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Abstract—A new mechanism for heating the electron component of plasmas formed upon the application of a
superintense ultrashort laser pulse to atomic clusters is proposed. Clusters considered here consist of deuterium
atoms. Upon the emission of a large number of electrons, an irradiated cluster, which acquires a positive charge,
explodes (Coulomb explosion). Deuterons that are ejected as the result of this possess high kinetic energies, so
that collisions between them can result in 3He formation accompanied by neutron emission. The new mecha-
nism of the heating of the electron plasma from clusters is based on the conjecture that, when an ionization elec-
tron is reflected from the inner surface of the cluster ion in the presence of a laser field, it predominantly absorbs
(rather than emits) laser photons. © 2001 MAIK “Nauka/Interperiodica”.
The nuclear reaction d + d  3He + n requires
high kinetic energies of the deuterons involved for their
Coulomb repulsion to be overcome. This energy can be
estimated as 1/4Rd , where Rd = 1.96 fm is the deuteron
radius (hereafter, we use the system of atomic units,
where e = me = " = 1), so that it amounts to 180 keV.
The cross section for the reaction in question depends
only slightly on the deuteron kinetic energy, its value in
the energy region around 200 keV being 0.01 b. The
energy of the emitted neutron is 2.45 MeV.

Deuterons of such high kinetic energies can be pro-
duced in the explosion of deuterium clusters exposed to
an ultrashort laser pulse of intensity in excess of 1015–
1016 W/cm2. Deuterium clusters have a spherical shape
and consist of a few hundred deuterium atoms bound
together by weak attractive Van der Waals forces.
Therefore, their density is much lower than typical den-
sities of solids.

When such clusters are irradiated with an intense
laser pulse, deuterium atoms in a cluster are ionized.
Since the intensity of the laser pulse exceeds the corre-
sponding quantities for atomic fields and since the laser
field penetrates freely in the cluster interior (the thick-
ness of the skin layer is much greater than cluster
dimensions), almost all deuterium atoms are ionized
before the termination of the laser pulse. Part of free
electrons generated in this way begin to escape from
the cluster through its surface. This continues until the
positive charge of the cluster ion formed attains a value
so large that the kinetic energy of electrons is insuffi-

  * e-mail: krainov@cyberax.ru
** e-mail: smirnov@imp.kiae.ru
1) Russian Research Centre Kurchatov Institute, pl. Kurchatova 1,

Moscow, 123182 Russia.
1063-7788/01/6404- $21.00 © 20585
cient for overcoming the Coulomb field of this cluster
ion. This Coulomb field tends to pull the electrons in
the cluster again. All this occurs within the laser-pulse
duration of τ = 30–50 fs. Because of Coulomb repul-
sion, deuterons in the charged cluster ion fly apart over
this time interval for a distance of about the cluster
diameter. After the termination of the laser pulse, the
divergence of the deuterons continues. This is the
explosion of a cluster, and it can generate deuterons
with energies in excess of the above value of 200 keV.
As a result, there can occur the fusion of two deuterons
emitted from different cluster ions (in addition to the
aforementioned channel, there is also the channel d +
d  t + p), which was observed experimentally in [1].
For a cluster ion of charge Z = 1000 and initial radius
R = 25 A (it is precisely this mean radius of deuterium
clusters that was recorded in [1]), the mean kinetic
energy of emitted deuterons can be estimated at Z/R ~
2.5 keV. This value complies with the data from the ear-
lier experiment reported in [2]. However, the energies
of individual deuterons can take values that substan-
tially exceed the above mean value and which are suf-
ficient for overcoming the Coulomb barrier for the
fusion of two deuterons. In the deuterium plasma
formed, deuterons undergo multiple collisions with one
another, which results in thermalization (the concentra-
tion of deuterons in the experiment reported in [1] was
1.5 × 1019 cm–3).

Of course, there are only few deuterons with ener-
gies Ö . 200 keV. According to the Maxwell distribu-
tion, their fraction at temperature Td = 2.5 keV is as
small as exp(–E/Td) ~ 10–35. However, deuterons with
subbarrier energies of 50 to 100 keV can fuse success-
fully by means of quantum tunneling through a Cou-
lomb barrier, which is low in this case. For example,
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Ditmire et al. [1] observed about 104 neutrons from the
reaction d + d  3He + n per laser pulse.

From the aforesaid, it follows that, in order to imple-
ment the fusion of deuterons, it is necessary that the
kinetic energy of electrons formed within a cluster as
the result of ionization by the field of a laser pulse be as
high as possible, since this ensures a higher charge of
the resulting cluster ion. The most popular mechanism
for increasing the kinetic energy of ionization electrons
is the following. At the instant of ionization, the kinetic
energy of electrons does not exceed a few eV. An elec-
tron that escapes from a deuterium atom collides with
positively charged deuterons. In the field of laser radia-
tion, it acquires energy—this is the so-called inverse
bremsstrahlung effect [3]: an electron can either absorb
or emit a laser-field photon, but the probability of
absorption is somewhat higher than the probability of
emission. For slow electrons, the probability of the
inverse bremsstrahlung effect was calculated in [4]. Of
course, electron–electron collisions also occur, but they
do not change the electron energy. The electron temper-
ature increases adiabatically with time.

The probability of an elastic electron–deuteron col-
lision is given by the expression

(1)

[T is the electron temperature, N is the concentration of
deuterons in a cluster, and lnΛ is the Coulomb loga-
rithm (equal to about 10 in the problem being consid-
ered)], which is well known from physical kinetics [5].
At temperature T = 1 keV, which was recorded experi-
mentally in [1], and the deuteron concentration of N =
1021 cm–3, this probability is about 0.001 1/fs. Thus, no
electron–deuteron collision occurs over the duration of
the applied laser pulse; that is, the above mechanism for
enhancing the electron temperature is inoperative for
deuterium clusters. However, it is a dominant mecha-
nism for metal clusters, where the concentration of atoms
is much higher (close to concentrations in solids) and
where the nuclear charge Z' is much greater than unity
[the probability in Eq. (1) is proportional to (Z')2] [6].

In a deuterium cluster ion, ionization electrons fly
freely from one cluster surface to another (they can
hardly escape from the cluster because of a large posi-
tive charge that the cluster has acquired owing to the
emission of preceding electrons). For the probability of
electron–electron collisions, we have the same estimate
given by (1) as for electron–nucleus collisions. Under
the above conditions, the inner surface of a cluster ion
is an ideally reflecting surface for free electrons within
the cluster. In the absence of a laser field, the energy of
the reflected electron would obviously be equal to the
energy of an incident electron. In the presence of a laser
field, however, the electron can absorb or emit a laser-
radiation photon. On average, the probability of
absorption is higher than the probability of emission
[3], the mean energy increment per collision being

wed
4 2πN Λln

3T3/2
-----------------------------,=
equal to the ponderomotive (vibrational) energy F2/4ω2

of an electron in the laser-radiation field [7, 8]; here, F
is the amplitude of the electric-field strength in a laser
pulse, while ω is the laser-radiation frequency. Of
course, this energy is small in relation to the above ther-
mal energy of electrons; that is, the energy is enhanced
in small portions. For the intensity of 1015 W/cm2 and a
typical laser-photon energy of ω ~ 1.5 eV (the laser-
radiation wavelength was 820 nm in the experiment
reported in [1]), we find that the ponderomotive energy
is about 50 eV.

The rate at which the thermal energy 3í/2 of an
electron grows is determined from the balance equation

(2)

where 2R is the cluster diameter (the distance that a free
electron travels between two opposite points of the
cluster surface), while v = (3T)1/2 is the thermal veloc-
ity of electrons. The phenomenological coefficient η,
which is much less than unity, considers that, in fact,
the collision between an electron and the cluster-ion
surface is not elastic and that the direction of the
strength of the electric field in the laser wave does not
coincide with the direction of electron motion. In the
following, we set η = 0.1.

Integrating Eq. (2) with respect to time, we find that
the temperature of electrons upon the termination of the
laser pulse is

(3)

where τeff is the effective time over which the field
strength F in the laser pulse is close to the amplitude
(maximum) value. In deriving Eq. (3), it was also
assumed that the initial energy of an ionization electron
is small in relation to its final energy. The distribution
of the laser-pulse intensity in time is close to a Gaussian
distribution, but we retain only the quasiplanar segment
of this distribution at its top and denote by τeff the width
of this moderately narrow segment. For metal clusters,
similar estimates obtained by considering collisions
between electrons and atomic ions within a cluster can
be found in our review article [9].

Substituting the laser-radiation-intensity amplitude
of 1015 W/cm2, the frequency of ω = 2 eV, and the effec-
tive pulse duration of τeff = 10 fs into (3), we obtain the
final electron temperature of T = 5 keV. This value com-
plies with the experimental estimates of the electron
temperature for various cluster ions [10, 11] and is on
the same order of magnitude as the potential barrier
Z/R, which opposes the escape of an electron from the
cluster ion. Of course, the assumption that electrons are
reflected elastically from the inner surface of the cluster
is based on the inequality T ! Z/R. Therefore, the above
estimates are quite rough.
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Atomic ions with energies up to 1 MeV [12, 13] and
electrons with energies up to 3 keV were observed in
experiments where argon and xenon clusters exploded
under the effect of ultrashort laser pulses of intensity
about 1016 W/cm2. Such high ion energies (much higher
than deuteron energies) were due to large charges of
xenon and argon atomic ions (xenon ions of charge as
large as +40 were observed). We note that, in cluster
explosions caused by Coulomb repulsion, the hydrody-
namic expansion of the cluster plasma also contributes
to the generation of high-energy atomic ions, but its
role is less significant than the role of Coulomb repul-
sion.

Clusters of deuterium atoms should be preferred to
polyethylene targets containing deuterium, because
only some 100 neutrons from deuteron fusion were
observed in the second case per laser pulse [14].

In summary, we can conclude that the induced
absorption of laser-radiation photons at the instant of
free-electron reflection from the inner surface of a clus-
ter ion is a dominant mechanism for the enhancement
of the electron temperature in experiments where deu-
terium clusters are exposed to an ultrashort laser pulse.
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Abstract—We review some possible improvements of mean-field theory for application to nuclear-binding
systematics. Up to now, microscopic theory has been less successful than models starting from the liquid drop
in accurately describing the global binding systematics. We believe that there are good prospects for developing
a better global theory, using modern forms of energy-density functionals and treating correlation energies sys-
tematically by the RPA. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

An important goal of nuclear theory is to predict
nuclear-binding energies. While mean-field theory
offers the most fundamental basis to understanding
nuclear structure, paradoxically it has not been as suc-
cessful as other approaches in making a global fit to
nuclear-binding energies. The most accurate theory of
nuclear-binding systematics [1] starts from the liquid-
drop model and treats shell effects perturbatively. It fits
the binding energies with an RMS deviation of 0.67 MeV,
taking 15 free parameters and a similar number of fixed
parameters to achieve the fit. No such systematic study
with so many parameters has been attempted in a
purely microscopic approach, but there are a number of
partial studies, beginning with the pioneering work of
Vautherin and Brink [2], using an energy functional
based on the Skyrme interaction. Noteworthy recent
papers using Skyrme interactions are by Patyk et al. [3]
and by Brown [4]. Patyk et al. found that Skyrme inter-
actions taken from the literature give RMS errors
greater than 2 MeV. This level is also found for the
Gogny interaction, which unlike the Skyrme has a finite
range. Brown recently made a new Skyrme fit to
closed-shell nuclei, including radii and spectroscopic
properties in the fitting [4]. He found an RMS deviation
of 0.8 MeV for the 10 nuclei he considered, encourag-
ing the hope that deviations below 1 MeV might be
reached microscopically. Of course, open-shell nuclei
have significant correlation energies, which must be
included. We discuss how this might be done in Section
3 below. Another problem is the choice of energy-den-
sity functional, and there may be reason to use other
forms than the Skyrme or finite-range generalizations.
This is discussed in the next section.

* This article was submitted by the authors in English.
1063-7788/01/6404- $21.00 © 20588
2. NEW FORMS FOR THE ENERGY 
FUNCTIONAL

Some perspective on the energy functional can be
obtained from the analogous problem in condensed-
matter physics. Correlation effects are rather mild in
the many-electron problem, and the mean-field
approach is very successful. The energy functional
analogous to the Skyrme is called the local-density
approximation (LDA), and it is widely used to calculate
structures of many-atom systems. Its accuracy for
chemical purposes is inadequate, however. For exam-
ple, in a comparison of different functionals, Perdew
et al. [5] noted that the LDA had a mean absolute error
of 1.4 eV in a sample of small molecules with binding
energies in the range 5–20 eV.1) Two refinements of the
energy functional, going beyond the LDA, make a dra-
matic improvement in the quality of agreement. The
first refinement is to include a term in the energy func-
tional that depends on the gradient of the density. Gra-
dient terms are already present in the Skyrme interac-
tion, but, in the electron system, improvement only
appears with a nonlinear functional form of the gradi-
ent term,

(1)

The mean absolute error decreases by a factor of 4, to
0.35 eV, when this term is added.2) The other improve-
ment is to allow the functional to depend on the kinetic-
energy density τ, as well as on the local density n(r).
This also is a familiar feature of the Skyrme interaction,
but for the electron case, τ is combined with the ∇ n
dependence in Eq. (1). The resulting mean absolute
error is reduced by almost a factor of 3, which gives a
final mean absolute error of 0.13 eV.

1)It should be mentioned, however, that the LDA energy functional
is constructed ab initio without fitting binding data.

2)Again, no free parameters are added with this term; the functional
form and dependences on ∇ n and τ are constructed to simulate
the nonlocality of the exchange.

e n ∇ n,( ) f n( )
1 a ∇ n/n( )2+
--------------------------------.∼
001 MAIK “Nauka/Interperiodica”



        

MEAN-FIELD THEORY FOR GLOBAL BINDING SYSTEMATICS 589

                                  
The nuclear problem is different from the electron
problem in one important respect. In the latter, much of
the loss of accuracy is due to the exchange potential,
which is intrinsically nonlocal, but which must be
treated in a nearly local approximation for computa-
tional reasons. In contrast, in the nuclear problem the
strong interaction is short-range, implying that the
exchange is also short-range and thus suited to local
approximations. Nevertheless, it might be that more
complicated functional forms such as Eq. (1) could be
useful in the nuclear problem. Indeed, this kind of gen-
eralization was examined by Fayans [6]. He used such
terms in an energy functional that was fit to 100 spher-
ical nuclei. He obtained an RMS binding error of
1.2 MeV, a factor of 2 better than the Gogny or the pub-
lished Skyrme functionals.

3. CORRELATION ENERGY

As mentioned earlier, in open-shell nuclei the corre-
lation energy associated with nearly degenerate config-
urations can be of the order of several MeV, so the sin-
gle-configuration mean-field approximation is not
accurate enough for global energy systematics.

We believe that the following correlations should be
considered explicitly in the theory:

center-of-mass delocalization,
quadrupole deformations,
pairing.

These are obvious correlations associated with symme-
try breaking in the mean-field Hamiltonian. Transla-
tional invariance is always broken in finite systems, and
rotational invariance is often broken as well. Pairing
treated by BCS theory violates particle-number conser-
vation.

How important are these correlations to the energet-
ics? For the center of mass, the correlation energy can
be estimated in the harmonic-oscillator model (but see
below) as 3"ω0/4 ≈ 30/A1/3 MeV. The resulting magni-
tude of several MeV is certainly much larger than the
allowable error in a global mass theory. However, the
energy varies very smoothly and one could question
whether it needs to be treated explicitly as a correlation
energy or whether its effect can be absorbed in the
parameters of the mean-field energy functional. The
latter might not be the case because the mean-field
functional determines most directly the leading terms
in the liquid-drop expansion, varying as A and A–1/3.
One should not use it to simulate a completely different
A dependence. This argument, and some mean-field
calculations to support, were given recently by Bender
et al. [7].

The correlation energy associated with the deforma-
tions may be thought of as the energy gained by pro-
jecting the states of good angular momentum out of the
deformed intrinsic state that contains many angular
momenta. Its magnitude can be quite large on our accu-
racy scale of hundreds of keV. For example, the nucleus
PHYSICS OF ATOMIC NUCLEI      Vol. 64      No. 4      2001
20Ne has a Hartree–Fock ground state close in structure
to the [8, 0] SU(3) state of the harmonic oscillator.
Combining probabilities of different angular states with
the energies of the states derived from the experimental
spectrum, one can easily show that the energy gained
by the projection is of the order of 4 MeV. A similar
number was obtained recently in the projected mean-
field calculations of 24Mg by [8]. Thus, this correlation
energy should be included with an accuracy of 10% or
better to achieve the desired accuracy of the mass the-
ory.

The situation with pairing is less severe. It is cer-
tainly necessary to include pairing in a theory of masses
just to get realistic odd–even mass differences, but the
need to include correlation effects beyond the Hartree–
Fock–Bogolyubov theory is less clear. With certain
simplified pairing interactions, the pairing Hamiltonian
can be solved exactly, without making the BCS approx-
imation [9]. The error in the BCS energy due to the
number nonconservation is of the order of 0.5 MeV
([10], Table 11.1). This might be significant in the glo-
bal mass theory, and we shall include it in our discus-
sion.

There are many ways in which correlation energies
can be calculated. The most popular one seems to be
the obvious method in which the eigenstates of the
symmetry are projected out of the mean-field wave
function. If the energy minimization is carried out after
the projection, this method is rather costly to use and
probably not suitable for a global mass theory. For a
global theory, it is important that the method be simple
computationally and also that it be systematic, applica-
ble in principle to all possible mean-field solutions.
Particularly important is that it does not introduce a dis-
continuity when the mean-field solution changes its
character. In the systematic development of many-parti-
cle perturbation theory, the leading term beyond the
mean-field approximation gives the correlation energy as
an integral over the RPA excitation modes. In a finite sys-
tem, the RPA correlation formula is given by [10, 11]

(2)

where ωi is the (positive) frequency of the RPA phonon
and A is the A matrix in the RPA equations. This
approach was first proposed by Friedrich and Reinhard
[12]. It seems to us that this formula is well suited to the
requirements we need for a systematic mass theory. We
shall first argue that the formula is adequate in principle
and then take up the issue of computational feasibility.
In the next section, we summarize experience with sim-
ple model Hamiltonians that show that Eq. (2) is more
accurate than commonly used projection techniques or
is easier to calculate. In the section following, we
examine specific algorithms for calculating nuclear-
binding energies efficiently.

Ecorr
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4. EXPERIENCE FROM SIMPLE MODELS

A. Center-of-Mass Localization

The Hamiltonian of two particles interacting

through a quadratic potential V(r12) = /2 is
solvable exactly and also has an analytic mean-field
approximate solution. One might guess that the RPA
correlation energy might give the correction exactly,
because one can derive the RPA by considering qua-
dratic approximations in a path integral formulation of
the problem. This is indeed the case [13]. The RPA
spectrum has two states, a zero-frequency mode and a
finite-frequency mode. Substituting these frequencies
into Eq. (2), one finds that the correction to the mean-
field energy "ω0 is just what is needed to give the exact

energy for the total, "ω0/ .
It is interesting to compare the RPA approach with

other ways of dealing with correlation energies associ-
ated with broken symmetries. In the case of center-of-

mω0
2r12

2

2

2

1

0
1 2

χ

ωRPA/e

0

–10

0
–20

2 4 χ

Eg.s./e

0

Fig. 1. RPA frequencies in the three-level Lipkin model ver-
sus χ ≡ V(N – 1)/e. The number of particles N is chosen to
be 20.

Fig. 2. Comparison of the ground-state energies in the three-
level Lipkin model that were obtained by several methods.
The solid line is the exact numerical solution. The ground-
state energy in the Hartree–Fock approximation is denoted
by the dashed line, while the dot-dashed line takes into
account the RPA correlation energy in addition to that.
mass motion, a recipe that is often used is to subtract
the expectation value of the center-of-mass operator
from the mean-field energy (e.g., in [7]). With our
Hamiltonian, this prescription gives

(3)

The total EMF + Ecm = 3"ω0/4 is not exact, although it is

close to the exact energy, "ω0/ . This study shows
that, for this first kind of correlation, the RPA formula
provides a better method to calculate the associated
energy.

B. Deformations

When the mean-field solution is deformed, a contin-
uous symmetry is broken. As in the above example, a
signature of the broken continuous symmetry is a zero-
frequency RPA mode. A model to test theories of the
correlation energy should thus have a corresponding
continuous symmetry. We constructed a model with
those properties in [13], making a generalization of the
Lipkin model. In the original Lipkin model, which has
been studied for 40 years, one considers many distin-
guishable particles, each of which can be in one of two
states. For that model, the ground-state correlation was
studied by Parikh and Rowe [14]. They compared vari-
ous methods for treating the correlation energy, finding
that the RPA formula worked best. In [13], we extended
the Lipkin model to a three-state wave function to get
sufficient degrees of freedom for a continuously broken
symmetry. The symmetry is imposed on the Hamilto-
nian by requiring it to be invariant under transforma-
tions within two of the three states. The two degenerate
upper states could be thought of as the first excited
states of a two-dimensional harmonic oscillator, thus
allowing deformed wave functions in two dimensions.
As expected, when the mean-field solutions and their
RPA excitations are calculated, one sees zero frequency
when the mean-field solution is deformed. There is also
another mode at a finite frequency. In this case, the first
mode corresponds to rotational motion perpendicular
to the symmetry axis, while the second mode corre-
sponds to a beta vibration. In the “spherical” phase, the
RPA frequencies for the modes are identical and have a
finite frequency. Figure 1 shows the RPA frequencies
versus χ ≡ V(N – 1)/e for the particle number N = 20,
where V and e are the strength of the interaction and the
single-particle energy, respectively. One can clearly see
the discontinuity at the critical point χ = 1.

Figure 2 compares the ground-state energies χ that
were obtained by several methods. The number of par-
ticles N is set to 20. The solid line is the exact solution
obtained by numerically diagonalizing the Hamilto-
nian. The dashed line is the ground-state energy in the
Hartree–Fock (HF) approximation. It considerably
deviates from the exact solution through the entire
range of χ shown in the figure. The dot-dashed line

Ecm MF
1
2
---

p1 p2+( )2

2m
------------------------ MF–

1
4
---"ω0.–= =

2
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takes into account the RPA correlation energy in addi-
tion to the HF energy. Clearly, the RPA significantly
improves the results. The corresponding energy as a
function of the number of particles is shown in Fig. 3.
One sees that the RPA correlation energy is reliable for
large N, but it may be problematic when there are only
a few valence particles. That situation is further compli-
cated by the pairing interaction, which may dominate
the mean-field solution for N = 2.

C. Pairing

Pairing is the final example of a long-range correla-
tion that significantly affects the energy. The mean-field
approach leads to BCS theory, whose ground state has
an indefinite particle number. An early study by Bang
and Krumlinde [15] showed that the RPA formula
reproduces the exact correlation energy rather well in a
schematic model. The RPA method has in fact been
used in realistic models of deformed nuclei [16]. The
RPA correlation in the normal phase was studied in [17]
by using the self-consistent version of RPA.

Kyotoku et al. [18] derived an analytic solution for
the model first proposed in [19], fermions in a space of
two nondegenerate j shells interacting with a pairing
Hamiltonian. They were able to solve the model exactly
and then compared the energy with several approxi-
mate methods to calculate the correlation corrections to
the BCS energy. They found that the ground-state
energy in the BCS + quasiparticle RPA (QRPA) coin-
cides with the exact solution at the leading order of an
expansion in 1/N, N being the number of particles in the
system. None of the other methods obtained the correct
coefficient of the leading-order contribution. For exam-
ple, the well-known method of Lipkin and Nogami [20]
gave a result that is only correct in the limit of a strong
pairing force (see Table I in [18]).

In [21], we specifically compared the RPA with the
computationally attractive alternative methods, testing
the behavior across shell closures and considering both
even- and odd-N systems. Taking, as a test case, the two-
level problem with a level degeneracy of Ω = 8 and a
Fermi energy half-way between the levels, we found that
the RPA was much superior to the Lipkin–Nogami
method over most of the range of pairing strengths. This
behavior is consistent with the result of [18], as we dis-
cussed above. However, right at the phase-transition
point, the two methods had comparable errors of opposite
sign.

We therefore also looked at a more realistic situa-
tion, varying the particle number N rather than the
interaction strength G. We consider the pairing energy
in oxygen isotopes, taking the neutron 1p and 2s–1d
shells as the lower and higher levels of the two-level
model. The pair degeneracy Ω thus reads Ω1 = 3 and
Ω2 = 6 for the lower and the upper levels, respectively.
The number of particles in a system is given by N = A –
8 – 2 for the AO nucleus. We assume that the energy dif-
PHYSICS OF ATOMIC NUCLEI      Vol. 64      No. 4      2001
ference between the two levels e is given by e = 41A–1/3

and the pairing strength is G = 23/A. The upper panel of
Fig. 4 shows the ground-state energy as a function of A.
In order to match with the experimental data for the 16O
nucleus, we have added a constant –72.8 MeV to the
Hamiltonian for all the isotopes. The exact solutions
are denoted by the filled circles. The deviation from the
BCS approximation (the dashed line) is around 2 MeV

Eg.s./e

0

–5

–10

–15
3 7 1511

N

Fig. 3. The ground-state energy of the three-level Lipkin
model as a function of N for χ = 5. The meaning of each line
is the same as in Fig. 2.
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Fig. 4. The ground-state energy Eg.s. (the upper panel) and
the pairing gap (the lower panel) for oxygen isotopes esti-
mated with the two-level model versus the mass number.
The exact results are denoted by the filled circles. For the
pairing gap in the Lipkin–Nogami method, λ2 is added to
the pairing gap ∆.
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for even-A systems and is around 1.2 MeV for odd-A
systems. This value varies within about 0.5 MeV along
the isotopes and shows relatively strong A dependence.
One can notice that the RPA approach (the dot-dashed
line) reproduces the exact solutions quite well. In con-
trast, the Lipkin–Nogami approach (the solid line) is
much less satisfactory and shows an A dependence dif-
ferent from the exact results. The pairing gap ∆ in the
BCS approximation and in the Lipkin–Nogami method
is shown separately in the lower panel of Fig. 4. For the
Lipkin–Nogami method, we show ∆ + λ2, which is to be
compared with experimental data [20]. Here, the Lip-

kin–Nogami Routhian is defined as  –  – ,

 and  being the nuclear Hamiltonian and the parti-
cle-number operator, respectively. The closed-shell
nucleus 16O and its neighbor nuclei 15, 17O have zero
pairing gap in the BCS approximation, and the Lipkin–
Nogami method does not work well for these nuclei.
On the other hand, the RPA approach reproduces the
correct A dependence of the binding energy. Evidently,
the RPA formula provides a better method to compute
correlation energies than the Lipkin–Nogami method,
especially for shell closures.

5. IS RPA COMPUTATIONALLY FEASIBLE?

We now discuss the practicality of using Eq. (2) to
calculate the correlation energy. In general, the RPA is
computationally more demanding than the mean-field
minimization for the ground state by an order of mag-
nitude or more. One must diagonalize an RPA matrix
whose dimensions are 2D × 2D, where D is the number
of particle–hole configurations. This number can be
huge if one is interested in deformed nuclei or heavy
spherical nuclei. A widely used way around this is to
take a residual interaction of a separable form. Then,
the matrix equation to be solved has the dimension of
the rank of the separable interaction; with a single term,
it is just the well-known algebraic dispersion relation.

Given a separable interaction, there are several effi-
cient ways to get the RPA correlation energy (2) with-
out explicitly calculating all the roots of the dispersion
relation. One method was recently proposed by Dönau
et al. [22] and also by Shimizu et al. [23]. Instead of
directly calculating the RPA correlation energy accord-
ing to Eq. (2), one carries out an integration of a func-
tion that depends on a free-response function and its
first derivative in the complex energy plane. An advan-
tage of this method is that one can choose the integra-
tion path so that the integrand is smooth enough, and
thus the mesh of the numerical integration along this
path can be much larger than the actual energy intervals
of the RPA solutions ωα. This method is particularly
useful when a separable interaction is used so that the
free-response function and its first derivative are ana-
lytically evaluated.

Ĥ λ N̂ λ2N̂
2

Ĥ N̂
Alternatively, one can also use the Lanczos-type
method proposed in [24] to evaluate the RPA correla-
tion energy. As we show below, this method quickly
converges when the interaction is separable. The idea is
to define at the outset a characteristic operator associ-
ated with each kind of correlation. That operator
applied to the mean-field ground state gives an excited
state, which is taken as the first vector in a space built
up by applications of the Hamiltonian to existing states.
Equation (2) is then evaluated in the restricted spaces,
and the method would be computationally feasible if
the convergence is rapid enough.

Suppose the matrices A and B in the RPA equation
are given by

(4)

(5)

where i and j label particle–hole configurations and fi is

normalized as  = 1. For such an interaction, the
collective operator can be chosen as ψi = fi . Notice that
f is an eigenvector of the matrix B with the eigenvalue
κ and also that Bφ = 0 for any vector φ that is orthogonal
to f. Starting from the initial vectors |X1〉  = |ψ〉 and |Y1〉  =
0, the Lanczos manipulation [24] transforms the matri-
ces A and B into the form 

(6)

The Lanczos basis for the backward-scattering ampli-
tude |Yi 〉  remains all zero in the manipulation, and thus
the transformed matrix B' has only one element that is
not equal to zero. This is not generally the case for non-
separable interaction. Note that the matrix B' measures
the degree of correlation in the transformed space.
Since it has a very simple form, the correlation energy
evaluated in the restricted space converges very rapidly.

We have tested the method with RPA matrices given
by Eq. (5) with ei = e0 + (i – 1)∆e. The method works
very well when there is a gap in the particle–hole spec-
trum. For example, if we take a model with D = 20 par-
ticle–hole states and other parameters fi = 1, ∆e = e0/D,
and κ = –0.035e0, the RPA spectrum has a collective
state at ω1 = 0.145e0. The correlation energy from
Eq. (2) with all eigenvalues is Ecorr = –0.542e0. The sin-
gle-state approximation starting from the state ψi =

fi/  is only off by 20%. The two-state approximation
has an accuracy of 1%. The calculational effort to get
these numbers is essentially that of three applications
of the Hamiltonian to the ground-state single-particle
wave function, much less than the effort to get the con-

Aij eiδi j, κ fi f j ,+=

Bij κ fi f j ,=

f i
2

i∑

A'

e1 a1 0  

a1 e2 a2  

0 a2 e3  

   … 
 
 
 
 
 
 

, B'

κ 0 0  

0 0 0  

0 0 0  

   … 
 
 
 
 
 

.= =

… …
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verged wave functions in the Hartree–Fock minimiza-
tion (see table).

From our point of view, the problem is then to define
a reliable separable interaction that can be used glo-
bally in RPA calculations. For particle–hole residual
interactions, a few possible ways to construct a separa-
ble interaction have been proposed on the basis of the
self-consistency argument [25–31]. The basic argu-
ment is that the collective motions primarily result in
the displacement of the nuclear surface; thus, the tran-
sition potential can be generated by displacing the self-
consistency potential associated with the ground-state
density. In equations, the transition density has a form
locally given by the gradient of the static density, and
the transition potential is the corresponding gradient of
the static potential:

(7)

(8)

where Ω is an angle giving the direction to an element
of the nuclear surface. The separable residual interac-
tion then has the shape of (8) and the required magni-
tude to satisfy (7). Thus, we have

(9)

It is amusing to compare the above self-consistent
definition with the microscopic particle–hole interac-
tion proposed by Migdal [32]. For the above transition
density, his transition potential would be given by

(10)

The two transition potentials for 208Pb are compared in
Fig. 5. We generate the static potential U0 using the
velocity-independent part of the Skyrme interaction
with SIII parametrization, and we use a Fermi distribu-
tion for a static density ρ0(r). The parameters of the
Migdal interaction are given in [33]. We see that the
two transition potentials have a similar surface-peaked
radial dependence.

The above self-consistency argument can be applied
very easily to the translation mode, where a(Ω) = cosθ
for translations in the z direction. For the rotational
degrees of freedom, we would use the displacement
fields associated with the five components of the qua-
drupole operator, i.e., aµ(Ω) = Y2µ(Ω), µ = –2, –1, 0, 1,
2. Note that the RPA correlations are to be evaluated for
spherical and for deformed nuclei; a major point of the
approach is that the theory applies to all cases.

It is not so simple to construct a global, separable
pairing interaction. The commonly used forms for the
pairing interaction give divergent results without a cut-
off in the space of states included in the BCS calcula-

δρ a Ω( )
dρ0

dr
--------,=

δV a Ω( )
dU0

dr
----------,=

v r1 r2,( ) δV Ω1 r1,( )δV Ω2 r2,( )/ drδVδρ.∫=

δV r( ) V0 f ex f in f ex–( )
ρ0 r( )
ρ0 0( )
-------------+ 

  δρ r( ).=
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tion. Here, we propose a nonlocal surface-peaked sep-
arable form:

(11)

The pairing matrix elements of this interaction are to be
evaluated as

(12)

This form is inspired by recent observations that the
pairing is essentially a surface phenomenon [34–36]. A
similar surface-peaked separable interaction was used
for the particle–hole channel in [37]. We have tested the
surface-peaked separable pairing interaction (11) by
comparing it with the density-dependent delta interac-
tion proposed in [38]. The problem of the cutoff is
much less severe with this interaction than with a con-
tact interaction, because the smoothness of dU0/dr cuts
off the radial integrals. Our preliminary calculations
show that the separable pairing interaction can repro-
duce results of the density-dependent pairing interac-
tion reasonably well once the strength χ is adjusted. For

v r1r2 r1' r2',( ) δ r1 r2–( )δ r1' r2'–( )=

× χ
2
---

dU0

dr1
----------

dU0

dr1'
---------- Yλµ r̂1( )Yλµ* r̂1'( )

λµ
∑– .

p1 p1 v p2 p2〈 〉

=  
χ
2
--- p1

dU0

dr
----------Yλµ r̂( ) p1 p2

dU0

dr'
----------Yλµ* r'ˆ( ) p2 .

λµ
∑–

40

VSkyrme

dVSkyrme/dr
dρ/dr × VMigdal

0

–40

–80
0 5 10 15

Arb. units

r, fm

Fig. 5. Comparison between transition potentials obtained
with the Skyrme and Migdal interactions.

Convergence characteristics of the Lanczos algorithm

Iteration number Ecorr/e0 ω1/e0

1 –0.2211 0.3326

2 –0.2688 0.1539

3 –0.2710 0.1454

Exact –0.2711 0.1451
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the purpose of the global binding systematics, the A
dependence of the strength has yet to be sorted out.

6. SUMMARY
Our goal is to develop a better microscopic theory

for the nuclear-binding systematics. In this paper, we
argued that the RPA approach provides a promising and
computationally tractable way to include correlation
effects in a global model, going beyond the mean-field
approximation. We have shown that the HF + RPA
approach indeed works well using simple Hamiltonian
models for the correlation associated with broken
mean-field symmetries, namely, the center-of-mass
localization, rotation, and pairing. The RPA equation
can be easily solved for a separable residual interaction.
For example, the Lanczos method is quite efficient to
solve the RPA equation for a separable interaction. This
contrasts to other popular computational methods such
as the generator-coordinate method and the variation-
with-projection method, which are rather complicated
to apply. A work is now in progress to tackle the nuclear
masses by using the HF + RPA approach discussed in
this paper.
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Abstract—The current status of the ∆I = 4 bifurcation in superdeformed bands is reviewed by making use of
a theoretical model based on the interaction of rotation and single-particle nucleon motion in nuclei with an
axial deformation. It is shown that the hexadecapole-type distortion of a nuclear shape by rotation is especially
important for explaining the phenomenon. The necessary condition for staggering is obtained from an analysis
of the nonadiabatic effect of rotation. This criterion is applied to 30 superdeformed bands in the mass region
around A ~ 150. An analysis confirms the configuration-dependence effect and allows us to discriminate
between single-particle states active and inactive for staggering. The consideration is based on the additivity of
the nonaxial hexadecapole moment, which plays a key role in the staggering phenomenon. © 2001 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

The ∆I = 4 bifurcation, or the ∆I = 2 staggering, is
a well-known mysterious phenomenon in the physics
of superdeformed (SD) bands. It is observed as regular
oscillations of the gamma-ray energy differences
against a smooth behavior. The amplitude of oscilla-
tions is approximately 100 eV (to be compared to a
transition energy of about 1 MeV), and the observation
of these oscillations is a good example of the experi-
mental potential of third-generation gamma-ray detec-
tor arrays, such as Eurogam and Gammasphere.
Although the phenomenon is of a small energy scale, it
has been of considerable interest, and much experimen-
tal and theoretical work has been devoted to it. The
motivation was furnished by a period of oscillations,
∆I = 4, that was unusual for nuclear physics and by
their long and regular character.

The first experimental indication of the staggering
phenomenon in the octupole vibrational band of 236U
was reported by Peker et al. [1], who observed oscilla-
tions of the differences

(1)

where Eγ(I) is the transition energy between the I + 2
and I levels, with I being the level spin. It was proposed
to describe the rotational energy in a band by the for-
mula

(2)

where ! and @ are the inertial parameters representing
the regular part of the energy. The last term splits the
normal ∆I = 2 rotational band into two ∆I = 4 subbands

∆Eγ I( ) Eγ I 2+( ) Eγ I( ),–=

E I( ) !I I 1+( )=

+ @I
2

I 1+( )2 … 1–( ) I 2+( )/2
B0,+ +

* This article was submitted by the authors in English.
1063-7788/01/6404- $21.00 © 20595
of spins I0, I0 + 4, I0 + 8, … and I0 + 2, I0 + 6, I0 + 10, …
by shifting them in opposite directions. Ten years later,
the phenomenon was discovered in the yrast SD band
of 149Gd by Flibotte et al. [2]. They found it more con-
venient to represent the effect by comparing the ∆Eγ(I)
values with a smooth reference calculated by the
expression

(3)

Afterward, other examples of staggering [3–8] were
identified, but no examples have been found that would
exhibit the ∆I = 2 staggering as regular and over so
large region of spins as the 149Gd(1) band.1) 

Several theoretical explanation of the phenomenon
were proposed [9–15]. It seems natural to explain the
∆I = 4 bifurcation by fourfold symmetry, whose role
was already mentioned in [1]. Hamamoto and Mottel-
son [9] and Macchiavelli et al. [10] postulated the exist-
ence of such symmetry with respect to the 3-axis (the
axis of symmetry). The nonadiabatic nature of nuclear
rotation requires an effective rotational Hamiltonian as
a power series in the body-fixed components (Iβ with
β = 1, 2, 3) of the spin operator. The symmetry of a sys-
tem imposes certain restrictions on the terms of this
series. For the C4v symmetry axis, the lowest order non-
axial operator in the Hamiltonian is proportional to

 +  (I± = I1 ± iI2). This operator means that there
are four preferred directions for the spin I (which cor-

1)As a rule, multiple SD bands in a nucleus are numbered accord-
ing to their intensities. Thus, the most intense yrast band is
labeled with 1.

∆Eγ
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respond to four minima of the rotational energy) in the
body-fixed frame (or four preferred orientations of the
nuclear shape with respect to the direction I in the
space-fixed frame). The tunneling of the spin between
these directions produces four almost degenerate states,
known as cluster states in molecular rotational spectra
[16]. The C4v cluster involves four states labeled with
the quantum numbers of this point-symmetry group.
The fact that the intrinsic shape has C4v symmetry
implies that the C4v quantum number of a cluster state
is determined by the intrinsic configuration. Of the four
states, only a single C4v eigenstate is therefore appro-
priate for the rotational band based on a given intrinsic
state. Because the position of a state in a cluster is alter-
nated with the quantum number I, the level energy of a
band has the regular ∆I = 4 oscillatory behavior in
accordance with Eq. (2).

Fourfold symmetry implies the existence of a non-
axial hexadecapole deformation of the nuclear surface.
However, calculations of the equilibrium shape for
nuclei exhibiting staggering within the Strutinsky [17,
18] and the Hartree–Fock–Bogolyubov [19] method
showed that the static deformation ε44 is too small to
generate ∆I = 2 staggering with an amplitude of exper-
imental value [20]. Another inherent difficulty of the
theory based on this tunneling mechanism was revealed
by one of the present authors (I.M. Pavlichenkov) and
Flibotte [11]. It is well known that, because of an
increase in the tunneling path, the splitting of cluster
levels decreases with increasing angular momentum
[16]. Therefore, it is difficult to fit the parameters of the
Hamamoto and Mottelson Hamiltonian to avoid a fast
damping of the staggering amplitude with increasing I,
but such damping has not been observed experimen-
tally. Important advances in testing this Hamiltonian
were made owing to the discovery [21] of the ∆I = 4
bifurcation in the SD bands 148Eu(1) and 148Gd(6),2)

two bands identical to 149Gd(1). The aforementioned
three bands in different nuclei show a striking similar-
ity in the staggering behavior; this immediately rules
out the explanation [15] of the phenomenon by band
crossing. Further, the high degree of correlation (about
0.1 keV over 12 MeV in excitation energy) between the
staggering patterns in these bands of three different
nuclei give sufficient grounds to conjecture that the
Hamiltonian parameters are independent of both spin
and nucleus. This observation was used in [23] to con-
strain the parameters that turned out to be inappropriate
for SD nuclei. The result indicated that a tunneling
mechanism of the Hamamoto and Mottelson type could
not explain the ∆I = 4 bifurcation. Another important
observation of [23] is the second triplet of bands
147Eu(1), 147Gd(4), and 148Gd(1) having the same sin-
gle-particle structures as the bands quoted above,
except that they lack a neutron in the positive-signature
N = 6 Nilsson orbital. Such a seemingly insignificant

2)The SD bands in 148Gd are numbered according to the scheme
proposed in [22].
change in the structures of these bands completely
destroys their staggering patterns. This experimental
fact is an excellent demonstration of the configuration
dependence, which offers the possibility of studying
the microscopic origin of the staggering phenomenon.

There is a more general cause of the ∆I = 4 bifurca-
tion. According to the approach proposed first in [2]
and confirmed later by the phenomenological treatment
in [11], a C4-symmetry perturbation may have a
dynamical origin. In [24, 25], this idea was formulated
at the microscopic level. In this theory, the operator

 +  of the rotational Hamiltonian is explained by
the coupling of rotation to the single-particle motion of
nucleons in an axisymmetric nucleus. The essential
ingredients of this coupling are two-body hexadecapole
interaction and nucleons occupying active orbitals,
which generate, due to rotation, a large nonaxial hexa-
decapole moment. The coupling distorts rotational
motion and may lead to staggering, provided that some
conditions depending, in particular, on the occupation
of the active orbitals are satisfied. The contribution of
the high-j intruder states to active orbitals is dominant.
For this reason, active orbitals were approximated in
[26] by the states of isolated intruder subshells. It was
shown that the staggering behavior of the SD bands in
A ~ 150 nuclei depends on the intruder configuration
π6mν7n with m protons (π) and n neutrons (ν) in the sub-
shells with principal quantum numbers 6 and 7, respec-
tively. This result explains the experimental observa-
tion that the staggering is not a universal characteristic
of SD bands. However, the simplified model being used
is not reliable for the SD bands because the intruder
subshells cannot be treated as isolated ones. It cannot
explain, for example, the aforementioned triplet of the
nonstaggering bands.

Interest in the staggering problem has been revived
upon the versatile analysis of experimental data that
was undertaken in [27, 28]. In particular, Haslip et al.
[28] presented a systematic survey and a statistical
analysis of the ∆I = 2 staggering in 19 SD bands of Eu
and Gd nuclei. This rendered an improvement of the
theory highly desirable. Here, the rotation-single-parti-
cle coupling model of the ∆I = 4 bifurcation is reformu-
lated in the context of a realistic shell-model potential.
The perturbation method developed in the theory of
nonadiabatic effects in nuclear rotational spectra [29–
31] is modified in Section 2 to derive the effective rota-
tional Hamiltonian featuring a C4v-symmetry term. It is
shown in Section 3 that the simple rotational regime of
this Hamiltonian may involve staggering. The neces-
sary condition of the staggering behavior is also
obtained. Orbitals that are active and inactive for stag-
gering and which are involved in the configurations of
the SD bands in the mass region around A ~ 150 are dis-
cussed in Section 4. There, we also estimate the param-
eters of the effective Hamiltonian. In Section 5, the
simple criterion found in Section 3 for the ∆I = 4
bifurcation is applied to 30 superdeformed bands of

I+
4

I–
4
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A ~ 150 nuclei. Our results are discussed and summa-
rized in Section 6.

2. EFFECTIVE ROTATIONAL HAMILTONIAN 
WITHIN THE CRANKING HARTREE–FOCK 

FORMALISM
Our consideration is based on the second quantized

Routhian

(4)

with the quadrupole and hexadecapole two-body inter-
actions of strengths χ2 and χ4, respectively. The cen-

tered-dot symbol denotes the scalar product  ·  =

 of the multipole-moment operators

(5)

where a+ and a are the particle creation and annihilation
operators. The first term in Eq. (4) is the single-particle
energy. The last two terms are cranking with the angu-
lar-momentum projections

(6)

They correspond to rotation about an arbitrary axis per-
pendicular to the 3-axis. For the sake of simplicity, we
ignore pairing interaction, whose role will be discussed
later.

Since all the numerical calculations performed so
far show the absence of a noticeable triaxial superde-
formation, it is reasonable to confine ourselves to the
axial case. Accordingly, we perform the canonical
transformation to the new single-particle functions |s〉 ,
which satisfy the self-consistent Schrödinger equation

(7)

where

(8)

is the shell-model Hamiltonian with the quadrupole and
hexadecapole deformed potentials, which are propor-
tional to the axial collective coordinates αλ0 =

(λ0)ns (ns are the nucleon occupation numbers of
the given rotational band); j± = j1 ± ij2; and ω± = (ω1 ±
iω2)/2. The energy in the rotating frame as a function of
frequencies ω+ and ω– is given by

(9)

H ' eikai
+
ak

1
2
--- χλ4̂λ

λ 2 4,=

∑–
i k,
∑ 4̂λ ω1J1– ω2J2,–⋅=

4̂λ 4̂λ

4λµ
* 4λµµ∑

4λµ i〈 |qλµ k| 〉 ai
+
ak,

i k,
∑=

Jβ i〈 | jβ k| 〉 ai
+
ak.

i k,
∑=

H0 ω+ j–– ω– j+–( ) s| 〉 εs s| 〉 ,=

H0 ê χλαλ0q̂λ0

λ 2 4,=

∑–=

qsss∑

% ' εsns
1
2
--- χλαλ0

2 1
2
--- χλαλµαλ µ–, .

λ µ 0≠,
∑–

λ
∑+

s

∑=
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The last term of this equation contains the nonaxial
collective coordinates

(10)

which are nonvanishing because the system density
matrix ρ in the representation of Eq. (7) is not axial due
to the cranking terms. Let us decompose these quanti-
ties into two parts

(11)

where  and Qλµ are, respectively, the perturbative
and nonperturbative nonaxial multipole moments
induced by rotation. The separation of multipole
moments is explained by the two types of the single-
particle states generating nonaxial moments: inactive
and active orbitals. The former are responsible for the
regular ω dependence of αλµ. It is possible to use per-
turbation theory to obtain this dependence for the first
quantity:

(12)

where  is the nth order correction to the density
matrix of the perturbative states resulting from the
cranking term of Eq. (7):

(13)

In performing corresponding calculations, we will uti-
lize the representation of nonrotating axially deformed
nuclei with the eigenfunctions satisfying the equation

(14)

It is important to note that the perturbation series for the
axial collective coordinates, αλ0, begins with the ω-

independent quantity , which is equal to the multi-
pole moment of nonrotating nucleus,

(15)

The active orbitals generate the nonaxial moments Qλµ,
which cannot be treated by perturbation theory and
should be evaluated with the wave functions of Eq. (7).

Due to the extreme regularity of the SD-band spec-
tra, the first two terms in Eq. (9) can be approximated
by the Harris formula

(16)

where %0 is the energy of nonrotating nucleus and

(17)

are the well-known coefficients of cranking expansion.
They depend on corrections to the density matrix of the

αλµ tr qλµρ( ), µ 2± 4,±,= =

αλµ α̃λµ Qλµ,+=

α̃λµ

α̃λµ tr qλµρ̃ 2( )( ) tr qλµρ̃ 4( )( ) …,+ +=

ρ̃ n( )

V ω+ j–– ω– j+.–=

ê χλαλ0
0( )

q̂λ0

λ 2 4,=

∑–
 
 
 

1| 〉 ε1 1| 〉 .=

αλ0
0( )

αλ0
0( )

tr qλ0ρ
0( )( ).=

εsns
1
2
--- χλαλ0

2

λ
∑ %0 2ω+ω–(– 4ω+

2ω–
2β,–≈+

s

∑

(
1
ω
----tr j1ρ

1( )( ), β 1

ω3
------tr j1ρ

3( )( )= =
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whole system. The decomposition in (11) and Eqs. (12)
and (16) allow us to obtain the expansion of the energy
(9) in the powers of the rotational frequencies ω+ and
ω– with the same accuracy as in Eq. (16),

(18)

Here, the coefficients ( and β are modified by the cen-
trifugal distortion of the axial collective coordinates
αλ0 . They are expressed in terms of the inertial param-
eters of Eq. (2) as (we assume " = 1)

(19)

where ( is the kinematical moment of inertia. The non-
axial terms of Eq. (18) arise from the quadrupole and
hexadecapole coupling of the active states with the
nonaxial distortion of the nuclear mean field. They are
proportional to the parameters

(20)

where the ω-independent quantities  are given by

(21)

It is important to emphasize that Eq. (18) is not a usual
low-ω expansion. Perturbation theory is used only for
part of orbitals, while an exact diagonalization is
employed for other. Thus, the method we have devel-
oped allows us to find correctly the nonaxial terms gen-
erating, as will be shown below, the staggering.

The next step is the transformation of the Routhian
(18) to the space-fixed-frame energy in terms of the
angular momentum by using the obvious expressions

(22)

For our purposes, we need only the rotational energy
with accuracy to within quartic terms in the angular
momentum. We start with the rotational frequencies ω+
and ω–, which can be obtained from the last of Eqs. (22)

as power series in I± /(. The small parameter /(
simplifies calculations. The result with a reasonable
accuracy is

(23)

where the term with the partial derivative is caused by
the ω dependence of the nonperturbative quantities Qλµ.
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These values and the first of Eqs. (22) allow us to obtain
the energy % as a power series in the angular momen-
tum components I+ and I–. Finally, we have to quantize
these components. The cranking approach allows us to
do this with an accuracy of their commutators. In order

to obtain correctly the term proportional to , we use
the time-reversal invariance and the D2-group symme-
try of the effective Hamiltonian (see [32]). The result
for an isolated rotational band is

(24)

where […]+ means an anticommutator and the parame-

ters  are the functions of I/(.

The effective rotational Hamiltonian (24) is
obtained by a SU(2) mapping from the original fermion
space to the rotor one. This method allows us to sepa-
rate the rotational and the single-particle motion at the
cost of nonadiabatic terms. For small spin I, when the
values Qλµ are close to zero, Eq. (24) is reduced to the
standard rotational Hamiltonian of axially symmetric

nuclei, which is a power series of the operator I2 – .
It is easy to show that such a Hamiltonian does not lead
to staggering. If a nucleus has a stable nonaxial defor-
mation 

 

ε

 

22

 

, the collective coordinates 
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22
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α

 

42

 

, and 

 

α

 

44

 

have 

 

ω

 

-independent parts by analogy with  [see
Eq. (15)]. The rotational Hamiltonian then has the form
of Eq. (24), but its nonaxial terms are greater than the
ones for axial nuclei. A similar Hamiltonian was con-
sidered in [13], where it was shown that it generates the
irregular 
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 = 2 staggering. For the 

 

ε

 

44

 

 deformation, 

 

α

 

44

 

is the only coordinate that involves an 

 

ω

 

-independent
part. Accordingly, the Hamiltonian has the 

 

C

 

4

 

v

 

-sym-
metric form used in [9].

3. SIMPLE ROTATIONAL REGIME 
WITH THE 

 

∆

 

I

 

 = 2 STAGGERING

The Hamiltonian (24) is not fourfold-invariant. The

terms with the operator  +  violate the 

 

C

 

4

 

v

 

 symme-
try. In order to prove that the nonaxial terms of the
effective Hamiltonian are responsible for the 

 

∆

 

I

 

 = 2
staggering, we consider the rotational regime with rota-
tion about an axis perpendicular to the symmetry axis.

Then, the terms proportional to  and  in Eq. (24)
are smaller than the nonaxial ones and the rotational
Hamiltonian takes the simplest form,
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with the inertial parameters ! and @ of its regular part
and the parameters of nonaxial terms

(26)

The nonaxial terms split a single band characteristic of
an axial nucleus in a series of bands that correspond to
different directions of the vector I. The Hamiltonian
(25) is adequate only for the description of the yrast
band, for which the angular momentum I is perpendic-
ular to the symmetry axis. All other bands are separated
from the yrast one by a large energy gap caused by the
small nonaxial deformation induced by rotation. They
are beyond the scope of our interest. The Hamiltonian
is invariant under the D2 point-symmetry group and
under the transformation d  –d with the simulta-
neous rotation through 90° about the 3-axis. The latter
invariance allows us to consider only the negative val-
ues of d. The transformation c  –c results in the
inversion of multiplet levels (or bands). In order to
investigate the staggering in the yrast band, we will
consider the positive values of c.

We begin with the study of the rotational energy sur-
face defined by the spin projections in the body-fixed
frame,

(27)

Substituting these projections into the Hamiltonian
(25), we obtain the energy surface

(28)

as a function of the spherical angles θ and ϕ and spin I.
Depending on I, there are three possibilities for the
arrangement of maxima, minima, and saddle points on
this surface. They are shown in Fig. 1 for d < 0 and c >
0. Two or four equivalent minima in the equatorial
plane provide the angular momentum I in the yrast
band to be localized in the plane normal to the symme-
try axis. As I increases, the quartic nonaxial term
becomes comparable with the quadratic one and the
stationary state with I directed along the 1-axis bifur-
cates at

(29)

to the C2v symmetrical state, which has four minima
and two saddle points. In turn, as I increases further, the

saddle points are doubled at Ic1 =  and move off
the equatorial plane. For higher I, when the last term of
Eq. (28) becomes greater than the term proportional to

 + , the four equivalent minima tend to form the
C4v-symmetric configuration. We are not interested in
this high-I limit; instead, we consider the low-spin

d  = 
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region I < Ic , where the C4-symmetric term is small in
relation to the C2 one.

Two sets of the equivalent classical trajectories sur-
rounding the 1-axis inside the separatrices (see Fig. 1)
correspond to the quantum states of a yrast band. The
energy E0(I) of these states is determined by the Bohr
quantization condition [33]

(30)

where the φ-conjugate variable I1 is the angular-
momentum projection onto the quantization axis, i.e.,
the 1-axis. The energy levels of the band occur in
degenerate pairs. The angular-momentum tunneling
removes the degeneracy and leads to the C2v doublets.
Only a single totally symmetric state of the doublet is
appropriate for the yrast SD band of even–even nuclei.
Its energy is given by

(31)

where

(32)

S1 E( ) I1 φ E,( ) φd

0

2π

∫ 2πI ,= =

E I( ) E0 I( ) 2 T Re S2 E0( ){ } ,cos–=

T
∂E
∂S1
-------- 

 
E0

e
iS2 E0( )

, S2 E( ) I2 φ E,( ) φ,d
γ
∫= =

Fig. 1. Phase space of the Hamiltonian (25) for c > 0 and
d < 0. Depending on the spin I, the rotational surface of the
Hamiltonian has three possibilities for the arrangement of
stationary points [maximum (d), minimum (s), and saddle
point (×)]. In all cases, the minima corresponding to the
yrast band lie on the equator. Only one view of the phase
sphere is shown: we look from the direction of the 3-axis,
and the positive 1- and 2-axes are labeled. The separatrices
passing through saddle points are indicated by dotted lines.
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is the tunneling amplitude for the angular momentum
precessing on one trajectory to leak over on another.
The tunneling path γ, connecting the points on the
equivalent trajectories where I2 = 0, is a part of the great
circle, which passes through the saddle point at the 3-
axis. Since the angle φ is taken around the 2-axis, the
representation of the Hamiltonian (25) should be used
with the 2-axis as the axis of quantization. Transform-
ing the Hamiltonian to new axes, we can estimate S2(E)
for the classical minimum Emin = (! + 2d)I2 + (@ +
2c)I4. The action S2 calculated in this way acquires a
real part at I0 < I < Ic , where

(33)

As spin I increases in this region, the second term of
Eq.  (31) changes its sign whenever the ReS2 value
increases by π. Thus, we have irregular staggering with
the phase inversion.

Figure 2 shows the staggering pattern obtained by
the direct diagonalization of the Hamiltonian (25) for
the I-independent parameters c and d. We use the refer-
ence found in [34] by analogy with the extraction of the
pairing energy from nuclear masses:

(34)

where ∆3Eγ means the third derivative of Eγ(I).
The above analysis shows that the staggering phe-

nomenon is connected with the wave-function oscilla-
tions in the classically forbidden regions of the rota-
tional-motion phase space. This effect is unusual for the
Schrödinger equation and is the characteristic of a

I0 2 2–( )1/2
Ic 2 2–( ) d

4c
------

1/2

.= =

∆Estag

=  
1
2
--- ∆3

Eγ I 2–( ) 4∆3
Eγ I 4–( ) ∆3

Eγ I 6–( )+ +[ ] ,

I

∆Estag

0.06

0.03

0

–0.03

20 40 60
–0.06

0

Fig. 2. Staggering plot for the yrast band of Hamiltonian
(25) with the parameters d/! = –0.01, @/! = –4 × 10–6, and
c/! = 2 × 10–6. The staggering-amplitude-independent ref-
erence is used (see main body of the text). Note that ∆Estag
is given in units of !. The staggering begins from the spin
I0 = 27, where the tunneling amplitude (32) acquires a real
part.
fourth-order wave equation. That is why the parameter
c appears in the condition for the staggering behavior,
which has the form

(35)

On the other hand, the term with the operator  + 
breaks a fourfold symmetry and makes the staggering
pattern irregular (see also [13]). In other words, the
nonaxial terms of the Hamiltonian (25) crimp the rota-
tional energy surface. The short-wave crimps near the
stationary point (i.e., the axis of rotation) are important
for staggering. However, the crimped surface does not
yet solve the problem. The staggering may exist if the
stationary point is a minimum, which happens for c >
0. For the negative value of this parameter, the stagger-
ing is absent in the yrast band but exists in the upper-
most one. The sign of d is not important for staggering.

4. PARAMETERS OF THE EFFECTIVE 
HAMILTONIAN: ACTIVE AND INACTIVE 

ORBITALS
As was shown in the preceding section, the stagger-

ing effect depends strongly on the parameters of the
Hamiltonian (25). Now, we consider these parameters,
which are functions of the spin I and the occupation of
single-particle states. At first, we address a more realis-
tic model of a nucleus with Z protons and N neutrons.
Assuming that the mean square radius and deformation
are identical for neutrons and protons [35], we obtain
the inequality

(36)

which will be used for the staggering analysis of SD
bands in the next section.

The parameter c involves the perturbative, , and
the nonperturbative, Q44, factors. The latter has the
form

(37)

where the summation is performed over all occupied
active single-particle states. In calculating these values,
we use the eigenfunctions of Eq. (7), which, after per-
forming the rotation of the intrinsic coordinate system
through the angle η about the 3-axis (cosη = ω1/ω, ω =

), take the form of a cranked shell-model
potential:

(38)

We employ the realistic modified oscillator (MO)
potential by using the GAMPN code [36]. The state s is

I I0, c 0.> >
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2
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Fig. 3. Expectation values of the multipole moment q44(r) versus the rotational frequency ω for various single-neutron orbitals. The
deformation parameters of ε2 = 0.555 and ε4 = 0.026 correspond to the calculated minimum energy of 149Gd(1) at I ≈ 40. The orbitals
are labeled with the asymptotic quantum numbers n = [Nn3Λ]Ω. Their parity and signature α (+, +1/2), (+, –1/2), (–, +1/2), and (–,
–1/2) are represented by solid, dotted, dashed, and dash-dotted lines, respectively.
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characterized by the quantum numbers n and the signa-
ture α. For n, we will use the asymptotic quantum num-
bers [Nn3Λ]Ω of a nonrotating nucleus. The κ and µ
parameters of the MO potential have been taken from
[37]. The expectation values q44(nατ)  = 〈nατ |q44 |nατ〉
involved in Eq. (37) are calculated with the wave func-
tions

(39)

of the cranking potential, where Nrot is the principal
quantum number in the stretched rotating basis. The
small coupling between different Nrot shells is
neglected.

In order to single out the active orbitals, we have
investigated how the expectation values q44(nα) depend
on the rotational frequency ω. All the single-particle
states occupied by neutrons and protons in the A ~
150 nuclei have been considered. The following con-
clusions can be drawn. (i) There are three different pat-
terns of the ω dependence, which are shown in Fig. 3.
Each of the patterns is associated with the specific types
of orbitals. (ii) The perturbative (Fig. 3a) and nonper-
turbative (Fig. 3b) dependences are associated with
orbitals inactive and active for staggering, respectively.
These orbitals are the same for neutrons and protons.
(iii) The set of active orbitals is supplemented with the
inactive states interacting with the active ones. The

ψnα aljΩ
nα

N rotljΩ| 〉
ljΩ
∑=
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orbitals [642]5/2 and [651]1/2 placed above the neu-
tron gap at N = 80 represent a classical example of an
avoided level crossing [38]. Figure 3c shows q44 as a
function of ω for the two signature branches of these
orbitals. According to the Strutinsky prescription, we
use a renormalization factor of 1.27 to have the possi-
bility of a comparison with the observed rotational fre-
quencies. At a low frequency, the [651]1/2 orbitals are
inactive, whereas, at a high frequency, they involve a
large admixture of the active, [642]5/2, orbitals and
have the nonperturbative dependence for q44.

3) These
interacting orbitals with the positive signature carry
considerable hexadecapole moment. Thus, the removal
or addition of a neutron in these states may change the
sign of the left part in inequality (36). Other active states
induced by an avoided crossing make a moderate contri-
bution to the quantity Q44(π) or Q44(ν). Let us note the
orbitals π[402]1/2 and π[301]1/2 with both signatures,
which are active for virtually all frequencies because
their avoided crossings with the orbitals ν[422]3/2 and
ν[303]5/2, respectively, occur at low frequencies. All the
considered pairs of interacting states belong to the same
Nrot shell. The coupling between different Nrot shells gen-
erates the avoided crossings, which change the moments
q44 only slightly due to a small interaction.

The set of states active for staggering is shown in
Fig. 4. These are not necessarily intruder orbitals but all

3)The orbitals are followed adiabatically.
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Fig. 4. Nonaxial hexadecapole moments of active (filled triangles) and inactive (empty circles) neutron orbitals versus the ordinal
number of a single-particle state in the cranking modified oscillator potential for the rotational frequency of ω = 0.8 MeV. The
asymptotic quantum numbers [Nn3Λ]Ω label the active states with the signature α = +1/2 (upward-oriented triangles) and –1/2
(downward-oriented triangles). The deformation-parameter values are identical to those in Fig. 3.
have the asymptotic quantum numbers Ω = 3/2 and 5/2.
Compared to inactive orbitals, active ones carry large
q44 values, which are nevertheless smaller than the
hexadecapole q40 moment of the single-particle states
around the SD core of 152Dy [39]. As a rule, the
moments of the states with the same asymptotic quan-
tum numbers have close absolute values and opposite
signs for different signatures. They almost offset each
other. Thus, the contribution of the active orbitals to the
total nonaxial hexadecapole moment has the same
order of magnitude as that of inactive ones. Conse-
quently, the equilibrium deformation ε44 at high rota-
tional frequencies is small [17–19].

To explain these findings, let us consider a cranking
isolated j shell with the Hamiltonian

(40)

where Hj0 is the spherical part and κ 0 is proportional to an
axial quadrupole deformation. Assuming the small rota-
tional frequency ω, we shall use perturbation theory with
the unperturbed function in the signature representation

(41)

H j H j0 κ0 j3
2 ωj1,–+=

u jΩα jΩ| 〉 e
iπ j α–( )

j Ω–| 〉+( )/ 2.=
There are the two types of states in the limit of small
rotational frequencies ω. Those with Ω = 3/2 and 5/2
generate q44, which are proportional to ω,

(42)

where the form of the positive definite function f is
immaterial for us. For states with other Ω, the first non-
vanishing contribution to q44( jΩα) is proportional to
higher powers of ω and, consequently, is small. Figures
3a and 3b show this distinction in the ω dependence,
which becomes more obvious at high frequencies. The
equality (42) also explains the signature dependence of
the values q44 for almost all active orbitals shown in
Fig. 4 because they are mostly high-j intruder or high-j
ones with a rather good quantum number j. An anoma-
lous signature dependence is observed for the five
states with small j.

The second factors, (τ), depend smoothly on
the number and the configuration of nonperturbative
orbitals. This allows us to adopt the approximation

q44 j 3/2 α( ) q44 j 5/2 α( )–=

=  
ω
κ0
----- q4〈 〉 f j( )e

iπ j α–( )
,

α̃44
4( )
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Table 1. Parameters of the Hamiltonian (25) that were calculated with an axially deformed oscillator potential for superde-
formed and normal deformed bands [in obtaining numerical data, we have used the following estimates for the pairing gap ∆
and the moment of inertia (: ∆/ω0 ~ A–1/3 and ω0( ~ A4/3, where ω0 = 41A–1/3 MeV is the deformation-independent oscillator
frequency and A ~ 150 is the number of nucleons; the function f(ω0/∆) is characteristic of SD nuclei with pairing correlations,
f(x) = x–2 lnx]

Parameters @/! d/! c/!

SD band without pairing A8/3/(ω0()4 ~ 10–6 A5/3/(ω0()2 ~ 10–2 A5/3/(ω0()4 ~ 10–8

SD band with pairing fA10/3/(ω0()4 ~ 10–6 fA5/3/(ω0()2 ~ 10–4 fA7/3/(ω0()4 ~ 10–8

ND band with pairing A8/3/(∆()4 ~ 10–3 A4/3/(∆()2 ~ 10–2 A2/(∆()4 ~ 10–5
(τ) ≈ ξτ (τ)4), where ξτ is the fraction of the
filled inactive states. The same estimations remain true

for the perturbative values (τ) entering into the
parameter d. Thus, the problem is reduced to obtaining
the corrections to the nuclear density matrix of the sec-
ond and the fourth orders in the perturbation V (13). In
order to simplify the calculations, the Green’s function
method is used. For independent nucleons, we have the
following expressions for these values in the represen-
tation of Eq. (14):

(43)

where the unperturbed Green’s function is

(44)

and the contour C is located in the upper half-plane of
the complex ε plane. The occupation numbers n1 refer to
a nonrotating nucleus. The Green’s function in the pres-
ence of pairing correlations is more complicated than
that in (44), but Eqs. (43) remain valid (see [29, 30]).

The estimation of the quantities  is based on
modeling the real self-consistent nuclear field of
Eq. (14) with the axially deformed harmonic-oscillator
potential with the frequencies ω3 along the symmetry
axis and ω⊥  in the perpendicular plane. Being tested by
evaluating macroscopic quantities such as the rota-
tional constants ! [40] and @ [29] for normally
deformed (ND) bands, the oscillator potential has the

advantage that  can be expressed analytically in

terms of the quantities  + 1),  + 1/2),

4)There is no difference between active and inactive states in the

quantity (τ).

α̃44
4( ) α44

4( )

α44
4( )

α̃ λ2
n( )

ρ13
2( ) εd

2πi
--------G1 ε( )V12G2 ε( )V23G3 ε( ),

C

∫
2

∑=

ρ15
4( ) εd

2πi
--------G1V12G2V23G3V34G4V45G5,

C

∫
2 3 4, ,
∑=

G1 ε( ) 1
ε ε1– iδ 1 2n1–( )+
-----------------------------------------------, δ +0,=

αλµ
n( )

αλµ
n( )

(n⊥∑ (n3∑
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 + 1)2, etc., where n⊥  = N – n3, and n3 are the
quantum numbers (we use the representation [Nn3Λ])
and the summation is performed over all occupied
states. It also allows us to use the self-consistent dou-
bly-stretched multipole interaction for the determina-
tion of the strength constants χ2 and χ4 [41]. The semi-
classical summation of the above quantities makes it
possible to find their A dependences.

First of all, it is interesting to study the expression
for the perturbative factor of the parameter c. Using the
small ratio (ω⊥  – ω3)/(ω⊥  + ω3), one obtains

(45)

where M is the nucleon mass and Σik are the sums of the
bilinear combinations of the oscillator quantum num-
bers n⊥ , n3, and Λ over occupied orbitals. In the semi-
classical approximation, we have

(46)

Thus, the quantity  is negative for both ND and SD
bands.

The perturbative factors of the parameter d are cal-
culated analogously. Table 1 shows the results of the
calculations for the parameters @, c, and d in units of
! = εFA–5/3, where εF is the Fermi energy. The second
inertial parameter @ representing the axial part of the
Hamiltonian (25) does not affect the staggering. We
need it only as a reference point in the calculation of c
and d. It is well known that the interaction of rotation
with quasiparticle motion and attenuation of pairing
correlations make the main contributions to @ for the
ND bands [30]. The quenching of the pairing gap leads
to the decrease in @ by a factor of A2/3 [42]. On the
other hand, the static pairing plays a limiting role in the
SD bands [43]. Thus, the estimates of the parameters c
and d shown in the first line of Table 1 seem to be more
relevant to SD bands.

(n⊥∑

α44
4( ) 35

32π
---------

9

64M
2ω⊥

4 ω3
2

----------------------------
ω⊥ ω3+
ω⊥ ω3–
------------------- 

 
4

=

× 3Σ33 12Σ⊥ 3– 3Σ⊥ ⊥ ΣΛΛ–+( ),

4Σ⊥ ⊥ 3Σ33, 2Σ⊥ 3 Σ33, 4ΣΛΛ Σ33= = =

for SD bands;

Σ⊥ ⊥ 3Σ33, Σ⊥ 3 ΣΛΛ Σ33= = =

for ND bands.

α̃44
4( )
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Table 2. Total moment Q44 of the neutron and proton active orbitals, sign of the coefficient c, and staggering significance
Y for the SD bands with the known equilibrium deformation for three rotational frequencies ω (MeV) (the subscripts + and
– denote the sign of the signature α = ±1/2; the standard notation is used for intruder orbitals)

Band
Configuration 

(relative to 149Gd(1))

Q44, ("/Mω0)2

Sign of c Y
ω = 0.4 ω = 0.6 ω = 0.8

147Gd(2) 0.891 1.161 1.194 >0 0.05

147Gd(3) 0.389 0.485 0.443 >0 0.15

147Gd(4) 0.284 0.195 –0.341 <0 0.16

148Gd(1) 0.235 0.199 –0.264 <0 0.23

148Gd(3) 0.197 0.361 0.270 >0 0.1

148Gd(4) 1.011 1.131 2.059 >0 0.98

148Gd(6) 0.337 0.369 0.683 >0 3.1

149Gd(1) 0.321 0.227 0.505 >0 2.3

149Gd(5) 0.344 0.456 0.600 >0

149Gd(6) –0.112 –0.297 –0.516 <0

150Gd(1) ν72 –0.079 0.112 0.625 >0 0.5

150Gd(4a) 0.485 0.316 0.864 >0

150Gd(4b) 0.025 –0.442 –0.265 <0 1.0

151Tb(1) π63ν72 0.776 1.320 1.477 >0
152Dy(1) π63π64ν72 –0.040 0.618 0.784 >0
153Dy(1) π63π64ν72ν73 0.915 1.317 1.382 >0

ν 642
5
2
---

+

1–
ν 651

1
2
---

+

1–

ν 651
1
2
---

+

1–
ν71

1–

ν 411
1
2
---

+

1–

ν 651
1
2
---

+

1–

ν 651
1
2
---

+

1–

ν71
1–

ν 642
5
2
---

+

1–

ν 411
1
2
---

+

1–

ν 402
5
2
---

+
ν 651

1
2
---

+

1–

ν 402
5
2
---

–
ν 651

1
2
---

+

1–

ν 402
5
2
---

+

ν 402
5
2
---

–

The parameters obtained allow us to find the critical
spin with which the ∆I = 2 staggering starts. In the con-
text of the rotational regime of the Hamiltonian (25),
we have the following values in the A ~ 150 mass
region: I0 ~ 400 for the SD nuclei without pairing, I0 ~
40 for the SD nuclei with pairing, and I0 ~ 10 for the
ND nuclei with pairing.

5. ANALYSIS OF ∆I = 4 BIFURCATION 
IN A ~ 150 SUPERDEFORMED NUCLEI

In a similar way as in [26], we now check the crite-
rion (36), bearing in mind that this condition is neces-
sary but insufficient. The estimations of the preceding
section show that the third multiplier on the left-hand
side of Eq. (36) is negative. The straightforward calcu-

lation of the perturbative quantity  in the MO
model confirms this result. Thus, we will be interested
only in the sign of the second multiplier

(47)

where the moments Q44(π) and Q44(ν) are calculated by
using additivity of contributions from individual orbit-
als according to Eq. (37). The main difficulty in this

α̃44
4( )

Q44
2Z
A

------ 
 

2/3

Q44 π( ) 2N
A

------- 
 

2/3

Q44 ν( ),+=
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Table 3. As in Table 2, but for the SD bands whose deformations ε and ε4 were estimated by using the additivity principle

Band
Configuration 

(relative to 149Gd(1))
ω, MeV ε ε4 Q44, ("/Mω0)2 Sign of c Y

147Eu(1) 0.8 0.554 0.043 –0.117 <0 0.95

147Eu(3) 0.8 0.573 0.047 1.191 >0 0.58

148Eu(1) 0.8 0.564 0.042 0.617 >0 2.3

148Gd(5) 0.8 0.619* 0.037* 0.010 >0 2.8

150Gd(2) 0.8 0.608 0.042 0.743 >0 0.14

150Gd(8a) 0.8 0.553 0.029 0.549 >0 0.13

150Gd(8b) 0.8 0.553 0.029 1.719 >0

151Gd(1a) 0.6 0.545 0.012 0.480 >0 1.8

151Gd(1b) 0.6 0.545 0.012 –0.280 <0 0.25

152Tb(1) 0.6 0.554 0.012 1.051 >0

152Tb(2) 0.6 0.554 0.012 0.276 >0

152Dy(4) 0.6 0.551 0.015 –0.387 <0

152Dy(5) 0.6 0.551 0.015 0.394 >0

153Dy(2) 0.6 0.562 0.009 –0.362 <0

153Dy(3) 0.6 0.562 0.009 0.421 >0

* The deformation parameters were taken from [45].

π 301
1
2
---

–

1–
ν 651

1
2
---

+

1–

π 301
1
2
---

2–

π63ν 651
1
2
---

–

1–

π 301
1
2
---

–

1–

π 301
1
2
---

2–

π63π64ν 411
1
2
---

2–

ν72

π 301
1
2
---

2–

π63π64ν72

π 301
1
2
---

–

1–

π63ν 402
5
2
---

–

π 301
1
2
---

–

1–
π63ν 402

5
2
---

+

ν72ν 402
5
2
---

+

ν72ν 402
5
2
---

–

π63ν72ν 402
5
2
---

+

π63ν72ν 402
5
2
---

–

π63π64ν 402
5
2
---

–

π63π64ν 402
5
2
---

+

π63π64ν72ν 402
5
2
---

–

π63π64ν72ν 402
5
2
---

+

calculation is the nuclear equilibrium deformation
since the shape trajectories in the (ε, ε4) plane are
known for a limited number of SD bands. Starting with
these bands, we give, in Table 2, the estimated values of
Q44 for three rotational frequencies. The corresponding
parameters ε and ε4 have been taken from [44] (147Gd),
[45, 46] (148Gd), [47] (149Gd), [48] (150Gd, 151Tb,
152, 153Dy), and [49] (150Gd (4a, 4b)). The present analy-
PHYSICS OF ATOMIC NUCLEI      Vol. 64      No. 4      2001
sis has an advantage because the sign of c can be com-
pared with the staggering significance Y found in [28].
According to that study, the significance is equal to the
mean staggering amplitude divided by its uncertainty. It
is highly unlikely that all the bands with the signifi-
cance Y > 2 exhibit the ∆I = 4 bifurcation only because
of statistical fluctuations in the γ-ray energy measure-
ments. In particular, the independent measurements of
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Table 4. Deformation changes induced by a nucleon in a fixed single-particle state (only these orbitals are necessary to esti-
mate the deformation parameters of the SD bands presented in Table 3; with the exception of the state π[301]1/2, all values
have been extracted from pairs of bands in adjacent nuclei with an extra nucleon in the indicated orbital)

Orbital
ω = 0.6 MeV ω = 0.8 MeV

Source
δε δε4 δε δε4

–0.013 –0.008 –0.014 –0.009 149Gd(4) vs 150Gd(1)

–0.012 –0.007 –0.013 –0.008 149Gd(3) vs 149Gd(1)

0.009 –0.001 0.009 0.000 151Tb(1) vs 150Gd(1)

0.008 –0.003 0.009 –0.004 152Dy(1) vs 151Tb(1)

0.010 0.002 0.009 0.003 149Gd(1) vs 148Gd(2)

0.011 –0.001 0.009 0.001 148Gd(1) vs 147Gd(1)

0.011 –0.006 0.012 –0.004 150Gd(1) vs 149Gd(1)

π 301
1
2
---

+

π 301
1
2
---

–

π 651
3
2
---

+

π 651
3
2
---

–

ν 651
1
2
---

–

ν 770
1
2
---

+

the 149Gd(1) staggering conclusively demonstrate the
existence of the effect. We use this band as a reference
for the single-particle structures of all the bands studied
in this work.

Table 3 presents the bands without calculated defor-
mation. In their analysis, we have used the observation
of [37] that the filling of any particular orbital always
induces the same deformation change in different
nuclei. Subsequently, this feature has been explained
by the additivity of quadrupole and hexadecapole
moments for SD bands in the A ~ 150 mass region [39,
50]. In a similar way as in the cited works, we find the
deformation changes δε and δε4 induced by a nucleon
in the given state. The corresponding values are pre-
sented in Table 4 for the two rotational frequencies.
They are used to evaluate the parameters ε and ε4 of the
bands collected in Table 3. The bands 150Gd(6a, 6b) are
omitted in this table because the deformation changes
induced by the orbital ν[514]9/2 are not known.

Tables 2 and 3 help to understand which property of
the single-particle structure is responsible for the ∆I =
4 bifurcation. First of all, we emphasize that the neces-
sary condition (36) is not violated in either of the bands
with the known staggering significance. This is not a
trivial fact because of the double cancellations in the
expression Q44: the partial cancellation of the q44(nα)
values with different signatures and the partial cancel-
lation of the quantities Q44(π) and Q44(ν) for almost all
these bands. As a direct consequence of these cancella-
tions, the value Q44 for some bands with the small sig-
nificance Y changes sign and becomes negative for high
rotational frequencies. The zero point of Q44 depends
not only on the deformed shell-model potential but also
on the frequency renormalization factor, for which we
take the conventional value of 1.27. With such scaling,
the criterion (36) seems unreliable for small frequen-
cies. Thus, we use the high frequencies (ω = 0.6 and
0.8 MeV) to compare the staggering criterion with the
experimental significance.

While Tables 2 and 3 exhibit definitely the correla-
tions between the sign of the parameter c and the signif-
icance Y, they also show some discrepancies. The high
positive value of Q44 in the bands 147Gd(2) and 148Gd(4)
is the consequence of the neutron hole in the state
ν[642]5/2 (α = 1/2), which has, according to Table 5,
the large negative q44. The same effect is produced by
the orbital π63 in the bands 147Eu(3) and 150Gd(8a). The
discrepancies observed in the bands 147Gd(3) and
148Gd(3) are less evident. Among the bands under study,
only these bands have the empty state ν71. It is possible
that the first intruder plays the crucial role in the phe-
nomenon (let us recall that the criterion (36) is only
necessary). This tentative conclusion is confirmed by
the nonstaggering bands 150Gd(1, 2), 151Tb(1), and
152Dy(1), but it disagrees with the staggering bands
148Gd(5) and 151Gd(1a). The first intruder is blocked up
by the second one, ν72, in these bands (see also [2]).
Let us also note that the first proton intruder π61 is
blocked up in all the bands under study.

From a strictly logical point of view, a better test of
the inequality (36) is provided by the pairs of the bands
with configurations that differ by a single nucleon
PHYSICS OF ATOMIC NUCLEI      Vol. 64      No. 4      2001
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nds with a known staggering significance Y (all
nding orbital is inactive in a given band)

n states

022 –1.394 0.609 –0.583

.041 –1.494 0.623 –0.597

.028 –1.521 0.614 –0.588

070 –1.442 0.588 –0.561

159 –1.180 0.597 –0.570

007 –1.549 0.560 –0.573

042 –1.463 0.597 –0.570

090 –1.303 0.602 –0.575

015 –1.570 0.594 –0.567

0.071 0.639 –0.613

.042 –1.652 0.605 –0.578

.011 –1.591 0.603 –0.576

.084 –1.620 0.606 –0.579

.167 –0.991 0.640 –0.613

012 –1.683 0.578 –0.551

.045 –1.685 0.599 –0.572

.065 –1.684 0.582 –0.554

.113 –1.427 0.615 –0.588

.149 –1.057 0.620 –0.592

1
1
2
---

–
ν 642

5
2
---

+
ν 402

5
2
---

+
ν 402

5
2
---

–

Table 5. Expectation values 〈τ|q44|τ〉 (in ("/Mω0τ)
2, τ = π, ν) of the active states involved in the configurations of the ba

the quantities were calculated for the fixed rotational frequency of ω = 0.8 MeV; a blank space means that the correspo

Band

Proton states Neutro

147Eu(1) 0.153 0.817 –0.204 0.731 –0.

147Eu(3) 0.824 –0.341 0.837 0

148Eu(1) 0.166 0.834 –0.353 0.856 0

147Gd(2) –0.012 0.848 –0.183 0.765 –0.

147Gd(3) 0.081 0.767 0.175* 0.143 –0.402 –0.

147Gd(4) 0.064 0.859 –0.321 0.872 –0.

148Gd(1) 0.044 0.842 –0.231 0.790 –0.

148Gd(3) 0.091 0.801 –0.038 –0.

148Gd(4) 0.006 0.865 –0.334 0.888 –0.

148Gd(5) 0.877 –0.673 –0.664

148Gd(6) 0.080 0.290 0.873 –0.449 0.976 0

149Gd(1) 0.061 0.858 –0.376 0.914 0

150Gd(1) 0.058 0.726 0.886 –0.558 0.947 0

150Gd(2) 0.862 –0.637 0.372 0

150Gd(4b) –0.157 0.892 –0.422 0.986 –0.

150Gd(8a) 0.008 0.401 0.881 –0.491 1.004 0

151Gd(1a, 1b) –0.165 0.769 0.919 –0.587 0.989 0

151Tb(1) 0.089 0.892 –0.606 0.764 0

152Dy(1) 0.077 –0.356 0.908 –0.666 0.408 0

* Strongly disturbed orbital.

π 301
1
2
---

+
π 541

1
2
---

–
π 651

3
2
---

+
π 651

3
2
---

–
ν 541

1
2
---

–
ν 523

7
2
---

+
ν 651

1
2
---

+
ν 65
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occupying an active or an inactive orbital. The filling of
the inactive orbital π[301]1/2 (α = –1/2) does not
change Q44. Therefore, any pair of the identical bands
147Eu(1)/148Gd(1), 148Eu(1)/149Gd(1) has identical stag-
gering properties. The same is true for the identical
bands 147Gd(4)/148Gd(1) and 148Gd(6)/149Gd(1), whose
configurations are distinguished by a neutron in the
state [411]1/2 (α = –1/2). This finding explains the
observation of the staggering effect in identical SD
bands [21]. Similarly, the two identical bands
150Gd(2)/152Dy(1), whose configurations differ by the
two [301]1/2 protons, do not stagger. An exception is
the band 148Gd(5) exhibiting clear evidence for stagger-
ing. Its configuration is the same as those for the bands
150Gd(2) or 152Dy(1) apart from two neutron holes in the
state [411]1/2 or the two [411]1/2 neutron and two
[301]1/2 proton holes, respectively. Nevertheless, sta-
tistically significant staggering has not been observed
in the latter bands. One would suppose that the super-
position principle does not work in this case. This sug-
gestion is confirmed by the large nonaxial deformation
of 148Gd(5) found in the calculations performed in [51].

The active orbitals give us a more rigorous verifica-
tion of the theory. A nucleon occupying this state con-
tributes significantly to the quantity Q44 and may
change its sign. Table 5 shows the estimated values q44
for some active orbitals involved in the configurations
of almost all the studied bands. The orbital ν[651]1/2
(α = 1/2) is one such example. Starting with the stag-
gering bands 148Eu(1), 148Gd (6), and 149Gd(1) and

Table 6. Test of the staggering criterion for the fixed rota-
tional frequency ω = 0.8 MeV by employing the relative mo-
ment ∆Q44 of the band A with respect to the reference band
B [the symbol + or – is used to show whether the staggering
significance of the band A agrees or disagrees with the sign
of Q44(A) obtained from Eqs. (48) and (51); a blank space
means that such a comparison is impossible; it is assumed
that the sign of Q44(B) is unchanged if |∆Q44 | < 0.5]

B

A

14
8 E

u(
1)

14
8 G

d(
6)

14
9 G

d(
1)

15
1 G

d(
1a

)
14

7 G
d(

2)
14

7 G
d(

3)
14

8 G
d(

3)
15

0 G
d(

2)
15

0 G
d(

8a
)

14
7 G

d(
4)

14
8 G

d(
1)

15
1 G

d(
1b

)

148Eu(1) + + – – – – –
148Gd(6) + + + – – – – –
149Gd(1) + + – – – – –
151Gd(1a) + + + – –
147Gd(2) – – – – +
147Gd(3) – – – + + + + +
148Gd(3) – – – + + + + +
150Gd(2) – – – – + + + +
150Gd(8a) – – – + + + +
147Gd(4) + + + + + + +
148Gd(1) + + + + + + +
151Gd(1b) + + + + + + +
removing a neutron from this orbital, we get the bands,
respectively, 147Eu(1), 147Gd(4), and 148Gd(1), which do
not stagger. Thus, this active orbital explains the
remarkable property of the ∆I = 4 bifurcation observed
in [23].

At the next step, we consider the signature partner
bands based on the state ν[402]5/2, which is associated
with the generation of identical bands. The correspond-
ing active orbitals have reasonably large values of the
moment q44 to modify the inequality in (36). Conse-
quently, a pair of identical bands may have different
staggering properties. The example is the band
150Gd(4b), which is identical to 149Gd(1), but which
does not exhibit staggering because the state ν[402]5/2
(α = –1/2) has the large negative value q44. Its signature
partner, 150Gd(4a), should stagger. Other examples of
the signature partner bands involving this state are
shown in Tables 2 and 3.

We now extend this procedure to the two bands with
the configurations that differ by an arbitrary number of
particles and holes in active and inactive orbitals. For a
fixed rotational frequency, the Q44 values of the two
bands A and B are related by the equality

(48)

where δQ44 is the contribution resulting from the differ-

ence in active orbitals, while  represents the con-
tribution due to the deformation change induced by
both active and inactive orbitals. According to the addi-
tivity of multipole moments, the former quantity can be
written as

(49)

where a runs over the active particle and/or hole states,
which define the intrinsic configuration of the band A
with respect to the band B (the reference band). Since

the contributions δQ44 and  may be comparable,
we have used the values Q44 listed in Tables 2 and 3 to
evaluate the relative nonaxial moment of active orbit-
als,

(50)

These quantities, along with the staggering significan-
ces YA and YB , allow us to obtain a more sophisticated
test of the staggering criterion.

We have first selected 12 bands having the proper
staggering significances to deal with the sample involv-
ing staggering (Y ≥ 1.8) and nonstaggering (Y ≤ 0.25)
bands with a reasonably high likelihood. According to
Eqs. (36) and (47), the former are characterized by the
value Q44 > 0 and the latter have Q44 < 0. To compare
the staggering properties of the bands A and B, we con-
sider the two strong inequalities

Q44 A( ) Q44 B( ) δQ44 δQ44
def

,+ +=

δQ44
def

δQ44 q44 a( ),
a

∑=

δQ44
def

∆Q44 δQ44 δQ44
def

+ Q44 A( ) Q44 B( ).–= =
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(51)

For other combinations of the values YB and ∆Q44, the
sign of the sum Q44(B) + ∆Q44 becomes indefinite
unless |∆Q44| < |Q44|. Let us consider, for example, the
bands 148Gd(1) with YA = 0.23 and 147Gd(3) with YB =
0.25, for which ∆Q44 = –0.71. According to Eq. (48)
and to the second inequality (51), we have Q44(A) < 0,
which is in agreement with the absence of staggering in
the band 148Gd(1). On the other hand, considering
148Gd(1) as a reference band, we cannot find the stag-
gering behavior of the band 147Gd(3) because the sign
of the right-hand side of Eq. (48) is indefinite.

The result of such a comparison for 132 pairs of
bands is presented in Table 6. The columns of this table
involve the reference bands B, whereas the lines repre-
sent the bands A. The symbol + (–) means that Eq. (48)
and the inequalities (51) determine the staggering
behavior of the band A correctly (incorrectly). A blank
space is used when the sign of Q44(A) is indefinite and
its comparison with the significance YA is impossible.
Three groups of bands are clearly visible in Table 6. (i)
The nonstaggering bands 147Gd(4), 148Gd(1), and
151Gd(1b). There is no contradiction in the staggering
behavior inside this group of bands. Such a contradic-
tion has not been found between these bands and the
bands of other groups either. (ii) The four bands
148Eu(1), 148Gd(6), 149Gd(1), and 151Gd(1a) with clear
evidence of staggering. Whether or not the staggering
behavior of the last band contradicts that of the band
148Eu(1) or 149Gd(1) is not clear. (iii) The most striking
feature of Table 6 is the third group of bands, whose
behavior is found to contradict that of all the bands of
the second group. The bands 147Gd(3) and 148Gd(3)
with the empty first intruder ν71 and the band 150Gd(2)
with the blocked first intruder belong to this group. It
should be noted that the band 148Gd(5) being included
in the sample contradicts the bands of the first and third
groups.

6. CONCLUSION

In rapidly rotating nuclei, the Coriolis force pro-
duces a variety of nonadiabatic effects, including the
∆I = 4 bifurcation, which appeared as a new and unex-
pected event. The analogy with molecular cluster states
allowed us to find the phenomenological background of
the phenomenon: the term proportional to the nonaxial

operator  +  in the rotational Hamiltonian. Its
microscopic origin is described in this article.

The Coriolis force in a rotating nucleus is the cause
of rotation-single-particle interaction, which leads to a
nonaxial distortion of the hexadecapole component of
the nuclear mean field. This dynamical mechanism
involves two kinds of the single-particle states generat-

Q44 B( ) ∆Q44 0 if YB 1.8 and ∆Q44 0,>≥>+

Q44 B( ) ∆Q44 0 if YB 0.25 and ∆Q44 0.<≤<+

I+
4

I–
4
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ing a nonaxial hexadecapole moment: active and inac-
tive orbitals. The proper sign of the Q44 moment of all
active orbitals is the necessary condition for the exist-
ence of the ∆I = 4 bifurcation. The fluctuating depen-
dence of this quantity on the number of nucleons occu-
pying active orbitals explains the configuration depen-
dence of the staggering phenomenon. One can observe
the effect of filling each of the active orbitals near the
Fermi surface upon the staggering behavior of a band.
We have used this simple criterion to test the micro-
scopic theory.

A systematic study of the ∆I = 4 bifurcation in
30 SD bands of the mass region around A ~ 150 shows
that the criterion of staggering behavior works surpris-
ingly well and is in reasonable agreement with the sta-
tistical analysis of Haslip et al. [28]. We have explained
the triplet of the identical staggering bands 148Eu(1),
148Gd(6), and 149Gd(1) and the related triplet of the non-
staggering bands 147Eu(1), 147Gd(4), and 148Gd(1).
Another important result is the fact that the necessary
condition is violated in none of the 18 bands with
known staggering significance. Discrepancies between
the theory and experiment may be attributed to other
requirements necessary for staggering, which are not
met in some bands. For example, the discrepancies
observed in the bands with the empty [147Gd(3),
148Gd(3)] or the blocked [150Gd(1, 2), 151Tb(1),
152Dy(1)] first intruder ν71 may indicate that this state
is an essential ingredient of the ∆I = 4 bifurcation. The
role of the first proton intruder is not clear because all
the bands analyzed in [28] have the intruder proton con-
figuration π62. The analysis also reveals contradictions
in the staggering behavior of some bands, whose con-
figurations differ in inactive orbitals. In these cases, we
cannot rule out the violation of the additivity principle,
which is a basic assumption of our theory. The band
148Gd(5) is a fine example of such a violation. These
contradictions may also be due to some inconsistencies
in experimental data.

The theory is not intended for reproducing the pat-
tern of staggering, because it relies on a rather general
form of rotation-single-particle interaction. As a conse-
quence, we can only analyze the simplest rotational
regime and obtain the necessary condition. The simpli-
fied approach used is a first step in dealing with so com-
plicated a phenomenon as the ∆I = 4 bifurcation. A fur-
ther study is required for obtaining a sufficient condi-
tion and for reproducing staggering patterns.
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Abstract—Various forms of superfluidity in nuclei and nuclear and neutron matter are characterized by the rel-
evance of strong nucleon–nucleon correlations, as well as by gap values, which can be a substantial fraction of
the Fermi energy. We present a microscopic many-body theory of nuclear superfluidity. The influence of various
physical effects is analyzed within the Green’s function formalism and the Bethe–Brueckner–Goldstone expan-
sion. In particular, dispersive effects are discussed in detail. We point out open problems that must be solved
before a full understanding of nuclear superfluidity can be achieved. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The pairing phenomenon in nuclei and nuclear mat-
ter is one of the fundamental issues in nuclear physics
that received invaluable contributions from the work of
Migdal [1]. Within the Green’s function formalism, he
showed the way in which nucleon–nucleon correlations
affect the pairing phenomenon in the case of weak
superfluidity—namely, when one can introduce an
effective pairing interaction concentrated around the
Fermi momentum. He also proposed, as the most con-
venient attitude, to handle the effective pairing interac-
tion and the quasiparticle strength as phenomenologi-
cal parameters, to be used in fitting the experimental
data or to be taken anyhow from other sets of experi-
ments. Nowadays, in view of the more recent develop-
ments in many-body theory and the rapid progress in
computer power, it appears challenging to try to under-
stand nuclear superfluidity merely on the basis of bare
nucleon–nucleon interaction and nucleon correlations
without the introduction of any free parameters. In par-
ticular, this is mandatory in the case of neutron-star
superfluidity. In this case, in fact, since the observa-
tional data are only indirectly related to superfluidity or
need explicit models for their interpretation, a firm the-
oretical prediction of the superfluidity strength, based
on microscopic ab initio calculations, appears to be
highly required. Indeed, neutron and nuclear-matter
superfluidity is one of the main issues in the physics of
neutron stars. Superfluidity is expected to play a major
role in some of the most striking phenomena occurring
in neutron stars, like glitches and postglitch transients
[2], vortex pinning [3], neutron-star cooling, and
maybe strong magnetic-field penetration [4]. Since
neutron and nuclear matter are strongly correlated sys-
tems, where short-range correlations dominate the
overall interaction energy even at densities well below

* This article was submitted by the authors in English.
1) ECT*, Strada delle Tabarelle 286, I-38050 Villazzano (TN), Italy,

and INFN, Sez. Catania, Corso Italia 57, I-95129 Catania, Italy.
2) Dipartimento di Fisica, Università di Catania, Corso Italia 57, I-

95129 Catania, Italy.
1063-7788/01/6404- $21.00 © 20611
the saturation value, the superfluidity problem turns out
to be a complex many-body problem, where a delicate
balance between short-range interactions and the long-
range pairing correlations needs an accurate treatment.
Many authors have tried to predict the pairing strength
in neutron matter within a definite microscopic many-
body theory, like the variational Jastrow method [5], the
Babu–Brown approach [6] and its generalizations [7,
8], and Landau theory [9]. In general, these micro-
scopic approaches seem to indicate a reduction of the
pairing gap due to the medium, with respect to the BCS
[10] approximation with bare interaction. The use [11]
in the BCS scheme of realistic bare nucleon–nucleon
interactions, which reproduce the experimental phase
shifts, can be a good starting point for a more sophisti-
cated many-body treatment, and the connection
between the pairing gap value and the phase shifts was
elucidated, in general, in [12].

Dispersive effects, due to the energy dependence of
the single-particle self-energy, are usually neglected or
considered in the weak-coupling limit. Only in [13]
was a self-consistent scheme developed where the
short-range correlations and the pairing problem are
treated on the same footing. The method is numerically
complex, and it was solved only for a schematic inter-
action [13]. More recently [14], a scheme to treat dis-
persive effects has been proposed that is supposed to be
valid whenever the pairing gap is not too large with
respect to the Fermi energy and the quasiparticle width
is small with respect to the quasiparticle energy. Both
conditions are indeed satisfied in the case of neutron
matter [14].

In this paper, we discuss the general scheme of treat-
ing strong superfluidity within the Green’s function for-
malism and the Bethe–Brueckner–Goldstone method
for the inclusion of short-range correlations. The
Green’s function formalism, generalized to the pairing
problem, was extensively developed long ago in [15,
16] and, of course, in [1]. The formalism will be
reviewed, for definiteness, in Section 2, and different
effects and mechanisms that can contribute to the
001 MAIK “Nauka/Interperiodica”
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development of the superfluid phase are shortly dis-
cussed. In Sections 3 and 4, dispersive effects are dis-
cussed in detail. Section 5 is devoted to the application
to neutron-star superfluidity. The medium renormaliza-
tion of the nucleon–nucleon interaction is discussed in
Section 6. A short conclusion is drawn in Section 7.

2. GENERAL FORMULATION 
OF THE GAP EQUATION

The Green’s function (GF) formalism for the pairing
problem can be extended to generalize the Gorkov’s
method beyond the BCS approximation [15, 16]. The
single-particle Green’s function & has a 2 × 2 matrix
structure, with normal diagonal components F1 and
abnormal off-diagonal components F2:

(1)

In the expression for the inverse Green’s function &
–1

,
we have introduced the quantity  = \2k2/2m – µ as the
single-particle kinetic energy, with respect to the chem-
ical potential µ, the diagonal single-particle self-energy
M(k, ω), and the momentum- and energy-dependent
gap function ∆(k, ω). Here, we assume S-wave singlet
pairing; therefore, we omit spin indices. They simply
express the coupling between the time-reversal states
(k, ↑ ) and (–k, ↓ ).

The constituent equation for the pairing problem is
the generalized gap equation, which expresses the con-
dition that the gap function ∆(k, ω) is solution of the
homogeneous Bethe–Salpeter equation [1, 15]. The
inhomogeneous Bethe–Salpeter equation is the general
equation for the two-body scattering matrix in the
medium [1]; therefore, the existence of a solution for
the corresponding homogeneous Bethe–Salpeter equa-
tion physically indicates the formation of bound Coo-
per pairs and the onset of the superfluid phase. The gen-
eralized gap equation [1, 15] can be written as

(2)

where I(kω, k'ω') is the irreducible NN interaction at
zero total energy and momentum.

Since both M(k, ω) and ∆(k, ω) can be expanded in
terms of the NN interaction and the full GF itself,
Eqs. (1) and (2) in general imply a self-consistent pro-
cedure for both the self-energy and the gap function.

& k ω,( ) F1 k ω,( ) F2 k ω,( )
F2 k ω,( ) F1 k ω–,( )– 

 
 

,=

& 1–
k ω,( ) = ẽk ω– M k ω,( )+ ∆ k ω,( )

∆ k ω,( ) ẽk ω M k ω–,( )+ +( )– 
 
 
 

.

ẽk

∆ k ω,( ) dω'∫
k'

∑=

× I kω k'ω',( )∆ k' ω',( )
ẽk' ω'– M k' ω',( )+( ) ẽk' ω' M k' ω'–,( )+ +( ) ∆ k' ω',( )2+

---------------------------------------------------------------------------------------------------------------------------,
Alternatively, one can introduce the single-particle
spectral function as the quantity to be determined self-
consistently [13]. In general, of course, one has to intro-
duce a suitable approximation for the irreducible inter-
action I and the self-energy M, and then solve the
resulting gap Eq. (2). If one takes the bare NN interac-
tion for the interaction I, and the Hartree–Fock approx-
imation for the diagonal self-energy M(k, ω), the stan-
dard BCS approximation is recovered. The same result
holds true if one introduces an energy-independent
effective interaction, to be determined phenomenologi-
cally or within a microscopic many-body scheme.
Since we take the microscopic point of view here, our
first choice will be the bare NN interaction, but later we
will discuss possible improvement.

It has to be noticed that the energy dependence of
the gap function ∆(k, ω) originates only from the
energy dependence of the irreducible interaction I. In
fact, if the interaction is taken as energy independent,
the gap function is also energy independent, despite the
possible energy dependence of the self-energy M(k, ω).
This indicates that dispersive effects, which are present
as soon as one goes beyond the Hartree–Fock approxi-
mation for the diagonal self-energy M(k, ω), are well
distinct from the medium renormalization effects on
the NN interaction.

According to the so-called “conserving approxima-
tions” [17], a well-defined relation between self-energy
and irreducible interaction should be used. If one con-
siders the self-energy as a functional of the correspond-
ing Green’s function, then the irreducible interaction
should be taken as the functional derivative of M with
respect to &. However, it has to be noticed that this type
of many-body theory is mainly devised for describing
transport properties and ensure that conservation laws
are then fulfilled. The relevance of such a prescription
in describing the ground state properties, where conser-
vation laws play no role, is not clear. It appears, there-
fore, that an approximation scheme has to be devised
for both the self-energy and the irreducible NN interac-
tion.

The medium modifications of the irreducible NN
interactions were considered by few authors in the case
of pure neutron superfluidity. In general, a “screening”
of the interaction was found, namely, a reduction of the
pairing strength [5, 7]. In [8], these findings were essen-
tially confirmed; however, at the highest densities the
attraction due to spin-density fluctuations was found to
overcome the repulsion due to density fluctuations and
an enhancement of the pairing gap was predicted near
the gap closure. Indeed, in [9], it was pointed out the
crucial role of the delicate balance between density and
spin-density fluctuations in determining the overall
medium effect on the renormalized NN interaction. At
present, no firm microscopic prediction of the medium
modifications of the NN interaction is available. This
point is further discussed in Section 5.
PHYSICS OF ATOMIC NUCLEI      Vol. 64      No. 4      2001
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3. DISPERSIVE EFFECTS

In order to single out dispersive effects, let us
assume that the irreducible NN interaction is energy
independent. Then the energy integration appearing in
the gap Eq. (2) can be formally performed, since the
gap function ∆ is also energy independent, as was
already noticed above. The denominator is an even
function of the energy ω (we recall again that single-
particle energies are measured with respect to µ). This
is a feature typical of the superconducting phase. Fur-
thermore, the propagation kernel is then proportional to
the anomalous Green’s function F2 of (1), as can be
explicitly checked. As such, the kernel satisfies the gen-
eral dispersion relation fulfilled by the superfluid
Green’s functions. If we define

(3)

then the kernel 1/D(k, ω) satisfies the (exact) dispersion
relation

(4)

Equation (4) allows us to rewrite the general gap Eq. (2)
in a form that resembles the usual BCS gap equation.
Indeed, upon inserting (4) into (2), the ω' integration
can be performed and one gets

(5)

where the following definition has been introduced:

(6)

where Im(…) indicates the imaginary part of the com-
plex number in the parenthesis. For a given approxima-
tion scheme for the self-energy M(k, ω), Eq. (5) gives
the corresponding gap equation with the inclusion of
dispersive effects. In general, the ω integration in (6)
can be easily done numerically for each value of the
momentum k. It has to be noticed that the kernel of the
integral (5) is a real function and, therefore, the gap
function ∆(k) can also still be taken as real.

Of course, dispersive effects are easily included in
the gap equation, once the weak coupling limit is
adopted [1]. Equations (5) and (6) generalize the treat-
ment to the strong coupling case, where the momentum
and energy integration cannot be restricted around the
Fermi surface, as it will be discussed in detail in the
next section.

D k ω,( ) ẽk ω– M k ω,( )+( )=

× ẽk ω M k ω–,( )+ +( ) ∆ k ω,( )2,+

1
D k ω,( )
-------------------

dω'
π

--------Im
1

D k ω',( )
-------------------- 

 

0

∞

∫=

× 1
ω' ω– ie–
------------------------- 1

ω' ω ie–+
--------------------------+ .

∆ k( ) I k k',( ) ∆ k'( )
2% k'( )
----------------,

k'

∑–=

1
2% k( )
---------------

1
π
--- dω'Im

1
D k ω',( )
-------------------- 

  ,∫=
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4. POLE APPROXIMATION

If the imaginary part of the self-energy is small with
respect to the single-particle energy, it is possible to
approximate the energy integration of (2) in a simple
way (still assuming the NN interaction as energy inde-
pendent). This will allow us to get a closer connection
with the weak coupling limit. In this case, in fact, the
main contribution is expected to come from the poles
close to the real axis. The denominator is an even func-
tion of the energy ω (we again recall that single-particle
energies are measured with respect to µ); therefore, the
kernel has two poles symmetric with respect to the ori-
gin in the complex ω plane. Formally, the pole energies
±Ek are the solutions of the implicit equation

(7)

If the energy dependence of M(k, ω) is neglected, then
(7) reduces to the usual square root expression for the
quasiparticle excitation energy of the BCS approxima-
tion. On the other hand, in the nonsuperconducting
limit ∆  0 and neglecting the imaginary part of M(k,
ω), one can verify that Eq. (7) reduces to the usual self-
consistent equation, e.g., Brueckner [18], for the sin-
gle-particle energy ek:

(8)

Equation (8) is valid whenever ∆ is negligible, in par-
ticular for momenta far away from the Fermi surface,
since then |∆k | ! | |. Taking the corresponding residue
of the kernel at the pole, we can write the gap Eq. (2) as

(9)

where Zk is a factor that is related to the quasiparticle
strength (see below). The pole approximation is exact
in the limit of vanishing imaginary part of the self-
energy, as can be checked from Eqs. (5) and (6). It has
to be noticed that in the generalized gap Eq. (9) the
square root in the denominator does not coincide with
the quasiparticle energy, implicitly defined by Eq. (7),
in contrast with the usual BCS approximation, where
the full pairing quasiparticle energy appears.

Let us discuss Eq. (9) in the extreme weak-coupling
limit, where one assumes that the main contribution to
the momentum integral is concentrated around the
Fermi surface and one neglects pairing in the diagonal
self-energy, which is then identified with the one in the
normal phase. In this limit, following the standard pro-

Ek± 1
2
--- M k Ek±,( ) M k Ek+−,( )–( )=

± ẽk
1
2
--- M k Ek–,( ) M k Ek,( )+( )+

2

∆ k( )2+ .

ek ẽk M k ek,( ).+=

ẽk

∆ k( ) I k k',( )Zk'

k'

∑–=

×
∆k'

2 ẽk
1
2
--- M k Ek–,( ) M k Ek,( )+( )+

2

∆ k( )2+

-----------------------------------------------------------------------------------------------------------,
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cedure of expanding the integrand of Eq. (9) around kF,
one gets [19]

(10)

where n0 is the density of state for the free Fermi gas
and mF is the so-called k mass (in units of the bare
mass) [20]. The interaction I(kF) is the diagonal matrix
element of the NN potential in the considered channel
(e.g., 1S0 for neutron matter), in the plane-wave repre-
sentation. The self-energy effects are, therefore, con-
tained mainly in the factor mFZF , which can be written

also as , since the full effective mass m* = mF/ZF

[20]. This is the standard result for the weak coupling
limit [1]. Equation (9) generalizes the treatment to the
case where the contribution from momenta far from the
Fermi surface is relevant, within the adopted pole
approximation. The appearance of the k mass is a pecu-
liar feature of the pairing phenomenon, and it is a direct
consequence of the coupling between time-reversal
states. In Eq. (9), the combination M(k, –ω) + M(k, ω)
gives rise to the combined density of state of the pair
{(k, ω); (–k, –ω)}, which is mainly determined by the
k mass.

The weak coupling limit is not valid in general for
neutron or nuclear matter [18], if one starts from the
bare NN interaction. This can be seen directly from the
observation that the gap equation often has a well-
defined solution even when the interaction matrix ele-
ment I(kF) is positive. This is due to the dominant role
of the off-diagonal matrix elements I(k, k'). Therefore,
in this case one must solve the more general Eqs. (9)
or (5).

In the case of neutron matter, a further approxima-
tion is viable. Short-range correlations are dominant in
this case, and the size of the normal-phase self-energy
is expected to be much larger than the pairing gap. It is
indeed of the same order of the Fermi kinetic energy
EF, and Eq. (8) will then be valid to the order of
∆(kF)/EF, which is expected to be small.

In the superfluid phase, in principle, the diagonal
self-energy M(k, ω) differs from the self-energy in the
normal phase. The main contribution not present in the
normal phase originates from the coupling of the sin-
gle-particle motion with the superfluid collective
modes. The latter correspond mainly to the center-of-
mass motion of the Cooper pairs and their possible
“vibrations” [21, 22]. The branch starting at zero
energy, in the long wave-length limit, is the branch of
the Goldstone boson [21], corresponding to the gauge
invariance symmetry breaking at the superfluid phase
transition. This contribution to the diagonal single-par-
ticle self-energy is expected to be at most on the order
of the superfluid condensation energy per particle and
is therefore negligible with respect to the typical short-
range correlation energy, as calculated, e.g., in Brueck-

∆F 8
EF

mF
------ 1

mFZFπ2n0I kF( )
-------------------------------------– 

  ,exp=

m*ZF
2

ner theory, at least to the extent that ∆/EF ! 1. For the
same reason, the deviation of the occupation number
from the free-gas value and the presence of a forbidden
energy region, of the order of ∆, around the Fermi
energy, typical of the pairing phenomenon, seem to
play no relevant role in determining the size of the self-
energy. It therefore appears to be justified to adopt, for
M(k, ω), its normal phase value.

Therefore, on the right-hand side of (7), we can
replace Ek with ek , solution of (8), to get

(11)

The procedure is justified, provided M(k, ω) is a smooth
function of ω. Along the same lines, one can approxi-
mate the factor Zk of the kernel at the pole. The general
expression of the factor Zk at each one of the poles can
be easily calculated:

(12)

where Sk is the square root appearing in Eq. (11). In the
limit ∆  0, this is the usual expression for the qua-
siparticle strength, provided the momentum k is close
enough to kF. The corrections to the normal phase value

of 1 –  are of the order ∆(kF)/EF; therefore, the fac-
tor can be identified with the quasiparticle strength, at
least in the vicinity of the Fermi surface. Far away from
the Fermi momentum, the factor Zk still has this expres-
sion (with Ek ~ ek) in the limit of a small imaginary part,
although the quasiparticle concept becomes less mean-
ingful, since its width can be large (but it can be still
much smaller than the real part of the energy). In this
case, the procedure is just an approximate method of
calculating the energy integral (i.e., within the pole
approximation) of (6).

5. APPLICATION TO NEUTRON-MATTER 
SUPERFLUIDITY

In a set of calculations for neutron matter, we
focused the analysis on the dispersive effects. The cal-
culations were restricted to the 1S0 channel, which
appears to be the strongest pairing channel. The irre-
ducible NN interaction was taken to coincide with the
bare Argonne v14 potential [23], according to the con-

Ek
1
2
--- M k ek,( ) M k – ek,( )–( )≈

+ ẽk
1
2
--- M k ek–,( ) M k ek,( )+( )+

2

∆ k( )2+ .

Zk 1
1
2
--- 1 Θk–( )ak 1 Θk+( )bk+( )–

1–

,=

Θk

ẽk
1
2
--- M k Ek–,( ) M k Ek,( )+( )+

Sk

------------------------------------------------------------------------,=
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∂M
∂ω
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ω Ek=

, bk
∂M
∂ω
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ω Ek–=

,= =

Zk
1–
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siderations developed in the Introduction and in Section 2.
Consistently, we calculated the normal self-energy
within the Brueckner approximation with the same
interaction. The choice of the bare interaction for I(k,
k') is suggested by the observation that no ladder sum-
mation should be included in the irreducible interaction
kernel I(k, k') [1, 18]. Of course, other terms like polar-
ization diagrams should be included [8], as mentioned
in the Introduction. However, calculations with the bare
Argonne v14 potential, and no dispersive effects, in
nuclear matter are well reproduced [24] by calculations
which adopt phenomenological pairing forces. It
seems, therefore, that the medium renormalization of
the NN interaction is not too strong, at least to a first
approximation. The deep reason for that is not at all
clear. Some comments on this point are reported in the
next section, but surely the issue requires further inves-
tigations.

The neutron self-energy has been calculated from
the sum of the two diagrams depicted in Fig. 1. The
continuous choice [18] for the self-consistent single-
particle potential was used. It turns out that the second-
order diagram (in the Brueckner G matrix) is at least
one order of magnitude smaller than the first one,
which is the standard Brueckner diagram, in the consid-
ered density range. This gives confidence on the accu-
racy of the expansion in this case.

Once the normal self-energy is calculated in an
energy grid, for a given momentum k, the integral of (6)
can be performed numerically. In the pole approxima-
tion discussed in the previous section, this energy inte-
gral produces the Zk factor of (9), together with the cor-
responding square root in the denominator. The latter
can be evaluated once the quasiparticle energy is
obtained from Eqs. (7) or (11).

It is possible to write down the gap Eq. (5) in the
same form of Eq. (9) if we introduce the “effective” fac-

tor  defined as

(13)

Then, Eq. (5) has the same form of Eq. (9), with 

replacing Zk. In principle, the factor  depends on the
value of the gap ∆(k). Because of the smallness of ∆(k),

it turns out that  is actually independent of the gap
value with great accuracy. Even for momenta very

close to kF, where  ≈ Zk , the gap dependence can be

Zk
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Zk
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neglected, as can be seen from (12). The closeness of Zk

to  indicates the accuracy of the pole approxima-
tion. In Fig. 2, these two quantities are reported as func-
tions of k for kF = 1.3 fm–1. As one can see, the pole
approximation introduces a systematic overestimation
of the factor Zk, but it appears to be an overall fair
approximation. The factor can even slightly exceed
unity in the pole approximation for intermediate values
of k. This is not surprising, since the regular (nonpolar)
contribution to the integral can be negative. Of course,
close to the Fermi momentum, Zk is smaller than unity,
since then it acquires the meaning of quasiparticle
strength. According to Migdal–Luttinger theorem [1],
in fact, the value ZF of Zk at k = kF is the discontinuity of
the momentum distribution at the Fermi momentum (in
the normal phase). One must have, therefore, 0 < ZF <
1. For higher momentum values, Zk tends to unity, since
then the self-energy becomes energy independent [25].

Also,  tends smoothly to unity but from values

smaller than one. The asymptotic value of  can be
expected from the fact that, for large enough k, the self-
energy around the peak of the function Im(1/D(k, ω))
becomes negligible with respect to the kinetic energy,
and the energy dependence of the kernel is then the
same as for free particle. In the case of Fig. 2, for k >

Zk
eff

Zk
eff

Zk
eff

(a) (b)

1.0

0 2

Zk
1.2

4
0.8

k, fm–1

Fig. 1. Self-energy diagrams in the Bethe–Brueckner–Gold-
stone expansion. A wavy line indicates a Brueckner G
matrix.

Fig. 2. The renormalization factor Z in the pole approxima-
tion (dashed line) and in the exact procedure (solid line). For
details, see the text.
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6 fm–1, the value of  can be safely taken as equal
to one.

On the other hand, the numerical comparison

between Zk and  cannot be done exactly at kF. There,
in fact, the imaginary part of the self-energy is vanish-
ingly small and the integral in (6) cannot be done
numerically, since the integrand is too sharply peaked.
Indeed, for k  kF, it becomes a delta function,
which, of course, cannot be integrated numerically.
However, the pole approximation close to the Fermi

Zk
eff

Zk
eff

1

0

–1

–2
0 4 8 ω, MeV

ImM(k, ω), MeV

Fig. 3. The imaginary part of the self-energy as a function of
the single-particle energy ω (calculated with respect to the
chemical potential) for the Fermi momentum kF = 1.1 fm–1

and the momentum k = 1.2 fm–1.

1

2

3

0 0.5 1.0 kF, fm–1

∆(kF), MeV

Fig. 4. The superfluid gap value, at the Fermi momentum, as
a function of density, in the case of free single-particle spec-

trum (e), with the inclusion of the factor  (+) and with

the inclusion of both  factor and the self-energy in the

single-particle spectrum (h).

Zk
eff

Zk
eff
momentum is expected to become accurate; therefore,

one should have  ≈ Zk. From our calculations, the
region around kF where this happens is quite small;
therefore, we could check this result numerically only
to a certain extent, namely, at distance not too small
from the Fermi surface. Still, at the shortest distance
allowed by the numerical accuracy, some discrepancies

between Zk and  persist, despite their clear tendency
to be closer. Looking at the self-energy near the Fermi
momentum, one indeed notices that the ratio between
the imaginary part and the quasiparticle energy remains
small but almost constant down to values close to kF.
Only at even closer values of k does the imaginary part
appear to display the expected quadratic dependence on
ω [1] and to become vanishingly small with respect to
the quasiparticle energy (which has linear dependence),
see Fig. 3. It is found that, for k < kF, the imaginary part
of the self-energy is quite small throughout the whole
energy range; therefore, we use the pole approximation
in any case there. Fortunately, it turns out that the val-

ues of  just above kF and the values of Zk at and just
below kF look to join quite smoothly; therefore, a sim-

ple interpolation for  across the Fermi surface
appears quite reliable.

Similar results are obtained for the other considered
values of kF.

Once the values of  are evaluated as functions of
k, the gap equation can be numerically solved. In Fig. 4,
the gap value at the Fermi momentum as a function of
neutron density is reported. For comparison, three dif-
ferent cases are plotted: (i) the results with free single-
particle spectrum, i.e., without any self-energy [11]; (ii)

including only the  factor in the numerator of the
gap Eq. (9); (iii) with both the self-energy in the

denominator and the  factor. The reduction of the
pairing gap is substantial at the highest densities, near
the gap closure. The gap values in cases (ii) and (iii) are
slightly smaller than in [14], as expected, since there
the pole approximation was adopted. The comparison
with [14], however, indicates that the pole approxima-
tion is a fairly good approximation, at least in neutron
matter. The results appear in line with the work of [13],
where the self-consistent treatment of pairing and short
range correlations seems indeed to reduce strongly the
gap value mainly because of these two factors [13, 26].
Dispersive effects seem, therefore, to be well estab-
lished with good accuracy in neutron matter.

6. RENORMALIZATION 
OF THE NUCLEON–NUCLEON INTERACTION

The problem of medium renormalization of the
nucleon–nucleon interaction has been considered by
several authors. The main effect which has been con-

Zk
eff

Zk
eff

Zk
eff

Zk
eff

Zk
eff

Zk
eff

Zk
eff
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sidered is the “screening” of the interaction due to the
coupling with particle–hole excitation of the Fermi liq-
uid. In neutron matter, the particle–hole excitations are
the density and spin-density fluctuations. As already
noticed by Brown (see [6] for a review), the main dif-
ference between the particle–hole and particle–particle
irreducible interactions is just due to this coupling with
particle–hole excitations (see Fig. 5). Since at the Fermi
momentum the particle–hole irreducible interaction
can be identified with the relevant set of Landau–
Migdal parameters, it has been suggested [5] to esti-
mate the pairing particle–particle irreducible interac-
tion just by correcting the parameters with the inclusion
of the particle–hole ring-diagram series. This amounts
to neglecting the momentum dependence of the parti-
cle–hole interaction. It turns out that, if one uses a rea-
sonable estimate of the Landau–Migdal parameters in
neutron matter the spin-density fluctuations produce a
strong additional repulsion to overcome the attractive
contribution coming from the density fluctuations [5,
18]. As a result, the pairing gap in neutron matter
appears strongly reduced by medium effects on the
pairing particle–particle interaction. This result was
somehow confirmed in [7–9], where more refined treat-
ments were adopted. The full-momentum dependence
of the particle–hole interaction was, however, never
considered, and it was included only within some crude
approximate scheme. As we have already noticed, the
weak-coupling limit is not applicable in a microscopic
treatment of neutron- and nuclear-matter superfluidity.

The problem of the interaction renormalization is
still an open problem, and it is surely the only main
source of uncertainty in the microscopic theory of neu-
tron- and nuclear-matter superfluidity. The main diffi-
culty, besides the obvious numerical complexity of the
calculation, is the inclusion of the relevant set of dia-
grams in evaluating the particle–hole irreducible inter-
actions, keeping the full-momentum dependence. If the
irreducible particle–hole interaction is identified with
the Brueckner G matrix, then the problem is well
defined and numerically viable. However, in neutron and
nuclear matter, the situation is probably more complex,
since it is known that the Brueckner G matrix is not a suf-
ficient approximation, and at least the so-called “rear-
rangement term” has to be included, see, e.g., [27, 28].

Moreover, if one follows the expansion scheme sug-
gested by the “conserving approximation” [17], one
gets a well-defined prescription for the irreducible par-
ticle–particle interaction consistent with the adopted
self-energy—namely, the former is obtained by a func-
tional derivative of the latter (Φ-derivable theory, in the
terminology of [17]). In neutron matter, where it
appears to be an excellent approximation to calculate
the self-energy from the diagrams in Fig. 1, one finds
that one should include only one bubble in the ring
series in Fig. 5 (second diagram) instead of the full RPA
series. As already noticed, it is not at all clear whether
this prescription has any relevance to ground-state
PHYSICS OF ATOMIC NUCLEI      Vol. 64      No. 4      2001
properties; therefore, the role of the higher order terms
of the series should be checked.

In conclusion, it appears difficult, but numerically
feasible, to include in the pairing microscopic theory
the medium renormalization of the nucleon–nucleon
interaction, still keeping the momentum dependence of
the resulting effective interaction. Much work has to be
done in this direction, but the solution of this still
unsolved problem will open the possibility of predict-
ing on a firm theoretical basis the strength of the pairing
gap in neutron and nuclear matter.

7. CONCLUSIONS

We have discussed a general scheme for treating
strong superfluidity in neutron and nuclear matter,
where short-range correlations dominate the normal
single-particle self-energy. Dispersive effects can be
treated on a firm theoretical basis, and the correspond-
ing modification of the pairing gap has been calculated
in the case of pure neutron matter. In this case, it turns
out that dispersive effects are relevant mainly near the
gap closure, where the pairing strength is considerably
reduced.

The theoretical uncertainties in the theoretical eval-
uation of the gap values are mainly concentrated in the
estimate of the medium modification of the nucleon–
nucleon interaction. Still, much work has to be done
before this problem can be clarified.
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Abstract—The Fermi surface of dense neutron matter may experience a rearrangement near the onset of pion
condensation, due to a strong momentum dependence of the effective interaction by spin–isospin fluctuations.
For example, a second (inner) Fermi surface may arise as high-momentum single-particle states are filled and
low-momentum states are vacated. The influence of this phenomenon on the superfluid-transition temperature
is investigated with the aid of a separation transformation of the BCS gap equation. Attention is also given to
modifications of the specific-heat discontinuity at the transition temperature and the relation between the tran-
sition temperature and the zero-temperature energy gap. © 2001 MAIK “Nauka/Interperiodica”.
Understanding the properties of strongly correlated
Fermi systems that may exist beyond the domain of
applicability of Fermi liquid theory presents a continu-
ing challenge for theorists. The study of such systems
promises valuable insights into exotic materials rang-
ing from high-Tc superconductors to the matter inside
neutron stars.

Key aspects of behavior beyond Fermi liquid theory
hinge on the rearrangement of the characteristic Lan-
dau quasiparticle distribution nF(p). For the sake of
simplicity, we shall restrict the discussion to homoge-
neous systems, for which the Fermi liquid distribution
nF( p) coincides with the momentum distribution of an
ideal Fermi gas. The actual quasiparticle distribution
n( p) inevitably departs from nF( p) = θ( pF – p) if the
necessary condition for its stability is violated. At T =
0, this condition requires that the change in the ground-
state energy E0 remain positive for any admissible vari-
ation δn( p) away from nF( p). More explicitly, stability
of a given quasiparticle distribution implies

(1)

where ξ(p, n( p)) ≡ ε(p, n( p)) – µ is the quasiparticle
energy measured relative to the chemical potential µ. In
the case of n( p) = nF( p), condition (1) is violated if
ε( p) rises above µ at p < pF , or if ε( p) drops below µ at
p > pF . A rearrangement of quasiparticle occupancies is
precipitated when the density ρ attains a critical value
ρcF at which the relation

(2)
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exhibits a bifurcation leading to a new root p = p0. This
relation usually serves only to determine the Fermi
momentum pF .

In homogeneous systems, the simplest type of rear-
rangement of the momentum distribution n( p) of qua-
siparticles of given spin and isospin maintains the prop-
erty that its values are restricted to 0 and 1, but the
Fermi sea becomes doubly or multiply connected [1].
In particular, we may suppose that, at densities exceed-
ing the critical value ρcF, the normal-state distribution
θ(pF – p) is altered by the formation of a “bubble,” or
particle void, over a range pi < p < pI < pF, with the
Fermi momentum pF readjusted to maintain the pre-
scribed density. As shown in Fig. 1, one then has three
Fermi surfaces, namely, two inner surfaces located at pi
and pI , along with the usual outer surface at pF. How-
ever, a more dramatic rearrangement can also occur,
resulting in a distribution with a partial occupation of
quasiparticle states that lacks the distinctive trademark
of Fermi liquid theory, namely, the discontinuity of
n( p) at the Fermi surface. In this scenario, called fer-
mion condensation, there exists a finite momentum
range over which the quasiparticle energy coincides
with the chemical potential, corresponding to the cre-
ation of a “fermion condensate” [2–4].

Any change in n( p) from the normal-state distribu-
tion nF( p) must entail an increase in the kinetic energy
of the quasiparticle system. Accordingly, the antici-
pated rearrangement only becomes possible if it is
accompanied by a counterbalancing reduction of the
potential energy, which implies that the effective inter-
action between quasiparticles has acquired a substan-
tial momentum dependence. The emergence of such a
strong momentum dependence is exactly what one
expects to occur as the density is increased toward the
critical value ρc for a second-order phase transition in
which a branch of the spectrum ωs(k) of collective exci-
tations of the Fermi system collapses at a nonzero value
kc of the wave vector k.
001 MAIK “Nauka/Interperiodica”
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To justify the latter assertion, we follow the lead of
Dyugaev [5] and consider the behavior of the quasipar-
ticle scattering amplitude F(p1, p2, k) ≡ z2Γ(p1, p2; k,
ω = 0)M*/M in the vicinity of the phase-transition
point. In this construction, Γ(p1, p2; k, ω) is the ordi-
nary (in-medium) scattering amplitude, M* is the effec-
tive mass, and z is the renormalization factor determin-
ing the weight of the quasiparticle pole. The amplitude
F can be written as the sum Fr + Fs of a regular part Fr

and a singular part Fs, with the latter taking the univer-
sal form

(3)

in terms of the propagator D(k) of the collective excita-
tion. This form has been derived with due attention to
the antisymmetry of the two-particle wave function
under exchange of the particle coordinates (spatial,
spin, isospin). The collective propagator is conve-
niently parameterized according to [5]

(4)

where the parameter β(ρ), with β(ρc) = 0, measures the
proximity to the phase-transition point. The vertex O
appearing in (3) determines the structure of the collec-
tive-mode operator and is normalized by Tr(OO+) = 1.
Specifically, the choice O = 1 is made in treating the
rearrangement of the quasiparticle distribution due to
collapse of density oscillations [6], while O = s is
appropriate when studying the rearrangement of nF( p)
triggered by the softening of the spin collective mode
[7]. In the present investigation, we will be concerned
with dense, homogeneous neutron matter in which
abnormal occupation is induced by spin–isospin fluctu-
ations; thus the pertinent operator is O = (s · k)t.

Details aside, the most essential features of the
model defined by Eqs. (3) and (4) are that the function
Fs(p1, p2, k = 0) . D(p1 – p2) depends on the difference

Fαδ; βγ
s p1 p2 k; ρ ρc, ,( )
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Fig. 1. The bubble-type rearrangement of the quasiparticle
occupation n(p).
p1 – p2 and that, in the neighborhood of the soft-mode
phase-transition point, this dependence becomes very
strong.

Equations (3) and (4) provide suitable raw material
for an efficient evaluation of the single-particle spec-
trum ξ( p) in the vicinity of the second-order phase
transition. We implement a straightforward connection
between ξ( p) and the scattering amplitude F(p1, p2, k =
0), thereby avoiding the awkward frequency integration
that would be encountered in an RPA approach. The
connection is made through the relation

(5)

which we derive in the Appendix using the Landau–
Pitaevskiœ identities [8]. The contribution to (5) from
the singular part (3) of F can be easily integrated over
the momentum p to obtain

(6)

In writing this result, we assume that the contributions
to the single-particle spectrum from the regular part of
F are accounted for by the replacement of the bare mass
M appearing in Eq. (5) by an effective mass . (We
note that the generally accepted values for this effective
mass due to the nonsingular interactions lie in the range
0.7–0.8 for the relevant densities in the neutron-star
interior.)

In his pioneering works reviewed in [9, 10] (see also
[11]), A.B. Migdal revealed to us that if the density ρ of
neutron matter in the liquid core of a neutron star
attains a critical density ρcπ of some 2–3 times the equi-
librium density ρ0 of ordinary nuclear matter, the spin–
isospin collective mode collapses at a finite wave vector
k = kc ~ pF and a phase transition identified as pion con-
densation sets in. A conspicuous feature of the ground
state of the system beyond the phase-transition point is
the presence of a condensate of spin–isospin density
waves. As shown in Eqs. (3) and (4), spin–isospin fluc-
tuations with k ~ kc are significantly enhanced in the
vicinity of the transition as a consequence of the diver-
gence of the propagator D(k  kc, ρc).

Let us now apply Eq. (6) to dense neutron matter
near the onset of neutral pion condensation. Insertion of
the parametrization (4) into (6) yields the working for-
mula

(7)

∂ξ p( )
∂p

-------------- p
M
-----

1
2
--- Fαβ; αβ p p1,( )

∂n p1( )
∂p1

-----------------
d

3
p1

2π( )3
-------------,∫+=

ξ p( ) p
2

2Mr*
------------

1
2
--- D p p1–( )n p1( )

d
3
p1

2π( )3
-------------.∫+=

Mr*

ξ p( ) p
2

2Mr*
------------=

+
1
2
--- 1

β2 γ2 p p1–( )2
kc

2
–( )2/kc

4
+

----------------------------------------------------------------n p1( )
d

3
p1

2π( )3
-------------.∫
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Unfortunately, there is as yet no definitive microscopic
treatment of neutron-star matter from which one can
extract or derive quantitatively reliable values for the
input parameters β, γ, and kc. Moreover, the predicted
values of the critical density ρcπ range from 0.2 to
0.5 fm–3 (corresponding to 1–3 times ρ0), depending on
a number of theoretical assumptions [9–11].

We have little recourse but to perform calculations
based on the formula (7) for several choices (or
“guesses”) of the parameters of the microscopic model.
Substituting expression (7) into (2), one finds the criti-
cal density ρcF at which the solution of the latter equa-
tion bifurcates. For ρ > ρcF, this equation then deter-
mines two new momenta pi and pI where ξ( p) vanishes
and between which ξ( p) is positive. The bubble region
evidently lies between these two momenta. Representa-
tive numerical results for the spectrum ξ( p) are dis-
played in Fig. 2. Results for the phase diagram of dense

neutron matter, plotted in the ρ/ρ0 versus β2/  plane,
are presented in Fig. 3. Different values of γ are consid-
ered while keeping the parameter kc fixed at the value
0.9pF suggested by earlier numerical calculations [10].

mπ
2

p/pF

ξ(p)/ε0
F

a
b

0 0.2 0.4 0.6 0.8 1.0

–0.3

–0.2

–0.1

0.1

c

0

Fig. 2. The neutron spectrum ξ(p) (measured in  =

/2M) at the critical densities ρcF corresponding to three
different sets of model parameters: (a) γ = 1.25mπ, kc = 0.9pF,

β2 = 0.22  (ρcF . 1.19ρ0), (b) γ = 1.25mπ, kc = 0.9pF,

β2 = 0.25  (ρcF . 1.76ρ0), and (c) γ = 1.25mπ, kc = pF,

β2 = 0.13  (ρcF . 1.88ρ0), where mπ is the pion mass.
Two different positions of the bifurcation point, namely,
p0 = 0 (for parameter sets (a) and (b)) and p0 . 0.12pF (for
set (c)), are indicated by arrows.

εF
0

pF
2

mπ
2

mπ
2

mπ
2
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It is quite clear that variation of the parameters β, γ,
and kc within sensible bounds can have strong effects
on the phase diagram and therefore on the extent, in
density, of the phase with rearranged quasiparticle
occupation. Nevertheless, our numerical study has doc-
umented four characteristic and generic features of the
bubble rearrangement.

(i) The critical density ρcF for the rearrangement is
less than the critical density ρcπ for pion condensation.
Since both phenomena are linked with the strong
momentum dependence of the amplitude F(p1, p2;
k  0), rearrangement of the quasiparticle distribu-
tion may be viewed as a precursor of pion condensa-
tion.

(ii) The bifurcation point associated with formation
of a bubble in the neutron momentum distribution is
located at small momenta, p0 < 0.2pF, regardless of the
applicable value of ρcπ.

(iii) The spectrum ξ( p) exhibits a deep depression
for p ~ (0.5–0.6)pF.

(iv) The ratios ρcF/ρcπ and p0/pF are insensitive to
the actual value taken by ρcπ within the range of plausi-
ble theoretical predictions.

The emergence in neutron matter of one or more
new Fermi surfaces positioned at low momentum val-
ues would provide a new avenue for rapid direct-Urca
neutrino cooling of neutron stars [12]. More broadly,
the creation of new Fermi surfaces by the mechanism

1.6
1.4
1.2

1.0

ρ/ρ0

3

2

1

0.15 0.20 0.25 0.30
β2/m2

π

Fig. 3. Phase diagram of neutron matter in the variables ρ

(measured in ρ0) and β2 (measured in ), as calculated for

kc = 0.9pF and four different values of γ, which (in mπ units)
label the corresponding phase boundaries separating the
bubble phase (upper left) from the normal phase (lower
right).

mπ
2
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we have described, as well as the more profound rear-
rangement involved in fermion condensation, would
call for revision of many of the conclusions that have
been developed within Fermi liquid theory. Here, we
shall focus on some elementary properties of pairing in
the reconfigured system.

For simplicity, we shall assume that, beyond the
instability point, there exist only two Fermi surfaces, an
outer one defined by the usual Fermi momentum pF and
an additional inner one at pI  lying close to the origin in
momentum space. (Thus, we consider the limiting case
pi = 0 in our original specification of the “bubble” rear-
rangement.) Also in the interests of simplicity, we
restrict the analysis to the 1S0 pairing problem, for
which the BCS gap equation has the simple form

(8)

where 9 is the effective particle–particle interaction.
For economy of expression, we have adopted the nota-
tion dτ = p2dp/2π2 for the volume element and

(9)

for the usual combination of tanh-temperature factor
and energy denominator 2E( p). The form of the super-
fluid quasiparticle energy E( p) = [ξ2( p) + ∆2( p)]1/2 is of
course responsible for the nonlinearity of the gap prob-
lem. The quantity ξ( p) is to be interpreted as the single-
particle spectrum in the system with pairing turned off.

Implementing the strategy for solving gap equations
that was introduced in [13] and elaborated in [14, 15],
we write the block 9, identically, as a separable part
plus a remainder that automatically vanishes on the
outer Fermi surface. Thus, we write

(10)

and choose φF( p) = 9(p, pF)/VF , where VF ≡ 9(pF , pF).
It follows directly that W(p, pF) ≡ W(pF, p) = 0, as
required. In the ordinary case where there is only one
Fermi surface, this decomposition allows us to replace
the singular nonlinear integral equation (8) by two
equivalent equations, namely, a nonsingular quasilinear
integral equation for a T-independent shape factor
χ( p) = ∆( p)/∆F and a nonlinear “algebraic” equation for
the T-dependent gap value ∆F(T) ≡ ∆(pF , T). In the
present case involving two Fermi surfaces, we must
extend the procedure of [13] to deal consistently with
the inner Fermi surface as well as the outer one. This is
achieved by decomposing the block W appearing in
(10) in the same manner as before, setting

(11)

with φI(p) = W(p, pI)/WI and WI = W(pI, pI) ≡ 9(pI, pI) –

9
2
(pF, pI)/9(pF, pF), so that Y(p, pI) ≡ Y(pI , p) ≡

Y(pF, p) ≡ Y(p, pF) = 0. The above relations imply the
boundary values

(12)

∆ p( ) 9 p p1,( )% 1–
p; T( )∆ p1( ) τ1,d∫–=

%
1–

p; T( ) tanh E p( )/2T[ ]
2E p( )

------------------------------------=

9 p1 p2,( ) VFφF p1( )φF p2( ) W p1 p2,( )+≡

W p1 p2,( ) WIφI p1( )φI p2( ) Y p1 p2,( )+≡

φF pF( ) 1, φI pI( ) 1, φI pF( ) 0,= = =
whereas the key quantity φF(pI) ~ 9(pI , pF) character-
izes the connection between the quasiparticles of the
two Fermi surfaces in the particle-particle channel. If
φF(pI) vanishes, these surfaces are disconnected and
the problem is obviated.

In the general case where 9(pI , pF) ≠ 0, insertion of
Eqs. (10) and (11) into the BCS gap equation (8) yields

(13)

This equation is conveniently recast as

(14)

or, equivalently,

(15)

with

(16)

and

(17)

Appealing to Eqs. (12), we observe that

(18)

because the block Y vanishes when either of its argu-
ments lies on a Fermi surface. By this same property, it
is permissible, within the quantity %

–1
 appearing in the

integral equations (17), to replace the superfluid quasi-
particle energy E(p1) by |ξ(p1)| and the temperature fac-
tor (p1)/2T] by unity. Because the energy gaps
involved are generally very small compared to the
Fermi energy, these replacements are valid to an excel-
lent approximation. We are then left with the linear
integral equations

(19)

for the two shape functions needed to assemble the gap
function ∆( p) via Eq. (15). Since there remains no trace

∆ p( ) VFφF p( ) φF p1( )% 1–
p1; T( )∆ p1( ) τ1d∫–=

– WIφI p( ) φI p1( )% 1–
p1; T( )∆ p1( ) τ1d∫

– Y p p1,( )% 1–
p1; T( )∆ p1( ) τ1.d∫

∆ p( ) VFχF p( ) φF p1( )% 1–
p1; T( )∆ p1( ) τ1d∫–=

WIχ I p( ) φI p1( )% 1–
p1; T( )∆ p1( ) τ1d∫–

∆ p( ) BFχF p( ) BIχ I p( ),+=

BF VF φF p( )% 1–
p; T( )∆ p( ) τ ,d∫–=

BI WI φI p( )% 1–
p; T( )∆ p( ) τd∫–=

χF p( ) φF p( ) Y p p1,( )% 1–
p1; T( )χF p1( ) τ1,d∫–=

χ I p( ) φI p( ) Y p p1,( )% 1–
p1; T( )χ I p1( ) τ1.d∫–=

χ I pI( ) χF pF( ) 1, χ I pF( ) 0,= = =

χF pI( ) φF pI( ) 9 pI pF,( )/9 pF pF,( )= =

tanh[E

χF p( ) φF p( ) Y p p1,( ) 1
2 ξ p1( )
-------------------χF p1( ) τ1,d∫–=

χ I p( ) φI p( ) Y p p1,( ) 1
2 ξ p1( )
-------------------χ I p1( ) τ1d∫–=
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of the temperature T in these equations, we are free to
regard the solutions χI( p) and χF( p) as T-independent
quantities.

Using the properties (18), Eq. (15) yields

(20)

Upon introducing the decomposition (15) in (16), we
arrive at the system of two equations

(21)

for determining the amplitudes BF and BI entering into
the construction (15), with

(22)

In practice, it is advantageous to rewrite the system of
Eqs. (21) in the equivalent form

(23)

For a solution to exist, the determinant $(T) of (21) or
(23) must equal zero for any T. Together with either of
the two equations (21) [or either of (23)], the dispersion
relation $(T) = 0 forms a closed system that allows one
to determine all characteristics of the superfluid system
feeding upon the two Fermi surfaces located at pI and pF.

We begin to explore the implications of the formal-
ism we have developed by examining the influence of
the additional (inner) Fermi surface on the superfluid-
transition temperature Tc and on the behavior of the
pairing gap near Tc. As shown earlier, Eqs. (21) [or
(23)] become decoupled if LIF = 0. Let us assume, as a
first case, that both of the interaction parameters VF and
WI are negative, so that Cooper pairing could exist at
both Fermi surfaces when they are disconnected. The
pairing effect is naturally more intensive at the main
(outer) surface due to a greater density of states. From
the two solutions of the problem as stated, we therefore
choose ∆( p) = ∆FχF(p) with ∆I = φF(pI)∆F, implying

that the individual critical temperatures  and  sat-

isfy  > . It is worth noting that, in spite of this ine-
quality, the magnitude of the ratio ∆I /∆F ~ φF(pI) is not
necessarily less than unity (see below).

∆F ∆ pF( )≡ BF,=

∆I ∆ pI( )≡ BI BFφF pI( ).+=

BF VFLFFBF– VFLF IBI,–=

BI WI LIFBF– WI LIIBI–=

LFF φF p( )% 1–
p; T( )χF p( ) τ ,d∫=

LII φI p( )% 1–
p; T( )χ I p( ) τ ,d∫=

LIF LF I≡ φI p( )% 1–
p; T( )χF p( ) τd∫=

≡ φF p( )% 1–
p; T( )χ I p( ) τ .d∫

1 VFLFF T( ) VFφF pI( )LF I T( )–+[ ]∆F

+ VFLF I T( )∆I 0,=

WI LIF T( ) 1 WI LII T( )+( )φF pI( )–[ ]∆F

+ 1 WI LII T( )+[ ]∆I 0.=

Tc
F

Tc
I

Tc
F

Tc
I
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Working in the vicinity of the transition temperature
Tc , standard calculations in the spirit of BCS theory
establish the behaviors

(24)

in terms of the dimensionless parameters τ = (Tc –
T)/Tc , DF = ∆F/Tc , and DI = ∆I/Tc . In Eqs. (24), NF(0)
and NI(0) are the densities of states at the indicated

Fermi surfaces;  = (pI)NI(0)/NF(0) is an effective

coupling constant; and L = ln( /πTc) + C measures

the transition temperature, where  is the free Fermi
energy and the value of Euler’s constant is C = 0.577.
Certain irrelevant constants entering the derivation of the
limiting behaviors of LII(T), LIF(T), and LFF(T) reduce in
effect to a renormalization of the critical temperatures

 and  and may hence be omitted in forming
Eqs. (24). The temperature dependence of the relevant
quantities is determined entirely by the ratio α/β =
(8π2/7)ζ(3), where ζ(x) is the Riemann zeta function.

Upon substituting the results (24) into (23), we are
led to

(25)

Putting T = Tc and evaluating the determinant $(Tc) of
this system, we arrive at a closed formula giving the new
critical temperature Tc in terms of the individual critical

temperatures  and  for the uncoupled system:

(26)

Here, we have introduced the definitions lF ≡
ln( /π ) + C = –1/VFNF(0) and lI ≡ ln( /π ) + C =

–1/WINI(0). Evidently, the inequality  >  implies
lI > lF.

The situation for small coupling,  ! 1, is espe-
cially transparent. In this case, the value of L (which
measures Tc) differs little from the value of lF (which

measures ), permitting us to replace L by lF in the
last term of the determinantal condition (26). The solu-
tion of Eq. (26) is then given by

(27)

LFF T Tc( )

NF 0( ) 1 gIF
2

+( ) L ατ+( ) β DF
2

gIF
2

DI
2

+[ ]–{ } ,

LII T Tc( ) NI 0( ) L ατ βDI
2

–+[ ] ,

LIF T Tc( ) NI 0( )φF pI( ) L ατ βDI
2

–+[ ]

gIF
2 φF

2

εF
0

εF
0

Tc
F

Tc
I

1 VFNF 0( ) L ατ βDF
2

–+( )+[ ] DF

+ VFNI 0( )φF pI( ) L ατ βDI
2

–+( )DI 0,=

φF pI( )DF– 1 WI NI 0( )+[ ] L ατ βDI
2

–+( )DI+ 0.=

Tc
F

Tc
I

L lI–( ) L lF–( ) gIF
2

lI L– 0.=

εF
0

Tc
F εF

0
Tc

I

Tc
F

Tc
I

gIF
2

Tc
F

L±
lI lF+

2
-------------

lI lF–( )2

4
-------------------- gIF

2
lIlF+

1/2

.±=
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This formula resembles the familiar textbook solution
of the two-level problem. If, in that problem, the off-
diagonal interaction is switched on, the two energy lev-
els repel each other. The lower level moves downward
and the upper level moves upward. Correspondingly, in
the current problem, the greater logarithm (in this case,
L+) increases while the smaller logarithm (L–)
decreases; in particular,

(28)

Since lI and lF are both positive in the case under con-
sideration, with lI > lF , we conclude that the emergence
of the second Fermi surface increases the critical tem-

perature Tc relative to .

The picture changes nontrivially when we turn to
the more interesting case in which pairing is absent at
the new Fermi surface when the two surfaces are dis-
connected, though still present at the original surface.
Upon restoration of the coupling, a pairing gap is found
to exist on the new Fermi surface as well as the old one,
a feature which is directly seen from either of Eq. (23).
The result (27) remains valid. However, in contrast to
the preceding case, the value of lI becomes negative
while lF stays positive. Consequently, the single accept-
able value of L derived from Eq. (27) increases relative

to lF , implying a decrease of Tc with respect to . This
finding should not come as a surprise: the value of the
pairing gap depends on the shape of the single-particle
spectrum, and if the spectrum becomes flatter in a
region where the interaction is repulsive, there must be
a suppression of the gap value and a corresponding sup-
pression of Tc . We should emphasize that the situation
is now quite different from that of perturbation theory,
where the gap increases independently of the sign of
the perturbating interaction. The distinctive behavior
we have described is indicative of a failure of perturba-
tion theory in this second case. We should also point out
the close resemblance between the predicted behavior
and the proximity effect observed in junctions between
a superconductor and a normal metal: the superconduc-
tor tends to induce superconditivity on the normal side
of the junction, at the expense of a suppression of its
intensity on the superconducting side.

Let us now turn to the matter of the jump in the
superfluid specific heat Cs at T = Tc triggered by the

branch point in (T) at the critical temperature Tc. In
BCS theory, there is a universal relation

(29)

whose origin is clarified if we set LIF = 0 in Eq. (23).
Subtracting from the general equation its special case
for T = Tc , several cancellations leave us with the result

(30)

L– lF . gIF
2 lIlF

lI lF–
-------------.––

Tc
F

Tc
F

∆F
2

∆F
2

 . 3.06Tc Tc T–( )

LFF T( ) LFF Tc( )– 0,=
which is completely independent of the choice of the
interaction between the particles. The relation (29) fol-
lows directly.

In the general case where LIF ≠ 0, the same subtrac-
tion procedure yields

(31)

from which we learn that  and  are linear in Tc –
T. Consequently, the specific-heat jump at T = Tc per-
sists in the presence of the two Fermi surfaces.

To determine the gap values and the magnitude of
the specific-heat jump, another relation between ∆F and
∆I is needed. With the help of the second of Eqs. (25),
we obtain

(32)

Together with Eq. (31), this relation permits us to eval-
uate both ∆F(T  Tc) and ∆I(T  Tc).

The result (32) is readily applied to the evaluation of
the specific-heat jump ∆C at T = Tc in the system with
the two Fermi surfaces. One has

(33)

with n( p) = {1 + exp[ξ(p)/T]}–1. Simple algebra pro-
duces the result

(34)

where Cn is the specific heat of the system just above
the transition temperature and the excess R, again

assuming  ! 1, is given by

(35)

It is instructive to analyze the excess R in more
detail. On the one hand, its value is proportional to the
ratio NI(0)/NF(0), which is seen to be small by phase-
space arguments. On the other hand, R also depends on
the departure of the quantity

from unity. This quantity, being positive and propor-
tional to the ratio 9(pI , pF)/9(pF , pF), can in fact have
a value considerably in excess of 1. Indeed, the singular
interaction represented by (3) should be present in both
the particle–hole and particle–particle channels. If the

α 2L lI– lF– gIF
2

lI–[ ] τ

– β L lI–( )DF
2
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ratio of 9’s is evaluated for the amplitude Fs of Eq. (3),
we immediately infer that for kc close to pF the factor
1 + R appearing in (34) does exceed unity.

In view of the above findings, it may be expected
that the touchstone formula

(36)

of BCS theory fails for a system having two or more
Fermi surfaces. To verify this prediction, we (i) observe
that the vanishing of the determinant $(T = 0) gives the
relation

(37)

where L0(∆F) = ln( /∆F) and L0(∆I) = ln( /∆I); (ii)
insert Eq. (32) into this relation; and (iii) compare the
result with (26). After straightforward algebra, one
obtains

(38)

The ratio in the last member of Eq. (38) should be pos-
itive for positive lndI . Further, if the value of this loga-
rithm is of order unity, the connection

(39)

can be established between the excess in the specific-
heat jump and the deviation of the ratio Tc/∆F(T = 0)
from its BCS value.

In summary, we have studied the rearrangement of
single-particle degrees of freedom that precedes the
phenomenon of pion condensation, the phase transition
in nuclear and neutron matter that was predicted by
A.B. Migdal more than 25 years ago. We have found
that this rearrangement may express itself in the emer-
gence of a bubble in the quasiparticle momentum dis-
tribution. As a consequence, the Fermi surface becomes
doubly connected. We have examined some of the
repercussions of such a rearrangement for the super-
fluid properties of dense neutron matter, specifically the
ensuing modifications of the standard BCS results for
the specific-heat jump at the transition temperature and
for the relation between this critical temperature and
the gap value at zero temperature. The formalism we
have developed and the results we have obtained can be
applied more widely in the theory of strongly corre-
lated Fermi systems. In this spirit, it will be of special
interest to revisit the case of superfluid 3He, which
offers a realistic example of a Fermi liquid existing near
an antiferromagnetic phase transition.

∆BCS T 0=( ) 1.57Tc=

L0 ∆F( ) lF–[ ] L0 ∆I( ) lI–[ ] gIF
2

L0 ∆I( )lI– 0,=

εF
0 εF

0

L0 ∆F( ) L–
1.57Tc

∆F T 0=( )
-------------------------ln≡

=  gIF
2 dIln

1 lF/lI( ) 1 lF/lI( )– dIln–[ ]–
--------------------------------------------------------------------.

1.57Tc

∆F T 0=( )
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APPENDIX

The key relation (5) between the spectrum ξ( p), the
static limit Γk of the Landau scattering amplitude, and
the quasiparticle momentum distribution n( p) can be
derived from the following two formulas (19.2) and
(19.3) of [16]:

(Ä.1)

and

(Ä.2)

The single-particle Green’s function

(Ä.3)

is made up of the pole term, namely Gq(p, ε) = [ε – ξ(p)]–1

multiplied by the quasiparticle weight factor z, together
with the regular term Gr(p, ε). The symbol Γk entering
(A.1) denotes the static limit Γ(p1, p2, ε1, ε2, k  0,
ω  0) of the scattering amplitude, with the limits
taken so that ω/k  0. Similarly, Γω denotes the static
limit evaluated under the opposite constraint, k/ω  0.
The amplitudes Γk and Γω are linked to one another by

(Ä.4)

where
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Our objective is to recast (A.2) into a form contain-
ing only quasiparticle contributions. To this end, let us
multiply both members of Eq. (A.2) from the left by the
product ΓkA and integrate. Rewriting the result for the
first term on the right-hand side with the aid of (A.4),
we find

(Ä.6)

Collecting, on the right-hand side of the equation, sim-
ilar terms containing Γk and using (A.1), we are led to

(Ä.7)

Next, we subtract (A.1) and (A.2) from one another and
observe that the difference coincides (in magnitude)
with the right-hand side of Eq. (A.7). The latter equa-
tion may then be rewritten as

(Ä.8)
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Γk. This is exactly the connection
formula (5) that has been applied in the main text of the
article.
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Abstract—A realistic version of the generalization of the theory of finite Fermi systems to the case where some
complex configurations involving phonons are explicitly taken into account is proposed. Secular equations
describing the fragmentation of simple states in odd and even–even nuclei over complex configurations that
belong to, respectively, the quasiparticle ⊗  phonon + quasiparticle ⊗  phonon ⊗  phonon and the two quasipar-
ticles ⊗  phonon type and which are presently of greatest interest are derived on the basis of general relations
for nuclei that involve pairing (nonmagic nuclei). These equations take into account effects associated with
ground-state correlations due to complex configurations and with the additional quasiparticle–phonon mecha-
nism of Cooper pairing in nuclei. The effects in question were disregarded previously, but they are of interest
since they can be observed in present-day experiments. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

It is well known that the conventional theory of
finite Fermi systems was developed by A.B. Migdal [1]
as a generalization of the Landau microscopic theory of
Fermi liquids to the case of a finite nucleus—that is, to
the case of a Fermi system consisting of two types of
nucleons, possessing the property of superfluidity, and
having finite dimensions. From the point of view of a
comparison with available alternative approaches to
studying even–even nuclei, the equations of the con-
ventional theory of finite Fermi systems appear to be
the equations of the random-phase approximation
(RPA) for magic nuclei or the equations of the quasi-
particle random-phase approximation (QRPA) for non-
magic nuclei as formulated in terms of the Green’s
function method. However, the use of consistent many-
body theory in terms of the Green’s function method
proved to be seminal for a further development of the
microscopic theory of the nucleus. The statement that
the parameters of the theory have the same values for
all nuclei (with the exception of light ones)—the uni-
versality principle advocated by Migdal and his disci-
ples—is of paramount importance, especially at
present, when much attention is being given to various
unstable nuclei not yet investigated experimentally. In
particular, this property of the theory of finite Fermi
systems was largely responsible for its rapid and suc-
cessful advancement to the fore as the underlying the-
ory in the physics of giant multipole resonances imme-
diately after their discovery in 1971 and 1972 (for an
overview, see [2, 3]).

A further development of the theory of finite Fermi
systems was associated primarily with taking into
account self-consistency effects [4–6] and mesonic
degrees of freedom [6]. Resorting to the coordinate rep-
1063-7788/01/6404- $21.00 © 20627
resentation, which made it possible to treat reliably the
continuous single-particle spectrum in magic ([6]) and
nonmagic ([7]) nuclei, was of paramount importance
from the point of view of the computational technique.
This circumstance was crucial for describing unstable
nuclei whose binding energy is close to zero. Thus, the
theory of finite Fermi systems basically remained a
consistent microscopic theory that took into account
relatively simple configurations, 1p1h within the RPA
or 2qp within the QRPA; that is, an excited state was
treated as a superposition of these configurations1)

(more complex configurations were assumed to be
effectively absorbed in the phenomenological constants
of the theory of finite Fermi systems). For magic and
odd near-magic nuclei, particle + phonon configura-
tions were taken into account in order to compute the
energies of the corresponding multiplets and some
static effects (see the review articles [3–5]).

A microscopic theory that takes into account more
complex configurations in nonmagic nuclei and which
is based on the Green’s function method has been
developed since the study of Belyaev and Zelevinskiœ
[8], who considered pairing effects in odd nuclei. For
even–even nuclei, it was the problem of describing the
widths of giant multipole resonances (for an overview,
see [2, 9–11]) that required generalizing the (Q)RPA. It
turned out that, in order to solve this problem, it was
sufficient, as a rule, to take into account the simplest of
more complex configurations (that is, 1p1h ⊗  phonon
[9, 10] or 2qp ⊗  phonon [11]). It should be emphasized
that, in relation to the problem of taking into account

1)Of course, we also include ground-state correlations taken into
account within the RPA or QRPA. For the sake of simplicity, we
make use of the notation qp (quasiparticle), implying Bogolyubov
quasiparticles and the full QRPA basis involving quasiparticle
1p1h, 1h1p, 1p1p, and 1h1h channels.
001 MAIK “Nauka/Interperiodica”
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simple configurations, that which incorporates more
complex configurations is much more involved both
theoretically and numerically, especially for nuclei
where pairing effects are significant. A wide variety of
approaches have been developed to tackle the last prob-
lem. Of these, the most advanced approach is that
which is based on the quasiparticle–phonon model [11]
relying on the Hamiltonian formulation and separable
forces fitted to data on the energies of low-lying collec-
tive levels. However, this model takes no account of the
single-particle continuous spectrum and, as a rule, of
ground-state correlations associated with complex con-
figurations.

In recent years, the need for refining and further
developing a microscopic theory for taking into
account complex configurations, especially in nuclei
with pairing, has ever become more pressing, predom-
inantly in connection with the emergence of new exper-
imental results. By way of example, we list below some
of the realms where advancements in experimental
techniques have made it possible to obtain relevant
information:

(i) Intensive development of modern germanium
detectors and multidetector gamma spectrometers like
those of the EUROBALL cluster and the EUROBALL
type (see [12–14]) ensured an unprecedentedly high
resolution and a high efficiency in recording gamma
rays of energy up to 20 MeV. This furnished radically
new information not only about deformed nuclei but
also about multiplets of the 1qp ⊗  phonon and the
1qp ⊗  2phonon type [13, 14]—that is, direct informa-
tion about configurations involving phonons.

(ii) Results that have already been obtained—and
even to a still greater extent, those that will be
obtained—at radioactive-beam accelerators call for
theoretical approaches that would take into account
complex configurations for nuclei whose binding
energy is close to zero, nuclei with a high neutron def-
icit, neutron-rich nuclei, and other unstable nuclear
species.

In addition, there are many unresolved questions in
the region of the neutron binding energy and above
(region of giant resonances). These include those that
are associated with the fine structure and decay proper-
ties of resonances, the origin of resonance-like struc-
tures, and the role of the odd nucleon [10, 11].

Experience gained in the first studies aimed at
applying the theory of finite Fermi systems [6] to taking
into account complex configurations in odd nuclei on
the basis of this theory [3, 5] and on the basis of its gen-
eralization that incorporates 1p1h ⊗  phonon configura-
tions [9, 10] showed that the Green’s function formal-
ism makes it possible to consider the single-particle
continuous spectrum, ground-state correlations associ-
ated with complex configurations [9, 15, 16], and com-
plex configurations in the particle–particle channel (in
particular, in the problem of Cooper pairing) [17, 18].
The majority of these effects can be observed in
present-day experiments, and it is of prime importance
that they can be incorporated in a theory that employs
the Green’s function formalism.

In order to formulate a viable approach—that is, an
approach that would allow a sufficiently fast numerical
implementation for a great number nuclei with pairing
(it should be borne in mind that such nuclei present
considerable computational difficulties) and which
would be able, on the other hand, to describe present-
day data—one can make use of two simplifying cir-
cumstances: the existence of the small parameter g2 (g
is the dimensionless amplitude for the production of a
low-energy phonon) for semimagic nuclei [19] and the
absence of self-consistency (in just the same way as in
the conventional theory of finite Fermi systems) in our
problem featuring complex configurations (this means
that we will use two sets of input phenomenological
parameters—parameters that describe the mean nuclear
field and parameters that describe nucleon interactions
in the particle–hole and the particle–particle channel).

On the basis of the Green’s function formalism, we
propose here viable methods for explicitly taking into
account some complex configurations in odd and even–
even nuclei. We will derive secular equations that
describe the fragmentation of simple states over com-
plex configurations in nonmagic nuclei. In order to
avoid encumbering our presentation, some results will
be presented, however, only for magic nuclei.

2. GENERAL RELATIONS FOR NUCLEI 
THAT INVOLVE PAIRING

In this section, we obtain general relations that will
be specified in Sections 3 and 4. Here, we do not preset
any concrete form of self-energy operators, only
assuming that they involve quasiparticle–phonon inter-
action generating complex configurations.

Since there is no self-consistency, the phenomeno-
logical pairing gap ∆λ and the phenomenological mean
field that is described by the Woods–Saxon potential
and which determines the relevant single-particle ener-
gies eλ and the corresponding wave functions appear as
inputs in our problem. Since the self-energy operators
contribute to the phenomenological quantities eλ and
∆λ, special care should be taken here to avoid double
counting. For this, the above phenomenological quanti-
ties must be refined by removing the contribution of
quasiparticle–phonon interaction contained in the self-
energy operators from these phenomenological quanti-
ties. The refining procedure—that is, a transition from

{eλ, ∆λ} to their refined counterparts { , }—is
specified at the end of this section.

ẽλ ∆̃λ
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2.1. General Equations for Single-Particle Green’s 
Functions

In [19, 20], general equations for single-particle
Green’s functions for a Fermi system that involves pair-
ing were obtained in a form where known mean-field
components described by Green’s functions of the
Gor’kov type were singled out explicitly. This was
done by proceeding from the most general equations
for the normal (causal) and anomalous Green’s func-
tions G and F in a Fermi system that involves pairing.
In the symbolic notation used in the present section,
they are given by

(1)

where Σ, Σh, Σ(1), and Σ(2) are the corresponding total

self-energy operators, while G0 and  are the Green’s
functions for a perfect gas. The set of Eqs. (1) must be
supplemented with analogous equations for Gh and
F (1), which describe the inverse process. In order to
obtain realistic equations, each self-energy operator is
represented as the sum of two terms,

(2)

Here, the first terms are independent of energy and cor-
respond to pairing described by a mechanism of the
Bardeen–Cooper–Schrieffer (BCS) type for the self-
energy operators Σ(1) and Σ(2) and to our mean field. The
second terms (self-energy operators M (i)) are not speci-
fied for the time being. It is assumed that they involve
quasiparticle–phonon interaction, which generates
complex configurations. The set of Eqs. (1) can then be
recast into the form [20]

(3)

Here, the tilde-labeled Green’s functions are the
Gor’kov Green’s functions
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It is important here that, by definition, the tilde-labeled
quantities involve no contributions from the self-energy
operators M(i). Since the input quantities {eλ, ∆λ} are
determined from experimental data in our approach, the
contribution of M(i) must be removed from them in

order to obtain the refined quantities { , }.

It is advisable to recast Eqs. (1) into an alternative
form that would make it possible to single out more
compactly that pairing mechanism which is different
from the conventional BCS mechanism. For this, we
represent Eqs. (1) as [19]

(5)

where the Green’s functions  and  define refined
quasiparticles (without pairing) in the mean field:

(6)

Further, we introduce the Green’s function  that sat-
isfies the Dyson equation

(7)

The second equation in (5) then reduces to the form

(8)

Substituting (8) into the first equation in (5), we find
that the Green’s function G satisfies the equation

(9)

By using the refined Gor’kov Green’s function (4),
which satisfies the equation

(10)

we eventually obtain

(11)

where the self-energy operator

(12)

represents the general expression for that part of the
self-energy operator in a Fermi system which is respon-
sible for the pairing mechanism additional to the
refined BCS mechanism {here, the last term in (12) [see
Eq. (10)] corresponds to this mechanism}—that is, for
the quasiparticle–phonon mechanism in our case.

By way of example, we indicate that, in the case
where all M (i) = 0, the above results coincide with the
results known from the theory of finite Fermi systems
if our refined quantities are replaced by their phenome-
nological analogs and if Mel is set to zero.
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2.2. Secular Equation for the Excitation Energies 
of an Odd Nucleus

For the sake of simplicity, we will henceforth use
the diagonal approximation in the single-particle indi-
ces λ. For a spherical nucleus, this approximation of
Mλλ ' is quite reasonable, since off-diagonal Mλλ ' are
nonzero only for transitions where the initial and the
final state do not belong to the same shell or to neigh-
boring shells. For the problem without pairing, the off-
diagonal case was considered in [21]; the results
obtained there can easily be generalized to the case
where pairing is taken into account. In the diagonal
approximation, the required solutions to the set of
Eqs. (3) are given by [19, 22]

(13)

where

(14)

By setting θλ(e) to zero, we therefore obtain a secular
equation that determines the fragmentation of a single-
particle state λ over complex configurations specified
by the operators M (i) in an odd nucleus with pairing.
Accordingly, we have

(15)

where η is a solution to the equation θλ(e) = 0; it must
have two indices, λ and n (solution number). Since
Mh(e) = M(–e) and since M(2)(e) is an even function of
e, Eq. (15) is invariant under the substitution η  –η.

Following [22], we represent the operator M as the
sum of the even and the odd component,

(16)

Equation (15) then takes the form
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From Eq. (3) or (15), we can also obtain the formal
solution
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(19)

with qλ = –Mλod(η)/η. Equations that are similar in
form to those in (18) and (19) were obtained in [17], but

the terms  and  were not singled out explicitly
there.

2.3. Equations for the Refined Quantities  and 

By using Eqs. (18) and (19), we can obtain the

refined quantities  and  from their phenomenolog-
ical counterparts eλ and ∆λ. The experimental single-
particle energies must correspond to dominant levels
(that is, levels characterized by the largest spectro-
scopic factors) obtained as solutions to Eq. (17) or solu-
tions to the set of Eqs. (18) and (19). Therefore, the
refining procedure must be implemented in such a way
that one of the solutions coincides with the experimen-
tal value and that this solution (we denote by Eλ the cor-
responding energy) would remain dominant. We denote
the relevant quantities by eλ and ∆λ. With the aid of
Eqs. (18) and (19), we then find that the refined quanti-

ties  and  are related to their phenomenological
counterparts eλ and ∆λ by the equations

(20)

where qλ = –Mλ od(Eλ)/Eλ. The nonlinear relations (20)

determine the refined quantities  and  if we know
the phenomenological quantities eλ and ∆λ. The latter
can be found from experimental low-lying single-
particle excitations in nonmagic nuclei (see, for exam-
ple, [19]).

Expression (20) for the observed pairing gap
receives contributions from two mechanisms of Cooper
pairing in nuclei. These are the conventional BCS

mechanism, which is concealed in the quantity , and
the quasiparticle–phonon mechanism, which is deter-

mined by the self-energy operators  and Mλ od . The

latter also contributes to  [18, 19]. The first quantita-
tive estimations of these mechanisms revealed [18]
that, for the 120Sn nucleus, the total contribution of the
quasiparticle–phonon mechanism saturates 26% of the

observed pairing gap, the difference ∆λ –  being 31%
(these values were obtained for the relevant quantities
averaged over the states λ).
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3. FRAGMENTATION OF SINGLE-
QUASIPARTICLE STATES OVER COMPLEX 

CONFIGURATIONS

3.1. Complex Configurations 1qp ⊗  phonon

Let us derive the secular equation for the simplest
case of M (i) ~ g2. The self-energy operator then has the
form

(21)

where

is the matrix of the bare Green’s functions specified by
Eqs. (4); no account is taken here of pair phonons. Here
and below, a dotted line represents the phonon Green’s
function.

From expression (21), we can see that, for the g2

approximation to be realized,  must involve the

refined Green’s functions  constructed from  and

. For the case of M(i)(g2) considered here, it would
not be absolutely erroneous to use the phenomenologi-
cal quantities eλ and ∆λ in (21). Partly, this issue was

considered in [23] (difference eλ – ) and in [19],
where it was shown that, in order to obtain quantita-
tively correct results, it is necessary to take into account
the refinement of the gap. It would be interesting to find
an experimental corroboration of this effect. But if it is
necessary to include terms of order g4 (see Subsection 3.2),
as is required in the majority of cases, the use of the
refined quantities is mandatory to avoid the double
counting of the operators M (or quasiparticle–phonon
interaction).

The expressions for the operators M(i)(g2) are pre-
sented in the Appendix to [19]. Substituting these
expressions into (17), we obtain the secular equation

(22)
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where λ = λ1 ≡ 1 and  =  + ωs . The double sum
over (2, s) and (2', s') involves g4 terms obtained upon
taking into account the bracketed expression in
Eq. (17); note that there are no second-order poles in
the double sum. For semimagic nuclei, where g2 < 1,
the contribution of this double sum can be quite mod-
est, but this was not verified numerically. Without terms
of order g4, the above equation coincides with the cor-
responding equation in the quasiparticle–phonon
model if we discard ground-state correlations, which

ensure invariance under time reversal, and replace 

and  by, respectively, eλ and ∆λ (for more details, see
[19]).

3.2. Complex Configurations
1qp ⊗  phonon + 1qp ⊗  phonon ⊗  phonon

Since relevant expressions for nuclei where pairing
occurs are very cumbersome, we will henceforth
present the eventual analytic formulas only for magic
nuclei. As to the general procedure for deducing results
for odd and even–even nonmagic nuclei (present sub-
section and Section 4, respectively), it becomes clear
upon following the analogous procedure for magic
nuclei, which is modified by replacing, in the relevant
diagrams and in the corresponding general formulas,

the Green’s functions G and  and the self-energy

operator M by, respectively, , , and  [see
Eq. (21)] and by additionally replacing, if pair phonons
are taken into account, the phonon amplitude g by the
matrix .

It was mentioned above that, in order to describe
available experimental data for odd nuclei, it is neces-
sary to include, in addition to 1qp ⊗  phonon complex
configurations, at least 1qp ⊗ phonon ⊗  phonon config-
urations [13, 14]. The main problem here is to formu-
late equations that do not involve second-order poles.
In terms of Green’s functions, the simplest 1qp ⊗
phonon ⊗  phonon terms in the self-energy operator
have the graphic representation

(23)

where thin lines stand for the refined Green’s functions

. It can easily be seen, however, that these graphs
involve unphysical second-order poles [η – (eλ + ωs)]2,
which, at λ2 = λ4, correspond to cuts shown by dashed
lines. That one aims here at describing individual low-
lying levels renders this difficulty all the more serious.
A general recipe for sidestepping such problems is well
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known (see, for example, [23]): it is necessary to sum
diagrams belonging to a specific class in all orders in
g2. For this reason, we will proceed from the general
representation of the self-energy operator for the case
of quasiparticle–phonon interaction [24]:

(24)

Here, the double line represents the total Green’s func-
tion G, while the triangle stands for the vertex operator.
For phonons, we use the well-known Green’s function
with experimental features or features fitted to experi-
mental data [8]. In the vertex Γ taken in the approxima-
tion adopted here, it is necessary to include, in addition to
the bare expression, the simplest expression of order g3,

(25)

Here, the refined Green’s functions  appear in Γ(1).
Taking into account (25), we then find from (24) that

(26)

If configurations that are more complex than 1qp ⊗
phonon ⊗  phonon are not needed, the total Green’s
function G in Eq. (26) must be taken with the self-
energy operator involving only g2 [see Eq. (17)]:

(27)

Thus, the representation of the self-energy operator in
the form specified by Eqs. (26) and (27) conforms to
the problem under consideration—as can be seen from
(26), neither term now has second-order poles since the
total Green’s function in (26) represents, according to
(27), an infinite sum of diagrams of order g2 (see also
below). Solutions to Eq. (27) can easily be obtained
both for magic ([21, 25]) and for nonmagic ([19])
nuclei.

In order to derive the expression for the rainbow
graph Mr, we make use of the general representation of
the Green’s function in the diagonal approximation
[21]. We have

(28)

where
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and  is a solution to Eq. (27). By explicitly singling
out the dominant (phenomenological) term, we can
recast expression (28) into the alternative form [21]

(30)

For our purposes, it is important that, upon the substi-

tution of (30) into (26), e2 ≠ , which implies the
absence of second-order poles. Substituting expression
(28) into Mr, we obtain

(31)

The expressions derived for the vertex Γ (1) and for
the crossed self-energy operator Mv with allowance for
(28) are presented in the Appendix. Substituting M =
Mr + Mv from (31) and (A.2) into Eq. (15) (this is more
convenient in the case of magic nuclei—that is, when

 = M(2) = 0), we find that the secular equation that
determines the fragmentation of the single-particle
state λ over 1qp ⊗  phonon and 1qp ⊗  phonon ⊗
phonon configurations has the form

(32)

where (η) is given by expression (A.2) in the

Appendix. It follows from (15) that Eq. (32) is invariant
under the substitution of –η for η. We retained here k ≠
1 terms, but it seems that of greatest importance are k =
1 terms—that is, the first two terms in Eq. (30).

There is every reason to hope that Eq. (32) describes
quite accurately not only the energies of levels that
appear to be superpositions of 1qp ⊗  phonon configu-
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rations but also the energies of levels that are deter-
mined by 1qp ⊗  phonon ⊗  phonon configurations. In
stating the latter, we bore in mind that, on one hand,
such levels, sufficiently pure ones indeed, were
observed experimentally [13, 14] and that, on the other
hand, the contributions of diagrams of order g6, which
correspond to taking into account three phonons, must
be modest for semimagic nuclei, since g2 < 1 for such
nuclear species. Additional terms, at least part of them
are already contained in the above equations, can be
taken into account, if necessary, by analogy with the
procedure outlined here.

Equation (32) differs noticeably from the corre-
sponding equation in the quasiparticle–phonon model
(see [11]). Our equations disregard g6 and g8 terms,
which stem from the use of a more precise expression
for the phonon Green’s function in [11], but—what is
more important—they take into account ground-state
correlations. A second distinctive feature of our

approach is that it relies on the refined quantities  and

 (in the sense clarified above), which must be found
by formulas (20) with the aid of the above complicated
expressions for our self-energy operators. These two
distinctions may be of importance in describing indi-
vidual low-lying levels in odd nuclei.

4. FRAGMENTATION OF PARTICLE–HOLE 
STATES OVER 1p1h ⊗ phonon COMPLEX 

CONFIGURATIONS

Here, we will consider only magic nuclei and derive
equations not featuring second-order poles. In this
sense, our results emerge from a direct generalization
of the approach formulated in [23]; for this reason, we
discuss solely the most important point—namely, the
modification of the propagators in the integral equation
for the density matrix or for the vertex function (the
remaining formulas retain the original form). By invok-
ing the result obtained in [26], the idea being discussed
can be straightforwardly generalized to nuclei where
pairing occurs.

For the problem of taking into account complex
configurations of the 1p1h ⊗  phonon type within the
Green’s function formalism, an attempt at getting rid of
second-order poles is not new. Previously, it was imple-
mented numerically within a more complicated version
that is referred to as the method of the chronological
decomposition of diagrams and which is based on
approximately summing, in the propagator, diagrams
of order g2 that feature self-energy inserts and a phonon
in the transverse particle–hole channel (for detail, see
[10]). This approach was successfully used to describe
many giant multipole resonances in the doubly magic
nuclei 40Ca, 56Ni, 48Ca, 208Pb, 78Ni, 100Sn, and 132Sn, as
well as in 58Ni. In this way, it appeared to be possible to
take simultaneously into account the single-particle
continuous spectrum, ground-state correlations, and

ẽλ

∆̃λ
PHYSICS OF ATOMIC NUCLEI      Vol. 64      No. 4      2001
nonseparable effective interaction [10]. However, the
problem of generalizing the method of the chronologi-
cal decomposition of diagrams is very cumbersome.
Anyway, it is instructive to consider an alternative
approach that would be in a sense more natural and
simpler in a numerical implementation, the latter being
of prime importance for its generalization to the case of
nonmagic nuclei.

The fragmentation of pure 1p1h configurations that
is due to particle–hole interactions is taken into account
within the theory of finite Fermi systems or within the
RPA. Our task is to include more complex configura-
tions—at least those of the 1p1h ⊗  phonon type—in
such a way as to avoid the emergence of second-order
poles. The equation for the density matrix or for the
vertex function is determined almost completely by the
propagator

(33)

where

(34)

Here, the total Green’s function G satisfies Eq. (27). It
seems that of greatest interest is the case of k = 1, which
corresponds to taking into account the first term in
expression (30) for the function K (34). In [23], use was
made of the quantity K involving the Green’s function

 instead of the total Green’s function G, but this
resulted in the emergence of second-order poles.
Expression (34) can be recast into two alternative
forms:

(35)

(36)

We must further specify the full Green’s function G.
Proceeding in just the same way as in the case of odd
nuclei [see Eq. (26)], we can represent it in the form G =

[  – M(g2, e)]–1 or make use of the solution to equation
G –1 = 0 in the form (28), where it is necessary to take into
account the total sum over k in solving Eq. (27). With the
aid of (28), we find for the propagator in (35) that

(37)
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where  ≡  –  and  ≡  – e2 and where we

have considered that  = (1 – ) and  = .

All the remaining formulas, including those that
describe observables, are obtained from the corre-
sponding formulas in [23] by substituting expression
(37) for the propagator. This approach makes it possi-
ble to calculate much more straightforwardly all giant
multipole resonances in magic nuclei (and not only M1
resonances as in [23]). Following a procedure similar to
that outlined above and using the results presented in
[26], one can easily generalize the results obtained in
this section to the case of nonmagic nuclei.

5. CONCLUSION

A viable and, probably, the simplest possible proce-
dure has been proposed for generalizing the theory of
finite Fermi systems to the case where it is necessary to
take explicitly into account more complex configura-
tions. More specifically, we have derived secular equa-
tions for describing the fragmentation of single-particle
(for odd nuclei) and particle–hole (for even–even
nuclei) states over complex configurations of, respec-
tively, the 1qp ⊗  phonon + 1qp ⊗  phonon ⊗  phonon
and the 2qp ⊗  phonon type, which are the most inter-
esting ones at present. A more detailed analysis, includ-
ing analysis of transition probabilities, and a numerical
realization of the proposed versions call for much addi-
tional effort, but the latter seems quite feasible. A gen-
eralization to the case of nonmagic nuclei would
require only algebraic complications. By using general
relations presented in Section 2, one can extend, if nec-
essary, the proposed scheme to the case of even more
complex configurations and to the case where effects
associated with a single-particle continuum are sizable
(see, for example, [26]).

In just the same way as the conventional theory of
finite Fermi systems, our approach is not self-consis-
tent. Unfortunately, no self-consistent theory that
would take into account complex configurations has
been formulated conclusively so far for either non-
magic or magic nuclei, although the first attempts for
the latter case have already been made [27] (in [28],
self-consistency is satisfied only at the RPA level).

The equations obtained in the present study cover
two effects that have hitherto been disregarded and
which can be tested in experiments employing modern
gamma detectors and gamma spectrometers. These are
ground-state correlations associated with complex con-
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figurations and quasiparticle–phonon pairing mecha-
nism in nuclei (an additional one with respect to the
conventional BCS mechanism). It would be of great
interest to study these effects both theoretically and
experimentally. The proposed approach is advanta-
geous is that it produces, as a final output, expressions
employing solutions to Eq. (5), whereby the problem at
hand is broken down into two parts, each being solved
individually. This makes it possible to reduce computa-
tional difficulties.
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APPENDIX

Expressions for the Vertex Γ (1) and the Self-Energy 
Operator Mv: Magic Nuclei

Presented immediately below are the expressions
that we have used in Subsection 3.1 for the vertex Γ (1)

(25) and the self-energy operator Mv (26). For the ver-
tex, we have
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Hereafter, s ≡ (n, L, M) and s' ≡ (n', L', M ') are the
phonon number and quantum numbers.

The self-energy operator has the form

(A.2)

where  =  –  and where the Green’s functions

(e), (e), and Ds(e) are given by

In order to avoid encumbering expressions (A.2),
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90th ANNIVERSARY OF A.B. MIGDAL’S BIRTHDAY
NUCLEI

               
Effective Field Theories, Landau–Migdal Fermi Liquid Theory, 
and Effective Chiral Lagrangians for Nuclear Matter*

M. Rho1), 2)
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Abstract—We reinterpret Landau–Migdal Fermi liquid theory of nuclear matter as an effective chiral field the-
ory with a Fermi surface. The effective field theory is formulated in terms of a chiral Lagrangian with its mass
and coupling parameters scaling à la Brown–Rho and with the Landau–Migdal parameters identified as the
fixed points of the field theory. We show how this mapping works out for response functions to the EM vector
current and, then using the same reasoning, make a prediction on nuclear axial current, in particular on the
enhanced axial-charge transitions in heavy nuclei. We speculate on how to extrapolate the resulting theory,
which appears to be sound both theoretically and empirically up to normal nuclear-matter density ρ0, to hitherto
unexplored higher density regime relevant to relativistic heavy-ion processes and to cold compact (neutron)
stars. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In a recent beautiful development [1], Landau’s
Fermi liquid theory has been reformulated as a modern
effective field theory with the Fermi liquid state identi-
fied as a stable fixed point. This theory represents an
effective field theory, which is as beautiful as chiral
Lagrangian field theory for low-energy pionic interac-
tions. It is then most natural that Migdal’s theory of
nuclear matter [2], which is based on Landau’s Fermi
liquid theory, can also be formulated as an effective
field theory. We dedicate this paper, which is based on
recent work [3, 4], as a tribute to Migdal on the occa-
sion of his 90th anniversary.

2. EFFECTIVE FIELD THEORY

Effective field theories enter the nuclear physics
domain in two different ways. One is to make precise
predictions for certain processes involving few-nucleon
systems that are connected with fundamental issues of
physics. This is often called for to answer questions of
fundamental nature in other areas of physics such as
astrophysics or particle physics [5]. The other—which
is our objective here—is to be able to extrapolate the
knowledge available in normal conditions beyond the
normal nuclear-matter regime into a high-temperature
or high-density regime that will be the focus of experi-
mental efforts in the coming years. In making the
extrapolation, the usual quantum-mechanical many-
body approach lacks the necessary versatility, and field
theoretical approaches anchored in quantum chromo-
dynamics will be required. Migdal’s formulation of

* This article was submitted by the author in English.
1) School of Physics, Korea Institute for Advanced Study, Seoul,

Korea.
2) Service de Physique Théorique, CE Saclay, Gif-sur-Yvette,

France.
1063-7788/01/6404- $21.00 © 20637
Fermi liquid for nuclear matter has proven to be power-
ful at least up to normal nuclear-matter density and has
even led to a variety of predictions of phenomena that
might take place under extreme conditions [6]. In its
original form, however, it is somewhat limited in its
scope if one wishes to extrapolate to extreme condi-
tions, where QCD phase changes may be induced. Such
densities are expected in upcoming laboratories and
probably exist in neutron-star interiors. In this paper,
we wish to discuss our recent attempt to formulate the
Landau–Migdal theory of nuclear matter in a modern
effective-field-theory framework. Such a framework,
which offers the possibility of extrapolation to extreme
conditions, has been quite successful in such different
fields as condensed matter and high-energy physics.

2.1. Effective Field Theory for Light Nuclei

Before going into our main topic of dense matter,
we briefly summarize the status of effective field theo-
ries in few-nucleon systems. Here, the setting for an
effective field theory (EFT) is straightforward.

The objectives there are essentially twofold. One is
to derive the nucleon–nucleon interactions—which are
fairly well understood from phenomenological
approaches—from fundamental principles. The basic
question is: Can all two-nucleon systems, viz, nucleon–
nucleon scattering at low energy and bound states (e.g.,
the deuteron), be understood in the framework of an
effective field theory? This old question, which was
stimulated by the work of Weinberg [7], recently
became the focus of intense activities in many theoret-
ical communities. The status of the field is comprehen-
sively summarized in the proceedings of two recent
INT–Caltech workshops [8]. The original Weinberg
approach had certain apparent inconsistency in the
power counting invoked for a systematic calculation,
001 MAIK “Nauka/Interperiodica”
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but this problem can be readily resolved as shown by
the INT–Caltech collaboration [9]. In that work, the
notion of power-divergence subtraction was introduced
into the dimensional regularization. This enables one to
handle the anomalous length scale that appears when a
quasibound state is nearby in a more straightforward
manner. We now know that when done correctly, the
two schemes (i.e., Weinberg’s and the INT/Seattle–
Caltech scheme) are essentially equivalent in the treat-
ment of low-energy two-nucleon interactions.
Although they may differ in specific details, the two
schemes reproduce the low-energy observables thus far
studied with equal quality.

The other objective is to exploit the power of effec-
tive field theories in making bona fide predictions for
processes which cannot be accessed by standard
nuclear physics methods. Examples that have been dis-
cussed recently are the asymmetry observables in the
polarized np capture [10]

(1)

and the solar hep process [11]

p + 3He  4He + e+ + νe. (2)

The first process (1) has been studied theoretically in a
variety of different methods [10, 12] and is being mea-
sured [13]. The second process (2) has been recently
measured in the SuperKamiokande experiment [14]
and has generated a lot of excitement among theorists
[15]. It turns out rather remarkably that these two pro-
cesses complement each other in providing a theoreti-
cal strategy to overcome a nontrivial obstacle on the
way to a parameter-free calculation.

Now, in order to increase the predictive power in
general and to facilitate accurate calculations of the
above processes, a hybrid version of EFT (called
MEEFT or “more effective EFT”) was launched by
Park, Kubodera, Min, and Rho [11, 16, 17]. This
approach, which combines the sophisticated standard
nuclear physics approach with chiral perturbation the-
ory, turns out to be far more powerful and robust than
naively expected. Within this scheme, one can actually
make reliable calculations of observables that cannot
be obtained by other methods. Of equal importance is
the fact that such predictions can be confronted with
data. Thus, the validity of this approach will be settled
by experiment in the near future. The accuracy with
which such predictions can be made is assessed in [11].

2.2 EFT for Heavy Nuclei and Nuclear Matter

In both cases mentioned above addressing low-den-
sity systems, the effective Lagrangians are defined at
zero density and the relevant fluctuations are made on
top of the zero-density vacuum which is accessible by
various QCD analyses, treating the matter density as an
external perturbation. In a dense medium, the situation
is expected to be quite different. While in the light sys-
tems the parameters that figure in the effective

n p d γ+ +
Lagrangian are in principle derivable from QCD (per-
haps on a lattice) or more often from experimental data,
this is not the case in a dense medium. Deriving an EFT
for dense matter from QCD is probably of similar diffi-
culty as deriving the Hubbard model from QED. The
best one can do is to start with a Lagrangian defined at
zero density and go up in density. Unfortunately, this
will be limited to low density and cannot be pushed to
high enough density to be useful in the regime we
would like to explore.

In this note, we circumvent the difficulty of deriving
such a theory directly. Rather, we construct an effective
chiral Lagrangian field theory that maps onto an estab-
lished many-body theory, specifically Landau–Migdal
Fermi liquid theory, and then extrapolate that field the-
ory to the regime of higher density. This is certainly in
accordance with the original spirit of Landau–Migdal
theory, though it is not clear if such a scheme will work
in all density regimes. We can only say that up to now
there is no evidence against the scheme. For a recent
review, see [4].

3. NUCLEAR MATTER AS A FERMI LIQUID 
FIXED POINT

3.1. Chiral Liquid

How to obtain a realistic description of nuclear mat-
ter from an effective Lagrangian anchored in the funda-
mentals of QCD is very much an open problem at the
moment. There are, however, several models available.
One of them, the skyrmion with an infinite baryon num-
ber, is yet to be confronted in nature. The skyrmion is a
soliton solution of a Skyrme-type Lagrangian, which is
an approximate Lagrangian for QCD at an infinite
number of colors, Nc = ∞. Because the mathematical
structure of this model is not very well known at the
moment, only very little information can be extracted
from it.

Another model is the nontopological soliton picture
proposed in an embryonic form sometime ago by Lynn
[18]. This description has recently been given a more
realistic structure by Lutz, Friman, and Appel [19]. The
idea here is that one writes down an effective potential
or energy calculated to the highest order feasible in
practice in chiral perturbation theory, suitably taking
into account all relevant scales involved, and then looks
for the minimum of the effective potential to be identi-
fied with the nuclear matter ground state. The state so
obtained may be identified with Lynn’s chiral liquid
state. The connection between the skyrmion with an
infinite winding number and the chiral liquid matter—
which must exist in large Nc limit—is presently not
understood.

The starting point of our consideration is the
assumption that we have a chiral-liquid solution of the
type described in [19] that represents the ground state
(vacuum), on top of which fluctuations can be calcu-
lated. The discussion of [19] does not specify how these
PHYSICS OF ATOMIC NUCLEI      Vol. 64      No. 4      2001
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fluctuations are to be made. To proceed, we propose
that the parameters of the Lagrangian (such as masses,
coupling constants, etc.) of the fields representing the
relevant degrees of freedom are determined at this
ground state, not at the zero-density vacuum which
gives the starting point of the Lynn strategy and hence
run with density.3) The Lagrangian so defined is
assumed to satisfy the same symmetry constraints—
such as chiral symmetry and scale anomaly—as those
intrinsic to QCD at zero density.

3.2. Effective Chiral Lagrangian

Let us denote the parameters so defined at a density
ρ with a star. The mass of a nucleon in the system will

be denoted as M*, the pion decay constant , etc. The
simplest chiral Lagrangian for the nuclear system so
defined takes the form

(3)

where the ellipsis denotes higher dimensional nucleon
operators and the Γi’s Dirac and flavor matrices as well
as derivatives consistent with chiral symmetry. Further-
more,

(4)

In (3), only the pion (π) and nucleon (N) fields appear
explicitly; all other fields have been integrated out. The
effect of massive degrees of freedom will be lodged in
higher dimensional and/or higher derivative interac-
tions. The external electroweak fields that we will con-
sider below are straightforwardly incorporated by suit-
able gauging.

If one considers symmetric nuclear matter and
restricts oneself to the mean-field approximation, one
can write, following [20], an equivalent Lagrangian
that contains just the degrees of freedom that appear in
a linear model of the Walecka-type [21],

(5)

3)The meaning of density dependence in the parameters in an effec-
tive Lagrangian we shall study will be precisely defined later.
There is a subtlety due to the requirement of chiral symmetry that
needs to be addressed.

f π*

+ N iγµ ∂µ
iv

µ
gA*γ5a

µ
+ +( ) M*–[ ] N=

– Ci* NΓ iN( )2 …,+
i

∑

ξ2
U e

iπτ / f π*,= =

v µ
i
2
--- ξ†∂µξ ξ∂µξ†+( ),–=

aµ
i
2
--- ξ†∂µξ ξ∂µξ†–( ).–=

+ N iγµ ∂µ
igv*ωµ

+( ) M*– h*φ+( )N=

–
1
4
---Fµν

2 1
2
--- ∂µφ( )2 mω*

2

2
----------ω2 mφ*

2

2
----------φ2

– …,+ + +
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where the ellipsis denotes higher dimension operators.
This Lagrangian is totally equivalent to (3) in the mean-
field approximation [20, 22]. Unless otherwise noted,
we will be using (3).

3.3. Interpreting the Density Dependence 
of the Parameters

From a field theory point of view, it is unclear what
density dependence of various constants of the
Lagrangian means. This is because the number density
ρ is defined as the expectation value of the number den-
sity operator  with respect to the state vector one
is considering. Thus, the density ρ is defined only when
the state is determined. The only way that such a quan-
tity can be introduced into the Lagrangian is to assume
that the parameters of the Lagrangian such as coupling
constants and masses are functions of the fields
involved. The constraint that the Lagrangian be invari-
ant under chiral-symmetry transformation then limits
the field dependence. One may choose a chiral singlet
scalar field or a chiral invariant bilinear in the nucleon
fields. In what follows, we shall choose the latter.

For this purpose, we define the chirally invariant
operator

(6)

where 

(7)

is the fluid 4-velocity. Here,

(8)

is the baryon current density, and

(9)

is the baryon number density. The expectation value of
 yields the baryon density in the restframe of the fluid.

Using  it is easy to construct a Lorentz-invariant,
chirally invariant Lagrangian with density dependent
parameters. However, here we shall not use the relativ-
istic formulation.

Now, a density-dependent mass parameter in the
Lagrangian should be interpreted as

(10)

This means that the model (5) is no longer linear, but
highly nonlinear even at the mean-field level. We shall
illustrate this using the Lagrangian (5) in the mean-field
approximation and show that our interpretation is
thermodynamically consistent.

The Euler–Lagrange equations of motion for the
bosonic fields are the usual ones, but the nucleon equa-

Nγ0N

ρu
µ

Nγµ
N ,≡

ˆ

u
µ 1

1 v2
–

------------------ 1 v,( ) 1

ρ2 j2
–

-------------------- ρ j,( )= =

j NgN〈 〉=

ρ N†N〈 〉 ni

i

∑= =

ρ

ˆ

ρ

ˆ

m* m* ρ( ).=

ˆ
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tion of motion is not. This is because of the functional
dependence of the masses and coupling constants on
the nucleon field:

(11)

with

(12)

Here, we assume that (∂/ )h* ≈ 0. It may be possible
to justify this but we shall not attempt it here. The addi-

tional term , which may be related to what is referred
to in many-body theory as rearrangement terms, is
essential in making the theory consistent. This point
has been overlooked in the literature.

Here we shall briefly summarize the results. Details
can be found in [4, 23]. When one computes the
energy-momentum tensor with (5), one finds the canon-
ical term, which is obtained when the parameters are
treated as constants, as well as a new term proportional

to :

(13)

The pressure is then given by 〈Tii 〉v = 0. The additional

term in (7) matches precisely the terms that arise when
the derivative with respect to ρ acts on the density-
dependent masses and coupling constants in the for-
mula derived from T00:

(14)

where

(15)

This matching assures energy–momentum conserva-
tion and thermodynamic consistency.

Once the interpretation of the density dependence is
specified, the derivation of the Landau–Migdal param-
eters, thermodynamic quantities etc. from (5) is com-
pletely analogous to the procedure used by Matsui [24]
for Walecka’s linear σ–ω model.

3.4. Nuclear Matter with Brown–Rho Scaling

We saw above that the masses and coupling con-
stants in (5) (or equivalently (3)) are to be treated as

δ+
δN
--------

∂+
∂N
--------

∂+
∂ρ
-------- ∂ρ

∂N
-------+=

=  iγµ ∂µ igv*ωµ iuµΣ–+( ) M*– h*φ+[ ] N 0=

ˆ
ˆ

ˆ

Σ ∂+
∂ρ
-------- mω*ω2∂mω*

∂ρ
----------- mφ*φ2∂mφ*

∂ρ
-----------–= =

– NωµγµN
∂gv*

∂ρ
--------- NN

∂M*
∂ρ

-----------.–

ˆ
ˆ ˆ ˆ

ˆ ˆ

∂ρ

ˆ

Σ

ˆ

Σ
ˆ

T
µν

Tcan
µν Σ Nu γN⋅( )g

µν
.+=

ˆ

1
3
---

p
∂E
∂V
-------– ρ2 ∂%/ρ

∂ρ
------------- µρ %,–= = =

% T
00〈 〉 .=
functionals of  given by Eq. (6). When treated at the

mean-field level,  is just the number density, so the
parameters become density dependent. The depen-
dence of the parameters in the Lagrangian on the fields
rather than on the density is essential for thermody-
namic consistency. Note, however, that these consider-
ations do not require the parameters to satisfy scaling
relations. It is the chiral symmetry and scale symmetry
that suggest that the masses satisfy Brown–Rho (BR)
scaling at the mean-field level [25]

(16)

Here, V stands for the light-quark vector mesons ρ and
ω. The quantity Φ(ρ) is the scaling factor that needs to
be determined from theory or experiments. For con-
creteness, we shall assume

(17)

The value of y will be determined below by a global fit
of the ground-state properties of nuclear matter. Now
taking the free-space values,

M = 938 MeV, mω = 783 MeV, mφ = 700 MeV, (18)

and

gv = 15.8,    h = 6.62, (19)

with one additional assumption that the vector coupling

 scales like the mass  and h* is almost constant,
one finds the following properties for the ground state
of nuclear matter

(20)

Here, kF is the Fermi momentum at the saturation point
and K is the corresponding compression modulus. The
best values favored by nature that are “well deter-
mined” and that “can be associated with an equal num-
ber of nuclear properties and general features of RMF
(relativistic mean field) models” [24]4) are

(21)

To arrive at (20), we need y = 0.28 which implies that
Φ(ρ0) ≈ 0.78. The scaling of gv , which is needed to
obtain a good fit, was not incorporated in the original
BR scaling [25] but it does not invalidate the scaling
relation (16) which is a mean-field relation. The scaling
of the coupling constant is a fluctuation effect on top of
the BR scaling ground state, that is, a running as in the

4)It is worth pointing out that the RMF that has been successful so
far involves nonlinear terms deemed natural in the terminology of
EFT. These terms can be interpreted as representing high-dimen-
sion Fermi operators.

ρ

ˆ

ρ

ˆ

Φ ρ( )
f π* ρ( )

f π
---------------

mφ* ρ( )
mφ

----------------
mV* ρ( )

mV

---------------- M* ρ( )
M

-----------------.≈ ≈ ≈ ≈

Φ ρ( ) 1 yρ/ρ0+( ) 1–
.=

gv* mω*

mN*/M 0.62, E/A M– 16.0 MeV,–= =

kF 257 MeV, K 296 MeV.= =

mN*/M 0.61 0.03± ,  E/A M– 16.0– 0.1 MeV,±= =

kF 256 2 MeV, K± 250 50 MeV.±= =
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renormalization group as discussed in [27]. A caveat
here is that at this level, the Kawarabayashi–Suzuki–
Riazuddin–Fyazuddin (KSRF) relation that holds in
free space between the vector mass mV and fπgv must
have a density-dependent correction in order for the
scaling of  to make sense. To date the possible valid-
ity of the KSRF relation or some generalization of it in
medium is not yet unraveled.

Another observation of interest is the in-medium
mass of the scalar φ.5) In the analysis of [26], the scalar
mass does not have a simple scaling since it is a com-
plicated nonlinear theory. See [4] for a detailed discus-
sion on this matter. In the present theory, we in fact
have the relation

(22)

which for Φ(ρ0) ≈ 0.78 gives the mass of the scalar in
nuclear matter to be 546 MeV which should be com-
pared with the value 500 ± 20 MeV favored by [26].

It should be stressed that, given the simplicity of the
model considered here, the agreement between the sim-
ple BR scaling model and the sophisticated nonlinear
mean-field model [26] is most remarkable. Whether
there is something deep here or it is just a coincidence
is an issue to be resolved.

4. DERIVING MIGDAL’S FORMULAS 
FROM EFFECTIVE CHIRAL LAGRANGIANS

Here, we sketch Migdal’s derivation of nuclear
orbital gyromagnetic ratio and then write an analogous
expression for the nuclear axial charge operator follow-
ing the same steps taken for the vector current. We have
no rigorous proof that the axial charge that results is a
unique one that follows from the premise of Fermi liq-
uid theory but we are offering it here as a possible one.

4.1. Landau–Migdal Formulation

4.1.1. Vector currents. Consider the response of a
heavy nucleus to a slowly varying electromagnetic
field. We wish to calculate the gyromagnetic ratio gl of
a nucleon sitting on top of the Fermi sea. There are sev-
eral ways for doing this calculation [29]. Here we shall
use the simplest which turns out to be straightforwardly
applicable to the axial current, in particular to its time
component, i.e., the axial charge.

We are interested in the response of a homogeneous
quasiparticle excitation to the convection current. This
corresponds to the limit q/ω  0, where (ω, q) is the
four-momentum transfer induced by the electromag-
netic field. The first step is to compute the total current
carried by the wave packet of a localized quasiparticle

5)The scalar that figures here is an effective degree of freedom
which need not be identified with a particle in the Particle Data
booklet. From our point of view, it is closer to the dilaton dis-
cussed by Beane and van Kolck [28].

gv*

mφ* ρ0( ) mφΦ ρ0( )=
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with group velocity vF =  where  is the Landau

effective mass of the quasiparticle and k is the momen-
tum carried by the quasiparticle.6) The convection cur-
rent for a localized quasiparticle is

(23)

However, this is not really what we want. Among other
things, it does not conserve the charge. This is because
the quasiparticle interacts with the surrounding
medium generating what is known as back-flow. Con-
sequently, we have to incorporate the back-flow to
restore gauge invariance. A simple way to account for
the back-flow is to compute the particle–hole contribu-
tions of the type given in Fig. 1 with the full particle–
hole interaction—represented in the figure by the solid
circle given by Eq. (24) (see below)—in the limit that
ω/q  0. (Note that this contribution vanishes in the
other limit q/ω  0.) The full interaction between two
quasiparticles p1 and p2 at the Fermi surface of sym-
metric nuclear matter written in terms of a few spin and
isospin invariants is [30]

(24)

where θ12 is the angle between p1 and p2 and N(0) =

 is the density of states at the Fermi surface.

We use natural units with " = 1. The spin and isospin
degeneracy factor γ is equal to 4 in symmetric nuclear
matter. Furthermore, q = p1 – p2 and

(25)

6)This should be distinguished from the BR-scaling effective mass
M* that appears in (3) and (5) and will be defined more precisely
later.

k
mN*
------- mN*

JLQP
k

mN*
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1 τ3+
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-------------- 
  .=

fp1σ1τ1 p2σ2τ2,  = 
1

N 0( )
----------- F θ12cos( ) F ' θ12cos( )t1 t2 -⋅+

+ G θ12cos( )s1 s2 G ' θ12cos( ) s1 s2⋅( ) t1 t2⋅( )+⋅

+
q2

kF
2

-----H θ12cos( )S12 q̂( )
q2

kF
2

-----H ' θ12cos( )S12 q̂( )t1 t2⋅+ ,

γkF
2

2π2
-------- dp

dε
------ 

 
F

S12 q̂( ) 3 s1 q̂⋅( ) s2 q̂⋅( ) s1– s2,⋅=

N–1

N

γ

N

N–1 γ

(a) (b)

Fig. 1. Particle–hole contributions to the convection current
involving the full particle–hole interaction (solid circle)
given by Eq. (24). Here, the backward-going nucleon line N–1

denotes a hole and the wiggly line the photon. These graphs
vanish in the q/ω  0 limit.
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where  = q/ |q |. The tensor interactions H and H ' are
important for the axial charge which we will consider
later. The functions F, F ', … are expanded in Legendre
polynomials,

(26)

with analogous expansion for the spin- and isospin-
dependent interactions.

In terms of (24), the quasiparticle–quasihole graphs
of Fig. 1, suitably generalized to the full interaction,
yield

(27)

where M denotes the free-space mass of the nucleon
and

(28)

In order to obtain the desired current, we have to add
the back-flow term (i.e., –Jph) to the localized quasipar-
ticle term (23),

(29)

where

(30)

is the orbital gyromagnetic ratio and

(31)

In arriving at (29), we have used the relation between
the Landau effective mass and the quasiparticle interac-
tion

(32)

It is important to note that, as a consequence of
charge conservation and Galilei invariance, the isosca-
lar term in (29) is not renormalized by the interaction.
Thus, the renormalization of gl is purely isovector. It is
also important to note that it is the free-space mass M,
not the Landau mass , that appears in (29). This is
an analog to the Kohn theorem for the cyclotron fre-
quency of an electron in an external magnetic field [31,

q̂

F θ12cos( ) F,P, θ12cos( ),
,

∑=
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1

3π2
--------k̂kF

2
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k
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2
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1
6
--- F̃1' F̃1–( )τ3+ 

  ,

gl

1 τ3+
2

-------------- δgl+=

δgl
1
6
--- F̃1' F̃1–( )τ3.=

mN*

M
------- 1

1
3
---F1+ 1

1
3
--- F̃1– 

 
1–

.= =

mN*
32],7) and constitutes a strong constraint for a consis-
tent theory to satisfy. The effective Lagrangian theory
discussed below does satisfy this condition.

4.1.2. Axial currents. Next we turn to the axial-

charge operator  (where the superscript a is an isos-
pin index). In deriving the “Migdal formula” for this
operator,8) we assume that we can follow exactly the
same reasoning as above for the vector current. This
assumption needs still to be justified.

In matter-free space, the axial-charge operator for a
nonrelativistic nucleon with mass M is

(33)

while, in dense matter, a localized quasiparticle with a
Landau effective mass  has the axial charge

(34)

Next we calculate the particle–hole contribution—
which is minus the back-flow contribution—in the
same way as for the vector current (i.e., Fig. 1 with the
photon vertex replaced by the axial-charge vertex). The
result [29] is

(35)

with

(36)

where G ' and H ' are the spin–isospin-dependent com-
ponents of the force given in Eq. (24). Therefore, the
total is

(37)

It will become clearer when we calculate the same
quantity based on chiral Lagrangian, but at this point it
should be noted that, unlike the vector current, here
there is no analog of the Kohn theorem. This is because
chiral symmetry is realized, not in the Wigner mode,
but rather in the Goldstone mode for which the mean-
ing of a conserved charge is different from that of the
vector charge. Another point to be noted is that while

7)The cyclotron frequency of an electron with a Landau effective
mass  in an external magnetic field of magnitude B = 2πnf φ/e,

where nf is the electron number density and φ is the flux integer

(=2 for fermions), is not ω0 = 2πnf φ/ , as one would naively

expect for a localized quasiparticle but ω0 = 2πnf φ/me due to the
back-flow effect.

8)We put quotation marks since Migdal did not derive formulas for
the axial charge.
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for the convection current only F1 and  appear, it is
a lot more complicated for the axial charge. It involves
spin–isospin dependent interactions as well as tensor
forces. These two features will show up nontrivially
when we compute the δgl and the ∆ with the effective
chiral Lagrangian.

4.2. Calculation with Effective Chiral Lagrangian

We will now compute δgl and ∆ using a BR-scaling
chiral Lagrangian. One can use either the Lagrangian
(3) or the Lagrangian (5) with BR scaling [25] incorpo-
rated. We shall use (3) as we did for the vector current.
We need only the two terms of the four-Fermi interac-
tions that correspond to the ω and ρ channels:

(38)

i.e., what remains when the vectors ω and ρ are inte-
grated out. The subscripts represent not only the vector
mesons ω and ρ nuclear physicists are familiar with but
also all vector mesons of the same quantum numbers,
so the two “counter terms” subsume the full short-dis-
tance physics of the same chiral order.

4.2.1. Landau mass from the chiral Lagrangian.
We first calculate the single-particle energy with (3). In
the nonrelativistic approximation, we have

(39)

where M* = ΦM is the BR-scaling nucleon mass and
Σπ(p) is the nucleon self-energy due to the pion Fock
term. The Landau effective mass is defined [33] by

(40)

where we have used the fact that the second term of
(39) does not contribute and

(41)

where f = gAmπ/(2fπ) . 1 and

(42)

Now using the Landau mass formula (32) and

(43)

we find

(44)
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4.2.2. Convection current. In the chiral Lagrangian
approach, the isovector magnetic multipole operator to
which the convection current belongs is chiral-filter-
protected [34], which means that the one-soft-pion
exchange should dominate in the correction to the lead-
ing single-particle term. The single-particle term for a
nucleon with the BR-scaling mass M* on the Fermi sur-
face with momentum k corresponding to Fig. 2a is

(45)

Note that the nucleon mass appearing in (45) is the BR
scaling mass M* as it appears in the Lagrangian, not the

(Landau) effective mass  that appears in the Fermi
liquid approach for the localized quasiparticle current.
To the next-to-leading order, we have two soft-pion
terms Figs. 2b and 2c as discussed in [7]. To the convec-
tion current, only Fig. 2b contributes

(46)

In arriving at this formula, it has been assumed that
pion properties are unchanged in medium up to nuclear
matter density. Since pions are almost Goldstone
bosons, this assumption seems reasonable. Indeed it is
consistent with what is observed in nature. Note that
there are no unknown parameters associated with the
pion contribution (46): the one-pion-exchange contri-

butions to the Landau parameters (π) and (π) are
entirely fixed by the chiral effective Lagrangian at any
density.

The contributions from the four-Fermi interactions
(that is, the vector meson degrees of freedom) are sub-
leading to the pion exchange by the chiral filter [34].
They are given by Fig. 3. Both the ω (isoscalar) and ρ
(isovector) channels contribute through the antiparticle
intermediate state as shown in Fig. 3a. The antiparticle
is explicitly indicated in the figure. However, in the
heavy-fermion formalism, the backward-going antinu-
cleon line should be shrunk to a point as in Fig. 3b,
leaving behind an explicit 1/M* dependence folded
with a factor of nuclear density indicating a 1/M* cor-

J1-body
k

M*
--------

1 τ3+
2

--------------.=

mN*

J2-body
π k

kF
----- f

2

4π2
-------- I1τ3

k
M
----- 1

6
--- F̃1' π( ) F̃1 π( )–( )τ3.⋅= =

F̃1 F̃1'

(a) (b) (c)

π
γ

γ π
γ

Fig. 2. Feynman diagrams contributing to the EM convec-
tion current in effective chiral Lagrangian field theory. Dia-
gram (a) is the single-particle term, (b) and (c) the next-to-
leading chiral order pion-exchange current term. Diagram
(c) does not contribute to the convection current; it renor-
malizes the spin gyromagnetic ratio.
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rection in the chiral expansion.9) One can interpret
Fig. 3a as saturating the corresponding counter term
although this has yet to be verified by writing down the
full set of counter terms at the same order. We find

(47)

(48)

where

(49)

and

(50)

The total current given by the sum of (45)–(48) pre-
cisely agrees with the Fermi liquid theory result (29)
when we identify

(51)

(52)

If we further assume that the same flavor symmetry as
in free space holds in medium, then

(53)

which uses the nonet symmetry, and

(54)

9)The heavy-baryon formalism must be unreliable once the M*
drops for ρ * ρ0. One would then have to resort to a relativistic
formulation [35]. We expect, however, that our reasoning will
remain qualitatively intact.

J2-body
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N
–
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γ

γ

Fig. 3. (a) Feynman diagram contributing to the EM convec-
tion current from four-Fermi interactions corresponding to
all channels of the ω and ρ quantum numbers (contact inter-
action indicated by the blob) in effective chiral Lagrangian
field theory. The  denotes the antinucleon state that is
given in the chiral Lagrangian as a 1/M correction and the
one without arrow is a Pauli-blocked or occupied state.
(b) The equivalent graph in heavy-fermion formalism with
the antinucleon line shrunk to a point. The blob represents a
four-Fermi interaction coupled to a photon that enters in (3)
as a 1/M counter term.

N

which uses the isotopic invariance. The BR-scaling
chiral Lagrangian prediction reduces to a one-parame-
ter formula

(55)

Here, Φ(ρ) is the only parameter in the theory that
needs to be determined from theory or experiment. As

mentioned, (π) is fixed for an arbitrary density from
the (assumed) chiral symmetry. It is important that the
result is consistent with charge conservation and Galilei
invariance.

4.2.3. Axial charge. The axial-charge operator in
nuclear matter is protected by the chiral filter in the
chiral Lagrangian formalism, so all we need is the soft-
pion exchange implemented with BR scaling. We shall
continue assuming that pions do not scale in a medium.
It was shown in [36] that higher order chiral correc-
tions—such as loops, higher derivative, and four-Fermi
terms—to the soft-pion contribution are small. This
means that we can limit ourselves to the tree order in
the chiral counting and to the pionic range with shorter-
range interactions subsumed in the BR scaling.

The procedure for the case at hand will then be iden-
tical to that we used for the convection current. The
axial charge for a single particle will be identical to that
of a particle in free space except that the nucleon mass
M is to be replaced by the BR, scaling mass M*

(56)

Now the leading correction to the single-particle term
is given by a diagram similar to Fig. 2c with the photon
replaced by the weak axial charge. There is no term
equivalent to Fig. 2b due to G-parity invariance. The
calculation is straightforward and the result is

(57)

with

(58)

where I1 is as defined in (42) and I0 is

(59)

The factor (1/ ) in (37) arose from replacing 1/  by

/( ) using the free-space Goldberger–Tre-
iman relation.

Collecting all terms, the chiral Lagrangian predic-
tion is

(60)
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For comparison with the Migdal formula , we

reexpress 1/M* in terms of 1/

(61)

Thus

(62)

where

(63)

Comparing with the Migdal formula (37), we obtain a
formula that expresses a combination of spin–isospin-
dependent Landau–Migdal parameters in terms of con-
stants that figure in the chiral Lagrangian with BR scaling:

(64)

Again, the result depends on only one parameter Φ.

There are two points to note here. One is, as noted
in the Landau–Migdal formulation, that there is no
equivalent to the Kohn theorem for the axial charge.
The other is that the soft-pion contribution combined
with BR scaling does not lend itself to a direct term-by-
term identification on both sides. These are all different
from the case of the convection current. In the axial
case, both the Landau–Migdal approach and the chiral
Lagrangian approach involve complicated relations: on
the right-hand side of (64), the factor gA appears in a
nontrivial way and exhibits features that are character-
istic of the spontaneously broken axial symmetry and
on the left-hand side, this complexity is manifested by
the fact that, due to the tensor force, the Migdal param-
eters involved comprise several multipoles (l = 0, 1, 2)
of the quasiparticle interaction.

5. COMPARISON WITH EXPERIMENTS

In confronting our theory with nature, we shall
assume that data on heavy nuclei represent nuclear mat-
ter. This aspect has been extensively discussed else-
where so we shall be brief.

5.1. Extracting Φ(ρ0)

If one assumes BR scaling, then there are several
ways to determine Φ at normal nuclear matter density.
We shall mention three of them.

(i) The first way is that if pions are taken to be non-
scaling, then the in-medium Gell-Mann–Oakes–Ren-
ner relation

(65)
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gives

(66)

From the value of quark condensate in nuclear matter
estimated from the empirical πN sigma term and using
Feynman–Hellmann theorem in the linear density
approximation10) one finds [22]

(67)

(ii) The second piece of evidence comes from the
property of nuclear matter in chiral Lagrangian models
with BR scaling. A global fit yields [4]

(68)

(iii) The third piece of evidence comes from QCD
sum-rule calculation of the mass of the vector meson ρ
in medium [37, 38]. The result is [38]

(69)

All three methods give the same result. We are there-
fore led to

(70)

As a smooth interpolation, which seems reasonable at
least up to ρ . ρ0, we take

(71)

5.2. The Orbital Gyromagnetic Ratio

Given the scaling factor Φ(ρ0) ≈ 0.78 and the pionic
contribution (24) which at nuclear matter density yields

(π) ≈ –0.459, the anomalous orbital gyromagnetic
ratio turns out to be

(72)

This is to be compared11) with the experimental value
for the proton obtained from the giant dipole resonance
in the Pb region [39]

(73)

It is worth commenting at this point which assump-
tions enter into this calculation and what the possible
implications might be. Apart from the BR scaling, we
have assumed (1) that pions do not scale, (2) the nonet
symmetry for the vector mesons, and (3) the isospin
symmetry for the pions. The first is based on the obser-
vation that the pion is almost a Goldstone boson and a
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--- F̃1 π( )– τ3 0.227τ3.= =

δgl
p

0.23 0.03.±=

10) The linear-density approximation may be suspect already at
nuclear matter density, so it is difficult to assess the uncertainty
involved with this estimate.

11) The precise agreement is probably coincidental.
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truly Goldstone boson would preserve its symmetry as
density is increased beyond normal nuclear matter den-
sity. This assumption needs to be verified. The second
is hard to check and remains to be verified. The third is
most probably solid. The upshot of the result is that the
charge is conserved, the Kohn theorem is satisfied, and
the agreement with experiment essentially confirms, on
average, the BR scaling for the nucleon mass.

5.3. Landau Mass for the Nucleon

A quantity closely related to δgl is the Landau effec-

tive mass . Given Φ and (π) for ρ = ρ0, we obtain
from Eq. (32) that

(74)

There are two sources of information that can be com-
pared with this prediction. One is theoretical, namely,
the QCD sum-rule result [40]

(75)

The other is an indirect semiempirical indication com-
ing from peripheral heavy-ion collisions at the BEVA-
LAC and the SIS [41]:

(76)

The agreement here is essentially a reconfirmation of
the gyromagnetic ratio (72).

5.4. Axial-Charge Transitions in Heavy Nuclei

Before confronting the chiral Lagrangian prediction
(60) (with (58)) with experiments, we compare the left-
hand side of (64) (i.e., Migdal’s axial charge) with one-
pion exchange only and the right-hand side which is
given to next-to-leading order (NLO) chiral perturba-
tion theory with BR-scaling chiral Lagrangian.12) 

To compute the Migdal charge, it is sufficient to
compute the one-pion-exchange graphs of Fig. 4 in the

mN* F̃1
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M 0.70M.≈=

mN* ρ0( )
M
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+0.14
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*HI

 . 0.68M.

Fig. 4. Particle–hole contribution to the axial charge involv-
ing one-pion exchange which is minus the back-flow. Here,
A0 stands for the external field probing axial charge, the

backward-going nucleon line N–1 denotes a hole and the
wiggly line the W boson connected to the axial charge.
These graphs vanish in the q/ω  0 limit.

A0

N

N–1

π

π
N

N N–1

A0

(a) (b)
N

12) Modulo correction less than 10%, this is valid to next-next-to-
leading order (NNLO) in chiral perturbation theory [36].
limit ω/q  0. The negative of this gives the desired
quantity, namely, the back-flow. A simple calculation
gives

(77)

where the subscript π denotes the pionic contribution.
Now since the right-hand side of (64) is valid beyond
the leading order in chiral perturbation theory, it con-
tains information that accounts for more than one-pion
exchange. In the same vein, Eq. (77) contains a lot more
since the mass of the nucleon is given by the Landau
mass , although the interaction is evaluated with
one-pion exchange. Therefore, there is no reason to
expect a one-to-one correspondence between the two.
Even so, we conjecture that, to the extent that the
dynamics is governed by the pion exchange corrected
by the BR-scaling Φ, the two must be approximately
the same. That is to say that the combination of the
Migdal parameters of (64) should be saturated by the
pions modulo what corresponds to higher chiral order
terms which are argued to be small. This is required if
the chiral-filter argument is to hold.

Let us consider how relation (64) fares with the pion
for ρ = ρ0 /2 and ρ0. The left-hand side—given by
(77)—comes out to be, respectively, 0.42 and 0.50 for
ρ = ρ0 /2 and ρ0, while the right-hand side—which is the
full contribution from the BR Lagrangian—gives 0.37
and 0.55. Thus the pions are seen to saturate about 90%
of the total predicted by the chiral field theory with BR
scaling.

Although far from direct, there is a beautiful confir-
mation of the prediction (60) from axial-charge transi-
tions in heavy nuclei (denoted by the mass number A)

(78)

The quantity we shall look at is Warburton’s eMEC [42]
defined by

(79)

where Mexp is the measured matrix element for the
axial-charge transition and Msp is the theoretical single-
particle matrix element for a nucleon without BR scal-
ing. There are theoretical uncertainties in defining the
latter, so the ratio is not an unambiguous object but
what is significant is Warburton’s observation that in
heavy nuclei, eMEC can be as large as two:

(80)

More recent measurements—and their analyses—in
different nuclei [43, 44] quantitatively confirm this
result of Warburton.

The theoretical prediction from (60) is

(81)
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with  given by (58). For nuclear matter density, we
find

(82)

The theory therefore correctly describes the large
enhancement of the axial-charge matrix element in
nuclei in general and the density-dependent enhance-
ment in particular. There are two elements that account

for this enhancement. Pions contribute  ~ 1/2 with lit-
tle density dependence and the BR-scaling Φ accounts
for the further enhancement for heavier nuclei. This
result represents a strong case for the validity of the the-
ory in the normal density regime.

6. GOING TO DENSER MATTER

6.1. Evidence in Dense Matter?

The real strength in effective field theories is that
one may be able to describe quantitatively the state of
matter that is formed at a high density as one
approaches the chiral phase transition. If one assumes
that the matter is a Fermi liquid all the way to the phase
transition, then one can use the BR-scaling chiral
Lagrangian in the mean field. But this means that all
degrees of freedom, fermionic as well as bosonic, are
treated as quasiparticles. It is established that nucleons
are quasiparticles in nuclear matter as Migdal had
argued. The shell model for nuclei is justified by the
quasiparticle picture. It is also supposed that at asymp-
totic density where weak coupling of QCD is operative,
quarks can be treated as quasiquarks [45]. The presence
of a Fermi sea for nucleons and quarks is one of the
ingredients for treating them as quasiparticles. In the
discussions given above, bosons were not required to
be quasiparticles despite that BR scaling is invoked for
both fermions and bosons. In addressing heavy-ion pro-
cesses, however, properties of bosons in medium might
play an important role. For instance, in CERN’s
CERES experiments, it is the property (i.e., mass,
width, etc.) of the ρ meson in dense and hot medium
that seems to play a key role. So the question arises how
bosons behave in extreme conditions.

There are some indirect experimental evidences for
vector bosons with dropping masses in dense medium.
The effect is usually manifested in spin–isospin-depen-
dent nuclear forces and affect spin–isospin observables
[46, 47]. These observables probe off-shell properties
of the mesons involved up to nuclear matter density and
do not in general give direct information on their phys-
ical properties in medium. There are similar indications
from tensor forces in heavy nuclei which also can be
explained from the exchange of the ρ meson with a
reduced mass [48]. A more direct indication comes
from dilepton production in heavy-ion collisions at
CERN CERES. There, the quasiparticle picture of the
vector mesons with dropping mass in hot and dense
matter (at a density greater than that of normal nuclear

∆̃

eMEC
chiral

2.1.≈

∆̃
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matter) provides a simple and successful explanation of
the observed downward shift of the invariant mass of
the lepton pair [49]. The approximation used in [49]
consists of taking only tree-order graphs with an effec-
tive chiral Lagrangian à la BR scaling discussed above
that gives a realistic description of nuclear matter: no
loop corrections are taken into account in a proper
sense although partial account is of course made in the
unitarization of the amplitudes involved. The question
as to what happens when loop corrections are properly
taken into account in this theory so far remains unan-
swered. It is also not known whether the tree-order (i.e.,
quasiparticle) treatment correctly describes the excita-
tion of the vector quantum numbers in such dense
matter.

6.2. Perturbing from a Zero-Density Vacuum

One might attempt an ambitious program to start
from an effective chiral Lagrangian constructed at zero
density and do a systematic chiral expansion to arrive at
higher density. This is the spirit of [18, 19]. Aided by
experiments, this program could be made to work up to
nuclear matter density, but it is a completely different
matter if one wants to reach a density where the chiral
phase transition can occur. Dense matter probes short
distances, and chiral perturbation theory (ChPT) cannot
access such kinematic regime as is clear from Landau–
Migdal Fermi liquid theory. What has been done up to
date is a low-order perturbation calculation in a strong-
coupling regime. Now, if such a calculation is based on
an effective Lagrangian satisfying relevant symme-
tries (e.g., chiral symmetry), leading-order (tree-
order) terms are consistent with low-energy theorems
and should give reasonable results at low density,
provided the parameters are picked from experi-
ments. See Rapp and Wambach [50] for a review
where the relevant references are found. In such low-
order calculations, one finds that the mesons, such as
the ρ and a1, get “melted” due to increasing width and
lose their particle identities. However, as the density
increases away from zero, the tree-order approxima-
tions, which are essentially all one can work with,
cannot be trusted. Exactly where this discrepancy
will become serious is not known. Being in a strong-
coupling regime, anomalous dimensions of certain
fields (such as scalar fields) grow too big to be natu-
ral, signaling that one is fluctuating around the wrong
vacuum. We believe this to be the case already at
nuclear matter density. Brown–Rho scaling corre-
sponds to shifting to and fluctuating around a vacuum
defined at ρ * ρ0 where the effective coupling gets
weaker in the sense of quasiparticle interactions. As
the density approaches the critical for the chiral phase
transition, the picture with quasinucleons goes over
to the one with quasiquarks. It seems extremely diffi-
cult, if not impossible, to arrive at this picture starting
from a strong-coupling hadronic theory effective at
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zero density. See [4, 51] for further discussion on this
point.

6.3. Perturbing from the BR-Scaling Ground State

Given a Lagrangian (3) or (5) with BR scaling
that gives the ground state of nuclear matter cor-
rectly, we would like to know how to make fluctua-
tions around the ground state. As an illustration, con-
sider kaon–nucleon interactions in a medium [22].
This process is relevant for both laboratory experi-
ments and for the structure of compact stars as we
will describe below.

For the problem at hand, it is convenient to general-
ize (5) to the SU(3) flavor so as to incorporate kaons in
the Lagrangian. The additional term relevant to the pro-
cess is given by

(83)

where KT = (K+K0), f * is the in-medium Goldstone
boson decay constant which, within the approximation
adopted here, may be taken to be the pion decay con-
stant, and the ellipses stand for higher order terms in the
chiral counting. The structure of the first two leading-
order terms of the fluctuating Lagrangian is dictated by
current algebras, which implies that ΣKN is the usual KN
sigma term in free space and also that it may be valid
near nuclear matter density.

Within the scheme à la BR, we are to work in the
mean-field approximation. Assuming that this is valid
up to nuclear matter density, one gets from (83) the
potential energy for the scalar (φ) field  and the vec-

tor (ω) field  that K– feels in nuclear matter at ρ = ρ0:

(84)

δ+KN
6i–

8 f *2
------------ Nγ0N( )K∂tK=

+
ΣKN

f *2
--------- NN( )KK … +ω +φ … ,+ +≡+

S
K

–

V
K

–

S
K

– V
K

– 192 MeV.–≈+

N*

ρ, ω, ...

N–1

Fig. 5. Particle–hole coherent modes excited by coupling to
vector mesons ρ, ω, … .
For this we have used the value for the KN sigma term,

ΣKN ≈ 3.2mπ and /fπ ≈ Φ. The exact value is unknown
since the sigma term is not fixed precisely. The attrac-
tion (84) is consistent with what is observed in kaonic
atoms [52] and also with the K–/K+ production ratio in
heavy-ion collisions at GSI [53]. When applied to neu-
tron-star matter and extrapolating to higher density, it is
more appropriate to adopt the “top–down” approach
proposed in [22], in which the kaon field is introduced
as a matter field and the relevant fermion field is taken
to be the quasiquark rather than the nucleon. With a
suitable modification appropriate for the top–down
approach of [22] in the Lagrangian (83), one then pre-
dicts K– condensation at a matter density ρc ≈ 2 ~ 3ρ0
with the intriguing implication that the maximum sta-
ble neutron-star mass is 1.5 times the solar mass [53].
These mean-field results with BR-scaling Lagrangians
are in agreement with more refined calculations carried
out in high-order chiral perturbation theory [54]. If it
turned out that condensation occurs at higher density
than the range considered so far (due to some higher
order effects that cannot be accessed by the effective
Lagrangian method used), then the presently available
machinery for handling short-distance physics would
not be powerful enough to allow us to pin down the crit-
ical density [55]. More work is needed in this area.

6.4. Sobar Model

Among Migdal’s other major contributions to
nuclear physics is his work on pion-nuclear interac-
tions, in particular on pion condensation in dense
nuclear matter [6]. It is suggested that the Fermi liquid
description à la BR-scaling chiral Lagrangian can be
phrased in a form resembling Migdal’s description of
pion condensation. The initial idea is formulated in a
series of recent papers by Kim et al. [56].

Consider a vector meson, say ω, which is inserted in
a dense medium, and look at the excitation of coherent
modes of the ω quantum number. The ω meson will be
coupled to particle–hole excitations of the same quan-
tum number as depicted in Fig. 5. Analogous to the
treatment of pion condensation, the lowest energy col-
lective particle–hole mode is interpreted as an effective
vector meson field operating on the ground state of the
nucleus, i.e.,

(85)

with the antisymmetrical (symmetrical) sum over neu-
trons and protons giving the ρ-like (ω-like) nuclear
excitation. Here, the “particle” is taken to be N*,
while the “hole” is a nucleon hole. We will ignore the
nucleon as a particle since, in the channel we are con-
cerned with, we expect the nucleon to be more weakly
coupled than the N* to the (near on-shell) vector

f π*

1

A
-------- Ni*Ni

1–[ ]
1–

 . ρ xi( ) or ω xi( )[ ] Ψ0| 〉 s,
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meson. We call the collective mode (85) sobar, i.e., ρ-
sobar, ω-sobar, etc.

The dropping vector meson masses could then be
calculated in terms of mixing of the nuclear collective
state, Eq. (85), with the elementary vector meson
through the mixing matrix elements of Fig. 5. Now
building up the collective nuclear mode, the latter can
be identified as an analog to the state in the degenerate
schematic model of Brown for giant dipole resonance
[57]. The fields figuring in a BR-scaling chiral
Lagrangian are then to be identified with interpolating
fields for the lowest branch modes that emerge from the
mixing. An important development which leads to the
assumption of Eq. (85) was furnished by Friman, Lutz,
and Wolf [58]. From empirical values of the amplitudes
such as π + N  ρ + N, etc., they constructed the ρ-
like or ω-like states in agreement with our assumption
of Eq. (85). Thus, the input assumption made for the
sobar model receives substantial empirical support.

Since the development is at its initial stage and still
quite crude, we briefly summarize what we hope to
accomplish in the end.

The property of a vector meson, say, ω, in a medium
is encoded in the propagator of the meson in interaction
with the system. For simplicity, let us consider a two-
level schematic model. In (85), we take only one con-
figuration with N* = N*(1520) in the ω channel. The
starting point is the ω-meson propagator in nuclear
matter given by

(86)

where we have ignored the ω decay width, and the den-
sity-independent real part of the self-energy has been
absorbed into the free (physical) mass mω. Here, ρN is
the nucleon-number density. Note that within the low-
order approximation made here the entire density
dependence resides in the in-medium ω self-energy
ΣωN*N induced by N*(1520)N–1 excitations. In what fol-
lows, we will, for simplicity, concentrate on the limit of
a vanishing three-momentum, where the longitudinal
and transverse polarization components become identi-
cal. Due to the rather high excitation energy of ∆E =
MN* – MN =580 MeV, one can safely neglect nuclear
Fermi motion to obtain

(87)

where Γtot is the sum of the full width of N*(1520) in
free space and the density-dependent width due to the
medium. If the widths of ω and N*(1520) are suffi-
ciently small, one can invoke the mean-field approxi-
mation and determine the quasiparticle excitation ener-
gies from the zeros in the real part of the inverse prop-

Dω q0 q; ρN,( )

=  
1

q0
2 q2

– mω
2

– ΣωN*N q0 q; ρN,( )–
-----------------------------------------------------------------------------,
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agator. In particular, for q = 0, the in-medium ω mass is
obtained by solving the dispersion relation

(88)

The pertinent spectral weights of the solutions are char-
acterized by Z factors defined by

(89)

The formulas written above are presumably valid
for low density since they can be made consistent (by
fiat) with low-energy theorems. However, there is no
reason to expect that a low-order calculation in strong
coupling will be viable at high density. For instance,
there is no way that the ω mass will go to zero at any
density even in the chiral limit. We are therefore led to
make certain assumptions motivated by our objective to
model BR scaling. It is clear that with a few-order per-
turbative calculation in a strong-coupling regime, there
is no way to arrive at BR scaling. Lacking a workable
scheme to compute systematically, we will simply
impose a condition on the model and study the conse-
quence on the model. The simplest condition that we
can impose is that q0 = 0 be a solution of (88) at some
density ρc at which the in-medium pion decay constant

 is to vanish (à la, e.g., in-medium Weinberg sum
rule). This is readily achieved if

, (90)

irrespective of density as ρ  ρc . Note that we have
appended a star on the ωN*N coupling constant to indi-
cate that higher order corrections will inject a non-lin-
ear density dependence into the vertex (as well as into
the width, etc.) The limit can be achieved only if the
density dependence in f * cancels the same in q0 as one
approaches the critical density. Now the constant can-
not be fixed a priori and what one takes for it will
determine at what ρc the effective ω-sobar mass will
vanish. The basic assumption here is that since the
vector mass drops while the pion mass does not, the
quasiparticle picture gets restored as ρ approaches ρc

with the width shrinking due to the decreasing phase
space. This is consistent with the general premise of
BR scaling.

As stressed in [56], nobody has been able to derive
such a sobar description starting from effective field
theories defined at zero density. It seems however
promising that this is possible in a systematic way in
the framework laid down in [56]. How this can come
about is sketched in the references [56].
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Abstract—Effects of the propagation of particles that have a finite lifetime and an according width in their mass
spectrum are discussed in the context of transport description. First, the importance of coherence effects (Lan-
dau–Pomeranchuk–Migdal effect) on the production and absorption of field quanta in nonequilibrium dense
matter is considered. It is shown that classical diffusion and Langevin results correspond to a resummation of
certain field-theory diagrams formulated in terms of full nonequilibrium Green’s functions. General properties
of broad resonances in dense and hot systems are discussed in the framework of a self-consistent and conserving
Φ-derivable method of Baym by considering the examples of the ρ meson in hadronic matter and the pion in
dilute nuclear matter. Further, we address the problem of a transport description that properly takes into account
the damping width of the particles. The Φ-derivable method generalized to the real-time contour provides a self-
consistent and conserving kinetic scheme. We derive a generalized expression for the nonequilibrium kinetic
entropy flow, which includes corrections from fluctuations and mass-width effects. In special cases, an H the-
orem is proven. Memory effects in collision terms contribute to the kinetic entropy flow that, in the Fermi liquid
case, reproduces the famous bosonic-type T3lnT correction to the specific heat of liquid 3He. For the example
of the pion-condensate phase transition in dense nuclear matter, we demonstrate the important role of the width
effects within the quantum transport. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Quasiparticle representations in many-body theory
were designed by Landau, Migdal, Galitsky, and others
(see [1–4]). This concept was first elaborated for low-
lying particle–hole excitations in Fermi liquids. Migdal
was the first to apply these methods to description of
various nuclear phenomena and construction of a
closed semimicroscopic approach that is now usually
called the theory of finite Fermi systems [3]. The need
for an explicit treatment of soft modes within this
approach stimulated him to generalize this concept to
include pion and ∆ excitations. Migdal suggested a
variety of interesting effects like the softening of the
pion mode in nuclei, pion condensation in dense
nuclear and neutron-star matter, and the possible exist-
ence of abnormal nuclei glued by a pion condensate [5–
8]. These ideas stimulated further development of pion
physics with applications to many phenomena in
nuclei, neutron stars, and heavy-ion collisions (see [8–
10] and references therein). In this paper, we would like
to review briefly recent developments of some of the
above ideas as applied to heavy-ion physics.

With the aim of describing a collision of two nuclei
at intermediate and high energies, one is confronted
with the fact that dynamics has to include particles like
the in-medium excitation with the pion quantum num-
bers, as well as the delta and ρ-meson resonances with

* This article was submitted by the authors in English.
1) Permanent address: Russian Research Centre Kurchatov Insti-

tute, pl. Kurchatova 1, Moscow, 123182 Russia.
2) Permanent address: Moscow State Engineering Physics Institute,

Kashirskoe sh. 31, Moscow, 115409 Russia.
1063-7788/01/6404- $21.00 © 20652
lifetimes of less than 2 fm/c or, equivalently, with
damping widths above 100 MeV. Also, the collision
damping rates deduced from currently used transport
codes are on the same order, whereas typical mean tem-
peratures range from 50 to 150 MeV, depending on the
beam energy. Thus, the damping width of most of the
constituents in the system can by no means be treated
as a perturbation. As a consequence, the mass spectrum
of the particles in dense matter is no longer a sharp
delta function, but it rather acquires a width due to col-
lisions and decays. Thus, one arrives at a picture that
unifies resonances, which already have a width in vac-
uum due to decay modes, with the “states” of particles
in dense matter, which acquire a width due to collisions
(collision broadening). Landau, Pomeranchuk, and
Migdal were the first to demonstrate the importance of
finite-width effects in multiparticle scattering [11, 12].
Such a coherence scattering effect, known now as the
Landau–Pomeranchuk–Migdal effect, was recently
observed at the Stanford accelerator [13].

Theoretical concepts for a proper many-body
description in terms of a real-time nonequilibrium field
theory were devised by Schwinger [14], Kadanoff and
Baym [15], and Keldysh [16] in the early 1960s. How-
ever, a proper dynamical scheme in terms of a transport
concept that deals with unstable particles, such as reso-
nances, is still lacking. Rather ad hoc recipes are in use
that sometimes violate basic requirements as given by
fundamental symmetries and conservation laws, detailed
balance, or thermodynamic consistency. The problem of
a conserving approximation has first been addressed by
Baym and Kadanoff [17, 18]. They started from an
001 MAIK “Nauka/Interperiodica”
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equilibrium description in the imaginary-time formal-
ism and discussed the response to external distur-
bances. Baym, in particular, showed [18] that any
approximation, in order to be conserving, must be so-
called Φ-derivable. It turned out that the Φ functional
required is precisely the auxiliary functional introduced
by Luttinger and Ward [19] (see also [20]) in connec-
tion with the thermodymanic potential. In the nonequi-
librium case, the problem of conserving approxima-
tions is even more severe than in near-equilibrium lin-
ear-response theory [21, 22].

In this review, we discuss recent developments of
the transport theory beyond the quasiparticle approxi-
mation and consequences of the propagation of parti-
cles with short lifetimes in hadron matter. First, we con-
sider few equilibrium systems which clearly indicate
that treatment beyond the quasiparticle approximation
is really needed. We start with a genuine problem
related to the occurrence of broad damping width, i.e.,
the soft-mode problem (Landau–Pomeranchuk–
Migdal effect). This is the direct radiation of quanta
from a piece of a dense medium [23]. Classically, this
problem is formulated as coupling of a coherent classi-
cal field, e.g., the Maxwell field, to a stochastic source
described by the Brownian motion of a charged parti-
cle. In this case, the classical current–current correla-
tion function can be obtained in closed analytic terms
and discussed as a function of the macroscopic trans-
port properties, the friction and diffusion coefficient of
the Brownian particle. We show that this result corre-
sponds to a partial resummation of photon self-energy
diagrams in the real-time formulation of field theory.
Subsequently, properties of particles with broad damp-
ing width are illustrated at the examples of the ρ meson
in dense matter at a finite temperature [24] and the pion
in the limit of a dilute nuclear matter [25]. The question
of consistency becomes especially important for a mul-
ticomponent system like πN∆ρ, …, where the proper-
ties of one species can change due to the presence of
interactions with the others and vice versa. The “vice
versa” is very important and corresponds to the princi-
ple of action = reaction. This implies that the self-energy
of one species cannot be changed through the interaction
with other species without affecting the self-energies of
the latter ones also. The Φ-derivable method of Baym
[18] offers a natural and consistent way to account for
this principle.

Then we address the question how particles with a
broad mass width can be described consistently within
a transport picture [21, 22]. We argue that the
Kadanoff–Baym equations in the first gradient approx-
imation together with the Φ-functional method of
Baym [18] provide a proper self-consistent approach
for kinetic description of systems of particles with a
broad mass–width. We argue that after gradient expan-
sion the full set of equations describing quantum trans-
port contains two equations, the differential general-
ized kinetic equation for a distribution function in 8-
dimensional (X, p) space and the algebraic equation for
PHYSICS OF ATOMIC NUCLEI      Vol. 64      No. 4      2001
the spectral density. Other equations are resolved. We
discuss the problems concerning charge and energy–
momentum conservation, thermodynamic consistency,
memory effects in the collision term and the growth of
entropy in specific cases. Finally, we demonstrate
finite-width effects in quantum kinetic description at
the example of pion condensation, where the width of
soft pionic excitations due to their decay into particle–
hole pairs governs the dynamics of the phase transition
in the isospin-symmetric nuclear matter.

We use the units " = c = 1. For simplicity, we treat
fermions nonrelativistically, whereas bosons (mesons)
are treated as relativistic particles.

2. BREMSSTRAHLUNG FROM CLASSICAL 
SOURCES

For the clarification of the soft-mode problem, fol-
lowing [23], we first discuss an example in classical
electrodynamics. We consider a stochastic source, the
hard matter, where the motion of a single charge is
described by the diffusion process in terms of the Fok-
ker–Planck equation for the probability distribution f of
the position x and velocity v:

(1)

Fluctuations also evolve in time according to this equa-
tion, or equivalently by the random-walk process [23],
and this way determine correlations. This charge is cou-
pled to the Maxwell field. On the assumption of a non-
relativistic source, this case does not suffer from stan-
dard pathologies encountered in hard-thermal-loop
(HTL) problems of QCD, namely, the collinear singu-
larities, where v · q ≈ 1, and from diverging Bose fac-
tors. The advantage of this Abelian example is that
damping can be fully included without violating cur-
rent conservation and gauge invariance. This problem
is related to the Landau–Pomeranchuk–Migdal effect
of bremsstrahlung in high-energy scattering [11, 12].

The two macroscopic parameters, the spatial diffu-
sion D and friction Γx coefficients determine the relax-
ation rates of velocities. In the equilibrium limit (t 
∞), the distribution attains the Maxwell–Boltzmann
velocity distribution with the temperature T = m〈v2〉/3 =
mDΓx. The correlation function can be obtained in
closed form, and one can discuss the resulting time cor-
relations of the current at various values of the spatial
photon momentum q, Fig. 1 (details are given in [23]).
For the transverse part of the correlation tensor, this

correlation decays exponentially as  at q = 0, and
its width further decreases with increasing momentum
q = |q |. The in-medium production rate is given by the
time Fourier transform τ  ω (right part of Fig. 1).

∂
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The hard part of the spectrum behaves as intuitively
expected; namely, it is proportional to the microscopic
collision rate expressed through Γx (cf. below) and thus
can be treated perturbatively by incoherent quasifree
(IQF) scattering prescriptions. However, independently
of Γx the rate saturates at a value of ~1/2 in these units
around ω ~ Γx, and the soft part shows the inverse
behavior. That is, with increasing collision rate the pro-
duction rate is more and more suppressed! This is in line
with the picture where photons cannot resolve the indi-
vidual collisions any more. Since the soft part of the
spectrum behaves like ω/Γx, it shows a genuine nonper-
turbative feature which cannot be obtained by any power
series in Γx. For comparison, the dashed curves show the
corresponding IQF yields, which agree with the correct
rates for the hard part while completely fail and diverge
towards the soft end of the spectrum. For nonrelativistic
sources 〈v2〉 ! 1, one can ignore the additional q depen-
dence (dipole approximation; cf. Fig. 1) and the entire
spectrum is determined by one macroscopic scale, the
relaxation rate Γx. This scale provides a quenching factor

(2)

by which the IQF results have to be corrected in order
to account for the finite-collision-time effects in dense
matter.

C0 ω( ) ω2

ω2 Γ x
2

+
------------------=

Fig. 1. Left: Current–current correlation function (in units of e2〈v

the photon momentum q2 = 3k2 /〈v2〉  with k = 0, 1, 2, 3. Righ

nonrelativistic source for Γx = 50, 100, 150 MeV; for comparison,

Γ x
2

1.2

1

0.8

0.4

0 2 3

Current corr. function

Γxτ

123 k = 0

+ –

Fig. 2. Self-energy diagrams determining the production
and absorption rates.
The diffusion result represents a resummation of the
microscopic Langevin multiple-collision picture; alto-
gether, only macroscopic scales are relevant to the form
of the spectrum and not the details of microscopic col-
lisions. Note also that the classical result fulfills the
classical version ("  0) of the sum rules discussed
in [23, 26].

3. RADIATION AT THE QUANTUM LEVEL

We have seen that at the classical level the problem
of radiation from dense matter can be solved quite nat-
urally and completely, at least for simple examples, and
Fig. 1 displays the main physics. They show that the
damping of the particles due to scattering is an impor-
tant feature, which, in particular, has to be included
right from the onset. This not only assures results that
no longer diverge but also provides a systematic and
convergent scheme. On the quantum level, such prob-
lems require techniques beyond the standard repertoire
of perturbation theory or the quasiparticle approxima-
tion. In terms of nonequilibrium diagrammatic tech-
nique in the Keldysh notation, the production or
absorption rates are given by the self-energy diagrams
of the type presented in Fig. 2 with an in- and out-going
radiating particle (e.g., photon) line [23, 27]. The
hatched loop area denotes all strong interactions of the
source. The latter give rise to a whole series of dia-
grams. As mentioned, for the particles of the source,
e.g., the nucleons, one has to resum the Dyson equation
with the corresponding full complex self-energy in
order to determine the full Green’s functions in dense
matter. Once one has these Green’s functions together
with the interaction vertices at hand, one could in prin-
ciple calculate the required diagrams. However, both
the computational effort to calculate a single diagram
and the number of diagrams increase dramatically with

2〉) as a function of time (in units of 1/Γx) for different values of

t: Rate of real photons d2N/(dωdt) (in units of 4πe2〈v2〉/3) for a

 the IQF results (dashed curves) are also shown.
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Photon rate (diffusion model)

ω, MeV

1.2
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100 MeV
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the loop order of the diagrams, such that, in practice,
only the lowest order loop diagrams can be considered
in the quantum case. In certain limits, some diagrams
drop out. We could show that in the classical limit,
which in this case implies the hierarchy ω, |q |, Γ ! T !
m together with low phase-space occupations for the
source, i.e., f(x, p) ! 1, only the following set of dia-
grams survives:

(3)

In these diagrams, the bold lines denote the full nucleon
Green’s functions which also include the damping
width, the black blocks represent the effective nucleon–
nucleon interaction in matter, and the full dots denote
the coupling vertex to the photon. The thin dashed lines
show how the diagrams are to be cut into two interfer-
ing amplitudes. This way, each of these diagrams with
n interaction loop insertions relates just to the nth term
in the corresponding classical Langevin process, where
hard scatterings occur at random with a constant mean
collision rate Γ. These scatterings consecutively change
the velocity of a point charge from v0 to v1, to v2, …. In
between scatterings, the charge moves freely. For such
a multiple-collision process the space integrated cur-
rent–current correlation function takes the simple Pois-
son form

(4)

with v = (1, v). Here, 〈…〉 denotes the average over the
discrete collision sequence. This form, which one
writes down intuitively, agrees with the analytic result
of the quantum correlation diagrams (3) in the limit f(x,
p) ! 1 and Γ ! T. Upon the Fourier transformation, it
determines the spectrum in completely regular terms
(void of any infrared singularities), where each term
describes the interference of the photon being emitted
at a certain time or n collisions later. In special cases
where velocity fluctuations are degraded by a constant
fraction α in each collision, such that 〈v0 · vn〉 = αn〈v0 ·
v0〉, one can resum the whole series in Eq. (4) and thus
recover the relaxation result with 2Γx〈v2〉 = Γ〈 (v0 – v1)2〉,
at least for q = 0, and the corresponding quenching fac-
tor (2). Thus, the classical multiple collision example
provides a quite intuitive representation of such dia-
grams. Further details can be found in [23].

The above example shows that we have to deal with
particle transport that explicitly takes account of the
particle mass width in order to properly describe soft
radiation from the system.
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4. THE ρ MESON IN DENSE MATTER

Following the Φ-derivable scheme, we will first dis-
cuss two examples within thermoequilibrium systems.
First, we will judge properties of the ρ meson and their
consequences for the ρ decay into dileptons [24]. In
terms of the nonequilibrium diagrammatic technique,
the exact production rate of dileptons is given by the
formula

(5)

Here, (m) ∝  1/m3 is the mass-dependent electro-
magnetic decay rate of the ρ into the dilepton pair of
invariant mass m. The phase-space distribution fρ(m, p,
x, t) and the spectral function Aρ(m, p, x, t) define the
properties of the ρ meson at spacetime point x, t. Both
quantities are in principle to be determined dynami-
cally by an appropriate transport model. However, the
spectral functions have not yet been treated dynami-
cally in most of the present transport models. Rather
one employs on-shell δ functions for all stable particles
and spectral functions fixed to the vacuum shape for
resonances.

As an illustration, we follow the two-channel exam-
ple presented by one of us in [28]. There, the ρ meson
just strongly couples to two channels, i.e., the π+π– and
πN  ρN channels, the latter being relevant at finite
nuclear densities. The latter component is representa-
tive for all channels contributing to the so-called direct
ρ in transport codes. For a first orientation, the equilib-
rium properties3) are discussed in simple analytical
terms with the aim to discuss the consequences for the
implementation of such resonance processes into
dynamical transport simulation codes.

Both considered processes add to the total width of
the ρ meson

(6)

and the equilibrium spectral function then results from
the cuts of the two diagrams

(7)

3)Far more sophisticated calculations have already been presented
in the literature [29–34]. It is not the point to compete with them
at this place.
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Fig. 3. e+e– rates (arb. units) as a function of the invariant pair mass m at T = 110 MeV from π+π– annihilation (dotted curve) and
direct ρ-meson contribution (dashed curve), the solid curve gives the sum of both contributions. Left part: using the free cross section
recipe, i.e., with Γtot = ; right part: the correct partial rates (7). Aρ is given by the thick curve. The calculations are done with

Γρ ↔ ππ(mρ) = 150 MeV and (mρ) = 70 MeV.

Γ
ρπ+π–

Γ
ρ πN N

1–↔
               
In principle, both diagrams have to be calculated in
terms of fully self-consistent propagators, i.e., with cor-
responding widths for all particles involved. This for-
midable task has not been done yet. Using microrevers-
ibility and the properties of thermal distributions, the
two terms in Eq. (7) contributing to the dilepton yield
(5) can indeed approximately be reformulated as the
thermal average of the π+π–  ρ  e+e– annihila-
tion process and the πN  ρN  e+e–N scattering
process, i.e.,

(8)

where fπ and fN are corresponding particle occupations
and vππ and vπN are relative velocities. However, an
important fact to be noticed is that, in order to preserve
unitarity, the corresponding cross sections are no
longer free, as given by the vacuum decay width in the
denominator, but rather involve the medium-dependent
total width (6). This illustrates in simple terms that rates
of broad resonances can no longer simply be added in a
perturbative way. Since it concerns a coupled-channel
problem, there is a cross talk between the different
channels to the extent that the common resonance prop-
agator attains the total width arising from all partial
widths feeding and depopulating the resonance. While
a perturbative treatment with free cross sections in
Eq. (8) would enhance the yield at the resonance mass,
m = mρ, if a channel is added (left part of Fig. 3), the
correct treatment (7) even inverts the trend and indeed
depletes the yield at the resonance mass (right part in
Fig. 3). Furthermore, one sees that only the total yield
involves the spectral function, while any partial cross

dn
e+e–

dmdt
------------- 〈 f

π+ f
π–vππσ π+π– ρ e+e–( )∝

+ f π f NvπNσ πN ρN e+e–N( )〉 T ,
                                  

section refers to that partial term with the correspond-
ing partial width in the numerator! Compared to the
shape of the spectral function, both thermal compo-
nents in Fig. 3 show a significant enhancement on the
low-mass side and a strong depletion at high masses
due to the thermal weight f ∝  exp(–p0/T) in the rate (5).
This kinematical effect related to the broad width also
survives in nonequilibrium calculations and is a signa-
ture of phase-space restrictions imposed for particles
with higher energies. The related question as to how to
preserve detailed balance in the case of broad reso-
nances was addressed by Danielewicz and Bertsch
[35]. The latter method has then been implemented in
transport models mostly applied to the description of
the ∆ resonance. For the transport description of the ρ
meson, only quite recently has a description level been
realized that properly includes the width effects dis-
cussed above, e.g., in [36], cf. also the comments given
in [37]. The transport treatment of broad resonances is
discussed further in Sections 5–8.

As an example, we show an exploratory study of the
interacting system of π, ρ, and a1 mesons described by
the Φ functional

(9)

(cf. Section 6 below). The couplings and masses are
chosen as to reproduce the known vacuum properties of
the ρ and a1 mesons with nominal masses and widths
mρ = 770 MeV,  = 1200 MeV, Γρ = 150 MeV, and

 = 400 MeV. The results of a finite-temperature cal-
culation at T = 150 MeV with all self-energy loops
resulting from the Φ functional of Eq. (9) computed

π
ρ

π

π
ρ
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π
π
π
π

++Φ =

ma1

Γa1
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[24] with the self-consistent broad-width Green’s func-
tions are displayed in Fig. 4 (corrections to the real part
of the self-energies were not yet included). The last dia-
gram of Φ with the four-pion self-coupling has been
added in order to supply pion with broad mass width as
they would result from the coupling of pions to nucle-
ons and the ∆ resonance in nuclear matter environment.
As compared to first-order one-loop results which drop
to zero below the two-pion threshold at 280 MeV, the
self-consistent results essentially add in strength at the
low-mass side of the dilepton spectrum.

Virial Limit

In the dilute-density limit (virial limit), the corre-
sponding self-energies of the particles and intermediate
resonances are entirely determined by two-body scat-
tering properties, in particular, by scattering phase
shifts. We illustrate this by example of the interacting
system of nucleons, pions, and delta resonances, which
have recently been investigated by Weinhold et al. [25].
Following their study, we consider a pedagogical
example, where the πNN interaction is omitted. Then,
with a p-wave πN∆-coupling vertex among the three
fields the first and only diagram of Φ up to two vertices
and the corresponding three self-energies are given by

. (10)

Here, the solid, dashed, and double lines denote the
propagators of N, π, and ∆, respectively. In nonrelativ-
istic approximation for the baryons, we ignore contri-
butions from the baryon Dirac sea. Then, the bare pion
mass agrees with its vacuum value, while the nucleon
and delta masses require appropriate mass counter
terms. The ∆ self-energy Σ∆ attains the vacuum width
and position of the delta resonance due to the decay into
a pion and a nucleon. The corresponding scattering dia-
grams are obtained by opening two propagator lines of
Φ with the prominent feature that the πN scattering pro-
ceeds through the delta resonance. Since in this case a
single resonance couples to a single scattering channel,
the vacuum spectral function of the resonance can be
directly expressed through the scattering T matrix and
hence through measured scattering phase shifts

(11)

where p = pN + pπ. Thus, through (11), the vacuum
properties of the delta can be obtained from scattering
data almost in a model-independent way.

For the multicomponent system the renormalized
thermodynamic potential including vacuum counter

Φ = , ΣN = , Σπ = , Σ∆ =
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|T33|2 = 4sin2δ33(p) = Γvac
∆ (p)Avac

∆ (p),
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terms can be written as

(12)

(13)

For any function f(p), the thermodynamic trace
tr{…}T, µ is defined as

(14)

Ω Gπ GN G∆, ,{ }

=  T κ tr Ga
R

p0 i0 p,+( )–[ ]ln–{+−
a π N ∆, ,{ }∈

∑
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RΣa
R } T µ, ΦT ,+
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Fig. 4. Upper part: contour plot of the self-consistent spec-
tral function of the ρ meson as a function of energy and spa-
tial momentum, T = 150 MeV; lower part: thermal dilepton
rate (arb. units) as a function of invariant mass at |p| =
300 MeV/c, T = 110 MeV.
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an energy integral over thermal occupations n(ε) =
[exp(ε/T) ± 1]–1, of Fermi–Dirac or Bose–Einstein
type. The upper sign appears for fermions, the lower for
bosons, d is the degeneracy in that particle channel, and
V denotes the volume. Equation (12) still has the func-
tional property to provide the retarded Dyson’s equa-

tions for the  from the stationary condition which
we use in order to determine the physical value of Ω.
For the particular case here, one can further exploit the
property

valid for ΦT that depend linearly on all propagators.
Compatible with the low-density limit, one can expand
the tr ln{–G} terms for the pion and nucleon around the
free propagators and finally obtain

(15)

(16)

for the physical value of Ω. Here, the  are the free
single-particle thermodynamic potentials,4) while µ∆
and d∆ = 16 are the chemical potential and degeneracy
factor of the ∆ resonance, respectively. The last term in
(16), obtained through (11), represents a famous result
derived by Beth–Uhlenbeck [38, 39], later generalized by
Dashen, Ma, and Bernstein [40] and applied to nuclear
resonance matter in [25, 41, 42]. It illustrates that the vir-
ial corrections of the system’s level density due to inter-
actions are entirely given by the energy variation of the
corresponding two-body scattering phase shifts ∂δ/∂p0.

All thermodynamic properties can be obtained from
Ω through partial differentiations with respect to T and
the µ. The final form (16) may give the impression that
one deals with noninteracting nucleons and pions. This
is, however, not the case. For instance, the densities of
baryons and pions derived from (16) become

(17)

4)The appropriate cancellation of terms for the result (15) is only
achieved if one uses Ωfree, i.e., the partition sum of free particles
with the free energy–momentum dispersion relation. Within this
model, even on the vacuum level the nucleon would acquire loop
corrections to its self-energy which would lead to deviations
between Ωvac and Ωfree, as well as between the corresponding
propagators off their mass shell.
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with

(18)

(19)

and µ∆ = µN + µπ.5) Here, the density of deltas ρ∆ is
determined by the delta spectral function. The interac-
tion contribution contained in the correlation density
ρcorr depends on the difference between the phase-shift
variation and the spectral function

(20)

Due to the fact that Γ∆(p) grows with energy and the
real part of G∆ changes sign at the resonance energy,
Bcorr becomes positive below and negative above reso-
nance, respectively. It leads to an enhancement of both
densities at low energies, i.e., below resonance, and
also to a further softening of the resulting equation of
state compared to the naive spectral function treatment
ignoring the Bcorr terms. This illustrates that an interact-
ing resonance gas cannot consistently be described by
a set of free particles (here the pions and nucleons) plus
vacuum resonances (here the delta), described by their
spectral function. Rather the coupling of a bare reso-
nance to the stable particles determines its width and,
thus, its spectral properties in a vacuum. At the same
time, the stable particles are modified due to the inter-
action with the resonance. Only the account of all three
self-energies in (10) provides a conserving and thermo-
dynamically consistent approximation.

Alternatively to the picture above, the properties of
the system can be discussed entirely in terms of the sta-
ble particles, i.e., the pion and the nucleon, thus elimi-
nating the delta. The thermodynamic potential is then
still given by (16). This form is valid even without
intermediate resonances and the phase shifts just
account for the πN-interaction properties. Also, the
self-energy of the lightest particle in the system, the
pion, can be obtained from phase shifts by means of the
optical theorem [43, 44]. To the linear order in the
nucleon density ρN, one determines the pion self-
energy

(21)

5)In equilibrium, µπ has to be put to zero after differentiation.
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from the forward πN-scattering amplitude FπN(0).
Here, plab and pc.m. refer to the pion 3-momenta in the
matter rest frame and the c.m. frame of the πN colli-

sions. The arising kinematical factor plab/pc.m. = /mN

which has mostly escaped notice even in standard ref-
erences on the low-density theorem, e.g., [45], becomes
important for heavier projectiles like kaons, cf. [46].
Here, the degeneracy factors dN : dπ : d∆ = 4 : 3 : 16 just
provide the proper spin–isospin counting. This self-
energy, which determines an optical potential or index
of refraction, is attractive below the ∆-resonance
energy and repulsive above. It agrees with a related
effect in optics, where a resonance in the medium
causes an anomalous behavior of the real part of the
index of refraction, which is larger than 1 below the res-
onance frequency and less than 1 above the resonance.
Thus, absorption, e.g., by exciting a resonance, is
always accompanied by a change of the real part of the
index of refraction of the scattered particle. The Φ-
derivable principle automatically takes care about these
features.

As has been discussed in [47], the corrections to the
system’s level density [last term in (16)] can also be
inferred from the time shifts (or time delays) induced
by the scattering processes. From ergodicity arguments
[47], one obtains, for a single partial wave,

(22)

These expressions apply to the c.m. frame. Here, the
forward delay time τforward relates to the change of the
group velocity induced by the real part of the optical
potential, cf. (21). The scattering time τscatt finally
results from the delayed reemission of the pion from
the intermediate resonance to angles off the forward
direction.

5. QUANTUM KINETIC EQUATION

The three above-presented examples unambigu-
ously show that, for consistent dynamical treatment of
nonequilibrium evolution of soft radiation and broad
resonances, we need a transport theory that takes due
account of mass widths of constituent particles. A
proper frame for such a transport is provided by
Kadanoff–Baym equations. We consider the Kadanoff–
Baym equations in the first-order gradient approxima-
tion, assuming that the spacetime evolution of a system
is smooth enough to justify this approximation.

First of all, it is helpful to avoid all the imaginary
factors inherent in the standard Green’s function for-
mulation (G ij with i, j ∈  {–+}) and introduce quantities
which are real and, in the quasihomogeneous limit,
positive and therefore have a straightforward physical

s

∂
∂p0
-------- N level p0( ) N level

free
p0( )–( ) = τ forward τ scatt+  = τdelay

=  2
∂

∂p0
-------- δ33 δ33cossin[ ] 4 δ33

∂δ33

∂p0
----------sin

2
+ 2

∂δ33

∂p0
----------.=
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interpretation [22], much like for the Boltzmann equa-
tion. In the Wigner representation, we define

(23)

(24)

for the generalized Wigner functions F and  with the
corresponding four-phase-space distribution functions
f(X, p) and Fermi (Bose) factors [1  f(X, p)], with the
spectral function A(X, p) and the retarded propagator
G R. Here and below, the upper sign corresponds to fer-
mions and the lower one, to bosons. According to rela-
tions between the Green’s functions G ij, only two inde-
pendent real functions of all the G ij are required for a
complete description. Likewise, the reduced gain and
loss rates of the collision integral and the damping rate
are defined as

(25)

(26)

where Σij are contour components of the self-energy
and ΣR is the retarded self-energy.

In terms of this notation and within the first-order
gradient approximation, the Kadanoff–Baym equations

for F and  (which result from differences of the cor-
responding Dyson equations with their adjoint ones)
take the kinetic form

(27)

(28)

with the drift operator and collision term, respectively,

(29)

(30)

2πµ = v µ = (1, p/m) for nonrelativistic particles and
πµ = pµ for relativistic bosons. Within the same approx-
imation level, there are two alternative equations for F

and 

(31)

(32)

F X p,( ) A X p,( ) f X p,( ) +−( )iG
–+

X p,( ),= =

F̃ X p,( ) A X p,( ) 1 f X p,( )+−[ ] iG
+–

X p,( ),= =

A X p,( ) 2 Im G
R

X p,( )–≡ F̃ F±=

=  i G
+–

G
–+

–( )

F̃

+−

Γ in X p,( ) +−( )iΣ–+
X p,( ),=

Γ out X p,( ) iΣ+–
X p,( ),=

Γ X p,( ) 2 Im ΣR
X p,( )–≡  = Γ out X p,( ) Γ in X p,( ),±

F̃

$F Γ in Re G
R,{ }– C,=

$F̃ Γout Re G
R,{ }– C,+−=

$ 2πµ
∂ Re ΣR

∂p
µ-----------------– 

  ∂X
µ ∂ Re ΣR

∂X
µ----------------- ∂

∂pµ
---------,+=

C X p,( ) = Γ in X p,( )F̃ X p,( ) Γout X p,( )F X p,( );–

F̃

MF Re G
RΓ in–

1
4
--- Γ F,{ } Γ in A,{ }–( ),=

MF̃ Re G
RΓout–

1
4
--- Γ F̃,{ } Γout A,{ }–( )=
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with the “mass” function

(33)

These two equations result from sums of the corre-
sponding Dyson equations with their adjoint ones.
Equations (31) and (32) can be called the mass-shell
equations, since in the quasiparticle limit they provide
the on-mass-shell condition M = 0. Appropriate combi-
nations of the two sets (27), (28) and (31), (32) provide
us with the retarded Green’s function equations, which
are simultaneously solved [15, 48] by

(34)

With solution (34) for GR, Eqs. (27) and (28)
become identical to each other, as well as Eqs. (31) and
(32); however, Eqs. (27) and (28) are not yet identical
to Eqs. (31) and (32), while they were identical before
the gradient expansion. Indeed, one can show [22] that
Eqs. (27) and (28) differ from Eqs. (31) and (32) in sec-
ond-order gradient terms. This is acceptable within the
gradient approximation; however, the remaining differ-
ence in the second-order terms is inconvenient from the
practical point of view. Following Botermans and
Malfliet [48], we express Γin = Γf + O(∂X) and Γin =
Γ(1  f ) + O(∂X) from the left-hand side of the mass-
shell Eqs. (31) and (32), substitute them into the Pois-
son-bracketed terms of Eqs. (27) and (28), and neglect
all the resulting second-order gradient terms. The so-
obtained quantum four-phase-space kinetic equations

for F = f A and  = (1  f )A then read

(35)

(36)

These quantum four-phase-space kinetic equations,
which are identical to each other in view of retarded
relation (34), are at the same time completely identical
to the correspondingly substituted mass-shell Eqs. (31)
and (32).

The validity of the gradient approximation [22]
relies on the overall smallness of the collision term C =
{gain – loss} rather than on the smallness of the damp-
ing width Γ. Indeed, while fluctuations and correlations
are governed by time scales given by Γ, the Kadanoff–
Baym equations describe the behavior of the ensemble

M X p,( )

p0 p2
/2m– Re ΣR

X p,( )–

for nonrelativistic particles

m
2

– p
2

Re ΣR
X p,( )–+

for relativistic bosons.

=

G
R 1

M X p,( ) iΓ X p,( )/2+
-----------------------------------------------------=

A
Γ

M
2 Γ 2

/4+
------------------------=

Re G
R M

M
2 Γ 2

/4+
------------------------.=

+−

F̃ +−

$ fA( ) Γ f Re G
R,{ }– C,=

$ 1 f+−( )A( ) Γ 1 f+−( ) Re G
R,{ }– C.+−=
mean of the occupation in phase space F(X, p). It
implies that F(X, p) varies on spacetime scales deter-
mined by C. In cases where Γ is not small enough by
itself, the system has to be sufficiently close to equilib-
rium in order to provide a valid gradient approximation
through the smallness of the collision term C. Both the
Kadanoff–Baym (27) and the Botermans–Malfliet
choice (35) are, of course, equivalent within the validity
range of the first-order gradient approximation. Fre-
quently, however, such equations are used beyond the
limits of their validity as ad hoc equations, and then the
different versions may lead to different results. So far,
we have no physical condition to prefer one of the
choices. The procedure, where in all Poisson brackets
the Γin and Γout terms have consistently been replaced
by f Γ and (1  f )Γ, respectively, is therefore optional.
However, in doing so we gained some advantages.
Beside the fact that quantum four-phase-space kinetic
equation (35) and the mass-shell equation are then
exactly equivalent to each other, this set of equations
has particular features with respect to the definition of
a nonequilibrium entropy flow in connection with the
formulation of an exact H theorem in certain cases. If
we omit these substitutions, both these features would
become approximate with deviations at the second-
order gradient level. A numerical scheme of the BM
choice in application to heavy-ion collisions is con-
structed in [49, 50].

The equations so far presented, mostly with the
Kadanoff–Baym choice (27), were the starting point for
many derivations of extended Boltzmann and general-
ized kinetic equations, ever since these equations have
been formulated in 1962. Most of those derivations use
the equal-time reduction by integrating the four-phase-
space equations over energy p0, thus reducing the
description to three-phase-space information (cf. [51–
59] and references therein). This can only consistently
be done in the limit of small width Γ employing some
kind of quasiparticle ansätze for the spectral function
A(X, p). Particular attention has been payed to the treat-
ment of the time-derivative parts in the Poisson brack-
ets, which in the four-phase-space formulation still
appear time-local, i.e., Markovian, while they lead to
retardation effects in the equal-time reduction. Gener-
alized quasiparticle ansätze were proposed, which
essentially improve the quality and consistency of the
approximation, providing those extra terms to the naive
Boltzmann equation (sometimes called additional col-
lision terms) which are responsible for the correct sec-
ond-order virial corrections and the appropriate conser-
vation of total energy (cf. [53, 56] and references
therein). However, all these derivations imply some
information loss about the differential mass spectrum
due to the inherent reduction to a 3-momentum repre-
sentation of the distribution functions by some specific
ansätze. With the aim to treat cases as those displayed
in Figs. 3 and 4, where the differential mass spectrum
can be observed by dilepton spectra, within a self-con-

+−
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sistent nonequilibrium approach, one has to treat the
differential mass information dynamically, i.e., by
means of Eq. (34) avoiding any kind of quasiparticle
reductions, and work with the full quantum four-phase-
space kinetic Eq. (35). In the following section, we dis-
cuss the properties of this set of quantum kinetic equa-
tions.

6. Φ-DERIVABLE APPROXIMATIONS

The preceding considerations have shown that one
needs a transport scheme adapted to broad resonances.
Besides the conservation laws, it should comply with
requirements of unitarity and detailed balance. A prac-
tical suggestion has been given in [35] in terms of cross
sections. However, this picture is tied to the concept of
asymptotic states and is therefore not well suited for the
general case, in particular, if more than one channel
feeds into a broad resonance. Therefore, we suggest to
revive the so-called Φ-derivable scheme, originally
proposed by Baym [18] on the basis of the generating
functional, or partition sum, given by Luttinger and
Ward [19] and later reformulated in terms of path inte-
grals [60].

With the aim to come to a self-consistent and con-
serving treatment on the two-point function level, we
generalized the Φ-functional method [18, 19] to the
real-time contour (#) in [21]. It was based on a decom-
position of the generating functional Γ with bilocal
sources into a two-particle-reducible part and an auxil-
iary functional Φ which compiles all two-particle-irre-
ducible (2PI) vacuum diagrams:

(37)

Here, +
0
(φ) is the free classical Lagrangian of the clas-

sical field φ, G0 and G denote the free and full-contour
Green’s functions, while Σ is the full-contour self-
energy of the particles. Contrary to the perturbation
theory, here the auxiliary functional Φ is given by all
two-particle-irreducible closed diagrams in terms of
full propagators G, full time-dependent classical fields
φ, and bare vertices. The upper signs in Eq. (37) relate
to fermion quantities, whereas the lower signs, to boson
ones, while nΣ and nλ count the number of self-energy
insertions in the ring diagrams and the number of verti-
ces in the diagrams of Φ, respectively, λ is the scaling
factor in each vertex. The stationarity conditions

(38)

provide the set of coupled equations of motion for the
classical fields φ and the Green’s functions G (the

+

iΓ{G, φ, λ} = iΓ0{G0} + dx+0{φ, ∂µφ}

+
–iΣ

–iΣ –iΣ –iΣ

 

#
∫

1
nΣ
-----

nΣ

∑ –
1
nλ
-----

nλ

∑
2PI

.

±ln(1 – (G0(Σ) ±(G(Σ +iΦ{G, φ, λ}

…

δΓ G φ λ, ,{ } /δG 0, δΓ G φ λ, ,{ } /δφ 0= =
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Dyson equation)

(39)

(40)

where the superscript “0” marks the free Green’s func-
tions and classical fields. The functional Φ{G, φ} acts
as the generating functional for the self-energy Σ and
source currents J(x) via the functional variations

(41)

The advantage of this formulation is that Φ can be
truncated at any level, thus defining approximation
schemes with built-in internal consistency with respect
to conservation laws and thermodynamic consistency.
For details, we refer to [18, 19] and our previous paper
[21]. Note that Φ itself is constructed in terms of the
“full” Green’s functions, where “full” now takes the
sense of solving self-consistently the Dyson equation
with the driving term derived from this approximate Φ
through relation (41). It means that even restricting our-
selves to a single diagram in Φ, in fact, we deal with a
whole sub-series of diagrams in terms of free propaga-
tors, and “full” takes the sense of the sum of this whole
subseries. Thus, restricting the infinite set of diagrams
for Φ to either only a few of them or some subseries of
them defines a Φ-derivable approximation. Such
approximations have the following distinct properties:
(a) they are conserving if Φ preserves the invariances
and symmetries of the Lagrangian for the full theory;
(b) they lead to a consistent dynamics; and (c) they are
thermodynamically consistent. These properties origi-
nally shown within the imaginary-time formalism with
a time-dependent external perturbation [18, 19] also
hold in the genuine nonequilibrium case formulated in
the real-time field theory [21].

Transport equation (35) weighted either with the
charge e or with 4-momentum pν, summed over internal
degrees of freedomlike spin (tr), and integrated over
momentum gives rise to the charge or energy–momen-
tum conservation laws, respectively, with the Noether
4-current and Noether energy–momentum tensor
defined by the expressions [22]

(42)

(43)

φ x( ) φ0
x( ) yG

0
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#
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Here,

(44)

is the interaction energy density, which in terms of Φ is
given by a functional variation with respect to a space-
time dependent coupling strength of interaction part of

the Lagrangian density   λ(x) , cf. [21].

The potential energy density %
pot

 takes the form

(45)

Whereas the first term in squared brackets complies
with quasiparticle expectations, namely, the mean
potential times density, the second term displays the
role of fluctuations in the potential energy density.

The conservation laws only hold if all the self-ener-
gies are Φ-derivable. In [22], it was shown that this
implies the consistency relation,

(46)

and the consistensy relation for the conserved current 

(47)

for the energy–momentum tensor.
They are obtained after first-order gradient expan-

sion of the corresponding exact relations. The contribu-
tions from the Markovian collision term C drop out in
both cases, cf. Eq. (50) below. The first term in each of
the two relations refers to the change from the free
velocity v to the group velocity vg in the medium. It can
therefore be associated with a corresponding drag-flow
contribution of the surrounding matter to the current or
energy–momentum flow. The second (fluctuation) term
compensates the former contribution and can therefore
be associated with a back-flow contribution, which
restores the Noether expressions (42) and (43) to be
indeed the conserved quantities. In this compensation,
we see the essential role of fluctuations in the quantum
kinetic description. Dropping or approximating this
term would spoil the conservation laws. Indeed, both
expressions (42) and (43) comply with the quantum
kinetic equation (35), being approximate (up to the
first-order gradient terms) integrals of it.

Expressions (42) and (43) for 4-current and energy–
momentum tensor, respectively, as well as self-consis-
tency relations (46) and (47), still need a renormaliza-
tion. They are written explicitly for the case of nonrel-
ativistic particles whose number is conserved. This fol-
lows from the conventional way of nonrelativistic
renormalization for such particles based on normal
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– C+ ,∫
ordering. When the number of particles is not con-
served (e.g., for phonons) or a system of relativistic
particles is considered, one should replace F(X, p) 

(F(X, p)  (X, p)) in all the above formulas in order

to take proper account of zero-point vibrations (e.g., of
phonons) or of the vacuum polarization in the relativis-
tic case. These symmetrized equations, derived from
special ( ) combinations of the transport equations
(35) and (36), are generally ultraviolet-divergent and,
hence, have to be properly renormalized at the vacuum
level.

7. COLLISION TERM

To further discuss the transport treatment, we need
an explicit form of the collision term (30), which is pro-
vided from the Φ functional in the – + matrix notation
via the variation rules (41) as

(48)

Here, we assumed Φ to be transformed into the Wigner

representation and all  and iG+– to be replaced by

the Wigner densities F and . Thus, the structure of the
collision term can be inferred from the structure of the
diagrams contributing to the functional Φ. To this end,
in close analogy to the consideration of [23], we dis-
cuss various decompositions of the Φ functional, from
which the in- and out-rates are derived. For the sake of
physical transparency, we confine our treatment to the
local case, where in the Wigner representation all the
Green’s functions are taken at the same spacetime coor-
dinate X and all nonlocalities, i.e., derivative correc-
tions, are disregarded. Derivative corrections give rise
to memory effects in the collision term, which will be
analyzed separately for the specific case of the triangle
diagram.

Consider a given closed diagram of Φ, at this level
specified by a certain number nλ of vertices and a cer-
tain contraction pattern. This fixes the topology of such

a contour diagram. It leads to  different diagrams in
the – + notation from the summation over all –+ signs
attached to each vertex. Any –+ notation diagram of Φ
that contains vertices of either sign can be decomposed
into two pieces in such a way that each of the two sub-
pieces contains vertices of only one type of sign6) 

6)To construct the decomposition, just deform a given mixed-vertex
diagram of Φ in such a way that all + and – vertices are placed left
and, respectively, right from a vertical division line and then cut
along this line.

1
2
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(49)

with F1… …  linking the two amplitudes. The

(X; p1, … , …) and Vβ(X; p1, … , …) ampli-
tudes represent multipoint vertex functions of only one
sign for the vertices; i.e., they are either entirely time-
ordered (– vertices) or entirely antitime-ordered (+ ver-
tices). Here, we used the fact that adjoint expressions
are complex-conjugate to each other. Each such vertex
function is determined by normal Feynman diagram
rules. Applying the matrix variation rules (48), we find
that the considered Φ diagram gives the following con-
tribution to the local part of the collision term (29):

(50)

with the partial process rates

(51)

The restriction to the real part arises, since with (α |β)
also the adjoint (β|α) diagram contributes to this colli-
sion term. However, these rates are not necessarily pos-
itive. In this point, the generalized scheme differs from
the conventional Boltzmann kinetics.

An important example of approximate Φ that we
extensively use below is

(52)

where logarithmic factors due to the special features of
the Φ-diagrammatic technique are written out explic-
itly, cf. [22]. In this example, we assume a system of fer-
mions interacting via a two-body potential V = V0δ(x – y)
and, for the sake of simplicity, disregard its spin struc-
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ture. The Φ functional of Eq. (52) results in the local
collision term

(53)

where d is the spin (and maybe isospin) degeneracy fac-
tor. From this example, one can see that the positive
definiteness of transition rate is not evident.

The first-order gradient corrections to the local col-
lision term (50) are called memory corrections. Only
diagrams of third and higher order in the number of ver-
tices give rise to memory effects. In particular, only the
last diagram of Eq. (52) gives rise to the memory cor-
rection, which is calculated in [22].

8. ENTROPY

Compared to exact descriptions, which are time-
reversible, reduced description schemes in terms of rel-
evant degrees of freedom have access only to some lim-
ited information and thus normally lead to irreversibil-
ity. In the Green’s function formalism presented here,
the information loss arises from the truncation of the,
exact Martin–Schwinger hierarchy, where the exact
one-particle Green’s function couples to the two-parti-
cle Green’s functions, cf. [15, 48], which in turn are
coupled to the three-particle level, etc. This truncation
is achieved by the standard Wick decomposition, where
all observables are expressed in terms of one-particle
propagators; therefore, higher order correlations are
dropped. This step provides the Dyson equation and the
corresponding loss of information is expected to lead to
a growth of entropy with time.

We start with general manipulations which lead us
to definition of the kinetic entropy flow [22]. We multi-

ply Eq. (35) by –ln(F/A), Eq. (36) by ( )ln( /A), take
their sum, integrate it over d4p/(2π)4, and finally sum
the result over internal degrees of freedom like spin (tr).
Then, we arrive at the relation

(54)
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where
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(57)

(58)

cf. the corresponding drift term [proportional to ∂µ f in

Eq. (35)]. The zero components of these functions, 
and B0, have a meaning of the entropy and flow spectral
functions, respectively, and satisfy the same sum rule as
A. If the considered particle is a resonance, like the ∆ or
ρ-meson resonances in hadron physics, the B0 function
relates to the energy variations of scattering phase shift
of the scattering-channel coupling to the resonance in

the virial limit discussed above. The value  is inter-
preted as the local (Markovian) part of the entropy flow.

Indeed, the  has proper thermodynamic and quasi-
particle limits [22]. However, to be sure that this is
indeed the entropy flow, we must prove the H theorem
for this quantity.

First, let us consider the case where memory correc-
tions to the collision term are negligible. Then, we can
make use of the form (50) of the local collision term.
Thus, we arrive at the relation

(59)

If all rates R are nonnegative, i.e., R ≥ 0, this expression
is nonnegative, since (x – y)ln(x/y) ≥ 0 for any positive
x and y. In particular, R ≥ 0 takes place for all Φ func-

tionals up to two vertices. Then, the divergence of 
is nonnegative:

(60)

which proves the H theorem in this case with (55) as the
nonequilibrium entropy flow. However, as has been
mentioned above, we are unable to show that R always
takes nonnegative values for all Φ functionals.

If memory corrections are essential, the situation is
even more involved. Let us consider this situation again
at the example of the Φ approximation given by
Eq. (52). We assume that the fermion–fermion poten-
tial interaction is such that the corresponding transition
rate of the corresponding local collision term (53) is
always nonnegative, so that the H theorem takes place
in the local approximation, i.e., when we keep only
C loc. Here, we will schematically describe calculations
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of [22] which, to our opinion, illustrate a general strat-
egy for the derivation of memory correction to the
entropy, provided the H theorem holds for the local
part.

Now Eq. (54) takes the form

(61)

where  is still the Markovian entropy flow defined
by Eq. (55). Our aim here is to present the last term on
the right-hand side of Eq. (61) in the form of full X
derivative

(62)

of some function (X), which we then interpret as a
non-Markovian correction to the entropy flow of
Eq. (55) plus a correction (δcmem). For the memory
induced by the triangle diagram of Eq. (52), the
detailed calculations of [22] show that smallness of the
δcmem, originating from small spacetime gradients and
small deviation from equilibrium, allows us to neglect
this term as compared with the first term on the right-
hand side of Eq. (62). Thus, we obtain

(63)

which is the H theorem for the non-Markovian kinetic

equation under consideration with  +  as the
proper entropy flow. The right-hand side of Eq. (63) is
nonnegative, provided that the corresponding transition
rate in the local collision term of Eq. (53) is nonnega-
tive.

The explicit form of  is very complicated, see

[22]. In equilibrium at low temperatures we get  ~
T3lnT that gives the leading correction to the standard
Fermi-liquid entropy. This is the famous correction [61,
62] to the specific heat of liquid 3He. Since this correc-
tion is quite comparable (numerically) to the leading
term in the specific heat (~T), one may claim that liquid
3He is a liquid with very strong memory effects from
the point of view of kinetics.

9. PION-CONDENSATE PHASE TRANSITION

As a further example for the role of finite-width
effects, we consider the phase-transition dynamics into
a pion condensate. The possible formation of such a
pion condensate in dense nuclear matter was initially
suggested by A.B. Migdal in his pioneering work [5]. In
realistic treatments of this problem applied to equili-
brated isospin-symmetric nuclear matter at low temper-
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atures T ! mπ, the pion self-energy is determined by
nucleon–nucleon–hole and ∆–nucleon–hole contribu-
tions corrected by nucleon–nucleon correlations, ππ
fluctuations, and a residual interaction [9]. A recent
numerical analysis [63] within a variational method
with realistic two- and three-nucleon interactions gave
ρc . 2ρ0 for the critical density of π+, π–, π0 condensa-
tion in symmetric nuclear matter and ρc . 1.3ρ0 for π0

condensation in neutron matter, with ρ0 being nuclear
saturation density.

In symmetric nuclear matter, the pion-condesate
frequency vanishes while the magnitude of condensate
momentum pc is approximately given by the nucleon
Fermi momentum |pc | . pF. The critical behavior of the
system is determined by the effective pion gap

(64)

where the momentum p = pc corresponds to the mini-
mum of the gap at zero mean field ϕπ = 0 [8, 9]. Figure 5

illustrates the behavior of the effective pion gap (pc)
as a function of the baryon density ρ. At low densities,

Re  is small and one obviously has  > 0. The
dashed curve in Fig. 5 describes the case where the ππ
fluctuations are artificially switched off and the phase
transition turns out to be of second order. At the critical
point of the pion condensation (ρ = ρc), this value of

 with switched-off ππ fluctuations changes its sign.
In reality, the ππ fluctuations are significant in the
vicinity of the critical point [64–66]. The correspond-
ing contribution to the pion self-energy behaves as

T/ (ϕπ, pc) at T > | (ϕπ, pc)/mπ|, and (pc) does
not cross the zero line at all.7) Rather there are two
branches (solid curves in Fig. 5) with positive and

respectively negative value for (pc) and the transi-
tion becomes of the first order. Calculations of [64–66]
demonstrate that at ρ > ρc the free energy of the state

with (p0) > 0, where the pion mean field is zero,
becomes larger than that of the corresponding state

with (pc) < 0 and a finite mean field. Thus, at ρ = ρc

the first-order phase transition to the inhomogeneous
pion-condensate state occurs. At ρ > ρc the state with

(pc) > 0 is metastable and the state with (pc) < 0
and  ≠ 0 becomes the ground state.

Before we discuss a self-consistent scheme for a
quantitative treatment of this problem, we should qual-
itatively explain how the instability toward pion con-
densation develops dynamically. To simplify the treat-

7)Here we have used the quantity , which already takes account
of the pion mean field as explained below, cf. Eq. (69) and the
definition of (ϕπ, pc) after it.

ω̃2
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2 p2
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ment, we assume that the pion density is low (ρπ ! ρ)
and further use the fact that the pion is much lighter
than the nucleon (mπ/mN . 1/7). This allows us to con-
sider the pion subsystem as a light admixture in a heavy
baryon environment, neglecting the feedback of the
pions onto the baryons. It provides the nucleon Green’s
functions unaffected by the pion distribution. This very
approximation was used in the first works exploring the
possibility of the pion condensation in dense nuclear
matter [5–7]. We will use it for the pion retarded self-
energy, thus neglecting the contribution from pion fluc-
tuations (see dashed curve in Fig. 5). Within the above
approximations, the quantum kinetic equation (35) for
the pion distribution fπ in homogeneous and equili-
brated baryon environment becomes

(65)

Here, Bµ is defined in Eq. (58) and all subscripts π are
omitted, except for the pion distribution function fπ.

We now illustrate that the second branch in Fig. 5

with negative  constructed under the assumption of
vanishing mean field is indeed unstable and becomes
stabilized by a finite mean field. The instability of the
system can be discussed considering a weak perturba-

tion δfπ of the pion distribution  = [exp(p0/T) – 1]–1,
which we assume equilibrated in the rest frame of the
system. Linearizing Eq. (65), we find

(66)

with the solution

(67)

where for simplicity the initial fluctuation δf0(p) of the
pion distribution is assumed to be space-independent.
Let us consider the case where p0  0 and |p | . pF .
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Fig. 5. Effective pion gap (64) versus nuclear density, see [9].
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This four-momentum region, being far from the pion
mass shell, is right the region where the pion instability
is expected in symmetric nuclear matter. Here, the real
part of the pion self-energy ReΣR is an even function of
the pion energy p0 , while the width is an odd function
and proportional to p0 for p0  0. Using the results of
[8, 9] 2p0 – ∂ReΣR/∂p0  0, Γ = β(p)p0, and β(p) ~ mπ

for p0  0, we get B0 = β(p)/  from Eq. (58) and
therefore

(68)

The above solution shows that for  > 0 initial fluctu-
ations are damped, whereas they grow in the opposite

case. Thus, the change of sign of (pc) leads to an
instability of the virtual pion distribution at low ener-
gies and momenta .pc . The solution (68) illustrates the
important role of the width in the quantum kinetic
description. If the width had been neglected in the
quantum kinetic equation, one would fail to find the
above instability.

The growth of the pion distribution δfπ is accompa-
nied by a growth of the condensate field ϕπ. Due to the
latter, the increase of the virtual pion distribution slows
down and finally stops when the mean field reaches its
stationary value. Therefore, a consistent treatment of
the problem requires the solution of the coupled system
of the quantum kinetic equation (35) and the mean-field
equation (39). In order to find the behavior of the vir-
tual pion distribution, one also has to include the mean-
field contribution to the pion self-energy. Considering
only small mean fields, we retain terms of the lowest
order in ϕπ. Then, ΣR acquires and additional contribu-
tion ΣR(ϕπ) = ΣR(ϕπ = 0) + λeff |ϕπ|2, where λeff denotes
the total in-medium pion–pion interaction. Within the
same order, the mean-field equation becomes

(69)

Here, we have assumed the simplest structure for the
condensate field ϕπ = (t)exp(ipc · r), where (t) is
a space-homogeneous real function which varies
slowly in time. Also, one should do the replacement

(pc)  (ϕπ, pc) ≡ (pc) + λeff |ϕπ|2 in the
above Eqs. (65)–(68) for the pion distribution.

The time dependence of  can qualitatively be
understood inspecting the two limits of small and large
times. At short times, the mean field is still small and

one can neglect the λeff (t) term in Eq. (69). Then the
mean field

(70)

ω̃2
p( )

δ f π t p0 0 p,=,( )

=  δ f 0 p0 0 p,=( ) 2ω̃2
p( )t/β p( )–[ ] .exp

ω̃2

ω̃2

ω̃2
pc( ) λ effϕ̃π

2
t( ) 1

2
---β pc( )∂t+ + ϕ̃π t( ) 0.=

ϕ̃π ϕ̃π

ω̃2 ω̃2 ω̃2

ϕ̃

ϕ̃2

ϕ̃π t( ) ϕ̃π 0( ) 2ω̃2
pc( )t/β pc( )–[ ]exp=
grows exponentially with time, just like the distribution
function (68). Here, (0) is an initial small fluctuation
of the field. At later times, the solution of Eq. (69)

approaches the stationary limit    with

(71)

Since simultaneously (ϕπ, pc) = (pc) +
λeff |ϕπ|2  0, the change in the pion distribution δfπ

will saturate. This stationary solution  is stable, as

can be seen from linearizing Eq. (69) around ,

(72)

since the exponential function is negative. Here, 
denoted an arbitrary initial space-homogeneous fluctu-
ation.

The physics can again be cast into a Φ-derivable
form, where the Φ functional should include at least the
following diagrams:

(73)

Here, bold and bold wavy lines represents the baryon
and pion Green’s functions, respectively, while a wavy
line terminated by a cross denotes the pion condensate.
Since in the broken phase the mean pion field mixes
nucleon with ∆ configurations, we adopt the SU(4) for-
mulation of the model, introduced in [67]. There, one
deals with a unified description of baryons (N and ∆),
based on 20 × 20 matrix Hamiltonian in the basis of 20
∆–nucleon spin–isospin states. Thus, the solid lines
symbolize a unified propagator matrix for ∆ resonance
and nucleon. The mixing is provided by condensate-
baryon coupling (diagram (g)). Numerical symmetry
factors are omitted in Eq. (73).

Functional variation of Φ with respect to propaga-
tors provides the corresponding self-energies. Dia-
grammatically, this variation corresponds to cutting
and opening the respective propagator lines of the dia-
grams of Φ in Eq. (73). Thus, diagrams (a) to (d), ( f ),
and (h) contribute to the pion self-energy. Diagram (a)
accounts for the baryon particle–hole contributions to
the pion self-energy. It includes NN–1, ∆N–1, N∆–1, and
∆∆–1 terms. The subsequent series of diagrams (b) to (d)
renormalizes baryon–pion vertex including baryon–
baryon correlations in terms of the Landau–Migdal
parameter g'. Diagram (f) accounts for the pion fluctu-
ations. It is proportional to T/ (ϕπ, pc) and thus causes
the transition to be of first order. This becomes espe-
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cially important for the case of heated and even non-
equilibrium dense matter, where the effective pion gap
[65, 66] drops. One should notice that pion fluctuation
contributions are also present in the particle–hole dia-
gram (a) when opened perturbatively. Diagram (h) cor-
responds to pion interactions with the condensate,
which are responsible for the stabilization of the con-
densate solution (71).

Likewise, cutting and opening the solid lines in Φ
determines the baryon self-energy, which describes the
feedback of the pions onto the baryonic subsystem.
This feedback is required for the conserving and ther-
modynamically consistent treatment of the problem.
Diagrams of the first line correspond to the modifica-
tion of the baryon motion by the multiple interaction
with the pions corrected by correlations. Diagram (e)
generates a purely local interaction contribution,
whereas diagram (g) with the coupling of the conden-
sate to baryons leads to the mixing of N and ∆.

Variation of Φ with respect to the condensates
(wavy line with a cross) determines the source term J in
the equation for the mean field (39). The value λeff
entering Eq. (69) is generated by the last two diagrams
(h) and (i) of Eq. (73).

The kinetic description (35) for the particle distribu-
tion together with the equation of motion for the mean
field (39) is still insufficient for the numerical simula-
tions of the dynamics of the phase transition. The rea-
son is that the creation of seeds of the new phase, which
initiate the growth of the mean field and the particle dis-
tribution, is due to fluctuations, cf. Eqs. (68) and (70).
However, the scheme of Eqs. (35) and (39) provides no
sources of stochastic fluctuations. Thus, it can only
simulate the dynamics of one of the phases rather than
the transition between them. The required stochastic
sources may be introduced into the transport theory in
the spirit of the Boltzmann–Langevin approach devel-
oped in [68–70] and the stochastic interpretation of the
Kadanoff–Baym equations [71]. The stochastic trans-
port approach offers an appropriate framework for the
description of the unstable dynamics by means of a sto-
chastic force in the mean-field equation and a stochas-
tic collision term in the transport equation, which both
act as a source for a continuous branching of the
dynamical trajectories.

The above example shows that we really need the
off-mass-shell kinetics to describe the dynamics of the
pion-condensate phase transition, since the correspond-
ing instability of the pion distribution function occurs
far from the pion mass shell, cf. Eq. (68). Besides the
conserving property and thermodynamic consistency
of the Φ-derivable approximation, it also leads us to the
proper order of the phase transition.

10. SUMMARY AND PROSPECTS

A number of problems arising in different dynami-
cal systems, e.g., in heavy-ion collisions, require an
PHYSICS OF ATOMIC NUCLEI      Vol. 64      No. 4      2001
explicit treatment of dynamical evolution of particles
with a finite mass width. This was demonstrated for the
example of bremsstrahlung from a nuclear source,
where the soft part of the spectrum can be reproduced
only provided the mass widths of nucleons in the
source are taken explicitly into account. In this case, the
mass width arises owing to collisional broadening of
nucleons. Another example considered concerns prop-
agation of broad resonances (like ρ meson and ∆) in the
medium. Decays of ρ mesons are an important source
of dileptons radiated by excited nuclear matter. As
shown, a consistent description of the invariant-mass
spectrum of radiated dileptons can be only achieved if
one accounts for the in-medium modification of the ρ
meson width (more precisely, its spectral function).
The action–reaction principle was demonstrated on a
pedagogical example when there is only πN∆ coupling
and in the limit of a dilute nuclear matter. We also
expect a consistent description of chiral σ-, π-conden-
sates together with fluctuations, as an immediate appli-
cation of our results to multicomponent systems.

We have argued that the Kadanoff–Baym equation
within the first-order gradient approximation, slightly
modified to make the set of Dyson’s equations exactly
consistent (rather than up to the second-order gradient
terms), together with algebraic equation for the spectral
function provide a proper frame for a quantum four-
phase-space kinetic description that applies also to sys-
tems of unstable particles. The quantum four-momen-
tum-space kinetic equation proves to be charge and
energy–momentum conserving and thermodynami-
cally consistent, provided it is based on a Φ-derivable
approximation. The Φ functional also gives rise to a
very natural representation of the collision term. Vari-
ous self-consistent approximations are known since
long time which do not explicitly use the Φ-derivable
concept like self-consistent Born and T-matrix approx-
imations. The advantage of the Φ-functional method
consists in offering a regular way of constructing vari-
ous self-consistent approximations.

We have also addressed the question as to whether a
closed nonequilibrium system approaches the thermo-
dynamic equilibrium during its evolution. We obtained
a definite expression for a local (Markovian) entropy
flow and were able to explicitly demonstrate the H the-
orem for some of the common choices of Φ approxima-
tions. This expression holds beyond the quasiparticle
picture and thus generalizes the well-known Boltzmann
kinetic entropy. Memory effects in the quantum four-
momentum-space kinetics were discussed and a gen-
eral strategy to deduce memory corrections to the
entropy was outlined.

At the example of pion-condensate phase transition
in symmetric nuclear matter we demonstrated impor-
tant role of the width effects in the dynamics and we
formulated a self-consistent Φ-derivable scheme for
the transport treatment of this problem. An interesting
application of such self-consistent transport description
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is possible to dynamics of the phase transition of a neu-
tron star to the pion or kaon condensate state accompa-
nied by the corresponding neutrino burst. In view of the
latter, another application concerns description of the
neutrino transport in supernovas and hot neutron stars
during first few minutes of their evolution. At an initial
stage, neutrinos typically of thermal energy, produced
outside (in the mantel) and inside the neutron-star core,
are trapped within the regions of production. However,
coherent effects in neutrino production and their rescat-
tering on nucleons [23] reduce the opacity of the
nuclear medium and may allow for soft neutrinos to
escape the core and contribute to the heating off the
mantle. The extra energy transport may be sufficient to
blow off the supernova’s mantle in the framework of
the shock-reheating mechanism [72]. The description
of the neutrino transport in the semitransparent region
should therefore be treated with the due account of
mass-widths effects.

Further applications concern relativistic plasmas,
such as QCD and QED plasmas. The plasma of decon-
fined quarks and gluons was present in the early Uni-
verse; it may exist in cores of massive neutron stars and
may also be produced in laboratory in ultrarelativistic
nucleus–nucleus collisions. All these systems need a
proper treatment of particle transport. Perturbative
description of soft-quantum propagation suffers of
infrared divergences and one needs a systematic study
of the particle mass-width effects in order to treat them,
cf. [23]. A thermodynamic Φ-derivable approximation
for hot relativistic QED plasmas—a gas of electrons
and positrons in a thermal bath of photons—was
recently considered in [73]. Their treatment may be
also applied to the high-temperature superconductors
and the fractional quantum Hall effect [74, 75]. The
approach formulated above allows for a natural gener-
alization of such Φ-derivable schemes to the dynamical
case.
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Abstract—The semiclassical approximation and the technique of 1/n expansion are used to calculate the
eigenenergies and the wave functions for the radial Schrödinger equation. It is shown that the expressions that
are asymptotically exact in the limit n = nr + l + 1  ∞ and which describe the above eigenenergies and the
asymptotic coefficients at the origin and at infinity ensure a satisfactory precision even for states characterized
by modest values of the quantum numbers nr and l, including the ground state. © 2001 MAIK “Nauka/Interpe-
riodica”.

This article is dedicated to the memory of Arkadiœ Bene-
diktovich Migdal, who profoundly understood the semiclas-
sical method and successfully used it in various physics
problems. His remarkable monograph Qualitative Methods
in Quantum Theory had a strong impact on the present au-
thors and aroused their interest in the semiclassical ap-
proach.
1) 1. INTRODUCTION

Despite the impressive successes of computational
mathematics, qualitative and approximate analytic
approaches to solving physics problems are still of heu-
ristic value and appeal [1]. These include the semiclas-
sical approximation, which is also known as the Went-
zel–Kramers–Brillouin (WKB) approximation [1–5]
and which was developed when quantum mechanics
was still in its infancy, and the technique of 1/N expan-
sion [6–11]. These methods are both widely used in
various realms of theoretical and mathematical physics.

Here, we discuss the application of these methods to
calculating the eigenenergies (both for discrete levels
and for quasistationary states) and wave functions for
the radial Schrödinger equation. Representing the
potential in the form

(1.1)

where M is the mass of the particle being considered, g
is the dimensionless coupling constant, R is the charac-
teristic range of the underlying interaction, and the
function v(r) specifies the form of this interaction, we
arrive at

(1.2)
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Hereafter, we use the system of units where " = M =
R = 1, so that the relation between the quantity k and the
particle energy E is E = k2/2.

There are many physics problems where it is impor-
tant to know the value of the normalized wave function
at the origin—more precisely, the asymptotic coeffi-
cients cnl (as usual, n and l are, respectively, the princi-
pal quantum number and the orbital angular momen-
tum of the particle; below, we will also use the radial
quantum number nr specified by the relation n = nr +
l + 1),

(1.3)

(see, for example, [11] and references therein). In order
to calculate the coefficients cnl in the semiclassical
approximation, it is necessary to match the wave func-
tions at the boundary between the classically allowed
and the subbarrier region. It turns out that the conven-
tional Kramers conditions [12] must be modified in this
case [11, 13].

These issues are considered in Section 2, where we
obtain analytic formulas that describe the coefficients
cnl and which are asymptotically exact in the limit
nr  ∞. We also discuss the accuracy of these formu-
las for modest values of the quantum numbers.

Section 3 is devoted to quantization by means of a
procedure where the centrifugal potential is eliminated
from the semiclassical momentum. This modified
method of quantization makes it possible to extend con-

χnl r( ) cnlr
l 1+ …, r 0+=
001 MAIK “Nauka/Interperiodica”



        

SEMICLASSICAL APPROXIMATION AND 1/

 

n

 

 EXPANSION 671

                                                 
siderably the potential of an analytic investigation of
the energy spectrum and wave functions.

In Section 4, we consider a 1/n expansion, whose
zero order corresponds to the classical limit l  ∞. In
view of this, the technique of 1/n expansion is in a sense
an alternative to the semiclassical expansion, which is
asymptotically exact for nr  ∞. These two
approaches supplement each other quite well for finite
values of l and nr .

Finally, a generalization of the Bohr–Sommerfeld
quantization rule to the case of quasistationary states is
examined in Section 5. By way of example, we discuss
a calculation of the positions and widths of Stark reso-
nances in a hydrogen atom placed in a strong electric
field.

2. SEMICLASSICAL APPROXIMATION 
AND CALCULATION OF WAVE FUNCTIONS

IN THE SUBBARRIER REGION

2.1. Modified Matching Conditions

It is well known [1–5] that, in the one-dimensional
case, the matching of semiclassical wave functions on
the two sides of the turning point x = x0,

[p(x; E) =  is the semiclassical momen-
tum] for smooth potentials U(x) is determined by the
Kramers conditions [12]

(2.2)

For these conditions to be valid, it is required that the
vicinity of the turning point where the linear expansion
of the potential

(2.3)

is valid overlap the region

(2.4)

where the use of the semiclassical expansion is justi-
fied. It is also well known that, in the three-dimensional
case, there arises a complication for states whose
orbital angular momentum is nonzero. The point is that,
in Eq. (1.2) for the radial wave function χl(r), the
potential V(x) is replaced by the effective potential

(2.5)
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and the condition ensuring the applicability of the
semiclassical approximation is violated at small dis-
tances because of the presence of the centrifugal poten-
tial.

This difficulty was circumvented by Langer [14],
who showed that, with the aid of the transformation

 

, (2.6)

 

the radial Schrödinger equation is reduced to the form

 

(2.7)

 

for which the subbarrier region 

 

x

 

  –

 

∞

 

 is a region
where the semiclassical approximation is valid. This
ensures, among other things, a correct dependence of
the radial function on the orbital angular momentum at
small distances. Indeed, it follows from (2.1'), (2.6),
and (2.7) that
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mation be valid for 
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 in the centrifugal potential. The
corresponding additional term is referred to as the
Langer correction [1].

At 

 

λ

 

 ~ 1

 

, it would be incorrect, however, to retain
only linear terms in expanding the potential at the turn-
ing point in matching semiclassical solutions to
Eq. (2.7), because the semiclassical approximation is
not valid here. This can easily be demonstrated by con-
sidering the example of free motion—that is, the case
of 
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 = 0. In the vicinity of the turning point 
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we have 
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, and condition (2.4),
which ensures the applicability of the semiclassical
approximation, yields

These inequalities are satisfied only if 

 

λ

 

 

 

@

 

 1

 

—that is, if

 

l

 

 

 

@

 

 1

 

, in which case the centrifugal potential becomes
semiclassical. At low values of the orbital angular
momentum, the matching rules (2.2) must be modified
[11, 13, 15, 16].
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The semiclassical wave functions can be matched,
provided that exact solutions to the Schrödinger equa-
tion are known in the region where the semiclassical
approximation is not valid. Below, we therefore discuss
three typical possibilities, assuming a power-law
behavior of the potential for r  0,

(2.10)

To be more specific, we consider attractive potentials
such that collapse into the center does not occur (see [2]).

2.1.1. Matching at high energies. With increasing
energy, the turning point r– approaches zero and x0
tends to negative infinity. By virtue of (2.10), the term
involving the potential can therefore be discarded in
Eq. (2.7), whereupon it is solved in terms of Bessel
functions. Such a solution makes its possible to pass
through the turning point and match [13, 15] the semi-
classical asymptotic expressions (2.1), whereby one
obtains

(2.11)

(2.12)

We note that ξ(1/2) =  = 0.8578 and ξ(1) =

 = 0.9221 and that, with increasing x, the func-
tion ξ(x) approaches unity,

(2.12')

so that, for l @ 1, relations (2.11) reduce to the Kramers
matching conditions (2.2).

2.1.2. Matching in the case of level condensation.
For power-law potentials—that is, in the cases where
the dependence given by (2.10) is valid over the entire
interval 0 < r < ∞, it follows from simple scaling con-
siderations and from the Bohr–Sommerfeld quantiza-
tion rule that

(2.13)

If α < 0, then   –0 for nr  ∞; that is, energy
levels are condensed at the boundary of the continuum
[2]. In Eq. (2.7), the energy can then be disregarded
against the potential (this is true for finite energy values
as well). As in the preceding case, the resulting equation
can be solved exactly, so that we eventually obtain
[11, 13]

(2.14)

where the function ξ(x) is given by the same expression
as before.
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In the cases considered above, it is possible to find a cor-
rection to the matching conditions (2.11) and (2.14) [16].

At high energies, the inclusion of the potential
yields

(2.15)

where

(2.15')

From the last expression, it follows that, at the particu-
lar values of α = –1 and 0 [the last case corresponds to
the logarithmic potential V(r) = g2lnr], we have

(2.15'')

where ψ(z) = Γ'(z)/Γ(z) is a digamma function. Since,
for nr @ 1, it follows from (2.13) and (2.15') that bl ∝

, it is legitimate to retain the above correction to the
conditions in (2.11) only for α ≤ 2.

The inclusion of the potential also yields a correc-
tion to the phase [13],

(2.16)

At the particular values of α = –1 and 0, we have

(2.16')

Under the condition –2 < α < 0, in which case the
levels condense near the boundary of the continuum,
the correction for the energy [see Eq. (2.15')] has the
form

(2.17)
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By way of example, we indicate that, for the Coulomb
potential (α = –1), the result is

(2.18)

2.1.3. Coulomb singularity at the origin. The
dependence of the matching conditions on energy over
the entire interval of its variation can be obtained in the
physically important case of potentials that have a Cou-
lomb singularity at small distances,

(2.19)

No constraints are imposed on u(r) at large distances. If
we disregard u(r), the radial Schrödinger equation can
be solved in terms of Coulomb functions, whereby one
obtains [15]

(2.20)

where

(2.20')

(2.20'')

Here, λ = l + 1/2; η = –( )/kaB is the Sommerfeld
parameter (η < 0 in the case of Coulomb attraction);
σl(η) = (l + 1 + iη) is the Coulomb phase shift;
aB = |Z |–1 is the Bohr radius; and

(2.20''')

For E  ∞ and E  0, the matching conditions
(2.20) reduce to (2.11) and (2.14), respectively. By way
of example, we indicate that, for η  0 (E  ∞), the
result is

(2.21)

where al =  – (l + 1), so that a0 = 0.1775, a1 =

0.0109, a2 = 0.0025, etc. On the other hand, it can be
found that, for η  ∞ (E  0),

(2.22)

It can easily be seen that expressions (2.21) and (2.22)
comply with (2.15'') and (2.18), respectively.
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In these limiting cases, we find for the function Θ(l,
η) that

(2.23)

[compare with expressions (2.16')]. At high orbital
angular momenta, we have

(2.24)

that is, the conditions in (2.20) reduce, as might have
been expected, to the Kramers conditions.

Since the semiclassical phase differs from the con-
ventional value of π/4, the quantization rule assumes
here the form

(2.25)

where r± are the semiclassical turning points (0 < r– <
r+). Equation (25) generalizes the Bohr–Sommerfeld
quantization rule with allowance for the Langer correc-
tion. As can be seen from (2.23) and (2.24), the addi-
tional term Θ(l, η) in Eq. (2.25) is small and can there-
fore be taken into account within perturbation theory.
The result is

(2.26)

where we have used the conventional notation ωnl =
∂Enl /∂n = 2π/Tr , with

(2.27)

being the period of radial oscillations of the particle
between the turning points r– and r+ .

If, at large distances, the function u(r) introduced in
(2.19) behaves as

it can be deduced from (2.23), with allowance for the

scaling properties (2.13), that Θ ∝ , which is

parametrically greater than . Thus, we conclude
that, even for sharply varying potentials with α @ 1, it
is legitimate to take into account the correction in
(2.25) since it exceeds the " semiclassical correction,
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which translates into an  correction in the quantiza-
tion rule.

2.2. Asymptotic Coefficient in the Wave Function
at the Origin

The asymptotic coefficients cnl [see Eq. (1.3)],
which determine the probability of finding the particles
at small distances from one another, are parameters that
are especially important for systems governed by inter-
actions featuring two markedly different radii (for
example, nuclear and Coulomb interactions).

According to Eqs. (2.8), (2.11), and (2.14), we have

(2.28)

(τ = λ for α > 0 and τ = µ for α < 0), where we have
used the semiclassical normalization condition [1, 2, 17]

(2.29)
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Table 1.  Asymptotic coefficients at the origin for the pow-

er-law potentials V(r) = rα

α nr l

1 0 0 2 –2.03 0 –0.074

1 0 2 –0.459 0 –1.98

0 1 0.85326 –3.94 1.28 –0.040

1 1 1.45153 –0.88 0.56 –0.79

4 0 0 2.89797 0.29 0.34 –4.24

1 0 6.78220 0.044 0.046 –17.0

0 1 3.05888 –2.97 3.59 –1.46

1 1 12.3423 –0.51 1.18 –7.78

Note: The uncertainties of the calculation of ρnl are given in per-
cent.

1
α
---

cnl
2 ρnl

WKB ρnl
MQ ρnl

1 n⁄( )

Table 2.  Asymptotic coefficients at the origin for the loga-
rithmic potential V(r) = lnr

nr l

0 0 1.951659 –12.6 5.17 17.3 –0.63

1 0 0.995922 –7.36 1.16 7.21 –8.36

2 0 0.678730 –5.85 0.82 5.09 –

0 1 0.339568 –9.14 –5.35 – –0.17

1 1 0.326674 –4.70 –1.85 –4.49 –3.10

2 1 0.294457 –3.53 –1.12 –3.33 –

Note: A dash instead of the corresponding value means that the
uncertainty in this value exceeds 25%.

cnl
2 ρ̃nl

WKB ρnl
WKB ρnl

MQ ρnl
1 n⁄( )
Since the coefficients  were obtained with the aid of
the conventional normalization condition (2.2), a non-
trivial point is that the factor ξ(τ) is present in (2.28).

Let us discuss the accuracy of the semiclassical for-
mula (2.28). We begin by considering the exactly solu-
ble problems of a harmonic oscillator (α = 2) and a
Coulomb potential (α = –1). For those, we have

(2.30)

where

(2.31)

From (2.30), it can be seen that, for nr  ∞—that is,
for states whose radial wave functions have a large

number of nodes—the ratio /cnl has a limit different
from unity,

/cnl = [ξ(τ)]–1.

Thus, the semiclassical approximation that employs
the rule in (2.2) for circumventing the turning point is
asymptotically exact for ψ2(0) when nr  ∞ at fixed l
(this result was obtained as far back as 1979 [18], but
no proper attention was given to it at that time). This
contradiction is removed by using modified matching
rules such that

(2.33)

It should be noted that, even in the case of the ground
state (nr = 0), this ratio is close to unity, amounting to
0.9679 and 0.9557 for α = 2 and –1, respectively.

For the power-law attractive potentials character-
ized by α = 1 and 4 and for the logarithmic potential,
the values of the asymptotic coefficients at the origin
and of the errors

(2.34)

are given in Tables 1 and 2 (for the energy values, the
reader is referred to Table 2 of the first study quoted in
[13]). Since the scaling relations

(2.35)

hold for the power-law potentials (2.10) [19, 20], it is
sufficient to consider only the case of g = 1, as was

cnl
L( )

cnl
L( )

cnl

--------
ζ nr τ+( )
ζ nr( )ξ τ( )
-----------------------, τ

l 1/2   for   α + 2=

2

 

l

 

1   for   α + 1,–= 



 
= =

ζ x( ) 1 1
2x
------+ 

  1/4

ξ x( ) ξ x 1/2+( )
ξ 2x( )

-------------------------
1/2

=

=  1 1
48x
--------- 47

4608x
2

-----------------– ….+ +

cnl
L( )

cnl
L( )

nr ∞→
lim

cnl
WKB

cnl

------------
2 ζ nr τ+( )

ζ nr( )
---------------------

2

1 τ
24nr

2
-----------– O nr

3–( ).+= =

ρnl
WKB cnl

WKB

cnl

------------ 1 bl
WKB

E( )–( )
2

1–=

Enl g( ) g
4/ 2 α+( )

Enl 1( ),=

cnl g( ) g
2l 3+( )/ 2 α+( )

cnl 1( )=
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indeed done in the aforementioned tables. For the log-
arithmic potential V(r) = g2lnr, we have

(2.35')

For the example of this potential, the role of the correc-
tion in (2.15) in the matching conditions was demon-

strated for modest values of nr and l: the parameter 

in Table 2 is determined by Eq. (2.34) with  = 0.

Table 3 also illustrates the accuracy of the modified
matching conditions for the funnel potential [20, 21]

(2.36)

which is written here in the standard form. For the Cou-
lomb parameter Z = 0.68812 [Cornell potential, which
is used in QCD to describe charmonium ( ) states],
the precise values of the energies and of the coefficients
cnl were obtained by numerically solving the
Schrödinger equation and were partly reported in [22].

Tables 1–3 demonstrate that the semiclassical
approximation with the modified matching conditions
for the coefficients cnl, which is asymptotically exact in
the limit nr  ∞, remains valid down to values of nr ~
1. As was shown in [13], the same is true for short-
range potentials in all cases with the exception of that
of shallow levels.

2.3. States at Zero Energy

This case requires a dedicated consideration,
because the asymptotic behavior of the wave function
of a bound state (that is, an l ≥ 1 state since the wave
functions for s states are delocalized for E  0)
changes: for r  ∞, χl (r, E = 0) decreases in propor-
tion to r –l rather than in proportion to an exponential.
Therefore, the conventional normalization condition
(2.29) must accordingly be modified.

For potentials featuring a power-law tail at infinity,

(2.37)

a finite contribution to the normalization comes from
the subbarrier region r > r+  (in contrast to what we have
in the case of E < 0). At zero energy, the Schrödinger
equation with the potential (2.37) is solved in terms of
Bessel functions. By using the resulting solution, we
find instead of (2.29) that [23]

(2.38)

where

(2.39)

Enl g( ) g
2

Enl 1( ) gln–[ ] ,=

cnl g( ) g
l 3/2+

cnl 1( ).=

ρ̃nl
WKB

bl
WKB

V r( ) Z
r
---–

1
2
---r, 0 r ∞,< <+=

cc

V r( ) 1
2
---g

2
r

β–
, β– 2,>=

C 2Rl
1/2 β( )Tr

1/2–
,=

Rl β( ) β 2–
2l 1+
-------------- 

 
β 2+
β 2–
------------

Γ 2l 1 β+ +( )/ β 2–( )( )
Γ 2l 1–( )/ β 2–( )( )

--------------------------------------------------------.=
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It can easily be shown that

(2.40)

whence it follows that, at high orbital angular
momenta, relation (2.38) reduces to the conventional
normalization condition. At the same time, we have

(2.41)

where # = 0.5772… is the Euler constant.

By way of example, we consider the Tietz potential
(β = 3)

(2.42)

which is extensively used in atomic physics [24–26].
The critical values of the effective coupling constant

gnl =  that correspond to the emergence of
the nl level can be found from an exact solution to the
Schrödinger equation or from the Bohr–Sommerfeld
quantization rule,

(2.43)

For n  ∞, we find from (2.43) that

(2.43')

For finite n and l, the semiclassical method ensures a
precision for gnl at a level of a few percent.

Rl β( ) 1 β β 2+( )
12 β 2–( )l

2
---------------------------– …, l @ 1,+=

Rl β( ) 2l 1–
2l 1+
-------------- 1

4
β
--- 2l 1+( )ln #–[ ]– …+
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β ∞,

V r( ) Ze
2

r 1 κ0r+( )2
---------------------------,–=

2Znl/κ0aB

gnl n l+( ) n l 1+ +( ), gnl
WKB

n l
1
2
---.+ += =

gnl
WKB

gnl

------------ 1 1

2n 2l 1+ +( )2
---------------------------------- … 1.+ +=

Table 3.  Asymptotic coefficients at the origin and energies of
the levels for the funnel potential V(r) = −0.68812r–1 + (1/2)r

nr l Enl

0 0 4.34022 0.49018 –1.5 8.2 –13
1 0 2.76673 1.61443 –1.4 1.0 –0.50
2 0 2.35982 2.42105 –0.97 0.46 –0.16
0 1 0.80452 1.30557 –6.5 2.3 –3.8
1 1 1.14509 2.14835 –2.5 1.8 –1.4
2 1 1.39408 2.85424 –1.5 1.3 –0.72

Note: The quantity in the last column is  – 1 (in

percent); see Eqs. (3.2) and (3.14).

cnl
2 ρnl

WKB ρnl
MQ εnl

MQ

εnl
MQ

Enl
MQ

Enl⁄=
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At the coupling-constant value corresponding to the
emergence of a level, we have

(2.44)

where (x) are Gegenbauer polynomials, those at

n = 0 and 1 being, respectively, (x) = 1 and

(x) = (4l + 3)x (see, for example, [27]), while cnl

are the asymptotic coefficients at the origin. Explicitly,
these coefficients are given by

(2.45)

where

(2.45')

With allowance for (2.28) and (2.38), it can be found
in this case that

(2.46)

(2.46')

where

(2.46'')

As a result, we obtain Rl(3) = 0.4934, 0.8082, and
0.8997 at l = 1, 2, and 3, respectively. For nr @ 1, we
have

(2.47)

which explains the astoundingly high accuracy of the
semiclassical approximation in this case (see Table 6 in
[13]).
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=  cnl
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-------------------------Cnr
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12n
2
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3. MODIFIED QUANTIZATION METHOD

3.1. Elimination of the Centrifugal Potential 
from the Semiclassical Momentum

Since, for excited states (nr @ 1), the centrifugal
potential at l ~ 1 is operative only in the region of small
distances and since, over the region where the particle
is predominantly localized, this potential appears as a
perturbation of order "2 [see also Eq. (2.13)], it can
removed from the semiclassical momentum p(L)(r),
whereupon the semiclassical radial function can be rep-
resented in the form

(3.1)

The parameter γl is determined by matching χ(r) in the
form (3.1) with the function that exactly satisfies the
Schrödinger equation and the boundary condition (1.3).
Obviously, the result depends on the small-distance
behavior of the potential. For the energies of the nl lev-
els in the attractive potentials (2.10), we have [28–30]

(3.2)

where p(r+) = 0, r−  = 0 is the left-hand turning point,
and

(3.3)

We note that, in the particular case of the Coulomb
potential, the quantization condition (3.2) with γl = l +
1 was obtained in the monograph [1].

By means of the modified quantization method, the
asymptotic coefficients at origin are found to be [31]

(3.4)

where, at high energies, we have

(3.5)

and where (E) coincides with the first term in
(2.15'),

(3.6)
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In the particular cases of the Coulomb and the linear
potential (α = –1 and α = 1, respectively), we have

(3.6')

For the cases of power-law potentials and a logarithmic
potential, the accuracy of the calculation of cnl on the
basis of Eqs. (3.4)–(3.6), which were derived within the
modified quantization method, is illustrated in Tables 1
and 2 (see also [31]).

In the case of the condensation of levels (E  –0)
for –2 < α < 0, we obtain

(3.7)

(3.8)

In particular, the result for the Coulomb potential
V(r) = –Z/r is

(3.8')

which coincides with the expansion of the exact expres-
sion for the coefficients cnl  [2].

3.2. Funnel Potential

Within the modified quantization method, we fur-
ther consider the funnel potential (2.36). In this case,
the quantization integral (3.2) can be calculated analyt-
ically. The result is

(3.9)

where N = nr + γl  and ν = Z(–2E)–1/2. Let us now discuss
two extreme cases.

(i) For deep levels, which are determined primarily
by the Coulomb potential (E < 0 and N ≡ n is the prin-
cipal quantum number), we find from (3.9) that

(3.10)

where f = n4/Z3 is the effective coupling constant.
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A perturbation-theory series for screened Coulomb
potentials of the general form

was constructed by McEnnan et al. [32] and Crant and
Lai [33], who showed that

(3.11)

where ρ = /n. A comparison of (3.10) and
(3.11) reveals that the semiclassical Eq. (3.9) is a good
approximation for n @ (1, l), especially for s states.

(ii) In another extreme case—that where Z  0,
E > 0, and N = n – (2l + 1)/4—it is necessary to perform
an analytic continuation of Eq. (3.9) to positive energy
values E ≡ e/2 > 0 (a similar situation arises in the the-
ory of the Stark effect in a strong electric field [34, 35]):

(3.12)

It follows that

(3.13)

where

(3.13')

At l = 0, e0 coincides with the semiclassical spectrum in
the linear potential. The expansion in (3.13) involves
the term ζ lnζ, which is nonanalytic in ζ. For potentials
featuring a Coulomb singularity at the origin, it can be
shown, however, that, in the quantization rule (3.2), it is
possible to obtain explicitly [31] a correction associ-
ated with taking into account the potential at small dis-
tances:

(3.14)
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V r( ) Z
r
--- v kr

k

k 0=

∞

∑=

1
νnl

------ = 
Z
n
--- 1

1
4
--- 3 ρ2

–( ) f–
1
16
------ 1 3ρ2

– 2ρ4 5

2n
2

--------–+ 
  f

2
–





–
1

128
--------- 39 20ρ2

– 11ρ4
14ρ6

– 60

n
2

------ 5ρ2

n
2

--------+ + + 
  f

3 …–




,

l l 1+( )

Z e
2

8Z+( )
1/4–

F2 1 1/2 5/2 2; 
1
2
--- 1 e

e
2

8Z+( )
1/2

----------------------------+, , 
  N .=

e = e0 1 2ζ ζln 2 2ln 1+( )–[ ] O ζ 2 ζln( )+ +{ } ,

e0 3πN /2( )2/3
, ζ 1

2
--- Z

πN( )4/3
-----------------.= =

γl γl γl
1( )

,+

γl
1( ) 1

πkaB
------------ kaB( )ln ψ l 1+( ) 1+ +[ ] , kaB @ 1.=

N N 1
Z

πNe0
1/2

---------------- Z/e0
1/2( )ln ψ l 1+( )– 1–[ ]–

 
 
 

,



678 KARNAKOV et al.
which compensates the term that is nonanalytic in Z:

(3.15)

It can be seen that not only does the correction in (3.14)
to the quantization rule lead to the qualitative agree-
ment between the semiclassical and the exact spectrum,
but it also ensures a correct analytic dependence of
energy levels on the parameters that determine the
small-distance behavior of the potential.

For states at high energies  > 0, the asymptotic
coefficients at zero can be computed by the formula

(3.16)

where the coefficients  are specified in (3.5) and

where the correction terms  and  are given by
expressions (3.6') and are associated with, respectively,
the Coulomb component of the potential (2.36) and its

component that is linear in r. As to the energy , it
is determined from the quantization condition (3.2)

with phase γl = (2l + 3)/4 +  [see Eq. (3.14)]. For a
potential that has a Coulomb singularity at the origin, it
is possible, however, to refine expressions (3.4) and
(3.16) by exactly taking into account the effect of this
potential at any values of the energy E = k2/2 > 0. It can
be shown [31] that, in (3.16), we must then make the
substitution

(3.17)

(in the case of l = 0, the product in the braced expres-
sion must be taken to be unity).

In Table 3, the asymptotic coefficients at the origin
that were calculated on the basis of the modified quan-
tization method are contrasted against precise values
obtained by numerically solving the Schrödinger equa-

tion. It can be seen that the semiclassical values 
are accurate to within a few percent. The same is true

for all energies , with the exception of ground-
state energy: the point is that, for the ground state, we
have kaB = 1.44, but it is necessary, strictly speaking,
that kaB @ 1 for the quantization condition (3.2) and
expression (3.14) to be applicable. Thus, we can see
that, for the funnel potential (in just the same way as for
power-law potentials), the modified quantization
method ensures an acceptable accuracy in calculating
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the relevant energy levels and the asymptotic coeffi-
cients at the origin.

3.3. Asymptotic Coefficients at Infinity

Let us consider bound states of a particle for poten-
tials vanishing at infinity,

(3.18)

The asymptotic expression for the normalized radial
wave function then takes the form

(3.19)

where κ =  is the energy of a level, while ν = Z/κ
is the effective principal quantum number, also denoted
as n*. The asymptotic coefficients Cκl, along with the
coefficients at the origin, are extensively used in quan-
tum mechanics and its applications—in particular,
applications to peripheral processes. Taking into
account the asymptotic expression (3.18), we now
express the semiclassical formulas for Cκl and the quan-
tization condition in terms of the function v(r) deter-
mining the form of the interaction potential (1.1). For
the quantization condition, we have [29]

(3.20)

where

(3.21)

and γl is defined in (3.3). Equation (3.20) determines

the quantity z and the energies  = – (gz)2 of the

levels as functions of the coupling constant. For the
asymptotic coefficients, we obtain
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The above formulas make it possible to calculate the
energy spectra and the asymptotic coefficients quite
straightforwardly. Let us consider a few examples
where the calculations can be performed analytically.

(i) For an undistorted attractive Coulomb potential,
we have v(r) = 1/r, γl = l + 1, N ≡ n = nr + l + 1, Z = g2/2,
and

It follows that the exact spectrum of Coulomb levels is
En = –Z2/2n2 and that the semiclassical formula of the
modified quantization method for the asymptotic coef-
ficients has the form

(3.24)

A comparison of the results produced by this formula
with precise values reveals that its error is at a level of
a percent for nr = l ≥ 1 states (for the ground state, we

have /C10 = 0.906) and that it fast decreases with
increasing nr at fixed l; that is,

(ii) For the Hulthén potential v(r) = (er – 1)–1, we
have γl = l + 1; N ≡ n = nr + l + 1 = 1, 2, … (in just the
same way as for the Coulomb potential); r+(z) = ln(1 +

z–2); and J(z) =  – z. The quantization condition
yields

(3.25)

(within the modified quantization method, the values of
g that are equal to gn = n correspond to the conditions
under which a bound state emerges). For s levels, this
semiclassical spectrum is exact.

(iii) For the exponential potential v(r) = e–r, we have

(3.26)

and further calculations are straightforward.

In calculating the energies of shallow levels, the
accuracy of the modified quantization method is not
very high (in just the same way as the accuracy of the
WKB method), but it becomes higher fast for deeper
levels (see Fig. 2 in [29]).
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3.4. Zero-Energy States

Equation (3.20) determines the quantity z and the
energy of the levels together with it. Here, we discuss
the case of Enl = 0, which is the least favorable for
applying the semiclassical approximation. The emer-
gence of a level corresponds to

(3.27)

For ns states in some short-range potentials used in
atomic and nuclear physics, Table 4 quotes precise val-

ues of gn and δn = (  – gn)/gn. In the case of smooth
potentials, the constant γ0 in the quantization condition
(3.2) corresponds to expression (3.3); for finite poten-
tials—that is, for potentials such that V(r) ≡ 0 for r >
R—we have

(3.28)

for potentials that are, respectively, discontinuous
(nos. 5, 14 in Table 4) and continuous (nos. 6, 15 in
Table 4) at r = R. A change in the constant γ0 is associ-

ated with the boundary condition (R) = 0, which
must now be satisfied at g = gn for s levels.

From the data in Table 4, it can be seen that the error
of the modified quantization method in determining the
coupling constant gn does not exceed a few percent and
that it decreases fast with increasing n.

The dependence of  on the orbital angular
momentum l will be analyzed by considering the exam-
ple of the Tietz potential (2.42) [v(r) = 1/r(r + 1)2], in
which case we have

(3.29)

whence it follows that

(3.30)

[compare with (2.43')]. With increasing l, the error of
the modified quantization method naturally increases.
That case, however, can be efficiently investigated by
the alternative method of 1/n expansion.

gnl
MQ nr γl+

J 0( )
---------------.=

gn
MQ

γ0

1/2   for   α 0 > 
4

 
α

 

+

 
( )

 

/4 2

 
α
 

+

 
( )    for   –2 α 0, < <




 
=

 

γ

 

0

 

7/12   for   α 0 > 
7 2

 
α

 

+

 
( )

 

/6 2

 
α
 

+

 
( )   for   2– α 0 < <




 
=

χn'

gnl
MQ

γl l 1, N+ n, r+ ∞, J 0( ) 1,= = = =

gnl
MQ

n,=

δnl
MQ

gnl
MQ

/gnl 1– 2l 1+
n

--------------– l l 1+( ) 3/8+

n
2

------------------------------- …,+ += =

n ∞



680 KARNAKOV et al.
Table 4.  Accuracy of the modified quantization method for short-range potentials

No. 1 2 3 4 5

v(x) (ex – 1)–1 e–x/x 1/shx exp(–x2)/x x–1Θ(1 – x)

nr = 0 1(0) 1.29607 (–3.3) 0.80088 (5.8) 1.32326 (10) 1.20241 (–2.0)

1 2(0) 2.53915 (–1.3) 1.67636 (1.1) 2.82261 (3.3) 2.76004 (–0.40)

2 3(0) 3.78709 (–0.72) 2.53006 (0.46) 4.29289 (1.8) 4.32686 (–0.17)

5 6(0) 7.53955 (–0.26) 5.07762 (0.11) 8.68001 (0.73) 9.03553 (–0.04)

γ0 1 1 1 1 3/4

1/J(0) 1 0.8472 1.4573 π/2

No. 6 7 8 9 10

v(x) (x–1 – 1)Θ(1 – x) e–xx–1/2 e–x e–x/(1 + x) (ex + 1)–1

nr = 0 1.75902 (–5.3) 1.31345 (–3.3) 1.20241 (–2.0) 1.91436 (–6.1) 1.31171 (1.9)

1 3.72572 (–1.6) 2.82127 (–0.94) 2.76004 (–0.40) 4.25959 (–1.6) 3.11034 (0.27)

2 5.71187 (–0.79) 4.33923 (–0.46) 4.32686 (–0.17) 6.63793 (–0.75) 4.89584 (0.11)

5 11.6952 (–0.24) 8.90510 (–0.14) 9.03553 (–0.04) 13.8066 (–0.23) 10.2453 (0.02)

γ0 5/6 5/6 3/4 3/4 3/4

1/J(0) 2 1.5244 π/2 2.3957 1.7822

No. 11 12 13 14 15

v(x) exp(–x2) 1/ch x 1/ch2x Θ(1 – x) (1 – x2)Θ(1 – x)

nr = 0 1.63829 (15) 0.87840 (2.3) 1.41421 (6.1) 1.57080 (0) 2.26311 (3.1)

1 4.21849 (4.0) 2.08357 (0.63) 3.46410 (1.0) 4.71239 (0) 6.29769 (0.57)

2 6.75081 (2.1) 3.28633 (0.26) 5.47723 (0.42) 7.85398 (0) 10.3077 (0.25)

5 14.3010 (0.78) 6.88517 (0.06) 11.4891 (0.09) 17.2788 (0) 22.3181 (0.07)

γ0 3/4 3/4 3/4 1/2 7/12

1/J(0) 1.1981 2 π 4

Note: The table presents the values of the coupling constant gn that correspond to the emergence of s levels in short-range potentials. The
potentials are represented in the form (1.1). Indicated parenthetically are the values (in percent) of the parameter δn characterizing
the accuracy of the approximation specified by Eq. (3.27).

π 2⁄

2π
4. 1/n EXPANSION

4.1. Energies and Wave Functions

An appealing feature of the 1/N-expansion method
is that it is closely related to classical mechanics since
the limit N  ∞ in quantum mechanics is equivalent
to the case of "  0 or M  ∞. In this limit, the
problem reduces to determining an equilibrium classi-
cal configuration; owing to this, the approach in ques-
tion can be applied to multidimensional problems not
admitting a separation of variables and to many-body
problems. Various versions of this method are associ-
ated with the choice of expansion parameter N. We will
consider that version of the method which was pro-
posed in [36] and which can be applied both to discrete
and to quasistationary states. In this version, N ≡ n = nr +
l + 1; therefore, we will refer to it as a 1/n expansion.
Assuming that n @ 1, nr , we set

, (4.1)

(4.1')

where σ = 2n2/g2 is a parameter that is independent of

Enl

g
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n. From the Schrödinger equation

(4.2)

it can then be deduced that the particle is localized near
the classical equilibrium point determined from the
relation [36, 37]

(4.3)

By comparing Eq. (4.2) at r ≈ r0 with the Schrödinger
equation for a one-dimensional harmonic oscillator, we
find that the parameter n plays the role of the ratio M/".
Recalling that the amplitude of zero-point oscillations
is of order ("/Mω)1/2 ∝ n–1/2, setting

, (4.4)

and expanding the wave function χ l in powers of n–1/2,
we determine consecutively the coefficients ε(k) in (4.1)
and the corresponding coefficients for the wave func-
tion. This yields

(4.5)

(4.5')

where s = 2nr(nr + 1),

(4.6)

(4.7)

(4.8)

We note that nω is the frequency of small oscillation
about the equilibrium point r0.

The idea of calculating the wave functions for the
entire interval 0 < r < ∞ is basically the following. In
the x region where the particle is predominantly local-
ized, the anharmonic corrections of order n–1/2x, n–1/2x3,
and n–1x4 in the potential can be taken into account as a
perturbation. This region also determines the normal-
ization of the wave function to terms of order 1/n inclu-
sive. For the wave function in the subbarrier region, use
is made of the WKB approximation including the first-
order correction in the parameter of the semiclassical
expansion, the quantity 1/n playing here the role of the
formal expansion parameter ". The expressions men-
tioned immediately above are matched in the overlap
region

(4.9)

χ l'' n
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whereby the radial function is determined for all values
of r. By way of example, we indicate that, in the region
containing the equilibrium point r0 and the turning
points r = r±, nodeless states are represented by the
functions

(4.9')

where the bracketed expression takes into account the
correction for anharmonicity. In Fig. 1 from [38], the
results obtained with the aid of this formula are con-
trasted against the results of the numerical calculations
for the funnel potential.

To terms of order 1/n2, the asymptotic coefficients at
the origin are given by [11]

(4.10)

Here, the first factor is determined from the relation [39]

(4.11)

where

(4.11')

the functions Q0(r) and P0(r) being specified by (4.1')
and (4.5), respectively. The correction d(nr) in the
bracketed expression on the right-hand side of (4.10)
has the form [40, 41]

(4.12)
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Table 5.  Coefficients in expression (4.12'')

nr k0 k1 k2 k3 k4 k5 k6 k7

0 –1/24 1/24 13/8 1/2 –61/48 –1/2 –11/4 293/96

1 –13/24 13/24 81/8 9/2 –217/48 –7/2 –63/4 1217/96
The numerical values of the coefficients ki for nodeless
(nr = 0) states and one-node states (nr = 1) are quoted in
Table 5.

4.2. Accuracy of the 1/n Expansion

The above expressions for the energy and for the
coefficients at the origin are asymptotically exact for
l  ∞ and fixed nr. However, the extent to which the
1/n expansion can be of use at modest values of the
quantum numbers is not obvious from the outset. Let us
consider some examples to assess this.

Setting g = 1 as before for power-law potentials of
the form (2.10), we arrive at

(4.13)

In accordance with (4.1) and (4.5), we find for an nl
level that the relevant energies can be expanded as

(4.14)

where

For –1 ≤ α ≤ 4, the coefficients εk decrease fast with
increasing k. At α = –1 and α = 2, all εk vanish identi-
cally for k ≥ 2, so that the series in (4.14) is truncated;
as a result, the energy spectrum coincides with the
exact one.

It should be emphasized that the approximation as
simple as that which is given by (4.14) has an astound-
ing precision. By way of example, we indicate that, for
α = 0–8 and nr = 0, the error is less 1% at l = 1 and less
than 0.06% at l = 5, decreasing fast with increasing l.

For the Coulomb and for the oscillator potential, the
accuracy of the approximations in (4.10) and (4.11) for
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the asymptotic coefficients can be investigated analyti-
cally. According to (4.11), we have [39]

(4.15)

These expansions show that even the zero-order
approximation (4.11) of the 1/n expansion has a high
accuracy for nodeless states, but this accuracy sharply
becomes poorer with increasing nr . The inclusion of the
1/n correction according to (4.10) improves substan-
tially the accuracy not only for nodeless but also for
one-node states (see [40, 41] and Tables 1 and 2).

It should be noted that the coefficients cnl change by
many orders of magnitude—for example, cnl ∝ [(2n/(2 +
α))!]–1 for nodeless states in the potential (2.10). For
large values of l, a numerical determination of cnl
becomes more complicated because they decrease in
proportion to a factorial; at the same time, the 1/n
expansion becomes ever more precise with increasing l.

For short-range potentials, a similar situation pre-
vails in all cases, with the exception of the case of shal-
low levels (that is, the case of g ≈ gnl , where gnl is the
coupling-constant value at which an nl level emerges),
which calls for a dedicated consideration [11].

4.3. 1/n Expansion for Zero-Energy States

In the case of short-range attractive potentials, the
energy of an nl level increases with decreasing cou-
pling constant g, with the result that, as soon as this
coupling constant attains a value gnl, the level is
expelled into the continuous spectrum, its energy being
Enl = 0 at this point. By using the 1/n-expansion method
to calculate gnl , we obtain

(4.16)

The parameters of this expansion are determined by the
requirement that ε(k) vanish for all values of k ≥ 0. From
Eq. (4.3) and from the condition ε(0) = 0, we obtain

(4.17)
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The corrections in the parameter 1/n are given by

(4.18)

where the quantities ω, u, and w defined in (4.6)–(4.8)
are taken at the value r0 following from (4.17).

Let us illustrate the application of these formulas by
considering the examples of the Tietz and the Yukawa

potential. For the former, we have v(r) = ,

r0 = 1, ω = 1/2, u = 3/8, and w = 23/32; the first three
terms of the 1/n expansion in (4.16) then yield

(4.19)

which coincides with the exact value in (2.43).

For the Yukawa potential, v(r) = er/r, r0 = 1, ω =

1/ , u = 2/3, and w = 55/48, so that

(4.20)

(e = 2.718...). Table 6 illustrates the accuracy in calcu-

lating the value of  corresponding to the emergence
of the level. The parameters

(4.21)

characterize the accuracy of 1/n expansion in the case
where k terms are taken into account in expansion
(4.20) (for k = 1, 2, 3).

When an l ≥ 1 level arises in a short-range potential,
the asymptotic coefficients at infinity, Anl, in the nor-
malized wave function

, (4.22)

determine [42] the effective interaction range

which is an important parameter in the theory of low-
energy scattering. Following the same line of reasoning
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as that adopted in calculating the asymptotic coeffi-
cients at zero, we obtain

(4.23)

where

with

The correction of order 1/n for nodeless states was cal-
culated in [41].

4.4. Calculation of Energies for Stationary
and Quasistationary States

We have presented above the analytic formulas (4.5)
for the first three terms of the 1/n expansion. The
explicit expressions fast become much more compli-
cated with increasing k. However, they can easily be
calculated with the aid of recursion relations [43]. For
nodeless states, this method admits the simplest imple-
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Table 6

nr l ρnl(1) ρnl(2) ρnl(3)

0 0 1.6799 62 14 5.5

1 9.0820 20 2.2 0.54

2 21.895 12 0.83 0.18

5 92.918 5.3 0.18 1.5 (–2)

1 0 6.4472 69 –5.4 3.0

1 17.745 38 –2.5 0.55

2 34.420 26 –1.4 0.18

5 116.99 14 –0.56 2.4 (–2)

Note: Indicated parenthetically for each number less than 0.1 is the
negative integral power of this number in the floating-point
representation a(b) ≡ a × 10b.

gnl
2
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mentation because one can use logarithmic perturba-
tion theory [44–46].

For a specific example, we consider the Yukawa
potential

where κ0 = σ/n2aB is the screening parameter. In this
case, we have

(4.24)

As to the quantity r0 = r0(σ), it is determined from the
equation

(4.25)

For the nodeless l = 3 state, the values of ε(k) and the
partial sums εk = ε(0) + ε(1)/n + … + ε(k)/nk of the series in
question are quoted in Table 7 for σ = 0.5. These values
illustrate convergence of the 1/n expansion. Since the
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Table 7.  Convergence of a 1/n expansion 

k –ε(k) –εk , l = n – 1 = 3

0 2.2283 (–1) 0.222827
1 8.4564 (–2) 0.243968
2 –1.2496 (–2) 0.243187
3 1.152 (–3) 0.243205
4 3.14 (–4) 0.243206
5 –1.02 (–4) 0.243206
6 –5.89 (–5) 0.243206
7 2.50 (–2) 0.243205
8 7.92 (–1) 0.243193
9 1.21 (+1) 0.243147

10 1.23 (+2) 0.243030
12 –1.14 (3) 0.242918
15 4.44 (8) 0.247577
coefficients ε(k) first decrease fast, the 1/n expansion
provides quite accurate results even at n ~ 1 [despite the
fact that, for k ≥ 7, the coefficients ε(k) begin to increase
fast, so that the series in (4.1) as a whole is not more
than an asymptotic series]. From the data in Table 7, it
can be seen that, at k ≈ 4–6, the partial sums εk stabilize,
specifying the energy to a precision of about 10–6.

The reduced energies εnl = 2σ2Enl /n2 calculated in
this way are quoted in Table 8 for some nodeless states
at a few values of the screening parameter σ. Also pre-
sented in this table are the results obtained by summing
divergent perturbation-theory series [47]. We can see
that the two methods produce results that agree to
within a high precision.

It should be noted that, at σ = σ∗  = 0.8399… > σcr,
in which case ω = 0, two classical solutions collide, the
coefficients ε(k) become infinite for k ≥ 2, and the 1/n
expansion ceases to be valid. Upon this collision (σ >
σ∗ ), the point of equilibrium r0(σ) goes into the com-
plex plane, whereas the coefficients in the 1/n expan-
sion develop an imaginary part. Such a solution is
meaningless in classical theory; in quantum mechanics,
however, it corresponds to the emergence of the width
of a quasistationary level and determines the asymp-
totic behavior of Breit–Wigner resonances, Enl = Er –
iΓ/2, characterized by large values of the quantum
numbers n and l. Such a situation is prevalent for all
short-range potentials, and it is the way in which Breit–
Wigner resonances of complex energy can be described
within the 1/n-expansion method.

It should be noted that, for quasistationary states,
the asymptotic behavior of higher orders of a 1/n
expansion is determined by the probability of the tun-
neling of the relevant particle through the potential bar-
rier and can be calculated by means of the imaginary-
time technique. This approach is applicable not only to
spherically symmetric potentials but also to cases
where the variables in the Schrödinger equations are
not separated. This was demonstrated by considering
the example of the two-body problem and the example
of the hydrogen atom in a constant electric and a con-
stant magnetic field (see [10, p. 149]).
Table 8.  Reduced energies εnl for the Yukawa potential (n = l + 1) 

σ l = 3 l = 10 l = 30

0.5 –2.43206 (–1) –2.30412 (–1) –2.25542 (–1)
–2.43206 (–1) –2.30412 (–1) –2.25541 (–1)

σcr –3.6871 (–2) –1.40396 (–2) –5.06734 (–3)
–3.6872 (–2) –1.4040 (–2) –5.07 (–3)

1.25 0.10917 – i0.12189 0.15411 – i0.13427 0.17142 – i0.13768
0.10917 – i0.12189 0.1541 – i0.1343 0.1714 – i0.1377

Note: At fixed values of l and σ, the upper and the lower line correspond to, respectively, 1/n expansion and the result obtained by summing
the series of perturbation theory. At σcr = 2e–1 = 0.73575…, we have ε(0)—that is, the level goes over to the continuous spectrum
when n  ∞.
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5. QUANTIZATION WITH ALLOWANCE 
FOR BARRIER PENETRABILITY

5.1. Generalization of the Bohr–Sommerfeld 
Quantization Rule

In many physics problems, the potential possesses a
barrier, with the result that the energy levels in this

potential prove to be quasistationary, E = Er – . If

the barrier penetrability is small, it can easily be shown
that the generalization of the quantization rule to this
case is (see, for example, [48])

(5.1)

where n = 1, 2, …;

(5.2)

x0 < x < x1 is the classically allowed region; x1 < x < x2 is
subbarrier region; for x > x2, the particle goes to infinity;
and Cik are integration contours circumventing the corre-
sponding turning points xi and xk in the positive direction

(i, k = 1, 2). Setting p = Er –  – U(x)  and

assuming that Γ ! |Er |, we arrive at the Gamow for-
mula for the level width:

(5.3)

If the energy of the level is close to the barrier top
(or exceeds it), the turning points approach each other,
the width is no longer exponentially small, and
Eq. (5.1) becomes invalid. Let us now discuss an ana-
lytic continuation of the quantization condition to the
above-barrier region.

Near the barrier top, x1 ≈ x2, we can make use of the
parabolic approximation

(5.4)

where ρ = (x – xm)/Ω1/2, Ω = [–U ''(xm)]1/2 being the fre-
quency of the inverted oscillator. The Schrödinger
equation then has the exact solution

(5.5)

which satisfies the Sommerfeld radiation condition. In
(5.5), Dν(z) is a parabolic-cylinder function [27]. By

i
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matching this solution with the semiclassical solution
(2.1) in the overlap region

,

we find for x < x1 that [49–51]

(5.6)

where

(5.7)

At a complex resonance energy, the turning points and
the parameter a defined in (5.2) are complex.

For |a |  ∞, the asymptotic expansions for the
function ϕ(a) are

 

the ray  = π/2 being a Stokes line for this function.
By using the expansion in (5.8), it can easily be shown
that, for deep levels (Er < Um , a @ 1), Eq. (5.6) reduces
to (5.1).

If Er  Um , the turning points x1 and x2 approach
each other, which invalidates the semiclassical approx-
imation near the barrier top. As Er increases further,
these points diverge, however, so that the conditions
ensuring the applicability of the WKB method are sat-
isfied again. It is important here that, for above-barrier
resonances, the parameter a occurs in the second quad-
rant of the complex plane. Indeed, we can see from
Eq. (5.4) that, in the subbarrier region, Rea > 0, while
the imaginary part of the parameter a is exponentially
small. When the level being considered touches the bar-
rier top (Er = Um), the point a traverses the positive
imaginary axis, so that  > π/2 at higher energies of
the level. Taking into account (5.8'), we find that, for
|a| @ 1,

a ! ρ  ! xmΩ 1/2–
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Noticing that (–p2)1/2 = ip(x), we recast this equation
into the form [52]

(5.9)

where the contour of integration circumvents the turn-
ing points x0 and x2. It is well known from [53] that the
Bohr–Sommerfeld quantization condition can also be
written in the form (5.9), but the contour C in that case
circumvents the turning points x0 and x1 both lying on
the real axis. Thus, we see that, in going over from the
subbarrier to the above-barrier region, the contour of
integration is rearranged in such a way that goes around
a different pair of the characteristic points.

Equation (5.9) represents an analytic continuation
of the quantization rule to the above-barrier region Er >
Um . This analytic continuation can also be imple-
mented by means of the formal substitution

a  aexp(–2πi) (5.10)

directly in the quantization integral. Since we have [52]

substitution (5.10) leads to Eq. (5.6), where use is made
of the asymptotic expression (5.8') for the function
ϕ(a).

With allowance for the barrier penetrability and the
semiclassical correction of order "2, the quantization
rule has the form [54]

(5.11)

where

(5.12)

and where we have explicitly recovered M and the
Planck constant ".

If the resonance energy Er is not very close to the
barrier top Um, so that the turning points can be consid-
ered individually, Eq. (5.11) is simplified, as before, to
become

. (5.13)

The contour C circumvents the turning points x0 and x1
in the case of the discrete spectrum (Er < Um) or the
points x0 and x2 in the case of quasistationary states
(Er > Um). (The quantization rule allowing for terms of

1
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order "6 inclusive was obtained [52].) Let us now pro-
ceed to analyze specific examples.

5.2. Anharmonic Oscillator

Let us consider the potential

(5.14)

where the exponent N can take odd values of 3, 5, etc.
This potential attains a maximum value of Um at x = xm ,

(5.14')

The frequency Ω = (N – 2)1/2, which was introduced in
(5.4), is independent of the coupling constant ζ. The
Schrödinger equation with the potential (5.14) can
serve as a reference for the theory of quasistationary
states.

The equation U(xi) = E(ζ) determines N complex
turning points and can be solved explicitly in the limit-
ing cases of ζ  0 and ζ  ∞. For ζ  ∞, we have

and Eq. (5.9) assumes the form

(5.15)

Having calculated the integral, we find that, in the
strong-coupling regime, the energy of a quasistationary
state is given by

(5.16)

where

(5.16')

In what is concerned with the asymptotic expression
(5.16), we would like to note the following:

(i) The dependence En(ζ) ∝ ζ 2/(N + 2) follows from the
scaling considerations alone.

(ii) According to (5.16), the imaginary part of the
energy, ImEn(ζ) = –Γ/2, has a correct sign, the level
width being relatively small at large N: Γ/Er ∝ N–1. This
smallness is associated with the fact that the potential
(5.14) becomes overly sharp for N  ∞.
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(iii) For an oscillator featuring only a cubic anhar-
monicity (N = 3), the result given by Eq. (5.16) coin-
cides with expression (5) from [55].

Of particular interest is the structure of the asymp-
totic expansion of En(ζ) at large ζ. By considering the
oscillator term x2/2 in (5.14) as a perturbation, it can be
shown [52] that

(5.17)

where

(5.18)

 = 1, and  = (n – 1/2)(N – 2)/2ζ is the effective cou-

pling for highly excited levels. The coefficients  can
be calculated analytically; in particular, we have

(5.18')

The potential (5.14) at N = 3 was considered by
Alvarez [55]; by using the method of complex rota-
tions, which is well known in atomic physics (see, for
example, [56]), he was able to compute En(ζ) at n = 1
and 2 for ζ ≤ 100 to a very high precision. In this case,
the first few coefficients in expansions (5.17) and (5.18)
have the following numerical values:

The coefficients  decrease fast with increasing k
and j; for this reason, we retain only the first three terms
in (5.17); that is, we set

(5.19)

In Table 9, the results obtained with the aid of this for-
mula are contrasted against the numerical values com-
puted in [55]. It can be seen that the region of applica-
bility of expression (5.19), which is formally valid for
ζ @ 1, extends to ζ ~ 1 even for the ground-state (n = 1)
level.

A particularly high precision is a achieved for the
ratio

(5.20)
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5.3. Stark Effect in a Hydrogen Atom in a Strong 
Electric Field

 

The Schrödinger equation for the hydrogen atom in
a uniform electric field 
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Table 9.  Energies of quasistationary states in the potential

V(x) =  – ζxN 

ζ
n = 1 n = 2

ReEn 10ξ ReEn 10ξ

100 3.8940 7.26541 13.8388 7.26542

3.848 7.26534 13.8399 7.26535

10 1.5502 7.2646 5.5093 7.26650

1.571 7.2620 5.5098 7.2639

5 1.17547 7.2630 4.1751 7.2643

1.190 7.255 4.1757 7.261

1 0.6165 7.7323 2.1921 7.2502

0.610 7.128 2.1935 7.206

0.5 0.4664 7.1613 1.6596 7.2182

0.462 6.84 1.662 7.14

Note: At fixed values of ζ and n, the first and the second line con-
tain, respectively, the results of the numerical calculation
from [55] and the results based on the asymptotic expression
(5.19). The quantity ξ is defined in (5.20), its limiting value
being ξ∞ = tan(π/5) = 0.7265425… .

1
2
---x

2
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The variable z2 increases monotonically with F; at z2 =
1, the level touches the barrier top in the effective
potential U2(η), which includes the Langer correction.
The corresponding electric field is that which is equal
to the classical ionization threshold %∗  = n–4F∗ . The
parameter a appearing in (5.6) is also calculated analyt-
ically. The result is

(5.23)

In the near-threshold region, the second equation in
(5.21) must be modified in accordance with (5.6). This
is achieved via the substitution

(5.24)

a
n

4F
------- ε/2–( )3/2

G 1 z2–( ) na* 1 z2–( ) …,+= =

F F*.

ν2 ν̃2 ν2
1

2πn
---------ϕ a( ).–=

Table 10.  Energy positions and widths of the peaks associ-
ated with the photoionization of the m = 0 Rydberg states of
the hydrogen atom in an electric field of strength % =
16.8 kV/cm 

n1, n2

Er, cm–1 Γ/2, cm–1

F F∗WKB [57] WKB [57]

16, 1 106.9 103.8 9.0 9.0 0.343 0.265

15, 1 167.8 167.9 0.8 2.1 0.273 0.263

15, 0 196.5 198.5 – 1.1 (–4) 0.214 0.308

14, 2 212.1 210.1 5.4 6.6 0.273 0.236

13, 2 273.6 275.8 – 0.23 0.214 0.233

12, 3 313.3 314.8 – 1.6 0.214 0.214

11, 4 353.8 351.4 2.5 3.0 0.214 0.200

11, 3 384.2 386.3 – 1.8 (–3) 0.165 0.211

10, 4 418.7 419.2 – 3.2 (–2) 0.165 0.197

Note: Here, n1 and n2 are the parabolic quantum numbers of a
Stark resonance, F = n4% is the reduced electric-field
strength, and F∗  is the classical ionization threshold [58].
The case of F < F∗  (F > F∗ ) corresponds to subbarrier
(above-barrier) resonances.
An analytic continuation of Eqs. (4.21) to the above-
barrier region (F > F∗ ) can be performed according to
(5.10) and (5.23) with the aid of the substitution

(5.25)

upon which the function G(z2) appearing in (5.21) is

replaced by (z2):

(5.26)

Equations (5.21) can be solved numerically [34, 52].
The calculated values of Er are quoted in Table 10,
along with the experimentally measured positions of
the peaks in the cross section for the ionization of
hydrogen atoms at % = 16.8 kV/cm. It can be seen that,
within the measurement errors (1 to 2 cm–1 according to
[57]), the semiclassical results agree with experimental
data. Since the relevant solutions to Eqs. (5.21) for F <
F∗  are real, they cannot determine the resonance
widths; for this reason, dashes stand for the correspond-
ing entries in this table. For F > F∗ , the analytically
continued quantization rules specify not only the reso-
nance positions but also the resonance widths Γ, which
are given in the table.

In order to calculate the widths of subbarrier and
above-barrier resonances, it is necessary to use
Eqs. (5.21) with substitution (5.24), which take into
account a finite barrier penetrability in the effective
potential U2. This is illustrated in Table 11 for n1 = n2
subbarrier resonances. Since the classical ionization
threshold is F∗  = 0.1837 for such states, the results of
the calculations for the effective quantum number ν =
(–2Er)–1/2 and the level widths Γ at moderate fields F <
F∗ , in which case the WKB method cannot determine
Γ, are presented in the table.

It was noted above that, in eventual formulas, the
semiclassical-expansion parameter " translates into
1/n; therefore, "2 corrections to the quantization inte-
gral are of order 1/n2. The quantities ν and Γ were cal-
culated in the semiclassical approximation with allow-
ance for the barrier penetrability both in the 1/n approx-
imation [in other words, according to Eqs. (5.21) with

1 z2 1 z2–( )e
2πi–

,–

G̃

G z2( ) G̃ z2( ) G z2( ) i 2G 1 z2–( ).–=
Table 11.  Energies of Stark resonances in a hydrogen atom according to calculations based on various methods

|n1n2, m〉
%
F

|2, 2, 0〉
1.8 (–4)
0.1125

|5, 5, 0〉
1.0 (–5)
0.1464

|7, 7, 0〉
3.0 (–6)
0.1519

Method ν Γ ν Γ ν Γ

1/n – A 4.92385 2.22 (–6) 10.7128 2.82 (–6) 14.5767 1.347 (–6)

1/n2 – A 4.92406 2.19 (–6) 10.7127 2.80 (–6) 14.5766 1.338 (–6)

PHA 4.92402 2.283 (–6) 10.713 2.83 (–6) 14.577 1.35 (–6)

[60] 4.9240 2.282 (–6) 10.688 2.815 (–6) 14.5771 1.338 (–6)

Note: Here, n1 = n2 = (n – 1)/2; the values of %, ν = (–2Er)
1/2, and Γ are presented in a.u.; the classical ionization threshold is F∗  = 0.1837

for n1 = n2 states.
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substitution (5.24)] and in the 1/n2 approximation
[59]—that is, with allowance for the "2 correction
according to equations similar to those in (5.11). In addi-
tion, Table 11 displays the results from [34], which
were obtained by summing perturbation-theory series
by means of Padé–Hermite approximants (PHA), and
the numerical results from [60]. It can be seen that the
results of the calculations performed by different meth-
ods are consistent and that, with increasing quantum
numbers n1 and n2 or reduced field F, the accuracy of
the semiclassical approximation becomes higher, while
the accuracy of the method based on summation of
divergent perturbation-theory series deteriorates.
Finally, we note that the energies of Stark resonances
corresponding to the circular states |0, 0, n – 1〉  can eas-
ily be calculated by means of the 1/n-expansion tech-
nique [34].

6. CONCLUSION

The semiclassical approximation and the 1/n-expan-
sion technique have been used to calculate the energies
of discrete and quasistationary states and radial wave
functions for the Schrödinger equation. It has been
shown that not only do these methods provide qualita-
tive estimates for the above quantities, but they are also
appropriate for calculating some fine features of the rel-
evant wave functions like the asymptotic coefficients at
the origin and at infinity. The resulting analytic formu-
las for these coefficients, which are important for appli-
cations, are asymptotically exact in the limit of large
values of the radial quantum number nr (WKB method)
and in the limit of high angular momenta l (1/n expan-
sion). It turns out that, as a rule, these formulas are also
applicable at modest values of nr and l, almost com-
pletely covering the region of all possible values of
these quantum numbers, with the exception of those
that correspond to shallow levels in short-range poten-
tials. But for this case, there are simple analytic expres-
sions that determine, to a reasonable precision even for
the ground state, coupling-constant values at which a
level emerges.

Both the semiclassical approximation and the 1/n-
expansion technique are especially convenient for solv-
ing physics problems where variables in the
Schrödinger equation cannot be separated. By way of
example, we indicate that, in the case of the Stark effect
in a strong electric field, the complex energies of Stark
resonances in a hydrogen atom and the positions and
widths of peaks in the cross sections for the photoion-
ization of various Rydberg states of arbitrary atoms can
be computed by combining these two methods.
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Abstract—A meson-theoretical model for the reaction π–p  π0π0n for large π– momenta is developed
which treats the final-state interaction between the two produced pions microscopically. For small momentum
transfers, the squares of the S-wave amplitudes of the produced two-pion system show a dip for invariant two-
pion masses in the vicinity of the f0(980) meson, while for momentum transfers –t > 0.2 (GeV/c)2, the f0(980)
meson appears as a bump. The model provides a microscopic explanation of the long-standing puzzle seen by
both the GAMS and the BNL experimental collaborations. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The reaction πN  ππN is one of the major
sources of information about pion–pion scattering. For
pion beam momenta above approximately 10 GeV/c
and for small values of the square t = (pN – pN ' )2 of the
momentum transfer between the incoming and the out-
going nucleon, the reaction is peripheral and is there-
fore dominated by one-pion exchange. During the last
decade, there has been significant experimental
progress due to new detector developments which
allow high-statistics studies of two-pion production [1,
2]. In this work, we concentrate on the charge-
exchange reaction π–p  π0π0n. This reaction elimi-
nates the odd angular momenta from the partial-wave
analysis of the two-pion system and is selective to the
isospin I = 0 and I = 2.

The GAMS collaboration employs a π–-beam
momentum of 38 GeV/c [1], while the BNL-E852 col-
laboration uses an incident beam momentum of
18.3 GeV/c [2]. The experimental results can be sum-
marized as follows. For momentum transfers – t <
0.2 (GeV/c)2, the squares of the S-wave amplitudes
show a broad enhancement above the threshold with a
sharp dip near the invariant two-pion mass mππ =
980 MeV. This dip corresponds to the excitation of the
f0 (980). A similar dip has been seen in the reaction

  3π0 by the Crystal Barrel collaboration [3, 4].
For momentum transfers above –t < 0.4 (GeV/c)2, how-
ever, a puzzle emerges: at mππ = 1 GeV, a distinct peak
is seen. In the GAMS data, the peak is taller than in the
corresponding BNL data.

Despite a large body of experimental and theoretical
work, the structure of the f0(980) meson remains a con-
troversial issue (see, e.g., the recent review by Godfrey
and Napolitano [5]). Since at least three scalar–isosca-

p p

* This article was submitted by the authors in English.
1063-7788/01/6404- $21.00 © 20691
lar mesons have been established to date, i.e., f0(980),
f0(1370), and f0 (1500), and since the low-lying scalar–
isoscalar strength can be summarized as a meson
f0(400–1200), there is no obvious single candidate for
the scalar member of the  nonet. The f0 (980) meson

was interpreted as a multiquark state [6], a  mole-
cule [7–9], or as a unitarized  state [10, 11]. The
issue could not be decided by analyses of the γγ 
ππ reaction [12, 13].

The earliest theoretical model that specifically
addresses the GAMS data is the K-matrix analysis by
Anisovich et al. [14, 15]. In that model, the transition
amplitude A(πN  Nb) is given by the product of a
pionic vertex for the proton-to-neutron transition, a
standard pion propagator, and a unitarized ππ  b
transition amplitude which is parameterized as a sum of
Breit–Wigner terms with momentum-dependent cou-
pling constants. A suitable multiplicative factor ensures
that the amplitude vanishes at the two-pion production
threshold.

An alternative model was suggested by Achasov and
Shestakov [16, 17], who point out that one-pion
exchange dies out rapidly as the momentum transfer –t
is increased. For large momentum transfers, the reac-
tion mechanism has to be generalized to include
mesons of larger mass. In addition to pion exchange,
Achasov and Shestakov therefore include the a1

exchange. The necessity to include a1 exchange in the
extraction of pion–pion phase shifts was emphasized
by Kaminski, Lesniak, and Rubicki [18, 19]. The
ππ  ππ and the a1π  ππ transition amplitudes
are parameterized by generalized Breit–Wigner-like
amplitudes and background terms with parameters
directly adjusted to the GAMS data. A good fit to the
GAMS data is obtained [16].
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In our work, we present a meson-theoretical model
for the reaction π–p  π0π0n. The advantage of a
microscopic approach like the present one is that one
does not have to rely on assumptions concerning the
background amplitude because the background is
explicitly generated by the meson–meson scattering
dynamics. In a meson-theoretical approach, one is
straightforwardly led to include both the pion and the a1
in the reaction mechanism.

2. THE MODEL

The reaction mechanism considered in the present
work is shown in Fig. 1. In addition to the pion, we also
include the exchange of the a1 meson. In principle, one
also has to consider the exchange of the ρ meson, which
may contribute via G-parity violating couplings. At a
quantitative level, however, this contribution turns out
to be entirely negligible. The incoming pion and the
virtual meson can interact via meson exchanges and
can couple to both ππ and  intermediate states
which undergo final-state interactions.

First, we have to choose an effective Lagrangian for
the meson dynamics. By imposing SU(3)-flavor sym-
metry, one can reduce the number of triple meson cou-
plings [8, 9]. But the SU(3) symmetry does not yet con-
strain the couplings of the a1 meson. Since the a1 meson
is chirally related to the pion, chiral symmetry helps to
reduce the number of independent coupling constants.
We start from an underlying effective-quark
Lagrangian which respects chiral symmetry and derive
the required meson interactions by integrating out the
quark degrees of freedom using known techniques [20–
24]. We employ the simplest such Lagrangian avail-
able, i.e., the one due to Nambu and Jona-Lasinio [25].

The following three-meson couplings result.

The pseudoscalar–pseudoscalar–scalar coupling is a
typical D coupling which reads

KK

+pps0
1
4
---Gppstr P P,{ } S( )–=

V T

π, K

n

π, K

π

π

π

πp
ρ

–

a1

Fig. 1. Meson-exchange model for the reaction πN 
ππN.
(1)

with the following relation between scalar and deriva-
tive coupling constants:

(2)

The coupling constant of the pseudoscalar–pseudosca-
lar–scalar interaction is denoted by Gpps, Λ is a cutoff
parameter, and Ms is the scalar mass; Ms and Λ are
defined within the NJL model.

In the actual calculations, we use the experimental
scalar mass and the corresponding cutoff parameters
given in the end of the section.

The pseudoscalar–pseudoscalar–vector coupling
interaction is

(3)

where Gppv is a pseudoscalar–pseudoscalar–vector cou-
pling constant.

The pseudovector–vector–pseudoscalar interaction
may be expressed as

(4)

with the following relation between scalar and deriva-
tive coupling constants:

(5)

where GAvp is a coupling constant of the pseudovector–
vector–pseudoscalar interaction.

–
1
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The pseudovector–pseudoscalar–scalar interaction is

(6)

with the coupling constant GAps and the related con-
stants

(7)

The vector–vector–pseudoscalar coupling has the
form

(8)

which is a pure D-type coupling with the coupling con-
stant Gvvp. Here, eµνρλ denotes the totally antisymmet-
ric four-tensor. The pseudovector–pseudovector–pseu-
doscalar coupling is

(9)

with the coupling constant GAAp. The pseudoscalar–
pseudoscalar–tensor coupling is

(10)

with the coupling constant Gppt .
For the nucleon–nucleon meson interaction, we fol-

low Aitchison and Fraser [21, 22]. The resulting total
effective Lagrangian reads

(11)

+Aps1
1
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2
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2
--- Λ2

Ms
2

-------ln+
 
 
 
-------------------------------GAps.=

+vvp2
1
2
---iGvvpe

µνρλ tr ∂νVρ Vλ,{ } ∂µP( )=

+
1
4
---iGvvpe

µνρλ tr ∂µVρ ∂νVλ,{ } P( ),

+AAp2 iGAApe
µνρλ tr ∂µP ∂ν Aρ,[ ] Aλ( )=

+
i
2
---GAApe

µνρλ tr ∂µAρ ∂ν Aλ,{ } P( ),

+ppt
i
4
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where µs and µv are the experimental masses of the sca-
lar and vector mesons and +int is the sum of the three-
meson-interaction Lagrangians displayed above.

The meson–meson scattering amplitudes are
obtained by solving the Blankenbecler–Sugar reduc-
tion of the Bethe–Salpeter equation.

As a numerical value of the pion–nucleon coupling

constant, we take /4π =13.8 which is close to the
value determined in [26] from new experimental data,

/4π = 14.5. For the rho-meson–nucleon coupling

constant, we take /4π = 0.9, which corresponds to
the value employed in the Bonn meson-exchange

model of the nucleon–nucleon interaction, /4π =
0.92. According to the construction of our Lagrangian,
this number directly fixes the a1–nucleon coupling con-
stant. In [27], the experimental tests of time-reversal

asymmetry give an upper limit of 0.9 for /4π
assuming maximal symmetry violation.

In our model, we assume that the chiral partner of
the pion can be identified with the f0(1370) meson
which fixes the required coupling constants of the
f0(1370).

We take the following three-meson couplings in our

calculation: /4π = /4π = 5.5, /4π =

/4π = 0.6, and /4π = 3.3. For regularization
purposes, standard form factors of the dipole type are
employed [9]. For the t-channel and u-channel interac-

tions, we take (in MeV)  =  = 1355,  =

3080,  = 1000, and  = 1400. For the s-chan-

nel, the values are (in MeV)  =  = 2355,

 = 2000,  =  = 1500,

 =  = 2320, and  =
2800. For the meson–nucleon form factors, we use
ΛπNN = 1300 MeV and  = 1800 MeV.

These values were determined from a fit to the ππ
phase shifts. The theoretical phase shifts obtained with
the present model are virtually identical to the ones
already published in [9]. The f0(980) is reproduced as a

quasibound  molecule. We now proceed to discuss
the results of the model for the reaction π–p  π0π0n.

3. RESULTS

We first analyze the BNL-E852 data. In Fig. 2, the
experimental events are shown as a function of the
square of the momentum transfer |t| summed over the
interval of invariant two-pion masses 0.98 < mππ <
1.08 GeV. Gunter et al. point out that the experimental
distribution cannot be characterized by a single expo-

gs
2

gNNπ
2

gv
2

gNNρ
2

gNNa1

2

Gpps
2 Gppv

2 GAps
2

GAvp
2 Gvvp

2

Λππρ
t( ) Λa1πρ

t( ) ΛKKρ
t( )
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t( ) ΛKKφ
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Λππρ
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ΛKKρ
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1.51.00.50
–t, (GeV/c)2

100

101
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103

104
Events/[0.0125 (GeV/c)2]

Fig. 2. The two-pion events obtained in the π–p  π0π0n reaction at a pion beam momentum of 18.3 GeV/c by the BNL-E852
collaboration [2] are shown as a function of the square –t of the momentum transferred between the proton and the neutron. The
invariant two-pion masses have been averaged over the interval 0.98 < mππ < 1.08 GeV. The dotted curve shows the results obtained
by assuming a pure one-pion exchange as a reaction mechanism, the dashed curve shows the corresponding result for a pure a1
exchange. The full model is given by the solid curve.
500 1000 1500

2

0

4
Intensity |S |2/(40 MeV) 

mππ, MeV

3

1

Fig. 3. The squares of the absolute values of the S-wave par-
tial wave amplitude are shown as a function of the invariant
two-pion mass for events in the region 0.01 < –t <
0.10 (GeV/c)2 . The present (π + a1) calculation is given by
the solid curve. The contribution due to pion exchange is
displayed by the dotted curve, while the contribution due to
a1 exchange is given by the dashed curve. Circles represent
the BNL-E852 data.

×104
nential. In order to fit the distribution, a sum of two
exponentials was required, which suggests more than
one production mechanism [2]. We identify the rapidly
decreasing amplitude with the one-pion exchange
mechanism and the slowly decreasing amplitude with
the a1 exchange, as was done already in [16]. The
amplitudes are multiplied by reduction factors

 and . The corresponding slope

parameters bπ = 3.80 (GeV/c)–2 and  = 1.20 (GeV/c)–2,

as well as the amplitudes Cπ = 0.970 and  = 0.004,
are phenomenological parameters which are chosen to
reproduce the data displayed in Fig. 2. As pointed out
by Achasov and Shestakov[17], the parameterization of
[14] predicts a rapid variation of the distribution with t
which is not confirmed by the data [2]. This finding
supports the assumption that the a1 exchange plays an
important role in the reaction mechanism.

The square of the S-wave partial wave amplitude is
shown in Fig. 3 as a function of the invariant two-pion
mass for values of the momentum transfer summed
over 0.01 < –t < 0.10 (GeV/c)2. The data show a broad
strength distribution above the threshold which is inter-
rupted by a sharp dip in the vicinity of mππ = 1 GeV. For

Cπ
1/2e

bπt /2
Ca1

1/2e
ba1

t /2

ba1

Ca1
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these small momentum transfers, the reaction mecha-
nism is dominated by one-pion exchange. The a1

exchange becomes noticeable only above 1 GeV. The
appearance of a dip can be understood microscopically
in meson-exchange models: the exchange of a ρ meson
in the t channel of the two-pion system leads to a strong
attraction between the two interacting pions. The pion–
pion phase shift consequently rises rapidly to 90°, and

Intensity |S |2/(40 MeV) 

500 1000 15000
mππ, MeV

4

2

6

8

10

Fig. 4. The squares of the absolute values of the S-wave par-
tial wave amplitude are shown as a function of the invariant
two-pion mass for events in the region 0.4 < –t <
1.5 (GeV/c)2. The present calculation is given by the solid
curve. The contribution due to pion exchange is displayed
by the dotted curve, while the contribution due to a1
exchange is given by the dashed curve. Circles represent the
BNL-E852 data.

Fig. 5. Theoretical two-pion mass distributions for the
π−p  π0π0n reaction at a pion beam momentum of
18.3 GeV/c obtained in a calculation without a  channel
are shown for two ranges of the square of the momentum
transfer: |t| < 0.2 (GeV/c)2 (solid curve) and |t| >
0.4 (GeV/c)2 (dotted curve).

KK

800

400

0 500 1000 1500
mππ, MeV

Events/(10 MeV)

×103
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therefore interferes destructively with the amplitude
generated by the opening of the  channel. Detailed

discussions on the structure of the  partial-wave
amplitude as generated by meson-exchange models can
be found in [8, 9].

In our model, we have only considered those f0
mesons above 1 GeV that are listed in the Particle Data
Group [28] and fitted the pion–pion phase shifts, but
not the BNL-E852 data. Now, we note that the present
calculation misses some S-wave strength above mππ =
1 GeV. A straightforward possible method for repro-
ducing the BNL-E852 data would be to follow Anisov-
ich and Sarantsev and postulate that the f0(1370) reso-
nance summarizes two scalar resonances, namely, a
f0(1300) and a broad f0(1550) [29].

Figure 4 shows the squares of the S-wave ampli-
tudes summed over the interval 0.4 < –t < 1.5 (GeV/c)2.
For these large momentum transfers, the pionic contri-
bution to the reaction mechanism almost disappears.
The data is reproduced satisfactorily. The peak at mππ =
500 MeV is due to a K– contamination in the pion beam
which generates a small signal due to the decay

  ππ which survives despite the presence of a
veto detector [2]. The enhancement near the threshold
is mainly produced by the a1-exchange mechanism. In
the vicinity of 1 GeV, the theoretical calculation pro-
duces a clear peak. This is the major result of the
present investigation. The meson-exchange model
straightforwardly produces the f0(980) meson as a peak
in the cross section, provided the momentum transfer is
sufficiently large. For large momentum transfers, there

KK

δ0
0

KS
0

Intensity |D0 |2/(40 MeV) 

150010005000
mππ, MeV

1.5

1.0

0.5

Fig. 6. The squares of the absolute values of the D0 partial-
wave amplitude are shown as a function of the invariant
two-pion mass for events in the region 0.01 < –t <
0.10 (GeV/c)2. The contribution due to pion exchange is
given by the solid curve, while the contribution due to a1
exchange is given by the dashed curve; the latter is negligi-
ble here. Circles represent the BNL-E852 data.

×105
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Fig. 7. The squares of the absolute values of the D0 partial-
wave amplitude are shown as a function of the invariant two-
pion mass for events in the region 0.4 < –t < 1.5 (GeV/c)2. For
a description of the theoretical curves and the experimental
data, see Fig. 6.

×103
is no missing strength between 1 and 1.3 GeV, in con-
trast to the situation at smaller momentum transfers.

In Fig. 5, we show the results obtained after switch-
ing off the coupling to the  channel. For small
momentum transfers (|t | < 0.2 (GeV/c)2), the dip disap-
pears. Likewise, for large momentum transfers (|t | >
0.4 (GeV/c)2), there is no peak near 1 GeV. We have to
conclude that, in the present model, the description of
the f0(980) meson as a quasibound  state is the
major ingredient that produces the strong variation of
the f0(980) production as a function of the momentum
transfer.

The partial wave D0 is dominated by the f2(1270),
which is included as a pole diagram in our model. We
find, indeed, a fair agreement with the experimental
data for both small (Fig. 6) and large (Fig. 7) momen-
tum transfers.

The slope parameters bπ and  and the amplitudes

Cπ and  summarize absorption effects and are
expected to change with the total available energy. For
analysis of the GAMS data, which were taken with a
beam momentum of 38 GeV/c, we employ Cπ = 0.77,
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Fig. 8. The squares of the absolute values of the S partial-wave amplitude obtained in the reaction π–p  π0π0n at a pion beam
momentum of 38 GeV/c by the GAMS collaboration [1] are shown as a function of the invariant two-pion mass for events averaged
over different t intervals. For a description of the theoretical curves, see Fig. 2. 
PHYSICS OF ATOMIC NUCLEI      Vol. 64      No. 4      2001



A MESON-THEORETICAL EXPLANATION 697
 = 0.001, bπ = 7.20 (GeV/c)–2, and  =

3.50 (GeV/c)–2. With this choice, the model can repro-
duce a dip in the S-wave amplitudes for small momen-
tum transfers and a peak at large momentum transfers,
see Fig. 8. One notices that the bump at mππ ~ 1 GeV
can be seen even more clearly than in the case of the
BNL-E852 data.

4. CONCLUSIONS
The present microscopic model shows that the

f0(980)-production puzzle in the reaction π–p 
π0π0n can be explained by meson dynamics. The a1
meson plays a crucial role in the reaction mechanism,
as was pointed out already by Achasov and Shestakov
[16]. The present meson-exchange model does not
include an explicit f0(980) resonance, but reproduces
the experimental scalar–isoscalar phase shifts by the
coupling to the  channel, where the attractive vec-
tor–meson exchange in the t channel generates a quasi-
bound state, as was already found in [8, 9]. The findings
of both the GAMS [1] and the BNL-E852 [2] collabo-
rations are therefore compatible with the assumption
that the f0(980) meson is a  molecule.
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Abstract—We compare two different possibilities of including meson-loop corrections in the Nambu–Jona-
Lasinio model: a strict 1/Nc expansion in the next-to-leading order and a nonperturbative scheme corresponding
to a one-meson-loop approximation to the effective action. Both schemes are consistent with chiral symmetry,
in particular, with the Goldstone theorem and the Gell-Mann–Oakes–Renner relation. The numerical part at
zero temperature focuses on the pion and the ρ-meson sector. For the latter, meson-loop corrections are crucial
in order to include the dominant ρ  ππ-decay channel, while the standard Hartree + RPA approximation
only contains unphysical -decay channels. We find that mπ, fπ, 〈 〉 , and quantities related to the ρ-meson
self-energy can be described reasonably with one parameter set in the 1/Nc-expansion scheme, whereas we did
not succeed in obtaining such a fit in the nonperturbative scheme. We also investigate the temperature depen-
dence of the quark condensate. Here, we find consistency with the chiral perturbation theory to the lowest order.
Similarities and differences of both schemes are discussed. © 2001 MAIK “Nauka/Interperiodica”.
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1. INTRODUCTION

During the last few years, one of the principal goals
in nuclear physics has been to explore the phase struc-
ture of QCD. Along with this comes the investigation of
hadron properties in a vacuum, as well as in hot or
dense matter. In principle, all properties of strongly
interacting particles should be derived from QCD.
However, at least in the low-energy regime, where per-
turbation theory is not applicable, this is presently lim-
ited to a rather small number of observables that can be
studied on a lattice, while more complex processes can
either be addressed by chiral perturbation theory or
within effective model calculations that try to incorpo-
rate the relevant degrees of freedom.

So far, the best descriptions of hadronic spectra,
decays, and scattering processes have been obtained
within phenomenological hadronic models. For
instance, the pion electromagnetic form factor in the
timelike region can be reproduced rather well within a
simple-vector dominance model with a dressed ρ meson,
which is constructed by coupling a bare ρ meson to a
two-pion intermediate state [1, 2]. Models of this type
have been successfully extended to investigate medium
modifications of vector mesons and to calculate dilepton
production rates in hot and dense hadronic matter [3].

In this situation, one might ask how the phenomeno-
logically successful hadronic models emerge from the
underlying quark structure and the symmetry proper-
ties of QCD. Since this question cannot be answered at
present from first principles, it has to be addressed
within quark models. For light hadrons, chiral symme-

* This article was submitted by the authors in English.
1063-7788/01/6404- $21.00 © 20698
try and its spontaneous breaking in a physical vacuum
through instantons play a decisive role in describing the
two-point correlation functions [4], with confinement
being much less important. This feature is captured by
the Nambu–Jona-Lasinio (NJL) model, in which the
four-fermion interactions can be viewed as being
induced by instantons. Furthermore, the model allows a
study of the chiral phase transition, as well as an exam-
ination of the influence of (partial) chiral-symmetry
restoration on the properties of light hadrons.

The study of hadrons within the NJL model has, of
course, a long history. In fact, mesons of various quan-
tum numbers have already been discussed in the origi-
nal papers by Nambu and Jona-Lasinio [5] and by many
authors thereafter (for reviews, see [6–8]).

In most of these works, quark masses are calculated
in the mean-field approximation (Hartree or Hartree–
Fock), while mesons are constructed as correlated
quark–antiquark states [random-phase approximation
(RPA)]. This corresponds to a leading-order approxi-
mation in 1/Nc, the inverse number of colors. With the
appropriate choice of parameters, chiral symmetry,
which is an (approximate) symmetry of the model
Lagrangian, is spontaneously broken in the vacuum and
pions emerge as (nearly) massless Goldstone bosons.
While this is clearly one of the successes of the model,
the description of other mesons is more problematic.
One reason is the fact that the NJL model does not con-
fine quarks. As a consequence, a meson can decay into
free constituent quarks if its mass is larger than twice the
constituent quark mass m. Hence, for a typical value of
m ~ 300 MeV, the ρ meson with a mass of 770 MeV, for
instance, would be unstable against decay into quarks.
001 MAIK “Nauka/Interperiodica”
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On the other hand, the physical decay channel of the ρ
meson into two pions is not included in the standard
approximation. Hence, even if a large constituent quark
mass is chosen in order to suppress the unphysical
decays into quarks, one obtains a poor description of
the ρ-meson propagator and related observables, like
the pion electromagnetic form factor.

Similar problems arise if one wants to study the
phase structure of strongly interacting matter within a
mean-field calculation for the NJL model, although this
has been done by many authors (see, e.g., [7–10]). In
these calculations, the thermodynamics is entirely
driven by unphysical unconfined quarks even at low
temperatures and densities, whereas the physical
degrees of freedom, in particular the pion, are missing.

This and other reasons have motivated several
authors to go beyond the standard approximation
scheme and to include mesonic fluctuations. In [11], a
quark–antiquark ρ meson is coupled via a quark trian-
gle to a two-pion state. Also, higher order corrections to
the quark self-energy [12] and to the quark condensate
[13] have been investigated. However, as the most
important feature of the NJL model is chiral symmetry,
one should use an approximation scheme which con-
serves the symmetry properties in order to ensure the
existence of massless Goldstone bosons.

A nonperturbative symmetry-conserving approxi-
mation scheme was discussed in [14, 15]. In [14], a cor-
rection term to the quark self-energy is included in the
gap equation. The authors find a consistent scheme to
describe mesons and show the validity of the Goldstone
theorem and the Goldberger–Treiman relation in that
scheme. The authors of [15] use a one-meson-loop
approximation to the effective action in a bosonized
NJL model. The structure of the meson propagators
turns out to be the same as in the approach of [14].
Based on this scheme, various authors have investi-
gated the effect of meson-loop corrections on the pion
electromagnetic form factor [16] and on ππ scattering
in the vector [17] and the scalar channel [18]. However,
since the numerical evaluation of the multiloop dia-
grams is rather involved, the exact expressions are
approximated by low-momentum expansions in these
references.

Another possible method for constructing a symme-
try-conserving approximate scheme beyond the Har-
tree approximation and RPA is a strict 1/Nc expansion
up to the next-to-leading order. Whereas, in the approx-
imation scheme mentioned above, the gap equation is
modified in a self-consistent way, the corrections in the
1/Nc-expansion scheme are perturbative. The consis-
tency of the 1/Nc-expansion scheme with chiral symme-
try was shown in [14]. It was studied in more detail in
[19, 20]. Recently, such an expansion was also dis-
cussed in the framework of a nonlocal generalization of
the NJL model [21].

In the present paper, we compare the results
obtained in the nonperturbative scheme with those
PHYSICS OF ATOMIC NUCLEI      Vol. 64      No. 4      2001
obtained in the 1/Nc-expansion scheme. In vacuum, we
focus our discussion on the pion and the ρ meson cal-
culated with the full momentum dependence of all
expressions. Within the 1/Nc-expansion scheme, the
influence of mesonic fluctuations on the pion propaga-
tor was examined closely in [19]. This was mainly
motivated by the recent works of Kleinert and Van den
Bossche [22], who claim that chiral symmetry is not
spontaneously broken in the NJL model as a result of
strong mesonic fluctuations. In [19], we argued that
because of the nonrenormalizability of the NJL model,
new divergences and, hence, new cutoff parameters
emerge if one includes meson loops. Following [14,
15], we regularize meson loops by an independent cut-
off parameter ΛM. The results are, of course, strongly
dependent on this parameter. Whereas, for moderate
values of ΛM, the pion properties change only quantita-
tively, strong instabilities are encountered for larger
values of ΛM. In [19], we suggested that this might hint
to instability of the spontaneously broken vacuum state.
It turns out that instabilities of the same type also
emerge in the nonperturbative scheme. This allows for
an analysis of the vacuum structure and, therefore, for
a more decisive answer to the question of whether
chiral symmetry indeed gets restored due to strong
mesonic fluctuations within this approximation.

In any case, in the 1/Nc-expansion scheme, the
region of parameter values where instabilities emerge
in the pion propagator is far away from the realistic
parameter set [20]. We used mπ, fπ, 〈 〉 , and the
ρ-meson spectral function to fix the parameters. The
last one is particularly suited to fix the parameters, as it
cannot be described realistically without taking into
account pion loops. An important result of the analysis
in [20] was that such a fit can be achieved with a con-
stituent quark mass that is large enough such that the
unphysical  threshold opens above the ρ-meson
peak. Since the constituent quark mass is not an inde-
pendent input parameter, this was not clear a priori. In
this paper, we will try the same for the self-consistent
scheme. It turns out that it is not possible to find a
parameter set where the constituent quark mass comes
out to be large enough to describe the properties of the
ρ meson reasonably. In fact, we encounter instabilities
in the ρ-meson propagator that are similar to those we
found in the pion propagator for large ΛM .

The inclusion of meson-loop effects should also
improve the thermodynamics of the model consider-
ably. A first insight into the influence of mesonic fluc-
tuations on the thermodynamics can be obtained via the
temperature dependence of the quark condensate. It
was shown in [23] that, in the self-consistent scheme,
the low-temperature behavior is dominated by pionic
degrees of freedom, which is a considerable improve-
ment on calculations in the Hartree approximation,
where quarks are the only degrees of freedom. Within
this scheme, the results obtained in lowest order chiral
perturbation theory can be reproduced. This is also the
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case for the 1/Nc-expansion scheme, which will be
demonstrated in the last part of this paper. The nonper-
turbative scheme also allows for an examination of the
chiral phase transition [23], whereas this is not possible
within the 1/Nc-expansion scheme.

The paper is organized as follows. In Section 2, we
begin with a brief summary of the standard approxima-
tion scheme used in the NJL model to describe quarks
and mesons and afterward present the scheme for
describing quantities in the next-to-leading order in
1/Nc. In Section 3, we discuss the nonperturbative
approximation scheme. The consistency of these
schemes with the Goldstone theorem and with the Gell-
Mann–Oakes–Renner (GOR) relation will be shown in
Section 4. The numerical results at zero temperature
will be presented in Section 5. The temperature depen-
dence of the quark condensate at nonzero temperature
within the above-mentioned approximation schemes
will be studied in Section 6. Finally, our conclusions
are drawn in Section 7.

2. THE NJL MODEL IN LEADING ORDER 
AND IN THE NEXT-TO-LEADING ORDER IN 1/Nc

2.1. The Standard Approximation Scheme: 
Hartree + RPA

We consider the generalized NJL-model Lagrangian

(2.1)

where ψ is a quark field with Nf = 2 flavors and Nc =
3 colors and gs and gv are coupling constants of dimen-
sion length2. In contrast to QCD, color is not related to
gauge symmetry in this model, but it is only related to
the counting of degrees of freedom. However, if one
defines the coupling constants to be of order 1/Nc , the
large-Nc behavior of the model agrees with that of QCD
[14, 15]. Although we are not interested in the behavior
of the model for arbitrary numbers of colors in the
present article, the 1/Nc expansion is introduced for the
purpose of book-keeping. This will allow us to take into
account mesonic fluctuations in a symmetry-conserv-
ing way. In order to establish the expansion scheme, the
number of colors will be formally treated as a variable.
All numerical calculations will be performed, however,
with the physical value of Nc = 3.

In the limit of vanishing current quark masses m0
(“chiral limit”), the above Lagrangian is invariant under
global SU(2)L × SU(2)R transformations. For a suffi-

+ ψ i∂̂ m0–( )ψ gs ψψ( )2 ψiγ5tψ( )2
+[ ]+=

– gv ψγµtψ( )
2

ψγµγ5tψ( )
2

+[ ] ,

= +

Fig. 1. The Dyson equation for the quark propagator in the
Hartree approximation (solid lines). The dashed lines
denote the bare quark propagator.
ciently large scalar attraction, this symmetry is sponta-
neously broken. This has mostly been studied within
the Bogolyubov–Hartree approximation.1)

The Dyson equation for the quark propagator in the
Hartree approximation is diagrammatically shown in
Fig. 1. The self-consistent solution of this equation
leads to a momentum-independent quark self-energy
ΣH and, therefore, only gives a correction to the quark
mass:

(2.2)

Usually, m is called the “constituent quark mass.” Here,
S(p) = (  – m)–1 is the (Hartree) quark propagator and
“tr” denotes a trace in color, flavor, and Dirac space.
The sum runs over all interaction channels M = σ, π, ρ,

a1 with Γσ = 1,  = iγ5τ a,  = γµτ a, and  =

γµγ5τa. The corresponding coupling constants are gM =
gs for M = σ or M = π and gM = gv for M = ρ or M = a1.
Of course, only the scalar channel (M = σ) contributes
in a vacuum. One gets

(2.3)

In a 1/Nc expansion of the quark self-energy, the Hartree
approximation corresponds to the leading order. Since gs
is of order 1/Nc, the constituent quark mass m and, hence,
the quark propagator are about unity.

For sufficiently large couplings gs, Eq. (2.3) allows
for a finite constituent quark mass m even in the chiral
limit. In the mean-field approximation, this solution min-
imizes the ground-state energy. Because of the related
gap in the quark spectrum, one usually refers to this
equation as the gap equation, in analogy to BCS theory.

A closely related quantity is the quark condensate,
which is generally given by

(2.4)

In a Hartree approximation, one immediately gets from
the gap equation

(2.5)

1)Because of the local 4-fermion interaction in the Lagrangian,
exchange diagrams can always be cast in the form of direct dia-
grams via a Fierz transformation. This is well known from zero-
range interactions in nuclear physics. In particular, the Hartree–
Fock approximation is equivalent to the Hartree approximation
with appropriately redefined coupling constants. In this sense, we
call the Hartree approximation the “standard approximation” to
the NJL model, although, in several references, the Hartree–Fock
approximation was performed.

m m0 ΣH m( )+=

=  m0 2igM
d

4
p

2π( )4
-------------tr ΓMS p( )[ ] .∫

M

∑+

p̂

Γπ
a Γρ

µa Γa1

µa

m m0 2igs4NcN f
d

4
p

2π( )4
------------- m

p
2

m
2

– ie+
-----------------------------.∫+=

ψψ〈 〉 i
d

4
p

2π( )4
-------------tr S p( ).∫–=

ψψ〈 〉 0( ) m m0–
2gs

----------------,–=
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where we have used the superscript (0) to indicate that
this corresponds to a Hartree approximation.

Mesons are described via a Bethe–Salpeter equa-
tion. Here, the leading order in 1/Nc is given by an RPA
without Pauli exchange diagrams. This is diagrammat-
ically shown in Fig. 2. The elementary building blocks
of this scheme are the quark–antiquark polarization
functions

(2.6)

with ΓM, M = σ, π, ρ, a1, as defined above. Again, the
trace has to be taken in color, flavor, and Dirac space.
Iterating the scalar (pseudoscalar) part of the four-fer-
mion interaction, one obtains for the sigma meson
(pion)

(2.7)

Here, a and b are isospin indices and we have used the

notation (q) ≡ Ππ(q)δab.

In the vector channel, this can be done in a similar
way. Using the transverse structure of the polarization
loop in the vector channel,

(2.8)

one obtains for the ρ meson

(2.9)

Analogously, a1 can be constructed from the transverse
part of the axial polarization function . As dis-

cussed, e.g., in [24],  also contains a longitudinal
part, which contributes to the pion. Although there is no
conceptional problem in including this mixing, we will
neglect it in the present paper in order to keep the struc-
ture of the model as simple as possible.

It follows from Eqs. (2.6)–(2.9) that the functions
DM(q) are of order 1/Nc . Their explicit forms are given
in Appendix B. For simplicity, we will call them “prop-
agators,” although, strictly speaking, they should be
interpreted as the product of a renormalized meson
propagator and a squared quark–meson coupling con-
stant. The latter is given by the inverse residue of the

ΠM q( ) = i
d

4
p

2π( )4
-------------tr ΓMiS p

q
2
---+ 

  Γ MiS p
q
2
---– 

  ,∫–

Dσ q( )
2gs–

1 2gsΠσ q( )–
--------------------------------,=

Dπ
ab

q( ) Dπ q( )δab≡
2gs–

1 2gsΠπ q( )–
--------------------------------δab.=

Ππ
ab

Πρ
µν ab,

q( ) Πρ q( )T
µνδab,=

T
µν

g
µν

– q
µ
q

ν

q
2

-----------+ 
  ,=

Dρ
µν ab,

q( ) Dρ q( )T
µνδab≡

2gv–
1 2gvΠρ q( )–
---------------------------------T

µνδab.=

Πa1

Πa1

µν
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function DM(q), while the pole position determines the
meson mass:

(2.10)

Again, the superscript (0) indicates that  and 
are quantities in RPA. One easily verifies that they are

of order unity and 1/ , respectively.

2.2 Next-to-Leading Order Corrections

With the help of the gap equation, Eq. (2.3), one can
show that the “standard scheme,” i.e., Hartree approxi-
mation + RPA, is consistent with chiral symmetry. For
instance, in the chiral limit, pions are massless, as
required by the Goldstone theorem. Of course, one
would like to preserve this feature when one goes beyond
the standard scheme. One way to accomplish this is to
perform a strict 1/Nc expansion systematically including
higher order corrections. In this subsection, we want to
construct the quark self-energy and the mesonic polar-
ization functions in next-to-leading order in 1/Nc.

The correction terms to the quark self-energy,

(2.11)

are shown in Fig. 3. In these diagrams, the single lines
and the double lines correspond to quark propagators in
the Hartree approximation (order unity) and to meson
propagators in the RPA (order 1/Nc), respectively.
Recalling that one obtains a factor Nc for a closed quark
loop, one finds that both diagrams are of order 1/Nc .
One can also easily convince oneself that there are no
other self-energy diagrams of that order.

According to Eq. (2.4), the 1/Nc correction to the
quark condensate is given by

(2.12)

DM
1–

q( )
q

2
mM

2 0( )
=

0, gMqq
2 0( )– dΠM q( )

dq
2

-------------------= =
q

2
mM

2 0( )
=

.

mM
2 0( )

gMqq
2 0( )–

Nc

δΣ p( ) δΣ a( ) δΣ b( )
p( ),+=

δ ψψ〈 〉 i
d

4
p

2π( )4
-------------trδS p( ),∫–=

= +

Fig. 2. The Bethe–Salpeter equation for the meson propaga-
tor in the RPA (double line). The solid lines indicate quark
propagators.

Fig. 3. The 1/Nc corrections δΣ(a) (left) and δΣ(b) (right) to
the quark self-energy.
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with

(2.13)

being the 1/Nc correction to the Hartree quark propaga-
tor S(p). Since we are interested in a strict 1/Nc expan-
sion, the self-energy correction must not be iterated.

The 1/Nc-corrected mesonic polarization diagrams
read

(2.14)

The four correction terms  to , together
with the leading-order term ΠM, are shown in Fig. 4.
Again, the lines in this figure correspond to Hartree
quarks and RPA mesons. Since the correction terms
consist of either one RPA propagator and one quark
loop or two RPA propagators and two quark loops, they
are of order unity, whereas the leading-order term is of
order Nc.

In analogy to Eqs. (2.7), (2.9), and (2.10), the cor-
rected meson propagators are given by

(2.15)

while the corrected meson masses are defined by the
pole positions of the propagators:

(2.16)

As we will see in Subsection 4.1, this scheme is consis-
tent with the Goldstone theorem; i.e., in the chiral limit,
it leads to massless pions. Note, however, that, because
of its implicit definition, mM contains terms of arbitrary
orders in 1/Nc , although we start from a strict expansion
of the inverse meson propagator up to the next-to-lead-
ing order. This will be important in the context of the
GOR relation.

δS p( ) S p( )δΣ p( )S p( )=

Π̃M q( ) ΠM q( ) δΠM
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D̃M
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RPA

(a) (b) (c) (d)

q, M1
p, M2

p' = –p – q, M3

p2, M2

p1, M1

p3, M3

p4, M4

Fig. 4. Contributions to the mesonic polarization function in
the leading (RPA) and the next-to-leading order in 1/Nc . 

Fig. 5. (Left) The quark triangle vertex (q, p).

(Right) The quark box vertex (p1, p2, p3).

iΓM1 M2 M3, ,–

iΓM1 M2 M3 M4, , ,–
For a more explicit evaluation of the correction
terms, it is advantageous to introduce the quark triangle
and box diagrams, which are shown in Fig. 5. The tri-

angle diagrams entering into δΣ(a), , and 
can be interpreted as effective three-meson vertices.
For external mesons M1, M2, and M3, they are given by

(2.17)

with the operators ΓM as defined below Eq. (2.2). We
have summed over both possible orientations of the
quark loop. For later convenience, we also define the
constant

(2.18)

which corresponds to a quark triangle coupled to an
external scalar vertex and a closed meson loop.

The quark box diagrams are effective four-meson

vertices and are needed for the evaluation of  and

. If one again sums over both orientations of the
quark loop, they are given by

(2.19)

With these definitions, the various diagrams can be
written in a relatively compact form. For the momen-
tum-independent correction term to the quark self-
energy, we get

(2.20)

In principle, there should also be a sum over the quan-
tum numbers of the meson that connects the quark loop
with the external quark legs, but all contributions from
mesons other than the σ meson vanish. The factor of
1/2 is a necessary symmetry factor because, otherwise,
the sum over the two orientations of the quark propaga-
tors [which is contained in the definition of the quark
triangle vertex (Eq. (2.7))] would lead to double count-
ing.
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The evaluation of the momentum-dependent correc-
tion term δΣ(b) is straightforward:

(2.21)

Inserting these expressions for δΣ(a) and δΣ(b) into
Eq. (2.13), we can recast the 1/Nc-correction term to the
quark condensate, Eq. (2.12), into the form

(2.22)

For the mesonic polarization diagrams, we get

(2.23)

The symmetry factor of 1/2 for  and  has

the same origin as in Eq. (2.20). Similarly, in , we
had to correct for the fact that the exchange of M1 and
M2 leads to identical diagrams.

For the further evaluation of Eqs. (2.20) to (2.23),
we proceed in two steps. In the first step, we calculate
the intermediate RPA meson propagators. We can
simultaneously calculate the quark triangles and box
diagrams. One is then left with a meson loop, which has
to be evaluated in a second step.

The various sums in Eqs. (2.20) to (2.23) are, in
principle, over all quantum numbers of the intermediate
mesons. However, for most applications, we expect that
the most important contributions come from the pion,
which is the lightest particle in the game. For instance,
the change of the quark condensate at low temperatures
should be dominated by thermally excited pions. Also,
for a proper description of the ρ-meson width in a vac-
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uum, we only need the two-pion intermediate state in

diagram . Other contributions to this diagram,
i.e., πa1, ρσ, ρρ, and a1a1 intermediate states, are much
less important since the corresponding decay channels
open far above the ρ-meson mass and—in the NJL
model—also above the unphysical two-quark thresh-
old. Hence, from a purely phenomenological point of
view, it should be sufficient for many applications to
restrict the sums in Eq. (2.23) to intermediate pions.
However, in order to stay consistent with chiral symme-
try, we have to include intermediate σ mesons as well.
On the other hand, vector and axial-vector mesons can
be neglected without violating chiral symmetry. Since
this leads to an appreciable simplification of the numer-
ics, we have restricted the intermediate degrees of free-
dom to scalar and pseudoscalar mesons in the present
paper. Of course, in order to describe a ρ meson, we
have to take vector couplings at the external vertices of
the diagrams shown in Fig. 4.

3. NONPERTURBATIVE 
SYMMETRY-CONSERVING SCHEMES

3.1. Axial Ward identities

The disadvantage of the 1/Nc-expansion scheme is
that it is perturbative. Although we have constructed the
1/Nc corrections to the Hartree quark self-energy
(Fig. 3), we did not self-consistently include such dia-
grams in the gap equation. Since the iteration would
produce terms of arbitrary orders in 1/Nc , one is not
allowed to do so in a strict expansion scheme. There-
fore, all correction diagrams we have discussed in the
previous section consist of “Hartree” quark propaga-
tors. This perturbative treatment should work rather
well as long as the 1/Nc corrections to the quark self-
energy are small compared with the leading order, i.e.,
the constituent quark mass. On the other hand, it is clear
that the scheme must fail to describe the chiral phase
transition, e.g., at finite temperatures. Here, a nonper-
turbative treatment is mandatory.

Therefore, in this section, we want to follow a dif-
ferent strategy, exploiting the fact that the Goldstone
theorem is basically a consequence of Ward identities.

Consider an external axial current  coupled to a
quark. Then, in the chiral limit, the corresponding ver-

tex function  is related to the quark propagator S(p)
via the axial Ward–Takahashi identity:

(3.1)

where p and p + q are the 4-momenta of the incoming
and the outgoing quark, respectively. Obviously, for a
nonvanishing constituent quark mass, the right-hand
side of this equation remains finite even for q  0.

Consequently, (p, q) must have a pole in this limit
that can be identified with the Goldstone boson. More-

δΠM
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p q,( ) S
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a
S
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p( ),+=
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over, the explicit structure of the Goldstone boson can
be constructed from the structure of the axial vertex
function.

As a first example, let us start again from the Hartree
gap equation [Eq. (2.2), Fig. 1] and construct the axial
vertex function by coupling the propagator to an exter-
nal axial current. This is illustrated in Fig. 6. In the
upper line, the first term on the right-hand side
describes the coupling to the bare quark corresponding
to the bare vertex γµγ5τa. In the second term, however,
the current is coupled to a dressed quark; therefore, we
have to use the same vertex function as on the left-hand
side of the equation

(3.2)

Here, S(k) denotes the quark propagator in the Hartree
approximation. As in Eq. (2.2), the sum runs over all

Γµ5
a

p q,( ) γµγ5τ
a

=

+ 2igMΓ M
d

4
k

2π( )4
-------------tr ΓMS k q+( )Γµ5

a
k q,( )S k( )[ ] .∫

M

∑

+=

+ +

+

=

=

+ ...

Fig. 6. Vertex function for an external axial current coupled
to a “Hartree” quark.

Fig. 7. Self-consistent scheme with a nonlocal self-energy
term: gap equation (upper part), equation for the vertex func-
tion of an external current (middle), and the corresponding
equation for the quark–antiquark T matrix (lower part). The
double line denotes an RPA meson propagator (see Fig. 2),
which is self-consistently constructed from the dressed-
quark propagators of the present equation (solid line).

= + +

= + ++

= + + +

+ ++=

+ ++
interaction channels, but, of course, only the pseudos-
calar and the axial vector contributions do not vanish.
Contracting Eq. (3.2) with qµ, one obtains a linear equa-

tion for . One can easily verify that, in the chiral
limit, the solution of this equation is given by the axial
Ward–Takahashi identity, Eq. (3.1). To this end, we

replace  on both sides of the equation by the
expressions given by Eq. (3.1) and check whether the
results agree. On the right-hand side, the insertion of
Eq. (3.1) basically amounts to removing one of the
quark propagators from the loop. In this way, the loop
receives the structure of the quark self-energy and we
can use the gap equation, Eq. (2.2), to simplify the
expression. For m0 = 0, the result turns out to be equal
to the left-hand side of the equation, which proves the
validity of the axial Ward–Takahashi in this scheme.

We have seen above that this implies the existence
of a massless Goldstone boson in the chiral limit. As
illustrated in the second and the third line of Fig. 6, the
self-consistent structure of Eq. (3.2) for the dressed ver-

tex  leads to an iteration of the quark loop and an
RPA pion emerges. Hence, we can identify the Gold-
stone boson with an RPA pion.

Obviously, the above procedure can be generalized
to other cases. Starting from any given gap equation for
the quark propagator, we construct the vertex function
to an external axial current by coupling the current in
all possible ways to the right-hand side of the equation.
As long as the gap equation does not violate chiral sym-
metry, this automatically guarantees the validity of the
axial Ward–Takahashi identity and, therefore, the exist-
ence of a massless pion in the chiral limit. The structure
of this pion can then be obtained from the structure of
the vertex correction.

As an example, we start from the extended gap
equation depicted in the upper part of Fig. 7. There, in
addition to the Hartree term, the quark is dressed by
RPA mesons. These are defined in the same way as
before (Fig. 2), but now self-consistently using the
quark propagator which results from the extended gap
equation. Therefore, the RPA pions are no longer mass-
less in the chiral limit. However, following the strategy
described above, we can construct the consistent pion
propagator. To that end, we again couple an external
axial current to both sides of the gap equation. The
resulting equation for the vertex function is also shown
in Fig. 7 (middle part). The additional term in the gap
equation leads to two new diagrams, which were not
present in Fig. 6. In the first, the current couples to a
quark–antiquark loop of the RPA meson, while, in the
second, it couples to the quark inside of the meson loop.
Again, one can easily check that the vertex function and
the quark propagator fulfill the axial Ward–Takahashi
identity, Eq. (3.1), in the chiral limit.

In principle, one can construct the corresponding
massless Goldstone boson from the quark–antiquark T

qµΓµ5
a

qµΓµ5
a

Γµ5
a
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matrix given in the lower part of Fig. 7. In practice,
however, this is very difficult. In fact, even solving the
extended gap equation is difficult, since the additional
self-energy term is nonlocal, leading to a nontrivial 4-
momentum dependence of the quark propagator. Note
that this propagator has to be self-consistently used for
the calculation of the RPA-meson propagator. There-
fore, the authors of [14] suggested droping the nonlocal
terms, but retaining a particular class of local diagrams
that arises from the combined iteration of the quark
loop and the meson loop. This gap equation is shown in
Fig. 8. Because of the restriction to local self-energy
insertions, we will call this scheme the “local self-con-
sistent scheme” (LSS). It will be discussed in the next
subsection.

3.2. The Local Self-Consistent Scheme

The gap equation for the constituent quark mass in
the LSS (upper part of Fig. 8) reads

(3.3)

Here, ΣH is the Hartree contribution to the self-energy

as defined in Eq. (2.2). The correction term  corre-
sponds to the third diagram on the right-hand side of
Fig. 8. We have explicitly indicated that the self-energy
diagrams have to be evaluated self-consistently at the
quark mass m, which comes out of the equation.

Because of the new diagram , this mass is, in gen-
eral, different from the Hartree mass. However, since
all diagrams in the LSS are constructed from the con-
stituent quarks of Eq. (3.3), we prefer not to introduce
a new symbol for this mass. This has the advantage that
we can also keep the notation for the quark propagator
S(p) = (  – m)–1, quark–antiquark loops, triangles, etc.
that we introduced earlier. The general structure of
these diagrams is the same in all schemes we discuss in
this article. Therefore, we introduce the convention
that, in the 1/Nc-expansion scheme, m denotes the Har-
tree mass, while it denotes the solution of Eq. (3.3) in
the LSS, and all diagrams should be evaluated at that
mass, unless otherwise stated.

The self-energy term  consists of a quark loop
dressed by an RPA-meson loop. The quark loop is cou-
pled to the external quark propagators via the NJL point
interaction. It can again be shown that only the scalar

interaction contributes. Hence,  is given by

(3.4)

where ∆ is the constant defined in Eq. (2.18).
Because of this additional self-energy diagram in

the gap equation, the RPA is not the consistent scheme
to describe mesons: in the chiral limit, RPA pions are
no longer massless. Hence, in order to find the consis-
tent meson propagators, we proceed in the way dis-
cussed in the previous subsection.

m m0 Σ̃ m( )+ m0 ΣH m( ) δΣ̃ m( ).+ += =

δΣ̃

δΣ̃

p̂

δΣ̃

δΣ̃

δΣ̃ 2gs∆,–=
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The equation for the axial vertex function is shown
in the middle part of Fig. 8. Compared with the corre-
sponding equation that follows from the Hartree
approximation (Fig. 6), there are three extra terms. This
leads to three additional polarization diagrams, which
have to be iterated in the Bethe–Salpeter equation for
the consistent meson propagator (lower part of Fig. 8).

Obviously, these diagrams are identical to ,

, and , which we defined in Subsection 2.2
[Fig. 4, Eq. (2.23)]; i.e., the new meson propagators are
given by

(3.5)

with

(3.6)

This structure agrees with the result of [14]. In that
reference, the scheme was motivated by a 1/Nc expan-
sion. However, one should again stress that the self-
consistent solution of the gap equation mixes all orders
in 1/Nc . Moreover, the next-to-leading-order self-
energy correction term δΣ(b) (cf. Fig. 3) is not contained
in the gap equation of Fig. 8. Therefore, the consistency
of the scheme cannot be explained by 1/Nc arguments.
In fact, our discussion shows that the structure of the
consistent pion propagator can be derived from the gap
equation without any reference to 1/Nc counting.

On the other hand, if one performs a strict 1/Nc
expansion of the mesonic polarization diagrams up to
the next-to-leading order, one exactly recovers the dia-
grams shown in Fig. 4 [14]. This is quite obvious for the

diagrams  to , which are explicitly con-

tained in poltilde. The diagram , which seems to
be missing, is implicitly contained in the quark–anti-
quark loop via the next-to-leading-order terms in the

δΠM
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1 2gMΠ̃M q( )–
-----------------------------------,=

Π̃M q( ) ΠM q( ) δΠM
k( )

q( ).
k a b c, ,=

∑+=

δΠM
a( ) δΠM

c( )

δΠM
d( )

+ + + +=

= + + + +

+ +=

Fig. 8. The “local self-consistent scheme”: gap equation
(upper part), equation for the vertex function of an external
current (middle), and the corresponding equation for the
consistent meson propagator (lower part). The double curve
denotes an RPA meson propagator (see Fig. 2) that is self-
consistently constructed from the dressed-quark propaga-
tors of the present equation (solid curve).
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quark propagator, which arise from the extended gap
equation.

In this sense, the LSS may be viewed as the simplest
nonperturbative extension of the standard scheme
which is consistent with the Goldstone theorem and
which contains all mesonic polarization diagrams up to
next-to-leading order in 1/Nc. However, since the dia-
gram δΣ(b) is not contained in the gap equation, this is
not true for the quark condensate: if we evaluate
Eq. (2.4) with the quark propagator of the present
scheme, we obtain

(3.7)

Performing a strict 1/Nc expansion of this expression
and only keeping the next-to-leading order term, one
does not recover Eq. (2.22) but only the contribution of
δΣ(a). This might be the reason why the authors of [14]
determine the quark condensate as

(3.8)

In contrast to Eq. (3.7), this expression reduces to the
perturbative result in a strict 1/Nc expansion. Moreover,
as we will discuss in Subsection 4.2, it is consistent
with the GOR relation. On the other hand, Eq. (3.8)
obviously does not follow from Eq. (2.4) with the quark
propagator of the present scheme. A possible resolution
to this problem was given in [15], where the LSS was
derived using functional methods. The meson propaga-
tors obtained in this way are identical to Eqs. (3.5) and
(3.6), while the quark condensate is given by Eq. (3.8).
This will be briefly discussed in the following subsec-
tion.

Finally, we would like to comment on the name
“local self-consistent scheme,” which we have intro-
duced in order to distinguish this scheme from the per-
turbative 1/Nc expansion. We call this scheme “self-
consistent” because the quark propagator which is
determined by the gap equation is self-consistently
used in the loops and the RPA-meson propagator on the
right-hand side of the equation. However, as we have
seen, the scheme is not self-consistent with respect to
the mesons: the improved meson propagators given by
Eqs. (3.5) and (3.6) are different from the RPA mesons
which are used in the gap equation and hence as inter-
mediate states in the mesonic polarization functions
δΣ(a) to δΣ(c). On the other hand, if we had used the
improved mesons already in the gap equation, our
method of Subsection 3.1 would have led to further
mesonic polarization diagrams in order to be consistent
with chiral symmetry. Obviously, the construction of an
expansion scheme which is self-consistent for quarks
and mesons is an extremely difficult task.

ψψ〈 〉
ΣH

2gs

--------–
m m0–

2gs

----------------– ∆.–= =

ψψ〈 〉 Σ̃
2gs

--------–
m m0–

2gs

----------------.–= =
3.3 One-Meson-Loop Order in the Effective Action 
Formalism

Both the nonlocal self-consistent scheme, which we
briefly discussed in Subsection 3.1 (Fig. 7), and the
local self-consistent scheme can be derived from func-
tional methods: the nonlocal self-consistent scheme
can be obtained as a Φ-derivable theory [25, 26] if one
includes the “ring sum” in the generating functional.
The present section is devoted to a brief discussion on
how the local self-consistent scheme can be derived
from a one-meson-loop approximation to the effective
action. The interested reader is referred to [15, 27].
Here, we will basically follow [15].

In this section, we drop the vector and the axial-vec-
tor interaction and start from a Lagrangian which con-
tains only scalar and pseudoscalar interaction terms:

(3.9)

The partition function of the system can be expressed in
terms of the path integral

(3.10)

with the Euclidean action

(3.11)

The integration here is over a Euclidean spacetime vol-
ume d4xE , where ∂τ corresponds to i∂t . The standard
procedure is now to bosonize the action by introducing
auxiliary fields , a = {0, 1, 2, 3}:

(3.12)

with Γa = (1, iγ5t). Then, the action contains only bilin-
ear terms in the quark fields, so that they can be inte-
grated out. After performing a shift of the auxiliary
fields, Φa =  + (m0, 0), one finally arrives at the
bosonized action

(3.13)

where S–1 is the Dirac operator

(3.14)

The symbol tr in Eq. (3.13) is to be understood as a
functional trace and a trace over internal degrees of
freedom like flavor, color, and spin; trlnS–1 is the quark-

+ ψ i∂̂ m0–( )ψ gs ψψ( )2 ψiγ5tψ( )2
+[ ] .+=

Z e
W– $ ψ†( )$ ψ( )e

I ψ† ψ,( )–
,∫= =

I ψ† ψ,( ) d
4
xE ψ†γ0 ∂τγ0 ig– — m0+⋅( )ψ{∫=

– gs ψ†γ0ψ( )
2

ψ†γ0iγ5tψ( )
2

+( ) } .

Φa'

Z $ ψ†( )$ ψ( )$ Φa'( )∫=

× I ψ† ψ,( )–
1

4gs

-------- d
4
xE Φa' 2gsψ

†γ0Γaψ+( )
2

∫–
 
 
 

,exp

Φa'

I Φ( ) = tr S
1–

ln–
1

4gs

-------- d
4
xE Φ2

2m0Φ0– m0
2

+( ),∫+

S
1– γ0∂τ ig– — ΓaΦa.+⋅=
PHYSICS OF ATOMIC NUCLEI      Vol. 64      No. 4      2001



MESON-LOOP EFFECTS IN THE NJL MODEL 707
loop contribution. The imaginary part of this term van-
ishes for the SU(2) case and we can rewrite the action as

(3.15)

The effective action Γ(Φ) is defined as a Legendre
transform of the generating functional W( j ). Its sta-
tionary point 〈Φa 〉 , i.e.,

(3.16)

represents the vacuum expectation values of the fields.
The quark condensate can be expressed via the

expectation value of Φ0. It is given as

(3.17)

Another important feature of the effective action is that
the inverse propagators of the fields (in our case, the
propagators for π and σ mesons) can be generated in a
symmetry-conserving way by second-order derivatives:

(3.18)

To obtain an expression for the effective action, the
path integral is evaluated using the saddle-point
approximation. The lowest order contribution to the
effective action is

(3.19)

This corresponds to the mean-field (Hartree) approxi-
mation [27]. The vacuum expectation values of the
fields in the mean-field approximation coincide with
the stationary point of the action I(Φ). This is obvious
if one combines Eqs. (3.16) and (3.19). Including qua-
dratic mesonic fluctuations leads to the following
expression for the effective action [27]:

(3.20)

The second term in the above expression contains the
mesonic fluctuations. As discussed in [27], the method
is only meaningful if the second-order functional deriv-
ative which enters into this term is positive definite.
Otherwise, severe problems arise due to an ill-defined
logarithm, which would then be complex. We will
come back to this point in Subsection 5.2.

Determining the stationary point of the effective action
in Eq. (3.20) leads to the following “gap equation” [15]:

(3.21)

Here, ΣH and  are the same functions we already
defined in Eqs. (2.2) and (3.4) in the context of the Har-
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tree and the LSS gap equation. In fact, Eq. (3.21) is
identical to the LSS gap equation, Eq. (3.3), if we iden-
tify 〈Φ0〉  with the LSS-constituent quark mass m.

In the same way, we exactly recover the meson
structure of the LSS if we evaluate Eq. (3.18) at the sta-
tionary point. This means that the “local self-consistent
scheme” which was constructed from a somewhat arbi-
trary starting point in Subsection 3.2 can be derived in
a systematic way in the effective action formalism.
However, the interpretation is different: as emphasized
in [15], the solution of the gap equation is only the
expectation value of the Φ0 field and does not corre-
spond to the pole of the quark propagator. This
becomes clear if we look at the quark condensate,
which is given by Eq. (3.17). The right-hand side of this
equation is identical to Eq. (3.8) and is therefore differ-
ent from Eq. (3.7), which was derived by taking the
trace over what we called the “quark propagator” in
Subsection 3.2.

Hence, within the effective-action formalism,
Eq. (3.8) is the correct expression for the quark conden-
sate (in that approximation scheme), whereas the gap
equation should not be interpreted as an equation for
the corresponding inverse quark propagator. In the fol-
lowing, we will adopt this point of view. For simplicity,
however, we will still call m a “constituent quark mass”
and (  – m)–1 a “quark propagator,” although this is not
entirely correct.

4. CONSISTENCY WITH CHIRAL SYMMETRY

By construction, the LSS is consistent with axial
Ward–Takahashi identities and hence—as discussed in
Section 1—with the Goldstone theorem. Since the
mesonic polarization functions of the LSS contain all
diagrams up to the next-to-leading order of the 1/Nc-
expansion scheme and since the various contributions
to the pion mass have to cancel order by order in the
chiral limit, this implies that the 1/Nc scheme discussed
in Subsection 2.2 is also consistent with the Goldstone
theorem.

Nevertheless, for numerical implementation, it is
instructive to show the consistency of the different
schemes with chiral symmetry on a less formal level.
Since most of the integrals that have to be evaluated are
divergent and must be regularized, one has to ensure
that the various symmetry relations are not destroyed
by the regularization. To this end, it is important to
know how these relations emerge in detail. This will also
enable us to perform approximations without violating
chiral symmetry. As we will see in Subsection 5.2, this is
very important for practical calculations within the
LSS, which cannot be applied as it stands.

For both the 1/Nc expansion and the LSS, we begin
our discussion with the explicit proof of the Goldstone
theorem. This was given first by Dmitra inovi  et al.
[14]. After that, we discuss the GOR relation. This is of
particular interest in the context of the proper definition

p̂

s

ˆ

ć
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of the quark condensate in the LSS [cf. Eqs. (3.7) and
(3.8)].

4.1. 1/Nc Expansion

We begin with the 1/Nc expansion scheme. For the
Goldstone theorem, one has to show that, in the chiral
limit, the inverse pion propagator vanishes at zero
momentum:

(4.1)

As before, we use the notation  = . The func-

tion  has been defined in Eq. (2.14). It consists of

the RPA-polarization loop  and the four 1/Nc-cor-

rection diagrams  k = a, b, c, d. Restricting the
calculation to the chiral limit and to zero momentum
simplifies the expressions considerably, and Eq. (4.1)
can be proven analytically.

For the RPA loop, one obtains

(4.2)

This is the relation that guarantees the consistency of
the Hartree + RPA scheme: in the Hartree approxima-
tion, we have m = m0 + ΣH; hence, Eq. (4.1) is fulfilled
by Eq. (4.2). Since the gap equation is not changed in
the perturbative 1/Nc expansion, this remains true if we
include the next-to-leading order. Therefore, we have to
show that the contributions of the correction terms add
up to zero:

(4.3)

The correction terms  are defined in Eq. (2.23).

Let us begin with the diagram . As mentioned
above, we neglect the ρ and a1 subspace for intermedi-
ate mesons. Then, one can easily see that the external
pion can only couple to a πσ intermediate state. Evalu-
ating the trace in Eq. (2.17) for zero external momen-
tum, one gets for the corresponding triangle diagram

(4.4)

with a and b being isospin indices and the elementary
integral

(4.5)

Inserting this into Eq. (2.23), we find

(4.6)

2gsΠ̃π 0( ) 1 for m0 0.= =

Π̃π
ab δabΠ̃π

Π̃π
ab

Ππ
ab

δΠπ
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2π( )4
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k
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m
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m

2
– iε+( )

---------------------------------------------------------------------------------.∫

δΠπ
a( )ab

0( )

=  iδab
d

4
p

2π( )4
------------- 4NcN f I p( )( )2

4m
2
Dσ p( )Dπ p( ).∫
Now, the essential step is to realize that the product of
the RPA-sigma and pion propagators can be converted
into a difference [14],

(4.7)

to finally obtain

(4.8)

The next two diagrams can be evaluated straightfor-
wardly. One finds

(4.9)

The elementary integral K(p) is of the same type as the
integral I(p) and is defined in Appendix A.

Finally, we have to calculate (0). According to
Eq. (2.23), it can be written in the form

(4.10)

For the constant ∆ defined in Eq. (2.18), one obtains

(4.11)

Evaluating Dσ(0) in the chiral limit and comparing the
result with Eq. (4.4), one finds that the product of the
first two factors in Eq. (4.10) is simply δab/m; i.e., one
gets

(4.12)

With these results it can be easily checked that Eq. (4.3)
indeed holds in this scheme.

As already pointed out, most of the integrals we
have to deal with are divergent and have to be regular-
ized. Therefore, one has to make sure that all steps that
lead to Eq. (4.3) remain valid in the regularized model.
One important observation is that the cancellations
occur already at the level of the p integrand, i.e., before
performing the meson-loop integral. This means that

Dσ p( )Dπ p( ) i
Dσ p( ) Dπ p( )–

4NcN f 2m
2
I p( )

--------------------------------------,=
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there is no restriction on the regularization of this loop.
We also do not need to perform the various quark loop
integrals explicitly, but we have to make use of several
relations between them. For instance, in order to arrive
at Eq. (4.12) we need the similar structure of the quark
triangle Γπ, π, σ(0, 0) and the inverse RPA propagator
Dσ(0)–1. Therefore, all quark loops, i.e., RPA polariza-
tions, triangles, and box diagrams, should be consis-
tently regularized within the same scheme, whereas the
meson loops can be regularized independently.

Going away from the chiral limit, the pion receives
a finite mass. To lowest order in the current quark mass,
it is given by the GOR relation

(4.13)

However, in the 1/Nc-expansion scheme, we cannot
expect that the GOR relation holds in this form. In Sec-
tion 2, we calculated the quark condensate in the lead-
ing order and the next-to-leading order in 1/Nc . Hence,
to be consistent, we should also expand the left-hand
side of the GOR relation up to the next-to-leading order
in 1/Nc:

(4.14)

Here, similar to the notation we already introduced for

the quark condensate,  and  denote the lead-

ing-order and  and  the next-to-leading-order
contributions to the squared pion mass and the squared
pion decay constant, respectively. Since the GOR rela-
tion holds only in the lowest order in m0 , Eq. (4.14) cor-

responds to a double expansion:  has to be calcu-

lated in the linear order in m0, , and 〈 〉 , in the
chiral limit.

The leading-order and next-to-leading-order
expressions for the quark condensate are given in
Eqs. (2.5) and (2.22). The pion decay constant fπ is cal-
culated from the one-pion to vacuum axial-vector
matrix element. Basically, this corresponds to evaluat-
ing the mesonic polarization diagrams, Fig. 4, coupled
to an external axial current and to a pion. This leads to
expressions similar to Eqs. (2.6) and (2.23), but with
one external vertex equal to γµγ5τa/2, corresponding to
the axial current, and the second external vertex equal
to gπqqiγ5τb, corresponding to the pion. Here, the 1/Nc-
corrected pion–quark coupling constant is defined as

(4.15)

analogously to Eq. (2.10). Now, we take the divergence
of the axial current and then use the relation

(4.16)

mπ
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to simplify the expressions [14]. One finds

(4.17)

In the chiral limit, q2 =   0, Eqs. (2.10) and
(4.15) can be employed to replace the difference ratios
on the right-hand side by pion–quark coupling con-
stants. When we square this result and only keep the
leading order and the next-to-leading order in 1/Nc, we
finally obtain

(4.18)

For the pion mass, we start from Eqs. (2.15) and
(2.16) and expand the inverse pion propagator around
q2 = 0:

(4.19)

To find  in the lowest nonvanishing order in m0, we

have to expand 1 – 2gs (0) up to the linear order in
m0 , while the derivative has to be calculated in the
chiral limit, where it can be identified with the inverse
squared pion–quark coupling constant, Eq. (4.15). The
result can be written in the form

(4.20)

Finally, one has to expand this equation in powers of

1/Nc . This amounts to expanding , which is the
only term in Eq. (4.20) which is not of a definite order
in 1/Nc . One gets

(4.21)

It can be seen immediately that the leading-order term

is exactly equal to –m0〈 〉 (0)/  as required by the
GOR relation. Moreover, combining Eqs. (2.22),
(4.18), and (4.21), one finds that the GOR relation in
next-to-leading order, Eq. (4.14), holds in this scheme.

However, one should emphasize that this result is
obtained by a strict 1/Nc expansion of the various prop-
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erties which enter into the GOR relation and of the
GOR relation itself. If one takes fπ and mπ as they result
from Eqs. (4.17) and (4.20) and inserts them into the
left-hand side of Eq. (4.13), one will in general find
deviations from the right-hand side which are due to
higher order terms in 1/Nc . In this sense, one can take
the violation of the GOR relation as a measure for the
importance of these higher order terms [19].

4.2. Local Self-Consistent Scheme

The proof of the Goldstone theorem in the LSS is
very similar to that in the 1/Nc-expansion scheme.
Therefore, we can be brief, concentrating on the steps
which are different.

Again, we have to show the validity of Eq. (4.1). In

the LSS, the function  is given by Eq. (3.6); i.e., it
differs from the corresponding function in the 1/Nc-
expansion scheme (Eq. (2.14)) by the fact that the dia-

gram  is (formally) missing. (As we already dis-
cussed, it is implicitly contained in the RPA diagram.)
The other diagrams have the same structure as before,
and we can largely use the results of the previous sub-
section. However, we should keep in mind that the con-
stituent quark mass is now given by the extended gap
equation, Eq. (3.3). Therefore, the right-hand side of
Eq. (4.2) is different from unity in the chiral limit and
RPA pions are not massless. This has important conse-
quences for the practical calculations within this
scheme, which will be discussed in greater detail in
Subsection 5.2.

Using Eqs. (4.8), (4.9), and (4.11), as well as
Eq. (3.4), we get for the correction terms to the pion
polarization function

(4.22)

Hence, together with the modified gap equation (3.3),
we find

(4.23)

in agreement with Eq. (4.1).

The discussion concerning the regularization proce-
dure can be repeated here. The structure of the proof
again leads to the conclusion that we have to regularize
all quark loops in the same way, whereas we have the
freedom to choose the regularization for the meson
loops independently.

Another important observation is that we do not
need the explicit form of the RPA propagators; Dσ(p)
and Dπ(p) only need to fulfill Eq. (4.7). Thus, approxi-
mations to the RPA propagators can be made as long as
Eq. (4.7) remains valid.
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2gsm
------------.= =
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m
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For a nonvanishing current quark mass, the pion
mass is given by the GOR relation (Eq. (4.13)). To the
linear order in m0, this relation holds exactly in the LSS,
if we choose the appropriate definition of the quark
condensate. This will be demonstrated in the following.

For the pion decay constant fπ, we follow the same
steps as in the 1/Nc-expansion scheme to arrive at the
following expression:

(4.24)

Here, the modified pion–quark coupling constant is
defined as

(4.25)

In the chiral limit,   0, the difference ratio on the
right-hand side of Eq. (4.24) can be replaced by the
pion–quark coupling constant [Eq. (4.25)]. This leads
to the Goldberger–Treiman relation

(4.26)

Following the analogous steps which led us to
Eq. (4.20), we find for the pion mass

(4.27)

Multiplying this by  as given by Eq. (4.26), we get
to the linear order in m0:

(4.28)

Obviously, this is consistent with the GOR relation
(Eq. (4.13)) if the quark condensate is given by Eq. (3.8),
but not if it is given by Eq. (3.7). In Subsection 3.3, we
saw that, within the effective action formalism, the
quark condensate is given by Eq. (3.8). Therefore, at
this point, we clearly see that the interpretation of m as
a constituent quark mass, which would mean that we
have to calculate the quark condensate according to
Eq. (3.7), leads to a contradiction with the GOR rela-
tion. Therefore, in the numerical part, we will calculate
the quark condensate according to Eq. (3.8).

5. NUMERICAL RESULTS AT ZERO 
TEMPERATURE

In this section, we present our numerical results at
zero temperature. We begin with a brief description of
the regularization scheme and then discuss peculiarities
related to the solution of the gap equation in the LSS.
After that, we study the influence of mesonic fluctua-
tions on quantities in the pion sector, thereby focusing
on possible instabilities. Finally, we perform a refit of
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these quantities within the 1/Nc-expansion scheme and
the LSS and apply the model to observables in the ρ-
meson sector.

5.1. Regularization

Before we begin with the explicit calculation, we
have to fix our regularization scheme. As discussed in
Section 4, all quark loops, i.e., the RPA polarization
diagrams, the quark triangles, and the quark box dia-
grams, must be regularized in the same way in order to
preserve chiral symmetry. We use Pauli–Villars regu-
larization with two regulators; i.e., we replace

(5.1)

with

(5.2)

Here, Λq is a cutoff parameter.
The regularization of the meson loop (integration

over d4p in Eq. (2.23)) is not constrained by chiral sym-
metry and is independent of the quark-loop regulariza-
tion. For practical reasons, we choose a three-dimen-
sional cutoff ΛM in momentum space. In order to obtain
a well-defined result, we work in the rest frame of the
“improved” meson. The same regularization scheme
was already used in [19, 20].

5.2. Solution of the Gap Equation in the LSS

In contrast to the 1/Nc-expansion scheme, where all
diagrams are constructed from “Hartree” quarks, the
LSS is based on the extended gap equation, Eq. (3.3).
In Subsection 3.2, this equation was the starting point
to find a consistent set of diagrams for the description
of mesons. In fact, in Subsection 4.2, we have shown
that various symmetry relations, namely, the Goldstone
theorem, the Goldberger–Treiman relation, and the
GOR relation, hold in this scheme. It is not surprising
that the structure of the extended gap equation was
needed to prove these relations. So far, all this has been
done on a rather formal level. This section is now
devoted to the explicit solution of the modified gap
equation in the LSS. We will see that this cannot be
done in a straightforward manner, and we are forced to
a slight modification of the scheme.

In addition to the Hartree term ΣH , Eq. (3.3) con-

tains the term , which is a quark loop dressed by
RPA mesons (see Fig. 8). As already pointed out, these
RPA mesons consist of quarks with self-consistent mass
m, which is in general different from the “Hartree”
mass mH. Hence, the masses of these mesons are also
different from the meson masses in the Hartree + RPA
scheme. On the left-hand side of Fig. 9, we have plotted

d
4
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the squared masses  of the RPA pion (solid) and
the RPA σ meson (dashed) as functions of a trial con-
stituent quark mass m'. An important observation is that

the pion becomes tachyonic; i.e.,  becomes nega-
tive for quark masses smaller than the Hartree quark
mass. Strictly speaking, this is only the case in the
chiral limit, whereas for nonvanishing current quark

masses,  becomes negative slightly below the
Hartree quark mass. A similar observation can be made

for , but only for m' much smaller than the Hartree
mass. This observation of tachyonic RPA mesons is
related to the point discussed in Subsection 3.3 that the
meson-loop term in the effective action [second term of
Eq. (3.20)] is no longer positive definite.

Tachyonic RPA mesons lead to a complex correc-
tion to the quark self-energy. Therefore, the solution of
the extended gap equation can only be real if it is larger
than the Hartree mass. Otherwise, it must be complex.
To investigate this point, we plot the difference between
the left-hand side and the right-hand side of Eq. (3.3) as
a function of the (real) trial quark mass m'. This is
shown in the right panel of Fig. 9. The solid curve
denotes the real part; the dashed curve shows the imag-

inary part of m' – m0 – (m'). Obviously, below the Har-
tree quark mass, the self-energy indeed gets complex.
Moreover, we see that there is no solution of the gap
equation for real constituent quark masses. Hence, in
principle, one should search for solutions of the gap
equation in the complex plane. However, this would
mean that the RPA mesons would also consist of quarks
with complex masses. In this case, e.g., a reasonable
description of the ρ meson would be completely impos-
sible, because its properties are mainly determined by
intermediate pions.

Therefore, we prefer to perform the approximation that
was introduced in [15]. As discussed in Subsection 4.2,

mM
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mπ
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mπ
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mσ
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Fig. 9. (Left) Squared pole masses of the pion (solid) and the
σ meson (dashed) in RPA as functions of a trial constituent
quark mass m' in units of the Hartree quark mass. (Right) Dif-

ference m' – m0 – (m') between the left-hand side and the
right-hand side of the LSS gap equation, Eq. (3.3), as a function
of the trial constituent quark mass m'. The real part is denoted
by the solid curve; the imaginary part, by the dashed curve.

Σ̃
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the symmetry properties of the LSS are not affected by
approximations to the RPA-meson propagators which
preserve the validity of Eq. (4.7). The authors of [15]
simply replace the RPA-pion propagator in the
extended gap equation

(5.3)

by

(5.4)

and, analogously, for the σ propagator. The same
replacements are performed for the RPA-meson propa-

gators in the correction terms  to the mesonic
polarization diagrams. The RPA contribution ΠM itself,
however, is not changed. In this way, the solution of the
gap equation and the masses of the intermediate
mesons remain real. Moreover, in the chiral limit, the
intermediate pions are massless, as one can immedi-
ately see from Eq. (5.4).

The above replacements would be exact in the Har-
tree approximation (cf. Eq. (A.13)). The authors of [15]
argue that the correction terms are suppressed because
they are of higher orders in 1/Nc (beyond the next-to-
leading order). In the LSS, this is a questionable argu-
ment because the self-consistent solution of the gap
equation mixes all orders of 1/Nc anyway. Nevertheless,
this approximation preserves the validity of the various
symmetry relations we checked in Subsection 4.2.

In the following, we will call this scheme, including
the above replacements, the “local self-consistent
scheme,” although it is, strictly speaking, only an
approximation to the LSS as it was originally intro-
duced in Subsection 3.2.
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5.3. Meson-Loop Effects on Quantities
in the Pion Sector

In this subsection, we want to study the influence of
mesonic fluctuations on the quark condensate, the pion
mass, and the pion decay constant, both within the
1/Nc-expansion scheme and within the LSS. Since the
strength of the fluctuations is controlled by the meson
cutoff ΛM, we first keep all other parameters fixed and
investigate how the above quantities change when ΛM is
varied. For the 1/Nc-expansion scheme, this has been
done in more detail in [19]. Later, in the next subsec-
tion, we will perform a refit of the parameters to repro-
duce the empirical values of 〈 〉 , mπ, and fπ.

Our starting point is the Hartree + RPA scheme,
which corresponds to ΛM = 0. Here, we obtain a reason-

able fit (〈 〉 (0) = –2(241.1 MeV)3,  = 140.0 MeV,

and  = 93.6 MeV) with the parameters Λq =

800 MeV,  = 2.90, and m0 = 6.13 MeV. These
parameters correspond to a relatively small “Hartree”
constituent quark mass of 260 MeV.

Now, we turn on the mesonic fluctuations by taking
a nonzero meson cutoff ΛM . All other parameters are
kept constant at the values given above. The resulting

behavior of , , and the quark condensate as func-
tions of ΛM is displayed in Fig. 10. The left panel cor-
responds to the 1/Nc-expansion scheme and the right
panel, to the LSS. As one can see, in both schemes, the
mesonic fluctuations lead to a reduction of fπ (dashed
curves), while mπ (solid) is increased. At smaller values
of ΛM, the absolute value of the quark condensate
decreases but goes up again for ΛM * 900 MeV. This is
also an effect that is found in both schemes.

In the Hartree + RPA scheme, the quantities ,

, and 〈 〉 (0) are in almost perfect agreement with
the GOR relation, Eq. (4.13). As discussed in Subsec-
tion 4.1, the 1/Nc-expansion scheme is consistent with
the GOR relation up to the next-to-leading order in 1/Nc,
but the relation is violated by higher order terms. We
therefore expect a less perfect agreement in this scheme
becoming worse with increasing values of ΛM. In the
LSS, on the other hand, the quantities should be in good
agreement with the GOR relation (see Subsection 4.2).

These expectations are more or less confirmed by
the results. In Fig. 10, the ratio of the right-hand side
and the left-hand side of Eq. (4.13) is displayed by the
dotted curves. In the 1/Nc-expansion scheme (left
panel), the relation holds within 30% for ΛM ≤ 900 MeV.
However, when the meson cutoff is further increased,
the deviation grows rapidly. This indicates that higher
order corrections in 1/Nc become important in this
regime and this perturbative scheme should no longer
be trusted. In the LSS, the agreement with the GOR
relation is almost perfect.

ψψ

ψψ mπ
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f π
0( )

gsΛq
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In Fig. 10, the various curves are only shown up to
ΛM = 1250 MeV for the 1/Nc-expansion scheme and up
to ΛM = 950 MeV for the LSS. For larger values of ΛM,
a second, unphysical pole with a residue of the “wrong”
sign emerges in the pion propagator. This would corre-
spond to an imaginary pion–quark coupling constant
and hence an imaginary pion decay constant. Upon fur-
ther increasing ΛM, the two poles merge and finally dis-
appear from the positive real axis.

For the 1/Nc-expansion scheme, this has been dis-
cussed in more detail in [19]. In that reference, we sug-
gested that the instabilities of the pion propagator
might indicate an instability of the underlying ground
state against mesonic fluctuations. In fact, it has been
claimed by Kleinert and Van den Bossche [22] that
there is no spontaneous chiral-symmetry breaking in
the NJL model as a consequence of strong mesonic
fluctuations. Although this cannot be true in general if
the strength of the mesonic fluctuations is controlled by
an independent cutoff parameter ΛM [19], this phenome-
non might very well occur for large values of ΛM. In
other words, there could be some kind of “chiral-symme-
try restoration” at a certain value of the parameter ΛM.

Clearly, this could not be studied within the 1/Nc-
expansion scheme, where the mesonic fluctuations are
built perturbatively on the Hartree ground state. In the
LSS, however, where we encounter the same type of
instabilities in the pion propagator, this question can be
investigated more closely. To that end, we consider the
effective action Eq. (3.20), which describes the energy
density of the system. It is explicitly given by

(5.5)

The irrelevant constant can be chosen in such a way that
Γ(0) = 0. The positions of the extrema of Γ(m') corre-
spond to the solutions of the gap equation (3.3). In par-
ticular, the vacuum expectation value m is given by the
value of m' at the absolute minimum of Γ. Note that,
according to Eq. (3.8), m is proportional to the quark
condensate, i.e., to the order parameter of chiral sym-
metry breaking. Hence, for a given value of ΛM, chiral
symmetry is spontaneously broken if the absolute min-
imum of Γ is located at a nonzero value of m' and it is
unbroken (“restored”) otherwise.

We perform the calculations in the chiral limit.2)

Our results for Γ(m') as a function of m'/mH for different

2)To be precise, we proceed as follows: starting from the parame-
ters given above, we keep the Hartree constituent quark mass,
mH = 260 MeV, fixed, while m0 is reduced from 6.1 MeV to zero.
Therefore, the coupling constant is slightly enhanced from

 = 2.90 to  = 2.96.
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values of ΛM are displayed in Fig. 11. For ΛM = 0, we
find, of course, the minimum at m' = mH = 260 MeV,
while there is a maximum at m' = 0. If there was indeed
a “phase transition” due to mesonic fluctuations, this
maximum should eventually convert to a minimum
when ΛM is increased. In fact, for ΛM & 900 MeV, the
results seem to point in this direction: in this regime,
the constituent quark mass m is reduced to about 30%
of the Hartree mass. At the same time, the “bag con-
stant” B = Γ(0) – Γ(m) decreases from 48.7 MeV/fm3 at
ΛM = 0 to 0.8 MeV/fm3 at ΛM = 900 MeV. However,
upon further increasing ΛM , both m and B go up again.
In particular, the point Γ(0) always remains a local
maximum: in the LSS, we do not observe a “phase tran-
sition” due to strong mesonic fluctuations.

Here we should remark that, according to the con-
jecture by Kleinert and Van den Bossche [22], the
mesonic fluctuations do not restore the trivial vacuum
in the NJL model, but they lead to a so-called
pseudogap phase. (See also [28] for a critical discus-
sion of that article.) In that phase, the quarks still have
a nonvanishing constituent mass, if the latter is identi-
fied with the vacuum expectation value of the modulus
of the scalar field Φ (cf. Subsection 3.3). Nevertheless,
chiral symmetry is not broken as the phase of the Φ
field is strongly fluctuating. An analogous phenomenon
is well known from strong-coupling superconductors
above Tc [29, 30], where Cooper pairs are formed but
do not condense. Obviously, our above investigations,
which focused on the change in m assuming a uniform
phase factor, cannot exclude a transition into a phase of
this type. Here, more refined investigations are needed
to give a conclusive answer.

0

–25

–50
0 0.2 0.4 0.6 0.8 1.0

m'/mH

Γ(m'), MeV/fm3

Fig. 11. Effective action Γ(m') as a function of m'/mH in the
LSS for different values of the meson cutoff ΛM: 0 MeV
(solid), 300 MeV (long-dashed), 500 MeV (dotted),
900 MeV (dash-dotted), and 1200 MeV (short-dashed). 
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Another type of vacuum instability which is caused
by unphysical poles of the RPA-meson propagators has
recently been discussed by Ripka [31]. Here, “unphys-
ical” means that these poles are located in regions of the
complex plane where they are forbidden by microcau-
sality. Ripka stated that they are induced by the regula-
tor scheme, in his case, a 4-momentum cutoff or a
Gaussian form factor. In fact, the RPA-meson propaga-
tors have this unphysical feature for most of the known
regulator schemes, such as proper-time regularization,
subtracted dispersion relations, dimensional regulariza-
tion, or, as mentioned above, a 4-momentum cutoff. A
3-momentum cutoff and the Pauli–Villars regulariza-
tion in the form we use (cf. Appendix B) are exceptions.
On the other hand, due to Pauli–Villars regulators, the
imaginary part of the quark loops can have the wrong
sign in some kinematical regions and we cannot rule
out that the instabilities we find for the pion propagator
are related to this. This supposition is corroborated by
the fact that these instabilities could be traced back to
the imaginary part of the diagram δΠ(b) (see Fig. 4),
which has the “wrong” sign and which becomes large
at large values of ΛM [19]. Further investigations are
needed, however, to clarify this point.

Recently, a second (unphysical) pole in the pion
propagator was also found in a nonlocal generalization
of the NJL model [21]. The calculations indicate that
these instabilities could probably be removed by
including vector and axial-vector intermediate states.
This point is certainly worth closer examination. In any
case, at least in the 1/Nc-expansion scheme, we found
[20] that, with a reasonable fit of all parameters, we are
far away from the region where these instabilities occur.
We will come back to this point in Subsection 5.5.

5.4 Parameter Fit in the Pion Sector

In the previous subsection, we did not change the
parameters which were determined in the Hartree +

RPA scheme by fitting , , and 〈 〉 (0). Of
course, if one wants to apply the model to describe
physical processes, a refit of these observables should
be performed that includes the mesonic fluctuations. In
[20], this was already done for the 1/Nc-expansion
scheme, and we will now try to perform an analogous
fit within the LSS. Of course, by fitting the above three
observables, we cannot conclusively fix the five param-
eters of our model, gs , gv , Λq , ΛM, and m0. Therefore,
we try to proceed in a similar way as in [20]: for various
values of ΛM, we fix the scalar coupling constant gs , the
current quark mass m0, and the quark-loop cutoff Λq to
reproduce the empirical values of the pion mass, fπ, and
〈 〉 . Then, in the next subsection, we will try to fix
the two remaining parameters, i.e., the vector coupling
constant gv and the meson cutoff ΛM, by fitting the pion
electromagnetic form factor in the timelike region,
which is related, via vector-meson dominance, to the

f π
0( )

mπ
0( ) ψψ

ψψ
ρ-meson propagator. Roughly speaking, this amounts
to fitting the ρ-meson mass and its width. Since, in our
model, the latter is due to intermediate RPA pions, we

decided to fix the empirical value of , not mπ, in
order to get the correct threshold behavior. In [20], we
found for the 1/Nc-expansion scheme that the deviation
is about 10%. As we will see below, the difference is
somewhat larger in the LSS.

Of course, the ρ meson can only be described rea-
sonably if the unphysical  threshold lies well above
the peak in the ρ-meson spectral function; i.e., the con-
stituent quark mass m should be larger than about
400 MeV. For that reason, we try to increase the con-
stituent quark mass as much as possible. Here, we have
some freedom as the empirical value of the quark con-
densate is not known very precisely. {Its absolute value
is probably less than 2(260 MeV)3, which roughly corre-
sponds to the upper limit extracted in [32] from sum
rules at a renormalization scale of 1 GeV. Recent lattice
results give 〈 〉 = –2(231 ±4 ± 8 ± 6 MeV)3 [33].} On

the other hand, since the correction term  in the LSS
gap equation, Eq. (3.3), contributes negatively to m, it
is much more difficult to obtain sufficiently large quark
masses in the LSS than in the 1/Nc-expansion scheme.

Our results for the LSS are given in Table 1. For
comparison, we also summarize the results obtained in
[20] within the 1/Nc-expansion scheme (Table 2). In
both tables, we list five parameter sets (corresponding
to five different meson cutoffs ΛM), together with the
constituent quark mass m, the values of mπ, fπ, and
〈 〉 and the corresponding RPA quantities. In the
LSS, the “RPA quantities” are calculated with the con-
stituent quark mass m in order to represent the proper-
ties of the intermediate pion states. For completeness,
we also give the value of the Hartree mass mH in Table 1
and the value of the quark condensate according to

Eq. (3.7). We also show the ratio −m0〈 〉/ ,
which would be equal to 1 if the GOR relation was
exactly fulfilled. Note that the deviations in the 1/Nc-
expansion scheme are less than 10% (for ΛM ≤ 600 MeV,
they are even less than 3%), indicating that higher order
corrections in 1/Nc are small. In the LSS, the deviations
are considerably smaller, as already discussed in the
previous subsection.

In both schemes, we find that the constituent quark
mass increases with increasing meson cutoff ΛM . In the
1/Nc-expansion scheme for ΛM ≥ 500 MeV, the value of
m is large enough to shift the  threshold above the ρ-
meson peak. Moreover, it turns out that we can only
stay below the limit of –2(260 MeV)3 for the quark con-
densate and simultaneously reproduce the empirical
value of fπ if the cutoff is not too large (ΛM & 700 MeV).
In the LSS, the region of values for ΛM where, on one
hand, the constituent quark mass is large enough and,

mπ
0( )

qq

ψψ
δΣ̃

ψψ

ψψ mπ
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f π
2

qq
PHYSICS OF ATOMIC NUCLEI      Vol. 64      No. 4      2001



MESON-LOOP EFFECTS IN THE NJL MODEL 715
Table 2.  The same as in Table 1, but in the 1/Nc-expansion scheme

ΛM [MeV] 0 300 500 600 700

Λq [MeV] 800 800 800 820 852

m0 [MeV] 6.13 6.40 6.77 6.70 6.54

gs 2.90 3.07 3.49 3.70 4.16

m [MeV] 260 304 396 446 550

 [MeV] 140.0 140.0 140.0 140.0 140.0

mπ [MeV] 140.0 143.8 149.6 153.2 158.1

 [MeV] 93.6 100.6 111.1 117.0 126.0

fπ [MeV] 93.6 93.1 93.0 93.1 93.4

〈 ψ〉(0) [MeV3] –2(241.1)3 –2(249.3)3 –2(261.2)3 –2(271.3)3 –2(287.2)3

〈 ψ〉 [MeV3] –2(241.1)3 –2(241.7)3 –2(244.1)3 –2(249.5)3 –2(261.4)3

–m0〈 ψ〉/ 1.001 1.007 1.018 1.023 1.072

Λq
2

mπ
0( )

f π
0( )

ψ

ψ

ψ mπ
2

f π
2

Table 1.  The model parameters (ΛM , Λq , m0, and gs); the resulting values of mπ, fπ, and 〈 ψ〉 (together with the correspond-

ing leading-order quantities); and the constituent quark mass m for the LSS. [The quantity –m0〈 ψ〉/  is also given;

the quantity 〈 ψ〉' denotes the quark condensate calculated according to Eq. (3.7)]

ΛM [MeV] 0 300 500 600 700

Λq [MeV] 800 800 810 820 835

m0 [MeV] 6.13 6.47 7.02 7.30 7.90

gs 2.90 3.08 3.44 3.71 4.52

mH [MeV] 260 305 390 450 600

m [MeV] 260 278.2 320.0 355.7 468.4

 [MeV] 140.0 139.9 140.0 139.7 140.0

mπ [MeV] 140.0 145.1 156.3 164.5 182.7

 [MeV] 93.6 96.7 103.6 108.4 120.0

fπ [MeV] 93.6 93.2 92.9 92.9 92.8

〈 ψ〉' [MeV3] –2(241.1)3 –2(244.7)3 –2(254.3)3 –2(261.9)3 –2(277.3)3

〈 ψ〉 [MeV3] –2(241.1)3 –2(241.7)3 –2(246.2)3 –2(250.8)3 –2(260.9)3

–m0〈 ψ〉/ 1.001 1.001 1.006 1.01 1.02

ψ

ψ mπ
2

f π
2

ψ

Λq
2

mπ
0( )

f π
0( )

ψ

ψ

ψ mπ
2

f π
2

on the other hand, the quark condensate stays below the
limit is much narrower. This can be seen from the val-
ues listed in Table 1. For a meson cutoff of ΛM =
600 MeV, m is still too small, and for ΛM = 700 MeV,
the quark condensate lies already slightly above the
limit. The reason for this is obvious: in the LSS, m and
the quark condensate are directly related by Eq. (3.8);
therefore, the mesonic fluctuations, which lower the
quark condensate, also decrease the constituent quark
mass. In the 1/Nc-expansion scheme, on the contrary,
the meson-loop effects only contribute to the quark
PHYSICS OF ATOMIC NUCLEI      Vol. 64      No. 4      2001
condensate and lower its value, whereas m is kept fixed
at its Hartree value.

5.5. Description of the ρ Meson

As already pointed out, the parameter fit in the pion
sector was not complete. It is clear, e.g., that the meson-
loop cutoff ΛM cannot be determined just by fitting the
pion mass, fπ, and 〈 〉, since these observables can
already be reproduced in the Hartree + RPA scheme,
i.e., without any meson-loop effects. We only found an

ψψ
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upper limit of ΛM ~ 700 MeV in both schemes (see
Tables 1 and 2). In [20], we therefore fixed the remain-
ing parameters gv and ΛM for the 1/Nc-expansion
scheme in the ρ-meson sector. In this subsection, we
want to give a short summary of these results and then
try to perform a similar fit for the LSS.

According to Eqs. (2.14) and (3.6), the polarization
function of the ρ meson reads

(5.6)

Here, k runs over {a, b, c, d} in the 1/Nc-expansion
scheme and only over {a, b, c} in the LSS. Because of
vector-current conservation, the polarization function
has to be transverse; i.e.,

(5.7)

With the help of Ward identities, it can be shown that
these relations hold in both schemes, if we assume that
the regularization preserves this property. This is the
case for the Pauli–Villars regularization scheme, which
was employed to regularize the RPA part Πρ. Together
with Lorentz covariance, this leads to Eq. (2.8) for the
tensor structure of Πρ. On the other hand, since we use
a three-dimensional sharp cutoff for the regularization

of the meson loops, the correction terms  are,
in general, not transverse. However, as mentioned in
Subsection 5.1, we work in the rest frame of the ρ
meson, i.e., q = 0. In this particular case, Eq. (5.7) is not

affected by the cutoff and the entire function  can be
written in the form of Eq. (2.8):

(5.8)

i.e., instead of evaluating all tensor components sepa-
rately, we only need to calculate the scalar functions

Πρ = –(1/3)gµν  and  = –(1/3)gµνδ .

Π̃ρ
µν ab,

q( ) Πρ
µν ab,

q( ) δΠρ
k( )µν ab,

q( ).
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∑+=

qµΠ̃ρ
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q( ) qνΠ̃ρ
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Fig. 12. Contributions to the pion electromagnetic form fac-
tor in the 1/Nc-expansion scheme. The propagator denoted
by the curly line corresponds to the 1/Nc-corrected ρ meson,
while the double lines indicate RPA pions and sigmas.
A second consequence of vector-current conserva-
tion is that the polarization function should vanish for
q2 = 0. For the correction terms, this is violated by the
sharp cutoff. We cure this problem by performing a
subtraction:

(5.9)

Note, however, that, already at the RPA level, a subtrac-
tion is required, although the RPA part is regularized by
Pauli–Villars regulators. This is due to a rather general
problem that is discussed in detail in Appendix B.

In [20], we have fixed gv and ΛM in the 1/Nc-expan-
sion scheme by fitting the pion electromagnetic form
factor, Fπ(q), in the timelike region, which is dominated
by the ρ meson. The diagrams we included in these cal-
culations are shown in Fig. 12. The two diagrams in the
upper part correspond to the standard NJL description
of the form factor [34] if the full ρ-meson propagator
(curly line) is replaced by the RPA one. Hence, the first
improvement is the use of the 1/Nc-corrected ρ-meson
propagator in the 1/Nc-expansion scheme. Since, in the
standard scheme, the photon couples to the ρ meson via
a quark–antiquark polarization loop, in the 1/Nc-expan-
sion scheme, we should also take into account the 1/Nc-
corrections to the polarization diagram for consistency.
This leads to the diagrams in the lower part of Fig. 12.
On the other hand, the external pions are taken to be

RPA pions (i.e., the mass is  and the pion–quark–

quark coupling constant is ). This is more consis-
tent with the fact that the ρ meson is also dressed by

RPA pions and, as discussed above, we have fitted 
to the experimental value.

The numerical results for |Fπ|2 as a function of the
center-of-mass energy squared are displayed in the left
panel of Fig. 13 together with the experimental data
from [35]. The theoretical curve was calculated with a
meson cutoff of ΛM = 600 MeV; a vector coupling con-
stant gv = 1.6gs; and other parameters, Λq , gs, and m0,
as listed in Table 2. This roughly corresponds to a best
fit to the data [20]. Since we assumed exact isospin
symmetry, we can, of course, not reproduce the detailed
structure of the form factor around 0.61 GeV2, which is
due to ρ–ω mixing. The high-energy part above the
peak is somewhat underestimated, mainly due to the
subthreshold attraction in the ρ-meson channel below
the  threshold at s = 0.80 GeV2. Probably, the fit can
be somewhat improved if we take a slightly larger
meson cutoff, but we are not interested in fine tuning
here.

A closely related quantity is the charge radius of the
pion, which is defined as

(5.10)
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Fig. 13. The pion electromagnetic form factor (left panel) and the ππ-phase shifts in the vector–isovector channel (right panel) for
ΛM = 600 MeV and gv = 1.6gs . The other parameter values are taken from Table 2. The data points are taken from [35] and [36],
respectively.
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With the above parameter set, we obtain a value of

 = 0.61 fm. It lies slightly below the experimen-

tal value  = (0.663 ± 0.006) fm [37].

One can also look at the ππ-phase shifts in the vec-
tor–isovector channel. We include the diagrams shown
in Fig. 14, i.e., the s-channel ρ-meson exchange and the
direct ππ-scattering via a quark box diagram. The latter
has to be projected onto spin and isospin 1, which is a
standard procedure. (For example, the analogous pro-
jection onto spin and isospin 0 can be found in [38,
39].) The result, together with the empirical data [36],
is displayed in the right panel of Fig. 13. Since the main
contribution comes from the s-channel ρ-meson
exchange, it more or less confirms our findings for the
form factor: below the ρ-meson peak, a good descrip-
tion of the data is obtained, while, at higher energies,
where -threshold effects start to play a role, we
slightly overestimate the data.

Let us now turn to the LSS. As already discussed in
the last paragraph of Subsection 5.4, there is not much
room to vary the meson cutoff ΛM in this scheme: on the
one hand, ΛM is restricted to values &700 MeV by the
fit to fπ and 〈 〉  (see Table 1). On the other hand, we
only have a chance to get a realistic description of the ρ
meson if the constituent quark mass m is larger than at
least 400 MeV. To achieve this, the meson cutoff cannot
be much smaller than 700 MeV. This means that ΛM is
more or less fixed to this value, so that the only remain-
ing parameter is the vector-coupling constant gv .

It turns out, however, that with ΛM * 700 MeV, we
already run into instabilities in the ρ-meson channel.
These instabilities are of the same type as the instabili-
ties in the pion channel (see Subsection 5.3), but unfor-
tunately emerge already at lower values of ΛM. This can
be seen in Fig. 15, where the real part of the ρ-meson

rπ
2〈 〉

1/2

rπ
2〈 〉

1/2

qq

ψψ
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polarization function  multiplied by 2gv is plotted as

a function of the energy  in the rest frame of the
meson. The LSS result corresponds to the solid curve.

Π̃ρ

s

π

ππ

π π

π π

π

ρ

Fig. 14. Diagrams contributing to the ππ-scattering ampli-
tude: quark box diagram (left) and s-channel ρ-meson
exchange (right).

Fig. 15. Real part of the ρ-meson polarization function 

multiplied by 2gv = 17.6 GeV–2 as a function of the energy

 in the rest frame of the meson. The dashed line corre-
sponds to the 1/Nc-expansion scheme with ΛM = 600 MeV;
the solid curve corresponds to the LSS with ΛM = 700 MeV.
The other parameters are given in Tables 2 and 1, respec-
tively.
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For comparison, we also show this function in the 1/Nc-
expansion scheme using the “best-fit parameters” given
above (dashed curve).

According to Eqs. (2.15) and (3.5), the function

2gvRe  has to become equal to 1 for  . mρ, cross-

ing the line 2gvRe  = 1 from below. This is obviously
the case in the 1/Nc-expansion scheme. In this scheme,

Re  is a rising function and the above condition can
be easily fulfilled with the appropriate choice of gv .

The situation is quite different in the LSS. Here, Re

has a maximum at  ~ 740 MeV and then steeply drops.

Hence, if gv is too small, the equation 2gvRe  = 1 has
no solution at all (see Fig. 15). On the other hand, for
large values of gv, we get a “physical” solution at lower
energies and an “unphysical” solution at higher ener-
gies. It is clear that neither of these two scenarios would
lead to a realistic description of the ρ meson.

One might wonder why the results in the 1/Nc-
expansion scheme and in the LSS are so different. To
answer this question, we have separately plotted the
various contributions to the polarization function in
Fig. 16. The left panel corresponds to the results in the
1/Nc-expansion scheme and the right panel, to the LSS.
One immediately sees that the unphysical behavior in

the LSS is due to the sum of the diagrams  and

 (dotted), which is the only negative contribution.
In the 1/Nc-expansion scheme, these diagrams behave
very similarly. However, in this scheme, their contribu-
tion is almost cancelled by the contribution of the dia-

gram , which is not present in the LSS.

We should note that the diagram  which
describes the two-meson intermediate state, is well-

Π̃ρ s

Π̃ρ

Π̃ρ

Π̃ρ

s

Π̃ρ

δΠρ
b( )

δΠρ
c( )

δΠρ
d( )

δΠρ
a( )

,

5.0

2.5

0

–2.5

–5.0
0 400 800

s MeV,
0 400 800

s MeV,

Fig. 16. RPA contribution 2gvΠρ (solid) and the various

correction terms to :  (dashed),

2gv(  + ) (dotted), and  (dash-dot-

ted). For all contributions, we performed a subtraction such

that they vanish at  = 0. The left panel corresponds to the
1/Nc-expansion scheme; the right panel corresponds to the
LSS. The model parameters are the same as in Fig. 15.

2gv Π̃ρ 2gvδΠρ
a( )

δΠρ
b( ) δΠρ

c( )
2gvδΠρ

d( )

s

behaved in both schemes. On the other hand, the
momentum dependence of all other diagrams is a pure
quark effect, which could be related to the imaginary part
of these diagrams above the (unphysical) two-quark
threshold via dispersion relations. Hence, if we could
manage to further push up the constituent quark mass,
the momentum dependence of these contributions
should become smaller and the instabilities should even-
tually vanish. Perhaps this is possible if further interme-
diate mesons, like ρ and a1, are included in the model.

6. QUARK CONDENSATE AT T ≠ 0

It is expected that, at sufficiently large temperatures,
chiral symmetry, which is spontaneously broken in vac-
uum, gets restored. The quark condensate as an order
parameter of chiral symmetry is well suited to study
indications of (partial) chiral-symmetry restoration. At
low temperatures, model-independent results for the
changes of the quark condensate can be obtained from
considering a gas of pions, which are the lightest parti-
cles and, therefore, the main degrees of freedom in this
range. Approaching the phase transition, we have to
rely on model calculations or lattice data because we do
not have any fundamental knowledge of the quark con-
densate at higher temperatures. Most of the results show
a phase transition at a temperature of Tc ~ 150 MeV.

Among others, the NJL model has been used to
examine the behavior of the quark condensate as a
function of temperature. Most of these investigations
were performed in the mean-field approximation [7–10].
There, one finds a second-order phase transition with Tc ~
150–200 MeV. However, one has to mention that these
calculations suffer from the severe problem that the ther-
modynamics is generated exclusively by a gas of quarks.
One consequence is that the low-temperature behavior,
which is driven mainly by pions, is completely missed.
Although we cannot bypass the fundamental problem of
lack of confinement in the NJL model, which, in any case,
leads to the existence of a quark gas at nonzero tempera-
ture, we can hope to improve the situation at least at low
temperatures via the inclusion of mesonic degrees of free-
dom in a calculation beyond mean field.

Therefore, we begin with a closer look at the low-
temperature behavior of the quark condensate at T ≠ 0.
After that, we will discuss our numerical results within
the 1/Nc-expansion scheme and within the LSS.

6.1. Low-Temperature Behavior

In the chiral limit and at vanishing baryon density, a
strict low-temperature expansion in chiral perturbation
theory leads to the following expression for the quark
condensate [40]:

(6.1)

Here, 〈 〉  denotes the quark condensate at zero tem-
perature. The T2 term represents the contributions from

ψψ〈 〉 T ψψ〈 〉 1 T
2

8 f π
2

---------– T
4

384 f π
4

---------------– …+
 
 
 

.=

ψψ
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a pure pion gas, whereas the higher order terms are due
to interactions between the pions. It has been shown
[40] that the T2 and the T4 term of this expansion are
model-independent results which follow from chiral
symmetry alone. Thus, in principle, every chirally sym-
metric model, including the NJL model, should repro-

duce these terms. However, as fπ is of order , we

can see that they are of order 1/Nc and 1/  respec-
tively. Therefore, a mean-field calculation, which cor-
responds to a restriction to leading order in 1/Nc, will
not be able to reproduce these terms [23]. Indeed, NJL-
model calculations in mean field show a much flatter
behavior at low temperatures [10, 27]:

(6.2)

Extending the calculations to next-to-leading order in
1/Nc will allow us to reproduce the T2 term. This will be
demonstrated in the following.

Our calculations at nonzero temperature are per-
formed within imaginary-time formalism. Basically,
this amounts to replacing the energy integration in the
various n-point functions by a sum over Matsubara fre-
quencies. The explicit expressions are listed in Appen-
dix D. As there exists a preferred frame of reference in
the heat bath, all dynamical quantities depend sepa-
rately on energy and three-momentum. Hence, in the
following, a finite-temperature RPA propagator, for
instance, will be denoted as DM(ω, p). For scalar quanti-
ties, like masses or condensates at nonzero temperature,
we use a suffix T in order to distinguish them from the
analogous quantities in a vacuum (cf. Eqs. (6.1) and
(6.2)).

In analogy to the vacuum expressions (Eqs. (2.5)
and (2.22)), the quark condensate in the next-to-leading
order of the 1/Nc-expansion scheme is given by

(6.3)

As shown in Eq. (6.2), the leading-order term 
does not contribute to the change of the quark conden-
sate to order T2. Similarly, thermal effects in the σ-
meson propagator can be neglected at low tempera-
tures. Therefore, we only need to consider the temper-
ature dependence of ∆T . If standard techniques are
used, the sum over the Matsubara frequencies in
Eq. (A.30) can be converted into a contour integral [41]:

(6.4)

Nc

Nc
2
,
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0( ) ψψ〈 〉 0( )

1
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  .=

ψψ〈 〉 T ψψ〈 〉 T
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∆T 4iNcN f mT
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2πi
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3
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------------- zd
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-----------------
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∫∫=

× Dπ z p,( ) 3I 0 0,( ) 3 z
2 p2

–( )K z p,( )–( ){
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At low temperatures, the main contribution to the tem-
perature-dependent part of this integral comes from the
lowest lying pion pole, as the other contributions are
exponentially suppressed. In the chiral limit, we can
therefore approximate this part for low temperatures by

(6.5)

This integral can be evaluated analytically and we
obtain

(6.6)

The last step is to realize that, in the chiral limit, the
vacuum σ-meson propagator can be expressed through
the leading-order pion decay constant as

(6.7)

(see Eqs. (A.16) and (A.21)). We finally obtain for the
quark condensate in the next-to-leading order at low
temperatures

. (6.8)

Comparing this with the chiral-perturbation-theory
result, Eq. (6.1), we see that we can, in principle, repro-
duce the T2 term. Note, however, that the coefficient is
given by the quark condensate and the pion decay con-
stant in the leading order in 1/Nc according to a strict
expansion of Eq. (6.1) up to the next-to-leading order in
1/Nc . The physical reason for this behavior is the fact
that the 1/Nc corrections to the quark condensate corre-
spond to fluctuating RPA mesons; hence, the thermal
corrections at low temperatures are due to thermally
excited RPA pions in this model.

For the LSS, a similar result was derived in [23]. In
the chiral limit, the authors find

(6.9)

Here,  is understood as the RPA pion decay con-
stant, Eq. (A.21), but evaluated at the quark mass m
which follows from the LSS gap equation, Eq. (3.3).
This corresponds to the fact that, in the LSS, the ther-
mal corrections to the quark condensate at low temper-
atures are due to RPA pions which consist of LSS
quarks.
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6.2. Numerical Results within the 1/Nc-Expansion 
Scheme

Our numerical results for the temperature behavior
of the quark condensate within the 1/Nc-expansion
scheme are displayed in Fig. 17. The right-hand side cor-

responds to a realistic parameter set with  = 140 MeV
(Table 2 with ΛM = 600 MeV) and the left-hand side, to
the chiral limit. The solid curves indicate the results
obtained in the next-to-leading order. For comparison,
we also show the leading order (dashed curve) and the
pure pion-gas result (dotted).

We begin our discussion with the chiral limit. At low
temperatures (T & 100 MeV), our results show the
behavior discussed in the previous subsection: the next-
to-leading-order result is in very good agreement with
the pion-gas result (Eq. (6.8)), whereas the leading-
order result remains almost constant. Therefore, in this
regime, the extension of the NJL model to the next-to-
leading order in 1/Nc leads to a considerable improve-
ment. Since the unphysical quark degrees of freedom,
which are in principle always present in the NJL model,
are exponentially suppressed, the system is dominated
by the (physical) pion degrees of freedom, which come
about in the next-to-leading order.

However, because of the much larger degeneracy
factor (24 as compared to 3), we cannot avoid the fact
that effects due to thermally excited quarks become
important at some temperature. In our present calcula-
tion, this happens at about T ~ 100 MeV. In a free-gas
approximation, this roughly corresponds to the temper-
ature at which the quark pressure becomes equal to the
pion pressure.

At this point, one might raise a question as to the
physical meaning of quark effects at these tempera-
tures. In nature, quark degrees of freedom can only be
excited above the deconfinement phase transition. In
the NJL model, there is no confinement and, hence, no
deconfinement transition. However, lattice calculations
[42] indicate that the deconfinement phase transition at

mπ
0( )

1.0

0.8

0.6

0.4

0.2

0 100 200

〈ψψ〉T/〈ψψ〉– –

0 100 200
T, MeV

Fig. 17. Quark condensate as a function of temperature, nor-
malized to the vacuum value, in the chiral limit (left) and

with  = 140 MeV (right): leading order in 1/Nc (dashed

curve), next-to-leading order (solid curve), and free pion gas
(dotted curve).

mπ
0( )
finite temperature coincides with the chiral phase tran-
sition. One should therefore compare the temperature
at which thermally excited quarks become important
with the critical temperature for the chiral phase transi-
tion. Unfortunately, as already pointed out in Section 3,
the perturbative treatment of the mesonic fluctuations
does not allow for a description of the chiral phase tran-
sition. Although the quark condensate vanishes at T ~
200 MeV, this does not correspond to a true phase tran-
sition. (Note that the slope of the curve does not diverge
at this point.) In any case, the perturbative-expansion
scheme probably breaks down much earlier. Therefore,
we cannot give a definite answer to the question of
whether the thermally excited quarks become impor-
tant near the phase transition or much below.

Our results with m0 ≠ 0 are shown on the right-hand
side of Fig. 17. Since the RPA pions are now massive
and therefore exponentially suppressed, the quark con-
densate as a function of T stays much flatter than in the
chiral limit. Nevertheless, at low temperatures, pions
can still be most easily excited as they are the lightest
particles. Therefore, the next-to-leading-order result
(solid curve) can be approximated quite well, albeit not
perfectly, by the pure pion-gas result (dotted) in this
regime. The latter was calculated from the pressure pπ
of a massive pion gas as

(6.10)

which can be easily derived with the help of the GOR
relation.

Quark effects become important at almost the same
temperature as in the chiral limit, at T ~ 100 MeV.

6.3. Local Self-Consistent Scheme

Let us now compare the results of the previous sub-
section with the analogous calculations in the LSS. A
study of the temperature dependence of the quark con-
densate within the LSS can also be found in [23]. Here,
we restrict ourselves to the chiral limit.

Our results are shown on the left-hand side of Fig. 18.
The calculations have been performed using the param-
eters of Table 1 for ΛM = 700 MeV, but m0 = 0. As dis-
cussed in Subsection 6.1, at low temperatures, the
model behaves again like a free pion gas (dotted curve).
Deviations from this behavior become visible at T ~
100 MeV, which is quite similar to our observations in
the 1/Nc-expansion scheme.

In contrast to the 1/Nc-expansion scheme, the treat-
ment of the mesonic fluctuations in the LSS also allows
examination of the phase transition. With the present
parameters, this takes place at Tc = 164.5 MeV, which
is considerably lower than in the Hartree approxima-
tion, where we have Tc = 266.1 MeV. Note, however, that
about one third of this reduction can be attributed to the
fact that the constituent quark mass m = 468.4 MeV in

ψψ〈 〉 T ψψ〈 〉 ψψ〈 〉 0( ) m0

f π
2 0( )-----------

d pπ T( )

dmπ
2 0( )------------------,+=
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the LSS is lower than the corresponding Hartree mass
mH = 600.0 MeV. For mH = 468 MeV, we would get a
critical temperature of about 236 MeV in the Hartree
approximation. (It is also interesting to note that the
critical temperature in the LSS calculation almost

coincides with the critical temperature  =
164.4 MeV one obtains in the Hartree approximation
for the parameters fitted in the RPA; i.e., m = mH =
260 MeV.)

Whereas in the Hartree approximation, the phase
transition is of second order, in the LSS, the system
undergoes a first-order phase transition, as already
reported in [23]. This can be inferred from the thermo-
dynamic potential ω, which is displayed on the right-
hand side of Fig. 18 for different temperatures as a
function of the constituent quark mass m'. At T = 164.5
MeV, one can clearly identify two degenerate minima
at m' = 0 and m' ≠ 0 corresponding to a first-order phase
transition at that temperature. One can ask the question
of whether this phenomenon depends on the strength of
the mesonic fluctuations that can be controlled by the
cutoff ΛM . Varying this parameter, we find that the dis-
continuity decreases with decreasing ΛM , but, even for
very small values of the cutoff, we encounter a first-
order phase transition.

Let us come back to the questions on the relevance
of the unphysical quark degrees of freedom. As already
mentioned, deviations from the pure pion-gas result
become visible at T ~ 100 MeV, which corresponds to
about 0.6Tc . At this temperature, one would not expect
quark effects to be present in nature. Furthermore,
according to universality arguments, it is generally
believed that the finite-temperature chiral phase transi-
tion in QCD with two massless quarks is of second
order [43]. This is based on the assumption that, at Tc,
there are four massless bosonic degrees of freedom
(three pions and one σ) which determine the infrared
behavior of the system. In this case, QCD—and also

Tc
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Fig. 18. Left: quark condensate in the chiral limit as a func-
tion of temperature, normalized to the vacuum value, Har-
tree approximation (dashed), LSS (solid), and free pion gas
(dotted). Right: thermodynamic potential per volume as a
function of the constituent quark mass in the self-consistent
scheme with T = 163.9 (dotted), 164.5 (dashed), and
165.3 MeV (solid).
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the NJL model—should lie in the same universality
class as the O(4) model, which is known to have a sec-
ond-order phase transition. Although some time ago it
was claimed that this argument might not hold if the
boson fields are not elementary but composite [44], it is
probably more likely that the first-order phase transi-
tion we observe is an artifact of the approximation
scheme. In this context, the application of renormaliza-
tion-group techniques to the NJL model would be
extremely interesting.

7. CONCLUSIONS

We have investigated quark and meson properties
within the NJL model, including meson-loop correc-
tions. These were generated in two different ways. The
first method is a systematic expansion of the self-ener-
gies in powers of 1/Nc up to the next-to-leading order
[14, 19, 20]. In the second scheme, a local correction
term to the standard Hartree self-energy is self-consis-
tently included in the gap equation [14]. We therefore
call it the “local self-consistent scheme.” This scheme
can also be derived as the one-meson-loop approxima-
tion to the effective action [15]. Both schemes, the
1/Nc-expansion scheme and the LSS, are consistent
with chiral symmetry, leading to massless pions in the
chiral limit. For nonvanishing current quark masses, the
pion mass is consistent with the GOR relation in the
LSS. This is also true in the 1/Nc-expansion scheme if
one carefully expands both sides of the relation up to
next-to-leading order in 1/Nc.

The relative importance of the mesonic fluctuations
is controlled by a parameter ΛM , which cuts off the
three-momenta of the meson loops. In both schemes,
we encounter instabilities in the pion propagator if the
meson effects become too strong. In order to find out
whether these instabilities are related to an unstable
ground state [19, 22] leading to a “chiral restoration
phase transition” at some critical value of ΛM , we cal-
culated the effective action of the LSS for increasing
values of ΛM . (Note that such investigations are not
possible within the 1/Nc-expansion scheme, where
mesonic fluctuations are included only perturbatively.)
It turned out that, up to a certain value of ΛM, the system
indeed seems to move toward a “phase transition.”
However, when ΛM is further increased, the nontrivial
ground state becomes again more stable and no phase
transition takes place.

Of course, at the end, the value of ΛM , together with
the other parameters, has to be determined by fitting
physical observables. The ρ meson and related quanti-
ties are very well suited for this purpose, since the
meson loops are absolutely crucial in order to include
the dominant ρ  ππ-decay channel, while the Har-
tree + RPA approximation contains only unphysical

-decay channels. Here, another problem, which con-
straints the possible choice of parameter values,
becomes obvious: a priori, it is not clear to what extent

qq
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these unphysical decay modes, which are an unavoid-
able consequence of the missing confinement mecha-
nism in the NJL model, are still present in the region of
the ρ-meson peak.

For the 1/Nc-expansion scheme, the parameters have
already been fixed in [20]. We obtained a reasonable fit
of fπ, 〈 〉 , and the pion electromagnetic form factor
with a constituent quark mass of m = 446 MeV. This
means that the unphysical -decay channel opens at
892 MeV, about 120 MeV above the maximum of the
ρ-meson peak. Furthermore, the parameters of that fit
are far away from the region where the instabilities in
the pion propagator emerge. In fact, we found only
moderate changes in the pion and quark sector: fπ and
〈 〉  are lowered by about 20% by the meson-loop cor-
rections, while the pion mass is increased by about 10%.
This indicates that the 1/Nc expansion converges rapidly
and higher order terms in the 1/Nc expansion are small.

Unfortunately, we did not succeed in obtaining a
similar fit within the LSS. Since, in this scheme, the
meson-loop effects lower the constituent quark mass as
compared to the Hartree mass, it is much more difficult
to evade the problem of unphysical -decay channels
in the vicinity of the ρ-meson peak. We found that a rel-
atively large meson cutoff, ΛM ~ 700 MeV, is needed in
order to get the quark mass large enough and, at the
same time, to get a fit for fπ. However, to our surprise,
for this cutoff, the ρ-meson self-energy already suffers
from stability problems, similar to those already dis-
cussed for the pion. As a result, we are not able to get a
reasonable description of the ρ-meson propagator and,
hence, of the pion electromagnetic form factor within
the LSS. It remains to be checked whether these prob-
lems can be cured by taking into account additional
intermediate states, like vector mesons and axial vector
mesons, or by different methods of regularization.

In the last part of this article, we investigated the
temperature dependence of the quark condensate. In
both schemes, the low-temperature behavior is consis-
tent with lowest order chiral perturbation theory, i.e.,
the temperature dependence arising from a free pion
gas. This is a considerable improvement over the mean-
field result, where the temperature dependence is
entirely due to thermally excited quarks, i.e., unphysi-
cal degrees of freedom. At higher temperatures, how-
ever, thermal quark effects also become visible in the
two extended schemes. We argued that this could be
tolerable near the chiral phase boundary, which is,
according to lattice results, identical to the deconfine-
ment phase boundary at nonzero temperatures.

Whereas the perturbative treatment of the mesonic
fluctuations within the 1/Nc-expansion scheme does not
allow an examination of the chiral phase transition, this
is possible in the LSS. For our model parameter set, we
found a critical temperature of 164.5 MeV. On the other
hand, quark effects are visible already at a temperature
of ~100 MeV. Obviously, this is still too early to be

ψψ

qq

ψψ

qq
realistic. Maybe here the model can be improved by
including additional intermediate meson states.

In agreement with [23], we found a first-order phase
transition in that scheme. This contradicts the general
belief that the nonzero-temperature chiral phase transi-
tion in a model with two light flavors should be of second
order and is probably an artifact of the approximation.
Here, further investigations, e.g., applying renormaliza-
tion-group techniques, would be very interesting.
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APPENDIX A

Definition of Elementary Integrals

It is possible to reduce the expressions for the quark
loops to some elementary integrals [45], see Appendi-
ces B and C. In this section, we give the definitions of
these integrals.

(Ä.1)

(Ä.2)

(Ä.3)

(Ä.4)

(Ä.5)

(Ä.6)

with ki = k + pi . The function M1(p1, p2) can be
expressed in terms of the other integrals:
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(Ä.7)M1 p1 p2,( )
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All integrals in Eqs. (A.1) to (A.6), are understood to be
regularized. As described in Subsection 5.1, we use
Pauli–Villars regularization with two regulators, i.e.,
we replace

with

(see Eqs (5.1) and (5.2)).
One then gets the following relatively simple ana-

lytic expressions for the integrals I1, I(p), and K(p):

, (Ä.8)

(Ä.9)

(Ä.10)

(Ä.11)

with

(Ä.12)

An analytic expression for the three-point function
(A.4) can be found in [46, 47]. In certain kinematical
regions, the four-point function (A.5) is also known
analytically [46, 47].

APPENDIX B

RPA Propagators

By using the definitions given in the previous sec-
tion, the gap equation (Eq. (2.2)) can be reduced to the
form

(Ä.13)

Similarly, one can evaluate the quark–antiquark polar-
ization diagrams (Eq. (2.6)) and calculate the RPA
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meson propagators. The results for the σ meson and
pion read

(Ä.14)

(Ä.15)

If we evaluate these propagators with the constituent
quark mass in Hartree approximation, we can simplify
the above expressions with the help of the gap equation
(Eq. (A.13)) to obtain

(Ä.16)

(Ä.17)

As discussed in Subsection 5.2, this form is also used
for the internal meson propagators in the LSS.

A straightforward evaluation of the vector and axial-
vector polarization diagrams gives

(Ä.18)

(Ä.19)

Because of vector-current conservation, Πρ should van-
ish for p2 = 0. This is only true if

(Ä.20)

which is not the case if we regularize I(p) and I1 as
described in Appendix A. This corresponds to the stan-
dard form of Pauli–Villars regularization in the NJL
model [7]. Alternatively, one could perform the
replacement of Eq. (5.1) for the entire polarization loop.
In fact, this is more in the original sense of Pauli–Villars
regularization [48]. Then, the factor m2 in Eq. (A.18)

should be replaced by a factor  inside the sum over
regulators and one can easily show that Eq. (A.20)
holds (see Eqs. (A.8) and (A.10)). However, this
scheme would lead to even more severe problems: from
the gap equation (A.13), we conclude that iI1 should be
positive. On the other hand, the pion decay constant in
the chiral limit and in leading order in 1/Nc is given by [7]

(Ä.21)
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which implies that im2I(0) should be negative. Thus,
irrespective of the regularization scheme, Eq. (A.20)
cannot be fulfilled if we want to get reasonable results

for m and  at the same time. Therefore, we choose
the standard form of Pauli–Villars regularization in the
NJL model [7] and replace the term I1 in Eq. (A.18) by
hand by m2I(0). For consistency, a1 is treated in an anal-
ogous manner. This leads to the following ρ- and a1-
meson propagator:

(Ä.22)

(Ä.23)

APPENDIX C

Explicit Expressions for the Meson–Meson Vertices

In this section, we list the explicit formulas for the
meson–meson vertices. We restrict ourselves to those
combinations that are needed for the calculations pre-
sented in this article.

We begin with the three-meson vertices
(q, p) (see Fig. 5):

(Ä.24)

with p' = –p – q and N = 4NcNf .
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For the four-meson vertices, we only need to con-
sider the special cases needed for diagrams (b) and (c)
in Fig. 5:

(Ä.25)
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with Γρ, M, M, ρ(q, p, –q) = (q, p, –q),

Γρ, M, ρ, M(q, p, –p) = (q, p, –p), and κabcd =
δabδcd + δadδbc – δacδbd .

APPENDIX D

Expressions at Nonzero Temperature

To determine the temperature dependence of vari-
ous quantities we need, for the calculation of the quark
condensate at nonzero temperature in Section 6, to
adopt the imaginary-time or Matsubara formalism (see,
e.g., [41]). In principle, this amounts to replacing the
integration over energy in the zero-temperature expres-
sions by a sum over fermionic or bosonic Matsubara
frequencies ωn:

(Ä.26)

With this replacement prescription, we can define the
temperature analogue to the elementary integrals; e.g.,

(Ä.27)

This example also illustrates our notation: at non-
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argument. A similar notation is used for other momen-
tum-dependent integrals. The nonzero-temperature
analog to the integral I1 will be denoted by I1T .

We will now summarize the explicit expressions for
various temperature dependent quantities which are
related to the determination of the quark condensate at
nonzero temperature. The temperature analog to the
gap equation (A.13) is given by

(Ä.28)

with E =  and ωn = (2n + 1)πT being fermi-
onic Matsubara frequencies.

The polarization functions for the RPA mesons read

(Ä.29)

with ωl = 2lπT being bosonic Matsubara frequencies.
Below the phase transition, the integral I1T can again be
replaced with the help of the gap equation (A.28) (cf.
Eqs. (A.16) to (A.17)).

Finally, the constant ∆T is given by

(Ä.30)

where ωl are again bosonic Matsubara frequencies.
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Abstract—Electroweak form factors for the decays of heavy B and D mesons are considered within the cova-
riant formulation of light-front dynamics. With the aid of this approach, it is possible to separate the physical
and unphysical contributions to the form factors. An analytic expression is obtained for gluon corrections to the
electroweak vertex of the vector and the vector-axial quark current, and it is shown that, for constructing a quan-
titative description of available experimental data, it is important to take into account such corrections to the
decay widths of heavy hadrons. The effect of contact interaction on the transition form factors is analyzed, and
the importance of taking into account contact interaction for 0–  1– transitions is demonstrated numerically.
The elements |Vbc |, |Vbu |, |Vcs |, and |Vcd | of the Cabibbo–Kobayashi–Maskawa matrix are determined from an
analysis of the entire body of data on 0–  0– and 0–  1– semileptonic decays. Within the experimental
errors, the results obtained in this way are intrinsically consistent and comply with world-averaged data. © 2001
MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The semileptonic decays of heavy B and D mesons
furnish important information about the elements |Vbu|,
|Vbc|, |Vcs|, and |Vcd| of the Cabibbo–Kobayashi–
Maskawa (CKM) matrix. Since the differential and par-
tial widths with respect to hadronic decays depend both
on the CKM-matrix elements and on the transition
form factors, theoretical models that describe ade-
quately the soft (nonperturbative) interaction of quarks
within hadrons are necessary for extracting, from
experimental data, reliable information about the quark
transition amplitude, which is proportional to the
CKM-matrix elements. Theoretical approaches that are
used to describe the semileptonic decays of hadrons
employ, in addition to QCD lattice calculations, calcu-
lations based on QCD sum rules, calculations within
various effective theories, and calculations relying on
relativistic quark models. Weak-decay form factors cal-
culated on the basis of lattice QCD make it possible to
confirm or disprove one idea or another of the internal
structure of hadrons and to test relevant models. Unfor-
tunately, present-day lattice calculations involve signif-
icant uncertainties. Therefore, quark models, whose
applicability range is comparatively wide, play an
important role in such investigations.

That light-front dynamics (LFD) is one of the viable
approaches to describing quark bound states is sug-

1) Institute of Theoretical and Experimental Physics, Bol’shaya
Cheremushkinskaya ul. 25, Moscow, 117259 Russia, and Mos-
cow Institute for Physics and Technology, Institutskiœ pr. 9, Dol-
goprudnyœ, Moscow oblast, 141700 Russia.
1063-7788/01/6404- $21.00 © 20727
gested by many arguments. In relation to various quark
models used to treat quark bound states, the LFD
approach stands out for a number of reasons. For an
arbitrary system quantized on a hypersurface specified
by the light-front equation ωx = σ, there always exists a
kinematical subgroup of the total group of Poincaré trans-
formations. It follows that, within the LFD approach,
constructing a state characterized by a specific value of
the total 4-momentum reduces to solving a purely kine-
matical problem. At the same time, the diagram technique
developed within the LFD approach is essentially an ana-
log of chronological perturbation theory and makes it
possible to describe correctly relativistic spin effects. It
should also be recalled that, within this approach, vacuum
diagrams that correspond to the production of a few par-
ticles from a vacuum are forbidden from the outset.

In this connection, it is highly desirable to apply the
LFD approach to two and three-quark systems and to per-
form a detailed analysis of heavy-hadron decays within
this scheme. This is the reason why the LFD approach has
recently been used in many studies to analyze inclusive
and exclusive hadronic transitions (see [1–17]).

Within this approach, B-meson and Λb-hyperon
decays associated with transitions of a heavy quark into
another heavy quark were considered in our previous
studies [18, 19]. Here, we analyze B- and D-meson
decays caused by a transition of a heavy quark into a
light one. Of particular interest in this connection are
the transitions B  πlνl and B  ρlνl, which make
it possible to explore the CKM-matrix element Vbu,
which has not yet received adequate study—at present,
001 MAIK “Nauka/Interperiodica”
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measurement of this matrix element is an important
problem in heavy-quark physics. Yet another novel ele-
ment in the present analysis is that we take into account
contact interaction, which inevitably arises in LFD, and
gluon corrections (Sudakov form factor) to the vector
and the axial-vector current.

The ensuing exposition is organized as follows. In
Section 2, we give an account of the formalism for con-
structing matrix elements of the vector and the axial-
vector current within the covariant formulation of LFD,
taking into account contact interaction. In Section 3, we
discuss gluon corrections. In Section 4, we present our
basic results and compare them with available data. The
conclusions are summarized in Section 5.

2. MATRIX ELEMENTS OF THE VECTOR
AND THE AXIAL-VECTOR CURRENT 

IN LIGHT-FRONT DYNAMICS

Following the covariant formulation of LFD [20],
we introduce the required definitions. Within the LFD
approach, vectors that characterize the states of the sys-
tem are defined on the hypersurface specified by the
equations ωx = σ and ω2 = 0. The conventional choice
of the 4-vector ωµ is

(1)

The equation of the hypersurface is then written as x+ =
const. The evolution of the system along the time axis on
the light front [x+ for the conventional choice of ωµ
according to (1)] is controlled by the Hamilton equation
on the light front. Transformations of the Poincaré group
that do not change the orientation of the light-front hyper-
surface and which map this hypersurface onto itself are
kinematical transformations—namely, the transforma-
tion properties of a state vector under kinematical trans-
formations do not depend on interaction and do not
require knowing the Hamiltonian of the system. The gen-
erators of the transformations that do not change the ori-
entation of the hypersurface ωx = σ are kinematical trans-
formations forming a subgroup of the Poincaré group.
Owing to this, a system having an arbitrary 4-momentum
can be transformed into a system having a preset 4-mo-
mentum by using only kinematical transformations.

The diagram technique on the light front (see [20]
and references therein) is similar to old chronological
perturbation theory, the only distinction being that the
variable τ = t + z, an analog of time on the light front,
appears to be the evolution parameter along the time
axis τ. In LFD, all particles are on their mass shells, the
momentum conservation law being violated for the
minus component P– = P0 – P3 (for the conventional
choice of ωµ)—more generally, for the 4-momentum
component proportional to ωµ.

In the LFD diagram technique, vectors characteriz-
ing states of an arbitrary bound system can be expanded
in a series in Fock components with an increasing num-

ωµ ω0 ωx ωy ωz, , ,( ) 1 0 0 1, , ,( ),= =

ω± ω0 ωz.±=
ber of particles, |H〉  = |q(1)…q(i)〉 . In this expres-
sion, the index i labels the Fock component involving i
particles, φ(i) being the wave function of the ith state.
The physical matrix elements of the current are
obtained by summing the matrix elements of the cur-
rent between the individual Fock states of the expan-
sion. We assume that the main contribution to the tran-
sitions in question comes from the sector featuring the
minimum number of particles. Therefore, mesons will
be considered as quark–antiquark bound states.

For a two-particle state that is pure in 4-momentum
and in mass, {Pµ, M}, and which is formed by a quark
q1 and an antiquark , their 4-momenta and masses
being {p1µ, m1} and {p2µ, m2}, respectively, the 4-
momentum conservation law can be written as

(2)

Since the spatial component of 4-momentum is not
conserved, the rest frame of the composite particle does
not coincide with the c.m. frame of the (p1 p2) state,
where 3333 = 0: at 3333 = 0, the spatial component of the 4-
momentum does not vanish—that is, P ≠ 0.

Within the LFD approach, the (q1q)  (q2q) tran-
sition amplitude is represented as the sum of the contri-
butions from the one-body current (Fig. 1) and the con-
tributions of diagrams corresponding to contact inter-
action in LFD (Figs. 2–4).

According to general rules of diagram technique
(for details, see [20]), the contribution of the one-body
current (Fig. 1) for a transition between states charac-
terized by specific values of momentum and spin (we
denote these quantum numbers by P1 and j1 for the ini-
tial state and by P2 and j2 for the final state) has the form

(3)

where  = (p1, 2, p, P, ωτ1, 2) are vertex functions
that are related to the wave functions by the equations [20]

(4)

and Γµ = (p2){γµ, γµγ5}u(p1) is the quark vertex for the
one-body current. Integration with respect to τ1 and τ2
in expression (3) corresponds to spurions describing 4-
momentum nonconservation in the intermediate state
(see Fig. 1).

Integration with respect to τ1, τ2, and k0 is performed
with the aid of delta functions. The result is (recall that
the abbreviation OBC in the superscript indicated that
we are dealing here with the one-body-current contri-
bution)

φ i( )
i∑

q

3µ p1µ p2µ+≡ Pµ ωµτ .+=
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2
–( )θ ωp( )
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4
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-------------,

Γ1 2,
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ji

Φ
ji p1 p2 P ωτ, , ,( )
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2
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u
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(5)

Jµ
OBC( ) tr p̂2 ω̂τ2* m2+ +( )Γµ p̂1 ω̂τ1* m1+ +( )φ1

J1( )
p̂– m+( )φ2
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2
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2k⊥ tr p̂2 ω̂τ2* m2+ +( )Γµ p̂1 ω̂τ1* m1+ +( )φ1

J1( )
p̂– m+( )φ2

J2( )*[ ] ,∫
0

y

∫

q

p1

P1 k

ωτ1
p2

P2

ωτ2

Fig. 1. One-body current in light-front dynamics.

P1 P2

q

k

p2

ωτ2

Fig. 2. Contact interaction of the m1 particle.

q

p1

P1 k

ωτ1

P2

q

P1 k P2

p1 p2

Fig. 3. Contact interaction of the m2 particle. Fig. 4. Double contact interaction.
where

(6)

(7)

In transforming the integral in Eq. (5), we have made
use of the relations

(8)

x
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--------, x'
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--------, y
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--------,= = =
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Having constrained the integration domain by the
inequality 0 ≤ x ≤ y (or 0 ≤ p+ ≤ P2+), we took into
account the so-called parton contribution. The contri-
bution from the region P2+ < p+ < P1+ corresponds to
that configuration of particles in the intermediate state
in which the valence quark in the final state is on the
mass shell. The spacetime pattern corresponding to this
configuration can be represented as follows: a pair

 is produced from a vacuum, whereupon the quark

q2 recombines with the spectator antiquark , forming
the final meson; the remaining pair  annihilates
into W–. This configuration can be described only if one
takes into account the relevant components of the ver-
tex function, which are not considered here.

In Eq. (5), the form factor is expressed in terms of
the wave functions dependent on 3-momentum. From
the point of view of the instantaneous form of dynam-
ics, these functions are specified in the infinite-momen-
tum frame. We will use the approximation where they
are independent of the direction in which a transition to
the infinite-momentum frame occurs. In general, such a
dependence arises in LFD when one is dealing with

q2q2

q
q1q2
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particles having a nonzero spin. It is important to note
that the problem of two particles treated on the basis of
field theory always involves relative time. A reduction
to an expression of the type in (5) is equivalent to elim-
inating the relative time in LFD.

The problem of eliminating the relative time in the
theory of a QCD string with quarks was discussed in
[22]. In principle, this theory provides a basis for con-
structing hadron wave functions and diagonal and off-
diagonal form factors in the QCD string model. In what
is concerned with constructing wave functions, our
approach is equivalent to the use of the relativistic-
quark-model limit, which is obtained in string dynam-
ics at l = 0 {see Eq. (73) in [22a]}. Formally, expression
(5) then involves the relativistic-quark wave functions
taken in the infinite-momentum frame. However, these
wave functions depend on the relative momentum;
therefore, it may seem, at first glance, that they are
taken in the rest frame, but, in fact, this is not so. The
example of a relativistic oscillator on the light cone
reveals (see [23]) that the wave functions defined in the
infinite-momentum frame cannot be obtained directly
by determining the eigenfunctions of the Hamiltonian
on the light cone, since the angular-momentum opera-
tors depend on interaction in this representation.

Within LFD, the wave function  of the J = 0

state ({p1, m1}, {p2, m2}) is generally parametrized in
terms of two scalar functions:

(9)

Φσ1σ2

J 0=

Φσ1σ2

J  = 0
u p1 σ1,( ) φ J  = 1( )[ ]v p2 σ2,( ),=

φ J  = 1( ) γ5h1 γ5ω̂h2.+=

q

P1

k

P2

p1 p2

Fig. 5. Parton contribution to the triangle diagram.
In the quark–antiquark c.m. frame, this expression can
be represented in the form

(10)

where ρ(k2) is given by

(11)

with εi = .

Only the functions h1 and ψ1 survive in the nonrela-
tivistic approximation. They describe a  bound state
in the S wave. The functions h2 and ψ2 have no nonrel-
ativistic analogs. Their origin is associated with the fact
that, within the covariant LFD formalism, two invariant
functions h1 and h2 must be introduced in order to con-
struct a unified description of the 0–  (1/2)+(1/2)–

bound state (Fig. 5) and the (1/2)–  0–(1/2)+ frag-
mentation (Fig. 6). Taking into account relativistic
effects in a minimal way, we will henceforth disregard
the functions h2 and ψ2 and the dependence of the func-
tions h1 and ψ1 on the direction of the unit vector n
specifying a transition to the infinite-momentum frame.
We then have

(12)

where ψS is the wave function of the S-wave bound
state of the  system.

Let us now consider the case of J = 1. Within LFD,

the wave function  of the J = 1 state formed by

two particles j1, 2 = , p1, 2, m1, 2  can be parame-

trized as

(13)

where we generally have six independent terms:

(14)
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Here, eµ(P, M) is the polarization 4-vector in the spin-1
state.

In the quark–antiquark c.m. frame, the wave func-
tion (13) can be parametrized in terms of six scalar
functions appearing as coefficients of independent spin
structures composed from the vectors k and n:

(15)

Here,  is the polarization 3-vector in the c.m. frame.
In general, ψ1, ψ2, ..., ψ6 depend on the scalars k2 and k ·

n; that is, ψn = ψn(k2, k · n). The functions , ..., 
and ψ3, ..., ψ6 have no nonrelativistic analogs. They are
associated with the covariant description of the (1/2)– 
1+(1/2)– fragmentation process (Fig. 6). In just the same
way as in the case of zero spin (J = 0), we disregard

these functions. The functions  and  or ψ1 and ψ2
correspond to the S- and D-wave functions of the bound
quark–antiquark state. In [18], we took into account S-
and D-wave contributions. The D wave was introduced
in order to improve the description of the decay B 
Dlνl . In [18], we neglected, however, the contact con-
tributions, which are of importance, as will be shown
here—their inclusion makes it possible to describe
experimental data without taking into account the D
wave. If we consider only the S wave, the 1− 
(1/2)+(1/2)– wave function in the c.m. frame has the
form

(16)

As in the case of zero spin, we neglect the dependence
of ψS on the vector n.

According to the LFD diagram technique, the one-

body hadronic current  must be supplemented
with the contributions corresponding to the contact
interaction of p1 and p2 particles with the weak-current
vertex. Each of the contact contributions is associated
with a diagram where the quark lines contactly interact
with the current  (see Figs. 2, 3). A crossed
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quark line then corresponds to the quantity – ,

where P is the sum of the momenta flowing into the ver-
tex (for more details, see [20]).

Exact expressions for the contact terms can be
obtained if the vertex functions in (3) are taken to be
constant. In this approximation, the sum of the three
diagrams in Figs. 1–3 has the form

(17)

where

(18)

The double contact interaction corresponding to the
crossed lines of the two quarks p1 and p2 appears to be
proportional to ωµ and does not contribute to the com-
ponents J+ and J⊥  of the current. Expression (17) will
be used below to calculate the spin structure of the
matrix elements of the current.

Thus, the contact interaction has no effect on the
vertex functions in the most general parametrization
given by Eqs. (13) and (14), but, according to (18), it
changes the momenta of the m1 and m2 particles
involved in the spin structure of expression (5). Gener-
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Fig. 6. Fragmentation contribution to the triangle diagram.
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ally speaking, this conclusion is valid only for LFD dia-
grams where vertex functions do not depend on the
variables of integration. However, even this approxi-
mate inclusion of the contact interaction affects signif-
icantly the results of the calculations for the 0–  1–

off-diagonal transition (see Section 5).

3. SELF-CONSISTENCY OF THE MODEL
AND DETERMINATION OF PHYSICAL 

FORM FACTORS

An exact calculation of the form factors in field the-
ory—in particular, in LFD treated as a field theory on
the light-front hypersurface—must lead to covariant
expressions for current matrix elements. In the approx-
imate scheme where we restrict ourselves to the contri-
butions of the sector featuring a fixed number of parti-
cles, the matrix elements of the current operator appear
to be dependent on the orientation of the vector ω.

This problem was discussed in [18, 19], where a
regular method for separating physical form factors
from unphysical structures was considered. In the
majority of studies, this problem is usually sidestepped
by indicating a reliable choice of matrix elements. As a
rule, quantities calculated with the current component
J+, which possesses “good” properties, are taken for
such matrix elements. However, the number of matrix
elements corresponding to this good current compo-
nent is usually insufficient for determining all physical
form factors for a given transition.

In the covariant formulation of LFD, physical form
factors can be self-consistently determined by eliminat-
ing the unphysical ωµ dependence of the transition
form factors. To illustrate the general approach to the
covariant LFD parametrization, we first consider
0−  0– transitions.

In the matrix elements of the current, we introduce,
apart from the vectors P1µ and P2µ, an explicit ωµ
dependence; that is,

(19)

where y = (P2ω)/(P1ω), F0 and F1 are physical form fac-
tors; B0 is a form factor that parametrizes the unphysi-
cal contribution; and superscript L.F. explicitly indi-
cates that the left-hand side was calculated approxi-
mately within the LFD approach. For the standard
choice of ωµ, we have y = P2+/P1+. In (19), we have con-
sidered that, within this approach, form factors can
involve ω only in the form ωµ/(Piω), because the calcu-
lations on the light front depend only on the orientation
of the vector n = w/ω0, undergoing no changes upon the

Jµ
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2
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ω P1 P2+( )
---------------------------,
multiplication of ωµ by an arbitrary integer. As a matter
of fact, the ω dependence of the matrix elements can be
taken into account through the quantity y. All the
remaining dimensionless combinations of ωµ can be
reduced to this expression. Thus, the form factors
depend not only on q2 but also on y, which is reflected
in the form of (19).

In the two-body approximation, the matrix element
of the 0–  0– transition current can be represented in
the form

(20)

where, in accord with the statements of Section 2,

p(i)µ = P(i)µ – pµ and  ≠ . If ω is chosen in a stan-
dard way, the unphysical form factor does not contrib-
ute to the good and the transverse component of the
matrix elements of the current. In order to determine
two physical form factors, we must therefore consider
the matrix elements of J+ and J⊥ .

We will use a reference frame where the momenta
of the initial and the final meson have small compo-
nents along the x axis. In this configuration, the square
of the 4-momentum transfer is given by

(21)

If P⊥  is chosen to be sufficiently small, almost all kine-

matically possible values in the region 0 ≤ q2 ≤  =
(M1 – M2)2 can be realized. By using the current com-
ponents J+ and J⊥ , we find that the form factors F1 and
F2 satisfy the set of two equations

(22)

In order to take into account the Sudakov form fac-
tor (see below), the integrand on the right-hand side of
(20) [it determines the matrix elements of the current in
Eq. (22)] must be multiplied by S(q2, x, k⊥ ),

(23)

The dependence of the Sudakov form factor on x and
k⊥ , which are the variables of integration in the relevant
diagram, is a consequence of the fact that particles in
the intermediate state (quarks in our case) are on the
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mass shell. In this case, the 4-momentum is not con-
served in the weak-current vertex, so that the quantity

 in the timelike region is not equal to the physical

momentum transfer squared, (  – )2 ≡  ≠ q2 =

(P1 – P2)2.
In the set of Eqs. (22), P+ is a parameter that is can-

celed in each of the equalities and can be chosen arbi-
trarily. In the case of P1⊥  = P2⊥  = P⊥ , this set of equa-
tions is further simplified to become

(24)

At y = 1—we then have q2 = 0 (P⊥   0)—the left-
hand side of the set of equations in question becomes
degenerate; on the right-hand side, the matrix elements
of the current components J+ and J⊥  concurrently
become proportional to each other, apart from the
factors P+ and P⊥ . Formulas (24) express the physical
0–  0– transition form factors F0 and F1 in terms of
the matrix elements of the good and the transverse cur-
rent components as given by Eq. (20).

For the 0–  1– transition, the general LFD
expression for the matrix element of the current has the
more complicated form

(25)

where  is the polarization 4-vector specified in the
c.m. frame of the constituent quarks; in an arbitrary ref-
erence frame, it is given by
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correspond to the S-wave states of the initial and the
final meson.

The spin structures of the contributions from the
vector and the axial-vector current to the trace tr[…] on
the right-hand side of (25) are given by

(27)

and

(28)

We note that the transverse component of the meson
polarization vector eµ coincides with that of the polar-

ization vector  of the  system.

Equations (27) and (28) represent the fullest LFD
parametrization that describes the transformation prop-
erties of the matrix elements of the current.

Thus, the most general parametrization of the
0−  1– transition current in the covariant LFD
approach can be represented as

(29)
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  p̂ m2+( ) eν*

=  4 i–( )εµλαβ m p1α p2β m1 pα p2β m2 p1α pβ+ +( )eλ*

+
p p2–( )νeν*

M20 m2 m+ +
-------------------------------- p1α p2β pλ–( ) .

ẽµ qq

Vµ
LFD 2i

M1 M2+
---------------------V q

2( )eµναβeνP1αP2β=

+ B1εµναβeν*P1α
ωβ

ω P1 P2+( )
---------------------------

+ B2εµναβeν*P2α
ωβ

ω P1 P2+( )
---------------------------

+ B3 SµP1ν P1µSν+( )eν* B4 SµP2ν P2µSν+( )eν*+

+ B5 Sµ
ων

ω P1 P2+( )
---------------------------

ωµ

ω P1 P2+( )
---------------------------Sν+ 

  eν*,
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(30)

where Sµ = . The matrix elements of

the vector and the axial-vector current involve four
physical form factors, V for the former and A1, A2, and
A0 for the latter; they also contain five (B1, …, B5) and
four (H1, …, H4) unphysical form factors for the former
and the latter, respectively.

Let us choose the reference frame where

(31)

In this frame, the final vector meson moves along the z
axis, which is singled out for the standard choice of ω
[see (1)]. In numerical calculations, the parton contri-
bution is maximized by choosing a reference frame
where the initial-meson transverse momentum is small
in relation to the masses of particles participating in the
reaction (see [18, 19]). We further consider only the
matrix elements of the good and the transverse current
component, whereby the unphysical form factors H3,
B1, and B2 are eliminated from the outset. In order to
eliminate H1 and H2, we consider only the transverse
polarization of the final meson. In this meson-momen-
tum configuration, the vector eµ is orthogonal to the z-
axis direction and to the final-vector-meson momen-
tum, so that eµ has only transverse components. In
order to eliminate the remaining unphysical form fac-
tors B1 and B2, we introduce the auxiliary tensor [24]

(32)

The current calculated within LFD can then be repre-
sented as (see also [24])

(33)

For the transverse polarization vector, this can be done,
in the momentum configuration being considered, for

Aµ
LFD

A1 M1 M2+( ) eµ*
e*q

q
2

---------qµ– 
 =

– A2
e*q

M1 M2+
--------------------- P1 P2+( )µ

M1
2

M2
2

–

q
2

---------------------qµ–
 
 
 

+ A02M2
e*q

q
2

---------qµ H1
e*ω
ωP1
---------- 

  P1µ H2
e*ω
ωP2
---------- 

  P2µ+ +

+ H3

e*P1

ωP1
------------ 

  ωµ H4
e*ω

ω P1 P2+( )( )2
----------------------------------ωµ,+

ieµναβωνP1αP2β

ω P1 P2+( )
--------------------------------------

P1µ P+ P⊥
M1

2 P⊥
2

+
P+

--------------------, , ,=

P2µ yP+ 0
M2

2

yP+
---------, , .=

Gµν M1M2 igεµναβP1αP2β B1εµναβP1αωβ+(=

+ B2εµναβP2αωβ) M1M2 B3 SµP1ν P1µSν+( )(+

+ B4 SµP2ν P2µSν+( ) B5 Sµων ωµSν+( ) ).+

Jµ Gµνeν*.=
 as well, since  does not involve, in this case,
quantities that depend on the integration variables x and
k⊥  (in general, this is incorrect). Upon antisymmetriza-

tion with respect to the indices µ and ν, Gµν   =

(Gµν – Gνµ), the covariant structures at B3, B4, and B5

vanish. For the remaining nonvanishing matrix ele-
ments of the current, we arrive at a set of equations that,
in terms of the form factors appearing at the 4-veloci-
ties V1 = P1/M1 and V2 = P2/M2 (this representation is
chosen for the sake of convenience), has the form

(34)

where the form factors b1, b2, and f are defined via the
relation

(35)

They can be expressed in terms of the form factors A1,
A2, and V as given by Eqs. (29) and (30). In the config-
uration being considered, the remaining matrix ele-
ments vanish.

Thus, relations (34) solve the problem of self-
consistently determining physical form factors for the
0–  1– electroweak transition within the covariant
LFD approach.

4. RADIATIVE CORRECTIONS 
FOR THE VECTOR 

AND THE AXIAL-VECTOR CURRENT

In this section, we calculate the Sudakov form fac-
tor, which corresponds to radiative corrections to the
electroweak vertex of the quark current 〈q2|Jµ|q1〉.
Within QCD, the Sudakov form factor has been consid-
ered by many authors (see, for example, [25–29] and
references therein). In our case, the momentum transfer
squared q2 is positive and is constrained by the condi-
tion q2 ≤ (m1 – m2)2; therefore, attention is given here
primarily to a self-consistent analysis of radiative cor-
rections to the first order in αs in this region. The result-
ing formulas have a unified analytic structure both at
positive and at negative q2 values.

Since, within the covariant LFD scheme, intermedi-

ate-state particles are on the mass shell, we set  = 
(for quark lines as well) in calculating radiative correc-
tions that correspond to the total contribution of the tri-
angle diagram (Fig. 7) and the total contribution of dia-
grams that describe the renormalization of external

Jµ
OBC( )

eeee⊥*

Gµν

1
2
---

A+ ex( ) M1M2 b1V1+ b2V2++[ ] e⊥ V1⊥–( ),=

Ax ex( ) M1M2 f b1V1⊥ e⊥ V1⊥–( )+( ),=

Ay ey( ) M1M2 f ,=

1
–〈 |q2γµq1 0

–| 〉

=  M1M2 f η( )eµ* b1 η( )V1µ b2 η( )V2µ+[ ] e*V1( )+( ).

pi
2

mi
2
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photon lines (Fig. 8) and the emission of soft gluons
(Fig. 9).

For the gluon field, we choose the Feynman gauge,
so that the gluon propagator is written in the form

(k2) = gµν,

where λ is the gluon mass introduced formally.
Let us calculate the contribution of the triangle dia-

gram that corresponds to virtual-gluon exchange
between the m1 and the m2 quark. We have

(36)

where CF = 4/3. Thus, the vector and the axial-vector
vertex function are determined in the form of integrals as

(37)

(38)

The Sudakov form factor for the vector and the axial-
vector vertex can be parametrized as

(39)

(40)

In order to transform Eq. (37), we make use of the
Feynman relation

(41)

Dµν
ab iδab

–

k
2 λ 2

– i0–
---------------------------

ieu p2( )Γµ
1( )

q
2( )u p1( )– ie–( )3

CFu p2( )=

× d
4
k

2π( )4
-------------γνi

p̂2 k̂ m2+ +

p2 k+( )2
m2

2
–

----------------------------------γµ 1 γ5–( )∫

× i
p̂1 k̂ m1+ +

p1 k+( )2
m1

2
–

----------------------------------γν
i–( )

k
2 λ 2

–
----------------u p1( ),

Γµ
1( )V

q
2( ) i

α s k
2( )

4π3
---------------–

 
 
 

CF=

× d
4
kγν

p̂2 k̂ m2+ +

p2 k+( )2
m2

2
–

----------------------------------∫ γµ
p̂1 k̂ m1+ +

p1 k+( )2
m1

2
–

----------------------------------γν
1

k
2 λ 2

–
----------------,

Γµ
1( )A

q
2( ) i

α s k
2( )

4π3
---------------–

 
 
 

CF=

× d
4
kγν

p̂2 k̂ m2+ +

p2 k+( )2
m2

2
–

----------------------------------γµγ5

p̂1 k̂ m1+ +

p1 k+( )2
m1

2
–

----------------------------------γν
1

k
2 λ 2

–
----------------.∫

Γµ
1( )V

q
2( )

=  u p2( ) F0
V( )γµγ5 i

qµ

m1 m2+
-------------------σµνF1

V( )
– qµF2

V( )
– u p1( ),

Γµ
1( )A

q
2( )

=  u p2( ) F0
A( )γµγ5 i

qµ

m1 m2+
-------------------σµνF1

A( )
– qµF2

A( )
– u p1( ).

1
a1a2

…an

----------------------

=  n 1–( )! x1… xn

δ x1 x2 …  +  x n 1– + +  ( ) 

a

 

1

 

x

 

1

 

a

 

2

 

x

 

2

 

…  +  a n x n + +  ( ) 
n

 
----------------------------------------------------------------

 
d

 
0

 

x

 

n

 

1–

 ∫d

0

1

∫    
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and introduce the following notation for the spin struc-
ture of the amplitude in (36):

(42)

In performing four-dimensional integration with respect
to 

 

k

 

, the right-hand side of (37) can be written as

 

(43)

Spinµ k x1 x2, ,[ ]

=  γν p̂2 k̂ m2+ +( )γµ 1 γ5–( ) p̂1 k̂ m1+ +( )γν.

2 x1 x2d
4
k k

2
2 p2x2 p1 x1 x2–( )+[ ]k+[d

0

x1

∫d

0

1

∫

 

–

 

λ

 

2

 

1

 

x

 

1

 

–

 

( ) ]

 

3–

 

Spin

 

µ

 

k x

 

1

 

x

 

2

 

, ,[ ]

=  2 x1 x2d
4
k k

2( )
2

A
2

– λ 2
1 x1–( )–[ ]

3–
d

0

x1

∫d

0

1

∫

k

q

p1 p2

q

k

p1 p2

q

k

p1 p2

qq

k k

p1 p2 p1 p2

Fig. 7. Diagram involving virtual-gluon exchange.

Fig. 8. Diagrams renormalizing external quark lines.

Fig. 9. Diagrams involving soft-gluon emission.
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where Aµ = x2 p2µ + (x1 – x2)p1µ.
Further, the integration with respect to this four

dimensional variable reduces to evaluating integrals of
the two types

(44)

where  ≡ A2 + λ2(1 – x1).

The ultraviolet divergence in the second integral is
removed by the dimensional-regularization method,

(45)

We then proceed to perform integration with respect to x1
and x2; there, an infrared divergence in the limit λ  0

arises only in the integral 

and stems from the region {x1, x2}  0. In the limit

λ2  0, we can set  = A2 + λ2 over the entire inte-
gration domain 0 ≤ x2 ≤ x1 ≤ 1 without changing the
structure of the infrared singularity.

For further integration, it is convenient to introduce,
instead of the Feynman variables x1 and x2, the vari-
ables

(46)

where

(47)

The integrals with respect to x1 and x2 then transform as

(48)

The vector Aµ is expressed in terms of the new vari-
ables as

(49)

× Spinµ k Aµ– x1 x2, ,[ ] ,

d
4
k

2π( )4
------------- 1

k
2

Aλ
2

– i0–[ ]
3

-----------------------------------,
d

4
k

2π( )4
------------- k

2

k
2

Aλ
2

– i0–[ ]
3

-----------------------------------,∫∫

Aλ
2

d
4
k

2π( )4
------------- 1

k
2

Aλ
2

+[ ]
3

------------------------∫ i–( ) π2

2π( )4
------------- 1

2Aλ
2

---------,=

d
4
k

2π( )4
------------- k

2

k
2

Aλ
2

+[ ]
3

------------------------∫

i–( ) π2

2π( )4
------------- C

1
2
--- 4π( )ln–

Aλ
2

µ2
------

 
 
 

ln+ + .reg

2 x1 x2
1

A
2 λ 2

1 x1–( )+
-------------------------------------d

0

x1∫d
0

1∫

Aλ
2

x x1,=

ζ x2 α1x1,–=

α1
1
2
--- 1

m1
2

m2
2

–

q
2

-------------------+
 
 
 

, α2
1
2
--- 1

m1
2

m2
2

–

q
2

-------------------–
 
 
 

.= =

2 x1 x2F x1 x2,[ ] 2 x ζF x ζ,[ ] .d

α1x–

α2 x–

∫d

0

1

∫d

0

x1

∫d

0

1

∫

Aµ x2 p2µ x1 x2–( ) p1µ+=

=  qµζ α1 p2µ α2 p1µ+( )x,+

A
2

q
2 ζ 2 β2

x
2

–[ ] ,=
where

(50)

The above auxiliary variables α1(q2), α2(q2), and

β(q2) have the following physical meaning: (q2)

and |α2(q2)| are the energies of, respectively, the m1
and the m2 particle (q = 0) in the c.m. frame, while

(q2) is the absolute value of the 3-momentum of
each particle in this frame. In the region corresponding
to the decay process m1  Wm2, the energy conserva-
tion law has the form

(51)

Upon four-dimensional integration with respect to k,
the integrand [see Eq. (45)] involves the following
structures:

(52)

Presented immediately below are integrals that are
taken of these functions F[x, ζ] and which arise upon
integrating (52) with respect to x and ζ:

(53)

β 1
2
--- 1 2

m1
2

m2
2

+

q
2

-------------------–
m1

2
m2

2
–( )

2

q
2( )

2
--------------------------+ .=

q
2α1

q
2

q
2β

q
2α1 q

2( ) q
2

q
2 α2 q

2( ) ,+=

q
2α i( )

2
mi

2
– q

2β( )
2
.=

d
4
k

2π( )4
-------------Spinµ

A V,
x ζ,[ ] 1

k
2

Aλ
2

+[ ]
3

------------------------∫

1
Aλ

2

µ2
------ln x

1

Aλ
2

------ ζ 1

Aλ
2

------ x
2 1

Aλ
2

------ ζx
1

Aλ
2

------ ζ 2 1

Aλ
2

------ 1

Aλ
2

------, , , , , , ,
 
 
 

.

2 x ζ1d

α1x–

α2 x–

∫d

0

1

∫ 1,=

2 x ζ A
2

µ2
------ 

 lnd

α1x–

α2 x–

∫d

0

1

∫ 3– α1 β–( )
m1

2

µ2
------

 
 
 

ln+=

– α2 β–( )
m2

2

µ2
------

 
 
 

ln 2β
α1 β+
α2 β+
------------------ 

  ,ln+

2 x ζζ 1

A
2

------d

α1x–

α2 x–

∫d

0

1

∫ q
2( )

1– m2
2

m1
2

------
 
 
 

,ln=

2 x ζx
1

A
2

------d

α1x–

α2 x–

∫d

0

1

∫ q
2( )

1– 1
β
---

α1 β–
α1 β+
---------------

α2 β+
α2 β–

------------------ 
  ,ln=

2 x ζ x
2 1

A
2

------d

α1x–

α2 x–

∫d

0

1

∫ 1

2βq
2

------------
α1 β–
α1 β+
---------------

α2 β+
α2 β–

------------------ 
  ,ln=
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Since the integrals in (53) do not involve infrared diver-
gences, we everywhere set λ2 = 0 (A2 + λ2 = A2) in the
above equations. The most important (doubly logarith-

mic) term DL(q2) =  can be rep-

resented in the form

(54)

where γ(q2) = [β2(q2) – λ2/q2]1/2.
This doubly logarithmic term can be written in a

unified form for q2 < 0 and for 0 < q2 < (m1 – m2)2:

(55)

The function F[x] = ln[1 + ζ] is real for x > –1.

For positive q2 values, we have α1, |α2 | > β > γ and
the doubly logarithmic term can be represented in the
form

(56)

where

(57)

2 x ζxζ 1

A
2

------d

α1x–

α2 x–

∫d

0

1

∫ 1–( )
q

2
-----------
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m2
------ 
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2 x ζζ 2 1

A
2

------d

α1x–

α2 x–

∫d

0

1

∫ 1

q
2

----- 1
1
2
---β

α1 β–
α1 β+
---------------

α2 β+
α2 β–

------------------ 
 ln+ .=

2 x ζ 1

A
2 λ 2

+
-----------------dα1x–

α2 x–∫d
0

1∫

DL q
2[ ] q

2( )
1– xd

x
----- 1

β2 λ 2

q
2
x

2
----------–

1/2
--------------------------------

0

1

∫=

×
α1 β2 λ 2

q
2
x

2
----------–

1/2

–

α1 β2 λ 2

q
2
x

2
----------–

1/2

+

---------------------------------------------

α2 β2 λ 2

q
2
x

2
----------–

1/2

+

α2 β2 λ 2

q
2
x

2
----------–

1/2

–

------------------------------------------------

 
 
 
 
 
 

ln

=  q
2( )

1– zd

z
2 β2

–( )
--------------------

α1 z–
α1 z+
--------------

α2 z+
α2 z–

----------------- 
  ,ln

γ

i∞

∫

DL q
2[ ] 1

2βq
2

------------ F
α1 β–
β γ+
--------------- F

α1 β–
β γ–

---------------+








=

– F
α1 β+

β– γ+
---------------- F

α1– β–
β γ+

-------------------–




α1 α2{ }–




.

ζd
ζ
-----

0

x∫

DL q
2[ ] q

2( )
1– 1
2β
------Z q

2[ ] ,=

Z q
2[ ]

α1 β+
α1 β–
---------------

α2 β–
α2 β+
------------------ λ2

m1m2
-------------lnln=

+
α1 β+
α1 β–
---------------

α2 β+
α2 β–

------------------
α2 β+
α1 β+
------------------lnln

+ 2F
2β

α1 β+
---------------– 2F
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α2 β+
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Since the inequalities q2 > 0 hold for − ,

−  > –1, all functions in (57) are real-valued. In

(57), we set λ  0 (γ  β) in all expressions where
no divergence arises in this limit.

In the spacelike region q2 < 0, the relations γ > β >
|α1|, |α2 | hold and the doubly logarithmic term can be
recast into the form

(58)

We note that the quantity Z[q2] determined by expres-
sion (58) is invariant under the interchange of the m1 and
the m2 particle and under the substitution α1  α2.

Finally, the expressions for the gluon corrections
(Fig. 7) are obtained by substituting (53), (56), (57),
and (58) into Eqs. (52) and (42).

In order to take into account all gluon corrections to
the first order in the strong-interaction constant αs , the
expression for the renormalized weak vertex must be
supplemented with the contributions of the diagrams
(Fig. 8) that renormalize the external quark propagators
and of the diagrams involving the emission of soft glu-
ons (Fig. 9).

The contributions (Fig. 8) that renormalize the
external quark propagators are independent of q2 and
can be expressed in terms of the contributions of the
corresponding diagrams in Fig. 7 that are diagonal in
the quark flavor. Indeed, we consider the diagram in
Fig. 7 that is diagonal in the flavor of the mi quark and
denote by F[q2, m1, m2] its contribution and by Z[mi] the
constant corresponding to the contribution of one of the
diagrams in Fig. 8. By virtue of vector-current conser-
vation, the relation F[q2 = 0, mi, mi] + 2Z[mi] = 0 must
hold in the first order in αs, whence it follows that

(59)

2β
α1 β+
---------------

2β
α2 β+
------------------
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-----
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2
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---------------ln
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Thus, the total contribution of the diagrams in Fig. 7
and 8 can be represented as

(60)

Since Z[mi] in (59) is associated with the vector vertex,
we then have

(61)

The form factors  and  transform as

(62)

(63)

As a result, Z[mi] does not contribute to the form fac-

tors , , , and .

At q2 =  = (m1 – m2)2, the form factors  and

 are normalized as [gluon-emission diagrams,
which will be considered in the next section, do not
contribute at this q2 = (m1 – m2)2 value] (see also [25])

(64)

The ultraviolet divergence is independent of the
quark masses m1 and m2 and of q2 and is canceled in
(60). The numerical procedure applied in (45) within
the dimensional-regularization method is validated in
(60). The functions F[q2, mi, mj] involve an infrared
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divergence in the form of a logarithmic dependence on
the soft-gluon mass λ. The infrared divergence is can-
celed upon taking into account soft-gluon-emission
diagrams. (While there are no free gluons in nature, the
principle of quark–hadron duality treats a color-singlet
hadron as a system formed by constituent quarks and a
collinear hadron jet where the particle momenta can be
projected onto the hadron wave function.)

Let us consider radiative corrections to external
quark lines. In order to eliminate infrared divergences
in the total cross section, we must take into account
soft-gluon-emission diagrams (see Fig. 9).The expres-
sion for the cross section characterizing the emission of
soft gluons with a nonvanishing mass is well known
(see, for example, [30]). In the Feynman gauge, it can
be represented as

(65)

where dσel is the differential cross section for the one-
body quark current (1 – γ5
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Thus, we have

(69)

where

(70)

Expressions (67)–(69) specify gluon-emission-induced
corrections to the weak vertex for the quark current.

Let us now consider the q2 dependence of regular
contributions to σ(1)(q2). The quantity σ(1)(q2) is not
invariant under Lorentz transformations, since integra-
tion in Eq. (67) is defined in a specific reference frame
where the gluon energy is constrained by the noninvari-
ant condition 0 ≤ ω(k2) ≤ ωmax. In order to define
σ(1)(q2), it is therefore necessary to fix a reference frame
where the 4-vector Aµ is specified. It seems that the
quasi-Breit frame, where the velocities of the initial and
the final quark are equal in magnitude and opposite in
direction (see, for example, [31]), is the most conve-
nient for computing off-diagonal form factors. Thus,
we define the quantity P0(x) in (67) in the quasi-Breit
frame as

(71)

The Sudakov form factor is specified in the region
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being the quark momenta (  = ); the boundaries of
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By way of example, we indicate that, for 0–  0–, the
physical region of q2 is not covered by the region –∞ ≤

 ≤ (m1 – m2)2.

In the spacelike region q2 ≤ 0, one can always
choose a reference frame where q+ = 0. In this case, we

have (q2, x, ) = q2, since  = (qµ + ωµ(  – ))2

and ω2 = 0. The condition q2 =  makes it possible to
factorize the relevant diagram into the hadronic-current
diagram and the W–-meson propagator [20]. In the
timelike region q2 > 0, there is no such possibility; for
this reason, the Sudakov form factor is calculated for a
given configuration of quarks (not mesons). Since inte-
gration over the intermediate quark configurations is
then performed for each meson configuration, the

Sudakov form factor, which now depends on (q2, x,

), is also integrated in accordance with Eq. (23).

5. TRANSITIONS FORM FACTORS
AND PROBABILITIES 

OF SEMILEPTONIC DECAYS

Meson wave functions are determined by solving
the relativistic wave equation

(74)

As was indicated above, the dependence of the wave
functions on the variable (n · k) is disregarded in our
calculations.

We relied on the potential proposed by Godfrey and
Isgur [32]. The computational procedure used and the
choice of parameter values are given in [18]. For vari-
ous quark pairs, the parameter σ that specifies the
smearing of the potential was set to σπ(ρ) = σK(K*) =
0.8  GeV, σD(D*) = 1.0 GeV, and σB(B*) = 1.2 GeV. For
the transitions B  D(D*), we also employed wave
functions obtained as solutions to the Schrödinger
equation (74) with the potential V0 and the confining
potential Vred ,

(75)

In order to take into account the difference between
the wave functions of the vector and the pseudoscalar
( ) bound state, the potential used in Eq. (74) was
supplemented with the spin-dependent potential
Vspin(k2) parametrized as

(76)

where the parameter  was determined for the (m1, m2)
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the masses of the corresponding 1– vector meson and
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Table 1.  Observables of the decays B  Dl  and B  D*l  (partial decay widths are expressed in units of |Vbc|2 ×
1012 s–1; |Vbc | was set to 0.037; and τB = 1.60 × 10–12 s)

Γ(D) @(D), % Γ(D*) @(D*), % ΓL/ΓT Γ(D*)/Γ(D)

Model I(S) 9.78 2.14 22.4 4.90 1.16 2.16

Model I 10.14 2.22 26.5 5.78 1.24 2.61

Model II(S) 8.58 1.88 20.4 4.48 1.06 2.38

Model II 8.87 1.94 24.2 5.28 1.16 2.73

QM:

WSB [2] 8.08 1.77 21.9 4.80 2.71

ISGW2 [6] 11.9 2.61 24.8 5.43 1.04 2.08

Jaus [4] 9.6 2.10 25.3 5.55 1.04 2.08

Faustov [8] 13.2 2.89 22.5 4.93 1.71

Melikhov [12] 8.7 1.90 23.2 5.08 1.28 2.65

DNKO [14] 9.09 1.99 23.1 5.06 1.15 2.54

SR:

Narison 92 [33] 9 ± 3 2.0 ± 0.6 17 ± 6 3.7 ± 1.3

Experiment [34, 35] 1.95 ± 0.27 5.05 ± 0.25 1.24 ± 0.16

νl νl

0.98–0.12
+0.14

1.9–0.3
+0.4
            
physical value. To a high precision, this condition is
met at  = 0.25 GeV3.

With the Godfrey–Isgur potential, the partial widths
were calculated at mb = 5.1 GeV, mc = 1.70 GeV, ms =
0.45 GeV, and m = 0.33 GeV. For each of the transitions
b  c, b  u, c  s, and c  d, the form factors
were calculated for (a) the wave functions as obtained
by solving the wave equation and (b) the model Gauss-
ian wave functions with parameters set to the values
from [3].

The calculations were performed with allowance for
the Sudakov form factor (explicit expressions for it are
given in Section 4) and also without it, S(q2)  1. The
integrals that determine the Sudakov form factor are
dominated by the contribution from the region where
the gluon virtualities µ2 are modest; for this reason, αs

was set to 0.30 for all types of quark transitions (see
also [25]).

In a calculation of the Sudakov form factor, the
parameter ωmax has the meaning of the maximum pos-
sible energy of the emitted gluon or, what is the same,
of characteristic parton virtualities in a meson. For
quark states to be color-singlet (hadronic) both in the
initial and in the final state, it is necessary to project the
emitted gluon onto the wave function of the initial or
the final meson; otherwise, a hard gluon with a charac-

teristic virtuality µ2 in excess of 〈 〉  will lead, in the
initial or in the final state, to the formation of a hadronic
jet. Hence, the quantity ωmax must be determined by
characteristic parton virtualities in a meson. If spin
interaction is taken into account, the wave function of the
initial meson may differ from the wave function of the

c̃

k⊥
2

final meson; however, our numerical calculations were
performed with the parameter ωmax set to the same value
for the scalar and for the vector meson (ωmax = 0.5 GeV).

Tables 1–10 display the results of our calculations
performed with various wave functions of the initial
and the final meson and with or without allowance for
the Sudakov form factor. Listed immediately below are
further details on the models used in these calculations.

(i) Model I: The wave functions for the initial and
the final meson were determined as solutions to the
wave equation for the potential, the smearing parame-
ters, and the potential of spin–spin interaction as spec-
ified by the above formulas; no account was taken of
the Sudakov form factor.

(ii) Model I(S): The wave functions were deter-
mined as solutions to the wave equation; the Sudakov
form factor was included.

(iii) Model II: Use was made of model wave func-
tions in the Gaussian parametrization ψ(k) =

Nexp  with the parameters β =  from

[6]; no account was taken of the Sudakov form factor.

(iv) Model II(S): Use was made of model wave
functions; the Sudakov form factor was included.

In the tables, we also quote relevant experimental
data and results obtained by other authors. The theoret-
ical approaches against which we contrast our results
include those that are based on quark models (QM),
sum rules (SR), and lattice calculations (Lattice). In
Tables 1, 5, 7, and 9, we present the results of the cal-
culations for the partial widths and branching fractions

k2

2β2
--------– βm1 m2 J, ,
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Table 2.  Form factors for the decay processes B  Dl  and B  D*l  at q2 = 0

F1(0) V(0) A1(0) A2(0) V(0)/A1(0) A2(0)/A1(0)

Model I(S) 0.69 0.73 0.62 0.54 1.19 0.88

Model I 0.73 0.74 0.70 0.59 1.06 0.84

Model II(S) 0.63 0.67 0.56 0.52 1.20 0.92

Model II 0.67 0.68 0.64 0.55 1.07 0.87

QM:

WSB [2] 0.71 1.09 1.06

Jaus [4] 0.69 0.81 0.69 0.64 1.17 0.93

Melikhov [12] 0.684 1.12 0.68 1.08 0.89

DNKO [14] 0.683 0.677 0.623 0.556 1.08 0.89

SR:

Narison 92 [33] 0.62 ± 0.06 0.58 ± 0.03 0.46 ± 0.02 0.53 ± 0.09 1.26 ± 0.08 1.15 ± 0.20

Experiment [36]

νl νl

1.18–0.30– 0.12
+0.30 + 0.12

0.71–0.20 – 0.07
+0.20 + 0.07

Table 3.  Observables of the decays B  Dl  and B  D*l  (A) with and (B) without allowance for contact interaction

(the calculation of the branching fractions employed the parameter values of |Vbc | = 0.037 and τB = 1.60 × 10–12 s; no account
was taken of the Sudakov form factor)

@(D), % @(D*), % ΓL/ΓT Γ(D*)/Γ(D) V(0)/A1(0) A2(0)/A1(0)

Model I A 2.22 5.78 1.24 2.61 1.06 0.84

Model I B 2.22 8.43 1.41 3.79 0.91 0.72

Model II A 1.94 5.28 1.16 2.73 1.07 0.87

Model II B 1.95 6.99 1.28 3.58 0.95 0.77

V = c + br – 4αs/3r (B) 2.21 9.02 1.49 1.96 0.69 0.92

V = c + br (B) 4.08 6.61 1.26 3.37 0.83 1.02

νl νl

Table 4.  Observables of the decays B  Dl  and B  D*l  without allowance for contact interaction in models B

and C (the calculations employed the parameter values of |Vbc| = 0.037and τB = 1.60 × 10–12 s)

@(D), % @(D*), % ΓL/ΓT Γ(D*)/Γ(D) V(0)/A1(0) A2(0)/A1(0)

Model I B 2.22 8.43 1.49 3.79 0.91 0.72

Model I C 2.22 7.33 1.45 3.30 0.91 1.12

Model II B 1.95 6.99 1.35 3.58 0.95 0.77

Model II C 1.94 6.32 1.32 3.26 0.95 0.81

νl νl
for transitions into pseudoscalar and vector mesons and
the observable values of ΓL/ΓT and Γ(1–)/Γ(0–).

In the first column of Tables 1, 5, 7, and 9, we quote
a reference to a theoretical or an experimental study. In
the second and the fourth column, we give partial
widths (in |Vif |2 units) with respect to semileptonic
decays into a pseudoscalar and a vector meson, respec-
tively. It is convenient to compare these quantities with
the results of other theoretical studies. The third and the
fifth column contain the branching fractions for transi-
tions into a pseudoscalar and a vector meson, respec-
tively. The theoretical branching fractions @ were
PHYSICS OF ATOMIC NUCLEI      Vol. 64      No. 4      2001
obtained by multiplying the widths in the second and
the fourth column by |Vif |2 , where the CKM-matrix
elements for the relevant transitions were taken to be
|Vbc| = 0.037, |Vbu| = 0.003, |Vcs| = 0.975, and |Vcd| = 0.24.
In the sixth and the seventh column, we quote the ratios
ΓL/ΓT and Γ(0–  1–)/Γ(0–  0–), respectively.
These quantities are independent of the CKM-matrix
elements; therefore, they can be directly compared with
experimental data.

In Tables 2, 6, 8, and 10, we give the values of the
form factors F1(0), V(0), A1(0), and A2(0), as well as the

τMi
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Table 5.  Observables of the decays B  πl  and B  ρe  (partial decay widths are expressed in units of |Vbu |2 ×
1012 s–1; |Vbu| was set to 0.003)

Γ(π) @(π), 10–4 Γ(ρ) @(ρ), 10–4 ΓL/ΓT Γ(ρ)/Γ(π)

Model I(S) 13.8 1.94 21.1 2.97 1.16 1.53

Model I 14.8 2.07 23.7 3.32 1.33 1.60

Model II(S) 8.93 1.26 15.1 2.16 0.90 1.69

Model II 9.18 1.29 16.5 2.31 1.02 1.80

QM:

WSB [2] 7.43 1.04 26.1 3.66 1.34 3.51

ISGW2 [6] 9.6 1.35 14.2 1.99 0.3 1.48

Jaus [4] 10.0 1.40 19.1 2.68 0.82 1.91

Faustov [10] 3.0 ± 0.6 0.42 ± 0.08 5.4 ± 1.2 0.76 ± 0.17 0.5 ± 0.3 1.8 ± 0.4

Melikhov [12] 7.2 1.01 9.64 1.36 1.13 1.34

DNKO [14] 8.72 1.22 13.2 1.85 1.51

SR:

Narison 92 [33] 3.0 ± 0.1 0.42 ± 0.01 33 ± 3 4.6 ± 0.5 11 ± 1

Ball 93 [37] 5.1 ± 1.1 0.72 ± 0.16 12 ± 4 1.7 ± 0.6  0.06 ± 0.02 2.4 ± 0.8

Yang 97 [38] 0.57 ± 0.17

Lattice:

ELC 94 [39] 12 ± 8 1.7 ± 1.2 13 ± 12 1.8 ± 1.7 1.1 ± 1.0

APE 96 [40] 8 ± 4 1.2 ± 0.6 2.0 ± 0.9

UKQCD 98 [41]

Experiment B0 [34] 1.8 ± 0.6 1.39

νl νe

0.88–0.20
+0.39

5.4–1.4
+1.6

0.76–0.20
+0.22

3.1–0.5
+0.9

0.44–0.7
+0.12

0.48–0.26
+0.46

8.5–1.4
+3.3

1.19–0.20
+0.46

16.5–2.3
+3.5

2.3–0.3
+0.5

0.80–0.03
+0.04

1.9–0.7
+0.9

2.5–1.0
+0.8
ratios V(0)/A1(0) and A2(0)/A1(0). A comparison with
experimental data is somewhat difficult here because
the form factors are not measured directly in experi-
ments. In view of this, they cannot be determined with-
out resort to some additional model assumptions.

The value of q2 = 0 stands out in describing various
hadronic processes within LFD. From the point of view
of the diagrammatic approach within the covariant
LFD scheme, there are no contact terms at q2 = 0, so
that LFD calculations are the most reliable there. More-
over, it turns out that, in the LFD diagram technique,
the hadronic current and the W-meson propagator can
be factorized at q2 = 0. For negative q2 far from the ana-
lytic singularities of the form factors, sum rules repre-
sent a good approximation to nonperturbative QCD.
For the semileptonic decays of hadrons, sum rules can
therefore be used in the region of small positive q2. On
the other hand, lattice calculations yield reliable results
for configurations in which the final meson has a small
recoil. In a sense, lattice calculations therefore supple-
ment calculations on the basis of sum rules. As to
results of lattice calculations for the form factors at the
point q2 = 0, they involve a large uncertainty, since the
form factors are continued in a model-dependent way
over the entire region of q2 allowed in the decay pro-
cess. In all cases where there are results of lattice cal-
culations over the entire interval of q2, the form factors
obtained within the covariant LFD formalism are con-
trasted against lattice results in the graphs.

5.1. Transitions B  Dlνl and B  D*lνl 
(Contributions of the One-Body Current and of Contact 

Interaction)

At present, the B  D(D*) transitions have been
best understood since the effective theory of heavy
quarks [48] is applicable to them. This makes it possi-
ble to determine many parameters of B  D decays
in a model-independent way. Corrections to the effec-
tive theory of heavy quarks are proportional to Λ/mb or
Λ/mc, where Λ ~ ΛQCD is the expansion parameter in the
effective theory of heavy quarks. According to the Luke
theorem [49], corrections of order Λ/mb, c to the predic-
tions of the effective theory of heavy quarks for form
factors at the point q2 = 0 vanish, so that the expansion
begins from (Λ/mb, c)2 terms. Nonetheless, corrections
to the effective theory of heavy quarks of order Λ/mc

may prove to be significant for integrated quantities
like the decay width.
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Table 6.  Form factors for the decay processes B  πl  and B  ρl  at q2 = 0

F1(0) V(0) A1(0) A2(0) V(0)/A1(0) A2(0)/A1(0)

Model I(S) 0.392 0.278 0.227 0.179 1.23 0.79
Model I 0.380 0.321 0.273 0.217 1.18 0.79
Model II(S) 0.252 0.197 0.160 0.134 1.23 0.84
Model II 0.305 0.236 0.200 0.169 1.18 0.84
QM:
WSB [2] 0.33 0.33 0.28 0.28 1.2 1.0
ISGW2 [6] 0.09 0.27 0.05 0.02 5.4 0.4
Jaus [4] 0.27 0.35 0.26 0.24 1.35 0.92
Faustov [10] 0.20 ± 0.02 0.29 ± 0.03 0.26 ± 0.03 0.31 ± 0.03 1.1 1.2
Melikhov [12] 0.293 0.215 0.169 0.154 1.27 0.91
DNKO [14] 0.293 0.216 0.170 0.155 1.27 0.91
SR:
Narison 92 [33] 0.23 ± 0.02 0.47 ± 0.14 0.35 ± 0.16 0.42 ± 0.12 1.3 ± 0.6 1.2 ± 0.5
Ball 93 [37] 0.26 ± 0.02 0.6 ± 0.2 0.5 ± 0.1 0.4 ± 0.2 1.2 ± 0.4 0.8 ± 0.4
Yang 97 [38] 0.29 ± 0.04 0.19 ± 0.01 0.07 ± 0.01 0.16 ± 0.01 2.7 ± 0.4 2.3 ± 0.3
Ball 98 [42] 0.305 ± 0.05 0.34 ± 0.05 0.26 ± 0.04 0.22 ± 0.03 1.20 ± 0.15 0.85 ± 0.13
Lattice:
ELC 94 [39] 0.28 ± 0.14 0.37 ± 0.14 0.24 ± 0.06 0.39 ± 0.24 1.4 ± 0.5 1.5 ± 0.8
APE 96 [40] 0.29 ± 0.06 0.45 ± 0.22 0.29 ± 0.16 0.24 ± 0.56 1.6 ± 0.8 0.8 ± 1.5

UKQCD 98 [41] 0.27 ± 0.11 1.3 ± 0.2 0.96 ± 0.20

νl νl

0.35–0.05
+0.06

0.46–0.01
+0.02

0.26–0.03
+0.05

Table 7.  Observables of the decays D  Kl  and D  K*l  (partial decay widths are expressed in units of |Vcs|2 ×
1010 s–1; the calculations were performed at |Vcs| = 0.975)

Γ(K) @(K), % Γ(K*) @(K*), % ΓL/ΓT Γ(K*)/Γ(K)

Model I(S) 10.44 4.12 5.63 2.22 1.26 0.54
Model I 9.77 3.85 6.14 2.42 1.32 0.63
Model II(S) 10.05 3.97 5.74 2.27 1.20 0.57
Model II 9.38 3.70 6.25 2.47 1.26 0.67
QM:
WSB [2] 7.95 3.14 8.13 3.21 1.34 1.02
ISGW2 [6] 10.5 4.14 5.7 2.25 0.94 0.54
Jaus [4] 9.6 3.79 5.5 2.17 1.33 0.57
Faustov [8] 7.43 2.93 4.83 1.91 1.05 0.65
Melikhov [12] 9.15 3.6 5.66 2.2 1.31 0.62
DNKO [14] 9.88 3.90 6.70 2.64 1.30 0.68
SR:
BBD 91 [43] 6.8 ± 1.4 2.68 ± 0.55 3.9 ± 1.3 1.54 ± 0.51 0.86 ± 0.06 0.57 ± 0.15

Yang 97 [38] 4.0 ± 0.8 1.58 ± 0.32 0.87 ± 0.20 0.47 ± 0.16

Lattice:
Lubicz 92 [44] 6.1 ± 1.6 2.41 ± 0.62 5.3 ± 0.9 2.08 ± 0.37 1.51 ± 0.27 0.85 ± 0.22
ELC 94 [39] 6.8 ± 3.4 2.68 ± 1.34 6.0 ± 2.2 2.37 ± 0.87 1.27 ± 0.29 0.92 ± 0.55

UKQCD 95 [45] 7.4 ± 1.7 ± 0.4 2.91 ± 0.71 2.37 ± 0.67 1.06 ± 0.16 0.86 ± 0.28

APE 96 [40] 9.6 ± 2.1 9.1 ± 2.0 7.3 ± 1.9 6.9 ± 0.18 1.2 ± 0.3 0.76 ± 0.20
Experiment [46] D0 3.78 ± 0.12 ± 0.25 2.37 ± 0.29 0.62 ± 0.08

νl νl

8.6–2.5
+3.0

3.4–1.0
+1.2

6.0–1.6
+0.8
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Table 8.  Form factors for the decay processes D  Kl  and D  K*l  at q2 = 0

F1(0) V(0) A1(0) A2(0) V(0)/A1(0) A2(0)/A1(0)

Model I(S) 0.82 0.88 0.61 0.44 1.44 0.73
Model I 0.81 0.84 0.65 0.45 1.30 0.70
Model II(S) 0.77 0.87 0.60 0.45 1.46 0.75
Model II 0.77 0.83 0.63 0.46 1.31 0.72
QM:
WSB [2] 0.76 1.27 0.88 1.15 1.36 1.48
ISGW2 [6] 0.76 1.10 0.80 0.80 1.37 1.0
Jaus [4] 0.78 1.04 0.66 0.43 1.58 0.65
Faustov [8] 0.73 0.62 0.63 0.43 0.98 0.68
Melikhov [12] 0.78 0.77 0.64 0.46 1.2 0.72
DKNO [14] 0.78 0.777 0.633 0.464 1.23 0.73
SR:

BBD 91 [43] 1.10 ± 0.25 0.50 ± 0.15 0.60 ± 0.15 2.2 ± 0.2 1.2 ± 0.2

Yang 97 [38] 0.75 ± 0.12 1.1 ± 0.1 0.54 ± 0.04 0.67 ± 0.08 2.04 ± 0.19 1.24 ± 0.15
Lattice:
Lubicz 92 [44] 0.63 ± 0.08 0.86 ± 0.10 0.53 ± 0.03 0.19 ± 0.21 0.62 ± 0.07 0.36 ± 0.40
ELC 94 [39] 0.65 ± 0.18 0.95 ± 0.34 0.63 ± 0.14 0.45 ± 0.33 1.5 ± 0.28 0.7 ± 0.4
APE 96 [40] 0.78 ± 0.08 1.08 ± 0.22 0.67 ± 0.11 0.49 ± 0.34 1.6 ± 0.3 0.7 ± 0.4

UKQCD 95 [45] 0.9 ± 0.2

Gupta 96 [47] 0.71 ± 0.04 1.28 ± 0.07 0.72 ± 0.03 0.84 ± 0.03 1.78 ± 0.07 0.68 ± 0.11
Experiment [34] D0 0.76 ± 0.03 1.07 ± 0.09 0.58 ± 0.03 0.41 ± 0.05

νl νl

0.60–0.10
+0.15

0.67–0.08
+0.07

1.01–0.13
+0.30

0.70–0.10
+0.07

0.66–0.15
+0.10

1.4–0.02
+0.055

Table 9.  Observables of the decays D  πl  and D  ρl  (partial decay widths are expressed in units of |Vcd|2 ×
1010 s–1; the calculations were performed at |Vcd | = 0.24)

Γ(π) @(π), 10–3 Γ(ρ) @(ρ), 10–3 ΓL/ΓT Γ(ρ)/Γ(π)

Model I(S) 15.6 3.73 6.54 1.56 1.29 0.42
Model I 14.4 3.44 6.83 1.62 1.34 0.47
Model II(S) 16.0 3.83 6.34 1.52 1.19 0.40
Model II 14.5 3.47 6.57 1.57 1.24 0.46
QM:
WSB [2] 14.0 3.35 13.8 3.30 0.91 0.98
ISGW2 [6] 9.8 2.34 4.9 2.89 0.67 0.5
Jaus [4] 8.0 1.91 3.3 0.79 1.22 0.41
Melikhov [12] 12.8 3.06 5.37 1.28 1.27 0.41
DKNO [14] 15.3 3.66 7.85 1.88 0.51
SR:
Ball 93 [37] 8.0 ± 1.7 1.91 ± 0.04 2.4 ± 0.7 0.57 ± 0.17 0.3 ± 0.1 0.31 ± 0.11

Yang 97 [38] 0.21 ± 0.10

Lattice:
Lubicz 92 [44] 10 ± 4 0.24 ± 0.10 8 ± 2 0.19 ± 0.05 1.86 ± 0.56 0.8 ± 0.3
APE 96 [40] 16.2 ± 4.1 0.39 ± 0.10 12.2 ± 4.1 0.29 ± 0.10

UKQCD 95 [45] 10.6 ± 3.7 ± 1.0 0.39 ± 0.10 8.7 ± 2.2 0.21 ± 0.05 0.82 ± 0.31

Experiment [34] D0 3.1 ± 1.5 2.2 ± 0.8

νl νl

13.4–3.8
+4.4

3.2–0.09
+0.11

2.8–0.8
+1.5

0.67–0.19
+0.36

0.35–0.24
+0.37

1.05–0.20
+0.29
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Table 10.  Form factors for the decays D  πl  and D  ρl  at q2 = 0

F1(0) V(0) A1(0) A2(0) V(0)/A1(0) A2(0)/A1(0)

Model I(S) 0.76 0.79 0.54 0.37 1.46 0.68

Model I 0.75 0.76 0.57 0.38 1.34 0.68

Model II(S) 0.72 0.75 0.51 0.37 1.46 0.73

Model II 0.71 0.72 0.53 0.39 1.34 0.73

QM:

WSB [2] 0.69 1.23 0.78 0.92 1.58 1.18

Jaus [4] 0.67 0.93 0.58 0.42 1.60 0.72

Melikhov [12] 0.68 0.66 0.50 0.37 1.32 0.74

DKNO [14] 0.681 0.663 0.502 0.366 1.32 0.73

SR:

Ball 93 [37] 0.5 ± 0.1 1.0 ± 0.2 0.5 ± 0.2 0.4 ± 0.1 2.0 ± 0.8 0.8 ± 0.3

Yang 97 [38] 0.65 ± 0.10 0.98 ± 0.11 0.34 ± 0.08 0.57 ± 0.08 2.88 ± 0.68 1.68 ± 0.39

Lattice:

Lubicz 92 [44] 0.58 ± 0.09 0.78 ± 0.12 0.45 ± 0.04 0.02 ± 0.26 1.7 ± 0.3 0.04 ± 0.50

UKQCD 95 [45] 1.5 ± 0.5 0.81 ± 0.25

Gupta 96 [47] 0.56 ± 0.08 1.18 ± 0.15 0.67 ± 0.07 0.44 ± 0.24 1.77 ± 0.16 0.67 ± 0.31

νl νl

0.61–0.11
+0.12

0.95–0.14
+0.29

0.63–0.9
+0.6

0.51–0.15
+0.10
Tables 1 and 2 show the results of the calculations
for B  D and B  D* transitions. For B  D
transitions, the partial decay width calculated within
the covariant LFD scheme is Γ(B  D) = 9.78 ×
1012|Vbc|2 s–1 (see Table 1). By using this result together
with the experimental value of @(B  D)expt = (1.95 ±
0.27)% [34], we obtain |Vbc | = 0.0353 ± 0.0024. A cal-
culation within the covariant LFD approach yields
Γ(B  D*) = 22.4 × |Vbc |2 (see Table 1). From this
result and from the experimental value of @(B 
D*)expt = (5.05 ± 0.25)%, we deduce that |Vbc| = 0.0387 ±
0.0009.

The tables quote the experimental branching frac-
tions @(D) and @(D*) averaged over the decays of B0,
B+, and Bs mesons. Accordingly, the calculation of the
theoretical branching fractions relied on the value of
τB = 1.60 × 10–12 s. Although the value quoted by the
Particle Data Group for the branching fraction of the
transition B0  D–(2010)*  is @(D–(2010)*) =
(4.60 ± 0.27)% [34], the latest experimental data yield,
on average, @(D−(2010)*) ≈ 5.5%: (5.08 ± 0.21 ±
0.66)% [50], (5.53 ± 0.26 ± 0.52)% [51], and (5.52 ±
0.17 ± 0.68)% [52]. The value of ΓL/ΓT = 1.16 (see
Table 1) agrees with the experimental result 1.24 ± 0.16
[35] within the errors. The partial transition width cal-
culated as a function of q2 is displayed in Fig. 10, along
with available experimental data [53]. The quantity
|Vbc| was set to 0.037. We can see that the theoretical
curve faithfully reproduces the experimental data.

The effect of the Sudakov form factor is quite signif-
icant for B-meson decays (more significant than in the

lν l
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case of D-meson decays—see below), because the width
of the interval of physical q2 values is much greater than

the final-meson (quark) mass:  ≈ 11 GeV2 for

B  D(D*) transitions and  ≈ 25 GeV2 for B 
π(ρ) transitions. It can be seen from Tables 1, 2, 5, and
6, however, that this effect is compensated in part by the

normalization of the Sudakov for factor at q2 = .
Since the probability of the B  D* transitions is
three times as great as the probability of the B  D
transition, the accuracy of an experimental determina-
tion of @(B  D*) is higher.

The values obtained for |Vbc |, |Vbc |(D) = 0.0387 ±
0.0031 and |Vbc |(D*) = 0.0394 ± 0.0050, comply with
the results of the calculations from [12, 14] and with the
values quoted in [34]. Within quark models, the value
determined for |Vbc | from data on inclusive decays are
somewhat greater than the value extracted from an
analysis of exclusive decays.

Figure 11 displays the calculated pseudoscalar and

axial-vector form factors (  and , respectively),
which were obtained from F1 and A1 by the formulas

(77)

qmax
2

qmax
2

qmax
2

ξ
F1 ξ

A1

ξ
A1 η( )

M1 M2+

2 M1M2

---------------------- 1 q
2

M1 M2+( )2
----------------------------–

 
 
  1–

A1 η( ),=

ξ
F1 η( )

M1 M2+

2 M1M2

----------------------F1 η( ).=
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The form factors  and  are represented by,
respectively, the solid and the dashed curve. The figure
also shows experimental values (points) obtained by
processing data for the differential width dΓD*/dq2 [54]
with respect to the transition B  D*lνl and the dif-
ferential width dΓD/dq2 [55] with respect to the transi-
tion B  Dlνl . It can be seen that b  c quark tran-
sitions are described reasonably well in the limit of the
effective theory of heavy quarks and that the results in
this limit comply with the results of the calculations
within the covariant LPD approach.

In general, a correct comparison of the results of the
calculations for B  D* transitions with experimen-

ξ
A1 ξ

F1

5

4

3

2

1

6 8 10

2

4
q2, GeV2

dΓB → D*
/dq2, ns–1 GeV–2

0.10

0.06

0.02

1.1 1.3 1.5 η

ξB → D(η)|Vbc|

Fig. 10. Differential width dΓ /dq2 with respect to the decay
B  D*lνl . Experimental data were borrowed from [53].
The parameter |Vbc | was set to 0.037.

Fig. 11. Form factors (solid curve) (η) and (dashed

curve) (η) as functions of η = V1V2 . Points correspond-
ing to the Isgur–Wise function ξ(η) were obtained by pro-
cessing experimental data on the decays (closed circles)
B  D*lνl [54] and (closed boxes) B  Dlνl [55]. The
matrix element |Vbc | was taken to be 0.037.

ξ
A1

ξ
F1
tal data is that which is performed directly for the dif-
ferential width dΓ/dq2 (see Fig. 10).

The problem of assessing the degree to which the
physical form factors obtained by taking into account
only the one-body current J(OBC) make it possible to
reproduce experimental data and the degree to which
these form factors comply with other models deserves
a dedicated consideration. Since, in the proposed
approach, the physical form factors are determined in
terms of the matrix elements of the currents J+ and J⊥ ,
such an analysis would enable us to estimate the contri-
bution of the contact interaction to LFD diagrams. It is
convenient to perform this analysis for a transition of a
heavy quark into a heavy one by considering the exam-
ple of B  D and B  D* transitions, where the
results can be compared with the predictions of the
effective theory of heavy quarks.

Table 3 displays observables of the decays B 
 and B   for various options of potential

in Eq. (74). The calculations were performed (A) with
and (B) without allowance for contact interaction. In
these calculations, the wave functions were determined
as solutions to the wave equation (model I) for the con-
fining potentials Vred(r) = c + br and V0 = c + br –

 (75). Model II relies on model wave functions.
The partial widths with respect to the decays B 

 and B   were computed at |Vbc| = 0.037.

It can be seen from the tables that, for a transition of
a pseudoscalar meson into a pseudoscalar one, the
inclusion of contact interaction has virtually no effect
on the results of the calculations: @(B  ) ≈
2.22% in model I and @(B  ) ≈ 1.94% in
model II, the experimental value being (1.95 ± 0.27)%.
The results of the calculations with and without allow-
ance for contact interaction differ significantly for a
transition that is off-diagonal in spin, in which case the
branching fractions @(D*) in models A and B differ by
a factor of about 1.5: @(D*)(A) = 5.78% in model A
and @(D*)(B) = 8.43% in model B. In addition, the
ratio ΓL/ΓT in model B is greater by about 15%. These
effects are due primarily to the fact that, without allow-
ance for the contact interaction, the form factor A1,
which determines the behavior of the differential width,
is significantly overestimated, which can be seen from
a comparison of the data in the last two columns of
Table 3, which contain the form-factor ratios V(0)/A1(0)
and A2(0)/A1(0). The use of a linear potential leads to
close values for integrated quantities. The results
obtained with the potential V0 are less satisfactory,
because the term 4αs/3r leads to an overly slow
decrease of the wave function in the momentum repre-
sentation.

One of the problems in the approach based on model
B, where use is made of only the one-body current and
where the contact interaction is disregarded, is that it

Dlν l D*lν l

4α s/3r

Dlν l D*lν l

Dlν l

Dlν l
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yields a slightly exaggerated value for the branching
fraction of the decay B  . At the most reason-
able values of the potential parameters and |Vbc | =
0.037, we have @(B  D*) = 8.43%, which exceeds
considerably the experimental value of (5.05 ± 0.25)%.
Obviously, the inclusion of the Sudakov form factor
cannot reconcile the results of the calculations with the
experimental value. The theoretical value of @(B 
D*) can be reduced by introducing a D-wave admixture
in the D*-meson wave function. For a spin-1 particle,
the wave function is given by expression (16). The
magnitude of the D-wave admixture depends on the
coefficient c in the vertex function of the 1– meson:

(78)

In the case of the S wave, c = 1. Zero value of c corre-
sponds to the presence of a D-wave admixture. We have
additionally calculated the branching fraction of the B

 D* decay under the assumption of γν dominance in
the D*   vertex function—that is, at c = 0. The
results of this calculation are quoted in Table 4. By
model C, we mean that which assumes c = 0. The
results in Table 4 were obtained without allowance for
the Sudakov form factor. At the most reasonable values
of the parameters in a potential of the Godfrey–Isgur
type (model I C), we have @(B  ) = 7.33%,
which is in better agreement with the experimental
value, but which is still considerably exaggerated.
Thus, a description of the branching fraction in the
model employing only the one-body current requires
the presence of a D wave in the D* meson. In the case
of c = 0, this admixture is 0.5%. The expressions for the
partial widths and branching fractions, whose values
are quoted in Table 4, were obtained without allowance
for the Sudakov form factor. Even upon the introduc-
tion of a D-wave admixture in the wave function of the
1–-meson, we have obtained exaggerated partial-width
values not complying with experimental data.

Model B takes into account only the S wave in the
final D* meson, while model C corresponds to γν dom-
inance in the spin structure [see Eq. (78)].

Similarly, the introduction of D-wave admixtures in
the wave functions of the final-state ρ and K* mesons
for the transitions b  u, c  s, and c  d leads
to the reduction of the relevant form factors and branch-
ing fractions. However, contact-interaction-induced
changes in the transition form factors are sufficient in
the sense that the form factors and widths obtained
within the covariant LFD formalism become consistent
with experimental data. In view of this, it is not neces-
sary to introduce a D-wave admixture in the vector-
meson wave function.

D*lν l

γν c
p1 p2–( )ν

M0 m1 m2+ +
--------------------------------– 

  eν.

cq

D*lν l
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5.2. Transitions B   and B  

The decays of B mesons into light π and ρ mesons
make it possible to analyze the poorly known CKM-
matrix element |Vbu |. Presently, measurement of this
matrix element is one of the most important problems
in heavy-quark physics.

The results of the calculations with the various wave
functions (model I, model II) are quoted in Tables 5 and
6, along with the results from other theoretical studies.
The parameters of the Sudakov form factor were taken
to be αs = 0.30 and ωmax = 0.5 GeV. From these tables,
we can see that the inclusion of the Sudakov form fac-
tor and the choice of model wave functions affects the
results of the calculations to a degree below that which
might have been expected for this quark transition.

The partial width calculated within the covariant
LFD scheme for the transition B0  π–l+νl into a
pseudoscalar state is Γ(B0  π–) = 13.8 × 1012|Vbu|2 s–1

(Table 5), the corresponding branching fraction being
@(B0  π–) = 22.1 × |Vbu|2. Using this result together
with the experimental value of @(B0  π–) = (1.8 ±
0.6) × 10–4, we obtain |Vbu | = (2.9 ± 0.5) × 10–3. The par-
tial width with respect to the transition into a vector
state is Γ(B0  ρ–) = 21.1 × 1012 |Vbu |2 s–1. On this
basis, |Vbu| can be estimated at |Vbu| = (2.8 ± 0.4) × 10–3.
Within the experimental errors, the predictions of the
covariant LFD approach for |Vbu | on the basis of data on
the transitions B  π and B  ρ are consistent.

The results of our calculations for the B  π and
B  ρ form factors are presented in Figs. 12–14,
along with the results of the lattice calculations
reported in [56, 45, 39] (see also [57]). It can be seen
that, within the errors, our results agree with those lat-
tice data.

In Figs. 15 and 16, the normalized form factors
V(q2)/V(0) and A1(q2)/A1(0) for the B0  ρ– transition
are contrasted against the pole parametrization

(79)

which is traditionally used in the literature to continue
form factors to the region of positive q2 (see the review
article of Stech [58]). The solid curves represent the
normalized form factors V(q2)/V(0) and A1(q2)/A1(0)
calculated in the present study, while the dashed curves
correspond to the pole parametrization (79) at n = 1 and
2. The parameter Mpole is the minimum mass of a reso-

nance that can be formed from the  system, Mpole =
MB ≈ MB* = 5.28 GeV. Since the region of momentum
transfers squared q2 is wide for B  π(ρ) transitions,
the applicability of the pole approximation over the
entire region 0 ≤ q2 ≤ (M1 – M2)2 is questionable.
Indeed, the form-factor slope with increasing q2 is
determined, in quark models, by the integrated overlap

πlν l ρlν l

1

1 q
2
/Mpole–( )

n
-----------------------------------,

bd
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of the wave functions of the initial and the final meson;
therefore, it is directly governed by the parameters of
the wave functions.

It can be seen from the figures that only at q2 values
in the vicinity of zero is it possible to obtain reasonable
agreement with the model parametrization of the form
factors at nA = 1 (lower dashed curves in Figs. 15, 16) and
nV = nA + 1 = 2 (upper dashed curves in Figs. 15, 16).

5.3. Transitions D  Klνl and D  K*lνl

The CKM-matrix element |Vcs | is related to |Vcd | by
the unitarity condition (see the review article of Caso
et al. [34]) and is one of the most accurately measured
ones, which is associated, among other things, with the
proximity of |Vcs | to unity and with the fact that the tran-
sitions D  Klνl and D  K*lνl are not suppressed
by the Cabibbo selection rule.

2.5

1.5

0.5

5 15 25

F1
B → π(q2)

q2, GeV2

2015105

1.75

1.25

0.75

0.25

q2, GeV2

VB → ρ(q2)

Fig. 12. Form factor F1(q2) for the B0  π– transition.
The results of lattice calculations were borrowed from [56].

Fig. 13. Form factor V(q2) for the B0  ρ– transition. The
results of lattice calculations were borrowed from (closed
boxes) [45] and (closed circles) [39].
The D0  (K*–)l+νl semileptonic partial
widths and branching fractions are quoted in Table 7.
Table 8 gives the form factors F1(0), V(0), A1(0), and
A2(0) calculated here for model wave functions and for
wave functions determined as solutions to the wave
equation. The parameters of the Sudakov form factor

were chosen to be  = 0.30 and ωmax = 0.5 GeV.

Tables 7 and 8 also display relevant experimental
values and the results obtained in other theoretical stud-
ies based on lattice calculations, sum rules, and quark
models. Within the errors, there is agreement with the
entire body of experimental data. The inclusion of the
Sudakov form factor has a modest effect (of 5 to 10%)
on the D  K partial widths Γ(D  K ): Γ(K ) =
9.77 × 1010 |Vcs |2 and 10.44 × 1010 |Vcs |2 s–1 in model I
without and with allowance for the Sudakov form fac-
tor, respectively. This is explained by a relatively slow
variation of the Sudakov form factor in the region 0 ≤
q2 ≤ (MD – MK, K*) ≈ 1 GeV2.

The D  K branching fraction predicted in our
model is @(D  K ) = 4.12 × 10–2 |Vcs |2. By using the

experimental value of @(D0  ) = (3.78 ± 0.12 ±
0.25)%, which was obtained by the CLEO collabora-
tion [46], we obtain |Vcs | = 0.934 ± 0.015 ± 0.030.

For the transition to the  final state, the experi-

mental errors are somewhat greater, @(D0  ) =
(2.37 ± 0.29) × 10–2 (see Table 7). A comparison with

the theoretical result @(D0  ) = 2.22 ×
10−2 |Vcs |2 yields |Vcs | = 1.01 ± 0.06.

The form factors F1(q2) and A1(q2) as functions of q2

are shown in Figs. 17 and 18, respectively, along with

K
–

α s
eff

K
–
lν l

K*–

K*–

K*–

2015105
q2, GeV2

0.7

0.5

0.3

0.1

A1
B → ρ(q2)

Fig. 14. Form factor A1(q2) for the B0  ρ– transition.
The results of lattice calculations were borrowed from
(closed boxes) [45] and (closed circles) [39].
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the results of lattice calculations performed for these
decays in [40, 59].

It can be stated that, by and large, the form factors
calculated here are in good agreement with available
experimental data and with the results of lattice calcu-
lations. For c  s transitions, both the inclusion of the
Sudakov form factor and the choice of wave functions
affect the results of the calculations only slightly. The
latter is associated above all with the fact that the final
meson has a low recoil over the entire interval of phys-
ical q2 values. As a consequence, the form factors are
calculated predominantly in the region of the maximum

2015105
q2, GeV2

4.5

3.5

2.5

1.5

V(q2)/V(0)

Fig. 15. Normalized form factor V(q2)/V(0) for the transi-
tion B0  ρ– (solid curve). Also shown in this figure is
the pole approximation according to Eq. (79) at n = 1 and 2
(lower and upper dashed curves, respectively).

1.75

1.25

0.75

0.25

1.751.250.750.25
q2, GeV2

F1
D → K(q2)

Fig. 17. Form factor F1(q2) for the transition D  Klνl.
Points represent the results of lattice calculations from [59].
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overlap of the wave functions, so that they are unaf-
fected by a decrease in the overlap of the wave func-
tions of the initial and the final meson with increasing
q2. Within LFD, the center of mass of a bound system
does not coincide with the rest frame of a composite par-
ticle; therefore, the overlap of the wave functions of the
initial and the final meson is maximal in the q2 = (m1 –
m2)2 frame and not in the frame where the initial and the

final meson are at rest [q2 =  = (M1 – M2)2].qmax
2

q2, GeV2

A1(q2)/A1(0)

105 15 20

4.5

3.5

2.5

1.5

Fig. 16. Normalized form factor A1(q2)/A1(0) for the transi-

tion B0  ρ– (solid curve). Also shown in this figure is
the pole approximation according to Eq. (79) at n = 1 and 2
(lower and upper dashed curves, respectively).

1.0

0.6

0.2

0 0.4 0.8
q2, GeV2

A1
D → K*

(q2)

Fig. 18. Form factor A1(q2) for the transition D  K*lνl .
Points represent the results of lattice calculations from
(closed boxes) [40] and (closed circles) [59].
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A few comments on the value of | (0)|exp = 0.70,
which is quoted by the Particle Data Group [34] as an
experimental value, and on the value of |Vcs | = 1.04 ±
0.16, which follows from the former, are in order here.

The value of (0) presented in [34] was obtained
under the assumption that the form factor obeys the

model dependence (q2) = (0) , where

Mpole = 2.1 GeV, in which case the D   decay

width is expressed in terms of |Vcs | and | (0)| as

(80)

f 1
K

f 1
K

f 1
K

f 1
K Mpole

2

Mpole
2

q
2

–
-----------------------

Klν l

f 1
K

Γ D Klν l( ) = f 1
K

0( )
2

Vcs
2

1.54 10
11

 s
1–×( ).

0.5

1.5

2.5

0.5 1.5 2.5
q2, GeV2

F1
D → π(q2)

0 0.4 0.8 q2, GeV2

A1
D → ρ(q2)

0.2

0.6

1.0

Fig. 19. Form factor F1(q2) for the transition D0  π–lνl.
Points represent the results of lattice calculations from [59].

Fig. 20. Form factor A1(q2) for the transition D0  ρ–lνl .
Points represent the results of lattice calculations from [45].
Along with the parameter Mpole, the product |Vcs | ×

| (0)| = 0.531 ± 0.027 is determined from a fit to

experimental data. If one uses the value of (0) = 0.7 ±
0.1 from [2, 60, 61], the prediction for |Vcs | appears to
be |Vcs | = 1.04 ± 0.16. It is rather difficult to assess the
model uncertainty in this determination of |Vcs |. In [34],

the uncertainty in determining the ratio  was esti-

mated at ±14%(theor). Thus, the values of |Vcs | and

(0) from [34] may serve only as guidelines.

5.4. Transitions D   and D  

For some observables of the D  π and D  ρ
transitions, including their partial widths and branching
fractions, as well as for the relevant form factors at the
point q2 = 0, Tables 9 and 10 display the results of the
calculations performed within the covariant LFD for-
malism on the basis of models I and II. These results are
contrasted against available experimental data and
against the results of lattice calculations and calcula-
tions relying on sum rules and quark models. In calcu-
lating the branching fractions quoted in Table 9, use
was made of the value of |Vcd | = 0.24. The parameters
of the Sudakov form factor were chosen to be αs = 0.30
and ωmax = 0.5 GeV. The inclusion of the Sudakov form
factor reduces the D  ρ branching fractions by
about 10% and increases the D  π branching frac-
tions by nearly the same value. In just the same way as
for D  K(K*) transitions, the dependence on the
choice of model wave functions is insignificant.

The D0  π–l+νl partial width calculated within
the covariant LFD formalism is Γ(D0  π) = 15.6 ×
1010 |Vcd |2 s–1 (see Table 9). If one considers that the D0-
meson lifetime is  = (0.415 ± 0.004) × 10–12 s, the

|Vcd | value predicted in our model is |Vcd| = 0.219 ±
0.047. The value of |Vcd| = 0.28 ± 0.10 is obtained by
using the model prediction Γ(ρ) = 6.54 × 1010 |Vcd |2 s–1

(see Table 9) together with the experimental D0  ρ–

branching fraction @(ρ–) = (2.2 ± 0.8) × 10–3.

The D  π transition form factor F1(q2) is shown
in Fig. 19, along with the results of the relevant calcu-
lations from [59]. The results of the calculations for the
form factor A1(q2) are illustrated in Fig. 20, which also
displays the predictions of the lattice calculations from
[45] for this form factor. We can see that the agreement
with the lattice calculations for the form factor A1(q2) is
quite reasonable over the entire accessible region of q2.

f 1
K

f 1
K

Vcd

Vcs

--------

f 1
K

πlν l ρlν l

τ
D

0
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6. CONCLUSION

The semileptonic decays B  D(D*) , B 

(π) , D  K(K*) , and D  π(ρ)  have
been analyzed within the covariant LFD approach. The
use of the covariant LFD parametrization has enabled
us to separate self-consistently physical and unphysical
contributions to the form factors under study. For the
above decays, we have calculated some important
observables and performed a comparison with avail-
able experimental data.

The meson wave functions have been determined as
solutions to the relativistic wave equation for two
quarks with allowance for spin–spin interaction and for
the relativistic smearing of the interaction potential.
The inclusion of spin–spin interaction in solving the
wave equation has led to wave functions that behave
differently for the pseudoscalar and the vector meson.

For the case of different quark masses m1 and m2, an
analytic expression for gluon corrections to the elec-
troweak vertices for the vector and the axial-vector
quark current has been obtained in the region –∞ < q2 ≤
(m1 – m2)2. A cancellation of the infrared divergence is
achieved upon summation of all diagrams involving
gluon corrections in the first order in αs. It has been
shown that the inclusion of such corrections to the
decay widths of heavy mesons is of importance for
quantitatively describing experimental data.

By considering the example of the B  D(D*)lνl

transition form factors, we have analyzed the effect of
contact interaction, as well as the effect of introducing
a D-wave admixture in the vector-meson wave func-
tion. The statement that the inclusion of contact inter-
action is more important for 0–  1– transitions than
for spin-diagonal 0–  0– transitions has been veri-
fied numerically. For each type of semileptonic decays,
we have investigated the effect of the Sudakov form
factor and the effect of the choice of meson wave func-
tions on the results of the calculations. Our results have
been compared with the results of other theoretical
studies based on relativistic quark models, sum rules,
and lattice calculations.

It has been shown that the semileptonic decays of
mesons featuring b and c quarks can be reasonably
described within the covariant LFD approach, provided
that the Sudakov form is taken into account. From an
analysis of the entire body of data on the 0–  0– and
0–  1– semileptonic decays of B and D mesons, we
have determined the CKM-matrix elements |Vbc|, |Vbu|,
|Vcs|, and |Vcd|. Within the experimental errors, the
resulting values are intrinsically consistent and comply
with available world-averaged data.
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Deep-Inelastic Scattering in k Factorization and the Anatomy
of the Differential Gluon Structure Function of the Proton*

I. P. Ivanov1), 2), 3), ** and N. N. Nikolaev1), 4), ***
Received 18 July, 2000

Abstract—The differential gluon structure function of the proton, ^(x, Q2), introduced by Fadin, Kuraev, and
Lipatov in 1975 is extensively used in small-x QCD. We report here the first determination of ^(x, Q2) from
experimental data on the small-x proton structure function F2p(x, Q2). We give convenient parametrizations for
^(x, Q2) based partly on the available DGLAP evolution fits (GRV, CTEQ, and MRS) to parton distribution
functions and on realistic extrapolations into the soft region. We discuss the impact of soft gluons on various
observables. The x dependence of the so-determined ^(x, Q2) varies strongly with Q2 and does not exhibit sim-
ple Regge properties. Nonetheless, the hard-to-soft diffusion is found to give rise to a viable approximation of
the proton structure function F2p(x, Q2) by the soft and hard Regge components with intercepts ∆soft = 0 and
∆hard ~ 0.4. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION: WHY UNINTEGRATED 
GLUON STRUCTURE FUNCTIONS?

The familiar objects from the Gribov–Lipatov–
Dokshitzer–Altarelli–Parisi (DGLAP) evolution des-
cription of deep-inelastic scattering (DIS) are the
quark, antiquark, and gluon distribution functions qi(x,
Q2), (x, Q2), g(x, Q2) (hereafter, x and Q2 are the stan-
dard DIS variables). At small x, they describe the inte-
gral flux of partons with light-cone momentum x in
units of the target momentum and transverse momen-
tum squared ≤Q2 and form the basis of the highly
sophisticated description of hard scattering processes
in terms of collinear partons [1]. On the other hand, the
object of the Balitsky–Fadin–Kuraev–Lipatov (BFKL)
evolution equation at very small x is the differential
gluon structure function (DGSF) of the target [2],

(1)

(evidently, the related unintegrated distributions can be
defined for charged partons as well). For instance, it is
precisely the DGSF of the target proton that emerges in
the familiar color-dipole picture of inclusive DIS at
small x [3] and diffractive DIS into dijets [4]. Another
familiar example is the QCD calculation of helicity

qi

^ x Q
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amplitudes for diffractive DIS into a continuum [5, 6]
and the production of vector mesons [7, 8]. Differential
gluon structure functions are custom-tailored for a
QCD treatment of hard processes when one needs to
keep track of the transverse momentum of gluons
neglected in the standard collinear approximation [9].

Over the past two decades, the DGLAP phenome-
nology of DIS has become a big industry and several
groups—notably, GRV [10], CTEQ [11], MRS [12],
and some others [13]—keep continuously incorporat-
ing new experimental data and providing the high-
energy community with updates of the parton distribu-
tion functions supplemented with the interpolation rou-
tines facilitating practical applications. On the other
hand, there are several pertinent issues—the onset of
the purely perturbative QCD treatment of DIS and the
impact of soft mechanisms of photoabsorption on the
proton structure function in the large-Q2 region are top
ones on the list—that cannot be answered within the
DGLAP approach itself because DGLAP evolution is
obviously hampered at moderate-to-small Q2. The
related issue is that of assessing the extent to which the
soft mechanisms of photoabsorption can bias the Q2

dependence of the proton structure function and, conse-
quently, the determination of the gluon density from
scaling violations. We recall here the recent dispute
[14] on the applicability of the DGLAP analysis at
Q2 & 2–4 GeV2 triggered by the so-called Caldwell’s
plot [15]. Arguably, the κ-factorization formalism of
DGSF in which the interesting observables are
expanded in interactions of gluons of transverse
momentum κ changing from soft to hard values is bet-
ter suited to look into the issue of the soft–hard inter-
face. Last but not least, neglecting the transverse
momentum κ of gluons is a questionable approxima-
tion in evaluating cross sections for the production of
jets or hadrons with high transverse momenta. It is dis-
001 MAIK “Nauka/Interperiodica”
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tressing, then, that convenient parametrizations of
DGSF are not yet available in the literature.

In this article, we report on a simple phenomenolog-
ical determination of the DGSF of the proton at small
x. We analyze x and Q2 dependences of the proton
structure function F2p(x, Q2) in the framework of the κ-
factorization approach, which is closely related to the
color-dipole factorization. In the formulation of our
ansatz for ^(x, k2), we take advantage of a large body
of early work on color-dipole factorization [3, 16, 17]
and follow a very pragmatic strategy first applied in [5,
6]: (i) For hard gluons with large κ, we make as much
use as possible of the existing DGLAP parametriza-
tions of G(x, k2). (ii) For the extrapolation of hard-
gluon densities to small k2, we use an ansatz [4] that
correctly describes the color-gauge-invariance con-
straints on the radiation of soft perturbative gluons by
color singlet targets. (iii) As suggested by color-dipole
phenomenology, we supplement the density of gluons
with small k2 with a nonperturbative soft component.
(iv) As suggested by soft–hard diffusion inherent in
BFKL evolution, we allow for the propagation of the
predominantly hard-interaction-driven small-x rise of
DGSF into the soft region, invoking plausible soft-to-
hard interpolations. The last two components of the
DGSF are parametrized on the basis of the modern
knowledge of the infrared (IR) freezing of the QCD
coupling and the short propagation radius of perturba-
tive gluons. Having specified the IR regularization, we
can apply the resulting ^(x, k2) to the evaluation of the
photoabsorption cross section in the whole range of
small-to-hard Q2.

The practical realization of the above strategy is
expounded as follows. The subject of Section 2 is a
pedagogical introduction to the concept of DGSF by
considering the example of Fermi–Weizsäcker–Will-
iams photons in QED. Taking electrically neutral
positronium as a target, we explain important con-
straints imposed by gauge invariance on DGSF at small
κ2. In Section 3, we present the κ-factorization
approach, which forms a basis of our analysis of small-
x DIS in terms of DGSF. We also comment on the con-
nection between the standard DGLAP analysis of DIS
and κ factorization and property of soft-to-hard and
hard-to-soft diffusion inherent in κ factorization. In
Section 4, we formulate our ansatz for DGSF. The
results obtained by determining DGSF from the exper-

κ κ

Fig. 1. The Fermi–Weizsäcker–Williams diagram for calcu-
lation of the flux of equivalent photons.
imental data on the proton structure function F2p(x, Q2)
and on the real-photoabsorption cross section are pre-
sented in Section 5. In Section 6, we discuss the anat-
omy of the so-determined DGSF in the momentum
space and comment on the interplay of soft and hard
components in the DGSF, the integrated gluon structure
function (GSF), and the proton structure function F2p(x,
Q2). In Section 7, we focus on the effective intercepts of
x dependence and the systematics of their change from
DGSF to integrated GSF to F2p(x, Q2), which illustrates
nicely the gross features of soft-to-hard and hard-to-
soft diffusion pertinent to BFKL physics. The subject
of Section 8 is a comparison of integrated gluon distri-
butions from κ factorization and conventional DGLAP
analysis of the proton structure function. As antici-
pated, the two distributions diverge substantially at
very small x and small to moderate Q2. In Section 9, we
discuss in more detail how different observables—the

scaling violations ∂F2p(x, Q2)/∂ , the longitudinal
structure function FL(x, Q2), and charm structure func-

tion (x, Q2)—probe the DGSF. In Section 10, we
summarize our major findings.

2. DIFFERENTIAL DENSITY OF GAUGE 
BOSONS: A QED EXAMPLE

For a pedagogical introduction, we recall the cele-
brated Fermi–Weizsäcker–Williams approximation in
QED, which is the well-known precursor of the parton
model (for a review, see [18]). Here, high-energy reac-
tions in the Coulomb field of a charged particle are
treated as collisions with equivalent transversely polar-
ized photons—partons of a charged particle (Fig. 1).
The familiar flux of comoving equivalent transverse
soft photons carrying a light-cone fraction xγ ! 1 of the
momentum of a relativistic particle, let it be the elec-
tron, is given by

(2)

Here, k is the photon transverse momentum and κz =
mexγ is the photon longitudinal momentum in the elec-
tron Breit frame. The origin of k2 in the numerator is
associated with current conservation—that is, with
gauge invariance. By definition, the unintegrated pho-
ton structure function of the electron is then given by

(3)

If the relativistic particle is a positronium P (Fig. 2),
we must take into account the destructive interference
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κ κ
κ κ

κ κ κ κ

(a) (b)

(c) (d)

Fig. 2. The Fermi–Weizsäcker–Williams diagrams for calculating the flux of equivalent photons in positronium.
between the electromagnetic fields of the electron and
positron. Specifically, the electromagnetic fields of the
electron and positron cancel each other for soft photons
with wavelength λ = 1/κ @ aP, where aP is the positro-
nium Bohr radius, and the flux of photons vanishes; for
λ ! aP, the flux of photons will be twice as large as that
for a single electron. The above properties are quanti-
fied by the formula

(4)

where the factor of 2 is the number of charged particles
in the positronium and corresponds to the Feynman dia-
grams in Figs. 2a and 2b. The vertex function V(κ) is
expressed in terms of the two-body form factor of the
positronium as

(5)

where r– – r+ is the spatial separation of e+ and e– in the
positronium. The two-body form factor F2(k, –k)
describes the destructive interference between the elec-
tromagnetic fields of the electron and positron and cor-
responds to the Feynman diagrams in Figs. 2c and 2d.

It vanishes for sufficiently large κ * , leaving us
with V(κ) = 2, whereas, for soft gluons, one has

(6)

One can say that the law in (6) is driven by electromag-
netic gauge invariance, which guarantees that long-
wave photons decouple from the neutral system.

Finally, we recall that the derivation of the differen-
tial flux of transversely polarized photons would apply
to the case of massive vector bosons interacting with a

^γ
P

xγ k2,( ) 2
α em

π
-------- k2

k2 κ z
2

+
-----------------

 
 
  2

V κ( ),=

V κ( ) 1 F2 k k–,( )–=

=  1 P〈 | ik r– r+–( )⋅( ) P| 〉 ,exp–

aP
1–

V κ( ) k2
aP

2
.∝
ICS OF ATOMIC NUCLEI      Vol. 64      No. 4      2001
conserved current, the only change being in the propa-
gator. For instance, for the neutral source, one finds

(7)

Recall that the massive vector fields are Yukawa–Debye-
screened, with the screening radius being given by

(8)

To the lowest order in QED perturbation theory, the two
exchanged photons in Figs. 1 and 2 do not interact, and
we will often refer to (7) as the Born approximation for
the differential vector-boson structure function. One
can regard (7) as a minimal model for soft-κ behavior
of the differential structure function for Yukawa–
Debye-screened vector bosons.

3. INSIGHT INTO THE DIFFERENTIAL DENSITY 
OF GLUONS

3.1. Modeling Virtual Photoabsorption in QCD

The quantity that is measured in deep inelastic lep-
toproduction is the total cross section of photo-absorp-
tion   X summed over all hadronic final states
X, where µ, ν = ±1, 0 are the helicities of (T) transverse
and (L) longitudinal virtual photons. One usually starts
with the imaginary part of the amplitude Aµν for the for-

ward Compton scattering   , which, by
optical theorem, gives the total cross section for the
photo-absorption of virtual photons,

(9)
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(10)

where W is the total energy in the γ*p c.m.s., mp is the
proton mass, Q2 is the virtuality of the photon, and

xBj = Q2/(Q2 + W2 – ) is the Bjorken variable.

In perturbative QCD (pQCD), one models virtual
photoabsorption in terms of the multiple production of
gluons, quarks, and antiquarks (Fig. 3). Experimental
integration over the full phase space of hadronic states
X is substituted in the pQCD calculation by integration
over the whole phase space of QCD partons:

(11)
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1
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γ*γ*

γ* γ*
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Fig. 3. The pQCD modeling of DIS in terms of multiproduc-
tion of parton final states.

Fig. 4. The κ-factorization representation for DIS at small x.
where the integration with respect to the longitudinal
Sudakov variables xi and the transverse momenta ki of
partons goes over the whole allowed region

(12)

The core of the so-called DGLAP approximation [1] is
an observation that, at finite x, the dominant contribu-
tion to the multiparton production cross sections comes
from a tiny part of the phase space

(13)

in which the upper limit of integration with respect to
the transverse momenta of partons is much smaller than
the kinematical limit (12). At very small x, this limitation
of the transverse phase space becomes much too restric-
tive and the DGLAP approximation is doomed to failure.

Hereafter, we focus on how lifting the restrictions
on the transverse phase space changes our understand-
ing of the gluon structure function of the nucleon at
very small x, that is, very large 1/x. In this kinematical
region, the gluon density g(x, Q2) is much higher than
the density of charged partons q(x, Q2) and (x, Q2).
Fadin, Kuraev, and Lipatov [2] showed that, to the lead-

ing   approximation, the dominant contri-

bution to photoabsorption comes from multigluon final
states of Fig. 3; alternatively, to the LL1/x, the splitting
of gluons into gluons dominates the splitting of gluons
into  pairs. As a matter of fact, we do not need the
full BFKL dynamics for the purposes of the present
analysis; in the κ factorization, only the  loop is
treated explicitly to the LL1/x approximation. In this
regime, the Compton scattering can be viewed as an
interaction of the nucleon with the light-cone  Fock
states of the photon via the exchange of gluons (Fig. 4),
and the Compton scattering amplitude takes the form

(14)

Here,  is the light-cone photon wave function

dependent on Q2 and on the q and  helicities λ and ,
while the QCD Pomeron-exchange -proton scatter-
ing kernel  does not depend on the q and  helici-
ties and conserves them exactly, summation over these
helicities being implied in (14).

The resummation of the diagrams in Fig. 3 defines
the unintegrated GSF of the target, which is represented
in the diagrams of Fig. 4 as the striped oval. The calcu-
lation of the forward Compton scattering amplitudes
(D = 0) is straightforward and gives the κ-factorization
formulas for photoabsorption cross sections [19, 20]
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(15)

(16)

Here, k is the transverse momentum of the gluon; k is
the transverse momentum in the quark–antiquark loop;
z and 1 – z are the fractions of the light-cone momen-
tum of the proton that are carried by the quark and the
antiquark, respectively; mf and ef are the mass and
charge of the quark f = u, d, s, c, b, …;

(17)

the QCD running coupling constant αS(q2) enters into
the integrand at the largest relevant virtuality;

(18)

and the density of gluons is taken at

(19)

Here, Mt is the transverse mass of the produced  pair
in the photon–gluon fusion γ*g  :

(20)

For longitudinal photons, only the transitions γL 

 into states with λ +  = 0 are allowed. In σT, the

terms ∝  are the contribution of states with λ +  =
µ, whereas the dominant contribution in the scaling

regime of Q2 @  comes from the transitions γT 

 into states λ +  = 0, when the helicity of the pho-
ton is transferred to the angular momentum of the
quark–antiquark pair. The corresponding transition
amplitudes are ∝ k, k ± k (for more discussion see [7]).

No restrictions on the transverse momentum in the
 loop, k, and gluon momentum k are imposed in the
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representation (15) and (16). This representation was
contained essentially in the classic Fadin, Kuraev, and
Lipatov papers [2] of the mid-1970s; in recent litera-
ture, it is sometimes referred to as the κ factorization.

We note that Eqs. (15) and (16) are for forward diag-
onal Compton scattering, but similar representation in
terms of the unintegrated GSF holds also for the off-
forward Compton scattering at finite momentum trans-
fer D, off-diagonal Compton scattering when the virtu-
alities of the initial and final-state photons are different,

 ≠ , including the timelike photons and vector

mesons,  = – , in the final state.

The photoabsorption cross sections define the
dimensionless structure functions

(21)

and F2 = FT + FL , which admit the familiar pQCD par-
ton model interpretation

(22)

where qf (xBj , Q2) an (xBj, Q2) are the integrated den-
sities of quarks and antiquarks carrying the fraction xBj
of the light-cone momentum of the target and with
transverse momenta ≤Q. Hereafter, we suppress the
subscript Bj.

3.2. Where κ Factorization Meets DGLAP 
Factorization

Recall the familiar DGLAP equation [1] for scaling
violations at small x,

(23)

where for the sake of simplicity we only consider light
flavors. Upon integration, we find

(24)

Q f
2

Qi
2

Q f
2

mV
2

FT L, xBj Q
2,( ) Q

2

4π2α em

-----------------σT L,=

FT xBj Q
2,( )

=  e f
2

q f xBj Q
2,( ) q f xBj Q

2,( )+[ ] ,
f u d s c b …, , , , ,=

∑

q f

dF2 x Q
2,( )

d Q
2

log
--------------------------

=  e f
2 αS Q

2( )
2π

----------------- y y
2

1 y–( )2
+[ ]G

x
y
-- Q

2, 
 d

x

1

∫
f

∑

≈
αS Q

2( )
3π

-----------------G 2x Q
2,( ) e f

2
,

f

∑

F2 x Q
2,( ) e f

2 Q
2

d

Q
2

---------
αS Q

2
( )
3π

-----------------G 2x Q
2

,( ).

0

Q
2

∫
f

∑≈



758 IVANOV, NIKOLAEV
In order to see the correspondence between the κ factor-
ization and DGLAP factorization, it is instructive to fol-
low the derivation of (24) from the κ representation (15).

First, separate the k2 integration in (15) into the DGLAP

part of the gluon phase space k2 &  = ε2 + k2 and the

beyond-DGLAP region k2 * . One readily finds

(25)

Consider first the contribution from the DGLAP

part of the phase space k2 & . Notice that because of
the factor k2 in (25), the straightforward k2 integration

of the DGLAP component yields G(xg , ) and  is
precisely the pQCD hard scale for the gluonic trans-
verse momentum scale:

(26)

The contribution from the beyond-DGLAP region of
the phase space can be evaluated as

(27)

The latter form of (27) allows us to combine conveniently
(26) and (27) by rescaling the hard scale in the GSF:

(28)

Q
2

Q
2

k

k2 ε2
+

---------------- k k–

k k–( )2 ε2
+

-------------------------------– 
  2

=  

2z
2

1 z–( )2
Q

4

Q
8

--------------------------------- 2z 1 z–( )Q
2

Q
6

-----------------------------– 1

Q
4

------+
 
 
 

k2

if k2
 & Q

2

1

Q
2

------ z 1 z–( )Q
2

Q
4

-------------------------–
 
 
 

if k2
 * Q

2
.

Q
2

Q
2

Q
2

k2
d

k2
--------αS q

2( )^ xg k2,( ) k

k2 ε2
+

---------------- k k–

k k–( )2 ε2
+

-------------------------------– 
 

2

0

Q
2

∫

=  2z
2

1 z–( )2
Q

4

Q
8

--------------------------------- 2z 1 z–( )Q
2

Q
6

-----------------------------– 1

Q
4

------+
 
 
 

G xg Q
2

,( ).

k2
d

k4
--------αS q

2( )^ xg k2,( ) 1

Q
2

------ z 1 z–( )Q
2

Q
4

-------------------------–
 
 
 

Q
2

∞

∫

=  1

Q
4

------ z 1 z–( )Q
2

Q
6

-------------------------–
 
 
 

^ xg Q
2

,( )I xg Q
2

,( )

=  2z
2

1 z–( )2
Q

4

Q
8

--------------------------------- 2z 1 z–( )Q
2

Q
6

-----------------------------– 1

Q
4

------+
 
 
 

× ^ xg Q
2

,( ) C2 xg Q
2

z, ,( ).log

G xg Q
2

,( ) ^ xg Q
2

,( ) C2 xg Q
2

z, ,( )log+

=  G xg C2 xg Q
2

z, ,( )Q
2

,( ).
Here, the exact value of I(xg , ) ≥ 1 depends on the
rate of the k2 rise of ^(xg , k2). At small xg and small to

moderate , one finds I(xg , ) substantially larger

than 1 and C2(xg , , z) @ 1 (for extended discussion,
see Section 9 below).

Now change from dk2 integration to  and again
split the z, Q2 integration into the DGLAP part of the

phase space  ! , where either z < /Q2 or 1 –

z < /Q2, and the beyond-DGLAP region  * ,

where 0 < z < 1. As a result, one finds

(29)

where

(30)

Let  be C2(xg , , z) at a mean point. Notice also that

 ~ Q2, so that xg ~ 2x. Then the contribution from the

DGLAP phase space of  can be cast precisely in the
form (24)
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The beyond-DGLAP region of the phase space
gives an extra contribution of the form
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Fig. 5. Huygens principle for Q2, x evolution of DIS structure functions with (a) DGLAP-restricted transverse phase space and (b)
for the BFKL x evolution without restrictions on the transverse phase space and hard-to-soft and soft-to-hard diffusion. The “IR
region” label refers to the domain of nonperturbative soft transverse momenta.
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Equations (31) and (32) immediately reveal the phe-
nomenological consequences of lifting the DGLAP
restrictions in the transverse momentum integration.
Indeed, the DGLAP approach respects the following
strict inequalities

(33)

As we just saw, removing the first limitation effectively

shifted the upper limit in the  integral to  ≠ Q2,

while lifting the second constraint led to an additional,
purely non-DGLAP contribution. Although both of

these corrections lack one leading  factor, they
are numerically substantial. As a matter of fact, in Sec-
tion 9, we show that  ≈ 8.

The above analysis suggests that the DGLAP and κ-
factorization schemes converge logarithmically at large
Q2. However, in order to reproduce the results (31) and
(32) for the full phase space by the conventional
DGLAP contribution (24) from the restricted phase
space (13), one has to ask for DGLAP gluon density
Gpt(x, Q2) larger than the integrated GSF in the κ-fac-
torization scheme and the difference may be quite sub-
stantial in the domain of strong scaling violations.

3.3. Different Evolution Paths: Soft-to-Hard Diffusion, 
and Vice Versa

The above discussion of the contributions to the
total cross section from the DGLAP and non-DGLAP
parts of the phase space can conveniently be cast in the
form of Huygens principle. To the standard DGLAP

leading  (LLQ2) approximation, one only con-
siders the contribution from the restricted part of the
available transverse phase space (13). The familiar
Huygens principle for the homogeneous DGLAP LLQ2

evaluation of parton densities in the xBj–Q2 plane is
illustrated in Fig. 5a: one starts with the boundary con-
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dition p(x, ) as a function of x at fixed , the evo-

lution paths (z, ) for the calculation of p(x, Q2)
shown in Fig. 5a are confined to a rectangle x ≤ z ≤ 1,

 ≤  ≤ Q2, the evolution is unidirectional in the
sense that there is no feedback on the x dependence of

p(x, ) from the x dependence of p(x, ) at  ≥

. In Fig. 5a, we show some examples of evolution
paths which are kinematically allowed but neglected in
the DGLAP approximation. Starting with about flat or

slowly rising G(x, ), one finds that the larger Q2, the
steeper the small-x rise of G(x, Q2).

At x ! 1, the DGLAP contribution from the
restricted transverse phase space (13) no longer domi-
nates the multiparton production cross sections, the
restriction (13) must be lifted, and the contribution to

the cross section from small  and large  * Q2 can
no longer be neglected. Huygens principle for the
homogeneous BFKL evolution is illustrated in Fig. 5b:
one starts with the boundary condition ^(x0, Q2) as a
function of Q2 at fixed x0 ! 1, and the evolution paths

(z, ) for the calculation of p(x, Q2) are confined to a
stripe x ≤ z ≤ x0. In contrast to the unidirectional
DGLAP evolution, one can say that, under BFKL evo-
lution, the small-x behavior of p(x, Q2) at large Q2 is fed
partly by the x dependence of soft p(x, Q2) at larger x
and vice versa. The most dramatic consequence of this
soft-to-hard and hard-to-soft diffusion, which cannot
be eliminated, is that, at very small x, the x dependence
of the gluon structure in the soft and hard regions will
eventually be the same:

(34)

Q0
2

Q0
2

Q̃
2

Q0
2

Q̃
2

Q1
2

Q2
2

Q2
2

Q1
2

Q0
2

ki
2 ki

2

Q̃
2

G x Q
2,( )

1/x ∞→
lim G Q

2( ) 1
x
--- 

 
∆IP

,=



760 IVANOV, NIKOLAEV
Parameters of the DGSF for various DGLAP inputs

DGSF D-GRV D-MRS D-CTEQ

LO DGLAP
input

GRV98LO [10] MRS-LO-1998 [12] CTEQ4L (v.4.6) [11]

, GeV2 0.895 1.37 3.26

, GeV2 (1 + 0.0018 )1/2 (1 + 0.038 )1/2 (1 + 0.047 )1/2

µsoft, GeV 0.1 0.07 0.1

Qc
2

κh
2 log

41
x
--- log

21
x
--- log

21
x
---
where ∆IP is the intercept of the rightmost BFKL singu-
larity. The rate of such hard-to-soft diffusion is evi-
dently sensitive to the IR regularization of pQCD; the
model estimates show that it is very slow in the HERA
range of x [16, 21, 22].

4. ANSATZ FOR DIFFERENTIAL GLUON 
STRUCTURE FUNCTION

The major insight into the parametrization of DGSF
comes from early experience with color-dipole phenom-
enology of small-x DIS. In the color-dipole approach,
which is closely related to κ factorization, the principal
quantity is the total cross section of interaction of the 
color dipole r with the proton target [3, 20, 23]

(35)

which for very small color dipoles can be approximated
by

(36)

where A ≈ 10 comes from properties of the Bessel func-
tion J0(z). The phenomenological properties of the
dipole cross section are well understood (for extraction
of σ(x, r) from the experimental data, see [24, 25]). The
known dipole-size dependence of σ(x, r) serves as a
constraint on the possible k2 dependence of ^(x, k2).

As we argued in Subsection 3.2, DGLAP fits are
likely to overestimate ^hard(x, k2) at moderate k2. Still,
approximation (36) does a good job when the hardness
A/r2 is very large, and at large Q2 we can arguably
approximate the DGSF by the direct differentiation of
available fits (GRV, CTEQ, MRS, …) to the integrated
GSF Gpt(x, Q2):

(37)
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Hereafter, the subscript “pt” serves as a reminder that
these gluon distributions were obtained from the pQCD
evolution analyses of the proton structure function and
cross sections of related hard processes.

The available DGLAP fits are only applicable at

k2 ≥  (see table for the values of ); in the extrap-

olation to soft region k2 ≤ , we are bound to an edu-
cated guess. To this end, we recall that perturbative glu-
ons are confined and do not propagate over large dis-
tances; recent fits [26] to the lattice QCD data suggest
Yukawa–Debye screening of perturbative color fields
with a propagation/screening radius Rc ≈ 0.27 fm. Inci-
dentally, precisely this value of Rc for Yukawa screened
color fields has been used since 1994 in the very suc-
cessful color-dipole phenomenology of small-x DIS
[16, 17]. Furthermore, the important finding of [17] is a
good quantitative description of the rising component
of the proton structure function starting with the
Yukawa-screened perturbative two-gluon exchange as
a boundary condition for the color-dipole BFKL evolu-
tion.

The above suggests that, to the Born approximation,
the k2 dependence of perturbative hard ^hard(x, k2) in

the soft region k2 ≤  is similar to the Yukawa-
screened flux of photons in the positron [cf. Eq. (4)] with
αem replaced by the running strong coupling of quarks
CFαS(k2) and with factor Nc instead of two leptons in the
positronium (for the early discussion, see [4])

(38)

Here, µpt = 1/Rc = 0.75 GeV is the inverse Yukawa
screening radius and must not be interpreted as a gluon
mass; more sophisticated forms of screening can be
considered. Following [16, 17, 19, 21], we also impose
the IR freezing of strong coupling: αS(k2) ≤ 0.82;
recently, the concept of freezed coupling has become
very popular (for a review, see [27]).

The vertex function VN(κ) describes the decoupling
of soft gluons, κ ! 1/Rp , from color-neutral proton and
has the same structure as in Eq. (5). In the nonrelativis-
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tic oscillator model for the nucleon, one can relate the
two-quark form factor of the nucleon to the single-
quark form factor,

(39)

To the extent that  ! , the detailed functional
form of F2(k, –k) is not crucial, and the simple relation
(39) will be used also for a more realistic dipole
approximation

(40)

The gluon probed radius of the proton and the charge
radius of the proton can be somewhat different and Λ ~
1 GeV must be regarded as a free parameter. Anticipat-
ing the forthcoming discussion of the diffraction slope
in vector-meson production, we put Λ = 1 GeV.

As discussed above, the hard-to-soft diffusion
makes the DGSF rise at small x even in the soft
region. We model this hard-to-soft diffusion by match-
ing the k2 dependence (38) to the DGLAP fit ^pt(x,

) at the soft-hard interface  and assigning to

^hard(x, k2) in the region of k2 ≤  the same x depen-

dence as shown by the DGLAP fit ^pt(x, ); i.e.,

(41)

Because the accepted propagation radius Rc ~ 0.3 fm
for perturbative gluons is short compared to a typical
range of strong interaction the dipole cross section (35)
evaluated with the DGSF (41) would miss an interac-
tion strength in the soft region, for large color dipoles.

In [16, 17], the interaction of large dipoles has been
modeled by the nonperturbative soft mechanism with
an energy-independent dipole cross section, whose spe-
cific form [16, 8] has been driven by the early analysis
[19] of the exchange of two nonperturbative gluons.
More recently, several closely related models for
σsoft(r) have appeared in the literature (see, for instance,
models for dipole–dipole scattering via polarization of
nonperturbative QCD vacuum [28] and the model of
soft–hard two-component Pomeron [29]). In order to
reproduce the required interaction strength for large
dipoles, we introduce the genuinely soft, nonperturba-
tive component of DGSF which we parametrize as

(42)

F2 k k–,( ) F1

2Nc

Nc 1–
---------------k2

 
  .=

Rc
2

Rp
2

F1 k2( ) 1

1 k2
/Λ2

+( )2
------------------------------.=

Qc
2

Qc
2

Qc
2

Qc
2

^hard x k2,( ) ^pt
B( ) k2( )

^pt x Qc
2,( )

^pt
B( )

Qc
2( )

--------------------------θ Qc
2 k2

–( )=

+ ^pt x k2,( )θ k2
Qc

2
–( ).

^soft
B( )

x k2,( )

=  asoftCFNc

αS k2( )
π

---------------- k2

k2 µsoft
2

+
---------------------

 
 
  2

V N κ( ).
PHYSICS OF ATOMIC NUCLEI      Vol. 64      No. 4      2001
The principal point about this nonperturbative compo-
nent of DGSF is that it must not be subjected to pQCD
evolution. Thus, the arguments about the hard-to-soft
diffusion-driven rise of perturbative DGSF even at
small k2 do not apply to the nonperturbative DGSF and
we take it as the energy-independent one. Such a nonper-
turbative component of the DGSF would have a certain
high-k2 tail which should not extend too far. The desired
suppression of soft DGSF at large k2 and of hard DGSF
(41) at moderate and small k2 can be achieved by the
extrapolation of the form suggested in [5, 6]:

(43)

The above-described ansatz for DGSF must be
regarded as a poor man’s approximation, and the
parameters entering into Eqs. (42) and (43) will be dis-
cussed below in Section 5.1. The separation of small-k2

DGSF into the genuine nonperturbative component and
small-k2 tail of the hard perturbative DGSF is not
unique. Specifically, we attributed to the latter the same

small-x rise as in the DGLAP fits at , while one can-
not exclude that the hard DGSF has a small x-indepen-
dent component. The issue of soft–hard separation
must be addressed in dynamical models for IR regular-
ization of perturbative QCD. As we shall see below, in
Section 5.1, the soft component of the above-described
ansatz is about twice as large as the soft component
used in the early color-dipole phenomenology [16, 17].

The κ-factorization formulas (15) and (16) corre-
spond to the full-phase space extension of the LO
DGLAP approach at small x. For this reason, our ansatz
for ^hard(x, Q2) will be based on LO DGLAP fits to the
GSF of the proton Gpt(x, Q2). We consider the
GRV98LO [10], CTEQ4L, version 4.6 [11], and MRS-
LO-1998 [12] parametrizations. We take the liberty of
referring to our ansatz for DGSF based on those LO
DGLAP input as D-GRV, D-CTEQ, and D-MRS
parametrizations, respectively.

Our formulas (15) and (16) describe the sea compo-
nent of the proton structure function. Arguably, these
LL1/x formulas are applicable at x & x0 = (1–3) × 10–2.
At large Q2, the experimentally attainable values of x
are not so small. In order to give a crude idea of the
finite-energy effects at moderately small x, we stretch
our fits to x * x0, multiplying the above ansatz for
DGSF by the purely phenomenological factor (1 – x)5

motivated by the familiar large-x behavior of DGLAP
parametrizations of the GSF of the proton. We also add
to the sea components (15) and (16), the contribution
from DIS on valence quarks borrowing the parametri-
zations from the respective GRV, CTEQ, and MRS fits.
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The latter are only available for Q2 ≥ . At x & 10–2,
this valence contribution is small and fades away rap-
idly with decreasing x (for instance, see [17]).

5. DETERMINATION OF THE DIFFERENTIAL 
GLUON STRUCTURE FUNCTION 

OF THE PROTON
5.1. Parameters of DGFS for Different DGLAP Inputs

Our goal is a determination of the small-x DGSF in
the whole range of k2 by adjusting the relevant parame-
ters to the experimental data on small-x F2p(x, Q2) in the
whole available region of Q2 as well as the real photoab-
sorption cross section. The theoretical calculation of
these observables is based on Eqs. (15), (16), and (43).

The parameters which we did not try adjusting but
borrowed from early work in the color-dipole picture
are Rc = 0.27 fm, i.e., µpt = 0.75 GeV, and the frozen
value of the LO QCD coupling with ΛQCD = 0.2 GeV:

(44)

We recall that the GRV, MRS, and CTEQ fits to GSF
start the DGLAP evolution at quite a different soft-to-

hard interface  and diverge quite a lot, especially at

moderate and small k2. The value of  is borrowed
from these fits and is not a free parameter.

The adjustable parameters are µsoft, asoft, mu, d, ,

and . We take ms = mu, d + 0.15 GeV and mc =
1.5 GeV. The role of these parameters is as follows. The
quark mass mu, d defines the transverse size of the  =

,  Fock state of the photon, whereas  con-
trols the r dependence of, and in conjunction with asoft
sets the scale for, the dipole cross section for large-size

 dipoles in the photon. The both mu, d and µsoft have
clear physical meaning and we have certain insight into
their variation range from the early work on color-
dipole phenomenology of DIS. The magnitude of the
dipole cross section at large and moderately small
dipole size depends also on the soft-to-hard interpola-
tion of DGSF, which is somewhat different for different
LO DGLAP inputs for Gpt(x, Q2). This difference of

DGLAP inputs can be corrected for by adjusting 

and the value of . Because of soft-to-hard and hard-
to-soft diffusion, the DGLAP fits are expected to fail at

small x; therefore, we allow for the x dependence of .

Evidently, roughly equal values of F2p(x, Q2) can be
obtained for somewhat smaller ^(x, Q2) at the expense
of taking smaller mu, d and vice versa. Therefore,
though the quark mass does not explicitly enter into the
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parametrization for ^(x, k2), the preferred value of mu, d
turns out to be correlated with the ansatz for DGSF; i.e.,
each particular parametrization of DGSF implies a cer-

tain mu, d. In what follows, we set asoft = 2,  =

3.0 GeV2, and mu, d = 0.22 GeV, so that only  and
µsoft varied from one DGLAP input to another (see
table). The soft components of the D-GRV and D-
CTEQ parametrizations turn out to be identical. The
eyeball fits are sufficient for the purposes of the present
exploratory study. The parameters found are similar to
those used in [5, 6], where the focus has been on the
description of diffractive DIS.

One minor problem encountered in numerical dif-
ferentiation of all three parametrizations for Gpt(x, Q2)
was the seesaw k2 behavior of the resulting DGSF (37),
which was an artifact of the grid interpolation routines.
Although this seesaw behavior of DGSF is smoothed
out in integral observables like G(x, Q2) or F2p(x, Q2),
we still preferred to remove the unphysical seesaw
cusps and have smooth DGSF. This was achieved by
calculation of DGSF from (37) at the center of each
interval of the Q2 grid and further interpolation of the
results between these points. by integration of the so-
smoothed ^pt(x, Q2) one recovers the input Gpt(x, Q2).

The values of  cited in the table correspond to cen-
ters of the first bin of the corresponding Q2 grid.

5.2. Description of the Proton Structure 
Function F2p(x, Q2)

We focus on the sea dominated LL1/x region of x <
10–2. The practical calculation of the proton structure
function involves the two running arguments of DGSF:
xg and k2. We recall that in the standard collinear
DGLAP approximation, one has k2 ! k2 ! Q2 and xg ≈
2x [see Eq. (23)]. Within the κ factorization, one finds
that the dominant contribution to F2p(x, Q2) comes from

 ~ Q2 with little contribution from  * Q2.
Because at small xg, the xg dependence of ^(xg , Q2) is
rather steep, we take into account the xg–xBj relation-
ship (19).Anticipating the results on effective intercepts
to be reported in Section 7, we notice that for all prac-
tical purposes one can neglect the impact of k on rela-
tionship (19), which simplifies greatly the numerical
analysis. Indeed, the xg dependence of ^(xg, k2) is
important only at large k2, which contribute to F2p(x,
Q2) only at large Q2; but the larger Q2, the better holds
the DGLAP ordering k2 ! k2, Q2. Although at small to
moderate Q2, the DGLAP ordering breaks down, the xg

dependence of ^(xg , k2) is negligibly weak here.

As we shall discuss in more detail below, achieving
a good agreement from small to moderate to large Q2 is
a highly nontrivial task, because strong modification of

κ s
2

κh
2

Qc
2

Mt
2

Mt
2
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Fig. 6. The κ-factorization description of the experimental data on F2p(x, Q2) in the low-Q2 region: open squares are E665 data [30],
closed circles are ZEUS BPC data [31], open triangles denote H1 shifted vertex data [32]. The solid curve represents  κ-factorization
results based on the D-GRV parametrization of the DGSF  ^(x, k2).

F2p F2p F2p
the soft contribution to ^(x, Q2) unavoidably echoes in
the integral quantity GD(x, Q2) throughout the whole
range of Q2 and shall affect the calculated structure
function from small to moderate to large Q2.

The quality of the achieved description of the exper-
imental data on the small-x proton structure function is
illustrated in Figs. 6 and 7. The data shown include
recent FNAL E665 experiment [30], HERA data
(ZEUS BPC [31], H1 shifted vertex [32], ZEUS [33],
ZEUS shifted vertex [34], H1 [35]), and CERN NMC
experiment [36]. When plotting the E665 and NMC
data, we took the liberty of shifting the data points from
the reported values of Q2 to the closest Q2 boxes for

which the HERA data are available. For Q2 <  =
0.9 GeV2, the parametrizations for valence distribu-
tions are not available and our curves show only the sea
component of F2p(x, Q2), at larger Q2 the valence com-
ponent is included.

At x < 10–2, the accuracy of our D-GRV description
of the proton structure function is commensurate to that
of the accuracy of standard LO GRV fits. In order not
to cram the figures with nearly overlapping curves, we
show the results for D-GRV parametrization. The situ-
ation with D-CTEQ and D-MRS is very similar, which
is seen in Fig. 8, where we show on a larger scale simul-
taneously the results from the D-GRV, D-CTEQ, and
D-MRS DGSFs for several selected values of Q2. Here,
at large Q2 we show separately the contribution from
valence quarks. The difference between the results for
F2p(x, Q2) for different DGLAP inputs is marginal for
all the practical purposes (see also a comparison of the
results for σγp for different DGLAP inputs in Fig. 9).

Qc
2
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5.3. Cross Section for Real Photoabsorption

In the limiting case of Q2 = 0, the relevant observ-
able is the real photoabsorption cross section σγp.
Although the Bjorken variable is meaningless at very
small Q2, the gluon variable xg remains well defined at
Q2 = 0 [see Eq. (19)]. In Fig. 9, we present our results
alongside with the results of the direct measurements of
σγp and the results of extrapolation of virtual photoab-
sorption cross sections to Q2 = 0 (for the summary of
the experimental data, see [31]). We emphasize that we
reproduce the observed magnitude and pattern of the
energy dependence of σγp in an approach with the man-
ifestly energy-independent soft contribution to the total
cross section (which is shown separately in Fig. 9). We
recall that our parametrizations for ^(x, Q2) give iden-
tical soft cross sections for the GRV and CTEQ inputs

(see table). The barely visible decrease of  towards
small W is a manifestation of the (1 – x)5 large-x behav-
ior of gluon densities. The extension to lower energies
requires introduction of the secondary Reggeon
exchanges, which goes beyond the subject of this study.

In our scenario, the energy dependence of σγp is
entirely due to the xg-dependent hard component
^hard(xg, Q2) and as such this rise of the total cross sec-
tion for soft reaction can be regarded as driven entirely
by very substantial hard-to-soft diffusion. Such a sce-
nario has repeatedly been discussed earlier [16, 17, 37].
Time and again, we shall see similar effects of hard-to-
soft diffusion and vice versa. Notice that hard-to-soft
diffusion is a straightforward consequence of full
phase-space calculation of partonic cross sections and
we do not see any possibility for decoupling of hard-

σsoft
γp
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Fig. 7. The κ-factorization description of the experimental data on F2p(x, Q2) in the moderate and high Q2 region: close circles and
triangles are ZEUS data [33, 34], open circles and triangles show H1 data [32, 35], open squares are E665 data [30], stars refer to
NMC results [36]. The solid curve represents κ-factorization results based on the D-GRV parametrization of the DGSF  ^(x, k2).

Fig. 8. A comparison of the κ-factorization description of the experimental data on F2p(x, Q2) for several values of Q2 based on the
three parametrizations of the DGSF ^(x, k2). The solid, dashed, and dotted curves represent κ-factorization calculations with the
D-GRV, D-MRS, and D-CTEQ parametrizations of ^(x, k2), respectively. For larger Q2, the dash-dotted curve shows the contribu-
tion to F2p(x, Q2) from DIS off valence quarks. Closed circles and triangles are the experimental data from ZEUS, open circles and
triangles show H1 data, open squares are E665 data, stars refer to NMC results.
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gluon contribution from the total cross sections of any
soft interaction, whose generic example is the real
photoabsorption.

6. PROPERTIES OF DIFFERENTIAL 
GLUON STRUCTURE FUNCTION

IN THE MOMENTUM SPACE

6.1. Soft–Hard Decomposition of DGSF

Now we focus on the x and k2 behavior of the so-
determined DGSF starting for the reference with the D-
GRV parametrization. The same pattern hods for DGSF
based on CTEQ and MRS DGLAP inputs, see below. In
Figs. 10 and 11, we plot the DGSF ^(xg , k2), while in
Fig. 12 we show the integrated GSF

(45)

Here, the subscript D is a reminder that the integrated
GD(x, Q2) is derived from DGSF. As such, it must not
be confused with the DGLAP parametrization
Gpt(x, Q2) supplied with the subscript pt.

Figures 10 and 11 illustrate the interplay of the non-
perturbative soft component of DGSF and perturbative
hard contribution supplemented with the above

described continuation into k2 ≤  at various x and k2.
The soft and hard contributions are shown by the
dashed and dotted curves, respectively; their sum is
given by the solid curve.

Apart from the large-x suppression factor (1 – x)5,
our nonperturbative soft component does not depend
on x. At a not so small x = 10–2, it dominates the soft
region of k2 & 1–2 GeV2, and the hard component takes
over at higher k2. The soft–hard crossover point is close

to  but because of the hard-to-soft diffusion it moves
with decreasing x to a gradually smaller Q2.

6.2. Soft–Hard Decomposition of the Integrated Gluon 
Structure Function

The role of the soft component is further illustrated
by Fig. 12, where we show by the solid curve the inte-
grated GSF (45) and by the dashed curve its soft com-
ponent Gsoft(x, Q2). The soft contribution Gsoft(x, Q2) is
a dominant feature of the integrated GSF GD(x, Q2) for
Q2 & 1 GeV2. It builds up rapidly with Q2 and receives
the major contribution from the region k2 ~ 0.3–
0.5 GeV2. Our ansatz for ̂ soft(x, k2) is such that it starts
decreasing already at k2 ~ 0.2 GeV2 and vanishes rap-

idly beyond k2 *  (see Figs. 10, 11). Still, the
residual rise of the soft gluon density beyond Q2 ~
0.5 GeV2 is substantial: Gsoft(x, Q2) rises by about the
factor of two before it flattens at large Q2. We empha-
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size that Gsoft(Q2) being finite at large Q2 is quite natu-
ral—a decrease of Gsoft(Q2) at large Q2 is possible only
if ̂ soft(Q2) becomes negative-valued at large Q2, which
does not seem to be a viable option.

At moderately small x ~ 10–2, the scaling violations
are still weak and the soft contribution Gsoft(x, Q2)
remains a substantial part, about one half, of the inte-
grated GSF GD(x, Q2) at all Q2. At very small x & 10–3,
the scaling violations in the GSF are strong and Ghard(x,
Q2) = GD(x, Q2) – Gsoft(x, Q2) @ Gsoft(x, Q2) starting
from Q2 ~ 1–2 GeV2.

6.3. Soft–Hard Decomposition of the Proton Structure 
Function F2(x, Q2)

Equations (15) and (16) define the soft–hard decom-
position of the proton structure function. In Fig. 13, we

show (x, Q2) and (x, Q2) as functions of Q2 for
the two representative values of x. Notice how the sig-
nificance of soft component as a function of Q2 rises
from the fully differential ^(x, Q2) to the integrated

GD(x, Q2) to doubly integrated (x, Q2). At a moder-
ately small x  ~ 10–3, the soft contribution is a dominant

F2 p
hard

F2 p
soft

F2 p
soft

Fig. 9. A comparison of the κ-factorization description of
the experimental data on real photoabsorption cross section
based on the D-GRV, D-MRS, and D-CTEQ parametriza-
tions of the DGSF ^(x, k2). The squares show the experi-
mental data from 1992–1993 direct measurements, the bul-
lets are the results of extrapolation of virtual photoabsorp-
tion to Q2 = 0 ([31] and references therein). The solid,
dashed, and dotted curves represent κ-factorization calcula-
tions with the D-GRV, D-MRS, and D-CTEQ parametriza-
tions of ^(x, k2), respectively. The soft component of pho-
toabsorption cross section is shown separately; it is identical
for D-GRV (solid) and D-CTEQ-based calculations (dotted).
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Fig. 10. D-GRV DGSF ^(x, k2) as a function of k2 at several values of x. The dashed and dotted curves represent the soft and hard
components, respectively; the total unintegrated gluon density is shown by the solid curve.
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Fig. 11. The same as in Fig. 10, but overlaid onto one graph
for illustration of the x dependence of ^(x, k2). The dashed
curves show the soft component ^soft(x, k2) and its slight

rise with x from x = 10–2 to x = 10–5 is due to the finite-x
factor (1 – x)5.

Fig. 12. The same as in Fig. 11, but for integrated GSF
GD(x, Q2) as given by the D-GRV parametrization of the
DGSF ^(x, k2) (for the discussion, see Section 6.2).
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part of F2p(x, Q2), although the rapidly rising hard com-

ponent (x, Q2) gradually takes over at smaller x.

Notice that not only does (x, Q2) not vanish at
large Q2, but also it rises slowly with Q2 as

(46)

Again, the decrease of (x, Q2) with Q2 would only
be possible at the expense of unphysical negative val-
ued Gsoft(Q2) at large Q2.

7. DGSF IN THE x SPACE: EFFECTIVE 
INTERCEPTS AND HARD-TO-SOFT DIFFUSION

It is instructive to look at the change of the x depen-
dence from the DGSF ̂ (x, Q2) to integrated GSF GD(x,
Q2) to proton structure function F2p(x, Q2). It is custom-
ary to parametrize the x dependence of various struc-
ture functions by the effective intercept. For instance,
for the effective intercept τeff the DGSF structure func-
tion is defined by the parametrization

(47)

One can define the related intercepts τhard for the hard
component ̂ hard(x, Q2). Notice that in our ansatz τsoft ≡ 0.

The power law (47) is only a crude approximation to
the actual x dependence of DGSF and the effective
intercept τeff will evidently depend on the range of fitted
x. To be more definite, for the purposes of the present
discussion, we define the effective intercept as 

(48)
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taking x2 = 10–5 and x1 = 10–3. The effective intercept
τhard(Q2) is defined by (48) in terms of ^hard(x, Q2).

One can define the related intercepts λeff  and λhard
for the integrated GSF GD(x, Q2):

(49)

In the case of F2p(x, Q2), we define the intercept ∆(Q2)
in terms of the variable  defined as

(50)

where MV is the mass of the ground state vector meson
in the considered flavor channel. Such a replacement
allows one to treat on equal footing Q2 & 1 GeV2, where
the formally defined Bjorken variable xBj can no longer
be interpreted as a light-cone momentum carried by
charged partons. For the purposes of the direct compar-
ison with τ(Q2) and λ(Q2) and in order to avoid biases
caused by the valence structure function, here we focus
on intercepts ∆eff  and ∆hard for the sea component of the

proton structure function (x, Q2):

(51)

The results for the effective intercepts are shown in
Figs. 14–16.

In our simplified hard-to-soft extrapolation of

^hard(x, Q2), we attribute to ^hard(x, Q2) at Q2 ≤  the

same x dependence as at Q2 =  modulo to slight

modifications for the x dependence of . This gives
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Fig. 13. The soft–hard decomposition of κ-factorization results for the proton structure function F2p(x, Q2) evaluated with the D-
GRV parametrization of the DGSF ^(x, k2). The soft and hard contributions are shown with the dashed and dotted curves, respec-
tively; their sum is given in the solid curve. Closed circles show the ZEUS BPC data [31], open triangles and circles are H1 data [32,
35], and open squares refer to E665 results [30].
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the cusp in τhard(Q2) at Q2 = , i.e., the first derivative

of τhard(Q2) is discontinuous at Q2 = .

A comparison of Fig. 11 with Fig. 12 and further
with Fig. 13 shows clearly that only in DGSF ^(x, Q2)
is the effect of the soft component concentrated at small
Q2; in integrated GD(x, Q2) and especially in the proton
structure function F2p(x, Q2) is the impact of the soft
component extends to much larger Q2. The larger the soft
contribution, the stronger is the reduction of τeff from
τhard and so forth, this pattern is evident from Fig. 14a to
Fig. 14b to Fig. 14c (see also Figs. 15 and 16).

The change of effective intercepts from differential
^(x, Q2) to integrated GD(x, Q2) is straightforward, the
principal effect is that λhard(Q2) < τhard(Q2) and λeff (Q2) <
τeff (Q2), which reflects the growing importance of soft
component in GD(x, Q2). The change of effective inter-
cepts from ^(x, Q2) and GD(x, Q2) to F2p(x, Q2) is less
trivial and exhibits two dramatic consequences of the
hard-to-soft and soft-to-hard diffusion. If the standard
DGLAP contribution (24) were all, then the change
from the intercept λ(Q2) for integrated gluon density to
the intercept ∆(Q2) for the proton structure function
F2p(x, Q2) would have been similar to the change from
τ(Q2) to λ(Q2); i.e., the effective intercept ∆eff (Q2)
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Fig. 14. Effective intercepts for total and hard components
of (a) the DGSF ̂ (x, k2), (b) integrated GSF GD(x, Q2), and

(c) proton structure function F2p(x, Q2) evaluated with the

D-GRV parametrization of the DGSF ^(x, k2). In (d) we
compare the effective intercepts τeff (k2), λeff (Q2), and

∆eff (Q2) for ^(x, Q2), GD(x, Q2), and F2p(x, Q2), respec-
tively.
would have been close to zero for Q2 & 1 GeV2. How-
ever, by virtue of the hard-to-soft diffusion phenome-
non inherent to the κ factorization, F2p(x, Q2) receives a
contribution from gluons with k2 > Q2, which enhances
substantially ∆hard(Q2) and ∆eff (Q2). The net result is that,
at small to moderately large Q2, we find ∆hard(Q2) >
λhard(Q2) and ∆eff (Q2) > λeff (Q2). As we emphasized
above in Section 5.3, the rise of the real-photoabsorp-
tion cross section is precisely of the same origin.

The second effect is a dramatic flattening of the
effective hard intercept ∆hard(Q2) over the whole range
of Q2. For all three DGLAP inputs, ∆hard(Q2) flattens at
approximately the same ∆hard ≈ 0.4.

The set of Figs. 14–16 also shows that the systematics

of intercepts in the hard region of Q2 >  is nearly iden-
tical for all three DGLAP inputs. In the soft region, we
have a slight inequality τhard(k2)|D-MRS > τhard(k2)|D-GRV,
which can be readily attributed to the slight inequality

(MRS) > (GRV). In the case of CTEQ4L (v.4.6)

input, the value of (CTEQ) is substantially larger

than (MRS), (GRV). In the range (MRS),

(GRV) < k2 < (CTEQ), the effective intercept
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Fig. 15. Effective intercepts for total and hard components
of (a) the DGSF ̂ (x, k2), (b) integrated GSF GD(x, Q2), and

(c) proton structure function F2p(x, Q2) evaluated with the

D-MRS parametrization of ^(x, k2). In (d) we compare the
effective intercepts τeff (k2), λeff (Q2), and ∆eff (Q2) for ̂ (x,

Q2), GD(x, Q2), and F2p(x, Q2), respectively.
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τhard(k2) rises steeply with k2. This explains why in the
soft region τhard(k2)|CTEQ is significantly larger than for
the D-GRV and D-MRS parametrization. The differ-
ence among intercepts for the three parametrizations
decreases gradually from the differential ̂ (x, k2) to the
integrated GD(x, Q2) gluon density to the proton struc-
ture function F2p(x, Q2).

Finally, in Fig. 17 we compare our results for
∆eff (Q2) with the recent experimental data from the
ZEUS collaboration [34]. In the experimental fit, the
range of x = [xmax, xmin] varies from point to point; in our
evaluation of ∆eff from Eq. (48), we mimicked the
experimental procedure, taking  = xmax and  = xmin.
This explains the somewhat irregular Q2 dependence.
The experimental data include both sea and valence

components. At Q2 > (GRV) = 0.9 GeV2, we
included the valence component of the structure func-
tion taking the GRV98LO parametrization. For

CTEQ4L (v.4.6) and MRS-LO-1998, the values of 
are substantially larger. However, the valence compo-
nent is a small correction and we took the liberty of

evaluating the valence contribution (x, Q2) for

(GRV) < Q2 < (MRS), (CTEQ). The overall
agreement with the experiment is good. Difference
among the three parametrizations is marginal and can
of course be traced back to Figs. 14–16.

8. HOW THE GLUON DENSITIES
OF κ FACTORIZATION DIFFER

FROM DGLAP GLUON DENSITIES

It is also instructive to compare our results for inte-
grated GSF (45) with the conventional DGLAP fit
Gpt(x, Q2). In Fig. 18, we present such a comparison
between our integrated D-GRV distribution (solid
curves) and the GRV98LO distribution (dashed
curves). As was anticipated in Subsection 3.2, at very
large Q2, the two gluon distributions converge. We also
anticipated that, at small x and moderate Q2, the
DGLAP gluon structure functions Gpt(x, Q2) are sub-
stantially larger than the result of integration of DGSF
[see Eq. (45)]. At x = 10–5, they differ by as much as a
factor of two to three over a broad range of Q2 &

100 GeV2. The difference between integrated DGSF
and the DGLAP fit decreases gradually at large x and is
only marginal at x = 10–2.

Recall the substantial divergence of the GRV, MRS,
and CTEQ GSF of DGLAP approximation Gpt(x, Q2) at
small and moderate Q2. Contrary to that, the κ-factor-
ization D-GRV, D-CTEQ, and D-MRS GSF GD(x, Q2)
are nearly identical. We demonstrate this property in
Fig. 19, where we show integrated GD(x, Q2) and their
DGLAP counterparts Gpt(x, Q2) for the three parametri-
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Fig. 16. Effective intercepts fort total and hard components
of (a) the DGSF^(x, k2), (b) integrated GSF GD(x, Q2), and

(c) proton structure function F2p(x, Q2) evaluated with the

D-CTEQ parametrization of ^(x, k2). In (d) we compare
the effective intercepts τeff (k2), λeff (Q2), and ∆eff (Q2) for

^(x, Q2), GD(x, Q2), and F2p(x, Q2), respectively.
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Fig. 17. Effective intercepts ∆(Q2) of the proton structure
function F2p(x, Q2) in the HERA domain evaluated for the D-
GRV, D-MRS, and D-CTEQ parametrizations for the DGSF
^(x, k2), shown in solid, dashed, and dotted curves, respec-
tively. The experimental data points are from ZEUS [34].
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zations at two typical values of x. Because of an essen-

tially unified treatment of the region of k2 ≤  and
strong constraint on DGSF in this region from the
experimental data at small Q2, such a convergence of D-
GRV, D-CTEQ, and D-MRS DGSFs is not unexpected.

One can also compare the effective intercepts for
our integrated GSF GD(x, Q2) with those obtained from
DGLAP gluon distributions Gpt(x, Q2). Figure 20

shows large scattering of (Q2) from one DGLAP
input to another. At the same time, this divergence of
different DGLAP input parametrizations is washed out
to a large extent in the κ-factorization description of
physical observables (see also Fig. 17).

9. HOW DIFFERENT OBSERVABLES PROBE 
THE DGSF ^(x, Q2)

The issue we address in this section is how different
observables map the k2-dependence of ^(xg , k2). We
expand on the qualitative discussion in Section 3.2 and
corroborate it with numerical analysis following the
discussion in [20]. We start with two closely related
quantities—longitudinal structure function FL(x, Q2)

and scaling violations ∂F2(x, Q2)/ —and pro-
ceed to F2p(x, Q2) and the charm structure function of

the proton, (x, Q2). This mapping is best studied if,
in (15) and (16), we first integrate with respect to k and
z. In order to focus on the k2 dependence, we prefer pre-
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Fig. 18. Comparison of our results for integrated GSF GD(x,
Q2) (solid curves) evaluated with the D-GRV parametriza-
tion of the DGSF ^(x, k2) with the GRV98LO DGLAP
input parametrization Gpt(x, Q2) (dashed curves).
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Fig. 19. A comparison of the divergence of GRV98LO,
CTEQ4L(v.4.6), and MRS-LO-1998 GSF Gpt(x, Q2) (top)
with the divergence of our integrated gluon structure func-
tions GD(x, Q2) (bottom) evaluated for the D-GRV, D-
CTEQ, and D-MRS parametrizations for differential gluon
structure function ^(x, Q2) at two typical values of x. The
solid, dashed, and dotted curves refer to GRV, MRS, and
CTEQ ansatz, respectively.
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Fig. 20. A comparison of the intercept (Q2) of the x

dependence of the GRV98LO, CTEQ4L(v.4.6), and MRS-
LO-1998 GSF Gpt(x, Q2) (dashed curves) with their coun-

terpart λeff (Q2) for integrated GD(x, Q2) evaluated with D-
GRV, D-CTEQ, and D-MRS parametrizations for differen-
tial gluon structure function ^(x, Q2) (solid curves).
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senting different observables in terms of ^(2x, k2) and
GD(2x, k2):

(52)

(53)

In the numerical calculation of FL(x, Q2) starting
from Eq. (16), we have xg and k2 as the two running
arguments of ^(xg , k2). As discussed above, the mean
value of xg is close to 2x, but the exact relationship
depends on k2. The k, z integration amounts to the aver-
aging of ^(xg , k2) over a certain range of xg . The result
of this averaging is for the most part controlled by the
effective intercept τeff (k2):

(54)

Because the derivative of τeff (k2) changes rapidly

around k2 = , the rescaling factor r(k2) also has a

rapid variation of the derivative at k2 = . As far as
the mapping of differential ^(2x, k2) is concerned, this
is an entirely marginal effect. However, let us consider
the mapping of the integrated GSF GD(x, Q2), which is
derived from Eqs. (52) and (53) by integration by parts: 

(55)

(56)

Then, because of rapid variation of the derivative of the

rescaling factor r(k2) around k2 = , the weight func-

tions (Q2, k2)/  will exhibit a slightly

irregular behavior around k2 = . Evidently, such an
irregularity appears in any region of fast variation of
τeff (k2); in our simplified model, it is somewhat ampli-
fied by the cusp-like k2 dependence of τeff (k2).
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Finally, starting from (56), one obtains a useful rep-
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Fig. 21. The weight function ΘL for mapping (52) of the
DGSF ^(x, k2) as a function of k2 for several values of Q2.
We show separately the results for light flavors, u, d, and
charm.
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DGSF ^(x, k2) as a function of k2 for several values of Q2.
We show separately the results for light flavors, u, d, and
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Fig. 23. The same as Fig. 21, but for mapping (55) of the
integrated GSF GD(x, k2) as a function of k2 for several val-
ues of Q2. We show separately the results for light flavors
and charm.
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Fig. 24. The weight function W2 for mapping of the inte-
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of Q2. We show separately the results for light flavors and
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where the scale factors CL ~ 1/2 and C2 ~ 2 can be
readily read from the figures (for the related discussion,
see [20]). Note that the value C2 ~ 2 corresponds to

 ~ 8 introduced in Section 3.2. Recall that the devel-
opment of the plateau-like behavior of ΘL and Θ2,
which extends to k2 ~ Q2, signals the onset of the LLQ2

approximation. For large Q2 in approximation (58), the
k2 integration can be carried out explicitly and FL(x,

C2
Q2)    ∝  GD(2x, CLQ2). Similarly, we have

∂F2(x, Q2)/  ∝  GD(2x, C2Q2), cf. Eq. (28).

A still better idea on how FL and scaling violations
map the integrated GSF is shown in Figs. 23 and 24,

where we show results for –∂ /  and .
The first quantity is sharply peaked at k2 ~ CLQ2. The
second quantity visibly develops a plateau at large Q2.

∂ Q
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As can be easily seen, scaling violations do receive a
substantial contribution from the beyond-DGLAP
region of k2 > Q2.

Because of the heavy mass, the case of the charm

structure function (x, Q2) is somewhat special. Fig-

ures 23 and 24 show the weak sensitivity of (x, Q2)
to the soft component of ^(xBj, k2), which has an obvi-
ous origin: long-wavelength soft gluons with κ & mc

decouple from the color-neutral  Fock state of the
photon which has a small transverse size &1/mc . Our

results for (x, Q2) are shown in Fig. 25 and the
agreement with the recent precision experimental data
from ZEUS [38] is good.

10. SUMMARY

We present the first parametrization of DGSF ^(x,
Q2) of the proton inherent to the κ-factorization
approach to small-x DIS. The form of the parametriza-
tion is driven by color gauge invariance constraints for
soft Q2, early ideas from color-dipole phenomenology
on the necessity of the nonperturbative soft mechanism
for the interaction of large color dipoles and by match-
ing to the derivative of familiar DGLAP fits Gpt(x, Q2).
The latter condition is not imperative, though, and can
be relaxed; in this exploratory study, we simply wanted
to take advantage of the insight on Gpt(x, Q2) from early
DGLAP approximation studies on scaling violations.
The parameters of ^(x, Q2) have been tuned to the
experimental data on F2p in the low-x (x & 0.01) domain
and throughout the entire Q2 region, as well as on the

real-photoabsorption cross section . The DGSF ̂ (x,
Q2) is the principal input for pQCD calculation of many
diffractive processes and we anticipate that the consistent
use of our parametrizations shall reduce the uncertainties
of calculations of cross sections of such processes as dif-
fractive DIS into vector mesons and continuum.

Our results allow us to address several interesting
issues. First, our ansatz for ^(x, Q2) have been con-
structed so as to ensure the convergence of GD(x, Q2)—
the integral of ^(x, Q2)—to the corresponding large Q2

DGLAP input Gpt(x, Q2). We notice that both gluon dis-
tributions provide a comparable description of the same
set of experimental data on the proton structure func-
tion, the only difference being that, in the κ factoriza-
tion, we lift the DGLAP limitation on the transverse
phase space of quarks and antiquarks. We find very
slow convergence of and a numerically very large dif-
ference between the κ-factorization distribution GD(x,
Q2) and the DGLAP fit Gpt(x, Q2). As anticipated, the
divergence of the two distributions is especially large at
small-x and persists even in the hard region up to Q2 ~
10–100 GeV2 at x = 10–5. We interpret this divergence
as a signal of breaking of the DGLAP approximation,

F2 p
cc

F2 p
cc

cc

F2 p
cc
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γp
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which arguably becomes poorer at smaller x. The sec-
ond finding is a numerically very strong impact of soft
gluons on the integrated GSF GD(x, Q2) and the proton
structure function F2p(x, Q2). It is not unexpected in
view of the early work on color-dipole phenomenology
of small-x DIS, but the evaluation of the soft compo-
nent of the integrated GSF is reported here for the first
time. In conjunction with the strong departure of the κ-
factorization distribution GD(x, Q2) from the DGLAP
fit Gpt(x, Q2) it serves as a warning against the unwar-
ranted application of DGLAP evolution at Q2 in the
range of several GeV2.

The phenomenologically most interesting find is the
anatomy of the rising component of the proton struc-
ture function from the Regge theory point of view. We
notice that the effective intercepts τhard(Q2) and
λhard(Q2) for hard components of the differential and
integrated gluon distributions are lively functions of Q2

which vary quite rapidly with Q2 from ≈0.1 at small Q2

to ≈0.6 at Q2 ~ 103 GeV2. In the language of Regge the-
ory, this evidently implies that the hard component of
neither ^(x, Q2) nor GD(x, Q2) is dominated by a single
Regge-pole exchange and a contribution from several
hard Regge poles with broad spacing of intercepts is
called upon. However, an approximately flat Q2 depen-
dence of ∆hard(Q2) shows that the hard component of the
proton structure function can be approximated by a sin-
gle Regge pole with an intercept of ∆hard ≈ 0.4. Such a
scenario in which a contribution of subleading BFKL-
Regge poles to F2p(x, Q2) is suppressed dynamically
because of the nodal properties of gluon distributions
for subleading BFKL-Regge poles has been encoun-
tered earlier in the color-dipole BFKL approach [17].
The intercept ∆hard(Q2) found in the present analysis is
remarkably close to the intercept of the leading BFKL-
Regge pole ∆IP = 0.4 found in the color-dipole approach
in 1994 [16, 17, 21] (or the related two-Pomeron phe-
nomenology of DIS, see also [29]). From the point of
view of κ factorization, the hard-to-soft diffusion is a
unique mechanism by which an approximate constancy
of ∆hard(Q2) derives from a very rapidly changing
τhard(Q2). Fourth, the same hard-to-soft diffusion pro-
vides a mechanism for the rise of the real photoabsorp-
tion cross section σγp in a model with the manifestly
energy-independent soft cross section. We emphasize
that the hard-to-soft diffusion is a generic phenomenon
and we do not see any possibility for the decoupling of
hard contribution from photoabsorption at Q2 = 0.

We restricted ourselves to a purely phenomenologi-
cal determination of differential gluon distributions
from the experimental data on F2p(x, Q2), which is suf-
ficient for major applications of the κ-factorization
technique. Whether the so-determined hard compo-
nents of ^(x, Q2) and GD(x, Q2) do satisfy the dynami-
cal evolution equations and what is the onset of
DGLAP regime will be addressed elsewhere.

One of the authors (N.N.N.) had the privilege of
belonging to the A.B. Migdal’s Nuclear Theory Divi-
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sion at the L.D. Landau Institute for Theoretical Phys-
ics. This paper is a humble tribute to the memory of
Arkadiœ Benediktovich, who was a great physicist,
teacher, artist, sportsman, a sparkling source of inspira-
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Abstract—The dynamics of partons that emerge as the result of quantum tunneling in a spatially uniform time-
dependent field is studied under conditions prevalent in ultrarelativistic heavy-ion collisions. A self-consistent
set of coupled equations that consists of the renormalized Maxwell equation and the Vlasov kinetic equation
that involves a source and which is derived on a dynamical basis is solved numerically. The time dependence
of the distributions of internal fields and currents for bosons and fermions is investigated within this back-reac-
tion mechanism, and their momentum spectra are constructed. Clear evidence that oscillations in the time
dependence of parton distributions in phase-space cells are of a stochastic character is obtained, and a signifi-
cant irregularity in the momentum distribution on large time scales is found. If the influence of the back reaction
is disregarded, these effects disappear completely, the oscillations becoming regular. A possible thermalization
scenario for such a quasiparticle plasma is considered in the relaxation-time approximation. A locally equilib-
rium state is described within the two-component thermodynamics of particles and antiparticles. The possibility
of introducing temperature under conditions of a strong vacuum polarization is discussed. © 2001 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

A.B. Migdal made a decisive contribution to the
development of quasiparticle concepts in many-body
theory, which were used as a basis for evolving meth-
ods for describing various phenomena in nuclear phys-
ics and the physics of neutron stars [1, 2]. In particular,
he predicted the softening of pion modes and pion con-
densation in dense nuclei as a general corollary of
physical-vacuum instability in strong fields [3]. These
predictions gave impetus to subsequent intensive inves-
tigations into the properties of the equation of state of
hot and compressed nuclear matter and, in particular,
into possible phase transitions in nuclei; in a sense,
Migdal’s ideas served as a motivation and a precursor
to experimental heavy-ion studies that are being pres-
ently performed over a wide interval of projectile ener-
gies. That one can vary, in this way, the temperature and
the baryon density of the system formed in a nuclear
collision opens a unique possibility of seeking and
exploring various phase transitions in nuclei like liq-
uid–gas phase transitions, chiral-symmetry restoration,
and the phase transition through which hadrons trans-
form into a quark–gluon plasma.

In the present study, we develop a dynamical
approach to describing the evolution of quark–gluon
plasma, heavily relying on the concept of quasiparti-
cles. The conditions under which a quark–gluon plasma
can be formed are considered only to the extent that is
required by the purposes pursued here. Models of the
nonequilibrium evolution of the system and of its ther-

1) Saratov State University, Saratov, 410071 Russia.
1063-7788/01/6404- $21.00 © 20775
malization differ by the degree of roughening and by
the underlying interaction mechanisms. Here, we
decide on a kinetic method for describing nonequilib-
rium matter and on the unsteady-state Schwinger
mechanism for vacuum particle production in strong
fields. Alternative models will be discussed precisely
from this point of view.

In accordance with general ideas of ultrarelativistic
heavy-ion collisions, it is assumed that, in each nucleus
that has suffered a collision, there arise color charges
generating chromoelectric fields between disklike
nuclear residues flying apart (flux-tube model [4, 5]).
These stringlike fields can prove to be sufficiently
strong (supercritical) to ensure intense vacuum tunnel-
ing of partons, which enrich the quark–gluon plasma
formed. If the density of such partons is sufficiently
high, parton collisions become operative, leading to
thermalization and local equilibration. Fast motion of
charges in a quark–gluon plasma induces a color field,
thereby affecting the vacuum production and annihila-
tion of partons. This scenario corresponds to the so-
called back-reaction problem; obviously, the evolution
of all field components of the system must be consid-
ered self-consistently in this case.

A quantum-field model of a system of massive par-
tons occurring in a preset spatially uniform time-depen-
dent classical electromagnetic field that is sufficiently
strong for inducing noticeable vacuum tunneling of
particles represents one of the possible realizations of
the flux-tube model. The assumption that the field in
question is of a semiclassical character is supported by
the result obtained in the leading 1/N approximation
001 MAIK “Nauka/Interperiodica”
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(here, N is the number of identical copies of charged
matter fields) [6–11]. In conformity with the flux-tube
model, it would also be reasonable to assume, for a first
step, that the direction of the chromoelectric field is
fixed and that there is no chromomagnetic field.

This system of model assumptions, which leads to
the Abelian version of the theory, was extensively used
at the semiphenomenological level to construct a
kinetic description of quark–gluon plasmas. The role of
the Schwinger mechanism [10] of vacuum parton pro-
duction in strong fields was first realized within time-
independent models (see, for example, [11]). A further
step in describing the dynamics of vacuum particle pro-
duction consisted in introducing a kinetic equation for
the time-dependent momentum distribution of partons
[12–15],

(1)

where f(p, t) is the relevant distribution function. In
addition to the collision integral S(p, t), which ensures
redistribution of particles in energy and momentum as
the result of binary collisions, the right-hand side of
this equation involves a source C(p, t) describing the
change in the number of charged particles as the result
of vacuum tunneling in an electric field of strength E(t).
Originally, the two terms on the right-hand side of the
kinetic Eq. (1) were constructed phenomenologically
on the basis of the simplest physical considerations. For
example, the Schwinger source was chosen in the form

(2)

where the critical field is Ecr = m2/e and where a plus
(minus) sign corresponds to Bose–Einstein (Fermi–Dirac)
statistics. The form of the source was specified differently
in different studies; the statistical factor (1 ± 2f) was first
introduced in [16]. As a rule, the relaxation-time approxi-
mation was adopted for the collision integral [17, 18].

Later, the Schwinger source in the kinetic Eq. (1)
was derived, for some simple cases, on a dynamical
basis as an exact solution to the equations of motion
[19, 20]. This derivation relied on the circumstance that
gauge-invariant theories (like QED and QCD) have
much in common, especially in the formulation of
problems peculiar to the flux-tube model. In particular,
the theory of vacuum particle production in strong
time-dependent electromagnetic fields was studied in
[21–25]. Some tricks devised in those studies and based
on a transition to the semiclassical representation will
be used in Section 2 to derive a kinetic equation of the
type in (1) in the collision-free approximation. On the
basis of these exact equations, the dynamics of partons
originating from a vacuum in a strong field was inves-
tigated in [20, 26] (see also Section 3 in the present
study). The supercritical values of the amplitudes of

f∂ p t,( )
t∂

-------------------eE t( ) ∂
p||∂

-------- f p t,( ) C p t,( ) S p t,( ),+=

S p t,( ) eE t( ) 1
πEcr

E t( )
-------------– 

 exp±ln=

× 1 2 f p t,( )±[ ]δ p||( ),
(chromo)electric fields are chosen in accordance with
estimates based on the flux-tube model. We will show
that the results obtained in Section 3 are in qualitative
agreement with the results produced by semiphenome-
nological approaches.

In Section 4, we investigate the back-reaction prob-
lem in the collision-free regime. Here, the role of an
external field reduces to the generation of a plasma con-
sisting of particles and antiparticles that have origi-
nated from a vacuum via tunneling. Upon switching the
external field off, the plasma formed undergoes self-
consistent evolution governed by the back-reaction
mechanism. As will be shown in the present study, a
transition to a self-consistent field generates sources of
nonlinearity in the description of the dynamics of mass-
less and massive fields, whereby there arise dynamical
singularities and large-scale plasma oscillations against
the background of small-scale instabilities [27]. These
oscillations are quickly damped as soon as one
switches on the thermalization mechanism associated
with binary collisions. In Section 5, this mechanism is
considered in the relaxation-time approximation for a
two-component thermodynamic system.

2. KINETIC EQUATION

In accordance with the ideology of the flux-tube
model, the vector potential of a semiclassical vector
field satisfying the gauge condition A0 = 0 is chosen
here in the form

(3)

Let us first consider the case of scalar electrodynamics,
which describes the vacuum production of scalar
bosons in such a field [19, 20, 28].

Solutions to the wave equation in the spatially uni-
form field (3) are sought in the form

(4)

where the functions g(±)(k, t) satisfy the oscillatory-
type differential equation

(5)

Here, ω2(k, t) =  + [k3 – eA(t)]2 is the quasiparticle

energy with  = m2 + . In Eq. (4), ω–(k) = (k,

t). Positive- and negative-frequency solutions are estab-
lished by considering their asymptotic behavior for
t  –∞ [21, 22, 24],

(6)

The expansion of field operators in the orthonormalized
basis (4) has the form

(7)

Aµ t( ) 0 0 0 A t( )–, , ,( ).=

φk
±( ) x( ) 2π( ) 3/2– 2ω– k( )[ ] 1/2– eik x⋅ g ±( ) k t,( ),=

ġ̇ ±( ) k t,( ) ω2 k t,( )g ±( ) k t,( )+ 0.=

ε⊥
2

ε⊥
2 k ⊥

2 ω
t ∞–→
lim

φ ±( ) k t,( ) iω– k( )t±[ ] .exp∼
t → –∞

φ x( ) d3k φk
+( ) x( )a k–

+( ) φk
–( ) x( )ak

–( )+[ ] .∫=
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The condition in (6) defines the operators  and 
as the operators annihilating particles and antiparticles,
respectively, in the initial (in) state and obeying a con-
ventional set of commutation relations.

The solutions given by Eqs. (4) and (7) make it pos-
sible to diagonalize the Hamiltonian and to go over to
the quasiparticle representation by means of the time-
dependent canonical Bogolyubov transformation

(8)

which is valid under the condition |αk(t )|2 – |βk(t )|2 = 1.
On the basis of the equations of motion as given by (5),
we can find, with the aid of the Lagrange method, that
the coefficients in the Bogolyubov transformation (8)
satisfy the equations [24, 25, 29, 30]

(9)

where the dynamical phase factor is given by

(10)

For the quasiparticle creation and annihilation opera-
tors, Eqs. (9) in turn lead to the equations of motion (of
the Heisenberg type)

(11)

where we have introduced the operators

which also obey the canonical commutation relations.
In the quasiparticle representation, the Hamiltonian
assumes the diagonal form

(12)

The unusual form of the equations of motion in (11) is
associated with nonunitarity of the transition from the
original to the quasiparticle representation.

In the new representation, one can define the instan-
taneous value of the number of particles produced from
a vacuum,

(13)

and, in the same way, the analogous value for antiparti-
cles, (k, t); obviously, we have (k, t) = f(–k, t).

ak
–( ) *ak

–( )

bk
–( ) t( ) αk t( )ak

–( ) βk t( )a k–
+( ),+=

b k–
+( ) t( ) αk* t( )a k–

+( ) βk* t( )ak
–( ),+=

α̇k t( ) ω̇ t( )
2ω t( )
--------------βk* t( )e2iΘ t( ),=

β̇k t( ) ω̇ t( )
2ωt
-----------= αk* t( )e2iΘ t( ),

Θ k t,( ) dτω k τ,( ).

∞–

t

∫=

dck
±( ) t( )
td

------------------
ω̇ t( )

2ω t( )
--------------c k–

+−( ) t( ) i H t( ) ck
±( ) t( ),[ ] ,+=

ck
±( ) t( ) bk

±( ) t( ) iΘ t( )±[ ] ,exp=

H t( ) ω t( ) ck
+( ) t( )ck

–( ) t( ) c k–
–( ) t( )c k–

+( ) t( )+{ } .
k

∑= * *

f k t,( ) 0in bk
+( ) t( )bk

–( ) t( ) 0in〈 〉=

=  0in ck
+( ) t( )ck

–( ) t( ) 0in〈 〉 ,

*

*

f f
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Differentiating this definition with respect to time
with allowance for Eq. (11), we obtain

(14)

The functions Φ(±)(k, t) describe the production and
annihilation of a particle and an antiparticle as the
result of vacuum tunneling:

For these functions, we can easily derive equations.
From the outset, it is convenient to represent them in
the integral form

(15)

where it is assumed that (k, t) = 0.

Substituting (15) into (14) and going over to the dis-
tribution with respect to the kinetic momentum, f(p, t)
with p = k – eA(t), we arrive at a kinetic equation in the
above form (1), but without a collision integral and with
the source given by

(16)

where

In a similar way, one can derive a kinetic equation for
spin-1/2 fermions produced from a vacuum [19, 20].
Combining the two cases, we can write the source in
the kinetic Eq. (1) as

(17)

df k t,( )
td

-------------------
eε⊥ E t( )
2ω2 t( )
------------------- Φ +( ) k t,( ) Φ –( ) k t,( )+[ ] .–=

Φ –( ) k t,( ) 0in c k–
–( ) t( )ck

–( ) t( ) 0in〈 〉 ,= *

Φ +( ) k t,( ) 0in ck
+( ) t( )c k–

+( ) t( ) 0in〈 〉 .= *

Φ ±( ) k t,( )
ε⊥

2
----- dt'

eE t'( )
ω2 k t',( )
-------------------- 2 f k t',( ) 1–[ ]

∞–

t

∫=

× 2i Θ t( ) Θ t'( )–[ ]±{ } ,exp

Φ ±( )

t ∞–→
lim

S p t,( )
eE t( ) p3

2 p0( )2
------------------- dt'

eE t'( ) p3 t t',( )
ω2 t t',( )

---------------------------------

∞–

t

∫=

× 1 2 f p t',( )+[ ] 2 dτω t τ,( )
t '

t

∫ 
 
 

,cos

p0( )2 ε⊥
2 p3

2, ω t t',( ) ε⊥
2 p3

2 t t',( )+ ,=+=

p t t',( ) p e E τ( ) τ .d

t '

t

∫–=

S± p t,( ) W p t,( ) dt'W p t t',( ) t',( )
∞–

t

∫=

× 1 2 f p t',( )±[ ] 2 dτω t τ,( )
t '

t

∫ 
 
 

,cos
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where the transition amplitude W(p, t) has the form

(18)

the degeneracy factor being g = 1 for spinless bosons
and g = 2 for spin-1/2 fermions.

The kinetic Eq. (1) with the source given by (17) is
a linear integro-differential equation of the non-
Markov type. The analytic structure of the source in
(17) is very intricate because of the quickly oscillating
factor that involves the dynamical phase (10) and which
describes the effect of an external field on vacuum
oscillations of charged particles [27].

In order to investigate the kinetic equation, it is
therefore convenient to represent it as a set of ordinary
differential equations. This can be done, for example,
by introducing two auxiliary real-valued functions [31]

(19)

Differentiating Eq. (19) with respect to time and using
the kinetic Eq. (1) with C(p, t) = 0, we arrive at the set
of ordinary linear differential equations

(20)

with zero initial conditions and a parametric depen-
dence on the canonical momentum k. It should be
noted that the set of Eq. (20) has the obvious first inte-
gral

(21)

Going over to observable momenta, we can represent the
set of Eqs. (20) as the set of partial differential equations 

(22)

W p t,( )
eE t( ) p3

p0( )2
-------------------

ε⊥

p3
----- 

 
g 1–

,=

v k t,( ) dt'W k eA t'( )– t',( )
∞–

t

∫=

× 1 2 f k t',( )±[ ] 2 dτω t τ,( )
t '

t

∫ 
 
 

,cos

z k t,( ) dt'W k eA t'( )– t',( )
∞–

t

∫=

× 1 2 f k t',( )±[ ] 2 dτω t τ,( )
t '

t

∫ 
 
 

.sin

f˙
1
2
---Wv ,=

v̇ W 1 2 f±( ) 2ωz,–=

ż 2ωv=

1 f±( )2 v 2 u2+ ++− const.=

f p t,( )∂
t∂

------------------- eE t( ) f p t,( )∂
p3∂

-------------------+
1
2
---W p t,( )v p t,( ),=

v p t,( )∂
t∂

-------------------- eE t( ) v p t,( )∂
p3∂

--------------------+

=  W p t,( ) 1 2 f p t,( )±[ ] 2 p0z p t,( ),–
The set of Eqs. (20) or (22) or its subsequent modifica-
tions served as a basis for numerically simulating the
processes under investigation [20, 26, 32].

In the model being considered, Eqs. (20) and (22)
can also be derived without resort to kinetic theory [25,
31]. However, the realization of the theory in the form
of a kinetic equation is preferable for further develop-
ing relativistic kinetics with allowance for vacuum par-
ticle production.

3. DYNAMICS OF VACUUM PARTON 
PRODUCTION IN AN EXTERNAL FIELD

The application of the kinetic Eq. (1), which was
obtained on a dynamical basis and which involves a
source in the form (17), to the physics of quarks and
gluons (partons)2) leads to some new effects that could
not be obtained within phenomenological approaches.

A nontrivial momentum distribution of partons [20,
26, 36] seems to be the most important of these. In con-
trast to the majority of phenomenological approaches,
where it is assumed that particles are produced at rest
[compare, for example, with relation (2)], the source
given by (17) generates particles of any momentum, the
relevant spectrum showing a power-law decrease. For
the parameter values typical of the flux-tube model [14,
37–40], Fig. 1 shows the momentum distributions of
bosons and fermions generated from a vacuum by the
electric field specified by the Narozhnyœ–Nikishov
potential [21]

(23)

The scale of the variables is specified by the parton
mass, which serves as a natural measurement unit for
them: t  tm, p  p/m, E0  eE0/m2, and b 
bm. Hereafter, the above quantities are given precisely
in these units, unless stated otherwise. Upon the substi-
tution of these variables reduced to a dimensionless
form into dynamical equations, the characteristic scale
of observables is also determined by the parton mass. In
particular, the field energy density then transforms as
ε  e2ε/m4. Owing to this, one can study, at the same
values of the external-field potential (23), systems hav-
ing markedly different energy densities—for example,
QED and QCD. In some cases, it is convenient to go
over to dimensionless variables with the aid of the
quantity ε⊥ .

Once the external field is switched on, the momen-
tum distribution of bosons develops a valley in the
region of zero longitudinal momenta, while the distri-

2)We emphasize once again that many aspects of nonequilibrium
dynamics in QED are similar to those in QCD [33–35].

z p t,( )∂
t∂

------------------ eE t( ) z p t,( )∂
p3∂

------------------+ 2 p0v p t,( ).=

Aext t( ) E0b t/b( )tanh 1+[ ] ,=

Eext t( ) E0cosh 2– t b⁄( ).=
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Fig. 1. Momentum spectra of product (left panel) bosons and (right panel) fermions for eE0/m2 = 7, bm = 0.5, and e2 = 4 at the instant
tm = 0.05.
bution of fermions develops a hill. These distributions
are concentrated within finite momentum regions and
are shifted with time toward higher longitudinal
momenta; the boson valley is filled, while the fermion
hill is stabilized (saturation effect). If the external field
is operative for a sufficiently long time, oscillations in
the longitudinal momentum can arise in the momentum
spectrum (see Fig. 2); this is in qualitative agreement
with the results obtained in other studies under the
assumption that the external field is constant [28, 41].

We note that the effect of statistics in the source
manifests itself both through the amplitude W(p, t) (18)
and through the statistical factor (1 ± 2f). The former
determines primarily the shape of the momentum dis-
tribution, while the latter is responsible either for the
Fermi suppression or for the Bose enhancement of the
particle-production rate. The last effect is nonnegligible
only if the parton density is sufficiently high.

The time dependence of the distribution function
also exhibits new singularities associated with a non-
Markov character of the source given by (17) [26]. In
the case of sufficiently weak and slowly varying fields,
the statistical factor (1 ± 2f) can be removed outside the
integral sign in (17), whereupon the kinetic equation
can be solved explicitly. The result has the form

(24)

where

(25)

f M p t,( ) 1
2
--- 1 2 dt'S0 k t',( )

∞–

t

∫±exp–
 
 
 

,+−=

S0 p t,( ) W p t,( ) dt'
eE t'( ) p3 t t',( )

2ω2 t t',( )
---------------------------------

∞–

t

∫=

× 2 dτω t τ,( )
t '

t

∫ 
 
  ε⊥

2

p3 t t',( )
------------------

g 1–

cos
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is the source function in the low-density approxima-
tion. From (24), it follows that, in the low-density limit,
the distribution function assumes the form

(26)

This relation can also be rewritten as [24]

(27)

whence it follows that f0(p, t) is always nonnegative.
In the Markov approximation, it is more convenient

to perform numerical calculations not on the basis of
expressions (24)–(27) but on the basis of the relevant
set of differential equations, which is derived by apply-
ing a procedure similar to that which has led to
Eqs. (20). Specifically, we obtain

(28)

In contrast to the set of Eqs. (20), this set of equations
is nonlinear.

In order to assess non-Markov effects, it is conve-
nient to make use of two time scales characterizing vac-
uum particle production [20, 28, 42]. The first of these
is the tunneling time τqu ~ 1/ω, while the second is the
pair-production time

(29)

f 0 p t,( ) dt 'S0 p t ',( ).

∞–

t

∫=

f 0 p t,( ) 1
4
---= dt'

eE t'( ) p3 t t',( )
2ω2 t t',( )

---------------------------------

∞–

t

∫

×
ε⊥

2

p3 t t',( )
------------------

g 1–

2iΘ p t',( )[ ]exp

2

,

f˙
1
2
---W 1 2 f±( )v ,=

v̇ W 2ωz,–=

ż 2ωv .=

τprod d p[ ]S p t,( )∫{ }
1–
, dp[ ]∼ g

dp

2π( )3
-------------.=



780 VINNIK et al.
To state it otherwise,  represents the mean pair-
production rate. In the Markov approximation, we have
τprod @ τqu.

In supercritical fields, memory effects become oper-
ative, so that phenomenological constructions of the
type in (2) can lead to sizable inconsistencies, as can be
seen in Fig. 3. In this figure, we can also observe oscil-
lations of the distribution function, which decay with
time and which were previously suggested by the
results of other studies (see, for example, [28, 37]). The
distribution functions themselves tend asymptotically
to constant values that are determined by the amplitude
of the external field, the effects of Fermi suppression
and of Bose enhancement being leveled out in this case.
It can easily be verified, however, that, when E  ∞,

τprod
1–

0.2

0.1

0
–1 0 1 2 3

f(k3 = 0, t ε⊥ )

 t ε⊥

Fig. 3. Precise solution to the kinetic equation for fermions
(thick solid curve) along with solutions in the Markov
approximation (thin solid curve) and in the low-density

limit (dotted curve) at p|| = 0 and eE/  = 3.ε⊥
2
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–20
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Fig. 2. Fermion-production rate as a function of longitudinal

momentum in a constant field of strength (‡) eE/  = 1.5

and (b) 0.5.

ε⊥
2

the Fermi distribution function tends to its limiting
value of unity, while the Bose distribution function
grows indefinitely.

4. DYNAMICS OF VACUUM PARTON 
PRODUCTION IN THE MEAN-FIELD 

APPROXIMATION

Let us now assume that the role of the external field

 reduces to triggering the generation of parton–anti-
parton pairs, which in turn produce the internal mass-

less field . As soon as the external field is switched
off, the parton plasma becomes an isolated self-consis-
tent system. For a first approximation, it is reasonable
to consider its dynamics in the mean-field approxima-
tion. The kinetic Eq. (1) with the source given by (17)
(in the collision-free version for the time being) must
be supplemented with the Maxwell equation

(30)

which renders the total field E(t) = – (t) – (t)
consistent with the total current j(t) = jex(t) + jin(t) in
the system. The internal current is the sum of the con-
duction current and the vacuum polarization current,

(31)

(32)

(33)

where v(p, t) is given by (19), while the momentum-
space element [dp] is defined in (29).

In order to eliminate the ultraviolet divergences in
the currents given by (32) and (33), we will make use
of the procedure of n-wave regularization [24, 31, 43].
In order to construct counterterms according to the pre-
scription of this procedure, it is necessary to expand the
functions f, v, and z (19) in asymptotic series in inverse
powers of ω. Having implemented this procedure in the
set of Eqs. (20), we obtain the leading contributions

(34)

From a comparison with expressions (32) and (33), we
can see that the current jcond is finite, while the current
jpol diverges logarithmically. In order to regularize the
currents, it is therefore sufficient to make the formal

Aex
µ

Ain
µ

Ė t( ) j t( ),–=

Ȧex Ȧin

jint t( ) jcond t( ) jpol t( ),+=

jcond t( ) 2e d p[ ]
p3

ω
----- f p t,( ),∫=

jpol t( ) e d p[ ]
p3

ω
-----v p t,( )

ε⊥

p3
----- 

 
g 1–

,∫=

f 4 eE t( )
p3

4ω3
---------

ε⊥

p3
----- 

 
g 1– 2

,=

v 3 eĖ t( )
p3

4ω4
---------

ε⊥

p3
----- 

 
g 1–

,=

z2 eE t( )
p3

2ω3
---------

ε⊥

p3
----- 

 
g 1–

.=
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substitution v  v – v3 in (33). We write the regular-
ized Maxwell equation as [44]

(35)

The Maxwell equation (35), in conjunction with the
kinetic Eq. (1) with the source given by (17) [or the set
of Eqs. (20)], forms a basis for studying the back-reac-
tion problem within the approach developed here. This
problem was solved by numerical methods in [32, 36]
for various versions of triggering external-field pulse.

Basic features of the dynamics of the system being
considered are associated with the essentially nonlinear
character of the self-consistent set of equations describ-
ing the back-reaction problem. This is reflected prima-

Ėin = 2e d p[ ]
p3

ω
----- f

v
2
----

ε⊥

p3
----- 

 
g 1–

– eĖ
p3

8ω4
---------

ε⊥

p3
----- 

 
2 g 1–( )

+ .∫–
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rily in the irregular dynamical behavior of the system,
most spectacularly in the evolution of the distribution
function. In Fig. 4, one can see how the smooth distri-
bution of bosons (see also Fig. 1) ceases to be regular
as soon as the back-reaction mechanism is included
[for the triggering pulse, we have chosen the potential
(23) with the parameter values corresponding to those
in Fig. 1].

Irregularities can be seen both in the momentum
distribution (comb in Fig. 5) and in the time scan of the
distribution function (Fig. 6). Figure 6, which shows
the fermion distribution function versus time and longi-
tudinal momentum, exhibits a small smooth fragment
that corresponds in time to the action of the external
pulse. After this pulse is switched off, the system
undergoes a self-consistent evolution, which is charac-
terized by an ever growing instability of multimode
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oscillations on small time scales (about τqu) and by the
emergence of large-scale plasma oscillations of charac-
teristic time τpl (within the semiphenomenological
approach, results similar to those in Fig. 6 were previ-
ously obtained in [37]).

On the basis of the above results, it can be conjec-
tured that a stochastic process is developed in the self-
consistent dynamics of vacuum particle production in
strong fields. Below, we present arguments in support
of this conjecture. Figure 7 displays the correlation
coefficient

(36)

where

and the power spectrum

(37)

for the distribution function f(t) ≡ f(0, t), which were
constructed for the d = 1 + 1 version of the approach
proposed here. The results shown in this figure are
peculiar to systems that exhibit stochastic behavior (for
example, a Lorenz system [45]): a continuous spectrum
and virtually no correlations. The presence of small
irregular oscillations in the vicinity of the origin fol-
lowing the exponential decay has no bearing on this
conclusion—they may be due to scanning the process
within a bounded time interval.

From the point of view of the theory of dynamical
systems, the problem being considered belongs to the

C τ( ) K τ( )
K 0( )
------------, K τ( ) 1

T
--- f̂ t( ) f̂ t τ+( ) t,d

0

T

∫= =

f̂ t( ) f t( ) 1
T
--- f t( ) t,d

0

T

∫–=

P ω( ) dteiωtC t( )∫=

Fig. 6. Fermion distribution function versus time and longi-
tudinal momentum at eE0/m2 = 7.
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class of nonlinear distributed quantum-mechanical
problems. Here, nonintegrability is one of the general
criteria of the existence of stochasticity [46]. For the
basic set of equations studied here for the back-reaction
problem, this criterion is obviously satisfied.

In contrast to the distribution function, other observ-
ables that are expressed in terms of its moments (cur-
rent, internal field, energy density, etc.) behave quite
regularly (Fig. 8). In the absence of dissipative mecha-
nisms, these variables undergo undamped oscillations
whose character is weakly dependent on the shape of
the external-field pulse. The amplitude and frequency
of these oscillations depend strongly on statistics: they
are much greater for fermions than for bosons. The
presence of small ripples in the vicinities of extremal
points of the current corresponds to the time scale τqu.

C(tm)

0.8

0.4

0

0 400 800 1200 1600
tm

0

–20

–40

–60

–80

0.0 0.4 0.8 1.2

P(ω/m), dB

ω/m

(a)

(b)

Fig. 7. (‡) Correlation coefficient and (b) power spectrum
for the distribution function at eE0/m2 = 7.
PHYSICS OF ATOMIC NUCLEI      Vol. 64      No. 4      2001



KINETIC DESCRIPTION OF VACUUM PARTICLE PRODUCTION 783
In all probability, a stochastic behavior of parton
plasmas in the mean-field approximation exemplifies
the emergence of stochasticity in high-energy physics
[47] and can lead to observable effects. Finally, we note
that the very existence of large-scale plasma oscilla-
tions (Fig. 6) can be interpreted in terms of self-organi-
zation effects [48].

5. THERMALIZATION

A consideration of plasma dynamics in the colli-
sion-free approximation has a significant drawback
associated with mean-field oscillations against the
background of particle density values n(t) close to the
Compton value. As soon as the field strength E is
reduced to values below en2/3, pair interaction becomes
dominant, so that the mean-field approximation ceases to
be valid in this case. At the same time, there are data sug-
gesting that, at an early stage of an ultrarelativistic
heavy-ion collision, partons interact strongly, whereby
matter is thermalized on the time scale te < 1 fm/c, which
is commensurate with the period of field oscillations.

Since solving the relevant self-consistent problem
requires performing very involved computations,
binary collisions are usually taken into account in the
relaxation-time approximation. In this case, the right-
hand side of the Vlasov equation is supplemented with
the model collision integral [17],

(38)

The quasiequilibrium distribution function feq depends
on thermodynamic parameters whose number is equal
to the number of conservation laws that must be satis-
fied in simulating collision events. The relaxation time
τc can be estimated as the ratio of the mean free path to
the mean velocity, τc ~ n–1/3/u, or expressed in terms of
the total cross section as τc ~ [σn]–1 [17]. Usually, the
system is assumed to be one-component and to be gov-
erned by a single thermodynamic parameter, the temper-
ature T(t), which is determined from the condition requir-
ing that the instantaneous energy densities in a nonequi-
librium and in a quasiequilibrium state be equal [49]:

(39)

In this case, thermalization is described in the rest
frame of one of the components of the system, while
the relative hydrodynamic flows of the components are
disregarded.

This scheme was used in many studies [13, 49–51]
to describe QED and quark–gluon plasmas with a
model source.

There arises a serious problem when the scheme
specified by Eq. (39) is used in an exact kinetic equa-
tion featuring a non-Markov source. In this case, the
matter energy density is negative at early plasma-for-
mation stages because of vacuum polarization by a

C p t,( )
f p t,( ) f eq p t,( )–

τc p t,( )
------------------------------------------.–=

d p[ ]ωf p t,( )∫ d p[ ]ω f eq p t,( ).∫=
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supercritical field, so that the scheme that introduces
the temperature according to Eq. (39) is not applicable
directly. The presence of the collision term in the
kinetic equation changes the asymptotic behavior of
f(p  ∞) in such a way that this effect is partly com-
pensated, but this does not solve the problem com-
pletely.

A simple trick that makes it possible to sidestep this
difficulty consists in that only after a lapse of some
delay time τd from the application of the external-field
pulse is the collision integral included in the kinetic
equation, whereby yet another phenomenological
parameter τd, which can be interpreted as the lifetime of
a strongly nonequilibrium state, appears in the system.

The system of particles f and antiparticles , which
is considered here, is a thermodynamically two-compo-
nent system, but, because of high symmetry of the
problem and of the initial conditions, there are only two
independent thermodynamic parameters, the tempera-
ture T(t) and the longitudinal hydrodynamic velocity
uµ = γ(1, 0, 0, u(t)), where γ = (1 – u2)–1/2. The chemical
potential is zero because of the electric neutrality of the
system, whence it follows that the equilibrium distribu-
tion function has the form [52]

(40)

Since we have f (p, t ) = (–p, t) in view of the sym-
metry of the problem, particles and antiparticles have
oppositely directed mean velocities equal in magnitude
and identical temperatures. Thus, the antiparticle distri-
bution function (p, t) is obtained from expression
(40) upon the substitution u  –u, so that it is suffi-
cient to use only one kinetic equation for particles. The
mean velocity is determined from the momentum con-
servation law

(41)

f

f eq p t,( )
uµ pµ

T t( )
-----------exp 1–( )g+
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Fig. 8. Electric-current density j(tm)/m3 (solid curve) and
electric field E(tm)/m2 (dashed curve) in the system of
bosons produced from a vacuum in the external field (23) at
eE0/m2 = 10, bm = 0.5, and e2 versus time.
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In this approximation, the model collision integral can
be represented as

(42)

The presence of the collision integral (42) in the
kinetic Eq. (1) does not induce qualitative changes in
the asymptotic behavior of f(p, t) for p  ∞—in par-
ticular, all singularities survive. Only the expression for
the leading term f4 changes, developing a non-Markov
term:

(43)

Since the integrand on the right-hand side of (43) is
positive definite, collisions only reduce the negative
contribution of vacuum polarization to the particle
energy density. This is, however, insufficient for the
scheme specified by Eq. (39) to become valid. In the
collision integral, we therefore introduce the factor
θ(t – t0 – τd), which ensures that collisions become
operative after a lapse of the delay time τd from the
instant t0 at which the external pulse was applied.
Figure 9 illustrates the time evolution of the tempera-

C p t,( )

=  
2 f p t,( )– f eq p t,( ) f eq p t,( )+ +

τc

-----------------------------------------------------------------------------θ t t0– τd–( ).

f 4

=  
W
4ω
------- 
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1

τcE2
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.

Fig. 9. (‡) Temperature in parton-mass units and (b) entropy
density at various values of τm = τcm (numbers on the
curves) versus time (time delay is equal to half the pulse
duration τdm = 1; the pulse is applied at t0m = –2).
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ture and the entropy at various values of τc . As might
have been expected, the inclusion of collisions leads to
an additional growth of the entropy and temperature,
each of which approaches a plateau with time, demon-
strating equilibration in the system.

The evolution of the energy density in the system is
shown in Fig. 10. At the values chosen here for the field
parameters, the relevant conditions reproduce those
that are prevalent in ultrarelativistic nuclear collisions
[51]. In just the same way as the temperature, ε(t)
reaches a plateau as soon as tm exceeds unity—that is,
almost immediately after the instant at which the exter-
nal field is switched off; this is consistent with a very
fast decay of fluctuations (see also Fig. 7). The dou-
bling of the external-field strength leads to a sixfold
increase in the equilibrium quark density; concurrently,
the temperature changes from about 280 MeV (see
Fig. 9) to 500 MeV at m = 200 MeV.

6. CONCLUSION

The present investigation has been performed on the
basis of the kinetic Eq. (1) featuring a source in the
form (17) and describing, in the collision-free approxi-
mation, the dynamics of vacuum particle production in
a strong spatially uniform time-dependent field of fixed
orientation in space [19, 20]. It is of importance that the
kinetic equation has been obtained on a dynamical non-
perturbative basis. This has enabled us to consider an
essentially nonperturbative region of a nonequilibrium
parton–antiparton plasma and to analyze the effect of
various factors on process dynamics. In the simplest
situation where the external field is preset, the evolution
of our quantum system is of a regular character; at the
same time, the assumption (3) of an external (back-
ground) field has shown natural conformity to the flux-
tube model. The inclusion of the back-reaction mecha-
nism via a self-consistent description of the dynamics

tm
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40

30

20

10

0
–2 0 2 4 6

ε/m4

Fig. 10. Energy density (solid curves) with and (dashed
curves) without allowance for the external-field energy at
eE0/m2 = 1.5 for eE0/m2 = (thick curves) 20 and (thin
curves) 10. The product τim was set to 1.5 here.
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of a parton plasma that has originated from a vacuum
and of its intrinsic field has led to the emergence of a
significant irregularity in parton distribution functions.
This is indicative of a change in the character of evo-
lution from regular oscillations to stochastic behav-
ior. The additional inclusion of the dissipation mech-
anism due to collisions at the phenomenological level
contributes to thermodynamic equilibration in the
system. All these models make it possible to fit a the-
oretical description to conditions expected in ultrarel-
ativistic nuclear collisions. A more detailed applica-
tion of the proposed approach to specific nuclear sys-
tems at RHIC and LHC will be developed elsewhere.
It would be of great interest to elaborate further on
the model by going, for example, beyond the 1/N-
expansion technique within some nonperturbative
scheme.
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