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Abstract—We review the Floquet theory of linear differential equations with periodic coefficients and
discuss its applications to neutrino oscillations in matter of periodically varying density. In particular, we
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1. INTRODUCTION

All oscillating systems are very much alike, and
there are many similarities between oscillating neu-
trinos and, for example, pendulums or electromag-
netic circuits. In particular, neutrino oscillations in
a vacuum or in matter of constant density are anal-
ogous to oscillations of a simple pendulum; reso-
nantly enhanced neutrino oscillations in a medium of
monotonically varying density, Mikheev–Smirnov–
Wolfenstein (MSW) effect [1, 2], are similar to os-
cillations of two weakly coupled pendulums of slowly
changing lengths [3, 4]. It is therefore natural to
address the question of whether there are any other
resonance phenomena in mechanics or electromag-
netism that might have an analog in neutrino physics.

One such phenomenon is a parametric resonance.
A parametric resonance can occur in dynamical sys-
tems with time-varying parameters if there is a certain
correlation between these variations and the values of
the parameters themselves. A parametric resonance
in systems with periodically varying parameters has
been best understood. Periodicity makes it easier
to satisfy resonance conditions and also simplifies
the relevant analysis, but it is not really necessary:
parametric resonance can occur even in stochastic
systems (see, for example, [5]). In the present paper,
we will concentrate on systems with periodically vary-
ing parameters.

A textbook example of a system in which a para-
metric resonance can occur is a pendulum with a
vertically oscillating point of support [6, 7]. Under
certain conditions, the topmost, normally unstable,
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equilibrium point becomes stable. The pendulum can
oscillate about this point in the upside-down position.
Another example, familiar to everybody, is a swing,
which is just a pendulum with periodically changing
effective length. It is the parametric resonance that
makes it possible to rock a swing.

What would be an analog of the parametric res-
onance for neutrino systems? Since matter affects
neutrino oscillations, periodically varying conditions
can be achieved if a beam of oscillating neutrinos
propagates through a medium with a periodically
modulated density. If certain relations between the
period and amplitude of the density modulation and
the neutrino oscillation length and mixing angle hold,
a parametric resonance occurs, with the result that
the oscillations can be strongly enhanced. The prob-
ability of a neutrino transition from one flavor state
to another may become equal to unity. This phe-
nomenon is very different from the MSW effect. In-
deed, at the MSW resonance, the neutrino mixing in
matter becomes maximal (θm = π/4) even if the vac-
uum mixing angle θ0 is small. As a result, there arise
large-amplitude neutrino oscillations in a medium
of constant density equal (or almost equal) to the
resonance density or a strong flavor conversion in
the case of the medium density slowly varying along
the neutrino path and passing through the resonance
value.

The situation is quite different in the case of a
parametric resonance. In general, the mixing angle
in matter does not become large (there is no level
crossing). What really happens is an amplification
of the transition probability because of specific phase
relationships. Thus, in the case of a parametric reso-
nance, it is the phase of oscillations (rather than their
amplitude) that undergoes an important modification.
2001 MAIK “Nauka/Interperiodica”
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The total flavor conversion can occur even if the mix-
ing angles are small both in a vacuum and in matter.

The possibility of a parametric resonance in neu-
trino oscillations was suggested independently in [8]
and in [9]. Approximate solutions for a sinusoidal
matter-density profile were found in those studies. An
exact analytic solution for a periodic step-function
(“castle wall”) density profile was also obtained in [9].
Parametric effects in neutrino oscillations were fur-
ther studied by Krastev and Smirnov [10], who con-
sidered the concerted effect of parametric and MSW
resonances and their possible implications for solar
and supernova neutrinos. A stochastic parametric
resonance in neutrino oscillations was also briefly
discussed in that study.

Although a parametric resonance in neutrino
oscillations is certainly an interesting physics phe-
nomenon, it requires that very special conditions be
satisfied. Unfortunately, these conditions cannot be
created in laboratory experiments, because this would
require either an overly long baseline or neutrino
propagation in a medium of overly high density. Until
recently, it was also unclear whether there exists a
natural object where these conditions can be satisfied
for any known source of neutrinos. This situation
changed upon the very important observation by Liu
and Smirnov [11] (see also [12]), who showed that
the parametric-resonance conditions can be approxi-
mately satisfied for the oscillations of atmospheric νµ
into sterile neutrinos νs within the Earth. The density
profile along the trajectories of neutrinos traversing
the Earth and passing through its core (mantle–
core–mantle) is, to a good approximation, a piece of
a periodic step-function profile, and their oscillations
can be parametrically enhanced. Even though the
neutrino travels only 1.5 periods of density modula-
tions (this would be exactly one period and a half if
the distances that the neutrinos traverse in the mantle
and in the core were equal), the parametric effects on
neutrino oscillations in the Earth can be quite strong.
Subsequently, it was pointed out in [13] that, in the
case of νe–νµ(τ) mixing, the parametric-resonance
conditions can also be satisfied (and even to a better
accuracy) for ν2 ↔ νe oscillations in the Earth. This,
in particular, may have important implications for the
solar-neutrino problem. The parametric resonance in
the oscillations of solar and atmospheric neutrinos in
the Earth was further explored in a number of papers
[14–20].

In the present paper, we review the Floquet theory
of linear differential equations with periodic coeffi-
cients and consider its applications to neutrino os-
cillations and, in particular, to oscillations of neu-
trinos within the Earth. The paper is organized as
follows. In Section 2, we briefly review Floquet theory
and its applications to the analyses of the stability of
PH
solutions. In Section 3, we discuss the special fea-
tures of Floquet theory in the case of time-dependent
Schrödinger equations with periodic Hamiltonians.
In Section 4, we consider applications of Floquet
theory to neutrino oscillations in a medium of pe-
riodic step-function (castle wall) density profile. In
Section 5, we review the implications of the paramet-
ric resonance in neutrino oscillations for neutrinos
traversing the Earth and passing through its core. In
the last section, the results are discussed and conclu-
sions are drawn.

2. DIFFERENTIAL EQUATIONS
WITH PERIODIC COEFFICIENTS

Now, we will briefly review the Floquet theory of
sets of linear differential equations with periodic coef-
ficients. A more detailed discussion can be found, for
example, in [7, 21].

2.1. Preliminaries

Let us start with a few well-known facts from the
general theory of linear differential equations. We
consider a set of n homogeneous linear differential
equations

ψ̇ = A(t)ψ, (1)

where ψ is an n-component column vector,
ψ = (ψ1, ..., ψn)T ; A(t) is an n×nmatrix with piece-
wise continuous elements; and an overdot denotes
differentiation with respect to t. Equation (1) has n
linearly independent continuous nontrivial solutions
ψ(j)(t), j = 1, ..., n. From the linearity of (1), it
follows that any linear combination of solutions is also
a solution. Any set of n linearly independent solutions
ψ(j)(t) to Eq. (1) forms a so-called fundamental set,
and a matrix whose columns are ψ(j) is referred to
as a fundamental matrix. Given an initial condition
ψ(t0) = ψ0, Eq. (1) has a unique solution ψ(t). Any
solution to Eq. (1) can be represented as a linear
combination (with constant coefficients) of solutions
that form a fundamental set, or equivalently as a
product of a fundamental matrix and a constant
vector.

Let ψ(t) be the solution of (1) with the initial
condition ψ(t0) = ψ0. Let us introduce the evolution
matrix U(t, t0) through the relation

ψ(t) = U(t, t0)ψ0 . (2)

From the definition of the evolution matrix, it imme-
diately follows that

U(t, t0) = U(t, t1)U(t1, t0), U(t0, t0) = I, (3)

where I is then×n identity matrix. It is easy to check
that the columns of U(t, t0) are solutions to Eq. (1)
YSICS OF ATOMIC NUCLEI Vol. 64 No. 5 2001
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with initial conditions ψ(j)
i (0) = δij . Thus, U(t, t0) is

a fundamental matrix, and any solution to Eq. (1) can
be written in the form (2). The determinant of U(t, t0)
is given by

det[U(t, t0)] = exp
{∫ t

t0

tr[A(t′)] dt′
}
. (4)

Equation (4) follows from two facts. (i) The deriva-
tive of the determinant is the sum of n determinants
obtained by replacing the elements of one row of the
original matrix by their derivatives. (ii) The columns
ofU(t, t0) are solutions to Eq. (1). Since the elements
of A are nonsingular, det[U ] does not vanish; that is,
the matrix U(t, t0) is nonsingular. From (3), one finds

U(t2, t1)−1 = U(t1, t2). (5)

Without loss of generality, one can always choose the
matrix A(t) to be traceless. Indeed, the substitution

ψ(t) = eα(t)ψ′(t), α(t) =
1
n

∫ t

tr[A(t′)] dt′ (6)

yields

ψ̇′ = A′(t)ψ′, A′(t) = A(t)− 1
n

tr[A(t)], (7)

whence it follows that A′ is traceless. Hereafter,
we will always assume that the transformation in (6)
has been performed; that is, we will consider only
traceless matrices A. Equation (4) then reduces to

det[U(t, t0)] = 1. (8)

Notice that, in general, U(t, t0) is not unitary.

2.2. Floquet Theory

Let us now address the case of the differential
Eqs. (1) with periodic coefficients,

A(t+ T ) = A(t), (9)

where T is the period. Hereafter, we will always
assume that the condition in (9) is satisfied, without
specifying this each time explicitly. From the period-
icity of A(t), it follows that, if ψ(t) is a solution to
Eq. (1), so is ψ(t+ T ). Let us consider the solu-
tion ψ(t) with initial condition ψ(s) = ψ0. We have
ψ(t+ T ) = U(t+ T, s)ψ0. On the other hand, we
have ψ(t+ T ) = U(t, t0)ψ(t0 + T ) = U(t, t0)U(t0 +
T, s)ψ0, since ψ(t+ T ) is also a solution at t. Equat-
ing these two expressions for ψ(t+ T ), one obtains

U(t+ T, s) = U(t, t0)U(t0 + T, s). (10)

This is a very important property of the evolution
matrix for the differential Eq. (1) with periodic coeffi-
cients. Setting s = t0 + T and s = t0 = 0, one finds
from (10) that

U(t+ T, t0 + T ) = U(t, t0), (11)
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U(t+ T, 0) = U(t, 0)U(T, 0). (12)

The first of these equations means that the evolution
matrix does not change if both its arguments are
shifted by the period T (and, by induction, by any
integer number k of the periods). From the second
equality, it follows, in particular, that the matrix of
evolution over k periods satisfies the equation

U(kT, 0) = U(T, 0)k. (13)

The matrix of evolution over one period, U(T, 0) ≡
UT , plays a very important role in the theory of dif-
ferential equations with periodic coefficients; it is re-
ferred to as a monodromy matrix.

It was indicated above that, if ψ(t) is a solution
to Eq. (1), so is ψ(t+ T ). In general, this does
not mean that ψ(t+ T ) = ψ(t); that is, solutions to
equations with periodic coefficients are not in general
periodic. There are, however, solutions that satisfy the
condition

ψ(t+ T ) = σψ(t); (14)

that is, they are multiplied by a number when t is
shifted by the period. Such solutions are referred to
as normal; they play an important role in the analysis
of stability of solutions to Eq. (1).

To analyze the properties of normal solutions, let
us show that the evolution matrix for the system of
linear differential Eqs. (1) with periodic coefficients
can be written as the product of a periodic matrix
and an exponential matrix. Since the monodromy
matrix UT is nonsingular, it can be represented as an
exponential of another matrix:

UT ≡ U(T, 0) = eBT . (15)

Let us now show that the matrix P (t) = U(t, 0)e−Bt

is periodic. We have P (t+ T ) = U(t+ T, 0) ×
e−B(t+T )= U(t, 0)U(T, 0)e−BT e−Bt = U(t, 0)e−Bt =
P (t), where we have used (12) and (15). Thus, the
evolution matrix can be written as

U(t, 0) = P (t)eBt, P (t+ T ) = P (t). (16)

From this expression, it follows, in particular, that the
vector χ introduced through the relation ψ = P (t)χ
satisfies a differential equation with constant coeffi-
cients,

χ̇ = Bχ. (17)

Let φ(j)
0 be a (constant) eigenvector of the matrix

B with the eigenvalue αjT
−1. It is then also an

eigenvector of UT with the eigenvalue σj = eαj :

Bφ(j)
0 =

αj
T
φ

(j)
0 ; UTφ

(j)
0 = σjφ

(j)
0 = eαjφ

(j)
0 . (18)

It is common practice to refer to the numbers σj as
characteristic numbers and to αj as characteristic
exponents. From (12), (16), and (18), it follows that
1
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any normal solution φ(j)(t) to Eq. (1) can be written
as

φ(j)(t) = U(t, 0)φ(j)
0 = P (t)eαj (t/T )φ

(j)
0 (19)

= P (t)σt/Tj φ
(j)
0 .

Thus, the eigenvectors ofUT give rise to normal solu-
tions. The monodromy matrix UT has n eigenvalues.
As follows from (8), they satisfy

n∏
j=1

σj = 1. (20)

If all the eigenvalues σj are different, UT has n linearly
independent eigenvectors; therefore, there are n lin-
early independent normal solutions φ(j)(t) to the set
of Eqs. (1). Hence, they form a fundamental set, and
any solution to (1) can be written as a linear combi-
nation of the normal solutions φ(j)(t) with constant
coefficients. If UT has repeated eigenvalues, there
arises a more complicated situation, which will be
discussed below.

It follows from Eq. (19) that the characteristic
exponents (or characteristic numbers) determine the
boundedness of normal solutions and, therefore, of
a general solution to Eq. (1). By way of example,
we now consider the case of n = 2. We first as-
sume that the characteristic exponents are real. The
characteristic numbers σ1 and σ2 are then real too.
Equation (20) gives σ1σ2 = 1; if σ1 �= σ2 (that is, they
are simple eigenvalues of UT ), the absolute value of
one of them is greater than one. It then follows from
Eq. (19) that the corresponding normal solution is
unbounded. If the characteristic exponents are pure
imaginary, the characteristic numbers are of modulus
one—that is, σ1 = σ∗

2 and |σ1| = 1. In this case, both
normal solutions are bounded [the matrix P (t) in (19),
being continuous and periodic, is obviously bounded].
If the characteristic exponents are complex, normal
solutions are bounded when the real parts of all char-
acteristic exponents are nonpositive, while there are
unbounded normal solutions if at least one of the
characteristic exponents has a positive real part. This
property holds in general—that is, for arbitrary n.

Let us now discuss the case of repeated eigen-
values of UT . We again consider the case of n = 2
and assume that the eigenvalues ofUT coincide, σ1 =
σ2 ≡ σ. In this case, the matrix UT has the general
form 2)

UT =


 σ 0

a σ


 . (21)

2)Another possibility would be to have zero element (UT )21 in-
stead of (UT )12, but the corresponding matrix can be reduced
to that in (21) by renumbering basis states.
PH
It can readily be seen that, at a = 0, the monodromy
matrix UT has two linearly independent and orthog-
onal eigenvectors corresponding to the same eigen-

value σ; they can be taken, for example, to be φ(1)
0 =

(0, 1)T and φ
(2)
0 = (1, 0)T . For a �= 0, however, there

is only one eigenvector, φ(1)
0 . It gives rise to a normal

solution φ(1)(t) through Eq. (19). This normal solu-
tion can be used as one of the basis solutions ψ(j)(t)
constituting a fundamental set, ψ(1)(t) = φ(1)(t). Let
ψ(2)(t) be another solution to Eq. (1), linearly in-
dependent of ψ(1)(t); ψ(1)(t) and ψ(2)(t) then form a
fundamental set. Since ψ(j)(t+ T ) are also solutions,
they can be written as linear combinations of ψ(1)(t)
and ψ(2)(t):

ψ(1)(t+ T ) = σψ(1)(t),

ψ(2)(t+ T ) = a′ψ(1)(t) + b′ψ(2)(t). (22)

Using arbitrariness in the normalization of the vectors

φ
(j)
0 , one can always set a′ = a. Since σ is a double

root of the characteristic equation of the monodromy
matrix UT , b′ = σ. 3) Equations (22) can therefore be
rewritten as

ψ(1)(t+ T ) = σψ(1)(t), (23)

ψ(2)(t+ T ) = aψ(1)(t) + σψ(2)(t). (24)

Let us introduce a matrix M that relates ψ
(2)
0 and

ψ
(1)
0 ≡ φ

(1)
0 : ψ(2)

0 = Mψ
(1)
0 .4) One can now find the

relation between ψ(2)(t) and ψ(1)(t):

ψ(2)(t) = W (t)ψ(1)(t), (25)

W (t) = U(t, 0)MU(t, 0)−1.

Therefore, we have ψ(2)(t+ T ) = W (t+ T )ψ(1)(t+
T ) = W (t+ T )σψ(1)(t). On the other hand, it fol-
lows from (24) and (25) thatψ(2)(t+ T ) = aψ(1)(t) +
σψ(2)(t) = [a+ σW (t)]ψ(1)(t). Equating these two
expressions for ψ(2)(t+ T ), one finds

W (t+ T ) = W (t) + a/σ. (26)

Therefore, the matrix F (t) defined through

F (t) = W (t)− a

σ

t

T
(27)

is periodic with the period T . From Eqs. (25) and (27),
we then find

ψ(2)(t) =
[
a

σ

t

T
+ F (t)

]
ψ(1)(t), (28)

3)An easy way to see this is to consider Eqs. (22) at t = 0 and
use the explicit form (21) of the matrix UT .

4)The matrix M is not uniquely defined, but this is immaterial
for our purposes.
YSICS OF ATOMIC NUCLEI Vol. 64 No. 5 2001
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F (t+ T ) = F (t).

This is the result we sought. Together with Eq. (23),
it states that, in the case of double roots of the
characteristic equation of UT (that is, in the case of
coinciding characteristic exponents), a fundamental
set can be chosen to consist of a normal solution
and a solution that is a linear combination of linearly
growing and periodic functions multiplied by a normal
solution. Thus, we conclude that, if a �= 0, there are
unbounded solutions. It follows from (28) that, if a =
0, then ψ(2)(t), being the product of a periodic matrix
and a normal solution, is also a normal solution. It
follows that, in this case, both solutions forming a
fundamental set can be chosen to be normal. This is
in accord with the fact that, for a = 0, the matrix UT
in Eq. (21) has two linearly independent eigenvectors.

It is instructive to see how the linear growth of
ψ(2)(t) arises from the general expression ψ(2)(t) =
P (t)eBtψ(2)

0 . From (15) and (21), one finds

BT = lnUT = ln[σ(I +∆)] (29)

= lnσ + ln(I +∆) = lnσ +∆− ∆2

2
+

∆3

3
− ...,

where

∆ =


 0 0

a/σ 0


 .

Since ∆2 = 0, Eq. (29) gives BT = lnσ +∆; hence,

eBt = σt/T e∆(t/T ) = σt/T
(
I +

t

T
∆
)
. (30)

Notice that the matrix ∆ annihilates φ(1)
0 ; therefore,

(30) does not contradict ψ(1)(t) being a normal solu-
tion. Using Eq. (30), one can find that the matrixF (t)
entering into Eq. (28) has the simple representation

F (t) = P (t)MP (t)−1, (31)

from which the periodicity of F (t) is obvious.
The above result can be generalized to the case

of n > 2. If the characteristic equation of the mon-
odromy matrix UT has repeated roots (that is, some of
the characteristic numbers coincide), a fundamental
set can be chosen to consist of normal solutions and
solutions that are linear combinations of polynomials
in t and periodic matrices multiplied by normal solu-
tions.

We have seen that, in the case where some of
the characteristic exponents have positive real parts,
there are exponentially growing solutions, while, if
some of the characteristic exponents coincide, there
are in general polynomially growing solutions. The
existence of such unbounded solutions signifies in-
stabilities due to a parametric resonance.
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 5 200
It should be noted that, instead of considering the
set of n first-order linear equations (1) with peri-
odic coefficients, one could equivalently consider one
equation of order n. By way of example, we indicate
that, in the case of n = 2, a general second-order
equation with periodic coefficients is obtained, which
is referred to as the Hill equation. A pendulum with
a vertically oscillating point of support mentioned in
the Introduction is described by this equation. If the
oscillations of the point of support are harmonic, the
pendulum is described by the well-known Mathieu
equation. In the limit of small-amplitude oscillations
of the point of support, the instability condition (the
condition of an exponential growth of the deviation
from equilibrium) is [6, 7]

Ω ≡ 2π
T

=
2ω
k
, (32)

where ω is the frequency of the oscillations of the
pendulum in the absence of motion of its point of
support and k is an integer. Equation (32) relates
the frequency Ω of the oscillations of the point of
support at which the parametric resonance occurs
to the oscillator eigenfrequency. When the ampli-
tude of the oscillations of the point of support is not
small, the parametric-resonance condition generally
depends not only on the frequency of these oscil-
lations but also on their amplitude. In this case,
there are resonance regions of parameters rather than
resonance values [7, 21].

In real physical systems, all parameters are of
course finite; unboundedness of certain solutions to
Eq. (1) with periodic coefficients just reflects the fact
that, in general, the dynamics of real systems is only
approximately described by linear equations. For
large deviations from equilibrium, nonlinear effects
become important, so that Eq. (1) must be modified.
There are, however, cases where solutions are always
bounded even in the linear regime, in which case a
description in terms of linear equations can be exact.
Nevertheless, a parametric resonance is possible in
such systems as well. One example of such a situ-
ation is given by Schrödinger equations with periodic
Hamiltonians (we will discuss this example in the
next section).

3. SCHRÖDINGER EQUATIONS
WITH PERIODIC HAMILTONIANS

If the matrix A(t) in Eq. (1) is anti-Hermitian, the
set of Eqs. (1) and (9) can be written as a Schrödinger
equation with a periodic Hermitian Hamiltonian,

iψ̇ = H(t)ψ, H(t)† = H(t), (33)

H(t+ T ) = H(t),
1
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where H(t) = iA(t). In the case of constant H,
Eq. (33) describes oscillations between the compo-
nents of ψ characterized by n− 1 (in general, differ-
ent) frequencies (of n eigenvalues of H, only n− 1
are independent since trH = 0). In particular, spin
precession in a constant magnetic field or neutrino
oscillations in a vacuum or in matter of constant
density are described by such an equation. Equa-
tion (33), with time-dependent periodic Hamiltoni-
ans, describes many physical systems—for example,
atoms in a laser field or electron paramagnetic res-
onance. It also describes neutrino oscillations in a
medium of periodically modulated density.

Because of the Hermiticity of H(t), the evolution
matrix U(t, t0) of Eq. (33) is unitary; that is, the norm
of the vectorψ is conserved. Therefore, all solutions to
Eq. (33) are bounded. In view of this, the parametric
resonance in the systems described by Eq. (33) has
some special features, which we will discuss below.

One consequence of the unitarity of the evolution
matrix U(t, t0) is that all characteristic exponents are
pure imaginary. In addition, we note that, since a
polynomial growth of solutions is not allowed in this
case, there are, even in the case of repeated roots of
the characteristic equations of the monodromy matrix
UT , n linearly independent normal solutions that form
a fundamental set. Actually, this is a direct corollary
of the fact that a unitary n× n matrix has exactly
n linearly independent eigenvectors, irrespective of
whether (or not) all roots of its characteristic equa-
tions are simple.

We will now discuss the general properties of so-
lutions to Eq. (33), again considering the case of
n = 2 as an example. The results will be applied,
in particular, to the problem of two-flavor neutrino
oscillations in a medium of periodically modulated
density.

Let us start with a few general remarks about
solutions of the Schrödinger equation with a time-
dependent (but not necessarily periodic) Hamiltonian
in the case of n = 2. First, we notice that, with-
out loss of generality, the Hamiltonian H(t) can be
considered to be real. Indeed, in the case of a com-
plex Hamiltonian, the rephasing of the components
ψ1,2 of ψ by the factors exp(±iβ(t)/2), where β(t) =
arg[H12(t)], reduces the Hamiltonian to the form

H(t) =


 −A(t) B(t)

B(t) A(t)


 (34)

with real A(t) and B(t). Notice that this rephasing
transformation preserves the trace of the Hamilto-
nian.

Next, we notice that the Hamiltonian H(t) in (34)
can be written as

H(t) = B(t)σ1 −A(t)σ3, (35)
PH
where σi are the Pauli matrices. Thus, H(t) anti-
commutes with σ2. From this fact, it immediately
follows that, if ψ(t) = (ψ1(t), ψ2(t))T is a solution to
the Schrödinger equation, so is ψ̃(t) = −iσ2ψ(t)∗ =
(−ψ2(t)∗, ψ1(t)∗)T . It is easy to see that ψ(t) and
ψ̃(t) are orthogonal and are therefore linearly inde-
pendent. Thus, we see that, if one nontrivial solution
to the Schrödinger equation for the case of n = 2
is known, it automatically gives another nontrivial
solution, linearly independent of the original one. The
solutions ψ and ψ̃ form a fundamental set; there-
fore, knowledge of a single nontrivial solution to the
Schrödinger equation allows one to obtain a general
solution.

We now proceed to the study the Schrödinger
equation with periodic coefficients in the case of n =
2. Since the monodromy matrix UT = exp(BT ) is a
unitary 2× 2 matrix, it can be written as

UT = Y − iσ ·X = exp[−i(σ · X̂)Φ] (36)

with real parameters X and Y (or X̂ and Φ),5) which
satisfy the relations

Y 2 +X2 = 1, cos Φ = Y, (37)

sinΦ = |X|; X̂ ≡ X/|X|.
It should be noted that the form of the monodromy
matrix in Eq. (36) is quite general; that is, it does
not depend on the particular form of the functional
dependence of A(t) and B(t), whereas the values of
the parameters Y and X = {X1,X2,X3} (or Φ and
X̂ = {X̂1, X̂2, X̂3}) are of course determined by this
functional dependence. Using (16), one can represent
the evolution matrix as

U(t, 0) = P (t)e−i(σ·X̂)Φ (t/T ), P (t+ T ) = P (t).
(38)

The matrix of evolution over an integer number of
periods is

U(kT, 0) = (UT )k = exp[−i(σ · X̂)kΦ]. (39)

From Eqs. (15) and (36), we obtain

BT = −i(σ · X̂)Φ. (40)

Since X̂ is a unit vector, the eigenvalues of the matrix
σ · X̂ are±1; hence, the characteristic exponentsα1,2

are pure imaginary, and the characteristic numbers
σ1,2 are of modulus one:

α1,2 = ±iΦ, σ1,2 = e±iΦ. (41)

5)That these parameters are real can be proven on the basis
of the relation σ2U(t, t0)

∗σ2 = U(t, t0), which in turn is
obtained from the following properties of the Hamiltonian:
H(t)∗ = H(t) and {H(t), σ2} = 0.
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Let us find normal solutions. The eigenvectors φ(1,2)
0

of the monodromy matrix coincide with the eigenvec-
tors of the matrix σ · X̂; they can be written as

φ
(1)
0 =

1√
2



√

1 + X̂3√
1− X̂3 e

iδ


 , (42)

φ
(2)
0 =

1√
2


 −

√
1− X̂3 e

−iδ

√
1 + X̂3


 ,

where

δ = arg(X̂1 + iX̂2). (43)

Notice that φ(2)
0 = φ̃

(1)
0 ≡ −iσ2(φ

(1)
0 )∗. Normal solu-

tions are now found asφ(1,2)(t) = U(t, 0)φ(1,2)
0 , which

yields

φ(1)(t) = P (t)e−iΦ(t/T )φ
(1)
0 , (44)

φ(2)(t) = P (t)eiΦ(t/T )φ
(2)
0 .

They form a fundamental set. This means that an
arbitrary solution ψ(t) can be represented as a linear
combination of φ(2)(t) and φ(1)(t) with constant co-
efficients:

ψ(t) = P (t)[C1 e
−iΦ(t/T )φ

(1)
0 + C2 e

iΦ(t/T )φ
(2)
0 ].

(45)
The normal solutions (44) are the products of periodic
functions with periods T and τ = (2π/Φ)T . Thus,
the general solution (45) describes modulated oscil-
lations between the components of ψ(t)—the para-
metric oscillations [20].

Let us now discuss the parametric resonance in
the system under consideration. In the general case
of Eq. (1), the parametric resonance typically corre-
sponds to situations where a solution becomes un-
bounded; that is, there are some values of t for which
the modulus of a component of ψ can exceed any pre-
set number, however large. A characteristic feature
of the parametric resonance is that this can happen
even for an arbitrarily small amplitude of variations of
the coefficients in Eq. (1).

In the case of systems described by Eq. (33),
the parametric resonance corresponds to a situation
where there exist values of t such that the modu-
lus of a component of a solution can reach a maxi-
mum value that is allowed by unitarity, but which is
unattainable in the case of the corresponding equa-
tion with constant coefficients. This can happen even
for an arbitrarily small amplitude of variations of the
coefficients in Eq. (33). Notice that the parametric
resonance is undefined in the cases where Eq. (33)
with constant coefficients itself leads to maximal am-
plitude oscillations.
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To be more specific, we will consider the case
of n = 2. If the Hamiltonian of the system were
constant, the Schrödinger equation (33) would de-
scribe oscillations between the components of ψ with
frequency ω0 =

√
A2 +B2 and amplitude sin2 2θ0 =

B2/(A2 +B2). If A �= 0, this amplitude is always
less than unity. We will now consider the case of
time-dependent A and B, but we will assume that
A(t) never vanishes over the period of evolution of
interest.6) The transition probability in the quasi-
time-independent (adiabatic) regime then never ex-
ceeds max{B(t)2/(A(t)2 +B(t)2)} < 1. The para-
metric resonance occurs when there are values of t
such that the modulus of a component of ψ that was
initially equal to zero can reach a maximum value
that is allowed by unitarity and which corresponds
to the transition probability equal to one. This can
happen even if max{B(t)2/(A(t)2 +B(t)2)} � 1 and
for arbitrarily small amplitudes of time variations of
A(t) and B(t).

Let us find the parametric-resonance condition.
We assume that the initial state at t = 0 is ψ0 =
(1, 0)T . At t = kT , we then have

ψ(kT ) = U(kT, 0)ψ0 (46)

=


 cos kΦ− iX̂3 sin kΦ

−ie−iδ
√
1− X̂2

3 sin kΦ


 .

We will now show that the parametric-resonance
condition is [14]

X̂3 = 0. (47)

Indeed, the transition probability reaches the maxi-
mum possible value, equal to one, when the survival
probability |ψ1(t)|2 vanishes. From (46), one has
ψ1(t = kT ) = cos kΦ for X̂3 = 0. The component
ψ1(t) at t = (k + 1)T is cos(k + 1)Φ. It is easy to
see that, for an arbitrary nonzero value of Φ, there is a
value of k for which cos kΦ ≤ 0 and cos(k + 1)Φ > 0,
or vice versa. Since all solutions to Eq. (33) with
regular coefficients are continuous, this means that
there is a value t1, kT ≤ t1 < (k + 1)T , for which
ψ1(t1) = 0 and the survival probability vanishes; that
is, the component ψ2 saturates the unitarity limit.
Thus, Eq. (47) is the parametric-resonance condi-
tion.

6)In the case of neutrino oscillations in a vacuum, the condition
A = 0 corresponds to maximum mixing, while, for neutrino
oscillations in a medium of varying density, A(t) = 0 corre-
sponds to the MSW resonance.
1
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4. NEUTRINO OSCILLATIONS IN MATTER
WITH A CASTLE-WALL DENSITY PROFILE

We will now consider applications of Floquet the-
ory, reviewed in the preceding sections, to neutrino
oscillations in a medium of periodically modulated
density. In particular, we will address the problem of
a parametric resonance in neutrino oscillations.

Let us examine oscillations in a two-flavor neu-
trino system. The evolution of the system in the
flavor-eigenstate basis is described by the Schrödin-
ger equation with Hamiltonian (34), in which the
parameters A and B are given by

A(t) =
∆m2

4E
cos 2θ0 −

GF√
2
N(t),

B =
∆m2

4E
sin 2θ0, (48)

where GF is the Fermi constant, E is the neutrino en-
ergy, ∆m2 = m2

2 −m2
1 (m1,2 are the neutrino-mass

eigenvalues), and θ0 is the mixing angle in a vacuum.
The effective density N(t) depends on the type of the
neutrinos involved in the oscillations:

N =




Ne for νe ↔ νµ,τ

0 for νµ ↔ ντ

Ne −Nn/2 for νe ↔ νs

−Nn/2 for νµ,τ ↔ νs.

(49)

Here, Ne and Nn are the electron- and neutron-
number density, respectively. For transitions between
antineutrinos, one should substitute −N for N in
Eq. (4). If the overall matter density or the chemical
composition varies along the neutrino path, the ef-
fective density N depends on the neutrino coordinate
t. The instantaneous oscillation length lm(t) and the
mixing angle θm(t) in matter are given by

lm(t) = π/ω(t), sin 2θm(t) = B/ω(t), (50)

ω(t) ≡
√
B2 +A(t)2.

The MSW resonance corresponds to A(tres) = 0 and
sin 2θm(tres) = 1.

For a parametric resonance to occur, the specific
shape of the matter-density profile is not very impor-
tant, but it is necessary that the change in the density
be synchronized in a certain way with the change
in the oscillation phase. In particular, a sinusoidal
density profile was considered in [8, 9], in which case
the equation describing the evolution of neutrinos
reduces to a modified Mathieu equation. In [9], the
parametric resonance was also considered for neu-
trino oscillations in a medium with a periodic step-
function density profile, which allows a very simple
exact analytic solution. This solution was studied in
P

detail in [14, 20]. Here, we will review this solution
and its main features.

Let us consider the case where the effective density
N(t) [and, therefore, A(t)] is a periodic step function,

N(t) =




N1 for 0 ≤ t < T1

N2 for T1 ≤ t < T1 + T2,
(51)

N(t+ T ) = N(t), T = T1 + T2.

Here, N1 and N2 are constants. It will be referred to
as the castle-wall density profile. The function A(t) is
given by a similar formula with constants A1 and A2.
Thus, the HamiltonianH(t) is also a periodic function
of time with period T . We denote

δ =
∆m2

4E
, Vi =

GF√
2
Ni (i = 1, 2). (52)

In this notation,
Ai = cos 2θ0 δ − Vi, B = sin 2θ0 δ, (53)

ωi =
√

(cos 2θ0 δ − Vi)2 + (sin 2θ0 δ)2.

Any instant of time in the evolution of the neutrino
system belongs to one of the two kinds of time inter-
vals:

0 + nT ≤ t < T1 + nT ; (54)

T1 + nT ≤ t < T1 + T2 + nT, n = 0, 1, 2, ... .

In either case, the Hamiltonian H is a constant matrix

(H1 and H2, respectively). We define the evolution
matrices for the time intervals (0, T1) and (T1, T1 +
T2) as

U1 = exp(−iH1T1), U2 = exp(−iH2T2). (55)

The monodromy matrix is then given by

UT = U2U1. (56)

Let us introduce the unit vectors

n1 =
1
ω1

(B, 0, −A1) = (sin 2θ1, 0, − cos 2θ1),

n2 =
1
ω2

(B, 0, −A2) = (sin 2θ2, 0, − cos 2θ2),

(57)

where θ1,2 are the mixing angles in matter at densities

N1 and N2: θ1 = θm(N1) and θ2 = θm(N2). One can
then write

Hi = ωi(σ · ni). (58)

Using Eqs. (55)–(58), one can obtain the mon-
odromy matrix in the form (36) with the parameters
Y and X given by

Y = c1c2 − (n1 · n2)s1s2, (59)

X = s1c2 n1 + s2c1 n2 − s1s2 (n1 × n2), (60)
HYSICS OF ATOMIC NUCLEI Vol. 64 No. 5 2001
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where
si = sinφi, ci = cosφi, φi = ωiTi (61)

(i = 1, 2).
Notice that the difference of the neutrino eigenener-
gies in a medium of density Ni is 2ωi, so that 2φ1

and 2φ2 are the oscillation phases acquired over the
intervals T1 and T2. The evolution matrix for k periods
(k = 0, 1, 2, ...) is given by Eq. (39).

In terms of the components, the vector X can be
written as

X = {s1c2 sin 2θ1 + s2c1 sin 2θ2

−s1s2 sin(2θ1 − 2θ2) (62)

−(s1c2 cos 2θ1 + s2c1 cos 2θ2)} .
Equations (36)–(39) and (59)–(4) provide an ex-

act solution to the evolution equation for any instant
of time that is an integral multiple of the period T . In
order to obtain the corresponding solution for kT <
t < (k+1)T , one has to evolve the solution at t = kT
by applying the evolution matrix

U1(t, kT ) = exp[−iH1(t− kT )] (63)

for kT < t < kT + T1 or
U2(t, kT + T1)U1 (64)

= exp[−iH2(t− kT − T1)] exp[−iH1T1]
for kT + T1 ≤ t < (k + 1)T , with H1,2 given by
Eq. (58).

4.1. Parametric Resonance

Let us assume that the initial neutrino state at
t = 0 is a flavor eigenstate νa. The probability of
finding another flavor eigenstate νb at an instant t >
0 (transition probability) is then P (νa → νb, t) =
|U21(t, 0)|2. As was pointed out in Section 3, the
evolution of a neutrino system in a medium of period-
ically varying density has the character of parametric
oscillations—modulated oscillations characterized by
two periods, T and τ = (2π/Φ)T . As can be seen
from Eq. (46), the transition probability after k periods
of the density modulation is [14]

P (νa → νb, t = kT ) = (1− X̂2
3 ) sin

2 Φp, (65)

Φp = kΦ,
where Φ was defined in (37). This expression is valid
for any periodic matter-density profile, irrespective of
its shape. Obviously, X̂3 and Φ depend on this shape.
For neutrino oscillations in the castle-wall density
profile, Eq. (65) corresponds to the evolution over
an even number of layers of constant density. After
passing an odd number of alternating layers, which
can be considered as k periods plus one additional
layer of density N1 (the corresponding evolution time
t = kT + T1), the transition probability is also given
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 5 200
by Eq. (65), the only difference being that the phase is
now [20]

Φp = kΦ+ ϕ, (66)

where

sinϕ = s1 sin 2θ1/

√
1− X̂2

3 ,

cosϕ = (s1 sin 2θ1Y + s2 sin 2θ2)/
√

X2 −X2
3 .

(67)

Equations (65)–(67) give the transition probability at
the borders of the layers.

The parametric resonance occurs when the depth
of the parametric oscillations described by Eq. (65)
becomes equal to unity—that is, when X̂3 = 0. This
coincides with condition (47), which was found in
Section 3. In the case of the castle-wall density
profile under consideration, it takes the form [14] [see
Eq. (4)]

X3 ≡ −(s1c2 cos 2θ1 + s2c1 cos 2θ2) = 0. (68)

As follows from (65), the maximum transition prob-
ability of P = 1 can be achieved at the borders of the
layers, provided that

Φp =
π

2
+ nπ, n = 0, 1, 2, ... . (69)

The parametric-resonance condition (68) can be
realized in two different ways. One possibility is that
both terms on the right-hand side of Eq. (68) vanish.
This requires c1 = c2 = 0 [8–14] or7)

φ1 =
π

2
+ k′π, φ2 =

π

2
+ k′′π, (70)

k′, k′′ = 0, 1, 2, ... .

In this case, the other option, s1 = s2 = 0, leads
to the trivial case of X = 0 and Y = ±1, in which
the monodromy matrix coincides (apart from the
sign) with the identity matrix, with the result that
the transition probability at the borders of the layers
vanishes.8) The other possible realization of the
parametric-resonance condition is that where neither
of the terms on the right-hand side of Eq. (68)
vanishes, but where they exactly cancel each other.

We will now consider the realization (70) of the
parametric-resonance condition (68). The second
realization will be illustrated below by a numerical ex-
ample. At the resonance, the transition probability for

7)In [8–10], these conditions were derived for the particular
case of k′ = k′′, which includes the most important principal
resonance with k′ = k′′ = 0.

8)We do not consider the trivial cases of the MSW resonance,
for which X3 = 0 because cos 2θi = 0 and si = ±1, i = 1
or 2, or cos 2θ1 = cos 2θ2 = 0. These cases correspond to
A(tres) = 0.
1
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Fig. 1. Coordinate dependence of the neutrino-flavor-
transition probability P in a medium with the castle-
wall density profile [sin2 2θ0 = 0.01, δ = 10−12 eV, V1 =
10−13 eV, V2 = 6.33 × 10−13 eV, T1 = 5.4 × 10−2, and
T2 = 0.1296 (all distances are in units of R = 3.23 ×
1013 eV−1)].

the evolution over k periods of the density modulation
takes the simple form

P (νa → νb, t = kT ) = sin2[k(2θ2 − 2θ1)]. (71)

Let us first assume that the densities N1 and
N2 are either both below the MSW resonance den-
sity NMSW, which is determined by the relation
GFNMSW/

√
2 = cos 2θ0 δ, or both above it. This

means that the mixing angles in matter, θ1,2, satisfy
the inequalities θ1,2 < π/4 or θ1,2 > π/4. It is easy
to see that, in this case, the difference 2θ2 − 2θ1
is always farther away from π/2 than either 2θ1

or 2θ2. In this case, the transition probability for
evolution over one period cannot therefore exceed
the maximal transition probabilities in matter of
constant density equal to either N1 or N2 (sin2 2θ1

or sin2 2θ2). However, the parametric resonance
leads to an important gain. In a medium of constant
densityNi, the transition probability can never exceed
sin2 2θi, irrespective of the distance that neutrinos
travel. In a medium with the castle-wall density
profile, the situation is different: if the parametric-
resonance conditions (70) are satisfied, the transition
probability can become large, provided that neutrinos
travel a sufficiently large distance. It can be seen
from (71) that the transition probability can become
quite sizeable even for small sin2 2θ1 and sin2 2θ2—
that is, for small max{B2/(A(t)2 +B2)} in terms of
the parameters of the Hamiltonian in (34). This is
illustrated in Figs. 1 and 3 for the case of N1, N2 <
NMSW (the corresponding matter-induced neutrino
potentials are shown in Figs. 2 and 4). In the case of
PH
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–12

Fig. 2. Coordinate dependence of the matter-induced
neutrino potential [GF/

√
2× (density profile)] for the case

shown in Fig. 1.

N1, N2 > NMSW, the transition probability behaves
similarly. The number of periods that neutrinos have
to pass in order to experience a complete (or almost
complete) conversion is

k � π

4(θ1 − θ2)
. (72)

It is instructive to consider the limit of small den-
sity variations, |N1 −N2| � N1. In terms of a pen-
dulum with a vertically oscillating point of support,
it corresponds to the limit of the small amplitude of
these vertical oscillations. In this limit, θ1 � θ2 and
Eq. (68) reduces to sin(φ1 + φ2) = 0 (φ1 + φ2 = kπ).
Since φi = ωiTi, this condition can be written as

Ω ≡ 2π
T

=
2ω
k
, where ω ≡ ω1

T1

T
+ ω2

T2

T
. (73)

This coincides with the familiar parametric-resonance
condition in the case of small-amplitude variations
of the parameter of the system [see Eq. (32)]. It is
important to note that the condition in (73) does not
depend on the amplitudeN1 −N2 of the density mod-
ulation. This illustrates the point that we emphasized
in Section 3—a parametric resonance can occur even
for an arbitrarily small amplitude of variations of the
parameters of the system. Of course, the smaller this
amplitude, the longer the evolution time for the total
conversion.

Let us now consider the case ofN1 < NMSW < N2

(θ1 < π/4 < θ2). The transition probability over n
periods at the parametric resonance is again given by
Eq. (71). In this case, however, one has sin2(2θ2 −
2θ1) > sin2 2θ1, sin2 2θ2 for θ2 > π/4 + θ1/2 (which
is always satisfied for small mixing in matter). This
means that, even for the time interval equal to one
period of the matter-density modulation, the transi-
tion probability exceeds the maximal probabilities of
oscillations in matter of constant densities N1 and
YSICS OF ATOMIC NUCLEI Vol. 64 No. 5 2001
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Fig. 3. As in Fig. 1, but for δ = 10−12 eV, V2 = 10−11 eV,
T1 = 5.4 × 10−2, and T2 = 5.4 × 10−3.

N2. The case of N1 < NMSW < N2 is illustrated in
Figs. 5–7.

Figures 3 and 4 illustrate the importance of the
phase relationships in the case of a parametric res-
onance. In these figures, the coordinate dependence
of the transition probability and the matter-density
profile are shown for a specific case in which con-
ditions (70) are satisfied. It can be seen from these
figures that the increase in the probability over the
time intervals T2, which correspond to the effective
matter density N2, is very small; in addition, we have
T2 � T1 in this case. One could therefore conclude
that the evolution within these very narrow intervals
is unimportant. However, this conclusion is wrong:
if one removes the “spikes” in the matter density
profile of Fig. 4—that is, if one replaces it by the
profile N(t) = N1 = const—the resulting transition
probability will be very small at all times (Fig. 5).

Further examples of parametrically enhanced neu-
trino oscillations can be found in Figs. 6 and 7. Fig-
ures 1, 3, and 6 correspond to the realization (70)
(c1 = c2 = 0) of the parametric-resonance condition
(68); Fig. 7 illustrates the realization in which the two
terms in X3 cancel each other.

5. PARAMETRIC RESONANCE
IN NEUTRINO OSCILLATIONS

IN THE EARTH

5.1. Evolution of Oscillating Neutrinos in the Earth

The Earth consists of two main structures, the
mantle and the core, which, to a very good approxi-
mation, can be considered as layers of constant den-
sity. We will treat neutrino oscillations in the Earth in
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 5 200
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Fig. 4. Coordinate dependence of the matter-induced
neutrino potential for the case shown in Fig. 3.

this two-layer approximation. Neutrinos arriving at
the detector from the lower hemisphere of the Earth
at zenith angles Θ in the range of cosΘ from –1
to –0.837 (the nadir angle lies in the region Θn ≡
180◦ −Θ ≤ 33.17◦) traverse the Earth’s mantle, the
core, and then again the mantle—that is, three layers
of constant density, with the third layer being identical
to the first one. Therefore, such neutrinos experience
a periodic castle-wall potential, and their oscillations
can be parametrically enhanced. Although these neu-
trinos traverse, in this case, only three layers (one
period and half of the density modulation), the para-
metric enhancement of the transition probability can
be very strong.

In this case, the evolution matrix is U = U1U2U1.
It can be parametrized in a form similar to that in
Eq. (36):

U = Z − iσ ·W, Z2 + W2 = 1. (74)

The matrix U describes the evolution of an arbitrary
initial state; therefore, it contains the entire body of
information about neutrino oscillations. In partic-
ular, the probabilities of neutrino-flavor oscillations,
P , and of ν2 ↔ νe oscillations (relevant to the oscil-
lations of solar and supernova neutrinos within the
Earth), P2e, are given by [14] 9)

P = W 2
1 +W 2

2 , (75)

P2e = sin2 θ0 +W1(W1 cos 2θ0 +W3 sin 2θ0).

Equivalently, the probability P can be described by
Eqs. (65)–(67) at k = 1.

We must now identify the effective densities N1

and N2 with the average matter densities Nm and Nc

in the Earth’s mantle and core, respectively; similarly,

9)Different but equivalent expressions can also be found in
[13, 22, 23].
1
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Fig. 5. As in Fig. 3, but for V2 = V1 [V (t) = V1 = const].

we change the notation as V1,2 → Vm,c, φ1,2 → φm,c,
and θ1,2 → θm,c.

In the two-layer approximation, the parameters Z
and W are given by the very simple expressions [14]

Z = 2Y cosφm − cosφc, (76)

W = (2Y sinφm sin 2θm + sinφc sin 2θc, 0, (77)

− (2Y sinφm cos 2θm + sinφc cos 2θc)) ,

where the vector W is written in the component
form and the parameter Y was defined in (59). If
the parametric-resonance condition (68) is satisfied
through the realization in (70), the neutrino-flavor-
transition probability reduces to [11, 12]

P = sin2(2θc − 4θm), (78)

whereas the probability of ν2 ↔ νe transitions is [13]

P2e = sin2(2θc − 4θm + θ0). (79)

These probabilities can be close to unity (the argu-
ments of the sines are close to π/2) even if the ampli-
tudes of neutrino oscillations in the mantle, sin2 2θm,
and in the core, sin2 2θc, are rather small. This can
happen if the neutrino energy lies in the range Ec <
E < Em, where Em andEc are the energy values that
correspond to the MSW resonance in the mantle and
in the core of the Earth. This condition is equivalent to
Nm < NMSW < Nc. In the case of the small-mixing-
angle MSW solution to the solar-neutrino problem,
sin2 2θ0 < 10−2 and P2e virtually coincides with P
unless both probabilities are very small.

The trajectories of neutrinos traversing the Earth
are determined by their nadir angle of Θn = 180◦ −Θ.
The distances Rm and Rc that neutrinos travel in the
mantle (each layer) and in the core are given by

Rm = R

(
cosΘn −

√
r2/R2 − sin2 Θn

)
, (80)

Rc = 2R
√
r2/R2 − sin2 Θn,

where R = 6371 km is the Earth’s radius and r =
3486 km is the core radius. The matter density in
P
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Fig. 6. Coordinate dependence of the transition
probability P for the case of total conversion over
five periods of the density modulation: (solid curve)
ten layers and (dashed curve) three layers. The
kinks correspond to the borders of the layers of
different densities. The curves were plotted for the
realization (70) (c1 = c2 = 0) of the parametric-
resonance condition.

the mantle of the Earth ranges from 2.7 g/cm3 at the
surface to 5.5 g/cm3 at the bottom, and that in the
core ranges from 9.9 to 12.5 g/cm3 (see, for example,
[24]). The electron-number fraction Ye is close to 1/2
both in the mantle and in the core. Taking the average
matter densities in the mantle and in the core to be
4.5 and 11.5 g/cm2, respectively, one finds for νe ↔
νµ,τ oscillations involving only active neutrinos that
Vm = 8.58× 10−14 eV and Vc = 2.19× 10−13 eV. For
νe ↔ νs and νµ,τ ↔ νs transitions involving sterile
neutrinos, these parameters are smaller by a factor of
two.

5.2. Parametric-Resonance Conditions for Neutrino
Oscillations in the Earth

If the parametric-resonance conditions (70) are
satisfied, the oscillations of neutrinos traversing the
core of the Earth can be strongly enhanced [11–16]
(see Fig. 8). In some cases, condition (69) can also
be fulfilled, and the parametric resonance leads to a
complete flavor conversion for neutrinos traversing
the Earth.

We will now discuss the resonance conditions
(70). The phases φm and φc depend on the neutrino
parameters ∆m2, θ0, and E and also on the distances
Rm and Rc that the neutrinos travel in the mantle
and in the core. The path lengths Rm and Rc vary
with the nadir angle; however, it can be seen from
HYSICS OF ATOMIC NUCLEI Vol. 64 No. 5 2001
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Fig. 7. As in Fig. 6, but for the case where the parametric-
resonance condition is realized through the cancellation
of the two terms in Eq. (32) (the total conversion is
achieved over three layers).

(80) that their changes are correlated and that they
cannot take arbitrary values. It follows that, if,
for some values of the neutrino parameters, there
exists a value of the nadir angle Θn such that, for
example, the first condition in Eq. (70) is satisfied,
it is not obvious whether the second condition is
also satisfied at the same value of Θn. In other
words, it is not clear whether the realization (70) of
the parametric-resonance condition (68) is possible
for neutrino oscillations in the Earth for at least
one set of the neutrino parameters ∆m2, θ0, and
E. It was shown in [13, 14], however, that not
only are the parametric-resonance conditions (70)
satisfied (or approximately satisfied) for a rather wide
range of nadir angles covering the Earth’s core,
but they are fulfilled for the ranges of the neutrino
parameters that are of interest for the neutrino-
oscillation solutions to the solar- and atmospheric-
neutrino problems. In particular, the conditions
for the principal resonance (k′ = k′′ = 0) are satis-
fied to a good accuracy for sin2 2θ0

<∼ 0.1 and δ �
(1.1–1.9) ×10−13 eV2, which includes the ranges
relevant to the small-mixing-angle MSW solution of
the solar neutrino problem and to the subdominant
νµ ↔ νe and νe ↔ ντ oscillations of atmospheric
neutrinos.

The fact that the parametric-resonance conditions
(70) can be satisfied so well for neutrino oscillations
in the Earth is rather surprising. It is a consequence
of a number of remarkable numerical coincidences. It
has been known for some time that the potentials Vm
and Vc corresponding to the matter densities in the
mantle and in the core, the inverse radius of the Earth
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 5 200
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Fig. 8. Transition probabilityP for νe ↔ νµ,τ oscillations
in the Earth as a function of the distance t (measured
in units of the Earth’s radius) along the neutrino tra-
jectory (solid curve) at δ ≡ ∆m2/4E = 1.8 × 10−13 eV,
sin2 2θ0 = 0.01, and Θn = 11.5◦ . The hypothetical case
of neutrino propagation over full two periods of the density
modulation [tmax = 2(Rm +Rc)] is represented by the
dashed curve.

(R−1), and typical values of δ ≡ ∆m2/4E of interest
for solar and atmospheric neutrinos are all on the
same order of magnitude—(3× 10−14–3× 10−13) eV
(see, for example, [11, 25, 26]). It is owing to this
surprising coincidence that Earth’s medium effects
on the oscillations of solar and atmospheric neutrinos
may become sizable. For the parametric resonance
to occur, a coincidence by an order of magnitude is
not sufficient, however: the conditions in (70) must
be satisfied at least to within 50% [14]. This is exactly
what takes place. In addition, we note that, in a wide
range of the nadir angles Θn, the δ value at which
the resonance conditions (70) are satisfied changes
slightly with Θn, but fulfillment of these conditions is
not destroyed.

That the second realization of the parametric-
resonance condition (68)—that in which the two
terms in X3 cancel each other—is also possible for
neutrino oscillations in the Earth [19] is even a more
surprising fact. This requires that the effective matter
densities Nm and Nc and the neutrino path lengths
Rm and Rc in the mantle and in the core be tuned,
in a very subtle way, to the values of the neutrino
parameters θ0 and δ = ∆m2/4E. Albeit looking very
contrived, this turns out to be possible. Moreover,
the condition in (69) can also be met for some
values of the neutrino parameters, and a complete
flavor conversion for neutrinos traversing the Earth is
possible [19].
1
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6. DISCUSSION AND CONCLUSION

We have reviewed the Floquet theory of linear
differential equations with periodic coefficients and
discussed its applications to neutrino oscillations in
matter of periodically modulated density. In particu-
lar, we have shown for the case of two-flavor oscilla-
tions that the evolution of the system takes the form
of parametric oscillations—modulated oscillations
characterized by two periods, the period T of density
modulations and τ = (2π/Φ)T , where ±iΦ are the
characteristic exponents. We have also discussed
a parametric resonance in neutrino oscillations and
shown that, irrespective of the shape of periodic den-
sity modulations, the parametric-resonance condi-
tion isX3 = 0, where X3 is one of the parameters that
determine the monodromy matrix given by Eq. (36).
We have also reviewed an exact solution in the case of
two-flavor neutrino oscillations in a medium having
a periodic step-function density profile and discussed
its connections with Floquet theory. This solution,
which was obtained in [9, 14], allows one to find
explicit expressions for the parameters entering into
the monodromy matrix, including the characteristic
exponents and X3. We have discussed implications
of this exact solution for the oscillations of neutrinos
within the Earth, whose density profile can be ap-
proximated, to a very good accuracy, by a piece of a
periodic step-function profile. We have concentrated
on possible parametric-resonance effects in neutrino
oscillations within the Earth.

Apart from being an interesting physical phe-
nomenon, a parametric resonance in neutrino oscil-
lations can furnish important additional information
about the properties of the neutrino. Therefore, an
experimental observation of this effect would be of
considerable interest. Prospects for the experimental
observation of a parametric resonance in oscilla-
tions of solar and atmospheric neutrinos traversing
the Earth were discussed in [17, 18]. To a large
extent, these prospects depend on the values of
some neutrino parameters that have not yet been
determined conclusively. The bottom line is that such
an experimental observation is difficult, but it may be
possible.

A parametric enhancement may lead to noticeable
effects in oscillations of supernova neutrinos in the
Earth, resulting in characteristic distortions of the
spectra of neutrinos traversing the Earth’s core [27].
However, a sufficiently accurate measurement of the
supernova-neutrino spectrum would require a rela-
tively close supernova (L ≤ 10 kpc).

An interesting possibility of studying paramet-
ric effects in neutrino oscillations would be a very
long baseline experiment with intense neutrino beams
produced at neutrino factories (for a discussion of
PH
neutrino-oscillation experiments at neutrino facto-
ries, see, for example, [28]). For baselines larger
than approximately 10 700 km, neutrinos would tra-
verse the Earth’s core, so that it would be possible
to probe parametric-resonance effects in νe ↔ νµ(τ)

oscillations. Notice, however, that the present fea-
sibility studies concentrate on relatively short base-
lines, a few thousand kilometers [28]. In addition, the
expected average energies of neutrino beams (E ≥
20 GeV) in the currently discussed experiments are
somewhat higher than what would be desirable in
order to study parametric effects.

As we have seen, it is not easy to observe a para-
metric resonance in oscillations of solar, atmospheric,
or supernova neutrinos within the Earth or in ex-
periments at neutrino factories. Can one create the
required matter-density profile and observe a para-
metric resonance in neutrino oscillations in laboratory
(that is, short-baseline) experiments? Unfortunately,
the answer to this question seems to be negative:
this would require either an overly long baseline or
neutrino propagation in a medium of overly high den-
sity (see [17, 18] for details). One can conclude that
the only presently known object where a parametric
resonance in neutrino oscillations can occur is our
planet, as was first indicated in [11, 12].
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Abstract—The equation of state of baryon-rich quark matter is studied within the SU(3) Nambu–
Jona-Lasinio model with flavor-mixing interaction. Possible bound states (strangelets) and chiral phase
transitions in this matter are investigated at various values of the strangeness fraction rs. Model predictions
are very sensitive to the ratio of the vector and scalar coupling constants, ξ = GV /GS . At ξ = 0.5 and zero
temperature, the binding energy takes a maximum value of about 15 MeV per baryon at rs � 0.4. Such
strangelets are negatively charged and have typical lifetimes of about 10−7 s. Calculations are performed at
finite temperatures as well. According to these calculations, bound states exist up to temperatures of about
15 MeV. The model predicts a first-order chiral phase transition at finite baryon densities. The parameters
of this phase transition are calculated as functions of rs. c© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Almost 30 years ago, A.B. Migdal put forth the
brilliant idea of pion condensation in nuclear mat-
ter [1]. Soon, it was realized that this phenomenon
may lead to the existence of density isomers [2]. At
about this time, Lee and Wick proposed another
mechanism leading to the appearance of an abnormal
nuclear state [3]. It is related to the restoration of
chiral symmetry at high baryon densities. These ideas
served as a motivation for initiating new experimental
programs aimed at producing hot and dense nuclear
matter in energetic collisions of heavy nuclei. These
experiments started in Dubna and Berkeley and then
continued in Brookhaven and CERN. Nowadays, ex-
citing expectations are associated with new ultrarel-
ativistic heavy-ion colliders (RHIC and LHC).

The general goal of present and future experiments
with ultrarelativistic heavy ions is to study the equa-
tion of state and the dynamical properties of strongly
interacting matter. Presently, the main interest lies
in investigating chiral and deconfinement phase tran-
sitions predicted by QCD. The ultimate goal is to
produce and study, under laboratory conditions, a
new state of matter, quark–gluon plasma (QGP).
This state of matter can be reached only at high
temperatures or particle densities, when elementary

∗This article was submitted by the authors in English.
1)Russian Research Centre Kurchatov Institute, pl. Kurcha-
tova 1, Moscow, 123182 Russia.

2)Institut für Theoretische Physik, Universität Frankfurt,
Postfach 111932, Robert-Mayer-Strasse 8-10, D-60054
Frankfurt am Main, Germany.

3)Niels Bohr Institute, Blegdamsvej 17, DK-2100 Copen-
hagen, Denmark.
1063-7788/01/6405-0802$21.00 c©
constituents, quarks and gluons, are liberated from
hadrons.

Since a direct application of QCD at moderate
temperatures and nonzero chemical potentials is not
possible at present, simpler effective models respect-
ing some basic symmetry properties of QCD are
commonly used. The Nambu–Jona-Lasinio (NJL)
model [4, 5], which deals with constituent quarks and
which respects chiral symmetry, is one of the most
popular models of this kind. In recent years, this
model has been widely used to describe hadron prop-
erties (see the reviews articles [6, 7]), phase transi-
tions in dense matter [8–13], and multiparticle bound
states [14–17].

In [18, 19], we used the NJL model to study the
properties of quark–antiquark plasma out of chemical
equilibrium. In fact, we considered a system with
independent densities of quarks and antiquarks. We
found not only first-order transitions but also deep
bound states even in baryon-free matter with equal
densities of quarks and antiquarks. Here, emphasis
is put on investigating the possibility of bound states
and phase transitions in equilibrated matter at various
flavor compositions. In particular, we consider the
possibility of bound states in quark matter with a
significant admixture of strange quarks, strangelets.
Thermal properties of strange-quark matter are also
studied.

This paper is organized as follows. In Section 2, a
generalized NJL model including flavor-mixing terms
is formulated in the mean-field approximation. The
predictions of the model for strange matter and the
characteristics of its bound states at zero temperature
are discussed in Section 3. Finite-temperature effects
are considered in Section 4. For new bound states,
2001 MAIK “Nauka/Interperiodica”
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the possible decay modes are discussed in Section 5.
The basic results of the present study are summarized
in Section 6.

2. FORMULATION OF THE MODEL

Below, we use the SU(3)-flavor version of the NJL
model suggested in [20]. The corresponding La-
grangian is written as (� = c = 1)

L = ψ (i ∂/ − m̂0)ψ (1)

+GS
8∑
j=0

[(
ψ
λj
2
ψ

)2

+
(
ψ
iγ5λj

2
ψ

)2
]

−GV
8∑
j=0

[(
ψ γµ

λj
2
ψ

)2

+
(
ψ γµ

γ5λj
2

ψ

)2
]

−K
[
detf

(
ψ (1 − γ5)ψ

)
+ detf

(
ψ (1 + γ5)ψ

)]
,

where ψ is the column vector consisting of three
single-flavor spinors ψf ; f = u, d, s; λ1, . . . , λ8 are
the SU(3) Gell-Mann matrices in flavor space; λ0 ≡√

2/3 I; and m̂0 = diag(m0u, m0d, m0s) is the ma-
trix of bare (current) quark masses. At m̂0 = 0, this
Lagrangian is invariant under SUL(3) ⊗ SUR(3)
chiral transformations. The second and the third term
in Eq. (1) correspond, respectively, to the scalar–
pseudoscalar and the vector–axial-vector 4-fermion
interaction. The last 6-fermion-interaction term
breaks UA(1) symmetry and gives rise to flavor-
mixing effects.

In the mean-field approximation, Lagrangian (1)
reduces to

LMFA =
∑
f

ψf (iD/ −mf )ψf (2)

−GS
2

∑
f

ρ2
Sf +

GV
2

∑
f

ρ2
V f + 4K

∏
f

ρSf ,

where D/ = ∂/ + i γ0GV ρV f and

ρSf = 〈ψfψf 〉, (3)

ρV f = 〈ψfγ0ψf 〉 (4)

are the scalar and vector densities of quarks with
flavor f . Angular brackets correspond to quantum-
statistical averaging. The constituent quark masses
mf are determined by the coupled set of gap equa-
tions

mf = m0f −GS ρSf + 2K
∏
f ′ �=f

ρSf ′ . (5)

The NJL model is an effective nonrenormaliz-
able model. To regularize the divergent contribu-
tion of negative-energy states of the Dirac sea, one
must introduce an ultraviolet cutoff. Following com-
mon practice, we use the 3-momentum cutoff θ(Λ −
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 5 200
p) in divergent integrals.4) The model parameters
m0f , GS ,K, and Λ can be fixed by fitting the observed
masses of π,K , and η′ mesons and the pion decay
constant fπ. According to [20], a reasonable fit is
achieved with the following values:
m0u = m0d = 5.5 MeV, m0s = 140.7 MeV, (6)

GS = 20.23 GeV−2,K = 155.9 GeV−5, (7)

Λ = 0.6023 GeV.
Motivated by the discussions in [6, 21], we choose the
following value of the vector coupling constant:5)

GV = 0.5GS = 10.12 GeV−2. (8)

Let us consider homogeneous, thermally (but not,
in general, chemically) equilibrated quark–antiquark
matter at temperature T . Let ap,λ ( bp,λ) and a+

p,λ

(b+p,λ) be the destruction and creation operators for
a quark (an antiquark) in the p, λ state, where p
is the 3-momentum and λ is a discrete quantum
number that denotes spin and flavor (color indices are
suppressed). It can be shown [18] that the quark and
antiquark phase-space occupation numbers coincide
with the Fermi–Dirac distribution functions; that is,

〈a+
p,λ ap,λ〉 ≡ npf (9)

=
[

exp
(
Epf − µRf

T

)
+ 1

]−1

,

〈b+p,λ bp,λ〉 ≡ npf (10)

=
[

exp
(
Epf − µRf

T

)
+ 1

]−1

,

where Epf =
√
m2
f + p2 and µRf and µRf stand for

the reduced chemical potentials of quarks and anti-
quarks:

µRf = µf −GV ρV f , (11)

µRf = µf +GV ρV f . (12)

The explicit expression for the vector density can
be written as

ρV f = ρf − ρf , (13)

where

ρf = ν

∫
d3p

(2π)3
npf , ρf = ν

∫
d3p

(2π)3
npf (14)

are the number densities of, respectively, quarks and
antiquarks of flavor f and ν = 2Nc = 6 is the spin–
color degeneracy factor. The net baryon density is
obviously defined as

ρB =
1
3

∑
f

ρV f . (15)

4)Here, θ (x) ≡ (1 + sgn x)/2.
5)See the discussion of this question in [19].
1
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The physical vacuum (ρf = ρf = 0) corresponds to
the limit npf = npf = 0.

In general, the chemical potentials µf and µf are
independent variables. The assumption of chemical
equilibrium with respect to creation and annihilation
of qq pairs leads to the conditions

µf = −µf , f = u, d, s. (16)

These conditions automatically follow from the rela-
tions

µi = Bi µB + Si µS + Qi µQ (i = u, d, s, ū, d̄, s̄),
(17)

which are valid for any qq system chemically equili-
brated with respect to strong interactions. Here, three
independent chemical potentials, µB, µS , and µQ, are
fixed by the net baryon number B, the strangeness S,
and the electric chargeQ of the system.

In heavy-ion collisions at high bombarding en-
ergies, partonic matter created is characterized by
B � 0 and S � 0; therefore, we have µf � µf � 0.
On the other hand, strangelets are finite droplets with
nonzeroB and S. Using Eq. (17), one can see that, in
this case, µB , µS 	= 0; therefore, the inequality µs >
µu, d must hold. This conclusion shows that strong
fluctuations are needed for strangelet formation in
high-energy nuclear collisions.

If the strangelet lifetimes are sufficiently long,
equilibrium with respect to the weak processes

s → u+ e−+ νe, u+ e−→ s+ νe, s + u↔ u+ d
(18)

may also be achieved. Assuming that µe = µν = 0,
one arrives at the conditions

µu = µd = µs. (19)

As will be shown below, the constituent masses ms
of strange quarks in (mechanically) stable strangelets
exceed the chemical potentials of u and d quarks.
For µs > ms and T → 0, the β equilibrium conditions
(19) can be realized only after all s quarks have de-
cayed.

Using conditions (16) in the zero-temperature
limit, one can see that the density of antiquarks van-
ishes in baryon-rich chemically equilibrated matter,
ρ→ 0. In the mean-field approximation, the reduced
chemical potential of quarks with flavor f coincides
with their Fermi energy; that is,

µRf =
√
m2
f + p2

Ff , (20)

where

pFf =
(

6π2ρf
ν

)1/3

(21)

is the corresponding Fermi momentum.
P

Within the NJL model, the energy density and
pressure of matter, as well as the quark condensates
ρSf , contain divergent terms originating from the
negative-energy levels of the Dirac sea. As was noted
above, these terms are regularized by introducing the
3-momentum cutoff θ (Λ − |p|). The scalar density
can then be represented as

ρSf = ν

∫
d3p

(2π)3
mf

Epf
[npf + npf − θ (Λ − p) ] .

(22)
The energy density corresponding to Lagrangian

(2) can be written [19] as

e = eK + eD + eS + eV + eFM + e0. (23)

This expression includes the “kinetic” term

eK = ν
∑
f

∫
d3p

(2π)3
Epf (npf + npf ) , (24)

the “Dirac sea” term

eD = −ν
∑
f

∫
d3p

(2π)3
Epf θ (Λ − p), (25)

the scalar-interaction term

eS =
GS
2

∑
f

ρ 2
Sf , (26)

the vector-interaction term

eV =
GV
2

∑
f

ρ 2
V f , (27)

and the flavor-mixing term

eFM = −4K
∏
f

ρSf . (28)

The constant e0 has been introduced in Eq. (23) in
order to annihilate the energy density of the physical
vacuum. This constant can be expressed in terms of
the vacuum values of the constituent masses, mvac

f ,
and the quark condensates, ρvac

Sf . These values are
obtained self-consistently by solving the gap equa-
tions (5) in a vacuum—that is, at npf = npf = 0.

Explicit analytic formulas for the energy density
and the gap equations can be obtained in the case of
zero temperature. For T → 0, one has [18]

eK + eD =
ν

8π2

∑
f

[
p4
FfΨ

(
mf

pFf

)
− Λ4Ψ

(mf

Λ

)]
,

(29)

ρSf =
ν

8π2

[
p 3
Ff Ψ ′

(
mf

pFf

)
− Λ3Ψ ′

(mf

Λ

)]
,

(30)
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where

Ψ(x) ≡ 4

1∫
0

dt t 2
√
t 2 + x2 (31)

=
(

1 +
x2

2

)√
1 + x2 − x4

2
ln

1 +
√

1 + x2

x
.

For a system with independent chemical potentials
for quarks (µf ) and antiquarks (µf ), one can use the
thermodynamic identity for the pressure of qq matter,

P =
∑
f

(µfρf + µfρf ) − e+ sT, (32)

where s is the entropy density,

s = −ν
∑
f

∫
d3p

(2π)3
(33)

× [npf lnnpf

+(1 − npf ) ln (1 − npf ) + npf → npf ] .

Aswas discussed in [18], bound states of qq matter
or first-order phase transitions in qq matter are
possible if its equation of state P = P (µf , µf , T )
contains regions of negative pressure or isothermal
compressibility, respectively. At T = 0, the state
of mechanical equilibrium with a vacuum (P = 0)
corresponds to the minimum of the energy per parti-
cle, ε = E/

∑
f (Nf + Nf̄ ) = e/

∑
f (ρf + ρ̄f ), where

E is the total energy and Nf(f̄) is the number of
quarks (antiquarks) of flavor f . In the case of pure
quark matter, Nf̄ = 0, its baryon number and its
energy per baryon are B =

∑
f Nf/3 and E/B = 3ε,

respectively.
To characterize the flavor composition, we intro-

duce the strangeness-fraction parameter

rs ≡
|S|
3B

=
|ρs − ρs|

3ρB
. (34)

Below, we consider only the isospin-symmetric mix-
tures, where Nu = Nd and Nū = Nd̄. It can be
shown [19] that, in the dilute limit, where all single-
flavor densities ρf and ρf are small, ε tends to the sum
of the constituent quark and antiquark masses in a
vacuum that is weighted according to rs:

mvac
q (rs) = (1 − rs)mvac

u + rsm
vac
s . (35)

In the case of chemically equilibrated matter at T = 0
and fixed rs, one has

ε(ρB → 0, rs) = mvac
q (rs). (36)

A bound multiparticle state exists if there is a nontriv-
ial minimum of ε as a function of ρB and if the binding
energy (BE) per baryon is positive:

BE = 3
[
mvac
q (rs) − εmin(rs)

]
> 0. (37)
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Fig. 1. Energy per particle, ε, in pure quark matter at
zero temperature as a function of the baryon density at
various values of the strangeness fraction rs (the value of
ρ0 = 0.17 fm−3 is taken for the normal nuclear density).
Points indicate local minima of ε.

3. STRANGE-QUARK MATTER AT ZERO
TEMPERATURE

Let us first consider quark matter with nonzero net
baryon density at T = 0. In the chemically equili-
brated system, the density of valence antiquarks will
be zero for each flavor (ρf = 0). Figure 1 shows
the energy per quark as a function of the baryon

density ρB =
1
3

∑
f

ρf . Different curves correspond

to different rs, which, in this case, is the relative con-
centration of strange quarks. From Eq. (36), it can
be seen that, for ρB → 0, the energy per quark tends
to the corresponding vacuum mass. With growing
density, both the attractive scalar and repulsive vector
interactions contribute to ε (see the discussion of this
question in [19]).

It is interesting that, at rs ≤ 0.7, the attractive in-
teraction is sufficiently strong to produce a nontrivial
local minimum at finite ρB. In pure u, d matter (rs =
0), this minimum is unbound by about 20 MeV in
relation to the vacuum masses of the u and d quarks.
On the other hand, it is located at a baryon density
of about 1.8 ρ0, which is surprisingly close to the sat-
uration density of normal nuclear matter. Of course,
the location of this minimum depends on the model
parameters. Nevertheless, one can speculate that, as
soon as nucleon-like three-quark correlations, which
are not considered in the mean-field approach, are
taken into account, this state transforms into a cor-
rect nuclear ground state.
1
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Fig. 2.Constituentmasses of u and s quarks as functions
of the baryon density at zero temperature. Shown in
the right upper corner are the values of the strangeness
fraction rs. Points correspond to minima of the energy
per particle at a given value of rs.

When rs grows from 0 to about 0.4, the local min-
imum deepens and the corresponding baryon density
increases to about 3.2 ρ0. At larger rs, the minimum
again becomes shallower and disappears completely
at rs � 0.7. At 0.2 < rs < 0.6, the minima corre-
spond to true bound states; that is, the energy per
quark is lower than the corresponding vacuum mass.
But in all cases, these bound states are rather shallow:
even the most strongly bound state at rs � 0.4 is
bound only by about 15 MeV per baryon. Never-
theless, the appearance of local minima means that
finite droplets can be in mechanical equilibrium with
the vacuum at P = 0. It is natural to identify such
droplets with strangelets, hypothetical objects formed
by light and strange quarks [22–27].

It should be emphasized here that β equilibrium
is not required in the present approach (see the
discussion below). For this reason, our most bound
strangelets are predicted to be richer in strange
quarks (rs > 1/3) than in approaches that assume
β equilibrium [22, 23, 25] and which yield rs < 1/3.
As a result, these strangelets will be negatively
charged.6) Indeed, the ratio of the charge Q to the
baryon number B is expressed in terms of rs as

Q

B
=

2
3
ρu
ρB

− 1
3
ρd
ρB

− 1
3
ρs
ρB

=
1
2

(1 − 3rs). (38)

For rs � 0.4, this gives Q/B � −0.1. In light of
recent discussions (see, for example, [27]) concern-

6)Negatively charged strangelets were also considered
in [24, 26].
P
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Fig. 3. As in Fig. 2, but for the chemical potentials of u
and s quarks.

ing possible dangerous scenarios of the production
of negatively charged strangelets at RHIC, we em-
phasize that the strangelets predicted here are not
absolutely bound;7) that is, their energy per baryon is
higher than that for normal nuclear matter. Hence,
the spontaneous conversion of normal nuclear matter
to strange-quark matter is energetically impossible.

Figure 2 shows the constituent masses of u and
s quarks as functions of the baryon density. The
dropping masses manifest a clear tendency to the
restoration of chiral symmetry at high densities. The
points indicate the masses at the local minima in the
corresponding energies per baryon shown in Fig. 1.
Note that the stronger the reduction of constituent
masses, the deeper the corresponding bound states.
For the metastable state at rs = 0, a candidate for
the nuclear ground state, the masses of the u and
s quarks are equal to, respectively, 0.3 and 0.9 of
their vacuum values. For the most bound states at
rs � 0.4, the corresponding mass ratios are reduced
to 0.15 and 0.6.

The behavior of the chemical potentials of the u
and s quarks is shown in Fig. 3. At rs 	= 0, 1, the
contribution of the vector interaction [see Eqs. (11),
(20)] results in that µu and µs show a nearly linear
growth at large baryon densities. In accordance with
the above discussion, one can see that the conditions
µs > µu,d hold at baryon-density values correspond-
ing to bound states of strange matter.

The properties of multiparticle bound states are
summarized in Figs. 4 and 5. Figure 4 shows the

7)A similar conclusion was drawn in [17].
HYSICS OF ATOMIC NUCLEI Vol. 64 No. 5 2001



STRANGE-QUARK MATTER 807
binding energy per baryon [see Eq. (37)]. The max-
imum binding, about 15 MeV, is realized at rs �
0.4. One should bear in mind that, in the case of
baryon-rich matter, local minima of ε result from a
strong cancellation between the attractive scalar and
repulsive vector interactions. Therefore, they are very
sensitive to their relative strengths. The results pre-
sented above were obtained forGV = 0.5GS . For the
sake of comparison, Figs. 4 and 5 also present model
predictions for GV = 0. In this case, the maximum
binding energy increases to about 90 MeV per baryon
and the corresponding rs value is shifted to about
0.6. It is interesting to note that, for GV = 0, the
bound state appears even in pure u, d matter. The
corresponding binding energy is about 20 MeV per
baryon.

The points in Fig. 5 indicate the positions of some
conventional baryons. By inspecting the figure, one
can make a few interesting observations. First, con-
ventional baryons are more bound than strangelets
even at GV = 0. This indicates that baryon-like
three-quark correlations might indeed be very impor-
tant in baryon-rich quark matter. Second, the bound-
state energies grow monotonically with rs.

4. QUARK MATTER AT FINITE
TEMPERATURES

In this section, we study the properties of decon-
fined matter at finite temperatures. For this case,
calculations can be performed by using the general
formulas of Section 2 with the quark and antiquark
occupation numbers given by Eqs. (9) and (10). Un-
less otherwise stated, the results given below corre-
spond toGV /GS = 0.5.

Figure 6a presents the pressure isotherms for the
case of zero net strangeness (rs = 0), which is ap-
propriate for fast processes where net strangeness is
conserved—for example, in relativistic nuclear col-
lisions. One can see a spinodal-instability region,
∂ρP < 0, which is characteristic of a first-order phase
transition. The corresponding critical temperature
is about 35 MeV. The dashed curve (binodal) shows
the boundary of mixed-phase states. Bound (zero-
pressure) states exist only at temperatures below
15 MeV.

Generally, the equation of state of chemically equi-
librated quark matter is characterized by two quanti-
ties: the net baryon chargeB and the net strangeness
S. Therefore, it is interesting to study the thermal
properties of this matter at S 	= 0. Such states can
occur in neutron stars. They can also be realized
via the distillation mechanism accompanying a QCD
phase transition in heavy-ion collisions [28]. Fig-
ure 6b shows the pressure isotherms for rs = 0.4. As
was discussed above, this case corresponds to the
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 5 200
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Fig. 4. Binding energies per baryon in pure quark matter
as functions of the strangeness fraction rs at zero temper-
ature: (dotted curve) results of the calculations disregard-
ing vector interaction (GV = 0) and (solid curve) results
forGV = 0.5GS .

most bound strange matter at T = 0. At this value
of rs, bound states exist at T < 30 MeV. The dashed
curve in Fig. 6b again shows the boundary of the two-
phase region. It is obtained by solving the Gibbs

conditions P (1) = P (2), µ(1)
u = µ

(2)
u , and µ(1)

s = µ
(2)
s ,

where the indices 1 and 2 label two coexisting phases.
In relation to the case of rs = 0, the chiral phase tran-
sition occurs in a wider region of T and ρB . Applying
the Gibbs conditions, one can see that, for rs = 0,
the equilibrium pressure isotherms are constant in
the mixed-phase region (Maxwell construction). But
this is not so for rs = 0.4 . From the general con-
clusions of [29], it follows that, in the case of two
conserved charges (baryon number and strangeness),
the Maxwell construction is modified in such a way
that the equilibrium pressure at fixed T increases
with ρB in the mixed-phase domain. However, this
increase is small (a few percent) and is hardly visible
in Fig. 6b. By way of example, we indicate that, for
T = 30 MeV, the equilibrium pressure changes from
5.36 to 5.44 MeV/fm3. It is interesting that, in the
coexisting phases, local values of rs are slightly differ-

ent (r(1)
s < 0.4 < r

(2)
s )—only the global strangeness

ratio is fixed (S/3B = 0.4).
Figure 7 shows the critical temperatures for the

existence of phase transitions and bound states in
equilibrated strange matter as functions of rs. One
can see that both temperatures first grow with rs and
then drop to zero at rs � 0.8. The maximal values of
T , respectively, 50 and 30 MeV are realized at some
intermediate value of rs � 0.4. As was demonstrated
earlier in Fig. 4, this value of rs corresponds to the
1
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〈N〉 = [mN + 4m∆(1232)]/5 (for details, see [19]). The
dotted curve shows the results in the limitGV → 0.

most bound state of strange-quark matter at T = 0.
Thus, we see an obvious correlation: the deeper the
bound state at T = 0, the stronger the phase transi-
tion at finite temperatures.

It should be emphasized here again that the
thermal properties of asymmetric baryon-rich quark
matter are very sensitive to the relative strength
of scalar and vector interactions [19]. If we set
GV = 0, as in the majority of the calculations in
the literature, the corresponding critical temperature
at rs = 0 increases to about 70 MeV. On the other
hand, zero-pressure states disappear completely if
one takes GV = 0.65GS . The calculation shows
that there is no phase transition for GV > 0.71GS .
It is interesting to note that, in all cases, this first-
order phase transition occurs in the region of densities
around the normal nuclear density ρ0.

More detailed information about the first-order
(chiral) phase transition predicted by our model is
given in Fig. 8, where the critical temperature Tc and
the baryon chemical potential µB = µu + 2µd = 3µu
are shown for various values of rs. Again, one can see
that maximal Tc � 50 MeV corresponds to rs � 0.4.

Two phases coexisting in the mixed-phase domain
of the chiral phase transition are characterized by
different values of the constituent quark masses.
If qq matter evolves from a high- to a low-density
state, crossing the two-phase domain, there occurs
a transition from chirally restored states (with low
quark masses mf ∼ m0f ) to the chirally broken
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Fig. 6. Pressure isotherms for chemically equilibrated
quark matter at rs = (a) 0 and (b) 0.4. Temperatures are
given in MeV on the corresponding solid curves. The
boundaries of spinodal regions are shown by the dashed
curves. The dash-dotted lines show the equilibrium pres-
sure in the mixed-phase domain at T = 30 MeV.

phase (where mf ∼ mvac
f ). Therefore, a part of the

internal energy must be converted into the rest mass.
If the total entropy 8) S and the effective number of
degrees of freedom are conserved, the temperature
will decrease during this transition. This is clearly
seen in Fig. 9, where isentropes with entropy per
baryon S/B = 2 and S/B = 5 are shown for the
case of rs = 0. A similar effect was predicted in [30]
within the linear σ model. The drop of temperature
as the result of this cooling mechanism may serve
as an observable signature of the chiral phase tran-
sition in nuclear collisions. The above behavior is
qualitatively different from that which is expected in
the deconfinement transition, where the number of
degrees of freedom is smaller in the dilute (hadronic)

8)This quantity should not be confused with the net
strangeness introduced in Section 2.
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phase and where the temperature may increase during
hadronization [31].

These results demonstrate that the chiral phase
transition is rather similar to a liquid–gas phase tran-
sition in normal nuclear matter. In the present case
(Tc � 30 MeV, ρBc ∼ ρ0), the critical temperature
and the baryon density are not very far from the values
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 5 200
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predicted by conventional nuclear models [32] (Tc �
20 MeV, ρBc ∼ 0.5 ρ0). One may expect that, in a
more realistic approach that takes into account nu-
cleonic correlations, the chiral transition may become
an ordinary “liquid–gas” phase transition. Should
this be the case, any other QCD phase transition of
the liquid–gas type at a higher baryon density would
be doubtful. At least, only one phase transition of this
type is predicted within the NJL model.

5. DISCUSSION OF DECAY MODES

Let us briefly discuss the possible decay channels
for bound states of quark matter described above.
In strange-quark matter (without antiquarks), flavor
conversion is only possible through weak decays. As
follows from Fig. 3, the condition µs > µu holds at
densities corresponding to zero pressure. This means
1
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Fig. 10. Schematic pictures of energy levels (shown by
shading) occupied by light and strange quarks in cold
quark matter at various values of the strangeness frac-
tion rs. The left and right diagrams in the upper panel
(a) show the results obtained within the NJL model for
strange (rs = 0.4) and nonstrange (rs = 0) matter. The
lower panel (b) shows the same results within the MIT
bag model [19]. The hatched boxes in the upper and lower
panels correspond, respectively, to the constituent and to
the bare quark mass. The arrows indicate the weak decay
processes s→ u+ e− + νe and s+ u→ u+ d.

that weak processes of the types s → u + e− + νe
and s+ u → u+ d are allowed. Since there is no lo-
cal barrier at any rs (see Fig. 5), all strange quarkswill
eventually be converted into light u and d quarks in a
system produced initially at some rs 	= 0. Schemat-
ically, this conversion process is shown in Fig. 10a,
where the initial (rs 	= 0) and the final (rs = 0) state
correspond to the left and the right diagram, respec-
tively.

This picture differs markedly from that based on
the MIT bag model. Because the quark masses are
kept constant (mf = m0f ), the condition µs > ms

will be first satisfied at a relatively low baryon density
proportional to m3

0s. At higher densities, a certain
fraction of s quarks will always be present in β-
equilibrated matter (see Fig. 10b).

In the NJL model, however, the s-quark mass
is a function of both the baryon density and the
strangeness content. It can be seen from Fig. 10a
that, at any given rs, the condition µu,d = µs can
be satisfied only at sufficiently high baryon densities
that correspond to a positive pressure. On the other
hand, we always have µu,d < µs at the points of zero
PHY
pressure. Therefore, weak decays will proceed until a
system reaches rs = 0 [see right panel in Fig. 10a].

The lifetimes of strangelets at T = 0 can be
roughly estimated by analogy with neutron decay.
The matrix element for s-quark β decay is propor-
tional to (∆E)5/2 sin θC, where ∆E is the energy
gain in the reaction and θC is the Cabibbo angle
(sin θC � 0.22 [33]). As follows from our calculations
(see Fig. 3), the energy gain ∆E = µs − µu depends
on rs, ranging from about 200 MeV at rs = 0.4 to
100 MeV at rs = 0 . By scaling with corresponding
quantities for neutron decay, one can express the
lifetime of a strangelet as

τ ∼ τn

(
∆m

∆E

)5

sin−2 θC, (39)

where ∆m = mn −mp � 1.2 MeV and τn � 880 s
is the neutron lifetime [33]. This estimate gives τ ∼
10−7–10−6 s, depending on rs. It is not surprising
that this is close to the lifetimes of charged pions and
conventional hyperons.

6. CONCLUSION
On the basis of the NJL model, we have inves-

tigated the equation of state of chemically equili-
brated deconfined quark matter at various temper-
atures, baryon densities, and strangeness contents.
The model predicts the existence of loosely bound,
negatively charged strangelets with maximal binding
energies of about 15 MeV per baryon at rs � 0.4. In
just the same way as in [17], no absolutely stable
strange-quark matter has been found. The estimated
lifetimes of these states may be as long as 10−7 s.
It has been shown that the properties of baryon-
rich quark matter are very sensitive to the relative
magnitude of the vector and the scalar interaction. At
the standard values of the vector and scalar couplings,
GV /GS = 0.5, metastable bound states of chemically
equilibrated matter exist at T < 15 MeV, while, at
GV = 0, this temperature increases to 40 MeV.

Our calculation has revealed a first-order chiral
phase transition at finite baryon densities and moder-
ate temperatures. In the case of zero net strangeness
(rs = 0), the critical temperature is in the region
around 30 MeV and the critical baryon density is
around ρ0. We believe that this phase transition is
reminiscent of the ordinary liquid–gas phase tran-
sition in nuclear matter. We have found that the
maximal critical temperature Tc � 50 MeV is reached
when the ratio of the net strangeness to the baryon
charge is S/B � 1.2 . The model predicts a strong
cooling of matter during the phase transition owing
to generation of the constituent mass.

We hope that these results will generate a certain
optimism in searches for unusual states of matter in
relativistic heavy-ion collisions.
SICS OF ATOMIC NUCLEI Vol. 64 No. 5 2001
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Abstract—A vast body of experimental data accumulated in the past few years in hadronic Z0 decays
allows one to check quark-combinatorics relations for a new type of processes—namely, quark jets in
the decays Z0 → qq̄ → hadrons. In this paper, we review quark-combinatorics rules for the yields of
vector and pseudoscalar mesons, V/P , in the central and fragmentation regions of hadronic Z0 decays.
It is emphasized that, in the central region, a direct verification of quark-combinatorics rules is rather
problematic because of a considerable background associated with the decay of highly excited resonances;
however, such a verification is possible in the fragmentation region, at xhadron ∼ 0.5–1, where the
contribution of resonance decays is suppressed owing to a fast decrease of the spectra with increasing
xhadron. It is shown that, in the fragmentation region, experimental data on ρ0/π0 and p/π+ are in
reasonable agreement with the predictions of quark combinatorics. The ratios of the heavy-meson yields,
B∗/B and D∗/D, are also discussed: the data demonstrate good agreement with the quark combinatorial
results. We analyze the structure of the suppression parameters for strange- and heavy-quark production
in soft processes and estimate their orders of magnitude in multiperipheral processes; the ratio K±/π± at
xhadron ∼ 0.5–0.8 and the production probabilities for cc̄ and bb̄ mesons are in good agreement with the
estimates. c© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The relations of quark combinatorics for hadron
yields were originally based on a qualitative treatment
of a multiparticle production process as a process
in which the production of a cloud of noncorrelated
quarks and antiquarks is followed by their occasional
fusion into mesons and baryons [1, 2]. In this picture,
the quark-combinatorics approach echoes a statis-
tical treatment of nuclear decays [3]; as a matter
of fact, it was initiated by the success of statistical
methods in describing multinucleon processes. There
is yet another common point in treating multinucleon
and multiquark processes: the stage of final-state
interactions. In multinucleon reactions, the Watson–
Migdal factor [4] leads to an increase in the low-
energy contributions to nucleon–nucleon final-state
interactions. In multiquark reactions, the analogous
effect of qq̄ and qqq final-state interactions, as one can
guess, should enhance the production of the compar-
atively low-mass mesons and baryons: the hypothesis
that a few low-mass qq̄ and qqq multiplets make

∗This article was submitted by the authors in English.
1)KFKI Research Institute for Particle and Nuclear Physics,

Hungarian Academy of Sciences, PO Box 49, H-1525 Bu-
dapest, Hungary.
1063-7788/01/6405-0812$21.00 c©
a dominant contribution to the spectra of product
hadrons was put forth in [5].

This particular story reflects a general trend of
how methods and approaches used in nuclear physics
affected the physics of strong interactions. But as
time goes on, our understanding of QCD, the theory
of strong interactions, becomes deeper, so that a
new level of understanding of quark–gluon physics
in the soft-interaction region furnishes a sufficient
motivation for reviewing the relations of quark com-
binatorics.

1.1. Quark Combinatorics for Hadron Production

As was indicated above, the rules of quark com-
binatorics were initially suggested for finding prob-
abilities of hadron yields in multiparticle production
processes [1, 2]. Later, they were extended to meson-
decay processes (see [6]). In [1, 2] (see also [5]),
hadronic production processes were treated on the
basis of the following qualitative picture. In a mul-
tiparticle production process, there is a stage of a
cloud of constituent quarks. When joining, they form
mesons (qq̄), baryons (qqq), and antibaryons (q̄q̄q̄).
The probabilities of forming hadrons of different sorts
2001 MAIK “Nauka/Interperiodica”
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are determined by combinatorial rules that were ob-
tained under the assumption that quarks and anti-
quarks of the sea are produced uncorrelated and that
there is neither spin nor isospin alignment.

Our knowledge of the multiparticle production
mechanism—that is of the structure of amplitudes
responsible for inclusive production—is now, how-
ever, more complete, thus allowing us to investigate
the basis of quark combinatorics at a new level. In
the present paper, we investigate (i) the ratio of vec-
tor/pseudoscalar meson yields both for the central
and for the fragmentation region of quark jets in
hadronic Z0 decays (Sections 2 and 3, respectively)
and (ii) the structure of the suppression parameters
for the production of strange and heavy quarks in
multiperipheral processes (Section 4).

The time is ripe for this review, for, in the mean-
time, quark combinatorics has become widely used to
consider meson resonances of masses 1.0–2.5 GeV,
with the aim of determining the quark–gluon content
of these states by investigating resonance→ meson
transitions [7–9]. In the investigation of exclusive
decay processes [7–9], the qualitative picture of the
cloud structure of sea quarks is not used (which
renders the conclusions more model-independent).
However, the notion of a “suppression parameter”
for the production of strange quarks plays an impor-
tant role, and it is identical to that which is used in
multiparticle production processes. Thus, we have
to rethink quark combinatorics on a new basis, both
theoretically and experimentally.

1.2. Hadronic Z0 Decays

Here, we discuss the yields of vector (ρ0, ω, K̄∗)
and pseudoscalar (π,K) mesons in hadronic Z0 de-
cays. Currently, there exists rich experimental infor-
mation about these processes, which are determined
by Z0 → qq̄ → hadrons transitions. First, we con-
sider the production of light-flavor mesons created in
quark jets, Z0 → uū, Z0 → dd̄, and Z0 → ss̄, with
probabilities in the proportion [10]

uū : dd̄ : ss̄ � 0.26 : 0.37 : 0.37. (1)

The large mass of the Z0 boson makes it possible to
observe, inZ0 → qq̄ → hadrons hadronic decays, the
characteristic features of both multiparticle produc-
tion (central region of quark jets) and meson-decay
processes (fragmentation production).

The data accumulated by the ALEPH [11], L3
[12], DELPHI [13], and OPAL [14] collaborations
provide the spectra of vector and pseudoscalar me-
sons, dσ/dx(Z0 → V +X) and dσ/dx(Z0 → P +
X), in a broad interval of x, so that it becomes pos-
sible to compare them with the predictions of quark
combinatorics.
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 5 200
1.3. Hadron Production in the Central Region
and Vector-to-Pseudoscalar Ratio

In Section 2, we consider the hadron produc-
tion in the central region in the quark jet. We
discuss the prompt-vector-meson (V ) and prompt-
pseudoscalar-meson (P ) yields. For particles be-
longing to the same qq̄ multiplet, we obtain

Vprompt

Pprompt
= 3. (2)

This is a well-known result of quark combinatorics
[1, 2, 5] for hadron–hadron collisions. Hence, our
analysis shows that the ratio Vprompt/Pprompt takes
the same value for the Pomeron ladder in hadron–
hadron collisions and for quark jets, despite the differ-
ent structures of color exchanges in these processes.

As we have already said, the rules of quark com-
binatorics for hadron–hadron collisions were intro-
duced in [1, 2, 5]. Investigations of the QCD Pomeron
[15, 16] shed light on the quark–gluon structure of
the multiperipheral ladder in hadron collisions and
allowed us to deal with meson yields in the central
region on a new level. In Appendix A, we therefore
give a new analysis of the results of quark combina-
torics for Vprompt/Pprompt at x ∼ 0 using Lipatov’s
Pomeron [16] as a guide.

1.4. Suppression of Strange-Quark Production

An important feature in hadron production is the
suppression of the production probability for a strange
quark in the multiperipheral ladder:

uū : dd̄ : ss̄ = 1 : 1 : λ (3)

with 0 ≤ λ ≤ 1. This topic is discussed in Section 4:
it is shown that λ � m2/m2

s , where m and ms are
the masses of nonstrange and strange constituent
quarks, respectively.

This suppression results in a suppression of the
production of mesons containing strange quarks that
is observed in hadronic Z0 decays.

1.5. Soft Color Neutralization
of Quarks in Hadronic Z0 Decays

In considering processes of central production
in Z0 → qq̄ → hadrons decays, we start with the
standard mechanism of soft color neutralization
of outgoing quarks: newly born quark–antiquark
pairs are produced in the multiperipheral ladder (see
Fig. 1a), which provides the transfer of color from a
quark to an antiquark. The discontinuity of the self-
energy diagram in Fig. 1b (determined by cutting
through hadronic states, dashed line) determines the
cross section for Z0 → hadrons transitions, while
1
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Fig. 1. Hadronic decay of the Z0 meson: (a) multiperipheral ladder providing the transfer of color from the quark to the
antiquark; (b) self-energy diagram [cutting through hadronic states (dashed line) determines the hadronic cross section]; (c)
diagram for the inclusive-meson-production cross section in the central region, dσ(Z0 → meson +X)/dx, at x ∼ 0; and (d)
diagram for the inclusive-meson-production cross section in the fragmentation region at x ∼ 0.2–1.
the quark–gluon block inside the big quark loop
determines confinement forces.

Likewise, the cross section for inclusive meson
production in the central region is provided by the
discontinuity of the diagram in Fig. 1c. The me-
son → qq̄ → meson quark loop shown in Fig. 1c
with the production of vector or pseudovector mesons
determines the relative probabilities of these particles.
The chain of quark loops shown in Figs. 1b, 1c, and
1d (below, we denote this chain as A) contains both
color-singlet (c = 1) and color-octet (c = 8) compo-
nents: A = A1 +A8. According to the rules of 1/N
expansion [17], the main contribution is due to the
octet component. The idea that the quark leaves the
confinement trap by producing new quark–antiquark
pairs is rather old; it was discussed long ago (see,
for example, [5], Sections 7 and 9, and [18]). A new
step in understanding the confinement mechanism
was made by Gribov [19]. Following his ideas and
assuming that the t-channel exchange of a quark
is a constructive element of the jet, we use the jet
structure shown in Fig. 1a.

Spectroscopic calculations (see, for example, [20])
support the hypothesis that confinement forces are of
the scalar type; accordingly, we assume that the chain
A realizes JP = 0+ t-channel exchange.
P

The calculation of the block for central meson
production in Section 2 proves that Eq. (2) holds if
the wave functions of mesons (V and P ) belonging to
the same multiplet are equal.

1.6. Prompt Hadron Production and Production
due to the Decay of Highly Excited Resonances
The equality in (2) is valid for prompt meson pro-

duction, while the decays of highly excited states vi-
olate this ratio, as is observed experimentally, leading
to an increase in the rate of light-meson production
due to resonance decay. As to ρ/π and K∗/K, the
decays increase the contribution of the pseudoscalar
component. According to [11], ρ0/π0 = 0.15 ± 0.03
and K∗/K = 0.40 ± 0.06, which indicates a large
contribution to the spectra from the decays of highly
excited states.

The production and decay of highly excited states
in hadron–hadron collisions was discussed in [21].
The conclusion was similar: the mean multiplicities of
product light mesons and baryons result mainly from
the cascade decays of highly excited resonances.

The multiperipheral structure of the ladder allows
us to estimate the resonance masses that are impor-
tant for meson production; they are on the order of or
less than 2 GeV (Section 5).
HYSICS OF ATOMIC NUCLEI Vol. 64 No. 5 2001



QUARK COMBINATORICS AND MESON-PRODUCTION RATIOS 815
That there are decays of highly excited resonances
must be taken into account in verifying quark combi-
natorial rules. We discuss several ways of solving this
problem.

1.7. Heavy-Meson Production in Z0 → bb̄
and Z0 → cc̄ Decays

One way is to check quark combinatorics for
heavy-particle yields, where cascade multiplication
is suppressed. An ideal example could be the pro-
duction of mesons containing a b quark. In fact,
the ratio B∗/B for beauty mesons that was observed
experimentally agrees with (2). When the lowest S-
wave multiplet dominates in the production of heavy
mesons, one has [provided that Eq. (2) is satisfied]
B � Bprompt +B∗

prompt = 4Bprompt, and the ratio of
vector-to-pseudoscalar mesons is B∗/B � 0.75.

Experiments that studied Z0 decays yield B∗/B =
0.771 ± 0.075 [22], 0.72 ± 0.06 [23], 0.76 ± 0.10 [24],
and 0.76 ± 0.09 [25], the mean value being 0.75 ±
0.04.

For charmed mesons, D∗/D = 0.60 ± 0.05 [26],
0.62± 0.03 [27], and 0.57± 0.05 [28]. The mean value
is 0.61± 0.03, which suggests an increase in the con-
tribution from the decay of non-S-wave multiplets.

It should be emphasized that the V/P ratios for
beauty and charmed mesons are saturated in the frag-
mentation region owing to the transitions Z0 → bb̄
and Z0 → cc̄. In Section 3, we therefore reanalyze
quark combinatorics for the fragmentation region of
hadronic Z0 decays.

The cross section for meson production in the
fragmentation region is determined by the discon-
tinuity of the diagram in Fig. 1c (the cut of the
ladder diagram is shown by the dashed line). Direct
calculations demonstrate that Eq. (2) is satisfied to a
rather high accuracy for the fragmentation region as
well, provided that the wave functions of the vector
and pseudoscalar mesons are equal.

1.8. Production of Light-Flavor Mesons
in the Fragmentation Region of Hadronic Z0 Decays

Investigation of meson production in the fragmen-
tation region opens the way to test the rules of quark
combinatorics for light-flavor hadrons and to verify
Eq. (2) in particular. As was said above, the spectra
of light-flavor hadrons are dominated by the contri-
bution of the component associated with the decay
of highly excited states. In the case of jet processes,
this component is still dominant in the central region
(at x ∼ 0), but not in the fragmentation one. The
hadronic spectra for jets are maximal at x ∼ 0, fast
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 5 200
decreasing with the growth of x. As a result, the com-
ponent that is due to resonance decay decreases fast
because decay products share the value of xresonance,
thus entering the region of smaller x. In due course,
this leads to a fast growth of the relative contribution
from prompt particle production. Therefore, mea-
surements of particle yields at x ∼ 0.5–1.0 provide
the opportunity of testing quark combinatorics in a
model-independent way.

In Section 3, we compare the ρ0/π0 and K∗/K
ratios measured in [11] at large x with quark-
combinatorics predictions; in Section 5, we discuss
the baryon-to-meson ratio p/π+. This comparison
demonstrates reasonable agreement of experimental
data with the predictions of quark combinatorics.

1.9. Suppression of Heavy-Quark Production

The multiperipheral dynamics of the quark–gluon
ladder in the processes of Fig. 1 results in a strong
suppression of the production of new heavy-quark
pairs, QQ̄. The suppression parameter (relative
probability) is of order λQ � m2/(m2

Q ln2(Λ2/m2
Q)),

where mQ is the heavy-quark mass and Λ is the
QCD scale parameter, Λ ∼ 200 MeV. One has λc �
2.8× 10−3 and λb � 1.1 × 10−4.

The inclusive production of cc̄ and bb̄ mesons in Z0

decays agrees with this estimate (Section 4).

1.10. ω/ρ0 Ratio and Interference of Flavor
Amplitudes at x ∼ 1

The rules of quark combinatorics yield
ωprompt/ρ

0
prompt = 1. It can be proven that the

decays of highly excited states have only a slight
effect on this equality. Indeed, the masses of ρ and
ω are almost equal, so that the phase spaces of the
decay processes affect identically the probabilities
of their yields. Experiments confirm this statement:
at x ∼ 0.1–0.2, the value of ω/ρ0 = 1 is observed.
However, the experimental value is ω/ρ0 < 1 at larger
x. This reveals the interference of flavor amplitudes.
The fact is that the decay vertices for Z0 → uū and
Z0 → dd̄ have opposite signs, thus enhancing the
coherent production of ρ0 mesons and suppressing
the production of ω (Section 6).

2. PROMPT PRODUCTION
IN THE CENTRAL REGION

OF THE QUARK JET: THE RATIO V/P = 3

In this section, we discuss the prompt production
of vector and pseudoscalar mesons (for the sake of
definiteness, ρ and π mesons) in the central region of a
1
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Fig. 2. (a, b) Production blocks for a meson in the central region (dashed lines show the cuts of diagrams in the spectral
integral); (c) form-factor diagram determining the meson wave function; and (d) cuts of the diagram for the inclusive-meson-
production cross section in the fragmentation region.
quark jet. The production cross section is determined
by the discontinuity of the diagram in Fig. 1c; it is
redrawn in Fig. 2a. A feature peculiar to ρ and π
production is the presence of a loop diagram, which
is shown separately in Fig. 2b. Below, we calculate
these loop diagrams for ρ and π using the spectral-
integration technique, which is discussed in detail in
[29, 30]. Within this technique, the loop diagrams
are expressed in terms of the ρ and π light-cone wave
functions.

First, we present the result of our calculations.
From the direct calculations, it follows that the

inclusive cross section for ρ and π mesons at x ∼ 0
is given by

dσ

dx
(Z0 → ρ+X) =

1
16π2

×
1∫

0

dξ

ξ(1− ξ)

∫
d2k⊥ψ2

ρ(ξ,k⊥)× 3ΠZ(W 2
1 ,W

2
2 ),

dσ

dx
(Z0 → π +X) =

1
16π2

(4)

×
1∫

0

dξ

ξ(1− ξ)

∫
d2k⊥ψ2

π(ξ,k⊥)×ΠZ(W 2
1 ,W

2
2 ).

Here, ψρ and ψπ are the quark wave functions for
the ρ and π mesons, while ξ and k⊥ are quark light-
cone variables [the momentum fraction carried by a
P

quark along the z axis and its momentum in the
(x, y) plane, respectively]. In (4), one can see explicit
expressions associated with the production of ρ and
π mesons. The remaining part (contribution from
the large quark loop and from ladder diagrams) is
denoted in (4) by ΠZ(W 2

1 ,W
2
2 ), which depends on the

invariant energies squared for the quark chains, W 2
1

and W 2
2 . Multiperipheral kinematics yields

W 2
1 W

2
2 � ξ(1− ξ)(m2 + k2

⊥)M
2
Z , (5)

where MZ is the mass of the Z0 boson.
The factor of 3 in the ρ-production cross section

results from a summation over polarizations of the
vector particle.

Equation (4) directly demonstrates that, if the
quark wave functions of ρ and π are identical, which is
assumed by the quark multiplet classification of these
mesons, we have dσ(Z0 → ρ+X)/dx : dσ(Z0 →
π +X)/dx = 3 : 1 at x ∼ 0. We emphasize once
again that Eq. (4) and the diagrams in Figs. 1c, 2a,
and 2b stand for promptly produced mesons.

2.1. Spectral Representation
for the Loop Diagram in Fig. 2a

The calculation of the diagram in Fig. 2a in terms
of spectral integration involves the following steps
(see also [29, 30]):
HYSICS OF ATOMIC NUCLEI Vol. 64 No. 5 2001
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(i) The quark loops in Fig. 2a are taken to be off
the energy shell.

(ii) The discontinuities are calculated for the off-
energy-shell quark loops (the relevant cuts are shown
by the dashed lines I, II, III, and IV).

(iii) The spectral integrals are determined by the
discontinuities of the integrands.

Let us first consider the double spectral integral
corresponding to cuts III and IV. These are the spec-
tral integrals with respect to the effective masses
squared, M2 and M ′2, in the transitions Z0 → qq̄ and
qq̄ → Z0:

∞∫
4m2

dM2dM ′2

π2

gZ(M2)gZ(M ′2)
(M2 −M2

Z)(M ′2 −M2
Z)

×
∫

dΦ(PZ ; p1, p2)dΦ(P ′
Z ; p3, p4) (6)

× SZ T (p; q1, q2)A(W 2
1 , q

2
1)A(W 2

2 , q
2
2).

Here, gZ(M2) is the vertex function for the transition
Z0 → qq̄ and MZ is the Z0-boson mass. The
factors dΦ(PZ ; p1, p2) and dΦ(P ′

Z ; p3, p4) are the
phase spaces associated with the cuts III and IV,
while SZ is the spin factor for the big quark loop in
Fig. 2a. The amplitudes A(W 2

i , q
2
i ) (i = 1, 2) refer

to the quark–gluon chains with the t-channel scalar
quantum numbers (see discussion in Section 1.5),
and T (p; q1, q2) is the block corresponding to the
small quark loop (the qq̄ loop for the production of
ρ and π mesons).

The characteristic feature of the spectral integral
(6) is the large value of MZ . For this reason, one
can replace, to a rather high precision, the poles of
the spectral integrand by half-residues:

1
M2 −M2

Z

→ −iπδ(M2 −M2
Z),

1
M ′2 −M2

Z

→ iπδ(M ′2 −M2
Z). (7)

Equation (6) stands for the discontinuity of the
amplitude that results in opposite signs for the half-
residues in (7). Equation (7) means that the block
inside the big quark loop can be considered, to a high
precision, as a block of the real process. This is a well-
known feature of high-energy jets; below, we use it to
estimate meson-production amplitudes.

We are not especially interested in the spectral in-
tegral (6), which is determined by the big quark loop,
since it is quite common to π and to ρ production. Our
objective is the spectral integral corresponding to the
amplitude T (p; q1, q2), which is the ρ- or π-meson-
production block. This block is shown separately in
Fig. 2b.
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2.2. Calculation of the Loop Diagram in Fig. 2b

The amplitude of the loop diagram in Fig. 2b rep-
resented as a double dispersion integral is

M = T (p; q1, q2)2p0(2π)3δ(3)(p + q1 − q2 − p′),
(8)

where

T (p; q1, q2)

=

∞∫
4m2

dsds′

π2

∫
dφ

Gmeson(s)
s− µ2

Gmeson(s′)
s′ − µ2

Smeson.

Here, µ is the product-meson mass, s and s′ are the
squares of the invariant masses in the intermediate qq̄
states, and Gmeson is the vertex for the meson → qq̄
transition. The ratio Gmeson(s)/(s − µ2) determines
the product-meson wave function apart from a spin
factor, and Smeson is the spin factor of the loop dia-
gram in Fig. 2b.

Let us explain the structure of the spectral integral
(8) in more detail.

The cut quark loop must be integrated over the
phase space of intermediate qq̄ states, Φ(P ; k1, k2)
and Φ(P ′; k′1, k

′
2), with the invariant phase space be-

ing determined as

dΦ(P ; k1, k2) (9)

=
1
2

d3k1

(2π)32k10

d3k2

(2π)32k20
(2π)4δ(4)(P − k1 − k2).

This integration is carried out with allowance for
the conservation law for momenta flowing through
the ladder (wavy lines in Fig. 2b); the momenta
are denoted by q1 and q2. Thus, the phase-space
integration of the cut diagram is given by

dΦ(P ; k1, k2)dΦ(P ′; k′1, k
′
2)(2π)

32k′10 (10)

×δ(3)(k′
1 − k1 − q1)(2π)32k′20δ

(3)(k′
2 − k2 + q2),

where k2
i = k′2j = m2, P 2 = s, and P ′2 = s′. We

use light-cone variables for the product-meson wave
functions; the simplest way to introduce them is to
go over to the infinite-momentum frame. The 4-
momenta P = (P0,P⊥, Pz) and ki = (ki0, ki⊥ kiz)
are then written in the limits Pz → ∞, kiz → ∞, and
k′iz → ∞. After introducing the light-cone variables
(ξi = kiz/Pz , ξ′i = k′iz/Pz , m2

i⊥ = m2 + k2
i⊥, m′2

i⊥ =
m2 + k′2i⊥) and taking qiz to be small (q′iz/Pz → 0, the
constraint of multiperipheral kinematics), we rewrite
(10) as follows:
1
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1
16π

× dξ1dξ2

ξ1ξ2
δ(1 − ξ1 − ξ2)d2k1⊥d2k2⊥δ(2)(k1⊥ + k2⊥)δ

(
s− m2

1⊥
ξ1

− m2
2⊥
ξ2

)

×δ

(
s′ + (q1⊥ − q2⊥)2 −

m′2
1⊥
ξ1

− m′2
2⊥
ξ2

)
× (2π)32P0δ

(3)(P + q1 − q2 − P′) (11)

≡ dφ(ξ1, ξ2;k1⊥,k2⊥;q1⊥,q2⊥)× (2π)32P0δ
(3)(P + q1 − q2 − P′).
The factor dφ stands for phase-space integration in
the spectral integral (8): dφ ≡ dφ(ξ1, ξ2;k1⊥,k2⊥;
q1⊥,q2⊥).

In the approximation given by (2.2.1), where the
jet block inside the big quark loop is considered as
a real process, one may fix q1 = q2 = 0, in which
case the inclusive cross section is proportional to
T (p; 0, 0). After taking δ functions in (2.2.2) into
account, the formula for T (p; 0, 0) takes the rather
simple form

T (p; 0, 0) (12)

=
1

16π3

1∫
0

dξ

ξ(1− ξ)

∫
d2k⊥

(
Gmeson(s)
s− µ2

)2

Smeson,

where s = m2
⊥/ (ξ(1− ξ)).

The amplitude T (p; 0, 0) alone does not determine
the inclusive cross section dσ/dx(Z0 → meson +X)
because the amplitudes A(W 2

1 , 0) and A(W 2
2 , 0) de-

pend on ξ and k2
⊥ [see (5)]. Taking into account this

dependence, we find at x ∼ 0 that
dσ

dx
(Z0 → meson +X) (13)

∼ 1
16π3

1∫
0

dξ

ξ(1− ξ)

∫
d2k⊥

(
Gmeson(s)
s− µ2

)2

×Smeson Π(W 2
1 ,W

2
2 ).

The spin factor Smeson is closely related to the nor-
malization of the product-meson wave function.

2.3. Spin Factors Sρ and Sπ

Below, we calculate the spin factors Sρ and Sπ at
q1 = q2 = 0. They are given by

Sπ = −tr
(
iγ5(k̂1 +m)(k̂′1 +m)iγ5

×(−k̂′2 +m)(−k̂2 +m)
)
, (14)

Sρ = −tr
(
γ⊥
α (k̂1 +m)(k̂′1 +m)γ⊥

α

×(−k̂′2 +m)(−k̂2 +m)
)
.

Here, we considered that the quark–gluon ladder car-
ries the quantum numbers of the scalar state, JP =
0+; hence, the quark-ladder vertex is equal to unity.
P

The ρ-meson vertex has the form

γ⊥
α = g⊥αα′γα′ g⊥αα′ = gαα′ − PαPα′

P 2
. (15)

In the spin factor Sρ, summation is performed over
the polarizations of the meson. For the spin factors,
we have

Sπ = 8m2s Sρ = 32m2(s+ 2m2). (16)

Let us now demonstrate that similar spin factors
determine the normalization of the ρ-meson and the
pion wave functions.

2.4. ρ-Meson and Pion Wave Functions

Within the light-cone technique, it is reasonable
to introduce the wave function for a particle and its
normalization by using the form factor for this par-
ticle. The procedure for defining the wave function
was discussed in detail elsewhere [29, 30]. For the
qq̄ state, this procedure schematically appears to be
as follows.

The form factor for a composite system (for the
sake of definiteness, we consider the pion form fac-
tor) is determined by the triangle diagram in Fig. 2c,
where the photon interacts with the composite sys-
tem. The form factor is represented as a double
spectral integral with respect to the masses of the
incoming and the outgoing pion; the relevant cuts are
shown by the dashed lines I and II in Fig. 2c.

The amplitude of the triangle diagram for the pion
has the form

A(tr)
ν = (pν + p′ν)Fπ(q

2), (17)

where p and p′ are the momenta of, respectively, the
incoming and the outgoing pion; the index ν refers to
photon polarization; and Fπ(q2) is the pion form fac-
tor, whose double spectral representation is given by

Fπ(q2) =

∞∫
4m2

dsds′

π2

∫
dΦ(tr)(k1, k

′
1, k2)

×Gπ(s)
s− µ2

Tπ(s, s′, q2). (18)

Here, dΦ(tr)(k1, k
′
1, k2) is the phase space of the tri-

angle diagram,

dΦ(tr)(k1, k
′
1, k2) = dΦ(P ; k1, k2)dΦ(P ′; k′1, k

′
2)
(19)
HYSICS OF ATOMIC NUCLEI Vol. 64 No. 5 2001
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×(2π)32k′20δ
(3)(k′

2 − k2),
and P and P ′ are the total momenta of the qq̄ system,
respectively, before and after the event of interaction
with the photon—that is, P = k1 + k2 and P ′ = k′1 +
k′2 (P 2 = s and P ′2 = s′). The spin factor of the
triangle diagram, Tπ , is determined by the trace

(−)tr
[
iγ5(k̂′1 +m)γ⊥

ν (k̂1 +m)iγ5(−k̂2 +m)
]
(20)

=
(
P⊥
ν + P ′⊥

ν

)
Tπ(s, s′, q2).

The index ⊥ stands for vectors orthogonal to the
photon momentum:

γ⊥
ν = g⊥νν′γν′ , P⊥

ν = g⊥νν′Pν′ , g⊥νν′ = gνν′ −
qνqν′

q2
.

(21)
At q2 = 0, one has Fπ(0) = 1. A direct calculation on
the basis of Eq. (2.2.4) in the limit q2 → 0 yields

1 =

∞∫
4m2

ds

π

(
Gπ(s)
s− µ2

)2

ρ(s)S(wf)
π (s), (22)

where ρ(s) is the phase space of the qq̄ system,

ρ(s) =
1
2

∫
dΦ(P ; k1, k2) =

1
16π

√
s− 4m2

s
,

(23)

and S
(wf)
π (s) is the trace of the quark loop diagram for

the pion,

S(wf)
π (s) (24)

= (−)tr
[
iγ5(k̂1 +m)iγ5(−k̂2 +m)

]
= 2s.

Using the light-cone variables, we can recast Eq. (22)
into the form

1 =
1

16π2

1∫
0

dξ

ξ(1− ξ)

∫
d2k⊥

(
Gπ(s)
s− µ2

)2

2s,

(25)
where s = (m2 + k2

⊥)/ (ξ(1− ξ)). This equation en-
ables us to introduce the pion wave function as

ψπ(ξ,k⊥) =
Gπ(s)
s− µ2

√
2s, (26)

where the normalization is fixed by the standard re-
quirement.

Likewise, we introduce the ρ-meson wave func-
tion: it is defined by the form factor that is the spin
matrix Fαα′(q2). In problems that do not deal with
the polarization properties of a vector particle, it is
convenient to use the trace of the form-factor matrix,∑

α Fαα(q2), which is normalized by the condition∑
α=1, 2, 3

Fαα(0) = 3. (27)
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The trace
∑

α Fαα(q2) is determined by an expres-
sion similar to (2.2.4), with the obvious substitutions
Gπ → Gρ and Tπ → Tρ. As a result, we find that the
normalization for the averaged form factor is

1 =
1
3

∑
α=1, 2, 3

Fαα(0)

=

∞∫
4m2

ds

π

(
gρ(s)
s− µ2

)2

ρ(s)S(wf)
ρ (s), (28)

where

S(wf)
ρ (s) = −1

3
Sp

[(
γα − Pα

P̂

P 2

)
(k̂1 +m)

(29)

×
(
γα − Pα

P̂

P 2

)
(−k̂2 +m)

]
.

The ρ → qq̄ vertex γα − PαP̂ /P 2 selects three de-
grees of freedom of the ρ meson. We have

S(wf)
ρ (s) =

8
3
(s+ 2m2). (30)

In the infinite-momentum frame, Eq. (2.2.4) can be
rewritten as

1 =
1

16π3

1∫
0

dξ

ξ(1− ξ)

∫
d2k⊥ψ2

ρ(ξ,k⊥), (31)

where

ψρ(ξ,k⊥) =
Gρ(s)
s− µ2

√
8
3
(s+ 2m2). (32)

2.5. V/P Ratio for the Central Region and Color
Degrees of Freedom

The normalization conditions for the ρ-meson and
pion wave functions define unambiguously the ratio of
the yields for prompt production, ρ/π = 3, provided
that the wave functions of these mesons are similar.
Indeed, expression (13) expressed in terms of the
wave functions ψρ and ψπ immediately yield (4).

In the above derivation, we have not taken into ac-
count explicitly color degrees of freedom. This, how-
ever, can easily be done. For the meson→ qq̄ vertex,
the color operator is equal to I/

√
Nc, where I is an

identity matrix in color space. For the chain of the
quark loop diagrams, we have two color amplitudes,
a singlet and an octet one (A1 and A8, respectively).
The couplings of the amplitudes A1 and A8 to quarks
[g(A1) and g(A8)] are proportional to I and λ (Gell-
Mann matrices). All color operators take the same
form for pion and for ρ-meson production. Because
of that, the color factors are immaterial for the ρ/π
1
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ratio—since these operators are identical, they cancel
in the production ratio.

As was stated above, the main contribution to
inclusive meson production comes from the ladder
diagram A8. This is because the coupling constant
for the c = 8 amplitude is greater than that for the
c = 1 amplitude. In terms of 1/Nc expansion, we have
g(A1)/g(A8) ∼ 1/

√
Nc.

3. INCLUSIVE PRODUCTION OF MESONS
IN THE FRAGMENTATION REGION

The cross section for inclusive meson production
in the fragmentation region is determined by the dis-
continuity of the diagram in Fig. 2d. The spectral
representation for this diagram is written as an inte-
gral with respect to the masses of the initial and final
qq̄ states in the transitions Z0 → qq̄ and qq̄ → Z0 and
with respect to the qq̄ masses in the qq̄ → meson
and meson → qq̄ transitions. The amplitude of the
diagram in Fig. 2d has the form

∞∫
4m2

dM2dM ′2

π2

gZ(M2)gZ(M ′2)
(M2 −M2

Z)(M ′2 −M2
Z)

×
∞∫

4m2

dsds′

π2
ψmeson(s)ψmeson(s′) (33)

× dφ3(k1, k2, k3)dφ3(k′1, k
′
2, k

′
3)A(W 2, (k2 − k′2)

2)

× S
(fr)
meson√

S
(wf)
meson(s)S

(wf)
meson(s′)

.

The vertices gZ(M2) and gZ(M ′2) are written for
the transitions Z0 → qq̄ and qq̄ → Z0. The spectral
P

integrals with respect to s and s′ stand for qq̄ →
meson and meson→ qq̄ (where the mesons stand for
π and ρ). The product-meson wave function ψmeson

was introduced explicitly in Section 2 for the pion
and for the ρ meson, and the factors dφ3(k1, k2, k3)
and dφ3(k′1, k

′
2, k

′
3) define integration over the phase

spaces in the left- and right-hand parts of the diagram
in Fig. 2d:

dφ3(k1, k2, k3) =
1
2

d3k1

(2π)32k10

d3k2

(2π)32k20

×(2π)4δ(4)
(
P̃ − k1 − k2

)
(34)

×1
2

d3k3

(2π)32k30
(2π)4δ(4)(P − k1 − k3).

Here, P̃ 2 = M2 and P 2 = s.
The block A

(
W 2, (k2 − k′2)

2
)

defines the multipe-
ripheral ladder (wavy line in Fig. 2d). This block de-
pends on the momentum transfer squared (k2 − k′2)

2

and the total energy squared W 2:

W 2 � M2
Z(1− x). (35)

Here, x is the momentum fraction carried by the prod-
uct meson, x = 2p/Mz , where p is the longitudinal
component of the meson momentum, pmeson = (p+
µ2
⊥/2p, 0, p).

The spectra dσ(Z0 → meson +X)/dx fall fast
with increasing x: this decrease is governed by
A
(
W 2, (k2 − k′2)

2
)
.

All the characteristic features of (3) listed above
are the same for pion and for ρ-meson production, the
wave functions ψπ and ψρ also being assumed to be
identical. The difference may be contained in the spin

factors S
(fr)
π and S

(fr)
ρ , which are
S(fr)
π = (−)tr

[
γ′⊥
ν (1 +Rγ5)(k̂′1 +m)iγ5(k̂′3 +m)(k̂3 +m)

×iγ5(k̂1 +m)γ⊥
ν (1 +Rγ5)(−k̂2 +m)(−k̂′2 +m)

]
, (36)

S(fr)
ρ = (−)tr

[
γ′⊥
ν (1 +Rγ5)(k̂′1 +m)γ′⊥

α (k̂′3 +m)(k̂3 +m)

×γ⊥
α (k̂1 +m)γ⊥

ν (1 +Rγ5)(−k̂2 +m)(−k̂′2 +m)
]
,

where R is determined by the ratio gA/gV (see also
Section 6). The factor γ⊥

ν (1 +Rγ5) is related to the
Z0 → qq̄ vertex, which is determined by the vector
and axial-vector interactions (the ratio of the coupling
constants is about 2.63 for the u quark and 1.43 for
H

the d quark). For S
(fr)
π , summation is performed over

the polarizations of the Z0 boson (index ν); γ⊥
ν is

orthogonal to k1 + k2, while γ′⊥
ν is orthogonal to k′1 +

k′2. For the ρ-meson spin factor S
(fr)
ρ , summation
YSICS OF ATOMIC NUCLEI Vol. 64 No. 5 2001
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is performed over the polarizations of the Z0 boson
(index ν) and of the ρ meson (index α), with γ⊥

α and
γ′⊥
α being orthogonal, respectively, to (k1 + k3) and to

(k′1 + k′3) [see also (15)].

The normalization factors S
(wf)
meson(s) and S

(wf)
meson(s′)

in (3) are related to the definition of the meson wave
functions [see (26) and (32)]. The explicit expressions
for spin factors (36) are presented in Appendix B.
With the aid of these expressions, we can evaluate
numerically the ratios of prompt-meson yields in the
decay reactions with a smaller energy release. In the
case of Z0 decay, where MZ 
 m and MZ 
 µ, a
reasonably good approximation for (3) is to replace
the integrals with respect to M2 and M ′2 by half-
residues at the poles M2 = M2

z and M ′2 = M2
z . We

then have the following kinematics for real jets:

k1 = k′1 k2 = k′2. (37)

In this approximation, we can set k3 = k′3 and s = s′.
For light mesons, we then have

S
(fr)
π

S
(wf)
π

� 2M2
Z(1 +R2),

S
(fr)
ρ

S
(wf)
ρ

� 6M2
Z(1 +R2).

(38)
For the ratio of the prompt yields, this leads to ρ : π =
3 : 1 in the fragmentation region x ∼ 0.5–1 (more
generally, V : P = 3 : 1 for hadronic decays Z0 → qq̄
with q = u, d, s).

The same ratio appears for the production of heavy
quarks, Z0 = QQ̄, where Q = c, b. By way of exam-
ple, we indicate that, in the case of the b quark, the
spin factors are

S
(fr)
B

S
(wf)
B

� 2
[
M2

Z + 2m2
b +R2(M2

Z − 4m2
b)
]

S
(fr)
B∗

S
(wf)
B∗

= 6
[
M2

Z + 2m2
b +R2(M2

Z − 4m2
b)
]
. (39)

Thus, the ratio B∗
prompt : Bprompt is also equal to 3.

3.1. V/P Ratio in the Fragmentation Region:
Comparison with Experimental Data

We have seen that V/P = 3 both in the frag-
mentation region and in the central region. In the
central region, however, a comparison of quark-
combinatorics predictions with experimental data
is hampered by the presence of a number of decay
products of highly excited resonances, while, in the
fragmentation region, this contribution is suppressed
by fast decreasing spectra. This means that the
fragmentation region allows us to perform a model-
independent verification of quark combinatorics.
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 5 200
Here, we carry out such a comparison on the basis
of ALEPH data [11].

To deal with meson spectra at x ∼ 0.2–0.8, we
have fitted the spectra (1/σtot)dσ/dx to the sum of
exponentials,

∑
Cie

−bix; the results of the calcu-
lations are presented in Fig. 3 for π±, π0, ρ0, and
(p, p̄). The ratio of the fitted curves drawn with the
calculation errors (shaded area) is shown in Fig. 4a
for ρ0/π0. We see that, for 0.6 < x < 0.8, the data are
in reasonable agreement with the predicted value of
ρ/π = 3.

Figures 4b and 4c demonstrate the K∗0/K0 and
K∗±/K± ratios: the data do not contradict the pre-
diction, but the errors are overly large to draw a
definitive conclusion.

4. SUPPRESSION OF STRANGE-
AND HEAVY-QUARK PRODUCTION

In hadronic multiparticle production processes (in
jet processes of the Z0 → hadrons type or in high-
energy hadron–hadron collisions), the production of
strange quarks is suppressed. A strong suppression is
observed for the production of heavy quarks Q = c, b.
One can guess that this suppression, being of the
same nature for different reactions, is associated with
the mechanism of the production of new quarks at
large separations of color objects. This mechanism is
seen in its pure form in two-body decays (the corre-
sponding diagram is shown in Fig. 5a). The block of
the production of a new qq̄ pair in a two-body decay is
identical to that of meson production in jet processes
(Fig. 5b); therefore, it is reasonable to assume that
the mechanism suppressing the production of new
quarks is similar for these processes.

4.1. Two-Meson Decay of qq̄ States and Soft
Hadronization

The decay of a qq̄ state proceeds as follows: the
quarks of the excited state leave the region where they
were kept by the confinement barrier; at a sufficiently
large separation, a new quark–antiquark pair will
inevitably be produced: together with the incident
quarks, these new quarks then form mesons (free
particles). Schematically, this process (which is the
leading one in terms of 1/N expansion) is represented
by the diagram in Fig. 5a: two quarks fly away (with
momenta p1 and p2), with the result that, at large
quark separations, the gluon field produces a new qq̄
pair (quarks with momenta k2 and k3); the primary
quark (now with momentum k1) then joins the newly
born one (k2), creating a meson. Likewise, another
newly born quark (k3) joins the other primary quark
1



822 ANISOVICH et al.

         

0 0.4 0.8

 

x

 

0 0.4 0.8

 

x

 

10

 

–3

 

10

 

–2

 

10

 

–1

 

10

 

0

 

10

 

1

 

10

 

–3

 

10

 

–2

 

10

 

–1

 

10

 

0

 

10

 

1

 

10

 

2

 

10

 

–3

 

10

 

–2

 

10

 

–1

 

10

 

0

 

10

 

1

 

10

 

2

 

10

 

1

 

10

 

0

 

10

 

–1

 

10

 

–2

 

(

 

a

 

) (

 

b

 

)

(

 

c

 

) (

 

d

 

)

(1/
 

σ
 

tot

 
)

 
d

 
σ

 
/

 
dx

 
(1/

 
σ

 

tot

 
)

 
d

 
σ

 
/

 
dx

Fig. 3. Spectra (1/σhadron) dσZ0→meson+X/dx [11] for (a) π±, (b) π0, (c) ρ0, and (d) (p, p̄) and their fits in terms of the
exponential functions ΣCi exp(−bix) [11].
(now with momentum k4), producing the second me-
son.

The block of quark–antiquark production for the
transition

q(p1) + q̄(p2) → q(k1) + q̄(k2) + q(k3) + q̄(k4) ,
(40)

a key process that determines decay physics, is shown
separately in Fig. 5c. The process in (40) is responsi-
ble for the escape of the quarks from the confinement
trap. In simulating the hadronization-transition am-
plitude (40), quark combinatorics uses the hypothesis
of soft hadronization. The idea was formulated in
the 1970s; even now, the soft-hadronization hypoth-
esis looks rather reliable and productive. It suggests
that, in the ladder of product quarks (Figs. 1a, 5c),
a leading contribution comes from low momentum
transfers (of order R−2

confinement). Within the spacetime
P

picture, this means that new qq̄ pairs are produced
at large separations, where color objects leave the
confinement well.

The soft-hadronization hypothesis applied to de-
cay processes treats the ladder diagram in Fig. 5c
for the decay amplitude in Fig. 5a in the same way
as for jet production (Fig. 5b): the process in (40)
is an elementary subprocess both for the high-energy
ladder and for the two-body-decay amplitude, and the
momentum transfers that enter into the amplitude
in (40) appear to be small on the hadronic scale,
R−2

confinement.

4.2. Spectral Representation of the Decay Diagram

Below, we consider in detail the decay amplitude
described by the diagram in Fig. 5a, performing cal-
culations, as before, within the spectral representa-
HYSICS OF ATOMIC NUCLEI Vol. 64 No. 5 2001
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tion by using the light-cone wave functions for qq̄
states. In terms of the variables
P = p1 + p2, k12 = k1 + k2, k34 = k3 + k4,

M2 = (k1 + k2)2, s12 = (k1 + k2)2, (41)

s34 = (k3 + k4)2,

this amplitude can be expressed as

A(qq̄state → twomesons)

=

∞∫
4m2

dM2

π
Ψin(M2)dΦ(P ; p1, p2) (42)

×
∞∫

(m+ms)2

ds12ds34

π2

× t(p1, p2; k1, k2, k3, k4)
×dΦ(k12; k1, k2) dΦ(k34; k3, k4)Ψ1(s12)Ψ2(s34).

That the masses of newly born quarks i = 2, 3 are
denoted here by ms opens the way to consider decays
leading to strange-quark production. The transition
amplitude (40), shown schematically in Fig. 5c, is
denoted by t(p1, p2; k1, k2, k3, k4). The decay am-
plitude (42) is written in terms of the meson wave
functions: for the initial state, it is Ψin(M2), while, for
the outgoing mesons, they are Ψ1(s12) and Ψ2(s34).
We do not specify here the meson spin structure of
the quark propagator: we consider it below in a more
detailed analysis of the transition amplitude (40).

Thus, the decay amplitude A is the convolution of
the transition amplitude (40) with the wave functions
of the initial and outgoing mesons:

A(qq̄ state → twomesons) = Ψin ⊗ t⊗Ψ1Ψ2. (43)

Further, we use light-cone variables; for piz → ∞ and
kiz → ∞, we have

ki = (kiz +
m2 + k2

i⊥
2kiz

,ki⊥, kiz), i = 1, 4;

ki = (kiz +
m2
s + k2

i⊥
2kiz

,ki⊥, kiz), i = 2, 3; (44)

p1 = (piz +
m2 + p2

i⊥
2piz

,pi⊥, piz), i = 1, 2.

Let us make use of the reference frame where the
outgoing particles move along the z axis. We set

P = (Pz +
M2

2Pz
, 0, Pz),

k12 = (k12z +
s12

2k12z
, 0, k12z), (45)

k34 = (k34z +
s34

2k34z
, 0, k34z).
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Fig. 4. (a) ρ0/π0, (b) K∗0/K0, (c) K∗±/K±, (d) p/π+,
(e) K∗0/ρ0 and K±/π±, and (f) ω/ρ0 ratios obtained
from an exponential fit to ALEPH data [11] (thin lines
and shaded areas). Thick lines represent the predictions
of quark-combinatorics rules. Figures 4d, 4e, and 4f also
show the p/π+, K±/π±, and ω/ρ0 ratios, which were
obtained from a histogram description of the spectra from
[11].

The phase spaces dΦ(k12; k1, k2) and dΦ(k34; k3, k4)
contain delta functions that ensure energy–momen-
tum conservation and which yield

M2 =
m2 + p2

1⊥
x1

+
m2 + p2

2⊥
x2

,

s12 =
m2 + k2

1⊥
y1

+
m2
s + k2

2⊥
y2

, (46)

s34 =
m2
s + k2

3⊥
y3

+
m2 + k2

4⊥
y4

,

where xi = piz/(p1z + p2z) and yi = kiz/(k1z + k2z)
for i = 1, 2 and yi = kiz/(k3z + k4z) for i = 3, 4.
1
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4.3. Region Dominated by the Transition Amplitude
tqq̄→qq̄qq̄

Let us address the main point that consists in
evaluating the momentum-space region selected
by the transition amplitude in Fig. 5c within the
soft-hadronization hypothesis, which means that the
ladder diagram in Fig. 5c has a peripheral structure:
it requires the square of the momentum transfer to the
qq̄ block to be small, of order 1/R2

confinement . Thus, we
have
−(p1 − k1)2 � (p1⊥ − k1⊥)2 ∼ R−2

confinement, (47)

−(p2 − k4)2 � (p2⊥ − k4⊥)2 ∼ R−2
confinement.

Likewise, the momentum transfer squared in the
quark propagator (see Fig. 5c) is of order

(p1 − k1 − k2)2 � −(p1⊥ − k1⊥ − k2⊥)2. (48)

Let us now discuss the peripheral constraint (47)
in more detail. By way of example, we consider (p1 −
k1)2. We have

(p1 − k1)2 = (p1z − k1z +
m2 + p2

1⊥
2p1z

− m2 + k2
1⊥

2k1z
)2

−(p1⊥ − k1⊥)2 − (p1z − k1z)2. (49)

The gluon carries a small fraction of the longitudinal
momentum of the primary quark; therefore, we have

p1z 
 p1z − k1z ≡ ∆, (50)

whence it follows that

(k1 − p1)2 � ∆
p1z

(k2
1⊥ − p2

1⊥)− (k1⊥ − p1⊥)2 (51)

� −(k1⊥ − p1⊥)2.

The peripheral constraint means that y1 
 y2. In
numerical calculations, however, this does not require
P

very large invariant energies squared, s12 and s34,
which determine the blocks of quark fusion. By way
of example, we indicate that, at y2/y1 ∼ 1/10, one
has s12 ∼ 10m2 ∼ 1 GeV2 for m � 350 MeV, which
gives, for the quark relative momentum, a value of
about 300–400 MeV.

4.4. The Decay Amplitude
A(qq̄ state → two mesons)

We now write the formula for t(p1, p2; k1, k2, k3, k4)
in the simplest approximation, taking into account
only the t-channel propagators. We have

t(p1, p2; k1, k2, k3, k4) =
g

m2
g + (p1⊥ − k1⊥)2

×g2 (ms − γ(p1⊥ − k1⊥ − k2⊥))
m2
s + (p1⊥ − k1⊥ − k2⊥)2

(52)

× g

m2
g + (p2⊥ − k4⊥)2

,

where γ is a Dirac matrix. To avoid ultrared diver-
gences, the effective mass mg of the soft gluon is
introduced in the gluon propagator (see, for example,
[31]).

Equation (4.4.4) does not state that the tran-
sition amplitude t(p1, p2; k1, k2, k3, k4) selects large
distances. At this point, the amplitude in (4.4.4) can
be improved by incorporating form factors into the
gluon-emission vertex:

g → g((p1⊥ − k1⊥)2), g → g((p2⊥ − k4⊥)2).
(53)

With the aid of Eqs. (4.4.4) and (53), the amplitude A
can be represented as
A(qq̄ state → twomesons) =

1∫
0

dx1dx2δ(1− x1 − x2)
16π2x1x2

∫
dp1⊥dp2⊥δ(p1⊥ + p2⊥)

×
∫

y1�y2

dy1dy2δ(1 − y1 − y2)
16π2y1y2

∫
dk1⊥dk2⊥δ(k1⊥ + k2⊥)

×
∫

y4�y3

dy3dy4δ(1 − y3 − y4)
16π2y3y4

∫
dk3⊥dk4⊥δ(k3⊥ + k4⊥)Ψin(x1, x2;p1⊥,p2⊥) (54)

× g((p1⊥ − k1⊥)2)
m2
g − (p1⊥ − k1⊥)2

g2(ms + γ(p1⊥ − k1⊥ − k2⊥))
m2
s + (p1⊥ − k1⊥ − k2⊥)2

g((p2⊥ − k4⊥)2)
m2
g + (p2⊥ − k4⊥)2

×Ψ1(y1, y2;k1⊥,k2⊥)Ψ2(y3, y4;k3⊥,k4⊥).
In terms of this expression for the decay amplitude,

we can discuss the rules of quark combinatorics.
H

In the approximation
g2 (ms − γ(p1⊥ − k1⊥ − k2⊥))

m2
s + (p1⊥ − k1⊥ − k2⊥)2

→ g2

ms
(55)
YSICS OF ATOMIC NUCLEI Vol. 64 No. 5 2001
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(we have neglected here the momenta in the propa-
gator for newly born quarks), which is quite rough,
but which nevertheless yields a qualitatively correct
result, we have

A(qq̄ state → twomesons) (56)

=
αs
ms

· (Ψin ⊗ t⊗Ψ1Ψ2) .

This equation tells us that the probability of produc-
ing nonstrange and strange quarks, uū : dd̄ : ss̄ =
1 : 1 : λ, is determined by the ratio of the squares
of the masses of nonstrange (u, d) and strange (s)
quarks. Introducing the constituent quark masses
in the soft region, mu � md ≡ m = 350 MeV and
ms � 500 MeV, we obtain

λ � m2

m2
s

� 0.5. (57)

Equations (55) and (56) validate the statements of
quark combinatorics as applied to the decay pro-
cesses [7–9, 32]. Of course, we suppose here the
identity of the wave functions for mesons that belong
to the same multiplet.

Equation (57) gives us a rough estimate of λ,
for, in (55), we have neglected momentum trans-
fers squared that are commensurate with light-quark
masses. In more sophisticated evaluations of λ, one
may take into account the momentum dependence of
the quark propagator:

1
m2
s + (p1⊥ − k1⊥ − k2⊥)2

→ 1
m2
s + 〈k2〉 . (58)

Here, 〈k2〉 is a typical momentum squared inherent
in the decay process being considered. Therefore, we
have

λ =
m2 + 〈k2〉
m2
s + 〈k2〉 . (59)

For standard decays of light resonances, 〈k2〉 ∼ 0.1–
0.3 (GeV/c)2, and this leads to an increase in λ in
relation to the estimate in (57). Indeed, λ ∼ 0.7 was
found in the analysis peformed in [32]. Actually,
Eq. (59) demonstrates that λ can vary, depending on
the reaction type.

4.5. Suppression Parameter λ in Hadronic Z0

Decays

Let us now consider qq̄-pair production in Z0 →
qq̄ → hadrons jet processes (see Fig. 5b). All the
above considerations, which have been applied to the
decay of a resonance into two mesons, are valid here
as well. As a result, we obtain the formula

A(Z0 → twomesons +X) (60)

=
αs
ms

(qq̄ from jet ladder⊗ t⊗Ψ1Ψ2) ,
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which is a counterpart of (56). This formula differs
from (56) only by the initial state, which is the wave
function of the qq̄ pair for the jet ladder, but not for the
state defined by the wave function Ψin. This means
that the ratio of the probabilities for the production
of a strange and a nonstrange quark is given by the
factor m2/m2

s. As in the decay process, one therefore
has

λ � m2

m2
s

� 0.5. (61)

Experimental data on the K±/π± yield ratio do not
contradict this evaluation. The K±/π± ratio as a
function of x is shown in Fig. 4e. It can be seen
that, at x = 0.2, K±/π± � 0.35. With increasing x,
the K±/π± ratio grows, reaching the value of about
0.8 at x = 0.7. Such an increase is rather legible:
the point is that K mesons are produced both owing
to the formation of a new ss̄ pair in the ladder (with
probability λ) and owing to the fragmentation pro-
duction of an ss̄ pair in the transition Z0 → ss̄. The
relative probabilities of the prompt production pro-
cesses Z0 → uū, dd̄, ss̄ are in the ratio uū : dd̄ : ss̄ �
0.26 : 0.37 : 0.37. Because of that, the production of
K mesons at large x is

K+ ∼ (0.37 × 1 + 0.26 × λ). (62)

Let us discuss this formula in more detail. A K+

meson can be produced in two processes: (i) the
fragmentation production of an s̄ quark (the relative
probability is 0.37) and a subsequent pickup of a u
quark from the qq̄ sea in a jet (the relative probability
is 1), and (ii) the fragmentation production of a u
quark (the relative probability is 0.26) and the pickup
of an s̄ quark from the sea (the relative probability λ).

The same quantity for pions is

π+ ∼ (0.37 × 1 + 0.26 × 1). (63)

Therefore, the K+/π+ ratio at large x is

K+

π+
=

0.37 + 0.26λ
0.37 + 0.26

� 0.8 (64)

at λ = 0.5. As can be seen from Fig. 4e, which shows
λ(x) determined as the K±/π±(x) ratio, this value
agrees with experimental data from [22].

The small value of the K+/π+ ratio at x = 0 is a
direct consequence of a large probability of the pro-
duction of highly excited resonances: resonance de-
cays produce more pions than kaons. For the problem
of breeding strange and nonstrange states in the de-
cay process in question, it is rather interesting to con-
sider the K∗/ρ ratio—experimental data for K∗0/ρ0

are also shown in Fig. 4e (shaded area). Remarkably,
the K∗0/ρ0 ratio has no tendency to decrease with
decreasing x: this means that the rate of K∗0 breeding
1
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Fig. 5. (a) Meson decay diagram; (b) transition qq̄ →meson + meson as a constructive element of the multiperipheral chain
in hadronic Z0 decay; and (c) diagram for the peripheral production of a new qq̄ pair.
in the decays is approximately identical to the rate of
ρ0 breeding. Unfortunately, experimental errors are
overly large to draw more definitive conclusions about
the behavior of λ(x).

4.6. Production of Heavy Quarks

The supression parameter for the production of a
strange quark cannot be reliably determined. This is
because the masses of strange and nonstrange quarks
are small in relation to the mean transverse momenta
of quarks in the production process [see Eq. (59)].
We can draw a more definitive conclusion about the
suppression parameter λQ for the production of heavy
quarks Q = c, b. This parameter is defined by the
same formula (4.4.4) for multiperipheral production,
so that we have

λQ � m2

m2
Q ln2 Λ2

m2
Q

. (65)

Here, we have considered that the gluon–quark cou-
pling constant decreases with increasing quark mass,
P

λQ ∼ α2(m2
Q). The QCD scale constant Λ is on the

order of 200 MeV.

To estimate λc and λb, we use the values of m =
0.35 GeV, mc = MJ/ψ/2 = 1.55 GeV, mb = MΥ/2 =
4.73 GeV, and Λ = 0.2 GeV. As a result, we arrive at

λc � 2.8 × 10−3, λb � 1.1× 10−4. (66)

The value of λc should reveal itself in the inclusive
production of J/ψ and χ mesons, while λb is to
be seen in reactions featuring Υ: Z0 → (

∑
J/ψ +∑

χ) +X and Z0 →
∑

Υ+X. These reactions are
determined by the processes Z0 → cc̄ → c+ (c̄c+
q̄q-sea)+ c̄ and Z0 → bb̄ → b+(b̄b+ q̄q-sea)+ b̄: for
the production of a cc̄ or a bb̄ meson, a new pair of
heavy quarks must be produced, since the quarks
formed at the first stage of the decay, Z0 → cc̄ or
Z0 → bb̄, have a rather large gap on the rapidity scale.
Within the definition

λc � Γ
(
cc̄ → c+ (c̄c+ q̄q-sea) + c̄

)
/Γ(cc̄), (67)
HYSICS OF ATOMIC NUCLEI Vol. 64 No. 5 2001
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λb � Γ
(
bb̄ → b+ (b̄b+ q̄q-sea) + b̄

)
/Γ(bb̄),

we estimateΓ(cc̄ → c+(c̄c+ q̄q-sea)+ c̄) andΓ(bb̄ →
b+ (b̄b+ q̄q-sea) + b̄) on the basis of available data
from [10]:

Γ
(
cc̄ → c+ (c̄c+ q̄q-sea) + c̄

)

∼ Γ
(
J/ψ(1S)X + J/ψ(2S)X + χ(1P )X

)
, (68)
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Γ
(
bb̄ → b+ (b̄b+ q̄q-sea) + b̄

)

∼ Γ
(
Υ(1S)X +Υ(2S)X +Υ(3S)X

)
.

Experimental data yield [10]
Γ(cc̄)/Γ(hadrons) = 0.177 ± 0.008,

Γ(bb̄)/Γ(hadrons) = 0.217 ± 0.001,
Γ
(
J/ψ(1S)X + J/ψ(2S)X + χ(1P )X

)
/Γ(hadrons) = (1.17 ± 0.13) × 10−2,

Γ
(
Υ(1S)X +Υ(2S)X +Υ(3S)X

)
/Γ(hadrons) = (1.4 ± 0.9)× 10−4. (69)
Thus, we have

Γ
(
J/ψ(1S)X + J/ψ(2S)X + χ(1P )X

)
/Γ(cc̄)

= (2.07 ± 0.23) × 10−3, (70)

Γ
(
Υ(1S)X +Υ(2S)X +Υ(3S)X

)
/Γ(bb̄)

= (0.31 ± 0.19) × 10−4,

in reasonable agreement with (66).

5. THE PROBLEM OF SATURATION
OF PRODUCT qq̄ AND qqq STATES

BY MESONS AND BARYONS;
BARYON-TO-MESON RATIO

AND WATSON–MIGDAL FACTOR

In quark combinatorics formulated in [1, 2], the
baryon quark number reveals itself as the probability
of the production of a baryon containing this quark.
For the hadronization of the quark qi in (q, q̄)sea, the
production rule has the form

qi + (q, q̄)sea → 1
3
Bi +

2
3
Mi +

1
3
M + (M,B, B̄)sea,

(71)
where Bi and Mi are baryons and mesons containing
the quark qi and M , B, and B̄ stand, respectively, for
mesons, for baryons, and for antibaryons of the sea.

Generally, one can write

M =
∑
L

µLML , B =
∑
L

βLML, (72)

Mi =
∑
L

µ
(i)
L M

(i)
L , Bi =

∑
L

β
(i)
L M

(i)
L ,

where the subscripts L = 0, 1, 2, ... define the multi-

plet, while µL, µ
(i)
L and βL, β

(i)
L are the probabilities
of the production of, respectively, mesons and baryons
of a given multiplet in the quark-hadronization pro-
cess. These probabilities are determined by charac-
teristic relative momenta of the fused quarks.

5.1. Baryon-to-Meson Ratio

Our present understanding of the multiperipheral
ladder is not sufficient to reanalyze (71) on the level
adopted in Sections 2 and 3 for V/P . Neverthe-
less, data on Z0 → p+X and Z0 → π+ +X decays
definitively confirm Eq. (71). For p/π+ at large x,
quark combinatorics [5] predicts

p/π+ � 0.20. (73)

Figure 4d shows the p/π+ ratio given by a fit to the
data from [11] (shaded area) and the prediction of
quark combinatorics (73): the agreement at x > 0.2
is quite good.

Let us comment on the result of our calculation,
p/π+ � 0.20, for leading particles in jets. In the jet
created by a quark, the leading hadrons are produced
in the proportion given by (71): Bi : 2Mi : M . We
consider only the production of hadrons belonging to
the lowest (baryon and meson) multiplets; hence, we
retain in (72) only the L = 0 terms (hadrons from the
quark S-wave multiplets). In our estimations, we
assume that β0 � µ0; therefore, we substitute Bi →
Bi(0), Mi → Mi(0), and M → M(0). The precise
content of Bi(0), Mi(0), and M(0) depends on the
proportions in which the sea quarks are produced.
We assume flavor symmetry breaking for sea quarks,
uū : dd̄ : ss̄ = 1: 1: λ, with 0 ≤ λ ≤ 1. For the sake
of simplicity, we first set λ = 0 (actually the ratio p/π
depends weakly on λ). For the u-quark initiated jet,
we then have

Bu(0) →
2
15

p+
1
15

n + (∆ resonances), (74)
1
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Fig. 6. Diagrams for the central production of a qq̄ pair:
the set of loop diagrams responsible for the Watson–
Migdal factor.

Mu(0) →
1
8
π+ +

1
16

π0 +
1
16

(η + η′)

+ (vector mesons),

M(0) → 1
16

π+ +
1
16

π0 +
1
16

π− +
1
16

(η + η′)

+ (vector mesons).

The hadron content of the d-quark initiated jet is
determined by the isotopic conjugation p → n, n →
p, and π+ → π−, and the content of antiquark jets
is governed by charge conjugation; in jets of strange
quarks, only sea mesons (M ) contribute to the p/π+

ratio.
Taking into account the ratio Bi : 2Mi : M = 1 :

2 : 1 and the probabilities of the production of quarks
of different flavors qi, given by (1), we obtain p/π+ �
0.21 for λ = 0. We can easily deduce the p/π+ ratio
for arbitrary λ: the decomposition of the ensembles
Bi(0), Mi(0), and M(0) with respect to hadron states
was performed in [5] (see Appendix D, Tables D.1
and D.2, in that study). As was emphasized above,
however, this ratio is a slowly varying function of λ:
at λ = 1, we have p/π+ � 0.20.

5.2. Production of Highly Excited Resonances
and Watson–Migdal Factor

For quark combinatorics, the saturation of qq̄ and
qqq states by real hadrons is of paramount impor-
tance. The probability of saturation is defined by the

coefficients (µL, µ
(i)
L ) and (βL, β

(i)
L ) in (72). A basic

question is what contribution from high multiplets is
sufficiently sizable not to be negligible in the spectra.

Let us consider in more detail the production of
mesons in the central region: qq̄ → M . The central
production of qq̄ states is described by the diagrams
in Fig. 6 (loop diagram, Fig. 6a, and interactions of
product quarks, Fig. 6b). Diagrams of the type in
Fig. 6b for final-state interactions lead to the rela-
tivistic Watson–Migdal factor. To estimate the num-
ber of highly excited states produced, we must find out
which states are determined by the qq̄ system in the
multiperipheral ladder.
P

The constructive element of the ladder is a process
shown in Fig. 5b. It was emphasized in Section 4
that, in this process, new qq̄ pairs are created at
relatively large separations (on the hadronic scale),
at r ∼ 1 fm: these separations are equal to those in
qq̄ → M transitions. The orbital angular momenta of
the qq̄ system for this transition can be written as L ∼
kr. For relative quark momenta of k <∼ 0.6 GeV/c, we
have

L <∼ 3. (75)

Relying on the behavior of the Regge trajectory, one
can assess meson masses µ to which this relation
corresponds. The trajectories for qq̄ states are linear
up to µ ∼ 2.5 GeV [33],

α(µ2) � α(0) + α′(0)µ2; (76)

the slope α′(0) is approximately equal to α′(0) � 0.8
GeV−2; and the intercept falls within the interval
0.25 <∼ α(0) <∼ 0.5. For large µ, the estimation
therefore yields µ2 ∼ α(µ2)/α′(0); with α(µ2) ∼ 3,
we have µ2 ∼ 4 GeV2. Thus, we conclude that, in the
multiperipheral ladder, it would be natural to expect
the production of qq̄ mesons with masses

µ <∼ 2 GeV. (77)

It is instructive to write down qq̄ states that belong
to this interval and which saturate the expansions in
(72). The qq̄ states are characterized by the orbital
angular momentum L; the quark spin S = 0, 1;
and the total angular momentum J . Yet another
characteristic of the qq̄ state is the radial quantum
number n. The region µ <∼ 2 GeV is populated by the
following n2S+1LJ qq̄ multiplets with n = 1 [10, 33]:

11S0, 13S1

11P1 13PJ (J = 0, 1, 2)

11D2 13DJ (J = 1, 2, 3) (78)

11F3 13FJ (J = 2, 3, 4).

As Eq. (75) tells us, all these states contribute
significantly to meson production.

The contribution of n > 1 states is determined
by the structure of quark final-state interaction (see
Fig. 5b). For each partial wave, the sum of the
diagrams featuring final-state interaction is

1
1−B(sqq̄)

Π(sqq̄, s′qq̄)
1

1−B∗(s′qq̄)
, (79)

where Π(sqq̄, s′qq̄) is final-state-interaction block and
1/[1−B(sqq̄)] is the relativistic Watson–Migdal fac-
tor,

B(sqq̄) =

∞∫
4m2

ds

π

N(s)ρ(s)
s− sqq̄

(80)
HYSICS OF ATOMIC NUCLEI Vol. 64 No. 5 2001
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= Re B(sqq̄) + iN(sqq̄)ρ(sqq̄).

Here, the function N(s) characterizes the interaction
of quarks for a given partial wave.

The cross section for the production of a qq̄ pair
with invariant mass squared sqq̄ is determined by
Eq. (79) at s′qq̄ = sqq̄:

dσ

(
qq̄(sqq̄) +X

)
(81)

∼ Π(sqq̄, sqq̄)
1

(1−B(sqq̄)) (1−B∗(sqq̄))
.

It follows from quark–hadron duality that

dσ

(
qq̄(sqq̄) +X

)
describes, on average, the spec-

trum of product resonances:

dσ

(
qq̄(sqq̄) +X

)
(82)

� dσ

(∑
(resonances near sqq̄) +X

)
.

The averaging of the resonance-production cross
section is performed over a certain vicinity of sqq̄. In
this way, we see that the structure of the Watson–
Migdal factor determines not only the rate of decrease

in dσ

(
qq̄(sqq̄) +X

)
with increasing invariant mass

but also the quantitative contribution of n > 1 reso-
nances.

There are the following qq̄ multiplets of the radial
excitations in the region µ <∼ 2 GeV [33]:

n1S0 n3S1 (n = 2, 3) (83)

n1P1 n3P0,1,2 (n = 2).
The probability of the production of these states is

determined by the decrease in dσ

(
qq̄(sqq̄) +X

)
—in

particular, by the Watson–Migdal factor.
In summary, we definitely expect a copious pro-

duction of resonances belonging to n = 1 qq̄ multi-
plets [see (78)]. With a smaller degree of definiteness,
we can judge the production of n > 1 resonances
presented in (83): if the Watson–Migdal factor sup-
presses strongly the contribution of large sqq̄, the pro-
duction of multiplets is suppressed as well; however,
a different situation is also possible.

Only a small part of resonances belonging to the
multiplets in (78) and located in the region 1500–
2000 MeV are included in the tables presented in [10];
a considerable number of resonances were discovered
and identified only recently (see [33–36] and refer-
ences therein). Moreover, numerous decay channels
related to multiparticle states have not yet been iden-
tified. This casts some doubt on the procedure for
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 5 200
reconstructing prompt probabilities on the basis of
the exclusion of known resonances [37–39].

There is yet another effect because of which the re-
alization of the program from [37–39] is questionable
at present: the effect of the accumulation of widths
of overlapping resonances by one of them [40]. An
identification of broad states of width about Γ/2 ∼
400− 600 MeV in the mass region 1500–2000 MeV
looks rather ambiguous at the present level of the
experimental data, although the existence of such
states seems probable if we expect the existence of
exotic mesons (glueballs and hybrids) in this mass
region (see [40] for details).

6. COHERENT PRODUCTION OF ω
AND ρ0 MESONS AT LARGE x

Indications of coherent phenomena in hadronic
Z0 decays follow from the ω/ρ0 ratio at x ∼ 1 (see
Fig. 4f). In multiparticle processes, where ρ and ω
are produced without any interference of flavor com-
ponents, this ratio is

ω/ρ0 = 1. (84)

Because of the approximate equality of the ρ and
ω masses, Eq. (84) is not violated by the decays of
highly excited resonances. Figure 4f demonstrates
the validity of (84) at x ∼ 0.1–0.2. At x ∼ 0.5–
1.0, however, the ω/ρ0 ratio is definitively less than
unity, thus unambigously suggesting the interference
of flavor components of the Z0 → uū and Z0 → dd̄
amplitudes.

Let us consider ω and ρ production in a quark
jet. If the hadronization of quarks in jets, Z0 →
u+X and Z0 → d+X, occurs in a noncoherent
way, the leading quark in the u jet picks up an an-
tiquark ū from the sea, giving rise to the transition
uū → (uū+ dd̄)/2 + (uū− dd̄)/2 = ω/

√
2+ ρ0/

√
2.

Likewise, the transition dd̄ → (uū+ dd̄)/2− (uū−
dd̄)/2 = ω/

√
2− ρ0/

√
2 occurs in the d jet. If there

is no interference of u and d jets, Eq. (84) is valid
for each of them. But if the amplitudes of ω and ρ
production do interfere, Eq. (84) is violated. Let us
consider the ω/ρ0 ratio for such a case.

The amplitude of the fragmentation production of
u and d quarks is determined by the Z0 → qiq̄i vertex,
which has the structure

[
ψ̄iγ

µ(giV − giAγ5)ψi
]
Zµ;

we have g
(u)
A = 1/2 and g

(u)
V = 1/2− 4/3 sin2 θW for

the u quark and g
(d)
A = −1/2 and g

(d)
V = −1/2 +

2/3 sin2 θW for the d quark. For the axial-vector
interaction, we therefore have

A → 0.5 [u+ (qq̄-sea + ū)] (85)

−0.5
[
d+ (qq̄-sea + d̄)

]

1



830 ANISOVICH et al.

             

Meson Meson

P

P

(
 
a
 
) (
 

b
 

) (
 

c
 

)
 

g g

q

q

qq– qq–

 

(

 

d

 

) (

 

e

 

) (

 

f

 

)

P

 

g g

 

Meson Meson

 

g g

 

P P

Meson Meson

 

g g

g g

 

P P

 

q q

q q

 

P

Meson Meson

 

––

Fig. 7. Diagrams for meson production in the central
region in high-energy hadron–hadron collisions.

→ 0.5 [uū+Xuū]− 0.5
[
dd̄+Xdd̄

]
.

If Xuū and Xdd̄ stand for the same state, Xuū =
Xdd̄ ≡ X, then

A → 1
2
(uū− dd̄) +X =

√
2ω +X. (86)

The amplitude that is due to the vector interaction is
V → 0.19 [u+ (qq̄-sea + ū)]

−0.35
[
d+ (qq̄-sea + d̄)

]
(87)

→ 0.19 [uū+Xuū]− 0.35
[
dd̄+Xdd̄

]
.

At Xuū = Xdd̄, we have

V →
√
2(−0.16ω + 0.54ρ0) +X. (88)

For axial-vector and vector interaction, the ratios are
therefore given by(

ω

ρ0

)
axial

= 0,
(

ω

ρ0

)
vector

= 8.8 × 10−2. (89)

Hence, coherent processes strongly suppress the pro-
duction of ω mesons in relation to ρ0 mesons. The
experimental value at x ∼ 0.5–1 is ω/ρ0 � 0.4, which
enables us to evaluate the contribution of coherent
processes at about 50%.

7. CONCLUSION

The rules of quark combinatorics follow from the
quark structure of hadrons, which directly reveals
itself in the ratio ρprompt/πprompt = 3. This equality
is valid for multiparticle production processes such
as hadronic Z0 decays and high-energy hadron colli-
sions; these relations are satisfied if the ρ-meson wave
function is identical to the pion wave function.

The spectra observed in multiparticle production
processes are formed owing primarily to the decay
P

of highly excited resonances. In the meson sector,
states of mass up to 1500–2000 MeV contribute
significantly; we can suppose that, in the baryon
sector, this would be the contribution of states up to
2000–3000 MeV. The reconstruction of the spectra
of highly excited resonances does not seem possible
at the present level of knowledge. Therefore, one
should investigate the prompt particle yields using
large-x jets, where the contribution of resonance-
decay products is considerably suppressed.

The ratio ρ0/π0 = 3, which is observed in hadronic
Z0 decay at x ∼ 0.5–0.8, agrees with the predictions
of quark combinatorics reasonably well.

The p/π+ value is also in agreement with the
quark combinatorial predictions at large x, thus re-
vealing a small (about 25%) probability of meeting a
diquark loop in the chain of quark loops.

The peripheral production of new qq̄ pairs in mul-
tiparticle production processes allows us to intro-
duce the suppression parameter for the production of
strange and heavy-flavor quarks. The suppression
parameters are determined by the ratio of the quark
masses, their values being in agreement with experi-
mental data.

In the central region for x <∼ 0.2, experiments yield
ω/ρ0 � 1, which also agrees with the quark combi-
natorial rules. For x > 0.5, however, experimental
data definitively tell us that ω/ρ0 < 1, which is an
indication of the interference of flavor amplitudes with
the fragmentation production of u and d quarks: the
signs of flavor amplitudes favor ω/ρ0 < 1.

To conclude, we can state that the predictions of
quark combinatorics for the hadronic decays of the Z0

boson agree reasonably well with experimental data.
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APPENDIX A

V/P Ratio in High-Energy Hadron–Hadron
Collisions

We demonstrate here that the ratio
Vprompt/Pprompt = 3 is not peculiar to decay proces-
ses—it is inherent in hadronic multiparticle produc-
tion processes as well.

We consider the cross section for the central pro-
duction of mesons, which is governed by the two-
Pomeron diagram in Fig. 7a. The probability of
meson production is determined by the structure of
HYSICS OF ATOMIC NUCLEI Vol. 64 No. 5 2001
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the Pomeron ladder; here, we use a QCD-motivated
Pomeron based on the pQCD Pomeron from [16]. In
[16], the Pomeron was constructed by inserting the
running coupling constant and the soft-interaction
boundary condition. The Pomeron found under these
constraints, Lipatov’s Pomeron [16], has an infinite
set of poles in the j plane; it is a suitable object for
using it as a guide in analyzing the soft-interaction
region. Previously, such an extension of Lipatov’s
Pomeron to the soft region was used in [41]; below
we follow the results from [41].

The gluon ladder that corresponds to Lipatov’s
Pomeron is shown in Fig. 7b. In order to describe
soft interactions, quark loops can be incorporated into
the gluon ladder, since, according to the rules of 1/N
expansion [17], quark loops do not introduce an ad-
ditional smallness. Cutting quark loops (see Fig. 7c)
yields the diagram that corresponds to the cross sec-
tion for the inclusive production of a qq̄ pair—that is,
the production of meson states. In this sense, the
diagram in Fig. 7c is redrawn as that in Fig. 7d: the
quark–Pomeron vertex is defined by the interaction
of two Reggeized gluons with a quark. The spin
structure of such a vertex can easily be calculated
(see [41], Appendix C) by using the analysis of the
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leading-s terms in Reggeon kinematics (large s and
small t) for the vector particle + fermion vertex [42].

In the leading terms of the 1/N expansion, there
exist diagrams of the type in Fig. 7e, where the gluons
of the upper (or lower) Pomeron interact with two
quarks simultaneously (generally, these diagrams can
be represented as that in Fig. 7f). As was shown in
[41], the sum of all these contributions (Figs. 7d, 7e,
etc.) results in the color-screening effect: the quark-
loop amplitude is nearly zero for the above quark
configurations at rqq̄ <∼ 0.2 fm (the existence of color-
screening effects in hadron-production processes has
long since been known [43, 44]).

The color-screening effect for the quark-loop dia-
gram in the Pomeron ladder [41] allows us to restrict
the calculations of Vprompt/Pprompt to the process in
Fig. 7a, because this diagram is responsible for the
leading effect at large qq̄ separations, rqq̄ >∼ 0.2 fm.

The loop diagram in Fig. 7a is defined by a formula
that is quite similar to (8)—only the spin factors are

replaced as Sπ → S
(P)
π and Sρ → S

(P)
ρ , which is due

to taking into account the vertices Pqq. The spin

factors S
(P)
π and S

(P)
ρ are given by
S(P)
π = −tr

(
iγ5(k̂1 +m)n̂+(k̂1 +m)iγ5(−k̂2 +m)(−n̂−)(−k̂2 +m)

)
, (A.1)

S(P)
ρ = −tr

(
γ⊥
α (k̂1 +m)n̂+(k̂1 +m)γ⊥

α (−k̂2 +m)(−n̂−)(−k̂2 +m)
)
,

where n̂+ is the quark–Pomeron vertex (coupling
to the upper Pomeron in Fig. 7a) and (−n̂−) is
the antiquark–Pomeron vertex (coupling to the
lower Pomeron); we have also considered that the
Pomerons in the diagram in Fig. 7a for the inclusive
cross section carry zero momenta.

If the upper Pomeron in the graph in Fig. 7a
moves along the z axis with momentum
pA = (p0, 0, pz) � (pz, 0, pz) and if the lower one
moves in the opposite direction, we have

n− = (1, 0,−1), n+ = (1, 0, 1). (A.2)

As in Section 2, the loop diagram has been calculated
in terms of the spectral integration; because of that,
we have k2

1 = k2
2 = m2. Once the operators n̂+ and

n̂− have been commuted with k̂1 and k̂2, we arrive at

S(P)
π = −tr

(
iγ5(k̂1 +m)iγ5(−k̂2 +m)

)
×4(n+k1)(n−k2), (A.3)

S(P)
ρ = −tr

(
γ⊥
α (k̂1 +m)γ⊥

α (−k̂2 +m)
)

×4(n+k1)(n−k2).
Apart from a common factor, S(P)
π and S

(P)
ρ coincide

with the normalization spin factors of the pion and
ρ-meson wave functions given by (24) and (29):

S(P)
π = 4(n+k1)(n−k2)S(wf)

π ,

S(P)
ρ = 4(n+k1)(n−k2)3S(wf)

ρ . (A.4)
This equation demonstrates that the two-Pomeron
diagram in Fig. 7a, which defines the cross sec-
tion for the inclusive production of ρ and π in the
central region of hadron–hadron collisions, yields
ρprompt/πprompt = 3.

APPENDIX B
Spin Factors for Fragmentation Production

Below, the explicit expressions for S(fr)
P /S

(wf)
P and

S
(fr)
V /S

(wf)
V are given for Z0 → bb̄ → → B +X and

Z0 → bb̄ → B∗ +X processes.
For the pseudoscalar particle, we have

S
(fr)
P

S
(wf)
P

= A1 +R2 A2, (B.1)

where
1
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A1 =
(
(mb −m)2 − s′

)
(M2 + 2m2

b) +
(
(mb −m)2 − s

)
(M ′2 + 2m2

b), (B.2)

A2 = M2

(
1− m2

b

M ′2

)(
(mb −m)2 − s′

)
+M ′2

(
1− m2

b

M2

)(
(mb −m)2 − s

)

−3m2
b

(
(mb −m)2 − s′

)
− 3m2

b

(
(mb −m)2 − s

)
. (B.3)
For the fragmentation production of the vector parti-
cle, the result is

S
(fr)
V

S
(wf)
V

=
M2

ss′
A3 +

M ′2

ss′
A4 +

2m2

ss′
(A3 +A4)

+
R2

M ′2M2s′s

(
M4(M ′2 −m2

b)A3 (B.4)

+M ′4(M2 −m2
b)A4 − 3M ′2M2m2

b(A3 +A4)
)
,

where
A3 = (s+ s′)(m2

b −m2)2

+ss′(3m2 −m2
b − 10mbm− 4s′)

+s′2(3m2
b − 2mbm−m2), (B.5)

A4 = (s+ s′)(m2
b −m2)2

+ss′(3m2 −m2
b − 10mbm− 4s)

+s2(3m2
b − 2mbm−m2).
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Abstract—QCD at a finite isospin chemical potential µI is studied. This theory has no fermion-sign
problemand can be simulated on a lattice by using present-day techniques. We solve this theory analytically
in two limits: low µI , where chiral perturbation theory is applicable, and asymptotically high µI , where
perturbative QCD is at work. At a low isospin density, the ground state is a superfluid pion condensate. At
a very high density, it is a Fermi liquid with Cooper pairing. The pairs carry the same quantum numbers
as the pions. Motivated by this observation, we put forward a conjecture that the transition from hadron to
quark matter is smooth. The conjecture passes several nontrivial tests. Our results imply a nontrivial
phase diagram in the space of the temperature and chemical potentials of isospin and baryon number.
At asymptotically large values of µI and small values of the baryon chemical potential, the ground state
is in a phase similar to the Fulde–Ferrell–Larkin–Ovchinnikov phase. It is characterized by a spatially
modulated superfluid order parameter 〈ūγ5d〉 and may be the asymptotic limit of the inhomogeneous pion-
condensation phase advocated by Migdal and others. c© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Good knowledge of QCD in the regime of finite
temperatures and a finite baryon density is crucial for
understanding a wide range of physical phenomena.
In cosmology, one faces the problem of understanding
how the Universe evolved through the QCD phase
transition at temperature T ∼ 150 MeV. Due to the
smallness of baryon asymmetry, finite-temperature
QCD should be sufficient to deal with this problem.
For the physics of heavy-ion collisions, however, one
needs to know how QCD behaves when both the
temperature and the baryon chemical potential are
finite. Lastly, neutron stars require knowledge of
matter in the “dense” regime—that is, at large baryon
densities and very low temperatures. Much less is
known about the last two regimes in relation to that
of high-temperature baryon–antibaryon-symmetric
QCD.

Let us use neutron stars as an example to illus-
trate the range of questions one would like to have
answers to. The equation of state (EOS) of nuclear
matter at high densities determines the mass–radius
relationship and the maximummass of neutron stars.
The Walečka model of nuclear matter predicts that

∗This article was submitted by the authors in English.
1)Physics Department, Columbia University, 538W. 120th St.
New York, NY 10027, USA.

2)Department of Physics, University of Illinois, M/C 237, 845
W. Taylor St. no. 2236, Chicago, IL 60607-7059, USA.

3)RIKEN–BNL Research Center, Brookhaven National Lab-
oratory, Upton, NY 11973, USA.
1063-7788/01/6405-0834$21.00 c©
the EOS becomes stiffer at higher densities and ap-
proaches the Zeldovich limit, ε = p (where the ve-
locity of sound approaches the speed of light), at
very high densities. At asymptotically high densities,
however, one expects nuclear matter to become a
weakly interacting quark liquid, with a much softer
EOS, ε = 3p. At what density does the transition
occur, and is it a phase transition or a crossover?

Migdal [1] and others [2] suggested that, at very
high densities, pion condensation might happen. It
is also argued that, at still higher densities, kaons are
condensed [3]. One would like to know whether pion
and kaon condensations do indeed occur in nuclear
matter before the transition to quark matter.

Finally, there is strong recent interest in the phe-
nomenon of color superconductivity [4, 5]. One very
interesting prediction is that, at a sufficiently high
chemical potential, the ground state of QCD is a
“color-flavor-locking” state [6], which breaks chiral
symmetry. However, while reliable results can be ob-
tained at asymptotically high densities, where strong
coupling is small [7–9], it is not known how one can
extend these results to the region of smaller, more
realistic, densities, without relying on uncontrollable
approximations.

Lacking reliable analytic means for approaching
QCD in the strong-coupling regime, one naturally
invokes numerical methods. First-principle lattice
numerical Monte Carlo calculations provide a solid
basis for our knowledge of the finite-temperature
2001MAIK “Nauka/Interperiodica”
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regime. However, the regime of a finite baryon chem-
ical potential µB is still inaccessible by Monte Carlo,
because present methods for evaluating the QCD
partition function require taking a path integral with
a measure that includes a complex fermion determi-
nant. At zero chemical potential, one can simply ig-
nore the determinant (as in the popular quenched ap-
proximation) and still find reasonable results for phys-
ical quantities. At finite µB , however, this procedure
leads to qualitatively unacceptable answers, as was
realized long ago [10]. It was understood more re-
cently that the quenched approximation fails at finite
µB because it describes an unphysical theory con-
taining, in addition to normal quarks, so-called con-
jugate quarks having the opposite baryon charge [11].

As a side remark, one notes that, although con-
jugate quarks are absent in real QCD, there are
many theories where they are naturally present. One
class of such theories is QCD with two colors, where
quarks are self-conjugate [12]. Another class con-
tains theories with quarks in the adjoint color repre-
sentation [13]. In all these theories, the positivity of
the fermion determinant ensures the applicability of
lattice Monte Carlo methods. However, the particle
content of all these theories is very different from that
in the real world.

The failure of the quenched approximation in real
QCD at finite µB and our inability to include a com-
plex fermion determinant in aMonte Carlo simulation
is one of the main reasons that our understanding of
QCD at a finite baryon density is still rudimentary.

One aspect in which QCD at a finite baryon den-
sity is different from finite-temperature QCD is that
the transition from hadronic to quark degrees of free-
dom occurs owing to a large density of a conserved
charge (such as the baryon number), while temper-
ature plays no role. This is the motivation for us
to address QCD at a finite chemical potential µI of
isospin (more precisely, of the third component of
isospin, I3), which is conserved by strong interaction.

Before going into details, we would like to com-
ment on the relevance of this regime to the real world.
Nature does provide us with nonzero-µI systems in
the form of isospin-asymmetric matter (for example,
within neutron stars); however, the latter contains
both isospin density and baryon number density. In
contrast, the idealized system considered in this study
does not carry baryon number: the chemical poten-
tials of the two light quarks, u and d, are equal in
magnitude, |µI |/2, and opposite in sign. Strictly
speaking, such a system is unstable with respect
to weak decays; does not conserve isospin; and, as
we will see, is not electrically neutral. Therefore,
that it does not exist in the thermodynamic limit.
Since we are interested in the dynamics of strong
interaction alone, one can imagine, however, that
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all relatively unimportant electromagnetic and weak
effects are switched off. Once this has been done,
we obtain a nontrivial regime that, as we will see
below, is accessible to present lattice Monte Carlo
methods, while being analytically tractable in various
interesting limits. As a result, the system that we
consider has a potential to improve substantially our
understanding of cold dense QCD. This regime car-
ries many attractive traits of two-color QCD [12, 13],
but it is realized in a physically relevant theory—QCD
with three colors.

2. POSITIVITY AND QCD INEQUALITIES

Since the fermion determinant of our theory is
real and positive in Euclidean space, some rigorous
results on the low-energy behavior can be obtained
from QCD inequalities [13, 14]. Let us recall how the
inequalities are derived in vacuumQCD. The starting
point is the following property of the Euclidean Dirac
operator D = γ(∂ + iA) + m:

γ5Dγ5 = D†. (1)

Among other things, this implies positivity of the
determinant, detD ≥ 0. For the correlation function
for a generic meson M = ψ̄Γψ, we can find, by using
(1) and the Buniakowski–Schwartz inequality, that

〈M(x)M †(0)〉ψ,A = −〈trS(x, 0)ΓS(0, x)Γ〉A
= 〈trS(x, 0)Γiγ5S†(x, 0)iγ5Γ〉A (2)

≤ 〈trS(x, 0)S†(x, 0)〉A,

where S ≡ D−1 and Γ ≡ γ0Γ†γ0. The inequality is
saturated for mesons with Γ = iγ5τi, since D com-
mutes with the isospin τi, whichmeans that the pseu-
doscalar correlation functions majorate all other I =
1 meson correlation functions.4) As a consequence,
one obtains an important restriction on the pattern of
spontaneous symmetry breaking. For example, sym-
metry breaking cannot be driven by a condensate of
〈ψ̄γ5ψ〉. Indeed, the generators of broken axial SU(2)
symmetry that act on such a presudoscalar con-
densate would have produced 0+ Goldstone bosons
ψ̄τiψ.

At a finite isospin density, µI �= 0, positivity still
holds [15], and certain inequalities can be derived
(in contrast to the case of µB �= 0 when there is no
positivity; hence, no inequality can be derived). Now,
D = γ(∂ + iA) + 1

2µIγ0τ3 + m, and Eq. (1) is not
true anymore, since the operation on the right-hand-
side of (1) changes the relative sign of µI . If, however,

4)It is important, as is the case for I = 1, that there is no
disconnected piece after ψ integration in (2). The proof does
not apply to the σ-meson correlation function,Γ = 1.
1



836 SON, STEPHANOV
mu = md, interchanging up and down quarks com-
pensates for this sign change (the u and d quarks play
the role of mutually conjugate quarks [11]); that is,

τ1γ5Dγ5τ1 = D†. (3)

Instead of the isospin τ1 in (3), one can also use τ2

(but not τ3). Equation (3) replaces Eq. (1), which is
now invalid, and ensures that detD ≥ ′. Repeating
the derivation of the QCD inequalities by using Eq.
(3), we find that the lightest meson, or the conden-
sate, must be in channels featuring ψ̄iγ5τ1,2ψ—that
is, a linear combination of π− ∼ ūγ5d and π+ ∼ d̄γ5u
states. Indeed, it is shown below that, in both two
analytically tractable regimes of small and large µI ,
the lightest mode is a massless Goldstone mode,
which is a linear combination of ūγ5d and d̄γ5u.

3. SMALL ISOSPIN DENSITIES:
PION CONDENSATE

When µI is small, chiral perturbation theory can
be used to treat the problem. To have a rough estimate
of how small µI should be, we require that no particles
other than pions be excited owing to the chemical
potential. This gives µI � mρ as an upper limit on
the applicability of chiral perturbation theory.

For zero quark mass and zero µI , the pion is a
massless Goldstone boson of spontaneously broken
SU(2)L × SU(2)R chiral symmetry. Actually, the
quarks have small masses, which break this sym-
metry explicitly. Under the assumption of equal
quark masses, the symmetry of the Lagrangian is
SU(2)L+R. The low-energy dynamics of the system is
governed by the familiar chiral Lagrangian; in terms
of the matrix pion field Σ ∈ SU(2), it is given by

L =
1
4
f2
πtr(∂µΣ∂µΣ† − 2m2

πReΣ).

This Lagrangian contains only two phenomenolog-
ical parameters: the pion decay constant, fπ, and
the pion mass in a vacuum, mπ. We will see that
interesting physics occurs at µI > mπ; since mπ �
mρ, there is a nontrivial range of µI where the chiral
Lagrangian is a reliable and useful treatment.

The isospin chemical potential further breaks
SU(2)L+R down to U(1)L+R. Its effect can be
included in the effective Lagrangian to leading order
in µI , without introducing additional phenomeno-
logical parameters. Indeed, µI enters into the
QCD Lagrangian in the same way as the zeroth
component of a gauge potential [13]. Thus, the
finite-µI chiral Lagrangian is obtained by promoting
global SU(2)L × SU(2)R symmetry to a local gauge
symmetry: gauge invariance completely fixes the way
P

in which µI enters into the chiral Lagrangian [13];
that is,

Leff =
f2
π

4
tr∇νΣ∇νΣ† − m2

πf
2
π

2
RetrΣ. (4)

The covariant derivative is defined as

∇0Σ = ∂0Σ − µI
2

(τ3Σ − Στ3), ∇iΣ = ∂iΣ,

(5)
which follows from the transformation property of Σ
under rotations by the isospin generator I3 = τ3/2.

With the aid of (4), it is straightforward to deter-
mine the vacuum alignment of Σ as a function of µI
and the spectrum of excitations around the vacuum.
We will be interested in negative µI , which favors
neutrons over protons, as in neutron stars. The re-
sults are very similar to those in two-color QCD at a
finite baryon density [13]. From (4), one finds that the
potential energy for Σ is

Veff(Σ) =
f2
πµ

2
I

8
tr(τ3Στ3Σ† − 1) − f2

πm
2
π

2
RetrΣ.

(6)
The first term in (6) favors the directions of Σ that
anticommute with τ3 (that is, τ1 and τ2), while the
second term prefers the vacuum direction Σ = 1. It
turns out that the minima of (6) at all µI are captured
by the ansatz

Σ = cosα + i(τ1 cosφ + τ2 sinφ) sinα. (7)

Substituting (7) into (6), one can see that the poten-
tial energy depends only on α, but not on φ:

Veff(α) =
f2
πµ

2
I

4
(cos 2α − 1) − f2

πm
2
π cosα. (8)

Minimizing Veff(α) with respect to α, one finds that
the system behaves differently in two distinct regimes:

(i) For |µI | < mπ, the system is in the same
ground state as at µI = 0: α = 0 or Σ = 1.

This result is easily understandable. The positive
energy mπ − |µI | is required to excite the lowest pion
state; therefore, no pion is excited at zero tempera-
ture. The ground state of the Hamiltonian at such
µI values coincides with the normal vacuum of QCD.
The isospin density is zero in this case.

(ii) When |µI | exceeds mπ, the minimum of (8)
occurs at

cosα = m2
π/mu2

I . (9)

In this regime, the energy required to excite a π−

quantum, mπ − |µI |, is negative; thus, it is ener-
getically favorable to excite a large number of these
quanta. Since pions are bosons, the result is a Bose
condensate of π−. If the pions did not interact, the
density of the condensate would be infinite. However,
the repulsion between the pions stabilizes the system
at a finite value of the isospin density. This value can
HYSICS OF ATOMIC NUCLEI Vol. 64 No. 5 2001
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be found by differentiating the ground-state energy
with respect to µI :

nI = −∂Leff

∂µI
= f2

πµI sin2 α = f2
πµI

(
1 − m4

π

µ4
I

)
.

(10)
For |µI | just above the condensation threshold,

|µI | −mπ � mπ, Eq. (10) reproduces the equation
of state of a dilute nonrelativistic pion gas [13],

nI = 4f2
π(|µI | −mπ).

At larger µI , |µI | � mπ, the isospin density is linear
in µI ,

nI = f2
πµI , |µI | � mπ.

From Eq. (10), one can find the pressure and the
energy density as functions of µI . The quantity of
interest is the ratio of the two,

p

ε
=

µ2
I −m2

π

µ2
I + 3m2

π

. (11)

This ratio starts from 0 at the threshold and fast
approaches unity with increasing |µI |. Thus, we see
that, as far as the chiral Lagrangian is still applicable,
the EOS approaches the Zeldovich limit of maximal
stiffness at high densities, in just the same way as for
nuclear matter in the Walečka model.

The fact that the minimum of the potential (6) is
degenerate with respect to the angle φ corresponds
to the spontaneous breakdown of U(1)L+R symmetry
generated by I3 in Lagrangian (4). This is not un-
expected since the ground state is essentially a pion
superfluid, with one massless Goldstone mode. Since
we start from a theory with three pions in a vacuum,
there are, in addition to the massless mode, two mas-
sive modes in the superfluid. One can be identified
with π0, while the other is a linear combination of
π+ and π−, which is denoted here by π̃+ since it
coincides with π+ at the condensation threshold. The
mass (defined as the rest energy) of these modes can
be obtained by expanding Lagrangian (4) around the
minimum. The result reads (cf. [13])

mπ0 = |µI |,
mπ̃+ = |µI |

√
1 + 3(mπ/µI)4. (12)

At the condensation threshold,mπ0 = mπ andmπ̃+ =
2mπ, while, for |µI | � mπ, both masses approach
|µI | (see Fig. 1).

The values of the chiral condensate, 〈ūu + d̄d〉,
and of the pion condensate, 〈ūγ5d〉, follow from (9):

〈ūu + d̄d〉 = 2〈ψ̄ψ〉vac cosα, (13)

〈ūγ5d〉 + h.c. = 2〈ψ̄ψ〉vac sinα;

that is, the chiral condensate “rotates” into the pion
condensate as a function of |µI |.
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Fig. 1. Schematic plot of masses (rest energies) of the
lowest excitations in QCD at finite (negative) µI in
the regime of applicability of chiral perturbation theory
(mπ, µI � mρ).

It is also possible to find baryon masses—that is,
the energy required for generating a single baryon in
the system. The most interesting baryons are those
that have the lowest energy and the highest isospin—
that is, the neutron n and the ∆− isobar. There
are two effects of µI on the baryon masses. The
first comes from the baryon isospin, which effectively
reduces the neutron mass by 1

2 |µI | and the ∆− mass
by 3

2 |µI |. If these were the only effect, the effective
∆− mass would vanish at |µI | = 2

3m∆. For larger
|µI |, there would arise the baryon or the antibaryon
Fermi surface, which would lead to a nonzero baryon
susceptibility χB ≡ ∂nB/∂µB . However, the other
effect comes into play much earlier than this occurs:
the negative pions in the condensate tend to repel the
baryons, increasing their masses.

These effects can be treated within baryon chi-
ral perturbation theory [16]. For example, the (Eu-
clidean) Lagrangian describing nucleons and their
interactions with pions at finite µI can be written as

LN = N̄γµ∇µN + mN

(
N̄LΣNR + h.c.

)
, (14)

where

∇0N =
(
∂0 −

µI
2

τ3

)
N, ∇iN = ∂iN.

Diagonalizing this bilinear Lagrangian in the pion
background given byΣ = Σ̄ from (7), one obtains the
nucleon masses. In the approximation of nonrela-
tivistic baryons, the results for the neutron and for the
∆− isobar are given by

mn = mN − |µI |
2

cosα, (15)

m∆− = m∆ − 3|µI |
2

cosα.
1
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Equation (3) can be interpreted as follows: as the
result of the rotation (7) of the chiral condensate,
the nucleonmass eigenstate becomes a superposition
of vacuum n and p states. The expectation value
of the isospin in this state is proportional to cosα
appearing in (3). With cosα given in Eq. (9), we
see that the two effects mentioned above cancel each
other whenmπ � |µI | � mρ. Thus, the baryonmass
never vanishes, and χB = 0 at zero temperature in the
region of applicability of the chiral Lagrangian.

As one forces more pions into the condensate, the
pions are packed closer and their interaction becomes
stronger. When |µI | ∼ mρ, the chiral perturbation
theory fails. To find the equation of state in this
regime, full QCD must be employed. As we have
seen, this can be done by using present lattice tech-
niques since the fermion-sign problem is nonexistent
at finite µI , in just the same way as in two-color
QCD [12].

4. ASYMPTOTICALLY HIGH ISOSPIN
DENSITIES:

QUARK–ANTIQUARK CONDENSATE

In the opposite limit of very large isospin densi-
ties, or |µI | � mρ, the description in terms of quark
degrees of freedom applies since the latter interact
weakly because of asymptotic freedom. In our case of
large negative µI , or nI , the ground state contains an
equal number of d quarks and ū antiquarks per unit
volume. If one neglects the interaction, the quarks
fill two Fermi spheres with the equal radii |µI |/2.
Switching on the interaction between the fermions
leads to instability that is associated with the forma-
tion and condensation of Cooper pairs and which is
similar to Bardeen–Cooper–Schrieffer (BCS) insta-
bility in metals or to diquark pairing at a high baryon
density [4]. To the leading order of perturbation the-
ory, quarks interact via one-gluon exchange. It can
easily be seen that the strongest attraction is observed
in the color-singlet channel; therefore, a Cooper pair
consists of a ū antiquark and a d quark. The ground
state is therefore a fermionic superfluid.

However, perturbative one-gluon exchange does
not discriminate between the scalar (ūd) channel and
the pseudoscalar (ūγ5d) channel: the attraction is the
same in both cases. But one can expect that the
instanton-induced interaction, however small, will
favor the ūγ5d channel rather than the ūd one. Thus,
the condensate is pseudoscalar and breaks parity,

〈ūγ5d〉 �= 0. (16)

This is consistent with our earlier observation that
QCD inequalities constrain the I = 1 condensate to
be a pseudoscalar at any µI . We note that the order
parameter in (16) has the same quantum numbers
P

as the pion condensate at lower densities. We will
discuss this coincidence later.

Because of Cooper pairing, the fermion spectrum
acquires a gap ∆ at the Fermi surface,

∆ = b|µI |g−5e−c/g, c = 3π2/2, (17)

where g should be evaluated at the scale |µI |. The
singular e−c/g behavior is associated with the long-
range magnetic interaction, as in the superconduct-
ing gap at large µB [7]. The constant c is smaller by
a factor of

√
2 in relation to the latter case because

of the stronger one-gluon attraction in the singlet qq̄
channel than in the 3̄ diquark channel. Consequently,
the gap in (17) is exponentially larger than the diquark
gap at comparable values of the baryon chemical
potential. Using the methods proposed in [8], one
can estimate b ≈ 104. As in BCS theory, the critical
temperature at which the superfluid state disappears
is of order ∆.

Asymptotically, ∆ is much less than |µI |, and
superfluidity affects slightly the equation of state.
The ratio p/ε approaches 1/3 from below in the limit
|µI | → ∞.

5. QUARK–HADRON CONTINUITY
AND CONFINEMENT

Since the order parameter (16) has the same
quantum numbers and breaks the same symmetry
as the pion condensate in the low-density regime, it
is plausible that there is no phase transition along the
µI axis. In this case, an increase in the density leads
to a smooth transformation of the Bose condensate
of weakly interacting pions into the superfluid state
of ūd Cooper pairs. The situation is very similar
to that in strongly coupled superconductors with
a “pseudogap” [17] and, possibly, to that in high-
temperature superconductors [18]. This also parallels
the continuity between nuclear and quark matter
in three-flavor QCD as conjectured by Schäfer and
Wilczek [19]. We therefore conjecture that, in two-
flavor QCD, one can move continuously from the
hadron phase to the quark phase without encounter-
ing a phase transition. We emphasize here that this
conjecture must be verified by lattice calculations.

At first glance, this conjecture seems to contra-
dict common wisdom that there is a “deconfinement”
phase transition from the hadron phase to the quark
phase. It is logically possible that there exists a first-
order phase transition at an intermediate value of µI .
However, there are several nontrivial arguments that
make the continuity hypothesis highly plausible.

The first argument arises from a consideration of
baryons. One notices that all fermions have a gap
HYSICS OF ATOMIC NUCLEI Vol. 64 No. 5 2001
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at large |µI |; this means that all excitations carry-
ing baryon number are massive. In particular, the
baryon-number susceptibility χB vanishes at zero
temperature. This is also true at small |µI |. It is thus
natural to expect that all excitations with a nonzero
baryon number are massive at any value of µI and
that χB remains zero at T = 0 for all µI . This also
suggests one way to verify the continuity on a lattice.

Another argument comes from a consideration of
the limit of a large number of colors, Nc. Let us
recall that, in finite-temperature QCD, there is a
mismatch at large Nc between the number of gluon
degrees of freedom, which is O(N2

c ), and the number
of hadron degrees of freedom, which is O(N0

c ). This
fact is a strong hint of a first-order confinement–
deconfinement phase transition such that the effective
number of degrees of freedom jumps from O(N0

c ) to
O(N2

c ). It is easy to see, however, that the behavior
of thermodynamic quantities as functions of Nc is
the same in the “hadronic” phase (low µI) and the
“quark” phase (large µI). Indeed, it can easily be
shown that, at very large µI , the isospin density nI is
proportional to the number of quarks, which isO(Nc):

nI =
Nc

3
µ3
I

8π2
. (18)

In the small-µI region, the isospin density is given by
Eq. (10). In the large-Nc limit, the pion decay con-
stant scales as f2

π = O(Nc); thus, the isospin density
in the pion gas is also proportional to Nc.5) What
occurs is that the repulsion between pions becomes
weaker as one goes to largerNc; thus, more pions can
be stacked at a given chemical potential. As a result,
the Nc dependence of thermodynamic quantities is
the same in the quark and in the hadronic regime,
although for seemingly very different reasons.

Let us now return to the question of confinement.
Naively, one would think that, at asymptotically large
µI , ū and d quarks are packed at a very high den-
sity, and that the system should become deconfined.
At finite temperatures, there is no rigorous way to
distinguish between the confined and the deconfined
phase in QCD with quarks in the fundamental repre-
sentation. However, a sharp distinction can be made
between the two phases at zero temperature (and
finite µI). In the confined phase, all particle exci-
tations carry integer baryon number; the deconfined
phase can be defined as a phase where there exist

5)At physical values of Nc, fπ, andmπ, the values of nI given
by Eqs. (10) and (18) and naively continued into the regime
of intermediate µI intersect at µI ≈ 800 MeV. This agrees
with the value of µI ∼ mρ, where one would expect the
crossover between the quark and hadron regimes to occur.
This is a quantitative indication that a phase transition is not
necessary.
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finite-energy excitations carrying fractional baryon
charge. The pion superfluid at small µI is clearly in
the confined phase. There is, however, the question
of whether quark matter at large µI is confined or
deconfined.

It might seem that, at very large µI , there exist
excitations with fractional baryon number. These
are fermionic quasiparticles near the Fermi surface,
which are related to the original quarks and anti-
quarks by a Bogolyubov–Valatin transformation. The
opening of a BCS gap makes the energy of these
excitations larger than ∆, but it is still finite.

To see that the logic above has a fault and that
there are no such excitations, one needs to consider
the dynamics of very soft gluons. A crucial obser-
vation is that, at large µI , gluons softer than ∆ are
not screened either by the Meissner or by the Debye
effect.6) The Meissner effect is absent because the
condensate does not break gauge symmetry (in con-
trast to the color superconducting condensate [4]).
Debye screening is also absent because, on scales
softer than ∆, there are no charge excitations in the
medium: Cooper pairs are neutral, while fermions
are too heavy to be excited. Thus, the gluon sector
below the scale ∆ is described by pure SU(3) gluo-
dynamics, which is a confining theory. This means
that there are no quark excitations above the ground
state: all particles and holes must be confined in
color-singlet objects, mesons and baryons, just as in
vacuum QCD.

If there is no transition along the µI axis, we
expect confinement at all values of µI . At large µI ,
the confinement scale Λ′

QCD is much less than ∆
since the running strong coupling αs at the scale ∆
is small. In more detail, let us trace the running
of the strong coupling from the UV to the IR limit.
First, αs increases until the scale gµI is reached when
it “freezes” owing to Debye screening and Landau
damping. The freezing regime continues until we
reach the scale∆, after which the coupling runs again
as in pure gluodynamics. Since the coupling is still
small at the scale ∆, it can become large only at
some scale Λ′

QCD much lower than ∆. Thus, at large
|µI |, there are three different scales separated by large
exponential factors, µI � ∆ � Λ′

QCD.

That the scale of confinement ismuch smaller than
the gap at large µI has an important consequence
for finite temperature. One can actually predict a
temperature-driven deconfinement phase transition
at a temperature T ′

c of order Λ′
QCD. Indeed, quarks

are unimportant at such low temperatures, so that the

6)This is similar to the behavior of the unbroken SU(2)c sector
of two-flavor color superconductors [20].
1
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Fig. 2. Phase diagram of QCD at a finite isospin density.

transition must be of the first order as in pure gluo-
dynamics. In particular, one expects the temperature
dependence of the baryon-number susceptibility to
change from e−3∆/T to e−∆/T around T ′

c because of
deconfinement.

The smallness of the confinement scale Λ′
QCD in

relation to the BCS gap∆ allows one to conclude that
the binding energy of quarks and antiquarks is small
and that the hadronic spectrum follows the pattern
of the constituent quark model, with ∆ playing the
role of the constituent quark mass. This means that
mesons weigh 2∆ and baryons weigh 3∆, approx-
imately. A good analog of the large-µI regime is
vacuum QCD with only heavy quarks. As in the
latter case, the string tension and string breaking are
determined by parametrically different energy scales
(Λ′

QCD and ∆, respectively). Hence, the area law
should work up to some distance much larger than
Λ−1

QCD, even when fundamental quarks are present.
For the same reason, one also expects high-spin ex-
cited states of hadrons to be narrow at large µI .

The energy hierarchy also leads to a curious
dispersion relation for hadrons in the isospin-dense
regime. By way of example, we consider the ρ−

meson, which is a bound state of a ū antiquark and a d
quark. At zero total momentum, these ū and d are on
opposite sides of the Fermi surface. With increasing
total momentum, the two constituents move along
the Fermi surface, remaining close to the latter until
the total momentum becomes larger than µI—that
is, twice the Fermi momentum. Thus, the dispersion
curve for the ρ− meson must remain essentially flat
in the momentum interval (0, |µI |). For baryons, the
energy is almost independent of momentum in the
interval (0, 1.5|µI |). Therefore, the group velocity of
hadrons virtually vanishes in these intervals. Above
these intervals, it should be equal to the speed of light.
It would be interesting to follow, on a lattice, the
evolution of the dispersion curves for ρ− from small
to large µI .
P

6. PHASE DIAGRAMS ON THE (T, µI)
AND (µI , µB) PLANES

By considering nonzero µI , we make the phase di-
agram of QCD three-dimensional: (T , µB, µI). Two
planes in this three-dimensional space are of special
interest: the µB = 0 (T, µI) plane, which is com-
pletely accessible to present lattice techniques, and
the T = 0 (µI , µB) plane, which contains neutron-
star matter.

Let us first consider the simpler case of the phase
diagram on the (T, µI) plane. Two phenomena
determine the phase diagram on this plane (Fig. 2):
pion condensation and confinement. At sufficiently
high temperatures, the condensate given by (16)
melts (solid line in Fig. 2). For large |µI |, this
critical temperature is proportional to the BCS gap
(17). There are two phases that differ by symme-
try: the high-temperature phase, where the explicit
flavor U(1)L+R symmetry is restored, and the low-
temperature phase, where this symmetry is spon-
taneously broken. The phase transition is in the
O(2) universality class.7) The critical temperature Tc
vanishes at |µI | = mπ and is an increasing function
of µI in both regimes that we studied: |µI | � mρ

and |µI | � ΛQCD. Thus, it is likely that Tc(µI) is
a monotonic function of µI . Moreover, it was ex-
plained above that, at large |µI |, there is a first-order
deconfinement phase transition at some temperature
T ′
c much lower than Tc(µI). Since there is no phase

transition at µI = 0 (for small mu,d) or at T = 0
(under the assumption of quark–hadron continuity),
this first-order line must end at some point A on the
(T, µI) plane (dashed line in Fig. 2).

The phase diagram in the (µI , µB) plane at zero
temperature proves to be quite complicated. We
defer a more detailed study of this plane for future
work. Here, we will only consider the regime where
|µI | � µB , both being much larger than ΛQCD, so
that perturbative QCD can be used. For µB = 0
and |µI | � ΛQCD, we have seen that the system is
a superfluid with a gap ∆. Finite µB provides a
mismatch between the ū and the d Fermi sphere. The
superconducting state becomes unfavorable at some
value of µB of order ∆. It is known [22] that the
destruction of this state occurs through two separate
phase transitions. As one increases µB , a first-order
phase transition occurring at µB slightly below∆/

√
2

7)The width of the Ginzburg region is suppressed by (∆/µI)
4

at large |µI |, as in usual BCS superconductors, and also by
1/N2

c , at largeNc, as in the case of the QCD chiral transition
[21].
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drives the system into the Fulde–Ferrell–Larkin–
Ovchinnikov (FFLO) state [22], which is character-
ized by a spatially modulated superfluid order param-
eter 〈ūγ5d〉 with a wave number of order 2µB . This
spatial dependence is still unknown, mostly because
the FFLO state has not been observed in metals.
The FFLO state persists only until µB = 0.754∆,
when it goes over, through a second-order phase
transition, to a 〈ūγ5d〉 = 0 state. The latter must
be a color superconductor with one-flavor diquark
condensates 〈uu〉 and 〈dd〉, owing to the attraction
between quarks of the same flavor. In that region of
the (µI , µB) phase diagram, which is directly relevant
to neutron stars, µB > |µI |, the color superconduct-
ing FFLO phase was studied by Alford, Bowers, and
Rajagopal [23].

The most interesting feature of the FFLO state
is that it has the same symmetries as the inhomo-
geneous pion-condensation state, which might be
formed in electrically neutral nuclear matter at high
densities, as argued by Migdal [1] and others [2].
Thus, the FFLO phase can be thought of as a real-
ization of Migdal’s pion condensate in the regime of
asymptotically high densities. It is also conceivable
that the two phases are actually one, continuously
connected on the (µI , µB) phase diagram.

Note added. Further research [24] reveals that
the physics below the scale ∆ is described by “glu-
odynamics of continuous media” with a large dielec-
tric constant. As a result, the scale of confinement,
Λ′

QCD, is small and decreases exponentially with the
chemical potential |µI |. This means that the line of
the first order deconfinement transition goes down as
indicated in Fig. 2.

7. CONCLUSION

Our original and primary motivation for consider-
ing QCD at finite isospin densities has been to have
a dense regime of realistic, three-color QCD that can
be studied on a lattice. Based on analytic calculations
in the asymptotic regimes of low and high densities,
we have found that there is likely no phase transition
along the µI axis at zero temperature. This conjecture
should be verified on the lattice. An obvious way
is to study the thermodynamics of the system. If
our continuity conjecture is correct, all thermody-
namic quantities should be smooth functions of µI .
In this case, we also suggest that the ratio p/ε is
a nonmonotonic function of µI : it grows from zero
at the threshold |µI | = mπ to some value close to
unity, then decreases to someminimal value, and then
approaches 1/3 from below at large |µI |. At zero
temperature, the baryon susceptibility must vanish at
any µI . We also predict that, on the (T, µI) plane,
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there is a line of first-order phase transitions, which
terminates at a second-order point.

The phase diagram on the (µI , µB) plane, which
is the most relevant to neutron-star physics, remains
inaccessible to lattice calculations. Based on our
preliminary investigations, we have concluded that
the phase diagram on this plane should have a rather
complicated topology. The most interesting feature of
this diagram appears to be the existence of the FFLO
phase, which is reliably predicted at |µI | � µB, both
being large. This phase has the same symmetry as
the pion-condensation state conjectured by Migdal;
both might be different regions of a single connected
region on the phase diagram.
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and M. Velkovsky, Phys. Rev. Lett. 81, 53 (1998);
Ann. Phys. (N.Y.) 280, 35 (2000).

6. M. Alford, K. Rajagopal, and F. Wilczek, Nucl. Phys.
B 537, 443 (1999).

7. D. T. Son, Phys. Rev. D 59, 094019 (1999); hep-
ph/9812287.

8. W. E. Brown, J. T. Liu, and H.-C. Ren, Phys. Rev. D
61, 114012 (2000); 62, 054013; 62, 054016 (2000).

9. D. T. Son and M. A. Stephanov, Phys. Rev. D 61,
074012 (2000); Erratum: 62, 059902 (2000).

10. I. Barbour, N.-E. Behilil, E. Dagotto, et al., Nucl.
Phys. B 275 (FS17), 296 (1986); J. B. Kogut,
M.- P. Lombardo, and D. K. Sinclair, Phys. Rev. D
51, 1282 (1995); Nucl. Phys. B (Proc. Suppl.) 42,
514 (1995).

11. M. A. Stephanov, Phys. Rev. Lett. 76, 4472 (1996).
1



842 SON, STEPHANOV
12. E. Dagotto, F. Karsch, and A. Moreo, Phys. Lett. B
169B, 421 (1986); E. Dagotto, A. Moreo, and U.
Wolff, Phys. Rev. Lett. 57, 1292 (1986); Phys. Lett.
B 186, 395 (1987); S. Hands, J. B. Kogut, M.-P.
Lombardo, and S. E. Morrison, Nucl. Phys. B 558,
327 (1999); S. Hands and S. E. Morrison, hep-
lat/9902012; hep-lat/9905021.

13. J. B. Kogut, M. A. Stephanov, and D. Toublan,
Phys. Lett. B 464, 183 (1999); J. B. Kogut,
M. A. Stephanov, D. Toublan, et al., Nucl. Phys. B
582, 477 (2000).

14. D. Weingarten, Phys. Rev. Lett. 51, 1830 (1983);
E. Witten, Phys. Rev. Lett. 51, 2351 (1983); S. Nus-
sinov, Phys. Rev. Lett. 52, 966 (1984); D. Espriu,
M. Gross, and J. F. Wheater, Phys. Lett. B 146B, 67
(1984).

15. M. Alford, A. Kapustin, and F. Wilczek, Phys. Rev. D
59, 054502 (1999).

16. See, for example, H. Georgi, Weak Interaction and
Modern Particle Theory (Benjamin-Cummings,
Menlo Park, 1984).
PH
17. A. J. Leggett, J. Phys. (Paris) 41, C7-19 (1980);
P. Nozières and S. Schmitt-Rink, J. Low Temp. Phys.
59, 195 (1985).

18. M. Randeria, cond-mat/9710223 and references
therein.
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Abstract—For the 190,192Pt nuclei, the g factors of the ν9/2−[505] ⊗ ν11/2+[615] 10− isomeric states
populated in the relevant (α, 2n) reactions are measured by the method of an integrated disturbed angular
distribution in an external magnetic field. From these measurements, it follows that the g factors are
0.009(8) and 0.010(6) for 190Pt and 192Pt, respectively. From the above g factors, it is found that the
anomalous gl factor of the neutron is δgl(n) = −0.017(6). c© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Experimental g factors are of importance for re-
vealing the structure of the corresponding states,
since they are quite sensitive to fine details of this
structure. Moreover, they sometimes contribute to
establishing medium-induced changes in the mag-
netic properties of intranuclear nucleons. Anomalies
in orbital gl factors (deviation from Dirac values) can
be determined from the g factors of states formed by
two nucleons belonging to the same species and hav-
ing oppositely directed spins. In this way, the anomaly
of the orbital gl factor of neutrons was determined
from the g factor of a 10− state in the 190Os nucleus as
measured by a modified NMR method implemented
for oriented nuclei [1]. The results revealed a sig-
nificant deviation from data known by that time and
from theoretical predictions. We made an attempt
at determining an anomaly in the orbital magnetism
of neutrons in nuclei neighboring Os by using the
method of an integrated disturbed angular distribu-
tion (IDAD). Here, we present results obtained by
measuring the g factors of 10− isomeric states in
190Pt and 192Pt. Previously, these nuclei were studied
by gamma-spectroscopy methods in a beam by using
(α, 4nγ) and (α, 2nγ) reactions [2, 3], and the results
of such investigations were employed in determining
the g factors discussed here.

2. DESCRIPTION OF THE EXPERIMENT

The excited states of 190Pt and 192Pt were popu-
lated and aligned in the reactions
188,190Os(α, 2n)190,192Pt in a 26.8-MeV alpha-
particle beam from the U-120 cyclotron installed at
the Institute for Nuclear Research (Kiev). An osmium
target enriched to 63% in 188Os and to 79% in 190Os
was prepared by depositing a metal powder onto a
1063-7788/01/6405-0843$21.00 c©
thick bismuth substrate. Colloid graphite was used
to glue the powder and to fix it on the substrate.

Upon traversing the target (∼ 60mg/cm2), the beam
energy was reduced to about 20 MeV, whereby the
excitation function for the relevant (α, 2n) reaction
was covered from the maximum to its half. The beam
stopped in the bismuth substrate, but this did not lead
to a significant enhancement of the background [the
threshold for the reaction 207Bi(α,2n) is 20.3 MeV].
Channels other than (α, 2n) do make sizable contri-
butions to the gamma spectrum.

The gamma-ray IDAD method in an external
magnetic field (see, for example, [4]) was used to
measure the g factors in question. The angle through
which the angular-distribution function is rotated
owing to the interaction of the magnetic moment
µ = gµNI of an isomeric state having a spin I and
a lifetime τ with a magnetic field B is given by

∆θ = ωLτ = gµNB/�, (1)

where ωL is the Larmor precession frequency. Prior to
hitting the target, the beam was additionally rotated
in the magnetic field through the angle θB. This
also leads to a rotation of the angular-distribution
function. Apart from this, we must take into account
the reduction of the angular distribution of gamma
rays because of isomer interaction with internal crys-
tal fields in the target. Eventually, the IDAD can
generally be represented as [4]

W (θ, τ) =
∑
k

AkḠkPk
[
cos(θ − ḠkωLτ − θB)

]
,

(2)

where θ is the angle at which the detector is arranged
with respect to the beam axis, Ak are coefficients in
2001MAIK “Nauka/Interperiodica”
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Table 1. CoefficientsA2 used to estimate their reduction by quadrupole interaction in the 10− isomeric state in 190,192Pt

Ii → If Eγ , keV A2 [2] A2 [3] Eγ , keV A2 [2] A2 [3]

12− → 10− 524 - 0.34(12) 454 0.17(3) 0.34(5)

10− → 8− 605 0.20(6) - 566 0.37(3) 0.37(6)

10− → 8−∗ 219 0.17(4) 0.32(10) 208 0.10(2) 0.06(6)

9− → 7−∗ 591 0.25(3) 0.26(12) 585 0.17(2) 0.13(3)

7− → 5−∗ 167 0.22(2) 0.28(10) 134 0.22(2) 0.14(3)
190Pt Ḡ2 = 0.96(9) 192Pt Ḡ2 = 0.6(2)

∗ Transitions involving delayed components.
the undisturbed angular distribution, Ḡk are coeffi-
cients that take into account the reduction of the an-
gular distribution due to the interaction in the target,
and Pk are Legendre polynomials.

A magnetic field of 2.92(1) T changing within
0.1% over the beam cross section was generated by
an electromagnet. The calculated beam-rotation an-
gle θB in the field of a complicated configuration was
8.14◦, the magnetic-field configuration being mea-
sured by a Hall sensor.

The choice of target requires special attention. In
measurements like that being discussed, a disturbing
effect is due to the quadrupole interaction of a long-
lived isomeric state with the surrounding medium. In
order to avoid the reduction of the angular distribution
of gamma rays emitted by recoil nuclei when implan-
tation in the target occurs, use is usually made of tar-
gets having a cubic crystal lattice (there is no electric-
field gradient in this case). We decided on a target that
consisted of osmium powder and was similar to that
employed in the measurements of the angular distri-
butions in [2, 3] (the only difference was that, here, the
gaps between powder grains were filled with colloid
graphite). Metal osmiumhas anA3 hexagonal lattice.
However, the reduction of the angular distribution is
not critical formeasuring g factors even for transitions
that deexcite states whose lifetimes are 69 and 404 ns.
Moreover, the reduction in the term AkḠk was taken
automatically into account, because the experimental
coefficientsAexpt

k = AkḠk in the angular distributions
were used in the present analysis. However, it is
necessary to estimate Ḡk in order to extract ωLτ from
ḠkωLτ . Since data on the quadrupole interaction of
Pt in the Os lattice are not available in the literature,
the quadrupole interaction of the 5− state of 206Hg in
the Hg lattice at T = 77K was extrapolated to Hg
in Os by using data for 197Au and 193Ir in various
lattices [4]. The quadrupole-frequency value of νQ =
0.58(2) MHz, which was obtained in this way, is
overly small to be taken into consideration for τ <
PH
20 ns transitions. For τ ≈ 280 ns, however, it leads
to the reduction factor equal to the hard-core limit
[4], s20:

Ḡ2(τ) = s20 =
∑
n

[
1 + (nω0τ)2

]−1 ≈ 0.24. (3)

The quadrupole interaction is weaker for Pt in Os
than for Hg in Os. This follows from a comparison
of theA2 values (see Table 1) for transitions following
the decay of 10− isomers whose lifetimes are 69 and
404 ns (the reduction occurs) and for fast transitions
(there is no reduction in this case) characterized by
the same or close spin values, like the 12− → 10−

transition populating the 10− isomer or the 10− → 8−
transition from the negative-parity band. Despite the
discrepancies between the data from [2] and [3] and
large uncertainties, we can conclude that the reduc-
tion in 190Pt is indeed small and can be disregarded
at the current experimental accuracy. For 192Pt, the
value of Ḡ2(τ) ≈ 0.6 was obtained from the ratio of
the coefficients A2 and was taken into account in
eventual results.

The relevant gamma rays were recorded by two
Ge(Li) detectors that had a resolution of 2.2 keV and
an efficiency of about 10% at an energy of 1.34 MeV
and which were arranged at angles of ±135◦ with re-
spect to the beam. The gamma spectra measured for
two opposite magnetic-field directions were analyzed
by two methods: (a) by fitting a peak and (b) by sum-
ming counts in each peak channel, whereupon the
background fitted over a wide region around the peak
was subtracted from the result of this summation.

In order to estimate the accuracy in determining
the peak area, we compared the ratio of the expo-
sure factors q1 and q2 with the ratio of the detector
efficiencies ε1 and ε2, which must be identical for all
transitions in the spectrum. They can be obtained
from the expressions(

q1
q2

)2

=
N(+θ) ↑
N(+θ) ↓

N(−θ) ↑
N(−θ) ↓ , (4)
YSICS OF ATOMIC NUCLEI Vol. 64 No. 5 2001
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(
ε1
ε2

)2

=
N(+θ) ↑
N(−θ) ↑

N(+θ) ↓
N(−θ) ↓ , (5)

where the effects of precession and beam rotation
cancel and where N(±θ)(↑↓) stands for the number
of counts in the detectors at ±θ for opposite field
directions (↑ and ↓).

For small Larmor precessions, the measured an-
gles of Larmor precession can be determined from the
relation

R = S ∆θL, (6)

where ∆θL = ωLτ if direct isomeric transitions are
observed (the deviations from the exact value are 0.2,
0.7, and 1.5% for ∆θL = 100, 200, and 300 mrad,
respectively), R is the asymmetry of counts that was
measured for up–down field directions, and S is the
logarithmic derivative of the angular distribution at
the angle of the detector arrangement. The quantity
R is determined as

R =
1 −√

ρ

1 +
√
ρ
, (7)

where

ρ =
N(+θ) ↑
N(+θ) ↓

N(−θ) ↓
N(−θ) ↑ . (8)

Expression (6) must be modified to take into ac-
count the concerted effect of Larmore precession and
beam rotation in the field of the electromagnet. In
those cases where the transition deexciting the isomer
cannot be recorded, but where the next transition
is observed, it is necessary to take into account the
fast population of the level that is deexcited by this
transition. Therefore, we have

R = S

{
θB +

∑
i

I
(i)
d

Ifd
∆θ(i)L

}
, (9)

where I(i)d is the intensity of the ith delayed compo-
nent and Ifd is the total (delayed plus fast) intensity
(see Fig. 1). In the case of ωτ � 200mrad, the reduc-
tion of the angular distribution is taken into account
in the expression

R = S

{
Ifd − Id
Ifd

θB +
Id
Ifd

sin 2(ωLτ + θB)√
1 + (2ωLτ)2

}
.

(10)

Those parts of the energy-level diagrams that are
necessary in the present context are displayed in
Fig. 2. The intensities of gamma rays from [2] were
corrected for internal conversion, and the transition
intensities obtained in this way are also shown in
Fig. 2. The coefficients A2 were borrowed from [2]
as the most precise ones. For 190Pt and 192Pt, the
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 5 200
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Fig. 1. Definitions of the symbols in expressions (9) and
(10).

coefficients A2 and A4 were used in the calculations
invoking the logarithmic derivative

S =
1
W

dW

dθ
=

12A2 + 5A4

8 + 2A2
. (11)

The averaged lifetime values obtained in [5–7] are
also quoted in Fig. 2. In all calculations, we first
determined the precession angles ωLτ for each tran-
sition being discussed. The precession angles were
averaged, whereupon the g factors were computed by
using the experimental lifetime values. The exper-
imental data and the results of the calculations are
presented in Table 2.

In analyzing data on the 219.1-, 447.3-, and
591.4-keV transitions in the 190Pt nucleus, we made
use of expression (9). The g factor of the 10− state
in 192Pt was determined on the basis of data on the
207.9-, 446.1-, and 584.7-keV transitions by varying
ωLτ in expression (10) to obtain a numerical fit to
the experimental value of R. A lower limit on the
error in ωLτ and g was obtained by calculating ωLτ
at R′ = R− ∆R. An upper limit cannot be derived
by a similar method, since Eq. (10) does not have
solutions atR′ = R+ ∆R. Therefore, the above error
was taken for a lower and for an upper limit.

3. DISCUSSION

In the decays of the 10− isomers in the 190Pt
and 192Pt nuclei, the reduced probabilities are
B(E2, 10− → 8−) ≈ (2 − 5) × 10−2 W.u. and
B(M1, 10− → 9−) ≈ (0.5 − 2) × 10−4 W.u. Large
delay factors indicate that the structure of these
isomers differs from the structure of the members
of the band built on the 5− state. At the same
time, the transition proceeding between the 10−

isomer in 192Pt and the 10+ state at 2583.5 keV
(see [2, 3]) suggests the i13/2 neutron configuration
1
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Fig. 2.Decay-diagram sections for 190,192Pt [2, 3] that illustrate the analysis of experimental data. The transition energies and
the total transition intensities are displayed in the figure.
in its structure. On this basis, it was concluded in
[2, 3] that the 10− isomer in 190,192Pt is similar to
the well-known 10− isomer in 190Os with a lifetime
of 10 min, its structure ν9/2−[505] ⊗ ν11/2+ [615]
being formed by two neutrons [8]. Calculations on
the basis of the nonaxial rotor plus two quasiparticles
also lend support to the (i13/2h9/2) configuration of
this isomer [9].

This interpretation is confirmed by the measure-
ments of the g factors. In the strong-coupling limit,
the g factor of a two-particle state is given by

g =
1
I + 1

(gR + gK1K1 + gK2K2) , (12)

where gR and gK are, respectively, the collective
and the single-particle g factor. The value of gK =
0.186(3) for the 9/2−[505] orbital can be obtained
from the experimental value g = +0.214(2) [10] of
the g factor of the 9/2− state in 191Os by using the
value of gR = g(2+) = +0.340(12) for 190Os [11]. In
a similar way, the value of gK = −0.180(5) for the
13/2+[606] orbital can be deduced from the exper-
imental value g = −0.116(3) [1] of the g factor of
the 13/2+ state in 193Pt with the aid of the value
of gR = g(2+) = +0.302(18) for 192Pt [12, 13]. In
order to obtain gK=11/2, the value of gK=13/2 must be
PH
corrected for the distinctions between K and 〈sz〉 by
using the expression

gK = gl +
〈sz〉
K

(gs − gl). (13)

In this way, we found gK=11/2 = −0.202(10). The
g-factor value of g(10−) = +0.003(2) calculated for
192Pt by using expression (12) and the above values
of gK is in excellent agreement with the experimental
result.

The measured g factor of the 10− state can be
used to determine the anomalous orbital g factor,
δgl = gl − gfreel , arising because of meson-exchange
currents. The most reliable way to determine it is
based on the use of the experimental g factors of
states in which two particles off the even–even core
that have oppositely directed spins are bound in such
a way that the total angular momentum is maximal
[14]. The single-particle g factor of neutrons can be
represented as

gK = δgl +
〈sz〉
K

(
geff
s − δgl

)
. (14)

For theK = K1 +K2 = I state, we obtain

g(I) =
I

I + 1
(15)
YSICS OF ATOMIC NUCLEI Vol. 64 No. 5 2001
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Table 2. Results obtained by measuring precession and by analyzing the isomeric states of the 190,192Pt nuclei

Eγ , keV Ii → If R S ∆θL ωLτ g

190Pt

219.1 10− → 8− 0.048(40) 0.25(6) 0.050(165) 0.050(165) 0.006(17)

447.3 8− → 7− 0.103(16) 0.60(10) 0.028(40) 0.090(125) 0.010(14)

591.4 9− → 7− 0.068(16) 0.37(4) 0.041(48) 0.096(112) 0.010(12)
192Pt

207.9 10− → 8− 0.049(30) 0.15(3) 0.30(23)∗ 0.009(7)∗∗

446.1 8− → 7− 0.096(15) 0.51(3) 0.40(32)∗ 0.013(10)∗∗

584.7 9− → 7− 0.056(13) 0.23(3) 0.29(20)∗ 0.009(7)∗∗

∗ The values are presented as Ḡ2ωLτ .

∗∗ The presumed reduction is Ḡ2 = 0.6(2).
×
{
gR
I

+ δgl +
〈sz〉1 + 〈sz〉2

I

(
geff
s − δgl

)}
.

The main contribution to g(l) comes from the second
term in (15). The contribution associated with the
collective g factor is small because gR is divided by
I, where I is large. Since the spin contributions
compensate each other almost completely (third term
in the bracketed expression), the remaining modest
correction due to spin magnetism can be taken
into account quite reliably. The quantity 〈sz〉 was
calculated within the Nilsson model. The 190Os
nucleus is prolate; in Pt isomers, there is a prolate-
to-oblate transition. The 190Pt nucleus has a triaxial
shape, while 192Pt is oblate (γ = 60◦ ) [15]. A
description of the 10− isomers in 190Pt and 192Pt, as
well as in 190Os, on the basis of Nilsson’s concepts
is acceptable only for axisymmetric prolate shapes.
The quantity 〈sz〉 was calculated at the value of β2 =
0.15, which is known from experiments for 192Pt [16]
(−0.434 and +0.442 for the 9/2−[505] and 11/2+[615]
orbitals, respectively). The anomalous neutron orbital
g factor calculated by using expression (15) and the
value of gR = 0.302(18) is

δgl(n) = −0.017(6). (16)

In this calculation, we set geff
s = 0.65gs.ps for both

orbitals (the distinction between geff
s and gs.p.s in a nu-

cleus is due to the core spin polarization, which takes
different values for different states [4]); the resulting
error, which does not exceed 0.0005, was taken into
account in the total uncertainty. The use of the
〈sz〉 values calculated at β2 = −0.15 yields a similar
result—namely, δgl(n) = −0.014(6). The inclusion
of the value of β4 = −0.04 from [17] in the calculation
does not change this result.
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Our value of δgl(n) is at odds with the value of
δgl(n) = −0.095(15), which was deduced from the g
factor of the 10− isomer in 190Os [1]. The last value
is also inconsistent with the systematics of δgl(n)
values obtained by various methods [4]: about (0.10–
0.15) for protons and about –(0.02–0.06) for neu-
trons; nor does it lend support to Yamazaki’s assump-
tion [18] on the increase of (8 ± 3)% in the effective
nuclear magneton within the nucleus in the relation
to the magneton of a free nucleon. The assumption
of Yamazaki was put forth in order to explain the de-
viation of the ratio δgl(p)/δgl(n) from −N/Z; specif-
ically, the values of δgl(p) = +0.15(2) and δgl(n) =
−0.05(3) follow from an analysis of the g factors in
the region around 208Pb. The above ratio is expected
under the assumption of the isovector character of δgl
because of meson-exchange currents. The increase
in the nuclear magneton implies a decrease in the
nucleon mass within the nucleus, the latter being
behind one of the explanations of the EMC effect [19].
In accord with Yamazaki’s assumption, our results
confirm the deviation of the ratio δgl(p)/δgl(n) [which
was found to be close to –60 even at the smallest
value of δgl(p)] from −N/Z (which is close to the
value of –1.5 for Pt isotopes).

4. CONCLUSION

The g factors of the 10− isomers in 190,192Pt have
been measured. The results have confirmed that the
internal structure of these isomers is ν9/2−[505] ⊗
ν11/2+[615]. On this basis, we have also been able
to find that the anomalous orbital g factor of neu-
trons is δgl(n) = −0.017(6). It is difficult to explain
so dramatic a deviation from the value of δgl(n) =
−0.095(6), which was determined from the g(10−)
1
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factor in 190Os [1]. If we assume that the 10− state
is spherical (not deformed) and use the corresponding
procedure for determining δgl, it is possible to obtain a
positive value of +0.04(2), which contradicts all data
accumulated so far and theoretical conjectures on the
nature of δgl.
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Abstract—The evolution of the reactor-antineutrino spectrum toward equilibrium above the inverse-beta-
decay threshold during the reactor operating period and the decay of residual ν̄e radiation after reactor
shutdown are considered. It is found that, under certain conditions, these processes can play a significant
role in experiments seeking neutrino oscillations. c© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The flux and the spectrum of reactor antineutri-
nos depend not only on the current reactor state,
which is specified by the power level and the isotope
composition of the nuclear fuel used, but also on
the preceding evolution of the fuel. The spectrum of
antineutrinos produced in the beta decay of fission
products and other radioactive nuclei accumulated in
the reactor core begin to evolve toward equilibrium
after the start-up of a reactor. After reactor shutdown,
the antineutrino radiation diminishes for a long time.

In [1, 2], equilibration of the spectrum and the
reduction of the soft section of the ν̄e spectrum, where
the effects of preceding evolution are pronounced,
were analyzed in connection with the problem of
searches for the neutrino magnetic moment in exper-
iments studying ν̄ee− scattering.

In this study, we consider the inverse-beta-decay
process

ν̄e + p→ e+ + n (1)

and antineutrino spectrum above the threshold for
this reaction (1.804 MeV). Presently, reaction (1)
is of interest mainly as a tool for seeking neutrino
oscillations in reactor experiments.

In this case, the oscillations in question are man-
ifested in the disappearance of some fraction of the
ν̄e flux and in a characteristic modulation of the ν̄e
spectrum, the latter being specified by the factor

P = 1 − sin2(2θ) sin2(1.27∆m2R/E), (2)

where sin2 2θ is the mixing parameter, ∆m2 is the
mass parameter measured in electronvolts squared,
R is the distance (in meters) between the source
and detector, and E is the detected neutrino energy
measured in megaelectronvolts.
1063-7788/01/6405-0849$21.00 c©
In experiments seeking the above oscillations, the
ν̄e spectrum and fluxmeasured with the aid of reaction
(1) are compared with their values expected in the
absence of the oscillations. In this case, use is made
of the reactor ν̄e spectrum obtained independently (ν̄e
spectrum at the production instant). Uncertainties
in determining this spectrum restrict the sensitivity
of the method, and systematic error in the spectrum
shape may generally mimic or mask the oscillation
effect. Procedures that are applied to analyze data
from experiments seeking oscillations were described
in more detail elsewhere (see, for example, [3]). As a
rule, equilibration of the spectrum and the reduction
of the ν̄e spectrum do not lead to considerable effects
in the regionE > 1.8MeV. However, their role can be
greatly enhanced in some cases that will be discussed
in Section 4.

This article is organized as follows. In Section 2,
we give a brief account of available data on the spec-
trum of reactor ν̄e in the region E > 1.8 MeV and on
the cross section for reaction (1). In Section 3, we
consider the evolution of the spectrum in the reactor
operating period and residual antineutrino radiation
in the reactor shutdown period and determine the
relevant cross sections. Section 4 is devoted to dis-
cussing the results.

2. SPECTRA AND CROSS SECTIONS
(STANDARD APPROACH)

Let us briefly review the basic properties of the
reactor-antineutrino spectrum in the energy region
above 1.8 MeV and the spectrum-averaged cross
section for reaction (1) (see, for example, [1, 2, 4–8]
and references therein).

The standard approach is based on the following
assumptions:
2001MAIK “Nauka/Interperiodica”
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Yields of some fission fragments (in %)

Fission Fissile nucleus

fragment 235U 239Pu 241Pu 238U
97Zr 5.95 5.30 4.89 5.50
132I 4.30 5.40 4.14 5.16
93Y 6.40 3.89 3.15 4.97

106Ru 0.40 4.31 6.18 2.55
144Ce 5.48 3.74 4.39 4.50
90Sr 5.82 2.10 1.57 3.12

(i) The ν̄e spectrum is formed exclusively by the
beta decays of the fragments produced in a reactor
upon the fission of 235U, 239Pu, 238U, and 241Pu
isotopes.

(ii) For each isotope, the equilibrium spectrum
is established within a small time interval that can
be neglected. At the instant under consideration,
the reactor-antineutrino spectrum ρ(E) measured in
(MeV)−1 units per fission event can then be expressed
in terms of the spectra ρ(E) for four fissile isotopes.
Specifically, we have

ρ(E) =
∑

αiρi(E), (3)

where αi is the contribution of a given isotope to the
number of fission events occurring in a reactor at
this instant, the subscript values of i = 5, 9, 8, and
1 labeling the quantities associated with the fissile
isotopes 235U, 239Pu, 238U, and 241Pu, respectively.

Because of 235U depletion and the accumulation
of fissile plutonium isotopes, the contributions αi en-
tering into Eq. (3) change, which leads to a change
in the total spectrum ρ(E) over the reactor operating
period. As was mentioned above, the spectra ρi(E)
are assumed to be time-independent. Information
about current αi values is presented by the reactor
personnel, the relative error in these values being set
to 5%.

The spectra ρi(E) for 235U, 239Pu, and 241Pu
were obtained in [5] by the conversion method, which
enables one to reconstruct the relevant antineutrino
spectrum on the basis of the total spectrum of beta-
decay electrons from the set of the fragments of a
given fissile isotope. For a few tens of hours, thin
layers of the aforementioned isotopes were exposed to
a thermal-neutron flux from the reactor installed at
ILL (Grenoble), and the current spectra of electrons
from the beta decay of fragments were simultaneously
measured in the energy region above 2.0 MeV for
235U and in the energy region above 1.8 MeV for
239Pu and 241Pu. After approximately 12 hours of
P

irradiation, the beta spectra reached saturation and
changed no longer. Therefore, the antineutrino spec-
tra ρi(E) reconstructed on the basis of these β spectra
are actually those that are established after about one
day of fuel irradiation. For 238U, use was made of the
spectrum calculated in [6] because the beta spectrum
was not measured for the fragments of this isotope.

The expected number of events of the interac-
tion between antineutrinos and target protons was
calculated in terms of the cross section σV−A for
reaction (1),

σV−A =
∑

αiσi, (4)

where σi =
∫
ρi(E)σ(E)dE , σ(E) being the reaction

cross section for monoenergetic antineutrinos [7].
In terms of 10−43 cm2 units per fission event, the

σi values calculated in this way are
σ5 = 6.39 ± 1.9%, σ9 = 4.18 ± 2.4%, (5)

σ1 = 5.76 ± 2.1%, σ8 = 8.88 ± 10%.

These calculationswere performed with the β con-
stants corresponding to the free-neutron lifetime of
τ = 887.4 s ± 0.2%. The resulting error in the cross
section (4) is 2.7% (68% C.L.).

To a higher precision, the cross section for reaction
(1) is known from an experiment performed by the
Kurchatov Institute–Collège de France–LAPP col-
laboration at a distance of 15 m from the Bugey PWR
reactor [8]:

σmeas = 5.750 × 10−43 cm2/(fission event)

± 1.4%(68%C.L.). (6)

This result corresponds to the following contribu-
tions αi from fissile isotopes:
α5 = 0.538, α9 = 0.328, α8 = 0.078, α1 = 0.056.

(7)

The proportion in (7) for the number of isotope-
fission events is typical for PWR reactors, which
were used in the majority of experiments seeking the
oscillations in question. Within the errors, the cross
section in (6) agrees with the reaction cross section
σV−A found for the given composition of nuclear fuel:

σmeas/σV−A = 0.987 ± 1.4%(experiment)
± 2.7%(V −A). (8)

The experimental value in (6) is treated as ametro-
logical reference for the cross section in the absence
of oscillations. A feature peculiar to this reference is
that, in each specific case of its application, it must be
rescaled to the relevant composition of nuclear fuel.
As a result, the error in the cross section increases to
about 1.6%.

For reactors of the type being considered, the du-
ration of the operating period is approximately one
HYSICS OF ATOMIC NUCLEI Vol. 64 No. 5 2001
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year. After that, the reactor is shut down for 30–
40 days, and one-third of the fuel is replaced by a new
load of fuel. Therefore, the fuel is irradiated for three
years.

The detector background is measured during re-
actor shutdown periods. It is assumed that antineu-
trino emission in the region E > 1.8 MeV ceases
completely within one day after reaction shutdown.

The above information forms a basis for analyzing
and interpreting the results of experiments seeking
neutrino oscillations in reactor experiments.

3. SPECTRA AND CROSS SECTIONS
(INCLUSION OF NONEQUILIBRIUM

EFFECTS)

1. Let us determine more precisely sources
that contribute to the formation of the reactor-
antineutrino spectrum ρ(E),

ρ(E) =Fρ(E) +Cρ(E). (9)

The first term in (9) describes radiation from the
set of fragments produced in 235U, 239Pu, 238U, and
241Pu fission, their interactions with neutrons being
disregarded here; the second term takes into account
additional radiation arising in radiative neutron cap-
ture by accumulated fragments.
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 5 200
For an irradiation time of ton > 1 day, each of the
spectra ρ(E, ton) for the four isotopes 235U, 239Pu,
238U, and 241Pu were calculated as functions of the
duration of fuel irradiation. In this calculation, the
fission rate was assumed to be constant for each
isotope. The residual-radiation spectra ρ(E, toff)were
also calculated as functions of the time toff from the
end of fission.

The calculations were performed by summing, at
each instant, the contributions from individual fission
fragments with allowance for their yields from the
fission process, decay diagrams, and lifetimes. The
database that we used contains information about
571 fission fragments whose cumulative yields are not
less than 10−4% each. As a matter of fact, the activity
of the majority of the fragments that can contribute in
the energy region E > 1.8 MeV reaches saturation
within one day after the onset of the fission pro-
cess, and a further increase is due to only six fission
products whose properties are well known. Three
of them—97Zr (Emax = 1.922 MeV), 132I (Emax =
2.140 MeV), and 93Y (Emax = 2.890 MeV)—attain
equilibrium within ten days. A further slow increase
is determined by the 106Ru and 144Ce half-lives:
106Ru
T1/2 = 372 day

−−−−−−−−−−→
Emax = 0.04 MeV

Rh
T1/2 = 30 s

−−−−−−−−−−−→
Emax = 3.541 MeV

Pd (stab),

144Ce
T1/2 = 285 day

−−−−−−−−−−→
Emax = 0.32 MeV

Pr
T1/2 = 17 min

−−−−−−−−−−−→
Emax = 2.996 MeV

Nd(T1/2 = 3 × 1015) yr. (10)
Finally, some contribution comes from 90Y (T1/2 =
64 h, Emax = 2.279 MeV) as well, which is in
equilibrium with its very long-lived predecessor 90Sr
(T1/2 = 28.6 yr). The yields of these fission fragments
are quoted in the table.

2. The antineutrino spectra calculated for 235U
and 239Pu are displayed in Figs. 1a and 1b (equili-
bration) and in Figs. 2a and 2b (decrease). For four
fissile isotopes, Figs. 3 and 4 show, respectively, the
cross sections σi(ton) for reaction (1) in the fission
process and the decrease in σi(toff) in the residual-
radiation spectra. In Figs. 1–4, the spectra and cross
sections are presented in dimensionless units and are
normalized to the corresponding values after a lapse
of ton = 1 day from the onset of the fission process.

3. The correction Cρ(E) was calculated with al-
lowance for fragments accumulated in a reactor, the
cross sections for radiative neutron capture, and the
spatial and energy distributions of the neutron flux
over the reactor core. The results presented in Fig. 5
refer to a standard operating period of a PWR reactor.

The relevant contribution Cρ(E) to the cross sec-
tion for reaction (1) is about 0.2% at the end of the
operating period. After reactor shutdown, the spec-
trum Cρ(E) decreases fast, not making a significant
contribution to residual radiation.

4. DISCUSSION OF RESULTS

(i) In the approximation specified in Section 2, the
flux and the spectrum of reactor antineutrinos are un-
ambiguously determined by the current reactor state.
After sharp changes in this state, the characteristics
of the ν̄e flux take the corresponding equilibrium val-
ues within a time as short as one day. In particular,
the antineutrino flux falls down to zero within one day
after reactor shutdown.
1
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Fig. 1. Ratio of the antineutrino spectra for (a) 235U and
(b) 239Pu fission to the spectrum after one day of irradia-
tion. The numbers on the curves indicate the irradiation
time.

As a matter of fact, the antineutrino flux in the re-
gionE > 1.8MeV has been found to have a nonequi-
librium component, whose relaxation time exceeds
the duration of the reactor operating period. In view
of this, a determination of the ν̄e spectrum and of the
corresponding values of the cross section for reaction
(1) requires tracing the preceding evolution of reactor
operation over a long time and taking into account
power levels, shutdown periods, and the discharge of
spent reactor fuel. In each specific case, this can be
done, if needed to a sufficient precision.
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Fig. 2. Ratio of the antineutrino spectra of the residual
radiation from (a) 235U and (b) 239Pu irradiated for two
years to the spectrum after one day of irradiation. The
numbers on the curves indicate the time that have elapsed
after the termination of irradiation.

The sample of the results in Section 3, which were
obtained under the assumption that the fission of ura-
nium and plutonium isotopes proceeds at a constant
rate, has enabled us to reveal qualitative features of
effects induced by the nonequilibrium component.

(ii) First of all, we note that the resulting correc-
tions to the spectrum and cross sections are relatively
small, but they are not negligible. In the antineutrino-
energy range 1.8–3.5 MeV, the relative contribu-
tion of the additional radiation during the reactor
YSICS OF ATOMIC NUCLEI Vol. 64 No. 5 2001
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Fig. 3. Ratio of the inverse-beta-decay cross sections for
fissile uranium and plutonium isotopes irradiated for the
time ton to that after one day of irradiation.

operating period (Figs. 1, 5) is about 4%, which is
somewhat greater than the error of the ILL spectra [5].

The corrections to the cross sections σi in Fig. 3
and the correction associated with radiative neutron
capture may change the cross sections σV−A by 0.4–
0.6%. As a result, relation (8) will change accord-
ingly. Corrections on the same order of magnitude
may arise if the cross section (6) is used as a refer-
ence value for the cross section in the absence of the
oscillations.

(iii) Here, we consider a situation where residual
radiation from a stopped reactor can play a significant
role and provide numerical examples illustrating the
scale of the effects under discussion.

Let us consider an experiment where antineutrinos
from reactors are recorded by one detector positioned
in such a way that the reactors are at markedly differ-
ent distances from the detector. Such an experimen-
tal setting was implemented, for example, in Rovno
(distances of 18 and 98m) and in the Bugey-3 experi-
ment (15 and 95 m) [9]; three reactors in Krasnoyarsk
were located at distances of 57, 57, and 234 m from
the detector [10]. The idea of these experiments con-
sists in using the shutdown and operating periods to
determine the background level and the signals from
each individual reactor. By comparing these signals,
one can reveal the oscillation effect or set limits on the
oscillation parameters.

By way of example, we consider two identical
PWR reactors of thermal power 2.8 GW each and
a detector positioned at distances of 15 and 100 m
from the near and the far reactor, respectively, so
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 5 200
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that the signal from the near reactor is approximately
45 times as great as that from the far one. In this
case, the numbers of events of reaction (1) that are
induced by the near and the far reactor per 1 t of a
1
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CH1.8 target per day are Nop
near ≈ 12 000 day−1 t−1

andNop
far ≈ 260 day−1 t−1, respectively.

When both reactors are shut down, the detector
records, however, the residual interaction in addition
to the background. Within one to two days after
the shutdown of the near reactor, the number of
interaction events induced by the residual radiation
from it in the detector per unit time decreases by a
factor of about 200, falling down to a value ofNoff

near ≈
70 day−1 t−1, which is approximately 25% of the
signal from the far reactor. After that, the signal from
the residual radiation decreases smoothly (see Fig. 4)
until the discharge of the spent fuel begins, which
significantly affects detector readings.

Obviously, these cases require a new approach to
processing and analyzing experimental data.

5. CONCLUSION

The effect of the equilibration of the reactor-
antineutrino spectrum on the cross section for the
inverse-beta-decay process (1) with the threshold of
1.8 MeV has been considered.

The increase in the antineutrino flux due to an in-
crease in the cross section (this effect was previously
ignored) is about 0.6% over the reactor operating
period. This value is commensurate with the accuracy
(the standard error is 1.4%) in the measurement of
the cross section itself. A correction at this level must
also be introduced in the ratio of the measured cross
section to the cross section calculated on the basis
of the antineutrino spectrum that was determined
independently and which corresponds to one day of
reactor operation.

We have calculated the additional contribution to
the antineutrino spectrum from neutron capture by
fission products and determined the corresponding
increase (0.2%) in the cross section for reaction (1).
PH
It has been found that corrections previously ig-
nored in the standard experimental scheme aimed at
searches for neutrino oscillations (one detector and
near and far reactors) may be as large as 25%.
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Abstract—Experimental results are presented that were obtained by measuring the astrophysical S factor
for dd interaction at very low deuteron collision energies by using the liner-plasma technique. The
experiment was performed at the high-current generator of the High-Current Electronics Institute (Tomsk,
Russia). The values found for the S factor at the deuteron collision energies of 1.80, 2.06, and 2.27 keV are
Sdd = 114± 68, 64± 30, and 53± 16 keV b, respectively. The corresponding dd cross sections obtained
as the product of the barrier factor and the measured astrophysical S factor are σn

dd(Ecol = 1.80 keV ) =
(4.3± 2.6)× 10−33cm2, σn

dd(Ecol = 2.06 keV ) = (9.8± 4.6)× 10−33cm2, and σn
dd(Ecol = 2.27 keV ) =

(2.1± 0.6)× 10−32cm2. c© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Investigation of dd nuclear fusion at ultralow en-
ergies (about 1 keV) is very important for exploring
the physics of few-body nucleon systems [1, 2] and
for solving some astrophysics problems [3, 4] and
the problems of nucleon–nucleon interaction [5–12].
Classical accelerators cannot be used to study nu-
clear reactions at very low energies because the rel-
evant cross sections at such energies lie in the range
10−43–10−32cm2, so that the intensities of acceler-
ated beams are overly low for direct measurements
[13, 14].

At present, there is virtually no experimental in-
formation about dd interaction in the energy region
around 1 keV. A new experimental method for investi-
gating strong interactions between light nuclei at very
low energies was proposed in [4, 13, 15–17]. This
method employs high-intensity radially converging
ion beams generated during plasma liner implosion
(Z pinch). The intensity of the accelerated ion flow
can reach 1020–1021 particles per pulse [18–23].

∗This article was submitted by the authors in English.
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1063-7788/01/6405-0855$21.00 c©
The first experimental investigations of dd reac-
tions on the basis of a high-current accelerator (I =
750 kA, I being the current through the liner) at the
High-Current Electronics Institute in Tomsk showed
that the new method can be promising for inves-
tigation of strong interactions at ultralow energies
[14, 15, 24–26].

Here, we present the results obtained by measur-
ing the S factor for the dd reaction

d+ d→3 He + n(2.46 MeV) (1)
at collision energies of 1.80, 2.06, and 2.27 keV.

2. METHOD OF MEASUREMENT

The astrophysical S factor can be determined by
measuring the neutron yield from reaction (1). We
used the well-known formula [27]

σ(E) =
S(E)
E

e−2πη , (2)

which represents the cross section as the product of
the barrier factor responsible for Coulomb repulsion
and the astrophysical S factor weakly dependent on
the deuteron collision energy E. In expression (2), η
is the Sommerfeld parameter given by

2πη = 2π
Z2

�v
= 31.29

( µ
E

)1/2
, (3)

where Z is the deuteron charge, µ is the reduced mass
of colliding deuterons (µ = md/2, with md being the
deuteron mass in amu), and v is the relative velocity
of the deuterons.
2001MAIK “Nauka/Interperiodica”
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Taking into account the energy dispersion of the
deuterons and the Coulomb energy losses, we can
represent the yield Nn(x) of neutrons from reaction
(1) for a target thickness x as

Nn(x) = Ndntεn

∞∫
0

f(E)dE

x∫
0

S(E′(E, x′))

× e−2πη′

E′(E, x′)
dx′, (4)

where f(E) is the energy distribution of deuterons
hitting the target, εn is the neutron-detection ef-
ficiency, Nd is the number of deuterons hitting
the target, nt is the target density, and 2πη′ =

31.29
(

µ

E′(E, x′)

)1/2

.

According to previous experiments, the function
f(E) was considered as a Gaussian distribution,
with the FWHM values taken from [24, 28]. The
function E′(E, x′) describes the energy losses of
liner deuterons in the target due to Coulomb scat-
tering. The energy losses can be described by the
formula [29]

dE

dx
= − π

2E
nte

4L, (5)

where e is an elementary charge andL is the so-called
Coulomb logarithm for plasma deuterons (under the
conditions of the present experiment, L = 12.8 [29]).
For the initial condition E′(x′ = 0) = E, where E′

(the deuteron collision energy in the c.m. frame)
corresponds to the energy E of a deuteron that has
traveled a distance x′, the solution to this equation
can be written as [29]

E′(E, x′) = (E2 − πnte
4Lx′)1/2. (6)

We have calculated the Coulomb energy losses, tak-
ing into account the interaction of liner deuterons
with target deuterons, but neglecting the interaction
with target electrons (this is valid for a fully ionized
target plasma [29]). This assumption was verified
on the basis of other theoretical models describing
charged-particle energy losses in plasmas [30–32].
The conditions of our experiment allow one to assume
that all liner deuterons are stopped in the target and
that the total neutron yieldN tot

n can be determined as
Nn(x→ ∞).

Because the S factor weakly depends on energy,
we can simplify Eq. (4). TheS factor used in Eq. (4) is
averaged with the distribution functionP (E) describ-
ing the neutron-detection probability as a function of
the deuteron collision energy:

S(E) =
∫
E

S(E) P (E)dE. (7)
PH
The distribution function P (E) can be obtained from
Eq. (4) by introducing the variable of integration
E′(E, x′) from Eq. (6) and by changing the order
of integration. The distribution P (E) normalized to
unity can be written as

P (E) = exp (−2πη) (8)

×
∫∞
E f(E′) dE′∫∞

0 exp (−2πη)dE
∫∞
E f(E′) dE′ .

To simplify Eq. (4), S(E) can be replaced by S(Ecol)
withEcol =

∫
E EP (E)dE. This simplification is valid

to linear terms in the expansion of S(E) near the
maximum of the distribution P (E).

The notation Ecol was introduced to distinguish
the average collision energy of the deuterons con-
tributing to the neutron yield from the average col-
lision energy Ē of hitting deuterons, the latter being
defined as Ē =

∫
E E f(E)dE.

Taking into account the above assumptions, we
can represent the total neutron yieldN tot

n as

N tot
n = NdntεnS(Ecol)

∞∫
0

f(E)dE

∞∫
0

e−2πη′

E′(E, x′)
dx′.

(9)
According to (9), the experimental dd S factor for the
average deuteron collision energy Ecol can be written
as

S(Ecol) =
N exp
n

Ndntεn
∫∞
0 f(E)dE

∫∞
0

e−2πη′

E′(E, x′)
dx′

,

(10)
where N exp

n is the number of neutrons from the dd
reaction.

To analyze the experimental conditions of target
transparency, the effective target thickness l̃ was in-
troduced through the relation [15]

Nn(l̃) = 0.9N tot
n , (11)

where Nn(l̃) is the recorded neutron yield from reac-
tion (1) for the target thickness l̃.

3. DESCRIPTION OF THE EXPERIMENT

Our experiment was performed at the Insti-
tute of High-Current Electronics (Tomsk), Russian
Academy of Science, by using a high-current gen-
erator [33]. The layout of the experimental setup is
displayed in Fig. 1.

A hollow-cylinder supersonic gaseous deuterium
jet with a Mach number of 4 was formed by an elec-
tromagnetic valve and a de Laval nozzle. A target
of CD2 deposited on a Cu rod was placed along the
YSICS OF ATOMIC NUCLEI Vol. 64 No. 5 2001
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Fig. 1. Layout of the experimental setup: (1) high-current
generator, (2) load unit, (3) measuring chamber, (4) su-
personic nozzle, (5) electromagnetic valve, (6) gaseous
liner, (7)CD2 solid target, (8) thermal-neutron detectors,
and (9) lead shield.

liner axis. The liner and target parameters are given
in Table 1.

For background measurements, we employed a
bare Cu rod or one coated with CH2. The liner mass
and the compression velocity were estimated by mea-
suring the current through the liner and the compres-
sion time [15].6) The dynamics of liner compression
was investigated by using an optical streak camera
with varying axial split positions and magnetic probes
placed at various distances from the liner axis.

It should also be mentioned that, under constant
initial conditions, the deviation of the liner mass from
one shot to another can be about 10%.

In this experiment, neutrons from dd reactions
were recorded by three thermal neutron detectors
with proportional BF3 counters placed in a paraffin
moderator. Each of the detectors consisting of 10BF3

counters was placed at a distance of 0.9 m from
the target center (Fig. 1). The neutron-detection
efficiency was measured with the calibrated 252Cf
source placed within the measuring chamber 3
(Fig. 1) at the center of Z-pinch formation. The total
neutron-detection efficiency of three BF3 detectors
was 5× 10−3.

A lead shielding 12 mm thick surrounded the
BF3 detectors to protect them against powerful x-ray

6) The liner mass and its compression time were calculated
according to the zero-dimensional model proposed in [34].
In this model, the liner is treated as an infinitely thin su-
perconducting shell, imploded under the pressure of its own
magnetic field.
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Fig. 2. (a) Differential energy distributions of deuterons
hitting the target for Ē = (1) 1.05, (2) 1.2, (3) 1.4, and
(4) 1.7 keV. (b) Calculated differential distributions of the
detection probabilities for neutrons with average energies
Ecol = (1) 1.79, (2) 1.80, (3) 2.06, and (4) 2.27 keV. The
distributions are normalized to unity.

bursts generated during the pulse of the high-current
generator.

Information about the recorded events included
(i) the time of generation and the amplitude of a signal
from the BF3 detectors and (ii) the time of generation
of a signal from the magnetic B-dot probe (a funda-
mental parameter that describes the dynamics of liner
implosion).

More details concerning the recording electronics
can be found in [15, 17, 25, 35].

Table 1. Experimental conditions (M is the liner mass
averaged over all shots; ld is the liner length; din

l and dout
l

are, respectively, the inner and the outer liner diameter; dt

is the target diameter; and t is the thickness of the CD2

layer on the Cu rod)

M , ld, Nd nt, din
l , dout

l , dt, t,

µg cm cm−3 mm mm mm mm

6.88 2.5 2.07× 1018 8.0× 1022 32 36 5.5 0.25
1
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Fig. 3. Astrophysical S factor as a function of the
deuteron collision energy: (squares) values from [37],
(triangles) values from [38], and (circles) valuesmeasured
in our experiment.

4. EXPERIMENTAL RESULTS

For four average deuteron collision energies of
Ecol = 1.79, 1.80, 2.06, and 2.27 keV, experimental
data were analyzed under the assumptions described
in Section 2. For these collision-energy values, we
estimated the astrophysical S factors on the basis of
(10), assuming that radially accelerated deuterons in-
teract with a fully ionized plasma. From our estimates
and from the results presented in [36], it follows that,

Table 2. Experimental results [Ē is the collision energy of
all deuterons that is averaged over all shots; Ecol is the
average collision energy of the deuterons contributing to
the experimentally measured neutron yield from reaction
(1); �Ecol is the root-mean-square energy dispersion of
the probability-density distribution function for recorded
neutrons from dd fusion; N th

n is the total number of neu-
trons recorded by thermal-neutron detectors; and N th

n,back

is the number of neutrons recorded in the background
measurements,N exp

n = N th
n −N th

n,back]

Experiment 1 2 3 4

FWHM,% 80 65 65 55

Ē [keV] 1.05 1.2 1.4 1.7

Ecol [keV] 1.79 1.80 2.06 2.27

�Ecol [keV] 0.28 0.27 0.32 0.34

N th
n 2± 2 7± 2 22± 8 86± 25

N th
n,back 2± 2 2± 2 3± 2 4± 3
N exp

n ≤ 4 5± 3 19± 9 82± 24
S, keV b ≤ 170 114± 68 64± 30 53± 16

l̃nt, 1018cm−2 1.40 1.42 1.96 2.42
PH
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Fig. 4. dd cross section as a function of the deuteron col-
lision energy: (curve) dependence calculated according to
(2) by using S = 53.8 keV b [37], (square) experimental
value from [38], and (circles) values found on the basis
of (2) by using the measured S factors (for the deuteron
collision energiesEcol of 1.80, 2.06, and 2.27 keV).

under our experimental conditions, the temperature of
the target surface reaches 20–30 eV during plasma
implosion.

Figure 2a shows the collision-energy distribution
of deuterons hitting the target, while Fig. 2b shows
the calculated differential distributions of the detec-
tion probabilities for neutrons from dd interactions
with respect to the deuteron collision energy. The
results of our analysis of these experimental data are
given in Table 2.

The FWHM values depend on the accuracy of the
liner-speed estimate (about ±10%), which was ob-
tained by comparing the measured and the calculated
compression time (in zero-dimensional model), and
also on the energy dispersion of deuterons due to the
appearance of liner surface instabilities with a char-
acteristic fringe wavelength of 1 to 2 mm. The liner
compression velocities in the regions of the respective
“hump” or “dip” could differ by 10%, which leads to a
deuteron-energy dispersion of 20%.

The experimental values of the astrophysical S
factor that were found by formula (10) for the deuteron
collision energies of 1.80, 2.06, and 2.27 keV are pre-
sented in Fig. 3. Other values of theS factor for dd in-
teractions in the collision-energy range 6.9–160 keV
[37, 38] are also shown for the sake of comparison. As
can be seen from Fig. 3, our measured S factors are
in agreement, within the statistical error, with the S
values measured for deuteron collision energies in the
range 7–45 keV.

The dd cross sections were calculated on the
basis of (2) by using the measured S factors for
deuteron collision energies Ecol −∆Ecol, and Ecol,
Ecol +∆Ecol. The results are presented in Table 3
YSICS OF ATOMIC NUCLEI Vol. 64 No. 5 2001
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Table 3. Results of calculations [N calc
n is the number of neutrons from dd reactions that is calculated according to

Eq. (9) with the S factor averaged in the energy range 7–45 keV (50 keV b); and σn
dd(Ecol), σn

dd(Ecol +�Ecol),
σn

dd(Ecol −�Ecol) are the cross sections calculated according to (2)]

N calc
n 1.2 2.2 14.9 77.4

σn
dd(Ecol), cm2 ≤ 6.1× 10−33 4.3× 10−33 9.8× 10−33 2.1× 10−32

σn
dd(Ecol +�Ecol), cm2 ≤ 2.7× 10−32 1.8× 10−32 3.9× 10−32 7.4× 10−32

σn
dd(Ecol −�Ecol), cm2 ≤ 8.9× 10−34 7.0× 10−34 1.7× 10−33 4.2× 10−33
and in Fig. 4. The calculated and the experimental
cross sections agree within the statistical error.

To check how our results depend on the model of
interaction between the liner and the target deuterons,
the Coulomb energy losses were also calculated by
taking into account the interaction between the liner
and the target electrons (as well as target deuterons)
according to the model proposed in [29]. In this case,
the S factor was one order of magnitude larger than
the previous one for a given energy range because
the deuteron range in the target is shorter. Such an
increase in the S factor cannot be explained either
by the presence of narrow resonances in the dd
cross section, because a large energy dispersion of
accelerated liner deuterons is observed, or by plasma
instabilities giving rise to an additional neutron yield,
because this contradicts the results of background
measurements. Our results fully confirm that the
new method for studying strong interactions between
light nuclei, which uses Z pinch, is very promising for
further investigations into the ultralow-energy range.
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Abstract—Two-dimensional mass–energy distributions of fission fragments are calculated for the first
time on the basis of three-dimensional stochastic Langevin equations. In these calculations, the emission
of light prescission particles is taken into account within the statistical model. The results demonstrate
that calculations within three-dimensional Langevin dynamics make it possible to describe most compre-
hensively the properties of the mass–energy distribution of fission fragments and the mean multiplicity of
prescission neutrons. c© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Among various theoretical approaches used to
describe the observables of the fission process, those
that are based on the multidimensional Fokker–
Planck equation [1] for the distribution of collective
variables or on the set of Langevin equations [1, 2],
which is equivalent to it, have proven to be successful
over the last twenty years of investigations. In solving
the multidimensional Fokker–Planck equation, one
inevitably has to invoke approximate methods [2, 3];
at the same time, the corresponding set of Langevin
equations for many problems of collective nuclear
dynamics can be solved without recourse to any
approximations.

This is the reason why the opinion prevalent in
the past few years has been [2, 4] that the stochastic
approach to fission dynamics on the basis of Langevin
equations is the most promising, the more so as it is
readily implementable in practical calculations.

In order to describe the maximum possible num-
ber of observables characterizing the fission process,
it is necessary to solve Langevin equations for as
many collective variables as is possible. However,
introducing each new collective variable leads to a
catastrophically sharp growth of the time and volume
of the relevant computations. For this reason, only
one-dimensional [5, 6] and two-dimensional calcula-
tions have been performed so far within the Langevin
approach. The two-dimensional calculations made it
possible to obtain either the energy distribution for
symmetric fission [7–10] or the mass distribution of
fission fragments that corresponds to the most prob-
able kinetic energy [11, 12].
1063-7788/01/6405-0861$21.00 c©
Only within three-dimensional Langevin calcu-
lations can we obtain the two-dimensional mass–
energy distribution, which includes a full body of in-
formation about the mass and the kinetic-energy dis-
tribution of fission fragments. In particular, the one-
dimensional mass and energy distributions can be
obtained on the basis of the two-dimensional mass–
energy distribution. Not only does a theoretical anal-
ysis of two-dimensional mass–energy distributions
make it possible to perform a correct comprehensive
comparison with experimental data, but it is also of
interest for studying a correlation of distributions.
The correlation in mass and kinetic-energy distribu-
tions of fragments carries additional valuable infor-
mation about the scission configuration of a fissile
nucleus and, hence, makes it possible to estimate the
strength of nuclear viscosity and to clarify its mecha-
nism. Thus far, mass–energy distributions have been
investigated on the basis of the Nix–Swiatecki zero-
viscosity dynamical model [13] or on the basis of the
diffusion model [1, 14].

In this article, we present the first results of calcu-
lations that are based on three-dimensional Langevin
dynamics and which take into account the evapo-
ration of light prescission particles. We calculate
the two-dimensional mass–energy distribution and,
on its basis, obtain the one-dimensional mass and
energy distributions and correlation dependences—
the mean kinetic energy of fission fragments (〈Ek〉)
as a function of the fragment masses, the variance
of the energy distribution (σ2

Ek
) as a function of the

fragment masses, and the variance of the mass distri-
bution (σ2

M ) as a function of kinetic energy. For inves-
tigation, we chose the reaction 12C+194 Pt→206 Po
(Elab = 99MeV) [15], which was studied in detail
2001MAIK “Nauka/Interperiodica”



862 NADTOCHY et al.
experimentally and which leads to the formation of
a compound nucleus at a temperature T in excess
of 1 MeV. The latter makes it possible to neglect
shell effects and nucleon-pairing effect in calculat-
ing the potential energy and transport coefficients in
dynamical equations. By comparing the calculated
characteristics and available experimental data, we
show that the inclusion of a third collective coordi-
nate in the analysis improves agreement between the
theoretical and experimental results in relation to the
two-dimensional model.

2. DESCRIPTION OF THE MODEL

For the nuclear-surface shape [the profile function
ρ2
s(z) whose rotation about the symmetry axis deter-

mines the nuclear surface], we choose the (c, h, α)
parametrization [16], which was widely and success-
fully used in the majority of the calculations. In
particular, statistical calculations within the Struti-
nsky shell-correction method [16], dynamical calcu-
lations of the mass–energy distribution within the
PH
diffusion model [1, 3, 14], and a great number of two-
dimensional calculations of various characteristics of
the fission process within the Langevin approach [9,
10] relied on the (c, h, α) parametrization.

In the shape parametrization that we choose, the
equation of the nuclear surface can be represented as

ρ2
s(z) =




c−2
(
c2 − z2

) (
Asc

2 +Bz2 + αzc
)

for B ≥ 0

c−2
(
c2 − z2

) (
Asc

2 + αzc
)
exp(Bcz2)

forB < 0,
(1)

where ρs is the polar radius and z is the coordinate
along the nuclear-symmetry axis. The quantities As
andB are expressed in the terms of the nuclear-shape
parameters (c, h, α) [9, 16] as
B = 2h+
c− 1
2

, (2)

As =




c−3 − B
5 forB ≥ 0

−4
3

B

exp(Bc3) +
(
1 + 1

2Bc3

)√
−πBc3erf(

√
−Bc3)

forB < 0,
where c is the elongation parameter (the length of
a nucleus in units of the initial-sphere radius R0 is
equal to 2c) and the parameter h describes the change
in the neck thickness at a given elongation. The
line h = 0 approximately corresponds to the bottom
of the fission valley in the liquid-drop model [16]. The
coordinate α determines the ratio of the masses of the
would-be fragments.

The authors of [9] investigated the problem of
choosing collective coordinates and showed, on the
basis of two-dimensional calculations, that, in de-
scribing the fission process, the coordinates (ρ, h)
should be preferred to (c, h), where ρ is the distance
between the centers of mass of the nascent fragments.
For the mass-asymmetry coordinate, Strutinsky [17]
proposed employing, instead of α, the coordinate η,
the ratio of the difference of the would-be-fragment
masses to the mass of the whole compound nucleus.
We note that (ρ, η) are the first two collective coordi-
nates in the scheme for introducing collective coordi-
nates that was developed in [18] and which is based
on the multipole moments of the nuclear density.

Although the coordinates (ρ, η) have a clear
physical meaning, the use of these coordinates in
three-dimensional Langevin calculations leads to
serious computational difficulties. Solving the dy-
namical problem in the coordinates (ρ, h, η) (instead
of (c, h, α)) leads to a considerable increase in the
machine time. The reason for this is that it is impos-
sible to find explicitly the dependences of the shape
parameters (c, h, α) on the parameters (ρ, h, η). In
view of this, we chose the geometric shape parameters
for collective coordinates.

In the stochastic approach [1, 2, 19], the evolution
of collective degrees of freedom was treated as the
Brownian motion of a particle in a heat bath formed
by single-particle nuclear degrees of freedom. The set
of relevant Langevin equations has the form

q̇i = µijpj,

ṗi = −1
2
pjpk

∂µjk
∂qi

− ∂F

∂qi
− γijµjkpk + θijξj,

i, j, k = 1, 2, 3, (3)

where q = (c, h, α) is the set of collective coordi-
nates; p = (pc, ph, pα) are the momenta conjugate to
these coordinates;mij (‖µij‖ = ‖mij‖−1) and γij are
the inertia tensor and the friction tensor, respectively;
YSICS OF ATOMIC NUCLEI Vol. 64 No. 5 2001
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F (q) is the free energy of the system under investiga-
tion; θijξj is a random force; and θij is its amplitude,
which is related to the diffusion tensor Dij by the
equation

Dij = θikθkj. (4)

The diffusion tensor in turn satisfies the Einstein re-
lation

Dij = Tγij. (5)

The eigenvalues and eigenvectors of the diffusionma-
trix Dij , which are used to calculate a random force
[4], were found by the Jacobi method [20]. A random
value ξj has the following statistical properties:

〈ξi〉 = 0,
〈ξi(t1)ξj(t2)〉 = 2δijδ(t1 − t2). (6)

The angular brackets in (6) denote averaging over the
statistical ensemble.

The set of Eqs. (3) was integrated numerically by
using the Heun difference scheme [4].

Until recently, numerous theoretical studies [1, 3,
11] evaluated the conservative force as the gradient of
the potential energy. It is well known [21, 22] that,
in the case of excited nuclear systems, we must use
the free energy instead of the potential energy, which
determines the mechanical force. In the Fermi gas
model, the free-energy functional has the form

F (q) = V (q)− a(q)T 2, (7)

where V (q) is the potential energy and a(q) is the
level-density parameter. The explicit form of the func-
tion a(q) is discussed below.

The potential energy was calculated on the basis
of the liquid-drop model with a sharp boundary of
the nuclear surface and with the Myers–Swiatecki
parameters [23]. In contrast to [1, 3], where it was
assumed, in calculating the potential energy, that
the α dependence of the potential energy has the
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 5 200
form V (c, h, α) = V (c, h, α = 0) + C (c, h)α2/2
[C (c, h) is the local stiffness of the potential along
the coordinate α], we evaluate the potential energy
without such assumptions. The potential energy, the
inertia tensor, and the friction tensor were calculated
by using an equidistant mesh with 151× 101 × 51
nodes and the values of c ∈ [0.7, 3.7], h ∈ [–0.6, 0.4],
and α ∈ [–0.2, 0.2]. The interpolation between nodes
was performed on the basis of the Lagrange formulas.

The inertia tensor was calculated in the Werner–
Wheeler approximation for the irrotational flow of an
incompressible liquid [24]. For the inertia-tensor
components as functions of the nuclear deformation,
Fig. 1 shows the results calculated along the mean
trajectory. By the mean trajectory, we imply the
particle trajectory obtained in dynamical calculations
by means of averaging over the ensemble of Brownian
particles or, what is the same, in the absence of a
random force (the initial conditions were chosen at
the saddle point for α = 0 and pα = 0). In this case,
the mean trajectory lies in the α = 0 plane. The inter-
section of themean trajectory and the scission surface
determines the mean scission point. For its coordi-
nates at a preset value of the coefficient of friction, our
calculations with a specified scission surface yielded
csс = 2.2 and hsc = −0.11. This is in good agreement
with the results obtained within the diffusion model
[1, 3]. The values of the Coulomb energy and of the
prescission kinetic energy at this point determine the
mean kinetic energy of fragments. Figure 2 shows
the mean trajectory on the potential-energy surface
and the scission line obtained as the intersection of
the scission surface and the α = 0 plane.

In order to describe the dissipation of the collective
kinetic energy into the internal energy, we used the
one-body mechanism of friction [25–27]. The friction
tensor was calculated by the formula
γij =
1
2
ρmv̄

{
∂ρ

∂qi

∂ρ

∂qj
∆σ +

32
9
1
∆σ

∂V1

∂qi

∂V1

∂qj

+ ksπ




zN∫
zmin

(
∂ρ2

s

∂qi
+

∂ρ2
s

∂z

∂D1

∂qi

) (
∂ρ2

s

∂qj
+

∂ρ2
s

∂z

∂D1

∂qj

)(
ρ2
s +

(
1
2
∂ρ2

s

∂z

)2
)−1/2

dz (8)

+

zmax∫
zN

(
∂ρ2

s

∂qi
+

∂ρ2
s

∂z

∂D2

∂qi

) (
∂ρ2

s

∂qj
+

∂ρ2
s

∂z

∂D2

∂qj

)(
ρ2
s +

(
1
2
∂ρ2

s

∂z

)2
)−1/2

dz




 .
Here, ρm is the nuclear density; v̄ is the mean
velocity of an intranuclear nucleon; ∆σ is the area
of the window—that is, the neck between the two
would-be fragments; D1 and D2 are the positions of
their centers of mass with respect to the coordinate of
the center of mass of the entire system; zmin and zmax
1



864 NADTOCHY et al.

   

1.0 1.4 1.8 2.2

 

c

m

 

cc

 

m

 

ch

 

m

 

hh

 

m

 

αα

 

0

1

2

3

 
m

 

ij

 
, 10

 
–39

 
 MeV s
 

2

Fig. 1. Nuclear-deformation dependence of the inertia-
tensor components that was calculated along the mean
trajectory.

are the left and the right boundary of a nuclear surface;
zN is the neck coordinate; and V1 is the volume of
one of the would-be fission fragments. The addi-
tional term (the second term in the braced expression)
takes into account the nucleon flux through the neck
connecting the two parts of the fissile nucleus. This
additional term was evaluated by different methods
in [26] and in [27]. Griffin and Dworzecka [28] con-
sidered a quantum version of one-body dissipation
and demonstrated that, in an actual nucleus, the
viscosity is only about 10% of that calculated by the
wall formula [bracketed expression in (8)]. In view
of this, Nix and Sirk proposed a modified version of
the one-body mechanism of dissipation [29]. They
dubbed it surface-plus-window dissipation. In this
mechanism, the contribution to dissipation from the
interaction of nucleons with the nuclear surface is re-
duced nearly by a factor of 4—from an analysis of the
experimental values of the isoscalar- and octupole-
resonance width, the reduction factor ks was found to
be dks = 0.27, the value of ks = 1 corresponding to
the full one-body viscosity.

In our calculations, we set ks = 0.25. In the future,
we will investigate the effect of ks on the parameters
of the mass–energy distribution and on the mean
multiplicity of prescission neutrons.

Figure 3 displays the nuclear-deformation depen-
dence of the friction-tensor components that was cal-
culated along the mean trajectory at ks = 0.25. The
dashed curve represents the component γαα com-
puted without allowing for the term that was intro-
duced in [26, 27] [second term in Eq. (8)] and which
describes the transfer of nuclear matter through the
neck connecting the nascent fragments. From the
figure, we can see how great the effect of this addi-
tional term on the diffusion-tensor component Dαα

along the mass-asymmetric coordinate is, whereby
PH
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15
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c

Fig. 2. Potential-energy surface in the coordinates (c, h)
in the plane α = 0. The thick curve and the curve formed
by closed squares represent, respectively, the mean tra-
jectory and the scission line (for details, see main body of
the text).

we can estimate its influence on the mass variance.
It should be noted that, until recently, this term was
disregarded in calculating the friction tensor [11].

For the dynamical equations (3), the initial con-
ditions were chosen as follows. The orbital angular
momentum l of the compound nucleus was set to
zero, and the values of the collective coordinates were
sampled on the ridge line separating the ground state
of the compound nucleus and the fission valley. The
momentum distribution was chosen to be equilib-
rium. In this case, the distribution function has the
form

P (q0 ,p0 , t = 0) ∼ exp
{
−V (q0) + Ecoll (q0 ,p0)

T

}
,

(9)
where V (q0) is the nuclear ridgeline potential en-
ergy, which depends on the deformation and which
is reckoned from the ground state, and Ecoll (q,p) =
1
2

∑
i,j

µij (q) pipj is the kinetic energy of the collective

motion of the fissile nucleus being considered. The
numerical procedure for choosing the initial values of
q0 and p0 was implemented by using the Neumann
method with the generating function (9).

Along with the choice of the initial conditions on
the ridgeline, we also performed dynamical calcula-
tions of evolution from the ground state. In this case,
YSICS OF ATOMIC NUCLEI Vol. 64 No. 5 2001
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the initial conditions were sampled in accordance
with the distribution function

P (q0 ,p0 , l, t = 0) (10)

∼ exp
{
−V (q0) + Ecoll (q0 ,p0)

T

}
δ (q− q0)F (l) ,

where q0 = (c = 1, h = 0, α = 0). The function F (l)
describes the distribution with respect to the orbital
angular momenta of the compound nuclei formed in
the fusion process [4, 5].

Following the proposal of Strutinsky [16], we as-
sumed that the disintegration of the nucleus into
fragments occurs at the neck radius equal to R0/3.
In the space of collective coordinates, this condition
determines the scission surface. In tracing themotion
of the nucleus toward the scission surface, we used,
over the entire trajectory in the collective-coordinate
space, the energy-conservation law in the form

E∗ = Eint + Ecoll + V (q) +Eevap(t), (11)

where E∗ is the total compound-nucleus excitation
energy determined in the input reaction channel from
the incident-ion energy and the mass difference be-
tween the colliding nuclei and the compound system,
Eint is the excitation energy of the single-particle
degrees of freedom of the compound nucleus (internal
energy), and Eevap(t) is the nuclear excitation energy
that light particles have carried away by the instant t.

The probability of light-particle emission was
determined on the basis of the decay widths of
compound nuclei through the corresponding chan-
nels. The decay widths were calculated by the
formulas [30, 31]

Γj =
gjmj

(π�)2
1

ρ0(E
(0)
int )

×
E

(j)
int−Bj∫
Vj

σ
(j)
inv(E)ρj(E

(j)
int −Bj − E)EdE, (12)

where j = n, p, d, t,3He, α, and

Γγ =
1

(π�c)2
1

ρ0(E
(0)
int )

E
(0)
int∫

0

σγ(E)ργ(E
(0)
int −E)E2dE.

(13)
Here, gj ,mj , andBj , are, respectively, the spin factor,
the mass, and the binding energy of the jth particle,
while Vj is the Coulomb barrier for it; ρ0 is the density
of excited levels of the compound nucleus; ρj and ργ
are the densities of excited states of the residual nuclei
upon the emission of the jth particle and a photon, re-

spectively; σ(j)
inv is the cross section for the absorption

of the jth particle by the residual nucleus; σγ is the
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 5 200
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cross section for dipole-photon absorption; and E
(0)
int

and E(j)
int are the internal energies of, respectively, the

original and the residual nucleus with allowance for
the nucleon-pairing energy.

In calculating the density of excited levels, we also
took into account collective effects with the aid of
formulas presented in [31]. In addition, we took into
account the nuclear-deformation effect on the level-
density parameter in the form

a (q) = αA+ βA2/3Bs (q) , (14)

where the values of α = 0.073 and β = 0.095 were
borrowed from [32] and whereBs (q) is the collective-
coordinate-dependent functional of the surface en-
ergy of a nucleus within themodel of a liquid drop with
a sharp boundary [16, 33].

The thermal-bath temperature T used in the
calculations was determined within the Fermi gas
model:

T = (Eint/a(q))1/2. (15)

The procedure used here to combine the statistical
model and the dynamical approach is as follows. At
each step τ of integration of the Langevin equa-
tions (3) by formulas (12) and (13), we evaluated
the partial-decay widths Γj . From their sum, we
then determined the mean lifetime of the compound
nucleus prior to the emission of some light particle
as τtot = �/

∑
j Γj . After this, we generated, in the

interval [0, 1], a uniformly distributed random num-
ber ξ and compared it with the ratio τ/τtot. If the
condition ξ < τ/τtot was satisfied, it was assumed
that the emission of some light particle occurs [34].
1
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Fig. 4. Contour diagram of the mass–energy distribution
according to the calculation from the ridge surface. The
distribution is normalized to 200%. The numbers on the
isolines indicate the yield of fission fragments (in %).

The choice of a particle species was performed by the
Monte Carlo method in accordance with the prob-
ability of compound-nucleus decay through a given
channel and with the calculated decay widths.

3. RESULTS OF THE CALCULATIONS
AND DISCUSSION

As was indicated above, we calculated the proper-
ties of the fission process for the reaction

12C+194Pt →206Po (Elab = 99MeV).

The fullest and clearest way to present the calcu-
lated mass–energy distributions of fission fragments
is to make use of the contour level plots for the dis-
tribution Y (Ek,M). Our method for calculating the
two-dimensional mass–energy distribution of fission
fragments is based on the concept of the scission
surface and is set forth in [1]. It is assumed that the
total kinetic energy Ek of fragments is the sum of the
energy Vc of Coulomb repulsion of the fragments and
the kinetic energy of their relative motion (prescission
kinetic energy), Eps,

Ek = Vc + Eps, (16)

these energies being determined at the nuclear-
scission instant. The mean kinetic energy is then
determined as

〈Ek〉 = 〈Vc〉+ 〈Eps〉 . (17)

The expression for the kinetic-energy variance has
the form

σ2
Ek
= σ2

Vc
+ σ2

Eps
+ 2σVcEps , (18)

where
σ2
Vc
=
〈
V 2
c

〉
− 〈Vc〉2 ,
PH
σ2
Eps
=
〈
E2

ps

〉
− 〈Eps〉2 , (19)

σVcEps = 〈VcEps〉 − 〈Vc〉 〈Eps〉 .

The fragment masses were calculated by the for-
mulas

MR =

zmax∫
zN

ρ2
s(z,qsc)dz

zmax∫
zmin

ρ2
s(z,qsc)dz

, (20)

ML =

zN∫
zmin

ρ2
s(z,qsc)dz

zmax∫
zmin

ρ2
s(z,qsc)dz

,

where MR and ML are, respectively, the left- and
the right-fragment mass, while qsc are the nuclear-
shape parameters (c, h, α) determined as the points
of intersection of Langevin stochastic trajectories and
the scission surface.

The results of our calculations for the two-
dimensional mass–energy distribution of fission frag-
ments from the area of the ridge of the potential-
energy surface are shown in Fig. 4. It can be seen
from the figure that the shape of the contour lines
near the maximum is close to elliptical and that,
as we move away from the maximum, the contour
lines assume the shape of a triangle with smoothed
angles, a pattern that qualitatively complies with that
observed experimentally. It is more convenient to
compare quantitatively the calculated characteristics
of the two-dimensional mass–energy distribution of
fragments with experimental data in terms of the one-
dimensional mass and energy distributions and the
correlation dependences.

Per fission event, we obtain two mass events
(two fission fragments) and one energy event (kinetic
energy of fragment divergence), so that the mass
and energy distributions are normalized to 200%
and 100%, respectively. The one-dimensional dis-
tributions can be obtained by integrating the two-
dimensional distribution with respect to the corre-
sponding parameter; that is,

Y (M) =
∫

Y (Ek,M)dEk,

Y (Ek) =
∫

Y (Ek,M)dM. (21)

The one-dimensional energy and mass distribu-
tions shown in Figs. 5а and 6а, respectively, appear
to be curves with one maximum. Both in experimen-
tal studies and in theoretical calculations, they are
usually approximated by Gaussian curves with the
YSICS OF ATOMIC NUCLEI Vol. 64 No. 5 2001
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Fig. 5. (а) Yield of fragments and (b) variance of the mass
distribution as functions of the fragment energy.

corresponding mean values and variances. We have
obtained the following results:

〈Ek〉rs = 160.5MeV, (σ2
Ek
)rs = 69 ± 3MeV2,

(σ2
M )rs = 115± 5 (amu)2, 〈νpre〉rs = 0.53;

〈Ek〉gr = 158.9MeV, (σ2
Ek
)gr = 106 ± 14MeV2,

(σ2
M )gr = 132± 17 (amu)2, 〈νpre〉gr = 2.3;

〈Ek〉ex = 146.5 ± 0.8MeV,

(σ2
Ek
)ex = 106 ± 3MeV2,

(σ2
M )ex = 165 ± 4 (amu)2, 〈νpre〉ex = 2.8.

The subscripts “rs” and “gr” label the results of our
dynamical calculations from, respectively, the ridge
surface and the ground state, while the subscript “ex”
labels the experimental values of the corresponding
quantities [15].

In calculating the mass–energy distribution of fis-
sion fragments from the ridge surface, we set the
orbital angular momentum l of a compound nucleus
to zero. As is well known, the orbital angular momen-
tum substantially affects the variance of the mass dis-
tribution, but it has virtually no effect on the parame-
ters of the energy distribution. In view of this, the ex-
perimental value of the mass variance was rescaled to
zero orbital angular momentum by using the method
described in [15, 35]. The result is σ2

M (l = 0) = 117±
4 (amu)2.

It can be seen that the mean number of prescission
neutrons, 〈νpre〉, that was obtained in our calculations
from the ridge surface is markedly different from the
experimental value, although, in the calculations from
the ground state, it is in fairly good agreement with
experimental data. This can be explained by the
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 5 200
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Fig. 6. (а) Yield of fragments, (b) mean kinetic energy,
and (c) variance of the energy distribution as functions of
the fragment mass.

fact that, for light compound nuclei, a major part
of all neutrons evaporate prior to reaching the ridge
surface separating the ground state and the valley
of nascent fragments. The mean multiplicities of
charged prescission particles and of photons are not
presented here, since events of their emission are
extremely rare, which was indeed observed experi-
mentally.

From our results, it is obvious that, both in the
calculation from the ridge and in the calculation from
the ground state, the resulting values of 〈Ek〉, σ2

Ek
,

and σ2
M agree fairly well with experimental data. It

is interesting to compare the results of our study and
the results obtained on the basis of two-dimensional
Langevin dynamics. In the (c, h, α) parametrization,
two-dimensional calculations in terms of the coordi-
nates (ρ, h) and (ρ, η) were performed in [36] without
taking into account the orbital angular momentum
and the evaporation of light prescission particles. The
results obtained there are

〈Ek〉 = 163.9MeV, σ2
Ek
= 133.3MeV 2,

σ2
M = 226 (amu)2.

We see that results in three-dimensional Langevin
dynamics better agree with experiment data than the
results of the above two-dimensional calculations.

The results of the two-dimensional calculations
show [11, 12], that the agreement with experimental
data, at least for the variance of the mass distribution,
must improve upon going over from the model of
1
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a liquid drop with a sharp boundary to the liquid-
drop model that takes into account the finite range
of nuclear forces and the nuclear-surface diffuseness
[37].

Here, we have also obtained the correlation depen-
dences of the mean kinetic energy and the variance of
the energy distribution on the fragment masses and
the kinetic-energy dependence of the variance of the
mass distribution.

These dependences are displayed in Figs. 6b, 6c,
and 5b. For the reaction considered here, we are
unaware of experimental data on the correlation be-
tween the parameters of mass–energy distribution.
It should be noted, however, that the behavior of
the curves is similar to the behavior observed in the
experiments that were reported in [38, 39] and which
were performed for reactions characterized by close
values of the excitation energy and of the mass num-
bers of compound nuclei. The growing scatter of the
correlation dependences is due to an increase in the
statistical error of the calculations as we approach the
tails of the distributions.

4. CONCLUSION
Here, we have presented the first results of cal-

culations of the mass–energy distribution Y (Ek,M)
within three-dimensional Langevin dynamics. On
this basis, we have obtained the one-dimensional
mass (Y (M)) and energy (Y (Ek)) distributions of
fission fragments. For the parameters of the mass–
energy distribution, we have also calculated the cor-
relation dependences Ek(M), σ2

Ek
(M), and σ2

M (Ek).
The emission of light prescission particles has been
taken into account in all these calculations.

In our opinion, a further problem is to perform sys-
tematic calculations—that is, calculations for a wide
set of compound nuclei over broad intervals of the
fissility parameter and excitation energies. We deem
that such calculations must employ initial conditions
in the ground state and take into account the orbital
angular momentum of the compound nucleus.

As was noted above, the potential energy has been
calculated here within the model of a liquid drop with
a sharp boundary. For future calculations, we plan to
employ the potential energy determined on the basis
of the liquid-drop model taking into account the finite
range of nuclear forces [37].

ACKNOWLEDGMENTS
We are grateful to G.I. Kosenko for cooperation

at the first stage of this study, to A.Ya. Rusanov and
G.Yu. Krappe for numerous enlightening discussions,
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17. V.M. Strutinskiı̆, Zh. Éksp. Teor. Fiz. 45, 1900 (1963)
[Sov. Phys. JETP 18, 1305 (1964)].

18. T. Ledergerber, H. C. Pauli, and Y. Yariv, Nucl. Phys.
A 280, 214 (1977).

19. H. A. Kramers, Physica (Utrecht) 7, 284 (1940).
20. V. V. Voevodin and G. Kim, Computational Meth-

ods and Programming (Mosk. Gos. Univ., Moscow,
1962), pp. 269–278.

21. A. Bohr and B. R. Mottelson, Nuclear Structure,
Vol. 2: Nuclear Deformations (Benjamin, New York,
1975; Mir, Moscow, 1977).

22. A. V. Ignatyuk, Statistical Properties of Excited
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Abstract—A relativistically invariant analysis of the deuteron-photodisintegration reaction is performed.
The reaction γd → pn is considered in the plane-wave approximation on the basis of the Bethe–Salpeter
equation with a separable kernel. The results obtained in this way are compared with the results based
on nonrelativistic models and on the quasipotential approximation. It is shown that the most important
relativistic contributions to the relevant angular distributions are associated with the dependence of the
Bethe–Salpeter amplitude on the relative energy of nucleons and on the boost transformation of this
amplitude. c© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

At present, experiments studying quasielastic lep-
ton scattering on nuclei are considered to be one of
the main and the most reliable sources of information
about the structure of nuclei. It should be empha-
sized that deuteron photodisintegration stands out
among such reactions. The reaction γd → np has
received a comprehensive study at low and interme-
diate incident-photon energies (a survey of relevant
experiments and theoretical methods for investigat-
ing this process can be found in [1]). A theoreti-
cal analysis of available data in the above kinemat-
ical regions yielded important information about the
deuteron wave function and made it possible to de-
termine various contributions to the reaction that are
generated by meson-exchange currents (MES) and
by the excitation of isobaric configurations.

Experimental investigation of deuteron photodis-
tegration is in the forefront of the research programs
of physics centers worldwide. In this connection, we
would like to mention experiments that employ 30- to
50-MeV polarized photons at the ADONE storage
ring [2] and which were performed to study the
assumption that, in reactions involving intermediate
energy nuclei, it is necessary to take explicitly into
account ∆-isobar degrees of freedom and experi-
ments at Yerevan Physics Institute that measure the
asymmetry of deuteron disintegration induced by 0.9-
to 1.7-GeV photons and which explore the problem of
the applicability of quark-counting sum rules at high
energies [3].

Future investigations of deuteron disintegration
induced by photons with energies up to 8 GeV ac-

*e-mail: kazakovk@ifit.phys.dvgu.ru
**e-mail: suskovs@ifit.phys.dvgu.ru
1063-7788/01/6405-0870$21.00 c©
cording to the RCNP program [4] and investiga-
tions at the SLAC–NPAS accelerator with a beam of
2.8-GeV photons [5] will make it possible to analyze
the quark structure of the nucleus. The experimental
program for the linear accelerator at TJNAL includes
studying the reaction γd → pn with the aim of ob-
taining precise data over a wide kinematical domain.
The first results from a measurement of the differ-
ential cross section for deuteron photodisintegration
at TJNAL were obtained in 1998 [6] for photons of
energy about 4 GeV and are in good agreement with
the results of previous measurements at low energies.
At the same time, a preliminary analysis of theoretical
results deduced from an investigation of deuteron
photodisintegration at high energies (about 1 GeV
and above) did not unambiguously reveal the role of
nonnucleonic degrees of freedom in the nucleus [7].

Nonetheless, results obtained in this energy re-
gion lead to the conclusion that relativistic effects are
important there. In order to investigate the photo-
disintegration reaction at high energies of the inci-
dent photon, it is necessary to develop a relativistic
description of both the deuteron structure and the
reaction mechanism. However, there are presently
no calculations that would describe the entire body
of available information. Moreover, it has not yet
been found whether a theory that is based on degrees
of freedom traditional for nuclear physics (nucleons,
mesons, isobars) is able to describe experimental data
self-consistently and comprehensively.

Traditional methods for studying deuteron pho-
todisintegration are based on isolating leading con-
tributions in the expansion of the electromagnetic
current in powers of p/m. In the majority of such
studies, it is implicitly assumed that the constituents
2001MAIK “Nauka/Interperiodica”
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forming the deuteron and the reaction final state be-
have nonrelativistically and that electromagnetic in-
teraction can be considered independently (there are
difficululties here that are associated with ensuring
gauge invariance [8, 9]). The relevant calculations
employ the Schrödinger equation with various phe-
nomenological potentials like the Paris and the Bonn
potential. In our opinion, however, these methods do
not possess the required degree of generality, because
they are applicable only at low energies.

It is important to emphasize the following. Exotic
components in the wave function of a nucleus mani-
fest themselves against the background of nucleon–
nucleon (NN) interaction. The problem of taking
correctly into account nuclear effects (in particular,
developing a relativistic formalism and including bi-
nary processes) and effects of background is always
crucial when it is necessary to extract information
about exoticism from data on some process. Simpli-
fied estimates of nuclear effects may lead to erroneous
conclusions. In order to take correctly into account
these effects, it is desirable to have exactly solvable
nuclear models.

A general relativistic approach to strongly coupled
systems and processes involving such systems can be
developed by invoking the field-theoretical Lorentz-
invariant Bethe–Salpeter equation [10, 11]. On the
basis of this equation, the dynamics of an NN system
is described in terms of Bethe–Salpeter amplitudes
(the Bethe–Salpeter formalism is surveyed in [12],
and a comprehensive list of references on the subject
can be found in [13]).

Since an implementation of this approach in prac-
tice involves considerable mathematical and com-
putational difficulties, various approximate methods,
including the quasipotential approximation, were
evolved on the basis of the Bethe–Salpeter formalism.
In this connection, we would like to mention above
all the Logunov–Tavkhelidze–Blankenbecler–Sugar
[14], Kadyshevsky [15], and Gross [16] equations.
In practice, a quasipotential equation usually cannot
be solved without recourse to approximations con-
cerning, in particular, the kernel of NN interaction;
therefore, it is difficult to assess the accuracy of this
approach. The results of the calculations along these
lines can be found in [16, 17].

Various approaches to taking into account rel-
ativistic effects are used to construct a relativistic
description of bound states. For example, relativistic
deuteron wave functions were constructed in [18] as
elements of a Fock column defined on the light-front
surface. A similar procedure was adopted in [19],
where deuteron photodisintegration was considered
on the basis of a field-theoretical gauge-invariant
model on the light front.
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 5 200
The approach that is based on the technique of
dispersion integration with respect to the masses of
compound masses [20] and which was applied to
performing a relativistically covariant calculation of
deuteron photodisintegration at photon energies in
the range Eγ=0–400 MeV [21, 22] is worthy of spe-
cial note. Within this formalism, it is possible to
investigate in detail final-state interaction (FSI) and
the effect of inelasticity in NN scattering channels
on the deuteron-photodisintegration cross section.
Such a relativistic calculation of the amplitude with
allowance for FSI makes it possible to obtain an ac-
curate description of the total cross section at photon
energies ofEγ < 50 MeV. For higher energies, it was
concluded that relativistic effects are of importance
in this region and that MECs can contribute signif-
icantly there.

On the whole, a preliminary conclusion from the
analysis of the theoretical situation is that the con-
tribution of relativistic effects is of importance at
high momentum transfers. However, a considerable
scatter of the results that is observed in this kine-
matical region indicates that a consistent relativistic
approach to the problem has yet to be developed.

At present, a relativistic treatment of the deuteron
predominantly relies on the Bethe–Salpeter equa-
tion, which is manifestly Lorentz-invariant and which
makes it possible to take self-consistently into ac-
count relativistic effects; in particular, this implies
a symmetric inclusion of nucleon and antinucleon
degrees of freedom and of binary processes. So far,
the Bethe–Salpeter equation has been applied only
to elastic electron–deuteron scattering [23], back-
ward proton–deuteron scattering [24], deep-inelastic
scattering on a deuteron [25, 26], and a description
of the static properties of the deuteron [27, 28]. In
view of this, it would be very interesting to explore the
deuteron-photodisintegration reaction on the basis of
the Bethe–Salpeter formalism.

Shebeko and Korchin [29] were among the first to
apply the Bethe–Salpeter formalism to the deuteron
photodisintegration reaction. Within this formalism,
they proposed a consistent derivation of the expres-
sions for the reaction amplitudes in terms of the
Bethe–Salpeter amplitudes for the initial and for the
final state and of the Mandelstam electromagnetic
current. In addition, these authors specified a pro-
cedure for taking into account binary processes in the
current and allowed for FSI. However, they performed
no specific calculations.

By considering the deuteron-photodisintegration
reaction as a example, we develop here a relativis-
tically covariant description of nucleonic degrees of
freedom and of relativistic effects in nuclei. This
is implemented on the basis of the Bethe–Salpeter
equation for the NN system. We believe that this
1
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approach will make it possible to reveal, in the scat-
tering amplitude, some important features that can-
not be established within nonrelativistic approaches.
The calculations are performed in the plane-wave
impulse approximation with allowance for the 1S++

3 -
and 1D++

3 partial-wave states in the Bethe–Salpeter
deuteron amplitude. The problem is solved by using
the relativistically covariant separable potential Graz-
II [30].

2. BETHE–SALPETER EQUATION
AND QUASIPOTENTIAL APPROXIMATION

The problem of describing a relativistic NN sys-
tem is formulated on the basis of the Bethe–Salpeter
equation. The Bethe–Salpeter equation for the am-
plitude of the scattering of two nucleons with the
4-momenta p and p′ or relative motion and the total
4-momentum P has the form

T (p, p′;P ) = V(p, p′;P )

+
i

(2π)4

∫
d4kV(p, k;P )G(k;P )T (k, p′ ;P ), (1)

where V is the kernel of the equation—it is obtained
as the sum of all irreducible Feynman diagrams in the
field-theoretical model chosen for NN interaction—
whileG(k;P ) is the two-particle Green’s function.

The Bethe–Salpeter amplitude for the continuous
spectrum at P 2 = s > 4m2 is expressed in terms of
the T matrix and the Green’s function as
χ(k; pP ) = [(2π)4iδ(4)(p− k) −G(k;P )T (k, p;P )]

×χ(0)(p;P ), p · P = 0, (2)

where χ(0)(p;P ) is the amplitude describing the mo-
tion of free particles.

If the T matrix has a pole corresponding to a
bound state of massMd at P 2 = M2

d < 4m2, the ver-
tex function for this state satisfies the homogeneous
Bethe–Salpeter equation

Γ(p;P ) =
i

(2π)4

∫
d4kV(p, k;P )G(k;P )Γ(k;P );

(3)
accordingly, the Bethe–Salpeter amplitude for the
bound state is given by

ψ(p;P ) = G(p;P )Γ(p;P ). (4)

Equations (1) and (3) possess a manifest relativis-
tic invariance. Yet another feature peculiar to them
is that integration is performed there with respect to
all four components of the intermediate relative 4-
momentum k, both nucleons here being off the mass
shell.

A field theoretical analysis of the integral equations
(1) and (3) is complicated by the presence of the rel-
ative energy in them, the complex analytic properties
PH
of the kernel and the Green’s function, and the spinor
structure of the amplitude. A possible way to simplify
such an analysis is to make use of the relativistic
quasipotential approximation.

A general procedure for reducing the Bethe–
Salpeter equation to the quasipotential equation is
well known [17]. A class of approximate three-
dimensional relativistic equations can be obtained by
approximating the free two-particle Green’s function
as the product of two free-nucleon propagators,
G = S(1)S(2) [for the sake of simplicity, we perform
our analysis in the c.m. frame, where P = (

√
s,0)];

that is,
G(k;

√
s) (5)

=
[P̂ /2 + k̂ + m](1)

(
√
s

2 + k0)2 − E2
k + iε

[P̂ /2 − k̂ + m](2)

(
√
s

2 − k0)2 − E2
k + iε

,

where Ek =
√
m2 + k2.

We single out the Blankenbecler–Sugar set of
approximate Green’s functions. In the c.m. frame,
both nucleons are then equidistant from the mass
shell in intermediate states, since their relative energy
is chosen to be zero. As a result, the propagator has
the form

g(k;
√
s) = −2πiδ(k0)

Λ(1)(k1)Λ(2)(k2)
Ek(s− 4E2

k + iε)
, (6)

where Λ stands for projection operators that explicitly
single out positive-energy states. Upon the substi-
tution of the propagator given by Eq. (6) into the
Bethe–Salpeter equation, we arrive at the quasipo-
tential Bethe–Salpeter equation for describing the
NN system. A similar analysis of the application
of the covariant quasipotential approximation to
describing the electromagnetic properties of two-
nucleon systems was performed in [31].

In numerically solving the Bethe–Salpeter equa-
tion, use is often made of the ladder approximation,
where the kernel V is represented as the sum of one-
boson-exchange diagrams. A solution to Eq. (3) can
then be found in Euclidean space (see, for example,
[24–28]. This is a serious drawback of this approx-
imation, because the relative energy of the particles
is on the imaginary axis in this solution. Moreover,
there arise additional difficulties in calculating ob-
servables in terms of the Bethe–Salpeter amplitudes,
since an analytic continuation from Euclidean space
to Minkowski space is ambiguous and very cumber-
some. For this reason, it is desirable to have a solution
directly in Minkowski space.

A physical solution can be obtained by the method
of integral representation of perturbation theory [32].
In [33], a general solution to the Bethe–Salpeter
equation was obtained in terms of the generalized
spectral representation for the bound-state vertex
YSICS OF ATOMIC NUCLEI Vol. 64 No. 5 2001
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function and for the kernel of the equation. However,
that analysis was performed only for scalar particles.

An alternative way to analyze the Bethe–Salpeter
equation consists in invoking a nonlocal separable
kernel of the type [30, 34, 35]

V(p0,p, k0,k) =
N∑

a,b=1

λabva(p0,p)vb(k0,k). (7)

In this case, the resulting scattering amplitudes and
the Bethe–Salpeter vertex functions are physical
quantities and possess analytic properties that are
determined by the form factors va(p). For a separable
kernel whose form factors appear to be a relativistic
generalization of the Yamaguchi form factor [36], the
authors of [34, 37, 38] investigated the properties
of the NN interaction within the Bethe–Salpeter
formalism.

For the purposes of the ensuing analysis, we per-
form a partial-wave expansion of the Bethe–Salpeter
deuteron vertex function Γ(k;P ). In the c.m. frame,
we have (here, we explicitly single out its dependence
on the spin variableM and omit the isospin part)

ΓM(p;P ) =
∑
α

gα(p0, |p|;
√
s)ΓαM (−p), (8)

M = ±1, 0,

where the summation index α is determined by the
quantum numbers S,L, J , and ρ; that is, the ρ spin
[39], which singles out nucleon and antinucleon
states, appears here in addition to the traditional
spin, orbital angular, and total momenta (S, L,
and J , respectively); ΓαM (−p) is the spin–angular
component; and gα is the radial function.

In general, summation in expression (8) must be
performed over eight partial-wave amplitudes. In
addition to physical channels that involve positive-
energy nucleon states (3S++

1 -, 3D++
1 ), there arise

channels involving negative-energy states:
3P+−

1 ,3 P−+
1 ,1 P+−

1 ,1 P−+
1 ,3 S−−

1 ,3 D−−
1 .

The corresponding radial vertex functions are odd in
the relative energy, whence it follows that they vanish
when the particles occur on the mass shell.

In the following, we will not consider partial-wave
channels characterized by a negative nucleon energy.
Thus, there remain two coupled channels, 3S1−3D1,
whose vertex functions are given by [28]
√

8πΓ
3S++

1
M (p;P ) = Np1Np2(m + p̂1)(1 + γ0) (9)

×êM (m− p̂2)g0(p0, |p|;
√
s),

√
16πΓ

3D++
1

M (p;P ) = −Np1Np2(m + p̂1)

×(1 + γ0)(ε̂M +
3
2

(p̂1 − p̂2)
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 5 200
×(p · eM )
p2

)(m− p̂2)g2(p0, |p|;
√
s),

where
√
s = Md, p1 = (Ep,p), and p2 = (Ep,−p)

are the on-mass-shell nucleon momenta; N−1
p =√

2Ep(m + Ep) is a normalization factor; and eM =
(0, eM ) is the deuteron polarization 4-vector,

+1∑
M=−1

eµMeν∗M = −gµν +
PµP ν

M2
d

, eM · P = 0.

(10)

Although theBethe–Salpeter vertex function does
not have a nonrelativistic limit in a rigorous mathe-
matical sense, it can be compared with the quasipo-
tential and the nonrelativistic vertex functions. For
this purpose, we make use of the normalization con-
dition for the bound-state amplitude. If the kernel V
is independent of the total energy P of the system, we
have

1 = −
∫

d4k

(2π)4i
Γ̄(p;P )

∂G(p;P )
∂P 2

∣∣∣∣
P 2=M2

d

Γ(p;P ).

(11)
In terms of the radial vertex function (9), this condi-
tion assumes the form

1
2π2iMd

×

×
∞∫
0

dk0

∞∫
0

d|k|k2 gL(k0, |k|;
√
s)2(Ek − Md

2 )

((Md
2 − Ek + iε)2 − k2

0)
2 = PL,

(12)

P0 + P2 = 1.

For the quasipotential vertex function g̃L, we ac-
cordingly obtain

2m2

π2Md

∫
d|k|k2 g̃L(0, |k|)2

Ek(M2
d − 4E2

k)2
= PL. (13)

Comparing these two expressions, we can find
that the Bethe–Salpeter vertex function and the
Blankenbecler–Sugar quasipotential function are
related by equation

gL(k0, |k|)
Ek − Md

2

∣∣∣∣∣ k0=
Md
2

−Ek
≈ 4√

π

√
m2

Ek

g̃L(0, |k|)
M2
d − 4E2

k

.

(14)

TheBlankenbecler–Sugar vertex function is identical
to the nonrelativistic vertex function under the condi-
tion [40]

gL(|k|) ≡
√

m

Ek
g̃L(0, |k|).

In numerically calculating the deuteron-photo-
disintegration cross section, we will make use of a
1
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rank-3 separable kernel, N = 3 in Eq. (7). The
nonrelativistic Graz-II potential, which is employed
to describe the properties of the NN system in the
3S1–3D1 coupled channels (for details, see [40]),
served as a prototype of this potential. The radial
vertex functions are given by

g0(k0, |k|; s) = A(s)
1 − γ1k

2

(k2 − β2
11)2

+B(s)
k2

(k2 − β2
12)2

, (15)

g2(k0, |k|; s) = C(s)
k2(1 − γ2k

2)

(k2 − β2
21)2(k2 − β2

22)2
,

s = M2
d ,

where k2 = k2
0 − k2; the coefficients A,B, and C

are solutions to a linear set of homogeneous Bethe–
Salpeter equations; and the parameters βab and γa are
chosen in such away that the T matrix reproduces the
3S1 and 3D1 phase shifts in the energy region extend-
ing up to 500 MeV, the low-energy parameters of NN
scattering, and the static properties of the deuteron
like the binding energy and the quadrupole and the
magnetic moment. For the nuclear parameters, we
choose values at which the probability of the 3D1-
wave state in the deuteron is P2 = 4%.

The quasipotential vertex function, which is used
in the ensuing calculations, was found as a solution to
the homogeneous Bethe–Salpeter equation with the
Blankenbecler–Sugar two-particle Green’s function
(6) and the separable nonrelativistic Graz-II poten-
tial. In our calculations, the parameters λab were
changed in relation to the corresponding parameters
of the kernel in the Bethe–Salpeter equation. For
the radial part g̃L, we then obtain a result that is
independent of the relative energy of the nucleons.

3. RELATIVISTIC IMPULSE
APPROXIMATION

Let us consider the deuteron-photodisintegration
reaction where, in the initial state, a real photon
with a 4-momentum qµ interacts with a deuteron
whose 4-momentum is K. The reaction final state
is determined by a neutron–proton (np) pair that is
characterized by a total 4-momentum P and by the
4-momentum p of relative motion.

In the np c.m. frame, where Pµ
0 = (

√
s,0) and

pµ = (0,p), with
√
s being the total energy of the pair,

the differential cross section for the scattering process
in question can be represented as

dσ

dΩp
=

α

16πs
| p |
ω

| ενλMfi,ν |2, (16)
PH
where α = e2/(4π) is the fine-structure constant;
Mfi,ν is the invariant amplitude, which is equal
to the matrix element Mfi,ν = 〈f | Ĵν | i〉 of the
electromagnetic-interaction operator Ĵν between the
initial (deuteron) and the final (np pair) state of the
two-nucleon system; εµλ is the photon polarization
4-vector; λ = ±1; and ω is the photon energy in
the np c.m. frame. Since particle polarizations are
not discussed here, it is assumed that the differential
cross section is averaged over the spin states of the
initial state and is summed over the spin states of
the final state. In order to simplify the calculations,
we choose a reference frame where the incident-
photon momentum is aligned with the z axis; that
is, qµ = (ω, 0, 0, ω).

In analyzing experimental data, the differential
cross section (16) is considered as a function of the
incident-photon energy Eγ and the angle θp between
the direction of the photon momentum and the direc-
tion of the scattered-proton momentum in the c.m.
frame, where the 3-momentum of the relative motion
of the nucleons, the photon energy, and the square
of the energy of the np pair satisfy the kinematical
relations

|p| =
√

s

4
−m2, ω =

s−M2
d

2
√
s

, (17)

s = M2
d + 2EγMd.

The invariant reaction amplitude Mfi,ν is ex-
pressed in terms of the Bethe–Salpeter amplitudes for
the initial [Eq. (4)] and the final [Eq. (2)] state as [29]

Mfi,ν (18)

=
∫

d4kd4lχ̄Sms(l; pP )Λν(l, k;P,K)ψM (k;K),

where the np Bethe–Salpeter amplitude χ̄Sms is
characterized by the total spin S (S = 0, 1) and by
its projectionms onto the z axis, the Bethe–Salpeter
deuteron amplitude ψM is characterized by the spin
projection M , and Λν is the Mandelstam vertex
specifying the electromagnetic interaction with the
two-nucleon system.

In general, the amplitude in Eq. (18) must be ana-
lyzed with allowance for FSI, so that it is necessary
to know the off-mass-shell T matrix [see Eq. (2)].
Moreover, the Mandelstam vertex involves the sin-
gle and the two-particle component determining the
contribution of binary processes to the scattering

amplitude, Λν = Λ[1]
ν + Λ[2]

ν . Within the formalism
developed here, the gauge invariance of the reac-
tion amplitude, qνMfi,ν = 0, is ensured by fulfillment
of the Ward–Takahashi identity for the Mandelstam
vertex, provided that the Bethe–Salpeter amplitudes
for the initial and for the final state satisfy the Bethe–
Salpeter equation with the same kernel.
YSICS OF ATOMIC NUCLEI Vol. 64 No. 5 2001
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Presently, an analysis of the amplitude in the
Bethe–Salpeter formalism with allowance for binary
processes involves formidable difficulties of a mathe-
matical and a computational character. For this rea-
son, we restrict our consideration to approximations
concerning the description of both the mechanism
governing photon interaction with the NN system
and the structure of the system in the continuous
spectrum. Specifically, we assume that

(i) Λ[2]
µ = 0 (impulse approximation);

(ii) T (p, k;P ) = 0 (plane-wave approximation).

Let us now discuss the quantities that appear in
the matrix element (18).

Bethe–Salpeter amplitude for the continu-
ous spectrum. According to the adopted approxi-
mations, the Bethe–Salpeter amplitude for the final
state [np pair in the c.m. frame; see Eq. (2)], which
is characterized by the 3-momentum p of relative
motion, the energy

√
s, and the spin S = 0, 1 and

its projection ms, is determined by an antisymmetric
combination of Dirac spinors; that is,

χ(0)
Sms

(k0,k;
√
sp) = δ(k0)

×
[
χSms

(p)(η0 + η1)δ(3)(k− p) + (−1)S+1 (19)

×χ
Sms

(−p)(η0 − η1)δ(3)(k + p)
]
,

where

χ
Sms

(p) = (2π)4
∑

λp,λn=± 1
2

CSms
1
2
λp

1
2
λn
uλp(p)uλn(−p)

and η0 and η1 are the isospin functions that corre-
spond to the total-isospin values of T = 0 and T = 1,
respectively. The Dirac spinors involved are normal-
ized in the covariant way: u+u = 2E.

Bethe–Salpeter amplitude for the discrete
spectrum. The Bethe–Salpeter equation for the
deuteron is solved numerically in the rest frame of
the nucleus. The vertex function in the amplitude
given by (18) is defined in a moving reference frame.
Therefore, it is necessary to perform the inverse
transformation. Let us specify the relevant Lorentz
transformation. Under the adopted kinematical
conditions, in which case the deuteron 3-momentum
is K = −q (that is, it is antiparallel to the z axis), the
transformation to the moving reference frame is spec-
ified by the equations Kµ = LµνKν

0 and Pµ = LµνP ν
0 ,

where Kν
0 and P ν

0 are the momenta of, respectively,
the deuteron and the np pair in their rest frame. The
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 5 200
Lorentz transformation matrix Lνµ then has the form

Lνµ =




√
1 + η 0 0 −√

η

0 1 0 0

0 0 1 0

−√
η 0 0

√
1 + η



, (20)

where the parameter η is defined as
√
η =

Eγ√
s
,
√

1 + η =
Eγ + Md√

s
.

Upon going over from the moving reference frame to
the rest frame, the Bethe–Salpeter vertex function
becomes

ΓM (k;K) = Λ(L)ΓM (L−1k;K0), (21)

where Λ(L) is the operator that is responsible for the
transformation of the spin components of the ampli-
tude, Λ(L) = Λ(1)(L)Λ(2)(L). Here, we have

Λ(l)(L) =
(

1 +
√

1 + η

2

)1/2(
1 +

γ0γ3
√
η

1 +
√

1 + η

)(l)

.

(22)

From the value of the parameter η, we can deduce
information about the magnitude of boost effects,
which is determined by changes in the dynamical and
spin degrees of freedom. FromEq. (21), it can be seen
that both the 4-momentum of the relative motion and
the nucleon spin degrees of freedom undergo changes
under the boost transformation.

For η → 0, the matrix given by (20) and the op-
erator given by (22) tend to the identity matrix and
the identity operator, respectively, L → I and Λ → I.
This corresponds to the static limit for the Bethe–
Salpeter amplitude and occurs at the photodisinte-
gration threshold, because we have Eγ/Md � 1 in
this case [see Eq. (17)].

Electromagnetic-interaction vertex. Let us
now consider the Mandelstam vertex. The single-
particle contribution to the total vertex has the form

Λ[1]
ν (p, k, P,K)

= i(2π)4δ(4)
(q

2
+ k − p

)
Γ(1)
ν (q)S(2)

(
P

2
− p

)−1

+i(2π)4δ(4)
(q

2
− k + p

)
Γ(2)
ν (q)S(1)

(
P

2
+ p

)−1

,

(23)

where Γ(l)
ν is the off-mass-shell γNN vertex for the

lth nucleon and S(l)(p) is the corresponding exact
propagator. Calculation of the function Γν off the
mass shell, as well as calculation of the propagator
S(p), is a problem in itself, since such a calculation
requires invoking specific field-theoretical models of
1
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Fig. 1. Deuteron-photodisintegration diagrams corre-
sponding to the plane-wave impulse approximation.

the nucleon [41]. In determining the Bethe–Salpeter
amplitude for the NN system, we discarded the con-
tribution of self-energy corrections in the Bethe–
Salpeter equation. We can then take the electromag-
netic vertex for the nucleon on the mass shell [29]:

Γ(l)
ν (q) = γν

(
F

(s)
1 (q) + τ

(l)
3 F (v)(q)

)

+
i

2m
σνµq

µ
(
F

(s)
2 (q) + τ

(l)
3 F

(v)
2 (q)

)
. (24)

Here,F (s)
1(2)(q) andF (v)

1(2) are, respectively, the isoscalar
and the isovector Pauli–Dirac form factors for the nu-
cleon that are normalized as follows:
F

(s)
1 (0) = 1/2, F

(s)
2 (0) = (κp + κn)/2, F

(v)
1 (0) =

1/2, and F
(v)
2 (0) = (κp − κn)/2, where κp,n are

the anomalous parts of the proton and the neutron
magnetic moment, respectively.

Substituting (19), (21), and (23) into expression
(18) and performing integration, we obtain

Mfi,ν =
i

16π4

∑
l=1,2

χ̄(0)
Sms

(0,p;
√
sp)Γ(l)

µ (q2 = 0)

(25)

×Λ(L)S(l)(k;K0)ΓM (k0l,kl;K0),

where kl = L−1(p + (−1)lq/2). Summation in (25)
is performed over the nucleons in the deuteron. The
corresponding contributions are represented by the
diagrams in Fig. 1.

We would like to highlight an important circum-
stance that follows from expression (25). First, the
relevant matrix element in the plane-wave impulse
approximation is proportional, asmight have been ex-
pected, to the Bethe–Salpeter vertex function taken
at specific values of the relative energy k0l and the
nucleon 3-momentum kl. Second, k0l and kl depend
PH
  

0 0.2 0.4 0.6 0.8 1.0

 

E

 

γ

 

, GeV

–1.0

–0.5

0

0.5

1.0

1.5

 
|

 
k

 

1

 
|
 
, 
 
k

 

01

 
, GeV

 

|

 

k

 

1

 

|

 

k

 

01

 

θ

 

p

 

 = 180°

90°

0°

 

θ

 

p

 

 = 0°

90°

180°

Fig. 2. Absolute value |k1| of the relative three momen-
tum (solid curves) and relative energy k01 (dashed curves)
of the nucleons in the deuteron versus the photon energy
Eγ at various proton emission angles θp.

on the boost-transformation parameter η. By way of
example, we indicate that, for the 4-momentum of the
first nucleon (proton), we have

k01 =
√
η |p||| − (

√
η +

√
1 + η)

ω

2
,

k⊥1 = p⊥, ω = Md
√
η, (26)

k||1 =
√

1 + η p|| − (
√
η +

√
1 + η)

q
2
,

where the symbols || and ⊥ in the subscripts label,
respectively, the longitudinal and the transvese com-
ponent of a vector with respect to the direction of the
photon momentum q. The relative energy and the
modulus of the proton momentum in the deuteron at
a fixed scattering angle are displayed in Fig. 2 versus
the incident-photon energy. It should be emphasized
that, according to (26), the relative energy k01 can
take negative values at some specific values of the
photon energy.

For the ensuing calculations, it is convenient to
represent expression (25) in a matrix form. Technical
details of the procedure can be found in [42]. The
reaction amplitude Mfi,ν can then be represented as
the sum of four traces:

Mfi,ν = −tr
(
χ̄Sms

(p)Γp,νS
(
K0

2
+ k1;K0

)

×ΓM(k1;K0)Λ(L−1)
)

−tr
(
χ̄Sms

(p)ΓM (k2;K0)S̃
(
K0

2
(27)

−k2;K0) Λ(L−1)Γn,ν
)

+(−1)Str
(
χ̄

Sms
(−p)Γn,νΛ(L)S

(
K0

2
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+k1;K0) ΓM (−k1;K0)Λ(L−1)
)

+(−1)Str
(
χ̄Sms

(−p)ΓM (−k2;K0)

×S̃

(
K0

2
− k2;K0)Λ(L−1)Γp,ν

)
.

The quantities appearing in (27) are determined by
relevant matrix expressions. For example, the Bethe–
Salpeter vertex functions for positive-energy states
are given by (9), while the Bethe–Salpeter ampli-
tudes for the final state can be represented as

χ̄1ms(p) =
1

2
√

2(m + Ep)

×(m− p̂2)ξ̂∗ms
(1 + γ0)(m + p̂1),

χ̄00(p) =
1

2
√

2(m + Ep)
(28)

×(m− p̂2)γ5(1 + γ0)(m + p̂1)

(for the spin values of S = 1, 0, respectively),
where ξms is the vector-particle polarization 4-vector,
which satisfies the conditions of completeness and
orthonormality,

+1∑
ms=−1

ξµms
ξν∗ms

= −gµν +
PµP ν

s
, ξνP

ν = 0,

(29)

while the normalization factors Np and the vectors
p1,2 are defined in Eq. (9).

For the real photon, the electromagnetic vertex for
the proton, Γp,ν , and the electromagnetic vertex for
the neutron, Γn,ν , are given by

Γp,ν = γν +
iκp
2m

σνµq
µ, Γn,ν =

iκn
2m

σνµq
µ.

(30)

The nucleon propagator in expression (27) has the
form

S̃(k) =
k̂ −m

k2 −m2 + iε
(31)

and is related to the propagator S by the equation
S̃ = C−1STC, where C = iγ2γ0.

By using expression (27), we find that the square
of the modulus of ενMfi,ν can be represented as

| ενλMfi,ν |2 = 4
(

1 +
√

1 + η

2

)2

×
∑
S=0,1

(| XS
0 |2 +2αRe(XS

0 X
S∗
1 ) (32)

+α2
(
| XS

1 |2 −2Re(XS
0 X

S∗
2 )
)

−2α3Re(XS
1 X

S∗
2 ) + α4 | XS

2 |2).
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Here, α =
√
η/(1 +

√
1 + η) and the amplitudes XS

i

(i = 0, 1, 2) are given by

XS
0 = tr

(
χ̄

Sms
(p) ενλΓp,ν S(s1;K0)ΓM (k1;K0)

)
+ neutron,

XS
1

= tr
(
χ̄Sms

(p) ενλΓp,ν γ0n̂3S(s1;K0)ΓM (k1;K0)
)
(33)

−tr
(
χ̄

Sms
(p) ενλΓp,ν S(s1;K0)ΓM (k1;K0)γ0n̂3

)
+ neutron,

XS
2 = tr

(
χ̄

Sms
(p) ενλΓp,ν γ0n̂3S(s1;K0)

×ΓM (k1;K0)γ0n̂3) + neutron,

where n3 = (0, 0, 0, 1) is a unit vector and s1 =
K0/2 − k1.

These are the most general expressions used be-
low to analyze various contributions from relativis-
tic effects to the differential cross section (16). In
performing summation over the polarizations of the
particles involved in the reaction being considered, we
have made use of the completeness conditions for the
deuteron and nucleon polarization vectors [Eqs. (10)
and (29), respectively]. In averaging over the photon
polarization states, we have employed the Coulomb
gauge (ε0 = 0, ε · q = 0), in which the completeness
condition has the form∑

λ=±1

(ελ)∗i (ελ)j = δij −
qiqj
q2

, i, j = x, y. (34)

4. RESULTS AND DISCUSSION

In Figs. 3 and 4, the calculated differential cross
section for deuteron photodisintegration is presented
as a function of the proton emission angle θp at vari-
ous values of the incident-photon energy Eγ . In order
to draw definitive conclusions on the relative impor-
tance of relativistic effects, we have performed cal-
culations (i) within the nonrelativistic model (without
MECs and FSI) by using the deuteron wave func-
tions computed for the Bonn and the Paris potential
and the operator of electromagnetic-current density
for nucleons in the form

Ĵ(x) =
∑
l=1,2

F
(s)
1 + τ

(l)
z F

(v)
1

2

×[δ(3)(x − rl)
p̂l
2m

+
p̂l
2m

δ(3)(x− rl)] (35)

+curl


∑
l=1,2

G
(s)
M + τ

(l)
z G

(v)
M

2
δ(3)(x − rl)

σl
2m


 ,
1
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where p̂l = −i∂/∂ri and G
(s)
M and G

(v)
M are, respec-

tively, the isoscalar and the isovector Stokes form
factor; (ii) within the quasipotential approximation
by using expressions (32) and (33), where the radial
Bethe–Salpeter vertex functions for the ++ partial-
wave channels were identified, according to the con-
dition in (14), with the corresponding quasipotential
vertex functions representing solutions to the Bethe–
Salpeter equation with the Blankenbecler–Sugar
propagator (6) and with Gratz-II separable nonrel-
ativistic potential [this approximation corresponds to
constraining the relative energy of the nucleons by the
conditions k01 = 0 and k02 = 0 in the radial vertex
function gL for the deuterons and by the conditions
Md/2 − k01 = Ek1 and Md/2 + k02 = Ek2 in the
nucleon propagator S(k;K0)]; and (iii) within the
Bethe–Salpeter formalism, where the computations
in terms of the Bethe–Salpeter amplitudes invoke
expressions (32) and (33) and the 3S++

1 and 3D++
1

states.
Moreover, we have performed additional investi-
PH
gations aimed at isolating contributions from rela-
tivistic effects. By way of example, we have explored,
within the Bethe–Salpeter formalism, the role of the
effect associated with the boost transformation of
the deuteron vertex function. For this purpose, we
have used (i) the static approximation that amounts
to completely ignoring the transformations associ-
ated with the boost operation in the matrix element
(25) [this is achieved by imposing the condition
gL(k0l,kl)|η=0 = gL(p0l,pl), where p0l = (−1)lω/2
and pl = p + (−1)lω/2 (l = 1, 2)] and in the Lorentz
transformation operator (22) [this corresponds to
setting Λ(L)|η=0 = I] and (ii) the approximation of
scalar nucleons. The results obtained within the
latter, where the effect of the boost transformation
is determined exclusively by the change in the dy-
namical variables kl = L(p + (−1)lq/2), having no
connections with the transformation of the spinor
structure of the Bethe–Salpeter amplitudes, are
compared with the results in the static approximation.
YSICS OF ATOMIC NUCLEI Vol. 64 No. 5 2001
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Such a comparisonmakes it possible to reveal the role
of the spin degrees of freedom.

Figure 3 shows the calculated differential cross
section for deuteron photodisintegration at low en-
ergies. Let us consider this cross section at the
photon energy of Eγ = 20 MeV. From the figure, we
can see that, for proton emission angles in the range
θp = 60◦–100◦, the curves obtained within the differ-
ent models considered here behave almost identically.
Deviations are observed only at angles close to 0◦ and
180◦. This is due to the variations in the probability
of the 3D1-wave state in the deuteron. It should be
noted that a nearly perfect sin2 θp behavior of the cross
section is reproduced in this case.

As soon as the photon energy reaches the value
of Eγ = 60 MeV, there appear, however, noticeable
distinctions between the curves. First of all, we
can see a decrease in the differential-cross-section
values over the entire range of the angles θp. The
maxima are shifted toward the value of θp = 70◦. In
this kinematical region, the values of the differential
cross section calculated within the Bethe–Salpeter
formalism differ significantly from the results of the
nonrelativistic calculations with the Paris and the
Bonn potential. Figure 3 shows that the role of the
boost effect is still insignificant here. The results in
the quasipotential approximation considerably exceed
those obtained in the Bethe–Salpeter approach, but
the two approaches yield similar dynamical patterns.
This distinction is due to the explicit dependence of
the Bethe–Salpeter vertex function on the relative
energy k0.

At Eγ = 100 MeV, the differential cross sections
are still smaller. Here, we can see a strong de-
pendence of the results of the calculations on the
choice of potential model. The distinctions between
the results of the relativistic calculations within the
Bethe–Salpeter formalism and the results of the
calculations in the nonrelativistic models become
more pronounced. At the photon energy of Eγ =
140 MeV, these distinctions are still greater. The
curves computed in the quasipotential approximation
lie much higher than those representing the results
in the Bethe–Salpeter approach. As before, boost
effects are insignificant.

Figure 4 presents the calculated differential cross
section at intermediate and high photon energies. It
can be seen that, as the incident-photon energy is
increased, the differential cross section as obtained
on the basis of the Bethe–Salpeter formalism tends
to be nearly isotropic. The curves computed within
the nonrelativistic models show a dip in the angular
region θp = 80◦–120◦. For this reason, the corre-
sponding cross sections for forward and backward
scattering considerably exceed values obtained from
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 5 200
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Fig. 4. As in Fig. 3, but for intermediate and high photon
energies.

a relativistic analysis. This is because the approach
based on nonrelativistic physics is incorrect at high
energies, which are beyond its applicability range [1].

Up to energies of Eγ = 500 MeV, the behavior
of the differential cross section in the quasipotential
approximation nearly reproduces the behavior of the
cross section within the Bethe–Salpeter formalism.
However, there appear distinctions above this energy
value. The role of boost effects associated with dy-
namical variables and with spinor structures becomes
more pronounced with increasing photon energy, es-
pecially for forward scattering.

Let us now discuss the ratio of the differential cross
sections at different values of the proton emission
angle θp (see Fig. 5). Specifically, we consider
the ratio dσ(0◦)/dσ(90◦). It can be seen that this
ratio is rather sensitive to the choice of potential
model. For example, the results of the calculations
performed with the Bonn and the Paris potential differ
significantly in magnitude. Moreover, the behav-
ior of the curves computed in the potential models
differs qualitatively from the behavior of the curves
obtained within the Bethe–Salpeter formalism and
the quasipotential approach. This is because the ratio
in question is sensitive to the contribution of rela-
tivistic effects, which become sizable here at photon
energies as low as 150MeV. The distinctions between
the curves obtained within the relativistic approaches
become more pronounced with increasing energy.

Figure 5 also shows the calculated ratio of the
cross section for forward (θp = 0◦) and backward
(θp = 180◦) scattering. We would like to emphasize
that the relativistic approaches lead to a maximum
in this ratio at Eγ = 120 MeV. A similar maximum,
which is shifted, however, to the region of higher
1



880 KAZAKOV, SUS’KOV

   

0 50 100 150 200 250

 

E

 

γ

 

, MeV

0.5

1.0

1.5

2.0

2.5

0

0.5

1.0

1.5

2.0

 
d

 
σ

 
(0°)/

 
d

 
σ

 
(90°)

 

d

 

σ

 

(0°)/

 

d

 

σ

 

(180°)

Fig. 5. Ratio of the differential cross section for forward
scattering to the differential cross sections for scattering
at the angles of 90◦ and 180◦. The experimental data
were borrowed from [43]. The notation for the curves is
identical to that in Fig. 3.

  

10

 

1

 

10

 

2

 

10

 

3

 

E

 

γ

 

, MeV

0

1000

2000

3000

 
σ

 
, 

 
µ

 
b

Fig. 6. Experimental data on the total cross section
for deuteron photodisintegration from [1, 43] (points),
along with the results of various theoretical calculations
(curves): (solid curve) results of the calculations within
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energies, is observed in experimental data. The boost
effect is pronounced almost over the entire kinemati-
cal region of photon energies that is considered here.

Figure 6 shows the calculated total differential
cross section for deuteron photodisintegration. It
can be seen that, with increasing incident-photon
P

energy, this cross section first increases sharply to a
maximum in the region aroundEγ = 4 MeV and then
decreases fast, approaching a plateau in the region
Eγ = 100–1000 MeV. From the figure, we can see
that the theoretical curves are below experimental
data almost over the entire kinematical region. This
underestimation is due to the disregard of two-body
and FSI effects. In addition to including these disre-
garded effects, it is also necessary, for rendering cal-
culations within the Bethe–Salpeter formalism viable
at high energies, to use the Bethe–Salpeter ampli-
tude obtained as a solution to the Bethe–Salpeter
equation with the kernel whose parameters are deter-
mined from a partial-wave analysis of NN scattering
at higher energies.

5. CONCLUSIONS

A relativistically covariant analysis of the deute-
ron-photodisintegration reaction has been performed
on the basis of the Bethe–Salpeter equation. The
results obtained within this approach have been com-
pared with those computed within the phenomeno-
logical potential model and within the quasipotential
approximation. Owing to this, we have been able to
reveal the role of various relativistic effects, including
relativistic kinematics, the dynamics of NN interac-
tion, and the boost effect on the dynamical and spin
degrees of freedom of the Bethe–Salpeter amplitude
in the angular distributions versus the photon energy
have led to the following conclusions:

The results of our analysis have led to the following
conclusions:

(i) Phenomenological potential models are inap-
plicable at high photon energiesEγ , since they predict
an incorrect behavior of the differential cross sec-
tion. In contrast to these models, the quasipotential
approximation yields cross sections that agree with
the results of other relativistic approaches and which
ensure a correct form of the angular distributions (see,
for example [1, 19]).

(ii) The Bethe–Salpeter approach makes it pos-
sible to take into account, in the most general way,
the Lorentz invariance of the reaction amplitudes and
the relativistic dynamical structure of two-nucleon
systems. A feature peculiar to this formalism is that
the amplitude for the NN system depends on the
relative energy k0l of bound nucleons. In the impulse
approximation, this dependence is manifest in the
reaction amplitude. In our opinion, this makes it
possible to study recoil effects associated with en-
ergy transfer from the incident photon to one of the
deuteron nucleons.

(iii) The role of the boost effects becomes more
pronounced with increasing incident-photon energy
and is of greatest importance for forward scattering.
HYSICS OF ATOMIC NUCLEI Vol. 64 No. 5 2001
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(iv) At high energies (in excess of 500 MeV),
the results greatly depend on the choice of model.
This suggests that calculations in this kinematical
region must be performed more carefully—above all,
they must employ more realistic Bethe–Salpeter am-
plitudes and wave functions whose determination is
directly associated with constructing a more realistic
interaction kernel that is applicable in this energy
region.

We deem that it is important to perform further
computations within the Bethe–Salpeter formalism
with allowance for FSI and binary processes, since
this will make it possible to draw a comparison with
experimental data. In this respect, our calculations
are of a purely methodological character.
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Abstract—The ground state of 229Pa91 is a 5/2± doublet, with the splitting energy being 220± 50 eV. A
direct observation of P-odd effects in this system is of great interest, since this may furnish information
about the parity-nonconserving effective one-nucleon potential. Since a transition between two opposite-
parity doublet states is accompanied by a strong conversion, it is possible to study P-odd mixing by
exploring the conversion-electron helicity and the circular polarization Pγ of the lines of atomic radiation
that arises upon the filling of a hole in the 6s1/2, 6p1/2, and 6p3/2 shells of the 229Pa91 atom. Since Pγ

is about 3–5% for individual atomic transitions, experiments aimed at observing parity-nonconservation
effects on this basis are feasible. c© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The present article completes the series of publi-
cations [1–3] reporting on our investigation into the
parity-nonconservation effect in the 5/2− → 5/2+

conversion transition in the 229Pa91 nucleus, whose
ground state appears to be a system of two opposite-
parity (±) I = 5/2 states—that is, a doublet split in
energy by ∆E = 220± 50 eV owing to the quasi-
crossing of proton orbitals in the strongly deformed
229Pa91 nucleus [4].
Of greatest interest are experiments that reveal

effects linear in the Fermi weak-coupling constant
GF—for example, the helicity of conversion electrons
in a multipole-order-mixed nuclear transition1) or the
circular polarization of primary photons from atomic
radiation accompanying this transition. Here, we
analyze the possibility of implementing an experiment
aimed at observing this circular polarization.

The doublet of states in the 229Pa91 nucleus is in-
terpreted here as the [523]5/2,−, 5/2 and
[642]5/2,+, 5/2 single-particle proton orbitals (the
classification of orbits according to Nilsson [5] is
[NnZΛ]Ω,Π, I). The strongly deformed nucleus
229Pa91 is described within the generalized model
proposed in [6]. The nucleon functions were obtained
in a deformed-nucleus potential of theWoods–Saxon
form and, as a check upon the results, in the deformed

†Deceased.
*e-mail: lomon@cerber.mbslab.kiae.ru
1)This effect was previously estimated in [3].
1063-7788/01/6405-0882$21.00 c©
nuclear oscillator potential from [5]. The details of the
calculations can be found in [1].
The parity-nonconserving weak-interaction po-

tential V̂ N
PNC leads to the mixing of these states:∣∣∣∣∣

5̃
2

−
〉

=
∣∣∣∣[523]52 ,−,

5
2

〉
+ ib

∣∣∣∣[642]52 ,+,
5
2

〉
,

∣∣∣∣∣
5̃
2

+
〉

=
∣∣∣∣[642]52 ,+,

5
2

〉
+ ib

∣∣∣∣[523]52 ,−,
5
2

〉
. (1)

Here, b is a coefficient that characterizes the admix-
ture of the opposite-parity state and which is given by

ib =
〈[642]52 ,+,

5
2 |V̂ N

PNC|[523]52 ,−,
5
2〉

∆E
. (2)

The phases of the wave functions are chosen in such
a way that these matrix elements are pure imaginary
quantities:〈

[523]
5
2
,−, 5

2

∣∣∣∣ V̂ N
PNC

∣∣∣∣[642]52 ,+,
5
2

〉∗

= −
〈
[523]

5
2
,−, 5

2

∣∣∣∣ V̂ N
PNC

∣∣∣∣[642]52 ,+,
5
2

〉
. (3)

The Hermitian effective-potential operator that acts
on an intranuclear nucleon (proton) and which vio-
lates parity has the form [7]

V̂ N
PNC(R, p̂, σ̂) (4)

=
GF

2mpc
α(N,Z){(σ̂ · p̂)ρ(R) + ρ(R)(σ̂ · p̂)},
2001MAIK “Nauka/Interperiodica”
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whereGF = 10−5�3/m2
pc is weak-coupling constant,

mp is the proton mass, p̂ is the nucleon-momentum
operator, σ̂ is the nucleon-spin operator, ρ(R) is
the nucleon-density distribution over the volume of
the deformed nucleus, and α(N,Z) is a coefficient
that depends on the form of single-particle potentials
adopted in averaging over the intranuclear nucleons
[α(N,Z) ∼ 1]. Data on parity-nonconservation ef-
fects in resonance-neutron interactions with heavy
nuclei suggest that this coefficient is enhanced by one
to two orders of magnitude (see, for example, [8]),
which in turn enhances observed effects. Nonethe-
less, we set α(N,Z) = 1 in our ensuing calculations.

2. POLARIZATION OF THE ELECTRON
SHELL OF THE ATOM

IN THE PARITY-MIXED (E1+M1)
TRANSITION IN THE 5/2± STATE

OF THE 229Pa91 ISOTOPE

2.1. Basic Definitions

Let us consider the nuclear conversion process in a
(E1 +M1) multipole transition. Here, the nucleus
goes over from the |E1I1M1〉 state to the |E2I2M2〉
(�ω = E1 − E2) final state; concurrently, an electron
goes over from the (n1l1j1)2j1+1 filled shell to the con-
tinuum state |p2ν2〉 (p2 is the electron momentum,
and ν2 is the spin projection onto a fixed axis). As a
result, the electron has a nonzero helicity, and it can
be expected that the hole state (n1l1j1)2j1 (n1l1j1)−1
of the electron group will be polarized, provided that
the electron momentum p2 is fixed. In the subsequent
radiative transition of the atomic electron into the hole
state, the emitted photon then possesses a circular
polarization.
In [1–3], it was established that a maximum

effect is to be expected in the conversion event
involving the filled subshells of the protoactinium
atom for the (6s1/2)2J=0, (6p1/2)

2
J=0, and (6p3/2)4J=0

configurations (J is the total angular momentum
of the atomic subshell).2) This is accompanied by
the emergence of, respectively, the (6s1/2)1(6s1/2)−1,
(6p1/2)1(6p1/2)−1, and (6p3/2)3(6p3/2)−1 hole con-
figurations in the electron shell. The hole spin j1
is oriented with respect to the conversion-electron
momentum p2; hence, it is necessary to detect, in

2)Strictly speaking, it is not clear whether the
(5f5/2)

2(6d3/2)
1(7s1/2)

2 shell of the valence band
undergoes any changes—and if so, what changes—
upon the formation of chemical compounds used in targets
and sources; however, the (6s1/2)

2, (6p1/2)
2, and (6p3/2)

4

configurations of deep orbits seem to remain unchanged.
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relevant experiments, the direction of the electron
momentum p2 and the electron energy,

3) since this
energy fixes the shell where the hole has been formed.
For the z axis in the laboratory frame, we choose the
direction of the electron momentum p2 (see figure).

2.2. Conversion Process Involving the (6s1/2)2

and (6p1/2)2 Subshells

The wave function for the initial state of the system
has the form

ΨI1M1(rI, rII) = ψI1M1ΨJM(rI, rII), (5)

where ψI1M1 ≡ |5̃/2−〉 is the nuclear wave function
(1); rI and rII are the radius vectors of the electrons in
the filled (n1l1j1)2J=0 subshell; and ΨJM(rI, rII) is its
wave function given by

ΨJM(rI, rII) =
∑
αβ

CJM
j1α j1βΨj1l1α(rI)Ψj1l1β(rII),

(6)
withCJM

j1α j1β
being the relevant Clebsch–Gordan co-

efficient. For identical fermions, odd values of J are
forbidden by the Pauli exclusion principle. The one-
electron wave function Ψj1l1m1(r) is a solution to the
Dirac equation in a spherically symmetric field and
can be represented in the bispinor form [9]

Ψj1l1m1(r) =




gl1j1(r)Ωj1l1m1(r/r)

ıfl1j1(r)Ωj1l′1m1
(r/r),

(7)

where Ωj1l1m1(r/r) is a spherical spinor,

Ωj1l1m1(r/r) =
∑
µ1ν1

Cj1m1

l1µ1 sν1
Yl1µ1(r/r)vν1 , (8)

3)However, the nuclear-transition energy is known to a rather
poor precision, 220 ± 50 eV; therefore, a further considera-
tion is meaningful if this energy is determined to within 1 eV.
1
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with Yλµ(ϑ,ϕ) being normalized spherical harmon-
ics [Y ∗

λµ(ϑ,ϕ) = (−1)µYλ−µ(ϑ,ϕ)], and gl1j1(r) and
fl′1j1(r) are radial functions normalized by the condi-
tion

∞∫
0

dx[g2l1j1(x) + f2l′1j1
(x)] = 1. (9)

Further, we fix the wave function for the final state
of the system as

ΨI2M2(rI, rII) = ψI2M2Ψ2(rI , rII), (10)

where ψI2M2 ≡ |˜5/2+〉. In the final state, we have an
electron in a continuum, |ε2, ν2〉, and one electron in
the n1l1j1 orbit. The wave function for the continuum
can be represented as [9]

Ψε2ν2(r) =
4π
p2

√
ε2 +mc2

2ε2

×
∑

j2l2m2

(Ω+
j2l2m2

(p2/p2)vν2)i
l2 exp (−iδl2j2)

×




Gl2j2(r)Ωj2l2m2(r/r)

iFl′2j2(r)Ωj2l′2m2
(r/r),

(11)

v+1/2 =




1

0


 , v−1/2 =




0

1


 ,

its asymptotic expression at infinity being a super-
position of a plane wave and a converging spherical
wave. For r → ∞, the wave functions of an electron
in a continuum are normalized as

Gl2j2(r) −→ sin
(
p2r − l2

π

2
+ δl2j2

)
, (12)

Fl′2j2(r) −→ il
′
2+1−l2 (13)

×

√
ε2 −mc2

ε2 +mc2
sin (p2r − l′2

π

2
+ δl2j2).

Thewave function for the final-state electron is the
superposition

Ψ2(rI, rII) =
∑
m2

b(I1M1, (n1l1j1)2

→ I2M2, n1l1j1m2,p2ν2) (14)

× 1√
2

{
Ψj1l1m2(rI)Ψε2ν2(rII)

−Ψj1l1m2(rII)Ψε2ν2(rI)
}
,

where the amplitudes b(I1M1, (n1l1j1)2 →
I2M2, n1l1j1m2, p2ν2) are proportional to the ma-
trix element of the interaction operator Ĥint for the
transition from the initial state to the final state.
PH
2.3. Conversion Process Involving the (6p3/2)4

Subshell

For the filled (n1l1j1)4F=0 subshell, the wave func-
tion has the form

Ψ00(rI, rII, rIII, rIV) (15)

=
∑
tδ

C00
Tt j1δΨj1t(rI, rII, rIII)Ψj1l1δ(rIV),

where rI, rII, rIII, and rIV are the radius vectors of
electrons in this subshell and Ψj1t(rI, rII, rIII) is the
wave function for the (n1l1j1)3j1 subshell,

Ψj1t(rI, rII, rIII) (16)

=
1√
3!

∑
J=0,2,...

AJ

∑
Mγ

Cj1t
JM j1γ

ΨJM(rI, rII)

×Ψj1l1γ(rIII).

The wave function ΨJM(rI, rII) is given by Eq. (6),
while the fractional-parentage coefficients areA0 = 1
and A2 = −

√
5 in our case.

The wave function for the final-state electron is
Ψ2(rI, rII, rIII, rIV) =

∑
m2

b(I1M1, (n1l1j1)4

→ I2M2, n1l1j1m2,p2ν2)

×1
2
{
−Ψε2ν2(rI)Ψj1m2(rII, rIII, rIV)

+Ψε2ν2(rII)Ψj1m2(rI, rIII, rIV)
−Ψε2ν2(rIII)Ψj1m2(rI, rII, rIV) (17)

+Ψε2ν2(rIV)Ψj1m2(rI, rII, rIII)
}
,

where the amplitudes b(I1M1, (n1l1j1)4 →
I2M2, n1l1j1m2,p2ν2) are proportional to the matrix
element of the interaction operator Ĥint for the tran-
sition from the initial to the final state.

2.4. Evaluation of the Matrix Element for the
Conversion Transition

Taking into account expressions (6) and (15) for
the initial-state wave functions and expressions (14)
and (17) for the final-state wave functions, we repre-
sent the matrix element as

〈I1M1, J(F ) = 0 M(f)

= 0|Ĥint|I2M2, n1j1l1m2,p2ν2〉
= −e2

√
N [j1]C00

j1m1 j1−m1
(18)

×
∫ ∫

drdR
exp (ik|r − R|)

|r − R|
×
[
(Ψ+

ε2ν2(r)Ψj1l1m1(r))〈I2M2|ρ̂N (R)|I1M1〉

−1
c
(Ψ+

ε2ν2(r)αΨj1l1m1(r))〈I2M2 |̂jN (R)|I1M1〉
]
,
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where k = ω/c is the wave number, α are Dirac
matrices, ρ̂N (R) is the nuclear-charge-density op-
eraror, ĵN (R) is the operator of the intranuclear-
nucleon-current density [div̂jN (R) = −∂ρ̂N (R)/∂t],
N [j1] = 2 for the (6s1/2)2 and (6p1/2)2 subshells, and
N [j1] = 4 for the (6p3/2)2 subshell. In the laboratory
frame, the conversion-electron momentum p2 has the
components (0, 0, p2). By using the decomposition
from [3] into multipole contributions (see [9, 10]), we
recast the transition matrix element (18) into the form

〈I1M1, J(F ) = 0 M(f)

= 0|Ĥint|I2M2, n1j1l1m2,p2ν2〉
= −e2

√
N [j1]C00

j1m1 j1−m1
(19)

×
(∑
EΛ

[HEΛ]21 +
∑
MΛ

[HMΛ]21
)
,

where
[HEΛ]21 (20)

=
∑
Λλ

4πikΛ+1

(2Λ + 1)!!
RΛ
N 〈I2||EΛ||I1〉CI2M2

Λλ I1M1
[ξEΛ]21,

[HMΛ]21 (21)

=
∑
Λλ

−4πikΛ+1

(2Λ + 1)!!
RΛ
N 〈I2||MΛ||I1〉CI2M2

Λλ I1M1
[ξMΛ]21,

RN being the radius of the nucleus.
The reduced matrix elements for the E1 transition

in the protoactinium nucleus (I1 = I2 = I) [1] are
given by

−eRN 〈2||E1||1〉CIM2
IM1 1λ (22)

=
〈
[642]

5
2
,+,

5
2

∣∣∣M̂e(1, λ)
∣∣∣ [523]5

2
,−, 5

2

〉
,

where the E1 transition operator has the form

M̂e(1, λ) = e
N

A
RY1λ(R). (23)

For theM1 nuclear transition, we have
−eRN 〈2||M1||1〉CIM2

IM1 1λ (24)
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= −i
√
2

〈
5̃
2

+ ∣∣∣M̂m(1, λ)
∣∣∣ 5̃
2

−
〉
,

where theM1 transition operator is given by

M̂m(1, λ) =

√
3
4π

( e�

2mpc

)[
gl l̂λ + gsŝλ + gRR̂λ

]
.

(25)

Here, µB = e�/2mpc is the nuclear magneton, l̂ is the
operator of the nucleon orbital angular momentum,
ŝ is the nucleon-spin operator, and R̂ is the operator
of the nuclear-core angular momentum. If the spin
polarization of the core is disregarded, we have gs =
5.585, gl = 1, and gR = Z/A for the proton.

The electron matrix elements [ξE1]21 and [ξM1]21
are given by

[ξE1]21 =
√
3a0
p2

√
ε2 +mc2

2ε2
(26)

×
∑

j2l2m2

Cj2m2

l20 sν2

√
2l2 + 1

[
il2 exp (−iδl2j2)

]∗

×{l2j2[E1]n1l1j1}[j2l2, 1, j1, l1]Cj1m1

j2m21λ
,

[ξM1]21 =
i
√
3a0
p2

√
ε2 +mc2

2ε2
(27)

×
∑

j2l2m2

Cj2m2

l20 sν2

√
2l2 + 1

[
il2 exp (−iδl2j2)

]∗

×{l2j2[M1]n1l1j1}[j2l2, 1, j1, l′1]C
j1m1

j2m2 1λ
,

where

[j2l2, 1, j1l1] =

√
2j2 + 1
2j1 + 1

C l10
l20 10

u(j2s1l1; l2j1),

u(abcd; ef) =
√
(2e + 1)(2f + 1)W (abcd; ef) being

a normalized Racah function. The relevant radial in-
tegrals of the relativistic wave functions for the initial-
and final-state electrons can be represented as [11]
{l2j2[E1]n1l1j1} =

∞∫
0

dx h
(1)
1 (ka0x)[Gl2j2(x)gl1j1(x) + Fl′2j2(x)fl′1j1(x)]

+

∞∫
0

dx h
(1)
0 (ka0x)[Gl2j2(x)fl′1j1(x)− Fl′2j2(x)gl1j1(x)] (28)

+[j2(j2 + 1)− l2(l2 + 1)− j1(j1 + 1) + l1(l1 + 1)]

×
∞∫
0

dx h
(1)
0 (ka0x)[Gl2j2(x)fl′1j1(x) + Fl′2j2(x)gl1j1(x)],
1
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{l2j2[M1]n1l1j1} =
j2(j2 + 1)− l2(l2 + 1)− j1(j1 + 1) + l′1(l

′
1 + 1)√

3
(29)

×
∞∫
0

dx h
(1)
1 (ka0x)[Gl2j2(x)fl′1j1(x) + Fl′2j2(x)gl1j1(x)],
where x = r/a0; a0 is the Bohr radius; and h
(1)
λ (ka0x)

is a spherical Hankel function of the first kind, its
asymptotic behavior at large argument values being

h
(1)
λ (z) z→∞→ (−i)λ+1 e

iz

z
. (30)

Under the condition that the conversion electron
has a fixed momentum p2 , we further define, for an
electron shell with a hole, the polarization spin-tensor

ρlabQq (j2,p2) =
∑
m2

∑
m′

2

C
j2m′

2
j2m2 Qq (31)

×b∗(I1 → I2,m
′
2,p2)b(I1 → I2,m2,p2).

In this expression, we have omitted some immaterial
arguments of the amplitudes b, which were intro-
duced above in Eqs. (14) and (17). Assuming that,
P

in the initial state, the nucleus being considered is not
oriented, we perform averaging over the possible pro-
jectionsM1 of the nuclear spin I1 in the initial state.
We also perform summation over the experimentally
unobservable projections M2 of the nuclear spin I2
and the emitted-electron polarizations ν2.

In the coordinate frame chosen here, the orthonor-
malized spin-tensor of shell orientation (polarization)
has the form

τ labQ0 (j2,p2) =
ρlabQ0(j2,p2)

ρlab00 (j2,p2)
. (32)

For Q = 1, a direct calculation yields
τ lab10 (j2,p2) = −〈I2||M1||I1〉
〈I2||E1||I1〉

1∑
l2j2

|{l2j2[E1]n1l1j1}|2 [j2l2, 1, j1, l1]2

×
∑

j2l2 j̃2 l̃2

C l̃20
l20 10

u(j211j1; j1 j̃2)u(l2s1j̃2; j2 l̃2)[j2l2, 1, j1, l1][j̃2 l̃2, 1, j1, l′1] (33)

×
(
−i{l2j2[E1]n1l1j1}∗{l̃2j̃2[M1]n1l1j1}

[
il2 exp (−iδl2j2)

][
il̃2 exp (−iδl̃2 j̃2)

]∗
+i{l2j2[E1]n1l1j1}{l̃2j̃2[M1]n1l1j1}∗

×
[
il2 exp (−iδl2j2)

]∗[
il̃2 exp (−iδl̃2 j̃2)

])
.

For j1 ≥ 3/2, the value ofQ = 2 is possible, in which
case we have

τ lab20 (j2,p2)

=
1∑

l2j2

|{l2j2[E1]n1l1j1}|2 [j2l2, 1, j1, l1]2

×
∑

j2l2j̃2 l̃2

√
2l2 + 1
2l̃2 + 1

×C l̃20
l20 20

u(j212j1; j1j̃2)u(l2s2j̃2; j2 l̃2) (34)

×[j2l2, 2, j1, l1][j̃2 l̃2, 2, j1, l1]

×({l2j2[E1]n1l1j1}∗{l̃2j̃2[E1]n1l1j1}

×
[
il2 exp (−iδl2j2)

][
il̃2 exp (−iδl̃2 j̃2)

]∗
.

H

In deriving Eqs. (33) and (34), we have made use of
the expansion in the small parameter
|〈I2||M1||I1〉|2/|〈I2||E1||I1〉|2.

The spin-tensor τ lab10 (j2,p2) is completely deter-
mined by the parity-nonconservation effect, whereas
τ lab20 (j2,p2) is formed by the pure multipoles of the
E1 and M1 transitions. Nonetheless, τ lab20 (j2,p2)
for the 6p3/2 orbit enters into the observed circular-
polarization effect.4)

4)An observation of the effect associated with the
6p3/2 orbit can be more convenient experimentally,
since the (7s1/2)

2 → (6p3/2)
−1 transition energy is

�ωγ ∼ 15–20 eV.
YSICS OF ATOMIC NUCLEI Vol. 64 No. 5 2001
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2.5. Effect of an Unfilled Valence Band
of the Protoactinium Atom on the Orientation
Spin-Tensors for States of a Shell Featuring

the (6s1/2)−1, (6p1/2)−1, and (6p3/2)−1 Hole States

In the normal configuration of the protoactinium
atom, the (5f5/2)2(6d3/2)1(7s1/2)2 subshells of the
valence band can have different sets of angular mo-
menta: j(7s1/2)2

= 0, j(6d3/2)1
= 3/2, and j(5f5/2)2

=
0, 2, 4. Thus, the total angular momentum jΣ =
j(6d3/2)1

+ j(5f5/2)2
of the electrons of the valence band

can take the following values:

j(6d3/2)1
j(5f5/2)2

jΣ

3/2 0 3/2

3/2 2 1/2, 3/2, 5/2, 7/2

3/2 4 5/2, 7/2, 9/2, 11/2

The wave function for the initial state of the va-
lence band of the atom has the form of the following
superposition:

ΨjΣ =
∑
mΣ

bmΣ
(jΣ)ΨjΣmΣ

. (35)

The total angular momentum of an ion that has
a hole in the n1l1j1 subshell is J1 = j1 + jΣ. States
that are characterized by the same value of J1 can
be mixed by the residual electrostatic interaction,
with the result that the radiative-transition probabil-
ity changes. The splitting of this energy term is about
1 eV, which is usually much greater than radiative
level widths; therefore, it is possible to observe indi-
vidual radiative transitions to states characterized by
different values of the angular momentum J1.
Prior to photon emission, the wave function of the

system being considered has the form

ΨJ1 =
∑

m2,mΣ

bm1(j1)bmΣ
(jΣ)Ψn1l1j1m1ΨjΣmΣ

(36)

=
∑
J1M1

bM1ΨJ1M1 ,

where

bM1 =
∑

m2,mΣ

CJ1M1
j1m1 jΣmΣ

bm1(j1)bmΣ
(jΣ). (37)

In a state having a fixed angularmomentum J1, which
determines the photon circular polarization in a radia-
tive transition, the orientation spin-tensor is given by

τ labQq (J1,p2) =
∑

M1,M′
1

C
J1M′

1
J1M1 Qqb

∗
M′

1
bM1 . (38)
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We further assume that, in the initial state (prior
to a conversion event), the valence-band angular mo-
mentum jΣ is not oriented. Accordingly, the valence-
band orientation spin-tensor has the form

τ labNn(jΣ) =
∑

mΣ,m
′
Σ

C
jΣm

′
Σ

jΣmΣ Nnb
∗
m′

Σ
bmΣ

, (39)

in which case we have τ labNn(jΣ) = δN0δn0.
Performing summation over angular-momentum

projections and using Eqs. (36), (38), and (39), we
obtain
τ labQq (J1,p2) = u(J1jΣQj1; j1J1)τ labQq (j1,p2), (40)

where τ labQq (j1,p2) is the orthonormalized shell-
orientation (shell-polarization) spin-tensor that is
defined in (32) and which disregards the effect of the
electrons of the valence band of the atom.
Let us consider the case where the subshell an-

gular momentum is j1 = 1/2, so that the rank of the
possible spin-tensor is not higher than Q = 1. At
J1 = jΣ + 1/2, we have

τ lab10 (J1,p2) =
√
J1 + 1
3J1

τ lab10 (j1,p2), (41)

while, at J1 = jΣ − 1/2, the corresponding result is

τ lab10 (J1,p2) = −
√

J1
3(J1 + 1)

τ lab10 (j1,p2). (42)

If the subshell angular momentum J1 is sufficiently
high, we have

√
(J1 + 1)/3J1 →

√
1/3 and

−
√
J1/3(J1 + 1) → −

√
1/3.

Thus, the inclusion of the interaction between the
angular momentum of the hole state of an electron
shell in the atom and the angular momentum of the
valence-band electron leads to a reduction of the po-
larization of this hole state.

2.6. Numerical Calculations

In [1], we calculated the reduced nuclear probabil-
ities for the electric dipole transition, B(E1; 5/2− →
5/2+), and for the magnetic dipole transition,

B(M1; 5̃/2− → 5̃/2+). Expressions (33) and (34)
for the spin-tensors of orientation of the electron
shell with the (6s1/2)−1, (6p1/2)−1, and (6p3/2)−1

holes involve the ratio of the reduced nuclear matrix
elements for the E1 andM1 transitions,

∣∣∣〈I2||M1||I1〉
〈I2||E1||I1〉

∣∣∣ =
√

2B(M1; 5̃/2− → 5̃/2+)
B(E1; 5/2− → 5/2+)

. (43)

This ratio (see Table 1) was borrowed from our pre-
ceding calculations [1]. In the following, we restrict
ourselves to calculating the magnitude of the effect.
1
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Table 1.Ratio of the reducedmatrix elements for the mag-
netic dipole transition (〈5̃/2+||M1||5̃/2−〉) and the electric
dipole transition 〈5/2+||E1||5/2−〉

β20

∣∣∣∣ 〈I2‖M1‖I1〉
〈I2‖E1‖I1〉

∣∣∣∣
0.20

2.95
∆E

0.23
2.52
∆E

0.25
2.31
∆E

Experiment
0.84
∆E

Note: The first three rows display the results obtained on the
basis of themodel employing theWoods–Saxon potential and the
corresponding value of the quadrupole-deformation parameter
β20 (β40 = 0.08), while the fourth row gives the value determined
from the experimental isomer lifetime τexpt for β20 = 0.23 (∆E is
measured in eV).

Table 2. Polarization spin-tensor τ lab
10 (j1,p2) for the

protoactinium-atom electron shell featuring a hole state in
the 6s1/2, 6p1/2, and 6p3/2 subshells

∆E, |τ lab
10 (j1,p2)|

eV I II

6s1/2 6p1/2 6p3/2 6s1/2 6p1/2 6p3/2

170 0.137 0.105 0.017 0.0460 0.0352 0.0057

180 0.133 0.101 0.016 0.0446 0.0339 0.0055

190 0.129 0.097 0.016 0.0434 0.0327 0.0054

200 0.126 0.094 0.016 0.0423 0.0317 0.0052

210 0.123 0.091 0.015 0.0413 0.0307 0.0051

220 0.120 0.089 0.015 0.0403 0.0299 0.0050

230 0.118 0.087 0.015 0.0395 0.0291 0.0049

240 0.115 0.084 0.014 0.0387 0.0284 0.0049

250 0.113 0.082 0.014 0.0379 0.0277 0.0048

260 0.111 0.081 0.014 0.0372 0.0271 0.0047

270 0.109 0.079 0.014 0.0366 0.0265 0.0047

Note: Here and in Table 3, we quote results obtained with
B(E1; 5/2− → 5/2+) determined on the basis of (I) the model
employing a deformed Woods–Saxon potential and (II) the ex-
perimental isomer lifetime texpt.

In order to describe the electron shell of the
protoactinium atom, we make use of the relativistic
Hartree–Fock–Slater method [12] [the normal con-
PH
figuration of the valence band is (5f5/2)2(6d3/2)1 ×
(7s1/2)2].
For the electron shell of the protoactinium atom

with a hole in the 6s1/2, 6p1/2, and 6p3/2 subshells,
Table 2 displays the calculated values of the orienta-
tion spin-tensor τ lab10 (j1,p2). The calculations were
performed for two values of the reduced nuclear prob-
ability B(E1; 5/2− → 5/2+), that obtained within
the model employing a deformed Woods–Saxon po-
tential and that determined from the experimental
isomer lifetime texpt [1].
As was indicated above, a nonzero value of the po-

larization spin-tensor τ lab10 (j1,p2) stems from the in-
terference contribution of the E1 andM1 multipoles.
At the same time, the alignment tensor τ lab20 (j1,p2)
is completely determined in our approximation by the
contribution of the E1 multipole and, in accordance
with Eq. (34), depends only slightly on the transition
energy ∆E. For the electron shell of the atom with a
hole in the 6p3/2 subshell, the alignment spin-tensor
τ lab20 (j1,p2) is 0.35 and 0.38 if the reduced nuclear
probability B(E1; 5/2− → 5/2+) is set, respectively,
to the value obtained with a deformed Woods–Saxon
potential and to the value deduced from the experi-
mental isomer lifetime texpt [1].
In [13], we compared the values of the polarization

spin-tensor τ lab10 (j1,p2) for different configurations of
the valence band of the protoactinium atom, whereby
we assessed the sensitivity in calculating the conver-
sion spectrum to various models of atomic potentials;
in this way, we were also able to estimate the hy-
bridization of the electron shell of the atom and the
magnitude of the predicted effect.

3. CIRCULAR POLARIZATION
OF A PHOTON EMITTED

FROM A PRELIMINARILY POLARIZED
SHELL OF THE 229Pa91 ION

3.1. Formulation of the Problem and Determination
of Observables

That the spin-tensor τ lab1q (J1,p2) is nonzero leads
to the emergence of a circular polarization of an
atomic photon emitted in the j3 → [j1]−1 transition.
On the basis of the degree of this polarization, we
can assess the degree of mixing of the E1 and M1
multipoles in the nuclear transition. The emitted-
photon energy is less than 50 eV; hence, the photon
wavelength is much greater than the the characteris-
tic dimension of the protoactinium atom, so that the
long-wave approximation is valid The ion final state
upon photon emission is |ε3j3l3m3〉. It is convenient
to perform calculations in a reference frame where
YSICS OF ATOMIC NUCLEI Vol. 64 No. 5 2001
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the z′ axis is aligned with the photon-momentum
vector Q (see figure). For the electron-shell wave
function, a transition from the laboratory frame to this
reference frame (Q frame) is implemented according
to the equation

Ψlab
j1l1m2

(r) =
∑
ς1

D
j1
m2ς1(θi)Ψ

Q
j1l1ς1

(r), (44)

whereD
j1
m2ς1(θi) are rotation-matrix elements [14].

An event of nuclear-multipole conversion involv-
ing the n1l1j1 shell of the atom specifies the set of
spin-tensors (32) for the ion in the laboratory frame
if the conversion-electron momentum p2 is recorded.
In the long-wave approximation, the operator of

electron interaction with the electromagnetic field of
the atom for the E1multipole has the form

ĤE1
lwa = −

∑
i

(
D̂(ri)ÊQ(r, t)

)
, (45)

where D̂(ri) = −|e|ri is the electron-dipole-momen-
tum operator and ÊQ(r, t) is the electromagnetic-
field-strength operator [14].
For the emission of a long-wave photon, the ma-

trix element of the interaction operator ĤE1
lwa has the

form

〈3|ĤE1
lwa|2〉 = i

√
2π�cQ

V
exp

{
i

�
(ε3 + �ωγ − ε1)t

}

×
∑
m2

b(I1M1, [n1l1j1]2j1+1 (46)

→ I2M2, n1l1j1m2,p2ν2)
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×
∑
ν=±1

∑
ς1,ς3

〈Ψlab
j3l3ς3(r)|D̂ν(r)|Ψlab

j1l1ς1(r)〉

×Dj1
m2ς1(θi)D

j2
m3ς3

∗(θi).

The probability of photon emission into the solid
angle dOQ is

Nν(Q, dOQ) =
2π
�
δ(ε3 + �ωγ − ε1)

×
[V Q2dQ

(2π�)3
]
dOQ

2p�cQ
V

× 2j3 + 1
3(2j1 + 1)

∑
N

(−1)N (2N + 1) (47)

×u(1j3Nj1; j11)C1ν
1ν N0

×τ labN0(j1,p2) PN (Q)〈j3l3||D̂(r)||j1l1〉,

where PN (Q) is a Legendre polynomial. In calculat-
ing the matrix element of the E1 transition operator,
use was made of the Wigner–Eckart theorem

〈Ψlab
j3l3ς3(r)|D̂ν(r)|Ψlab

j1l1ς1(r)〉 (48)
= Cj3ς3

j1ς1 1ν
〈j3l3||D̂(r)||j1l1〉.

The photon circular polarization is

Pγ =
N−1(Q, dOQ)−N+1(Q, dOQ)
N−1(Q, dOQ) +N+1(Q, dOQ)

. (49)

In the case considered here, only spin-tensors of
rank not higher than two (N = 0, 1, 2) are nonzero;
taking into account Eq. (47), we obtain
Pγ =

3√
2
u(j11j31; 1j11) τ lab10 (j1,p2) cos θQ

1 +
√

5
2
u(j12j31; 1j11) τ lab20 (j1,p2)

(3
2
cos2 θQ − 1

2
) . (50)
Let us consider the E1 radiative transitions of the
electrons belonging to the protoactinium-ion valence
band to the (6s1/2)−1, (6p1/2)−1, and (6p3/2)−1 hole
states. We have[

(6p1/2)
2j3 =

1
2
→ (6s1/2)

−1j1 =
1
2

]
,

τ lab20 (j1,p2) ≡ 0,

Pγ =
√
3τ lab10 (j1,p2) cos θQ;[

(6p3/2)
4j3 =

3
2
→ (6s1/2)

−1j1 =
1
2

]
,

τ lab20 (j1,p2) ≡ 0,
1

Pγ = −
√
3
2
τ lab10 (j1,p2) cos θQ;[

(7s1/2)
2j3 =

1
2
→ (6p1/2)

−1j1 =
1
2

]
,

τ lab20 (j1,p2) ≡ 0,

Pγ =
√
3τ lab10 (j1,p2) cos θQ;[

(7s1/2)
2j3 =

1
2
→ (6p3/2)

−1j1 =
3
2

]
,

Pγ =

√
15
2

τ lab10 (j1,p2) cos θQ

1 +
√
5
2
τ lab20 (j1,p2)

(3
2
cos2 θQ − 1

2
) .
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Table 3. Circular polarization of atomic photons

Atomic transition |Pγ |,%
I II

(6p1/2)2j3 = 1/2 → (6s1/2)−1j1 = 1/2 15.0 5.0

(6p3/2)4j3 = 3/2 → (6s1/2)−1j1 = 1/2 7.5 2.5

(7s1/2)2j3 = 1/2 → (6p1/2)−1j1 = 1/2 11.0 3.7

(7s1/2)2j3 = 1/2 → (6p3/2)−1j1 = 3/2 1.8 0.6

By using the results obtained by calculating the
polarization spin-tensors for the electron shell of the
protoactinium-atom valence band, we have estimated
the possible values of photon circular polarization.
The estimates were obtained for the photon emission
angle of θQ = π/4 with respect to the direction of the
conversion-electron momentum p2. Since the energy
of the conversion transition in the 229Pa91 isomer is
quite uncertain, we present only the maximum val-
ues (in percent) for the degree Pγ of circular photon
polarization (see Table 3). For individual lines, Pγ

is about 3 to 5 percent, so that experiments aimed
at observing the parity-nonconservation effect seem
quite promising.

4. CONCLUSION

The possibility of extracting the parameters of the
effective weak-interaction potential from an experi-
ment measuring the circular polarization of primary
photons of the radiation that accompanies conversion
in the parity-mixed (E1 +M1) transition between
the components of the 5/2± doublet of states in
the 229Pa91 nucleus has been demonstrated. If the
primary-photon energy and the conversion-electron
energy have been determined to a precision such that
the nuclear-transition energy is found to within 1 eV,
the cascade process in an experiment of the type being
discussed is clearly separated by a detection event
from other processes. If, however, the accuracy in
determining the nuclear-transition energy is insuf-
ficient, the experiment in question would yield data
integrated in the conversion-electron energy (only
the direction of the conversion-electron momentum
and the energy of the atomic-radiation photon can be
recorded in this case. There then arise two problems:
(i) In order to identify the line that corresponds to

the transition to a given hole state, it is necessary to
analyze the spectrum of atomic radiation.
(ii) It is necessary to analyze the contribution of

Auger processes, since they generate an irremovable
background in such an experiment.
In integrated data, the circular polarization of pho-

tons belonging to atomic radiation receives contribu-
tions from all processes leading to the formation of
PH
a hole state in the electron shell of the atom5) and
reducing the photon circular polarization.
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3174 (Institute of Atomic Energy, Moscow, 1979).

12. J. C. Slater, Quantum Theory of Molecules and
Solids, Vol. 4: The Self-Consistent Field for
Molecules and Solids (McGraw-Hill, New York,
1974; Mir, Moscow, 1978).

13. D. P. Grechukhin and A. V. Lomonosov, Preprint
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−1 hole state

in the electron shell arises not only in the conversion process
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2 subshell but also in the conversion
process involving the (6s1/2)

2 subshell and leading to the
formation of the polarized (6s1/2)

−1 hole state with the
subsequent E1 radiative transition of the electron from the
(6p1/2)

2 subshell, part of the polarization of the (6s1/2)
−1

hole state being transferred to the (6p1/2)
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Abstract—Charmed-particle production in pp interactions at 70 GeV/c was studied with the SVD setup
at the IHEP accelerator (Protvino). The experimental procedure used and the data-selection methods
are described. Data obtained by using a quickly cycling bubble chamber and a magnetic spectrometer
are analyzed. The number of inelastic-interaction events recorded in the chamber is 109 000, with the
charge multiplicity being nch � 4. The corresponding statistics are 4.96 event/µb. Part of the events
were recorded in the magnetic spectrometer. Three three-prong decays of charged particles near the
primary vertex are found on the films, two of these being recorded with the spectrometer. All three
are interpreted as D− decays. Two neutral decays observed simultaneously in the chamber and in the
spectrometer are interpreted as D̄0 decays. The total cross section for cc̄ production in the Feynman
variable region −1 < xF < +1 is estimated at σ (cc̄) = 1.6+1.1

−0.7 (stat.) ± 0.3 (syst.)µb. The cross-section
values and the mean values 〈|xF |〉 and 〈p⊥〉 for D mesons are compared with other experimental results
in the energy range 58–800 GeV. The data of this experiment are compatible with the cross-section
estimates obtained in the beam-dump experiment at 70 GeV and with those predicted by perturbative
QCD. c© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Since the discovery of hadrons composed of heavy
quarks (1974), their investigation has continued in-
tensively at the largest accelerators worldwide. By
and large, data from CERN and FNAL experiments
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that studied charmed-particle production in hadron
interactions at energies above 200 GeV agree satis-
factorily with the predictions of perturbative QCD.

However, the situation is different in the near-
threshold energy region, where the features of cc̄ pro-
duction can change substantially for some reasons
that require correcting perturbative QCD [1–3] and
also because of nonperturbative effects associated
with the possible intrinsic-charm mechanism [4] and
with the properties of fragmentation [5]. These points
are of considerable interest for QCD [6]. When the
preparation of our experiment at the IHEP acceler-
ator energies (60–70 GeV) began, there had been
2001MAIK “Nauka/Interperiodica”
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Fig. 1. Layout of the SVD-1 setup: (S1–S6) scintillation
counters, (MCPC) multichannel proportional chambers,
(MSD) microstrip silicon detectors, and (QCBC) quickly
cycling bubble chamber.

only first results on charmed-particle production in
experiments of two types. These were an experi-
ment at the BIS spectrometer [7, 8], where particles
were recorded by using a Cherenkov counter or by
measuring their effective masses, and the so-called
beam-dump experiment [9], which employed the neu-
trino channel and a setup that recorded directly pro-
duced charged leptons from the semileptonic modes
of charged-hadron decay. It should be noted that, in
those experiments, the decay vertex was not recorded
for short-lived charmed hadrons and that the mea-
surements of the cross sections for charmed-particle
production yielded anomalously large values of 5–50
µb. These were data that furnished a strong motiva-
tion for performing a new experiment at a Spectrom-
eter with a Vertex Detector (SVD) [10, 11].
Here, we present the result obtained by studying

charmed-particle production in proton–proton inter-
actions at 70 GeV/c.
Preliminary results of this experiment (E-161)

were reported in [12, 13].

2. EQUIPMENT AND EXPERIMENTAL
PROCEDURE

Figure 1 shows the layout of the SVD-1 setup,
which comprises a quickly cycling bubble chamber
(QCBC) as a vertex detector, a wide-aperture mag-
netic spectrometer, and a system for beammonitoring
and event triggering.
The QCBC construction was described in detail

elsewhere [14]. The QCBC operates with a frequency
of 20–30 Hz (up to 10 expansions per beam spill); its
diameter and depth are 150 and 50 mm, respectively;
pictures were taken on two photographic films by a
fast photorecorder [15]. The beam-particle flux was
chosen to be relatively high—there were, on average,
30–40 particles per frame. The track density was
P

100–130 bubbles per centimeter, the bubble diameter
being 25–30 µm.
The wide-aperture magnetic spectrometer equip-

ped with wire proportional chambers (PC) and con-
structed on the basis of an MS-7A electromagnet
[16] with 3-m-long poles along the beam direction,
its aperture being 1.8 m wide and 1.3 m high, was
included in SVD-1 in order to determine the mo-
menta of charged secondaries. The field was suffi-
ciently uniform in the spectrometer operating volume,
its strength being about 1.18 T; the strength of the
scattered magnetic field outside the operating volume
was 0.3 T at a distance of 1.5m from themagnet yoke.
Functionally, the SVDmagnetic spectrometer is a

double-arm device. Its first arm is formed by a forward
block of 12 PC planes that is positioned in front of
the magnet; in particular, it is used to measure low
momenta of particles emitted at large angles. The
proportional chambers of this block that have an op-
erating area of 1 m2 and a gap of 2 mm between them
are combined into three quadruples in such a way
that the wires have the UY V X orientation, where
Y and X are the vertical and the horizontal wire,
respectively, while theU and V are tilted at an angle of
10.5◦ to the vertical. The total number of signal anode
wires is 5424 in these chambers.
The central block, positioned inside the magnet

aperture, consists of 19 PCs with a gap of 2 mm be-
tween them and an operating area of 1.0× 1.5m2 [17].
Four forward chambers are combined into UY and
V Y doublets, while the remaining 15 chambers are
grouped into UY V triplets. These chambers form the
second arm of the spectrometer and make it possible
to measure the momenta of particles captured by the
magnet. Altogether they contain 12608 signal anode
wires.
The PC amplifiers, signal-recording electronics

operating according to the CAMAC–COMPLEX
protocol, and the local network of data transfer were
described in [18–21].
In view of a small field depth in photographing,

the QCBC was irradiated by a ribbon-shaped beam,
which was 40 mm in height and below 2 mm in width
within the chamber operating volume. To eliminate
the background from particles that come at an in-
stant not coinciding with that of the highest chamber
sensitivity, the beam was fed to the chamber in a
pulsed mode for 50 µs synchronously with a drop to
a minimum in the pressure-release cycle. This mode
was provided by a special system of beam-intensity
modulation (SBIM) [22].
A trigger system consisting of scintillation coun-

ters and microstrip silicon detectors (MSD) [23] con-
trolled SBIM operation and the photographing pro-
cess. This system was intended for recording beam
HYSICS OF ATOMIC NUCLEI Vol. 64 No. 5 2001
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particles before they entered the chamber and for pro-
ducing the trigger for interaction. The use of MSDs
with a spacing of 200 µm between them also per-
mitted efficiently controlling the size of the profile of
incident-particle beam. The trigger signal appeared
in the case where there occurred a beam-particle
interaction within the QCBC and where, in addition,
two charged particles were simultaneously recorded
by scintillation counters located behind the QCBC
outside the beam region. Since liquid hydrogen in the
operating volume formed only a part of the complete
amount of medium on the beam path in the vicinity of
the QCBC, including the walls of the vacuum cover
and the chamber, about 60% of trigger signals were
due to the interactions outside the chamber volume.

3. STRUCTURE OF DATA PROCESSING

Events featuring the possible decays of charmed
particles were separated on the basis of two inde-
pendent scans of QCBC films on the scan tables
with a large magnification. All events originating
from beam-particle interactions and involving nch >
2 charged secondaries in the fiducial volume of the
bubble chamber were recorded. The region cor-
responding, in a frame, to a rectangle having side
lengths of 10 and 5 mm, the longer side being along
the beam direction, and the center at the primary
vertex was scanned carefully.
The small size of this region (so-called charm box)

permits reducing the contamination from strange-
particle decays. In this region, we selected the one-
prong (C1), three-prong (C3), and five-prong (C5)
decays of charged particles and the two-prong (V 2),
four-prong (V 4), and six-prong (V 6) decays of neu-
tral particles; we also recorded secondary interactions
featuring an even number of tracks (Neven) for the in-
teractions of charged secondaries and those featuring
an odd number of tracks (Nodd) for the interactions of
neutral secondaries.
The smallest distance Lmin at which the secondary

and the primary vertex can be distinguished visually
with a probability close to 100% was experimentally
determined to be Lmin = 0.2mm [24].
The track measurements on QCBC films were

performed on the PUOS-4 (IHEP) and PUOS-2
(JINR) tables. The track-point accuracy of these
devices was 2.5 µm.
The primary processing of the results of track

measurements in individual projections makes it pos-
sible to find the decays of heavy short-lived particles
directly on QCBC films by using the values of the
impact parameter δ and of the transverse decay length
LT . The δ value is the least distance on the frame
plane between the line representing a least squares fit
to the measured track points and the primary-vertex
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 5 200
coordinates. This value is independent of the momen-
tum of the particle that decayed [25]. The LT value is
LT = L sin θc, where L is the charmed-particle decay
length and θc is the charmed-particle emission angle
with respect to the incident-beam direction. Since
the masses of charmed hadrons are large and since
their lifetimes are small, the LT value for charmed-
particle decays is short, much shorter on average than
that for strange-hadron decays. The procedure for
preliminarily processing QCBC film measurements
was described in more detail elsewhere [24].
The spatial reconstruction of tracks in the QCBC

operating volume was performed on the basis of the
GEOSVD code [26, 27].
An original method (variable-momentummethod)

was developed to analyze SVD data instead of the
usual methods employed for track reconstruction in
the magnetic spectrometer [28]. In the procedure of
track identification and reconstruction, the variable-
momentum method relies on a priori information
about the angular properties of tracks and about the
coordinates of the interaction vertex in the vertex
detector [29]. The values of the polar (λ) and the
azimuthal (ϕ) angle obtained in the QCBC serve as
inputs for a reconstruction of each charged-particle
track in the spectrometer. For each specific particle,
this makes it possible to identify unambiguously the
trajectory curved by the magnetic field and to de-
termine the particle momentum by minimizing the
distance between the particle trajectory calculated for
the spectrometer magnetic field and the hits in the
U , Y , and V planes of the proportional chambers
of the magnetic-spectrometer tracking system. Ap-
plications of the method are exemplified in Fig. 2,
which shows the reconstruction of a multiprong event
featuring the production and decay of a K0

S me-
son recorded in the QCBC. It can be seen that all
14 tracks captured by the spectrometer aperture are
found and reconstructed. A more detailed analysis of
these events was presented in [29].
Table 1 displays the main measuring properties

of the SVD setup that were obtained experimentally
by processing QCBC films [30] on the basis of the
variable-momentum method for the magnetic spec-
trometer.
To improve the selection criteria used and the in-

terpretation of our data, we simulated the production
and decays of charmed hadrons in pp interactions
at 70 GeV/c [31] and processes that involve strange
particles and which appear to be the main source of
background. This simulation was performed by the
Monte Carlo method implemented on the basis of the
PYTHIA code (version 5.702). According to these
calculations, the total production cross section for
events featuring a charmed hadron pair was 1.07 µb,
1
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Fig. 2. Multiprong event of inelastic pp interaction as
recorded in theQCBC and reconstructed in theU , Y , and
V projections. The charge signs and momenta were de-
termined for all particles that traversed the spectrometer
aperture.

which was mainly due to Λ+
c D̄ and DD̄ associated

production (0.51 and 0.52 µb, respectively).

The simulation showed that 74% of D± mesons,
70% of D̄0 mesons, and 47% of Λ+

c hyperons de-
cay at a distance L from the primary vertex between
Lmin = 0.2 mm and Lmax = 5.0 mm within a cylinder
of radius 2.5 mm, with its axis being directed along
the beam momentum. The inclusive cross sections
calculated on the basis of PYTHIA forK0

S-meson and
Λ0- and Σ0-hyperon production agree with the data
obtained with the MIRABELLE bubble chamber at
69 GeV/c [32]. The simulations also showed that,
if only information from QCBC scanning was used
for C1 and V 2 decays, the background from strange
particles was two orders of magnitude higher than
the sought effect. This background is substantially
reduced (by a factor of about 5) when the transverse-
length (LT ) criterion was used for event selection. A
further reduction of the background to V 2 decays can
be ensured owing to a sufficiently accurate determi-
nation of particle effective masses by the spectrometer
(see Table 1). The background to C1 decays remains
high, and this topology will be eliminated from a
further analysis for this reason.
The background to C3 decays stems from the

overlap of the vee from a V 2 decay and the track of
the charged particle from the corresponding primary
vertex. This background source is virtually eliminated
by imposing the requirement that each track from a
P

C3 decay have an impact parameter in the region δ >
5 µm. The background from C3 K±-meson decays
is about 30% for all recorded C3 decays; it is reduced
to 6% upon the application of the LT selection crite-
rion. The use of the LT criterion nearly removes the
background to the V 4, V 6, etc., decays. For a further
analysis, we selected events with a single secondary
vertex, including V 2, V 4, V 6, C3, and C5 decay
topologies, and events with two secondary vertices
of any decay topologies, including C1. In this case,
the decays were selected according to the following
criteria:
(i) The decay length L was chosen within the

interval 0.2–5 mm.
(ii) The transverse decay length LT was required

to be within 0.2 mm.
(iii) Both tracks from a V 2 decay were required to

traverse the spectrometer aperture.
(iv) Each track from C3 decays was required to

have an impact-parameter value in the region δ >
5 µm.

4. EXPERIMENTAL RESULTS

Table 2 displays the results obtained from a dou-
ble scan of QCBC films. The number of simulated
events that involved C3 decays, V 2 decays, and two
secondary vertices is 2.1, 482, and 5.9, respectively.
In our analysis of experimental data, three events

featuring a C3 decay and 67 events featuring a V 2
decay passed the selection criteria described in the
preceding section. According to the Monte Carlo
calculations, the background from strange-particle
decays is 0.09 and 88 events for C3 and V 2 topolo-
gies, respectively. Twenty-five events involving V 2
decays were recorded simultaneously in the QCBC
and in the magnetic spectrometer. In analyzing the
effective masses, we were able to associate 23 of
these with K0

S and Λ0
(
Λ̄0
)
decays (with the calcu-

lated background being 22 events) and the remain-
ing two events with the D̄0 decays. According to
the criterion LT � 0.2 mm, six events featuring a
double secondary activity (C1V2) were assigned to
the associated production of strange particles. That
no event featuring cc̄ production with two observed
vertices was recorded in this experiment by using the
above selection criteria can be explained by a sta-
tistical fluctuation. Indeed, 2.7+2.3

−1.7 events involving
two secondary vertices in the final state could be
found via scanning, as follows from the cc̄-production
cross section and its errors (see below) and from the
PYTHIA simulation; in this case, the probability of
observing no event lies in the interval between 0.7 and
37%.
HYSICS OF ATOMIC NUCLEI Vol. 64 No. 5 2001
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Table 1. Features of the SVD setup

Feature Value

Accuracy in determining the coordinate x, spectrometer (in mm):

(a) averaged over all secondary tracks 〈σx〉 = 0.8

(b) for beam tracks
〈
σb

x

〉
= 0.4

Root-mean-square error in the polar-angle projection onto the horizontal plane (in mrad):

(a) measurement error (spectrometer)
〈
∆φsp

〉
= 0.1

(b) total error including multiple-scattering contribution at p = 5GeV/c 〈∆φtot〉 = 0.5

Root-mean-square error in the dip angle (in mrad):

(a) QCBC 〈∆λcham〉 = 0.7

(b) spectrometer
〈
∆λsp

〉
= 0.8

Momentum resolution at 70 GeV/c (in %) ∆p/p = 2.5

Effective-mass resolution (in %):

(a)K0 mesons 0.4

(b) Λ0 hyperons 0.2

Table 2. Results of a double scan of QCBC films

Topology Primary
vertex

C1 C3 V 2 C5, V 4, V 6
Secondary
interactions

Two
secondary
verticesNeven Nodd

Number of events 108 863 331 6 473 0 482 55 6

Efficiency of a double scan 0.99 0.96 >0.96 0.96 – 0.97 0.95 0.97
The ten-prong event featuring aC3 decay in Fig. 3
was found on films obtained in the absence of a mag-
netic field. This event satisfies all selection criteria;
additionally, three tracks of its primary vertex have
sizable values of the impact parameter. This allowed
us to assign this C3 decay to the decay of a charmed
hadron (D± or Λ+

c ). In this case, the background
expected from K±-meson decays is less than 0.01
event.
Four selected events (two featuring a C3 and the

other featuring a V 2 decay), provided with spectro-
metric information, were analyzed by using the pro-
cedures for geometrical reconstruction and kinematic
fitting. Tables 3 and 4 display the basic properties of
these events.
The tabulated values of the maximum internal

transverse momentum of particles, pin⊥, that was cal-
culated with respect to the direction of decaying-
hadron emission are well above those expected for
K−, K0

S , and Λ0 decays (about 0.25 GeV/c). The
invariant charged-particle masses calculated under
the assumption of strange-particle decays differ sig-
nificantly from the tabular values. Tables 3 and 4
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 5 200
also quote the values of pch⊥ , x
ch
F , and p

ch
lab for the

observed charged component of a charmed particle.
Here, xchF is the Feynman variable value averaged
over all possible decay modes of charged and neutral
D mesons. The errors caused by averaging do not
exceed 10%. More specific decay modes can be
obtained from the following analysis. If, for charmed-
hadron decay, the vertex coordinates are measured
to a sufficient accuracy and if the 3-momenta of all
charged particles from the decay are reconstructed in
the spectrometer, then only the absolute value of the
charmed-hadron momentum remains unknown. The
absence of undetected neutral particles in the decay
mode makes it possible to determine the masses of
decay particles and to refine their momenta by means
of a kinematical fit subjected to three constraints (3C
fit). In the case of an undetected neutral particle
in the decay mode (0C fit), one calculates M2 =
m2
c +m2

b − 2mc

(
m2
b + p2

⊥
)1/2 [33], where mc is the

mass of the charmed hadron that has decayed, mb is
the effective mass of the system of charged particles
from its decay, and p⊥ is the transverse momentum
1
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Fig. 3. Ten-prong pp interaction that involve a C3 decay
and which were recorded only on QCBC films and dig-
itized by using the PUOS-4 measuring projector. The
properties of the event are described in the main body of
the text and in Table 3.

of this system. Further, we assume that one or two
π0 mesons are emitted if M + ∆M < 0.4 GeV or
M − ∆M > 0.4 GeV, respectively. Fulfillment of the
conditionM + ∆M <0.7GeV suggests the presence
of a K0 meson in the decay process, while fulfillment
of the condition M − ∆M > 0.7 GeV implies the
emergence of theK0 + π0 system.

Tables 3 and 4 present the M values, the most
probable channels of D− and D̄0 decays, and the in-
variant masses of the charged-particle systems asso-
ciated with these channels. These tables also provide
information about the primary vertices of the selected
events, which is indicative of the presence of tracks
with impact-parameter values δ > 3σ and which is
compatible with the assumption that there is a second
charmed particle in the events under consideration.

The total cross section σ (cc̄) for the pair produc-
tion of charmed hadrons was determined by compar-
ing the observed number of events with that expected
from our Monte Carlo simulation (PYTHIA code)
under the conditions of the present experiment. In
the interval −1 < xF < +1, this cross section was
P

calculated by the formula
σ (cc̄) (1)

=
mMCσMC
mexptε1ε2ε3

(
W1

N
expt
s

NMC
s ε4

+W2
N
expt
V 2

NMC
V 2 εV 2

)
,

where mMC and mexpt are the millibarn-equivalent
values preset in the Monte Carlo calculations and
obtained in our experiment, respectively; σMC is the
total cc̄-production cross section obtained from the
PYTHIA simulation; ε1 and ε4 are the efficiencies
of the scanning of QCBC films for events featuring,
respectively, one and two vertices; ε2 is the efficiency
taking into account the losses of cc̄ events of small
multiplicity in triggering; ε3 is the efficiency associ-
ated with the selection of particles according to the
transverse length LT for one-vertex events; NMC

s

and N expt
s are, respectively, the number of simulated

events featuring secondary vertices within the QCBC
(all topologies, with exception of one-vertex V 2 and
C1 decays) and the number of analogous events ob-
served experimentally; NMC

V 2 and N expt
V 2 are, respec-

tively, the number of simulated events involving V 2
decays and the number of analogous events observed
experimentally; εV 2 is the total efficiency of the detec-
tion of V 2 events; and W1 and W2 are the statistical
weights of theN expt

s andN expt
V 2 events.

For these variables, Table 5 gives the values used
to determine the cross section σ (cc̄). Further, we
discuss some details of these calculations.
The experimental millibarn-equivalent value was

obtained from the total sample of observed inelastic
events of multiplicity nch > 2 and from the cross sec-
tion given in [34, 35] for inelastic pp interactions at
70 GeV/c.
The efficiencies ε1 and ε4 were taken from the

data in Table 2. The efficiency ε2 was assessed by
comparing our experimental multiplicity distributions
of charged particles and analogous distributions in
pp interactions at 69 GeV/c from the experiment at
the MIRABELLE chamber [35], only the multiplicity
distribution of events that involve charmed-hadron
production and which are simulated by PYTHIA [24]
being taken into account. The efficiency ε3 was esti-
mated on the basis of the Monte Carlo simulation.
Three events with C3 topology (Table 3) and two

events with V 2 topology (Table 4) were taken for
N
expt
s andN expt

V 2 , respectively.
The total efficiency of the detection of V 2 events,

εV 2, is determined by the probability of obtaining
simultaneous information from the QCBC and the
spectrometer (0.33) and by the efficiency and the
estimate of event losses due to a limited setup ac-
ceptance (0.76), as obtained from the Monte Carlo
HYSICS OF ATOMIC NUCLEI Vol. 64 No. 5 2001
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Table 3. Properties of events involving a C3 decay

Properties of C3 decay
Number of event

1 2 3

Decay vertex

Total charge – –1 –1

Distance between the vertices (µm) 290 512 2820

Distance LT (µm) 15 17 85

Presence of tracks with impact parameters δ > 3σ with
respect to the primary vertex

All three tracks Single track Two tracks

Maximum internal transverse momentum pin⊥ (GeV/c) – 0.46 0.31

Invariant mass of charged particles for the K− →
π+π−π− hypothesis (GeV)

– 1.134 1.030

Transversemomentum of the charged system, pch⊥ (GeV/c) – 0.45 0.64

Mean value of the Feynman variable of the charged system,
xchF

– 0.29 0.10

Laboratory momentum of the charged system, pchlab
(GeV/c)

– 22.94 13.12

The most probable mode ofD−-meson decay – K∗ (892)π−π0π0 π+π−π−K0

M (GeV) – 0.55 0.82

Invariant mass of charged particles for this mode of D−-
meson decay (GeV)

– 1.286 1.030

Primary vertex

Total number of tracks 10 4 6

Number of tracks with impact parameters δ > 3σ 2 1 2

Number of secondary particles reconstructed in the
spectrometer

– 1 4

Possible mode of Λ+
c decay – nK+π0 Λ0π+π0 pπ+K−

Laboratory momentum ofΛ+
c for this decay mode (GeV/c) – – 26.8
simulations. The value obtained experimentally for
the pion-detection efficiency with respect to xF is
ε
expt
π = 0.66 ± 0.04 [30], which is in accord with the
value of εtheorπ = 0.72 calculated by the Monte Car-
lo method [10]. For the spectrometer, similar val-
ues of the pion-detection and the charmed-particle-
detection efficiency follow from the similarity of their
xF distributions presented in [30, 36].
The statistical weights W1 and W2 found with

allowance for Poisson fluctuations in the number of
the observed events areW1 = 0.95 andW2 = 0.05.
As a result, the total-cross-section value of

σ (cc̄) = 1.6+1.1
−0.7 (stat.) ± 0.3 (syst.) µb has been ob-

tained according to expression (1).
The systematic error stems mainly from the un-

certainty in the number of expected cc̄ events because
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 5 200
of an unknown contribution of the DD̄- and Λ+
c D̄-

production channels, their ratio changing between 1
and 0.2.

The mean values 〈|xF|〉, 〈p⊥〉, and 〈plab〉 for the
observed D mesons are compiled in Table 6, along
with those from the PYTHIA simulation. The mean
value 〈|xF|〉ch for the charged component of the D
mesons was obtained from the experimental data
presented in Tables 3 and 4. We determined the
total value 〈|xF|〉, taking into account the neutral-
component contribution estimated with the aid of
the PYTHIA code (〈|xF|〉neut / 〈|xF|〉 = 0.34 for D±

mesons and 〈|xF|〉neut / 〈|xF|〉 = 0.45 for D̄0mesons).
Themean values of the transverse and laboratory mo-
menta (〈p⊥〉 and 〈plab〉, respectively) were determined
in a similar way.
1
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Table 4. Properties of events involving V 2 decay

Properties of V 2 decay
Number of event

1 2

Decay vertex

Total charge 0 0

Distance between the vertices (µm) 570 430

Distance LT (µm) 11 18

Presence of tracks with impact parameters δ > 3σ with
respect to the primary vertex

No Two tracks

Maximum internal transverse momentum pin⊥ (GeV/c) 0.70 0.41

Invariant mass of the charged particles for 1.010 0.417

theK0 → π+π− and Λ0 → pπ− hypotheses (GeV) 1.472 1.143

Transverse momentum of the charged system, pch⊥
(GeV/c)

0.13 0.57

Mean value of the Feynman variable for the charged
system, xchF

0.04 –0.08

Laboratory momentum of the charged system, pchlab
(GeV/c)

8.12 4.97

The most probable mode of D̄0-meson decay K+π−π0π0 K+π−π0π0

M (GeV) 0.52 0.78

Invariant mass of the charged particles for this mode of
D̄0-meson decay (GeV)

1.147 1.044

Primary vertex

Total number of tracks 6 6

Number of tracks with impact parameters δ > 3σ 2 3

Number of secondary tracks reconstructed in the
spectrometer

1 5

Possible mode of Λ+
c decay pK̄0

(
π0
)

–

Laboratory momentum of Λ+
c for this decay mode

(GeV/c)
>54.1 –
Table 6 also shows the fitted values of the expo-
nent n in the form dσ/dxF = (1 − |xF|)n. For D
mesons, the ratio of the experimental mean decay
length 〈L〉 to the mean value 〈LMC〉 calculated on the
basis of PYTHIA is given in the penultimate column
of Table 6. It can be seen that, by and large, the
experimental and the simulated data agree rather well.
Our present data can be compared with some

results obtained for the total cross section σ (cc̄) in
the 70-GeV beam-dump experiments at the IHEP
accelerator [36–38]. For the case of total proton-
beam absorption implemented in those experiments,
the estimates σ (cc̄)< 4.8 µb (for the SKAT chamber)
[37], σ (cc̄) = 0.9+1.1

−0.9 µb and σ (cc̄) < 2.7 µb (for a
neutrino detector) [36], and σ (cc̄) = −0.3 ± 1.2 µb
and σ (cc̄) < 1.6 µb (for a neutrino detector) [38] were
PH
obtained for the interval−1 < xF < +1 bymeasuring
the yields of directly produced leptons and neutrinos.
The indicated upper limits on the cross sections cor-
responded to a 90% confidence level. The value of
σ
(
DD̄

)
= 5 ± 4 µb was obtained from the data of

the experiment reported in [9], where a spark spec-
trometer was used to separate the electron modes of
charmed-meson decay. We see that the σ (cc̄) value
obtained in the present study is compatible with the
results of the beam-dump experiments.

In the studies with the BIS-2 spectrometer, the
cross section for D-meson production was deter-
mined in neutron interactions with hydrogen and car-
bon nuclei at a mean energy of 58 GeV [39, 40] in
the region xF > 0.5. The cross section for hydrogen,
σD̄0X (xF > 0.5) = 3.2 ± 1.1 µb [39], was obtained
YSICS OF ATOMIC NUCLEI Vol. 64 No. 5 2001
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Table 5. Values of the parameters needed for calculating the cross section σ (cc̄)

mMC, ev/µb mexpt, ev/µb σMC, ev/µb ε1 ε2 ε3 ε4 N
expt
s N

expt
V 2 NMC

s NMC
V 2 εV 2

10 4.96 ± 0.05 1.07 0.97 ± 0.01 0.91 ± 0.03 0.96 0.97 3 2 6.20 2.58 0.25 ± 0.05

Table 6. Properties of theD meson

〈|xF|〉 〈p⊥〉 ,GeV/c 〈plab〉 ,GeV/c 〈L〉 / 〈L〉MC n

E-161 experiment 0.20 ± 0.07 0.53 ± 0.13 17.6 ± 5.3 0.67 ± 0.32 3.0 ± 1.3

Monte Carlo (PYTHIA) 0.18 0.64 18.0 1.0 3.5
for D̄0 mesons, whereX is a charmed meson or a Λ+
c

baryon. The cross section for D−-meson production
on hydrogen must be close to the above value be-
cause, for xF > 0.5, the relevant inclusive cross sec-
tions for production on carbon in [40], σD̄0 = 28 ± 14
µb and σD− = 26 ± 13 µb, nearly coincide.
Among D-meson events selected in this experi-

ment, only in one can a D meson have xF > 0.5 with
a probability of 50% in accordance with two possible
directions of emission of the neutral decay system. As
a consequence, the estimate of the cross section is
σDX(xF > 0.5) < 1.2 µb at a 90% confidence level.
The estimates of the cross section for the pair pro-

duction of D mesons for xF > 0.5 from experiments
with 250-GeV and 400-GeV protons correspond to
σDD̄ < 0.14 µb [41] and σDD̄ = 0.6+0.6

−0.3 µb [42], re-
spectively. These values indicate that the D-meson
cross section obtained in the BIS-2 experiment con-
tradicts the data of other experiments at the IHEP
accelerator energies and experimental data obtained
at higher energies.
Basic experimental data on the cross section for

the pair production of D mesons for −1 < xF < +1
in proton–nucleon interactions at energies in the in-
terval 200–800 GeV [41–46] are shown in Fig. 4,
along with our result (E-161). A comparison of the
experimental data on σ

(
DD̄

)
with the QCD predic-

tions for the total cross section σ (cc̄) and with our
results is legitimate, since the extra contribution of
the Λ+

c -hyperon-production channel is below 10% in
the range 200–800 GeV.
The theoretical curves presented in Fig. 4 were

obtained in [3] within two approximations. The dash-
dotted curves represent the results of the calculations
performed in the next-to-leading order (NLO) of per-
turbative QCD. The solid curves are the pioneering
results taking into account the effect of resumma-
tion of the contribution from soft gluons emitted by
colliding partons at the NLO + NLL level, where
NLL corresponds to the approximation next to the
leading-logarithm approximation. These calculations
employed the theoretical parameter values of mc =
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 5 200
1.5 GeV and ΛQCD = 120 MeV and the MRSR2
parameterization for the parton structure functions
[47]. The calculations were performed for the scale-
parameter values of µ = mc and µ = 2mc. Figure 4
shows that the correction for soft-gluon emission
reduces the interval of uncertainties associated with
variations in the parameter µ and enhances the es-
timate of the near-threshold cross section σ (cc̄) by
a factor of about 2. The theoretical predictions were
calculated in [3] for energies in excess of 100 GeV;
therefore, the curves presented in Fig. 4 were extrap-
olated down to 70 GeV.
Figure 4 demonstrates that our result is compat-

ible with the general experimental dependence and
with the theoretical predictions.
Since the near-threshold production of heavy

quarks—in particular, charmed quarks—is of con-
siderable interest for QCD, the SVD collaboration
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Fig. 4. Cross section for charmed-particles production
in proton–nucleon interactions [13, 41–46]. The results
of QCD calculations [3] at the NLO + NLL and the
NLO level are depicted by solid and dash-dotted curves,
respectively. The two upper (lower) curves correspond to
µ = mc (µ = 2mc).
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plans to continue studying in detail the properties
of charmed particles by obtaining a sample of 103–
104 events owing to an upgrade of the SVD setup
[11]. The upgrade will consist in replacing the bubble
chamber by a vertex detector equipped with mi-
crostrip plates and in incorporating a photon recorder
and a threshold Cherenkov counter into the setup.
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Abstract—Results are presented for the total and the apparent cross sectionmeasured in 3Hep interactions
at an incident momentum of 8.0 GeV/c and for an anomalously short mean free path of Z = 2 secondary
nuclei from these interactions. About 14000 Z = 2 nuclei leading to 2319 secondary interactions are
studied. An admixture of 0.5% of anomalons is found with a mean free path of 1.5 cm to be compared with
around 250 cm for primary interactions. Our results are compared with other data from the interactions of
He nuclei with protons at various energies. c© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

A short mean free path of relativistic nuclear frag-
ments of high-energy heavy ions has been occasion-
ally observed since 1954 in nuclear emulsion experi-
ments carried out in cosmic rays. The first provoca-
tive piece of evidence for anomalous nuclear cascade
interactions induced by heavy cosmic-ray nuclei was
reported in [1], and the effect was concentrated in
the first few centimeters from the primary-interaction
vertex. Because of limited statistics in cosmic rays,
these results could not gain recognition.

The first experiment to study anomalous nuclei
with significant statistics by using the nuclear-
emulsion technique was realized when relativistic
nuclear beams became available from the Berkeley
Bevalac in 1980. Nuclear interactions induced by
16O and 56Fe beams of energy 2 GeV per projectile
nucleon showed anomalously short mean free paths
for nuclear fragments within a few centimeters after
their emission [2]. A statistical analysis introduced
the so-called interaction model trying to describe the
effect under the assumption that only a small part
of projectile fragments have a cross section larger
by one order of magnitude. In the following years,
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several experiments were performed in this field, and
their results confirmed a significantly shorter mean
free path of about 2–15% of the projectile fragments
[3]. Later experiments used, as detectors, not only
nuclear emulsions but also bubble chambers, plastic
detectors, and Cherenkov counters. Some results
support the anomalous effect [4], but, in other cases,
the effect was not confirmed [5]. There also exist
a series of theoretical attempts at understanding
and describing the anomalous behavior. Among
other things, they invoke quark–gluon effects, open
color states, quasimolecular states, nuclear-density
effects, and metastable nuclear states [6]. Despite
an extensive amount of published results, the current
situation is complicated—no consensus has been
reached on the question of whether the effect is real
or not; moreover, we do not have either a theory that
would explain the anomalous shortening of the mean
free paths of fragments or a general idea that would
explain the ambiguity of experimental results. Thus,
the question of anomalons remains open for further
experiments.

2. DESCRIPTION OF THE EXPERIMENT

Our previous efforts aimed at studying the mean
free paths of secondary He nuclei with protons [7, 8]
preceded the analysis of data from 3Hep interactions
induced by a 3He beam of momentum 8.0 GeV/c.
This is the fourth in the series of experiments study-
ing 3He and 4He interactions with protons by using
the 1-m hydrogen bubble chamber installed at the
Joint Institute for Nuclear Research (JINR, Dubna).
The experimental setup used was described in detail
2001MAIK “Nauka/Interperiodica”
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Table 1.Cross sections (total and apparent) for Hep inter-
actions at various He momenta

Interaction Momentum, GeV/c σapp,mb σtot, mb
3Hep 8.0 112.1± 1.7 125.5 ± 1.3

13.5 106.0± 1.6 118.0 ± 1.2
4Hep 8.6 135.4± 3.7 149.0 ± 2.1

13.6 138.2± 3.2 152.5 ± 1.7

elsewhere [9]. A hydrogen bubble chamber is si-
multaneously a pure proton target and a full-solid-
angle detector. In experiments where nuclear beams
are incident on a fixed proton target, all fragments
of incoming nuclei are fast in the laboratory frame;
therefore, they can be detected, well measured, and
identified nearly without losses (almost all losses due
to the chamber threshold momentum are concen-
trated in the elastic channel). A low hydrogen density
and the measured track momentum enabled us to
identify secondary charged particles on the basis of
the ionization check.

These conditions allowed (i) a suitable selection
of primary interactions with even topology (that is, a
crosscheck of Z = 2 tracks by using electric-charge
conservation), (ii) a unique identification of doubly
charged tracks on the ionization basis, and (iii) a reli-
able selection and identification of Z = 2 fragments
because the momenta of secondary 3He nuclei are
close to the beam momentum and because the pro-
duction angles are in the forward cone of 10◦.

All these conditions are of paramount importance
for a determination of the mean free path in the in-
teractions of light nuclei with protons and for the
ensuing analysis of the anomalon effect.

For data processing, the standard chain was used:
the pictures were scanned twice for all topologies,
and measurements for three projections were used for
a geometric reconstruction and a subsequent kine-
matical analysis of events. This was carried out by
using an appropriate version of the CERN program
system based on the HYDRA library. The ionization
of secondary charged particles was estimated visually.

The complete data sets for 4Hep and 3Hep inter-
actions at two reaction energies contain [7, 8, 10]
(i) 3688 secondary interactions found on the corre-
sponding 20231 Z = 2 fragment tracks for 4Hep at
13.6 GeV/c, (ii) results of the analysis of the same
interactions at the lower incoming momentum of
8.6 GeV/c that were observed on the basis of even
vaster statistics of 4197 secondary interactions found
from 23435 Z = 2 fragments from primary interac-
tions, (iii) 1069 secondary interactions found for 7211
Z = 2 fragments in the case of 3Hep interactions at
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 5 200
Table 2. Mean free path versus the distance from the
primary vertex

x, cm λ, cm ∆λ,cm
1 177.6 14.2

3 215.1 19.0

5 238.6 22.3

7 293.0 30.5

9 326.2 36.1

11 244.6 23.8

13 252.0 25.4

15 232.8 22.9

17 278.4 30.5

19 231.8 23.6

21 271.5 30.5

23 231.8 24.5

26 218.4 16.4

30 258.1 21.9

34 254.5 22.4

40 232.3 14.9

48 244.6 18.2

56 235.6 19.9

65 242.3 24.0

13.5 GeV/c, and (iv) 2319 secondary interactions
corresponding to 14020 Z = 2 He fragments at the
lower 3He beam momentum of 8.0 GeV/c.

It can be seen that the samples used are statisti-
cally well based in relation to the other ones [7].
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Fig. 1.Distribution of distances between the primary and
the secondary vertex.
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Fig. 2. As in Fig. 1, but after geometric corrections.

3. CROSS SECTIONS FOR 3Hep
INTERACTIONS AT 8.0 GeV/c

The total and topological cross sections for 4Hep
collisions at momenta of 8.6 and 13.6 GeV/c and for
3Hep collisions at 13.5 GeV/c are published in [11].

In the case of 3Hep interactions at 8.0 GeV/c, the
entire sample was doubly scanned, but only a limited
part of it was measured and fully processed. Two
independent scannings gave 23735 3Hep interactions
of different topologies, which correspond to 187692
primary nuclei. The average scanning efficiency was
99%, and the fiducial volume was le = 34.6 ± 0.1 cm
for primary interactions.

Because of limited statistics, the losses of events
in the elastic channel could not be determined in the
way used in [11, 12]. But we made use of these results
and arrived at the conclusion that the losses can be
estimated at 12%, irrespective of the incoming energy
and nuclei. Taking into account comparable statistics
at the two values of the 3He momentum, we esti-
mated the losses at Ninvis = 2848 ± 174, which cor-
responds to 26583±232 primary 3Hep interactions
at 8.0 GeV/c. The total and apparent interaction
cross sections were determined by using the standard
formula. The numerical results are

σtot = 125.5 ± 1.3 mb, σapp = 112.1 ± 1.7 mb.

The apparent cross-section value σapp corresponds to
the mean free path of λapp = 253.7 ± 3.8 cm, which
will be used in the next sections.

The values obtained here for the cross sections
are compared in Table 1 with those published in our
previous studies [11, 12] for He isotopes at different
energies.
P
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Fig. 3. Mean free path as a function of the distance
between the primary and secondary interactions (the no-
tation for the curves is explained in the main body of the
text).

4. MEAN FREE PATH FOR SECONDARY
3Hep INTERACTIONS AT A PRIMARY

MOMENTUM OF 8.0 GeV/c

Our experimental data were subjected to two inde-
pendent scanning procedures for revealing secondary
interactions. The fragments formed have been fol-
lowed to the end of the chamber fiducial volume. For
secondary tracks with Z = 2, 2319 interactions have
been found for 14020 events with even topology. The
overall scanning efficiency was ε = (99.1 ± 0.5)%.
Particular attention has been given to the dependence
of the scanning efficiency on the distance x between
the primary and secondary vertices. Within the sta-
tistical errors, we have found constant scanning effi-
ciency, independent of x.

As a matter of fact, all fragments of the incoming
nuclei do not have the same volume to give rise to a
secondary interaction, but this depends on the place
where the primary interaction occurs. In view of this,
a geometric correction taking into account this fact
has been applied to the data; accordingly, the events
have been weighted in the following way:

wi =




1, for x < L0

1 − e−(L−L0)/λ

1 − e−(L−x)/λ , for x > L0.

Here, L0 = 8 cm is the distance from the physical
end of the chamber to the end of the fiducial volume
for the primary interactions; L = 78 cm is the length
of the fiducial volume for secondary interactions; and
λ stands for λapp = 253.7 ± 3.8 cm—the mean free
path of primary 3He nuclei at 8.0 GeV/c.

The effect of the geometric correction is illustrated
in Figs. 1 and 2, which display the corresponding raw
and weighted distributions of the distance between
the primary and secondary vertices.
HYSICS OF ATOMIC NUCLEI Vol. 64 No. 5 2001
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Table 3. Results of various fits to λ (x) for 3Hep interactions at 8.0 GeV/c

Function λn,cm λa, cm α, % χ2/NDF

λn = const 234.3 ± 4.9 − − 2.18

f (λn, λa, α) 244.02+5.1
−5.5 1.47+0.88

−0.71 0.45+0.15
−0.13 0.93

f (λn = fix, λa, α) λn = λvis 1.82+0.95
−0.65 0.57+0.16

−0.14 1.28

Table 4. Fitted values of the parameters λn, λa, and α and χ2/NDF

Experiment λn, cm λa, cm α, % χ2/NDF
4Hep, 13.6 GeV/c [7] 240.7+4.7

−4.6 1.9+2.0
−1.7 0.40+0.21

−0.13 1.46
4Hep, 8.6 GeV/c [7] 230.0+6.1

−5.3 7.5+3.7
−2.2 1.06+0.45

−0.31 1.17
3Hep, 13.5 GeV/c [8] 270.4+14.6

−12.7 6.0+3.7
−2.5 1.56+0.76

−0.54 0.38
3Hep, 8.0 GeV/c 244.02+5.1

−5.5 1.47+0.88
−0.71 0.45+0.15

−0.13 0.93

Table 5.Mean free path of secondary Z = 2 nuclei

Experiment λ (x < 10 cm) λ (x > 10 cm) λapp, cm
4Hep, 13.6 GeV/c [7] 212.9 ± 7.3 246.1± 4.7 211.5± 5.8
4Hep, 8.6 GeV/c [7] 189.9 ± 5.7 228.5± 4.2 207.2± 4.8
3Hep, 13.5 GeV/c [8] 195.7 ± 11.5 277.7± 9.9 270.2± 4.1

3Hep, 8.0 GeV/c 238.1 ± 10.2 241.6± 5.6 253.7± 3.8
Upon applying the efficiency and geometric cor-
rections, the number of secondary interactions chan-
ges to 3629; of these, 574 are produced at a distance
less than 10 cm behind the primary vertex. In the
resulting sample of events, the x dependence of the
mean free path λ was calculated according to the
formula

λ (x) =
n∑
i=1

Si/n,

where
∑
Si is the total length of the paths of the

interacting and noninteracting Z = 2 fragments in
the interval ∆x = xi+1 − xi with ∆x = 2 cm and n
is the number of secondary interactions found in this
interval. This way enables us to make the estimate
of λ (x) independent of the place of the primary inter-
action. The resulting values of λ are given in Table 2
versus x, the errors being purely statistical.

Our experimental values were fitted in terms of the
function

λ (x) = [(1 − α) exp (−x/λn)
+ α exp (−x/λa)] / [(1 − α) /λn exp (−x/λn)

+α/λa exp (−x/λa)]−1 ,

which corresponds to the customary assumption that
the set of secondary nuclei contains an abnormal
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 5 200
component with an enhanced cross section. This
two-component function represents one of the sim-
plest hypotheses describing the decrease in the mean
free path at short distances and is a convenient and
commonly used parametrization of data. It involves
three free parameters: λn and λa, which are the nor-
mal and the anomalous mean free path, respectively,
and α, which is the fraction of the anomalous cross
section. However, it should not be taken literally in
view of the present status of experimental findings.

The experimental distribution of the mean free
path λ (x) of Z = 2 secondary nuclei versus the dis-
tance x is shown in Fig. 3, where the solid curve
represents a fit obtained under the assumption that
there is an anomalous component in addition to the
primary one, the dashed line is a fit assuming only a
normal component and yielding a constant value of
λ = 234.3 cm, and the dotted line corresponds to a
fit with fixed λapp = 253.7 cm for the primary 3Hep
interactions at 8.0 GeV/c. Table 3 contains the fitted
parameter values, together with χ2/NDF.

To demonstrate more clearly the statistical signif-
icance of the results, the χ2 contour maps are drawn
in Fig. 4, where the contours labeled with 1, 2, ...
correspond to confidence levels of 1, 2, ... standard
deviations. As can be seen from Fig. 4, the zero
1



906 GLAGOLEV et al.

 

9

7

5

3

1

0 0.01 0.02 0.03

 

α

 

, %

 
λ

 
, cm
 

1

2

3

4 5 6 7

Fig. 4. χ2 contour maps.

hypothesis (α = 0) is excluded by more than four
standard deviations. The results of a two-component
fit to a experimental data for Z = 2 fragments from
3Hep and 4Hep interactions at the above two energy
values are shown in Table 4.

The measured mean free paths for x < 10 cm and
x > 10 cm are compared in Table 5 with the apparent
value of the mean free path for primary interactions.

From the values obtained here, one can see that
the results for 3Hep interactions at 8.0 GeV/c do
not contradict the results of previous experiments
(Tables 4 and 5). In these data, there is no indication
of some regular tendency between the anomalous
parameters (λa and α) and the number of nucleons or
the reaction energy. The largest anomalous fraction
of α = 1.56% [8] has been found in 3Hep collisions at
the higher energy value. This experiment gives nearly
the same values of the mean free path for x < 10 cm
and for x > 10 cm. The anomalous effect is less pro-
nounced in this experiment, and the fraction of 0.45%
corresponds to λa = 1.47 cm. Within two standard
deviations, the fitted parameters of the anomalous
component—the mean free path and the fraction in
question—are consistent for the two nuclear species
and for the two energy values (see Table 4).

5. CONCLUSION

We have studied 3Hep interactions at 8.0 GeV/c.
PH
In particular, we have determined the total and the
apparent cross sections for these interactions and
compared these results with those from our previous
studies. The mean free path of secondary doubly
charged tracks has been examined in terms of the
two-component hypothesis as a continuation of our
previous work on anomalons. The values obtained
for the anomalous fraction and the mean free path
do not contradict previous results. The comparison
has not shown any systematics associated with the
reaction energy or with the number of nucleons. The
problem of anomalons remains open, so that further
experiments are required to get more conclusive and
decisive data.
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Abstract—The total and topological 4Hep cross sections, as well as the cross sections for individual αp-
interaction channels and the differential cross sections dσ/dt for elastic αp scattering, were measured by
using a 2-m hydrogen bubble chamber exposed to a separated beam of 5-GeV/c α particles from the ITEP
synchrotron (the kinetic energy of initial protons in the nuclear rest frame was Tp = 620 MeV). The data
obtained are compared with the results of previous experiments and with theoretical predictions based on
Glauber–Sitenko multiple-scattering theory. c© 2001 MAIK “Nauka/Interperiodica”.
Systematic investigations of nuclear reactions in
few-nucleon systems at intermediate energies have
been carried out at ITEP for the last few years by
making use of extremely light nuclei (3H, 3He, 4He)
as a beam and liquid-hydrogen bubble chambers
(80 cm and 2 m) as a target (see, for example, [1]
for bibliography and background). Data on the cross
sections for 4He interaction with protons and αp
elastic scattering below the pion-production thresh-
old in the elementary NN process were reported in
[1]. The momentum of the 4He nuclei averaged over
the bubble-chamber fiducial volume was 2.7 GeV/c
(the kinetic energy of initial protons in the nuclear
rest frame was Tp = 220 MeV). Here, we present
some new data on αp-interaction cross sections at
5 GeV/c (Tp = 620 MeV), in which case pions are
copiously produced. In this energy range, data on
the cross sections for individual 4Hep-interaction
channels have been obtained for the first time. Data
on the total and differential cross sections for αp
scattering are compared with the results of previous
experiments in the energy range considered and
with the predictions of Glauber–Sitenko multiple-
scattering theory. The present experiment is the only
one based on nonelectron techniques in this energy
range. For the first time, a similar experimental
scheme (with anα-particle beam incident on a bubble
chamber) was implemented with the JINR 100-cm
liquid-hydrogen bubble chamber at initial momenta
of 8.6 and 13.6 GeV/c (see [1]).

The 2-m liquid-hydrogen bubble chamber was ex-
posed to a separated beam of 5-GeV/c α particles
from the ITEP synchrotron. About 120000 pictures

∗This article was submitted by the authors in English.
†Deceased.
1063-7788/01/6405-0907$21.00 c©
have been obtained with an average of about eight
initial particles for the chamber extension. About
18000 events have been measured. Special features
of our experimental procedure are described in [1].

The total cross section is defined as

σtot =
1
nl

ln
1

1 −Nint/N0
, (1)

where n is the number of hydrogen nuclei in 1 cm3, l is
the fiducial length, N0 is the number of initial tracks,
and Nint is the total number of interactions in the
fiducial volume with allowance for a systematic loss
of two-prong events.

Two- and three-prong αp events were identified by
means of a kinematical analysis and track-ionization
measurements. A correction was introduced for the
loss of two-prong events with a large dip angle. This
correction was determined from the distribution over
the angle between the event plane and the plane
spanned by the initial track and the vector directed
along the magnetic field in the chamber. The loss of
inelastic two-prong events was about 14%. The loss
of elastic-scattering events with a short recoil-proton
track for |t| < 0.03 (GeV/c)2, where the differential
cross sections have not been determined, was evalu-
ated by extrapolating the data in the interval 0.035 <
|t| < 0.1 (GeV/c)2 on the exponential function to the
region |t| < 0.03 (GeV/c)2. For |t| < 0.01 (GeV/c)2,
the differential cross section for elastic scattering has
not been measured because of poor statistics.

The topological cross sections, the number of
events in each channel, and the cross sections for αp
interactions at 5 GeV/c are presented in Table 1 (only
statistical errors are indicated).

The total αp-interaction cross section is 121.5 ±
2.9 mb (the error is purely statistical). The systematic
2001MAIK “Nauka/Interperiodica”
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Table 1. Topological cross sections and cross sections for individual αp-interaction channels at a momentum of 5 GeV/c
(Tp = 620 MeV)

Topology Topological cross Channel Number Cross section, mb

of an event section, mb of events

2∗ 59.9±2.8 4Hep→ 4Hep 1695 31.4±2.8
4Hep→ 3Hepn 2507 22.2±0.4
4Hep→ 4Henπ+ 233 2.0±0.1
4Hep→ 4Hepπ0 295 2.6±0.2
4Hep→ 3Hepnπ0(π0) 97 0.80±0.08

3∗ 60.2±0.7 4Hep→ 3Hedπ0 59 0.50±0.07
4Hep→ 3Hpp 1952 16.1±0.4
4Hep→ ddp 335 2.8±0.2
4Hep→ dppn 2567 21.2±0.4
4Hep→ pppnn(π0) 1394 11.5±0.3
4Hep→ 3Hdπ+ 101 0.80±0.08
4Hep→ 3Hpnπ+ 362 3.0±0.2
4Hep→ ddnπ+ 79 0.65±0.07
4Hep→ dpnnπ+(π0) 128 1.10±0.09
4Hep→ ppnnnπ+(π0) 79 0.65±0.07
4Hep→ 3Hppπ0 117 1.00±0.09
4Hep→ ddpπ0 53 0.40±0.06
4Hep→ dppnπ0(π0) 93 0.80±0.08

4∗–5∗ 1.4± 0.1
error in the absolute normalization of the cross sec-
tion is about 3%.

The differential cross sections for αp elastic
scattering at 5 GeV/c are presented in Table 2.
These data can be very well parameterized by the
exponential function dσ/dt = AeBt with A = (9.4 ±

Table 2.Differential cross sections forαp elastic scattering
at 5 GeV/c (Tp = 620 MeV)

−t, (GeV/c)2 dσ/dt, mb/(GeV/c)2

0.035 311±19

0.045 246±15

0.055 172±13

0.065 134±12

0.075 97±10

0.085 70±8

0.100 52±5
PH
0.5) × 102 mb/(GeV/c)2 and B = 31 ± 1 (GeV/c)−2

(χ2/NDF = 0.4).

For the theoretical interpretation of the elastic-
scattering data, we have used Glauber–Sitenko
multiple-scattering theory that takes into account the
spin–isospin structure of the NN-scattering ampli-
tude and which represents a simple generalization of
the conventional Glauber theory of nondiffractive NN
scattering.

The details of this theoretical approach are given
in [1]. In our present calculations, we also param-
eterize the ground-state density of the 4He nucleus
in the Gaussian form ρ(r) ∼ exp(−r2/R2) with R =
1.25 fm [1].

The figure shows the differential cross sections
dσ/dt for 4Hep elastic scattering at a momentum
of 5 GeV/c (Tp = 620 MeV) and the results of the
calculations that were performed within Glauber–
Sitenko multiple-scattering theory and which take
YSICS OF ATOMIC NUCLEI Vol. 64 No. 5 2001
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Differential cross section for the reaction 4Hep→ 4Hep.
Points represent experimental data from (•) the present
study (Tp = 620 MeV), (♦) [2] (Tp = 500 MeV), (�) [3]
(Tp = 560 MeV), (�) [4] (Tp = 587 MeV), (�) [5]
(Tp = 600 MeV), and (◦) [6] (Tp = 695 MeV). The
solid line corresponds to the theoretical predictions (at
Tp = 620 MeV) based on Glauber–Sitenko multiple-
scattering theory taking into account the spin–isospin
structure of the NN-scattering amplitude.

into account the spin–isospin structure of the NN-
scattering amplitude (curve). For the sake of com-
parison, the data on 4Hep elastic scattering at Tp =
500 MeV [2], 560 MeV [3], 587 MeV [4], 600 MeV
[5], and 695 MeV [6] are also displayed here. As can
be seen from the figure, the shapes of the distributions
from all these experiments are quite similar. All data
are consistent. Note that independent experiments
based on different experimental techniques yield very
close results. Multiple-scattering theory perfectly
describes the shape of the distribution, but the the-
oretical curve is slightly below the experimental data.

The total αp cross section obtained in this ex-
periment at Tp = 620 MeV (σtot = 121.5 ± 2.9 mb)
is in good agreement with the result from [7] at
Tp = 563 MeV (σtot = 123.7 ± 0.9 mb). Some de-
viation from the theoretical value calculated for the
total cross section by means of the optical theorem
(σth

tot = 113.4 mb at Tp = 620 MeV) is caused by the
inaccuracy of the theoretical scheme used here (see
[1] for details).
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 5 200
The main results of our study are as follows:
(i) Using the 2-m ITEP liquid-hydrogen bubble

chamber exposed to a separated beam of α particles
with a momentum of 5 GeV/c (Tp = 620 MeV), we
havemeasured the total and topological αp cross sec-
tions, as well as the cross sections for individual αp-
interaction channels. The data on the cross sections
for αp-reaction channels in this energy range have
been obtained for the first time. The value of the total
αp cross section from the present experiment is in
good agreement with data from the literature.

(ii) The data on the differential αp cross sections
are in good agreement with previous data in the en-
ergy range considered here and with the predictions
of multiple-scattering theory.
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Abstract—Experimental results on the multiplicity distributions of various particles produced in the
interactions of 7Li with emulsion nuclei at a momentum of 3 GeV/c per projectile nucleon are reported. A
comparison with data on collisions induced by other nuclei at a nearly identical momentum per nucleon
is presented in order to reveal the dependence on the projectile mass. The internal structure of 7Li is
explored by studying the projectile fragment. The mean multiplicity of shower particles, 〈ns〉, induced
by 7Li is found to be less than that in the case of 6Li projectiles. The angular distributions of target
fragments and relativistic charged secondaries are investigated. No shock-wave phenomena are observed.
Forward-to-backward ratios are calculated for each case. The probability distributions for relativistic
secondaries produced per unit rapidity are studied in detail, along with the rapidity densities and their
dependence on the projectile and the target mass. A comparison of the angular spectra of shower
particles produced in central and peripheral collisions supports the limiting-fragmentation hypothesis.
The collisions in question seem to become more central with increasing shower-particle multiplicity.
c© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Interest in nucleus–nucleus collisions quickened
considerably when beams of relativistic heavy ions
became available. Investigation of these interactions
is expected to provide useful information about the
multiparticle production mechanism.

It has always been interesting to study the gen-
eral characteristics of different projectiles at different
energies and mass numbers. The present experi-
ment studying the interaction of 7Li projectiles with
emulsion at 3 GeV/c per nucleon is of special in-
terest for two reasons: (i) This projectile provides a
new point belonging to a wide spectrum of heavy-
ion nuclear reactions carried out; therefore, it could
lend support to certain theoretical models describing
the mechanisms of high-energy nuclear reactions.
(ii) It is interesting to see the effect of the neutron
difference between 6Li and 7Li projectiles interacting
with similar targets.

In high-energy nuclear collisions, it is convenient
to introduce Lorentz-invariant kinematical variables
to describe the phase-space domain into which parti-
cles are emitted. For example, the rapidity η describes
the motion of particles along the beam direction.

∗This article was submitted by the authors in English.
1063-7788/01/6405-0910$21.00 c©
The angular distributions of shower, gray, and
black particles are reported and analyzed in de-
tail. Angular distributions provide valuable data on
single-particle distributions of s particles in multiple
production in nucleus–nucleus interactions at high
energies.

2. EXPERIMENTAL PROCEDURE

Stacks of Br-2 nuclear emulsions were exposed to
a 7Li beam accelerated to a momentum of 3 GeV/c
per projectile nucleon at the Dubna synchropha-
sotron. The stacks had dimensions of 20 cm ×
10 cm × 600 µm (undeveloped emulsions). The
intensity of irradiation was 104 particle/cm2, and
the beam diameter was about 1 cm. Away from the
surface and bottom by at least 50 µm (undeveloped
emulsion), only very thick, dark beam tracks were
chosen for double scanning along the track, fast
scanning in the forward direction and slow scanning
in the backward direction. The pellicles of each stack
were doubly scanned by using a method such that
each track was followed until it either interacted or
left the pellicle. The scanned beam tracks were further
examined by measuring the delta-electron density on
each of them to exclude tracks having a charge less
than the beam-particle charge [1].
2001MAIK “Nauka/Interperiodica”
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Table 1. Mean multiplicities of shower, gray, and black particles (〈ns〉, 〈ng〉, and 〈nb〉, respectively) produced in the
interactions of 6Li, 7Li [8], and 7Li projectiles with emulsion nuclei in various nh intervals

Interval Projectile 〈ns〉 〈ng〉 〈nb〉
nh < 7 6Li 2.91 ± 0.12 0.80 ± 0.03 1.44± 0.06

7Li 2.16 ± 0.09 0.82 ± 0.03 1.55± 0.06
7Li* 2.37 ± 0.14 0.85 ± 0.05 1.28± 0.06

7 � nh < 13 6Li 5.33 ± 0.47 2.92 ± 0.25 6.49± 0.53
7Li 3.91 ± 0.32 2.66 ± 0.22 6.76± 0.56
7Li* 4.00 ± 0.22 3.20 ± 0.12 6.34± 0.19

13 � nh < 27 6Li 10.13± 0.69 6.64 ± 0.47 12.94 ± 0.93
7Li 6.16 ± 0.43 5.75 ± 0.40 12.72 ± 0.88
7Li* 6.59 ± 0.40 7.20 ± 0.28 13.69 ± 0.28

nh � 28 6Li 12.63± 1.93 13.16± 2.01 16.88 ± 2.57
7Li 7.83 ± 1.25 13.05± 2.09 18.51 ± 2.96
7Li* 6.92 ± 0.50 13.48± 0.48 18.79 ± 0.54

* Our study.
In the measured events, secondary particles were
classified as follows: (i) black particle tracks having a
range L < 3mm in emulsion (this range corresponds
to a proton kinetic energy of less than 26 MeV);
(ii) gray particle tracks having relative ionization I∗ =
I/I0 > 1.4, where I is the particle-track ionization
and I0 is the ionization of a shower track in the
narrow forward cone of angle θ � 3◦, and L > 3 mm,
which corresponds to a proton kinetic energy of 26–
400 MeV; (iii) heavily ionizing particle tracks (h)
including black or gray (or both) particle tracks; (iv)
shower particles having I∗ � 1.4 [tracks of this type
with an emission angle of θ � 3◦ were further sub-
jected to rigorous multiple-scattering measurements
for determining momenta and, consequently, for sep-
arating the product pions and singly charged projec-
tile fragments (protons, deuterons, tritons)]; and (v)
multiply charged (Z � 2) projectile fragments subdi-
vided into Z = 2, 3, . . . , Zbeam tracks according to the
measured delta electrons.

The total charge of projectile fragments, Z∗ =∑
niZi, where ni is the number of fragments of

charge Zi in an event, were calculated in each event.
For each track, our measurements resulted in a deter-
mination of (a) the space angle θ (the angle between
the direction of the beam and that of a given track)
and (b) the azimuthal angle φ (the angle between the
projection of a given track onto the plane orthogonal
to the beam and the direction orthogonal to the beam
in this plane (in the counterclockwise direction).
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 5 200
All relevant details concerning emulsion stacks,
methods of measurement, etc., can be found in [1–5].

Over a total length of 113.83 m of scanned tracks,
we found 723 inelastic interactions. Therefore, the
mean free path of 7Li nuclei in the emulsion was λe =
15.74 ± 0.8 cm.

3. MULTIPLICITY CHARACTERISTICS

Energy transfer during high-energy nuclear col-
lisions produces relativistic particles (pions). In this
section, we study the dependence of secondary parti-
cles on the heavily ionizing tracks (nh). It is known
that the impact parameter is difficult to measure ex-
perimentally. For this reason, we consider the multi-
plicity nh of target fragments as a measure of the im-
pact parameter [1–3, 6, 7]. The higher themultiplicity
nh, the lower the impact parameter, and vice versa.
The mean multiplicities of shower, gray, and black
particles (〈ns〉, 〈ng〉, and 〈nb〉, respectively) from the
interactions of 6Li and 7Li projectiles with emulsion
nuclei at, respectively, 4.5 and 3 GeV/c per nucleon
are quoted in Table 1 as functions of nh intervals (col-
lision impact parameter). This table demonstrates
that, with increasing nh (decreasing impact param-
eter), 〈ns〉, 〈ng〉, and 〈nb〉 increase, which indicates
that the number of nucleons from the incident beam
that have interacted with target nuclei increases; the
data in the table also indicate that, in each region of
nh, 〈ng〉 and 〈nb〉 are equal to each other within the
statistical error. For all intervals of nh, the values of
1
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Fig. 1. Mean multiplicity 〈ns〉 as a function of nh for the
interactions of (•) 6Li projectile of momentum 4.5 GeV/c
and (◦) 7Li projectile ofmomentum3GeV/c per projectile
nucleon with emulsion nuclei.

〈ns〉 are less for 7Li than for 6Li, which means the
projectile-energy dependence of themean multiplicity
of shower particles, dominated by pions.

In order to find out why the mean multiplicity 〈ns〉
of shower particles is less for 7Li than for 6Li, we plot-
ted 〈ns〉 as a function of nh in Fig. 1. In this figure, the
flat region (nh ≈ 15 and greater), often referred to as a
plateau, is observed. This region corresponds to a full
overlap of the projectile and target nuclei—that is, to a
collision characterized by an impact parameter equal
the difference between the nuclear radii. Collisions
belonging to this type are referred to as central colli-
sions. It exhibits the absence of projectile fragmenta-
tion and the emission of a large number of secondary
fragments (pions and slow singly charged fragments).
Thus, the mean difference of 〈ns〉 between 6Li and 7Li
in the flat region from Fig. 1 is found to be 3.7. This
value corresponds to the kinetic energy according to
the confirmed relation 〈ns〉 = aEbt , where a = 1.55
and b = 0.43 [9–11], which yields Et ≈ 7.5 GeV. The
value of 7.5 GeV is equivalent to the energy of two
nucleons. Thus, we have arrived at the important
conclusion that two nucleons, mostly neutrons, are
not involved in the collisions of 7Li with emulsion.
Therefore, the decrease in 〈ns〉 associated with 7Li
P

is due to a decrease in the number of participant
nucleons (often two neutrons). The production of
a neutron [12] and the emission of gamma rays are
possible, and 7Li can break up in such a way that one
of its parts interacts strongly with the target, while the
other part goes away, suffering virtually no interaction
(stripping reaction).

4. MULTIPLICITY OF SECONDARY
PARTICLES AND TARGET SPECTATORS

For the inelastic interactions of 7Li with emulsion
nuclei, Table 2 presents the mean multiplicities 〈ns〉,
〈ng〉, 〈nb〉, and 〈nh〉 for the various charged secon-
daries. The data were compared with other data [13–
16] on the interactions of 4He, 6Li, 7Li, and 12C with
emulsion nuclei. For each projectile, the mean num-
ber of interacting nucleons, 〈Nint〉, was calculated on
the basis of experimental data by the formula

Nint = Aproj −
(
Aproj/Zproj

)∑
Zf ,

where Aproj and Zproj are, respectively, the mass and
the charge number of the projectile and

∑
Zf is the

net charge of the projectile fragments that did not
undergo interactions. Although the energy of 6Li
and 4He projectiles (4.5 GeV/c per nucleon) was
higher than the energy of 7Li projectiles (3 GeV/c per
nucleon), the mass number of 7Li is greater than the
mass numbers of 6Li and 4He. From many references
[7, 14, 17], we found that the multiplicities of all
particles increase with the projectile mass. Table 2
shows that 〈Ns〉 for 7Li is less than the corresponding
values for 4He and 6Li. In order to explain this result,
we consider that, owing to the special structure of 7Li,
the emission of a Z = 2 projectile spectator (stripped
He nucleus) proceeds with higher probability (0.38 ±
0.02) per event. In this case, 〈Ng〉 is less than the
corresponding values in 4He and 6Li interactions.

5. STRUCTURES OF 7Li
FROM AN ANALYSIS OF PROJECTILE

FRAGMENTS

We can reveal various features of the fragmenta-
tion process, including the event rate in 7Li–emulsion
interactions as a function of Zmax, the highest charge
of projectile fragments emitted in an interaction event.
We analyzed 723 events of the interactions of 7Li with
emulsion nuclei at 3 GeV/c per projectile nucleon. At
least one charged projectile fragment was observed
in 613 events where we studied Zmax, of projectile
fragments. Projectile-fragmentation events featur-
ing no heavily ionizing particle (nh = 0 events) have
been investigated. The sample contains 110 of these
HYSICS OF ATOMIC NUCLEI Vol. 64 No. 5 2001
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Table 2.Mean multiplicities of secondary particles from the interactions of 4He, 6Li, 7Li, 12C [13–16], and 7Li (our
study) projectiles with emulsion nuclei

4He 6Li 7Li 7Li* 12C

〈ns〉 4.27 ± 0.13 5.70± 0.29 3.60 ± 0.19 3.90± 0.10 7.6± 0.20

〈ng〉 4.60 ± 0.20 4.23± 0.21 3.80 ± 0.12 3.50± 0.20 5.9± 0.30

〈nb〉 4.70 ± 0.20 4.91± 0.30 5.37 ± 0.18 5.10± 0.20 4.3± 0.20

〈nh〉 9.30 ± 0.20 9.14± 0.37 9.17 ± 0.29 8.60± 0.30 9.2± 0.30

〈Nint〉 2.60 ± 0.20 3.36± 0.13 3.92 ± 0.12 3.94± 0.13 5.2± 0.16

〈nα〉 0.36± 0.01 0.41 ± 0.01 0.38± 0.02 1.49 ± 0.13

* Our study.

Table 3. Values of the forward-to-backward ratio F/B for the angular distributions of particles produced in nuclear
collisions

Beam Momentum per nucleon F/B

GeV/c Shower Gray Black Ref.

p 3 10.15± 1.40 3.36± 0.20 1.30± 0.05 [19]

α 4.5 11.50± 0.66 3.00± 0.10 1.42± 0.004 [18]
7Li 3 32.70 ± 2.6 5.18± 0.21 1.60± 0.07 Our study
12C 4.5 38.93± 3.21 4.69± 0.18 1.49± 0.04 [5]
events (nh = 0)—that is, about 15% of the total set
of inelastic events. Figure 2 shows the probability of
events in 7Li–emulsion interactions as a function of
Zmax.

It should be noted that the probability is max-
imal for Zmax = 2 events—that is, for events with
α-particle projectile fragments as maximally charged
fragments. This result is interpreted as that which is
associated with an even–even nucleus of total spin
I = 0 as a constituent of the 7Li nucleus. The author
of [4] deemed that the structure of 6Li interacting
with emulsion is α+ d or α+ p+ n, while our results
suggest that the structure of 7Li interacting with
emulsion is mainly α+ t or α+ d+ n.

6. ANGULAR CHARACTERISTICS
OF CHARGED SECONDARIES

The angular distributions of target fragments—
that is, black and gray particles emitted in 7Li inter-
action with emulsion nuclei at 3 GeV/c per projectile
nucleon—are shown in Figs. 3 and 4. The distri-
butions due to 4He–Em collisions at 4.5 GeV/c per
nucleon [18], p–Em interactions at 3 GeV/c per nu-
cleon [19], and 12C–Em interactions at 4.5GeV/c per
nucleon [20] are also given in the same figures. These
distributions do not depend on the mass of beam
nuclei and do not have any feature or bump structure
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 5 200
that might indicate the occurrence of nuclear-shock-
wave phenomena. The forward (θ < 90◦) to back-
ward (θ > 90◦) ratio (F/B) for these distributions
was calculated and is presented in Table 3. A weak
dependence of this ratio on the projectile mass is ob-
served in target-fragment distributions, which exhibit
an increase in the collision impact with increasing
projectile mass. This results are in agreement with
the results of Tariq et al. [5].

The angular distributions of shower particles pro-
duced in collisions of p, 4He, 7Li, and 12C with emul-
sion are shown in Fig. 5. This figure demonstrates
that the angular distributions of showers are similar
and that prominent peaks are observed at smaller
angles. Furthermore, the ratio F/B was calculated
for charged relativistic shower particles and is given in
Table 3. A strong dependence of the ratio F/B in the
case of relativistic charged secondaries implies that
they are closely associated with projectile nucleons.
These results agree with those from [21].

7. RAPIDITY DISTRIBUTIONS

The pseudorapidity is defined as η = − ln tan (θ/2),
where θ is the angle of secondary-particle emission
with respect to the primary-beam direction. The
normalized pseudorapidity distributions (particle-
number densities in rapidity space) of relativistic
1
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Fig. 2. Probability of nh = 0 events and total sample of
events as a function of Zmax, the highest charge of a
projectile fragment in an event.

charged secondaries emitted in 7Li–Em collisions at
3 GeV/c per projectile nucleon and in 28Si–Em [5]
and p–Em [20] collisions at 4.5 GeV/c per projectile
nucleons are displayed in Fig. 6. The distributions
are normalized to the total numberNev of interactions
in each sample. The η distributions for the cases of p
and 7Li (that is, for small mass numbers of projectiles)
are observed to be independent of the projectile mass
at small η values. The heights and widths of the
distribution increase with the projectile mass. The
centroid in the case of nucleus–nucleus collisions is
much higher than that in the case of proton–nucleus
interactions.

Particle-density distributions for various nh inter-
vals are shown in Fig. 7 in order to reveal a possible
target dependence. The total sample of 7Li inelastic
interactions with emulsion nuclei was divided into en-
sembles of collisionswith hydrogen (H) and with light
(C, N, O) and heavy (Ag, Br) groups of target nuclei
[2, 22]. Figure 7 demonstrates that, in the case of
nucleus–nucleus collisions, the centroids of the dis-
tributions grow and are shifted toward smaller η val-
ues with increasing target mass, whereas, in the case
PH
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Fig. 3. Angular distributions of black particles produced
by various projectiles.
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of interactions induced by protons [5], the distribution
is merely displaced to the region of lower η values with
increasing target size. Thus, one can conclude that
the distributions corresponding to lower and higher
η values are associated with the target and projectile
nuclei, respectively. Hence, rapidity space can be
divided into three regions: the target-fragmentation,
YSICS OF ATOMIC NUCLEI Vol. 64 No. 5 2001
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the projectile-fragmentation, and the central/pionic
region. The target-fragmentation region corresponds
to small η values—that is, to large emission an-
gles associated with target nuclei. The projectile-
fragmentation region is assumed to be populated by
fragments of the projectile nucleus that correspond to
larger values of η—that is, to small emission angles.
The central region is believed to be enriched in par-
ticles produced in the interactions of colliding nuclei
and is independent of either of the two fragmentation
regions.

The pseudorapidity distribution for all shower par-
ticles originating from nh = 0 events is displayed in
Fig. 8, along with the corresponding distribution of
shower particles from Z∗ = 0 central events—that is,
from events where the total charge of projectile frag-
ments in the narrow forward cone θ � 3◦ is equal to
zero. A pronounced rapidity gap is observed between
the two distributions. Owing to the absence of spec-
tators and the complete dominance of participants,
the distribution of central events extends from the
target-fragmentation to the projectile-fragmentation
region. The distribution of nh = 0 events is domi-
nated by the projectile spectators; thus, it is concen-
trated largely in the projectile-fragmentation region.
These features pertain to the limiting-fragmentation
hypothesis.

In order to examine the ns dependence of the
pseudorapidity of shower particles produced in 7Li–
emulsion interactions, the data are partitioned into
three different ns groups: ns � 8, 9 < ns � 14, and
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 5 200
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ns � 15. The pseudorapidity distributions of charged
shower particles in the various ns bins are plotted
in Fig. 9. This figure clearly demonstrates that,
with increasing ns, the peaks of the distributions are
shifted toward lower values of η and that the excess of
particles tends to appear in the central rapidity region.
1
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8. CONCLUSIONS

The present study of the interactions of 7Li projec-
tiles with emulsion at 3 GeV/c per projectile nucleon
has led to the following conclusions:

(1) The mean multiplicities 〈ns〉, 〈ng〉, and 〈nb〉 of
PH
secondary particles depend on the impact parameter
and increase with increasing target mass number.

(2) The mean multiplicity 〈ns〉 of shower particles
for 7Li projectiles is less than that for 6Li projectiles,
which implies a decrease in the number of participant
nucleons, typically by two neutrons.

(3) By studying the function of Zmax, the highest
charge of a projectile fragment emitted in an interac-
tion event, we have found that the structure of the 7Li
nucleus is basically α+ t or α+ d+ n.

(4) A smooth projectile-mass dependence of the
F/B ratio has been observed for target fragments; at
the same time, a strong dependence has been revealed
in the case of relativistic charged secondaries.

(5) The collisions in question seem to become
more central with increasing ns, as well as with in-
creasing projectile mass.

(6) The angular distributions of shower particles
have lent support to the limiting-fragmentation hy-
pothesis.
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Abstract—Anew α6µ3/ (m1m2) ln (m1m2) correction that arises in one-photon particle interaction in the
muonium atom is found and calculated. c© 2001 MAIK “Nauka/Interperiodica”.
Although relativistic two-body theory is of interest
in and of itself, its application to calculating the struc-
ture of the energy levels in hydrogen-like atoms is also
of paramount importance. Since such atoms are the
most accessible to both theoretical and experimental
investigations, they offer the possibility of testing the
fundamentals of quantum theory. In addition, a com-
parison of theoretical and experimental spectroscopic
data on hydrogen-like atoms can be used to refine
the value of the fine-structure constant α, which is
expressed in terms of the universal fundamental con-
stants. Finally, the results of such investigations can
play an important role in practical applications like
metrology.
In a number of recent studies, logarithmic cor-

rections to the fine shift of the S levels in hydrogen-
like atoms were considered to the sixth order in the
constant α. For the sake of convenience, we represent
these corrections in the form

∆EnS
(
α6
)

=
α6µ3

m1m2

(
C0 lnβ−1 + C1 lnα−1 +C2β ln2 β

)
,

β =
m1

m2
, µ =

m1m2

m1 +m2
. (1)

It was shown in [1, 2] that

C1 =




0 form1 �= m2
1
32
α6mδl0n

−3 form1 = m2 = m.

In [3], we considered the coefficient C2; here, we
are going to calculate C0.
Our consideration is based on the quasipotential

equation [4, 5]
(E − ε1p − ε2p)ΨE (p,E) (2)

1)Saratov State University, Astrakhanskaya ul. 83, Saratov,
490071 Russia.
1063-7788/01/6405-0917$21.00 c©
= (2π)−3
∫
d3qVE (p, q,E) ΨE (q,E),

where εip =
√
p2 +m2

i and VE is the quasipotential

given by

VE = F−1
E −

(
Ĝ+
E

)−1
.

Here, we have

F−1
E = (2π)3 δ3 (p− q) (E − ε1p − ε2p) ,

[. . .]+ = u∗1u
∗
2 [. . .] γ10γ20u1u2,

ui is the Dirac bispinor of the ith particle, and

Ĝ (p, q,E) = (2π)−2
∫
G (p0, q0, p, q, E) dp0dq0.

(3)
We now isolate the interaction with a Coulomb ker-
nel in the original equation and denote by ∆En the
correction to the energy level En of the nonrelativistic
Schrödinger equation with a Coulomb potential:(

F−1
En

+ ∆En −K+
c − ṼE

)
ΨE = 0, (4)

∆En = E − En, ṼE = VE −K+
c ,

Kc (p, q) = e1e2γ10γ20 (p− q)−2 .

In the nonrelativistic equation, the energy eigenval-
ues for the Coulomb interaction and the correspond-
ing eigenfunctions are determined by the expressions

En = m1 +m2 −
µα2

2n2
,

En = E1n + E2n = η1En + η2En,

η1 =
E2
n +m2

1 −m2
2

2E2
n

, η2 =
E2
n +m2

2 −m2
1

2E2
n

,

E1n = m1 −
µ2α2

2m1n2
,
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E2n = m2 −
µ2α2

2m2n2
,m2

1 − E2
1n (5)

= m2
2 − E2

2n =
µ2α2

n2
,

Ψ1S (p) = ϕ1 (0)
8πω

(p2 + ω2)2
, |ϕ1 (0)|2 =

ω3

π
, (6)

ω = µα,

Ψ2S (p) = ϕ2 (0)
16πΩ

(p2 + Ω2)2
, |ϕ2 (0)|2 =

Ω3

π
, (7)

Ω =
1
2
ω.

Since (
p2 +

ω2

n2

)
= (ε1p − E1n) (ε1p +E1n)

= (ε2p − E2n) (ε2p + E2n) ,

we have

(ε1p + ε2p − En) =

(
p2 + ω2/n2

)
(ε1p + ε2p + En)

(ε1p + E1n) (ε2p + E2n)
.

If we use the last relation in Eq. (4), we arrive at the
simplest relativistic generalization of the Coulomb
wave function:

ϕ
′
c = ΩpΨc, Ωp =

(ε1p +m1) (ε2p +m2)
2µ (ε1p + ε2p +m1 +m2)

.

(8)
According to perturbation theory, the exchange of a
transverse photon between the muon and the electron
generates a correction to the fine shift of S levels,

∆EnS =
〈
ϕ′nS

∣∣ (KT )+0F
∣∣ϕ′nS〉 , (9)

where
(KT )+0F = F−1 (G0KTG0)

+ F−1,

KT =
e1e2
k2

(
δij −

kikj
k2

)
γi1γ

j
2, i, j = 1, 2, 3.

We use an integral representation of the Dirac delta
function to perform the two-time operation in Eq. (3);
as a result, we reduce integration with respect to the
relative momenta p0 and q0 to contour integrals. In
the ensuing calculations, it is convenient to employ
the simplest recipes of the residue theory like

∞∫
−∞

dp0e
ip0t

(p0 + E − εp + iε) (E − p0 − εp + iε)
(10)

=
πi

E − εp
e−i(εp−E−iε)|t|.

The matrix structure of the expression for KT is
simplified owing to the symmetry properties of the
integrand. As a result, the fine shift as given by (9)
PH
can be expressed in terms of integrals with respect to
3-momenta. Specifically, we have

∆EnS (11)

=
4α6µ5

(2π)4

∫
d3pNpΩp

(p2 + ω2)2

∫
d3qNqΩq

(q2 + ω2)2 (p− q)2

×
{
− (p+ q)2

(
1
M1p

+
1
M1q

)(
1
M2p

+
1
M2q

)

+

(
p2 − q2

)2
(p− q)2 (ε1p + ε1q) (ε2p + ε2q)

×
[ (

p2 + q2
)2

M1pM1qM2pM2q

+4 + 2
(
p2 + q2

)( 1
M1pM1q

+
1

M2pM2q

)]}
,

where

Np =

√
M1pM2p

ε1pε2p
, M1p = ε1p +m1,

M2p = ε2p +m2.

The coefficients of the logarithmic terms, C0 andC2β,
are a priori unknown. Therefore, it is natural to ana-
lyze first the contributions of order α6µ3/ (m1m2) ×
ln2 β−1. Such corrections are associated with typical
integrals referred to here as standard integrals:

I1st =

∞∫
0

dp

p2 + γ2

∞∫
0

dq

q2 + γ2

√
p2 + β2

√
q2 + β2√

p2 + 1 +
√
q2 + 1

,

(12)

β � 1;

I2st =

∞∫
0

dpp√
p2 + β2 (p2 + γ2)

∞∫
0

dq√
q2 + 1

ln
∣∣∣∣p− qp+ q

∣∣∣∣,

γ =
αβ

1 + β
.

The integral I1st stems from terms proportional to(
p2 − q2

)
/ (p− q)2 and is free from positive powers

of p and q in the numerator. The integral I2st arises in
the terms of ∆EnS that include the Coulomb factor
(p− q)−2. The calculation of C2 yields

C2 = 1/π2,

so that the corresponding correction is

∆E1S =
α6µ3β

m1m2π2

(
π2

2
+

√
2 + lnβ−1

)
lnβ−1,

(13)

∆E2S =
α6µ3β

8m1m2π2

(
π2

2
+

√
2 + lnβ−1

)
lnβ−1.
YSICS OF ATOMIC NUCLEI Vol. 64 No. 5 2001
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Let us now investigate the different standard inte-
gral

I3st =

∞∫
0

dkNk
k2 + α2µ2

∞∫
0

dqNq
ε1qε2q

, (14)

where

Nk = NβkN1k,

Nβk =

√√
k2 + β2 + β√
k2 + β2

,

N1k =

√√
k2 + 1 + 1√
k2 + 1

.

A feature peculiar to (14) is that there are two inde-
pendent integrals with respect to the variables k and
q.We begin by considering the integral

∞∫
0

dq

ε1qε2q
NβqN1q. (15)

Both radicals are clearly less than unity, while the

integral
∞∫
0

dq

ε1qε2q
, calculated in our previous study,

includes the factor lnβ−1 [3]. It only remains to
estimate the integral

∞∫
0

dq

ε1qε2q

√
ε1q +m1

2ε1q

(
1 −

√
ε2q +m2

2ε2q

)
. (16)

It can easily be shown that this integral does not
contain the factors lnβ−1.

Similarly, we can get rid of the radical N1k. After
that, it is possible to isolate quantities proportional to

α5 in the integral
∞∫
0

dk

k2 + α2µ2
Nβk and to calculate

exactly the coefficient of the logarithmic term,

I3st =
2α6µ3

m1m2

(
1√
2

ln
(
1 +

√
2
)
− 1
)

lnβ−1. (17)

This integral is a kind of reference: through a
comparison with it, we can disclose expressions that
contain the contributions of interest.
By way of example, we consider the following part

of the correction∆EnS :

∆E′ =
α6µ5

2π4

∫
d3pNpΩp

(p2 + α2µ2)2

×
∫

d3qNqΩq

(q2 + α2µ2)2

(
p2 − q2

)2
(p− q)4

p2 + q2

M1pM1q
. (18)
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Using the symmetry of the integrand with respect to
the substitution p↔ q and performing some simple
reductions, we arrive at

∆E′ =
α6µ5

4π4

∫
d3pNp

(p2 + α2µ2)2
(19)

×
∫

d3qNq

(q2 + α2µ2)2

(
p2 − q2

)2
(p− q)4

q2

(ε1p + ε1q) (ε2p + ε2q)
.

Integration with respect to the angles is straightfor-
ward. Using the formula∫

d2θp

(
p2 − q2

)2
(p− q)4

= 4π,

we obtain

∆E′ =
4α6µ3

π2
(20)

×
∞∫
0

dpNp

(p2 + α2µ2)2

∞∫
0

dqNq
(ε1p + ε1q) (ε2p + ε2q)

.

The last integral can easily be recast into the standard
form I3st:

∆E′ =
2
π2
I3st (21)

=
4α6µ3

π2m1m2

(
1√
2

ln
(
1 +

√
2
)
− 1
)

lnβ−1.

Let us now analyze the divergences in expression (11)
for the fine shift. We represent the difference of the
divergent integrals in the form

∆E∞ =
α6µ5

2π4

∫
d3pΩpNp

(p2 + α2µ2)2
(22)

×
∫

d3qΩqNq

(q2 + α2µ2)2

[(
p2 − q2

)2
(p− q)4

× p4

M1pM1qM2qM2p (ε1p + ε1q) (ε2p + ε2q)
(23)

− 1
M2qM1q

]
.

Upon integration with respect to the angles and sim-
ple reductions, we arrive at

∆E∞ =
2α6µ3

π2

∞∫
0

dqNq
(q2 + α2µ2)M2q

×




∞∫
0

dpNpp
2

M2p (ε1p + ε1q) (ε2p + ε2q)
(24)

−
∞∫
0

dpNpM1p

(p2 + α2µ2)


 .
1
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Each term in the difference diverges logarithmically
in the variable p. After some simple algebra, we find,
however, that the divergences cancel:

∆E∞ =
2α6µ3

π2

∞∫
0

dqNqM
−1
2q

q2 + α2µ2

∞∫
0

dpNp (25)

×
{
m1 + E1

p2 + α2µ2
+

1
ε1p + ε1q

×
(
ε1p + E1

ε1p + E1
+

M2q

ε2p + ε2q

)}
.

The first two terms do not involve the quantities
lnβ−1, while, apart from a numerical factor, the last
term corresponds to the correction∆Epq:

∆E∞ =
1
π2
Ist. (26)

Summing all contributions from the one-photon par-
ticle interaction in the muonium atom, we arrive at

∆E1S =
4α6µ3

π2m1m2

(
1√
2

ln
(
1 +

√
2
)
− 1
)

lnβ−1,

(27)

∆E2S =
α6µ3

2π2m1m2

(
1√
2

ln
(
1 +

√
2
)
− 1
)

lnβ−1.

(28)
In the hydrogen-like atom with a nuclear charge Ze,
the shift of the S levels is obtained according to ex-
pression (9), where the eigenfunction ΨnS satisfies
the equation(

p2 + Z2α2µ2/n2
)2 ΨnS (p) (29)

=
µαZ

π2

∫
d3q

(p− q)2
ΨnS (q) ,

the value of this function at the origin being

|ΨnS (0)|2 =
(Zαµ)3

πn3
. (30)

Therefore, we find, for arbitrary n and Z, that

∆EnS =
4 (Zα)6 µ3

π2m1m2n3

(
1√
2

ln
(
1 +

√
2
)
− 1
)

lnβ−1.

(31)

We now present the numerical frequency values
corresponding to the shifts of the 1S and 2S levels
in the muonium atom (the subscripts 1 and 2 label
quantities referring to the electron and the muon,
respectively):

δνeµ1S = −80 kHz, δνeµ2S = −10 kHz, (32)
PH
δνeµ (1S − 2S) = −70 kHz.
In the conventional hydrogen atom and in the muonic
hydrogen atom, the differences of the shifts of the 1S
and 2S levels are

δνep (1S − 2S) = −9 kHz,

δνµp (1S − 2S) = −128.1 kHz.
(33)

The results that we obtained for the above contribu-
tions to the fine shift of the S levels in the hydrogen-
like atom are on the same order of magnitude as
the corresponding corrections (without logarithms)
calculated in [6–8]:

∆EnS =
(Zα)6

n3

m2
1

m2

(
4 ln 2 − 7

2

)
.

The precise measurements reported in [9] yielded

νeµ (1S − 2S) = 2455528941.0 (9.8) MHz. (34)

Thus, the corrections obtained here are still be-
yond the experimental accuracy.
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Abstract—The electron excitation of nucleon resonances is discussed both from the theoretical and from
the experimental point of view. This discussion is based on a phenomenological approach that employs
the conservation of the electromagnetic and vector-meson hadronic currents and the requirements of
limiting chiral invariance. For the electron excitation of Jπ = 1/2±, 3/2∓, 5/2±, . . . nucleon resonances,
the structure functions are defined in terms of Sachs transition form factors. The resulting resonance
structure functions for l + N → l + R processes are used in parametrizing smooth (background) structure
functions for l + N → l + X inelastic scattering. c© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Electromagnetic transition form factors carry im-
portant information about spin effects that are asso-
ciated with the collective interaction of quarks and
gluons in the nucleon [1–3]. Data on the transition
form factors for the p → ∆+(1232) transition were
previously used in clarifying the role of diquark [4] and
quark–gluon [5] configurations in the structure of the
nucleon, in estimating the deformation of the quark
wave functions for the nucleon and for the resonance
because of hyperfine chromomagnetic interaction [6],
and in testing the conservation of hadron helicity in
exclusive reactions [7].

However, the validity of such estimates is deter-
mined by the reliability of the empirical values used for
the transition form factors. There are a few sources
of systematic errors in determining transition form
factors on the basis of experimental data.

First of all, there is an ambiguity is separating
the electron-excitation process from background
processes. Because of dynamical resonance coupling
to the background [1], this is a rather complicated
task, especially in the case of exclusive reactions like
single-pion electroproduction on a nucleon [8, 9].

We further note that transition form factors that
belong to different types and which determine the
same matrix element of the electromagnetic hadronic
current appear in the structure functions and, hence,
in the l + N → l + R differential cross section with
different kinematical factors [10]. The explicit form of
these factors is of importance not only in extracting

*e-mail: ruskin@satsun.sci.kz
**e-mail: pavel@satsun.sci.kz
1063-7788/01/6405-0921$21.00 c©
empirical values of transition form factors from data
on the differential cross section but also in simulating
transition form factors.
Finally, various assumptions on the relationship

between the longitudinal transition form factor and
the transverse transition form factors are made, in just
the same way as in the case of the elastic form factors
for the nucleon [11], in extracting empirical values for
transition form factors from data on the differential
cross section.
In the present study, we express the struc-

ture functions for the electron excitation of J =
l + 1/2 (l = 0, 1, 2, . . .) nucleon resonances in terms
of the Sachs transition form factors of the type

G
(l)
i (Q2), i = 1, 2, 3, where the subscript value of

i = 1 corresponds to the longitudinal transition form
factor, while the other two subscript values corre-
spond to the transverse transition form factors. In
just the same way as elastic Sachs form factors,
they are free from kinematical singularities, obey
some useful kinematical constraints, and appear in
the l + N → l + R differential cross section without
forming mixed terms of the type G(l)

i G
(l)
j , i �= j. In

order to describe Sachs transition form factors, one
can make use of the generalized vector-dominance
model [12], which was successfully applied to elastic
Sachs form factors.
The resulting resonance structure functions make

it possible to express background structure functions
in terms of simple parametric forms that reproduce
the results obtained by measuring structure functions
in the threshold [13] and in the deep-inelastic [14]
region of the deep-inelastic-scattering process l +
N → l + X.
2001MAIK “Nauka/Interperiodica”



922 RUS’KIN, KHARCHEVNIKOV
Here, we use the Feynman metric and the sys-
tem of units where � = c = 1. We also adopt the
following notation: q and q′ are the 4-momenta
of, respectively, the initial and the scattered lepton
(q2 = q′2 = m2

l � 0); p and p′ are the 4-momenta of,
respectively, the nucleon involved and the nucleon
resonance (p2 = M2, p′2 = M2

R); k is the virtual-
photon 4-momentum, kµ = pµ− p′µ, k

2 = −Q2 ≤ 0;
Pµ ≡ p′µ + pµ, P2 = 2M2

R + 2M2 − k2, (k,P) =
M2

R −M2, Q± ≡ (MR ±M)2 − k2; (k,P)µ ≡
k2Pµ − (k,P)kµ, k(α1, αl) ≡ kα1kα2 · · · kαl

; gµν
is the metric tensor, diag gµν = (1,–1,–1, –1);
γµ is a Dirac matrix in the Pauli representation,
γ5 = iγ0γ1γ2γ3, σµν = (γµγν − γνγµ)/2; εµλ1λ2λ3

is the fully antisymmetric unit tensor (ε0123 = 1),
εµ ≡ εµλ1λ2λ3γ

λ1γ5Pλ2kλ3 , εαµ ≡ εσαλ1λ2εσµλ3λ4 ×
Pλ1kλ2Pλ3kλ4 ; u(p, s) is a bispinor that describes a
free-nucleon state characterized by the polarization
s; and uα1,α2,...,αl

(p′, s′) is the Rarita–Schwinger
spin-tensor that describes the state of a stable nu-
cleon resonance of spin J = l + 1/2, l = 1, 2, . . ., and
polarization s′. This spin-tensor satisfies the Dirac
equation

(p̂′ −MR)uα1,α2,...,αl
(p′, s′) = 0 (1)

and obeys the following additional constraints:

(i) uα1,α2,...,αl
(p′, s′) is symmetric under the inter-

change of any pair of tensorial indices.

(ii) p′αiu...αi...(p
′, s′) = 0.

(iii) γαiu...αi...(p
′, s′) = 0 for any tensorial in-

dex αi.
In addition, the following normalization condition

must be satisfied:
ūα1,α2,...,αl

(p′, s′)uα1,α2,...,αl(p′, s′) = 2MR(−1)l.
(2)

2. DETERMINATION OF SACHS
TRANSITION FORM FACTORS

In accordance with relativistic invariance and with
parity conservation, the matrix element of the electro-
magnetic hadronic current for the 1/2+ → Jπ tran-
sition can be expressed in terms of four invariant

transition structure functions f (l)
i (k2) (i = 1, 2, 3, 4)

as [15]

〈R|Jµ(0)|N〉 = ūα1,α2,...,αl−1,α(p′, s′)
k(α1, αl−1)

(MR + M)l−1

(3)

×
[
f

(l)
1 (k2)

MR + M
kαγµ − f

(l)
2 (k2)

(MR + M)2
kασµνk

ν

P

− f
(l)
3 (k2)

(MR + M)2
kαkµ − f

(l)
4 (k2)gµα

]
Ãu(p, s),

where Ã = 1 for transitions characterized by a nor-
mal spin–parity (Jπ = 1/2+, 3/2−, 5/2+, . . .) and
Ã = γ5 for transitions characterized by an anomalous
spin-parity (Jπ = 1/2−, 3/2+, 5/2−, . . .).
From current conservation, it follows that

f
(l)
3 (k2) =

(MR ∓M)(MR + M)
k2

f
(l)
1 (k2) (4)

−(MR + M)2

k2
f

(l)
4 (k2),

where the upper (lower) sign in the factor (MR ∓M)
is taken for a transition characterized by a normal
(anomalous) spin-parity.
According to (4), the number of independent

gauge-invariant transition form factors reduces to
three, and they can be defined as

F
(l)
1 (k2) =

(MR + M)2

k2
f

(l)
1 (k2),

F
(l)
2 (k2) = f

(l)
2 (k2), (5)

F
(l)
3 (k2) =

MR + M

MR −M

(MR + M)2

k2
f

(l)
4 (k2).

In this case, the matrix element (3) can be recast
into the form

〈R|Jµ(0)|N〉 = ūα1,α2,...,αl−1,α(p′, s′)
k(α1, αl−1)

(MR + M)l−1

(6)

×
[

F
(l)
1 (k2)

(MR + M)3
kα(k2γµ

−(MR ∓M)kµ) − F
(l)
2 (k2)

(MR + M)2
kασµνk

ν

− F
(l)
3 (k2)

(MR + M)3
(MR −M)(k2gαµ − kαkµ)

]
Ãu(p, s).

We note that the gauge-invariant transition form

factors F
(l)
i (k2) are analogs of the Dirac and Pauli

elastic form factors.
In order to go over from the gauge-invariant form

factors, F (l)
i (k2) to the Sachs transition form factors

we can make use of the identities [16]

ūα1,α2,...,αl−1,α(p′, s′)
k(α1, αl−1)

(MR + M)l−1

×
[
kα
(
k2γµ − (MR ∓M)kµ

)

HYSICS OF ATOMIC NUCLEI Vol. 64 No. 5 2001
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− 1
Q±

(
kα(k,P)µ(MR ±M) − ik2kαεµ

)]

×Ãu(p, s) ≡ 0,

ūα1,α2,...,αl−1,α(p′, s′)
k(α1, αl−1)

(MR + M)l−1

×
[
kασµνk

ν +
1
Q±

(
kα(k,P)µ

−ikαεµ(MR ±M)
)]
Ãu(p, s) ≡ 0, (7)

ūα1,α2,...,αl−1,α(p′, s′)
k(α1, αl−1)

(MR + M)l−1

×
[
(MR −M)(k2gαµ − kαkµ)

−MR −M

Q+Q−

(
kα(k,P)µ(k2 + (k,P)) + k2εαµ

)]

×Ãu(p, s) ≡ 0,

which make it possible to reduce the matrix element
(6) to the form

〈R|Jµ(0)|N〉 = ūα1,α2,...,αl−1,α(p′, s′)
k(α1, αl−1)

(MR + M)l−1

×
[

G
(l)
1 (k2)

(MR + M)2
kα(k,P)µ

Q±
− G

(l)
2 (k2)
Q+Q−

εαµ (8)

− G
(l)
3 (k2)

(MR + M)Q±

(
ikαεµ +

1
4MR

εαµ

)]
Ãu(p, s),

where the Sachs transition form factors G(l)
i (k2) are

related to F (l)
i (k2) by the equations

G
(l)
1 (k2) =

MR −M

MR + M
F

(l)
1 (k2) + F

(l)
2 (k2)

−MR −M

MR + M

k2 + (k,P)
Q∓

F
(l)
3 (k2),

G
(l)
2 (k2) =

MR −M

(MR + M)3
k2F

(l)
3 (k2) (9)

− Q∓
4MR(MR + M)

×
[

k2

(MR + M)2
F

(l)
1 (k2) +

MR −M

MR ∓M
F

(l)
2 (k2)

]
,

G
(l)
3 (k2) =

k2

(MR + M)2
F

(l)
1 (k2)

+
MR −M

MR ∓M
F

(l)
2 (k2).

As in Eqs. (4)–(8), the upper (lower) sign in the
factors (MR ∓M) and Q∓ is taken for transitions
characterized by a normal (anomalous) spin–parity.
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The condition requiring that the gauge-invariant
transition form factors not have kinematical singu-
larities imposes kinematical constraints on the Sachs
transition form factors at k2 = 0, k2 = (MR + M)2,
and k2 = (MR −M)2. According to (9), we easily
obtain

G
(l)
2 (k2 = 0) = − (MR ∓M)2

4MR(MR + M)
G

(l)
3 (k2 = 0),

(10)

G
(l)
2 (Q∓ = 0) = 0,

G
(l)
1 (Q± = 0) =

1
2
MR + M

MR ±M

×
(
G

(l)
3 (Q± = 0) ± MR + M

M
G

(l)
2 (Q± = 0)

)
.

In the case of 1/2+ → 1/2± transitions, the ma-
trix element (3) does not contain a term involving

f
(0)
4 (k2) ≡ 0. As a result, we have F (0)

3 (k2) ≡ 0 and
G

(0)
2 (k2) ≡ 0. Accordingly, the matrix element of

the electromagnetic hadronic current for the 1/2+ →
1/2± transition can be represented in the form

〈R|Jµ(0)|N〉 = ū(p′, s′)

[
G

(0)
1 (k2)

MR + M

(k,P)µ
Q±

(11)

− G
(0)
3 (k2)
Q±

iεµ

]
Ãu(p, s).

The form factorsG(0)
1 (k2) and G(0)

3 (k2) then obey the
kinematical constraints

G
(0)
1 (Q± = 0) =

MR + M

MR ±M
G

(0)
3 (Q± = 0). (12)

3. STRUCTURE FUNCTIONS FOR THE
ELECTRON EXCITATION OF NUCLEON

RESONANCES

In the one-photon approximation, the invariant
amplitude for the electron excitation of a resonance R
is determined by the photon propagator and the ma-
trix elements of the leptonic and the hadronic current:

A(R) =
e2

k2
〈l′|jµ(0)|l〉〈R|Jµ(0)|N 〉. (13)

Accordingly, the quantity obtained by averaging the
squared modulus of the amplitude over the initial spin
states and summing the result over the final spin
states can be expressed in terms of the leptonic and

the hadronic tensor (lµν andW (R)
µν , respectively) as

|A(R)|2 =
(
e2

k2

)2

lµνW (R)
µν . (14)
1
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The explicit form of the leptonic tensor is well known
to be

lµν = 2
[
q′µqν + qµq′ν +

k2

2
gµν
]
. (15)

By using relativistic invariance, parity conservation,
and electromagnetic-hadronic-current conservation,
we can in general express the hadronic tensor

W (R)
µν ≡ 1

2

∑
s′,s

〈R(p′, s′)|Jµ(0)|N(p, s)〉

×〈R(p′, s′)|Jν(0)|N(p, s)〉+ (16)

in terms of two invariant structure functions
W

(R)
1,2 (k2, (k, p)) [17] and represent the squared mod-

ulus of the amplitude and, accordingly, the l + N →
l + R differential cross section as

|A(R)|2 =
(
e2

k2

)2

× 8q0q′0M cos2

(
θ

2

)
(17)

×
[
2 tan2

(
θ

2

)
W

(R)
1 + W

(R)
2

]
,

d2σ(R)

dq′0d cos θ
=

πα2

2q2
0

cos2(θ/2)
sin4(θ/2)

(18)

×
[
2 tan2

(
θ

2

)
W

(R)
1 + W

(R)
2

]
,

where q0 and q′0 are the the energies of, respectively,
the incident and the scattered lepton; θ is the lepton
P

scattering angle in the laboratory frame; and α =
e2/4π � 1/137 is the fine-structure constant.

In order to determine the hadronic tensor (16) in
terms of transition form factors, it is necessary to
know the operator of summation over the polariza-
tions of J = l + 1/2 (l = 1, 2, 3, . . .) particles,

Λαβ
l (p′) ≡

∑
s′

uβ1,β2,...,βl−1,β(p′, s′) (19)

×ūα1,α2,...,αl−1,α(p′, s′)k(α1, αl−1)k(β1, βl−1).

The explicit form of this operator is [16]

Λαβ
l (p′) = −ηl

(
Q+Q−
M2

R

)l−1

(p̂′ + MR) (20)

×
[
gβα − 2

3M2
R

p′βp′α − 1
3
γβγα

+
1

3MR
(p′βγα − γβp′α)

]
,

where

ηl ≡
(l!)2

(2l)! · 2l−2
. (21)

By using the matrix elements (8) and operator (20) in
(16) and evaluating the traces of the γ matrices, we
obtain [16]
W (R)
µν = ηl

(
Q+Q−

M2
R(MR + M)2

)l [
−
(
G

(l)
1 (k2)

)2
× Q∓K2

6(MR + M)2

(
PµPν

P2
(22)

+
(k,P)2

P2K4
KµKν −(k,P)

P2K2
(PµKν + KµPν)

)
+
(

2
3
M2

R(MR + M)2

Q∓

(
G

(l)
2 (k2)

)2

+
1
8
Q∓

(
G

(l)
3 (k2)

)2
)(

−gµν +
PµPν

P2
+

KµKν

K2

)]
,

where we have introduced the notation Kµ ≡ kµ −
Pµ(k,P)/P2 and where we have used the relations
(K,P) = 0 and P2K2 = −Q+Q−.
Taking into account, in (16), the matrix elements

(11) and the operator of summation over the polariza-
tions of spin-1/2 particles,∑

s′

u(p′, s′)ū(p′, s′) = (p̂′ + MR), (23)

we find for 1/2+ → 1/2± transitions that

W (R)
µν = −

(
G

(0)
1 (k2)

)2 Q∓K2

(MR + M)2
(24)

×
(
PµPν

P2
+

(k,P)2

P2K4
KµKν
H

−(k,P)
P2K2

(PµKν + KµPν)
)

+ Q∓
(
G

(0)
3 (k2)

)2

×
(
−gµν +

PµPν

P2
+

KµKν

K2

)
.

Expressions for the structure functions in terms
of the Sachs form factors can easily be found [16] by
contracting the hadronic and the leptonic tensor. By
additionally taking into account nucleon-resonance
instability with the aid of the Breit–Wigner represen-
tation for the production amplitude [this is equivalent
to replacing δ(Sx −M2

R) by the Breit–Wigner factor
BW(Sx)], we find, for the structure functions describ-
ing l = 1, 2, 3, . . . transitions, that
YSICS OF ATOMIC NUCLEI Vol. 64 No. 5 2001
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2MW
(l)
1 (Sx, Q2) =

ηl
6

(
1 − M

MR

)2l (
1 +

Q2

M2
R −M2

)2l [
1 +

4M2Q2

(M2
R + Q2 −M2)2

]l

×
(
(MR ∓M)2 + Q2

) [3
4

(
G

(l)
3 (Q2)

)2
+

4M2
R(MR + M)2

((MR ∓M)2 + Q2)2
(
G

(l)
2 (Q2)

)2
]

BW(Sx),

νW
(l)
2 (Sx, Q2) =

ηl
6

Q2

M2
R + Q2 −M2

(
1 − M

MR

)2l (
1 +

Q2

M2
R −M2

)2l

(25)

×
[

1 +
4M2Q2

(M2
R + Q2 −M2)2

]l−1 (
(MR ∓M)2 + Q2

) [3
4

(
G

(l)
3 (Q2)

)2

+
4M2

R(MR + M)2

((MR ∓M)2 + Q2)2
(
G

(l)
2 (Q2)

)2
+

Q2

(MR + M)2
(
G

(l)
1 (Q2)

)2
]

BW(Sx),
where 2Mν = 2(k, p) = M2
R + Q2 −M2. For the

structure functions describing the 1/2+ → 1/2± (l =
0) transitions, we similarly obtain

2MW
(0)
1 (Sx, Q2) =

(
(MR ∓M)2 + Q2

)
×
(
G

(0)
3 (Q2)

)2
BW(Sx),

νW
(0)
2 (Sx, Q2) =

Q2

M2
R + Q2 −M2

(26)

×
(
(MR ∓M)2 + Q2

) [ Q2

(MR + M)2
(
G

(0)
1 (Q2)

)2

+
(
G

(0)
3 (Q2)

)2
]

BW(Sx).

The Breit–Wigner factor

BW(Sx) ≡ MRΓR(Sx)

π
[
(Sx −M2

R)2 + M2
RΓ2

R(Sx)
] , (27)

which appears in expressions (25) and (26), repre-
sents the distribution of the square of the invariant
mass of products originating from the decay of a
resonance with 4-momentum squared p′2 = Sx and
with the total hadronic-decay width ΓR(Sx) near the
value Sx = M2

R.

4. GENERALIZED VECTOR-DOMINANCE
MODEL FOR TRANSITION FORM FACTORS

The conserved vector-meson hadronic currents
that describe an N → R transition have the same
structure as the electromagnetic hadronic current (8).
In just the same way as in the case of elastic form
factors [11, 12], this makes it possible to represent the
isoscalar (s) and isovector (v) transition form factors
as

G
(l)s,v
i (Q2) =

(
G

(l)s,v
i (Q2)

)
VDM
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+
(
G

(l)s,v
i (Q2)

)
VDM

f (l)(Q2). (28)

The first term in (28) takes into account virtual pho-
ton → vector meson transitions and can be written
in the form
(
G

(l)s,v
i (Q2)

)
VDM

=
n(s,v)∑
k=1

g
(l)s,v
i (k)

/(
1 +

Q2

m2
k

)
,

(29)

i = 1, 2, 3,
which is conventional within the vector-dominance
model (VDM). In expression (29), n(s, v) is the num-
ber of the isoscalar (isovector) vector mesons that are
taken into account in the model;
m2

1 < m2
2 < . . . < m2

n(s,v), m1 = mω in the case
of isoscalar and m1 = mρ in the case of isovector

mesons; and g(l)s,v
i (V ) ≡ g

(l)
i,V NR/gV are the residues

at the poles of vector mesons V at k2 = m2
V , where

g
(l)
i,V NR is the V NR coupling constant and gV is
the vector-meson decay constant for the electron–
positron channel.
The second term in (28) takes into account virtual

photon→ vector meson→multiparticle interme-
diate states transitions. Assuming, as in the case of
elastic form factors [12], that the behavior of the tran-
sition form factors in the vicinities of vector-meson
poles is determined exclusively by pole contributions
and that the contribution of cuts does not distort the
asymptotic behavior of the transition form factors that
is predicted by limiting chiral invariance [17], we can
represent the function f (l)(Q2) in the form

f (l)(Q2) =
−αl

(
Q2/Λ2

l

)
1 +

(
Q2/Λ2

l

)2 , (30)

where 0 ≤ αl ≤ 1.
The limiting chiral invariance of the matrix ele-

ments (8) and (11) of the hadronic currents imposes
1
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rather stringent constraints on the asymptotic behav-
ior (forQ2 � M2

R) of the longitudinal form factor and
the transverse form factors:

G
(l)s,v
2 (Q2)/G(l)s,v

3 (Q2) = − Q∓
4MR(MR + M)

,

G
(l)s,v
1 (Q2)/G(l)s,v

3 (Q2) � const/Q2. (31)

Together with the kinematical constraints (10) and
(12) and the condition

G
(l)s,v
i (0) =

(
G

(l)s,v
i (0)

)
VDM

=
n(s,v)∑
k=1

g
(l)s,v
i (k),

(32)

the requirements (31) of limiting chiral invariance
make it possible to represent the pole transition form
factors (29) as

(
G

(l)s,v
1 (Q2)

)
VDM

=
G

(l)s,v
1 (0)

n(s,v)∏
k=1

(
1 + Q2

m2
k

) , (33)

(
G

(l)s,v
2 (Q2)

)
VDM

(34)

= − Q∓
4MR(MR + M)

(
G

(l)s,v
3 (Q2)

)
VDM

,

(
G

(l)s,v
3 (Q2)

)
VDM

=
G

(l)s,v
3 (0) +

Q2

m2
1

K(l)s,v

n(s,v)∏
k=1

(
1 +

Q2

m2
k

) , (35)

where

K(l)s,v ≡ G
(l)s,v
3 (0) − g

(l)s,v
3 (1)

n(v)∏
j=2

(
1 − m2

1

m2
j

)
.

(36)

The residues g(l)s,v
i (V ) are related by the equations

g
(l)s,v
1 (j) =

G
(l)s,v
1 (0)

n(s,v)∏
k �=j

(
1 − m2

j

m2
k

) , j = 1, 2, . . . , n(s, v);

(37)

g
(l)s,v
2 (1) =

m2
1 − (MR ∓M)2

4MR(MR + M)
g
(l)s,v
3 (1),

g
(l)s,v
2 (j) =

m2
j − (MR ∓M)2

4MR(MR + M)
(38)

×
[
G

(l)s,v
3 (0) − g

(l)s,v
3 (1)

n(s,v)∏
k �=1
k �=j

(
1 − m2

1

m2
k

)]
PH
×
[n(s,v)∏
k �=1
k �=j

(
1 −

m2
j

m2
k

)]−1

;

g
(l)s,v
3 (j) (39)

=
[
G

(l)s,v
3 (0) − g

(l)s,v
3 (1)

n(s,v)∏
k �=1
k �=j

(
1 − m2

1

m2
k

)]

×



n(s,v)∏
k �=1
k �=j

(
1 −

m2
j

m2
k

)
−1

, j = 2, 3, . . . , n(s, v).

For 1/2+ → 1/2± transitions, relations (34) and (38)
do not hold, since we have G(l)s,v

2 (Q2) ≡ 0. Relation
(34) reduces the number of independent transition
form factors to two. Their asymptotic behavior de-
pends on the number n(s, v) of vector mesons that
are taken into account in the model. However, the
residues (37)–(39) at the heavy-meson poles de-
crease fast inmagnitude with increasing mesonmass.
As a consequence, K(l)s,v � 0, so that the transition
form factorsG(l)s,v

i (Q2) do not have zeros forQ2 > 0.

5. RESONANCES AND BACKGROUND
IN THE INELASTIC LEPTON–NUCLEON

SCATTERING l + N → l + X

The resonance-scattering region, where structure
functions behave irregularly in response to changes
in Sx, is empirically specified as (M + µ)2 ≤ Sx ≤
4GeV2, where µ is the pion mass. The resonance
peaks of∆(1232), N(1520), and N(1680), which are
very distinct in this region for Q2 ≤ 1GeV2, die out
fast with increasing Q2, which suggests a power-
law reduction of the transition form factors with Q2,
this being peculiar to vector dominance. For Q2 >

6GeV2, the behavior of the structure functions in the
resonance region has a nearly smooth (background)
character, which is similar to that in the Bjorken re-
gion (Sx � M2

R, Q
2 � M2

R). In view of this behavior
of the structure functions in the resonance region, it is
reasonable to represent them as

νW2(Sx, Q2) = νW
(R)
2 (Sx, Q2) + νW

(B)
2 (Sx, Q2),

2MW1(Sx, Q2) = 2MW
(R)
1 (Sx, Q2) (40)

+ 2MW
(B)
1 (Sx, Q2).

The resonance structure functions

νW
(R)
2 (Sx, Q2) =

∑
l

νW
(l)
2 (Sx, Q2), (41)
YSICS OF ATOMIC NUCLEI Vol. 64 No. 5 2001
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2MW
(R)
1 (Sx, Q2) =

∑
l

2MW
(l)
1 (Sx, Q2)

are given by (25) and (26). For all processes in-
volving the electron excitation of J = l + 1/2 (l =
0, 1, 2, . . .) nucleon resonances, they exhibit a power-
law decrease with increasing Q2 and Sx and do not
contribute to the structure functions (40) in the deep-
inelastic region. With the exception of l + N → l +
(R → X), all processes, including the interference
between the resonances and the background (this
interference is disregarded here), must then be taken
into account in the background structure functions

νW
(B)
2 and 2MW

(B)
1 .

In considering the background structure functions

νW
(B)
2 (Sx, Q2) and 2MW

(B)
1 (Sx, Q2), we have made

use of the well-known special features in the behav-
ior of νW2(Sx, Q2) and 2MW1(Sx, Q2) in the region
specified by the inequalities Sx � 4GeV2 and Q2 �
4GeV2—specifically, we mean here scale invariance
in the Bjorken limit (Sx → ∞, Q2 → ∞, Q2/Sx =
const) and the Regge pole behavior in the Regge
limit (Sx → ∞, Q2/Sx → 0), as well as the assump-
tion that there is a smooth transition between the
Regge and the Bjorken region. The structure func-

tion νW2(Sx, Q2) = νW
(B)
2 (Sx, Q2) satisfying these

requirements can be represented as [18]

νW
(B)
2 (Sx, Q2) =

Q2

Sx + Q2 −M2
Φ(Sx, Q2)

×
[
1 +

4M2Q2

(Sx + Q2 −M2)2

]−1

(42)

×
∑
m

bm

(
Sx + Q2 −M2

c0 + Q2

)αm(0)

.

In order to determine the structure function
2MW

(B)
1 (Sx, Q2), it is then convenient to use the

relation

2MW
(B)
1 (Sx, Q2) =

[
1 +

4M2Q2

(Sx + Q2 −M2)2

]

×Sx + Q2 −M2

Q2

νW
(B)
2 (Sx, Q2)

1 + R(Sx, Q2)
, (43)

which is a corollary of the unitarity condition relating
the structure functions W1 and W2 to the imag-
inary parts of the amplitudes for the forward [t =
(k − k′)2 = 0] scattering of a longitudinally (l) and a
transversely (t) polarized virtual photon by a nucleon.
The ratio of the total cross sections for the absorption
of a longitudinally and a transversely polarized photon
by a nucleon,

R(Sx, Q2) = σ
(l)
γN→X(Sx, Q2)/σ(t)

γN→X(Sx, Q2),
(44)
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obeys the obvious constraint

lim
Q2→0

R(Sx, Q2) = 0 (45)

and admits a rather simple parametrization—in par-
ticular, within perturbative QCD [19].
In expression (42), we have used the notation

bm ≡ βm(0)
βP(0)

(
c0
s0

)αm(0)

, (46)

where αm(0) is the intercept, βm(Q2) = βm(0) ×(
c0/(c0 + Q2)

)αm(0) is the residue at the mth Regge
pole, and summation is performed over Regge poles
with a positive signature and positive intercepts
[αP(0) = 1 + ∆, αf (0) = αa2(0) = 0.5, απ(0) =
−0.025, and αη(0) = −0.2].
The factor Φ(Sx, Q2) controls the behavior of

the background structure functions in the resonance
[Sx < 4GeV2] and in the threshold [(Sx)th = (M +
µ)2] region of the variable Sx. In particular, it must
take into account resonance-to-background cou-
pling (Blum–Gilman duality), which is empirically
manifested [20] in the same Q2 dependence of the
background and the resonance structure function
in the vicinities of all resonance peaks, with the
exception of ∆(1232), which lies in the threshold
region. The function Φ(Sx, Q2) must not violate,
at least in a power-law way, scale invariance in
the Bjorken limit or the Regge pole behavior in the
Regge limit and must vanish at the elastic-scattering
threshold—that is, at Sx = (M + µ)2.
All these requirements are satisfied for the function

Φ(Sx, Q2) =
[
1 +

4M2Q2

(Sx + Q2 −M2)2

]

×
(
Sx − (M + µ)2

)κ(Q2)
(47)

×(Sx + M2)3−κ(Q2)

(Sx + Q2 −M2)3
.

The first factor in (47) determines a transition to
the static limit k2/k2

0 → 0, which lies beyond the
physical region of the scattering process l + N → l +
X. The second factor controls the threshold behavior
of the structure function for Sx → (Sx)th, while the
third factor determines a transition from the Regge to
the resonance region.
Finally, the background structure functions are

given by

2MW
(B)
1 (Sx, Q2) =

[
1 +

4M2Q2

(Sx + Q2 −M2)2

]

×
(
Sx − (M + µ)2

)κ(Q2)

1 + R(Sx, Q2)
(48)
1



928 RUS’KIN, KHARCHEVNIKOV
Table 1. Fitted values of the parameters in the resonance component of the structure functions

Resonance Ap
1/2 An

1/2 Gp
3(0) Gn

3 (0) Gv
3(0) Gs

3(0)
Gv

3(0)
αv

Gs
3(0)
αs

Gs
1(0)

Gv
1(0)

Ap
3/2 An

3/2

∆(1232) −141 ± 5 −141 ± 5 5.04 −5.04 5.04 – 15.686 – –

−258 ± 11 −258 ± 11 ±0.21 ±0.21 ±0.21 ±0.210

N(1520) −22 ± 10 −65 ± 13 10.05 −9.43 19.48 0.620 60.629 1.045 0.031

167 ± 80 −144 ± 14 ±0.68 ±1.09 ±1.77 ±1.770 ±1.770 ±1.770 ±0.094

N(1680) −17 ± 10 31 ± 13 33.61 −11.32 44.93 22.29 139.838 37.563 0.500

−127 ± 12 −30 ± 14 ±3.54 ±5.01 ±8.55 ±8.55 ±8.550 ±8.550 ±0.033
×(Sx + M2)3−κ(Q2)

(Sx + Q2 −M2)3
∑
m

bm

(
Sx + Q2 −M2

c0 + Q2

)αm(0)

,

νW
(B)
2 (Sx, Q2) =

Q2

Sx + Q2 −M2

×
(
Sx − (M + µ)2

)κ(Q2)

×(Sx + M2)3−κ(Q2)

(Sx + Q2 −M2)3
∑
m

bm

(
Sx + Q2 −M2

c0 + Q2

)αm(0)

,

with the exponent κ(Q2) of the threshold factor being
parametrized as

κ(Q2) = κ0 −
a1(Q2)2

(Q2)2 + a2Q2 + a3
, (49)

where a1 is the threshold-channel probability without
allowing for final-state interaction at Q2 = 0 (a1 �
κ0 − 3/2).
We note that all the parameters in (48) have a

clear physical meaning, whereas expressions (48)
themselves admit an obvious generalization to the
case where there is a logarithmic violation of scale
invariance in the Bjorken limit.

6. VALUES OF THE PARAMETERS
IN THE BACKGROUND STRUCTURE

FUNCTIONS

With the exception of the parameters a2 and a3,
which determine the Q2 dependence of the exponent
κ(Q2) [see Eq. (49)], all the parameters in the back-
ground structure functions (48) can be estimated on
the basis of data on the total cross section for hadron
photoproduction on a proton [21],

σγptot(Sx) =
4π2α

Sx −M2
× 2MW p

1 (Sx, Q2 = 0). (50)

In calculating the resonance component of the
cross section, we have taken into account only those
PH
three nucleon resonances, ∆(1232), N(1520), and
N(1680), that makes a decisive contribution to the
observed first, second, and third resonance peaks.
For the Breit–Wigner factor (27), we have used
the simplest representation taking no account of the
kinematical Sx dependence of the total hadronic-
decay width Γi. The resonance masses Mi and the
resonance decay widths Γi were set to their tabular
values [22].

The proton transition form factors at Q2 = 0,
|G(i)p

3 (0)|, were estimated on the basis of data [23]
on the γpRi helicity coupling constants A(i)

λ , which
appear in the definition of the radiative-decay width of
the J = l + 1/2 resonance:

Γ(i)
γ (Sx = M2

i ) =
M2

i −M2

4M2
i

2M
πMi(2J + 1)

×
(
|A(i)

1/2|
2 + |A(i)

3/2|
2
)
. (51)

In turn, this width is related to |G(i)
3 (0)| by the equa-

tion [16]

Γ(i)
γ (Sx = M2

i ) =
αηl

6(l + 1)
M2

i −M2

2Mi

×(Mi −M)2l(Mi ∓M)2

M2l+1
i

(
G

(i)
3 (0)

)2
. (52)

The numerical values of the quantity G(i)p
3 (0) and

of the helicity coupling constants A(i)p
3/2 and A

(i)p
1/2 (in

10−3 GeV−1/2 units), which were used in calculating
this quantity, are quoted in Table 1.
A fit of expression (50) to the entire body of data

[21] collected by Blum and Caldwell (150 experimen-
tal points in theSx interval from 1.233 to 343.6 GeV2)
yielded the following values for the parameters in the
background structure functions (at χ2/NDF= 1.06):
YSICS OF ATOMIC NUCLEI Vol. 64 No. 5 2001
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∆ = 0.058 ± 0.003, c0 = 0.509 ± 0.007 GeV2,

bP = 0.350 ± 0.082, (bf + ba2) = 0.511 ± 0.095,
bπ = 0.360 ± 0.052, bη = −0.339 ± 0.156,

κ0 = 2.328 ± 0.014. (53)

The results of this fit are shown by the solid curve
in Fig. 1. The dashed curve illustrates the behavior of
the background component of the cross section (50).
An independent fit of only the background com-

ponent of the cross section at the fixed value of κ0 =
2.328 to Caldwell data (33 experimental points in the
Sx interval from 32.1 to 343.6 GeV2, where there is
virtually no resonance contribution) yields parameter
values close to those in (53) (at χ2/NDF= 1.1):

∆ = 0.077 ± 0.013, c0 = 0.563 ± 0.070 GeV2,

bP = 0.350 ± 0.062, (bf + ba2) = 0.521 ± 0.045,
bπ = 0.360 ± 0.082, bη = −0.339 ± 0.278.

This demonstrates that the values in (53) are
weakly sensitive to the values of the resonance pa-
rameters in Table 1.
The parameters bf and ba2 can be estimated on

the basis of the EMC [24] and BCDMS [25] data
by using the compilation of the ratios of the proton-
to-neutron structure functions from [14], while the
parameters a1, a2, and a3, which appear in the defi-
nition (49) of the exponent κ(Q2), can be determined
from data on the difference of the proton and neutron
structure functions in the deep-inelastic region (Sx >
20GeV2, Q2 > 6GeV2).
Considering that the signs of the residues for the

isovector Regge trajectories of a2 and π are reversed
in going over from the proton to the neutron, we find
for the background structure functions that

νW n
2

νW p
2

(54)

=
bPu1.058 + (bf − ba2)u0.5 − bπu

−0.025 + bηu
−0.2

bPu1.058 + (bf + ba2)u0.5 + bπu−0.025 + bηu−0.2

and

νW p
2 − νW n

2 = 2
Q2

Sx + Q2 −M2
(55)

×(Sx − (M + µ)2)κ(Q2)(Sx + M2)3−κ(Q2)

(Sx + Q2 −M2)3

×(ba2u
0.5 + bπu

−0.025),

where u ≡ (Sx + Q2 −M2)/(c0 + Q2).
A fit of expression (54) to data from [24, 25] (71 ex-

perimental points) at the parameters set to the values
in (53) yields (at χ2/NDF= 0.30)
bf = 0.500 ± 0.054, ba2 = 0.011 ± 0.010. (56)
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Fig. 1. Total cross section for hadron production on a
proton: (experimental points) data of Blum and Caldwell
according to the compilation from [21], (solid curve) fit in
terms of expression (50), and (dashed curve) behavior of
the background component of the cross section (50).

At fit of expression (55) to the same data at the
parameters set to the values in (53) and (56) and at
a1 = κ0 − 3/2 = 0.828 leads to (at χ2/NDF= 0/31)

a2 = −6.900 ± 1.297 GeV2, (57)

a3 = 29.659 ± 5.219 GeV4.

The results of this fit for the values of Q2 = 11.5
and 90.0GeV2 are shown by the solid and dashed
curves in Figs. 2 and 3.

7. STRUCTURE FUNCTIONS
IN THE THRESHOLD

AND THE RESONANCE REGION

For Q2 > 6GeV2, the contribution of l + N →
l + (R → X) resonance processes is negligibly small
even in the resonance region Sx ≤ 4GeV2. This
makes it possible to use the SLAC data from [13] on
the behavior of the structure function νW p

2 (Sx, Q2) in
the range 1.16 ≤ Sx ≤ 1.985 GeV2 for Q2 > 6GeV2

in order to verify the reliability of the definition (48) of
the background structure function νW

(B)p
2 (Sx, Q2).

For the parameters a1, a2, and a3, a fit of expression
(48) to the entire body of data from [13] (72 experi-
mental points) at the parameters set to the values in
1
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Fig. 2. Ratio of the neutron to the proton background
structure function in the deep-inelastic-scattering re-
gion. The solid and the dashed curve represent the results
of a fit in terms of expression (54) at Q2 = 11.5 and
90.0 GeV2, respectively. Points show experimental data
from [24, 25] that are quoted according to the compilation
from [14]: (closed circles) Q2 = 11.5 GeV2 and (closed
triangles)Q2 = 90.0 GeV2.

(53) and (56) yields values close to those in (57) (at
χ2/NDF= 0.62):

a1 = 0.828 ± 0.014, a2 = −6.905 ± 0.966 GeV2,

a3 = 29.650 ± 5.017 GeV4. (58)

A noticeable deviation (with χ2
i > 2 per point) from

experimental values is observed only at 5 of 72 exper-
imental points. The results of this fit are shown by
solid curves in Fig. 4.

Thus, the background structure functions given by
(48) with the parameter values

∆ = 0.058 ± 0.003, c0 = 0.509 ± 0.007 GeV2,

bP = 0.350 ± 0.082, bf = 0.500 ± 0.005,
ba2 = 0.011 ± 0.010, bπ = 0.360 ± 0.052,
bη = −0.339 ± 0.156, κ0 = 2.328 ± 0.014,

a1 = 0.828 ± 0.014, a2 = −6.905 ± 0.966 GeV2,

a3 = 29.650 ± 5.017 GeV4 (59)

faithfully reproduce available experimental data
from [13].
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Fig. 3. Difference of the proton and the neutron
background structure function in the deep-inelastic-
scattering region. The notation is identical to that in
Fig. 2.

8. TRANSITION FORM FACTORS
IN THE GENERALIZED

VECTOR-DOMINANCE MODEL

In order to assess the possibility of extracting
transition form factors from data on inelastic lepton–
nucleon scattering (l + N → l + X) in the resonance
region (Sx ≤ 4GeV2) at high values of Q2 (Q2 >

3GeV2), we make use of the expressions for the
transition form factors within the generalized vector-
dominance model.
The proton and neutron transition form factors for

the resonances∆(1232)(i = 1),N(1520)(i = 2), and
N(1680)(i = 3) are related to the isoscalar (s) and
isovector (v) transition form factors by the equations

G
(1)p
3,1 (Q2) = −G

(1)n
3,1 (Q2) = G

(1)v
3,1 (Q2), i = 1,

G
(i)p
3,1 (Q2) =

1
2

(G(i)s
3,1 (Q2) + G

(i)v
3,1 (Q2)), (60)

G
(i)n
3,1 (Q2) =

1
2

(
G

(i)s
3,1 (Q2) −G

(i)v
3,1 (Q2)

)
, i = 2, 3.

Assuming that G(i)s
3 (0) < G

(i)v
3 (0), which is equiva-

lent to the conditions G(i)p
3 (0) > 0 and G(i)n

3 (0) < 0,
we can find the values G(i)v

3 (0) and G(i)s
3 (0) and the

ratio G(i)s
1 (0)/G(i)v

1 (0). From the condition requiring
that the transition form factors (28) have no zeros,

g
(i)v
3 (1) ≤ G

(i)v
3 (0)/αv , g

(i)s
3 (1) ≤ G

(i)s
3 (0)/αs,

(61)
YSICS OF ATOMIC NUCLEI Vol. 64 No. 5 2001
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Fig. 4. Background structure functions in the resonance region. The solid curves represent the results obtained by fitting, to
data from [13], expression (48), which features three free parameters (a1, a2, and a3).
we can obtain the maximum possible values of the
residues at ρ- and ω-meson poles of the transition

form factors, G(i)v
3 (0)/αv and G

(i)s
3 (0)/αs. All these

estimates are given in Table 1.
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 5 200
In order to estimate the free parameters

g
(i)v
3 (1), g(i)s

3 (1), αi, and Λ2
i , we have made use of

data from [26] on the differential cross section for

e− + p → e− + X inelastic scattering. It should
1
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be noted, however, that, instead of tabular data on
1
Γt

d2σ

dq′0dΩ′ , the authors of [26] present a semiempirical

parametrization of the data that extrapolates them to
the region of low Q2 values according to the dipole
law. For this reason, the expression

1
Γt

d2σ

dq′0dΩ′ =
4π2α

Sx −M2

(
1 +

4M2Q2

(Sx + Q2 −M2)2

)

×
(

1 + εR(Sx, Q2)
1 + R(Sx, Q2)

)
Sx + Q2 −M2

Q2
νW2(Sx, Q2)

(62)

was fitted only on the basis of data in the region spec-
ified by the inequalities 0.5 ≤ Q2 ≤ 3.0GeV2 and
1.2 ≤ Sx ≤ 4GeV2, where the role of the longitu-
dinal transition form factors is insignificant [9], so
that only the transverse form factors (G(i)p

3 (Q2))2
were taken into account in the resonance component
of the structure function νW2. At the parameters
set to the values in (59), expression (62) involves,
in addition to the transition form factors that are
to be determined from experimental data, an un-
known function R(Sx, Q2) = σl(Sx, Q2)/σt(Sx, Q2).
It should be noted, however, that, in the case of
lepton scattering at angles θ < 10◦ in the target rest
frame, we have ε � 1, so that (1 + εR)/(1 + R) � 1;
as a result, the differential cross section is virtually
independent ofR(Sx, Q2). In the transverse transition
form factors (35), we took into account the vector
mesons ρ(770), ρA(1100), ρ(1250), ω(783), ω(1600),
and φ(1600), whose squaredmasses inGeV2 were set
to the values

m2
1v = 0.593, m2

2v = 1.210, m2
3v = 1.603,

m2
1s = 0.615, m2

2s = 2.756, m2
3s = 2.780,

which provide the best description [15] of the elastic
electromagnetic form factors for the pion and the
nucleon. The resulting parameter values are

g
(1)v
3 (1) = 15.686 ± 0.012, α1 = 0 ± 0.001;

g
(2)v
3 (1) = 60.144 ± 0.116,

g
(2)s
3 (1) = 1.045 ± 0.239, α2 = 0 ± 0.012;

g
(3)v
3 (1) = 139.838 ± 1.036, (63)

g
(3)s
3 (1) = 37.563 ± 0.063, α3 = 0.138 ± 0.012;

Λ2
3 = 2.625 ± 0.528 GeV2.

The results of this fit are shown in Fig. 5. It can
be seen that, for all three resonances considered here,
the resonance-to-background ratio at the resonance
point is greater than unity up to Q2 = 5GeV2. Ow-
ing to this, a reliable measurement of the differential
cross sections for l + N → l + X reactions at high
PH
values of Q2 in the resonance region would make it
possible to determine empirically the transition form
factors for the resonances ∆(1232), N(1520), and
N(1680) at values of Q2 not accessible to a partial-
wave analysis of single-pion electroproduction on a
nucleon.

9. RESONANCE MULTIPOLE AMPLITUDES
AND TRANSITION FORM FACTORS

The Coulomb (C) or the longitudinal (S), the
magnetic (M ), and the electric (E) resonance am-
plitudes for nucleon-resonance photoexcitation in
γ∗ + N → Ri → π + N processes can be expressed
in terms of the multipole transition form factors as
[15]

(l + 1)S(i)
(l+1)−(Sx, Q2)

= alL
(−)
i (Q2)

(
Ki(Q2)

)l
G

(i)
S (Q2)A(i)

BW(Sx),

(l + 1)M (i)
(l+1)− (Sx, Q2) (64)

= blL
(−)
i (Q2)

(
Ki(Q2)

)l
G

(i)
M (Q2)A(i)

BW(Sx),

(l + 1)E(i)
(l+1)−(Sx, Q2)

= clL
(−)
i (Q2)

(
Ki(Q2)

)l
G

(i)
E (Q2)A(i)

BW(Sx)

in the case of transitions characterized by a normal
spin–parity (1/2+ → 3/2−, 5/2+, 7/2−, . . .) and as

(l + 1)S(i)
l+

(Sx, Q2)

= alL
(+)
i (Q2)

(
Ki(Q2)

)l
G

(i)

S̄
(Q2)A(i)

BW(Sx),

(l + 1)E(i)
l+

(Sx, Q2) (65)

= blL
(+)
i (Q2)

(
Ki(Q2)

)l
G

(i)

Ē
(Q2)A(i)

BW(Sx),

(l + 1)M (i)
l+

(Sx, Q2)

= clL
(+)
i (Q2)

(
Ki(Q2)

)l
G

(i)

M̄
(Q2)A(i)

BW(Sx)

in the case of transitions characterized by an anoma-
lous spin–parity (1/2+ → 3/2+, 5/2−, 7/2+, . . .).
Here, we have used the following notation: l =

J − 1/2, J is the nucleon-resonance spin;

ηl =
(l!)2

(2l)! · 2l−2
, al =

(
ηl

6(l + 1)

)1/2

,

bl =
(

ηl
96(l + 2)

)1/2

, cl =
( ηl

96l

)1/2
;

L
(∓)
i (Q2) =

(
a((Mi ∓M)2 + Q2)

|qi|

)1/2

,

Ki(Q2) =
(

1 − M

Mi

)(
1 +

Q2

M2
i −M2

)
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Fig. 5.Differential cross section for e− + p→ e− +X scattering processes in the resonance region. The solid curves represent
the results obtained by fitting, to data from [26], expression (62) featuring the transition form factors (28), which were obtained
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the cross section (62).
×
(

1 +
4M2Q2

(M2
i + Q2 −M2)2

)1/2

,

A(i)
BW(Sx) =

√
Γ(i)
πN

M2
i − Sx − iMiΓi

;

|qi| = ((M2
i + M2 − µ2)2 − 4M2

i M
2)1/2/2Mi is the

absolute value of the pion 3-momentum in the res-

onance rest frame; Γ(i)
πN is the ith-resonance width

with respect to the decay into a pion and a nucleon;
and α = 1/137 is the fine-structure constant.

In the case of resonance decay through a specific

charged channel a, we have Γ(i)a
πN = κaiXiΓi, where
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 5 200
Xi = Γ(i)
πN/Γi, Γi is the total hadronic-decay width of

the ith resonance, and κai is the channel charge factor.
The limiting-chiral-invariance requirements (31)

significantly simplify the relationship between the
multipole and the Sachs form factors; that is,

G
(i)

S̄
(Q2) = G

(i)
S (Q2) =

√
Q2

Mi + M
G

(i)
C (Q2),

G
(i)
C (Q2) = G

(i)
1 (Q2),

G
(i)
M (Q2) =

4ri√
1 + r2

i

G
(i)
3 (Q2), (66)

G
(i)
E (Q2) =

4√
1 + r2

i

G
(i)
3 (Q2),
1
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Table 2. Ratios of the magnetic and the electric resonance amplitude

Transition ri Amplitude ratio

p → ∆+(1232) −0.0234± 0.0325 E
(1)
1+ /M

(1)
1+ −0.0135 ± 0.0188

n → ∆0(1232) −0.0234± 0.0325 −0.0135 ± 0.0188

p → N+(1520) 0.768 ± 0.062 M
(2)
2− /E

(2)
2− 0.443 ± 0.031

n → N0(1520) 0.100 ± 0.104 0.058 ± 0.060

p → N+(1680) 0.929 ± 0.010 M
(3)
3− /E

(3)
3− 0.657 ± 0.001

n → N0(1680) 6.463 ± 15.717 4.570 ± 11.114
G
(i)

Ē
(Q2) =

4r̄i√
1 + r̄2

i

G
(i)
3 (Q2),

G
(i)

M̄
(Q2) =

4√
1 + r̄2

i

G
(i)
3 (Q2),

where

ri = −r̄i =
(
A(i)

3/2
−
√

l + 2
l

A(i)
1/2

)
(67)

×
(√

l + 2
l

A(i)
3/2 + A(i)

1/2

)−1

.

In this case, the ratios of the magnetic and electric
resonance amplitudes are constant:

M
(i)
(l+1)−(Sx, Q2)/E(i)

(l+1)−(Sx, Q2)

=
bl
cl

G
(i)
M (Q2)

G
(i)
E (Q2)

= ri

√
l

l + 2
,

E
(i)
l+

(Sx, Q2)/M (i)
l+

(Sx, Q2) (68)

=
bl
cl

G
(i)

Ē
(Q2)

G
(i)

M̄
(Q2)

= ri

√
l

l + 2
.

For the resonances ∆(1232), N(1520), and
N(1680), which are of interest to us, we can estimate
the ratios in (68) by using the values in Table 1 for the

γNRi helicity coupling constants A(i)
λ for the proton

and the neutron. The results of this estimation are
given in Table 2.
The proton and neutron Sachs transition form

factors calculated with the parameters given in (63)
are displayed in Fig. 6. The rough estimates

G
(1)v
1 (0) = −1.69; G

(2)v
1 (0) = 10.86, G

(2)s
1 (0) =

0.337; and G
(3)v
1 (0) = 4.51, G

(3)s
1 (0) = 2.26 were

obtained by using the empirical maximum values [9]
(in µb1/2)

S
(1)p
1+ (Sx = M2

1 , Q
2 = 0.434 GeV2) = −0.218,
PH
S
(2)p
2− (Sx = M2

2 , Q
2 = 0.5 GeV2) = 0.10,

S
(3)p
3− (Sx = M2

3 , Q
2 = 1.0GeV2) = 0.01

for the amplitudes and the values of the ratios

G
(i)s
1 (0)/G(i)v

1 (0) from Table 1.
It can be seen that the transition form fac-

tors as constructed within the generalized vector-
dominance model with the parameter values from
(63), which were determined on the basis of data
on inelastic-scattering processes e− + p → e− + X,
comply rather well with the empirical values obtained
in [9] for Sachs transition form factors from data
of the partial-wave analysis [2] of γ∗ + p → R+

i →
(π + N)+ processes.
That the ratios of the electric and magnetic res-

onance amplitudes are constant, which follows from
limiting chiral invariance, implies the invariability
of the ratios of transverse resonance helicity ampli-
tudes. The values presented in Table 2 for the ra-
tios of the magnetic and electric resonance ampli-
tudes correspond to the following values of the ratios

A(i)p
3/2 (Sx, Q2)/A(i)p

1/2 (Sx, Q2) of the resonance helicity
amplitudes:

A(1)p
3/2 /A

(1)p
1/2 = −A(1)n

3/2 /A(1)n
1/2 = 1.830 ± 0.141;

A(2)p
3/2 /A

(2)p
1/2 = −7.597 ± 1.984,

A(2)n
3/2 /A(2)n

1/2 = 2.219 ± 0.609; (69)

A(3)p
3/2 /A

(3)p
1/2 = −7.463 ± 0.043,

A(3)n
3/2 /A(3)n

1/2 = −0.968 ± 0.712.

These values differ significantly from the values

A(i)p,n
3/2 (Sx, Q2)/A(i)p,n

1/2 (Sx, Q2) � 0, (70)

which follow from the requirement of hadron-helicity
conservation [27] for Q2 � M2. In accordance with
(70), the resonance multipole amplitude must satisfy
the relations

E
(1)p,n
1+ (Sx, Q2) � M

(1)p,n
1+ (Sx, Q2), (71)
YSICS OF ATOMIC NUCLEI Vol. 64 No. 5 2001
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Fig. 6. Proton (solid curves) and neutron (dashed curves) Sachs transition form factors within the generalized vector-
dominance model: (а) N → ∆(1232), (b) N → N(1520), and (c) N → N(1680). Experimental points correspond to the
results obtained in [9] by estimating the proton transition form factors on the basis of data from a partial-wave analysis of
γ∗ + p→ R+

i → (π+N)+ processes. Curves 1, 2, 3, and 4 represent the results of the calculation ofG(1,2,3)p
3 (closed circles),

G
(1)n
1 andG(2,3)p

1 ,G(1)p
1 (closed triangles) andG(2,3)n

1 , andG(1,2,3)n
3 , respectively.
E
(2)p,n
2− (Sx, Q2) � −M

(2)p,n
2− (Sx, Q2),

E
(3)p,n
3− (Sx, Q2) � −M

(3)p,n
3− (Sx, Q2),

while the transverse Sachs form factorsmust obey the
equalities

G
(1)
2 (Q2) =

(
√

3 − 3r1)
(
√

3 + r1)
(M1 + M)2 + Q2

4M1(M1 + M)
G

(1)
3 (Q2),

G
(2)
2 (Q2) =

√
3

r2

(M2 −M)2 + Q2

4M2(M2 + M)
G

(2)
3 (Q2),

G
(3)
2 (Q2) =

3
√

2 +
√

3 + (3 −
√

6)r3√
2 −

√
3 + (

√
6 + 1)r3

(72)

×(M3 −M)2 + Q2

4M3(M3 + M)
G

(3)
3 (Q2).
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Substituting the values of rp,ni from Table 2 into (72),
we obtain

G
(1)(p

n)
2 (Q2) = (1.055 ± 0.077)

×(M1 + M)2 + Q2

4M1(M1 + M)
G

(1)(p
n)

3 (Q2),

G
(2)(p

n)
2 (Q2) =

(
2.255 ± 0.182

17.321 ± 18.010

)
(73)

×(M2 −M)2 + Q2

4M2(M2 + M)
G

(2)(p
n)

3 (Q2),

G
(3)(p

n)
2 (Q2) =

(
2.247 ± 0.025
0.434 ± 0.676

)

1
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×(M3 −M)2 + Q2

4M3(M3 + M)
G

(3)(p
n)

3 (Q2).

Data on theQ2 dependence of the differential cross
section for e− + p → e− + X processes in the region
of the resonances N(1520) and N(1680) make it
possible to discriminate between (31) and (73) quite
readily, since the resonance structure functions de-
pend on the squares of the transition form factors.
This is impossible in the region of the resonance
∆(1232), in which case relations (31) and (73) differ
only in sign.

10. CONCLUSION

The background structure functions given by (48)
reproduce fairly well available experimental data, in-
cluding data from [13], which were obtained in the
threshold and in the resonance (1.2 ≤ Sx ≤ 4GeV2)
region at Q2 values so high (Q2 > 6GeV2) that the
contribution of the resonance structure functions (25)
is negligibly small.
The parameters that control the behavior of the

background structure functions in the Regge region
are weakly sensitive to the number of nucleon reso-
nances that are taken into account and to the values
of their masses and hadronic-decay widths. For this
reason, only the parameters a1, a2, and a3, which
appear in the definition (49) of the exponent of the
threshold factor (Sx − (M + µ)2)κ(Q2) in (48), can
affect the results obtained by extracting the transi-
tion form factors for the nucleon from data on the
differential cross section for inelastic lepton–nucleon
scattering.
In general, the resonance structure functions (25)

are expressed in terms of the squares of three Sachs
transition form factors. Because of the limiting chiral
invariance of the electromagnetic current determin-
ing the nucleon → nucleon resonance transition,
the transverse transition form factors are related by
Eq. (31). That the ratios of the electric and magnetic

resonance amplitudes (E/M ) or the ratiosA(i)
3/2/A

(i)
1/2

of the transverse resonance helicity amplitudes for
virtual hadron photoproduction on a nucleon are con-
stant is an important corollary of Eq. (31).
The expressions obtained for the transition form

factors on the basis of the generalized vector-domi-
nance model allowing for the requirements of limiting
chiral invariance reproduce fairly well data from [26]
on the differential cross sections for e− + p → e− +X
PH
processes in the region specified by the inequalities
1.2 ≤ Sx ≤ 4GeV2 and 0 ≤ Q2 ≤ 6GeV2.
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Processes (Énergoatomizdat, Moscow, 1983; North-
Holland, Amsterdam, 1984).

18. V. I. Rus’kin and O. S. Kosmachev, Multiparticle
Hadron Production (Nauka, Alma-Ata, 1983), p. 91.
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Abstract—The spin dependence of the intensity and polarization of synchrotron radiation from a longitudi-
nally polarized particle moving at a constant speed along a circle in a uniform magnetic field is investigated
within the pseudoclassical approach. c© 2001 MAIK “Nauka/Interperiodica”.
It is well known that synchrotron radiation from a
polarized particle involves a contribution proportional
to the particle spin. The dependence of quan-
tities characterizing synchrotron radiation on the
polarized-electron spin was investigated by Sokolov
and Ternov [1] within quantum field theory. The spin
dependence of synchrotron radiation can be employed
to measure the degree of transverse beam polarization
in accelerators [2]. A method for determining the
degree of longitudinal beam polarization on the basis
of synchrotron radiation from the beam was proposed
in [3]. All estimates in the quoted studies were
obtained within QED.

Since the electron spin is a first-order quantity
in the Planck constant �, the spin contribution to
the features of synchrotron radiation in this order
is of classical nature. The semiclassical theory of
synchrotron radiation was developed in [4, 5]. The
general expressions for the spin dependence of the
characteristics of synchrotron radiation were derived
in [4]. These formulas can be used to calculate the
spin contribution to the emission intensity in the case
of longitudinally polarized particles.

At the same time, the electron spin can be de-
scribed in terms of Grassmann variables at the clas-
sical level within the pseudoclassical theory of a rel-
ativistic spinning particle. The quantization of this
theory leads to the Dirac theory of the electron. That a
spin in an external field can be consistently described
at the classical level in terms of Grassmann variables
makes it possible to study spin effects in radiation
processes on the basis of classical equations of mo-
tion.

In [6], Lienard–Wiechert potentials for a relativis-
tic spinning particle with an anomalous magnetic

*e-mail: gagri@lx2.yerphy.am
**e-mail: rogri@lx2.yerphy.am
1063-7788/01/6405-0937$21.00 c©
momentum were derived within the pseudoclassical
approach. With the aid of the general expressions for
these potentials, some particular cases of the motion
of such a particle were investigated to the leading
order in the spin S. Among other things, the spin
dependence of the intensity and polarization of syn-
chrotron radiation from a transversely polarized par-
ticle was investigated for the case where the particle
moves at a constant speed along a circle.

The expressions describing the spin dependence of
the observables of radiation from a relativistic particle
are derived much more straightforwardly within our
approach than within QED.

Using the formulas obtained in [6], we study here
the spin dependence of the intensity and polarization
of synchrotron radiation from a longitudinally polar-
ized particle having no anomalous magnetic moment
and moving at a constant speed along a circle in a
uniform external magnetic field.

The pseudoclassical theory of interactions of a
relativistic spinning particle with an electromagnetic
field provides an example of a constrained gauge the-
ory. Fixing the gauge by imposing additional con-
straints, we find that the vector potential Aµ of the
electromagnetic field satisfies the equation (for more
details, see [6])

�Aµ = jµ, (1)

where

jµ(y) = g

∫
dτẋµδ(x(τ) − y)

+
∂

∂yν

∫
dτδ(x(τ) − y)pµν(τ). (2)

Here, y is the observation point, g is a charge, xµ
is the coordinate of the particle, an overdot denotes
differentiation with respect to the parameter τ varying
along the particle trajectory, and pµν is the tensor of
2001 MAIK “Nauka/Interperiodica”



938 G. V. GRIGORYAN, R. P. GRIGORYAN
the dipole moment of the particle (its explicit form is
given below).

In deriving Eq. (1), the gauge was fixed by impos-
ing the conditions [6]

∂µA
µ = 0, ẋ2 = 1, qµ = −pµν ẋν = 0. (3)

The second relation in (3) means that τ is the proper-
time parameter, while the third relation ensures the
vanishing of the electric dipole moment qµ for a point-
like particle (this must always be so).

The first term in (34) represents the contribution
of the charge of a spinning particle to the current,
while the second term is the contribution of its dipole
moment to the current.

In the case of a particle without an anomalous
magnetic moment—and we consider here precisely
this case—the tensor pµν in the chosen gauge is given
by [6]

pµν = − g

m2
εµνλσW

λẋσ, (4)

whereWµ is the pseudoclassical analog of the Pauli–
Lubanski vector. In the reference frame comoving
with the particle, it can be expressed in terms of the
particle-spin vector S = (Si) as

Wµ

m
=
(
γ(v · S), Si + γ2 vi(v · S)

γ + 1

)
, (5)

where v ≡ (vi) = dxi/dt is the particle 3-velocity

and dt/dτ = γ =
(√

1 − v2
)−1

(in pseudoclassical

theory, the tensor pµν and the vectors Wµ and Si
are quadratic in Grassmann variables; the explicit
expressions for them are irrelevant here).

A solution to Eq. (1) with current (34) in terms
of the retarded fields was obtained in [7]. Here, we
present only that part of this solution which describes
the radiation field. We have

Fµνret (y) (6)

=
1

2πρ

[
g
(
k[µẍν] − (ẍk)k[µẋν]

)
+ P

[µν]
1

]
τ=τr

,

where ρ = ẋνRν , kµ = Rµ/ρ, Rµ ≡ yµ − xµ(τ), and
RµRµ = 0; all quantities in (6) are taken at the in-
stant τr determined by the equation τr = τ −R(τr),
where Pµν1 is given by1)

Pµν1 = T µαkαk
ν , T µν = p̈µν − 3(ẍk)ṗµν (7)

+3(ẍk)2pµν − (
...
xk)pµν .

1)The brackets [. . . ] in (6) imply com-
plete antisymmetrization: A[αβγ] =
1/3! {Aαβγ + Aβγα +Aγαβ − Aβαγ − Aαγβ − Aγβα}.
PH
The first term in (6) describes the contribution of
the charge of a spinning particle, while the second
term represents the contribution of its dipole moment.

Let us consider the motion of a longitudinally
polarized particle (v||S) in a uniform magnetic field
B. The angular velocity of rotation of the particle
without an anomalous magnetic moment is equal to
the angular velocity of spin precession. Thus, the
particle helicity λ is conserved, and we obtain

vk = λ
v

S
Sk, λ = ±1, (8)

(v · a) = (S · a) = 0, γ̇ = 0, ω̇ω = 0, (9)

where a = dv/dt.

Taking into account this relation and expression
(5), we find that the components p0i and pij of the
dipole-moment tensor (4) and their derivatives can be
represented as

p0i = ṗ0i = p̈0i = 0,

pij = − g

m
εijkSk, (10)

ṗij = − g

m
εijkṠk = −γ g

m
(ωiSj − ωjSi) ,

p̈ij = γ2 g

m
ω2εijkSk. (11)

With the aid of (6), we obtain the contribution Edip
i

of the particle dipole moment to the radiation electric
field in the form

Edip
i =

(
F rad
i0

)dip
=

1
4πρ

(P1,i0 − P1,0i)

= − 1
4πρ

[
T0lk

lki − Tiλk
λk0

]
τ=τr

(12)

= − 1
4πρ

[(
δijk

2
0 − kikj

)
T0j + Tijkjk0

]
τ=τr

,

where T0i and Tij are the components of the tensor
Tµν . It can easily be seen that the components T0i

vanish identically by virtue of Eqs. (34).

Taking into account the relations

ẋµ = γ(1,v), ρ = γ(R− (v · R))

= γR(1 − (v · n)), γ = 1/
√

1 − v2,

ẍµ =
(
γ4(v · a), γ2a + γ4v(v · a)

)
,

kα =
(
R

ρ
,
R
ρ

)
=
R

ρ
nα, (13)

...
xµ =

(
ȧ0, γ3b + 3γ5(v · a)a + ȧ0v

)
,

ȧ0 = γ5
[
(v · b) + a2

]
+ 4γ7(v · a)2,
YSICS OF ATOMIC NUCLEI Vol. 64 No. 5 2001
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where b = da/dt, we recast expression (12) into the
form

Edip
i = − R2

4πρ3
Tijnj =

1
4πR(1 − (n · v))3

g

mγ
(14)

×
[

3(a · n)
1 − (n · v)

(ωi(S · n) − Si(ωω · n))

+ εijknjSk

(
3(a · n)2

(1 − (n · v))2
− ω2

1 − (n · v)

)]
τ=τr

.

For the strength Ech
i of the electric field generated

by a charged spinless particle, the substitution of
expressions (13) into the first term in (6) yields the
well-known expression

Ech
i =

g

4πR(1 − (v · n))3
(15)

× [(ni − vi) (a · n) − ai(1 − (v · n))]
τ=τr

,

Erad
i = F rad

i0 = Ech
i + Edip

i .

The intensity of synchrotron radiation is proportional

to (Erad
i )2 =

(
Ech
i + Edip

i

)2
. To the first order in

the spin, the contribution of the dipole moment to
the intensity of radiation is determined by the term
2Ech

i E
dip
i . Using expressions (14) and (15), we ar-

rive at

2Ech
i E

dip
i = 2

( g

4πR

)2 λSv

mγ(1 − (v · n))6
ω2(ωω · n)

= −2
( g

4πR

)2 λSvω3

mγ(1 − v cos θ)6
sin θ sinϕ, (16)

where θ and ϕ are the angles that determine the
direction of the vector n in the basis formed by the
vectors v, a, and B (see Fig. 1).

With the aid of (16), we find that, to the first order
in the particle spin, the contribution of the dipole
moment to the synchrotron-radiation intensity takes
the form

dIdip

dt0dΩ
= −

( g

4π

)2 2λ
(1 − v cos θ)5

ω3vS sin θ sinϕ
mγ

.

(17)
From this expression, we see that, to the first or-
der in the spin, the total contribution of the dipole
moment of a longitudinally polarized particle to the
synchrotron-radiation intensity vanishes. Upon in-
tegrating Eq. (17) over the upper (up) hemisphere
(0 ≤ ϕ ≤ π, 0 ≤ θ ≤ π), we obtain

dIdip
up

dt0
= − g2

4π
4 + v2

8m
ω3vλSγ6. (18)
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 5 200
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Fig. 1. Reference frame for angles in studying the angular
characteristics of radiation.

Using expression (17) and considering that

dIdip
up

dt0
= −dIdip

down

dt0
, (19)

dItot
up(down)

dt0
=

g2

4π
a2

3
γ4 +

dIdip
up(down)

dt0
, (20)

we find that the asymmetry of synchrotron radiation
into the upper and lower (down) hemispheres can be
characterized as

δ =

dIdip
up

dt0
− dIdip

down

dt0
dItot

up

dt0
+
dItot

down

dt0

= −3(4 + v2)
8mv

ωγ2λS. (21)

In the ultrarelativistic case, we have

δ = − 15
8m

ωγ2λS. (22)

Rewriting this expression in terms of the Schwin-
ger field H0 = m2/g = 4.41 × 109 T and considering
that S = 1/2 and ωmγ = gB, we arrive at

δ = −15
16
γλ

B

H0
. (23)

Our estimate δ = −0.38 × 10−4, which was ob-
tained at E = 45 GeV (the energy available at the
LEP), the magnetic-field strength of B = 2 T, and
λ = 1, agrees with the estimate derived in [3] on the
basis of QED formulas [4].

We will now study the polarization properties of
synchrotron radiation, following the ideas developed
in [4]. For this purpose, we expand the electric-field
strength Erad in the components in the orthonormal
basis formed by the vectors e = a/a and [n× e],

Erad = E1e + E2 [n× e] . (24)
1
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Fig. 2. Reference frame for angles in describing radiation
from a fast particle.

This basis is advantageous in that it provides a
convenient reference frame for the angles that can
be used to describe emission from a fast particle (see
Fig. 2). Indeed, the main contribution to the emission
comes from the region of small angles β and ψ (about
1/γ), since the angle between the vectors n and v is
of order 1/γ. As was indicated in [4], the vectors E
and n are not orthogonal, but this mismatch is about
1/γ. For this reason, expansion (24) can be used to
calculate the leading contribution in the parameter
1/γ. Using expressions (14) and (15) and expansion
(24), we obtain the expressions for E1 and E2 in the
form

E1 =
ga

πR(µ2 + ψ2)3
(25)

×
(

(ψ2 − µ2) +
4aλS
mγ

β(µ2 − 5ψ2)
(µ2 + ψ2)2

)
τ=τr

,

E2 = − 2ga
πR(µ2 + ψ2)3

(26)

×
(
βψ − 4aλS

mγ

ψ(2µ2 − ψ2)
(µ2 + ψ2)2

)
τ=τr

,

where µ2 = γ−2 + β2.
PH
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Abstract—The minimal model of dynamical electroweak-symmetry breaking through top condensation
in the presence of compact large extra dimensions is studied. It is shown that, owing to the power-law
evolution of gauge and Yukawa couplings, the original predictions of Bardeen, Hill, and Lindner for the
top-quark mass are significantly lowered and that, even for a small cutoff scale Λ of a few TeV, one can
obtain experimentally allowed values. c© 2001 MAIK “Nauka/Interperiodica”.
Despite the success of the Standard Model (SM)
in describing experimental data with impressive ac-
curacy, the physics mechanism behind electroweak-
symmetry breaking (EWSB) and a somewhat related
explanation of the masses and mass hierarchies of
elementary particles remain an outstanding problem.
Top condensation is an interesting mechanism for
dynamical EWSB (for an overview, see [1] and refer-
ences therein). The beauty and strength of this mech-
anism lie in the fact that, usually, the set of underlying
assumptions is rather limited and that themechanism
can explain simultaneously the dynamical generation
of the heavy-top-quark mass and EWSB (entirely or
at least partly). A detailed investigation of the min-
imal scenario, where EWSB follows from top-quark
condensation alone, was performed by Bardeen, Hill,
and Lindner (BHL) [2]. Eliminating the SM Higgs
sector in favor of the local attractive interaction

L4-dim
NJL = G(QLtR)(tRQL) (1)

[here, QT
L = (tL, bL) is the third-generation left-

handed quark doublet and tR is the corresponding
right-handed singlet, color and weak-isospin indices
being suppressed], which is of the Nambu–Jona-
Lasinio type, they obtained, in the fermion-bubble
approximation for sufficiently attractive G (G >

8π2

3
1
Λ2

), a nontrivial solution to the gap equation.

This solution relates the top-quark mass mtop to the
ultraviolet-cutoff parameter Λ and the four-fermion

∗This article was submitted by the author in English.
**e-mail: archil.kobakhidze@helsinki.fi
1063-7788/01/6405-0941$21.00 c©
couplingG,

m2
top =

Λ2 − (8π2/3)G−1

ln(Λ2/m2
top)

, (2)

and to theW -boson mass,

m2
W =

3g2
2

32π2
m2

top

(
ln(Λ2/m2

top) +
1
2

)
. (3)

For a large cutoff parameter, Λ � 1015 GeV, the
bubble approximation predicts a value of mtop �
163 GeV for the top-quark mass, while, for a smaller
cutoff parameter value of Λ � 10 TeV, mtop � 1 TeV.
This requiresG to be fine-tuned in order to cancel the
quadratic cutoff-parameter dependence in (2).

An improvement for the top-quark mass can be
achieved by considering a low-energy effective field
theory that is just the full SM, which treats the
composite Higgs field as an elementary degree of
freedom. The only difference is the compositness
condition that the Higgs field becomes static at
high energies of about Λ—that is, ZH(Λ) = 0—
thus recovering from the SM Lagrangian, together
with equation of motion, the structure of the basic
Nambu–Jona-Lasinio Lagrangian (1). This com-
positness condition means that the top-quark mass
is governed by an infrared fixed-point solution to the
renormalization-group equations [3]. Unfortunately,
the full analysis on the basis of renormalization-group
equations yields unacceptable predictions for the top-
quark mass, mtop � 220–430 GeV for Λ � 1019–
104 GeV [2]. Thus, the minimal BHL model and
its various modifications (two Higgs and supersym-
metric versions), while being phenomenologically
viable in many aspects [4], have a common drawback:
2001MAIK “Nauka/Interperiodica”
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they predict too high a value for the top-quark mass
to fit experimental data. Therefore, one is led to
consider more complex symmetry-breaking scenarios
involving more condensates and more parameters
[1, 4].

In this study, I consider the minimal BHL model,
assuming the existence of extra dimensions with rela-
tively large compactification radii that tend to produce
lower values for the top-quark mass, in agreement
with experimental data, even for a lower cutoff scale
Λ. In this way, the fine tuning required for large
Λ is avoided. Extra spacetime dimensions natu-
rally appear in string theory; therefore, such an idea
is highly motivated from the fundamental point of
view. In recent years, the possibility of large extra
dimensions has received considerable attention; in
particular, their role was explored for gauge-coupling
unification [5, 6], for neutrino-mass generation [7],
for supersymmetry breaking [8], and for providing
an alternative solution to the gauge-hierarchy prob-
lem [9]. The cosmological implications [10], various
phenomenological issues [11], and possible collider
signatures [12] of extra dimensions having large radii
were also investigated.

In order to implement compact extra dimensions
in practice, one introduces towers of Kaluza–Klein
(KK) excitations associated with gauge and matter
fields. The exact details of the spectrum of KK states
are, to some extent, model-dependent. Here, I closely
follow the models described in [5], where the extra
dimensions are compactified on the S/Z2 orbifold (a
circle subjected to further identification yα → −yα,
α = 1, ..., δ; δ denotes the number of compact dimen-
sions). In this case, KK excitations can be decom-
posed into even [Φ+(x, y)] and odd [Φ−(x, y)] fields,

Φ+(x, y) =
∞∑

n1=0

...
∞∑

nδ=0

Φ(nα)(x) cos(nαyα/R),

Φ−(x, y) =
∞∑

n1=1

...

∞∑
nδ=1

Φ(nα)(x) sin(nαyα/R), (4)

where R is the radius of compact dimensions (for the
sake of simplicity, I assume that all extra dimensions
have the same radius). Since the appropriate trans-
formation of the fields under Z2 parity is determined
by interactions, half of the original KK states can be
projected out according to the Z2 parity of the fields.
If only the odd tower is left, the zero mode is missing.

Nonsupersymmetric theories can be more
straightforwardly embedded into higher dimensions
than supersymmetric ones, because KK states must
not any longer form N = 2 multiplets, in contrast
to what is usually assumed in the supersymmetric
case. Thus, as a minimal scenario, I assume that
gauge bosons (even Z2) have KK excitations, while
P

chiral SM fermions (even Z2), living at the orbifold
fixed points, do not. At each KK level, this requires
introducing additional scalar fields (odd Z2) that
transform according to the adjoint representations of
each SM gauge symmetry group in order to make
corresponding gauge bosons massive [5]. Within
this framework, I assume that, in four dimensions,
an infinite number of four-fermion interactions

L(4+δ)- dim
NJL =

∞∑
n1=0

...
∞∑

nδ=0

Gnα(QLtR)(tRQL) (5)

with Gnα = (M2
0 + n2

α/R
2)−1 effectively appear in

addition to the ordinary Nambu–Jona-Lasinio inter-
action. The set of four-fermion interactions in (5) can
be viewed as the result of integration over some heavy
(M2

0 ) state and its KK excitations (M2
0 +n2

α/R
2) [13].

Introducing auxiliary fields Hnα = Gnα(tRQL), one
can rewrite Lagrangian (5) in the equivalent form

L(4+δ)- dim
NJL =

∞∑
n1=0

...

∞∑
nδ=0

[
−(M2

0 + n2
α/R

2)|Hnα |2

+(QLtR)Hnα + h.c.
]
. (6)

The static fields Hnα acquire gauge-invariant kinetic
and self-interacting terms after taking into account
radiative corrections. Below the cutoff scale Λ, one
therefore obtains the SM Lagrangian describing the
interactions of gauge and Higgs bosons and their KK
excitations with each other and with chiral fermions
living at the orbifold fixed points:

L(4+δ)-dim
NJL = Lgauge

kin + Lfermion
kin

+
∞∑

n1=0

...
∞∑

nδ=0

[ZH |DµH
nα |2 −M2

Hnα |Hnα |2 (7)

−1
2
λ(Hnα+Hnα)2 +

(
(QLtR)Hnα + h.c.

)
].

Here, Lgauge
kin andLfermion

kin are the gauge and fermionic
kinetic terms, respectively, and Dµ = ∂µ −

∑∞
n1=0 ...∑∞

nδ=0

(
ig2τ

aAnα
µa + ig1B

nα
µ

)
. In perfect analogy

with [2], one must demand ZH → 0; equivalently,
rescaling the Higgs field and its KK excitations
Hnα = hnα/

√
ZH in order to normalize canonically

the kinetic terms in (6) leads, for the top–Yukawa
coupling, to

gt =
1
ZH

→ ∞ (8)

as energy approaches Λ.
Let us now examine how the BHL predictions

for the top-quark mass change in the presence of
extra dimensions. First, we note that, since the
fermions, and particularly top quark, have no KK
excitations in our minimal approach, it is obvious
HYSICS OF ATOMIC NUCLEI Vol. 64 No. 5 2001
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Fig. 1. Top-quark mass as a function of Λ/µ0 at Λ = 104, 107, 1013, and 1019 GeV for δ = 1, 2, 4, and 7. The intersection of
the curves at Λ = µ0 corresponds to the BHL predictions, while the left-going arrow indicates the central experimental value
for the top-quark mass.
that, in the fermion-bubble approximation, the results
for the top-quark mass are identical to those in the
BHL model [see (2) with G ≡ Gnδ=0]. However,
the improvement on the basis of renormalization-
group equations is expected to be drastically differ-
ent because the contributions of KK states to β and
γ functions lead to the power-law running of the
gauge and Yukawa couplings (for a proper treatment
of renormalization-group equations in extra dimen-
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 5 200
sions, see [5]), which is accompanied by the cor-
responding changes in the fixed-point solutions to
renormalization-group equations (see [13] for fixed-
point solutions in supersymmetric theories with large
extra dimensions).

One-loop diagrams contributing to the anomalous
dimensions of the top quark consist of top–Higgs
and top–gauge internal states. Since the top quark
has no KK excitations in our minimal approach, the
1
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diagrams contribute as the equivalent SM diagrams
each time one traverses the Higgs or the gauge KK
threshold. This is because the KK number is not con-
served in the vortices since translational invariance
is broken in extra dimensions. The Higgs–gauge
loops contributing to the anomalous dimension of the
Higgs field also make the same contribution as equiv-
alent SM diagrams since, now, the KK number must
be conserved at vortices. The only contribution of
KKmodes to gauge-coupling β functions comes from
diagrams involving gauge loops and loops of Z2-odd
adjoint scalars. Thus, we conclude that, above the
energy µ0 ≈ 1/R, the renormalization-group equa-
tions for the top–Yukawa coupling Yt ≡ g2

t /(4π) and
the gauge couplings αi (i = 1, 2, 3) are

dYt
d lnµ

=
3
2π

Y 2
t +

Yt
4π

[
3
2
Yt − ciαi

]
dJ
d lnµ

, (9)

dαi
d lnµ

=
bi − b

′
i

2π
α2
i +

b
′
i

2π
α2
i

dJ
d lnµ

,

where

bi =
(

41
10
,−19

6
,−7

)
,

b
′
i =

(
1
10
,−41

6
,−21

2

)
, (10)

ci =
(

17
12
,
9
4
, 8
)
.

In (9), J is an integral of the elliptic Jacobi theta
function [5],

J (µ/µ0, δ) =

r∫
r/(µ/µ0)2

dx

x

[
ϑ3(0, e−x)

]δ
,

ϑ3(u, q) =
+∞∑

n=−∞
qn

2
ei2nu, (11)

where r = [Γ(1 + δ/2)]δ/2 (Γ is the Euler gamma
function). Below the compactification scale µ0, the
top–Yukawa and gauge couplings run according
to the usual four-dimensional SM renormalization-
group equations, which is easily recovered from
(9) by setting δ = 0 or, alternatively, µ/µ0 = 1
[dJ (µ/µ0, 0)/d lnµ = dJ (1, δ)/d lnµ = 2].

The figure shows the top-quark massmtop = gtv,
v � 174 GeV, as a function of Λ/µ0. These re-
sults were obtained by numerically solving the full
set of Eqs. (9) with compositeness condition (8) at
Λ = 104, 107, 1013, and 1019 GeV for δ = 1, 2, 4,
and 7. The values mtop(0) (Λ = µ0) in the figure
are clearly the BHL predictions mtop(0) = mBHL

top .
When the radius of the extra dimensions is close
to Λ (Λ/µ0 � 2.5–104 for δ = 7–1), mtop increases
PH
further since the gauge contributions to the evolution
of the top–Yukawa coupling Yt are more significant
than in the case of the four-dimensional SM. This
is a direct consequence of our minimal approach,
where the chiral fermions are assumed to live at the
orbifold fixed points; therefore, they do not feel the
extra dimensions. For larger Λ/µ0, however, mtop

decreases fast, and one can obtain values of the top-
quark mass in the experimentally allowed range even
forΛ = 104 GeV and δ ≥ 5 (demanding µ0 ≥ 1 TeV).
This happens because of the power-law (1/δ(Λ/µ0)δ)
running of Yt [in contrast to the logarithmic running
(ln(Λ/µ0)) in the SM] [5, 13], which leads to ex-
tremely small values of Yt when Λ/µ0 or δ (or both)
increases even for a small cutoff scale Λ of about a
few TeV. Thus, the problem of quadratic divergences
can be potentially solved within our framework.

To conclude, I have studied the minimal BHL
model for dynamical EWSB, assuming the existence
of compact extra dimensions with relatively large
radii. It has been shown that, owing to the power-
law evolution of the gauge and Yukawa couplings,
the original BHL predictions for the top-quark mass
are significantly lowered, with the result that, even for
a small cutoff scale Λ of a few TeV, one can obtain
experimentally allowed values of mtop, provided that
the number of extra dimensions with R ≈ 1 TeV−1 is
not less than five. For future colliders, this offers the
exciting possibility of probing not only the composite
nature of the Higgs boson but also the structure of
spacetime.
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Abstract—The multi-instanton solutions of ’t Hooft and of Jackiw, Nohl, and Rebbi are generalized to the
case of curvilinear coordinates. The resulting formulas are considerably simplified if the transformation of
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addition of a geometric origin (it is determined by the coordinate frame used). The singularities of the
compensating field are irrelevant to physical quantities, but they can affect gauge-dependent quantities.
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1. INTRODUCTION

The years that have passed since the discovery of
instantons [1] have not given a decisive answer to
the question of their role in QCD [2, 3]. As long as
the nature of confinement remains a puzzle, spec-
ulations on instantons at large distances cannot be
complete. Additional information about this region
can be deduced by studying instanton effects in phe-
nomenological models like the bag model [4]. Such
an analysis makes it possible to assess the degree to
which confinement affects pseudoparticles, and vice
versa.

Conventional models of hadrons appear to bemore
natural in curvilinear coordinates. By way of example,
(3 + 1)-dimensional cylindrical coordinates—that is,
spherical coordinates supplemented with time—seem
to suggest themselves for a bag. At the same time, a
(2 + 2)-dimensional system of cylindrical coordinates
[(2 + 1)-dimensional system of spatial cylindrical co-
ordinates plus time] should be preferred for strings.
Nonetheless, instantons are traditionally considered
in Cartesian coordinates, which represent an ideal
option in a free vacuum. The present study is aimed
at attracting the attention of theorists to this problem
and at developing a conventient technique. We will
express the multi-instanton solutions of ’t Hooft and
of Jackiw, Nohl, and Rebbi [5] in terms of curvilinear
coordinates and simplify the resulting formulas by
means of a gauge transformation. The result is uni-
versal and is independent of the method of derivation.
It can be hoped that the geometric ideas developed
here will prove to be useful for other non-Abelian
topological solutions as well, including the most gen-
eral multi-instanton solution obtained in [6].

The ensuing exposition is organized as follows.
In Section 2, we recall the foundations of the theory
1063-7788/01/6405-0946$21.00 c©
being considered. We discuss curvilinear coordinates
in Subsection 2.1 and consider multi-instanton so-
lutions in Subsection 2.2. In Section 3, the general
multi-instanton configuration is expressed in terms of
curvilinear coordinates. We show how the resulting
expressions can be simplified by making a gauge
transformation along with the coordinate transfor-
mation. The appearance of an additional connection
in the group space is the price paid here for beauty.
We will refer to this connection as a compensating
connection. In Section 4, we will exemplify our
general analysis by considering the most symmetric
O(4) spherical coordinates. In Section 5, we dis-
cuss singularities that arise upon the application of
the compensating gauge transformation. The basic
results are summarized in Section 6.

2. BASIC INFORMATION

2.1. Curvilinear Coordinates

Let us consider a flat four-dimensional Euclidean
spacetime, whose points can be specified by either
Cartesian coordinates xµ or curvilinear coordinates
qα. The system of coordinates q is defined by the
metric tensor gαβ(q),

ds2 = dx2
µ = gαβ(q) dqα dqβ . (1)

In curvilinear coordinates, one has to use the co-
variant derivatives Dα instead of the conventional
partial derivatives ∂/∂xµ. For example, the derivative
of the covariant vector Aβ is given by

DαAβ = ∂αAβ − Γγαβ Aγ . (2)

The function Γαβγ is referred to as a Christoffel symbol
of the second kind or a Levi-Civita connection. It can
2001MAIK “Nauka/Interperiodica”
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easily be calculated if we know the metric tensor and
the matrix gβγ reciprocal to it (gαβ gβγ = δγα):

Γαβγ =
1
2
gαδ

(
∂gδβ
∂qγ

+
∂gδγ
∂qβ

− ∂gβγ
∂qδ

)
. (3)

Instead of the metric gαβ , it is often convenient
to use a vierbein—that is, the set of four vectors eaα,
a = 1, . . . , 4, such that

gαβ(q) = δab e
a
α(q) ebβ(q). (4)

Tensor quantities can have both conventional coordi-
nate (Greek) and vierbein (Latin) indices. A transi-
tion between them is performed via multiplication by
eaα:

Aa = eaαAα. (5)

The covariant derivatives of tensors carrying Latin
indices are calculated with the aid of the spin connec-
tionRa

α b(q),

DαA
a = ∂αA

a + Ra
α bA

b. (6)

The spin connection Ra
α b can be expressed in

terms of the Levi-Civita connection Γβαδ as

Ra
α b = eaβ ∂αe

β
b + eaβ Γβαγ e

γ
b = eaβ (Dαe

β)b. (7)

It can easily be shown that, if covariant derivatives
are defined in this way, the metric gαβ and the vierbein
eaα are covariantly constant.

In general, the vierbein is defined within orthogo-
nal transformations eαa → jαa = Oα

β e
β
a preserving the

metric, gαβ = Oγ
α gγδ O

δ
β . Under such transforma-

tions, relation (4) is invariant, whence it follows that
the sets of vectors eαa and jαa are equivalent. A specific
choice of vierbein is determined by the formulation of
the problem.

If the system of curvilinear coordinates is orthog-
onal and if the off-diagonal elements of the metric are
equal to zero, gαβ(q) = Gα(q) δαβ , it is convenient
to render the vierbein consistent with the coordinate
system by choosing it in the form

eαa =
√

Gα(q) δαa . (8)

This simplifies the relevant calculations significantly
because, in the case of this option, only four of 16 el-
ements of the matrix eαa are nonzero. We will refer
to such a vierbein as a natural vierbein. In terms of
Cartesian coordinates, the natural vierbein has the
form cµa = δµa .
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2.2. Instantons

Let us consider pure SU(2) Yang–Mills gauge
theory. Here, we will make use of the matrix no-
tation. The vector potential of the gauge field is
Âµ = 1

2τ
aAa

µ, where τa are the Pauli matrices. The
covariant derivative in terms of Cartesian coordinates
is Dµ = ∂µ − i Âµ, and the action functional for this
theory has the form

S =
∫ tr F̂ 2

µν

2g2
d4x =

∫
tr F̂αβ F̂αβ

2g2

√
g d4q, (9)

where g = det ||gαβ ||. The gauge-field strength F̂αβ
is specified by a universal formula (that is a formula
that is independent of the choice of coordinates):

F̂αβ(Â) = ∂αÂβ − ∂βÂα − i
[
Âα, Âβ

]
. (10)

It is well known that the action functional (9) is
invariant under gauge transformations; that is,

Âµ → ÂΩ
µ = Ω† Âµ(x)Ω + iΩ† ∂µΩ , (11)

where Ω is a unitary 2 × 2 matrix; that is, Ω† = Ω−1.

The classical field equations have self-dual (Fµν =

F̃µν =
1
2
εµνλσ F λσ) solutions referred to as instan-

tons. The most universal self-dual configuration
found explicitly1) is due to Jackiw, Nohl, and Rebbi. It
generalizes the multi-instanton solution of ’t Hooft (’t
Hooft ansatz) [5] and involves four parameters more
in relation to the latter. The two solutions can be
represented in the general form

Âµ(x) = −
η̂−µν
2

∂ν lnΠ(x), (12)

where η̂µν is the matrix version of the ’t Hooft η
symbol [7],

η̂±µν = −η̂±νµ =




τa εaµν for µ, ν = 1, 2, 3

±τa δµa for ν = 4.
(13)

The ’tHooft (’tH) solution differs from the Jackiw–
Nohl–Rebbi (JNR) solution in the form of the scalar
function Π(x). For the topological charge N , the two
versions of this function are given by

Π′tH(x) = 1 +
N∑
n=1

ρ2
n

(x− yn)2
,

ΠJNR(x) =
N+1∑
n=1

ρ2
n

(x− yn)2
. (14)

1)The general solution from [6] is known only implicitly.
1
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The parameters in Π′tH can readily be interpreted
as the radii (ρn) and the coordinates (yn) of pseu-
doparticles; however, the structure of ΠJNR is not so
transparent.

The popular regular and singular gauges for an
instanton of radius ρ occurring at the point y can
also be represented in the form (12), provided that the
function Π(x) is chosen appropriately (in the case of
the regular gauge, however, it is necessary to make
the substitution η̂−µν → η̂+

µν):

Πreg(x) =
ρ2

(x− y)2 + ρ2
, (15)

Πsing(x) = 1 +
ρ2

(x− y)2
.

In the following, we will generalize the solution in
(12) to the case of curvilinear coordinates. We will
nowhere rely on the explicit expressions for Π(x), and
the results to be obtained will be valid in all cases
considered here.

3. INSTANTONS IN CURVILINEAR
COORDINATES

3.1. Problem and Its Solution

Problem. It is straightforward to express the
covariant vector Âµ (12) in terms of curvilinear co-
ordinates q. After that, however, the constant tensor
η̂µν appears to be a nontrivial function of coordinates:

η̂µν → η̂αβ(q) = η̂µν
∂xµ

∂qα
∂xν

∂qβ
= ξ̂ab c

a
α cbβ. (16)

Here, caα = δaµ
∂xµ

∂qα are the components of the natural
Cartesian vierbein in terms of the new coordinates
and ξ̂ab is a constant matrix tensor and is given by

ξ̂ab = δµa δνb η̂µν . (17)

In Cartesian coordinates, ξ̂ab coincides with η̂µν ,
taking its place in curvilinear coordinates.

From the point of view of the coordinates q, caα is
an important particular case of vierbein for zero spin
connection Ra

α b. It is desirable to know whether it is
possible to generalize Eq. (16) and to replace caα in it
by an arbitrary vierbein eaα without complicating ξ̂ab.

Solution. A positive answer to this question is
associated with the special features of the η sym-
bols, which project coordinate space onto the gauge
group (more precisely, they project self-dual rank-
2 antisymmetric tensors into the group algebra). It
is well known that the substitution caα → eaα for the
vierbein reduces to the rotation caα = Oa

b(q) e
β
a , under

which the ξ symbols change and become dependent
on the coordinates: ξ̂ab → ξ̂′ab(q) = Oc

a(q)Od
b(q) ξ̂cd.
PH
However, four-dimensional rotations can be compen-
sated by relevant gauge transformations owing to the
properties of the projection of the O(4) space group
onto the SU(2) gauge group.

In the coordinates q, we choose a vierbein eaα(q).
We assume that there exists a unitary matrix Ω(q)
such that

Ω†(q) η̂αβ(q)Ω(q) = eaα(q) e
b
β(q) ξ̂ab. (18)

It can be seen that the gauge transformation as-
sociated with the matrix Ω factorizes the coordinate
dependence of the tensor η̂ and transfers it to eaα(q).
As a matter of fact, the role of Ω is to render the color
orientation of gauge fields consistent with the new
vierbein.

It is obvious that relation (18) forms a set of equa-
tions for the elements of the matrix Ω. By virtue of
the above considerations, the only condition for the
sought solution to exist is the requirement that the
orientation of the new vierbein eaα(q) be coincident
with the orientation of the original system of coor-
dinates x. Otherwise, the right- and the left-hand
side of Eq. (18) have different duality properties.
For an arbitrary vierbein, this condition has the form
det ||cαa || × det ||eaα(q)|| > 0.

Upon a gauge rotation, the instanton field involves
two terms,

ÂΩ
α (q) = −1

2
eaα ξ̂ab e

b β ∂β ln Π(q) + iΩ† ∂αΩ. (19)

The first term has a nearly standard form and is in-
dependent of thematrixΩ, whereas the second carries
information about the system of coordinates q. It has
a geometric origin. We will refer to it as a compensat-
ing gauge connection, since it compensates for the
coordinate dependence of the tensor η̂ab = eαa eβb η̂αβ ,
transforming it from a covariantly constant tensor
into a merely constant tensor ξ̂ab.

So far, we have not actually required the duality
of the η̂ symbol. However, the matrices Ω and the
compensating connections for η̂+ and η̂− are differ-
ent. In general, the quantities Âcomp±

α represent the
self-dual and the anti-self-dual projection of the spin
connection onto the gauge group:

Âcomp±
α = iΩ†

± ∂αΩ± = −1
4
Rab
α ξ̂±ab. (20)

It is noteworthy that the last formula does not
involve the gauge-transformation matrix Ω. In order
to write explicitly multi-instanton solutions in non-
Cartesian coordinates, it is sufficient to know the
vierbein and the spin connection. This simplifies
the calculations considerably, since Eq. (18) is very
involved. By explicitly calculating the instanton field
[Eqs. (19) and (20)], we have also proven de facto the
YSICS OF ATOMIC NUCLEI Vol. 64 No. 5 2001
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existence of such a solution and the meaningfulness
of this approach.

It should be emphasized that the proposed pro-
cedure can be applied to any vierbein. From the
practical point of view, however, it is convenient to
use a four-component natural vierbein in orthogonal
coordinates.

3.2. Triviality of the Compensating Field

That the vector potential Âcomp is trivial—that is,
it is the pure gauge (20)—is quite natural. It would
have been strange if a mere coordinate transforma-
tion, xµ → qα, had had physical implications. It is in-
teresting, however, that triviality of the compensating
field proves to be peculiar to a flat space. The point
is that the strength F̂αβ(Âcomp) of the gauge field
corresponding to the vector potential (20) is related to
the Riemann curvature Rγδ

αβ of space by the equation

F̂αβ(Âcomp±) = −1
4
Rγδ
αβ ξ̂

±
γδ. (21)

Thus, we see that, if Rγδ
αβ = 0, F̂αβ(Â

comp) = 0 as

well; hence, Âcomp is a pure gauge. In a curved space,
however, the gauge connection specified by Eq. (20)
is no longer trivial, so that it can have physical impli-
cations, including gravitational instantons.

3.3. Duality and Topological Charge

It is well known that instanton and multi-instan-
ton solutions satisfy classical field equations. Since
the vector potential (19) was obtained from solution
(12) by means of a gauge transformation, it is also a
classical solution. As to duality equations, they have a
somewhat different form in curvilinear coordinates. If
wemake use of quantities carrying coordinate indices,
then

F̂αβ =
√
g

2
εαβγδ F̂

γδ =
1
2
Eαβγδ F̂

γδ. (22а)

In the duality equations, the antisymmetric ε sym-
bol must therefore be replaced by its non-Cartesian
generalization Eαβγδ =

√
g εαβγδ. Upon a transition

from Greek (coordinate) to Latin (vierbein) indices,
however, the equation takes the original form

F̂ab =
1
2
εabcd F̂

cd. (22b)

The topological charge of the solution is given by
the integral

q =
1

32π2

∫
εαβγδ tr F̂αβ F̂ γδ d4q, (23а)
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which can also be written in the vierbein notation

q =
1

32π2

∫
εabcd tr F̂ ab F̂ cd√g d4q. (23b)

The general expression for the instanton-field
strength F̂αβ in arbitrary coordinates is rather cum-
bersome. Fortunately, it is simplified for one instan-
ton. In Cartesian coordinates, the instanton vector
potential in the regular gauge is (r2 = x2

µ)

ÂI
µ =

η̂+
µν

2
∂ν ln

(
r2 + ρ2

)
. (24)

The combined coordinate and Ω+ gauge transforma-
tions reduce it to

ÂI
α =

1
2
eaα ξ̂+

ab e
b β ∂β ln(r2 + ρ2) + Âcomp +. (25)

With the aid of the definition in (10), we obtain

F̂ab(ÂI ) = − 2 ξ̂+
ab

(r2 + ρ2)2
; (26)

that is, the field obviously proves to be self-dual.
The same expression can be obtained by perform-

ing a change of coordinates and an Ω+ rotation of
the instanton-field strength calculated in Cartesian
coordinates, F̂µν = −2η̂µν / (x2 + ρ2)2, and by mak-
ing use of relation (18). Equations (25) and (26)
generalize the regular gauge to the case of arbitrary
curvilinear coordinates.

3.4. Homogeneous Gauge Transformations

It is well known that the multi-instanton solutions
(12) admit homogeneous gauge transformations,

η̂ → U † η̂ U, (27)

where U is a unitary matrix, U † = U−1. They are
equivalent to a left multiplication of Ω by U , Ω → U Ω
(Ω† → Ω† U †); from the point of view of the q system,
they reduce to rotations of the Cartesian coordinate
system x.

From Eq. (20), it can easily be seen that these
transformations do not affect the form of Âcomp. This
means that the compensating connection is universal
and is independent of the embedding of the origi-
nal (Cartesian) instanton in the gauge group. The
solution specified by Eqs. (19) and (20) is unam-
biguously determined by the tensor ξ̂ab. Arbitrariness
in choosing ξ̂ab reduces to the homogeneous gauge
transformations

ξ̂ → V † ξ̂ V (28)

with a unitary matrix V , V † = V −1. These trans-
formations are equivalent to a right multiplication of
1
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Ω by V , Ω → ΩV (Ω† → V † Ω†), and rotate solution
(19) as a discrete unit.

We can see that the result is independent of either
the specific form of η̂ or the intermediate matrix Ω;
that is, it could be obtained by directly solving the field
equations in curvilinear coordinates.

4. EXAMPLE

By way of example, we consider an instanton sit-
uated at the center of the O(4) spherical-coordinate
system. In these coordinates, a point is specified by
three angles and the modulus of the radius vector:
qα = (χ, φ, θ, r). The polar axis is aligned with the
x1 axis of the original system of Cartesian coordi-
nates:

x1 = r cosχ, (29a)

x2 = r sinχ sin θ cosφ, (29b)

x3 = r sinχ sin θ sinφ, (29c)

x4 = r sinχ cos θ. (29d)

For this choice, the system of spherical coordinates
is oriented in the same way as the original system of
Cartesian coordinates.

The metric tensor and the natural vierbein are
diagonal matrices:

gαβ = diag (r2, r2 sin2 χ sin2 θ, r2 sin2 χ, 1), (30a)

eaα = diag (r, r sinχ sin θ, r sinχ, 1). (30b)

We must now consistently implement the above
procedure, starting from the instanton vector poten-
tial in the regular gauge [Eq. (24)]. In addition
to the instanton component proper, it is necessary
to calculate the compensating connection. In order
to do this, we must first find the Christoffel symbol
Γαβγ , then determine the spin connection Rab

α , and

finally compute Âcomp +. By definition, the ξ̂+
ab symbol

coincides with η̂+
ab as given by Eqs. (13) and (17).

Omitting intermediate transformations, we immedi-
ately present the eventual result:

ÂI
χ =

τx
2

(
r2 − ρ2

r2 + ρ2

)
, (31a)

ÂI
φ = −τx

2
cos θ +

τy
2

sinχ sin θ

(
r2 − ρ2

r2 + ρ2

)

+
τz
2

cosχ sin θ, (31b)

ÂI
θ = −τy

2
cosχ +

τz
2

sinχ

(
r2 − ρ2

r2 + ρ2

)
, (31c)

ÂI
r = 0. (31d)
PH
The corresponding strength of the Yang–Mills field
is given by Eq. (26).

The same procedure can be applied to a singular
gauge. Recall that we perform a change of coordi-
nates and a gauge transformation, these transforma-
tions for the regular and the singular gauge being
different. By way of example, we indicate that the
instanton field in a regular gauge involves the tensor
η̂+
αβ and that it is transformed with the aid of the

matrix Ω+; at the same time, the singular gauge
dependent on η̂−αβ must be rotated by means of the
matrix Ω−. Naturally, the resulting compensating
connections are also different.

It turns out that, if an instanton occurs at the
origin of coordinates, the two different procedures
applied to different original vector potentials lead to
the same result given by (31). Moreover, the matrices
Ω+ and Ω− are related by the equation

Ω+|O(4) = Ω†
−|O(4) = Ω−1

− |O(4)

or
Ω−|O(4) = Ω†

+|O(4) = Ω−1
+ |O(4). (32)

This means that the matrix Ω2
+ transforms the

regular gauge into the singular gauge, while the ma-
trix Ω2

− implements the inverse transformation. The
solution given by (31) is in between.

It would be of interest to clarify the reason behind
this coincidence. It can be shown that, for an arbitrary
choice of vierbein, the regular and the singular gauge
are different, O(4) spherical coordinates representing
an exception. It is important in this connection that
the quantities η̂±µν are given by expressions (13) and
that the fourth coordinate coincides with the radius.
A violation of these conditions would lead to distinc-
tions in the results; however, this leaves the pos-
sibility of reparametrizing the sphere S3, (q, q4) →
(q′, q4), and of changing the vierbein without affect-
ing e4

α = δ4
α.

5. SINGULARITIES
The above vector potential (31) is singular, since

neither ÂI
θ nor ÂI

φ vanishes at χ = 0, π and θ =
0, π—that is, near the x1x4 Cartesian coordinate
plane. These singularities arise upon applying a
gauge transformation, so that they must not change
observables. However, they can affect gauge-variant
quantities. We will explain this point by considering
the example of the Chern–Simons number.

It is well known that the topological charge
(23) can be represented as the surface integral q =∮
Kα dSα [2, 3], where

Kα =
εαβγδ

16π2
tr
(
Âβ F̂γδ +

2i
3
ÂβÂγÂδ

)
. (33)
YSICS OF ATOMIC NUCLEI Vol. 64 No. 5 2001
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Although the charge q is gauge-invariant, Kα de-
pends on the choice of gauge. This circumstance
is often used when an instanton is interpreted as a
tunnel transition. Let us consider an instanton in
the gauge Â4 = 0. In this case, the total topological
charge is decomposed into the sum of integrals over
the hyperplanes x4 = ±∞; that is, q = NCS(∞) −
NCS(−∞). The quantity

NCS(t) =
∫
x4=t

K4 dS4 (34)

is referred to as a Chern–Simons number. An instan-
ton represents a∆NCS = 1 transition between three-
dimensional vacua (that is, between the hyperplanes
x4 = ±∞).

At first glance, formulas (31) strongly resemble
the situation described above. First of all, we again
have Â4 = 0 as in (31d). It is tempting to consider
the radius as time and assign a sphere of radius r
the Chern–Simons number NCS(r). By analogy,
the topological charge would seem to be determined
as the difference ∆NCS = NCS(r)|∞0 . However, the
calculations do not confirm this; in fact, we obtain
∆NCS = 1/2. The second half of the topological
charge q comes from the singularities at θ = 0, π.
It should be recalled that the topological charge is
concentrated at the origin, q = N sing

CS (0) = 1, in the
singular gauge and at infinity, q = N reg

CS (∞) = 1, in
the regular gauge. Thus, the Ω gauge transformation
changes the distribution ofNCS.

It can be seen that, in our approach, gauge-variant
quantities depend on the coordinate system. In par-
ticular, they can be concentrated at the singulari-
ties of the Ω transformation. It is the opinion of
the present author that this may conceal additional
possibilities for simplifying relevant calculations by
appropriately choosing curvilinear coordinates.

6. CONCLUSION

It has been demonstrated how one can generalize
explicit (multi)instanton solutions to the case of
curvilinear coordinates and make them consistent
with the vierbein in that representation. A gauge
transformation reduces the coordinate-dependent,
albeit covariantly constant, η̂ab symbol to the con-
stant ξ̂ab. The vector potential appears to be the sum
of the instanton component and the compensating
gauge connection (19).

The compensating gauge connection can be cal-
culated in three steps:
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(i) First, it is necessary to calculate the Christoffel
symbol Γαβγ (3).

(ii) By taking the covariant derivative of the vier-
bein (7), one can then find the spin connection Rab

α .

(iii) The compensating vector potential (20) can be
obtained by contracting the spin connection with the
corresponding ξ̂ab symbol.

The proposed solution is advantageous in that it
is quite clear and in that it is constructed directly
from geometric objects (vierbein, spin connection,
projection operator ξ̂ab). The matrix Ω, which is not
always readily calculable, is not involved explicitly—
it serves for explanatory purposes exclusively. If the
system of curvilinear coordinates is orthogonal, a
gauge consistent with it can be obtained by using
a natural vierbein. It would be of great interest to
find out new possibilities associated with this. For a
detailed exposition of the matters discussed here and
for further examples, the interested reader is referred
to [8].
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Abstract—The yield of parametric x-ray radiation from a tungsten single crystal irradiated with a E =
500MeV electron beam from the Tomsk Sirius synchrotron was studied experimentally in Bragg geometry.
The tungsten sample was 1.7 mm thick and had a surface mosaicity less than 1.5′; it was oriented in such
a way that the (111) face was at the Bragg angle of θB = 45◦ with respect to the electron-beam direction.
The x-ray photons were detected at the angle of 2θB = 90◦ with respect to the electron beam. The angular
distributions of parametric x rays are comparedwith those calculated with allowance for actual experimental
conditions. c© 2001 MAIK “Nauka/Interperiodica”.
Crystals having a perfect crystallographic lattice—
for example, silicon—are being successfully used
now as deflectors (on the basis of channeling in bent
crystals) for extracting charged particles (including
heavy ions) from accelerators.
The efficiency of extraction for crystals with a large

atomic number like tungsten significantly exceeds
that which is attained for crystals with a small atomic
number. However, modern technologies for growing
thick tungsten crystals necessary for producing de-
flectors do not guarantee the perfectness and homo-
geneity of the crystal structure along particle trajec-
tories.
The objective of this study is to investigate, by

using a 500-MeV electron beam from the Tomsk
synchrotron, the structure of a tungsten single crystal
on the basis of spectral angular characteristics of
parametric x rays and radiation accompanying chan-
neling and to develop methods for orienting crystals
in heavy-ion beams.
Tungsten single crystals are planned to be used

for extracting light and heavy nuclei from the JINR
nuclotron (Dubna) [1]. The crystal under study
represents a block of dimensions 1.7 × 10 × 15 mm
grown by the method of zone melting with subse-
quent grinding and etching. A large face of the crystal
deviated from the (111) plane by not more than 30′.
The crystal was preliminarily investigated with an
x-ray diffractometer. “Rocking curves” measured
for various surface points showed that the surface
mosaicity was less than 80′′.

*e-mail: adischev@interact.phtd.tpu.edu.ru
1063-7788/01/6405-0952$21.00 c©
The experimental procedure was similar to that
described in [2]. Electrons accelerated in the vacuum
chamber of the synchrotron were directed onto an in-
ternal tungsten target for 15 ms, the pulse-repetition
frequency being 5 Hz. The spectral and angular
distributions of parametric x rays were measured by
an x-ray spectrometer based on a silicon PIN diode
that had the input window of diameter 5 mm and
which was arranged in Bragg geometry at the angle
of 2θB = 90◦ with respect to the electron-beam axis
at a distance of 97 cm from the target. For the 13.95-
and 17.8-keV lines of the 241Am L series, the energy
resolution of the spectrometer was 1.5 keV, and the
detection efficiency was approximately 60%.
The energy equivalent of the lower threshold of

the spectrometer amounted to 5 keV, and the max-
imum energy of photon detection was 50 keV. The
number of accelerated electrons was monitored by
an inductive current sensor with an error of 5% and
by a synchrotron-radiation sensor with an error of
20%. The number of electrons that had traversed the
target was determined by measuring the total energy
of bremsstrahlung by a Wilson quantameter with an
error of 10%.
Throughout the measurements, the current of ac-

celerated electrons was maintained at a level such
that the counting rate in the spectrometer was less
than 2 × 102 photons per spill. Even at this counting
rate, the energy resolution of the PIN spectrometer
was markedly impaired.
The tungsten single crystal was oriented with re-

spect to the electron beam by using a goniome-
ter with angular steps of ∆θvert = 2 × 10−5 rad and
2001MAIK “Nauka/Interperiodica”



PARAMETRIC X-RAY RADIATION FROM 500-MeV ELECTRONS 953

 

80400–40–80

 

θ

 

, mrad

0

0.5

1.0

1.5

Intensity, arb. units
 

×

 

2.5

Fig. 1. Orientation dependences of the γ-radiation yield during the channeling of 500-MeV electrons in a tungsten single
crystal.
∆θhorizon = 7 × 10−6 rad for the rotation about the
vertical and the horizontal axis, respectively.

In order to achieve a precise orientation of the
crystal, we used the effect of γ radiation from elec-
trons during channeling. The radiation was recorded
by a NaI detector that was arranged at an angle
of 7◦ with respect to the beam and which detected
Compton photons from the target. As the crystal
was rotated about the vertical axis, we measured the
orientation dependence of the yield of photons with an
energy exceeding the threshold of 511 keV.

Figure 1 shows the orientation dependences of the
yield of γ radiation from the rotating crystal for α =
(upper curve) 16 mrad and (lower curve) 0, where α
is the angle between the electron momentum and the
〈111〉 axis; in the latter case, the electron momentum
is parallel to the axis. By using these dependences,
the crystal was oriented in such a way that the 〈111〉
axis was aligned with the electron beam to within
0.1 mrad. Thereafter, the crystal was rotated through
an angle of 45◦ with respect to the electron beam in
order to implement Bragg geometry.

Figure 2 displays the spectrum of parametric
x rays that was obtained in Bragg geometry from the
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 5 200
(222) and (444) planes of the tungsten single crystal.
In this spectrum, we can see a characteristic peak
that occurs at the photon energy of ω = 9.6 keV
and which corresponds to the (222) second-order
diffraction according to the Bragg formula

ω =
π�cn

dsinθB
, n = 1, 2, 3, ..., (1)

where d is the interplane spacing.
The second peak at ω = 19.2 keV, which corre-

sponds to the next order of (444) diffraction, is less
pronounced, which is due to the dynamical deteriora-
tion of the PIN spectrometer resolution in this energy
region.
The FWHM of the first peak is 3 keV, which is as-

sociated with the superposition of closely lying prin-
cipal spectral lines of the L series in the characteristic
x-ray radiation from tungsten (8.4, 8.33, 9.67, 9.96
and 11.29 keV).
The yield of photons of characteristic x rays was

measured for a tungsten-crystal disorientation up to
θ = 40◦ with respect to the electron-beam axis, the
Bragg condition (1) being violated in this case. A
contribution from these photons to the first spectral
peak amounts to 30%.
1
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The angular distribution of photons of parametric
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For the (222) reflex at ω = 9.6 keV, the orientation

dependence of the yield of photons belonging to para-
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Fig. 3. Orientation dependence of the yield of photons of
parametric x-ray radiation generated by 500-MeV elec-
trons traversing a tungsten single crystal.
PH
metric x-ray radiation is plotted in Fig. 3 according to
measurements at a fixed position of the spectrometer
at an angle of 2θB = 90◦, which corresponds to θ = 0
in the figure. The FWHM of the orientation depen-
dence amounts to 4 mrad.
Figure 4 displays the orientation dependences of

parametric x-ray radiation that were obtained from
a Monte Carlo simulation performed with allowance
for the initial angular divergence of the beam of elec-
trons scattered in the crystal, electron energy losses,
the mosaic structure of the crystal, the absorption of
the photons of this radiation in the crystal, and the
spectrometer aperture. The simulation was based on
kinematical theory [3]. The FWHM of the theoretical
orientation dependence is ∆θ � 5 mrad, which is in
excess of the width of the experimental dependence.
In the photon-energy range ω = 9.6–19.2 keV,

the contribution from bremsstrahlung diffraction is
negligible; for this reason, the narrowing of the curve
must be explained in terms of a different mechanism.
In the majority of previous experiments performed

with light-atom crystals (diamond, silicon), good
agreement with the kinematical theory of parametric
x-ray radiation was observed [2]. The discrepancy
found here is possibly associated with the contribu-
tion from the diffraction of real photons of transition
x rays to the total photon yield [4]. A simulation of
YSICS OF ATOMIC NUCLEI Vol. 64 No. 5 2001
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Fig. 4. Result of a Monte Carlo simulation of the orienta-
tion dependence of the yield of parametric x rays.

the contribution from diffracted transition x rays for a
silicon single crystal was performed in [5], where the
angular cone of diffracted transition x rays was shown
to be significantly narrower than that of parametric x
rays.
The effects of parametric x rays and diffracted tran-

sition x rays have not yet been investigated experi-
mentally for heavy-atom crystals, where the plasmon
energy ωp is much higher than that in diamond and
silicon.
It seems necessary to develop, on the basis of the

dynamical theory of parametric x rays, methods for
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 5 200
simulating the properties of radiation in heavy-atom
crystals.

The results obtained here confirm that the effect
of parametric x rays generated in a tungsten single
crystal can be used in extracting heavy particles from
an accelerator for orienting a crystal and controlling
its bend.
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Abstract—The results obtained by experimentally investigating the dynamics of the propagation of
1.2-GeV electrons through a thin silicon single crystal are discussed. The orientation dependences of
electron scattering into a small solid angle, which are measured at various scattering angles, under
conditions where the effects of crystallographic axes and planes manifest themselves are interpreted. It
is shown that there are such electron-scattering directions for which the orientation “independence” of the
scattering intensity with respect to a specific crystallographic plane is observed and that there also exists a
crystal-axis orientation for which the region of a uniform angular distribution of the intensity is observed.
c© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Experimental investigation of the dynamics of the
propagation of electrons with an energy of about
1 GeV is of interest in connection with the possibil-
ity of using the instructive classical approach for its
description. At the same time, relativistic effects in
the propagation and scattering of fast particles and in
radiation from them are pronounced at such energies.

In this study, we present the results obtained from
an experimental investigation of orientation effects in
the scattering of ultrarelativistic electrons in a silicon
single crystal. The experiments were performed at the
2000-MeV linear electron accelerator of the Kharkov
Institute for Physics and Technology.

A typical experimental procedure was used in
electron-scattering experiments. A crystalline target
was placed in a chamber equipped with a goniometer
that made it possible to orient the target with re-
spect to the axis of incident electron beam to within
5 × 10−5 rad. The particles that had traversed the
target were detected by a small germanium detector
(0.5 × 0.5 mm) positioned at a distance of 15 m
from the target; this corresponded to measuring the
flux of particles scattered into a solid angle of about
1× 10−9 sr. The angular distribution of scattered par-
ticles was measured by scanning the scattered beam
in the transverse plane by displacing the detector. In
this study, we measured the angular distributions of
particle-flux density versus the orientation of a given

1)Kharkov Institute for Physics and Technology, ul. Aka-
demicheskaya 1, Kharkov, 310108 Ukraine.

*e-mail: blazh@belgorod.bpqu.su
1063-7788/01/6405-0956$21.00 c©
crystallographic axis or a given plane with respect
to the axis of the incident-particle beam; we also
explored orientation dependences.

2. ELECTRON PROPAGATION AT SMALL
ANGLES TO A CRYSTALLOGRAPHIC AXIS
The propagation of ultrarelativistic electrons was

experimentally investigated by using a 1200-MeV
electron beam incident at small angles with respect
to a crystallographic axis on a silicon single crystal
10 µm thick cut along the (111) plane. The incident
beam was collimated to a diameter of 0.3 mm and
had an angular divergence of 10−5 rad. At the detec-
tor position fixed on the axis of the incident-particle
beam, we measured the dependence of forward elec-
tron scattering (at zero angle θ) on the orientation of
the 〈111〉 crystal axis. Fixing the detector in a position
displaced in the transverse plane, we measured the
corresponding orientation dependences of scattering.
The dependence of forward electrons scattering on
the angle ψ of orientation of the 〈111〉 crystal axis is
depicted in Fig. 1 (solid curve), which shows a narrow
region of orientation angles near the incident-beam
axis. Here, the transmission intensity is normalized to
that corresponding to the transmission through a dis-
oriented crystal. It can be seen that a strong scatter-
ing effect is observed in the region of small orientation
angles, where we have Iψ � 1 for the transmission
intensity. Coherent effects in the interaction of fast
charged particles with an ordered atomic medium
are pronounced in thin crystals. In the orientation
dependence of transmission, the present experiment
revealed here a new feature, a local transmission-
intensity minimum at small orientation angles, which
2001MAIK “Nauka/Interperiodica”
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Fig. 1. Orientation dependence of the forward-
transmission intensity for 1200-MeV electrons incident
on a Si crystal 10 µm thick at small angles to the 〈111〉
axis.

resembles the well-known effect of blocking. This
feature was not previously predicted, so that it calls for
an adequate theoretical description. Another feature
in the measured orientation dependence manifests
itself in a comparison with the results of a calculation
based on a theoretical model that takes into account
the multiple azimuthal scattering of relativistic elec-
trons by atomic chains in a crystal [1]. It turned
out that the calculation (Fig. 1, open circles) yields
a much more gently sloping orientation dependence
than that measured experimentally. A qualitative ex-
planation for this discrepancy is provided by a model
that takes into account the scatter of particles in
the polar angle [2] and which leads to an additional
reduction of the transmission intensity at small ori-
entation angles. In Fig. 1, open squares represent
this dependence with allowance for the scatter in the
polar angle.

Figures 2 and 3 display experimental results ob-
tained by measuring the transmission (curve 1) and
the scattering of electrons at various angles in the
plane whose normal is aligned with the axis of crystal
rotation. Figure 2 shows the results of measurements
performed with a 500-MeV electron beam under the
same conditions as those described above. The re-
sults from [3], which were obtained with a 760-MeV
electron beam incident on a crystal 80 µm thick under
the conditions of a much poorer angular resolution
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 5 200
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Fig. 2. Orientation dependence of scattering and trans-
mission for 500-MeV electrons incident on a Si crystal
10 µm thick at scattering angles θ of (1) 0, (2) 0.08, (3)
0.12, (4) 0.16, (5) 0.18, (6) 0.23, (7) 0.27, and (8) 0.3
mrad. The root-mean-square angle of incoherent scat-
tering is θs = 0.15 mrad. Data presented in this figure
and in Figs. 3, 5, and 6 are normalized to the transmission
intensity for a disoriented crystal (see main body of the
text).

(the detection solid angle was 1.2 × 10−8 sr) are
shown in Fig. 3 for the sake of comparison.

Special attention should be given to the relation-
ship between the intensity of transmission through a
disoriented crystal and the intensity of transmission
through an analogous crystal oriented in such a way
that one of its crystallographic axes is aligned with
the incident electron beam. At a local peak, a typical
transmission curve for an oriented crystal at a low
angular resolution has an intensity that is commen-
surate with that of transmission through a disoriented
crystal. As to the measurements carried out with a
high angular resolution, they give much larger ra-
tios of these values. This circumstance agrees well
with the concept that the electrons undergo multiple
azimuthal scattering on atomic chains in a crystal.
From Figs. 2 and 3, it can be seen that there exists
a crystal-axis orientation such that almost all orien-
tation curves intersect; that is, there is a scattering-
angle region where the angular distribution of the
intensity is uniform.

3. PROPAGATION OF ELECTRONS
AT SMALL ANGLES

TO A CRYSTALLOGRAPHIC PLANE

Experimental investigation of the influence of
atomic planes in a crystal on the propagation of
relativistic charged particles is aimed at clarifying
some orientation effects that differ geometrically from
1



958 BLAZHEVICH et al.

 

–8 –4 0 4

 

ψ

 

, mrad
0

0.5

1.0

 
I

 
, arb. units

 

〈

 

111

 

〉

 

1
2

3

4

5

6
7
8

Fig. 3. Orientation dependence of scattering and trans-
mission for 760-MeV electrons incident on a Si crys-
tal 80 µm thick at scattering angles θ of (1) 0, (2)
0.17× 10−3, (3) 0.34× 10−3, (4) 0.51× 10−3, (5) 0.65×
10−3, (6) 0.80 × 10−3, (7) 0.89 × 10−3, and (8) 1.03 ×
10−3 mrad.

those considered for the case of axes, but which are of
no less interest both for fundamental physics and for
the possible applications.

In this article, we present the results obtained by
measuring the orientation dependence of the trans-
mission and scattering of 1200-MeV electrons by
the (110) atomic planes in a silicon crystal 10 µm
thick. The crystal was oriented in such a way that
the target-rotation axis in the goniometer lay in a
plane parallel to the (110) planes and that the ori-
entation angles ψ and the observation angles θ (see
Fig. 4) lay in the same plane orthogonal to the (110)
atomic planes. The measurements were performed
in the same geometry and with the same detector as
those described above. The results are displayed in
Fig. 5. As can be seen from this figure, the intensity
of electron transmission into a small forward solid
angle is minimal when the (110) plane of the crystal
is oriented along the incident-beam axis; that is, elec-
trons incident on the crystal along atomic planes are
scattered more strongly than those in a disoriented
crystal. In other words, the electrons are scattered
more intensely under the conditions of planar chan-
neling than in the case of a disoriented crystal. It
can also be seen that the electrons are scattered sym-
metrically with respect to the plane. Furthermore,
Fig. 5 shows that the intensity of scattering at angles
θ > θs (where θs is the multiple-scattering angle in a
disoriented crystal) in the region of small orientation
angles ψ proves to be greater than that in the case
of a stronger disorientation. The position of the in-
tensity peak does not correspond to the orientation
of crystalline planes along the incident-beam axis—
the orientation dependence becomes asymmetric with
PH
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e

 

–

 

e
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Fig. 4. Geometry of the experiment studying the orien-
tation dependence of transmission (θ = 0) and scattering
at specific angles θ for 1200-MeV electrons incident at
small angles ψ to a crystallographic plane.

respect to the orientation angle of ψ = 0. The above
effect was also observed by Ermak et al. [4], who
studied the angular distributions of electrons scat-
tered at various orientations of the crystalline plane;
they called this effect a quasirefraction. In the the-
oretical study of Fomin [5], this phenomenon was
explained by the concerted effect of the incoherent
multiple scattering of electrons and their planar chan-
neling.

From Fig. 5, it can also be seen that there is
an angle θ∗ ≈ θs at which the scattering intensity
is virtually independent of orientation; this can be
used in measurements of orientation dependences for
monitoring the beam current.

4. OBSERVATION OF ORIENTATION
DEPENDENCE OF THE FORWARD
PROPAGATION OF RELATIVISTIC

ELECTRONS INCIDENT ON A CRYSTAL
AT SMALL ANGLES TO AN AXIS

IN THE CASE OF PLANAR CHANNELING

In transmission experiments, it is possible in prin-
ciple to observe, on a single curve of orientation
dependence, the effect of orientation of both crystal
planes and axes. Conceivably, this is not a new pos-
sibility, but we deem that it is of interest as a demon-
stration of a crystalline-structure manifestation in the
angular structure of a particle flux that has traversed
a crystal.

The relevant results of our measurements are il-
lustrated in Fig. 6, which shows the intensity of
YSICS OF ATOMIC NUCLEI Vol. 64 No. 5 2001
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Fig. 5. Transmission and scattering of 1200-MeV elec-
trons into the solid angle ∆Ω = 10−9 sr that are incident
on a Si crystal 10 µm thick versus the angle ψ of orien-
tation of the (110) plane at the observation angles θ of
(1) 0, (2) 0.047, (3) 0.067, (4) 0.084, (5) 0.103, (6) 0.13,
(7) 0.148, (8) 0.186, (9) 0.231, and (10) 0.273 mrad.

relativistic-electron transmission as a function of the
angle ψ of the crystal rotation about a certain axis
(orthogonal to the incident-beam axis) for various
values of the angle α that specifies the orientation of
the normal to one of the planes whose intersection
forms the 〈111〉 crystallographic axis with respect to
the crystal-rotation axis.

The lower curve in Fig. 6 corresponds to the
atomic-plane orientation orthogonal to the crystal-
rotation axis in the goniometer (α = 0◦). In this
case, rotation of the crystal rotates the atomic plane
without changing the orientation of its normal and the
crystal appears to be oriented in such a way that, for
all values of ψ, the incident beam lies in the atomic
plane. In this case, a disoriented crystal therefore
turns out to be in fact oriented, but this orientation
is determined by a plane rather than by a crystallo-
graphic axis; naturally, the transmission intensity is
then lower than that for a “truly” disoriented crystal
(see Fig. 6, the upper curve). At small α (second
and third curves in Fig. 6), the effect of changing
the atomic-plane orientation is observed in the orien-
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 5 200
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Fig. 6. Manifestation of the (110) crystallographic plane
in the orientation dependence of the transmission of
500-MeV electrons into the solid angle ∆Ω = 10−8 sr
that are incident on a Si crystal at small angles to the
〈111〉 axis.

tation dependence of the transmission intensity, but
this effect is much weaker than that of the change
in the crystallographic-axis orientation, manifesting
itself as a broader minimum on the curve.

5. CONCLUSION

The results obtained from our experimental inves-
tigation of the transmission and scattering of rela-
1
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tivistic electrons reflect some of the most characteris-
tic orientation phenomena, including new effects like
the blocking of particle transmission at very small
angles to a crystallographic axis and the asymmetry
of scattering by atomic planes. Our results can be of
use for studying both the dynamics of particle trans-
mission through an oriented crystal and processes
associated with propagation dynamics like photon
emission, the production of electron–positron pairs,
and nuclear reactions in a crystal.
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Abstract—The magnetic and electric polarization fields of a relativistic hydrogen atom in a solid are
analyzed. At atomic distances, these fields differ only slightly from the corresponding fields of an ionized
atom. c© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION
When atomic particles move through a solid, there

arise polarization fields, which play an important role.
In particular, some features of the divergence of the
fragments of molecular ions in the case of Coulomb
explosion can be interpreted by taking into account
the polarization of a medium. The effect of these
fields is well understood in the nonrelativistic case.
However, the formulas of nonrelativistic theory are
inapplicable at high particle velocities, in particular,
because polarization fields cannot be described by the
scalar potential alone in this case. Polarization fields
induced by a relativistic pointlike charge in a metal
were calculated in [1], where both electric and mag-
netic fields were found to increase with the Lorentz
factor. It is interesting to find out how these fields
act on particles of a cluster moving at a speed close
to the speed of light. This problem arises in studying
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Fig. 1. Pattern of the magnetic field Bϕ(ρ, z) of (1) a
relativistic hydrogen atom and (2) a proton that move
through carbon. The origin of coordinates is at the center
of the atom, and γ = 10.
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the aforementioned Coulomb explosion of relativistic
molecular ions in a solid film. In this study, the mag-
netic and the electric component of the polarization
field of a relativistic atom moving in a solid are calcu-
lated within the formalism of dielectric functions.

2. POLARIZATION FIELDS
OF A MOVING ATOM

The electric field of an atom in its rest frame is a
potential field; that is, E′ = −grad Φ′(x′), where

Φ′(x′) =
γ2

2π2

∫
d3q

ρ(k)
k2

×
(

1
εl(k, ω)

− 1 (1)

+
v2q2⊥
c2q2

εt(k, ω) − 1
εt(k, ω) − k2c2/ω2

) ∣∣∣∣∣
ω=kzv

eiq·x
′
,
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Fig. 2. Magnetic field Bϕ(1, z) of (1) a relativistic hy-
drogen atom and (2) a proton that move through carbon.
The origin of coordinates is at the center of the atom, and
γ = 10.
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k = (k⊥, kz), and q = (q⊥, γqz). The magnetic
component of the polarization field is given by

B′
⊥(x′) =

−iγ2

2π2c

∫
d3q

ρ(k)
k2

[q× v]
(

1
εl(k, ω)

− 1

+
(εt(k, ω) − 1)

(εt(k, ω) − k2c2/ω2)

) ∣∣∣∣
ω=kzv

eiq·x
′
. (2)

The polarization fields of an atom are calculated
with the aid of the following model expressions for the
transverse and longitudinal dielectric functions:

εt(k, ω) = 1 − ω2
0/ω

2,

εl(k, ω) = 1 − ω2
0

ω2 + ω2
0 − ω2

k + iδω
,

ωk = ω0 + k2/2.
PH
If the charge distribution ρ(q) in an atom is ax-
isymmetric with respect to the z axis, expressions (1)
and (2) can be reduced to double integrals.
Expressions (1) and (2) do not involve charge

self-interaction—the polarization fields correspond to
the reaction of the particles of a medium to external
particles moving in this medium. Because of the
mutual shielding of charges, fields (1) and (2) are
weaker than those of an individual moving charge;
however, this is so only far off the atom. At small
distances corresponding to large q, shielding has only
a slight effect on the polarization fields, which can
considerably affect the state of atomic electrons. The
magnitude and the configuration of these fields are of
interest for experimenters studying the propagation of
relativistic atomic particles through solid films.
When a ground-state hydrogen atommoves along

a straight line, the magnetic field in the cylindrical co-
ordinates (ρ, ϕ, z) has only a ϕ component. Figure 1
presents the pattern of the magnetic field Bϕ(ρ, z)
for a moving atom and for a proton in the coordinate
frame whose origin is at the center of the particle
being considered. Figure 2 shows the magnetic field
of an atom and of a proton in the wake region. The
maximal values of the magnetic field behind a particle
are proportional to the Lorentz factor γ and can be
large. The distance from the center of the atom to the
nearest peak is proportional to the particle energy and
is quite large.
Figure 3 shows the potential pattern of the atomic

electric field in the rest frame. For the wake re-
gion, Fig. 4 presents the electric-field potential on
the symmetry axis for an atom and that for a proton
that moves at the same velocity. At the peaks, the
polarization-field potential in the wake region can
take large values, which are proportional to the energy
of the atom. The distance from the center of the atom
to the nearest peak is large and increases with the
Lorentz factor.
To summarize, we note that, owing to weak

shielding, the field of an ultrarelativistic particle dis-
turbs a large volume of a solid and induces, at a small
change in the charge density, large polarization fields,
which increase with energy. The magnetic field is less
affected by the mutual shielding of the particles in the
atom involved than the electric field. Because the po-
larization fields of a relativistic particle cover extensive
regions, these fields are expected to depend strongly
on the thickness of the film traversed by the particle.
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Abstract—The asymmetry of parametric x rays emitted by polarized electrons is considered on the basis
of quantum theory. The asymmetry value is calculated for emission both in the Bragg direction and in
directions different from the Bragg direction by an angle of order γ−1. The asymmetry is computed for the
longitudinal and for the transverse polarization of the electrons. c© 2001 MAIK “Nauka/Interperiodica”.
Measurement of quantities that characterize the
polarization of relativistic particles is of great interest
in connection with planned experiments with polar-
ized electron, positron, and proton beams.
Parametric x rays in crystals were predicted in [1]

and experimentally discovered in [2] 15 years ago.
This radiation, together with Cherenkov radiation and
transition radiation, belongs to the class of so-called
polarization radiations. Many features of parametric
x rays can be adequately described within classical
electrodynamics [3]. However, the quantum approach
developed in [4] makes it possible to compute quan-
tum corrections and understand this process at the
microscopic level.
In contrast to coherent bremsstrahlung and emis-

sion that accompanies channeling, which are due to
a periodic modulation of the trajectories by the crystal
potential, parametric x rays are caused by the scatter-
ing of virtual photons by electrons located at regular
intervals in a crystal.
On the basis of the quantum approach, we calcu-

late here the asymmetry of parametric x rays, which is
defined as

A =
(
dσ↑
dΩ

− dσ↓
dΩ

)
/

(
dσ↑
dΩ

+
dσ↓
dΩ

)
, (1)

where dσ↑,↓/dΩ stands for the cross sections calcu-
lated in the neighborhood of the Bragg direction for
oppositely polarized electrons. As was shown in [4],
the matrix element for this process has the form

Y (k, a)

= P (k, a)U+
p′s′

eha ·αUps + Q (k, a)U+
p′s′

Ups, (2)

1)Moscow State Engineering Physics Institute (Technical
University), Kashirskoe sh. 31, Moscow, 115409 Russia.
*e-mail: serd@interact.phtd.tpu.edu.ru
1063-7788/01/6405-0963$21.00 c©
where Ups is the four-component spinor describing
an electron of momentum p and spin s, k is the
momentum of a photon of parametric x rays, eha
(a = 1, 2) are the unit polarization vectors of a photon
of momentum kh = k + h, and h is a vector of the
reciprocal lattice of the crystal. The functions P (k, a)
and Q (k, a) are defined in [4]. Upon going over to
the two-component spinors and the system of units in
which � = m = c = 1, wherem is the electron mass,
the matrix element (2) takes the form

Y (k, a) = ν+
s′
{P (k, a) (Ap + iσ · Bp) (3)

+Q (k, a) (Aq + iσ · Bq)}νs,

where νs and νs′ are the two-component spinors. We
also use here the notation

Ap =
eha · p
γ + 1

+
eha · p

′

γ′ + 1
,

Aq = 1 +
p · p′

(γ + 1) (γ′ + 1)
, (4)

Bp =

[
eha,

(
p

γ − 1
− p

′

γ′ + 1

)]
,

Bq =

[
p

′
,p
]

(γ′ + 1) (γ + 1)
,

where p and γ are the momentum and the energy of
the initial-state electron, while p

′
and γ

′
are the mo-

mentum and energy of the final-state electron. The
polarization ξ of the initial-state electron is described
in terms of the density matrix

ρ =
1
2
(1 + ξ · σ). (5)

Squaring expression (3) and performing summation
2001MAIK “Nauka/Interperiodica”
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over the polarizations of the final-state electron, we
arrive at

|Y |2 =
1
2

(tr1 + tr2) , (6)

tr1 = |P |2
(
|Ap|2 + |Bp|2

)
+ |Q|2

(
|Aq|2 + |Bq|2

)
+2Re (PQ∗) (ApAq +Bp · Bq), (7)

tr2 = 2Im (PQ∗) {Ap (ξ · Bq) −Aq (ξ · Bp) (8)

+ ξ [Bp,Bq]} = 2Im (PQ∗)K(ξ).

The conservation laws imply that

p′ = p− k− h = p− kh, γ
′
= γ − ω. (9)

Retaining only the leading terms in the expansion
in powers of γ−1, we reduce (4) to the form

Ap = 2(eha · β), Aq = 2, (10)

Bp =
1
γ

[eha × b], Bq =
1
γ

[β × kh],

where b = (kh − βω) (1 − 1/γ) + βω/γ, β is the ve-
locity of the initial particle, and ω is the energy of a
photon of parametric x rays. The factorK (ξ) depends
on the particle momenta and the photon polarization
vectors. Specifically, we have

K (ξ) =
4∑
i=1

Ki (ξ), (11)

where

K1 (ξ) = −2
γ

(eha · β) ξ · [kh × β], (12)

K2(ξ) = −2
γ
ξ [eha × b] = −2

γ
eha · [b× ξ],

K3 (ξ) =
1
γ2
eha · [β × kh] (ξ · kh),

K4 (ξ) = − ω

γ2

(
1 − 2

γ

)
eha · [β × kh] (ξ · β).

Using the above formulas, we obtain

A =
2Im (PQ∗) [K (ξ) −K (−ξ)]

tr1
, (13)

where summation over photon polarizations is im-
plied. The virtual-photon polarization vectors eha
are expressed in terms of the polarization vectors
eka of the on-mass-shell photon, and summation is
performed according to the formula∑

a

eiaeja = δij − ninj, (14)
P

where ni = ki/ |k|.
The asymmetry given by (13) depends on the di-

electric permittivity ε = 1 + χ
′
0 + iχ

′′
0 , where χ

′
0 and

χ
′′
0 are, respectively, the real and the imaginary part
of the dielectric susceptibility. If the dielectric permit-
tivity is real, ε = 1 + χ

′
0, then the factor Im (PQ∗) in

(13) vanishes. However, this factor does not vanish
in the region where χ

′′
0 �= 0 (for example, near the K

edge of absorption):

Im (PQ∗) = −P0Q0χ
′′
0/2. (15)

The quantities P0 and Q0 in (15) are nothing but the
functions P and Q evaluated at ε = 1 + χ

′
0.

For scattering in the forward direction, only the
second term contributes to the asymmetry; in the
region of anomalous absorption in a crystal (ω ∼
10 keV/mc2, χ

′′
0 ∼ 10−3), we therefore find for

5-MeV electrons (γ ∼ 101) that

A ∼ χ
′′
0ω/γ ∼ 10−5–10−6.

For photons emitted in directions close to the Bragg
direction (characterized by the unit vector nB =
p/p− h/ |k|), the expression for the asymmetry takes
the form

A = ωχ
′′
0 cot (2θB) . (16)

At ω = 10 keV/mc2, χ
′′
0 = 10−3, and θB = 5◦, we

obtain A ∼ 10−4. This estimate complies with the
results from [5], which were obtained by calculating
quantum corrections to transition radiation. We have
also calculated the asymmetry for photons emitted in
the directions deviating from the Bragg direction by
angles not exceeding that of order γ−1.

The contributions of the spin-dependent terms
Ki (ξ) to the asymmetry A are given by
∑
a

(eka · eha) (eka · h)K1 (ξ) =
(
2β2ω2/γ

)
(17)

×
(
n · k̂h

) [(
n · k̂h

)(
n0 · k̂h

)
− (n0 · n)

]

×
(
ξyk̂hx − ξxk̂hy

)
,

where ξ = (ξx, ξy, ξz) and only the transverse polar-
ization contributes;
∑
a

(eka · eha) (eka · h)K2 (ξ)

=
(
2ω2/γ

) (
n · k̂h

)
{ξy

[
β (1 − 2/γ)

(
n · k̂h

)(
k̂hx − nx

)
+
(
nxk̂hz − nz k̂hx

)]
− ξx [x ↔ y]

}
, (18)
HYSICS OF ATOMIC NUCLEI Vol. 64 No. 5 2001
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where ξ = (ξx, ξy, 0) and only the transverse polar-
ization contributes;∑

a

(eka · eha) (eka · h)K2 (ξ) (19)

= −
(
2ω2/γ

)(
n · k̂h

)(
nyk̂hx − nxk̂hy

)
ξ‖,

where ξ = (0, 0, ξz) = (0, 0, ξ‖) and the contribution
of the longitudinal polarization is zero because the
projections of the unit polarization vectors of the real
photon, ny, and of the virtual photon, k̂hy , onto the
diffraction plane (x–z) vanish;∑

a

(eka · eha) (eka · h)K3 (ξ) =
(
ω3β/γ

)
(20)

×
(
nxk̂hz − nyk̂hx

)(
ξxk̂hx + ξy k̂hy + ξz k̂hz

)
,

where both the transverse and the longitudinal polar-
izations contribute; and∑

a

(eka · eha) (eka · h)K4 (ξ) (21)

=
ω3β2

γ2

(
n · k̂h

)
(1 − 2/γ)

(
nyk̂hx − nxk̂hz

)
ξ‖,

where only the longitudinal polarization contributes.
It is obvious that the third and the fourth term [ex-

pressions (20) and (21)] can be neglected since their
contribution to the asymmetry is of order χ

′′
0ω

2/γ2
∼

10−10, whereas the contribution of the first and the
second term [expressions (17)–(19)] is on the order
of 10−5–10−6 (χ

′′
0 = 10−3, ω = 2.5 keV/mc2, θB =

π/8).
Let us now discuss the results that we obtained.

It is worth noting that the asymmetry for scattering
strictly in the Bragg direction is rather great in rela-
tion to the asymmetry for directions deviating from
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 5 200
the Bragg direction by an angle within γ−1. This
is because only the contribution of P (k, a) to the
expression for tr1 (which appears in asymmetry and
which determines the cross section for unpolarized
electrons),

tr1 =
∑
a

|P (k, a) (eha · β) + Q (k, a)|2 (22)

=
∑
a

∣∣∣∣(eka · eha) (eha · β)
ω2 (k) − ω2 (kh)

+
eka · h

ω2 (kh)ω (k)

∣∣∣∣
2

,

is traditionally taken into account [4]. However, it is
necessary to include Q (k, a) for the Bragg direction,
in which case (eha · β) = 0 and |P (k, a)|2 = 0. We
then obtain formula (16) and the corresponding es-
timate of the asymmetry. If there appears a deviation
from the Bragg direction, the asymmetry in (13) is de-
termined by the fast growing function P (k, a) in (22),
with the result that, for angles of order (n · nB) ∼

γ−1, the effect is two orders of magnitude smaller than
that considered above.
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Abstract—Polarization bremsstrahlung from relativistic electrons moving in a medium consisting of very
small crystals oriented at random is studied theoretically. The results of this analysis predict a sharp
dependence of the spectral and angular features of the radiation on the crystal dimensions and on the angle
of observation. The possibility of developing, on the basis of the phenomena considered in the present study,
a new method for studying lowly ordered media is highlighted. c© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION
If a fast charged particle moves in a medium, the

scattering of the Coulomb field of such a particle on
the atomic electrons of the medium generates po-
larization bremsstrahlung [1]. An important feature
peculiar to polarization bremsstrahlung is that the ef-
fective impact parameter for a collision of a fast parti-
cle with an atom is large, commensurate with atomic
dimensions [2]. Because of this circumstance, the
features of polarization bremsstrahlung from a fast
particle moving in a condensed medium are greatly
affected by interatomic correlations in themedium [2].
For example, the spectral and angular distributions of
the intensity of polarization bremsstrahlung from rel-
ativistic electrons moving in an amorphous medium
and in a polycrystalline sample are markedly different
[3], in contrast to what is observed for the distribution
of the intensity of conventional bremsstrahlung.
In the present study, we consider the spectral and

angular distribution of the intensity of polarization
bremsstrahlung from relativistic electrons moving in
a condensed medium characterized by the presence of
short-range order in the arrangement of the medium
atoms and by the absence of long-range order. The
theory of polarization bremsstrahlung in such me-
dia has not yet been developed. At the same time,
experimentalists have accumulated a vast body of
relevant data requiring explanation. The authors of [4]
measured the spectrum of collimated radiation from
electrons traversing a film from diamond-like carbon.
According to x-ray investigations, the film material
does not have a crystal structure. Nonetheless, the
theory of polarization bremsstrahlung in an amor-
phous medium failed to describe the measured spec-
tra. The results obtained in [4] could not be explained

*e-mail: nnn@bsu.edu.ru
1063-7788/01/6405-0966$21.00 c©
by the theory of polarization bremsstrahlung in poly-
crystalline samples either. In order to fill this gap,
we consider here polarization bremsstahlung from
relativistic electrons moving in a condensed medium
consisting of small crystals oriented at random.
The spectral and angular distribution obtained for

polarization bremsstrahlung on the basis of the model
that we adopt for a small-grained medium depends
sharply on the crystal dimensions and agrees with
unexpected experimental results [4].

2. GENERAL RELATIONS

Let us consider the structure of the electromag-
netic field excited by a relativistic charged particle
moving in a condensed medium. In order to find
the Fourier transform of the electric field, Eωk =
(2π)−4

∫
dtd3rE(r, t) exp (−ik · r + iωt), we will

make use of the conventional Maxwell equations

(k2 − ω2)Eωk − k(k · Eωk) = 4πiωjωk

+
iωe

2π2
vδ(ω − k · v), (1)

where jωk is the Fourier transform of the density of
the induced current of medium electrons and v is the
velocity of our fast particle (we use the system of units
where h = c = 1).
In the x-ray frequency range, which is considered

here,
I � ω � m, (2)

where I is the mean ionization potential of an atom
and m is the electron mass. In this case, the atomic
electrons involved in the scattering of the pseudopho-
ton field of the incident particle by an atom can
be treated as nearly free particles, while the Comp-
ton shift of the scattered-pseudophoton frequency
2001MAIK “Nauka/Interperiodica”
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is small. Within the traditional approach in x-ray-
scattering theory, the density of the induced medium-
electron current must then be defined as [5, 6]

j = −e2

m
A(r, t)n̂ , n̂ =

∑
j

δ(r − rj), (3)

where A is the vector potential of the electromag-
netic field and rj is the radius vector of the jth
medium electron; summation in (3) is performed over
all medium electrons. It is important that the co-
ordinates of atomic electrons remain nearly constant
throughout the time of a collision between a relativis-
tic incident particle and a medium atom.
From (1) and (3), we obtain the equation

(k2 − ω2)Eωk − k(kEωk) (4)

+
∫

d3k′G(k′ − k)Eωk′ =
iωe

2π2
vδ(ω − k · v),

G(k′ − k) =
e2

2π2m

∑
j

ei(k
′−k)·rj ,

which makes it possible to take into account, in the
simplest way, both the collective and the individ-
ual contribution of medium electrons to the elastic
scattering of the pseudophoton field of a fast particle
moving in a medium.
In the function G(k′ − k), we further isolate the

mean component by taking the average over all rj;
that is,

G(k′ − k) ≡ 〈G(k′ − k)〉 + G̃(k′ − k), (5)

〈G(k′ − k)〉 = ω2
0δ(k

′ − k) , ω2
0 =

4πen0

m
,

where n0 is the mean density of medium electrons. By
using this representation, we rewrite Eq. (4) in the
form

(k2 − k2
0)Eωk′ +

∫
d3k′G̃(k′ − k)

×
(
Eωk′ − k

k ·Eωk′

k2
0

)
(6)

=
iωe

2π2

(
v − k

k · v
k2
0

)
δ(ω − k·v),

where k2
0 = ω2ε(ω) = ω2(1 − ω2

0/ω
2), ε(ω) being

the conventional mean dielectric permittivity of the
medium.
Assuming that the scattering in question is weak,

we will solve Eq. (6) within perturbation theory.
The Fourier transform of the scattered field (field of
polarization bremsstrahlung) is then given by

EPB
ωk = − iωe

2π2

1
k2 − k2

0

∫
d3k′

k′2 − k2
0

G̃(k′ − k)
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Fig. 1. Crystalline-grain structure factor as a function of
momentum transfer.

×
(
v − k′k

′ · v
k2
0

− k
k2
0

(
k · v − k · k′

k2
0

k′ · v
))

×δ(ω − k′ · v). (7)

In order to determine the spectral and angular
distribution of the intensity of polarization brems-
strahlung, it is necessary to calculate the Fourier
integral

EPB
ω =

∫
d3k eik·nrEPB

ωk , (8)

where n is a unit vector in the radiation direction.
Evaluating the integral in (8) in the far asymptotic

region by the stationary-phase method, we obtain

ω
dNPB

dωdΩ
= e2

∫
d3k

k2 + 2k0n · k
d3k′

k′2 + 2k0n · k′

×〈G̃(k)G̃∗(k′)〉ak · ak′δ (ω(1 −
√
εn · v) − k · v)

×δ (ω(1 −
√
εn · v) − k′ · v), (9)

ak = v
k · v

1 −√
εn · v − k

1
ε

−n
(
n · v k · v

1 −√
εn · v − n · k1

ε

)
,

where angular brackets denote averaging over the
coordinates of all medium electrons.

3. SPECTRAL AND ANGULAR
DISTRIBUTION OF RADIATION

In order to describe the properties of the radia-
tion under study, we will make use of the general
expression (9). First of all, it is necessary to calculate
the correlation function 〈G̃(k)G̃∗(k′)〉. We assume
that the medium consists of crystals containing Nc

atoms that are regularly arranged and which have
Z electrons. The density nc of crystalline grains,
the mean density nа of atoms, and the mean density
1
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n0 of medium electrons are related by the obvious
equations n0 = Znа = ZNcnc. In the case being
considered, the coordinates of a fixedmedium electron
are given by

Rjlp = rj + rjl + ujl + rjlp, (10)

where rj is the radius vector of the jth crystalline
grain, rjl is the radius vector of the equilibrium po-
P

sition of the lth atom in the jth crystalline grain, ujl
is the thermal displacement of this atom, and rjlp is

the coordinate of the pth electron in the atom. In per-
forming the above averaging, we rely on the statistical
model of the atom with exponential screening. The

result of the averaging has the form
〈G̃(k)G̃∗(k′)〉 =
2e4nc
πm2

[
NcZ

(
1 − 1

(1 + k2R2)2

)
+ NcZ

2 1 − e−k
2u2

(1 + k2R2)2
(11)

+
∣∣∣
Nc∑
l=1

eik·rjl

∣∣∣2Z2 e−k
2u2

(1 + k2R2)2


1 − 4πnc

k

∞∫
0

d r r sin(kr)(1 −W (r))



]
δ(k − k′),
where R is the radius of screening in the Thomas–
Fermi model of the atom, u is the root-mean-square
amplitude of thermal vibrations of crystalline atoms,
the overbar denotes averaging over all possible orien-
tations of a crystalline grain, and W (r) is the prob-
ability of finding two crystalline grains at a distance
r from each other. This probability is W (r) → 1
for r → ∞ and W (r) = 0 for r values less than the
crystalline-grain dimensions.
The first term in (11), which is proportional to

Z, corresponds to the noncoherent contribution of
the medium electrons to the radiation yield. The
second represents the electron contribution that is
coherent with respect to an individual atom, but
which is noncoherent with respect to a crystalline
grain. The above formula predicts a suppression
of the independent contribution to the polarization-
bremsstrahlung yield from the atoms of the partially
ordered medium being considered, an effect of great
importance indeed. Let us somewhat expand on this
point. According to (11), the term being discussed is
very small in themomentum-transfer region k < 1/u.
This effect is fully analogous to the well-known effect
of suppression of the noncoherent component of
bremsstrahlung from relativistic particles in a crystal
[7]. However, the effective momentum transfer in
the bremsstrahlung process satisfies the condition
keff ≈ 1/m 
 1/u; therefore, the suppression effect
is quite small. In contrast to this, the region k < 1/u,
where polarization bremsstrahlung is suppressed,
overlaps completely the momentum-transfer region
k < 1/R (the strong inequality R 
 u is almost
always satisfied), which is of importance for the
formation of the polarization-bremsstrahlung yield
that is coherent with respect to the electrons of an
individual atom.
Thus, we can see that, if polarization radiation is

generated by a relativistic particle moving through a
H

small-grained medium, the radiation yield is formed
owing primarily to the medium-electron contribution
that is coherent with respect to an individual crys-
talline grain. This contribution is described by the last
term in expression (11). According to (11), the cor-
relation in the relative arrangement of the crystalline
grains leads to a suppression of coherent radiation
at low momentum transfers (k � 1/L, L being the
characteristic crystalline-grain dimension), but this
effect is manifested at very low frequencies ω that do
not satisfy the condition in (2), which is adopted here.
We note that, in the limiting case u → ∞ (which

corresponds to an amorphous medium), the second
term in (11), which corresponds to a coherent radia-
tion from a fast particle interacting with an individual
medium atom, becomes dominant.
The crystalline-grain structure factor in (11) can

be represented in the form [5]

S(k) =
∣∣∣
Nc∑
l=1

eik·rjl

∣∣∣2 =
Nc∑
l,l′=1

sin k|rjl − rjl′ |
k|rjl − rjl′ |

. (12)

A further simplification is possible only if we
choose a specific arrangement of the atoms in a
crystalline grain.
Let us consider the simplest model of a crystalline

grain having a cubic lattice withN atoms along a face
(in this case, Nc = N3 and L = Na, a being a lattice
constant). From (12), it then follows that

S(k) = N3SN (ka) (13)

= N3


1 +

6
N2

N∑
j=1

(N − j)f(j) +
12
N2

N∑
j=1

(N − j)

×
N∑
l=1

(N − l)f(
√

j2 + l2) +
8
N3

N∑
j=1

(N − j)
YSICS OF ATOMIC NUCLEI Vol. 64 No. 5 2001
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×
N∑
l=1

(N − l)
N∑
p=1

(N − p)f(
√

j2 + l2 + p2)


 ,

f(
√

j2 + l2 + p2) =
sin ka

√
j2 + l2 + p2

ka
√

j2 + l2 + p2
.

The dependence SN (ka) computed by formula (13)
for various values of N is displayed in Fig. 1. The
curves in the figure demonstrate a sharp shrink-
age of the spectrum of momentum transfers in
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 5 200
polarization-bremsstrahlung formation with increas-
ing crystalline-grain size. This result is quite natural,
since a crystalline grain appears, in this case, as a
large atom whose dimensions specify the coherence
region in the radiation.

Substituting (11) and (13) into the general expres-
sion (9), we represent the spectral and angular dis-
tribution of the polarization-bremsstrahlung intensity
in the form
ω
dNPB

d t dωdΩ
≈ Z2e6na

π2m2

∫
d3k

(k2 + 2ω
√
εn · k)2

SN (ka)
e−k

2u2

(1 + k2R2)2

×
[
(v2 − (n · v)2)ω2 + (k2 − (n · k)2)

1
ε2

− 2
ω

ε
(k · v − (n · v)(n · k))

]
δ

[
ω(1 −

√
εn · v) − k · v

]
. (14)
It should be borne in mind that, at small obser-
vation angles θ (n · v = v cos θ) satisfying the condi-
tion θ2 ≤ ρ2 = γ−2 + ω2

0/ω
2 [γ = (1 − v2)−1/2], the

bremsstrahlung from a fast electron is dominant. Of
greatest interest is therefore the distribution in (14) at
large observation angles θ2 
 ρ2, where expression
(14) assumes the form

ω
dNPB

d t dωdΩ
=

2Z2e6na
πm2

FN (ωa, θ, ρ),

FN =

∞∫
1−cos θ

dxxSN (ω ax)
e−ω

2u2x2

(1 + ω2R2x2)2

×
[
2

1 + cos2 θ√
(x2 − 2(1 − cos θ))2 + 4ρ2 sin2 θ

− 1

+
x2 − 2(1 − cos θ)√

(x2 − 2(1 − cos θ))2 + 4ρ2 sin2 θ

− 8ρ2 sin2 θ cos2 θ

((x2 − 2(1 − cos θ))2 + 4ρ2 sin2 θ)3/2

]
, (15)

which is convenient for numerically analyzing the
properties of polarization bremsstrahlung.

4. DISCUSSION

Proceeding to analyze the result that we obtained,
we note that, at N = 1, expression (15) actually de-
scribes polarization bremsstrahlung in an amorphous
medium because, in the x region that makes a domi-
nant contribution to the integral in (15), the Debye–
Waller factor is e−ω

2u2x2 ≈ 1. Therefore, expression
(15) makes it possible to trace the transformation suf-
fered by the properties of polarization bremsstrahlung
as the degree of ordering in the medium structure
becomes greater.
The curves in Fig. 2 represent the dependences

FN (ωa) that were calculated by formula (15) at fixed
values of the parameters ρ and θ for various values
ofN .
According to our results, the spectra of polariza-

tion bremsstrahlung from a relativistic particle mov-
ing in an amorphous and a small-grained medium
differ markedly. The frequency (ω) region where the
response of crystalline-grain electrons to the electro-
magnetic perturbation generated by a fast particle is
coherent shrinks with increasing number of atoms in
a crystal grain. Therefore, the spectrum of polariza-
tion bremsstrahlung is suppressed in the region of
high frequencies, but it grows in the region of low
frequences. It should be noted that photoabsorption
has a rather strong effect on the measured spectrum
of polarization bremsstrahlung from a fast particle
moving in a condensed medium. Since photoab-
sorption is especially pronounced for soft x rays, the
effect described in the present study can be observed
in an actual experiment as a uniform suppression of
polarization bremsstrahlung over the entire spectrum.
It is precisely this effect of the total suppression of po-
larization bremsstrahlung from relativistic electrons
moving through a film of diamond-like carbon that
was observed in the experiment reported in [4].
From the curves in Fig. 3, we can see that the

yield of polarization bremsstrahlung decreases with
1
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P

increasing observation angle θ. This is explained by
an increase in the momentum transfer in the process,
whereby the degree of coherence is reduced.

To conclude, we note that the observed sharp
grain-size dependence of the properties of the spec-
trum of polarization bremsstrahlung from relativistic
particles moving through a small-grained medium
can be used to develop an efficient method for study-
ing the structure of partly ordered media.
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Abstract—Parametric x-ray radiation from relativistic electrons moving in a crystal is theoretically
investigated in Bragg geometry. It is shown that the effect of anomalous photoabsorption can manifest
itself within this geometry of the scattering of the pseudophoton field of a fast particle. In this case, the
angular distribution of the radiation changes significantly, while the total radiation yield can increase by a
factor of 3. c© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The effect of anomalously low absorption (Borr-
mann effect [1]) can occur in the coherent scatter-
ing of x rays in a crystal. Theoretical investigations
of a similar phenomenon—parametric x-ray radia-
tion, which consists in the coherent scattering of
the pseudophoton field of a fast particle moving in a
crystal—revealed that there is no Borrmann effect in
parametric x-ray radiation [2, 3]. It should be noted
that the results presented in [2, 3] were obtained for
parametric x-ray radiation in Laue geometry without
taking into account the contribution to the formation
of the radiation yield from transition radiation emitted
by a fast particle at the entrance surface of a crys-
tal. A more detailed analysis showed that anomalous
photoabsorption can yet occur in parametric x-ray
radiation owing to the Bragg diffraction of the afore-
mentioned transition radiation from a fast electron at
the entrance surface of the crystal [4].
Of considerably greater interest is nonetheless the

possible manifestation of the Borrmann effect in the
scattering of the pseudophoton field of a fast parti-
cle, since the yield of this process is proportional to
the target thickness, in contrast to the yield of the
diffracted transition radiation.
The objective of this study is to analyze in detail

parametric x-ray radiation generated by relativistic
electrons in a semi-infinite absorbing crystal. In
contrast to what was done in [2, 3], we consider here
Bragg geometry. Our basic result is the prediction
of the Borrmann effect in parametric x-ray radiation
under the conditions of the present analysis.

1)Adelphi Technology, Palo Alto, USA.
2)Nuclear Physics Institute, Tomsk Polytechnic University,
pr. Lenina 2a, Tomsk 50, 634050 Russia.
*e-mail: nnn@bsu.edu.ru
1063-7788/01/6405-0971$21.00 c©
2. GENERAL RELATIONS

Let us investigate the structure of the electromag-
netic field excited by a relativistic electron moving
from a vacuum and entering a crystal that is charac-
terized by the periodically varying dielectric permit-
tivity ε (ω, r) = 1 + χ0 (ω) +

∑′

g χg(ω)eig·r, where g
is a set of reciprocal-lattice vectors of the crystal. We
assume that the crystal thickness exceeds the pho-
toabsorption length; thismakes it possible to consider
the crystal as a semi-infinite one.

In order to find the Fourier transform of the excited
electric field, Eωk = (2π)−4 ∫ dtd3r×
exp (−ik · r + iωt) E (r, t), we will make use of the
conventional Maxwell equations(

k2 − ω2
)

Eωk − k (k · Eωk) − ω2χ0Eωk (1)

−ω2

′∑
g

χ−gEωk+g =
iωe

2π2
vδ (ω − k · v) ,

where v is the velocity of the radiating electron.
Since the susceptibilities satisfy the condition χ0,

χg � 1 in the x-ray region, Eq. (1) can be solved
within the well-known two-wave approximation of
the dynamical theory of diffraction [5]. By consider-
ing that the components Eωk and Eωk+g are virtually
transverse in the x-ray range of frequencies for rela-
tivistic particles [6], we can straightforwardly reduce
Eq. (1) to the simple set of equations(

k2 − ω2 − ω2χ0

)
Eλ0 − ω2χ−gαλEλg (2)

=
iωe

2π2
eλ0 · vδ (ω − k · v) ,(

(k + g)2 − ω2 − ω2χ0

)
Eλg = ω2χgαλEλ0,
2001MAIK “Nauka/Interperiodica”
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where the as-yet-undefined quantities are given by

Eωk =
2∑

λ=1

eλ0Eλ0, Eωk+g =
2∑

λ=1

eλgEλg,

e10 = e1g =

[
k‖ × ex

]
k‖

, e20 =
[k × e10]

k
,

e2g =
[k + g × e10]

|k + g| , (3)

α1 = 1, α2 = k · (k + g) /k |k + g| ,
k = k‖ + exkx, ex · k‖ = 0.

Equations (2) describe the field in the target. The
corresponding equations for this field in a vacuum
(beyond the target),(

k2 − ω2
)
Evλ0 =

iωe

2π2
eλ0 · vδ (ω − k · v) , (4)(

k2
g − ω2

)
Evλg = 0,

follow from (2) in the limit χ0 = χg = 0. Here, we
have kg = k + g. Below, we assume that the reflecting
crystallographic plane is parallel to the crystal sur-
face. The reciprocal-lattice vector g is then parallel
to the normal ex to the crystal surface (see Fig. 1).
The radiation field Evλg is determined as a solution

to the corresponding equation in (4). The result is

Evλg = aλk‖δ (kgx − p) , p =
√
ω2 − k2

‖ . (5)

In order to determine an unknown coefficient aλk‖ ,
it is necessary to find solutions to the remaining
equations in (2) and (4) and to employ conventional
boundary conditions for the electromagnetic field at
the target surface. Considering that, in the x-ray
frequency range, the photon wave vector in a vacuum
differs insignificantly from that in a crystal, we intro-
duce the variable ξ through the relation

kgx = p+ ξ, ξ � g. (6)

By using relation (6), we can represent solutions
to Eqs. (2) and (4) in the form

Eλg = bλk‖δ (ξ − ξ∗) (7)
PH
− iωe
2π2

ω2χgαλ
4p2 |vx|

eλ0 · v
(ξ − ξ1) (ξ − ξ2)

δ (ξ − ξ0) ,

Eλ0 =
2p

ω2χgαλ

(
ξ − ω2

2p
χ0

)
Eλg,

Evλ0 =
iωe

2π2

1
2p |vx|

eλ0 · v
∆ − ξ

δ (ξ − ξ0) ,

where

ξ1,2 =
1
2


∆ ±

√(
∆ − ω2

p
χ0

)2

− β2
λ


 , (8)

ξ0 =
1
vx

(
ω − k‖ · v‖ + pvx

)
+ ∆,

β2
λ =

ω4

p2
χgχ−gα

2
λ, ∆ = g

(
g

2p
− 1
)

� g.

In the case of the Bragg geometry of scattering
(and we consider precisely this case), the quantity ξ∗
is determined by the relations

ξ∗ =




ξ2 for
(

∆ − ω2

p
χ0

)2

< β2
λ

ξ1 for
(

∆ − ω2

p
χ0

)2

> β2
λ,∆ − ω2

p
χ0 > 0

ξ2 for
(

∆ − ω2

p
χ0

)2

> β2
λ, ∆ − ω2

p
χ0 < 0.

(9)

By using Eqs. (5) and (7) and the boundary
conditions∫

dξ (Eλ0 − Evλ0) =
∫
dξ
(
Eλg − Evλg

)
= 0, (10)

we find that the coefficient aλk‖ is given by the expres-
sion

aλk‖ =
iωe

2π2

ω2χgαλ
4p2 |vx|

eλ0 · v

ξ∗ − ω2

2pχ0

(11)

×
(

ξ0 − ξ∗
(ξ0 − ξ1) (ξ0 − ξ2)

− 1
ξ0 − ∆

)
,

which completely describes the properties of the radi-
ation field.

3. CONTRIBUTION OF PARAMETRIC
X RAYS: EFFECT OF ANOMALOUS

PHOTOABSORPTION

In order to find the spectral and angular distri-
bution of the radiation in question, we make use of
the general expression (11). In order to determine
the radiation amplitude Aλ, we apply the stationary-
phase method to compute the Fourier integral

Eradλ =
∫
d3kge

ikg·nrEvλg → Aλ
eiωr

r
, (12)

Aλ = −2πiωnxaλωn‖ ,
YSICS OF ATOMIC NUCLEI Vol. 64 No. 5 2001
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where n = n‖ + exnx is a unit vector in the direction
of radiation, ex · n‖ = 0.
For the purposes of the ensuing analysis, it is

convenient to define the angular variables θ and ψ
through the relations (see Fig. 1)

v = e1

(
1 − 1

2
γ−2 − 1

2
ψ2

)
+ψ, e1 ·ψ = 0,

n = e2

(
1 − 1

2
θ2

)
+ θ, (13)

e2 · θ = 0, e1 · e2 = cosϕ
and the dielectric susceptibilities χ0 and χg as

χ0 = −ω
2
0

ω2
+ iχ

′′
0 , (14)
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 5 200
χg = χ−g = −
ω2

g

ω2
+ iχ

′′
g,

where ω0 is the plasmon frequency and ω2
g =

ω2
0e

−g2u2
(F (g) /Z), u, F (g), and Z being, respec-

tively, the root-mean-square amplitude of thermal
vibrations of the atoms, the atomic form factor, and
the number of electrons in an atom; we consider here
a reflection for which the lattice structure factor is
equal to unity.

From Eqs. (11)–(14), it follows that the spectral
and angular distribution of the radiation being studied
can be represented as
ω
dNλ

dωd2θ
=
e2

π2

Ω2
λ

|τλ ± fλ − iδλ|2
∣∣∣APXRλ +ADTRλ

∣∣∣2 ,

APXRλ =
ω2

g

ω2
|αλ|

τλ ± fλ(
γ−2 +

ω2
0

ω2
+ Ω2

)(
γ−2 +

ω2
0

ω2
+ Ω2 −

ω2
g

ω2
|αλ| (τλ ± fλ)

) , (15)

ADTRλ =
1

γ−2 +
ω2

0

ω2
+ Ω2

− 1
γ−2 + Ω2

,

where

τλ =
g2

2ω2
g |αλ|

(
g

2ωnx
− 1 + 2

ω2
0

g2

)
,

fλ =
√
τ2
λ − 1 − 2iδλ (τλ − κλ),

δλ =
ω2

2ω2
g |αλ|

χ
′′
0 , κλ =

χ
′′
g

χ
′′
0

|αλ| , (16)

Ω1 = θ⊥ − ψ⊥, Ω2 = 2θ
′
+ θ‖ + ψ‖,

Ω2 = Ω2
1 + Ω2

2, α1 = 1, α2 = cosϕ.

In Eq. (15), the quantities APXRλ and ADTRλ rep-
resent the contributions of, respectively, parametric x
rays and diffracted transition radiation (DTR) [7]. The
plus (minus) sign corresponds to the case of ξ∗ = ξ1
(ξ∗ = ξ2) [see Eq. (9)].
Let us first consider the contribution of parametric

x rays to the total radiation yield. According to (15),
this contribution is given by

ω
dNPXR

λ

dωd2θ
=
e2

π2

ω4
g

ω4

Ω2
λα

2
λ(

γ−2 +
ω2

0

ω2
+ Ω2

) (17)

×
∣∣∣∣γ−2 +

ω2
0

ω2
+ Ω2 −

ω2
g

ω2
|αλ|(τλ ± fλ)

∣∣∣∣
−2

.

1

It can easily be seen that the dependence of
the distribution in (17) on the emitted-photon en-
ergy ω is associated primarily with the fast variable
τλ (ω) from (16), which shows that, at fixed values
of the orientation angle θ′ and of the observation
angle θ‖, the spectrum of parametric x rays is

concentrated in the vicinity of the frequency ω
′
B =

ωB

(
1 +

(
θ
′
+ θ‖

)
cot (ϕ/2)

)
, where ωB = g/2 ×

sin (ϕ/2) is the Bragg frequency, the relative fre-
quency of the spectrum being very small: ∆ω/ω ∼
2ω2

g/g
2 ∼ 10−4.

For the ensuing analysis, it is convenient to sepa-
rate the real and the imaginary part of the function fλ:

fλ =



f

′
λ − isgn (τλ − κλ) f

′′
λ , for τ2

λ > 1

−sgn (τλ − κλ) f
′
λ + if

′′
λ for τ2

λ < 1,

f
′
λ = 1√

2

√√(
τ2
λ − 1

)2 + 4δ2λ (τλ − κλ)
2 + τ2

λ − 1,

f
′′
λ = 1√

2

√√(
τ2
λ − 1

)2 + 4δ2λ (τλ − κλ)
2 − τ2

λ + 1.

(18)

We note that, because of the smallness of the
absorption factor (δλ � 1), the function f

′′
λ is small

in the region of normal dispersion (τ2
λ > 1) and that
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the function f
′
λ is small in the region of anomalous

dispersion (τ2
λ < 1). With allowance for Eqs. (9) and

(18), expression (17) can be recast into the simple
form

ω
dNPXR

λ

dωd2θ
=
e2

π2

Ω2
λ(

γ−2 + γ−2
∗ + Ω2

)2RPXRλ (τλ) ,

RPXRλ

=
[(
pλ − τλ − sgn (τλ − κλ) f

′
λ

)2
+
(
f

′′
λ

)2
]−1

,

(19)

where

γ∗ = ωB/ω0, pλ =
γ−2 + γ−2

∗ + Ω2

ω2
g |αλ| /ω2

B

. (20)

The above result demonstrates the physical
essence of parametric x-ray radiation as the coherent
Bragg scattering of the screened Coulomb field of a
fast electron by a set of atomic crystal planes. Indeed,
the factor appearing in front of the function RPXRλ in
(19) describes the spectral and angular distribution
of the Coulomb field of a particle in a medium whose
mean dielectric permittivity is ε (ω) = 1 − ω2

0/ω
2 (in

the vicinity of the Bragg frequency, ω ≈ ωB), while
the quantity RPXRλ can be treated as the coefficient of
reflection of this field by a crystal.
It can easily be shown that the denominator of

the functionRPXRλ (τλ (ω)) has a resonance character
in the region of frequencies ω that correspond to
the condition τλ (ω) > 1; that is, parametric x rays
are formed in the region of normal dispersion. The
position and the height of the peak of parametric x-
ray radiation are determined by the single generalized
parameter pλ (20), which is greatly dependent on
the radiating-particle energy, the photon-observation
P

angle, and the orientation angle. Since the spectral
width of the peak of parametric x-ray radiation is
∆ω ∼ 1 eV at a fixed value of the parameter pλ, the
approximation

RPXRλ → π

f
′′
λ

δ
(
pλ − τλ − f

′
λ

)
(21)

is sufficient for describing experiments that employ
conventional x-ray detectors with an energy resolu-
tion of about 100 eV.
Considering that the absorption factor δλ is small,

we find from (19) and (21) that

ω
dNPXR

λ

dωd2θ
(22)

=
e2ω4

g

πg2

1
ωχ

′′
0

(
1 − 1/p2

λ

)2
(
1 − 1/p2

λ

)2 + 2 (1 − κλ) /pλ

× Ω2
λ − α2

λ(
γ−2 + γ−2

∗ + Ω2
)2 δ (ω − ωB) .

This expression differs from the traditional formula in
the kinematical theory of parametric x rays [8, 9] only
by a factor that involves the parameters pλ and κλ.
It can easily be seen that only in the region

of sufficiently high radiating-particle energies can
dynamical-scattering effects manifest themselves. To
demonstrate this, we note that, in the region of low
energies,

γ � γ∗, (23)

it follows from (20) that pλ � 1, irrespective of the
observation-angle value. Expression (22) then coin-
cides with that in kinematical theory.
In the energy region where the condition oppo-

site to (23) is satisfied, the parameter pλ is on the
order of unity for observation angles in the region
Ωλ � γ−1

∗ , where the bulk of the radiation is con-
centrated. In this case, the distribution in (22) is
extremely sensitive to variations in the parameter κλ.
In order to demonstrate this, we consider, for γ �
γ∗, the angular distribution of parametric x rays that
follows from (22). We have

ω
dNPXR

λ

dxx
=
e2ω4

gα
2
λsin

2 (ϕ/2)

g4χ
′′
0

FPXR (x, κλ, qλ) ,

(24)

FPXR =
x2

(1 − qλ + x2)2 + 2qλ (1 − κλ) (1 + x2)

×
(

1 − q2λ
(1 + x2)2

)2

,

where x = γ∗Ω and qλ = e−g
2u2/2 (F (g) /Z) |αλ|.

The function FPXR calculated for a strong reflection
(qλ ≈ 1) is illustrated by the curves in Fig. 2, which
HYSICS OF ATOMIC NUCLEI Vol. 64 No. 5 2001
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are plotted for various values of the parameter κλ. We
can see that the polarization-bremsstrahlung yield
grows significantly as κλ tends to unity, and this is
the main result of the present study.
The effect being discussed is similar to the anoma-

lous photoabsorption of x rays in a crystal [1]. The
latter is manifested in the Bragg diffraction of x rays
under the condition κλ ≈ 1. In the diffraction of the
pseudophoton field of a fast particle—it is precisely
the case considered here—the effective absorption
factor f

′′
λ also decreases for κλ → 1. It is impor-

tant to note that, according to formula (18), which
determines the dependence f

′′
λ (τλ) (for example, we

have f
′′
λ � δλ

√
(τλ − 1)/(τλ + 1) in the limiting case

of κλ = 1), the above suppression of photoabsorp-
tion is realized only near the region of anomalous
dispersion, τλ (ω) ≈ 1. In accordance with (21), the
position of the maximum in the spectral distribution
of parametric x-ray radiation is determined by the
parameter pλ [the corresponding value is τλ = τ∗λ ≈(
p2
λ + 1

)
/2pλ]. At low radiating-particle energies

that satisfy the condition in (23), the parameter pλ
is large. In this case, f

′′
λ � δλ; that is, the effect of

anomalous photoabsorption does not manifest itself
in kinematical parametric x-ray radiation. At high
energies, γ � γ∗, we have pλ ≈

(
1 + x2

)
qλ ∼ 1 for

strong reflections (qλ ≈ 1) in the region x � 1, which
is of particular interest [see formula (24)]. In this
case, the effect of anomalously low photoabsorption,
f

′′
λ (τ∗λ) � δλ, can show up if the coefficient κλ is
sufficiently close to unity.

4. CONTRIBUTION OF DIFFRACTED
TRANSITION RADIATION: INTERFERENCE
OF DIFFRACTED TRANSITION RADIATION
AND PARAMETRIC X-RAY RADIATION

Returning to the general formula (15), we con-
sider the contribution of diffracted transition radia-
tion, whose spectral and angular distribution can be
represented in the form

ω
dNDTR

λ

dωd2θ
=
e2

π2
Ω2
λ (25)

×
(

1
γ−2 + Ω2

− 1
γ−2 + γ−2

∗ + Ω2

)2

×RDTRλ (τλ) ,

RDTRλ

=
[(
τλ + sgn (τλ − κλ) f

′
λ

)2
+
(
δλ + f

′′
λ

)2
]−1

,

which is similar to that in (19). As follows from for-
mula (25), diffracted transition radiation is generated
when transition radiation from a relativistic electron
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 5 200
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Fig. 3. Normalized angular distributions of parametric
x-ray radiation, diffracted transition radiation, and to-
tal radiation with and without allowance for anomalous
photoabsorption (presented in the figure are the quan-
tities PDTR

λ , P PXR
λ , and Pλ = PDTR

λ + P PXR
λ defined by

the relations dNDTR
λ /d2θ = AλP

DTR
λ and dNPXR

λ /d2θ =

AλP
PXR
λ , where Aλ = e2qλ/4πsin (ϕ/2)2: (а) curves 1

and 2 representing the contribution of parametric x rays
at κλ = 0 and 0.95, respectively, correspond to qλ = 0.8,
γ∗χ

′′
0 = 1/300, and γ/γ∗ = 0.5 (there is virtually no con-

tribution from diffracted transition radiation); (b) curves
1, 2, 3, 4, and 5 representing the contributions of, respec-
tively, diffracted transition radiation, parametric x rays at
κλ = 0, parametric x rays at κλ = 0.95, total radiation
at κλ = 0, and total radiation at κλ = 0.95 correspond to
γ/γ∗ = 20, all other parameters being identical to those
in Fig. 3a.

that traverses the entrance surface of the crystal tar-
get undergoes Bragg reflection from the crystal [7].
It can easily be shown that the coefficient of reflec-

tion RDTRλ attains a maximum value of about unity in
the anomalous-dispersion region τ2

λ (ω) < 1.
Absorption reduces the yield of diffracted transi-

tion radiation; however, it does not play a crucial
role, as it does in parametric x-ray radiation from a
relativistic particle moving in a semi-infinite medium.
The formula for the angular distribution of diffracted
1
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transition radiation—it follows from (25) without tak-
ing into account absorption—has the form

dNDTR
λ

d2θ
=

16e2ω2
g |αλ|

3π2g2
Ω2
λ (26)

×
(

1
γ−2 + Ω2

− 1
γ−2 + γ−2

∗ + Ω2

)2

.

This formula and the corresponding formula fol-
lowing from (22) for the angular distribution of
parametric x rays make it possible to compare the
contributions of the radiation mechanisms under
investigation. First of all, we note that our analysis
of the interference term in the general formula (15)
has revealed that the interference between parametric
x-ray radiation and diffracted transition radiation is
insignificant.
The expression that follows from (22) and which

describes the angular distribution of parametric x rays
has the form

dNPXR
λ

d2θ
=
e2ω2

g |αλ|
πg2

qλ

γ2
∗χ

′′
0

Ω2
λ(

γ−2 + γ−2
∗ + Ω2

)2
(27)

×
(
1 − 1/p2

λ

)2
(1 − 1/pλ)

2 + 2 (1 − κλ) /pλ
,

where pλ =
(
γ−2 + γ−2

∗ + Ω2
)
/qλγ

−2
∗ .

In order to compare the dependences in (26) and
(27), it is convenient to choose the quantity γΩ for
an angular variable. In this case, the ratio γ/γ∗ be-
comes the main parameter in both distributions. The
distributions calculated on the basis of (26) and (27)
are displayed in Fig. 3, along with the computed dis-
tribution of the total radiation. The curves presented
in this figure demonstrate that parametric x-ray radi-
ation is dominant at low radiating-particle energies
γ < γ∗ such that the effect of anomalous photoab-
sorption is not manifested here. At the same time,
PH
we can see that, at energies so high that γ � γ∗, the
contribution of diffracted transition radiation domi-
nates the observation-angle region Ω � γ−1

∗ , while
the peak of parametric x-ray radiation is formed near
the observation-angle value of Ω ≈ γ−1

∗ . From these
curves, we also see that the yield of parametric x-ray
radiation increases considerably under the conditions
where the effect of anomalous photoabsorption man-
ifests itself and that the peak in the angular distri-
bution of parametric x-ray radiation is shifted to the
region of small observation angles.
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Abstract—Amethod is developed for solving relativistic wave equations for the Hamiltonian in the Foldy–
Wouthuysen representation. These equations are recast into a quadratic form, whereby we get rid of square
roots of operators. Applications of the method are exemplified by considering the interaction of a particle
with a field characterized by a harmonic potential. c© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The Foldy–Wouthuysen representation is very
convenient for studying the interaction of relativistic
particles with an external field—in particular, in a
situation where a charged particle moves through a
crystal [1]. This representation is advantageous above
all in that the operators of physical observables (like
coordinate, momentum, spin, and angular momen-
tum) are given by expressions that fully correspond to
analogous operators in nonrelativistic quantum me-
chanics. This circumstance substantially simplifies a
derivation of the equations of motion for a particle and
a spin. However, solving relativistic wave equations
in the Foldy–Wouthuysen representation is signifi-
cantly complicated by the fact that the expression for
the HamiltonianH involves square roots of operators.
For example, the equation involving the Hamiltonian
for a free spin-1/2 particle has the form1)

HΨ = ρ3

√
p 2 + m2Ψ, ρ3 =


1 0

0 −1


 , (1)

where Ψ is the wave function (bispinor) in the Foldy–
Wouthuysen representation, p = −i∇ is the momen-
tum operator, and ρ3 is a Pauli matrix. Here, 0, ±1
represent the relevant 2× 2 matrices acting on spinor
components.

Naturally, the square root of operators is also
present in expressions describing the interaction of
particles in an external field. In order to obtain a
quantum-mechanical solution to the problem, it is
necessary to recast an equation of the type in (1)
to a quadratic form not involving a square root of

*e-mail: silenko@inp.minsk.by
1)Use is made here of the relativistic system of units where

� = c = 1.
1063-7788/01/6405-0977$21.00 c©
operators. It is important to solve this problem, in
particular, for studying the interaction of relativistic
charged particles with crystals. For example, it was
the quadratic form of a relativistic wave equation
in the Foldy–Wouthuysen representation that was
used in [2] in a quantum-mechanical treatment of the
rotation of the spin of a channeling particle.

A method that makes it possible to go over to a
quadratic form of a relativistic wave equation is pro-
posed in the present study. This method also permits
solving the inverse problem—that of going over from
a quadratic form of a relativistic wave equation to
an equation for the Hamiltonian. The latter is of
importance for spinless particles.

2. OPERATOR SQUARING

Let us consider the simplest case for the problem
in question, that of the equation for the Hamiltonian
describing a spin-1/2 particle in an external field. We
have

i
∂

∂t
Ψ = HΨ, HΨ =

[
ρ3

√
p 2 + m2 + V (r)

]
Ψ,

(2)
where V (r) is the operator that represents the en-
ergy of particle interaction with the field. We as-
sume that the external field is time-independent
(∂V/∂t = 0), in which case the total particle energy
E is constant and is one of the eigenvalues of the
Hamiltonian:

HΨ = EΨ.

For V (r) = V0 = const, a reduction of Eq. (2) to
a quadratic form is performed by means of operator
squaring, which is possible owing to the commuta-
tivity of the operators

√
p 2 + m2 and V0. Let us
2001MAIK “Nauka/Interperiodica”



978 SILENKO
rearrange all operator terms to the left-hand side of
the equation:[

i
∂

∂t
− V0 − ρ3

√
p 2 + m2

]
Ψ = 0.

Multiplying the resulting equation from the left by
the operator

i
∂

∂t
− V0 + ρ3

√
p 2 + m2,

we obtain the required quadratic equation in the form[
(i

∂

∂t
− V0)2 − p 2 −m2

]
Ψ = 0. (3)

For stationary states, the operator i(∂/∂t) can be
replaced by the energyE, whereupon Eq. (3) assumes
the form [

p 2 + m2 − (E − V0)2
]
Ψ = 0. (4)

However, this simple method does not work when
the interaction energy V depends on r. In this case, a
multiplication of the equation[

i
∂

∂t
− V (r) − ρ3

√
p 2 + m2

]
Ψ = 0 (5)

from the left by the operator

i
∂

∂t
− V (r) + ρ3

√
p 2 + m2

yields {[
i
∂

∂t
− V (r)

]2

− p 2 −m2 (6)

−
[
ρ3

√
p 2 + m2, V (r)

]}
Ψ = 0,

where [. . . , . . . ] stands for a commutator. Different
methods for reducing Eq. (2) to a quadratic form by
squaring, such as a multiplication of Eq. (5) from the
left by the operator

i
∂

∂t
− V (r) − ρ3

√
p 2 + m2,

also lead to Eq. (6). For stationary states, it can be
represented as{

p 2 + m2 + 2EV (r) − [V (r)]2 (7)

+
[
ρ3

√
p 2 + m2, V (r)

]}
Ψ = E2Ψ.

It can easily be seen that Eqs. (6) and (7) are non-
Hermitian, since they involve the anti-Hermitian op-

erator
[
ρ3

√
p 2 + m2, V (r)

]
. In accordance with the

general properties of operator equations, the eigen-
functionsΨi of such equations do not form an orthog-
onal set of functions, while the eigenvalues E2

i of the
braced operator on the left-hand side of Eq. (7) are
PH
complex. It follows that only when the above anti-
Hermitian operator can be disregarded is it possible
to go over to a quadratic form of a relativistic wave
equation by means of squaring. Obviously, this oper-
ator is not always negligible. A method that enables
one to go over to a quadratic form and which is free
from the above flaw is described in the next section.

3. RELATION BETWEEN THE QUADRATIC
AND THE LINEAR FORM OF RELATIVISTIC

WAVE EQUATIONS

In order to implement a correct transition to a
quadratic form of relativistic wave equations, we will
establish a relation between relevant quadratic and
linear equations. For this, we will make use of the
method for linearizing quadratic equations that was
developed for spinless particles (see [3]). The external
field will be assumed to be time-independent.

Let us consider a general relativistic wave equation
in the quadratic form
[
(E − V )2 − (p− a)2 −m2

]
ψ = 0, E = i

∂

∂t
, (8)

where the operators V and a, which characterize the
interaction of a particle with an external field, can
have an arbitrary form and involve the operators of
the coordinate r, of the momentum p, and of the spin
s. For a spinless and a spin-1/2 particle, the wave
function ψ is one-component and two-component,
respectively. At s = 0, Eq. (8) coincides with the
Klein–Gordon equation.

In order to linearize Eq. (8), we introduce the
functions φ and χ defined by the conditions

ψ = φ + χ, (E − V )ψ = m(φ− χ).

Equation (8) is equivalent to the following linear

equation for the wave function Ψ =


 φ

χ


 [3]:

EΨ = HΨ =
[
V + ρ3

(
π2

2m
+ m

)
+ iρ2

π2

2m

]
Ψ.

Here, π = p− a and ρi are the Pauli matrices,

ρ1 =


 0 1

1 0


 , ρ2 =


 0 −i

i 0


 , ρ3 =


 1 0

0 −1


 .

The HamiltonianH can be represented as

H = V + ρ3M+ O, M =
π2

2m
+ m, O = iρ2

π2

2m
.

(9)
The Hamiltonian is pseudo-Hermitian [3, 4], since

its even (diagonal) terms V and ρ3M are Hermitian
and the odd (off-diagonal) term O is anti-Hermitian.
YSICS OF ATOMIC NUCLEI Vol. 64 No. 5 2001
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The wave function is normalized by the condition [3–
5] ∫

Ψ†ρ3ΨdV =
∫

(φ†φ− χ†χ)dV = 1.

In this case, an operator that transforms the Hamil-
tonian and the wave functions to any other represen-
tation must possess the property [3–5]

U−1 = ρ3U
†ρ3.

As a result, it turns out that the transformation of
the Hamiltonian H to the diagonal form has much in
commonwith the Foldy–Wouthuysen transformation
(see [4]). It can be shown that, at V = 0, it follows
from the anticommutativity of the operators ρ3M
and O (ρ3MO = −Oρ3M) that the operator H is
reduced to a diagonal formwith the aid of the operator
that is given by

U =
ε + M + ρ3O√

2ε(ε + M)
, U−1 =

ε + M− ρ3O√
2ε(ε + M)

, (10)

where ε =
√
M2 + O2 =

√
m2 + π2, and which is

similar to the operator of the Foldy–Wouthuysen
transformation for free particles (see [1, 6]).

At V = 0, the transformed Hamiltonian is given by

H = UHU−1 = ρ3ε.

In general (V �= 0), a reduction of theHamiltonian
in (9) to a diagonal form is performed in two steps.
Assuming that the interaction energy V is small in
relation to the total energy of a relativistic particle
(|V | 
 ε), we can first make a transformation with
the operator U given by (10). As a result, the expres-
sion for the Hamiltonian assumes the form2)

H′ = ρ3ε + E ′ + O′, ρ3E ′ = E ′ρ3, ρ3O′ = −O′ρ3.

Since the condition |O′| 
 ε is now satisfied, we can
perform, at the second step, a transformation that is
similar to the Foldy–Wouthuysen transformation for
nonrelativistic particles (see [1, 7]). If we take into
account only the largest corrections, the resulting
expression for the Hamiltonian takes the form

H′′ = ρ3ε + E ′ +
1
4
ρ3

(
O′2 1

ε
+

1
ε
O′2
)

. (11)

In the case where the Hamiltonian H is given
by (9), we retain only terms of orders V 2 and
∂2V/∂xi∂xj , disregarding terms proportional to
(∇V )2 and the derivatives of V of orders higher
than two. In this approximation, the transformed
Hamiltonian has the form

H′′ = ρ3ε + V − 1
16

{
1
ε4

, (π · ∇)(π · ∇)V
}

, (12)

2)The odd termO′ is still anti-Hermitian.
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where {. . . , . . . } stands for an anticommutator. For
spinless particles in an electromagnetic field, we have
V = eΦ and π = p− eA, where e is the particle
charge and Φ and A are, respectively, the scalar and
the vector potential of an external field. We emphasize
that, for a diagonalized Hamiltonian, we can use
only the upper wave function φ. For nonrelativis-
tic particles, Eq. (12) reduces to the conventional
Schrödinger equation

H′′φ =
[
m +

(p− eA)2

2m
+ eΦ

]
φ. (13)

4. QUADRATIC FORM OF RELATIVISTIC
WAVE EQUATIONS FOR SPIN-1/2

PARTICLES

The results obtained in the preceding section will
now be used to find the quadratic form of relativis-
tic wave equations for spin-1/2 particles interacting
with an electrostatic field. Solving this problem is of
paramount importance for studying the interaction of
relativistic particles with crystals.

In accordance with the results presented in [8–
10], the Hamiltonian operator taken in the Foldy–
Wouthuysen representation and determined to terms
of orders (eΦ)2 and e∂2Φ/∂xi∂xj inclusive has the
form3)

H′′ = ρ3ε + eΦ (14)

+
1
4

{(
e

2(ε + m)
+ µ′

)
1
ε
, [(σ · [p× E])

−(σ · [E × p]) + ∆Φ]
}

− e

16

{
2ε2 + 2εm + m2

ε4(ε + m)2
, (p · ∇)(p · ∇)Φ

}
,

ε =
√

m2 + p2,

where µ′ is the anomalous magnetic moment. The
wave functions φ and χ are spinors in the case being
considered, while σ is the Pauli matrix acting on the
components of each of these functions. In the present
case, the interaction energy in Eq. (12) assumes the
form

V = eΦ (15)

+
1
4

{(
e

2(ε + m)
+ µ′

)
1
ε
, [(σ · [p× E])

−(σ · [E × p]) + ∆Φ]
}

− e

16

{
1

ε2(ε + m)2
, (p · ∇)(p · ∇)Φ

}
, a = 0.

3)The vector potential of an electrostatic field is equal to zero.
1
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From Eqs. (8), (12), and (15), it follows that the
quadratic equation has the form[(

E − eΦ − 1
4

{(
e

2(ε + m)
+ µ′

)
1
ε
, [(σ · [p× E])

−(σ · [E × p]) + ∆Φ]

}
(16)

+
e

16

{
1

ε2(ε + m)2
, (p · ∇)(p · ∇)Φ

})2

− p2 −m2




ψ = 0.

In solving Eq. (16), the operator ε can be replaced
by the total particle energy E in small terms (which
involve anticommutators) [2]. Since the operator E is
also replaced by E for stationary states of the particle
being considered, Eq. (16) reduces, with the above
accuracy, to the form{

E2 − 2eEΦ + e2Φ2 − [
e

2(E + m)
+ µ′] (17)

× [(σ · [p × E]) − (σ · [E × p]) + ∆Φ]

+
e

4E(E + m)2
(p · ∇)(p · ∇)Φ − p2 −m2

}
ψ = 0.

Equation (17) is a quadratic equation for the
energy-operator eigenvalues, which does not involve
a square root of operators. Equations (16) and (17)
differ from the equation derived in [2] by the presence
of a term that is proportional to (p · ∇)(p · ∇)Φ.
However, this term does not contribute to the motion
of the spin of a charged particle in crystals.

5. PARTICLES IN THE FIELD
OF A HARMONIC POTENTIAL

In order to illustrate a transition from a first-order
relativistic wave equation to a second-order equation,
we consider here a particle in the field of a harmonic
potential Φ = ax2/2. Such a potential can approx-
imate the field of crystal planes in the case where a
particle moves through a straight crystal. We choose
the x axis to be orthogonal to the set of crystal planes
and the y axis to be parallel to the direction of particle
translational motion.

Going over from the first-order Eq. (14) to the
second-order Eq. (17) and discarding small terms, we
find for spin-1/2 particles that

Tψ =
[
p2
x

2E
+

eax2

2
+

λ

E

(
µ0m

E + m
+ µ′

)
(18)

×
√

E2 −m2 ax

]
ψ,
PH
T =
E2 −m2 − p2

y

2E
,

where µ0 = e/2m is the Dirac magnetic moment and
λ = ±1 is an eigenvalue of the operator σz (σzψ =
λψ). Equation (18) is in accord with that derived in
[2]. Since

T =
(E +

√
m2 + p2

y)(E −
√

m2 + p2
y)

2E

≈ E −
√

m2 + p2
y, p2

y � p2
x,

the operator on the right-hand side of Eq. (18) char-
acterizes the transverse energy of the particles, while
the quantity T determines the eigenvalues of this
operator. Equation (18) can be recast into the form [2](
− 1

2E
d2

dX2
+

eaX2

2

)
κ(X) =

(
T − eax2

0

2

)
κ(X),

X = x + x0, κ(X) = ψ(X − x0), (19)

x0 =
λ

eE

(
µ0m

E + m
+ µ′

)√
E2 −m2.

Disregarding eax2
0/2 against T 4) and considering

that the transverse energy of the particles is much
less than the energy of their translational motion, we
represent the energy spectrum in the form

En = (m2 + p2
y)

1/2 +
(ea)1/2

(m2 + p2
y)1/4

(
n +

1
2

)
,

(20)

n = 0, 1, 2, . . . .
For spinless particles moving in the field of a

harmonic potential, the second-order Klein–Gordon
equation has the form[(

E − eax2

2

)
− p2 −m2

]
ψ = 0. (21)

In this case, the energy spectrum is also given by
expression (20).

In an arbitrary electrostatic field, the Hamiltonian
has the form (12), where V = eΦ and a = 0. This
form is convenient for deriving the operator equation
of motion of the particles. Since

dp
dt

= i[H′′,p],

this equation has the form
dp
dt

= eE − e

16

{
1
ε4

, (p · ∇)(p · ∇)E
}

. (22)

The second term on the right-hand side of (22) is a
quantum correction to the relevant classical equation.
A similar derivation of the operator equation ofmotion
for spin-1/2 particles leads to a spin-dependent
result:

4)This quantity characterizes the shift of the energy levels that
is due to the magnetic moment of the particles.
YSICS OF ATOMIC NUCLEI Vol. 64 No. 5 2001
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dp
dt

= eE − 1
4

{(
e

2(ε + m)
+ µ′

)
1
ε
, [∇(σ · [p × E]) −∇(σ · [E × p]) − ∆E]

}

− e

16

{
2ε2 + 2εm + m2

ε4(ε + m)2
, (p · ∇)(p · ∇)E

}
.

6. DISCUSSION OF THE RESULTS

It is well known that, in the Foldy–Wouthuysen
representation, relativistic wave equations involve a
square root of operators. From the results obtained in
the present study, it follows that the problem of going
over to the quadratic form of relativistic wave equa-
tions cannot be rigorously solved by merely squaring
the operators involved. This problem cannot be solved
by means of the operator squaring of the Dirac equa-
tion either. A multiplication of this equation

(γµπµ + m)Ψ = 0,

where Ψ is a bispinor, from the left by the operator
γµπµ −m is known to lead to the equation [11][

(E − eΦ)2 − π2 −m2 + e(Σ ·H) (23)

− ie(α ·E)]ψ = 0,

where α = γ0γ and Σ = i[γ × γ]/2. Since the ma-
trix α is off-diagonal, Eq. (23) is also off-diagonal.

In order to find a quadratic form of relativistic wave
equations, we invoke here a solution to the inverse
problem—that of going over from the quadratic to the
linear form of relevant equations, which determines
the Hamiltonian in the Foldy–Wouthuysen repre-
sentation. For spin-1/2 particles, use is made of
the method developed previously for linearizing the
relativistic wave equation describing spinless parti-
cles (Klein–Gordon equation). Linearization, imple-
mented with the aid of the Pauli matrices, leads to an
equation where theHamiltonian is pseudo-Hermitian
and off-diagonal. It is necessary to reduce it to a
diagonal form. Previously, this problem was solved
either for particular cases [4] or in the nonrelativis-
tic approximation [12], but, here, a reduction of the
Hamiltonian to a diagonal form that characterizes
the Foldy–Wouthuysen representation has been per-
formed for relativistic particles in external fields. As
a result, it turns out that, in addition to a simple
extraction of the square root,

a2 = b2 + c2 → a = ±
√

b2 + c2,

the resulting Hamiltonian develops a term that is
proportional to a double commutator:[

π2, [π2,Φ]
]

= −4(π · ∇)(π · ∇)Φ.

In the majority of cases, this term is small, as
it is in the above example of a particle moving in
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 5 200
the field of a harmonic potential. It is important,
however, that the method in question makes it pos-
sible to avoid the emergence of anti-Hermitian or off-
diagonal terms, which are relatively large, as one can
see from Eqs. (6), (7), and (23).

A transition from a quadratic to a linear form of
relativistic wave equations makes it possible to es-
tablish a one-to-one correspondence between these
forms. Owing to this, the inverse transition—from
the linear to the quadratic form of these equations—
can be implemented in a comparatively simple way,
whereby we obtain a solution to the problem that we
addressed here, that of reducing the equation for the
Hamiltonian in the Foldy– Wouthuysen representa-
tion to a conveniently soluble form. In many cases,
the resulting second-order equation can be solved
quite straightforwardly, as we have seen from the
example considered above. The proposed method can
be applied to spinless particles as well. In that case, it
permits constructing theHamiltonian and deriving an
operator equation of motion for relativistic particles in
an external field.

7. CONCLUSION

A convenient method has been developed for solv-
ing relativistic wave equations for spin-1/2 particles
interacting with an external field. The presence of the
square root of operators is an obstacle to directly solv-
ing the equation for the Hamiltonian in the Foldy–
Wouthuysen representation for relativistic particles.
It has been shown that the square root can be re-
moved by recasting the equation being considered
into a quadratic form. The example of particle motion
in the field of a harmonic potential has demonstrated
the efficiency of the proposed method.
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Abstract—The possibility of verifying the conclusions of quantum theory on the motion of the spin of parti-
cles and nuclei of arbitrary spin in an electric field is analyzed. The theory predicts that the planar channeling
of particles and nuclei with higher spins (one or more) through straight crystals is accompanied by the
rotation of their spin. For some nuclei, the spin-rotation angle per unit length is about 10−1 rad/cm . For
ultrarelativistic nuclei undergoing planar channeling through bent crystals, the spin-rotation angle per unit
length is on the order of 1 rad/cm, which makes it possible to verify the validity of the Bargmann–Michel–
Telegdi equation for particles and nuclei of higher spins. c© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Investigation of the motion of the spin of charged
particles in crystals is of importance both for measur-
ing the magnetic moments of short-lived particles [1–
3] and for testing the conclusions drawn from QED
[4, 5]. In order to describe the motion of a spin, use
is made of the Bargmann–Michel–Telegdi equation
[6]. This equation was derived semiclassically in [7];
for spin-1/2 particles, it was obtained on the basis of
QED methods [8, 9]. We emphasize that, for spin-1/2
particles, a rigorous quantum-mechanical analysis
does not confirm the presence of second-order terms
in spin in the equation describing the motion of a spin
[4, 5, 9], but such terms usually arise in semiclassical
equations [10–16].

Until recently, rigorous quantum-mechanical
methods for describing the motion of a spin were
applied only to spin-1/2 particles. Spin-1 particles
were considered in [14], but the methоd used there
is not satisfactory, since it leads to incorrect results
for spin-1/2 particles (see [17]). For particles with an
arbitrary spin, the equations of motion of a particle
and a spin were obtained on the basis of quantum-
mechanical methods in [18, 19]. In a uniform field,
the equation of motion of a spin coincides with
the Bargmann–Michel–Telegdi equation.1) It was
confirmed in [18] that, for spin-1/2 particles, the
relevant equations involve no second-order terms in

*e-mail: silenko@inp.minsk.by
1)For particles with an arbitrary spin, a quantum-mechanical

equation of motion of a spin that is coincident with the
Bargmann–Michel–Telegdi equation was previously derived
in [20] from a general consideration.
1063-7788/01/6405-0983$21.00 c©
spin, which are proportional to the derivatives of the
field strengths. At the same time, the Lagrangian for
s ≥ 1 particles (s is the particle spin) includes such
terms, and it was found in [18, 19] that these terms
depend not only on the electric quadrupole but also
on the magnetic dipole moment of a particle.

However, the results obtained in [18, 19] call for an
experimental corroboration for the following reasons.
For s = 1 particles in a magnetic field, the authors
of [21–24] derived quadratic equations that are con-
sistent neither with the results from [18, 19] nor with
the Bargmann–Michel–Telegdi equation. Moreover,
it is well known that, for spin-1 particles, the normal
magnetic moment (magnetic moment of a pointlike
particle) is µnorm = e/(2m) and corresponds to the
g factor of gnorm = 1. For particles with an arbitrary
spin, we have µnorm = e/(2m) and gnorm = 1/s [25–
29]. At the same time, it follows from the Bargmann–
Michel–Telegdi equation that the magnetic moment
µmust be broken down into the terms µ0 = es/m and
µ′ = µ− µ0 = (g − 2)es/(2m).

In this study, we will consider methods for exper-
imentally testing the results obtained in [18, 19] by
measuring the rotation of the spin of nuclei that un-
dergo planar channeling in straight and bent crystals.

We use here the relativistic system of units in
which � = c = 1.

2. EQUATION OF MOTION OF A SPIN
WITH ALLOWANCE FOR SECOND-ORDER

TERMS IN SPIN

The equation of motion of a spin can be derived
with the aid of the Lagrangian for particles with an
2001 MAIK “Nauka/Interperiodica”



984 SILENKO
arbitrary spin. This Lagrangian obtained in [18, 19]
has the form

L = L1 + L2,

L1 =
e

2m

{(
g − 2 +

2
γ

)
(s · B)

−(g − 2)
γ

γ + 1
(s · v)(v ·B)

+
(
g − 2 +

2
γ + 1

)
(s · [E × v])

}
, (1)

L2 =
Q

2s(2s− 1)

×
[
(s · ∇) − γ

γ + 1
(s · v)(v · ∇)

]

×
[
(s ·E) − γ

γ + 1
(s · v)(v · E)

+(s · [v × B])

]
+

e

2m2

γ

γ + 1
(s · [v ×∇])

×
[(

g − 1 +
1
γ

)
(s ·B) − (g − 1)

γ

γ + 1
(s · v)(v ·B)

+
(
g − γ

γ + 1

)
(s · [E × v])

]
,

PH
where g = 2µm/(es); e, m, and µ are, respectively,
the charge, the mass, and the total magnetic mo-
ment of a particle; v is its velocity; γ is the Lorentz
factor; Q is the quadrupole moment; s is the spin
operator; and E and B are the electric-field strength
and the magnetic-field induction, respectively. In the
Lagrangian given by (1), L1 and L2 contain terms
that are, respectively, linear and quadratic in spin.
The Hermitian form of expression (1) can be obtained
by means of the substitution L → (L + L†)/2. The
equation of motion of a spin is obtained with the aid of
the formula [18]

ds
dt

= −i[L, s], (2)

where [. . . , . . . ] is a commutator. For Lagrangian (1),
it has the form

ds
dt

=
(
ds
dt

)
BMT

+
(
ds
dt

)
q

, (3)

(
ds
dt

)
BMT

=
e

2m

{(
g − 2 +

2
γ

)
[s × B] (4)

− (g − 2)
γ

γ + 1
[s× v](v · B)

+
(
g − 2 +

2
γ + 1

)
[s× [E × v]]

}
,

(
ds
dt

)
q

=
Q

4s(2s − 1)

({(
[s ×∇] − γ

γ + 1
[s× v](v · ∇)

)
,

(
(s ·E) − γ

γ + 1
(s · v)(v · E) + (s · [v × B])

)}
+

{(
(s · ∇) − γ

γ + 1
(s · v)(v · ∇)

)
,

(
[s × E]

− γ

γ + 1
[s × v](v ·E) + [s× [v × B]]

)})
(5)

+
e

4m2

γ

γ + 1

({
[s× [v ×∇]] ,

[(
g − 1 +

1
γ

)
(s ·B) − (g − 1)

γ

γ + 1
(s · v)(v · B)

+
(
g − γ

γ + 1

)
(s · [E × v])

]}
+
{(

s · [v ×∇]
)
,

[(
g − 1 +

1
γ

)
[s × B]

−(g − 1)
γ

γ + 1
[s × v](v ·B) +

(
g − γ

γ + 1

)
[s× [E × v]]

]})
,

where {. . . , . . . } is an anticommutator. The quanti-
ties (ds/dt)BMT and (ds/dt)q characterize the motion
of a spin described by the terms in Lagrangian (1) that
are, respectively, linear [Bargmann–Michel–Telegdi
(BMT) equation (4)] and quadratic [equation (5)] in
spin. We note that Eq. (5) is not consistent with the
semiclassical Good equation [10], where the second-
order terms in spin at Q = 0 are given by(
ds
dt

)
G

=
eg

2m2

γ

γ + 1

[
s× [v ×∇]

]
(6)

×
{

(s · B) − γ

γ + 1
(s · v)(v ·B) +

(
s · [E × v]

)}
.

Here, we have used the notation adopted in this study.
YSICS OF ATOMIC NUCLEI Vol. 64 No. 5 2001



MOTION OF THE SPIN OF PARTICLES 985
Even for g � 1, Eq. (5) differs from (6) by the pres-
ence of the second term.

For spin-1/2 particles, the relations

{si, sj} = δij/2

remove the operator s from the Lagrangian L2 and
from Eq. (5). This is the reason why, for such
particles, the equations of motion of a spin do not
involve second-order terms in spin (this circumstance
has already been noted above).

It should be emphasized that not only is Eq. (4)
equivalent to the semiclassical Bargmann–Michel–
Telegdi equation, but it is also consistent with the
classical equation derived in [4, 5]. The latter follows
from the fact that the magnetic moment of a macro-
scopic body is equal to the total magnetic moment
of electrons. Since macroscopic bodies have a large
mass, the quantity µ0, which involves the mass of
the body in the denominator, is small in relation to µ;
therefore, we have µ ≈ µ′. In this case, the equation
of motion of a spin corresponds to the equation for the
anomalous magnetic moment, and this was found in
[4, 5].

Equation (5) includes two terms, which describe
the motion of a spin due to, respectively, the elec-
tric quadrupole and the magnetic dipole moment of
particles. The equation of motion induced by the
quadrupole moment was derived in [30], and it co-
incides with the first term on the right-hand side of
Eq. (5).

As was shown in the Introduction, however, there
exists the problem of rendering Eqs. (3)–(5) consis-
tent with the results obtained in the theory of spin-1
particles and with the values of the intrinsic magnetic
moment µ0. This problem is investigated in the next
section.

3. SPIN-1 PARTICLES
IN THE ELECTROMAGNETIC FIELD

The authors of [21–23] investigated the interac-
tion of spin-1 particles with a magnetic field. They
considered three versions of the theory of spin-1 par-
ticles and found that they lead to consistent results
(later on, these results were corroborated in [24]).
These authors also derived second-order equations
for the eigenvalues of the Hamiltonian. In the weak-
field approximation,2) one obtains a linear equation
that is consistent neither with the Lagrangian in (1)
nor with the Bargmann–Michel–Telegdi equation.

In view of this contradiction, we have calculated
the Hamiltonian for relativistic spin-1 particles in

2)Within this approximation, the energy of particle–field inter-
action is assumed to be low in relation to the total particle
energy, including the rest energy.
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an electromagnetic field. We have used the weak-
field approximation and disregarded terms involving
the derivatives of the electric- and the magnetic-field
strength (E and H, respectively). The calculation,
performed within Proca theory (see [31]), employed,
as a starting point, the generalized Sakata–Taketani
equation for particles with an anomalous magnetic
moment. The Hamiltonian specified by this equation
was reduced to a form diagonal in two spinors by
using the Foldy–Wouthuysen transformation [32]. In
this representation, the resulting expression for the
Hamiltonian has the form

H = βε + eΦ +
e

4m

[
−
{(

g − 2 +
2m
ε

)
, (Π ·H)

}

+
{

g − 2
2ε(ε + m)

, (Π · π)(π ·H) + (π · H)(Π · π)
}

−
{(

g − 2
2

+
m

ε + m

)
1
ε
, (Σ · [E × π]) (7)

−(Σ · [π × E])
}]

, ε =
√
π2 + m2,

where π = p− eA; p = −i∇ is the momentum op-
erator; Φ and A are, respectively, the scalar and the
vector potential of the external field; and

Π =


 s 0

0 −s


 , β =


 1 0

0 −1


 , Σ =


 s 0

0 s


 .

Here, s is the spin matrix for spin-1 particles and
0, ±1 denote the corresponding 3 × 3 matrices. The
operator H acts on the six-component wave function

(bispinor) Ψ =


 φ

χ


. The g factor g = gnorm = 1

corresponds to the particle with a normal magnetic
moment (Proca particle).

For the particular case of nonrelativistic particles
in a magnetic field, formula (7) complies with the
Hamiltonian derived by Case [33], who also used the
Foldy–Wouthuysen transformation. This formula is
also consistent with the Hamiltonian obtained in [34]
for relativistic particles in a magnetic field that are
characterized by the g factor of g = 2 .

In just the same way as in the theory of spin-
1/2 particles [9], the polarization operator for spin-1
particles in the Foldy–Wouthuysen representation is
equal to the matrix Π.3) From the formula

dΠ
dt

= i[H,Π],

3)The use of the matrix Σ for the polarization operator also
leads, upon a transition to the semiclassical approximation,
to formula (9) (see below) for the angular velocity of spin
rotation.
1
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we find, with the aid of expression (7), that the equa-
tion of motion of a spin can be represented as

dΠ
dt

=
e

4m

[{(
g − 2 +

2m
ε

)
, [Σ × H]

}
(8)

−
{

g − 2
2ε(ε + m)

, [Σ × π](π ·H) + (π · H)[Σ × π]
}

−
{(

g − 2
2

+
m

ε + m

)
1
ε
, [Π × [E × π]]

−[Π × [π × E]]
}]

.

Since we can recast Eq. (8) into the form

dΠ
dt

=
1
2

([Ω × Π] − [Π × Ω]) ,

a transition to a description within the semiclassical
approximation consists in averaging the operator of
the angular velocity of spin rotation,

Ω =
e

4m

[
−β

{(
g − 2 +

2m
ε

)
,H
}

+β

{
g − 2

2ε(ε + m)
,π(π ·H) + (π · H)π

}
(9)

−
{(

g − 2
2

+
m

ε + m

)
1
ε
, [E × π] − [π × E]

}]
,

over the wave functions of stationary states. For
free particles, the lower spinor is equal to zero in
the Foldy–Wouthuysen representation. For particles
in an external field, the ratio of the lower and the
upper spinor is at maximum on the same order of
magnitude as Wint/E, where Wint is the energy of the
particle–field interaction and E is the total particle
energy. Thus, we have (χ†χ)/(φ†φ) ∼ (Wint/E)2.
For this reason, the contribution of the lower spinor is
negligibly small; in the semiclassical approximation,
the angular velocity of spin rotation (ω) is therefore
given by

ω =
e

2m

{
−
(
g − 2 +

2
γ

)
H

+(g − 2)
γ

γ + 1
v(v · H)

−
(
g − 2 +

2
γ + 1

)
[E × v]

}
,

where γ = ε/m and v = π/ε. This formula is fully
consistent with that presented in [18] and with the
Bargmann–Michel–Telegdi equation.

Thus, a rigorous calculation has revealed that,
upon the Foldy–Wouthuysen transformation, the
Hamiltonian determined on the basis of Proca theory
(with allowance for an anomalous magnetic moment)
is inconsistent with the results presented in [21–24],
PH
but it is fully consistent with the data from [18, 19] and
with the Bargmann–Michel–Telegdi equation [6].

By analyzing the reasons behind the inconsis-
tency of the results obtained in [21–24] and in the
present study, we emphasize that the use of a second-
order wave equation requires extreme caution. A
transition from a linear to a quadratic form of wave
equations cannot be performed by merely eliminat-
ing some components of the wave function, since
this would lead to the emergence of non-Hermitian
terms in the resulting equation. This would re-
sult in complex-valued particle energies and in the
nonorthogonality of the wave functions. We note that
the second-order wave equation used in [21] includes
a term that is proportional to πµπ

ν and which is non-
Hermitian;4) that is,

(πµπν)† = πνπµ = πµπ
ν + [πν , πµ]

= πµπ
ν − iegνρFρµ �= πµπ

ν ,

where gνρ = diag{1,−1,−1,−1} is the metric tensor
and Fρµ is the electromagnetic-field-strength tensor.
In this connection, the presence of imaginary values
in the energy spectrum of a particle in a magnetic field
(this fact was indicated in [23]) is quite natural.

A second possible reason for the above inconsis-
tency is that the representation used in [21–24] to
derive the equations being discussed can be different
from the Foldy–Wouthuysen representation.

Thus, it follows from the theory of spin-1 parti-
cles that the quantum-mechanical equation of mo-
tion of a spin of such particles is consistent with the
Bargmann–Michel–Telegdi equation.

4. MOTION OF PARTICLE AND NUCLEAR
SPINS IN PLANAR CHANNELING
THROUGH STRAIGHT AND BENT

CRYSTALS

Successful experiments devoted to measuring the
rotation of the spin of short-lived spin-1/2 charged
particles [2, 3] create preconditions for experimentally
testing the results obtained in [18, 19] and for apply-
ing these results in practice.

We assume that the crystal is bent in such a way
that the plane of the bend is orthogonal to crystal-
lographic planes and denote the bend radius by R.
We choose the x axis to be orthogonal to the set of
planes in the direction of the bend and the y axis to
be orthogonal to the x axis in the plane of the bend.
Channeled particles or nuclei execute translational
motion along the y axis and vibrational motion along
the x axis. Since particles (nuclei) move at small

4)A correct transition to a second-order wave equation is de-
scribed in [31].
YSICS OF ATOMIC NUCLEI Vol. 64 No. 5 2001
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angles with respect to crystallographic planes, the ki-
netic energy of their translational motion considerably
exceeds the vibrational energy. The potential of the
planes does not exceed values on the order of 100 eV;
therefore, the vibrational motion of channeled par-
ticles (nuclei) is nonrelativistic, occurring at speeds
much less than the speed of light. It follows that, in
Eqs. (4) and (5), we can disregard terms proportional
to (v · ∇) and (v ·E) and additionally set B = 0. For
the problem being considered, these equations then
take the form (

ds
dt

)
BMT

=
e

2m
(10)

×
{(

g − 2 +
2

γ + 1

)[
s× [E × v]

]}
,

(
ds
dt

)
q

=
Q

4s(2s − 1)

×
({

[s ×∇], (s ·E)
}

+
{

(s · ∇), [s × E]
})

+
e

4m2

γ

γ + 1

(
g − γ

γ + 1

)
(11)

×
({(

s · [v ×∇]
)
,

[
s× [E × v]

]}

+
{[

s × [v ×∇]
]
,

(
s · [E × v]

)})
.

Equations (10) and (11) are valid both for particles
and for nuclei.5) There is no fundamental difference
between them in describing the motion of a spin, since
nuclei, in just the same way as almost all particle
species, are composite objects. Since both particles
and nuclei are bound by strong interaction, the ef-
fect of their internal structure on the interaction with
an electromagnetic field can be disregarded in many
cases.

The equation of motion of a spin is broken down
into two parts that are described by Eqs. (10) and
(11). When particles and nuclei are channeled in
straight crystals, the term that is linear in spin [see
Eq. (10)] does not contribute to the motion of a spin.
In the case of channeling in bent crystals, however,
it is one to two orders of magnitude greater than the
terms of second order in spin, which are given by
Eq. (11). At the same time, the presence of quadratic
terms leads to the important effect of spin oscilla-
tions [35].

5)The nuclear-spin operator is traditionally denoted by I. To
avoid confusion, however, we reserve the former notation s
for this operator in the formulas that are given below.
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Let us first consider the motion of a spin in straight
crystals. The second term in Eq. (11) is negligi-
bly small even for light nuclei. By way of example,
we indicate that, for relativistic deuterons, the result
that this term yields for the spin-rotation angle per
unit of the traveled distance is about 10−6 rad/cm
at |∂Ex/∂x| ∼ 1022 V/m2. Such small values of the
spin-rotation angle cannot be observed experimen-
tally. We can therefore disregard the second term in
Eq. (11) and represent it as(

ds
dt

)
q

=
Q

2s(2s − 1)

{
[s × ex], sx

}
∂Ex
∂x

. (12)

It can easily be seen that dsx/dt = 0, whence it fol-
lows that, in straight crystals, the spin rotates about
the x axis. Equation (12) is not trivial because it
describes the rotation of the spin of not only nonrela-
tivistic but also relativistic particles. By analogy with
Eq. (9), we can introduce here the operator Ω of the
angular velocity of spin precession as

Ω = − Q

2s(s− 1)
{ex, sx}

∂Ex
∂x

.

Since the angular velocity Ω = |Ω| of spin precession
is independent of the particle energy, the spin-rotation
angle ϕ per unit length is in inverse proportion to the
velocity,

∆ϕ

∆l
=

Ω
v

=
Q

s(2s − 1)
1
v

∣∣∣∣sx∂Ex∂x

∣∣∣∣ .
The spin-rotation angle is minimal at v ≈ c, in

which case it assumes a value of (∆ϕ/∆l)min ∼
|Q(∂Ex/∂x)|. Since the quadrupole moment of the
deuteron is small, the spin-rotation angle is small for
deuterons: (∆ϕ/∆l)min ∼ 10−4 rad/cm. For nuclei
having a large quadrupole moment, however, this
quantity is accessible to experimental observations.

From (12), it follows that the direction of spin
rotation is invariant under the reversal of the sign of
the spin projection; at the same time, the angular-
velocity vector is reversed in this case.

Let us now discuss channeling through a bent
crystal. The presence of the term linear in spin then
leads to a spin rotation through large angles about
the z axis. From Eq. (10), it follows that, for this
geometry, the spin-rotation angle per unit length is
given by

∆ϕ

∆l
=

e

2m

(
g − 2 +

2
γ + 1

)
|Ēx|,

where |Ēx| is the absolute value of the electric-field
strength (it depends on the bend of the crystal). It is
well known that the spin-rotation angle is then given
by the Lyuboshitz formula [36], which is valid both in
1
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Spin-rotation angle for nuclei traversing bent crystals

Nucleus Spin Mass, аmu µ/µN Energy, GeV Radius of the crystal bend, m g γ ∆ϕ/∆l, rad/cm
2H 1 2.014102 +0.8574 +1.714 213 −0.10
6Li 1 6.015122 +0.8220 +4.91 71.4 0.35
7Li 3/2 7.016004 +3.2564 400 3 +15.11 61.2 1.34
9Be 3/2 9.012182 –1.1775 −7.02 47.6 −0.71
classical and in quantum theory [37] and which has
the form

ϕ =
(
γ − 1
γ

+
g − 2

2
γ2 − 1

γ

)
θ, θ =

l

R
, (13)

where θ is the mean momentum-rotation angle, l
is the traveled distance, and R is the radius of the
crystal bend. For ultrarelativistic (γ � 1) particles,
this expression reduces to the formula

ϕ =
(g − 2)γ

2
θ,

which was previously obtained by Baryshevskiı̆ [1].
The spin-rotation angle the per unit length is given
by

∆ϕ

∆l
=
(
γ − 1
γ

+
g − 2

2
γ2 − 1

γ

)
1
R
. (14)

From (13), it follows that, since θ � 1, large spin-
rotation angles can be obtained only under the con-
dition γ � 1; that is, the nuclei involved must be
ultrarelativistic. Since the g factor increases with
increasing mass of the nuclei, a rotation through a
given angle can be attained at a smaller value of the
Lorentz factor γ for heavier nuclei.

In the case of channeling that occurs in bent crys-
tals, spin motion due to the second-order terms in
spin leads to simultaneous rotations about the x and
the z axis. In this case, the spin oscillates [35], so that
the spin projection onto the z axis is not conserved.

5. DISCUSSION OF THE RESULTS
AND CONCLUSIONS

At present, the validity of the Bargmann–Michel–
Telegdi equation [6] has been proven experimentally
only for spin-1/2 particles. Previously, a quantum-
mechanical derivation of this equation was given in
[8, 9] precisely for such particles. The authors of
[18, 19] presented a quantum-mechanical derivation
of the Bargmann–Michel–Telegdi equation for par-
ticles of arbitrary spin and determined terms in the
Lagrangian that are of second order in the spin. These
important results call for an experimental verifica-
tion, since there were some problems in rendering
P

the results from [18, 19] consistent with the existing
theory of spin-1 particles. This is reason why, in
the present study, the quantum-mechanical equation
of motion of the spin of spin-1 particles having an
anomalous magnetic moment has been derived on the
basis of Proca theory. Our calculation has revealed
that this equation corresponds to the Bargmann–
Michel–Telegdi equation. This means that, in dis-
tinction to what was stated previously in [21–24], we
have validated here the Bargmann–Michel–Telegdi
equation and the results from [18, 19] for spin-1 par-
ticles.

The results obtained in [18, 19] can be verified
in experiments of two types. First, investigation of
nuclear-spin rotation in the case of planar channel-
ing in straight crystals makes it possible to test the
theoretical description that those studies provide for
second-order effects in spin. For nuclei having a large
quadrupole moment (on the order of 10−24 cm2), the
spin-rotation angle per unit length is about 10−2–
10−1 rad/cm in this case. By way of example, we in-
dicate that, for 25Na (I = 5/2, Q = 2.3× 10−25 cm2),
25Mg (I = 5/2, Q = 2.2 × 10−25 cm2), and 153Eu
(I = 5/2, Q = 2.9 × 10−24 cm2), the values of the
spin-rotation angle per unit length in a tungsten
crystal are 6× 10−3, 6× 10−3, and 8× 10−2 rad/cm,
respectively.

Second, one can test the conclusion from [18]
that the Bargmann–Michel–Telegdi equation is valid
(in the linear approximation in spin) for particles of
arbitrary spin. Such a test can be implemented in a
planar channeling of ultrarelavistic particles through
bent crystals. The experimental setting for this case
has much in common with that used in [2, 3]. Of par-
ticular importance for such experiments is the energy
of nuclei; it can be taken to be close to that which
was chosen in [2, 3] for experiments with Σ+ hyperons
(375 GeV).

In just the same way as in [2, 3], initial beams
can be polarized via scattering on a polarized nuclear
target. The resulting polarization of a nuclear beam
that has traversed a crystal can be determined by ob-
serving the elastic scattering of the beam on a nuclear
target (see [38]).
HYSICS OF ATOMIC NUCLEI Vol. 64 No. 5 2001
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In the channeling of nuclei through bent crystals,
the spin-rotation angle per unit length is usually quite
large (about 1 rad/cm). For some extremely light nu-
clei, the results of the calculation of the spin-rotation
angle are quoted in the table.

The relations obtained in the present study can be
used to determine the magnetic dipole and electric
quadrupole moments of short-lived nuclei by mea-
suring the spin-rotation angle in planar channeling
through bent and straight crystals, respectively. A
short lifetime seriously complicates a determination
of nuclear moments by conventional methods, but
it does not seem to be an obstacle to finding them
from a measurement of the spin-rotation angle in
channeling. Investigation of beta-radioactive nuclei
is especially promising owing to a high asymmetry
of beta decay. By taking advantage of this, one can
determine the polarization state of the initial nucleus
by recording decay products, a daughter nucleus and
an electron (positron). In general, such an experiment
can be performed according to a procedure similar to
that in experiments pursuing the magnetic moments
of short-lived particles, both already performed [2, 3,
39] and planned [40].
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Abstract—The results obtained by investigating the motion of fast charged particles in a nanotube along
its axis are presented. It is shown that dynamical chaos may arise when a positively charged particle moves
along the axis of a nanotube. c© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

A nanotube is a hollow cylinder whose surface
is formed by regularly spaced carbon atoms. The
diameter of a nanotube may range up to several tens
of angstrom. Modern technologiesmake it possible to
prepare a nanotube of length a few hundred microm-
eters [1, 2]. In recent years, much attention has been
given to effects associated with the propagation of a
beam of charged particles along nanotubes, because
such structures offer new possibilities for controlling
beam parameters and for generating electromagnetic
radiation [3–6]. In [3–5], the motion of fast particles
in a nanotube along its axis was described in the
continuous-surface-potential approximation, where
the potential of the atoms forming the nanotube is
averaged over its surface. In such a field, a particle
can execute a finite motion along the nanotube axis.
The continuous surface potential of a nanotube is
axisymmetric; hence, any finite motion of a particle
in such a field is regular and quasiperiodic. However,
it is not always correct to describe particle motion in a
nanotube within this approximation. In just the same
way as in the case of particle channeling in a crystal
[7, 8], the potential of a nanotube can sometimes be
represented as the sum of the continuous potentials of
individual atomic chains on the nanotube surface that
are parallel to the nanotube axis. The continuous po-
tential of the set of atomic chains of a nanotube then
differs substantially from an axisymmetric potential.
In the present study, we focus on some features of
such a potential of a nanotube and on some special
properties of a finite motion of positively charged par-
ticles in such a field. In particular, we present typical
trajectories and the Poincaré sections for a finite mo-
tion of a positively charged particle in a nanotube. It is
shown that, in the continuous potential of the atomic
chains in a nanotube, a particle can execute not only
a regular but also a chaotic motion.

*e-mail: shulga@kipt.kharkov.ua
1063-7788/01/6405-0990$21.00 c©
2. DESCRIPTION OF THE MODEL

In many respects, the problem of the motion of a
fast charged particle in the field of a nanotube along
its axis is similar to the problem of the motion of a
particle in an oriented crystal along some of its crys-
lallographic axes (see [7, 8] and references therein).
Therefore, the motion of a particle in the field of a
nanotube can be described in terms of the theory of
particle channeling in a crystal. We now proceed
to consider the motion of a fast charged particle in
the field of a nanotube along its axis, relying on this
analogy. The continuous potential of a nanotube
can be determined by averaging the total potential of
atoms forming the nanotube over its axis (z axis):

U (ρ) =
1
L

∑
n

∫
u (r− rn) dz. (1)

Here, ρ stands for coordinates in the plane orthogonal
to the nanotube axis, u(r − rn) is the potential of the
nanotube atom occurring at the point rn, and L is
the nanotube length. The atoms in a nanotube are
located at the vertices of hexagons that are arranged
periodically over the nanotube surface. In such an
arrangement, the hexagons can be differently oriented
with respect to the nanotube axis, the continuous
potential of the nanotube being dependent on their
orientation.
Typical configurations of the continuous nanotube

potential that correspond to the (10, 0) and (10,1)
orientations of the hexagons on the nanotube surface
are shown in Figs. 1 and 2, respectively. As in the
case of a crystal, the continuous nanotube potential
in the cases being considered is the sum of the con-
tinuous potentials of isolated atomic chains. How-
ever, the atomic chains in a nanotube are arranged
periodically over the nanotube surface, in contrast to
the arrangement of atoms in a crystal. As a result,
the total potential of the atomic chains develops a
deep and wide well for a positively charged particle
inside the nanotube. It follows that, as in the case
2001MAIK “Nauka/Interperiodica”
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Fig. 1. Equipotential surfaces of the continuous potential of a (10, 0) nanotube. The right panel displays the potential plotted
versus (a, b) the radial distance from the nanotube axis and (c) the azimuthal angle ϕ at the radial distance R equal to the
nanotube radius. The numbers on the lines indicate the potential energy of the interaction of a proton with the nanotube
(in eV).
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Fig. 2. As in Fig. 1, but for a (10,1) nanotube.
of channeling in a crystal, a particle can execute here
a finite motion along the axis of a nanotube. For
negatively charged particles, the potential well is very
close to the nanotube surface, so that such particles
can execute a finite motion only near the nanotube
surface.

A finite motion of a particle in the continuous field
of a nanotube was investigated in [3–5] by using
the nanotube potential averaged over the azimuthal
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 5 200
angle ϕ:

U (ρ) =
1
2π

2π∫
0

dϕU (ρ). (2)

This approximation is justified if the particles can-
not approach closely the nanotube surface or if the
continuous potential of the nanotube depends only
slightly on the azimuthal angle ϕ [this condition is
satisfied for a (10,1) nanotube].
1
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Fig. 3. (a, b) Typical trajectories and (c, d) Poincaré sections for the finitemotion of fast protons in the field of a (10,0) nanotube
at the transverse-motion energies of (a, b) 30 eV and (c, d) 50 eV.
From the equipotential surfaces in Fig. 1, it can
be noticed that the shape of the potential in the im-
mediate vicinity of the nanotube surface may deviate
considerably from an axisymmetric shape. This de-
viation is readily illustrated in Figs. 1 and 2, where
the potential is plotted versus (a, b) the radial distance
from the nanotube axis and (c) the azimuthal angle at
the radial distance R equal to the nanotube radius.

Thus, the equipotential surfaces demonstrate that
the motion of particles that closely approach the nan-
otube surface may differ substantially from motion in
the axisymmetric field (2). In what follows, we briefly
discuss some features of particle motion in the field of
a nanotube that are associated with the violation of
axial symmetry in the nanotube potential.
PH
3. RESULTS AND DISCUSSION

The longitudinal component p‖ of the momen-
tum of a fast particle moving along the axis of the
nanotube (z axis) in its continuous field (1) is con-
served. In just the same way as in the case of particle
channeling in a crystal, the motion of a particle in
the continuous field of a nanotube is described by
the two-dimensional equation of motion in the plane
orthogonal to the nanotube axis; that is,

ρ̈ = − 1
ε‖

∂

∂ρ
U (ρ) , (3)
YSICS OF ATOMIC NUCLEI Vol. 64 No. 5 2001
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where ε‖ =
√
p2
‖ +m2 and U(ρ) is given by Eq. (1).

For high-energy particles, ε‖ is close to the total
particle energy ε, ε‖ ≈ ε.
For Eq. (3), the first integral of the motion repre-

sents the energy of the transverse motion of a particle,

ε⊥ (ρ0) =
ερ̇2

2
+ U (ρ) . (4)

It is determined by the point at which the particle
enters the nanotube endface and by its angle of in-
cidence ψ,

ε⊥ (ρ0) = ε⊥ + U (ρ0) , (5)

where ε⊥ = εψ2/2. Depending on the values of ψ
and ρ0, a particle in the nanotube can execute either
finite or infinite motion. In what follows, we will
consider the features of the finite motion of positively
charged particles in the field of a nanotube. A pos-
itively charged particle executes a finite motion in a
nanotube if ρ0 < R (R is the nanotube radius) and if
the energy of the transverse motion, ε⊥ (ρ0), is small
in relation to the depth of the nanotube potential well,
Umax.
If the continuous potential of the nanotube is close

to the axisymmetric potential (2), the angular mo-
mentum of transverse motion becomes conserved, in
addition to the energy of transverse motion. In this
case, the two variables in the equation of motion
(3) are separated, and the motion of a particle in a
nanotube is regular and quasiperiodic.
If the axial symmetry of the nanotube potential is

severely violated, as in the case shown in Fig. 1, then
the motion of a particle in the field of the nanotube
may be very intricate—it may be either regular or
chaotic. This is illustrated in Fig. 3, which shows (a,
b) typical trajectories of a particle in the continuous
field of a nanotube at various energies of transverse
motion and (c, d) the corresponding Poincaré sec-
tions. A method for obtaining Poincaré sections is
outlined in [8, 9].
Our results indicate that, at small values of the

energy of transverse motion (when the particle being
considered cannot approach the surface of a nan-
otube; see Fig. 3a), the motion of the particle is reg-
ular (quasiperiodic) for almost all initial conditions.
This is because, in this case, the particle moves in the
domain where the continuous nanotube potential is
approximately axisymmetric.
If the energy of transverse motion is close to the

maximum depth of the potential well, the motion of
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 5 200
a particle in the field of a nanotube is chaotic for
significant part of initial conditions (see Fig. 3b).
Thus, a positively charged fast particle moving along
the axis of a nanotube may chaotically oscillate in
its continuous field—that is, there arises dynamical
chaos.

In studying radiation associated with the propaga-
tion of particles along a nanotube and in determining
the time over which a particle resides in a nanotube,
it is important to take into account the above type of
dynamical chaos. The point is that, when a particle
executes a regular motion in a potential well, radiation
from this particle occurs at regular intervals, so that
interference effects are significant. This gives rise to
sharp peaks at definite frequencies in the radiation
spectrum. However, chaotic motion destroys inter-
ference effects, and the radiation spectrum appears to
be a slowly varying function of frequency.
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Abstract—The problem of transition radiation generated by the oblique motion of a relativistic electron
through a thin metal plate of finite transverse dimensions is considered. The expressions for the spectral
and angular densities of radiation emitted forward and backward are obtained. It is shown that, in the
millimeter and the submillimeter range, the spectra of both forward and backward radiation for targets of
finite transverse dimensions can differ substantially from the corresponding spectra for an infinite plate.
c© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In [1, 2], we considered infrared transition radia-
tion generated by a relativistic electron traversing a
thin plate of finite transverse dimensions at a right
angle. We showed that both the longitudinal and
the transverse dimension of a target can significantly
affect the radiation intensity. This is because the lon-
gitudinal and the transverse dimension of the region
where the radiation is formed are bothmacroscopic. If
the transverse dimension of the formation region, λγ
(λ is the radiation wavelength, and γ is the electron
Lorentz factor), is commensurate with the transverse
dimension of the target or exceeds it, the intensity
of the transition radiation is much lower than that
in the case of an infinite plate. The effect might
be significant under the conditions of experiments
reported in [3, 4]. The transition radiation from a
relativistic electron obliquely incident on a target is
of special interest. The reason is that, in this case,
the bulk of transition radiation into the backward
hemisphere (backward radiation) is not emitted along
the particle trajectory. This facilitates the detection
of the radiation. For the oblique motion of a rela-
tivistic electron through an infinite thin metal plate,
transition radiation was theoretically analyzed in [5,
6]. The present study aims at analyzing the effect of
finite transverse dimensions of the target on transition
radiation generated by a relativistic electron obliquely
incident to a thin metal target. Here, this is done for
the simplest situation where the electron trajectory
passes through the center of a thin metal disk.

*e-mail: dobrovolsky@kipt.kharkov.ua
**e-mail: shulga@kipt.kharkov.ua
1063-7788/01/6405-0994$21.00 c©
2. DESCRIPTION OF THE METHOD USED
We consider radiation generated by a relativistic

electron whose trajectory passes through the center
of a thin metal disk of radius a at an angle φ to
the z axis directed normally to the target surface
(Fig. 1). Without loss of generality, we assume that
the electron moves in the zx plane. The target is
considered to be thin if its thickness az is much less
than the radiation wavelength λ. However, we also
assume that az � ∆, where ∆ is the depth of field
penetration into the target. In this case, that part
of the proper field of the electron which missed the
screen diffracts on it, whereas that part of the field
which hits the screen is completely reflected from it
into the backward hemisphere. Within the target, the
field of the medium response completely screens the
Coulomb field of the electron. As soon as the electron
leaves the target, there arises the field associated with
the transition radiation in addition to the diffraction
field. The former completely screens the proper field
of the electron near the target surface.
In order to calculate the spectral and angular ra-

diation density in the problem being considered, it is
necessary above all to take into account the boundary
conditions at the target surface for the field surround-
ing the electron. We represent the radiation electric
fields in the forward [E(+) (r, t)] and in the backward
[E(−) (r, t)] hemisphere as the sum of the emitted-
radiation field and the proper field of the electron; that
is,

E(±) (r, t) = E(e) (r, t) + E′(±) (r, t) , (1)

where E(e) (r, t) is the proper field of the elec-
tron, while E′(+) (r, t) and E′(−) (r, t) are the radi-
ation fields in the forward and the backward hemi-
sphere, respectively. The field E′(+) (r, t) is the sum
2001MAIK “Nauka/Interperiodica”



TRANSITION RADIATION BY THE RELATIVISTIC ELECTRON 995
of the diffraction-radiation field E(d) (r, t) and the
transition-radiation field E(tr) (r, t) [1, 2]:

E′(+) (r, t) = E(d) (r, t) + E(tr) (r, t) . (2)

By using the boundary conditions for the tangen-
tial and the normal component of the electric field
and for the electric displacement vectors at the target
surface (see [5, 6]), we find that the radiation field
E′(±) (r, t) in the target plane (z = 0) can be repre-
sented as

E′(±)
‖ (r, t) = −Θ (a− ρ)Ee‖ (r, t) ,

E′(±)
⊥ (r, t) = Θ (a− ρ)Ee⊥ (r, t) , (3)

where E′(±)
|| (r, t) and E′(±)

⊥ (r, t) (r = ρ+ zez , ez be-
ing a unit vector along the z axis) are the radiation-
field components parallel and orthogonal to the tar-
get surface, respectively, and Θ (x) is the Heaviside
step function [Θ (x) = 1 for x � 0, and Θ (x) = 0 for
x < 0].
The radiation field E′ (r, t) can be represented as

a superposition of plane electromagnetic waves of
frequency ω and wave vector k; that is,

E′ (r, t) (4)

=
1

(2π)4

∫
dkdωei(k·r−ωt)Ek,ωδ

(
ω2

c2
− k2

)
,

where δ
(
ω2/c2 − k2

)
is a Dirac delta function, c is

the speed of light, and Ek,ω stands for expansion
coefficients determined by condition (2). Using (2)
and (4), we obtain the Fourier components E′χ,ω (z) of
the radiation fields with respect to time and transverse
coordinates in the form

E′(±)
‖χ,ω (z) (5)
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 5 200
= −e±iz
√
k2−χ2

∫
S2

d2ρ′E(e)
‖ω
(
ρ′, z = 0

)
e−iχ·ρ′

,

E′(±)
⊥χ,ω (z)

= e±iz
√
k2−χ2

∫
S2

d2ρ′E(e)
⊥ω
(
ρ′, z = 0

)
e−iχ·ρ′

,

where E(e)
ω (ρ, z) is the time Fourier component of the

proper field of the electron, while χ is the transverse
component of the wave vector k (k = χ+ kzez). In-
tegration in the z = 0 plane is performed over the area
S2 occupied by the screen.

In order to find the Fourier components of the
radiation field E′(±)

χ,ω (z), it is therefore necessary to
know, in the z = 0 plane, the Fourier component of
the Coulomb field of a relativistic electron moving at a
velocity v forming an angle φ with the z axis. For this
purpose, we use the Fourier expansion of the proper
field of the electron in a vacuum [5–7]. We have

E(e)
ω (r) (6)

=
ieω

πvzc

∫
d3keik·r

(
β
v
v
− ck
ωε

)
(
k2 − ω2

c2
ε

)δ
(
ω

vz
− k · v
vz

)
,

where β = v/c.

To terms of order γ−1, the proper field of a relativis-
tic electron can be considered to be transverse with
respect to its velocity (see [5, 6]). To terms of order
γ−2, the field of the electron that moves in a vacuum
in the zx plane at a velocity v at an angle φ to the z
axis can be represented in the form
E(e)
ω (ρ, z) ≈ eω

v2
zγ

2K1

(
ωρ

vγ

√
1 + sin2 φ

z2 − x2

ρ2
− sin 2φ

zx

ρ2

)
(7)

×ρ− sinφ (ex [z cosφ+ x sinφ] + ez [x cosφ− z sinφ])

ρ
√

1 + sin2 φz
2−x2

ρ2
− sin 2φzx

ρ2

exp
[
i
ω

vz
(z cosφ+ x sinφ)

]
,

where K1 is a Macdonald function of the first order
[8] and ρ = xex + yey , ex, and ey being unit vectors
along the x and y axes, respectively.
Substituting (7) into (5) and considering that the

integration surface is the surface of a disk of radius a,
we represent the Fourier components of the forward-
and the backward-radiation field as

E′(±)
χ,ω (z) =

2eω
v2
zγ

π∫
−π

a∫
0

ρdρdαK (ρ, φ, α) (8)
× [± cosα cosφ (ex cosφ+ ez sinφ) + ey sinα]

× exp
[
−i
(
χ · ρ± z

√
k2 − χ2 − ωρ

vz
cosα sinφ

)]
,

where

K (ρ, φ, α) =
K1

(
ωρ

vzγ

√
1 − sin2 φ cos2 α

)
√

1 − sin2 φ cos2 α
,

χ = ωc−1 sinϑ,
1
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Fig. 1. Oblique incidence of a relativistic electron on a
thin metal disk.

and the angle ϑ determines the direction of radiation.

3. RESULTS AND DISCUSSION

For the spectral and angular densities of the
electromagnetic-energy flux in the forward (plus sign)
PH
and the backward (minus sign) hemisphere through
the detector surface xy at a distance z = z0 from the
target, we have [5, 6]

d3S
(±)
z

dω dΩ
= (9)

=
1

(2π)4 c
ω2
∣∣∣[E′(±)

χ,ω (z0) ×H′(±)
−χ,−ω (z0)

]
· ez
∣∣∣ ,

where H′
χ,ω (z) is the vector of the radiation magnetic

field. For forward radiation, expression (9) is mean-
ingful only at large distances z0 from the target, where
the radiation field can be separated from the proper
field of the particle involved. At smaller distances,
it is necessary to take into account the interference
between these fields (see [1]). For backward radiation,
expression (9) is valid at arbitrary distances from the
target.

Expressing H′
χ,ω (z) in terms of E′χ,ω (z) (see

[7]) and using (8), we find for cosφ� γ−1 that the
spectral and angular density of the electromagnetic-
energy flux of forward and backward radiation that
traverses the z = z0 plane is given by
d3S
(±)
z

dω dΩ
=

e2

π2c
β2 cos2 φ

|(sinϑ− β sinφ cosϕ)2 + β2 sin2 φ cos2 ϑ sin2 ϕ|A2 + sin2 ϑ cos2 ϑ sin2 ϕ(B2 −A2)[
(1 − β sinφ sinϑ cosϕ)2 − β2 cos2 ϑ cos2 ϕ

]2 .

(10)
Here, the angle ϑ for forward and backward radi-
ation is reckoned from, respectively, the positive and
the negative direction of the z axis; ϕ is the azimuthal
angle of radiation; and
A =

π∫
−π
dα

u∫
0

tdtK (t, φ, α) cosα exp [−itγ cosα (sinϑ cosϕ− β sinφ) − itγβ sinα sinϑ sinϕ]

π∫
−π
dα

∞∫
0

tdtK (t, φ, α) cosα exp [−itγ cosα (sinϑ cosϕ− β sinφ) − itγβ sinα sinϑ sinϕ]
,

B =

π∫
−π
dα

u∫
0

tdtK (t, φ, α) sinα exp [−itγ cosα (sinϑ cosϕ− β sinφ) − itγβ sinα sinϑ sinϕ]

π∫
−π
dα

∞∫
0

tdtK (t, φ, α) sinα exp [−itγ cosα (sinϑ cosϕ− β sinφ) − itγβ sinα sinϑ sinϕ]
,

(11)
where
u =

ωa

vzγ
,

K (t, φ, α) =
K1

(
t
√

1 − sin2 φ cos2 α
)

√
1 − sin2 φ cos2 α

.

The functionsA (u, ϑ, ϕ, γ, φ) andB (u, ϑ, ϕ, γ, φ)
determine the effect of the transverse dimensions of
the target on the radiation generated by a relativistic
electron whose trajectory passes through the center
of a thin ideally conducting disk at an angle φ to
the axis of the disk. The expressions obtained for
the spectral and angular density of the radiation are
valid for arbitrary angles of electron incidence on the
target, with the exception of those that correspond to
sliding incidence, in which case the condition cosφ�
YSICS OF ATOMIC NUCLEI Vol. 64 No. 5 2001
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Fig. 2. Function F = |A (u, ϑ, ϕ, γ, φ)|2 versus the parameter u = ωa/vzγ at φ = π/4, γ = 200, ϕ = 0, and various values
of the angle ϑ: ϑ = (1) φ+ γ−1, (2) ϑ = φ+ 5γ−1, and (3) ϑ = φ+ 0.5γ−1.
γ−1 is violated. According to (10), the functions
A (u, ϑ, ϕ, γ, φ) andB (u, ϑ, ϕ, γ, φ) are close to unity
for u� 1. In this case, the spectral and angular
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 5 200
density of radiation is identical to that for the case of
electron motion through a plate that is infinite in the
transverse direction:
d3S
(±)
z

dω dΩ
=

e2

π2с
β2 cos2 φ

(sinϑ− β sinφ cosϕ)2 + β2 sin2 φ cos2 ϑ sin2 ϕ[
(1 − β sinφ sinϑ cosϕ)2 − β2 cos2 ϑ cos2 ϕ

]2 . (12)
This expression coincides with the corresponding
expression obtained in [5, 6].
For u
 1, the functions A(x, ϑ, ϕ, γ, φ) and

B(x, ϑ, ϕ, γ, φ) are much smaller than unity. In
this region, the spectral and angular density of the
radiation is much smaller than that for u� 1.
It is very difficult to analyze the effect that the

transverse size of the disk exerts on the radiation
intensity at arbitrary angles of the radiation and ar-
bitrary values of the parameter u. For this reason,
we restrict our consideration of the process to the
simplest case of ϕ = 0. Here, the spectral and an-
gular density of the radiation is determined solely
by the function A (u, ϑ, ϕ, γ, φ) [according to (11),
B (x, ϑ, ϕ, γ, φ) = 0 at ϕ = 0]. Figure 2 displays the
results of numerical calculations for the function F =
|A (u, ϑ, ϕ, γ, φ)|2 at φ = π/4, γ = 200, and various
values of the angle ϑ. These results show that, in
just the same way as in the case of normal incidence,
both forward and backward transition radiation are
reduced in relation to the case of an infinite plate in
the region u � 1 (that is, when the effective trans-
verse size of the radiation-formation region, λγ cosφ,
exceeds the characteristic transverse size of the tar-
get, a; see Fig. 1). For backward radiation, this is
explained by the fact that a smaller (in relation to
the case of an infinite plate) part of the electron field
incident on the plate is reflected into the backward
hemisphere. For forward radiation, the reduction is
due to the diffraction radiation, which significantly
contributes to the total energy flux of the emitted
radiation for λγ cosφ � a.
The angular dependence of the spectral and an-

gular distribution (10) of the radiation in the region
u � 1 peaks at angles of order φ± γ−1. The reduction
of the radiation intensity does not exhaust changes
in the region u � 1—in addition, the main angular
maxima are shifted toward larger deviations from the
angle of electron incidence, and new oscillating peaks
appear.
For electron energies of about 100 MeV, the effec-

tive transverse size of the radiation-formation region
is macroscopic in the millimeter range of the radiation
wavelength. It is comparable with the transverse size
of the targets used in the experiments reported in [3,
4]. In such cases, data analysis must rely on ex-
pressions (10), which take into account the possible
effect of the transverse target dimension on the char-
acteristics of the spectral and angular density of the
radiation. Our results show that, in themillimeter and
submillimeter ranges, calculations allowing for the
transverse dimensions of the target yield a radiation
1
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intensity that can be less than that for an infinite plate
by one order of magnitude or more.
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Georgiı̆ Borisovich Khristiansen
May 31, 1927–August 4, 2000
Russian science has suffered a heavy blow. Aca-
demician Georiı̆ Borisovich Khristiansen, professor at
Moscow State University and an eminent scientist
in the realms of cosmic-ray and high-energy physics,
died on August 4, 2000. He was 73 years old.

G.B. Khristiansen was born in Moscow on May
31, 1927. In 1950, he graduated from the Faculty of
Physics at Moscow State University (MSU). Even
in his undergraduate years, when he began study-
ing, under the supervision of D.V. Skobel’tsyn and
G.T. Zatsepin, ultrahigh-energy cosmic rays at the
high-mountain Pamir station of the Lebedev Institute
of Physics (USSR Academy of Sciences, Moscow),
Khristiansen had cherished keen interest in these
realms of physics, which had remained the main sub-
ject of his investigations.

Having finished his postgraduate studies (super-
vised by Skobel’tsyn) at the Nuclear Physics Depart-
ment of the Faculty of Physics (MSU) in 1953 and re-
ceived his candidate’s degree, Khristiansen, together
with S.N. Vernov, was involved in planning and, later
on, in creating, atMSU, a new array that was capable
of recording extensive atmospheric showers (EAS)
generated by cosmic rays of energies 1015–1017 eV
and which was unique at that time. The Department
of Ultrahigh-Energy Particles, which was organized
at the Institute of Nuclear Physics (MSU) on the
-7788/01/6405-0999$21.00 c©
basis of this array, called EAS MSU, was headed by
Khristiansen for nearly 40 years.

The discovery of a knee in the energy spectrum
of primary cosmic radiation at an energy of about
3×1015 eV was the most outstanding result obtained
by Khristiansen. In 1970, this result was registered
by the Committee for Inventions and Discoveries at
the Council of Ministers of the USSR as a scientific
discovery. At present, the existence of the knee has
been confirmed by the studies of a few tens of labora-
tories worldwide. However, the problem of this knee
and of the interpretation of its nature remains topical
in cosmic-ray physics, and arrays aimed at studying
it further are still being constructed.

In the early 1970s, a group of researchers headed
by Khristiansen performed a detailed comparison of
themeasured characteristics of EASs with theoretical
predictions. This comparison revealed that it would
be absolutely incorrect to extrapolate the Feynman
scaling model, which was popular in the early 1970s,
from the energies of the ISR collider to the energy
range 1014–1015 eV. This conclusion had been drawn
six years before the emergence of its experimental
corroboration in experiments at the SPS collider.

The research style of Khristiansen was character-
ized by a constant quest for new, nonconventional
methods that would make it possible to study various
facets of cosmic-ray physics. At the very begin-
ning of the operation of the EAS MSU array, he
initiated and supervised the fabrication of large-area
scintillation counters, which were unknown in the
Soviet Union at that time and which were used in
detecting atmospheric showers. At the EAS MSU
array, Khristiansen investigated the radiation of radio
waves that is generated by an extensive atmospheric
shower traversing the atmosphere. In the early 1970s,
Khristiansen proposed a promising new method that
was later dubbed the method of Cherenkov light pulse
shape and which made it possible to reconstruct an
individual cascade curve of a shower in the atmo-
sphere and to determine simultaneously its energy.
This method immediately aroused keen interest. It
was used by almost all laboratories worldwide study-
ing EASs to explore their Cherenkov radiation.

Khristiansen played a great part in creating new
arrays at various institutes of the Soviet Union and
Russia. He supervised the construction of the EAS
array at the Samarkand University and was one of
2001MAIK “Nauka/Interperiodica”
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the founding fathers of the giant shower array in
Yakutsk. In the late 1980s, Khristiansen headed
the work on designing and creating the new EAS-
1000 array for studying cosmic rays of extremely high
energies (1019–1021 eV).

Khristiansen began teaching physics very early.
At the Department of Nuclear Physics (Faculty of
Physics, MSU), he delivered a number of original lec-
ture courses for students who specialized in cosmic-
ray physics. He gave much attention to tutoring
students, postgraduates, and young physicists not
only from the Faculty of Physics at MSU but also
from other physics institutions of both Russia and
foreign countries. He created a robust scientific
school in the physics of ultrahigh-energy cosmic rays.
His disciples successfully work in various fields of
physics. For many years, he had been the Chairman
of the Dissertation Council of the Higher Certification
Commission at MSU.

Khristiansen was elected to corresponding mem-
bership and to membership in the Russian Academy
of Sciences in 1990 and 1997, respectively. He was
PH
awarded a Lenin Prize, a State Prize of the Ukrainian
SSR, and a Lomonosov Prize of MSU for his sci-
entific achievements; he was also decorated with the
Badge of Honour.

Of great importance was the activity of Khris-
tiansen as aDeputy Chairman of the Scientific Coun-
cil at the Russian Academy of Sciences for the inter-
disciplinary problem “Cosmic-Ray Physics,” where
he was in charge of scientific organization and coordi-
nation of studies in cosmic-ray physics in Russia and
of regular international conferences on cosmic rays.
He was also a member of the Cosmic-Ray Commis-
sion of the Union of Pure and Applied Physics at
UNESCO.

The memory of Georgiı̆ Borisovich Khristiansen
will always live in the hearts of his friends and dis-
ciples.

G.T. Zatsepin, N.N. Kalmykov, G.F. Krymskiı̆,
G.V. Kulikov, V.A. Matveev, M.I. Panasyuk,

V.A. Rubakov, V.A. Sadovnichiı̆,
A.N. Skrinskiı̆, Yu.A. Fomin
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