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Abstract—A discrete model of adsorption with allowance for recharge of the state and lateral interaction
between molecules is constructed in the framework of the theory of probabilistic cellular automata. It is found
that this model admits of the regular (ordered) behavior of the system accompanied by the global synchroniza-
tion of the system’s parameters. The turbulent (chaotic)–ordered transition takes place through the occurrence
of local ordered areas due to the appearance of local leading centers (pacemakers) and helical waves. The
ordered behavior originates from intrinsic instability in the system. The ordering is related to the collective
behavior of the subsystems constituting the entire system. The model can be extended to the case of chemical
reactions between an adsorbate and the surface. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

Material adsorption on the solid surface has long
been a subject of much interest, because the surface is
the only channel for penetration of impurities into the
crystal [1]. In addition, surface processes specify the
states of more complex systems consisting of bordering
media, e.g., liquid–solid or gas–solid systems. More-
over, surface modification considerably affects the bulk
properties of solids, especially, of fine-grain polycrys-
tals, where the volume and surface area of features are
commensurable. Material modification is also inti-
mately related to surface processes, which control both
the dynamic and physical properties of resulting struc-
tures.

During anodizing of silicon crystals in hydrofluoric
acid, the dynamic characteristics of the process were
found to periodically vary with time under certain con-
ditions [2–9]. Oscillatory effects were also revealed at
finish etching of porous silicon in water [10]. Similar
phenomena were found in experiments with porous-sil-
icon-based electroluminescent devices placed into a
surface-active medium [11], which generally contains
polar molecules [12, 13]. Finally, the periodic variation
of dynamic variables was observed in recording the I−V
characteristics of porous-silicon-based structures
placed in a polar-molecule-containing medium [14].

Adsorption and/or desorption of atoms capable of
changing their charge state are time-periodic. Self-
oscillations were observed at the field desorption of
potassium from the tungsten surface covered by gold
and potassium adsorbates [15, 16]. Namely, the ionic
current and desorption images periodically varied
under invariable experimental conditions.

The observations listed above indicate the need for
a theory that could explain the body of data gained in
different fields of physics.
1063-7842/05/5012- $26.00 1535
STATEMENT OF THE PROBLEM

The problem of adsorption with a change in the
charge state, as applied to etching of silicon by atomic
fluorine, was considered by Babanov et al. [17], who
presented the energy diagrams of adsorbed fluorine
atoms (ions), a system of kinetic equations, and their
solutions. A continuous model that accounts for oscil-
lations in the adsorption of surfactant molecules in
terms of the averaged molecular surface density was
developed in [13]. That model is in many ways based
on the concepts put forward in [17].

Analysis of the problem stated is convenient to
begin with writing the kinetic equations for molecules
adsorbed on the surface in the same form as in [13], i.e.,
in the form suitable for describing the variation of sur-
face concentration P of neutral and charged molecules
(atoms). This system of equations sheds light on the
physics of the phenomena accompanying molecular
adsorption on the solid surface and clarifies the way of
extending this model for the two-dimensional case with
the method of probabilistic cellular automata [18],

(1)

(2)

Here, P is the surface density of charged molecules
(atoms), Γ is the total surface density of neutral and
charged molecules, Γtr is the surface density of active
adsorption centers (traps), τt ( ) is the time of direct
(backward) tunneling of charge carriers for molecules
or atoms, τa (τd) is the adsorption (desorption) time for
a molecule or atom, and τs is the time taken for a
charged molecule to overcome an activation barrier on
the surface. The system of Eqs. (1) and (2) was solved
in detail for different cases elsewhere [13, 17, 19].

dP
dt
------- Γ P–

τ t
------------- P

τ t'
---–

P
τ s
----,–=

dΓ
dt
-------

Γ tr Γ–
τa

--------------- Γ
τd
----–

P
τ s
----.–=

τ t'
© 2005 Pleiades Publishing, Inc.



 

1536

        

KAPLIŒ 

 

et al

 

.

                                                                      
Solutions to a similar system of kinetic equations for
stationary etching (the rate of silicon etching by atomic
fluorine is time-independent) are presented in [17].

Equations similar to (1) and (2) can be used for
description of silicon anodizing in a hydrofluoric acid
solution [19]. In this case, a stationary solution to the
system, a relation between the band bending and
applied voltage, and the activation type of the time con-
stants preceding the reaction are used. The reaction
should proceed at selected sites where the probability
of interaction is maximal. Such conditions may be
identified with the conditions for pore formation [19].
In this case, the dependence of the current density on
the applied voltage obeys the Tafel law

where the rate constant of the chemical reaction is
expressed as

barrier E of the reaction being decreased by V = eU,
where U is the applied potential.

To study a nonstationary (time-dependent) solution
to the system stated by (1) and (2), we express Γ from
(1) and substitute it into (2). It should also be taken into
account that, because of the lateral interaction, the I–V
characteristics have a portion with a negative differen-
tial conductivity [13]. It was shown [13] that, with
regard to the nonlinearity of the lateral interaction, the
system of Eqs. (1) and (2) can be reduced to a one-
dimensional van der Pol equation in some averaged
value of the charged molecule surface density. The
phase portraits of the dynamic variables that are solu-
tions to the one-dimensional van der Pol equation indi-
cate the presence of a limiting cycle (oscillations of the
variables) in the dynamic system under consideration.

Thus, as was demonstrated in [13, 17, 19], system
(1)–(2) can be applied to a wide class of problems deal-
ing with molecules (atoms) that can be in one of two,
neutral or charged, states. However, the dynamics of
some of the processes turns out to be more complicated
than that predicted by system (1)–(2) [6–10]. Specifi-
cally, there is good reason to think that laterally propa-
gating phase waves of different configurations may
arise in such systems [15, 16, 20]. All these facts neces-
sitate further generalization of the given theoretical
approach [18].

The aim of this study is to reproduce the dynamics
and characteristic properties of as many processes
observed in [2–10, 12–16] as possible based on the the-
oretical principles described by Eqs. (1) and (2). The
next objective is to extend the developed approach as
much as basic pure mathematical principles allow, i.e.,
to go beyond the scope of the mathematical formalism
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that suffices only to generalize Eqs. (1) and (2) for the
two-dimensional case with allowance for lateral inter-
action. Thus, the approach presented below is rather
general and covers a large number of particular cases.

THREE-STATE TWO-DIMENSIONAL DISCRETE 
MODEL

The problem of reproducing the complex behavior
of dynamic systems was solved by the method of cellu-
lar automata with allowance for molecule (atom)–solid
electron exchange by tunneling. The surface of the
solid was divided into square unit cells, which could be
in one of three states: a white state (–1) without an
adsorbed molecule or atom, a gray state (0) with an
adsorbed neutral molecule or atom, and a black state
(+1) with an adsorbed charged molecule or atom. An
important point here is that characteristic times τa, τd, τt,

, and τs of physical processes are finite. This is
because all physical processes proceed not instantly but
take some characteristic time for which a certain state
of the system sets in. Each process features a character-
istic time of its own. For instance, for free charge redis-
tribution, this time is on the order of the Maxwellian
time (τM ~ 10–12 s for Ge), etc. It is assumed that these
times may be different for white (–1), gray (0), and
black (+1) states of a unit cell.

Central to determining the system dynamics by
means of the cellular automaton method is setting local
rules for step transition of unit cells from one state to
another. This means setting corresponding rules for dis-
crete mapping. The lateral interaction is introduced by
taking into account the states of the nearest neighbors.
A simple mapping can be conventionally represented as
consisting of two steps, each involving an initial (inter-
mediate) mapping of a set into another, wider set and a
final mapping of this wider set into an initial (but not
identical!) one. It should be emphasized that such a
mapping as a whole is not an identity mapping. This
simplest (“basic”) variant of mapping can be schemati-
cally represented as follows:

(3)

with (i, j, t + 1) = X(i, j t) if t < . Next, if t ≥

, mapping follows: if  < (i, j, t + 1) < Al

(where l = lmin, …, lmax), then

(4)
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(5)

Next, mapping follows: if  < (i, j, t + 1) < Al (where
l = lmin–lmax), then

(6)

(iii) the first step follows again and so on.
Here,

is the theta (switching) function or the Heaviside func-
tion; g(n2(t), n3(t)) is the weighting factor taking into
account the state of the neighborhood of the starting
cell; δi, j is the Kronecker delta; mi, j(t) = 1, 2, 3 is the
state of cell (i, j) at time instant t, where 1, 2, and 3 are
assigned to white (–1), gray (0), and black (+1) states,
respectively; n1(t), n2(t), and n3(t) are the numbers of
white, gray, and black cells, respectively, constituting
the neighborhood of a given cell (i, j) at time instant t,
with n1(t) + n2(t) + n3(t) = N (in our case, N = 8; the
Moor domain); ton is the time the second term in for-
mula (3) is “switched on,”

and g(n2(t), n3(t)) is the weighting factor taking into
account the effect of differently colored nearest neigh-
bors. Since n1(t) + n2(t) + n3(t) = N, this relationship
gives the number of white cells; therefore, g(n2(t), n3(t))
depends on only n2(t) and n3(t), while the number of
white neighbors, n1(t), plays a “passive” role.

The idea of the “basic” mapping can be clarified in
simple terms as follows. Let us label, in one way or
another, all possible combinations of color states by the
numbers of nearest neighbors in a particular state. For
example, if the neighborhood of a cell consists of white
neighbors only, this situation is assigned number 1
(which is also the “weight” of this state). If one cell in
the neighborhood is gray and others white, this situa-
tion is assigned number (weight) 4. It should be noted
that here we have degeneracy in gray cell permutations,
since there are eight equivalent states with equal
“weights.” Moreover, numbers (“weights”) 1, 4, 8, 12,
… are chosen so that the mapping is unique; i.e., a state
is mapped into a certain number that takes the value of
–1, 0, or +1 after the first term in (3) is added (degener-

(ii) X i j t 1+, ,( ) X i j t, ,( ) g n2 t( ) n3 t( ),( )+[ ]=

× δmi j, t( ) mi j, t 1+( ), θ t τmi j, ton 1+( )–( ).

Al' X
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0

+1 
 
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 
 
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0, t 0<
1, t 0≥
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acy is only in permutations). Then, the intermediate
mapping will be into numbers 0, 1, 2, 3, 4, …; i.e., the
state of starting cell (i, j) (which equals –1, 0, or +1) and
the weight of the neighborhood (equal to 1, 4, 8, …)
will be mapped into 0, 1, 2, 3, 4, …, according to (3).
By numbering specific color combinations in the neigh-
borhood (with permutation degeneracy alone), we will
know into which number a specific cell (i, j) is mapped
depending on the state of nearest cells. It should be
emphasized once again that degeneracy remains only in
permutations.

The first stage of the mapping, i.e., the application
of formulas (3) and (4), is switched on according to cer-
tain rules. The first term in (3) works up to time instant

, with instant  depending on the state of
a cell (i, j) at time ton of its appearance in a new state, so
that (3) specifies the intermediate mapping. If after the
second phase of the first stage of mapping (formula
(4)), the initial state of the starting cell changes, the pro-
cess starts from the beginning, i.e., from formula (3) but
already at the next stage.

If, however, the initial state of the original cell per-
sists after the second phase of the first stage, we pass to
the second stage (formula (5)). The bracketed delta in
(3) is switched on at time instant (  + 1), and, if
the state of the cell is retained, formula (3) goes to zero
and we proceed using formula (5).

Formula (5) is valid as long as the initial state of the
cell (i, j) is retained. However, at the second stage, the
transition to another state may happen at any subse-
quent time instant, unlike at the first stage, when the ini-
tial state of the cell persisted all the time from its emer-
gence to instant . Figuratively, the situation can
be expressed as follows. To pass into another state, the
cell must first “mature” for time  and only then
change (or retain) its state at any time. The theta func-
tion in (5) is switched on at the time instant after ton, i.e.,
when a subsequent cycle begins (time ton + 1). The delta
in (5) leaves only transitions with invariable states.

Consider now the second parts of the mappings
given by (3) and (5), i.e., of formulas (4) and (6). These
mappings establish relationships between the interme-
diate map and the map of this intermediate set into three
main states of the cell. A numerical range ( , Al) is
specified such that a cell in the final state, when falling
into it, is declared to be in a certain final color state.
Physically, this is substantiated as follows. (Note that,
in setting mapping rules, one may be guided by purely
mathematical principles rather than physical consider-
ations. However, here we are using mostly physically
meaningful arguments.). If there is good reason to
believe that a gray cell surrounded by three (and more)
black cells will turn into the black state, a range ( , Al)
is taken such that these combinations with n3 ≥ 3 fall

τmi j, ton( ) τmi j, ton( )

τmi j, ton( )

τmi j, ton( )

τmi j, ton( )

Al'

Al'
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into this range and all these combinations are then
mapped into the (+1) (black) state and so on.

Now we pass to the most general statement of map-
ping. It is specified by the following rules.

(7)

where

is the normalization factor taking into account all pos-
sible states of a cell (i, j) and of its neighborhood. Here,

(i, j, t + 1) = X(i, j t) if t < ; n3(t) ≥ n3 in the
summation sign means that summation is over n3(t) that

are greater than, or equal to, n3; and  is the number
of combinations of N things n3(t) at a time. Next is the

mapping: if  < (i, j, t + 1) < Al (where l = lmin–lmax),
then

(8)

with probability .

(9)
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∑
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n2 t( ) n2=

n2 t( ) n2≥

N n3–

∑
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n3 t( ) n3≥

N

∑

× Dδmi j, t( ) mi j, t 1+( ), θ t τmi j, ton( )–( )Pmi j, t( ) mi j, i 1+( ), ,
where

(10)

is the probability matrix of transitions from a state
mi, j(t) to a state mi, j(t + 1); mi, j(t) = 1, 2, 3; and 
and g(n2(t), n3(t)) are, respectively, the weighting factor
of the corresponding initial state and the factor taking
into account the state of the neighborhood of the initial
cell.

The writing n3(t) ≥ n3 in the summation sign means
that all states with the number of black neighbors n3(t)
that is larger than, or equal to, n3 fall into one general
set that is then mapped into one specific color state
mi, j(t) (the same refers to the writing n2(t) ≥ n2, where
n2 is the number of gray neighbors). Such summation
can also be applied to other relationships between n3(t)
and n3, as well as between n2(t) and n2, depending on
conditions imposed on the transitions. For instance, if
the transitions to other states are allowed (or “blocked”)
at n3(t) ≤ n3 and n2(t) ≤ n2, summation will be as fol-
lows:

where the condition n1 + n2 + n3 = N must be met at any
time.

Weighting factor  multiplying the first term in
(7) and (9) determines the “addition” of the initial state
to the intermediate state. This can be understood from
the following considerations. If the second term stands
for mapping into the numbers 0, 1, 2, 3, or 4 according
to the state of the neighborhood (as was explained in the
statement of the basic mapping given by formulas (3)
and (4)), the resulting series of maps (numbers) will be
different with regard to the weighting factor multiply-
ing the first term. If we leave the final rules specifying
the second phase of mapping,  < x < Al (see, e.g., for-
mula (6)) the same, i.e., those without the weighting
factors (that is, the ranges of mapping are not rede-
fined), weight factor  adds somewhat different
combinations of states into these ranges: cell (i, j) + its
neighborhood.

In our opinion, the mapping given by (7)–(10) is the
most general mapping that can represent the class of
problems under study. By switching different compo-
nents on or off in this general mapping, one can obtain
particular cases, such as basic mapping (3)–(6).

Pmi j, t( ) mi j t 1+( ),,

w11 w12 w13

w21 w22 w23

w31 w32 w33 
 
 
 
 

=

gmij t( )

CN
n3 t( )

CN n3 t( )–
n2 t( )

g n2 t( ) n3 t( ),( ),
n2 t( ) 0=

n2 t( ) n2≤

n2

∑
n3 t( ) 0=

n3 t( ) n3≤

n3

∑

gmij t( )

Al'

gmi, j t( )
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RESULTS AND DISCUSSION

Note that general mapping (7)–(10) yields such a
vast diversity of dynamic (from strictly periodic to cha-
otic) structures of different configurations, color com-
binations, leading centers, and helical waves that today
it seems infeasible to cover all possible results of map-
ping (7)–(10). We will concentrate on a number of reg-
ularities that have been found to date. Some features of
our model were considered in [18]. In that work, we
presented the characteristic structures arising under the
conditions of leading center formation and the variation
of the number of black cells with time (with the number
of cycles). These structures reflect the strictly periodic
and chaotic dynamics of the system and also its dynam-
ics under the conditions of leading center formation at
certain values of the system parameters.

Below, we show several patterns representing the
dynamic structures resulting from mapping (7)–(10), as
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Fig. 1. (a) Helical waves (gray cells on the white back-
ground) and (b) the dependences of the number of black (B),
gray (G), and white (W) cells on time (on the number of
cycles).
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well as the dependence of the number of black (B), gray
(G), and white (W) cells on time (on the number of
cycles). Figures 1 and 2 demonstrate the “snapshots” of
helical waves consisting of gray cells (on the back-
ground of white cells, Fig. 1) and black-and-gray-and-
white cells (on the background of white cells, Fig. 2),
along with the corresponding time (cycle) dependences
of the number of cells in specific states. The helical
waves consist of two portions with different chirality,
and their composition may vary, as indicated by Figs. 1
and 2. It should be noted that spiral waves represent ele-
mentary self-sustaining structures in excitable media.
The structure of spiral waves depends on the excitabil-
ity of an active medium. The formation of leading cen-
ters is mainly related to external factors (to the initial
number of active unit cells in our case).

Figure 3 presents the snapshots of octagonal leading
centers and associated dynamic dependences. The
structures with well-defined angles nucleate when
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Fig. 2. (a) Helical waves, including those interacting with
each other (gray and black cells on the white background),
and (b) the dependences of the number of black (B), gray
(G), and white (W) cells on time (on the number of cycles).
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probability factor  is blocked (switched
off). When it is switched on, rounded structures may
well form. That is, the stochastic factor may impart
rounded shapes, along with others, to the forming struc-
tures.

Figures 4 and 5 demonstrate the snapshots of the
systems under different chaotic conditions and the
dynamic dependences of the number of different points
on time (on the number of cycles). In this case, the
dynamic behavior takes a variety of forms.

The behavior of a three-state adsorption system,
which is described by local rules (7)–(10), is much
richer than that of averaged macroscopic characteristics
described by the van der Pol equation [13]. This fact is
largely explained by the effective dimensionality of the
system. It is known that the generalization of the one-
dimensional van der Pol equation to the three-dimen-
sional space [21] involves a stochastic (strange) attrac-

Pmi j, t( ) mi j t 1+( ),,
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Fig. 3. (a) Octagonal leading centers (gray cells on the
white background) and (b) the dependences of the number
of black (B), gray (G), and white (W) cells on time (on the
number of cycles).
tor as a solution. These generalized equations describe
a generator with inertial nonlinearity (Anishchenko–
Astakhov generator) [21].

Significantly, the one-dimensional two-state adsorp-
tion problem for probabilistic cellular automata does
not offer such a variety of solutions [22]. Moreover,
oscillating solutions and solutions with pacemakers are
totally absent. The one-dimensional three-state prob-
lem for classical cellular automata results in three types
of solution: turbulent solutions, periodic solutions, and
solutions of propagating soliton type [23]. As was noted
in [24], nobody may today answer the question of how
to find local rules following which a set of individual
elements will reproduce a desired dynamics.

Under oscillatory conditions of pore formation,
Buchin and Prokaznikov [20] observed different local-
ized porous structures, which can be viewed as being
related to the effect of pacemakers of spherical or right-
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Fig. 4. (a) Chaotic dynamics (gray and black cells on the
white background) and (b) the dependences of the number
of black (B), gray (G), and white (W) cells on time (on the
number of cycles).
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angle configuration. The phase wave fronts in these two
types of leading center run away both concentrically
and at right angles. As was shown in [18], our model
describes leading centers similar to those observed
in [20].

A most interesting inference that can be drawn from
this study is that, when passing from chaos to global
synchronization, the system synchronizes first in the
presence of leading centers. This means that locally
oscillating centers with certain oscillation frequencies
arise. The most convenient parameter characterizing
different dynamic regimes in the system under study is
the dynamic (Kolmogorov–Sinay) entropy, which is
related to Lyapunov exponents [25]. Its value is maxi-
mal for chaotic oscillations and equal to that for regular
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Fig. 5. (a) Chaotic dynamics (gray and black cells on the
white background) and (b) the dependences of the number
of black (B), gray (G), and white (W) cells on time (on the
number of cycles).
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oscillations. In the presence of leading centers, this
entropy takes an intermediate value.

Thus, we developed a two-dimensional model of a
non-Hamiltonian system exhibiting all properties char-
acteristic of active media with self-organization. The
results of this study can be used for predicting and
interpreting the operation of various sensors (see, e.g.,
[12, 13]).

It should be emphasized that the subject of this
investigation is the dynamic properties of adsorption
systems with variable states of its basic building blocks
(atoms or molecules), whereas the traditional approach
handles mainly averaged macroscopic characteristics
of the system (see, e.g., [1, 26, 27]).

The model can be extended to cells with a number
of states of more than three. Such an extension may
take into account the participation of molecules (atoms)
in various chemical reactions on the solid surface. Sim-
ilarly, a greater number of factors attendant to processes
on the solid surface may be allowed for. Finally, the
model might be helpful in sociological studies (see,
e.g., [28] and Refs. therein).
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APPENDIX

An algorithm based on mapping (7)–(10) was
implemented in the MatLab software environment [29],
which is the most suitable for vector and matrix compu-
tations.

The algorithm relies on an adsorption system model
according to which atoms adsorbed on the solid surface
may be in two, neutral and charged, states. The latter is
due to tunnel exchange of electrons between an atom
and the solid. The algorithm considers unit cells on the
surface that may (i) be free of an adsorbed atom (mole-
cule), (ii) contain an adsorbed neutral atom, and
(iii) contain a charged adsorbed atom. The charge state
of the unit cell may vary depending on the state of the
nearest neighbors. In this way, the lateral interaction
between adsorbed atoms is taken into account. This
model, being two-dimensional, is related to the solid
surface, which is considered ideal: surface defects and
surface inhomogeneities are ignored. The boundary of
the working area is assumed to be cyclically closed in
both dimensions.

The computer model considered in this work is
based on the theory of probabilistic cellular automata.
The whole field of events on the solid surface is divided
into square unit cells, which may be empty (white),
occupied by a neutral molecule (gray), or occupied by
a charged molecule (black). Two 100 × 100 sparse
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square matrices are used to store locational data for
black and gray cells. The lateral interaction is taken into
account in such a way that the probability of a cell turn-
ing into one or another state depends on the number of
nearest neighbors being in a certain state.

The dynamics of color-to-color cell transitions is
calculated by means of matrix operations, which con-
siderably accelerates the execution of the algorithm [29]:

% initialization of matrices for location data storage,
% gray and black points,
m = 100; % dimension of matrices,
% initialization of matrices X and Y of gray and

black points, respectively, on white background,
X = sparse(m, m); Y = sparse(m, m);
% 100 × 100 matrix of uniformly distributed ran-

dom numbers [0…1],
R = rand(m);
% matrix of cell lifetimes,
T = zeros(m, m);
% number of gray, N1, and black, N2, neighbors,
N1 = neighbors(X); N2 = neighbors(Y);
% corresponding transition probabilities tau_i,

where i = 1, …, 7;
% white  (gray|white);
% gray  (white|gray|black);
% black  (white|gray|black);
% lifetimes of corresponding points ttl_w; ttl_g;

ttl_b;
% local transition rules
% white  (gray|white)
dX1 =~ X& ~ Y&T >= ttl_w&(((N1 >= 1|N2 >= 2)&
R <= tau_1)|(N1 == 0&…, N2 == 0&R <= tau_7));
% gray  (black|white|gray),
dY1 = X&T> =ttl_g&R< = tau_2&
(N1 > = 3|N2 > = 2);
% gray  black,
dW1 = ~dY1&X&T> = ttl_g&R < = tau_3;
% gray  white,
% black  (gray|white|black),
dX2 = Y&T >= ttl_b&R <= tau_4&
(N1 >= 3|N2 >= 2);
% black  gray,
dW2 =~ dX2&Y & T >= ttl_b&r <= tau_5;
% black  white,
% reset of TTL for newly modified cells,
T =~ ((dX1|dY1|dW1|dX2|dW2)&T). *T;
X = X + dX1 – dY1 – dW2 + dX2; % modification of

gray matrix,
Y = Y + dY1 – dX2 – dW2; % modification of black

matrix,
T = T + 1; % increase of TTL by 1.
Implementation of this algorithm generates a large
number of dynamic conditions, which can nevertheless
be categorized into four basic groups [30].
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Abstract—Nonstationary 1D equations describing the motion of electrons in a double plasma layer subjected
to the self-consistent electric field of the space charge are investigated with allowance for friction force.
Analytical solutions to a set of nonlinear hydrodynamic equations for plasma electrons are derived. The varia-
tion of the electric field strength, as well as of the electron velocity and concentration, in space and time is
found. Electron plasma motions of different types of symmetry are characterized in terms of dynamic parame-
ters. © 2005 Pleiades Publishing, Inc.
(1) Charged particle flow dynamics is a subject of
great interest in such areas of science and technology as
radio physics; generation, injection, and transport of
electron and/or ion beams in a plasma or vacuum; etc.
[1, 2]. Most frequently, relevant studies are carried out
as applied to the double plasma layer, which is the basic
structural component of the plasma and is dealt with
both in laboratory conditions (plasma-filled devices,
plasma probes, etc.) and in outer space (e.g., auroras
and experiments with charged particle injection in the
ionosphere) [3, 4]. As a rule, the double plasma layer
consists of two space-separated unlike electrical layers
with different particle concentrations. Accordingly, the
plasma becomes charged, i.e., charged particle flows in
it have an uncompensated volume charge. Furthermore,
the double plasma layer is usually studied either in the
steady state (the boundary conditions are set, and the
charged particle current is a desired parameter) [5] or in
equilibrium (the electric field potential is set, and the
subject under study is the behavior of the system, e.g.,
conditions of its stability) [6].

In this work, we study the 1D motion of electrons in
the double plasma layer where electrons and ions are
initially (t = 0) completely separated in space and have
a mutual boundary and their net electrical charge equals
zero. The ions are assumed to remain quiescent for
t ≥ 0. A solution to the problem will be sought for the
time interval 0 ≤ t ≤ tr, where tr is the time instant the
electron velocity becomes zero at any point of the space
or the electron front reaches the boundary of the layer.
The first restriction follows from the fact that, at t > tr,
a counter flow of electrons may arise and, hence, the
particle trajectories will cross each other, which makes
the hydrodynamic approach invalid. The second restric-
tion implies that the electrons can move only within the
double plasma layer. Those reaching the boundary and
1063-7842/05/5012- $26.00 1544
leaving the layer at t > tr should be omitted from con-
sideration, since they cease to contribute to the electric
field strength in the layer. Because of these restrictions,
the problem cannot be solved analytically.

Consider a double plasma layer of volume V = Ve +
Vi, where Ve and Vi are the respective volumes occupied
by electrons and ions at t = 0. These volumes are
bounded coordinates 0 ≤ R < ∆ and ∆ ≤ R ≤ Rc. Here, 0,
Rc, and ∆ are the distances from the origin to the left-
hand boundary of the layer, right-hand boundary of the
layer, and boundary between Ve and Vi, respectively.
The electrons can move within the interval 0 ≤ R ≤ Rc,
and the ions are at rest within ∆ ≤ R ≤ Rc. Let electron
charge Qe in volume Ve and ion charge Qi in volume Vi
be such that

(1)

Charges Qe and Qi are assumed to be continuous
functions in Ve and Vi,

(2)

where e is the electron charge and ne and ni are the con-
centrations of electrons and ions, respectively, in the
plasma.

Since the motion is one-dimensional, we can repre-
sent (1), in view of (2), as

(3)

Qe Qi+ 0.=

Qe ene V e, Qid

Ve

∫ e ni V i;d

V i

∫= =

ene R 0,( )Rk Rd

0

∆

∫ eni R 0,( )Rk Rd

∆

Rc

∫– 0,=
© 2005 Pleiades Publishing, Inc.
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where k = 0, 1, or 2 for plane, cylindrical, and spherical
symmetry, respectively.

(2) To study the electron dynamics with regard to
the above approximations and restrictions, we will use
a set of equations for one-liquid cold plasma hydrody-
namics with allowance for a friction force proportional
to the motion velocity [7]. With thermal effects ignored,
this set in the 1D representation appears as

(4)

(5)

(6)

Here, E(R, t) = Ee(R, t) + Ei(R, 0) is the total electric
field of electrons and ions, Ve(R, t) is the electron veloc-
ity, R is the distance to a point in space, me is the elec-
tron mass, and νe = const is the electron–neutral colli-
sion rate.

To close set (4)–(6), we set initial and boundary con-
ditions [8]. As the former (t = 0), we take

(7)

(8)

where 0 ≤ R∗  ≤ Rc;  =  = const are the undisturbed
concentrations of electrons and ions, respectively, in
the plasma; and fe, i(R, 0) ≥ 1 are functions specifying
ne, i(R, 0). Parameter χ = 0 or 1 for 0 ≤ R < ∆ and ∆ ≤
R ≤ Rc, respectively.

The boundary conditions at the outer (stationary)
boundaries of Ve and Vi are given by

(9)

(10)

The boundary conditions for electrons at the mobile
boundary of Ve and the position of this boundary are
found by solving set (4)–(6).

Integrating (5) over V between 0 and R, where R is
the coordinate of the final position of the mobile bound-
ary of volume Ve (at t = 0, this boundary has coordinate
R∗ ), and applying the Gaussian theorem, we get

(11)

∂V e

∂t
--------- V e

∂V e

∂R
--------- νeV e+ +

e
me
------E,=

1

Rk
----- ∂

∂R
------ RkE( ) 4πe ne ni–( ),=

∂E
∂t
------ 4πeneV e.–=

V e i, R* 0,( ) 0, ne i, R* 0,( ) ne i,
0 f e i, R* 0,( ),= =

E R* 0,( )

=  
4π
R*

k
------- ene

0 f e R* 0,( ) χeni
0 f i R* 0,( )–[ ] R*

k R*,d

0

R
*

∫

ne
0 ni

0

V e 0 t,( ) 0, ne 0 t,( ) ne
0 f e 0 0,( ),= =

V i Rc t,( ) 0, ni Rc t,( ) ni
0 f i Rc 0,( ),= =

E 0 t,( ) 0, E Rc t,( ) 0.= =

E R t,( )
me

e
------

ω0
2

P k( )ne
0

----------------- Ψe R t,( ) χΨi R 0,( )–[ ] 1

Rk
-----.=
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Here,  = 4πe2 /me and P(k) = 1, 2π, or 4π for plane,
cylindrical, and spherical symmetry, respectively.

Functions Ψe(R, t) = P(k) (R, t)RkdR and Ψi(R, t) =

χP(k) (R, 0)RkdR are the functions of the

Lagrangean material variable [9] that define, in the
given case, the number of electrons and ions, as well as
their charges qe = eΨe and qi = |e|Ψi, in volumes Ve(0, R)
and Vi(∆, R).

Let us assume that the trajectories of moving vol-
ume elements do not cross each other; then, the number
of electrons in volume Ve specified by coordinates [0,
R∗ (0)] and [0, R(t)] (where R∗ (0) and R(t) are the initial
and final positions of the mobile boundary) is time-
independent. Therefore, we can write [9]

(12)

Thus, in view of (12), expression (11) can be recast
as

(13)

where C(R∗ ) = (R∗ , 0) dR∗ .

Substituting (13) into (4) yields

(14)

Passing to the substantial derivative in (14), we find
that

(15)

Writing (5) in the Lagrangean variables, we obtain
an equation for ne(R∗ , t),

(16)

ω0
2 ne

0

ne0

R∫
ni∆

R∫

ne R t,( )Rk Rd

0

R

∫ ne R* 0,( )R*
k R*.d

0

R*

∫=

E R* R,( )

=  
me

e
------ C R*( ) χω0

2 f i R* 0,( )R*
k R*d

∆

R

∫–
1

Rk
-----,

ω0
2 f e0

R*∫ R*
k

∂V e

∂t
--------- V e

∂V e

∂R
--------- νeV e+ +

=  C R*( ) χω0
2 f i R* 0,( )R*

k R*d

∆

R

∫–
1

Rk
-----.

d2R

dt2
--------- νe

dR
dt
-------+

=  C R*( ) χω0
2 f i R* 0,( )R*

k R*d

∆

R

∫–
1

Rk
-----.

ne R* t,( ) χni R* 0,( )=

+
1

4πe
--------- k

E
R
--- ∂E

∂R
------

∂E
∂R*
---------- 1

∂R/∂R*
-------------------+ + 

  .
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(3) Let k = 0 and ni(R∗ , 0) = , i.e., fi(R∗ , 0) = 1.
Then, the electron motion is of plane symmetry and
proceeds in the presence of neutrals at R < ∆ and in the
presence of neutrals and homogeneous background of
plasma ions at ∆ ≤ R ≤ Rc.

(i) For R < ∆, the solutions to set (4)–(6) have the
form (in view of (13)–(16))

(17)

(18)

(19)

(20)

The constants of integration entering into expres-
sions (17)–(20) can be found with regard to the initial
conditions.

From (17)–(20), it follows that E(R∗ ) = const|R by
virtue of plane symmetry and the initial conditions and
E(R∗ ) = const|t owing to the fact that ∂qe/∂t = 0, where
qe is the electron charge in the volume corresponding to
0 ≤ R ≤ R∗  (see (12)). In this case, E(R∗ ) is the electric
field strength at a charged infinitely large plane. Let the
condition νet @ 1 be met for the particles moving in the
interval 0 < R < ∆; then, R(R∗ , t) ≈ R∗  + [C(R∗ )/νe]t,
Ve(R∗ , t)  C(R∗ )/νe = const|t, and ne(R∗ , t) ≈

νe/ t. The time of motion of these particles can be
estimated from expression (18) where we put R(R∗ , t) ≤
∆. Eventually, we have

(21)

Putting fe(R∗ , 0) = µ = const (the uniform distribu-
tion of ne(R∗ , 0), we obtain from (21)

(22)

For νe  0, expressions (17)–(20) become solu-
tions to set (4)–(6), which describes the motion of elec-
trons in a vacuum [10].

(ii) For ∆ ≤ R ≤ Rc and νe < 2ω0 (low drag), we
arrive, in view of (13)–(16), at the solutions to set (4)–

ni
0

E R*( )
me

e
------C R*( ),=

R R* t,( ) R*
C R*( )

νe
2

---------------- νet 1– νet–( )exp+[ ] ,+=

V e R* t,( ) C R*( )
νe

---------------- 1 νet–( )exp–[ ] ,=

ne R* t,( )

=  
ne

0 f e R* 0,( )

1
ω0

2

νe
2

------ νet 1 νet–( )exp–[ ]–{ } f e R* 0,( )+

--------------------------------------------------------------------------------------------------.

ne
0 ω0

2

t R* ∆,( )
νeR*

C R*( )
---------------- ∆

R*
------- 1– 

  .≤

t R* ∆,( )
νe

µω0
2

---------- ∆
R*
------- 1– 

  .≤
(6) in the form

(23)

(24)

(25)

(26)

Here, Ω = (4πe2 /me – /4)1/2 = (  – /4)1/2 and

functions G1–G4 are functions of R∗ . The prime in (26)

means differentiation with respect to R∗ . From (23)–

(26), it follows that, if νet @ 1, electron oscillations
decay; namely, E(R∗ , t)  0, R(R∗ , t)  ∆ +

C(R∗ )/ , Ve(R∗ , t)  0, and ne(R∗ , t)  . In

other words, the particles tend toward the state of rest.
Also, they must stay within the plasma layer; i.e., the

condition R(R∗ , t)  ∆ + C(R∗ )/  ≤ Rc must be ful-

filled. Assuming that fe(R∗ , 0) = µ, we have R(R∗ ,

t)  ∆ + µR∗  ≤ Rc. Then, µ ≤ (Rc – ∆)/R∗ . Now, put-

ting R∗  = ∆ (the initial coordinate of the electron flow

front), we can find the maximal value of ne(R∗ , 0) =

µ = (Rc/∆ – 1), at which the particles at the front

still remain within Rc; that is, R(R∗ , t) ≤ Rc. Note that

the need to determine constants G1–G4 is related to the
use of expressions (17)–(20), which specify “initial
conditions” for solutions (23)–(26) at point R(R∗ , t) =

∆. To find G1–G4 in explicit form for the motion in the
domain ∆ ≤ R ≤ Rc, it is necessary that each particle
with coordinate R∗  from the domain 0 < R < ∆ be

assigned specific t(R∗ , ∆) and Ve(R∗ , ∆). In the general

case, however, this task cannot be accomplished, since
the equations to be solved are nonlinear. Therefore,
constants G1–G4 in (23)–(26) remained undetermined.

E R* t,( )

=  
me

e
------ω0

2 νe
t
2
---– 

  G1 Ωtsin G2 Ωtcos+( ),exp–

R R* t,( ) ∆ C R*( )
ω0

2
----------------+=

+ νe
t
2
---– 

  G1 Ωtsin G2 Ωtcos+( ),exp

V e R* t,( ) νe
t
2
---– 

  G3 Ωtsin G4 Ωtcos+( ),exp=

ne R* t,( )

=  
ne

0 f e R* 0,( )

f e R* 0,( ) νe
t
2
---– 

 exp G1' Ωtsin G2' Ωtcos+( )+

----------------------------------------------------------------------------------------------------------------.

ni
0 νe

2 ω0
2 νe

2

ω0
2 ne

0

ω0
2

ne
0 ne

0
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(iii) If ∆ ≤ R ≤ Rc and νe > 2ω0 (high drag), the solu-
tions to set (2)–(4) in view of (13)–(16) are given by

(27)

(28)

(29)

(30)

where ξ = ( /4 – )1/2.

Expressions (27)–(30) describe the aperiodic
motion of the particles, which tend toward the state of

rest without oscillations. If νet @ 1, /  @ 1, and
R(R∗ , t) ≤ Rc, we have from (27)–(30)

E R* t,( )
me

e
------ω0

2 νe
t
2
---– 

 exp–=

× G5 ξ t( )exp G6 ξ t–( )exp+[ ] ,

R R* t,( ) ∆ C R*( )
ω0

2
----------------+=

+ νe
t
2
---– 

  G5 ξ t( )exp G6 ξ t–( )exp+[ ] ,exp

V e R* t,( )

=  ξ ν e
t
2
---– 

  G7 ξ t( )exp G8 ξ t–( )exp–[ ] ,exp

ne R* t,( )

= 
ne

0 f e R* 0,( )

fe R* 0,( ) νe
t
2
---– 

  G5' ξ t( )exp G6' ξ t–( )exp+[ ]exp+

--------------------------------------------------------------------------------------------------------------------,

νe
2 ω0

2

νe
2 ω0

2

E R* t,( ) me/e( )ω0
2G5 νet/ νe

2/ω0
2( )–[ ] ,exp–≈

R R* t,( ) ∆ C R*( )/ω0
2 G5 νet/ νe

2/ω0
2( )–[ ] ,exp+ +≈

Ve R*( ) ξG7 νet/ νe
2/ω0

2( )–[ ] ,exp≈

ne R*( ) ne
0 f e R* 0,( )/ f e R* 0,( ){≈

+ G5' νet/ νe
2/ω0

2( )–[ ]exp } .
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Constants G5–G8 in solutions (27)–(30) cannot be
generally expressed in explicit form.

Let us study the motion of the particles at the front
of the electron flow. Substituting the expressions

which are found for R∗  = ∆ and Ve(∆, 0) = 0, into for-
mulas (27)–(30), we obtain

(31)

(32)

(33)

C ∆( ) ω0
2 f e ∆ 0,( )∆,=

G5 1 νe/2ξ+( )– f e ∆ 0,( )∆/2,=

G6 1 νe/2ξ–( ) f e ∆ 0,( )∆/2,–=

G7 1 νe/2ξ–( )G5, G8 1 νe/2ξ+( )G6,= =

G5' 1 νe/2ξ+( ) f e ∆ 0,( )/2,–=

G6' 1 νe/2ξ–( ) f e ∆ 0,( )/2,–=

E ∆ t,( )
f e ∆ 0,( )

2
--------------------

∆me

e
----------ω0

2 νe
t
2
---– 

 exp=

× 1
νe

2ξ
------+ 

  ξ t( )exp 1
νe

2ξ
------– 

  ξ t–( )exp+ ,

R ∆ t,( ) ∆ f e ∆ 0,( )∆ 1
1
2
--- νe

t
2
---– 

 exp–




+=

× 1
νe

2ξ
------+ 

  ξ t( )exp 1
νe

2ξ
------– 

  ξ t–( )exp+




,

V e ∆ t,( )
f e ∆ 0,( )∆

2
------------------------ 1

νe
2

4ξ2
--------–

 
 
 

ξ ν e
t
2
---– 

 exp–=

× ξt( )exp ξ t–( )exp–[ ] ,
(34)ne ∆ t,( )
ne

0

1
1
2
--- νe

t
2
---– 

  1
νe

2ξ
------+ 

  ξ t( )exp 1
νe

2ξ
------– 

  ξ t–( )exp+exp–

------------------------------------------------------------------------------------------------------------------------------.=
For νet @ 1 and /  @ 1, we get from (31)–(34)νe
2 ω0

2

E ∆ t,( ) me/e( )ω0
2

f e ∆ 0,( )∆ νet/ νe
2/ω0

2( )–[ ] ,exp≈

R ∆ t,( ) ∆ f e ∆ 0,( )∆ 1 νet/ νe
2/ω0

2( )–[ ]exp–{ } ,+≈

V e ∆ t,( ) ωe
2 f e ∆ 0,( )∆/νe[ ] ν et/ νe

2/ω0
2( )–[ ] ,exp≈
Putting R(∆, t) = Rc in (32), we can find the time
instant the electron flow front reaches right-hand
boundary Rc (i.e., time tr) (see Sect. (1)),

(35)

ne ∆ t,( ) ne
0/ 1 νet/ νe

2/ω0
2( )–[ ]exp–{ } .≈

t ∆ Rc,( )
νe

ω0
2

------ 1
f e ∆ 0,( )
--------------------

Rc

∆
----- 1– 

 ln– tr.≡≈
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Let we have (Rc/∆ – 1)/fe(∆, 0) ≈ 1 in (35); then,
tr  ∞. This means that the electrons in this case can-
not reach boundary Rc. As follows from (33), if t ≥ 0,
then Ve(∆, t) ≥ 0; that is, the sign of the particle velocity
at the flow front remains the same. The velocity reaches
a maximum when

(36)

If /  @ 1, we find from (36) that t(Ve max(∆)) ≈
(2/νe)ln(νe/ω0). For this value of t(Ve max(∆)), we get
from (33)

(37)

For fe(R∗ , 0) = µ, expressions (35) and (37) yield

t(∆, Rc) ≈ –(νe/ )ln[1 – (Rc – ∆)/µ∆] and Ve max(∆) ≈

µ∆ /νe.

(4) Equation (14) can be reduced to the Abelian
equation of the second kind [11],

(38)

For νe = 0, the solution to Eq. (38) may be written as

(39)

t Ve max ∆( )( ) 1
2ξ
------

1 2
ξ
νe
-----+

1 2
ξ
νe
-----–

-----------------

 
 
 
 
 

.ln=

νe
2 ω0

2

V e max ∆( ) f e ∆ 0,( )∆
ω0

2

νe
------.≈

ω0
2

ω0
2

V e

∂V e

∂R
--------- νeV e+

=  C R*( ) χω0
2 f i R* 0,( )R*

k R*d

∆

R

∫–
1

Rk
-----.

V e R* R,( )

=  2 C R*( ) χω0
2 f i R* 0,( )R*

k R*d

∆

R

∫–
Rd

Rk
------

R*

R

∫ .
Taking into account that Ve = dR/dt, where R is the
time-dependent coordinate of a fixed particle in the
medium, we have from (39)

(40)

Writing Eq. (5) in terms of the Lagrangean variables
and using expressions (13) and (40), we find ne(R∗ , R),

(41)

Let, e.g., k = 2 (the cases k = 0 and 1 can be consid-

ered in a similar manner) and ni(R∗ , 0) =  (i.e.,
fi(R∗ , 0) = 1). Then, the spherically symmetric motion
of electrons proceeds in a vacuum at R < ∆ or in the
presence of the homogeneous plasma ion background
at ∆ ≤ R ≤ Rc.

(i) R < ∆, the solutions to set (4)–(6) have the form,
in view of (13) and (39)–(41),

(42)

(43)

(44)

t R* R,( )

=  
Rd

2 C R*( ) χω0
2 f i R*( )R*

ê R*d

∆

R

∫–
Rd

Rê
------

R*

R

∫
------------------------------------------------------------------------------------------------.

R*

R

∫±

ne R* R,( ) χni
0 1

4πe
--------- k

E
R
--- ∂E

∂R
------

∂E
∂R*
---------- ∂t/∂R

∂t/∂R*
-----------------–+ 

  .+=

ni
0

E R* R,( )
me

e
------C R*( )

R2
----------------,=

V e R* R,( ) 2C R*( )
R*

------------------- 1 R*
R

-------– 
  ,=

t R* R,( )

=  R*
3

2C R*( )
-------------------

R
R*
------- 1 R*

R
-------– Arctanh 1 R*

R
-------–– 

  ,
(45)

ne R* R,( ) ne
0 R*

3

R3
-------=

×
f e R* 0,( )

1
3
2
--- 1

ω0
2 f e R* 0,( )R*

3

3C R*( )
-------------------------------------– 1

R*
R

------- R
R R*–
----------------Arctanh 1 R*

R
-------–– 

 –

----------------------------------------------------------------------------------------------------------------------------------------------------.
Expression (42) implies that E(R∗ , R) ~ 1/R2

because of the spherical symmetry of the electron flow.
Since Ve(R∗ , R) > 0 in (43), the electrons move without
crossing the trajectories. At R∗ /R ! 1, we find from

(43) and (44) that Ve(R∗ ) ≈  = const|R and2C R*( )/R*
t(R∗ , R) ≈ (R/R∗ ) ; that is, the motion
velocity does not vary with distance, while the time
grows with distance linearly. For fe(R∗ , 0) = µ, we have
Ve(R∗ ) ~ R∗ . Hence, it follows that the particles do not
outdistance each other if ne(R∗ , R) is uniformly distrib-

R*
3 /2C R*( )
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uted. Putting R = ∆ in (43), we obtain the velocity at
which a particle with initial coordinate R∗  falls into the
plasma layer (or into the segment Rc – ∆),

(46)

Expression (46) is “the initial condition” in deter-
mining Ve(R∗ , R) for the particles that start moving in
the presence of the ions. It follows from (45) that, when
the electrons move in a vacuum, their concentration
drops by the law ne(R∗ , R) ~ 1/R3.

(ii) For ∆ ≤ R ≤ Rc, the solutions to set (2)–(4) can be
written, in view of (13), (39), and (40), as

(47)

(48)

(49)

The integral in expression (49) can be reduced to the
elliptic integral of the third kind [12], which is nonrep-
resentable in elementary functions for k = 2 (unlike the
cases k = 0 and 1). To find an analytical expression for
t(R∗ , R), we consider this integral for R∗ /R ≈ 1 and
R∗ /R ! 1. In the former case, we have R/R∗  ≈ 1 and
R∗ /∆ ≈ 1. Then, it follows from (49) that

(50)

If R∗ /R ! 1, then R/R∗  @ 1 and, from (49),

(51)

V e R* ∆,( ) 2C R*( )
R*

------------------- 1 R*
∆

-------– 
  .=

E R* R,( )
me

e
------

ω0
2

3
------ 1 3C R*( )

ω0
2∆3

-------------------+
∆3

R2
----- R–

 
 
 

,=

V e R* R,( ) ω0R*=

× 2
3
--- 3C R*( )

ω0
2R*

3
------------------- ∆3

R*
3

-------+ 1 R*
R

-------– 
  1

3
--- 1 R2

R*
2

-------– 
 + ,

t R* R,( ) 1
ω0R*
-------------±=

× Rd

2
3
--- 3C R*( )

ω0
2R*

3
------------------- ∆3

R*
3

-------+ 1 R*
R

-------– 
  1

3
--- 1 R2

R*
2

-------– 
 +

----------------------------------------------------------------------------------------------------.

R
*

R

∫

t R* R,( ) 1
ω0
------

ω0
2
R*

3

2C R*( )
------------------- R

R*
------- 1– 

  .≈

t R* R,( ) 3
ω0
-------

R
R*
-------

2 3C R*( )
ω0

2R*
3

------------------- ∆3

R*
3

-------+

----------------------------------------------

 
 
 
 
 
 
 
 
 

,arcsin≈
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where it is taken into account that

 @ 1.

Putting R∗  = ∆ and R = R∗  in (51), we arrive at the
time it takes for the electron front to reach boundary Rc

(cf. (35)),

(52)

Subsequently, the electrons at the front leave the
layer (recall that the motion outside the layer is omitted
from consideration). It should be noted that tr ≡
π /2ω0 if fe(R∗ , 0) = 1 and Rc/∆ = 2.

To determine ne(R∗ , R), we first put R∗ /R ≈ 1; then,
t(R∗ , R) is given by formula (50). Substituting (47) and
(50) into (41) yields

(53)

Such a result is explained by the fact that the condi-
tion R∗ /R ≈ 1 is valid when the coordinate of the parti-
cle is close to ∆; that is, R∗ /∆ ≈ 1. The associated time
for these particles is t(R∗ , R) ≈ 0 (see (50)). Actually,
the above approximations apply to particles at the elec-
tron flow front that has coordinate R∗  = ∆ and starts to
move within the interval Rc – ∆. Therefore, ne(R∗ , R) is
the initial distribution. If R∗ /R ! 1, t(R∗ , R) is given by
formula (51). Substituting (47) and (51) into (41) yields

(54)

Now we pass to the electron dynamics in the double
plasma layer for a given initial electron distribution. By
way of example, we put fe(R∗ , 0) = µ in formulas (42)–
(45), (47), (48), (50), (51), (53), and (54).

For R < ∆, the solutions to set (4)–(6), in view of
(42)–(45), have the form

(55)

(56)

(57)

2 3C R*( )/ω0
2R*

3 ∆3/R*
3+[ ]

t ∆ Rc,( ) 3
ω0
-------

Rc

∆
-----

2 f e ∆ 0,( ) 1+[ ]
-----------------------------------------

 
 
 
 
 

arcsin tr.≡≈

3

ne R* R,( ) ne
0 f e R* 0,( ).≈

ne R* R,( ) ne
0 R*

3

R3
-------2

3
--- 3C R*( )

ω0
2R*

3
------------------- ∆3

R*
3

------- 1–+ .=

E R* R,( ) µ
me

e
------

ω0
2

3
------ R*

3

R2
-------,=

V e R* R,( ) ω0R*
2
3
---µ 1 R*

R
-------– 

  ,=

t R* R,( )

=  
1
ω0
------ 3

2µ
------

R
R*
------- 1 R*

R
-------– Arctanh 1 R*

R
-------–– 

  ,
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(58)

Note that formulas (55)–(58) were also obtained
in [10].

For ∆ ≤ R ≤ Rc, the solutions to set (2)–(4), in view
of (47), (48), (50), (51), (53), and (54), can be repre-
sented as follows:

(59)

(60)

(61)

(62)

(63)

(64)

(5) To conclude, let us discuss the conditions under
which the simplifications adopted in this work are
valid.

(i) The hydrodynamic approach as applied to a cold
plasma implies that the thermal velocity is disregarded.
This simplification is valid if the directional velocity of
plasma electrons that is gained in the electric field far
exceeds their thermal velocities; that is,

(65)

where Ve, th is the thermal velocity of plasma electrons.

Let k = 0. In this case, the validity condition for ine-
quality (65) can be found from formulas (19) and (37)
for Ve(R∗ , t) provided that the constants of integration
in them are known. For example, substituting formula
(37) into (64), we arrive at a condition (a relationship

between parameters , νe, and Ve, th of the medium and
geometrical factor ∆) under which this inequality

ne R* R,( ) µne
0 R*

3

R3
-------.=

E R* R,( )
me

e
------

ω0
2

3
------ 1 µR*

3

∆3
-------+ 

  ∆3

R2
----- R– ,=

V e R* R,( )

=  ω0R*
2
3
--- µ ∆3

R*
2

-------+ 
  1 R*

R
-------– 

  1
3
--- 1 R2

R*
2

-------– 
 + ,

t R* R,( ) 1
ω0
------ 6

µ
--- R

R*
------- 1– 

  , R*/R 1,≈ ≈

ne R* R,( ) µne
0, R*/R 1,≈ ≈

t R*/R( ) 3
ω0
-------

R
R*
-------

2 µ ∆3

R*
3

-------+ 
 

------------------------------ , R*/R ! 1,arcsin≈

ne R* R,( ) ne
0 R*

3

R3
-------2

3
--- µ ∆3

R*
3

-------+ 
  , R*/R ! 1.≈

Ve R* t,( ) V e R* R,( ),
V e, th

--------------------------------------------------  @ 1,

ne
0

works. From (65), we have

(66)

A similar estimate can be obtained for k = 2.
(ii) The statement of the problem ignores the ion

motion; that is, it is assumed that the ions are of an
indefinitely large weight (mi  ∞). Such an assump-
tion implies that the processes in the system are fast and
is valid if

(67)

where  = 4πe2 /mi.

(iii) The solution method assumes that the volume
element trajectories specified by the solutions do not
cross each other. Otherwise, shock waves, discontinui-
ties of the density of the medium, etc., may appear. The
condition that the trajectories of electron volumes do
not intersect is met if ∂R/∂R∗  > 0 or ne(R∗ )/(∂R/∂R∗ ) >

0. For ne(R∗ ) = , the condition |(dVe(R∗ ,
0)/d(R∗ ))/ω0| < 1 is sufficient for the trajectories not to
intersect. In other words, the distribution of initial
velocity Ve(R∗ , 0) over R∗  must be fairly uniform [10].
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Abstract—The gas dynamics in a discharge chamber for arc production of fullerenes in the inert gas atmo-
sphere is analyzed for the first time. A turbulent fanlike jet due to the carbon flow from the discharge gap is
shown to be a crucial factor in the gasdynamic pattern formation. The dependence of the fraction of fullerenes
extracted from the chamber on the total amount of the product is constructed, with the gas flow rate, as well as
the radius and length of the chamber, being adjustable parameters. Tangential twisting of the gas, a way of
improving the fullerene extraction efficiency, is considered. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

The complex process of fullerene formation in an
arc [1–3] and the relation of the product extraction effi-
ciency to the discharge chamber geometry account for
the fact that a consistent theoretical model that makes it
possible to optimize the arc is still lacking. However,
the potential of the arc method of fullerene production
is far from being exhausted and it is believed that a
major part of this material will be produced worldwide
precisely with this method. Considerable evidence for
the beneficial role of the plasma at different stages of
fullerene molecule assembly counts in favor of this
statement [4–6].

In this work, which elaborates upon study [7], we
construct a simple model that allows one to calculate
the gas flow pattern in a cylindrical discharge chamber
the axis of which coincides with the axis of the elec-
trodes. Such a geometry is common to most arc-dis-
charge chambers for fullerene production. Based on
this calculation, one can estimate the flow distribution
in a chamber of any geometry with given dimensions.
Emphasis is on the gas flow along the electrodes, in
which case fullerene soot can be accumulated in a spe-
cial collector rather than being scraped out of the cham-
ber walls [8].

Initial information on the gasdynamic pattern in the
chamber that was extracted from analysis of fullerene
production in an infinite chamber without the gas flow
[7] can be summarized as follows.

(1) Near the source, the concentration of carbon (in
the form of the atomic gas and ions) is high; that is, the
plasma is heavily ionized. The carbon pressure forces
most of a buffer gas (helium) out of the discharge zone.
1063-7842/05/5012- $26.00 1551
(2) A gas-plasma jet forms near the source. Its initial
velocity can be estimated as

(1)

where T and nC are the temperature and concentration
of carbon atoms in the arc [7].

Calculated by (1), the flow (jet) velocity agrees well
with experimental data [9]. It sharply grows with cur-
rent (hence, carbon concentration). Under optimal pro-
duction conditions, it equals 20–60 m/s depending on
the arc-discharge mode.

(3) The jet is inclined, rather than perpendicular, to
the arc axis (z axis) at angle θ0 = 60°–70° if the elec-
trode axis is taken to be directed from the anode to cath-
ode (Fig. 1). A jet making an angle with the arc axis is
generated by a conical nozzle [10], while a fanlike (or
radial-slot) jet is incident on the arc axis almost nor-
mally, θ0 ≈ 90°.

V0
DP

P nCT–
-------------------

∇ nC

nC

---------- ∇ T
T

--------+ 
  ,=

y
z

θ0

Anode

Cathode

r

x

Fig. 1. Discharge gap geometry.
© 2005 Pleiades Publishing, Inc.
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(4) The jet is turbulent: the Reynolds number calcu-
lated with regard to the characteristic size of the dis-
charge gap far exceeds unity.

(5) The jet is binary. Initially, it has largely one com-
ponent (carbon); as the buffer gas is pumped to the jet,
it becomes a helium jet with a small carbon additive.
However, the results obtained for an incompressible
fluid are applicable just in the case at hand (a jet of a
heavy gas strikes a light gas when the temperatures of
the source of the jet and of its environment differ by
almost one order of magnitude), since the jet density
changes insignificantly [7].

Therefore, with an accuracy sufficient for our pur-
poses, we can apply the results following from the the-
ory of a free turbulent jet of incompressible liquid
[11, 12] and represent jet half-width δ, longitudinal
(radial) velocity um of the jet at its axis, transverse
velocity Vm of the gas incoming to the jet at the bound-
ary δ(x), and flow rate G of the gas pumped into the jet
versus distance x from the jet axis in the form

(2)

(3)

(4)

(5)

Parameter a ≈ 0.1 entering into (2)–(5) is the phe-
nomenological parameter of the turbulence theory [11],

n = 1.2 u0, 2r0 is the diameter of the graphite
electrodes, and 2b0 is the electrode gap width. Formulas
(2)–(5) refer to the main portion of the jet; however,
neglect of the initial portion changes final results insig-
nificantly. Importantly, formula (5) gives a fairly accu-
rate result for the initial portion as well.

δ 2.4ax,=

um n/ax,=

Vm n/x,=

G 4πx1.2 ar0b0.=

ar0b0

1
xfl

G
G1, F1

xt

z

x

G2, F2

CathodeAnode

G'1, F'1

Backward viscous
gas flow

Turbulent jet

Fig. 2. 2D gas flow pattern in a cylindrical chamber for the
case when the jet decays at the wall. The gas is delivered
through the entire cross section of the anodic flange and
leaves the chamber through the slotted ring. The dashed line
shows the boundary of the turbulent jet; the dotted line, its
virtual extension to the outlet.
(6) Fullerenes form at distance x1 = 3–4 cm from the
discharge axis [13]. This distance is at least several
times shorter than typical dimensions of the chamber
used in the experiments [1–3, 8]. Therefore, one can
consider the chamber geometry as not influencing pri-
mary fullerene production. Subsequently, the amount
of primary fullerenes reduces because of the UV radia-
tion from the arc [14], association of fullerenes and
fullerene-like clusters [9, 15], and other effects related
to the gas dynamics in the chamber.

The assumption that the chamber geometry does not
influence the jet parameters (at least within the
fullerene formation zone) is substantiated by relevant
experiments [11].

Thus, the production of fullerenes in large amounts
and their extraction from the chamber are essentially
different processes, which should be considered sepa-
rately. The former is controlled by the current, gas pres-
sure, and electrode sizes; the latter, by the buffer gas
dynamics in a specific chamber and impurity
(fullerene) flow in the buffer gas.

The results related to the first problem are presented
at length in [7]. Important additional information con-
cerning the effect of a plasma on fullerene assembling
can be found elsewhere [4–6].

COMPUTATIONAL MODEL

Gas flow pattern in the chamber. A feature of a gas
jet is that it diverges (its cross-sectional area increases)
with distance from the source and the jet sucks the gas
from the environment (which is the chamber volume in
our case).

The initial gas flow pattern can easily be inferred
from the following considerations and estimates. For
initial (at x = r0) jet velocity V0 = 40 m/s and typical
parameters of the electrode gap, the flow rate of the gas
sucked by the jet from the chamber is roughly G =
130 3/h for the chamber radius R = 10 cm. Below, it is
assumed, according to the experimental findings [8],
that gas flow rate Gg at the inlet and outlet of the cham-
ber (pumping-through) is at least three to four times
lower than this value. This means that the direct gas
flow is responsible for only a part of the cross-sectional
area of the jet (the domain x < xfl in Fig. 2). Over the rest
of the cross-sectional area of the chamber, the jet sucks
the gas from the backward flow along the chamber
walls.

A general scheme of solution will first be based on
the 2D geometry, which corresponds to the radially
symmetric gas flow pattern in the chamber. Such a pat-
tern is observed when the gas enters and leaves the
chamber either along the electrodes or through radially
running slots in the walls (such a gas outlet is shown by
thick line 1 in Fig. 2). According to the experimental
conditions, its was assumed that the gas flows from the
anode to the cathode. Accordingly, the entrance flange
and the half of the chamber upstream of the flow will be
TECHNICAL PHYSICS      Vol. 50      No. 12      2005
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called “anodic” (the left half in Fig. 2); that adjacent to
the cathode (the right half) will be called “cathodic.”
These terms will also apply to those jet parts adjacent
to the anodic and cathodic parts of the chamber.

The variations of the radial velocity along the jet
axis and of the transverse velocity at the jet boundary
(as well as along an extension of this boundary to the
wall if the turbulence of the jet fades out; the dotted line
in Fig. 2) are qualitatively shown in Fig. 3. On the side
walls of the chamber, the radial velocity of the jet
depends on the gas pump velocity if the jet is directed
to the inlet (curve 1) or vanishes (if pumping-through is
absent or the gas leaves the chamber, for example,
along the axis of the cathodic flange (curve 1')). The
velocity transverse to the jet boundary (or to the exten-
sion of this boundary) is bound to change sign when
approaching the wall (curve 2). Such a situation,
namely, a turbulent reflection-free jet outgoing from the
chamber and the reflection of the turbulent jet from the
walls or from the edge of the outlet (or fadeout of tur-
bulence before the jet reaches the wall), occurs under
any flow conditions near the hole.

In the case of turbulent reflection (Fig. 4), the jet
propagating near the walls is bound to decay at a dis-
tance from the point of reflection. The position of the
stagnation zone (point D in Fig. 4) depends on the
chamber length and gas balance condition: the total
amount of the gas absorbed by the jet (minus the gas
pumped through the chamber) must be restored to the
chamber, the flow velocity in the restore region having
to meet the viscous flow condition (Re < 1). This con-
dition specifies a minimal length (more exactly, half-
length) L of the chamber in the direction of jet reflec-
tion from the wall. When the gas is not pumped, the ine-
quality

(6)

must be fulfilled, where η and ρ are, respectively, the
dynamic viscosity and density of the gas.

At a working pressure of 300 Torr in the chamber
and temperature 1000 K, (inequality (6)) is fulfilled if
the chamber is unrealistically long, L ≥ 5R. With pump-
ing taken into account, condition (6) changes insignifi-
cantly and so actually is not fulfilled. Therefore, two
situations should be considered: (i) the jet ceases to be
turbulent before reaching the walls and gas absorption
by the jet changes to gas escape from the jet along the
walls (Fig. 2) and (ii) when escaping from the chamber,
the gas is turbulent, the qualitative picture of turbulent
zones near the outlet having to be the same as in the
case of the “internal” jet flow from an annular source of
radius R and width h up to velocity sense (Fig. 5).

In case (i), radius xt of turbulence fadeout deter-
mined from the same considerations as for turbulent

L
R δ–
------------ n

η /ρ( )γ
-----------------,>
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reflection can be easily found from the estimator
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Fig. 3. Variation of the radial velocity of the jet along its axis
and of the transverse velocity of the jet at its boundary.
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Fig. 4. Turbulent reflection of the jet from the walls (radially
symmetric case): (1) the boundary of the flow part of the
chamber (the wavy line is the boundary of the jet) and
(2) the jet axis.
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Fig. 5. Turbulent jet structure between the gap and ring out-
let for turbulent outflow from the chamber. The boundaries
of the jet are shown by the wavy lines. P is the potential core
of the outgoing jet.
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provided that the condition for viscous jet flow from the
outlet,

(8)

is simultaneously fulfilled.
In (7), as in (6), the gas velocity along the wall,

which specifies the backward flow rate into the cham-
ber, is assumed to equal η/ρ, which corresponds to the
condition Re = 1.

Conditions (7) and (8) are fulfilled for only a low
pump rate and a very short jet,

(9)

the length of which exceeds its potential core only
slightly. Therefore, case (ii) (Fig. 5) seems to be more
realistic. Thus, the gas flow from the discharge gap to
the outlet combines two turbulent jets passing into each
other. For brevity, the jet portion between the discharge
gap and point xt will hereafter be called the gap jet and
that between point xt and the outlet, the outlet jet. Point
xt in Fig. 5 has the same meaning as in Fig. 2: the point
where the transverse velocity at the jet boundary
changes sign.

For the outlet jet, the dependences of parameters um,
Vm, G, and δ on distance R – x to the wall are well
known from the theory of plane turbulent jet. They are
similar to relationships (2)–(5) for the gap jet and are
given in Appendix 1. The gas balance in the jet results
in the following equation for point xt, where the trans-
verse velocity changes sign (see Appendix 2):

(10)

An essential point in deriving (10) is that the values
of xt for the anodic (open) and cathodic (“plugged”)
parts of the chamber are different. Since a jet where
regions symmetric about its axis act in such a way that
one absorbs the gas and the other forces the gas out of
the jet can hardly be conceived, xt was assumed to be
equal to the half-sum of the values calculated for the
cathodic and anodic halves of the jet.

Clearly, the above speculations are true only for xfl <
xt. In this case, the flow pattern in that part of the jet
adjacent to the anodic half of the chamber is identical
to the flow pattern in the cathodic half (there exists the
backward flow along the walls). It is natural to think
that high-rate pumping, xfl  xt, will cause arc
breaking.

Analysis of the flow pattern in the entire volume of
the chamber is complicated by the presence of areas
with turbulent and viscous flows and by the finite

ρR
η

-------
Gg

2πRh
-------------- 1<
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R
---- η

ρ
--- h

R
--- 1+ 

  n
η
ρ
---+ 
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,≤
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2 xtxfl 0.36
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R
----- 

 
2aR
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------- 1

4
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R
----- 

 
2

.–
dimensions of the chamber. In addition, initial escape
angle θ0 of the jet relative to the chamber axis may gen-
erally depend on the position of the ring slot through
which the jet leaves the chamber.

Significantly, a full solution (i.e., a solution to a set
of equations for the entire volume of the chamber with
regard to boundary conditions at the inlet and outlet of
the chamber and at its walls) is not only difficult to
obtain but also is not necessarily true. The fact is that
averaged turbulence equations involve many time cor-
relation functions, which may vary with the geometry
of the chamber.

Therefore, we used the available analytical solutions
for a free turbulent jet in the boundary layer approxima-
tion [11, 12]. At the natural boundaries of the jet, these
solutions were joint with viscous solutions for the rest
of the chamber.

The position of the slot for gas axial withdrawal was
taken to be such that the natural axis of the jet (the axis
in the absence of pumping) was directed to the slot.
Based on experimental data, we also assumed for con-
venience that the boundary between the jet and the
anodic part of the chamber (on the left in Figs. 2 and 5)
makes a right angle with the chamber axis.

The gas flow outside the jet and its extension to the
wall was assumed to be viscous. Then, a set of 2D
Navier–Stokes continuity equations reduces to a
fourth-order equation for stream function Ψ specified
by the conditions

(11)

and has the form of the curl transfer equation,

(12)

where ν = η/ρ is the kinematic viscosity of the gas and
∆ is the Laplacian.

In the absence of gas twisting and jet viscous atten-
uation, the simple potential approximation [10]

(13)

provides a reasonable accuracy.
At the walls, stream function Ψ can be set equal to

zero; at the inlet, it is defined by the boundary condi-
tions at the inlet. If the gas enters the chamber uni-
formly over the cross section of the entrance flange,
function Ψ(x) at the inlet depends only on pump rate
Gg. At the boundaries of the turbulent jet with the
cathodic and anodic parts of the chamber, the stream
function outside the neighborhood of point xt (Fig. 5) is
easy to calculate from the first condition in (11) by for-
mulas (4) and (23) (see Appendix 1); in the neighbor-
hood of point xt, it is found by linearly joining (4) and
(23) and integrating over coordinate x.

For the cylindrical chamber, a desired solution is
constructed by analytically expanding into the Fourier–
Bessel series. Analysis of the anodic part of the cham-

Vy V≡ 1/x( ) ∂Ψ/∂x( ),=

V x u≡ 1/x( )– ∂Ψ/∂z( ),=

V∇( ) curlV⋅ curlV ∇⋅( )V– ν∆curlV,=

∆Ψ 0=
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ber is a trivial task in this case, since the boundaries of
this part have a simple cylindrical form (Fig. 5). For the
cathodic part, the situation is more complicated, since
this boundary makes an angle of 2 × 2.4a ≈ π/6 with the
jet (such is the angle of divergence of a fanlike jet from
the discharge gap calculated by formula (2) and sup-
ported experimentally [11, 12]). For the outward jet, the
angle of divergence (angle ϕ2 in Fig. 5) is related to the
angle of divergence of another, plane, jet [11, 12]. How-
ever, in our case, angle ϕ2 is uncertain: the point where
the gap jet passes into the outlet jet may lie just at the
beginning of the outlet jet. Therefore, the boundary
conditions were set on the axial plane of symmetry for
simplicity (the x axis in Fig. 5) and were taken such that
derivative dϕ/dl of the potential along the real boundary
that is obtained from the solution coincides with the
true derivative at least at the beginning of the gap jet (at
point xt near the outlet of the chamber).

Fullerene extraction from the discharge cham-
ber. The efficiency of fullerene production by the arc
method in a flow-type chamber is most natural to esti-
mate by fullerene percentage α' in the soot flux leaving
the chamber and by relative fullerene yield Γ. The latter
parameter can be defined as the ratio of the fullerene
flux from the chamber, F, to the amount of arising
fullerenes, F0 (Fig. 2),

(14)

Fullerene fluxes F1 and F2 coming from the jet along
the wall to the anodic and cathodic parts of the cham-
ber, as well as fluxes  and  returning to the jet
from the chamber (Fig. 2), must be found from a solu-
tion to the problem of heavy impurity (fullerene) diffu-
sion in a gas flow. This solution must also include
fullerene losses due to UV irradiation and deposition on
the walls. Obviously, such a problem can be posed only
in a greatly simplified form. This is because fullerenes
near the cold walls of the chamber associate into clus-
ters, the kinetic properties of which differ radically
from those of fullerenes, and systematic data for
fullerene decomposition under UV radiation are virtu-
ally lacking.

When solving the problem of impurity (fullerene)
diffusion in a known gas velocity field,

(15)

we used the diffusion coefficient for soot clusters of
characteristic mean size 〈rs〉  = 3 × 10–3 cm [15]. The
boundary conditions to problem (15) and characteristic
time τ of fullerene irradiation by UV light are consid-
ered in Appendix 3.

Percentage α' is obtained in a natural way during the
solution of problem (15), which considers fullerenes
incorporated into soot particles, and a problem similar
to (15) that describes fullerene-free soot particles (the
right of (15) is zero in the latter case).

Γ F
F0
-----≡

F0 F1– F' F2– F2'+ +
F0

----------------------------------------------------.=

F1' F2'

Div nCV x y,( ) D∇ nC–( ) nC/τ–=
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ANALYSIS OF TWO-DIMENSIONAL GAS FLOW 
AND FULLERENE YIELD

To compare the results of calculation with the per-
formance of the real 3D chamber where the gas goes
out through a circular hole of radius Rout ≈ 2.5 cm on the
side wall [8], width 2b1 of the ring slotted outlet was
taken to be 0.5 cm starting from the equivalence condi-

tion for surface areas: 2b1 × 2πR = π .

As a parameter controlling the relative fullerene
yield, we took gas flow rate Gg (Fig. 6). It is seen that
yield Γ grows with increasing flow rate. On the right,
the curves terminate at xfl  xt. Thus, for a chamber
of the given geometry, a maximal flow rate at which the
arc still persists is optimal for the fullerene yield.

For the given radius of the chamber, the Gg depen-
dence of fullerene percentage α' is very weak, in full
accordance with the experiment.

For a given Gg, Γ is virtually independent of the
dimensions of the chamber (Fig. 7). The left extremity
of curve 3 in Fig. 7 corresponds to xfl  xt. When the
chamber dimensions are scaled up, Γ increases with Gg
(Fig. 8).

Qualitatively, the results of calculation can be inter-
preted as follows. The value of Γ can be found not only
by solving the diffusion equation but also from the
approximate relationship

(16)

where P1 = /F1 and P2 = /F2 are the integral “sur-
vival” probabilities of the fullerenes when they are once
passed through the areas of closed gas flow in the

Rout
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Fig. 6. Relative fullerene yield vs. flow rate Gg. The radius
of the chamber is (1) 10, (2) 15, (3) 20, and (4) 25 cm.
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anodic and cathodic parts of the chamber, respectively;
G1/G2 is the ratio of the gas flows reflected into the
anodic and cathodic parts of the chamber (Fig. 2);

is the contribution of the flowing gas to the anodic part
of the jet; and quantities

characterize the behavior of the fullerene impurity in
the gas flow near the walls at the time instant this flow
(G = G1 + Gg) splits into the backward flow along the
walls and the outward flow.

Relationship (16) follows from the balance condi-
tions for the gas and fullerenes and from the definitions
of parameters ε1, ε2, and g. In the absence of the
cathodic half of the chamber and under the assumption
ε = 1, this relationship takes the very simple form

which is the sum of an infinite geometrical progression
each term of which is the survival probability of the
fullerenes passed once more through the closed viscous
gas flow.

For the geometry used in this work (the chamber
with the plugged cathodic part) and under the assump-
tion ε1 = ε2 = 1, it follows from (16) that

(17)

If the jet leaves the gap at a right angle, it is natural
to assume that G1 + Gg ≈ G2 and (17) simplifies even

g
Gg

G1 Gg+
-------------------≡

ε1

F1/F
G1/G
-------------, ε2

F2/F
G2/G
-------------= =

Γ g
1 P 1 g–( )–
-----------------------------,=

Γ g 1 P1 1 g–( )
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Fig. 7. Relative fullerene yield vs. the chamber radius at
flow rate Gg of (1) 20, (2) 40, (3) 60, and (4) 80 m3/h.
more,

(18)

where g ≈ xfl/xt and xt is found from (10).
Probabilities P1 and P2 can be estimated from the

time of irradiation and the rate of fullerene and soot
particle deposition on the walls,

where τdif is the characteristic time of particle diffusion
across streamlines of the gas and χ(q) = 1 (for q > 0) or
0 (for q < 0).

Even (17) and (18) allow one to qualitatively “see”
the results obtained above. From (10), it follows that,
for the chamber considered, the dependence g(Gg)
obeys a near-square-root law when the flow rate is high.
However, as Gg increases, the closed-flow area in the
anodic part of the chamber shrinks and, consequently,
the irradiation dose of the fullerenes declines; there-
fore, probability P1 of fullerene survival in (18) grows
and the dependence Γ(Gg) in Fig. 6 is a supra-square-
root function.

If the dimensions of the chamber grow with the flow
rate remaining constant (Fig. 7), the fullerene irradia-
tion zone moves away from the arc. However, this
effect is compensated for by an expansion of the
closed-flow area and an increase in the amount of
fullerenes drawn in this area. To raise the fullerene
yield, it is necessary to raise the flow rate.

Figure 9 shows the maximal fullerene yield (i.e., the
yield at a flow rate above which the arc breaks) versus
chamber radius R. In a chamber with R = 30 cm, the
yield basically may exceed the yield at R = 10 cm by
20–30%; to this end, however, the flow rate should be
raised fourfold(!). Clearly, the fabrication of a gas
blower with such a high capacity, to say nothing of the
fabrication of such a large chamber, greatly increases
the cost of the installation.

From the engineering standpoint, a small-radius
chamber with a near-threshold flow rate seems to be
optimal.

WAYS OF IMPROVING THE FULLERENE YIELD 
IN THE CONTEXT OF TWO-DIMENSIONAL 

PROBLEM DEFINITION

The 2D definition of the problem is the simplest;
therefore, quantitative analysis of other 2D versions
that could increase the fullerene yield, first of all a
chamber with tangential gas inlet and outlet, is of inter-
est. The situation can be provided in such a chamber
when a heavy component (fullerenes) is not only
entrained by the main gas flow but is also continuously
extracted from the chamber by centrifugal separation of
the components.

Γ g 2 P2– P1 1 g–( )–( ) 1– ,=

P 1 L/τV( )χ 1 L/τV–( )–=

– L/τdiffV( )χ 1 L/τdiffV–( ),
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Even before performing related calculations, it is
evident that the gas streamline patterns are the same for
twisted and untwisted gas flows (Figs. 2 and 5). How-
ever, a turbulent fanlike jet turns into a twisted fanlike
jet. Twisting is accomplished twofold: by tangential
outlet of the gas from the chamber (and, correspond-
ingly, by turbulent transfer of vortices upstream) or by
viscous transfer of vortices from the entrance cross sec-
tion of the chamber through its flow-through part.
Obviously, the first effect is much stronger. If it is
assumed, for definiteness, that the gas leaves the cham-
ber through a set of outlets with sizes h and l ! R
(Fig. 10), the angular momentum persisting upstream
[10],

(19)

grows in proportion to the flow rate squared.
The centrifugal mechanism may act in either of the

two following ways. (i) It may displace the boundary
between the stream and closed-flow areas toward the
wall. In this case, the closed-flow area will shrink and
the capture of arising fullerenes into the chamber will
decrease. (ii) This mechanism may stimulate the escape
of the fullerenes from the outlet of the chamber by turn-
ing part of the gas flowing along the walls.

The amount of the former effect can be estimated
from an equation for the gas flow across the jet using a
cylindrical coordinate system appropriate for a fanlike
jet [10],

(20)

(in the turbulent case, shear viscosity ν changes to tur-
bulent viscosity νt determined by one or another empir-
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Fig. 8. Relative fullerene yield vs. the chamber radius for
ratio Gg (m3/h)/R (cm) = (1) 3, (2) 4, and (3) 5.
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ical method). In the boundary layer approximation, it
follows from (20) that P = const.

Thus, unlike the similar equation for an axisymmet-
ric jet,

(21)

in the spherical coordinate system [11], (the y coordi-
nate is shown in Fig. 1), velocity V in (20) is insensitive
to rotation. Accordingly, the pressure at the center of
the jet does not drop (more exactly, it turns out to be a
small quantity of lower order than in the axisymmetric
case). Neither does the relatively slowly decreasing
correction (on the order of 1/x2) to the transverse veloc-
ity arise. As for the correction on the order of 1/x3, it is
localized at the center of the jet and its effect at the
boundary is not perceived (see Appendix 4). Thus, at
the boundary, rotation does not affect the gas velocity
across the jet.

The amount of the latter effect, centrifugal separa-
tion of a heavy component near the escape zone, can be
estimated from an equation of impurity diffusion rela-
tive to the gas flow, D∆nC = Div(nCV) (Eq. 15 with the
zero right-hand side).

If the angular dependence is absent, the form of this
equation is the same for the twisted and untwisted
cases, since the angular velocity is not involved. Hence,
the transfer of a heavy component in the jet is also
insensitive to twisting.

Thus, tangential twisting of the gas flow offers no
advantages from the standpoint of fullerene production.
Another possible modification of the chamber configu-
ration, double-sided gas delivery to the chamber
(through both the anodic and cathodic sides), as well as
the 3D geometry of the chamber, will be considered in
part II of this work. The need for considering the 3D
geometry is related to the fact that gas outlet through a

w2/y– ∂P/∂y– ν ∂2V /∂y2( )+=
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Fig. 9. (1) Maximal fullerene yield achievable at a given
radius of the chamber and (2) its associated flow rate.
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hole in the side wall is the simplest way of gas outlet in
engineering terms. However, it can be shown based on
the above results that the fullerene yield may decrease
in this case. The only question is how much this
decrease is.

CONCLUSIONS

(1) A turbulent fanlike jet arising when the carbon
flow leaves the discharge gap plays a key role in the
gasdynamic pattern in the chamber.

(2) At a moderate rate of gas pumping from the
anode to the cathode, a characteristic flow pattern with
the backward flow along the walls forms in the anodic
(flow) part of the chamber.

(3) In a wide range of flow rates, relative fullerene
yield Γ grows with flow rate Gg. However, at a certain
(threshold) value of Gg (specific for a specific cham-
ber), the arc breaks.

(4) The threshold value of the flow rate sharply
increases with the chamber radius; however, the
fullerene yield grows much more slowly in this case.
Therefore, a small-radius chamber with near-threshold
pumping seems optimal from the engineering stand-
point.

(5) The transition to a chamber with symmetric tan-
gential twisting of the gas at the inlet and outlet of the
chamber raises the fullerene yield insignificantly. The
gasdynamic pattern in the chamber does not change
radically: the gas flow merely twists as a whole.

APPENDIX 1

Jet parameters versus distance to the chamber
walls. The formulas for the axisymmetric effusion of a
jet form a fanlike source are well known [10]. However,
by virtue of the condition h ! R and also of the fact that
the area under consideration does not exceed half the
chamber radius (as follows from subsequent calcula-

h

l

Fig. 10. Gas outflow from a set of outlets with sizes h and
l ! R.
tions), one can apply the known results for the main
part of a plane jet with initial velocity V' and initial
width 2b1 = h [11, 12],

(22)

(23)

where y is the distance to the source of the jet.

The flow rate per unit length of the slot is given by

(24)

APPENDIX 2

Position of the point where the transverse veloc-
ity at the jet boundary changes sign. As applied to our
problem, the gas flow entering the chamber from the jet
forming at the outlet is given by

for total length 2πR of the slot.

Then, the gas balance in the anodic part of the cham-
ber (with regard to the stream part of the jet with radius
xfl and the closed-flow part (with width R – xt) of the
chamber near the wall) has the form

where V' is the gas velocity at the slotted ring outlet of
the chamber and xfl is found from the law of conserva-
tion of the gas flow in the chamber,

In this case, xt calculated in the anodic (flow) part of
the chamber must be found from the quadratic equation

It is easy to see that, for the cathodic part of the
chamber,

Taking the half-sum of these values, one readily
arrives at (10).

Significantly, in the course of solution, we used for-
mulas (5) and (24) for the rate of pumping into the jet,
which can be applied in the initial portion of the jet. If
we used relationships of type (2) for the geometrical
shape of the jet, which are valid only for its main por-
tion, the position of point xt would be defined once and
for all (i.e., at any flow rate) by the geometric relation-
ship 2.4axt = 2.4a(R – xt) and the relevant information
would be lost.

um V '1.2 b1/ay,=

Vm V '0.6a b1/ay,=

G ' 2.4V ' ab1y.=

2.4V ' ab1 R xt–( )2πR

2πn xt xfl–( ) 1
2
---2.4V '2πR ab1 R xt–( ),=

2πnxfl Gg 2πR2b1V '.= =

xt xfl– 0.6xfl a R xt–( )/b1.=

xt 0.6xfl a R xt–( )/b1.=
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APPENDIX 3

Boundary conditions for the impurity diffusion
equation at the jet boundary and the rate of
fullerene lost under irradiation.

(1) Clearly, the problem of fullerene diffusion from
the area of their birth, x ≈ x1, should be posed for the
entire chamber in the domain x1 < x < R. However, the
question arises of how to define the fullerene turbulent
diffusion coefficient within the jet. Taking into account
the linearity of the problem and the natural boundary
condition at the wall, nC = 0 (“black wall” condition),
one may try to set nC(x) at the jet boundary in the model
form

Fluxes F1, F2, , and  appearing in (14) are
determined as derivatives D∂n/dx at the outer bound-
aries of the jet.

(2) The available results for fullerene losses due to
UV radiation are contradictory. Experiments [3] on
keeping the fullerene soot under daylight (illuminance
up to 1 cd/cm2) and in the dark did not show any signif-
icant effect of radiation, unlike those performed in [14].
In any case, the upper limit of undangerous illumina-
tion can be estimated as follows. It is known that the
fullerene yield in a chamber with pumping is no higher
than 10–12% under optimal conditions. If it is assumed
that UV irradiation “kills” fullerenes, such a high per-
centage of the fullerenes lost at the walls is possible
only if at least one monolayer of the fullerene soot
deposits on the walls for characteristic time τ of irradi-
ation. Then, we have

where H is the characteristic thickness of the soot layer
on the walls, dm/dt is the amount of the soot per unit
time deposited within this layer, and ρs is the soot den-
sity.

The dependence of the fullerene lost time on the dis-
tance to the discharge gap is estimated from the condi-
tion of conservation of radiation flux within a cone
specified by the gap geometry,

where the ratio of reference values, /τUV, depends
only on the arc discharge conditions.

APPENDIX 4

Twist-related correction to the transverse veloc-
ity of a fanlike jet. As follows from (20), the transverse
pressure difference between the axis of the jet and its
boundary does not depend on twisting and should be set

nC nC x1( )
x1

x
----- R x–

R x1–
-------------- 

  Π
, Π 1.>=

F1' F2'

τ 2πRH
dm/dt
---------------ρs rs〈 〉 ,=

1/τ rUV
2 /r2( ) 1/τUV( ),=

rUV
2
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equal to zero (as in the absence of twisting). Then, the
equation of motion and the continuity equation are the
same as those considered in [10],

(25)

(26)

where velocities u and V are related to stream function
Ψ by (11).

A solution is sought in the form [10]

.

In the zeroth approximation, coefficient A obtained
in [10] is

where Λ = y/x, and

The next approximation, which is easily found from
(26), follows from the equation

(27)

Since we are interested in only the velocity at the
boundary, where αΛ/2ν @ 1, correction a1 can be
sought in the form of the expansion

(28)

which is similar to the asymptotics of A. Substituting
(28) into (27) yields

(29)

The first term in expansion (29) is unrelated to twist-
ing. The second one is proportional to the angular
momentum of jet motion; however, it is localized at the
axis of the jet and has no effect at its boundary.
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Abstract—Based on the model suggested in part I of this work and analysis of a chamber for arc production
of fullerenes, two ways of gas delivery to the chamber, one-sided pumping of the gas (from the side of the
anode) and double-sided pumping (from both the cathodic and anodic flanges), are considered. In the latter
case, the efficiency of fullerene extraction from the discharge chamber rises substantially. The axisymmetric 2D
case considered earlier is extended for the 3D geometry of the chamber, where gas outlet is accomplished
through the side wall of the chamber. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

This paper elaborates upon investigation [1, 2] into
the process of fullerene production in an arc-discharge
chamber pumped through by a buffer gas (helium). The
analysis made in [2] and qualitative considerations
show that, in an “asymmetric” flow-type chamber,
where the gas is delivered through its anodic part and
the cathodic part is “plugged” [2, Fig. 5], a closed gas
flow arises, which entrains a large amount of fullerenes
and eventually reduces the total fullerene yield. An
increase in the gas flow rate makes the gas flow pattern
in the chamber even more asymmetric; the jet breaks
when the flow rate exceeds a critical (threshold) value;
and the arc, which is intimately related to the jet,
becomes unstable.

The simplest way of improving the fullerene yield in
the cylindrical chamber is to deliver the gas through
both (anodic and cathodic) flanges and to discharge it
through an axisymmetric slot the position of which cor-
responds to the jet direction (Fig. 1). It will be shown
that the influence of vortices can be considerably
depressed in this case by appropriately selecting the
flow rate.

It is clear, however, that the implementation of such
a “truly” 2D geometry is difficult. It seems that analysis
of fullerene production in an axisymmetric chamber
with double-sided gas delivery and a subsequent exten-
sion of the results to the 3D problem, where gas outlet
is accomplished through a circular hole in the wall,
would be of great value for fullerene production optimi-
zation.
1063-7842/05/5012- $26.00 1561
CALCULATION OF THE FULLERENE YIELD 
IN THE CASE OF DOUBLE-SIDED GAS 

DELIVERY

As in [2], our goal is to solve a set of equations for
the gas flow in the chamber (Fig. 1). Following [2], the
area of turbulence is separated out from the volume of
the chamber and is subjected to approximate analysis
using the results known from the theory of free turbu-
lent jet [3, 4] with the aim of determining conditions at
the boundaries between the jet and the anodic and
cathodic parts of the chamber. However, the boundaries
of the flow region with the anodic and cathodic parts of

the chamber (  and , respectively, in Fig. 1) dif-
fer from those adopted in [2]. The positions of points

xfl
a( ) xfl

c( )

Gas

x (a)
t

AF

Anodic
region of
chamber

Cathode
Turbulent jet CF

Cathodic
region of
chamber

Gas

x (a)
fl x (c)

fl

x (c)
t

Anode

Fig. 1. Schematic of a discharge chamber with the symme-
try axis along the electrodes and the streamline pattern for
the case of double-sided gas delivery and gas outflow
through a radial–annular slot. AF and CF are the anodic and
cathodic flanges, respectively.
© 2005 Pleiades Publishing, Inc.
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 and , where the gap jet transforms into the out-
going jet [2] are also different in the general case

(Fig. 1). When calculating the positions of  and

, one may either find them independently or assume
them to be the same and use some averaged value in
subsequent calculations, as was done in [2] (for details,
see below).

As in [2], the calculated values of characteristic

points  specify the conditions for the stream func-
tion at the boundaries of the jet with the anodic and
cathodic parts of the chamber (the wavy lines in Fig. 1).

The procedures of calculating the gas velocity field
under boundary conditions specified at the walls, as
well as at the anodic and cathodic flanges (surfaces AF
and CF in Fig. 1), and the carbon impurity concentra-
tion are virtually the same as those used in [2].

In [2], the efficiency of the chamber in terms of the
fullerene yield was estimated with parameter Γ, which
is defined as the ratio of the fullerene flux from the
chamber to the amount of arising fullerenes. The fac-
tors that decrease Γ are the UV irradiation of the
fullerenes by the arc and the deposition of the fullerenes
on the walls.

Figure 2 plots Γ against flow rate Gg at different val-
ues of θa, the fraction of the incoming flux that passes
through the anodic part of the chamber (θa + θc = 1).
The value of θa was assumed to be minimal, θa = 1/2,
when the gas flows pumped through the anodic and
cathodic parts of the chamber coincide. For ease of con-
trasting with the previous results, the computational
technique in the case of one-sided pumping (θa = 1) was
slightly modified compared with that used in [2];

xt
a( ) xt

c( )

xt
a( )

xt
c( )

xfl t,
a c,( )

15 25

10

8
7565554535

0.5

0.6

0.7 12

1

2
3

4

0.4

α, %Γ

Gg, m3/h

Fig. 2. Relative fullerene yield Γ (the left vertical axis) vs.
gas flow rate Gg for chamber radius R = 10 cm. Gas delivery
asymmetry parameter θa = (1) 0.5, (2) 0.6, (3) 0.7, and
(4) 1.0 (one-sided delivery from the anodic side). The
dashed line refers to the fullerene percentage in the soot (the
right vertical axis) vs. Gg. Symbols (d) are data points.
namely, parameters  and  were calculated inde-
pendently.

As in [2], there appears a “crisis” of solution at a
certain value of flow rate Gg; i.e., the solution becomes
physically meaningless. However, unlike the situation
in [2], where the crisis means that the condition xfl < xt
is no longer valid, here the crisis lies in the fact that dis-

tance  becomes equal to chamber radius R and the
free turbulent gas flow just cannot leave the chamber in
the absence of a pressure gradient along the jet axis.
Physically, this formal result means the same as before:
the need for providing a considerable pressure gradient
along the jet and the need to take into account this gra-
dient in the solution. This will cause a substantial
change in the arc discharge conditions and instability of
the discharge.

The crisis values of the flow rate calculated by the
two techniques mentioned above differ by 15–20% and
vary in a basically similar manner. Therefore, we will

speak of the limiting value of the flow rate at which 

and  still differ (are calculated separately) and the

condition  < R holds. The boundary  = R is to an
extent conventional. One could equally well assume

that the maximum flow rate corresponds to  =

(  + R)/2, in which case point  with the zero
transverse (to the jet) velocity is close to the middle of
the closed-flow area. However, speculations at such a
definition do not change at all and associated estimates
change insignificantly.

Figure 3 shows the relative fullerene yield versus the
flow rate at different θa. Double-sided pumping is seen

to noticeably raise threshold flow rate  and relative

fullerene yield Γ(th) achievable at .

Moreover, at a total flow rate far from the threshold
value, the fullerene yield grows with flow rate until gas
delivery becomes more symmetric: at Gg ≥ 25 m3/h,
curve 1 (the flux ratio is 1 : 1, θa = 1/2) runs above curve 4
(one-sided gas delivery from the side of the anodic part
of the chamber). Such a result could not be predicted in
advance, since, as gas delivery becomes more and more
symmetric, the boundary of the cathodic closed-flow
area moves away from the radiation source, while the
anodic area of closed flow approaches the source. Con-
sequently, the fullerenes entrained by the two flows
experience different actions.

Figure 3 and 4 show the dependences of  and
Γ(th) on θa for different chamber radii R. Interestingly,
when pumping is symmetric, Γ(th) varies with R only
slightly (the left-hand ends of curves 1–3 in Fig. 4). If
one-sided pumping prevails (θa  1), conversely, a
small chamber (R = 10 cm, curve 1), which is more

xt
a( ) xt
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appropriate from the engineering standpoint, cannot
provide a high fullerene extraction efficiency and so a
large chamber should be designed.

BOUNDARY CONDITIONS AND STREAMLINES 
FOR THE ASYMMETRIC AXIAL GAS FLOW 

IN THE 3D CHAMBER

As was indicated in [2], the need to consider the 3D
problem is related to the fact that gas outlet through a
hole in the side wall is much simpler from the engineer-
ing standpoint [3].

We will consider first a chamber with one-sided gas
inlet uniform over the cross section of the anodic flange
(as in [2]) and gas outlet through a hole in the side wall
of the chamber. It is assumed that the center of the hole
is roughly aligned with the direction of the arc-pro-
duced gas jet.

The streamline pattern in the axial section of the
anodic part that passes through the center of the outlet
is shown at the left of Fig. 5. Clearly, this section is the
only one that involves all streamlines originating in it
and is crossed by no other streamlines at none of the
points. It is natural to assume that the same pattern will
be observed in the cathodic part of the chamber. How-
ever, one could imagine quite a different streamline pat-
tern in the cathodic part with a “bottom to top” gas flow
toward the outlet (Fig. 6). The feasibility of such a pat-
tern can be evaluated by contrasting Fig. 6 with the for-
mally identical case of 2D geometry. In such a 2D rep-
resentation, the problem becomes two-dimensional and
one may take advantage of the idea of the stream func-
tion. Then, if gas delivery through the inlet flange is
symmetric, the stream function has equal values over
half-plane 2 and band 1 (to the left of the outlet in
Fig. 6). In going through the outgoing jet to band 3
(Fig. 6), the stream function changes. However, for the

50
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θa

1

2

3
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Fig. 3. Gas flow rate threshold value  vs. θa for cham-

ber radius R = (1) 10, (2) 20, and (3) 30 cm.
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flow pattern in the cathodic part of the chamber shown
in Fig. 6, such a situation is unrealizable, since intake
of the gas from the lower part of the chamber entails
“short circuiting.”

Therefore, the gas flow pattern in the cathodic part
must be identical to that in the anodic part (Fig. 5) with

0.55
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1

2
3

0.7 0.8 0.9 1.0
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0.70
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Fig. 4. Relative fullerene yield Γ(th) achievable at threshold

flow rate  vs. θa for R = (1) 10, (2) 20, and (3) 30 cm.Gg
th( )

Fig. 5. (a) Characteristic regions of the flow in the anodic
part of the chamber in the axial plane passing through the
outlet section: surfaces Sa and Sc are the boundaries of the
jet with the anodic and cathodic parts of the chamber; (b)
(1) streamlines at the jet boundary and (2) ϕ-dependent
boundary of the viscous decay region; and (c) plane projec-
tion of the part of the chamber surface that is imaginary cut
by the gap jet and streamlines along the chamber surface.
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the only exception that the stream part of the flow in the
cathodic part is absent. Thus, the streamline pattern dif-
fers from the axisymmetric case only quantitatively.

For convenience, let the gas leave the discharge gap
toward the outlet of radius Rout within solid angle (the
exit cone angle) 2ϕ1 = 2Rout/R (Fig. 5).

In the gas flow model shown in Fig. 5, the gas flow
through the jet to the outlet is accomplished as follows.
A fraction of the gas enters the exit cone immediately
from the anodic part of the chamber. The rest of the gas
is sucked into the jet; scatters along the radius to the
center; and then falls into the exit cone together with the
circular flow, entirely remaining within the jet (and its
geometric extension to the walls; dashed arrow 4 at the
right of Fig. 5).

In the upper part of the chamber, the streamline pat-
tern is akin to the axisymmetric case: turbulent outflow
from the chamber, the structure of the jet incoming to
the outlet being identical to the structure of the outgo-
ing plane jet up to velocity sense. In the lower part of
the chamber and in all axial cross sections not passing
through the outlet, the jet decays before it reaches the
walls. Accordingly, the flow becomes viscous and
spreads over the walls with a velocity specified by the
condition Re = 1.

Each section not passing through the outlet covers
the flow region and the region where the flow along the
walls is closed (stagnation zone). Therefore, as in the
axisymmetric case, here two characteristic points are
separated out: point xfl (the radial boundary of the flow
region) and point xt, where the velocity longitudinal
along the walls and transverse to the jet changes sign.
The positions of points xfl and xt considerably depend
on angle ϕ (see the right-hand part of Fig. 5). If the flow
pattern inside the jet is known, boundary conditions for
gas flow analysis in the chamber should be set at the jet
boundaries and their geometric extension to the walls
(surfaces Sa and Sc in Fig. 5).

The internal friction of the jet should be calculated
as follows. The integral conditions for curves xfl(ϕ) and

x (0)
t

AF

x (0)
fl

x (1)
t

Anode

1

2

3

Fig. 6. Imaginary picture of streamlines when the gas passes
through the cathodic (“plugged”) part of the chamber.
xt(ϕ) can be obtained by analogy with a set of equations
for gas balance under one-sided gas delivery (pumping)
in the 2D case [2]. These equations are

(1)

which describes the balance for the flowing gas (the gas
flow into the stream part of the jet, x ≤ xfl, equals the
flow leaving the outlet), and

(2)

which describes the balance of the gas circulating in the
chamber. In (1) and (2), 2b1 is the width of the outlet
ring slot and uout is the gas velocity inside this slot.

In the 3D case, the balance equation for the flowing
gas (an analogue of (1)) has the form

(3)

where d is the half-side of an imaginary square outlet
whose cross-sectional area equals that of a circular hole

of radius Rout (π  = 4d2).

When calculating the balance of the circulating gas,
one should take into account circular flow G1 entering
the exit cone. A fraction of this current (κG1, κ < 1) sub-
sequently falls into the outlet of the chamber, while the
remainder turns back to the chamber (Fig. 5).

The circulating gas has the following components.
The inflow to the jet from the stagnation zone is given
by

(4)

The backward flow from the jet to the chamber is the

sum of backward current , which completely
forms in the exit cone (i.e., in the range ϕ = (π – ϕ1)–π
on the right of Fig. 5); the part of the circular current
that falls into the exit sector but returns to the chamber

(the lower part of Fig. 5); and backward current ,
which completely forms in the range ϕ = 0–(π – ϕ1)
(Fig. 5).

Flow  is specified by a model of gas flow in the
outlet. Here, it is viewed as a portion of a jet outgoing
from an infinite plane slot with an appropriate flow rate

streamwise [4, 5]. Then, flow  can be related to the

flow 2πR1/2 , which would enter a
plane jet of half-width d effusing from a slot of length
2πR at flow velocity

2πnxfl Gg 2πR2b1uout,= =

2πn xt xfl–( ) 1.2uout2πR ab1 R xt–( ),=

2n ϕxfl ϕ( )d

0

π

∫ 4d2uout,=

Rout
2

2n ϕ xt ϕ( ) xfl ϕ( )–( ).d

0

π

∫

Gback
1( )

Gback
2( )

Gback
1( )

Gback
1( )

ad R xt–( )ũout

ũout
Gg κG1–

4d2
----------------------=
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(i.e., the gas inflow to the exit cone due to the circular
flows is excluded). Thus,

(5)

Flow  can be calculated under the assumption

that axial radial velocity um varies from  = n/ax
[2, 4] at x < xt(ϕ) (the part of the jet that is considered
to be free) to zero at x = R and that incoming gas veloc-

ity Vm transverse to the jet varies from  = n/x [2] at
x < xt(ϕ) to VRe = η/ρ, which sets in when Re = 1 [2].
For gas circular velocity in the jet, Vϕ, we can put

(6)

(7)

where function ζ varies from 0 at x = xt to 1 at x = R, and
use the jet-thickness-averaged continuity equation.
Eventually, we easily find that

(8)

(9)

The integral A1 = Λfu(Λ) in (8) depends on the

form of the radial (transverse) velocity curve in the
jet [1].

In the final form, the analogue of balance (2)
appears as

(10)

where

(11)

(12)

(13)
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In (13),

(14)

is the angular velocity of the gas entering the exit cone
together with the circular flow.

Parameter κ can be found under the assumption that
the flow entering the exit cone comes largely from the
domain x > xt(ϕ) (such an assumption is totally equiva-
lent to the idea that the jet does not “sense” the outlet
until it reaches the point x = xt(ϕ) and, accordingly, the
circular current does not distort the streamlines in the
jet). Then, calculated at the end of the exit cone, the
flow through the chamber is given by 2nϕ1 + κG1.
Hence,

(15)

In relationships (10)–(15), parameters  = xt(ϕ =

π) and  = xfl(ϕ = π) (the right-hand side of Fig. 5)
can be considered unknown and calculated by preas-
signing some analytical dependences xfl(ϕ) and xt(ϕ)
within the interval between ϕ = π and ϕ = 0.

The jet pattern at ϕ = 0 must be the same as in the

absence of pumping (  = 0). In the absence of pump-

ing, the value of  was calculated as in the 2D axi-
symmetric statement ([2]) (see Appendix 1 in part I)
and so was considered known in the 3D problem.

From the calculated values of  and ; con-
structed curves xt(ϕ) and xc(ϕ); and dependences (6),
(7), and (14), one can set conditions for velocity fields
u, V, and Vϕ at the boundary of the jet. However, unlike
in the 2D problem, here most of the anodic and cathodic
parts of the chamber are occupied by the viscous circu-
lar flow adjacent to the area where the jet viscously
decays. Therefore, the velocity field in the chamber
should be calculated based on the classical equation of
motion of the curl for a viscous incompressible
liquid [6],

(16)

Equation (16), being a third-order equation,
requires, along with the obvious condition u = 0, an
additional boundary condition at the walls. Therefore,
bearing in mind that the boundary conditions and the
problem as a whole are of approximate character, we
did not solve Eq. (16). Instead, we approximated veloc-
ities u, V, and Vϕ from the plane z = –L to the plane z =
0 (for the anodic part of the chamber) and from the
body of revolution z = 2δx to the plane z = 0 (for the

Vϕ
1( ) x( ) ϕ A1um

turbx
∂ζ
∂x
------ x

δ x( )
-----------VReζ– 

 d

0

π ϕ1–

∫=

2nϕ1 κG1+ Gg.=

xt
0( )

xfl
0( )

xfl
1( )

xt
1( )

xc
1( ) xt

1( )

V∇( ) curlV⋅ curlV ∇⋅( )V– ν∆curlV.=
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cathodic part of the chamber) by relationships of type

where (x, ϕ) = V(x, z = 0, ϕ) is the velocity field at
the boundary of the jet (Sa in Fig. 5) with the anodic part
of the chamber and VAF(x, ϕ) = V(x, z = –L, ϕ) is the
velocity field at the anodic flange.

Exponent Π was varied. For the curves given below,
it was taken to be Π = 2. It is essential, however, that the
variation of exponent Π changes the final result much

V x z ϕ, ,( ) V AF x ϕ,( )=

+ VSa
x ϕ,( ) V AF x ϕ,( )–( ) z L+( )/L( )Π ,

VSa
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Fig. 7. Relative fullerene yield Γ vs. Gg under (1, 1') one-
sided gas delivery and (2, 2') totally symmetric double-
sided gas delivery for the (1, 2) 3D and (1', 2') 2D cases.
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radius R for the (1, 1') 2D and (2, 2') 3D cases.

Gg
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Gg
th( )
less significantly than the transition to the axisymmet-
ric 2D geometry.

ANALYSIS OF THE THREE-DIMENSIONAL 
PROBLEM

Fullerene yield Γ versus the gas flow rate depen-
dence was taken for chambers of different radii
(curves 1 and 2 in Fig. 7). For comparison, Fig. 7 also
plots the same dependences for an axisymmetric cham-
ber (curves 1' and 2'). When constructing curves 1' and
2', we took slot width 2b1 such that the cross-sectional

area of the outlet in the 3D problem, π , was equal
to 2πR2b1.

It follows from Fig. 7 that, compared with the axi-
symmetric case, Γ reaches a maximum at a lower flow
rate and is smaller in magnitude by roughly 20%. This
drop depends on parameter 2b1 only slightly.

The qualitative inference that an increase in the
chamber radius is an effective means for improving the
yield provided that the flow rate increases simulta-
neously (which leads to the need for a higher capacity
blower) also remains valid.

The dependences of threshold flow rate  and

relative fullerene yield achievable at Gg = , Γ(th), on
the chamber radius are shown in Fig. 8 (curves 2 and
2'). The same dependences for the 2D axisymmetric
case are also given for comparison.

The dependence of Γ(th) on parameter θa at a fixed
chamber radius also resembles this curve for the axi-
symmetric case (Fig. 9). This means that a loss in the
efficiency of the 3D chamber compared with the 2D
axisymmetric one does not grow, if not compensated,
when one-sided gas delivery is replaced by double-
sided delivery.

Of great interest is the dependence of the relative
fullerene yield on the chamber length that is calculated
for the simpler, 2D case. As the length increases (all
other parameters being the same), Γ slightly grows.
However, this growth is very sensitive to a specified
coordinate dependence of the fullerene irradiation
intensity. If it is assumed that the intensity is uniform
(direction-independent), this effect is much weaker or
even changes sign. This is because, as the chamber
elongates, so does the wall area of fullerene deposition.
The same is true for fullerene-free soot particles. At the
same time, if the radiation is isotropic, the fullerene
irradiation conditions vary insignificantly. As a result, Γ
decreases with increasing chamber length. If, however,
the radiation intensity has a distinct peak in the cross
section of the chamber that passes through the gap,
some of the fullerenes in a longer chamber fall outside
the irradiation zone and the survivability of fullerenes
twisted in the vortex flow rises, albeit insignificantly. In
general, the length of the chamber has a weak effect on
the efficiency of fullerene extraction from the chamber.

Rout
2

Gg
th( )

Gg
th( )
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COMPARISON WITH EXPERIMENTAL 
DATA

The dependence of the fullerene yield (in percent-
age) on the gas flow rate, α(Gg), in the case of the 3D
geometry is the only characteristic that makes qualita-
tive comparison with experiment possible. Both the
experiment carried out with the setup described in [3]
and the calculation indicate that the curve α(Gg)
slightly increases (Fig. 2). Therefore, as Gg rises, the
efficiency of the setup is not directly associated with the
absolute amount of fullerenes produced; rather, it is
related to an increase in the absolute amount of the soot
(and, hence, fullerenes) extracted from the arc.

It should be noted that the comparison in this case
can be made only on the qualitative basis, since the
absolute value of α is hard to calculate directly: the cal-
culated (dashed) curve in Fig. 2 is drawn so as to fit
experimental data (circles) at the initial point with Gg =
16 m3/h.

The triangle in Fig. 2 corresponds to the onset of arc
instability under one-sided gas delivery and roughly
corresponds to the threshold value of flow rate.

Unfortunately, we have not managed to find any
other publications that can be employed to make an

0.5

0.4
0.6

Γ (th)

θa

1

2

0.7 0.8 0.9

0.6

0.7

0.5

Fig. 9. Relative fullerene yield Γ(th) vs. parameter θa in the
(1) 2D and (2) 3D cases. The chamber radius is R = 10 cm.
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independent comparison of our calculations with
experiment. For example, in works [7, 8], which are
similar to ours in design of experiment, the gas is deliv-
ered through a large inlet hole in the cathode, so that the
gas velocity at the exit from the gap is a function of the
flow rate.

CONCLUSIONS

The basic results of this work are as follows.
(1) Double-sided gas delivery (from both the anodic

and cathodic sides) raises the efficiency of fullerene
extraction from the chamber. The higher the total gas
flow rate, the stronger this effect.

(2) In addition, double-sided delivery makes it pos-
sible to raise the flow rate threshold level at which the
arc still persists and, accordingly, to greatly improve the
fullerene yield.

(3) The advantages of double-sided gas delivery are
highlighted at a small radius of the chamber, R ≤ 10 cm.
In a larger chamber, these advantages are not so pro-
nounced.

(4) In a 3D chamber with fullerene extraction
through a hole in the side wall, the fullerene yield drops
by 15–20% compared with a 2D axisymmetric cham-
ber. The drop is slightly dependent on the width of an
annular slot equiareal to a real circular hole.
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Abstract—The generatrix of a nonlinearly vibrating charged drop of a viscous incompressible conducting liq-
uid is found by directly expanding the equilibrium spherical shape of the drop in the amplitude of initial mul-
timode deformation up to second-order terms. A fact previously unknown in the theory of nonlinear interaction
is discovered: the energy of an initially excited vibration mode of a low-viscosity liquid drop is gradually
(within several vibrations periods) transferred to the mode excited by only nonlinear interaction. Irrespectively
of the form of the initial deformation, an unstable viscous drop bearing a charge slightly exceeding the critical
Rayleigh value takes the shape of a prolate spheroid because of viscous damping of all the modes (except for
the fundamental one) for a characteristic time depending on the damping rates of the initially excited modes
and the further evolution of the drop is governed by the fundamental mode. In a high-viscosity drop, the rate of
rise of the unstable fundamental mode amplitude does not increase continuously with time, contrary to the pre-
dictions of nonlinear analysis in terms of the ideal liquid model: it first decreases to a value slightly differing
from zero (which depends on the extent of supercriticality of the charge and viscosity of the liquid), remains
small for a while (the unstable mode amplitude remains virtually time-independent), and then starts growing.
© 2005 Pleiades Publishing, Inc.
(1) Investigation into the nonlinear vibration of the
charged drop was begun about two decades ago, and
today more than 50 publications concerning this issue
are available. However, all the analytical studies have
been carried out in the approximation of an ideal liquid
[1−4], the nonlinear vibrations of viscous drops being
studied only by numerical methods (see, for example,
[5, 6]). Accordingly, both the epistemological and prog-
nostic value of such works are limited (regardless of the
degree of correctness and methods employed). The rea-
son for such a situation is obvious: analytical calcula-
tions of nonlinear vibrations of a viscous liquid drop
and resulting expressions are extremely awkward. Nev-
ertheless, the analysis of the time evolution of a viscous
liquid drop deformed at the zero time that was per-
formed in an approximation linear in initial deforma-
tion amplitude [4] suggest that the nonlinear vibrations
of a charged viscous liquid drop are quite computable
by asymptotic approaches, at which the present paper is
aimed.

(2) Let a spherical drop of an incompressible vis-
cous perfectly conducting liquid of radius r0, density ρ,
kinematic viscosity ν, and surface tension σ bear elec-
tric charge Q. The velocity field of the liquid flow in the
drop is denoted by U(r, ϑ , t); the pressure field, by
p(r, ϑ , t); and the electric field potentials near the drop
and on its surface, by φ(r, ϑ , t) and φs(t), respectively. In
spherical coordinate system (r, ϑ , φ), the equation for
1063-7842/05/5012- $26.00 1568
the surface of the drop executing axisymmetric vibra-
tions at any time instant t can be written in the form

(1)

The initial deformation of the drop is represented as
a superposition of modes,

(2)

where ε is a small parameter characterizing the initial
perturbation amplitude; Pm(µ) is the mth-order Leg-
endre polynomial; and Ω is the set of indices of the
modes that, when superposed, specify the initial defor-
mation of the equilibrium (spherical) shape of the drop.

Mathematically, the problem of nonlinear axisym-
metric capillary vibrations of such a drop the shape of
which at the zero time is described by (1) and (2) is
stated as

F r ϑ t, ,( ) r r0– ξ ϑ t,( )–≡ 0.=

t 0: ξ ϑ( ) ε hmPm µ( );
m Ω∈
∑= =

hm

m Ω∈
∑ 1; µ ϑ ;cos≡=

∂tU U —⋅( )U+
1
ρ
---grad p– ν∆U; divU+ 0;= =

∆φ 0;=

t 0: U 0; r 0: U= = ∞;<

r +∞: —φ 0; r r0 ξ ϑ t,( ): φ+ φs t( );= =
© 2005 Pleiades Publishing, Inc.
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(3)

where ∂t means partial time differentiation, t and n are
the unit vectors of the tangent and external normal to
the free surface defined by expression (1), and ∆ is the
Laplacian.

(3) The above set of equations is nonlinear, and its
solution will be sought by direct expansion in small
parameter ε. For this purpose, all the desired values are
represented in the form of asymptotic expansions in ε,

(4)

where er and eϑ are the unit vectors of the spherical
coordinate system.

Substituting these expansions into the above set of
equations and equating the coefficients multiplying
equal powers of small parameter ε on the left and on the
right to each other, we split the initial nonlinear prob-
lem into a set of interrelated linear inhomogeneous sub-
problems.

(i) In the zeroth order of smallness, the subproblem
is stated as

r r0 ξ ϑ t,( ): ∂tF U —⋅( )F+ + 0;= =

t n —⋅( )U n t —⋅( )U⋅+⋅ 0;=

– p 2ρνn n —⋅( )U⋅ 1
8π
------ —φ( )2– σdivn+ + 0;=

n —⋅ φ Sd

S

∫ 4πQ;–=

S r ϑ ϕ r r0 ξ ; 0 ϑ π; 0 ϕ 2π≤ ≤ ≤ ≤+=, ,{ } ;=

r2 ϑsin rd ϑd ϕd

V

∫ 4π
3

------r0
3;=

V r ϑ ϕ 0 r r0 ξ+ ; 0 ϑ π; 0 ϕ 2π≤ ≤ ≤ ≤≤ ≤, ,{ } ;=

rr2 ϑsin rd ϑd ϕd

V

∫ 0,=

ξ ϑ t,( ) εξ 1( ) ϑ t,( ) ε2ξ 2( ) ϑ t,( ) O ε3( );+ +=

U r ϑ t, ,( ) εUr
1( ) r ϑ t, ,( )er ε2Ur

2( ) r ϑ t, ,( )er+=

+ εUϑ
1( ) r ϑ t, ,( )eϑ ε2Uϑ

2( ) r ϑ t, ,( )eϑ O ε3( );+ +

p r ϑ t, ,( ) p 0( ) r ϑ t, ,( ) εp 1( ) r ϑ t, ,( )+=

+ ε2 p 2( ) r ϑ t, ,( ) O ε3( );+

φ r ϑ t, ,( ) φ 0( ) r t,( ) εφ 1( ) r ϑ t, ,( )+=

+ ε2φ 2( ) r ϑ t, ,( ) O ε3( );+

φs t( ) φs
0( ) t( ) εφs

1( ) t( ) ε2φs
2( ) t( ) O ε3( ),+ + +=

∆φ 0( ) 0; r +∞: —φ 0( ) 0;=

r r0: φ 0( ) φs
0( ) t( );= =
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The solution to this subproblem has the form

(5)

(ii) Collecting the terms involving the small param-
eter in the first power and taking into account the vector
identity

(6)

we come to the first-order subproblem,

(7)

Here, ∆Ω is the angular part of the Laplacian in the
spherical coordinates.

p 0( )– pQ
0( )– pσ

0( )+ 0; r0
2∂rφ

0( ) ϑcos( )d

1–

1

∫ 2Q.–= =

φ 0( ) Q
r
----; φs

0( ) Q
r0
----; p 0( ) Q2

8πr0
4

-----------+
2σ
r0
------.= = =

∆U grad divU( ) curl curlU( ),–=

∂tUr
1( ) 1

ρ
---∂r p 1( )– ν 1

r2
----∂ϑϑ Ur

1( ) ϑ( )cot

r2
----------------∂ϑ Ur

1( )+
+=

–
1
r
---∂rϑ Uϑ

1( ) ϑ( )cot
r

----------------∂rUϑ
1( )–

1

r2
----∂ϑ Uϑ

1( )–
ϑ( )cos

r2
-----------------Uϑ

1( )– 
 ;

∂tUϑ
1( ) 1

ρ
---1

r
---∂ϑ p 1( )–=

+ ν ∂rrUϑ
1( ) 2

r
---∂rUϑ

1( ) 1
r
---∂rϑ Ur

1( )–+ 
  ;

∂rUr
1( ) 2

r
---Ur

1( ) 1
r
---∂ϑ Uϑ

1( ) cot ϑ( )
r

----------------Uϑ
1( )+ + + 0;=

t 0: U 1( ) 0; ξ 1( ) ε hmPm µ( );
m Ω∈
∑= = =

r 0: U 1( ) ∞;<

∆φ 1( ) 0; r +∞: —φ 1( ) 0;=

r r0: φ 1( ) ξ 1( )∂rφ
0( ) φs

1( ) t( );=+=

r0∂rφ
1( ) ξ 1( ) r0∂rrφ

0( ) 2∂rφ
0( )+( )+( ) µ( )d

1–

1

∫ 0;=

ξ 1( ) µ( )d

1–

1

∫ 0; ξ 1( )P1 µ( ) µ( )d

1–

1

∫ 0;= =

∂tξ
1( ) Ur

1( ); ∂rUϑ
1( ) 1

r
---∂ϑ Ur

1( ) 1
r
---Uϑ

1( )–+ 0;= =

p 1( )– 2ρν∂rUr
1( ) 1

4π
------∂rφ

0( ) ∂rφ
1( ) ξ 1( )∂rrφ

0( )+( )–+

–
σ
r0

2
---- 2 ∆Ω+( )ξ 1( ) 0.=
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With regard to (5), the solution to set (7) can be pre-
sented in the form [4]

(8)

where

ξ 1( ) ϑ t,( ) ξn
1( ) t( )Pn µ( );

n Ω∈
∑=

Ur
1( ) r ϑ t, ,( ) Urn

1( ) r t,( )Pn µ( );
n Ω∈
∑=

Uϑ
1( ) r ϑ t, ,( ) Uθn

1( ) r t,( )∂ϑ Pn µ( );
n Ω∈
∑=

p 1( ) r ϑ t, ,( ) pn
1( ) r t,( )Pn µ( );

n Ω∈
∑=

φ 1( ) r ϑ t, ,( ) φn
1( ) r t,( )Pn µ( );

n Ω∈
∑=

ξn
1( ) t( ) aξn Sn

j( )( ) Sn
j( )t( );exp

j 1=

+∞

∑=

φn
1( ) r t,( ) Q

r0
2

----
r0

r
---- 

 
n 1+

ξn
1( ) t( );=

Urn
1( ) r t,( ) an Sn

j( )( ) r
r0
---- 

  n 1–

∫



j 1=

+∞

∑=

+ bn Sn
j( )( )1

r
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jn χn
j( )r( )

jn χn
j( )r0( )

----------------------


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Sn
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Uϑ n
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

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+∞

∑=

+ bn Sn
j( )( )

1
r
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jn χn
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jn χn
j( )r0( )

---------------------
χn

j( )

n 1+
------------

jn 1+ χn
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jn χn
j( )r0( )

-------------------------+
 
 
 



 Sn

j( )t( )exp
n

------------------------;

aξn Sn
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j( ) 2 n 1–( ) 2n 1+( ) ν
r0

2
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=

+ 2 n 1–( )2 n 1+( ) ν
ηn 1 χn
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2

-----------------------------
 hn

∂
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j( )Dn Sn
j( )( )

----------------------------;

an Sn
j( )( ) = 2 n2 1–( ) r0χn

j( )( )2
+( ) 1

2χn
j( )r0

----------------
jn χn

j( )r0( )
jn 1+ χn

j( )r0( )
---------------------------- 1–

 
 
 

×
hn

ηn 1 χn
j( ),( )

------------------------
ωn

2

∂
sn

j( )Dn Sn
j( )( )

----------------------------;
Here,  is the root of dispersion relation Dn( ) = 0

and jn( r0) is the nth-order modified spherical Bessel
function of the first kind.

(iii) In the second order of smallness, the problem is
stated as

bn Sn
j( )( ) 2 n2 1–( )=

× 1
2
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=  
1
ρ
---1

r
---∂ϑ p 2( )– ν ∂rrUϑ

2( ) 2
r
---∂rUϑ

2( ) 1
r
---∂rϑ Ur

2( )–+ 
  ;+

∂rUr
2( ) 2

r
---Ur

2( ) 1
r
---∂ϑ Uϑ

2( ) ϑ( )cot
r

----------------Uϑ
2( )+ + + 0.=
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(9)

t 0: U 2( ) 0;= =

ξ 2( ) 1
r0
----

hm
2

2m 1+
----------------P0 µ( )

m Ω∈
∑–=

–
9
r0
----

m 1+( )hmhm 1+

2m 1+( ) 2m 3+( )
-------------------------------------------P1 µ( );

m Ω∈
∑

r 0: U 2( ) ∞;<

∆φ 2( ) 0; r +∞: —φ 2( ) 0;=

r r0: φ 2( ) ξ 2( )∂rφ
0( ) 1

2
--- ξ 1( )( )2∂rrφ

0( )+ +=

+ ξ 1( )∂rφ
1( ) φs

2( ) t( );=

r0
2∂rφ

2( ) r0ξ
1( ) r0∂rrφ

1( ) 2∂rφ
1( )+( )+[

1–

1

∫

+ r0ξ
2( ) r0∂rrφ

0( ) 2∂rφ
0( )+( ) ξ 1( )( )2 1

2
---r0

2∂rrrφ
0( )


+

---+ 2r0∂rrφ
0( ) ∂rφ

0( )+ 
 ∂ϑξ 1( )∂ϑφ 1( )– d µ( ) 0;=

r0ξ
2( ) ξ 1( )( )2

+( ) µ( )d

1–

1

∫ 0;=

2r0ξ
2( ) 3 ξ 1( )( )2

+( )P1 µ( ) µ( )d

1–

1

∫ 0;=

∂tξ
2( )– Ur

2( ) ∂rUr
1( )ξ 1( ) 1

r0
----Uϑ

1( )∂ϑξ 1( )–+ + 0;=

1
r0
----∂ϑ Ur

2( ) ∂rUϑ
2( ) 1

r0
----Uϑ

2( )–
1
r0
----∂rϑ Ur

1( )

+ +

–
1

r0
2

----∂ϑ Ur
1( ) ∂rrUϑ

1( ) 1
r0
----∂rUϑ

1( )–
1

r0
2

----Uϑ
1( )


 ξ 1( )+ +

– 2
1

r0
2

----∂ϑ Uϑ
1( ) 1

r0
2

----Ur
1( ) 1

r0
----∂rUr

1( )–+ 
  ∂ϑξ 1( ) 0;=

p 2( )–
σ
r0

2
---- 2 ∆Ω+( )ξ 2( )–

2σ
r0

3
------ξ 1( ) 1 ∆Ω+( )ξ 1( )+

–
1

8π
------ 2ξ 2( )∂rrφ

0( )∂rφ
0( ) ξ 1( )( )2 ∂rrφ

0( )( )2
---

+

---+ ∂rrrφ
0( )∂rφ

0( )

 1

r0
2

---- ∂ϑφ 1( )( )2 ∂rφ
1( )( )2

+ +

--+ 2∂rφ
2( )∂rφ

0( ) 2ξ 1( ) ∂rrφ
0( )∂rφ

1( ) ∂rrφ
1( )∂rφ

0( )+( )+
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Substituting solutions (5) and (8) of the zeroth- and
first-order subproblems into set (9) yields a set of sec-
ond-order partial linear inhomogeneous differential

equations for , , p(2), ξ(2), and φ(2).

To solve this set, we apply the time Laplace transfor-
mation

The second-order Laplace transforms are now
expanded into series in Legendre polynomials (this is
possible, since the problem is axisymmetric) and in
their first derivatives with respect to the polar angle
[4, 7],

(10)

Let us take into account that the first-order projec-
tions of the liquid velocity field onto the unit vectors of
the spherical coordinate system are related by the con-
tinuity equation,

Then, set (9) takes the form

+ 2ρν∂rUr
2( ) ∂r p 1( ) 2ρν∂rrUr

1( )–( )ξ 1( )–

– 2ρν 1

r0
2

----∂ϑ Ur
1( ) 1

r0
----∂rUϑ

1( ) 1

r0
2

----Uϑ
1( )–+ 

  ∂ϑξ 1( ) 0.=

Ur
2( ) Uϑ

2( )

f S( ) f t( ) St–( )exp td

0

+∞

∫ ℑ f t( )[ ] ;= =

f Ur
2( ); Uϑ

2( ); p 2( ); ξ 2( ); φ 2( ){ } .=

Ur
2( ) r ϑ S, ,( ) Urn

2( ) r S,( )Pn µ( );
n 0=

+∞

∑=

Uϑ
2( ) r ϑ S, ,( ) Uϑ n

2( ) r S,( )∂ϑ Pn µ( );
n 1=

+∞

∑=

ξ 2( ) ϑ S,( ) ξn
2( ) S( )Pn µ( );

n 0=

+∞

∑=

φ 2( ) r ϑ S, ,( ) φn
2( ) r S,( )Pn µ( );

n 1=

+∞

∑=

p 2( ) r ϑ S, ,( ) pn
2( ) r S,( )Pn µ( ).

n 0=

+∞

∑=

Uϑ n
1( ) r t,( ) r

n n 1+( )
-------------------- ∂rUrn

1( ) r t,( ) 2
r
---Urn

1( ) r t,( )+ 
  .=

SUrn
2( ) r S,( )

α kmn

k k 1+( )m m 1+( )
-------------------------------------------rℑ

k m Ω∈,
∑–

× ∂rUrk
2( ) r t,( )∂rUrm

1( ) r t,( )[ ]

+ Kkmn

k2 k 4–+( )α kmn

k k 1+( )m m 1+( )
-------------------------------------------+ 

 
k m Ω∈,
∑
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(11)

(12)

(13)

(14)

(15)

(16)

(17)

× ℑ Urk
1( ) r t,( )∂rUrm

1( ) r t,( )[ ]

+
2 m 1–( ) m 2+( )α kmn

k k 1+( )m m 1+( )
---------------------------------------------------1

r
--- ℑ Urk

1( ) r t,( )Urm
1( ) r t,( )[ ]

k m Ω∈,
∑

=  
1
ρ
---∂r pn

2( ) r S,( )– n n 1+( )ν
r
--- ∂rUϑ n

2( ) r S,( )---
+

+
1
r
---Uϑ n

2( ) r S,( ) 1
r
---Urn

2( ) r S,( )– 
 ; n 0;≥

SUϑ n
2( ) r S,( )

Γ kmn

m m 1+( )
---------------------rℑ Urk

1( ) r t,( )∂rrUrm
1( ) r t,( )[ ]

k m Ω∈,
∑+

+
α kmn

2k k 1+( )m m 1+( )
--------------------------------------------rℑ ∂ rUrk

1( ) r t,( )∂rUrm
1( ) r t,( )[ ]

k m Ω∈,
∑

+
2

m m 1+( )
----------------------- 2Γ kmn

α kmn

k k 1+( )
--------------------+ 

 
k m Ω∈,
∑

× ℑ Urk
1( ) r t,( )∂rUrm

1( ) r t,( )[ ]

+
2

m m 1+( )
----------------------- Γ kmn

α kmn

k k 1+( )
--------------------+ 

  1
r
--- ℑ

k m Ω∈,
∑

× Urk
1( ) r t,( )Urm

1( ) r t,( )[ ] 1
ρ
---1

r
--- pn

2( ) r S,( )–=

+ ν ∂rrUϑ n
2( ) r S,( ) 2

r
---∂rUϑ n

2( ) r S,( ) 1
r
---∂rUrn

2( ) r S,( )–+ 
  ;

n 1;≥

∂rUrn
2( ) r S,( ) 2

r
---Urn

2( ) r S,( ) n n 1+( )
r

--------------------Uϑ n
2( ) r S,( )–+  = 0;

n 0;≥

r 0: Urn
2( ) ∞; Uϑ n

2( ) ∞;< <

∂rrφn
2( ) r S,( ) 2

r
---∂rφn

2( ) r S,( ) n n 1+( )φn
2( ) r S,( )–+ 0;=

n 0;≥

r +∞: ∂rφn
2( ) r S,( ) 0; φn

2( ) r S,( ) 0;

r r0: φn
2( ) r S,( ) Q

r0
2

----ξn
2( ) S( )–=

–
Q

r0
3

---- mKkmnℑ ξ k
1( ) t( )ξm

1( ) t( )[ ]
k m Ω∈,
∑ φs

2( ) S( )δn0;=

n 0;≥
(18)

(19)

(20)

(21)

(22)

r0
2∂rφn

2( ) r S,( )∫
n 0=

+∞

∑
1–

+1

∫

+
Q

r0
2

---- m m 1+( )Kkmnℑ ξ k
1( ) t( )ξm

1( ) t( )[ ]
k m Ω∈,
∑

–
Q

r0
2

---- α kmnℑ ξ k
1( ) t( )ξm

1( ) t( )[ ]
k m Ω∈,
∑ Pn µ( )d µ( ) 0;=

r0ξn
2( ) S( )∫




n 0=

+∞

∑
1–

+1

∫

+ Kkmnℑ ξ k
1( ) t( )ξm

1( ) t( )[ ]
k m Ω∈,
∑ 




Pn µ( )d µ( ) 0;=

2r0ξn
2( ) S( )∫




n 0=

+∞

∑
1–

+1

∫

+ 3 Kkmnℑ ξ k
1( ) t( )ξm

1( ) t( )[ ]
k m Ω∈,
∑ 




Pn µ( )P1 µ( )d µ( ) = 0;

Sξn
2( ) S( )–

1
r0
----

hm
2

2m 1+
----------------δn0

m Ω∈
∑–

9
r0
----–

×
m 1+( )hmhm 1+

2m 1+( ) 2m 3+( )
-------------------------------------------δn1

m Ω∈
∑ Urn

2( ) r S,( )+

+ Kkmn

α kmn

m m 1+( )
-----------------------– 

  ℑ ξ k
1( ) t( )∂rUrm

1( ) r t,( )[ ]
k m Ω∈,
∑

–
2α kmn

m m 1+( )
----------------------- 1

r0
---- ℑ ξ k

1( ) t( )Urm
1( ) t( )[ ]

k m Ω∈,
∑ 0;=

n 0;≥

1
r0
----Urn

2( ) r S,( ) ∂rUϑ n
2( ) r S,( ) 1

r0
----Uϑ n

2( ) r S,( )–+

+
Γ kmn

m m 1+( )
-----------------------r0ℑ ξ k

1( ) t( )∂rrrUrm
1( ) r t,( )[ ]

k m Ω∈,
∑

+
3Γ kmn

m m 1+( )
-----------------------ℑ ξ k

1( ) t( )∂rrUrm
1( ) r t,( )[ ]

k m Ω∈,
∑

+ Γ kmn 2Γmkn

2Γ kmn

m m 1+( )
-----------------------

2Λkmn

m m 1+( )
-----------------------––+ 

 
k m Ω∈,
∑
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(23)

Here, coefficients Kkmn, αkmn, Γkmn, Λkmn are defined by
relationships

× 1
r0
---- ℑ ξ k

1( ) t( )∂rUrm
1( ) r t,( )[ ]

+
2Γ kmn

m m 1+( )
----------------------- Γ kmn 2Γmkn

4Λkmn

m m 1+( )
-----------------------––– 

 
k m Ω∈,
∑

× 1

r0
2

---- ℑ ξ k
1( ) t( )Urm

1( ) r t,( )[ ] 0; n 1;≥=

pn
2( ) r S,( )–

σ
r0

2
---- n 1–( ) n 2+( )ξn

2( ) S( )+

–
2σ
r0

3
------ Kkmn k k 1+( ) 1–( )ℑ ξ k

1( ) t( )ξm
1( ) t( )[ ]

k m Ω∈,
∑

+
1

8π
------ 2Q

r0
2

-------∂rφn
2( ) r S,( ) 4Q2

r0
5

---------ξn
2( ) S( )+

–
Q2

r0
6

------ α kmnℑ ξ k
1( ) t( )ξm

1( ) t( )[ ]
k m Ω∈,
∑

–
Q2

r0
6

------ 10 k 1+( ) m 1+( ) 2 m 1+( ) m 4+( )–+( )
k m Ω∈,
∑

∫ × Kkmnℑ ξ k
1( ) t( )ξm

1( ) t( )[ ] 2ρν∂rUrn
2( ) r S,( )+

+ 2ρν Kkmn

α kmn

m m 1+( )
---------------------– 

  ℑ ξ k
1( ) t( )∂rrUrm

1( ) r t,( )[ ]
k m Ω∈,
∑

– Kkmnℑ ξ k
1( ) t( )∂r pm

1( ) r t,( )[ ]
k m Ω∈,
∑

– 2ρν 1
r0
----

2α kmn

m m 1+( )
-----------------------ℑ ξ k

1( ) t( )∂rUrm
1( ) r t,( )[ ]

k m Ω∈,
∑

+ 2ρν 1

r0
2

----
2α kmn

m m 1+( )
----------------------- α kmn– 

 
k m Ω∈,
∑

× ℑ ξ k
1( ) t( )Urm

1( ) r t,( )[ ] 0; n 0.≥=

α kmn Ck0m0
n0 Ck 1–( )m1

n0 k k 1+( )m m 1+( );–=

Kkmn Ck0m0
n0( )2

; Γ kmn
2n 1+( )

n n 1+( )
--------------------

αnmk

2k 1+( )
--------------------;= =

Γ kmn Γmkn+ Kkmn;=
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where  and  are the Clebsch–Gordan
coefficients.

(iv) Equations (19) and (20) entering into set (11)–

(23) will be solved first to find coefficients (t) and

(t),

(24)

Now we find the potential of the surface of the drop
and the electrostatic field potential of near the drop
from set (15)–(18),

(25)

(26)

Expressing velocity projection (r, S) from con-
tinuity equation (13),

(27)

and substituting it into (12) yields

Λkmn
2n 1+

n n 1+( )
-------------------- m2

2m 1+
----------------– αnkm αn k m 2 j–, ,

j 1=

m/2[ ]

∑+
 
 
 

;=

Λkmn Λmkn+ α kmn;=

Ck0m0
n0 Ck 1–( )m1

n0

ξ0
2( )

ξ1
2( )

ξ0
2( ) t( ) 1

r0
---- 1

2m 1+
---------------- ξm

1( ) t( )( )2
;

m Ω∈
∑–=

ξ1
2( ) t( ) 9

r0
---- m 1+( )

2m 1+( ) 2m 3+( )
-------------------------------------------ξm

1( ) t( )ξm 1+
1( ) t( ).

m Ω∈
∑–=

φs
2( ) t( ) Q

r0
3

---- m 1–
2m 1+
---------------- ξm

1( ) t( )( )2
;

m Ω∈
∑=

φn
2( ) r S,( ) 0; n 0;= =

φn
2( ) r S,( ) Q

r0
2

---- ξn
2( ) S( )∫




=

+
1
r0
---- mKkmnℑ ξ k

1( ) t( )ξm
1( ) t( )[ ]

k m Ω∈,
∑ 


 r0

r
---- 

 
n 1+

;

n 1.≥

Uϑ n
2( )

Uϑ n
2( ) r S,( ) = 

1
n n 1+( )
-------------------- r∂rUrn

2( ) r S,( ) 2Urn
2( ) r S,( )+( );

pn
2( ) r S,( ) ρS

n n 1+( )
-------------------- r2∂rUrn

2( ) r S,( ) 2rUrn
2( ) r S,( )+( )–=

+
ρν

n n 1+( )
-------------------- r2∂rrrUrn

2( ) r S,( ) 6r∂rrUrn
2( ) r S,( )+(

+ 6∂rUrn
2( ) r S,( ) ) ρν∂rUrn

2( ) r S,( )–

–
ρΓkmn

m m 1+( )
-----------------------r2ℑ ξ rk

1( ) r t,( )∂rrUrm
1( ) r t,( )[ ]

k m Ω∈,
∑



1574 ZHAROV et al.
(28)

Finally, substituting the expressions for (r, S)

and (r, S) into Eq. (11), we arrive at a fourth-order
ordinary inhomogeneous differential equation for func-

tion (r, S),

(29)

Homogeneous equation (29) has four linearly inde-
pendent solutions [8],

(30)

–
ραkmn

2k k 1+( )m m 1+( )
--------------------------------------------r2

k m Ω∈,
∑

× ℑ ∂ rUrk
1( ) r t,( )∂rUrm

1( ) r t,( )[ ]

–
2ρ

m m 1+( )
----------------------- 2Γ kmn

α kmn

k k 1+( )
--------------------+ 

  r
k m Ω∈,
∑

× ℑ Urk
1( ) r t,( )∂rUrm

1( ) r t,( )[ ]

–
2ρ

m m 1+( )
----------------------- Γ kmn

α kmn

k k 1+( )
--------------------+ 

 
k m Ω∈,
∑

× ℑ Urk
1( ) r t,( )Urm

1( ) r t,( )[ ] .

Uϑ n
2( )

pn
2( )

Urn
2( )

∂rr
4
r
---∂r

n 1–( ) n 2+( )
r2

----------------------------------–+ 
 

× ∂rr
4
r
---∂r

n 1–( ) n 2+( )
r2

----------------------------------– S
ν
---–+ 

  Urn
2( ) r S,( )

=  
n n 1+( )

ν
-------------------- f kmn r S,( );

k m Ω∈,
∑

f kmn r S,( )
Γ kmn

m m 1+( )
-----------------------ℑ Urk

1( ) r t,( )∂rrrUrm
1( ) r t,( )[ ]=

+
1

m m 1+( )
--------------------- Γ kmn

α kmn

k k 1+( )
------------------+ 

  ℑ ∂ rUrk
1( ) r t,( )∂rrUrm

1( ) r t,( )[ ]

+
2

m m 1+( )
--------------------- 3Γ kmn

α kmn

k k 1+( )
------------------+ 

  1
r
---ℑ Urk

1( ) r t,( )∂rrrUrm
1( ) r t,( )[ ]

+
4

m m 1+( )
--------------------- Γ kmn

α kmn

k k 1+( )
------------------+ 

  1
r
--- ℑ ∂ rUrk

1( ) r t,( )∂rUrm
1( ) r t,( )[ ]

+
6Γ kmn

m m 1+( )
-----------------------

2Γmkn

k k 1+( )
-------------------- Kkmn

k2 k 10–+( )α kmn

k k 1+( )m m 1+( )
-------------------------------------------––+ 

 

× 1

r2
---- ℑ Urk

1( ) r t,( )∂rUrm
1( ) r t,( )[ ]

2α kmn

k k 1+( )
-------------------- m 1–( ) m 2+( )

m m 1+( )
------------------------------------–

× 1

r3
---- ℑ Urk

1( ) r t,( )Urm
1( ) r t,( )[ ] .

Urn
2( ) r S,( ) rn 1– , Urn

2( ) r S,( ) 1

rn 2+
----------;= =

Urn
2( ) r S,( ) 1

r
--- jn

S

ν
-------r 

  ; Urn
2( ) r S,( ) 1

r
---yn

S

ν
-------r 

  ,= =
where jn(z) and yn(z) are the modified spherical Bessel
functions of the first and second kind.

The Wronskian of set (30) is compactly written as

and the partial solution to Eq. (29) can be written in the
form

Thus, the solution to Eq. (29) with regard to bound-
edness condition (14) has the form

(31)

where An(S) and Bn(S) are arbitrary constants.
Substituting (31) into (27) and (28) and employing

the recurrence relation [8]

(32)

we find functions (r, S) and (r, S),

(33)

W rn 1– 1

rn 2+
---------- 1

r
--- jn

S

ν
-------r 

  1
r
---yn

S

ν
-------r 

 , , , 
 

=  1–( )n 2n 1+( )
r8

--------------------S3/2

ν3/2
--------,

Urn
2( ) *( )

r S,( ) 1
2n 1+( )

--------------------ν
S
---rn 1– f τ( )

τn 2–
----------- τd

0

r

∫–=

+
1

2n 1+( )
--------------------ν

S
--- 1

rn 2+
---------- τn 3+ f τ( ) τd

0

r

∫

+ 1–( )n ν
S

-------1
r
--- jn

S

ν
-------r 

  τ3yn
S

ν
-------τ 

  f τ( ) τd

0

r

∫

– 1–( )n ν
S

-------1
r
---yn

S

ν
-------r 

  τ3 jn
S

ν
-------τ 

  f τ( ) τ .d

0

r

∫

Urn
2( ) r S,( ) An S( )rn 1–=

+ Bn S( )1
r
--- jn

S

n
-------r 

  Urn
2( ) *( )

r S,( ),+

∂χ jn χ( ) jn 1+ χ( ) n
χ
--- jn χ( ); χ S

ν
-------r,≡+=

Uϑ n
2( ) pn

2( )

Uϑ n
2( ) r S,( )

An S( )
n

--------------rn 1–=

+
Bn S( )

n n 1+( )
--------------------1

r
--- n 1+( ) jn

S

ν
-------r 

  S

ν
-------r jn 1+

S

ν
-------r 

 + 
 

+
1

n n 1+( )
-------------------- r∂rUrn

2( ) *( )
r S,( ) 2Urn

2( ) *( )
r S,( )+( );

pn
2( ) r S,( ) An S( )Sρ

n
------rn–=

–
ρS

n n 1+( )
-------------------- r2∂rUrn

2( ) *( )
r S,( ) 2rUrn

2( ) *( )
r S,( )+( )
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(34)

(v) Substituting expressions (31)–(33) into bound-
ary conditions (21)–(23) and taking into account (26),
(32), and recurrent relation [6]

we recast boundary conditions (21)–(23) in the form

(35)

+
ρν

n n 1+( )
-------------------- r2∂rrrUrn

2( ) *( )
r S,( ) 6r∂rrUrn

2( ) *( )
r S,( )+(

+ 6∂rUrn
2( ) *( )

r S,( ) ) ρν∂rUrn
2( ) *( )

r S,( )–

–
ρΓkmn

m m 1+( )
-----------------------r2ℑ Urk

1( ) r t,( )∂rrUrm
1( ) r t,( )[ ]

k m Ω∈,
∑

–
ραkmn

2k k 1+( )m m 1+( )
--------------------------------------------r2ℑ ∂ rUrk

1( ) r t,( )∂rUrm
1( ) r t,( )[ ]

k m Ω∈,
∑

–
2ρ

m m 1+( )
----------------------- 2Γ kmn

α kmn

k k 1+( )
--------------------+ 

 
k m Ω∈,
∑

× rℑ Urk
1( ) r t,( )∂rUrm

1( ) r t,( )[ ] 2ρ
m m 1+( )
-----------------------

k m Ω∈,
∑–

× Γkmn

α kmn

k k 1+( )
--------------------+ 

  ℑ Urk
1( ) r t,( )Urm

1( ) r t,( )[ ] .

∂χ jn χ( ) jn 1– χ( ) n 1+
χ

------------ jn χ( ),–=

An S( )r0
n Bn S( ) jn

S

ν
-------r0 

  Sr0ξn
2( ) S( )–+

=  
hm

2m 1+
---------------- hmδn0

9 m 1+( )
2m 3+

---------------------hm 1+ δn1+ 
 

m Ω∈
∑

– r0Urn
2( ) *( )

r0 S,( ) Kkmn

α kmn

m m 1+( )
-----------------------– 

 
k m Ω∈,
∑–

× r0ℑ ξ k
1( ) t( )∂rUrm

1( ) r0 t,( )[ ]
2α kmn

m m 1+( )
-----------------------

k m Ω∈,
∑+

× ℑ ξ k
1( ) t( )Urm

1( ) r0 t,( )[ ] ; n 0;≥

2
n 1–

n
-----------An S( )r0

n Bn S( )
n n 1+( )
-------------------- 2 n2 1–( ) S

ν
---r0

2+ 
 


+

× jn
S

ν
-------r0 

  2
S

ν
-------r0 jn 1+

S

ν
-------r0 

 

–

= 
r0

n n 1+( )
-------------------- r0

2∂rrUrn
2( ) *( )

r0 S,( ) 2r0∂rUrn
2( ) *( )

r0 S,( )+(–
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(36)

(37)

+ n 1–( ) n 2+( )Urn
2( ) *( )

r0 S,( ) )
Γ kmn

m m 1+( )
-----------------------

k m Ω∈,
∑–

× r0
2ℑ ξ k

1( ) t( ) r0∂rrrUrm
1( ) r0 t,( ) 3∂rrUrm

1( ) r0 t,( )+( )[ ]

– Γ kmn 2Γmkn

2Γ kmn

m m 1+( )
-----------------------–

2Λkmn

m m 1+( )
-----------------------–+ 

 
k m Ω∈,
∑

× r0ℑ ξ k
1( ) t( )∂rUrm

1( ) r0 t,( )[ ]
2Γ kmn

m m 1+( )
-----------------------


k m Ω∈,
∑–

– Γ kmn 2Γmkn–
4Λkmn

m m 1+( )
-----------------------

 ℑ ξ k
1( ) t( )Urm

1( ) r0 t,( )[ ] ;–

n 1;≥

An S( )r0
n S

n
---

2ν
r0

2
------ n 1–( )+ 

  2ν
r0

2
------Bn S( ) n 1–( ) jn---

+

× S

ν
-------r0 

  r0
S

ν
------- jn 1+

S

ν
-------r0 

 

 r0ωn

2

n
-----------ξn

2( ) S( )+ +

=  
Sr0

n n 1+( )
-------------------- r0∂rUrn

2( ) *( )
r0 S,( )(–

+ 2Urn
2( ) *( )

r0 S,( ) ) ν
n n 1+( )
-------------------- r0

2∂rrrUrn
2( ) *( )

r0 S,( )(+

+ 6r0∂rrUrn
2( ) *( )

r0 S,( ) 3 n 1–( ) n 2+( )∂rUrn
2( ) *( )

r0 S,( ) )–

–
r0

2

m m 1+( )
-----------------------ℑ Γ kmnUrk

1( ) r0 t,( )∂rrUrm
1( ) r0 t,( )---

k m Ω∈,
∑

+
α kmn

2k k 1+( )
-----------------------∂rUrk

1( ) r0 t,( )∂rUrm
1( ) r0 t,( )

–
2

m m 1+( )
----------------------- 2Γ kmn

α kmn

k k 1+( )
--------------------+ 

  r0




k m Ω∈,
∑

× ℑ Urk
1( ) r0 t,( )∂rUrm

1( ) r0 t,( )[ ] Γ kmn

α kmn

k k 1+( )
--------------------+ 

 +

---× ℑ Urk
1( ) r0 t,( )Urm

1( ) r0 t,( )[ ]


 σ

ρr0
3

--------+

× 2Kkmn k k 1+( ) 1–( ) W
2
----- m 2n 2m– 7–( )((+





k m Ω∈,
∑

---+ k m 1+( ) 3)+ Kkmn α kmn)+



ℑ ξ k

1( ) t( )ξm
1( ) t( )[ ] 2ν–
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The set of Eqs. (35)–(37) is a set of linear inhomo-
geneous algebraic equations for An(S), Bn(S), and

(S). Substituting the solution to first-order subprob-
lem (8) into this set, we find, upon tedious calculations,

the expression for coefficient (S) in the form

(38)

where

× ℑ ξ k
1( ) t( ) Kkmn

α kmn

m m 1+( )
-----------------------– 

  ∂rrUrm
1( ) r0 t,( )


k m Ω∈,
∑

–
1
r0
----

2α kmn

m m 1+( )
-----------------------∂rUrm

1( ) r0 t,( )
 ℑ ξ k

1( ) t( )---
k m Ω∈,
∑–

× 2ν
r0

2
------

2α kmn

m m 1+( )
----------------------- α kmn– 

  Urm
1( ) r0 t,( )



–
1
ρ
---Kkmn∂r pm

1( ) r0 t,( )
 ; n 1.≥

ξn
2( )

ξn
2( )

ξn
2( ) S( )

ζ kmn
lg S Sk

l( ) Sm
g( ), ,( )

S Sk
l( )– Sm

g( )–( )Dn S( )
--------------------------------------------------;

l g, 1=

+∞

∑
k m Ω∈,
∑=

n 2;≥

ζ kmn
lg S Sk

l( ) Sm
g( ), ,( ) χr0( )2 n 1–( ) 3n 1+( )---+






0

r0

∫=

+ n2 1–( )
ηn 2n 1– χ,( )

ηn 1 χ,( )
--------------------------------

 2n n 1+( )
2n 1+( )r0χ

2
-------------------------------

r0

r
---- 

 
n 2–

– χr0( )2 2 n 1+( ) n n 3–( ) 1–( ) 2 n 1+( )
ηn 1 χ,( )
--------------------+ +



× n 2n2 n 1–+( ) 1 n n 2+( )
r0χ
2

--------
jn χr0( )

jn 1+ χr0( )
-----------------------–+ 

 



× n

2n 1+( )r0χ
2

------------------------------- r
r0
---- 

  n 3+

n n 1+( )
jn χr0( )

ηn 1 χ,( )
--------------------–

× 2 χr0( )2 4n n 1–( ) n 2+( ) χr0( χr0( )2---–+


+ 2 n 1–( ) 2n 1+( ) )
jn χr0( )

jn 1+ χr0( )
-----------------------

 1–( )n

χr0
3

-------------r3yn χr( )

+
n n 1+( )
ηn 1 χ,( )
-------------------- n 1+( ) χr0( )2 4n n 1–( ) n 2+( )+((

– χr0 χr0( )2 2 n 1–( ) 2n 1+( )+( )
jn χr0( )

jn 1+ χr0( )
-----------------------

 yn χr0( )

– n 1–( ) χr0( )2 jn χr0( )
jn 1+ χr0( )
-----------------------yn 1+ χr0( )

 1–( )n

χr0
3

-------------r3 jn χr( )




× f kmn
lg r Sk

l( ) Sm
g( ), ,( )dr

ηn n χ,( )
ηn 1 χ,( )
--------------------2n n 1+( )-





+

×
Λkmn m 2–( )Γ kmn+

m
---------------------------------------------- m 2–( )Kkmn– 

 

–
Dn S( ) ωn

2–( )r0
2

ν2χ2
------------------------------------

α kmn

m
---------- m 1–( )Kkmn– 

 


 ν

r0
4

----

× aξk Sk
l( )( ) am Sm

g( )( )r0 bm Sm
g( )( )+( )

4 m 1–( )α kmn

m
--------------------------------

+

---– χm
g( )r0( )2

2 m 2–( ) m 1–( )+( )Kkmn
 nν

r0
3

------aξk Sk
l( )( )

× am Sm
g( )( ) χm

g( )r0( )2
2 m2 1–( )+( )

2α kmn

m m 1+( )
-----------------------

+

– 2 χm
g( )r0( )2

m 2–( ) m 1–( )+( )Kkmn

ηn n χ,( )
ηn 1 χ,( )
--------------------–

× n 1+( ) m 2–( )
m m 1+( )

----------------------------------- χm
g( )r0( )2Γ kmn

 nν
r0

4
------aξk Sk

l( )( )bm Sm
g( )( )

+
nσ

2r0
4ρ

----------- 4 k2 k 1–+( ) (3 k m 1+( )++((

+ m 2n 2m– 7–( ))W )Kkmn Wα kmn )aξk Sk
l( )( )+

× aξm Sm
g( )( )

ηn n χ,( )
ηn 1 χ,( )
-------------------- 2

Λkmn

m m 1+( )
----------------------- Kkmn– 

 




+

– χm
g( )r0( )2

4+( )
Γ kmn

m m 1+( )
-----------------------

 n n 1+( )

–
Dn S( ) ωn

2–( )r0
2

ν2χ2
------------------------------------

α kmn

m m 1+( )
----------------------- Kkmn– 

 

+ 4n 2Kkmn

α kmn

m m 1+( )
-----------------------– 

 

 aξk Sk

l( )( )bm Sm
g( )( )

νχm
g( )

r0
3

------------

×
jm 1+ χm

g( )r0( )
jm χm

g( )r0( )
----------------------------- Kkmn

α kmn

km
----------+ 

  n
2r0
-------ak Sk

l( )( )am Sm
g( )( )–

– Kkmn

Γ kmn

m m 1+( )
----------------------- χm

g( )r0( )2 α kmn

km
----------+ + 

  n

r0
2

----ak Sk
l( )( )

× bm Sm
g( )( ) 1

2
--- Kkmn

α kmn

km
----------+ 

  Γ kmn

m m 1+( )
----------------------- χm

g( )r0( )2
+ 

 –

× n

r0
3

----bk Sk
l( )( )bm Sm

g( )( ) n

r0
2

----
α kmnχm

g( )

km k 1+( )
------------------------bm Sm

g( )( ) r0ak Sk
l( )( )∫




–
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It is seen that expression (28) has singular point S =
0 and an infinite countable set of singular points that are

defined from the conditions Dn(S) = 0 and S –  –

 = 0 and are simple poles. In addition, expression
(38) tends to zero at S  ∞. This allows one to apply
the Jordan lemma to the inverse Laplace transformation
for the left half-plane and the residue theorem. Eventu-
ally, the inversion formula takes the form

(39)

where summation is over the roots of the equations

Dn(S) = 0 and S –  –  = 0.

Employing formula (39) to calculate coefficient

(S) gives

(40)

where  is a root of dispersion relation Dn( ) = 0.

Substitution of expressions (40) and (24) into (10)
yields coefficient ξ(2)(ϑ , t) in explicit form. Next, sub-
stituting the expression for ξ(2)(ϑ , t) thus found, as well

+ bk Sk
l( )( ) 1

r0χk
l( )

2 k 1+( )
--------------------

jk 1+ χk
l( )r0( )

jk χk
l( )r0( )

---------------------------+
 
 
 



 jm 1+ χm

g( )r0( )
jm χm

g( )r0( )
-----------------------------,

f kmn
lg r Sk

l( ) Sm
g( ), ,( )

Γ kmn

m m 1+( )
----------------------- χm

g( )( )3
ak Sk

l( )( )bm Sm
g( )( )=

× rk 2–

r0
k 1–

----------
jm 1+ χm

g( )r( )
jm χm

g( )r0( )
---------------------------

m k+( )kΓ kmn α kmn+
km m 1+( )

------------------------------------------------- χm
g( )( )2

+

× bm Sm
g( )( ) ak Sk

l( )( )rk 3–

r0
k 1–

---------- bk Sk
l( )( ) 1

r3
----

jk χk
l( )r( )

jk χk
l( )r0( )

----------------------+
 
 
 

×
jm χm

g( )r( )
jm χm

g( )r0( )
-----------------------

Γ kmn χm
g( )( )2

m m 1+( )
--------------------------

m m 1+( )Γmkn α kmn+
k k 1+( )m m 1+( )

---------------------------------------------------+
+

× χk
l( )( )2


 χm

g( )bk Sk
l( )( )bm Sm

g( )( ) 1

r2
----

jk χk
l( )r( )

jk χk
l( )r0( )

----------------------
jm 1+ χm

g( )r( )
jm χm

g( )r0( )
---------------------------.

Sk
l( )

Sm
g( )

f t( ) 1
2πi
-------- F S( ) St( )exp Sd

γ i∞–

γ i∞+

∫=

=  res F Sn
j( )( ) Sn

j( )t( )exp( ),
j 1=

+∞

∑

Sk
l( ) Sm

g( )

ξn
2( )

ξn
2( ) t( )

ζ kmn
lg Sn

j( ) Sk
l( ) Sm

g( ), ,( )
Sn

l( ) Sk
l( ) Sm

g( )––( )∂
Sn

j( )Dn Sn
j( )( )

--------------------------------------------------------------------
l g j, , 1=

+∞

∑
k m Ω∈,
∑=

× Sn
j( )t( )exp

ζ kmn
lg Sk

l( ) Sm
g( )+ Sk

l( ) Sm
g( ), ,( )

Dn Sk
l( ) Sm

g( )+( )
---------------------------------------------------------

l g, 1=

+∞

∑
k m Ω∈,
∑+

× Sk
l( ) Sm

g( )+( )t( ); n 2,≥exp

Sn
j( ) Sn

j( )
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as the expression for coefficient ξ(1)(ϑ , t) (which is
defined by expression (8)), into (4), we readily find the
explicit form of function ξ(ϑ , t) and, thereby, of the
generatrix of a nonlinearly vibrating axisymmetric drop
of a viscous incompressible conducting liquid as a
function of time and polar angle,

(41)

Passing to the ideal-liquid limit in expression (41)
(using the asymptotic representation of the modified
spherical functions at large values of the argument at
ν  0), we easily arrive at the expression for the gen-
eratrix of a nonlinearly vibrating charged drop of an
ideal liquid that was found in [9].

(4) Consider the case of a high-viscosity liquid,
when (νρ1/2/(r0σ)1/2) ≥ 1 (this inequality is met, e.g., for
a water drop with a characteristic linear size of less than
0.1 µm [10]). In this case, one may leave only the first
several terms in the asymptotic representation of the
modified spherical Bessel functions of the first and sec-
ond kind at small values of the argument [8],

(42)

r ϑ t,( ) r0 ε aξn Sn
j( )( ) Sn

j( )t( )Pn µ( )exp
j 1=

+∞

∑
n Ω∈
∑+=

–
ε2

r0
----

aξm Sm
l( )( )aξm Sm

g( )( )
2m 1+

------------------------------------------ Sm
l( ) Sm

g( )+( )t( )exp
l g, 1=

+∞

∑
m Ω∈
∑

× P0 µ( ) 9ε2

r0
--------

m 1+( )aξm Sm
l( )( )aξm 1+ Sm 1+

g( )( )
2m 1+( ) 2m 3+( )

-----------------------------------------------------------------------
l g, 1=

+∞

∑
m Ω∈
∑–

× Sm
l( ) Sm 1+

g( )+( )t( )P1 µ( ) ε2

k m Ω∈,
∑

n 2=

+∞

∑+exp

×
ζ kmn

lg Sn
j( ) Sk

l( ) Sm
g( ), ,( )

Sn
j( ) Sk

l( )– Sm
g( )–( )∂

Sn
j( )Dn Sn

j( )( )
-------------------------------------------------------------------- Sn

j( )t( )exp
l g j, , 1=

+∞

∑




+
ζ kmn

lg Sk
l( ) Sm

g( )+ Sk
l( ) Sm

g( ), ,( )

Dn Sk
l( ) Sm

g( )+( )
--------------------------------------------------------- Sk

l( ) Sm
g( )+( )t( )exp

l g, 1=

+∞

∑



Pn µ( ).

jn χ( ) χn

2n 1+( )!!
------------------------ 1

χ2/2
1! 2n 3+( )
-------------------------+

=

+
χ2/2( )2

2! 2n 3+( ) 2n 5+( )
---------------------------------------------- …+ 

 ; χ 0;

yn χ( ) 2n 1–( )!!
1–( )nχn 1+

------------------------ 1
χ2/2

1! 1 2n–( )
-------------------------+

=

+
χ2/2( )2

2! 1 2n–( ) 3 2n–( )
--------------------------------------------- …+ 

 ; χ 0.
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Eventually, we obtain

(43)

Now, dispersion relation Dn( ) = 0 has only two
roots [4],

(44)

If the liquid viscosity is so large that inequality ν2 @

βn  holds, then the roots of (44) can be written in
the form [4]

(45)

It is not difficult to check that | | ! | |; there-
fore, in expression (40), the terms involving the second

root  rapidly decay with time. The time evolution of
an initially deformed drop is governed by the terms

involving the first root . Then, with regard to the

aξn Sn
j( )( ) hn≅

–
3 2n 2n n 2+( ) 3+( ) 3+( )

2 n 1–( ) 2n 1+( ) 2n 5+( ) 2n n 2+( ) 3+( )
----------------------------------------------------------------------------------------------------

r0
2hnSn

j( )

ν
------------------;

aξn Sn
j( )( ) n 1+( ) 2n 3+( )

2n n 2+( ) 3+( )
-------------------------------------

hnωn
2

Sn
j( )-----------–≅

+
4n 3+( ) 2n n 2+( ) 4n2 6n 5+ +( ) 9+( )

2 n 1–( ) 2n 1+( ) 2n 5+( ) 2n n 2+( ) 3+( )2
------------------------------------------------------------------------------------------------------

r0
2hnωn

2

ν
----------------;

bn Sn
j( )( ) n 1+( ) 2n 3+( )

2n n 2+( ) 3+( )
-------------------------------------

r0hnωn
2

Sn
j( )----------------≅

–
n 1+( ) 2n 4n n 3n 11+( ) 14+( ) 35+( ) 21+( )

n 1–( ) 2n 1+( ) 2n 5+( ) 2n n 2+( ) 3+( )2
---------------------------------------------------------------------------------------------------------

r0
3hnωn

2

ν
----------------;

Dn Sn
j( )( ) 3 2n 2n n 2+( ) 3+( ) 3+( )

2n 1+( )2 2n 5+( )
--------------------------------------------------------------≅

× Sn
j( )( )2

2Sn
j( )τnν

r0
2

-------- τn
2βnωn

2+ + 
  ;

τn
2n 1+( ) 2n 5+( ) n 1–( ) 2n2 4n 3+ +( )

3 4n3 8n2 6n 3+ + +( )
----------------------------------------------------------------------------------------------;=

βn
3 4n3 8n2 6n 3+ + +( )

2n 5+( ) n 1–( )2 2n2 4n 3+ +( )2
-----------------------------------------------------------------------------.=

Sn
j( )

Sn
1( ) τn

ν
r0

2
----– τn

ν
r0

2
---- 1 βn

r0
4ωn

2

ν2
-----------– ;+=

Sn
2( ) τn

ν
r0

2
----– τn

ν
r0

2
---- 1 βn

r0
4ωn

2

ν2
-----------– .–=

r0
4ωn

2

Sn
1( ) τnβn

r0
2ωn

2

2ν
-----------; Sn

2( ) 2τn
ν
r0

2
----.–≅–≅

Sn
1( ) Sn

2( )

Sn
2( )

Sn
1( )
above expansions for coefficients aξn( ), an( ),

and bn( ), one readily obtains from (40)

(46)

In the adopted approximation, expressions (24) with
regard to (8) can be written in the form

Sn
j( ) Sn

j( )

Sn
j( )

ξn
2( ) t( ) τkβkωk

2 τmβmωm
2+( )

r0
2

2ν
------t– 

 exp




k m Ω∈,
∑=

– τnβnωn
2 r0

2

2ν
------t– 

 exp


 2n 1+

n 1–( ) 2n n 2+( ) 3+( )
-------------------------------------------------------

×
hkhm

τnβnωn
2 τkβkωk

2– τmβmωm
2–

-----------------------------------------------------------------

× nσ
ρr0

4
--------Kkmn 2 k k 1+( ) 1–( ) (3 k m 1+( )---++






– m 7 2m 2n–+( ))
W
2
-----

 W
2
----- nσ

ρr0
4

--------α kmn+

– Kkmn

α kmn

km
----------+ 

  nωk
2

2r0
--------- 2k 1+( ) m 1–( ) m 1+( ) 2m 3+( )

k 1–( ) 2k k 2+( ) 3+( ) 2m 1+( )
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Minimal number of the roots of the dispersion relation that should be taken into account to provide a satisfactory convergence

of the series expressing nonlinear correction (t) to the profile of the drop at k = m = 2 and different dimensionless viscosity
ν, Rayleigh parameter W, and number n of a nonlinearly excited mode.

ν
n = 2 n = 4

W = 0 W = 2 W = 3 W = 3.5 W = 0 W = 2 W = 3 W = 3.5

0.02 16 12 9 6 48 28 22 18

0.03 10 8 7 5 30 18 12 10

0.05 8 6 5 4 16 10 8 6

0.07 6 5 4 3 12 8 6 4

0.1 4 4 3 3 10 6 4 4

0.2 3 3 3 3 6 4 3 3

0.5 3 3 3 2 4 3 2 2

1.5 2 2 2 2 3 2 2 2

2.0 2 1 1 1 3 2 1 1

ξn
2( )
Interestingly, the accuracy of asymptotic expression
(46) depends on parameter W: as W approaches the crit-
ical Rayleigh value, the accuracy of (46) rises. This is

because (46) is valid only if ν2 @ βn  (see (44)), and

when W approaches a critical value,  decreases rap-
idly. It then becomes appropriate to use relation (46) in
studying mechanisms making the drop unstable against
its self-charge when W differs little from a critical
value. This is especially true if one takes into account
that relation (46), like expressions (40) and (41), is also
valid at supercritical values of the self-charge (W > 4).

(5) Numerical simulations with the use of (40) in the
dimensionless variables such that ρ = σ = r0 = 1 dem-
onstrate the different convergence of the sums over the
roots of the dispersion relation at various values of liq-
uid viscosity ν, Rayleigh parameter W, and number n of
the mode excited in the second order of smallness. In
particular, at a low liquid viscosity, the roots of disper-
sion relation Dn(S) = 0 are closely spaced; therefore,
summation should be over a large set of the roots (see
the table). If the liquid viscosity is high, one may take
two or even one root of the dispersion relation (see
Sect. 4). It also follows from the table that an increase
in Rayleigh parameter W improves the convergence of
series (40).

Comparison of coefficients (t) for a low-viscos-
ity liquid, when the dimensionless viscosity is low,
(νρ1/2/(r0σ)1/2) ≤ 0.01 (such a condition is met, e.g., for
a water drop with r0 ≥ 100 µm), and for an ideal liquid

[9] shows that, in the former case, coefficient (t)
may be noticeably higher (Fig. 1). This means that non-
linear mode interaction is enhanced in a low-viscosity

× τm 1+ βm 1+

r0
2ωm 1+

2

2ν
-----------------t– 

  .exp

r0
4ωn

2

ωn
2

ξn
2( )

ξn
2( )
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liquid. It seems that, in a low-viscosity liquid, energy
transfer from a mode governing the initial deformation
to that nonlinearly interacting with the former proceeds
not instantly (at the zero time) but takes some finite
time, unlike in an ideal liquid. The amplitudes of non-
linearly exciting modes first grow (within several vibra-
tion periods) and only then exponentially decay
because of viscous energy dissipation (Fig. 1a). In low-
viscosity liquids, the damping of vibrations occurs in
an oscillatory manner (Figs. 1a and 1b); in high-viscos-
ity liquids, this process is aperiodic (Fig. 2). “Long-
term” (over several vibration periods) energy transfer
from an initially exited mode to a mode nonlinearly
interacting with the former is typical of only low-vis-
cosity liquids: even in moderate-viscosity liquids
(Fig. 1b) and a fortiori in high-viscosity ones (Fig. 2),
energy transfer occurs instantly, as in an ideal liquid.

The characteristic spindle-shaped form of the enve-
lope of the oscillating curve in Fig. 1a is explained by
the following factors: (i) the energy is transferred from
the mode governing the initial deformation to that non-
linearly excited in the second order of smallness;
(ii) the amplitude of the initial deformation exponen-
tially decreases with time because of viscous dissipa-
tion, and, consequently, the energy transferred to the
mode excited by nonlinear interaction alone also
decreases; and (iii) the amplitude of the mode nonlin-
early excited in the second order of smallness decays
too. The sum of the first- and second-order amplitudes
will exponentially decrease with time, as is seen in Fig.
3. Yet, the fact that the nonlinearly excited modes grad-
ually build up allows one to imagine real physical
mechanisms underlying nonlinear interactions between
modes of a vibrating drop with a nonzero viscosity.

For a viscous drop with W < 4, when the fundamen-
tal mode and, hence, the drop are stable against the self-
charge, expressions (40), (41), and (46) specify a law of
recovery of the drop equilibrium shape (Fig. 4a). From
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(40), (41), and (46), it follows that the amplitudes of
modes specifying the initial deformation, as well as the
amplitudes of nonlinearly excited modes, exponentially
decrease with time, the indices of the exponentials
growing with increasing mode number.

At 4 < W < 5, when the fundamental mode (n = 2)
loses stability and higher modes do not, the time evolu-
tion of the shape becomes more complicated. The indi-
ces involving the fundamental mode frequency squared
change sign (because, at 4 < W < 5, so does squared fre-

quency ), and the corresponding term starts expo-
nentially increasing with time, whereas the rest of the
components in expressions (40), (41), and (46) con-
tinue decreasing (Fig. 4b). After a lapse of time, the ini-
tial deformation disappears and the shape of the drop is
specified by the fundamental mode growing with time;
that is, the drop evolves toward a prolate spheroid. Such

ω2
2

0 10 20

(a)

–2

–1

0

1

2

ξ n
(2)

0 2.5 5.0

(b)

–0.4

–0.2

0

0.2

0.4

0.6

0.8

7.5 t

t

Fig. 1. Dimensionless coefficient  for the fundamental

mode vs. dimensionless time t for the single-mode initial
deformation at k = m = 2, n = 2, W = 1, and ν = (a) 0.01 and
(b) 0.1. The solid lines are plotted using expression (40);
dotted lines, using the expression valid for an ideal liquid.

ξn
2( )
a process (extension of a charged drop of a conducting
liquid as a result of fundamental mode amplitude
buildup) can be terminated for two reasons. One is field
emission of charges when the self-charge field at the
vertices of the drop, which grows with radius of curva-
ture at the vertices, becomes sufficiently high (as was
described earlier [10]). The other reason is disintegra-
tion of the drop into two parts comparable in size [11].
The fundamental mode becomes unstable irrespective
of whether it enters into the spectrum of modes speci-
fying the initial deformation, because this mode is

0 10 20

0.2

0.4

ξ n
(2)

30 t

1

2

3

0 5 10

–0.4

0.4

ξ n
(1) + εξn
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–0.8

–1.2

0

0.8

Fig. 2. Dimensionless coefficient  vs. dimensionless

time t for k = m = 2, n = 4, h2 = 1, ν = 1, and W: (1) 3, (2) 3.8,
and (3) 3.9. The solid lines are plotted using expression
(40); dotted lines, using asymptotic expression (46).

ξn
2( )

Fig. 3. Linear superposition  + ε  of the first- and

second-order solutions for the dimensionless amplitude of
the fundamental mode vs. dimensionless time t at k = m = 2,
n = 2, W = 1, ν = 0.02, and ε = 0.3. The curves mean the
same as in Fig. 1.

ξn
1( ) ξn

2( )
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excited in the second order of smallness at any form of
the initial deformation through nonlinear interaction [3,
12, 13].

In a high-viscosity liquid drop, when the dimension-
less viscosity is large (νρ1/2/(r0σ)1/2) ≥ 1), the damping
of nonlinearly excited modes that are stable against the
self-charge is an aperiodic process (Figs. 2 and 5).
Then, if the fundamental mode of a high-viscosity drop
is unstable and the rest of the excited modes are stable
against the charge of the drop (Fig. 5), the amplitude of
the fundamental mode will grow with time and the drop
will extend, taking the shape of a spheroid. However,
unlike a drop of an ideal liquid, a high-viscosity drop
will extend rather slowly and the rate of its deformation
will decrease, rather than increase, with increasing
eccentricity [14] (see Fig. 5 and 6). In this case, as fol-
lows from detailed analysis, the rate of growth of the
unstable fundamental mode, which initially depends on

0 2 4
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ξ n
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2
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0

1.0

1.5 t

6

2

0

–0.5
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4
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2.0

Fig. 4. Dimensionless coefficient  on dimensionless

time t at k = m = 3, h3 = 1, ν = 0.1, and various n. The figures
by the curves coincide with numbers n of excited modes.
W = (a) 3 and (b) 4.01.

ξn
2( )
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supercriticality ∆W of the Rayleigh parameter for the
fundamental mode, first decreases for some ∆W-depen-
dent time to a very small value, remains constant for the
time inversely proportional to ∆W, and then starts rising
following a near-exponential law with the rate of rise
inversely proportional to the liquid viscosity. At a small
supercriticality of the Rayleigh parameter (∆W ~ 0.001),
the evolution curve for the unstable fundamental mode
exhibits a plateau (Figs. 5 and 6), where the fundamen-
tal mode amplitude varies insignificantly. Physically,
this means that an unstable high-viscosity drop with
∆W and ν mentioned above rapidly (for a time interval
close to oscillation period T2 of the fundamental mode

0 2 4
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0.4

ξ n
(2)

6

6

2

0
–0.2

1.0

4

t

0.6

0.8
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1

t
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Fig. 5. The same dependences as in Fig. 4b for ν = 1.

Fig. 6. Dimensionless coefficient  for the fundamental

mode vs. dimensionless time t at k = m = 4, n = 2, W = 4.01,
and viscosity ν = (1) 0.05, (2) 0.1, and (3) 1. The solid lines
are plotted using expression (40); dotted line, using expres-
sion (46) for ν = 1.

ξn
2( )
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of an uncharged drop) acquires a spheroidal deforma-
tion ~ε, remains so for a time interval ≈10T2, and only
then continues to elongate with an increasing rate.
Recall that the time dependence of the spheroidal
deformation amplitude for an unstable drop of an ideal
liquid is supraexponential [14]. With low viscosity
taken into account [15], the unstable drop evolution
pattern changes only quantitatively.

If parameter W lies in the range 5 < W < 6, the third
mode (n = 3) also becomes unstable. However, whether
the instability of the third mode will contribute to sphe-
roidal deformation depends on whether this mode is in
the spectrum of modes specifying the initial deforma-
tion or in the spectrum of modes excited by nonlinear
interaction. According to (46), if the third mode is
absent in both spectra, it will not influence the drop’s
shape (provided that thermal vibrations of a vanish-
ingly small amplitude, which are always present in the
drop due to the thermal motion of molecules, are disre-
garded).

CONCLUSIONS

Nonlinear vibrations of viscous drops can be studied
analytically using classical asymptotic methods. In the
limit of large viscosity, the resulting analytical expres-
sions are fairly compact. The time evolution of nonlin-
early excited modes shows that, in a low-viscosity liq-
uid, the energy transfer from a mode specifying the ini-
tial deformation to a nonlinearly excited mode occurs
not instantly but takes several vibration periods, unlike
in an ideal or high-viscosity liquid. Such a mechanism
of energy transfer to a nonlinearly excited mode pro-
vides it with more energy and was unknown previously.
When a high-viscosity drop bearing a charge slightly
exceeding the critical value for the fundamental mode
becomes unstable ((νρ1/2/(r0σ)1/2) ≥ 1), the growth of
the spheroidal deformation amplitude differs apprecia-
bly from that predicted earlier for an ideal or low-vis-
cosity liquid.
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Abstract—Second-order calculations show that, when a gas flows about a charged drop, the fundamental mode
of the multimode initial deformation of its equilibrium shape builds up through nonlinear secondary Raman res-
onant interaction with higher modes if this mode is present in the mode spectrum specifying the initial defor-
mation. This circumstance accounts for large-amplitude spheroidal oscillations of drops in natural liquid-drop
systems and provides an insight into corona initiation in the vicinity of drops in thunderstorm clouds and into
lightning initiation. © 2005 Pleiades Publishing, Inc.
(1) Charged drops moving in an environment are the
object of much investigation, since they are frequently
encountered in various fields of technology (see, e.g.,
the reviews [1–3] and Refs. cited therein). For example,
cumuli causing thunderstorms consist of numerous
charged water drops, which are suspended in air owing
to ascending flows counterbalancing the weight of the
drops. Studying the electrohydrodynamic stability of
their charged surface is also expected to shed light on
the physical mechanism of lightning initiation [4, 5].
According to the present-day concepts, streak lightning
arises from a corona discharge initiated by an intrac-
loud electric field near a coarse drop or water-covered
hail freely falling in a thunderstorm cloud (see, e.g., [6, 7],
where critical conditions for corona initiation near the
top of a drop nonlinearly vibrating in a cloud are ana-
lyzed). However, the maximal self-charge of drops and
maximal electric fields measured in thunderstorm
clouds [8] are much lower than those causing instability
of the surface of the drops against the self-charge or
induced charges [9, 10]. The measured values of these
parameters may initiate a corona discharge near the top
of the drop only if the spheroidal vibration amplitude is
very high [6–8].

To date, not much has been known about the physi-
cal mechanism of lightning initiation near a drop in
clouds (in spite of much effort made in this field). It
seems that, when studying the instability of the drop
moving in an environment against its self-charge,
researchers overlook some important factor. This may
be interaction of the drop with a flowing medium. For
real velocities of drops, the flow around the drop can be
simulated by an incompressible liquid. The real liquid
model assumes that the velocity field at the interface
experiences a tangential discontinuity, which results in
the vibrational instability of the interface (Kelvin–
1063-7842/05/5012- $26.00 1583
Helmholtz instability for the planar interface between
immiscible incompressible liquids [11, 12]). Kelvin–
Helmholtz instability radically changes the physics of
interface instability; specifically, it loosens the critical
conditions for instability of the drop against the self-
charge [9, 10]. In this work, we study the nonlinear res-
onance redistribution of the initial deformation energy
among the modes of a nonlinearly vibrating drop
placed in a laminar flow and analyze critical conditions
for interface instability in such a system.

The nonlinear vibrations of a charged drop in a flow-
ing environment were studied previously [13]. How-
ever, the resulting expressions, being very awkward,
were analyzed only numerically and the point of reso-
nant energy exchange between the modes has not been
touched upon. Degenerate nonlinear resonances in the
system studied were considered in [14], where it was
found that such resonances transfer the energy only
from lower to higher modes. Reverse energy transfer is
typical of multimode Raman resonances [15, 16]. How-
ever, for a charged drop placed in an ideal insulating
incompressible medium, the lowest mode that could be
excited in three-mode secondary Raman resonances is
the third mode [17, 18]. The resonant buildup of the
fundamental mode, which is of particular importance in
elaborating a mechanism of lightning initiation [4–6],
was found only in nonlinear four-mode Raman reso-
nances [16]. However, the fundamental mode discov-
ered only as a third-order effect in terms of initial defor-
mation amplitude [16] turned out to be very weak and
so could not explain real observations [19, 20], where
the spheroidal vibration amplitude of drops falling in
the atmosphere exceeded half the drop’s radius.

(2) Let an ideal incompressible insulating medium
of density ρ2 and permittivity ε∗  occupying an infinitely
© 2005 Pleiades Publishing, Inc.



 

1584

        

GRIGOR’EV

                                                                        
large volume flow with constant velocity U0 about an
immobile drop of an ideal incompressible perfectly
conducting liquid of density ρ1. The radius of the drop
is R; the surface tension coefficient at the interface, σ;
and the total charge of the drop, Q. We assume that, at
the zero time t = 0, the equilibrium (spherical) shape of
the drop experiences virtual axisymmetric deformation
of finite amplitude that is, however, much smaller than
the radius of the drop. At the zero time, the flow veloc-
ity field in the drop is taken to be identically zero. We
are interested in nonlinear oscillations of the drop at
t > 0.

To simplify the mathematics, we introduce dimen-
sionless variables such that R = σ = ρ1 = 1. Then, in the
spherical coordinate system with the origin at the center
of mass of the drop, the equation for the interface dis-
turbed by the axisymmetric capillary wave motion has
the form r = 1 + ξ(θ, t), |ξ| ! 1. The liquid flow in the
drop and environment is assumed to be potential; that
is, the flow velocity fields in the drop and environment
are given by V = —ψ(r, t) and U = —ϕ(r, t), respectively.

Mathematically, the problem of nonlinear oscilla-
tions of the interface in this system is described by the
Laplace equations for velocity potentials ψ(r, t) and
ϕ(r, t) and for electrostatic potential Φ(r, t) [6, 7, 13–
16],

subject to the boundary conditions

(1)

∆Φ r t,( ) 0; ∆ψ r t,( ) 0; ∆ϕ r t,( ) 0,= = =

r 0: ψ r t,( ) 0;

r ∞: Φ r t,( ) 0: —ϕ r t,( ) U0;

r 1 ξ : 
∂ξ
∂t
------+ ∂ψ

∂r
-------

1

r2
----∂ψ

∂θ
-------∂ξ

∂θ
------;–= =

∂ψ
∂r
-------

1

r2
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∂θ
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∂θ
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r2
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∂θ
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1
2
--- —ψ( )2– Pin PE Pσ–+ +

=  ρ∂ϕ
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ρ
2
--- —ϕ( )2– Pex;+
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8π
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4π
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
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---π; V1

0 r 1 ξ θ t,( )+≤ ≤
0 θ π≤ ≤
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
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= =
Here, ε is the initial deformation amplitude (the small
parameter of the problem); Pi(µ) is the ith-order Leg-
endre polynomial (m ≡ cos(θ)); Pin and Pex are the inter-
nal and external pressures (inside and outside the drop),
respectively; PE is the pressure of the self-charge of the
drop on the interface; Pσ is the Laplace pressure; n is
the unit positive normal to the surface of the drop; Φs(t)
is the electrostatic potential that is assumed to be con-
stant over the surface; ρ ≡ ρ2/ρ1; hi are the coefficients
that specify the partial contribution of an ith vibration
mode to the total disturbance; Ξ is the set of the num-
bers of initially excited vibration modes specifying the
initial deformation of the drop; and ξ0 is the constant
that is found from the condition that the volume of the
drop remains constant at the zero time. The hydrody-
namic velocities are assumed to be much lower than the
speed of an electromagnetic signal in a vacuum,
because of which the Maxwell equations for the electric
field near a nonlinearly vibrating drop are reduced to
the electrostatics equations.

Along with the initial and boundary conditions, we
should include the stationary condition for the center of
mass. If the characteristic linear dimensions of the sur-
rounding medium are sufficiently large, this condition
is fulfilled automatically, as follows from [21], and the
amplitude of the translational (first) mode, as well as
the amplitudes of higher modes, should be calculated
based on boundary hydrodynamic conditions at the
interface.

(3) The problem thus stated will be solved in the sec-
ond-order approximation in small parameter ε using the
asymptotic method of many scales. According to this
method, desired functions ψ(r, t), ϕ(r, t), and Φ(r, t), as
well as envelope ξ(θ, t) of the shape of the drop, are
considered to be dependent not on standard time t but
on many time scales Tm = εmt, which reflect the pres-
ence of fast and slow processes in the vibrating system.
Analytical expressions for ξ(θ, t), ψ(r, t), ϕ(r, t), and
Φ(r, t) will be sought as asymptotic expansions in Leg-
endre polynomials,

t 0: ξ θ t,( ) ξ0P0 µ( ) ε hiPi µ( );
i Ξ∈
∑+= =

hi

i Ξ∈
∑ 1;

∂ξ θ t,( )
∂t

------------------- 0;= =

ξ0 ε2 hi
2

2i 1+( )
-------------------

i Ξ∈
∑– O ε3( ).+≈

ξ θ t,( ) εmξ m( ) θ T0 T1 …, , ,( );
m 1=

∞

∑=
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(2)

where

(3)

With regard to many time scales, the time deriva-
tives will be calculated by the rule

(4)

Substituting expansions (2)–(4) into statement (1)
and equating the terms of the same order of smallness
to each other in each of the equations, we easily arrive
at a set of zeroth-, first-, and second-order subproblems

for unknown coefficients (T0, T1, …), (T0, T1,

…), (T0, T1, …), and (T0, T1, …) appearing in
(2) and (3).

Below, we will restrict our calculation to coeffi-

cients (T0, T1), which specify the shape of the non-
linearly vibrating drop as a function of time. The other
coefficients in expansions (2) and (3) are easily, while

awkwardly, expressed through (T0, T1) [13].

(4) In the first order of smallness in ε, unknown

coefficients (T0, T1) are found from the infinite set
of coupled differential equations

ψ r t,( ) εmψ m( ) r θ T0 T1 …, , , ,( );
m 1=

∞

∑=

ϕ r t,( ) εmϕ m( ) r θ T0 T1 …, , , ,( );
m 0=

∞

∑=

Φ r t,( ) εmΦ m( ) r θ T0 T1 …, , , ,( );
m 0=

∞

∑=

ξ m( ) θ T0 T1 …, , ,( ) Mn
m( ) T0 T1 …, ,( )Pn µ( );

n 0=

∞

∑=

ψ m( ) r θ T0 T1 …, , , ,( ) En
m( ) T0 T1 …, ,( )rnPn µ( );

n 0=

∞

∑=

ϕ m( ) r θ T0 T1 …, , , ,( ) = Gn
m( ) T0 T1 …, ,( )r n– 1– Pn µ( );

n 0=

∞

∑

Φ m( ) r θ T0 T1 …, , , ,( ) = Fn
m( ) T0 T1 …, ,( )r n– 1– Pn µ( ).

n 0=

∞

∑

∂
∂t
----- ∂

∂T0
--------- ε ∂

∂T1
--------- O ε2( ).+ +=

Mn
m( ) En

m( )

Gn
m( ) Fn

m( )

Mn
m( )

Mn
m( )

Mn
1( )

M0
1( ) T0 T1 …, ,( ) 0; M1

1( ) T0 T1 …, ,( ) 0;≡ ≡

n 2: AnMn 2–
1( ) T0 T1 …, ,( )≥

+ Bn

∂Mn 1–
1( ) T0 T1 …, ,( )

∂T0
--------------------------------------------

∂2Mn
1( ) T0 T1 …, ,( )

∂T0
2

--------------------------------------------+
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(5)

It is easy to see that, putting U0 = 0, we split set (5)
into uncoupled second-order differential equations with
constant coefficients that describe the harmonic oscilla-
tions of the modes (as was done earlier in [17, 18] for
the vibration of a charged drop of an incompressible
liquid that is at rest in an incompressible insulating
medium). Thus, the motion of the surrounding medium
causes mode interaction linear in small parameter ε.
According to (5), an nth mode interacts with the four
nearest, (n – 2)th, (n – 1)th, (n + 1)th, and (n + 2)th,
modes. Earlier, first-order interaction between the
modes was found for the planar interface between
immiscible ideal incompressible liquids, one of which
executes translational motion along the interface
[11, 12], i.e., in the situation when the interface is prone
to Kelvin–Helmholtz instability. It was shown [10] that,
when an ideal liquid flows around the drop, its surface
starts vibrating, which is typical of this type of instabil-
ity.

One more linear effect showing up when an ideal
liquid flows around the drop is noteworthy: according
to [9], the drop flattens along the flow, taking the shape
of a spheroid with an eccentricity depending on the
flow velocity and charge of the drop. In this case, the
drop is expected to vibrate about the spherical (equilib-
rium) shape. However, the spherocity of the drop at rea-
sonable velocities (i.e., as long as the encircling flow
remains laminar) is, as a rule, small. For example, when
air with density ρ2 ≈ 0.001 g/cm3 flows around a drop
of radius R = 100 µm with velocity U0 ≤ 100 cm/s, sphe-

+ ωn
2( )Mn

1( ) T0 T1 …, ,( ) Cn

∂Mn 1+
1( ) T0 T1 …, ,( )

∂T0
---------------------------------------------+

+ DnMn 2+
1( ) T0 T1 …, ,( ) 0;=

An
9
4
---Weχ n( ) n2 n 1–( ) n 2–( )

2n 3–( ) 2n 1–( )
----------------------------------------;=

Bn
3
2
--- ρWenχ n( );=

Cn
3
2
--- ρWeχ n( )n 2n 1+( )

2n 3+
-----------------------;=

Dn
9
4
---Weχ n( ) n2 n 1+( ) n 2+( )

2n 3+( ) 2n 5+( )
-----------------------------------------;=

ωn
2 χ n( ) n n 1–( ) n 2 W–+( )---

=

– We
9n2 2n 1+( ) n2 1–( ) 3+( )
2 2n 1–( ) 2n 1+( ) 2n 3+( )
-----------------------------------------------------------------

 ;

W
Q2

4πε*
------------; χ n( ) 1 ρ n

n 1+
------------+ 

 
1–

;= =

We ρU0
2; Φs

1( ) 0.≡ ≡
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roidal deformation amplitude  = (3We/16) is neg-
ligible and can be ignored in second-order calculations.

(5) Second-order corrections (i.e., coefficients

) are found from the set of coupled inhomoge-
neous harmonic differential equations

(6)

with zero boundary conditions. Inhomogeneity func-

tions fn(T0) are determined through coefficients ,
which are solutions to set (5), as follows:

(7)

M2
1( )

Mn
2( )

M0
2( ) T0( ) 1

2n 1+
--------------- Mn
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∞
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2m 1–

------------------------
∂Ml

1( ) T0( )
∂T0

------------------------
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∂Mm
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 

+ G5

∂2Mm
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2
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where

(8)

G1 Km l n, , 2n l l 1+( ) 1–[ ] W
n
2
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



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

+ W
n
2
---αm l n, , We

9n n 1–( )
4 2n 1–( ) 2m 1+( )
---------------------------------------------+

× m m 1–( )2Km 1– l n 1–, , m 1+( )2 m 2+( )Km 1+ l n 1–, ,–[
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9n
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

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,
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-----------------------------≡
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G3 We
9
8
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G4
4
3
---
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and  and  are the Clebsch–Gordan coeffi-
cients.

The presence of the Clebsch–Gordan coefficients
makes the number of inhomogeneity functions fn(T0)
that are not identically zero finite. For example, if an
mth mode is initially excited, the Clebsch–Gordan
coefficients (and, hence, the inhomogeneity functions)
with numbers from 0 to 2m + 2 will be other than zero.

(6) In our consideration, emphasis is on the nonlin-
ear vibration of large water drops in thunderstorm
clouds. Let, for definiteness, R = 100 µm; then, the free-
fall velocity of such a drop in a cloud is U0 = 72 cm/s
and its associated Reynolds number is Re = 9.61 [22].
This means that the air flow around the drop is laminar;
hence, the conditions that were set in stating the prob-
lem are fulfilled. The Weber number for this drop is
very small, We ≈ 0.7 × 10–3. Dimensionless density ρ,
which enters into expressions (7) and (8) defining the
inhomogeneity functions, has the same order of magni-
tude. In sets (5) and (6), coefficients An, Bn, Cn, and Dn

involve the Weber number and its combination with

dimensionless density ρ in the form . Coeffi-
cients Gj entering into definition (7) of the inhomoge-

neity functions contain We, ρ, and  as factors. As
is evident from the aforesaid, quantities We, ρ, and

 are of the same order of magnitude (this follows
from the fact that dimensionless velocity U0 of the drop
is on the order of unity for those values of physical
quantities adopted in this paper); so, they will serve as
parameters in asymptotic expansions of solutions to
sets (5) and (6).

In our problem, dimensionless Rayleigh parameter
W characterizing the stability of the drop against its
self-charge may vary between 0 and 4. According to
[8], self-charges of drops in thunderstorm clouds are
small: for maximal values of the Rayleigh parameter,
they are no higher than several tenths. Yet, parameter W

+
m 1–( )αm 1– l n, ,

n 1+( ) 2m 1+( )
---------------------------------------

n 1–( )αm l n 1–, ,

m 1+( ) 2n 1–( )
--------------------------------------–

+
n 1+( )αm l n 1+, ,

m 1+( ) 2n 3+( )
---------------------------------------

n 1+( )αm 1+ l n, ,

n 1+( ) 2m 1+( )
---------------------------------------– 

 ,

G8 ρWe
3n

2 n 1+( ) 2m 1+( )
------------------------------------------≡

× m 1+( )2 m 2+( )Km 1+ l n, , m m 1–( )2Km 1– l n, ,–[

– m 1+( )αm 1+ l n, , m 1–( )αm 1– l n, ,+ ] ,

G9 ρWe
3
2
---nm m 1+( )Km l n, , ;≡

αmln m m 1+( )l l 1+( )Cm0l0
n0 Cm 1l1–

0 ;–≡

Kmln Cm0l0
n0[ ] 2

;≡

Cm0l0
n0 Cm 1– l1

n0

ρWe

ρWe

ρWe
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in asymptotic calculations will be viewed as a quantity
of zeroth-order of smallness.

(i) To be definite, we assume that the initial defor-
mation of the drop is specified by a superposition of jth
and kth modes with j > k, | j > k| ≥ 4. Then, in the first-

order approximation in We, ρ, and , solutions to
set (5) with the boundary conditions

have the form

(9)

Frequencies ωn are found from the equation

(10)

which has the meaning of the dispersion relation of the
problem that is written in the approximation linear in

We, , and ρ without taking into account mode
interaction. Such an approach is valid, since the influ-
ence of mode interaction on the dispersion relation for
the tangential discontinuity at the interface shows up in

the second-order approximation in We, , and ρ.
Frequencies ωn are found from Eq. (10) at We = 0.
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∂Mk
1( )

∂T0
------------- 0; Mn

1( ) 0;
∂Mn

1( )

∂T0
------------- 0;= = =

n j; n k≠ ≠

M g 2–( )
1( ) Dg 2– hg

ω0g
2 ωg 2–

2–
-------------------------- ω0gT0( )cos ωg 2– T0( )cos–[ ] ;=
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Thus, at | j – k| ≥ 4, four modes ((g – 1)th, (g – 2)th,
(g + 1)th, and (g + 2)th) are excited near a gth mode
(g = j or k) entering into the mode spectrum that speci-
fies the initial deformation. Such a situation is due to
hydrodynamic interaction at the interface where the
velocity field experiences a discontinuity. However, the
amplitudes of these modes will have the first order of

smallness in variables We, ρ, and . If the condi-
tion | j – k| ≥ 4 is not set, the form of solutions to set (5)
will change insignificantly because of its linearity: the
solutions will represent linear combinations of the
functions appearing in (9).

(ii) Using solutions , we will write expressions
for inhomogeneity functions (7) appearing in set (6).
Taking into account the order of smallness of the modes
specifying the initial deformation and also of the modes
excited via linear interaction due to the tangential dis-
continuity, one can easily see that the modes specifying
the initial deformation of the equilibrium shape of the
drop play a major role in nonlinear (quadratic in ε)
interaction. Recall that the main goal of this study is to
see whether the fundamental mode can be resonantly
built up by absorbing the energy of higher modes
involved in the initial deformation. Therefore, below,
we will analyze the solutions to sets (6) and (7), ignor-
ing mode interaction due to a tangential discontinuity
of the velocity field at the interface. In this case, the
infinite set of coupled inhomogeneous equations (6)
and (7) will turn into a set of uncoupled inhomogeneous
harmonic equations with zero initial conditions for all
the modes and inhomogeneity function (7) written in

the zeroth-order of smallness in We, ρ, and  will
simplify greatly. Actually, the resulting set of equations
will describe the nonlinear vibrations of a charged
immobile drop in a medium. A solution to this set was
found earlier [17, 18]. The presence of the encircling
flow will show up merely as a change in the vibration
frequency, which can be found from dispersion relation
(10). Eventually, in the quadratic (in small parameter ε)
approximation, corrections to the envelope of the shape
of a nonlinearly vibrating drop will have the form
[17, 18]

(11)

ρWe

Mn
1( )

ρWe

Mn
2( ) T0 T1,( )

hlhm

2
---------- λ lmn

+( ) λ lmn
–( )+( ) ωnT0( )cos

l m Ξ∈,
∑–=

+
hlhm

2
---------- λ lmn

+( ) ωl ωm+( )T0( )cos(
l m, Ξ∈
∑

+ λ lmn
–( ) ωl ωm–( )T0( )cos ),

λmln
±( ) γmln ωmωlηmln±( )/ ωn

2 ωm ωl±( )2–( ),=

γmln = χnKmln ωm
2 n m– 1 ρn n  m – – 1( )/ n 1+( )–+( )(

+ 2n l l 1+( ) 1–( ) l m 1+( )(+
(7) It is easy to check that, if the relationship  =
(ωm ± ωl)2 is valid, the denominators of some of the
terms appearing in solutions (11) vanish and expres-
sions (11) diverge; in other words, the second-order
corrections become asymptotically invalid. In the the-
ory of nonlinear oscillations, such a situation is treated
as a resonance situation and should be analyzed sepa-
rately using other mathematical means [16–18]. Physi-
cally, the resonance situation means that a wave with
frequency ωn vigorously exchanges energy with two
waves with frequencies ωm and ωl (the case of second-
ary Raman resonance) or, at m = l, interacts twice with
the wave of frequency ωm = ωl (degenerate resonance)
[16–18]. It was shown previously [14] that, when
degenerate resonant mode interaction occurs in the sys-
tem being considered, the energy is transferred only
from lower to higher modes. In the case of secondary
Raman resonance, the energy may be transferred in the
reverse direction too: from lower to higher modes and
vice versa [16–18]. The only factor that “spoils” the
general consistent picture for a charged drop nonlin-
early vibrating in a quiescent insulating medium (see
[16–18]) is that the fundamental mode (n = 2) can be
involved in resonance energy exchange between the
modes in the second order of smallness in vibration
amplitude. To put it otherwise, it is impossible for a
immobile charged drop vibrating in an insulating
medium to transfer energy from higher modes to the
fundamental mode by means of secondary Raman res-

onance, since the condition  = (ωm ± ωl)2 is fulfilled
for none of m and l. If the drop moves relative to the
medium, its vibration frequency is given by (11); that
is, the dispersion relation involves the term propor-
tional to Weber number We and so the fundamental
mode can resonantly build up. Indeed, introducing the
designation

(12)

where ∆  = ∆ (m, l, n, W, We), we construct for
several values of n (specifically, for several lower
modes to which the energy is transferred from higher

modes) the dependences ∆  = ∆ (m, l) that are

crossed by the plane ∆  = 0 at fixed values of Ray-
leigh and Weber parameters W and We (Fig. 1). In a

similar way, we construct the dependences ∆  =

– m 2m 2n– 7+( ) 3 )nW /2+ )

+ χnαmln 1/m nρ/ n 1+( ) m 1+( )( )+( )ωm
2 nW /2+( ),

ηmln χnKmln n/2 m– 1+((=

+ ρn 2m 3 n–+( )/ 2 n 1+( )( )) χnαmln 1 n/ 2l( )+( )/m((+

– nρ n 2l 3+ +( )/ 2 m 1+( ) l 1+( ) n 1+( )( ) ).

ωn
2

ω2
2

∆ωn
2 ωm ωl±( )2 ωn

2,–≡
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2
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2
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∆ (W, We) for fixed pairs of mode numbers m and l
specifying the initial deformation (Fig. 2). In Figs. 1
and 2, the condition for resonant energy exchange is
strictly fulfilled along the lines of intersection of the

surfaces. The dependences ∆  = ∆ (m, l) for the
second, third, and fourth modes (Figs.1a–1c) indicate a
considerable scope for energy transfer from higher to
lower modes. It should be noted, however, that only a
finite number of points in the lines of intersection in
Fig. 1 corresponds to integer mode numbers m and l
(when constructing Fig. 1, we assumed that discrete
variables m and l vary continuously). The rest of the
points in these lines indicate near-resonance situations.
Remarkably, the nonlinear internal resonant mode
interaction is slightly sensitive to small deviations of
the physical parameters from the values corresponding
to exact resonance positions [17, 18, 23]. This means
that the resonant interaction will also take place in the
neighborhood of the locus of points constituting the
straight lines in Figs. 1 and 2 but its intensity (the frac-
tion of the resonantly transferred energy and the time
interval within which the transferred energy stays in a
growing lower mode) will be somewhat lower [17, 23].

According to the calculations, the fundamental
mode strictly resonantly interacts with the third mode
alone if both modes are present in the spectrum of the
modes specifying the initial deformation (this situation
is illustrated in Fig. 2a). It follows from Fig. 2a that the
exact values of the Rayleigh and Weber parameters
meeting the resonance interaction amount to several
fractions of unity, i.e., are somewhat larger than those
obtained by the model calculation for a cloud drop of
radius 100 µm. The discrepancy between the analytical
calculations and the real situation in a thunderstorm
cloud may be eliminated by (i) increasing the radius of
the drop (then, the free-fall velocity of the drop will
also increase and the Weber number will tend toward its
value in Fig. 1a) or (ii) taking into account the weak
dependence of the vibration frequency on the Rayleigh
and Weber parameters when they are small and also the
above-mentioned slight sensitivity of the resonant
interaction to small deviations of the physical parame-
ters from exact resonance values. These remedies can
be applied in combination. In any case, the parameters
of large drops in thunderstorm clouds (W ~ 0.1, We ≤
0.5) are such that they admit of energy transfer from the
excited third vibration mode to the excited second
mode. Certainly, a more detailed investigation is neces-
sary to gain a better insight into the resonance energy
transfer between these modes. Today, only the possibil-
ity of energy transfer between these modes can be
viewed as a documented fact. The third mode energy
can be replenished by resonant energy transfer from
higher modes (Fig. 1b).

The calculations show that, unlike the second mode,
the third mode may resonantly exchange energy with a
large number of modes: from the fourth to the thirteenth

ωn
2

ωn
2 ωn

2
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mode. However, the resonant interaction with the
twelfth and thirteenth modes corresponds to the least
values of the Rayleigh and Weber parameters (Fig. 2b)
(the necessary condition for analytical calculations to
meet the reality is the smallness of the charge and
velocity of the drop, which are characterized by the
Rayleigh and Weber parameters). For the fourth mode,
the spectrum of modes resonantly coupled with it is still
wider (from the fifth to thirty-first mode); however, the
optimal (in terms of the smallness of the Rayleigh and
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Fig. 1. Quadratic form ∆  (12) crossed by the plane

∆  = 0 vs. mode numbers m and l at W = 0.1, We = 0.001,

and n = (a) 2, (b) 3, and (c) 4.
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Weber parameters) interactions in this case are interac-
tions with the thirteenth and thirty-first modes (see
Fig. 2c).

Figures 2a–2c show the resonance interaction of an
nth mode with two neighboring (mth and lth) higher
modes (|l – m| = 1). As number n increases, the range of
the lth and mth modes resonantly coupled with the nth
mode widens, as illustrated by Fig. 2d for n = 4, m = 6,
and l = 8. Eventually, the following situation may arise:
the fundamental mode takes the energy from the third
mode, the third mode absorbs the energy of the fourth
to thirteenth modes, the fourth mode takes the energy
from the fifth to thirty-first modes, etc. It can be conjec-
tured that, in a nonlinearly vibrating charged drop mov-
ing in a medium, secondary Raman resonant interaction
between vibration modes generates an energy flux from
higher modes to the fundamental mode. The energy
transfer from higher modes (which are regularly
excited when a large drop moving in a cloud collides
with finer and slower drops) builds up the amplitude of
fundamental mode vibrations up to a value observed in
full-scale experiments (which is comparable to the
radius of the drop [19, 20]). Note, however, that the
possibility exists of a reverse energy transfer (from
lower to higher modes), which is supported by degen-
erate interaction between the modes. Physical mecha-
nisms behind interaction between these oppositely
directed fluxes in the vibrating system under consider-
ation are as yet a mystery and call for special investiga-
tion.

The present study of internal nonlinear resonances
in a charged drop placed in the laminar flow of an ideal
incompressible insulating low-density medium ignores
mode interaction at a tangential discontinuity of the
velocity field at the interface, and inhomogeneity func-
tion (7) is written in the zeroth approximation in param-

eters We, ρ, and . With these simplifying
assumptions discarded, the solution to the problem will
have extra terms of the first and second order of small-

ness in We, ρ, and  but the resonance terms will
persist. Taking into account mode interaction at the
velocity field tangential discontinuity gives rise to sec-

ond-order (in We, ρ, and ) corrections to the
exact resonance positions. However, the basic infer-
ences drawn in this work will remain valid.

ρWe

ρWe

ρWe
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CONCLUSIONS

The motion of a nonlinearly vibrating charged drop
in a medium greatly expands the spectrum of realizable
internal nonlinear resonances. A large charged drop in
a cloud admits of resonant energy transfer from higher
vibrating modes to the fundamental mode, which
shows up even in the second order of smallness in
deformation amplitude and builds up spheroidal vibra-
tions of the drop, as is observed under natural condi-
tions.
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Abstract—The translational temperature in the plasma of glow and contracted discharges is measured using
the methods of coherent anti-Stokes Raman spectroscopy and optical interferometry. The current density in the
discharge is determined by measuring the electron concentration with optical interferometry and emission spec-
troscopy. The distribution of nitrogen molecules over vibrational and rotational levels in the ground state, the
electron energy distribution, and the time dependence of the gas temperature are numerically found based on a
model including the homogeneous Boltzmann equation and balance equations for the concentrations of charged
and excited particles and for the gas temperature. The dynamics of transition to the quasi-steady-state distribu-
tion of nitrogen molecules over vibrational levels is studied. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

Molecular nitrogen is used as a basic component in
a variety of plasma-chemical processes and also as a
small additive to various gases in studying the parame-
ters of the gas discharge plasma. The glow discharge
plasma in nitrogen is a heavily nonequilibrium weakly
ionized gas. The factors responsible for nonequilibrium
and affecting the kinetics of processes occurring in the
plasma are the disturbance of equilibrium between the
vibrational, rotational, and translational degrees of
freedom of the molecules, as well as the deviation of
the electron energy distribution function (EEDF) from
the Maxwell distribution [1–3]. The retarded vibra-
tional relaxation of nitrogen molecules in the discharge
causes their high vibrational excitation, and the popula-
tion of molecular vibrational levels is no longer
described by the Boltzmann formula [4]. This greatly
complicates experimental and theoretical investigation
of the gas heating dynamics, as well as the EEDF and
the molecule vibrational–rotational energy level distri-
bution function (hereafter, molecule vibrational distri-
bution function (MVDF)).

Numerical simulation of the process kinetics in the
nonequilibrium gas discharge plasma requires experi-
mental verification even if the processes are described
in detail (a fortiori if they are briefly outlined). How-
ever, the published parameters entering into the rele-
vant kinetic equations, such as the rate constants and
the cross sections of elementary processes in a gas dis-
charge, are frequently given with an insufficient accu-
1063-7842/05/5012- $26.00 1592
racy, since they are difficult to calculate or measure. For
example, the reported cross sections of electron-
impact-induced vibrational level excitation in nitrogen
molecules differ by a factor of 4 [5], and the scatter in
the rate constants for vibrational–vibrational energy
exchange (VV exchange) and vibrational–translational
relaxation (VT relaxation) differ by one order of magni-
tude [6]. Therefore, it seems topical to develop efficient
plasma diagnostics methods. However, development of
diagnostics methods inevitably runs into the problem of
gaining insight into elementary processes in the plasma
and selecting a model substantiating the means of
choice. A reasonable combination of experimental and
theoretical studies would make it possible to experi-
mentally verify numerical methods selected, gain lack-
ing data for the rate constants and elementary process
cross sections, optimize (with minimal costs) technolo-
gies using the plasma of a nonequilibrium gas dis-
charge as an active medium, and comprehensively
study its properties in a wide range of critical parame-
ters.

An essential issue in studying the EEDF and MVDF
in the nitrogen plasma is kinetic mechanisms behind
the interplay between these functions [7–9]. An impor-
tant parameter characterizing a discharge plasma is the
translational temperature, which specifies the routes
and rate constants of many plasma-chemical reactions.

The basic processes underlying the interplay
between the EEDF and MVDF are electron collisions
of the first and second kind with vibrationally excited
© 2005 Pleiades Publishing, Inc.
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molecules in the ground state, N2(X1 , v). In addition,
when considering the MVDF formation, one should
take into account the processes of VV exchange and VT
relaxation. To include these processes, the EEDF was
taken by probe methods [10, 11] and the MVDF was
obtained by jointly solving the Boltzmann equation and
the balance (master) equation [7–9]. The input data,
such as the translational and vibrational temperatures,
reduced electric field strength, and electron concentra-
tion, were measured by the methods of emission spec-
troscopy, optical interferometry, and coherent anti-
Stokes Raman scattering (CARS). The emphasis in this
work was on determining the low-energy part of the
EEDF. However, reliable determination of the rate con-
stants for high-threshold processes calls for investiga-
tion of the high-energy part of the EEDF.

The dynamics of nitrogen heating in the discharge
has been the subject of extensive research [12–19]. In
this field, a number of reasons makes comparison
between measurements and calculations difficult.
When nitrogen heats up, it is necessary to take into
account not only the interrelation between EEDF and
MVDF but also many other processes that may affect
their formation in the discharge plasma. Such are elec-
tron collisions of the first and second kind with excited
particles, relaxation, deactivation of excited molecules
and recombination of atoms, thermal losses due to a gas
translational temperature gradient, etc. Translational
temperature Ttr was measured by optical interferometry
and CARS. Of special importance in our experiments is
a channel of VV energy exchange between nitrogen
molecules. It should be noted here that the form of the
analytical MVDF is sensitive to the rate constant of VV
energy exchange between the molecules [15].

The glow discharge as an object of investigation was
chosen for the following reasons. First, in the positive
column plasma, equilibrium between the vibrational,
rotational, and translational degrees of freedom of
nitrogen molecules is noticeably disturbed. Second, the
glow parameters, such as electrode potential, cathode
drop, and current intensity, which are necessary for
finding electron concentration Ne and reduced electric
field strength E/N, can be reliably measured. Third, one
can use EEDF measurements taken by the probe
method.

EXPERIMENTAL

Figure 1 shows the experimental setup used in this
work to study the gas heating dynamics, gas density
and electron concentration distributions over the cross
section of the discharge cell, rotational temperature,
and MVDF in a nitrogen glow by the methods of emis-
sion spectroscopy, interferometry, and CARS.

A dc longitudinal glow discharge was initiated in a
quartz cell at a pressure ranging from 3 to 30 Torr. The
cell was cooled by water, and so wall temperature Tw
could be kept at 300 K. A weak gas flow was pumped

Σg
+

TECHNICAL PHYSICS      Vol. 50      No. 12      2005
through the cell, the flowing gas being prepurified in
nitrogen traps. Ring titanium electrodes were mounted
flush with the inner surface of the discharge tube. The
inner radius of the tube was R = 1.8 cm. Windows at the
end faces of the cell were made of different materials
depending on optical diagnostics means. For optical
interferometry and emission spectroscopy, the win-
dows were made of quartz, which is transparent for the
near-UV and visible ranges (λ = 300–700 nm). When
the translational temperature and the populations of
nitrogen molecule vibrational levels were measured by
CARS, ZhS-17 and SS-5 color filters served as the
entrance and exit windows of the cell. The former elim-
inated the CARS signal due to the nonlinear interaction
between the laser beams propagating in the atmosphere
toward the cell. The latter filter separated out the CARS
valid signal from the total radiation of the discharge and
lasers.

Translational temperature Ttr and the populations of
nitrogen molecule vibrational levels were measured at
two stages of the glow. At the first (transient) stage (t =
3–20 ms), Ttr was measured optically. It is at this stage
of the discharge that its basic parameters (current inten-

ω1

OSMA

1
2
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7

8 9

10 11

12 13
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18 19

ω2

ω2, ω1

ωaS

Fig. 1. Schematic of the experimental setup: (1) Nd3+ : YAG
laser, (2) dye laser, (3, 17) power suppliers, (4, 5) control-
lers, (6, 14) photoelectric multipliers, (7) PC, (8) monochro-
mator, (9) discharge cell, (10) filter, (11) lens, (12) lens with
focal length f = 150 cm, (13) wedge, (15) camera, (16) volt-
age dividers, (18) He–Ne laser, and (19) oscilloscope.
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sity, Ttr, and MVDF) are formed at a constant pressure.
The glow discharge was initiated by stepwise increas-
ing the voltage applied to the cell electrodes from a reg-
ulated high-voltage power supply. As soon as the dis-
charge was initiated, a voltage drop and current inten-
sity in the discharge gap were displayed and measured
on the oscilloscope’s screen using resistive voltage
dividers.

In the time interval t = 20–25 ms, within which the
low-frequency vibrations of the setup deteriorate the
accuracy of interferometric measurements, Ttr and the
MVDF were determined by narrow-band CARS. In
addition, Ttr and gas density distributions N and Ne over
the cross section of the cell were measured by optical
interferometry and emission spectroscopy. At this
stage, the discharge became quasi-stationary and its
current remained at the level Id = 20–50 mA.

From the measured values of p, Ttr, and electrode
voltage, we found E/N. Electric field strength E in the
positive column of the glow was determined with
regard to the cathode drop [2], and molecular concen-
tration N at the discharge axis was determined with
allowance for a decrease in the gas density as a result of
heating. The values of E/N varied from 40 to 80 Td. To
take the time dependence of Ttr along the axis of the cell
and the distribution of this temperature over the cell’s
cross section, we used a two-pass Michelson interfer-
ometer [20, 21].

As a source of monochromatic radiation in the inter-
ferometer, a single-mode 632.8-nm He–Ne laser with
an output of 50 mW was applied. The laser beam was
expanded to 4 cm in diameter with a telescope and then
was wedge-split into two, object and reference, beams.
The former was directed toward a mirror through the
windows, reflected from the mirror, and then (upon
being made coincident with the reference beam on the
wedge) fell on a lens together with the reference beam
reflected from the mirror. Such a double-pass optical
scheme was used to improve the sensitivity of the setup
at low pressures. Another lens with a focal length of
150 cm placed before the splitter matched the size of
the interference pattern to that of the camera frame and
to the slit of a photoelectric multiplier (PM). Photo-
graphing of the interference pattern provides informa-
tion on the Ttr distribution along the radius of the gas-
discharge tube. The maximal displacement of the
fringes at the discharge axis was equal to 3.2–8.0
widths of the fringe. The fringe displacement was mea-
sured accurate to 0.2 of the fringe width. The axial dis-
placement of the fringes was detected by the PM. The
0.3 × 4.5-mm2 slit before the PM cathode was placed in
such a way that its center was coincident with the center
of the interference pattern. The fringes ran parallel to
the slit. The signal from the PM was displayed on the
screen of the oscilloscope. The time resolution of the
PM was 5 µs. The typical waveforms of PM signals and
typical interferograms were demonstrated earlier
[22, 23]. The fringe displacement measurements were
processed by the method described in [20, 21].

The variation of electron concentration Ne at the cell
axis in time was calculated from the dependence of the
current on the electron drift velocity and discharge

cross section Sd (Sd = π , where Rf is the effective
radius of the current filament, which is found by the
technique described in [14]). The drift velocity was
found by solving the Boltzmann equation for the EEDF.
As input data, the measured parameters of the glow dis-
charge plasma were used.

It has been experimentally established [14] that, at
p = 15–20 Torr in a contracted discharge, the distribu-
tion of the radiation intensity from the nitrogen second
positive system over the cell’s cross section correlates
with the electron concentration distribution over the
cross section. Therefore, the value of Rf was determined
from the distribution of radiation intensity Iλ(r) along
cell radius r at wavelengths λ = 337, 354, 358, and
380 nm of the nitrogen second positive system. Inten-
sity Iλ(r) was measured with a photoelectric spectral
instrument equipped with two 2 × 2-mm diaphragms.
The spatial resolution along the cell radius was 2 mm.
Effective radius Rf was determined from the relation-
ship [14]

(1)

In the stationary glow discharge, the rotational tem-
perature and the populations of nitrogen molecule
vibrational levels v  = 0–4 in the ground state were mea-
sured with a Sopra (France) CARS spectrometer.

The second harmonic of a Nd3+ : YAG laser at the
frequency corresponding to wavenumber ν1 =
18797 cm–1 (the peak energy is 50 mJ, a pulse width of
25 ns, and a pulse repetition rate of 10 Hz)) and the
radiation of a tunable dye laser (the peak energy 1 mJ at
the frequency corresponding to wavenumber ν2 =
16475 cm–1) were focused along the positive column of
the glow by a lens with a focal length of 50 cm. The
populations of the levels at p = 3.5 Torr were measured
with the collinear beams. Such a scheme provided a
spatial resolution of 250 µm × 250 µm × 4 cm. When
the vibrational temperature was measured at p = 11–
20 Torr, the spatial resolution was raised by using sharp
focusing of the beams in plane (Planar BOXCARS
approach). Such an approach allowed us to improve the
spatial resolution to 250 × 250 × 500 µm. The valid sig-
nal at anti-Stokes frequency ωaS was separated out from
the total discharge and laser radiation by wide-band fil-
ters and a concave-grating monochromator. The CARS
valid signal was recorded in the counting mode with an
optical spectrum multichannel analyzer (OSMA).

To find the populations of the vibrational levels, we
recorded the intensity distribution in the spectrum of

Rf
2

Rf
2 2

Iλ r( )
Iλ 0( )
------------r r.d

0

R

∫=
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the Q branch of vibrational–rotational transitions from
v  = 0  v  = 1 (Q01) to v  = 4  v  = 5 (Q45). The
MVDF was determined from the CARS spectra by the
method suggested in [22]. Rotational temperature Trot
was determined from the vibrational–rotational Raman
spectrum of the Q branch of vibrational transition v  =
1  v  = 2. From the experimentally found spectrum,
the dependence of ln(NJ/gJ) on J(J + 1) was constructed
(NJ is the population of a rotational level with quantum
number J, and gJ is the order of its degeneracy). When
constructing this dependence, we took into account the
degeneracy orders of rotational levels and spin degen-
eracy of the ground state. The rotational temperature
was found from the slope of the straight line

(2)

which was constructed by the rms method under the
assumption that the populations of rotational levels
obey the Boltzmann distribution. Here, Be is the rota-
tional constant of a nitrogen molecule and k is the Bolt-
zmann constant. Under our experimental conditions,
the translational and rotational temperatures coincide.

KINETIC MODEL

Figure 2 shows the scheme for finding the EEDF
and MVDF, as well as for elucidating mechanisms
underlying their interplay and gas heating. When find-
ing the MVDF and low-energy part of the EEDF, we
varied total (over the first eight vibrational levels)
vibrational excitation cross section σΣ and rate con-
stants of VV exchange in order to achieve the best
agreement between the computational results and
experimental data. Next, to improve the reliability of
extracted quantitative information on the EEDF,
MVDF, σΣ, and rate constants of VV exchange, the
number of measured glow discharge plasma parameters
used as input data was taken as large as possible.

The EEDF and its basic moments, drift velocity v dr
and characteristic temperature D/µ of electrons in the
glow discharge plasma, were found by numerically
solving the Boltzmann equation. The input data for
determining the EEDF were measured values of E and
Ttr. The value of E/N was found with regard to the cath-
ode drop and a change in molecular concentration N
due to gas heating. The cathode drops for various mate-
rials used as glow-sustaining electrodes are given in [2].

When comparing the calculated and measured [10,
11] EEDFs in the typical experimental range E/N = 40–
80 Td (Table 1), we varied σΣ and vibrational tempera-
ture Tv of the first vibrational level (Tv = θv/ln(N1/N0)),
where θv is the vibrational quantum of a nitrogen mol-
ecule).

The EEDF and MVDF were found by iterations
from a solution to the Boltzmann equation and kinetic
equations that describe the balance of vibrationally

NJ/gJ( )ln const J J 1+( )
Be

kT rot
-----------,+=
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excited molecules and variation of the gas chemical
composition. This set of equations also included an
equation for Ttr variation in the isobaric approximation.
The exited particle concentration obtained by calcula-
tion was used to refine the EEDF, which varies with the
chemical composition of the gas and due to electron
collisions of the second kind with excited particles.
From the EEDF calculated, rate constants Ki, v dr, elec-
tron energy losses ηelas due to electron–heavy particle
elastic collisions, and electron energy losses ηrot due to
molecule rotational excitation were found. The values

1
2 3

4

5 6

7 8 9

10 11 12

13 14

15 16 17

18 19 20
21

22

23 24
25

26 27
28

Fig. 2. Block diagram of calculating the discharge kinetics.
(1) Comparison of calculated and experimental data for
EEDF, vdr, and D/µ; (2) input experimental data for EEDF,
E/N, Ttr, and Tv; (3) variation of Tv  and comparison with
experiment; (4) EEDF; (5) refinement of cross section σΣ
by comparing calculation and experiment; (6) heating of
electrons by electric field E; (7, 21) electron-impact-
induced vibrational excitation of molecules; (8) electron-
impact-induced ionization of molecules and atoms;
(9) electron-impact-induced excitation of Rydberg states of
molecules; (10, 23) electron-impact-induced excitation of
molecules and atoms; (11) electron–electron collisions;
(12) electron–molecule and electron–atom elastic colli-
sions; (13) electron-impact-induced dissociation of mole-
cules; (14) electron-impact-induced rotational excitation of
molecules; (15) iterations to determine EEDF, MVDF, vdr,
D/µ, Ttr, and Tv; (16) reaction rate constants Ki; (17) input
experimental data for heat conduction equation and calcula-
tion of MVDF (N, R, Ne, γv, γat, and Tv); (18) MVDF;
(19) VT molecule–molecule relaxation; (20) gas heating
and heat removal toward the cell wall; (22) VT molecule–atom
relaxation; (24) VV molecule–molecule energy exchange;
(25) refinement of VV exchange rate constants by compar-
ing calculation with experiment; (26) diffusion of excited
molecules and atoms followed by heterogeneous relaxation
at walls; (27) dissociation of molecules by electron impact
and via vibrational excitation; and (28) comparison of cal-
culated and experimental data for MVDF, Tv, and Ttr.
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Table 1

Ttr, K Tv , K P,
Torr R, cm t, ms Ne,

cm–3
E/N,
Td Refs.

experiment theory experiment theory

530 ± 30CARS 470 (γv = 10–4) 5300 ± 350CARS 4960 (γv = 10–4) 2.0 1.0 11 2 × 1010 80 [28]

420 (γv = 10–3) 4250 (γv = 10–3)

480 ± 40CARS 512 (γv = 10–4) 3790 ± 350CARS 3700 (γv = 10–4) 3.5 1.8 20 3.5 × 109 45 [22]

470 (γv = 10–3) 3475 (γv = 10–3)

530 ± 40CARS 545 (γv = 10–4) 4320 ± 350CARS 4255 (γv = 10–4) 7.0 1.8 15 1.2 × 1010 60

520 ± 50OI 530 (γv = 10–3) 4200 (γv = 10–3)

600 ± 40CARS 610 (γv = 10–4) 4270 ± 350CARS 4240 (γv = 10–4) 9.5 1.8 15 6 × 109 70

570 ± 50OI 605 (γv = 10–3) 4240 (γv = 10–3)

395 ± 15CARS 400 (γv = 10–4) 2850 ± 100CARS 2790 (γv = 10–4) 12.0 0.7 30 ∝ 109 <100 [27]

360 (γv = 10–3) 2615 (γv = 10–3)

1000 ± 100CARS 1135 (γv = 10–4) 15.0 1.8 30 2 × 1010 70

1140 ± 110OI 1135 (γv = 10–3)

1200 ± 110CARS 1230 (γv = 10–4) 20.0 1.8 30 4 × 1010 68 This 
work1230 ± 120OI 1230 (γv = 10–3)

1350 ± 130CARS 1300 (γv = 10–4) 30.0 1.8 30 5 × 1010 67

1300 ± 350OI 1300 (γv = 10–3)

1150–1200OI 1170 (γv = 10–4) 20.0 1.0 30 3.9 × 1010 59 [14]

1170 (γv = 10–3)
of Ki, v dr, ηelas, and ηrot thus obtained were then used in
calculating the variation of the gas composition in the
plasma, Ne, and gas heating dynamics, respectively.
Importantly, the rate constants of VV exchange and
cross sections σΣ were refined at each iteration by com-
paring the calculated and experimental MVDF and Ttr,
as well as the EEDF and its basic moments. Such a pro-
cedure was repeated until the rate constants and cross
section started converging.

When determining Ne and Ttr, we took into consid-
eration their nonuniform distribution over the cross sec-
tion of the cell. In solving the master equation for the
composition, allowance was made for particle diffusion
toward the walls followed by heterogeneous (VW)
relaxation in order to estimate the effect of these pro-
cesses on the MVDF and gas heating.

KINETIC EQUATION FOR THE ELECTRON 
ENERGY DISTRIBUTION FUNCTION

The homogeneous Boltzmann equation was solved
by the two-term approximation method, according to
which the EEDF is expanded into a series in spherical
harmonics (Legendre polynomials) up to the first two
terms, which specify its isotropic part f(ε) and current
characteristics of electrons.
Isotropic part f(ε) was obtained by solving the equa-
tion with regard to (i) electron–atom and electron–mol-

ecule elastic collisions; (ii) excitation of A3 , B3Πg,

C3Πu, B'3 , a'1 , W3∆u, a1Πg , w1∆u, and a''1  elec-
tron and Rydberg rotational and vibrational states, as
well as electron-impact-excited (hereafter, impact-
excited) states 2P and 2D; (iii) impact-induced dissoci-
ation of molecules in the ground state and also through
electron levels with passage to repulsive terms; (iv) ion-
ization of molecules in the ground state due to electron–
molecule collisions; (v) impact-induced ionization of
atoms from ground state 4S; (vi) collisions of the second
kind between vibrationally excited molecules that are

in ground X1  state (only for the first ten levels) and
in the impact-excited states listed above (except for

state a''1 ) and electrons; and (vii) collisions of the
second kind between electrons and atoms in impact-
excited states 2P and 2D.

In the spatially homogeneous approximation, the
equation for the isotropic part of the EEDF has the form
[7–9]

Σu
+

Σu
– Σu

– Σg
+

Σg
+

Σg
+

E2ε

3 Nlσml ε( )
l

∑
--------------------------------df ε( )

dε
------------- 2
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(3)

Here, m and Ml are the masses of an electron and mol-
ecule (l = 0) or atom (l = a); Nl is the concentration of
molecules or atoms in the ground state; ε is the electron
energy; εij is the change in the electron energy due to
electron–molecule or electron–atom collisions; σml(ε)
is the transport scattering cross section of an electron by
a nitrogen molecule (l = 0) or atom (l = a); σrot(ε) is the
cross section of electron-impact-induced vibrational
level excitation; σij(ε) are the cross sections of dissoci-
ation, ionization, vibrational level excitation, and elec-
tron level excitation for a molecule or atom in the case
of direct reactions; qij are the cross sections of collisions
of the second kind between electrons and molecules or
atoms in impact-excited states, which is calculated
from the principle of detailed balance; and Nj is the con-
centration of molecules and atoms, as well as vibra-

tionally excited molecules in electron state X1  for
vibrational levels 1 ≤ v  ≤ 10. The set of cross sections
is the same as used in [7–9].

The first term in the left of Eq. (3) stands for an
increase in the electron energy in field E; the second,
for energy losses in electron–molecule and electron–
atom elastic collisions; and the third, for energy losses
due to electron-impact-induced excitation of nitrogen
molecule vibrational levels. The right of this equation
describes electron–heavy particle inelastic collisions,
which change the energy state of the particles (the tran-
sition from state i to state j with energy change εij or −εij

for electron collisions of the second kind with excited
heavy particles). The form of the equation implies that
electron–electron collisions are disregarded.

The EEDF is normalized as follows:

(4)

The Boltzmann equation for the EEDF was solved
by iterations [9]. The function calculated by the method
given in [24] was used as a zeroth-order approximation.

The rate constants for excitation of nitrogen mole-
cule electron states from unresolved higher vibrational

levels of ground state X1  were calculated by relation-
ships derived in [25]. Other rate constants for electron–
heavy particle interaction were found by normalizing

× f ε( )
T tr

e
------df ε( )

dε
-------------+ NBeεσrot ε( )+
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the cross sections of related reactions by the EEDF,

(5)

The values of v dr and D/µ were determined from the
relationships [26]

(6)

(7)

MASTER EQUATIONS FOR GAS COMPONENTS 
AND GAS HEATING

The glow discharge positive column is characterized
by a complex composition, many kinetic processes, and
nonuniform distribution of parameters (molecular,
atomic, and electron concentrations; gas temperature;
etc.) over the column’s cross section. When processing
experimental data obtained in this work and in [14, 22,
27, 28], we took into consideration (i) nitrogen mole-

cules in ground state X1  (47 vibrational levels,
among which the level v  = 46 was assumed to be a level
of dissociation via vibrational excitation) and in

impact-excited states A3 , B3Πg, C3Πu, B'3 , a'1 ,
W3∆u, a1Πg, and w1∆u; (ii) nitrogen atoms in the ground,
4S, and excited, 2P and 2D, states; and (iii) electrons e.
The processes and rate constants that were included in
describing the glow discharge plasma kinetics are listed
in [7, 25].

Furthermore, the master equations for particles and
gas temperature must include diffusion and transport
phenomena, which greatly complicates the solution of
the problems stated. A method was suggested [29, 30]
that makes it possible to simplify the partial differential
equations. With this method, the set of partial differen-
tial equations is reduced to a set of stiff ordinary differ-
ential equations for plasma parameters averaged over
the cell’s cross section. In experiments, however, the
discharge parameters are usually measured at the axis
of the cell. The approach used in this work allows one
to derive a set of stiff ordinary differential equations for
the parameters that describe the state of the plasma at
the axis of the positive column with regard to heat
removal and diffusion of vibrationally excited mole-
cules and atoms from the positive column axis toward
the walls with subsequent heterogeneous relaxation of
the molecules and recombination of atoms. This
approach is based on the assumptions that (i) during the
establishment of the gas parameters, the radial profiles
of the translational temperature and particle concentra-
tion are near-stationary; (ii) pressure p is constant along

Ki
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the positive column; and (iii) the gas flow velocity, as
well as the rates of dissociation and ionization, in the
positive column are high.

It was also assumed that, in the diffusion- and/or
recombination-controlled positive column, energy
release VT(r) and atomic (molecular) concentration
Vv, at(r) vary along the cell radius by the law

(8)

Here, z is an approximation parameter that is deter-
mined by comparing the calculated and measured
radial temperature profiles Ttr(r). Quantities VT(0) and
Vv, at(0) express, respectively, heat removal and diffu-
sion of vibrationally excited molecules and atoms from
the discharge axis with subsequent heterogeneous
relaxation of the molecules and recombination of the
atoms at the walls. Under the above assumptions, these
quantities as functions of Ttr and particle concentration
at the cell axis were found by solving the heat conduc-
tion and diffusion equations with appropriate boundary
conditions [29, 30],

(9)

(10)

(11)

(12)

Here, 〈v x〉 (x = v  or at) is the mean thermal velocity of
molecules or atoms; γx is the probability of deactivation
of the molecules or recombination of the atoms at the
walls; Nx is the concentration of vibrationally excited

molecules, N2(X1 , v), or atoms, N(4S); Dx is the dif-
fusion coefficient of the molecules or atoms; and χ0 =
2.3 × 10–4 W/(K cm) is the thermal conductivity [31].
For nitrogen molecules, α = 0.84.

Regardless of vibrational level v, the diffusion coef-
ficients were set equal to [31]

(13)

where p is expressed in Torr.
Under the experimental conditions considered, het-

erogeneous relaxation of the molecules proceeds
largely through physical adsorption [1],

(14)

(15)
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The value of γv was varied from 10–4 to 10–3 depend-
ing on the cell material (quartz, glass, or Pyrex), while
γat was set equal to 10–4 [1, 4]. The temperature of the
cell walls was taken to be Tw = 300 K. Calculations
showed that wall (surface) deactivation of impact-
excited molecules and atoms is a much weaker process
than volume quenching of the excitation and, hence,
may be ignored under our experimental conditions
[14, 22, 27, 28].

The translational temperature profile taken by opti-
cal interferometry is given by

(16)

For such a profile of Ttr(r), thermal losses VT(0) at
the axis are expressed (in terms of K/s) as

(17)

The variation of the concentration of molecules in
the state with quantum number v  = 0 or atoms due to
diffusion from the discharge axis is given by

(18)

In the master equation, this term describes an incre-
ment of molecules in the state with v  = 0 through VW
deactivation of those in the state with v  = 1. For atoms,
this term describes a decline in the concentration
because of wall recombination. The associated relation-
ship for molecules with v  ≥ 1 has the form

(19)

Characteristic times τD and τγ for diffusion and VW
deactivation of molecules (recombination of atoms) at
the wall depend on the translational temperature at the
cell axis as follows:

(20)

Thus, in view of the earlier found expressions for
Vv, at(0) and VT(0), the simplified master equations for
the excited particle concentration and translational tem-
perature in the isobaric approximation have the form of
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stiff ordinary differential expressions of type

(21)

(22)

The first two terms in Eqs. (21) and (22) describe
one-particle processes responsible for an increase or
decrease in the concentration of particles of sort i as a
result of which a particle of sort j disappears or appears
(such processes are, for example, radiation-induced
processes). The third and fourth terms stand for two-
particle processes, such as impact-induced excitation or
de-excitation of molecules or atoms, VT molecule–
molecule and molecule–atom relaxation, one-quantum
VV exchange, molecular dissociation, and exchange
reactions between molecules and atoms in the ground
and impact-excited states. The fifth and sixth terms
account for three-particle processes: recombination of
nitrogen atoms in the ground and impact-excited states.
Here, subscripts j and l denote the sort of interacting
particles. The last two terms describe the thermal
expansion of the elementary volume of the gas and dif-
fusion of excited molecules and atoms toward the cell
walls with subsequent VW heterogeneous relaxation.
Superscript f indicates the type of reaction between the
components, since the same pair of particles may be
involved in reactions of several types.

When numerically simulating the MVDF, rate con-

stant  of VV exchange was varied until the best
agreement between the calculated and measured values
of vibrational temperature Tv was achieved.

The basic factors that govern the translational tem-
perature, i.e., are responsible for gas heating in a wall-
bounded discharge, are (i) VT relaxation of excited
molecules on molecules and resulting atoms, (ii) vibra-
tional energy losses due to VV exchange between mol-
ecules, (iii) electron–molecule and electron–atom elas-
tic collisions, (iv) excitation of molecular vibrational
levels by an electron impact, and (v) thermal losses due
to a translational temperature gradient. The model at
hand also includes processes with the participation of
molecules and atoms in excited states. These processes
may noticeably affect the populations of vibrational
levels responsible for the MVDF formation and,
thereby, indirectly influence the gas heating dynamics.
On the other hand, since the amount of energy directly
converted to heat via collisions of molecules in ground
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state X1  and metastable states A3  and B3Πg is not
known exactly [6, 17], the direct contribution of these
processes to gas heating was not carefully analyzed and
so calls for further investigation. Note that gas heating
due to ionization of molecules and atoms was not taken
into consideration as well.

The set of equations was solved numerically by the
method suggested in [32]. At the zero time, the MVDF
corresponded to the Boltzmann distribution for Ttr =
300 K. The concentrations of atoms and molecules in
the excited states were set equal to zero. In the course
of integration of the equations for particle concentra-
tions, the rate constants for vibrational excitation of the
molecules were recalculated according to the variation
of the vibrational temperature of the first excited level
(300 K ≤ Tv ≤ 6000 K) and translational temperature
(300 K ≤ Ttr ≤ 6000 K) with time.

RESULTS AND DISCUSSION

Electron energy distribution function. Figs. 3a–
3c compare the calculated EEDF and the EEDF mea-
sured by the probe method [10, 11] for the quasi-sta-
tionary glow discharge. At E/N = 60–140 Td, the calcu-
lation and measurements are in good agreement when
Tv = 3800–4000 K. It is these values of the vibrational
temperature that were obtained by the CARS method
under the conditions considered (Table 1).

In the quasi-stationary mode of the glow discharge
plasma, near-resonance VV exchange, together with
molecule–electron inelastic collisions, plays an essen-
tial role in redistribution of populations N0 and N1 over
vibrational levels. Therefore, Tv depends on rate con-

stant  of VV exchange. To provide simultaneous
agreement between experimental and calculated data
for the MVDF (lower states) and EEDF, σΣ was varied

together with . The former parameter ranged from
3.0 and 13.3 Å2 (see [5 and Refs. cited therein]); the lat-
ter, from 9 × 10–15 to 1.5 × 10–13 cm3/s [6, 33–36]. For
the EEDF, the calculation and measurements are in best
agreement when σΣ = 9–10.6 Å2 and  = 9 ×
10−15 cm3/s, which almost coincides with the values
recommended in [5, 6], respectively.

Thus, both the theory and experiment indicate the
presence of an additional mechanism behind VV energy
exchange between molecules in lower excited states,
this mechanism indirectly influencing the form of the
EEDF. For the nonequilibrium glow discharge plasma,
a consistent description of the electronic component
kinetics and vibrational kinetics is only possible if elec-
tron collisions of the first and second kind with vibra-
tionally excited molecules and VV exchange in the
states with quantum numbers v  = 0 and 1 are taken into
consideration concurrently.

Σg
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+
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As follows from calculations, the production of
atoms affects the EEDF insignificantly when the degree
of dissociation of molecules does not exceed 10–3. VT
molecule–atom relaxation also remains the MVDF for
the first eight to ten vibrational levels and, hence, the
EEDF is unaffected.

As E/N exceeds 70 Td, the electron energy is spent
mostly on the excitation of electron degrees of freedom,
as well as on dissociation and ionization of molecules.
At E/N = 80 and 140 Td, variation of the vibrational
temperature changes the EEDF only slightly. As fol-
lows from Figs. 3b and 3c, good agreement between the
calculation and experiment is achieved when Tv is no
higher than 4000 K.

The calculated values of drift velocity v dr and char-
acteristic temperature D/µ of electrons are consistent
with reference data [26] in the range E/N = 10–85 Td.
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Fig. 3. EEDF in the glow discharge nitrogen plasma: (a)
E/N = 60 Td, Tv  = 3800 K; (b) E/N = 80 Td, Tv  = 4000 K;
and (c) E/N = 140 Td, Tv  = 4000 K. Lines, calculation;
squares, data points [10, 11].
Molecule vibrational distribution function and
gas heating. Table 1 and Figs. 4 and 5 compare the
computational results for the MVDF, Ttr, and Tv with
the measurements performed in this work and in [4, 22,
27, 28]. Figure 5 shows the evolution of Ttr from its ini-
tial (at the time the discharge is initiated) to a steady-
state value.

The experimental data listed in Table 1 were
obtained in the positive column of the glow discharge
plasma at the cell axis. Superscripts OI and CARS indi-
cate that associated Ttr and Tv were measured by the
methods of optical interferometry and CARS, respec-
tively.

Temperatures  and  were found from
the populations of rotational and first two vibrational
levels that were determined from the CARS spectra.
The solid lines in Fig. 4 refer to the MVDFs calculated
according to the kinetic model, as well as to the Boltz-
mann and Treanor distributions.

Residence time t of nitrogen molecules in the dis-
charge zone listed in Table 1 coincides with the time of
setting the quasi-stationary values of Ttr and Tv, which
characterize the MVDF in the positive column. The
quasi-stationary values of Ttr at pressures of 15 and
20 Torr are presented in Table 1 and in Figs. 5a and 5b.
Figure 5 also shows the experimental time dependence
of the current that was used in calculating Ttr. The cal-
culation and measurements of Ttr and Tv indicate that

T tr
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Fig. 4. MVDF in the glow discharge. Data points are taken
from (j) [27], (+) [22], and (d) [28]. Computational results
are shown by solid lines. Boltzmann distribution: Tv  = (1)
5300, (2) 4320, and (3) 2850 K. Treanor distribution: (4)
Tv  = 5300 K, Ttr = 530 K; (5) Tv  = 4320 K, Ttr = 530 K; and
(6) Tv  = 2850 K, Ttr = 395 K. (7–9) Calculation by the
model adopted in this work. v  is the vibrational quantum
number.
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the quasi-stationary MVDFs for the first two vibra-
tional levels and quasi-stationary Ttr are set within 15–
20 ms.

The setting time for Ttr and Tv seems to depend on
experimental conditions and is specified, directly or
indirectly, by gas pressure p, wall temperature Tw, elec-
tron concentration Ne, reduced electric field E/N (which
characterizes the discharge-sustaining power supply),
probability γv of heterogeneous deactivation of the mol-
ecule vibrational energy, discharge tube radius R, posi-
tive column length L, and gas flow velocity (all the ini-
tial parameters are listed in Table 1). This list should be
supplemented by other important parameters, namely,
reaction rate constants Ki (which are related to the
EEDF), Ttr, Tv , and elastic and inelastic cross sections.

The parenthetic figures by the values of Ttr and Tv in
Table 1 are probabilities γv of vibrational energy heter-
ogeneous deactivation based on which the temperatures
were calculated. The evolution of the MVDF and the
gas heating kinetics (Figs. 4 and 5, respectively) were

constructed using VV exchange rate constant  taken
from [6, 25, 33]. In addition, we slightly modified the
approximated dependence of VV exchange rate con-
stants on Ttr and v  (that was suggested in [37]) to
achieve a good quantitative fit to experimental data.

Figure 6 demonstrates the MVDF evolution calcu-
lated with the aim of analyzing gas heating. Within time
interval t = 10–7–2.0 × 10–3 s (solid lines 1–5), the elec-
tron energy is spent mostly on the vibrational excitation
of molecules in the states with v  = 1–10 (eV processes).
The populations of these levels obey the Boltzmann
distribution with a vibrational temperature markedly
differing from temperature Tv of the first vibrational
level. The kink in the MVDF curve indicates that the
initial stage of the MVDF evolution is due largely to the
impact-induced excitation and de-excitation of molec-
ular vibrational states. It should be noted that the results
of calculating the MVDF evolution at the initial stage
of gas heating in the glow discharge plasma qualita-
tively agree with those obtained in [25].

From time instant t ≥ 3 × 10–3 s (line 6), the redistri-
bution of molecules over lower vibrational levels pro-
ceeds via competition of eV processes and near-reso-
nance VV exchange. For lower levels (v  = 1–5), the
MVDF as a function of Ttr and Tv is approximated well
by the Treanor distribution, which remains valid with
time.

As follows from the calculations in terms of our
model, for discharge tube radius R = 1.8 cm and pres-
sures ranging from 3.5 to 9.0 Torr, the effect of VW
deactivation and diffusion of molecules on the popula-
tions of vibrational levels v  = 1–5 is insignificant com-
pared with that of resonance VV exchange and eV pro-
cesses. At t ≥ 3 × 10–3 s, the form of the MVDF for
lower vibrational levels turns out to be slightly sensitive
to the way of their excitation. This is because the char-

K01
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acteristic times of nitrogen molecule redistribution over
lower levels as a result of resonance VV exchange
become much shorter than those of VW deactivation
and diffusion of the molecules, as well as the times of
impact-induced excitation and deexcitation of impact-
excited molecules [1]. The Treanor form of the MVDF
(curves 4–6 in Fig. 6) and the weak dependence of the
vibrational temperature on molecule deactivation prob-
ability γv when γv varies by one order of magnitude
(Table 1), are direct evidence for the dominance of VV
exchange processes.

Table 2 lists rate constants  of VV exchange that
were used in comparing the measured and calculated

values of quasi-stationary Tv. As  grows, vibra-
tional temperature Tv decreases noticeably. Contrasting
the experimental and calculated values of the vibra-
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Fig. 5. Relative current I/Id and relative gas temperature
Ttr/Tw vs. time at the stage of discharge formation. Symbols,
data points; solid lines, approximation of I/Id and calcula-
tion of Ttr/Tw. (a) p = 20 Torr, Id = 30 mA and (b) p = 15 Torr,
Id = 50 mA.
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tional temperature, one can see that they are in quanti-

tative agreement for VV exchange rate constant  =
9 × 10–15 cm3/s, which is consistent with measurement
and calculations performed elsewhere [6, 25, 33]. Note
that the kinetic model in terms of which the EEDF is
calculated in our work yields results similar to those
obtained in [6], where the EEDF was assumed to be
Maxwellian.

The results obtained in terms of the kinetic model
are summarized in Table 1. It is seen that the calculated
values of vibrational temperature Tv are one order of
magnitude higher than the calculated values of Ttr. As
the pressure grows from 3 to 10 Torr, the vibrational
temperature varies between 3700 and 4400 K.

The values of the vibrational temperature obtained
under experimental conditions [22] far exceed the val-
ues measured in [28]. This may be explained by the fact
that the electron concentration in [28] is much higher
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Fig. 6. MVDF at the stage of gas heating at p = 7 Torr. Time
instants are (1) 10–7, (2) 10–6, (3) 10–4, (4) 10–3, (5) 2 × 10–3,
(6) 3 × 10–3, (7) 4 × 10–3, (8) 6 × 10–3, (9) 7 × 10–3, (10) 8 ×
10–3, (11) 15 × 10–3, and (12) 15.5 × 10–3 s.
than in the experiment [22]. The fact that, in [28], Ttr
and Tv appreciably drop with increasing deactivation
probability γv may be explained by a small radius of the
discharge tube used in those experiments (as follows
from Table 1). Furthermore, as follows from Fig. 4, the
MVDF measured in [28] at v  > 6 deviates markedly
from the Treanor distribution. In this case, it becomes
difficult to discriminate between effects due to VV
exchange and impact-induced activation/deactivation
of molecular vibrational levels and effects due to pro-
cesses at the discharge cell walls. However, the calcula-
tions of Ttr and Tv performed for the experimental con-
ditions [22] show that, as the pressure grows, the γv

dependence of the temperatures becomes less pro-
nounced.

At times far exceeding t = 3 ms (Fig. 6), molecules
pass from lower to higher (v  ≥ 10) vibrational levels
because of fast VV exchange, forming a plateau in the
MVDF (curves 6–12). As the plateau forms, Ttr at
higher vibrational levels increases (see Fig. 5). The
form of the MVDF is specified by competition between
nonresonance VV energy exchange between molecules
and VT processes. Specifically, the latter form the
MVDF tail for v  ≥ 15, which is approximated well by
the Boltzmann distribution with a temperature close to
the translational temperature. Nonresonance VV
exchange plays a significant role in increasing Ttr: it
transfers a major part of the energy from vibrational to
translational degrees of freedom because of molecule
vibration anharmonicity.

In the time interval 4–10 ms (curves 7–10), the cal-
culated (using the VV exchange rate constants taken
from [6, 25, 33] and the approximation suggested in
[37]) and measured rates of rise of Ttr are nearly the
same, ≈50 K/ms. The rate of rise of Ttr is related to non-
resonance VV energy exchange between molecules in
lower and higher (10 < v  < 15) vibrational states. For
Ttr = 300–500 K, the contribution of VT molecule–mol-
ecule and molecule–atom relaxation to heating is as
low as less than several percent of the total energy dep-
osition into translational and vibrational degrees of
freedom.

Under our experimental conditions, atoms are pro-
duced mainly by direct impact-induced dissociation
and also through electron levels with passage to repul-
Table 2

Experimental data
Tv calculated using published data for  × 10–14, cm3/s (first row)

[6, 25, 33] [13] [34] [35] [36]

p, Torr Tv , K           0.9           2.6           5.0     10     15

3.5 3790 ± 350 3764 3384 3266 3147 3093

7 4320 ± 360 4230 3642 3495 3356 3278

9.5 4270 ± 370 4183 3578 3451 3330 3266

K10
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sive terms. The effect of molecular dissociation through
vibrational excitation and atomic losses due to volume
recombination is minor. According to calculations, the
fraction of dissociated molecules in the discharge posi-
tive column does not exceed 10–6–10–4 by the time t =
10 ms. Thus, at such a low nitrogen molecule dissocia-
tion, the significance of channels for VT molecule–
atom relaxation is low in terms of our model and,
hence, VT relaxation has a negligible effect on the
vibrational excitation and gas heating dynamics.

As follows from calculations, the processes involv-
ing nitrogen molecules and atoms in impact-excited
states (see [25]) also contribute insignificantly to gas
heating. For example, the occupation of impact-excited
state B3Πg of a nitrogen molecule through collisions of

molecules in states A3  and X1  (3 < v  < 15) does
not have a considerable effect on the gas heating
dynamics. Neither do gas heating reactions involving
atoms in metastable state 2P and molecules in states

X1  for v > 8, as well as reactions with the participa-

tion of molecules in state A3 .

By the time t = 8–10 ms, thermal losses calculated
for our experimental conditions do not exceed 20% of
the heat release associated to nonresonance VV
exchange.

For Ttr = 600–1000 K, the contributions of VT mol-
ecule–molecule relaxation and VV molecule–molecule
exchange become comparable and are roughly com-
pensated by thermal losses. As the pressure rises from
7 to 30 Torr, the values of Ttr both calculated for and
measured at the quasi-stationary distribution of the
glow discharge plasma parameters monotonically grow
from 450 to 1300 K. At p > 10 Torr and at the same dis-
charge current (50 mA) and E/N = 50–60 Td, the values
of Ttr calculated and measured in this work and in [14]
diverge only slightly in spite of a large difference in dis-
charge cell radius. This is related to the fact that we are
dealing with the contracted discharge. At p > 15 Torr,
the glow is filamentary and is observed (localized) at
the axis of the discharge cell. In this case, the thermal
balance in the quasi-stationary positive column is con-
trolled largely by relaxation processes taking place
within a small area near the discharge axis, where the
electron concentration is maximal. The wall cooling
conditions influence the thermal balance to a small
extent. For t > 20 ms, the values of Ttr measured in this
work and in [14] and calculated using the vibrational–
translational relaxation rate constants taken from [37]
quantitatively coincide, as follows from Table 1.

It should be noted that the use of rate constants and
cross sections other than those employed in the kinetic
model may cause disagreement with our results. Partic-
ular emphasis should be on processes with a high exci-
tation threshold, the correct description of which
requires insight into the high-energy part of the EEDF.

Σu
+ Σg

+

Σg
+

Σu
+
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Abstract—A mechanism of unidirectional anisotropy formation in an exchange-coupled ferromagnetic–ferri-
magnetic film structure with orthogonal effective magnetizations in the layers is investigated. The reason for
unidirectional anisotropy is the magnetic heterogeneity of the ferrimagnetic layer in the compensation range.
Magnetization reversal in the magnetically soft layer of an (REE–transition metal)/NiFe film structure is dis-
cussed based on a model of uniform rotation of magnetization. It is found that unidirectional anisotropy sharply
decreases the magnetic noise level in the magnetically soft layer. The field of application of these materials is
outlined. © 2005 Pleiades Publishing, Inc.
Exchange interaction between magnetically soft and
magnetically hard layers imparts intriguing properties
to related structures, which are of great fundamental
and applied interest. One of these properties is unidi-
rectional exchange anisotropy in the magnetically soft
layer, which shifts hysteresis loop ∆H along the mag-
netic field axis. Although this effect was discovered
50 years ago [1], it has not been yet completely under-
stood. Therefore, to gain a deeper insight into the nature
of unidirectional anisotropy remains a topical problem.
Hot interest in these materials as candidates, e.g., for
magnetic memory devices [2], spintronics devices [3],
and magnetic sensors [4] is giving an additional impe-
tus to research in this field.

Unidirectional exchange anisotropy has been stud-
ied mostly in ferromagnetic–antiferromagnetic
(FM/AFM) film structures [5]. However, a number of
disadvantages limit the application of these materials
[6]. These are a poor temperature stability of ∆H, an
increased coercive force of the magnetically soft layer
compared with that of a one-layer FM film, and the evo-
lution of the hysteresis loop with the number of a mag-
netization reversal cycle.

At the beginning of the 1980s, unidirectional anisot-
ropy was discovered [7] in a TbFe/NiFe ferromagnetic–
ferrimagnetic (FoM/FiM) film structure. These struc-
tures attracted attention, since they, on the one hand,
lack the disadvantages typical of their FM/AFM coun-
terparts and, on the other hand, unidirectional anisot-
ropy here appears in layers with orthogonal effective
magnetizations. A large body of data concerning inves-
tigation and application of FoM/FiM structures has
been gained in recent years [8–15]. In our opinion, it is
1063-7842/05/5012- $26.00 1605
an appropriate time to analyze the state of the art in this
field. In this work, we consider the nature of unidirec-
tional anisotropy, its effect on the magnetic perfor-
mance of the FM layer, and applications of FoM/FiM
strictures.

MECHANISMS OF UNIDIRECTIONAL 
ANISOTROPY FORMATION

The phenomenological description of the effect of
unidirectional exchange anisotropy is straightforward.
It is based on the assumption that the magnetic
moments at the interface are collinear,

(1)

In [7], where the existence of unidirectional anisot-
ropy in a TbxFe1 – x/NiFe exchange-coupled film struc-
ture with orthogonal effective magnetizations of the
layers was reported for the first time, we applied some
considerations to the origin of this effect. It was conjec-
tured that an amorphous ferrimagnetic layer may have
the in-plane magnetization component resulting, for
example, from a chemical inhomogeneity across the
amorphous alloy film. This inhomogeneity, in turn, pro-
duces a compensation plane, in which the magnetiza-
tion reverses.

Further investigations into the chemical composi-
tion of REE–transition metal (REE–TM) amorphous
alloy films obtained by thermal evaporation have
shown, however, that a concentration gradient normal
to the plane is absent in such films. Therefore, other
mechanisms come to the fore. For example, the in-
plane magnetization component in amorphous REE–

jM1 M2⋅ JM1M2 M1
^M2( ).cos=
© 2005 Pleiades Publishing, Inc.
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TM films, which are characterized by perpendicular
anisotropy, may be due to a local dispersion of the mag-
netic anisotropy axis. As a result, the general direction
of the easy magnetic axis deviated from the normal to
the film surface. If such a mechanism works and the
composition of the REE–TM film is off-compensation,
the amount of unidirectional anisotropy in exchange-
coupled (REE–TM)/NiFe film structures is bound to
grow, being minimal in those where the easy magnetic
axis of the amorphous REE–TM layer lies in the plane
of the film. However, our investigations [14], as well as
those carried out by other authors [9, 11], show that the
reverse is true. In (REE–TM)/NiFe structures, unidirec-
tional anisotropy exists only in that concentration range
of the amorphous alloy where perpendicular anisotropy
in the REE–TM layer is observed.

The existence of unidirectional anisotropy in
TbxFe1 – x/NiFe and DyxCo1 – x/NiFe film structures,
which was first discovered in [7], indicates a specific
magnetic microstructure of REE–TM layers. Namely,
DyxCo1 – x and TbxFe1 – x alloys show nanoareas where
the magnetization vector of the 3d metal sublattice has
the in-plane component, and it is this component that
takes part in exchange interaction with the FM layer of
NiFe alloy.

To establish factors causing the in-plane component
of the 3d metal sublattice in REE–TM alloy with layers

–20
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Fig. 1. (a) Hysteresis loop and concentration dependence of
bias field ∆H(x) and (b) the orientation scheme for the mag-
netizations of 3d metals in exchange-coupled DyCo/NiFe
film structures. A, substrate; I, matrix; and II, impurity.
that have near-compensation compositions and feature
a high degree of integral perpendicular anisotropy is a
challenge. This is because the amorphous ferrimagnetic
REE–TM alloy has a low saturation magnetization
(Ms  0) and a high magnetic hardness (for example,
the coercive field in the (REE–TM)/DyCo alloy may be
as high as > 10 kOe). In light of this, we suggested that
the physical properties of such magnetically hard mate-
rials be studied on NiFe/DyxCo1 – x/NiFe multilayer
exchange-coupled film structures where the DyxCo1 – x
layer is much thinner than NiFe, dDyCo ! dNiFe.
Exchange interaction between the Co sublattice of the
ferrimagnetic alloy and the NiFe layer substantially
modifies the magnetic performance of such a well-stud-
ied alloy as NiFe.

Based on the measurements of the dynamic and
static magnetic characteristics of NiFe/DyxCo1 – x/NiFe
composites, we developed a microheterogeneous
model of the DyCo amorphous layer [15, 16]. The
DyCo specific microstructure in the compensation
range that follows from this model has allowed us to
explain experimental data for FM resonance (FMR)
and spin-wave resonance (SWR). To find specific fea-
tures of DyCo, we (i) prepared NiFe/DyCo/NiFe three-
layer structures with unidirectional exchange anisot-
ropy and orthogonal effective magnetizations of the
layers, (ii) studied the FMR and SWR spectra of these
structures, and (iii) found that the spin system of the
amorphous DyCo alloy in the concentration range of
magnetic compensation can be represented in the form
of two subsystems with the TM magnetization prevail-
ing in one of them (nanophase Φ1) and the REE magne-
tization in the other (nanophase Φ2). This model
embodies the basic structural feature of amorphous
alloys: natural fluctuation (topological and composi-
tion) inhomogeneity. In the concentration ranges xi ±
∆x ! xcomp (matrix Φ1) and xi ± ∆x @ xcomp (matrix Φ2),
the magnetic microstructures of amorphous ferrimag-
nets will differ substantially from the magnetic micro-
structure in the range xi – ∆x < xcomp < x + ∆x. In this
case, magnetic compensation point xcomp is defined by

the condition 〈M〉  = p  + q  = 0, where p and
q are the volume fractions of nanophases Φ1 and Φ2 and

 and  are the effective magnetizations of
these phases at xi – ∆x and xi + ∆x, respectively.

Figure 1 shows the experimental dependences of
shift ∆H(x) of the hysteresis loop on the REE concen-
tration in a planar DyCo/NiFe structure and the distri-
butions of nanophases Φ1 and Φ2 in the DyCo layer. It
is seen that the curve ∆H(x) for the DyxCo1 – x/NiFe
structure is described by the asymmetric function
∆H(x – xcomp) and has singular points: the coordinate of
the zero (minimal value of ∆H) and extreme points.
Also, it is seen that ∆H(x) in this planar structure
reaches a maximum at x ≈ 19 at.% for undercompensa-

Meff
Φ1( )

Meff
Φ2( )

Meff
Φ1( )

Meff
Φ2( )
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tion compositions of DyCo and x ≈ 24 at.% for over-
compensation compositions.

The above results are readily explained in terms of
the suggested model of amorphous DyCo alloy struc-
ture in the magnetic compensation range. Indeed, in the
REE–TM concentration range x ≤ 16 at.% (x ≥
27 at.%), the magnetic structure of amorphous DyCo is
completely specified by magnetic nanophase Φ1 (Φ2).
Hence, the magnetic moments of the Co and Dy sublat-
tices are collinear with the perpendicular anisotropy
axis in the DyCo layer and, as a consequence, the effec-
tive magnetizations of the DyCo and NiFe layers are
mutually orthogonal (exchange coupling is absent).
Such a situation takes place in the concentration range
xi – ∆x < xcomp < x + ∆x. Here, the magnetic structure of
DyCo is formed by randomly mixed nanophases Φ1 and
Φ2. If phase Φ1 is a matrix, phase Φ2 is an impurity and
vice versa. The only exception is compensation point
xcomp, where the volume fractions of the phases are
roughly the same.

At any concentration xi from the above range, the
effective magnetization of matrix phase Φi in the DyCo
layer is aligned with the perpendicular anisotropy field
(MCo and MDy are collinear with this field (as indicated
by the polar Kerr effect). In this case, the magnetization
of the Co sublattice, MCo, in impurity nanophase Φj

must have the in-plane component because of exchange
interaction between the transition elements in the impu-
rity and matrix and the effective magnetization of
nanophase Φj has a chance to align with an external
magnetic field. We believe that exchange interaction
between magnetization MCo of impurity phase Φj in the
DyCo layer and the magnetization of the NiFe layer
results in exchange unidirectional anisotropy in NiFe.

The form of the experimental dependence in Fig. 1
(asymmetry about xcomp) can also be treated in terms of
our model. In this planar system, a DyxCo1 – x layer
forms where the magnetization of the matrix phase is
aligned with the perpendicular anisotropy axis, while
the effective magnetization of the impurity phase lies in
the plane of the payer. When a NiFe overlayer is grown,
a permanent magnetic field is switched on to specify the
easy direction and the effective magnetization of the
impurity phase in the DyxCo1 – x layer is aligned with
this field and, hence, with the unidirectional anisotropy
axis in NiFe. In the range x < xcomp, the impurity phase
meets the inequality MCo < MDy, while at x > xcomp, the
inverse inequality is valid. This means that, at x < xcomp,
the magnetization vectors of the Co sublattice and NiFe
layer are anticollinear, whereas, at x > xcomp, they are
codirected (see Fig. 1b). That is why the sign of ∆H
changes in going through concentration xcomp (Fig. 1a).
TECHNICAL PHYSICS      Vol. 50      No. 12      2005
QUASI-STATIC MAGNETIZATION REVERSAL 
IN FERROMAGNETIC–FERRIMAGNETIC FILM 

STRUCTURES

In exchange-coupled structures, the state of one
layer may substantially affect the state of another. For
example, direct exchange interaction between ferro-
magnetic layers (positive coupling) with different
degrees of anisotropy may lead to the situation where
both layers experiencing magnetization reversal will
behave as a whole with a coercive force intermediate
between the coercive forces of the layers [6]. In
FM/AFM film structures, unidirectional anisotropy
shifts the hysteresis loop, results in only one easy axis,
stabilizes the domain structure of the ferromagnetic
layer, etc. [17, 18].

In FoM/FiM structures, the magnetization reversal
process somewhat differs from that in FM/AFM films.
Figure 2a shows the angular dependence of the hyster-
esis loop for a DyCo/NiFe film (the layer thicknesses
are, respectively, 70 and 210 nm; the easy axis coin-
cides with the unidirectional anisotropy axis). In the
easy axis direction (α = 0), the hysteresis loop is the
widest (Hc = 2 Oe) and is shifted along the field axis by
∆H = 10.5 Oe. As angle α increases, the loop gets thin-
ner and collapses at α = 25° (in the range 25°–90°, the
process of magnetization reversal is hysteresis-free).
The shift also decreases, and, at α = 90°, the “loop”
becomes symmetric (the anisotropy field determined
from this curve is Ha = 15 Oe).

Figure 2b demonstrates the variation of the hystere-
sis loop for the same film when permanent magnetic
field H⊥  is applied along the hard axis. At H⊥  = 4 Oe,

α = 0°

α = 15°

α = 25°

α = 45°

α = 90°

α = 0°

H~ = 23 Oe H~ = 23 Oe

H⊥ = 20 Oe

H⊥ = 4 Oe

H⊥ = 15 Oe

H⊥ = 0

(‡) (b)

Fig. 2. (a) Angular dependence of ∆H and (b) dependence
of the hysteresis loop on H⊥  in the exchange-coupled
DyCo/NiFe film structure.
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the loop collapses and takes the form of the magnetiza-
tion reversal curve for α = 25°. At H⊥  = Ha = 15 Oe, the
loop is still asymmetric.

Such an observation (collapsed hysteresis loop) dif-
fers from experimental data obtained on NiFe/FeMn
films [17]. Magnetization reversal curves taken of two-
layer exchange-coupled structures are usually treated in
terms of the model assuming that the magnetization
vector of one layer is fixed, while the magnetization
vector of the other spirals under the action of an exter-
nal magnetic field [19, 20]. The analytical solution pre-
sented in [20] gives the following results. If magnetiza-
tion reversal takes place along the easy axis (α = 0) in
films with dFM < dcr, the hysteresis loop collapses and
shifts along the field axis. In films with dFM > dcr, the
loop “opens up” and expands with dFM. (Here, dcr =

2A/MsHa  > 12/π2, where A is the exchange interac-
tion constant and Ms, Ha, and dFM are, respectively, the
saturation magnetization, anisotropy field, and thick-
ness of the magnetically soft layer.)

However, in none of the numerous experiments
where magnetization reversal took place along the easy
axis in FM/AFM and FoM/FiM structures did the hys-
teresis loop collapse even for ∆H @ HC. The reason for
the discrepancy between the analytical and experimen-
tal data seems to be an inadequate estimate of dcr. For
an exchange-coupled structure with parameters Ms =
800 G and Ha = 3 Oe for the magnetically soft material
and exchange constant A = 10–6 erg/cm3, the critical
thickness was estimated as dcr = 260 nm [20]. At the
same time, experiments with NiFe/FeMn films showed
that the exchange constant is two orders of magnitude
smaller [21]; that is, dcr = 3 nm. However, the hysteresis
loop did not collapse even when magnetization reversal

dFM
2

4

0

BN, nT/Hz1/2

∆H; H0, Oe
2 4 6

8

20

60

100

1

2

Fig. 3. Magnetic noise intensity (1) in the exchange-cou-
pled DyCo/NiFe film structure vs. the amount of unidirec-
tional anisotropy ∆H and (2) in the reference NiFe film vs.
applied permanent magnetic field H0.
along the easy axis took place in structures with dFM
(dNiFe) < 3 nm [21].

Another model of quasi-static magnetization rever-
sal in exchange-coupled structures that assumes coher-
ent rotation of the magnetization in a magnetically soft
layer was suggested in [17]. Here, the interaction
between the layers is described in terms of specific sur-
face energy Es. In this case, we deal with thickness-
averaged unidirectional anisotropy, the amount of
which is inversely proportional to the thickness of the
magnetically soft layer. Such a dependence of ∆H on
the thickness of the magnetically soft layer is confirmed
experimentally [9, 11]. When external magnetic field H
is applied to the plane of the film at angle α to the easy
axis, magnetization M of the magnetically soft layer
rotates through angle β relative to the easy axis. Then,
the energy of the FM layer can be written in the form

(2)

where ϕ = α – β and Ea is the unidirectional anisotropy
constant.

Using the standard computational method, we
derived an expression for the hysteresis loop for any α
(except α = 0 and π). It was found that the loop col-
lapses at certain α > αcr, αcr depending on ratio ∆H/Ha,
where ∆H = Es/MdFM. This model leads us to conclude
that, first, magnetization reversal at an angle to the easy
axis of an FM layer may proceed by rotation of vector
M and, second, unidirectional anisotropy can be simu-
lated by permanent magnetic field H = ∆H. Both con-
clusions were corroborated in experiments, which
means that the model adequately describes quasi-static
magnetization reversal in exchange-coupled structures.

MAGNETIC NOISE IN FERROMAGNETIC–
FERRIMAGNETIC FILM STRUCTURES

It is known that the magnetic noise in thin-film mag-
netic devices can be depressed, e.g., by applying a mag-
netic field, which makes the process of magnetization
reversal more uniform. The same results can be
obtained using structures with unidirectional anisot-
ropy.

We performed special experiments to see how the
external magnetic field and unidirectional anisotropy
influence the magnetic noise in Permalloy films
[22, 23]. The object of interest was fluctuations of the
transverse emf in the presence of a constant bias (H0,
∆H) applied along the easy magnetic axis or a high-fre-
quency field (Hhf < Ha, H0) applied along the hard mag-
netic axis.

Figure 3 shows the variation of magnetic noise BN in
the NiFe film incorporated into an exchange-coupled
DyCo/NiFe structure 500 nm thick with bias field ∆H
(curve 1) and in a reference NiFe film magnetized by
magnetic field H0 (curve 2).

E HM ϕcos– Ek βsin
2 Es

dFM
-------- β,cos–+=
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As follows from Fig. 3, the magnetic noise in the
exchange-coupled film structure is much lower than in
the reference film. Presumably, unidirectional anisot-
ropy is not totally equivalent (is superior) to the applied
field in efficiency and exchange interaction in the struc-
ture makes the process of magnetization reversal in the
magnetic layer more uniform.

APPLICATION OF EXCHANGE-COUPLED 
STRUCTURES

Film magnetic materials have found wide applica-
tion in various fields of technology [2–4]. Here, we will
concentrate on using (REE–TM)/NiFe FoM/FiM struc-
tures with unidirectional anisotropy as magnetooptic
memory devices and weak-field magnetic sensors.

Memory devices. It is believed that, in this field, the
film structures under consideration may decrease the
power consumption and raise the speed of data writing
and erasing.

Magnetooptic data writing on films with a magneti-
zation normal to the film surface is in common use in
disk storages of PCs. Data writing and erasing is
accomplished by the thermomagnetic method in writ-
ing magnetic field H3 = 400–500 Oe applied normally
to the film (Fig. 4).

As materials for magnetooptic data carriers, REE–
TM alloys are usually employed. Their basic disadvan-
tages are (i) the need to apply high writing/erasing mag-
netic fields, which influence the electrodynamic sus-
pension of the focusing lens holder and (ii) a large time
delay between writing and erasing, which depends on
the inductance of the magnetic field source winding
[24].

We suggest another approach [16] to writing magne-
tooptic information on REE–TM/NiFe FoM/FiM struc-
tures with exchange anisotropy (see Fig. 5).Writing
magnetic field Hwr > HC + ∆H (10–15 Oe) is applied to
a FoM/FiM structure (Fig. 5a) antiparallel to the initial
magnetization in layer 3 (Fig. 5b). The magnetization
of layer 3 reverses, while that of layer 2 does not. After
layer 2 has been locally heated by a thermal pulse to a
temperature close to Curie temperature TC, the heated
area turns into the paramagnetic state (Fig. 5c) and the
magnetic state of layer 3 remains unchanged, since TC
of NiFe is much higher than TC of DyCo. Due to
exchange interaction between layers 2 and 3 (during
cooling), the magnetization of the heated area of layer
2 reverses in accordance with the magnetization direc-
tion in the NiFe layer (Fig. 5d). After the thermal pulse
is terminated and the writing field is switched off, the
inverted state of the magnetic moment of the heated
area in layer 2 persists (which corresponds to writing a
bit of information), while the magnetization of the local
area in layer 3 takes on a nonequilibrium (helical) struc-
ture (Fig. 5d), representing a compressed “spin spring.”
Data readout is accomplished using the polar Kerr
effect.
TECHNICAL PHYSICS      Vol. 50      No. 12      2005
To erase information, it suffices to heat the same
local area of layer 2 to the Curie temperature. Exchange
interaction between this area and layer 3 then disap-
pears, and the magnetization of the local area in layer 3
becomes aligned with the magnetization of the entire
layer (“the helix untwists”). After the pulse is termi-
nated and the local area of layer 2 cools, the magnetiza-
tion of this area changes sense because of exchange
interaction with layer 3 and the information is erased.

Thus, in our approach, writing magnetic field Hwr ≥
HC + ∆H is much lower than the writing field in the case
of standard REE–TM films. Moreover, data erasing
does not require a magnetic field at all. Accordingly, the
magnetic field energy spent on data writing/erasing
substantially decreases. At the same time, a low writing
magnetic field, which makes it possible to generate H3

pulses as short as several nanoseconds, and no need for
switching the magnetic field at writing and/or erasing
provide a higher speed of the processes. It should be
emphasized that all the related advantages of REE–TM
layers are retained.

Hwr < Hc(T < TC) Hwr < Hc(T = TC) Hwr = 0(T < TC)
Hwr Hwr

B M CREE–TM

A

Fig. 4. Thermomagnetic data writing on REE–TM films
with perpendicular magnetic anisotropy. A, substrate; B,
radiation; and C, domain.

Hwr = 0

M

Hwr >_ Hc + ∆H

Hwr >_ Hc + ∆H Hwr = 0

B C

DyCo

NiFe

A

(‡) (b)

(d)(c)

Fig. 5. Thermomagnetic data writing on exchange-coupled
(REE–TM)/NiFe film structures. A–C, the same as in Fig. 4.

1

1

2

2

3

3
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Film magnetometers. FoM/FiM structures with
unidirectional anisotropy were used to design a weak-
field magnetic detector and study the dependence of the
magnetic noise of this device on the static characteris-
tics of the film magnetic structure and on excitation
modes [22, 23]. The operating principle of this magne-
tometer is akin to that of a bubble magnetometer [25].
However, an exchange-coupled film structure used as a
sensitive element made it possible to considerably sup-
press the low-frequency noise, which was found to be
≈2 × 10–11 T/Hz1/2 at a frequency of 1 Hz. The device
was put to field tests, which shows that it can be applied
in geophysics, specifically, in geoelectrical prospecting
of shallow ore-bearing rocks and in shallow oil-and-gas
prospecting [12].

CONCLUSIONS
We touched upon three issues concerning exchange-

coupled FoM/FiM film structures consisting of a mag-
netically hard material (amorphous films of REE–TM
alloys) and a magnetically soft Permalloy film. These
are the mechanism of formation of exchange coupling
between the layers, the magnetic properties of the
structures, and application of the structures. In spite of
extensive investigation, the problems considered here
still need greater insight. However, wide application of
these composites stimulates further effort in this field.
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Abstract—An electron–optical system generating a rectilinear or helical 250 keV/4 A/10 µs electron beam with
a high compression factor is developed. For the former beam, a compression factor as high as 4400 and a current
density of 25 kA/cm2 are achieved. In the process of forming the helical beam, the electrons rotating about the
system’s axis (paraxial beam) acquire an initial velocity in a transverse magnetic field produced by a kicker.
Their pitch factor is increased to a desired (operating) value in an adiabatically growing magnetic field. In ten-
tative experiments with the helical beam in a large-orbit gyrotron, generation was obtained at the second cyclo-
tron harmonic (223 GHz). © 2005 Pleiades Publishing, Inc.
INTRODUCTION

A challenging problem in microwave electronics is
the development of inexpensive high-power sources of
coherent sub-mm-wave radiation. Associated devices
could extend the capabilities of spectroscopy, solid-
state physics, medicine, and other fields of science and
technology. Along with the unique sources currently
available, such as traditional high-field gyrotrons [1–5]
and sub-mm-wave free-electron lasers [6, 7], the so-
called large-orbit gyrotrons (LOGs) [8–11], which
today operate at centimeter and millimeter waves, seem
to be more promising and, presumably, much simpler
devices. Unlike the traditional gyrotron, the LOG
employs as an active medium not a multihelix beam but
a single-helix beam all particles of which, when mov-
ing along the resonator’s axis, execute Larmor preces-
sion about it. In an axially symmetric electromagnetic
system, such a paraxial beam is capable of exciting
only those modes whose azimuth index coincides with
the index of the resonance cyclotron harmonic [12–17].
This selection rule considerably thins out the mode
spectrum and thereby simplifies the selective excitation
of higher cyclotron harmonics compared with the tradi-
tional gyrotron. Operation at higher harmonics allows
the designer to significantly decrease the intensity of
the operating magnetic field.

Paraxial electron beams used in the LOG basically
cannot be generated in axisymmetric magnetron injec-
tion guns, which are employed in most traditional
gyrotrons. Therefore, in designing LOGs, emphasis
should be on creating electron–optical systems (EOSs)
generating a high-current paraxial beam with a high
rotational velocity of the particles and small spreads in
velocity and guiding centers. Until recently, three types
of LOG have been applied. In each of them, first a rec-
1063-7842/05/5012- $26.00 1611
tilinear beam is formed and then the particles are
imparted a rotational velocity. In early experiments [18,
19], the rotational energy was pumped in a high-fre-
quency electromagnetic field produced by a special
sweep resonator (a similar EOS is used in magnicons
[20]). In such a scheme, the modulated beam is applied
to the output resonator and the device operates as an
amplifier. In generator circuits, a rectilinear beam is
adiabatically swept in a transverse magnetostatic field.
In cm-wave LOGs [15], the particles of a rectilinear
tubular beam acquire a rotational velocity as they pass
through the region where the guiding magnetic field
abruptly reverses (the cusp of the magnetic field). In a
relativistic LOG operating in the short-wave part of the
millimeter-wave range at the third and fourth cyclotron
harmonics [10], the rectilinear beam is formed in a ther-
mionic EOS and the initial velocity imparted by a
kicker is then raised to a desired value in an adiabati-
cally growing magnetic field. In this work, we discuss
a modified version of this EOS designed for a submilli-
meter generator and report the results of preliminary
experiments.

DESIGN OF THE MODIFIED ELECTRON–
OPTICAL SYSTEM

Theoretically [17], the LOG can selectively operate
at relatively high cyclotron harmonics with indices s =
3–5 when the particle energy is higher than 30 keV pro-
vided that the spread of electron guiding centers, ∆R0,
and the offset of the beam from the axis do not exceed
0.2λ, where λ is the radiated wavelength. Also, to
achieve a reasonably high electron efficiency, average
electron pitch factor g = v ⊥ /v || must be no smaller than
1.0–1.2 for a transverse velocity spread below 20–30%.
© 2005 Pleiades Publishing, Inc.
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Here, v ⊥  and v || are the rotational and translational
components of the particle velocity. At an electron
energy of 30–300 keV, the cross section of the beam in
the working space has the form of a 0.2- to 0.25-λ-wide
ring with an average radius of (0.1–0.5)λ. To operate at
harmonics s = 3–5 with a moderate-length resonator,
the LOG beam current must be on the order of several
amperes. Accordingly, in the submillimeter range, such
a beam will have a density as high as 3–10 kA/cm2. If
the LOG uses a thermionic cathode with a typical emis-
sion current density of jc < 5 A/cm2, such a high current
density implies a high compression of the electron
beam.

In this paper, we study the EOS of the relativistic
375-GHz LOG [21], which is an extension of the high-
voltage device developed earlier. With that device, we
succeeded in generating a 10-µs-long dense helical
beam with a particle energy of 250 keV, current of
10 A, and pitch factor of 1.2 [10]. This beam was used
to selectively generate the TE3,2 mode at the third cyclo-
tron frequency (115 GHz) and the TE4,2 mode at the
fourth cyclotron frequency (130 GHz) with an output of
100 kW and an efficiency of 4%. The EOS of this gen-
erator forms a helical electron beam in two steps. First,
it creates a rectilinear beam using a quasi-Pierce diode
gun with a spherical thermionic cathode (Fig. 1a).
Then, the electrons are imparted a rotational velocity in
the transverse magnetic field of a kicker produced by
two pairs of rectangular loops placed on both sides of
the beam at a distance of roughly half the Larmor pitch
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Fig. 1. Modified electron–optical system: (a) general con-
figuration and (b) schematic of the kicker.
(Fig. 1b). Current pulses of duration about 1 ms are cre-
ated by discharging a capacitor through the kicker
loops. Charging voltage Ukick on this capacitor controls
the electron transverse velocity. After passing through
the kicker, the particles fall into an adiabatically grow-
ing magnetic field, where their rotational velocity is
increased to a desired value. The compression factor for
the beam’s cross-sectional area can be as high as 1100,
and the rectilinear beam current density may exceed
3 kA/cm2. The success in generating such a dense beam
allowed us to expect that, when appropriately modified,
this system can also be used at shorter waves.

In order to decrease ohmic wall losses in the LOG
resonator when going to a much higher frequency, one
has to increase the radial index of the operating mode
to a maximal value permissible for mode selection. In a
traditional gyrotron resonator operating at the third
cyclotron frequency, the radial index can be increased
from 2 to 5–8. However, at the fourth cyclotron fre-
quency, even the mode with a radial index of 3 has a
much higher starting current and is lossy, so that an
increase in the radial index may excite spurious modes.
Therefore, in our design of the submillimeter LOG, the
operating frequency is the third cyclotron frequency
and operating modes are TE3, p modes with high radial
indices, p = 5–8. Under these conditions and at the
same particle energy as earlier (250 keV), a frequency
of 375 GHz can be achieved by raising the magnetic
field in the working space of the gyrotron to B0 = 6.6 T,
which is roughly four times higher than in the early ver-
sion.

Our calculations show that a beam current of 3 A
will suffice for the generator to efficiently operate at the
above modes with electron pitch factor g = 1. At an
emission current density of 4 A/cm2 in a paraxial beam
with a tolerable spread of guiding centers, such a cur-
rent strength is achievable at a compression factor of
about 4000. As in the early version, the magnetic field
at the cathode is very weak, about 1.5 mT. Accordingly,
the Larmor pitch of electrons near the cathode is several
tens of centimeters and the electron cyclotron fre-
quency is less than the plasma frequency of the beam.
Under these conditions, the particles in the growing
magnetic field move nonadiabatically and detailed
numerical simulations with allowance for space charge
forces must be carried out. To analyze the beam near the
cathode, we used the EPOS program, which makes it
possible to adequately calculate the particle trajectories
for a given configuration of an axisymmetric EOS with
regard to static electric and magnetic fields of the space
charge (for more details, see [22]). As the magnetic
field along the longitudinal coordinate grows, the
plasma-to-cyclotron frequency ratio squared and the
Larmor pitch decrease inversely with the field (with
regard to the beam compression factor). Beginning with
field intensity Ba at which the cyclotron frequency
becomes equal to the plasma frequency and the Larmor
pitch becomes several times shorter than the character-
TECHNICAL PHYSICS      Vol. 50      No. 12      2005



        

ELECTRON–OPTICAL SYSTEM 1613

                                          
istic scale of variation of the guiding field, the particle
motion can be simulated in terms of the adiabatic the-
ory (except for the kicker region).

At the exit from the cathode region, the nonideality
of the beam can be characterized by its radial pulsations
or by maximum transverse velocity v ⊥ a of peripheral
electrons. In the EOS under study, the kicker is outside
the cathode region; i.e., Bk > Ba, where Bk is the guiding
field at the kicker. The relative spread of the transverse
velocity of the particles after they have been swept in
the kicker can be estimated by the simple formula [23]

(1)

where v ⊥ s is the maximal spurious transverse velocity
of the electrons before the kicker and v ⊥ k is the trans-
verse velocity imparted by the kicker to the electrons
moving along the axis.

According to the adiabatic theory, the transverse
velocity relative spread in the working space of the
LOG is the same. Since the spurious transverse velocity
in the kicker is given by

(2)

and operating transverse velocity v ⊥ 0 is

(3)

the relative spread can be expressed through the operat-
ing parameters and the parameters at the exit from the
cathode region as

(4)

If parameters v ⊥ a and Ba in the cathode region
remain the same when the operating field is increased
by a factor of 4, the transverse velocity spread increases
by a factor of 2, as follows from expression (4). Note
that the position of the kicker outside the cathode
region, where the magnetic field grows, does not affect
the velocity spread. To decrease a necessary kicker field
and increase the size of the loops, it is reasonable to
place the kicker in the region where the guiding field is
the weakest. In the system developed earlier, the kicker
was placed near the cathode boundary, where B0 =
0.4 T and the maximum transverse velocity is v ⊥ a =
0.06c. In the new EOS, the beam current was dimin-
ished to 3 A, which allowed us to decrease the emitter
diameter twofold and, thereby, maintain the velocity
spread at a level close to that obtained in [10].

The velocity spread of the particles swept in the
kicker depends not only on the transverse velocity but
also on the spread of the guiding center radii (position
spread). For an adjusted paraxial beam, the spread in
the radii is equal to its radius. In the presence of regular
radial pulsations in a laminar beam leaving the kicker,
it is reasonable to place the kicker so as to bring into
coincidence a minimum of the transverse field on the

δv ⊥ 2v ⊥ s/v ⊥ k,=

v ⊥ s v ⊥ a Bk/Ba( )1/2,=

v ⊥ 0 v ⊥ k B0/Bk( )1/2,=

δv ⊥
2v ⊥ a

v ⊥ 0
------------

B0

Ba
-----.=
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system’s axis (the center of the kicker) and a minimum
of the beam radius. To this end, we fixed the position of
the kicker and optimized the pulsation phase by slightly
varying the guiding magnetic field in the cathode
region.

In accordance with the aforesaid, the magnetic sys-
tem generating a field in the cathode region, the config-
uration of gun electrodes, the kicker, and the position of
the kicker in the modified design are the same as in the
earlier version of the EOS. At the same time, the diam-
eter of the emitter is reduced by a factor of 2 (to
10 mm); the parameters of the solenoid that produces
an operating magnetic field in the resonator are
changed; and an additional solenoid is included, which
matches the magnetic field in the gun and kicker with
the operating magnetic field raised fourfold (Fig. 1a).
At an emission current density of 4 A/cm2, the rated
beam current is 3 A and the gun must operate in the
temperature-limited emission mode. To optimize the
phase of electron spurious oscillations at the entrance to
the kicker (B < Ba), the magnetic field in the cathode
region was increased with its value immediately at the
cathode remaining the same (about 1.5 mT). In this
case, according to the trajectory analysis (Fig. 2a), the
maximum velocity of spurious oscillations is v ⊥ a =
0.033c and the beam in the kicker has the smallest cross
section, which reduces the effect of position spread. In
the kicker region, the effect of the self-field of the beam
is much weaker than in the cathode region (the plasma-
to-cyclotron frequency ratio squared is 0.3); therefore,
the particle motion in the kicker and then in the beam
transport channel to the region of the uniform magnetic
field was simulated without regard to the space charge
forces. This approximation significantly simplifies the
analysis and allows us to use a model based on numer-
ical integration of equations of motion for electrons in
a given three-dimensional magnetic field. As initial
conditions in three-dimensional analysis, we used the
results obtained from the two-dimensional trajectory
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analysis of the EOS with the space charge considered in
detail.

According to our calculations, as the current in the
kicker loop increases, the absolute spread in the trans-
verse velocity remains approximately the same (pro-
vided that the electron pitch factor also rises appropri-
ately), while the relative spread decreases (Fig. 3). The
finite value of the transverse velocity absolute spread
that is determined by the cathodic part of the beam-
forming region does not allow us to increase the oper-
ating pitch factor above gmax = 1.2. As the kicker volt-
age grows further, the magnetic-mirror-reflected por-
tion of the electrons whose transverse velocity reaches
a final value in the process of subsequent adiabatic
compression becomes too large. At the kicker voltage
corresponding to the average pitch factor (g = 1.15),
when the number of reflected electrons is about 1%, the
transverse velocity relative spread (the rms deviation)
equals 11.5% and the relative width of the transverse
velocity distribution at the base is about 50% (Fig. 4),
which is in good agreement with estimate (4). The cal-
culations show that the modified EOS can generate a
beam acceptable for the 375-GHz LOG.

EXPERIMENTAL RESULTS

The modified EOS was first tested in the weak-cur-
rent mode, which allows visualization of the beam’s
cross section on a phosphor applied on a quartz target.
In this mode, the potential and magnetic field were,
respectively, 2 and 21/2 times lower than their operating
values. Unlike standard simulation conditions, the elec-
tron current was reduced not by a factor of 23/2 but to a
very small value of about a milliampere that can pro-
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Fig. 3. Beam sweeping in the kicker: pitch factor g, trans-
verse velocity spread δVt, and number R of particles
reflected by the magnetic mirror vs. kicker voltage.
vide the luminescence. At a higher current, the phos-
phor does not withstand a thermal load. If the simula-
tion coefficient had been more than two, the magnetic
field at the cathode would have been too weak (compa-
rable to the terrestrial magnetic field).

Comparative calculations of the electron trajectories
under the weak-current conditions (without the space
charge, Fig. 2b) and operating conditions (at a current
of 3 A, Fig. 2a) demonstrated the significant difference
in the transverse velocity of the particles before the
kicker and in the velocity spread after the kicker. The
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Fig. 4. Analytical particle transverse velocity distribution at
kicker voltage Ukick = 100 V.

Fig. 5. Luminescent spot of the helical beam on the phos-
phor target (the diameter of the dark inner circle is 1.5 mm).
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average transverse velocities of the particles in the
beam swept by the kicker in these modes were close to
each other. Therefore, the weak-current mode could be
used for both adjusting the beam and estimating the
transverse velocity at different particle energies.

The beam was studied with the phosphor target
placed at a distance of 40 mm from the center of the
kicker. The pitch factor was determined from the size of
the luminescent spot (Fig. 5). The quantities measured
in the weak-current mode and converted to the operat-
ing mode with parameters 250 keV and 6.6 T at differ-
ent kicker currents are in good agreement with the
results of calculations performed for the operating
mode (Fig. 6).

According to the I–V characteristics of the EOS
obtained in the operating mode at different emitter tem-
peratures, the maximum beam current exceeded 4 A.
Thus, the maximum current density of the rectilinear
beam in the resonator was found to be about
25 kA/cm2; that of the helical beam with a pitch factor
of 1.0, about 2.3 kA/cm2.

In the experiment on excitation of the LOG resona-
tor by the helical beam, the spurious mode at the funda-
mental cyclotron resonance frequency interfered with
the high-radial-index TE3,8 operating mode excited at
the third cyclotron frequency. At the same time, the
TE2,5 mode at the second harmonic frequency
(223 GHz) with an output of 45 kW and an efficiency
of 6% was stable. The detailed comparison of the mea-
sured and analytical LOG output characteristics
showed that the electron beam apparently had an appre-
ciable transverse velocity spread (up to 60%) and was
offset from the axis by about 0.2 mm. To make the radi-
ation at the third harmonic frequency stable, it seems
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Fig. 6. Electron pitch factor measured in the simulation
mode and its calculated value vs. kicker voltage.
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necessary to adjust the electron beam more finely and,
presumably, to use a lower index operating mode.

CONCLUSIONS

The modified EOS forms a 250-keV/4 A/10 µs elec-
tron beam with a high compression factor (4400). The
application of such a beam in the LOG provides stable
excitation at the second cyclotron harmonic frequency
(223 GHz) with an output of 45 kW and an efficiency
of 6%. The calculations show that such an electron
beam can also provide excitation at the third cyclotron
frequency (375 GHz).
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Abstract—The effect of double scattering of Ar+ ions from the surface of C, Al, Si, Ti, Ge, and In targets is
studied by the method of slow scattered ion spectroscopy. Based on this effect, a technique to estimate the clus-
ter phase of germanium atoms in the Si1 – xGex solid solution with a small (5–10%) content of germanium is
suggested. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

Diagnostics of elemental inhomogeneity (specifi-
cally, clusters) is a challenging problem in production
of the Si1 – xGex solid solution, a promising material for
high-speed electronics [1]. Since atoms in clusters or in
regions enriched by any of the constituent elements are
bound to differ in chemical state from those in the
homogeneous solution, it seems natural to use X-ray
photoelectron spectroscopy—the method widely used
for diagnostic purposes. However, as applied to Ge
clusters in the Si1 – xGex solid solution, this method is
entirely unsuited. The reason is that the binding ener-
gies of core Ge levels in the bulk Ge crystal [2] (or in
sufficiently high Ge clusters) and in the solid solution
[3] almost coincide because of similar electronic struc-
tures of germanium and silicon. The elemental inhomo-
geneity can today be estimated only qualitatively by the
methods of transmission and scanning electron micros-
copy, as well as from the plasma oscillation spectrum in
the electron system of clusters [4]; direct techniques to
find the fraction of clustered Ge atoms in the SiGe solid
solution are absent.

In this work, we developed a method of diagnosing
elemental inhomogeneity (determining the amount of
Ge atoms in the cluster phase) in Si1 – xGex solid solu-
tions. The essence of this method is picking out the con-
tribution of ions doubly scattered by Ge atoms from the
mass spectra of slow scattered ions. The double scatter-
ing effect arises in the presence of Ge clusters or Ge-
enriched regions and cannot basically be observed in
the low-Ge homogeneous solid solution. This method
was synopsized in the proceedings of the 16th Interna-
tional Conference on Ion–Surface Interaction [5].

Ion double scattering is known to be the first orien-
tation effect (discovered as early as in 1965) in experi-
ments on scattering of medium-energy argon ions by a
copper crystal [6]. The energy distribution of the scat-
tered ions has two unequal peaks. The lower energy
1063-7842/05/5012- $26.00 1617
peak is related to quasi-single scattering of a projectile
by a target atom. This statement relies on the fact that
the experimental dependence of its energy position on
the scattering angle agrees well with the analytical
curve constructed under the assumption of single elas-
tic scattering of ions by free atoms of the target.
Namely, the run of both curves is the same and the
absolute values differ by inelastic energy losses in a real
experiment. The term quasi-single scattering here is
used to reflect the fact that a few atoms of a solid target
are actually involved in the scattering event but the
resulting scattering angle depends largely on scattering
by only one of them. In the literature, the terms a singly
scattered ion, a peak corresponding to single scatter-
ing, etc., are usually used to describe this situation.

Under certain conditions, the high-energy part of the
spectrum of ions scattered by a crystal has a peak
whose energy is close to the calculated energy of ions
scattered in a given direction as a result of two sequen-
tial ion–target atom collisions. The double scattering
effect is considered, e.g., in [7–9]. The issue of how the
atomic distance in the surface layer of solids can be
determined from this effect is discussed in [10]. In most
experimental works, the energy of scattered particles is
found by a time-of-flight technique and both neutral
and charged particles are detected. The disadvantages
of time-of-flight techniques as a surface diagnostics
means are (i) large dimensions of instruments that mea-
sure the time it takes for a scattered particle to fly from
the target to the detector and (ii) the need to apply
pulsed ion beams. The energy of scattered particles is
much easier to analyze using electrostatic analyzers.
However, it is impossible to detect neutrals in this case,
which constitute a major fraction of the scattered parti-
cle flow (except for the case of alkali metal ion scatter-
ing). Yet, we enlarged on electrostatic analysis, which
allows one to considerably simplify the setup, operate
with a continuous beam of incident ions (projectiles),
© 2005 Pleiades Publishing, Inc.
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and gain statistics in an amount making it possible to
reliably discriminate the desired effect. To choose opti-
mal experimental conditions for the technique sug-
gested, it was necessary to see how the peaks of singly
and doubly scattered ions behave depending on kine-
matic parameters of the process (the angle by which a
projectile is scattered and the projectile-to-target mass
ratio). To this end, we studied the double scattering
effect on C, Al, Si, Ti, Ge, and In targets, i.e., on targets
made of elements entering into most semiconductor
compounds currently used.

EXPERIMENTAL

We measured the energy distributions of scattered
ions after 5-keV Ar+ ions had bombarded the surface.
The measurements were taken with the high-vacuum
setup described in [11]. The energy and charge of the
ions scattered by fixed angle θ (relative to the primary
beam direction) were analyzed by a Hughes–Rojansky
analyzer with an energy resolution of 9 × 10–3. The ana-
lyzer could be horizontally rotated in the angular range
θ = 0–30°, and the angular resolution of the scattered
ion collimator was 20'. The specular scattering of the
ions was studied (the angle of incidence is half the scat-
tering angle). The residual pressure in the measuring
chamber was equal to 10–9 Torr.

RESULTS AND DISCUSSION

In the first part of this work, we studied the double
scattering of positive ions; in the second one, the feasi-
bility of using this effect for surface analysis of solids.
The contribution of double scattering to the total scat-
tered particle flow is convenient to estimate using
energy peak height ratio Id/Is versus experimental
parameters, where Id and Is are the intensities of double
and single scattering, respectively. Monograph [9] cov-
ers experiments where ratio Id/Is is studied as a function
of primary (incident) ion energy E0, scattering angle θ,
glancing and azimuth angles, target temperature,
atomic number of a projectile, and charge of the scat-
tered ions.

If the particle energy is analyzed with a time-of-
flight technique, the experimental value of ratio Id/Is can
be directly contrasted with the results of calculation
(computer simulation), since these techniques detect
both the charged and neutral components in the scatter-
ing spectrum. If only charged scattered particles are

analyzed, ratio /  for the ion fraction is related to
ratio Id/Is for all the scattered particles as Id/Is =

( / )( / ), where  and  are the respective
fractions of the charged particles scattered by a given
angle as a result of single and double collisions with
surface atoms. It is known that the charge state of a
scattered particle forms away from the surface, since
the particle interacts not with individual target atoms

Id
+ Is

+

ps
+ pd

+ Id
+ Is

+ ps
+ pd

+

but with the surface as a whole. Accordingly, the prob-
ability that the scattered particle will be in one charge
state or another depends on such parameters as the
work function of the surface, ionization potential, and
the velocity normal component of the particle leaving

the target [12]. It is then obvious that the values of 

and  have to equal each other when the singly and
doubly scattered ions escape the surface at the same
angle, since their velocities differ infinitesimally.

However, for Ar+ ions with energies of several kilo-
electron-volts scattered by a polycrystalline Au target

by angle θ = 90°, ratio /  turns out to be smaller
than Id/Is [13]. The same fact was indicated in [4],
where Ar+ ions were mirror-scattered by a Cu crystal by
θ = 30°. This means that comparing the calculated

value of Id/Is with the experimental value of /  for
the charged fraction of the scattered particles may be
incorrect.

In [15], it was suggested that ratio Id/Is be calculated
by the formula

(1)

where σ(θ, E) is the differential cross section of scatter-
ing an ion with energy E by angle θ, E0 is the initial
energy of the ion, E1 is the energy of the ion scattered
by the first atom, θ1 and θ2 are the respective angles of
scattering by the first and second atoms, and d is the
spacing between the first and second atoms.

In this work, we studied the energy spectra of scat-
tered argon ions and recoil ions. For the C, Al, and Si
targets, the spectra taken at angle of observation θ = 12°
are presented in Fig. 1. A change in the energy width of
the analyzer’s window due to a change in the ion energy
is disregarded. The spectra contain peaks due to single
scattering (S) and double scattering (D), as well as a
peak corresponding to recoil ions (R) (the positions of
these peaks are indicated for the carbon and silicon tar-
gets).

Figure 2 shows the dependence of ratio /  on the
target atomic mass. The energy spectra were taken in
the range of scattering angles θ = 6°–27°. To trace how

ratio /  measured at different angles depends on the
atomic mass of the target, it is convenient to recalculate

the values of /  to one angle of observation using
the relationship Id/Is ~ 1/θ2.5 [15], which is valid in the
small-angle approximation. The dependences of

( / )(θ/12)2.5 on the atomic mass of the target (i.e.,
of C, Al, Si, Ti, Ge, and In) are reduced to angle θ = 12°.

For these targets, the values of ( / )(θ/12)2.5 fall into
the range 0.4–4.0. Our results agree with those obtained
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in [10], where ratio /  for Ar+ ions with E0 = 5 keV
scattered by a Cu crystal was measured. The value of

( / )(θ/12)2.5 found from experimental data of [10]
lies in the range 0.6–6.0 (such a wide interval is associ-
ated with the strong dependence on the target orienta-
tion).

Figure 3 demonstrates the angular dependences of

/  (measured) and Id/Is (calculated by formula (1))
for Al, Ge, and In. It is seen that the data points are fitted
well by the relationship Id/Is ~ 1/θ2.5 (dotted curve) [15].
Atomic spacing d of the target used in the calculation
was taken from the table of lattice constants [16].
Agreement between the absolute values of experimen-

tal /  and Id/Is calculated by (1) will be achieved if
d is higher by two- or threefold. Thus, formula (1) and
its small-angle asymptotics, Id/Is ~ 1/θ2.5 , describe well
the run of the angular dependence but the absolute val-
ues of Id/Is disagree.

The energy dependence of /  for In (the angle of
observation is θ = 27°) is presented in Fig. 4. In the

energy range 2–5 keV, /  equals 0.08–0.13. Figure 4
also shows the data for variously oriented Cu crystals in
the case of Ar+ projectiles with E0 = 5–10 keV and θ =

30° [10]. It follows from this figure that ratio /  for
the Cu samples monotonically grows from 0.06 to 2.60
as the energy increases from 5 to 10 keV. Our results are
seen to agree with those from [10].

From the aforesaid, it follows that the effect of dou-
ble scattering of the scattered particles is well pro-
nounced in the case of the C, Al, Si, Ti, Ge, and In tar-
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+
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+
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Fig. 1. Energy spectra of scattered ions and recoil ions when
C, Al, and Si targets are bombarded by 5-keV Ar+ ions. The
angle of observation is θ = 12°.
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gets. The dependence of /  on experimental param-
eters agrees well with the data of other authors and
obeys the same law as ratio Id/Is for the total particle
flux. Thus, information gained from analysis of the
charged component can be used for diagnostic pur-
poses.

Now, let us turn to the feasibility of using this effect
in diagnostics of the Si1 – xGex solid solution. The possi-
bility of separating out the fraction of clustered Ge
atoms in the SiGe solid solution is based on the differ-
ence between the energies of ions having experienced
two successive collisions with similar atoms (Ge + Ge)
and dissimilar atoms (Ge + Si). Consequently, the spec-
tra of scattered Ar+ ions for the samples with Ge clus-
ters will differ from the spectra taken of the homoge-
neous solid solution: in the former case, along with the
peak due to normal double scattering (Ge + Si), an addi-
tional peak associated with double scattering by Ge
atoms (Ge + Ge) arises. The fraction of clustered Ge
atoms can be estimated by comparing the ratio between
the intensities of double (Ge + Ge) and single scattering
of Ar+ ions by Ge atoms in the solid solution with the
same ratio for pure germanium.

We measured the energy distribution of Ar+ ions
with initial energy E0 = 5 keV scattered by Si1 – xGex

samples with x = 5–10, 25, 50, and 60%. The low-ger-
manium (5–10%) samples were prepared in the Insti-
tute of Crystal Growth (Berlin, Germany); the samples
with x = 25, 50, and 60%, in the Ioffe Physicotechnical
Institute, Russian Academy of Sciences (St. Peters-
burg). The angles of observation (measurement) were
21° and 24°, since the double scattering peak is best
visible at these angles (it is high and far apart from the
single scattering peak).
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Fig. 2. Peak height ratio for singly and doubly scattered Ar+

ions vs. the atomic mass of the target. The incident ion
energy is E0 = 5 keV.
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Figure 5 shows the energy spectra of the scattered
ions and recoil atoms for the Si1 – xGex samples with x =
5, 25, and 50% at E0 = 5 keV and θ = 24°. The spectra
contain the peaks of the Ar+ ions singly scattered by Ge
atoms, S(Ge), and silicon atoms, S(Si), as well as the
peak of recoil atoms, R(Si). A validity criterion for
these measurements is the ion intensity ratio. For exam-
ple, the intensity ratio for Ar+ ions singly scattered by
Ge and Si atoms in the Si1 – xGex solution must be
directly proportional to the ratios between the concen-
trations of the respective components, differential cross
sections dσ/dΩ of scattering by a given angle, and
widths ∆E of the analyzer’s energy window for the
peaks measured. It is then natural to assume that prob-
ability p+ of generation of singly charged ions, which is
defined by electron exchange in the escaping ion–sur-
face system, does not depend on whether a Ge or Si
atom acts as a scatterer. In the approximation of the Zie-
gler–Biersack–Littmark interaction potential [17], the
calculated intensity ratio of Ar+ ions scattered by Ge
and Si atoms in the Si1 – xGex samples with x = 5, 25,
and 50% is 0.1, 0.6, and 1.9, respectively, for the differ-
ential cross sections estimated at an angle of observa-
tion of 24°. The accuracy of measuring the intensity
ratio is not high primarily because of a poorly resolved
peak of the Ar+ ions scattered by Si (this peak overlaps
with the more intense peak of Si+ recoil ions). For the
samples with x = 5, 25, and 50%, the measured inten-
sity ratio is 0.19 ± 0.06, 1.4 ± 0.5, and 2.9 ± 1.0, respec-
tively. Agreement between the calculation and experi-
ment may be considered satisfactory.

On the right of single scattering peak S(Ge) in the
spectra, a structure is observed that is related to the Ar+

0 5 10 15 20 25 35
10–2

100
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102

I+
d /I+

s
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θ, deg
30
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10–1

Fig. 3. Experimental values of /  (symbols) and calcu-

lated values of Id/Is (solid lines) vs. scattering angle for (d)
Al, (h) Ge, and (j) In. The dotted line depicts the relation-
ship Id/Is ~ 1/θ2.5.

Id
+

Is
+

ions having experienced at least two successive colli-
sions. At a given angle of observation, Ar+ ions with an
energy exceeding the energy of single scattering by Ge
atoms may result from two processes: an Ar atom col-
lides (i) with a Ge atom and a Si atom (the structure
denoted by D(Ge + Si) in Fig. 5) or (ii) with two Ge
atoms (this structure, which is of interest for us, is
denoted by D(Ge + Ge) in Fig. 5), the energy of scat-
tered ions in the former case being bound to be lower.
For an angle of observation of 24° (x = 5%), the peak of
double scattering by Ge and Si atoms is ∆E/E0 = 0.02
apart from the peak of single scattering by a Ge atom.
For pure germanium, the peak of singly scattered Ar+

ions is ∆E/E0 = 0.03 apart from the peak of double scat-
tering. Thus, double scattering peak D(Ge + Ge) is
∆E/E0 = 0.01 apart from peak D(Ge + Si). This differ-
ence, while small, is sufficient to conclude that the clus-
ter fraction in the samples with x = 5–10% is absent.

Thus, we can state that the low-germanium samples
submitted for investigation are of fairly high quality:
most Ge atoms in the solid solution occupy lattice sites,
and the remainder are interstitials or form small clusters
(clearly, Ar+ ion scattering by small clusters makes a
negligible contribution to the double scattering peak,
since such is the probability that an ion having experi-
enced a collision with a Ge atom will “find” another Ge
atom to collide with in its neighborhood). The estimate
of the cluster fraction, if any, could be affected by the
effect of preferred sputtering of one of the solid solu-
tion components. As is known, the sputtering coeffi-
cient for pure germanium is roughly twice as high as
that for pure silicon when these materials are irradiated
by 5-keV Ar+ ions. However, bombardment of the SiGe
compound surface by inert gas ions leaves the surface
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Fig. 4. Experimental value of /  vs. incident Ar+ ion

energy. (j) Experimental values obtained in this work for In
and angle of observation θ = 27°. The lines with symbols
refer to the variously oriented Cu target [10].
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composition unchanged, as follows from experimental
data [18].

The applicability of this approach to thin-film SiGe
was tested on ≈100-nm-thick Si1 – xGex films MBE-
grown on silicon in the Ioffe Physicotechnical Institute.
Figure 6 shows the variation of the energy spectra
obtained when one of such films (x = 60%) was etched
by 5-keV Ar+ ions with time of etching. The high-
energy part of the spectra exhibits a peak of Ar+ ions
singly scattered by Ge atoms; the central part contains
a peak of Si+ recoil ions. The intensity of the former
peak declines with time and almost disappears in
≈30 min. This means that the incident Ar+ ion beam
(energy E0 = 5 keV, current density j ≈ 10 µA/cm2)
etches off the Si1 – xGex layer and reaches the substrate.
It follows from Fig. 6 that our approach provides a suf-
ficiently high scattered ion intensity (~103 s–1), accept-
able noise-to-signal ratio (~102) in the energy range we
are interested in, and time sufficient to carry out analy-
sis. Hence, the method suggested can be applied for
estimating the Ge cluster concentration in thin Si1 – xGex

films.

Since clusters were lacking in the samples with x =
5–10%, the method of cluster concentration estimation
was refined on the targets with high x (25, 50, and
60%). We proceeded from the assumption that, if the
Ge concentration in the target is high, the energy spec-
trum will contain a collision-induced peak (Ge + Ge)
resulting not from clusters but from individual Ge
atoms (even if the solution is homogeneous), which are
closely spaced in a high-germanium solid solution.
Therefore, a collision-induced spectral feature (Ge +
Ge) gives us a chance to simulate clustering in the
target.
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Fig. 5. Energy spectra of scattered Ar+ ions and recoil ions
in the Si1 – xGex solid solution with x = (1) 5, (2) 25, and
(3) 50%. E0 = 5 keV, θ = 24°.
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Figure 7 demonstrates the energy range of interest
for the samples with x = (a) 5 and (b) 60%. The angle
of observation is 21°. The estimation of the cluster con-
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Fig. 6. Variation of the energy spectra of scattered Ar+ ions
and recoil Si+ ions under irradiation of the Si1 – xGex target
by 5-keV Ar+ ions with etch time: (1) 0, (2) 10, (3) 15, and
(4) 30 min. θ = 21°.
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Fig. 7. Scattered Ar+ ion spectra under irradiation of the
Si1 – xGex target with x = (a) 5 and (b) 60%. θ = 21°. Sym-
bols, data points; continuous lines, model energy distribu-
tions of components.



1622 BABENKO et al.
centration is based on the assumption that the spectrum
in the given energy range consists of the following
components: a peak of Ar+ ions singly scattered by Ge
atoms, a peak of Ar+ ions doubly scattered by Ge and Si
atoms, a peak of Ar+ ions double scattered by Ge atoms,
a “pedestal” associated with Ar+ ions scattered by pure
silicon, and a background due primarily to scattering of
the incident beam by structure elements of the chamber.
In Fig. 7, the single scattering and double scattering
peaks are described by Gaussians, the substrate compo-
nent is that part of the experimental spectrum described
by the analytical curve, and the background is
described by some constant level. Since clusters are
absent in the sample with x = 5%, the spectrum for this
sample has four components (Fig. 7a): the background,
substrate component, single scattering peak S(Ge), and
double scattering peak D(Ge + Si). In simulating the
spectra for the samples with a higher Ge percentage, the
adjustable parameters were only the amplitudes of the
Gaussians describing processes D(Ge + Ge) and
D(Ge + Si) provided that these amplitudes are normal-
ized by peak S(Ge). In describing the spectrum for the
sample with x = 60%, it is impossible to simulate the
experimental curve without taking into account double
scattering by Ge atoms, D(Ge + Ge). Comparing the
intensity ratios of the Ar+ ions singly and doubly scat-
tered by Ge atoms in the Si1 – xGex solid solution and in
a pure Ge target, one can estimate the concentration of
the “clusters.” In the sample with x = 60%, this ratio
equals ≈0.9. The word “clusters” is put in quotation
marks, since peak D(Ge + Ge) here is associated with a
decrease in the Ge atom spacing and, hence, with an
increase in the double scattering probability in the high-
germanium solid solution even if it is homogeneous.

CONCLUSIONS

We measured the intensity ratio for Ar+ ions singly
and doubly scattered by C, Al, Si, Ti, Ge, and In targets
as a function of the atomic mass of the target (M2 = 12–
115 u), projectile energy (E0 = 2–5 keV), and angle of
observation (θ = 6°–27°). The data obtained indicate
that the double scattering effect shows up in the ionic
component, which constitutes a minor part of the total
particle flux and obeys the laws typical of neutrals.

This effect can be used to estimate the Ge cluster
fraction in the Si1 – xGex solid solution. It is shown that
slow scattered ion spectroscopy is applicable to diag-
nostics of elemental inhomogeneity in both thin
(~100 nm) films and bulk samples of the low-germa-
nium Si1 – xGex solid solution. The method of estimating
the Ge cluster fraction in the Si1 – xGex solid solution is
elaborated.
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Abstract—Electron beam formation in krypton, neon, helium, and nitrogen at elevated pressures are experi-
mentally investigated. It is shown that, when the krypton, neon, and helium pressures are varied, respectively,
from 70 to 760 Torr, from 150 to 760 Torr, and from 300 to 4560 Torr, runaway electrons are beamed at the
instant the plasma in the discharge gap approaches the anode and the nonlocal criterion for electron runaway is
fulfilled. The fast-electron simulation of discharge gap preionization is performed. The simulation data demon-
strate that preionization in the discharge gap is provided if the voltage pulse rise time is shorter than a nanosec-
ond under atmospheric pressure. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

In the studies summarized in [1], subnanosecond
electron beams with a record-breaking current ampli-
tude were produced in a gas diode under atmospheric
pressure. It was shown that these beams of runaway
electrons form at the instant the plasma in the discharge
gap approaches the anode and the nonlocal criterion for
electron runaway is fulfilled (for more details, see
[1, 2]). It is of interest to study this mechanism for a
wider spectrum of gases (including heavy ones) and
under higher-than-atmospheric pressures. Relevant
investigations at pressures far exceeding the atmo-
spheric value have not been performed to date. Our pre-
liminary experiments in this field were reported in
[3−5].

In this study, we consider the electron beam forma-
tion at elevated pressures of different gases (krypton,
neon, helium, and nitrogen), krypton being studied for
the first time under these conditions.

The simulation of the propagation of bunched fast
electrons has demonstrated that preionization in the
discharge gap is provided at a subnanosecond voltage
pulse rise time under atmospheric pressure.

EXPERIMENTAL SETUP

We used an upgraded version of the SINUS nano-
second pulser, which was described at length elsewhere
[6]. The pulser (Fig. 1) was equipped with an additional
built-in transmission line with a wave resistance of
40 Ω . A matched termination of 40 Ω generated a volt-
age pulse of amplitude ≈180 kV. At a rise time of the
voltage pulse of ≈0.5 ns, its FWHM was ≈1.5 ns. As in
1063-7842/05/5012- $26.00 1623
[3–5], the cathode was composed of three coaxial cyl-
inders (12, 22, and 30 mm in diameter) made of 50-µm-
thick Ti foil and mounted on a duralumin substrate. The
height of the cylinders decreased by 2 mm from the
least-diameter to largest-diameter cylinder. The dis-
charge gap width was varied from 10 to 28 mm. The
plane anode through which the electron beam was
extracted was made of 40- to 45-µm-thick AlBe foil or
of a wire mesh. A negative voltage pulse was applied to
the cathode under a krypton, neon, or helium pressure
in the discharge gap varying from 1 to 760 Torr. For
helium, additional measurements were taken at a pres-
sure in the discharge gap varying from 760 to 4560 Torr
(from 1 to 6 atm). Elevated-pressure measurements
(from 1 to 4 atm) were also performed for nitrogen.

The beam current was measured using collectors of
different diameters (from 12 to 50 mm) placed at a dis-
tance of 10 mm from the foil. Along with the electron

1 2 3 4

5 6
7

Fig. 1. Schematic of the electron accelerator with a gas
diode: (1) pulser, (2) body, (3) sharpener, (4) high-voltage
terminal, (5) insulator, (6) cathode, and (7) anode.
© 2005 Pleiades Publishing, Inc.
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beam current, we also measured the “total” current of
the diode and the gap voltage. The waveforms of sig-
nals from a capacitive divider, collector, and shunt
resistors were recorded by a TDS-7405 4-GHz oscillo-
scope with a speed of 20 GS/s (20 dots per 1 ns) and a
TDS-334 0.3-GHz oscilloscope with a speed of
2.5 GS/s (2.5 dots per 1 ns). When the gas diode was
filled with helium or nitrogen, the measurements were
taken using the TDS-7405; when with krypton or neon,
using the TDS-334. The discharge glow was photo-
graphed by a digital camera.
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Fig. 2. Discharge current amplitude in the diode (Id), the
voltage across the gas diode (Ud), the beam current density
behind the foil (Ie), and the FWHM of the beam current
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Fig. 3. (1) Discharge current amplitude in the diode,
(2) voltage across the diode, (3) beam current density
behind the foil, and (4) FWHM of the beam current vs. the
helium pressure.
EXPERIMENTAL RESULTS

Figure 2 shows the pressure dependences of the
amplitude of the discharge current through the diode, of
the voltage across the gap, of the electron beam current
density behind the foil, and of the FWHM of the beam
current pulse for krypton and neon. The same depen-
dences for helium are shown in Figs. 3 and 4. For the
electron beam in helium, the measurements were taken
at a time resolution of the recording system of ≈0.1 ns
and a maximum pressure of 6 atm (Fig. 5). The depen-
dences for krypton depicted in Fig. 2 are similar to
those obtained by us earlier for helium and neon [3].
Note that, in krypton (the heaviest gas), the current den-
sity behind the foil, as well as the pressure at which the
beam current amplitude began to increase, was the
lowest.

From Figs. 2 and 3, one can separate out two main
operating regimes of the diode. The first regime, which
was described by us earlier [3], is observed at a helium
pressure of less than 100 Torr (E/p > 0.6 kV/(Torr cm)),
a neon pressure of less than 50 Torr (E/p >
1.2 kV/(Torr cm)), and a krypton pressure of less than
20 Torr (E/p >2.5 kV/(Torr cm)). This regime is charac-
terized by a significant increase in the amplitude and
duration of the electron beam current behind the foil at
low helium, neon, and krypton pressures. Such behav-
ior manifests the transition to the electron acceleration
regime accomplished in [7]. Here, a critical field is
reached between the electrodes of the diode or between
the cathode and the excessive positive charge region in
the gap. For the critical field to be reached in the first
regime with increasing pressure in the diode, it is nec-
essary to narrow the electrode gap to several fractions
of a millimeter or even less. In this case, however, the
electric field at the cathode rises due to explosive elec-

1

10–1

100

101

102

Ud, kV; je, A/cm2; t0.5, ns

1
p(He), atm

2 3 4 5 6

2

3

Fig. 4. (1) Voltage across the diode, (2) beam current den-
sity behind the foil, and (3) FWHM of the beam current vs.
the helium pressure for an electrode spacing of 16 mm.
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tron emission, generating a plasma. The cathodic
plasma rapidly short-circuits the gap, and the beam of
runaway electrons has no time to form.

Of most interest is the second regime, which was
used to produce subnanosecond electron beams [1, 3–
5] at a pressure of 1 atm or higher. Figures 2–4 show
that, at a helium pressure exceeding 300 Torr (at neon
and krypton pressures exceeding 100 and 50 Torr,
respectively), the amplitude of the electron beam cur-
rent, the amplitude of the gap voltage, and the ampli-
tude of the discharge current vary insignificantly. In this
case, the value of parameter E/p for all the gases
becomes much smaller than critical (at which the
amount of runaway electrons is considerable). In other
words, a change in the krypton, neon, and helium pres-
sures in the diode by several times has no effect on the
amplitude of the electron beam current behind the foil.
Such a variation of the beam current with pressure con-
vincingly validates the assumption that the electron
beam forms in the region between the anode and the
plasma expanding from the cathode. As the pressure
grows, the critical value of parameter E/p is attained at
a proportionally decreasing distance to the anode. Note
that the parameters of the electron beam will vary insig-
nificantly under these conditions only if the discharge
remains volume and its geometrical sizes remain
unchanged. In helium, this condition is met; therefore,
the parameters of the electron beam do not change even
at a maximum pressure of 6 atm. The formation of an
electron beam at still higher pressures was beyond the
scope of this paper. The photos of the glow in the
16-mm-wide electrode gap at helium pressures of 1, 3,
and 6 atm are shown in Fig. 6. It is seen that the dis-
charge in the diode is of volume character and the
geometry of the gas-discharge plasma remains invari-
able. Note that the discharge was volume in all the
atomic gases under the pressures used.

Figure 7 shows the discharge glow in nitrogen at
pressures of 1, 2, 3, and 4 atm. At 4 atm, the gap is
short-circuited by a bright channel. As is seen on the
photos taken at different pressures (Fig. 4), the channel
originates at the cathode. Remarkably, when the pres-
sure increases, the shape of the discharge changes and
when the spark (channel) short-circuits the gap, the
amplitude of the beam current sharply drops (Figs. 7
and 8). The pressure dependences of the gap voltage,
electron beam current density behind the foil, and
FWHM of the beam current under these conditions are
shown in Fig. 8. The parameters of the beam current
were measured with a time resolution of ≈0.1 ns. A fea-
ture of beam formation in nitrogen is that the geometri-
cal sizes of the discharge plasma change (Fig. 7). When
the pressure exceeds 1 atm, the cross section of the
plasma shrinks and the amplitude of the beam current
declines (Fig. 8). This decline is associated with a
decrease in the capacitance of the “capacitor” made up
by the anode and the plasma expanding from the cath-
ode. It was also found that the current of the beam of
TECHNICAL PHYSICS      Vol. 50      No. 12      2005
runaway electrons depends on the geometrical sizes of
the discharge plasma and on its homogeneity.

PROPAGATION OF FAST AVALANCHE 
ELECTRONS

According to the notions summarized in [1, 2], at
the stage of electron beam formation, the discharge
propagates in a dense gas by multiplication of available
low-density background electrons rather than by means
of electron or photon transport. The background den-
sity of electrons increases owing to the preionization of
the gas by fast electrons preceding the multiplication
wave. Below, we present the results of simulation for a
bunch of fast electrons propagating in helium under

(a)

(b)

Fig. 5. Waveforms of the electron beam current pulses
obtained in the diode at helium pressures of (a) 1 and
(b) 3 atm. The recording surface area of the collector is
1 cm2. The horizontal scale is 0.1 ns/div. The vertical scale
is (a) 3.7 and (b) 7.8 A/div.

He, 1 atm He, 3 atm He, 6 atm

Fig. 6. Discharge glow in the diode at different helium pres-
sures for an electrode spacing of 16 mm.
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atmospheric pressure. The simulation of multiplication
and runaway of electrons in helium was performed in
the same manner as in [1, 2], i.e., based on a modifica-
tion of the particle method (for details, see [8]). The
cross sections were assumed to be relativistic [9].

We were interested in the coordinates and momenta
of a bunch of the fastest electrons and also in total
amount n of electrons. If this amount exceeded given
amount nmax at a certain time step, we rejected some of
the slow electrons in such a way that the number of
remaining electrons was equal to nmin and the projec-
tions of their momenta onto the field direction were
maximal. Prior to rejection, the coordinate along the
field, l1, and momentum p1 that were averaged over all
electrons were calculated and stored. After rejection,
coordinate l2 and momentum p2 averaged over the
bunch of fast electrons were calculated and stored.

N2, 1 atm N2, 2 atm

N2, 3 atm N2, 4atm

Fig. 7. The same as in Fig. 6 at different nitrogen pressures.
Next, the propagation and multiplication of these fast
electrons was simulated until n < nmax.

The calculations were carried out for different elec-
tric field intensities E. Helium pressure p was assumed
to be equal to 1 atm. The electron motion was traced to
time instant t = τ = 1 ns. We put nmax = 2000 and nmin =
1000.

It follows from the calculations that volume preion-
ization over a given length in a given time will take
place only if a voltage drop over this length is suffi-
ciently high. This fact is illustrated in Fig. 9, which
plots voltage drop U = El versus length l = l1 ≈ l2 (the
averaged coordinate of the fast electrons) for different
time instants τ = 0.1, 0.5, and 1 ns. These dependences
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Fig. 8. (1) Voltage amplitude across the diode, (2) beam cur-
rent density behind the foil, and (3) FWHM of the beam
current vs. the nitrogen pressure for an electrode spacing of
16 mm.
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Fig. 9. Voltage drop U = El over length l = l1 ≈ l2 corre-
sponding to the averaged coordinate of fast electrons vs. this
length for time instants τ = 0.1, 0.5, and 1 ns.
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show limiting voltage U above which fast electrons
cause preionization of the gap with given electrode
spacing l in a time shorter than τ. It is seen that a voltage
higher than 100 kV is required for preionization of a
1-cm-wide gap filled with helium to take place in 1 ns
under atmospheric pressure. This estimate is consistent
with experimental findings.

However, the dependences in Fig. 9 may be treated
otherwise. They show that, at a given voltage across a
discharge gap of a given length, preionization will take
place if the pulse rise time is shorter than time τ for
which the curve in Fig. 9 was constructed.

CONCLUSIONS
Thus, we investigated the conditions under which

runaway electrons are generated in krypton, neon,
helium, and nitrogen at elevated pressures. For krypton,
such a study was performed for the first time. Under
atmospheric pressure in neon, an electron beam with a
current density higher than 6 A/cm2 was obtained. After
the resolution of the recording system had been
improved, the FWHM of the electron beam current in
helium and nitrogen was measured to be ≈0.2 ns.

The electron beam formation in nitrogen demon-
strates that spark channels adversely affect the beam
generation conditions. This is associated with a
decrease in the cross-sectional area of the volume dis-
charge and also with the fact the spark shot-circuits the
electrodes. These facts cannot be explained by assum-
ing that the electron beam behind the foil consists of the
electrons emitted from the end of the propagating spark
channel [10].

The simulation of the propagation of preavalanche
fast electrons showed that rapid preionization occurs if
the voltage across the gap exceeds a certain value
depending, in particular, on the electrode spacing. The
pulse ride time must be shorter than the preionization
time. In other words, a subnanosecond voltage pulse
rise time under atmospheric pressure should be pro-
vided.

Thus, when the krypton, neon, and helium pressures
vary, respectively, in the ranges 70–760, 150–760, and
TECHNICAL PHYSICS      Vol. 50      No. 12      2005
300–4560 Torr, applying a nanosecond voltage pulse
with a subnanosecond rise time generates a beam of
runaway electrons. The beam forms at the instant the
plasma in the discharge gap approaches the anode and
the nonlocal criterion for electron runaway is fulfilled.
In this case, the discharge propagates via the multipli-
cation of background electrons. An enhanced back-
ground density of the electrons is provided by gas
preionization by the fast electrons preceding the multi-
plication wave.
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Abstract—Experiments with a new type of resonance microwave self-excited system with complex dynamics,
a cascade klystron self-excited oscillator with delayed feedback, are reported. The new self-excited oscillator
features a low starting current and many oscillation bands; in addition, it can readily be switched into complex,
including random, oscillation modes. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

When the operating current of the electron beam
exceeds a threshold value by two to three times,
delayed-feedback self-excited oscillators based on
multiresonator klystrons break into complex, including
random, oscillations [1]. Self-excited oscillators of
such a type are of interest as high-power microwave
sources applicable in various fields of technology
[2, 3], since their frequency band in the chaotic oscilla-
tion mode is sufficiently broad. The complex dynamics
of a single-klystron resonance self-excited oscillator
was experimentally studied in [1].

In this work, we report experiments with a new type
of such a dynamic system, a cascade self-excited oscil-
lator built on multiresonator klystrons.

CASCADE KLYSTRON SELF-EXCITED 
OSCILLATOR

The device consists of two series-connected nearly
identical multiresonator klystrons (the output of either
of them is connected to the input of the other). The
klystron stage, in turn, represents a commercial five-
resonator 10-cm-range medium-power klystron. The
two-gap cavities of the klystrons generate oscillations
in antiphase. The parameters of the first klystron are as
follows: the loaded Q factor of the input resonator is
250; that of the output resonator, 125; the unloaded Q
factor, 460; and the resonance frequency, 2798 MHz.
For the second klystron, the respective parameters
equal 120, 112, 380, and 2800 MHz.

The accelerating and control voltages of the
klystrons are applied from the same power supply. The
output resonator of the first klystron is connected to the
output resonator of the second one through a coaxial
feedback loop. The feedback loop is connected via
directional couplers to a wattmeter with a polarization
attenuator, crystal detector to display the phase portrait
of the signal, spectrum analyzer recording the full spec-
trum of the signal, a second crystal detector to display
the envelope of the signal, digital frequency meter, and
1063-7842/05/5012- $26.00 ©1628
polarization attenuator controlling the amount of feed-
back. Schematically, the experimental setup is shown in
Fig. 1.

The full delay time related to the feedback loop
including the feedback loop length, flight time of elec-
trons in the drift space, and Q factors of the cavities of
both klystrons was measured to be 0.6 µs. As a control
parameter, we used the electron beam current, damping
in the feedback loop, and control voltages of the
klystrons. Such a setup makes it possible to fairly accu-
rately identify the oscillation mode, specifically the
periodic modulation and random oscillation modes.

1

3

2

11

9
0–60 dB

12

54 6

10
0–60 dB 8 7

15

14

Fig. 1. Schematic of the experimental setup: (1, 2) multires-
onator klystrons, (3) power supply, (4–8) directional cou-
plers, (9, 10) polarization attenuators, (11) wattmeter,
(12) phase portrait recorder, (13) spectrum analyzer,
(14) envelope recorder, and (15) electronic frequency
meter.

13
 2005 Pleiades Publishing, Inc.
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EXPERIMENTAL RESULTS

The performance of the cascade klystron self-
excited oscillator with delay in different operating
modes was thoroughly examined. The “simple-to-com-
plex” approach was applied; that is, the operating con-
ditions were made increasingly more complicated:
from single-frequency oscillations to periodic modula-
tion and then to random oscillations. In addition, com-
parison was permanently made with the performance of
the oscillator based on a single five-resonator klystron
[1].

To find the operating range of the control voltage,
we first of all studied the dependence of the starting
current of the cascade self-excited oscillator on this
parameter. A cascade self-excited oscillator, as well as
a single-klystron oscillator, is characterized by a set of
oscillation bands.

Figure 2 plots minimal starting current I0 for each of
the bands of the cascade oscillator against accelerating
voltage U0 (curve 2). For comparison, the same depen-
dence is presented for the single-klystron oscillator
(curve 1). The damping in the feedback loops is identi-
cal, 6 dB. For one of the bands, Fig. 3 shows the depen-
dence of the starting current on damping L in the feed-
back loop for the single-klystron (curve 1) and cascade
(curve 2) oscillators. It is seen that the starting current
of the latter device is much smaller; so, it is easier to
excite and, accordingly, carry to the developed chaos
mode.

The dependences of power P and oscillation fre-
quency f on the accelerating voltage for different values
of beam current I are demonstrated in Figs. 4a and 4b,
respectively. As the current grows, the oscillation bands
expand both in voltage and frequency and their number
increases. Also, the bands deform severely; specifically,
the power maxima shift toward higher voltages. The
curves exhibit peaks (maximal power) followed by the
sharp jump into the adjacent band. Near the peaks,
power and frequency hysteresis is observed. The cas-
cade oscillator behaves in many ways similarly to its

1000 1500 2000 2500 3000 3500
U0, V

0

4

8

12

16
I0, mA

1

2

Fig. 2. Minimal starting current vs. accelerating voltage for
the (1) single-klystron and (2) cascade klystron oscillators.
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single-klystron counterpart with the only (but essen-
tial!) difference that, for the former, the number of the
bands is much larger in the same accelerating voltage
range and they are excited at a much lower value of the
starting current. For example, at a beam current of 10
mA in the klystron, the number of the bands is eight in

6 16 26 36 46
L, dB
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Fig. 3. Starting current vs. the damping in the feedback loop
for the (1) single-klystron and (2) cascade klystron oscilla-
tors.
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Fig. 4. (a) Power and (b) frequency vs. accelerating voltage
for different beam currents.
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the cascade oscillator versus five in the single-klystron
oscillator for the same accelerating voltage range.

The number of the bands, as well their positions and
boundaries, can be found from the oscillation phases.
Oscillations occur when the phase shift of the signal
passing through the feedback loop is a multiple of 2π.
If the resonators of a self-excited oscillator are tuned to
synchronism, this condition is written as

Here, θ0 = ω0l/  is the undisturbed angle of flight
between the initial and last resonators in each of the
klystrons, η = e/m; l is the distance between these reso-
nators, ω0 is the eigenfrequency of the resonators, δt1 is
the time of signal propagation in the outer feedback cir-
cuit with measuring devices, δt2 is the time of signal
propagation in the circuit connecting the output resona-
tor of the second klystron with the input resonator of
the first one, k is the number of resonators per klystron,
and n is an integer. The boundaries of the bands can be
found from a similar relationship,

Figure 5 compares the results obtained by these for-
mulas with experimental data.

When the electron current in the klystrons exceeds
the self-excitation threshold by two to three times, the
single-frequency mode changes to the aperiodic modu-
lation mode, in which two satellites appear that are
symmetric about the basic signal in the signal spectrum
and the phase portrait exhibits an ellipse-like limiting
cycle. Interestingly, the self-modulation frequency in
the cascade oscillator is roughly twice lower than in its
single-klystron counterpart.

The self-modulation frequency of a klystron self-
excited oscillator can be found from the full delay time

2θ0 ω0δt1 ω0δt2+ + 2πn k 1–( )π.–=

2ηU0

2θ0 ω0δt1 ω0δt2+ + 2πn k 1–( )π–
π
2
---.±=

20

0
1400

P(U0), mW

U0, V
1600 1800 2000 2200 2400 2600 2800

40
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80

100

120

140

1200

1
2

Fig. 5. (1) Calculated and (2) experimental dependences of
the power on the accelerating voltage.
over the closed feedback loop,

τ L ε
c

---------- 2l
ν0
-----

2
ω01
-------- 3Q01 Qin1 Qout1+ +( )+ +=

+
2

ω02
-------- 3Q02 Qin2 Qout2+ +( ).

Fig. 6. (a) Single-frequency oscillation mode, A = 46 dB;
(b) regular self-modulation mode, A = 37 dB; (c) double-
period mode, A = 33 dB; (d) weak chaos mode, A = 32.5 dB;
and (e) random oscillation spectrum under the developed
chaos mode, A = 31 dB.
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(d)
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Here, L is the length of the coaxial line in the feedback
loop of the klystrons, ε is the permittivity of a filler of
this line, Q0 is the unloaded Q factor of the intermediate
resonators in the klystron, Qm is the loaded Q factor of
the input resonators of the klystrons, Qin is the loaded Q
factor of the input resonators of the klystrons, and Qout
is the loaded Q factor of the output resonators of the
klystrons. Calculation by this formula yields self-mod-
ulation frequency fsm = 2.5 MHz (cf. experimental value
fsm = 3.5 MHz). As in the single-klystron oscillator,
self-modulation in the cascade klystron device arises in
the frequency response descending portion, which is
due to electron grouping, but at a much lower beam cur-
rent or a much higher damping in the feedback loop.

Transition to chaos in the self-excited oscillator
under study follows largely the scenario of period dou-
bling bifurcation, as illustrated by the oscillation spec-
tra and phase portraits taken in the case when amount
of feedback A is used as a control parameter (Fig. 6).

It should be noted that transition to chaos may pro-
ceed through intermittency and quasi-periodicity, as
well as directly from the single-frequency oscillation
mode. The dynamic mode map on the parameter plane,
beam current I, and accelerating voltage U0 for the cas-
cade oscillator are shown in Fig. 7. Compared with the
same map for the single-klystron oscillator (Fig. 8), the
developed chaos mode in the cascade occupies much
more extended domains, which merge together at high
currents (above 40 mA).

Remarkably, without specially selecting operating
parameters for the klystrons under the developed chaos
conditions, a cascade self-excited oscillator composed
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U0, V

I,
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Fig. 7. Dynamic mode map on the (I0, U0) plane for the cas-
cade self-excited oscillator: (1) single-frequency modula-
tion, (2) double-period mode, (3) self-modulation, (4) qua-
druple-period mode, and (5) chaos.
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of almost identical resonators provides gain neither in
power nor in frequency band.

CONCLUSIONS
Our experiments show that a delayed-feedback cas-

cade klystron self-excited oscillator features a low
starting current and many oscillation bands. It can be
readily carried to the complex (including chaotic) oscil-
lation mode and demonstrates various scenarios of tran-
sition to chaos. Therefore, such an oscillator is very
convenient for experimental studying of the general
nonlinear dynamics of distributed systems in the micro-
wave range.
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Abstract—The subject of consideration is the time dependence of the field in the near-field zone of an (acoustic
or electric) dipole generating a nonmonochromatic signal smoothly varying with time. It is shown that this
dependence is approximately the same at different points in the near-field zone; i.e., the smooth signal does not
lag in time, as it might with regard to a finite velocity of wave propagation. The absence of delay is a result of
interference between two identical but differently damped and delayed copies of one signal that are emitted
from two monopoles constituting the dipole. The same is true for an arbitrary electroneutral (as a whole) set of
nonstationary charges (in particular, for a nonstationary quadrupole, octupole, etc.). © 2005 Pleiades Publish-
ing, Inc.
Let us consider interference (superposition) of sev-
eral (i = 1, …, n) copies of one signal A(0)(t) with atten-
uation coefficients fi and different (but positive) time
delays τi > 0. For the total signal, we have

(1)

where (τ) is the operator of time translation by

τ( (τ)A(t) ≡ A(t – τ)),  is the linear operator cou-
pling input (initial) signal A(0)(t) with output (total) sig-
nal A(t).

Considering transformation A(t) = A(0)(t) as a
result of passing initial signal A(0)(t) through a linear fil-
ter [1, 2], one can easily check that the pulsed response
of this filter can be expressed as

and the frequency response has the form

(2)

Note at once that filter (2) is (for τi ≥ 0) physically
feasible (i.e., not violating the causality principle),
since its pulsed response is identically zero at t < 0.

Moreover, operator  is not, strictly speaking, a time-

A t( ) f iA
0( ) t τ i–( )

i 1=

n

∑=

=  f iT̂ τ i( )
i 1=

n

∑ 
 
 

A 0( ) t( ) T̂ totA
0( ) t( ),=

T̂

T̂ T̂ tot

T̂ tot

g t( ) f iδ t τ i–( ),
i 1=

n

∑=

K ω( ) g t( ) iωt–( )exp∫ f i iωτi–( ).exp
i 1=

n

∑= =

T̂ tot
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translating operator (unlike operator  (τi ≥ 0), since
the pulse and frequency responses of the corresponding
filter cannot be expressed as g(t) = fδ(t – τ) and K(ω) =
fexp(–iωτ), respectively, at any values of parameters f
and τ. Nevertheless, linearizing the logarithm of fre-
quency response K(ω) in frequency near the zero fre-
quency (ω = 0), i.e., using the approximation of group
delay under linear filtration (well known from the the-
ory of signals) or, which is the same thing, using the
first order of the classical dispersion theory, one readily
obtains the approximate formula

(3)

where

(4)

With Eq. (3), operator  is easy to approximate by

some translational operator f (τ) that relates parame-
ters f and τ by Eq. (4). Then

(5)

Thus, in the group delay approximation [1, 2], the
total signal differs from the initial one only in ampli-
tude (f) and time shift (τ). Equation (3) is approximate
and is valid at low frequencies only (when the condi-
tions |ω(τi – τ)| ! 1; i = 1, …, n are satisfied). Hence,

T̂ tot

K ω( ) K 0( ) ∂ K ω( )ln
∂ω

---------------------
ω 0=

 
  ωexp≈  = f iωτ–( ),exp

f K 0( ) f i,
i 1=

n

∑= =

τ i K 0( )ln( )' f iτ i/ f i.
i 1=

n

∑
i 1=

n

∑= =

T̂ tot

T̂

A t( ) f iA
0( ) t τ i–( )

i 1=

n

∑ f A 0( ) t τ–( ).≈=
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Eq. (5) for signals with an arbitrary time dependence is
also approximate and can be used for only smooth suf-
ficiently long signals, T @ |τi – τ| (i = 1, …, n).

The accuracy of approximate formula (5) depends
on the form of signal A(0)(t), attenuation constants fi ,
and delay times τi. It is easy to check that, in the very
general case ((lnK(0))'' ≠ 0), formula (5) is an exact for-
mula for any linear function ((A(0)(t) = a + bt).There-
fore, for arbitrary function A(0)(t) Eq. (5) may be viewed
as the “inverse” formula of smooth linear interpolation
[3], which differs from the “normal” formula only by
permutation of the left- and right-hand sides. If the con-
ditions (lnK(0))'' = … = (lnK(0))(m) = 0 are also fulfilled,
formula (5) becomes an exact formula for an arbitrary
mth-degree polynomial and can be viewed as the for-
mula of smooth interpolation of the mth order. Accord-
ingly, the accuracy of Eq. (5) for arbitrary function
A(0)(t) rises (see below).

Importantly, Eq. (4) basically imposes no restric-
tions on delay time τ of the total signal. Even at positive
delays τi of interfering copies, delay τ of the total signal
may be positive, negative, or equal to zero depending
on attenuation coefficients fi. In this case, the delay of
the total signal may be much different from the delays
of the interfering copies of the initial signal, which con-
stitute the total signal. For example, it may so happen
that the total signal does not have a delay (τ = 0),
although each of the copies has (τi > 0 at i = 1, …, n).
Such a situation should not be perceived as violation of
the causality principle or the principle of the maximal-
ity of speed of light in vacuum as applied to data trans-
fer: it is well known [2] that an infinitely smooth signal,
strictly speaking, is not a signal as a data carrier and
that data are transmitted through breaks in the time
dependence of the signal, which appear in the high-fre-
quency (and not in the low-frequency) part of the signal
spectrum.

As an example, consider the field of an electric [1]
or acoustic [4] dipole in a homogenous medium with-
out dispersion and absorption. Designating the posi-
tions of the point oscillators as r1 and r2 and the distance
between these oscillators and the point of observation r
as R1 and R2, we have for the total field

(6)

Here, c is the speed of light (or sound) in the medium
and A(0)(t) is the same (up to sign) time dependence of
either signal.

Equation (4) in this case yields τ(r) = 0 ( f1 = 1/R1,
f2 = –1/R2, τ1,2 = R1,2/c); i.e.,

(7)

Equation (7) applies if τ1,2 ! T or r ! cT. This
means that we are dealing with the field of a nonstation-
ary dipole in the near-field zone.

A r t,( )
A 0( ) t R1/c–( )

R1
--------------------------------

A 0( ) t R2/c–( )
R2

--------------------------------.–=

A t( ) f A 0( ) t( ), f r( )≈ 1/R1( ) 1/R2( ).–=
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It is seen that the total field (unlike the fields of the
point sources producing this total field) has no time
delay. It is easy to check that this conclusion is valid (in
an absorption-free medium) for any set of point acous-
tic or electromagnetic oscillators provided that the total
volume velocity of the acoustic monopoles (in the case
of an acoustic wave) is equal to zero. The fact that the
time delay is the same (zero) at each point of the near-
field zone is associated with the geometric attenuation
of the spherical wave field, which follows the 1/r law in
the three-dimensional space. If the field decays with
distance from the point source faster (for example, in
the presence of absorption), the delay time of the total
signal varies from point to point, remaining positive
(while smaller than that of the signal coming from the
point source nearest to the point of observation).

Let us substantiate these speculations by calcula-
tion. Figures 1a and 1b show the time dependences of
the total signal at the dipole axis for point source spac-
ing d = 0.01 in the medium where the wave velocity is
c = 1. The curves are constructed at a distance from the
dipole center r = (a) 5 and (b) 10. The signal is taken in
the form A(0)(t) = sin(t/T)/(t/T) with duration T = 10.
Shown are (i) the time dependence of the field produced
by both point sources A(0)(t – τ1,2), two merged dotted
lines; (ii) the time dependence of the signal without tak-
ing into account its delay A(0)(t), the solid line; and
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–50 0 50
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0

1

t

Fig. 1. Time dependence of the signal at the axis of a dipole
radiator for r = (a) 5 and (b) 10.
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(iii) the time dependence of the total field arising from
interference between the fields of the point sources
A(r, t)/f(r), the thin solid line. It is seen that the total
field (unlike the partial fields) does “ignore” the time
delay associated with the finiteness of the signal veloc-
ity: as long as the delay is small in comparison with the
signal duration, the field in the near-field zone almost
coincides with the “undelayed” signal. It should be
emphasized that the delay ignored by the total signal is
by no means beyond the calculation accuracy: it is
much longer than the time taken for the signal to travel
from one point source to the other (or, which is the
same, greater than the difference between the delay
times of the partial signals).

Figures 2a (r = 10) and 2b (r = 20) show the calcu-
lation results for a quadrupole (see Fig. 2a). Here, the
accuracy of Eq. (5) turns out to be higher than in the
previous case. This is because (lnK(0))'' = 0 in this case,
and Eq. (5) becomes exact for signals in the form
A(0)(t) = a + bt + ct2.

Figure 3a demonstrates the results for an octupole at
r = 20. In this case, (lnK(0))'' = (lnK(0))''' = 0 at the
octupole axis, which improves the calculation accuracy
(Eq. (5) is valid for third-degree polynomials).

Figure 3b demonstrates the results for the same sig-
nal as in Fig. 3a with the only difference that the signal
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–1/2

–50 0 50

(b)

0

1

t

–1/2

+1

Fig. 2. Time dependence of the signal at the axis of a qua-
drupole radiator at r = (a) 10 and (b) 20.
is truncated: it appears stepwise at t = –30 and vanishes
stepwise at t = 0. It follows from Figs. 3a and 3b that the
total signal appears and vanishes synchronously with
the interfering signals from the point sources (i.e., with
the corresponding delay), but here its time dependence
in the time “window” where the signal exists repeats
the time dependence of the initial signal without delay.
Practically, this means that the signal fragment being
received is other than the fragment being transmitted;
i.e., the time dependence of the partially transmitted
signal is reconstructed (which is typical of the case
when a pulse propagates with a supraluminal group
velocity [5, 6]).

To conclude, we note that today the propagation of
quasi-monochromatic light pulses with a supraluminal
velocity in a number of dispersive media is being exten-
sively investigated [5–12]. This effect is similar to that
considered in this paper, the results of which suggest
that this effect may take place not only for quasi-mono-
chromatic signals but also for wide-band signals, not
only during the propagation of waves but also when
waves are emitted, and not only in a highly dispersive
(or nonlinear) medium but also in a vacuum.
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Fig. 3. Time dependence of the (a) smooth signal and
(b) signal truncated from above and from below at the axis
of an octupole radiator at r = 20.
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Abstract—The behavior of localized plasticity macrodomains is experimentally studied at the final stage of the
plastic flow in going to necking and ductile fracture in fcc, bcc, and hcp materials. General features of the local-
ization process at the stage of prefracture are found. They are a constant velocity of domains and their tendency
to consistently move toward the focus of a bundle of straight lines in space–time diagrams. A correlation
between the type of fracture and the kinetics of localized plasticity domains is established. © 2005 Pleiades
Publishing, Inc.
INTRODUCTION

In the previous studies [1, 2], we revealed specific
features in the behavior of the domains (centers) of
localized plastic strain at the final stage of the plastic
flow in single-crystalline and polycrystalline Fe–3wt%
Si alloys (siliceous iron). At this stage, the stress–strain
dependence is known to obey a parabolic law, σ ~ εn

[3]. For n < 1/2, localized strain domains were found to
move along the sample with velocity V, which depends
on n as [4]

(1)

where q ≈ 1/2. For strain hardening in the form σ ~ 
predicted by Taylor [3], i.e., when n ≈ 1/2, localized
strain domains are immobile (Vn = 1/2 = 0), in accordance
with (1). This fact has been confirmed in many experi-
ments [1, 2, 4, 5]. For n = 1, formula (1) describes the
stage of linear hardening, when plasticity domains have
the same constant velocity Vn = 1.

During the plastic flow, parabolicity exponent n in
the relationship σ ~ εn decreases. This circumstance has
made it possible to separate out a number of parabolic
substages with different parabolicity indices n [4, 5]. In
the range n < 1/2, localized plasticity domains become
mobile [1, 2]. An important and interesting feature of
the motion of the domains at this stage of deformation
is the self-consistency of their velocities, which sponta-
neously arises in the stressed material.

The essence of such a self-consistent motion is illus-
trated in Fig. 1a, which shows the kinetics of localized
strain domains in submicrocrystalline aluminum pro-
duced by the method of equichannel angular pressing1

[6]. In this case, the domain trajectories at the final

1 The authors thank N.M. Rusin for the preparation of submicroc-
rystalline aluminum samples.
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stage of the process plotted in the space–time diagram
(X is the domain position and t is the time) appear as a
bundle of straight lines converging to some point
(focus) with coordinates X* and t*.

EXPERIMENTAL RESULTS

The data obtained in this work complement those
for bcc siliceous iron [1, 2]. We carried out similar
experiments with pure submicrocrystalline (grain size
D lies between 30 and 100 nm) fcc aluminum and with
hcp magnesium and bcc vanadium alloys (their compo-
sitions are presented in the table). The methods of
determining parabolicity exponent n, as well as of visu-
alizing and quantitatively describing localized plastic-
strain domains, are described in [4, 5, 7].

Figures 1a–1d summarize the results obtained for
the alloys. Along with the conventional analysis of the
flow curve σ(ε) and dependence dσ/dε = θ(ε), we con-
structed associated X–t diagrams. They show three
well-defined stages of strain hardening: linear harden-
ing (V = const, n = 1), Taylor hardening (V = 0, n ≈ 1/2),
and the stage of prefracture (V ≠ 0, n < 1/2).

It follows from Fig. 1 that, at the stage of prefrac-
ture, the domains have different velocities, which, how-
ever, remain constant throughout the domain lifetime.
Similar results were obtained previously [2] for
Fe−3% Si single crystals. It was found that the velocity
depends only on the site of birth of a domain: the closer
this site to the region of subsequent fracture, the lower
the domain velocity. At the prefracture stage, new
domains may start to consistently move from one
(Figs. 1a and 1c) or both (Figs. 1b and 1d) sides of a sta-
tionary domain.

It can be shown that extrapolating the portions of the
straight lines X(t) where n < 1/2 to intersection yields a
bundle of lines for each of the materials. It turns out that
© 2005 Pleiades Publishing, Inc.
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Fig. 1. Kinetics of localized plasticity domains in (a) submicrocrystalline aluminum, (b) magnesium alloy, (c) vanadium alloy, and
(d) siliceous iron.
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the time and space coordinates of the focuses of these
bundles, X* and t*, are close to the coordinates of frac-
ture. This means that the velocities of the domains syn-
chronize from the very beginning of this stage so that
the domains simultaneously arrive at the focus. To
determine X* and t*, extrapolation of the dependence
X(t) to long times is often needed, as can be seen from
Figs. 1a and 1c. Therefore, the site of fracture and the
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time to fracture of the sample are predetermined early
in the stage of plastic flow. Note that, actually, the
domains moving at the last stage of the process may
collapse at a certain time instant, as it is well seen in
Figs. 1a and 1c for Al and Mg. As time passes, only one
domain “survives,” namely, the one that emerges at the
site of subsequent macroscopic necking and ductile
fracture [4]. Usually, having appeared at the stage of
Coefficients of the equation for the domain velocity and the coordinates and times of fracture

Parameter Pure Al
Mg

(≈2.0 wt % Mn,
≈0.25 wt % Ce)

V
(≈2.3 wt % Zr,
≈0.4 wt % C)

Fe–Si
(≈3 wt % Si)

α, s–1 1.13 × 10–3 4.64 × 10–3 7.24 × 10–3 1.32 × 10–3

α0, m s–1 6.7 × 10–3 1.7 × 10–2 –6.1 × 10–4 –1.27 × 10–3

X* = α0/α, mm 6.2 3.7 –8 × 10–3 1.0

t* = t0 + 1/α, s 1174 1265 980 2560
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Taylor hardening at n ≈ 1/2, such a domain remains
almost immobile up to fracture but becomes progres-
sively strained as the flow decays in other domains.

DISCUSSION

Let us consider the formation conditions for the
bundles of straight lines X(t) shown in Fig. 1. It is
known [8] that these lines intersect if the domain veloc-
ities linearly depend on coordinates ξ of the site of birth
at time instant t = t0, i.e., if V(ξ) = αξ  + α0. Here, α and
α0 are empiric constants. Coordinate ξ is convenient to
measure from the stationary domain, as is shown in
Fig. 1a. The dependences V(ξ) for the materials studied
are plotted in Fig. 2, and corresponding constants α and
α0 are listed in the table. The domain velocity as a func-
tion of the domain’s initial position was determined
from the slopes of the lines in Fig. 1. As follows from
Fig. 2, the curve V(ξ) is actually linear for all the sam-
ples. The coefficient of parabolic strain hardening, θ =
dσ/dε ~ nεn – 1, decreases with decreasing parabolicity
exponent n. Then, the velocity of the localized strain
fronts, V ~ 1/θ, is bound to grow with a decrease in n
and, accordingly, in θ [5, 7]. At n < 1/2, the velocity also
grows by virtue of Eq. (1).

The coordinates of the focal point, which corre-
spond to the site and time of fracture,

were calculated in the same way as in [8] (see table).
Since the focus was found for all the materials, one may
suggests that it is a general sign of localization at the
stage of prefracture and associate the convergence of
the domains in the X–t coordinates with the automatic
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Fig. 2. Dependence V(ξ) in (a) submicrocrystalline alumi-
num, (b) magnesium alloy, (c) vanadium alloy, and (d) sili-
ceous iron.
fulfillment of condition V(ξ) = αξ  + α0 in the samples
under tension at the prefracture stage with n < 1/2.

As was mentioned above, localized plasticity
domains may originate on both sides of the site of sub-
sequent fracture (V, Fe–3% Si alloys) and on one side
(Al, Mg alloy). The domains originating on both sides
of the stationary domain make angles of unlike signs
with the axis of tension. This may be a reason for the
different type of ductile fracture in low-plasticity (bcc)
and high-plasticity (fcc and hcp) materials [9]. This
conjecture is supported by the different structure of
fracture surfaces. More plastic materials (Al and Mg
alloy) exhibit a typical pattern of shear ductile fracture,
while fracture in vanadium and Fe–3% Si alloy is more
brittle [1].

Next, using Eq. (1) and normalizing the quadratic
dependence V(n) by the experimental values Vn = 1 and
Vn = 1/2 = 0 corresponding to the stages of linear and
Taylor strain hardening (n = 1 and n ≈ 1/2, respec-
tively), we estimated the values of n for each of the
mobile domains in all the materials, except for the sub-
microcrystalline aluminum.2 The results of such pro-
cessing (Fig. 3) indicate an intriguing property of the
dependence V(n): the parabolicity exponent is negative
(n < 0) for the fastest domains of localized plasticity. A
negative value of the exponent corresponds to the
descending branch of the conditional stress–strain dia-
gram [9, 10]; however, the parabolicity exponent for a
sample as a whole remains positive at this stage. It is
worth noting that the domains for which n < 0 sponta-
neously appear at the stage of prefracture and are geo-
metrically unrelated to the regions of localization aris-

2 In the submicrocrystalline aluminum, the stage of linear harden-
ing was absent and so the velocity corresponding to n = 1 could
not be measured.
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Fig. 3. Domain velocity V vs. parabolicity exponent n in
(a) magnesium alloy, (b) vanadium alloy, and (c) siliceous
iron.
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ing at the stage of Taylor hardening and remaining sta-

tionary as long as σ ~ , i.e., at n ≈ 1/2.

The dependences observed can be explained by sup-
posing that parabolicity exponent n may take different,
including negative, values in every localized plasticity
domain moving at the stage of prefracture. Then, one
has to admit that the deformability of separate domains
in a material may be different and the ability of the
material for strain hardening under the plastic flow con-
ditions may vary during this stage. It was shown [11]
that the dislocation structure inside plasticity domains
at various stages of deformation develops ahead of the
dislocation substructure between the domains, which
confirms this viewpoint.

CONCLUSIONS

Important points concerning the behavior of materi-
als at the stage of prefracture preceding macroscopic
necking can be summarized as follows.

(1) According to the evolution patterns that show
localized deformation zones immediately before the
onset of macroscopic necking, the site of fracture can
be found early in the process [4]. The stage of the stable
parabolic (Taylor) hardening (n ≈ 1/2) is followed by
the transition stage with n < 1/2, which ends in the for-
mation of a macroscopic neck with subsequent ductile
fracture. Such a change in n may correspond to the
instant the plastic flow becomes unstable [12–14].

(2) The patterns observed at the stage of prefracture
indicate that macroscopic necking shortens the zone of
intense plastic flow and suppresses the plastic flow in
the rest of the sample. As the sample elongates, the
wavelength of local deformation decreases.

(3) It seems that localized strain domains appearing
at the stage of prefracture evolve (in the sense of strain
hardening/softening) independently. In other words,
hardening domains (n > 0, θ > 0) may coexist with soft-
ening ones (n < 0, θ < 0) in the same sample. Each of
the domains moves with its own constant velocity,
which is a linear function of the start point coordinates.

ε
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(4) Necking and the fracture zone nucleation start
long before fracture and result from the consistent
motion of plastic flow domains concentrating at the site
of subsequent ductile fracture. Its position is fixed early
in the process by a domain arising at the end of Taylor
hardening. The time of fracture is defined by the consis-
tent motion of all the domains.
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