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Abstract—Nuclear structure in exotic nuclei is likely to be quite different than in the nuclei we have been
able to access near the valley of stability. With the development of advanced radioactive-beam facilities, we
will, for the first time, have access to long isotopic chains of nuclei. A key facet of exotic nuclei therefore
will be the study of the evolution of structure with N , Z, and A to an extent never before imagined. Yet,
the beam intensities will be very low (relative to stable beams); hence, we will need to extract more physics
from less data. We will discuss several aspects of structural evolution and its elucidation in exotic nuclei.
c© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Nuclear structure in exotic nuclei is likely to be
quite different than in the nuclei we have been able
to access near the valley of stability. New orbits
will be occupied; nuclei near the drip lines will be
loosely bound, exhibiting spatially extended topolo-
gies; the unbound continuum will play an important
role; the outer reaches of neutron-rich nuclei will
contain regions of dilute, essentially pure neutron
matter; residual interactions such as pairing and the
pn interactions will differ significantly from what we
are accustomed to; magic numbers are likely to be
significantly altered.

With the development of advanced radioactive-
beam facilities, we will, for the first time, have access
to long isotopic chains of nuclei. One of the most
enticing aspects of the study of exotic nuclei will
therefore be the mapping of structure in new nuclear
regions far from stability. Primarily, this will focus on
neutron-rich nuclei, where all the facets listed in the
previous paragraph come into play.

In early studies of neutron-rich nuclei, emphasis
must be on obtaining the first, basic information on
these nuclei. The relevant experimental techniques
will be long-familiar ones—β decay and Coulomb
excitation, to name just two—carried out with vastly
better instruments than in their heyday 30–40 years
ago, when nuclear physicists were mapping out the
stable nuclei, and with techniques such as inverse
kinematics that are dictated by the particular nature
of radioactive-beam experiments.

It is the purpose of this paper to discuss and il-
lustrate some of the characteristics of structural evo-
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lution in nuclei and some of the interpretative tech-
niques to extract the most physics from sparse data.

2. STRUCTURAL EVOLUTION
It is well known that nuclei soften as valence nu-

cleons are added beyond magic numbers and that, for
a given number of valence nucleons, a more equal
distribution between protons and neutrons aids in the
development of collectivity and deformation. Indeed,
this is the idea behind the NpNn scheme. A general,
highly schematic, overview of structural evolution
across a pair of proton/neutron major shells is shown
in Fig. 1.

Magic nuclei are characterized by rather high ex-
citation energies for low-lying states and by an abun-
dance of negative-parity states among the first few
excited states. Singly magic nuclei typically have
level systems like that shown in the second panel of
Fig. 1, with R4/2 ≡ E(4+

1 )/E(2+
1 ) < 2 and decreas-
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Fig. 1. Schematic view of the evolution of structure from
magic nuclei to midshell.
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Fig. 2. Empirical phenomenology of Gd, Ba (N < 82), and Th nuclei illustrating three distinct morphological trends.
ing spacings between successive states. This is char-
acteristic of an |jnJ〉 configuration and the seniority
two levels extend up to Jmax = 2j − 1.

With both valence protons and neutrons, vibra-
tions about spherical shapes appear, characterized by
R4/2 values near 2.0. With more valence nucleons,
a transitional region develops—whose character is
highly region-dependent—but which leads, by one
trajectory or another, through R4/2 values approach-
ing and exceeding 3.0, at which point a permanent
static deformation, and accompanying rotational be-
havior, with R4/2→ 3.33, ensues.

Throughout such an evolutionary scenario,
E(2+

1 ) drops and the yrast B(E2) values grow sub-
stantially.

Such a generic picture, however, masks specific
trajectories within an evolutionary sequence. Three
such trajectories, discussed in [1], are shown in Fig. 2,
where we have specifically selected three elements,
Gd, Ba (N < 82), and Th, to illustrate the ideas
below.

A key point here is that, throughout the his-
tory of nuclear physics, we have had several bench-
mark structural paradigms, such as those in Fig. 1—
magic nuclei, vibrators, rotors—that represent lim-
iting cases of structural evolution. However, we
have never had paradigms for structural change, but
yet most nuclei are in regions of structural change.
Moreover, such regions usually involve competing
degrees of freedom and have, historically, been the
most difficult to treat. Figure 2 is an initial effort to
provide a classification scheme for such transitional
regions, presented primarily in the hope that it will
spur more formal theoretical study.

Figure 2 shows E(2+
1 ) and R4/2 for three isotopic

chains. Normally, as in the first part of this section,
these two observables are considered to reflect sim-
ilar aspects of the equilibrium structure. Figure 2,
PH
however, shows that they, in fact, reflect somewhat
different physics and that this is useful in classifying
different structural morphologies.

The Gd transition region is known to be rapid
(almost as fast as that near A = 100) and has been
recently described, based upon extensive new data, in
terms of a critical phase transition, involving a cross-
ing of spherical and deformed configurations [2]. Both
E(2+

1 ) and R4/2 change very rapidly near N = 90.

In Th, a gradual onset of deformation occurs.
E(2+

1 ) decreases rather gradually, reflecting this evo-
lution. However, surprisingly, R4/2 increases almost
as abruptly as in Gd.

The explanation centers on understanding the
physics behind the ratio R4/2. Rotational energies
go as (�/2I)J(J + 1). Hence, in first order, as
soon as nuclei become deformed, the moment of
inertia cancels out in the ratio R4/2. R4/2 = 3.33
for deformed nuclei regardless of the deformation.
Thus, R4/2 is like a binary indicator of the spherical
or deformed character of a nucleus: hence the rapid
rise in R4/2 in Th as soon as stable deformation sets
in. E(2+

1 ), in contrast, is proportional to 1/β (in
first order) and hence decreases systematically as the
deformation grows.

The third trajectory in Fig. 2 reflects a new de-
gree of freedom, axial asymmetry. The rotor value,
R4/2 = 3.33, applies only for axially symmetric nu-
clei. For nuclei with large axial asymmetry, R4/2 is
substantially lower (∼2.5 for γ ∼ 30◦). Hence, in
the Ba nuclei, which evolve from spherical through
highly axially asymmetric shapes toward symmetric
rotor shapes, R4/2 increases gradually and, likewise,
E(2+

1 ) drops smoothly and slowly.

More formal developments of models for transi-
tional nuclei are urgently needed as opportunities for
YSICS OF ATOMIC NUCLEI Vol. 64 No. 6 2001



EVOLUTION OF STRUCTURE IN EXOTIC NUCLEI 1003
the study of new mass regions with exotic nuclei
emerge in the coming years. Hopefully, the discussion
above will encourage such work.

3. THE Ni AND Sn NUCLEI

Two particularly attractive opportunities for inter-
esting structural evolution that can address funda-
mental questions relating to shell structure are the
Ni and Sn nuclei. The Ni isotopes are unique: from
the proton drip line to very neutron-rich nuclei, these
isotopes cross four magic numbers (20, 28, 40, 50)
and span five major shells (8–20, 20–28, 28–40, 40–
50, >50).

One of the major issues in exotic nuclei is the
robustness of magicity. We know that major subshell
gaps such as Z = 40 and 64 are fragile and recent
studies [3] of 32Mg have shown that even the major-
shell gap N = 20 can dissolve in proton deficient
nuclei. Therefore, of high interest in Ni is the status
of the magic numbers at the limits of accessibility.

In Sn, recent data [4] reveal a fascinating facet
of the evolution of structure that is related to a very
general phenomenon recently noted in two-particle
and two-hole nuclei. The Sn systematics is shown in
Fig. 3a. 132Sn shows the characteristics of a doubly
magic nucleus. Most of the Sn nuclei show nearly
constant excited-state energies typical of the gener-
alized seniority scheme. E(2+

1 ) ∼ 1200 across the
entire N = 50–82 shell. It is a striking departure in
this systematics, therefore, thatE(2+

1 ) in 134Sn drops
to 725 keV. More importantly, R4/2(134Sn) = 1.45,
whereasR4/2(130Sn) = 1.63. Is there a simple expla-
nation of this behavior? Before addressing that issue,
we note that this phenomenon in Sn is not isolated.
In fact, it applies to virtually all two-particle (2p)
and two-hole (2h) nuclei. One (of many) examples is
shown in Fig. 3b. It has not been easy to understand
these data. Yet, the fact that it has now been found in
Sn changes the situation. Sn, being singly magic,
is very simple to calculate in the shell model: one
needs to treat only two-valence nucleons occupying
a small set of orbits. If we can understand the data
in Sn (in a transparent way), we can perhaps get an
understanding of a much more general phenomenon.

This point highlights one of the most appealing
subjects of exotic nuclei. The opportunity is not to
study hundreds of new nuclei, but the possibility to
access selected nuclei with special properties. Often,
as in this case, the key is to choose nuclei that mag-
nify particular interactions or isolate particular effects
in systems that are easy to understand.

Mias [4] has carried out shell-model calculations
for 130,134Sn and reproduced the essential results
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 6 200
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Fig. 3. (a) Systematics of the lowest states of the Sn nu-
clei. (b) Systematics of R4/2 ratios for Z = 60, showing
the general result that R2h

4/2 > R2p
4/2 (figure courtesy of

N.V. Zamfir).

above, in particular, the larger R4/2 (2h) value. From
an analysis of the resulting wave functions, the un-
derlying physics becomes clear. At the end of major
shells, the shell-model orbit j values are generally low
(e.g., d3/2), while, at the start of a shell, higher j val-
ues are encountered. Hence, above a magic number,
n particles in a |jn〉 configuration, interacting with
a short-range attractive residual interaction, give a
sequence of 0+, 2+, 4+, 6+ states, with successively
smaller spacings, and, hence, an R4/2 ratio that is
well below 2.0. Below a magic number, though, a 4+

level cannot be formed from, say, two particles in a
d3/2 orbit. The 4+

1 level therefore requires elevation of
a particle in such an orbit to another orbit, requiring
extra energy and leading to a larger R4/2 value.

The fact that there is such a simple explanation of
the Sn systematics and that the same phenomenon,
R2h

4/2 > R2p
4/2, appears in essentially all nonmagic nu-

clei where the data are known suggests that similar
underlying physics is at work, although it would have
been much more difficult, and, doubtless, ambiguous,
1



1004 CASTEN
to have first tackled the problem in nuclei with open
shells of both protons and neutrons.

4. CONCLUSION

In the paragraphs above, we have shown a couple
of examples of structural evolution, first in collective
nuclei and then in singly magic nuclei, discussing the
underlying physics, with emphasis on the systematic
opportunities provided by beams of exotic nuclei.
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Abstract—The “quadrupole plus pairing” collective model is constructed for the microscopic description
of low-lying collective states of even–even transitional nuclei. Inclusion of the model to the core–
quasiparticle coupling model in order to describe odd nuclei is realized. An approximation scheme
suitable for investigation of the quadrupole excitations is demonstrated. Exemplary results of microscopic
calculations for the Ru isotopes are shown. c© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The aim of the research presented here is a micro-
scopic description of low-lying collective excitations
in transitional nuclei. Nowadays, the nuclear many-
body problem is treated mainly in an independent-
quasiparticle approximation. Different approaches,
i.e., different interactions and different methods, are
used to define the quasiparticles and the mean field.3)

However, all of them deal with the notion of intrin-
sic system. To describe rotational bands in well-
deformed nuclei, it is sufficient to project somehow
intrinsic states onto a good angular momentum or
to rotate the intrinsic system. This is not the case
for transitional nuclei in which rotational motion is
coupled to vibrations. On the other hand, correlations
of quasiparticles taken into account within various
versions of the random-phase approximation (RPA)
lead just to vibrational states. Again, the rotation–
vibration coupling important for transitional nuclei
is not taken into account. In principle, a version
of the interacting-boson model (IBM) could explain
collective states in transitional nuclei as such types
of models give states of a definite angular momentum
and are able to include rotation–vibration coupling.
Unfortunately, reliablemethods of calculating param-
eters of the IBM Hamiltonians from a microscopic
many-body theory are not known, and the IBM re-
mains a purely phenomenological model as yet.

∗This article was submitted by the authors in English.
1)Institute of Physics, Maria Curie-Skłodowska University,
Lublin, Poland.

2)Institute of Experimental Physics, Warsaw University,
Poland.
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At the moment, the best method of description of
the collective states of transitional nuclei seems to
be the generator-coordinate method (GCM) leading
to an integral eigenvalue problem provided all vari-
ables adequate for the orientation and vibrations of
the nucleus are used as generator coordinates. The
Gaussian overlap approximation (GOA) to the GCM
leads to a differential eigenvalue problem [2] for a
general Bohr Hamiltonian (GBH) [3]. A classical
counterpart of GBH can be obtained from a micro-
scopic theory also by means of the cranking method
or the adiabatic time-dependent approximation to a
microscopic Hamiltonian [4, 5]. However, then a
requantization procedure should be applied to such
a Hamiltonian in order to obtain its quantum form.
Nowadays, one has reliable methods of calculation
of parameters of the GBH from a particular micro-
scopic Hamiltonian. The description of collective
states via GBH has, however, its shortcoming: this
is an adiabatic approach, and coupling to other, say,
quasiparticle degrees of freedom is neglected. This is
why it can be appropriate for even–even nuclei only.

The GBH has already been used for a long time
to describe the quadrupole collective states of tran-
sitional nuclei from different regions of masses (e.g.,
[4, 6]). The Bohr deformation parameters, β and γ,
and the Euler angles defining an orientation of the in-
trinsic system have been used as the dynamical vari-
ables. The approach, when treated as phenomeno-
logical with parameters of the Hamiltonian fitted to
experimental data, has been quite successful (cf., e.g.,
[7]). However, when the collective Hamiltonian (po-
tential and inertial functions) was calculated micro-
scopically, the results obtained, especially for energy
levels, were not compatible with the corresponding
experimental quantities [6]. It has turned out that
the calculated inertia is too small, giving overly high
2001 MAIK “Nauka/Interperiodica”
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excitation energies. This conclusion seems to be
independent of a microscopic model used so far. A
strong sensitivity of calculated inertial functions to
pairing correlations is observed in all cases, which
suggests that the pairing vibrations [8] can strongly
affect the quadrupole excitations (cf. [9]). In fact,
it seems to be a natural effect. The schematic mi-
croscopic model of the nuclear structure takes into
account the quadrupole and pairing two-body inter-
actions. So, this is natural to treat mean values of
the corresponding single quasiparticle potentials on
an equal footing and use them as collective dynam-
ical variables. This is why we have proposed the
“quadrupole plus pairing” collective model [10].

In Section 2.1 the GBH in an extended “quadru-
pole plus pairing” collective space is constructed. It is
shown in Section 2.2 how to describe collective states
of even–odd and odd–even transitional nuclei within
a core–quasiparticle coupling model using results of
the GBH. An approximation scheme for solving the
eigenvalue problem of the GBH suitable for descrip-
tion of the quadrupole excitations is explained in Sec-
tion 3. Exemplary results of calculations for isotopes
of ruthenium are demonstrated in Section 4. Finally,
conclusions coming from the present research are
drawn in Section 5.

2. THE “QUADRUPOLE PLUS PAIRING”
COLLECTIVE MODEL

2.1. Even–Even Nuclei: The General Bohr
Hamiltonian

Let the space of collective variables of the model be
formed by the set of the nine following quantities:

β, γ, the Bohr deformation parameters (describing
the nuclear shape or the quadrupole moment in the
intrinsic frame);

φ, θ, ψ, the Euler angles (describing the orienta-
tion of the intrinsic frame);

∆p,∆n, the proton and neutron energy gaps (de-
scribing the proton and neutron pairing correlations);

Φp,Φn, the proton and neutron gauge angles (de-
scribing rotations in the proton and neutron gauge
spaces or transfer of the proton and neutron pairs).

Thus, the collective motion described by the model
has nine degrees of freedom. We do not introduce
here any quantities connected with the correlation of
proton–neutron pairs as we do not take into account
the proton–neutron pairing forces. Those can play
a role for the Z ≈ N systems, i.e., either lighter or
exotic ones which are beyond the scope of the present
research.
P

The classical collective Hamiltonian can be writ-
ten as

Hquad−pair =
1
2

[
Bβββ̇

2 + 2Bβγβ̇βγ̇ + Bγγβ
2γ̇2
]
(1)

+
1
2

3∑
k=1

I2
k(φ̇, θ̇, ψ̇)/Jk

+ Vdef +
∑

t=p,n

{
1
2

[
B∆t∆t(∆̇t)2 + JΦt(Φ̇t)2

]

+ V
(t)
pair + λ(t)JΦtΦ̇t

+ Bβ∆t β̇∆̇t +Bγ∆tβγ̇∆̇t

}
.

It does not contain mixed terms of type ∆̇p∆̇n as the
proton and the neutron pairing are not coupled to
each other. Also, it is not invariant under time re-
versal because of terms linear in Φ̇t, meaning that the
direction of rotation in the proton or neutron gauge
spaces (i.e., adding or subtracting nucleon pairs) is
not the same thing. The Hamiltonian in the form (1)
is obtained by means of the cranking method. It has
to be quantized by the Pauli–Podolsky prescription.
The GCM gives a quantum Hamiltonian immedi-
ately. The structure of the quantum collective Hamil-
tonian obtained by either method is the following:

Ĥquad−pair (2)

= T̂vib(β, γ;∆n,∆p) + Vdef(β, γ,∆n,∆p)

+ Ĥrot(φ, θ, ψ;β, γ,∆n,∆p)

+
∑

t=p,n

[
T̂ (t)

pair(∆
t,Φt;β, γ)

+ V
(t)
pair(β, γ,∆

t) + T̂ (t)
quad−pair(β, γ,∆

t)
]
.

The particular terms of the Hamiltonian in (2) are
either the second or the first order differential oper-
ators in their arguments given in front of semicolon;

the term T̂ (t)
quad−pair is the second order differential

operator in all of its arguments. We do not give here
an evident form of all these terms which ismore or less
obvious. The entire Hamiltonian is determined by the
following 19 functions of β, γ, ∆p, and ∆n for a given
Z, N (cf. (1)):

Vdef , V
(p)
pair, V

(n)
pair, the deformation and pairing po-

tentials;
Bββ, Bβγ , Bγγ , the quadrupole vibrational inertial

functions (mass parameters);
J1,J2,J3, the quadrupole moments of inertia;
B∆t∆t for t = p, n, the pairing vibrational inertial

functions;
HYSICS OF ATOMIC NUCLEI Vol. 64 No. 6 2001



COLLECTIVE STATES OF TRANSITIONAL NUCLEI 1007
Bβ∆t , Bγ∆t for t = p, n, the quadrupole–pairing
mixed vibrational inertial functions;
JΦt for t = p, n, the pairing moments of inertia;

λ(t) for t = p, n, the chemical potentials.
All above functions can be calculated from a given

microscopic model. We do not give here prescriptions
how to do it. References [2, 4, 5, 10, 11] can be con-
sulted in this respect. It remains to construct other
collective operators like, e.g., electric and magnetic
multipole operators. This can also be done from the
microscopic theory.

Collective states of a given nucleus can be found
by solving the common eigenvalue problem for the
following set of operators:

Ĥquad−pair, the collective Hamiltonian;

Î2, Îz , the total angular momentum and its projec-
tion onto a lab axis z;

N̂t = −i∂/∂Φt for t = p, n, the particle number
excess operators. In other words the following set of
equations should be solved:

Ĥquad−pair|IM,np, nn;Z,N〉 (3)

= EInp,nn(Z,N)|IM,np, nn;Z,N〉,
Î2|IM,np, nn;Z,N〉=I(I+1)�2 |IM,np, nn;Z,N〉,

Îz|IM,np, nn;Z,N〉 = M�|IM,np, nn;Z,N〉,
N̂p|IM,np, nn;Z,N〉 = 2np|IM,np, nn;Z,N〉,
N̂n|IM,np, nn;Z,N〉 = 2nn|IM,np, nn;Z,N〉.

For the nucleus of given Z and N , the excitation en-
ergiesEI(Z,N) = EI00(Z,N)−E000(Z,N) and the
states |IM ;Z,N〉 ≡ |IM, 0, 0;Z,N〉 with the pair
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 6 200
excess numbers np, nn = 0 are relevant. However,
those of either np = 1 or nn = 1 will be important for
the odd–even or the even–odd nuclei, respectively.

2.2. Odd Nuclei: The Core–Quasiparticle
Coupling Model

Having even–even nuclei described, one can use
them as cores and try to describe collective states in
odd nuclei within the Core–Quasiparticle Coupling
Model (CQCM) [12]. The collective excitations of an
odd nucleus are understood as collective excitations
of the even–even cores coupled to the single-particle
excitations of the odd particle. The quadrupole–
quadrupole interaction between the core and the par-
ticle is assumed. Here the description of an even–
odd nucleus with given Z (even) and N (odd) is
demonstrated. The case of an odd–even nucleus
can be repeated in a similar way. The nucleus in
question is treated as the system of either the lighter
collective core, (Z,N − 1), and the neutron or the
heavier collective core, (Z,N + 1), and the neutron
hole. This way, the neutron quasiparticle is defined.

The following information about the cores is fur-
ther needed:

excitation energies,

EI(Z,N ∓ 1);

reduced matrix elements of the mass quadrupole
operator,

QI′I(Z,N ∓ 1) = 〈I ′;Z,N ∓ 1 ‖ Q2 ‖ I;Z,N ∓ 1〉;

the neutron pair transfer matrix elements,
∆n
I′I(Z,N ∓ 1) = δI′IδM ′M 〈IM, 0,±1;Z,N ∓ 1|∆ne±2iΦn |IM, 0, 0;Z,N ∓ 1〉.
All the above quantities one has when solving the
eigenvalue problem (3) of the previous section.

Needful information about the neutron comprises
the following quantities:

the neutron single-particle energies, en
j , from a

vicinity of the Fermi level µn;

reduced single-particle quadrupole matrix ele-
ments, qn

jj′ = 〈n, j ‖ r2Y2 ‖ n, j′〉.

The two quantities, the neutron Fermi level µn

and the quadrupole–quadrupole coupling constant κ,
can, in principle, be deduced from considerations on
the equilibrium deformation but are usually treated as
fitting parameters.
The core–quasiparticle state with spin J and en-
ergy EJ(Z,N) of the even–odd nucleus has the form

|JK;Z,N〉 =
∑
j,I

{
un

J(j, I)
[
a†nj |I;Z,N − 1〉

]
JK

(4)

+ vn
J (j, I) [ãnj |I;Z,N + 1〉]JK

}
.

The standard CQCM equations for the spectroscopic
factors un

J(j, I) and vn
J (j, I) read(

EJ(Z,N) − EI(Z,N − 1)− (en
j − µn)

)
un

J(j, I)

= −κ
2

∑
j′,I′

(−1)j
′+I′+J




j j′ 2

I ′ I J


 (5)
1
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Fig. 1. Zero-point pairing vibration of neutrons in 104Ru
at deformation β = 0.2, γ = 20◦. The equilibrium value
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probable value is ∆0 ≈ 0.09�ω0. The oscillator frequency
is �ω0 ≈ 41/A1/3 MeV.

× qn
jj′QI′I(Z,N − 1)un

J (j′, I ′)

+
∑
j′,I′

∆n
I′I(Z,N − 1)δj′jvn

J (j′, I ′),

(
EJ(Z,N) − EI(Z,N + 1) + (en

j − µn)
)
vn
J (j, I)

=
κ

2

∑
j′,I′

(−1)j
′+I′+J




j j′ 2

I ′ I J


 (6)

× qn
jj′QI′I(Z,N + 1)vn

J (j′, I ′)

+
∑
j′,I′

∆n
I′I(Z,N + 1)δj′jun

J(j′, I ′).

The core-polarization effect, which might be impor-
tant, is neglected in the above equations.

3. AN APPROXIMATION SCHEME

So far, the exact solutions of the eigenvalue prob-
lem (3) are not available. Construction of a code
for full diagonalization is in progress. To investigate
the quadrupole collective states of transitional nuclei,
an approximation scheme is invented. It goes in the
following steps:

1. The quadrupole–pairing coupling in kinetic en-
ergy is neglected; i.e., the last term in Hamiltonian (2)

is set to T̂ (t)
quad−pair(β, γ,∆

t) = 0 for t = p, n.

2. The zero-point pairing vibrations of neutrons
and protons for given β and γ are found by solving
PH
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the partial eigenvalue problem

Ĥ(t)
pair(∆

t;β, γ)Ψ0(∆t;β, γ)=E
(t)
0 (β, γ)Ψ0(∆t;β, γ),

(7)

N̂t(Φt)Ψ0(∆t;β, γ) = 0,

where

Ĥ(t)
pair(∆

t;β, γ) = T̂ (t)
pair(∆

t;β, γ) + V
(t)
pair(∆

t, β, γ)
(8)

and the collective pairing kinetic energy in the sub-
space belonging to eigenvalues 2np = 0 and 2nn = 0
of the particle number excess operators reads

T̂ (t)
pair = − �

2

2
√
g(∆t)

∂

∂∆t

√
g(∆t)

B∆t∆t(∆t)
∂

∂∆t
; (9)

here, g(∆t, β, γ) is a normalization weight.
3. Themost probable neutron or proton energy gap

∆t
0(β, γ) is found, i.e., the value of ∆t for which g|Ψ0|2

takes a maximum at given β and γ (see Fig. 1).
4. The eigenvalue problem is solved for the follow-

ing quadrupole part of the GBH (2) with the energy
gaps replaced with their most probable values for
given deformations:

Ĥcoll = T̂vib(β, γ;∆n
0 (β, γ),∆p

0(β, γ)) (10)

+ Vcoll(β, γ,∆n
0 (β, γ),∆p

0(β, γ))

+ Ĥrot(φ, θ, ψ;β, γ,∆n
0 (β, γ),∆p

0(β, γ)),
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where

Vcoll = Vdef + E
(n)
0 + E

(p)
0 (11)
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 6 200
and the vibrational and rotational quadrupole kinetic

energies are
T̂vib = − �
2

2
√
wr

{
1
β4

[
∂β

(
β4

√
r

w
Bγγ∂β

)
− ∂β

(
β3

√
r

w
Bβγ∂γ

)]
(12)

+
1

β sin3γ

[
1
β
∂γ

(√
r

w
sin3γBββ

)
∂γ − ∂γ

(√
r

w
sin3γBβγ∂β

)]}
and

Ĥrot =
1
2

3∑
k=1

Î2
k/Jk, (13)

respectively. The operators Î1, Î2, and Î3 are the
intrinsic angular momenta being the first-order differ-
ential operators in the Euler angles; here, the volume
element is dτ = β4√wr| sin3γ|dβdγ sinθdθdφdψ,
where w = BββBγγ −B2

βγ and r = J1J2J3/(4β6 ×
sin23γ).

The above approximation scheme allows for in-
vestigation of the quadrupole excitations of a given
nucleus which are affected by the zero-point pairing
vibrations. The pairing excitations themselves are
omitted.

4. RESULTS FOR Ru ISOTOPES
To illustrate the approach presented in the pre-

vious sections, some results of calculations within
the present approximation scheme for even–even
neutron-rich isotopes of ruthenium (104−114Ru, Z =
44, N = 60−70) are shown here. The Nilsson
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deformed mean field and state-independent pairing
forces were used for the microscopic description of
the nuclei in question. To construct the collective
Hamiltonian, we used the microscopic–macroscopic
method for deformation potential, cranking method
for mass parameters, and the GCM + GOA for
pairing. There were no free parameters fitted to data
in the calculation. Apart from earlier data [13, 14],
we have at our disposal still unpublished data taken
from multiple Coulomb excitations (COULEX) of
104Ru [15], the heaviest stable isotope of ruthenium.
The COULEX data contain not only energy levels
but also a comprehensive set of E2 matrix elements
so important for verification of collective models.
Unfortunately, COULEX of heavier, unstable Ru
isotopes cannot be observed. These nuclei are inves-
tigated mainly by means of γ spectroscopy of fission
fragments [16, 17]. We have also at our disposal by
courtesy of Urban [18] unpublished data for even–
odd isotopes 109Ru and 111Ru. Calculations for these
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odd isotopes using the results for the corresponding
even–even cores 108Ru, 110Ru, and 112Ru are in
progress.

Figure 2 shows how important the effect of zero-
point pairing vibrations on the quadrupole excitation
energies in 104Ru really is. The present (“new”)
calculation gives energies in excellent agreement with
experimental values, whereas that with the original
Bohr Hamiltonian (“old”) overestimates them a lot.
The same effect is observed for other even–even Ru
isotopes. Figures 3 and 4 show the results of the
present calculation of diagonal reduced E2 matrix
elements and reduced E2 transition probabilities, re-
spectively, again for 104Ru. The agreement with ex-
perimental data is really very good, as good as for
microscopic calculations without free parameters.

5. CONCLUSIONS

The collective “quadrupole plus pairing” model
based on the schematic microscopic model has been
constructed to describe low-lying collective excita-
tions of even–even transitional nuclei. In order to in-
vestigate the quadrupole collective states, an approx-
imation scheme has been proposed which consists in
taking into account an effect of the zero-point pairing
vibrations on the quadrupole part of the collective
Hamiltonian. Such an approach to the quadrupole
excitations has been successfully applied to the de-
scription of collective properties of even–even tran-
sitional nuclei from various mass regions, namely,
isotopes of Te, Xe, Ba, Ce, Nd, and Sm from the
neutron-deficient region 50 < Z,N < 82 [10]; iso-
topes of Ru and Pd from the neutron-rich region
28 < Z < 50, 50 < N < 82 [19]; and isotopes of Gd
and Er from the rare-earth region [20]. In all cases,
an essential role of zero-point pairing vibrations was
found. Including this effect has allowed us to obtain
very good results for neutron-rich and rare-earth nu-
clei and much improvement of results for neutron-
deficient ones. In all calculations, no free parameters
were used to fit results to experimental data. It has
been shown how the present collective model can
be inserted to core–quasiparticle coupling model in
order to describe collective properties of odd nuclei.

In conclusion, we may say that the low-lying
collective excitations of transitional nuclei seem to
be of the “quadrupole plus pairing” rather than pure
quadrupole nature. However, we are still not sure
if only these two types of degrees of freedom really
account for the lowest collective excitations of all
heavy nuclei.
PH
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Abstract—To obtain the highest possible resolution in a measurement has always been one of the major
challenges for experimental physicists because increased resolution generally results in progress. At
the Institut Laue–Langevin, gamma rays emitted after neutron capture can be recorded with parts-per-
million resolution. This is achieved by diffracting the gamma rays on highly perfect Si or Ge crystals.
Precise measurement of the Bragg angles and the crystal lattice spacings permits the determination of
wavelengths or energies. This outstanding resolving power allows the measurement of extremely small
Doppler effects caused by the emission of primary gamma rays. These so-called gamma-ray-induced
Doppler broadening measurements have given rise to applications in both nuclear and condensed matter
physics. c© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Nuclei display many diverse modes of excitation.
The observed behavior of nuclear systems can be in-
terpreted in terms of the competition between the mo-
tion of individual particles and the collective motion of
many nucleons. It is evident that it has always been
a central challenge in nuclear physics to understand
the interplay between these concepts. This is related
to the nature of the nucleus as a many-body quantal
object and to the role of the Pauli principle in this
fermionic system. Despite years of studies, both ex-
perimental and theoretical, we do not yet fully under-
stand collective excitations. Many different models
are needed to describe the many features observed.
The interplay between the different degrees of freedom
in a nucleus can be ideally probed by investigating
the gamma transitions involved in its de-excitation.
The most crucial information is thereby obtained from
absolute transition rates which can be deduced from
the knowledge of the state lifetimes, which provide a
very sensitive test of different theoretical approaches.
We will in the following describe briefly the main
characteristics of the Gamma Ray Induced Doppler
broadening (GRID) technique, optimized at the In-
stitut Laue–Langevin, and discuss some of its appli-
cations to the measurements of multiphonon states in
several nuclei.

2. THE GRID TECHNIQUE

It is well known that the Doppler effect can be
used to determine short lifetimes of excited nuclear

∗This article was submitted by the authors in English.
**e-mail: borner@ill.fr
1063-7788/01/6406-1011$21.00 c©
states. In the Doppler shift attenuation (DSA) tech-
nique, one uses accelerated ion beams impinging on
a sample. The reaction products then recoil with a
velocity that is typically several percent of the speed
of light. The Doppler shift of gamma rays emitted by
the recoiling nuclei is in the keV region and can easily
be measured with semiconductor detectors.

In thermal neutron capture, the product nucleus
is excited by the neutron binding energy of approxi-
mately 10 MeV. In contrast to the DSA technique, the
contribution of the reaction mechanism to the recoil
is negligible due to the low average incident energy of
thermal neutrons (∼25 meV). The capture state will
typically decay by the emission of gamma rays since
the compound nuclear system is below the particle
emission threshold. Each emitted gamma ray induces
a recoil in the nucleus of its origin with velocity v
given by v/c = E/Mc2, where c is the velocity of
light, E is the gamma-ray energy, and M is the mass
of the nucleus. These velocities are on the order of
10−4 to 10−6 of the velocity of light—up to 4 orders
of magnitude smaller than those observed in DSA.
Consequently the Doppler shifts of secondary gamma
rays, emitted after gamma-ray-induced recoil, are
extremely small. They can be detected with ppm
resolution crystal spectrometers like those available
at the Institut Laue–Langevin [1, 2]. Because there
is no preferred direction for the emission of primary
gamma rays, the secondary gamma rays will show a
Doppler broadening rather than a Doppler shift. The
obtained lineshape depends—besides the magnitude
of the original recoil—on two time scales: the life-
time τ of the nuclear level that is depopulated by the
measured gamma ray and the slowing-down time for
the recoiling atom to thermalize. The corresponding
2001 MAIK “Nauka/Interperiodica”
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Fig. 1. Two examples for Doppler-broadened lineshapes:
(a) the lineshape obtained for the lifetime study of a level
in 158Gd, (b) the lineshape obtained for the study of
interatomic potentials using TiO2 single crystals. The
dotted curves show the instrumental resolution function
(about 3 ppm for 158Gd). The solid curves are fits to
the data that incorporate Doppler broadening due to the
finite lifetimes (∼500 fs for the 158Gd level, ∼15 fs for the
49Ti level). Mind the different scales for the abscissa: the
Doppler shift for 49Ti is large compared to 158Gd because
(i) 49Ti is lighter; (ii) the recoil in 49Ti is mainly due
to primary feeding, whereas it is mainly due to cascade
feeding in 158Gd; and (iii) the lifetime of the 49Ti level is
much shorter (less slowing down) than the one chosen for
158Gd. The line shape of the upper profile shows structure
due to the fact that an oriented single crystal was used. In
the case of Gd the target consisted of powder material.

technique is called GRID, and more details of the
basic principles may be found elsewhere [3, 4]. When
the nucleus has deexcited after neutron capture, it
may find itself either in a stable ground state or de-
cay further—generally by beta decay or K capture.
Also, such subsequent decay modes induce recoils
which can be studied in high resolution gamma spec-
troscopy. At low recoil velocities, the slowing-down
time is quite short and this limits the determination
PH
of lifetimes to below about 10 ps. However, there
is in principle no lower limit as below about 1 fs
one can measure experimentally the natural width
Γ [eV] � 6.6 × 10−16/τ [s] of the corresponding tran-
sitions. The slowing down of the recoiling atoms has
first been described within the so-called mean-free-
path approach [3], but it has also been studied in detail
by using molecular dynamics simulations [5]. This
has proven to be especially powerful when applied
to the measurement of Doppler profiles of gamma
rays emitted by atoms from oriented single crystals
[6, 7]. Due to the regular arrangement of atoms in
a single crystal, the rate of slowing down depends
on the recoil direction (channeling and/or blocking
caused by the surrounding atoms). In the Doppler
profiles, fine structure appears (Fig. 1) which depends
on the orientation of the crystals with respect to the
spectrometer. The GRID method can be applied to
all nuclei which can be reached by thermal neutron
capture. In exceptional cases, nuclei with up to two
neutrons beyond stability have been studied. Due to
the extreme resolving power, natural target materials
can be used.

3. TWO-PHONON STATES
IN DEFORMED NUCLEI

The existence of two-phonon states in deformed
nuclei has been of considerable debate for more than
30 years. It was therefore an important fundamental
result in 1991 when an experiment at the ILL [8] us-
ing the GRID technique found a state in 168Er which
could be associated with a Kπ = 4+ two-phonon γ-
vibrational mode (4+γγ). This measurement of en-
hanced E2 transitions from the levels at 2055 keV
and 2169 keV, the 4+ and 5+ states of the Kπ = 4+

band, respectively, immediately had both far-reaching
theoretical and experimental consequences. These
results reinvigorated the experimental searches for
multiphonon vibrational excitations in nuclei. It led
to searches for multiphonon states in other nuclei.
Interesting aspects of vibrational motion were un-
covered, including varying degrees of anharmonicities
for the single and double-phonon vibrational exci-
tations. Nevertheless the discussion continues and
centers now on the magnitude of the two-phonon
component in the wave function needed to reproduce
the enhanced E2 rate. Certain models predict that
states with properties of Kπ = 4+ states should be
widespread in the well-deformed rare-earth region.
V.G. Soloviev, with the quasiparticle-phonon nuclear
model (QPNM) [9], however, predicted thatKπ = 4+

states should exist only in a few cases such as 164Dy,
166Er, and 168Er. The predictions concerning Kπ =
0+ two-phonon γ vibrations (0+γγ) are even more
controversial. Some models predict that they should
YSICS OF ATOMIC NUCLEI Vol. 64 No. 6 2001
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lie at excitation energies similar to the two-phonon
4+γγ excitation, while others claim that the first ex-
cited Kπ = 0+ band in nuclei is the 0+γγ vibration.
Experimental work at ILL with respect to studies of
multiphonon vibrational excitations is going in three
general directions. One is a systematic search and
measurement ofKπ = 4+ bands in deformed nuclei in
order to identify the collective 4+γγ modes. Secondly,
there are searches for two-phonon 0+γγ modes and,
thirdly, searches for 0+ββ modes.

3.1. Kπ = 4+ States
164Dy was one of the first nuclei after 168Er where

at ILL the search for two-phonon γ-vibrational states
continued (meantime Garrett et al. [10] had found
evidence for the existence of both, the Kπ = 0+

and 4+ two γ vibrations in 166Er). As mentioned
above, 164Dy is one of the three candidates proposed
by QPNM calculations. A candidate for a Kπ =
4+ double γ vibration was identified at 2173 keV
[11]. The measurements involved the use of crystal
spectroscopy, coincidence data, and electron spec-
troscopy. The lifetime for this level was then deter-
mined via the GRID method, and it was found that
this state exhibits some degree of collective enhance-
ment in its decay. Figure 2 shows the corresponding
part of the level scheme. The collective enhancement
suggests a two-phonon γ-vibrational component in
its wave function, although the present data does
not determine if it is the dominant component. At
variance to that, an investigation of the lifetimes of the
first Kπ = 4+ band in the neighboring 162Dy isotope
[12] does not indicate that this configuration would be
a good candidate for a two-phonon γγ vibration.

3.2. Kπ = 0+ States

The nature of excited Kπ = 0+ bands still remain
even more enigmatic. The difficulty lies in the many
ways that a Kπ = 0+ band can be made but also in
the lack of measured lifetimes for Kπ = 0+ bands.
Consequently the lifetimes of several of the 2+ states
of the first excited Kπ = 0+ bands were investigated
in—amongst others—164Dy, 168Er , and 156,158Gd.

For 168Er, it was found that the absolute transition
probabilities of the decay of this 2+ state to the γ band
are moderately collective [13]. This could suggest an
admixture of a double γ vibration in the wave function
of the state and rule out a pure β-vibrational mode.
For 164Dy, however, it was concluded [13] that the
theoretical overestimation of the β to γ transition
rate points towards a less collective structure of the
first excited Kπ = 0+ band than in 168Er and lends
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 6 200
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support to the interpretation of the band as mainly a
quasiparticle excitation.

High-resolution studies in 158Gd [14] also yielded
new absolute B(E2) values associated with Kπ =
0+ excitations. Strong B(E2) values from the 0+

2
band to the nearby γ band were confirmed, but it
was shown that these can be explained by an ex-
isting [15] four-band mixing calculation. Another
result concerned the potentially large and collective
Kπ = 0+ to γ transitions from the Kπ = 0+

3 band at
1452 keV. However, precise energy measurements of
the transitions and levels involved showed that previ-
ously assigned gamma-ray lines from the 2+ level of
this second excited 0+ band were incorrectly placed
1
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(Fig. 3). This removed the existing evidence for mul-
tiphonon character for this band as well.

In 156Gd, the first Kπ = 0+ band is below the
single-phonon γ-vibrational excitation. Transitions
from this first excited Kπ = 0+ band to the ground
state in 156Gd appear to be collective, and this band
was interpreted as the β band [16]. It was also
found [16] that the 0+

4 band at 1715 keV is strongly
connected to the γ band. In this case, this establishes
possible evidence for this configuration being a can-
didate for a Kπ = 0+ γγ-vibrational band.

In summary, ultraprecise energies and absolute
B(E2) values associated with Kπ = 0+ and Kπ =
4+ excitations in a number of rare-earth nuclei, mea-
sured with the GRID technique, reveal significant
information relating to the possible existence or ab-
sence of two-phonon vibrational excitations in de-
formed nuclei. However, so far no unique signature
concerning such states seems to emerge. Further
systematic studies are certainly needed.
P
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Abstract—The role played by isospin in nuclear structure phenomena encountered on the N = Z line is
discussed. New results on Coulomb energy differences (CED) at high spin for odd-A nuclei in the f7/2

shell are presented and interpreted in the framework of a simple Cranked Shell Model treatment involving
an exact numerical diagonalisation. Results for the CED between the A = 46 even–even mirror pairs
are also discussed. The CED between the T = 1 states in N = Z odd–odd nuclei and their isobaric
analogues are suggested as a possible probe of np pairing on the N = Z line. First results from a numerical
diagonalization of IBM-4 are cited. c© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Nuclei along the N = Z line display several
unique characteristics which arise from two principal
sources. Firstly, the coincidence of neutron and
proton Fermi surfaces ensures maximum spatial
overlap between the neutron and proton wave func-
tions, so that, as the number of valence nucleons
increases with increasing mass, strong collective
effects develop. Secondly, the charge independence
of the nuclear force gives rise to a neutron–proton
exchange symmetry which can be represented by the
isospin quantum number and which manifests itself
in a number of structural features observable only
on, or very near, the N = Z line. Examples include
SU(4) symmetry, which is good for only the lightest
of nuclei and rapidly gets worse as the spin–orbital
force increases; mirror symmetry, which is currently
being studied to higher spins than ever before; and np
pairing correlations. Finally, breaking of the isospin
symmetry itself is expected to occur most strongly for
the heaviest masses on the N = Z line.

Clearly collective effects on the N = Z line can
be expected to become most apparent as we go up
in mass and enter regions of larger valence space.
However, only in recent years has experimental sen-
sitivity been sufficient to begin to probe some of the
relevant questions. Thus, for example, A = 51 is the
current mass limit for the high-spin mirror studies
[1], while 76Sr [2] probably now represents the limit of
spectroscopy for N = Z nuclei, meaning the heaviest
nucleus in which more than the first one or two yrast
states have been identified. It is obviously not possible
to explore all of these features in this talk, which will

∗This article was submitted by the author in English.
**e-mail: d.warner@dl.ac.uk
1063-7788/01/6406-1015$21.00 c©
therefore concentrate on mirror nuclei at high spin,
where new data have become available, and on a few
aspects of np pairing.

2. MIRROR NUCLEI AT HIGH SPIN

Until very recently, the most recent results on this
topic were those for the 49Cr/49Mn mirror pair [3]
which extend to the band terminating spin of 31/2−

in each case and reveal a collective structure with the
standard backbend/alignment taking place around
Jπ = 17/2−. Similar data have been obtained for
the A = 47 pair also [4]. Very recently, however, a
new study [1] by the same collaboration has revealed
the complete yrast structure up to band termination
of the A = 51 mirror pair 51Fe/51Mn. In this case,
the maximum spin state achievable within the f7/2

shell is 27/2−, and the results were obtained using
the combination of the GAMMASPHERE gamma-
ray detector array and the fragment mass analyzer
(FMA) at the ATLAS facility of Argonne National
Laboratory. The deduced level schemes are shown
in Fig. 1. Nothing was known about the excited
states of the neutron-deficient partner 51Fe prior to
this investigation.

The Coulomb energy differences (CED) between
states for theA = 49 and 51 mirror pairs are shown in
Fig. 2 as a function of angular momentum. The de-
gree of collectivity is greater for the mid shell pair with
A = 49 than forA = 51. This is evident both from the
observed level structures and from the smoother be-
havior of the CEDs in the former case. Nevertheless,
the data for both pairs reveal a sudden change at Jπ =
17/2−, analogous to the behavior of the rotational
alignment. The basic origin of this phenomenon has
been understood for some time [5]; for A = 49, the
2001 MAIK “Nauka/Interperiodica”
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Fig. 1. The level schemes of the A = 51 mirror pair [1]
(energy in keV).

blocking of the odd proton in Mn causes the two
neutrons to align first and vice versa for Cr. The
Coulomb energy in Cr therefore decreases because
of the decrease in spatial overlap of the two aligning
protons, with a consequent increase in the CED of
Fig. 2. Similarly, for A = 51, the protons align in Fe
and hence the difference Fe–Mn decreases. However,
in the interpretation of the earlier data [5, 6], which
did not extend to such high spin, it was thought that
the CED would saturate at higher spin, in common
with the two-proton alignment. Instead, the new data
show an unexpected return of the CED towards zero
after the first bandcrossing.

These new features can be understood [7] and put
on a more quantitative footing in the framework of
a cranked shell model calculation. The Hamiltonian
consists of a cranked deformed one-body term and
a scalar two-body term which is taken as the delta
interaction

H ′ = hdef − gδ(r1 − r2)− ωJx. (1)

Here, hdef is the quadrupole deformed mean field,

hdef = −4κ

√
4π
5

∑
i

Y20(r̂i), (2)
PH
and κ is the deformation energy, which is related to
the usual deformation parameter β by

κ � 0.16�ω0(N + 3/2)β, (3)

where �ω0 is the harmonic oscillator frequency of the
deformed potential and N the quantum number of
the major shell. G = g

∫
|Rnl(r)|4r2dr is used as the

energy unit.
The Hamiltonian has been diagonalized numeri-

cally for particles in the f7/2 shell with κ = 1.5 MeV,
which approximately corresponds to the observed
deformation in the f7/2 region. The two-proton
Coulomb matrix elements have been calculated using
empirical values from the binding energy differences
given by VC(J) = 2BE(42Sc;J)−BE(42Ca;J)−
BE(42Ti;J). As pointed out in [5], use of these values
should incorporate a first-order treatment of the
omitted correction terms [8] known to be necessary
for a full description of absolute Coulomb energies.
The current study uses differences in excited states
and thus concentrates on the changes induced by the
changing collective structure.

The results for the CED between both odd–even
and even–even mirror partners are plotted in Fig. 3
against the rotational frequency, the latter being given
in units of the pairing strength G, which takes a value
of �1 MeV in this region. It is to be noted that in
the absence of an explicit neutron–proton interaction
it is necessary to perform the calculations for protons
only. Thus, for example, the CED between the A =
49 systems of five protons + four neutrons (5p + 4n)
and 4p + 5n are shown as 5p−4p, while A = 51 is
6p−5p.

It is clear that the calculations reproduce both the
observed rise and subsequent fall of the CED in each
case. The results can be understood by considering
the behavior of the concomitant alignment shown in
Fig. 4, remembering that, at any crossing represent-
ing an alignment of protons, the Coulomb energy will
drop due to the transition from the paired (J = M =
0) state to the two-particle aligned (J = Mx = 6)
state. Thus, taking the 5p−4p case as an example, the
differences in the Coulomb energy of the two mirror
nuclei will show a rise at the frequency at which the
crossing begins in the four-particle case, followed by
a fall as the alignment in the 5p nucleus sets in. In the
6p−5p case, the result is the inverse.

A similar argument can be adopted for pairs of
even–even mirror nuclei in the f7/2 shell, and the
results for the 4p−2p case are plotted on the right of
Fig. 3. These CED correspond to the mirror pair
46Cr and 46Ti. The calculated values in this case
are again constant at low rotational frequency but
then show an increase at around �ω = 0.65G. This
corresponds to the first crossing in the 2p nucleus.
YSICS OF ATOMIC NUCLEI Vol. 64 No. 6 2001
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Since the first crossing in the 4p nucleus occurs at a
somewhat later frequency, we observe that the initial
increase is cut off prematurely by the onset of the 4p
alignment. If the first bandcrossings in the 2p and the
4p case had occurred at the same rotational frequency,
then we would not have predicted any increase at
all in the calculated CED, while, if their order was
inverted, we would predict an effect of the opposite
sign. In fact, Fig. 3 shows that very preliminary data
[9] for the yrast states of the Tz = −1 nucleus 46Cr
obtained at the GAMMASPHERE+FMA facility at
ANL seem to indicate that the sign of the CED effect
is indeed opposite to expectations. The reason for this
is currently not clear, but could also arise because
the schematic calculations of Figs. 3 and 4 were per-
formed at a single value of the deformation which may
not be appropriate for the less collectiveA=46 nuclei.

There is one other set of CED which can be con-
sidered, namely, those involving the T = 1 isobaric
analogue states in the odd–odd N = Z nucleus. For
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 6 200
the A = 46 example cited above, this would imply the
T = 1 states in 46V. A theoretical treatment would
necessitate explicit inclusion of isospin and hence np
modes in the formalism, and such a framework is not
yet available, but the first experimental information of
this type has recently been obtained. More specifi-
cally, results from a recent study [10] which populated
the T = 1 states of 46V allow the first glimpse of the
CED between 46V and 46Ti, shown in Fig. 5.

The figure shows a rapid increase in the CED up
to the Jπ = 6+ state. CSM calculations indicate that
it is the protons which align first in 46Ti, which would
give rise to an increase in the CED plotted. Hence, in
46V, the alignment must stem from neutron–neutron
or neutron–proton pairs. In fact, the pair structure
in the two nuclei can be deduced from the algebraic
treatment of the isospin in the IBM-3 model [11],
yielding the results shown in the table for the three
types of boson in the model basis. There is a sur-
1
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prisingly large increase in the number of np pairs in
going to the self-conjugate system, suggesting that
they must dominate the alignment process in 46V and
that study of the CED involving such systems may
offer an insight into the spatial correlations associated
with np pairs as a function of rotational frequency.

3. NEUTRON–PROTON PAIRING

The first results on the T = 1 isobaric analogs for
A = 46 can be viewed in the context of the overall
behavior of the ground states of odd–odd N = Z
nuclei, which shows a steady decrease in the energy
separation of the T = 1 and T = 0 states as mass
increases along the N = Z line until, above A = 40,
the ground state becomes T = 1. This lowering of the
T = 1 states is accompanied by a gradual reduction
in the contribution of T = 0 pairs in the ground
state [12]. This feature is probably linked to the
change from ls to jj coupling as the strength of the
spin–orbit interaction increases, which results in a
steady erosion in the purity of the L = 0, S = 1 wave
function of the T = 0 pair, rendering it less attractive
relative to its T = 1 competitor. The switch to T =
1 ground states favors the study of CED involving
the odd–odd nuclei; unfortunately, however, it is the
T = 0 states which appear to be favored in the feeding
when these nuclei are created in heavy-ion fusion
evaporation reactions.

From a theoretical point of view, many approaches
are currently being developed to deal with the problem
of heavy N = Z nuclei. Examples include variational
approximations, like BCS or HFB, direct diagonal-
ization of the shell model or the use of Monte Carlo
techniques. The Interacting Boson Model of Arima
and Iachello [13] has achieved an impressive level
PH
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of success in the description of collective features
in medium-heavy nuclei, and, recently, a first step
has been made [14] towards the use of the isospin
invariant version of the model, IBM-4, to analyze the
structure of N = Z nuclei at the beginning of the
28–50 shell. The microscopic foundations of such
a numerical boson calculation have been studied by
calculating, where possible, the Hamiltonian from
a realistic shell model interaction using a mapping
procedure that relies on the existence of approximate
fermionic symmetries.

The first test of the IBM-4 Hamiltonian thus de-
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nuclei beyond 58Cu [14].
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Values of the boson (pair) number for A = 46, T = 1 from
IBM-3

Ti (Z = 22) V (Z = 23)

Np 4/5 2/5

Nn 9/5 2/5

Nnp 2/5 11/5

rived was made on the recently studied levels of the
odd–odd,N = Z nucleus 62Ga. Both shell model and
IBM-4 predict a 0+ (T = 1) ground state and a 1+

(T = 0) first-excited state. Note that this represents
an inversion with respect to the order in 58Cu, which
agrees with the data. Given that no free parameter is
introduced in the IBM-4 calculation, the agreement
for the T = 0 levels can be called remarkable and
a near one-to-one correspondence with shell model
levels can be established. Further calculations have
been made [14] for the next two odd–odd N = Z
nuclei, 66As and 70Br, where shell model calculations
have not yet been possible and, in the latter case, no
data yet exist on the low-lying level structure.

Another application of this formalism is that a
quantitative indication of the pair structure of nuclear
states can be readily obtained by computing boson-
number expectation values in the IBM-4 eigenstates.
This is illustrated in Fig. 6, where the proportion
of isoscalar bosons of the total number of bosons
is plotted for various states in the three odd–odd
N = Z nuclei studied. The first important feature to
note is the mixture of T = 1 and T = 0 pairs in the
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 6 200
lowest states with, for example, the T = 1, 0+ ground
state containing 10–20% of T = 0 bosons; this is an
unavoidable consequence of isospin invariance. The
correlation between the energy separation of T = 0
and 1 states and the dominance of one pairing mode
over another has been pointed out before [12]; here the
separation is around 1 MeV, and it seems clear that
this is already sufficient to signal that the T = 1 col-
lective pair structure is significantly more attractive
than for T = 0.
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Abstract—A brief review of the results of microscopic calculations aimed at describing the characteristics
of double giant dipole resonances (DGDR) is presented. Special attention is paid to a systematic
microscopic study of the anharmonic properties of DGDRs for nuclei with mass numbers 40 ≤ A ≤ 208.
It is found that the corrections of the energy centroid of a DGDR from its harmonic limit are negative,
have a value on the order of a few hundred keV, and follow an A−1 dependence. c© 2001 MAIK “Nau-
ka/Interperiodica”.
1. INTRODUCTION

The concept of the RPA phonons is a usual way
to treat collective excitations in many-body systems.
The best method to examine its validity in actual
physical systems is to study deviations from the har-
monic picture for multiphonon excitations. The an-
harmonicity of such excitations appears owing to the
corrections associated with the Pauli exclusion prin-
ciple [1–3]. Many examples of anharmonical behavior
are well known from the low-excitation-energy part of
nuclear spectra.

The discovery of the double giant dipole resonance
(DGDR) in nuclei [4–8]—that is, the giant dipole
resonance (GDR) built on top of another GDR—and
the observation of small deviations from the harmonic
picture of the excitation energy and spreading width,
combined with the large deviations of the associated
Coulomb excitation cross sections measured in rela-
tivistic heavy-ion collisions [7], require better under-
standing of the role that anharmonicities play in the
spectrum of the DGDR.

Anharmonicities can affect electromagnetic
DGDR cross sections in several ways. For example,
the energy shifts of the DGDR states from the
harmonic values can have a pronounced effect on the
electromagnetic cross section because of the expo-
nential dependence of these quantities on theQ value
of the process [9]. In addition, anharmonicities lead to
changes in E1-transition matrix elements and finally
give rise to many paths, other than the (harmonic)
two-step one, to excite a DGDR in electromagnetic
processes.

Various aspects of the influence of anharmonic-
ities on the electromagnetic DGDR cross sections

∗This article was submitted by the author in English.
**e-mail: voronov@thsun1.jinr.ru
1063-7788/01/6406-1020$21.00 c©
were considered in [9–19], but no clear picture of the
DGDR anharmonicity problem emerged. In partic-
ular, there is no consensus on the mass-number de-
pendence of the energy shifts from the harmonic val-
ues. The first systematic calculation of the spectrum
of a DGDR in a complete one- and two-phonon basis
(the effect of three-phonon states on anharmonicity is
small [14]) for nuclei with mass number A spanning
the whole mass table was performed in [20]. Here,
we will discuss the results of microscopic studies of
DGDR anharmonicity.

2. BASIC FORMULAS AND NUMERICAL
DETAILS

The Hamiltonian of the quasiparticle–phonon
model (QPM) used in describing the system con-
tains, in addition to a mean-field term, which de-
termines the single-particle motion of protons and
neutrons, a monopole pairing interaction and a sep-
arable multipole–multipole force, whose strengths
are adjusted in such a way as to reproduce the odd–
even mass differences and the spectrum of low-lying
vibrations and of giant resonances, respectively [3].

To study the anharmonic properties of two-
phonon excited states with a total spin J and its
projection M , one can describe them by the wave
function

|Ψν
JM 〉 =



∑

i

Ri(Jν)Q+
Ji (1)

+
∑

λ1i1≤λ2i2

P λ2i2
λ1i1

(Jν)
[Q+

λ1µ1i1
Q+

λ2µ2i2
]JM√

1 + δλ1i1,λ2i2


 | 〉ph ,

which is a superposition of different one- and two-
phonon configurations, with | 〉ph being the phonon
2001 MAIK “Nauka/Interperiodica”
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vacuum. The coupling of two-phonon states to three-
phonon states, which was considered in [14], leads
to the fragmentation of the strength of two-phonon
states. In (1), use has been made of the notation

[Q+
λ1µ1i1

Q+
λ2µ2i2

]JM

=
∑
µ1µ2

CJM
λ1µ1λ2µ2

Q+
λ1µ1i1

Q+
λ2µ2i2

,

where C is a Clebsch–Gordan coefficient.
In our approach, phonons possess the internal

fermion structure. The phonon creation operatorQ+
λµi

of multipole order λ, projection µ, and order number i
is a linear combination of two quasiparticle creation
(α+

jm) and annihilation (αjm) operators with shell
quantum numbers j ≡ (n, l, j) andm,

Q+
λµi =

1
2

n,p∑
τ

∑
jj′

{
ψλi

jj′[α
+
j α

+
j′ ]λµ (2)

− (−1)λ−µϕλi
jj′ [αj′αj ]λ−µ

}
.
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The energy spectrum of one-phonon states ωλi is
obtained by solving quasiparticle-RPA equations.
These equations also yield the values of the forward
(ψλi

jj′) and backward (ϕλi
jj′) amplitudes in Eq. (2). In

the case of a separable form of a residual interaction
with a radial form factor fλ(r), they are(

ψ

ϕ

)λi

jj′
(τ) =

1√
2Yλi

τ

fλ
jj′(τ)(ujvj′ + vjuj′)

εj + εj′ ∓ ωλi
,

where fλ
jj′ = 〈j′||fλ(r)||j〉; uj and vj are the coeffi-

cients of the Bogolyubov transformation from parti-
cle (ajm) to quasiparticle operators, a+

jm = ujα
+
jm +

(−1)j−mvjαj−m; and εj is a quasiparticle energy and
Yτ are normalization coefficients (see, e.g., [3] for an
explicit form). The quasiparticle spectrum and the
coefficients uj and vj are obtained by solving BCS
equations.

To obtain the spectrum Eν(J) of the states in (1)
and their structure—i.e., the coefficients R and P—it
is necessary to diagonalize the matrices
∣∣∣∣∣∣〈Ψν′
J |H|Ψν

J〉 − E〈Ψν′
J |Ψν

J〉
∣∣∣∣∣∣

[ν×ν′]
=
〈[Qλ4i4Qλ3i3]J |H|[Q+

λ1i1
Q+

λ2i2
]J〉 Uλ1i1

λ2i2
(Ji)

Uλ4i4
λ3i3

(Ji) ωJi −E
= 0 (3)
for a definite value of J .
The QPM Hamiltonian can be written in terms of

quasiparticle and phonon operators as

H =
∑
jm

εjα
+
jmαjm (4)

−1
4

∑
λµii′

n,z∑
τ

Xλi
τ +Xλi′

τ√
Yλi

τ Yλi′
τ

Q+
λµiQλµi′ +Hint ,

where

Xλi
τ =

1
2λ+ 1

τ∑
jj′

[fλ
jj′(τ)(ujvj′ + vjuj′)]2(εj + εj′)

(εj + εj′)2 − ω2
λi
1

and Hint is the term responsible for the interaction
between quasiparticles and phonons. The coefficients
in the second term of (4) are such that the model
Hamiltonian in the form (4) is diagonal in the space of
one-phonon configurations [21, 22]. Thus, no double
counting of quasiparticle operators is due to the fact
that they appear twice in the first and second terms
because the phonons themselves possess the internal
fermion structure [2].

The matrix element of the interaction between
two-phonon configurations has the form
∑
all µ

〈[Qλ4µ4i4Qλ3µ3i3 ]JM |H|[Q+
λ1µ1i1

Q+
λ2µ2i2

]JM 〉 = (ωλ1i1 + ωλ2i2) (5)

×
{
δλ1i1,λ3i3δλ2i2,λ4i4 +Kλ4i4λ3i3

λ1i1λ2i2
(J)

}

−1
4

∑
iτ

[
Xλ3i3

τ +Xλ3i
τ√

Yλ3i3
τ Yλ3i

τ

Kλ4i4λ3i
λ1i1λ2i2

(J) +
Xλ4i4

τ +Xλ4i
τ√

Yλ4i4
τ Yλ4i

τ

Kλ4iλ3i3
λ1i1λ2i2

(J)

+
∑
λ5i5
λ6i6

Xλ5i5
τ +Xλ5i

τ√
Yλ5i5

τ Yλ5i
τ

Kλ4i4λ3i3
λ5i5λ6i6

(J)Kλ6i6λ5i
λ1i1λ2i2

(J)

]
1√

(1 + δλ1i1,λ2i2)(1 + δλ3i3,λ4i4)
,
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where the coefficientsKJ are complex functions of phonon amplitudes ψ and ϕ in (2) and are given by

Kλ4i4λ3i3
λ1i1λ2i2

(J) =
∑
j1j2
j3j4

(−1)j2+j4 λ̂1λ̂2λ̂3λ̂4


(−1)λ2+λ4




j1 j2 λ4

j4 j3 λ3

λ1 λ2 J



(
ψλ3i3

j3j4
ψλ1i1

j1j4
ψλ2i2

j3j2
ψλ4i4

j1j2
(6)

−ϕλ3i3
j3j4

ϕλ1i1
j1j4

ϕλ2i2
j3j2

ϕλ4i4
j1j2

)
− (−1)λ1+λ2



λ1 λ2 J

j2 j4 j3





λ3 λ4 J

j2 j4 j1




×
(
ϕλ3i3

j1j4
ϕλ1i1

j4j3
ψλ2i2

j2j3
ψλ4i4

j1j2
− ψλ3i3

j1j4
ψλ1i1

j4j3
ϕλ2i2

j2j3
ϕλ4i4

j1j2

)


with λ̂i =
√

2λi + 1. The terms in KJ that are pro-
portional to ψ2ϕ2 and to ϕ4 do not exceed 1 to 2% of
the leading term ψ4 for low-lying collective phonons
and are negligibly small for phonons associated with
giant resonances.

For photons of natural parity, a matrix element of
the interaction between one- and two-phonon con-
figurations is given by

Uλ1i1
λ2i2

(λi) (7)

=
∑
all µ

〈[Qλµi|H|[Q+
λ1µ1i1

Q+
λ2µ2i2

]JM 〉

= (−1)λ1+λ2−λλ̂1λ̂2

×
n,p∑
τ

∑
j1j2j3


fλ

j1j2
v
(−)
j1j2√
Yλi

τ



λ1 λ2 λ

j2 j1 j3




×
(
ψλ1i1

j3j1
ϕλ2i2

j2j3
+ ψλ2i2

j2j3
ϕλ1i1

j3j1

)

+
fλ1

j1j2
v
(−)
j1j2√

Yλ1i1
τ



λ1 λ2 λ

j3 j2 j1




×
(
ϕλi

j2j3 ϕ
λ2i2
j3j1

+ ψλi
j2j3 ψ

λ2i2
j3j1

)

+
fλ2

j1j2
v
(−)
j1j2√

Yλ2i2
τ



λ1 λ2 λ

j1 j3 j2




×
(
ψλi

j3j1 ψ
λ1i1
j2j3

+ ϕλi
j3j1 ϕ

λ1i1
j2j3

) ,

where v(−)
j1j2

= uj1uj2 − vj1vj2 .

The diagrams corresponding to the various terms
in (5) and (7) are shown in Fig. 1. The wavy lines
correspond to the RPA phonons, and the straight
lines with arrows represent fermions. In addition to
P

these diagrams, there are also diagrams that can be
generated by inverting the direction of the phonon
lines in the diagrams presented in Fig. 1 (for details,
see [2, 3, 23]). A direct diagonalization of the QPM
Hamiltonian enables one to take into account the
contribution of all possible diagrams that are respon-
sible for anharmonical corrections.

The orthogonality relation between pure two-
phonon configurations has the form∑

all µ

〈[Qλ4µ4i4Qλ3µ3i3 ]JM | [Q+
λ1µ1i1

Q+
λ2µ2i2

]JM 〉 (8)

= δλ1i1,λ3i3δλ2i2,λ4i4

+
Kλ4i4λ3i3

λ1i1λ2i2
(J)√

(1 + δλ1i1,λ2i2)(1 + δλ3i3,λ4i4)
.

Equations (5), (7), and (8) were obtained by apply-
ing the exact commutation relations between phonon
operators—i.e., by taking into account their internal
fermion structure.

In order to eliminate the energy dependence in a
two-step process of the DGDR excitation in relativis-
tic heavy-ion collisions—this dependence also modi-
fies the energy centroid of the DGDR with respect to
a double energy of the single GDR—we have calcu-
lated, for DGDR excitation, the energy-independent
quantity

Bν([E1 × E1]J ) (9)

=

∣∣∣∣∣
∑

i

〈Ψν
J |E1|Ψi

1−〉〈Ψ
i
1− |E1|Ψg.s.〉

∣∣∣∣∣
2

=
2J + 1

3

∣∣∣∣∣∣ 2
∑
i1≤i2

P 1−i2
1−i1

(Jν)
Mi1(E1)Mi2(E1)√

1 + δi1,i2

∣∣∣∣∣∣
2

,

where Mi(E1) is the reduced transition probability
of the E1 excitation of the ith one-phonon 1− con-
figuration from the ground state. The intermediate
HYSICS OF ATOMIC NUCLEI Vol. 64 No. 6 2001
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Fig. 1. Diagrams contributing to the anharmonicity shift
of the DGDR.

states Ψi
1− belonging to the GDR are described in

the one-phonon approximation. The results will be
compared with the harmonic picture of nuclear exci-
tation in whichP λ2i2

λ1i1
(Jν) = δλ1i1λ2i2,1−i11−i2 and the

excitation energy of the two-phonon configuration
[1−i1 × 1−i2]J is exactly equal to (ω1−i1 + ω1−i2).

Natural-parity phonons of multipole order λ from
0 to 4 were used in the calculations. All one-phonon
configurations up to the excitation energy of 50 MeV
were included in the first term of the wave function (1).
The basis of two-phonon configurations was slightly
truncated to make calculations possible as follows:
all collective and weakly collective phonons that con-
tribute to the energy-weighted sum rule (EWSR)
with more than 0.2% for dipole phonons and 1.0%
for other multipolarities were taken into account.

3. RESULTS

The calculations have been performed for nuclei
from various mass regions. Figure 2 shows the
quantities Bν([E1 × E1]J ) for various (two-phonon)
states ν (eigenstates of the total Hamiltonian with
angular momentum and parity 0+ and 2+) of the
nucleus 136Xe.

The results of our calculations are listed in the
table. Presented in the second column of the table
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 6 2001
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Fig. 2. Energy distributions of the B(E1 × E1) values
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components of the DGDR in 136Xe, along with the same
quantity for the (c) 2+ component in the harmonic limit.
Scales are chosen to be in proportion to 2J + 1.

is the exhaustion of TRK EWSR by electric dipole
phonons included in the model space. In the third

column, the exhaustion of the DGDR sum rule S(1)
2

introduced in [24] is given for the sum of 0+ and 2+

components of the DGDR in our calculations. This
quantity is

S
(1)
2 = 4S(0)

1 S
(1)
1 ,

where S(1)
1 is the TRK sum rule for the GDR. For

S
(0)
1 =

∑
i

∣∣〈1−i |E1|g.s.〉
∣∣2 ,

we used the value from our calculation of GDR ex-
citation in the one-phonon approximation. A small
difference between the exhaustion of the EWSR for
the DGDR and the GDR is due to the fact that the
ground state is considered as a phonon vacuum in
the present approach and that ground-state correla-
tions, which arise from the interaction between mul-
tiphonon configurations, are not taken into account.
In the last two columns of the table, the values of the
anharmonicity shift of the DGDR energy centroid

Ec(J) =
∑

ν Bν([E1 ×E1]J )Eν(J)∑
ν Bν([E1 × E1]J )
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Percentage of the EWSR exhausted by the GDR and
DGDR of nuclei and values of the anharmonicity shift
∆Ec(Jπ) of the energy centroid for the Jπ = 0+ and 2+

components of the DGDR from its harmonic limit

Nuclei
EWSR, % ∆Ec(Jπ), keV

GDR DGDR Jπ = 0+ Jπ = 2+

40Ca 104 103 −643 −740
58Ni 104 103 −476 −495
86Kr 106 105 −309 −271

120Sn 106 105 −199 −194
136Xe 103 102 −203 −179
208Pb 94 94 −108 −158

with respect to the energy centroid of the DGDR in
the harmonic approximation—i.e., the double value
of the energy centroid of the GDR—are presented
individually for the 0+ and 2+ components of the
DGDR.

Corrections associated with the Pauli exclusion
principle are responsible for this energy shift [2].
Excluding four-quasiparticle configurations, which
violate the Pauli exclusion principle, reduces some-
what the collectivity of two-phonon configurations.
Thus, from general arguments, we should expect a
positive sign of the shift for two-phonon states formed
by two isoscalar phonons and a negative sign when
we are dealing with isovector phonons, as in the case
of the DGDR.

According to the predictions of various approaches
for theA dependence of the anharmonicity shifts, their
value follows the A−1 [1, 18] or A−5/3 [16] depen-
dence. The results of the present calculations follow
the A−1 dependence very well, although both doubly
magic and semimagic nuclei have been included in
the consideration. Weighing equally the 0+ and 2+

components of the DGDR, we obtain a |∆E| ∼ A−α

dependence with α = 1.08 ± 0.06 from a χ2 analysis
of the results in the table. To better appreciate the
results, one should point out that the present cal-
culations of the shift have been performed without
free parameters. The strength of the isovector dipole
residual interaction, the most important parameter for
this calculation, was fixed on the basis of a fit to the
energy of the GDR centroid in each nucleus known
from experiment or systematics.

Let us compare the results of the present calcu-
lation for the anharmonicity energy shifts with the
results of our previous calculations that took into
account an additional coupling to three-phonon con-
figurations [14]. Figures 3b and 3c show the quan-
tity B(E1)×B(E1) (9), which is associated with
PH
the Coulomb excitation of the Jπ = 0+ and Jπ =
2+ components of the DGDR. The quantity B(E1)
associated with theCoulomb excitation of the GDR is
shown in Fig. 3a. The calculated excitation functions
displayed in Figs. 3b and 3c yield the following values
for the centroid and the width of the DGDR in 136Xe:
〈E0+〉 = 30.68 MeV and Γ0+ = 6.82 MeV for the 0+

component of the DGDR and 〈E0+〉 = 30.71 MeV
and Γ2+ = 6.84 MeV for the 2+ component. These
values are to be compared with 〈E1−〉 = 15.40 MeV
and Γ1− = 4.72 MeV for the single GDR in this
nucleus from our calculation. In this case, the an-
harmonicity shifts ∆Ec(Jπ) = EDGDR − 2EGDR are
about −100 keV; they are underestimated in relation
to the present calculation. The calculated widths
are quite close to the predictions of the harmonic
model, ΓDGDR =

√
2ΓGDR. The last ones are in good

agreement with experimental data [7] too. Large-
scale calculations taking into account the coupling
of the DGDR to one- and three-phonon terms can
reproduce very well the integrated characteristics of
the DGDR in many nuclei [8].

Comparing the results of the present calculation
of the DGDR properties with the previous ones [14],
we should note the following. The main idea of the
calculation in [14] was to describe the width of the
DGDR; for this reason, the three-phonon term was
added to the wave function (1), but we had to trun-
cate very strongly the basis of the two-phonon con-
figurations in order to make numerical calculations
possible. Thus, only the most important two-phonon
configurations of the type [1−i ⊗ 1−i′ ] have been in-
cluded in the model space. Also, the internal fermion
structure of phonons was taken into account only
for the one- and two-phonon configurations, while
the three-phonon ones were treated as those that are
constructed of bosons. For this reason, the shift of
the DGDR centroid in [14] was underestimated, and
0+ and 2+ components of the DGDR were virtually
degenerate. In the present calculation, the model
space of two-phonon configurations is rather com-
plete and the B([E1× E1]J ) strength distribution
over two components of the DGDR is different. It
is presented in Fig. 2a for 0+ and in Fig. 2b for 2+

components of the DGDR in 136Xe along with the
strength distribution in the harmonic limit in Fig. 2c.

Although the calculations discussed above have
been done with a separable residual interaction, a
comparison with other calculations performed for
some doubly magic nuclei within different approaches
and with the Skyrme [25] or Migdal [12] forces
supports the A−1 dependence.
YSICS OF ATOMIC NUCLEI Vol. 64 No. 6 2001
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Fig. 3. Fragmentation of the most collective (a) one-phonon 1− and two-phonon [1− ⊗ 1−] configurations with (b) Jπ = 0+

and (c) Jπ = 2+. The results are presented with a smearing parameter ∆ = 0.5 MeV.
4. CONCLUSION

On the basis of the present and other microscopic
calculations, one can conclude that the integrated
characteristics of the double giant resonances can be
described very well and that the deviation of the en-
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 6 20
ergy centroid of theDGDR from the harmonic limit as
a function of the mass number A displays a behavior
typical of that associated with the global properties
characterizing the system, like the energy centroid of
the GDR.
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At. Yadra 14, 1380 (1983) [Sov. J. Part. Nucl. 14, 583
(1983)].

23. P. F. Bortignon, A. Bracco, and R. A. Broglia, Giant
Resonances. Nuclear Structure at Finite Tempera-
ture (Harwood Academy, New York, 1998).

24. H. Kurasawa and T. Suzuki, Nucl. Phys. A 597, 374
(1996).

25. M. Tohyama, nucl-th/0003034.
YSICS OF ATOMIC NUCLEI Vol. 64 No. 6 2001



Physics of Atomic Nuclei, Vol. 64, No. 6, 2001, pp. 1027–1029. From Yadernaya Fizika, Vol. 64, No. 6, 2001, pp. 1103–1104.
Original English Text Copyright c© 2001 by Bortignon.
Nuclear Structure at Finite Temperature: A Review*

P. F. Bortignon**
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Abstract—Information on nuclear structure at finite temperature is obtained from the physics of the level
density, of the rotational damping, and of the giant dipole resonance thermally excited on a compound
nucleus at very large excitation energy (and angular momentum). The current understanding in terms
of mean-field theories and beyond is reviewed. The coupling to doorway states and the coupling to
many-particle–many-hole states in the random-matrix-theory limit are discussed. Emphasis will be on
the close relation between the single-particle damping and the damping of collective vibrations. The
coherence between the particle and the hole strongly suppresses the vibrational damping, in particular,
the temperature dependence. c© 2001 MAIK “Nauka/Interperiodica”.
Experimental information on nuclear structure
properties at finite temperature T up to few MeV is
obtained from the study of the nuclear level densities,
and in the last decades from the physics of the
rotational damping and of the giant dipole resonance
(GDR) thermally excited on compound nucleus
states at very large excitation energy and angular
momentum [1, 2]. The contributions of A. Schiller,
S. Leoni, and F. Camera at this conference discuss
very recent, exciting experimental achievements in
these fields. In what follows, I will shortly review some
recent theoretical developments.

There is no need to stress the role of the level den-
sity ρ(Ex) at the excitation energy Ex, being impor-
tant for theoretical estimates of any nuclear reaction
rates. In particular, this is true for nucleosynthesis
calculations, with the s and r processes determined
by the competition between neutron capture and be-
ta decay.

Conventional calculations of ρ are based on the
Fermi gas model, in which all many-body effects,
but those associated with fermion statistics, are ne-
glected, in particular, the small-amplitude quantal as
well as the large-amplitude thermal fluctuations as-
sociated with the surface collective vibrations. Along
with the Fermi gas formula, popular is the backshifted
Bethe formula (BBF), where the ground state energy
is backshifted by an amount ∆ adjusted for each
nucleus together with the level density parameter a
to obtain

ρ(Ex) ∝ exp (2
√
a(Ex −∆)). (1)

∗This article was submitted by the author in English.
**e-mail: pierfrancesco.bortignon@mi.infn.it
1063-7788/01/6406-1027$21.00 c©
Powerful methods to take the effects of the fluctua-
tions into account have been developed making use of
the functional-integral techniques. Assuming a nu-
clear Hamiltonian which contains, at most, two-body
terms and making use of the Hubbard–Stratonovich
transformation, the partition function Z (from which
ρ is obtained) is written as a functional integral over
auxiliary one-body fluctuating fields σ(τ). Different
approximations have been used to evaluate this in-
tegral, as the static path approximation (SPA) and
the SPA + RPA, with the RPA carried out not only
around the mean field σ0, but also in configurations
away from it. Thus, increases of the level density
of orders of magnitude are obtained compared to the
mean-field values, especially at low excitation en-
ergy [3]. More recently, the integral has been evalu-
ated exactly (up to statistical errors) by Monte Carlo
methods as in the shell-model Monte Carlo approach
(SMMC) [4, 5]. With the aid of Hamiltonians that in-
clude correctly the dominating collective components
of realistic effective interactions in terms of monopole
pairing and isoscalar multipole–multipole terms [6],
impressive agreement with the empirical values is
obtained for a and ∆ (the SMMC level densities are
fitted to the BBF). This is so forEx up to 20 MeV and
in nuclei of mass A up to 162Dy [7–9].

In heavier nuclei and at higher excitation energy,
theT dependence of the level-density parameter a can
be obtained from the behavior of the effective mass
m∗ [10],

m∗

m
=
mk

m

mω

m
, (2)

for which we have a ∝ m∗. The k mass mk/m
is connected to the nonlocality of the mean field
and is rather constant with T , while the ω mass
2001 MAIK “Nauka/Interperiodica”
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mω/m, connected to the frequency dependence of
the real part of the single-particle (hole) self-energy
Σsp(ω, T ), drops from the T = 0 value of about 1.5 (at
the Fermi energy) to unity for temperature of about
the frequency of the collective surface vibrations to
which single-particle motion is coupled [11, 12] in the
doorway-state coupling model. Thus, a is expected
to drop to the Fermi gas value, in qualitative agree-
ment with the existing, still limited, experimental evi-
dences. The extension of this approach is in progress
for the deformed nuclei. Results at zero temperature
are just published in [13].

The imaginary part of Σsp(ω, T ) gives the spread-
ing width Γ↓ of single-particle (hole) states. The cou-
pling to doorway 2p–1h (2h–1p) states containing a
collective surface vibration produces a linear depen-
dence on energy ω − εF and temperature [14, 15] as

Γ↓
j = α(ω − εF) + βT , (3)

where α and β are of the order of 1 for ω ≈ εF and of
order of 4 and 0.2 respectively for (ω − εF) ≈ 8 MeV
as in the GDR [16]. While α compares well with
the empirical values [17] (testifying to the success of
the doorway coupling model), no direct comparison is
possible for β.

The spreading width Γ↓
GR of the GR is not simply

related to the single-particle (hole) spreading widths
because of the interference between the amplitudes
describing the decay of the single-particle and single-
hole states in the doorway states [18]. These terms
(vertex corrections) ensure the coherence of the col-
lective motion and the fulfillment of the conservation
laws (Ward identities). In particular, they strongly
reduce (because of cancellation effects) the weak β ≈
0.2 temperature dependence of the spreading width
Γ↓

j , making the spreading width Γ↓
GR in this doorway

coupling model very much temperature-independent
[14, 16, 19]. At zero temperature, the resulting values
have been shown to be in agreement with the data
for a variety of GR modes and nuclei [1]. Recently
[20], a careful analysis of the contribution to Γ↓

GR
of the collision-integral type of terms (in which the
GR is coupled to 2p–2h uncorrelated states via ef-
fective interactions) has shown that this contribution
is indeed small, of the order of 25–30% of Γ↓

GR,
when calculated employing a realistic microscopic in-
medium cross section. Much larger and much faster
growing (as T 2) values were claimed in the past. The
authors of [20] concluded that “there is plenty of room
for coherent damping mechanism due to coupling of
the dipole mode with surface fluctuations.” Thus, the
experimental growth of the total ΓGDR with T and
PH
angular momentum is explained in terms of large-
amplitude fluctuations of shape and orientation [21–
23]. Problems remain in a more punctual comparison
with the strength functions extracted from the exper-
imental spectra and with the total GDR strength at
very high excitation energy.

The success of the doorway coupling approach
is justified by the smooth properties of the coupling
to the chaotic background of many-particle–many-
hole states in the compound nucleus (CN), which will
not alter the main features of the strength functions
obtained in the doorway coupling. In the random
matrix theory limit, we write for the interaction matrix
elements Vn between the GR and the background
states

(Vn) = 0, (VnVm) = δnmv
2/N, (4)

where v is the typical mixing matrix element between
the resonance and simple intrinsic states andN is the
number of significant components of the complicated
CN states. Then, we obtained

Γ↓ = 2πv2ρ/N ∼ v2/a, (5)

where a ∼ ND is the fragmentation energy interval
(D the mean level spacing). All exponentially grow-
ing quantities are eliminated due to the random prop-
erties with (1/

√
N ) scaling of the coupling [24–26].
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Abstract—The coupling between E2 and M1 modes in deformed 154Sm is investigated within the novel
averaging RPA approach with the factorized residual interaction. The calculations show that the E2 giant
resonance is not noticeably affected by the coupling. At the same time, the M1 response demonstrates
a new structure (high-energy branch of the scissors mode) at 24–25 MeV. c© 2001 MAIK “Nau-
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Deformed nuclei, as compared with spherical
ones, demonstrate strong fragmentation of the
strength of giant resonances. The deformation results
in a considerable broadening or even splitting of the
resonances. This effect has already been well studied
in numerous publications (see, e.g., [1]). Much less
attention has been paid to other consequence of the
deformation, the mixing of electric and magnetic
excitations of a given parity. This effect is rather
fragile and, in principle, needs a careful microscopic
analysis and considerable computational effort.

The residual two-body interaction can be decom-
posed into a series of separable multipole, spin–
multipole, etc., terms (see, e.g., [2, 3]). In deformed
nuclei, the moments λ of such terms cannot be as-
sociated with the moment of a nuclear state. As a
result, the nuclear state with quantum numbers Kπ

can be affected by any electric and magnetic residual
interactions λµ with the same parity and µ = K. In
the present paper, we will analyze the remarkable
example of the coupling of E2 and M1 modes in
deformed 154Sm. The main question to be addressed
is how much this effect influences E2 and M1 giant
resonances. As compared to other studies of this
problem (see, e.g., [4, 5]), we will use the novel
specific technique [6] which allows one to avoid the
solution of the complex RPA equations describing the
coupling electric and magnetic modes. This simplifi-
cation is especially important if one deals with giant
resonances in deformed nuclei which are known to
embrace a huge configuration space. Besides, the
experiment provides only averaged properties of giant

∗This article was submitted by the authors in English.
1)Dipartimento di Scienze Fisiche, Università di Napoli Fed-

erico II, Italy.
2)Bogoliubov Laboratory of Theoretical Physics, JINR,

Dubna, Russia.
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1063-7788/01/6406-1030$21.00 c©
resonances, and, therefore, in any case, we do not
need information about every RPA root.

For the analysis mentioned above, the Lorentzian
averaging technique [6–8] was used to determine
the E2 and M1 strength functions. This technique
is described in detail in [6], where it is applied to
the Hamiltonian with separable multipole and spin–
multipole residual interactions. The electromagnetic
operators, as well as the fields of the residual inter-
action, are presented within the signature formalism
which is especially suitable for fast rotating nuclei.
In the framework of this approach, the RPA axial
symmetrical Hamiltonian can be decomposed into the
mutually commuting terms, HK(rπ),

HRPA = 〈RPA|H|RPA〉+
∑

r=+1

∑
π=+1

∑
K≥0

HK(rπ),

(1)

where each term HK(rπ) contains the multipole
MλK ∼ rλYλK and spin–multipole TlλK ∼ rl[σ ⊗
Yl]λK operators with given parity π, signature r, and
projection K (the projection of the angular moment
to the symmetry axis). In the case of the E2 and M1
resonances, we may restrict ourselves to the following
terms of the Hamiltonian (see [6]): HK=0(r=+1

π=+1)
(pairing, M20, and T010 terms) and HK=1(r=+1

π=+1)
(T011 and M21 terms).

The RPA equations for the collective vibrations of
electric and magnetic type are solved independently
for each part, H(rπ), of the Hamiltonian (1). They can
be written [6] as a system of algebraic equations for

unknowns R(ν)
i

2n∑
j=1

DijR
(ν)
j = 0, Dij = Dji, (2)
2001 MAIK “Nauka/Interperiodica”
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where the matrixDij contains quasiparticle matrix el-
ements of the single-particle operators involved to the
HK(rπ). In (2), n is the number of the single-particle
multipole and spin–multipole operators included in
the HK(rπ) and the index ν numerates the solutions

of Eq. (2) (see [6] for details). The solutions R(ν)
j de-

termine the contributions of two-quasiparticle com-
ponents j to the phonons ν (for each set of K, r, π).
The Lorentz averaging technique allows one to deter-
mine the strength function for the reduced transition
probability without the time-consuming procedure of
the solution of the RPA equations (2) for each phonon
state. The expression for the strength function (as a
function of the excitation energy E) is [6]

S(XLµ, gr −→ Kπ) (3)

=
∑

ν

B(XLµ, gr −→ ν)ρ(E − Eν)

=
2
π

Im
det[B̂(z)]
det[D̂(z)]

∣∣∣∣∣
z=E+i∆/2

+
∆
2π

∑
ij

(pXλµ
ij̄

)2

×
[

1
(εij̄ − E)2 + ∆2/4

− 1
(εij̄ +E)2 + ∆2/4

]
.

Here, B(XLµ, gr −→ ν) is the reduced probability
of the electromagnetic transition XLµ between the
ground state and the phonon state ν with quantum
numbers Kπ (K = µ), Eν is the excitation energy
of the one-phonon state ν, the matrices B̂(z) and
D̂(z) are defined in [6], εij̄ is the energy of the two-

quasiparticle state ij̄, and pXλµ
ij̄

is the corresponding
single-particle matrix element of the Xλµ transition.
Further, ρ(E − Eν) = ∆/[2π((E − Eν)2 + (∆/2)2)]
is the Lorentz function with the averaging parameter
∆ (here ∆ = 1 MeV). The first term of the right-
hand side of (3) represents the contribution of the
residual interaction, while the second term gives the
contribution of the unperturbed system. The sum
of the strength functions (3) over all projections K
(K ≥ 0) gives the total strength function S(XL).

Numerical calculations have been performed for
the spherical nucleus 144Sm and deformed one
154Sm. We started with the spherical Nilsson av-
erage field with its standard parametrization given in
[9]. Using the Hartree–Fock–Bogolyubov method,
we obtained neutron and proton quasiparticle fields
(deformed one for 154Sm; see [6] for details). The
parameters of the nn and pp monopole pairing
were taken from [10]. The strength constants,
κ2[τ = 0] = 9.2 × 104 MeV fm−4 and κ2[τ = 1] =
−2.6 × 103 MeV fm−4, of the isoscalar and isovector
quadrupole residual interaction, respectively, were
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 6 200
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Fig. 1. E2 strength function in deformed 154Sm.

taken in accordance with [11]. To restore the ro-
tational invariance of the RPA Hamiltonian, the
constant κ2[τ = 0] was slightly varied in order to
get the zero energy for the first RPA solution. The
isoscalar and isovector strength constants of the
spin residual interaction, κ01[τ = 0] = −2.26 MeV
and κ01[τ = 1] = −3.26 MeV, were chosen following
the prescription [12] and available experimental data
for the M1 giant resonance. Gyromagnetic factors
gs(n) = −2.7, gl(n) = 0, gs(p) = 3.9, and gl(p) = 1
were used. Spin and orbital contributions to the M1
response were calculated with gl(n) = gl(p) = 0 and
gs(n) = gs(p) = 0, respectively.

The numerical results are exhibited in Figs. 1
and 2. Our calculations show that the coupling
between E2 and M1 resonances does not influence
noticeably the E2 resonance (this resonance is pre-
sented in Fig. 1). So, the analysis presented below
will concern only the M1 resonance. In Figs. 2a and
2b, this resonance and its orbital and spin compo-
nents are compared in spherical 144Sm and deformed
154Sm. Unlike the spherical case, the orbital com-
ponent in 154Sm dominates in the low-energy region.
This component represents the well-known scissors
mode [13] which exists only in deformed systems.
In the energy region of the main peak, 5–10 MeV,
the spin component dominates in both spherical and
deformed nuclei. Due to the deformation splitting,
the resonance in 154Sm is much wider than in 144Sm
(compare Figs. 2a and 2c).

The most interesting effect is that the M1 mode in
154Sm has the distinctive high-energy bump at 24–
25 MeV. As is seen from Fig. 2b, this bump is of the
orbital character. It has no counterpart in the spher-
ical 144Sm. Figure 2c shows that the bump takes
place only in the K = 1 branch of the M1 response.
1
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obtained with the spin residual interaction only (dot-
ted curve) and with the coupling between the spin and
quadrupole interactions (solid curve). See the text for
details.

The origin of the bump is explained in Fig. 2d, where
two versions of the calculations are presented: with
the spin residual interaction only (T01µ terms) and
with the coupling between the spin and quadrupole
interactions (T01µ and M2µ terms). It is seen that
just the coupling of the spin and quadrupole modes
results in the high-energy resonance at 24–25 MeV.
This treatment is confirmed by the remarkable corre-
lation between this resonance and the isovector E2
resonance presented in Fig. 1. Both the resonances
are placed at the same energy. In fact, the M1 bump
at 24–25 MeV represents the high-energy branch of
the orbital scissors mode. This result agrees with
the previous schematic and microscopic RPA calcu-
lations (see [14] and references therein).

The correlation between the scissors mode and E2
excitations can be motivated by the close connection
between the operator of the scissors mode, lx (x pro-
jection of the single-particle angular momentum),
PH
and the operator r2Y21 of the E2 mode. For example,
in the configuration space of the harmonic anisotropic
oscillator, there is a link between the corresponding
particle–hole matrix elements

〈p|lx|h〉 ∝ b(ω0)〈p|r2Y21|h〉, (4)

where b(ω0) = 2ω0 and δω0 for the ∆N = 0 and
∆N = 2 transitions, respectively; N is a principal
shell quantum number; δ is the parameter of the
quadrupole deformation; and ω0 is the oscillator
frequency. So, the scissor excitations have to be
essentially influenced by the residual quadrupole
interaction.

In summary, the novel averaging technique has
been used for the RPA study of the coupling of E2
and M1 modes in deformed 154Sm. The interplay
of the modes results in the remarkable high-energy
(24–25 MeV) bump in the M1 response. Our anal-
ysis shows that the bump represents the high-energy
branch of the scissors mode.
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1. INTRODUCTION

Most of the investigations on magnetic excitations
were associated in the past with spin excitations only.
More specifically, they were devoted to the quenching
of the spin magnetic dipole and quadrupole transi-
tions, a problem not completely solved yet [1]. In
the past twenty years, however, the interest toward
orbital excitations has literally exploded after the dis-
covery of the low-lying M1 excitations, known as
scissors mode [2], in ee′ scattering [3]. Such a mode
arises from a rotational oscillation of protons against
neutrons and represents a unique example of orbital
magnetic excitation. Systematic experimental and
theoretical investigations have proved its existence in
all deformed nuclei and unveiled its peculiar prop-
erties. It is well established by now that the mode
is fragmented into several closely packed M1 tran-
sitions, mainly promoted by the convection current,
with a summed M1 strength growing quadratically
with nuclear deformation [4–7]. This law represents
the most spectacular signature of the mode.

A fallout of the experiments stimulated by the
discovery of the mode was the detection of spin ex-
citations over an energy range of 4 to 12 MeV [8, 9].
Theoretical investigations have shown that the exis-
tence of the low-lying scissors mode is a consequence
of the separation of the orbital from spin excitations.
Such a splitting is promoted mainly by the spin–
spin interaction which pushes the spin excitations at
high energies, well above the domain of the orbital
transitions.

Another peculiarity of the scissors mode is its
strict correlation with deformation. According to the
geometric two-rotor model [2] and consistent with all
the other theoretical approaches, the scissors mode
should exist in deformed nuclei only. As we shall

∗This article was submitted by the author in English.
**e-mail: loiudice@na.infn.it
1063-7788/01/6406-1033$21.00 c©
discuss in the present paper, this is true if the mode is
to be excited from the ground state. Nothing forbids,
however, building a scissors mode on excited states
with nonvanishing quadrupole moments in spherical
nuclei. It has been shown in fact that these states
can be constructed [10] and correspond to the so
called mixed-symmetry states of the proton–neutron
interacting boson model (IBM-2), observed in very
recent experiments [11, 12].

The interference between orbital and spin mo-
tion is of crucial importance in the case of magnetic
quadrupole transitions. The existence of the so-called
twist mode [13] relies on the possibility of separat-
ing the spin from the orbital M2 excitations. Since
such a separation cannot be obtained experimentally,
one can get only indirect evidence of the existence
of this mode through a combination of experimental
measurements and theoretical analyses. Indeed, in a
recent ee′ experiment on 90Zr, it has been shown that
the contribution of the twist mode is essential in order
to reproduce the experimental data [14].

In the present paper, we will discuss briefly the
scissors mode and the spin excitations in deformed
nuclei and try to clarify how spin and orbital motions
interfere so as to generate the observed pattern of the
M1 spectra at low and intermediate energies. We
will then discuss the mechanism responsible for the
excitation of the scissors mode in spherical nuclei.
We finally discuss the possible outcome of this inter-
ference between orbital and spin motion in the M2
channel and provide the conditions for the separation
of the orbital from the spin excitations and consequent
identification of the twist mode.

2. SCISSORS MODE AND SPIN
EXCITATIONS IN DEFORMED NUCLEI

In order to illustrate the excitation mechanism of
the scissors mode, we decompose the full shell model
2001 MAIK “Nauka/Interperiodica”
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M1 operator into a rotational, a spin, and a scissors
piece. The latter one, responsible for the excitation of
the scissors mode, has the form

Msc(M1) =
(

3
16π

)1/2

S(gp − gn)µN (1)

=
(

3
16π

)1/2

(J(p) − J(n))(gp − gn)µN .

In axially deformed nuclei, the operator S = J(p) −
J(n) generates a rotation of protons versus neutrons
around an axis lying in the equatorial plane and,
through such a relative rotational displacement,
arouses a restoring force. The net result is a proton–
neutron rotational oscillation, which in the two-rotor
model (TRM) [2] is described by a two-dimensional
harmonic oscillator in the angles ϑk between the
proton and neutron symmetry axes and their conju-
gate variables Sk = id/dϑk (k = 1, 2). The scissors
mode corresponds to the first excited eigenstate of
intrinsic excitation energy ω =

√
Cϑ/�sc, where �sc

and Cϑ are, respectively, the mass parameter and the
restoring force constant of theHamiltonian. The state
carries theM1 strength

Bsc(M1)↑ =
3

16π
�sc ωg

2
r µ

2
N . (2)

This formula, of general validity, has the virtue of
relating the properties of the mode to those of the
nuclear mass parameter. In particular, the behavior
of the moment of inertia versus deformation yields a
summed M1 strength quadratic in the deformation
parameters in agreement with experiments [15].

A largely model-independent study of the collec-
tive properties of the mode can be carried out by
exploiting the energy weighted sum rule M1, which
relates the energy weighted sum of theM1 strengths
to the E2 transition probabilities [16, 17]. These
being known experimentally, it has been possible to
carry out an empirical analysis [17] which shows
that the sum rule is almost exhausted only once the
contribution of another mode of scissors nature at
high energy is included. Indeed, such a mode is
predicted in schematic RPA. The same study shows
that the sum rule yields the deformation law for both
low- and high-energy modes if the energy of the low-
energy mode depends weakly on deformation. This is
confirmed explicitly in schematic RPA [18].

Although successful in accounting for many of the
properties of the mode, RPA calculations could not
reproduce the energy distribution of theM1 strength.
Such a failure has induced us to go beyond the har-
monic approximation by computing the M1 spectra
in the QPNM which accounts for the coupling be-
tween one and two RPA phonon states [19]. In the
PH
QPNM [20], one expresses a Hamiltonian of gen-
eral separable form, acting on both particle–hole and
particle–particle channels, in terms of quasiparticle
operators and RPA phonons. An elaborated proce-
dure yields a new Hamiltonian of the quasiparticle–
phonon form. This transformed Hamiltonian is then
put into diagonal form by using the variational princi-
ple with a trial wave function

Ψν(Kπ = 1+) (3)

∼
{∑

v

C(ν)
v Q†

v +
∑
v1,v2

Dv1v2Q
†
v1
Q†

v2

}
Ψ0.

The starting QPNM Hamiltonian is composed of a
one-body deformed Woods–Saxon potential and a
two-body interaction of separable form acting in the
particle–hole and the particle–particle channels. The
interaction is responsible for the separation of the
orbital from the spin transitions. The observation of
the scissors mode, in fact, results from the combined
effect of the spin–spin interaction which pushes the
low-lying spin excitation up in energy and the other
components which tend to make more compact the
orbital peaks.

A systematic analysis shows that the fragmenta-
tion induced by the coupling between one and two
RPA phonons, although modest, improves the agree-
ment between computed and measured spectra. Also
the summed M1 strength is of the same order as the
one observed experimentally. The coupling does not
alter the nature of the transitions, which, in the range
2–4 MeV, remain of orbital nature. A modest spin
admixture, however, affects considerably the intensity
of the transition because of the constructive interfer-
ence between orbital and spin motion. We have also
tested the scissors nature of the transitions and found
for the overlap with the scissors state

∑
n |〈Kπ =

1+, n|ψsc〉|2 	 0.4.Most of the other percentage goes
to the high-lying states describing the high-energy
scissors mode.

As pointed out already, the systematic experimen-
tal study of the scissors mode has lead to the discovery
of spin excitations in rare-earth and actinide nuclei
through pp′ scattering [8, 9]. These M1 peaks fall
in the energy range 4–12 MeV and, in some nuclei
like 154Sm, form a spectrum with two distinct bumps
(Fig. 1). It has not been established yet if these
two peaks correspond to distinct proton and neutron
excitations [21] or to isovector and isoscalar excita-
tions [22]. On the experimental side, highly sensi-
tive NRF experiments using a EUROBALL cluster
module have found [23] that the γγ′ spectrum is in
qualitative agreement with the strength distribution
derived from pp′. Nevertheless, nonnegligible dis-
crepancies between the two spectra are noticeable.
Contrary to the pp′ experiment, the γγ′ strength falls
YSICS OF ATOMIC NUCLEI Vol. 64 No. 6 2001
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very rapidly to zero above 6 MeV. Moreover, the γγ′

spectrum displays a nonnegligible strength, not seen
in pp′, in the 4–5 MeV region. It is reasonable to
relate the above discrepancies to the different char-
acteristics of the two experimental techniques. It
might well be that the orbital amplitudes, not seen in
pp′, interfere destructively with the spin amplitudes,
thereby generating the observed deep minimum. It is
also reasonable to believe that the unexpected dipole
strength at 4–5 MeV is a signal for the occurrence of
either orbital M1 or E1 transitions. In order to shed
some light on these puzzling problems, we performed
an RPA calculation using a Hamiltonian of general
separable form [24]. As shown in Fig. 1, the com-
puted spectrum has two main peaks, in qualitative
agreement with pp′ experiments. A detailed analysis
indicates that the high-lying peak is mainly due to
neutron spin excitations, while most of the peaks at
lower energy are to be ascribed to proton spin and
orbital transitions. It is also true that the high-energy
spin excitations are mainly of isovector nature, while
the ones at lower energy are mostly isoscalar. In any
case, the spectrum is quite sensitive to the shell struc-
ture. As shown in Fig. 1, the spectrum is basically
due to spin excitations. Though generally small, the
orbital amplitudes interfere with the spin ones over the
full energy range, thereby affecting considerably the
shape of the spectrum. The orbital M1 strength is
actually dominant in the range 4–6, suggesting that
the strength seen in this region in γγ′ scattering is
due to orbital (but not scissors-like) excitations. The
deep minimum above 6 MeV, consistent with the new
γγ′ results [23], is also to be noticed.

On the grounds of these results, we would be
tempted to conclude that the orbital motion may ac-
count for the discrepancies between pp′ and γγ′ ex-
periments. On the other hand, strong and serious dis-
crepancies exist between computed and experimental
spectra. While its sum is of the same magnitude as
the measured one, the RPA M1 strength is not as
fragmented as required by the experiments. Con-
clusive statements about the nature of the spectrum
may come only by calculations in an enlarged space
which include four quasiparticle configurations or, in
the QPNM scheme, two RPA phonons.

3. SCISSORS MODE IN SPHERICAL
NUCLEI

In the language of the proton–neutron interact-
ing boson model (IBM-2) [25], the scissors mode is
known as a mixed-symmetry state with respect to
proton–neutron boson exchange. For several years,
the scissors was the only mixed-symmetry state de-
tected experimentally out of the many predicted in
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 6 200
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Fig. 1. Experimental versus computed total, orbital, and
spin M1 spectra in 154Sm. The M1 strength is summed
in bins of 80 keV.

IBM-2. New mixed-symmetry states have been iden-
tified in a recent experiment on 94Mo [11, 12]. This
experiment has not only identified several mixed-
symmetry states, but has produced an almost ex-
haustive mass of information on low-lying levels and
absolute transition strengths. All these new data have
been analyzed using the IBM-2. More specifically,
they have defined symmetric and mixed-symmetry
1
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states as
|ψsym〉 ∝ (Qs)n|0〉 = (Qp +Qn)n|0〉, (4)

|ψms〉 ∝ Qms(Qs)n−1|0〉 = (Qp −Qn)(Qs)n−1|0〉.
Namely, the mixed symmetry state is obtained from a
symmetric one by replacing one symmetric quadru-
pole operator Qs = Qp +Qn with the antisymmetric
one Qms = Qp −Qn. According to this scheme, one
should get (i) strong E2 transitions between states
of the same symmetry and (ii) strong M1 transitions
between mixed-symmetry and symmetric partners.
Such a simple picture describes quite accurately the
experimental data.

In a recent paper [10], we have carried out a fully
microscopic study of these new experimental data
within the QPM [20] discussed in the previous sec-
tion. We have found that the QPM states have a
simple structure which leads to regularities in the sys-
tematic of the E2- and M1-transition strengths and
enforces the consistency with experiments as well as
with the IBM scheme. More specifically, we have got
a set of F-spin symmetric states connected among
themselves through strongE2 transitions and a set of
mixed-symmetry and scissors-like states coupled to
the symmetric ones through strong M1 transitions.
All these predictions are supported by the experimen-
tal data.

We have, on the other hand, pointed out that
there is not a clear cut distinction between mixed-
symmetry and scissors states. Such a state can in
fact be constructed by the following procedure:

|ψsc〉 ∝ Sµ(Qs)n−1|0〉 (5)

= (Jp
µ − Jn

µ )(Qs)n−1|0〉
∝ Qms(Qs)n−1|0〉 ∝ |ψms〉.

Namely, the scissors operator turns a symmetric into
a mixed-symmetry state. There is no way of dis-
tinguishing the two kinds of states. Both kinds of
states have the same signature, a strongM1 coupling
with the symmetric states and strong E2 transitions
among themselves. We have also shown that, acting
on excited states of spin J , the scissors operator
creates several states with spins J, J − 1, J + 1 gen-
erating three branches of the same scissors mode.

4. M2 ORBITAL
AND SPIN EXCITATIONS

The knowledge about spin and orbital motion in
nuclei can be further enriched by the study of mag-
netic quadrupole (M2) transitions. Indeed, the spin
components of the M2 operator induce relative dis-
placements between spin-up and spin-down nucle-
ons giving rise to spin–dipole excitations. Its or-
bital part correlates the relative displacement of the
PH
protons with their magnetic orbits generating the
so-called twist mode. Such a mode, predicted for
spherical nuclei in a fluid-dynamics model [13], can
be viewed as arising from a mutual rotation among
different layers of the nuclear fluid around the z axis
by an angle proportional to the z coordinate. Since no
restoring force would be generated by such a rotation
in an ideal fluid, the observation of such a mode
would indicate that the nucleus behaves as an elastic
medium rather than a perfect Fermi liquid.

Experimentally, electron scattering is specially
suitable for a clean and complete study of M2
transitions. These experiments, however, do not
distinguish between orbital and spin motion. One
therefore has to rely also on theoretical analyses. A
quite important and promising advance toward the
understanding of the nature of the M2 transitions
and the identification and characterization of the
twist mode has been made recently by the Darmstadt
group [14]. In a high-resolution electron-scattering
experiment in 40Ca and 90Zr supported by a the-
oretical microscopic analysis, they found that the
orbital contribution is appreciable and necessary for
the reproduction of the experimental data. This would
therefore be the first indirect evidence of the existence
of the twist mode.

Since the possibility of detecting the twist mode
relies on the separation of the orbital from the spin–
dipole excitations, it is therefore of interest to check
if deformation may favor the splitting by inducing a
selective fragmentation of the orbital and the spin
M2 strengths. There is another aspect which links
M2 transitions to deformation. The M2 transitions
are the magnetic counterpart of the electric dipole
excitations. We might therefore hope to observe a K
splitting of theM2 resonance similar to the E1 case.

We have carried out a study of theM2 transitions
in proton–neutron quasiparticle RPA using a sepa-
rable potential of general form which includes dipole
and spin–dipole fields [26]. We have computed the
strength distributions by means of a strength func-
tion technique developed for proton–neutron RPA in
the signature formalism [27]. This technique avoids
lengthy diagonalizations and therefore allows us to
cover the full energy range of the M2 transitions.
Due to the simple structure of the interaction, it was
also possible to test the sensitivity of spin–dipole and
orbital M2 spectra to the strength of the interaction.
This latter issue is quite relevant to the possible iden-
tification of the twist mode, which relies on the sepa-
ration between the two different excitation modes. We
did not include explicitly the 2p–2h configurations.
We accounted for the spreading of the strength only
effectively through the width used in the calculation
of the strength function.
YSICS OF ATOMIC NUCLEI Vol. 64 No. 6 2001
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We explored the sensitivity of the M2 spectrum
to the spin–dipole interaction by computing the
strength function for 154Sm using different values
of the spin–dipole coupling constant. We found
that the unperturbed strength function exhibits a
single peak which results from the constructive
interference between the orbital and the spin–dipole
amplitudes. The corresponding strengths are almost
equally fragmented and spread over the same energy
range around a common centroid. As we turn on
the interaction, the orbital strength is practically
unaffected. The spin–dipole strength, instead, gets
more fragmented and is shifted at higher energy.
For the current values of the coupling constant, the
M2 strength function splits into two separate peaks,
one at low energy around 7 MeV and another at
high energy around 16 MeV (Fig. 2). The first is
almost entirely of orbital nature; the second, much
broader, is entirely due to spin–dipole excitations.
The complete overlap between orbital and spin–
dipole strength in the unperturbed case proves that
the splitting has little to do with deformation. Indeed
we get a similar result also for 144Sm (Fig. 2, upper
panel). Deformation has the only effect of inducing
more fragmentation. In fact, the peaks are broader
in the deformed 154Sm. The results obtained are
compatible with the available experimental data.
We best reproduce the electron scattering data in
90Zr [14] for a value of the strength constant which
generates two distinct bumps, one mainly of orbital
and the other of spin–dipole nature. This differs from
the results of the theoretical analysis carried out in
[14], where orbital and spin–dipole strengths overlap.

The effects of deformation become manifest if we
carry out a fine-tuned analysis of theM2 spectrum in
154Sm. The low-lying, mainly orbital, bump can be
unfolded into three peaks generated, respectively, by
Kπ = 0− (low-lying peak), Kπ = 1− (middle peak),
and Kπ = 2− (upper peak) transitions (Fig. 3). This
fine-tuned splitting of the M2 resonance reflects the
close correspondence between electric dipole and
magnetic quadrupole transitions. Indeed, the Kπ =
0− and Kπ = 2− magnetic quadrupole excitations
are the counterpart of the Kπ = 0− and Kπ = 1−

electric modes, while the Kπ = 1− magnetic exci-
tations involving dipole oscillations perpendicular to
the direction of the angular momentum along the
symmetry axis as well as in the equatorial plane are
an intruder which falls in between the other two cases
and fill partially the gap between the Kπ = 0− and
Kπ = 2− peaks. Because of the Kπ = 1− intruders,
the splitting of the low-lying, mainly orbital, M2
resonance is not too pronounced and may be observed
only in a high-resolution experiment. No K splitting
is observed in the region of the spin excitations. This
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 6 200
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might be due to shell effects, like the coexistence of
spin-flip–dipole with spin–dipole excitations in the
same energy domain.

5. CONCLUSION
The survey has shown that the collective fea-

tures of the low-lying M1 excitations, chiefly the
1
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quadratic deformation law, are described fairly well
in phenomenological as well as schematic models.
In particular, formulas extrapolated from schematic
RPA give a satisfactory systematic not only of theM1
strength but also of the energy centroids.

A fairly good description of the fragmentation
of the mode is given within the QPNM which in-
cludes anharmonicities by coupling one and two
RPA phonon configurations. The same scheme
has been shown to be necessary for explaining the
fragmentation of the M1-spin strength. We have
also shown that the destructive interference between
orbital and spin motion plays an important role in
shaping these spectra.

We have shown how scissors states can be built on
excited states in spherical nuclei. These are nothing
but the mixed-symmetry states observed in a recent
experiment. A QPM calculation, crucial for the de-
scription of these excitations, has predicted an energy
and transition scheme fully consistent with IBM-2
and experiments.

In all these excitations, the subtle interference be-
tween orbital and spin transition amplitudes plays a
crucial role. Indeed, the identification of the scissors
mode has relied on its separation from the spin ex-
citations. We have discussed the mechanism which
achieves such a splitting.

The interplay between orbital and spin motion is
even more crucial in the case of M2 transitions. We
may in fact hope to observe the twist mode only if the
spin–dipole strength is pushed up in energy. We have
shown when this is the case. Also interesting is the
role of deformation which may be responsible for a
possible K splitting of the M2 resonance similar to
the E1 case.

Finally, it might be worth mentioning that an M1
mode, which is the analog of the nuclear scissors
mode, was predicted in a schematic model [28] and
supported recently by more realistic microscopic cal-
culations [29]. Unlike the other excitations, such a
mode has the virtue of falling at much lower energy
than the overwhelming plasmon resonance. It might
therefore have some chances of being detected.
PH
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Abstract—The γ decay of the giant dipole resonance (GDR) built on excited nuclear states has been
measured in coincidence with the low-energy γ discrete transitions for the nucleus 143Eu. The reaction
used was 110Pd(37Cl, 4n)143Eu at a beam energy of 165MeV. The EUROBALL spectrometer (for the mea-
surement of discrete γ transitions) coupled with the HECTOR array (for high-energy γ-ray detection) has
been used. The high-energy γ-ray spectrum in coincidence with superdeformed (SD) discrete transitions
of 143Eu shows an “excess” between 9–12 MeV if compared with the one associated to cascades which
do not pass through the SD configurations. Such an “excess” is in the energy region where one expects
the low-energy component of the GDR strength function built on a SD state. The measured intensity can
be reproduced by the statistical model assuming that the superdeformation survives only few MeV above
the yrast line. A similar and consistent scenario has also been obtained by comparing the high-energy γ-
ray spectra of 143Eu in coincidence with its spherical (which is fed by the SD configuration) and its triaxial
configuration (which is bypassed by the decay of the SD states). c© 2001MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The γ decay of the giant dipole resonance (GDR)
built on excited nuclei has been extensively used to
probe the properties of hot and rotating nuclei. In
fact, the sensitivity of the GDR strength function to
nuclear deformation allows one to study the nuclear
shape and its temperature/spin induced dependence
by the measurement of the dipole response.

In recent years, with the availability of power-
ful detector arrays, it has been possible to perform
exclusive measurements where the GDR properties
have been measured, for example, as a function of
excitation energy [1], angular momentum [2], or by
choosing specific evaporation residues [3].

An interesting and still open question concerns the
population and decay of superdeformed (SD) struc-
tures in cold rotating nuclei, and, in particular, theE1
cooling, which is expected to play an important role in
the feeding mechanism of SD configurations [4, 5].

The feeding of SD structures has been a long
standing problem since the time of the discovery of the
first SD band [6, 7]. In fact, it was experimentally ob-
served that SD bands are populated with an intensity
which is approximately one order of magnitude larger
than that of normally deformed (ND) configurations
at high spins (Fig. 1). A possible explanation relies

∗This article was submitted by the author in English.
**e-mail: camera@mi.infn.it
1063-7788/01/6406-1039$21.00 c©
on the E1 statistical cooling [4, 5]. Namely, the E1
transition probability atEγ ≈ 9–11MeV for theGDR
decay built on SD configurations is expected to be
several times larger than that of ND states due to
both the shape of the GDR strength function and
the level density of SD states. In particular, for the
GDR in a SD nucleus, one-third of the total energy-
weighted sum rule (EWSR) strength (corresponding
to the dipole oscillation along the nuclear symmetry
axis of a collective SD prolate nucleus) is shifted from
≈15 to ≈10 MeV, an energy close to the neutron
binding energy favoring, consequently, the γ decay of
the GDR into a SD state.

A good candidate for such kind of study is the
nucleus 143Eu. In fact, at high spin, it presents
both a strong discrete SD band (1% of the total)
and an intense E2 quasicontinuum of excited SD
bands [8]. At low spin, instead, a quasispherical (ND)
and triaxially deformed (TD) shapes [9–12] coexist.
Both the SD yrast band and the SD quasicontinuum
follow decay routes that end up only in spherical
low-spin states (ND). Therefore, one should see the
γ decay of the GDR built on SD states by comparing
the high-energy γ-ray spectra gated by either discrete
SD transitions (if possible), or low-spin ND transi-
tions, or by low-spin TD transitions.

In an experiment [13] previously performed by
coupling the NORDBALL (which consisted of
17 HpGe detectors and a multiplicity filter) with the
HECTOR arrays (for the detection of high energy
2001MAIK “Nauka/Interperiodica”
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Fig. 1.Discrete line intensitiesnormalized to the intensity
of the 2+ → 0+ ground-state transitions versus spin for
some well-deformed nuclei and for a SD band (from [4]).

γ rays), indirect evidence of the GDR built on SD
states in 143Eu has been obtained by comparing
the high-energy spectrum in coincidence with ND
discrete transitions with the one in coincidence with
TD transitions. In that experiment, an excess of
γ rays centered around 10 MeV was observed and
interpreted as the low-energy component of the SD
GDR.However, the statistics were rather poor, point-
ing to the necessity for a new and better experiment.

In this paper, we discuss the results of a new
experiment on 143Eu searching for evidence of a GDR
built on SD states. The measurement has been made
using the EUROBALL spectrometer coupled with
the HECTOR array. The experimental apparatus is
several times more powerful than that used in [13], so
that it has been possible to gate directly on discrete
SD transitions.

2. THE EXPERIMENT

The experiment was performed at the Legnaro Na-
tional INFN laboratories in Italy using EUROBALL
(which consists of 15 Cluster and 26 Clover HpGe
detectors) coupled with 8 Large BaF2 crystals from
the HECTOR array. High-energy γ rays (5–
30 MeV) detected in the BaF2 crystals have been
measured in coincidence with low-energy discrete
transitions detected in Cluster and Clover Germa-
nium detectors. Four small BaF2 crystals placed
at 5 cm from the target provided the time reference
PH
for time-of-flight measurements used to discriminate
neutrons. The FERA based electronics of the BaF2
was coupled with EUROBALL VXI electronics.

The reaction used was 110Pd(37Cl, 4n)143Eu at a
beam energy of 165MeV. The 110Pd target was 97.3%
pure and 950 µg/cm2 thick with an Au backing of
15 mg/cm2. The chosen bombarding energy repre-
sents a good compromise for the good population of
the SD band and for E1 emission of the final residual
nucleus around the yrast line. The compound nucleus
147Eu was formed at an excitation energy of 79 MeV.
The maximum angular momentum is predicted to be
62� by the Swiatecki model [14] and 68� by the model
of Winther [15].

The absolute experimental full-energy peak effi-
ciency for high-energy γ rays in the BaF2 detectors
was approximately 1%, while, for low-energy transi-
tions in EUROBALL, it was approximately 8%. The
gain of each BaF2 detector was monitored continu-
ously by a LED source, and small shifts have been
corrected by an off-line analysis. The calibration of
HpGe detectors has been performed using 60Co and
152Eu sources, while the BaF2 detectors have been
calibrated by using the 15.1-MeV γ rays produced in
the reaction 11B + D = 12C∗ + n.

3. RESULTS

As described in [13], the idea followed in the past
to seek a GDR built on SD states is based on the
comparison of the high-energy spectrum gated by
ND low-spin transitions (known to be populated by
the SD configurations) with that gated by TD low-
spin transitions (known not to be populated by SD
transitions). In this case, as we did not have a multi-
plicity filter, we have made an additional gate on the
first excited states of 143Eu to isolate the 4n-decay
channel.

The comparison of the measured ND-gated and
TD-gated high-energy spectra is shown in the left
panel of Fig. 2. In the right panel, the ratio of the two
spectra is shown. As was measured in [13], an excess
of yield centered around 10–11 MeV is also clearly
evident here. The intensity of the excess is compa-
rable with that previously measured, confirming that
superdeformation survives only few MeV above the
yrast line, as the statistical model calculations of Fig.
2 show.

In the calculations, we denote with YND(Eγ) the
γ yield corresponding to the ND nucleus and with
YSD(Eγ) that corresponding to the SD nucleus case.
The YND(Eγ) yield was obtained under the assump-
tion that the GDR strength function has the shape
of a single Lorentzian centered at 15 MeV and with
YSICS OF ATOMIC NUCLEI Vol. 64 No. 6 2001
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a width varying, with increasing excitation energy,
from 5 to 8 MeV. Instead, the YSD(Eγ) yield was
obtained by means of a procedure similar to that
adopted for the YND(Eγ) yield but by using a two-
Lorentzian GDR strength function of SD type and
a different value of the level density in the region
with angular momentum 40� < I < 55� and energy
U above the yrast in the interval 0 < U < 15 MeV.
The GDR strength function that was used for this
region of the phase space has E1GDR = 10.5 MeV,
Γ1GDR = 3 MeV with 33% of EWSR strength and
E2GDR = 17 MeV, Γ2GDR = 6.5 MeV, with 66% of
EWSR strength. For the density of SD states, we
have assumed two different values: a = A/8 MeV−1

and a = A/10 MeV−1.

The experimental ratio in the left part of Fig. 2 can
be reproduced assuming that for 40–55� and up to
15 MeV above the yrast 40% of the cascades which
end in the ND part pass through a SD configuration
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 6 200
[8]. In particular, the expression

Yratio(Eγ) =
0.4YSD(Eγ) + 0.6YND(Eγ)

YND(Eγ)
(1)

was used. The dashed curve in Fig. 2 corresponds
to the Yratio(Eγ) obtained using a level density coef-
ficient a = A/8 MeV−1 in the SD region, while the
solid curve corresponds to a = A/10 MeV−1. The
results agree with the data of [13].

The high statistics and the good quality of the
data have allowed us to extract the high-energy γ-
ray spectrum in coincidence with the discrete SD
transitions. This spectrum is shown in the left panel
of Fig. 3, compared with the high-energy spectrum
(solid line) gated by TD transitions. Again, an excess
of γ rays at 10–11 MeV is clearly visible.

In the right panel of Fig. 3, the intensity population
of the discrete SD band (closed squares) has been
plotted relative to the energy of the coincident high-
energy γ rays. The 917-keV transition from the first
excited state over the 11/2− isomeric state of 143Eu
1
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has been used as a reference. Other experimental
points corresponding to transitions of the spherical
shape and of the triaxial shape obtained with the same
procedure used for the SD yrast lines are shown in the
same figure for comparison.

While in the case of transitions of the ND and
TD configurations a constant behavior is found, with
a value of ≈1, a rather pronounced increase with
γ-ray energy is instead measured in the case of the
transitions of the SD yrast band. If this increase is
due to the fact that the E1 feeding of the SD band
originates from a residual nucleus in an excited state
consisting of a dipole vibration on the SD structure,
this should follow the low-energy tail of the GDR
strength function. This simple estimate, shown with
the solid curve, represents the lowest limit expected
for the situation in which the gating high-energy
transition has a SD nature and is feeding directly
the SD band. The larger measured values could
reflect both level density effects as well as the fact
that the high-energy gating transitions do not all end
necessarily on the SD yrast states.

4. CONCLUSIONS

The recent experimental data discussed here show
evidence of a GDR built on SD states and that su-
perdeformation exists only few MeV over the yrast
P

line in the high-spin region. Such results confirm the
indications of [13].

The experimental fact that the intensity of the
discrete SD band increases by a factor of ≈2 when
one gates with high-energy γ rays clearly shows that
SD configurations are preferably populated by E1
cooling, namely, by the decay of the SD GDR.
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G. Colò **, N. Van Giai1), P. F. Bortignon, and M. R. Quaglia2)
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Abstract—Isoscalar monopole and dipole resonances in 90Zr, 116Sn, 144Sm, and 208Pb are studied within
the framework of self-consistent HF–RPA or HF–BCS plus quasiparticle RPA. A comparison with recent
experimental data obtained at Texas A&M University, as well as the problems related to the determination
of the nuclear incompressibilityK∞, is discussed. c© 2001 MAIK “Nauka/Interperiodica”.
The isoscalar giant monopole resonance
(ISGMR), the so-called “breathing mode” of the
nucleus associated with the operator

M̂ =
A∑

i=1

r2i , (1)

has been intensively studied for more than two
decades, especially with the aim to extract from it
information on the nuclear matter incompressibility
K∞. Recently, new experimental measurements
performed at the Texas A&M University cyclotron
are claimed to provide a better determination of the
ISGMR properties than ever obtained before for 90Zr,
116Sn, 144Sm, and 208Pb [1]. The uncertainty on
the mean energy of the ISGMR (defined as E0 ≡
m1/m0, where the moments mk of the strength
distribution are mk =

∑
n |〈n|M̂ |0〉|2(En − Eg.s)k)

is now believed to be of the order of 100–300 keV.
We will discuss in the first part of this contribution
the problems which persist, despite this remarkable
experimental achievement, in the determination of
K∞. The second part will be devoted to another, more
elusive, compressional mode of the nucleus, namely,
the isoscalar giant dipole resonance (ISGDR).

It has been discussed by a number of authors [2]
that the extraction of K∞ done by means of the def-
inition of a finite nucleus incompressibility (through
the equation E0(ISGMR) =

√
�2AKA/m〈r2〉) and
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of its extrapolation for A→∞ through a liquid drop-
type formula is unreliable because of the many as-
sumptions one has to use in this procedure. A more
transparent way of determining K∞ consists in per-
forming self-consistent calculations of the ISGMR
which are based on different parametrizations of the
effective nucleon–nucleon interaction. The value of
K∞ associated with the effective force which repro-
duces the experimental values of the mean energy of
the ISGMR should be chosen as the correct value.
The obvious difficulty arises that, since mean energies
obtained from calculations normally do not match
exactly the experimental finding, the value of K∞
should be determined by interpolation.

We report calculations of the ISGMR done using
effective Skyrme interactions, within self-consistent
Hartree–Fock (HF) plus random-phase approxi-
mation (RPA) in the case of 208Pb, and Hartree–
Fock–BCS (HF–BCS) plus quasiparticle RPA
(QRPA) for the other, non-double-magic, nuclei.
The parametrizations used are SkP [3], SGII [4],
SKM∗ [5], SLy4 [6], and SkI2 [7] (they span a range
of values of K∞ from 200 to 250 MeV). The HF
mean field is first calculated in coordinate space,
and then the single-particle spectrum of occupied
and unoccupied states is built by diagonalizing the
mean field on a harmonic oscillator basis. Details of
RPA calculations can be found in [8]. The dimension
of the 1-particle–1-hole (1p–1h) space is fixed by
requiring the exhaustion of the RPA m1 sum rule. In
the HF–BCS calculations, constant pairing gaps ∆
are introduced according to the usual 12 MeV/

√
A

parametrization. The QRPA matrix equations are
solved with a procedure which parallels what has been
said for RPA, with the two quasiparticle configura-
tions replacing the 1p–1h ones. The method is the
same as that of [9].
2001MAIK “Nauka/Interperiodica”
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The results, expressed in terms ofE0(ISGMR) vs.
K∞, are shown in Fig. 1. The symbols correspond to
the RPA mean energies associated with the different
Skyrme force sets, whereas the continuous lines are
drawn to guide the eyes. For each nucleus, it is
possible to draw a horizontal line at the experimental
mean energy, and this line intersects the line shown in

the figure for a value ofK(exp)
∞ which should be rather

constant for the four nuclei. Using as experimental
mean energies the values 17.9, 15.3, and 14.2 MeV
for 90Zr, 144Sm, and 208Pb, values of K∞ between
205 and 212 MeV are obtained. This is not shown
on the figure for the sake of clarity. Using the experi-
mental energy for 116Sn (16 MeV) would give a value
ofK∞ slightly outside the mentioned range.
A quite similar procedure has been applied in [1],

by using the results of RPA calculations based on the
finite-range Gogny interaction [10]. The result for
the nuclear incompressibility is in this case 231 MeV.
Apparently, therefore, different nonrelativistic models
predict different values of K∞. However, in our cal-
culation, the treatment of some components of the
particle–hole residual interaction is not fully consis-
tent. Indeed, we neglect the two-body spin–orbit and
Coulomb matrix elements. Work along this line is
in progress. We conclude by mentioning that self-
consistent calculations based on relativistic mean
field theory [11] provide values for K∞ which range
between 250 and 270 MeV.
Equally related to the nuclear incompressibility is

the ISGDR. This resonance is in fact associated with
the operator

D̂ =
A∑

i=1

r3i Y1µ(r̂i) (2)

and corresponds to a nonisotropic compression of
the system. Although some first indications about
the energy location of this mode date back to the
beginning of the eighties, as reviewed in [12], only
very recently convincing evidence about its proper-
ties has come from 0◦ angle measurements of 240-
MeV inelastically scattered α particles at Texas A&M
University. The ISGDR strength has been extracted
using a multipole decomposition technique. The
values of the centroid energy E0 (defined as in the
case of the ISGDR) are 26.3(4), 24.3(3), 23.0(3), and
20.3(2) MeV, respectively, in 90Zr, 116Sn, 144Sm, and
208Pb.
We have done a systematic study of the ISGDR

theoretical strength distributions [13], whose results
are summarized in the following. The method of
calculation is the same as outlined above for the
ISGMR. We just recall here that in the ISGDR case
one has to face the problem of the spurious state
associated with the center-of-mass motion which
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 6 200
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carries the same quantum numbers Jπ = 1−. In
our case, the spurious strength is subtracted from
the results using a projection technique described in
detail in [13].

The difference between the strength distributions
before and after the projection of the spurious strength
is shown in the top-left corner of Fig. 2 for the typical
case of 208Pb with the force SGII. The strengths are
essentially the same in the energy range which will
be denoted “giant resonance (GR) region.” At lower
energies, omitting the projection procedure can lead
to a serious overestimation of the ISGDR strength. It
is clear nevertheless from Fig. 2 that a nonnegligible
amount of nonspurious strength is present in the en-
ergy range which will be called “low-energy region.”
This low-lying strength is due to 1-�ω excitations,
which of course can contain strength associated with
the D̂ operator.

In Fig. 2, we also show center-of-mass corrected
strength distributions for the other nuclei calculated
with a typical interaction, namely SGII. The general
features are (i) a large fraction of the strength lies
in the GR region and (ii) a nonnegligible amount
of strength is in the low-energy region. The latter
region contains about 20% of the ISGDR energy-
weighted sum rule. These features are common to the
results obtained with the other interactions. A more
1
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detailed analysis in terms of the momentsm0 andm1

is reported in [13].
In comparison with the existing data, there is a

main issue to be faced, namely, the large discrep-
ancy between predicted and measured GR energies,
much larger than in all other GR cases. The cal-
culations predict a sizeable amount of strength at
low energy, and this seems now to be experimentally
confirmed [14]. This strength does not seem to have
a genuine compressional nature because its energy
position does not depend onK∞ (see also [15]).
In Fig. 3, we show the predicted peak and centroid

energies of the GR region for various nuclei as a
function ofK∞. The experimental values ofE0 for the
GR region quoted above would be outside the figure,
except for 90Zr. The discrepancy appears very severe
in Pb and Sn. In what follows, we concentrate on Pb
because it is the nucleus where the HF + RPA model
should work better.
Earlier RPA calculations [16] performed with the

finite range Gogny interaction already found that the
ISGDR energy was in the range of 26 MeV, in quali-
tative agreement with the present results. One might
expect that effects beyond RPA, like the coupling
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to 2p–2h excitations, would somewhat lower the
centroid energy. However, the calculations of [17]
find a downward shift of less than 1 MeV. The IS-
GDR has also been calculated in the relativistic RPA
approach [11] in 208Pb and 144Sm, and it is found
that, for effective Lagrangian parametrizations cor-
responding to K∞ in the range 200–270 MeV, the
energy of the ISGDR is of the order of 25 MeV. Thus,
the question of understanding the observed values of
E0 is still open.

In conclusion, self-consistent RPA and QRPA
calculations have been done for the nuclei analyzed
recently at Texas A&M University. In the case of the
ISGMR, the results are in reasonable agreement with
the data for the case of some Skyrme forces. Despite
this, it is difficult to extract a unique value for the
nuclear incompressibility K∞. It can be in the range
200–215 MeV for Skyrme forces, or about 230 MeV
for the finite-range Gogny force, or even higher in
the relativistic mean field approach. Moreover, all
these calculations are to some extent consistent in
predicting a larger value for the ISGDR energy than
experimentally observed. This is the next puzzle to be
solved.
YSICS OF ATOMIC NUCLEI Vol. 64 No. 6 2001
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Abstract—We try to determine to what extent an “axial prolate rotor + 1 or 2 quasiparticle model”
succeeds in describing the transitional odd and odd–odd Ir and Au nuclei. The relative location of the
excited states, as well as the properties of the ground and isomeric states, particularly the magnetic and
spectroscopic quadrupole moments, is compared to the predictions of the model. c© 2001 MAIK “Nau-
ka/Interperiodica”.
1. INTRODUCTION

The structure of the low-lying states in Ir and
Au is very widely discussed: these nuclei belong to
a region of shape instability, and various theoretical
approaches setting or not axial symmetry have been
used with success to interpret specific states [1–
20]. Recently, both isotope series have been studied
by laser spectroscopy [21–24] providing the nuclear
moments of the ground and isomeric states and the
change in the mean square charge radius (δ〈r2c 〉).
The magnetic moment (µ) gives information on the
structure of the state, whereas, assuming axial sym-
metry, the deformation of the nucleus can be ex-
tracted from δ〈r2c 〉 and QS . On the other hand, elec-
tron spectroscopy measurements recently performed
in the odd–odd 182Ir and 184Au nuclei [25, 26] have
brought decisive information to define the structure
of the low-energy levels, especially concerning the
neutron and proton configurations involved in the
description of these states.

The aim of this paper is to determine to what
extent an “axial prolate rotor + 1 or 2 quasiparticles”
approach succeeds in describing these transitional
odd and odd–odd nuclei, and particularly the recent
data obtained by laser and nuclear spectroscopy. The

∗This article was submitted by the authors in English.
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2)Physics Department, McGill University, Montréal, Canada.
3)Institut des Sciences Nucléaires, Grenoble, France.
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properties of the low-lying states observed in Ir and
Au are presented, and similarities between these two
isotope series are underlined. The main characteris-
tics of the model are recalled, and the predictions of
the model are compared with the experimental results
analyzing (i) the relative location of the excited states
in the odd nuclei and (ii) the properties of the ground
and isomeric states (namely, the behavior of the as-
sociated rotational bands, the values of the magnetic
and spectroscopic quadrupole moments) taking as an
example 191Ir for the heavier odd nuclei, 185Ir for the
lighter odd ones, and 184Ir and 184Au for the odd–odd
isotopes.

2. EXPERIMENTAL PROPERTIES OF Ir
AND Au NUCLEI

Figure 1 shows the levels located at low energy
in the odd Ir and Au nuclei and interpreted as band-
heads. Three groups of levels can be defined in both
isotopes series. The first one is formed by the 3/2
and 1/2 positive parity states which are very close
in energy. The 3/2+ state arising from the 2d3/2

subshell is the ground state down to A = 187 in Ir
and down to A = 191 in Au. The 1/2+ state arising
from the 3s1/2 subshell becomes the ground state in
187,189Au. The second group of states is formed by the
11/2− levels originating from the 1h11/2 subshell,
and the third group by the two negative parity states
which are the intruder states arising from the 1h9/2

subshell; the 5/2− state becomes the ground state in
the A ≤ 185 Ir and Au nuclei.

Figure 2 shows δ〈r2c 〉, µ, andQS obtained for the Ir
and Au ground and isomeric states. Great similarities
2001 MAIK “Nauka/Interperiodica”



PROPERTIES OF THE LOW-LYING LEVELS 1049
between the two isotope series can be noted. In both
cases, there is an increase in δ〈r2c 〉 at A = 186, and
when the spin of the state has the same value in Ir
and Au, the magnetic moment and the spectroscopic
quadrupole moment have similar values. This is par-
ticularly true for the 3/2+ state.

3. THE “ROTOR + 1 OR 2
QUASIPARTICLES” MODELS

These models have been developed by Meyer
et al. [27] and Bennour et al. [28]. In a first step,
Hartree–Fock + BCS calculations are performed
for the even–even cores using the Skyrme III force
and the constant G approximation for the pairing
correlations. Axial symmetry is assumed. Here,
the core is constrained to the deformation found
experimentally from the δ〈r2c 〉measurements in Ir and
Au. This first step provides us with the single-particle
wave functions.

In a second step, one or two quasiparticle states
are coupled to an axial rotor with the variable moment
of inertia determined from the experimental energy
sequence observed in the even–even core. In this
approach, the Coriolis term is calculated exactly. The
particle number is not conserved, which means that
two cores can be used to describe an odd nucleus and
four cores to describe an odd–odd nucleus. How-
ever, using the occupation probabilities which are
directly related to the location of a state above or
below the Fermi level, we can determine the most
suitable core to represent a given configuration. In
the “rotor + 2 quasiparticles” approach, the proton–
neutron residual interaction (Vpn) is calculated using
the Skyrme III force, i.e., the same force as that used
to determine the neutron and proton quasiparticle
wave functions.

To describe the gold and iridium nuclei, such cal-
culations have been performed using Hg, Pt, and Os
cores.

For the odd nuclei, the magnetic and spectro-
scopic quadrupole moments have been calculated us-
ing the procedure described in [29]. For the odd–odd
nuclei, the magnetic moments have been evaluated
following the method given in [30]:

µ =
K

I + 1

[
gKpKp + gKnKn + gR

I2 + I −K2

K

]

with the gKp and gKn factors extracted from the the-
oretical magnetic moments obtained in the “rotor +
1 quasiparticle” approach for the given neutron and
proton configurations.
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 6 200
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4. COMPARING THEORY
WITH EXPERIMENT

4.1. Systematics of the Bandheads

Figure 3 shows the theoretical bandheads calcu-
lated with the “rotor + 1 quasiparticle” model using
the Os and Pt cores. The theoretical states are la-
beled by their main component on the quasiparticle
state basis using the asymptotic notation. The main
differences between the results obtained with the Os
and Pt cores are (i) the 5/2+[402] state calculated
above 500 keV with the Pt cores appears to be the
ground state with the 182–190Os cores and (ii) the
9/2−[514] state located above 1.4 MeV with the Pt
cores is predicted to lie below 1 MeV with the Os
cores. However, for both states, the occupation prob-
abilities indicate full states, which means that, for
these configurations, the Os cores describe the Re
odd nuclei rather than the Ir ones. The 5/2+[402]
state is actually the ground state in the odd 179–189Re
1
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0

180

Energy, keV

Mass

400

800

184 188 192

1200

 

3/2

 

+

 

[402]
1/2

 

+

 

[400]
11/2

 

–

 

[505]
9/2 1/2

 

–

 

[541]
5/2 1/2

 

–

 

[541]
5/2

 

+

 

[402]
9/2

 

–

 

[514]

 

0.2
14

0.2
06

0.1
73

0.1
69

0.1
55

0.1
41

 

β

 

180 184

 

3/2

 

+

 

[402]
1/2

 

+

 

[400]
11/2

 

–

 

[505]
9/2 1/2

 

–

 

[541]
5/2 1/2

 

–

 

[541]
5/2

 

+

 

[402]
3/2

 

–

 

[532]

 

0.2
21

0.2
14

0.2
06

0.1
73

0.1
69

0.1
55

 

β

 

0.1
41

 

188 192 196

Osmium cores Platinum cores
1600

Fig. 3. Theoretical states calculated with the Os and Pt
cores. Deformation β obtained from the δ〈r2

c〉 measure-
ments in Ir.

 

Theory:
Experiment:

Theory:

 

190

 

Os

 

β

 

 = 0.155

 

191

 

Ir

 

192

 

Pt

 

β

 

 = 0.155

 

1500

1000

500

0

Energy, keV
 

13/2

 

+

 

11/2

 

+

 

9/2

 

+

 

7/2

 

+

 

5/2

 

+

 

3/2

 

+

 

3/2

 

+

 

11/2

 

+

 

9/2

 

+

 

7/2

 

+

 

5/2

 

+

 

1/2

 

+

 

13/2

 

+

 

11/2

 

+

 

9/2

 

+

 

7/2

 

+

 

5/2

 

+

 

3/2

 

+

 

13/2

 

+

 

11/2

 

+

 

9/2

 

+

 

7/2

 

+

 

5/2

 

+

 

3/2

 

+

 

3/2

 

+

 

11/2

 

+

 

9/2

 

+

 

7/2

 

+

 

5/2

 

+

 

1/2

 

+

 

3/2

 

+

 

11/2

 

+

 

9/2

 

+

 

7/2

 

+

 

5/2

 

+

 

1/2

 

+

 

Q

 

S

 

 = +0.85 b

 

µ

 

g

 

s

 

, free

 

 = –0.14 

 

µ

 

N

 

µ

 

0.6

 

g

 

s

 

, free

 

 = +0.51 

 

µ

 

N

 

Q

 

S

 

 = +0.82(1) b

 

µ

 

 

 

= +0.151(1) 

 

µ

 

N

 

 + 1 quasiparticle + 1 quasiparticle

 

Q

 

S

 

 = +0.87 b

 

µ

 

g

 

s

 

, free

 

 = –0.15 

 

µ

 

N

 

µ

 

0.6

 

g

 

s

 

, free

 

 = +0.48 

 

µ

 

N

Fig. 4. 3/2+[402] and 1/2+[400] bands calculated with
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nuclei, and the 9/2−[514] state is found at low energy
(E ≤ 263 keV) in 181–189Re [31].

The other theoretical states can be classified into
two groups: the first one is formed by the 3/2+[402],
1/2+[400], and 11/2−[505] levels with an energy de-
creasing when the mass of the core increases, and the
second group by the 5/2−1/2[541] and 9/2−1/2[541]
states originating from the h9/2 subshell with an
energy increasing with the mass of the core. The
PH
result is that the ground state is expected to be the
3/2+[402] state in the heavier odd Ir and Au nuclei,
and the 5/2−1/2[541] state in the lighter odd ones.
This is in agreement with the experimental data (see
Fig. 1).

In the following, the 5/2−1/2[541] and
9/2−1/2[541] states will be labeled as originating
from h9/2. Indeed, the analysis of the wave functions
describing these states shows a K mixing due to
the Coriolis interaction, and this K mixing becomes
stronger as the deformation increases. This point
is illustrated by the wave function obtained for the
5/2− state using the 186Pt core constrained to various
deformation values:

Ψ(5/2−, β = 0.155)

= 80.5% 5/2−1/2[541] + 18.8% 5/2−3/2[532] + . . . ,

Ψ(5/2−, β = 0.268)

= 59.5% 5/2−1/2[541] + 39.8% 5/2−3/2[532] + . . . .

4.2. The 3/2+[402] and 1/2+[400] Bands

Experimentally, the ground state is a 3/2+ state
in 187−193Ir and 191−195Au, and a 1/2+ state in
187,189Au. The bands built on these two states are
known and rather similar in all these nuclei. Figure 4
shows as an example the experimental data obtained
in 191Ir and the theoretical results obtained with the
“rotor + 1 quasiparticle” model using the 190Os and
192Pt cores constrained to the deformation found ex-
perimentally for the 191Ir ground state from the δ〈r2c 〉
measurements. The band built on the 3/2+ state is
quite well reproduced by the calculations, in particu-
lar, with the 190Os core. Moreover, the experimental
µ value lies between the values calculated using gs =
gs,free and 0.6gs,free, and the spectroscopic quadrupole
moment is in fair agreement with the theoretical
values (see Fig. 4). Thus, we can consider that the
model succeeds in describing this 3/2+ ground state
in the heavier Ir and Au nuclei. On the contrary,
the experimental pattern of the band built on the
1/2+ state differs strongly from the predictions.
Moreover, the magnetic moment measured for the
1/2+ state, for example in 189Au, µexp(189Au) =
+0.494(14)µN , is much smaller than the values
calculated for the 1/2+[400] state using the 188Pt core
with β = 0.150: µth

gs,free
= +2.66 µN and µth

0.6gs,free
=

+1.57µN .
YSICS OF ATOMIC NUCLEI Vol. 64 No. 6 2001
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4.3. The h9/2 Structure

This structure is known and built on the ground
state in the lighter Ir and Au nuclei. Figure 5 shows
its pattern in 185Ir, as well as the results obtained with
the “rotor + 1 quasiparticle” model using the 184Os
and 186Pt cores. The agreement between experiment
and theory is quite good, in spite of some differences
in the order of appearance of the levels. Table 1
shows the moments measured for the 5/2− ground
state in 185Ir and 185Au, as well as the theoretical
values obtained for the various cores for deformations
close to the values found experimentally from the
δ〈r2c 〉 measurements. With the Pt and Os cores,
the wave function of the 5/2− state has K = 1/2
as main component, but with the Hg core the wave
function shows a strongK(3/2 and 1/2) mixing. This
strong K mixing does not affect the values obtained
for the theoretical magnetic moments but strongly
increases the theoretical spectroscopic quadrupole
moments (see Table 1). Therefore the change in the
QS values between 185Ir and 185Au appears to be
related to the change in the K mixing in the wave
function describing the ground state. ThisK-mixing
change is due to the variation of the deformation and
of the Fermi level location between 185Ir and 185Au.
Since it is quite well reproduced by the calculations,
we can conclude that for this proton configuration the
Coriolis effects are well accounted for by the “axial
rotor + 1 quasiparticle” model.

4.4. The πh9/2 ⊗ ν7/2
−[514]

and πh9/2 ⊗ ν1/2
−
[521] Configurations in 184Au

From the intrinsic states observed in the neigh-
boring odd-neutron and odd-proton nuclei, the
configurations expected in 184Au for the Iπ = 5+

ground state and for the Iπ = 2+ isomeric state
are the following: πh9/2 ⊗ ν7/2−[514] and πh9/2 ⊗
ν1/2−[521] [32]. As πh9/2 stands for π1/2[541]
and/or π3/2[532], the possible K values are K = 4,
3 and/or 5, 2 for the ground state and K = 1, 0
and/or 2, 1 for the isomeric state.

Figure 6 represents the experimental levels which
have been interpreted as members of these π ⊗ ν
configurations [32], as well as the theoretical states
obtained in the frame of the “rotor + 2 quasiparti-
cles” model using the 186Hg core at the deformation
found experimentally for 184Au from the δ〈r2c 〉 mea-
surements. Except for the 6+ state, each theoretical
state can be associated with one experimental level.
We can note that the 6+ level has been observed
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 6 2001
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experimentally but its energy location with respect to
the 5+ ground state is still unknown [33].

Table 2 shows the magnetic and spectroscopic
quadrupole moments measured for the ground and
isomeric states in 184Au, as well as the theoreti-
cal values obtained assuming the K mixing given
by the “rotor + 2 quasiparticles” calculations using
the 186Hg core at β = 0.25, or pure K states. The
calculated µ values are not very sensitive to these
various possibilities, but the experimental QS values
indicate a pure K = 5 state for the ground state and
a K = 2 component stronger than that given by the
“rotor + 2 quasiparticles” calculation for the iso-
meric state. Such K values are obtained by coupling
the π3/2[532] state to the ν7/2−[514] or ν1/2−[521]
state. Thus, it seems that in 184Au the role of the
π3/2[532] state is underestimated by the “rotor +
2 quasiparticles” calculations, which means that the
K mixing due to the Coriolis interaction is overesti-
mated.
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Table 1. Experimental moments measured for the 5/2− ground state in 185Ir and 185Au compared with the values
calculated for the 5/2− state of the h9/2 structure

Core Core

Nucleus µexp, µN β2 µth, µN
a) β2 µth, µN

a)

Qexp
S , b Main component Qth

S , b Main component Qth
S , b

185Ir +2.55(7) 184Os µ1 = +1.38 186Pt µ1 = +1.39

0.206 µ2 = +2.06 0.206 µ2 = +2.10

−1.8(6) 85% 1/2[541] −1.46 78.4% 1/2[541] −1.42
185Au +2.17(7) 184Pt µ1 = +1.32 186Hg µ1 = +1.31

0.245 µ2 = +2.00 0.242 µ2 = +1.94

−1.1(1) 76% 1/2[541] −1.65 65% 3/2 [532] −1.01
a)Calculated with gs = gs,free(µ1) and gs = 0.6fs,free(µ2).

Table 2. Experimental moments measured for the ground and isomeric states in 184Au compared with the values
calculated for the πh9/2⊗ν7/2−[514] and πh9/2⊗ν1/2−[521] configurations

Experiment Theory
184gAu, Iπ = 5+ K mixedb) K = 5 K = 4

µ[µN ]a) +2.07(2) +2.29 +2.36 +2.19

+2.07 +2.21 +1.85

QS [b] +4.7(3) +3.4 +4.4 +1.8
184mAu, Iπ = 2+ K mixedc) K = 2 K = 1

µ[µN ]a) +1.44(2) +1.10 +1.27 +0.80

+1.21 +1.41 +1.00

QS [b] +1.9(2) +0.62 +2.2 −1.1
a)Calculated with gs = gs,free and gs = 0.6gs,free.
b)Ψ(5+) = 47%(K = 5) + 31%(K = 4) + . . . .
c)Ψ(2+) = 40%(K = 2) + 37%(K = 1) + . . . .
4.5. The πh9/2 ⊗ ν9/2
+[624] Configuration in 184Ir

In 184Ir the 5− ground state has been interpreted
by the πh9/2 ⊗ ν9/2+[624] configuration [34]. The

Table 3. Experimental moments measured for the ground
state in 184Ir compared with the values calculated for the
πh9/2 ⊗ ν9/2+[624] configuration

Experiment Theory
184Ir K mixed K = 5 K = 4 K = 3

µ[µN ]a) +0.69(3) −0.92 −1.41 −0.74 +0.07

−0.39 −0.69 −0.32 +0.719

QS [b] +2.6(4) +2.15 +3.61 +1.44 −0.24
a)The theoretical values have been calculated with gs = gs,free

and gs = 0.6gs,free.
PH
experimental levels identified as members of this con-
figuration [35, 36] and the corresponding theoretical
states obtained with the 184Pt core are presented in
Fig. 7. The agreement between experiment and the-
ory is quite good since the same spin sequence is ob-
served in both cases, even though the calculated en-
ergy spacings are somewhat below the observations.
The wave function describing the 5− state shows a
strong mixing between the K = 5 and 4 components
corresponding to the parallel and antiparallel coupling
of the ν9/2[624] state to the π1/2[541] state origi-
nating from the πh9/2 subshell, and a weak K = 3
component due to the coupling of the same neu-
tron state to the π3/2[532] state: Ψ(5−) = 46%(K =
4) + 41.5%(K = 5) + 6%(K = 3) + . . . . These K
percentages have been used to estimate the values
of the nuclear moments presented in Table 3. The
YSICS OF ATOMIC NUCLEI Vol. 64 No. 6 2001
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Fig. 7. The πh9/2 ⊗ ν9/2+[624] configuration calculated
with the 184Pt core compared with the experimental data
in 184Ir.

experimental QS and µ values, as well as those cal-
culated under the assumption of a pure K = 5, 4,
or 3 state, are also shown in Table 3. In the K-
mixed case, the spectroscopic quadrupole moment
is in rather good agreement with the experimental
value, but the magnetic moment is negative, contrary
to what has been measured. It results from the µ
values calculated under the assumption of a pure K
state, in which case a positive value is obtained for
only K = 3. This seems to indicate that the role of
the π3/2[532] state is again underestimated by the
“rotor + 2 quasiparticles” calculations. But in 184Ir,
unlike what has been observed in 184Au, the wave
function describing the ground state has to exhibit a
K mixing in order to obtain a positive spectroscopic
quadrupole moment.

5. CONCLUSIONS

The properties of the low-lying levels in the iridium
and gold nuclei have been compared with the pre-
dictions of an “axial rotor + 1 or 2 quasiparticles”
model assuming a prolate shape of the core and a
deformation close to that extracted from the δ〈r2c 〉
measurements. Since there is no adjustable param-
eters in the theoretical approach, we can consider
that the agreement found between the theoretical and
experimental results is of high quality.

Concerning the positive parity states, the proper-
ties of the 3/2+ ground state in the heavier Ir and Au
nuclei are quite well reproduced, but some discrep-
ancies between theory and experiment are found for
the 1/2+ state which is the ground state in 187,189Au.
These positive parity states have been previously dis-
cussed in the frame of this “rotor + 1 quasiparticle”
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 6 200
model assuming an oblate shape of the core with
the deformation parameter corresponding to the min-
imum of the potential energy [19]. In this case, the
description of the properties of the band built on the
1/2+ state becomes better, but that of the 3/2+ level,
in particular, the nuclear moments, becomes worse.
It remains to be seen whether the same conclusions
are obtained when the calculations are constrained
in deformation. On the other hand, this difficulty in
reproducing the whole of the low-spin positive-parity
states does not seem to be due to the axial-symmetry
assumption since it has also been encountered in
the recent calculations performed using the particle-
triaxial-rotor model for 191,193Ir [37].

On the contrary, a very good theory–experiment
agreement is found for the h9/2 structure built on the
5/2− state in the lighter Ir and Au nuclei. It appears
from the calculations that the more deformed the
nucleus, the more important the 3/2[532] component
in the wave function describing the 5/2− state. As the
deformation increases between 185Ir and 185Au, the
differences observed in the experimental QS values
are mainly due to the changes in the weight of the
main components in the wave function describing the
ground state.

As for the odd–odd nuclei, their properties are
qualitatively well reproduced by the “rotor + 2 quasi-
particles” model. The theory–experiment compar-
ison done for 184Au and 184Ir indicates that the
π3/2[532] component is favored when the h9/2 proton
is coupled to a neutron. For the configurations
involving the h9/2 structure, the K mixings due to
the Coriolis interaction are better accounted for in the
odd nuclei than in the odd–odd nuclei.
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Abstract—A new single-particle basis is proposed for use in weakly bound nuclei far from the valley of beta
stability. The basis, obtained by applying a local-scaling point transformation to the states of a harmonic
oscillator potential, can be tailored to have the correct asymptotic properties for weakly bound systems. We
first present a test of the basis and then apply it in Hartree–Fock–Bogolyubov calculations of the even Mg
isotopes, from the proton drip line to the neutron drip line. c© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The development of experimental facilities that ac-
celerate radioactive species will open up the possi-
bility of exploring a wide variety of nuclei heretofore
inaccessible. With these new facilities and the new
detector technology that is accompanying them, it
should soon be possible to study the properties of
nuclei very far from the valley of beta stability. Several
such facilities are already in operation, and several
more advanced ones are in the planning or develop-
ment stage. With these new experimental opportu-
nities comes the need for new theoretical techniques
suitable for describing the new phenomena that are
expected.

Many of the theoretical techniques used in the
description of nuclear structure require an appropriate
single-particle basis. Most commonly used in the
description of normal nuclei is the harmonic oscillator
(HO) basis. This basis is particularly useful for sev-
eral reasons: because of its simple analytic properties,
because it provides a complete and discrete set of
states, and because of its properties in numerical al-
gorithms. But the HO basis has much less use when
dealing with weakly bound nuclei far from stability,
especially on the neutron-rich side. Near the neutron
drip line, at least two important new pieces of physics
come into play: (1) the need to include very weakly
bound single-particle orbits with long tails and (2)
the need to include explicitly the continuum. An HO
basis, because of its Gaussian asymptotic properties,
cannot accommodate this physics.

∗This article was submitted by the authors in English.
1)Institute of Nuclear Research and Nuclear Energy, BAS,

Sofia, Bulgaria.
**e-mail: pittel@bartol.udel.edu
1063-7788/01/6406-1055$21.00 c©
We have recently proposed [1] an alternative to the
HO basis, which preserves much of its simplicity but
is more suitable for the description of weakly bound
nuclei. The new basis derives from the application of
a local-scale transformation (LST) [2] to the single-
particle states of the oscillator. Referred to as the
transformed HO (THO) basis, it consists of a com-
plete set of localized states, making it useful in basis
expansion approaches, and is relatively simple to im-
plement in numerical algorithms. Most importantly,
the LST from which it derives can be tailored to yield
the appropriate asymptotic properties of nuclei.

In this presentation, we review the progress that
has been made in the development and application
of the THO basis. We begin in Section 2 with a
brief description of the basis and then in Section 3
describe a test of its usefulness [1, 3] in the context
of Hartree–Fock–Bogolyubov (HFB) calculations of
spherical nuclei. Such calculations can be carried
out directly in coordinate space [4], thereby mitigat-
ing the need for a good single-particle basis. As
we will see, the THO basis is able to reproduce the
results of full coordinate-space HFB calculations for
spherical nuclei far from stability. Then, in Section 4,
we present the results of drip-line to drip-line HFB
calculations for the even Mg isotopes [3], permitting
axial deformation. Coordinate-space calculations are
much more difficult for deformed nuclei for numerical
reasons. As we will see, reliable configuration-space
HFB calculations even for deformed nuclei are pos-
sible when using the THO basis. Finally, Section 5
contains some closing remarks.

2. THE THO BASIS

The key concept in our construction of a new
basis is that of an LST of coordinates [2]. An LST
2001 MAIK “Nauka/Interperiodica”
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replaces the original coordinate r by a new coordinate
r′, defined according to

r′ = f(r) = r̂ f(r). (1)

The new coordinate is in the same direction as r,
but has a new magnitude that depends on a scalar
function f(r). It is further assumed that f(r) is an
increasing function of r and that f(0) = 0.

Let us now consider an A-particle model wave
function Ψ̄(r1, r2, ..., rA). The LST transforms it into
a new A-particle wave function

Ψ(r1, r2, ..., rA) = D1/2Ψ̄(f(r1), f(r2), ..., f(rA)),
(2)

where

D =
A∏

i=1

f2(ri)
r2i

∂f(ri)
∂ri

(3)

is the Jacobian of the LST.
Under the assumption that the model wave func-

tion is normalized to unity,
〈Ψ̄|Ψ̄〉 = 1, (4)

the LST wave function Ψ(r1, r2, ..., rA) is likewise
normalized to unity, regardless of the choice of f .

Let us now consider an A-particle Slater determi-
nant,

Ψ̄(r1, r2, ..., rA) =
1√
A!

det |ψ̄HO
i (rj)|, (5)

built from the set of HO single-particle wave func-
tions ψ̄HO

i . Due to its unitarity, the LST takes it into
another Slater determinant,

Ψ(r1, r2, ..., rA) =
1√
A!

det |ψTHO
i (rj)|, (6)

built from a new set of single-particle wave functions

ψTHO
i (r) =

[
f2(r)
r2

∂f(r)
∂r

]1/2

ψ̄HO
i (f(r)). (7)

The complete and discrete set of single-particle
states, ψTHO

i , derived by applying the LST to the set
of HO states, is what we refer to as the transformed
HO basis.

In principle, LST functions can be introduced to
transform separately the three components of a three-
dimensional wave function. In the applications re-
ported here, we have permitted the transformation to
affect the radial part of the oscillator wave functions
only, whereby the resulting THO states have the same
angular momentum properties as the original oscilla-
tor states.

The LST can in principle be chosen in any way
consistent with its definitions. This gives enormous
flexibility, but in fact much too much. A useful
transformation is one that produces wave functions
P

with the correct asymptotic behavior, but with as few
parameters as possible.

The form of the LST function that we used in this
work is

f(r)=




r
(
1 + ar2

)1/3 for r ≤ R

√
d−2

r2
+
d−1

r
+d0+d1r+dL ln r

for r > R.

(8)

The five coefficients di are fixed by the requirement
that the function f(r) and its first, second, third,
and fourth derivatives are continuous at the matching
radius R. The function thus has two parameters, a
andR. Since the oscillator length also determines the
final THO states, the total number of parameters that
define our basis is 3.

This form of the LST was obtained by considering
the behavior at large and small r. At small r, nuclear
densities are expected to vary weakly with r and have
a central depression. A Slater determinant built from
these THO wave functions produces a density at
small r of the form

ρ(r) ≈ ρ0 + cr2, (9)

as desired.
More important is the behavior at large r. Asymp-

totically, the linear term in f(r) dominates, and the
THO wave functions behave like

ψTHO
i (r →∞) ≈ exp

[
−1

2
kr

]
, (10)

where

k =
d1

b
. (11)

Thus, with this form of the transformation, we satisfy
the requirement that the THO wave functions fall off
exponentially.

With this parametrization, we determine the three
parameters so as to optimize the basis for the problem
of interest.

3. TEST CALCULATIONS

The principal test we carried out for our new basis
was in the context of HFB calculations for weakly
bound neutron-rich spherical nuclei [3]. For such
nuclei, the HFB approximation can be carried out in
coordinate space, where no expansion in a single-
particle basis is required. How do configuration-
space HFB calculations that expand both the density
matrix and the pairing tensor in an optimally chosen
THO basis compare with the full coordinate-space
results? Can they reproduce the physics?
HYSICS OF ATOMIC NUCLEI Vol. 64 No. 6 2001
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radii, rp and rn, obtained in the HFB + SLy4 calculations
for 28O using the HO and THO bases, as functions of the
number of HO shells Nsh. The exact results refer to those
obtained from spherical coordinate-space calculations.

These questions are addressed in Fig. 1, which
show the results of calculations carried out for the
very neutron-rich nucleus 28O at several levels of
approximation. The results labeled “exact” refer to
coordinate-space HFB calculations. Also shown are
the results obtained by expanding in terms of HO
states and THO states. All results are presented as
a function of the number of basis shells included. In
the two sets of configuration-space calculations, the
parameters that defined the basis were chosen varia-
tionally so as to minimize the total HFB energy. All
calculations were carried out using the force SLy4.
Since 28O is doubly-magic, pairing correlations do
not enter.

The first point to note is that an expansion in the
THO basis is much better than an expansion in the
HO basis. More importantly, when 20 major shells
are included, the calculation in the optimized THO
basis gives an excellent reproduction of the “exact”
results. This is to be contrasted with the HO results,
which even after 20 shells cannot reproduce the exact
results very accurately.

Perhaps the key improvement is in the neutron
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 6 200
 

HO (

 

N

 

sh

 

 = 20)

THO (

 

N

 

sh

 

 = 20)

Exact HFB solution
Protons

0 5 10 15 20 25 30

 

r

 

, fm

10

 

–12

 

10

 

–10

 

10

 

–8

 

10

 

–6

 

10

 

–4

 

10

 

–2

 

10

 

0

 

Neutrons

 
ρ

 
, fm

 
–3

Fig. 2. Neutron densities obtained in the HFB + SLy4
calculations for 28O using the HO (dashed curve) and
THO (solid curve) bases. Neutron and proton densities
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ical coordinate-space calculations in a box of 20 fm.

rms radius. This is obviously a quantity that in a
nucleus like 28O, so close to the neutron drip line, is
highly sensitive to the long tail of the last neutron’s
wave function. With 20 shells, the THO calculation
reproduces it very accurately, whereas the HO basis
does not.

This latter point can be better understood from
Fig. 2, where we show the calculated density distribu-
tions for the same nucleus 28O. Of particular interest
are the neutron distributions. The THO calculation
with 20 shells reproduces the tail of the neutron den-
sity distribution very accurately. In contrast, with
only 20 shells the HO calculation cannot get the tail
right beyond about 10 fm. That is fine for normal
nuclei, but not for very weakly bound nuclei which
extend out much further. This is not to say that an
oscillator basis cannot reproduce a long tail. To do
so, however, would require very many major shells
[1], which cannot be accommodated within existing
codes.

Note, by the way, that the coordinate-space re-
sults stop at 20 fm. Coordinate-space HFB calcu-
lations are typically performed by putting the system
in a large box, and in these calculations the box size
was 20 fm. This artificial behavior does not enter the
1
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configuration-space analysis, which does not require
the introduction of a cutoff in r.

4. DRIP-LINE TO DRIP-LINE
CALCULATIONS

FOR THE EVEN Mg ISOTOPES

The success of our calculations for spherical nu-
clei, where they can be tested against coordinate-
space results, suggests that they can also be used
in deformed nuclei. In deformed nuclei, coordinate-
space HFB studies are extremely difficult, because
of the dramatically increased complications in going
from a one-dimensional to a two-dimensional mesh.

We have now succeeded in carrying out calcula-
tions of very weakly bound deformed nuclei using the
configuration-space HFB framework expanded in the
THO basis. We report in Fig. 3 some of the more
interesting results that emerged, referring the reader
to [3] for more complete results. These calculations
were carried out for all of the even Mg isotopes, from
the proton drip line to the neutron drip line, using the
Skyrme force SLy4 and a Volume Delta interaction in
the pairing channel.

The upper panel of the figure shows the calculated
results for the two-neutron separation energy S2n and
the related quantity−2λn for the various ground state
solutions. From the latter, we can readily determine
λn, the neutron chemical potential or Fermi energy.
These quantities provide direct information on the
stability of the nucleus to neutron emission. In par-
ticular, a nucleus with a positive two-neutron sepa-
ration energy is bound against two-neutron emission,
P

whereas one with a negative two-neutron separation
energy spontaneously decays by two-neutron emis-
sion and is formally beyond the two-neutron drip line.
Analogously, a nucleus with a negative λn is bound
against the emission of a single neutron.

The first point to note is that the heaviest even-
mass Mg isotope that is bound against two-neutron
decay, on the basis of having a positive two-neutron
separation energy, is 40Mg. The next is that both
42Mg and 44Mg, though unstable against two-
neutron decay, have very small negative values of the
chemical potential λn, and are thus bound against
one-neutron emission.

The lower panel of Fig. 3 shows results for the
quadrupole deformation parameter for the various
isotopes considered. The circles correspond to the
proton deformation, and the squares to the neutron
deformation. Those symbols that are filled and
connected by lines refer to the ground state minima;
those represented by open symbols refer to the second
minima. We will focus on the ground state minima.

The point to note is that for the heavier nuclei
approaching 40Mg—the heaviest bound against two-
neutron decay—the ground state is prolate. For
the next two nuclei, 42Mg and 44Mg, both of which
are unbound against two-neutron decay but bound
against one-neutron decay, the ground state is oblate.
Interestingly, this change in the shape of the ground
state takes place at the same point at which the nu-
cleus becomes unstable against two-neutron emis-
sion while remaining stable against single-nucleon
emission.

It is premature to take these conclusions too seri-
ously, until we are able to explore other forces. But
if they do survive, it would be quite interesting. It
would indicate that there are nuclei that are stable
against one-neutron emission but unstable against
two-neutron emission. And perhaps most interest-
ingly, it would suggest that under certain circum-
stances such nuclei might live long enough to be
observed. The reason for this is related to the change
in shape mentioned earlier. Since the ground state of
42Mg has a different shape than that of the nucleus
to which it should decay by two-neutron emission,
namely, 40Mg, there may be a built-in suppression of
the decay. Thus, it might be possible for 42Mg to live
long enough to be observed, even though it is formally
beyond the two-neutron drip line. More work on such
an exotic possibility is clearly needed.

While this is in our view a potentially interesting
conclusion and one worth thinking about and study-
ing further, it is not the key message that we would
like to transmit. The more significant message is
that we are now able to carry out meaningful HFB
calculations for nuclei all the way out to the drip lines,
HYSICS OF ATOMIC NUCLEI Vol. 64 No. 6 2001
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including those that are deformed. And the reason we
are able to do this is because of our use of the THO
basis with its improved asymptotic properties.

5. CLOSING REMARKS

In the previous two sections, we briefly summa-
rized the tests we carried out to assess the useful-
ness of the THO basis and reported some results of
a first application. Based on the success of these
calculations, we are now in the process of carrying out
other applications. On the one hand, we are carrying
out a systematic study of nuclei across the periodic
table in the HFB framework, with different forces and
different prescriptions for pairing. For these applica-
tions, we are exploring alternative parametrizations
of the transformation that are more suitable for a
systematic investigation of a wide range of nuclear
species. In a totally different direction, we are using
the THO basis, with its improved asymptotics, in
variational shell-model studies of weakly bound light
nuclei. No doubt, other interesting applications of
this new methodology to the study of nuclei far from
stability will also be possible.
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 6 200
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Abstract—The octupole bands in the Z ∼ 88, N ∼ 134 region, with their abundance of experimental
information, offer a real challenge for different nuclear structure models. In this region, quasimolecular
bands, which are thought to indicate the presence of stable octupole deformation, have been observed.
The quantities most often reported are the B(E1)/B(E2) branching ratios from these levels. The calcu-
lations in the framework of the spdf model show that the 1-pf boson limit (dipole–octupole vibrations)
can describe the essential experimental features related to the octupole bands in the Rn–Th region.
c© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The nuclear octupole states, despite their almost
50 years history, are much less understood than the
quadrupole collective states. The question of the
existence of octupole deformation is still controver-
sial and challenging for nuclear structure models.
The difficulty arises from the fact that is no specific
established phenomenological criteria for the degree
of octupole collectivity. Although there are many
models [1], microscopic or macroscopic, geometric or
algebraic, it is not yet known definitively which nuclei
are octupole-deformed, if any, and which models ad-
equately describe the occurrence of strong octupole
correlations. The recent developments in spectro-
scopic techniques produced qualitatively new sets of
data which constitute a real challenge for different
models. Extensive numerical studies are necessary
to test different models in their ability to describe the
essential experimental features.

2. spdf IBA CALCULATIONS

The Interacting Boson Model (IBA) offers a phe-
nomenological approach by introducing bosons of a
given spin which carry the corresponding multipole
modes. The negative parity states are described by
introducing bosons with odd values of angular mo-
mentum, p(L = 1) and/or f(L = 3), in addition to
the standard s(L = 0) and d(L = 2) bosons. The
spdf version of the IBA was introduced by Engel
and Iachello [2], and the dynamical symmetries of
the related group, U(16), were studied by Nadjakov

∗This article was submitted by the author in English.
**e-mail: zamfir@galileo.physics.yale.edu
1063-7788/01/6406-1060$21.00 c©
and Mikhailov [3a] and completely constructed and
classified by Kusnezov [3b]. Although the dynamical
symmetries of the sd IBA constituted benchmarks for
the phenomenology of the quadrupole collectivity, in
this case, none of the typical features of the dynamical
symmetries of U(16) appear to be in the data. The
Z ∼ 88, N ∼ 134 nuclei, where octupole deformation
is predicted by microscopic–macroscopic calcula-
tions to play a major role and where there is a wealth
of experimental information, are in a quadrupole and
octupole transitional region. Under these conditions,
numerical calculations are needed. The model space
is very large and is impractical for a systematic nu-
merical study. Different truncations were applied, and
a variety of data were successfully explained [4–8].

The aim of this work is to test the vibration-like
picture (np, nf ≤ 1) in a large region of transitional
nuclei (Z = 86–90, N = 130–142) in a unified way
(the same Hamiltonian) and to keep the calculations
as simple as possible (a minimum number of terms).
The question is howmuch of the observed phenomena
can be explained in the absence of octupole defor-
mation. The calculations were done with the code
OCTUPOLE [9] using a very simple Hamiltonian:

H = εdn̂d + εpn̂p + εf n̂f − κQspdfQspdf , (1)
where

Qspdf = Qsd +Qpf (2)

= [s†d̃+ d†s]−
√

7
2

[d†d̃](2) +
3
√

7
5

[p†f̃

+ f †p̃)](2) − 9
√

3
10

[p†p̃](2) − 3
√

42
10

[f †f̃ ](2).

With four parameters (three boson energies εd, εp,
and εf and the strength κ of the quadrupole–
quadrupole interaction) having a smooth behavior
2001MAIK “Nauka/Interperiodica”
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across the region (Fig. 1), the energies of the alter-
nating parity band (K = 0+

1 and K = 0−1 ) are very
nicely reproduced (Fig. 2). It is worth noting that this
includes the inversion of the 1− and 3− states (the
1− state is lower than 3− in 218Rn [10] and 218Ra [11]
and is higher in all other nuclei).

The one-body E1 operator is

Tspdf (E1) = e1([p†d̃+ d†p̃](1) (3)

+χsp[s†p̃+ p†s](1) + χdf [d†f̃ + f †d̃](1)).

The E1-branching ratios depend only on χsp, χdf

and are not dependent on the effective charge e1.
The parameters χsp, χdf are presented in Fig. 3
(top). In Fig. 3 (middle) is shown the branching
ratio B(E1; 1−1 → 2+

1 )/B(E1; 1−1 → 0+
1 ) for differ-

ent isotopic chains, and in Fig. 3 (bottom) are
presented the branching ratios B(E1;J− → (J +
1)+)/B(E1;J− → (J − 1)+) as a function of spin for
230,232Th. In all cases, the agreement with the data is
excellent, including the large variation in magnitude
of the branching ratio as a function of spin in 232Th.

Another test of the model constitutes the
B(E1)/B(E2) ratios. For the T (E2) operator, we
used the sd form, namely, T (E2) = e2Qsd. In Fig. 4
(bottom) are compared the experimental and theoret-
ical average values of this ratio. This agreement was
obtained with a mass-dependent effective charge, e1,
presented in Fig. 4 (top).
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3. DISCUSSION
The comparisons presented in Figs. 2–4 show

that calculations with 1-pf boson are able to repro-
duce the essential features of the alternating parity
bands in the light actinides.

In order to see if the p boson is essential or not
in describing the negative parity states, we show
in Fig. 5 a comparison of two sets of calculations
corresponding to 230Th: one calculation is 1-pf bo-
son approach described in the present work, and the

B(E1; J−
i → J+

f1)/B(E1; J−
i → J+

f2) for octupole bands
in 230Th compared with calculations in the 1-pf and 1-f
limits of the IBA model

K− J−
i J+

f1 J+
f2 Experiment spdf sdf [12]

0− 1− 2+
1 0+

1 2.32(14) 2.42 2.60

3− 4+
1 2+

1 2.15(24) 1.85 1.65

5− 6+
1 4+

1 2.06(19) 1.61 1.21

7− 8+
1 6+

1 2.12(24) 1.31 0.92

1− 1− 2+
1 0+

g.s 0.24(2) 0.44 0.17

1− 2+

K=0+
2

2+
1 0.6(2) 114 2.7

3− 4+
1 2+

1 0.09(4) 0.04 0.54

2− 2− 2+

K=0+
2

2+
1 0.28(7) 0.12 1.64

2− 2+
γ 2+

1 1.2(6) 3.8 0.9

2− 3+
γ 2+

γ 0.8(5) 0.3 0.8

3− 4+
1 2+

1 0.31(9) 0.07 0.89

3− 2+

K=0+
2

2+
1 �0.2 48 0.05

3− 2+
γ 2+

1 <1.1 0.01 1.8
YSICS OF ATOMIC NUCLEI Vol. 64 No. 6 2001
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other is only 1-f description from [12]. Although,
the general pattern is similar, the spdf calculation
describes better the position of the K = 0+

2 band
(lower than K = 2+

γ ). In order to see the effect on
the calculated B(E1) branching ratios, in the table
is presented a full comparison of the two calculations
with all the experimentally known B(E1) branching
ratios in 230Th. The two calculations agree with the
experimental values except those when one of the
transition is to the K = 0+

2 band when both sets fail
to reproduce the data.

In lighter nuclei where theK = 0+
2 band is known,

222,224Ra and 226,228Th (see Fig. 2), the 1-pf calcula-
tions with the parameters presented in Fig. 1 predict
overly low 0+

2 states. However, a slight change in
the parameters improves the agreement, but the lack
of data on other non-yrast states does not permit a
definite answer.

4. CONCLUSION

Extensive numerical studies show that by adding
only 1-pf boson to the usual sd space of the IBA, with
smooth varying parameters, we obtained a consistent
picture (except, maybe, the 0+

2 states) over the entire
nuclear region of the light actinides. In comparison
with only 1-f boson, the addition of 1-p boson does
not change the essential features of the agreement
with the data, at least for deformed nuclei as 230Th.
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 6 200
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Abstract—We discuss a multistep variational approach to collective excitations. The approach is de-
veloped in a boson formalism (bosons representing particle–hole excitations) and based on an iterative
sequence of diagonalizations in subspaces of the full boson space. The purpose of these diagonalizations is
that of searching for the best approximation of the ground state of the system. The procedure also leads us
to define a set of excited states and, at the same time, of operators which generate these states as a result of
their action on the ground state. We examine the cases in which these operators carry one-particle–one-
hole and up to two-particle–two-hole excitations. We also explore the possibility of associating bosons to
Tamm–Dancoff excitations and of describing the spectrum in terms of only a selected group of these. Tests
within an exactly solvable three-level model are provided. c© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Developing reliable microscopic approaches for
the description of correlations in quantum many-
body systems is a field of active research in various
branches of physics. A preeminent role in this field
has been traditionally played by the random phase
approximation (RPA) [1]. Over the years, however,
several attempts [2–16] have also been made to over-
come the natural limitations of this theory related, in
particular, to its lack of an internal consistency.

In a recent publication [16], with reference to the
β-decay physics and working in a quasiparticle for-
malism, we have discussed an approach aiming at
improving the quality of the standard quasiparticle
RPA calculations usually made in this field. In this
contribution, we present an evolution of this method
which we believe to be more effective and simpler to
apply in realistic cases.

The approach is developed in a boson formalism.
As a preliminary step, then, a boson space will be de-
fined where bosons identify particle–hole excitations
and a mapping procedure will allow the transforma-
tion of fermion operators onto their images in this
boson space. Similarly to the previous work [16], the
basic point of the approach will consist in searching
first for the best approximation of the ground state.
Differently from the mentioned case, however, this
will be achieved by means of an iterative sequence of
diagonalizations in subspaces of the full boson space.
As a further and important difference from the case of
[16], as a result of this sequence of diagonalizations, a

∗This article was submitted by the author in English.
**e-mail: samba@ct.infn.it
1063-7788/01/6406-1064$21.00 c©
set of operators will also be generated which by acting
on the ground state of the system will define a set of
excited states. We will consider two cases: the case in
which these operators carry only one-particle–one-
hole (1p–1h) excitations and the case in which they
include up to two-particle–two-hole (2p–2h) excita-
tions. The comparison with exact calculations within
a schematic model will allow us to judge the quality of
the approximations. As a schematic model we have
chosen the SU(3) model [17–19].

In the second part of the contribution, we will
reformulate the fermion–boson correspondence and
identify bosons with properly chosen collective
particle–hole excitations. Then, what is more inter-
esting, we will explore the possibility of describing at
least partially the spectrum of the system in terms of
only a selected group of these bosons.

The article is organized as follows. In Section 2,
we will describe the basic points of the procedure. In
Section 3, we will provide some applications within
the SU(3) model. In Section 4, we will examine the
case of bosons as collective particle–hole excitations.
Finally, in Section 5, we will summarize the results
and give some conclusions.

2. THE PROCEDURE

To simplify the notation, we will illustrate the
procedure directly within the exactly solvable model
which has been used for our tests. This model, the
so-calledSU(3) model, was first discussed by Li et al.
[17] and has been used more recently by Matsuo and
Matsuyanagi [18] and Takada et al. [19] to test some
approximation schemes. The model consists of three
2Ω-fold degenerate single-particle shells which are
2001MAIK “Nauka/Interperiodica”
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occupied by 2Ω particles. In the absence of interac-
tion, then, the lowest level is completely filled, while
the others are empty. This state, the Hartree–Fock
(HF) state of the system, is denoted by |0〉. A single-
particle state is specified by a set of quantum numbers
(j,m), where j stands for the shell (j = 0, 1, 2) and
m specifies the 2Ω substates within the shell. The
creation and annihilation operators of a fermion in a
state (j,m) are defined by a†jm and ajm, respectively.

Let us consider the operators

Kij =
2Ω∑

m=1

a†imajm (i, j = 0, 1, 2). (1)

These operators satisfy the Lie algebra of the group
SU(3)

[Kij ,Kkl] = δjkKil − δilKkj. (2)
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 6 20
It is assumed that the Hamiltonian of the model is
written in terms of the generators Kij only and con-
tains up to two-body interactions. Its form is [19]

HF =
∑
i=1,2

ε(i)Kii +
∑

i,j=1,2

Vx(i, j)Ki0K0j (3)

+
1
2

∑
i,j=1,2

Vv(i, j)(Ki0Kj0 + K0jK0i)

+
∑

i,j,k=1,2

Vy(i, j, k)(Ki0Kjk + KkjK0i),

where the coefficients are real and obey the symmetry
conditions Vx(i, j) = Vx(j, i) and Vv(i, j) = Vv(j, i).
The eigenstates ofHF are constructed by diagonaliz-
ing it in the space
F =

{
|n1n2〉 =

1√
Nn1n2

(K10)n1(K20)n2 |0〉
}

0≤n1+n2≤2Ω

, (4)
whereNn1n2 are normalization factors. As in [16], we
will work in a boson formalism. To begin, then, we
define the boson space

B (5)

=
{
|n1n2) =

1√
n1!n2!

(b†1)
n1(b†2)

n2 |0)
}

0≤n1+n2≤2Ω

,

where the operators b†i obey standard boson commu-
tation relations

[bi, b
†
j ] = δij , [bi, bj ] = 0, (6)

and |0) is the boson vacuum. As is evident from a
glance at (4) and (5), a one-to-one correspondence
exists between the states of F and B, the boson op-
erators b†i playing the role of the excitation operators
0

Ki0 and the boson vacuum |0) replacing the HF state
|0〉. As anticipated in the Introduction, however, in
Section 4 we will also examine a different correspon-
dence and so a different meaning to attribute to these
boson operators.

The mapping procedure to construct boson im-
ages of fermion operators is the same discussed in
previous works [12, 16], and it is based on the require-
ment that corresponding matrix elements in F and B
be equal. The procedure is, therefore, of Marumori-
type. In correspondence with the Hamiltonian HF

(3), then, we introduce a Hermitian boson Hamilto-
nianHB which we truncate at five-boson terms. This
has therefore the general form
HB = α +
∑

i

βi(b
†
i + h.c.) +

∑
ij

γijb
†
ibj +

∑
i≤j

φij(b
†
i b

†
j + h.c.) (7)

+
∑
i≤j

∑
k

εijk(b
†
i b

†
jbk + h.c.) +

∑
i≤j

∑
k≤l

δijklb
†
ib

†
jbkbl

+
∑

i≤j≤k

∑
l

ρijkl(b
†
i b

†
jb

†
kbl + h.c.) +

∑
i≤j≤k

∑
l≤m

τijklm(b†i b
†
jb

†
kblbm + h.c.).
To illustrate the iterative sequence of diagonal-
izations on which our approach is based, we start

by introducing an arbitrary boson state |Ψ(0)
0 ). We

consider this as a zeroth-order approximation of the

ground state, and we assume |Ψ(0)
0 ) = (1/

√
3)(|0) +
b†1|0) + b†2|0)). Let us then consider the space

B(1) ≡
{
|Ψ(0)

0 ), b†i |Ψ
(0)
0 ), bi|Ψ(0)

0 )
}

i=1,2
(8)

and diagonalizeHB in this space. B(1) is, in general,
considerably smaller than the full boson space B.
1
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In our calculations, for instance, we have assumed
2Ω = 10 and this implies that the space B can have
up to ten-boson states, while B(1) contains only up

to two-boson states. However, if |Ψ(1)
0 ) denotes the

lowest eigenstate resulting from this diagonalization,

one can only expect that |Ψ(1)
0 ) will provide an ap-

proximation of the ground state better than (or, at

worst, equal to) |Ψ(0)
0 ). This is due to the fact that we

are allowing the new state to have more components

than |Ψ(0)
0 ) and that the coefficients of |Ψ(1)

0 ) are fixed
to guarantee the lowest energy of the state. We

define |Ψ(1)
0 ) as the first-order approximation of the

ground state.
As a next step, let us consider the space

B(2) ≡
{
|Ψ(1)

0 ), b†i |Ψ
(1)
0 ), bi|Ψ(1)

0 )
}

i=1,2
(9)

and diagonalize HB in this space. If |Ψ(2)
0 ) is the

lowest eigenstate resulting from this diagonalization,

the above arguments lead us to expect that also |Ψ(2)
0 )

will be better than |Ψ(1)
0 ). We define |Ψ(2)

0 ) as the
second-order approximation of the ground state. The
procedure can go on as many times as one wishes. By
performing a sequence of diagonalizations in spaces
whose dimensionality remains unchanged (and much
smaller than that of the full boson space), one can
construct approximations of the ground state which
improve step-by-step.

It turns out to be interesting to reformulate the
procedure just described as follows. Let us define the
operator

(Q†
0)

(ν) =
∑

i

X
(ν)
i b†i +

∑
i

Y
(ν)
i bi + Z(ν). (10)

It is, then,

|Ψ(0)
0 ) = (Q†

0)
(0)|0) (11)

with X
(0)
i = Z(0) = 1/

√
3 (the coefficients Y

(0)
i re-

main undetermined in this case). Similarly, one can
define an operator (Q†

0)
(1) such that

|Ψ(1)
0 ) = (Q†

0)
(1)|Ψ(0)

0 ) (12)

and so on for all other approximations. In general, if

|Ψ(k)
0 ) denotes the kth approximation of the ground

state, one can write

|Ψ(k)
0 ) = (Q†

0)
(k)|Ψ(k−1)

0 ) (13)

= (Q†
0)

(k)(Q†
0)

(k−1) · · · (Q†
0)

(0)|0).

Therefore |Ψ(k)
0 ) is a product of k + 1 operators Q†

of the type (10), k corresponding to the k diago-
nalizations in the B(k) subspaces plus the operator
PH
(Q†
0)

(0) corresponding to the starting ansatz |Ψ(0)
0 ).

Concerning this state, some comments are necessary
to justify its use. In principle, one could have started
with a diagonalization similar to all the other ones,

namely, in a space of the type (8) where |Ψ(0)
0 ) ≡ |0).

However, the coefficients βi of the bosonHamiltonian
(7) are nothing but the matrix elements of HF be-
tween the HF state |0〉 and the 1p–1h states Ki0|0〉.
These coefficients turn out to be zero in our model,
and the same would happen in a realistic case. In
consequence of that, no mixing is possible between
the states |0) and b†j|0), and so a diagonalization in

the space {|0), b†j |0)} could generate (what indeed
happens in our model) the boson vacuum |0) as the
lowest eigenstate. This would lead to a crash of the
iterative mechanism.

Once a sufficient number of iterations have been
performed, the procedure is expected to reach conver-
gence. If this is the case, any diagonalization beyond
a given one, let us say the kth one, will have to leave
the results unmodified. This necessarily implies that
the operator (Q†

0)
(k+1) which will emerge from the

(k + 1)th diagonalization will have coefficients

X
(k+1)
i = Y

(k+1)
i = 0, Z(k+1) = ±1. (14)

Convergence of the procedure therefore means con-
vergence towards these values of the coefficients
X,Y , and Z.

As a result of the same (k + 1)th diagonalization,
besides the operator (Q†

0)
(k+1), one will also obtain

the operators (Q†
i )

(k+1) associated with the remain-
ing eigenstates. The number of these eigenstates is
(up to) 2N , where N is the number of the 1p–1h
excitations (N = 2 in our model). If we call |gs) our
best approximation for the ground state, i.e., |gs) ≡
|Ψ(k)

0 ), these further eigenstates can be written as

|Ψ(k+1)
i ) ≡ (Q†

i )
(k+1)|gs) (i = 1, ..., 2N). (15)

This procedure therefore leads us to define a set of
operators (Q†

i )
(k+1) whose action on the ground state

gives rise to a set of excited states which, considering
the nature of the operators (10), all carry excitations
of the type 1p–1h.

Of course, the same procedure discussed so far
can be extended in a natural way to include 2p–2h
excitations as well. The basic difference consists in
performing each diagonalization of the iterative se-
quence in spaces of the type
YSICS OF ATOMIC NUCLEI Vol. 64 No. 6 2001
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B(k) =
{
|Ψ(k−1)

0 ), b†i |Ψ
(k−1)
0 ), b†i b

†
j|Ψ

(k−1)
0 ), bi|Ψ(k−1)

0 ), bibj|Ψ(k−1)
0 )

}
i≤j=1,2

. (16)
Moreover, differently from the 1p–1h case, there is no
more need for an initial ansatz for the ground state.
The iterative procedure simply begins by performing a
diagonalization in a spaceB(1) of the form (16) where
|Ψ(0)

0 ) ≡ |0).

3. RESULTS

The calculations we are going to describe refer
to the following choice of the parameters: 2Ω = 10,
ε(1) = ε, ε(2) = 1.5ε, Vx(i, j) = −2χ, Vv(i, j) = 1

2χ,
and Vy(i, j, k) = −3

4χ (i, j, k,= 1, 2). Both ε and χ
are parameters expressed in units of energy. Due to
space reasons, we are forced to reduce considerably
the analysis of the results. A complete description of
the numerical tests can be found in [20].

In Fig. 1, we show the energies calculated ac-
cording to the procedure described in (8)–(15) and
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Fig. 1. Ground state energy (lower panel) and excita-
tion energies of the lowest five states (upper panel) as
functions of the strength χ/ε. The solid curves are ob-
tained by diagonalizing HB (7) in B (5), while the dash-
dotted curves are obtained with the procedure described
in Section 2 (only 1p–1h excitations are included). The
numbers label different orders of approximation. The
dashed curves (upper pannel) show the RPA one-phonon
energies.
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so withQ† operators carrying only 1p–1h excitations.
In the lower part, we plot the ground state energies
corresponding to different orders of approximation as
indicated by the numbers which label the dash-dotted
curves. For comparison, we plot (solid curve) the
energies which result from the diagonalization ofHB

in B since this represents the best one can hope
to reproduce in this approach. These energies are
found to be very close to the exact ones [20]. A clear
improvement of the quality of the approximation is
observed in correspondence with the increasing of its
order.

Still in Fig. 1, upper part, the dash-dotted curves
show the spectrum obtained within this approach (the
spectrum is found in correspondence with the best
approximation of the ground state shown in the lower
part of the figure). Also shown are the energies of
the two RPA states (dashed curves). RPA undergoes
a collapse as soon as the ground state energy starts
deviating significantly from zero (χ/ε ≈ 0.024). The
same states, but within the whole range of χ/ε, are
well reproduced within the present approach.

Results shown in Fig. 2 refer to calculations which
include up to 2p−2h excitations [see (16)]. As com-
pared to results of Fig. 1, one observes a faster con-
vergence of the procedure and a quite good agreement
for all low-lying excited states.

4. BOSONS AS COLLECTIVE
PARTILCLE–HOLE EXCITATIONS

When performing the boson mapping, we have
established a one-to-one correspondence between
the states |n1n2〉 and |n1n2) defined in (4) and (5),
respectively. In such a correspondence, bosons b†j
are images of the 1p–1h operators Kj0. However, as
already anticipated, this is not the only possibility of
correspondence. To show an alternative choice, let us
proceed as in Takada et al. [19] and first define the
Tamm–Dancoff (TD) phonon operator

V †
λ =

1√
2Ω

∑
i

v
(λ)
i Ki0. (17)

In terms of these TD operators we construct the space{
|n1n2〉 =

1√
N ′

n1n2

(V †
1 )n1(V †

2 )n2 |0〉
}

0≤n1+n2≤2Ω

.

(18)
1
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Fig. 2. The same as in Fig. 1, but the dash-dotted curves
refer now to calculations involving up 2p−2h excitations.

This space is the same as (4) but just a different
representation. Therefore, if we establish a one-to-
one correspondence between states (18) and (5) and
we reconstruct the boson image ofHF , the new boson
Hamiltonian will have different coefficients but its
spectrum will remain unchanged. In this new repre-
sentation, bosons correspond to collective particle–
hole excitations and so play a role very similar to
that of the standard s, d, . . . bosons in the Interacting
Boson Model picture [21] (where they are meant to
represent collective particle–particle excitations). As
in this case, then, it is natural to expect that the
structure of the low-lying part of the spectrum may
be described in terms of only a selected group of
collective bosons.

Space reasons force us again to omit a detailed
discussion of this important point, for which we ad-
dress to [20]. Here, we simply say that in this model,
by introducing only one boson in correspondence with
the lowest TD excitation and repeating the calcu-
lations illustrated in Section 2, we have obtained a
surprisingly good description of the low-lying levels
of the spectrum.

5. SUMMARY AND CONCLUSIONS

We have presented a multistep variational ap-
proach for the study of many-body correlations. The
P

approach has been developed in a boson formalism
(bosons representing particle–hole excitations) and
based on an iterative sequence of diagonalizations
in subspaces of the full boson space. The purpose
of these diagonalizations has been that of searching
for the best approximation of the ground state of the
system. The procedure has also led us to define a set
of excited states and, at the same time, of operators
generating these states as a result of their action on
the ground state. We have considered two cases: (i)
the case in which these operators carried only 1p–
1h excitations and (ii) the case in which also 2p–2h
excitations were included. The approach has been
tested within an exactly solvable three-level model
and has provided encouraging results.

We have also reformulated the fermion–boson
correspondence and identified bosons with TD pho-
nons. The possibility of selecting a restricted set of
collective particle–hole excitations and therefore of
constructing the boson space only in terms of the
corresponding bosons appears to be quite appealing.
It may represent, in fact, an effective way to reduce
the dimensionalities of the system and so to lead
to a much simplified application of the procedure to
realistic cases.

REFERENCES
1. P. Ring and P. Schuck, The Nuclear Many-Body

Problem (Springer-Verlag, New York, 1980).
2. Ken-ji Hara, Prog. Theor. Phys. 32, 88 (1964).
3. D. J. Rowe, Phys. Rev. 175, 1283 (1968).
4. J. da Providencia, Phys. Rev. C 2, 1682 (1970).
5. J. Dukelsky and P. Schuck, Nucl. Phys. A 512, 466

(1990).
6. D. Janssen and P. Schuck, Z. Phys. A 339, 43 (1991).
7. A. Klein et al.,Nucl. Phys. A 535, 1 (1991).
8. F. Catara et al.,Nucl. Phys. A 579, 1 (1994).
9. J. Dukelsky and P. Schuck, Phys. Lett. B 387, 233

(1996).
10. E. R. Marshalek, Phys. Rev. C 36, 2538 (1987).
11. D. Beaumel and Ph. Chomaz, Ann. Phys. (N.Y.) 213,

405 (1992).
12. M. Sambataro and J. Suhonen, Phys. Rev. C 56, 782

(1997).
13. F. Catara et al., Phys. Rev. B 54, 17536 (1996).
14. F. Catara et al., Phys. Rev. B 58, 16070 (1998).
15. M. Sambataro and N. Dinh Dang, Phys. Rev. C 59,

1422 (1999).
16. M. Sambataro, Phys. Rev. C 59, 2056 (1999).
17. S. Y. Li et al., J. Math. Phys. 11, 975 (1970).
18. M. Matsuo and K. Matsuyanagi, Prog. Theor. Phys.

74, 288 (1985).
19. K. Takada et al.,Nucl. Phys. A 485, 189 (1988).
20. M. Sambataro, Phys. Rev. C 60, 064320 (1999).
21. F. Iachello and A. Arima, The Interacting Boson

Model (Cambridge Univ. Press, Cambridge, 1991).
HYSICS OF ATOMIC NUCLEI Vol. 64 No. 6 2001



Physics of Atomic Nuclei, Vol. 64, No. 6, 2001, pp. 1069–1075. From Yadernaya Fizika, Vol. 64, No. 6, 2001, pp. 1144–1150.
Original English Text Copyright c© 2001 by Vdovin, Storozhenko.
TFD Extension of a Self-Consistent RPA to Finite Temperatures*
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Abstract—The self-consistent RPA (SCRPA) developed by Schuck and coauthors is extended to finite
temperatures. The corresponding equations are derived by using the formalism of thermofield dynamics.
The intrinsic energy of a system is calculated as the expectation value of the Hamiltonian with respect
to a T -dependent thermal vacuum state for a thermal-phonon operator. A nonvanishing number of
thermal quasiparticles in the vacuum state are assumed. By virtue of the assumption, the thermal
Hartree–Fock (HF) equations appear to be coupled to the equations of motion for phonon variables.
The thermal occupation numbers are also calculated in a consistent way with the energies of the HF
quasiparticles. The approximation is applied to the two-level Lipkin model. Advantages of the thermal
SCRPA (TSCRPA) are most obvious at temperatures near the phase-transition point. In the TSCRPA,
the phase transition occurs at lower T than in other approximations. Moreover, within the TSCRPA, a
statistical behavior of the Lipkin model is described with an appropriate accuracy at any T even if the HF
transformation parameter is kept fixed at a value corresponding to the “spherical” phase of the HF field.
c© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The random-phase approximation (RPA) is a
standard theoretical tool for studying collective vi-
brations in nuclei. This approximation has known
many generalizations from the so-called extended
RPA developed by Ken-ji Hara and Rowe [1]. One
of the recent and seemingly the most consistent
improvements of the RPA is the self-consistent RPA
(SCRPA) proposed by Schuck and coauthors [2, 3].
There is no place here to discuss all ingredients of nu-
merous versions of the RPA, and we point out only the
most important one, a redefinition of the RPA vacuum
state, thus incorporating new kinds of particle–hole
or particle–particle (hole–hole) correlations in it.

While the aforementioned new approximations
were carefully examined for cold nuclei, much less
is known about the influence of new correlations on
the statistical (thermal) properties of nuclei. This
problemwas studied in [4–7]. A thermal version of the
extended RPA (referred to as a thermal renormalized
RPA or TRRPA) was proposed and studied in detail
elsewhere [4, 5]. Moreover, a more sophisticated
version of the TRRPA was presented in [6, 7], where
the coupling of Hartree–Fock (HF) variables to
collective ones was taken into account. In this
respect, this approximation is quite close to the
aforementioned SCRPA.

∗This article was submitted by the authors in English.
**e-mail: vdovin@thsun1.jinr.ru
***e-mail: astorozh@thsun1.jinr.ru
1063-7788/01/6406-1069$21.00 c©
In this article, we present a fully consistent ver-
sion of a thermal self-consistent RPA (TSCRPA),
thus extending the ideas developed in [2, 6]. As
before [4–7], we use the formalism of thermofield
dynamics (TFD) [8]. For the first time, it was ap-
plied to a nuclear-structure problem in [9]. This is a
real-time formalism—i.e., in contrast to the method
of thermal (Matsubara) Green’s functions, tempera-
ture and time are independent variables within TFD.
The formalism is convenient for our present purposes
because temperature effects arise explicitly as T -
dependent vertices, thus providing a good starting
point for various approximations. Moreover, the TFD
approach is the most powerful when combined with
variational methods, which are our main tools in the
present consideration.

2. GENERAL SCHEME OF TSCRPA

We consider a system of N fermions that is gov-
erned by a two-body interaction and write the Hamil-
tonian as

H =
∑
12

t12a
+
1 a2 +

1
4

∑
1234

V1234a
+
1 a

+
2 a4a3, (2.1)

where a+ and a are the fermion creation and annihila-
tion operators, respectively. The one-body part of the
Hamiltonian, t12 = T12 − λδ12, contains the kinetic
energy matrix T12 and the chemical potential λ.

In order to describe, at thermal equilibrium (T �=
0), a system whose behavior is governed by the
2001MAIK “Nauka/Interperiodica”



1070 VDOVIN, STOROZHENKO
Hamiltonian in (2.1), it is necessary to find a mini-
mum of the model grand canonical thermodynamic
potential

Ωmod(H) = Ω0 + 〈〈H −H0〉〉0, (2.2)

where
Ω0 = 〈〈H0〉〉0 − TS0

is the probing grand canonical thermodynamic po-
tential of a model N-fermion system characterized by
the Hamiltonian H0 and the entropy S0 [10]. The
statistical average 〈〈 〉〉0 is taken with respect to the
grand partition function of this model system. In the
thermal HF approximation (THFA), H0 is chosen as
the Hamiltonian of a system of noninteracting quasi-
particles moving in a common mean field, the cor-
responding creation and annihilation operators being
denoted by α+

i and αi, respectively. Then, the entropy
is

S0 = −
∑

1

[n1 ln(n1) + (1− n1) ln(1− n1)] , (2.3)

where n1 = 〈〈α+
1 α1〉〉0 is the quasiparticle density

matrix.
In terms of TFD, the statistical average 〈〈 〉〉0

is evaluated as a matrix element with respect to the
thermal vacuum state |0(T )〉 of the model system.
The vacuum state |0(T )〉 is an eigenstate of the
thermal HamiltonianH0 = H0(α+

i , αi)− H̃0(α̃+
i , α̃i)

with zero eigenvalue. It controls the thermal behavior
of the system. To find the “best” H0, one makes a
unitary transformation D from the operators a+

1 and
a1 characterizing the initial (“bare”) fermions to the
quasiparticle operators α+

1 and α1,

a+
1 =

∑
2

D∗
21α

+
2 , a1 =

∑
2

D21α2, (2.4)

and then finds a minimum of Ωmod with respect to
small variations of the coefficients Dik. With expres-
sion (2.3) for the entropy, one also gets the Fermi–
Dirac formula for thermal occupation numbers of the
HF quasiparticles,

n1 =
[
1 + exp

(
E1

T

)]−1

, (2.5)

where E1 is the HF quasiparticle energy.
The state |0(T )〉 appears to be a vacuum for the

operators of the so-called thermal quasiparticles de-
fined as

β1 = x1α1 − y1α̃
+
1 , (2.6)

β̃1 = x1α̃1 + y1α
+
1 ,

where x2
1 + y2

1 = 1 and y2
1 = n1 from (2.5). The uni-

tary transformation {x , y} is referred to as the ther-
mal Bogolyubov transformation.
P

Usually, the THFA basis {β1 , β
+
1 , β̃1 , β̃

+
1 } is

used to build the thermal RPA (TRPA) scheme that
includes some long-range correlations of a motion
of thermal quasiparticles. Within TRPA, a thermal
vacuum state |Ψ0(T )〉 and excited states |Ψν(T )〉 of
a heated system are defined by the relations

|Ψν(T )〉 = Q+
ν |Ψ0(T )〉, Qν |Ψ0(T )〉 = 0, (2.7)

where the thermal phonon creation operatorQ+
ν is

Q+
ν =

∑
12

ψν
12β

+
1 β̃

+
2 − φν

12β̃2β1. (2.8)

To find the energy ων and the amplitudes ψ12 and
φ12, use is usually made of the equation-of-motion
method. A feature peculiar to the TRPA (like RPA)
is the additional assumption that the operators Q+

ν
and Qν obey bosonic commutation rules, which is
equivalent to averaging with respect to the thermal
HF vacuum state in the equations of motion. In this
respect, the THFA and the TRPA are consistent with
each other. Moreover, the vacuum states |0(T )〉 and
|Ψ0(T )〉 are related by a unitary transformation, and,
within the TRPA, the thermal occupation numbers
(2.5) are identical to those within the THFA. In ad-
dition, the THFA equations are decoupled from those
of TRPA.

In order to retain the aforementioned consistency
of the two stages of our treatment of collective vi-
brations in a heated N-fermion system, one should
use a new vacuum state already in the THFA if new
correlations are taken into account in the equations
of motion. This leads us to a generalization of the
THFA. Actually, this was proposed in [2] for the HF
procedure at T = 0 and then in [6] for T �= 0. Thus,
one should calculate the expectation value ofH −H0

in Ωmod (2.2) over a correlated vacuum state |Ψ0(T )〉
defined by (2.7) but not over |0(T )〉; that is, we pro-
pose to use a new Ωmod,

Ωmod = 〈Ψ0(T )|H|Ψ0(T )〉 − TS. (2.9)

If |Ψ0(T )〉 includes correlations beyond the TRPA,
the quantity 〈|H|〉1) appears to be dependent on ther-
mal phonon variables [6] and the parameters of the
HF transformation (2.4) can be determined only to-
gether with the amplitudes ψ12 and φ12. To evaluate
(2.9), we need to know the properties of the vacuum
state |Ψ0(T )〉 and an expression for the entropy S,
which can also differ from expression (2.3).

To determine the properties of |Ψ0(T )〉, we must
diagonalize H. To this aim, let us first write the

1)Hereafter, the expectation values are implied to be taken over
the thermal vacuum state defined in (2.7), unless otherwise
stated.
HYSICS OF ATOMIC NUCLEI Vol. 64 No. 6 2001
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thermal Hamiltonian H in terms of thermal quasi-
particles. At this stage, we only assume that the
transformations D (2.4) and {x , y} (2.6) are unitary.

The Hamiltonian H is equal to the sum of the
termsHik, each consisting of i creation operators and
k annihilation operators for thermal quasiparticles,

H = H11 +H22 +H20 +H02

+H40 +H04 +H31 +H13. (2.10)

Only the termsH11,H22,H40, andH04,

H11 =
∑
12

(
P12 +

∑
3

y2
3U1323

)
(2.11)

× (x1x2 + y1y2)
(
B12 − B̃12

)
,

H22 =
∑
1234

U1234

[
(x1x4y2y3 − x2x3y1y4)A+

13A42

+
1
4

(x1x2x3x4 − y1y2y3y4)
(
: B13B24 − B̃13B̃24 :

)]
,

H40 =
∑
1234

U1234 (x1x2y3y4 − x3x4y1y2)A+
13A

+
24,

H40 = H+
04,

are relevant to the present consideration. Here, we
have used the newly defined bifermionic operators

A+
12 = Ã+

21 = β+
1 β̃

+
2 , A12 = Ã21 = β̃2β1,

B12 = β+
1 β2, B̃12 = β̃+

1 β̃2.

The coefficients P12 and U1234 are given by

P12 =
∑
34

t34D
∗
13D24,

U1234 =
∑
5678

V5678D
∗
51D

∗
62D73D84.

At this stage, our main assumption is the relation
[1, 4]

M1234 = 〈|
[
A12, A

+
34

]
|〉 (2.12)

= 〈|δ13δ24 − δ13B̃42 − δ24B31|〉
= δ13δ24 (1− q1 − q2) = δ13δ24 (1− q12) ,

where qi is a c number to be determined. Formula
(2.12) means that there is a nonvanishing number of
thermal quasiparticles in the vacuum state |Ψ0(T )〉,

〈|B12|〉 = 〈|B̃12|〉 = q1δ12 .

The set of equations for the phonon amplitudes and
energies then takes the form∑

34

ψν
34〈|

[
A12,

[
H, A+

34

]]
|〉 (2.13)

−
∑
34

φν
34〈| [A12, [H, A34]] |〉 = ων

∑
34

ψν
34M1234,
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 6 200
∑
34

ψν
34〈|

[
A+

12,
[
H, A+

34

]]
|〉

−
∑
34

φν
34〈|

[
A+

12, [H, A34]
]
|〉 = −ων

∑
34

φν
34M1234.

The normalization condition for the one-phonon
state is

〈|QνQ
+
ν′ |〉 (2.14)

=
∑
12

(1− q12)
(
ψν

12ψ
ν′
12 − φν

12φ
ν′
12

)
= δνν′ .

In deriving the coefficients of the phonon ampli-
tudes ψ and φ in (2.13), one meets four types of
two-body matrix elements, 〈|A+

12A34|〉, 〈|A12A34|〉,
〈|A+

12A
+
34|〉, and 〈|B12B34|〉. To demonstrate what

kinds of approximations we made in diagonalizing the
thermal Hamiltonian, we display the expressions for
these matrix elements

〈|A+
12A34|〉 =

∑
ν

(1− q12) (1− q34)φν
12φ

ν
34, (2.15)

〈|A+
12A

+
34|〉 =

∑
ν

(1− q12) (1− q34)φν
12ψ

ν
34,

〈|A12A34|〉 =
∑

ν

(1− q12) (1− q34)ψν
12φ

ν
34.

To evaluate the fourth matrix element, an expan-
sion in the complete phonon basis is used,

〈|B12B34|〉 = 〈|B12|〉〈|B34|〉 (2.16)

+
∑
ν1ν2

〈|B12Q
+
ν1
Q+

ν2
|〉〈|Qν2Qν1B34|〉

〈|Qν2Qν1Q
+
ν1Q

+
ν2|〉

+
∑

ν1ν2ν3ν4

... + ...,

and only the two lowest order terms of (2.16) are
taken (see [2]).

An equation for q1 is derived by applying the
number-operator method. Denoting the operator of
the number of HF quasiparticles, N̂ =

∑
1 α

+
1 α1, we

obtain

q1 = 〈|B11|〉 = 〈|β+
1
˜̂
Nβ1|〉 − 〈|β+

1 N̂β1|〉 (2.17)

=
∑

2

(〈|A+
12A12|〉 − 〈| : B12B21 : |〉).

Equation (2.17) closes the set of equations for the
thermal phonon characteristics. Moreover, expres-
sions (2.15) and (2.16) must be used in evaluating
〈|H|〉 in Ωmod. Because of coupling to collective
variables, thermal quasiparticles cannot be treated as
a system of independent ingredients and expression
1
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(2.3) is not valid any more. Instead, we have to use a
general formula for the entropy,

S =

T∫
0

1
T ′

∂〈|H|〉
∂T ′ dT ′.

By using the same expression for 〈|H|〉 as inΩmod(H),
we arrive at

S = −
∑

1

(1− 2q1)
[
x2

1 lnx2
1 + y2

1 ln y2
1

]
. (2.18)

The coupling of phonon and HF variables affects the
HF basis and, hence, the thermal occupation num-
bers of HF quasiparticles. Therefore, wemust include
a determination of x and y in the general scheme re-
quiring stability for Ωmod(H) against small variations
in x1 and y1. Unfortunately, we are forced to assume
additionally that y2

1 is the Fermi–Dirac function (2.5)
of the HF energies and temperature.

Thus, the complete set of equations of the TSCRPA
includes the variational equations for Dik, xi, and yi

with Ωmod (2.9), the equations of motion (2.13), and
equations (2.17) for qi.

3. APPLICATION OF THE TSCRPA
TO THE LIPKIN MODEL

As an example of a system of N fermions that is
governed by a two-body interaction, we consider the
two-level Lipkin model [11, 12] in the version where
only a pair of particles with parallel spins interact. The
model system consists ofN fermions distributed over
two levels with a degeneracy multiplicity Ω (Ω = N ).
The energies of the lower and the upper level are−ε/2
and +ε/2, respectively. Thus, the Hamiltonian has
the form

HL = εJz −
1
2
V (J+J+ + J−J−) , (3.1)

where the operators of the quasispin, J , and of its
components J+, J−, and Jz are defined as

J2 =
1
2

(J+J− + J−J+) + J2
z ,

Jz =
1
2

Ω∑
p=1

(
a+

2pa2p − a+
1pa1p

)
,

J+ =
Ω∑

p=1

a+
2pa1p, J− = (J+)+ ,

where the indices “1” and “2” label the lower and
the upper level, respectively, and the index p numbers
sublevels.

First, we make a unitary transformation to the HF
quasiparticle operators. In the present particular case
PH
of a 2 × 2 transformation matrix, it is convenient to
parameterize the coefficients Dik as in [12],

D11 = D22 = cos θ, D12 = −D21 = sin θ .
The second step is the thermal Bogolyubov trans-
formation (2.6), and the thermal Hamiltonian of the
Lipkin model takes the form

HL ≡ HL − H̃L (3.2)

=
1
2

(
B2 −B1 − B̃2 + B̃1

)
[ε cos 2θ + 2V1N ]

−V2

2

[
A+A+ + AA− Ã+Ã+ − ÃÃ

]

−V1

2

[
A+A + AA+ − Ã+Ã− ÃÃ+

]

−V1

2

[
(B2 −B1)2 −

(
B̃2 − B̃1

)2
]
,

where we have introduced the notation

Bk =
Ω∑

p=1

β+
kpβkp (k = 1, 2), A+ =

Ω∑
p=1

β+
2pβ̃

+
1p,

Ã+ =
Ω∑

p=1

β+
1pβ̃

+
2p, V1 =

1
2
V
(
y2
1 − y2

2

)
sin 22θ,

V2 =
1
2
V
(
y2
1 − y2

2

) (
1 + cos 22θ

)
.

The thermal Hamiltonian (3.2) can be diagonal-
ized in the space of two one-phonon states

|Ψ1(T )〉 = Q+
1 |Ψ0(T )〉 =

(
ψ1A+ − φ1A

)
|Ψ0(T )〉,

|Ψ2(T )〉 = Q+
2 |Ψ0(T )〉 = (ψ2Ã

+ − φ2Ã)|Ψ0(T )〉.
Their norms are

N (1− 2q)
(
ψ2

k − φ2
k

)
= 1, k = 1, 2,

where q is defined as

q ≡ qk =
〈|Bk|〉
N

=
〈|B̃k|〉
N

.

The equations of motion for the vectors |Ψ1(T )〉 and
|Ψ2(T )〉 are decoupled, and their normalized solu-
tions are

ω = ω1 = −ω2 =
√
M2

1 −M2
2 , (3.3)

ψ2
1 = ψ2

2 =
M1 + ω

2ωN (1− 2q)
≡ ψ2, (3.4)

φ2
1 = φ2

2 =
M1 − ω

2ωN (1− 2q)
≡ φ2,

where
M1 = ε cos 2θ

+ 3V1 [N (1− 2q)− 1]− 6V1t1 + 2V2t2,

M2 = −V2 [N (1− 2q)− 1]− 6V1t2 + 2V2t1
YSICS OF ATOMIC NUCLEI Vol. 64 No. 6 2001
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with

t1 = N (1− 2q)φ2

[
1− 8ψ2

R

]
,

t2 = N (1− 2q)ψφ.

Equation (2.17) for q takes the form

q = φ2 (1− 2q)2
[
1 +

4ψ2

R

]
+ q2 − q

N
, (3.5)

where the norm of a two-phonon state, R, can be
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 6 200
found from the equation

R = 2
(

1− ψ2 − φ2 +
4ψ2φ2

R

)
.

Equations (3.3), (3.4), and (3.5) are the TSCRPA
equations of motion for the Lipkin model. In the
limit T → 0, they take a form of equations of the
SCRPA [2].

The final expression for the model grand canonical
potential ΩL defined in accordance with (2.9) is
ΩL = −N (1− 2q)
2

{
ε
(
y2
1 − y2

2

)
cos 2θ + V1

(
y2
1 − y2

2

)
[N (1− 2q)− 1] (3.6)

+
1 +

(
y2
1 − y2

2

)2
y2
1 − y2

2

(V2t2 − V1t1)

}
+NT (1− 2q)

∑
k=1,2

(
x2

k lnx2
k + y2

k ln y2
k

)
.

Of course, we bear in mind the number-conservation
condition. After variation of (3.6) with respect to θ,
we find that the HF parameter satisfies the equation

sin 2θ
{
−ε

(
y2
1 − y2

2

)
+V

(
y2
1 − y2

2

)2 [N (1− 2q)− 1] cos 2θ
−V
[
1 +

(
y2
1 − y2

2

)2] (t1 + t2) cos 2θ
}

= 0,

which has two solutions. The first one, θ = 0, deter-
mines the so-called “spherical” phase. The second
θ =
1
2

arccos




ε
(
y2
1 − y2

2

)
[
V
(
y2
1 − y2

2

)2 [N (1− 2q)− 1]− V
(
1 +

(
y2
1 − y2

2

)2) (t1 + t2)
]

 (3.7)
determines the “deformed” phase.
A variation of ΩL with respect to xi and yi pro-

duces equations for the single-quasiparticle energies

E1,2 = ∓1
2
{ε cos 2θ (3.8)

+V
(
y2
1 − y2

2

)
[N (1− 2q)− 1− t1] sin 22θ

+V
(
y2
1 − y2

2

)
t2
(
1 + cos 22θ

)}
.

One can see from (3.7) and (3.8) that the parameters
of the HF transformation, as well as the parameters
of the thermal Bogolyubov transformation, depend on
the collective variables ψ and φ. But if one sets q =
0, ψ = N−1, and φ = 0, this dependence disappears,
with the result that one gets equations of the con-
ventional thermal HF approximation for the Lipkin
model. Equations (3.3), (3.4), and (3.5), together
with (3.7) and (3.8), form the complete set of the
TSCRPA equations for the Lipkin model.

By way of example, we calculate the temperature
dependence of the intrinsic energy of the system,
〈|HL|〉. The results of the TSCRPA are compared
with those of other approximations as well as the
exact ones.2)

The expression for the intrinsic energy is

〈|HL|〉 = −N (1− 2q)
2

{
ε
(
y2
1 − y2

2

)
cos 2θ

+V1

(
y2
1 − y2

2

)
[N (1− 2q)− 1]

+
1 +

(
y2
1 − y2

2

)2
y2
1 − y2

2

(V2t2 − V1t1)

}
.

The calculations were performed for the system of
N = 20 particles with ε = 1 (i.e., we adopt ε as an
energy unit). Here, we discuss the results for the
strong-coupling case (V = 0.1).

AtT = 0, the system is in a deformed phase. Since
the interaction between particles effectively weakens

2)The description of the exact grand-canonical calculations
with the Lipkin model can be found in [5, 13].
1
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Fig. 1. Temperature dependence of the intrinsic energy 〈|H |〉 at V = 0.1 according to calculations within various approx-
imations [(a) THFA, (b) TRPA, (c) TRRPA, and (d) TSCRPA]: (open circles) exact result (the grand-canonical-ensemble
calculations), (closed circles) results of the calculationswith a deformed HF field, and (solid line) result of the calculationswith
a spherical HF field.
with increasing T , a rearrangement of the HF field
(i.e., a phase transition) occurs at a certain temper-
ature Tcr, whereupon the system appears to be in a
normal phase. Within the THFA and the TRPA, the
phase transition occurs at Tcr = 0.5 (Figs. 1a, 1b).

In the TRRPA and the TSCRPA, the phase tran-
sition occurs at lower temperature (Fig. 1c). The
reason is the following. Within the TRPA, the RPA
solution collapses at T = Tcr (i.e., ω → 0); at T <
Tcr, the RPA root is pure imaginary if one formally
stays in the spherical phase. A pleasant feature of
the TSCRPA (and the TRRPA) is that ω is finite at
all values of the coupling strength V . It follows that,
within the TSCRPA, one can formally calculate the
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Fig. 2. Occupation number n1 for the lower level as a
function of temperature.
PH
intrinsic energy 〈|H|〉 at T < Tcr with the HF field of
the spherical phase. It appears that, in a small but
noticeable temperature range at T < Tcr, the value of
〈|H|〉 calculated with the spherical HF field is lower
than the value calculated with the deformed HF field.
As can be seen from Fig. 1d, the critical temperature
is shifted down to Tcr ≈ 0.35 and the temperature
range where the spherical phase gives a minimum
of ΩL, broadens. The same tendency can be seen
in the TRRPA as well (Fig. 1c), but Tcr is higher
(≈0.42) in this approximation.

It is worthwhile to note that, if one calculates 〈|H|〉
within the TSCRPA with the spherical HF field in
the whole temperature range from T = 0 to T � Tcr,
the difference between the exact and the approximate
value of 〈H〉 does not exceed 10%. This means
that the TSCRPA describes the statistical proper-
ties of the Lipkin system quite well even without a
rearrangement of the HF field. Thus, correlations
in quasiparticle motion that are taken into account
within the TSCRPA compensate, to a great extent,
the effect of fluctuations that are produced by the
grand-canonical-ensemble approach.

It is also interesting to examine what various ap-
proximations tell us about the occupation numbers
n1,2 of single-quasiparticle levels. The expression for
n1 normalized to unity is

n1 =
1
2

+
〈|Jz |〉
N

.

The results are shown in Fig. 2. The THFA (and
the TRPA) overestimates n1, although the difference
between the exact and approximate values is only 2
YSICS OF ATOMIC NUCLEI Vol. 64 No. 6 2001
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to 3%. The difference is the largest at small tem-
peratures (T < 0.2). When quantum effects (i.e., a
nonvanishing number of thermal quasiparticles in the
thermal ground state) are taken into account within
the TRRPA, the agreement between the approximate
and the exact results becomes better. However, the
approximate values of n1 in the TRRPA are slightly
lower than the exact ones. Thus, the TRRPA over-
estimates the effect of a residual interaction. In the
TSCRPA, the values of n1 appear to be almost equal
to the exact ones. In addition to the total values of
n1, we also display, in Fig. 2, the pure thermal part of
them (y2

1). It can be compared with the HF values.
The difference associated with the tuning of the HF
field and collective oscillations is not large, but it is
noticeable.

4. CONCLUSION

On the basis of the above results, we conclude
that, on the whole, the TSCRPA describes the sta-
tistical properties of a finite Fermi system better than
other approximate schemes. Its advantages are most
evident in the vicinity of the phase-transition point.
Moreover, within the TSCRPA, one can describe,
with an appropriate accuracy, the temperature depen-
dence of the intrinsic energy, keeping the HF field
in the “spherical” phase, i.e., avoiding a phase tran-
sition. The main effect that is responsible for these
improvements is a more correct treatment of the Pauli
exclusion principle in the thermal vacuum state (or,
in other words, a nonvanishing number of thermal
quasiparticles in the thermal vacuum state).
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Abstract—Using the Hamiltonian that consists of the separable quadrupole + pairing forces and the
cranking term, we analyze the correlations associated with shape, orientation, and particle-number
fluctuations in rotating nuclei. Quantum fluctuations around mean field solutions are treated in the random
phase approximation (RPA), with special emphasis on the restoration of rotational symmetry and particle
number conservation. The mean field calculations have been made within the self-consistent cranking
model. The effect of the RPA correlation energy for the moment of inertia is studied with the integral
representation method proposed. c© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The mean field approximation is quite success-
ful in describing various nuclear phenomena [1, 2].
However, a mean field solution often breaks one or
more fundamental symmetries, e.g., translation, ro-
tation, reflection, and gauge rotation, of a many-body
Hamiltonian. For instance, a spontaneous breaking
of the spherical symmetry for a nucleus with a par-
tially filled shell gives rise to a deformed shape and
to a fixed orientation in space characterized by the
principal axis of the mass distribution. As a result,
the deformed mean field functions span a subspace of
the many-body Hilbert space containing the ground
state and low-lying excited states which exhibit a
rotational spectrum [3]. One way to restore broken
symmetries of the mean field functions is to use dif-
ferent projection techniques onto eigenspaces of the
corresponding symmetry operator.

A more advanced quantum mechanical descrip-
tion should take into account quantum fluctuations
around the mean field minimum. The quantal fluc-
tuations lead not only to a series of collective excita-
tions like rotation and vibration but also give rise to
correlations in the mean field ground state which may
change its properties. The random phase approxi-
mation permits one to consider quantum fluctuations
in a harmonic order [3, 4]. The RPA correlations
improve the mean field solution and give a better
approximation to the exact solution [3, 5]. In addition,
the RPA is another systematic approach of the ap-
proximate restoration of broken symmetries of mean
field solutions.

∗This article was submitted by the authors in English.
1)Joint Institute for Nuclear Research, Dubna, Russia.
**e-mail: D.Almehed@fz-rossendorf.de
1063-7788/01/6406-1076$21.00 c©
Our aim is to demonstrate an effective method for
calculating the RPA correlations in rotating nuclei.
The model Hamiltonian will be presented in Sec-
tion 2. The method for calculating the RPA corre-
lation energy is described in Section 3 followed by the
results for two cases in Section 4 and conclusions.

2. THE HAMILTONIAN

We start our discussion with a Nilsson-like oscil-
lator Hamiltonian with quadrupole–quadrupole plus
pairing forces

Ĥ ′ = ĥ0 + ĥ� − J · ω − κ

2
Q̂ · Q̂−

∑
τ=n,p

Gτ P̂
†
τ P̂τ .

(1)

Here, ĥ0 is a spherical Hamiltonian containing the
kinetic energy term and the spherical oscillator po-
tential, ĥ� contains the spin-orbit and �2 terms

ĥ� = −�ω0κ�

[
2� · s + µ�

(
�2 −

〈
�2
〉
N

)]
, (2)

and J · ω is a cranking term [6]. The index τ cor-
responds to the proton and neutron part, and it will
be left out in the following discussion where it is not
necessary. Notice that the model Hamiltonian can be
generalized easily. The quadrupole Q̂m and pairing P̂τ

operators are given by

Q̂m =
∑
kl

qm,kl ĉ
†
k ĉl, P̂ =

∑
i>0

ĉ īĉi. (3)

The index ī refers to time-reversed spherical single-
particle orbit labeled so that ī < 0, and ĉ (ĉ†) is the
particle annihilation (creation) operator. The stan-
dard quadrupole matrix element

qm,kl ∼
1√
2

(
〈k| r2Y2m |l〉+

m

|m| 〈k| r
2Y2−m |l〉

)

2001MAIK “Nauka/Interperiodica”
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and q0,kl ∼ 〈k| r2Y20 |l〉 is expressed in the spherical
basis |nljm〉 [2]. The mean field approximation of
the total Hamiltonian (1) determines the mean field
Hamiltonian which consists of a modified harmonic
oscillator and a pairing potential

ĥ′ = ĥ0 + ĥ� − J · ω (4)

−
√

5
4π

�ω0β(cosγQ̂0 − sinγQ̂2)−∆(P̂ † + P̂ ),

where β and γ are the deformation parameters [2, 3].
Taking into account the mean field Hamiltonian (4),
we have

Ĥ ′ = ĥ′ +

√
5
4π

�ω0β
(
cosγQ̂0 − sinγQ̂2

)
(5)

− κ

2
Q̂ · Q̂ + ∆

(
P̂ † + P̂

)
−GP̂ †P̂ .

The energy minimum of the Hamiltonian (5) requires
the fulfillment of the self-consistent conditions

κ 〈Q0〉 =
√

5
4π

βcosγ, κ 〈Q2〉 =
√

5
4π

βsinγ, (6)

〈Q±1,−2〉 = 0, and G〈P̂ 〉 = ∆.

Consequently, the Hamiltonian (5) has the following
form:

Ĥ ′ = ĥ′ +
κ

2

∑
m

〈Q̂m〉2 + G〈P̂ 〉2 − Ĥint, (7)

Ĥint =
κ

2

∑
m

(
Q̂m − 〈Q̂m〉

)2
(8)

+ G
(
P̂ † − 〈P̂ 〉

)(
P̂ − 〈P̂ 〉

)
,

if (6) are fulfilled. The remaining interaction, Ĥint, will
be treated in the RPA order in Section 3.

The quadrupole operator Q̂ mixes states with dif-
ferent main oscillator quantum numbers N . Using
the stretched transformation [2]

x̄i = xi

√
Mωi

�
, i = 1, 2, 3, (9)

we diagonalize our Hamiltonian for eachN shell sep-
arately. Here, ωi are the oscillator frequencies. As a
result, themean fieldHamiltonian (4) expressed in the
stretched basis has the form

ĥ′ = h̄0 + ĥ� − J · ω (10)

−
√

5
4π

�ω̄0β̄
(
cosγ̄Q̄0 − sinγ̄Q̄2

)
−∆

(
P̂ † + P̂

)
.

The ĥ� part is not affected, and it does not become
N-diagonal from the stretched transformation. The
same is true for the cranking term.
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 6 200
To diagonalize (10), we use the standard Hartree–
Fock–Bogoliubov transformation to quasiparticle
operators [4]

α̂†
i =

∑
k

(
ukiĉ

†
k − vkiĉk

)
, (11)

α̂i =
∑

k

(
ukiĉk − vkiĉ

†
k

)
,
∑

k

(
v2
ki + u2

ki

)
= 1.

The ground state wave function is the vacuum state
for quasiparticles α̂i |HFB〉 = 0, and the total energy
can be calculated as E0 =

∑
ei, where ei are the

eigenvalues of ĥ′ in (10).

3. THE RPA CORRELATIONS

Using the quasiboson approximation [3, 4]

b̂†µ = α̂†
i α̂

†
j , b̂µ = α̂jα̂i, and i > j ↔ µ, (12)

in which the operators in (12) obey the boson com-
mutation rules [

b̂µ, b̂ν

]
=
[
b̂†µ, b̂

†
ν

]
= 0 (13)

and [
b̂µ, b̂

†
ν

]
= δµν ,

we express the Hamiltonian (7) and (8) in terms of the
operators (12). In the RPA, one includes all terms of
the boson Hamiltonian that is of the second order in
b̂. ĤRPA can be diagonalized in the form [3, 7]

ĤRPA =
∑
λ>0

ωλÔ
†
λÔλ +

P̂2

2µ
+ ERPA, (14)

where Ô†
λ(Ôλ) is the phonon creation (annihilation)

operator of the eigenmode λ and P̂ is the operator
connected with the spurious mode. The spurious
mode is a zero energy motion without a restoring
force, e.g., rotation around a symmetry axis. The zero
energy phonon in (14) restores the symmetry broken
in the mean field treatment [8]. The ground state
energy correlation, ERPA, of the RPA Hamiltonian is
then given by

ERPA =
1
2

(∑
λ>0

Ωλ −
∑
µ

Eµ

)
+ Eexch, (15)

where Eµ is the sum of two quasiparticle energies
Eµ = ei + ej and Eexch is the standard exchange en-
ergy (see, e.g., [9]). In this formulation of the RPA en-
ergy, we do not have to treat the energy contribution
of the spurious mode explicitly and a Ων = 0 solution
does not cause any complication in the evaluation of
(15). The total RPA energy can in principle be cal-
culated by diagonalizing the Hamiltonian (7). Since
the RPA matrix is so large in realistic calculations, of
the order 104, and none of the eigenfrequencies can be
1
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neglected, the evaluation of (15) is very difficult even
for the separable interaction [10].
Possible spurious solutions of the Q ·Q + pairing

RPA Hamiltonian

ĤRPA =
∑
µτ

Eµτ b̂
†
µb̂µ −

κ

2

∑
m

(
Q̂m − 〈Q̂m〉

)2
(16)

−
∑

τ

Gτ

(
P̂ †

τ − 〈P̂τ 〉
)(

P̂τ − 〈P̂τ 〉
)

will be connected with the particle number operator
N̂ for the pairing force and different components of
the angular momentum, if the self-consistency con-
ditions in (6) are fulfilled. Writing our operators in a
Hermitian form and expressing them in terms of the
boson operators, b̂, we get the following expressions:

S̃+
τ =

1√
2

(
P̂ †

τ + P̂τ − 2〈P̂τ 〉
)

(17)

=
∑

µ

s+
µτ

(
b†µτ + bµτ

)
,

S̃−
τ =

i√
2

(
P̂ †

τ − P̂τ

)
= i
∑

µ

s−µτ

(
b†µτ + bµτ

)
,

(18)

Q̃mτ = Q̂mτ − 〈Q̂mτ 〉 (19)

=
√
ϕm

∑
µ

q̃mµτ

(
b†µτ + ϕmbµτ

)
,

ϕm =




1, m = 0,−1, 2,

−1, m = 1,−2.
(20)
PH
The boson matrix elements are defined as

s±µ =
∑
k>0

[(
ukiuk̄j ± vkjvk̄i

)
(21)

−
(
ukjuk̄i ± vkivk̄j

)]
,

q̃0,µ =
∑
k,l>0

q0,kl (ukivlj − uljvki (22)

+ uk̄ivl̄j − ul̄jvk̄i

)
,

q̃±1,µ =
∑
k,l>0

q±1,kl

(
ukivl̄j ± uk̄ivlj (23)

− ukjvl̄i ∓ uk̄jvli

)
,

q̃±2,µ =
∑
k,l>0

q±2,kl (ukivlj + uljvki (24)

± uk̄ivl̄j ± ul̄jvk̄i

)
,

where qm,kl are the single-particle matrix elements of
Q̂m in (3). The Hamiltonian can be expressed as

ĤRPA =
∑
µτ

Eµτ b̂
†
µτ b̂µτ (25)

− 1
2

∑
m

κ0

(
Q̃m,p + Q̃m,n

)2

+ κ1

(
Q̃m,p − Q̃m,n

)2
− 1

2

∑
τ

Gτ

(
S̃+2

+ S̃−2
)
,

where κ0,1 are the isoscalar and isovector quadrupole
coupling constants. Using the equation-of-motion
approach to solve the RPA equations (see [11]), we
obtain the determinant of the secular equations
F (Ω) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

R+ − 1̂
2κ0

R− T−,n
m=1 T+,n

m=−1 T−,p
m=1 T+,p

m=−1

R− R+ − 1̂
2κ1

T−,n
m=1 T+,n

m=−1 −T−,p
m=1 −T+,p

m=−1

T−,n
k=1 T−,n

k=1 Sn
−− −

1
2Gn

Sn
+− 0 0

T+,n
k=−1 T+,n

k=−1 Sn
+− Sn

++ −
1

2Gn
0 0

T−,p
k=1 −T−,p

k=1 0 0 Sp
−− −

1
2Gp

Sp
+−

T−,p
k=−1 −T−,p

k=−1 0 0 Sp
+− Sp

++ −
1

2Gp

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (26)
where the matrix elements have the following forms:

S±±
τ (Ω) =

∑
µ

s±
2

µτ Eµτ

E2
µτ − Ω2

, (27)

S+−
τ (Ω) =

∑
µ

s+
µτs

−
µτΩ

E2
µτ − Ω2

, (28)
Y

R±
km(Ω) (29)

=
∑

µ

(
q̃k,µnq̃m,µnC

km
µn

E2
µn −Ω2

±
q̃k,µpq̃m,µpC

km
µp

E2
µp − Ω2

)
,

T±,τ
km (Ω) =

∑
µ

q̃m,µτs
±
µτC

km
µτ

E2
µτ − Ω2

. (30)
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Fig. 1. A schematic picture of the integration contour
(dashed line) in the complex plane. The roots Ων and
polesEµ of F (z) are marked with crosses.

Here,

Ckm
µτ =




Eµτ , k = 0,−1, 2; m = 0,−1, 2,

and k = 1,−2; m = 1,−2;

Ω, k = 0,−1, 2; m = 1,−2,

and k = 1,−2; m = 0,−1, 2.

(31)

The zeros of the functionF determine the RPA eigen-
frequencies, i.e., Ων ,

F (Ων) = 0. (32)

Continuing the variable Ω→ z into the complex
plane, one can form the spectral function F ′(z)/F (z)
which obviously has first order poles at Ων and Eµ,
and it is analytic for all other complex values of z. We
can now use the Cauchy theorem and formulate the
integral

1
2πi

∮
C

dzg(z)
F ′(z)
F (z)

(33)

=
∑

ν

g(Ων)−
∑

µ

g(Eµ),

where g(z) is an arbitrary complex function which is
analytic within the region enclosed by the integration
pathC [12]. Ων andEµ are the roots and poles ofF (z)
in the same region. By choosing g(z) = z , we obtain
for the RPA correlation energy (15),

ERPA =
1

4πi

∮
C

dzz
F ′(z)
F (z)

+ Eexch, (34)

where the integration path C goes around the right
half of the complex plane. The integral in (33) is
independent of the path C as long as all poles in the
positive plane are enclosed (see Fig. 1). Therefore, the
path C can always be chosen in such a way that the
spectral function becomes smooth and the integration
is numerically stable even for a small number of grid
points used in the integration procedure.
We would like to mention that the correlation en-

ergy (34) is in general a negative (gain) term, the
value of which depends on the rotational frequency as
well as on the configuration under study. When one
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 6 200
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Fig. 2. The energy of a rotating deformed harmonic os-
cillator with (solid line) and without (dashed line) Q · Q
isoscalar RPA correlations as a function of ω2. The self-
consistent deformed oscillator is filled with 14 (76) pro-
tons and 14 (76) neutrons in the left (right) picture.

calculates the correlation energy for excited quasipar-
ticle configurations, possible negative RPA solutions
have to be treated with special care.

4. DISCUSSION OF THE RESULTS
To investigate the effect of the ground state RPA

correlations in rotating nuclei, we start with a har-
monic oscillator with the Q ·Q forces and without
the � · s and �2 terms but including a cranking term.
The self-consistent mean field solution gives a three-
dimensional cranking deformed oscillator. The energy
spectrum of this system is the one of a rigid rotor (see
Fig. 2), which means that the energy is proportional
to the square of the rotational frequency, ω2. The RPA
treatment of the isoscalar Q ·Q interaction allows
one to include shape and orientation fluctuations in
all three dimensions. Taking into account the RPA
correlations, we obtain a large decrease in the total
energy and also a dependence of ERPA on ω. It turns
out that ERPA ∝ ω2. The nucleus still has a rigid
rotation, but the RPA correlation reduces themoment
of inertia, as seen in Fig. 2. In the N = Z = 14
system shown in Fig. 2, we see a 16% reduction
of the moment of inertia, which is proportional to
the slope of the curves. In the heavier N = Z = 76
system in Fig. 2, the moment of inertia is reduced by
4%. We see that RPA correlations cause a relatively
smaller effect on the moment of inertia in the heavier
system than in the lighter one. This is because (i) the
absolute ω dependence of the ERPA becomes a little
bit smaller and (ii) the mean field moment of inertia
becomes much larger in the heavier system.
An explicit calculation of the commutation rules[
ĤRPA, Q̃

]
=
[
ĤRPA, Ĵi

]
= 0, i = 1, 2, 3, (35)

gives a stringent check of the RPA restoration of the
rotational symmetry. In the numerical calculation of
the N = Z = 14 case above, we found that (35) was
fulfilled with an accuracy of 10−3.
1
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5. SUMMARY

The self-consistent scheme to calculate the total
energy for a three-dimensional cranking Hamiltonian
which includes the pairing + quadrupole separable
interactions has been developed. The basic element
of our approach is the novel method based on the
integral representation which permits efficient calcu-
lations of the RPA correlation energy. Applying the
approach to a Hamiltonian that consists of a har-
monic oscillator plus a plain isoscalar quadrupole–
quadrupole interaction, we obtain a reduction of the
moment of inertia in the ground band. The effect is
found to be large in small systems and decreasing
with increasing mass. To carry out more qualitative
calculations, one has to include the spin–orbit and
�2 terms in the Hamiltonian. The analysis of pairing
vibrations in high-K rotational bands was presented
in [13]. The particle number restoring calculations
gave an improvement of the relative energy with re-
spect to the experiment and showed the importance
of pairing vibrations to describe the relative energy
between different K bands. In the cases where we
have a static pair field, the T terms in (26) mixQ · Q
and pairing vibrational modes. How they will affect
each other and the total correlation energy is yet to be
examined.
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Abstract—Experimental data on some long bands in N = 88–98 deformed nuclei are analyzed on the
basis of a method systematizing the energies of levels and inertial parameters and a method employing the
analogy between neighboring. Beta bands built on low-lying 0+

2 levels are identified in N = 90 isotones,
including the 158Er, 160Yb, and 162Hf nuclei. Some of intermediate members of these bands have not been
found yet. The systematic properties of 4− bands are presented, and the dynamics of the inertial parameters
of these bands in N = 88–98 isotones is revealed. The bands are identified in 158Yb, 156Dy, 156Er, 162Yb,
and 166Hf. c© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION
Extensive development of experimental tech-

niques of nuclear spectroscopy has resulted in finding
many new high-spin levels. A considerable number of
these levels belong to rotational bands characterized
by small values of theK projection of the spin J onto
the symmetry axis of a nucleus. High-spin levels
are excited mostly in heavy-ion reactions, but low-
lying levels of the bands having low spins (including
bandheads) are not so often revealed. Because of this
it is difficult to determine theK values of the bands.

This study is devoted to finding the rules of order-
ing of levels in rotational bands in the nuclei being
considered and to comparing the positions of the head
levels in analogous bands.

Our method of analysis is based on a comparison
of the energies of levels and inertial parameters as
calculated by using the energies of neighboring levels
(A), or neighboring levels with even spins (A+), or
neighboring levels with odd spins (A−). The simplest
formula for a rotator energy,

E =
�

2

2J
J(J + 1), (1)

is used to evaluate the formulas
∆E = E(J) − E(J − 1) = A× 2J,

A(J) = ∆E/2J,

∆E+,∆E− = E(J)− E(J − 2),

A±(J) =
∆E±

2(2J − 1)
,

where J is even for E+ and odd for E−.

∗This article was submitted by the author in English.
**e-mail: epgri@snoopy.phys.spbu.ru
1063-7788/01/6406-1081$21.00 c©
2. GROUND-STATE BANDS
AND BETA-VIBRATIONAL BANDS

IN N = 90 ISOTONES

TheN = 90 isotones have very special properties.
First of all, nine N = 90 nuclides are known (from
146Ba to 162Hf), and long rotational bands are ob-
served in each of them (Fig. 1). Second, the first
Kπ = 0+ excited states in these isotones (Fig. 1) have
the properties of beta-vibrational states and relatively
low excitation energies. The Rasmussen parameter
X = B(E0)/B(E2) takes a value that is quite close
to that predicted by the vibrational model (X = 0.4).
Third, it was shown in [1] that, in these isotones, the
back-bending in the ground-state band is due to the
crossing with the beta band. Difficulties arise when
one tries to identify the origin of the levels near the
crossing point. We give here unambiguous interpre-
tation of the data (see Table 1 and Fig. 1). Levels with
J = 6, 8, and 10 in the beta band of 158Er, as well
as those with J = 4–10 in 160Yb and with J = 0–10
in 162Hf, have not yet been observed. But a smooth
dependence of the energies of the levels in the ground-
state band and in the beta band on Z is revealed
in the N = 90 isotones. Therefore, the positions of
unknown levels can be found by extrapolating their
energies along the isotone chain (i.e., along the Z ax-
is; see circles in Fig. 1). In Fig. 1, the scale

√
E(J) is

used for the ordinate, whereby almost equal intervals
between the points for each isotone are obtained.

Figure 2 shows the inertial parameter A+ as a
function of the spin J . The values of A+ for the
ground-state and beta bands are indicated by closed
circles and crosses, respectively. One can see a sim-
ilar behavior of A+ values in the isotones from 154Gd
2001MAIK “Nauka/Interperiodica”
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Table 1.Energies of levels (in keV) of the 0+ bands built on the ground and beta-vibrational states in theN = 90 isotones

Nucleus J = 0 2 4 6 8 10 12 14 16 18 20
146Ba g 0 181 513 958 1182 2051 2632 3192 3737 - -

β 1052
148Ce g 0 158 454 840 1192 1792 2329 2889 - - -
150Nd g 0 130 381 720 1129 1599 2119 - - - -

β 675 851 1138 1541 - - - - - - -
152Sm g 0 122 366 707 1125 1609 2149 2736 3362 - -

β 685 810 1023 1310 1666 2079 2525 2977 - - -
154Gd g 0 123 371 718 1144 1673 2185 2777 3404 4087 4782

β 681 815 1048 1366 1756 2192 2622 3027 3491 4016 4646
156Dy g 0 138 404 770 1216 1725 2286 2888 3523 4178 4859

β 676 828 1088 1437 1859 2316 2706 3065 3499 4026 4635
158Er g 0 192 527 970 1493 2073 2681 3374 4026 4674 5373

β 806 989 1257 - - - 2881 3191 3663 4230 4888
160Yb g 0 243 638 1147 1736 2373 3137 3746 4376 5091 -

β 1086 1293 - - - - 2959 3363 3847 4425 5089
162Hf g 0 285 730 1293 1940 2635 3386 3997 4555 5168 5807

β - - - - - - 3185 3667 4068 4652 5310

Table 2. Energies of levels of theKπ = 4− bands (in keV)

N Nucleus J = 4 6 8 10 12 20 5 7 9 11 13 21

88 156Er 1814 2206 2603 2905 3387 6062 - - - 3083 3675 6441
158Yb - 2230 2650 2923 3407 6007 - - - - - -

90 156Dy - - 2346 2588 2942 5201 - - 2408 2710 3104 5428
158Er - - 2333 2570 2955 5538 - 1853 2432 2731 3155 5739
160Yb 1568 2051 2363 2579 2979 5693 - - 2481 2703 3195 5948
162Hf 1735 2118 2439 2623 3031 5776 1649 2039 - 2819 3248 6065

92 160Er 1638 1908 2294 2533 2876 5020 - - 2104 2520 2980 5326
162Yb - - 2280 2573 2938 5170 - 1768 2153 2605 3077 5482

94 164Yb 1551 1799 2124 2484 2865 5069 1443 1674 2000 2401 2864 5206
166Hf - - 2197 2540 2911 5090 - 1726 2078 2497 2962 5253
168W 1578 1916 2318 2620 2967 5097 1537 1835 2213 2629 3074 5288

98 174Os 1550 1790 2102 2476 2906 5112 1596 1860 2206 2613 3073 5266
176Pt 1736 2004 2320 2689 3091 - 1699 2010 2373 2787 3252 -

100 170Yb 1258 1450 1716 2057 2474 4886 1345 1573 1872 2242 2681 -
172Hf 1419 1598 1852 2156 2598 4942 1503 1727 1969 2337 2778 5184
174W 1365 1628 1963 2330 2752 - 1401 1676 1999 2396 2862 5449
to 162Hf. At the same time, the functions A+(J) for
the ground-state and beta bands strongly differ from
each other. (In Fig. 2, asterisks indicate the crossings
of the ground-state and beta bands.)
PH
In Fig. 3, we give amore detailed picture of the two
band levels in the 154Gd–162Hf isotones in the vicinity
of possible crossings. In this figure, one can clearly
see that the spin value and the excitation energy
YSICS OF ATOMIC NUCLEI Vol. 64 No. 6 2001
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Fig. 1. Energies of rotational levels of ground-state and beta-vibrational bands in the N = 90 isotones.
where the band crossing occurs smoothly decrease
with increasing Z. The arrows indicate the places of
crossings of the ground-state and beta bands. The
spin values at which the crossing occurs are written
in the circles. It seems worthwhile to note that, in
Figs. 2 and 3, some individual special features of each
nucleus can be seen, but they are not so meaningful
to mask the regularities discussed above.

3. Kπ = 4− STATES

3.1. N = 88 Isotones: 156Er and 158Y b

In addition to a long Kπ = 0− band, two level
sequences are known in the 156Er nuclide: Jπ =
6− (2206.1 keV)–38− (13066.3 keV) and Jπ = 11−

(3082.8 keV)–33− (10934.8 keV) [2]. We attribute
them to one Kπ = 4− band, adding the known Jπ =
4− level at 1814.48 keV to this band. Figure 4 shows
the inertial parameters (closed circles) A+ and (open
circles) A− versus J . The above interpretation can
be confirmed by a similar behavior of the function
A+(J) for the known even-spin band in 158Yb up to
Jπ = 30− (9740.5 keV) [2] (Table 2). From Fig. 4,
it can be seen that the values of the parameters A+

in the 156Er and 158Yb nuclei are quite close. Since
the differences of the absolute energies of the J = 6–
30 states in these two nuclei are less than 50 keV,
we conclude that these bands have similar structures.
Thus, our interpretation of the origin of the band in
SICS OF ATOMIC NUCLEI Vol. 64 No. 6 200
156Er seems valid. At the same time, very small values
of A+ at J = 10 have yet to be explained.

3.2. N = 90 Isotones: 156Dy, 158Er, 160Y b,
and 162Hf

The rotational bands in 156Dy, 158Er, and 160Yb
have similar properties. In 160Yb, the even-spin level
sequence starts from the 4− level (Ex = 1567.5 keV,
Table 2). It seems very probable that its structure is
4−, p505 ↑,−p651 ↑. According to the quasiparticle–
vibrational model, the bandhead is expected to be
at Ex= 2.0 MeV [3]. The bands in 156Dy, 158Er,
and 162Hf have the same structure. In 156Dy, the
level sequences were observed up to the Jπ = 42−

level at 15234.8 keV and up to the Jπ = 53− level at
21665.2 keV. In 158Er, they were observed up to the
Jπ = 48− level at 18131 keV (with the exception of
the Jπ = 24− and 26− levels) and up to the Jπ = 47−

level at 18345 keV. In 160Yb, the bands were traced
up to the Jπ = 42− level at 15403 keV and up to
the Jπ = 39− level at 13740 keV. In 162Hf, the levels
of these bands were observed up to, respectively, the
Jπ = 24− level at 7421.8 keV and the Jπ = 29− level
at 9184.8 keV (with the exception of the Jπ = 9−
level). The energies of lower levels of these bands are
given in Table 2.

From the analysis of the available data, we can
therefore conclude the following:
1
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(1) The energies of the bandheads in the four
isotones considered here are very close. The energy
differences of the rotational levels are also small.

(2) The functionsA+(J) andA−(J) are very simi-
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lar in all four isotones (Fig. 4). These functions have a
deep minimum at J = 10 and a bump at J ≈16. The
points corresponding to the levels with positive and
negative signatures—i.e., with even and odd spins—
refer to the same sequence. The same dependence
was observed in 156Er and in 158Yb (Fig. 4).

(3) The signature splitting is similar at the spin
values of J = 12–30 (Fig. 5). The splitting increases
for spin values of J > 40. The splitting inversion
occurs at J = 30 in 160Yb and at J = 42 in 158Er.

3.3.N = 92 Isotones: 160Er and 162Y b

The dynamics of long Kπ = 4− bands is deter-
mined by the properties of 160Er and 162Yb. It can
be seen from Table 2 that the energies of the levels
in these bands are quite close to each other in both
nuclei. At the same time, they do not deviate far
from the energies of the levels in the N = 90 iso-
tones. In 160Er, levels up to J = 52, 21515 keV
and up to J = 49, 19938 keV were observed. Here,
the quantum numbers Kπ = 4− were assigned to the
HYSICS OF ATOMIC NUCLEI Vol. 64 No. 6 2001
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bands in accordance with the characteristics of the
lowest Jπ = 4− head level at 1638 keV. In 162Yb, two
bands are known that extend up to the Jπ = 37−

level at 12392 keV and up to the Jπ = 36− level at
11917.8 keV. The identification is made on the basis
of the same arguments as for theN = 88 andN = 90
isotones.

Figure 4 shows the functions A+(J) and A−(J)
in the 160Er and 162Yb nuclei. A deep minimum at
J = 10 and a bump at J = 16 are observed in just the
same was as in the N = 88 and N = 90 isotones (see
Subsections 3.1 and 3.2). Moreover, there exists a
more pronounced bump at J = 29.

Figure 5 displays the function A(J). It demon-
strates explicit signature splitting. The same can be
seen in 156Er and in the N = 90 isotones.

3.4. N = 94 Isotones
In 164Yb, two Kπ = 4− level sequences up to the

Jπ = 24− level at 6374.0 keV and up to the Jπ =
23− level at 5308.1 keV are observed. In 166Hf,
these sequences can be traced up to the Jπ = 32−

level at 9991.2 keV and up to the Jπ = 33− level
at 10330.0 keV; in 168W, these extend up to the
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 6 200
Jπ = 34− level at 10813 keV and up to the Jπ = 35−
level at 11128 keV. From Table 2, one can see that
there are no J = 4, 6, and 5 levels in 166Hf. The
behavior of moments of inertia and the energies of the
levels (Figs. 4 and 5) makes it possible to assign the
quantum numbers Kπ = 4− to this band. According
to [3], it has the structure 4−, n521 ↑ +n642 ↑.

It should be noted that the dependences ofA+ and
A− on J in N = 94 isotones differ from those in N ≤
92 isotones.

4. CONCLUSIONS

The present study has been carried out in order
to determine the structure of long ground-state and
beta bands in N = 90 isotones and to examine the
effects of their crossings. Moreover, we aimed at
determining the structure of long Kπ = 4− bands in
deformed nuclei. Special attention has been given to
“incomplete” bands where low-spin members have
not yet been observed. From the analysis of the
energies of the levels and of the inertial parameters
by the method of analogies, we deduced the following
results:
1



1086 GRIGORIEV
(1) The moments of inertia of different bands ap-
proach the rigid-body value (A≈ 7) with increasing
spin.

(2) The point of crossing of the ground-state band
and the beta band in theN = 90 nuclei moves to low
spins with increasing Z. The beta bands in 158Er,
160Yb, and 162Hf have been identified.

(3) Special features of the Kπ = 4− bands have
been investigated. The Kπ = 4− bands in 158Yb,
156Dy, 158Er, 162Yb, and 166Hf have been identified.
A deep minimum of A+ and A− at J = 10 has been
found inN = 88–92 nuclei. There is no such effect in
bands having other values of Kπ. A similar minimum
was not observed in N = 94 isotones. Bumps at J ≈
16 and J ≈ 30 and a minimum at J ≈ 22 have been
found in all the bands studied here. Similar features
PH
of signature splitting have been revealed in different
bands. These facts call for a theoretical explanation.
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Abstract—The rotational motion in thermally excited nuclei and its damping at high excitation energy
is discussed here with reference to the role of effects beyond mean-field approximation. The experimental
results for different mass regions and deformations are presented and compared with a cranked-shell-model
calculation including a two-body residual interaction of surface delta type. Altogether, it is found that the
dependence of the mixing process on the nuclear mass and deformation is well reproduced by the data.
c© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The understanding of the rotational motion in
thermally excited nuclei and of its damping at high
excitation energy is one of the central issues in
nuclear structure, and more in general in the study of
the effects beyond mean field. In fact, the study of the
collective rotation with increasing excitation energy
is expected to shed light on the mechanisms which
bring the zero temperature regular ordered motion,
characterized by complete sets of quantum numbers
for every state, into the chaotic compound nucleus
regime, described by random combinations of the
available configurations [1].

In rare-earth nuclei, on the order of 20 excited
rotational bands, carrying strong E2 transitions, can
be resolved at rather low heat energy. They can
be well described by a rotating mean field, although
interactions at crossings between them point beyond
the mean field description [2, 3]. Such splitting of the
rotational strength can be considered as a precursor
of the fragmentation of the rotational decay, known
as damping of the rotational motion at higher heat
energies [4, 5].

With present-day techniques, our knowledge of
damped rotation stems from the analysis of unre-
solved coincidence spectra. In particular, in double
coincidence energy spectra, transitions along regu-
lar bands can be separated from damped transitions,
forming a landscape of ridges and valleys [6]. While
the ridges are formed by transitions from states at low
excitation energy obeying rotational energy correla-
tions, the valley is formed by γ rays from the region of
higher level density above yrast. By a statistical anal-
ysis of the counts fluctuations of γγ spectra, one can

∗This article was submitted by the author in English.
**e-mail: silvia.leoni@mi.infn.it
1063-7788/01/6406-1087$21.00 c©
extract the numberN (2)
path of paths available to the nu-

cleus in the γ decay through different regions of level
density, namely, the number of excited bands, as well
as the effective number of damped transitions [7, 8].
The very existence of a finite number of decay paths
leads, in fact, to enhanced fluctuations µ2/µ1, whose
magnitude is fixed by the number of paths through
the simple relation µ2/µ1 = Neven/Npath + 1. Here,
µ1, µ2, and Neven are the statistical moments and the
number of counts in a 4/� × 4/� sector, in which
each rotational cascade contributes on the average
one count, � being the dynamical moment of inertia
of the nucleus.

Systematic results have been obtained from a
number of rare-earth nuclei analyzed (A = 160) [8].
Large fluctuations are observed in the ridge struc-
tures, showing that only a rather low number (≈40)
of discrete rotational bands exist up to excitation
energy ≈800 keV above yrast. In contrast, very
weak fluctuations are found along the central valley,
revealing a number of coincidence combinations
(≈ 104–105) larger than expected assuming that
the rotational decay leads to a unique final state.
These experimental findings have unambiguously
shown that the rotational transition strength gets
progressively fragmented with increasing excitation
energy above yrast, a manifestation of the damping of
the rotational motion [4].

The results of the fluctuation analysis are found to
be well in accordance with a model of the thermally
excited states as obtained from cranked mean bands
interacting via a two-body surface-delta (SDI) resid-
ual interaction that includes high-multiple terms [5]
and that in some cases is found to be configuration-
dependent [9]. In particular, simulations of decay
cascades on the basis of this model produce spectra
2001 MAIK “Nauka/Interperiodica”
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of approximately the same shape, carrying quanti-
tatively the same count fluctuations in the different
regions of the spectra as seen experimentally [10].

The basic assumption behind the damping model,
namely, that the warm nucleus is strongly collective
with a quadrupole moment Qt of the same order as
that of the cold regular rotational bands, has been
experimentally verified in the case of the typical rare-
earth nucleus 164Yb by a lifetime measurements of
the damped transitions [11]. Using an experimental
technique based on the fluctuation pattern (covari-
ance method) [12], the fractional Doppler shifts of
unresolved transitions along the valley of γγ spectra
have been extracted. As shown in Fig. 1, the exper-
imental results show that the rotational collectivity
persists with full strength also when the rotational
bands are strongly mixed, giving further support to
the rotational damping model.

In order to test the sensitivity to the strength of
the SDI residual interaction used in the model, which
is known to strongly affect the properties of the nu-
clear many-body system at finite temperature, a more
detailed comparison between experimental data and
theoretical predictions has been made. This has been
obtained by the analysis of rotational energy correla-
tions extending over several decay steps. Such corre-
lations can be especially emphasized in the so-called
tilted rotational planes of triple γ-ray coincidence
matrices [13], which pick out and much enhance
the ridge structures compared to the background of
uncorrelated coincidences. Each plane, defined by the
equation Eγ1 − Eγ3 = N × (Eγ3 −Eγ2)± δ/2, δ be-
ing the thickness of the plane and N = 1, 2, 3, ... [6],
PH
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Fig. 2. The average number of bands obtained from the
experimental analysis of the measured ridge structures of
168Yb as a function of the number of decay steps (points), in
comparison with the predictions from cranked shell model
calculations plus a two-body residual interaction with in-
teraction strength V0 = 13.8/A, 27.5/A, and 55/A MeV
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selects different types of coincidences along rotational
bands: the N = 1 plane will select three consecutive
γ-ray transitions, the N = 2 plane will contain three
γ-ray transitions out of four consecutive transitions,
and so on.

Figure 2 shows the average number of bands ob-
tained from the fluctuation analysis of the measured
ridge structures of the tilted rotational plane of 168Yb
as a function of the cascade length, in comparison
with the prediction from cranked shell model cal-
culations plus a two-body SDI residual interaction
with interaction strength V0 = 13.8/A, 27.5/A, and
55/A MeV. As one can see, good agreement is found
between data and calculations using the interaction
strength V0 = 27.5/A MeV, which agrees with the
analysis of low-lying collective vibrations and the
pairing in rare-earth deformed nuclei [14].

Until recently, a convincing picture of collective
damped rotation has mainly been obtained for the
mass region A ≈ 160. However, in the original
formulation of the rotational damping model [4], large
variations with mass number and deformation were
predicted. In particular, the onset energy U0, at which
damping sets in, is expected to depend on the level
density and on the strength of the residual interaction
and is predicted to vary with mass number as U0 ≈
A−2/3. In addition, the rotational damping width
Γrot, expressing the width of the quadrupole transition
strength distribution, is expected to follow the relation
Γrot ≈ IA−5/2ε−1, where I,A, and ε are the spin,
mass number, and deformation, respectively.

To determine the validity of the relations given
above, one needs to compare data from nuclei in
YSICS OF ATOMIC NUCLEI Vol. 64 No. 6 2001
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Fig. 3. (a, b) γ spectra measured at different bombarding energies for 114Te and 164Yb, respectively. The arrows indicate that
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distributions. (e, f) The dynamical moment of inertia �(2) for 114Te and 164Yb, respectively [16].
different regions of mass and deformation. For this
purpose, dedicated experiments were recently made
with the EUROBALL array [15], as described in the
next sections.

2. MASS DEPENDENCE
OF ROTATIONAL DAMPING

The mass dependence of rotational damping has
been tested by a comparative analysis of the unre-
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 6 200
solved γ transitions of the 114Te and 164Yb nuclei,
having very similar deformation ε ≈ 0.25 [16]. The
two nuclei can be considered as representative exam-
ples of the mass region A = 110 [17] and A = 160 [8],
for which a factor of 2 difference in the damping width
is expected.

The nucleus 114Te has been produced by the fu-
sion reaction 64Ni + 54Cr → 118Te at bombarding
1
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lines) [16].

energies Ebeam = 230, 240, 250, 260, and 270 MeV.
The largest fraction of the data was taken at Ebeam =
250 MeV, which populated the residual nucleus 114Te
at ≈20% level. The data for the nucleus 164Yb were
instead obtained in a previous measurement made
with the EUROGAM II array using the reaction
30Si + 138Ba at the bombarding energies of 140, 145,
150, and 155 MeV [11].

Figures 3a and 3b show the spectra obtained at
the different bombarding energies for the 114Te and
164Yb nuclei. In both cases, one can observe the pres-
ence of a pronounced continuous bump of increasing
intensity with bombarding energy, with characteris-
tic transition energy at ≈1.8−2 MeV in 114Te and
≈1.2–1.3 MeV in 164Yb. This is consistent with
the fact that at a given spin the rotational transition
energy is higher for a nucleus with smaller value of
the moment of inertia, being Eγ ∝ �−1 ∝ A−5/3. In
particular, the average energy of the rotational bump
is observed to move to higher transition energy with
increasing bombarding energy and maximum angular
momentum, which is a typical feature of rotational
nuclei. This can be clearly seen in the difference
P

between spectra corresponding to two consecutive
bombarding energies, as shown in Figs. 3c and 3d. In
addition, values of the fractional Doppler shifts for the
edge of the rotational bump measured in forward and
backward angles have been obtained using the same
type of analysis carried out in [18]. The values show
that the transitions at the edge of the bump are fully
shifted, thus supporting the strong collective charac-
ter of the continuous bumps observed in both 114Te
and 164Yb nuclei. The widths of the distributions
of the difference spectra shown in Figs. 3c and 3d
are expected to give an upper limit for the rotational
damping width Γrot [17]. In the present case, the
widths are found to be larger by a factor of ≈2 in the
case of 114Te (with values 800–1000 keV), as com-
pared to those of 164Yb (with values 300–400 keV),
supporting the scaling of Γrot with mass number.

Figures 3e and 3f show the dynamical moment of
inertia �(2) for 114Te and 164Yb nuclei, as extracted
from the analysis of the yrast transitions (circles), of
the excited regular bands forming the ridges (open
squares), and of the damped rotational transitions
populating the continuous bump (closed squares). As
one can see, in both nuclei the moment of inertia of
the excited rotational transitions shows rather high
values, close to that of a rigid rotor, indicating that
the thermally excited nucleus rotates collectively.

More quantitative information on the rotational
motion at thermal energy in the two different mass
regions A = 110 and A = 160 has been obtained
by the study of γγ-coincidence spectra of 114Te
and 164Yb nuclei. Figure 4 shows the experimen-
tal results obtained from the fluctuation analysis
of the ridge and valley structures of both nuclei,
in comparison with theoretical predictions from a
cranked shell model calculation including the two-
body SDI residual interaction [5]. As one can see,
the calculations are found to reproduce both the ridge
and the valley results quite well, strongly supporting
the scaling with the mass number of the residual
interaction and the level density. According to the
present calculation, damping should set in around
heat energy U0 ≈ 0.9−1.0 MeV in 114Te, compared
to U0 ≈ 0.7−0.8 MeV in 164Yb. In addition, the
values of the damping widths predicted by the band
mixing calculations are approximately a factor of two
larger for 114Te than for 168Yb, in good agreement
with the scaling of Γrot with mass number, as given in
the original formulation of the damping model [4].

3. DEFORMATION DEPENDENCE
OF ROTATIONAL DAMPING

The dependence of rotational damping on the nu-
clear deformation has been tested in a EUROBALL
HYSICS OF ATOMIC NUCLEI Vol. 64 No. 6 2001
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experiment aiming at the study of the superdeformed
(SD) nucleus 143Eu. The nucleus was populated by
the fusion reaction 37Cl + 110Pd → 147Eu, at beam
energies of 165 and 170 MeV. As shown in previ-
ous works, the nucleus 143Eu is characterized by a
very complex and irregular level scheme at low spin,
due to the existence of both spherical and triaxially
deformed shapes [19], while a strong superdeformed
minimum is expected to dominate at high angular
momenta [20]. In addition, the population of the SD
excited states is found to be particularly strong [21],
as a consequence of the low crossing between the
normal and superdeformed yrast lines, which occurs
already around angular momentum ≈40�, compared
to ≈54� in the more typical case of 152Dy. In fact,
γγ-coincidence spectra of 143Eu show, in the high
transition energy region, a pronounced ridge-valley
structure corresponding to the moment of inertia of
a superdeformed nucleus with deformation ε ≈ 0.55,
while a strong E2 bump of superdeformed nature can
be seen in one-dimensional spectra.

Figure 5 shows the fractional Doppler shift val-
ues experimentally obtained from the analysis of the
discrete yrast transitions of the SD band (circles),
of the superdeformed ridges (squares), and of the
continuous bump (triangles), in comparison with the
prediction corresponding to different values of the
quadrupole moment Qt. As one can see, the experi-
mental results are in agreement with a quadrupole de-
formation of the order of 10–13 e b, which proves the
superdeformed nature of the excited rotational bands.
This gives further support to the basic assumption
of the rotational damping model, namely, that the
nucleus maintains its collectivity up to rather high
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 6 200
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excitation energy, both in normal and superdeformed
nuclei.

The number of superdeformed excited rotational
bands forming the ridge structures of 143Eu has been
obtained from the fluctuation analysis method and is
shown in Fig. 6. As one can see, the number of bands
is found to depend very strongly on the transition
energy, reaching a value of ≈35 at the maximum of
the population. The experimental results have been
compared with a microscopic-cranked-shell model
calculation plus a two-body SDI residual interaction
for the specific nucleus 143Eu. As shown in Fig. 6,
the calculation (dashed line) is close to the data at
the maximum of the distribution, while it deviates
strongly at lower transition energies. This is generally
expected for the lower part of the ridge structure, since
barrier penetration into the first well removes intensity
from the excited bands, eventually leaving only the
yrast band together with a few low-lying bands to
survive further down in angular momentum. The
reduction observed in the number of bands at low
transition energy (low spin) can also be explained by
the theoretical model once the decay-out mechanism
of the excited states is taken into account (solid line)
[22]. In the model, the decay-out of the excited su-
perdeformed states is treated as a quantum tunneling
between the compound states in the superdeformed
and normal well, extending a statistical model which
has been previously applied to the decay-out of the
superdeformed yrast band [23].

4. CONCLUSIONS
The rotational motion in thermally excited nuclei

and its damping at high excitation energy have been
1
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discussed here in connection with experimental da-
ta from different regions of mass and deformation.
Several results have been obtained mainly by using
the experimental technique of the statistical fluctu-
ations and compared with cranked-shell-model cal-
culations plus a two-body residual interaction. This
model predicts a dependence on both deformation
and mass number for the damping mechanism. The
good agreement found for the three different nuclei
here discussed (164Yb, 114Te, and 143Eu) has therefore
allowed a very stringent test to the damping model,
which describes the nucleus on its way to the chaotic
compound nucleus regime.
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Abstract—A semiclassically exact solution for the second inertial parameter B is found for the superfluid
and normal phases. An interpolation between these limiting values shows that B changes sign in the
transition region at the spin Ic that is critical for the rotational spectrum. A superfluid-to-normal transition
reveals itself in a specific variation of B versus the spin I. Experimental data show the existence of
a transition for superdeformed bands in the A ∼ 80, 130, and 150 mass regions and for some bands
characterized by a normal deformation. A transition to the normal phase explains the extreme regularity of
superdeformed bands. c© 2001 MAIK “Nauka/Interperiodica”.
One of the amazing features of superdeformed
(SD) rotational bands is the extreme regularity of
their rotational spectra: an SD nucleus is the best
quantum rotor known in nature. Although numerous
theoretical calculations [1–4] successfully reproduce
the measured intraband γ-ray energies, the underly-
ing microscopic mechanism of this phenomenon has
yet to be well understood. To explain the regularity of
SD rotational spectra, we parameterize the relevant
energy as the three-term expression

E(I) = E0 +AI(I + 1) + BI2(I + 1)2, (1)

which is valid for an axisymmetric deformed nucleus
with K = 0. The inertial parameters A = �

2/2�(1)

(�(1) is the kinematic moment of inertia) and B are
the objects of our investigation. They are determined
by the transition energies Eγ(I) = E(I + 2)− E(I)
as follows:

A(I) =
1

4(2I+5)
(2)

×
[
I2+7I+13

2I + 3
Eγ(I)− I

2+3I+3
2I + 7

Eγ(I+2)
]
,

B(I) =
1

8(2I + 5)

[
Eγ(I + 2)

2I + 7
− Eγ(I)

2I + 3

]
.

The coefficient B(I) characterizes the nonadiabatic
properties of a band and realizes the relationship of
kinematic and dynamic (�(2)) moments of inertia,

B =
�

2

2(2I + 3)(2I + 7)

[
1
�(2)

− 2I
(2I + 5)�(1)

]
.

(3)

∗This article was submitted by the author in English.
**e-mail: pavi@pretty.mbslab.kiae.ru
1063-7788/01/6406-1093$21.00 c©
The ratio B/A determines the convergence radius
[5] of the expansion in (1), which is large for SD
bands. A faster convergence is obtained with the
Harris formula

E(ω) = E0 +
1
2
αω2 +

3
4
βω4, (4)

which is based on the fourth-order cranking expan-
sion

α =
1
ω
tr(�xρ(1)), β =

1
ω3

tr(�xρ(3)), (5)

where ρ(n) is the nth correction to the nucleus den-
sity matrix; �x is the projection of the single-particle
angular momentum onto the rotational axis x, which
is perpendicular to the symmetry axis z; and ω is the
rotational frequency. It follows from (1) and (4) that

α =
�

2

2A , β = −�
4B

4A4
. (6)

For the sake of simplicity, we will deal with the pa-
rameter β.

The problem of microscopically calculating the
parameter B for normal deformed (ND) nuclei has at-
tracted considerable attention. It has been shown that
this quantity receives contributions from four types of
nonadiabatic effects: (i) perturbation of quasiparticle
motion by rotation (quasiparticle alignment), (ii) at-
tenuation of pairing correlation by the Coriolis force,
(iii) a change in the nuclear equilibrium deformation
(centrifugal stretching), and (iv) vibration–rotation
interaction. The first two effects are dominant for
well-deformed nuclei, as was shown in the first at-
tempts at obtaining B [6–8] and confirmed by sub-
sequent calculations (see the review article [9] and
references therein). Of the remaining two effects, the
quasiparticle alignment depends strongly on pairing
correlations because the pairing force tries to bind
2001MAIK “Nauka/Interperiodica”
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pairs of particles in time-reversal states, reducing the
ability of nucleons to carry an angular momentum.
Therefore, the parameter B sensitively depends on the
variation of the pairing correlations along a band.

There are two features of pairing correlations in
SD bands compared to ND ones. First, owing to a
large shell gap stabilizing the SDminimum, the static
pairing field∆ is small and can be commensurate with
its fluctuation δ∆ (dynamical pairing correlations). A
qualitative conclusion concerning the role of static
and dynamical pairing in SD bands is presented in
[10]. Second, since intruder single-particle states,
which are unavailable at normal deformations, appear
in the case of superdeformations, it is necessary to go
beyond the commonly used monopole pairing force
[11]. A gauge-invariant pairing interaction expands
the correlation space and stabilizes the pairing field.
The coordinate-dependent (nonuniform) pairing is
crucial for nucleon-current conservation in a rotating
nucleus as well [12]. These features do not allow one
to use the results of previous theoretical calculations
of the parameter B for superdeformations. For the
first time, we present an exact solution for the second
inertial parameter in the superfluid (∆� δ∆) and
normal (∆ = 0) phases. Since present-day theoreti-
cal methods do not allow one to describe correctly the
transition region (∆ ∼ δ∆), we use interpolation that
reveals the critical spin Ic of a rotational spectrum,
B(Ic) = 0.

The semiclassical method developed in [6] is used
to represent the parameter β in the superfluid phase
as

βs =− �
4

4∆2

∑
�x12�

x
23�

x
34�

x
41 (7)

×F (x12, x23, x34, x41)δ(ε1−εF),
where the summation indices i = 1, 2, 3, 4 refer to
the single-particle states i of the nonrotating mean
field with the energy εi. The delta function implies
that summation over the states 1 is replaced by an
integral in the semiclassical approximation [12]. The
dimensionless quantities xii′ = (εi−εi′)/2∆, where
∆ is the state-independent pairing gap at ω = 0,
correspond to the energy differences between states
permitted by the selection rules for the matrix element
of �x. The function F depending on these quantities
can be represented in the form

F =
3∑

k=0

P̂kG12 (8)

+
1∑

k=0

P̂kH13−8D2
2x12x23x34x41h(x13),

where the permutation operators P̂kxi,i′ = xi+k,i′+k

in the space of four indices i (i mod 4 = i) are used
PH
to simplify the formulas. The expressions for G12 and
H13 involve the well-known functions [12]

h(x) = (1 + x2)g(x) , g(x) =
arg sinhx
x
√

1 + x2
(9)

and have the form

G12 =
g(x12)

x23x41x13x24

{(1−D1x
2
12

) (10)

×
[
−1− x2

12
− x23x41

+D1

[
x2

23
(1− x12x24) + x2

41
(1 + x12x13)

]
+ D2

1
x23x34x41(x23 + x41) +D3

1
x12x

2
23
x34x

2
41

]
+D1(x34 −D1x12x23x41)

×(x34 + x12x13x24 −D1x12x23x41)},

H13 =
h(x13)

x12x23x34x41

×
[
1−D1(x

2
12

+ x2
23

+ x2
34

+ x2
41

)2

+ D2
1
(x12x41 + x23x34)

]
.

The quantity βs in (7) multiplied by ω3 is the third-
order cranking correction to the total angular mo-
mentum of the neutron or proton system. We want
to emphasize that (7) represents the first theoretically
correct expression for a high-order effect of the Cori-
olis pairing interaction at a fixed deformation. The
result is obtained by taking into account the effect
of rotation on Cooper pairs in the gauge-invariant
form. This effect is described by the first and second
corrections to the pairing energy,

∆(1)(r) = − i�
2ω

2∆
D1�̇x, (11)

∆(2)(r) =
�

4ω2

4∆3
D2�̇

2
x,

where D1 and D2 are the amplitudes of the nonuni-
form pairing fields that are found in a self-consistent
way. The theory incorporating nonuniform pairing
also allows one to consider various limiting cases for
the inertial parameters, which make it possible to
study the interplay between rotation, pairing correla-
tions, and the mean-field deformation in a SD band.

In order to consider this problem quantitatively, we
will use an axially deformed oscillator potential with
frequencies ωx and ωz along the corresponding axes.
In this model, the matrix element �x12 is nonzero for
two types of transitions: (i) transitions inside a single
oscillator shell (close transitions) with x12 =±ν1 and
(ii) transitions over a shell (distant transitions) with
x12 =±ν2. The quantities ν1 and ν2 are well-known
parameters involved in the moment of inertia [12],

ν1,2 =
�(ωx∓ωz)

2∆
=
k ∓ 1
2ξk2/3

, ξ=
∆

�ω0
, (12)
YSICS OF ATOMIC NUCLEI Vol. 64 No. 6 2001
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where �ω0 = 41A−1/3 MeV. Hereafter, we use the
axis or the frequency ratio k = c/a = ωx/ωz and
the volume-conservation condition ω2

xωz = ω3
0. The

quantities ν1 and ν2 are both large for superdefor-
mation. For the fixed state 1, there are 36 com-
binations of these basis transitions in the sum in
(7). Performing summation over the states 1 in
the Thomas–Fermi approximation, we find in the
oscillator potential that

βs =
(k + 1)4

1875�2k4/3
AM3R6Φ(ξ, k), (13)

where R = 1.2A1/3 fm is the radius of the sphere
whose volume is equal to that of the spheroid with
half-axis a < c,M is the nucleon mass, and A is the
number of nucleons. The function Φ, along with its
limiting cases, is shown in Fig. 1. It can be seen
that nonuniform pairing reduces substantially βs and
consequently the parameterB. On the other hand, the
contribution of distant transitions is minor for small
ξ. Nevertheless, the latter is necessary to obtain the
hydrodynamic limit. Since Φ ∼ 1 for a reasonable
pairing gap, ∆ ∼ 0.5MeV, βs is of order �

4(A/εF)3.
This, together with the estimate A ∼ εFA−5/3, yields
B/A ∼ A−2, which overestimates the minimal value
of this ratio in all SD mass regions. Thus, a small ∆
and nonuniform pairing do not solve the problem of
the regularity of SD bands.

Let us now consider the normal phase. The right-
hand side of Eq. (7) vanishes in the limiting case
∆ = 0. This result is an artifact of the semiclassical
approximation used in (7). For the parameter β in
the normal phase, the correct expression obtained
with the limiting values of the Bogolyubov amplitudes
(ui = 0 and vi = 1 for ni = 1 and ui = 1 and vi = 0
for ni = 0, where ni is the nucleon occupation num-
bers) has the form

βn = −�
4
∑
�x12�

x
23�

x
34�

x
41

3∑
k=0

P̂k

{ n1

ε12ε13ε14

}
. (14)

The odd function of the differences εii′ = εi− εi′ leads
to the cancellation of the leading terms in the sum
in (14), whereby βn is substantially reduced, βn ∼
�

4A7/3/ε3F. In the normal phase, the centrifugal-
stretching effect is therefore of the same order as the
particle-alignment effect, βstr ∼ βn. For the oscillator
potential, we have

βn + βstr =
k4 − 10k2 + 1

6ω2
0k

4/3
AMR2. (15)

It can be seen that βn+βstr<0 for prolate nuclei with
c/a< 3.15, whereas βs is always positive. Thus, the
ratio B/A has to change sign with increasing spin I
and approach its limiting value of Bn/An ∼ A−8/3,
∼ 10−6 for the SD bands in the 130 and 150 mass
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 6 200
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Fig. 1.Plot of the functionΦ from (13) against the dimen-
sionless quantity ξ for the axis ratio c/a = 2. The solid,
dotted, and dashed curves correspond, respectively, to the
exact value, the limit of close transitions, and uniform
pairing. The abscissa scale must be multiplied by a factor
of about 7.7 for nuclei in theA ∼ 150mass region in order
to obtain the gap energy in MeV.

regions. The limiting ratio for a nucleus consisting of
Z protons andN neutrons is

Bn

An
=−2.56

(k4−10k2+1)k2/3

(k2 + 1)3A8/3
(16)

×
[(2Z
A

)1/3
+
(2N
A

)1/3
]
.

An interpolation between the quantities in (13)
and (15) allows one to conclude that there are two
distinct regions in the variation of B/A versus I. The
lower part of an SD band is characterized by a gradual
decrease in the pairing gap ∆. According to (13),
the ratio B/A must exhibit a sharp increase. It then
changes sign at the spin value of Ic and approaches
the plateau value of (16) at the top of a band. Such
behavior of the ratio B/A is the signature of quench-
ing static pairing correlations. Pairing fluctuations in
the normal phase reduce the value in (16) (by analogy
with the dealignment effect of [13]), but they do not
change our conclusion. This statement is confirmed
by the ω dependence of the difference �(1) −�(2)

[which is proportional to B/A in the high-I limit
according to (3)] calculated with and without pairing
vibrations in [14].

We have analyzed all the SD bands of [15] with
known or suggested spins of levels. Figure 2 shows
B/A as a function of I for SD bands represent-
ing different mass regions. Apart from the bands
192Hg(1) and 194Hg(3), where frequencies are so low
that B/A rises continuously in the superfluid phase,
and 84Zr(1), for which pairing is quenched completely
and B/A is close to the limiting value in (16), all
these bands display the behavior described above.
1
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Fig. 2.RatioB/A versus spin for SD and NDbands with predominantly collective behavior. Expressions (2) are used to obtain
this ratio from experimental data for (closed circles) ND and (open circles) SD bands. The solid straight line is the limiting
value of Bn/An for the normal phase with the deformation c/a found from the quadrupole moment. The error bars (if they are
greater than symbol sizes) include only the uncertainties in the γ-ray energies. The uncertainties in the spin assignment are
immaterial for all SD bands [with the exception of 152Dy(1)], since the spin variation of 2� would merely shift the curves along
the abscissa.
The pronounced plateau is a consequence of the weak
dependence of the nuclear deformation c/a on I. A
slow decrease in the ratio B/A in the upper parts of
all the SD bands considered here seems to result from
the stretching of nuclei at highest spins. It is impor-
tant to note that the behavior characteristic of static
pairing quenching is observed in the upper part of the
yeast ND bands of 84Zr [where B/A reaches the same
limiting value (16) as in the SD band 84Zr(1)], 168Yb,
and 168Hf. Thus, the plots of Fig. 2 demonstrate the
universality of the superfluid-to-normal transition for
SD and ND bands.

The problem of the pairing phase transition in the
ND and SD bands has been the subject of inten-
sive discussions in high-spin physics for a long time
[10, 13]. The main difficulty lies in the finiteness of
the system. The presence of fluctuations and the
configuration dependence make this transition very
diffuse and ambiguous. The phenomenon is anal-
ogous to the transition from deformed to spherical
nuclei. The physical reality of the two critical phe-
nomena lies in the possibility of observing the change
in the collective excitations of the system. In the case
of deformation, the rotational–vibrational spectrum
PH
transforms into a pure vibrational one. The transition
being considered is more delicate. It manifests itself
in a modification to the rotational spectrum: the spec-
trum compressed relative to the rigid-rotor one below
the critical point Ic transforms into the extended one
above Ic. Following [16], we can represent the effec-
tive rotational Hamiltonian describing the levels of a
band in the transition region as

Heff = aI2 + (I/Ic − 1)bI4 + cI6, (17)

where the parameters a, b, and c and the critical spin
Ic are the subjects of a microscopic theory that has
to take into account static, dynamical, and uniform
pairing. Upon incorporating the critical spin, which
can be found from the plots in Fig. 2, this concept
of the superfluid-to-normal transition is free from
ambiguities characteristic of the approach based on
a change in the single-particle spectra [17, 18]. This
also allows one to explain the extreme regularity of
SD bands. Figure 2 shows that, for the most part,
the SD bands from the 80, 130, and 150 mass regions
belong to the normal and transition phases, where the
nonadiabatic parameter B is small or close to zero.

As an example of the configuration-dependent ef-
fect, which destroys the characteristic features of the
YSICS OF ATOMIC NUCLEI Vol. 64 No. 6 2001
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Fig. 3. As in Fig. 2, but for the bands with high-N
configurations, which have a nonzero alignment i. The
straight line represents the value of Bn/An for 153Dy(1).

transition, Fig. 3 shows the ratio B/A for two SD
bands of odd nuclei. The staggering behavior of the
ratio is a point of particular interest. This new phe-
nomenon is associated with an odd neutron and can-
not be explained by pairing correlations. It should be
noted that staggering is reproduced very well, the er-
ror bars being smaller than the staggering amplitude.

In summary, an exact solution for the inertial pa-
rameter B demonstrates the importance of nonuni-
form pairing, which allows one to find correctly the
different limits of this quantity. The limit of zero static
pairing is of special interest because it shows that the
parameter B changes sign as the spin I increases in a
band. The critical point Ic, B(Ic) = 0, is a signature
of the superfluid-to-normal transition, which leads to
a modification of the rotational spectrum of a band.
This modification reveals itself in the characteristic
dependence of the ratio B/A on the spin I. The appli-
cation of this criterion to experimental data indicates
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 6 200
the existence of the transition in the SD bands of the
three mass regions and in some ND bands. As a rule,
the closer the critical point to the beginning of a band,
the more regular its rotational spectrum.
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Abstract—We propose a collective Hamiltonian that incorporates interactions capable of generating
rotations in nuclei with simultaneous presence of octupole and quadrupole deformations. It is demonstrated
that the model formalism could be applied to reproduce the staggering effects observed in nuclear octupole
bands. On this basis, we propose that the interactions involved would provide a relevant handle in the
study of collective phenomena in nuclei and other quantum mechanical systems with reflection asymmetry
correlations. c© 2001 MAIK “Nauka/Interperiodica”.
The properties of nuclear systems with octupole
deformations [1] are of current interest due to the
increasing amount of evidence for the presence of
octupole instability in different regions of the nuclear
table [2]. Various parametrizations of the octupole
degrees of freedom have opened a useful tool for un-
derstanding the role of the reflection asymmetry cor-
relations and for analysis of the collective properties of
such kind of systems [3–5]. As an important step in
this direction, it is necessary to elucidate the question:
Which are the collective nuclear interactions that cor-
respond to the different octupole shapes and how do
they determine the structure of the respective energy
spectra? A physically meaningful answer could be
obtained by taking into account the simultaneous
presence of other collective degrees of freedom, such
as the quadrupole ones.

In the present work, we address the above prob-
lem by examining the interactions that generate col-
lective rotations in a system with octupole defor-
mations. Based on the octahedron point symme-
try parametrization of the octupole shape [4], we
propose a general collective Hamiltonian which in-
corporates the interactions responsible for the ro-
tations associated with the different octupole defor-
mations. It will be shown that after taking into
account the quadrupole degrees of freedom and the
appropriate higher order quadrupole–octupole inter-
action the model formalism would be able to repro-
duce schematically some interesting effects of the fine
rotational structure of nuclear octupole bands. The
study is strongly motivated by the need of theoretical

∗This article was submitted by the authors in English.
1)Institute of Nuclear Physics, N.C.S.R. “Demokritos,” Attiki,
Greece.

**e-mail: nminkov@inrne.bas.bg
1063-7788/01/6406-1098$21.00 c©
explanation of the recently observed staggering pat-
terns in octupole bands of light actinides [6] as well
as by the possibility of gaining an insight into the fine
structure of negative parity rotational bands based on
octupole vibrations.

Our model formalism is based on the understand-
ing that the collective properties of a physical system
in which octupole correlations take place should be
influenced by the following most general octupole
field V3 =

∑3
µ=−3 α

fix
3 µY

∗
3 µ (in the intrinsic, body-

fixed frame), which can be written in the form [4]

V3 = ε0A2 +
3∑

i=1

ε1(i)F1(i) +
3∑

i=1

ε2(i)F2(i), (1)

where the quantities

A2 = − i√
2
(Y3 2 − Y3−2) =

1
r3

√
105
4π

xyz, (2)

F1(1) = Y3 0 =
1
r3

√
7
4π
z

(
z2 − 3

2
x2 − 3

2
y2

)
, (3)

F1(2) = −1
4

√
5(Y3 3 − Y3−3) (4)

+
1
4

√
3(Y3 1 − Y3−1)

=
1
r3

√
7
4π
x

(
x2 − 3

2
y2 − 3

2
z2

)
,

F1(3) = −i1
4

√
5(Y3 3 + Y3−3) (5)

− i1
4

√
3(Y3 1 + Y3−1)

=
1
r3

√
7
4π
y

(
y2 − 3

2
z2 − 3

2
x2

)
,

2001 MAIK “Nauka/Interperiodica”
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F2(1) =
1√
2
(Y3 2 + Y3−2) (6)

=
1
r3

√
105
16π

z(x2 − y2),

F2(2) =
1
4

√
3(Y3 3 − Y3−3) (7)

+
1
4

√
5(Y3 1 − Y3−1)

=
1
r3

√
105
16π

x(y2 − z2),

F2(3) = −i1
4

√
3(Y3 3 + Y3−3) (8)

+ i
1
4

√
5(Y3 1 + Y3−1)

=
1
r3

√
105
16π

y(z2 − x2)

(with r2 = x2 + y2 + z2) belong to the irreducible
representations (irreps) of the octahedron group (O).
A2 is one-dimensional, while F1 and F2 are three-
dimensional irreps. The seven real parameters ε0 and
εr(i) (r = 1, 2; i = 1, 2, 3) determine the amplitudes
of the octupole deformation. Their relation to the αfix

3 µ

is given in [4].
Our proposition is that the general collective

Hamiltonian which incorporates the shape charac-
teristics of the octupole field (1) can be constructed
on the basis of the above octahedron irreps. For
this purpose, we introduce operator forms of the
quantities A2, F1(i), and F2(i) (i = 1, 2, 3) in which
the cubic terms of the Cartesian variables x, y, and z
in (2)–(8) are replaced by appropriately symmetrized
combinations of cubic terms of the respective angular
momentum operators Îx, Îy , Îz (with Î2 = Î2

x + Î2
y +

Î2
z ). The following Hamiltonian is then obtained:

Ĥoct = ĤA2 +
2∑

r=1

3∑
i=1

ĤFr(i) (9)

with

ĤA2 = a2
1
4
[(ÎxÎy + Îy Îx)Îz + Îz(ÎxÎy + Îy Îx)],

(10)

ĤF1(1) =
1
2
f11Îz(5Î2

z − 3Î2), (11)

ĤF1(2) =
1
2
f12(5Î3

x − 3ÎxÎ2), (12)

ĤF1(3) =
1
2
f13(5Î3

y − 3Îy Î2), (13)

ĤF2(1) = f21
1
2
[Îz(Î2

x − Î2
y ) + (Î2

x − Î2
y )Îz ], (14)
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 6 200
ĤF2(2) = f22(ÎxÎ2 − Î3
x − ÎxÎ2

z − Î2
z Îx), (15)

ĤF2(3) = f23(Îy Î2
z + Î2

z Îy + Î3
y − Îy Î2). (16)

TheHamiltonian parameters a2 and fr i (r = 1, 2; i =
1, 2, 3) are formally related to the parameters in (1)
as follows: a2 = ε0

√
105/(4π), f1 i = ε1(i)

√
7/(4π),

f2 i = ε2(i)
√

105/(16π), i = 1, 2, 3.
During the procedure described above, the r3 fac-

tors appearing in the denominators of (2)–(8) are
replaced by Î3 factors. In the final result, (10)–(16),
we normalize with respect to Î3, i.e., we multiply the
results by Î3, an operation which is equivalent to the
transition to a unit sphere, a natural thing to do since
we are interested in surface shapes.

We remark that the terms of the Hamiltonian
obtained (as a function of the angular momentum
operators Îx, Îy , Îz) correspond to the same octupole
shapes which appear in (2)–(8) and belong to the
same irreps of the octahedron group. In other words,
through the above procedure we determine the oc-
tahedron point symmetry properties of the system in
angular momentum space.

Our analysis shows that the operator ĤF1(1) (11),
which corresponds to Y3 0 (with axial deformation) is
the only one octupole operator possessing diagonal
matrix elements in the states with collective angular
momentum I. Below, it will be shown that it is of
major importance for determining the fine structure of
collective bands with octupole correlations. Actually,
it is well known that the Y3 0 (axial) deformation is the
leading mode in the systems with reflection asymmet-
ric shape (see for review [2]).

Further, it is known that the use of the pure oc-
tupole field (1) is not sufficient to incorporate the col-
lective shape properties of the system. More specif-
ically, a unique parametrization of the pure octupole
field in an intrinsic frame has not been obtained yet
in a consistent way [2]. In this respect, the consid-
eration of octupole degrees of freedom together with
the quadrupole deformations is important. A general
treatment of a combined quadrupole–octupole field
is proposed in the framework of a general collective
model for coupled multipole surface modes [7, 8].

Based on the above consideration, we suggest that
the most general collective Hamiltonian of a system
with octupole correlations should also contain the
quadrupole rotation part

Ĥrot = AÎ2 +A′Î2
z , (17)

where A and A′ are the inertial parameters. In addi-
tion, the following higher order diagonal quadrupole–
octupole interaction term (corresponding to the prod-
uct Y2 0 · Y3 0) could be introduced:

Ĥqoc = fqoc
1
I2

(15Î5
z − 14Î3

z Î
2 + 3Îz Î4). (18)
1
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The “yrast” energy levels, E(I) (in keV), and the re-
spective K values obtained by (23) for the parameter set
E0 = 500 keV, fk = −7.5 keV, A = 12 keV, A′ = 6.6 keV,
f11 = 0.56 keV, and fqoc = 0.085 keV

I E(I) K I E(I) K I E(I) K

1 522.772 1 13 2335.81 5 25 5453.12 11

2 568.327 1 14 2576.57 6 26 5694.49 12

3 637.095 1 15 2827.57 6 27 5935.5 12

4 728.71 1 16 3082.36 7 28 6157.5 13

5 840.857 2 17 3344.94 7 29 6378.29 13

6 971.155 2 18 3608.18 8 30 6575.37 14

7 1123.22 2 19 3877.05 8 31 6770.62 14

8 1288.09 3 20 4143.16 9 32 6937.23 15

9 1472.71 3 21 4413.03 9 33 7101.62 15

10 1668.56 4 22 4676.45 10 34 7232.21 16

11 1880.56 4 23 4942.01 10 35 7360.44 16

12 2101.68 5 24 5197.18 11 36 7449.45 17

This operator is normalized with respect to the mul-
tiplication factor I3. (More precisely, we use the
product I3Y2 0 · Y3 0 so as to keep all nonquadrupole
Hamiltonian terms of the same order.)

Then, the Hamiltonian of the system can be writ-
ten as

Ĥ = Ĥbh + Ĥrot + Ĥoct + Ĥqoc. (19)

Here,

Ĥbh = Ĥ0 + fkÎz (20)

is a pure phenomenological part introduced to repro-
duce the bandhead energy in the form

Ebh = E0 + fkK, (21)

where E0 and fk are free parameters. The K depen-
dence of Ebh, which can reasonably be referred to
the intrinsic motion, provides the correct value of the
bandhead angular momentum projection K in the
variation procedure described below.

We remark that the Hamiltonian (19) is not a rota-
tional invariant in general. It does not commute with
the total angular momentum operators, and any state
with given angular momentum is energy split with
respect to the quantum number K. Therefore, the
physical relevance of this Hamiltonian depends on the
possibility of determining in a unique way the angular
momentum projection. The basic assumption of our
consideration is thatK is not frozen within the states
of the collective rotational band. We suggest that for
any given angular momentum it should be determined
so as to minimize the respective collective energy.
PH
The resulting energy spectrum represents the yrast
sequence of energy levels for our model Hamiltonian.
We remark that similar procedure is used in [9, 10] in
reference to the ∆I = 2 staggering effect in superde-
formed nuclei.

As a first step in testing our Hamiltonian, we
consider its diagonal part

Ĥd = Ĥbh + Ĥrot + Ĥd
oct + Ĥqoc, (22)

where the operator Ĥd
oct ≡ ĤF1(1) represents the

diagonal part of the pure octupole Hamiltonian
Ĥoct, (9).

The following diagonal matrix element is then ob-
tained:

EK(I) = E0 + fkK +AI(I + 1) +A′K2 (23)

+ f11

(
5
2
K3 − 3

2
KI(I + 1)

)

+ fqoc
1
I2

(
15K5 − 14K3I(I + 1) + 3KI2(I + 1)2

)
.

Following the above assumption for the third angular
momentum projection, we determine the yrast se-
quence E(I) after minimizing (23) as a function of
integer K in the range −I ≤ K ≤ I. The obtained
energy spectrum depends on six model parameters:
E0 essentially responsible for the bandhead energy;
fk which provides minimal energy for K = Kbh =
Ibh; A and A′ are the quadrupole inertial parame-
ters which should generally correspond to the known
quadrupole shapes (axes ratios) of nuclei; f11 and fqoc

are the parameters of the diagonal octupole (11) and
quadrupole–octupole (18) interactions, respectively.
We consider the latter two parameters as free param-
eters.

We applied several exemplary sets of the above pa-
rameters and obtained the corresponding schematic
energy spectra. One of them is given in the table. It is
seen that the “yrast” values of the quantum number
K gradually increase with the increase in the angular
momentum I. We remark that they correspond to
the local minima of (23) as a function of K. This is
illustrated on Fig. 1. We see that these minima are
well determined and their depth increases with the
increase in the angular momentum. Such a behavior
of the spectrum corresponds to a wobbling motion
and could also be interpreted as a multiband-crossing
phenomenon. The obtained yrast sequence can be
considered as the envelope of the curves with different
values of the quantum number K, as is illustrated in
Fig. 2.

In addition, we see that theK values of the odd and
the even sequence of levels are grouped by couples
YSICS OF ATOMIC NUCLEI Vol. 64 No. 6 2001
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Fig. 1. The diagonal energy matrix element EK(I) (23)
is plotted as a function of K for I = 1, 2, ..., 10 for the pa-
rameter set E0 = 500 keV, fk = −7.5 keV, A = 12 keV,
A′ = 6.6 keV, f11 = 0.56 keV, and fqoc = 0.085 keV.

which imply the presence of an odd–even stagger-
ing effect. Indeed, the presence of such an effect is
demonstrated in Figs. 3a–3e, where the quantity

Stg(I) = 6∆E(I) (24)

− 4∆E(I − 1)− 4∆E(I + 1)
+ ∆E(I + 2) + ∆E(I − 2)

with ∆E(I) = E(I + 1)− E(I) is plotted as a func-
tion of angular momentum I for several different sets
of model parameters. (The quantity Stg(I) is the
discrete approximation of the fourth derivative of the
function ∆E(I), i.e., the fifth derivative of the energy
E(I). Its physical relevance has been discussed ex-
tensively in [6, 11].)

Figure 3a illustrates a long ∆I = 1 staggering
pattern with several irregularities, which looks similar
to the “beats” observed in the octupole bands of some
light actinides such as 220Ra, 224Ra, and 226Ra [6].
Also, it is rather similar to the staggering patterns
observed in rotational spectra of diatomic molecules
[12]. In Fig. 3b, the increased values of f11 and
fqoc provide a wide angular momentum region (up
to I ∼ 40) with a regular staggering pattern. The
further increase of fqoc results in a staggering pattern
with different amplitudes, shown in Fig. 3c. These
two figures resemble the staggering behavior of some
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 6 200
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Fig. 2. The diagonal energy matrix element EK(I) (23)
is plotted as a function of I for K = 10, 11, 12, 13 for the
parameter set of Fig. 1.

rotational (negative parity) bands based on octupole
vibrations [13]. The further increase of f11 and fqoc

leads to a staggering pattern with many “beats,” as
shown in Fig. 3d. Notice that in Fig. 3d the first three
“beats” are completed by I ≈ 40, while in Fig. 3a
the first three “beats” are completed by I ≈ 70. An
example with almost constant staggering amplitude
is shown in Fig. 3e. It resembles the form of the odd–
even staggering predicted in theSU(3) limit of various
algebraic models (see [6] for details and relevant ref-
erences). It also resembles the odd–even staggering
seen in some octupole bands of light actinides, such
as 220Th [6].

Now, we can discuss the general Hamiltonian
structure (19), including the various nondiagonal
terms (10), (12)–(16). Here, the major problem is the
circumstance thatK is generally not a good quantum
number. However, we are able to provide our analysis
for small values of the respective parameters which
conserve K “asymptotically” well. This requirement
assumes a weak K-bandmixing interaction which
guarantees that for any explicit energy minimum
appearing in the diagonal case the corresponding
perturbed Hamiltonian eigenvalue will be uniquely
determined. Thus we are able to obtain the respective
K-mixed yrast energy sequence. Our numerical
analysis of the Hamiltonian eigenvector systems
shows that the parameters of the nondiagonal terms
1
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Fig. 3. ∆I = 1 staggering patterns (24) (in keV) obtained (a–e) by the diagonal Hamiltonian (22) for several different
sets of model parameters; (f) by adding three nondiagonal terms ĤF1(2) (12), ĤF2(1) (14), and ĤF2(2) (15) to the diagonal
Hamiltonian (22).
should be an order smaller in value than the parameter
f11. In addition, we established that the following
couples of nondiagonal terms make the same con-
tribution to the energy spectrum: ĤA2 and ĤF2(1);

ĤF1(2) and ĤF1(3); ĤF2(2) and ĤF2(3).

In Fig. 3f, a staggering pattern with a presence
of K-bandmixing is illustrated. In fact, we added
the following three nondiagonal terms ĤF1(2), ĤF2(1),
P

and ĤF2(2) to the already considered diagonal Hamil-

tonian (22), with the parameters of the latter being
kept the same as in Fig. 3b (and in the table). We see
that the mixing leads to a decrease in the staggering
amplitude with the increase in angular momentum,
so that the staggering pattern is reduced completely
in the higher spin region. This pattern resembles

the experimental situation in 218Rn and 228Th [6]
HYSICS OF ATOMIC NUCLEI Vol. 64 No. 6 2001
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(odd–even staggering with amplitude decreasing as
a function of I).

So, the staggering patterns illustrated so far
(Fig. 3) cover almost all known ∆I = 1 staggering
patterns in nuclei and molecules. The amplitudes
obtained for the examined sets of parameters vary
up to 300 keV. Some reasonable theoretical patterns
with Stg(I) ∼ 500 keV can be easily obtained. On
this basis, we suppose that the model parameters
can be adjusted appropriately so as to reproduce
the staggering effects in nuclear octupole bands as
well as in some rotational negative parity bands
built on octupole vibrations. Also, an application
of the present formalism to the spectra of diatomic
molecules could be reasonable.

Here, the following comments on the structure of
the collective interactions used and the related sym-
metries would be relevant:

1. The equal contribution of the three couples of
nondiagonal terms (mentioned above) indicates that
only four octupole Hamiltonian terms are enough to
determine the energy spectrum. This result reflects
the circumstance that in the intrinsic frame three
octupole degrees of freedom, from the seven ones,
are related to the orientation angles. For example,
we could suggest that the following terms (applied in
Fig. 3f) give an independent contribution to the total
Hamiltonian: ĤF1(1), ĤF1(2), ĤF2(1), and ĤF2(2). We
remark that our analysis (related to the collective
rotations of the system) gives a natural way to deter-
mine the four collective octupole interaction terms.

2. From a symmetry point of view, we remark
that the diagonal term ĤF1(1), which corresponds to
Y3 0, possesses an axial symmetry, while the nondi-
agonal terms ĤF1(2), ĤF2(1), and ĤF2(2) (of previous
item 1) are constructed by using the combinations
(Y3 1 − Y3−1) with C2v symmetry, (Y3 2 + Y3−2) with
Td symmetry, and (Y3 3 − Y3−3) with D3h symmetry.
This, our analysis shows that the axial symmetric
term should play the major role in the structure of
the collective rotational Hamiltonian, while the non-
axial parts could be considered as small K-band-
mixing interactions. From a microscopic point of
view, a detailed analysis of the above spherical har-
monic combinations and the respective symmetries
has been provided on the basis of the one-particle
spectra of the octupole-coupled two-level model [14].

3. The observed influence of the nondiagonal
Hamiltonian terms on the fine structure of our
“schematic” spectra suggests an important physical
conclusion: the nondiagonal K-mixing interactions
suppress the staggering pattern. In such a way, we
find that the axial symmetric term ĤF1(1) is the only
one pure octupole degree of freedom which provides
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 6 200
“beat” staggering behavior of the quantity (24) (see
Fig. 3e). (The quadrupole–octupole term Ĥqoc gives
an additional contribution and provides wider angular
momentum regions with regular staggering.) So,
our analysis suggests that the ∆I = 1 staggering
effect observed in systems with octupole deformations
could be referred to the dominant role of the axial
symmetric “pearlike” octupole shape.

In addition, it is important to remark that the fine
(staggering) behavior of our schematic energy spec-
tra reflects the structure of the interactions considered
through the K sequences generated in the above
minimization procedure. Thus, our analysis suggests
that in the high-angular-momentum region, some
high-K-band structures should be involved. From a
microscopic point of view, the values K = 0, 1, 2, 3
have been included in the calculations, showing that
in the beginning of the rare-earth region the values
K = 0, 1 are important for the lowest 3− state, while
in the middle of the region the values K = 1, 2 are
important and in the far end of the region the values
K = 2, 3 are important [15]. The same authors deal
with nuclei with A ≥ 222 in [15]. One of the authors
of [15, 16] in [17] finds that the restriction toK ≤ 3 is
not justifiable for large energies. This is in agreement
with our findings in the table.

In conclusion, we remark that the collective inter-
actions considered in this work suggest the presence
of various fine rotational band structures in quantum
mechanical systems with collective octupole corre-
lations. In particular, they provide various forms of
staggering patterns which appear as the results of
a delicate interplay between the terms of a pure oc-
tupole field and the terms of a high-order quadrupole–
octupole interaction. The analysis carried out outlines
the dominant role of the axial symmetric “pearlike”
octupole shape for the presence of a ∆I = 1 stag-
gering effect. The obtained multi-K-band crossing
structures could be referred to a wobbling collective
motion of the system. We propose that the inter-
actions involved would provide a relevant handle in
the study of collective phenomena in nuclei and other
quantum mechanical systems with complex shape
correlations.
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Abstract—Ground-state properties of the heaviest nuclei are analyzed within a macroscopic–microscopic
approach. The main attention is paid to such properties as deformation, deformation energy, energy of
the first rotational state 2+ of a nucleus, and the branching ratio of α decay to this 2+ state with respect
to the decay to the ground state 0+. The analysis concerns the problem of experimental confirmation of
theoretically predicted deformed shapes of superheavy nuclei situated in the region around the nucleus
270Hs. A large region of even-even nuclei with proton, Z = 82–128, and neutron,N = 126–190, numbers
is considered. c© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The objective of this paper is to present results
of our recent studies on the properties of superheavy
nuclei. The studies are a continuation of our previous
works (e.g., [1–3]) in this field. They are closely
connected with extensive experimental studies of su-
perheavy nuclei (e.g., [4–6]). A wider review of recent
theoretical studies of these nuclei may be found, e.g.,
in [7–9]. In this paper, we mainly concentrate on
the problem of the deformation of superheavy nuclei.
Calculations of this deformation (e.g., [1, 10–13])
indicate that most of these nuclei, especially those
around the nucleus 270Hs, are expected to be de-
formed. These predictions are not yet, however, con-
firmed by experiment. The heaviest nuclei, for which
ground-state rotational bands have been observed,
are 254, 256Fm. Very recently, such bands have also
been seen for 254No [14, 15] and 252No [16]. The
observations were done by γ spectroscopy. There is,
however, only a small chance to do this for heavier
nuclei by γ spectroscopy, because its efficiency is
too low for nuclei whose production cross sections
are very small. There is a better chance to measure
directly the energy of the first rotational state, E2+ ,
in the respective α transition or conversion electrons.
For example, the two close lines already seen in the
α-decay spectrum of 260Sg [17] may be interpreted
[18] as the observation of the lowest rotational state
of 256Rf.

To help such experiments, calculations of the en-
ergyE2+ [19] and of the branching ratio b2+/b0+ have

∗This article was submitted by the authors in English.
1)Institute for Nuclear Research, Kiev, Ukraine.
**e-mail: sobicz@fuw.edu.pl
1063-7788/01/6406-1105$21.00 c©
been done for many even–even superheavy nuclei.
The latter is the ratio of the probability of α decay of a
nucleus to the first 2+ state of its daughter, to that to
the ground-state 0+ of the daughter. It is important
to estimate its value before doing an experiment, to
get some idea of the chance to measure it for nuclei
with very small cross sections for their synthesis.
Some results of these calculations are presented in
this paper.

2. METHOD OF THE CALCULATIONS

The potential energy E of a nucleus is calcu-
lated by a macroscopic–microscopic method, with
the Yukawa-plus-exponential model [20] taken for
the macroscopic part and the Strutinski shell cor-
rection used for the microscopic part of the energy.
TheWoods–Saxon single-particle potential, with the
“universal” version of its parameters [21], is taken for
the calculation of the shell correction.

The equilibrium deformation parameters β0
λ of a

nucleus are found by minimization of the potential
energy E in a large deformation space. The 7-dimen-
sional space {βλ}, λ = 2, 3, . . . , 8, is taken.

The moment of inertia of a nucleus is calculated in
the cranking approximation.

3. RESULTS

We find, similar to [2, 22], that only a few nuclei
in the concidered region are reflection asymmetric,
i.e., have the odd-multipolarity components β0

λ, λ =
3, 5, 7, different from zero. Due to this, we only
show the results for even-multipolarity components
β0

λ, λ = 2, 4, 6, 8. They are given in Fig. 1.
2001MAIK “Nauka/Interperiodica”
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Fig. 2.Contourmap of the deformation energyEdef (MeV).

One can see that most of the investigated nuclei
are deformed. Only two relatively small regions of
spherical nuclei appear: one (smaller) region of nuclei
near those with a closed neutron shell at N = 126,
PH
Z

115

95

145 N

42.5

105

45.0

50.0

55.0

42.5

55.0

155 165

Fig. 3. Contour map of calculated energy E2+ (keV) of the
first rotational state 2+.

and the other (larger) near to nuclei with a closed
neutron shell at N = 184. Relatively small effects of
weaker proton spherical closed shells at Z = 82 and
Z = 114 are also visible.
YSICS OF ATOMIC NUCLEI Vol. 64 No. 6 2001
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One can also see that the main, quadrupole, com-
ponent of the deformation, β0

2 , is the largest. It
is large (β0

2 ≈ 0.24) and approximately constant in
a large part of the studied region and rapidly de-
creases as one moves to the boundaries of this region.
The higher multipolarity components are smaller, and
they change sign as one moves across the region.

Figure 2 shows the deformation energy of the nu-
clei, Edef . This quantity is defined as the difference
between the energy of a nucleus at its spherical and
equilibrium shapes,

Edef ≡ E(0) − E(β0
λ), (1)

i.e., as the gain in energy of a nucleus due to its
deformation. The analysis of this quantity in various
nuclei [23] indicates that nuclei with E � 2 MeV
are well deformed, while those with E < 2 MeV are
spherical or transitional. One can see in Fig. 2 that
most of the considered nuclei are well deformed. The
largest values ofEdef (above 12MeV) are obtained for
nuclei around the nucleus 254No, i.e., for nuclei with
the largest quadrupole deformation β0

2 .
It is worth noting here that, although there is a

general similarity between the maps of Edef and β0
2 ,

there also exist some differences. For example, for
nuclei with N = 152 (i.e., with about a half-filled
neutron shell between N = 126 and N = 184), Edef
decreases rather fast when the proton number Z de-
creases from Z = 102 to Z = 82, or when it increases
above Z = 102, while β0

2 remains almost unchanged
with these changes of Z. Thus, for 234Pb (i.e., for
the nucleus with the magic proton number Z = 82),
the calculated value of β0

2 is large (β
0
2 = 0.244), while
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 6 200
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Edef is rather small (Edef = 1.9 MeV). This means
that this nucleus is predicted to be rather transitional
than well deformed. In other words, the large defor-
mation of this nucleus is expected to be of a dynamical
rather than static nature.

Figure 3 shows a map of the energies E2+ of
the first rotational state 2+, calculated for even–even
nuclei from about the central part of the considered
region [19]. According to Fig. 2, they are expected to
be well deformed. The energies are obtained from the
calculated values of the moment of inertia J by the
formula

EI+ = (�2/2J )I(I + 1), (2)

valid for an ideal even–even rotor, where I is its spin.
Two minima of E2+ appear. One (41.7 keV) is ob-
tained for the nucleus 254No, and the other (40.0 keV)
for 270Hs. One may note that the value 44 keV,
deduced forE2+ from the recently observed rotational
band of 254No [14] is quite close to the value predicted
theoretically.

The appearance of two minima of E2+ at 254No
and 270Hs is due to significant proton energy gaps at
Z = 102 and 108 and especially large neutron energy
gaps at N = 152 and 162 [1]. A large energy gap
weakens pairing correlations and, this way, increases
the moment of inertia of a nucleus, which is a very
sensitive function of these correlations. The coinci-
dence of minima of E2+ (maxima of the moment of
inertia J) with minima of the pairing correlations is
directly illustrated by the map of the neutron pairing-
energy gap ∆n shown in Fig. 4, to be compared
with the map of E2+ given in Fig. 3. This way, a
measurement of E2+ for nuclei in the studied region
may give us a knowledge on their shell structure,
besides the knowledge on their deformation. Up to
now, the basic information about the shell structure of
these nuclei comes from the analysis of their half-lives
(e.g., [2, 3]). This knowledge is especially important
1
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Values of E2+ , Qpar
α , and b2+/b0+ calculated for isotopes

of the elements Rf (Z = 104), Sg (Z = 106), and Hs (Z =
108)

N A E2+ ,
keV

Qpar
α ,

MeV
b2+/b0+ ,
%

Z = 104
148 252 49.1 10.19 18.9

150 254 46.9 9.90 16.7

152 256 43.4 9.96 15.1

154 258 44.5 9.60 13.1

156 260 46.4 9.06 11.0

158 262 47.3 8.54 9.3

160 264 47.2 8.05 8.0

162 266 44.3 8.66 7.6

164 268 49.0 8.46 6.4

166 270 54.9 8.11 5.2
Z = 106

150 256 48.4 10.97 15.4

152 258 44.7 11.02 14.0

154 260 45.0 10.69 12.2

156 262 45.9 10.20 10.4

158 264 45.6 9.65 9.0

160 266 45.0 9.13 7.7

162 268 41.9 9.79 7.3

164 270 46.5 9.58 6.2

166 272 51.8 9.22 5.1

168 274 57.0 8.77 4.2
Z = 108

154 262 46.2 12.17 11.4

156 264 46.6 11.76 9.9

158 266 45.8 11.24 8.6

160 268 43.9 10.80 7.5

162 270 40.2 11.39 7.0

164 272 44.5 11.03 5.9

166 274 49.1 10.52 5.0

168 276 53.8 9.84 4.1

170 278 61.6 8.86 3.2

for the superheavy nuclei as they exist due to their
shell structure [24].

The table gives values of the ratio b2+/b0+ cal-
culated for even–even isotopes of the elements 104,
PH
106, and 108, i.e., for nuclei which show a great
increase in their half-lives due to their shell struc-
ture [1–3] and which, simultaneously, are predicted
to be well deformed. One can see that for a given
atomic number Z, b2+/b0+ decreases with increasing
neutron number N . Thus, among all isotopes, for
which one would like to obtain the rotational state 2+

and measure its energy E2+ , one should choose the
lightest one. For this isotope, the probability of the
2+ → 0+ transition from the 0+ ground state of the
parent nucleus, with respect to the probability of the
0+ → 0+ transition in α decay, is expected to be the
largest. The calculated values of the rotational energy
E2+ and of the α-decay energy of the corresponding
parent nucleusQpar

α are also given in the table.
To check the quality of our calculation of the ratio

b2+/b0+ , we have compared the calculated values
with the experimental ones for nuclei for which this
ratio has been measured. The result is shown in
Fig. 5. One can see that the description is rather
good. In particular, the isotopic dependence of this
ratio is correctly reproduced by the calculation.
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Joint Institute for Nuclear Research, Dubna, Russia
and Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse
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Abstract—We continue the discussion on the respective roles of individual and collective motion in the
angular momentum distribution in fission fragments. As in our prior publications on the subject, the
role of individual nucleon motion in fragments in the postscission configuration is underlined, and the
central part in the discussion concerns phenomena observed in the spontaneous fission of even–even nuclei.
A formalism is prepared to study the spin distribution of fragments in induced fission from high-spin states.
c© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

A rather high-spin population in fission fragments
is a general property of all types of fission processes
(see references in the review paper [1]): it was dis-
covered already long ago in thermal-neutron-induced
fission [2] and in spontaneous fission from ground
states of heavy nuclei [3, 4], as well as in photofission,
fast-neutron-induced fission, and alpha-particle-
induced fission [5] and, finally, in the fission process
following heavy ion collisions (see, e.g., [1]). Recent
detailedmeasurements provide important information
on the spin distribution in chosen pairs of fragments
from the same compound nucleus [6] and on the an-
gular distribution of γ rays deexciting the fragments
in binary (and in some cases ternary [7]) fission.

Most of the theoretical accounts of the spin
content in fission fragments consider dynamical
sources of generation of rotational currents inside the
fission fragments issuing from quantum or thermal
activation of collective degrees of freedom before
the scission. As a typical example of the collective
mechanism, we mention the excitation of the bending
mode considered in [8–11] and, in particular, in [12].
Naturally, the mean field rotation, present in the case
of fission following heavy ion fusion, must also be
considered as a possible mechanism of fragments’
angular momentum generation.

These explanations leave unresolved a number of
questions raised by experimental studies [13]. It is
found that in most cases the zero-point motion must
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be complemented with temperature effects. The tem-
perature needed to explain the bulk of the data even
roughly turns out to be unreasonably high (2–3 MeV
in [6], yielding an excitation energy ≥50 MeV). The
prescission excitation of a fissioning nucleus cannot
explain the drop down to low values (2–3�) of the
mean square angular momentum found in some
particular pairs of fragments. Another problem,
remaining unresolved by the theory based exclusively
on the account of collective currents excitation, is
discussed in [7], where the angular distributions of
photons in binary fission and in fission accompanied
by a light charged particle (ternary) are compared and
found to be virtually the same, contrary to theoretical
estimations.

In [14, 15] a “postscission” mechanism of the
spin generation is suggested: the pumping of spin by
orientation of the fragments in the reference system
attached to the fission direction. The deformed frag-
ments before separating at distances larger than the
length of internucleon interaction keep their neck-to-
neck orientation due to the polarizing effects of nu-
clear and Coulomb forces. The single-particle states
in a field without central symmetry are not states with
a definite value of angular momentum. Consequently,
the individual particle motions contribute to the an-
gular momentum in each fragment. In [14, 15], it was
shown that the bulk of angular-momentum content
of the fragments of spontaneously fissioning nuclei
from the ground and weakly excited states has pre-
cisely this origin: it is generated by the single-particle
motion in the deformed field of primary fragments.

The discussion presented in this paper concerns
mostly the spontaneous fission from the ground state.
However, we add here to the formalism developed in
2001MAIK “Nauka/Interperiodica”
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[14, 15] some material which will allow us to study
in the future the spin distribution in fragments from
nuclei having large rotational angular momentum.

2. THE STATE OF PRIMARY FRAGMENTS

As the “building blocks” from which the wave
function of a fissioning nucleus is constructed, we
consider products of two Slater determinants or BCS

functions Φ(i)
Ji

(i = 1 or 2). As a rule, the single-
particle states in the Slater determinants stem from
rotating deformed potential wells. This introduces in
the game “collective” angular momenta

Ji = 〈Φ(i)
Ji
| Ĵ(i) | Φ(i)

Ji
〉. (1)

To fix the geometry, we assume that the reference
frame has the origin at the center of mass of the
fissioning nucleus with the z axis coincident with
the line connecting the centers of mass of fragments,
e.g., with the instantaneous direction of their flight.
We assume also that the collective angular momen-
ta of fragments are directed along the x axis (Ji =
(Ji, 0, 0)). Thus, the y–z plane is understood as
the reaction plane in the induced fission case. In
the case of the spontaneous fission of an even–even
nucleus from the ground state, all directions in the
plane perpendicular to the direction of fission are
equivalent and the measurable quantities represent
some appropriately averaged calculation results.

Some comments on the properties of Slater de-
terminants are appropriate. One expects that at
the moment of scission the fragments are deformed.
Then, the corresponding Slater determinants are su-
perpositions of eigenstates of the angular momentum
operators:

Φ(i)
Ji

=
∑
Ii,Ki

a
(i)
Ii,Ki

Ψ(i)(Ii,Ki). (2)

Consequently, they are not eigenstates of Hamilto-
nians of primary fragments separated by distances
greater than the length of the fragment–fragment
interaction. Let us recall that eigenstates of individ-
ual nuclei are associated with the wave functions in
which all possible orientations of the inertia tensor are
represented with appropriately chosen weights (equal
weights for all orientations in the case of the ground
state of an even–even nucleus). In the late 1950s
and early 1960s, this character of “deformed Slater
determinants” originated theoretical studies on the
accuracy of the cranking model in the determination
of nuclear inertia properties. The description of the
relevant properties of Slater determinant eigenfunc-
tions of a Schrödinger equation corresponding to a
single particle deformed potential is given in [16]. The
use of Slater determinants projected onto the space
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of functions with fixed angular momentum showed
that the cranking approach gives numerically close
results for the moment of inertia as compared with
the results obtained with projected functions [16].
Probably, the first formal proof of the accuracy of the
cranking approach was reported in [17], where it was
shown that the accuracy in determining the moment
of inertia is in inverse proportion to the dispersion of
the squared angular momentum in the unprojected
BCS or Slater determinant function:
〈Φ(i)

Ji
| Ĵ2 | Φ(i)

Ji
〉int = �

2
∑
Ii,Ki

| a(i)
Ii,Ki

|2 Ii(Ii + 1).

The typical values of the dispersion for some of rare
earth nuclei in their ground states have been esti-

mated and found to be of the order of
√
〈Ĵ2〉int = 10�,

e.g., the same order of magnitude as found in fission
fragments. Later on, numerous authors [18, 19] con-
tributed to the analysis of the quantities aI,K . A de-
velopment of the mathematical structure of the theory
which happens to be important for our purpose was
suggested by Bhaduri and Das Gupta in [20]. Here,
a nice simple form of these expansion coefficients was
proposed for even–even nuclei when the deformation
is large and stable enough so that the fragments
may be considered as good axial rotors. Through an
analogy with the statistical mechanics description of
a rotational band, these authors deduced in this limit
that the factors a(i)

I ≡ a
(i)
I,0 should be of the form of a

Boltzmann factor as

| a(i)
I |

2=
2(2I + 1)
〈J2

i 〉int
exp

(
−I(I + 1)
〈J2

i 〉int

)
. (3)

These results were confirmed for “cranked” Slater
determinants, and the correspondence between the
cranking and projection methods was further clarified
in an elegant paper by Kamlah (see the presentation
of these ideas in Section 11.4 of [21]).

The above discussion shows that the spin of frag-
ments in the states described by the product of two

Slater determinants Φ(1)
J1

Φ(2)
J2

is spread over a rather
large region with weights similar to that in the case
of the thermal distribution. Then, it follows that
such product functions cannot be associated with the
state of a fissioning nucleus having a definite angular-
momentum value. This leads us to the following sug-
gestion concerning the structure of the wave func-
tion of primary fragments from the mother nucleus
fissioning from the quantum state α with the angular
momentum quantum numbers Im,Mm:

Ψ(α, Im,Mm | {cα,Im(J1, J2, L, I)}) (4)

=
∫
dJ1

∫
dJ2

∑
I,L;MI ,ML

cα,Im(J1, J2, L, I)
1
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× CIm,Mm

I,MI ;L,ML
ΦL,ML

(R)Ψ(1,2)
J1,J2;I,MI

[where cα,Im(J1, J2, L, I) is a weight factor which will

be discussed below and CJ,M
I1,M1;I2,M2

is a Clebsch–
Gordan coefficient]. In the above, ΦL,ML

(R) and

Ψ(1, 2)
J1,J2;I,MI

are the terms describing the orbital and
intrinsic motions, respectively. This definition of the
wave function also allows for a functional dependence
on the distribution of fragments in collective angular
momenta J1 and J2 or in the frequencies of their
rotation. In the spirit of the cranking approach, col-
lective angular momenta may be considered to have a
continuous spectrum.

The orbital motion of fragments is described by

ΦL,ML
(R) =

FL(R)
R

YL,−ML
(θ, φ). (5)

We specify the radial wave functions FL(R) by setting
a normalization condition

lim
R→∞

FL(R) = 1.

The intrinsic state of fragments having fixed angular-
momentum quantum numbers I,MI is given by

Ψ(1, 2)
J1,J2; I,M =

1
NJ1,J2,I

P̂I,M

(
Φ(1)

J1
Φ(2)

J2

)
, (6)

where the restoration of rotational properties of

Φ(1)
J1

Φ(2)
J2

is achieved by introducing the projection
operator

P̂I, MI
=

I∑
K=−I

P̂ I
MI , K ,

P̂ I
M, K =

2I + 1
8π2

2π∫
0

dα

π∫
0

sin β dβ (7)

×
2π∫
0

dγ DI
M,K(α, β, γ)

∗
D̂(α, β, γ),

DI
M,K(α, β, γ) and D̂(α, β, γ) being theWigner rota-

tion D function and the operator of rotation, respec-
tively [22]. The operator P̂I,MI

picks up all the com-
ponents with angular-momentum quantum numbers
I, K (−I ≤ K ≥ I), transforming each of them into
the eigenfunction of the angular momentum with the
quantum numbers I, MI . The quantity

N2
J1,J2,I = 〈Φ(1)

J1
Φ(2)

J2
|

I∑
K=−I

P̂ I
K,K | Φ

(1)
J1

Φ(2)
J2
〉 (8)

is the squared norm of the projected wave function.
The wave function in (4) manifestly possesses the

proper symmetry with respect to the group of rotation.
P

What is not clear, in fact, is its connections with
the mean-field approaches to the fission dynamics.
One may establish such a relation introducing the
averaged density matrix

ρ̂ {c(J1, J2, L, I)} (9)

=
1
Γ

∑
α,Im,Mm

∫
dΩ Ψ†(α, Im,Mm | {J1, J2})

×Ψ(α, Im,Mm | {J1, J2}).
Here, the integration goes over the angular variables
Ω = θ, φ determining the variable R (R→ R, θ, φ).
The sum runs over the states of the fissioning nucleus,
contributing significantly to the primary fragments
having a distribution of matter and currents similar to
that in the states described by Slater functions Φ(i).
The factor Γ stands for the number of different states
of fissioning nucleus entering into the sum.

We suggest now that the weight function
cα,Im(J1, J2, L, I) can be approximated as

FL(R)cα,Im(J1, J2, L, I) (10)

= c̃α,Im(J1, J2)
√

2I + 1
2Im + 1

NJ1,J2,I .

TheR dependence introduced in the preceding makes
the new c coefficients depend on R. In (10), R is
defined by its value at scission. Using the upper ex-
pression, one readily finds ρ̂ =

∑
I,M P̂I,M ρ̂m.f P̂

†
I,M

with

ρ̂m.f =
∫
dJ1dJ2dJ

′
1dJ

′
2 | Φ

(1)
J ′
1
Φ(2)

J ′
2
〉 (11)

×〈J ′
1, J

′
2 | ρ | J1, J2〉m.f〈Φ(1)

J1
Φ(2)

J2
|,

〈J ′
1, J

′
2 | ρ | J1, J2〉m.f

=
1
Γ

∑
α,Im

c̃α,Im(J1, J2) c̃α,Im(J ′
1, J

′
2).

Themean values of arbitrary operators commuting
with the angular-momentum operators of fragments
calculated with ρ̂m.f and with the density matrix ρ̂
in (9) coincide. Thus, the density matrix ρ̂m.f may
be considered as containing the basic information
on the states of primary fragments averaged over
the initial state (and the angular momentum) of the
fissioning nucleus. On the other hand, the density
matrix ρ̂m.f given in terms of the unprojected Slater
determinants may be obtained, in principle, in ap-
proaches based on the mean-field dynamics. If the
structure of primary fragments can be approximated
by projected Slater determinants and the mean-field
theory is capable of producing averaged information
on the fission process, the factorization of coefficients
cα,Im(J1, J2, L, I) in (10) seems plausible. Note,
however, that such an interpretation implies the ex-
istence of a relation between the yields of fragments
HYSICS OF ATOMIC NUCLEI Vol. 64 No. 6 2001
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with different values of orbital angular momentum L
and the quantity (2I + 1)N2

J1,J2,I .

3. SPINS OF FRAGMENTS
IN SPONTANEOUS FISSION

Hereafter, we discuss the spin distribution in frag-
ments of the spontaneous fission of an even–even
nucleus from its ground (0+) state. We summarize
the essential results of [14, 15] corresponding to a
simple special case of the wave function in (4) when
the weighting function c(J1, J2, L, I) in (4) is propor-
tional to δ(J1 + J2 + L). More precisely, we assume
that

Ψ(Im,Mm, J1, J2) (12)

=
∑

MI ,ML

CIm,Mm

I,MI ;L,ML
ΦL,ML

(R)Ψ(1,2)
J1,J2; I,MI

.

This total wave function manifestly possesses the
proper symmetry with respect to the group of rotation
and describes the quantum state with a vanishing
value of the total angular momentum operator Ĵtot =
L̂ + Ĵ1 + Ĵ2. It is also an eigenfunction of the orbital
angular momentum L̂2 with the eigenvalue L(L+
1). Since Ĵtot|Ψ〉 = 0, these properties lead to the
following relations :

〈L̂ · (Ĵ1 + Ĵ2)〉 = −〈L̂2〉, (13)

〈J2
1〉+ 〈J2

2〉+ 2〈J1 · J2〉 = 〈L̂2〉.

Valuable informations on the spin distribution in
the fission fragments may be obtained using (2),
where Ψ(i)(Ii,Ki) are normalized wave functions of
each of fragments having good angular momentum
quantum numbers Ii,Ki. The operator P̂L,M from (7)

applied to the product of two wave functions Φ(1)
J1

and

Φ(2)
J2

yields

P̂L,M

(
Φ(1)

J1
Φ(2)

J2

)
(14)

=
∑
I1,I2

∑
K1,K2

CL,K
I1,K1; I2,K2

a
(1)
I1,K1

a
(2)
I2,K2

×
∑

M1,M2

CL,M
I1,M1; I2,M2

Ψ(1)(I1,M1)Ψ(2)(I2,M2).

The mean values 〈Ĵ2
i 〉 expressed in terms of the ex-

pansion coefficients a(i)
Ii,Ki

are

〈Ĵ2
i 〉 =

1
N2

J1,J2,L

∑
I1,K1

∑
I2,K2

Ii(Ii + 1) (15)

×
(
CL,K

I1,K1;I2,K2
a

(1)
I1,K1

a
(2)
I2,K2

)2
,
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where the norm of the projected function is given by
N2

J1,J2,L (16)

=
∑

I1,K1

∑
I2,K2

(
CL,K

I1,K1;I2,K2
a

(1)
I1,K1

a
(2)
I2,K2

)2
.

In the special case when L = 0, one obtains from
the above formulas

〈Ĵ2
i 〉 = −〈Ĵ1Ĵ2〉 (17)

=

∑
I,K

(
a

(1)
I,Ka

(2)
I,K

)2
(I(I + 1)/(2I + 1))

∑
I,K

(
a

(1)
I,Ka

(2)
I,K

)2
(1/(2I + 1))

.

This result generalizes an expression obtained in [14]
to the case in which the fragments have no axial
symmetry.

4. STRUCTURE OF Φ(i)
Ji

FUNCTIONS

In this section, we repeat for the sake of complete-
ness a discussion already presented by the authors in

[15]. The functions Φ(i)
Ji

should in principle be found
from the dynamical equations describing the scission.
However, the angularmomentum distributions do not
change much prior to γ emission. Indeed, only the
Coulomb interaction is liable to change the orbital
and intrinsic angular momenta of fragments during
this time. Leaving aside the study of the Coulomb
interaction effects (which were found to be small in
[11]), one may describe the intrinsic structure of the
separated fragments in the framework of the cranking
approach [21]. Some further approximations to the
latter will be added in the course of the discussion so
that more transparent conclusions can be drawn.

An approximate solution of the variational crank-
ing equation

δ〈Φi(Ωi)|Ĥi − ΩiĴ
(i)
x − Ei(Ωi) | Φi(Ωi)〉 = 0 (18)

with Lagrange multipliers Ωi determined from the
condition

〈Φi(Ωi) | Ĵ (i)
x | Φi(Ωi)〉 = Ji (19)

is given at lowest order in Ω by

Φ(i)(Ωi) = Φ(i)
0 − Ωi

∑
n

| n〉 (20)

× 〈n | Ĵ
(i)
x | Φ(i)

0 〉
E

(i)
n − E

(i)
0

+ · · · ,

containing the sum over all intrinsic excited states
|n〉 = α†

pα
†
qΦi(0). The rotational frequencies Ωi are

related to the collective spins of the fragments by
JiΩi =|Ji |, where

Ji =
∑
n

|〈n | Ĵ (i)
x | Φ(i)

0 〉|2

E
(i)
n − E

(i)
0

(21)
1
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are the corresponding moments of inertia. In the
case of axially symmetrical fragments with strong
deformation, the matrix element

〈Φ(i)(Ω)|D̂(R)(Ĵ(i))2 | Φ(i)(Ω)〉
(where R represents the relative rotation between the
two fragments) appearing in the expression of the ex-
pectation value of the angular momentum of fragment
imay be approximated as

〈Φ(i)(Ω) | D̂(R)(Ĵ(i))2 | Φ(i)(Ω)〉
∼
∑

µ

(−1)−µ〈Φ(i)(Ω) | Ĵ (i)
−µD̂(R)Ĵ (i)

µ | Φ(i)(Ω)〉.

The action of the angular momentum operator Ĵ (i)
k

(k = x, y, z) on Φ(i)(Ω) is given by

Ĵ
(i)
k Φ(i)(Ωi) = Ĵ

(i)
k Φ(i)(0) (22)

−Ωi

∑
n,m

| m〉〈m | J (i)
k | n〉

〈n | Ĵ (i)
x | Φ(i)

0 〉
E

(i)
n − E

(i)
0

∼
(
Ĵ

(i)
k − δk,xJi

)
Φ(i)(0).

Using the projection procedure described before, one
then obtains

〈J2
i 〉 = (J (i))2 (23)

+

∑
I1,I2

I(i)(I(i) + 1)
(
CL,0

I1,0;I2,0a
(1)
I1,0a

(2)
I2,0

)2

∑
I1,I2

(
CL,0

I1,0;I2,0a
(1)
I1,0a

(2)
I2,0

)2 .

Thus, the mean angular momentum due to the frag-
ment rotation and the one generated via the orienta-
tion pumping add up quadratically.

5. NUMERICAL ESTIMATES

To evaluate approximately the second term in the
sum of (23), we may use, as in [14], the simple

ansatz of [20], where it is suggested that a(i)
I could

be approximated as a Boltzmann factor [see (3)]. Us-
ing this ansatz, we find that the mean square of the
angular momentum of the fragment i is given by

〈J2〉i = (J (i))2 +
(

1
〈J2

1 〉int
+

1
〈J2

2 〉int

)−1

(24)

in the case of a small value of the orbital angular
momentum.

In [20], a good correspondence was found between
the Boltzman distribution of the angular momentum
of deformed Slater determinants and the results of
microscopic calculations made for s–d nuclei. The
calculations of |aI |2 coefficients and of 〈J2〉int for
even–even rare-earth nuclei were also reported in [18,
19, 21]. It is found that typically 〈J2〉int = 100�

2.
P

From these estimations, it is possible to conclude
that for strongly deformed fission fragments spins up
to approximately 7� or more could be generated by
the orientation pumpingmechanism, which coincides
with themean angularmomentum of fragments found
experimentally in most cases.

When one of the fragments is nearly spherical, the
second term in (24) is small. Then, the role of the
collective rotation becomes dominant. Nevertheless,
even in such cases the orientation pumping mecha-
nism of the population of high-spin states in a well
deformed nucleus may not be ignored if the orbital
angular momentum is large.

6. MEAN ORBITAL ANGULAR MOMENTUM
AND RELATED CORRELATIONS

Preliminary conclusions about the distribution on
L and on the correlations of angular momenta of
fragments may be obtained assuming a thermal dis-
tribution

p(J(1)
coll,J

(2)
coll,L)

∼ exp
[
−(a(J(1)

coll)
2 + b(J(2)

coll)
2 + cL2)/Θ

]
.

Qualitative estimations may be done applying the
techniques appropriate for large angular momenta.

Then, one finds J(1)
coll = J(2)

coll = L = 0,(
J(1)

coll

)2
=

Θ
2

[
cos2 φ

Λ2
1

+
sin2 φ

Λ2
2

]
,

(
J(2)

coll

)2
=

Θ
2

[
sin2 φ

Λ2
1

+
cos2 φ

Λ2
2

]
,

L2 =
Θ
2

[
(cos φ− sinφ)2

Λ2
1

+
(cos φ+ sinφ)2

Λ2
2

]
(
tan(2φ) = −2c/(a − b),

Λ1 =
[
a cosφ2 + b sinφ2 + c(cos φ− sinφ)2

]1/2
,

Λ2 =
[
a sinφ2 + b cosφ2 + c(cos φ− sinφ)2

]1/2
)
.

Consider the mean angular momenta for two par-
ticular cases:

a = b =⇒
(
J(1)

coll

)2
=
(
J(2)

coll

)2
=

1
2
L2 =

Θ
2a
,

a� b, a� c

=⇒
(
J(1)

coll

)2
∼ Θ

2a
,
(
J(2)

coll

)2
∼ Θ

2(b+ c)
,

L2 =
(
J(1)

coll

)2
+
(
J(2)

coll

)2
.

In both cases, J(1)
coll · J

(2)
coll = 0. Angular momenta

generated by the pumping mechanism are highly
HYSICS OF ATOMIC NUCLEI Vol. 64 No. 6 2001
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correlated. In particular, when L = 0, J1 · J2 =
−2(J1)2 = −2(J2)2. Thus, it is the pumping mech-
anism which is responsible for the correlation of
angular momenta of fragments.

7. CONCLUSIONS

From the present analysis, we can draw some
conclusions in the realm of both experimental and
theoretical aspects of this fascinating process where
vortical modes emerge out of what could be rea-
sonably described at its start like a purely potential
mode. Any data pertaining to the determination of the
orbital angular momentum L can be deemed from our
analysis as carrying very valuable informations on the
scission phenomenon. As we have seen, this could be
achieved by measuring the quantity 〈J1 · J2〉.

From a theoretical point of view, we would like to
stress that the inclusion of the pumping mechanism
in estimating the spin of fission fragments is not op-
tional. If it does not work, the mean field approach to
the fission dynamics is dubious.

Taking into account the pumping mechanism, one
settles the problem of the high value of the “effec-
tive temperature” needed to explain the “large” val-
ues of the mean square angular momenta in fission
fragments. Moreover, it makes plausible the “ef-
fective temperature” variations in different pairs of
fragments. Finally, it works when the collective gen-
eration of angular momentum takes place.

The material presented here constitutes a basis
for a quantitative analysis of the spin distribution in
fission fragments. Such a task, however, still remains
ahead of us for many reasons. In particular, the
scarcity of experimental information on the subject
should be stressed, that being said, notwithstanding
the long and profound experimental study of such a
difficult subject which is carried out, nowadays, with
state-of-the-art multidetector arrays.
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and the Process of Complete Fusion of Massive Nuclei*
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Abstract—The development of various approaches to describing the complete fusion of nuclei and their
connections with experimental studies is discussed. A brief account of the dinuclear-system concept
(DNSC), the approach proposed at Dubna, is given. The DNSC revealed two important features of
the complete fusion of massive nuclei: the existence of the inner fusion barrier B∗

fus and the competition
between complete fusion and quasifission channels in a dinuclear system formed at the capture stage. The
DNSCwas applied to the analysis of reactions used to synthesize superheavy elements (SHE). The DNSC
provided a basis for the models of competition between complete-fusion and quasifission channels. Using
these models, one can describe the cross section for SHE production in cold- and warm-fusion reactions.
c© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

There are two main aspects in the problem of
synthesis of superheavy elements (SHE).

The first one is associated with the properties of
superheavy nuclei—i.e., with the magic values of Z
and N, modes of radioactive decay, and the half-
life with respect to radioactive decay. The second
aspect concerns nuclear reactions that can be used
to synthesize SHE: the type of reaction, the expected
production cross section, and the optimal value of
the excitation energy of a compound nucleus. The
synthesis of SHE may be realized only in the com-
plete fusion of two massive nuclei. This means that
we must understand the mechanism of this nuclear
process and create a realistic model for its description.

The main problem of the complete-fusion process
is the mechanism of compound-nucleus formation.
There are two difficulties inherent in this problem.

The first stems from the closed character of the
complete-fusion process. Fusing nuclei do not send
any signals that would allow one to reveal the mech-
anism of compound-nucleus formation. Experimen-
talists detect the products of compound-nucleus de-
cay. But it is well known that a compound nucleus
forgets the history of its formation.

The second is a high complexity of the theoretical
analysis of the transformation of two multinucleon

∗This article was submitted by the authors in English.
1)Justus-Liebig Universität, Giessen, Germany.
2)Institute of Nuclear Physics, Tashkent, Uzbekistan.
**e-mail: cher@jinr.ru
1063-7788/01/6406-1116$21.00 c©
nuclear systems into a new one. Theorists developed
various approaches to describing the complete-fusion
process. These approaches reflect the progress in
the experimental study of this fundamental nuclear
process.

2. THREE APPROACHES TO DESCRIBING
THE COMPLETE-FUSION PROCESS

2.1. First Approach
Consideration of the compound-nucleus-formation

mechanism is omitted.
In the first approach, the compound-nucleus-

formation mechanism is not considered at all. Early
experiments employed rather light heavy ions (12C,
14N, 16O, and 20Ne). In reactions induced by these
ions, the capture of a projectile by a target nucleus
inevitably leads to the formation of a compound
nucleus. The compound-nucleus-production cross
section σcn was equal to the capture cross section σc:

σcn = σc. (1)
The efforts of theorists were aimed at creating models
for calculating the capture cross section σc. These
were the optical model [1], the model of the critical
distance [2], the surface friction model [3], and the
model with a “pocket” in the nucleus–nucleus po-
tential V (R) [4]. In all these models, a critical or-
bital angular momentum lcr was the most important
characteristic of the complete-fusion process. The
compound-nucleus-production cross section σcn is
defined by the well-known relation

σcn = πλ2
l=lcr∑
l=0

(2l + 1)Tl, (2)
2001MAIK “Nauka/Interperiodica”
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where Tl is the penetration factor.

2.2. Second Approach

The complete-fusion process is described on the
basis of the liquid-drop model.

The use of heavier ions, such as 40Ar and 84Kr, in
the relevant experiments revealed new nuclear pro-
cesses: fast fission and quasifission. These processes
were also realized in collisions with orbital angu-
lar momenta li < lcr but without compound-nucleus
formation. The main postulate of the first approach,
σcn = σc, was violated. The capture may be realized,
but a compound nucleus is not formed.

The new approach to the complete fusion of the
massive nuclei was proposed by W. Swiatecki. It
was the macroscopic dynamical model (MDM) [5].
This model describes the whole history of the fusion
process from the contact between nuclear surfaces
to compound-nucleus formation. The fusion process
was substantially simplified in the MDM. Actual nu-
clei consisting of protons and neutrons and having
a shell structure were replaced by drops of a viscous
nuclear liquid. The MDM introduced new character-
istics of the fusion of massive nuclei: an extra push
Ex and an extra–extra push Exx. For the production
of a compound nucleus, the bombarding energy Ei

must be higher than Bc + Exx. The MDM was very
popular among experimentalists. However, serious
difficulties arose in attempts at using theMDM to de-
scribe reactions employed to synthesize SHE. From
our point of view, these shortcomings of the MDM
stem from the replacement of actual nuclei by drops
of a hypothetical nuclear liquid.

2.3. Third Approach

Complete fusion is the process of formation and
evolution of a dinuclear system.

The third approach was proposed at Dubna [6].
The basic idea of the third approach is the assump-
tion that complete fusion and deep-inelastic-transfer
reactions (DITR) are similar nuclear processes. What
does this assumption give us? In contrast to fusion
and fission, DITRs are open reactions. They pro-
vide unique information about the interaction of two
nuclei that appear to be in close contact after the
full dissipation of the collision kinetic energy. It is
this unique information that was used to reveal the
mechanism of compound-nucleus formation. This
approach, which was due to G.G. Adamian, N.V. An-
tonenko, E.A. Cherepanov, A.K. Nasirov, W. Scheid,
and V.V. Volkov, was dubbed the dinuclear-system
concept (DNSC) [7].

According to the DNSC, the main features of the
fusion process are the following:
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 6 200
    
The first approach:

The optical model, the model of critical distance,
the surface friction model.
The “black box

 

”

 

 or collapse

The second approach:

 

... ? ...

 

The macroscopic dynamical model.
Fusion of two nuclear liquid drops

CN

The third approach:
The dinuclear system concept.
Conservation of nuclear individualities

CN

CN

Fig. 1. Schematic illustration of the compound-nucleus-
formation mechanism within various approaches to de-
scribing the complete-fusion process.

(i) A dinuclear system (DNS) is formed at the
capture stage, after the full dissipation of the collision
kinetic energy.

(ii) Complete fusion is an evolutionary process in
which the nucleons of one nucleus gradually, shell by
shell, are transferred to the other nucleus.

(iii) The nuclei of theDNS retain their individuality
until the end of the fusion process (this important
feature of DNS evolution is a consequence of the shell
structure of nuclei).

Figure 1 highlights the fundamental difference
between the pictures of the compound-nucleus-
formation process that are offered by the first, the
second, and the third approach. In the first approach,
the restructuring stage of the process is regarded as
a “black box” or collapse. In the second approach,
fusing nuclear drops rapidly lose their individuality
as the result of neck formation. Complete fusion is
a dynamical process that develops in the space of
deformation, as is the case in the fission process. In
the DNSC, the fusing nuclei retain their individuality
until the end of the fusion process. Complete fusion
is mainly a statistical process that develops along the
mass-asymmetry coordinate of the system.

3. SPECIAL FEATURES OF THE COMPLETE
FUSION OF MASSIVE NUCLEI

WITHIN THE DNSC

The DNSC reveals two important features of the
complete fusion of massive nuclei: the appearance of
a specific inner fusion barrierB∗

fus and the competition
between the complete fusion and quasifission chan-
nels in the DNS formed at the capture stage.
1



1118 VOLKOV et al.

 

30

20

10

0

 

B

 

*
fus

 

B

 

*
fus

 

0 40 80

 

Z

L

 

 = 80

60

40

0

 
V

 
(

 
Z

 
, 

 
L

 
), MeV

20

Fig. 2. Potential energy of the dinuclear system formed in
110Pd + 110Pd interaction. Z is the atomic number of one
of the DNS nuclei.

As is known from DITR, DNS evolution is deter-
mined by the potential energy of the system, which is
a function of the charge (mass) asymmetry and the
collision angular momentum. Figure 2 shows the
potential energy V (Z,L) of the DNS formed in the
reaction 110Pd + 110Pd. The potential energy is nor-
malized to the compound-nucleus potential energy,
which is taken as zero. The initial DNS is situated
at the minimum of the potential energy. It looks like a
gigantic nuclear molecule. To realize complete fusion
and to form a compound nucleus, the initial DNS
must overcome a potential barrier. It was called the
inner fusion barrier B∗

fus". The asterisk symbolizes
that the energy to overcome the barrier is taken from
the DNS excitation energy E∗.

The initial asymmetric DNS has two ways of evo-
lution. It may increase its charge asymmetry and,
after overcoming the barrier B∗

fus, transform into a
compound nucleus, or it may evolve into a symmetric
shape. In a symmetric shape, the Coulomb repulsion
between the DNS nuclei reaches its maximal value
and the DNS decays into two nearly equal fragments.
This means that quasifission occurs. In the quasifis-
sion process, the DNS must overcome the quasifis-
sion barrier Bqf . The competition between complete
fusion and quasifission arises naturally as the conse-
quence of the statistical nature of DNS evolution.
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4. ANALYSIS OF NUCLEAR REACTIONS
USED TO SYNTHESIZE SUPERHEAVY

ELEMENTS WITHIN THE DNSC

4.1. Role of Quasifission
in the Synthesis of Superheavy Elements

Figure 3 shows the experimental and calculated
cross sections for the production of the elements 104,
108, and 110 synthesized in cold-fusion reactions.
The calculations were made by Pustylnik [8] within
the first approach. The optical model was used to
calculate the capture cross section σc; the statistical
model was invoked to calculate the survival proba-
bility for the excited compound nucleus, Wsur. The
experimental data were obtained at GSI [9]. One
can see more or less good agreement between the
YSICS OF ATOMIC NUCLEI Vol. 64 No. 6 2001
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calculated and experimental data for the element 104.
But there is dramatic disagreement in the case of the
elements 108 and 110. This disagreement is due to
quasifission. However, the competition with quasifis-
sion was not taken into account in the first approach.
The calculations were made according to the relation

σER = σcWsur. (3)

There is no term that reflects the influence of quasi-
fission.

According to the DNSC, the cross section for
the formation of the evaporation residue of a heavy
element is given by

σER = σcPcnWsur, (4)

where Pcn is the probability of compound-nucleus
formation in the competition with quasifission. It
should be emphasized that only the DNSC provides
a basis for developing a realistic model of the compe-
tition between complete fusion and quasifission chan-
nels.

Our first model of the competition between com-
plete fusion and quasifission was created for sym-
metric nuclear reactions [7]. We also proposed two
models for asymmetric nuclear reactions. In the first
model, the Monte Carlo method was used to calcu-
late DNS evolution [10]. In the second model, the
evolution of the DNS was considered as a diffusion
process proceeding along two collective coordinates.
Diffusion along the mass-asymmetry coordinate η =
(A1 −A2)/(A1 +A2) leads to complete fusion. Dif-
fusion along the R coordinate leads to quasifission (R
is the distance between the two centers of the DNS
nuclei) [11]. A quasistationary solution to the two-
dimensional Fokker–Planck equation is used to de-
scribe DNS evolution. The parameter of the model is
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 6 200
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results reflecting the competition between fission and the
emission of various numbers of neutrons from the excited
compound nucleus [14]. The closed circle represents the
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the DNS viscosity. The second model was employed
to calculate Pcn in the synthesis of transfermium and
SHE [12]. Figure 4 presents the dependence of Pcn

on the atomic number of the compound nucleus for
cold-fusion reactions. For the element 104, Pcn is
5× 10−2. However, for the elements 112 and 114,
Pcn drops to 10−6 and 10−7, respectively. One can
say that quasifission is the main factor responsible for
decreasing the production cross section in the cold-
fusion reactions with increasing atomic number of the
element.

4.2. Cross Section of SHE Production in Cold-
and Warm-Fusion Reactions

On the basis of the calculated values of Pcn, it
is possible to reproduce experimental data on the
cross sections for the production of transfermium and
SHE synthesized in cold- and warm-fusion reac-
tions. Figure 5 shows the experimental production
cross sections for the elements with Z from 102 to
112 obtained in cold-fusion reactions. Experimental
data are represented by closed squares. The circles
correspond to the production cross sections calcu-
lated by using the DNSC [13, 14]. One can see
that the agreement is satisfactory. Figure 6 shows
1
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[16].

the calculated production cross section of the element
114 synthesized in the warm-fusion reaction 48Ca +
244Pu → 289114 + 3n [14]. The calculated produc-
tion cross section at the maximum of the (HI, 3n)
channel is 1.6 pb, whereas the experimental value is
1.0 pb [15]. These calculations were made while the
experiment was still in progress.

At the Flerov Laboratory of Nuclear Reactions
(JINR,Dubna), the experiment aimed at synthesizing
the element 116 has recently been started. Thewarm-
fusion reaction 48Ca + 248Cm → 296116 is used for
this purpose. The cross section for the synthesis of the
element 116 has been calculated by using the DNSC
[16]. The results of these calculations are presented
in Fig. 7. One can see that the expected production
cross section for the (HI, 3n) channel is 0.6 pb. The
production cross section for the element 114 was 1.0
pb. This means that the element 116 may be synthe-
sized in a warm-fusion reaction using 48Ca ions.

5. CONCLUSION

Analyzing experimental data on the synthesis of
transfermium and superheavy elements within the
PH
DNSC, one may arrive at the conclusion that, nowa-
days, the DNSC provides the most realistic descrip-
tion of the complete-fusion process and the mecha-
nism of compound-nucleus formation.
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Abstract—The results of the joint experiments carried out by the Dubna–GANIL (France) and the
Dubna–RIKEN (Japan) collaborations aimed at synthesizing new isotopes close to the neutron shells
N = 20 and N = 28 and at studying their properties are presented. Gamma-spectroscopic methods
were used to study low-lying states in 30,32Mg, 26–28Ne, 22O, and 18C. The ratios E(4+)/E(2+) were
determined. A direct method was used to measure the masses of 20 nuclides located between the shells
N = 20 and N = 28. The decay properties were determined for 30Ne and 26,27,29F. Information obtained
in this way suggests the existence of a deformation close to the neutron shell N = 20. The results of
experiments devoted to searches for the doubly magic nucleus 28O are also presented. Only the upper
limit on the cross section for its production was deduced, which can be taken as evidence of its instability.
c© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Interest in neutron-rich nuclei featuringmore than
20 neutrons is associated with the experimental dis-
covery of their unusual properties. The N = 20 shell
was shown to have no influence on the properties of
nuclei in that region, which are basically accounted
for by deformation effects. This may be evidenced by
the anomalies observed in the neutron binding energy
of Na and Mg, by the great quadrupole momentum
of 32Mg, etc. Deformation effects can markedly
manifest themselves in half-lives, neutron-emission
probability, and nuclear masses and sizes and corre-
spondingly be responsible for nuclear stability.
More recently, a determination of the lifetime and

of the deformation of 44S has indicated the existence
of a similar effect at N = 28. This is the first shell
closure that arises from spin–orbit splitting and is
responsible for the gap in the 1f7/2−2p3/2 shell.
It is particularly interesting to study the shell clo-

sure N = 20 and 28, since the vanishing of the latter
one could be the first piece of evidence for the weak-
ening of the spin–orbit force in neutron-rich nuclei. A
determination of the neutron and the proton drip line
is also very important, since they limit the region of
particle stability.
This article reports on the results of the latest

experiments aimed at synthesizing new isotopes in
the region of the N = 20 and N = 28 shells and at
measuring their characteristics.

∗This article was submitted by the author in English.
**e-mail: pyuer@nrsun.jinr.dubna.su
1063-7788/01/6406-1121$21.00 c©
The new isotopes 31F, 31Ne, 36Mg, and 40,41Al
were produced in the experiments carried out within
the framework of the JINR–RIKEN (Japan) col-
laboration. Situated beyond the predicted drip line,
these nuclei show increased stability. Their half-lives
and neutron decay probabilities were measured and
compared with the theoretical predictions.
In the collaborative JINR–GANIL (France) ex-

periments, an attempt was made to produce 26O and
28O nuclei; that attempt resulted in obtaining only
an upper limit on the cross section for their produc-
tion. The results of these experiments suggest that
these nuclei are unstable. Direct measurement of the
nuclear masses in the region of N = 20 and N = 28
was carried out to high accuracy (10−4−10−6). For
the first time, data on the masses of 12 nuclei close
to the drip lines were obtained and compared with
the results of the calculations based on semiempiri-
cal mass formulas. The data obtained indicate that
strong deformations must be introduced to explain
the properties of nuclei in that region.

2. DECAY PROPERTIES
OF NEUTRON-RICH NUCLEI NEAR

THE N = 20 CLOSED SHELL

The decay properties in the region of N = 20 nu-
clei can be explained by the transition from spherical
to deformed shapes in the so-called “island of inver-
sion.”
The lack of experimental information on very

neutron-rich isotopes in the C–Al region is due
2001MAIK “Nauka/Interperiodica”
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Experimental values of the β-decay half-lives of neutron-
rich nuclei and experimental neutron-emission probabili-
ties for them close toN = 20

Isotope
Experimental results

This work Table of Isotopes, 1996

T1/2,ms Pn,% T1/2,ms Pn,%
22N 31(5) 37(14) 24(7) 35(5)
24O 67(10) 12(8) 61(26) 58(12)
25F 70(10) 14(5) 59(4) 15(10)
27F 9.6(0.8) 11(4)
29F 2.4(0.8) 100(80)

27Ne 22(6) 0(3) 32(2) 2(0.5)
28Ne 20(3) 11(3) 17(4) 22(3)
29Ne 15(3) 27(9) 200(10)
30Ne 7(2) 9(17)
30Na 50(4)
31Na 18(2) 48(2) 30(4)

predominantly to very small production cross sec-
tions. Therefore a very exotic primary beam of 36S
(78 MeV/u) ions, which makes it possible to study
β-delayed neutron emission from neutron-rich nuclei
with the magic neutron number of N = 20, such as
29F , 30Ne, and 31Na, was used in the experiment. The
experiment was carried out at GANIL [1].
For the first time the β-decay half-lives and the

neutron-emission probability were measured for 30Ne
and 26,27,29F. Additionally, the cases of 22N, 24O,
24−29Ne, 25F, and 30,32Na were reexamined (see
table).
Themeasured half-lives of 28Ne and 30,31Na agree,

within the errors, with the results of previous experi-
ments. The only important discrepancy is observed
for 29Ne. The experimental half-lives obtained here
are in good agreement (within a factor of two) with the
sd-shell-model calculations of Wildenthal et al. [2],
including the values for 27,29F and 29,30Ne. The last
suggest that the deformation phenomenon, predicted
and observed in theMg–Na region, disappears below
Z = 11. Thus, the standard shell-model space seems
to be sufficient to predict the half-lives of fluorine and
neon isotopes in the vicinity ofN = 20.

3. EVIDENCE FOR THE PARTICLE
STABILITY OF 31F AND THE PARTICLE

INSTABILITY OF 25N AND 28O
The recent discovery of the particle stability of

31Ne [3], in contrast to the majority mass predictions,
PH
has motivated us to reexamine the location of the
fluorine drip line. The 31Ne nucleus is located in the
deformation region centered at Z ∼ 11 and N ∼ 20,
the so-called island-of-inversion region. A particular
feature of this region is the tendency toward a prolate
deformation despite the effect of spherical stability
due to the magicity of the neutron number 20 [4].
Toward lower Z along N = 20, much attention has
recently been given to the question of the possible sta-
bility of the magic nucleus 31F and the doubly nucleus
28O, even though the particle instability of 30F and
25,26O beyond 29F and 24O was clearly shown by two
experiments [5, 6]. The expectation for 28O to be sta-
ble stems from an enhanced stability anticipated from
the double magicity or the deformation. The stability
of 28O was discussed in several theoretical studies,
which however yielded conflicting results. In the
framework of the Dubna–RIKEN collaboration, new
isotopes around N = 20 (28O, 31F, 25N) were sought
by using the RIKEN accelerator facility and an 40Ar
beam of energy 94.1 MeV per projectile nucleon [7].
In this experiment, the new isotope 31F (eight events)
was observed for the first time (Fig. 1). The absence
of events corresponding to the 25−28O isotopes, as
well as 24,25N and 30F, was clearly confirmed.

The nonobservation of an isotope does not nec-
essarily prove its unbound character. To achieve
more definitive evidence, we have plotted the observed
yields versus Z for the N = 2Z + 4 nuclei, as shown
in Fig. 2. The calculated yields are in good agreement
with the observed yields over the whole range, which
connects smoothly the results on 22C and 31F. The
yields of 25N and 28O, which lie between 22C and 31F,
can therefore be estimated with fair reliability by the
interpolation method.

The fact that the experimental results showing
no events distinctly deviate from the estimated yields
provides strong evidence for the particle instability of
24,25N, 27,28O, and 30F. A sudden change in stability
from oxygen to fluorine indicates an extra push of
stability for the very neutron-rich fluorine isotopes.

Experiments to study the properties of nuclei in
the vicinity of the N = 20 and N = 28 shells and the
deformation of nuclei in this region must be contin-
ued. This can be achieved bymeans of γ spectroscopy
and the direct method of level-mixing resonances
(LMR), as well as by mass and structure measure-
ments of unbound nuclei by using the missing-mass
method. For instance, one could use the reaction
26F(d,3He)25O in the case of 25O and the reaction
24O(t, p)26O in the case of 26O.
YSICS OF ATOMIC NUCLEI Vol. 64 No. 6 2001
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of the RIPS spectrometer. The centroids experimentally
detected for the (dashed histogram) 22C and (dotted his-
togram) 29F isotopes are in agreement with the values
(upward arrows) obtained by an energy-loss calculation.
The position distribution of the 31F isotope (solid-line
histogram) is also in accord with the calculation. The
expected events for 24,25N and 26,28O could be centered
at the middle of F2, and their expected center positions
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4. IN-BEAM γ SPECTROSCOPY OF VERY
NEUTRON-RICH NUCLEI

One of the most challenging goals of nuclear-
structure physics is to determine how the structure
of nuclei changes far away from the stability line.
Recent results on the structure of light neutron-rich
nuclei suggest that some major shell gaps are weak-
ened when large isospin values are encountered. The
typical cases of 32Mg (N = 20) and 44S (N = 28),
which show a high degree of collectivity [8, 9], provide
some evidence for such shell-gap weakening at a
large neutron excess.
However, information about the excitation ener-

gies of the first 2+ states and about the B(E2) val-
ues for the 2+ −→ 0+ transitions is not sufficient to
understand fully the structure of these nuclei. For
instance, measurement of the E(4+)/E(2+) ratio is
expected to shed some light on the origin of the large
quadrupole collectivity observed.
A novel experimental method has been used to

obtain more spectroscopic information on 32Mg and
neighboring nuclei. This method is based on the pro-
duction of very neutron-rich nuclei in relatively higher
excited states, through the projectile-fragmentation
process, and on the detection of their in-beam gamma
decay. Such an experiment has recently been per-
formed at GANIL [10] in order to measure the ratio
E(4+)/E(2+) in 30,32Mg, 26−28Ne, and 22O. A 36S
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 6 200
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beam of energy 77 MeV per projectile nucleon was
used with a 2.77-mg/cm2 Be target.

It is worth pointing out that the majority of the
product nuclei are terra incognita for nuclear spec-
troscopy; thus, the γ spectroscopy of these nuclei
(such as 22,23O, 27,28Ne, 32,33Mg) is completely un-
known. For all product exotic nuclei, γ spectroscopy
is obtained by performing coincidences between the
analyzed fragments at the SPEG focal plane and γ
rays emitted in flight during their decay to the ground
state. For this purpose, a highly efficient (25% at
1.33 MeV) gamma array of 74 BaF2 crystals was
used around the target covering symmetrically the
upper and lower hemispheres (roughly 80% of the
solid angle around the target is covered). This array
is supposed to provide fragment–γ–γ coincidences.

The γ spectra obtained by gating on the 18C frag-
ment revealed for the first time γ-spectroscopy in-
formation about this neutron-rich nucleus. A γ line
is clearly visible at 1.6 MeV in the BaF2 spectrum,
probably the 2+ −→ 0+ transition. Furthermore, the
same spectrum shows a shoulder at a gamma energy
around 2.0 MeV, indicating the decay of an unknown
higher excited state.

The γ line observed for the first time for 22O at
3.1 MeV corresponds to the 2+ −→ 0+ transition;
this extends the systematics of the 2+ transition en-
ergies of oxygen isotopes up toN = 14. It was shown
that oxygen isotopes exhibit the lowest 2+ energy at
half-occupancy of the d5/2 state (N = 12), just as the
Ne and Mg isotopes do. Whether it will continue
to follow the same trend up to N = 16 (or not) is a
1



1124 PENIONZHKEVICH

 

3000

2000

1000

0 1000 2000 3000 4000

Counts

885 keV

2

 

+ 

 

→ 

 

0

 

+

 

 

1430 keV

BaF2

 

E

 

γ

 

, keV

885 keV

1430 keV

Ge
100

80

60

40

20

0 20001000 3000 4000

Counts

2

 

+ 

 

→ 

 

0

 

+

 

 

Fig. 3.Gamma-energy spectra of 32Mg in the (left panel) BaF2 and in the (right panel) Ge.

      

4

3

2

1

0
14 18 22

 

N

 

25 27 29 31

(

 

a

 

) (

 

b

 

)

 

E

 

2

 

+

 

, MeV

 
Z

 
 = 8

 

Z

 

 = 10

 

Z

 

 = 12

 

Z

 

 = 14

 

Z

 

 = 16

 

Z

 

 = 18

 

Z

 

 = 20

 
Z

 
 = 16

 

Z

 

 = 20

 

Z

 

 = 22

 

Z

 

 = 24

 

Z

 

= 26

 

Z

 

 = 28

 

Z

 

 = 30

 

Z

 

 = 18

Fig. 4.Gamma-ray energy of the first 2+ level for even–even nuclei.
key point to understand why the last oxygen isotope
seems to be 24O.
A γ line at 1.3 MeV was observed for 28Ne. This γ

line is very likely to represent the 2+ −→ 0+ transition
in 28Ne, which shows, for the first time, that the 2+

energies in the Ne isotopes decrease dramatically as
we approach N = 20. The 2+ energy drops from
around 2 MeV in 24Ne and 26Ne to 1.3 MeV in 28Ne
(it is worth pointing out that the 2+ excitation energy
of 26Ne was measured in a β-decay experiment at
GANIL [1]). This behavior is presumably indicative
of a change in the shell structure of neutron-rich Ne
isotopes similar to that observed long ago in the Mg
isotopes [8].
P

Figure 3 shows the BaF2 spectra and the Ge
spectra of 32Mg. As for many other fragments, the
gamma spectra (Ge and BaF2) of 32Mg exhibit more
than one line. For all these fragments, γ angular
distributions and γ–γ coincidences between BaF2
detectors must be analyzed in order to deduce a level
scheme. This type of analysis is quite in progress for
32Mg and reveals that two lines, that at 885 keV (the
well-known 2+ −→ 0+ transition in 32Mg [1]) and the
line at 1.4 MeV newly observed, are in coincidence.
The nature (multipolarity) of the 1.4-MeV γ ray has
not yet been extracted from the data. However, it is
likely to be either a 4+ to a 2+ transition or a transition
from a second to the first state. In both cases, this
HYSICS OF ATOMIC NUCLEI Vol. 64 No. 6 2001
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will shed more light on the physics underlying the so-
called shell-effect quenching on the neutron-rich side
of the valley of stability.
Figure 4 displays the γ-ray energy of the first 2+

level for even–even nuclei for the N range 12–32.
In Fig. 4b, we can clearly see a peak corresponding
to doubly magic nuclei Z,N = 20, 28 and 28, 28;
a similar situation appears in Fig. 4a at N = 20 for
Z = 14, 16, and 20. Only a small enhancement is
visible at N = 16 for Z = 10, 14, 16, and 18, while
an apparent decrease reveals itself for 28Mg.

5. MASS MEASUREMENT FOR HEAVY
ISOTOPES FROM Ne UP TO Ar

Only a few masses of neutron-rich nuclei are
known between the N = 20 and N = 28 shell clo-
sures [11]. However, the measurements of these
masses are directly related to the binding energies
and therefore constitute the most fundamental infor-
mation one can get for these nuclei. In particular, the
evolution of the isotope binding energy is illustrated
by one of its derivatives, the separation energy of the
two last neutrons S2n,

S2n(A,Z) = [M(A− 2, Z)−M(A,Z) + 2Mn]c2.

At GANIL, we have performed a mass-measurement
experiment by using a direct time-of-flight technique
to investigate the N = 20 and N = 28 shell clo-
sures for nuclei from carbon (Z = 6) to calcium (Z =
20) [12]. The production of these neutron-rich nu-
clei was implemented through the fragmentation of
a 48Ca beam of energy 60 MeV per projectile nu-
cleon on a Ta target located in the SISSI device
[7]. A precision of 10−6–10−5, depending on statis-
tics, was obtained, which corresponded to a mass
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 6 200
uncertainty from 100 keV (thousands of events) to
1MeV (a few tens of events). During this experiment,
20 masses were measured in the region of interest
with at least a precision better than the one in the
table of masses [13].

The new S2n values deduced from this experiment
are shown in Fig. 5. Here, we just comment on S2n

for P and S isotopes. If one considers the behavior of
S2n for Ca isotopes as a reference of the standard shell
structure (f7/2 closed shell), the P and S isotopes
clearly do not follow this trend. From N = 20 to
N = 26, the S2n values include an extra energy given
by deformation, which allows the nuclei to minimize
their binding energies with one more degree of free-
dom. At N = 26, a strong decrease is observed. This
may be the result of the possible vanishing of the
N = 28 shell closure at least for these two elements.
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The values of S2n appear to be at least 2 MeV lower
than that expected on the basis of mass extrapolations
forN = 28 [13].
In the case of the standard shell structure, the

microscopic energy should be minimized at the shell
closures. An example is given in Fig. 6 by the Ca
isotopic chain, where the N = 20 and N = 28 shell
closures are clearly identified. One can see a sudden
change at N = 26 already pointed out in the preced-
ing figure for P and S isotopes. Up to N = 26, no
anomaly is observed in relation to the Ca. The magic
number of N = 28 does not coincide anymore with
the minimum of the microscopic energy, which can be
related to the vanishing of the shell closure. This trend
is well reproduced by the shell calculation [14]. The
RMF calculation gives very good agreement with the
data if one eliminates the odd–even effect associated
with the adjustment of the pairing force.
A more qualitative interpretation is obtained by

the observation of a new isomeric state in 43S during
the same experiment [12]. The existence of such an
isomer can be explained in the shell model by the
inversion of a spherical with a deformed configuration.
In this model, the standard spherical configuration
is no longer the ground state, its spin being 3/2−

instead of 7/2−. The coexistence and inversion of
spherical and deformed configurations would thus be
the origin of the observed behavior.

6. CONCLUSION

The synthesis and investigation of these extremely
neutron-rich isotopes are crucial for a better under-
standing of the nature of nuclear interaction. The
study of the shell closures N = 20 and 28 is partic-
ularly interesting since the vanishing of the latter one
could be the first piece of evidence for the weakening
of the spin–orbit force in neutron-rich nuclei.
In particular, theN = 28 43P, 44S, and 45Cl nuclei

appeared to be less bound than what was predicted,
which constitutes a new piece of evidence for the
weakening of the N = 28 shell closure. On the other
hand, there appears a discontinuity in the slope at
P

N = 26. A comparison with the shell model and rel-
ativistic mean field calculations demonstrate that the
observed effects arise from deformed prolate ground-
state configurations associated with shape coexis-
tence. Consequently, a pseudoshell closure can be
considered to appear atN = 26.
A similar situation occurs for N = 16, where the

shell closure at N = 20, which persists from Z = 20
down to Z = 14, may change into the pseudoshell
closure at N = 16 for 6 ≤ Z ≤ 10 and takes place
between 2s1/2 and 1d3/2 orbitals. This fact is strongly
supported by the instability of N > 16 carbon, nitro-
gen, and oxygen isotopes.
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Abstract—Application of the supersymmetry concept in nuclear-structure physics is considered. A
Hamiltonian that is based on theU(6/12) graded algebra and which does not possess, in general, a dynamic
symmetry is constructed. However, part of the eigenstates of this Hamiltonian belonging to even–even
and odd neighboring nuclei form supersymmetric multiplets. It is also shown that the particle–rotor model
description of rotational bands in an odd nucleus that are built on theK = 1/2 pseudoorbital singlet Nilsson
state belonging to the shell with an even principal pseudooscillator quantum number can be reformulated
as a realization of supersymmetry. c© 2001 MAIK “Nauka/Interperiodica”.
The idea of supersymmetry was invented in parti-
cle physics. However, actual examples of supersym-
metry were found in the spectra of nuclei. Investiga-
tion of supersymmetry in nuclear-structure physics
was initiated by Iachello [1] and then continued in
numerous publications [2–11].
The simplest textbook example of supersymmetry

[12] is given by the Hamiltonian

H = ε(a+a+ s+s) , (1)

which involves a monopole s boson. Its eigenstates
having the same excitation energies ε are

(s+)n|0〉, a+(s+)n−1|0〉. (2)

The second eigenstate in (2) featuring one fermion
can be produced by applying the superoperator P =
a+s to the first pure boson eigenstate. The superop-
erator P is the eigenmode operator,

[H,P ] = 0.

A more realistic example is given by the Hamil-
tonian describing a system of monopole s bosons,
quadrupole d bosons, and a fermion occupying j =
1/2 single-particle state,

H = ε(N̂F + N̂s) +Hd,

where

N̂F =
∑
m

a+1/2ma1/2m, N̂s = s+s,

Hd = εd
∑
µ

d+µ dµ +
∑

L=0, 2, 4

CL((d+d+)L(d̃d̃)L)00.

∗This article was submitted by the author in English.
**e-mail: jolos@thsun1.jinr.ru
1063-7788/01/6406-1127$21.00 c©
The superpartner eigenstates having the same eigen-
energies are

(s+)n|0〉 ←→ a+1/2m(s+)n−1|0〉,

d+(s+)n−1|0〉 ←→ (a+1/2d
+)JM (s+)n−2|0〉,

(d+d+)I(s+)n−2|0〉
←→ (a+1/2(d

+d+)I)JM (s+)n−3|0〉.

In nuclear-structure physics, supersymmetry is
considered mainly as dynamical supersymmetry. This
means that corresponding Hamiltonians are con-
structed as linear combinations of the Casimir oper-
ators of the groups belonging to the reduction chains
of the basic graded group U(6/nF =

∑
i(2ji + 1))

[13]. These reduction chains can include combined
boson–fermion groups. The states of the boson sub-
system are characterized by the quantum numbers of
one of the reduction chains of the UB(6) group. The
states of the fermion subsystem can be classified in
terms of the quantum numbers of the reduction chain
of the U(nF ) group. If some of the groups in two
reduction chains coincide or are isomorphic, they can
be combined in the unified boson–fermion group

U(6/nF ) ⊃ UB(6) ⊗ UF (nF )

⊃ G′B ⊗G′F ⊃ G′BF ⊃ ... .
In this case, the Hamiltonian describing even–even,
odd, and odd–odd nuclei takes the form

H = E0 + α · C(UB) + β · C(UF )

+α′C(G
′B) + β′ · C(G

′F ) + γ · C(G
′BF ) + ... .

The parameters of this Hamiltonian, determined by
using the subset of known energy levels, are then
used to describe all nuclei belonging to the same
supersymmetric multiplet. In general, γ-transition
2001MAIK “Nauka/Interperiodica”
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Fig. 1. An example of U(6/2) supersymmetry in nuclei:
part of the experimental spectra of the 102Ru–103Rh–
104Pd isotopes forming a supermultiplet [13]. The en-
ergies are given in keV. The two-quasiparticle states in
104Pd are not identified. A possible candidate for the
lowest state in 104Pd belonging to the supermultiplet is
the 0+ (1793 keV) state seen in the β− decay of 104Rh
with log ft = 5.5.

energies in even–even and odd nuclei do not nec-
essarily coincide. However, there are several exper-
imental examples where some γ-transition energies
in even–even and odd nuclei are quite close. These
examples are not the cases of weak coupling of the
fermion to the even–even core. Perfect supersymme-
try assumes the coincidence of the boson and fermion
masses. Thus, the cases of approximate coincidence
of γ-transition energies are examples of approximate
supersymmetry. In this report, we consider only these
cases. The report is based on the studies [14–16],
written in collaboration with P. von Brentano.

A consideration based on the dynamical-symmetry
approach has two limitations. First, only those even–
even nuclei that belong to one of the dynamical-
symmetry limits O(6), U(5), or SU(3) can be con-
sidered as members of the boson–fermion multiplets.
Second, a set of single-particle states that can be
occupied by an odd particle is restricted by symmetry
requirements.

In order to see whether these restrictions are in
accord with the data (or they are created by the limita-
tions of the theoretical technique used), we now con-
sider existing experimental data on the eigenstates of
even–even and odd nuclei that are characterized by
approximately the same γ-transition energies.

A first example is provided by the spectra of 102Ru
and 103Rh (Fig. 1). The spectrum of 103Rh seems
to result from the coupling of the odd proton in the
PH
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Fig. 2. Experimental low-lying states of 194Pt and states
of 195Pt that form a supermultiplet with the states of
194Pt. The predictions of the exact supersymmetry model
for 195Pt are shown on the left extreme. The calculated
spectrum of 195Pt is obtained under the assumption that
the eigenvalues of the Hamiltonian in (4) for the even–
even 194Pt nucleus coincide with the corresponding ex-
perimental energies. The results of the calculations in-
cluding the compression of the spectrum in odd 195Pt and
the pseudospin–orbit splitting of the doublets are shown
on the right extreme. The energies are given in keV.

p1/2 state to the even–even 102Ru core. Other pos-
sible negative-parity single-particle states are p3/2

and f5/2, which are separated, however, from p1/2

by 1 MeV. It is seen that the negative-parity excited
states of 103Rh form doublets: 3/2− and 5/2− at
excitation energies of 295 and 357 keV and 7/2− and
9/2− at energies of 848 and 920 keV. The center of
gravity of the first doublet is close to the energy of the
2+
1 state in

102Ru (475 keV). The center of gravity of
the second doublet is close to the excitation energy
of the 4+

1 state in 102Ru (1106 keV). The coefficient
of compression of the spectrum of 103Rh relative to
the spectrum of 102Ru is 0.7–0.8. It approaches unity
with increasing excitation energy. The 1/2− state
at the excitation energy of 803 keV corresponds to
p1/2 ⊗ 0+

2 (944 keV).

The next example of an odd nucleus whose spec-
trum appears to be a result of the coupling of an
odd particle in the 1/2− state to low-lying states of
an even–even core is 195Pt. Figure 2 shows only
those states of 195Pt that form doublets based on
the collective states of 194Pt. The splitting of the
doublets in 195Pt is smaller than in 103Rh. However,
the compression of the spectrum relative to one of
the neighboring even–even nuclei is identical to that
in 103Rh. In nuclei of the Pt region, negative-parity
single-particle states p1/2, p3/2, and f5/2 are quite
YSICS OF ATOMIC NUCLEI Vol. 64 No. 6 2001
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Fig. 3.Observed levels of the ground-state band of 174Hf
and experimental and calculated states of 173Hf that form
supermultiplets. The energies are given in keV. Experi-
mental data were taken from [17–19].

close in energy. This is also seen from the data on
one-nucleon transfer from [11]. In addition to the
doublets based on collective even–even core states,
195Pt also features other negative-parity states at low
excitation energies. This means that the scheme
assuming the weak coupling of an odd particle to a
collective core is not realized in this case. In these Pt
isotopes, supersymmetry has deeper grounds.
Figures 3 and 4 display rotational bands belonging

to odd deformed or nearly deformed nuclei. In both the
cases, the bandheads are 1/2− states. It is seen that
these bands consist of weakly split doublets whose
centers of gravity are close to the energies of the
corresponding rotational states of the neighboring
even–even nuclei. The coefficient of compression of
the spectrum of 173Hf relative to the spectrum of 174Hf
is 0.9.
Figures 5 and 6 show the levels of superdeformed

rotational bands. It is seen that the energies of γ
transitions in even–even and neighboring odd nuclei
agree to within a few keV. Unfortunately, the angular
momenta of the states are unknown or known only
tentatively for superdeformed bands. The parities of
the states are unknown too. It is not clear whether
signature partners exist or not. Therefore, we cannot
talk about doublets. However, these examples are
included in the report because the first two papers de-
voted to interpreting the phenomenon of identical su-
perdeformed bands presented theoretical arguments
that, in both examples, we have K=1/2 negative-
parity bands in odd nuclei [23, 24].
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Fig. 4. As in Fig. 3, but for 181,182Pt. Experimental data
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From these examples, we see that the members of
supersymmetric multiplets can be even–even nuclei
not necessarily belonging to the dynamical-symmetry
limits. It is also seen that the restriction of the space
of single-particle states to an artificially small subset
can be at odds with a particle–core coupling strength,
as it is in the case of deformed nuclei or nuclei close to
deformed ones. Below, we will consider a theoretical
possibility of removing these restrictions.

As can be seen from the figures shown above,
the bandheads in odd nuclei are 1/2− states in all
cases where γ-transition energies in odd nuclei are
close to the corresponding energies in the ground-
state bands of even–even nuclei. Excited states
in these rotational bands are weakly split doublets:
(3/2−, 5/2−), (7/2−, 9/2−), and so on. This means
that the angular momenta of the states of odd nuclei
belonging to the supersymmetric multiplets can be
treated as the result of the vector coupling of angular
momenta L = 0, 2, 4, ... of the even–even core
and the fermion momentum jπ = 1/2−. The fermion
momentum is decoupled from the interaction. It is
assumed below that it is a pseudospin. Because of
approximate pseudospin symmetry that is realized in
heavy nuclei [25, 26], a pseudospin–orbit interaction
is weak. Therefore, the pseudospin–orbit doublets
are only weakly split, and the quadrupole–quadrupole
interaction of the odd fermion with the even–even
core is approximately a pseudospin scalar.

Let us decompose the total angular momentum of
the odd fermion into the pseudospin and pseudoor-
1
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Fig. 5. Observed states of the identical superdeformed
bands of 150Gd and 151Tb. The energies are given in keV.
Experimental data were taken from [22].

bital angular momentum:

a+jm =
∑
µ,σ

Cjm

l̃µ1/2σ
a+

l̃µ,1/2σ
. (3)

Using the fermion operators a+
l̃µ,1/2σ

and al̃µ,1/2σ , we

can construct the operator of the fermion quadrupole
moment,

QF
2µ(χ)

=
∑
σ

(
a+2µ,1/2σa00,1/2σ + a+00,1/2σ(−1)µa2−µ,1/2σ

+χ
∑
η,η′

C2µ
2η2η′a

+
2η,1/2σ(−1)η

′
a2−η′,1/2σ


 ,

which contains a free parameter χ, and the operators
of the numbers of fermions with pseudoorbital angular
momenta l̃ = 0 and 2,

N̂F (l̃ = 0) =
∑
σ

a+00,1/2σa00,1/2σ ,

N̂F (l̃ = 2) =
∑
µ,σ

a+2µ,1/2σa2µ,1/2σ .

Presented immediately below are the corresponding
boson operators.
The operator of the boson quadrupole moment has

the form
QB

2µ(χ) = d+µ s+ s+(−1)µd−µ
PH
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Fig. 6. Observed states of the identical superdeformed
bands of 152Dy and 151Tb. The energies are given in keV.
Experimental data were taken from [22].

+χ
∑
η,η′

C2µ
2η2η′d

+
η (−1)η

′
d−η′ .

The operators of the numbers of the s-bosons and d-
bosons are N̂B

s = s+s and N̂B
d =

∑
µ d

+
µ dµ, respec-

tively.
The combined boson–fermion operators are

Q2µ(χ) = QB
2µ(χ) +QF

2µ(χ),

N̂(0) = N̂B
s + N̂F (l̃ = 0),

N̂(2) = N̂B
d + N̂F (l̃ = 2).

The general form of the Hamiltonian used is

H(χ) = ε0N̂(0) + ε2N̂(2)− κQ2(χ) ·Q2(χ). (4)
This is the most general CQF IBM1 Hamiltonian
for even–even nuclei, but it has a special form for
odd nuclei. In general, the Hamiltonian cannot be
represented as the sum of the Casimir operators of
some subgroup chain. This can be done only if χ =
0 and ε0 = ε2 [i.e., in the limit of O(6) dynamical
symmetry] or if χ = ±

√
7/2 and ε0 = ε2 [i.e., in the

limit of SU(3) dynamical symmetry].
The superoperator commuting with the Hamilto-

nian in (4) and with the combined boson–fermion
quadrupole-moment operator for arbitrary χ, ε0, and
ε2 is

P1/2m = a+00,1/2ms+
∑

µ

a+2µ,1/2mdµ.
YSICS OF ATOMIC NUCLEI Vol. 64 No. 6 2001
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Thus, we see that, although we get, for an even–
even nucleus, a spectrum that does not belong to a
dynamical-symmetry limit for arbitrary χ, we have
a subset of eigenstates in an odd nucleus with the
same relative energies as in the even–even nucleus.
Together with the corresponding eigenstates of the
even–even nucleus, these states form supersymmet-
ric multiplets. The eigenvectors of these states are
constructed by applying the superoperator P1/2m to
the eigenvectors of the even–even nucleus with dif-
ferent values of the angular momentum I,

|JMNF = 1, NB = N − 1, Ln〉

=
1√
N

∑
m,µ

CJM
1/2mLµP1/2m|LnµNF = 0, NB = N〉.

Since the operator P1/2m has the angular momentum
of j = 1/2, we get doublets of states with the angular
momenta of J = I ± 1/2 in the odd nucleus.
Let us now consider the second limitation asso-

ciated with the dimension of the single-particle con-
figuration space. Let us show that the particle–rotor
model description of the degenerate-signature part-
ner bands built on theK = 1/2 pseudosinglet Nilsson
orbit can be reformulated as a realization of super-
symmetry. In this model, there is no restriction on the
number of spherical single-particle orbits interacting
with a quadrupole deformed core. Using the parti-
cle creation and annihilation operators introduced in
(3) and assuming that the matrix elements of r2 are
independent of l̃, we obtain the particle quadrupole
operator in the form

q2µ = 〈r2〉
∑

l̃,l̃′,ν,ν′,σ

〈l̃′||Y2||l̃〉√
5
C2µ

l̃′ν′ l̃ν
a+

l̃′ν′, 1̃
2
σ
ã

l̃ν, ˜1/2σ
.

We will also neglect a weak pseudospin–orbit in-
teraction. In the pseudospin–orbit representation,
the Hamiltonian of the particle–rotor model can be
written, in the laboratory frame, as

H =
∑
l̃,ν,σ

El̃a
+

l̃µ,1̃/2σ
a

l̃µ,1̃/2σ
+

�
2

2
L
2 (5)

−�ω0

∑
µ

(−1)µq2µQ
c
2−µ.

In contrast to the standard particle–rotor model, it
is assumed in (5) that the total orbital angular mo-
mentum L is the vector sum of the core rotational
momentum R and the particle pseudoorbital angular
momentum l: L = R + l̃. The operator Qc

2µ is repre-
sented as Qc

2µ = βD2
µ0. The operators

a+
l̃µ,1̃/2σ

a
l̃′µ′,1̃/2σ′ , Lν , D

L
M0,
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which are used to construct the Hamiltonian in (5),
form, together with the operators

a+
l̃µ, ˜1/2σ

Dl
m0, a

l̃µ, ˜1/2σ
Dl

m0,

a graded Lie algebra. The superoperator that is an
eigenmode operator for the Hamiltonian in (5) has the
form

P1/2σ ≡
∑
l̃, m

χl̃C
00
l̃ml̃−m

a+
l̃m,1̃/2σ

√
2l̃ + 1Dl̃

−m0

and satisfies the relation[
H,P1/2σ

]
= E0P1/2σ . (6)

The coefficients χl̃ obey the equation∑
l̃′

hl̃,l̃′χl̃′ = E0χl̃ ,

where

hl̃,l̃′ = El̃δl̃l̃′ − �ω0β〈r2〉〈l̃0|Y20|l̃′0〉
are the matrix elements of the Nilsson single-particle
Hamiltonian in the pseudooscillator basis calculated
under the assumption that the matrix elements of r2

are independent of l̃ and l̃′. More precisely, hl̃l̃′ is the
part of the NilssonHamiltonianmatrix corresponding
to the single-particle states characterized by zero
projection of the pseudoorbital angular momentum
(Λ̃ = 0) onto the symmetry axis. It follows from (6)
that the superoperatorP1/2σ acting on the eigenstates
of an even–even nucleus produces the eigenstates of
the neighboring odd nucleus with Λ̃ = 0. The γ-
transition energies will be the same in even–even and
odd nuclei for the states being considered.
As can be seen from the expression for P1/2σ , its

total orbital angular momentum is zero. For this
reason, P1/2σ applied to even–even core rotational
states creates only states of the odd nucleus with even
L and Λ̃ = 0. From the expression for the eigenvector
of the Hamiltonian in (5) with Λ̃ = 0, it follows that
the total orbital angular momentum L of these states
must satisfy the condition

(−1)L+l̃ = +1. (7)

Therefore, P1/2σ will create eigenstates of the odd

nucleus only if l̃ is even. For instance, the normal-
parity single-particle orbits p1/2, (p3/2, f5/2), and
(f7/2, h9/2) have even pseudoorbital angular momen-
ta, and, in the case where a corresponding oscillator
shell is a valence one, the energy intervals in the ro-
tational band of the odd nucleus based on the Nilsson
state with Λ̃ = 0 can be identical to the corresponding
energy intervals in the ground-state band of the
even–even nucleus. In contrast, the normal-parity
1
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single-particle orbits (s1/2, d3/2) and (d5/2, g7/2)
have odd pseudoorbital angular momenta. According
to (7), L is therefore odd and the eigenstates of the
odd nucleus based on these orbits cannot be created
by applying P1/2σ . It is possible to construct the
corresponding operator. However, this operator must
have a nonzero total orbital angular momentum, so
that it will not commute with the Hamiltonian in
(5); therefore, it will not create, in the odd nucleus,
rotational bands identical to the bands of the even–
even one. This situation is illustrated by the ground-
state rotational bands of 171Tm and 171Yb. The
171Tm nucleus has an odd proton hole produced in
PH
the even–even core 172Yb. This proton hole occupies
the [411]1/2+ state in the case of the ground-state
band, which is characterized by Λ̃ = 0 and odd l̃.
Since l̃ is odd, the total orbital momentum L of the
odd nucleus takes the values of L = 1, 3, 5... . Hence,
the ground-state band of 171Tm, which is constructed
by the vector coupling of L to the pseudospin equal
to 1/2, consists of the almost degenerate doublets
(1/2+, 3/2+), (5/2+, 7/2+), and so on. The ground-
state band of 171Yb is based on the [521]1/2− state
with Λ̃ = 0 and even l̃. In this case, L takes the
values of 0, 2, 4, ... . As a result, the ground-state
YSICS OF ATOMIC NUCLEI Vol. 64 No. 6 2001
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band of 171Yb consists of the singlet 1/2− and almost
degenerate doublets (3/2−, 5/2−), (7/2−, 9/2−), and
so on. The experimental energy intervals in the
ground-state band of 171Yb are quite close to those
of 172Yb, thus giving an example of approximate su-
persymmetry. In the ground-state band of 171Tm, the
energy intervals deviate to a greater extent from those
in 172Yb. However, they follow, with a good accuracy,
the L(L+ 1) rule (L is odd) with approximately the
same value of the moment of inertia as in 172Yb.
The operator P1/2m, which creates a neutron hole,

can also be applied to the states of rotational bands
of the odd-proton nucleus, thus producing the rota-
tional bands in the odd–odd nucleus with the same
energy intervals as in the parent odd-proton nucleus.
This case is illustrated by the spectra of 174,175Lu
shown in Fig. 7. Applying the operator P1/2m to the
states of the ground-state band of 175Lu based on the
7/2+ state, we create two rotational bands in 174Lu
based on the 4− and 3− states. The energies of the γ
transitions in these bands are close to the γ-transition
energies in 175Lu. This is especially true for the band
in 174Lu that is based on the 4− state, where the
agreement is almost perfect.
The examples demonstrated above show that, in

all cases, the rotational bands of an odd nucleus
belonging to the supermultiplets are based on the

[521]1/2− Nilsson state which is [̃420] pseudoorbital
singlet. Thus, it is interesting to investigate the prop-
erties of the rotational bands based on this single-
particle state in different nuclei at different excitation
energies of the bandhead. The existing experimental
data are rather scarce. Figure 8 shows the known
levels belonging to the rotational bands based on the
[521]1/2− state in the Pt isotopes. It can be seen that
only in the nuclide 181Pt is the band followed up to
high spins and are the complete doublets observed.
The same picture is characteristic of the Os and W
isotopes. Thus, new experimental data are needed for
obtaining deeper insights into supersymmetry phe-
nomena in nuclear structure.
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Abstract—Nuclear and atomic spectroscopy measurements have provided a great number of data on
the neutron-deficient Pt and Hg nuclei. The odd-A Pt and Hg with A <186 have a prolate shape, and
the even–even isotopes have a triaxial shape, while the nuclear shape of the odd-A Pt and Hg with
A >186 is still an open question. The energy of the low-lying levels and the nuclear moments have
been calculated in the framework of a semimicroscopic “axial-rotor + 1 quasiparticle” coupling model.
The predictions are compared with the experimental data and discussed. The results strongly suggest
a prolate shape for the negative-parity low-lying states of the odd-A 187−191Pt and 187−193Hg isotopes.
c© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

A great number of data on the neutron-deficient
Hg, Au, Pt, and Ir nuclei have been obtained by
both nuclear and atomic spectroscopy measurements
performed during the last thirty years. The properties
of these transitional nuclei have already been studied
using different models [1–8]. But no single model is
able to reproduce the whole set of data. The goal of the
present work is to determine to what extent the semi-
microscopic “axial-rotor + 1 quasiparticle” coupling
model, developed and tested on well-deformed nuclei
some years ago [9–11], can reproduce the properties
of these soft nuclei and can help answer the remaining
open questions. Firstly, known results of the even–
even and odd-A Hg and Pt nuclei will be recalled.
Then, the procedure used to calculate the energies
of the low-lying levels and the nuclear moments in
the framework of the “axial-rotor + 1 quasiparti-
cle” coupling model will be very briefly described.
Thereafter, the predictions will be compared with the
experimental results in order to study the deformation
and shape properties of the odd-A Pt and Hg nuclei.
This will allow us to propose a prolate shape for
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2)Physics Department, McGill University, Montréal, Canada.
3)Institut des Sciences Nucléaires, IN2P3–CNRS/UJF,
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4)Institut für Physik der Universität Mainz, Germany.
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1063-7788/01/6406-1134$21.00 c©
the negative-parity low-lying states of the odd-A
187−191Pt and 187−193Hg isotopes.

2. RECALL OF KNOWN RESULTS

The energy evolution of the low-lying states in the
even–even Pt and Hg isotopes [12] obtained by nu-
clear spectroscopy measurements is shown, against
their mass numberA, in Fig. 1. For Pt nuclei, the mo-
ment of inertia of the ground-state band progressively
increases whenA decreases from 198 to 186, remains
almost constant between 186 and 178, and starts to
decrease afterwards, which shows that the deforma-
tion of the even Pt nuclei changes with A. On the
contrary, for the Hg nuclei, the energy of the first 2+

state is almost constant, which indicates a very weak
deformation change of these nuclei in their first levels.
On the other hand, the sharp energy changes ob-
served for the upper states of 180Hg and 182Hg reveal
the coexistence of two different deformations for the
lightest Hg isotopes. Furthermore, the existence of a
2+ state located close to the 4+ state of the ground-
state band in 180−196Pt and 186−198Hg nuclei is a
signature of triaxiality [13]. All the results support the
contention that the even–even Pt nuclei progressively
change from a triaxial-oblate to a triaxial-prolate
shape whenA decreases from 198 to 180, whereas the
even–even Hg nuclei have a triaxial shape and keep a
small deformation in their first two states.

The results obtained by atomic spectroscopy are
illustrated in Fig. 2 by the curves of the mean square
2001 MAIK “Nauka/Interperiodica”
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charge radius change, δ〈r2c 〉, of the Hg, Au, Pt,
and Ir isotopes shown vs. their neutron number
N . The δ〈r2c 〉 values have been deduced from iso-
tope shift (IS) measurements performed using optical
methods as optical pumping or resonance ionization
spectroscopy [2, 4, 5, 14–20]. These measurements
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provide, for odd-A and doubly-odd nuclei, the hy-
perfine structures from which the nuclear moments
can be extracted. The charge radius decreases very
regularly for the even Hg nuclei. There is no sud-
den deformation change, which is in agreement with
the energy evolution of the first 2+ state shown in
Fig. 1. On the other hand, the famous huge odd–
even staggering observed below N = 106 has been
interpreted as alternating shape transitions: the odd-
A Hg isotopes have a prolate shape, while the even
ones have an oblate or triaxial shape [2]. From the
results shown in Fig. 1, the even Hg nuclei (at least
down to A = 186) have rather a triaxial shape. As
for the Pt nuclei, below N = 113, the charge radius
decreases with N more slowly than for the Hg nu-
clei, which corresponds to a quicker deformation in-
crease. Moreover, the inverted odd–even staggering
observed belowN = 109 has been explained as due to
alternating shape changes: the odd-A Pt have a pro-
late shape, while the even ones have a triaxial-prolate
shape with an asymmetry parameter γ around 15◦
[15]. In addition to this, a large deformation change
has been measured between the isomeric and ground
states of 185Hg, 183,185Pt, and 186Ir. The results
reveal deformation instabilities especially around the
neutron midshell.

From the δ〈r2c 〉 values, it is possible to calculate
the variation of the deformation parameters δ〈β2〉.
Thus, provided the β value is known for one isotope
used as a reference, the β value of all the other iso-
topes can be determined. For the even nuclei, the
β value can be extracted from the reduced transition
probability B(E2) of the 2+ → 0+ transition using
the following relation:

B(E2; 2+ → 0+) =
1

16π
Q2

0,

where the intrinsic quadrupole momentQ0 is given by

Q0 = 0.757Zr20A
2/3β(1 + 0.36β).

The β values of the even Pt and Hg nuclei reported
in Fig. 3 have been deduced from both the B(E2)
values and IS results. The β values of the 194Pt and
198Hg isotopes, calculated from the B(E2) values,
have been used as references to extract the β values
from the IS measurements. We can note that, for
the Pt isotopes for which more data are available, the
evolutions of the β values are in excellent agreement.
Since two completely different methods lead to the
same results, we can consider that the β values de-
duced from the IS results are quite reliable.

Finally, the behavior of the even–even Pt and Hg
isotopes is rather well understood. It is in qualita-
tive agreement with the predictions of the models.
Furthermore, in the odd isotopes with A < 186, the
single-particle levels have been identified as states
PH
corresponding to a prolate nuclear shape [12, 21–24].
This has been clearly confirmed by the properties of
the rotational bands built on them [12, 25, 26]. On
the other hand, the nuclear shape of the odd-A Pt and
Hg isotopes with A > 186, is still an open question.

3. DESCRIPTION OF THE MODEL USED

In the attempt to determine the nuclear shape of
the odd-A Pt and Hg isotopes with A < 186, we
have calculated the energies of the low-lying levels
and their nuclear moments in the framework of the
semimicroscopic “rotor + 1 quasiparticle” coupling
model [9–11]. For that, we proceed in three steps.
First, constraint Hartree–Fock + BCS calculations
are performed, assuming axial symmetry and using
the Skyrme III force, to get the quasiparticle wave
functions φ in the core. In these calculations, the
core is constrained to take the deformation of the odd
nucleus, extracted from the IS measurements. The
constant matrix elements used for the pairing treat-
ment are G0p = 13.5 MeV, G0n = 15.2 MeV for the
Pt and G0p = 13.4 MeV, G0n = 14.9 MeV for the Hg
isotopes. In the second step, the wave functions φ are
used in the “axial-rotor + 1 quasiparticle” coupling
model to get the wave functions Ψ that describe the
coupled states of the odd nucleus. In this approach,
the Coriolis force is treated exactly and all the quasi-
particle states φ corresponding to an energy belong-
ing to the interval [EFermi level ± 5 MeV] from the
Fermi level are taken into account. At last, the nu-
clear moments are calculated using the coupled-state
wave functions Ψ obtained in the second step. The
magnetic moments are calculated with gR = Z/A for
gs free and 0.6 gs free. An important property of this
approach is that there are no adjustable parameters.
But, the particle number is not conserved, which
means that a given core provides the spectrum of the
two adjacent odd-A nuclei.

4. COMPARISON OF THE EXPERIMENTAL
AND THEORETICAL RESULTS

The energy evolution of the negative-parity states
expected in the odd-A 185−193Pt nuclei from calcula-
tions performed assuming oblate and prolate shapes
is shown in Fig. 4, on the left-hand side and right-
hand side, respectively. For a given configuration,
when the level predicted at the lowest energy is not
the I = K state, two levels are reported: the I =
K state and the state predicted at the lowest en-
ergy. This is the case for the 1/2[521] and 1/2[501]
configurations in the oblate calculations and for the
1/2[510] and 3/2[512] configurations in the prolate
calculations. All the negative-parity levels observed
below 250 keV in the odd-A 187−193Pt are drawn in
YSICS OF ATOMIC NUCLEI Vol. 64 No. 6 2001
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the middle of Fig. 4. They are labeled with their
spin value since they are not yet identified. The first
observed levels have 3/2, 5/2, and 1/2 spin values;
such states are predicted at low energy in both the
oblate and prolate calculations. Besides this, 7/2
and 9/2 single-particle states have been observed at
low energy. No 7/2 or 9/2 state is predicted below
1.2 MeV in the oblate calculations, whereas these two
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1138 SAUVAGE et al.
Comparison of the measured and calculated nuclear moments (results for the oblate calculations are italicized)

Experiment Theory

nucleus 〈β2〉1/2 µexp, µN Qscor, b1) Iπ state core β
µ2), µN

Qs, b
gs free 0.6gs free

193Pt 0.133(10) 0.603(8) 1/2− 1/2[530] 192Pt –0.146 0.65 0.4

1/2− 1/2[510] 0.145 0.79 0.54
187Pt 0.184(3) −0.399(8) −0.98(5) 3/2− 1/2[521] 186Pt –0.191 –0.86 –0.53 0.93

3/2− 3/2[532] 0.33 0.28 –1.1

3/2− 3/2[512] 0.58 0.49 –0.9

3/2− 1/2[501] 0.88 0.9 0.81

3/2− 1/2[510] 0.191 −0.21 −0.0014 −0.28

3/2− 3/2[512] 0.14 0.25 0.27
193Hg 0.114(4) −0.62757(18) −0.72(38) 3/2− 1/2[510] 192Hg 0.127 −1.09 −0.53 −0.66
195Pt 0.136(3) +0.60949(6) 1/2− 1/2[510] 194Pt 0.141 0.8 0.55
193Pt 0.133(10) +0.603(8) 1/2− 1/2[510] 192Pt 0.145 0.79 0.54
191Pt 0.141(10) −0.501(5) −0.78(10) 3/2− 1/2[510] 190Pt 0.14 −0.39 −0.11 −0.03
189Pt 0.158(3) −0.422(7) −0.869(76) 3/2− 1/2[510] 188Pt 0.162 −0.0013 0.11 −0.048
187Pt 0.184(3) −0.399(8) −0.98(5) 3/2− 1/2[510] 186Pt 0.191 −0.21 −0.0014 −0.28
185gPt 0.224(3) −0.723(11) +3.73(17) 9/2+ 9/2[624] 184Pt 0.229 −1.46 −0.86 3.31
185mPt 0.200(3) +0.503(5) 1/2− 1/2[521] 186Pt 0.206 0.63 0.37
183gPt 0.220(3) +0.502(5) 1/2− 1/2[521] 184Pt 0.229 0.63 0.38
183mPt 0.239(3) +0.782(14) +3.37(27) 7/2− 7/2[514] 184Pt 0.245 1.46 0.99 3.25
181Pt 0.232(4) +0.484(21) 1/2− 1/2[521] 182Pt 0.236 0.63 0.38
179Pt 0.236(5) +0.431(32) 1/2− 1/2[521] 180Pt 0.243 0.64 0.38
189Os −0.320(46) 3/2− 1/2[510] 190Os 0.176 −0.040 0.085 −0.077

1) Spectroscopic quadrupole moment corrected for the Sternheimer shielding factor.
2) Calculated using gR = Z/A.
states exist at low energy in the prolate calculations.
The odd-A 187−191Pt have a 3/2 ground state. To
determine which theoretical 3/2 state corresponds
to the ground state we calculated the nuclear mo-
ments of all the 3/2 states predicted below 1.2 MeV,
namely the 3/2, 1/2[521], 3/2[532], 3/2[512], and
3/2, 1/2[501] states in the oblate case and the 3/2,
1/2[510], and 3/2[512] states in the prolate case. In
the same way, we calculated the µ value of the 1/2
ground state of the 193Pt isotope. For 193,187Pt, the µ
and Qs values obtained with both oblate and prolate
calculations are compared with the experimental ones
at the beginning of the table. The µ value of the 1/2
ground state of 193Pt is perfectly reproduced in both
P

calculations. Therefore, the nuclear shape cannot
be clearly determined in this case. As for the 187Pt
nucleus, both the measured µ and Qs have negative
values. Only the prolate 3/2, 1/2[510] state has this
property. However, the calculated values are too high
relative to the experimental ones. We can note that
the µ value varies quickly with the gs value. To study
the sensitivity of the nuclear moments to the nuclear
deformation, we calculated the µ and Qs values of the
3/2, 1/2[510] state using the 188Pt core constrained
to have different deformations (β from 0.15 to 0.27).
In Fig. 5 are displayed the purity of the wave function
and the evolutions of the µ and Qs values. One
can see that the evolutions of the µ and Qs values
have their maxima when the wave function purity is
HYSICS OF ATOMIC NUCLEI Vol. 64 No. 6 2001
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minimal. As shown with the dotted curves, a purity
of 90% would be necessary to approach both the µ
and Qs experimental values. Therefore, the wave
function admixtures are calculated too large for this
configuration.

In spite of this, several clues suggest that the
odd-A Pt and Hg nuclei with A > 186 have a prolate
shape. The experimental levels of Pt and Hg nuclei
have then been identified assuming a prolate shape.
The comparison of the level energies of 193Hg with
the predictions obtained using the 192Hg prolate core
is shown in Fig. 6 as an example. The 7/2[503] state
is predicted at slightly too low an energy, but all the
state energies are reproduced at better than 250 keV.

In the second part of the table, the measured nu-
clear moments of 193Hg, 179−195Pt, and 189Os are
compared with the predicted ones for prolate shape
and β values close to the 〈β2〉1/2 extracted from the IS
measurements. We must note that the 3/2− ground
states of the odd-A 187−193Hg and 187−191Pt nuclei,
identified as 3/2, 1/2[510] states, have µ values close
to that of the known 3/2, 1/2 [510] state of 189Os [12].
These measured µ values slowly decrease with A,
whereas the calculated µ and Qs values vary rapidly
because of admixture changes in the 3/2, 1/2[510]
wave function. The admixture in the wave function
is due to the fact that the 3/2[512] and 1/2[510]
quasiparticle states are found at very close energies in
the CHF + BCS calculations. The Coriolis effect be-
comes especially large when the 3/2[512] state is lo-
cated above the 1/2[510] state. The 3/2[512] state is
found at 20 keV below the 1/2[510] state in the 192Hg
core, whereas it is at 15 keV above it in the 188Pt core.
This explains why the nuclear moments are perfectly
reproduced for 193Hg, while their predictions are too
large for the Os and Pt nuclei. Therefore, for the 3/2,
1/2[510] state, the admixtures are overestimated for
the Os and Pt nuclei. For the 9/2+ ground state of
185Pt, the calculated µ and Qs values are slightly too
small. For the 7/2− isomeric state of 183Pt, the cal-
culated µ value is slightly too large, whereas the pre-
dicted and measured Qs values are in a perfect agree-
ment. At last, for the 1/2 ground states of 179−183Pt
and the 1/2 isomeric state of 185Pt, the measured µ
values are perfectly reproduced by the calculations for
the 1/2[521] configuration. In Fig. 7, the energies of
the coupled quasiparticle states calculated using the
prolate Pt cores from A = 180 to 198 are compared
with the energies of the single-particle states ob-
served in the 181−191Pt. The positive-parity states are
linked with full lines, and the negative-parity states
with dotted lines. One can note that numerous states
cross each other between the mass numbers 184 and
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 6 200
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Fig. 7. Comparison of the observed and predicted single-
particle spectra of the odd-A Pt isotopes.

186. The energies of the low-lying states for A < 186
increase with A, while the energies of the low-lying
states for A > 186 increase when A decreases. For
A < 186, all the levels observed below 650 keV and
previously identified [12] as single-particle states are
found in the calculations. However, the 5/2[512]
state is calculated at slightly too low an energy, and
the 9/2[624], 1/2[510], 3/2[512], and 7/2[503], states
have energies that increase as observed, but the slope
is too steep. Nevertheless, most of the state energies
1
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are reproduced at better than 500 keV. For A > 186,
the first levels are identified as prolate states, as sug-
gested by the results presented in the table and in
Figs. 4 and 6. For 187−191Pt, a satisfactory agreement
is found between the measured and predicted energies
for the first levels. However, all the levels could not
be clearly identified. To go further, it would be inter-
esting to calculate the reduced transition probabilities
B(M1) and B(E2).

5. CONCLUSION

We have shown that the model used can reproduce
the results satisfactorily for the odd-A 181−185Pt that
clearly have a prolate shape: the energies of most of
the low-lying levels are reproduced within 500 keV,
and the nuclear moments are well predicted. Fur-
thermore, the comparison of the measured and calcu-
lated results strongly suggests a prolate shape for the
187−193Hg and 187−191Pt nuclei: the existence at low
energy of the 7/2 and 9/2 single-particle states and
the negative µ and Qs values of the 3/2 ground states
could be reproduced only in the prolate calculations.
It is worth noting that the β values extracted from
the IS results and the signs of the nuclear moments
played a decisive role in this work.

Finally, the odd-A neutron-deficient Pt and Hg
isotopes more likely have a prolate shape while the
even ones have a triaxial shape, which indicates that
the coupling of a neutron to the core highly influences
the mean field producing a nucleon rearrangement.
PH
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Abstract—Low-lying dipole excitations in the medium-weight vibrational nuclei of the Cd isotopic
chain were investigated by means of nuclear resonance fluorescence experiments performed at the
bremsstrahlung beam of the Stuttgart Dynamitron accelerator (endpoint energy 4.1 MeV). Detailed in-
formation has been obtained on excitation energies, spins, decay widths, and transition probabilities of nu-
merous excited states in 110−114,116Cd. Additionally, the use of two Compton polarimeters enabled model-
independent parity assignments for excitations in the even–even isotopes. Strongly excited Jπ = 1− states
are found in all even–evenCd nuclei at excitation energies near the sum of the energies of the first 2+ and 3−

states. These excitations are interpreted as the 1− member of the quadrupole–octupole coupled quintuplet
(2+⊗ 3−). The fragmented strength observed in the odd isotopes 111,113Cd is compared with the strength
distributions in the neighboring even–even Cd isotopes. c© 2001 MAIK “Nauka/Interperiodica”.
1. MOTIVATION

Low-lying dipole excitations in heavy nuclei are
an interesting and important field in modern nuclear
structure physics. An outstanding example was the
prediction [1] and the subsequent discovery [2] of the
orbitalM1ScissorsMode in deformed nuclei in 1984,
stimulating a large number of both experimental and
theoretical works (for references see, e.g., recent re-
views [3, 4]). On the other hand, also enhanced
electric dipole excitations (E1) were expected and
observed in heavy nuclei [3, 5]. In semimagic nuclei
like the N = 82 isotones (see [6–12] and references
therein) or the even–even Sn isotopes [13, 14], the
corresponding 1− states were interpreted as the spin
1 member of the 1−, 2−, . . ., 5− quintuplet due to a
two-phonon coupling of the quadrupole and octupole
phonons. So far, all these enhanced E1 excitations
weremainly investigated in even–even nuclei. A topic
of current interest is also the study of the fragmen-
tation of these dipole modes in the neighboring odd-
mass nuclei [15–18]. The coupling of an unpaired
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nucleon or hole to the even–even core should lead to
a splitting of the dipole strength in odd-A nuclei.
In this contribution, we want to focus on strong

E1 excitations in the medium-weight, spherical nu-
clei of the Cd isotopic chain (Z = 48), which are
known as vibrational nuclei. The present systematic
nuclear resonance fluorescence (NRF) experiments
represent an ideal completion of extensive particle-
induced reaction studies [19, 20] and our previous
photon scattering experiments [21, 22] performed in
the last years.

2. EXPERIMENTAL TECHNIQUES

2.1. Nuclear Resonance Fluorescence Method

Nuclear resonance fluorescence, photon scatter-
ing off bound nuclear states, has proven to be an
outstanding tool to investigate low-lying dipole ex-
citations in heavy nuclei and to provide detailed spec-
troscopic information. The low transfer of momentum
of real photons gives rise to a high selectivity in ex-
citing low-spin states (dipole transitions). The use
of continuous bremsstrahlung radiation enables all
states with ∆J = 0,±1 and with sufficient ground-
state decay widths to be excited simultaneously.
The following quantities can be extracted in a

completely model-independent way [3, 23]:
1. The excitation energies (∆E ≤ 1 keV).
2. The ratio Γ2

0/Γ (Γ0 and Γ: ground-state and
total decay widths, respectively). Reduced transition
2001MAIK “Nauka/Interperiodica”
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probabilities B(M1)↑ and B(E1)↑, respectively, can
be deduced if parities are known.

3. The spins J of the excited states (for even–even
nuclei).

4. The branching ratios for the decay to lower lying
excited states.

5. The parities of the excited states (for even–even
nuclei).

The formalism describing NRF experiments is
summarized in previous reviews (e.g., [3, 23]). From
experiments using continuous electron bremsstrah-
lung as a photon source, the total scattering cross
section Is,f , integrated over one resonance and the
full solid angle, can be extracted:

Is,f = g

(
π

�c

Eγ

)2 Γ0Γf

Γ
. (1)

Here, Γ0, Γf , and Γ are the decay widths of the pho-
toexcited state with spin J to the ground state, to a
final lower lying state, and its total width, respectively.
The statistical factor g = (2J + 1)/(2J0 + 1) is called
“spin factor.” In the case of elastic scattering (Γ0 =
Γf ), the scattering cross section is proportional to
Γ2

0/Γ. If the decay to other states can be observed or is
known, the ground-state width Γ0 and the total width
Γ can be determined. Γ is connected to the lifetime
τ of the excited level via the uncertainty relation:
Γ = � / τ . The product gΓ0, which can be directly
extracted from the measured scattering intensities,
is proportional to the reduced excitation probabilities
B(E1)↑ or B(M1)↑:

B(Π1)↑= g B(Π1)↓= 9
16π

(
�c

Eγ

)3

(gΓ0) (2)

and in numerical form:

B(E1)↑= 0.955
gΓ0

E3
γ

[10−3e2 fm2], (3)

B(M1)↑= 0.0864
gΓ0

E3
γ

[µ2
N ].

Here, the excitation energies Ex are in MeV and the
ground-state transition widths Γ0 in meV.

Unfortunately, in the case of odd-mass target nu-
clei, the angular distributions of the scattered photons
are rather isotropic. Therefore, in general no unam-
biguous spin assignments to the photoexcited states
are possible, and hence the spin factor g is not known.
P

For the comparison with the strengths in even–even
nuclei, one introduces the quantity gΓred0 :

gΓred0 = g
Γ0

E3
γ

, (4)

which is proportional to the reduced dipole excitation
probabilities [see (3)].
The spins of the excited states can be easily de-

termined from the measured angular distributions in
the case of even–even nuclei. Parities can be as-
signed model-independently from photon scattering
experiments by measuring the linear polarization of
the scattered photons using Compton polarimeters
[3, 24] or by using linearly polarized bremsstrahlung
[3, 23]. In the Stuttgart experiments, sectored single-
crystal Ge Compton polarimeters have successfully
operated for many years [24]. The parity information
is obtained from the measured azimuthal asymmetry
ε:

ε (Eγ) =
N⊥ − N‖
N⊥ + N‖

= PγQ (Eγ), (5)

where N⊥ and N‖ represent the rates of Compton
scattering events perpendicular and parallel to the
NRF scattering plane defined by the directions of the
photon beam and the scattered photons, respectively.
The sign of the asymmetry ε, given by the product
of the degree of polarization Pγ and the polariza-
tion sensitivity Q of the polarimeter device, deter-
mines the parity. The polarization sensitivity Q(Eγ)
of the Compton polarimeter arrangements (including
its apparative asymmetries) can be determined exper-
imentally using γ–γ cascades with known spins and
mixing ratios or using photons of known linear polar-
ization from appropriate (p, p′ �γ) reactions [24]. For
the Stuttgart polarimeters, the polarization sensitivity
amounts to about 20% at a photon energy of about
0.5 MeV and decreases to about 10% at 4 MeV.

2.2. Experimental Setups
at the Stuttgart Dynamitron

The NRF measurements reported on have been
performed at the well-established bremsstrahlung fa-
cility of the Stuttgart Dynamitron accelerator [3],
shown schematically in Fig. 1. The high-current
DC electron beam (maximum current 4 mA; typi-
cal current 0.8 mA) with a maximum energy of 4.3
MeV is bent by 120◦ and focused on the bremsstrah-
lung radiator target. The excellent quality of the
bremsstrahlung beam and the high flux of typically
some 106 photons per keV per second for 3 MeV
photons enable one to run NRF experiments at two
different setups simultaneously. At the first NRF site,
the scattered photons were detected now by three
HYSICS OF ATOMIC NUCLEI Vol. 64 No. 6 2001
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carefully shielded HPGe-γ spectrometers (efficien-
cies of 100% relative to a 3′′ × 3′′ NaI(Tl) detector)
placed at scattering angles of about 90◦, 127◦, and
150◦ with respect to the incident beam. At the sec-
ond site, two sectored single-crystal Ge-Compton
polarimeters [24] are installed at slightly backward
angles of ≈ 95◦ with respect to the photon beam
measuring the linear polarization of the resonantly
scattered photons. The sensitivity of the polarime-
ters could be increased considerably in the past by
improving the response functions using a BGO anti-
Compton shield [25]. An additional Ge-γ detec-
tor of modest relative efficiency (≈40%) allows the
measurement of angular distributions at this second
site too and hence the simultaneous investigation of
a second isotope. The NRF targets in the present
experiments consisted of discs of highly enriched Cd
material in quantities of some grams sandwiched by
plates of aluminum allowing an absolute calibration
of the incoming photon flux (see [26]).

3. RESULTS AND DISCUSSION

3.1. E1 Two-Phonon Excitations
in the Even–Even Cd Isotopes

In Fig. 2, the very clean (γ, γ′) spectra for 110,116Cd
are depicted in comparison with previously taken data
for 112,114Cd [21, 22]. The strong peaks marked by
“27Al” correspond to transitions in 27Al used as pho-
ton flux standards. The lines at 2.614 MeV labeled
with “208Pb” are due to natural background radiation.
The spectra look quite similar and are dominated
by the marked strong E1 two-phonon excitations at
excitation energies around 2.5 MeV.
The measured angular distributions clearly iden-

tified the strong excitations in all isotopes as dipole
transitions. For two of the two-phonon excitations (in
110,116Cd), the negative parity could be established by
the present linear polarization measurements using
the Compton polarimeters. This is shown in Fig. 3,
where the azimuthal asymmetries ε of the transitions
in 110Cd are plotted versus the excitation energy. The
result for the two-phonon excitation at 2.650 MeV
is in excellent agreement with the negative value of
ε as expected for E1 transitions (lower dashed line)
and is more than six standard deviations off from the
M1 expectation (positive ε values). The asymmetries
for the nearly unpolarized 27Al transitions agree with
zero within two standard deviations, demonstrating
the nearly perfect symmetry of the polarimeter. Neg-
ative parities for the candidates of the two-phonon
excitations in 112,114Cd are known from the literature
and are or will be checked in polarization measure-
ments at Stuttgart.
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 6 200
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Fig. 1. Sketch of the bremsstrahlung facility and the
photon scattering setups installed at the Stuttgart 4 MV
Dynamitron accelerator.

Figure 4 summarizes the results for the two-
phonon excitations in the even–even Cd isotopes
obtained in the Stuttgart NRF experiments. For all
investigated isotopes, all quantities are remarkably
constant: the energies of the one-phonon excitations
Ex(2+) and Ex(3−), of the two-phonon excita-
tions Ex(1−), and the absolute excitation strengths
B(E1, 0+ → 1−). Such a behavior, as expected for
collective modes in nuclei of an isotopic chain without
changes of the nuclear shapes, is reminiscent of the
situation in the semimagic Sn isotopes [14].

The observed excitation energies Ex(1−) are very
close to the sum

∑
of the one-phonon excitation en-

ergies Ex(2+) and Ex(3−) corresponding to a nearly
completely harmonic coupling of the quadrupole and
octupole vibrations. This nearly perfect agreement
between the one-phonon sum energies

∑
and the

two-phonon energies Ex(1−) is demonstrated in the
upper panel of Fig. 4. The two-phonon anharmonic-
ities are small and result in a minor lowering of the
1− two-phonon states. The measured B(E1)↑ values
1
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Fig. 2. NRF spectra for the even–even Cd isotopes 110,112,114,116Cd measured in recent NRF studies at Stuttgart.
(see lower panel of Fig. 4; the analysis for 116Cd is not
yet completed) are also nearly constant. The absolute
values of about 2×10−3 e2 fm2 are at least one order
of magnitude larger than for other E1 transitions in
neighboring nuclei. However, they are about a factor
PH
of three lower than those observed in the semimagic
Sn isotopes [14].
So far, there is a lack of detailed calculations for

these excitations in the Cd isotopes. Only for 112Cd
are calculations available performed in the framework
YSICS OF ATOMIC NUCLEI Vol. 64 No. 6 2001
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of the sdpf-IBMmodel by Lehmann et al. [22]. They
succeeded in reproducing quite well the excitation
energies and transition strengths of the first four 1−

states in 112Cd (see [22]).

3.2. Fragmentation of the Dipole Strength
in the Odd-Mass Isotopes 111,113Cd

In Fig. 5, the spectra for the odd-mass isotopes
111,113Cd are compared with the spectrum for 112Cd.
Obviously, the strengths are strongly fragmented in
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the odd-mass isotopes as compared to the strength
distribution in the even–even neighbor isotope 112Cd.
A more quantitative comparison should be done in

terms of reduced transition probabilities, as shown in
Fig. 6. As can be seen, the dipole responses of the
even–even Cd isotopes 112,114Cd are rather similar,
with respect to both the strength distributions and the
total strengths. Also, in the odd nucleus 113Cd, the
strength seems to be concentrated in two bumps with
a somewhat stronger fragmentation as is expected
for an odd-mass nucleus. Furthermore, the two
groups of excitations are shifted to lower energies.
However, the experimentally detected total strength
in 113Cd (

∑
gΓred0 = 8.5 ± 1.7 meV/MeV3) is re-

duced by a factor of roughly 1.5 as compared to
the strengths observed in the neighboring even iso-
topes (112Cd: 11.8 ± 0.8 meV/MeV3; 114Cd: 13.4 ±
2.0 meV/MeV3). This reduction factor is less than
that observed in deformed even–even and odd-mass
Dy and Gd nuclei [27, 28]. For the deformed odd-
mass rare earth nuclei, a recent statistical fluctu-
ation analysis [29, 30] of the corresponding NRF
spectra demonstrated that a considerable part of the
total dipole strengths in these odd-mass nuclei, the
missing strengths as compared to the even–even
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neighboring isotopes, is hidden in the continuous
background due to a strong fragmentation. The
reason for this fragmentation is the diverse coupling
possibilities of the single unpaired nucleon to the
collective excitations the even–even cores.
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Abstract—The properties of low-lying states in 136Ba and 144Nd are calculated within the quasiparticle
phonon model. It is shown that the strong quadrupole interaction in the particle–particle channel leads to
the appearance of low-lying isovector excitations. Due to this reason, there are two branches in the low-
lying part of the spectrum, an isoscalar and an isovector one. Both branches show peculiar regularities of
E2 andM1 transitions. c© 2001 MAIK “Nauka/Interperiodica”.
The nuclei around closed shell N = 82 have been
an object of intensive study in recent years. In this
region, the collectivity and the energy of the low-
lying excitations change considerably with A. This
permits one to establish a close correlation of the
simple modes (collective and noncollective) with the
detailed structure of the low-lying excited states. By
means of photon scattering experiments, a large body
of experimental information about low-lying dipole
transitions (E1 andM1) in nuclei aroundN = 82 has
been collected [1, 2]. It has been shown that the first
1− state in even–even nuclei is predominantly a two-
phonon member of a quadrupole–octupole multiplet.
The excitation energy of the 1− state and the corre-
spondingB(E1) value are described quite well within
the quasiparticle–phonon model (QPM) [3, 4]. The
experimental information about the structure of the
low-lying states is completed by means of (n, n′γ)
reaction [5] and lifetimemeasurements [6]. The struc-
ture of low-lying 1+ states is of great interest since
the M1 transitions reveal the isovector character of
the low-lying states. They appear as a scissors mode
in deformed nuclei [7] and are classified as mixed-
symmetry states within the neutron–proton version
of the interacting boson model (IBM-2) [8, 9]. The
structure of the 1+ states in 94Mo is calculated within
the QPM, and the results are presented in [10]. It
is shown that the 1+

1 is a two-phonon state, where
the isoscalar 2+ phonon is coupled with the isovector
one. In [10], it is also found that the same component
dominates in the structure of the 3+ and some 2+ ex-

∗This article was submitted by the authors in English.
1)Dipartimento di Scienze Fisiche, Università di Napoli Fed-
erico II, and INFN, Sezione di Napoli, Italia.

**e-mail: stoyanov@inrne.bas.bg
1063-7788/01/6406-1147$21.00 c©
cited states. In the low-lying spectrum of 94Mo, there
are two branches. The isoscalar branch includes one-
and two-phonon states constructed by the isoscalar
2+ phonon. Another branch is based on the isovec-
tor 2+ phonon. The strong E2 transitions connect
the states within each branch, while the strong M1
transitions connect the states belonging to different
branches.

In the present study, we have used the QPM to
calculate the properties of the low-lying states around
the closed shell N = 82. The structure of the excited
states in N = 80 (136Ba) and N = 84 (144Nd) nuclei
and E2 and M1 transition probabilities have been
calculated. The available experimental information
has been analyzed, and the properties of the low-
lying isovector quadrupole excitations have been dis-
cussed.

The most general form of the QPM Hamiltonian
is [11]

H = Hav + Hpair + Hph
M + Hph

SM + Hpp
M . (1)

The term Hav is the Woods–Saxon potential, Hpair

represents the monopole pairing interaction, Hph
M

stands for the separable multipole–multipole inter-
action in the particle–hole channel,Hph

SM is the sepa-
rable spin–multipole interaction in the particle–hole
channel, and Hpp

M stands for the residual interaction
in the particle–particle channel.

The first step in QPM is to construct the phonon
basis and to express the Hamiltonian (1) in terms of
phonons. The phonon operator has the form

Q+
λµi =

1
2

∑
jj′

{
ψλi

jj′A
+(jj′;λµ) (2)

− (−1)λ−µφλi
jj′A(jj′;λ− µ)

}
,

2001MAIK “Nauka/Interperiodica”



1148 STOYANOV et al.
where A+(jj′;λµ) and A(jj′;λ− µ) are two-quasi-
particle creation and annihilation operators, respec-
tively, coupled to momentum λ. The energy of the
phonons and the amplitudes ψ and φ are found by
solving the RPA equations.
P

The Hamiltonian (1) is diagonalized in the model
space, where the model wave function of an excited
state in even-even nuclei with angular momentum
J and projection M includes one-, two-, and three-
phonon components. It reads
Ψν(JM) =
{∑

i

Ri(Jν)Q+
JMi +

∑
λ1i1λ2i2

P λ1i1
λ2i2

(Jν)
[
Q+

λ1µ1i1
Q+

λ2µ2i2

]
JM

(3)

+
∑

λ1i1λ2i2λ3i3I

T λ1i1
I

λ2 i2
λ3i3

(Jν)
[[

Q+
λ1µ1i1

Q+
λ2µ2i2

]
Ik

Q+
λ3µ3i3

]
JM

}
Ψ0,
where [. . . ]JM stands for angular momentum cou-
pling, Ψ0 represents the phonon vacuum state, and
R, P , and T are unknown amplitudes. To ensure
a proper antisymmetrization, the norm of the wave
function and the necessary matrix elements are cal-
culated using the exact commutation relations of the
phonons taking into account their fermion structure
[11]. The wave function (3) has been successfully
used to calculate the structure of the excited states
in theN = 82, 84 even–even nuclei [3, 4, 12].

In the present calculations the parameters of the
Woods–Saxon potential are taken from [13, 14]. The
corresponding single-particle spectra for theA = 140
region can be found in [15]. The radial component
of the multipole field entering into the particle–
hole and particle–particle separable interaction is
f(r) = dU(r)/dr, where U(r) is the central part of
the Woods–Saxon potential. The strengths κ(2) and
κ(3) of the quadrupole–quadrupole and octupole–
octupole particle–hole interaction were fixed by a
fit to the energies of the first 2+ and 3− states.
H

The strengths κ(λ) of the other multipole terms
are adjusted according to the prescription of [11].
The interaction in the particle–particle channel is
important only in the quadrupole term. We have
used as strength parameter in this channel G(2) =
G

(2)
nn = G

(2)
pp and G

(2)
np = 0. The value of G(2) will be

discussed below. The phonons with multipolarity
1±, 2+, 3−, 4+, 5− are used in the calculations.

The most important states in the RPA basis are
the first and second 2+ states. The first [2+]RPA state
is an isoscalar one. The properties of the state depend

mainly on the value of κ(2)
0 , the isoscalar quadrupole

strength parameter. The properties of the second

[2+]RPA state are very sensitive to the ratioG(2)/κ
(2)
0 .

The increase in this ratio enhances the collectivity of
the
[
2+
2

]
RPA

and changes the nature of the state from
isoscalar to isovector. It is shown in [16] that the
relevant quantity for checking the nature of an RPA
phonon is the ratio
B(2+
i ) =

|〈2+
i ‖
∑p

k r
2
k Y2µ(Ωk)−

∑n
k r2

k Y2µ(Ωk)‖g.s.〉|2

|〈2+
i ‖
∑p

k r
2
k Y2µ(Ωk) +

∑n
k r2

k Y2µ(Ωk)‖g.s.〉|2
. (4)
If B(2+
i ) > 1, the 2+ state under consideration is an

isovector state, otherwise it is isoscalar.

The dependence of the properties of
[
2+
2

]
RPA

on the ratio G(2)/κ
(2)
0 is shown in Table 1. It is

seen that when the ratio G(2)/κ
(2)
0 increases the

B(E2;g.s.→
[
2+
2

]
RPA

) increases too, i.e., the col-
lectivity of

[
2+
2

]
RPA

becomes larger. Also, the M1
transition strength between the

[
2+
2

]
RPA

and the[
2+
1

]
RPA

states increases. The value of B(2+
i ), (4),

changes dramatically, indicating that the nature of the
[
2+
2

]
RPA

varies from isoscalar to isovector. Another

quantitative check of the nature of
[
2+

i

]
RPA

states is
the relative signs of the neutron and proton ampli-
tudes ψ (2). The structure of the first two [2+]RPA

phonons is shown in Table 2 for 136Ba. It is seen that,
while in the case of

[
2+
1

]
RPA

the main components

are in phase, in
[
2+
2

]
RPA

the relative sign of the main
components has changed and the amplitudes ψ are
in opposition of phases. Table 2 illustrates that at an

appropriate value of the ratioG(2)/κ
(2)
0 the RPA basis
YSICS OF ATOMIC NUCLEI Vol. 64 No. 6 2001
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Table 1. The dependence ofM1 and E2 transitions on the ratioG(2)/κ(2)
0 in 136Ba

G(2)/κ
(2)
0 B(E2; 0+

1 → 2+
2 )RPA, e2 b2 B(M1; 2+

2 → 2+
1 )RPA, µ2

N B(2+
2 )

0 0.0009 0.042 0.73

0.779 0.010 0.208 14.57

0.847 0.011 0.223 16.42

Table 2. Structure of the first RPA phonons (only the largest components are given) and values of B(2+
i ) [see (4)] for

136Ba

λπ
i wλπ

i
,MeV Structure B(E2)↑, e2 b2 B(2+

i )

2+
1 0.940 0.76(1h11/2)2n + 0.68(2g7/2)2p 0.370 0.00003

0.24(3s1/22d3/2)n + 0.43(2d5/2)2p
0.31(2d3/2)2n + 0.39(1g7/22d3/2)2p

2+
2 1.997 0.88(1h11/2)2n − 0.92(1g7/2)2p 0.011 16.4

0.38(2d3/2)2n − 0.24(2d5/2)2p
0.22(3s1/22d3/2)n − 0.14(1h11/2)2p
used contains a collective isoscalar
[
2+
1

]
RPA

and a
slightly collective isovector

[
2+
2

]
RPA

state. The states
are connected with a relatively large M1 transition.
This property of the basis is in agreement with the
IBM-2. In this model, the first

[
2+
1

]
RPA

is symmetric
with respect to the exchange of protons and neutrons,
i.e., F spin symmetric. The second

[
2+
2

]
RPA

is a
mixed symmetry state according to F spin. The
required property of the RPA basis determines the

value ofG(2) = (0.8−0.9)κ(2)
0 .

To proceed with the QPM eigenvalue problem, the
Hamiltonian (1) is diagonalized in the multiphonon
basis (3).

The energy and the structure of several 1+ and
2+ states are given in Table 3 for 136Ba and Table 4
for 144Nd. Well-pronounced components dominate in
the structure of the states. Except for a few states,
the main component exhausts more than 80% of the
norm of the wave function. Due to the dominance of
the main component, the states could be separated
into two branches. In 136Ba, the first and second 2+

states are members of the isoscalar branch, while the
2+
3 , 1

+, and 2+
9 states are members of the branch

based on the isovector
[
2+
2

]
RPA

phonon-isovector
branch [10]. In 144Nd, the

[
2+
2

]
RPA

component and
the two-phonon

[
2+
1 ⊗ 2+

1

]
RPA are fragmented over
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 6 200
the 2+
2 and 2+

3 states. These therefore qualify as mixed
(isoscalar and isovector) states, while the 2+

1 state
appears as fully symmetric (isoscalar).

The reduced transition probabilities are shown
in Tables 5 and 6. Large E2 transitions connect
members of the isoscalar branch (g.s.→ 2+

1 ) and
(2+

2 → 2+
1 ). The calculated B(E2; g.s.→ 2+

2 ) value
is close to the experimental value in 144Nd, while it is
much larger than the experimental one in 136Ba. The
reason is that the anharmonicity in 136Ba is larger
and the contribution of the [2+

1 ]RPA component in
the structure of the 2+

2 state is too large (more than
10%). The value of B(E2; 2+

2 → 2+
1 ) in 136Ba agrees

with the experimental one, which implies that the

Table 3. Structure and energy of several low-lying states
in 136Ba (only the main component is given)

State
Energy, keV

Structure
Exp. QPM

1+
1 2694 2772 81.7%

[
2+
1 ⊗ 2+

2

]
RPA

2+
1 813 727 80.4%

[
2+
1

]
RPA

2+
2 1551 1653 54.2%

[
2+
1 ⊗ 2+

1

]
RPA

2+
3 2129 1951 88.2%

[
2+
2

]
RPA

2+
9 – 3007 57.7%

[
2+
1 ⊗ 2+

2

]
RPA
1



1150 STOYANOV et al.
Table 4. Structure and energy of several low-lying states
in 144Nd (only the main components are given)

State
Energy, keV

Structure
exp. QPM

1+
1 2656 2895 99%

[
2+
1 ⊗ 2+

2

]
RPA

2+
1 678 744 92%

[
2+
1

]
RPA

2+
2 1561 1674 69%

[
2+
1 ⊗ 2+

1

]
RPA

2+
3 2073 1948 69%

[
2+
2

]
RPA

2+
8 – 2936 46%

[
2+
1 ⊗ 2+

2

]
RPA

54% contribution of the component
[
2+
1 ⊗ 2+

1

]
RPA

to the norm of the 2+
2 state (see Table 3) is a realistic

one. Another set of large B(E2) values is between the
members of the isovector branch—B(E2; 1+

1 → 2+
3 );

B(E2; 2+
9 → 2+

3 )(136Ba); B(E2; 2+
8 → 2+

3 )(144Nd). It
is seen from Table 5 that the E2 transitions connect-
ing members of different branches are small—B(E2;
1+
1 → 2+

1 ); B(E2; 1+
1 → 2+

2 ); B(E2; 2+
3 → 2+

1 ).
The M1 transitions are shown in Table 6. Fol-

lowing the foregoing discussion, one has to expect
large M1 transition between members of different
branches, while inside each branch the M1 transi-
tions are small. The results presented in Table 6 con-
firm such a statement. The values B(M1; g.s.→ 1+

1 ),
B(M1; 2+

3 → 2+
1 ), B(M1; 1+

1 → 2+
2 ), etc., are large,

while the value B(M1; 1+
1 → 2+

3 ) is small in 136Ba.
In 144Nd, because of the fragmentation of the two-

Table 5. B(E2) values calculated in QPM for 136Ba
and 144Nd. (The experimental data are taken from
[1, 2, 5, 6, 17]. The notation 2+

[2+
1 ⊗2+

2 ]
means 2+

9 state in
136Ba and 2+

8 state in 144Nd)

Transition[
e2 b2

] Mult.
136Ba 144Nd

exp. QPM exp. QPM

1+
1 → 2+

1 E2 – 0.0015 – 0.0043

1+
1 → 2+

2 E2 – 0.0008 – 0.021

1+
1 → 2+

3 E2 – 0.097 – 0.061

0+
1 → 2+

1 E2 0.400(5) 0.428 0.540 0.413

0+
1 → 2+

2 E2 0.016(4) 0.09 0.005(1) 0.0045

0+
1 → 2+

3 E2 0.045(5) 0.017 0.023 0.035

2+
2 → 2+

1 E2 0.09(4) 0.083 0.095(21) 0.15

2+
3 → 2+

1 E2 – 0.0055 0.02(1) 0.04

2+

[2+
1 ⊗2+

2 ] → 2+
1 E2 – 0.0002 – 0.004

2+

[2+
1 ⊗2+

2 ] → 2+
3 E2 – 0.04 – 0.057
PH
phonon and isovector
[
2+
2

]
RPA

components, the M1
transition strength connecting

[
2+
1

]
RPA

and
[
2+
2

]
RPA

states is shared between two transitions 2+
2 → 2+

1

and 2+
3 → 2+

1 . This is confirmed by the experiment
[17]. For the same reason, the value B(M1; 1+

1 →
2+
3 ) is large in 144Nd. The B(M1) values are calcu-
lated using the quenching factor gs = 0.7. The contri-
bution of the orbital part in B(M1) value is estimated
to be more than 70% for 144Nd.

The strength of the component
[
[2+

1 ⊗ 2+
2 ]2+

]
RPA

,
member of the isovector branch, is distributed over
several 2+ states. Its maximal value is around 50%
in the 2+

9 state in 136Ba (Table 3) and 2+
8 state in

144Nd (Table 4). It means that even in the schematic
calculations presented in the paper the quadrupole
part of the scissors branch is strongly hindered. For
example, the value of M1 transition connecting 2+

9

and 2+
2 states in 136Ba is much less than the value

of B(M1; 1+
1 → 2+

2 ). The same result is found in
144Nd (see Table 6). Because of that, it seems difficult
to detect experimentally this branch of the scissors
mode.

The calculation of the structure of low-lying states
inN = 80 136Ba andN = 84 144Nd reveals that there
are two simple modes in the quadrupole excitations,
an isoscalar and an isovector one. The properties of
these two modes are very close to the ones proposed
as symmetric and mixed-symmetry states in IBM-2.
The coupling of isoscalar and isovector states leads to
a variety of excited states connected by specific values

Table 6. B(M1) values calculated in QPM for 136Ba and
144Nd with gs = 0.7. (The experimental data are taken
from [1, 2, 5, 6, 17]. The notation 2+

[2+
1 ⊗2+

2 ]
means 2+

9 state

in 136Ba and 2+
8 state in 144Nd)

Transition
[µ2

N ] Mult.
136Ba 144Nd

exp. QPM exp. QPM

2+
2 → 2+

1 M1 – 0.007 0.11 0.10

2+
3 → 2+

1 M1 0.26(3) 0.24 0.14(0.04) 0.39

0+
1 → 1+

1 M1 0.13(2) 0.17 – 0.24

1+
1 → 2+

2 M1 0.6(1) 0.20 – 0.52

1+
1 → 2+

3 M1 – 0.01 – 0.18

2+

[2+
1 ⊗2+

2 ] → 2+
1 M1 – 0.013 – 0.004

2+

[2+
1 ⊗2+

2 ] → 2+
2 M1 – 0.081 – 0.125

2+

[2+
1 ⊗2+

2 ] → 2+
3 M1 – 0.001 – 0.047
YSICS OF ATOMIC NUCLEI Vol. 64 No. 6 2001
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of M1 and E2 transitions. We have calculated only
the properties of 2+ and 1+ states. It is interesting to
complete the study by calculating the structure of 3+

and 4+excited states and the corresponding E2 and
M1 transitions.
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Abstract—Nonmesonic weak decays of hypernuclei are analyzed. One peculiar case—decay of A = 10
hypernuclei—which can resolve the puzzle of the ratio Γn/Γp (neutron stimulated to proton stimulated
rates) is discussed. c© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

We dedicate this contribution to the memory of
V.G. Soloviev, the leader of the nuclear structure
department of BLTP, where our international group
(R. Eramzhyan, V. Fetisov, M. Gmitro, M. Kirch-
bach, R. Mach, L. Majling, R. Wünsch, and J. Žofka)
was formed to solve the problems of interactions of
µ, π, and K mesons with light nuclei. It was quite
natural that, as soon as the brilliant idea of Pod-
goretsky [1] was confirmed at CERN [2] and physics
of hypernuclei was transformed into a fundamental
area of intermediate-energy nuclear physics [3], it
attracted our interest as well [4].

The study of hypernuclei presents many facets of
interest: production of hypernuclei in various reac-
tions [the strangeness exchange n(K−, π−)Λ or as-
sociative n(π+,K+)Λ]; baryonic decay (production
of hyperfragments); emission of γ rays. The purpose
of our contribution is to analyze the characteristics of
hyperon weak decay in a nuclear medium [5, 6].

2. WEAK DECAYS OF HYPERNUCLEI:
EFFECTIVE INTERACTION

Hypernuclei are a convenient laboratory to study
the baryon–baryon weak interaction and an associ-
ated effective weak Hamiltonian. The strangeness-
changing process in which a Λ hyperon converts to a
neutron with the release of up to 176 MeV provides a
clear signal for the conversion of an s quark to an u
or d quark. The effective operator generally employed
to analyze ∆S = 1 nonleptonic interactions has the
form [7]

H∆S=1 =
1
2
GF sin θw cos θw

6∑
i

ciOi, (1)

∗This article was submitted by the authors in English.
1)Laboratory of Nuclear Problems, JINR, Dubna, Russia.
**e-mail: majling@ujf.cas.cz
1063-7788/01/6406-1152$21.00 c©
where θw is the weak angle, and Oi are the four-
quark operators describing lowest order W-boson-
exchange diagrams, gluon radiative correction, and
also “penguin” diagrams. The coefficients ci are
obtained as solutions of renormalization group equa-
tions.

Two experimental features of baryonic |∆S = 1|
decays are noteworthy:

(i) The empirical∆I = 1/2 rule: amplitude (∆I =
1/2) �20 amplitude (∆I = 3/2);

(ii) Γ(nonleptonic)�400 Γ (semileptonic).
The weak interaction at the quark level is short-

ranged, involving W , Z exchange. However, be-
cause of the core repulsion, the baryon–baryon
effects are modeled in terms of one-meson-exchange
interaction, all pseudoscalar (π, η,K) and vector
(ρ, ω,K∗)meson exchanges included. The evaluation
of the weak baryon–baryon–meson vertices is quark-
model-based, but presented in terms of the symmetry
SU(6)w [8, 9].

The properties of the free Λ hyperon are familiar
[10]: it decays nearly 100% via the nonleptonic mode
Λ→ N + π:

τ = 1/ΓΛ = 2.63 × 10−10 s;

Γπ−
/ΓΛ = 0.639, (2)

Γπ0
/ΓΛ = 0.358.

Table 1.Momentumand kinetic energy of the final nucleon
in various modes

Γi Q, MeV p, MeV/c TN ,
MeV

Γπ−
Λ→p+ π− 38− (BΛ −Bp) �100 �5

Γπ0
Λ→n+ π0 41− (BΛ −Bn) �100 �5

Γp Λ + p→n+ p 177− (BΛ +Bp) �400 �88

Γn Λ + n→n+ n 177− (BΛ +Bn) �400 �88
2001 MAIK “Nauka/Interperiodica”
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Table 2. Summary of the hypernuclear lifetimes

A
ΛZ

Measured Calculated τ , ps

Ref. production τ , ps [13] [14] [15]

Λ [10] 263
3
ΛH [16] Rel. ion 240+170

−100
4
ΛH [17] Rel. ion 220+50

−40

[18] (K−, π) 194+24
−26

4
ΛHe [19] (K−, π) 256± 27

[12] (K−, π) 246± 27
5
ΛHe [20] (K−, π) 256± 21 263
(9ΛBe) [21] (K−, π) 201± 30
11
ΛB [21] (K−, π) 192± 22

12
ΛC [21] (K−, π) 211± 31 206 129 214

[11] (π+,K+) 231± 15
(16ΛO) [22] Rel. ion 86+33

−26 127
28
ΛSi [11] (π+,K+) 206± 12 165 202

ΛFe [11] (π+,K+) 215± 14 139 122 195
(209Λ Bi) [23] p , fission 250+250

−100

[24] e−, fission 2700± 500
[25] e−, fission 1500± 400
[25] 80± 15
[26] p , fission 180± 40 118 188
[27] p , fission 161± 21

(238Λ U) [28] p , fission 100+100
− 50

[26] p , fission 125± 15
[29] p , fission 240± 60
Table 3. Survey of measured partial rates

�������� A
ΛZ

Γi

4
ΛHe

5
ΛHe

11
ΛB

12
ΛC

Γπ−
0.26± 0.03 [12] 0.44± 0.11 [20] 0.23± 0.09 [31] 0.14± 0.10 [31]
0.33± 0.05 [19] 0.34± 0.06 [30] 0.113± 0.042 [33]

Γπ0
0.61± 0.08 [12] 0.18± 0.20 [20] 0.192± 0.090 [32] 0.217± 0.084 [32]

0.53± 0.03 [19]
Γp 0.16± 0.02 [12] 0.21± 0.07 [20] 0.30+0.15

−0.11 [31] 0.31+0.18
−0.11 [31]

0.16± 0.02 [19] 0.17± 0.04 [30]
Γn 0.04± 0.02 [12] 0.20± 0.11 [20] 0.65± 0.17 [31] 0.58± 0.18 [31]

0.01+0.04
−0.01 [19]

Γn/Γp 0.25± 0.13 [12] 0.93± 0.55 [20] 1.04+0.59
−0.48 [20] 1.33+1.12

−0.81 [20]
0.06+0.28

−0.06 [19] 1.97± 0.67 [30] 2.16+1.03
−1.53 [31] 1.87+0.91

−1.59 [31]
The dominant mechanism of hypernuclear weak

decay is not the pionic mode favored by a free Λ
but the far more complex Λ +N → N +N process.

The total decay width of a hypernucleus, Γtot, is

defined in terms of its mesonic and nonmesonic decay

modes [5, 6]

τ−1 = Γtot

= Γmesonic + Γnonmesonic ;︷ ︸︸ ︷
Γπ−

+ Γπ0
+ (Γπ+

)
︷ ︸︸ ︷
Γp + Γn + (Γmb)
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 6 2001
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Figure.

Γmb and Γπ+
are the possible many-body decay

modes and are ignored in our discussion. In Table 1,
the relevant momentum p and kinetic energy TN of
the final nucleon are displayed. The main observables
which can be measured experimentally and should be
confronted with theoretical predictions include

(a) the hypernuclear lifetime;

(b) the partial widths Γπ−
, Γπ0

, Γp, and Γn;
(c) the ratio of parity-violating to parity-conserving

decay, which is measured via the proton asymmetry in
polarized hypernuclear decay.

Recently, a further step was completed: hadronic
weak matrix elements of the form 〈B′M |Hw|B〉 were
implanted into the nucleus with usual many-body
shell model wave functions [9]. Spectroscopic fac-
tors are utilized to describe the initial hypernuclear
and final nuclear structure. A convenient compact
expression for the potential is given by

V (r) =
∑

i

∑
α

V (i)
α (r)OαI

(i)
α (r),

where the index i runs over the different mesons ex-
changed, and α over the different spin operators. The

isospin operator I(i)α (r) depends on the meson.

Table 4. Survey of calculated partial rates

Method 4
ΛHe

5
ΛHe

11
ΛB

12
ΛC

Γn/Γp

OPE [8] 0.05 0.20

[9] 0.07 0.10

OME [8] 0.48 0.83

[9] 0.07 0.07

DQ + OPE [34] 0.178 0.489

DQ + OME [35] 0.024 0.195

Γp/ΓΛ

OPE [9] 0.43 0.64 0.80

OME [9] 0.386 0.563 0.705
PH
3. WEAK DECAYS OF HYPERNUCLEI:
EXPERIMENTAL SITUATION

The field of weak decay of Λ hypernuclei has ex-
perienced impressive progress in the last decade [6].
Among weak decay observables, the lifetime can be
measured most accurately [11]. The results from
different experiments are listed in Table 2 along with
the calculated values. Note that figures in the last
column were obtained very recently and some model
parameters were corrected in order to achieve agree-
ment with experimental data.

At present, there are four hypernuclei for which the
complete set of partial rates has been measured [12].
The results are displayed in Table 3 together with the
Γn/Γp ratio.

The results of the calculation of this ratio in var-
ious approaches (One-Pion Exchange, One-Meson
Exchange, Direct Quark mechanism) are given in
Table 4. The substantial increase in this ratio in the
OME model [8] was not confirmed by [9]. The dif-
ference between two similar approaches is disturbing
[6]. The lower part of Table 4 gives some clue to
this puzzle. It appears that calculation leads to a
significant overestimation of Γp. So, to improve our
understanding of the weak baryon–baryon interac-
tion, we need precise measurements of Γp and/or Γn.

4. NONMESONIC DECAY OF 10
Λ Be AND 10

Λ B

In general, the identification of the final nuclear
states A−2Zf is not possible with present detectors.
Bressani [36] has shown that resolutions planned for
the FINUDA spectrometer may allow an exclusive
measurement for 6Li as a stopping target and in this
case the final state of the residual nucleus could be
determined.

The specific properties of the host nuclei 9Be and
9B of the hypernuclei 10

Λ Be and 10
Λ B could be very use-

ful in the process of selection of the spin-dependent
part of the weak interaction matrix element

wSJ
� τ = |〈l1l2 : L′S′JT |Vw|τ)sΛ : L = )SJ〉|2.

It is well known that removing one nucleon from 9Be
or 9B results in 8Be∗:

9B→ n+ (8B
β+

−→8Be∗),
9B→ p+ 8Be∗,

9Be→ n+ 8Be∗,

9Be→ p+ (8Li
β−
−→ 8Be∗).

The prevailing part of the final states of the residual
nuclei (more than 75% according to Table 5) ulti-
mately decay in the αα channel, and through this
unique process it would be possible to identify these
YSICS OF ATOMIC NUCLEI Vol. 64 No. 6 2001
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Table 5. Energy levels of 8Be and coefficients of fractional parentage

Experiment Model: s4p4 Ec J
+
c Tc

Ajzenberg-Selove [37] [38] [39]

Ec, MeV Jπ
c Tc Γ, keV decay Ec, MeV g2c Ec, MeV g2c

0.00 0+ 0 6.8 eV α 0.00 0.110 0.00 0.112

3.04 2+ 0 1500 α 3.09 0.151 3.41 0.144

11.4 4+ 0 �3500 α 10.30 – 11.29 –

16.63 2+ 1(+0) 108 γ, α 16.76 0.303 15.81 0.308

16.92 2+ 0(+1) 74 γ, α 16.89 0.086 14.44 0.095

17.64 1+ 1 11 γ, p 17.59 0.134 16.89 0.104
final states. These events are easily recognized as
“hammer tracks” in the emulsion.

In Table 5, energy levels of 8Be and coefficients of
fractional parentage

g2c =
∑

j

|〈p5Egs
3
2

− 1
2
{|p4EcJcTc; pj〉|2

are displayed.

In the figure, the relevant states of A = 8 isotopes
are displayed and the notation of the “partial widths”
Γτ

ααi is explained.

Table 6 demonstrates that these partial widths
are various combinations of the four matrix elements
(eight for different τ ). We see that in principle their
study offers a unique possibility to determine all
needed matrix elements of the weak interaction [9]
and can resolve the puzzle of neutron- to proton-
induced decay rates Γn/Γp [6].

Table 6. Partial nucleon decay widths Γτ
ααi

Proton w01
1p w10

1p w11
1p w12

1p

Γp
αα (10ΛBe) 0.441 0.157 0.491 0.548

Γp
αα2 (

10
ΛB) 0.096 0.520 0.439

Γp
αα1 (

10
ΛB) 0.388 0.051 0.408

Γp
αα0 (

10
ΛB) 0.412 0.206

Neutron w01
1n w10

1n w11
1n w12

1n

Γn
αα2 (10ΛBe) 0.096 0.520 0.439

Γn
αα1 (

10
ΛBe) 0.388 0.051 0.408

Γn
αα0 (

10
ΛBe) 0.412 0.206

Γn
αα (10ΛB) 0.141 0.489 0.505
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