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Fortieth Anniversary of the Journal
Physics of Atomic Nuclei

This year marks the 40th anniversary of the
starting of the journal Yadernaya Fizika (translated
into English under the title Physics of Atomic
Nuclei, formerly known as the Soviet Journal of
Nuclear Physics). The need for a specialized journal
on nuclear and elementary-particle physics was felt
because of the rapid development of these fields in
this country in the 1960s. Major nuclear research
centers were created: the Joint Institute for Nuclear
Research (JINR) in Dubna, the Institute of Theoreti-
cal and Experimental Physics (ITEP) in Moscow, the
Institute for High Energy Physics (IHEP) near Ser-
pukhov, the Institute of Nuclear Research at Moscow
State University, Institute for Nuclear Research in
Troitsk, nuclear research institutes in Novosibirsk
and QGatchina, and the Institute for Physics and
Power Engineering in Obninsk. Nuclear physics
research was done at large departments of the Kur-
chatov Institute of Atomic Energy and the Lebedev
Institute of Physics in Moscow, and the Institute
for Physics and Technology in Kharkov. Important
independent schools evolved in theoretical and ex-
perimental nuclear physics. Typically, it was around
accelerators, newly built or under construction, at
nuclear centers that experimental schools sprung up.
The relaxation of secrecy conditions went a long way
toward the proliferation of nuclear physics papers.
This stream of papers overwhelmed the Journal of
Experimental and Theoretical Physics, which cov-
ered a wide range of physics subjects. As it branched
from the JETP, which was directed by P.L.. Kapitsa at
that time, the new journal, Physics of Atomic Nuclei,
has retained the splendid traditions of the leading
national physics journal—namely, high professional-
ism, scientific objectivity, and adherence to principle.
The first editorial board was headed by V.I. Veksler
(editor in chief), V.V. Vladimirsky (deputy editor in
chief), and Ya.A. Smorodinsky (executive editor). The
editorial board has included some of the nation’s
leading names in nuclear physics: S.T. Belyaey,
D.I. Blokhintsev, N.N. Bogolyubov, G.I. Budker,
S.N. Vernov, A.S. Davydov, B.S. Dzhelepov, V.G. Ki-
rillov-Ugryumov, A.A. Logunov, M.G. Meshch-
eryakov, A.B. Migdal, B.M. Pontecorvo, R.M. Su-
lyaev, I.LE. Tamm, G.N. Flerov, and I.M. Frank. The
editorial staff, led by T.G. Bychkova, maintained

high publishing standards. With time, V.I. Veksler
was replaced by V.V. Vladimirsky as editor in chief,
who was in turn replaced by Yu.G. Abov at a later
date. The composition of the editorial board and staff
varied, but the principles that underlay the journal
at its founding were carefully preserved, turning into
traditions.

Since 1965, the journal Physics of Atomic Nuclei
has appeared in an English version. It is distributed
by the American Institute of Physics among libraries
outside Russia, which, naturally, broadens its reader-
ship and increases its communication potential.

Many eminent scientists have been published
in this journal—among them, 1.Ya. Pomeranchuk,
V.Z. Gribov, Ya.B. Zeldovich, A.B. Migdal, G.N. Fle-
rov, S.T. Belyaev, B.I. lToffe, L.B. Okun, K.A. Ter-
Martirosyan. The list can be made much longer.

Many papers that appeared in the journal are
widely known and quoted.

The current phase in nuclear physics research
is marked by broad international cooperation. This
trend is reflected in the coverage of the journal, which
often carries papers coauthored by Russian and for-
eign scientists. Not infrequently, it prints independent
foreign papers generated at leading research centers
in Europe and the United States (Saclay, Princeton,
and others).

Papers printed in the Physics of Atomic Nu-
clei more than once took the first prize in the
annual best paper competition started by ITAPC
Nauka/Interperiodica in 1995, which is a testimony
to their high quality. Over the intervening ten years,
authors from the Physics of Atomic Nuclei cap-
tured the first prize four times, which is a record
among the journals in this field! The winners (listed
chronologically) are Yu.A. Simonov, ITEP (for a set
of papers proposing a new approach to the description
of nonperturbative phenomena in quantum chromo-
dynamics); members of two groups at the Institute
for High Energy Physics headed by L.G. Landsberg
and A.M. Zaitsev (for a set of papers devoted to the
search for, and systematic study of, the properties
of exotic baryon and meson resonances); Yu.D.
Prokoshkin, THEP [for a set of papers on hadron
spectroscopy (the award was given posthumously)];
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and Yu.Ts. Oganesyan, JINR (for a set of papers We are confident that the journal will continue to

devoted to the discovery of the stability island). appear and develop together with Russian nuclear
The journal held out through a period of hard times ~ physics and, while changing in a rapidly changing

for science in this country—the late 1980s and the  world, maintain its high standards.

1990s. It is busy developing new publishing methods

and keeping a firm hold on its bridgehead. Over the

intervening years, the Physics of Atomic Nuclei ci-

tation index has quadrupled. Editorial Board
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Abstract—A model for the Q?-dependent dual amplitude with Mandelstam analyticity (DAMA) is pro-
posed. The modified DAMA (M-DAMA) preserves all the attractive properties of DAMA, such as its pole
structure and Regge asymptotics, and leads to a generalized dual amplitude A(s,t,Q?). This generalized
amplitude can be checked in the known kinematical limits; i.e., it should reduce to the ordinary dual
amplitude on mass shell and to the nuclear structure function when ¢ = 0. In such a way, we complete
a unified “two-dimensionally dual” picture of strong interaction. By comparing the structure function
F, resulting from M-DAMA, with phenomenological parametrizations, we fix the Q? dependence in M-
DAMA. In all studied regions, i.e., in the large- and low-z limits as well as in the resonance region, the
results of M-DAMA are in qualitative agreement with the experiment. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

About thirty years ago, Bloom and Gilman [1]
observed that the prominent resonances in inelastic
electron—proton scattering (see Fig. 1) do not dis-
appear with increasing photon virtuality Q2 with re-
spect to the “background” but, instead, fall at roughly
the same rate as the background. Furthermore, the
smooth scaling limit proved to be an accurate average
over resonance bumps seen at lower @2 and s; this is
so-called Bloom—Gilman or hadron—parton duality.

For the inclusive e~ p reaction, we introduce vir-
tuality Q%, Q? = —¢*> = —(k — k)2 > 0, and Bjorken
variable z. These variables x, @? and Mandelstam
variable s (of the v*p system), s = (p + ¢)?, obey the
relation

5= Q1 —a)/w+m?, (1)
where m is the proton mass.

Since its discovery, hadron—parton duality has
been studied in a number of papers [2] and new sup-
porting data has come from recent experiments [3,
4]. These studies were aimed mainly at answering
the questions: In which way can a limited number
of resonances reproduce the smooth scaling behav-
ior? The main theoretical tools in these studies were
finite energy sum rules and perturbative QCD cal-
culations, whenever applicable. Our aim, instead, is
the construction of an explicit dual model combining
direct channel resonances, Regge behavior typical for
hadrons and scaling behavior typical for the partonic

*This article was submitted by the author in English.
“e-mail: Volodymyr.Magas@ific.uv.es

picture. Some attempts in this direction have already
been made in [5—8], which we will discuss in more
detail below.

The possibility that a limited (small) number of
resonances can build up the smooth Regge behavior
was demonstrated by means of finite energy sum
rules [9]. Later it was confused by the presence
of an infinite number of narrow resonances in the
Veneziano model [10], which made its phenomeno-
logical application difficult, if not impossible. Sim-
ilar to the case of resonance—Reggeon duality [9],
hadron—parton duality was established [1] by means
of finite energy sum rules, but it was not realized
explicitly like the Veneziano model (or its further
modifications).

The first attempts to combine resonance (Regge)
behavior with Bjorken scaling were made [11—13]
at low energies (large x), with the emphasis on the
right choice of the Q? dependence, such as to satisfy
the required behavior of form factors, vector meson

Fig. 1. Kinematics of deep inelastic scattering.
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Fig. 2. Veneziano (or resonance—Reggeon) duality [10] and Bloom—Gilman (or hadron—parton) duality [1] in strong interac-

tions. From [6].

dominance [the validity (or failure) of the (general-
ized) vector meson dominance is still disputable] with
the requirement of Bjorken scaling. Similar attempts
in the high-energy (low-z) region became popular
recently, stimulated by the HERA data. These are
discussed in Section 6.

Recently, in a series of papers [5—8], the authors
made attempts to build a generalized @Q?-dependent
dual amplitude A(s, t, @?). This amplitude, a function
of three variables, should have correct known limits;
i.e., it should reduce to the on-shell hadronic scatter-
ing amplitude on the mass shell and to the nuclear
structure function (SF) when ¢ = 0. In such a way,
we could complete a unified “two-dimensionally dual”
picture of strong interaction [5—8]—see Fig. 2.

In [5, 6], the authors tried to introduce Q2 depen-
dence in the Veneziano amplitude [10] or more ad-
vanced Dual Amplitude with Mandelstam Analyticity
(DAMA)[14]. The Q? dependence can be introduced
either through a Q?-dependent Regge trajectory [5],
leading to a problem of physical interpretation of such
an object, or through the g parameter of DAMA [5,
6]. This last way seems to be more realistic [6], but
it is also restricted due to the DAMA model re-
quirement g > 1 [14]. The authors [5—8] relate the
imaginary part of amplitude to the total cross sec-
tion and then to the nucleon SF: Fy(z, Q?) ~ oo ~
ImA(s(z, Q?),t = 0,Q?), which was compared to the
experimental data (we shall discuss this chain in more
detail in Section 6). In this way, the low-z behavior
of Fy prescribed a transcendental equation for g(Q?)
(see [6] for more details), which led to g(Q? — o0) —
0, forbidden by DAMA definition. Therefore, such an
identification of g(Q?) is allowed only in the limited
range of Q?, as was actually stressed by the authors.

PHYSICS OF ATOMIC NUCLEI Vol.68 No. 1

2005

Recently, this problem was also studied in the
framework of field theory. In [15], the off-shell con-

tinuation of the Veneziano formula was derived in the
Moyal star formulation of Witten’s string field theory.

In [7, 8], the authors went in an opposite direc-
tion—they built a Regge-dual model with Q?-depen-
dent form factors, inspired by the pole series ex-
pansion of DAMA, which fits the SF data in the
resonance region. The hope was to reconstruct later
the @2-dependent dual amplitude, which would lead
to such an expansion. It is important that DAMA
not only allows but rather requires nonlinear complex
Regge trajectories [14]. Then the trajectory with a

restricted real part leads to a limited number of res-
onances.

A consistent treatment of the problem requires
taking into account the spin dependence. This was
done in [8], and a substantial improvement of the fit,
in comparison to earlier works [7] ignoring the spin
dependence, was found. Nevertheless, the applica-
bility range of the above model [8] is limited to the
resonance region, as was actually discussed by the
authors. For the sake of simplicity, we ignore spin
dependence in this paper. Our goal is rather to check
qualitatively the proposed new way of constructing
the “two-dimensionally dual” amplitude.

2. MODIFIED DAMA MODEL

The DAMA integral is a generalization of the in-
tegral representation of the B function used in the
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Veneziano model [14]:1)

1
—as(s')—1 . —a(t")—1
D(s,t) = /dz(z> (¥> ;
3 g g

(2)

where ' = a(1 — 2), a’ = az, and g is a free parame-
ter (a = s,t), g > 1, and a;(s) and oy (t) stand for the
Regge trajectories in the s and ¢ channels.?)

In this paper, we propose a modified definition of
DAMA (M-DAMA) with Q? dependence [17]. It also
can be considered as a next step in generalization of
the Veneziano model. M-DAMA preserves the at-
tractive features of DAMA, such as pole decompo-
sitions in s and ¢ and Regge asymptotics, yet it gains
the Q%-dependent form factors, correct Q% — oo limit
fort = 0 (Fy(z,Q?) at large ), etc.

The proposed M-DAMA integral reads

P\ () =8Q) -1
DGt = | dz(—) (3)
0

1 — 2\ —®)=B@*")-1
(%) |

where 3(Q?) is a smooth dimensionless function of
Q?, which will be specified later on from studying
different regimes of the above integral.

The on-mass-shell limit, Q% = 0, leads to the shift
of the s- and t-channel trajectories by a constant
factor 5(0) (to be determined later), which can be
simply absorbed by the trajectories, and, thus, M-
DAMA reduces to DAMA. In the general case of the
virtual particle with mass M, we have to replace Q?
by (Q? + M?) in the M-DAMA integral.

Now all the machinery developed for the DAMA
model (see, for example, [14]) can be applied to the
above integral. Below, we shall report briefly only
some of its properties, relevant for further discussion.

3. SINGULARITIES IN M-DAMA

The dual amplitude D(s,t,Q?) is defined by in-
tegral (3) in the domain Re(ay(s') + 5(Q%")) <0
and Re(ay(t") + 3(Q%")) < 0. For monotonically de-
creasing function Re3(Q?) (or nonmonotonic func-
tion with maximum at Q2 = 0) and for increasing or

DThere are several integral representations of DAMA [14];
here, we shall use the most common one.

DIn [14], the authors use the same trajectories in s and ¢
channels. This is easy to generalize—see, for example, [16].
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constant real parts of the trajectories, the first of these
equations, applied for 0 < z < 1, means

Re(as(s) +4(0)) <0. (4)
Similarly, the second one leads to
Re(ax(t) + 5(0)) <0. (5)

To enable us to study the properties of M-DAMA in
the  domains  Re(as(s') + 6(Q%")) >0  and
Re(ay(t") + B(Q?")) > 0, which are of the main
interest, we have to make an analytical continuation
of M-DAMA. It can be done in the same way as
for DAMA [14]—basically, we need to transform the
integration contour in the complex z plane in such a
way that z =0 and z =1 will no longer be the end
points of the integration contour; instead, the contour
will run around these points at an arbitrarily close
distance. The important thing here is that such a
procedure will lead to an extra factor

{exp[—2mi(as(s") + B(Q*"))] — 1}
x {exp[—2mi(ay (¢") + B(Q*))] — 1}

in the denominator of the M-DAMA integrand [14],
which generates two moving poles z, and z,, from
zeros of the denominator:®)

as(s(1—2n)) + ﬂ(Q2zn) =n, (6)
n=0,1,2,...,

ar(tzm) + ﬂ(QQ(l —zm)) = m, (7)
m=20,1,2,....

The motion of the poles z, and z,, with s, t, and @Q?
depends on the particular choice of the trajectories
and function 8(Q?). The integrand (3) also has two
fixed branch points at z = 0 and z = 1. Ii the trajec-
tories as(s), ay(t) or function B(Q?) have thresholds
and correspondingly their own branch points, then
these also generate the branch points of the M-
DAMA integrand. For example, z; generated by the
threshold sy, in «ay trajectory will be given by s(1 —
Zs) = Sth = 2zs = 1 — sy/s. Similarly, the threshold
Q7 in B(Q%) will generate 2, =1—Qf /Q* and
24 = Qf,/Q? branch points. In this work, we are
not going to discuss the threshold behavior of M-
DAMA, but we assume that the trajectory as(s)
has a threshold and an imaginary part above it, and

3Of course, the above denominator has zeros for n,m =
—1,—2,... also, but, as we said above, we need to make an
analytical continuation only in the region where Re(as(s”) +
B(Q*")) >0 and Re(au(t") + B(Q?")) > 0. This point is
not clearly described in [14]—there are no poles in DAMA
for Rea(s) < 0 (or Rea(t) < 0).
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correspondingly dual amplitude D(s,t, Q?) also has
an imaginary part above the threshold.

The singularities of the dual amplitude are gener-
ated by pinches which occur in the collisions of the
above-mentioned moving and fixed singularities of
the integrand.

(1) The collision of a moving pole z = z, with the
branch point z = 0 results in a pole at s = s,,, where
Sy, is defined by

as(sn) + B(0) = n. (8)

Please note the presence of an extra (in comparison
to DAMA) term (0). It can be considered as a shift
of the trajectory. If 3(0) is an integer number, then the
modification is trivial.

(2) The collision of a moving pole z = z, with

the branch point z = 1 results in a pole at Q? = @Q?2,
defined by

as(0) +8(Q7) = n. (9)

In this sense, we can think of B(Q?) as a kind of
trajectory, but we do not mean that it describes real
physical particles. Also, we will see later that, with a
proper choice of 3(Q?), we can avoid these unphysical
poles, and 3(Q?) required by the low-z behavior of the
nucleon SF is exactly of this type.

(3) Similarly, the collision of a moving pole z = z,,
with the branch point z = 1 resultsin a pole att = t,,,
defined by

ar(tm) + B(0) = m. (10)
(4) The collision of a moving pole z = z,, with

the branch point z = 0 results in a pole at @* = Q2,,
defined by

a(0) + B(Q,) = m. (11)

Note that, if as(0) = a;(0), the poles in Q2 will be
degenerate.

Generally, since poles in s, t, and Q? arise when
pairs of different singularities collide, the ampli-
tude is free of terms like ~ 1/[(s — s,)(t — t;)] or
~1/[(s — 5,)(Q* — Q2,)], which would possess poles
simultaneously in two variables (similarly, there are
no terms possessing the poles simultaneously in all
three variables). Although in some degenerate cases
this could happen—for example, if [(z) = as(z)
and a(0) = as(0), then we could have terms like
~1/[(s — $0)(Q? — Q2)? coming from Egs. (8), (9),
and (11). For further discussion, we shall consider a
nondegenerated case.
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4. POLE DECOMPOSITIONS

Let us consider the pinch resulting from the colli-
sion of a pole at z = z,, with the branch point z = 0.
The point z, is a solution of Eq. (6):

as(s(1 = z,)) + B(Q%*z,) = m,
For z, — 0, it becomes
as(s) — sal(s)zn + B0) + B(0)Q%z, = n

and so

n=0,1,2,....

(12)

o = n— as(s) - B(O)

T B(0)Q* — sal(s)
We see that z, — 0 when s — s, given by Eq. (8).
The residue at the pole z, (see [14] for more details) is

equal to
1 2\ ! 14
o) 0

Lo\ —on(tzn) =A@ (1=2)—1
()
g
_g"MB(0)Q* — sal(s)]"
[n — ag(s) — B(0)]"+1
|\ —eeltn) =A@ (1= 2n) -1
X ( ") )
g

[t contains a pole at s = s, of order of n+ 1. By
expanding the nonpole cofactor in (14), we obtain

(13)

2miRes,, =

- —at(tzn)—B(Q%*(1—2n))—1
(1 Zn) (15)
g
= > CUlt. Q)2 + Fu(t. Q% 20),
1=0
where
1 d
2y . - %
Ci(t, Q%) = P (16)
1— —a(t2)—B(Q* (1-2))—1
X < ) )
9 z=0
2
W — const, z— 0. (17)
z

Finally, inserting (15) into (14), we end up with the
following expression for the pole term:

Dsn (87 t Q2) - gnJrl
N B 0)Q — sai ()] Cou(t, Q%)
2 e A0

Formula (18) shows that our D(s,t,Q?) does not
contain ancestors and that an (n + 1)-fold pole

(18)

=0
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emerge on the nth level. The crossing-symmetric
term can be obtained in a similar way by considering
the case 3 from the list above (see Section 3).

The modifications with respect to DAMA are (i)
the shift of the trajectory a,(s) by the constant factor
of 5(0) (we can easily remove this shift including
B(0) in the trajectory); (ii) the coefficients C; are now
Q?-dependent and can be directly associated with the
form factors. The presence of the multipoles [Eq. (18)]
does not contradict the theoretical postulates. On the
other hand, they can be removed without any harm
to the dual model by means of the so-called Van der
Corput neutralizer.®) This procedure [14] seems to
work for M-DAMA equally well as for DAMA and
will result in a “Veneziano-like” pole structure:

Cn(t, Q%)

2y _ n+l
Danls:,Q%) = 6" — " 50y

(19)

The Q?-pole terms can be obtained by considering
cases 2 and 4 from Section 3, but as we shall see later
in Section 7, with our choice of 3(Q?), we avoid Q?
poles.

5. ASYMPTOTIC PROPERTIES OF M-DAMA

Let us now discuss the asymptotic properties
of M-DAMA. For this purpose, we rewrite the
M-DAMA expression (3) in the following way:

1
D(s,t,Q%) = / dze™ W (zis:.Q%) (20)
0
where
W (z;s,t, Q%) (21)
— () o) + 5@ +1
+ m(l ; Z) (au(t") + B(QY) +1).

Below, a simplified notation W (z) will be used instead
of W(z;s,t,Q%).

The calculations in this section will be done
through the saddle-point method, and we will care
only about the leading-order term, although the
method allows one to derive subleading terms to any

YIn brief, the procedure [14] is to multiply the integrand
of (3) by a function ¢(z) which has the following properties:
#(0)=0, ¢(1) =1, ¢"(1) =0, n=1,2,3,.... The func-
tion ¢(z) = 1 — exp(—z/(1 — 2)), for example, satisfies the
above conditions.
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order. If zy is the saddle point, then the leading term
is given by

2T —W(zo).

D(s,,Q") = W ()

(22)

Let us prove the Regge asymptotic behavior of M-
DAMA (s — oo, t,Q? = const). First, we consider
the behavior of D(s,t,Q?) for s — —oco and fixed
Q? and t such that Re(ay(t) + 8(0)) + 1 < 0. In this
case, analytical continuation is not needed. The first
term of the integrand (3) is a decreasing function of
sforany 0 < z < 1; it vanishes for z = 0. The second
term vanishes at the opposite end of the integration
region. As is easy to see, the integrand has a max-
imum somewhere in the middle, i.e., a saddle point,
which can be found from the equation

W'(z) = ln<§>
X (=sal(s(1 — 2)) + Q%7 (@%2))
2 ((s(1 = 2)) + B(Q) +1)

N m(l ; ) (ta(t2) — Q*F(Q*(1 — 2))

T (ou(t2) + B(Q*(1 - 2) +1) = 0.

Since t and Q2 are constants, the saddle point ap-
proaches z =1 as s — —oo. For large |s| and near
z = 1, there are only two important terms in Eq. (23);
the rest can be neglected:

(23)

—sal(s(1 — z))ln(§> (24)
- () @1 - 2) +1) = 0
a 1
where

o (0)Ing

Since we are interested now only in the leading term,
we can neglect all the corrections and write

W) POy ()
sa(0)Ing 2
) <O‘t(t) +5(0) + 1) (e (t) + B(0) +1)
W2 " 06;(0) lng
=3 (—065(0) Ing — T) '
And finally,
Dlsoroo & —s2t(OF80) o)
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Fig. 3. According to Veneziano (or resonance—Reggeon) duality, a proper sum of either ¢-channel or s-channel resonance

exchanges accounts for the whole amplitude. From [6].

ot (t)+ors (a)+6(Q%)+B(0)+2  — o (t)—B(0)—1

y 2
—a!(0)Ing — («

~ t(t)+B(0) /@(QQ)
D(s,t, Q%) ~ s

xg

4(0)Ing)/a’
Thus,
(28)

S — —OQ.

Now, what happens if we enter into the physical
region of the s channel? In this case, we have to use
the analytical continuation of M-DAMA. Using ex-
actly the same method as in[14], it is possible to show
that, if the trajectory satisfies some restriction on its
increase, then the Regge asymptotic behavior (28)
holds for s — co. Of course, D(s,t,Q?) becomes a
complex function, due to complex trajectory as(s),
and Eq. (28) gives the asymptotics for both real and
imaginary parts.

Thus, in the Regge limit, M-DAMA has the same
asymptotic behavior as DAMA (except for the shift
£(0)). It is more interesting to study the new regime,
which does not exist in DAMA—the limit Q% — oo,
with constant s, t. We assume that 3(Q?) — —oo for
Q? — oo. From Eq. (23), we can easily find that, in
this limit, zo = 1/2. Then

W (20) = 2Q"8"(Q*/2) (29)
+8(Q*'(Q%/2) — B(Q%/2)
+4(s0li(s/2) — as(s/2) — taj(t/2) — u(t/2))
—In(2g)(s*{(s/2) — ta]/(t/2)) — 8

and
D(s,1,Q%)|g2 o0 (30)
~ 28(Q2/2)+as(s/2)+au (t/2)+2 2
~ (2¢)20(Q7/2)Fas(s/2) e (t/2)+ i)

For deep inelastic scattering (DIS), as we shall see
below, if s and ¢ are fixed and Q? — oo, then u =
—2Q?% — —00, as follows from the kinematic relation
s+t+u=2m?—2Q?. So, we also need to study the
D(u,t,Q?) term in this limit. If |, (—2Q?)| grows
slower than |3(Q?)| or terminates when Q% — oo,
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then the previous result [Eq. (30), s to be changed to
u = —2Q?] s still valid. We shall come back to these
results in the next section to check the proposed form

of B(Q?).

6. NUCLEON STRUCTURE FUNCTION

The kinematics of inclusive electron—nucleon
scattering, applicable to both high energies, typical
of HERA, and low energies, as at JLab, is shown
in Fig. 1. And Fig. 3 shows how DIS is related to
the forward elastic (¢ = 0) v*p scattering, and then
the latter is decomposed into a sum of the s-channel
resonance exchanges.

The total cross section is related to the SF by
Q*(1 - ) Y*p
By, Q%) = dra(l + 4m2x2/Q2)0 ’
where « is the fine structure constant. In Eq. (31), we
neglected R(z, Q%) = o (v, Q?)/or(z,Q?), which s
a reasonable approximation.

The total cross section is related to the imaginary
part of the scattering amplitude,

O-Z)tp (‘T7 QQ)

ImA( (.CU, Q2)7t =0, Q2)7

(31)

(32)
8w
PCIT] \/_

where P, ., is the center-of-mass momentum of the
reaction,

s—m? |1+ 4m222/Q?
21— ) V s (39

for DIS. Thus, we have
4Q2(1 — 2

F2($a QQ) = a (8 - m2) (1 + 4m2x2/Q2)3/2
x ImA(s(z,Q%),t = 0,Q?).

The minimal model for the scattering amplitude is a
sum [18]

Pc.m. =

(34)

A(s,0,Q%)
= c(s — u)(D(s,0,Q%) — D(u,0,Q2)),

providing the correct signature at the high-energy
limit, where ¢ is a normalization coefficient (u is not

(39)
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an independent variable, since s +u = 2m? — 2Q? or
u=—Q*1+z)/xr +m?). As was said at the begin-
ning, we disregard the symmetry properties of the
problem (spin and isospin), concentrating on its dy-
namics.

In the low-z limit: « — 0, t =0, Q? = const,
s = Q?/z — oo, u = —s, we obtain, with the help of
Egs. (28) and (35),

ImA(s, 0, Q%)]s—o0 ~ st OFBO+1 5@  (36)

Our philosophy in this section is the following: we
specify a particular choice of 3(Q?) in the low-z limit
and then we use M-DAMA integral (3) to calculate
the dual amplitude and, correspondingly, SF in all
kinematical domains. We will see that the resulting
SF has qualitatively correct behavior in all regions.
Even more—our choice of 3(Q?) will automatically
remove Q2 poles.

According to the two-component duality pic-
ture [19], both the scattering amplitude A and the
structure function Fy are the sums of the diffractive
and nondiffractive terms. At high energies, both
terms are of the Regge type. For v*p scattering, only
the positive-signature exchanges are allowed. The
dominant ones are the Pomeron and f Reggeon,
respectively. The relevant scattering amplitude is as
follows:

s \ ax(0)
B(s, Q) =ifu(@) (=) . (D)
where ay, and Ry, are Regge trajectories and residues
and k stands either for the Pomeron or for the
Reggeon. As usual, the residue is chosen “by hand”
to satisfy approximate Bjorken scaling for the SF [20,
21]. From Egs. (34) and (37), SF is given as

S )ak(o)*l

Ba, @)~ Q@R(@Q)(5) " . (38)

where z = Q?/s in the limit s — oo.

[tis obvious from Eq. (38) that Regge asymptotics
and scaling behavior require the residue to fall like
~ (@%)~+() Actually, it could be more involved if
we require the correct @% — 0 limit to be respected
and the observed scaling violation (the “HERA ef-
fect”) to be included. Various models to cope with
the above requirements have been suggested [20—22].
At HERA, especially at large 2, scaling is so badly
violated that it may not be explicit anymore.

Data show that the Pomeron exchange leads to a
rising structure function at large s (low x). To provide
for this, we have two options: either to assume a
supercritical Pomeron with ap(0) > 1 or to assume
a critical (ap(0) = 1) dipole (or higher multipole)

PHYSICS OF ATOMIC NUCLEI

Pomeron [22—24]. The latter leads to the logarithmic
behavior of the SF,

Fop(,Q%) ~ Q*Rp(Q*) In( = ).

which proves to be equally efficient [22, 24].

Let us now come back to M-DAMA results. Us-
ing Egs. (34) and (36), we obtain

Fy ~ 50 04800 0248(Q%)

(39)

(40)
Choosing

we restore the asymptotics (38) and this allows us
to use trajectories in their commonly used form. It
is important to find such B(Q?) which can provide
for Bjorken scaling (if one also wants to take into
account the scaling violation, then the problem just
gets more technical). If we choose 3(Q?) in the form

B(Q*) = d — v In(Q*/Q3), (42)
with
7= (a(0) + B(0) +1)/Ing = a(0)/In g,

where d and Q% are some parameters, we get the exact
Bjorken scaling.

(43)

Actually, expression (42) might cause problems in

the Q% — 0 limit. To avoid this, it is better to use a
modified expression

2 2
8@ = 5(0) v (L52)
0
- a;(0) Q? + Q3
=—-1- Ing ln( Q(Q) >
This choice leads to
Ll (@7 \e©
Fa @)~ o0 () )

where the slowly varying factor (Q2/[Q? 4 Q3])*+(®)
is typical for the Bjorken scaling violation (see, for
example, [21]).

Now let us turn to the large-x limit. In this regime,
r — 1, sis fixed, Q% = (s — m?)/(1 — z) — oo, and,
correspondingly, u = —2Q?. Using Egs. (30), (34),
and (35), we obtain

Py ~ (1—2)%Q"?7@/?

(46)

27 2
T (gas(s/2) _ jou(—Q7)
X W”(ZO) (g g )'

For Q? — oo, factors (g(s/2) — gou(=Q%)) and
W (z9) =~ 8y1In(Q?/Q3%) are slowly varying functions
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of @? under our assumption about ay (—Q?). Thus,
we end up with qualitatively correct behavior,

2\ 27vIn(2g)
P~ (2@@20) (1 — )20 1n(20)/ Ing
(47)

Let us now study F» given by M-DAMA in the
resonance region. The existence of resonances in
SF at large x is not surprising by itself: as follows
from (32) and (34), they are the same as in the
~*p total cross section, but in a different coordinate
system.

For M-DAMA, the resonances in the s channel
are defined by condition (8). For simplicity, let us
assume that we performed the Van der Corput neu-
tralization and, thus, the pole terms appear in the
form (19). In the vicinity of the resonance s = syes,
only the resonance term Dies (s, 0, @?) is important in

the scattering amplitude and correspondingly in the
SE.

The complex pattern of the nucleon SF in the
resonance region was developed a long time ago (see,
forexample, [25]). There are several dozen resonances
in the v*p system in the region above the pion—
nucleon threshold, but only a few of them can be
identified more or less unambiguously for various
reasons. Therefore, instead of identifying each res-
onance, phenomenologists frequently consider a few
maxima (usually three) above the elastic scattering
peak, corresponding to some “effective” resonance
contributions. In the Regge-dual model [7, 8], it
was shown that, for a reasonable fit, it is enough
to take into account three resonance terms, corre-
sponding to “effective”® A, N, N* trajectories with
one resonance on each, plus the background. As was
already discussed in the introduction, in the Regge-
dual model, the Q% dependence was introduced by
hand. Let us now check what we get from M-
DAMA.

Using 3(Q?) in the form (44), which gives Bjorken
scaling at large s, we obtain from Eq. (16)

o gQ% >at(0)
CNQ)'_<Q2+Q%
Q? ~ au(0) In (Q2 + Q%)]
Q>+ Q% Ing Q3 '

(48)

X [a(0) +1Ing

%) By “effective” trajectory, the authors mean that, in the fitting
procedure, the parameters of these trajectories were allowed
to differ from their values at the physical trajectories. In
this way, the authors tried to account for the contributions
from the other resonances. The “effective” trajectories did
not move far from the physical ones, thus giving a posteriori
justification for this approach.
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The term (Q3/[Q? + Q2))**() gives the typical Q?
dependence for the form factor (the rest is a slowly
varying function of Q?).

[f we calculate higher orders of C), for sublead-
ing resonances, we will see that the Q? depen-
dence is still defined by the same factor (Q3/[Q? +
Q3])*©). Here comes the important difference from
the Regge-dual model [7, 8] motivated by intro-
ducing @? dependence through the parameter g.
As we see from Eq. (19), ¢g enters with different
powers for different resonances on one trajectory—
the powers are increasing with the step 2. Thus, if
g~ (Q2/1Q* + Q&))*, then the form factor for the
first resonance (n = 0) is ~ (Q%/[Q% + Q3])?, and
for the second one (n = 2)itis ~ (QZ/[Q? + Q3])3~,
etc. As discussed in [4], the present accuracy of
the data does not allow one to discriminate be-
tween the constant powers of form factor (for ex-

ample, [3, 4, 25, 26] and this work) and increasing
ones.

7. HOW TO AVOID @? POLES?

General study of the M-DAMA integral allows the
Q? poles (see cases 2 and 4 in Section 3), which
would be unphysical. The appearance and properties
of these singularities depend on the particular choice

of the function 3(Q?), and for our choice, given by
Eq. (44), the Q2 poles can be avoided.

We have chosen 3(Q?) to be a decreasing func-
tion; then, according to conditions (9) and (11), there
are no Q2 poles in M-DAMA in the physical domain
Q? > 0if

Ref(0) < —as(0), ReB(0) < —ax(0).  (49)

We have already fixed 3(0) = —1[Eq. (41)], and thus
we see that, indeed, we do not have Q? poles, except
for the case of a supercritical Pomeron with the inter-
cept ap(0) > 1. Such a supercritical Pomeron would
generate one unphysical pole at Q% = Q? , defined by

pole
the equation

ap(0) Q? + Qj B
mgln( ng>+aﬂm—0 (50)

= ng]e = Q(Q)(g(aP(O)_l)/aP(O) - 1)

Therefore, we can conclude that M-DAMA does not
allow a supercritical trajectory—which is good from
the theoretical point of view, since such a trajectory
violates the Froissart—Martin limit [27].

As was discussed above, there are other phe-
nomenological models which use a dipole Pomeron
with the intercept ap(0) = 1 and also fit the data (see,

1 -
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for example, [18]). This is a very interesting case—
(a¢(0) = 1)—for the proposed model. At first glance,
it seems that we should anyway have a pole at Q% = 0.
[t should result from the collision of the moving pole
z = 29 with the branch point z = 0, where a;(0) +
B(Q*(1 — 20)) = 0 in our case. Then, checking the
conditions for such a collision,

@, (0) = taj(0)z0 + B(Q%) — B'(Q%)Q%20 = 0
—u(0) — B(Q?)

tag(0) — Q?5(Q?)’

we see that, fort = 0 and for 3(Q?) given by Eq. (44),

the collision is simply impossible, because zy(Q?)

does not tend to 0 for Q> — 0. Thus, for the Pomeron
with ap(0) = 1, M-DAMA does not contain any un-
physical singularity.

= 2Z0 =

On the other hand, a Pomeron trajectory with
ap(0) =1 does not produce rising SF (38), as
required by the experiment. So, we need a harder
singularity and the simplest one is a dipole Pomeron.
A dipole Pomeron produces poles of the second
power:

C(s) ,
m — ap(t) +1)2’
usually, the simple pole is also taken into account
(we write a sum of simple pole and dipole)—see, for

example, [23] and references therein. Formally, such
a dipole Pomeron can be written as

0 C(s)
dap (m —ap(t) +1)’

and generalizing this

Ddipole(satm) X ( (51)

0
Ddipole(87t) = a—D(S7t)7 (52)

ap
where D(s,t) can be given for example by DAMA or
M-DAMA. Applying this expression to the asymp-
totic formula of M-DAMA [Eq. (28)], we obtain
a term ¢P@")su(®M+500) 1y g which then leads to a
logarithmically rising SF (for ap(0) + 3(0) = 0)—
the one given by Eq. (39).

For 3(Q?) in the form (44), M-DAMA will gener-
ate an infinite number of the Q? poles concentrated
near the “jonization point” Q? = —Q3. Although
these are in the unphysical region of negative Q?,
such a feature of the model (i) makes us think
of 3(Q?) as a kind of trajectory, which is not the
case, as was stressed above, and (ii) might create
a problem for a general theoretical treatment, for
example, for making an analytical continuation in
Q% To avoid this, we can redefine 8(Q?) in the
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nonphysical Q? region, for example, in the following
way:

B(Q%) (53)
11— Oﬁfg) In (Q2 +2Q3 . forQ? >0,
_ 0
- 0 2 _ N2
-1- Oﬁl(g) In <QOQ%Q ) , for@?% <.

This function has a maximum at Q2 = 0, 3(0) = —1.
M-DAMA with 3(Q?) given by Eq. (53) preserves
all its good properties discussed above and does
not contain any singularity in Q% (except for the
supercritical Pomeron case, which we do not al-
low).

8. CONCLUSIONS

A new model for the Q?-dependent dual ampli-
tude with Mandelstam analyticity is proposed. The
M-DAMA preserves all the attractive properties of
DAMA, such as its pole structure and Regge asymp-
totics, but it also leads to generalized dual amplitude
A(s,t,Q?) and in this way realizes a unified “two-
dimensionally dual” picture of strong interaction [5—
8] (see Fig. 2). This amplitude, when ¢t = 0, can be
related to the nuclear structure function. In Section 6,
we compare the SF generated by M-DAMA with
phenomenological parametrizations, and in this way
we fix the function 3(Q?), which introduces the @Q?
dependence in M-DAMA [Eq. (3)]. The conclusion is
that, for both large- and low-x limits as well as for
the resonance region, the results of M-DAMA are in
qualitative agreement with the experiment.

General study of the M-DAMA integral tells us
about the possibility of having poles in Q2. These
singularities may be avoided with our choice of 3(Q?)
and also by putting a restriction on the physical
trajectories—the use of a supercritical trajectory
would lead to one Q? pole.

In the proposed formulation, a Q? dependence is
introduced into DAMA through the additional func-
tion B(Q?). Although in the integrand this func-
tion stands next to Regge trajectories, this, as was
stressed already, does not mean that it also corre-
sponds to some physical particles. There is no qual-
itative difference between the two ways of introduc-
ing Q2 dependence into DAMA: through the Q?-
dependent parameter g, i.e., function g(Q?) [5, 6], or
through the function 3(Q?). On the other hand, the
second way, i.e., M-DAMA, is applicable for all range
of Q2 and it results in physically correct behavior in all
tested limits.
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Abstract—The magnetic moment p of the p meson is calculated in the framework of QCD sum rules in
external fields. Bare-loop calculations (parton model) give iyt = 2.0 (in units e/(2m,,)). The contribution
of operators of dimension 6 reduces this value: p = 1.5 £ 0.3. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

Investigation of the static properties of vector
mesons provides an important information about
strong interaction of hadrons. In particular, the vector
dominance hypothesis (VDM) supposes that the
interaction of a real or virtual photon with hadrons
proceeds in such a way that the photon first trans-
forms into vector mesons p, w, ¢, which then un-
dergo interaction with hadrons. In the consistent
Lagrangian formulation of VDM, it is assumed [1]
(for a review, see [2]) that p mesons are Yang—Mills
vector bosons. In the framework of this hypothesis,
the p-meson magnetic moment is equal to 2 (in units
e/(2m,)), at least if strong interaction is neglected.

The goal of this paper is to calculate the p-meson
magnetic moment in QCD using the method of QCD
sum rules in external fields [3, 4].

In [5], the p-meson form factors were found at
intermediate momentum transfer by QCD sum rules.
By extrapolation of the p-meson magnetic form factor
to the point Q2 = 0 (outside the applicability domain
of the technique), it was found that the p-meson
magnetic moment p is close to 2. However, this re-
sult cannot be considered as conclusive; the direct
calculation of 1 in QCD in a model-independent way
is still absent. The p-meson magnetic moment was
calculated in models based on the Dyson—Schwinger
equation [6, 7] and in the framework of relativistic
quantum mechanics [8].

Here, we work in the limit of zero quark masses;
ag corrections are neglected.

*This article was submitted by the author in English.

W . .
e-mail: sams@heron.itep.ru

2. PHENOMENOLOGICAL PART
OF THE SUM RULE

We consider the correlator of two vector currents
in the external electromagnetic field:

IL“«p>=:i//d4xe*“<1%ju<x>zfa»>F. (1)

Here, subscript F' denotes the presence of the external
electromagnetic field with strength F,\ and j, is the
vector current with p-meson quantum numbers: j,, =
Uy d. Its matrix element is

<p+’ju‘0> = (m?)/gp)euv (2)
where m, is the p-meson mass, g, is the p—v
coupling constant, g>/(4r) = 1.27, and e, is the p-
meson polarization vector.

In the limit of a weak external field, we consider
only terms linear in F) in the correlator IT,,,, (1):

I, =1L, 4+ iVArallwye Fyo. (3)

We find the magnetic moment from the sum rule
for the invariant function II(p?) at a certain kine-
matical structure of I, (3). To obtain this sum
rule, we calculate IT at p? < 0 as the operator product
expansion series. On the other hand, we saturate
dispersion relation for IT by the contributions of phys-
ical states. After equating these representations, the
required sum rule appears.

Therefore, first of all, one should choose a kine-
matical structure.

The electromagnetic vertex of the p meson has the
following general form [5]:

(p(p+q,e")i%|p(p,e")) (4)
=—4%Qmwmwm—@+mwa

- pagpx)Fl(_q2) + (gquO' - ngQp)F2(_q2)

1063-7788/05/6801-0114$26.00 © 2005 Pleiades Publishing, Inc.
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+ %(p +@)ppo(2p + q)sz(—QQ)) :
p

In (4), j = e Uvyu + eqdyyd is electromagnetic
current; e,, eq are u- and d-quark charges; and Fy,
Fy, and Fj are electric, magnetic, and quadrupole
form factors, respectively,

Fi(0) =1, p=1+ F;(0), (5)
1t being the p-meson magnetic moment.
Using (2) and (4), we obtain for the

(Olulp) (pldy ') (p|j. |0)e, transition
—ZZ Oljule™ Yo" 132107 (p" iv|0)ey  (6)

= Zg— Z el el €Z€£€x< (2p + 4)x9po
Pt

— Pogox ) F1(—¢°)

1
2 JE—
q )+m%(p+q)p

X po(2p + Q)sz(—q2)> :

— (P4 @) p9xo

+ (gquO' - ngQp)F2(_

Here, €, is photon polarization, and r, 7' are the
p-meson polarization indices. Let us consider in
this expression the terms linear in ¢,. We sum over
p-meson polarizations, retain the antisymmetric over
X, o part, introduce F\, = i(e,qs — €59y ), and obtain
for (6)

4

My (L)1
Ty e\ 3 P (Pl = Dot

1.1
— Pu(PxGvo — PoGuy)) + §F1P

X (pu(pxg/w - pagux) + pu(pxgua - pagux))
+ (F2 + Fl)(guxgua - guagux)>-

Form factor F3 does not give a contribution linear

in qg.
Thus, we choose the structure
Pv (pxg/w - pagux) — DPpu (pxgua - pagux)- (7)

In comparison with another possible structure,
GuxIve — Guo9uy. (7) contains two additional powers
of momentum in the numerator, which result in better
convergence of the operator expansion series.

It should be noted here that, as follows from the
vector current conservation, the structure antisym-
metric over field indices x, o in I,y (3) is antisym-
metric over p-meson indices p, v too.

From (5), one can see that F5(0) + (1/2)F1(0) =
w—1/2.
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Thus, one should calculate the invariant function
I1(p?) at the structure (7) in 11,0 In the dispersion
relation for IT, we use the simplest model of a physical
spectrum, which contains the lowest resonance and
continuum. The phenomenological representation of
IT has the form

G- P
m4
pus) =~ (1= 5) ots = md)
D
()05~ 3,)

Here, dots mean the contributions of nondiagonal
transitions (for example, (0] |0") (6" i ex|0) (p,/0),
where p* is the excited state with the same quantum
numbers as p), function f represents the continuum
contribution, and s, is the continuum threshold for
the p meson.

Retaining only the terms which do not vanish after
Borel transformation, we obtain

m2 p—1/2
H(PQ): QQZW (8)
¢ [ fs)
+m,%—p2+/d8<s—p2>2’

where C appears due to nondiagonal transitions.
3. CALCULATION OF THE VECTOR
CURRENT CORRELATOR

Now let us calculate IT(p?
product expansion in QCD.

), based on the operator

The quark propagator in the external electromag-
netic field F),, in the fixed-point gauge z,A, =0,

A, =—(1/2)F,x,, can be found in [3]:
(Tqs(x)73(0)) r
ab ab
N 627r( x)f e o (@)
- Wbﬁ%w(%w — YAVp)as
5ab\é;;§ 22 (@977 + T E)ag-

Here, e, is the quark charge; o, 3 are spinor indices;
a, b are color indices; and (see [3]) (Gopnq)F =
VaraegxFyn(qq), x being the quark condensate
magnetic susceptibility.
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The expression for the quark propagator in the ex-

ternal electromagnetic and soft gluon fields Sp¢ has
the following form in momentum representation [3]:

igeqVATaF \Gh t"
20

Sre =

X (m%%%ﬁ = 2D\ Yo Vp — 2P VAV Vo

8DpPrIro
— 20D+ 295060 — 297 GpoD |-

Here, G7}. is the gluon field strength and ¢™ are the

color matrices.
The contribution of the loop diagrams to II(p?) is
equal to

(e o]

o | ®

0

According to the quark—hadron duality, the contin-
uum contribution in the interval of P? = —p? from
s, to infinity is determined by the bare loop in this
interval. Therefore, function f in (8) is constant: f =
—3/(167?).

The loop diagrams correspond to the operator of
the lowest dimension F),y. Operators of dimension 4
are absent. As was shown in [3], operator g(D,y, —
D,~,)q has opposite C' parity with respect to the
electromagnetic field and cannot be induced by them,
while operator €,,,0,7757,Dq vanishes due to the
equation of motion for massless quarks.

There are a number of vacuum expectation values
of operators of dimension 6:

<60—P)\q> < > <G G > ;w»and
g<q((GZ)\DV - DI/GZ)\)
—(GI\Dy = DuGr)nt"a)r,

E;wp)\g< (G §D>\ + DAGpg)’YE’YL")t Q>F7
™ <(GZ )\G)\pGpu G )\GApGpu»F?

(10)

where D, is the covariant derivative and d*l are
SU(3) structure constants.

The diagrams corresponding to the operator
(Gp .Gy ) Fy, have infrared divergence. We introduce
the cutoff over transversal momenta A and obtain
their contribution into IT(p?):

1 /a 1 1 3
(SN (= - 2 ) (1
36 < 0 > (2)\4p2 6A2pt + p6> ()

As for vacuum expectation values (10), usually
such operators can be calculated by constructing the
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corresponding sum rules. An example of such an ap-
proach can be found in [9] for dimension-4 operators
and symmetric tensor field. But for operators (10),
this approach is inapplicable because of their high
dimension. However, the first and second vacuum
expectation values in (10) are suppressed by the fac-
tor N71 (NN, is the color number) as compared with
(@ooxq) r(qq), while the third contains the factor g*.
So we can expect that they are rather small and
disregard them.

The dominating contribution appears from no-
loop diagrams with hard gluon exchange. In our case,
such diagrams contain the operator (go,xq)r(qq).
They give

2 g*(a9)x

9 pf
[t should be noted here that the quark condensate
magnetic susceptibility x is negative.

Collecting expressions (9), (11), and (12), one can

find the operator product expansion part of the sum
rule:

(12)

(p?) = 1
o o (13)
0
20%(qq)x 1 Jas,
+9 pb 36< G>
1

1 n 3
A2 6A2pt | pb )

4. RESULTS AND DISCUSSION

After Borel transformation

(P2)n+1 d n
lim - ,
P2 ,M— 00 n' dP2

P2/n=M?2

P?2=_p%>0,

B(M?) =

we equate the phenomenological (8) and operator
product expansion (13) parts of sum rule and obtain
(M? is the Borel mass)

1
=g+ CM? (14)
2 2 2
39 M (1 . 7sp/M ) 2/M2 . g_pemg/MQ
- 8m2m /27 m/%

1 /a5 o
9M2 " 36 <7G >
X —|— ! + i
)\4 3\2 ’
C appears due to nondiagonal transitions.
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We use the following values of parameters:
m, = 0.77 GeV is the p-meson mass,

gz/(47r) = 1.27 is the p—v coupling constant,

s, =15 GeV? is the continuum threshold for p
meson,

(s /m)G?) = 0.009 £ 0.007 GeV? is the gluon
condensate [10],

¢2(3q)% = (0.28 +0.09) x 102 GeVO is the quark
condensate [10],

x = —(5.7 £ 0.6) GeV 2 is the quark condensate
magnetic susceptibility [11],

A2 = 0.8 GeV? is the cutoff over transversal mo-
menta.

First of all, let us consider the contribution of the
bare loop (and continuum). It is given by the first term
in the right-hand side of (14). In [12], the following
relation for g, can be found:

gM?

2,2
47rmp

Substituting (15) into (14) and omitting for a while
the terms with quark and gluon condensates, one can
obtain a very simple answer:

1 3

Mpart — ) = 5

(15)

(1 oo/ M) gm3M? _

We see that, in the parton model approximation, the
p-meson magnetic moment is equal to 2. This result
agrees with the prediction of the vector dominance
hypothesis.

Now let us analyze the whole Eq. (14). In order to
find the value of magnetic moment, we approximate
the right-hand side of (14) (see figure) by a straight
line in the interval 0.9 < M? < 1.3 GeV? and find its
ordinate at zero Borel mass.

Thus, we obtain

p=15. (16)

The contribution of the operators of dimension-6
to this value does not exceed 20%.

The contribution of the terms which contain A\?
is not more than 20% of the total contribution of
dimension-6 operators. That is why variation of \?
within the interval 0.6 < A2 < 1.0 GeV? does not
change the value of magnetic moment.

The variations of the values of the quark and gluon
condensates within the given limits change the value
of magnetic moment by <10% each.

The uncertainty in the value of the quark conden-
sate magnetic susceptibility results in an error of a
few percent in the value of the magnetic moment.
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R(MP), ef(2my)
1.4+

1.2+

L

1.0r

0'8 1 1 1 1 1
0.9 1.0 1.1 1.2 1.3

M2, GeV?

The right-hand side of Eq. (14) R(M?) as a function
of M?.

Variation of the continuum threshold s, for the p
meson within reasonable limits gives the same effect.

Supposing that the contribution of vacuum expec-
tation values (10) does not exceed 50% of that from
diagrams with hard gluon exchange (12), we obtain
after collecting all uncertainties

p=15=%0.3.

This is our final result.

In [13], it was shown that the approximation pro-
cedure is correct (nonlinear terms can be safely ne-

glected) when p > CM?2. In our case, CM?/u ~
0.2—0.3.

Thus, we find that, in the parton model (bare-
loop) approximation, the p-meson magnetic moment
Mpart = 2, whereas the nonperturbative interactions
decrease this quantity by a quarter: p = 1.5 £0.3. It
is important to mention that all considered operator
product expansion corrections are negative, i.e., re-
sult in a decrease in y in comparison with a4 = 2.

Since the effective values of the Borel parameter 1>
are about 1 GeV?, one may expect that perturbative
corrections are remarkable and can reach ~20%.

The value of the p-meson magnetic moment was
calculated in a number of papers within models based
on the Dyson—Schwinger equation. In [6], the value
1= 2.69 was found. In [7], several results are com-
pared, and the values of u lie between 2.5 and 3.0.
The relativistic quantum mechanics model gives [8]
= 2.23 + 0.13. Recently, the value of the magnetic
moment was found in the light cone QCD sum rule
technique [14]. The result is p = 2.2 £ 0.2. Unfor-
tunately, while a corrections are not calculated (we
plan to do this in the next paper), it is hard to say with
certainty if this discrepancy is real or not.
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Abstract—QCD predictions for moments of multiplicity distributions are compared with experimental data
on eTe™ collisions and their two-NBD fits. Moments of the multiplicity distribution in a two-NBD model
for 1.8-TeV pp collisions are considered. Three-NBD model predictions and fits for pp at LHC energies are
also discussed. Analytic expressions for moments of hybrid NBD are derived and used to get insight into
jet parameters and multicomponent structure of the processes. Interpretation of observed correlations is

proposed. (© 2005 Pleiades Publishing, Inc.

Multiplicity distributions are the integral charac-
teristics of multiparticle production processes. They
can be described either in terms of probabilities
P,(FE) to create n particles at energy E or by the
moments of these distributions. It has been found
that their shapes possess some common features in
all reactions studied. At comparatively low energies,
these distributions are relatively narrow and have
sub-Poissonian shapes. With energy increase, they
widen and fit a Poisson distribution. At even higher
energies, the shapes become super-Poissonian; i.e.,
their widths are larger than for a Poisson distribution.
The width increases with energy and, moreover, some
shoulder-like substructures appear.

Their origin is usually ascribed to multicomponent
contents of the process. Ina QCD description of eTe™
processes, these could be subjets formed inside quark
and gluon jets (for reviews, see, e.g., [1, 2]). In phe-
nomenological approaches, the multiplicity distribu-
tion in a single subjet is sometimes approximated by
a negative binomial distribution (NBD) first proposed
for hadronic reactions in [3]. For hadron-initiated pro-
cesses, these peculiarities are also explained by the
multicomponent structure of the process. This is ei-
ther multiladder exchange in the dual parton model [4,
5], varying number of clans [6], or multiparton in-
teractions [7, 8]. These subprocesses are related to
the state of matter during the collision (e.g., there
are speculations about a nonhomogeneous matter
distribution in impact parameters [9], not to speak of
quark—gluon plasma [10] behaving as a liquid [11],
etc.).

*This article was submitted by the author in English.
“e-mail: dremin@lpi.ru

Such evolution of the multiplicity distributions can
be quantitatively described by the energy behavior of
their moments. These moments reveal the correla-
tions inherent for the state of matter formed during the
collision. Similarly to virial coefficients in statistical
physics, they can tell us about the equation of state
of this matter. To introduce them, let us write the
generating function of the multiplicity distribution as

G(E,z) =Y Pu(E)(1+2)" (1)
n=0

In what follows, we will use the so-called unnormal-
ized factorial F, and cumulant Xy moments defined
according to the formulas

Fo=> Pnn—1)...(n—q+1)  (2)

_ dIG(E,z)
- dz4

z=0

_ d'InG(E,2)

Kq dz4

(3)

z=0
They correspondingly define the total and genuine
correlations among the particles produced (for more
details, see [2, 12]). These cumulant moments could
be considered as the direct analogies of virial coeffi-
cients of statistical physics since both are related to
genuine (irreducible) correlations. In particular, the
first moments describe the mean multiplicity (n):

Fi1 =K1 =(n), (4)

and the second moments are related to the dispersion
D of the distribution P,,:

Ko = Fo — (n)? = D? — (n). (5)

1063-7788/05/6801-0119$26.00 © 2005 Pleiades Publishing, Inc.
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The higher rank moments reveal other asymmetries
of distributions, such as skewness. Since both F, and
KCq strongly increase with their rank and energy, their
ratio

H, :Kq/]:qv (6)

first introduced in [13], is especially useful due to
partial cancellation of these dependences. The fac-
torial moments F, are always positive by definition
[Eq. (2)], while the cumulant moments /C, can change
sign. Again, let us recall that the changing-sign sec-
ond virial coefficient in statistical physics implies the
liquid state with the van der Waals equation corre-
sponding to repulsion at small distances and attrac-
tion at large distances. Cooper pair formation is also
related to similar behavior of correlations.

Here, we compare QCD and NBD approaches to
the description of multiplicity distributions. We argue
that H, values are more sensitive to minute details
of the distributions than their direct x? fits and reveal
differences between proposed fits of ete™ and pp(pp)
processes. Some estimates for LHC energies will be
provided.

The generating functions for quark and gluon jets
satisfy definite equations in perturbative QCD (see |2,
14]). It has been analytically predicted in gluody-
namics [13] that, at asymptotically high energies, H,
moments are positive and decrease as ¢~2, but at
present energies up to 200 GeV, they become negative
at some values of ¢ and reveal the negative minimum
at

1
dmin = m + 0.5+ O(’y()), (7)

where hy = b/(8N.) =11/24, b = 11N./3 — 2ny/3,
78 = 2N.as/m, as is a coupling strength, and N,
and n; are the numbers of colors and flavors. At
ZY energy, oy &~ 0.12, and this minimum is at about
q ~ 5. It moves to higher ranks with energy increase
because the coupling strength decreases. Some hints
to possible oscillations of H, vs. ¢ at higher ranks
at LEP energies were obtained in [13]. Then the
approximate solution of the gluodynamics equation
for the generating function [15] agreed with this and
predicted the oscillating behavior at higher ranks.
These oscillations were confirmed by experimental
data for ete™ and hadron-initiated processes first
in [16], later in [17], and most recently in [18]. The
same conclusions were obtained from an exact so-
lution of equations for quark and gluon jets in the
framework of fixed coupling QCD [19]. The physics
interpretation of these oscillations as originating from
multisubjet structure of the process is related to the
(multi)fractal behavior of factorial moments, found
also in QCD [20—22]. The asymptotic disappearance

of oscillations can be ascribed to the extremely large
number of subjets at very high energies.

A recent exact numerical solution of the gluody-
namics equation in a wide energy interval [23] co-
incides with the qualitative features of multiplicity
distributions described above. In terms of moments,
they correspond to the values of H, changing sign
at each subsequent ¢ (with Hy < 0) at low energies
(narrow shapes!)), the approach of H, to zero at
the Poisson transition point about 20 GeV for ete™
processes, and the positive second moment Hy with
oscillations of higher rank cumulants at Z° which
disappear asymptotically. At Z°, the first minimum
appears at ¢ =~ 5. This confirms earlier exact QCD
results [24] at ZY. It moves to higher ranks with a
steadily decreasing amplitude when energy increases.
The only free parameter is the QCD cutoff, which is,
however, approximately fixed by the coupling strength
and does not strongly influence the results.

In parallel, the NBD fits of multiplicity distri-
butions were attempted [6, 25]. The single NBD
parametrization is

“r i (i) (1 Z)k(s

where I" denotes the gamma function. This distribu-
tion has two adjustable parameters n;(E) and k; (E)
which depend on energy. Such a formula happened
to describe low-energy data with negative values of
ky that correspond to binomial fits. At the Poisson

transition point, k:l_l = 0. The parameter k; becomes
positive at higher energies. However, the simple fit
by formula (8) is valid until the shoulders appear. In
that case, this formula is replaced by the hybrid NBD
which combines two or more expressions like (8).
Each of them has its own energy-dependent parame-
ters n;, k;. These distributions are weighted with the
energy-dependent probability factors a; which sum
up to 1. Correspondingly, the number of adjustable
parameters drastically increases.

A single NBD (8) has positive cumulants for
k1> 0 (Ky = T(q)nd/kI") and thus positive H, =
I'(¢)T'(ky + 1)/T(ky1 + q). For hybrid NBD, negative
H, can exist. The traditional procedure to calculate
higher rank moments is by the iterative relations

Po(E)

qg—1
1 I'(q) FnFyg—m
R b s T s e R
)
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YNarrow distributions always have such cumulants as shown,
e.g.,in[2]
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Table 1
QCD L3, untr. data L3, tr. data 2NBD (OPAL)

H, 3.9 x 1072 (4.42+£0.11) x 1072 (4.41£0.10) x 1072 4.4 %1072

H; 7.4 %1073 (7.40 £0.38) x 1073 (7.20 £0.35) x 1073 7.4 %1073

Hy 4.0x 1074 (9.69 £+ 2.56) x 10~* (7.17+1.42) x 10~* 4.9x 1074

Hs —22x107* —(1.30 £ 1.59) x 10~* —(3.95+0.53) x 1074 —2.4x107*

i i i i 24an} | 24(1 — a)n}

Strong compensa’uons are mhere@ in Eq. (9). .Th1s K5 = o Ly ( . )n3 +5a(1—a) (15)
calls for high accuracy of numerical calculations. ki k5

More importantly, the formula does not give any
direct insight into the physical reasons for such
compensations. Therefore, it is instructive to write the
analytic formulas for moments of hybrid NBD which
provide a clear interpretation of negative values of
cumulants. We have derived these expressions for the
two-NBD parametrization (2NBD) given by a sum
of two expressions like (8) with two sets of adjustable
parameters ny, ki, mo, ko weighted with energy-
dependent factors o and 1 — «, respectively. 2NBD
describes the process with two independent NBD
components of mean multiplicities n; and widths k;
created with probabilities @ and 1 — «. The factorial
moments for any rank ¢ are given by the simple
formula

(k1 4+ q) ng
Ty w0
0<a<l).

L'(ko 4+ q) nd

Tk K Y

Fy=

The cumulant moments are more complicated and
should be calculated separately for each rank. The
first five moments are

K1 =F = (n) =ani + (1 — a)ns,
an? 1—a)n3
SR
+a(l —a)(ng —n2)?,
2(1 — a)n3
i k3
+a(l = a)(ng — na)[3(n} /k1 — n3/ks)
+ (1 —2a)(ny — n2)2],
6(1 —a)n;
ki k3
X [(n1 — ng)*(1 — 6a(l — a))
+11(n}/k1 — nd/ks)?
— 8ning(ny/ky —na/ks)?
+ 6(1 — 2a)(ny — ng)*(n3/ky — n3/ks)],

(11)

Ko = (12)

Ky = 2an}

(13)

Ky = 6ani

tall—a) (14
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X [6(n1 — no)(ni/k; — ny/k3)
+4(ni ki — n3/k3)(n3 [ky —n3/ks)
+ (1 = 20) (1 = n2)(T(n1 — n2)(nf /KT — n3/k3)
+ 3nina(ny/k1 — ??,2//6‘2)2)
+2(1 = 6a(1 — a))(ny — n2)3(n?/k1 — n3/ko)
+0.2(1 — 20)(1 — 12a(1 — a))(n1 — n2)’].

For ae = 0 or 1, they reduce to one-NBD formulas
with one of the first two terms surviving. This term is
always positive for positive k;. Therefore, as expected,
the distributions show no oscillations if considered
individually. For 2NBD, there is a symmetry in re-
placing indices 1 to 2 together with @ to 1 — a.. Neg-
ative Iy can be obtained only if k; < 0. For positive
k;, one always gets positive Kq. Its value depends
on the difference ny — ny. K3 can become negative
depending on the values of the last two terms. These
cancellations of positive and negative contributions
in expressions (13)—(15) are not so drastic as in
Eq. (9), especially for large ¢, because the leading
contributions to H, are strongly decreasing with ¢
in (13)—(15), and not of the order of 1, as in (9).
Therefore, they do not require very high precision and,
moreover, clearly display the origin of each term and
its dependence on fitted parameters.

Actually, five moments determine quite well the
shape of the distribution if they are calculated with
high enough accuracy. Since these shapes are qual-
itatively similar in different reactions, it is especially
instructive to compare their H, moments. In Ta-
ble 1, the H, moments for eTe™ annihilation at Z°
are shown. Their values according to the solution
of the gluodynamics equations [23] are in the sec-
ond column. In the third and fourth columns, the
experimental results of the .3 Collaboration [18] are
represented for full phase space, respectively, with all
measured multiplicities included and with some very
high multiplicities truncated (because of large error
bars). Next follow H, values restored from 2NBD fits
of OPAL [26] results done in [27]. They are similar
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Table 2
2NBD fit, 3NBD fit, Pythia,
1.8 TeV 14 TeV 14 TeV
H, 0.2279 0.8754 0.4224
Hj 0.0988 0.9703 0.3387
Hy 0.0414 0.9737 0.2683
Hj 0.0120 0.9742 0.1877

to directly measured L3 values. The errors in fitted
parameters are omitted since they are also close to
those for L3.

The overall qualitative agreement is rather good.
Quite impressive is the fact that, in all cases, the fifth
cumulant moment is negative. However, somewhat
surprising is the difference of the theoretical and ex-
perimental widths ( Hy values). The widths are deter-
mined quite precisely both experimentally and theo-
retically. The only reason to which such disagreement
could be ascribed is the incomplete treatment with
quarks omitted in [23]. More complete theoretical
calculations will shed some light on this problem.

One cannot blame the so-called truncation effect
for this disagreement. The analytical QCD predic-
tions deal with an infinitely long tail of the distribu-
tion. In experiment, the final statistics prevent mea-
suring very high multiplicities, and the tail is trun-
cated. Some additional truncation can be imposed
to avoid data with large errors. However, this is not
very important for low-rank moments if done at high
multiplicities. This is seen from comparison of L3
results for untruncated (actually, truncated only by
statistics of experiment) and truncated (with highest
multiplicity data omitted because of poor statistics)
data in the first row of Table 1. Additional truncation
does not change the results qualitatively even for Hj
(the last row). The negative sign and decrease com-
pared to Hy persist. That is why, to minimize the role
of the tail of the distribution, we consider only the five
lowest rank moments.

Comparing QCD predictions with experiment at
higher rank moments, one can hope to reveal new
qualitative features. This happened with oscillating
moments whose amplitudes do not necessarily agree
because of truncation of experimental data. However,
this effect can be fully taken into account in cutoff
NBD fits and in Monte Carlo models with a sample
of the same size.

The comparison of eTe™ and pp(pp) data turns
out to be especially interesting. While both show
qualitative similarity of the shapes of multiplicity dis-
tributions, the corresponding H, values are quite dis-
tinctive. In Table 2, we show H,, values for pp data at
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1.8 TeV [7] (Tevatron) and interpolations to 14 TeV
(LHC), both obtained from NBD fits elaborated in [6,
25]. The 2NBD fit at 1.8 TeV corresponds to the
parameters a = 0.62, ny = 30, ny = 61.6, and k; =
ko = 7, which are approximately equal to average
values for the 2.A model considered in [6]. However,
even this extreme model underestimates high multi-
plicities and, therefore, H, values in Table 2 should be
treated as lower bounds to experimental ones, which
are unknown, unfortunately. The extrapolated values
at 14 TeV have been calculated using the parameters
of 3NBD fits and the Pythia model, both considered
in[25].

Quite impressive are much larger values of H,
in hadron-initiated reactions (Table 2) as compared
to eTe™ results (Table 1). They strongly increase
with energy. Moreover, the drastic difference is clearly
displayed by H, between 3NBD interpolations and
Pythia at 14 TeV. This demonstrates the extremely
high sensitivity of H, analysis because both ap-
proaches provide a similar two-shoulder structure
of multiplicity distributions as seen in Fig. 2 of [6].
At 14 TeV, the predictions are given for full phase
space. For the rapidity interval |n| < 0.9, the H,
values become larger than those in Table 2. H, for the
3NBD model of [6] become almost indistinguishable
from 1 (above 0.99). Pythia values increase by about
1.4 times. No oscillations are seen at these high
energies, while they are present at energies below
1 TeV [16]. Surely, LHC experiments will give their
decisive conclusion.

To conclude, we have shown that H, moments
of the multiplicity distribution are extremely sensi-
tive to minute details of its shape. They can resolve
the differences between various fits even if those are
not clearly seen in the traditional representation. H,
values obtained from experimental data can be com-
pared with analytical QCD results (if the size of the
sample is large enough), NBD fits, and Monte Carlo
model predictions. Truncation of the tail is not crucial
for lower rank moments. Nevertheless, it can be ac-
counted for in the NBD and Monte Carlo approaches
(notin analytical QCD), so that higher rank moments
are incorporated as well and provide additional infor-
mation. For ete™, slight disagreement on theoretical
and experimental widths is embarrassing and must
be further studied. For hadron- and nuclei-initiated
reactions, H, values are much larger than in ete™.
Two attempts demonstrated in Table 2 to extrapolate
to LHC energy give rise to completely different val-
ues of the moments even though the shapes of the
multiplicity distributions do not differ much. Thus,
it has been shown that moments can be used to
discriminate between various phenomenological fits
and models. RHIC and LHC data are awaited for

Vol.68 No.1 2005



QCD AND HYBRID NBD ON OSCILLATING MOMENTS 123

better insight. The energy dependence of H, and of
the relative weights of various NBD components can
provide some hints on the state of matter during the
collision and its energy evolution.
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Magnetic Catalysis of Stability of Quark Matter
in the Nambu—Jona-Lasinio Model
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Abstract—The effect of an external magnetic field H on the stability of quark matter is studied on the basis
of the Nambu—Jona-Lasinio model. It is shown that, at H = 0, droplets of quark matter are stable only
in the case where the coupling constant G is greater than some value Gyp,g. If H # 0, stable multiquark
formations may exist even for G < Gag (magnetic catalysis of stability). For G > Gpag, a magnetic field
facilitates the formation of stable quark matter. (© 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

In recent years, physicists have given much atten-
tion to dense quark—hadron matter, which is present
in neutron stars and which can arise in relativistic
heavy-ion collisions. Strictly speaking, QCD, which
is a theory of strong interactions, is a theoretical
basis for studying this object. The majority of QCD
predictions are based on the use of the perturbation-
theory method, which is inapplicable at comparatively
low baryon densities. In such cases, use is usually
made of effective models that, to some extent, are
adequate to QCD at low energies, as well as at baryon
densities pp commensurate with the baryon density
po in conventional nuclear matter (p, = 0.16 fm=3).
Among such effective models, those that involve four-
fermion interactions—that is, models of the Nambu—
Jona-Lasinio type [1]—are very popular. Since it is
assumed that a stable quark-matter droplet—that is,
a droplet that does not tend to contract into a point or
to extend over the entire space—is formed for a short
time in heavy-ion processes, any realistic effective
model must predict the existence of stable multiquark
objects featuring a large baryon number (we will re-
fer to them as baryon droplets). Within Nambu—
Jona-Lasinio models, quarks are usually considered
as pointlike particles, while mesons are collective
quark—antiquark excitations of the vacuum. Within
such models, one can also describe an octet and
a decuplet of the simplest baryons. Finally, it was
shown in [2, 3] that stable multiquark formations are
also present in the mass spectrum of Nambu—Jona-
Lasinio models. In this case, however, the domain of
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Dlnstitut fir Physik, Humboldt-Universitat zu
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admissible values of model parameters (coupling con-
stants and so on) is constrained significantly, while
such quark droplets can be stable only if they con-
sist of massless quarks (we discuss here the case of
chiral-invariant Nambu—Jona-Lasinio models).

As was indicated above, there exist, in nature,
objects whose physics is determined to a considerable
extent by the properties of dense quark—gluon matter.
These are neutron stars. Their surface is formed by
ordinary nuclei, electrons, and so on. The pressure in
a star and its density grow toward its interior. There-
fore, nuclei and thereupon constituent nucleons can
merge, forming quark droplets. According to some
modern concepts, the core of a neutron star consists
of quark matter whose density is severalfold greater
than p,. A superstrong magnetic field—according to
some estimates, its strength may reach values on the
order of 10'® G [4]—is an indispensable feature of
neutron stars. In this connection, some aspects of
the external-magnetic-field effect on dense quark—
hadron matter were previously investigated in [5—8].

In the present study, the problem of stability of
quark matter is considered within the simplest chiral-
invariant Nambu—Jona-Lasinio model and, in con-
trast to what was done in [2, 3], with allowance for a
constant uniform magnetic field H. We will prove the
following statements: (i) In an external magnetic field,
stable droplets of quark matter can also be formed by
massive quarks. (ii) For model-parameter values at
which stability is impossible at H = 0, quark droplets
are stabilized for H # 0 (magnetic catalysis of stabil-
ity of quark matter).

2. NAMBU—-JONA-LASINIO MODEL
AND STABILITY CONDITION

The problem of the external-magnetic-field effect
on the stabilization of quark matter will be consid-
ered here within the simplest Nambu—Jona-Lasinio

1063-7788/05/6801-0124$26.00 © 2005 Pleiades Publishing, Inc.
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model [1] featuring quarks that have three colors and
the same electric charge ¢. In Minkowski space, the
Lagrangian of the model has the form

L = 9[in" (9, —iqAy) + uy 1 (1)

+ GlWY)* + iy,

where p >0 is the chemical potential and A, =
0,02 H is the vector potential of a constant and
uniform magnetic field H (we consider here the
case of zero temperature). The Lagrangian in (1) is
invariant under the continuous chiral transformation
group U(1)r, x U(1)g.

In order to solve the problem of stability of quark
matter, we will rely, as in[2, 3], on the thermodynamic
approach within which a quark-matter droplet can be
interpreted as a dense-phase droplet surrounded by
a phase of zero baryon density, a vacuum. The con-
dition under which there emerge stable multiquark
droplets is then the condition of coexistence of these
two phases—that is, the condition of the occurrence
of a first-order phase transition between them (an
analog of coexistence in a liquid—vapor system in
condensed-matter theory).?) Quantitatively, it can be
represented in the form (see [2])

Mdense < He < Myac, (2)

where . is the critical chemical-potential value at
which the two phases in question coexist, my,e is
the mass of a single-quark excitation of the true
vacuum (this vacuum is not symmetric under chiral
transformations), and mgense is the quark mass in the
phase where the baryon density is nonzero (that is,
within a quark droplet). Relation (2) will be referred
to as the condition of stability of quark matter. [The
condition (2) of coexistence of the two phases can
easily be understood if the chemical potential is in-
terpreted as the lowest energy that a particle must
have to escape from the system. If the two phases
in question coexist at the chemical-potential value p,
and if one of them (vacuum) does not contain quarks,
then the inequality p. < My, must hold (otherwise,
quarks of energy about my,e could not escape from
the system, with the result that the baryon density in
the vacuum would be nonzero). For the same reason,
pp #0 in the dense phase merely because mgense <
e, and the energy of quarks is insufficiently high for
escaping from the system.] Thus, we see that, in the
thermodynamical approach, the problem of stability
reduces to solving the problem of the phase structure

$This method is also used in some nuclear-physics models
to describe the properties of dense nuclear matter (see, for
example, [9]). In such models, a conventional nucleus of
rather large charge number is identified with a droplet of
a dense phase that coexists with the vacuum phase of the
model.
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of the model and to finding first-order phase transi-
tions occurring between the dense baryon phase and
the vacuum and satisfying relation (2). We also note
that, in this approach, we disregard surface effects,
which are significant only for baryons consisting of a
small number of quarks.

3. STABILITY AT H=0

On the basis of the foregoing, we will first study the
problem of stability at H = 0. In the leading order of a
mean-field expansion,) the thermodynamic potential
Q of the model has the form (see[2, 11])

2

m
QAmip) = 55—

< [ ot B ot - )}

where E, = /m? 4+ p? and m is the order parame-
ter for chiral symmetry. The point m, at which the
potential Q(m;u) as a function of m reaches the
global minimum is related to the vacuum expecta-
tion value for a quark—antiquark pair by the relation
me = —2G (). It follows that, if m, = 0, then the
ground state of the model is chiral-symmetric, but
that, if m, # 0, the chiral invariance of the model
is spontaneously broken. Moreover, m, is equal to
the dynamical quark mass. By employing, in (3), the
Lorentz-noninvariant regularization p? < A? for the
divergent integral, we can obtain

m? 3
4G 872

) 2
x /m2+ A2 —miln <W>}

_ M |:M(2M2 _ 5m2)‘ /,u2 —m2

82

2 2
+3mtIn (H— wmﬂ
m

2N, (3)

Q(m;p) = [A(QA2 +m?) (4)

At p =0, it follows from (4) that, if G <G.=
72/(3A?), the thermodynamic potential in question
has the global minimum at m =0, so that the
vacuum is chiral-symmetric. If G > G, the chiral
invariance of the model is spontaneously broken since
the global minimum of the thermodynamic potential

HIn[10], a scheme for systematically going beyond the leading
approximation in the mean-field expansion is given within
the formalism of a bilocal source. We restrict our consid-
eration here to the leading order of this expansion since
this is sufficient for demonstrating effects associated with an
external magnetic field.
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M M, M
Fig. 1. Phase portrait of the model in the (M, u1) plane at

H = 0. Points on the curve [ 4 g separating phases A and
B satisfy the condition of stability.

Q2(m;0) occurs at a nonzero point M that satisfies the
stationarity equation

2
;T—G = AV/M2 4+ A? (5)

e <A+m>
= .

We consider predominantly the case of G > G,
where, along with G, it is convenient to employ the
parameter M, the dynamical quark mass in a vacuum
whose chiral symmetry is broken. The quantities G
and M are related by Eq. (5).

In [12], the phase structure of the model specified
by the Lagrangian in (1) and regularized in a Lorentz-
invariant way was already investigated for pu # 0 (the
problem of stability of quark matter was not consid-
ered there). By using the same methods as in [12]
for the present case, we can obtain a phase portrait
of the model. It is depicted in Fig. 1 in the (M, p)
parameter plane. In this figure, phase A is a dense
chiral-invariant phase of the model, the quarks having
zero mass there. Phase B, where chiral symmetry is
spontaneously broken and where the quark mass is
equal to M, corresponds to the true QCD vacuum. In
this phase, pp = 0. Finally, there is phase C, where
the baryon density is nonzero (pp # 0) and where the
quark mass is also nonzero and depends on p. The
solid and dashed curves in the figure are the curves
of, respectively, second- and first-order phase tran-
sitions. In particular, ipc = {(M, p):pu = M}, while
the curve l4p, which entirely lies below the straight
line u = M, is determined by the equation

Q(M; p) = Q(0; ). (6)

Solving Eq. (6), we obtain lap = (M,pu)p=
pe(M) < M, M > M. = 0.56A, where

2ut(M) = 6A%/ M2 4 A2 — 6A* (7)

— 3M?*F(M, A)

[the expression for F'(M, A) is the right-hand side of
Eq. (5)]. In Fig. 1, there are in addition two tricritical
points avand 3 whose coordinates are « = (M, j) and
B = (M., M.), where M = 0.31A and fr = 0.37A.

From the aforesaid, it follows that the relations
Mdense = 0 < pe(M) < M = my,, which are noth-
ing but the stability condition (2), hold for points
on the curve [ap corresponding to the first-order
phase transitions and separating the vacuum phase
B from phase A, where the baryon density is nonzero.
This means that only for M > M, = 0.56A—that
is, for G > Gp,g = 1.37G.—can stable droplets of
quark matter (quark droplets) arise within the original
Nambu—Jona-Lasinio model. Quarks are massless
within these droplets.

In should be recalled that, in [2], the problem of
stability of quark droplets was already investigated
within the Nambu—Jona-Lasinio model, but only for
three values of the parameter M: My = 0.48A, M =
0.67A, and M3 = 0.88A. The results reported in [2]
confirm our more general conclusions: for the values
Ms> 3, quark droplets are stable, while, for Mj, there is
no stability.

The baryon density pgrop within a stable quark
droplet is calculated by the formula

9Q(0; ) L 3
parp(M) = ~ =2 = (M

rop N0 p=pie(M) 372
In particular, it follows from (8) that pqro, = 1.43p, at
M = Mj and A = 600 MeV and that pgrop, = 2.090,
at M = M3 and A = 570 MeV.

). (8)

4. STABILITY FOR H # 0

The thermodynamic potential of the Nambu—
Jona-Lasinio model in an external magnetic field
has the form (the details of the derivation of this
expression can be found in [13, 14])

Q(m; p, H) = Q(m; 0, H) (9)

o0

3qH
-2 > b — si)
=0

472
k
ot i = s

—siln | —F—— )
Sk

X S p/p? — st

where

sp = /m?2+2qHE,

ar, = 2 — dor,

3(qH)?
Q(m: 0, H) = Q(m: 0) — 10
(m; 0, H) = Q(m; 0) — =~ (10)
PHYSICS OF ATOMIC NUCLEI Vol.68 No.1 2005



MAGNETIC CATALYSIS OF STABILITY OF QUARK MATTER 127

X {('(—l,x) — %[x2 —x]lnx—l—aé}.

Here, (m;0) is the thermodynamic potential (4) at
pu=0,z=m?/(2qH), {(v,7) is a generalized Rie-
mann zeta function [15], and ({'(—1,2) =
d¢(v, ) fdvy——1.

A few comments on the effect of a magnetic field
on the vacuum of the model specified by the La-
grangian in (1) at u = 0 are in order here. If G < G,
then, as was indicated above, the vacuum is chiral-
invariant at H = 0. However, the chiral invariance of
the model is spontaneously broken at arbitrarily weak
uniform and constant external magnetic fields, with
the result that the quarks acquire a mass [16]. This
is a manifestation of a universal effect of the mag-
netic catalysis of dynamical symmetry breaking (see
the review articles quoted in [17])—for the first time,
this effect was observed in the (2 + 1)-dimensional
Nambu—Jona-Lasinio model [18]. If G > G,, then,
for H # 0, the potential Q(m; 0, H) reaches the global
minimum at the point m,(H) that is also nonzero and
which is associated with the dynamical quark mass
Myae from relation (2). Its value grows monotonically
with increasing H, and m,(H) — M for H — 0.5
Thus, we can see that, at p = 0 and H # 0, the chiral
invariance of the model is spontaneously broken for
all positive values of G > 0.

In the case of 4 # 0 and H # 0, it is more difficult
to study the phase structure of the model—that is,
to find the global minimum of the thermodynamic
potential (9); however, this problem is simplified con-
siderably upon representing the (H,u) plane as a
unification of all regions wy (kK =0,1,...,00):

wy = {(H,p):2qHk < p* <2¢H(k+1)}.  (11)

Indeed, only the first term (k = 0) of the infinite series
in (9) does not vanish in the region wy, only the terms
corresponding to £k =0 and & =1 make a nonzero
contribution in the region wq, etc. (It should be noted,
however, that the smaller the value of H, the greater
the number of regions wy that must be taken into
account.) In the present study, the problem of stability
of quark matter in an external magnetic field is con-
sidered in detail for the same values of the parameter
M asin|[2].

4.1. Magnetic Catalysis of Stability

In the case of M = M;, we have investigated
numerically the thermodynamic potential in (9) and
constructed the phase portrait of the model. It is
depicted in Fig. 2. On this portrait, one can see,

1n different models of the QCD vacuum, the chiral conden-
sate also grows with increasing magnetic field at p = 0[19].
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u

H

Fig. 2. Phase portrait of the model in the (H,u) plane
at M = My = 048N (M < My < M.). Here, p; is the
chemical-potential value at which the point (M, p1)
lies on the curve corresponding to the first-order phase
transitions and connecting the tricritical points « and 3
in Fig. 1. Points on the curves lap and Ipc satisfy the
stability condition.

among other things, phase B, which corresponds
to the true QCD vacuum in an external magnetic
field and in which the baryon density is nonzero,
while the quarks have a nonzero mass m,(H), this
mass being identified with my,. from relation (2).
In Fig. 2, the line L = {(H, pu):;u = my(H)} repre-
sents an upper bound on the quantity u,. from (2).
Two dense phases—the chiral-invariant phase A
involving massless quarks (in this phase, mgense = 0)
and phase C featuring massive quarks and broken
chiral invariance—Ilie immediately below this curve.
The boundaries between the phases in the figure
are shown by the dashed and solid lines, which
represent, respectively, first- and second-order phase
transitions. The tricritical point « has the coordinates
V2qH, /A = 0.59 and po /A = 0.44; that is, it lies in
the region wo (11) (H, ~ 1012 G).

We would like to emphasize one detail of para-
mount importance in Fig. 2: at nonzero values of
H, a transition from the vacuum phase B to one
of the dense baryon phases (A or C, depending on
the value of H) is a discrete first-order transition,
while, at H =0 and M = M; < M., a transition
from phase B to phase C is a second-order phase
transition (see Fig. 1). (Thereby, we obtain, within
the Nambu—Jona-Lasinio model, a corroboration of
one the statements in the phenomenological theory
of phase transitions—in external fields, second-order
phase transitions transform into first-order phase
transitions [20].) From Fig. 2, one can see that the
stability relation (2) holds for points lying on the
curve [4p. For points on the curve Ip¢, this relation
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is also valid (from the figure, it immediately follows
that pe < myae = mo(H); we skip the proof of the
fact that myense < pte in a dense phase C'). This means
that, within the model being considered, an external
magnetic field stabilizes, at M = Mj, quark droplets,
which were unstable at H = 0. We have verified that
the curve lp¢, along which the vacuum (phase B)and
phase C, where the baryon density is nonzero, coexist,
traverses all regions wy for k = 1,...,100—that is, it
extends to comparatively small values of H ~ 10'7 G.
In all probability, it reaches the point M7 (see Fig. 2,
where the points show the extrapolations of the curves
lap and Ipc to the region of small values of H).
Depending on H values, stable multiquark droplets of
matter are formed by massive (H < H, ~ 10 G) or
massless (H > H,)quarks. A similar conclusion can

also be drawn for arbitrary values of M e (M, M,)
(see Fig. 1).

[t should be recalled that, in [13, 14], the phase
structure of the model specified by the Lagrangian in
Eq. (1) was considered at nonzero values of p and
H, but the problem of stability of quark matter was
not addressed there. In[14], attention was focused on
the case of G < G, while, in [13], the phase portrait
of the model was obtained for values lying in the

region G > G, and corresponding to M < M < M,.
In [13, 14], it was proven that, in an external mag-
netic field, there exists, at small values of u, a chiral-
noninvariant vacuum (phase B), which is separated
by the critical curve of first-order phase transitions
from phases where the baryon density is nonzero.
[t can easily be shown that the points of this curve
also satisfy the stability condition in (2). Thus, we
see that, while, at H = 0, quark droplets are unstable
for G < Gp,g = 1.37G,. within the model specified by
the Lagrangian in Eq. (1), at H # 0, their stability is
induced by an external magnetic field. We refer to this
effect as the magnetic catalysis of stability of quark
matter.

However, the following important feature of the
effect is worthy of special note. From the formal point
of view, the stability of quark droplets at T'=0 is
induced by an arbitrarily weak external magnetic field.
The binding energy Ej of one quark within such a
droplet has the form Ep = myac — pe [2]. Since, for
H — 0, the curve Ipc comes arbitrarily close to the
line L (see Fig. 2), then Ej also approaches zero for
H — 0. In view of this, we admit that, at small values
of H, the effect in question may not manifest itself
under realistic conditions—that is, for 7" # 0—since
rather strong thermal phenomena are obstacles for
the formation of a loosely bound droplet of quark mat-
ter. However, we believe that the magnetic catalysis of
stability of quark matter must be taken into account

PHYSICS OF ATOMIC NUCLEI

in studying neutron stars, within which the magnetic-
field strength may be as great as 10'® G [4]. This is
suggested by some estimates of the binding energy
Ey. Indeed, the binding energy Ej is approximately
equal to 6 keV in the region wygg, where H ~ 107 G,
whereas the temperature within compact stars may
take much lower values (see, for example, the review
article of Alford [21]) that are insufficient for a ther-
mal destabilization of quark droplets whose binding
energy is on this order of magnitude.

Yet another argument in favor of a true value of our
effect is based on the results reported in [22], where
it was shown that, for ¢H < AéCD, the dynamics

in the nonperturbative QCD vacuum is in qualita-
tive agreement with the predictions of the Nambu—
Jona-Lasinio model (Agcp ~ 250 MeV). By means
of a numerical analysis, we have found that quark
droplets are stabilized in magnetic fields correspond-
ing to gH ~ O.OIAéCD (at such values of H, the

curve Igc in Fig. 2 traverses the region wygp) and in
stronger magnetic fields. In other words, the mag-
netic catalysis of stability of quark matter, an effect
that was discovered within the Nambu—Jona-Lasinio
model, has a direct bearing on QCD, a commonly
accepted theory of strong interactions.

4.2. Case of M = My 3

[t is well known that, at H = 0, stability is inherent
in the model specified by Eq. (1) for G > Gyp,,—that
is,for M > M, = 0.56A. Here, we will investigate the
problem of the external-magnetic-field effect on the
stability of quark droplets for the same values M =
My 3 > M., as in[2].

The phase portrait of the model at M = M, is
schematically illustrated in Fig. 3, where use is made
of the same notation as that which was adopted for
Fig. 2. In contrast to what we have seen in Fig. 2, the
region of the massive phase C'is compact here; there
appeared yet another tricritical point (3) and a triple
point (7) (Ha, g~ ~ 10 G). The first-order-phase-
transition lines [ 4 and lp¢ of this figure satisfy the
stability condition (2). It follows that, both at H =0
and in an external magnetic field, the model in ques-
tion predicts the existence of stable quark droplets
formed by massive or massless quarks, depending
on the value of the magnetic-field strength H. In
the case of M = M3, we have not found a massive
phase C, the vacuum (phase B) coexisting with the
dense chiral-invariant phase A at chemical-potential
values that satisfy the stability condition (2). We then
conclude that, at M = M3 and H # 0, there can exist
stable multiquark droplets consisting, as at H =0,
only of massless quarks.
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Fig. 3. Phase portrait of the model in the (H, ) plane at
M = M, = 0.67TA (M, < M), where po(Ms) = 0.63A.
The points of the curves lap and I ¢ satisly the stability
condition.

In order to clarify the role of an external magnetic
field in the very process of quark-droplet formation
for M > M., we present, in Fig. 4, the energy ¢/pp
per baryon as a function of the baryon density pp at
H =0and H # 0 (M = Ms). (As in [2], the energy
density ¢ is given by

€= Q(mvuvH) - Q(mO(H),O,H) +NC/J/pB, (12)

where pp = —0Q/(N.0p) and m,(H) is the dynam-
ical quark mass in phase B.) In Fig. 4, the curve
corresponding to H = 0 has a maximum at a point
pmax and the global minimum at a point pgrop (M)
[see Eq. (8)]; there is also a local minimum at the point
pp =0, and this point corresponds to the vacuum.
We assume that fluctuations of the baryon density are
possible in the vacuum. It is obvious that, if a quark
droplet whose density is less than pmax appears in this
state at H = 0 in one way or another, this droplet will
be unstable, since it is energetically preferable to have
an infinite volume where pp = 0; that is, the droplet
will actually disappear. But if the density in a droplet
satisfies the condition pp > pmax, the droplet will be
stable (it will not disappear); its volume will decrease
or increase until the droplet occurs in the state of
lowest energy, where pp = pyrop(M2). Thus, we see
that, at H = 0, the vacuum is a metastable state. This
means that, for baryon-density fluctuations, there is a
threshold pmax above which the vacuum disappears,
with the result that the system goes over to a state
where pp # 0, this corresponding to the formation of
one or a few baryon droplets.

The situation changes drastically in a rather
strong magnetic field. Indeed, ¢/pp has a maxi-
mum in this case at pp = 0 (see Fig. 4, where the
magnetic-field strength is fixed by the condition
V2qH /A = 0.7); therefore, it is energetically prefer-
able for a drop of even an arbitrarily low density to
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Fig. 4. Energy per baryon as a function of the baryon
density at H = 0 and /2¢H /A = 0.7.

contract to a finite volume (but not to disappear
completely) at which the baryon density within it
would correspond to a minimum of the function €/pp
at H # 0. Our method of investigation is not very
efficient at small nonzero values of the magnetic-
field strength, in which case it is necessary to take
into account contributions from a very large number
of regions wy, (11). Knowing the shape of the curve
e/pp at H=0 and /2¢H/A = 0.7 (see Fig. 4),
we can nevertheless make the natural assumption
that, in response to variations in H, the curve ¢/pp
changes shape in the following way: at H = 0, it has
a local minimum at the point pp = 0; with increasing
H, this minimum gradually becomes shallower, with
the result that, finally, the function ¢/pp develops a
maximum at pp = 0 from a rather high value of H. It
follows that, with increasing H, the threshold above
which rather strong fluctuations destroy the vacuum
decreases, vanishing at sufficiently strong magnetic
fields; that is, an external magnetic field facilitates
the generation of stable droplets of quark matter for
G > Gbag~

5. CONCLUSION

The problem of stability of quark matter in the
presence of an external magnetic field has been con-
sidered within the simplest version of the Nambu—
Jona-Lasinio model. It has been shown that (i) at
H =0, there exists a coupling-constant value
(Ghag = 1.37G) such that quark droplets can be
stable only for G > G,g; (ii) if the magnetic field is
nonzero, droplets of quark matter can be stable even
for 0 < G < Gy, (magnetic catalysis of the stability
of quark matter); (iii) in contrast to what we have in
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the case of H = 0, stable quark droplets at H # 0 can
be formed not only by massless but also by massive
quarks; and (iv) from general energy considerations,
it follows that, for G > Glag, the formation of stable
quark-matter droplets must occur more vigorously in
an external magnetic field than at H = 0. This means
that, in a rather strong magnetic field, arbitrarily
small fluctuations of the baryon density lead to the
generation of a quark droplet (in contrast, only rather
strong fluctuations lead to the emergence of a quark
droplet at H = 0).

[t should also be noted that our results are also
valid for values of the magnetic-field strength in the
region ¢H < AéCD, where QCD dynamics is in qual-
itative agreement with the predictions of the Nambu—
Jona-Lasinio model [22]. One may therefore hope
that the effects described above occurin QCD as well.

In the future, we are going to consider in more
detail the region of low values of H and to take into
account different structures of four-fermion interac-
tion in the Lagrangian in (1); also, we plan to ex-
plore the role of the gluon condensate (which can be
simulated by external chromomagnetic fields) in the
stabilization of quark matter.
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Abstract—The elastic scattering of hadrons (protons, charged pions, and positively charged kaons) on
6,78Li nuclei is analyzed on the basis of Glauber—Sitenko diffraction theory. A few nuclear-wave-function
versions found within two- and three-particle potential cluster models are used in the calculations. It
is shown that the application of these wave functions in diffraction theory makes it possible to describe
adequately the experimental differential cross sections and analyzing powers in hadron scattering at
intermediate energies. In this study, particular attention is given to a comparison of the scattering of
different particles on the same target nucleus, as well as to a comparison of scattering of particles of the
same sort on different target nuclei. © 2005 Pleiades Publishing, Inc.

INTRODUCTION

Investigation of hadron interaction with nuclei is
a key problem in the theory of the nucleus and of
nuclear reactions. This is a test that makes it possible
to study both the structure of nuclei and the nature
of nuclear forces. The scattering of different particle
species on the same target nuclei is of interest since
particles of different nature interact differently with
target nucleons, and this circumstance will man-
ifest itself in observables. By way of example, we
indicate that, in the region of intermediate energies
(from 100 MeV to 1 GeV), the interaction of protons
and positively charged kaons with target nucleons is
of a nonresonance character, the range of positively
charged kaons in a nuclear medium being 5 to 7 fm,
which permits employing them as a probe for studying
the interior of nuclei. Charged pions form, owing to
the presence of antiquarks in their composition (d in
7T and @ in 77), stable resonances and undergo a
strong absorption in a nuclear medium (for the sake of
comparison, we recall that their range is about 1 fm,
which is less that the typical internucleon distance).

The cross sections for elastic and inelastic proton
scattering on SLi nuclei were measured at the Gustav
Werner Institute (Uppsala University, Sweden)[1] by
using the 185-MeV synchrocyclotron and in Saclay
(France) at the energies of 0.6 and 1.0 GeV [2]. The
scattering of 0.2-GeV polarized protons on %Li and
"Linuclei was investigated at the cyclotron of Indiana

Dnstitute of Experimental and Theoretical Physics, Kazakh
State University, ul. Timiryazeva 46, Almaty, 480121 Re-
public of Kazakhstan.

“e-mail: ibr@inp.kz

University (USA) [3, 4]. The differential cross sec-
tions for the scattering of 0.1- to 0.24-GeV charged
pions on SLi and “Li were measured at the Paul
Scherrer Institute (PSI, Villigen, Switzerland) [5—
7]. Experiments devoted to studying the scattering of
positively charged kaons on 8Li nuclei were performed
in the Brookhaven National Laboratory (BNL AGS,
USA) at Ex = 0.375 GeV [8—10].

The advent of the new technique that employs
secondary radioactive beams permits performing ex-
periments with unstable nuclei under conditions of
so-called inverse kinematics, in which case a beam
of radioactive nuclei is incident on a hydrogen target.
A similar experiment for 8Li nuclei is planned at the
Petersburg Nuclear Physics Institute, as was claimed
in[11].

Interest in 578Li nuclei is motivated by the fact that
these few-nucleon systems are strongly clustered in
some channels, so that they can be considered as
a convenient testing ground for various model wave
functions. These wave functions are calculated within
potential cluster models, where the nucleus in ques-
tion is represented as that which is formed by two («
and t in "Li) or three (a, n, and p in 5Li and «, ¢,
and n in 8Li) fragments assigned the properties of the
corresponding particles in a free state. These models
take into account the Pauli exclusion principle and
employ realistic potentials of intercluster interaction,
this making it possible to describe the main features
of nuclei, including their binding energies, the spectra
of their low-lying levels, their root-mean-square radii,
and their magnetic and quadrupole moments [12—
19]. It was precisely these wave functions that pro-
vided a good description of direct and inverse reac-

1063-7788/05/6801-0131$26.00 © 2005 Pleiades Publishing, Inc.
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tions of photodisintegration through cluster chan-
nels [20, 21]. In the present study, multicluster wave
functions are used to analyze the elastic scattering of
protons, charged pions, and positively charged kaons
on 578Li nuclei.

Glauber—Sitenko diffraction theory [22] is exten-
sively used in the region of intermediate projectile
energies. Apart from its relative simplicity, this theory
is advantageous in that it involves a small number
of input parameters to be extracted from data of in-
dependent experiments and employs elementary am-
plitudes whose parameters, having a rather simple
physical meaning, are related to observables; more-
over, the form of the multiple-scattering operator €2
in the Glauber—Sitenko diffraction theory is quite
convenient for analysis. But in phenomenological ap-
proximations, such as the optical model, physical ef-
fects are masked by numerous adjustable parameters,
whose meaning is not always clear.

The set of available experimental data and reliable
computational methods make it possible to perform a
detailed analysis of relevant processes, which includes
a comparison of processes where particles of different
species are scattered on the same target nuclei, a
comparison of processes where particles of the same
species are scattered on different lithium isotopes, and
a comparison of our results with experimental data
and with the results of other authors.

The scattering of protons, charged pions, and pos-
itively charged kaons on %7Li nuclei was explored in
a number of studies [1—10, 22—30] in the distorted-
wave impulse approximation [1—4, 8—10, 23—25],
within the coupled-channel method [6, 7], or within
Glauber—Sitenko theory [5, 22, 26—30]. (Here, we
have given references only to a small number of stud-
ies published thus far.) But only in some of those
studies [5, 23, 27—29] was use made of wave func-
tions that describe correctly the structure of nuclei
both in their interior and at their periphery. None
of them presents a comparison of processes involv-
ing the scattering of hadrons that belong to differ-
ent species—that is, none covers the aspects of the
problem that form the subject of the present study. At
the same time, it was indicated in [3, 4, 24, 26] that
an insufficiently accurate description of the structure
of nuclei is one of the reasons for an inadequate
description of the features of scattering (differential
cross sections and analyzing powers A, ).

For example, the differential cross sections for
pSLi and p7Li scattering and the analyzing power
A, for these processes were calculated in [3, 4] on
the basis of the optical model with the standard
Woods—Saxon potential in the first version and with
a microscopic folding potential in the second version.
These were the first studies where the purpose of
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deducing more justified conclusions on the shape
of the ground-state densities and of the transition
densities was pursued by simultaneously considering
proton and electron scattering and by calculating
the contributions of high multipoles (J =1, 2, 3)
to the observables in question. However, the au-
thors of those studies themselves admitted that the
failure of the distorted-wave impulse approximation
to reproduce the scattering cross sections could be
attributed to several factors, including the inadequacy
of the single-scattering model, inaccuracy of the
description of the nucleon—nucleon interaction in the
transition matrix element, and a low quality of the
transition density used in the calculations.

An attempt at taking into account quadrupole ef-
fects in 77Li scattering was made in [24]. The cal-
culations there were performed on the basis of the
optical model with the 7Li wave function found by
the resonating-group method. The wave function ob-
tained in this way for the “Li nucleus in the ot con-
figuration describes the electromagnetic properties of
the nucleus quite accurately. It was found that, in
the elastic-scattering process, quadrupole effects are
large, especially in the region of backward angles.

A complete microscopic analysis of the elastic
scattering of 0.2-GeV protons on nuclei in the range
from SLi to 298Pb was given in [25]. The respective
calculations were performed in the distorted-wave
Born approximation (DWBA9I1 code) with fully an-
tisymmetrized wave functions by using an effective
approximation that includes central, tensor, and two-
particle spin—orbit forces. The authors of that study
achieved a good description of a vast body of ex-
perimental data—in particular, those on the binding
energies of p- and sd-shell nuclei, root-mean-square
charge radii, differential cross sections, and polariza-
tion observables (A4, and @).

In [26], the calculation of the elastic and inelastic
scattering of charged pions at E; = 0.16—0.24 GeV
was performed within Glauber—Sitenko diffraction
theory, and it was shown there that, in the region
of the As3 resonance, this theory provides, for these
scattering processes, results that are not poorer than
those within the generally accepted distorted-wave
impulse approximation. However, the authors of that
study considered predominantly the scattering on
12¢, 160, and 2*Mg nuclei, whose wave functions are
taken in the shell model (only inelastic scattering was
studied for "Li).

In connection with our investigation, we would
also like to mention the study of Tag Eldin ef al. [31],
who used the Glauber—Sitenko diffraction theory to
calculate elastic proton, antiproton, and pion scat-
tering on 2C nuclei. Some discrepancy between the
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theoretical and experimental results for pion scatter-
ing on 2C nuclei at £ = 0.18 GeV was explained
in [31] by several factors—in particular, by the need
for choosing, for 2C, a more realistic density, better
than a Gaussian one, since, in the A-resonance re-
gion, pion interaction with '2C nuclei occurs predom-
inantly in the surface region. At such energies, it is
therefore of importance to know the true shape of the
nuclear density at the surface. In [31], attention was
given primarily to exploring the possibility of applying
the theory at not very high energies (from 50 MeV for
antiprotons) and large scattering angles (up to 130°
for pions). It was concluded that Glauber—Sitenko
theory can be used throughout the region where the
elementary amplitude has a strong forward peak.

The present analysis is a logical continuation of
the preceding studies reported in [28, 29] and devoted
to studying hadron scattering on %7Li nuclei. How-
ever, the attention there was given predominantly to
the application of Glauber—Sitenko theory to hadron
scattering on individual nuclei, and no comparative
analysis of the features of scattering was performed
there. In addition to including one more nucleus in our
consideration, 8Li, we focus our attention primarily on
a comparison of the calculated features of scattering
on different lithium isotopes.

The ensuing exposition is organized as follows.
In the next section, we briefly describe the formal-
ism of Glauber—Sitenko theory and input parameters
for which we take wave functions and elementary
hadron—nucleon amplitudes. Further, we discuss the
results that we obtain. In the last section, we formu-
late our basic conclusions.

BRIEF ACCOUNT OF THE FORMALISM
OF DIFFRACTION THEORY
AND DESCRIPTION OF INPUT
PARAMETERS

Within diffraction theory, the amplitude for had-
ron—nucleus scattering can be represented in the
form [22]

ik . JM,
Mis(q) = %/d%eXp(zq-p)OI’fM"!Q\‘I’i ),
(1)

3
My _ / [T dr.w ™ Qe 5(R ),

v=1

JM J
(UM 10w;

where p is the impact-parameter vector lying in the
plane orthogonal to the axis of the incident-hadron

beam; r, stands for the nucleon coordmates RA is
the c.m. coordinate of the target nucleus; \I! 7 and

\IJ; 7 are, respectively, the initial- and the ﬁnal state
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wave function for the target nucleus; and q = k' — kis
the momentum transfer in the reaction being consid-

ered, k and k being the c.m. momenta of, respectively,
the incident and the scattered hadron. The absolute
value of the momentum transfer is given by

q=2ksinf/2, k=+/e2—m?2, (2)

where m and e are, respectively, the mass and the
energy of the incident hadron and 6 is the scatter-
ing angle (we use here the system of units where
h=c=1).

We represent the multiple-scattering operator in
the “factorized” form

Q=04+ Q- QaQba (3>

where b denotes an np pair in °Li, ¢ in “Li, and a tn
pair in 8Li and

A
Q=1 H(l _WV(P_PV)) (4)
v=>
=1- ll—Zwy—FZw,,wu
v<p

Here, p, are the two-dimensional coordinates of
intranuclear nucleons in the plane of the impact-
parameter vector p, and w,, is a profile function that is
expressed in terms of the amplitude for 2V scattering
(x=p,nF, KT)as

wy(p — pv) (9)
— 27:% /d2qexp(—2q (P = pv)) fan(q),

where

faen(q) = fan(q) + o -nfin(q). (6)

Here, o is the spin Pauli matrix, and n is a unit vector
orthogonal to the plane spanned by the vectors k and
k'. The expressions for the central elementary ampli-
tude f¢y(q) and the spin-orbit elementary amplitude

v (q) are given below, while the fitted values of their
parameters are quoted in Tables 1—3.

We write the operator of scattering on an alpha
particle in the form of one profile function, Q, = w,,
but we employ, in that case, the elementary amplitude
fan instead of f,n. This is because an alpha parti-
cle, which enters into the composition of all lithium
isotopes, is treated as a structureless object within
this approach, so that all special features of scattering
on it are taken into account in the parameters of the
elementary amplitude f, . This approach has some
obvious advantages since one can assume that some
nontrivial effects, such as those that are associated
with the spins of target nucleons, various nucleon—
nucleon correlations, the Fermi motion of nucleons,
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Table 1. Compendium of the parameters of the proton—nucleon amplitudes

E,, GeV Interaction | ooy, fm? SN v, Im? | Dy, fm? e N 5 n. fm? | References
0.2 o 2.36 115 | 065 (35]
pn 4.20 0.71 0.68
0.6 pp 3.7 —0.1 0.12 3.0 1.0 0.6 [33]
n 3.7 —0.1 0.12 3.0 1.0 0.6
0.8 o 473 0.06 | 034 73 118 0.11 32]
n 3.79 0.2 0.46 11.3 0.35 0.12
1.0 o 475 | 008 | 025 0.7 15 0.4 (34]
n 3.85 —-0.41 0.25 0.7 1.5 0.4

and multiparticle effects and which are difficult to take
into account within the independent-particle model,
are included in the xaw amplitude fitted to experimental
data. The question of the most convenient represen-
tation of the Glauber operator 2 and the question
of which scattering effects are taken into account in
the elementary amplitudes was discussed in detail
elsewhere [29].

The operator €2 (3), which depends on the elemen-
tary xa and x N amplitudes, will be represented, in
accordance with the partition of each of these into the
central and the spin—orbit component [see Eq. (6)], in
the form of the sum of two terms,

Q=0Q°+Q°. (7)

With allowance for the spin dependence, the scat-
tering matrix element can be written in the form

M;f(q) = M(q) + M (q). (8)

The differential cross section is determined by the
squared modulus of the matrix element; that is,

do
E‘wlﬂ > U @) +| ff(q)|2}- (9)
MM,

The analyzing power is defined as

~2Re [M(a)M3 (@)
v do /dS2

(10)

[t is rather difficult to calculate the scattering am-
plitude (1). In order to accomplish this goal, we go
over, in the wave functions and in the scattering op-
erator, from single-particle coordinates to Jacobi co-
ordinates and, after that, integrate the matrix element
with respect to all variables. There are, however, a few
difficulties along the way. First, the presence of the

delta function of R4 in the amplitude given by Eq. (1)
results in that this amplitude does not factorize into
amplitudes for individual clusters and relative motion,
since all of the variables are related to each other.
Second, the coordinates of the nucleons involved are
three-dimensional in the wave functions and two-
dimensional in the operator €2, since, in diffraction
theory, scattering occurs in a plane orthogonal to the
incident-beam axis; in view of this, one has to perform
integration in the system of Cartesian coordinates
rather than in the system of spherical coordinates,
which would be simpler. However, the use of not only
N but also za amplitudes for elementary ampli-
tudes and the resort to the wave functions for relative
motion in the form of expansions in terms of multi-
dimensional Gaussian functions make it possible to
integrate the relevant matrix elements analytically; as
a result, there is no loss of accuracy in calculating
the differential cross sections, since there do not arise
here errors inevitable in a numerical calculation of
multidimensional integrals.

The technique for calculating the matrix element
(1) with multicluster wave functions is described
in [29].

The elementary x /N amplitudes [see formula (6)]

Table 2. Compendium of the parameters of the 7+ N am-
plitudes (data from [35])

E,, GeV | Interaction | o', im? | ¢ C v, fm?
0.15 Tt N 10.93 0.522 | 1.25
0.18 T p 6.0 0.18 0.570
mn 7.6 —0.03 0.586
0.2 Tt N 11.90 | —-0.17 | 0.873
PHYSICS OF ATOMIC NUCLEI Vol.68 No.1 2005
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enter into the set of input parameters of Glauber—
Sitenko theory. They describe phenomenologically
the interaction of an incident hadron with target nu-
cleons, the parameters of these amplitudes being ex-
tracted from data of independent experiments [32—
39],

tot

C Jx N C C
fo = 47TN (Z+€IN)€XP(—ﬂqu2/2), (11)
S ko_}l}Ot N q2 N S S
TN = —47TNZ A2 Ds(i + egn)exp(— ach2/2)7

(12)

where k& and m are, respectively, the momentum and

the mass of the incident hadron; o' is the total

cross section for hadron—nucleon scattering; e, is
the ratio of the real part of the respective amplitude to
its imaginary part; 8, is the cone-slope parameter
of the amplitude; and the indices ¢ and s label, respec-
tively, the central and the spin—orbit component of the
amplitude.

The question of why protons, positively charged
kaons, and charged pions are of interest as probes in
studying the structure of nuclei is in order here. The
answer is that this is due primarily to the mechanism
of their interaction with bound nucleons that occur
in nuclear matter. A positively charged kaon, whose
strangeness is +1, cannot be entirely absorbed in
a nucleus since there are no forces of one-pion ex-
change with a nucleon for it. Only elastic or inelastic
scattering on a nucleon is possible for a positively
charged kaon (as well as for a proton); therefore, it is
the weakest of all hadronic probes. This mechanism
is different from that which governs the interaction of
charged pions, for which two-nucleon absorption is
dominant. A strong perturbative interaction that has
a complicated resonance structure (featuring a dis-
tinct forward maximum) is observed in 7% N scatter-
ing; in this respect, 7N interaction more resembles
K~ N interaction, since a negatively charged kaon
can also be readily absorbed by a single nucleon.

The interaction of positively charged kaons with
nucleons differs significantly from the interaction of
other particles: at the same energy, the values of ag’}v
and 3¢ for positively charged kaons are much less,
while the value of [ey| is much greater (see Ta-
bles 1—3). The smallness of 35 (it is one to two or-
ders of magnitude smaller for KN interaction than
for pN and 7N interactions), which characterizes
the range of N interaction, indicates that only the
I =0 and | partial waves are dominant in the K™N
amplitude. In simplicity, the interaction of positively
charged kaons with nucleons can be compared with
electron interaction, but the former is advantageous
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Table 3. Compendium of the parameters of the KN
amplitudes (data from [30])

Ex, GeV | Interaction | o%%y, fm? | &%y | B%n, Im?
0.201 K*p 1.29 —=2.190 | 0.0134
K*n 1.31 —0.667 | 0.0013
0.23 KTp 1.30 —1.964 | 0.0197
K*n 1.41 —0.575 | 0.0012
0.375 K*p 1.32 —1.467 | 0.0114
K*n 1.67 —0.373 | 0.0015
0.468 K*p 1.32 —1.258 | 0.0095
K*n 1.71 —0.305 | 0.0013
0.534 K*p 1.39 —0.9074 | 0.0065
K*n 1.75 —0.105 | 0.0011

in that a positively charged kaon is sensitive to neu-
tron interaction, this making it possible to realize

processes involving high momentum transfers. The

smallness of ¢'% indicates that the imaginary part

of the Kt N amplitude (ag}t\, is related to it by the
optical theorem) is also small. The quantity |5 /| is
also indicative of this. That it is sometimes greater
than unity means that the real part of the respective
elementary amplitude is greater than its imaginary
part, which is responsible for absorption; that is, the
scattering process proceeds predominantly through
the elastic channel. These circumstances explain why
the interaction of positively charged kaons with nu-
cleons is much weaker than the interaction of protons
and charged pions and why the mean range of posi-
tively charged kaons in a nuclear medium is unusually
long.

The total cross sections for the interaction of a
proton, a positively charged kaon, and a negatively
charged pion with a neutron are larger than their
counterparts for interactions with a proton, as can be

seen from a comparison of the corresponding values

of 1%, and are determined by different isospin depen-

dences. This is of importance in employing negatively
charged pions as a probe of neutron and proton dis-
tributions in nuclei.

At the quark level, the elementary interactions of
protons and charged pions and kaons with nucleons
were considered in detail in [29].

The wave functions for target nuclei on which
the scattering processes being considered occur form
yet another element of the theory. The basic proper-
ties of these nuclei are rather well reproduced within
the multiparticle shell model [36]. However, shell-
model wave functions have an incorrect asymptotic
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behavior; therefore, they describe poorly peripheral
processes such as two-cluster photodisintegration
through reactions of the A(v, b)B type or inverse
reactions involving radiative cluster capture and be-
longing to the B(b, v)A type. The particular clus-
ter models developed in [37, 38] are more adequate
to such processes. Within these models, it is as-
sumed that a nucleus A consists of two (sometimes
three) composite particles and nucleons that are in
the ground state each with respect to their internal
motion, all excitations of the nucleus being associated
exclusively with the relative motion of the fragments.
As in the resonating-group method [39], the wave
functions for a nucleus that consists, for example,
of two fragments a and b, which can be either in a
continuous or in a discrete spectrum, are written in
the form

v = A(\Ila\pb(I)V(Rab))a (13)

where W, and W, are the intrinsic fragment wave
functions, for which one usually employs known
parametrizations that describe the properties of free
particles. In contrast to what is done within the
resonating-group method, antisymmetrization is not
performed here explicitly, the Pauli exclusion principle
being taken into account via a choice of interaction
potential constraining the form of the relative-motion
wave function, since it involves forbidden states in
addition to allowed ones. The three-particle wave
functions for Li (in the anp model) and for 8Li
(in the atn model) can be symbolically represented
in form similar to that in (13), since the intrinsic
nucleon wave functions are not written explicitly,
but all of their quantum numbers (spins, isospins,
orbital angular momenta) are taken into account in
the corresponding vector-composition coefficients.
Thus, ¥, = ¥, forall lithium isotopes. We have ¥, =
U, for “8Li and ¥}, = const for SLi, this implying
the absence of the intrinsic nucleon wave functions
in the representation in (13). The relative-motion
wave functions @, (Rg) (v = abN) depend on the
corresponding coordinates: for SLi, this is the radius
vector between the alpha particle and the center of
mass of the np pair, ®4pn(Rap) = Panp(Ra—np); Tor
"Li, this is the radius vector between the alpha particle
and the triton, ®45n (Rap) = Pt (Ra—t); for 8L, this is
the radius vector between the neutron and the center
of mass of the at pair, PN (Rap) = Potn(Rat—n)-
The structure of these states is determined by the
correspondence of the relative-motion wave function
to the shell-model wave function in the interior of
the nucleus (the region where the fragments a and b
overlap). We mean the correspondence of the internal
node structure of the two functions (numbers of nodes
and their positions). A shell-model wave function
is an oscillator-type function featuring p quanta.
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By way of example, we indicate that, for the "Li
nucleus, which has the (0s)*(1p)? shell configuration,
three quanta are associated with the relative-motion
wave function in the potential cluster model—that
is, u = 3. Thus, we arrive at node wave functions for
the ground state of the "Li nucleus in an ot model
of the Rg, type. The Ry, state is forbidden. In order
to obtain the relative-motion wave function for the
"Li nucleus in the at model, one has to solve the
Schrédinger equation for the case where a central
interaction in the form of a deep attractive potential
of the Woods—Saxon [14] or the Gaussian [15]
type is supplemented with spin—orbit and Coulomb
terms. The parameters of two-cluster potentials are
chosen on the basis of a fit to low-energy elastic-
scattering phase shifts in all partial waves. In all
models, relative-motion wave functions are sought
in the form of an expansion in multidimensional
Gaussian functions, this making it possible not only
to find all matrix elements analytically but also to
calculate wave functions for a broad basis with a
large number of small components. We note that the
number of Gaussian functions is chosen in such a
way as to ensure a correct exponential asymptotic
behavior of ®,(Ryy) for rather long distances. In
the present study, we have performed calculations
with two cluster wave functions for 7Li that have
the parameters borrowed from [14] (model 1) and
from [16] (model 2).

In the literature, it is often indicated that the 6Li
nucleus is especially appealing for theorists: owing
to a comparatively small number of nucleons in this
nucleus, it may serve as a testing ground for con-
structing various model wave functions that, on one
hand, are sensitive to multiparticle nuclear correla-
tions and, on the other hand, make it possible to
perform accurate calculations for such few-particle
systems.

The wave functions obtained by Kukulin’s group
from the Institute of Nuclear Physics at Moscow
State University [12, 13] were among the first wave
functions for the SLi nucleus in the anp model. The
calculations performed with these functions for reac-
tions featuring electrons [12, 13], protons [28, 29] and
charged pions [5, 23, 27, 29] yielded reliable results.
The wave functions for the SLi and ®He nuclei in
the dynamical multicluster model involving Pauli pro-
jection and full antisymmetrization were constructed
in [40]. Also presented there are the most comprehen-
sive calculations of all basic properties of these nuclei:
the radius of the neutron halo in ®He, the electro-
magnetic form factors, the features of the photomeson
process SLi(vy, 71)%He, and the cross sections for
the elastic scattering of charged pions at 0.134 GeV.
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Table 4. Form of intercluster interaction potentials used to calculate wave functions

6Li Li 8Li
Model
alN NN at an tn at
| SBB Soft-core Buck Split Split Buck
potential Reid potential potential potential potential potential
9 Split Soft-core Woods—Saxon Split Split Woods—Saxon
potential Reid potential potential potential potential potential

In our calculations, we employ the wave functions
obtained in[12, 13].

Experimental data on the angular and energy de-
pendences of observables for reactions like "Li(~, t)a,
6Li(y, t)>He, and 5Li(y, d)a were explained on the ba-
sis of the above models for the 6Li and 7Li nuclei [20].
Moreover, a correct treatment of the structure of these
nuclei within cluster models enabled one not only to
describe available experimental data but also to make
a number of successful predictions. For example, the
data of the dedicated measurements of the asym-
metry of the angular distribution of tritons from the
polarized-photon-induced reactions 7Li(v, t)a and
6Li(, t)*He at the Kharkov Institute for Physics and
Technology[41, 42] proved to be in perfect agreement
with the results of the calculations performed earlier
in [20, 21]. The same is true for the recently mea-
sured angular distributions of tritons in the reaction
TLi(7y, t)or [43).

The 8Li nucleus is of interest both for nuclear
physics (as a one-neutron halo nucleus) and for nu-
clear astrophysics, since the radiative-capture reac-
tion "Li(n, «)8Li provides one more channel in the
chain of the thermonuclear fusion of C, N, and O
elements in a nonstandard model of nucleosynthesis.
The rate of this reaction may refine our ideas of the
evolution of the Universe [44]. In view of this, the 8Li
nucleus has been vigorously studied so far[17—19].

As a rule, the wave functions for the 8Li nucleus
are calculated within three-particle atn models with
realistic potentials of intercluster interactions. In
order to obtain deeper insight into the mechanism
of the radiative-capture reaction in question, it is
of importance to determine low-lying resonances
precisely [18] and to consider simultaneously the
effect of a strong deformation of the 7Li nucleus,
the dynamical polarization of its core, and its excita-
tion[17]. In[19], the wave functions constructed there
were used to calculate basic spectroscopic features
(root-mean-square charge radius and quadrupole
and magnetic moments) and to find the total cross
section for the reaction "Li(n, v)3Li and its rate over
the energy range between 107° keV and 1 MeV. We
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note that this energy range covers eight orders of
magnitude of energy and that the calculated total
cross sections agree with available experimental data
throughout this range. In the present study, we will
use precisely this wave function.

The wave-function configurations are determined
by the quantum numbers A LS, where [ is the or-
bital angular momentum of the relative motion of the
alpha-particle cluster and the center of mass of the
remaining two clusters (or nucleons); A is the orbital
angular momentum of the relative motion of these two
clusters (nucleons); and L and S are, respectively, the
total orbital angular and the total spin momentum of
the nucleus being considered.

In the ground-state wave function for the °Li nu-
cleus (J™ = 1%, T =0) in the anp model, we can
retain only two leading configurations: A=1=1L =
0, S = 1(S wave, its weight being greater than 90%)
and A=2,1=0, L=2,5=1(D wave, its weight
varying from 3 to 7% in the calculations with dif-
ferent interaction potentials). The total weight of the
remaining components does not exceed a few percent.
The contribution of the small D-wave component to
the differential cross section and the role of this com-
ponent in the filling of the diffraction minimum in the
cross section were investigated in detail in [28, 29].

The ground state of the "Li nucleus is character-
ized by the following quantum numbers: J™ = 3/27,
T =1/2; L =1. The dominant cluster ot configu-
ration characterized by A =1 (its weight is greater
than 95%) is assumed to be responsible for a sig-
nificant quadrupole deformation of this nucleus. The
effect from additional configurations in electromag-
netic form factors was calculated in [45], and it was
shown there that the ot component is dominant in
the ground and in the first excited state, while other
components contribute to higher excited states.

The model wave functions for the 8Li nucleus were
calculated in [19] with various «at potentials, since
the at interaction affects the ground-state properties
of this nucleus more strongly than the an and tn
interactions do. The quantum numbers of the ground
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Fig. 1. Differential cross sections for elastic proton scat-

tering on 78Li nuclei. The solid and dashed curves were
calculated with wave functions based on models 1 and 2,
respectively. The displayed points represent experimental
data from|[3, 4]. Here and in Fig. 2 below, the experimen-
tal data and the calculated curves for °Li were multiplied
by 10 in order to avoid an overlap of the results.

state of this nucleus are the following: J™ = 2T, T =
LA=l=L=S=1

Table 4 gives a compendium of the intercluster
interaction potentials used to calculate the model
wave functions. For the aNV interaction, we took two
potentials.

(i) Sack—Biedenharn—Breit (SBB in the ta-
ble) [46] potential. Its central part has a Gaussian
form. It also involves a spin—orbit and a Coulomb
interaction. The Sack—Biedenharn—Breit potential
describes quite accurately the main P/ and Pz
phase shifts for elastic a/NV scattering and less accu-
rately S-wave phase shifts up to an energy of 14 MeV.
The main drawback of the Sack—Biedenharn—Breit
potential is that it leads to a strong overestimation
of the theoretical D5/, and D3/, phase shiits with
respect to available experimental data.

(ii) Refined eV potential that involves the splitting
of phase shifts in the parity of the orbital angular
momentum [47] (split potential). It describes more
precisely S-wave and especially Ds/p- and Ds/o-
wave phase shifts than the Sack—Biedenharn—Breit
potential.

For the ot interaction, we also chose two poten-
tials.

(i) A deep attractive potential of the Woods—
Saxon form [14] supplemented with a spin—orbit and
a Coulomb term. The potential is rather deep, so that,
in the p wave, it involves, in addition to the allowed 3p
state, the forbidden 1p state. This potential provides
an excellent description of known low-energy phase
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Fig. 2. Differential cross sections for the scattering of

charged pions on ®Li and “Li nuclei. The solid and dashed
curves were calculated with wave functions based on
models 1 and 2, respectively. The dash-dotted curves
represent the results of the calculation in the distorted-

wave impulse approximation for SLi from [23] and the
results of the calculation with the oscillator wave function
for TLi. The displayed experimental data were borrowed

from (closed triangles, 77 )[5] and (closed circles, 7 and
open circles, 77 )[7].

shifts for elastic at scattering and, at the same time,
reliably reproduces the binding energy of the "Li nu-
cleus, as well as the spectrum of its low-lying states
and its basic spectroscopic features. It is precisely the
potential with which an adequate description of the
two-particle-photodisintegration reaction "Li (7, t)a
was achieved in[20, 21]. We note that forbidden-state
wave functions (of the type Ry (r) = Rip(r)) are
used in calculating projection operators in the three-
particle model of the 8Li nucleus [19].

(ii) Attractive Buck potential. Its radial part has
a Gaussian form, contains two parameters, and in-
cludes a spin—orbit and a Coulomb term [15]. It
reproduces known low-energy phase shifts for ot
scattering, as well as the binding energy of the 7Li
nucleus, the spectrum of its low-lying levels, and
its basic spectroscopic features. The respective ra-
dial function for the ground state of the 7Li nucleus
involves an internal node; that is, it has the form of
the oscillatory function Rs,(r). The Buck potential
provides an adequate description of the total cross
section for the radiative-capture reaction at —7 Liy
and of the corresponding astrophysical S factor.

In the present study, we discuss precisely these
two potentials, since they give nearly the same de-
scription of the spectroscopic features of the "Li nu-
cleus. However, the potentials in question differ in
asymptotic behavior, and this results in that the wave
functions for the ground state of the "Li nucleus
behave differently in the asymptotic region. This cir-
cumstance may be of importance in discussing the
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elastic scattering of particles that penetrate differently
into the interior of the target nucleus used.

DISCUSSION OF THE RESULTS

We have calculated the differential cross sections
and analyzing powers for elastic proton scattering
on 578Li nuclei and the differential cross sections for
the elastic scattering of charged pions and positively
charged kaons on ®7Li nuclei in the energy range
between 0.164 and 1.0 GeV and have compared our
results with experimental data from [1, 2—5, 7, 9] and
with some results of other authors [3, 4, 10, 23].

Figures 1—4 display the differential cross sections
(Figs. 1-3) and the asymmetry A, (Fig. 4) calculated

for 58Li nuclei. In all of these figures, the solid and
dashed curves were calculated with wave functions
determined within models 1 and 2, respectively. From
Figs. 1—3, one can see that the differential cross
sections depend only slightly on the model wave func-
tions, which differ only in the form of the N (for ®Li)
and ot (for "Li and ®Li) potentials (see Table 4).

Let us first consider Fig. 1, which shows the dif-
ferential cross sections for proton scattering at £, =
0.2 GeV. The curves calculated with the wave func-
tions in models 1 and 2 describe experimental data
for 67Li nuclei quite accurately. The calculation of
the differential cross section for scattering on 8Li nu-
clei under conditions of inverse kinematics was per-
formed at two energy values of Fs;; = 0.2 (Fig. 1)and
1.0 GeV/nucleon (dash-dotted curve in Fig. 6 below)
and is of a predictive character—there are presently
no relevant experimental data. The distinction be-
tween the curves calculated for 8Li is rather modest,
although the minimum of the dashed curve in Fig. 1
is deeper and is shifted somewhat toward the region of
small scattering angles. This brings about the ques-
tion of how the distinction between the wave func-
tions affects other properties of the 8Li nucleus. From
the results reported in [19], it follows that the static
features of the nucleus (root-mean-square charge ra-
dius and quadrupole and magnetic moments) and the
energy spectrum of low-lying excitations are better
described within model 1 (with the wave function
calculated in the Buck ot potential). The differential
cross section for ®Li has a deep minimum at 6 =
26°—28°, but there is no such minimum for %7Li. As
was shown in [28, 29], the minimum for ®Li is filled
by the contribution of the D-wave component of the
wave function, while the minimum for “Li is filled by
the contribution of the A = 1 configuration, which is
responsible for the large quadrupole deformation of
this nucleus, and partly by the contribution from the
transition to the first excited state of Li (J™ = 1/27,
T = 1/2)—it lies only 0.48 MeV above the ground
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Fig. 3. Differential cross sections for the scattering of
positively charged kaons on ®Li and 7Li nuclei. The solid
and dashed curves were calculated with wave functions
based on models 1 and 2, respectively. The dash-dotted
curves represent the results of the calculation in the

distorted-wave impulse approximation for ®Li from [10]
and the results of the calculation with the oscillator wave
function for “Li. The displayed experimental data (points)
were borrowed from [9, 10]. The results corresponding to
the calculated curves for “Li were multiplied by 10? in
order to avoid an overlap of the results.

state and is therefore indistinguishable from it ex-
perimentally. At zero scattering angle, the differential
cross section for ®Li is severalfold larger than those for
the remaining nuclear species considered here, this
reflecting the larger root-mean-square radius of this
isotope.

Figure 2 shows the differential cross sections for
the scattering of charged pions on %7Li nuclei. Here,
the pattern is similar to that which is observed in
proton scattering—the calculations with the wave
functions in models 1 and 2 adequately reproduce
experimental data, and there is a distinction between
the results of these calculations only for the SLi nu-
cleus in the vicinity of the minimum, this being ex-
plained by different weights of the D wave in the
wave functions: 3% in model 1 (solid curve) and
7% in model 2 (dashed curve) [12, 13]. The dash-

dotted curve for ®Li represents the results of the cal-
culation in the distorted-wave impulse approximation
from [23], where the authors employed, as we have
done here, Kukulin’s wave function, but they did not
include the D-wave contribution. The role of the D
wave in the filling of the minimum is clearly seen from
a comparison of this dash-dotted curve with the solid
and dashed curves.

For "Li, the dash-dotted curve represents the dif-

ferential cross section obtained with the oscillator
wave function. The oscillator wave function differs
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Fig. 4. Analyzing powers for proton scattering on °Li, “Li, and ®Li nuclei. The solid and dashed curves represent the results of
our calculation with wave functions based on models 1 and 2, respectively. The dash-dotted curves and points correspond to

the calculation and experimental data from [3] for ®Li and from [4] for 7 Li.

from its cluster counterparts both in the interior of the
nucleus and at the periphery, although the position
of the node is identical for all functions. The distinc-
tion between the results at small scattering angles,
which correspond to low momentum transfers (at
E; =164 MeV, q < 0.09 GeV/c for § < 20°), is due
to the fact that the wave functions behave differently
at large distances from the center of the nucleus (in
the asymptotic region), where the cluster wave func-
tions differ greatly from the oscillator wave function.
At large scattering angles, which correspond to high
momentum transfers (at # = 80°, ¢ = 0.33 GeV/c),
the behavior of the wave function in the interior of
the nucleus is of importance, and the distinction there
arises because of the disregard of correlation effects in
the oscillator model.

Figure 3 gives the differential cross sections for
the scattering of positively charged kaons. Here, the
results of our calculation with the cluster wave func-
tions are contrasted against the results of the calcu-
lation with the oscillator wave function (dash-dotted
curve for "Li) and against the results of the calcu-
lation in the distorted-wave impulse approximation
from [10] (dash-dotted curve for °Li). For "Li, the dis-
tinction between the solid and the dash-dotted curve
is noticeable only for scattering angles of 6 > 25°
since a positively charged kaon, which is scattered
in the interior of the nucleus, is less sensitive to the
asymptotic region, so that the the difference in the
behavior of the wave functions there does not affect
the shape of the cross section. The scattering of pos-
itively charged kaons on Li for 40° > § > 20° is bet-
ter described by diffraction theory, although not only
central but also quadrupole noncentral scattering was
taken into account in [10], but the contribution of the
latter proved to be overly small to affect the cross-
section value. The distinction between the solid and
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the dash-dotted curve is especially large (three orders
of magnitude) for # = 50°, but the correctness of the
various model calculations cannot be confirmed by
experimental data in this region.

[t is noteworthy that, for protons and charged pi-
ons, the differential cross sections at # = 0° for °Li
are somewhat larger than those for 7Li (see Figs. 1
and 2), but that, for positively charged kaons, the
relationship between these cross sections is inverse.
This inconsistency calls for a more detailed analysis,
and it will be performed elsewhere.

[t is well known that the polarization features are
more sensitive to the structure of nuclei than differ-
ential cross sections. Bearing this in mind, we have
calculated the analyzing powers for proton scattering
on SLi, "Li, and ®Li nuclei (see Fig. 4) with the same
model wave functions for the lithium-isotope nuclei
as those that were used in calculating the results
displayed in Figs. 1—3. The dash-dotted curves rep-
resent the results of the calculations from [3] for ®Li
and from [4] for "Li. Here, the distinctions between
the results of the calculations with the different wave
functions are more pronounced. For &7Li, our curves
describe A, at the first maximum almost identically,
but there are significant distinctions for angles larger
than 35°. None of the calculations performed here
describes the minimum of A, satisfactorily. The re-
sults of the calculations for A, from [3, 4] are correct
for 6 < 35°, but they fail to describe adequately the
negative slope and the position of the minimum in
the experimental data in the region 6 > 35°; in our
opinion, this must be attributed to an insufficiently
accurate determination of nuclear densities.

For scattering on 8Li, the results of the calcula-
tions with the wave functions in models | and 2 differ
over the entire region of angles. In the coordinate
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Fig. 5. Comparison of the analyzing powers for proton
scattering on (solid curve) °Li, (dashed curve) Li, and
(dash-dotted curve) 8Li nuclei according to calculations
with the wave functions in model 1.

space of wave functions, small scattering angles—
that is, low momentum transfers [see Eq. (2)]—
correspond to large relative distances lying in the
asymptotic region of the wave functions. The discrep-
ancies between the results of the calculations at these
angles (0 < 30°, ¢ <0.28 GeV/c) are indicative
of the effect of the asymptotic behavior of the wave
functions on A,. But if there are discrepancies at large
angles (60° > 6 > 40°, 0.55 > ¢ > 0.37 GeV/c), this
suggests the effect of the high-momentum compo-
nents of the wave functions on A,. Thus, it has been
shown that the analyzing power is a quantity that
is sensitive to the behavior of the respective wave
function both in the interior of the nucleus being
considered and at its periphery.

From a comparison of the A, values calculated
with the wave functions found on the basis of model 1
for the various nuclear species (Fig. 5), one can see
that the calculated curves for ®Li and “Li are close to
each other up to # < 35° and that, for 8Li, the zeros of
A, are shifted by approximately 10° toward the region
of smaller angles, this being indicative of the presence
of special features in the structure of this nucleus.

Thus, we can see that, even at not very high ener-
gies (below 1 GeV), in which case the applicability
of Glauber—Sitenko theory may be questionable, it
is not inferior in quality of the description of differ-
ential cross sections and A, to the distorted-wave
impulse approximation, possibly because of the use
of realistic wave functions, which faithfully reproduce
intermediate-energy processes involving modest mo-
mentum transfers.

In Fig. 6, the differential cross sections for proton
scattering on lithium isotopes are given at yet another
energy value, 1 GeV (results of the calculation with
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Fig. 6. Differential cross sections for elastic proton scat-
tering on (solid curve) 5Li, (dashed curve) "Li, and (dash-
dotted curve) 8Li nuclei at E, =1 GeV according to

calculations with the wave functions based on model 1.
The points represent experimental data from [2] for ®Li.

the wave function based on model 1). Experimental
data at this energy are available only for °Li [2]. A
comparison with these experimental data reveals that,
for angles in the region 6 < 25°, the results of the
calculation are in fairly good agreement with the data,
but that slight discrepancies appear at larger angles.
The differential cross sections for (solid curve) SLi,
(dashed curve) Li, and (dash-dotted curve) 8Li nu-
clei have the following special features. The absolute
value of the cross section for scattering in the forward
direction is larger for ®Li, this reflecting the fact that
the nuclear-matter radius of this nucleus is larger
than those of its counterparts. The diffraction mini-
mum for large A is shifted toward the region of smaller
scattering angles. The minimum in the cross section
is more pronounced for the A = 8 nucleus than for
the A =6 and 7 nuclei. The deformation of nuclei
(quantitatively, it is determined by the quadrupole
moment) is the main reason for the filling of the
minimum: the larger the deformation of a nucleus, the
greater the extent to which the diffraction minimum
is filled. The "Li nucleus has the greatest quadrupole
moment among the lithium isotopes considered here
(Q = 40 mb [48]); therefore, the cross section for this
nuclear species does not have a distinct minimum,
exhibiting only an inflection point. The minimum is
filled by the quadrupole-component contribution. The
8Li quadrupole moment calculated with the three-
cluster wave function introduced in [19] and employed
in the present study is 18.9 mb (the respective exper-
imental value is 24 mb [48]), and the calculated mini-
mum in the cross section for this nucleus is somewhat
greater than that for "Li. The SLi quadrupole moment
is close to zero, and the filling of the minimum in the
respective cross section occurs owing to the D-wave
contribution.
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Finally, we will consider the behavior of the dif-
ferential cross sections for the scattering of various
particle species on the SLi nucleus versus momen-
tum transfer squared at the fixed energy value of
E =0.18 GeV. Figure 7 demonstrate that the cross
sections in question may differ in structure. Differ-
ent symbols (points) correspond to the scattering
of protons [1] and positively and negatively charged
pions [5]. Since there are no experimental data at
this energy value for the scattering of antiprotons and
positively charged kaons on ®Li nuclei, only the differ-
ential cross sections calculated in [29] are displayed
in this figure. One can immediately see that there are
a similarity in the structure of the cross sections for
protons and positively charged kaons (curves 3, 4)
and a similarity in the structure of the cross sec-
tions for antiprotons and charged pions (curves /1, 2).
For protons and positively charged kaons, the cross
section is a smoothly decreasing function, while, for
antiprotons and charged pions, there is a minimum
around ¢% =~ 0.09 (GeV/c)?. A manifestation of the
diffraction structure in the differential cross section at
a relatively low energy—such as that which is now
being discussed—is due to a special feature in the
elementary amplitudes for antiprotons and charged
pions: these amplitudes have a sharp anisotropy in the
forward direction [this anisotropy is characterized by
large values of 3¢\ (see Table 2), which is 0.86 fm? for
antiprotons at 0.18 GeV]; owing to this, the particles
in question are predominantly scattered within a nar-
row forward cone, the eikonal approximation being
valid for them to a high precision. This feature of the
PN and 7N amplitudes extends the energy region
where Glauber—Sitenko theory is applicable.

The total cross section calculated on the basis
of the optical theorem is 838.9 mb for antiprotons
and 327.3 mb for charged pions [29]. The diffraction
structure in the cross sections for protons and posi-
tively charged kaons begins manifesting itself at en-
ergies higher than 0.18 GeV—specifically, at 0.6 GeV
for protons and at 0.375 GeV for positively charged
kaons [29].

CONCLUSIONS

(i) For various hadron species, Glauber—Sitenko
diffraction theory provides an adequate description of
differential cross sections for scattering on 578Li nu-

clei over a wide range of projectile energies (between
0.1 and 1.0 GeV).

(i) By using wave functions calculated on the
basis of two- or three-particle cluster models with
realistic interaction potentials, one can calculate re-
action amplitudes analytically. As a result, the accu-
racy of the description of differential cross sections
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do/dQ, mb/sr

10°

Fig. 7. Differential cross sections for elastic hadron
scattering on °Li nuclei at 0.18 GeV versus momen-
tum transfer squared. Points represent experimental da-
ta for (closed circles) protons [1] and (open circles and
triangles) positively and negatively charged pions [5].
Curves 1, 2, 3, and 4 depict the results of the calculations
for, respectively, antiprotons, charged pions, protons, and
positively charged kaons.

within diffraction theory is not inferior to or is even
sometimes higher than the accuracy of the distorted-
wave impulse approximation.

(iii) The differential cross sections for hadrons are
only slightly dependent on the detailed structure of
two- and three-particle wave functions, but they ex-
hibit a significant dependence on their asymptotic be-
havior, since, in the interior of a nucleus, hadrons (es-
pecially antiprotons and charged pions) are strongly
absorbed, so that the main contribution to elastic
scattering comes from the surface region.

(iv) Analyzing powers are much more sensitive to
wave functions calculated with different intercluster-
interaction potentials than differential cross sections.

(v) A comparison of processes where particles of
different species (protons, antiprotons, charged pions,
and positively charged kaons) are scattered on SLi
nuclei has revealed that, because of a strong absorp-
tion of antiprotons and charged pions in the interior
of nuclei, the x N elementary amplitudes for them de-
velop a special feature owing to which the diffraction
structure in the differential cross sections for them is
observed at energies lower than those for protons and
positively charged kaons.
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Abstract—The amplitudes obtained from the effective chiral Lagrangian with anomalous terms based on
hidden local symmetry are applied to the evaluation of the partial widths of the decays w — 27727~ 7% and
w — 77~ 37% Combining the Okubo—Zweig—lizuka rule, applied to the five-pion final state, with the
Adler condition of vanishing of the amplitude at the vanishing of four-momentum of any final pion in the chi-
ral limit, the ¢ — 27727~ 7% and ¢ — 777~ 37" decay amplitudes are also calculated. The partial widths
of the above decays are evaluated, and the resonance excitation curves in e*e™ annihilation are obtained,
assuming reasonable particular relations among the free parameters characterizing the anomalous terms of
the Lagrangian. The evaluated branching ratios Bry_, z+ 3,0 &~ 2 X 10~7 and Bry_onton—mo &5 X 107
are such that with the luminosity L = 500 pb™ !, attained at the DA®NE ¢ factory, one may already possess
about 1340 events of the decays ¢ — 5. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

The effective chiral Lagrangians describing the
low-energy interactions of the ground-state octet of
pseudoscalar mesons m, K, n are constructed upon
treating these mesons as the Goldstone bosons of the
spontaneously broken chiral Ur(3) x Ur(3) symme-
try of the massless three-flavored QCD Lagrangian.
The key point in this task is that the transformation
properties of the Goldstone fields under the nonlin-
ear realization of chiral symmetry are sufficient for
establishing the most general form of the effective
Lagrangian [1]. As far as vector mesons are con-
cerned, the situation is not so clear, because the vec-
tor mesons, contrary to the pseudoscalar ones, cannot
be considered as the Goldstone bosons of the sponta-
neously broken symmetry. For this reason, there exist
different schemes of including these mesons in the
effective chiral Lagrangians [2—4]. The scheme of [5,
6], where the vector mesons are treated as the dynam-
ical gauge bosons of hidden local symmetry (HLS),
incorporates these mesons into the effective chiral
Lagrangian in a most elegant way. The fact is that the
low-energy theorems for anomalous processes, such
as, say, the decay 7% — v+, are fulfilled automatically
in HLS. The general form of both nonanomalous
and anomalous parts of the Lagrangian is given in
original papers [5, 6]. Here, we restrict ourselves,

*This article was submitted by the authors in English.
“e-mail: achasov@math.nsc.ru
" e-mail: kozhev@math.nsc.ru

first, by writing down only those pieces of the La-
grangian corresponding to the strong interaction pro-
cesses, omitting the electroweak terms, and, second,
by restricting the above Lagrangian to the subgroup
SU(2) x U(1) with only isovector 7, p, and isoscalar
w mesons. Taking into account the coupling of the
»(1020) meson with the mesons composed of non-
strange quarks demands additional assumptions to be
discussed below.

The nonanomalous part of the HLS Lagrangian
(with nickname “nan”) obtained from the general
expression found in [3, 5, 6] in the weak field limit is
written as

1 1
£nan _prw 4wlﬂf + §a92f3(pi + WZ) (1)
1 2 1 2,2 m2 4
+ 5((‘%7‘-) — M+ 24}:%71'

1 2
+ iag(l - Tf,%) (pu [ x auﬂ'])a
where the dot () and cross ( x ) stand, respectively, for

the scalar and vector products in the isotopic space;

1Py — Oupp + glpu X pul; (2)
Wy = Opwy — Opwy,

Puv =

are, respectively, the field strengths of the isovector
field p, and the isoscalar field w,; g is the gauge
coupling constant; f; = 92.4 MeV is the pion decay

1063-7788/05/6801-0144$26.00 © 2005 Pleiades Publishing, Inc.
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constant; and a is an HLS parameter. The boldface
characters refer hereafter to the vectors in isotopic
space. As is clear from Eq. (1),

1

Jorm = iag’ m,2) = a92f72 (3)
are the coupling constant of the p with the pion
pair and its mass squared, respectively. The w(782)
is degenerate with p in the present model. Note
that a =2 if one demands the universality condi-
tion g = gonr to be satisfied. Then the so-called
Kawarabayashi—Suzuki—Riazzuddin—Fayyazuddin
(KSRF) relation [7] arises,

297 en /7

2
mp

=1, (4)

which beautifully agrees with experiment. The prm
coupling constant resulting from this relation is
Gprr = 9.9.

To include the decays of the w meson in the many
pion states, one should add the anomalous terms in
the action (nicknamed “an”). They are given in [5, 6].
Using the formalism of the differential forms adopted
in the literature on the subject, restricting the general
expressions in [5, 6] to the w, p, m-meson sector by

1
writing V' = v + p, where w and p = (7 - p)/2 are,

respectively, the scalar and matrix-valued 1-forms, 7
being three isospin Pauli matrices, one obtains

/ wTrlerad, + id(apar) (5)
My

X (c1/2 —ca —¢c3) +i(c1 + c2 + e3)pd(ar, — agr)
— 2icgdp(ar, — ag) + (c1 + ca — c3)p*(ar, — ag)].

Ne

Faﬂ —
1672

Here n. = 3 is the number of colors and c; 23 are
arbitrary constants multiplying three independent
structures in the solution [5, 6] of the Wess—Zumino
anomaly equation [8]; the fourth constant ¢4 multiply-
ing the structure that includes electromagnetic field,
as is explained above, is dropped. Our normalization
of ¢1,2,3 is in accord with [6]. In Eq. (5), it is implied
that the gauge coupling constant is included in the
fields w and p as w — gw, p — gp; d is the symbol
of exterior derivative; ar g = —ide,szR; and the
trace is over SU(2) indices. In the unitary gauge to
be used hereafter,

q:ést—exp[Qfﬂ( )],

one can rewrite Eq. (5) in the usual Minkowskian
form as

incg "
D = BT [ dlofaw, (0,8 ©
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X (EFONE)(ETD5E) — (c1/2 — c2 — c3)w,[(€7D,6)
X (ETONE)(ED-ET) — (EDLET)(EDNET)(ET05€))]
+ ige3wupA(§T05€ — £05ET)

—ig(c1 4 c2 — c3)wuprON(ET05E — £0,E7)

- 92(01 + co — C3)W;LPVP)\(£+6U§ - faa§+)}a

with the convention €123 = —1. Using the following
exact expression valid for the SU(2) subgroup,

o e Lo (sinll/f

S0ut™ = g7 (7 O )< wl/ fr > @
(rm) o |m| . (tenxl/2f)

T <2fﬁ>a“< wl/2f) )
o (sml/f)
a2 (7w O ”( =l @) )

to expand in the weak field limit |7|/fr < 1 as

i€0,&T 2f {Qﬂr - %[ﬂ' x Oym]  (8)
+ 6—f7%[7r(7r - OuT) — 7r28u7r]},

and substituting this expansion into Eq. (6), one ar-
rives at the expression for the anomalous part of the
Lagrangian in the form

, neg
Ldﬂ — 3271-2]07? (C

X (Oym - [O\T X Opm]) +

1—C — 63)5;w)\(7wu (9)

Neg
12872 f2

[ 5
X|—ca+5

3 (CQ + C3):| Euu)\awu

2
Neg=c3

X ((9,,7(' . [a)\’ﬂ' X 80-71'])71'2 — ﬁeuw\gﬁuwy

«{or-0m) + (o m)(m -0

g

- 7‘-2(9)\ : 807")]} - 87T62gf7r (Cl +co—c3

)5 uvioWp

«{ @ o) 0m) = 1o, x o] 0rm) )

As is evident from the third term on the right-hand
side of Eq. (9), the wpm coupling constant is

2
Neg=c3
Gupr = — 87T2f7|- . (10)
Assuming
¢ —cg—c3 =0, (11)

i.e., the absence of the pointlike w — 7+7~ 7% am-

plitude, and using the w — 7" 7~ 7" partial width to
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Fig. 1. The diagrams describing the amplitudes of the
decay w — nT7 370 through the p intermediate state
followed by the decay p — 4m. The closed circles refer to
the whole p — 47 amplitudes.

extract guor, the p — 77~ partial width, and Eq. (3)
to extract g = g,rr = 6.00 £ 0.01 (assuming a = 2),
one finds

c3 = 0.99 + 0.01, (12)

where the errors come from the errors of the w and
p widths. Hereafter, we use the particle parameters
(masses, full and partial widths, etc.) taken from [9].

The purpose of the present paper is to calculate the
branching ratios of the decays

w— 7tr 370, (13)

w — 2r T2~ 7, (14)

¢ — w370, (15)
and

¢ — 2nt 2 n° (16)

in the framework of chiral model for pseudoscalar and
low-lying vector mesons based on HLS [see Egs. (1)
and (9)]. To this end, Section 2 is devoted to obtaining
thew — 7t~ 37" and w — 2727~ 7Y decay ampli-
tudes from the Lagrangians given by Egs. (1) and (9)
and verifying the Adler condition for their expressions.
The results of the evaluation of the branching ratios at
the w-pole position and the calculation of the excita-
tion curves of the above decays in e™e™ annihilation
are given in Section 3, assuming some particular
relations among the parameters c¢; 23, which char-
acterize various terms of the HLS Lagrangian [5, 6]
[see Eq. (9)]. The reason for disagreement with our
previous evaluations [10, 11] of the branching ratios
for the decays (13) and (14) is explained. In Section 4,
guided by the specific assumptions about how the
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Fig. 2. The diagrams describing the amplitudes of the
decay w — w7~ 37" through the pm intermediate state
followed by the transitions p — 27 and 7w — 3w. The
closed circles refer to the effective # — 37 vertices given
by Eq. (18). Note that the non-7-pole term is included in
the diagrams in Fig. 4 below.

OZl rule is violated in the decays of the ¢ meson into
the states containing no particles with strangeness,
the effective Lagrangian for the ¢ — 777~ 37" and
¢ — 2n 27~ 70 decay amplitudes is written. Under
the assumptions about the free parameters of this La-
grangian similar to ¢y 2 3, the branching ratios and the
ete™ annihilation excitation curves for the five-pion
decays of the ¢ are given in the same section. The es-
timates of the number of events of the decays w, ¢ —
atn=37% and w, ¢ — 2727~ 70 at the respective w
and ¢ peak positions and the general conclusions
about the possibilities of detecting the decays under
consideration in eTe™ annihilation are given in Sec-
tion 5. The kinematical relations necessary for the
phase-space integration, which express the Lorentz
scalar products of the pion momenta through in-
variant Mandelstam-like variables, are given in the
Appendix.

Our convention for the Lorentz scalar product of
two different four-vectors a and b is (a,b) = apby —
(a-b), while the Lorentz square is denoted as usual
as a?.

2. THE w — 7t7737% AND w — 272770
DECAY AMPLITUDES
The diagrams for the amplitude of the decay
+ 0.0 0

172" q3TqaTgs>

(17)

where we explicitly label each particle in the reaction
by its four-momentum, are shown in Figs. 1—4. Let

Wqg — T
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™(q,)

1 ™(q1)
! . T (q2) o

+ (1 + P35+ Pys)

Fig. 3. The diagrams describing the contributions to the
w— 7wt~ 37% decay amplitude via pointlike vertices.
The closed circles refer to the effective # — 37 vertices
given by Eq. (18).

"I'[+(‘71) Tlr(lh)
w_P*/"'"“Tp(qs} o fm0(gs)
(P big TG SR
(g @) ‘2114) (q3)

Fig. 4. The contributions to the w — 777~ 37% decay
amplitude arising due to the chiral vertex w — p3m.

us give the expressions corresponding to them. The
amplitude in Fig. 1 includes the four-pion decay of
the intermediate p meson, which was extensively dis-
cussed in, e.g., [10]. However, the so-called Wein-
berg Lagrangian [12] was used in [10] to find the
expressions for the p — 4w decay amplitudes. This
Lagrangian is different in coefficients as compared to
Eq. (1) above. Yet one can show by direct computa-
tion that, as the result of the well-known parameter
independence, the p — 47 amplitudes resulting from
the above Lagrangians coincide. The reason is that
the terms o< D (k) in the 7 — 37 amplitudes,

_ 1
M) = mimgng) = 71+ P)  (18)

i

x | —a(q1,q3) + (a —2)(q1,92)
(Q2,(J3 - (h) 1

pam2 2B ~p gy,

PDolqi+q3) 37 *)
1
M(7r,;F — 7r;'17r237r24) = —2(1 + Pyy)
2f7
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x [— (a—1)(g3,04) + (a — 2)(q1,q3)

g2l —a) 1

pr(Ql +Q3) 6

_ 1
M (7)) — 7 g, Tgs) = ﬁ(l + Piy)

™

Dﬂwﬂ,

X [— (@ —1)(q1,q2) + (a — 2)(q1,5)

2(6]2,611 - QS) 1 ]
+am?=2 DL 2D (k)]
PDy(gi +q5) 67 (k)
2
m_o
M(WO - 7r237r247r25) = f72r ’
s

which vanish on the pion mass shell, give the non-
m-pole terms in the p — 27 — 47 amplitude. When
added to the pointlike p — 47 amplitude, they make
their sum parameter independent. The same occurs
with such terms in the expression derived from Fig. 2
below, which should be added to the expression de-
rived from Fig. 4. The final expressions for the full
w — 7t~ 379 decay amplitude will be given below.
Hereafter, P;; is the operator of permutation of the
pion momenta g; and g;;

Dy(k) = m? — k* —iVE2L - (K7),
Gorn

3/2
r _(K*) = 2 _4m?
p—mtm (k ) AR T2 <k mﬂ+>

(19)

are the inverse propagator of the p meson and its two-
pion decay width, respectively; and

D, +0(k) (20)

is the inverse propagator of the 7% meson. Also,
in view of the fact that the expressions for the w,
¢ — b amplitudes will appear to be rather long, the
following shorthand notation for inverse propagators
of the particle A will be used:

Daay = Da(qa + @),
DAabc = DA(QQ +qp + QC)~

Let us give the expression for each diagram in
Figs. 1-=5. The upper index (n) (nickname of neutral,
because three neutral pions are in the final state)
will designate this particular isotopic state. Choosing
qu, €u for the four-momentum and four-vector of
polarization of the w, one obtains

_ 2 2
=M_+0 — k

(21)

Ml(n) _ YuprnGprm € o Qo |:(1 + P35 (22)

2
a5 0 +. -0 _0
+ P45)mJa(P — 7Tq17Tq27Tq37Tq4)
g2 0,0, 0
+(1- P12)mJa(p+ — W(;quﬂqﬂqu)}
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for the diagrams in Fig. 1. The coupling constants
Gprr and gupr are given in Eqs. (3) and (10), re-
spectively. The p — 47 decay currents standing in
Eq. (22) are[10]

+ 0 )

01 g2 g 7rq4

x (1 +P34){Q1a<— Ly

(1 - Pra)

{(Q:a, q4 — 2q2)

Jo(p’ =7 (23)

1

D7r+234

4
m? m,
— -1 9D aD)oor
+ a(gs, g2 — q4) (Dp24 )D + 2D 13D p2a

X (g3 +q1)o(q1 —a3,02 — qa) +2(q3 — q1)o

2 2
Neg-c 1
X(Q1+Q3,CJ2—6]4)]+2< ed 3> D

82 w123
1 1 1 Cl — Cy — C3>
X + + +3
(me Dji3 Dpos 2c3m?
X [QIU((kv q2)(q37 Q4) - (kv QB)(C]% Q4))

+ @30 (K, q1) (g, (J4)]}

(with k = ¢1 + g2 + g3 + q4), where
Dwabc = D (QQ +aq+ QC)
(Qa +a + QC) —imyly,

(24)

is the inverse propagator of the w (note that, because
the w resonance is narrow, we take the fixed width
approximation for the w meson), and

Tl 70 70 ) = (14 Py + Pss)

0173 qa T gs
1 2m 0 430
X< =qo|1— L > + (1+ Pys)
{ 377 < Dro345 D145

X [(6]4,(15 —2q1) + alqq, g5 —ql)(g:)’i — 1>} }

The expression for the diagrams in Fig. 2 is

Jo(pt — 7 (25)

_ Yuwpr g
wp7}2p7r7r (1 . P12)
X (1 + P35+ Pys)(1 + Psa)e o Quer

M = (26)

% { q1\q50
Dyp15D 11934

2
()]
Dp24

The expression for the diagrams in Fig. 3 is

[(q:a, q1 — 2¢2) + a(q3, q2 — qa)

q1aG20 20 }
6D 12D 0345 |

(n) N9

M. — Pp)(1+ P 27

3 327T2f5( 12)( + 35 ( )
4cp — H(e2 + ¢

+ P45)5u1//\o'qlteu{ ! g 2 3) 9104920

+ 3(01 — Co — 63)(1 + P34)
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Tri(‘] 1)
------- (q3)
z """"""""" Tf’(q5)
Permutations of 345 P N\ (g,)

T‘r(lh)

Fig. 5. The contributions to the w — 777~ 37" decay
amplitude via intermediate state with two p mesons. Total
number of diagrams of this kind is 3! = 6.

qixq
X [TM 4 ((QS, q4 — 2q2) + a(gs, g2 — q4)
T+234
2
m
% P _1>> i 412920 q ,q4}}.
<Dp24 3D7r0345( 3 04)
Notice the relation
neg uwprGprr 1

= — 2
32m2 f2 bE (28)
which is useful for an easier comparison of the present
contribution with others. The expression for the dia-
grams in Figs. 4 and 5 are, respectively,

27
263mp

Min) = gw”}‘zp” (1= Pi2)(1+ Pss (29)
€ (q1 — q5)a
P, VAEL 19/A
+ 45)€/w/\a 2Dp15
c1+c2—c3
X [qu%a S VI @2.(q3 + Q4o
3
and
2
GuprGprm™M, c1 + C2 — €3
M(”) — pTIp P 1-p 30
5 12 13 ( 12)  (30)
X (1 + P35 + P45)€/u//\o' eV(Q1 — Q3)u(q2 — q4))\q50 .
D 13D 24
The full w — 777~ 37Y decay amplitude is
M(w — 7t~ 7%7970) (31)

M+ M 4 v+ M .

Since the expressions for the amplitudes are very
lengthy, one should invoke the method of control of
the calculations. We take the Adler condition (see
below) as the method of such a control.
Now, let us verify the Adler condition for the w —
+77371Y decay amplitude. This is the condition of
vanishing of the amplitude of the process with soft
pions, when the momentum of any pion is vanish-
ing. Pions emitted in the decay w — 57 [10, 11] are
truly soft, because they possess the typical momen-
tum |q,| =~ 0.5m. To verify the Adler condition, we,
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() () @) re(g,)
S T LS T
o o0 T(q4) © p* ' R m(gs)
4 + (1+P3)
(gs) T(q4)
@D gy
T (q4)
(g
o
+ (1+P)y)
T (q2)

Fig. 6. The diagrams describing the amplitudes of the
decay w — 2727~ 7° through the p intermediate state
followed by the decay p — 4. The closed circles refer to
the whole p — 4 amplitudes.

first, set any particular pion momentum to zero and,
second, take the chiral limit, i.e., set the pion mass
my, — 0. The correct expression should result in the
vanishing of the amplitude in this limit.

(i) ¢1 = 0. The contributions of the diagrams in
Figs. 3—5 vanish; the contributions of the diagrams
in Figs. 1 and 2 are equal in magnitude but oppo-
site in sign, and hence they are canceled. The Adler
condition is fulfilled. The case g2 = 0 is obtained from
the case of g1 = 0 by the permutation property [see
the operator 1 — Pj5 in front of each expression in
Egs. (22),(23),(26), (27),(29), and (30)].

(ii) g3 = 0. Here, the situation is more subtle. Let
us represent the amplitude at g3 = 0 in the form

M(w — 7r+7r_7r07ro7ro)|q3:0

- _%(1 - P12)(1 + P45)€MV)\U€VT/L)\0"
Then one obtains the following contributions to the
tensor 1), from Figs. 1—5, respectively:

T _ qu(q1 — Q4))\Q5a’ 39
lu,)\a' 2Dp14 ( )
T(2) _ 4910940
N Dp14
1 c1+co—c3
pAo 4m% 9ud1i0920 91920940
@ _ 1 13qaq20
T = 6%[ 2m2
. (@1 — qa)r(2q2 — q5)5 — 2611,\6140]
Dj14
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Tﬁ(“h)
p° S T (q3)
w
(I +Pp)(1+ P3y) _/
R irh)
n()(lqj) TT(q4)
Tﬁl(éh) Tr(‘%)
Tlo(‘ls) ; 0
t e ; B - Tt(gs)
P
w
+ 4P + <1+P34)—./
o ™

Fig. 7. The diagrams describing the amplitudes of the
decay w — 227~ 7% through the pr intermediate state
followed by the transitions p — 27 and @ — 3w. The
closed circles refer to the effective # — 3 vertices given
by Eq. (18). Note that the non-m-pole term is included in
the first pair of diagrams in Fig. 9 below.

c1+c2—c3 [@u(et — @)rgse _ Q1p922940

403 Dp14 m% !
76 _ 4 +ca — 3 q2u(q1 — 94) 2G50
puro .

463 Dp14

Note that, when obtaining the contribution Tﬁ)a

Eq. (28) is essential. As is evident from Eq. (32), the
terms with the factor ¢; + ¢9 — ¢3 and without such a
factor are canceled separately in the sum. Hence, the
Adler condition is satisfied in the case g3 = 0 too. The
cases qq5 = 0 are obtained from this case by Bose
symmetry.

The diagrams for the amplitude of the decay
(33)

Wqg — Wcz WCL 7Tq37rq47T857
where the particles are labeled by their four-momenta,
are shown in Figs. 6—10. Let us give the expressions
corresponding to them. The upper index (¢) (nick-
name of charged, because most pions in the final
state are charged) will designate this particular iso-
topic state. The expression for the diagrams in Fig. 6

is written as

Ywpr 9,
M1(C) — %guw\aquey (34)
K
g5\ 0 4+ -
By = mimimaa
d4x + + + — 0
+(1+P34)m‘]0(p = Ty Ty g gs)
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(g1 (g1

o @)

— () (P 4 Prg) e T
\\\\ o Q = T0(qy)
(qs) Mg T

T(q 3)

(g2) ‘Tr(%) Tr(q4:) TE*(‘]z)

Fig. 8. The diagrams describing the contributions to the
w — 27727~ 7% decay amplitude via pointlike vertices.
The closed circles refer to the effective m — 37 vertices
given by Eq. (18).

qax _
S —
Dya—an o

Here, the currents responsible for the four-pion decay
of the intermediate p meson are the following [10]:

Ja(po — 7'(';—17'(';27'(';)’7'{';1) = (14 Pi2) (35)
1 1

X (1+ P3g)(1— P13P24){Q1a< - -+
2 D7r+234

X [a(qg,fp - Q4)<l;7;§4 - 1) B 2(q3,q4)]>}

and

+ (1+ Pi2)

+ -~ 0
- 7Tq17rq37rq47rq5)} :

Tolp* = et = (1+ Pio)

X {%(fh —q5)0 — (1 + Pa3)

(36)

1o
D7T0135

m2
X [(%qg —2¢5) + a(q2,93 — q5) <D 25 - 1>]
P

q50
Dﬂ.+ 123

: (g:i - 1)] + (1= P55)[2(01 — a5)o

X (q1+¢5,92—q3) — (@1 + ¢5)0
m;

[ —2(q1,92) +a(q1,q93 — g2)

2

D135
n9203 2

X< ;772 > [q16(1 — P35)(k, q3) (g2, 95)

+ @30 (1 — P15)(k,45)(q1, q2) + q50(1 — Pi13)

1 1 1

X (kaQI)(qQ’qg)]<D 13 D 15 D 33
p P r

X (q1 —q5,q2—q3)]2D Do
pl5p
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(g1
o J— )
(1 +Pro)(1 + P3y) S - T(q2)
‘ T (q4)
"(qs)
™(q1) T(43)
. p+ "_"__-IP(QS) . o ," ________ Tp(qS)
+ (1+Pp) CommT0(g3) + (1+P3y) —(.-\,-::: ..... - T(qy)
y ;:r((h) '(q2)
TC(42) T\r((]4)

Fig. 9. The contributions to the w — 2727~ 70 decay
amplitude arising due to the chiral w — p3m vertex.

+C1;C2;C3)}’

C3mp

where k=q1+ g2+ q3+g5. The expression for
Jo(p~ — mfimpm,, ™) is obtained from Eq. (36) by
the replacements ¢ < ¢3, g2 — g4 and by inverting
an overall sign. The expression for the contribution of

the diagrams in Fig. 7 is

My = JeemIomm (1 4 pry) (37)
IE
X (1 + P34)€HV)\J(]M€,,{(1 + P24)%
p134/70245

mg
(g2,94 — 2g5) + a(q2,q4 — g5) Do 1
p45

_ N\Pe
Dp15D 14934

— (1 = Pi3Pay)

m2
X | —2(q3,q4) + a(q3,q2 — Q4)<D ;)4 — 1)} }
p

The expression for the contribution of the diagrams in
Fig. 8 is written as

() _ Mg

3 32m2f5

(14 Pr2) (38)

4c1 — 5(62 + 03)
3
X q1xq30 + 3(c1 — c2 — ¢3)

X ((1 — P14 Ps3) DiAT50 [— 2(q3,q4)
D7r+234

m2
+ a(g3, g2 — q ( i —1>]
(g3, 92 — q4) Dyt

A
- EJ)I B2 (14 Pa) [(Q% q1 — 2g5)
w0245

X (1 + P34)5uu>\0quell{
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s )

Notice that Eq. (28)is necessary in verifying the Adler
condition below. The expression for the contribution
of the diagrams in Fig. 9 is

MO = SIS Pa) (39)
VE
1 _
x (1+ P34)5um€,,{_qu [w
2 D13
1
q17G50 + §(Q1 — ¢5)7 20
+ (1 — P13P24) D :|
plb
_ate-—c [%u(m —@3)a(q2 + q4)o
403 Dp13
La- P13P24)Q1,L(Q3D— Q5),\Q4a} }
p35

Finally, the amplitude resulting from the diagrams in
Fig. 10 is

2
_gwpﬂgpmrmp

I3
> (1 + Pr2)(1 + P3a)

M = (40)

<61 +co —c3
X e —
463
(91 — 43)uqar(g2 — @5)o
D 13D pa5
Notice that the product of the operators (1 4+ Py2)(1 +

Psy) [see (35) and (36)] makes evident the Bose sym-

metry of the full w — 2712770 decay amplitude,
which is

X (1 + P24)5u1/>\aeu

ot~ — 0
(117r(127r(137r(147TQ5)

M(w, — (41)

= M9 4+ M + M+ M+ Ml

Let us verify the Adler condition for the w —
2727~ 710 decay amplitude and write down the
Adler limits of all the above contributions to the
w — 27727770 decay amplitudes. As an example,
the case ¢; = 0 is considered in detail. Representing
the total amplitude Eq. (41) in this limit as

o4 - = 0
M(wg — 7Tq17Tq27Tq37Tq47Tq5)‘q1:O

_ Ywprn9prm (14 P34)5W,\U€VTM/\U’

bE
one has the following expressions for the diagrams in
Figs. 6—10, respectively:

6 1
T (=0 =30-Psg  (42)
402 — ¢5)0 422430
D 25 Dyss |’
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(q3) ™(q,)
5 ______Tlo(%) 5 _____ T[O (q5)
W P, w p+
(1+Pp)(1 +Psy) ™(q)) + —C-- (q3)
0 N\ ______. (0] .
S 2 CA) Y
: T
TG (q2) |

Fig. 10. The contributions to the w — 27727~ 70 decay
amplitude via intermediate state with two p mesons.

91922930
Dyos

(=0 =—(2+2 T2 70 ) dudoadso
3 4m?

T (q1=0) = (1 - Py5)

7®)

N
9 1
T (@1 =0) = Gln
" [—2(1%6]30 + (2 — @3)A (205 — Q4)o
D a3
_Ag3ngse + (03 — 95)A (204 — @2)o
D a3

><< 1 +L>:|+61+62—63

Dp25 m/% 463

+ 3¢27q50

Q3,L(Q4 - Q5)>\Q2a

'mp Dp45 ’
Py, _n_ Gatec—c
TH)\U (Q1 - 0) - 403
44 — q5)\q20

q3p(
X (1 — Poy P
( 24 P35) Doty

Again, when obtaining TS\)U, relation (28) is essential.

The close inspection of Eq. (42) shows that, first, the
p-pole terms in the sum of the diagrams in Figs. 6,
7, and 9 are canceled and, second, both the p-pole
terms proportional to ¢; + ¢ — ¢3 and the non-p-
pole ones are canceled in the sum of the diagrams
in Figs. 8—10. The cases of g2 3.4 = 0 are obtained
from the present case by Bose symmetry and evident
replacements of the pion momenta. In the case ¢5 =
0, the contributions of the diagrams in Figs. 8—10
vanish in the chiral limit separately, while the con-
tributions of the diagrams in Figs. 6 and 7 are equal
in magnitude but opposite in sign, and hence they
are canceled. The conditions of the vanishing of the
amplitude in the Adler limit obtained here turn out to
be of great importance in obtaining the ¢ — 57 decay
amplitudes.
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3. THE w — 7#t7 = 37% AND w — 27t27r— 7V
BRANCHING RATIOS REVISITED

In our previous works [10, 11], the branching ra-
tios of the w — 7177 37% and w — 277~ 70 decays
were estimated. The basis of that evaluation was
the expressions for the contributions of the diagrams
shown in Figs. | and 6, added with the specific cor-
rection factor stemming from the diagrams shown in
Figs. 2 and 7 of the present paper, respectively. This
seemed to be justifiable because of the presence of
the p pole. Moreover, the nonrelativistic limit |q,| <
m, was essentially used, because the approximate
nonrelativistic expressions gave almost the same nu-
merical results for the p — 4m partial widths as ex-
act ones, yet were much simpler. Those approximate
amplitudes cannot satisfy the Adler condition that
demands taking the massless pion limit, which is
clearly opposite to the nonrelativistic limit. Finding
the full decay amplitude undertaken in the present
paper is essential in finding the ¢ — 57 decay ampli-
tudes (see Section 4). Having at hand the amplitudes
satisfying the Adler condition, we evaluate here the
above branching ratios using these amplitudes.

Strictly speaking, the HLS approach does not give
the predictions even for the w — 77~ 70 decay rate,
because arbitrary constants c; 2 3 enter the expression
for Lagrangian Eq. (9). As was pointed out in [5, 6],
these constants should be determined from experi-
ment. Nevertheless, HLS relates the contributions to
the amplitudes [compare Figs. | and 2 to Figs. 3—
5 (respectively, Figs. 6 and 7 to Figs. 8—10)], which
otherwise appear unrelated. One can obtain reason-
able predictions for the w — 57 decay rates upon as-
suming particular relations among ¢y 2 3. First, there
are no experimental indications on the pointlike w —
ntr— 70 vertex; hence, one can take Eq. (11) for
granted. Second, the constant c3 [see Eq. (12)], ex-
tracted from the w — 3m branching ratio, is remark-
ably close to unity. Note that older chiral models [3] for
the vector meson interactions, with the inclusion of
the terms arising from the gauging of the anomalous
Wess—Zumino action [8], predicted ¢5 = 1. We fix
cg from the w — 37 partial width [see Egs. (10) and
(12)]. After taking into account Eq. (11), the ratio
c1/cs remains arbitrary, and the magnitude of the
w — b7 decay width depends on this parameter. We
choose its value guided by the following considera-
tions. The inspection of the expressions for the w —
5w decay amplitudes obtained in Section 2 shows
that almost all the terms, except those proportional
to ¢1 + ¢o — ¢3, have the tensor structure

M — Juwpr Gprm

fT% ENVAUQMEVT)@: (43)

where
The = Z Gaan)\Q(b)a

a<b

(44)

is the tensor composed of pion four-momenta g,
(where @ = 1,...,5 counts the final pions), and G
are invariant amplitudes, whose explicit form can be
read off the expressions for the amplitudes obtained
in Section 2 by gathering the coefficients in front of
darq(b)o- They are very lengthy, so we do not give them
here. In the rest frame system of the decaying w, the
Lorentz structure of Eq. (43) is reduced to the three-
dimensional form e;;1&; T, where & is the polariza-
tion vector of the w in this frame and e;j;, is totally
antisymmetric in ¢, j, k = 1,2, 3. It enormously sim-
plifies the calculation of the modulus squared of the
amplitude. In the meantime, the terms proportional to
c1 + co — c3 have entirely the four-dimensional tensor
structure €20 €49arq(v)29(c)o- The resulting expres-
sion for the modulus squared of the full amplitude
turns out to be extremely lengthy. Hence, for the sake
of simplicity, we set

(45)

in what follows. Note that this means that the con-
tributions of the diagrams in Figs. 5 and 10 together
with the part of the contributions from the diagrams
in Figs. 4 and 9 are dropped. Finally, our assumptions
about HLS arbitrary constants ¢; 2,3 and a are

ci+co—c3=0

a=2.

(46)

Notice that the above relations among ¢y 23 are the
solutions of Egs. (11) and (45). Of course, having
the full expressions for the decay amplitude at hand,
one can always loosen the constraint Eq. (45) and
come back to the evaluation of the branching ratios
at various values of ¢; /c3.

The expression for the partial width of the de-
cays (13) and (14) is written as

1
T =
w 57T(8) 2\/5(27T)11N5ym

cp=c3, ¢c2=0,

/ (MPdDs,  (47)

2
where s = (ZZZI qa) is the total energy squared

in the rest frame system of the decaying particle;
the Bose symmetry factor Ny, =6 and 4 for the
reaction (13) and (14), respectively; and dDs5 given
in [13] is the differential element of the phase-space
volume of the five-pion final state. Note that we take
into account the mass difference of the charged and
neutral pions both in amplitude and in the phase-
space volume. In the above formula,

3
1 ( Guworg 2
2 wpmYprm 2
M = o (=5 ) STy — Tyl (48)
s\ 2 ) 24
i,j=1
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is the modulus squared of the amplitude Eq. (43)
averaged over three independent polarizations of the
w. When evaluating Eq. (47), eight Mandelstam-like
invariant variables s;, u;, ¢ = 1,2,3, and ¢y, ty pro-
posed by Kumar in [13] are suitable. They are given
in the Appendix. All the scalar products of the pair
of pion four-momenta are expressed via the Kumar
variables by the expressions given in the Appendix.
For the numerical evaluation of the eight-dimensional
integral over Kumar variables, we use the method
suggested in [14].

We evaluate both the branching ratios for the
two aforementioned isotopic modes at the resonance
mass,

Fww(mi)

Ty '
and the branching ratios averaged over the resonance
peak,

Bl‘wﬂgm (mi) =

(49)

me+Tw
2 sTwosr(S)

B raver d .
EET T

w—bT T

(50)
me—Tw

The quantity Bri)®;_ is useful in situations where

the total energy of the five-pion state is not directly
measured, as is the case in, e.g., photoproduction or
peripheral production in 7N collisions. The results of
the evaluation are the following:

Brw~>7r+7r—3ﬂ-0 (mi) =3.6 X 10_9,
BroY .0 =28x10"7,
Brw—>27r+27r*7r0 (mi) =3.3 X 10797

Braver 0o =25x107".

w—2n 27— 7

(51)

These branching ratios for the w — 57 decay by
a factor of more than 3 exceed those obtained in
our previous papers [10, 11]. The reason of the
disagreement is the following. As is mentioned at
the beginning of the present section, the diagrams
in Figs. 1 and 6 corrected with those in Figs. 2
and 7 were considered to be dominant in [10, 11].
Let us evaluate the contributions of the diagrams
in Figs. 1 and 6 to the branching ratios of the
decays w — 7t~ 37Y and w — 2727770, respec-
tively. For a reason soon to become clear in the
case of ¢ — 5w decay, we call these contributions

resonant. One obtains Br™" | = 1.54 x 107°
resonant _ -9
and Br 205", 0 = 1.3 x 107°. These figures are

w—mtr—3m0 wo2rtor—70 & 1 X 1077
obtained in[10, 11]. If one evaluates the net contribu-
tion of all the remaining diagrams called nonresonant,

the following figures will be obtained: Brio"esenant | —

0.47 x 1079 and Bro"ssomnt  —0.50 x 107, The

w—2rt 27—

close to Br ~ Br
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Fig. 11. The excitation curves of the decays w — 57 in
ete™ annihilation.

nonresonant contributions amount to 13—14% of the
total [Eq. (51)]. However, the phase-space-averaged
relative phase differences between the resonant and
nonresonant contributions evaluated with the above
numbers are § = 21° and 24°, respectively, for the re-
action (13) and (14). These phase differences and the
comparison with the total branching ratios [Eq. (51)]
show that the aforementioned contributions to the
decay amplitude are almost in phase. The neglect of
seemingly small nonresonant contributions resulted
in the underestimated magnitude of branching ratios
in[10, L1].

The excitation curves for the w — 57 decays in
etTe™ annihilation,
mey

3
Uw—>57r(s) =127 (\/g) Lyetem (m?u) (52)

sy—sr(s)
= m2)? + maTE

are plotted in Fig. 11. The curves are asymmetric
and shifted to higher values from the w mass be-
cause of strong energy dependence of I'y,_,5,(s) (see
Figs. 12 and 13). As is seen, both isotopic channels
have approximately equal branching ratios and al-
most coincident excitation curves in the w-resonance
region. This can be understood as follows. The matrix
elements squared numerically are approximately the
same in the near-to-threshold region, since the pion
mass difference is smeared in the sum of various
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MNw - 2m2mm), eV
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---- Phase space

10°

s
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L
.

107!

PR NS N SR T
08 09 1.0 1.1
52, GeV

Fig. 12. The energy dependence of the w — 2727~ 70
partial width.

contributions. Hence, they are canceled in the ratio
of two partial widths, leaving the ratio of the phase-
space volumes. Using the nonrelativistic expression
for the phase-space volume of the five-pion final state
from [15], one obtains

Brz,u—>27rJr 27— 70 (m?u)
Brw—>7r+7r*37r0 (ma)

_ 3Mmgt (2mg+ + 3mgo 3/2
© 2mo0 \ 4mo+ +mpo

My — dm+ — myo b
X =0.93

(53)

My — 2Mpt+ — IMo0

to be compared to 0.92 calculated from Eq. (51).
The ratio of the Bose symmetry factors 3/2 com-
pensates the smaller phase-space volume of the final
state 27127~ 70, as compared to 77~ 37" one. In
the meantime, the energy dependence of the w — 57
partial width in the dynamical model is drastically dif-
ferent from that in the model of the Lorentz-invariant
phase space (lips). In the latter, one has the following
expression for the w — 57 partial width:
(lips) _ 2y Wsr(s)

Fw—>57r(s) Lyosr (mw) W57r(mz;) >
where T',,_5.(m?2) is the partial width evaluated with
the dynamical amplitudes given in Section 2, and
the expression for the Lorentz-invariant phase-space
volume is

(54)

ad

(2m)113253/2 Ngym
(vs—ms5)? p
X / i)\1/2(5,51,771?))

51

Wsr(s) =

(59)

(m1+ma+m3+ma)?
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Fig. 13. The energy dependence of the w — w77~ 37°
partial width.

(v/51—ma)? p
X / ﬂ)\l/2(81,82,m2)
52
(m1+ma+ms3)?
(v/s2—m3)?
% @)\1/2(8 s mQ))\l/Q(s 2 m2)
s3 2,903,113 3, My, My),
(m14+m2)?
with m;, i = 1,..., being the mass of the meson ;

and
Nz, y,2) =22 +y? + 22 — 2xy
—2xz — 2y=z.

(56)

The predictions of both models for the energy de-
pendence of I'y, o +2.—-0(s) are plotted in Fig. 12.
The corresponding plot for the 777 =37 final state
is shown in Fig. 13. The faster growth of the partial
width in the dynamical model, as compared to the
phase-space one, is due to the resonance enhance-
ment arising from opening of the p production in the
intermediate state.

There is one interesting limiting case of the w —
5m decay amplitudes. Since the pions in the five-pion
decays are truly soft, the p meson can be considered
as very heavy and hence can be integrated out, leaving
an effective coupling of the w meson to the five-pion
state. This can be done at the Lagrangian level. But
since we have the complete expressions for the am-
plitudes, one may keep in them only the leading terms

in l/mf,. The resulting expressions are the following:

M(wq — 7r;r17r;27r237r247r85) (57)
3n g2
~ —Wéﬁg(q — 2+ e3)erc€udn (1 — Pr2)
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m?
X (14 Ps3 + Ps4) {M (1 - 77@)
6 Dro345

(g3,94) — (g2, 93 + q4)]
D7r+234 ’

+ q17G50
0
M(wq - W(;rl WJQW(ISW(MW%)
N 3n.g?
T 16m2f5
X Euq,,(l + Plg)(l + P34)

(92,q4) — (g5, 92 +q4) 3

X _°2
{Q1AQ3U [ Droas 5

D7r+ 234

(1 — c2+ e3)epmre

+ (1 — Pi3P24)qirq50

One can convince oneself that the above expressions
satisfy the Adler condition. Making the same as-
sumptions about HLS parameters ¢y 2 3, as earlier in
this section, and evaluating the branching ratios with
Eqs (57)and (58) gives Brwﬂ,ﬁﬂ az0(m2) = 0.95 x
1072 and Bry, o5 t9r—r0(m?2) = 1.04 x 1079, respec-
tively, which fall short by a factor of 3 as compared to
the evaluation with the full expressions. The reason
is that the p pole in the full expressions is essential
despite its nonresonant behavior in w — 57 decay.

4. EVALUATION OF THE ¢ — nt7~ 37"
AND ¢ — 2727~ 7% BRANCHING RATIOS

As is known, chiral models, including HLS, do
not possess terms responsible for the decays of the ¢
meson into final states containing nonstrange quarks
only. However, one can guess the general form of such
terms guided both by the way the OZI rule is broken
in the decay ¢ — pm — 77~ 7% and by the condition
of vanishing of the amplitude of the vector meson
decays into the states consisting of many Nambu—
Goldstone bosons.

There are two feasible models of the OZI-suppres-
sed ¢ — pm decay amplitude. The first one is the
¢—w-mixing model, where the above decay proceeds
due to the small admixture of nonstrange quarks in
the flavor wave function of the ¢ meson composed
mostly of the pair of strange quarks. In the sec-
ond model, ¢ goes to pm directly, with the decay
coupling constants originated from the OZI-rule-
violating three-gluon state [16]. Earlier we pointed
out that there are no particular reasons to prefer one
model to another, and possible ways to resolve the
issue were pointed out[16, 17]. Recent SND data[18]
point to a sizable coupling constant of direct ¢ — pm
transition, assuming the dependence [¢(0,my)|? o
m3, [16] of the wave function of the vector ¢g bound
state at the origin on the mass my of this state. It
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should be noted that the assumed dependence agrees
remarkably well with the ratios of the measured lep-
tonic widths of the vector quarkonia p, w, ¢, J/1, and
T(1S).

The decays ¢ — 5w are treated slightly differently
in the above models of OZI-rule violation. Let us
consider them in turn. In the model of ¢—w mixing,
¢ goes to the off-mass-shell w, which decays in a way
considered in Section 2. Hence, one can immediately
obtain

F(Z)—>57T(m%¢>) = |5<Z>—w (mi)|2rwﬂ5ﬂ(m%¢)a (59)

where €4_,(mg) is the complex parameter of ¢p—w
mixing taken at the ¢ mass. It can be evaluated as

F(Z)—>37T (mg))
Lyan(m?)

where r = 3.5 x 1072 is the ratio of the three-pion
phase-space volumes at the w and ¢ peaks.

2

leg—w(md)|* = r=3.04x1073,

If p—w mixing is negligible, one should introduce
a number of new OZI-rule-violating parameters to
quantify the ¢ — 57 decay amplitude. Guided by the
condition of chiral symmetry expressed as the de-
mand that the correct decay amplitude should fulfill
the Adler condition, it is reasonable to expect that
the effective Lagrangian, describing anomalous OZI-
suppressed decays of the ¢ meson, looks similar to the
Lagrangian Eq. (9)

»ng?p7 2f3 (ﬂl ﬂQ - ﬂS)g;LV)\O'QbM (60)
X (O - [8>\7" X O,])
+ 8}5 |: ﬂl + - (ﬁQ + ﬁ3):| Euvio

20339

: [8)\7‘- S 8077]) 2 - I — Suvo u¢u

X ¢u (0,

«{or-0m) + (o m)(m -0

1
e
—x%(py - a,w)]} -2+ -

S FCENCIES

ﬁB ) Euvio ¢/L

- %([pu X py] - 8aﬂ)},

where (31 5 3 are the above-mentioned parameters re-
sponsible for the violation of the OZI rule in the ¢ —
5w decays of the ¢ meson. The analysis, similar to that
presented in the case of the w — 57 decay amplitudes,
shows that the ¢ — 57 decay amplitudes obtained
from the Lagrangian (60) satisfy the Adler condition.
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As is evident from Eq. (60), one should identify the
coupling constant of direct ¢ — pr transition as

2[33g

Gopr =~~~ = 0.8 GeV~!,

(61)

where the magnitude of gy, is obtained from the
¢ — 3w partial widths, while the positive sign (rela-
tive to g,,» usually taken to be positive) is fixed by
the ¢—w interference pattern observed in the energy
dependence of the ete™ — mTm~ 7Y reaction cross
section [19]. Note that we neglect the unitarity cor-
rections to gg,» [20], because they are irrelevant in
the context of the present work. Next, there seems
to be no sizeable pointlike ¢ — 7+ 7~ 7° contribution.
Indeed, first, the existing upper limit to the branching
ratio of the non-pm-intermediate-state direct tran-
sition ¢ — 77—, obtained by the SND group at
VEPP-2M, is very small [21],

Brdirect(¢ N 7r+7r_7T0) <6 X 10_4(90% C.L.).
(62)

Second, the KLOE Collaboration at DA®NE gives
the phase-space-averaged direct ¢ — ¥ 77" con-
tribution at the level of 1% [22], and this contribution
is incoherent with the contribution of the intermediate
resonant p meson. Hence, in a close analogy with the

w case, one can set
Br— B2 —B3=0. (63)

Then (3 = —0.006 is fixed according to Eq. (61) by
the ¢ — 3x partial widths. After all, the ratio 5,/0s
remains arbitrary. We set 81 + B2 — 33 = 0; hence,
01 = B3, B2 =0, so that the ¢ — 5r decay ampli-
tudes are determined by only parameter 33 and look
like Eq. (43) for the w — 57 decay, with the replace-
ment g,,r — gspr. The tensor Ty, is the same as
in the w — 57 decay amplitude. Under these as-
sumptions, both aforementioned models for the OZI-
rule-violating decay ¢ — 37 give similar results for
branching ratios of the decays ¢ — 5m. These are the
following:

BI‘¢_)7T+7F—3W0 (mi) =24 % 1077,

Br;\fﬂ+ﬂ_3ﬂo — ].8 X 1077,

(64)

Bryontar—qo(m3) =5.0 x 1077,
By ton—mo = 3.6 X 1077,

where Br*'" useful for the reactions of peripheral pro-
duction, stands for the branching ratio averaged over
the £T'y region around the ¢ peak [use Eq. (50) with
replacement w — ¢]. The evaluation of the excitation
curve of the decays ¢ — 57 in ete™ annihilation per-
formed according to Eq. (52) (with the replacement
w — ¢) is plotted in Fig. 14. Notice that the ratio of
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Fig. 14. The excitation curves of the decays ¢ — 57 in
ete™ annihilation.

the branching ratios of two isotopic modes at the ¢
peak is

Br¢>~>27r+ 2~ w0 (mi)

Br¢>~>7r+ = 3mw0 (mi)

=21 (65)

to be compared to the number 1.3 obtained from the
simple evaluation of the ratio of nonrelativistic phase
space [see Eq. (53) with the replacement m,, — mgy].
In the present case, the difference with the exact eval-
uation is sizable, because now the phase-space model
is inadequate due to the strong p- and w-resonance
production in the intermediate states.

In this respect, it is interesting to look at the
dynamical behavior of the specific contributions to
the ¢ — 57 decay amplitudes in another way. For
this purpose, let us evaluate, at the ¢ mass, the con-
tribution to Bry_ +,-3,0 of the diagrams in Fig. 1
with the resonant p meson. (Notice that now w in
the initial state should be replaced with ¢ in all the
diagrams, and the effective gg,r is understood at
the corresponding expression, while other couplings
are related to it, as is explained earlier in this sec-

tion.) One obtains Brf;i’;fﬁfr,?mo =21x107". All

the remaining contributions with the nonresonant
intermediate p meson (see Figs. 2—4) amount to
Br;o_”f;i";i‘}fﬁo = 0.34 x 1077, Notice that the seem-
ingly resonant diagrams in Figs. 2 and 7 do not, in
fact, possess this property, because three pions, pro-
duced from the transition 7 — 3, push the p meson
away from the resonance. The phase-space-averaged
relative phase between the resonant and nonreso-
nant contributions calculated with the help of given
branching ratios and that given in Eq. (64) is about

0 = 91°. Correspondingly, similar calculations for an-

. . +o — 0 resonant _
other isotopic state 272w~ 7" give Bry,o %y 10 =
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APPLICATION OF THE HIDDEN LOCAL SYMMETRY EFFECTIVE CHIRAL LAGRANGIAN 157

4.2 x 1077 from Fig. 6, Bry™5*9%" , = 0.70 x 1077
from Figs. 7-9, and § = 96°. This clearly illustrates
the dominance of the diagrams with the resonant p
meson in the intermediate state in the decay ¢ —
57, because the resonant and the smaller nonres-
onant contributions add incoherently in the case of
¢ — 5w decay. For comparison, the opposite situation
occurs in the case of w — 57 decay amplitudes (see
the corresponding calculations in Section 3), where
the smaller nonresonant contribution to the decay
amplitude adds almost in phase with the resonant
one and for this reason is essential. The above dis-
cussion shows that the branching ratios of the de-
cays ¢ — 7w~ 3% and ¢ — 2727~ 70, determined
within the conservatively estimated accuracy of 20%
by the well-studied OZI-rule-violating coupling of
the ¢ meson to the pr state followed by the transition
p — 4m, are evaluated here in a model-independent
way.

5. DISCUSSION AND CONCLUSION

In view of the fact that there are three (or even
four, if one includes radiative decays—see [5, 6]) inde-
pendent constants in the effective chiral Lagrangian
describing anomalous decays of w (and ¢) mesons,
one can only consider some scenarios of what may
happen. We restrict ourselves by considering only the
strong decays. In principle, the study of the Dalitz plot
in the w — 777~ 7~ decay allows one to extract c3
and (¢; — c2)/cs by isolating the p-pole and non-p-
pole contributions, because the density on this plot
is proportional, omitting the w—p interference term in
the 7+ 7~ mass spectrum, to the factor

d*c 1
D,(q1 + q2)

2
€l —C—C3

dmydm_ (66)

1 1
- -
Dy(q1+q3)  Dyl(g2 +q3)

where m2 = (q1 + ¢3)%, m% = (g2 + ¢3)?. Notice in
this respect that the combination of parameters of
the low-energy effective Lagrangian entering into the
non-p-pole term in Eq. (66) should be treated as the
low-energy limit of all possible contributions from the
transitions w — p'm, p”, etc. If one assumes that the
direct transitions are responsible for the decays of the
¢ meson to the states containing no strange quarks,
the same will be true for the parameters 3y 23, char-
acterizing the OZI-rule-violating decays ¢ — 37 and
¢ — bm. In the model of p—w mixing, the ¢ — 5 de-
cay amplitude contains no additional free parameters
as compared to the case of w — 57 decay. It should
be recalled that both models can be, in principle,
discriminated either by the careful study of the ¢—w-
interference minimum in the energy dependence of

)

2
203mp
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the eTe™ — wTr~ 7Y reaction cross section or by the
ratio of the leptonic widths of w and ¢ mesons [16—
18]. On the other hand, within an accuracy of 20%,
the branching ratios of the ¢ — 57 decays can be
evaluated in a model-independent way (see the dis-
cussion at the end of Section 4).

The excitation curves of the decays w — 57 and
¢ — 5min eTe™ annihilation can be used to evaluate
the expected number of these decays at w and ¢
peaks. With the luminosity L = 1032 cm~2 s~! at the
w peak, one may hope to observe three events of the
decays w — 77~ 37% and 27+ 27~ 70 per each mode
bimonthly. With the same luminosity at the ¢ peak,
the observation of 540 (250) ¢ — 2727~ 7% (¢ —
77~ 31%) decays per month is feasible. Note that the
existing upper limit is Bry_or+or— 70 < 4.6 X 1076

(90% C.L.)[23]. With the luminosity L = 500 pb~*
already attained at the ¢ factory DA®NE [24], one
could gain about 1340 events of the decay ¢ — 5
proceeding via chiral mechanisms considered in the
present paper. The possible nonchiral-model back-
ground from the dominant decay ¢ — Ky Kg, K1, —
3w, Kg — 2w is well cut from the considered chiral
mechanism because in the former mechanism kaons
fly away by macroscopic distances. Rare decay ¢ —
nm 7™, whose branching ratio was estimated [25, 26]
at the level Bry_, -+, ~ 3 x 1077, is cut by remov-
ing events in the vicinity of the n peak in the three-
pion distribution observed in the five-pion events [23].

In the present work, we neglect the contribution
of the a1(1260) meson. This is justifiable because
both the w(782) and ¢(1020) peaks are deep under
the threshold of a;7 production. As is known, the
approach to chiral dynamics based on HLS, allows
one to take the axial vector mesons into account [5,
6]. This is the theme of future work.
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APPENDIX

Relations Expressing Lorentz Scalar Products
through the Kumar Variables

The relations expressing the Lorentz scalar prod-
ucts (gi,q;) through Lorentz-invariant variables are
presented. Given the pion momentum assignment
according to

(A.1)

Wqg = Tq1 Mo Mgz Mgy Tgs s
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the eight Kumar variables [13] are defined as
s1=(q—q)* (A.2)
s2=(q¢—q1— CJ2)2,

S3 = (q—Q1 — Q2 —(J3)2,

u = (¢ — @)%
U2 = (q - q3)27
us = (q - Q4)2,

to=(q—q — q3)°
ts=(q—q2— g3 — q1)*.

Associated with them, but not independent, are the
following:

sy = (q1 + q2)°, (A.3)
sh=(q + a2 + g3)°,

th = (g2 + g3)°,
ty = (g2 + g3+ ).

Then all but two Lorentz scalar products of the pion
momenta can be expressed through Egs. (A.2) and
(A.3):

1
(q1,q2) = 5(3/2 —mi —m3), (A4)
1 / ! / 2
(q1,q3) = 5(53 — 8y — ty +mj3),
1 2
(q1,q4) = 5(752 —t3 — 53+ mj3),
1
(q1,05) = §(t3 —m3 —ma),
1
(40.05) = 285 = m3 =),
1
(q4,05) = 5(83 - mi - ’mg)-
The remaining scalar products
1
(93,q5) = 5(82 —s3—m3) — (g3,q1),  (A.B)

1
(g2, q4) = §(t§ —ty —mj) — (g3, 4a)
can be expressed through (g3, q4). The latter, using
the method of invariant integration outlined in Ap-
pendix D of [13], can be found as

(45.m) = glols —us +m3)  (AS6)
+ B(uy — ta —m3) +(s2 — 53 — m3)],
where
o= ﬁ(ths;:, + BCG + ACH (A.7)
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—toBH — C%F — As3Q),
1
B =-—(ss3sG+ ABH + BCF
Ay
— B?G — sCH — As3F),
1
v = —+——(stoH + ABG + ACF
Ay
— t3BF — sCG — A%H),
and

44:%@442—g% (A.8)

1
B = —(s+ 53— s%),

—_
[\]

C = —(83 +t2 — m%),

— DN

F = —(s—u3+mi),

[l \V]

G = =(ty — t3 +m?),

)

H= 5(33 +m3 —m2),
A = stoss +2ABC — B2t2 — 028 — A283.

In the above formulas, m;, i=1,...,5, are the
masses of final pions.
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with silicon nuclei at energies below 25 MeV/nucleon are presented. The energy dependence of the
parameters of a semimicroscopic potential is determined from the measured values of this cross section.
This investigation was performed at the Flerov Laboratory of Nuclear Reactions at the Joint Institute
for Nuclear Research (Dubna, Russia) and at the Department of Physics at the University of Jyvéskyla

(Finland). © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

Experimental data on the cross sections for re-
actions induced by nucleus—nucleus collisions per-
mit us to evaluate the parameters of nuclear poten-
tials and are supplementary to data on elastic scat-
tering. The energy dependence of the total reaction
cross section (o) for *He ions incident on various
targets was studied at intermediate energies (E >
20 MeV/nucleon) in [I1—6]. The cross section op
was found to change substantially with increasing
atomic number of the target nucleus. For light nuclei
(A < 40), the cross section decreases with increasing
energy in accordance with the expected effect caused
by the energy dependence of the cross section for
nucleon—nucleon scattering. For medium-mass and
heavy nuclei, the cross section remains independent
of energy; in this region of nuclear masses, op is de-
termined primarily by the geometric size of the target
nucleus.

In this study, we have measured the dependence

of the total cross section for the reaction of *He ions
with 28Si at low energies (F < 25 MeV/nucleon).
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The choice of reaction and of energy range was mo-
tivated by the following considerations. In [7], our
group measured the energy dependence of o for the
6He + 28Si reaction in the range 10—28 MeV/nuc-
leon, and the results exhibited an increase in the cross
section in the energy range 10—17 MeV/nucleon. At
low energies, a comparison of the excitation func-
tions for the “He, SHe, and ®Li neighboring nuclei
is of interest, because *He is the nuclear core of
the neutron-halo nucleus ®He and because He and
SLi are mirror nuclei. The distinction between the
mechanisms of nuclear reactions can manifest itself
most vividly in a comparison of low-energy excitation
functions, because the respective collisions of nuclei
are of a peripheral character in this case. Therefore,
the objective of our study was to perform a detailed
measurement of the low-energy excitation-function
portion of o in *He interaction with silicon nuclei.

2. EXPERIMENTAL PROCEDURE

The experiment was performed in 30-, 50-, 75-,
90-, and 115-MeV “He-ion beams from the K130 cy-
clotron of the Department of Physics at the University
of Jyviskyla (Finland). The *He-beam intensity was
10 nA. The beam was extracted to a 2%®Pb scatter-
ing target 4 mg/cm? thick, and elastically scattered
4He ions were recorded by a telescope. The rate at
which the particles hit the telescope was 500 s=1. An
assembly of detectors (Fig. 1) was located at a dis-
tance of 60 cm from the scattering target at an angle
of 20° with respect to the beam axis inside a large
scattering chamber. An aluminum diaphragm 5 mm
thick having an inner diameter of 10 mm restricted the

1063-7788/05/6801-0016$26.00 © 2005 Pleiades Publishing, Inc.
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Fig. 1. Layout of the telescope detectors (the material, di-
ameter, and thickness of the elements are also mdlcated)

angular spread of scattered particles to 1°. The energy
spread of scattered “He ions that was measured by
the telescope was approximately 400 keV for various
beam energies.

Here, we give a brief account of the procedure
used to measure op, because it was described in
detail elsewhere [7]. The telescope consisted of sili-
con detectors adjacent to one another; there were six
detectors at E, = 75, 90, and 115 MeV and five of
them at E, = 30 and 50 MeV. Alpha particles from
elastic scattering on 2°8Pb were extracted by means
of cuts imposed on the energy depositions AF;, AFEs,
and AFj3 in the first three detectors (Figs. 2a, 2b).
An active collimator (third detector) 8 mm in diam-
eter was intended for extracting only those particles
in the flux incident onto the telescope that hit the
detector centers. The remaining particles either es-
caped detection in this detector or generated low re-
sponses that corresponded to hitting the boundary of
the active layer. The target detector was placed behind
the collimator detector. The extracted alpha particles
could cause various nuclear reactions leading to a
change in the typical ionization energy losses in the
telescope detector being studied and in those that fol-
low it. Reaction products were recorded by the energy
depositions AFE, and AFEj5 in, respectively, the fourth
and the fifth detector (Fig. 3). In the figure, events
associated with reactions in the fourth detector are
located predominantly above the energy distribution
of alpha particles that did not initiate any reaction.
[f we denote by Iy the number of alpha particles that
hit the target and by I the number of events in which
the energy deposition in this target corresponds to the
elastic-scattering peak, then the total reaction cross
section or(F,) can be determined from the relation

I = Iy orlEON (1)

where N is the number of target nuclei per unit sur-
face.
The thickness of the AFE detectors were between

50 and 380 pm, with the detectors of smaller thick-
ness placed downstream of the target for the amount
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of nuclear reaction products produced inside them to
be insignificant. The energy loss of the particles before

the target was below 50%, and the energy dissipation
in the target was below 20%.

The cross section or(F,) measured by means
of the above procedure involves two main method-
ological uncertainties. First, nuclear-reaction events
featuring particles that suffered scattering into the
backward hemisphere and which moved from the tar-
get to the previous detector were not recorded as
a reaction event, because the energy deposition in
those events could not meet the constraints shown in
Figs. 2a and 2b. The cross sections for these reaction
channels were substantially smaller than the statisti-
cal uncertainties in the measured values of or(E,).
Second, the elastic and the first inelastic channel
of alpha-particle scattering on silicon nuclei were
separated from each other. Excited levels in silicon
were observed in the total energy distribution that was
obtained by summing the energy depositions in all of
the detectors; however, it was difficult to determine
the detector in which the excitation occurred. Us-
ing data on the angular distributions in the reaction
28Si(a, a*)®Si for the 2% level in silicon at E, =
104 MeV [8], we estimated the contribution of this
reaction to the total cross section at 30 mb. This
latter correction to or(E,) was taken into account
by adding 30 mb to the statistical uncertainty.

3. RESULTS AND DISCUSSION

The experimental values of the total reaction cross
sections op are listed in Table 1, along with the
mean alpha-particle energies E, at which or was
measured. The widths of the energy intervals, £AFE,
are determined by the energy losses in the detectors
in which o was measured and by the widths of the
energy distributions. The uncertainties £Aog given
in Table I include both statistical uncertainties and
uncertainties associated with the procedure of event
separation (Fig. 3).

Figure 4 shows the total-cross-section values
listed in Table 1 (closed squares). The circles in this
figure represent the o values measured previously in
[9], and the open squares correspond to data from[11].
The curve was calculated within the semimicroscopic
folding model [10]. Figure 4 demonstrates that the
reaction cross section reaches a maximum at £ =~
20 MeV/nucleon. In order to follow carefully the
behavior of o over the whole energy range presented
in Fig. 4, we invoke the strong-absorption model. It
is well known that, within this model, the absorption
cross section can be written as

oo =mA>Y (2L + 1Ty, (2)
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Fig. 3. Identification matrix of nuclear reaction products
produced in detector 4 (events above the separating line)
and in detector 5 (events to the right of the elastic-
scattering peak). The spectra are given in the ADC chan-
nels.

where A = h/\/2M(E — B) is the de Broglie wave-
length (M is the reduced mass of the projectile parti-
cle and the target nucleus, B is the height of the one-
dimensional barrier, and E' is the projectile energy),
L is the orbital angular momentum of the nucleus,
and Ty, is the barrier penetrability. We can represent
the data obtained here in the form of the ratio of the
total reaction cross section to the absorption cross
section, or/ao, as a function of E_ L. The cross
section ag is calculated as og = mr2(AL° + AL/%)2,
where the parameter ry is taken to be 1.4 fm, as
follows from the energy and mass dependences of this
parameter [1], and A, and A; are the mass num-
bers of the projectile particle and the target nucleus,
respectively. Figure 5 shows or/og as a function

of E_}L. From this figure, one can see that there
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Fig. 4. Energy dependence of the total reaction cross
section for alpha-particle interaction with ® Si nuclei.

are actually two energy regions: the low-energy re-
gion, in which the relative cross section increases
with increasing energy, and the high-energy region,
in which it slowly decreases with increasing energy.
This trend is usually observed in heavy-ion fusion
reactions [11]. It is assumed that the maximum in
the relative cross section must be associated with the
threshold energy at which all inelastic channels of the
reaction being considered become open; obviously,
the position of the maximum depends strongly on the
structural features of the target nucleus. The variation
of or /oo with B indicates that relation (2) cannot
be interpreted unequivocally as penetration through
a one-dimensional barrier. Indeed, a *He nucleus
penetrates more deeply into the interaction region at
high energies, the effective optical potential (the sum
of the nuclear, centrifugal, and Coulomb potentials)
acting at short distances within the barrier, where the

Vol.68 No.1 2005
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Fig. 5. Ratio of or to the absorption cross section o as
a function of the inverse energy.

barrier is determined by attractive nuclear forces. In
this case, the energy dependence of the cross section
is controlled by the energy dependence of the mean
cross section for nucleon—nucleon interaction. In the
low-energy region, we can assume that the barrier
has the form

B Ze? B Ze?
Rcoul "”OC()ulAl/3

Using the slope of the curve in Fig. 5, we can de-
termine the Coulomb interaction range rocoy, which
differs from the actual interaction range. The barrier
height B assessed in this way is 10 MeV, which is
above the Coulomb barrier for the conventional pa-
rameter rocoy = 1.3 fm.

B (3)

Figure 6 shows the energy dependences of the to-
tal cross sections for the *He + 28Siand *He + 28Si
reactions according to the measurements in our ex-
periment and according to [1, 6]. One can see from
this figure that the cross sections o behave differ-
ently for “He and ®He at high energies. For “He, a
decrease in the cross section with increasing energy is
observed, while, for °He, the cross section is virtually
independent of energy. The energy dependence of or
is still more contrasting for E < 20 MeV/nucleon:
the “He cross section decreases sharply with decreas-
ing energy, but the He cross section increases, on
the contrary, above E ~ 20 MeV/nucleon. This dis-
tinction between the energy dependences for *He and
6He seems to suggest an additional reaction channel
that opens for 6He at 20 MeV/nucleon. The data
on the cross section for “He production in 6He(?8Si,
4He)X reactions from [6, 7] cannot explain the ob-
served jump of or. In order to explain the observed
phenomenon, one can assume that the °He + 28Si
reaction produces a nuclear system that decays via
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Fig. 6. Energy dependence of the total cross sections for
the reactions of (0) *He and (o) ®He ions with silicon
nuclei.

channels different from the entrance channel. In any
case, it follows from Fig. 6 that the experimenters
face the problem of identifying the reaction channel
responsible for the increase in o in the region £ <
20 MeV /nucleon.

The theoretical values of o g were calculated on the
basis of the modified ECIS-88 code [12] by using the
semimicroscopic potential

UiR) = U(R) 0, 0 (4)
+i <NwU(R) - awR—dZ;R)) :

where U(R) is a microscopic real potential; a, is the
parameter of that part of the total potential which

Table 1. Measured values of the total cross sections for the
4He + 28Si reaction at various energies

MeV/LI?ucleon Me\:i:/AnfC’leon or,mb | £Aog, mb

3.4 0.70 600 60

4.6 0.75 982 60

7.5 0.96 1023 100
11.2 1.06 1191 60
13.8 1.21 1280 60
16.4 1.43 1247 60
18.4 0.88 1320 60
23.8 0.56 1223 55
25.3 0.71 1146 60
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Table 2. Parameters of the semimicroscopic optical poten-
tial for elastic alpha-particle scattering on 28Si at various
energies

E, MeV ay Ny (A
14.5 0.015 0.04 0
23.1 0.010 0.13 0
28.0 0.010 0.17 0
41.0 0.010 0.21 0
50.5 0.010 0.26 0

104.0 0 0.30 0.027
166.0 0 0.30 0.031

simulates dynamical polarization; and N,, and a,,
are the parameters of, respectively, the volume and
the surface imaginary potential [10]. For the alpha-
particle energies at which the total cross sections
were measured, we calculated the theoretical values
of the total cross sections, fitting the values of a,, a.,,
and N,,. At energies below 50 MeV, the parameter a,,
was set to zero, while the remaining two parameters
were varied; above 50 MeV, the parameters a,, and N,,
were fixed. In addition to the experimental data on the
total reaction cross sections, there were some data on
the differential cross sections for elastic scattering in
the same range of energies E,. Theoretical angular
distributions were calculated for the data on elastic
scattering. A global analysis of the data on the differ-
ential and total cross sections made it possible to cal-
culate the parameters of the semimicroscopic poten-
tial (Table 2). The solid curve in Fig. 4 represents the
energy dependence of the total reaction cross section
corresponding to the calculated parameter values. As
can be seen from Table 2, the parameter N, of volume
absorption is sensitive to the structure of both nuclei
at F, < 50 MeV, whereas the parameter a,, of surface
absorption becomes significant in the region E, >
50 MeV.

4. CONCLUSION

The energy dependence of the total cross section
for the *He + 28Si reaction has been measured in de-
tail for the poorly studied region 4—25 MeV /nucleon.
The results obtained in this way, together with other
data available from the literature, have enabled us
to trace the trend toward the variation of o over a
broad energy range and to find the inflection point

PHYSICS OF ATOMIC NUCLEI

of the function or(F) at E = 20 MeV/nucleon. The

experimental values of og at E < 20 MeV/nucleon
cannot be described adequately on the basis of the
semimicroscopic folding model with the parameters
obtained in measurements of elastic He scattering
on a silicon target. With the aid of our experimental
data on the total reaction cross section, new values
were calculated for the parameters of the semimicro-
scopic folding potential.

We would also like to note that an increase in the
total cross section for the *He + 28Si reaction with
increasing energy has been observed in the energy

range 8—20 MeV/nucleon; at the same time, the
cross section for the SHe + 28Si reaction decreases
in this range [7]. Further experimental and theoretical
studies of the total reaction cross section for #He
and SLi ions at low energies (E < 25 MeV/nucleon)
are required for understanding this phenomena.
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Accompanied by the Emission of High-Transverse-Momentum Protons
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Abstract—Auvailable experimental data on the tensor analyzing power for nuclear relativistic-deuteron
fragmentation accompanied by the emission of high-transverse-momentum protons are analyzed within
light-front quantum mechanics. It is shown that, in contrast to calculations with standard wave functions,
calculations employing the relativistic deuteron wave function obtained by V.A. Karmanov and his coau-
thors on the basis of light-front dynamics can explain the entire body of data without resort to additional
degrees of freedom. (© 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

Investigations of reactions involving a deuteron at
intermediate and high energies receive constant at-
tention. On one hand, the deuteron—the only known
bound state of two nucleons—is quite appropriate for
studying models in which nuclear interactions can be
explained by meson exchange between baryons. On
the other hand, it is a convenient object for testing
the approaches that are used to describe relativistic
bound states. Experiments performed with polarized-
deuteron beams in Saclay [1—4] and in Dubna [5—
10] resulted in understanding that, at short distances,
the traditional ideas of the deuteron are invalid. For
example, it was indicated in [10] that the analyzing
power Tyg for the pionless deuteron breakup dp —
ppn in a kinematical region close to that of backward
elastic deuteron—proton scattering in the c.m. frame
depends on the primary deuteron momentum, the
internal momentum & of nucleons in the deuteron
(it is defined as a kinematical variable of light-front
dynamics) being fixed. This gave sufficient grounds to
assume that, in addition to k&, one more variable is re-
quired for describing the bound state of two nucleons
adequately.

Recent measurements of the tensor analyzing
power Ay, in relativistic-deuteron fragmentation on
nuclei that is accompanied by the emission of protons
having high transverse momenta [11, 12] also favor
this assumption. From available data, it follows that,
at fixed values of the longitudinal momentum of
protons, the quantity A,, depends greatly on their
transverse momentum; moreover, it turns out that the

DJoint Institute for Nuclear Research, Dubna, Moscow
oblast, 141980 Russia; e-mail: azhgirey@jinr.ru

D Moscow State University, Vorob’evy gory, Moscow, 119899
Russia.

values of A, that are associated with fixed values of k
exhibit a significant dependence on the angle between
the vectors k and n (where n is a unit normal to the
light-front surface).

The experimental data accumulated thus far for
the spin features of A(d,p) reactions at relativistic
deuteron energies have not yet been interpreted the-
oretically at the ab initio level, since hadron physics
is essentially nonperturbative, which hinders the for-
mulation of basic concepts (within this framework)
that would produce automatically, to a considerable
extent, the whole diversity of hadron phenomena. In
view of this, there remain many as-yet-unresolved
problems in hadron physics, despite some advances
such as the development of the concept of sponta-
neous chiral-symmetry breaking [13] or the devel-
opment of effective field theory associated with this
concept [14]. In particular, the way in which the
relativistic invariance of hadron systems is realized
has yet to be disclosed conclusively (that is, there is
presently no answer to the question of which type of
quantum mechanics is the most efficient in describing
hadrons). Therefore, investigation of the polarization
properties of deuteron-fragmentation reactions (d, p)
is still one of the most important problems in relativis-
tic hadron physics.

The results obtained by analyzing (d, p) reactions
at relativistic energies of the deuterons involved are
rather contradictory. On one hand, experimental
data on the differential cross sections for inclusive
deuteron breakup on nuclei [15, 16] are satisfactorily
described within light-front dynamics in the approx-
imation of the simple t-channel pole mechanism
(Fig. 1) by using standard deuteron wave functions
(see, for example, [17, 18]). On the other hand,
calculations of polarization observables within this
approach [19] do not reproduce experimental data,

1063-7788/05/6801-0160$26.00 © 2005 Pleiades Publishing, Inc.
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as a rule. The only exception in this respect was
the analysis reported in [20], where data on deuteron
fragmentation on nuclei that is accompanied by the
emission of protons at zero angle were successfully
described owing largely to taking into account the P
wave in the ground state of the deuteron.

In the deuteron wave function, a P-wave state
can be generated by various mechanisms. In [20], a
P wave arises owing to the formation of a six-quark
configuration, its fragmentation into baryons produc-
ing negative-parity resonances. In[21], a P wave ap-
pears as an essentially relativistic effect—on the basis
of taking into account, in the deuteron ground state,
an admixture of negative-energy nucleons (antipar-
ticles). If, instead of phenomenologically considering
mechanisms that generate a P wave in the deuteron
wave function, one relies on calculations within the
Bethe—Salpeter equation—for example, with a kernel
(in the integral equation) that is constructed on the
basis of the one-boson-exchange model—then the
resulting admixture of the P wave would be overly
small, insufficient for removing the discrepancy with
experimental data [22]. It is interesting to note that,
even within the approach developed in [23] and based
on relativistic quantum mechanics—in this approach,
nucleons interact via an instantaneous pair potential
included in the Hamiltonian in such a way that the
formalism proves to be Lorentz-invariant—the cal-
culations fail to reproduce experimental data.

Thus, we have to admit that there is a theoret-
ical crisis in describing polarization observables in
relativistic-deuteron fragmentation on nuclei, so that
further investigations are necessary. The simplest way
would be to state that the discrepancy between theo-
retical and experimental results is due to the use of an
overly simple reaction mechanism in the calculations.
In our opinion, however, the potential of this simple
(and very valuable for this reason) mechanism has not
yet been exhausted in view of the currently achieved
level of experimental accuracy. Bearing this in mind,
we do not include new degrees of freedom (for exam-
ple, mesonic ones) in our description of experimental
data. Restricting ourselves to nucleonic degrees of
freedom, we instead try to treat relativistic properties
of deuteron—proton collisions more thoroughly.

In all of the preceding studies devoted to an analy-
sis of polarization features of the reaction A(d,p)X,
including those that used light-front quantum me-
chanics, a relativistic deuteron was taken in the form
of a superposition of § and D waves that is known
from nonrelativistic physics. This superposition pre-
sumes quite a specific relation between the transverse
and the longitudinal component of the momentum of
the internal motion of nucleons in a deuteron [19].
Within light-front dynamics, however, the depen-
dence of the wave function on the transverse and
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Fig. 1. Pole diagram for describing reactions induced by
relativistic deuterons and accompanied by the emission of
protons in the forward direction in the laboratory frame.

longitudinal components of the internal momentum
can differ considerably from that which is dictated by
the combination of S and D waves. This possibility
was first indicated in [24, 25], where the relativistic
model of hard collisions of composite hadrons [26]
was generalized to the case of relativistic nucleus—
nucleus interactions.

The objective of the present study was to inves-
tigate the aforementioned circumstance. The ensu-
ing exposition is organized as follows. In Section 2,
we describe assumptions concerning the application
of light-front quantum mechanics. The relativistic
deuteron wave function that is used in our calcula-
tions and which was obtained by Karmanov ef al. [27]
within light-front dynamics is described in Section 3.
In Section 4, we present the formalism that we use
to calculate the tensor analyzing power for deuteron
fragmentation. The results of the calculations are
given in Section 5, along with the corresponding dis-
cussion. Finally, the conclusions of the present study
are formulated in Section 6.

2. LIGHT-FRONT QUANTUM MECHANICS

In the past years, various aspects of light-front
dynamics were considered in a number of studies
(see, for example, the review article of Miller [28] and
references therein). However, we believe that a short
discussion on the points relevant to our approach is
appropriate.

It is well known that the dynamics of relativistic
particles is determined by the shape of a fixed space-
like surface in four-dimensional spacetime—within
quantum theory, it is the surface on which the Hilbert
space of states is defined [29]. The choice of one or
another version specifies the way in which ten gener-
ators of the Poincaré group, P* = (P, P), MH =
(J,K), are partitioned into kinematical generators
and dynamical ones (interaction-dependent Hamil-
tonians). Within conventional dynamics—that is,
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instantaneous-form dynamics, where states are spec-
ified at the fixed time instants ¢t = 0—the momen-
tum and angular-momentum operators (P and J,
respectively) are kinematical generators, while the
energy operator P? and the Lorentz boost operator
K are Hamiltonians. Within light-front quantum
mechanics, where states are constructed on the fixed
light-front surface t* =t+ 2 =0, the quantities
PJr = P() +P3,P1,P2,Er = (Kr —|-€7«SJ5)/2, Kg, and
Js are kinematical operators, while P_ = Py — P3 and
E, =K, —€e.sJs (here, r,s = 1,2 and €, is an anti-
symmetric tensor: €190 = —e9; = 1) are Hamiltonians.

In relation to instantaneous-form dynamics, light-
front dynamics possesses the advantage that par-
ticle—antiparticle pairs are not produced from a vac-
uum in this approach (here, the vacuum is “empty”).
Owing to this, time-inverse diagrams must not be
taken into account in describing the amplitudes for
the processes being studied. However, this form of
dynamics has the following disadvantages: First, one
has to deal here with a specific direction—this is
the direction of the z axis, with respect to which the
generators of the Poincaré group are partitioned into
kinematical and dynamical ones. Second, it turns
out that the angular-momentum operators J, and
Jy, which are conventional kinematical quantities
in instantaneous-form dynamics, become dynamical
operators in light-front dynamics—that is, they prove
to be interaction-dependent operators. To derive the
result of the application of these operators to the
wave function, it is necessary, in fact, to solve an
additional Schrodinger-type equation—it is natural
that, without doing this, there would arise difficulties
in calculating the spin of a composite system. All of
the aforesaid creates the impression that the results of
the respective calculations are noncovariant. In fact,
there must not be of course the dependence on the
choice of direction for the z axis, since the original
Lagrangian is Lorentz-invariant.

For the ensuing exposition to be clearer, we will
now outline the scheme of a “correct” calculation of
(d, p) reactions within light-front dynamics under the
assumption of the pole mechanism displayed in Fig. 1.
The relativistic-deuteron wave function, which is a
function of the longitudinal (k) and transverse (kr)
components of the internal nucleon momentum,

vyt =g (kL kr), (1)

where M =0,+1 are the projections of the spin
J =1 onto the quantization axis, is a key point in
this calculation. We would like to highlight special
features of this wave function.

First, we note that, although the functions ¢é‘4,

which correspond to different values of M, are related,
as in conventional instantaneous-form dynamics, to
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each other by the operators J, £ iJ,, this relation is
unusual in the sense that they are now “separated”
by dynamics and can therefore differ from each other
significantly. In view of this, it is difficult to introduce
a conserved angular-momentum operator; that is, it
is not straightforward, within light-front dynamics, to
pinpoint the spin associated with a given state, and
it is necessary, in general, to consider all three wave
functions, which are related in quite an intricate way.

Second, the relation between the arguments kp,
and k7 of the wave function (1) may differ significantly
from that which is valid in the case where the state in
question is described by a superposition of S and D
waves. This circumstance may change qualitatively
the situation in describing reactions that involve rela-
tivistic deuterons.

3. RELATIVISTIC DEUTERON WAVE
FUNCTION

The difficulties in light-front dynamics that are
associated with the particular role of the direction
of the z axis and with the formation of the angular
momentum were overcome to a considerable degree
in[27, 30, 31] by extending the set of dynamical vari-
ables used to describe a composite system—namely,
an additional variable was introduced there. This was
the orientation of the spacelike quantization plane on
which the Hilbert space of states was defined or the
orientation of the plane on which the wave function
was specified.

On one hand, the appearance of a variable that
characterizes the orientation of the light-front plane
complicates the situation because of an increase in
the number of variables that are taken into account;
on the other hand, this significantly simplifies the
properties of the wave function with respect to rota-
tions, making it possible to construct, irrespective of
interaction (that is, in a purely geometric way), states
of specific angular momentum. Problems associated
with the introduction of an additional variable were
solved in[27], and the relativistic deuteron wave func-
tion corresponding to a specific spin was found there
within light-front dynamics. It is now a function of the
spins of nucleons, their internal momentum, and the
orientation of the quantization plane and has the form

\Ilggal = w;2¢M(k, n)oyWe, , (2)
where o, is a Pauli matrix and
1
Mk, n)=— 3
Y™ (k,n) ﬁafl (3)
13 1
+§ ﬁk(kwr)—a f2+§[3n(n-a)—a]f3
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3 V3
+ \/;E[k x n]fs + - [k x 0] x o] fs.
Here, k is the nucleon momentum in the c¢.m. frame;
n is a unit normal to the light-front plane; o are
the Pauli matrices; w,,(4,) are the nonrelativistic-
nucleon spin functions; and fi, ..., f¢ are rotation-
invariant functions of kinematical variables determin-
ing the deuteron state. We then have

m2 + p3
— p T_ 2 4
K \/4x(1—x) " (4)
1 m? + pa
K= (== —p T
0= (5o

where z is the deuteron-longitudinal-momentum
fraction taken away by the proton in the infinite-
momentum frame [24, 25]. As in [19, 32], we choose
the direction of the z axis to be antiparallel to the
deuteron-beam axis, in which case n = (0,0, —1).

We take the normalization condition for the wave
function (3) in the same form as previously in [17];
that is,

dxdky 5 / dk 9
/ (2m)32z(1 — x) l” = (2m)3e(k) Wl =1,
(5)
where €(k) = vVm? + k? and m is the nucleon mass.

4. TENSOR ANALYZING POWER
FOR THE DEUTERON-FRAGMENTATION
PROCESS

For a binary reaction, the analyzing power T}, is
given by

tr{ Mt . M}
THMAMT ®

where the operator ¢, is determined by the relation

(mlteqlm’) = (=1)'7"(1m1 — m'|xq),

Thg =

with (Im1 — m/|kq) being a Clebsch—Gordan coef-

ficient; M is the reaction amplitude; Mt is the Her-
mitian conjugate of the amplitude M; and the symbol
tr denotes summation over the diagonal elements of
the spin matrices. We note that our definition of the
averaged operator t., can differ by a factor from the
operators used in other studies. For a more compli-
cated reaction involving a greater number of particles
in the final state—this is precisely our case—it is
necessary to redefine T}, as

drt tooMT
Ty = LT M M) )
[ drtr{MM'}
PHYSICS OF ATOMIC NUCLEI Vol.68 No. 1

2005

where dr is an element of phase space over which
summation is performed. By way of example, we indi-
cate that, in the case where two particles are emitted
from the lower vertex of the diagram, it has the form

1 64( o ) d3p2 d3p3
2c2my3” P T P om)3 2pag (21)3 - 2p30
(8)

where 64(ps — p;) is the four-dimensional delta func-
tion of the difference of the total final and the total
initial momentum. This definition of the phase space
of summation corresponds to the invariant differential
cross section pipdo /dp; for the emission of particle 1.
As aresult, the expression for this cross section in the
case of deuterons featuring a tensor polarization can
be written in the form

prodo P10d0>
= 1+ wo(2J + 1T, ) .
T () (14 3 pua2 + 1T
(9)

Here, summation over dummy indices is implied, as
usual; (p1pdo/dp1)un is the reaction cross section for
the case where colliding particles are unpolarized; J is
the deuteron spin; and p,, are the initial-state spin—
tensors, which transform, under rotations, according
to the law

dr =

Prq = ZDIqiq’(R)p,{cq’? (10)

where p;q, is the rank-x spin—tensor in the coordi-

nate system involving a new axis 2’ that is obtained
from the original z axis upon the rotation R. The
spin—tensors are defined in accordance with the fol-
lowing expansion of the spin density matrix:

pzzpnqtmr (11)

Within light-front dynamics, the amplitude for the
process shown in Fig. 1 can be represented in the
form

./\/la _ M(d—>p1b)

(1 —a) (M7 — M?(k))

The expression

M(bp — p2X). (12)

. ./\/l(d — plb)
Y(z,pir) = 12 ~M2(k))

is nothing but the deuteron wave function in the
(b, N) channel. In formula (13), pi7 is that compo-
nent of the momentum p; which is orthogonal to the
z axis, while the quantity M?(k) is given by

2, .2
PERr
x

(13)

m2 +p%T
x 1-—

M?(k) =

where b? is the square of the invariant mass of the
exchanged particle.
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Fig. 2. Tensor analyzing power Ay, for deuteron frag-
mentation accompanied by the emission of protons at
zero angle as a function of the internal momentum k. The
displayed experimental data were borrowed from (trian-
gles) [2], (boxes) [5], (diamonds) [6], and [7] for (open
circles)a 'H target and (closed circles)a '2C target. The
calculations were performed with the deuteron wave func-
tions for the (dash-dotted curve) Paris [33] and (dashed
curve) Bonn B [34] potentials. The solid curve was cal-

culated with Karmanov's relativistic deuteron wave func-
tion [27].

For the ensuing calculations to be more compact,
we introduce the matrix p,, (%, ¢) in the spin space of
the nucleon b for the deuteron polarization character-
ized by the indices (k, q),

P () = Y WM () ()M (15)
v, M, M’
X (LM1 = M'|rq)y™ (v, 1),
or, equivalently, in the symbolic form
Pk, q) = (Yteg)). (16)

[t goes without saying that, like a conventional den-
sity matrix, this matrix can be represented in the form
1

p(k,q) = 5po(k,q)(1 + P - o), (17)
where P is an analog of the polarization vector of a
nucleon in the deuteron for a given deuteron polar-

ization characterized by the indices (k,q), o are the
Pauli matrices, and

po(k,q) = tr{p(k,q)} (18)
= Z¢M(V7 H)<1M1 - M/|’€7Q>¢*M/(V7 :U’/)'

Formulas (15) and (16) are of a general charac-
ter—one can substitute any spin—tensors into them.
However, it is the tensor analyzing powers Ty and
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Ayy = —Too /2 — /3T that are usually measured
in experiments. In view of this, it is assumed below
that, in expressions (15) and (16), averaging is per-
formed with the weights corresponding to Ty and
A

yy-

Further, we denote by p; the momentum of the
detected proton, irrespective of the vertex from which
it originates, and use the invariant differential cross
section in the form

prodo (2%)4/ gt
dpy  4I(d,p) tr{iMpiMydr.

where p; is the spin density matrix for the initial state
and I(d,p) is the invariant flux of deuterons incident
on protons. As a result, we obtain

(19)

piodo 1
(), "y
I(b,
X {mpo(lq)a(bp — p2X)

dydpar I(b,p)
+ | s T a9

X %(prPQX)[l-FP%UH}a

where (o) is the vector analyzing power for nucleon—
nucleon scattering; o(bp — p2X) is the total cross
section for nucleon—nucleon scattering (it is indepen-
dent of polarization); and P is the polarization vector
of a nucleon in the deuteron, its polarization being
characterized by the indices (x, q),

tr{o - p(k,q)}
pO(’iv Q) '

The first term in the braced expression on the right-
hand side of (20) corresponds to the detection of a
spectator proton, while the second term corresponds
to the detection of a proton that underwent rescatter-
ing on a target proton.

The density matrices po(k,q) depend on the type
of averaging in expression (15). For the analyzing
powers Thy and Ths, they are given, respectively, by

,00(2,0) = %(U) . 1/)T - 3% ' %) - _3f??

—12f3faz + 3f32% — 12f72" — 6f32"
—15f2(1 — 2%) —4.5f2(1 — 2%) + 3f2(1 — 2%)
—15.5885f1 f6(1 — 22) — 1.5f2(1 — 2?)
—3f32%(1 — 2%) + 3f3(1 — 2%)* — 8.48528f, f3
—16.9706 f1 faz — 4.24264f) fo2>
— 4.24264f) f22* + 2.12132f, fo(1 — 2?)

— 212132 fo2%(1 — 2%) 4 2.12132f fo(1 — 2°)?

P = (21)

(22)
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—6fafszt —12f2f22° + A5 fafs(1 — 2%)
+4.5ff12(1 — 22) — 7.79423 f5 fe2(1 — 2?)
— T.5faf32%(1 — 2%) — 19.5fa f12° (1 — 2°)
— 779423 f5 f62° (1 — 2%) — 1.5 fo f3(1 — 22)?
— T.5faf12(1 — 22)% — 7.79423 f5 fez(1 — 2%)?
and by

po(22) = 30 UL =y 0 (23)

= 1.06066f; f2(1 — 2%) — 0.75f3(1 — 2%)
+2.25f2(1 — 2%) — 1L.5f2(1 — %)

— 2.59808f4 fo(1 — 22) + 0.75f2(1 — 2%)
+ 1.06066 f1 foz2(1 — 22) 4+ 1.5f32%(1 — 2%)
+ 1.06066 f1 fo(1 — 2%)* + 1.5f3 (1 — 2%)?
—0.75f2 f3(1 — 22) + 0.75 f2 f22(1 — 2?)

— 1.29904f5 foz(1 — 22) — 0.75f2 f32%(1 — 2?)
+0.75fo f423(1 — 2%) — 1.29904f5 f23 (1 — 2°)
—0.75f2f3(1 — 22)% + 0.75 f2 faz(1 — 22)?
—1.29904 f> foz(1 — 22)2.

In order to calculate the analyzing power A,,, the
density matrix po(y,y) can be derived from the rela-
tion
1
) = ———=p0(2,0) — V3p0(2,2).
po(y,y) \/590( ) po(2,2)

The invariant differential cross section for an unpolar-
ized beam in formula (20) is given by

1(b,p)

plodO' . 1
( ap: ) = 200y {I<d,p><1 e 9
. dydpsr __1(b,p)
xolbp m”*/mm—wu—wmeO
paodo
ips (bp — pQX)}a
where
po =3[fT + f5 + f5 + fofs(32" —=1)  (25)

+Afs(f2+ fa)z + f1 (22 +3) + (fF + f5) (1 = 2°)].

5. RESULTS OF THE CALCULATIONS
AND DISCUSSION

In order to calculate the tensor analyzing power
by formula (20), it is necessary to know the invariant
differential cross sections pagdo(bp — paX)/dps for
processes proceeding in the lower vertex of the pole
diagram. Moreover, it should be borne in mind that
particle b is off the mass shell. In the calculations,
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this circumstance was taken into account through the
use of analytic continuations of the parametrizations
of do(s',t')/dt' to s’ and t' values defined for b? #
m?. In doing this, we treated the contributions of the
processes pp — pp, np — pn, Np — pA, and Np —
pN7 (up to N7 invariant masses of 1.5 GeV/c?)
in accordance with the parametrizations presented
in[17].

The majority of the experiments with polarized
deuteron beams in Saclay and Dubna were devoted
to measuring the tensor analyzing power Thg in
A(d,p)X reactions accompanied by the emission
of protons at zero angle. The results obtained by
calculating the parameter A,, (0°) for this process
with Karmanov’s wave function (3) are represented
by the solid curve in Fig. 2 (it should be recalled that,

at zero angle, Ay, = —T50/V2).

One can see that, in contrast to what we have
in the calculations with standard nonrelativistic
deuteron wave functions [33, 34], the solid curve
does not change sign and is in better agreement with
experimental data in the region of k between 0.4 and
0.8 GeV/c. In all probability, the discrepancy between
the results of the calculations and experimental data
in the region of k around 0.3 GeV/c cannot be
removed without going beyond the pole mechanism,
this region corresponding precisely to those values of
kinematical variables in backward elastic deuteron—
proton scattering at which the cross section given for
this process by the triangle diagram is expressed in
terms of the cross section for the reaction NN — dr
(the latter cross section has a resonance character
here).

In Fig. 3, the results of the calculations are con-
trasted against experimental data on the tensor an-
alyzing power in the reaction where the fragmenta-
tion of 4.5-GeV/c deuterons on beryllium nuclei is
accompanied by the emission of protons at an angle
of 80 mrad. One can see once again that the cal-
culations with Karmanov’s wave function provide a
qualitatively correct picture of the general behavior
of the parameter A,, as a function of the detected-
proton momentum, but that the curves calculated by
using standard deuteron wave functions are in a sharp
contradiction with experimental data, changing sign
at a proton momentum of about 3.2 GeV/c.

Finally, Fig. 4 presents experimental data on the
parameter A, in the inclusive breakup of 9-GeV/c
deuterons on carbon nuclei for the case where the
emitted protons are detected at an angle of 85 mrad.
Also given in this figure are the results obtained
by calculating this parameter with various deuteron
wave functions.

2005
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Fig. 3. Tensor analyzing power A, for the reaction where

the fragmentation of 4.5-GeV/c deuterons is accompa-
nied by the emission of protons at an angle of 80 mrad
versus the detected-proton momentum. The displayed
experimental data were borrowed from [12]. The notation
for the curves is identical to that in Fig. 2.

[t can be seen that the general trend revealed in
discussing the data in Figs. 2 and 3 manifests itself
here even more sharply: the momentum dependence
calculated with the relativistic deuteron wave function
from [27] is very close to the experimental values,
whereas the calculations with the standard nonrela-
tivistic wave functions lead to results that dramati-
cally deviate from the experimental data.

Since the relativistic deuteron wave function
from [27] has a rather complicated form, there arises
the question of which terms in this function are cru-
cial in qualitatively describing experimental data on
the tensor analyzing power for relativistic-deuteron
fragmentation on nuclei at high transverse momenta
of protons. In order to answer this question, we
have calculated the parameter A, for the reaction

12C(d, p) X at 9 GeV/c for the proton emission angle
of 85 mrad, successively including in the calculation
the terms fs, ..., fg of the function in (3). The results
are shown in Fig. 5.

From Fig. 5, one can see that the dominant con-
tribution to the quantity A,, comes from the first two
terms of the function in (3); the remaining terms only
lead to corrections, whose role becomes more pro-
nounced with increasing momentum. It was shown
in [27, 31] that, in the nonrelativistic limit, the func-
tions f1 and fo correspond to the S and D compo-
nents of the deuteron wave function. It follows that,
in a moving deuteron, the relationship between the
longitudinal and transverse components of the inter-
nal momentum differs significantly from that which
holds either in the nonrelativistic case or in the case
where relativistic effects are taken into account in
accordance with the approaches developed in[35, 19,
23]; in all probability, the method proposed in [27,
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Fig. 4. Tensor analyzing power Ay, for the reaction where
the fragmentation of 9-GeV/c deuterons is accompanied
by the emission of protons at an angle of 85 mrad versus
the detected-proton momentum. The displayed experi-
mental data were borrowed from [11]. The notation for the
curves is identical to that in Fig. 2.

Ayy 7

06  f+fhtfstfitfstfs /
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——————————— h+h+h+h /
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p, GeV/c

Fig. 5. Tensor analyzing power Ay, for the reaction
12C(d,p)X at a momentum of 9 GeV/c for the proton
emission angle of 85 mrad versus the detected-proton
momentum [11]. The different curves here correspond to
the successive inclusion of the terms f; of the relativistic
deuteron wave function from [27] in the calculation.

30, 31] for treating the region of relativistic momenta
reflects this distinction correctly.

6. CONCLUSION
The present investigation has provided suffi-
cient grounds to conclude that, in contrast to stan-
dard nonrelativistic wave functions, the relativistic
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deuteron wave function obtained in [27] within light-
front dynamics makes it possible to reproduce basic
features of experimental data even on the basis of the
simple pole mechanism. In our opinion, this is due to
the fact that, in the approach developed in[27, 30, 31],
there arises a new relationship between the longitudi-
nal and transverse components of the intranuclear-
motion momentum, a relationship that is different
from that which is dictated by a superposition of
S and D waves in nonrelativistic deuteron wave
functions. This effect was already discussed in [31]
for the example of the Wick—Cutkosky model, and it
was shown there that even a spherically symmetric S-
wave system of two particles in light-front dynamics
becomes dependent on angles. In all probability, this
is a manifestation of a close relation in the relativistic
region between the internal motion of a system and
its motion as a discrete unit.

Our present results may have far-reaching con-
sequences both for obtaining deeper insight into
the structure of the deuteron at short distances and
for interpreting mechanisms of relativistic-deuteron
fragmentation. Indeed, it turns out, quite unexpect-
edly, that, within light-front quantum mechanics,
the deuteron can be considered as a two-nucleon
system up to short relative distances corresponding
to internal-nucleon momenta of k ~ 0.5—0.8 GeV/c.
A similar conclusion was also drawn in the stud-
ies reported in [16] and devoted to measuring the
momentum spectra of 9-GeV/c deuterons in the
region of proton transverse momenta between 0.5
and 1 GeV/c; it was indicated there that, in all
probability, the nucleons of the deuteron preserve
their individuality up to relative momenta of about
1 GeV/e.

The second important conclusion that can be
drawn from the present investigation is that, in
relativistic-deuteron fragmentation, relativistic ef-
fects become operative rather fast. Our results sug-
gest that the simplest way to take them into account
is to consider the reaction mechanism within light-
front quantum mechanics without introducing addi-
tional degrees of freedom.
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Inclusive Formation of 7% Mesons in dC and dCu Interactions at a Momentum of 4.5 GeV/c
per Nucleon

Kh. U. Abramyan, M. A. Kozhin, G. L. Melkumov, M. N. Khachaturyan, and A. G. Khudaverdyan

Cross sections for the inclusive production of 7° mesons ind + C — 7% 4+ z and d + Cu — 7% + x reactions
at a momentum of 4.5 GeV/c per nucleon are measured for the kinematic region specified by the inequalities
0, <16° and E; > 2 GeV (in the laboratory frame). The dependence of the exponent n in the parametrization
Ed3o/d3p ~ A™ on the cumulative numbers X in the interval of 0.6 < X < 1.8 and on the square of the
transverse momentum in the interval 0.04 < P? < 0.40 (GeV/c)? is obtained from the ratio of the cross
sections for the generation of 7 mesons on carbon and copper nuclei. The probabilities of the formation of
six-quark configurations in 2H, He, and '2C nuclei are estimated. On the basis of statistics including more

than 40 000 7° mesons, the double-differential cross sections for the d + C — 70 + z reactions are determined
for the first time.

Effects of Nuclear Deformations in Dinuclear Systems: Application to the Fission Process
A. V. Andreev, G. G. Adamyan, N. V. Antonenko, S. P. Ivanova, and W. Scheid

The relative yields of fission fragments and the mean values and variances of the distributions of the total
kinetic energy of fragments are described on the basis of a refined scission-point model. It is shown that the
potential energy of a prescission configuration as a function of fragment-deformation parameters has several
minima at fixed charge and mass numbers of fragments. Fission from these minima results in a relative
enhancement of the yield of fragments at the corresponding values of the total kinetic energy and in the
appearance of a fine structure in the mass—energy distribution, this structure being different from the fine
structure induced by the even—odd effect.

Inclusive Production of Deuterons in 1®0p Collisions at a Momentum of 3.25 GeV/c
per Nucleon

E. Kh. Bazarov, V. V. Glagolev, K. G. Gulamov, M. Yu. Kratenko, S. L. Lutpullaev, K. Olimov, Kh. Sh. Khamidov,
A. A. Yuldashev, and B. S. Yuldashev

For the first time, experimental data on the inclusive production of deuterons in ¢Op collisions at high
energies are obtained under conditions of 47 geometry. In the deuteron-momentum spectrum in the oxygen-
nucleus rest frame, an irregularity is found in the region 0.40 < p < 0.55 GeV/c, and reasons that could be
responsible for its appearance are discussed. The mean multiplicities of secondary fragments are correlated
with the presence of a deuteron in an event, these correlations being positive for zy < 4 fragments and negative
for5 < zy < 7iragments (this is likely to be due to baryon-charge conservation).

Color Fluxes in the Processgg — B, + ¢ + b
A. V. Berezhnoy

The contributions of various color fluxes to the cross section for the gluonic production of B, mesons are
calculated, which is necessary for the simulation of events involving B. mesons that is based on the PYTHIA
package, since the method of hadronization of final partons and hadronic residues that is used in the PYTHIA
code depends on the color-flux type. A modified method of partition into color fluxes is proposed.
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Analysis of the Phase Time of Cold-Neutron Tunneling
through a Neutron Interference Filter
A. K. Zaichenko and V. S. Olkhovsky

Explicit expressions for the energy dependence of the transmission factor for the tunneling of particles
through two rectangular barriers and the respective tunneling phase time are obtained in the resonance region.
The resonance half-width and the neutron-tunneling phase time at the resonance are calculated.

Quantum and Thermodynamic Features of Spontaneous
and Low-Energy Induced Fission of Nuclei
S. G. Kadmensky

[t is shown that the coordination of A. Bohr’s concept of transition fission states with the properties of
Coriolis interaction is possible if an axially symmetric fissile nucleus near the point of scission into fission
products remains cold despite a nonadiabatic character of nuclear collective deformation motion. The quantum
and thermodynamic properties of various stages of binary and ternary fission after the descent of a fissile
nucleus from an external saddle point are investigated on the basis of the quantum theory of fission. The
important role of superfluid and nucleon—nucleon correlations in the formation of fission products and in the
classification of fission transitions is shown. The distributions of thermalized primary fission fragments with
respect to spins and their projections onto the symmetry axis of the fissile nucleus and fission fragments are
constructed, the properties of prompt neutrons and photons emitted by these fragments being determined by
these distributions. A new nonevaporation mechanism of the formation of third particles in the ternary fission
of nuclei is proposed. This mechanism is associated with the transitions of third particles from cluster states
of the fissile-nucleus neck to high-energy states under shakeup effects, which are caused by a nonadiabatic
character of nuclear collective deformation motion.

Alpha Particles Accompanying the Weak Decay of !{ Be and 4 B Hypernuclei
L. Majling, V. A. Kuzmin, and T. V. Tetereva

The possibilities of studying in detail weak AN interaction in ' Be and QB hypernuclei, which stand out
owing to their caNA cluster structure, are discussed. The detection of a few groups of correlated a-particle
pairs furnishes information about decays to specific states of a final nucleus (8Be*, 8Li, ®B), thereby opening the
way to a phenomenological analysis of the weak decays of p-shell hypernuclei. The ratios of the intensities of
individual groups—it is planned to measure them by using the JINR nuclotron—will become a useful criterion
for selecting a suitable model of weak AN interaction. A brief review of the modern state of the physics of
hypernuclei is given.

Decay ¢(1020) — ~fo(980): Analysis within the Nonrelativistic-Quark-Model Approach
A. V. Anisovich, V. V. Anisovich, V. N. Markov, V. A. Nikonov, and A. V. Sarantsev

The possibility of adequately describing the processes ¢(1020) — vz and ¢(1020) — ~fp(980) within the
nonrelativistic quark model under the assumption that f,(980) is predominantly the quark—antiquark system
is demonstrated. Various mechanisms of radiative decay—that is, the emission of a photon by a constituent
quark (additive quark model) and a charge-exchange current—are considered. The status of the threshold
theorem applied to the reactions being studied—namely, the behavior of the decay amplitude for My, — mg
and my, — mg—is also discussed. In conclusion, arguments in favor of the ¢q origin of fy(980) are given.

Alpha-Cluster States in 120
V. Z. Goldberg, K.-M. Killman, T. Lénnroth, P. Manngard, and B. B. Skorodumov

The excitation function for elastic a-particle scattering on *C was measured in the laboratory-energy
range 16.3—19.2 MeV by using a backscattering technique with a thick target. These data were analyzed,
together with the old low-energy data of G.L. Morgan et al., in the framework of the R-matrix formalism.
Spin-parity assignments were made for 32 states in O in the excitation range 9—20 MeV. The estimations
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of the widths of the states are also presented. The 0% and 0~ a-cluster bands appeared to be well separated
by 5.6 MeV (as in 'O and 2°Ne). We did not find a confirmation of the existence of negative-parity molecular
states proposed by M. Gai et al. We observed the effect of doubling of a-cluster levels in 18O (it is similar to
that found in 22Ne).

Mass Splittings of Nuclear Isotopes within the Chiral Soliton Approach
V. B. Kopeliovich, A. M. Shunderuk, and G. K. Matushko

The differences in the masses of isotopes with atomic numbers between about 10 and about 30 can be
described within the chiral soliton model in satisfactory agreement with data. The rescaling of the model is
necessary for this purpose—the reduction of the Skyrme constant by about 30 %, providing the nuclear variant
of the model. The asymmetric term in Weizsdcker—Bethe—Bacher mass formula for nuclei can be obtained
as the isospin-dependent quantum correction to the energy of a nucleus. Some predictions for the binding
energies of neutron-rich isotopes are made in this way—for example, from *Be or 9B to 3'Ne or 3?Na.
Neutron-rich nuclides with high isospin values are unstable with respect to decay due to strong interactions.
The SK4 (Skyrme) variant of the model, as well as the SK6 variant (sixth-order term in the Lagrangian as a
soliton stabilizer), is considered, the rational-map approximation being used to describe multi-Skyrmions.

Subthreshold ¢-Meson Production and Medium Effects in Proton—Nucleus Reactions
E. Ya. Paryev

Within the spectral-function approach, the direct production and decay are studied via the dikaon (dimuon)
channel of ¢ mesons in the interactions of 2.4- and 2.7-GeV protons with light and medium-mass target
nuclei. It is shown that the K™K~ (pu*p™) invariant-mass distribution consists of two components, which
correspond to ¢ decays outside and inside the target nucleus. The first (narrow) component has the free ¢
width, while the second (broad) component is distorted by nuclear-matter effects due to resonance-nucleon
scattering and a possible in-medium modification of kaons and p mesons at finite baryon density. The relative
strength of the inside and outside components is analyzed within various scenarios for the ¢ width and
momentum cut. It is demonstrated that the width of the resulting dimuon invariant mass distribution on
medium nuclei is almost twice as broad as the free ¢ width if the total in-medium width of ¢ is used and if the
respective cutoff for the ¢ 3-momentum is applied, whereas the resulting dikaon invariant-mass distribution
has an insignificant sensitivity to the in-medium properties of ¢ owing to the strong absorption of the K~ in
surrounding nuclear matter. On the other hand, because the K™ and K~ are distorted on their paths out of
the target nucleus mainly because of the hadronic kaon potential, the latter is broadened and shifted to higher
invariant masses. This means that the measurement of such broadening would give an additional piece of
evidence for the modification of kaon and antikaon properties in the nuclear medium.
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Properties of Products Originating from the Interaction
of 35-MeV/nucleon “Li lons with Pb Nuclei

N. A. Demekhina®, G.S. Karapetyan'), S. M. Lukyanov?,
Yu. E. Penionzhkevich?), N. K. Skobelev?), and A. B. Yakushev?

Yerevan Physics Institute, ul. Brat’ ev Alikhanian 2, Yerevan, 375036 Armenia
Received May 6, 2003

Abstract—The results are presented that were obtained by measuring and analyzing the yields and
kinematical features of radioactive products of the reactions initiated in a lead target by lithium ions
accelerated to an energy of 35 MeV per nucleon. The cross sections, charge and mass distributions, and
kinematical and energy features of various reaction products associated with the fission and the evaporation
channels of the decay of excited nuclei are determined. Quantities that are calculated in the present study
include the momenta and kinetic energies of residual nuclei, as well as the momentum transfer and the
excitation energy of intermediate nuclear systems formed upon complete and incomplete fusion. On the
basis of an analysis of data obtained in our experiment, the total cross section for nuclear interaction and
partial widths with respect to various channels of the decay of intermediate compound nuclei are determined
in the energy range being investigated. (© 2005 Pleiades Publishing, Inc.

INTRODUCTION

Investigation of heavy-fragment production under
the effect of accelerated ions is of great interest not
only for exploring reaction mechanisms but also for
obtaining deeper insights into the regularities of the
formation of residual nuclei at intermediate energies.
The results of such investigations can be used in
considering a number of applied problems and in cre-
ating ion sources, as well as in exploring fundamental
regularities of the formation of superheavy elements.

Previous investigations in the realms of ion—
nucleus interaction revealed that, at low energies
(less than 10 MeV per nucleon), the main interaction
channel is characterized by the total fusion of nuclei
and the formation of a compound nucleus. Its decay,
dominated by the mean nuclear field, is adequately
described on the basis of various statistical mod-
els [1—3]. The growth of the projectile-nucleus energy
is accompanied by an increase in the probability
of the formation of fast particles and light nuclei
emitted in the direction of the incident-beam axis.
This observation is interpreted by various authors
as a manifestation of peripheral processes, incom-
plete fusion, preequilibrium emission, etc. A feature
common to these products is that their production

D¥erevan State University, ul. A. Manukian 1, Yerevan,
375049 Armenia.

2Joint Institute for Nuclear Research, Dubna, Moscow
oblast, 141980 Russia.

“e-mail: nina@lx2. yerphi.am

is of a spectator character, the projectile energy—
momentum not being completely transferred to the
target nucleus [4, 5]. At energies explored in the
present study, the incomplete fusion of nuclei must
occur with a high probability; however, data on the
probability of the formation of intermediate nuclear
systems, as well as on the properties of various decay
channels and of the products originating from these
channels, are scanty and fragmentary, this hindering
the systematization of the data and the application of
model concepts. The data reported in the literature
for the scattering of "Li ions on Pb nuclei refer to
the total interaction cross section measured by the
beam-absorption method at energies in the range
30—60 MeV per nucleon [6].

Our present investigations of the probability of the
formation of various products originating from the
decay of intermediate excited states are of interest for
understanding the mechanisms of relevant reactions
and of energy dissipation in the processes of complete
and incomplete fusion and for determining the prob-
abilities of various deexcitation channels. For heavy
nuclei, the fission of intermediate states, which are
characterized by a broad distribution with respect to
masses, excitation energies, and angular momenta, is
the most probable decay channel in the energy range
investigated here. An analysis of the charge and mass
distributions of fission fragments makes it possible to
draw conclusions on the properties of fissile nuclei.
Spallation reactions accompanied by the evaporation
of neutrons, charged particles, and light nuclei and

1063-7788/05/6801-0021$26.00 © 2005 Pleiades Publishing, Inc.
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Fig. 1. Gamma spectrum of the activity induced in a "' Pb
target (the time of the measurements was 4 hours, and the
source—detector distance was 5 cm).

by the formation of products in the near-target mass
region are competing processes at these energies.
Therefore, information about processes proceeding at
the nuclear surface in peripheral collisions can be
obtained by measuring the yields of residual nuclei
whose masses lie around the target mass.

Basic regularities of nucleus—nucleus reactions
are investigated by analyzing the properties of both
fast light products emitted from the target and heavy
nuclear residues. In the latter case, measurement of
an induced activity is the simplest and most infor-
mative method for separating interaction channels
and for studying the charge, mass, and momentum
distributions of nuclei produced in the target and
recoiled into catch foils. The momentum and energy
transfers are quantities that furnish information about
the character of collisions. These data make it pos-
sible to estimate the relationship between complete-
and incomplete-fusion processes and to explore con-
ditions of the possible saturation of nuclear excita-
tion [7, 8.

In the present study, the cross sections for the for-
mation of heavy radioactive products were determined
on the basis of a gamma-spectrometric analysis of
an induced activity. Information about unmeasurable
reaction products was extracted by using the approx-
imations presented in the literature for the charge
and mass distributions of residual nuclei. Data on
the total and partial cross sections for the interaction
in the energy region being studied were assessed via
summation along the isobaric-distribution curve.

Relying on the measured fractions of radioactive
products emitted into catch foils and employing the
formalism of the two-step vector model, we deter-
mined the kinematical parameters of residual nuclei
and the momentum features of intermediate nuclear
systems [9—12]. The results of our calculations are
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discussed within the concept dealing with the prob-
abilities of the complete and incomplete fusion of
interacting nuclei in the energy region investigated
here [13, 14].

EXPERIMENTAL PROCEDURE

A beam of “Li ions accelerated to an energy of
35 MeV per nucleon at the U-400M cyclotron of the
Joint Institute for Nuclear Research (JINR, Dubna,
Russia) was used to irradiate a target. The target
was prepared in the form of an assembly of seven
lead foils 12 pm thick having a natural isotopic com-
position ("'Pb: 1.48% 294Pb, 23.6% 2°Pb, 22.6%
207Ph and 52.3% 208Pb). For catch foils, we took
aluminum plates 20 pm thick arranged on the two
sides of the target in the direction orthogonal to the
beam axis. The whole system was placed within the
vacuum chamber of the beam guide. The irradiation
was performed for 40 min at a beam intensity of 30 nA
(about 10° nuclei per second).

The measurements of the spectra of gamma rays
emitted in the decays of radioactive reaction products
began 10 min after the completion of the irradiation
and lasted five months. In the measurements, we used
a detector from high-purity germanium, its resolution
being 0.23% at an energy of 1330 keV. The depen-
dence of the gamma-ray-detection efficiency on the
energy and on the geometry of our experimental facil-
ity was measured with the aid of ®”Co, °Co, ®*Eu,
152F 4, and 133Ba reference sources.

In the process of our measurements, we were able
to identify radioactive products in more than 20 spec-
tra of "'Pb and in 40 spectra associated with recoil
nuclei in the catch aluminum foils. Figures 1 and 2

display the spectra of the irradiated "'Pb foils and the
spectra of recoiling nuclei in the catch aluminum foils.
The main problem in identifying reaction products by
the activation method stems from the fact that, in
the presence of a heavy background caused primarily
by induced activity and by a natural background, it
is difficult to single out nuclear gamma transitions
associated with a specific nucleus. The energies de-
termined precisely for gamma lines associated with
the same isotope, the ratios of their intensities, and
the decay rates are basic observables that make it
possible to separate radioactive reaction products and
to determine the cross sections for their production.
The number of photons recorded at the photopeak
corresponding to a radioactive product of a specific
reaction (independent yield, I) was calculated on the
basis of the relation

N, ®rewo (1 — e Mi)eAMz(1 — ¢=As3) )
A )

S =
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where S is the area under the photopeak; o is the
cross section for the reaction leading to the formation
of the product being studied; ® is the beam intensity
(in 1/s units); N, is the number of target nuclei
(in 1/em? units); ¢; is the irradiation time; ¢, is the
time interval between the termination of the irradi-
ation and the commencement of the measurement;
ts3 is the time of the measurement; A is the decay
constant; w is the relative intensity of gamma tran-
sitions of given energy; « is the coefficient of gamma-
ray absorption in target and detector materials for
a given energy; and ¢ is the detection efficiency for
gamma rays from nuclear transitions. This case refers
to isotope formation in the interaction of nuclei and
concerns the independent yield (I). The presence of
the contribution to the yield of a given isotope from the
decays of neighboring unstable isotopes complicates
the calculation of relevant cross sections [15, 16]. If
the cross section for the production of a parent isotope
has been determined experimentally or estimated on
the basis of other sources, then the independent yields
of daughter nuclei can be obtained from the relation

o )\p_)\d 1—6_>‘pt1
PPN = A | A2

14
eprtg)

S = anbmewd{ (2)

x e~ Mwt2(1 —
1 — ettt
Al
1 — el
Ad
where the symbols d and p label variables that refer
to, respectively, the daughter and the parent isotope,

while S determines the measured total area under the
photopeak.

G*Adtz (1 _ G*Adts ):|

+ oy e_AdtQ(l — e_Adtg’)},

In some limiting cases, the precursor contribution
can be disregarded if the parent-nucleus half-lives are
very long or if the weight of the contribution is low.

In the case where parent and daughter isotopes
could not be separated experimentally, the calculated
cross sections are classified as cumulative ones (C).

In order to analyze the measured spectra, we em-
ployed the standard DEIMOS code [17]. The half-
lives of identified isotopes were within the range be-
tween 15 min and 1 yr.

The error in determining cross sections depended
on the following factors: the statistical significance of
experimental results (<2—3%), the accuracy in mea-
suring the target thickness and the accuracy of tab-
ular data on nuclear constants (<3%), and the errors
in determining the detector efficiency with allowance
for the accuracy in calculating its energy dependence
(<10%).
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Fig. 2. Gamma spectrum of radioactive nuclei emitted
into the catch aluminum foils: (a) data for forward catch
foils and (b) data for backward catch foils.

Additional information about the reaction mech-
anism was obtained by measuring the properties of
recoil nuclei with the aid of the catch-foil method.
For a detailed account of the relevant experimental
technique and of the mathematical formalism used
in data processing, the interested reader is referred
to [9—13]. The idea of the method consists in irra-
diating an assembly that contains target and catch
foils and in recording, both in the target itself and
in the catch foils, whose chemical composition rules
out the formation of the nuclei under study in them
under the effect of irradiation, the emerging products.
Depending on the geometric and other experimental
conditions and on the problem at hand, one measures
the differential or integrated ranges of recoil nuclei
and their angular distributions. If use is made of a
thick target—thick catch foil system, as was done in
the present experiment, the thicknesses of the targets
and of the catch foils are severalfold larger than the
ranges of the products being studied. The disposition
of the catch foils in the immediate vicinity of the target
makes it possible to capture nuclei emitted within a
solid angle of about 27, in the beam-axis direction
(F) and in the direction opposite to it (B). Under
such conditions, one measures the integrated ranges
of radioactive reaction products and the anisotropy of
their emission with respect to the beam axis.

As the results of the measurements, one obtains
the relative amounts of radioactive products in the
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forward (F') and backward ( B) catch foils; that is,
F = Sp/(Sr+ S+ St), (3)
B = Sp/(Sr+ S+ Sr),

where Sr, Sp, and St are the photopeak areas as-
sociated with the products under study in the catch
foils and in the target. The resulting data were used to
calculate the forward—backward ( F'/ B) anisotropy of
product emission and the ranges in the target material
(R).

The results of such measurements are usually an-
alyzed on the basis of the two-step vector model
with the aid of the mathematical formalism developed
in[9—12]. The gross features of the pattern being con-
sidered are consistent with the concept of compound-
nucleus formation and decay within the cascade—
evaporation model, but this pattern corresponds to a
simplified version that makes it possible to estimate
kinematical features of the reactions for a comparison
with the measured parameters. According to [9—11],
the first reaction stage involves the formation of a
compound nucleus having an excitation energy E*
and a velocity v (or the momentum p) along the beam
axis. It is assumed that, at the second reaction stage,
there occurs the evaporation of nucleons and light
nuclei, with the result that the nucleus in question
acquires an additional velocity V. The velocity of the
residual nucleus is given by the vector sum of the
two velocities (v + V). That reaction fragments are
emitted in the forward direction is due to the lon-
gitudinal velocity (v), which is acquired at the first
stage of the interaction. In general, this velocity has
a component along the beam axis and a component
in an orthogonal direction, while the quantity V" obeys
an anisotropic distribution. However, the application
of the procedure involving thick catch foils oriented
orthogonally to the beam axis makes it possible to
measure only the longitudinal component of the ve-
locity transfer (v} ), not providing information about
the angular distribution of the vector V. In such
experiments, an analysis of data is performed by in-
troducing the following approximations:

(i) The quantity v is constant and has only one
component v| directed along the beam axis.

(ii) The quantity V is isotropic.

(iii) The quantities v and V" are independent of each
other.

The mathematical formalism developed in [9, 11,
12] makes it possible to calculate, on the basis of
experimental results for F' and B, parameters that
characterize the first (v}, £*) and the second (R and
T, which are the fragment range and kinetic energy,
respectively) stage of the interaction.

The longitudinal-momentum-transfer fraction
p||/pcN with respect to the maximum possible value,
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which corresponds to the momentum of a hypothet-
ical compound nucleus, enables one to calculate the
excitation energy E* and to determine the number of
projectile nucleons transferred to the target.

DISCUSSION
Fission Products

Table 1 gives experimental data concerning the
yields of products in the mass range 40—153 amu,
which were interpreted as fission fragments. The
application of the induced-activity procedure made
it possible to determine the yields of radioactive
products whose features are convenient for measure-
ments. The yields of stable and short-lived nuclei, as
well as the yields of other unmeasurable products,
were estimated with the aid of the approximat-
ing functions known from [18]. Gaussian functions
whose parameters were fitted to experimental results
were employed to represent charge distributions.

The fission of nuclei in the region of lead is charac-
terized by a symmetric mass distribution of products,
which was described by a Gaussian distribution. A
complete pattern of the charge and mass distribution
of fission fragments was obtained with the aid of the
expression [18]

0(A,Z) =04 exp[—(A — MA)Q/FIQL‘] (4)

X ﬁ ZeXp[—(Z —i—Z,)%/T%],

where o(A, Z) is the cross section for the formation
of a product that has a charge number Z and a mass
number A, the remaining parameters that appear in
this formula being determined from a fit to the mea-
sured yields. In performing our analysis, we assumed
that I' 4 is a normalization factor. Further, M4 and 64
are the mean values of, respectively, the mass and the
width of the mass distribution of fission fragments; Z,
and I'z are the most probable charge and width of the
charge distribution; and the coefficient ¢ determines
the contribution of radioactive precursors (the value
of i = 0 corresponds to the yield of an independent
product, while positive and negative values of i specify
the fractions of the 3~ and 8T branches of the decay
of neighboring unstable isobars). The results of the
analysis performed in [18] revealed that Z, and I'z
can be represented as slowly varying linear functions
of the mass numbers of fission fragments; that is,

Zy=p1+p2A, Tz =y +74, (5)
where 71, 79, p1, and pe are adjustable parame-
ters. The values obtained here for the parameters are
quoted in Table 2.

The total fission cross section was calculated by
means of integration over the entire curve of the mass
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Table 1. Cross sections for the formation of fission products
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Nucleus Reaction type o, mb Nucleus Reaction type o, mb
"Be I 27.70 4 2.80 102mRh I 0.42 4 0.03
22Na C 7.40 4+ 0.74 103Ry C 15.65 4+ 1.51
24Na C 9.56 & 1.00 105Ry C 7.70+0.85
BMg C 0.26 + 0.03 105(m+9) Rh I 13.74 £ 1.37
383 I <0.40 105(m+9) Ao I 2.00 £ 0.22
43Sc C 0.21 +0.06 105Cd C < 1.00
44(m+9) S I 0.37 +0.11 106Ry C 11.11+1.11
46(m+9) S I 0.56 & 0.07 106mRh I 7.60 & 0.91
17Ca C <0.03 110m A o [ 2.70 £ 0.40
5 Mn I <0.02 Himp I 1.90 +0.19
%Co C 0.043 + 0.008 Hi(m+g) Ag C 10.18 +1.02
%6Co C 0.07 + 0.009 HimCq [ <0.63
58(m+9) Co I 0.20 £ 0.03 Hllp C 2.50 4 0.25
Fe C 0.84 4 0.09 Hisn C <191
67Cu C 7.404+0.74 H2pq C 3.104+0.31
69m7n [ 1.68 +0.17 H2Ag [ 2.10 £ 0.25
mzn I 1.32+£0.18 H3(m+9) Ag C 2.45 4 0.37
27n I 0.43 +0.04 113(m+9) Sp C 3.34 4 0.50
@Ga I 6.80 + 0.68 H5Cd C 1.25+0.13
Ga C 1.23+0.14 179Cd C 1.26 +£0.13
T4As I 0.37 & 0.04 Himcd C 1.31+£0.16
Se I 0.10 £ 0.01 H79n I <0.98
"5Br C <0.17 HimSp I 2.83 +0.28
"6As I 4.13 £ 0.41 118m G I 1.90 £ 0.20
T7(m+9) Ge I 2.00 £ 0.20 120m Sy I 3.80 & 0.40
T1(m+9) B I 0.12 £ 0.01 1219 Te I 4.60 £ 0.69
TKr C <0.16 121mTe I 1.954+0.29
BGe C <0.11 1217 I <0.14
8As [ <1.45 121X e C <0.79
8lmgGe C <0.77 122(m+9) S I 2.74+0.30
82(m+9) Br I 1.67+0.17 123mTe I 4.73 4+ 0.50
83Rb C 2.25+0.23 123] I 0.94+0.10
84Br C <0.80 123X e C <0.44
84(m+9)Rh I 5.22 4 0.52 124(m+9) S I 0.88 & 0.09
859Gt C 2.70 +0.27 124] I 1.25+0.13
85m S I <0.34 1258h C 0.86 & 0.09
859y C 0.35 + 0.04 126(m+g) S I <0.07
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Table 1. (Contd.)

Nucleus Reaction type o, mb Nucleus Reaction type o, mb
8smy C 5.29 4 0.60 1261 I 1.824+0.19
86(m+9)Rp I 7.04 4+ 1.05 12798 C <0.26
8TKr C <0.40 127Gh C < 0.06
879y I 0.68 & 0.07 127(m+9) X e I 0.29 £ 0.03
8Tmy C 2.00 + 0.20 127Cs C <0.25
87(m+9) 7 C < 7.40 1288h C 0.38 +0.04
88y C 1.1240.35 1298 C <0.55
89Rb C < 1.87 129mTe I 1.62+0.17
89(m+9) 7 C 0.48 +0.05 1299Ba C <0.73
89mNh I <0.45 129mpBa C <0.19
90my I 3.80 £ 0.40 130(m+9)] I 0.29 +0.03
9Sr C 4.94 4 0.50 131mTe C < 0.50
oimy I <0.32 132Te C <0.02
92Gr C 1.344+0.16 132Cs I 0.37£0.04
92y I < 2.00 133(m+9)] C < 1.00
92mNh I 0.10 +0.01 133mBa I 1.21+0.15
93y C 13.00 £+ 1.30 133]a C < 1.60
91y C <215 136Cs I 0.05 £ 0.005
BZr C 8.40+0.84 137Tm Ce I <0.10
95(m+9)Nb I 6.50 & 0.65 13984 C <0.45
959 Te C 0.55 + 0.06 139(m+9) Ce C 1.1740.12
95mTe I 1.4440.14 140B4 C < 0.06
%Ru C <0.30 1401 a I 0.18 +0.02
9Nh I 5.47 4+ 0.55 1 g C <0.30
96(m+9) Te I 0.47 +£0.05 Ml Ce I 0.57 +0.06
NZr C 2.00 4 0.22 MTEy I <0.24
97(m+9)Nh I 3.55 4 0.36 17Gd C <0.03
9Ru C <0.20 1489pm I <0.05
98mNh I 1.50 4 0.16 148mpm I <0.68
Mo C 10.72 £ 1.08 H8E Y I <0.90
99m Te I 0.26 4 0.03 153Gd C <0.25
101mph I 0.78 £ 0.08 182(m+9) Ty C <0.01
101pq C 1.50 +0.15

distribution with allowance for the formation of two
fragments in one fission event (by introducing a fac-

tor of 0.5). The result proved to be 2.85+ 0.3 b. In
the total isobaric distribution of interaction products
(Fig. 3), the region of fission fragments is described by

a curve that is calculated by using experimental data
constituting about 60% of the total data set.

The calculation of the averaged properties of a
fissile nuclear system revealed that the mass number

of a nucleus undergoing fission is on average Ajss =
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206 amu, the mean value of the charge being Zsss =
82 (ZF?SS/AﬁSS = 32.64). Thus, the nucleus undergo-
ing fission does not differ from the target nucleus
substantially, this being compatible with the concept
that, in the energy region being considered, there
occurs an incomplete fusion after the breakup of the
projectile nucleus.

From Fig. 3, it can also be seen that light nuclei
in the mass region A < 40 amu are produced with a
high probability. The yields of such products are not
discussed in the present study.

Our measurements of the properties of recoil nu-
clei made it possible to calculate kinematical parame-
ters and single out data concerning fission fragments
and the compound nucleus undergoing fission (see
Table 3). For fission fragments, we obtained the mean
value of F/B =1.23 £0.25 (see Table 3). A weak
anisotropy of the divergence of these nuclei confirms
the fission nature of their production. The ranges in
question were calculated in the approximation where
it is considered that the kinetic energies of fission
fragments are due primarily to their Coulomb repul-
sion and are much higher than the energy of the mov-
ing compound nucleus. The use of the approximation
v/V <1 [9—11] makes it possible to calculate the
ranges by the formula

R =2W(F + B), (6)

where W is the target thickness (in mg/cm?). On the
basis of the analysis performed in [9, 11, 12], one can
also calculate the quantity

n=u/V =[(F/B)"? = 1]/[(F/B)"*+1] (7)

and obtain values of the longitudinal velocity v and
of the longitudinal-momentum transfer p| = Ajssv)
in the primary interaction. The relative longitudinal-
momentum (longitudinal-velocity) transfer pj/pcn,
where pcy is the momentum of a hypothetical com-
pound nucleus formed in a complete fusion, is the
main feature that characterizes the probability of a
complete or an incomplete fusion. Its mean value
of 0.46 £0.09, which was obtained in the present
study, supports the hypothesis that nuclei produced
upon an incomplete fusion undergo fission. The mean
excitation energy of the intermediate nucleus and the
number of nucleons transferred from the projectile
to the target nucleus can be estimated by using the
relations [7, 8]

E*/EcNn = 0.8p)/pcn, (8)
(A + Ap)(Ap — Am) 9)
A (A + A, —Am)

where A; and A, are the target and the projectile
mass, respectively, and Am is the number of nucleons

V)| /veN =
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Table 2. Fitted values of the parameters in (4) and (5)

Parameter Value

04 135.00 £+ 5.80
My 103.00 £ 0.41
| 24.60 +0.39
T 0.74 +0.10
Yo 0.0042 £ 0.0008
111 1.64 +0.23
11 0.41 + 0.008

emitted in the form of the projectile spectator. The
quantity (A, — Am) determines the number of nucle-
ons that formed, together with a target nucleus, the
compound nucleus.

In order to transform the ranges into the kinetic

energy of fission fragments, we made use of the rela-
tion [9—11]

R=KTN?, (10)

where K and N are constants that are determined
on the basis of range—energy data from [19]. In or-
der to obtain more precise values of these constants,
we additionally performed a systematization of data
presented in the literature for the ranges of ions.

The calculated energies of residual nuclei are given
in Table 3. The total kinetic energy released in fission
was determined by taking the sum of the energies
of two presumed fission fragments. The result was
141.5 + 12.7 MeV, on average. This value is in fairly
good agreement with the estimate 142.67 MeV, which
was obtained by using the statistical approximation
[13].

Spallation Products

The results of investigations reveal that an incom-
plete fusion of interacting nuclei and, hence, only a
partial transfer of the projectile-ion energy and mo-
mentum to the target nucleus manifest themselves
even in the energy range 10—25 MeV/nucleon [9,
10]. As the limiting value of the projectile velocity at
which one can still observe nuclear effects of complete
fusion, the authors of [9, 10] presented v/c ~ 0.19. In
the present experiment, the velocity of “Li ions was
v/c = 0.27,in which case it was natural to expect that
there is no complete fusion at all. In view of these con-
siderations, searches for and separation of products
in the near-target mass region are of special interest.
Part of such nuclei are spallation or evaporation prod-
ucts, this being indicative of the presence of a non-
fission mode in the decay of an excited nucleus. But
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Table 3. Kinematical features of fission fragments

Nucleus F/B 2W (F + B), mg/cm? T, MeV E*, MeV p||/PeN

27n 1.1140.22 13.22 4 2.64 107.41 £ 21.48 68.68 £+ 11.64 0.33 £ 0.06
""Br 1.16 +0.14 13.36 4 1.60 100.17 £ 12.02 82.32 + 11.52 0.42 £ 0.06
82Br 1.174+0.14 11.79 + 1.41 96.25 + 11.55 84.28 £ 11.79 0.43 £ 0.06
83Rb 1.17£0.08 10.25 £ 0.72 93.15 4+ 6.52 80.36 + 7.88 0.41 4+ 0.04
84Rb 1.14+0.10 8.174+0.74 89.56 + 8.06 68.60 + 7.82 0.35 4 0.04
86Rb 1.11+0.08 9.81+0.77 86.03 + 6.42 54.88 4 4.68 0.28 +0.04
87y 1.19 4 0.06 10.50 £ 0.53 87.57+4.38 86.24 + 4.31 0.44 4+ 0.02
91Sr 1.18 £0.10 10.10 £ 0.81 79.05 £ 5.59 76.44 £ 7.64 0.39 £0.04
B7r 1.1940.16 11.414+1.74 76.54 + 11.51 78.40 + 11.76 0.40 + 0.06
9%Nb 1.234+0.11 11.36 & 1.02 77.22 £ 6.56 90.16 + 7.84 0.46 + 0.04
96Te 1.294+0.14 10.09 +1.10 74.76 + 8.22 99.47 4+ 9.95 0.58 £ 0.06
99 Mo 1.2240.06 10.33 4+ 0.52 71.86 + 3.59 84.28 +4.21 0.43 £ 0.02
105Rh 1.17 £ 0.09 10.07 £ 0.81 70.95 £ 5.65 66.64 + 3.99 0.34 £ 0.02
HAg 1.2240.12 8.32+0.83 65.69 £ 6.57 76.44 4 7.64 0.39 + 0.04
15¢Cd 1.194+0.12 10.77 £ 1.07 59.03 & 5.90 64.68 + 7.76 0.33 +0.04
HTmgn 1.434+0.17 7.69 £ 0.92 53.50 £ 6.42 119.56 & 15.54 0.61£0.08
120m g, 1.45 4+ 0.06 429 +£0.17 50.87 £ 2.03 119.56 4 7.89 0.61£0.04
1241 1.65 4+ 0.18 7.95+£0.87 46.47 £5.11 150.92 & 15.09 0.77 £0.08

some of these products in the immediate vicinity of
215At, the hypothetical compound nucleus Acy, can
be associated with the complete-fusion processes.

The radioactive products of mass number about
A, that were formed upon the emission of AA > 28
nucleons from the hypothetical compound nucleus
Acn were associated with the region of near-target
nuclei (see Table 4). The charge and mass distribu-
tions of these products are given in Fig. 4. The num-
ber of emitted nucleons is plotted along the abscissa
in Fig. 4b. It can be seen that the respective cross
sections decrease with increasing number of emitted
nucleons, this being due to a modest excitation en-
ergy. The isotopes of At that are produced upon the
addition of three protons to the target nucleus were
considered here as products of the reactions where
the complete fusion of Pb and 7Li nuclei was followed
by neutron evaporation. The potential of the proce-
dure used was insufficient for measuring the yields of
212=215At and only estimates could be obtained for
the 205296 At cross sections. By and large, the total
yield of At isotopes was about 2 mb. This value can
be interpreted as a lower limit on the cross section
for complete fusion in the system being investigated.

According to [20], the complete-fusion fraction de-
creases not only with increasing projectile energy but
also with increasing mass asymmetry in the input
channel.

The remaining heavy nuclei, whose cross sections
are quoted in Table 4, were considered here as spalla-
tion products formed upon an incomplete fusion and
a sequential emission of nucleons and light nuclei.
The total yield of these products was 446.1 £ 52.9 mb,
which, in view of the potential of the procedure used,
can be treated as a lower limit for such reactions.

Energy and Momentum Features

From the results obtained by measuring kine-
matical features and displayed in Fig. 5, one can
see that, for some nuclei, emission occurs predomi-
nantly in the forward direction (¥'/B > 2). This dis-
tinct anisotropy of the emission of nuclear fragments
is indicative of their formation in nonequilibrium re-
actions that, in view of a high probability of an in-
complete fission, are of a peripheral character. To a
good approximation, the quantity F'/B may be con-
sidered as the result of the motion of a compound
nucleus along the beam axis and as an indication of
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Nucleus Reaction type o, mb Nucleus Reaction type o, mb
1881 I 3.85 4+ 0.40 200m1 g C <6.26
188 pt C 0.71 £ 0.07 2017 I 40.08 + 4.01
191pt C 3.64 +0.40 201(m+9) pp, I 45.00 £ 4.50
193(m+9) T} C <0.18 2019 Bj C 4.24 +0.55
1949T] C <0.83 201mBj C <1.57
194mT| I <0.35 2027] I 3.18 £0.32
1959Hg [ 0.64 +0.32 202mpt, [ 13.26 4+ 1.33
195mHg [ 1.80 + 0.20 202B;j [ 6.54 + 0.65
195(m+9) T} C <1.80 202p C 1.11+0.12
196(m1+9) Ay I 0.22 +0.02 203(m+9) pp, I 44.80 4 4.48
1969T| I <1.35 203Bj I 13.89 4+ 1.39
196m T I 2.4340.24 203(m+9) po C 1.88+0.28
196 pp C 1.6340.17 204m pp, I 2.67 +0.27
1TmHg I 1.00 4 0.10 204B;j I 41.00 +4.10
197(m+9) T| I <4.61 204pg C 6.35 + 0.89
1979 pp C 1.72+£0.17 205Bj I 37.74 £ 3.77
197mpy, C 2.77 £ 0.30 205pq I <1.94
1989 Ay I 0.14 +0.02 205 At I <0.33
198m Ay I 0.34 +0.03 206Bj I 17.40+1.74
1989T| I 12.92 +1.50 206p I 7.10+0.71
198mT| I 1.55 4 0.23 206 At I <0.37
198pp C 27.00 + 2.70 207(m+9)pg I 2.60 £ 0.99
1997 I 32.87 4 3.29 207 At I 0.33 4 0.04
199(m+9) ppy C 8.00 4 0.80 208 At I 0.17 4 0.02
199(m+9) Bj C 3.10+0.3 2097t | 0.46 + 0.05
200m Ay I 1.334+0.13 210 At I 0.44 £+ 0.04
2007 I 13.134+1.33 2LLAL I 0.40 £+ 0.04
200pp I 15.56 & 1.56 212Bj I <0.62
2009 B C 4.3340.43

a rather high value of the longitudinal component of
the residual-nucleus velocity in relation to the velocity
acquired upon evaporation, vy > V. In the case where
the velocities in question satisfy this inequality, the
ranges are calculated on the basis of the relation R =
W F [mg/cm?][9, 12]. The results of the calculations
for the kinematical parameters are given in Table 5
and in Fig. 5. From these data, one can see that
the mean relative longitudinal momentum py /pcn de-
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pends on the number of nucleons emitted from the hy-
pothetical compound nucleus 2 At. With increasing
AA, the relative momentum transfer to the nucleus
grows, reaching a limiting value in the range AA =
18—27 amu. In studying the longitudinal-momentum
distribution of products originating from nonequilib-
rium processes, the authors of [5, 8, 14] explained
a dependence of this type by the correlation of the
longitudinal-momentum and energy transfer with the
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240
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0 80 160

Fig. 3. Isobaric distribution of products originating from
"Li 4+ "Pb interaction: (points) our experimental data
and (curve) function approximating the yields of fission
fragments in the form (4).

o, mb
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0 2 4 0 10 20
Zen —Zp Acn —Ap

Fig. 4. Distributions of reaction products in the near-
target region of mass numbers: (a) charge distribution
and (b) mass distribution.

impact parameter. Those authors indicated that, with
increasing projectile energy (above 10 MeV per nu-
cleon) or with increasing impact parameter, the rela-
tive value of the linear-momentum transier decreases,
along with the excitation-energy transfer. If a rela-
tively small number of nucleons are emitted in such
processes, residual nuclei are characterized by a pre-
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Fig. 5. Relative longitudinal momentum of the interme-
diate compound nucleus (p)| is the intermediate-nucleus
momentum, while pcy is the momentum of the hypotheti-
cal compound nucleus formed upon complete fusion). The
open and closed boxes correspond to different isotopic
states of residual nuclei containing, respectively, a smaller
and a larger number of neutrons.

ferred emission in the forward direction—that is, by a
large value of F/B.

Some authors explain the presence of a plateau at
large values of A ~ 18—28 amu by a possible satura-
tion in the energy—momentum transfer in a nuclear
collision, this leading to specific decay channels [5,
20]. The value of 174 + 18 MeV/c per nucleon, which
we obtained for the momentum transfer in the plateau
region, is in satisfactory agreement with the lim-
iting momentum value of 180 MeV/c per nucleon
from [20].

From Fig. 5, it can also be seen that, if use is
made of momentum features not subjected to aver-
aging, then the experimental points are distributed
in the form of two curves referring approximately to
different values of the longitudinal-momentum trans-
fer. For the groups of nuclei being considered, the
mean values of p /pcy within the plateau region were

0.55 £ 0.05 and 0.68 + 0.06. The isotopes associ-
ated with these curves are characterized by different
numbers of neutrons: neutron-rich nuclei are dis-
tributed below neutron-deficit nuclei. The resulting
values of longitudinal-momentum transfer make it
possible to calculate the excitation energies of inter-
mediate nuclear systems, which are sources respon-
sible for the production of these products. Estima-
tions of the mean excitation energies on the basis of
expression (8) revealed that isotopes enriched in neu-
trons are formed from states at an excitation energy of
E* =107.8 £ 11 MeV and that the sources respon-
sible for the production of neutron-deficit products
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Table 5. Kinematical features of heavy products

Nucleus F/B WE, mg/cm? T, MeV E*, MeV p|/PeN

1881 2.90 £ 0.30 1.104+0.11 5.14 4+ 0.51 156.80 4+ 20.38 0.80 + 0.08
188 pt 26.25 + 3.41 0.32 £0.04 2.69 4+ 0.35 108.00 + 14.00 0.55 £ 0.05
191pt 7.24 +0.87 0.39 £ 0.06 3.21 +£0.51 120.00 + 15.60 0.61 +0.06
195mHgo 3.02+£0.12 0.43 £ 0.05 3.59 +0.39 127.00 4+ 10.16 0.65 + 0.06
196 Ay 2.00 4+ 0.17 0.72 £ 0.09 6.00 £ 0.72 165.00 & 24.75 0.84 +0.08
19TmHg 4.69 4+ 0.21 0.32 +0.03 2.66 + 0.29 110.00 £ 9.90 0.56 & 0.06
198 Ay 3.96 4 0.90 0.27 +0.03 2.27 4+ 0.23 102.00 £ 5.10 0.52 4+ 0.05
1997] 23.15 £ 0.60 0.59 £ 0.06 4.90 £+ 0.49 151.00 & 19.63 0.77 £ 0.08
200m Ay 22.77 4+ 2.28 0.53 4+ 0.05 2.334+0.23 98.00 4 12.74 0.50 & 0.05
200 547.81 4+ 3.29 0.53 £ 0.05 4.38 +0.44 143.00 4 21.45 0.73 £ 0.07
200pp 112.374+0.79 0.43 +0.04 3.59+0.36 130.00 + 19.50 0.66 + 0.07
201T] 955.43 £+ 13.93 0.38 + 0.04 3.17+£0.32 122.00 4+ 17.08 0.62 + 0.06
201pp 80.81 £ 0.81 0.40 + 0.04 3.35+0.34 126.00 + 12.6 0.64 + 0.06
2027 7.06 £ 0.42 0.18 £0.02 1.46 £0.18 82.40 + 21.36 0.42 £+ 0.04
203pp 257.61 + 3.69 0.29 +0.03 2.39 4+ 0.24 106.00 4 11.34 0.54 +0.05
203Bj 183.05 £ 5.49 0.28 £0.03 2.37+£0.24 106.00 & 15.90 0.54 £+ 0.05
204Bj 38.07 £ 0.76 0.24 £0.02 1.96 4+ 0.20 90.40 £ 10.85 0.43 £ 0.04
205Bj 16.73 £ 0.90 0.16 £ 0.02 1.36 +0.23 80.40 & 12.06 0.41 4+ 0.04
2063 4.3240.19 0.09 +0.01 0.79 +0.09 61.00 + 6.34 0.31 £0.03

are characterized by an excitation energy of E* =
133.3 £ 13 MeV. To explain this pattern, one can
assume that a few sources having different excitations
can take part in the formation of residual nuclei [21,
22]. In a number of studies, the formation of various
products is assumed to be distributed over the time
scale of the development of the reaction.

Total and Partial Interaction Cross Sections

On the basis of the resulting pattern of the forma-
tion of various reaction products, we have calculated
the total cross section for “Li + Pb interaction at the
projectile energy of 245 MeV. By summing the yields
from all of the reactions studied here, we obtained
3.318 £ 0.4 b. Upon adding, to this value, the cross
section for the formation of light (A < 40 amu) nuclei,
about 95 mb, the total interaction cross section be-
comes 3.413 £ 0.4 b, which is in good agreement with
the results of calculations based on a microscopic
model (3.19 b) and with experimental data (3.67 +
0.12 b) determined by measuring the attenuation of
a "Li beam in a Pb target [6].

PHYSICS OF ATOMIC NUCLEI Vol.68 No. 1

The fissility of the product compound nucleus was
0.86, which is also compatible with the probability of
nuclear fission in the mass region around 206 amu ac-
cording to calculations within the liquid-drop model.
The fraction of processes contributing to the proba-
bility of complete fusion was estimated here at a value
below 0.1%. The contribution of nonfission reactions
recorded in our experiment proved to be about 13.5%
of the total cross section.

CONCLUSION

By investigating the interaction of lead with Li
ions at a projectile energy of 35 MeV per nucleon, we
have obtained cross sections for various processes ac-
companying complete and incomplete fusion in a col-
lision process. In the energy range investigated here,
data on fission cross sections, as well as on the cross
sections for spallation and for evaporation from in-
termediate compound nuclei, have been presented for
the first time. On the basis of studying the kinematical
features of reaction products, we have analyzed the
properties of intermediate nuclear systems produced
upon the incomplete fusion of interacting nuclei.
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A comparison with estimates based on the statistical
model has made it possible to determine the most
probable number of projectile nucleons participating
in reactions at the energy considered here.
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Abstract—Experimental results obtained by determining the double-differential cross sections for neu-
tron production in Pb, W, Zr, Cu, and Al targets irradiated with 0.8-, 1.0-, and 1.6-GeV protons are
presented. The spectra of neutrons were measured at 15°, 30°, 60°, 90°, 120°, and 150° with a time-
of-flight spectrometer by using a proton beam extracted from the 10-GeV synchrotron at the Institute
of Theoretical and Experimental Physics (ITEP, Moscow). The neutrons are recorded with 5SMAB-
IF6BC501A/5L liquid scintillation detectors and NE110 solid-state scintillators. The experimental data
in question are compared with the results of simulations based on the CEM97, LAHET, and CASCADE

codes. (© 2005 Pleiades Publishing, Inc.

INTRODUCTION

The present-day strategy of the development of
nuclear-power production is determined largely by
the problem of annihilation of minor actinides and
long-lived radioactive fission products in spent nu-
clear fuel.

One of the possible ways to resolve this problem is
the transmutation of minor actinides and some long-
lived fission products in ADS facilities constructed on
the basis of a linear proton accelerator (characterized
by a current of a few tens of mA and an energy of 1 to
3 GeV), aneutron-producing target, and a subcritical
blanket. In turn, an optimal selection of the composi-
tion and design of the target and subcritical blanket
requires data on particle yields from targets and on
double-differential cross sections for particle produc-
tion. The requirements for the uncertainty in data
(about 10%) are defined by the accuracy in calculat-
ing the main blanket parameters—namely, neutron-
breeding coefficient k., the efficiency of the protec-
tion system control, the energy-deposition fields of
fuel elements, the minor-actinide-transmutation rate,
and the radiation resistance of materials.
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The present-day data libraries [1, 2] include copi-
ous experimental data on various parameters, includ-
ing particle yields and double-differential cross sec-
tions that characterize proton—nucleus interactions
at low energies of protons. Recently, similar results
were published for intermediate energy range, up to
proton energies of about 3 GeV, and experimental
data were compared with the results of simulations
based on various codes. Table 1 presents all of the
known experiments [3—17] aimed at measuring the
double-differential cross sections and the spectra of
neutrons emitted in intermediate-energy proton in-
teractions with thin and thick targets made from var-
ious materials.

The analysis of the data published in [3—17] re-
vealed that the double-differential cross sections for
neutron emission from lead that were measured at
the LANL, KEK, and SATURNE laboratories for
primary proton energies of up to 0.8 GeV agree with
one another and do not contradict the results of simu-
lations on the basis of transport codes throughout the
measured neutron-energy range. At the same time,
the disagreement between experiment data and the
results of simulations in this energy range may reach

100% for targets of low mass numbers.

As the primary proton energy increases to a few
GeV, the experimental results become more and more
different, and their agreement with the results of cal-
culations deteriorates. This concerns tungsten, which

1063-7788/05/6801-0003$26.00 © 2005 Pleiades Publishing, Inc.
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Table 1. Experiments devoted to measuring the yields of neutrons from matter irradiated with intermediate-energy

protons
No- | anergy, Gev Torget material | aery Mev | miab. hame | Conter | RS
- 0.585 C, Al, Fe, Nb, In, Ta, Pb, U 0.9— 30, 90, 150 PSI (3]
2 0.12,0.16 | Al Zr, Pb > 30 0—145 IUCF (4]
3+ 0.113 Be, C, O, Al, Fe, W, Pb, U 0.5~y 7.5-150 LANL [5]
4 0.256 Be, C, O, Al, Fe, Pb, U 0.5~y 7.5-150 LANL (6]
5 | 0.256,0.80 | Li, Al Zr, Pb 20— Ey 7.5-150 LANL 7]
6* | 0318080 |C,AlPb U 5.0~ Eynax 7.5, 30 LANL 8]
7 0.597 Be, B, C,N, O, Al, Fe, Pb, U | 0.5~ Epa 30—150 LANL [9]
8" 0.80 E(‘; gf&%gﬁh 0.3— B 30—150 LANL | [10]
9 | 081530 |C,AlLFe In,Pb [y 15—150 KEK [11]
10 2.20 Cu 3.3-200 60 KEK [12]
11| 050815 |C,Pb [ By 15—150 KEK [13]
12 | 081216 |C,AlFe Zr, W, Pb, Th 9 By 0-160 SATURNE | [14]
13 | 06,1216 | Al Cu,Zr,Pb 3-200 15—150 ITEP [15]
14 0.44-6.5 | Be,C,Cu,Pb,U 7.5-190 119 ITEP [16]
15 | 200,255 |Be, Al Cu,Cd, Pb 0.2— By 30—120 JINR [17]

Note. The tabulated data no. 1—-9 (labeled with asterisks) were taken from the report of Yu.W. Watahable et al. in YAERI-Coni.

98-016 (1998), p. 24.

is proposed by some projects to be a material of an
ADS multiplication target, and some other structural
materials.

The optimal version of the ADS target composi-
tion and design can only be selected by using well-
verified codes. Therefore, experiments aimed at ob-
taining reliable data still remain topical.

Taking into consideration all of the above and
bearing in mind various materials that may be used as
ADS targets, we measured, in the present study, the
spectra and obtained double-differential cross sec-
tions for neutrons ejected at angles of 15°, 30°, 60°,
90°, 120°, and 150° from Pb targets irradiated with
0.8-, 1.0-, and 1.6-GeV protons and from W, Zr,
Cu, and Al targets irradiated with 1.0- and 1.6-GeV
protons. The experimental data are compared with the
results of simulations based on the CEM97, LAHET,
and CASCADE codes.

I. EXPERIMENTAL DESIGN

Ourexperiments aimed at determining the double-
differential neutron production cross sections were
performed by using a time-of-flight spectrometer and
beam no. 512 from the 10-GeV proton synchrotron at
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the Institute of Experimental and Theoretical Physics
(ITEP, Moscow). Figure 1 shows the layout of the
beam optics and of the time-of-flight spectrometer in
the experimental hall. Charged particles are ejected
from the interactions of accelerated protons with
nuclei of the inner Be foil target (TA) at an angle of
3.5° and are then focused by a magnetic dipole M;
and quadrupoles QQ1—Q4 into the intermediate focus
Fy. After that, the charged particles are focused by
a magnetic dipole Ms and quadrupoles Q5—Qs into
the focus Fs, where the target is located. The inner
target of the accelerator and the second focus F, were
spaced 70 m apart. The particle beam of diameter
about 2 cm was focused into the target center. The
beam-pulse duration was about 0.3 s. The primary-
beam intensity could be varied up to 10° protons per
pulse.

Primary particles were recorded along the beam
path by detectors Cy, C1, and Cs (C1 is a scintillating
NE-102A 10 x 15 x 1 c¢m?® plastic with an FEU-
30 photomultiplier tube; Cy and Cy are NE-102A
@4 x 1 cm? scintillating plastics with FEU XP-2020
amplitude—time photomultiplier tubes).

In dealing with a pure proton beam, the beam

Vol.68 No.1 2005
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Fig. 1. The beam 512 layout showing the main spectrometer units: (TA) internal target of the ITEP synchrotron, (MON) beam
monitor, (Q1,2—Q7,s) magnetooptic quadrupole lenses, (M7, M) bending magnets, (F1, F») first and second foci of the beam,
(T") spectrometer target, (Co, C1, C2) pilot detectors, (A1—A4) detectors of charged secondaries, (D1—D3) neutron detectors
based on a BC501A liquid scintillator, and (D4 ) neutron detector based on solid-state scintillating plastic.

path was tuned to the quasielastic peak of protons
scattered by the inner Be target of the accelerator,
while the protons were recorded by two pilot detectors
Cy and Cs spaced 10 m apart. In dealing with a
particle beam at high energies of accelerated protons,
an additional thin plastic detector Cjy was placed at
the intermediate focus Fy. The detectors Cy and Cy
were spaced 34 m apart. In that case, the protons
were separated from other particles by time-of-flight
techniques at a 0.31-ns time resolution.

Secondary particles from the target were recorded
by the following time-of-flight spectrometer detectors
placed at various angles:

(a)the NE110 1 x 19 x 19 cm? scintillating plas-
tics A1, Ao, and As placed at 2 cm from the neu-
tron detectors Dq, Do, and D3 (the detectors Aj_3
recorded charged particles that hit the neutron detec-
tors);

(b) the detectors D;—3 (5SMAB-1F6BC501A/5L
@12.7 x 15.2 cm?) with a liquid scintillator that are
used in the main measurements to record neutrons,
photons, and charged particles;

(c) the detector assemblies consisting of the
NE110 25 x 25 x 1 cm? (A4) and NE110 20 x 20 x
11.5 ecm? (Dy) scintillating plastics, whose spectra
were measured with a view to estimate and compare
the y-background contributions to various energy
ranges of the neutron spectra measured in the liquid
and large-volume plastic detectors of neutrons.

The detectors A; and D; were mounted and shifted
at different angles by using a turning device placed
at a distance of above 5 m from the ceiling and walls
and a distance of 2.5 m from floor, without any addi-
tional shielding. The flight base from the target to the
neutron detectors was 2.0 m (some of the measure-
ments were made with a 3-m base). The results of
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the measurement were fixed in the separate particle-
detection mode. Neutrons and photons were sepa-
rated by techniques for discriminating pulse shapes,
pulse durations, and the times of flight.

The functional logic of the operation of the time-
of-flight spectrometer is as follows. The coincidence
of a pulse from the telescope of the pilot detectors Cy
and Cy (or Cy and Cy) with a pulse from one of the
neutron detectors D; triggers the measurement cir-
cuit. The pulse from a detector (C; or Cj) is the stop
signal of the circuit for time-of-flight measurements,
while a pulse from one of the neutron detectors is the
start signal (the inverse pattern). The time interval
between the start and stop pulses was converted into
a charge, which was then digitized by the charge-to
digit converter (ChADC) to become the number of a
channel. The ChADC was also used to measure some
parameters that are necessary for separating neutrons
and photons by their pulse shape. The data set from
all the elements of time-of-flight spectrometer was
fixed by the MES code [18]. Table 2 presents the
dimensions and composition of the targets.

2. TECHNIQUES FOR RECORDING
NEUTRONS

The neutron spectra were measured at angles of
15° to 150° with respect to the beam axis. The neutron
detectors operated without evacuation of the flight
base and without any additional shielding. Calcula-
tions and tentative measurements revealed that the
contributions from neutrons scattered by the ceiling
and walls to the main measurements are minor. The
signals from the detectors A; and D; were recorded in
the anticoincidence mode in measuring the neutron
spectra and in the coincidence mode in measuring
the charged-particle spectra. The energy calibration
of the neutron detectors was made (a) with standard
7 sources (137Cs, 9°Co, 22Na) at low energies (below
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Table 2. Properties of the targets and of the proton beam

Proton energy

Target " . Proton passage Proton loss (MeV)
Target | dimensions Compoosmon, D;nsﬁgy through the energy

(mm) Jo (g/cm) target (C1) (GeV) 0.8 1.0 1.6

GeV GeV GeV

Pb @50 x 10.0 99.9 11.3 0.97 1.0,1.6 13 13
Pb @50 x 20.0 99.9 11.3 0.94 0.8 28
Y @50 x 5.1 97.5 18.8 0.97 1.0,1.6 13 12
Zr @50 x 20.0 99.9 6.5 0.96 1.0, 1.6 18 17
Cu @50 x 10.0 99.9 8.9 0.97 1.0, 1.6 14 13
Al @50 x 50.0 99.9 2.7 0.94 1.0,1.6 25 22

2.5 MeV) and (b) with proton beams at high energies
(above some 30 MeV).

Since the differences in the neutron-detector-
pulse amplitudes may reach a factor of 100 or be
even higher, the recorded events were divided into two
ranges in the following way to get a better separation
of neutrons and photons:

(1) The method of amplitude—amplitude analysis
of a recorded-particle pulse above the detection
threshold, Apyrp (total-pulse charge) and Arap.
(pulse-tail charge), was applied to the range of recoil
proton energies between about 10 and about 30 MeV.
The method is described in detail in [19]. Figure 2
shows the results obtained in this way.

(2) The method of measuring the total-pulse
charge and the pulse duration above the detection
threshold, Aryp 1 (total-pulse charge) at Tpyg (pulse
duration), was applied to the range of recoil proton
energies between about 10 and about 300 MeV. It
should be recalled that the ADC used in the time-
of-flight measurements (ChADC LeCroy 4300B)
measures directly the pulse charge, which is an
integral under the pulse. To illustrate the method,
Fig. 3 shows the pulses of the same charge (area)
from a neutron and a photon produced by a pulsed
source of neutrons of energy about 14 MeV.

The pulses were recorded by a LeCroy LT-344
digital oscillograph. Figure 4 shows the results of
applying the method of separation by pulse duration
to the given energy range.

At the next stage, all neutron events from two
energy ranges were combined, just as the respective
sets of photon events. After that, the time-of-flight
spectra were formed from the sets of neutron and
photon events. Figure 5 gives an example of such a
spectrum.

The ~y-peak center was determined from the ~-
spectrum maximum to within 0.79 ns, which is the
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same as the accuracy of determining the «-peak half-
width.

With our electronics, the particle time of flight is
determined by measuring the charge of a calibrated
rectangle pulse whose duration is the same as the
measured time of flight and is equal to the time inter-
val between the discriminator-formed and read-out
timing signals. The difference between the instants
of the occurrence of an analog pulse of a neutron
detector and a formed timing pulse is determined by
the analog-pulse amplitude. In such a manner, the
particle time of flight measured by the electronics
becomes somewhat dependent on the particle-pulse
amplitude in the neutron detector. The dependence
was taken into account by introducing an appropriate
amplitude—time correction.

Upon the separation of charged particles and the
removal of the amplitude—time dependence, the data-
set files include only those events that result from the
detection of neutral particles with a true time of flight,
whereupon neutrons are separated from photons.

In such a way, neutrons were effectively sepa-
rated, via the selection of an optimal situation with
the amplitude—amplitude and amplitude—time sepa-
ration, from photons emitted by the target.

An analysis of the solid-state scintillator data
also demonstrates that neutron—photon separation
via the amplitude—time separation is sufficiently
efficient. Being dependent on the target material, the
uncertainty in the photon contribution to the neutron
spectra with a particle flight base of 3 m was 5—
10% at emission angles smaller than 90° (at neutron
energies of up to 200 MeV) and at least 5—15% at
emission angles larger than 90° (at neutron energies
of up to 100 MeV).

Vol.68 No.1 2005
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Fig. 2. Separation of neutrons from photons by an amplitude—
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Fig. 3. Separation of neutrons from photons by

3. DETERMINATION OF THE EFFICIENCY
AND ENERGY RESOLUTION
OF THE NEUTRON DETECTORS

(a) The neutron-detection efficiency for liquid
and solid-state scintillators was calculated by the
SCINFUL code [20] for E,, < 80 MeV and by the
CECIL code [21] for E,, > 80 MeV at the discrim-
ination threshold corresponding to £, = 661.6 keV

(137Cs). The CECIL data were normalized to get a
smooth matching with the 80-MeV SCINFUL re-
sults. The relation between the photoelectron energy
(corresponding to the total photon-energy transfer)
and the energy of recoil protons that produce the same
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the pulse-duration-measurement method.

photoyield is [22]
E =0.83E, —2.82(1 — e OBE™) ()

where E), is the proton