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Fortieth Anniversary of the Journal
Physics of Atomic Nuclei
This year marks the 40th anniversary of the
starting of the journal Yadernaya Fizika (translated
into English under the title Physics of Atomic
Nuclei, formerly known as the Soviet Journal of
Nuclear Physics). The need for a specialized journal
on nuclear and elementary-particle physics was felt
because of the rapid development of these fields in
this country in the 1960s. Major nuclear research
centers were created: the Joint Institute for Nuclear
Research (JINR) in Dubna, the Institute of Theoreti-
cal and Experimental Physics (ITEP) inMoscow, the
Institute for High Energy Physics (IHEP) near Ser-
pukhov, the Institute of Nuclear Research at Moscow
State University, Institute for Nuclear Research in
Troitsk, nuclear research institutes in Novosibirsk
and Gatchina, and the Institute for Physics and
Power Engineering in Obninsk. Nuclear physics
research was done at large departments of the Kur-
chatov Institute of Atomic Energy and the Lebedev
Institute of Physics in Moscow, and the Institute
for Physics and Technology in Kharkov. Important
independent schools evolved in theoretical and ex-
perimental nuclear physics. Typically, it was around
accelerators, newly built or under construction, at
nuclear centers that experimental schools sprung up.
The relaxation of secrecy conditions went a long way
toward the proliferation of nuclear physics papers.
This stream of papers overwhelmed the Journal of
Experimental and Theoretical Physics, which cov-
ered a wide range of physics subjects. As it branched
from the JETP, which was directed by P.L. Kapitsa at
that time, the new journal,Physics of Atomic Nuclei,
has retained the splendid traditions of the leading
national physics journal—namely, high professional-
ism, scientific objectivity, and adherence to principle.
The first editorial board was headed by V.I. Veksler
(editor in chief), V.V. Vladimirsky (deputy editor in
chief), and Ya.A. Smorodinsky (executive editor). The
editorial board has included some of the nation’s
leading names in nuclear physics: S.T. Belyaev,
D.I. Blokhintsev, N.N. Bogolyubov, G.I. Budker,
S.N. Vernov, A.S. Davydov, B.S. Dzhelepov, V.G. Ki-
rillov-Ugryumov, A.A. Logunov, M.G. Meshch-
eryakov, A.B. Migdal, B.M. Pontecorvo, R.M. Su-
lyaev, I.E. Tamm, G.N. Flerov, and I.M. Frank. The
editorial staff, led by T.G. Bychkova, maintained
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high publishing standards. With time, V.I. Veksler
was replaced by V.V. Vladimirsky as editor in chief,
who was in turn replaced by Yu.G. Abov at a later
date. The composition of the editorial board and staff
varied, but the principles that underlay the journal
at its founding were carefully preserved, turning into
traditions.

Since 1965, the journal Physics of Atomic Nuclei
has appeared in an English version. It is distributed
by the American Institute of Physics among libraries
outside Russia, which, naturally, broadens its reader-
ship and increases its communication potential.

Many eminent scientists have been published
in this journal—among them, I.Ya. Pomeranchuk,
V.Z. Gribov, Ya.B. Zeldovich, A.B. Migdal, G.N. Fle-
rov, S.T. Belyaev, B.I. Ioffe, L.B. Okun, K.A. Ter-
Martirosyan. The list can be made much longer.

Many papers that appeared in the journal are
widely known and quoted.

The current phase in nuclear physics research
is marked by broad international cooperation. This
trend is reflected in the coverage of the journal, which
often carries papers coauthored by Russian and for-
eign scientists. Not infrequently, it prints independent
foreign papers generated at leading research centers
in Europe and the United States (Saclay, Princeton,
and others).

Papers printed in the Physics of Atomic Nu-
clei more than once took the first prize in the
annual best paper competition started by IAPC
Nauka/Interperiodica in 1995, which is a testimony
to their high quality. Over the intervening ten years,
authors from the Physics of Atomic Nuclei cap-
tured the first prize four times, which is a record
among the journals in this field! The winners (listed
chronologically) are Yu.A. Simonov, ITEP (for a set
of papers proposing a new approach to the description
of nonperturbative phenomena in quantum chromo-
dynamics); members of two groups at the Institute
for High Energy Physics headed by L.G. Landsberg
and A.M. Zaitsev (for a set of papers devoted to the
search for, and systematic study of, the properties
of exotic baryon and meson resonances); Yu.D.
Prokoshkin, IHEP [for a set of papers on hadron
spectroscopy (the award was given posthumously)];
c© 2005 Pleiades Publishing, Inc.
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and Yu.Ts. Oganesyan, JINR (for a set of papers
devoted to the discovery of the stability island).

The journal held out through a period of hard times
for science in this country—the late 1980s and the
1990s. It is busy developing new publishing methods
and keeping a firm hold on its bridgehead. Over the
intervening years, the Physics of Atomic Nuclei ci-
tation index has quadrupled.
PH
We are confident that the journal will continue to
appear and develop together with Russian nuclear
physics and, while changing in a rapidly changing
world, maintain its high standards.

Editorial Board
YSICS OF ATOMIC NUCLEI Vol. 68 No. 1 2005
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Abstract—A model for the Q2-dependent dual amplitude with Mandelstam analyticity (DAMA) is pro-
posed. The modified DAMA (M-DAMA) preserves all the attractive properties of DAMA, such as its pole
structure and Regge asymptotics, and leads to a generalized dual amplitude A(s, t, Q2). This generalized
amplitude can be checked in the known kinematical limits; i.e., it should reduce to the ordinary dual
amplitude on mass shell and to the nuclear structure function when t = 0. In such a way, we complete
a unified “two-dimensionally dual” picture of strong interaction. By comparing the structure function
F2, resulting from M-DAMA, with phenomenological parametrizations, we fix the Q2 dependence in M-
DAMA. In all studied regions, i.e., in the large- and low-x limits as well as in the resonance region, the
results of M-DAMA are in qualitative agreement with the experiment. c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

About thirty years ago, Bloom and Gilman [1]
observed that the prominent resonances in inelastic
electron–proton scattering (see Fig. 1) do not dis-
appear with increasing photon virtuality Q2 with re-
spect to the “background” but, instead, fall at roughly
the same rate as the background. Furthermore, the
smooth scaling limit proved to be an accurate average
over resonance bumps seen at lower Q2 and s; this is
so-called Bloom–Gilman or hadron–parton duality.

For the inclusive e−p reaction, we introduce vir-
tuality Q2, Q2 = −q2 = −(k − k′)2 ≥ 0, and Bjorken
variable x. These variables x, Q2 and Mandelstam
variable s (of the γ∗p system), s = (p + q)2, obey the
relation

s = Q2(1− x)/x + m2, (1)

where m is the proton mass.

Since its discovery, hadron–parton duality has
been studied in a number of papers [2] and new sup-
porting data has come from recent experiments [3,
4]. These studies were aimed mainly at answering
the questions: In which way can a limited number
of resonances reproduce the smooth scaling behav-
ior? The main theoretical tools in these studies were
finite energy sum rules and perturbative QCD cal-
culations, whenever applicable. Our aim, instead, is
the construction of an explicit dual model combining
direct channel resonances, Regge behavior typical for
hadrons and scaling behavior typical for the partonic

∗This article was submitted by the author in English.
**e-mail: Volodymyr.Magas@ific.uv.es
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picture. Some attempts in this direction have already
been made in [5–8], which we will discuss in more
detail below.

The possibility that a limited (small) number of
resonances can build up the smooth Regge behavior
was demonstrated by means of finite energy sum
rules [9]. Later it was confused by the presence
of an infinite number of narrow resonances in the
Veneziano model [10], which made its phenomeno-
logical application difficult, if not impossible. Sim-
ilar to the case of resonance–Reggeon duality [9],
hadron–parton duality was established [1] by means
of finite energy sum rules, but it was not realized
explicitly like the Veneziano model (or its further
modifications).

The first attempts to combine resonance (Regge)
behavior with Bjorken scaling were made [11–13]
at low energies (large x), with the emphasis on the
right choice of the Q2 dependence, such as to satisfy
the required behavior of form factors, vector meson
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Fig. 1. Kinematics of deep inelastic scattering.
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Fig. 2. Veneziano (or resonance–Reggeon) duality [10] and Bloom–Gilman (or hadron–parton) duality [1] in strong interac-
tions. From [6].
dominance [the validity (or failure) of the (general-
ized) vector meson dominance is still disputable] with
the requirement of Bjorken scaling. Similar attempts
in the high-energy (low-x) region became popular
recently, stimulated by the HERA data. These are
discussed in Section 6.

Recently, in a series of papers [5–8], the authors
made attempts to build a generalized Q2-dependent
dual amplitude A(s, t, Q2). This amplitude, a function
of three variables, should have correct known limits;
i.e., it should reduce to the on-shell hadronic scatter-
ing amplitude on the mass shell and to the nuclear
structure function (SF) when t = 0. In such a way,
we could complete a unified “two-dimensionally dual”
picture of strong interaction [5–8]—see Fig. 2.

In [5, 6], the authors tried to introduce Q2 depen-
dence in the Veneziano amplitude [10] or more ad-
vanced Dual Amplitude with Mandelstam Analyticity
(DAMA) [14]. The Q2 dependence can be introduced
either through a Q2-dependent Regge trajectory [5],
leading to a problem of physical interpretation of such
an object, or through the g parameter of DAMA [5,
6]. This last way seems to be more realistic [6], but
it is also restricted due to the DAMA model re-
quirement g > 1 [14]. The authors [5–8] relate the
imaginary part of amplitude to the total cross sec-
tion and then to the nucleon SF: F2(x, Q2) ∼ σtot ∼
ImA(s(x, Q2), t = 0, Q2), which was compared to the
experimental data (we shall discuss this chain in more
detail in Section 6). In this way, the low-x behavior
of F2 prescribed a transcendental equation for g(Q2)
(see [6] for more details), which led to g(Q2 →∞)→
0, forbidden by DAMA definition. Therefore, such an
identification of g(Q2) is allowed only in the limited
range of Q2, as was actually stressed by the authors.
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Recently, this problem was also studied in the
framework of field theory. In [15], the off-shell con-
tinuation of the Veneziano formula was derived in the
Moyal star formulation of Witten’s string field theory.

In [7, 8], the authors went in an opposite direc-
tion—they built a Regge-dual model with Q2-depen-
dent form factors, inspired by the pole series ex-
pansion of DAMA, which fits the SF data in the
resonance region. The hope was to reconstruct later
the Q2-dependent dual amplitude, which would lead
to such an expansion. It is important that DAMA
not only allows but rather requires nonlinear complex
Regge trajectories [14]. Then the trajectory with a
restricted real part leads to a limited number of res-
onances.

A consistent treatment of the problem requires
taking into account the spin dependence. This was
done in [8], and a substantial improvement of the fit,
in comparison to earlier works [7] ignoring the spin
dependence, was found. Nevertheless, the applica-
bility range of the above model [8] is limited to the
resonance region, as was actually discussed by the
authors. For the sake of simplicity, we ignore spin
dependence in this paper. Our goal is rather to check
qualitatively the proposed new way of constructing
the “two-dimensionally dual” amplitude.

2. MODIFIED DAMA MODEL

The DAMA integral is a generalization of the in-
tegral representation of the B function used in the
5
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Veneziano model [14]:1)

D(s, t) =

1∫
0

dz

(
z

g

)−αs(s′)−1(1− z

g

)−αt(t′′)−1

,

(2)

where a′ = a(1− z), a′′ = az, and g is a free parame-
ter (a = s, t), g > 1, and αs(s) and αt(t) stand for the
Regge trajectories in the s and t channels.2)

In this paper, we propose a modified definition of
DAMA (M-DAMA) with Q2 dependence [17]. It also
can be considered as a next step in generalization of
the Veneziano model. M-DAMA preserves the at-
tractive features of DAMA, such as pole decompo-
sitions in s and t and Regge asymptotics, yet it gains
theQ2-dependent form factors, correct Q2 →∞ limit
for t = 0 (F2(x, Q2) at large x), etc.

The proposed M-DAMA integral reads

D(s, t, Q2) =

1∫
0

dz

(
z

g

)−αs(s′)−β(Q2′′)−1

(3)

×
(

1− z

g

)−αt(t′′)−β(Q2′)−1

,

where β(Q2) is a smooth dimensionless function of
Q2, which will be specified later on from studying
different regimes of the above integral.

The on-mass-shell limit, Q2 = 0, leads to the shift
of the s- and t-channel trajectories by a constant
factor β(0) (to be determined later), which can be
simply absorbed by the trajectories, and, thus, M-
DAMA reduces to DAMA. In the general case of the
virtual particle with mass M , we have to replace Q2

by (Q2 + M2) in the M-DAMA integral.

Now all the machinery developed for the DAMA
model (see, for example, [14]) can be applied to the
above integral. Below, we shall report briefly only
some of its properties, relevant for further discussion.

3. SINGULARITIES IN M-DAMA

The dual amplitude D(s, t, Q2) is defined by in-
tegral (3) in the domain Re(αs(s′) + β(Q2′′)) < 0
and Re(αt(t′′) + β(Q2′)) < 0. For monotonically de-
creasing function Reβ(Q2) (or nonmonotonic func-
tion with maximum at Q2 = 0) and for increasing or

1)There are several integral representations of DAMA [14];
here, we shall use the most common one.

2)In [14], the authors use the same trajectories in s and t
channels. This is easy to generalize—see, for example, [16].
PH
constant real parts of the trajectories, the first of these
equations, applied for 0 ≤ z ≤ 1, means

Re(αs(s) + β(0)) < 0. (4)

Similarly, the second one leads to

Re(αt(t) + β(0)) < 0. (5)

To enable us to study the properties of M-DAMA in
the domains Re(αs(s′) + β(Q2′′)) ≥ 0 and
Re(αt(t′′) + β(Q2′)) ≥ 0, which are of the main
interest, we have to make an analytical continuation
of M-DAMA. It can be done in the same way as
for DAMA [14]—basically, we need to transform the
integration contour in the complex z plane in such a
way that z = 0 and z = 1 will no longer be the end
points of the integration contour; instead, the contour
will run around these points at an arbitrarily close
distance. The important thing here is that such a
procedure will lead to an extra factor

{exp[−2πi(αs(s′) + β(Q2′′))]− 1}
× {exp[−2πi(αt(t′′) + β(Q2′))]− 1}

in the denominator of the M-DAMA integrand [14],
which generates two moving poles zn and zm from
zeros of the denominator:3)

αs(s(1− zn)) + β(Q2zn) = n, (6)

n = 0, 1, 2, . . . ,

αt(tzm) + β(Q2(1− zm)) = m, (7)

m = 0, 1, 2, . . . .

The motion of the poles zn and zm with s, t, and Q2

depends on the particular choice of the trajectories
and function β(Q2). The integrand (3) also has two
fixed branch points at z = 0 and z = 1. If the trajec-
tories αs(s), αt(t) or function β(Q2) have thresholds
and correspondingly their own branch points, then
these also generate the branch points of the M-
DAMA integrand. For example, zs generated by the
threshold sth in αs trajectory will be given by s(1−
zs) = sth ⇒ zs = 1− sth/s. Similarly, the threshold
Q2

th in β(Q2) will generate z1
Q = 1−Q2

th/Q2 and

z2
Q = Q2

th/Q2 branch points. In this work, we are
not going to discuss the threshold behavior of M-
DAMA, but we assume that the trajectory αs(s)
has a threshold and an imaginary part above it, and

3)Of course, the above denominator has zeros for n,m =
−1,−2, . . . also, but, as we said above, we need to make an
analytical continuation only in the region where Re(αs(s′) +

β(Q2′′)) ≥ 0 and Re(αt(t′′) + β(Q2′)) ≥ 0. This point is
not clearly described in [14]—there are no poles in DAMA
for Reα(s) < 0 (or Reα(t) < 0).
YSICS OF ATOMIC NUCLEI Vol. 68 No. 1 2005
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correspondingly dual amplitude D(s, t, Q2) also has
an imaginary part above the threshold.

The singularities of the dual amplitude are gener-
ated by pinches which occur in the collisions of the
above-mentioned moving and fixed singularities of
the integrand.

(1) The collision of a moving pole z = zn with the
branch point z = 0 results in a pole at s = sn, where
sn is defined by

αs(sn) + β(0) = n. (8)

Please note the presence of an extra (in comparison
to DAMA) term β(0). It can be considered as a shift
of the trajectory. If β(0) is an integer number, then the
modification is trivial.

(2) The collision of a moving pole z = zn with
the branch point z = 1 results in a pole at Q2 = Q2

n,
defined by

αs(0) + β(Q2
n) = n. (9)

In this sense, we can think of β(Q2) as a kind of
trajectory, but we do not mean that it describes real
physical particles. Also, we will see later that, with a
proper choice of β(Q2), we can avoid these unphysical
poles, and β(Q2) required by the low-x behavior of the
nucleon SF is exactly of this type.

(3) Similarly, the collision of a moving pole z = zm
with the branch point z = 1 results in a pole at t = tm,
defined by

αt(tm) + β(0) = m. (10)

(4) The collision of a moving pole z = zm with
the branch point z = 0 results in a pole at Q2 = Q2

m,
defined by

αt(0) + β(Q2
m) = m. (11)

Note that, if αs(0) = αt(0), the poles in Q2 will be
degenerate.

Generally, since poles in s, t, and Q2 arise when
pairs of different singularities collide, the ampli-
tude is free of terms like ∼ 1/[(s − sn)(t− tm)] or
∼1/[(s− sn)(Q2 −Q2

m)], which would possess poles
simultaneously in two variables (similarly, there are
no terms possessing the poles simultaneously in all
three variables). Although in some degenerate cases
this could happen—for example, if β(x) = αs(x)
and αt(0) = αs(0), then we could have terms like
∼1/[(s − sn)(Q2 −Q2

n)2] coming from Eqs. (8), (9),
and (11). For further discussion, we shall consider a
nondegenerated case.
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4. POLE DECOMPOSITIONS

Let us consider the pinch resulting from the colli-
sion of a pole at z = zn with the branch point z = 0.
The point zn is a solution of Eq. (6):

αs(s(1− zn)) + β(Q2zn) = n, n = 0, 1, 2, . . . .

For zn → 0, it becomes

αs(s)− sα′
s(s)zn + β(0) + β′(0)Q2zn = n (12)

and so

zn =
n− αs(s)− β(0)
β′(0)Q2 − sα′

s(s)
. (13)

We see that zn → 0 when s→ sn given by Eq. (8).
The residue at the pole zn (see [14] for more details) is
equal to

2πiReszn =
1

β′(0)Q2 − sα′
s(s)

(
zn
g

)−n−1

(14)

×
(

1− zn
g

)−αt(tzn)−β(Q2(1−zn))−1

=
gn+1[β′(0)Q2 − sα′

s(s)]
n

[n− αs(s)− β(0)]n+1

×
(

1− zn
g

)−αt(tzn)−β(Q2(1−zn))−1

.

It contains a pole at s = sn of order of n + 1. By
expanding the nonpole cofactor in (14), we obtain(

1− zn
g

)−αt(tzn)−β(Q2(1−zn))−1

(15)

=
n∑
l=0

Cl(t, Q2)zln + Fn(t, Q2, zn),

where

Cl(t, Q2) =
1
l!

dl

dzl
(16)

×
[(

1− z

g

)−αt(tz)−β(Q2(1−z))−1
]
z=0

,

Fn(t, Q2, z)
zn+1

→ const, z → 0. (17)

Finally, inserting (15) into (14), we end up with the
following expression for the pole term:

Dsn(s, t, Q2) = gn+1 (18)

×
n∑
l=0

[β′(0)Q2 − sα′
s(s)]

lCn−l(t, Q2)
[n− αs(s)− β(0)]l+1

.

Formula (18) shows that our D(s, t, Q2) does not
contain ancestors and that an (n + 1)-fold pole
5
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emerge on the nth level. The crossing-symmetric
term can be obtained in a similar way by considering
the case 3 from the list above (see Section 3).

The modifications with respect to DAMA are (i)
the shift of the trajectory αs(s) by the constant factor
of β(0) (we can easily remove this shift including
β(0) in the trajectory); (ii) the coefficients Cl are now
Q2-dependent and can be directly associated with the
form factors. The presence of the multipoles [Eq. (18)]
does not contradict the theoretical postulates. On the
other hand, they can be removed without any harm
to the dual model by means of the so-called Van der
Corput neutralizer.4) This procedure [14] seems to
work for M-DAMA equally well as for DAMA and
will result in a “Veneziano-like” pole structure:

Dsn(s, t, Q2) = gn+1 Cn(t, Q2)
n− αs(s)− β(0)

. (19)

The Q2-pole terms can be obtained by considering
cases 2 and 4 from Section 3, but as we shall see later
in Section 7, with our choice of β(Q2), we avoid Q2

poles.

5. ASYMPTOTIC PROPERTIES OF M-DAMA

Let us now discuss the asymptotic properties
of M-DAMA. For this purpose, we rewrite the
M-DAMA expression (3) in the following way:

D(s, t, Q2) =

1∫
0

dze−W (z;s,t,Q2), (20)

where

W (z; s, t, Q2) (21)

= ln
(

z

g

)
(αs(s′) + β(Q2′′) + 1)

+ ln
(

1− z

g

)
(αt(t′′) + β(Q2′) + 1).

Below, a simplified notation W (z) will be used instead
of W (z; s, t, Q2).

The calculations in this section will be done
through the saddle-point method, and we will care
only about the leading-order term, although the
method allows one to derive subleading terms to any

4)In brief, the procedure [14] is to multiply the integrand
of (3) by a function φ(z) which has the following properties:
φ(0) = 0, φ(1) = 1, φn(1) = 0, n = 1, 2, 3, . . . . The func-
tion φ(z) = 1 − exp(−z/(1 − z)), for example, satisfies the
above conditions.
PH
order. If z0 is the saddle point, then the leading term
is given by

D(s, t, Q2) =

√
2π

W ′′(z0)
e−W (z0). (22)

Let us prove the Regge asymptotic behavior of M-
DAMA (s→∞, t, Q2 = const). First, we consider
the behavior of D(s, t, Q2) for s→ −∞ and fixed
Q2 and t such that Re(αt(t) + β(0)) + 1 < 0. In this
case, analytical continuation is not needed. The first
term of the integrand (3) is a decreasing function of
s for any 0 ≤ z < 1; it vanishes for z = 0. The second
term vanishes at the opposite end of the integration
region. As is easy to see, the integrand has a max-
imum somewhere in the middle, i.e., a saddle point,
which can be found from the equation

W ′(z) = ln
(

z

g

)
(23)

× (−sα′
s(s(1− z)) + Q2β′(Q2z))

+
1
z
(αs(s(1− z)) + β(Q2z) + 1)

+ ln
(

1− z

g

)
(tα′

t(tz)−Q2β′(Q2(1− z)))

− 1
1− z

(αt(tz) + β(Q2(1− z)) + 1) = 0.

Since t and Q2 are constants, the saddle point ap-
proaches z = 1 as s→ −∞. For large |s| and near
z = 1, there are only two important terms in Eq. (23);
the rest can be neglected:

−sα′
s(s(1− z)) ln

(
z

g

)
(24)

− 1
1− z

(αt(tz) + β(Q2(1− z)) + 1) = 0

⇒ 1− z0 =
a

s
+ O

(
1
s2

)
,

where

a =
αt(t) + β(0) + 1

α′
s(0) ln g

. (25)

Since we are interested now only in the leading term,
we can neglect all the corrections and write

W ′′(z0) ≈ −s2α′′
s(0) ln g (26)

−
(

sα′
s(0) ln g

αt(t) + β(0) + 1

)2

(αt(t) + β(0) + 1)

= s2

(
−α′′

s(0) ln g − α′
s(0) ln g

a

)
.

And finally,

D|s→−∞ ≈ −sαt(t)+β(0) (27)
YSICS OF ATOMIC NUCLEI Vol. 68 No. 1 2005
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Fig. 3. According to Veneziano (or resonance–Reggeon) duality, a proper sum of either t-channel or s-channel resonance
exchanges accounts for the whole amplitude. From [6].
× gαt(t)+αs(a)+β(Q2)+β(0)+2a−αt(t)−β(0)−1

×
√

2π

−α′′
s(0) ln g − (α′

s(0) ln g)/a
.

Thus,

D(s, t, Q2) ∼ sαt(t)+β(0)gβ(Q2), (28)

s→ −∞.

Now, what happens if we enter into the physical
region of the s channel? In this case, we have to use
the analytical continuation of M-DAMA. Using ex-
actly the samemethod as in [14], it is possible to show
that, if the trajectory satisfies some restriction on its
increase, then the Regge asymptotic behavior (28)
holds for s→∞. Of course, D(s, t, Q2) becomes a
complex function, due to complex trajectory αs(s),
and Eq. (28) gives the asymptotics for both real and
imaginary parts.

Thus, in the Regge limit, M-DAMA has the same
asymptotic behavior as DAMA (except for the shift
β(0)). It is more interesting to study the new regime,
which does not exist in DAMA—the limit Q2 →∞,
with constant s, t. We assume that β(Q2)→ −∞ for
Q2 →∞. From Eq. (23), we can easily find that, in
this limit, z0 = 1/2. Then

W ′′(z0) = 2Q4β′′(Q2/2) (29)

+ 8(Q2β′(Q2/2) − β(Q2/2))

+ 4(sα′
s(s/2) − αs(s/2)− tα′

t(t/2)− αt(t/2))

− ln(2g)(s2α′′
s(s/2)− t2α′′

t (t/2)) − 8

and

D(s, t, Q2)|Q2→∞ (30)

≈ (2g)2β(Q2/2)+αs(s/2)+αt(t/2)+2

√
2π

W ′′(z0)
.

For deep inelastic scattering (DIS), as we shall see
below, if s and t are fixed and Q2 →∞, then u =
−2Q2 → −∞, as follows from the kinematic relation
s + t + u = 2m2− 2Q2. So, we also need to study the
D(u, t, Q2) term in this limit. If |αu(−2Q2)| grows
slower than |β(Q2)| or terminates when Q2 →∞,
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then the previous result [Eq. (30), s to be changed to
u = −2Q2] is still valid. We shall come back to these
results in the next section to check the proposed form
of β(Q2).

6. NUCLEON STRUCTURE FUNCTION

The kinematics of inclusive electron–nucleon
scattering, applicable to both high energies, typical
of HERA, and low energies, as at JLab, is shown
in Fig. 1. And Fig. 3 shows how DIS is related to
the forward elastic (t = 0) γ∗p scattering, and then
the latter is decomposed into a sum of the s-channel
resonance exchanges.

The total cross section is related to the SF by

F2(x, Q2) =
Q2(1− x)

4πα(1 + 4m2x2/Q2)
σγ

∗p
t , (31)

where α is the fine structure constant. In Eq. (31), we
neglected R(x, Q2) = σL(x, Q2)/σT (x, Q2), which is
a reasonable approximation.

The total cross section is related to the imaginary
part of the scattering amplitude,

σγ
∗p

tot (x, Q2) (32)

=
8π

Pc.m.
√

s
ImA(s(x, Q2), t = 0, Q2),

where Pc.m. is the center-of-mass momentum of the
reaction,

Pc.m. =
s−m2

2(1 − x)

√
1 + 4m2x2/Q2

s
, (33)

for DIS. Thus, we have

F2(x, Q2) =
4Q2(1− x)2

α (s−m2) (1 + 4m2x2/Q2)3/2
(34)

× ImA(s(x, Q2), t = 0, Q2).

The minimal model for the scattering amplitude is a
sum [18]

A(s, 0, Q2) (35)

= c(s − u)(D(s, 0, Q2)−D(u, 0, Q2)),

providing the correct signature at the high-energy
limit, where c is a normalization coefficient (u is not
5
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an independent variable, since s + u = 2m2 − 2Q2 or
u = −Q2(1 + x)/x + m2). As was said at the begin-
ning, we disregard the symmetry properties of the
problem (spin and isospin), concentrating on its dy-
namics.

In the low-x limit: x→ 0, t = 0, Q2 = const,
s = Q2/x→∞, u = −s, we obtain, with the help of
Eqs. (28) and (35),

ImA(s, 0, Q2)|s→∞ ∼ sαt(t)+β(0)+1gβ(Q2). (36)

Our philosophy in this section is the following: we
specify a particular choice of β(Q2) in the low-x limit
and then we use M-DAMA integral (3) to calculate
the dual amplitude and, correspondingly, SF in all
kinematical domains. We will see that the resulting
SF has qualitatively correct behavior in all regions.
Even more—our choice of β(Q2) will automatically
remove Q2 poles.

According to the two-component duality pic-
ture [19], both the scattering amplitude A and the
structure function F2 are the sums of the diffractive
and nondiffractive terms. At high energies, both
terms are of the Regge type. For γ∗p scattering, only
the positive-signature exchanges are allowed. The
dominant ones are the Pomeron and f Reggeon,
respectively. The relevant scattering amplitude is as
follows:

B(s, Q2) = iRk(Q2)
( s

m2

)αk(0)
, (37)

where αk and Rk are Regge trajectories and residues
and k stands either for the Pomeron or for the
Reggeon. As usual, the residue is chosen “by hand”
to satisfy approximate Bjorken scaling for the SF [20,
21]. From Eqs. (34) and (37), SF is given as

F2(x, Q2) ∼ Q2Rk(Q2)
( s

m2

)αk(0)−1
, (38)

where x = Q2/s in the limit s→∞.

It is obvious from Eq. (38) that Regge asymptotics
and scaling behavior require the residue to fall like
∼ (Q2)−αk(0). Actually, it could be more involved if
we require the correct Q2 → 0 limit to be respected
and the observed scaling violation (the “HERA ef-
fect”) to be included. Various models to cope with
the above requirements have been suggested [20–22].
At HERA, especially at large Q2, scaling is so badly
violated that it may not be explicit anymore.

Data show that the Pomeron exchange leads to a
rising structure function at large s (low x). To provide
for this, we have two options: either to assume a
supercritical Pomeron with αP(0) > 1 or to assume
a critical (αP(0) = 1) dipole (or higher multipole)
PH
Pomeron [22–24]. The latter leads to the logarithmic
behavior of the SF,

F2,P(x, Q2) ∼ Q2RP(Q2) ln
( s

m2

)
, (39)

which proves to be equally efficient [22, 24].
Let us now come back to M-DAMA results. Us-

ing Eqs. (34) and (36), we obtain

F2 ∼ sαt(0)+β(0)Q2gβ(Q2). (40)

Choosing

β(0) = −1, (41)

we restore the asymptotics (38) and this allows us
to use trajectories in their commonly used form. It
is important to find such β(Q2) which can provide
for Bjorken scaling (if one also wants to take into
account the scaling violation, then the problem just
gets more technical). If we choose β(Q2) in the form

β(Q2) = d− γ ln(Q2/Q2
0), (42)

with

γ = (αt(0) + β(0) + 1)/ ln g = αt(0)/ ln g, (43)

where d and Q2
0 are some parameters, we get the exact

Bjorken scaling.
Actually, expression (42) might cause problems in

the Q2 → 0 limit. To avoid this, it is better to use a
modified expression

β(Q2) = β(0)− γ ln
(

Q2 + Q2
0

Q2
0

)
(44)

= −1− αt(0)
ln g

ln
(

Q2 + Q2
0

Q2
0

)
.

This choice leads to

F2(x, Q2) ∼ x1−αt(0)
( Q2

Q2 + Q2
0

)αt(0)
, (45)

where the slowly varying factor (Q2/[Q2 + Q2
0])

αt(0)

is typical for the Bjorken scaling violation (see, for
example, [21]).

Now let us turn to the large-x limit. In this regime,
x→ 1, s is fixed, Q2 = (s−m2)/(1− x)→∞, and,
correspondingly, u = −2Q2. Using Eqs. (30), (34),
and (35), we obtain

F2 ∼ (1− x)2Q4g2β(Q2/2) (46)

×
√

2π

W ′′(z0)
(gαs(s/2) − gαu(−Q2)).

For Q2 →∞, factors (gαs(s/2) − gαu(−Q2)) and
W ′′(z0) ≈ 8γ ln(Q2/Q2

0) are slowly varying functions
YSICS OF ATOMIC NUCLEI Vol. 68 No. 1 2005
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of Q2 under our assumption about αu(−Q2). Thus,
we end up with qualitatively correct behavior,

F2 ∼
(

2Q2
0

Q2

)2γ ln(2g)

∼ (1− x)2αt(0) ln(2g)/ ln g.

(47)

Let us now study F2 given by M-DAMA in the
resonance region. The existence of resonances in
SF at large x is not surprising by itself: as follows
from (32) and (34), they are the same as in the
γ∗p total cross section, but in a different coordinate
system.

For M-DAMA, the resonances in the s channel
are defined by condition (8). For simplicity, let us
assume that we performed the Van der Corput neu-
tralization and, thus, the pole terms appear in the
form (19). In the vicinity of the resonance s = sres,
only the resonance term Dres(s, 0, Q2) is important in
the scattering amplitude and correspondingly in the
SF.

The complex pattern of the nucleon SF in the
resonance region was developed a long time ago (see,
for example, [25]). There are several dozen resonances
in the γ∗p system in the region above the pion–
nucleon threshold, but only a few of them can be
identified more or less unambiguously for various
reasons. Therefore, instead of identifying each res-
onance, phenomenologists frequently consider a few
maxima (usually three) above the elastic scattering
peak, corresponding to some “effective” resonance
contributions. In the Regge-dual model [7, 8], it
was shown that, for a reasonable fit, it is enough
to take into account three resonance terms, corre-
sponding to “effective”5) ∆, N , N∗ trajectories with
one resonance on each, plus the background. As was
already discussed in the introduction, in the Regge-
dual model, the Q2 dependence was introduced by
hand. Let us now check what we get from M-
DAMA.

Using β(Q2) in the form (44), which gives Bjorken
scaling at large s, we obtain from Eq. (16)

C1(Q2) =
(

gQ2
0

Q2 + Q2
0

)αt(0)
(48)

×
[
αt(0) + ln g

Q2

Q2 + Q2
0

− αt(0)
ln g

ln
(

Q2 + Q2
0

Q2
0

)]
.

5)By “effective” trajectory, the authors mean that, in the fitting
procedure, the parameters of these trajectories were allowed
to differ from their values at the physical trajectories. In
this way, the authors tried to account for the contributions
from the other resonances. The “effective” trajectories did
not move far from the physical ones, thus giving a posteriori
justification for this approach.
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The term (Q2
0/[Q2 + Q2

0])
αt(0) gives the typical Q2

dependence for the form factor (the rest is a slowly
varying function of Q2).

If we calculate higher orders of Cn for sublead-
ing resonances, we will see that the Q2 depen-
dence is still defined by the same factor (Q2

0/[Q2 +
Q2

0])
αt(0). Here comes the important difference from

the Regge-dual model [7, 8] motivated by intro-
ducing Q2 dependence through the parameter g.
As we see from Eq. (19), g enters with different
powers for different resonances on one trajectory—
the powers are increasing with the step 2. Thus, if
g ∼ (Q2

0/[Q2 + Q2
0])

∆, then the form factor for the
first resonance (n = 0) is ∼ (Q2

0/[Q2 + Q2
0])

∆, and
for the second one (n = 2) it is ∼ (Q2

0/[Q2 + Q2
0])

3∆,
etc. As discussed in [4], the present accuracy of
the data does not allow one to discriminate be-
tween the constant powers of form factor (for ex-
ample, [3, 4, 25, 26] and this work) and increasing
ones.

7. HOW TO AVOID Q2 POLES?

General study of theM-DAMA integral allows the
Q2 poles (see cases 2 and 4 in Section 3), which
would be unphysical. The appearance and properties
of these singularities depend on the particular choice
of the function β(Q2), and for our choice, given by
Eq. (44), the Q2 poles can be avoided.

We have chosen β(Q2) to be a decreasing func-
tion; then, according to conditions (9) and (11), there
are no Q2 poles in M-DAMA in the physical domain
Q2 ≥ 0 if

Reβ(0) < −αs(0), Reβ(0) < −αt(0). (49)

We have already fixed β(0) = −1 [Eq. (41)], and thus
we see that, indeed, we do not have Q2 poles, except
for the case of a supercritical Pomeron with the inter-
cept αP(0) > 1. Such a supercritical Pomeron would
generate one unphysical pole at Q2 = Q2

pole defined by
the equation

−1− αP(0)
ln g

ln
(

Q2 + Q2
0

Q2
0

)
+ αP(0) = 0 (50)

⇒ Q2
pole = Q2

0(g
(αP(0)−1)/αP(0) − 1).

Therefore, we can conclude that M-DAMA does not
allow a supercritical trajectory—which is good from
the theoretical point of view, since such a trajectory
violates the Froissart–Martin limit [27].

As was discussed above, there are other phe-
nomenological models which use a dipole Pomeron
with the intercept αP(0) = 1 and also fit the data (see,
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for example, [18]). This is a very interesting case—
(αt(0) = 1)—for the proposed model. At first glance,
it seems that we should anyway have a pole at Q2 = 0.
It should result from the collision of the moving pole
z = z0 with the branch point z = 0, where αt(0) +
β(Q2(1− z0)) = 0 in our case. Then, checking the
conditions for such a collision,

αt(0)− tα′
t(0)z0 + β(Q2)− β′(Q2)Q2z0 = 0

⇒ z0 =
−αt(0) − β(Q2)

tα′
t(0) −Q2β′(Q2)

,

we see that, for t = 0 and for β(Q2) given by Eq. (44),
the collision is simply impossible, because z0(Q2)
does not tend to 0 for Q2 → 0. Thus, for the Pomeron
with αP(0) = 1, M-DAMA does not contain any un-
physical singularity.

On the other hand, a Pomeron trajectory with
αP(0) = 1 does not produce rising SF (38), as
required by the experiment. So, we need a harder
singularity and the simplest one is a dipole Pomeron.
A dipole Pomeron produces poles of the second
power:

Ddipole(s, tm) ∝ C(s)
(m− αP(t) + 1)2

; (51)

usually, the simple pole is also taken into account
(we write a sum of simple pole and dipole)—see, for
example, [23] and references therein. Formally, such
a dipole Pomeron can be written as

∂

∂αP

C(s)
(m− αP(t) + 1)

,

and generalizing this

Ddipole(s, t) =
∂

∂αP
D(s, t), (52)

where D(s, t) can be given for example by DAMA or
M-DAMA. Applying this expression to the asymp-
totic formula of M-DAMA [Eq. (28)], we obtain
a term gβ(Q2)sαt(t)+β(0) ln s, which then leads to a
logarithmically rising SF (for αP(0) + β(0) = 0)—
the one given by Eq. (39).

For β(Q2) in the form (44), M-DAMA will gener-
ate an infinite number of the Q2 poles concentrated
near the “ionization point” Q2 = −Q2

0. Although
these are in the unphysical region of negative Q2,
such a feature of the model (i) makes us think
of β(Q2) as a kind of trajectory, which is not the
case, as was stressed above, and (ii) might create
a problem for a general theoretical treatment, for
example, for making an analytical continuation in
Q2. To avoid this, we can redefine β(Q2) in the
PH
nonphysical Q2 region, for example, in the following
way:

β(Q2) (53)

=



−1− αt(0)

ln g
ln
(

Q2 + Q2
0

Q2
0

)
, for Q2 ≥ 0,

−1− αt(0)
ln g

ln
(

Q2
0 −Q2

Q2
0

)
, for Q2 < 0.

This function has a maximum at Q2 = 0, β(0) = −1.
M-DAMA with β(Q2) given by Eq. (53) preserves
all its good properties discussed above and does
not contain any singularity in Q2 (except for the
supercritical Pomeron case, which we do not al-
low).

8. CONCLUSIONS

A new model for the Q2-dependent dual ampli-
tude with Mandelstam analyticity is proposed. The
M-DAMA preserves all the attractive properties of
DAMA, such as its pole structure and Regge asymp-
totics, but it also leads to generalized dual amplitude
A(s, t, Q2) and in this way realizes a unified “two-
dimensionally dual” picture of strong interaction [5–
8] (see Fig. 2). This amplitude, when t = 0, can be
related to the nuclear structure function. In Section 6,
we compare the SF generated by M-DAMA with
phenomenological parametrizations, and in this way
we fix the function β(Q2), which introduces the Q2

dependence in M-DAMA [Eq. (3)]. The conclusion is
that, for both large- and low-x limits as well as for
the resonance region, the results of M-DAMA are in
qualitative agreement with the experiment.

General study of the M-DAMA integral tells us
about the possibility of having poles in Q2. These
singularities may be avoided with our choice of β(Q2)
and also by putting a restriction on the physical
trajectories—the use of a supercritical trajectory
would lead to one Q2 pole.

In the proposed formulation, a Q2 dependence is
introduced into DAMA through the additional func-
tion β(Q2). Although in the integrand this func-
tion stands next to Regge trajectories, this, as was
stressed already, does not mean that it also corre-
sponds to some physical particles. There is no qual-
itative difference between the two ways of introduc-
ing Q2 dependence into DAMA: through the Q2-
dependent parameter g, i.e., function g(Q2) [5, 6], or
through the function β(Q2). On the other hand, the
second way, i.e., M-DAMA, is applicable for all range
of Q2 and it results in physically correct behavior in all
tested limits.
YSICS OF ATOMIC NUCLEI Vol. 68 No. 1 2005
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Abstract—The magnetic moment µ of the ρ meson is calculated in the framework of QCD sum rules in
external fields. Bare-loop calculations (parton model) give µpart = 2.0 (in units e/(2mρ)). The contribution
of operators of dimension 6 reduces this value: µ = 1.5± 0.3. c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Investigation of the static properties of vector
mesons provides an important information about
strong interaction of hadrons. In particular, the vector
dominance hypothesis (VDM) supposes that the
interaction of a real or virtual photon with hadrons
proceeds in such a way that the photon first trans-
forms into vector mesons ρ, ω, φ, which then un-
dergo interaction with hadrons. In the consistent
Lagrangian formulation of VDM, it is assumed [1]
(for a review, see [2]) that ρ mesons are Yang–Mills
vector bosons. In the framework of this hypothesis,
the ρ-meson magnetic moment is equal to 2 (in units
e/(2mρ)), at least if strong interaction is neglected.

The goal of this paper is to calculate the ρ-meson
magnetic moment in QCD using the method of QCD
sum rules in external fields [3, 4].

In [5], the ρ-meson form factors were found at
intermediate momentum transfer by QCD sum rules.
By extrapolation of the ρ-meson magnetic form factor
to the point Q2 = 0 (outside the applicability domain
of the technique), it was found that the ρ-meson
magnetic moment µ is close to 2. However, this re-
sult cannot be considered as conclusive; the direct
calculation of µ in QCD in a model-independent way
is still absent. The ρ-meson magnetic moment was
calculated in models based on the Dyson–Schwinger
equation [6, 7] and in the framework of relativistic
quantum mechanics [8].

Here, we work in the limit of zero quark masses;
αs corrections are neglected.

∗This article was submitted by the author in English.
**e-mail: sams@heron.itep.ru
1063-7788/05/6801-0114$26.00
2. PHENOMENOLOGICAL PART
OF THE SUM RULE

We consider the correlator of two vector currents
in the external electromagnetic field:

Πµν(p) = i

∫
d4xeipx〈T (jµ(x)j+

ν (0)〉F . (1)

Here, subscriptF denotes the presence of the external
electromagnetic field with strength Fρλ and jµ is the
vector current with ρ-meson quantum numbers: jµ =
uγµd. Its matrix element is

〈ρ+|jµ|0〉 = (m2
ρ/gρ)eµ, (2)

where mρ is the ρ-meson mass, gρ is the ρ−γ
coupling constant, g2

ρ/(4π) = 1.27, and eµ is the ρ-
meson polarization vector.
In the limit of a weak external field, we consider

only terms linear in Fρλ in the correlator Πµν (1):

Πµν = Π0
µν + i

√
4παΠµνχσFχσ. (3)

We find the magnetic moment from the sum rule
for the invariant function Π(p2) at a certain kine-
matical structure of Πµνχσ (3). To obtain this sum
rule, we calculate Π at p2 < 0 as the operator product
expansion series. On the other hand, we saturate
dispersion relation forΠ by the contributions of phys-
ical states. After equating these representations, the
required sum rule appears.
Therefore, first of all, one should choose a kine-

matical structure.
The electromagnetic vertex of the ρmeson has the

following general form [5]:

〈ρ(p + q, er
′
)|jelχ |ρ(p, er)〉 (4)

= −er′σ erρ
(

((2p + q)χgρσ − (p + q)ρgχσ

− pσgρχ)F1(−q2) + (gχρqσ − gχσqρ)F2(−q2)
c© 2005 Pleiades Publishing, Inc.
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+
1
m2
ρ

(p + q)ρpσ(2p + q)χF3(−q2)
)
.

In (4), jelχ = euuγχu + eddγχd is electromagnetic
current; eu, ed are u- and d-quark charges; and F1,
F2, and F3 are electric, magnetic, and quadrupole
form factors, respectively,

F1(0) = 1, µ = 1 + F2(0), (5)

µ being the ρ-meson magnetic moment.
Using (2) and (4), we obtain for the

〈0|jµ|ρ〉〈ρ|jelχ |ρ〉〈ρ|jν |0〉εχ transition

−i
∑
r,r′

〈0|jµ|ρr
′〉〈ρr′ |jelχ |ρr〉〈ρr|jν |0〉εχ (6)

= i
m4
ρ

g2
ρ

∑
r,r′

er
′
µ e

r′
σ e

r
ρe
r
νεχ

(
((2p + q)χgρσ

− (p + q)ρgχσ − pσgρχ)F1(−q2)

+ (gχρqσ − gχσqρ)F2(−q2) +
1
m2
ρ

(p + q)ρ

× pσ(2p + q)χF3(−q2)
)
.

Here, εχ is photon polarization, and r, r′ are the
ρ-meson polarization indices. Let us consider in
this expression the terms linear in qσ. We sum over
ρ-meson polarizations, retain the antisymmetric over
χ, σ part, introduce Fχσ = i(εχqσ − εσqχ), and obtain
for (6)

−
m4
ρ

2g2
ρ

Fχσ

((
F2 +

1
2
F1

)
1
p2

(pν(pχgµσ − pσgµχ)

− pµ(pχgνσ − pσgνχ)) +
1
2
F1

1
p2

× (pν(pχgµσ − pσgµχ) + pµ(pχgνσ − pσgνχ))

+ (F2 + F1)(gµχgνσ − gµσgνχ)
)
.

Form factor F3 does not give a contribution linear
in qσ.
Thus, we choose the structure
pν(pχgµσ − pσgµχ)− pµ(pχgνσ − pσgνχ). (7)

In comparison with another possible structure,
gµχgνσ − gµσgνχ, (7) contains two additional powers
of momentum in the numerator, which result in better
convergence of the operator expansion series.
It should be noted here that, as follows from the

vector current conservation, the structure antisym-
metric over field indices χ, σ in Πµνχσ (3) is antisym-
metric over ρ-meson indices µ, ν too.
From (5), one can see that F2(0) + (1/2)F1(0) =

µ− 1/2.
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Thus, one should calculate the invariant function
Π(p2) at the structure (7) in Πµνχσ . In the dispersion
relation forΠ, we use the simplest model of a physical
spectrum, which contains the lowest resonance and
continuum. The phenomenological representation of
Π has the form

Π(p2) =
∫

ds
ρL(s)

(s− p2)2
+ . . . ,

ρL(s) = −
m4
ρ

2g2
ρ

1
s

(
µ− 1

2

)
δ(s −m2

ρ)

+ f(s)θ(s− sρ).

Here, dots mean the contributions of nondiagonal
transitions (for example, 〈0|jµ|ρ∗〉〈ρ∗|jχεχ|ρ〉〈ρ|jν |0〉,
where ρ∗ is the excited state with the same quantum
numbers as ρ), function f represents the continuum
contribution, and sρ is the continuum threshold for
the ρmeson.

Retaining only the terms which do not vanish after
Borel transformation, we obtain

Π(p2) = −
m2
ρ

2g2
ρ

µ− 1/2
(m2

ρ − p2)2
(8)

+
C̃

m2
ρ − p2

+

∞∫
sρ

ds
f(s)

(s− p2)2
,

where C̃ appears due to nondiagonal transitions.

3. CALCULATION OF THE VECTOR
CURRENT CORRELATOR

Now let us calculate Π(p2), based on the operator
product expansion in QCD.

The quark propagator in the external electromag-
netic field Fµν in the fixed-point gauge xµAµ = 0,
Aµ = −(1/2)Fµνxν , can be found in [3]:

〈Tqaα(x)qbβ(0)〉F

=
iδab(x̂)αβ

2π2x4
− δabgαβ

12
〈qq〉

− iδab〈qσρλq〉F
48

(γργλ − γλγρ)αβ

− δab
√

4παeqFρλ
32π2x2

(x̂γργλ + γργλx̂)αβ.

Here, eq is the quark charge; α, β are spinor indices;
a, b are color indices; and (see [3]) 〈qσρλq〉F =√

4παeqχFρλ〈qq〉, χ being the quark condensate
magnetic susceptibility.
5
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The expression for the quark propagator in the ex-
ternal electromagnetic and soft gluon fields ŜFG has
the following form in momentum representation [3]:

ŜFG = − igeq
√

4παFρλGn
στ t

n

2p6

×
(
γλγτγργσp̂− 2pλγτγσγρ − 2pτγλγργσ

− 8pρpτgλσ
p2

p̂ + 2gλτγσγρp̂− 2gλτgρσ p̂
)
.

Here, Gn
στ is the gluon field strength and tn are the

color matrices.
The contribution of the loop diagrams to Π(p2) is

equal to

− 3
16π2

∞∫
0

ds

(s− p2)2
. (9)

According to the quark–hadron duality, the contin-
uum contribution in the interval of P 2 = −p2 from
sρ to infinity is determined by the bare loop in this
interval. Therefore, function f in (8) is constant: f =
−3/(16π2).
The loop diagrams correspond to the operator of

the lowest dimension Fρλ. Operators of dimension 4
are absent. As was shown in [3], operator q(Dµγν −
Dνγµ)q has opposite C parity with respect to the
electromagnetic field and cannot be induced by them,
while operator εµνρλqγ5γρDλq vanishes due to the
equation of motion for massless quarks.
There are a number of vacuum expectation values

of operators of dimension 6:
〈qσρλq〉F 〈qq〉, 〈Gn

στG
n
στ 〉Fµν , and

g〈q((Gn
µλDν −

←−
DνG

n
µλ) (10)

− (Gn
νλDµ −

←−
DµG

n
νλ))γλt

nq〉F ,
εµνρλg〈q(Gn

ρξDλ +
←−
DλG

n
ρξ)γξγ5t

nq〉F ,
dikl〈(Gi

µλG
k
λρG

l
ρν −Gi

νλG
k
λρG

l
ρµ)〉F ,

where Dµ is the covariant derivative and dikl are
SU(3) structure constants.
The diagrams corresponding to the operator

〈Gn
στG

n
στ 〉Fµν have infrared divergence. We introduce

the cutoff over transversal momenta λ and obtain
their contribution into Π(p2):

− 1
36

〈αs
π
G2
〉( 1

2λ4p2
− 1

6λ2p4
+

3
p6

)
. (11)

As for vacuum expectation values (10), usually
such operators can be calculated by constructing the
PH
corresponding sum rules. An example of such an ap-
proach can be found in [9] for dimension-4 operators
and symmetric tensor field. But for operators (10),
this approach is inapplicable because of their high
dimension. However, the first and second vacuum
expectation values in (10) are suppressed by the fac-
tor N−1

c (Nc is the color number) as compared with
〈qσρλq〉F 〈qq〉, while the third contains the factor g3.
So we can expect that they are rather small and
disregard them.
The dominating contribution appears from no-

loop diagrams with hard gluon exchange. In our case,
such diagrams contain the operator 〈qσρλq〉F 〈qq〉.
They give

2
9
g2〈q̄q〉χ

p6
. (12)

It should be noted here that the quark condensate
magnetic susceptibility χ is negative.
Collecting expressions (9), (11), and (12), one can

find the operator product expansion part of the sum
rule:

Π(p2) = − 3
16π2

∞∫
0

ds

(s− p2)2
(13)

+
2
9
g2〈q̄q〉χ

p6
− 1

36

〈αs
π
G2
〉

×
(

1
2λ4p2

− 1
6λ2p4

+
3
p6

)
.

4. RESULTS AND DISCUSSION

After Borel transformation

B̂(M2) = lim
P2,n→∞
P2/n=M2

(P 2)n+1

n!

(
− d

dP 2

)n
,

P 2 = −p2 > 0,

we equate the phenomenological (8) and operator
product expansion (13) parts of sum rule and obtain
(M2 is the Borel mass)

µ− 1
2

+ CM2 (14)

=
3g2
ρM

2

8π2m2
ρ

(1− e−sρ/M
2
)em

2
ρ/M

2 −
g2
ρ

m2
ρ

em
2
ρ/M

2

×
(
− 2g2〈q̄q〉2χ

9M2
+

1
36

〈αs
π
G2
〉

×
(
M2

λ4
+

1
3λ2

+
3

M2

))
,

C appears due to nondiagonal transitions.
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We use the following values of parameters:
mρ = 0.77 GeV is the ρ-meson mass,

g2
ρ/(4π) = 1.27 is the ρ−γ coupling constant,
sρ = 1.5GeV2 is the continuum threshold for ρ

meson,

〈(αs/π)G2〉 = 0.009 ± 0.007 GeV4 is the gluon
condensate [10],

g2〈q̄q〉2 = (0.28± 0.09)× 10−2 GeV6 is the quark
condensate [10],

χ = −(5.7± 0.6) GeV−2 is the quark condensate
magnetic susceptibility [11],

λ2 = 0.8 GeV2 is the cutoff over transversal mo-
menta.
First of all, let us consider the contribution of the

bare loop (and continuum). It is given by the first term
in the right-hand side of (14). In [12], the following
relation for gρ can be found:

g2
ρM

2

4π2m2
ρ

(1− e−sρ/M
2
)em

2
ρ/M

2
= 1. (15)

Substituting (15) into (14) and omitting for a while
the terms with quark and gluon condensates, one can
obtain a very simple answer:

µpart −
1
2

=
3
2
.

We see that, in the parton model approximation, the
ρ-meson magnetic moment is equal to 2. This result
agrees with the prediction of the vector dominance
hypothesis.
Now let us analyze the whole Eq. (14). In order to

find the value of magnetic moment, we approximate
the right-hand side of (14) (see figure) by a straight
line in the interval 0.9 ≤M2 ≤ 1.3 GeV2 and find its
ordinate at zero Borel mass.
Thus, we obtain

µ = 1.5. (16)

The contribution of the operators of dimension-6
to this value does not exceed 20%.
The contribution of the terms which contain λ2

is not more than 20% of the total contribution of
dimension-6 operators. That is why variation of λ2

within the interval 0.6 ≤ λ2 ≤ 1.0 GeV2 does not
change the value of magnetic moment.
The variations of the values of the quark and gluon

condensates within the given limits change the value
of magnetic moment by�10% each.
The uncertainty in the value of the quark conden-

sate magnetic susceptibility results in an error of a
few percent in the value of the magnetic moment.
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The right-hand side of Eq. (14) R(M2) as a function
ofM2.

Variation of the continuum threshold sρ for the ρ
meson within reasonable limits gives the same effect.

Supposing that the contribution of vacuum expec-
tation values (10) does not exceed 50% of that from
diagrams with hard gluon exchange (12), we obtain
after collecting all uncertainties

µ = 1.5± 0.3.

This is our final result.

In [13], it was shown that the approximation pro-
cedure is correct (nonlinear terms can be safely ne-
glected) when µ� CM2. In our case, CM2/µ ≈
0.2−0.3.

Thus, we find that, in the parton model (bare-
loop) approximation, the ρ-meson magnetic moment
µpart = 2, whereas the nonperturbative interactions
decrease this quantity by a quarter: µ = 1.5± 0.3. It
is important to mention that all considered operator
product expansion corrections are negative, i.e., re-
sult in a decrease in µ in comparison with µpart = 2.
Since the effective values of the Borel parameter M2

are about 1GeV2, one may expect that perturbative
corrections are remarkable and can reach ∼20%.

The value of the ρ-meson magnetic moment was
calculated in a number of papers within models based
on the Dyson–Schwinger equation. In [6], the value
µ = 2.69 was found. In [7], several results are com-
pared, and the values of µ lie between 2.5 and 3.0.
The relativistic quantum mechanics model gives [8]
µ = 2.23 ± 0.13. Recently, the value of the magnetic
moment was found in the light cone QCD sum rule
technique [14]. The result is µ = 2.2± 0.2. Unfor-
tunately, while αs corrections are not calculated (we
plan to do this in the next paper), it is hard to say with
certainty if this discrepancy is real or not.
5
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Abstract—QCDpredictions formoments of multiplicity distributions are comparedwith experimental data
on e+e− collisions and their two-NBD fits. Moments of the multiplicity distribution in a two-NBD model
for 1.8-TeV pp collisions are considered. Three-NBDmodel predictions and fits for pp at LHC energies are
also discussed. Analytic expressions for moments of hybrid NBD are derived and used to get insight into
jet parameters and multicomponent structure of the processes. Interpretation of observed correlations is
proposed. c© 2005 Pleiades Publishing, Inc.
Multiplicity distributions are the integral charac-
teristics of multiparticle production processes. They
can be described either in terms of probabilities
Pn(E) to create n particles at energy E or by the
moments of these distributions. It has been found
that their shapes possess some common features in
all reactions studied. At comparatively low energies,
these distributions are relatively narrow and have
sub-Poissonian shapes. With energy increase, they
widen and fit a Poisson distribution. At even higher
energies, the shapes become super-Poissonian; i.e.,
their widths are larger than for a Poisson distribution.
The width increases with energy and, moreover, some
shoulder-like substructures appear.

Their origin is usually ascribed to multicomponent
contents of the process. In aQCDdescription of e+e−

processes, these could be subjets formed inside quark
and gluon jets (for reviews, see, e.g., [1, 2]). In phe-
nomenological approaches, the multiplicity distribu-
tion in a single subjet is sometimes approximated by
a negative binomial distribution (NBD) first proposed
for hadronic reactions in [3]. For hadron-initiated pro-
cesses, these peculiarities are also explained by the
multicomponent structure of the process. This is ei-
ther multiladder exchange in the dual partonmodel [4,
5], varying number of clans [6], or multiparton in-
teractions [7, 8]. These subprocesses are related to
the state of matter during the collision (e.g., there
are speculations about a nonhomogeneous matter
distribution in impact parameters [9], not to speak of
quark–gluon plasma [10] behaving as a liquid [11],
etc.).

∗This article was submitted by the author in English.
**e-mail: dremin@lpi.ru
1063-7788/05/6801-0119$26.00
Such evolution of themultiplicity distributions can
be quantitatively described by the energy behavior of
their moments. These moments reveal the correla-
tions inherent for the state ofmatter formed during the
collision. Similarly to virial coefficients in statistical
physics, they can tell us about the equation of state
of this matter. To introduce them, let us write the
generating function of the multiplicity distribution as

G(E, z) =
∞∑
n=0

Pn(E)(1 + z)n. (1)

In what follows, we will use the so-called unnormal-
ized factorial Fq and cumulant Kq moments defined
according to the formulas

Fq =
∑
n

Pnn(n− 1) . . . (n− q + 1) (2)

=
dqG(E, z)

dzq

∣∣∣∣
z=0

,

Kq =
dq lnG(E, z)

dzq

∣∣∣∣
z=0

. (3)

They correspondingly define the total and genuine
correlations among the particles produced (for more
details, see [2, 12]). These cumulant moments could
be considered as the direct analogies of virial coeffi-
cients of statistical physics since both are related to
genuine (irreducible) correlations. In particular, the
first moments describe the mean multiplicity 〈n〉:

F1 = K1 = 〈n〉, (4)

and the second moments are related to the dispersion
D of the distribution Pn:

K2 = F2 − 〈n〉2 = D2 − 〈n〉. (5)
c© 2005 Pleiades Publishing, Inc.
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The higher rank moments reveal other asymmetries
of distributions, such as skewness. Since bothFq and
Kq strongly increase with their rank and energy, their
ratio

Hq = Kq/Fq, (6)

first introduced in [13], is especially useful due to
partial cancellation of these dependences. The fac-
torial moments Fq are always positive by definition
[Eq. (2)], while the cumulant momentsKq can change
sign. Again, let us recall that the changing-sign sec-
ond virial coefficient in statistical physics implies the
liquid state with the van der Waals equation corre-
sponding to repulsion at small distances and attrac-
tion at large distances. Cooper pair formation is also
related to similar behavior of correlations.

Here, we compare QCD and NBD approaches to
the description of multiplicity distributions. We argue
that Hq values are more sensitive to minute details
of the distributions than their direct χ2 fits and reveal
differences between proposed fits of e+e− and pp(pp̄)
processes. Some estimates for LHC energies will be
provided.

The generating functions for quark and gluon jets
satisfy definite equations in perturbative QCD (see [2,
14]). It has been analytically predicted in gluody-
namics [13] that, at asymptotically high energies, Hq

moments are positive and decrease as q−2, but at
present energies up to 200GeV, they become negative
at some values of q and reveal the negative minimum
at

qmin =
1

h1γ0
+ 0.5 +O(γ0), (7)

where h1 = b/(8Nc) = 11/24, b = 11Nc/3− 2nf/3,
γ2
0 = 2Ncαs/π, αs is a coupling strength, and Nc

and nf are the numbers of colors and flavors. At
Z0 energy, αs ≈ 0.12, and this minimum is at about
q ≈ 5. It moves to higher ranks with energy increase
because the coupling strength decreases. Some hints
to possible oscillations of Hq vs. q at higher ranks
at LEP energies were obtained in [13]. Then the
approximate solution of the gluodynamics equation
for the generating function [15] agreed with this and
predicted the oscillating behavior at higher ranks.
These oscillations were confirmed by experimental
data for e+e− and hadron-initiated processes first
in [16], later in [17], and most recently in [18]. The
same conclusions were obtained from an exact so-
lution of equations for quark and gluon jets in the
framework of fixed coupling QCD [19]. The physics
interpretation of these oscillations as originating from
multisubjet structure of the process is related to the
(multi)fractal behavior of factorial moments, found
also in QCD [20–22]. The asymptotic disappearance
PH
of oscillations can be ascribed to the extremely large
number of subjets at very high energies.

A recent exact numerical solution of the gluody-
namics equation in a wide energy interval [23] co-
incides with the qualitative features of multiplicity
distributions described above. In terms of moments,
they correspond to the values of Hq changing sign
at each subsequent q (with H2 < 0) at low energies
(narrow shapes1)), the approach of Hq to zero at
the Poisson transition point about 20 GeV for e+e−

processes, and the positive second moment H2 with
oscillations of higher rank cumulants at Z0 which
disappear asymptotically. At Z0, the first minimum
appears at q ≈ 5. This confirms earlier exact QCD
results [24] at Z0. It moves to higher ranks with a
steadily decreasing amplitude when energy increases.
The only free parameter is the QCD cutoff, which is,
however, approximately fixed by the coupling strength
and does not strongly influence the results.

In parallel, the NBD fits of multiplicity distri-
butions were attempted [6, 25]. The single NBD
parametrization is

Pn(E) =
Γ(n+ k1)

Γ(n+ 1)Γ(k1)

(
n1

k1

)n(
1 +

n1

k1

)−n−k1
,

(8)

where Γ denotes the gamma function. This distribu-
tion has two adjustable parameters n1(E) and k1(E)
which depend on energy. Such a formula happened
to describe low-energy data with negative values of
k1 that correspond to binomial fits. At the Poisson
transition point, k−1

1 = 0. The parameter k1 becomes
positive at higher energies. However, the simple fit
by formula (8) is valid until the shoulders appear. In
that case, this formula is replaced by the hybrid NBD
which combines two or more expressions like (8).
Each of them has its own energy-dependent parame-
ters ni, ki. These distributions are weighted with the
energy-dependent probability factors αi which sum
up to 1. Correspondingly, the number of adjustable
parameters drastically increases.

A single NBD (8) has positive cumulants for
k1 > 0 (Kq = Γ(q)nq1/k

q−1
1 ) and thus positive Hq =

Γ(q)Γ(k1 + 1)/Γ(k1 + q). For hybrid NBD, negative
Hq can exist. The traditional procedure to calculate
higher rank moments is by the iterative relations

Hq = 1−
q−1∑
m=1

Γ(q)
Γ(m+ 1)Γ(q −m)

Hq−m
FmFq−m
Fq

.

(9)

1)Narrow distributions always have such cumulants as shown,
e.g., in [2].
YSICS OF ATOMIC NUCLEI Vol. 68 No. 1 2005
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Table 1

QCD L3, untr. data L3, tr. data 2NBD (OPAL)

H2 3.9× 10−2 (4.42± 0.11)× 10−2 (4.41± 0.10)× 10−2 4.4× 10−2

H3 7.4× 10−3 (7.40± 0.38)× 10−3 (7.20± 0.35)× 10−3 7.4× 10−3

H4 4.0× 10−4 (9.69± 2.56)× 10−4 (7.17± 1.42)× 10−4 4.9× 10−4

H5 −2.2× 10−4 −(1.30± 1.59)× 10−4 −(3.95± 0.53)× 10−4 −2.4× 10−4
Strong compensations are inherent in Eq. (9). This
calls for high accuracy of numerical calculations.
More importantly, the formula does not give any
direct insight into the physical reasons for such
compensations. Therefore, it is instructive to write the
analytic formulas for moments of hybrid NBD which
provide a clear interpretation of negative values of
cumulants. We have derived these expressions for the
two-NBD parametrization (2NBD) given by a sum
of two expressions like (8) with two sets of adjustable
parameters n1, k1, n2, k2 weighted with energy-
dependent factors α and 1− α, respectively. 2NBD
describes the process with two independent NBD
components of mean multiplicities ni and widths ki
created with probabilities α and 1− α. The factorial
moments for any rank q are given by the simple
formula

Fq = α
Γ(k1 + q)

Γ(k1)
nq1
kq1

+ (1− α)
Γ(k2 + q)

Γ(k2)
nq2
kq2

(10)

(0 ≤ α ≤ 1).

The cumulant moments are more complicated and
should be calculated separately for each rank. The
first five moments are

K1 = F1 = 〈n〉 = αn1 + (1− α)n2, (11)

K2 =
αn2

1

k1
+

(1− α)n2
2

k2
(12)

+ α(1− α)(n1 − n2)2,

K3 =
2αn3

1

k2
1

+
2(1 − α)n3

2

k2
2

(13)

+ α(1 − α)(n1 − n2)[3(n2
1/k1 − n2

2/k2)

+ (1− 2α)(n1 − n2)2],

K4 =
6αn4

1

k3
1

+
6(1 − α)n4

2

k3
2

+ α(1− α) (14)

× [(n1 − n2)4(1− 6α(1 − α))

+ 11(n2
1/k1 − n2

2/k2)2

− 8n1n2(n1/k1 − n2/k2)2

+ 6(1− 2α)(n1 − n2)2(n2
1/k1 − n2

2/k2)],
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K5 =
24αn5

1

k4
1

+
24(1 − α)n5

2

k4
2

+ 5α(1 − α) (15)

× [6(n1 − n2)(n4
1/k

3
1 − n4

2/k
3
2)

+ 4(n3
1/k

2
1 − n3

2/k
2
2)(n

2
1/k1 − n2

2/k2)

+ (1− 2α)(n1 − n2)(7(n1 − n2)(n3
1/k

2
1 − n3

2/k
2
2)

+ 3n1n2(n1/k1 − n2/k2)2)

+ 2(1− 6α(1 − α))(n1 − n2)3(n2
1/k1 − n2

2/k2)

+ 0.2(1 − 2α)(1 − 12α(1 − α))(n1 − n2)5].

For α = 0 or 1, they reduce to one-NBD formulas
with one of the first two terms surviving. This term is
always positive for positive ki. Therefore, as expected,
the distributions show no oscillations if considered
individually. For 2NBD, there is a symmetry in re-
placing indices 1 to 2 together with α to 1− α. Neg-
ative K2 can be obtained only if ki < 0. For positive
ki, one always gets positive K2. Its value depends
on the difference n1 − n2. K3 can become negative
depending on the values of the last two terms. These
cancellations of positive and negative contributions
in expressions (13)–(15) are not so drastic as in
Eq. (9), especially for large q, because the leading
contributions to Hq are strongly decreasing with q
in (13)–(15), and not of the order of 1, as in (9).
Therefore, they do not require very high precision and,
moreover, clearly display the origin of each term and
its dependence on fitted parameters.

Actually, five moments determine quite well the
shape of the distribution if they are calculated with
high enough accuracy. Since these shapes are qual-
itatively similar in different reactions, it is especially
instructive to compare their Hq moments. In Ta-
ble 1, the Hq moments for e+e− annihilation at Z0

are shown. Their values according to the solution
of the gluodynamics equations [23] are in the sec-
ond column. In the third and fourth columns, the
experimental results of the L3 Collaboration [18] are
represented for full phase space, respectively, with all
measured multiplicities included and with some very
high multiplicities truncated (because of large error
bars). Next followHq values restored from 2NBD fits
of OPAL [26] results done in [27]. They are similar
5
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Table 2

2NBD fit,
1.8 TeV

3NBD fit,
14 TeV

Pythia,
14 TeV

H2 0.2279 0.8754 0.4224

H3 0.0988 0.9703 0.3387

H4 0.0414 0.9737 0.2683

H5 0.0120 0.9742 0.1877

to directly measured L3 values. The errors in fitted
parameters are omitted since they are also close to
those for L3.

The overall qualitative agreement is rather good.
Quite impressive is the fact that, in all cases, the fifth
cumulant moment is negative. However, somewhat
surprising is the difference of the theoretical and ex-
perimental widths (H2 values). The widths are deter-
mined quite precisely both experimentally and theo-
retically. The only reason to which such disagreement
could be ascribed is the incomplete treatment with
quarks omitted in [23]. More complete theoretical
calculations will shed some light on this problem.

One cannot blame the so-called truncation effect
for this disagreement. The analytical QCD predic-
tions deal with an infinitely long tail of the distribu-
tion. In experiment, the final statistics prevent mea-
suring very high multiplicities, and the tail is trun-
cated. Some additional truncation can be imposed
to avoid data with large errors. However, this is not
very important for low-rank moments if done at high
multiplicities. This is seen from comparison of L3
results for untruncated (actually, truncated only by
statistics of experiment) and truncated (with highest
multiplicity data omitted because of poor statistics)
data in the first row of Table 1. Additional truncation
does not change the results qualitatively even for H5

(the last row). The negative sign and decrease com-
pared to H4 persist. That is why, to minimize the role
of the tail of the distribution, we consider only the five
lowest rank moments.

Comparing QCD predictions with experiment at
higher rank moments, one can hope to reveal new
qualitative features. This happened with oscillating
moments whose amplitudes do not necessarily agree
because of truncation of experimental data. However,
this effect can be fully taken into account in cutoff
NBD fits and in Monte Carlo models with a sample
of the same size.

The comparison of e+e− and pp(pp̄) data turns
out to be especially interesting. While both show
qualitative similarity of the shapes of multiplicity dis-
tributions, the correspondingHq values are quite dis-
tinctive. In Table 2, we show Hq values for pp̄ data at
PH
1.8 TeV [7] (Tevatron) and interpolations to 14 TeV
(LHC), both obtained from NBD fits elaborated in [6,
25]. The 2NBD fit at 1.8 TeV corresponds to the
parameters α = 0.62, n1 = 30, n2 = 61.6, and k1 =
k2 = 7, which are approximately equal to average
values for the 2.A model considered in [6]. However,
even this extreme model underestimates high multi-
plicities and, therefore,Hq values in Table 2 should be
treated as lower bounds to experimental ones, which
are unknown, unfortunately. The extrapolated values
at 14 TeV have been calculated using the parameters
of 3NBD fits and the Pythia model, both considered
in [25].

Quite impressive are much larger values of Hq

in hadron-initiated reactions (Table 2) as compared
to e+e− results (Table 1). They strongly increase
with energy. Moreover, the drastic difference is clearly
displayed by Hq between 3NBD interpolations and
Pythia at 14 TeV. This demonstrates the extremely
high sensitivity of Hq analysis because both ap-
proaches provide a similar two-shoulder structure
of multiplicity distributions as seen in Fig. 2 of [6].
At 14 TeV, the predictions are given for full phase
space. For the rapidity interval |η| < 0.9, the Hq

values become larger than those in Table 2.Hq for the
3NBD model of [6] become almost indistinguishable
from 1 (above 0.99). Pythia values increase by about
1.4 times. No oscillations are seen at these high
energies, while they are present at energies below
1 TeV [16]. Surely, LHC experiments will give their
decisive conclusion.

To conclude, we have shown that Hq moments
of the multiplicity distribution are extremely sensi-
tive to minute details of its shape. They can resolve
the differences between various fits even if those are
not clearly seen in the traditional representation. Hq

values obtained from experimental data can be com-
pared with analytical QCD results (if the size of the
sample is large enough), NBD fits, and Monte Carlo
model predictions. Truncation of the tail is not crucial
for lower rank moments. Nevertheless, it can be ac-
counted for in the NBD and Monte Carlo approaches
(not in analytical QCD), so that higher rank moments
are incorporated as well and provide additional infor-
mation. For e+e−, slight disagreement on theoretical
and experimental widths is embarrassing and must
be further studied. For hadron- and nuclei-initiated
reactions, Hq values are much larger than in e+e−.
Two attempts demonstrated in Table 2 to extrapolate
to LHC energy give rise to completely different val-
ues of the moments even though the shapes of the
multiplicity distributions do not differ much. Thus,
it has been shown that moments can be used to
discriminate between various phenomenological fits
and models. RHIC and LHC data are awaited for
YSICS OF ATOMIC NUCLEI Vol. 68 No. 1 2005
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better insight. The energy dependence of Hq and of
the relative weights of various NBD components can
provide some hints on the state of matter during the
collision and its energy evolution.
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Abstract—The effect of an external magnetic fieldH on the stability of quark matter is studied on the basis
of the Nambu–Jona-Lasinio model. It is shown that, at H = 0, droplets of quark matter are stable only
in the case where the coupling constant G is greater than some value Gbag. If H �= 0, stable multiquark
formations may exist even for G ≤ Gbag (magnetic catalysis of stability). For G > Gbag, a magnetic field
facilitates the formation of stable quark matter. c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

In recent years, physicists have given much atten-
tion to dense quark–hadron matter, which is present
in neutron stars and which can arise in relativistic
heavy-ion collisions. Strictly speaking, QCD, which
is a theory of strong interactions, is a theoretical
basis for studying this object. The majority of QCD
predictions are based on the use of the perturbation-
theory method, which is inapplicable at comparatively
low baryon densities. In such cases, use is usually
made of effective models that, to some extent, are
adequate to QCD at low energies, as well as at baryon
densities ρB commensurate with the baryon density
ρo in conventional nuclear matter (ρo = 0.16 fm−3).
Among such effective models, those that involve four-
fermion interactions—that is, models of the Nambu–
Jona-Lasinio type [1]—are very popular. Since it is
assumed that a stable quark-matter droplet—that is,
a droplet that does not tend to contract into a point or
to extend over the entire space—is formed for a short
time in heavy-ion processes, any realistic effective
model must predict the existence of stable multiquark
objects featuring a large baryon number (we will re-
fer to them as baryon droplets). Within Nambu–
Jona-Lasinio models, quarks are usually considered
as pointlike particles, while mesons are collective
quark–antiquark excitations of the vacuum. Within
such models, one can also describe an octet and
a decuplet of the simplest baryons. Finally, it was
shown in [2, 3] that stable multiquark formations are
also present in the mass spectrum of Nambu–Jona-
Lasinio models. In this case, however, the domain of

1)Institute for High Energy Physics, Protvino,Moscow oblast,
142284 Russia; e-mail: kklim@mx.ihep.su

2)Institut für Physik, Humboldt-Universität zu
Berlin, D-10115 Berlin, Germany; e-mail:
debert@physik.hu-berlin.de
1063-7788/05/6801-0124$26.00
admissible values of model parameters (coupling con-
stants and so on) is constrained significantly, while
such quark droplets can be stable only if they con-
sist of massless quarks (we discuss here the case of
chiral-invariant Nambu–Jona-Lasinio models).

As was indicated above, there exist, in nature,
objects whose physics is determined to a considerable
extent by the properties of dense quark–gluonmatter.
These are neutron stars. Their surface is formed by
ordinary nuclei, electrons, and so on. The pressure in
a star and its density grow toward its interior. There-
fore, nuclei and thereupon constituent nucleons can
merge, forming quark droplets. According to some
modern concepts, the core of a neutron star consists
of quark matter whose density is severalfold greater
than ρo. A superstrong magnetic field—according to
some estimates, its strength may reach values on the
order of 1018 G [4]—is an indispensable feature of
neutron stars. In this connection, some aspects of
the external-magnetic-field effect on dense quark–
hadron matter were previously investigated in [5–8].

In the present study, the problem of stability of
quark matter is considered within the simplest chiral-
invariant Nambu–Jona-Lasinio model and, in con-
trast to what was done in [2, 3], with allowance for a
constant uniform magnetic field H . We will prove the
following statements: (i) In an external magnetic field,
stable droplets of quark matter can also be formed by
massive quarks. (ii) For model-parameter values at
which stability is impossible atH = 0, quark droplets
are stabilized forH �= 0 (magnetic catalysis of stabil-
ity of quark matter).

2. NAMBU–JONA-LASINIO MODEL
AND STABILITY CONDITION

The problem of the external-magnetic-field effect
on the stabilization of quark matter will be consid-
ered here within the simplest Nambu–Jona-Lasinio
c© 2005 Pleiades Publishing, Inc.
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model [1] featuring quarks that have three colors and
the same electric charge q. In Minkowski space, the
Lagrangian of the model has the form

L = ψ̄[iγν(∂ν − iqAν) + µγ0]ψ (1)

+G[(ψ̄ψ)2 + (ψ̄iγ5ψ)2],

where µ ≥ 0 is the chemical potential and Aν =
δν2x

1H is the vector potential of a constant and
uniform magnetic field H (we consider here the
case of zero temperature). The Lagrangian in (1) is
invariant under the continuous chiral transformation
group U(1)L × U(1)R.

In order to solve the problem of stability of quark
matter, we will rely, as in [2, 3], on the thermodynamic
approach within which a quark-matter droplet can be
interpreted as a dense-phase droplet surrounded by
a phase of zero baryon density, a vacuum. The con-
dition under which there emerge stable multiquark
droplets is then the condition of coexistence of these
two phases—that is, the condition of the occurrence
of a first-order phase transition between them (an
analog of coexistence in a liquid–vapor system in
condensed-matter theory).3) Quantitatively, it can be
represented in the form (see [2])

mdense < µc < mvac, (2)

where µc is the critical chemical-potential value at
which the two phases in question coexist, mvac is
the mass of a single-quark excitation of the true
vacuum (this vacuum is not symmetric under chiral
transformations), andmdense is the quark mass in the
phase where the baryon density is nonzero (that is,
within a quark droplet). Relation (2) will be referred
to as the condition of stability of quark matter. [The
condition (2) of coexistence of the two phases can
easily be understood if the chemical potential is in-
terpreted as the lowest energy that a particle must
have to escape from the system. If the two phases
in question coexist at the chemical-potential value µc
and if one of them (vacuum) does not contain quarks,
then the inequality µc < mvac must hold (otherwise,
quarks of energy about mvac could not escape from
the system, with the result that the baryon density in
the vacuum would be nonzero). For the same reason,
ρB �=0 in the dense phase merely because mdense <
µc, and the energy of quarks is insufficiently high for
escaping from the system.] Thus, we see that, in the
thermodynamical approach, the problem of stability
reduces to solving the problem of the phase structure

3)This method is also used in some nuclear-physics models
to describe the properties of dense nuclear matter (see, for
example, [9]). In such models, a conventional nucleus of
rather large charge number is identified with a droplet of
a dense phase that coexists with the vacuum phase of the
model.
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of the model and to finding first-order phase transi-
tions occurring between the dense baryon phase and
the vacuum and satisfying relation (2). We also note
that, in this approach, we disregard surface effects,
which are significant only for baryons consisting of a
small number of quarks.

3. STABILITY AT H = 0

On the basis of the foregoing, we will first study the
problem of stability atH = 0. In the leading order of a
mean-field expansion,4) the thermodynamic potential
Ω of the model has the form (see [2, 11])

Ω(m;µ) =
m2

4G
− 2Nc (3)

×
∫

d3p

(2π)3

{
Ep + θ(µ− Ep)(µ− Ep)

}
,

where Ep =
√
m2 + p2 and m is the order parame-

ter for chiral symmetry. The point mo at which the
potential Ω(m;µ) as a function of m reaches the
global minimum is related to the vacuum expecta-
tion value for a quark–antiquark pair by the relation
mo = −2G〈ψ̄ψ〉. It follows that, if mo = 0, then the
ground state of the model is chiral-symmetric, but
that, if mo �= 0, the chiral invariance of the model
is spontaneously broken. Moreover, mo is equal to
the dynamical quark mass. By employing, in (3), the
Lorentz-noninvariant regularization p2 ≤ Λ2 for the
divergent integral, we can obtain

Ω(m;µ) =
m2

4G
− 3

8π2

[
Λ(2Λ2 +m2) (4)

×
√
m2 + Λ2 −m4 ln

(
Λ +
√
m2 + Λ2

m

)]

− θ(µ−m)
8π2

[
µ(2µ2 − 5m2)

√
µ2 −m2

+ 3m4 ln
(
µ+

√
µ2 −m2

m

)]
.

At µ = 0, it follows from (4) that, if G ≤ Gc ≡
π2/(3Λ2), the thermodynamic potential in question
has the global minimum at m = 0, so that the
vacuum is chiral-symmetric. If G > Gc, the chiral
invariance of the model is spontaneously broken since
the global minimum of the thermodynamic potential

4)In [10], a scheme for systematically going beyond the leading
approximation in the mean-field expansion is given within
the formalism of a bilocal source. We restrict our consid-
eration here to the leading order of this expansion since
this is sufficient for demonstrating effects associated with an
external magnetic field.
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Fig. 1. Phase portrait of the model in the (M,µ) plane at
H = 0. Points on the curve lAB separating phasesA and
B satisfy the condition of stability.

Ω(m; 0) occurs at a nonzero pointM that satisfies the
stationarity equation

π2

3G
= Λ

√
M2 + Λ2 (5)

−M2 ln

(
Λ +
√
M2 + Λ2

M

)
.

We consider predominantly the case of G > Gc,
where, along with G, it is convenient to employ the
parameterM , the dynamical quark mass in a vacuum
whose chiral symmetry is broken. The quantities G
andM are related by Eq. (5).

In [12], the phase structure of the model specified
by the Lagrangian in (1) and regularized in a Lorentz-
invariant way was already investigated for µ �= 0 (the
problem of stability of quark matter was not consid-
ered there). By using the same methods as in [12]
for the present case, we can obtain a phase portrait
of the model. It is depicted in Fig. 1 in the (M,µ)
parameter plane. In this figure, phase A is a dense
chiral-invariant phase of themodel, the quarks having
zero mass there. Phase B, where chiral symmetry is
spontaneously broken and where the quark mass is
equal toM , corresponds to the true QCD vacuum. In
this phase, ρB = 0. Finally, there is phase C, where
the baryon density is nonzero (ρB �= 0) and where the
quark mass is also nonzero and depends on µ. The
solid and dashed curves in the figure are the curves
of, respectively, second- and first-order phase tran-
sitions. In particular, lBC = {(M,µ):µ = M}, while
the curve lAB, which entirely lies below the straight
line µ = M , is determined by the equation

Ω(M ;µ) = Ω(0;µ). (6)

Solving Eq. (6), we obtain lAB = (M,µ):µ =
µc(M) < M,M ≥Mc = 0.56Λ, where

2µ4
c(M) = 6Λ3

√
M2 + Λ2 − 6Λ4 (7)
P

− 3M2F (M,Λ)

[the expression for F (M,Λ) is the right-hand side of
Eq. (5)]. In Fig. 1, there are in addition two tricritical
points α and β whose coordinates are α = (M̃ , µ̃) and
β = (Mc,Mc), where M̃ = 0.31Λ and µ̃ = 0.37Λ.

From the aforesaid, it follows that the relations
mdense ≡ 0 < µc(M) < M ≡ mvac, which are noth-
ing but the stability condition (2), hold for points
on the curve lAB corresponding to the first-order
phase transitions and separating the vacuum phase
B from phaseA, where the baryon density is nonzero.
This means that only for M ≥Mc = 0.56Λ—that
is, for G > Gbag ≡ 1.37Gc—can stable droplets of
quark matter (quark droplets) arise within the original
Nambu–Jona-Lasinio model. Quarks are massless
within these droplets.

In should be recalled that, in [2], the problem of
stability of quark droplets was already investigated
within the Nambu–Jona-Lasinio model, but only for
three values of the parameterM :M1 = 0.48Λ,M2 =
0.67Λ, and M3 = 0.88Λ. The results reported in [2]
confirm our more general conclusions: for the values
M2,3, quark droplets are stable, while, forM1, there is
no stability.

The baryon density ρdrop within a stable quark
droplet is calculated by the formula

ρdrop(M) = −∂Ω(0;µ)
Nc∂µ

∣∣∣∣
µ=µc(M)

=
1

3π2
µ3
c(M). (8)

In particular, it follows from (8) that ρdrop = 1.43ρo at
M = M2 and Λ = 600 MeV and that ρdrop = 2.09ρo
atM = M3 and Λ = 570 MeV.

4. STABILITY FOR H �= 0

The thermodynamic potential of the Nambu–
Jona-Lasinio model in an external magnetic field
has the form (the details of the derivation of this
expression can be found in [13, 14])

Ω(m;µ,H) = Ω(m; 0,H) (9)

− 3qH
4π2

∞∑
k=0

αkθ(µ− sk)

×


µ
√
µ2 − s2k − s

2
k ln


µ+

√
µ2 − s2k
sk




 ,

where

sk =
√
m2 + 2qHk, αk = 2− δ0k,

Ω(m; 0,H) = Ω(m; 0)− 3(qH)2

2π2
(10)
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×
{
ζ ′(−1, x)− 1

2
[x2 − x] ln x+

x2

4

}
.

Here, Ω(m; 0) is the thermodynamic potential (4) at
µ = 0, x = m2/(2qH), ζ(ν, x) is a generalized Rie-
mann zeta function [15], and ζ ′(−1, x) =
dζ(ν, x)/dν|ν=−1.

A few comments on the effect of a magnetic field
on the vacuum of the model specified by the La-
grangian in (1) at µ = 0 are in order here. If G ≤ Gc,
then, as was indicated above, the vacuum is chiral-
invariant at H = 0. However, the chiral invariance of
the model is spontaneously broken at arbitrarily weak
uniform and constant external magnetic fields, with
the result that the quarks acquire a mass [16]. This
is a manifestation of a universal effect of the mag-
netic catalysis of dynamical symmetry breaking (see
the review articles quoted in [17])—for the first time,
this effect was observed in the (2 + 1)-dimensional
Nambu–Jona-Lasinio model [18]. If G > Gc, then,
forH �= 0, the potentialΩ(m; 0,H) reaches the global
minimum at the pointmo(H) that is also nonzero and
which is associated with the dynamical quark mass
mvac from relation (2). Its value grows monotonically
with increasing H , and mo(H)→M for H → 0.5)
Thus, we can see that, at µ = 0 andH �= 0, the chiral
invariance of the model is spontaneously broken for
all positive values ofG > 0.

In the case of µ �= 0 and H �= 0, it is more difficult
to study the phase structure of the model—that is,
to find the global minimum of the thermodynamic
potential (9); however, this problem is simplified con-
siderably upon representing the (H,µ) plane as a
unification of all regions ωk (k = 0, 1, . . . ,∞):

ωk = {(H,µ):2qHk ≤ µ2 ≤ 2qH(k + 1)}. (11)

Indeed, only the first term (k = 0) of the infinite series
in (9) does not vanish in the region ω0, only the terms
corresponding to k = 0 and k = 1 make a nonzero
contribution in the region ω1, etc. (It should be noted,
however, that the smaller the value of H , the greater
the number of regions ωk that must be taken into
account.) In the present study, the problem of stability
of quark matter in an external magnetic field is con-
sidered in detail for the same values of the parameter
M as in [2].

4.1. Magnetic Catalysis of Stability

In the case of M = M1, we have investigated
numerically the thermodynamic potential in (9) and
constructed the phase portrait of the model. It is
depicted in Fig. 2. On this portrait, one can see,

5)In different models of the QCD vacuum, the chiral conden-
sate also grows with increasing magnetic field at µ = 0 [19].
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Fig. 2. Phase portrait of the model in the (H,µ) plane
at M = M1 ≡ 0.48Λ (M̃ < M1 < Mc). Here, µ1 is the
chemical-potential value at which the point (M1, µ1)
lies on the curve corresponding to the first-order phase
transitions and connecting the tricritical points α and β
in Fig. 1. Points on the curves lAB and lBC satisfy the
stability condition.

among other things, phase B, which corresponds
to the true QCD vacuum in an external magnetic
field and in which the baryon density is nonzero,
while the quarks have a nonzero mass mo(H), this
mass being identified with mvac from relation (2).
In Fig. 2, the line L = {(H,µ):µ = mo(H)} repre-
sents an upper bound on the quantity µc from (2).
Two dense phases—the chiral-invariant phase A
involving massless quarks (in this phase,mdense = 0)
and phase C featuring massive quarks and broken
chiral invariance—lie immediately below this curve.
The boundaries between the phases in the figure
are shown by the dashed and solid lines, which
represent, respectively, first- and second-order phase
transitions. The tricritical point α has the coordinates√

2qHα/Λ = 0.59 and µα/Λ = 0.44; that is, it lies in
the region ω0 (11) (Hα ∼ 1019 G).

We would like to emphasize one detail of para-
mount importance in Fig. 2: at nonzero values of
H , a transition from the vacuum phase B to one
of the dense baryon phases (A or C, depending on
the value of H) is a discrete first-order transition,
while, at H = 0 and M = M1 < Mc, a transition
from phase B to phase C is a second-order phase
transition (see Fig. 1). (Thereby, we obtain, within
the Nambu–Jona-Lasinio model, a corroboration of
one the statements in the phenomenological theory
of phase transitions—in external fields, second-order
phase transitions transform into first-order phase
transitions [20].) From Fig. 2, one can see that the
stability relation (2) holds for points lying on the
curve lAB . For points on the curve lBC , this relation
5
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is also valid (from the figure, it immediately follows
that µc < mvac ≡ mo(H); we skip the proof of the
fact thatmdense < µc in a dense phaseC). This means
that, within the model being considered, an external
magnetic field stabilizes, atM = M1, quark droplets,
which were unstable at H = 0. We have verified that
the curve lBC , along which the vacuum (phaseB) and
phaseC, where the baryon density is nonzero, coexist,
traverses all regions ωk for k = 1, . . . , 100—that is, it
extends to comparatively small values ofH ∼ 1017 G.
In all probability, it reaches the pointM1 (see Fig. 2,
where the points show the extrapolations of the curves
lAB and lBC to the region of small values of H).
Depending onH values, stable multiquark droplets of
matter are formed by massive (H < Hα ∼ 1019 G) or
massless (H ≥ Hα) quarks. A similar conclusion can
also be drawn for arbitrary values of M ∈ (M̃ ,Mc)
(see Fig. 1).

It should be recalled that, in [13, 14], the phase
structure of the model specified by the Lagrangian in
Eq. (1) was considered at nonzero values of µ and
H , but the problem of stability of quark matter was
not addressed there. In [14], attention was focused on
the case of G < Gc, while, in [13], the phase portrait
of the model was obtained for values lying in the
region G > Gc and corresponding toM < M̃ < Mc.
In [13, 14], it was proven that, in an external mag-
netic field, there exists, at small values of µ, a chiral-
noninvariant vacuum (phase B), which is separated
by the critical curve of first-order phase transitions
from phases where the baryon density is nonzero.
It can easily be shown that the points of this curve
also satisfy the stability condition in (2). Thus, we
see that, while, atH = 0, quark droplets are unstable
for G ≤ Gbag ≡ 1.37Gc within the model specified by
the Lagrangian in Eq. (1), at H �= 0, their stability is
induced by an external magnetic field. We refer to this
effect as the magnetic catalysis of stability of quark
matter.

However, the following important feature of the
effect is worthy of special note. From the formal point
of view, the stability of quark droplets at T = 0 is
induced by an arbitrarily weak external magnetic field.
The binding energy Eb of one quark within such a
droplet has the form Eb = mvac − µc [2]. Since, for
H → 0, the curve lBC comes arbitrarily close to the
line L (see Fig. 2), then Eb also approaches zero for
H → 0. In view of this, we admit that, at small values
of H , the effect in question may not manifest itself
under realistic conditions—that is, for T �= 0—since
rather strong thermal phenomena are obstacles for
the formation of a loosely bound droplet of quark mat-
ter. However, we believe that themagnetic catalysis of
stability of quark matter must be taken into account
PH
in studying neutron stars, withinwhich themagnetic-
field strength may be as great as 1018 G [4]. This is
suggested by some estimates of the binding energy
Eb. Indeed, the binding energy Eb is approximately
equal to 6 keV in the region ω100, whereH ∼ 1017 G,
whereas the temperature within compact stars may
take much lower values (see, for example, the review
article of Alford [21]) that are insufficient for a ther-
mal destabilization of quark droplets whose binding
energy is on this order of magnitude.

Yet another argument in favor of a true value of our
effect is based on the results reported in [22], where
it was shown that, for qH < Λ2

QCD, the dynamics
in the nonperturbative QCD vacuum is in qualita-
tive agreement with the predictions of the Nambu–
Jona-Lasinio model (ΛQCD ≈ 250 MeV). By means
of a numerical analysis, we have found that quark
droplets are stabilized in magnetic fields correspond-
ing to qH ∼ 0.01Λ2

QCD (at such values of H , the
curve lBC in Fig. 2 traverses the region ω100) and in
stronger magnetic fields. In other words, the mag-
netic catalysis of stability of quark matter, an effect
that was discovered within the Nambu–Jona-Lasinio
model, has a direct bearing on QCD, a commonly
accepted theory of strong interactions.

4.2. Case ofM = M2,3

It is well known that, atH = 0, stability is inherent
in the model specified by Eq. (1) for G > Gbag—that
is, forM > Mc = 0.56Λ. Here, we will investigate the
problem of the external-magnetic-field effect on the
stability of quark droplets for the same values M =
M2,3 > Mc, as in [2].

The phase portrait of the model at M = M2 is
schematically illustrated in Fig. 3, where use is made
of the same notation as that which was adopted for
Fig. 2. In contrast to what we have seen in Fig. 2, the
region of the massive phase C is compact here; there
appeared yet another tricritical point (β) and a triple
point (γ) (Hα,β,γ ∼ 1019 G). The first-order-phase-
transition lines lAB and lBC of this figure satisfy the
stability condition (2). It follows that, both at H = 0
and in an external magnetic field, the model in ques-
tion predicts the existence of stable quark droplets
formed by massive or massless quarks, depending
on the value of the magnetic-field strength H . In
the case of M = M3, we have not found a massive
phase C, the vacuum (phase В) coexisting with the
dense chiral-invariant phase A at chemical-potential
values that satisfy the stability condition (2). We then
conclude that, atM = M3 andH �= 0, there can exist
stable multiquark droplets consisting, as at H = 0,
only of massless quarks.
YSICS OF ATOMIC NUCLEI Vol. 68 No. 1 2005
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Fig. 3. Phase portrait of the model in the (H,µ) plane at
M = M2 ≡ 0.67Λ (Mc < M2), where µc(M2) = 0.63Λ.
The points of the curves lAB and lBC satisfy the stability
condition.

In order to clarify the role of an external magnetic
field in the very process of quark-droplet formation
for M > Mc, we present, in Fig. 4, the energy ε/ρB
per baryon as a function of the baryon density ρB at
H = 0 and H �= 0 (M = M2). (As in [2], the energy
density ε is given by

ε = Ω(m;µ,H)− Ω(mo(H); 0,H) +NcµρB, (12)

where ρB = −∂Ω/(Nc∂µ) andmo(H) is the dynam-
ical quark mass in phase B.) In Fig. 4, the curve
corresponding to H = 0 has a maximum at a point
ρmax and the global minimum at a point ρdrop(M2)
[see Eq. (8)]; there is also a local minimum at the point
ρB = 0, and this point corresponds to the vacuum.
We assume that fluctuations of the baryon density are
possible in the vacuum. It is obvious that, if a quark
droplet whose density is less than ρmax appears in this
state atH = 0 in one way or another, this droplet will
be unstable, since it is energetically preferable to have
an infinite volume where ρB = 0; that is, the droplet
will actually disappear. But if the density in a droplet
satisfies the condition ρB > ρmax, the droplet will be
stable (it will not disappear); its volume will decrease
or increase until the droplet occurs in the state of
lowest energy, where ρB = ρdrop(M2). Thus, we see
that, atH = 0, the vacuum is ametastable state. This
means that, for baryon-density fluctuations, there is a
threshold ρmax above which the vacuum disappears,
with the result that the system goes over to a state
where ρB �= 0, this corresponding to the formation of
one or a few baryon droplets.

The situation changes drastically in a rather
strong magnetic field. Indeed, ε/ρB has a maxi-
mum in this case at ρB = 0 (see Fig. 4, where the
magnetic-field strength is fixed by the condition√

2qH/Λ = 0.7); therefore, it is energetically prefer-
able for a drop of even an arbitrarily low density to
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Fig. 4. Energy per baryon as a function of the baryon
density atH = 0 and

√
2qH/Λ = 0.7.

contract to a finite volume (but not to disappear
completely) at which the baryon density within it
would correspond to a minimum of the function ε/ρB
at H �= 0. Our method of investigation is not very
efficient at small nonzero values of the magnetic-
field strength, in which case it is necessary to take
into account contributions from a very large number
of regions ωk (11). Knowing the shape of the curve
ε/ρB at H = 0 and

√
2qH/Λ = 0.7 (see Fig. 4),

we can nevertheless make the natural assumption
that, in response to variations in H , the curve ε/ρB
changes shape in the following way: at H = 0, it has
a local minimum at the point ρB = 0; with increasing
H , this minimum gradually becomes shallower, with
the result that, finally, the function ε/ρB develops a
maximum at ρB = 0 from a rather high value ofH . It
follows that, with increasing H , the threshold above
which rather strong fluctuations destroy the vacuum
decreases, vanishing at sufficiently strong magnetic
fields; that is, an external magnetic field facilitates
the generation of stable droplets of quark matter for
G > Gbag.

5. CONCLUSION

The problem of stability of quark matter in the
presence of an external magnetic field has been con-
sidered within the simplest version of the Nambu–
Jona-Lasinio model. It has been shown that (i) at
H = 0, there exists a coupling-constant value
(Gbag ≡ 1.37Gc) such that quark droplets can be
stable only for G > Gbag; (ii) if the magnetic field is
nonzero, droplets of quark matter can be stable even
for 0 < G ≤ Gbag (magnetic catalysis of the stability
of quark matter); (iii) in contrast to what we have in
5



130 KLIMENKO, EBERT
the case ofH = 0, stable quark droplets atH �= 0 can
be formed not only by massless but also by massive
quarks; and (iv) from general energy considerations,
it follows that, for G > Gbag, the formation of stable
quark-matter droplets must occur more vigorously in
an external magnetic field than atH = 0. This means
that, in a rather strong magnetic field, arbitrarily
small fluctuations of the baryon density lead to the
generation of a quark droplet (in contrast, only rather
strong fluctuations lead to the emergence of a quark
droplet atH = 0).

It should also be noted that our results are also
valid for values of the magnetic-field strength in the
region qH < Λ2

QCD, where QCD dynamics is in qual-
itative agreement with the predictions of the Nambu–
Jona-Lasinio model [22]. One may therefore hope
that the effects described above occur in QCDas well.

In the future, we are going to consider in more
detail the region of low values of H and to take into
account different structures of four-fermion interac-
tion in the Lagrangian in (1); also, we plan to ex-
plore the role of the gluon condensate (which can be
simulated by external chromomagnetic fields) in the
stabilization of quark matter.
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Abstract—The elastic scattering of hadrons (protons, charged pions, and positively charged kaons) on
6,7,8Li nuclei is analyzed on the basis of Glauber–Sitenko diffraction theory. A few nuclear-wave-function
versions found within two- and three-particle potential cluster models are used in the calculations. It
is shown that the application of these wave functions in diffraction theory makes it possible to describe
adequately the experimental differential cross sections and analyzing powers in hadron scattering at
intermediate energies. In this study, particular attention is given to a comparison of the scattering of
different particles on the same target nucleus, as well as to a comparison of scattering of particles of the
same sort on different target nuclei. c© 2005 Pleiades Publishing, Inc.
INTRODUCTION

Investigation of hadron interaction with nuclei is
a key problem in the theory of the nucleus and of
nuclear reactions. This is a test that makes it possible
to study both the structure of nuclei and the nature
of nuclear forces. The scattering of different particle
species on the same target nuclei is of interest since
particles of different nature interact differently with
target nucleons, and this circumstance will man-
ifest itself in observables. By way of example, we
indicate that, in the region of intermediate energies
(from 100 MeV to 1 GeV), the interaction of protons
and positively charged kaons with target nucleons is
of a nonresonance character, the range of positively
charged kaons in a nuclear medium being 5 to 7 fm,
which permits employing them as a probe for studying
the interior of nuclei. Charged pions form, owing to
the presence of antiquarks in their composition (d̄ in
π+ and ū in π−), stable resonances and undergo a
strong absorption in a nuclear medium (for the sake of
comparison, we recall that their range is about 1 fm,
which is less that the typical internucleon distance).

The cross sections for elastic and inelastic proton
scattering on 6Li nuclei were measured at the Gustav
Werner Institute (Uppsala University, Sweden) [1] by
using the 185-MeV synchrocyclotron and in Saclay
(France) at the energies of 0.6 and 1.0 GeV [2]. The
scattering of 0.2-GeV polarized protons on 6Li and
7Li nuclei was investigated at the cyclotron of Indiana

1)Institute of Experimental and Theoretical Physics, Kazakh
State University, ul. Timiryazeva 46, Almaty, 480121 Re-
public of Kazakhstan.

*e-mail: ibr@inp.kz
1063-7788/05/6801-0131$26.00
University (USA) [3, 4]. The differential cross sec-
tions for the scattering of 0.1- to 0.24-GeV charged
pions on 6Li and 7Li were measured at the Paul
Scherrer Institute (PSI, Villigen, Switzerland) [5–
7]. Experiments devoted to studying the scattering of
positively charged kaons on 6Li nuclei were performed
in the Brookhaven National Laboratory (BNL AGS,
USA) at EK = 0.375 GeV [8–10].

The advent of the new technique that employs
secondary radioactive beams permits performing ex-
periments with unstable nuclei under conditions of
so-called inverse kinematics, in which case a beam
of radioactive nuclei is incident on a hydrogen target.
A similar experiment for 8Li nuclei is planned at the
Petersburg Nuclear Physics Institute, as was claimed
in [11].

Interest in 6–8Li nuclei ismotivated by the fact that
these few-nucleon systems are strongly clustered in
some channels, so that they can be considered as
a convenient testing ground for various model wave
functions. These wave functions are calculated within
potential cluster models, where the nucleus in ques-
tion is represented as that which is formed by two (α
and t in 7Li) or three (α, n, and p in 6Li and α, t,
and n in 8Li) fragments assigned the properties of the
corresponding particles in a free state. These models
take into account the Pauli exclusion principle and
employ realistic potentials of intercluster interaction,
this making it possible to describe the main features
of nuclei, including their binding energies, the spectra
of their low-lying levels, their root-mean-square radii,
and their magnetic and quadrupole moments [12–
19]. It was precisely these wave functions that pro-
vided a good description of direct and inverse reac-
c© 2005 Pleiades Publishing, Inc.
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tions of photodisintegration through cluster chan-
nels [20, 21]. In the present study, multicluster wave
functions are used to analyze the elastic scattering of
protons, charged pions, and positively charged kaons
on 6–8Li nuclei.

Glauber–Sitenko diffraction theory [22] is exten-
sively used in the region of intermediate projectile
energies. Apart from its relative simplicity, this theory
is advantageous in that it involves a small number
of input parameters to be extracted from data of in-
dependent experiments and employs elementary am-
plitudes whose parameters, having a rather simple
physical meaning, are related to observables; more-
over, the form of the multiple-scattering operator Ω
in the Glauber–Sitenko diffraction theory is quite
convenient for analysis. But in phenomenological ap-
proximations, such as the optical model, physical ef-
fects are masked by numerous adjustable parameters,
whose meaning is not always clear.

The set of available experimental data and reliable
computational methods make it possible to perform a
detailed analysis of relevant processes, which includes
a comparison of processes where particles of different
species are scattered on the same target nuclei, a
comparison of processes where particles of the same
species are scattered on different lithium isotopes, and
a comparison of our results with experimental data
and with the results of other authors.

The scattering of protons, charged pions, and pos-
itively charged kaons on 6,7Li nuclei was explored in
a number of studies [1–10, 22–30] in the distorted-
wave impulse approximation [1–4, 8–10, 23–25],
within the coupled-channel method [6, 7], or within
Glauber–Sitenko theory [5, 22, 26–30]. (Here, we
have given references only to a small number of stud-
ies published thus far.) But only in some of those
studies [5, 23, 27–29] was use made of wave func-
tions that describe correctly the structure of nuclei
both in their interior and at their periphery. None
of them presents a comparison of processes involv-
ing the scattering of hadrons that belong to differ-
ent species—that is, none covers the aspects of the
problem that form the subject of the present study. At
the same time, it was indicated in [3, 4, 24, 26] that
an insufficiently accurate description of the structure
of nuclei is one of the reasons for an inadequate
description of the features of scattering (differential
cross sections and analyzing powers Ay).

For example, the differential cross sections for
p6Li and p7Li scattering and the analyzing power
Ay for these processes were calculated in [3, 4] on
the basis of the optical model with the standard
Woods–Saxon potential in the first version and with
a microscopic folding potential in the second version.
These were the first studies where the purpose of
P

deducing more justified conclusions on the shape
of the ground-state densities and of the transition
densities was pursued by simultaneously considering
proton and electron scattering and by calculating
the contributions of high multipoles (J = 1, 2, 3)
to the observables in question. However, the au-
thors of those studies themselves admitted that the
failure of the distorted-wave impulse approximation
to reproduce the scattering cross sections could be
attributed to several factors, including the inadequacy
of the single-scattering model, inaccuracy of the
description of the nucleon–nucleon interaction in the
transition matrix element, and a low quality of the
transition density used in the calculations.

An attempt at taking into account quadrupole ef-
fects in π7Li scattering was made in [24]. The cal-
culations there were performed on the basis of the
optical model with the 7Li wave function found by
the resonating-group method. The wave function ob-
tained in this way for the 7Li nucleus in the αt con-
figuration describes the electromagnetic properties of
the nucleus quite accurately. It was found that, in
the elastic-scattering process, quadrupole effects are
large, especially in the region of backward angles.

A complete microscopic analysis of the elastic
scattering of 0.2-GeV protons on nuclei in the range
from 6Li to 208Pb was given in [25]. The respective
calculations were performed in the distorted-wave
Born approximation (DWBA91 code) with fully an-
tisymmetrized wave functions by using an effective
approximation that includes central, tensor, and two-
particle spin–orbit forces. The authors of that study
achieved a good description of a vast body of ex-
perimental data—in particular, those on the binding
energies of p- and sd-shell nuclei, root-mean-square
charge radii, differential cross sections, and polariza-
tion observables (Ay and Q).

In [26], the calculation of the elastic and inelastic
scattering of charged pions at Eπ = 0.16–0.24 GeV
was performed within Glauber–Sitenko diffraction
theory, and it was shown there that, in the region
of the ∆33 resonance, this theory provides, for these
scattering processes, results that are not poorer than
those within the generally accepted distorted-wave
impulse approximation. However, the authors of that
study considered predominantly the scattering on
12C, 16O, and 24Mg nuclei, whose wave functions are
taken in the shell model (only inelastic scattering was
studied for 7Li).

In connection with our investigation, we would
also like to mention the study of Tag Eldin et al. [31],
who used the Glauber–Sitenko diffraction theory to
calculate elastic proton, antiproton, and pion scat-
tering on 12C nuclei. Some discrepancy between the
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 1 2005
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theoretical and experimental results for pion scatter-
ing on 12C nuclei at E = 0.18 GeV was explained
in [31] by several factors—in particular, by the need
for choosing, for 12С, a more realistic density, better
than a Gaussian one, since, in the ∆-resonance re-
gion, pion interaction with 12Cnuclei occurs predom-
inantly in the surface region. At such energies, it is
therefore of importance to know the true shape of the
nuclear density at the surface. In [31], attention was
given primarily to exploring the possibility of applying
the theory at not very high energies (from 50 MeV for
antiprotons) and large scattering angles (up to 130◦
for pions). It was concluded that Glauber–Sitenko
theory can be used throughout the region where the
elementary amplitude has a strong forward peak.

The present analysis is a logical continuation of
the preceding studies reported in [28, 29] and devoted
to studying hadron scattering on 6,7Li nuclei. How-
ever, the attention there was given predominantly to
the application of Glauber–Sitenko theory to hadron
scattering on individual nuclei, and no comparative
analysis of the features of scattering was performed
there. In addition to including onemore nucleus in our
consideration, 8Li, we focus our attention primarily on
a comparison of the calculated features of scattering
on different lithium isotopes.

The ensuing exposition is organized as follows.
In the next section, we briefly describe the formal-
ism of Glauber–Sitenko theory and input parameters
for which we take wave functions and elementary
hadron–nucleon amplitudes. Further, we discuss the
results that we obtain. In the last section, we formu-
late our basic conclusions.

BRIEF ACCOUNT OF THE FORMALISM
OF DIFFRACTION THEORY

AND DESCRIPTION OF INPUT
PARAMETERS

Within diffraction theory, the amplitude for had-
ron–nucleus scattering can be represented in the
form [22]

Mif (q) =
ik

2π

∫
d2ρ exp(iq · ρ)〈ΨJMJ

f |Ω|ΨJM ′
J

i 〉,
(1)

〈ΨJMJ
f |Ω|ΨJM ′

J
i 〉 =

∫ 3∏
ν=1

drνΨ
JMJ
f ΩΨJM ′

J
i δ(RA),

where ρρρ is the impact-parameter vector lying in the
plane orthogonal to the axis of the incident-hadron
beam; rν stands for the nucleon coordinates; RA is

the c.m. coordinate of the target nucleus; ΨJM ′
J

i and
ΨJMJ
f are, respectively, the initial- and the final-state
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wave function for the target nucleus; and q = k′− k is
the momentum transfer in the reaction being consid-
ered, k and k′ being the c.m. momenta of, respectively,
the incident and the scattered hadron. The absolute
value of the momentum transfer is given by

q = 2k sin θ/2, k =
√
ε2 −m2, (2)

where m and ε are, respectively, the mass and the
energy of the incident hadron and θ is the scatter-
ing angle (we use here the system of units where
� = c = 1).

We represent the multiple-scattering operator in
the “factorized” form

Ω = Ωα + Ωb − ΩαΩb, (3)

where b denotes an np pair in 6Li, t in 7Li, and a tn
pair in 8Li and

Ωb = 1−
A∏
ν=5

(1− ων(ρ− ρν)) (4)

= 1−
[
1−

A∑
ν=5

ων +
∑
ν<µ

ωνωµ − . . .

]
.

Here, ρν are the two-dimensional coordinates of
intranuclear nucleons in the plane of the impact-
parameter vector ρ, and ων is a profile function that is
expressed in terms of the amplitude for xN scattering
(x ≡ p, π±,K+) as

ων(ρ− ρν) (5)

=
1

2πik

∫
d2qexp(−iq · (ρ− ρν))fxN (q),

where
fxN (q) = f cxN(q) + σ · nf sxN (q). (6)

Here, σσσ is the spin Pauli matrix, and n is a unit vector
orthogonal to the plane spanned by the vectors k and
k′. The expressions for the central elementary ampli-
tude f cxN(q) and the spin-orbit elementary amplitude
f sxN (q) are given below, while the fitted values of their
parameters are quoted in Tables 1–3.

We write the operator of scattering on an alpha
particle in the form of one profile function, Ωα = ωα,
but we employ, in that case, the elementary amplitude
fαN instead of fxN . This is because an alpha parti-
cle, which enters into the composition of all lithium
isotopes, is treated as a structureless object within
this approach, so that all special features of scattering
on it are taken into account in the parameters of the
elementary amplitude fαN . This approach has some
obvious advantages since one can assume that some
nontrivial effects, such as those that are associated
with the spins of target nucleons, various nucleon–
nucleon correlations, the Fermi motion of nucleons,
5
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Table 1. Compendium of the parameters of the proton–nucleon amplitudes

Ep, GeV Interaction σtot
pN , fm2 εc

pN βc
pN , fm2 Ds, fm2 εs

pN βs
pN , fm2 References

0.2 pp 2.36 1.15 0.65 [35]

pn 4.20 0.71 0.68

0.6 pp 3.7 −0.1 0.12 3.0 1.0 0.6 [33]

pn 3.7 −0.1 0.12 3.0 1.0 0.6

0.8 pp 4.73 0.06 0.34 7.3 1.18 0.11 [32]

pn 3.79 0.2 0.46 11.3 0.35 0.12

1.0 pp 4.75 −0.08 0.25 0.7 1.5 0.4 [34]

pn 3.85 −0.41 0.25 0.7 1.5 0.4
and multiparticle effects and which are difficult to take
into account within the independent-particle model,
are included in the xα amplitude fitted to experimental
data. The question of the most convenient represen-
tation of the Glauber operator Ω and the question
of which scattering effects are taken into account in
the elementary amplitudes was discussed in detail
elsewhere [29].

The operator Ω (3), which depends on the elemen-
tary xα and xN amplitudes, will be represented, in
accordance with the partition of each of these into the
central and the spin–orbit component [see Eq. (6)], in
the form of the sum of two terms,

Ω = Ωc + Ωs. (7)

With allowance for the spin dependence, the scat-
tering matrix element can be written in the form

Mif (q) = M c
if (q) +M s

if (q). (8)

The differential cross section is determined by the
squared modulus of the matrix element; that is,

dσ

dΩ
=

1
2J + 1

∑
MJM

′
J

[∣∣M c
if (q)

∣∣2 +
∣∣M s

if (q)
∣∣2] . (9)

The analyzing power is defined as

Ay =
2Re

[
M c
if (q)M s∗

if (q)
]

dσ/dΩ
. (10)

It is rather difficult to calculate the scattering am-
plitude (1). In order to accomplish this goal, we go
over, in the wave functions and in the scattering op-
erator, from single-particle coordinates to Jacobi co-
ordinates and, after that, integrate the matrix element
with respect to all variables. There are, however, a few
difficulties along the way. First, the presence of the
PH
delta function of RA in the amplitude given by Eq. (1)
results in that this amplitude does not factorize into
amplitudes for individual clusters and relative motion,
since all of the variables are related to each other.
Second, the coordinates of the nucleons involved are
three-dimensional in the wave functions and two-
dimensional in the operator Ω, since, in diffraction
theory, scattering occurs in a plane orthogonal to the
incident-beam axis; in view of this, one has to perform
integration in the system of Cartesian coordinates
rather than in the system of spherical coordinates,
which would be simpler. However, the use of not only
xN but also xα amplitudes for elementary ampli-
tudes and the resort to the wave functions for relative
motion in the form of expansions in terms of multi-
dimensional Gaussian functions make it possible to
integrate the relevant matrix elements analytically; as
a result, there is no loss of accuracy in calculating
the differential cross sections, since there do not arise
here errors inevitable in a numerical calculation of
multidimensional integrals.

The technique for calculating the matrix element
(1) with multicluster wave functions is described
in [29].

The elementary xN amplitudes [see formula (6)]

Table 2. Compendium of the parameters of the π±N am-
plitudes (data from [35])

Eπ, GeV Interaction σtot
πN , fm2 εc

πN βc
πN , fm2

0.15 π±N 10.93 0.522 1.25

0.18 π−p 6.0 0.18 0.570

π−n 7.6 −0.03 0.586

0.2 π±N 11.90 −0.17 0.873
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enter into the set of input parameters of Glauber–
Sitenko theory. They describe phenomenologically
the interaction of an incident hadron with target nu-
cleons, the parameters of these amplitudes being ex-
tracted from data of independent experiments [32–
35],

f cxN =
kσtotxN
4π

(i + εcxN )exp(−βcxNq2/2), (11)

f sxN =
kσtotxN
4π

i

√
q2

4m2
Ds(i + εsxN )exp(−βsxNq2/2),

(12)

where k and m are, respectively, the momentum and
the mass of the incident hadron; σtotxN is the total
cross section for hadron–nucleon scattering; εxN is
the ratio of the real part of the respective amplitude to
its imaginary part; βxN is the cone-slope parameter
of the amplitude; and the indices c and s label, respec-
tively, the central and the spin–orbit component of the
amplitude.

The question of why protons, positively charged
kaons, and charged pions are of interest as probes in
studying the structure of nuclei is in order here. The
answer is that this is due primarily to the mechanism
of their interaction with bound nucleons that occur
in nuclear matter. A positively charged kaon, whose
strangeness is +1, cannot be entirely absorbed in
a nucleus since there are no forces of one-pion ex-
change with a nucleon for it. Only elastic or inelastic
scattering on a nucleon is possible for a positively
charged kaon (as well as for a proton); therefore, it is
the weakest of all hadronic probes. This mechanism
is different from that which governs the interaction of
charged pions, for which two-nucleon absorption is
dominant. A strong perturbative interaction that has
a complicated resonance structure (featuring a dis-
tinct forward maximum) is observed in π±N scatter-
ing; in this respect, π±N interaction more resembles
K−N interaction, since a negatively charged kaon
can also be readily absorbed by a single nucleon.

The interaction of positively charged kaons with
nucleons differs significantly from the interaction of
other particles: at the same energy, the values of σtotxN
and βcxN for positively charged kaons are much less,
while the value of |εcxN | is much greater (see Ta-
bles 1–3). The smallness of βcxN (it is one to two or-
ders of magnitude smaller for K+N interaction than
for pN and π±N interactions), which characterizes
the range of xN interaction, indicates that only the
l = 0 and 1 partial waves are dominant in the K+N
amplitude. In simplicity, the interaction of positively
charged kaons with nucleons can be compared with
electron interaction, but the former is advantageous
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 1 200
Table 3. Compendium of the parameters of the K+N
amplitudes (data from [30])

EK , GeV Interaction σtot
KN , fm2 εc

KN βc
KN , fm2

0.201 K+p 1.29 –2.190 0.0134

K+n 1.31 –0.667 0.0013

0.23 K+p 1.30 –1.964 0.0197

K+n 1.41 –0.575 0.0012

0.375 K+p 1.32 –1.467 0.0114

K+n 1.67 –0.373 0.0015

0.468 K+p 1.32 –1.258 0.0095

K+n 1.71 –0.305 0.0013

0.534 K+p 1.39 –0.9074 0.0065

K+n 1.75 –0.105 0.0011

in that a positively charged kaon is sensitive to neu-
tron interaction, this making it possible to realize
processes involving high momentum transfers. The
smallness of σtotxN indicates that the imaginary part
of the K+N amplitude (σtotxN is related to it by the
optical theorem) is also small. The quantity |εcxN | is
also indicative of this. That it is sometimes greater
than unity means that the real part of the respective
elementary amplitude is greater than its imaginary
part, which is responsible for absorption; that is, the
scattering process proceeds predominantly through
the elastic channel. These circumstances explain why
the interaction of positively charged kaons with nu-
cleons is much weaker than the interaction of protons
and charged pions and why the mean range of posi-
tively charged kaons in a nuclear medium is unusually
long.

The total cross sections for the interaction of a
proton, a positively charged kaon, and a negatively
charged pion with a neutron are larger than their
counterparts for interactions with a proton, as can be
seen from a comparison of the corresponding values
of σtotxN , and are determined by different isospin depen-
dences. This is of importance in employing negatively
charged pions as a probe of neutron and proton dis-
tributions in nuclei.

At the quark level, the elementary interactions of
protons and charged pions and kaons with nucleons
were considered in detail in [29].

The wave functions for target nuclei on which
the scattering processes being considered occur form
yet another element of the theory. The basic proper-
ties of these nuclei are rather well reproduced within
the multiparticle shell model [36]. However, shell-
model wave functions have an incorrect asymptotic
5
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behavior; therefore, they describe poorly peripheral
processes such as two-cluster photodisintegration
through reactions of the A(γ, b)B type or inverse
reactions involving radiative cluster capture and be-
longing to the B(b, γ)A type. The particular clus-
ter models developed in [37, 38] are more adequate
to such processes. Within these models, it is as-
sumed that a nucleus A consists of two (sometimes
three) composite particles and nucleons that are in
the ground state each with respect to their internal
motion, all excitations of the nucleus being associated
exclusively with the relative motion of the fragments.
As in the resonating-group method [39], the wave
functions for a nucleus that consists, for example,
of two fragments a and b, which can be either in a
continuous or in a discrete spectrum, are written in
the form

Ψ = Â(ΨaΨbΦν(Rab)), (13)

where Ψa and Ψb are the intrinsic fragment wave
functions, for which one usually employs known
parametrizations that describe the properties of free
particles. In contrast to what is done within the
resonating-group method, antisymmetrization is not
performed here explicitly, the Pauli exclusion principle
being taken into account via a choice of interaction
potential constraining the form of the relative-motion
wave function, since it involves forbidden states in
addition to allowed ones. The three-particle wave
functions for 6Li (in the αnp model) and for 8Li
(in the αtn model) can be symbolically represented
in form similar to that in (13), since the intrinsic
nucleon wave functions are not written explicitly,
but all of their quantum numbers (spins, isospins,
orbital angular momenta) are taken into account in
the corresponding vector-composition coefficients.
Thus,Ψa = Ψα for all lithium isotopes.We haveΨb =
Ψt for 7,8Li and Ψb = const for 6Li, this implying
the absence of the intrinsic nucleon wave functions
in the representation in (13). The relative-motion
wave functions Φν(Rab) (ν = abN ) depend on the
corresponding coordinates: for 6Li, this is the radius
vector between the alpha particle and the center of
mass of the np pair, ΦabN (Rab) = Φαnp(Rα–np); for
7Li, this is the radius vector between the alpha particle
and the triton,ΦabN (Rab) = Φαt(Rα–t); for 8Li, this is
the radius vector between the neutron and the center
of mass of the αt pair, ΦabN (Rab) = Φαtn(Rαt–n).
The structure of these states is determined by the
correspondence of the relative-motion wave function
to the shell-model wave function in the interior of
the nucleus (the region where the fragments a and b
overlap). We mean the correspondence of the internal
node structure of the two functions (numbers of nodes
and their positions). A shell-model wave function
is an oscillator-type function featuring µ quanta.
PH
By way of example, we indicate that, for the 7Li
nucleus, which has the (0s)4(1p)3 shell configuration,
three quanta are associated with the relative-motion
wave function in the potential cluster model—that
is, µ = 3. Thus, we arrive at node wave functions for
the ground state of the 7Li nucleus in an αt model
of the R3p type. The R1p state is forbidden. In order
to obtain the relative-motion wave function for the
7Li nucleus in the αt model, one has to solve the
Schrödinger equation for the case where a central
interaction in the form of a deep attractive potential
of the Woods–Saxon [14] or the Gaussian [15]
type is supplemented with spin–orbit and Coulomb
terms. The parameters of two-cluster potentials are
chosen on the basis of a fit to low-energy elastic-
scattering phase shifts in all partial waves. In all
models, relative-motion wave functions are sought
in the form of an expansion in multidimensional
Gaussian functions, this making it possible not only
to find all matrix elements analytically but also to
calculate wave functions for a broad basis with a
large number of small components. We note that the
number of Gaussian functions is chosen in such a
way as to ensure a correct exponential asymptotic
behavior of Φν(Rab) for rather long distances. In
the present study, we have performed calculations
with two cluster wave functions for 7Li that have
the parameters borrowed from [14] (model 1) and
from [16] (model 2).

In the literature, it is often indicated that the 6Li
nucleus is especially appealing for theorists: owing
to a comparatively small number of nucleons in this
nucleus, it may serve as a testing ground for con-
structing various model wave functions that, on one
hand, are sensitive to multiparticle nuclear correla-
tions and, on the other hand, make it possible to
perform accurate calculations for such few-particle
systems.

The wave functions obtained by Kukulin’s group
from the Institute of Nuclear Physics at Moscow
State University [12, 13] were among the first wave
functions for the 6Li nucleus in the αnp model. The
calculations performed with these functions for reac-
tions featuring electrons [12, 13], protons [28, 29] and
charged pions [5, 23, 27, 29] yielded reliable results.
The wave functions for the 6Li and 6He nuclei in
the dynamical multicluster model involving Pauli pro-
jection and full antisymmetrization were constructed
in [40]. Also presented there are the most comprehen-
sive calculations of all basic properties of these nuclei:
the radius of the neutron halo in 6He, the electro-
magnetic form factors, the features of the photomeson
process 6Li(γ, π+)6He, and the cross sections for
the elastic scattering of charged pions at 0.134 GeV.
YSICS OF ATOMIC NUCLEI Vol. 68 No. 1 2005
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Table 4. Form of intercluster interaction potentials used to calculate wave functions

Model
6Li 7Li 8Li

αN NN αt αn tn αt

1 SBB
potential

Soft-core
Reid potential

Buck
potential

Split
potential

Split
potential

Buck
potential

2 Split
potential

Soft-core
Reid potential

Woods–Saxon
potential

Split
potential

Split
potential

Woods–Saxon
potential
In our calculations, we employ the wave functions
obtained in [12, 13].

Experimental data on the angular and energy de-
pendences of observables for reactions like 7Li(γ, t)α,
6Li(γ, t)3He, and 6Li(γ, d)αwere explained on the ba-
sis of the above models for the 6Li and 7Li nuclei [20].
Moreover, a correct treatment of the structure of these
nuclei within cluster models enabled one not only to
describe available experimental data but also to make
a number of successful predictions. For example, the
data of the dedicated measurements of the asym-
metry of the angular distribution of tritons from the
polarized-photon-induced reactions 7Li(γ, t)α and
6Li(γ, t)3He at the Kharkov Institute for Physics and
Technology [41, 42] proved to be in perfect agreement
with the results of the calculations performed earlier
in [20, 21]. The same is true for the recently mea-
sured angular distributions of tritons in the reaction
7Li(γ, t)α [43].

The 8Li nucleus is of interest both for nuclear
physics (as a one-neutron halo nucleus) and for nu-
clear astrophysics, since the radiative-capture reac-
tion 7Li(n, γ)8Li provides one more channel in the
chain of the thermonuclear fusion of C, N, and O
elements in a nonstandard model of nucleosynthesis.
The rate of this reaction may refine our ideas of the
evolution of the Universe [44]. In view of this, the 8Li
nucleus has been vigorously studied so far [17–19].

As a rule, the wave functions for the 8Li nucleus
are calculated within three-particle αtn models with
realistic potentials of intercluster interactions. In
order to obtain deeper insight into the mechanism
of the radiative-capture reaction in question, it is
of importance to determine low-lying resonances
precisely [18] and to consider simultaneously the
effect of a strong deformation of the 7Li nucleus,
the dynamical polarization of its core, and its excita-
tion [17]. In [19], the wave functions constructed there
were used to calculate basic spectroscopic features
(root-mean-square charge radius and quadrupole
and magnetic moments) and to find the total cross
section for the reaction 7Li(n, γ)8Li and its rate over
the energy range between 10−5 keV and 1 MeV. We
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note that this energy range covers eight orders of
magnitude of energy and that the calculated total
cross sections agree with available experimental data
throughout this range. In the present study, we will
use precisely this wave function.

The wave-function configurations are determined
by the quantum numbers λlLS, where l is the or-
bital angular momentum of the relative motion of the
alpha-particle cluster and the center of mass of the
remaining two clusters (or nucleons); λ is the orbital
angular momentum of the relativemotion of these two
clusters (nucleons); and L and S are, respectively, the
total orbital angular and the total spin momentum of
the nucleus being considered.

In the ground-state wave function for the 6Li nu-
cleus (Jπ = 1+, T = 0) in the αnp model, we can
retain only two leading configurations: λ = l = L =
0, S = 1 (S wave, its weight being greater than 90%)
and λ = 2, l = 0, L = 2, S = 1 (D wave, its weight
varying from 3 to 7% in the calculations with dif-
ferent interaction potentials). The total weight of the
remaining components does not exceed a few percent.
The contribution of the small D-wave component to
the differential cross section and the role of this com-
ponent in the filling of the diffraction minimum in the
cross section were investigated in detail in [28, 29].

The ground state of the 7Li nucleus is character-
ized by the following quantum numbers: Jπ = 3/2−,
T = 1/2; L = 1. The dominant cluster αt configu-
ration characterized by λ = 1 (its weight is greater
than 95%) is assumed to be responsible for a sig-
nificant quadrupole deformation of this nucleus. The
effect from additional configurations in electromag-
netic form factors was calculated in [45], and it was
shown there that the αt component is dominant in
the ground and in the first excited state, while other
components contribute to higher excited states.

The model wave functions for the 8Li nucleus were
calculated in [19] with various αt potentials, since
the αt interaction affects the ground-state properties
of this nucleus more strongly than the αn and tn
interactions do. The quantum numbers of the ground
5
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Fig. 1. Differential cross sections for elastic proton scat-
tering on 6–8Li nuclei. The solid and dashed curves were
calculated with wave functions based on models 1 and 2,
respectively. The displayed points represent experimental
data from [3, 4]. Here and in Fig. 2 below, the experimen-
tal data and the calculated curves for 6Li were multiplied
by 10 in order to avoid an overlap of the results.

state of this nucleus are the following: Jπ = 2+, T =
1; λ = l = L = S = 1.

Table 4 gives a compendium of the intercluster
interaction potentials used to calculate the model
wave functions. For the αN interaction, we took two
potentials.

(i) Sack–Biedenharn–Breit (SBB in the ta-
ble) [46] potential. Its central part has a Gaussian
form. It also involves a spin–orbit and a Coulomb
interaction. The Sack–Biedenharn–Breit potential
describes quite accurately the main P1/2 and P3/2

phase shifts for elastic αN scattering and less accu-
rately S-wave phase shifts up to an energy of 14MeV.
The main drawback of the Sack–Biedenharn–Breit
potential is that it leads to a strong overestimation
of the theoretical D5/2 and D3/2 phase shifts with
respect to available experimental data.

(ii) Refined αN potential that involves the splitting
of phase shifts in the parity of the orbital angular
momentum [47] (split potential). It describes more
precisely S-wave and especially D5/2- and D3/2-
wave phase shifts than the Sack–Biedenharn–Breit
potential.

For the αt interaction, we also chose two poten-
tials.

(i) A deep attractive potential of the Woods–
Saxon form [14] supplemented with a spin–orbit and
a Coulomb term. The potential is rather deep, so that,
in the pwave, it involves, in addition to the allowed 3p
state, the forbidden 1p state. This potential provides
an excellent description of known low-energy phase
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Fig. 2. Differential cross sections for the scattering of
charged pions on 6Li and 7Li nuclei. The solid and dashed
curves were calculated with wave functions based on
models 1 and 2, respectively. The dash-dotted curves
represent the results of the calculation in the distorted-
wave impulse approximation for 6Li from [23] and the
results of the calculationwith the oscillator wave function
for 7Li. The displayed experimental data were borrowed
from (closed triangles, π+) [5] and (closed circles, π+ and
open circles, π−) [7].

shifts for elastic αt scattering and, at the same time,
reliably reproduces the binding energy of the 7Li nu-
cleus, as well as the spectrum of its low-lying states
and its basic spectroscopic features. It is precisely the
potential with which an adequate description of the
two-particle-photodisintegration reaction 7Li (γ, t)α
was achieved in [20, 21]. We note that forbidden-state
wave functions (of the type RNL(r) ≡ R1p(r)) are
used in calculating projection operators in the three-
particle model of the 8Li nucleus [19].

(ii) Attractive Buck potential. Its radial part has
a Gaussian form, contains two parameters, and in-
cludes a spin–orbit and a Coulomb term [15]. It
reproduces known low-energy phase shifts for αt
scattering, as well as the binding energy of the 7Li
nucleus, the spectrum of its low-lying levels, and
its basic spectroscopic features. The respective ra-
dial function for the ground state of the 7Li nucleus
involves an internal node; that is, it has the form of
the oscillatory function R3p(r). The Buck potential
provides an adequate description of the total cross
section for the radiative-capture reaction αt→7 Liγ
and of the corresponding astrophysical S factor.

In the present study, we discuss precisely these
two potentials, since they give nearly the same de-
scription of the spectroscopic features of the 7Li nu-
cleus. However, the potentials in question differ in
asymptotic behavior, and this results in that the wave
functions for the ground state of the 7Li nucleus
behave differently in the asymptotic region. This cir-
cumstance may be of importance in discussing the
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 1 2005
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elastic scattering of particles that penetrate differently
into the interior of the target nucleus used.

DISCUSSION OF THE RESULTS

We have calculated the differential cross sections
and analyzing powers for elastic proton scattering
on 6–8Li nuclei and the differential cross sections for
the elastic scattering of charged pions and positively
charged kaons on 6,7Li nuclei in the energy range
between 0.164 and 1.0 GeV and have compared our
results with experimental data from [1, 2–5, 7, 9] and
with some results of other authors [3, 4, 10, 23].

Figures 1–4 display the differential cross sections
(Figs. 1–3) and the asymmetryAy (Fig. 4) calculated
for 6–8Li nuclei. In all of these figures, the solid and
dashed curves were calculated with wave functions
determined within models 1 and 2, respectively. From
Figs. 1–3, one can see that the differential cross
sections depend only slightly on themodel wave func-
tions, which differ only in the form of the αN (for 6Li)
and αt (for 7Li and 8Li) potentials (see Table 4).

Let us first consider Fig. 1, which shows the dif-
ferential cross sections for proton scattering at Ep =
0.2 GeV. The curves calculated with the wave func-
tions in models 1 and 2 describe experimental data
for 6,7Li nuclei quite accurately. The calculation of
the differential cross section for scattering on 8Li nu-
clei under conditions of inverse kinematics was per-
formed at two energy values ofE8Li = 0.2 (Fig. 1) and
1.0 GeV/nucleon (dash-dotted curve in Fig. 6 below)
and is of a predictive character—there are presently
no relevant experimental data. The distinction be-
tween the curves calculated for 8Li is rather modest,
although the minimum of the dashed curve in Fig. 1
is deeper and is shifted somewhat toward the region of
small scattering angles. This brings about the ques-
tion of how the distinction between the wave func-
tions affects other properties of the 8Li nucleus. From
the results reported in [19], it follows that the static
features of the nucleus (root-mean-square charge ra-
dius and quadrupole and magnetic moments) and the
energy spectrum of low-lying excitations are better
described within model 1 (with the wave function
calculated in the Buck αt potential). The differential
cross section for 8Li has a deep minimum at θ =
26◦–28◦, but there is no such minimum for 6,7Li. As
was shown in [28, 29], the minimum for 6Li is filled
by the contribution of the D-wave component of the
wave function, while the minimum for 7Li is filled by
the contribution of the λ = 1 configuration, which is
responsible for the large quadrupole deformation of
this nucleus, and partly by the contribution from the
transition to the first excited state of 7Li (Jπ = 1/2−,
T = 1/2)—it lies only 0.48 MeV above the ground
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Fig. 3. Differential cross sections for the scattering of
positively charged kaons on 6Li and 7Li nuclei. The solid
and dashed curves were calculated with wave functions
based on models 1 and 2, respectively. The dash-dotted
curves represent the results of the calculation in the
distorted-wave impulse approximation for 6Li from [10]
and the results of the calculation with the oscillator wave
function for 7Li. The displayed experimental data (points)
were borrowed from [9, 10]. The results corresponding to
the calculated curves for 7Li were multiplied by 102 in
order to avoid an overlap of the results.

state and is therefore indistinguishable from it ex-
perimentally. At zero scattering angle, the differential
cross section for 8Li is severalfold larger than those for
the remaining nuclear species considered here, this
reflecting the larger root-mean-square radius of this
isotope.

Figure 2 shows the differential cross sections for
the scattering of charged pions on 6,7Li nuclei. Here,
the pattern is similar to that which is observed in
proton scattering—the calculations with the wave
functions in models 1 and 2 adequately reproduce
experimental data, and there is a distinction between
the results of these calculations only for the 6Li nu-
cleus in the vicinity of the minimum, this being ex-
plained by different weights of the D wave in the
wave functions: 3% in model 1 (solid curve) and
7% in model 2 (dashed curve) [12, 13]. The dash-
dotted curve for 6Li represents the results of the cal-
culation in the distorted-wave impulse approximation
from [23], where the authors employed, as we have
done here, Kukulin’s wave function, but they did not
include the D-wave contribution. The role of the D
wave in the filling of the minimum is clearly seen from
a comparison of this dash-dotted curve with the solid
and dashed curves.

For 7Li, the dash-dotted curve represents the dif-
ferential cross section obtained with the oscillator
wave function. The oscillator wave function differs
5
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from its cluster counterparts both in the interior of the
nucleus and at the periphery, although the position
of the node is identical for all functions. The distinc-
tion between the results at small scattering angles,
which correspond to low momentum transfers (at
Eπ = 164 MeV, q < 0.09 GeV/с for θ < 20◦), is due
to the fact that the wave functions behave differently
at large distances from the center of the nucleus (in
the asymptotic region), where the cluster wave func-
tions differ greatly from the oscillator wave function.
At large scattering angles, which correspond to high
momentum transfers (at θ = 80◦, q = 0.33 GeV/с),
the behavior of the wave function in the interior of
the nucleus is of importance, and the distinction there
arises because of the disregard of correlation effects in
the oscillator model.

Figure 3 gives the differential cross sections for
the scattering of positively charged kaons. Here, the
results of our calculation with the cluster wave func-
tions are contrasted against the results of the calcu-
lation with the oscillator wave function (dash-dotted
curve for 7Li) and against the results of the calcu-
lation in the distorted-wave impulse approximation
from [10] (dash-dotted curve for 6Li). For 7Li, the dis-
tinction between the solid and the dash-dotted curve
is noticeable only for scattering angles of θ > 25◦
since a positively charged kaon, which is scattered
in the interior of the nucleus, is less sensitive to the
asymptotic region, so that the the difference in the
behavior of the wave functions there does not affect
the shape of the cross section. The scattering of pos-
itively charged kaons on 6Li for 40◦ > θ > 20◦ is bet-
ter described by diffraction theory, although not only
central but also quadrupole noncentral scattering was
taken into account in [10], but the contribution of the
latter proved to be overly small to affect the cross-
section value. The distinction between the solid and
P

the dash-dotted curve is especially large (three orders
of magnitude) for θ = 50◦, but the correctness of the
various model calculations cannot be confirmed by
experimental data in this region.

It is noteworthy that, for protons and charged pi-
ons, the differential cross sections at θ = 0◦ for 6Li
are somewhat larger than those for 7Li (see Figs. 1
and 2), but that, for positively charged kaons, the
relationship between these cross sections is inverse.
This inconsistency calls for a more detailed analysis,
and it will be performed elsewhere.

It is well known that the polarization features are
more sensitive to the structure of nuclei than differ-
ential cross sections. Bearing this in mind, we have
calculated the analyzing powers for proton scattering
on 6Li, 7Li, and 8Li nuclei (see Fig. 4) with the same
model wave functions for the lithium-isotope nuclei
as those that were used in calculating the results
displayed in Figs. 1–3. The dash-dotted curves rep-
resent the results of the calculations from [3] for 6Li
and from [4] for 7Li. Here, the distinctions between
the results of the calculations with the different wave
functions are more pronounced. For 6,7Li, our curves
describe Ay at the first maximum almost identically,
but there are significant distinctions for angles larger
than 35◦. None of the calculations performed here
describes the minimum of Ay satisfactorily. The re-
sults of the calculations for Ay from [3, 4] are correct
for θ < 35◦, but they fail to describe adequately the
negative slope and the position of the minimum in
the experimental data in the region θ > 35◦; in our
opinion, this must be attributed to an insufficiently
accurate determination of nuclear densities.

For scattering on 8Li, the results of the calcula-
tions with the wave functions in models 1 and 2 differ
over the entire region of angles. In the coordinate
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 1 2005
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space of wave functions, small scattering angles—
that is, low momentum transfers [see Eq. (2)]—
correspond to large relative distances lying in the
asymptotic region of the wave functions. The discrep-
ancies between the results of the calculations at these
angles (θ < 30◦, q < 0.28 GeV/с) are indicative
of the effect of the asymptotic behavior of the wave
functions onAy . But if there are discrepancies at large
angles (60◦ > θ > 40◦, 0.55 > q > 0.37 GeV/с), this
suggests the effect of the high-momentum compo-
nents of the wave functions on Ay. Thus, it has been
shown that the analyzing power is a quantity that
is sensitive to the behavior of the respective wave
function both in the interior of the nucleus being
considered and at its periphery.

From a comparison of the Ay values calculated
with the wave functions found on the basis of model 1
for the various nuclear species (Fig. 5), one can see
that the calculated curves for 6Li and 7Li are close to
each other up to θ ≤ 35◦ and that, for 8Li, the zeros of
Ay are shifted by approximately 10◦ toward the region
of smaller angles, this being indicative of the presence
of special features in the structure of this nucleus.

Thus, we can see that, even at not very high ener-
gies (below 1 GeV), in which case the applicability
of Glauber–Sitenko theory may be questionable, it
is not inferior in quality of the description of differ-
ential cross sections and Ay to the distorted-wave
impulse approximation, possibly because of the use
of realistic wave functions, which faithfully reproduce
intermediate-energy processes involving modest mo-
mentum transfers.

In Fig. 6, the differential cross sections for proton
scattering on lithium isotopes are given at yet another
energy value, 1 GeV (results of the calculation with
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the wave function based on model 1). Experimental
data at this energy are available only for 6Li [2]. A
comparison with these experimental data reveals that,
for angles in the region θ < 25◦, the results of the
calculation are in fairly good agreement with the data,
but that slight discrepancies appear at larger angles.
The differential cross sections for (solid curve) 6Li,
(dashed curve) 7Li, and (dash-dotted curve) 8Li nu-
clei have the following special features. The absolute
value of the cross section for scattering in the forward
direction is larger for 8Li, this reflecting the fact that
the nuclear-matter radius of this nucleus is larger
than those of its counterparts. The diffraction mini-
mum for largeA is shifted toward the region of smaller
scattering angles. The minimum in the cross section
is more pronounced for the A = 8 nucleus than for
the A = 6 and 7 nuclei. The deformation of nuclei
(quantitatively, it is determined by the quadrupole
moment) is the main reason for the filling of the
minimum: the larger the deformation of a nucleus, the
greater the extent to which the diffraction minimum
is filled. The 7Li nucleus has the greatest quadrupole
moment among the lithium isotopes considered here
(Q = 40 mb [48]); therefore, the cross section for this
nuclear species does not have a distinct minimum,
exhibiting only an inflection point. The minimum is
filled by the quadrupole-component contribution. The
8Li quadrupole moment calculated with the three-
cluster wave function introduced in [19] and employed
in the present study is 18.9 mb (the respective exper-
imental value is 24 mb [48]), and the calculated mini-
mum in the cross section for this nucleus is somewhat
greater than that for 7Li. The 6Li quadrupole moment
is close to zero, and the filling of the minimum in the
respective cross section occurs owing to the D-wave
contribution.
5



142 ZHUSUPOV et al.
Finally, we will consider the behavior of the dif-
ferential cross sections for the scattering of various
particle species on the 6Li nucleus versus momen-
tum transfer squared at the fixed energy value of
E = 0.18 GeV. Figure 7 demonstrate that the cross
sections in question may differ in structure. Differ-
ent symbols (points) correspond to the scattering
of protons [1] and positively and negatively charged
pions [5]. Since there are no experimental data at
this energy value for the scattering of antiprotons and
positively charged kaons on 6Li nuclei, only the differ-
ential cross sections calculated in [29] are displayed
in this figure. One can immediately see that there are
a similarity in the structure of the cross sections for
protons and positively charged kaons (curves 3, 4)
and a similarity in the structure of the cross sec-
tions for antiprotons and charged pions (curves 1, 2).
For protons and positively charged kaons, the cross
section is a smoothly decreasing function, while, for
antiprotons and charged pions, there is a minimum
around q2 ≈ 0.09 (GeV/с)2. A manifestation of the
diffraction structure in the differential cross section at
a relatively low energy—such as that which is now
being discussed—is due to a special feature in the
elementary amplitudes for antiprotons and charged
pions: these amplitudes have a sharp anisotropy in the
forward direction [this anisotropy is characterized by
large values of βcπN (see Table 2), which is 0.86 fm2 for
antiprotons at 0.18 GeV]; owing to this, the particles
in question are predominantly scattered within a nar-
row forward cone, the eikonal approximation being
valid for them to a high precision. This feature of the
p̄N and π±N amplitudes extends the energy region
where Glauber–Sitenko theory is applicable.

The total cross section calculated on the basis
of the optical theorem is 838.9 mb for antiprotons
and 327.3 mb for charged pions [29]. The diffraction
structure in the cross sections for protons and posi-
tively charged kaons begins manifesting itself at en-
ergies higher than 0.18 GeV—specifically, at 0.6GeV
for protons and at 0.375 GeV for positively charged
kaons [29].

CONCLUSIONS

(i) For various hadron species, Glauber–Sitenko
diffraction theory provides an adequate description of
differential cross sections for scattering on 6–8Li nu-
clei over a wide range of projectile energies (between
0.1 and 1.0 GeV).

(ii) By using wave functions calculated on the
basis of two- or three-particle cluster models with
realistic interaction potentials, one can calculate re-
action amplitudes analytically. As a result, the accu-
racy of the description of differential cross sections
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Fig. 7. Differential cross sections for elastic hadron
scattering on 6Li nuclei at 0.18 GeV versus momen-
tum transfer squared. Points represent experimental da-
ta for (closed circles) protons [1] and (open circles and
triangles) positively and negatively charged pions [5].
Curves 1, 2, 3, and 4 depict the results of the calculations
for, respectively, antiprotons, charged pions, protons, and
positively charged kaons.

within diffraction theory is not inferior to or is even
sometimes higher than the accuracy of the distorted-
wave impulse approximation.

(iii) The differential cross sections for hadrons are
only slightly dependent on the detailed structure of
two- and three-particle wave functions, but they ex-
hibit a significant dependence on their asymptotic be-
havior, since, in the interior of a nucleus, hadrons (es-
pecially antiprotons and charged pions) are strongly
absorbed, so that the main contribution to elastic
scattering comes from the surface region.

(iv) Analyzing powers are much more sensitive to
wave functions calculated with different intercluster-
interaction potentials than differential cross sections.

(v) A comparison of processes where particles of
different species (protons, antiprotons, charged pions,
and positively charged kaons) are scattered on 6Li
nuclei has revealed that, because of a strong absorp-
tion of antiprotons and charged pions in the interior
of nuclei, the xN elementary amplitudes for them de-
velop a special feature owing to which the diffraction
structure in the differential cross sections for them is
observed at energies lower than those for protons and
positively charged kaons.
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ELEMENTARY PARTICLES AND FIELDS
Theory
Application of the Hidden Local Symmetry Effective Chiral Lagrangian
to Evaluation of the ω(782), φ(1020)→ 5(1020)→ 5(1020)→ 5π Decay Widths*
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Abstract—The amplitudes obtained from the effective chiral Lagrangian with anomalous terms based on
hidden local symmetry are applied to the evaluation of the partial widths of the decays ω → 2π+2π−π0 and
ω → π+π−3π0. Combining the Okubo–Zweig–Iizuka rule, applied to the five-pion final state, with the
Adler condition of vanishing of the amplitude at the vanishing of four-momentum of any final pion in the chi-
ral limit, the φ→ 2π+2π−π0 and φ→ π+π−3π0 decay amplitudes are also calculated. The partial widths
of the above decays are evaluated, and the resonance excitation curves in e+e− annihilation are obtained,
assuming reasonable particular relations among the free parameters characterizing the anomalous terms of
the Lagrangian. The evaluated branching ratios Brφ→π+π−3π0 ≈ 2× 10−7 and Brφ→2π+2π−π0 ≈ 5× 10−7

are such that with the luminosityL = 500 pb−1, attained at the DAΦNE φ factory, one may already possess
about 1340 events of the decays φ→ 5π. c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

The effective chiral Lagrangians describing the
low-energy interactions of the ground-state octet of
pseudoscalar mesons π, K, η are constructed upon
treating these mesons as the Goldstone bosons of the
spontaneously broken chiral UL(3)× UR(3) symme-
try of the massless three-flavored QCD Lagrangian.
The key point in this task is that the transformation
properties of the Goldstone fields under the nonlin-
ear realization of chiral symmetry are sufficient for
establishing the most general form of the effective
Lagrangian [1]. As far as vector mesons are con-
cerned, the situation is not so clear, because the vec-
tor mesons, contrary to the pseudoscalar ones, cannot
be considered as the Goldstone bosons of the sponta-
neously broken symmetry. For this reason, there exist
different schemes of including these mesons in the
effective chiral Lagrangians [2–4]. The scheme of [5,
6], where the vector mesons are treated as the dynam-
ical gauge bosons of hidden local symmetry (HLS),
incorporates these mesons into the effective chiral
Lagrangian in a most elegant way. The fact is that the
low-energy theorems for anomalous processes, such
as, say, the decay π0 → γγ, are fulfilled automatically
in HLS. The general form of both nonanomalous
and anomalous parts of the Lagrangian is given in
original papers [5, 6]. Here, we restrict ourselves,

∗This article was submitted by the authors in English.
**e-mail: achasov@math.nsc.ru
***e-mail: kozhev@math.nsc.ru
1063-7788/05/6801-0144$26.00
first, by writing down only those pieces of the La-
grangian corresponding to the strong interaction pro-
cesses, omitting the electroweak terms, and, second,
by restricting the above Lagrangian to the subgroup
SU(2) × U(1) with only isovector π, ρ, and isoscalar
ω mesons. Taking into account the coupling of the
φ(1020) meson with the mesons composed of non-
strange quarks demands additional assumptions to be
discussed below.

The nonanomalous part of the HLS Lagrangian
(with nickname “nan”) obtained from the general
expression found in [3, 5, 6] in the weak field limit is
written as

Lnan = −1
4
ρ2
µν −

1
4
ω2
µν +

1
2
ag2f2

π(ρ
2
µ + ω2

µ) (1)

+
1
2
(∂µπ)2 − 1

2
m2
ππ

2 +
m2
π

24f2
π

π4

+
1

2f2
π

(
a

4
− 1

3

)
[π × ∂µπ]2

+
1
2
ag

(
1− π2

12f2
π

)
(ρµ · [π × ∂µπ]),

where the dot (·) and cross (×) stand, respectively, for
the scalar and vector products in the isotopic space;

ρµν = ∂µρν − ∂νρµ + g[ρµ × ρν ], (2)
ωµν = ∂µων − ∂νωµ

are, respectively, the field strengths of the isovector
field ρµ and the isoscalar field ωµ; g is the gauge
coupling constant; fπ = 92.4 MeV is the pion decay
c© 2005 Pleiades Publishing, Inc.
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constant; and a is an HLS parameter. The boldface
characters refer hereafter to the vectors in isotopic
space. As is clear from Eq. (1),

gρππ =
1
2
ag, m2

ρ = ag2f2
π (3)

are the coupling constant of the ρ with the pion
pair and its mass squared, respectively. The ω(782)
is degenerate with ρ in the present model. Note
that a = 2 if one demands the universality condi-
tion g = gρππ to be satisfied. Then the so-called
Kawarabayashi–Suzuki–Riazzuddin–Fayyazuddin
(KSRF) relation [7] arises,

2g2ρππf
2
π

m2
ρ

= 1, (4)

which beautifully agrees with experiment. The ρππ
coupling constant resulting from this relation is
gρππ = 5.9.

To include the decays of the ω meson in the many
pion states, one should add the anomalous terms in
the action (nicknamed “an”). They are given in [5, 6].
Using the formalism of the differential forms adopted
in the literature on the subject, restricting the general
expressions in [5, 6] to the ω, ρ, π-meson sector by

writing V =
1
2
ω + ρ, where ω and ρ = (τ · ρ)/2 are,

respectively, the scalar and matrix-valued 1-forms, τ
being three isospin Pauli matrices, one obtains

Γan =
inc

16π2

∫
M4

ωTr[c1α3
R + id(αLαR) (5)

× (c1/2− c2 − c3) + i(c1 + c2 + c3)ρd(αL − αR)

− 2ic3dρ(αL − αR) + (c1 + c2 − c3)ρ2(αL − αR)].

Here nc = 3 is the number of colors and c1,2,3 are
arbitrary constants multiplying three independent
structures in the solution [5, 6] of the Wess–Zumino
anomaly equation [8]; the fourth constant c4 multiply-
ing the structure that includes electromagnetic field,
as is explained above, is dropped. Our normalization
of c1,2,3 is in accord with [6]. In Eq. (5), it is implied
that the gauge coupling constant is included in the
fields ω and ρ as ω → gω, ρ→ gρ; d is the symbol
of exterior derivative; αL,R = −idξL,Rξ+L,R; and the
trace is over SU(2) indices. In the unitary gauge to
be used hereafter,

ξ+L = ξR ≡ ξ = exp
[
i

2fπ
(τ · π)

]
,

one can rewrite Eq. (5) in the usual Minkowskian
form as

Γan =
incg

16π2
εµνλσTr

∫
d4x{c1ωµ(ξ+∂νξ) (6)
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 1 200
× (ξ+∂λξ)(ξ+∂σξ)− (c1/2− c2 − c3)ωµ[(ξ+∂νξ)
× (ξ+∂λξ)(ξ∂σξ+)− (ξ∂νξ+)(ξ∂λξ+)(ξ+∂σξ)]

+ igc3ωµνρλ(ξ+∂σξ − ξ∂σξ+)

− ig(c1 + c2 − c3)ωµρν∂λ(ξ+∂σξ − ξ∂σξ+)

− g2(c1 + c2 − c3)ωµρνρλ(ξ+∂σξ − ξ∂σξ+)},
with the convention ε0123 = −1. Using the following
exact expression valid for the SU(2) subgroup,

iξ∂µξ
+ =

1
2fπ

(τ · ∂µπ)
(

sin |π|/fπ
|π|/fπ

)
(7)

+
(τ · π)

2fπ
cos2 |π|

(2fπ)
∂µ

(
tan |π|/(2fπ)
|π|/(2fπ)

)

− 1
4f2
π

(τ · [π × ∂µπ])
(

sin |π|/(2fπ)
|π|/(2fπ)

)2

,

to expand in the weak field limit |π|/fπ � 1 as

iξ∂µξ
+ ≈ 1

2fπ
τ ·
{
∂µπ −

1
2fπ

[π × ∂µπ] (8)

+
1

6f2
π

[π(π · ∂µπ)− π2∂µπ]
}
,

and substituting this expansion into Eq. (6), one ar-
rives at the expression for the anomalous part of the
Lagrangian in the form

Lan =
ncg

32π2f3
π

(c1 − c2 − c3)εµνλσωµ (9)

× (∂νπ · [∂λπ × ∂σπ]) +
ncg

128π2f5
π

×
[
− c1 +

5
3
(c2 + c3)

]
εµνλσωµ

× (∂νπ · [∂λπ × ∂σπ])π2 − ncg
2c3

8π2fπ
εµνλσ∂µων

×
{

(ρλ · ∂σπ) +
1

6f2
π

[(ρλ · π)(π · ∂σπ)

− π2(ρλ · ∂σπ)]
}
− ncg

2

8π2fπ
(c1 + c2 − c3)εµνλσωµ

×
{

1
4f2
π

(∂νπ · ρλ)(π · ∂σπ)− g
4
([ρν × ρλ] · ∂σπ)

}
.

As is evident from the third term on the right-hand
side of Eq. (9), the ωρπ coupling constant is

gωρπ = −ncg
2c3

8π2fπ
. (10)

Assuming

c1 − c2 − c3 = 0, (11)

i.e., the absence of the pointlike ω → π+π−π0 am-
plitude, and using the ω → π+π−π0 partial width to
5



146 ACHASOV, KOZHEVNIKOV

 

(1 + 

 

P

 

35

 

 + 

 

P

 

45

 

)

 

+

 

ω

ω ω

 

+

 

ρ

 

0

 

ρ

 

+

 

ρ

 

–

 
π

 
+

 
(

 
q

 

1

 
)

 
π

 

–

 

(

 

q

 

2

 

)

 

π

 

0

 

(

 

q

 

3

 

)

 

π

 

0

 

(

 

q

 

4

 

)

 

π

 

0

 

(

 

q

 

5

 

)

 

π

 

+

 

(

 

q

 

1

 

)

 

π

 

0

 

(

 

q

 

3

 

)

 

π

 

0

 

(

 

q

 

4

 

)

 

π

 

0

 

(

 

q

 

5

 

)

 

π

 

–

 

(

 

q

 

2

 

)

 

π

 

+

 

(

 

q

 

1

 

)

 

π

 

–

 

(

 

q

 

2

 

)

 

π

 

0

 

(

 

q

 

3

 

)

 

π

 

0

 

(

 

q

 

4

 

)

 

π

 

0

 

(

 

q

 

5

 

)

Fig. 1. The diagrams describing the amplitudes of the
decay ω → π+π−3π0 through the ρ intermediate state
followed by the decay ρ→ 4π. The closed circles refer to
the whole ρ→ 4π amplitudes.

extract gωρπ , the ρ→ π+π− partial width, and Eq. (3)
to extract g = gρππ = 6.00 ± 0.01 (assuming a = 2),
one finds

c3 = 0.99± 0.01, (12)

where the errors come from the errors of the ω and
ρ widths. Hereafter, we use the particle parameters
(masses, full and partial widths, etc.) taken from [9].

The purpose of the present paper is to calculate the
branching ratios of the decays

ω → π+π−3π0, (13)

ω → 2π+2π−π0, (14)

φ→ π+π−3π0, (15)

and

φ→ 2π+2π−π0 (16)

in the framework of chiral model for pseudoscalar and
low-lying vector mesons based on HLS [see Eqs. (1)
and (9)]. To this end, Section 2 is devoted to obtaining
the ω → π+π−3π0 and ω → 2π+2π−π0 decay ampli-
tudes from the Lagrangians given by Eqs. (1) and (9)
and verifying the Adler condition for their expressions.
The results of the evaluation of the branching ratios at
the ω-pole position and the calculation of the excita-
tion curves of the above decays in e+e− annihilation
are given in Section 3, assuming some particular
relations among the parameters c1,2,3, which char-
acterize various terms of the HLS Lagrangian [5, 6]
[see Eq. (9)]. The reason for disagreement with our
previous evaluations [10, 11] of the branching ratios
for the decays (13) and (14) is explained. In Section 4,
guided by the specific assumptions about how the
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Fig. 2. The diagrams describing the amplitudes of the
decay ω → π+π−3π0 through the ρπ intermediate state
followed by the transitions ρ→ 2π and π → 3π. The
closed circles refer to the effective π → 3π vertices given
by Eq. (18). Note that the non-π-pole term is included in
the diagrams in Fig. 4 below.

OZI rule is violated in the decays of the φ meson into
the states containing no particles with strangeness,
the effective Lagrangian for the φ→ π+π−3π0 and
φ→ 2π+2π−π0 decay amplitudes is written. Under
the assumptions about the free parameters of this La-
grangian similar to c1,2,3, the branching ratios and the
e+e− annihilation excitation curves for the five-pion
decays of the φ are given in the same section. The es-
timates of the number of events of the decays ω, φ→
π+π−3π0 and ω, φ→ 2π+2π−π0 at the respective ω
and φ peak positions and the general conclusions
about the possibilities of detecting the decays under
consideration in e+e− annihilation are given in Sec-
tion 5. The kinematical relations necessary for the
phase-space integration, which express the Lorentz
scalar products of the pion momenta through in-
variant Mandelstam-like variables, are given in the
Appendix.

Our convention for the Lorentz scalar product of
two different four-vectors a and b is (a, b) = a0b0 −
(a · b), while the Lorentz square is denoted as usual
as a2.

2. THE ω → π+π−3π0 AND ω → 2π+2π−π0

DECAY AMPLITUDES
The diagrams for the amplitude of the decay

ωq → π+
q1π

−
q2π

0
q3π

0
q4π

0
q5, (17)

where we explicitly label each particle in the reaction
by its four-momentum, are shown in Figs. 1–4. Let
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 1 2005
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Fig. 3. The diagrams describing the contributions to the
ω → π+π−3π0 decay amplitude via pointlike vertices.
The closed circles refer to the effective π → 3π vertices
given by Eq. (18).
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Fig. 4. The contributions to the ω → π+π−3π0 decay
amplitude arising due to the chiral vertex ω → ρ3π.

us give the expressions corresponding to them. The
amplitude in Fig. 1 includes the four-pion decay of
the intermediate ρmeson, which was extensively dis-
cussed in, e.g., [10]. However, the so-called Wein-
berg Lagrangian [12] was used in [10] to find the
expressions for the ρ→ 4π decay amplitudes. This
Lagrangian is different in coefficients as compared to
Eq. (1) above. Yet one can show by direct computa-
tion that, as the result of the well-known parameter
independence, the ρ→ 4π amplitudes resulting from
the above Lagrangians coincide. The reason is that
the terms ∝Dπ(k) in the π → 3π amplitudes,

M(π+
k → π

+
q1π

+
q2π

−
q3) =

1
2f2
π

(1 + P12) (18)

×
[
− a(q1, q3) + (a− 2)(q1, q2)

+ am2
ρ

(q2, q3 − q1)
Dρ(q1 + q3)

− 1
3
Dπ+(k)

]
,

M(π+
k → π

+
q1π

0
q3π

0
q4) =

1
2f2
π

(1 + P34)
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 1 200
×
[
− (a− 1)(q3, q4) + (a− 2)(q1, q3)

+ am2
ρ

(q4, q3 − q1)
Dρ(q1 + q3)

− 1
6
Dπ+(k)

]
,

M(π0
k → π+

q1π
−
q2π

0
q5) =

1
2f2
π

(1 + P12)

×
[
− (a− 1)(q1, q2) + (a− 2)(q1, q5)

+ am2
ρ

(q2, q1 − q5)
Dρ(q1 + q5)

− 1
6
Dπ0(k)

]
,

M(π0 → π0
q3π

0
q4π

0
q5) =

m2
π0

f2
π

,

which vanish on the pion mass shell, give the non-
π-pole terms in the ρ→ 2π → 4π amplitude. When
added to the pointlike ρ→ 4π amplitude, they make
their sum parameter independent. The same occurs
with such terms in the expression derived from Fig. 2
below, which should be added to the expression de-
rived from Fig. 4. The final expressions for the full
ω → π+π−3π0 decay amplitude will be given below.
Hereafter, Pij is the operator of permutation of the
pion momenta qi and qj ;

Dρ(k) = m2
ρ − k2 − i

√
k2Γρ→π+π−(k2), (19)

Γρ→π+π−(k2) =
g2ρππ

48πk2

(
k2 − 4m2

π+

)3/2

are the inverse propagator of the ρmeson and its two-
pion decay width, respectively; and

Dπ+,0(k) = m2
π+,0 − k2 (20)

is the inverse propagator of the π+,0 meson. Also,
in view of the fact that the expressions for the ω,
φ→ 5π amplitudes will appear to be rather long, the
following shorthand notation for inverse propagators
of the particle A will be used:

DAab ≡ DA(qa + qb), (21)

DAabc ≡ DA(qa + qb + qc).

Let us give the expression for each diagram in
Figs. 1–5. The upper index (n) (nickname of neutral,
because three neutral pions are in the final state)
will designate this particular isotopic state. Choosing
qµ, εµ for the four-momentum and four-vector of
polarization of the ω, one obtains

M
(n)
1 =

gωρπgρππ
f2
π

εµνλσqµεν

[
(1 + P35 (22)

+ P45)
q5λ

Dρ(q − q5)
Jσ(ρ0 → π+

q1π
−
q2π

0
q3π

0
q4)

+ (1− P12)
q2λ

Dρ(q − q2)
Jσ(ρ+ → π+

q1π
0
q3π

0
q4π

0
q5)
]

5
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for the diagrams in Fig. 1. The coupling constants
gρππ and gωρπ are given in Eqs. (3) and (10), re-
spectively. The ρ→ 4π decay currents standing in
Eq. (22) are [10]

Jσ(ρ0 → π+
q1π

−
q2π

0
q3π

0
q4) = (1− P12) (23)

× (1 + P34)
{
q1σ

(
− 1

4
+

1
Dπ+234

[
(q3, q4 − 2q2)

+ a(q3, q2 − q4)
(
m2
ρ

Dρ24
− 1
)])

+
m2
ρ

2Dρ13Dρ24
× [(q3 + q1)σ(q1 − q3, q2 − q4) + 2(q3 − q1)σ

× (q1 + q3, q2 − q4)] + 2
(
ncg

2c3
8π2

)2 1
Dω123

×
(

1
Dρ12

+
1
Dρ13

+
1
Dρ23

+ 3
c1 − c2 − c3

2c3m2
ρ

)
× [q1σ((k, q2)(q3, q4)− (k, q3)(q2, q4))

+ q3σ(k, q1)(q2, q4)]
}

(with k = q1 + q2 + q3 + q4), where

Dωabc ≡ Dω(qa + qb + qc) (24)

= m2
ω − (qa + qb + qc)2 − imωΓω

is the inverse propagator of the ω (note that, because
the ω resonance is narrow, we take the fixed width
approximation for the ω meson), and

Jσ(ρ+ → π+
q1π

0
q3π

0
q4π

0
q5) = (1 + P34 + P35) (25)

×
{

1
3
q1σ

(
1−

2m2
π0

Dπ0345

)
+

q3σ
Dπ+145

(1 + P45)

×
[
(q4, q5 − 2q1) + a(q4, q5 − q1)

(
m2
ρ

Dρ15
− 1
)]}

.

The expression for the diagrams in Fig. 2 is

M
(n)
2 = −gωρπgρππ

f2
π

(1− P12) (26)

× (1 + P35 + P45)(1 + P34)εµνλσqµεν

×
{

q1λq5σ
Dρ15Dπ+234

[
(q3, q4 − 2q2) + a(q3, q2 − q4)

×
(
m2
ρ

Dρ24
− 1
)]
−
q1λq2σm

2
π0

6Dρ12Dπ0345

}
.

The expression for the diagrams in Fig. 3 is

M
(n)
3 =

ncg

32π2f5
π

(1− P12)(1 + P35 (27)

+ P45)εµνλσqµεν

{
4c1 − 5(c2 + c3)

3
q1λq2σ

+ 3(c1 − c2 − c3)(1 + P34)
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Fig. 5. The contributions to the ω → π+π−3π0 decay
amplitude via intermediate state with two ρmesons. Total
number of diagrams of this kind is 3! = 6.

×
[
q1λq5σ
Dπ+234

(
(q3, q4 − 2q2) + a(q3, q2 − q4)

×
(
m2
ρ

Dρ24
− 1
))

+
q1λq2σ

3Dπ0345
(q3, q4)

]}
.

Notice the relation
ncg

32π2f5
π

= −gωρπgρππ
f2
π

1
2c3m2

ρ

, (28)

which is useful for an easier comparison of the present
contribution with others. The expression for the dia-
grams in Figs. 4 and 5 are, respectively,

M
(n)
4 = −gωρπgρππ

f2
π

(1− P12)(1 + P35 (29)

+ P45)εµνλσ
εν(q1 − q5)λ

2Dρ15

×
[
qµq2σ −

c1 + c2 − c3
2c3

q2µ(q3 + q4)σ

]
and

M
(n)
5 =

gωρπgρππm
2
ρ

f2
π

c1 + c2 − c3
4c3

(1− P12) (30)

× (1 + P35 + P45)εµνλσ
εν(q1 − q3)µ(q2 − q4)λq5σ

Dρ13Dρ24
.

The full ω → π+π−3π0 decay amplitude is

M(ω → π+π−π0π0π0) (31)

=M (n)
1 +M (n)

2 +M (n)
3 +M (n)

4 +M (n)
5 .

Since the expressions for the amplitudes are very
lengthy, one should invoke the method of control of
the calculations. We take the Adler condition (see
below) as the method of such a control.

Now, let us verify the Adler condition for the ω →
π+π−3π0 decay amplitude. This is the condition of
vanishing of the amplitude of the process with soft
pions, when the momentum of any pion is vanish-
ing. Pions emitted in the decay ω → 5π [10, 11] are
truly soft, because they possess the typical momen-
tum |qπ| � 0.5mπ . To verify the Adler condition, we,
YSICS OF ATOMIC NUCLEI Vol. 68 No. 1 2005
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Fig. 6. The diagrams describing the amplitudes of the
decay ω → 2π+2π−π0 through the ρ intermediate state
followed by the decay ρ→ 4π. The closed circles refer to
the whole ρ→ 4π amplitudes.

first, set any particular pion momentum to zero and,
second, take the chiral limit, i.e., set the pion mass
mπ → 0. The correct expression should result in the
vanishing of the amplitude in this limit.

(i) q1 = 0. The contributions of the diagrams in
Figs. 3–5 vanish; the contributions of the diagrams
in Figs. 1 and 2 are equal in magnitude but oppo-
site in sign, and hence they are canceled. The Adler
condition is fulfilled. The case q2 = 0 is obtained from
the case of q1 = 0 by the permutation property [see
the operator 1− P12 in front of each expression in
Eqs. (22), (23), (26), (27), (29), and (30)].

(ii) q3 = 0. Here, the situation is more subtle. Let
us represent the amplitude at q3 = 0 in the form

M(ω → π+π−π0π0π0)
∣∣
q3=0

= −gωρπgρππ
f2
π

(1− P12)(1 + P45)εµνλσενTµλσ .

Then one obtains the following contributions to the
tensor Tµλσ from Figs. 1–5, respectively:

T
(1)
µλσ =

qµ(q1 − q4)λq5σ
2Dρ14

, (32)

T
(2)
µλσ =

qµq1λq4σ
Dρ14

,

T
(3)
µλσ = − 1

4m2
ρ

(
qµq1λq2σ +

c1 + c2 − c3
c3

q1µq2λq4σ

)
,

T
(4)
µλσ =

1
6
qµ

[
3q1λq2σ

2m2
ρ

+
(q1 − q4)λ(2q2 − q5)σ − 2q1λq4σ

Dρ14

]
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Fig. 7. The diagrams describing the amplitudes of the
decay ω → 2π+2π−π0 through the ρπ intermediate state
followed by the transitions ρ→ 2π and π → 3π. The
closed circles refer to the effective π → 3π vertices given
by Eq. (18). Note that the non-π-pole term is included in
the first pair of diagrams in Fig. 9 below.

− c1 + c2 − c3
4c3

[
q2µ(q1 − q4)λq5σ

Dρ14
− q1µq2λq4σ

m2
ρ

]
,

T
(5)
µλσ =

c1 + c2 − c3
4c3

q2µ(q1 − q4)λq5σ
Dρ14

.

Note that, when obtaining the contribution T (3)
µλσ ,

Eq. (28) is essential. As is evident from Eq. (32), the
terms with the factor c1 + c2 − c3 and without such a
factor are canceled separately in the sum. Hence, the
Adler condition is satisfied in the case q3 = 0 too. The
cases q4,5 = 0 are obtained from this case by Bose
symmetry.

The diagrams for the amplitude of the decay

ωq → π+
q1π

+
q2π

−
q3π

−
q4π

0
q5, (33)

where the particles are labeled by their four-momenta,
are shown in Figs. 6–10. Let us give the expressions
corresponding to them. The upper index (c) (nick-
name of charged, because most pions in the final
state are charged) will designate this particular iso-
topic state. The expression for the diagrams in Fig. 6
is written as

M
(c)
1 =

gωρπgρππ
f2
π

εµνλσqµεν (34)

×
[

q5λ
Dρ(q − q5)

Jσ(ρ0 → π+
q1π

+
q2π

−
q3π

−
q4)

+ (1 + P34)
q4λ

Dρ(q − q4)
Jσ(ρ+ → π+

q1π
+
q2π

−
q3π

0
q5)
5
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Fig. 8. The diagrams describing the contributions to the
ω → 2π+2π−π0 decay amplitude via pointlike vertices.
The closed circles refer to the effective π → 3π vertices
given by Eq. (18).

+ (1 + P12)
q2λ

Dρ(q − q2)
Jσ(ρ− → π+

q1π
−
q3π

−
q4π

0
q5)
]
.

Here, the currents responsible for the four-pion decay
of the intermediate ρmeson are the following [10]:

Jσ(ρ0 → π+
q1π

+
q2π

−
q3π

−
q4) = (1 + P12) (35)

× (1 + P34)(1− P13P24)
{
q1σ

(
− 1

2
+

1
Dπ+234

×
[
a(q3, q2 − q4)

(
m2
ρ

Dρ24
− 1
)
− 2(q3, q4)

])}
and

Jσ(ρ+ → π+
q1π

+
q2π

−
q3π

0
q5) = (1 + P12) (36)

×
{

1
2
(q1 − q5)σ − (1 + P23)

q1σ
Dπ0135

×
[
(q2, q3 − 2q5) + a(q2, q3 − q5)

(
m2
ρ

Dρ35
− 1
)]

+
q5σ
Dπ+123

[
− 2(q1, q2) + a(q1, q3 − q2)

×
(
m2
ρ

Dρ23
− 1
)]

+ (1− P35)[2(q1 − q5)σ

× (q1 + q5, q2 − q3)− (q1 + q5)σ

× (q1 − q5, q2 − q3)]
m2
ρ

2Dρ15Dρ23
+

2
Dω135

×
(
ncg

2c3
8π2

)2

[q1σ(1− P35)(k, q3)(q2, q5)

+ q3σ(1− P15)(k, q5)(q1, q2) + q5σ(1− P13)

× (k, q1)(q2, q3)]
(

1
Dρ13

+
1
Dρ15

+
1
Dρ33
PH
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Fig. 9. The contributions to the ω → 2π+2π−π0 decay
amplitude arising due to the chiral ω → ρ3π vertex.

+
c1 − c2 − c3

2c3m2
ρ

)}
,

where k = q1 + q2 + q3 + q5. The expression for
Jσ(ρ− → π+

q1π
−
q3π

−
q4π

0
q5) is obtained from Eq. (36) by

the replacements q1 ↔ q3, q2 → q4 and by inverting
an overall sign. The expression for the contribution of
the diagrams in Fig. 7 is

M
(c)
2 =

gωρπgρππ
f2
π

(1 + P12) (37)

× (1 + P34)εµνλσqµεν

{
(1 + P24)

q1λq3σ
Dρ13Dπ0245

×
[
(q2, q4 − 2q5) + a(q2, q4 − q5)

(
m2
ρ

Dρ45
− 1
)]

− (1− P13P24)
q1λq5σ

Dρ15Dπ+234

×
[
− 2(q3, q4) + a(q3, q2 − q4)

(
m2
ρ

Dρ24
− 1
)]}

.

The expression for the contribution of the diagrams in
Fig. 8 is written as

M
(c)
3 =

ncg

32π2f5
π

(1 + P12) (38)

× (1 + P34)εµνλσqµεν

{
4c1 − 5(c2 + c3)

3
× q1λq3σ + 3(c1 − c2 − c3)

×
(

(1− P14P23)
q1λq5σ
Dπ+234

[
− 2(q3, q4)

+ a(q3, q2 − q4)
(
m2
ρ

Dρ24
− 1
)]

− q1λq3σ
Dπ0245

(1 + P24)
[
(q2, q4 − 2q5)
YSICS OF ATOMIC NUCLEI Vol. 68 No. 1 2005
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+ a(q2, q4 − q5)
(
m2
ρ

Dρ45
− 1
)])}

.

Notice that Eq. (28) is necessary in verifying the Adler
condition below. The expression for the contribution
of the diagrams in Fig. 9 is

M
(c)
4 =

gωρπgρππ
f2
π

(1 + P12) (39)

× (1 + P34)εµνλσεν

{
1
2
qµ

[
(q1 − q3)λq5σ
Dρ13

+ (1− P13P24)
q1λq5σ +

1
2
(q1 − q5)λq2σ
Dρ15

]

− c1 + c2 − c3
4c3

[
q5µ(q1 − q3)λ(q2 + q4)σ

Dρ13

+ (1− P13P24)
q1µ(q3 − q5)λq4σ

Dρ35

]}
.

Finally, the amplitude resulting from the diagrams in
Fig. 10 is

M
(c)
5 = −

gωρπgρππm
2
ρ

f2
π

(40)

×
(
c1 + c2 − c3

4c3

)
(1 + P12)(1 + P34)

× (1 + P24)εµνλσεν
(q1 − q3)µq4λ(q2 − q5)σ

Dρ13Dρ25
.

Notice that the product of the operators (1 +P12)(1 +
P34) [see (35) and (36)] makes evident the Bose sym-
metry of the full ω → 2π+2π−π0 decay amplitude,
which is

M(ωq → π+
q1π

+
q2π

−
q3π

−
q4π

0
q5) (41)

=M (c)
1 +M (c)

2 +M (c)
3 +M (c)

4 +M (c)
5 .

Let us verify the Adler condition for the ω →
2π+2π−π0 decay amplitude and write down the
Adler limits of all the above contributions to the
ω → 2π+2π−π0 decay amplitudes. As an example,
the case q1 = 0 is considered in detail. Representing
the total amplitude Eq. (41) in this limit as

M(ωq → π+
q1π

+
q2π

−
q3π

−
q4π

0
q5)
∣∣
q1=0

=
gωρπgρππ
f2
π

(1 + P34)εµνλσενTµλσ,

one has the following expressions for the diagrams in
Figs. 6–10, respectively:

T
(6)
µλσ(q1 = 0) =

1
2
(1− P35)qµ (42)

×
[
q4λ(q2 − q5)σ
Dρ25

− q2λq3σ
Dρ35

]
,
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Fig. 10. The contributions to the ω → 2π+2π−π0 decay
amplitude via intermediate state with two ρmesons.

T
(7)
µλσ(q1 = 0) = (1− P35)

qµq2λq3σ
Dρ23

,

T
(8)
µλσ(q1 = 0) = −

(
2 +
c1 + c2 − c3

c3

)
qµq2λq5σ

4m2
ρ

,

T
(9)
µλσ(q1 = 0) =

1
6
qµ

×
[
−2q2λq3σ + (q2 − q3)λ(2q5 − q4)σ

Dρ23

− 4q3λq5σ + (q3 − q5)λ(2q4 − q2)σ
Dρ23

+ 3q2λq5σ

×
(

1
Dρ25

+
1
m2
ρ

)]
+
c1 + c2 − c3

4c3

×
[
qµq2λq5σ
m2
ρ

+ (1− P24P35)
q3µ(q4 − q5)λq2σ

Dρ45

]
,

T
(10)
µλσ (q1 = 0) = −c1 + c2 − c3

4c3

× (1− P24P35)
q3µ(q4 − q5)λq2σ

Dρ45
.

Again, when obtaining T (8)
µλσ , relation (28) is essential.

The close inspection of Eq. (42) shows that, first, the
ρ-pole terms in the sum of the diagrams in Figs. 6,
7, and 9 are canceled and, second, both the ρ-pole
terms proportional to c1 + c2 − c3 and the non-ρ-
pole ones are canceled in the sum of the diagrams
in Figs. 8–10. The cases of q2,3,4 = 0 are obtained
from the present case by Bose symmetry and evident
replacements of the pion momenta. In the case q5 =
0, the contributions of the diagrams in Figs. 8–10
vanish in the chiral limit separately, while the con-
tributions of the diagrams in Figs. 6 and 7 are equal
in magnitude but opposite in sign, and hence they
are canceled. The conditions of the vanishing of the
amplitude in the Adler limit obtained here turn out to
be of great importance in obtaining the φ→ 5π decay
amplitudes.
5
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3. THE ω → π+π−3π0 AND ω → 2π+2π−π0

BRANCHING RATIOS REVISITED

In our previous works [10, 11], the branching ra-
tios of the ω → π+π−3π0 and ω → 2π+π−π0 decays
were estimated. The basis of that evaluation was
the expressions for the contributions of the diagrams
shown in Figs. 1 and 6, added with the specific cor-
rection factor stemming from the diagrams shown in
Figs. 2 and 7 of the present paper, respectively. This
seemed to be justifiable because of the presence of
the ρ pole. Moreover, the nonrelativistic limit |qπ| �
mπ was essentially used, because the approximate
nonrelativistic expressions gave almost the same nu-
merical results for the ρ→ 4π partial widths as ex-
act ones, yet were much simpler. Those approximate
amplitudes cannot satisfy the Adler condition that
demands taking the massless pion limit, which is
clearly opposite to the nonrelativistic limit. Finding
the full decay amplitude undertaken in the present
paper is essential in finding the φ→ 5π decay ampli-
tudes (see Section 4). Having at hand the amplitudes
satisfying the Adler condition, we evaluate here the
above branching ratios using these amplitudes.

Strictly speaking, theHLS approach does not give
the predictions even for the ω → π+π−π0 decay rate,
because arbitrary constants c1,2,3 enter the expression
for Lagrangian Eq. (9). As was pointed out in [5, 6],
these constants should be determined from experi-
ment. Nevertheless, HLS relates the contributions to
the amplitudes [compare Figs. 1 and 2 to Figs. 3–
5 (respectively, Figs. 6 and 7 to Figs. 8–10)], which
otherwise appear unrelated. One can obtain reason-
able predictions for the ω → 5π decay rates upon as-
suming particular relations among c1,2,3. First, there
are no experimental indications on the pointlike ω →
π+π−π0 vertex; hence, one can take Eq. (11) for
granted. Second, the constant c3 [see Eq. (12)], ex-
tracted from the ω → 3π branching ratio, is remark-
ably close to unity. Note that older chiral models [3] for
the vector meson interactions, with the inclusion of
the terms arising from the gauging of the anomalous
Wess–Zumino action [8], predicted c3 = 1. We fix
c3 from the ω → 3π partial width [see Eqs. (10) and
(12)]. After taking into account Eq. (11), the ratio
c1/c3 remains arbitrary, and the magnitude of the
ω → 5π decay width depends on this parameter. We
choose its value guided by the following considera-
tions. The inspection of the expressions for the ω →
5π decay amplitudes obtained in Section 2 shows
that almost all the terms, except those proportional
to c1 + c2 − c3, have the tensor structure

M =
gωρπgρππ
f2
π

εµνλσqµενTλσ , (43)
PH
where

Tλσ =
∑
a<b

Gabqaλq(b)σ (44)

is the tensor composed of pion four-momenta qaµ
(where a = 1, . . . , 5 counts the final pions), and Gab
are invariant amplitudes, whose explicit form can be
read off the expressions for the amplitudes obtained
in Section 2 by gathering the coefficients in front of
qaλq(b)σ. They are very lengthy, so we do not give them
here. In the rest frame system of the decaying ω, the
Lorentz structure of Eq. (43) is reduced to the three-
dimensional form eijkξiTjk, where ξ is the polariza-
tion vector of the ω in this frame and eijk is totally
antisymmetric in i, j, k = 1, 2, 3. It enormously sim-
plifies the calculation of the modulus squared of the
amplitude. In the meantime, the terms proportional to
c1 + c2 − c3 have entirely the four-dimensional tensor
structure εµνλσεµqaνq(b)λq(c)σ. The resulting expres-
sion for the modulus squared of the full amplitude
turns out to be extremely lengthy. Hence, for the sake
of simplicity, we set

c1 + c2 − c3 = 0 (45)

in what follows. Note that this means that the con-
tributions of the diagrams in Figs. 5 and 10 together
with the part of the contributions from the diagrams
in Figs. 4 and 9 are dropped. Finally, our assumptions
about HLS arbitrary constants c1,2,3 and a are

c1 = c3, c2 = 0, a = 2. (46)

Notice that the above relations among c1,2,3 are the
solutions of Eqs. (11) and (45). Of course, having
the full expressions for the decay amplitude at hand,
one can always loosen the constraint Eq. (45) and
come back to the evaluation of the branching ratios
at various values of c1/c3.

The expression for the partial width of the de-
cays (13) and (14) is written as

Γω→5π(s) =
1

2
√
s(2π)11Nsym

∫
|M |2dD5, (47)

where s =
(∑5

a=1 qa

)2
is the total energy squared

in the rest frame system of the decaying particle;
the Bose symmetry factor Nsym = 6 and 4 for the
reaction (13) and (14), respectively; and dD5 given
in [13] is the differential element of the phase-space
volume of the five-pion final state. Note that we take
into account the mass difference of the charged and
neutral pions both in amplitude and in the phase-
space volume. In the above formula,

|M |2 =
1
3

(
gωρπgρππ
f2
π

)2 s

2

3∑
i,j=1

|Tij − Tji|2 (48)
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is the modulus squared of the amplitude Eq. (43)
averaged over three independent polarizations of the
ω. When evaluating Eq. (47), eight Mandelstam-like
invariant variables si, ui, i = 1, 2, 3, and t1, t2 pro-
posed by Kumar in [13] are suitable. They are given
in the Appendix. All the scalar products of the pair
of pion four-momenta are expressed via the Kumar
variables by the expressions given in the Appendix.
For the numerical evaluation of the eight-dimensional
integral over Kumar variables, we use the method
suggested in [14].

We evaluate both the branching ratios for the
two aforementioned isotopic modes at the resonance
mass,

Brω→5π(m2
ω) =

Γω→5π(m2
ω)

Γω
, (49)

and the branching ratios averaged over the resonance
peak,

Braverω→5π =
2
π

mω+Γω∫
mω−Γω

d
√
s

sΓω→5π(s)
(s−m2

ω)2 +m2
ωΓ2

ω

. (50)

The quantity Braverω→5π is useful in situations where
the total energy of the five-pion state is not directly
measured, as is the case in, e.g., photoproduction or
peripheral production in πN collisions. The results of
the evaluation are the following:

Brω→π+π−3π0(m2
ω) = 3.6× 10−9, (51)

Braverω→π+π−3π0 = 2.8× 10−9,

Brω→2π+2π−π0(m2
ω) = 3.3× 10−9,

Braverω→2π+2π−π0 = 2.5 × 10−9.

These branching ratios for the ω → 5π decay by
a factor of more than 3 exceed those obtained in
our previous papers [10, 11]. The reason of the
disagreement is the following. As is mentioned at
the beginning of the present section, the diagrams
in Figs. 1 and 6 corrected with those in Figs. 2
and 7 were considered to be dominant in [10, 11].
Let us evaluate the contributions of the diagrams
in Figs. 1 and 6 to the branching ratios of the
decays ω → π+π−3π0 and ω → 2π+2π−π0, respec-
tively. For a reason soon to become clear in the
case of φ→ 5π decay, we call these contributions
resonant. One obtains Brresonantω→π+π−3π0 = 1.54 × 10−9

and Brresonantω→2π+2π−π0 = 1.3× 10−9. These figures are
close to Brω→π+π−3π0 � Brω→2π+2π−π0 � 1× 10−9

obtained in [10, 11]. If one evaluates the net contribu-
tion of all the remaining diagrams called nonresonant,
the following figures will be obtained: Brnonresonantω→π+π−3π0 =
0.47 × 10−9 and Brnonresonantω→2π+2π−π0 = 0.50 × 10−9. The
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 1 200
 

0.77 0.78 0.79
0

2

4

6

 

E

 

, GeV

 
σ

 
(
 
e
 
+
 

e
 

–
 

 →
 

 
 

ω →
 

 5
 

π
 

), fb
 

2

 

π

 

+

 

2

 

π

 

–

 

π

 

0

 

π

 

+

 

π

 

–

 

3

 

π

 

0

Fig. 11. The excitation curves of the decays ω → 5π in
e+e− annihilation.

nonresonant contributions amount to 13–14% of the
total [Eq. (51)]. However, the phase-space-averaged
relative phase differences between the resonant and
nonresonant contributions evaluated with the above
numbers are δ = 21◦ and 24◦, respectively, for the re-
action (13) and (14). These phase differences and the
comparison with the total branching ratios [Eq. (51)]
show that the aforementioned contributions to the
decay amplitude are almost in phase. The neglect of
seemingly small nonresonant contributions resulted
in the underestimated magnitude of branching ratios
in [10, 11].

The excitation curves for the ω → 5π decays in
e+e− annihilation,

σω→5π(s) = 12π
(
mω√
s

)3

Γω→e+e−(m2
ω) (52)

× sΓω→5π(s)
(s−m2

ω)2 +m2
ωΓ2

ω

,

are plotted in Fig. 11. The curves are asymmetric
and shifted to higher values from the ω mass be-
cause of strong energy dependence of Γω→5π(s) (see
Figs. 12 and 13). As is seen, both isotopic channels
have approximately equal branching ratios and al-
most coincident excitation curves in the ω-resonance
region. This can be understood as follows. The matrix
elements squared numerically are approximately the
same in the near-to-threshold region, since the pion
mass difference is smeared in the sum of various
5
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contributions. Hence, they are canceled in the ratio
of two partial widths, leaving the ratio of the phase-
space volumes. Using the nonrelativistic expression
for the phase-space volume of the five-pion final state
from [15], one obtains

Brω→2π+2π−π0(m2
ω)

Brω→π+π−3π0(m2
ω)

(53)

=
3mπ+

2mπ0

(
2mπ+ + 3mπ0

4mπ+ +mπ0

)3/2

×
(
mω − 4mπ+ −mπ0

mω − 2mπ+ − 3mπ0

)5

= 0.93

to be compared to 0.92 calculated from Eq. (51).
The ratio of the Bose symmetry factors 3/2 com-
pensates the smaller phase-space volume of the final
state 2π+2π−π0, as compared to π+π−3π0 one. In
the meantime, the energy dependence of the ω → 5π
partial width in the dynamical model is drastically dif-
ferent from that in the model of the Lorentz-invariant
phase space (lips). In the latter, one has the following
expression for the ω → 5π partial width:

Γ(lips)
ω→5π(s) = Γω→5π(m2

ω)
W5π(s)
W5π(m2

ω)
, (54)

where Γω→5π(m2
ω) is the partial width evaluated with

the dynamical amplitudes given in Section 2, and
the expression for the Lorentz-invariant phase-space
volume is

W5π(s) =
π4

(2π)1132s3/2Nsym
(55)

×
(
√
s−m5)2∫

(m1+m2+m3+m4)2

ds1
s1
λ1/2(s, s1,m2

5)
PH
 

0.8 0.9 1.0 1.1
10

 

–5

 

10

 

–3

 

10

 

–1

 

10

 

1

 

10

 

3
Dynamic
Phase space

 

s

 

1/2

 

, GeV

 
Γ

 
(

 
ω →

 
 
 
π
 
+
 

π
 

–
 

3
 

π
 

0
 

), eV

0.7

Fig. 13. The energy dependence of the ω → π+π−3π0

partial width.

×
(
√
s1−m4)2∫

(m1+m2+m3)2

ds2
s2
λ1/2(s1, s2,m2

4)

×
(
√
s2−m3)2∫

(m1+m2)2

ds3
s3
λ1/2(s2, s3,m2

3)λ
1/2(s3,m2

1,m
2
2),

with mi, i = 1, . . . , being the mass of the meson πi
and

λ(x, y, z) = x2 + y2 + z2 − 2xy (56)

− 2xz − 2yz.

The predictions of both models for the energy de-
pendence of Γω→2π+2π−π0(s) are plotted in Fig. 12.
The corresponding plot for the π+π−3π0 final state
is shown in Fig. 13. The faster growth of the partial
width in the dynamical model, as compared to the
phase-space one, is due to the resonance enhance-
ment arising from opening of the ρ production in the
intermediate state.

There is one interesting limiting case of the ω →
5π decay amplitudes. Since the pions in the five-pion
decays are truly soft, the ρ meson can be considered
as very heavy and hence can be integrated out, leaving
an effective coupling of the ω meson to the five-pion
state. This can be done at the Lagrangian level. But
since we have the complete expressions for the am-
plitudes, one may keep in them only the leading terms
in 1/m2

ρ. The resulting expressions are the following:

M(ωq → π+
q1π

−
q2π

0
q3π

0
q4π

0
q5) (57)

≈ − 3ncg2

16π2f5
π

(c1 − c2 + c3)εµνλσεµqν(1− P12)
YSICS OF ATOMIC NUCLEI Vol. 68 No. 1 2005
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× (1 + P53 + P54)
[
q1λq2σ

6

(
1−

m2
π0

Dπ0345

)

+ q1λq5σ
(q3, q4)− (q2, q3 + q4)

Dπ+234

]
,

M(ωq → π+
q1π

+
q2π

−
q3π

−
q4π

0
q5) (58)

≈ 3ncg2

16π2f5
π

(c1 − c2 + c3)εµνλσ

× εµqν(1 + P12)(1 + P34)

×
{
q1λq3σ

[
(q2, q4)− (q5, q2 + q4)

Dπ0245
− 3

2

]

+ (1− P13P24)q1λq5σ
(q3, q4)
Dπ+234

}
.

One can convince oneself that the above expressions
satisfy the Adler condition. Making the same as-
sumptions about HLS parameters c1,2,3, as earlier in
this section, and evaluating the branching ratios with
Eqs. (57) and (58) gives Brω→π+π−3π0(m2

ω) = 0.95×
10−9 and Brω→2π+2π−π0(m2

ω) = 1.04× 10−9, respec-
tively, which fall short by a factor of 3 as compared to
the evaluation with the full expressions. The reason
is that the ρ pole in the full expressions is essential
despite its nonresonant behavior in ω → 5π decay.

4. EVALUATION OF THE φ→ π+π−3π0

AND φ→ 2π+2π−π0 BRANCHING RATIOS

As is known, chiral models, including HLS, do
not possess terms responsible for the decays of the φ
meson into final states containing nonstrange quarks
only. However, one can guess the general form of such
terms guided both by the way the OZI rule is broken
in the decay φ→ ρπ → π+π−π0 and by the condition
of vanishing of the amplitude of the vector meson
decays into the states consisting of many Nambu–
Goldstone bosons.

There are two feasible models of theOZI-suppres-
sed φ→ ρπ decay amplitude. The first one is the
φ−ω-mixing model, where the above decay proceeds
due to the small admixture of nonstrange quarks in
the flavor wave function of the φ meson composed
mostly of the pair of strange quarks. In the sec-
ond model, φ goes to ρπ directly, with the decay
coupling constants originated from the OZI-rule-
violating three-gluon state [16]. Earlier we pointed
out that there are no particular reasons to prefer one
model to another, and possible ways to resolve the
issue were pointed out [16, 17]. Recent SND data [18]
point to a sizable coupling constant of direct φ→ ρπ
transition, assuming the dependence |ψ(0,mV )|2 ∝
m2
V [16] of the wave function of the vector qq̄ bound

state at the origin on the mass mV of this state. It
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should be noted that the assumed dependence agrees
remarkably well with the ratios of the measured lep-
tonic widths of the vector quarkonia ρ, ω, φ, J/ψ, and
Υ(1S).

The decays φ→ 5π are treated slightly differently
in the above models of OZI-rule violation. Let us
consider them in turn. In the model of φ−ω mixing,
φ goes to the off-mass-shell ω, which decays in a way
considered in Section 2. Hence, one can immediately
obtain

Γφ→5π(m2
φ) = |εφ−ω(m2

φ)|2Γω→5π(m2
φ), (59)

where εφ−ω(mφ) is the complex parameter of φ−ω
mixing taken at the φmass. It can be evaluated as

|εφ−ω(m2
φ)|2 =

Γφ→3π(m2
φ)

Γω→3π(m2
ω)
r = 3.04 × 10−3,

where r = 3.5 × 10−2 is the ratio of the three-pion
phase-space volumes at the ω and φ peaks.

If φ−ω mixing is negligible, one should introduce
a number of new OZI-rule-violating parameters to
quantify the φ→ 5π decay amplitude. Guided by the
condition of chiral symmetry expressed as the de-
mand that the correct decay amplitude should fulfill
the Adler condition, it is reasonable to expect that
the effective Lagrangian, describing anomalous OZI-
suppressed decays of the φmeson, looks similar to the
Lagrangian Eq. (9),

Lanφ,ρ,π =
1

2f3
π

(β1 − β2 − β3)εµνλσφµ (60)

× (∂νπ · [∂λπ × ∂σπ])

+
1

8f5
π

[
−β1 +

5
3
(β2 + β3)

]
εµνλσ

× φµ(∂νπ · [∂λπ × ∂σπ])π2 − 2β3g
fπ
εµνλσ∂µφν

×
{

(ρλ · ∂σπ) +
1

6f2
π

[(ρλ · π)(π · ∂σπ)

− π2(ρλ · ∂σπ)]
}
− 2g
fπ

(β1 + β2 − β3)εµνλσφµ

×
{

1
4f2
π

(∂νπ · ρλ)(π · ∂σπ)

− g
4
([ρν × ρλ] · ∂σπ)

}
,

where β1,2,3 are the above-mentioned parameters re-
sponsible for the violation of the OZI rule in the φ→
5π decays of the φmeson. The analysis, similar to that
presented in the case of theω → 5π decay amplitudes,
shows that the φ→ 5π decay amplitudes obtained
from the Lagrangian (60) satisfy the Adler condition.
5
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As is evident from Eq. (60), one should identify the
coupling constant of direct φ→ ρπ transition as

gφρπ = −2β3g
fπ

= 0.8 GeV−1, (61)

where the magnitude of gφρπ is obtained from the
φ→ 3π partial widths, while the positive sign (rela-
tive to gωρπ usually taken to be positive) is fixed by
the φ−ω interference pattern observed in the energy
dependence of the e+e− → π+π−π0 reaction cross
section [19]. Note that we neglect the unitarity cor-
rections to gφρπ [20], because they are irrelevant in
the context of the present work. Next, there seems
to be no sizeable pointlike φ→ π+π−π0 contribution.
Indeed, first, the existing upper limit to the branching
ratio of the non-ρπ-intermediate-state direct tran-
sition φ→ π+π−π0, obtained by the SND group at
VEPP-2M, is very small [21],

Brdirect(φ→ π+π−π0) < 6× 10−4(90% C.L.).
(62)

Second, the KLOE Collaboration at DAΦNE gives
the phase-space-averaged direct φ→ π+π−π0 con-
tribution at the level of 1% [22], and this contribution
is incoherent with the contribution of the intermediate
resonant ρmeson. Hence, in a close analogy with the
ω case, one can set

β1 − β2 − β3 = 0. (63)

Then β3 = −0.006 is fixed according to Eq. (61) by
the φ→ 3π partial widths. After all, the ratio β1/β3
remains arbitrary. We set β1 + β2 − β3 = 0; hence,
β1 = β3, β2 = 0, so that the φ→ 5π decay ampli-
tudes are determined by only parameter β3 and look
like Eq. (43) for the ω → 5π decay, with the replace-
ment gωρπ → gφρπ. The tensor Tλσ is the same as
in the ω → 5π decay amplitude. Under these as-
sumptions, both aforementioned models for the OZI-
rule-violating decay φ→ 3π give similar results for
branching ratios of the decays φ→ 5π. These are the
following:

Brφ→π+π−3π0(m2
φ) = 2.4× 10−7, (64)

Braverφ→π+π−3π0 = 1.8 × 10−7,

Brφ→2π+2π−π0(m2
φ) = 5.0 × 10−7,

Braverφ→2π+2π−π0 = 3.6× 10−7,

where Braver, useful for the reactions of peripheral pro-
duction, stands for the branching ratio averaged over
the ±Γφ region around the φ peak [use Eq. (50) with
replacement ω → φ]. The evaluation of the excitation
curve of the decays φ→ 5π in e+e− annihilation per-
formed according to Eq. (52) (with the replacement
ω → φ) is plotted in Fig. 14. Notice that the ratio of
P
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Fig. 14. The excitation curves of the decays φ→ 5π in
e+e− annihilation.

the branching ratios of two isotopic modes at the φ
peak is

Brφ→2π+2π−π0(m2
φ)

Brφ→π+π−3π0(m2
φ)

= 2.1 (65)

to be compared to the number 1.3 obtained from the
simple evaluation of the ratio of nonrelativistic phase
space [see Eq. (53) with the replacement mω → mφ].
In the present case, the difference with the exact eval-
uation is sizable, because now the phase-space model
is inadequate due to the strong ρ- and ω-resonance
production in the intermediate states.

In this respect, it is interesting to look at the
dynamical behavior of the specific contributions to
the φ→ 5π decay amplitudes in another way. For
this purpose, let us evaluate, at the φ mass, the con-
tribution to Brφ→π+π−3π0 of the diagrams in Fig. 1
with the resonant ρ meson. (Notice that now ω in
the initial state should be replaced with φ in all the
diagrams, and the effective gφρπ is understood at
the corresponding expression, while other couplings
are related to it, as is explained earlier in this sec-
tion.) One obtains Brresonantφ→π+π−3π0 = 2.1 × 10−7. All
the remaining contributions with the nonresonant
intermediate ρ meson (see Figs. 2–4) amount to
Brnonresonantφ→π+π−3π0 = 0.34 × 10−7. Notice that the seem-
ingly resonant diagrams in Figs. 2 and 7 do not, in
fact, possess this property, because three pions, pro-
duced from the transition π → 3π, push the ρ meson
away from the resonance. The phase-space-averaged
relative phase between the resonant and nonreso-
nant contributions calculated with the help of given
branching ratios and that given in Eq. (64) is about
δ = 91◦. Correspondingly, similar calculations for an-
other isotopic state 2π+2π−π0 give Brresonantφ→2π+2π−π0 =
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 1 2005
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4.2× 10−7 from Fig. 6, Brnonresonantφ→2π+2π−π0 = 0.70× 10−7

from Figs. 7–9, and δ = 96◦. This clearly illustrates
the dominance of the diagrams with the resonant ρ
meson in the intermediate state in the decay φ→
5π, because the resonant and the smaller nonres-
onant contributions add incoherently in the case of
φ→ 5π decay. For comparison, the opposite situation
occurs in the case of ω → 5π decay amplitudes (see
the corresponding calculations in Section 3), where
the smaller nonresonant contribution to the decay
amplitude adds almost in phase with the resonant
one and for this reason is essential. The above dis-
cussion shows that the branching ratios of the de-
cays φ→ π+π−3π0 and φ→ 2π+2π−π0, determined
within the conservatively estimated accuracy of 20%
by the well-studied OZI-rule-violating coupling of
the φmeson to the ρπ state followed by the transition
ρ→ 4π, are evaluated here in a model-independent
way.

5. DISCUSSION AND CONCLUSION
In view of the fact that there are three (or even

four, if one includes radiative decays—see [5, 6]) inde-
pendent constants in the effective chiral Lagrangian
describing anomalous decays of ω (and φ) mesons,
one can only consider some scenarios of what may
happen. We restrict ourselves by considering only the
strong decays. In principle, the study of the Dalitz plot
in the ω → π+π−π− decay allows one to extract c3
and (c1 − c2)/c3 by isolating the ρ-pole and non-ρ-
pole contributions, because the density on this plot
is proportional, omitting the ω–ρ interference term in
the π+π− mass spectrum, to the factor

d2σ

dm+dm−
∝
∣∣∣∣ 1
Dρ(q1 + q2)

(66)

+
1

Dρ(q1 + q3)
+

1
Dρ(q2 + q3)

+ 3
c1 − c2 − c3

2c3m2
ρ

∣∣∣∣
2

,

where m2
+ = (q1 + q3)2, m2

− = (q2 + q3)2. Notice in
this respect that the combination of parameters of
the low-energy effective Lagrangian entering into the
non-ρ-pole term in Eq. (66) should be treated as the
low-energy limit of all possible contributions from the
transitions ω → ρ′π, ρ′′π, etc. If one assumes that the
direct transitions are responsible for the decays of the
φ meson to the states containing no strange quarks,
the same will be true for the parameters β1,2,3, char-
acterizing the OZI-rule-violating decays φ→ 3π and
φ→ 5π. In the model of φ−ω mixing, the φ→ 5π de-
cay amplitude contains no additional free parameters
as compared to the case of ω → 5π decay. It should
be recalled that both models can be, in principle,
discriminated either by the careful study of the φ−ω-
interference minimum in the energy dependence of
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the e+e− → π+π−π0 reaction cross section or by the
ratio of the leptonic widths of ω and φ mesons [16–
18]. On the other hand, within an accuracy of 20%,
the branching ratios of the φ→ 5π decays can be
evaluated in a model-independent way (see the dis-
cussion at the end of Section 4).

The excitation curves of the decays ω → 5π and
φ→ 5π in e+e− annihilation can be used to evaluate
the expected number of these decays at ω and φ
peaks. With the luminosity L = 1032 cm−2 s−1 at the
ω peak, one may hope to observe three events of the
decays ω → π+π−3π0 and 2π+2π−π0 per each mode
bimonthly. With the same luminosity at the φ peak,
the observation of 540 (250) φ→ 2π+2π−π0 (φ→
π+π−3π0) decays per month is feasible. Note that the
existing upper limit is Brφ→2π+2π−π0 < 4.6× 10−6

(90% C.L.) [23]. With the luminosity L = 500 pb−1

already attained at the φ factory DAΦNE [24], one
could gain about 1340 events of the decay φ→ 5π
proceeding via chiral mechanisms considered in the
present paper. The possible nonchiral-model back-
ground from the dominant decay φ→ KLKS , KL →
3π, KS → 2π is well cut from the considered chiral
mechanism because in the former mechanism kaons
fly away by macroscopic distances. Rare decay φ→
ηπ+π−, whose branching ratio was estimated [25, 26]
at the level Brφ→ηπ+π− ∼ 3× 10−7, is cut by remov-
ing events in the vicinity of the η peak in the three-
pion distribution observed in the five-pion events [23].

In the present work, we neglect the contribution
of the a1(1260) meson. This is justifiable because
both the ω(782) and φ(1020) peaks are deep under
the threshold of a1π production. As is known, the
approach to chiral dynamics based on HLS, allows
one to take the axial vector mesons into account [5,
6]. This is the theme of future work.
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APPENDIX

Relations Expressing Lorentz Scalar Products
through the Kumar Variables

The relations expressing the Lorentz scalar prod-
ucts (qi, qj) through Lorentz-invariant variables are
presented. Given the pion momentum assignment
according to

ωq → πq1πq2πq3πq4πq5, (A.1)
5
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the eight Kumar variables [13] are defined as

s1 = (q − q1)2, (A.2)

s2 = (q − q1 − q2)2,
s3 = (q − q1 − q2 − q3)2,

u1 = (q − q2)2,
u2 = (q − q3)2,
u3 = (q − q4)2,
t2 = (q − q2 − q3)2,

t3 = (q − q2 − q3 − q4)2.
Associated with them, but not independent, are the
following:

s′2 = (q1 + q2)2, (A.3)

s′3 = (q1 + q2 + q3)2,

t′2 = (q2 + q3)2,

t′3 = (q2 + q3 + q4)2.

Then all but two Lorentz scalar products of the pion
momenta can be expressed through Eqs. (A.2) and
(A.3):

(q1, q2) =
1
2
(s′2 −m2

1 −m2
2), (A.4)

(q1, q3) =
1
2
(s′3 − s′2 − t′2 +m2

2),

(q1, q4) =
1
2
(t2 − t3 − s3 +m2

5),

(q1, q5) =
1
2
(t3 −m2

1 −m2
5),

(q2, q3) =
1
2
(t′2 −m2

2 −m2
3),

(q4, q5) =
1
2
(s3 −m2

4 −m2
5).

The remaining scalar products

(q3, q5) =
1
2
(s2 − s3 −m2

3)− (q3, q4), (A.5)

(q2, q4) =
1
2
(t′3 − t′2 −m2

4)− (q3, q4)

can be expressed through (q3, q4). The latter, using
the method of invariant integration outlined in Ap-
pendix D of [13], can be found as

(q3, q4) =
1
2
[α(s − u2 +m2

3) (A.6)

+ β(u1 − t2 −m2
3) + γ(s2 − s3 −m2

3)],

where

α =
1

∆M
(Ft2s3 +BCG+ACH (A.7)
PH
− t2BH − C2F −As3G),

β =
1

∆M
(ss3G+ABH +BCF

−B2G− sCH −As3F ),

γ =
1

∆M
(st2H +ABG+ACF

− t2BF − sCG−A2H),

and

A =
1
2
(s+ t2 − t′2), (A.8)

B =
1
2
(s+ s3 − s′3),

C =
1
2
(s3 + t2 −m2

1),

F =
1
2
(s − u3 +m2

4),

G =
1
2
(t2 − t3 +m2

4),

H =
1
2
(s3 +m2

4 −m2
5),

∆M = st2s3 + 2ABC −B2t2 − C2s−A2s3.

In the above formulas, mi, i = 1, . . . , 5, are the
masses of final pions.
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Abstract—Directly measured data on the total cross section for the reaction of projectile 4He ions
with silicon nuclei at energies below 25 MeV/nucleon are presented. The energy dependence of the
parameters of a semimicroscopic potential is determined from the measured values of this cross section.
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1. INTRODUCTION

Experimental data on the cross sections for re-
actions induced by nucleus–nucleus collisions per-
mit us to evaluate the parameters of nuclear poten-
tials and are supplementary to data on elastic scat-
tering. The energy dependence of the total reaction
cross section (σR) for 4He ions incident on various
targets was studied at intermediate energies (E >
20 MeV/nucleon) in [1–6]. The cross section σR
was found to change substantially with increasing
atomic number of the target nucleus. For light nuclei
(A < 40), the cross section decreases with increasing
energy in accordance with the expected effect caused
by the energy dependence of the cross section for
nucleon–nucleon scattering. For medium-mass and
heavy nuclei, the cross section remains independent
of energy; in this region of nuclear masses, σR is de-
termined primarily by the geometric size of the target
nucleus.

In this study, we have measured the dependence
of the total cross section for the reaction of 4He ions
with 28Si at low energies (E < 25 MeV/nucleon).
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The choice of reaction and of energy range was mo-
tivated by the following considerations. In [7], our
group measured the energy dependence of σR for the
6He + 28Si reaction in the range 10–28 MeV/nuc-
leon, and the results exhibited an increase in the cross
section in the energy range 10–17 MeV/nucleon. At
low energies, a comparison of the excitation func-
tions for the 4He, 6He, and 6Li neighboring nuclei
is of interest, because 4He is the nuclear core of
the neutron-halo nucleus 6He and because 6He and
6Li are mirror nuclei. The distinction between the
mechanisms of nuclear reactions can manifest itself
most vividly in a comparison of low-energy excitation
functions, because the respective collisions of nuclei
are of a peripheral character in this case. Therefore,
the objective of our study was to perform a detailed
measurement of the low-energy excitation-function
portion of σR in 4He interaction with silicon nuclei.

2. EXPERIMENTAL PROCEDURE

The experiment was performed in 30-, 50-, 75-,
90-, and 115-MeV 4He-ion beams from the K130 cy-
clotron of theDepartment of Physics at theUniversity
of Jyväskylä (Finland). The 4He-beam intensity was
10 nA. The beam was extracted to a 208Pb scatter-
ing target 4 mg/cm2 thick, and elastically scattered
4He ions were recorded by a telescope. The rate at
which the particles hit the telescope was 500 s−1. An
assembly of detectors (Fig. 1) was located at a dis-
tance of 60 cm from the scattering target at an angle
of 20◦ with respect to the beam axis inside a large
scattering chamber. An aluminum diaphragm 5 mm
thick having an inner diameter of 10mm restricted the
c© 2005 Pleiades Publishing, Inc.
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Fig. 1. Layout of the telescope detectors (the material, di-
ameter, and thickness of the elements are also indicated).

angular spread of scattered particles to 1◦. The energy
spread of scattered 4He ions that was measured by
the telescope was approximately 400 keV for various
beam energies.

Here, we give a brief account of the procedure
used to measure σR, because it was described in
detail elsewhere [7]. The telescope consisted of sili-
con detectors adjacent to one another; there were six
detectors at Eα = 75, 90, and 115 MeV and five of
them at Eα = 30 and 50 MeV. Alpha particles from
elastic scattering on 208Pb were extracted by means
of cuts imposed on the energy depositions∆E1,∆E2,
and ∆E3 in the first three detectors (Figs. 2a, 2b).
An active collimator (third detector) 8 mm in diam-
eter was intended for extracting only those particles
in the flux incident onto the telescope that hit the
detector centers. The remaining particles either es-
caped detection in this detector or generated low re-
sponses that corresponded to hitting the boundary of
the active layer. The target detector was placed behind
the collimator detector. The extracted alpha particles
could cause various nuclear reactions leading to a
change in the typical ionization energy losses in the
telescope detector being studied and in those that fol-
low it. Reaction products were recorded by the energy
depositions ∆E4 and ∆E5 in, respectively, the fourth
and the fifth detector (Fig. 3). In the figure, events
associated with reactions in the fourth detector are
located predominantly above the energy distribution
of alpha particles that did not initiate any reaction.
If we denote by I0 the number of alpha particles that
hit the target and by I the number of events in which
the energy deposition in this target corresponds to the
elastic-scattering peak, then the total reaction cross
section σR(Eα) can be determined from the relation

I = I0e
−σR(Eα)N , (1)

where N is the number of target nuclei per unit sur-
face.

The thickness of the ∆E detectors were between
50 and 380 µm, with the detectors of smaller thick-
ness placed downstream of the target for the amount
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 1 200
of nuclear reaction products produced inside them to
be insignificant. The energy loss of the particles before
the target was below 50%, and the energy dissipation
in the target was below 20%.

The cross section σR(Eα) measured by means
of the above procedure involves two main method-
ological uncertainties. First, nuclear-reaction events
featuring particles that suffered scattering into the
backward hemisphere and which moved from the tar-
get to the previous detector were not recorded as
a reaction event, because the energy deposition in
those events could not meet the constraints shown in
Figs. 2a and 2b. The cross sections for these reaction
channels were substantially smaller than the statisti-
cal uncertainties in the measured values of σR(Eα).
Second, the elastic and the first inelastic channel
of alpha-particle scattering on silicon nuclei were
separated from each other. Excited levels in silicon
were observed in the total energy distribution that was
obtained by summing the energy depositions in all of
the detectors; however, it was difficult to determine
the detector in which the excitation occurred. Us-
ing data on the angular distributions in the reaction
28Si(α, α*)28Si for the 2+ level in silicon at Eα =
104 MeV [8], we estimated the contribution of this
reaction to the total cross section at 30 mb. This
latter correction to σR(Eα) was taken into account
by adding 30 mb to the statistical uncertainty.

3. RESULTS AND DISCUSSION

The experimental values of the total reaction cross
sections σR are listed in Table 1, along with the
mean alpha-particle energies Eα at which σR was
measured. The widths of the energy intervals, ±∆E,
are determined by the energy losses in the detectors
in which σR was measured and by the widths of the
energy distributions. The uncertainties ±∆σR given
in Table 1 include both statistical uncertainties and
uncertainties associated with the procedure of event
separation (Fig. 3).

Figure 4 shows the total-cross-section values
listed in Table 1 (closed squares). The circles in this
figure represent the σR values measured previously in
[9], and the open squares correspond to data from [11].
The curve was calculated within the semimicroscopic
folding model [10]. Figure 4 demonstrates that the
reaction cross section reaches a maximum at E ≈
20 MeV/nucleon. In order to follow carefully the
behavior of σR over the whole energy range presented
in Fig. 4, we invoke the strong-absorption model. It
is well known that, within this model, the absorption
cross section can be written as

σ0 = πλ2
∑
L

(2L+ 1)TL, (2)
5



18 UGRYUMOV et al.

 

250

0 250

 
∆
 

E
 

1

 

∆

 

E

 

2

 

500 750 1000

500

750

1000
(

 

a

 

)

250

0 250

 
∆

 
E

 

2

 

∆

 

E

 

3

 

500 750 1000

500

750

1000
(

 

b

 

)

Fig. 2. Two-dimensional energy plots for detectors (a) 1 and 2 and (b) 2 and 3. The intersecting lines confine the contour
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where λ = h/
√

2M(E −B) is the de Broglie wave-
length (M is the reduced mass of the projectile parti-
cle and the target nucleus,B is the height of the one-
dimensional barrier, and E is the projectile energy),
L is the orbital angular momentum of the nucleus,
and TL is the barrier penetrability. We can represent
the data obtained here in the form of the ratio of the
total reaction cross section to the absorption cross
section, σR/σ0, as a function of E−1

c.m.. The cross

section σ0 is calculated as σ0 = πr20(A
1/3
p +A

1/3
t )2,

where the parameter r0 is taken to be 1.4 fm, as
follows from the energy and mass dependences of this
parameter [1], and Ap and At are the mass num-
bers of the projectile particle and the target nucleus,
respectively. Figure 5 shows σR/σ0 as a function
of E−1

c.m.. From this figure, one can see that there
P
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Fig. 4. Energy dependence of the total reaction cross
section for alpha-particle interaction with 28Si nuclei.

are actually two energy regions: the low-energy re-
gion, in which the relative cross section increases
with increasing energy, and the high-energy region,
in which it slowly decreases with increasing energy.
This trend is usually observed in heavy-ion fusion
reactions [11]. It is assumed that the maximum in
the relative cross section must be associated with the
threshold energy at which all inelastic channels of the
reaction being considered become open; obviously,
the position of the maximum depends strongly on the
structural features of the target nucleus. The variation
of σR/σ0 with E−1

c.m. indicates that relation (2) cannot
be interpreted unequivocally as penetration through
a one-dimensional barrier. Indeed, a 4He nucleus
penetrates more deeply into the interaction region at
high energies, the effective optical potential (the sum
of the nuclear, centrifugal, and Coulomb potentials)
acting at short distances within the barrier, where the
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 1 2005
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barrier is determined by attractive nuclear forces. In
this case, the energy dependence of the cross section
is controlled by the energy dependence of the mean
cross section for nucleon–nucleon interaction. In the
low-energy region, we can assume that the barrier
has the form

B =
Ze2

RCoul
=

Ze2

r0CoulA1/3
. (3)

Using the slope of the curve in Fig. 5, we can de-
termine the Coulomb interaction range r0Coul, which
differs from the actual interaction range. The barrier
height B assessed in this way is 10 MeV, which is
above the Coulomb barrier for the conventional pa-
rameter r0Coul = 1.3 fm.

Figure 6 shows the energy dependences of the to-
tal cross sections for the 4He + 28Si and 6He + 28Si
reactions according to the measurements in our ex-
periment and according to [1, 6]. One can see from
this figure that the cross sections σR behave differ-
ently for 4He and 6He at high energies. For 4He, a
decrease in the cross section with increasing energy is
observed, while, for 6He, the cross section is virtually
independent of energy. The energy dependence of σR
is still more contrasting for E < 20 MeV/nucleon:
the 4He cross section decreases sharply with decreas-
ing energy, but the 6He cross section increases, on
the contrary, above E ≈ 20 MeV/nucleon. This dis-
tinction between the energy dependences for 4He and
6He seems to suggest an additional reaction channel
that opens for 6He at 20 MeV/nucleon. The data
on the cross section for 4He production in 6He(28Si,
4He)X reactions from [6, 7] cannot explain the ob-
served jump of σR. In order to explain the observed
phenomenon, one can assume that the 6He + 28Si
reaction produces a nuclear system that decays via
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 1 200
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channels different from the entrance channel. In any
case, it follows from Fig. 6 that the experimenters
face the problem of identifying the reaction channel
responsible for the increase in σR in the region E <
20 MeV/nucleon.

The theoretical values of σR were calculated on the
basis of the modified ECIS-88 code [12] by using the
semimicroscopic potential

Ut(R) = U(R)− av
dU(R)
dR

(4)

+ i

(
NwU(R)− awR

dU(R)
dR

)
,

where U(R) is a microscopic real potential; av is the
parameter of that part of the total potential which

Table 1.Measured values of the total cross sections for the
4He + 28Si reaction at various energies

E,
MeV/nucleon

±∆E,
MeV/nucleon

σR, mb ±∆σR, mb

3.4 0.70 600 60

4.6 0.75 982 60

7.5 0.96 1023 100

11.2 1.06 1191 60

13.8 1.21 1280 60

16.4 1.43 1247 60

18.4 0.88 1320 60

23.8 0.56 1223 55

25.3 0.71 1146 60
5
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Table 2.Parameters of the semimicroscopic optical poten-
tial for elastic alpha-particle scattering on 28Si at various
energies

E, MeV av Nw aw

14.5 0.015 0.04 0

23.1 0.010 0.13 0

28.0 0.010 0.17 0

41.0 0.010 0.21 0

50.5 0.010 0.26 0

104.0 0 0.30 0.027

166.0 0 0.30 0.031

simulates dynamical polarization; and Nw and aw
are the parameters of, respectively, the volume and
the surface imaginary potential [10]. For the alpha-
particle energies at which the total cross sections
were measured, we calculated the theoretical values
of the total cross sections, fitting the values of av, aw,
andNw. At energies below 50MeV, the parameter aw
was set to zero, while the remaining two parameters
were varied; above 50MeV, the parameters av andNw

were fixed. In addition to the experimental data on the
total reaction cross sections, there were some data on
the differential cross sections for elastic scattering in
the same range of energies Eα. Theoretical angular
distributions were calculated for the data on elastic
scattering. A global analysis of the data on the differ-
ential and total cross sections made it possible to cal-
culate the parameters of the semimicroscopic poten-
tial (Table 2). The solid curve in Fig. 4 represents the
energy dependence of the total reaction cross section
corresponding to the calculated parameter values. As
can be seen from Table 2, the parameterNw of volume
absorption is sensitive to the structure of both nuclei
atEα < 50MeV,whereas the parameter aw of surface
absorption becomes significant in the region Eα >
50 MeV.

4. CONCLUSION

The energy dependence of the total cross section
for the 4He + 28Si reaction has been measured in de-
tail for the poorly studied region 4–25 MeV/nucleon.
The results obtained in this way, together with other
data available from the literature, have enabled us
to trace the trend toward the variation of σR over a
broad energy range and to find the inflection point
PH
of the function σR(E) at E = 20 MeV/nucleon. The
experimental values of σR at E < 20 MeV/nucleon
cannot be described adequately on the basis of the
semimicroscopic folding model with the parameters
obtained in measurements of elastic 4He scattering
on a silicon target. With the aid of our experimental
data on the total reaction cross section, new values
were calculated for the parameters of the semimicro-
scopic folding potential.

We would also like to note that an increase in the
total cross section for the 4He + 28Si reaction with
increasing energy has been observed in the energy
range 8–20 MeV/nucleon; at the same time, the
cross section for the 6He + 28Si reaction decreases
in this range [7]. Further experimental and theoretical
studies of the total reaction cross section for 4,6He
and 6Li ions at low energies (E < 25 MeV/nucleon)
are required for understanding this phenomena.
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Abstract—Available experimental data on the tensor analyzing power for nuclear relativistic-deuteron
fragmentation accompanied by the emission of high-transverse-momentum protons are analyzed within
light-front quantum mechanics. It is shown that, in contrast to calculations with standard wave functions,
calculations employing the relativistic deuteron wave function obtained by V.A. Karmanov and his coau-
thors on the basis of light-front dynamics can explain the entire body of data without resort to additional
degrees of freedom. c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Investigations of reactions involving a deuteron at
intermediate and high energies receive constant at-
tention. On one hand, the deuteron—the only known
bound state of two nucleons—is quite appropriate for
studying models in which nuclear interactions can be
explained by meson exchange between baryons. On
the other hand, it is a convenient object for testing
the approaches that are used to describe relativistic
bound states. Experiments performed with polarized-
deuteron beams in Saclay [1–4] and in Dubna [5–
10] resulted in understanding that, at short distances,
the traditional ideas of the deuteron are invalid. For
example, it was indicated in [10] that the analyzing
power T20 for the pionless deuteron breakup dp→
ppn in a kinematical region close to that of backward
elastic deuteron–proton scattering in the c.m. frame
depends on the primary deuteron momentum, the
internal momentum k of nucleons in the deuteron
(it is defined as a kinematical variable of light-front
dynamics) being fixed. This gave sufficient grounds to
assume that, in addition to k, one more variable is re-
quired for describing the bound state of two nucleons
adequately.

Recent measurements of the tensor analyzing
power Ayy in relativistic-deuteron fragmentation on
nuclei that is accompanied by the emission of protons
having high transverse momenta [11, 12] also favor
this assumption. From available data, it follows that,
at fixed values of the longitudinal momentum of
protons, the quantity Ayy depends greatly on their
transverse momentum; moreover, it turns out that the

1)Joint Institute for Nuclear Research, Dubna, Moscow
oblast, 141980 Russia; e-mail: azhgirey@jinr.ru

2)Moscow State University, Vorob’evy gory, Moscow, 119899
Russia.
1063-7788/05/6801-0160$26.00
values ofAyy that are associated with fixed values of k
exhibit a significant dependence on the angle between
the vectors k and n (where n is a unit normal to the
light-front surface).

The experimental data accumulated thus far for
the spin features of A(d, p) reactions at relativistic
deuteron energies have not yet been interpreted the-
oretically at the ab initio level, since hadron physics
is essentially nonperturbative, which hinders the for-
mulation of basic concepts (within this framework)
that would produce automatically, to a considerable
extent, the whole diversity of hadron phenomena. In
view of this, there remain many as-yet-unresolved
problems in hadron physics, despite some advances
such as the development of the concept of sponta-
neous chiral-symmetry breaking [13] or the devel-
opment of effective field theory associated with this
concept [14]. In particular, the way in which the
relativistic invariance of hadron systems is realized
has yet to be disclosed conclusively (that is, there is
presently no answer to the question of which type of
quantummechanics is themost efficient in describing
hadrons). Therefore, investigation of the polarization
properties of deuteron-fragmentation reactions (d, p)
is still one of themost important problems in relativis-
tic hadron physics.

The results obtained by analyzing (d, p) reactions
at relativistic energies of the deuterons involved are
rather contradictory. On one hand, experimental
data on the differential cross sections for inclusive
deuteron breakup on nuclei [15, 16] are satisfactorily
described within light-front dynamics in the approx-
imation of the simple t-channel pole mechanism
(Fig. 1) by using standard deuteron wave functions
(see, for example, [17, 18]). On the other hand,
calculations of polarization observables within this
approach [19] do not reproduce experimental data,
c© 2005 Pleiades Publishing, Inc.
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as a rule. The only exception in this respect was
the analysis reported in [20], where data on deuteron
fragmentation on nuclei that is accompanied by the
emission of protons at zero angle were successfully
described owing largely to taking into account the P
wave in the ground state of the deuteron.

In the deuteron wave function, a P-wave state
can be generated by various mechanisms. In [20], a
P wave arises owing to the formation of a six-quark
configuration, its fragmentation into baryons produc-
ing negative-parity resonances. In [21], a P wave ap-
pears as an essentially relativistic effect—on the basis
of taking into account, in the deuteron ground state,
an admixture of negative-energy nucleons (antipar-
ticles). If, instead of phenomenologically considering
mechanisms that generate a P wave in the deuteron
wave function, one relies on calculations within the
Bethe–Salpeter equation—for example, with a kernel
(in the integral equation) that is constructed on the
basis of the one-boson-exchange model—then the
resulting admixture of the P wave would be overly
small, insufficient for removing the discrepancy with
experimental data [22]. It is interesting to note that,
even within the approach developed in [23] and based
on relativistic quantummechanics—in this approach,
nucleons interact via an instantaneous pair potential
included in the Hamiltonian in such a way that the
formalism proves to be Lorentz-invariant—the cal-
culations fail to reproduce experimental data.

Thus, we have to admit that there is a theoret-
ical crisis in describing polarization observables in
relativistic-deuteron fragmentation on nuclei, so that
further investigations are necessary. The simplest way
would be to state that the discrepancy between theo-
retical and experimental results is due to the use of an
overly simple reaction mechanism in the calculations.
In our opinion, however, the potential of this simple
(and very valuable for this reason) mechanism has not
yet been exhausted in view of the currently achieved
level of experimental accuracy. Bearing this in mind,
we do not include new degrees of freedom (for exam-
ple, mesonic ones) in our description of experimental
data. Restricting ourselves to nucleonic degrees of
freedom, we instead try to treat relativistic properties
of deuteron–proton collisions more thoroughly.

In all of the preceding studies devoted to an analy-
sis of polarization features of the reaction A(d, p)X,
including those that used light-front quantum me-
chanics, a relativistic deuteron was taken in the form
of a superposition of S and D waves that is known
from nonrelativistic physics. This superposition pre-
sumes quite a specific relation between the transverse
and the longitudinal component of the momentum of
the internal motion of nucleons in a deuteron [19].
Within light-front dynamics, however, the depen-
dence of the wave function on the transverse and
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Fig. 1. Pole diagram for describing reactions induced by
relativistic deuterons and accompanied by the emission of
protons in the forward direction in the laboratory frame.

longitudinal components of the internal momentum
can differ considerably from that which is dictated by
the combination of S and D waves. This possibility
was first indicated in [24, 25], where the relativistic
model of hard collisions of composite hadrons [26]
was generalized to the case of relativistic nucleus–
nucleus interactions.

The objective of the present study was to inves-
tigate the aforementioned circumstance. The ensu-
ing exposition is organized as follows. In Section 2,
we describe assumptions concerning the application
of light-front quantum mechanics. The relativistic
deuteron wave function that is used in our calcula-
tions and which was obtained by Karmanov et al. [27]
within light-front dynamics is described in Section 3.
In Section 4, we present the formalism that we use
to calculate the tensor analyzing power for deuteron
fragmentation. The results of the calculations are
given in Section 5, along with the corresponding dis-
cussion. Finally, the conclusions of the present study
are formulated in Section 6.

2. LIGHT-FRONT QUANTUM MECHANICS

In the past years, various aspects of light-front
dynamics were considered in a number of studies
(see, for example, the review article of Miller [28] and
references therein). However, we believe that a short
discussion on the points relevant to our approach is
appropriate.

It is well known that the dynamics of relativistic
particles is determined by the shape of a fixed space-
like surface in four-dimensional spacetime—within
quantum theory, it is the surface on which the Hilbert
space of states is defined [29]. The choice of one or
another version specifies the way in which ten gener-
ators of the Poincaré group, Pµ = (P 0,P),Mµν =
(J,K), are partitioned into kinematical generators
and dynamical ones (interaction-dependent Hamil-
tonians). Within conventional dynamics—that is,
5
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instantaneous-form dynamics, where states are spec-
ified at the fixed time instants t0 = 0—the momen-
tum and angular-momentum operators (P and J,
respectively) are kinematical generators, while the
energy operator P 0 and the Lorentz boost operator
K are Hamiltonians. Within light-front quantum
mechanics, where states are constructed on the fixed
light-front surface t+ = t + z = 0, the quantities
P+ = P0 + P3, P1, P2,Er = (Kr + εrsJs)/2,K3, and
J3 are kinematical operators, whileP− = P0−P3 and
Er = Kr − εrsJs (here, r, s = 1, 2 and εrs is an anti-
symmetric tensor: ε12 = −ε21 = 1) are Hamiltonians.

In relation to instantaneous-form dynamics, light-
front dynamics possesses the advantage that par-
ticle–antiparticle pairs are not produced from a vac-
uum in this approach (here, the vacuum is “empty”).
Owing to this, time-inverse diagrams must not be
taken into account in describing the amplitudes for
the processes being studied. However, this form of
dynamics has the following disadvantages: First, one
has to deal here with a specific direction—this is
the direction of the z axis, with respect to which the
generators of the Poincaré group are partitioned into
kinematical and dynamical ones. Second, it turns
out that the angular-momentum operators Jx and
Jy , which are conventional kinematical quantities
in instantaneous-form dynamics, become dynamical
operators in light-front dynamics—that is, they prove
to be interaction-dependent operators. To derive the
result of the application of these operators to the
wave function, it is necessary, in fact, to solve an
additional Schrödinger-type equation—it is natural
that, without doing this, there would arise difficulties
in calculating the spin of a composite system. All of
the aforesaid creates the impression that the results of
the respective calculations are noncovariant. In fact,
there must not be of course the dependence on the
choice of direction for the z axis, since the original
Lagrangian is Lorentz-invariant.

For the ensuing exposition to be clearer, we will
now outline the scheme of a “correct” calculation of
(d, p) reactions within light-front dynamics under the
assumption of the polemechanism displayed in Fig. 1.
The relativistic-deuteron wave function, which is a
function of the longitudinal (kL) and transverse (kT )
components of the internal nucleon momentum,

ψMd = ψMd (kL, kT ), (1)

where M = 0,±1 are the projections of the spin
J = 1 onto the quantization axis, is a key point in
this calculation. We would like to highlight special
features of this wave function.

First, we note that, although the functions ψMd ,
which correspond to different values ofM , are related,
as in conventional instantaneous-form dynamics, to
P

each other by the operators Jx ± iJy , this relation is
unusual in the sense that they are now “separated”
by dynamics and can therefore differ from each other
significantly. In view of this, it is difficult to introduce
a conserved angular-momentum operator; that is, it
is not straightforward, within light-front dynamics, to
pinpoint the spin associated with a given state, and
it is necessary, in general, to consider all three wave
functions, which are related in quite an intricate way.

Second, the relation between the arguments kL
and kT of thewave function (1) may differ significantly
from that which is valid in the case where the state in
question is described by a superposition of S and D
waves. This circumstance may change qualitatively
the situation in describing reactions that involve rela-
tivistic deuterons.

3. RELATIVISTIC DEUTERON WAVE
FUNCTION

The difficulties in light-front dynamics that are
associated with the particular role of the direction
of the z axis and with the formation of the angular
momentum were overcome to a considerable degree
in [27, 30, 31] by extending the set of dynamical vari-
ables used to describe a composite system—namely,
an additional variable was introduced there. This was
the orientation of the spacelike quantization plane on
which the Hilbert space of states was defined or the
orientation of the plane on which the wave function
was specified.

On one hand, the appearance of a variable that
characterizes the orientation of the light-front plane
complicates the situation because of an increase in
the number of variables that are taken into account;
on the other hand, this significantly simplifies the
properties of the wave function with respect to rota-
tions, making it possible to construct, irrespective of
interaction (that is, in a purely geometric way), states
of specific angular momentum. Problems associated
with the introduction of an additional variable were
solved in [27], and the relativistic deuteron wave func-
tion corresponding to a specific spin was found there
within light-front dynamics. It is now a function of the
spins of nucleons, their internal momentum, and the
orientation of the quantization plane and has the form

ΨM
σ2σ1

= w∗
σ2
ψM (k,n)σywσ1 , (2)

where σy is a Pauli matrix and

ψM (k,n) =
1√
2
σf1 (3)

+
1
2

[
3
k2

k(k · σ)− σ
]
f2 +

1
2

[3n(n · σ)− σ] f3

+
1
2k

[3k(n · σ) + 3n(k · σ)− 2σ(k · n)]f4
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+

√
3
2
i

k
[k× n]f5 +

√
3

2k
[[k× n]× σ]f6.

Here, k is the nucleon momentum in the с.m. frame;
n is a unit normal to the light-front plane; σ are
the Pauli matrices; wσ1(σ2) are the nonrelativistic-
nucleon spin functions; and f1, ..., f6 are rotation-
invariant functions of kinematical variables determin-
ing the deuteron state. We then have

k =

√
m2
p + p2

T

4x(1 − x)
−m2

p, (4)

(n · k) =
(

1
2
− x

)√
m2
p + p2

T

x(1 − x)
,

where x is the deuteron-longitudinal-momentum
fraction taken away by the proton in the infinite-
momentum frame [24, 25]. As in [19, 32], we choose
the direction of the z axis to be antiparallel to the
deuteron-beam axis, in which case n = (0, 0,−1).

We take the normalization condition for the wave
function (3) in the same form as previously in [17];
that is,∫

dxdkT
(2π)32x(1 − x)

|ψ|2 =
∫

dk
(2π)3ε(k)

|ψ|2 = 1,

(5)

where ε(k) =
√
m2 + k2 and m is the nucleon mass.

4. TENSOR ANALYZING POWER
FOR THE DEUTERON-FRAGMENTATION

PROCESS

For a binary reaction, the analyzing power Tκq is
given by

Tκq =
tr{MtκqM†}
tr{MM†} , (6)

where the operator tκq is determined by the relation

〈m|tκq|m′〉 = (−1)1−m〈1m1 −m′|κq〉,
with 〈1m1−m′|κq〉 being a Clebsch–Gordan coef-
ficient;M is the reaction amplitude;M† is the Her-
mitian conjugate of the amplitudeM; and the symbol
tr denotes summation over the diagonal elements of
the spin matrices. We note that our definition of the
averaged operator tκq can differ by a factor from the
operators used in other studies. For a more compli-
cated reaction involving a greater number of particles
in the final state—this is precisely our case—it is
necessary to redefine Tκq as

Tκq =
∫
dτ tr{MtκqM†}∫
dτ tr{MM†} , (7)
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where dτ is an element of phase space over which
summation is performed. By way of example, we indi-
cate that, in the case where two particles are emitted
from the lower vertex of the diagram, it has the form

dτ =
1

2(2π)3
δ4(pf − pi)

d3p2

(2π)3 · 2p20

d3p3

(2π)3 · 2p30
,

(8)

where δ4(pf − pi) is the four-dimensional delta func-
tion of the difference of the total final and the total
initial momentum. This definition of the phase space
of summation corresponds to the invariant differential
cross section p10dσ/dp1 for the emission of particle 1.
As a result, the expression for this cross section in the
case of deuterons featuring a tensor polarization can
be written in the form
p10dσ

dp1
=
(
p10dσ

dp1

)
un

(
1 +

∑
ρκq(2J + 1)Tκq

)
.

(9)

Here, summation over dummy indices is implied, as
usual; (p10dσ/dp1)un is the reaction cross section for
the case where colliding particles are unpolarized; J is
the deuteron spin; and ρκq are the initial-state spin–
tensors, which transform, under rotations, according
to the law

ρκq =
∑

Dκ
qq′(R)ρ′κq′ , (10)

where ρ′κq′ is the rank-κ spin–tensor in the coordi-
nate system involving a new axis z′ that is obtained
from the original z axis upon the rotation R. The
spin–tensors are defined in accordance with the fol-
lowing expansion of the spin density matrix:

ρ =
∑

ρκqtκq. (11)

Within light-front dynamics, the amplitude for the
process shown in Fig. 1 can be represented in the
form

Ma =
M(d→ p1b)

(1− x)(M2
d −M2(k))

M(bp→ p2X). (12)

The expression

ψ(x, p1T ) =
M(d→ p1b)

(M2
d −M2(k))

(13)

is nothing but the deuteron wave function in the
(b,N) channel. In formula (13), p1T is that compo-
nent of the momentum p1 which is orthogonal to the
z axis, while the quantity M2(k) is given by

M2(k) =
m2 + p2

1T

x
+

b2 + p2
1T

1− x
, (14)

where b2 is the square of the invariant mass of the
exchanged particle.
5



164 AZHGIREY, YUDIN

 

1.0

0.5

0

–0.5

 
A

 

yy

 

0.2 0.4 0.6 0.8 1.0

 

k

 

, GeV/

 

Ò

 

0

Fig. 2. Tensor analyzing power Ayy for deuteron frag-
mentation accompanied by the emission of protons at
zero angle as a function of the internal momentum k. The
displayed experimental data were borrowed from (trian-
gles) [2], (boxes) [5], (diamonds) [6], and [7] for (open
circles) a 1H target and (closed circles) a 12C target. The
calculationswere performedwith the deuteronwave func-
tions for the (dash-dotted curve) Paris [33] and (dashed
curve) Bonn B [34] potentials. The solid curve was cal-
culated with Karmanov’s relativistic deuteron wave func-
tion [27].

For the ensuing calculations to be more compact,
we introduce the matrix ρµµ′(κ, q) in the spin space of
the nucleon b for the deuteron polarization character-
ized by the indices (κ, q),

ρµµ′(κ, q) =
∑

ν,M,M ′

ψM (ν, µ)(−1)1−M
′

(15)

× 〈1M1 −M ′|κq〉ψ∗M ′
(ν, µ′),

or, equivalently, in the symbolic form

ρ(κ, q) = 〈ψtκqψ
∗〉. (16)

It goes without saying that, like a conventional den-
sity matrix, this matrix can be represented in the form

ρ(κ, q) =
1
2
ρ0(κ, q)(1 + P · σ), (17)

where P is an analog of the polarization vector of a
nucleon in the deuteron for a given deuteron polar-
ization characterized by the indices (κ, q), σ are the
Pauli matrices, and

ρ0(κ, q) = tr{ρ(κ, q)} (18)

=
∑

ψM (ν, µ)〈1M1 −M ′|κ, q〉ψ∗M ′
(ν, µ′).

Formulas (15) and (16) are of a general charac-
ter—one can substitute any spin–tensors into them.
However, it is the tensor analyzing powers T20 and
PH
Ayy = −T20/
√

2−
√

3T22 that are usually measured
in experiments. In view of this, it is assumed below
that, in expressions (15) and (16), averaging is per-
formed with the weights corresponding to T20 and
Ayy .

Further, we denote by p1 the momentum of the
detected proton, irrespective of the vertex from which
it originates, and use the invariant differential cross
section in the form

p10dσ

dp1
=

(2π)4

4I(d, p)

∫
tr{MρiM†}dτ, (19)

where ρi is the spin density matrix for the initial state
and I(d, p) is the invariant flux of deuterons incident
on protons. As a result, we obtain

T2q

(
p10dσ

dp1

)
un

=
1

2(2π)3
(20)

×
{

I(b, p)
I(d, p)(1 − x)2

ρ0(2, q)σ(bp → p2X)

+
∫

dydp2T

2y(1− y)
I(b, p)

(1− y)I(d, p)
ρ0(2, q)

× p20dσ

dp2
(bp→ p2X)[1 + P · 〈σ〉]

}
,

where 〈σ〉 is the vector analyzing power for nucleon–
nucleon scattering; σ(bp→ p2X) is the total cross
section for nucleon–nucleon scattering (it is indepen-
dent of polarization); and P is the polarization vector
of a nucleon in the deuteron, its polarization being
characterized by the indices (κ, q),

P =
tr{σ · ρ(κ, q)}

ρ0(κ, q)
. (21)

The first term in the braced expression on the right-
hand side of (20) corresponds to the detection of a
spectator proton, while the second term corresponds
to the detection of a proton that underwent rescatter-
ing on a target proton.

The density matrices ρ0(κ, q) depend on the type
of averaging in expression (15). For the analyzing
powers T20 and T22, they are given, respectively, by

ρ0(2, 0) =
1√
6
(ψ · ψ† − 3ψz · ψz) = −3f2

3 (22)

− 12f3f4z + 3f2
2 z

2 − 12f2
4 z

2 − 6f2
2 z

4

− 1.5f2
2 (1− z2)− 4.5f2

4 (1− z2) + 3f2
5 (1− z2)

− 15.5885f4f6(1− z2)− 1.5f2
6 (1− z2)

− 3f2
2 z

2(1− z2) + 3f2
2 (1− z2)2 − 8.48528f1f3

− 16.9706f1f4z − 4.24264f1f2z
2

− 4.24264f1f2z
4 + 2.12132f1f2(1− z2)

− 2.12132f1f2z
2(1− z2) + 2.12132f1f2(1− z2)2
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− 6f2f3z
4 − 12f2f4z

5 + 4.5f2f3(1− z2)

+ 4.5f2f4z(1− z2)− 7.79423f2f6z(1 − z2)

− 7.5f2f3z
2(1− z2)− 19.5f2f4z

3(1− z2)

− 7.79423f2f6z
3(1− z2)− 1.5f2f3(1− z2)2

− 7.5f2f4z(1− z2)2 − 7.79423f2f6z(1 − z2)2

and by

ρ0(2, 2) =
1
2
(ψx · ψ†

x − ψy · ψ†
y) (23)

= 1.06066f1f2(1− z2)− 0.75f2
2 (1− z2)

+ 2.25f2
4 (1− z2)− 1.5f2

5 (1− z2)

− 2.59808f4f6(1− z2) + 0.75f2
6 (1− z2)

+ 1.06066f1f2z
2(1− z2) + 1.5f2

2 z
2(1− z2)

+ 1.06066f1f2(1− z2)2 + 1.5f2
2 (1− z2)2

− 0.75f2f3(1− z2) + 0.75f2f4z(1− z2)

− 1.29904f2f6z(1− z2)− 0.75f2f3z
2(1− z2)

+ 0.75f2f4z
3(1− z2)− 1.29904f2f6z

3(1− z2)

− 0.75f2f3(1− z2)2 + 0.75f2f4z(1− z2)2

− 1.29904f2f6z(1− z2)2.

In order to calculate the analyzing power Ayy, the
density matrix ρ0(y, y) can be derived from the rela-
tion

ρ0(y, y) = − 1√
2
ρ0(2, 0) −

√
3ρ0(2, 2).

The invariant differential cross section for an unpolar-
ized beam in formula (20) is given by(

p10dσ

dp1

)
un

=
1

2(2π)3

{
I(b, p)

I(d, p)(1 − x)2
ρ0 (24)

× σ(bp→ p2X) +
∫

dydp2T

2y(1− y)
I(b, p)

(1− y)I(d, p)
ρ0

× p20dσ

dp2
(bp→ p2X)

}
,

where
ρ0 = 3[f2

1 + f2
2 + f2

3 + f2f3(3z2 − 1) (25)

+ 4f4(f2 + f3)z + f2
4 (z2 + 3) + (f2

5 + f2
6 )(1− z2)].

5. RESULTS OF THE CALCULATIONS
AND DISCUSSION

In order to calculate the tensor analyzing power
by formula (20), it is necessary to know the invariant
differential cross sections p20dσ(bp→ p2X)/dp2 for
processes proceeding in the lower vertex of the pole
diagram. Moreover, it should be borne in mind that
particle b is off the mass shell. In the calculations,
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this circumstance was taken into account through the
use of analytic continuations of the parametrizations
of dσ(s′, t′)/dt′ to s′ and t′ values defined for b2 �=
m2. In doing this, we treated the contributions of the
processes pp→ pp, np→ pn, Np→ p∆, and Np→
pNπ (up to Nπ invariant masses of 1.5 GeV/c2)
in accordance with the parametrizations presented
in [17].

The majority of the experiments with polarized
deuteron beams in Saclay and Dubna were devoted
to measuring the tensor analyzing power T20 in
A(d, p)X reactions accompanied by the emission
of protons at zero angle. The results obtained by
calculating the parameter Ayy(0◦) for this process
with Karmanov’s wave function (3) are represented
by the solid curve in Fig. 2 (it should be recalled that,
at zero angle, Ayy = −T20/

√
2).

One can see that, in contrast to what we have
in the calculations with standard nonrelativistic
deuteron wave functions [33, 34], the solid curve
does not change sign and is in better agreement with
experimental data in the region of k between 0.4 and
0.8 GeV/c. In all probability, the discrepancy between
the results of the calculations and experimental data
in the region of k around 0.3 GeV/c cannot be
removed without going beyond the pole mechanism,
this region corresponding precisely to those values of
kinematical variables in backward elastic deuteron–
proton scattering at which the cross section given for
this process by the triangle diagram is expressed in
terms of the cross section for the reaction NN → dπ
(the latter cross section has a resonance character
here).

In Fig. 3, the results of the calculations are con-
trasted against experimental data on the tensor an-
alyzing power in the reaction where the fragmenta-
tion of 4.5-GeV/c deuterons on beryllium nuclei is
accompanied by the emission of protons at an angle
of 80 mrad. One can see once again that the cal-
culations with Karmanov’s wave function provide a
qualitatively correct picture of the general behavior
of the parameter Ayy as a function of the detected-
proton momentum, but that the curves calculated by
using standard deuteron wave functions are in a sharp
contradiction with experimental data, changing sign
at a proton momentum of about 3.2 GeV/c.

Finally, Fig. 4 presents experimental data on the
parameter Ayy in the inclusive breakup of 9-GeV/c
deuterons on carbon nuclei for the case where the
emitted protons are detected at an angle of 85 mrad.
Also given in this figure are the results obtained
by calculating this parameter with various deuteron
wave functions.
5
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Fig. 3.Tensor analyzing powerAyy for the reactionwhere
the fragmentation of 4.5-GeV/c deuterons is accompa-
nied by the emission of protons at an angle of 80 mrad
versus the detected-proton momentum. The displayed
experimental data were borrowed from [12]. The notation
for the curves is identical to that in Fig. 2.

It can be seen that the general trend revealed in
discussing the data in Figs. 2 and 3 manifests itself
here even more sharply: the momentum dependence
calculated with the relativistic deuteronwave function
from [27] is very close to the experimental values,
whereas the calculations with the standard nonrela-
tivistic wave functions lead to results that dramati-
cally deviate from the experimental data.

Since the relativistic deuteron wave function
from [27] has a rather complicated form, there arises
the question of which terms in this function are cru-
cial in qualitatively describing experimental data on
the tensor analyzing power for relativistic-deuteron
fragmentation on nuclei at high transverse momenta
of protons. In order to answer this question, we
have calculated the parameter Ayy for the reaction
12C(d, p)X at 9 GeV/c for the proton emission angle
of 85 mrad, successively including in the calculation
the terms f2, . . . , f6 of the function in (3). The results
are shown in Fig. 5.

From Fig. 5, one can see that the dominant con-
tribution to the quantity Ayy comes from the first two
terms of the function in (3); the remaining terms only
lead to corrections, whose role becomes more pro-
nounced with increasing momentum. It was shown
in [27, 31] that, in the nonrelativistic limit, the func-
tions f1 and f2 correspond to the S and D compo-
nents of the deuteron wave function. It follows that,
in a moving deuteron, the relationship between the
longitudinal and transverse components of the inter-
nal momentum differs significantly from that which
holds either in the nonrelativistic case or in the case
where relativistic effects are taken into account in
accordance with the approaches developed in [35, 19,
23]; in all probability, the method proposed in [27,
P
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30, 31] for treating the region of relativistic momenta
reflects this distinction correctly.

6. CONCLUSION
The present investigation has provided suffi-

cient grounds to conclude that, in contrast to stan-
dard nonrelativistic wave functions, the relativistic
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deuteron wave function obtained in [27] within light-
front dynamics makes it possible to reproduce basic
features of experimental data even on the basis of the
simple pole mechanism. In our opinion, this is due to
the fact that, in the approach developed in [27, 30, 31],
there arises a new relationship between the longitudi-
nal and transverse components of the intranuclear-
motion momentum, a relationship that is different
from that which is dictated by a superposition of
S and D waves in nonrelativistic deuteron wave
functions. This effect was already discussed in [31]
for the example of the Wick–Cutkosky model, and it
was shown there that even a spherically symmetric S-
wave system of two particles in light-front dynamics
becomes dependent on angles. In all probability, this
is a manifestation of a close relation in the relativistic
region between the internal motion of a system and
its motion as a discrete unit.

Our present results may have far-reaching con-
sequences both for obtaining deeper insight into
the structure of the deuteron at short distances and
for interpreting mechanisms of relativistic-deuteron
fragmentation. Indeed, it turns out, quite unexpect-
edly, that, within light-front quantum mechanics,
the deuteron can be considered as a two-nucleon
system up to short relative distances corresponding
to internal-nucleon momenta of k ∼ 0.5−0.8 GeV/c.
A similar conclusion was also drawn in the stud-
ies reported in [16] and devoted to measuring the
momentum spectra of 9-GeV/c deuterons in the
region of proton transverse momenta between 0.5
and 1 GeV/c; it was indicated there that, in all
probability, the nucleons of the deuteron preserve
their individuality up to relative momenta of about
1 GeV/c.

The second important conclusion that can be
drawn from the present investigation is that, in
relativistic-deuteron fragmentation, relativistic ef-
fects become operative rather fast. Our results sug-
gest that the simplest way to take them into account
is to consider the reaction mechanism within light-
front quantum mechanics without introducing addi-
tional degrees of freedom.
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FUTURE PUBLICATIONS
Inclusive Formation of π0 Mesons in dddC and dddCu Interactions at a Momentum of 4.5 GeV/ccc
per Nucleon

Kh. U. Abramyan, M. A. Kozhin, G. L. Melkumov, M. N. Khachaturyan, and A. G. Khudaverdyan

Cross sections for the inclusive production of π0 mesons in d+C→ π0 + x and d+Cu→ π0 + x reactions
at a momentum of 4.5 GeV/c per nucleon are measured for the kinematic region specified by the inequalities
θπ ≤ 16◦ and Eπ ≥ 2GeV (in the laboratory frame). The dependence of the exponent n in the parametrization
Ed3σ/d3p ∼ An on the cumulative numbers X in the interval of 0.6 ≤ X ≤ 1.8 and on the square of the
transverse momentum in the interval 0.04 ≤ P 2

t ≤ 0.40 (GeV/c)2 is obtained from the ratio of the cross
sections for the generation of π0 mesons on carbon and copper nuclei. The probabilities of the formation of
six-quark configurations in 2H, 4He, and 12C nuclei are estimated. On the basis of statistics including more
than 40 000 π0 mesons, the double-differential cross sections for the d+C→ π0 + x reactions are determined
for the first time.

Effects of Nuclear Deformations in Dinuclear Systems: Application to the Fission Process
A. V. Andreev, G. G. Adamyan, N. V. Antonenko, S. P. Ivanova, and W. Scheid

The relative yields of fission fragments and the mean values and variances of the distributions of the total
kinetic energy of fragments are described on the basis of a refined scission-point model. It is shown that the
potential energy of a prescission configuration as a function of fragment-deformation parameters has several
minima at fixed charge and mass numbers of fragments. Fission from these minima results in a relative
enhancement of the yield of fragments at the corresponding values of the total kinetic energy and in the
appearance of a fine structure in the mass–energy distribution, this structure being different from the fine
structure induced by the even–odd effect.

Inclusive Production of Deuterons in 16Oppp Collisions at a Momentum of 3.25 GeV/c
per Nucleon

E. Kh. Bazarov, V. V. Glagolev, K. G. Gulamov, M. Yu. Kratenko, S. L. Lutpullaev, K. Olimov, Kh. Sh. Khamidov,
A. A. Yuldashev, and B. S. Yuldashev

For the first time, experimental data on the inclusive production of deuterons in 16Оp collisions at high
energies are obtained under conditions of 4π geometry. In the deuteron-momentum spectrum in the oxygen-
nucleus rest frame, an irregularity is found in the region 0.40 ≤ p ≤ 0.55 GeV/c, and reasons that could be
responsible for its appearance are discussed. The mean multiplicities of secondary fragments are correlated
with the presence of a deuteron in an event, these correlations being positive for zf ≤ 4 fragments and negative
for 5 ≤ zf ≤ 7 fragments (this is likely to be due to baryon-charge conservation).

Color Fluxes in the Process gggggg →→→ BBBccc +++ ccc +++ b̄bb

A. V. Berezhnoy

The contributions of various color fluxes to the cross section for the gluonic production of Bc mesons are
calculated, which is necessary for the simulation of events involving Bc mesons that is based on the PYTHIA
package, since the method of hadronization of final partons and hadronic residues that is used in the PYTHIA
code depends on the color-flux type. A modified method of partition into color fluxes is proposed.
1063-7788/05/6801-0168$26.00 c© 2005 Pleiades Publishing, Inc.
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Analysis of the Phase Time of Cold-Neutron Tunneling
through a Neutron Interference Filter

A. K. Zaichenko and V. S. Olkhovsky

Explicit expressions for the energy dependence of the transmission factor for the tunneling of particles
through two rectangular barriers and the respective tunneling phase time are obtained in the resonance region.
The resonance half-width and the neutron-tunneling phase time at the resonance are calculated.

Quantum and Thermodynamic Features of Spontaneous
and Low-Energy Induced Fission of Nuclei

S. G. Kadmensky

It is shown that the coordination of A. Bohr’s concept of transition fission states with the properties of
Coriolis interaction is possible if an axially symmetric fissile nucleus near the point of scission into fission
products remains cold despite a nonadiabatic character of nuclear collective deformation motion. The quantum
and thermodynamic properties of various stages of binary and ternary fission after the descent of a fissile
nucleus from an external saddle point are investigated on the basis of the quantum theory of fission. The
important role of superfluid and nucleon–nucleon correlations in the formation of fission products and in the
classification of fission transitions is shown. The distributions of thermalized primary fission fragments with
respect to spins and their projections onto the symmetry axis of the fissile nucleus and fission fragments are
constructed, the properties of prompt neutrons and photons emitted by these fragments being determined by
these distributions. A new nonevaporation mechanism of the formation of third particles in the ternary fission
of nuclei is proposed. This mechanism is associated with the transitions of third particles from cluster states
of the fissile-nucleus neck to high-energy states under shakeup effects, which are caused by a nonadiabatic
character of nuclear collective deformation motion.

Alpha Particles Accompanying the Weak Decay of 10
Λ

10
Λ

10
ΛBe and 10

Λ
10
Λ

10
ΛB Hypernuclei

L. Majling, V. A. Kuzmin, and Т. V. Tetereva

The possibilities of studying in detail weak ΛN interaction in 10
ΛBe and

10
ΛB hypernuclei, which stand out

owing to their ααNΛ cluster structure, are discussed. The detection of a few groups of correlated α-particle
pairs furnishes information about decays to specific states of a final nucleus (8Be∗, 8Li, 8B), thereby opening the
way to a phenomenological analysis of the weak decays of p-shell hypernuclei. The ratios of the intensities of
individual groups—it is planned to measure them by using the JINR nuclotron—will become a useful criterion
for selecting a suitable model of weak ΛN interaction. A brief review of the modern state of the physics of
hypernuclei is given.

Decay φ(1020)→ γfff0(980): Analysis within the Nonrelativistic-Quark-Model Approach
A. V. Anisovich, V. V. Anisovich, V. N. Markov, V. A. Nikonov, and A. V. Sarantsev

The possibility of adequately describing the processes φ(1020) → γππ and φ(1020) → γf0(980) within the
nonrelativistic quark model under the assumption that f0(980) is predominantly the quark–antiquark system
is demonstrated. Various mechanisms of radiative decay—that is, the emission of a photon by a constituent
quark (additive quark model) and a charge-exchange current—are considered. The status of the threshold
theorem applied to the reactions being studied—namely, the behavior of the decay amplitude forMππ → mφ

andmf0 → mφ—is also discussed. In conclusion, arguments in favor of the qq̄ origin of f0(980) are given.

Alpha-Cluster States in 18O
V. Z. Goldberg, K.-M. Källman, T. Lönnroth, P. Manngård, and B. B. Skorodumov

The excitation function for elastic α-particle scattering on 14C was measured in the laboratory-energy
range 16.3–19.2 MeV by using a backscattering technique with a thick target. These data were analyzed,
together with the old low-energy data of G.L. Morgan et al., in the framework of the R-matrix formalism.
Spin-parity assignments were made for 32 states in 18O in the excitation range 9–20 MeV. The estimations
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 1 2005
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of the widths of the states are also presented. The 0+ and 0− α-cluster bands appeared to be well separated
by 5.6 MeV (as in 16O and 20Ne). We did not find a confirmation of the existence of negative-parity molecular
states proposed by M. Gai et al. We observed the effect of doubling of α-cluster levels in 18O (it is similar to
that found in 22Ne).

Mass Splittings of Nuclear Isotopes within the Chiral Soliton Approach
V. B. Kopeliovich, A. M. Shunderuk, and G. K. Matushko

The differences in the masses of isotopes with atomic numbers between about 10 and about 30 can be
described within the chiral soliton model in satisfactory agreement with data. The rescaling of the model is
necessary for this purpose—the reduction of the Skyrme constant by about 30%, providing the nuclear variant
of the model. The asymmetric term in Weizsäcker–Bethe–Bacher mass formula for nuclei can be obtained
as the isospin-dependent quantum correction to the energy of a nucleus. Some predictions for the binding
energies of neutron-rich isotopes are made in this way—for example, from 16Be or 19B to 31Ne or 32Na.
Neutron-rich nuclides with high isospin values are unstable with respect to decay due to strong interactions.
The SK4 (Skyrme) variant of the model, as well as the SK6 variant (sixth-order term in the Lagrangian as a
soliton stabilizer), is considered, the rational-map approximation being used to describe multi-Skyrmions.

Subthreshold φ-Meson Production and Medium Effects in Proton–Nucleus Reactions
E. Ya. Paryev

Within the spectral-function approach, the direct production and decay are studied via the dikaon (dimuon)
channel of φ mesons in the interactions of 2.4- and 2.7-GeV protons with light and medium-mass target
nuclei. It is shown that the K+K− (µ+µ−) invariant-mass distribution consists of two components, which
correspond to φ decays outside and inside the target nucleus. The first (narrow) component has the free φ
width, while the second (broad) component is distorted by nuclear-matter effects due to resonance-nucleon
scattering and a possible in-medium modification of kaons and ρ mesons at finite baryon density. The relative
strength of the inside and outside components is analyzed within various scenarios for the φ width and
momentum cut. It is demonstrated that the width of the resulting dimuon invariant mass distribution on
medium nuclei is almost twice as broad as the free φ width if the total in-medium width of φ is used and if the
respective cutoff for the φ 3-momentum is applied, whereas the resulting dikaon invariant-mass distribution
has an insignificant sensitivity to the in-medium properties of φ owing to the strong absorption of the K− in
surrounding nuclear matter. On the other hand, because the K+ and K− are distorted on their paths out of
the target nucleus mainly because of the hadronic kaon potential, the latter is broadened and shifted to higher
invariant masses. This means that the measurement of such broadening would give an additional piece of
evidence for the modification of kaon and antikaon properties in the nuclear medium.
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 1 2005
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NUCLEI
Experiment
Properties of Products Originating from the Interaction
of 35-MeV/nucleon 7Li Ions with Pb Nuclei

N. A. Demekhina*, G. S. Karapetyan1), S. M. Lukyanov2),
Yu. E. Penionzhkevich2), N. K. Skobelev2), and A. B. Yakushev2)

Yerevan Physics Institute, ul. Brat’ev Alikhanian 2, Yerevan, 375036 Armenia
Received May 6, 2003

Abstract—The results are presented that were obtained by measuring and analyzing the yields and
kinematical features of radioactive products of the reactions initiated in a lead target by lithium ions
accelerated to an energy of 35 MeV per nucleon. The cross sections, charge and mass distributions, and
kinematical and energy features of various reaction products associated with the fission and the evaporation
channels of the decay of excited nuclei are determined. Quantities that are calculated in the present study
include the momenta and kinetic energies of residual nuclei, as well as the momentum transfer and the
excitation energy of intermediate nuclear systems formed upon complete and incomplete fusion. On the
basis of an analysis of data obtained in our experiment, the total cross section for nuclear interaction and
partial widths with respect to various channels of the decay of intermediate compound nuclei are determined
in the energy range being investigated. c© 2005 Pleiades Publishing, Inc.
INTRODUCTION

Investigation of heavy-fragment production under
the effect of accelerated ions is of great interest not
only for exploring reaction mechanisms but also for
obtaining deeper insights into the regularities of the
formation of residual nuclei at intermediate energies.
The results of such investigations can be used in
considering a number of applied problems and in cre-
ating ion sources, as well as in exploring fundamental
regularities of the formation of superheavy elements.

Previous investigations in the realms of ion–
nucleus interaction revealed that, at low energies
(less than 10 MeV per nucleon), the main interaction
channel is characterized by the total fusion of nuclei
and the formation of a compound nucleus. Its decay,
dominated by the mean nuclear field, is adequately
described on the basis of various statistical mod-
els [1–3]. The growth of the projectile-nucleus energy
is accompanied by an increase in the probability
of the formation of fast particles and light nuclei
emitted in the direction of the incident-beam axis.
This observation is interpreted by various authors
as a manifestation of peripheral processes, incom-
plete fusion, preequilibrium emission, etc. A feature
common to these products is that their production

1)Yerevan State University, ul. A. Manukian 1, Yerevan,
375049 Armenia.

2)Joint Institute for Nuclear Research, Dubna, Moscow
oblast, 141980 Russia.

*e-mail: nina@lx2.yerphi.am
1063-7788/05/6801-0021$26.00
is of a spectator character, the projectile energy–
momentum not being completely transferred to the
target nucleus [4, 5]. At energies explored in the
present study, the incomplete fusion of nuclei must
occur with a high probability; however, data on the
probability of the formation of intermediate nuclear
systems, as well as on the properties of various decay
channels and of the products originating from these
channels, are scanty and fragmentary, this hindering
the systematization of the data and the application of
model concepts. The data reported in the literature
for the scattering of 7Li ions on Pb nuclei refer to
the total interaction cross section measured by the
beam-absorption method at energies in the range
30–60 MeV per nucleon [6].

Our present investigations of the probability of the
formation of various products originating from the
decay of intermediate excited states are of interest for
understanding the mechanisms of relevant reactions
and of energy dissipation in the processes of complete
and incomplete fusion and for determining the prob-
abilities of various deexcitation channels. For heavy
nuclei, the fission of intermediate states, which are
characterized by a broad distribution with respect to
masses, excitation energies, and angular momenta, is
the most probable decay channel in the energy range
investigated here. An analysis of the charge and mass
distributions of fission fragments makes it possible to
draw conclusions on the properties of fissile nuclei.
Spallation reactions accompanied by the evaporation
of neutrons, charged particles, and light nuclei and
c© 2005 Pleiades Publishing, Inc.
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Fig. 1.Gamma spectrumof the activity induced in a natPb
target (the time of themeasurementswas 4 hours, and the
source–detector distance was 5 cm).

by the formation of products in the near-target mass
region are competing processes at these energies.
Therefore, information about processes proceeding at
the nuclear surface in peripheral collisions can be
obtained by measuring the yields of residual nuclei
whose masses lie around the target mass.

Basic regularities of nucleus–nucleus reactions
are investigated by analyzing the properties of both
fast light products emitted from the target and heavy
nuclear residues. In the latter case, measurement of
an induced activity is the simplest and most infor-
mative method for separating interaction channels
and for studying the charge, mass, and momentum
distributions of nuclei produced in the target and
recoiled into catch foils. The momentum and energy
transfers are quantities that furnish information about
the character of collisions. These data make it pos-
sible to estimate the relationship between complete-
and incomplete-fusion processes and to explore con-
ditions of the possible saturation of nuclear excita-
tion [7, 8].

In the present study, the cross sections for the for-
mation of heavy radioactive products were determined
on the basis of a gamma-spectrometric analysis of
an induced activity. Information about unmeasurable
reaction products was extracted by using the approx-
imations presented in the literature for the charge
and mass distributions of residual nuclei. Data on
the total and partial cross sections for the interaction
in the energy region being studied were assessed via
summation along the isobaric-distribution curve.

Relying on the measured fractions of radioactive
products emitted into catch foils and employing the
formalism of the two-step vector model, we deter-
mined the kinematical parameters of residual nuclei
and the momentum features of intermediate nuclear
systems [9–12]. The results of our calculations are
P

discussed within the concept dealing with the prob-
abilities of the complete and incomplete fusion of
interacting nuclei in the energy region investigated
here [13, 14].

EXPERIMENTAL PROCEDURE

A beam of 7Li ions accelerated to an energy of
35 MeV per nucleon at the U-400М cyclotron of the
Joint Institute for Nuclear Research (JINR, Dubna,
Russia) was used to irradiate a target. The target
was prepared in the form of an assembly of seven
lead foils 12 µm thick having a natural isotopic com-
position (natPb: 1.48% 204Pb, 23.6% 206Pb, 22.6%
207Pb, and 52.3% 208Pb). For catch foils, we took
aluminum plates 20 µm thick arranged on the two
sides of the target in the direction orthogonal to the
beam axis. The whole system was placed within the
vacuum chamber of the beam guide. The irradiation
was performed for 40 min at a beam intensity of 30 nA
(about 1010 nuclei per second).

The measurements of the spectra of gamma rays
emitted in the decays of radioactive reaction products
began 10 min after the completion of the irradiation
and lasted five months. In themeasurements, we used
a detector from high-purity germanium, its resolution
being 0.23% at an energy of 1330 keV. The depen-
dence of the gamma-ray-detection efficiency on the
energy and on the geometry of our experimental facil-
ity was measured with the aid of 57Co, 60Co, 154Eu,
152Eu, and 133Ba reference sources.

In the process of our measurements, we were able
to identify radioactive products in more than 20 spec-
tra of natPb and in 40 spectra associated with recoil
nuclei in the catch aluminum foils. Figures 1 and 2
display the spectra of the irradiated natPb foils and the
spectra of recoiling nuclei in the catch aluminum foils.
The main problem in identifying reaction products by
the activation method stems from the fact that, in
the presence of a heavy background caused primarily
by induced activity and by a natural background, it
is difficult to single out nuclear gamma transitions
associated with a specific nucleus. The energies de-
termined precisely for gamma lines associated with
the same isotope, the ratios of their intensities, and
the decay rates are basic observables that make it
possible to separate radioactive reaction products and
to determine the cross sections for their production.
The number of photons recorded at the photopeak
corresponding to a radioactive product of a specific
reaction (independent yield, I) was calculated on the
basis of the relation

S =
NnΦκεωσ(1 − e−λt1)e−λt2(1− e−λt3)

λ
, (1)
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 1 2005
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where S is the area under the photopeak; σ is the
cross section for the reaction leading to the formation
of the product being studied; Φ is the beam intensity
(in 1/s units); Nn is the number of target nuclei
(in 1/cm2 units); t1 is the irradiation time; t2 is the
time interval between the termination of the irradi-
ation and the commencement of the measurement;
t3 is the time of the measurement; λ is the decay
constant; ω is the relative intensity of gamma tran-
sitions of given energy; κ is the coefficient of gamma-
ray absorption in target and detector materials for
a given energy; and ε is the detection efficiency for
gamma rays from nuclear transitions. This case refers
to isotope formation in the interaction of nuclei and
concerns the independent yield (I). The presence of
the contribution to the yield of a given isotope from the
decays of neighboring unstable isotopes complicates
the calculation of relevant cross sections [15, 16]. If
the cross section for the production of a parent isotope
has been determined experimentally or estimated on
the basis of other sources, then the independent yields
of daughter nuclei can be obtained from the relation

S = NnΦκεωd

{
σpωp

λp − λd
λd − λp

[
1− e−λpt1
λ2
p

(2)

× e−λpt2(1− e−λpt3)

− 1− eλdt1
λ2
d

e−λdt2(1− e−λdt3)
]

+ σd
1− e−λdt1
λd

e−λdt2(1− e−λdt3)
}
,

where the symbols d and p label variables that refer
to, respectively, the daughter and the parent isotope,
while S determines the measured total area under the
photopeak.

In some limiting cases, the precursor contribution
can be disregarded if the parent-nucleus half-lives are
very long or if the weight of the contribution is low.

In the case where parent and daughter isotopes
could not be separated experimentally, the calculated
cross sections are classified as cumulative ones (C).

In order to analyze the measured spectra, we em-
ployed the standard DEIMOS code [17]. The half-
lives of identified isotopes were within the range be-
tween 15 min and 1 yr.

The error in determining cross sections depended
on the following factors: the statistical significance of
experimental results (≤2−3%), the accuracy in mea-
suring the target thickness and the accuracy of tab-
ular data on nuclear constants (≤3%), and the errors
in determining the detector efficiency with allowance
for the accuracy in calculating its energy dependence
(≤10%).
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 1 200
 

10

 

2

 

10

 

3

 

10

 

4

 
Number of counts (

 

a

 

)

0 1000 2000 3000 4000
Channels

(

 

b

 

)

10

 

4

 

10

 

3

 

10

 

2

Fig. 2. Gamma spectrum of radioactive nuclei emitted
into the catch aluminum foils: (a) data for forward catch
foils and (b) data for backward catch foils.

Additional information about the reaction mech-
anism was obtained by measuring the properties of
recoil nuclei with the aid of the catch-foil method.
For a detailed account of the relevant experimental
technique and of the mathematical formalism used
in data processing, the interested reader is referred
to [9–13]. The idea of the method consists in irra-
diating an assembly that contains target and catch
foils and in recording, both in the target itself and
in the catch foils, whose chemical composition rules
out the formation of the nuclei under study in them
under the effect of irradiation, the emerging products.
Depending on the geometric and other experimental
conditions and on the problem at hand, one measures
the differential or integrated ranges of recoil nuclei
and their angular distributions. If use is made of a
thick target–thick catch foil system, as was done in
the present experiment, the thicknesses of the targets
and of the catch foils are severalfold larger than the
ranges of the products being studied. The disposition
of the catch foils in the immediate vicinity of the target
makes it possible to capture nuclei emitted within a
solid angle of about 2π, in the beam-axis direction
(F) and in the direction opposite to it (B). Under
such conditions, one measures the integrated ranges
of radioactive reaction products and the anisotropy of
their emission with respect to the beam axis.

As the results of the measurements, one obtains
the relative amounts of radioactive products in the
5
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forward (F ) and backward (B) catch foils; that is,

F = SF/(SF + SB + ST ), (3)

B = SB/(SF + SB + ST ),

where SF , SB , and ST are the photopeak areas as-
sociated with the products under study in the catch
foils and in the target. The resulting data were used to
calculate the forward–backward (F/B) anisotropy of
product emission and the ranges in the target material
(R).

The results of such measurements are usually an-
alyzed on the basis of the two-step vector model
with the aid of the mathematical formalism developed
in [9–12]. The gross features of the pattern being con-
sidered are consistent with the concept of compound-
nucleus formation and decay within the cascade–
evaporation model, but this pattern corresponds to a
simplified version that makes it possible to estimate
kinematical features of the reactions for a comparison
with the measured parameters. According to [9–11],
the first reaction stage involves the formation of a
compound nucleus having an excitation energy E∗

and a velocity v (or the momentum p) along the beam
axis. It is assumed that, at the second reaction stage,
there occurs the evaporation of nucleons and light
nuclei, with the result that the nucleus in question
acquires an additional velocity V. The velocity of the
residual nucleus is given by the vector sum of the
two velocities (v + V). That reaction fragments are
emitted in the forward direction is due to the lon-
gitudinal velocity (v), which is acquired at the first
stage of the interaction. In general, this velocity has
a component along the beam axis and a component
in an orthogonal direction, while the quantity V obeys
an anisotropic distribution. However, the application
of the procedure involving thick catch foils oriented
orthogonally to the beam axis makes it possible to
measure only the longitudinal component of the ve-
locity transfer (v|| ), not providing information about
the angular distribution of the vector V. In such
experiments, an analysis of data is performed by in-
troducing the following approximations:

(i) The quantity v is constant and has only one
component v|| directed along the beam axis.

(ii) The quantity V is isotropic.
(iii) The quantities v and V are independent of each

other.
The mathematical formalism developed in [9, 11,

12] makes it possible to calculate, on the basis of
experimental results for F and B, parameters that
characterize the first (v||, E∗) and the second (R and
T , which are the fragment range and kinetic energy,
respectively) stage of the interaction.

The longitudinal-momentum-transfer fraction
p||/pCN with respect to the maximum possible value,
P

which corresponds to the momentum of a hypothet-
ical compound nucleus, enables one to calculate the
excitation energy E∗ and to determine the number of
projectile nucleons transferred to the target.

DISCUSSION

Fission Products

Table 1 gives experimental data concerning the
yields of products in the mass range 40–153 amu,
which were interpreted as fission fragments. The
application of the induced-activity procedure made
it possible to determine the yields of radioactive
products whose features are convenient for measure-
ments. The yields of stable and short-lived nuclei, as
well as the yields of other unmeasurable products,
were estimated with the aid of the approximat-
ing functions known from [18]. Gaussian functions
whose parameters were fitted to experimental results
were employed to represent charge distributions.

The fission of nuclei in the region of lead is charac-
terized by a symmetric mass distribution of products,
which was described by a Gaussian distribution. A
complete pattern of the charge and mass distribution
of fission fragments was obtained with the aid of the
expression [18]

σ(A,Z) = θA exp[−(A−MA)2/Γ2
A] (4)

× 1√
πΓZ

∑
i

exp[−(Z − i− Zp)2/Γ2
Z ],

where σ(A,Z) is the cross section for the formation
of a product that has a charge number Z and a mass
number A, the remaining parameters that appear in
this formula being determined from a fit to the mea-
sured yields. In performing our analysis, we assumed
that ΓA is a normalization factor. Further,MA and θA
are the mean values of, respectively, the mass and the
width of the mass distribution of fission fragments; Zp
and ΓZ are the most probable charge and width of the
charge distribution; and the coefficient i determines
the contribution of radioactive precursors (the value
of i = 0 corresponds to the yield of an independent
product, while positive and negative values of i specify
the fractions of the β− and β+ branches of the decay
of neighboring unstable isobars). The results of the
analysis performed in [18] revealed that Zp and ΓZ
can be represented as slowly varying linear functions
of the mass numbers of fission fragments; that is,

Zp = µ1 + µ2A, ΓZ = γ1 + γ2A, (5)

where γ1, γ2, µ1, and µ2 are adjustable parame-
ters. The values obtained here for the parameters are
quoted in Table 2.

The total fission cross section was calculated by
means of integration over the entire curve of the mass
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 1 2005
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Table 1. Cross sections for the formation of fission products

Nucleus Reaction type σ, mb Nucleus Reaction type σ, mb
7Be I 27.70± 2.80 102mRh I 0.42± 0.03
22Na C 7.40± 0.74 103Ru C 15.65± 1.51
24Na C 9.56± 1.00 105Ru C 7.70± 0.85
28Mg C 0.26± 0.03 105(m+g)Rh I 13.74± 1.37
38S I ≤ 0.40 105(m+g)Ag I 2.00± 0.22
43Sc C 0.21± 0.06 105Cd C ≤ 1.00
44(m+g)Sc I 0.37± 0.11 106Ru C 11.11± 1.11
46(m+g)Sc I 0.56± 0.07 106mRh I 7.60± 0.91
47Ca C ≤ 0.03 110mAg I 2.70± 0.40
54Mn I ≤ 0.02 111mPd I 1.90± 0.19
55Co C 0.043± 0.008 111(m+g)Ag C 10.18± 1.02
56Co C 0.07± 0.009 111mCd I ≤ 0.63
58(m+g)Co I 0.20± 0.03 111In C 2.50± 0.25
59Fe C 0.84± 0.09 111Sn C ≤ 1.91
67Cu C 7.40± 0.74 112Pd C 3.10± 0.31
69mZn I 1.68± 0.17 112Ag I 2.10± 0.25
71mZn I 1.32± 0.18 113(m+g)Ag C 2.45± 0.37
72Zn I 0.43± 0.04 113(m+g)Sn C 3.34± 0.50
72Ga I 6.80± 0.68 115Cd C 1.25± 0.13
73Ga C 1.23± 0.14 117gCd C 1.26± 0.13
74As I 0.37± 0.04 117mCd C 1.31± 0.16
75Se I 0.10± 0.01 117gIn I ≤ 0.98
75Br C ≤ 0.17 117mSn I 2.83± 0.28
76As I 4.13± 0.41 118mSb I 1.90± 0.20
77(m+g)Ge I 2.00± 0.20 120mSb I 3.80± 0.40
77(m+g)Br I 0.12± 0.01 121gTe I 4.60± 0.69
77Kr C ≤ 0.16 121mTe I 1.95± 0.29
78Ge C ≤ 0.11 121I I ≤ 0.14
78As I ≤ 1.45 121Xe C ≤ 0.79
81mSe C ≤ 0.77 122(m+g)Sb I 2.74± 0.30
82(m+g)Br I 1.67± 0.17 123mTe I 4.73± 0.50
83Rb C 2.25± 0.23 123I I 0.94± 0.10
84Br C ≤ 0.80 123Xe C ≤ 0.44
84(m+g)Rb I 5.22± 0.52 124(m+g)Sb I 0.88± 0.09
85gSr C 2.70± 0.27 124I I 1.25± 0.13
85mSr I ≤ 0.34 125Sb C 0.86± 0.09
85gY C 0.35± 0.04 126(m+g)Sb I ≤ 0.07
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 1 2005
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Table 1. (Contd.)

Nucleus Reaction type σ, mb Nucleus Reaction type σ, mb
85mY C 5.29± 0.60 126I I 1.82± 0.19
86(m+g)Rb I 7.04± 1.05 127gSn C ≤ 0.26
87Kr C ≤ 0.40 127Sb C ≤ 0.06
87gY I 0.68± 0.07 127(m+g)Xe I 0.29± 0.03
87mY C 2.00± 0.20 127Cs C ≤ 0.25
87(m+g)Zr C ≤ 7.40 128Sb C 0.38± 0.04
88Y C 1.12± 0.35 129Sb C ≤ 0.55
89Rb C ≤ 1.87 129mTe I 1.62± 0.17
89(m+g)Zr C 0.48± 0.05 129gBa C ≤ 0.73
89mNb I ≤ 0.45 129mBa C ≤ 0.19
90mY I 3.80± 0.40 130(m+g)I I 0.29± 0.03
91Sr C 4.94± 0.50 131mTe C ≤ 0.50
91mY I ≤ 0.32 132Te C ≤ 0.02
92Sr C 1.34± 0.16 132Cs I 0.37± 0.04
92Y I ≤ 2.00 133(m+g)I C ≤ 1.00
92mNb I 0.10± 0.01 133mBa I 1.21± 0.15
93Y C 13.00± 1.30 133La C ≤ 1.60
94Y C ≤ 2.15 136Cs I 0.05± 0.005
95Zr C 8.40± 0.84 137mCe I ≤ 0.10
95(m+g)Nb I 6.50± 0.65 139Ba C ≤ 0.45
95gTc C 0.55± 0.06 139(m+g)Ce C 1.17± 0.12
95mTc I 1.44± 0.14 140Ba C ≤ 0.06
95Ru C ≤ 0.30 140La I 0.18± 0.02
96Nb I 5.47± 0.55 141La C ≤ 0.30
96(m+g)Tc I 0.47± 0.05 141Ce I 0.57± 0.06
97Zr C 2.00± 0.22 147Eu I ≤ 0.24
97(m+g)Nb I 3.55± 0.36 147Gd C ≤ 0.03
97Ru C ≤ 0.20 148gPm I ≤ 0.05
98mNb I 1.50± 0.16 148mPm I ≤ 0.68
99Mo C 10.72± 1.08 148Eu I ≤ 0.90
99mTc I 0.26± 0.03 153Gd C ≤ 0.25
101mRh I 0.78± 0.08 182(m+g)Ta C ≤ 0.01
101Pd C 1.50± 0.15
distribution with allowance for the formation of two
fragments in one fission event (by introducing a fac-
tor of 0.5). The result proved to be 2.85 ± 0.3 b. In
the total isobaric distribution of interaction products
(Fig. 3), the region of fission fragments is described by
P

a curve that is calculated by using experimental data
constituting about 60% of the total data set.

The calculation of the averaged properties of a
fissile nuclear system revealed that the mass number
of a nucleus undergoing fission is on average Āfiss =
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 1 2005
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206 amu, the mean value of the charge being Z̄fiss =
82 (Z2

fiss/Afiss = 32.64). Thus, the nucleus undergo-
ing fission does not differ from the target nucleus
substantially, this being compatible with the concept
that, in the energy region being considered, there
occurs an incomplete fusion after the breakup of the
projectile nucleus.

From Fig. 3, it can also be seen that light nuclei
in the mass region A < 40 amu are produced with a
high probability. The yields of such products are not
discussed in the present study.

Our measurements of the properties of recoil nu-
clei made it possible to calculate kinematical parame-
ters and single out data concerning fission fragments
and the compound nucleus undergoing fission (see
Table 3). For fission fragments, we obtained the mean
value of F/B = 1.23 ± 0.25 (see Table 3). A weak
anisotropy of the divergence of these nuclei confirms
the fission nature of their production. The ranges in
question were calculated in the approximation where
it is considered that the kinetic energies of fission
fragments are due primarily to their Coulomb repul-
sion and are much higher than the energy of the mov-
ing compound nucleus. The use of the approximation
v/V < 1 [9–11] makes it possible to calculate the
ranges by the formula

R = 2W (F +B), (6)

whereW is the target thickness (in mg/cm2). On the
basis of the analysis performed in [9, 11, 12], one can
also calculate the quantity

η = v‖/V = [(F/B)1/2 − 1]/[(F/B)1/2 + 1] (7)

and obtain values of the longitudinal velocity v‖ and
of the longitudinal-momentum transfer p‖ = Afissv‖
in the primary interaction. The relative longitudinal-
momentum (longitudinal-velocity) transfer p‖/pCN,
where pCN is the momentum of a hypothetical com-
pound nucleus formed in a complete fusion, is the
main feature that characterizes the probability of a
complete or an incomplete fusion. Its mean value
of 0.46 ± 0.09, which was obtained in the present
study, supports the hypothesis that nuclei produced
upon an incomplete fusion undergo fission. The mean
excitation energy of the intermediate nucleus and the
number of nucleons transferred from the projectile
to the target nucleus can be estimated by using the
relations [7, 8]

E∗/ECN = 0.8p‖/pCN, (8)

v‖/vCN =
(At +Ap)(Ap −∆m)
Ap(At +Ap −∆m)

, (9)

where At and Ap are the target and the projectile
mass, respectively, and∆m is the number of nucleons
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Table 2. Fitted values of the parameters in (4) and (5)

Parameter Value

θA 135.00± 5.80

MA 103.00± 0.41

ΓA 24.60± 0.39

γ1 0.74± 0.10

γ2 0.0042± 0.0008

µ1 1.64± 0.23

µ2 0.41± 0.008

emitted in the form of the projectile spectator. The
quantity (Ap −∆m) determines the number of nucle-
ons that formed, together with a target nucleus, the
compound nucleus.

In order to transform the ranges into the kinetic
energy of fission fragments, we made use of the rela-
tion [9–11]

R = KTN/2, (10)

where K and N are constants that are determined
on the basis of range–energy data from [19]. In or-
der to obtain more precise values of these constants,
we additionally performed a systematization of data
presented in the literature for the ranges of ions.

The calculated energies of residual nuclei are given
in Table 3. The total kinetic energy released in fission
was determined by taking the sum of the energies
of two presumed fission fragments. The result was
141.5 ± 12.7 MeV, on average. This value is in fairly
good agreement with the estimate 142.67MeV, which
was obtained by using the statistical approximation
[13].

Spallation Products

The results of investigations reveal that an incom-
plete fusion of interacting nuclei and, hence, only a
partial transfer of the projectile-ion energy and mo-
mentum to the target nucleus manifest themselves
even in the energy range 10–25 MeV/nucleon [9,
10]. As the limiting value of the projectile velocity at
which one can still observe nuclear effects of complete
fusion, the authors of [9, 10] presented v/c ∼ 0.19. In
the present experiment, the velocity of 7Li ions was
v/c = 0.27, in which case it was natural to expect that
there is no complete fusion at all. In view of these con-
siderations, searches for and separation of products
in the near-target mass region are of special interest.
Part of such nuclei are spallation or evaporation prod-
ucts, this being indicative of the presence of a non-
fission mode in the decay of an excited nucleus. But
5
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Table 3. Kinematical features of fission fragments

Nucleus F/B 2W (F +B), mg/cm2 T , MeV E∗, MeV p||/pCN
72Zn 1.11± 0.22 13.22± 2.64 107.41± 21.48 68.68± 11.64 0.33± 0.06
77Br 1.16± 0.14 13.36± 1.60 100.17± 12.02 82.32± 11.52 0.42± 0.06
82Br 1.17± 0.14 11.79± 1.41 96.25± 11.55 84.28± 11.79 0.43± 0.06
83Rb 1.17± 0.08 10.25± 0.72 93.15± 6.52 80.36± 7.88 0.41± 0.04
84Rb 1.14± 0.10 8.17± 0.74 89.56± 8.06 68.60± 7.82 0.35± 0.04
86Rb 1.11± 0.08 9.81± 0.77 86.03± 6.42 54.88± 4.68 0.28± 0.04
87Y 1.19± 0.06 10.50± 0.53 87.57± 4.38 86.24± 4.31 0.44± 0.02
91Sr 1.18± 0.10 10.10± 0.81 79.05± 5.59 76.44± 7.64 0.39± 0.04
95Zr 1.19± 0.16 11.41± 1.74 76.54± 11.51 78.40± 11.76 0.40± 0.06
95Nb 1.23± 0.11 11.36± 1.02 77.22± 6.56 90.16± 7.84 0.46± 0.04
96Tc 1.29± 0.14 10.09± 1.10 74.76± 8.22 99.47± 9.95 0.58± 0.06
99Mo 1.22± 0.06 10.33± 0.52 71.86± 3.59 84.28± 4.21 0.43± 0.02
105Rh 1.17± 0.09 10.07± 0.81 70.95± 5.65 66.64± 3.99 0.34± 0.02
111Ag 1.22± 0.12 8.32± 0.83 65.69± 6.57 76.44± 7.64 0.39± 0.04
115Cd 1.19± 0.12 10.77± 1.07 59.03± 5.90 64.68± 7.76 0.33± 0.04
117mSn 1.43± 0.17 7.69± 0.92 53.50± 6.42 119.56± 15.54 0.61± 0.08
120mSb 1.45± 0.06 4.29± 0.17 50.87± 2.03 119.56± 7.89 0.61± 0.04
124I 1.65± 0.18 7.95± 0.87 46.47± 5.11 150.92± 15.09 0.77± 0.08
some of these products in the immediate vicinity of
215At, the hypothetical compound nucleus ACN, can
be associated with the complete-fusion processes.

The radioactive products of mass number about
Ap that were formed upon the emission of ∆A ≥ 28
nucleons from the hypothetical compound nucleus
ACN were associated with the region of near-target
nuclei (see Table 4). The charge and mass distribu-
tions of these products are given in Fig. 4. The num-
ber of emitted nucleons is plotted along the abscissa
in Fig. 4b. It can be seen that the respective cross
sections decrease with increasing number of emitted
nucleons, this being due to a modest excitation en-
ergy. The isotopes of At that are produced upon the
addition of three protons to the target nucleus were
considered here as products of the reactions where
the complete fusion of Pb and 7Li nuclei was followed
by neutron evaporation. The potential of the proce-
dure used was insufficient for measuring the yields of
212−215At, and only estimates could be obtained for
the 205,206At cross sections. By and large, the total
yield of At isotopes was about 2 mb. This value can
be interpreted as a lower limit on the cross section
for complete fusion in the system being investigated.
P

According to [20], the complete-fusion fraction de-
creases not only with increasing projectile energy but
also with increasing mass asymmetry in the input
channel.

The remaining heavy nuclei, whose cross sections
are quoted in Table 4, were considered here as spalla-
tion products formed upon an incomplete fusion and
a sequential emission of nucleons and light nuclei.
The total yield of these products was 446.1± 52.9mb,
which, in view of the potential of the procedure used,
can be treated as a lower limit for such reactions.

Energy and Momentum Features

From the results obtained by measuring kine-
matical features and displayed in Fig. 5, one can
see that, for some nuclei, emission occurs predomi-
nantly in the forward direction (F/B > 2). This dis-
tinct anisotropy of the emission of nuclear fragments
is indicative of their formation in nonequilibrium re-
actions that, in view of a high probability of an in-
complete fission, are of a peripheral character. To a
good approximation, the quantity F/B may be con-
sidered as the result of the motion of a compound
nucleus along the beam axis and as an indication of
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 1 2005
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Table 4. Cross sections for the production of heavy products

Nucleus Reaction type σ, mb Nucleus Reaction type σ, mb
188Ir I 3.85± 0.40 200m1Bi C ≤6.26
188Pt C 0.71± 0.07 201Tl I 40.08± 4.01
191Pt C 3.64± 0.40 201(m+g)Pb I 45.00± 4.50
193(m+g)Tl C ≤0.18 201gBi C 4.24± 0.55
194gTl C ≤0.83 201mBi C ≤1.57
194mTl I ≤0.35 202Tl I 3.18± 0.32
195gHg I 0.64± 0.32 202mPb I 13.26± 1.33
195mHg I 1.80± 0.20 202Bi I 6.54± 0.65
195(m+g)Tl C ≤1.80 202Po C 1.11± 0.12
196(m1+g)Au I 0.22± 0.02 203(m+g)Pb I 44.80± 4.48
196gTl I ≤1.35 203Bi I 13.89± 1.39
196mTl I 2.43± 0.24 203(m+g)Po C 1.88± 0.28
196Pb C 1.63± 0.17 204mPb I 2.67± 0.27
197mHg I 1.00± 0.10 204Bi I 41.00± 4.10
197(m+g)Tl I ≤4.61 204Po C 6.35± 0.89
197gPb C 1.72± 0.17 205Bi I 37.74± 3.77
197mPb C 2.77± 0.30 205Po I ≤1.94
198gAu I 0.14± 0.02 205At I ≤0.33
198mAu I 0.34± 0.03 206Bi I 17.40± 1.74
198gTl I 12.92± 1.50 206Po I 7.10± 0.71
198mTl I 1.55± 0.23 206At I ≤0.37
198Pb C 27.00± 2.70 207(m+g)Po I 2.60± 0.99
199Tl I 32.87± 3.29 207At I 0.33± 0.04
199(m+g)Pb C 8.00± 0.80 208At I 0.17± 0.02
199(m+g)Bi C 3.10± 0.3 209At I 0.46± 0.05
200mAu I 1.33± 0.13 210At I 0.44± 0.04
200Tl I 13.13± 1.33 211At I 0.40± 0.04
200Pb I 15.56± 1.56 212Bi I ≤0.62
200gBi C 4.33± 0.43
a rather high value of the longitudinal component of
the residual-nucleus velocity in relation to the velocity
acquired upon evaporation, v‖ > V . In the case where
the velocities in question satisfy this inequality, the
ranges are calculated on the basis of the relation R =
WF [mg/cm2] [9, 12]. The results of the calculations
for the kinematical parameters are given in Table 5
and in Fig. 5. From these data, one can see that
themean relative longitudinal momentum p‖/pCN de-
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 1 200
pends on the number of nucleons emitted from the hy-
pothetical compound nucleus 215At. With increasing
∆A, the relative momentum transfer to the nucleus
grows, reaching a limiting value in the range ∆A =
18−27 amu. In studying the longitudinal-momentum
distribution of products originating from nonequilib-
rium processes, the authors of [5, 8, 14] explained
a dependence of this type by the correlation of the
longitudinal-momentum and energy transfer with the
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Fig. 3. Isobaric distribution of products originating from
7Li + natPb interaction: (points) our experimental data
and (curve) function approximating the yields of fission
fragments in the form (4).
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Fig. 4. Distributions of reaction products in the near-
target region of mass numbers: (a) charge distribution
and (b) mass distribution.

impact parameter. Those authors indicated that, with
increasing projectile energy (above 10 MeV per nu-
cleon) or with increasing impact parameter, the rela-
tive value of the linear-momentum transfer decreases,
along with the excitation-energy transfer. If a rela-
tively small number of nucleons are emitted in such
processes, residual nuclei are characterized by a pre-
P
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Fig. 5. Relative longitudinal momentum of the interme-
diate compound nucleus (p|| is the intermediate-nucleus
momentum, while pCN is themomentumof the hypotheti-
cal compoundnucleus formed upon complete fusion). The
open and closed boxes correspond to different isotopic
states of residual nuclei containing, respectively, a smaller
and a larger number of neutrons.

ferred emission in the forward direction—that is, by a
large value of F/B.

Some authors explain the presence of a plateau at
large values of A ∼ 18−28 amu by a possible satura-
tion in the energy–momentum transfer in a nuclear
collision, this leading to specific decay channels [5,
20]. The value of 174± 18 MeV/с per nucleon, which
we obtained for the momentum transfer in the plateau
region, is in satisfactory agreement with the lim-
iting momentum value of 180 MeV/с per nucleon
from [20].

From Fig. 5, it can also be seen that, if use is
made of momentum features not subjected to aver-
aging, then the experimental points are distributed
in the form of two curves referring approximately to
different values of the longitudinal-momentum trans-
fer. For the groups of nuclei being considered, the
mean values of p‖/pCN within the plateau region were
0.55 ± 0.05 and 0.68 ± 0.06. The isotopes associ-
ated with these curves are characterized by different
numbers of neutrons: neutron-rich nuclei are dis-
tributed below neutron-deficit nuclei. The resulting
values of longitudinal-momentum transfer make it
possible to calculate the excitation energies of inter-
mediate nuclear systems, which are sources respon-
sible for the production of these products. Estima-
tions of the mean excitation energies on the basis of
expression (8) revealed that isotopes enriched in neu-
trons are formed from states at an excitation energy of
E∗ = 107.8 ± 11 MeV and that the sources respon-
sible for the production of neutron-deficit products
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 1 2005
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Table 5. Kinematical features of heavy products

Nucleus F/B WF, mg/cm2 T , MeV E∗, MeV p‖/pCN
188Ir 2.90± 0.30 1.10± 0.11 5.14± 0.51 156.80± 20.38 0.80± 0.08
188Pt 26.25± 3.41 0.32± 0.04 2.69± 0.35 108.00± 14.00 0.55± 0.05
191Pt 7.24± 0.87 0.39± 0.06 3.21± 0.51 120.00± 15.60 0.61± 0.06
195mHg 3.02± 0.12 0.43± 0.05 3.59± 0.39 127.00± 10.16 0.65± 0.06
196Au 2.00± 0.17 0.72± 0.09 6.00± 0.72 165.00± 24.75 0.84± 0.08
197mHg 4.69± 0.21 0.32± 0.03 2.66± 0.29 110.00± 9.90 0.56± 0.06
198Au 3.96± 0.90 0.27± 0.03 2.27± 0.23 102.00± 5.10 0.52± 0.05
199Tl 23.15± 0.60 0.59± 0.06 4.90± 0.49 151.00± 19.63 0.77± 0.08
200mAu 22.77± 2.28 0.53± 0.05 2.33± 0.23 98.00± 12.74 0.50± 0.05
200Tl 547.81± 3.29 0.53± 0.05 4.38± 0.44 143.00± 21.45 0.73± 0.07
200Pb 112.37± 0.79 0.43± 0.04 3.59± 0.36 130.00± 19.50 0.66± 0.07
201Tl 955.43± 13.93 0.38± 0.04 3.17± 0.32 122.00± 17.08 0.62± 0.06
201Pb 80.81± 0.81 0.40± 0.04 3.35± 0.34 126.00± 12.6 0.64± 0.06
202Tl 7.06± 0.42 0.18± 0.02 1.46± 0.18 82.40± 21.36 0.42± 0.04
203Pb 257.61± 3.69 0.29± 0.03 2.39± 0.24 106.00± 11.34 0.54± 0.05
203Bi 183.05± 5.49 0.28± 0.03 2.37± 0.24 106.00± 15.90 0.54± 0.05
204Bi 38.07± 0.76 0.24± 0.02 1.96± 0.20 90.40± 10.85 0.43± 0.04
205Bi 16.73± 0.90 0.16± 0.02 1.36± 0.23 80.40± 12.06 0.41± 0.04
206Bi 4.32± 0.19 0.09± 0.01 0.79± 0.09 61.00± 6.34 0.31± 0.03
are characterized by an excitation energy of E∗ =
133.3 ± 13 MeV. To explain this pattern, one can
assume that a few sources having different excitations
can take part in the formation of residual nuclei [21,
22]. In a number of studies, the formation of various
products is assumed to be distributed over the time
scale of the development of the reaction.

Total and Partial Interaction Cross Sections

On the basis of the resulting pattern of the forma-
tion of various reaction products, we have calculated
the total cross section for 7Li + Pb interaction at the
projectile energy of 245 MeV. By summing the yields
from all of the reactions studied here, we obtained
3.318 ± 0.4 b. Upon adding, to this value, the cross
section for the formation of light (A < 40 amu) nuclei,
about 95 mb, the total interaction cross section be-
comes 3.413± 0.4 b, which is in good agreement with
the results of calculations based on a microscopic
model (3.19 b) and with experimental data (3.67 ±
0.12 b) determined by measuring the attenuation of
a 7Li beam in a Pb target [6].
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The fissility of the product compound nucleus was
0.86, which is also compatible with the probability of
nuclear fission in themass region around 206 amu ac-
cording to calculations within the liquid-drop model.
The fraction of processes contributing to the proba-
bility of complete fusion was estimated here at a value
below 0.1%. The contribution of nonfission reactions
recorded in our experiment proved to be about 13.5%
of the total cross section.

CONCLUSION

By investigating the interaction of lead with 7Li
ions at a projectile energy of 35 MeV per nucleon, we
have obtained cross sections for various processes ac-
companying complete and incomplete fusion in a col-
lision process. In the energy range investigated here,
data on fission cross sections, as well as on the cross
sections for spallation and for evaporation from in-
termediate compound nuclei, have been presented for
the first time. On the basis of studying the kinematical
features of reaction products, we have analyzed the
properties of intermediate nuclear systems produced
upon the incomplete fusion of interacting nuclei.
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A comparison with estimates based on the statistical
model has made it possible to determine the most
probable number of projectile nucleons participating
in reactions at the energy considered here.
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Abstract—Experimental results obtained by determining the double-differential cross sections for neu-
tron production in Pb, W, Zr, Cu, and Al targets irradiated with 0.8-, 1.0-, and 1.6-GeV protons are
presented. The spectra of neutrons were measured at 15◦, 30◦, 60◦, 90◦, 120◦, and 150◦ with a time-
of-flight spectrometer by using a proton beam extracted from the 10-GeV synchrotron at the Institute
of Theoretical and Experimental Physics (ITEP, Moscow). The neutrons are recorded with 5MAB-
1F6BC501A/5L liquid scintillation detectors and NE110 solid-state scintillators. The experimental data
in question are compared with the results of simulations based on the CEM97, LAHET, and CASCADE
codes. c© 2005 Pleiades Publishing, Inc.
INTRODUCTION

The present-day strategy of the development of
nuclear-power production is determined largely by
the problem of annihilation of minor actinides and
long-lived radioactive fission products in spent nu-
clear fuel.

One of the possible ways to resolve this problem is
the transmutation of minor actinides and some long-
lived fission products in ADS facilities constructed on
the basis of a linear proton accelerator (characterized
by a current of a few tens of mA and an energy of 1 to
3 GeV), a neutron-producing target, and a subcritical
blanket. In turn, an optimal selection of the composi-
tion and design of the target and subcritical blanket
requires data on particle yields from targets and on
double-differential cross sections for particle produc-
tion. The requirements for the uncertainty in data
(about 10%) are defined by the accuracy in calculat-
ing the main blanket parameters—namely, neutron-
breeding coefficient keff, the efficiency of the protec-
tion system control, the energy-deposition fields of
fuel elements, theminor-actinide-transmutation rate,
and the radiation resistance of materials.

1)Joint Institute for Nuclear Research, Dubna, Moscow
oblast, 141980 Russia.

2)Los Alamos National Laboratory, Los Alamos, NM 87545,
USA.

*e-mail: Yury.Titarenko@itep.ru
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The present-day data libraries [1, 2] include copi-
ous experimental data on various parameters, includ-
ing particle yields and double-differential cross sec-
tions that characterize proton–nucleus interactions
at low energies of protons. Recently, similar results
were published for intermediate energy range, up to
proton energies of about 3 GeV, and experimental
data were compared with the results of simulations
based on various codes. Table 1 presents all of the
known experiments [3–17] aimed at measuring the
double-differential cross sections and the spectra of
neutrons emitted in intermediate-energy proton in-
teractions with thin and thick targets made from var-
ious materials.

The analysis of the data published in [3–17] re-
vealed that the double-differential cross sections for
neutron emission from lead that were measured at
the LANL, KEK, and SATURNE laboratories for
primary proton energies of up to 0.8 GeV agree with
one another and do not contradict the results of simu-
lations on the basis of transport codes throughout the
measured neutron-energy range. At the same time,
the disagreement between experiment data and the
results of simulations in this energy range may reach
100% for targets of low mass numbers.

As the primary proton energy increases to a few
GeV, the experimental results become more and more
different, and their agreement with the results of cal-
culations deteriorates. This concerns tungsten, which
c© 2005 Pleiades Publishing, Inc.
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Table 1. Experiments devoted to measuring the yields of neutrons from matter irradiated with intermediate-energy
protons

No. Proton
energy, GeV Target material Neutron

energy, MeV
Ejection angle
in lab. frame

Research
Center

Refs.

1∗ 0.585 C, Al, Fe, Nb, In, Ta, Pb, U 0.9–Emax 30, 90, 150 PSI [3]

2∗ 0.12, 0.16 Al, Zr, Pb ≥ 30 0–145 IUCF [4]

3∗ 0.113 Be, C, O, Al, Fe, W, Pb, U 0.5–Emax 7.5–150 LANL [5]

4∗ 0.256 Be, C, O, Al, Fe, Pb, U 0.5–Emax 7.5–150 LANL [6]

5∗ 0.256, 0.80 Li, Al, Zr, Pb 20–Emax 7.5–150 LANL [7]

6∗ 0.318, 0.80 C, Al, Pb, U 5.0–Emax 7.5, 30 LANL [8]

7∗ 0.597 Be, B, C, N, O, Al, Fe, Pb, U 0.5–Emax 30–150 LANL [9]

8∗ 0.80 Be, B, C, N, O, Al,
Fe, Cd, W, Pb, U 0.3–Emax 30–150 LANL [10]

9∗ 0.8, 1.5, 3.0 C, Al, Fe, In, Pb 1–Emax 15–150 KEK [11]

10 2.20 Cu 3.3–200 60 KEK [12]

11 0.5, 0.8, 1.5 C, Pb 1–Emax 15–150 KEK [13]

12 0.8, 1.2, 1.6 C, Al, Fe, Zr, W, Pb, Th 2–Emax 0–160 SATURNE [14]

13 0.6, 1.2, 1.6 Al, Cu, Zr, Pb 3–200 15–150 ITEP [15]

14 0.44–6.5 Be, C, Cu, Pb, U 7.5–190 119 ITEP [16]

15 2.00, 2.55 Be, Al, Cu, Cd, Pb 0.2–Emax 30–120 JINR [17]

Note. The tabulated data no. 1–9 (labeled with asterisks) were taken from the report of Yu.W. Watahable et al. in YAERI-Conf.
98-016 (1998), p. 24.
is proposed by some projects to be a material of an
ADSmultiplication target, and some other structural
materials.

The optimal version of the ADS target composi-
tion and design can only be selected by using well-
verified codes. Therefore, experiments aimed at ob-
taining reliable data still remain topical.

Taking into consideration all of the above and
bearing in mind various materials that may be used as
ADS targets, we measured, in the present study, the
spectra and obtained double-differential cross sec-
tions for neutrons ejected at angles of 15◦, 30◦, 60◦,
90◦, 120◦, and 150◦ from Pb targets irradiated with
0.8-, 1.0-, and 1.6-GeV protons and from W, Zr,
Cu, and Al targets irradiated with 1.0- and 1.6-GeV
protons. The experimental data are compared with the
results of simulations based on the CEM97, LAHET,
and CASCADE codes.

1. EXPERIMENTAL DESIGN

Our experiments aimed at determining the double-
differential neutron production cross sections were
performed by using a time-of-flight spectrometer and
beam no. 512 from the 10-GeV proton synchrotron at
P

the Institute of Experimental and Theoretical Physics
(ITEP, Moscow). Figure 1 shows the layout of the
beam optics and of the time-of-flight spectrometer in
the experimental hall. Charged particles are ejected
from the interactions of accelerated protons with
nuclei of the inner Be foil target (TA) at an angle of
3.5◦ and are then focused by a magnetic dipole M1

and quadrupoles Q1–Q4 into the intermediate focus
F1. After that, the charged particles are focused by
a magnetic dipole M2 and quadrupoles Q5–Q8 into
the focus F2, where the target is located. The inner
target of the accelerator and the second focusF2 were
spaced 70 m apart. The particle beam of diameter
about 2 cm was focused into the target center. The
beam-pulse duration was about 0.3 s. The primary-
beam intensity could be varied up to 105 protons per
pulse.

Primary particles were recorded along the beam
path by detectors C0, C1, and C2 (C1 is a scintillating
NE-102A 10 × 15 × 1 cm3 plastic with an FEU-
30 photomultiplier tube; C0 and C2 are NE-102A
∅4× 1 cm3 scintillating plastics with FEU XP-2020
amplitude–time photomultiplier tubes).

In dealing with a pure proton beam, the beam
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 1 2005



DOUBLE-DIFFERENTIAL CROSS SECTIONS FOR THE PRODUCTION OF NEUTRONS 5
                                      
MON

TA
Q1, 2

Q3, 4
Q5, 6

Q7, 8

M2

F1

C0

C1 C2

F2

D1

D2D3

D4

A4

A3 A2
A1

T p

TOFS

M1

Fig. 1. The beam 512 layout showing themain spectrometer units: (TA) internal target of the ITEP synchrotron, (MON) beam
monitor, (Q1,2–Q7,8) magnetooptic quadrupole lenses, (M1,M2) bendingmagnets, (F1, F2) first and second foci of the beam,
(T ) spectrometer target, (C0, C1, C2) pilot detectors, (А1–А4) detectors of charged secondaries, (D1–D3) neutron detectors
based on a BC501A liquid scintillator, and (D4) neutron detector based on solid-state scintillating plastic.
path was tuned to the quasielastic peak of protons
scattered by the inner Be target of the accelerator,
while the protons were recorded by two pilot detectors
C1 and C2 spaced 10 m apart. In dealing with a
particle beam at high energies of accelerated protons,
an additional thin plastic detector C0 was placed at
the intermediate focus F1. The detectors C0 and C2
were spaced 34 m apart. In that case, the protons
were separated from other particles by time-of-flight
techniques at a 0.31-ns time resolution.

Secondary particles from the target were recorded
by the following time-of-flight spectrometer detectors
placed at various angles:

(a) the NE110 1× 19 × 19 cm3 scintillating plas-
tics A1, A2, and A3 placed at 2 cm from the neu-
tron detectors D1, D2, and D3 (the detectors A1–3

recorded charged particles that hit the neutron detec-
tors);

(b) the detectors D1–3 (5MAB-1F6BC501A/5L
∅12.7 × 15.2 cm3) with a liquid scintillator that are
used in the main measurements to record neutrons,
photons, and charged particles;

(c) the detector assemblies consisting of the
NE110 25× 25× 1 cm3 (A4) and NE110 20 × 20 ×
11.5 cm3 (D4) scintillating plastics, whose spectra
were measured with a view to estimate and compare
the γ-background contributions to various energy
ranges of the neutron spectra measured in the liquid
and large-volume plastic detectors of neutrons.

The detectorsAi andDi were mounted and shifted
at different angles by using a turning device placed
at a distance of above 5 m from the ceiling and walls
and a distance of 2.5 m from floor, without any addi-
tional shielding. The flight base from the target to the
neutron detectors was 2.0 m (some of the measure-
ments were made with a 3-m base). The results of
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 1 200
the measurement were fixed in the separate particle-
detection mode. Neutrons and photons were sepa-
rated by techniques for discriminating pulse shapes,
pulse durations, and the times of flight.

The functional logic of the operation of the time-
of-flight spectrometer is as follows. The coincidence
of a pulse from the telescope of the pilot detectors C1

and C2 (or C0 and C2) with a pulse from one of the
neutron detectors Di triggers the measurement cir-
cuit. The pulse from a detector (C1 or C0) is the stop
signal of the circuit for time-of-flight measurements,
while a pulse from one of the neutron detectors is the
start signal (the inverse pattern). The time interval
between the start and stop pulses was converted into
a charge, which was then digitized by the charge-to
digit converter (ChADC) to become the number of a
channel. The ChADCwas also used tomeasure some
parameters that are necessary for separating neutrons
and photons by their pulse shape. The data set from
all the elements of time-of-flight spectrometer was
fixed by the MES code [18]. Table 2 presents the
dimensions and composition of the targets.

2. TECHNIQUES FOR RECORDING
NEUTRONS

The neutron spectra were measured at angles of
15◦ to 150◦ with respect to the beam axis. The neutron
detectors operated without evacuation of the flight
base and without any additional shielding. Calcula-
tions and tentative measurements revealed that the
contributions from neutrons scattered by the ceiling
and walls to the main measurements are minor. The
signals from the detectors Ai andDi were recorded in
the anticoincidence mode in measuring the neutron
spectra and in the coincidence mode in measuring
the charged-particle spectra. The energy calibration
of the neutron detectors was made (a) with standard
γ sources (137Cs, 60Co, 22Na) at low energies (below
5
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Table 2. Properties of the targets and of the proton beam

Target
Target

dimensions
(mm)

Composition,
%

Density
(g/cm3)

Proton passage
through the
target (CL)

Proton
energy
(GeV)

Proton energy
loss (MeV)

0.8
GeV

1.0
GeV

1.6
GeV

Pb ∅50× 10.0 99.9 11.3 0.97 1.0, 1.6 13 13

Pb ∅50× 20.0 99.9 11.3 0.94 0.8 28

W ∅50× 5.1 97.5 18.8 0.97 1.0, 1.6 13 12

Zr ∅50× 20.0 99.9 6.5 0.96 1.0, 1.6 18 17

Cu ∅50× 10.0 99.9 8.9 0.97 1.0, 1.6 14 13

Al ∅50× 50.0 99.9 2.7 0.94 1.0, 1.6 25 22
2.5 MeV) and (b) with proton beams at high energies
(above some 30 MeV).

Since the differences in the neutron-detector-
pulse amplitudes may reach a factor of 100 or be
even higher, the recorded events were divided into two
ranges in the following way to get a better separation
of neutrons and photons:

(1) The method of amplitude–amplitude analysis
of a recorded-particle pulse above the detection
threshold, АFULL (total-pulse charge) and ATAIL
(pulse-tail charge), was applied to the range of recoil
proton energies between about 10 and about 30 MeV.
The method is described in detail in [19]. Figure 2
shows the results obtained in this way.

(2) The method of measuring the total-pulse
charge and the pulse duration above the detection
threshold,АFULL (total-pulse charge) atТDUR (pulse
duration), was applied to the range of recoil proton
energies between about 10 and about 300 MeV. It
should be recalled that the ADC used in the time-
of-flight measurements (ChADC LeCroy 4300B)
measures directly the pulse charge, which is an
integral under the pulse. To illustrate the method,
Fig. 3 shows the pulses of the same charge (area)
from a neutron and a photon produced by a pulsed
source of neutrons of energy about 14 MeV.

The pulses were recorded by a LeCroy LT-344
digital oscillograph. Figure 4 shows the results of
applying the method of separation by pulse duration
to the given energy range.

At the next stage, all neutron events from two
energy ranges were combined, just as the respective
sets of photon events. After that, the time-of-flight
spectra were formed from the sets of neutron and
photon events. Figure 5 gives an example of such a
spectrum.

The γ-peak center was determined from the γ-
spectrum maximum to within 0.79 ns, which is the
PH
same as the accuracy of determining the γ-peak half-
width.

With our electronics, the particle time of flight is
determined by measuring the charge of a calibrated
rectangle pulse whose duration is the same as the
measured time of flight and is equal to the time inter-
val between the discriminator-formed and read-out
timing signals. The difference between the instants
of the occurrence of an analog pulse of a neutron
detector and a formed timing pulse is determined by
the analog-pulse amplitude. In such a manner, the
particle time of flight measured by the electronics
becomes somewhat dependent on the particle-pulse
amplitude in the neutron detector. The dependence
was taken into account by introducing an appropriate
amplitude–time correction.

Upon the separation of charged particles and the
removal of the amplitude–time dependence, the data-
set files include only those events that result from the
detection of neutral particles with a true time of flight,
whereupon neutrons are separated from photons.

In such a way, neutrons were effectively sepa-
rated, via the selection of an optimal situation with
the amplitude–amplitude and amplitude–time sepa-
ration, from photons emitted by the target.

An analysis of the solid-state scintillator data
also demonstrates that neutron–photon separation
via the amplitude–time separation is sufficiently
efficient. Being dependent on the target material, the
uncertainty in the photon contribution to the neutron
spectra with a particle flight base of 3 m was 5–
10% at emission angles smaller than 90◦ (at neutron
energies of up to 200 MeV) and at least 5–15% at
emission angles larger than 90◦ (at neutron energies
of up to 100 MeV).
YSICS OF ATOMIC NUCLEI Vol. 68 No. 1 2005
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3. DETERMINATION OF THE EFFICIENCY
AND ENERGY RESOLUTION

OF THE NEUTRON DETECTORS

(a) The neutron-detection efficiency for liquid
and solid-state scintillators was calculated by the
SCINFUL code [20] for En < 80 MeV and by the
CECIL code [21] for En > 80 MeV at the discrim-
ination threshold corresponding to Eγ = 661.6 keV
(137Cs). The CECIL data were normalized to get a
smooth matching with the 80-MeV SCINFUL re-
sults. The relation between the photoelectron energy
(corresponding to the total photon-energy transfer)
and the energy of recoil protons that produce the same
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 1 200
photoyield is [22]

E = 0.83Ep − 2.82(1 − e−0.25E0.93
p ), (1)

where Ep is the proton energy (MeV) and E is the
electron energy (MeV).

(b) The energy resolution is determined primarily
by the following two factors that affect the accuracy in
determining the detected-neutron velocities: (1) the
spatial resolution (∆L), which depends on the di-
mensions and relative position of the neutron counter
and target; (2) the time resolution (∆T ), which is
controlled by the speed of measuring equipment and
by the fluctuations of the photoelectron flight time in
a photomultiplier tube and of the time of flight of pho-
tons through a scintillator and through the detector
5
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Fig. 4. Separation of neutrons from photons by the
method of an amplitude–time analysis.

light guide. The time resolution was quantitatively
estimated by the width of the peak associated with
prompt photons from the Pb target. It proved to be
0.67 ns.

The energy resolution of the facility was deter-
mined as

∆E

E
= γ(γ + 1)

√(
∆L

L

)2

+
(

∆T

T

)2

, (2)

where γ is the relativistic Lorentz factor and L is the
distance between the centers of the target and the
detector.

When the target and the detector are spaced 2.0 m
apart, the ultimate neutron energy at which the en-
ergy resolution is below 25% is 300 MeV.

4. EXPERIMENTAL RESULTS

The double-differential cross sections were deter-
mined from the time spectra of neutrons as

∂2σ

∂E∂Ω
=

NiA

NpCLεi∆Ei∆ΩρLMNA
, (3)

where Ni is the number of neutron-induced signals
fixed by the ith time channel,A is the atomic weight of
the target material, Np is the number of bombarding
protons,CL is a factor that takes into account the loss
of protons in the target, εi is the neutron-detection
efficiency corresponding to the middle of the ith time
interval, ∆Ei is the energy width of the ith channel,
∆Ω is the detector solid angle, ρ is the target-material
density (g/cm3),LM is target thickness (cm), andNA
is Avogadro’s number.
PH
The neutron energy in the ith channel was deter-
mined as

Ei = mnc
2

(
1
/√

1− L2

(L + c(ti − t0))2
− 1

)
,

(4)

where mn is the neutron rest mass, c is the speed of
light, and ti− t0 is the delay time between the instants
at which a prompt photon and a neutron hit a detector
(t0 is determined in the middle of the prompt-photon
peak, and ti is determined in the middle of the ith time
interval).

The errors in the above double-differential cross
sections were mainly determined by the error in the
neutron-detection efficiency. The error in calculating
the detection efficiency was taken to be 10% at en-
ergies below 80 MeV and 15% at energies above
80 MeV. These are just the values recommended in
[11] for neutron detectors based on liquid scintillators
of a similar volume. The statistical errors fluctuated
in the interval between about 1% and about 20%,
depending on the neutron energy and emission angle.
The systematic errors arising from scattered neutrons
in the hall were estimated at less than 5% and were
disregarded because of their smallness.

All of the data obtained for the double-differential
cross sections were published in [23] in the form
of figures and tables, supplemented with a complete
description of the experimental setup. Table 3 makes
it possible to compare our double-differential cross
sections obtained for Pb at 0.8 GeV with similar data
obtained elsewhere.

5. CODES USED TO SIMULATE
EXPERIMENTAL DATA

The experimental data were simulated by using
three codes—namely, (1) the CEM97 cascade–
exciton code, (2) the LAHET cascade–evaporation–
fission code, and (3) the CASCADE cascade–eva-
poration–fission code.

The models underlying the three codes are de-
scribed in detail in [24–48]. We will only mention the
fundamentals of the codes.

(i) In the CEM97 code [24], hadron–nucleus in-
teractions are simulated by the Monte Carlo method
in terms of the advanced version of the CEM cas-
cade–exciton model for nuclear reactions [25]. The
code deals with three-stage reactions. The first stage
is an intranuclear cascade (INC) for primary and
secondary particles to be multiply scattered until they
are absorbed or emitted from a nucleus. The residual
excited nucleus formed after cascade-particle emis-
sion specifies the particle–hole configuration, which
is the initial state for the second (preequilibrium)
YSICS OF ATOMIC NUCLEI Vol. 68 No. 1 2005
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reaction stage. The subsequent relaxation of the nu-
clear excitation is simulated in terms of the exciton
preequilibrium-decay model, which also describes the
third (equilibrium) reaction stage. All three stages
contribute to the measured secondary-particle spec-
trum.

The criterion of the transition from the intranuc-
lear-cascade stage to the stage of preequilibrium
evaporation is an important element of the CEM.

In conventional cascade–evaporation models (IS-
ABEL [26] and BERTINI [27]) used in the LAHET
code, fast particles are traced up to a certain minimum
energy (cutoff energy Tcut), or the duration of the
cascade reaction stage is compared with the cutoff
time tcut, which is usually taken at an energy of 7 to
10 MeV above the inner nuclear potential. Below the
threshold, the particles are assumed to be absorbed by
the nucleus (the so-called “temporal” cascade models
of the type of Liege INC [28]).

The CEM code uses a criterion for the escape
of a primary particle from the cascade stage via the
introduction of the effective local optical potential
Wopt.mod(r) determined from the local interaction
cross sections, including the blocking effects due to
the Pauli exclusion principle. This imaginary potential
is compared with the potentialWopt.exp(r) determined
in terms of the phenomenological global optical model
by using data on elastic scattering by a nucleus.
The convergence degree of imaginary potentials is
determined via the parameter P ,

P = |(Wopt.mod(r)−Wopt.exp(r))/Wopt.exp(r)|.

IfP exceeds an empirically selected value, the par-
ticle escapes from the cascade stage of the process,
SICS OF ATOMIC NUCLEI Vol. 68 No. 1 200
becoming an exciton. In the CEM97 code, the pa-
rameter P is fixed at 0.3. This valuewas obtained from
an analysis of data on proton– and pion–nucleus
interactions at low and intermediate energies. With
the selected P value, the cascade part of the code
becomes shorter than in other cascade models.

The subsequent nuclear-reaction stages, which
involve preequilibrium and equilibrium evaporation,
are treated in terms of an improved modified exciton
model (MEM) [29, 30]. At the preequilibrium stage,
the CEM code takes into account all possible nuclear
transitions leading to changes of∆n = +2,−2, and 0
in the exciton number n and all possible sequences of
multiple emissions of n, p, d, t, 3He, and 4He. The set
of equations for describing the behaviour of a nucleus
at the preequilibrium stage is solved by the Monte
Carlo technique [30].

The improved code CEM97 [24] makes use of new
approximations of elementary interaction cross sec-
tions and of more accurate values of nuclear masses,
Q, and binding and pairing energies. Also, it employs
an updated systematics of the density-level param-
eters and improved approximations of pion binding
energies. In addition, the code includes refined data on
pion absorption on intranuclear quasideuteron pairs.
Besides, the Pauli exclusion principle is taken into
account in describing the preequilibrium stage.

(ii) The LAHET code, based on the Monte Carlo
technique, is used to calculate the transport and in-
teractions of nucleons, pions, muons, light ions, and
antinucleons in extended objects. The code may also
be employed without particle transport to generate
cross sections for intranuclear interactions.

The LAHET code is a result of the LANL ef-
fort to develop a code system based on the HETC
5
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Table 3. Double-differential cross sections for neutron generation, mb/(MeV sr), in a Pb target of dimensions ∅50×
20 mm2 irradiated with 0.8-GeV protons

E +∆E
n−∆E , MeV

Angle in lab. frame

30 60 90 120 150

330+136
−88 0.497± 0.087 0.121± 0.024

242+75
−54 0.886± 0.14 0.278± 0.055 0.049± 0.022

179+45
−35 1.20± 0.19 0.554± 0.095 0.169± 0.041

132+28
−23 1.72± 0.28 0.926± 0.153 0.289± 0.057 0.176± 0.051 0.173± 0.079

99+18
−16 2.51± 0.40 1.39± 0.23 0.513± 0.093 0.307± 0.076 0.280± 0.089

74+12
−11 3.33± 0.40 1.96± 0.27 0.839± 0.11 0.456± 0.072 0.368± 0.084

57.2+8.4
−7.6 4.13± 0.45 2.93± 0.33 1.29± 0.17 0.807± 0.12 0.638± 0.10

44.8+6.0
−5.5 4.70± 0.56 3.45± 0.42 1.92± 0.23 1.17± 0.15 0.888± 0.14

35.4+4.5
−4.1 6.94± 0.75 4.16± 0.52 3.31± 0.34 2.67± 0.27 2.06± 0.21

28.4+3.4
−3.2 7.34± 0.79 5.63± 0.62 4.31± 0.44 3.88± 0.39 2.68± 0.28

23.1+2.7
−2.6 8.00± 0.80 7.69± 0.77 5.02± 0.51 5.50± 0.56 4.12± 0.42

18.9+2.1
−2.0 9.62± 0.97 8.96± 0.90 7.44± 0.75 7.89± 0.79 6.43± 0.64

15.5+1.6
−1.6 13.4± 1.4 12.5± 1.3 11.8± 1.2 9.53± 0.96 8.61± 0.87

12.8+1.3
−1.3 19.0± 1.9 19.8± 2.0 18.9± 1.9 17.0± 1.7 15.6± 1.6

10.7+1.1
−1.0 24.5± 2.5 27.5± 2.8 23.4± 2.4 23.9± 2.4 20.1± 2.1

8.88+0.90
−0.86 39.8± 4.0 39.2± 4.0 39.3± 4.0 35.6± 3.6 34.1± 3.5

7.41+0.74
−0.71 52.6± 5.5 49.4± 5.2 49.8± 5.0 49.6± 5.0 45.2± 4.6

6.20+0.61
−0.60 77.5± 8.0 63.1± 6.5 64.6± 6.5 64.1± 6.5 60.3± 6.1

5.20+0.52
−0.50 105± 11 84.7± 8.8 76.0± 7.9 78.4± 7.9 70.4± 7.1

4.37+0.43
−0.42 144± 15 110± 12 112± 12 86.2± 8.7 73.5± 7.8

3.67+0.37
−0.36 186± 19 152± 16 147± 15 123± 13 110± 12

3.10+0.31
−0.30 209± 22 170± 18 162± 17 158± 16 146± 15
code version intended for nucleon, pion, and muon
transport and originally developed at the Oak Ridge
Laboratory [31, 32]. Having been supplemented with
copious amendments, the code system was named
LAHET, and its associate code system was called
the LAHET code system (LCS) [33]. The resultant
code system can use the Bertini intranuclear-cascade
models to describe the nucleon–nucleus interactions
below 3.5 GeV [27].

Being an alternative to the Bertini model, the LCS
also includes the intranuclear-cascade model from
the ISABEL code [26], which is the Yariv–Frankel
extension of the VEGAS code [34], and can simulate
nucleus–nucleus and particle–nucleus interactions
up to 1 GeV. The two models were used in the present
study in the simulations via LCS.
PH
The following LAHET code features are worth
noting.

LCS makes it possible to calculate preequilib-
rium emission as an intermediate stage between
the intranuclear cascade and evaporation/fission in
terms of the multistage preequilibrium exciton model
(MPM) [35]. As initially proposed in the multistage
exciton model (MEM) [29, 30], the MPM uses the
Monte Carlo technique to solve the set of master
equations describing the equilibration of the excited
residual nucleus that remains after the cascade reac-
tion stage.

However, there are several important distinctions
between the MPM and the MEM. First, the master
equation of the MPM is simplified in relation to that
of theMEM: theMPM takes into account only∆n =
YSICS OF ATOMIC NUCLEI Vol. 68 No. 1 2005
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+2 nuclear transitions, i.e., only in the direction of
equilibration. The MEM considers all possible ∆n =
+2,−2, and 0 transitions, taking into account all
possible positions of particle–hole pairs with respect
to the Fermi level (∆n = 0 transitions). Second, the
master equation of the MPM disregards the angular
distributions of preequilibrium particles (note, how-
ever, that the MPM and, hence, the LAHET option
allow one to calculate angular distributions of pree-
quilibrium particles by using the phenomenological
parametrization of Kalbach [34]). The MEM version
used in CEM97 includes the conservation of momen-
tum and the angular momentum of the nuclear sys-
tem at the preequilibrium and equilibrium evaporation
stages too. Therefore, theMonte Carlo algorithms are
different when used in the MPM and the MEM to
solve the respective equations.

There are several other distinctions between the
MEM and the MPM, such as the use of different ap-
proximations for the cross sections describing inverse
processes and for Coulomb barriers, for the level-
density parameters, and for the nuclear-transition
matrix elements (the details can be found in [29,
30, 35]).

There are also differences in interfaces between a
portion of the intranuclear cascade and the preequi-
librium emission in LAHET and CEM97. Besides,
attention should be paid to the fact that LAHET in-
vites the user to select between two fission models—
namely, (a) the ORNLmodel [37] and (b) the Ruther-
ford Appeleton Laboratory model (RAL) [38]. In fact,
RAL consists of two parts (for actinides and preac-
tinides separately), permits fission up to Z = 71, and
is used in LAHET by default. The two fission mod-
els are used together with the Dresner evaporation
model [36].

The LAHET code made use of the Bertini model
at 1.6 GeV and of the ISABEL model at 0.8 and
1.0 GeV. The calculations were made without al-
lowance for particle transport and the elastic scat-
tering of neutrons for sufficiently thin Pb, W, Zr, Cu,
and Al targets used at 1.0 and 1.6 GeV and with
allowance for them for a 20-mm Pb target used at
0.8 GeV. The models included in LCS are described
in detail in the references listed below and on some
web sites [33].

(iii) The CASCADE Monte Carlo code system,
which was developed at JINR (Dubna), has been
used for many years to simulate ADS targets and
the radiation damage of microelectronics, as well as
to solve many other problems relevant to radiation
transport in condensed and gaseous media [39, 40].
Like many other codes used to solve similar prob-
lems, the CASCADE code system is based on the
cascade–evaporation intranuclear-cascade model. A
feature peculiar to it is that the phenomenological
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 1 200
angular and energy approximations are used in each
interaction event to simulate the multiplicities and
the parameters of particles produced in intranuclear
hadron–nucleon interactions. Allowance is made in
this case for the law of energy–momentum con-
servation and, sometimes, for the law of angular-
momentum conservation [41]. The coordinates and
momenta of all intranuclear nucleons are simulated
for each intranuclear cascade in terms of a Gaussian
distribution in light nuclei and of the Woods–Saxons
distribution in the remaining nuclei. The decrease in
the number of intranuclear nucleons due to knockout
by fast cascade particles is also taken into account
[42], just as the time coordinate, on assumption that
an interaction event is determined by the particle that
is the earliest in time [43]. This procedure also makes
it possible to take into account the contribution from
many-particle interactions, with a few cascade parti-
cles interacting simultaneously with an intranuclear
nucleon within a time of 10−23 s [44].

The updated code developed by S. Mashnik and
V. Toneev is used to calculate the emission of par-
ticles at the stage of relaxation of a strongly excited
aftercascade nucleus [30]. The subsequent equilib-
rium decay of the after-cascade nucleus is calcu-
lated in terms of conventional Dostrovsky–Phong
theory [41]. Allowance is also made for the depen-
dence of the parameters of the density of levels in
the decaying nucleus on its charge, mass, and ex-
citation energy. The approximations of experimental
cross sections are applied to the cross sections for
hadron–nucleus interactions [45, 46].

6. COMPARISON OF EXPERIMENTAL DATA
WITH THE RESULTS

OF THE CALCULATIONS AND WITH DATA
OBTAINED ELSEWHERE

In the present article, Fig. 6 shows only the
double-differential cross sections for tungsten along
with the results of simulations based on the LAHET,
CEM97, and CASCADE codes.3)

A comparison of the experimental data with the
results of the calculations leads to the following con-
clusions:

(1) An analysis of the spectra of the double-
differential cross sections for neutrons emitted at
angles of 15◦ to 150◦ for all of the incident proton
energies has indicated fairly good agreement be-
tween the experimental data for Pb, W, and Zr with
the results of the simulations on the basis of the
LAHET, СЕМ97, and CASCADE codes throughout

3)The data for Pb, W, Zr, Cu, and Al in the form of tables and
figures are given in [23].
5
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the neutron-energy range 3–300 MeV. A disagree-
ment is observed only in the range between about 15
and 40 MeV, where the calculated values exceed the
experimental data (by up to 50%) at neutron emission
angles of 15◦ to 90◦. The best agreement for Pb
and W has been reached with LAHET. The CEM97
overestimation of the experimental data in the range
10–30 MeV is explained by the overestimated gen-
eration of preequilibrium neutrons. This conclusion is
in good agreement with the results of a comparison
of spallation-product yields calculated on the basis
of CEM97 with the GSI (Darmstadt) data of the
inverse-kinematics experiments [47]. The difficulty
with the overestimated generation of preequilib-
rium neutrons is expected to be overcome by the
updated СЕМ97–CEM2k, CEM2k+GEM2, and
LAQGSM+GEM2 code versions [48].

In the case of Zr and Cu, the experimental spectra
for all angles are in the best agreement with the
spectra simulated by using CEM97.

In the case of Al, the agreement between the ex-
perimental spectra and the spectra simulated by all of
the codes is much poorer.

(2) Figure 7 shows the experimental spectra as
integrated over all neutron emission angles within
four energy ranges restricted at 3, 10, 30, 100, and
300 MeV. Also shown are the results of LAHET,
CEM97, and CASCADE calculations. The energy
groups presented are qualitatively resultant from
P

three stages of proton–nucleus interaction process—
namely, (i) the intranuclear-cascade stage (at neutron
energies of 100–300 MeV), (ii) the preequilibrium-
evaporation stage (energy ranges 10–30 MeV and,
partly, 30–100 MeV), and (iii) the equilibrium-
evaporation stage (energy ranges 3–10 MeV and,
partly, 10–30 MeV).

An analysis of these spectra has revealed the fol-
lowing special features:

(a) In the case of Al, all codes simulate the region
of cascade neutrons satisfactorily. The CASCADE
code describes the evaporation and preevaporation
stages quite properly at 1.0 GeV but leads to un-
derestimated results at 1.6 GeV. The LAHET code
is the best to predict the evaporated-neutron yield at
1.6 GeV.

(b) In the case of Zr andCu, theCEM97 code sim-
ulates all interaction stages in good agreement with
experimental data, the only reservation being that, for
Zr, the evaporation-stage neutron yield is somewhat
underestimated at two incident proton energies; this
region is better described by the CASCADE code.

(c) In relation to the remaining targets, W and Pb
are described much better by all codes (this is not so
only in the range 10–30 MeV). The LAHET code is
the best to agree with experimental data, especially in
the case of Pb at 0.8 GeV and 1.0 GeV. The CAS-
CADE code persistently overestimates the neutron
yields at the evaporation and preequilibrium stages.
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 1 2005
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The CEM97 code yields markedly underestimated
results at energies below 5 MeV; this may result from
the absence of simulations of neutron emission from
fission products, as well as from the insufficiently
correct description of the rotation energy and angular
momentum of the nucleus at the evaporation reaction
stage.

An analysis of the entire dataset leads to following
conclusions:

(a) For the heavy nuclei Pb and W, the exper-
imental data agree satisfactorily with the LAHET,
CEM97, and CASCADEsimulations. To achieve any
better agreement, it is necessary to have a more ac-
curate description of the point of inflection in spectra
at the contact of the equilibrium and preequilibrium
regions (about 10 to 30 MeV) for neutrons emitted
into the forward hemisphere.

(b) For medium nuclei, the code CEM97 is the
most adequate.

(c) For Al, all of the calculated spectra aremarked-
ly different from the experimental data in the case
of equilibrium and preequilibrium evaporation. Tra-
ditionally, this is explained by the inadequacy of the
intranuclear-cascade model to describing the case of
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 1 200
light nuclei, where most of the nucleons are bound
by shell effects, and by the increased probability for
α-cluster emission in strongly excited light nuclei.

(d) For all of the measured nuclei and for all pro-
ton energies, all three codes describe the double-
differential cross sections quite well at the intranuc-
lear-cascade stage.

The following conclusion can be drawn from a
comparison of our experimental data with the results
obtained elsewhere:

At the incident proton energy of 1.0 GeV, our
Pb and Al data are in good agreement with the re-
sults obtained earlier by using 0.8-GeV protons at
LANL [7, 10] and KEK [11], while the Zr data show
good agreement with the data from [7] within the
intranuclear-cascade range (90–300 MeV).

At the incident proton energy of 1.6 GeV, our
Pb data are in good agreement with KEK data from
[11], but the Al data show a significant disagreement
(up to 100%) at the equilibrium and preequilibrium
evaporation stages.
5
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Abstract—General expressions that are obtained in the present study for the differential cross sections
describing the two- and three-body diffractive dissociation of tritons that is induced by intermediate-energy
incident protons are used to calculate the energy distributions of neutrons and protons originating from this
process and of scattered protons. The results are basically in satisfactory (but sometimes only qualitative)
agreement with data from relevant coincidence experiments. c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

The dissociation of the three-nucleon nuclei 3H
and 3He that is induced by incident protons has been
studied experimentally and theoretically for more than
30 years [1–7]. Among other things, these studies
revealed that one can obtain additional and more de-
tailed (than in the case of elastic nucleon scattering
on three-nucleon nuclei) information both about the
structure of three-nucleon systems and about the de-
tails of the nuclear interaction of nucleons with nucle-
ons, deuterons, and 3H and 3He nuclei. Relevant co-
incidence experiments were performed at projectile-
proton energies of about 102 MeV or higher. This
suggests that the processes being considered appear
to be predominantly of a quasifree-proton-scattering
character, in which case momentum and energy are
basically transferred to only one target nucleon, and
that one can employ, in a theoretical investigation,
various approximations that follow from the fact that
the particles involved have rather high energies.

The diffraction approximation [8–10], which we
employ in the present study in a theoretical consid-
eration of the two- and three-particle dissociation of
3H nuclei that is induced by incident protons of non-
relativistic kinetic energies E0 around 70 MeV, is one
of the most efficient approximations in describing the
dissociation of nuclei at these energies. These were
precisely the energies that protons that induced the
dissociation of tritons had in the experiments reported
in [5, 6], which have not yet received an adequate
theoretical interpretation. In those experiments, the
energy spectra of neutrons and protons originating
from the dissociation of tritons and the coincidence
spectra of inelastically scattered protons were mea-
sured in coplanar kinematics for the case where, af-
ter an interaction event, the proton momentum pp

*e-mail: alya@ps.kiev.ua
1063-7788/05/6801-0033$26.00
and the neutron momentum pn formed, respectively,
the angle θp = 45◦ and the angle θn = 45◦ with the
incident-protonmomentum p0 in the triton rest frame
and lay on different sides of the direction (z axis) of the
vector p0 (that is, the angle θpn between the momenta
pp and pn was 90◦).

The kinematical conditions of the experiments that
were reported in [5, 6] and which are treated here
theoretically are at the applicability boundary usually
indicated in the literature for the diffraction approx-
imation. It will be seen below nevertheless that, in
some cases, one can attain fairly good agreement be-
tween the calculated and measured differential cross
sections, this indicating that, in fact, the applicability
range of this approximation is much wider. It would
be natural to expect at least qualitative agreement,
since a qualitative description was obtained from cal-
culations performed by other authors for a similar
situation [3, 4]. Calculations show that, for smaller
angles θp and θn—for example, those that fall with-
in the range 10◦−20◦—and energies in the region
E0 ≥ 100 MeV, differential cross sections would be
much larger than those in [5, 6]; concurrently, the
diffraction-approximation conditions would be satis-
fied much better, and better agreement between the
results of the calculation with data from such ex-
periments could be expected in this case. As will be
seen from the ensuing consideration, it is possible to
correct the traditional formalism of the diffraction nu-
clear model both for larger angles of incident-proton
scattering and for larger angles of the emission of
nucleons formed upon triton-dissociation reactions.

Our theoretical investigations of the processes
3H(p, pn)2H and 3H(p, pn)pn under the kinematical
conditions of the experiments reported in [5, 6] reveal
that the results here are much more sensitive to
the nuclear structure and interaction than at smaller
angles θp and θn and higher energies E0, and this can
c© 2005 Pleiades Publishing, Inc.
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be used in more precise experiments and calculations
for extracting additional information.

In the present study, we aim at approximately solv-
ing the extremely difficult problem of four interacting
and partly (p+ 3H, p+ n+ 2H) or completely (2p +
2n) unbound nucleons in a specific range of energies
of the system where one can use the diffraction ap-
proximation.

2. REACTION 3H(p, pn)2H: FORMALISM

In experiments reported in [5, 6], neutrons orig-
inating from the dissociation of tritons could arise
either in the two-particle breakup of tritons through
the reaction 3H(p, pn)2H or in the complete (three-
particle) dissociation of the 3H nucleus through the
reaction 3H(p, pn)pn. We will first consider the pro-
cess 3H(p, pn)2H, which is simpler from the point of
view of a theoretical investigation.

In the diffraction approximation [4, 8–10], the am-
plitude Af (q) for the reaction 3H(p, pn)2H can be
represented in the form (use is made here of the sys-
tem of units where � = c = 1)

Af (q) = −
∫

d(3)r
∫

d(3)s (1)

×
∫

d(2)ρeiq·ρϕ∗
f (r)ϕ

∗
d(s)ω̂123ψ(r, s),

where ψ(r, s) is the triton internal wave function; r
is the radius vector between the first neutron and
the center of mass of the remaining two nucleons
in the triton being considered; s is the radius vector
between these two nucleons, a neutron and a proton
(respectively, the second and the third nucleon in
the triton); ϕd(s) is the wave function describing the
internal state of the product deuteron; ϕf (r) is the
wave function describing the relative motion (with
a momentum f ) of the knock-on (first) neutron and
this deuteron; and q = p0 − pp is the momentum-
transfer vector. The wave functions in question are
orthonormalized as follows (no account is taken of the
particle spins here):∫

d(3)s
∫

d(3)r|ψ(r, s)|2 =
∫

d(3)s|ϕd(s)|2 = 1,

(2)∫
d(3)s

∫
d(3)rϕ∗

f (r)ϕ
∗
d(s)ψ(r, s) = 0.

As in [4, 7, 11], the diffraction operator ω̂123 (profile
operator) in (1) is given by

ω̂123 =
3∑
j=1

ωje
iqzzj

3∏
k=j+1

(1− ωk), (3)
PH
where ωj is the profile function for the incident proton
and the jth nucleon in the triton (j = 1, 2, 3) and qz
and zj are the z projections of, respectively, the vector
q and the radius vector rj between the incident proton
and the jth nucleon of the triton. The value of qz
in (3) was taken to correspond to the momentum-
conservation law. Integration with respect to ρ in (1)
is performed in a plane that is orthogonal to the vector
p0 = 4k/3, where k is the momentum associated
with incident-proton motion relative to the target nu-
cleus 3H at rest, ρ being that component of the vector
between the incident proton and the triton center of
mass which lies in a plane that is orthogonal to the
vector k, so that ρ · k = 0.

The profile operator ω̂123 defined in (3) is a gen-
eralization of the elastic-scattering profile operator
[which is obtained from (3) upon discarding the expo-
nential function eiqzzj—that is, at qz = 0] to the case
of one deep-inelastic-collision event accompanied by
nucleon knockout from the target nucleus. For angles
of proton scattering and neutron emission from the
triton (they are denoted by θp and θn, respectively) as
large as those in the experiments reported in [5, 6],
the value that is obtained for the longitudinal com-
ponent qz = q·p0/p0 = p0 − ppz of the momentum-
transfer vector q upon taking correctly into account
the momentum-conservation law is significant and
cannot be disregarded, in contrast to what is done in
the case of elastic scattering. This can also be seen
from the theoretical results for the differential cross
section at qz �= 0 and qz = 0.

The physical reason behind the emergence of
a significant longitudinal component qz is that,
prior to a collision with an incident proton, bound-
state nucleons in the triton have relative-momentum
distributions such that the most probable values
of their relative momenta in 3H are not low. It is
clear that, in addition to components orthogonal to
p0, the momentum distribution in question features
significant relative-momentum components aligned
with p0, and this can lead to a considerable scatter of
the values of ppz and qz = p0 − ppz.

The general expression for the differential cross
section for the process p+ t→ p+ n+ d in terms of

the transition amplitudeM (2)
i→f is [4, 7, 12]

d9σ(2) = (2π)4|M (2)
i→f |

2δ(4)(p0 + pt (4)

− pp − pn − pd)
d(3)pp
(2π)3

d(3)pn
(2π)3

d(3)pd
(2π)3

,

where the argument of the four-dimensional delta
function involves the 4-momenta pp, pn, and pd of, re-
spectively, the proton, neutron, and deuteron after the
scattering of an incident proton with a 4-momentum
YSICS OF ATOMIC NUCLEI Vol. 68 No. 1 2005
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p0 on a triton with a 4-momentum pt. All of the
quantities on the right-hand side of (4) are defined in
the laboratory frame, where the triton is at rest prior
to the collision event (pt = 0), as in the experiments
reported in [5, 6].

In order to relate the general transition ampli-

tude M (2)
i→f to the amplitude in (1) in the diffraction

approximation (an insignificant phase factor being
omitted there), it is sufficient to equate the differ-
ential cross section for the incident-proton-induced
diffractive dissociation of a triton into a neutron and a
deuteron [8–10],

d5σ
(2)
i→f = |Af (q)|2 d

(2)κd(3)f
(2π)5

, (5)

d(2)κ = d(2)q⊥,

to the differential cross section (4) integrated with
respect to pd and qz = p0 − ppz (with allowance for
delta functions),

d5σ
(2)
i→f =

∞∫
−∞

dqz

∫
d(3)pd

(
d9σ(2)

dqzd(3)pd

)
. (6)

Here,κ ≡ q⊥ = −pp⊥ is themomentum-transfer (q)
component orthogonal to p0 (κ is a two-dimensional
vector) and pp⊥ is the scattered-proton-momentum
(pp) component orthogonal to p0, so that d(3)pp ≡
dpzd

(2)pp⊥ = d(3)q = dqzd
(2)κ. In performing in-

tegration in (6) and in reducing the result to (5),
it is necessary to bear in mind that the element
d(3)ppd(3)pn of the six-dimensional volume in (4)
can be replaced by d(3)qd(3)f (the modulus of the
transition Jacobian is equal to unity) owing to the
relations f = pp/3 + pn − p0/3 and q = p0 − pp.
In the diffraction approximation, only a term that is
linear in qz can be retained in the argument of the
delta function

δ(E2) ≡ δ

{
E0 − εdn −

1
2M

[p2
0 − 2p0qz (7)

+ (4/3)(κ2 + q2
z) + (3/2)f2]

}
,

where εdn ≈ 6.26 MeV is the energy required to de-
tach a neutron (first nucleon) from the triton [13]. As
a result, we arrive at the relation

M
(2)
i→f =

√
p0/MAf (q) =

√
4k/3MAf (q), (8)

where M is the nucleon mass. We now represent
differential cross sections in the form of expressions
that correspond to the differential cross sections mea-
sured in the experiments reported in [5, 6]. Integrating
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 1 200
expression (4) with respect to the 3-momentum pd,
we obtain

d6σ(2) = 2π
p0

M
|Af (q)|2δ(E2)

d(3)pp
(2π)3

d(3)pn
(2π)3

, (9)

E2 = E0 − εdn − Ep − En − Ed(pp,pn), (10)

E0 =
p2

0

2M
,Ep =

p2
p

2M
,En =

p2
n

2M
, (11)

Ed(pp,pn) =
p2
d

4M
=

1
2
(E0 + Ep + En) (12)

−
√
E0Ep cos θp −

√
E0En cos θn

+
√
EpEn cos θpn,

where pd = p0−pp−pn. Taking into account (10)–
(12), we now recast the differential cross section (9)
into the form of an expression that has already been
used in calculations (it contributed to the differential
cross section measured in [5]). Specifically, we have

d6σ
(2)
i→f

dΩpdΩndEpdEn
=

M2p0

√
EpEn

8π5
|Af (q)|2δ(E2),

(13)

where we have replaced δ(E2) by the function

δ∆(E2) =
1√
π∆2

exp
(
− E2

2

∆2

)
, (14)

lim
∆→0

δ∆(E2) = δ(E2),

which involves a finite smearing parameter ∆. A nu-
merical value of ∆ reflects experimental errors asso-
ciated with the particle energies and measured angles
in (10)–(12). Since the two neutrons of the triton can
be knocked out with equal probabilities, the ultimate
expression for the differential cross section in (13)
must be doubled. Integrating (9) with respect to the
energy En of the knock-on neutron, we obtain [with
allowance for relations (10)–(12) and doubling] a dif-
ferential cross section that we have also directly used
in our calculations (it made the main contribution
to the differential cross section measured in [6]). Its
specific form is

d5σ
(2)
i→f

dΩpdΩndEp
=

Mp0

√
2MEp

8π5G
(15)

×
{

[p2
n|Af (q)|2]pn= 1

3
(g+G)

+ [p2
n|Af (q)|2]pn= 1

3
(g−G)

}
,

where

g = p0 cos θn − pp cos θpn, (16)
5
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G = [g2 + 3(p2
0 + 2p0pp cos θp − 3p2

p − 4Mεdn)]1/2.
(17)

Over the kinematical region corresponding to the ex-
perimental conditions in [6], the contribution of the
first term in the braced expression on the right-hand
side of (15) is dominant.

Although nonrelativistic kinematics can be used
in theoretically analyzing the reaction 3H(p, pn)2H
at an energy of E0 ≈ 70 MeV, numerical estimations
reveal that the Coulomb interaction effect is still mod-
est; therefore, it can be disregarded. However, we will
see that, at such moderate energies, the quasielastic-
scattering approximation can prove to be inadequate
numerically in some region (specifically, in the region
where the differential cross section is small) because
of a considerable value of εdn.

In calculating the differential cross sections (13)
and (15) and differential cross sections that are given
below, we use the model wave functions [14–16]

ψ(r, s) =
33/4α3

π3/2
exp
[
−α2

(
r2 +

3
4
s2
)]
, (18)

α = 0.375 fm−1;

ϕd(s) =
(

2λ2

π

)3/4

exp(−λ2s2), (19)

λ = 0.267 fm−1;

ϕf (r) = exp(if · r)−
√

8 exp
(
− f2

4α2
− α2r2

)
(20)

(their parameters were found in [14] from a fit to data
on electron scattering from [17]) and the nucleon–
nucleon profile functions [18, 19]

ωj(ρj) = (a1 − ia2) exp(−bρ2
j), j = 1, 2, 3, (21)

where ρj is the component of the radius vector rj in
a plane orthogonal to the vector k. The real-valued
parameters a1, a2, and b appearing in (21) are func-
tions of the relative energy of colliding nucleons. Their
values were borrowed from [18, 19].

3. FORMALISM FOR THE REACTION
3H(p, pn)pn: TOTAL CROSS SECTIONS

In the diffraction approximation, one can also
describe quite straightforwardly the three-particle
breakup of a triton undergoing a collision with a
nonrelativistic incident proton, taking into account
the final-state interactions between four unbound
nucleons.
PH
In the diffraction approximation, the amplitude
Af ,u(q) for the reaction t+ p→ 2p + 2n can be rep-
resented in the form [8–10]

Af ,u(q) = −
∫

d(3)r
∫

d(3)s (22)

×
∫

d(2)ρeiq·ρϕ∗
f (r)ϕ

∗
u(s)ω̂123ψ(r, s),

where ϕf (r) has the form (20) and is the wave func-
tion that describes the relative motion (with momen-
tum f ) of the first neutron knocked out from the
triton and the unbound system formed by the second
neutron and the proton (third nucleon), which was
released from the triton. We have

ϕu(s) = exp(iu · s)−
√

8 exp
(
− u2

3α2
− 3

4
α2s2

)
,

(23)∫
d(3)s

∫
d(3)rϕ∗

f (r)ϕ
∗
u(s)ψ(r, s) = 0,

where u = (p′
p − p′

n)/2 is the relative momentum of
the second and the third nucleon, p′

n and p′
p being

their momenta; the rest of the notation is identical to
that in the preceding section.

The amplitude in (22) can be related to the tran-

sition amplitude M
(3)
i→f characterizing the process

3H(p, pn)pn and determining the differential cross
section for complete triton dissociation induced by
incident protons,

d12σ
(3)
i→f = (2π)4|M (3)

i→f |
2δ(4)(p0 + pt (24)

− pp − pn − pp
′ − p′n)

d(3)pp
(2π)3

d(3)pn
(2π)3

d(3)p′
p

(2π)3
d(3)p′

n

(2π)3
,

where p′n and p
′
p are the 4-momenta of the second and

the third nucleon (proton and neutron, respectively)
released upon triton breakup [further, we assume,
as in (4), that pt = 0]. Going over in (24) from
the six-dimensional momentum-volume element
d(3)p′

pd
(3)p′

n to the momentum-volume element

d(3)ud(3)p′
d (the absolute value of the transition Jaco-

bian is equal to unity) and performing integration with
respect to p′

d (p
′
d = p′

n + p′
p is the total momentum

of the unbound second and third nucleons), we obtain

d9σ
(3)
i→f = 2π|M (3)

i→f |
2δ(E3) (25)

× d(3)pp
(2π)3

d(3)pn
(2π)3

d(3)u
(2π)3

,

E3 = E0 − ε− u2

M
(26)
YSICS OF ATOMIC NUCLEI Vol. 68 No. 1 2005
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− 1
2M

[
p2
0 +

3
2
f2 +

4
3
(κ2 + q2

z)− 2p0qz

]
,

d(3)u = u2dudΩu = u2du sin θudθudϕu, (27)

where ε ≈ 8.5 MeV is the triton binding energy [13].
Further, we go over in (25) from the variables pp

and pn to the new variables q(qz,κ) and f and per-
form integration with respect to qz from −∞ to +∞,
employing the delta function δ(E3) and relation (26),
where we disregard the q2

z term, which is small in the
diffraction approximation. We then arrive at

d8σ
(3)
i→f =

M

p0
|M (3)

i→f |
2 d

(2)κ

(2π)2
d(3)f
(2π)3

d(3)u
(2π)3

. (28)

Comparing this expression with the correspond-
ing differential cross section within the diffraction
model [9, 10],

d8σ
(3)
i→f = |Af ,u(q)|2 d

(2)κ

(2π)2
d(3)f
(2π)3

d(3)u
(2π)3

, (29)

we obtain the relation

|M (3)
i→f |

2 =
p0

M
|Af ,u(q)|2, (30)

which is similar to that in (8) and which involves
the well-known expression (22) for the amplitude of
complete diffractive triton disassembly.

Let us now represent the differential cross sec-
tion for three-particle triton breakup in a form that
corresponds to the differential cross sections mea-
sured in [5, 6]. For this purpose, we substitute ex-
pression (30) into (25) and integrate the result with
respect to the relative momentum u, taking into ac-
count relations (26) and (27) [in doing this, it is
not necessary at this stage to disregard the q2

z term
in (26)]. As a result, we arrive at a differential cross
section that was measured (partly) in [5]. Specifically,
we have

σ
(3)
1 ≡ σ

(3)
1 (θp, θn, Ep, En) (31)

=
d6σ

(3)
1

dΩpdΩndEpdEn

=
2M3u0p0

√
EpEn

(2π)7
|Af ,u0(q)|2,

|Af ,u0(q)|2 =
1
4π

∫
dΩu|Af ,u(q)|2, (32)

where, on the right-hand side of (32), wemust replace
u by u0,

u0 =
√
M [E0 − ε− Ep − En − E′

d(pp,pn)]
1/2,
(33)
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E′
d(pp,pn) =

1
4M

[p′
d(pp,pn)]

2, (34)

p′
d(pp,pn) = p′

p + p′
n = p0 − pp − pn.

Thus, the differential cross section given by expres-
sion (31) depends on the momenta pp and pn.

We will now take into account the identity of two
protons and the identity of two neutrons in the final
state of the process 3H + p→ 2p+ 2n. Since, in [5],
two nonidentical nucleons, a proton and a neutron,
were recorded in coincidence in the reaction of com-
plete triton dissociation, the differential cross section
in (31) must be supplemented with three more terms
(partial differential cross sections). Here, the situation
is similar to that described in [20–23], and we will
dwell on this analogy at some length later. Of these

partial differential cross sections, one, σ(3)
2 , corre-

sponds to recording the same neutron (first nucleon)
as in (31) and the knock-on (not scattered) proton
(third nucleon in the triton). The partial cross section

σ
(3)
2 is obtained from the differential cross section (24)

by integrating the latter with respect to the variables
pp and p′

n. As a result, the partial differential cross
section

σ
(3)
2 ≡ σ

(3)
2 (θ′p, θn, E

′
p, En) =

d6σ
(3)
2

dΩ′
pdΩndE′

pdEn
(35)

will depend on the momenta p′
p and pn.

Yet another partial differential cross section for

complete triton dissociation, σ(3)
3 , is obtained upon

integrating the differential cross section in (24) with
respect to pn and p′

p, so that the differential cross
section

σ
(3)
3 = σ

(3)
3 (θp, θ′n, Ep, E

′
n) =

d6σ
(3)
3

dΩpdΩ′
ndEpdE

′
n
(36)

will depend on pp and p′
n. It corresponds to record-

ing the scattered proton [as in (31)] and the other
neutron (second nucleon) escaping from the triton.

The remaining partial differential cross section σ(3)
4 is

obtained by integrating (24) with respect to pp and
pn:

σ
(3)
4 = σ

(3)
4 (θ′p, θ

′
n, E

′
p, E

′
n) =

d6σ
(3)
4

dΩ′
pdΩ′

ndE
′
pdE

′
n

.

(37)

Therefore, the differential cross section σ(3)
4 depends

onp′
p andp′

n and corresponds to recording the second
and third nucleons of the dissociated triton.
5
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Fig. 1. Differential cross section
d6σi→f/dΩpdΩndEpdEn for triton breakup in the
scattering of E0 = 72 MeV protons as a function of
the energy En of knock-on neutrons for the case where
the energy of knock-on protons is Ep = 35 MeV. The
momenta pp and pn of the detected proton and neutron
form angles of 45◦ with respect to the incident-proton
momentum p0 in the rest frame of the 3H nucleus and
lie in the same plane with the vector p0 on different
sides of it. The solid curve (total contribution of two-
and three-particle triton breakup) and the dashed
curve (contribution of two-particle breakup alone) were
calculated with the triton wave function (18), while the
dotted curve (which represents both the two- and the
three-particle breakup of a 3H nucleus) was calculated
with the triton wave function (42).

Obviously, the differential cross section measured
in [5] receives contributions from all four partial differ-
ential cross sections (31) and (35)–(37), which differ
in structure; that is,

d6σ
(3)
i→f

dΩpdΩndEpdEn
=

4∑
k=1

σ
(3)
k (θp, θn, Ep, En). (38)

Upon integration of (38) with respect to the energy
En of the knock-on neutron (within the limits allowed
by conservation laws), we obtain the differential cross
section

d5σ
(3)
i→f

dΩpdΩndEp
=

4∑
k=1

∫
dEnσ

(3)
k (θp, θn, Ep, En),

(39)

which will contribute to the differential cross section
measured in [6].
PH
Each of the cross sections measured in [5, 6] re-
ceives contributions both from the two- and from the
three-particle breakup of a triton. It is clear that the
sum of the differential cross sections given by (13)
and (38) determines the differential cross section

d6σi→f

dΩpdΩndEpdEn
=

d6σ
(2)
i→f

dΩpdΩndEpdEn
(40)

+
d6σ

(3)
i→f

dΩpdΩndEpdEn
,

which, under respective kinematical conditions, must
describe the differential cross section measured in [5],
while the sum of the differential cross sections in (15)
and (39), namely, the total cross section

d5σi→f

dΩpdΩndEp
=

d5σ
(2)
i→f

dΩpdΩndEp
+

d5σ
(3)
i→f

dΩpdΩndEp
, (41)

must describe the cross section observed in [6].
The following comments are in order here. It was

indicated, for example, in [21] that, if the particles
involved are quite widely separated in space (this is
often so for short-range nuclear interactions) as clus-
ters in some nuclei or as unbound diverging particles,
the wave function used for the system being consid-
ered can be factorized to a good accuracy, as was done
here for the final states in (1) and (22). Moreover,
it is not necessary to perform symmetrization here
with respect to identical particles in calculating the
probabilities and differential cross sections in ques-
tion, since the contributions from this symmetrization
are quite small in this case [20–23]. The result then
appears to be nearly identical to that in the case of
a semiclassical consideration. The possibility of skip-
ping symmetrization of the wave function for a system
formed by widely spaced constituents is in fact the
content of the “cluster law” [22], which was proven
for a general case in [23]. The process considered here
(as a matter of fact, it is a semiclassical process since
the relevant wavelengths are short), which involves
the diffractive dissociation of composite particles [8–
10], falls within the applicability range of this law.
Therefore, the identity of the scattered proton and the
proton knocked out from a triton is taken here into
account by means of a purely classical procedure—
that is, by summation of the corresponding differen-
tial cross sections, since, in the experiments reported
in [5, 6], these protons were not distinguished in
detecting them. The identity of released neutrons in
the case of complete triton dissociation was taken
into account in a similar way. We would like to recall
here that disappearance of interference upon going
over to the classical limit takes place in collisions of
identical particles in the case of long-range Coulomb
interaction inclusive [24].
YSICS OF ATOMIC NUCLEI Vol. 68 No. 1 2005
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In accordance with the measurements described
in [5, 6], we explore, in the present study, processes
of coplanar kinematics, in which case the main con-
tribution to the total differential cross sections (40)
and (41) in the region of maxima comes from the two-
particle dissociation of tritons. However, preliminary
calculations revealed that, in a general (noncoplanar)
case, there can arise kinematical situations where
the contribution of the three-particle dissociation of
tritons is dominant.

4. CALCULATION AND DISCUSSION
OF THE RESULTS

Since the data obtained from experiments aimed at
studying nucleon–nucleon scattering and employed
in [18, 19] to determine the parameters a1, a2, and
b appearing in (21) involved sizable errors and were
incomplete, the resulting parameter values suffered
from significant uncertainties. By using the corridors
of possible values of these parameters for various nu-
cleon energies, the differential cross sections calcu-
lated by formulas (40) and (41) were simultaneously
fitted by the least squares method to experimental
data from [5] and from [6] with allowance for both
two- and three-particle triton dissociation induced by
incident protons. Figures 1 and 2 display the results of
such calculations (curves) and the corresponding ex-
perimental data from [5, 6] with errors (points), where
∆ ≈ 4 MeV. With allowance for the two- and the
three-particle dissociation of tritons, the solid curves
were calculated with the triton wave function (18),
while the dotted curves were calculated (for the sake
of comparison) with the triton wave function repre-
sented in the clustered (factorized) form

ψ(r, s) = ϕ0(r)ϕd(s), (42)

ϕ0(r) =
(

2α2

π

)3/4

exp(−α2r2),

where ϕ0(r) is the wave function describing the rel-
ative motion of the first (neutron) nucleon and the
system of the other two triton nucleons in the bound
state and ϕd(s) is the deuteron wave function (19).
The dashed curves represent the contribution from
only two-particle triton breakup for the triton wave
function (18).

Figure 1 displays the differential cross section
d6σi→f/dΩpdΩndEpdEn—that is, the differential
cross section (40)—as a function of the energy En
of knock-on neutrons atEp = 35MeV. It can be seen
that, in the region of a maximum atEn ≈ 30MeV, the
main contribution to the differential cross section (40)
comes from the differential cross section (13) for
two-particle dissociation, but that, to the left of the
maximum at En ≤ 25 MeV, the differential cross
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 1 200
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Fig. 2. Differential cross section d5σi→f/dΩpdΩndEp
for triton breakup in the scattering of E0 = 70 MeV
protons versus the energy Ep of knock-on protons (the
calculationswere performed for the same final-state kine-
matical parameters as those used for the differential cross
section in Fig. 1). The notation for the curves is identical
to that in Fig. 1.

section (38) for three-particle dissociation proves
to be significant, so that its inclusion is necessary
for attaining better agreement between the results
of the calculations and experimental data from [5].
For En ≥ 28 MeV, the contribution of three-particle
triton breakup vanishes by virtue of conservation
laws, and this is the reason why the dashed curve
coincides with the solid curve for En ≥ 28 MeV.

The differential cross section calculated by for-
mula (41)—namely, d5σi→f/dΩpdΩndEp—as a
function of Ep is shown in Fig. 2, along with the cor-
responding experimental data from [6]. For all values
of the detected-proton energy Ep, the contribution
to (41) from the differential cross section (15) for the
two-particle dissociation of tritons proved to be much
greater than the contribution of the differential cross
section (39) for the three-particle dissociation of 3H
nuclei in this case as well, the optimum values of the
interaction parameters being

a1 = 2.65, a2 = 1.95, b = 0.372 fm−2. (43)

These values are close to those of the corresponding
parameters in [18, 19], where themean parameter val-
ues were determined on the basis of experimental data
from [4, 19, 25, 26] on nucleon–nucleon scattering
and were then varied within the aforementioned cor-
ridors of their values in order to achieve better agree-
ment with the experimental results obtained in [5, 6].

We note that, among the four terms of the differen-
tial cross sections in (38) and (39) for complete triton
5
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dissociation, the contributions of the two differential
cross sections σ

(3)
1 and σ

(3)
3 , which correspond to

recording the scattered proton and one of the two
released neutrons, proved to be, under the kinematical
conditions of the experiments reported in [5, 6], two
orders of magnitude smaller than the contributions of

the remaining two differential cross sections σ(3)
2 and

σ
(3)
4 , which are on the same order of magnitude.

From the figures, one can see that, within the
diffraction approximation, the use of the model wave
functions (18)–(20), (23), and (42) and theGaussian-
type profile functions (21) makes it possible to de-
scribe fairly well the experimental differential cross
section from [5]; as to the experimental differential
cross section from [6], its description within this
framework is predominantly of only a qualitative
character. Agreement with experimental data, espe-
cially with data from [6], can be improved by using
more realistic dependences instead of the model wave
functions (18)–(20) and (23). However, there will be
a concurrent increase in computational difficulties
associated with the growth of the multiplicity of
integration to be performed numerically in that case.
The agreement with the experimental data from [5,
6] can also be improved by calculating the differential
cross sections in (40) and (41) without applying the
procedure of simultaneous fitting, but this will lead
to different sets of the interaction parameters a1, a2,
and b in (21) for these two total differential cross
sections. Finally, one can improve the agreement with
the experimental data, especially in Fig. 2, by slightly
changing (reducing) the numerical values of the
structural parameters λ and α in (18)–(20), (23), and
(42). However, we preferred the set of values in (43),
which were obtained in our study simultaneously
for the differential cross sections (40) and (41), and
values that were derived previously in an independent
way for the structural parameters λ and α.

In all probability, relatively small (within a few
percent) distinctions between the final results for the
two triton internal wave functions used [that in (18)
and that in (42)]—that is, the proximity of the solid
and dotted curves in the figures—can be explained by
a partial clustering of the 3H nucleus into a deuteron
and a neutron. This conjecture is in accord with the
conclusion drawn in [27], where it was shown that the
probability Pd of an undistorted deuteron state in the
triton is 0.448. Although this value is 1.5 times less
than the value of Pd = 0.65 for the 6Li nucleus [28],
which is well known to be clustered into a deuteron
and an alpha particle, it is indicative of the presence of
some degree of clustering in the triton.
PH
5. CONCLUSIONS

(i) In the diffraction approximation, analytic ex-
pressions have been obtained for differential cross
sections describing two- and three-particle triton
dissociation induced by intermediate-energy incident
protons.

(ii) By and large, the differential cross sections
for proton-induced triton dissociation that have been
calculated by using model wave functions, profile
functions, and one set of interaction parameters
in (43) reproduce satisfactorily experimental data
from [5], but they describe only qualitatively experi-
mental data from [6].

(iii) It has been shown that, for the coplanar kine-
matical conditions of the experiments reported in [5,
6], the contribution of the two-particle dissociation of
tritons to the differential cross section is dominant ev-
erywhere, but that, in order to attain better agreement
with experimental data, it is necessary to take into
account the three-particle dissociation of 3H nuclei
as well.

(iv) A comparison of the results obtained with the
triton wave functions in (18) and in (42) indicates
that, in accord with the data quoted in [27], the 3H
nucleus is partly clustered into a deuteron and a neu-
tron.
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Abstract—Within the relativistic quasipotential approach to quantum field theory, the relativistic inverse
scattering problem is solved for the case where the total quasipotential describing the interaction of two
relativistic spinless particles having different masses is a superposition of a nonlocal separable and a local
quasipotential. It is assumed that the local component of the total quasipotential is known and that there
exist bound states in this local component. It is shown that the nonlocal separable component of the total
interaction can be reconstructed provided that the local component, an increment of the phase shift, and
the energies of bound states are known. c© 2005 Pleiades Publishing, Inc.
The inverse scattering problem has a long his-
tory [1–3]. A comprehensive review on this subject
for the nonrelativistic case can be found in [4, 5].
For the most part, the interaction in this problem
is reconstructed on the basis of the nonrelativistic
Schrödinger equation [6–9], this being so in the case
of separable potentials inclusive. Therefore, it would
be of interest to solve the relativistic inverse scatter-
ing problem—in particular, within the quasipotential
approach [10].

In the present study, the problem of reconstruct-
ing the nonlocal separable component of the total
quasipotential describing the interaction of spinless
particles that have different masses (m1 �=m2) is con-
sidered within the relativistic quasipotential approach
[11]. It is assumed that the local component W (r) of
the total interaction admits the existence of nl bound
states at energies satisfying the condition1)

0 ≤ Ej = coshχj < 1, χj = iκj , (1)

0 < κj � π/2, j = 1, 2, . . . , nl.

Moreover, the local component is considered to be
known. We will show that the nonlocal separable
component Vl(r) of the total potential can be recon-
structed provided that the local componentW (r), the
increment of the phase shift δVl (χ′), and the energies
of the bound states are known. Our starting point is
the expression for the phase shift derived in [12] in the
form

tan δVl (χ′) = −π
2
sinh−1χ′Al(χ′) (2)

1)Here and below, we use the system of units in which
� = c = 1.
1063-7788/05/6801-0042$26.00
×
[
1− εl

2

nl∑
j=1

Clj
|Ṽl(χj)|2

coshχ′ − coshχj

+
1
2
P

∞∫
0

dχ
Al(χ)

coshχ− coshχ′

]−1

,

Al(χ′) =
2
π
εl|Ql(cothχ′)Ṽl(χ′)/FW

l (χ′)|2, (3)

εl = ±1,

where P symbolizes the principal-value prescription,
Ql(z) is a Legendre function of the second order,
Ṽl(χ) is the transform of the quasipotential Vl(r),
FW
l (χ′) is the Jost function, and Clj are the normal-

ization constants corresponding to the purely local
quasipotentialW (r).2)

In order to reconstruct the separable component
Vl(r) of the total quasipotential on the basis of the
increment of the phase shift δVl (χ′), we will solve the
integral Eq. (2) for the unknown function Al(χ′). In
doing this, we will develop a relativistic generalization

2)We recall that the Jost function FWl (χ′) is expressed
in terms of the phase shift δWl (χ′) as FWl (χ′) =

|FWl (χ′)|exp[−iδWl (χ′)] and that the zeros of the Jost
function, χj(j = 1, 2, . . . , nl), which determine the energies
(1) of the bound states of the local quasipotential W (r),
are located on the positive part of the imaginary axis in
the complex plane of the rapidity χ′ (in the c.m. frame, the
rapidity parametrizes the energyE′

q of an effective relativistic
particle of mass m′ =

√
m1m2 : E′ = Eq′/m

′ = coshχ′).
The normalization constants Clj for the bound-state
eigenfunctions ϕl(r, χj) are also expressed in terms of
the Jost function as C−1

lj =
∫∞
0
drϕl(r, χj)ϕ

∗
l (r, χj) =

i
4
[Ql(cothχj)]−2FWl (−χj)dFWl (χj)/dχj , j = 1, 2, . . ., nl.
c© 2005 Pleiades Publishing, Inc.
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of the method proposed by Chadan [6] for solving the
respective nonrelativistic inverse scattering problem.
Making use of the Hilbert integral transformation,
we will then find the function Ṽl(χ′) from (3). After
that, we will employ the generalized Hankel integral
transformation [12]3)

Vl(r) =

∞∫
0

dρl(coshχ)Ṽl(χ)ϕl(r, χ) (4)

=
nl∑
j=1

Clj Ṽl(χj)ϕl(r, χj) +

∞∫
0

dχτl(χ)Ṽl(χ)ϕl(r, χ),

τl(χ) =
2
π
|Ql(cothχ)/FW

l (χ)|2

to reconstruct the quasipotential Vl(r).4)

For the resulting solution to the inverse scattering
problem to be unique, we assume that the increment
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 1 200
of the phase shift δVl (χ′) in formula (2) is Hölder
continuous with a positive value of the exponent and
that, for χ′ → +∞, we have the estimate

δVl (χ′) = O(χ′−γ), l ≥ 0, γ > 1. (5)

These requirements imply that the quasipotential
Vl(r) satisfies the condition

rVl(r) ∈ L1(0,∞). (6)

Moreover, the Levinson theorem for the phase shift
[12] states that

δVl (0)− δVl (∞) = δVl (0) = π(σl − nl + νl) (7)

and

δWl (0)− δWl (∞) = δWl (0) = πnl.

Here, σl is the number of bound states corresponding
to the total quasipotential and having energies that
satisfy the conditions
0 ≤ Etj′ = coshχtj′ < 1, χtj′ = iκtj′ , 0 < κtj′ ≤ π/2, (8)

j′ = 1, 2, . . . , σl, σl =


 nl − 1 (Φl(1) < 0), nl (Φl(1) > 0) for εl = +1

nl (Φl(1) < 0), nl + 1 (Φl(1) > 0) for εl = −1,
where

Φl(E′) = εl


1− εl

2

nl∑
j=1

Clj|Ṽl(χj)|2
E′ − Ej

+
1
2
P

∞∫
0

dχ
Al(χ)

coshχ− E′


 ,

3)Note that, in the absence of the local interaction [W (r) ≡ 0],
the integral transformation (4) is nothing but the Hankel
integral transformation proposed in [13].

4)Here, ϕl(r, χ) is a regular solution to the finite-difference
quasipotential equation for the local quasipotential W (r)
admitting the existence of nl bound states whose energies
are given by (1), while

dρl(coshχ)

d(coshχ)

=




sinh−1χτl(χ), E = coshχ ≥ 1,
nl∑
j=1

Cljδ(coshχ− coshχj), 0 ≤ E = coshχ < 1,

χ = iκ, χj = iκj , 0 < κ, κj ≤ π/2,

is the spectral density associated with the local quasipoten-
tialW (r).
and νl is the number of spurious bound states whose
energies satisfy the condition

Efk = coshχfk ≥ 1, k (9)

=


 0, 1, . . . , νl − 1, εl = +1,

1, 2, . . . , νl, εl = −1.

As was demonstrated in [12], the energies (8) of true
bound states for the total quasipotential are simple
roots of the equation

Φl(Etj′) = εl


1− εl

2

nl∑
j=1

Clj|Ṽl(χj)|2
Etj′ − Ej

(10)

+
1
2

∞∫
0

dχ
Al(χ)

coshχ− Etj′


 = 0, j′ = 1, 2, . . . , σl,

whereas the energies (9) of spurious bound states can
be determined from the values of χ′ at which the in-
crement of the phase shift intersects the straight lines
δVl = πk (k is an integer) from above as χ′ increases;
5
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that is,

δVl (χfk) = πk, k =


 0, 1, . . . , νl − 1, εl = +1,

1, 2, . . . , νl, εl = −1.
(11)

Making the substitutions x = coshχ′ and t = coshχ
and introducing the notation

∆V
l (x) = δVl (arcoshx), (12)

gl(x) = −(2/π)(x2 − 1)1/2 tan ∆V
l (x),

ψl(x) = Al(arcoshx)g−1
l (x)

× [1 + i(π/2)gl(x)(x2 − 1)−1/2],

hl(x) = (π/2)gl(x)(x2 − 1)−1/2

× [1− i(π/2)gl(x)(x2 − 1)−1/2]−1

= − sin∆V
l (x)exp[−i∆V

l (x)],

we recast the integral Eq. (2) into the form

ψl(x) = 1− εl
2

nl∑
j=1

Clj
|Ṽl(χj)|2
x− Ej

(13)

+
1
π

∞∫
1

dt
ψl(t)h∗l (t)
t− x− i0

.

The integral Eq. (13) is a nonhomogeneous integral
equation, in just the same way as in the case where
the total quasipotential has no local part [W (r) ≡ 0]
[13]. Moreover, this equation has the same form as the
respective nonrelativistic equation obtained in [6]. In
order to solve it, we introduce the function

Hl(z) = µl(z) +
1
π

∞∫
1

dt
ψl(t)h∗l (t)
t− z

, (14)

where

µl(z) = 1− εl
2

nl∑
j=1

Clj
|Ṽl(χj)|2
z − Ej

.

Obviously, the function Hl(z) is an analytic function
in the complex plane of the variable z with a cut from 1
to +∞, with the exception of the points z = Ej (0 ≤
Ej < 1, j = 1, 2, . . . , nl), where it has simple poles.
Also, we have

lim
|z|→∞

Hl(z) = 1 (15)

along any direction provided that the function ψl(x)
is Hölder continuous and that the integral in (14)
converges. In terms of the function introduced above,
the solution to the integral Eq. (13) has the form
ψl(x) = Hl(x+) ≡ lim

η→+0
Hl(x + iη), 1 ≤ x ≤ ∞.

(16)
P

The functionHl(z) can be represented in the form

Hl(z) = µl(z) +Gl(z)exp[ωl(z)], (17)

where

ωl(z) = − 1
π

∞∫
1

dt
∆V
l (t)
t− z

. (18)

From the above assumptions on the behavior of the
increment of the phase shift and from conditions (5)
and (15), it follows that

lim
|z|→∞

ωl(z) = 0, lim
|z|→∞

Gl(z) = 0 (19)

along all directions. Moreover, the function Gl(z)
must be analytic in the complex plane of the variable
z with a cut from 1 to +∞, while the function (18) is
defined everywhere on the cut, with the exception of
maybe the point z = 1, where its behavior is given by

ωl(z) = (1/π)∆V
l (1) ln |1− z|+ Ωl(z), z → 1.

(20)

The function Ωl(z) is finite as z → 1, and ∆V
l (1) =

δVl (0) = π(σl − nl + νl) according to the Levinson
theorem (7). For this reason, the function exp[ωl(z)]
either is finite at σl − nl + νl = 0 or has a zero of order
σl − nl + νl > 0 at the point z = 1.5)

The discontinuity of the functionHl(z) across the
cut is given by

Hl(x+)−Hl(x−) = Gl(x+)exp[ωl(x+)] (21)

−Gl(x−)exp[ωl(x−)]

= −2i sin ∆V
l (x)exp[i∆V

l (x)]ψl(x).

Substituting the solution in (16) into expression (21)
and taking into account the representation in (17),
we arrive at the nonhomogeneous Riemann–Hilbert
equation for the unknown functionGl(z),

Gl(x+)exp[ωl(x+) + 2i∆V
l (x)]

−Gl(x−)exp[ωl(x−)] = µl(x){1 − exp[2i∆V
l (x)]},

(22)

where

ωl(x±) = lim
η→+0

ωl(x± iη) = αl(x)∓ i∆V
l (x), (23)

αl(x) = − 1
π
P

∞∫
1

dt
∆V
l (t)

t− x
, 1 ≤ x ≤ ∞. (24)

5)In the case where δVl (0) = −π—that is, for σl = nl − 1
(nl �= 0) and νl = 0 (εl = +1), the function Hl(z) and,
hence, the function ψl(x) are not finite at z = 1. For this
reason, the inverse scattering problem for this case calls for a
dedicated consideration.
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Taking into account (23), we can recast Eq. (22) into
the form

Gl(x+)−Gl(x−) = −µl(x){exp[−ωl(x+)] (25)

− exp[−ωl(x−)]}, 1 ≤ x ≤ ∞.

A particular solution satisfying Eq. (25) and the con-
ditions in (19) is given by

G̃l(z) = 1− µl(z)exp[−ωl(z)]

− εl
2

nl∑
j=1

Clj
|Ṽl(χj)|2
z − Ej

exp[−ωl(Ej)].

From this formula, we obtain a particular solution
ψ̃l(x) to the nonhomogeneous integral Eq. (13). Tak-
ing expressions (16) and (17) into account, we arrive
at

ψ̃l(x) = exp[ωl(x+)] (26)

×


1− εl

2

nl∑
j=1

Clj
|Ṽl(χj)|2
x− Ej

exp[−ωl(Ej)]


 .

The function in (26) is regular at x = 1 (at this point,
it either is finite at σl − nl + νl = 0 or has a zero of
order σl − nl + νl > 0), Hölder continuous with an
exponent equal to that for the increment of the phase
shift, and bounded for x→ +∞ in accord with a priori
assumptions on its properties. Moreover, the function
in (26) satisfies Eq. (13), because the residue theorem
implies that

lim
R → +∞
η → +0

1
2πi

∫
Γ+

dz
H̃l(z)

z − x− iη

= res

[
H̃l(z)

z − x− iη
, z = x + iη

] ∣∣∣∣∣
η→+0

+
nl∑
j=1

δnjres

[
H̃l(z)

z − x− iη
, z = En

] ∣∣∣∣∣
η→+0

,

where

H̃l(z) =

{
1− εl

2

nl∑
n=1

Cln
|Ṽl(χn)|2
z − En

exp[−ωl(En)]
}

× exp[ωl(z)]

and Γ+ is a closed contour consisting of the circum-
ference C+

R of radius R centered at z = 0, the cir-
cumference C−

η of radius η centered at z = 1, and the
two edges of the cut from 1 to R, the direction of the
contour along the upper edge being opposite to that
along the lower edge. According to the asymptotic
formula (19), the contribution of the integral along the
circumference C+

R tends to unity as R→ +∞, while,
according to the estimate in (20) and the conclusions
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presented in footnote 5, the integral along the circum-
ference C−

η tends to zero as η → +0. From the above
and from expression (23), we obtain

1 +
1
π

∞∫
1

dt
ψ̃l(t)h∗l (t)
t− x− i0

= ψ̃l(x)

+
εl
2

nl∑
j=1

Clj
|Ṽl(χj)|2
x− Ej

;

that is, the function ψ̃l(x) given by (26) is a particular
solution to the nonhomogeneous integral Eq. (13).

A general solution to the homogeneous equation

ψlо(x) =
1
π

∞∫
1

dt
ψlо(t)h∗l (t)
t− x− i0

(27)

has the form
ψlо(x) = Hlо (x+) (28)

= lim
η→+0

Hlо(x+ iη), 1 ≤ x ≤ ∞,

where the function

Hlо(z) =
1
π

∞∫
1

dt
ψlо(t)h∗l (t)

t− z
(29)

is analytic in the complex plane of z with a cut from 1
to +∞, the equation

lim
|z|→∞

Hlо(z) = 0 (30)

being valid along any direction. Moreover, the func-
tion in (29) satisfies the Riemann–Hilbert homoge-
neous equation

Hlо(x+)exp[2i∆V
l (x)]−Hlо(x−) = 0, (31)

1 ≤ x ≤ ∞,

which follows from expression (21) for the disconti-
nuity of the function Hl(z) ≡ Hlо(z) across the cut
and from the representation in (28). Therefore, we use
the following ansatz for a general solution to Eq. (27):

Hlо(z) = exp[ωl(z)]
m∑
k=0

Ak
(z − 1)k

. (32)

Under the condition that the function Hlо(z) is finite
at z = 1 (it either is finite at σl − nl + νl = 0 or has
a zero of order σl − nl + νl > 0 at this point), the
substitution of expression (32) into Eq. (31) gives

m =


 σl − nl + νl > 0,

0 at σl − nl + νl = 0;

atm = σl − nl + νl = 0, A0 = 0. Therefore, we have
5
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ψlo(x) = Hlo(x+) = exp[ωl(x+)]




σl−nl+νl∑
k=1

Ak
(x− 1)k

at σl − nl + νl > 0,

0 at σl − nl + νl = 0.
(33)
As in the case of a particular solution, integration
along the contour Γ+ leads to the conclusion that the
function in (33) is a solution to Eq. (27) and possesses
all the required properties.

According to relations (23), (24), (26), and (33), a
general solution of the integral Eq. (13) is given by

ψl(x) = ψ̃l(x) + ψlо(x) = exp[αl(x)− i∆V
l (x)]

×
{

1 +
σl−nl+νl∑
k=1

Ak
(x− 1)k

(34)

− εl
2

nl∑
j=1

Clj
|Ṽl(χj)|2
x− Ej

exp[−ωl(Ej)]
}
.

Making use of the notation in (12) and rearranging
the sum into a product, one can recast the solution in
(34) into either of the following two forms:

Al(χ′) = − 2
π
sinhχ′ sin δVl (χ′)exp[αl(coshχ′)] (35)

×


1 +

Nl∑
k=1

Ak
(coshχ′ − 1)k

−
nl∑
j=1

Bj
coshχ′ − Ej


 ,

Al(χ′) = − 2
π
sinhχ′ sin δVl (χ′)exp[αl(coshχ′)] (36)

×
Nl−δ∏
k=1−δ

(
1 +

ak
coshχ′ − 1

) nl∏
j=1

(
1− bj

coshχ′ − Ej

)
,

where

αl(coshχ′) = − 1
π
P

∞∫
0

dχ
sinhχδVl (χ)

coshχ− coshχ′ , (37)

Bj =
εl
2
Clj|Ṽl(χj)|2exp[−ωl(Ej)], (37a)

Nl = σl − nl + νl =



νl − 1, σl = nl − 1, εl = +1,

νl, σl = nl, εl = ±1,

νl + 1, σl = nl + 1, εl = −1,
(38)

δ =


1, εl = +1,

0, εl = −1.
PH
Obviously, the solutions in (35) and (36) depend on
Nl + nl = σl + νl parameters: the former depends on
{Ak} and {Bj}, while the latter depends on {ak}
and {bj}. The relations between these parameters are
given by

1 +
Nl∑
k=1

Ak
(coshχ′ − 1)k

−
nl∑
j=1

Bj
coshχ′ − Ej

(39)

=
Nl−δ∏
k=1−δ

(
1 +

ak
coshχ′ − 1

)

×
nl∏
j=1

(
1− bj

coshχ′ − Ej

)
.

In particular, we readily find from relation (39) that

Bj = bj

nl∏
n = 1
n �=j

(
1− bn

Ej − En

) Nl−δ∏
k=1−δ

(
1− ak

1− Ej

)
,

(40)
j = 1, 2, . . . , nl,

whereNl and δ are defined in (38).
It should be noted that, in the nonrelativistic limit

(χ′ � 1), the solution in (35) coincides with the re-
spective nonrelativistic solution obtained in [6]. At
the same time, uniqueness of the parameter set for
the nonrelativistic inverse scattering problem was not
investigated there.

To determine the parameters {ak} and {bj}, we
first note that, by definition (3), the sign of the func-
tion Al(χ′) is identical for all values of χ′, whereas
the increment of the phase shift at the energies (9) of
spurious bound states satisfies the condition in (11).
Therefore, sin δVl (χ′) and the expression involving the
products over k and j on the right-hand side of the
solution in (36) must change sign at the same points
χfk [see formula (9)]. This condition is satisfied if

ak = 1− coshχfk, (41)

k =




0, 1, . . . , Nl − 1, εl = +1,

1, 2, . . . , Nl, σl = nl, εl = −1,

1, 2, . . . , Nl − 1, σl = nl + 1, εl = −1,

bnl = coshχf(νl−1) − coshχnl ,

σl = nl − 1, εl = +1.
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The values of the remaining parameters {bj} and
aνl+1 can be determined from σl in Eqs. (10) for the
unknown energies in (8). Substituting the solution in
(36) into Eqs. (10) for the unknown energies in (8)
and taking into account relation (37a), we arrive at

1−
nl∑
j=1

Bjexp[ωl(Ej)]
Etj′ − Ej

(42)

− 1
π

∞∫
0

dχ
sinhχ sin δVl (χ)exp[αl(coshχ)]

coshχ− Etj′

×
Nl−δ∏
k=1−δ

(1 +
ak

coshχ− 1
)
nl∏
j=1

(1− bj
coshχ− Ej

) = 0,

j′ = 1, 2, . . . , σl.

Making the change of variable x = coshχ in (42) and
using relation (23), we recast expression (42) into the
form

1−
nl∑
j=1

Bjexp[ωl(Ej)]
Etj′ − Ej

(43)

+
1

2πi

∞∫
1

dx
exp[ωl(x+)]− exp[ωl(x−)]

x− Etj′

×
Nl−δ∏
k=1−δ

(
1 +

ak
x− 1

) nl∏
j=1

(
1− bj

x− Ej

)
= 0,

j′ = 1, 2, . . . , σl.

According the residue theorem, we can write

lim
R → +∞
η → +0

1
2πi

∫
Γ+

dzexp[ωl(z)]
z − Etj′

Nl−δ∏
k=1−δ

(
1 +

ak
z − 1

)

×
nl∏
j=1

(
1− bj

z − Ej

)
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= 1 +
1

2πi

∞∫
1

dx
exp[ωl(x+)]− exp[ωl(x−)]

x− Etj′

×
Nl−δ∏
k=1−δ

(
1 +

ak
x− 1

) nl∏
j=1

(
1− bj

x− Ej

)

= res

{
exp[ωl(z)]
z − Etj′

Nl−δ∏
k=1−δ

(
1 +

ak
z − 1

)

×
nl∏
j=1

(
1− bj

z − Ej

)
, z = Etj′

}

+
nl∑
j=1

res

{
exp[ωl(z)]
z − Etj′

Nl−δ∏
k=1−δ

(
1 +

ak
z − 1

)

×
nl∏
n=1

(
1− bn

z − En

)
, z = Ej

}
, j′ = 1, 2, . . . , σl,

where Γ+ is the same closed contour as that used
in integrating the function H̃l(z). In addition to the
above, we have considered that, according to the
asymptotic relation (19), the integral along the cir-
cumference C+

R tends to unity as R→ +∞, while,
according to the estimate in (20) and the conclu-
sions presented in footnote 5, the integral along the
circumference C−

η tends to zero as η → +0. As a
consequence, Eqs. (43) take the form

exp[ωl(Etj′)]
Nl−δ∏
k=1−δ

(
1− ak

1− Etj′

)
(44)

×
nl∏
j=1

(
1− bj

Etj′ − Ej

)
= 0, j′ = 1, 2, . . . , σl.

From this formula and from formula (41), we obtain
bj = coshχtj′ − coshχj, (45)

j′ = j =


 1, 2, . . . , σl, σl = nl − 1 (Φl(1) < 0), nl (Φl(1) > 0), εl = +1,

1, 2, . . . , nl, σl = nl (Φl(1) < 0), nl + 1 (Φl(1) > 0), εl = −1,

aνl+1 = 1− coshχt(nl+1), σl = nl + 1 (Φl(1) > 0), εl = −1.
Note that Eqs. (44) also admit solutions of the
form

bj = Etj − Ej = 0.

Thus, we arrive at a degeneracy of states at the en-
ergies Ej ; since Etj = Et(j+1) = Ej , the degree of
degeneracy for each eigenvalue Ej does not exceed
two. Moreover, Eqs. (44) imply that at least one of the
parameters {bj} is different from zero [12].

Thus, the coefficients {ak} and {bj} are deter-
mined unambiguously. Taking into account expres-
sions (41) and (45), we can therefore recast the solu-
5
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tion in (36) into the form

Al(χ′) = − 2
π
sinhχ′ sin δVl (χ′)exp[αl(coshχ′)] (46)

× [sinh(χ′/2)]−2Nl

σl∏
j′=1

[sinh2(χ′/2) + sin2(κtj′/2)]

×
nl∏
j=1

[sinh2(χ′/2) + sin2(κj/2)]−1

×
νl−δ∏
k=1−δ

[sinh2(χ′/2)− sinh2(χfk/2)],

where σl is defined in (8) and Nl and δ are defined in
(38).

Thus, the solution in (46) is unambiguously de-
termined by the energies (1) of the bound states of
the local quasipotential W (r), the energies (8) of
the bound states of the total quasipotential, and the
increment of the phase shift, since the values χfk are
also determined by its behavior—that is, the condition
in (11). Moreover, formulas (37) and (46) imply that
the function Al(χ′) is Hölder continuous and that its
asymptotic behavior for |χ′| → ∞ is

coshχ′|χ′|−γ , γ > 1,

provided that the increment of the phase shift satisfies
the condition in (5), this in turn entailing fulfillment of
the condition in (6) for the quasipotential Vl(r).

In order to reconstruct the quasipotential Vl(r)
with the aid of the transformation in (4), we must
find the function Ṽl(χ′) (which is complex-valued, in
contrast to what we have in the nonrelativistic case
[6]) by using expression (46). For this purpose, we
introduce the function

V̂l(sinh(χ′/2)) =
σl∏
j′=1

[
sinh(χ′/2) + i sin(κtj′/2)
sinh(χ′/2) − i sin(κtj′/2)

]
(47)

×
nl∏
j=1

[
sinh(χ′/2) − i sin(κj/2)
sinh(χ′/2) + i sin(κj/2)

]

× |Ql(cothχ′)/FW
l (χ′)|2[Ṽ (−)

l (sinh(χ′/2))]2,
P

where

|Ṽ (−)
l (sinh(χ′/2))| = |Ṽl(χ′)|, (48)

ReṼ (−)
l (sinh(χ′/2)) = ReṼl(χ′),

arg Ṽ (−)
l (−sinh(χ′/2)) = − arg Ṽ (−)

l (sinh(χ′/2)).

With allowance for the conditions in (48), the relation
arg Ṽl(−χ′) = arg Ṽl(χ′) implies that

arg Ṽl(χ′) = sgnχ′ · arg Ṽ (−)
l (sinh(χ′/2)). (49)

The function V̂l(sinh(χ′/2)) is then analytic in the
band 0 < Imχ′ ≤ π/2 and is continuous for 0 ≤
Imχ′ ≤ π/2. If the condition in (5) is met, then the
estimate

V̂l(sinh(χ′/2)) = O(sinh2(χ′/2)), (50)

|χ′| → ∞, 0 ≤ Imχ′ ≤ π/2

is valid for this function. Moreover, the function
V̂l(sinh(χ′/2)) does not vanish anywhere in the band
0 < Imχ′ ≤ π/2. Therefore, the function
ln V̂l(sinh(χ′/2)) is analytic in the band 0 < Imχ′ ≤
π/2 and, according to the estimate in (50), behaves
as ln sinh2(χ′/2) when |χ′| → ∞. Therefore, the
Hilbert integral transformation can be applied to
both the real and the imaginary part of the function
ln V̂l(sinh(χ′/2)). For real values of χ′, we then arrive
at

Im ln V̂l(sinh(χ′/2))

= − 1
π
P

∞∫
−∞

d(sinh(χ/2))
Re ln V̂l(sinh(χ/2))

sinh(χ/2) − sinh(χ′/2)

= −2sinh(χ′/2)
π

P

∞∫
0

dχ
cosh(χ/2) ln[πεlAl(χ)/2]

coshχ− coshχ′ ,

where we have considered that

Re ln V̂l(sinh(χ′/2)) = ln[πεlAl(χ′)/2].

From this formula and from expression (47), we ob-
tain
|Ql(cothχ′)/FW
l (χ′)|2[Ṽ (−)

l (sinh(χ′/2))]2 =
π

2
εlAl(χ′)

σl∏
j′=1

[
sinh(χ′/2) − i sin(κtj′/2)
sinh(χ′/2) + i sin(κtj′/2)

]
(51)

×
nl∏
j=1

[
sinh(χ′/2) + i sin(κj/2)
sinh(χ′/2)− i sin(κj/2)

]
exp


2sinh(χ′/2)

iπ
P

∞∫
0

dχ
cosh(χ/2) ln[πεlAl(χ)/2]

coshχ− coshχ′


 .
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Taking into account relations (48) and (49), we finally
arrive at

|Ql(cothχ′)/FW
l (χ′)|Ṽl(χ′) =

√
πεlAl(χ′)/2 (52)

× exp

{
−isgnχ′

[
σl∑
j′=1

arctan
sin(κtj′/2)
sinh(χ′/2)

−
nl∑
j=1

arctan
sin(κj/2)
sinh(χ′/2)

+
sinh(χ′/2)

π

× P

∞∫
0

dχ
cosh(χ/2) ln[πεlAl(χ)/2]

coshχ− coshχ′

]}
.

Thus, we have shown that, in the case considered
here, a solution to the relativistic inverse scattering
problem exists. It is unambiguously determined by
the increment of the phase shift and by the energies
of the bound states of the local and the total quasipo-
tential. However, the particular case of σl = nl − 1,
nl �= 0, νl = 0 must be excluded as in the nonrela-
tivistic case [6] because formula (34) does not provide
a regular solution at x = 1.

In conclusion, it should be emphasized that the
method developed here for reconstructing the non-
local separable component of the total interaction
between two relativistic spinless particles having dif-
ferent masses is in fact equivalent to the one-body
relativistic inverse scattering method. This equiva-
lence stems from the fact that, within the relativistic
quasipotential approach to quantum field theory, the
total c.m. energy of two relativistic spinless particles
having different masses can be represented in the
form of an expression proportional to the energy of one
effective relativistic particle of massm′ [14].
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Abstract—A multivariate statistical procedure for solving problems of estimating physical parameters on
the basis of data from measurements with multichannel equipment is described. Within the multivariate
procedure, an algorithm is constructed for estimating the energy of primary cosmic rays and the exponent
in their power-law spectrum. They are investigated by using the KLEM spectrometer (NUCLEON
project) as a specific example of measuring equipment. The results of computer experiments simulating
the operation of the multivariate procedure for this equipment are given, the proposed approach being
compared in these experiments with the one-parameter approach presently used in data processing.
c© 2005 Pleiades Publishing, Inc.
INTRODUCTION

Highly precise measurements of energy are re-
quired in order to solve many important problems in
cosmic-ray physics—for example, in order to localize
the break in the power-law spectrum of primary cos-
mic rays. The smaller the error in measuring energy,
the higher the probability of correctly interpreting
these measurements and the higher the accuracy in
determining the parameters of the break in the spec-
trum and other features of the energy spectrum in a
given range. Requirements for the accuracy in mea-
suring energy become especially stringent in the case
of low statistics, since, among all statistical factors,
it is the volume of statistics that has the strongest
effect on the magnitude of errors in determining the
parameters of the break [1].

With the aid of modern measuring equipment,
one can obtain vast amounts of digitized information.
For example, a strip silicon detector that is used in
the KLEM spectrometer (NUCLEON project [2, 3])
to record the angular distribution of secondary par-
ticles makes it possible to measure simultaneously
pulse heights in a few hundred channels, each of
the channels carrying information about the primary-
particle energy. In the present study, we propose,
for the example of a computer model of the KLEM
spectrometer, a multivariate procedure for processing
data obtained by recording cosmic rays (it should
be emphasized, however, that problems of this type

*e-mail: postn@rbcmail.ru
1063-7788/05/6801-0050$26.00
admit a similar solution for any multichannel detector
or any multiparameter measuring equipment).

The NUCLEON project is aimed at developing
recording equipment that is intended for studying
cosmic rays (protons and nuclei) over a broad energy
range and which would be characterized by a rela-
tively low weight and a high sensitivity. The KLEM
measuring procedure essentially consists in deter-
mining the primary-particle energy from the lateral
density distribution ρ(x, y) of the flux of secondary
particles produced in a thin target (first inelastic-
interaction event) and bred in an ultrathin push-out
device [4]. Two strip-detector matrices orthogonal
to each other, the signal Ni from each of the strip
detectors being proportional to the ionization loss in
the ith strip, are used to measure ρ(x, y). We will refer
to the signal Ni or to any other data of multichan-
nel measuring equipment as measured variables and
to physical quantities (for example, primary-particle
energy) to be determined on the basis of these mea-
surements as estimated parameters.

We will consider two types of problems that can be
solved optimally—that is, to the highest possible pre-
cision within a broad class of algorithms. These are
problems of deriving estimates on the basis of multi-
variate data from multichannel equipment—first, one
or a few physical quantities not measurable directly [5]
(for example, primary energy, charge, etc.) and, sec-
ond, the exponent of the power-law primary spec-
trum.
c© 2005 Pleiades Publishing, Inc.



APPLICATION OF A MULTIVARIATE STATISTICAL TECHNIQUE 51
1. DETERMINATION OF PRIMARY ENERGY
IN EACH INDIVIDUAL EVENT

The simplest multivariate method—this is the
method of obtaining, for a random vector, a linear
estimate that corresponds to the best (least) mean-
square deviation—makes it possible to derive, for
the problem of estimating, on the basis of data
from measurements with multichannel equipment,
one or a few physical parameters not measurable
directly, a solution that would be more precise than
that provided by any other linear algorithm for their
determination [6]. For the KLEM spectrometer, this
statement implies that, for any choice of coefficients
of the measured variables Ni in an empirical or a
speculated formula for estimating the primary energy,

E =
∑
i

CiNi + C0,

the estimated value of E would not be better than
that which is obtained by applying the multivariate
procedure.
Despite the linearity of the method in question,

its multivariate character by far compensates for this
restriction: although any of the physical quantities
measured experimentally is only taken into account
within a linear dependence, numerous relations be-
tween the measured variables and the estimated pa-
rameter, as well as the interplay of the measured vari-
ables themselves, are included in the procedure in the
best possible way. In practice, this algorithm therefore
works much better than any “simplified” procedure of
data treatment via replacing all variables measured
with the aid of expensive equipment by one variable
representing their combination, whereupon one con-
structs a nonlinear dependence of an unknown quan-
tity on this variable. By way of example, we indicate
that, within the method developed previously by our
group [4] for determining primary energy by means of
the KLEM spectrometer, one replaces a few thousand
variablesNi by only one variable

S =
m∑
i=1

{ln2(2ri/H)}Ni, (1)

where ri is the distance between the ith strip, which
recorded the signal Ni, and the axis of a shower of
secondary particles andH is the distance between the
strip-detector plane and the interaction point. More-
over, there are various methods for taking nonlinear-
ities into account even within multivariate strategies
in the case where the importance of these nonlineari-
ties is suggested by physical considerations.
In order to realize this method, the energy E is

treated as a random variable, while all of the m mea-
sured variables (for example, signals from the de-
tector strips) are treated as the coordinates of an
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 1 200
m-dimensional random vector (it is denoted here by
ξ). After that, a linear estimate of the quantity E is
formed on the basis of the entire body of information
available from measurements; that is,

Eest =
m∑
i=1

biξi + c, (2)

where the constant coefficients bi and c are chosen in
such a way as to minimize the mean-square deviation
of the estimate of E from its true value (mean-square
error):

M(Eest − E)2 =

(
m∑
i=1

biξi + c− E
)2

∼ min (3)

{in relation to any other linear estimate of E}.
Here, M symbolizes the expectation value.
The sought values of the coefficients appearing in

the formula for estimatingE are given by the theorem
quoted in [6]; that is,

bi = (SEξ · S−1
ξ )i, c = ME − SEξ · S−1

ξ Mξ, (4)

where Sξ is the autocovariance matrix for the random
vector ξ, SEξ is the mutual covariance matrix for E
and ξ, and the index i after a parenthesis labels the ith
coordinate of a vector. Instead of unknown covariance
matrices and expectation-value vectors, we use their
unbiased estimates obtained on the basis of data from
a learning sample (that is, a sample characterized
by a rather large volume and specially simulated for
estimating unknown coefficients), for example,

Mξ ≈ 〈ξ〉 =
1
nt

nt∑
i=1

ξi, (5)

SEξ =
1

nt − 1

nt∑
i=1

(Ei − 〈E〉)(ξi − 〈ξ〉)T,

where nt is the volume of the learning sample; ξi
and Ei are the ith realizations of the vector ξ and
the energy E, respectively; angular brackets denote
averaging; and T denotes transposition.
In general, the algorithm used to estimate energy

involves the following steps:
(i) The response of the device to the passage of

a beam of primary particles through the measuring
equipment is simulated, their energy spectrum being
preset; in other words, there occurs the formation of a
learning sample.
(ii) The algorithm of estimation by formulas (2),

(4), and (5) is formulated.
In addition, one can incorporate, into the proce-

dure being developed, one or a few extra parameters
that would describe our a priori ideas of the character
5
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of the statistical relationship (more precisely, of the
nonlinearity present in this relationship, since all of
the linear correlations are estimated automatically)
between measured and (or) estimated variables. The
parameters themselves can be chosen on the ba-
sis of physical considerations, while their optimum
values are fixed by using the results of a numerical
(computer) experiment that simulates the operation
of the procedure being developed. It follows that the
formation of yet another random sample (a test one)
is necessary, and this is the next step.

(iii) The test sample is formed by simulating the
operation of the measuring device, and a computer
testing of the procedure of estimation is performed on
the basis of this new sample. After that, the error in
the estimation on the basis of (3) is calculated, and
the optimum values of all unknown parameters of the
method are determined as those that minimize the
error of the estimation.
As to the form of the energy spectrum of the learn-

ing and test samples, it must be determined by the
special features of a concrete applied problem to be
solved by means of the above algorithm for estimating
the primary-particle energy. In order to improve the
accuracy of the estimation, it is necessary to include
a greater amount of various a priori information about
the physical process being studied. Yet another im-
portant comment is in order. For a criterion that the
procedure being developed must satisfy, one can take
not only the condition in (3), which requires that the
absolute error in estimating energy, M(Eest −E)2, be
minimized. The algorithm in question can be mod-
ified in such a way that it would minimize the di-
mensionless relative error M((Eest − E)/E)2, which
has a clearer meaning. The condition in (3) will then
assume the form

M((Eest −E)/E)2 (6)

=

((
m∑
i=1

biξi + c− E
)
/E

)2

∼ min

{in relation to any
other linear estimate of E}.

After some simple algebra, this problem reduces to
the preceding one. The ingredients of the algorithm
described in items (i)–(iii) and used to determine the
primary-particle energy undergo no changes, with the
exception of the formula for determining, on the basis
of a simulated learning sample, the coefficients bi and
c in expression (2) for Eest; that is,

bi = (ΣẼξ̃ ·Σ
−1

ξ̃
)i, (7)

c = {1/M(1/E2)}{M(1/E) −ΣẼξ̃ ·Σ
−1

ξ̃
M(ξ/E2)},
PH
where ξ̃ = {1/E}{ξ −M(ξ/E2)/M(1/E2)}; Ẽ =
1− (1/E)M(1/E)/M(1/E2); and Σξ̃ and ΣẼξ̃ are
correlation (that is, noncentered) matrices, whose
sample estimates are obtained in a way similar to that
in (5):

Σξ̃ =
1
nt

nt∑
i=1

ξ̃i · ξ̃Ti , ΣẼξ̃ =
1
nt

nt∑
i=1

Ẽiξ̃
T
i . (8)

In contrast to what we have in (2) and (4), the esti-
mate of energy, Eest, is no longer unbiased upon such
a modification; that is, MEest 
=ME.
Finally, we would like to dwell at some length

on the parameters that make it possible to take into
account, within the chosen procedure, the nonlinear-
ity of the physical processes being considered. First,
we note that, even in the course of computer exper-
iments that relied on a one-dimensional algorithm
for estimating the primary-particle energy and which
employed the artificial variable S (1), it was found that
the tightest correlation is observed between E and
Na
i , where a ≈ 1.2–1.4. This circumstance, as well

as the case where the tightest correlation would take
place between an unknown parameter (E) and any
arbitrarily complicated known function of measured
variables, can readily be taken into account within
the multivariate algorithm for estimation as well. In
order to include this a priori information, it is sufficient
to modify appropriately, from the outset, the input
database and to employ, in the following, data on Na

i
rather than on the recorded signalsNi themselves.
Yet another factor that enables one to take ef-

ficiently into account physical processes underlying
the operation of the measuring equipment is inherent
in the computational procedure of the multivariate
method for estimation [7]. The point is that we re-
alized the algorithm of pseudoinversion of the corre-
lation matrix [8] with the aid of only a few maximal
singular quantities whose number is determined in
a computer experiment as that which minimizes the
error in estimating energy. This algorithm implements
some kind of “filtration” of small-scale, insignificant,
and spurious interrelations stemming from insuffi-
ciently vast statistics and concurrently removes dif-
ficulties associated with addressing ill-posed prob-
lems.
As applied to the KLEM spectrometer, the algo-

rithm for estimating energy is the following:
(i) The form of the cosmic-ray energy spectrum

that is proposed to be recorded in a simulated or an
actual experiment is chosen (for example, a power-
law spectrum or a few monochromatic beams of fixed
energy). The form of the learning and the test sample
is chosen accordingly for a subsequent accumulation
of computer statistics. The type of error—the absolute
YSICS OF ATOMIC NUCLEI Vol. 68 No. 1 2005
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error, as in (3), or the relative error, as in (6)—is
chosen.
(ii) The beam of primary particles belonging to the

sort in which we are interested and having the preset
form of the energy spectrum (see the preceding item)
is simulated at the input of the computer model of the
detector. Preset values of the primary energy E and
the measured values of the signal Ni are successively
recorded in a file for each of the simulated events
that involve the passage of beam particles through
the device. The learning sample E,Ni1, E,Ni2, . . . ,
E,Nin is formed, and allNi are transformed into Na

i ,
where the constant a is taken to be unknown for the
time being.
(iii) The unknown constants of the algorithm are

evaluated by formulas (4) and (5) or (7) and (8).
(iv) The testing sample is formed in a way similar

to that described in item (i) of the algorithm, the
energy of each particle from this sample is estimated,
and the error in (3) or in (6) is calculated by means of
averaging over the entire sample. The optimum value
at which the error is minimal is determined for the
parameter a. Formula (2) for estimating the primary
energy has now been fully specified, since the values
of all constants appearing in it have been determined.
(v) A test beam having the structure, spectral

shape, and intensity in which were are interested is
transferred to the input of the computer model of the
measuring equipment (and, in the future, to the input
of the actual device); the energy of each particle in the
beam is estimated; and the error in these quantities is
calculated.
We will now present the results obtained by ap-

plying the above procedure to solving two problems
within one general problem of reconstructing the en-
ergy of primary particles. The first of these is that
of determining the energy of each particle from a
beam having a power-law energy spectrum, while the
second is that of determining the energies of particles
from a few beams of monochromatic energy between
E = 1011 and E = 1015 eV.
Only protons incident orthogonally to the measu-

ring-equipment plane were simulated in all of the
cases considered here. This simulation was based
on the GEANT 3.21 package [9]. High-energy in-
teractions of hadrons were described with the aid of
the QGSJET generator [10], while their low-energy
interactions (up to 50 GeV) were treated by using the
FLUKA generator [9]. The applicability of thesemod-
els to describing hadron interactions was confirmed
by a comparison with experimental data [10, 11].
Within the first problem, it is assumed that we

know the shape of the actual energy spectrum. This
is a power-law function, but it is not necessary that
its exponent be known to a high precision. In order
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 1 200
to take into account this a priori information, a ran-
dom sample for learning our procedure must be taken
precisely from a power-law distribution characterized
by the presumed exponent value γ. For a criterion,
we took the relative error. According to the results
of the simulation, the mean-square error in estimat-
ing energy was 49%. The one-dimensional method
that employs the variable S yields 56%. These values
receive overwhelming contributions from low-energy
events, since they result from averaging over a steeply
descending power-law spectrum.
In the second problem, where monochromatic

beams of energy ranging between 1011 and 1015 eV
form the test sample, we are equally interested in
energy values over the entire range on a logarithmic
scale, from E = 1011 to E = 1015 eV; therefore, a
random sample from an energy spectrum such that
the logarithm of energy is uniformly distributed over
the entire range that we chose must be taken to
be learning. Such a sample was formed by about
500 events over the entire energy range covering five
orders of magnitude. The volume of each of six test
samples monochromatic in energy ranged between
100 and 500 events.
The results of estimating energy are given in Ta-

ble 1 for several values of the parameter a, which
characterizes nonlinearity. In order to compare these
results with those that emerge from the application
of the already existing procedure used within the
KLEM–NUCLEON project to estimate energy, sim-
ilar errors were calculated for the same test samples
bymeans of the algorithmbased on the single variable
S in (1). We note that, in contrast to what was done
previously in [4], we did not perform any low-energy
truncation in calculating these errors—we took into
account the entire body of statistics generated for
test samples. Moreover, it is of importance that, as a
matter of fact, the errors of the earlier procedure were
calculated for the same data as those that were used
in the algorithm itself to construct the calibration
curve (thus, it was an a priori known energy that was
subjected to reconstruction). This means that, within
the earlier algorithm, it would be natural to expect
even a poorer accuracy of reconstruction for different
samples.
The last column of Table 1 gives the results ob-

tained previously in [4] from computer experiments
aimed at estimating the primary-particle energy with
the KLEM spectrometer, where the error was calcu-
lated by using incomplete statistics, its part at the
lowest energies being eliminated. Albeit being incor-
rect from the mathematical point of view, this proce-
dure did not lead to loss of information significant for
the ensuing data treatment, since the reconstructed
energy values were further used directly to construct
5
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Table 1. Relative error in reconstructing energy (in %)

E, eV

Multivariate method One-dimensional method employing the parameter S

a = 1.2 a = 1.3 a = 1.4 a = 1.5 full statistics result obtained in [4] without the
low-energy part of statistics

1011 46 43 37 33 92 72

1012 58 59 62 64 103 69

1013 61 61 62 64 101 61

1014 60 62 63 65 95 55

1015 63 66 69 73 83 56
the primary spectrum by means of histograms. The
region of low energies is of no interest from this point
of view, whereas the tail in the region of underesti-
mated values of Eest makes a significant contribution
to the total error, as is suggested by a comparison
of the data in the last two columns of Table 1. The
algorithm that will be proposed in the present study
for reconstructing the exponent in the power-law
spectrum employs only an estimate of 〈lnE〉 rather
than estimates of energy.

2. DETERMINATION OF THE EXPONENT
IN THE PRIMARY POWER-LAW SPECTRUM

In order to reconstruct the exponent γ in the en-
ergy distribution of cosmic rays,

p(E) =
γ − 1
E0

(
E

E0

)−γ
(9)

(E0 is the left boundary of the spectrum), and the
shape of the spectrum, we previously used the tradi-
tional procedure for plotting histograms on the basis
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Fig. 1. Density of the primary energy distribution (solid
curve, based on an analytic form) before and (dashed
curve, constructed on the basis of a histogram) after the
trigger.
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of reconstructed energy values [12, 13]. This proce-
dure involves a large error, which is difficult to esti-
mate, but it has long since become a conventional tool
in these realms. Since the method proposed in Sec-
tion 1 for estimating energy leads to unbiased results
and involves aminimummean-square error, it is quite
natural to expect that even a direct application of the
traditional algorithm of reconstructing the spectrum
at energy values found by the new method, which is
not in use at the present time, would lead to a higher
precision in reconstructing the spectrum.
One of the most serious difficulties in reconstruct-

ing the spectrum is that, in simulating the operation
of the KLEM spectrometer, one performs a “multi-
step” selection of events that the detector used would
record. As a result, the shape of the primary spectrum
is severely distorted, so that even a perfectly precise
measurement of energies of particles recorded by the
detector would give no way to reconstruct their spec-
trum at the input of themeasuring equipment (Fig. 1).
The selection criterion results in that the exponent
γ calculated by the maximum-likelihood method for
the primary spectrum having the lower boundary at
E0 = 1 TeV is underestimated to become γest = 2.58
(in the case of a precise measurement of the energies
of all particles that passed a triggering selection of
particles) instead of γ0 = 2.70, whereas, for the same
volume of the sample, the statistical uncertainty in
estimating γ can be determined as

σγest ∼ σ{1/ ln(E/E0)} = 0.017

[on the basis of formula (10) below, which provides
a realization of the method in question in the case of
precise measurements].

2.1. Spectrum Unbounded from the Right

In order to estimate the exponent γ in the power-
law distribution by the maximum-likelihood method
(MLM), one can make use of the formula

γest = 1 + 1/(〈lnE〉 − lnE0). (10)
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 1 2005
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The quantity 〈lnE〉 can be found by averaging the
logarithms of the measured energy values only if the
energy is measured without errors or if the errors
in determining lnE do not depend on energy, but,
in either case, this is an idealization—otherwise, the
distribution ofmeasured energies is the convolution of
the primary spectrum with a function that describes
distortions introduced by the measuring device. In
the problem at hand, an additional distortion of the
spectral shape arises even at the preliminary stage of
event selection by instrumental triggers. Therefore,
we applied a procedure that immediately yields the
most precise estimate of lnE—namely, a linear esti-
mate that is constructed for lnE treated as a random
variable and which is the best in the sense of the
mean-square deviation. In contrast to the method
employing the parameter S, this method yields un-
biased results, guaranteeing that the respective esti-
mate of 〈lnE〉 will not suffer from systematic under-
or overestimations.
The algorithm used to estimate the exponent of the

primary power-law spectrum is the following:
(i) The “preliminary” step consists in choosing a

few values of γ = γ0 from the interval in which we are
interested. In all, we employed three values of γ0 in our
numerical experiments (this was sufficient to ensure a
fairly high precision).
(ii) For each of the chosen values of γ0, two ran-

dom samples are taken from the power-law spectrum
that has this exponent. The use of precisely a power-
law distribution for learning the method involves tak-
ing into account additional a priori information. In
the procedure implemented further to reconstruct the
logarithm of the energy for each γ0, one sample will
be used as a learning one, while the other is taken to
be a test one.
(iii) For each individual event of the test sample,

lnE is reconstructed by formulas (2), (4), and (5),
where the random variable E is replaced by lnE. For
a learning sample, we employ that which features
fixed γ0 (beginning with the first one), while, for a
test sample, we successively take samples involving
each of the three values of γ0 (including that which
corresponds to the learning sample).
(iv) For each of the three sets of lnE that were

determined at the preceding step, a preliminary es-
timate of γ is found by formula (10). These will be
“preliminary” estimates of γ, the true values being
equal to the first, the second, and the third of the γ0

values, respectively; the learning of the procedure was
performed by using one (initially, the first) of these γ0

values.
(v) The procedures of steps (iii) and (iv) are re-

peated by using, for a learning sample, the sample
that involves, first, the second and, then, the third
value of γ0. Thus, we performed the procedure for
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 1 200
 

2.55 2.60 2.65 2.70 2.75 2.80
2.6

2.8

3.0

3.2

3.4

 

γ

 

prelim

 
γ

Fig. 2. Estimating γ on the basis of the linear depen-
dence γ(γprelim): (open circles) “learning” points, (solid
line) interpolation straight line corresponding to the least
squares method, (thick dashed lines) ultimate estimates
of the parameter γ, and (dotted lines) true values of the
estimated γ.

reconstructing lnE three times for each of the three
γ0 values, thereby deriving nine sets of reconstructed
values of lnE and the corresponding “preliminary”
estimates of γ0: three estimates for the first value
of γ0, three estimates for the second one, and three
estimates for the third one. The three estimates of
the same value of γ0 differ in that different learning
samples (successively, the samples involving the first,
the second, and the third value of γ0) were used to
obtain them.
(vi) An interpolation curve representing the de-

pendence of the true value of γ on its “preliminary”
estimate is constructed on the basis of the points
found at the preceding step (in our case of three
points, we use a linear function). For each of the
three values of γ0, we construct an individual inter-
polation dependence. For cases like that in which the
estimated value is much greater or much less than
the known one, we thereby obtain the possibility of
comparing the quality of the developed procedure for
different values of γ0 preassigned for learning this
procedure.
(vii) The “ultimate step” consists in finding the

estimates of the exponent γ that are corrected with
the aid of the three interpolation dependences con-
structed at the preceding step. An example of how the
procedure outlined here is represented graphically is
given in Fig. 2.
We have performed computer experiments aimed

at estimating the exponent of a power-law proton
spectrum (for a vertical incidence of the beam to the
detector plane). In order to compare our multivariate
5
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Table 2. Estimates of the exponent γ in the form 〈γest〉 ±∆γ

True
values
of γ

N = 100, σMLM = 0.18 N = 200,
σMLM = 0.12

N = 300,
σMLM = 0.10

N = 400,
σMLM = 0.09

One-di-
mensional
method
involving
the param-
eter S

Multivariate method One-di-
mensional
method
involving
the param-
eter S

Multi-
variate
method,
γ0 = 2.7

One-di-
mensional
method
involving
the param-
eter S

Multi-
variate
method,
γ0 = 2.7

One-di-
mensional
method
involving
the param-
eter S

Multi-
variate
method,
γ0 = 2.7

γ0 = 2.7 γ0 = 3.0 γ0 = 3.3

2.8 2.81 2.81 2.81 2.81 2.80 2.80 2.81 2.79 2.78 2.79
± 0.29 ± 0.30 ± 0.31 ± 0.30 ± 0.21 ± 0.22 ± 0.15 ± 0.17 ± 0.13 ± 0.15

2.85 2.90 2.83 2.85 2.85 2.88 2.84 2.84 2.83 2.86 2.84
± 0.33 ± 0.32 ± 0.31 ± 0.30 ± 0.22 ± 0.22 ± 0.13 ± 0.18 ± 0.13 ± 0.16

2.9 2.90 2.89 2.91 2.91 2.92 2.89 2.88 2.89 2.87 2.89
± 0.31 ± 0.30 ± 0.29 ± 0.30 ± 0.24 ± 0.21 ± 0.16 ± 0.17 ± 0.14 ± 0.16

3.1 3.19 3.14 3.16 3.13 3.11 3.14 3.13 3.13 3.15 3.13
± 0.46 ± 0.27 ± 0.26 ± 0.27 ± 0.29 ± 0.19 ± 0.20 ± 0.15 ± 0.19 ± 0.13

3.15 3.24 3.17 3.17 3.17 3.22 3.18 3.20 3.17 3.16 3.18
± 0.44 ± 0.26 ± 0.25 ± 0.24 ± 0.34 ± 0.18 ± 0.25 ± 0.15 ± 0.19 ± 0.13

3.2 3.20 3.16 3.16 3.17 3.13 3.15 3.09 3.16 3.13 3.15
± 0.43 ± 0.26 ± 0.25 ± 0.26 ± 0.25 ± 0.18 ± 0.21 ± 0.15 ± 0.19 ± 0.14
procedure with that which employs one parameter,
the exponent γ was estimated by the two methods as
applied to the same simulated data—that is, by the
algorithm that employs a multivariate statistical esti-
mation of the logarithm of energy and by the method
that reconstructs energy on the basis of the parameter
S (1).

The learning of the multivariate method was per-
formed by using three proton beams having a power-
law energy spectrum whose exponent γ0 takes the
values of 2.7, 3.0, and 3.3. The exponent was esti-
mated for beams characterized by a set of γ values in
the range between 2.8 and 3.2. The number of events
in each of the learning beams was quite large (a few
thousand), but this imposed no constraints on the im-
plementation of the tested procedure in practice, since
the learning samples can be accumulated via a com-
puter simulation rather than in an actual experiment.
The test samples were taken to have a volume of 100
to 400 events—such numbers of primary protons can
be recorded by the KLEM facility on board a cosmic
vehicle.
The results of the estimation are given in Table 2.

For the purposes of visualization, the data in the
column corresponding to N = 100 and γ0 = 2.7 are
represented graphically in Fig. 3. Since the estimates
of γ that were obtained for each of the three learning
samples specified by the values of γ0 = 2.7, 3.0, and
3.3 proved to be close to one another, only estimates
PH
at γ0 = 2.7 are given in all parts of the table, with the
exception of the first one.
On the basis of the data in Table 2, one can assess

the strength of the effect that the volume of accu-
mulated data has on the accuracy of estimation. As
was indicated above, the statistical uncertainty of an
estimate due exclusively to the finiteness of a sample
(the energy is known precisely) can be obtained by
using the maximum-likelihood-method formula (10).
This uncertainty is “irremovable”; therefore, it is of
paramount importance to get an idea of the order of
its magnitude playing the role of the “limiting res-
olution” (which corresponds to the case of perfectly
accurate measurements) of the procedure (or facility)
for reconstructing the exponent γ. A graph that rep-
resents this “irremovable” uncertainty as a function
of the volume of statistics, N , is given in Fig. 4 for
an interval covering a few hundred events, which is of
interest to us.
We note that, although each estimation of γ by

formula (10) involves only data associated with N
(from 100 to 400) events in Table 2, the estimates
of γ are averaged over a few N-event samples from
the entire body of available data in order to suppress
random “outliers” and to verify an unbiased character
of the results given by this procedure and the absence
of a systematic bias. However, we will have modest
statistics in an actual experiment, and this will pre-
vent averaging results over a few samples. Therefore,
YSICS OF ATOMIC NUCLEI Vol. 68 No. 1 2005
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mean-square errors, ∆γ , for estimates of the exponent
γ (here, N = 100 and σMLM = 0.18; for the multivari-
ate method, γ0 = 2.7): (thin-solid-line histogram) ∆γ

within the one-dimensional method, (thick-dashed-line
histogram) ∆γ within the multivariate method, (closed
histogram) σMLM, (closed circles) (γ − 〈γest〉) within the
one-dimensional method, and (double triangles) (γ −
〈γest〉) within the multivariate method.

the errors ∆γ (printed in boldface type in Tables 2–
4), which can be used to assess the degree of devi-
ations from the averaged value that are expected in
performing a single experiment for statistics involving
N events, carry information of no less importance.
The smaller the factor by which this error exceeds
the “irremovable” error σMLM, which is displayed in
Table 2 and in Fig. 4, the higher the quality of estima-
tion.
It should be noted that the above comparison

of the two procedures, the one-dimensional and
the multivariate one, involves some degree of ar-
bitrariness, since no generally accepted algorithm
for reconstructing the exponent of the power-law
spectrum in processing data simulated for the KLEM
equipment exists at the present time, and this was
one of the reasons for developing a new universal
algorithm. In our case, the values of E (or lnE) that
were obtained for each of the primary particles from
simulated beams by the multivariate method and by
the one-dimensional method employing the parame-
ter S were merely subjected to identical treatment. It
follows that, as a matter of fact, the same complicated
algorithm of treatment was applied to the results of
energy measurements by both procedures.
In order to render the conditions of our numeri-

cal experiment closer to those that will be prevalent
in a live experiment, where the left boundary of the
spectrum of recorded particles will not be known, the
estimation of γ for an unknown left boundary of the
spectrum was simulated in an independent run of the
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 1 200
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Fig. 4. Error in estimating γ by the maximum-likelihood
method for a precisely known primary energy versus the
volume of statistics.

calculations. We took only those events that were
selected according to the criterion Eest > E0, where
E0 is a known preset value (more rigorously, one does
not determine the energy itself within the multivariate
procedure of estimation; therefore, the selection cri-
terion has the form (lnE)est > lnE0 within this algo-
rithm). The value for the left boundary of the spectrum
was chosen, first, with allowance for the possibility of
estimating it to a fairly high degree of precision and,
second, with allowance for the volume of data that is
necessary for the present purposes. On the basis of
these considerations, we choose a few values of E0 in
the range between 2 and 4 TeV. Table 3 displays the
results obtained by estimating γ for some values of
E0.
From a comparison of these results with the data

in Table 2, it can be seen that the exponent of the
spectrumwhose left boundary is a priori unknown and
is reconstructed on the basis of results of measure-
ments performed with recording equipment can be
estimated to a precision not poorer than that attained
in estimating the exponent of the spectrum charac-
terized by a fixed value of E0.

2.2. Spectrum within the (E1, E2) Segment

In the case where one is interested in the value of
the exponent γ only within some segment of the en-
ergy spectrum of primary cosmic rays, it is advisable
to consider the spectrum in a form different from that
in (9),

p(E) =
γ − 1

E1−γ
1 − E1−γ

2

E−γ , if E ∈ (E1, E2);

p(E) = 0, if E /∈ (E1, E2).

This form of the spectrum is more complicated from
the point of view of estimating γ, since, in this case,
the maximum-likelihoodmethod yields, instead of the
direct formula (10), a nonlinear equation for γ,

γ = 1 + (E1−γ
1 − E1−γ

2 )/(E1−γ
1 {〈lnE〉 − lnE1}

(11)
5
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Table 3. Estimates of the exponent γ in the form 〈γest〉 ±∆γ at a fixed left boundary E0 of the spectrum for γ0 = 2.7, 3.0,
and 3.3 (here,N = 100 and σMLM = 0.18)

True
values of

γ

E0 = 2 TeV E0 = 2.5 TeV E0 = 3 TeV

2.7 3.0 3.3 2.7 3.0 3.3 2.7 3.0 3.3

2.8 2.84± 0.232.82± 0.232.83± 0.222.85± 0.252.86± 0.242.86± 0.272.83± 0.222.83± 0.192.80± 0.21

2.85 2.83± 0.232.83± 0.242.80± 0.232.81± 0.242.79± 0.232.76± 0.252.80± 0.222.77± 0.202.80± 0.21

2.9 2.91± 0.242.91± 0.232.88± 0.222.90± 0.242.91± 0.242.92± 0.252.93± 0.232.93± 0.212.93± 0.21

3.1 3.11± 0.233.10± 0.243.08± 0.243.14± 0.253.10± 0.233.11± 0.242.97± 0.222.97± 0.203.02± 0.18

3.15 3.25± 0.283.24± 0.263.22± 0.253.27± 0.303.26± 0.293.33± 0.333.26± 0.273.23± 0.233.27± 0.27

3.2 3.19± 0.243.17± 0.233.16± 0.233.26± 0.263.30± 0.273.30± 0.283.26± 0.233.20± 0.193.20± 0.19
− E1−γ
2 {〈lnE〉 − lnE2}).

The algorithm of estimation exactly reproduces
that which was described above for the case of an un-
bounded spectrum, the only exception being that the
maximum-likelihood method, which underlies both
algorithms, is now realized through Eq. (11) rather
than through formula (10).
As in the case of an unbounded spectrum, the

vertical incidence of a proton beam to the detector
plane was considered in computer experiments aimed
at estimating the exponent γ within various energy
ranges. All of the parameters of the simulation were
identical to those in the preceding case. The values for
both the left and the right boundary of the spectrum
were not considered to be known and were recon-
structed on the basis of simulated data, as is described
in the preceding subsection.
For statistics including 100 events, Table 4 shows

the results for an energy interval of width 2 TeV. It

Table 4. Estimates of the exponent γ in the form 〈γest〉 ±
∆γ for the interval 2 < E < 4 TeV (here, N = 100 and
σMLM = 0.29)

True
values
of γ

One-di-
mensional
method
involving
the pa-
rameter S

Multivariate method

γ0 = 2.7 γ0 = 3.0 γ0 = 3.3

2.8 2.94± 0.50 2.78± 0.37 2.72± 0.36 2.70± 0.35

2.85 2.93± 0.45 2.85± 0.39 2.94± 0.37 2.77± 0.36

2.9 2.86± 0.46 2.82± 0.41 2.87± 0.37 2.74± 0.39

3.1 2.94± 0.48 3.18± 0.40 3.14± 0.36 3.04± 0.37

3.15 3.10± 0.48 3.19± 0.41 3.15± 0.36 3.07± 0.38

3.2 2.95± 0.52 3.18± 0.40 3.11± 0.37 3.00± 0.41
PH
can be seen that, even for so small a volume of data,
the exponent γ can be estimated within an energy
range of small width by using the proposed procedure,
albeit the uncertainty is somewhat greater than for an
unbounded spectrum. This is because the irremovable
error inherent in the maximum-likelihood method is
greater in this case. This error now depends not only
on the volume of statistics but also on the width of the
energy interval. The relationship between the actual
and the minimum possible error remains approxi-
mately identical to that in estimating the exponent γ
of an unbounded spectrum.

CONCLUSION

Multivariate procedures for processing the results
of measurements with multichannel equipment have
been developed, implemented, and tested in computer
experiments. These procedures, which are optimal
within a broad class of algorithms in the sense that
they are characterized by the highest sensitivity, are
intended for estimating (i) physical parameters inac-
cessible to direct measurements (such as the primary
energy and other features of the primary particle) and
(ii) the exponent of the primary spectrum of cosmic
rays.
The multivariate procedures for estimation have

been studied in computer experiments employing a
mathematical model for the KLEMmeasuring equip-
ment from the NUCLEON project. The following
conclusions have been drawn from the results of these
experiments:
(a) In estimating the primary-particle energy, the

multivariate procedure yields a much smaller error
(by a factor of 1.5) in relation to the one-dimensional
algorithm used previously by our group.
(b) In estimating the exponent of the spectrum

of primary cosmic rays, the multivariate procedure
works at least no poorer than the algorithm based on
a one-dimensional estimation of the energy of each
YSICS OF ATOMIC NUCLEI Vol. 68 No. 1 2005
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individual event. At the same time, the new procedure
in question, in contrast to algorithms that are aimed
at determining the exponent of the spectrum from his-
tograms on the basis of a one-dimensional estimation
of energy and which were previously applied in the
KLEM–NUCLEON project and in other investiga-
tions, is optimal in a rigorous mathematical sense, is
universal, and makes it possible to employ codes of a
single type in processing multiparameter data of any
kind.
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Abstract—A brief description of the physics research program implemented with an alpha magnetic
spectrometer (AMS detector) by a large-scale international collaboration on board the International Space
Station is presented. The features of the experimental facility under construction are given, along with
some results obtained during the test flight of the prototype spectrometer on board a space shuttle.
c© 2005 Pleiades Publishing, Inc.
INTRODUCTION

The detection of cosmic-ray particles at the be-
ginning of the 20th century initiated research that
resulted in fundamental discoveries. In order to assess
the impact of these discoveries on the formation of
modern ideas of our world, it would suffice to re-
call that the first antiparticles (positrons), as well as
muons and pions, were first observed in cosmic-ray
experiments. Up to the early 1950s, when the first
powerful accelerators were created, cosmic rays had
been the single source of particles used in investiga-
tions into the area later called high-energy physics.

To a great extent, cosmic-ray studies have given
impetus to the development of various detecting de-
vices. Almost all detectors used in modern exper-
iments were invented for investigations associated
with cosmic rays.

Since the time of theAragatz expeditions, A.I. Ali-
khanov, who headed these expeditions, had given
much attention to cosmic-ray studies. Thus, it was
not merely a matter of accident that there was a labo-
ratory for cosmic-ray studies at the Institute of The-
oretical and Experimental Physics (ITEP, Moscow)
organized by Alikhanov. Up to the early 1960s, when
a strong-focusing accelerator—the first one in the
Soviet Union—was commissioned at ITEP, the in-
stitute carried out intensive investigations into the
properties of cosmic rays. For example, the helicity of
cosmic-ray muons was measured under the supervi-
sion of Alikhanov [1].

Since the advent of accelerators, cosmic-ray stud-
ies have been related, to a greater extent, to astro-
physics and cosmology rather than to elementary-
particle physics. Nevertheless, these two realms
of physics have always been interrelated [2]. For
1063-7788/05/6801-0060$26.00
example, the modern understanding of baryogen-
esis is based, among other things, on the ideas
elaborated as the result of studying the dynam-
ical and static properties of elementary particles
in accelerator experiments. At the same time, as-
trophysics investigations—predominantly, measure-
ments of cosmic microwave background radiation
[3]—indicate that the total baryon mass is not greater
than 5% of the total Universe mass, the visible
component (that which emits or absorbs electromag-
netic waves) being only 1/10 of this fraction. The
remaining 95% of the Universe mass is due to dark
matter and dark energy. Although the existence of
these dominant components of the Universe is an
experimental fact, the nature of dark matter and dark
energy has not yet been established.

In efforts to explain this picture, theorists have
ever more often discussed processes that occur in
the energy region beyond the capabilities of present-
day accelerators. At the same time, some pro-
cesses accompanying the evolution of stars result
in the production of particles whose energy ex-
ceeds that of modern accelerators by several or-
ders of magnitude. A nonfixed energy and a non-
fixed “beam” content, as well as a fast decrease
in the beam intensity with energy, are the main
problems associated with the use of this natural
accelerator in investigations. In addition, arrays
deployed on the Earth’s surface and used in ex-
periments with cosmic-ray particles are beneath
the atmosphere, with the result that they detect
predominantly secondary particles produced in air
showers. For this reason, terrestrial experiments
furnish only indirect information about the fluxes
of primary protons and nuclei and are unable to
c© 2005 Pleiades Publishing, Inc.
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study the fluxes of electrons, positrons, and gamma
rays.

Balloon-borne experiments solve in part the prob-
lem of interaction between primary cosmic rays
and the atmosphere. However, the relatively short
duration of flight of balloons, and small area and
acceptance of the detectors used prevent obtaining
sufficiently large data samples for the flux of charged
particles at energies above a few tens of GeV.

The emerging possibility of studying cosmic rays
for a long time with rather large facilities by installing
them on board a space vehicle significantly extends
the region of investigations. The application of de-
tectors and methods developed for accelerator exper-
iments in these facilities would provide a radical so-
lution to the problem of measuring the flux of primary
particles up to energies of several TeV.

An alpha magnetic spectrometer (AMS) is one of
the first large-scale facilities intended for a long-term
study of primary cosmic rays with a device located in
a near-Earth orbit.

The idea to create an AMS detector was put
forth in 1994 by physicists from the Massachusetts
Institute of Technology (MIT) (S. Ting’s laboratory)
and from ITEP (Yu.V. Galaktionov’s laboratory) [4].
The idea is based on the desire to use the vast
experience gained by accelerator experimentalists
to solve problems that lie at the meeting point of
two areas of physics (elementary-particle physics
and astrophysics) rapidly developing over the past
decades.

The search for antimatter in the Universe through
a potential discovery of antinuclei in cosmic rays [5],
searches for dark matter, and measurement of the
spectra for various types of cosmic radiation are the
main points of the AMS research program. The pro-
gram is officially supported by the Russian Academy
of Sciences.

The implementation of such an ambitious project
would be impossible without a space platform suitable
for deploying the experimental facility. This oppor-
tunity is offered by the International Space Station
(ISS), which, at the moment, is under construction
in a near-Earth orbit.

It is worth noting that the AMS experiment is
the first project supported both by NASA and by
US DOE, which provides financial support to exper-
iments in elementary-particle physics, mainly accel-
erator experiments.

In Russia, the experiment is supported by the
Ministry of Atomic Energy and the Ministry of Indus-
try, Science, and Technology.

At the moment, over 200 physicists and engineers
from more than 30 countries of Europe, Asia, and
America, including, in addition to researchers from
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 1 200
ITEP, colleagues from the Kurchatov Institute and
the Institute of Nuclear Physics at Moscow State
University, are involved in the project.

COSMIC RADIATION

For several decades, the problem of baryogene-
sis—that is, the problem of explaining the fact that
the observable world consists of matter, while, ac-
cording to theory, the Universe upon the Big Bang
contained equal amounts of matter and antimatter—
has been one of the fundamental problems in cosmol-
ogy.

In principle, a baryon-asymmetric universe—that
is, that which contains only matter—can be obtained
if three conditions for the appearance of baryon asym-
metry (nonconservation of the baryon charge, C and
CP violation, thermodynamic nonequilibrium of the
system) that were formulated by A.D. Sakharov in [6]
are valid.

It seems that the validity of all three conditions is
confirmed experimentally. For example, the Universe
expansion observed through the redshift of spectra
is indicative of its thermodynamic nonequilibrium.
Investigation of muon and kaon decays revealed
C and CP violation in weak interactions. Finally,
the very existence of our world as a phase of the
evolution from a baryon-symmetric state can be
considered as an indication of baryon-charge non-
conservation. However, it turns out that the degree
of CP violation observed so far only in kaon decay
is clearly insufficient for explaining the existing ratio
of the number of baryons to the number of cosmic-
microwave-background photons in the Universe. As
for the baryon charge, no experimental manifestations
of its nonconservation, apart from the aforemen-
tioned fact of our existence, have been obtained thus
far.

In view of this, there are numerous theoretical
models of baryogenesis that are based on commonly
accepted (albeit not yet experimentally confirmed)
theories, like supersymmetric extensions of the Stan-
dard Model or Grand Unification Theory, or on new
hypotheses (equally not based on any experimen-
tal observations). The universe predicted by various
models may contain or not contain antimatter. If, in
turn, a model predicts the existence of antimatter, this
antimatter may appear in the form of rather distant
galaxy clusters entirely consisting of antimatter or
in the form of objects that have dimensions on the
order of star dimensions and which may occur within
a galaxy of ordinary matter like ours [7]. Since the
production of antinuclei in the interaction of ordinary
matter is virtually impossible, the observation of a
single nucleus of antihelium or any heavier element in
cosmic rays would be an indisputable confirmation of
5
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Fig. 1. Energy (E) dependence of the ratio of the positron
flux to the sum of the electron and positron fluxes for the
case of the annihilation of neutralinos having a mass of
120 GeV [9]. The displayed dependences correspond to
two different models of the propagation of cosmic rays
in the interstellar space of our Galaxy. The dashed curve
represents the fluxes from ordinary sources.

the existence of large (on an astronomic scale) objects
that consist of antimatter.

Charged cosmic-ray particles detected in near-
Earth space are predominantly produced inside our
Galaxy. Primary particles, dominated by protons and
helium nuclei, are assumed to appear and gain energy
in the process of a diffuse acceleration in the shock
wave generated by the divergence of supernova-
explosion remnants [8]. Accelerated charged particles
are scattered by intragalactic interstellar magnetic
fields. As a result, they reach the vicinity of the solar
system in the form of isotropic radiation.

Near the Earth, the flux of particles with a rigidity
of up to several GV/c is reduced owing to the effect of
solar modulation. The reduction level clearly depends
on solar activity. Information about the content and
the energy spectra of various components of cosmic
rays makes it possible to draw conclusions about
occurring astrophysical processes.

At the moment, the measured spectra of primary
cosmic rays are in good agreement with the theoret-
ically predicted power-law dependence of the particle
flux on energy. However, the accuracy of these mea-
surements is rather poor, especially at high energies.
For fluxes decreasing with energy, deviations for var-
ious particles from a universal spectral index may be
indicative of the presence of new-physics processes.
If we assume that dark matter in the invisible halo of
galaxies consists of neutralinos predicted by super-
symmetry, one can expect an increase in the cosmic-
ray flux due to neutralino annihilation. Figure 1 shows
P
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Fig. 2. AMS detector: (1) detector of transition radiation,
(2) scintillation counters of the time-of-flight system, (3)
anticoincidencecounters, (4)magnet windings, (5) vessel
with liquid helium, (6) planes of microstrip silicon detec-
tors, (7) superconductor magnet, (8) Cherenkov counter,
and (9) calorimeter.

how the neutralino-annihilation process in the ha-
lo of our Galaxy might reveal itself in the positron
spectrum [10]. Similar deviations from the power-
law dependence in the proton spectra could indicate
the presence of cosmic-ray-acceleration mechanisms
other than those that are the commonly accepted [11].

It is worth noting that theoretically predicted de-
viations are usually very small and manifest them-
selves in a bounded energy region [12]. Therefore,
their detection requires a high detector resolution and
long exposures. In addition, the detector used must
feature a high efficiency of particle identification. We
emphasize that the flux of high-energy cosmic-ray
protons exceeds the corresponding positron flux by
four orders of magnitude; therefore, the corresponding
suppression of the proton background is necessary for
measuring the positron spectrum.

The absence of the background from secondary
particles is an important factor in measuring fluxes of
primary cosmic rays; therefore, the detecting devices
must be in outer space.

The AMS experiment satisfies all of the aforemen-
tioned conditions.
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 1 2005
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AMS DETECTOR

The AMS detector (Fig. 2) is a wide-aperture
magnetic spectrometer. The inner diameter and
length of the cylindrical superconductor magnet of the
spectrometer (7) are approximately 1 m. Twenty-two
specially oriented magnet coils (4) placed along its
perimeter produce a field directed orthogonally to the
cylinder axis. The maximum field strength is 0.85 T.

Eight planes of double-sided microstrip silicon
detectors (6) located inside, above, and below the
cylinder are used to measure the track coordinates of
particles traversing the spectrometer. The precision of
the track-coordinate measurement is 10 µm in the
plane of the trajectory-curvature measurement and
30 µm in the plane orthogonal to it. The amplitudes
of the signals from the detectors are used to measure
the charges of particles by ionization losses.

The combination of the high deflecting power of
the magnet and a high precision in determining the
points where a particle traverses the microstrip detec-
tors provides a high resolution of the spectrometer (2
to 3%) in the particle rigidity (R = p/Z) over a broad
interval (1 < R < 50 GV/c). The maximum rigidity
detectable with the spectrometer (σR/R = 100%) is
2.5 TV/c.

A transition-radiation detector is located (1) in the
upper part of the facility. It contains 20 layers, each
being a radiator made from plastic fibers, which is fol-
lowed by a layer of thin-wall drift tubes of small diam-
eter filled with a Xe/CO2 gas mixture. The detector is
intended for the separation of positrons from protons
with a suppression factor of 103 to 102 in the energy
range between 1.5 and 300 GeV. Individual groups of
drift tubes are located in mutually orthogonal direc-
tions, this making it possible to trace the direction
along which particles enter the detector. In addition
to determining the coordinates of particle tracks, the
gas detectors permit estimating the particle charge
by ionization losses on the basis of the amplitudes of
signals from 20 layers of tubes.

The same method is used to measure the charge in
four planes of scintillation counters. The counter pairs
placed above and below the magnetic spectrometer
(2) measure the time of flight. Another set of scintil-
lation counters (3) is located at the inner cylindrical
surface of the magnet, suppressing the background
from particles that interacted with the magnet.

A Cherenkov detector (8) and a calorimeter (9)
are arranged in the lower part of the spectrom-
eter. The Cherenkov detector consists of a radi-
ator manufactured from aerogel and a matrix of
photomultiplier tubes intended for detecting pho-
tons. Providing the possibility of reconstructing
the radius of the Cherenkov radiation ring by the
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 1 200
coordinates of detected photons, the detector per-
mits measuring particle velocities to a precision
of 0.1% up to an energy of about 10 GeV. The
number of detected photons enables one to deter-
mine the particle charge. In order to improve the
detection efficiency, the detector is equipped with
a conic mirror. Information from the Cherenkov
detector, together with the rigidity measured in
the magnetic spectrometer, makes it possible to
determine directly the masses of particles and nu-
clei.

The calorimeter is made from 18 lead layers
arranged in two projections, with scintillating plastic
fibers being uniformly distributed within each layer.
The calorimeter has a thickness of 15 radiation-
length units. It is intended for measuring energy and
for determining the shape of a shower produced in
the interaction of a particle with the calorimeter. The
calorimeter ensures a precision of a few percent in
measuring energy. Knowing the shape of a shower
in two projections, one can distinguish electrons and
positrons from hadrons in the energy range between
1.5 GeV and 1 TeV, the hadron-suppression factor
being about 104. Measurement of hadron energies up
to a few TeV is yet another important function of the
calorimeter.

In order to suppress the background from sec-
ondary particles to the maximum possible degree and
to reduce the impact of multiple scattering on the
precision of rigidity measurements, the general layout
of the AMS detector was implemented in such a way
as to ensure the minimum amount of matter at the
inlet of the spectrometer and within it.

The AMS facility is essentially a classical mag-
netic spectrometer, such as those that are exten-
sively used in high-energy-physics experiments. The
significant distinction between the AMS and simi-
lar spectrometers is that this complicated apparatus,
consisting of technologically ultramodern detectors,
should permanently operate without failures for a few
years under conditions of outer space.

None of the facilities deployed on the Earth’s
surface operates under such harmful external con-
ditions as those experienced by a facility in outer
space. During its flight in a near-Earth orbit, the
facility periodically moves from the zone of direct
solar-light impact into the shadow region, the surface
temperature of the detector concurrently changing
from +50◦ to −180◦C. In addition, the detectors
themselves and the readout electronics are perma-
nently exposed to cosmic radiation, which is able,
especially during magnetic storms caused by solar
flares, to disturb the operation of the detector or even
to destroy it. In addition, there are vibrations and
overloads amounting to a few g and affecting the
facility during the launch of the vehicle carrying it.
5
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Fig. 3. Layout of the AMS-01 detector: (S1−S4) scin-
tillation counters of the time-of-flight system, (T1−T6)
planes of the microstrip silicon detectors, (1) anti-
coincidence counters, (2) permanent magnet, and (3)
Cherenkov counters. The dashed curve shows the particle
trajectory.

In order to ensure a successful launch and the
ensuing reliable operation of the detector for a few
years, it is therefore necessary to solve numerous
technological problems. In particular, silicon detec-
tors are known to be very sensitive to temperature
variations, so that there arises the problem of thermal
protection and thermal stabilization of the elements of
the microstrip detector. In turn, the refrigerators of the
magnet cooling system should uninterruptedly supply
the facility with superfluid helium at a temperature of
1.8 K. Further, the presence of the gas detectors oper-
ating in a vacuum imposes stringent requirements on
the gas-supply system and on the gas tightness of the
detector. All of these problems, which are quite readily
solved in facilities deployed on the Earth’s surface,
become virtually the most important consideration in
designing a facility intended for operation in outer
space. In addition, there are stringent restrictions on
the total weight of the equipment (6 t in the case of
the AMS), its dimensions and power consumption
(2 kW for this detector), the radiation resistance of
the materials and electronics, and the safety of the
detector for astronauts and for the station. These
conditions require the application of state-of-the-art
and, as a rule, very expensive technologies.

In order to gain experience in constructing a com-
plicated apparatus and employing it under conditions
of outer space, NASA required that a prototype spec-
trometer be developed and operated in a test flight.
The device known as AMS-01 was constructed and
tested.
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RESULTS OF THE FLIGHT OF THE AMS-01
DETECTOR

Figure 3 shows the layout of the AMS-01 detec-
tor. A permanent magnet was used as an analyzing
element of the spectrometer. A modern magnetic ma-
terial (NdFeB) ensured a magnetic induction of about
0.15 T over a rather large volume. The magnet had
the shape of a cylinder 80 cm long. The magnetic field
was nearly uniform and was orthogonal to the cylinder
axis, ensuring an efficient deflection of particles trav-
eling along the cylinder axis. The particle rigidity was
measured by the curvature of tracks detected in six
layers of the microstrip silicon detectors; within the
interval 1–10 GV/c, the precision of this measure-
ment was 10%. Themaximum detectable rigidity was
400 GV/c.

Entering the magnet and leaving it, a particle
traverses the scintillation hodoscopic counters of
the time-of-flight system (S1−S4). The precision
in measuring the time of flight over a base of about
1 m was approximately 100 ps, and this permitted
measuring the particle velocity to a precision of
σβ/β � 2.4%, whereby one could distinguish protons
(antiprotons) from (e−) e+ for momentum values
of up to 1.5 or 2 GeV/c (see Fig. 4). The aerogel
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 1 2005
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one period of the flight when the shuttle traversed the
equator. The figure clearly demonstrates the presence of
secondary subthreshold particles.

Cherenkov counter situated in the lower part of
the spectrometer extended the region where protons
were distinguished from leptons to 3.5 GeV/c. The
particle charge was determined by ionization losses
in the scintillation counters of the system for time-
of-flight measurements and in the silicon microstrip
detectors independently. The inner surface of the
magnet was covered with anticoincidence scintilla-
tion counters.

Since the detector should operate in the vacuum
of outer space, all of the detector elements were
carefully tested at the thermovacuum test bench at
the stage of construction and assembly. The detector
was also tested at the vibration table in order to inves-
tigate the stability of the AMS-01 structure against
strong vibrations that arise during the operation of
the shuttle jet engines. Successful preflight tests
guaranteed a reliable operation of the detector during
the flight.

The test flight of the AMS-01 detector occurred
in June 1998, on the Discovery space shuttle [13].
The detector operated in a virtually circular orbit
400 km from the Earth, with the orbit-plane incli-
nation being 51.8◦. The flight lasted 10 days; for a
significant part of this period, the shuttle was docked
to the MIR station. Throughout the flight in the
orbit, the detector accumulated experimental data.
Approximately 108 cosmic-ray particles traversing
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the facility were detected over the flight time. The
most interesting part of the total statistics included
data collected for 100 hours of independent flight of
the shuttle; for about 24 hours of this independent
flight, the AMS-01 detector was oriented toward
the zenith. Figures 4 and 5 display the distributions
of the parameters of particles detected over a few
minutes of such a flight of the detector in the equator
region.

Figure 4, which displays the dependence of the
momentum of a particle carrying a positive charge of
unity (the particle momentum was determined by the
track curvature) on its velocity in units of the speed of
light (β), demonstrates the potential of AMS-01 for
discriminating between positrons and protons. In the
figure, positive and negative values of β correspond
to particles moving toward and from the Earth, re-
spectively. From Fig. 5, which shows the dependence
of the ionization losses measured by the silicon de-
tectors on the measured particle momentum, one can
see that the detector provides a reliable determination
of the particle charge. Similarly, the charge is deter-
mined by the counters of the system for measuring the
time of flight.

The data obtained from measurements and pre-
sented in Figs. 4 and 5 are merely a raw material for
a physical analysis. Nevertheless, some conclusions
can be drawn directly from the displayed distribu-
tions. For example, it is clear from Fig. 4 that, along
with the expected flux of protons having momentum
values above the geomagnetic threshold (which is
about 10 GeV/c near the equator) and moving toward
the Earth, there are particles of momenta substan-
tially below the geomagnetic-cutoff threshold. More-
over, the subthreshold fluxes of particles (protons and
positrons) toward the Earth and away from it are
equal to each other. Subthreshold electrons were also
detected. A data analysis revealed that subthreshold
particles are present not only in the equator region
but at all latitudes covered by the orbit of the AMS-
01 flight. The presence of particles in the Earth’s
radiation fields referred to as Van Allen belts had been
known before the AMS-01 flight. However, protons
in theVan Allen belts have energies within the interval
10–100 MeV and occur at distances of a few thou-
sand kilometers from the Earth. In the AMS-01 case,
we are dealing with protons present at a distance of
400 km from the Earth that have energies exceeding
the energy of protons in external radiation belts by
one or two orders of magnitude. The back tracking
of subthreshold particles in the Earth’s magnetic field
showed that they are particles that are produced in
hadronic showers caused by the interaction of primary
cosmic rays with the atmosphere [14]. In the course
of their motion in the magnetic field, these particles
can repeatedly traverse the surface of the sphere at the
5
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altitude of the space-shuttle flight in both directions,
toward or away from theEarth. In view of this circum-
stance, the ascending and descending fluxes prove to
be equal.

A precise measurement of the fluxes of primary and
secondary particles is of paramount importance. In
particular, knowledge of the fluxes of various particles
entering the atmosphere and of the character of the
development of air showers is crucial for interpreting
results for atmospheric neutrinos [15]. The results
obtained in the test flight substantially improved the
accuracy of information about the primary fluxes of
cosmic rays. In addition, information about the spec-
tra of secondary particles (p, e+, e−) produced in air
showers together with neutrinos provides very im-
portant data for validating hadronic-shower models
that are used to calculate the fluxes of atmospheric
neutrinos.

Throughout the AMS-01 flight, 2.86 × 106 He
nuclei of rigidity up to 140 GV/c were detected, but
no signal from anti-He nuclei was found (Fig. 7).
Assuming the same He and anti-He spectra in the
interval 1 < R < 140 GV/c, we arrive at the following
limit on the ratio of antihelium and helium fluxes:
NHe/NHe < 1.1 × 10−6. In addition, the data on the
fluxes of nuclei heavier than helium make it possible
to set a limit of 2× 10−5 on the antimatter-to-matter
ratio for heavy antinuclei.

The limits derived for the fluxes of antinuclei in
cosmic rays from the data obtained over a few tens
of hours of the test flight proved to be more stringent
than those from many years of searches for antimatter
that had been performed before the AMS-01 flight.
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CONCLUSION

The test flight described above resulted not only
in obtaining interesting physics results but also in
gaining experience in operating the facility under con-
ditions of an actual space flight. On the basis of this
experience, the spectrometer design was significantly
changed and supplemented in order to improve the
accuracy of measurements and to extend the physics
potential of the facility. At the moment, the changes
in question are being implemented in the AMS de-
tector under construction. The replacement of the
permanent magnet used in the AMS-01 detector by
a superconductor magnet is worthy of special note. A
sixfold increase in the deflecting power of the magnet
due to this replacement would enable a reliable deter-
mination of the sign of the charge of particles travers-
ing the spectrometer up to an energy of a few hundred
GeV per nucleon. This would be of paramount impor-
tance in searches for antinuclei if one considers that,
during the main mission, the spectrometer would de-
tect approximately 2× 109 helium nuclei, including
more than 2× 105 nuclei of energy above 2 TeV.

Within the next few years, the AMS detector will
be installed on board the International Space Sta-
tion Alpha. It is planned to collect data for 3 to
5 years. Evidently, information obtained within this
period would contribute to improving our knowledge
of processes occurring in the Universe both in the
astrophysical and cosmological aspects and at the
level of elementary-particle interactions.
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Neutrino Geophysics at Baksan I: Possible Detection of Georeactor
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Abstract—J.M. Herndon in the 1990s proposed a natural nuclear fission georeactor at the center of
the Earth with a power output of 3–10 TW as an energy source to sustain the Earth magnetic field.
R.S. Raghavan in 2002 pointed out that, under certain conditions, antineutrinos generated in such a
georeactor can be detected using massive scintillation detectors. We consider the underground Baksan
Neutrino Observatory (4800 m w.e.) as a possible site for developments in geoneutrino physics. Here, the
intrinsic background level of less than 1 event/yr in a liquid scintillation ∼1000-t target detector can be
achieved and the main source of background is the antineutrino flux from power reactors. We find that
this flux is ∼10 times lower than at the KamLAND detector site and two times lower than at the Gran
Sasso laboratory and thus at Baksan the georeactor hypothesis can be conclusively tested. We also discuss
possible searches for the composition of georeactor burning nuclear fuel by analysis of the antineutrino
energy spectrum. c© 2005 Pleiades Publishing, Inc.
INTRODUCTION

In this paper, we consider possibilities of detecting
at BNO (Baksan Neutrino Observatory of the Insti-
tute for Nuclear Research, RAS) antineutrinos from
a georeactor using a liquid scintillation spectrometer
of ∼1000-t target mass. The same spectrometer can
detect ν̄e coming from terrestrial 238U and 232Th de-
cays; the latter problem will be considered in the next
publication. We mention also that here searches for
the astrophysical antineutrino flux can be done.

The Earth’s magnetic field varies in intensity and
irregularly reverses polarity with an average interval
between reversals of about 200 000 yr. This requires
some variable or intermittent energy source. This
source is understood as a georeactor, i.e., as natu-
rally varying self-sustaining nuclear chain reaction
burning at the center of the Earth. The georeactor
started ∼4.5 billion years ago when 235U/238U en-
richment was about 30%. In the georeactor, 239Pu is
formed by neutron capture in 238U followed by two
short-lived beta decays: 238U(n, γ)→ 239U(β−)→
239Np(β−)→ 239Pu. The neutron flux in the re-
actor is extremely low and, in contrast with man-
made high-flux power reactors, 239Pu does not
contribute to the fission power and decays to 235U:

∗This article was submitted by the authors in English.
1)Institute for Nuclear Research, Russian Academy of Sci-

ences, Moscow, Russia.
**e-mail: sinev@polyn.kiae.su
1063-7788/05/6801-0069$26.00
239Pu(α, T1/2 = 2.4 × 104 yr) → 235U. Thus, the
georeactor operates in a breeder regime and repro-
duces 235U through the 238U→ 239Pu→ 235U cycle.
An average thermal power output of the uranium-
based reactor is assumed to amount to 3–6 TW. Had
thorium been included, the power could be higher.
Variations of georeactor power originate from self-
poisoning due to accumulation of fission products
and subsequent removal of these products by diffu-
sion or some other mechanism. This is a short and
very schematic summary of the georeactor concept
proposed in a number of publications by Herndon [1].

A nuclear fission chain reaction can occur in na-
ture. In 1956, Kuroda [2] showed that thick seams
of uranium ore, 2 billion years ago, might have been
able to support chain reactions and function as a
natural nuclear reactor. Sixteen years later, remains of
a natural nuclear fission reactor were actually found in
a mine at Oklo in the Republic of Gabon in Africa [3].

Herndon’s idea about a georeactor located at the
center of the Earth, if validated, will open a new era
in planetary physics. However, it is not clear whether
further geophysical, chemical, etc., studies can in the
foreseeable future give a decisive confirmation (or
disproof) of this reactor. Particle physics can give an-
other approach to the problem. In 2002, Raghavan [4]
pointed out that, under certain conditions, a direct
and conclusive test could be obtained by detection of
antineutrinos from such a georeactor.

Below, we consider a georeactor: expected ν̄e rate
c© 2005 Pleiades Publishing, Inc.
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Fig. 1. Positron spectra for georeactor powerW = 3 TW,
10 TW, and power reactor background at BNO (no oscil-
lation; 100% efficiency is assumed).

and spectrum (Section 1), and detector design and
backgrounds (Section 2).

In Section 3, we compare ν̄e energy spectra emit-
ted in 235U, 238U, and 233U fission and discuss pos-
sibilities of searches for georeactor fuel composition
using ν̄e spectroscopy.

1. GEOREACTOR: EXPECTED ν̄e RATE
AND SPECTRUM

Georeactor antineutrinos are detected in a liquid
scintillation spectrometer via the inverse beta-decay
reaction

ν̄e + p→ n+ e+. (1)

The visible positron energy Ee is related to the ν̄e
energy as

Ee = E − 1.80 + Eannihil − rn ≈ E − 0.8 [MeV],
(2)

where 1.80 MeV is the threshold of the reaction and
rn is the neutron recoil energy. The signature of a
neutrino event is e+ and 2.2-MeV neutron signals
correlated in time and space.

The calculated antineutrino interaction rate for
georeactor powerW = 3−10 TW andNp = 1032 tar-
get protonsNνGR = (33−110)/yr is found for the no-
oscillation case and detection efficiency ε = 100%,
the Earth’s radius REarth = 6370 km, and typical
PWR parameters:

NνGR ≈ (33−110)/yr with 1032 protons, 3–10 TW,
(3)

ε = 100% and no oscillation,

which is exactly what has been found in [4]. Had 235U
neutrino fission parameters been used, the rate would
be ∼10% higher.
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Fig. 2. Detector (schematic): 1—1032 p LS target, 2—
buffer zone (oil), 3—balloon, 4—Rn protector, 5—PMTs,
6—vessel, 7—outer water Cherenkov detector.

The positron visible energy spectrum is shown in
Fig. 1.

2. DETECTOR DESIGN
AND BACKGROUNDS

The sensitivity of low-energy antineutrino detec-
tion depends on detector size and level of background.
In the past ten years, the sensitivity has been in-
creased, in two steps (CHOOZ, KamLAND), by a
factor of ∼108 and approaches ∼1 event per year per
∼1000-t LS target.

The main features of future BNO detector design
and location can be the following:

(a) Three-concentric zone detector design
(Fig. 2). The central ∼14-m-diameter zone one is
a 1032 H atom liquid scintillator target contained in a
spherical transparent balloon. Zone two is a buffer of
nonscintillation oil contained in a ∼19-m-diameter
stainless steel vessel; on the inner surface of the
vessel are mounted PMTs with ∼30% photocathode
coverage. A transparent acrylic barrier protects radon
emanations from penetrating in the LS of zone one.
Zone three is ∼22-m-diameter water Cherenkov de-
tector which gives veto signals for cosmic muons and,
as passive shielding, protects the inner parts from
neutrons and γ rays coming from the surrounding
rock.

(b) Deep underground position of the detector to
reduce muon-induced backgrounds. BNO is located
at a site with 4800 m w.e. rock overburden, which is
much deeper than KamLAND’s 2700 m w.e. position.
YSICS OF ATOMIC NUCLEI Vol. 68 No. 1 2005
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Antineutrino backgrounds at BAKSAN from power reac-
tors

Country
or plant

Num-
ber of
cores

Thermal
power,
GW

Distance
from

BNO,
km

Energy
flux∗,

J/cm2/yr

Rate∗,
1032

p yr−1

Rostov 1 3 463 2.99 5.34

Kursk 4 12.8 1070 2.38 4.26

Smolensk 3 9.6 1500 0.91 1.6

Balakovo 4 12 1035 2.37 4.27

Tver 2 6 1600 0.5 0.89

Novovo-
ronezh

3 5.75 945 1.37 2.46

Rovno 3 5.75 1550 0.51 0.9

Khmelnitsky 1 3 1395 0.33 0.59

Chernobyl 1 3.2 1278 0.39 0.7

Zaporozhie 6 18 612 10.3 18.33

Yuzhno-
ukrainskaya

3 9 1035 1.79 3.2

Great Britain 35 38.5 3390 0.71 1.28

France 58 204.8 2940 5.05 9.04

Germany 19 69.5 2550 2.28 4.07

Baltic
countries

26 69.7 2355 2.68 4.79

Nearest
European
countries

25 62.4 2250 2.63 4.7

Armenia 1 1.375 400 1.83 3.28

Bucher∗∗ 1 3 1760 0.21 0.37

Pakistan 1 0.375 3130 0.01 0.017

India 10 5.8 4320 0.08 0.14

Total 39.35 70.5
∗ Average power is assumed to be 0.85 of its maximal value.
∗∗ Bucher Power Plant is under construction now.

(c) Highest purification of zone 1 (LS) and zone
2 (oil) (U, Th, and K concentrations as low as
10−17 g/g).

Experience accumulated in the KamLAND exper-
iment [5] shows that with conditions (a)–(c), an in-
trinsic detector background at BNO of less than 1/yr
in an LS target with 1032 H atoms can be achieved.

The most important condition for successful de-
tection of georeactor antineutrinos is not too high an
antineutrino flux coming from power reactors. Using
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 1 200
data from [6], the ν̄e interaction no-oscillation rate
NνPWR is (see table)

NνPWR = 70.5/yr with 1032 protons, (4)

ε = 100% and no oscillation.

This rate is ∼10 times smaller than at Kamioka
site and two times smaller than at Gran Sasso (for
KamLAND and Gran Sasso data see [4]). Using
known PWR powers and their distances from BNO,
this rate can be calculated with ∼3% systematic un-
certainty.

Antineutrino interaction rates (3), (4) are obtained
for the no-oscillation case and 100% detection effi-
ciency. With realistic ε = 80% and LMA oscillation
parameters, the detection rates are two times lower.
Nevertheless, in ∼2 yr of data taking, a 3-TW geore-
actor can be conclusively confirmed.

3. ON ANALYSIS OF FUEL COMPOSITION
IN GEOREACTOR

Imagine that the georeactor hypothesis is con-
firmed. The next step could be efforts to obtain direct
information on composition of the nuclear fuel, which,
no doubt, would be of primary geophysical impor-
tance.

The shape of the reactor ν̄e energy spectrum
depends on contributions of fissile isotopes to the
total chain reaction rate. Thus measurement of the
ν̄e spectrum provides information on the nuclear
fuel composition. This idea was first proposed years
ago [7] and later was confirmed in experiments at
reactors [8].

In water-cooled thermal neutron power reactors
with (initial) 235U/238U enrichment ∼4%, fast neu-
tron fission of 238U contributes typically 7.5% to the
total reactor fission rate. In the fast neutron geore-
actor, the 238U contribution can be expected to be
much higher (no information on this subject is given
in [1]). The calculated ratio of reaction (1) positron
spectra induced by 238U and 235U fission antineutri-
nos (Fig. 3) considerably departs from unity. Thus,
using shape analysis and with larger statistics, the
contribution of 238U fission can be estimated.

We continue speculations on the georeactor nu-
clear fuel composition. Suppose that, initially
(∼4.5 billion years ago), a large amount of 232Th
was present in the georeactor core. Then 233U is
formed through neutron capture and two beta decays:
232Th(n, γ) → 233Th(β) → 233Pa(β) → 233U.
233U with its large fission cross section would con-
tribute greatly to the total georeactor fission rate.

We have calculated the 233U fission ν̄e energy
spectrum (V. Kopeikin et al., to be published) and
5
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antineutrino-induced positron spectra.

found that it is much softer than the 235U fission ν̄e
energy spectrum (Fig. 3). Thus, if the contribution
of 233U fission is sufficiently large, this can be found
in experiments considered here. We note also that, if
233U and 238U contribute equally to georeactor fission
power, the resulting positron spectrum can look very
much like that of 235U.

CONCLUSIONS

The hypothesis of a 3-TW georeactor burn-
ing inside the Earth can be conclusively tested at
Baksan with a few years of data taking using an
∼1000-t target liquid scintillation detector. With
P

longer time/larger LS mass, a search for the domi-
nant nuclear fuel components can be done. The same
spectrometer can detect ν̄e coming from terrestrial
238U and 232Th decays; the latter problem will be
considered in the next publication. We mention also
that here searches for the astrophysical antineutrino
flux can be done.
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Abstract—The results are presented that were obtained at the Yakutsk array by investigating the time
structure of a muon disk in extensive air showers of primary energy in the region E0 ≥ 5× 1016 eV at
distances of 250 to 1500 m from the shower core. The measurements were performed with a large muon
detector that has an area of 184 m2 and a detection threshold of Eµ ≈ 0.5secθ GeV and which began op-
erating in November 1995. Two components having different muon-disk thicknesses were discovered, and
this requires strongmodifications in the currently prevalent idea of the development of extensive air showers.
The problem of the existence of E0 ≥ 1020 eV events is considered. c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION
Muons of energy in the range between about 0.5

and 1.0GeV are an important component of extensive
air showers generated by cosmic rays of ultrahigh
energy (E0 ≥ 1015 GeV). They are weakly absorbed
in the atmosphere and are sensitive to the properties
of nuclear interactions in the process of the devel-
opment of extensive air showers and to the chemical
composition of primary cosmic rays.

There exists the opinion that the composition of
primary cosmic radiation is significantly enriched in
heavy nuclei at energies in the range 3× 1015 < E0 ≤
1017 eV (see, for example, [1, 2]), but that, at en-
ergies in the range 1017 < E0 ≤ 1018 eV, it again
changes fast, approaching a proton-dominated com-
position [3]. The heaviest composition corresponds to
E0 ≈ 1017 eV. These results can be explained within
the diffusion model [4].

Muons of energy in the regionEµ ≥ 1.0 GeV have
been unceasingly investigated at the Yakutsk array
since 1974. In [5–8], it was shown that the develop-
ment of showers at E0 ≥ (3–5)× 1018 eV is different
from their development in the region of lower ener-
gies. In the opinion of the authors of [9–19], this may
be associated with new primary-cosmic-ray particles
of an extragalactic origin.

In November 1995, a large muon detector that has
a detection threshold of Eµ ≈ 0.5 sec θ GeV began

1)Institute of Nuclear Physics, Moscow State University,
Vorob’evy gory, Moscow, 119899 Russia.

*e-mail: a.v.glushkov@ikfia.ysn.ru
1063-7788/05/6801-0073$26.00
operating at the Yakutsk array. A preliminary analysis
of the results obtained with the large muon detec-
tor revealed that it has a high additional potential
for studying the development of extensive air show-
ers [20, 21]. Below, we present some results obtained
by studying the time structure of amuon disk.We also
compare the results of the measurements with their
counterparts calculated on the basis of the model of
quark–gluon strings (QGS) [22].

2. LARGE MUON DETECTOR

The large muon detector consists of 92 scintilla-
tion counters of area 2 m2 that are similar to those
in the Yakutsk array stations deployed on the Earth’s
surface. They are arranged in six rows in an under-
ground hall having dimensions of 26× 12 m2 and
occurring at a distance of 180 m from the center
of the array. The main part of the electronics used
was manufactured in the CAMAC standard and was
positioned within the same hall, while the controlling
computer IBM PC 486 was in the laboratory house.
The computer ensures themonitoring of the operation
of this electronic equipment and performs the calibra-
tion of the detectors and the recording and storage
of information. The exchange of information between
the computer and the electronics in the underground
hall is implemented by means of two drivers con-
nected in series that involve six communication lines
each.

The electronic equipment was developed in such a
way that the height of a pulse and the time of its arrival
c© 2005 Pleiades Publishing, Inc.
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in a shower is measured independently of the actu-
ation of other detectors. An amplitude-time-channel
block mounted on each scintillation counter was cre-
ated for such measurements. This block consists of
the amplitude channel for measuring the number of
muons and the time channel for measuring the time
of the arrival of the first particle. All amplitude–time
channels are concentrated in 11 crates, and signals
to the input of each amplitude–time signal are trans-
ferred from a photomultiplier tube through a PK-75
cable of length 20 to 70 m.

An amplitude channel, which has a dynamical
range of about 103, operates with a follower threshold
(of 1 mV to 2 V) in the mode of background loading,
whose intensity ranges between 100 and 1000 events
per second. An analogous signal at the amplitude-
channel input is preliminarily delayed for about 100 ns
(this corresponds to 20 m of the РК-75 cable) in
order that the respective time channel have time to
generate, at the controlling amplitude-channel input,
a rectangular pulse of duration 2 µs for integrating the
charge q from the photomultiplier tube. After 2 µs, the
linear transformation q → T and the recording of this
duration in the memory by a 10-MHz clock generator
begins. In the memory of an amplitude–time channel,
pulse-height information is stored up to the arrival of
the successive pulse or up to the completion of the
interrogation of the largemuon detector by the central
recorder (see below).

The time channel belonging to an amplitude–time
channel and consisting of two synchronized channels
is used to perform an accurate measurement of the
time interval between the instant of counter actua-
tion (“start”) and a signal from the receiver of syn-
chropulses of the master array for studying extensive
air showers (“stop”). The “start” signal triggers the
precise time channel measuring the interval up to
the beginning of the successive cycle of the 10-MHz
reference generator common to all amplitude–time
channels. In turn, the “stop” of the precise time chan-
nel serves as the start of the rough time channel
counting the number of cycles of the reference gen-
erator before the generation of the main “stop” signal
for the large muon detector by the receiver of a syn-
chropulse of the array. The “stop” signal for the large
muon detector is synchronized with the beginning
of a successive 10-MHz cycle, and this guarantees
that the rough time channels of all counters actuated
in a shower are stopped simultaneously. In a precise
time channel, a short time interval (from 0 to 100 ns)
is extended by a factor of about 100 by means of
a “time–time” transformer, and the same 10-MHz
clock generator is used to obtain a digital code. This
scheme makes it possible to measure the whole in-
terval up to the internal “stop” signal for the large
muon detector to a precision of about 5 ns and to have
P

a relative precision of about 5 ns between different
counters arranged in the underground hall.

A signal is fed to a time channel after a pre-
liminary amplification and a high-frequency pulse-
edge correction for a discriminator that has a follower
threshold; being actuated at a specific phase of the
leading edge of a pulse, this discriminator renders the
actuation of a time channel independent of the height
of an input pulse. The synchropulses of the array are
fed by a transmitter with a frequency of 10 kHz.

The total time of actuation of the time channel
of an individual counter is determined as the sum
of the readings of the rough and precise time chan-
nels with allowance for the delay of signal propaga-
tion along the cable from the photomultiplier tube to
the amplitude-time channel and an additional instru-
mental delay.

As soon as the processing of a signal that has
arrived begins, the amplitude–time channels are
blocked from repeated actuations up to the com-
pletion of processing in each channel (this time can
range between 5 and 250 µs). If, within 100 µs since
the arrival of a signal, the Yakutsk array selects an
extensive air shower or a local actuation of the large
muon detector occurs, then the actuated amplitude–
time channels are blocked to save information and to
transfer data to the controlling computer.

Information about the last selected event is always
stored in the memory of amplitude–time channels.
Only after the arrival of a new event (if the unit is
not blocked by a special command) is the memory
cleared. Amplitude–time channels involve a special
trigger for recalling counters that were actuated in a
given shower. This trigger is set in a special position
in the presence of a signal at the input of amplitude–
time channels at the instant of shower selection with
a resolution time of 100 µs (bit of involvement) and is
then interrogated in reading off information.

The block of master selection serves for synchro-
nizing the operation of all amplitude–time channels,
obtaining the master of the main array for studying
extensive air showers, selecting local events, and de-
veloping an interruption signal for the computer used.
A signal associated with a shower that is recorded
by the main array for studying extensive air showers
is transferred from the central recorder to the block
of master selection along a special cable, and the
block of master selection develops interruption for the
computer operating with the large muon detector and
transmits pulses to all amplitude–time channels for
generating a bit of involvement. Such an event is
always recorded irrespective of whether the counters
of the large muon detector were actuated.

Moreover, the block of master selection itself se-
lects local showers of energy E0 ∼ 1015 eV if several
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 1 2005
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counters are actuated simultaneously within 2 µs.
The number and the arrangement of counters are
determined by the tuning of summing schemes in
each crate and in the block of master selection itself.
The permission or prohibition of a given type of se-
lection can be implemented in a computer-controlled
way. Also, a controlling code can imitate an artificial
shower upon operator’s command. This code is used
to test the equipment involved and the coupling be-
tween the computer and remote electronics.

The block of master selection has a memory that
can contain 32 16-digit words. This memory is used
to save permanently the times of arrival of individual
events. A special 10-digit counter (clock) counts the
number of cycles of the 10-MHz generator from a
successive pulse of synchronization of the array. At
the instant of arrival of such a signal, the readings
of this counter are annihilated. As soon as the signal
of an allowed event arrives, data of this counter are
recorded in the successive cell of the memory of the
block of master selection. One employs ten digits to
record times and the remaining six digits to indicate a
feature of an event. Such events include (i) instants of
arrival of a synchropulse of the array, in which case the
recording in the memory occurs before clearing the
time counter (feature 0); (ii) actuation of any detector
in each row of 14 to 16 counters, in which case the
feature is determined by the number of a row and is
indicated in the first to the sixth digit; and (iii) the
instant of the completion of a pulse formed in a large
muon detector in shower events for developing a bit
of involvement in amplitude–time channels, in which
case a further recording is blocked up to interrogation
and a subsequent unblocking by the controlling code
(feature 0). This scheme makes it possible to obtain
a time development of events over several periods of
100 µs up to the selection of a shower and to mon-
itor the operation of the time channels of individual
amplitude–time channels.

An individual computer is used to record and ac-
cumulate data from the largemuon detector. In show-
ers, the block of master selection produces an inter-
ruption signal according to which an event is recorded
in a file on the hard disk of the computer. Each
recording of this file refers to one shower and has a
structure that makes it possible to store information
from all counters of the large muon detector. In order
to identify and combine straightforwardly data from
the large muon detector and from the main array in
common showers, both recorders save the time of
an event according to unified clocks of world time
(UT). For this, an input register to which a code from
an external UT clock is transferred is arranged in a
special crate connected to one of the lines of a series
driver; concurrently, the same code is advanced to
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 1 200
the input register of the main recorder of the Yakutsk
array.

In between the showers, the recording code of the
large muon detector accumulates testing and cali-
bration information. With the aid of this code, the
background and the amplitude spectra from all coun-
ters are measured continuously, and these spectra are
recorded in individual files on the hard disk and are
used for the pulse-height calibration of the counters.

3. PROPERTIES UNDER STUDY

For zenith angles satisfying the condition cos θ ≥
0.7, we have investigated the time structure of a
muon disk in extensive air showers of energy in the
region E0 ≥ 5× 1016 eV . By way of example, the
distribution of delays of the arrival of muons (T ) for a
threshold energy of Eµ ≈ 0.5 sec θ GeV with respect
to a plane front (plane orthogonal to the extensive-
air-shower axis at the point of its intersection with the
array plane) is shown by curve 1 in Fig. 1 according
to calculations on the basis of the QGS model for
primary photons of energy E0 = 1018 eV for cos θ ≥
0.9 at the distance of R = 630 m from the shower
core. The mean density of muons at this distance is
ρµ(630) = 0.35 m−2, whereas the mean delay time is
〈T 〉 = 156 ns, the respective standard deviation being
σT = 114.2 ns. The FWHM value of this pulse is
T1/2 = 107 ns, while its width at a relative height of
0.01 from the base is 475 ns. This is the time of full
integration (99%) of all muons in a specific event.

Curve 2 represents the distribution obtained by
integrating curve 1. As a matter of fact, it reflects the
pulse shape that would be developed by an oscillo-
scope at the output of an ideal detector. The width
of this distribution at a level of 10 to 50% is T15 =
62 ns. This quantity is often measured in experiments
and is used to characterize the thickness of the disk in
an extensive air shower.

Of practical interest in measuring particle densi-
ties are not the values of T but the relative delay times

ti = Ti–T1 (1)

(where T1 is the time of arrival of the fastest muon
among n actuated counters of the large muon collider
in each individual shower and Ti is the time of arrival
of the first muon to the ith counter), since the latter
reflect the real time necessary for collecting the preset
fraction of all particles at the chosen distance from the
shower core.

The distribution of the delays defined by (1) has an
exponential form,

P (t) ≈ exp(−t/λ). (2)

One can state with confidence that it depends un-
ambiguously on the mean density of recorded muons,
5
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Fig. 1. Distribution of delays of the arrival of muons for
the threshold energy of Eµ ≈ 0.5 sec θ GeV at the obser-
vation level of X = 1020 sec θ g cm−2 at the distance of
R = 630 m from the shower core according to calcula-
tions on the basis of the QGS model for primary protons
of energy E0 = 1018 eV for zenith angles satisfying the
condition cos θ ≥ 0.9: (1) delays with respect to a plane
front and (3) delays with respect to the first muon for
densities of ρµ ≤ 0.35 m−2 in the case of the actuation
of two counters (2 m2 in area) in each of 5000 showers;
T15 is the rise time for curve 2 (which was obtained by
integrating curve 1) at a level of 10 to 50%.

〈ρµ(R)〉—more precisely, on the number m of muons
that traversed the area S (in our case, S = 2 m2),
which, at the mean value of 〈m〉 = 〈ρµ(R)〉S, obey
the Poisson distribution

Pm(〈m〉) = 〈m〉m/m!exp(−〈m〉). (3)

Histogram 3 in Fig. 1 represents the distribution
of delays (1) that was obtained with the aid of the
Monte Carlo method by rescaling curve 1 for 〈m〉 =
0.7 in the case of the actuation of two counters. The
delay corresponding to this histogram is 〈t〉 = 99 ns,
whereas the respective standard deviation is σt =
115.8 ns. The quantities 〈t〉 and T15 are related by
the equation

〈t〉 ≈ 1.6T15, (4)

which may prove to be of use in estimating the time
of integration of signals at the input of pulse-height
transformers in measuring the number of particles at
various distances from the extensive-air-shower core.

An analysis has revealed that, in our case, the
distributions of delays for ρµ ≤ 1 m−2 have the ex-
ponential form (2), where the parameters λ and 〈t〉
are close to each other. On this basis, one can readily
derive a relation for estimating the time Tη that is
PH
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Fig. 2. Delays 〈t〉 with respect to the fastest muons at
various distances from the shower core in each shower
for showers characterized by 〈E0〉 ≈ 3 × 1017 eV and
〈cos θ〉 ≈ 0.95: (closed circles) 〈ρµ〉 ≈ 0.45 m−2, (open
circles) ρµ ≥ 2.5 m−2, (dashed curve) behavior on av-
erage, and (solid curve) results of the calculation on the
basis of the QGSmodel for primary protons.

required for recording the fraction η of all muons.
Specifically, we have

Tη = −〈t〉 ln(1− η). (5)

From (5) and from the distribution represented by
curve 2 in Fig. 1, it follows that the effective thickness
of a muon disk (95% of all particles) in showers of
energy in the region E0 ≤ 1018 eV does not exceed
300 ns for distancesR from the shower core not larger
than 630 m and that 99.7% of all muons will be
recorded within the time Tη = 600 ns.

4. RESULTS

The data sample subjected to the present analysis
includes showers recorded over the period between
1995 and 2002 at the Yakutsk array with the aid of
the large muon detector. The primary-particle energy
E0 was determined from the relations

E0 = (4.8± 1.6) × 1017(ρs,600(0◦))1.0±0.02 [eV],
(6)

ρs,600(0◦) = ρs,600(θ)exp((sec θ − 1) (7)

× 1020/λρ) [m−2],

λρ = (450 ± 44) (8)

+ (32± 15) log(ρs,600(0◦)) [g/cm2],

where ρs,600(θ) is the charged-particle density mea-
sured by scintillation detectors at the distance of R =
YSICS OF ATOMIC NUCLEI Vol. 68 No. 1 2005
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600 m from the shower core that are deployed on the
Earth’s surface.

Below, we will consider only the mean delay times
obtained from the quantities in (1). For showers
characterized by energies in the range 1017 ≤ E0 ≤
1018 eV and zenith angles satisfying the condition
cos θ ≥ 0.9, Fig. 2 shows the values of 〈t〉 at distances
from the extensive-air-shower core in the range
R = 250–1500 m. The closed circles correspond
to 〈t〉 in the case where two counters of the large
muon detectors were actuated if m ≤ 2 (〈m〉 ≈ 0.9)
muons traversed them. The dashed curve reflects
the behavior of 〈t〉 on average. The solid curve (p)
shows 〈t〉 values expected in this case on the basis
of the QGS model for primary protons. The open
circles represent 〈t〉 values obtained by selecting
ρµ ≥ 2.5 m−2 events, which correspond to the case
wherem ≥ 5 muons traverse the counters.

One can see that the variation represented by the
closed circles is more gently sloping than the predic-
tion of the QGS model. The disagreement for R <
500 m stems from taking, in the calculations, muon
densities at any values ofm (that is, without imposing
the constraint m ≤ 2), this leading to a significant
decrease in the “looseness” of the muon disk and,
hence, to a decrease in 〈t〉. The above distinction dis-
appears in the case where m ≥ 5 muons traverse the
counters of the large muon detector (open circles). As
to disagreement forR > 800 m, it eludes all attempts
at explanation presently.

In the following, our attention will be given pri-
marily to studying the thickness of the muon disk
at distances from the shower core in the range R ≈
500–800 m. This choice was motivated by a few
factors. First, data from the large muon collider ver-
sus E0 and θ are the most extensive in this range
of distances. Second, the muon density ρµ,600 mea-
sured at a distance of 600 m from the shower core
is weakly dependent on the zenith angle for E0 ≤
(3–5)× 1018 eV [7, 8]; therefore, it is yet another
parameter, along with that in (5), convenient for es-
timating the energy of primary particles. For muons
of threshold energy Eµ ≥ 1.0 GeV, the respective de-
pendence obtained at the Yakutsk array in vertical
showers has the form [8]

E0 = 2.4 × 1018(ρµ,600(0◦))1.08±0.01 [eV]. (9)

Third, model results and experimental data are con-
sistent to some extent at distances from the shower
core in the range R ≈ 500–800 m (see Fig. 2), and
this gives sufficient grounds to employ the results
of the calculations in interpreting results presented
below.

For a standard distance, we have chosen R =
630 m and have rescaled all results to it. In Figs. 3
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distance ofR = 630 m from the shower core for extensive
air showers whose zenith angles satisfy the condition
cos θ ≥ 0.8: (closed circles) experimental data for 〈ρµ〉 ≈
0.45 m−2 in the case of the actuation of two showers of
the large muon detector in each shower, (dashed line)
behavior of 〈t〉 on average, and (solid lines) results of the
calculation on the basis of the QGSmodel for primary (p)
protons or (Fe) iron nuclei.

and 4, the lines represent the delays 〈t〉 expected at
this distance according to the calculation on the basis
of the QGS model for primary (p) protons or (Fe)
iron nuclei in the case of the actuation of two large-
muon-detector counters traversed by m ≤ 2 muons
(Figs. 3 and 4 show these results, respectively, ver-
sus E0 for showers characterized by cos θ ≥ 0.8 and
versus sec θ for showers of energy in the range 1017 ≤
E0 ≤ 1018 eV). For primary particles of atomicweight
A, the results of the calculations can be accurately
approximated by the dependence

〈t〉 ≈ 104 + 5(log(E0/18) − log(A)) (10)

− 140(sec θ − 1) + 0.194(R − 630)

for 1016.7 ≤ E0 ≤ 1018.3 eV and θ ≤ 45◦ in the range
500 ≤ R ≤ 1000 mof distances from the shower core.
The experimental data in question were obtained un-
der the same selection conditions as those used in the
calculation. The dashed lines reflect the behavior of
experimental data on average. One can see that the
measured and calculated values of 〈t〉 in Fig. 3 are
compatible with the hypothesis that the composition
of primary cosmic rays is mixed for E0 ≤ 1018 eV. In
the region around E0 ≈ 1017 eV, this composition is
enriched in iron nuclei to a considerable extent, while,
atE0 ≈ 1018 eV, it becomes close to a purely protonic
composition. At first glance, it seems that this con-
clusion is in fairly good agreement with the results
obtained by many other researchers (see Introduc-
tion). However, we would like to attract the attention
of the reader to the zenith-angle dependence of the
experimental data in Fig. 4, which are in much poorer
5
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agreement with the results of the calculations for
inclined extensive air showers (θ > 35◦–40◦), where
the mean thickness of the muon disk proved to be
much larger than that predicted by the QGSmodel.

In order to disentangle this situation and to clarify
the reasons behind the aforementioned disagreement
between the theory and experiment in Fig. 2, we
have studied the measured delay times (1) in greater
detail. It turned out that their distribution for E0 ≤
(3–5)× 1017 eV differs considerably from the purely
exponential distribution in (2). This can clearly be
seen from the example in Fig. 5a, which, for the case
of the actuation of two large-muon-detector counters
traversed by m ≤ 2 muons, shows experimental re-
sults for a sample of 477 showers characterized by
1016.7 ≤ E0 ≤ 1017.0 eV and cos θ ≥ 0.8. The points
there correspond to an integrated distribution that
can be represented in the form

N(≥ t) = N1exp(−t/λ1) + N2exp(−t/λ2). (11)

The first term in this sum (solid straight line) at
λ1 ≈ 105 ns includes about 50% of all events. It is
not due to methodological factors associated with the
operation of the large muon detector but reflects the
fact that the sample being considered involves part
of the showers in which the distribution of muons at
the distance of R = 630 m from the shower core is
broader than that predicted by model calculations. If
these events are subtracted from the total distribu-
tion, there remains the second term (dashed curve)
at λ2 ≈ 52 ns. For E0 > (5–7)× 1017 eV, the pattern
is different—here, the delay times (1) are of a purely
exponential form over the entire range where they are
measured. One can clearly see this in Fig. 5b, which,
for the case of the actuation of two large-muon-
detector counters traversed by m ≤ 2 muons, shows
experimental results for a sample of 154 showers
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Fig. 5. Integrated distributions of the delay times (1)
at the distance of R = 630 m from the shower core in
〈cos θ〉 ≈ 0.9 extensive air showers for the case of the
actuation of two counters of the large muon detector at
〈ρµ〉 ≈ 0.45 m−2 in each shower for the (а) 1016.7 ≤
E0 ≤ 1017.0 eV and (b) 1017.9 ≤ E0 ≤ 1018.2 eV sam-
ples: (solid straight line) first term in (11) at λ1 ≈ 105 ns
and (dashed straight line) second term in (11) at λ2 ≈
52 ns.

characterized by 1017.9 ≤ E0 ≤ 1018.2 eV and cos θ ≥
0.8. The straight line there corresponds to the distri-
butionN(≥ t) = N1exp(−t/105).

5. DISCUSSION

Figure 6 displays the variations in the structural
parameters of the delay spectrum in (11) versus the
energy of an extensive air shower in the intervals
∆ logE0 = 0.3. For E0 ≤ (5–7)× 1017 eV, the delay
times as defined in (1) are characterized by a stable
two-component distribution that has the form given
in (11) and which involves substantially different pa-
rameters λ1 and λ2 (closed and open circles, respec-
tively). One can see this in Fig. 6a, where, for the sake
of comparison, we also show the results of our model
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 1 2005
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calculations and the averaged dependence of exper-
imental data (dashed line) from Fig. 3. In Fig. 6b,
we give the fraction of either component. All of the
results refer to R ≈ 630 m and showers characterized
by 〈cos θ〉 ≈ 0.9.

Before proceeding to interpret the results, we will
consider the gross pattern of the formation of mean
delay times 〈t〉. The calculations reveal that they are
determined primarily bymuons arriving from altitudes
in the vicinity of the maximum of the development of
extensive air showers. A decrease in 〈t〉 with decreas-
ing primary energy E0 is due to an increase in the
distance between the depth of the shower maximum,
Xm, and the observation level X (for Yakutsk, X =
1020 secθ). One can clearly see this from the illus-
trative Fig. 7, which shows the relative delay times
ta < tb because of a deteriorating geometric factor of
the collection of muons. At a fixed energy E0, the
growth of the zenith angle leads to an increase in
X −Xm, with the result that the difference of the
delays for muons decreases (see Fig. 4).

Let us now revisit data in Fig. 6 and try to un-
derstand their meaning from the physical point of
view. Taking into account the above mechanism of
the formation of delay times in (1), we can assume
that they are associated with different shapes of cas-
cade curves characterized by radically different val-
ues of Xm. One of these is peculiar to showers for
which the depth of the maximum is much higher in
the atmosphere than what is predicted by the QGS
model, this being so for any composition of primary
particles, from protons to iron nuclei. The fraction
of such showers decreases fast in the energy range
E0 ≈ (4–10) × 1017 eV (see Fig. 6b).

We can assume that these events are generated
by primary particles of some unknown nature. The
results obtained by analyzing the arrival directions
for cosmic rays of energy in the range E0 ≈ 1016.9–
1017.2 eV are presented in [19]. It was revealed there
that a considerable part of such rays (about 50%)
have a small-scale cellular structure and, in all prob-
ability, stem from neutral particles of an extragalactic
origin. It was also shown in [19] that the range of
these particles up to the first nuclear interaction is
very short (Λ1 ≈ 3.3× 10−2 g cm−2). They are likely
to disappear after the first interaction, giving way, in
the development of extensive air showers, to a stan-
dard cascade of secondary particles; otherwise, show-
ers generated by them would differ strongly from or-
dinary showers and would be readily identifiable. Be-
cause of so short a range—we denote it by Λ1—these
mysterious neutral particles are expected to cause
an enhanced development of extensive air showers
with a cascade-curve maximum at a higher altitude
than in the case of primary protons. Possibly, one of
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 1 200
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the components represented by open circles in Fig. 6
reflects roughly the contribution of such particles.

Any specific conclusions on the neutral particles in
question are still premature. We cannot rule out the
possibility that these are neutrinos. The calculations
reported in [23] show that, if the growth of the cross
section for neutrino–nucleon interaction (σνN ) in the
region of ultrahigh energies satisfies some specific
conditions, the resulting extensive air showers can
be similar in many respects to showers originating
from the standard composition of primary cosmic
rays. Fargion et al. [24] and Weiler [25] considered
the hypothesis of ultrahigh-energy neutrinos, which
interact with relic neutrinos, producing “Z-boson”
showers.

According to [26], neutral pions can also play
the role of the presumed neutral particles of primary
5
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Fig. 7. Scheme of formation of relative delays in extensive
air showers of various primary energies.

cosmic rays. In [26], it was shown that stable pions
can exist in the composition of ultrahigh-energy cos-
mic rays. The calculations there were performed on
the basis of the QGS model [22] with allowance for
the Landau–Pomeranchuk–Migdal effect [27] within
the Coleman–Glashow hypothesis of a very weak
violation of Lorentz invariance. That the interaction
of pions with photons of cosmic microwave back-
ground radiation is kinematically forbidden is of par-
ticular importance here, since this makes it possible
to resolve the Greisen–Zatsepin–Kuz’min paradox
[28, 29].

The second group of data in Fig. 6 (closed circles)
refers to showers for which the depth of the maxi-
mum is likely to be much lower in the atmosphere
than what is expected according to the predictions of
the QGS model in the case of primary protons; the
fraction of these events increases fast in the energy
region E0 ≈ (4–10)× 1017 eV (see Fig. 6b). The
reason behind this disagreement between the theory
and experiment is not yet clear. Possibly, it is due
to imperfections of the QGS model used here, but
we cannot rule out the possibility that these events
are associated with “long-range” showers, for which
P

the depth of the maximum “sinks” significantly deep
into the atmosphere in relation to what we have for
ordinary extensive air showers. Such showers were
experimentally observed at the Tien Shan array for
E0 > 2× 1016 eV [30]. Their appearance is explained
by the formation of a sizable fraction of charmed par-
ticles during the development of extensive air show-
ers; penetrating deep into matter without interaction,
charmed particles thereby shift significantly the max-
imum of the cascade curve toward the observation
level.

In my opinion, the results in Figs. 3 and 6 are
quite instructive. On one hand, they are not (in Fig. 3)
in a glaring contradiction with the hypothesis of a
mixed composition of primary cosmic rays in the en-
ergy region being considered, where there occurs a
rapid variation from the predominance of iron nuclei
at E0 ≈ 1017 eV to a purely protonic composition at
E0 ≈ 1018 eV. On the other hand, the same experi-
mental data subjected to a more thorough analysis
lead to the results displayed in Fig. 6, which sug-
gest a totally different pattern of the development of
extensive air showers. Here, we cannot rule out the
situation where a superposition of two components
in Fig. 6 can “mimic” showers generated by a mixed
composition of primary cosmic rays. Probably, this
could explain the as-yet-unresolved problem of the
origin of the first break in the spectrum of cosmic rays
for E0 ≥ 3× 1015 eV (it was discovered more than
40 years ago by a group of researchers from Moscow
State University [31])—the point is that, being based
on a comparison of various observed features of ex-
tensive air showers with their counterparts calculated
on the basis of model concepts of the development of
extensive air showers with one presumed composition
of primary cosmic rays or another, the majority of the
methods for determining the composition of primary
cosmic rays are indirect.

Many experiments have been performed over the
past years, but there is still no unambiguous under-
standing of this phenomenon. Disclosing its nature
would greatly contribute to solving the problem of
the origin of cosmic rays having ultrahigh energies
up to about 1020 eV. In [9–19], it is shown that, for
E0 > 5× 1016 eV, some part of primary cosmic rays
have a small-scale ordered structure associated with
the distribution of extragalactic pointlike primary-
cosmic-ray sources that, in all probability, generate
neutral particles. These results are consistent with
our present results—and precisely in what is con-
cerned with the possible existence of neutral particles
of extragalactic origin. Massive efforts of theoreti-
cal astrophysics that are aimed at investigating the
phenomenon in question beyond the traditional ideas
of the composition of primary cosmic rays and to
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 1 2005
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the level of experimentally measured nuclear-physics
features of the development of extensive air showers
are required here.

6. ON E0 ∼ 1020 eV EVENTS

Event the first observations of extensive air show-
ers at large arrays worldwide, like Volcano Ranch
(USA) [32], Haverah Park (England) [33], SUGAR
(Sydney University Giant Airshower Recorder, Aus-
tralia) [34] and Yakutsk [35], made it possible to dis-
cover giant air showers of energy in the region E0 >
1019 eV. Following the discovery of cosmic microwave
background radiation, it was shown that, because of
the interaction of primary protons and nuclei with
this radiation, their flux for E0 > 3× 1019 eV should
decrease sharply owing to the Greisen–Zatsepin–
Kuz’min cutoff [28, 29]. However, this prediction is at
odds with observations of giant air showers at various
arrays [36–39], where their energies were estimated
at values of up to about (1–3) × 1020 eV. Arrays that
are still larger than those mentioned above are being
now created in order to investigate the problem of
the “upper endpoint” of the energy spectrum of giant
air showers. The AGASA (Akeno Giant Air Shower
Array) facility of area about 100 km2 [40] is operative
at the present time. Giant arrays of area about 1000 to
5000 km2, where the detectors to be used are spaced
by a distance of 1 to 1.5 km are being designed or are
under construction at present [41, 42].

Even at this moment, however, there is a sharp
contradiction in the observed changes in the energy
spectrum of primary cosmic rays in the vicinity of
E0 ∼ 1020 eV. On one hand, only one giant air shower
of energy E0 ≈ 1.5× 1020 eV was recorded at the
Yakutsk array [37], which has been in use for more
than 30 years (exposure of about 825 km2 yr sr).
On the other hand, 11 events characterized by
E0 > 1020 eV were recorded at the AGASA ar-
ray [43], where the exposure is only twice as large
(1649 km2 yr sr) as that in Yakutsk. This fact was
used byWatson [44] to criticize the detectionmethods
at the Yakutsk array and estimations of the energy
of giant air showers there. We note that, previously,
a group of researchers including Watson recorded
six giant air showers of energy E0 ≥ 1020 eV at the
Haverah Park array [36], but that none of such events
survived upon revisiting these data and reducing
the estimate of energy by about 30% [45]. A recent
reanalysis of data from the Fly’s Eye and Hires arrays
also reduced the number of recorded giant air showers
of energy E0 ≥ 1020 eV from eight to one [46].
Thus, all arrays worldwide (with the exception of the
AGASA) find a sharp cutoff in the spectrum of giant
air showers at E0 ≈ 1020 eV.
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 1 200
6.1. Measurements at the Yakutsk Array

Let us now dwell on the essence of the criticism
in [44]. In the opinion ofWatson, the miscounts of the
master system of the Yakutsk array in detecting giant
air showers of energy in the region E0 ≥ 1020 eV
was one of the main reasons for underestimating their
number. However, this is an erroneous opinion. First,
the time of coincidence between two scintillation de-
tectors (of area 2 m2 each) at all stations was 2 µs
and not 1.2 µs, as was reported in [44]. Second, the
Yakutsk array has a rather dense network of stations
that form equilateral triangles of side length 500 m at
the center and 1000 m at the periphery. Since 1995,
all stations are within a circle of radius 2 km and form
a triangular network, the side length in its cell being
500 m.

Each station, together with any two of its neigh-
bors, is included in themaster system selecting show-
ers. In recording giant air showers whose cores fall
within the perimeter of the array, not less than two
master triangles are actuated in the majority of cases.
Therefore, the core of such a shower is always within
a distance of 1000 m from three to four stations at the
highest densities of particles.

By way of example, the mean lateral distributions
of all charged particles and muons for a muon thresh-
old energy ofEµ ≥ 1 GeV are shown in Fig. 8 (closed
and open circles, respectively) for giant air showers
of energy E0 = 2× 1019 eV that are characterized
by 〈cos θ〉 = 0.98, 0.78, or 0.58 [7]. In this figure,
curves 1 and 2 represent the approximations

fs(R) = ρs,600(R/600)−1.3((R + RM)/(600 (12)

+ RM))1.3−bs((R + 2000)/2600)−3.5

with bs = 3.19, 2.67, 2.15 and

fµ(R) = ρµ,600(R/600)−0.75((R (13)

+ 280)/880)0.75−bµ ((R + 2000)/2600)−8.0 ,

where the fitted parameter values of bµ = 1.92, 2.07,
and 1.32 correspond to the above three zenith angles
and RM is the Molière radius (for the Yakutsk array,
RM = 70 m).

From Fig. 8a, one can see that, in giant air show-
ers close to the vertical direction, the densities of
charged particles at a distance of R ≈ 1000 m are
about 10 m−2. Accordingly, about 20 particles tra-
verse each detector. The probability that, at this par-
ticle density, two detectors of the station will not yield
a coincidence signal within 2 µs does not exceed
10−6. In showers of energy E0 ≈ 1020 eV, the particle
densities at the distance indicated above is five times
higher—that is, it is about 50 m−2. This rules out
completely a miscount of the master system of the
Yakutsk array.
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Watson asserts [44] that an insufficiently long time
of integration of signals by pulse-height transformers
at the stations is the second reason for underesti-
mating, at the Yakutsk array, the number of giant air
showers of energy in the region E0 ≥ 1020 eV. In his
opinion, this leads to underestimating the quantity
ρs,600(θ) by about 25% and, accordingly, the energy
E0 by a factor of 1.25 [see relation (6)].

This opinion is also erroneous. The largest giant
air shower was recorded at the Yakutsk array at an
angle of θ = 58.7◦ [37]. It consisted of muons almost
completely. The shape of a pulse at a distance of
YSICS OF ATOMIC NUCLEI Vol. 68 No. 1 2005
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R = 930 m from the shower core was measured at the
output of one of the standard scintillation detectors
deployed on the Earth’s surface. Its FWHM value
proved to be T1/2 ≈ 200 ns. This result is consistent
with measurements of the pulse shape at the Pierre
Auger Observatory array [47], where, in a giant air
shower characterized by E0 ≈ (2–3)× 1019 eV and
θ = 54◦, the signal at half maximum at the output
of a water Cherenkov tank had a duration of T1/2 ≈
200 ns at a distance of R = 977 m from the shower
core. The total width of the signal was about 400 ns.
Upon going over from inclined to vertical showers, the
disk thickness at distances of R ≈ 1000–2000 m in-
creases, according to AGASAdata [48] and according
to the results of the calculations reported in [49], by a
factor of about 2 owing to the addition of electrons to
muons. It follows that, at sea level, the effective disk
thickness (95% of all particles) in giant air showers of
energyE0 ≈ 1020 eV isT0.95 ≈ 800 ns at a distance of
R ≈ 1000 m from the shower core.

We note that the investigations of the time struc-
ture of the giant-air-shower disk at the Haverah Park
array [50] lead to the same conclusion. This array
and that in Yakutsk are situated at approximately the
same altitude above sea level. The time T15 ≈ 260 ns
measured experimentally in a giant air shower of en-
ergy E0 = 6× 1019 eV and zenith angle θ = 30◦ at
the distance of R = 1029 m from the shower core is
quoted in [50]. From relations (4) and (5), we obtain
〈t〉 ≈ 416 ns at an effective disk thickness of T0.95 ≈
1250 ns. From the above data, one can see that the
thickness of the shower disk of all particles in a gi-
ant air shower of energy in the range E0 ≈ (2–6)×
1019 eV is 0.8–1.2 µs (about 1 µs on average) at a
distance of R ≈ 1000 m from the shower core.

Logarithmic RC transformers (R and C are, re-
spectively, the resistance and the capacitance of the
input circuit) characterized by the time constant τ =
RC ≈ 10–12 µs of integration of the input signal U ,

U ∼ exp(−t/τ), (14)

are used at the Yakutsk array to measure pulse
heights. Calculations revealed [51] that, if the number
of particles hitting the detector is not less than ten, the
coefficient of the input-signal transfer is k = U/U0 ≈
1 + d/τ , where U0 is the height of an undistorted
pulse and d is the half-width of the shower disk. In our
case, d ≈ 0.5 µs, so that k ≤ 1.05. Therefore, the den-
sity of charged particles can hardly be underestimated
at distances in the region R ≤ 1000 m—the more so
in measuring ρs,600.

6.2. Measurements at AGASA
Thus, we can state with confidence that virtu-

ally no giant air showers of energy in the region
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 1 200
E0 ≥ 1020 eV have been recorded at the Yakutsk
array and at other arrays worldwide In this connec-
tion, we will critically reconsider the method used
at AGASA to determine the energies of giant air
showers. Previously, we repeatedly indicated that, in
the energy range E0 ≥ (3–5)× 1018 eV, the devel-
opment of showers differs from their development at
lower energies [5–8]; this especially concerns giant
air showers of extremely high energy—their lateral
structure changes significantly.

In order to obtain deeper insight into the essence of
the problem, we will perform a comparative analysis
of lateral distributions measured at the Yakutsk array
and at AGASA. We will first consider the zenith-
angle dependences of the parameters ρs,600(θ) and
ρµ,600(θ), which are used at both arrays to estimate
the energy E0. In Fig. 9, these dependences are
shown for E0 = (a) 2× 1018, (b) 1019, and (c)
3× 1019 events by closed and open symbols for all
charged particles andmuons, respectively. The curves
there represent theoretical lateral distributions refer-
ring to both arrays for (1) all charged particles and (2)
muons. The calculations were performed on the basis
of the QGSJET model for primary protons [8]. The
data from the Yakutsk array and all calculated values
were obtained from the averaged lateral distributions.
At AGASA, the experimental values of ρs,600(θ) were
deduced by the method of intensity isolines [52], while
the ρµ,600(θ) values for muons there were obtained
with the threshold of Eµ ≈ 1.0 · sec θ GeV [53]. One
can see that, at E0 = 2× 1018 eV (see Fig. 9a),
all experimental data agree with the results of the
calculations. There is no such agreement for giant
air showers. At E0 = 1019 eV, the energies deter-
mined according to data from the Yakutsk array
are greater than their calculated counterparts by a
factor of about 1.25 (see Fig. 9b). The values of
ρµ,600(θ) undergo more pronounced changes (dash-
dotted curve); for inclined showers (θ ≥ 52◦), they
coincide with ρs,600(θ). On the contrary, there is a
trend in the AGASA data toward underestimating the
experimental values of ρs,600(θ) by a factor of about
1.25 in the zenith-angle range 35◦–50◦.

The above anomaly in the development of giant
air showers is fast enhanced with increasing energy
of primary cosmic radiation. One can clearly see this
in Fig. 9c for showers of energy E0 = 3× 1019 eV, in
which case all experimental data are in a glaring con-
tradiction with the predictions of theQGSJETmodel.
This contradiction is not due to relatively low statis-
tics of events. A trend toward a change in ρµ,600(θ) in
the data from the Yakutsk array (dash-dotted curve)
becomes ever more pronounced, reaching a nearly
threefold enhancement in relation to the results of the
calculations for θ ≥ 35◦. The experimental values of
5
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Fig. 10. Cascade curves of giant air showers of energy E0 = (a) 1.3 × 1019 and (b) 3.3 × 1019 eV according to data from the
Pierre Auger Observatory array [54].
ρs,600(θ) in giant air showers whose arrival directions
are close to the vertical direction are greater than their
calculated counterparts by a factor of about 1.4 and
coincide with ρµ,600(θ) for θ ≥ 45◦. The ρs,600(θ) val-
ues measured by AGASA for θ ≤ 30◦ are also larger
than the calculated values by a factor of about 1.4 and
decrease fast in more inclined showers: they are less
than the results of the calculations for θ ≥ 37◦ by a
factor of about 1.4 and become commensurate with
the data from the Yakutsk array for θ ≥ 45◦.

It follows that, in these showers, only muons of
energy in the region Eµ ≥ 1.5 GeV are recorded at
the above distance from the shower core for θ ≥ 45◦.
There are no “softer” muons here and the more so
electrons. In all probability, the above trend will be
still more enhanced as soon as the energy of giant air
showers approaches the limiting value. The disregard
of this circumstance may lead to large errors in esti-
mating E0.

We will now pay special attention to some impor-
tant details in Fig. 9c. For sec θ ≤ 1.2, the ρs,600(θ)
values measured at the two arrays in question proved
to be greater than their theoretical counterparts by a
factor of about 1.5, while the ρµ,600(θ) values accord-
ing to the AGASA data are 1.7 times less than the
theoretical values. From the point of view of the lon-
gitudinal development of giant air showers, this may
imply an anomalously deep position of the cascade-
curve maximum. This assumption is confirmed ex-
perimentally by the data in Fig. 10 from the Pierre
Auger Observatory array [54] for giant air showers of
PH
energyE0 = (a) 1.3× 1019 and (b) 3.3× 1019 eV.One
can see that the measured value ofXm ≈ 950 g cm−2

is indeed larger by ∆Xm ≈ 160 g cm−2 than a value
(Xm ≈ 790 g cm−2) that is expected on the basis of
the QGSJET model for primary protons. This situa-
tion may prove to be dramatic for AGASA, which is
situated at an altitude of 920 g cm−2, since the depth
of the maximum of the development of giant air show-
ers at E0 ≈ 1020 eV lies directly in the array plane
(or below it). Here, calculations other than those used
previously in the region of lower energies of extensive
air showers are required for interpreting experimental
data.

We would like to note yet another interesting fea-
ture of the data in Fig. 9c. One can see that, albeit
lying higher than theoretical results, all experimen-
tal densities ρs,600(θ) measured at the Yakutsk ar-
ray (closed circles) are parallel to them. As to the
AGASA data (open circles), they behave differently—
in particular, these data intersect the dashed theo-
retical curve 1, an increase in ρs,600(θ) in giant air
showers whose arrival directions are close to the ver-
tical direction (that is, for sec θ ≤ 1.2) in relation to
inclined showers with respect to the results of the
calculations being about 2.5. The data in Fig. 9a do
not exhibit this feature. We assume that there can be
a methodological experimental error here. Within the
intensity-isoline method, which was used at AGASA
to obtain the aforementioned data, this probably oc-
YSICS OF ATOMIC NUCLEI Vol. 68 No. 1 2005
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Fig. 11. One of the largest showers recorded by AGASA
and characterized by E0 ≈ (1.7–2.6) × 1020 eV and θ ≈
23◦ [55]: (a) lateral distribution of (closed circles) all
charged particles and (closed boxes) muons for a thresh-
old of Eµ ≈ 1.0 · sec θ GeV in the latter case, along with
the approximations according to (15) and our supposition
(solid and dash-dotted curve, respectively); (b) chart of
the densities in the array plane (the radii of the circles
are proportional to the logarithm of the density in each
detector, and the symbol indicates the position of the
shower core according to [55]).

curred because of an uncontrolled growth of ρs,600(θ)
upon going over from inclined to vertical events.

We will show how this could happen by consider-
ing the example of one of the largest showers recorded
by AGASA. In Fig. 11a, the closed symbols repre-
sent the lateral distribution of all charged particles in
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Fig. 12. Lateral distribution of all charged particles in a
giant air shower of energy E0 = 2 × 1019 eV at a depth
of X = 1040 g cm−2 in the atmosphere: (solid curve)
approximation in the form (12) with bs = 3.19, cos θ =
0.98, and RM = 91.6 m and (dashed curve) approxima-
tion in the form (15) with η = 3.74 (sec θ = 1.13).

giant air showers characterized by E0 ≈ (1.7–2.6) ×
1020 eV and θ ≈ 23◦ [55]. The solid curve corresponds
to the approximation

ρs(R) ∼ (R/RM)−1.2(1 + R/RM)1.2−η(1 (15)

+ (R/1000)2)−0.6

with RM = 91.6 m and with the parameter value

η = 3.97 − 1.79(sec θ − 1). (16)

This approximation was used to find the shower-core
coordinates (cross in Fig. 11b). The closed boxes
indicate the densities of muons for a threshold ofEµ ≈
1.0 · sec θ GeV. The arrows indicate the saturation of
the detectors. The depth of the atmosphere for this
event isX = 920 sec θ ≈ 1000 g cm−2.

We will now address the question of what will oc-
cur if one treats the data with the aid of another, more
“humped” lateral distribution (dash-dotted curve in
Fig. 11a). As a result, the giant-air-shower axis will
approach significantly the detectors with the highest
particle densities: the first detector with the maximum
particle density (23 682) will become closer to the new
axis by about 120 m (left open circle), the second de-
tector (687 particles) will approach it by about 100 m,
and the third detector (357 particles) will move away
by about 30 m; this shift of the axis coordinates has
virtually no effect on the remaining points in Fig. 11a.
This leads to a decrease in the value of ρs,600(θ) =
892 m−2, which was found at AGASA, by a factor
of 2.5. Accordingly, E0 will decrease in the same
proportion.
5
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The dash-dotted curve in Fig. 11a is not more
than our assumption, which is rough but quite feasi-
ble since the overwhelming majority of the densities
in giant air showers were measured by AGASA at
distances in the region R > 600 m. As was shown
previously in [7, 8] and as can be seen in Fig. 9, the
lateral distribution of charged particles in giant air
showers changes significantly according to data of
the Yakutsk array. We will now consider the conse-
quences of this in the case of AGASA. We will make
use of the lateral distribution in Fig. 8а (for the depth
of X = 1040 g cm−2 in the atmosphere) and change,
in the approximation of the form (12), the Molière
radius RM = 70 m by 91.6 m. The result is shown
in Fig. 12 by the solid curve. In the same figure,
the dashed curve represents the approximation in the
form (15) for the same depth in the atmosphere [with
the parameter value of η = 3.74, which corresponds
to (16) for sec θ = 1.13 = 1040/920]. The two curves
in question are matched at R = 1000 m.

It can be seen that the shapes of the lateral dis-
tributions in Fig. 12 are virtually indistinguishable at
distances of about 600 to 2000 m. This is yet another
argument in favor of the statement that there were
no distortions in the measurements of the charged-
particle densities by the Yakutsk array at the periphery
of giant air showers. However, the approximation of
the form (12) is more gently sloping than the ap-
proximation of the form (15) as one approaches the
shower core; in all probability, this trend becomes
more pronounced as the energy of a giant air shower
tends to the limiting value. The situation is aggra-
vated by the circumstance that the cascade-curve
maximum proves to be nearly at the same level as the
array itself. Here, many particles traverse scintillation
detectors at distances in excess of 1000 m at very
small angles with respect to their surface. Under such
conditions, detector responses to particle fluxes may
be substantially different from those that are observed
in the region of much lower energies of extensive air
showers.

7. CONCLUSION

From the data quoted above, one can see that the
structure of the muon disk in extensive air showers of
energy in the range 5× 1016 < E0 ≤ 1018 eV is rather
complicated. On one hand, the results presented in
Fig. 3 do not exhibit strong inconsistencies with the
hypothesis of a mixed composition of primary cosmic
rays in the energy region being considered, where
this composition changes fast, from the dominance
of iron nuclei at E0 ≈ 1017 eV to a purely protonic
composition at E0 ≈ 1018 eV. On the other hand, the
same experimental data—if subjected to a more thor-
ough analysis—lead to results shown in Fig. 6, which
P

offer a totally different pattern of the development of
extensive air showers. Here, one cannot rule out the
possibility that the superposition of two components
in Fig. 6 can mimic showers initiated by a mixed
composition of primary cosmic rays. Possibly, this
underlies the explanation of the as-yet-unresolved
problem of the origin of the first break in the spectrum
of cosmic rays at E0 ≥ 3× 1015 eV.

As to the criticism expressed in [44] in connection
with the detection methods at the Yakutsk array and
the methods for estimating the energies of giant air
showers there, it is hardly sober. Possibly, this was
due to a lack of publicity of the technical features of
the Yakutsk array in the widespread scientific litera-
ture. In our opinion, it cannot be stated with confi-
dence that an increase in the number of events at en-
ergies of E0 ∼ 1020 eV at presently operating arrays
or the construction of arrays having enormous areas
(about 1000 to 5000 km2) and employing detectors
spaced by a distance of 1 to 1.5 km [41, 42] would
contribute to solving the problem of the limiting en-
ergies of giant air showers. We believe that it is ille-
gitimate to extrapolate, to this region, any calculated
[at energies in the range E0 ≤ (2–3)× 1018 eV] or
experimental dependence. Such extrapolations could
lead to large errors in estimating the energies of pri-
mary particles. Dedicated investigations of the lateral
distributions of all charged particles and muons at ar-
rays where the detectors used are spaced by a distance
not longer than 200 or 300 m are required here.
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Abstract—The amplitudes of the K± → 3π and K → 2π decays are expressed in terms of different com-
binations of one and the same set of CP-conserving and CP-odd parameters. Extracting the magnitudes
of these parameters from the data onK → 2π decays, we estimate an expectedCP-odd difference between
the values of the slope parameters g+ and g− of the energy distributions of “odd” pions inK+ → π+π+π−

andK− → π−π−π+ decays. c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

The observation ofCP effects inK± → 3π decays
would allow one to understand better how the mech-
anisms of CP violation work.

Now the Collaboration NA48/2 has begun a
search for such an effect with accuracy

δ
(
g+−g−
g++g−

)
≤ 2× 10−4.

Contrary to the case ofKL → 2π decay, whereCP
is violated in both ∆S = 2 and ∆S = 1 transitions,
in the K± → 3π decays, only the latter (so-called
direct) CP violation takes place. Experimentally, the
existence of direct CP violation in KL → 2π decays,
predicted by the Standard Model (SM) and char-
acterized by the parameter ε′, is established: ε′/ε =
(1.66 ± 0.16) × 10−3.

What is expected for CP effects in K+ →
π±π±π∓ decay? To give an answer, it is necessary
to understand the role of the electroweak penguin
(EWP) operators in both decays and get rid of the
large uncertainties usual for the theoretical cal-
culations. The real scale of these uncertainties is
characterized by the following predictions obtained
before the above experimental result:

ε′

ε
= (17+14

−10)× 10−4 [1],

ε′

ε
= (1.5–31.6) × 10−4 [2].

To avoid the uncertainties arising in the theoretical
calculation of the ingredients of the theory, we use

∗This article was submitted by the author in English.
**e-mail: shabalin@heron.itep.ru
1063-7788/05/6801-0088$26.00
the following procedure. We express the amplitudes
ofK → 2π andK± → 3π decays in terms of one and
the same set of parameters, and calculating g+ − g−,
we use the magnitudes of these parameters extracted
from data onK → 2π decays.

2. THE SCHEME OF CALCULATION

A theory of ∆S = 1 nonleptonic decays is based
on the effective Lagrangian [3]

L(∆S = 1) =
√

2GF sin θC cos θC
∑
i

ciOi, (1)

where

O1 = s̄LγµdL · ūLγµuL − s̄LγµuL · ūLγµdL (2)

({8f},∆I = 1/2);

O2 = s̄LγµdL · ūLγµuL + s̄LγµuL · ūLγµdL (3)

+ 2s̄LγµdL · d̄LγµdL + 2s̄LγµdL · s̄LγµsL
({8d},∆I = 1/2);

O3 = s̄LγµdL · ūγµuL + s̄γµuL · ūγµdL (4)

+ 2s̄LγµdL · d̄LγµdL − 3s̄LγµdL · s̄LγµsL
({27},∆I = 1/2);

O4 = s̄LγµdL · ūγµuL + s̄LγµuL · ūLγµdL (5)

− s̄LγµdL · d̄LγµdL
({27},∆I = 3/2);

O5 = s̄LγµλadL

( ∑
q=u,d,s

q̄Rγµλ
aqR

)
(6)

({8},∆I = 1/2);
c© 2005 Pleiades Publishing, Inc.
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O6 = s̄LγµdL

( ∑
q=u,d,s

q̄RγµqR

)
(7)

({8},∆I = 1/2).

This set is sufficient for calculation of the CP-
even parts of the amplitudes under consideration. To
calculate the CP-odd parts, it is necessary to add the
so-called electroweak contributions originated by the
operators O7, O8:

O7 =
3
2
s̄γµ(1 + γ5)d

( ∑
q=u,d,s

eq q̄γµ(1− γ5)q
)

(8)

(∆I = 1/2, 3/2);

O8 = −12
∑

q=u,d,s

eq(s̄LqR)(q̄RdL), (9)

eq =
(

2
3
,−1

3
,−1

3

)
(∆I = 1/2, 3/2).

The coefficients c5−8 have the imaginary parts neces-
sary for CP violation.
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In the case of nonlinear realization of chiral sym-
metry, the bosonization of these operators can be done
using the relations [4]

q̄j(1 + γ5)qk = − 1√
2
Fπr

(
U − 1

Λ2
∂2U

)
kj

, (10)

q̄jγµ(1 + γ5)qk = i[(∂µU)U † − U(∂µU †) (11)

− rFπ√
2Λ2

(m(∂µU †)− (∂µU)m)]kj .

Here

Fπ ≈ 93 MeV, Λ ≈ 1 GeV,

r = 2m2
π/(mu +md), m = diag(mu,md,ms),

U =
Fπ√

2

(
1 +
i
√

2π̂
Fπ

− π̂
2

F 2
π

(12)

+ a3

(
iπ̂√
2Fπ

)3

+ 2(a3 − 1)
(
iπ̂√
2Fπ

)4

+ . . .
)
,

where a3 is an arbitrary number and
π̂ =




π0√
3

+
π8√
6

+
π3√

2
π+ K+

π−
π0√

3
+
π8√

6
− π3√

2
K0

K− K̄0 π0√
3
− 2π8√

6


 . (13)
The PCAC condition demands a3 = 0 [5] and we
adopt this condition, bearing in mind that, on the
mass shell, the values of the mesonic amplitudes are
independent of a3.

Using also the relations between matrices in the
color space

δαβ δ
γ
δ =

1
3
δαδ δ

γ
β +

1
2
λαδ λ

γ
β,

λαβλ
γ
δ =

16
9
δαδ δ

γ
β −

1
3
λαδ λ

γ
β

and the Fierz transformation relation

s̄γµ(1 + γ5)d · q̄γµ(1− γ5)q
= −2s̄(1− γ5)q · q̄(1 + γ5)d

and representingM(K → 2π) in the form

M(K0
1 → π+π−) = A0e

iδ0 −A2e
iδ2 , (14)

M(K0
1 → π0π0) = A0e

iδ0 + 2A2e
iδ2 , (15)

M(K+ → π+π0) = −3
2
A2e

iδ2 , (16)
where δ0 and δ2 are the S-wave shifts of ππ scattering
in the isotopic spin I = 0, 2 channels, we obtain

A0 = GFFπ sin θC cos θC
m2
K −m2

π√
2

(17)

×
[
c1 − c2 − c3 +

32
9
β(Rec̃5 + iImc̃5)

]
;

A2 = GFFπ sin θC cos θC
m2
K −m2

π√
2

(18)

×
[
c4 + i

2
3
βΛ2Imc̃7(m2

K −m2
π)

−1

]
,

where

c̃5 = c5 +
3
16
c6, c̃7 = c7 + 3c8, (19)

β =
2m4

π

Λ2(mu +md)2
.

The contributions from c̃7O7 to ReA0 and ImA0 are
small because c̃7/c̃5 is proportional to the electro-
magnetic constant α and we neglected these correc-
tions. From data on widths of K → 2π decays, we
5
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obtain

c4 = 0.328; (20)

c1 − c2 − c3 +
32
9
βRec̃5 = −10.13.

At c1 − c2 − c3 = −2.89 [3, 6], we obtain
32
9
βRec̃5 = −7.24. (21)

From the expression forA2, it is seen that the contri-
bution of the operators O7,8 is enlarged by the factor
Λ2/m2

K in comparison with the other operator contri-
bution. The reason is discussed in the Appendix.

Using the general relation

ε′ = iei(δ2−δ0)
[
− ImA0

ReA0
+

ImA2

ReA2

] ∣∣∣∣A2

A0

∣∣∣∣ (22)

and the experimental value ε′ = (3.78± 0.38)× 10−6,
we come to the relation

− Imc̃5
Rec̃5

(
1−Ωη,η′ + 24.36

Imc̃7
Imc̃5

)
(23)

= (1.63 ± 0.16) × 10−4,

where Ωη,η′ takes into account the effects of K0 →
π0η(η′)→ π0π0 transitions.

Introducing the notation

− Imc̃5
Rec̃5

= x
Imλt
s1
,

24.36
1− Ωη,η′

Imc̃7
Imc̃5

= −y (24)

and using

(Imλt)/s1 ≈ s2s3 sin δ =
(1.2± 0.2) × 10−4

0.223
[7],

(25)

we can write Eq. (23) for Ωη,η′ = 0.25 ± 0.08 in the
form

x(1− y) = 0.40 × (1± 0.22). (26)

In the last two equations, si and δ are the parameters
of the CKM matrix. Equation (26) depends on the
variables x and y representing the contribution of
the QCD penguin and relative contribution of EWP,
respectively. To move further, we are forced to apply
to existing theoretical estimates of one of these vari-
ables.

In terms of notation in [8–10],

y =
Π2

ω

/
Π0(1− Ωη,η′). (27)

According to [8], y ≈ 0.3 and, hence, x = 0.57 ±
0.12. But ε′/ε = 2.2× 10−3, or is 30% larger than the
experimental value.

In [10], the central value of y is y ≈ 0.5 and,
consequently, x = 0.80 ± 0.18. This result looks like
P

a reliable one. A very close result x = 0.71 ± 0.27
can be derived from the result (ε′/ε)EWP = (−12 ±
3)× 10−4 [11], compared to the experimental value
(ε′/ε)exp = (16.6 ± 1.6) × 10−4. But it should be
noted that the previous estimates of x were rather dif-
ferent. In particular, according to [12], x = 1.4± 0.28.
An estimate of x can be extracted also from [13–15]
operating with a different set of four-quark operators
Qi, where the combination C6Q6 corresponds to our
c5O5. From the general representation

C6(µ) = z6(µ) +
(
s22 + s2s3

c2
c1c3

cos δ
)
y6(µ)

− is2s3
c2
c1c3
y6(µ) sin δ

and the calculated magnitudes of y6 and z6, we find
for x ≈ y6/z6
x ≈ 2 at Λ(4)

QCD = 0.35 GeV, µ = 0.8 GeV, (28)

mt = 176 GeV [13];

x = 2.8 at ΛMS = 0.3 GeV, µ = 1 GeV, (29)

mt = 130 GeV [14];

x = 5.5 at Λ(4)
QCD = 0.3 GeV, µ = 1 GeV, (30)

mt = 170 GeV [15].

Such a difference of the theoretical estimates of x
makes very desirable an investigation ofCP effects in
K± → π±π±π∓ decays, where, contrary toKL → 2π
decays, the EWP contributions increase CP effects.

3. DECAY K± → π±π±π∓

To the leading p2 approximation,

M(K+ → π+(p1)π+(p2)π−(p3)) (31)

= κ
[
1 + iaKM +

1
2
gY (1 + ibKM) + . . .

]
,

where

κ = GF sin θC cos θCm2
Kc0(3

√
2)−1, (32)

aKM =
[
32
9
βImc̃5 + 4βImc̃7

(
3Λ2

2m2
K

+ 2
)]/

c0,

(33)

bKM =
[
32
9
βImc̃5 + 8βImc̃7

]/
(c0 + 9c4). (34)

The last two quantities represent the imaginary parts
produced by the Kobayashi–Maskawa phase δ,

1
2
g = − 3m2

π

2m2
K

(
1 +

9c4
c0

)
, Y =

s3 − s0
m2
π

, (35)
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c0 = c1 − c2 − c3 − c4 +
32
9
βRec̃5 = −10.46. (36)

As the field K+ is complex and its phase is
arbitrary, we can replace K+ by K+(1 + iaKM)×
(
√

1 + a2KM)−1. Then

M(K+ → π+(p1)π+(p2)π−(p3)) (37)

= κ
[
1 +

1
2
gY (1 + i(bKM − aKM)) + . . .

]
.

Though this expression contains the imaginary CP-
odd part, it does not lead to observable CP effects.
Such effects arise due to interference between the
CP-odd imaginary part and the CP-even imaginary
part produced by rescattering of the final pions. Then

M(K+ → π+π+π−) (38)

= κ
[
1 + ia+

1
2
gY (1 + ib+ i(bKM − aKM) + . . .

]
,

where a and b are the corresponding CP-even imag-
inary parts of the amplitude. These parts can be es-
timated to the leading approximation in momenta by
calculating the imaginary part of the two-pion loop
diagrams with

M(π+(r2)π−(r3)→ π+(p2)π−(p3))

= F−2
π [(p2 + p3)2 + (r2 − p2)2 − 2m2

π],

M(π0(r2)π0(r3)→ π+(p2)π−(p3))

= F−2
π [(p2 + p3)2 −m2

π],

M(π+(r1)π+(r2)→ π+(p1)π+(p2))

= F−2
π [(r1 − p1)2 + (r1 − p2)2 − 2m2

π].

Then we find
a = 0.12065, b = 0.714. (39)

Using the definition

|M(K± → π±(p1)π±(p2)π∓(p3))|2

∼ [1 + g±Y + . . . ]

and the results of our calculation
|M(K± → π±(p1)π±(p2)π∓(p3)|2 (40)

∼
[
1 +

g

1 + a2
Y (1 + ab± a(bKM − aKM)) + . . .

]
,

we find

Rg ≡
g+ − g−
g+ + g−

=
a(bKM − aKM)

1 + ab
. (41)

At the numerical values of the parameters fixed above
and Ωη,η′ = 0.25, we obtain to the leading p2 approx-
imation

(Rg)p2 = 0.030
Imc̃5
Rec̃5

(
1− 14.9

Imc̃7
Imc̃5

)
(42)
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= −(2.44 ± 0.44) × 10−5x

(
1− 0.13 ± 0.03

x

)
.

4. THE ROLE OF p4 AND OTHER
CORRECTIONS

The corrections to the result obtained in the con-
ventional chiral theory up to the leading p2 approxi-
mation are of two kinds. The corrections of the first
kind are connected with a necessity to explain the
observed enlargement of the S-wave I = 0 ππ am-
plitude. The corrections of the second kind are the p4

corrections. As was argued in [16, 17], the correc-
tions of both kinds must be properly estimated in the
framework of a special linear U(3)L ⊗ U(3)R σ model
with broken chiral symmetry. The above-mentioned
enlargement of the S wave in this model is originated
by mixing between the q̄q state and the gluonic state
(Gaµν)2 states. In such a model,

U = σ̂ + iπ̂,

where σ̂ is a 3× 3 matrix of scalar partners of the
mesons of the pseudoscalar nonet. The relations be-
tween diquark combinations and spinless fields are as
given by Eqs. (10) and (11), but without the terms
proportional to Λ−2. Such contributions in the σ
model appear from an expansion of the propagators
of the intermediate scalar mesons. The parameter Λ2

in this model is equal to the differencem2
a0(980) −m2

π.
The strength of mixing between the isosinglet σ me-
son and the corresponding gluonic state is character-
ized by the parameter ξ.

If the p2 approximation gives

(κ)p2 = 1.495 × 10−6, (g)p2 = −0.172, (43)

instead of

(κ)exp = 1.92 × 10−6, (44)

(g)exp = −0.2154 ± 0.0035,

the corrected values of these CP-even parameters of
the K+ → π+π+π− amplitude are closer or practi-
cally equal to the experimental ones [16]:

(κ)(p2+p4;ξ=−0.225) = 1.73 × 10−6, (45)

(g)(p2+p4;ξ=−0.225) = −0.21.

More information on the parameter ξ can be found in
[16, 17]. The expressions for the corrected ππ → ππ
amplitudes are presented in [17].

Calculating the CP-even imaginary part of the
K± → π±π±π∓ amplitude originated by two-pion
intermediate states, we obtain

a(p2 + p4; ξ = −0.225) = 0.16265, (46)
5
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b(p2 + p4; ξ = −0.225) = 0.762. (47)

An estimate of the parameter a can also be ob-
tained without any calculations using the experimen-
tal data on the phase shifts of ππ scattering δ00 , δ

2
0 , δ

1
1 .

According to definition (38), a is a phase at s3 = s0.
The mean value of the squared energy of the π+π−

system is

1
2
[(p1 + p3)2 + (p2 + p3)2] = s0 +

s0 − s3
2
.

Consequently, a is a phase shift of π+π− scattering
at
√
s =
√
s0. But the only significant phase shift at√

s =
√
s0 is δ00 . The remaining phase shifts are very

small: |δ20(s0)| < 1.8◦ and δ11(s0) < 0.3◦ [18]. Then,
according to Eq. (38), a ≈ tan δ00(s0), or a = 0.13 ±
0.05, if δ00(s0) = (7.50 ± 2.85)◦ [19] and a = 0.148 ±
0.018 if δ00(s0) = (8.4± 1.0)◦ [20]. These results co-
incide inside the error bars with the result (46). The
corrected magnitude of Rg is

(Rg)(p2+p4;ξ=−0.225) (48)

= 0.039
Imc̃5
Rec̃5

(
1− 11.95

Imc̃7
Imc̃5

)

= −(3.0± 0.5) × 10−5x

(
1− 0.11 ± 0.025

x

)
.

This result is 23% larger in absolute magnitude than
that calculated in the leading approximation. There-
fore, we come to the conclusion that the corrections to
the result obtained in the framework of conventional
chiral theory to the leading approximation are not
negligible (23%), but not so large, as was declared
in [21].

5. CONCLUSION

From Eqs. (22), (26), and (48), it follows that
EWP contributions diminish ε′/ε and increase Rg .
The EWP corrections cancel one-half of the QCD
penguin contribution to ε′/ε at x = 0.8 and cancel
80% of the QCD penguin contribution at x = 2. In
both cases, ε′/ε is the same.

In the case of K± → 3π decays, the direct influ-
ence of EWP corrections themselves on CP effects
is not so crucial as in KL → 2π decays. But if a
cancellation between the contribution of QCD and
EWPs in ε′/ε is large, the factor x in Eq. (48) is also
larger than 1. So, for x = 2, the predicted Rg must be
2.5 times larger than that at x = 0.8.

Therefore, measuring Rg, one obtains a possibil-
ity to determine the true relation between QCD and
EWP contributions to CP violation in kaon decays.
PH
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APPENDIX
Here, we explain why an expansion of the am-

plitudes originated by EWP diagrams begins from
the term independent of momenta and masses of the
pseudoscalar mesons.

The operators O7,8 can be expressed in terms of
colorless diquark combinations in the form

O7 = −s̄(1− γ5)u · ū(1 + γ5)d−
3
8
O5, (A.1)

O8 = 3O7.

Using Eq. (10), we find

O7 = −F
2
π r

2

2
U21U

∗
13 (A.2)

+ (terms proportional to p2i (m
2
i )).

Omitting the terms proportional to derivatives of U
and taking in Eq. (12) a3 = 0, we find for the parity-
even transitions

(O7)P -even = −F
2
πr

2

2

{
π−K+ +

1
2F 2

π

(A.3)

×
[
π−
(

2π0√
3

+
2π8√

6

)
+K0K−

]

×
[
K+

(
2π0

√
3
− π8√

6
+
π3√

2

)
+ π+K0

]
+ . . .

}
.

This expression does not contain a direct contribution
to K+ → 3π decays, but thanks to the term π−K+,
the part of the K+ → 3π amplitude independent of
p2i (m

2
i ) arises. In the p

2 approximation,

〈π+(p1)π+(p2)π−(p3)|O7|K+(k)〉 (A.4)

= − F 2
π r

2

2(m2
K −m2

π)

[
s1 + s2 − 2m2

π

F 2
π

− s1 + s2 −m2
π −m2

K

F 2
π

]
= −r

2

2
,

where si = (k − pi)2 and the first term in brackets
describes the π+(k)→ π+(p1)π+(p2)π−(p3) tran-
sition. The second term describes the transitions
K+(k)→ K+(p1,2)π+(p2,1)π−(p3).

Therefore, the operator O7 violates the rule ac-
cording to which an expansion of the mesonic ampli-
tudes begins from the terms proportional to p2i (m

2
i ).

It may seem that, by removing the nondiagonal
term − r2

2 π
−K+ from the effective Lagrangian by re-

definition of K+ and π− fields [22], the problem with
YSICS OF ATOMIC NUCLEI Vol. 68 No. 1 2005
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the constant contribution could be solved. But this is
not so.

In our case, the mass part of the effective La-
grangian contains, in particular, the combination

−m2
ππ

+π− −m2
KK

+K− (A.5)

− F
2
πr

2

2
(γK+π− + γ∗K−π+),

where γ =
√

2GF sin θC cos θCc7. The transforma-
tions

π− → π− + βK−, K+ → K+ − βπ+, (A.6)

π+ → π+ + β∗K+, K− → K− − β∗π−

with

β = γ∗F 2
πr

2/[2(m2
K −m2

π)] (A.7)

remove the nondiagonal terms in the linear in γ ap-
proximation. But the effective Lagrangian of strong
interaction generates the sum of the amplitudes

〈π+(p1)π+(p2)π−(p3)|π+(k)〉 (A.8)

+ 〈K+(p1)π+(p2)π−(p3)|K+(k)〉
+ 〈K+(p2)π+(p1)π−(p3)|K+(k)〉,

which after the transformation (A.6) generates the
amplitude

〈π+(p1)π+(p2)π−(p3)|O7|K+(k)〉 = − β
γ∗

(A.9)

×
[
s1 + s2 − 2m2

π

F 2
π

− s1 + s2 −m2
π −m2

K

F 2
π

]
= −r

2

2
.

We have reproduced the result (A.4). The contribu-
tion of the operatorsO7,8 to the leading approximation
does not depend on p2i (m

2
i ).
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Abstract—The transverse-momentum spectra of direct J/ψ and ψ′ mesons in pp interactions at the
Tevatron collider energy of

√
s = 1.8 TeV are calculated on the basis of nonrelativistic QCD, the frag-

mentation model, the kT -factorization approach, and the standard parton model. The contribution of
gluon fragmentation is shown to exceed the contribution of c-quark fragmentation both within the parton
model and within the kT -factorization approach. Experimental data of the CDF Collaboration agree with
the assumption that gluon fragmentation plays a dominant role in the QQ̄[3S1, 8] octet state, with the
nonperturbative matrix element taking approximately equal values in the parton model and in the kT -
factorization approach. c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

The phenomenology and the theory of processes
involving the production of heavy quarkonia have
been vigorously developed for several years following
the measurement of the transverse-momentum (pT )
spectra and polarizations of J/ψ and ψ′ mesons by
the CDF Collaboration at the Tevatron collider [1,
2]. At the moment, it is clear that the production
of heavy quarkonia has a complicated physical na-
ture and requires new physical ideas for their de-
scription. The color-singlet model [3] previously pro-
posed to describe a nonperturbative transition of a
QQ̄ pair to final-state quarkonium was extended in
a natural way within the formalism of nonrelativistic
QCD (NRQCD) [4]. The extended model takes into
account QQ̄-pair production not only in the color-
singlet state [3] but also in the color-octet state.
Moreover, it turned out that the octet-production
mechanism is dominant in some processes.

The NRQCD formalism makes it possible to
calculate consistently, by perturbation theory in two
small parameters (strong coupling constant αs at
the scale of the heavy-quark mass and the relative
velocity v of quarks in quarkonium), not only the
parton cross sections for quarkonium-production
processes through the fusion of Q and Q̄ quarks but
also the universal functions for parton fragmentation
into various quarkonium states [5–10].

It is natural to assume that, in the region of high
quarkonium transverse momenta (pT �MQQ̄), the

*e-mail: Saleev@ssu.samara.ru
**e-mail: Vasin@ssu.samara.ru
1063-7788/05/6801-0094$26.00
contribution of the fragmentation production mech-
anism is greater in the kT -factorization approach—in
just the same way as in the parton model [6, 11]—
than the contribution of the mechanism associated
with the fusion of a heavy quark and a heavy antiquark
produced in a hard subprocess.

In the Tevatron energy region (
√
s = 1.8 TeV),

the main contribution to the cross sections for the
production of heavy quarks comes from gluon–gluon
fusion at small values of the argument x of the
gluon distribution function and large values of the
QCD-evolution scale parameter µ2 �M2

QQ̄
+ p2

T . In
this kinematical region, the collinear parton model
can be generalized within the kT -factorization ap-
proach [12–14], which takes into account, in the
evolution equation for the transverse-momentum-
dependent noncollinear distribution of gluons in
the proton, corrections of the form (αslog(1/x))n
along with large logarithmic corrections of the form
(αslogµ2)n. As a result, interesting observable effects
appear in the production of heavy quarkonia, as was
first shown 10 years ago in [15] and more recently
in [16–19].

In the present study, the pT spectra of direct J/ψ
and ψ′ mesons in pp interactions at the Tevatron
energy are calculated in the fragmentation approx-
imation. The results differ considerably from those
obtained in [17–19] by using the kT -factorization
approach as well but within the model of gluon–
gluon fusion.We consider the possible reasons for the
disagreement between these results.

The term “direct” refers to J/ψ and ψ′ mesons
originating immediately from the hard parton sub-
process. Of course, they do not include J/ψ mesons
c© 2005 Pleiades Publishing, Inc.
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produced in the cascade decays of the P-wave char-
monium states χcJ and ψ′ or B mesons. Since the
ψ′-meson mass exceeds the masses of P-wave char-
monium states, direct ψ′ mesons do not contain con-
tributions from the decays ofB mesons. The present-
day technique of vertex detectors makes it possible
to separate experimentally direct J/ψ mesons, J/ψ
mesons produced in the radiative decays of χcJ , and
J/ψ mesons from the weak decays ofB mesons.

Within NRQCD, it is shown that the main con-
tribution to the production of J/ψ and ψ′ mesons
may come from the fragmentation of gluons through
the QQ̄[3S1, 8] octet state and the fragmentation of c
(c̄) quarks through theQQ̄[3S1, 1] color-singlet state.
The contribution of the singlet state for gluons and
the contribution of the octet state for c (c̄) quarks are
suppressed within the expansion in αs and v [5–10].

Below, we will compare the predictions obtained
for the pT spectra of direct J/ψ and ψ′ mesons in
the collinear parton model and in the kT -factorization
approach. In both cases, we perform calculations with
hard amplitudes in the leading order of perturbative
QCD. In the parton model, we take into account the
following main subprocesses:

g + g → g + g, (1)

c(c̄) + g → c(c̄) + g. (2)

It was shown in [20] that, at high transverse momen-
ta, pT � mc, the contribution of the parton subpro-
cess (2) to the cross section for the hadroproduction
of J/ψ or ψ′ mesons is an order of magnitude greater
than the contribution of the subprocess

g + g → c+ c̄. (3)

In the kT -factorization approach, our calculations
take into account the following parton subprocesses:

g∗ + g∗ → g, (4)

c(c̄) + g∗ → c(c̄). (5)

As in the parton model, the contribution of subpro-
cess (5) in the region pT � mc exceeds significantly
the contribution of the subprocess

g∗ + g∗ → c + c̄, (6)

which we disregard.

2. NRQCD FORMALISM

Within the NRQCD approach, the cross section
for the production of heavy quarkonium H and the
a→ H fragmentation function, where a stands for a
parton, can be represented as sums of terms where
coefficients determined by hard-interaction physics
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 1 200
and the matrix elements that describe the effects of
long-distance physics factorize [4]:

dσ(H) =
∑
n

dσ̂(QQ̄[n])〈OH [n]〉, (7)

D(a→ H) =
∑
n

D(a→ QQ̄[n])〈OH [n]〉. (8)

Here, n stands for the set of color, spin, and or-
bital quantum numbers of the QQ̄ pair, dσ̂(QQ̄[n])
is its production cross section, and D(a→ QQ̄[n])
is the respective fragmentation function. The last two
quantities can be calculated by perturbation theory in
the strong coupling constant αs. For the production
of quarkonium H in pp interaction, one must take
the convolution of the cross section dσ̂ with the par-
ton distribution in the proton. The nonperturbative
transition of a QQ̄ pair to final quarkonium H is
described by the matrix element 〈OH [n]〉, which can
be calculated by the nonperturbative QCD methods
or can be extracted from experimental data. Fits to
the experimental pT spectra obtained for J/ψ, χc,
and ψ′ mesons by the CDF Collaboration [1, 2] were
constructed by various authors within the collinear
parton model (for an overview, see [21]).

In [22, 23], it was shown that, at high transverse
momenta (pT > 17 GeV), gluon fragmentation to the
color-octet state,

g∗ → QQ̄[3S1, 8], (9)

makes the main contribution to the direct production
of J/ψ and ψ′ mesons. According to [23], the values
of the nonperturbative matrix elements that de-
scribe the transition in (9) are 〈OJ/ψ[3S1, 8]〉 = 4.4×
10−3 GeV3 and 〈Oψ′

[3S1, 8]〉 = 4.2× 10−3 GeV3.
We note that a fit to data within the model of
gluon–gluon fusion and within the collinear parton
model give a different value of the matrix element,
〈OJ/ψ[3S1, 8]〉 = 1.2× 10−2 GeV3 [24]. This is of
importance for a comparison of the results obtained
within the kT -factorization approach on the ba-
sis of the fusion model and on the basis of the
fragmentation-production model.

3. FRAGMENTATION FUNCTIONS

Gluon fragmentation to the 3S1 charmonium state
depends on the probability of the transition of a cc̄
pair to the color-singlet (Fig. 1a) or the color-octet
(Fig. 1b) state. In [8, 9], it was shown that the con-
tribution of the octet production mechanism consid-
erably exceeds the contribution of the singlet mecha-
nism and that, in the leading order inαs, the fragmen-
tation functions that describe the transition in (9) to
5
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Fig. 1. Diagrams that describe the fragmentation pro-
cesses g∗ → J/ψ + g + g [color-singlet state; (a)] and
g∗ → J/ψ [color-octet state; (b)] in the leading order in
the coupling constant αs.

transversely and longitudinally polarized J/ψ mesons
can be calculated at µ2 = µ2

0 = 4m2
c ; that is,

DT
g→J/ψ(ψ′)(z, µ

2
0) (10)

= 2dT (z, µ2
0)〈OJ/ψ(ψ′)[3S1, 8]〉,

DL
g→J/ψ(ψ′)(z, µ

2
0) (11)

= dL(z, µ2
0)〈OJ/ψ(ψ′)[3S1, 8]〉,

where

dT (z, µ2
0) =

παs(µ2
0)

48m3
c

δ(1 − z), (12)

dL(z, µ2
0) =

α2
s(µ

2
0)

8m3
c

(1− z)
z

. (13)

It is clear that the probability of gluon fragmenta-
tion to a longitudinally polarized J/ψ (ψ′) meson is
negligible; therefore, the product J/ψ (ψ′) meson is
transversely polarized.

In the first approximation, the QCD evolution of
the fragmentation functions (10) and (11) is described
by the standard Dokshitzer–Gribov–Lipatov–Alta-
relli–Parisi equation [25]

µ2∂Dg

∂µ2
(z, µ2) (14)

=
αs(µ2)

2π

1∫
z

dx

x
Pgg

(x
z

)
Dg(x, µ2),

where Pgg(x) is the gluon–gluon splitting function
in the leading order in αs. We solved Eq. (14) by
using the well-known method based on the Mellin
transformation. It can easily be shown that theMellin
moment of the fragmentation function for an arbitrary
value of µ2 can be expressed in terms of the moment
PH
at µ2 = µ2
0; that is,

Dg(n, µ2) (15)

= Dg(n, µ2
0) exp


Pgg(n)

2π

µ2∫
µ2

0

dµ2

µ2
αs(µ2)


 ,

where

Pgg(n) = 3
[
−2S1(n) +

11
6

+
2

n(n− 1)
(16)

+
2

(n + 1)(n + 2)

]
− 1,

S1(n) =
n∑
j=1

1
j
. (17)

In the one-loop approximation, the running strong
coupling constant αs(µ2) is

αs(µ2) =
4π

b0log(µ2/Λ2)
, (18)

where b0 = 11 − (2/3)NF , NF being the number of
active flavors. Taking into account (18), we can rep-
resent Eq. (15) in the form

Dg(n, µ2) (19)

= Dg(n, µ2
0) exp

[
2
b0
Pgg(n)log

(
log(µ2/Λ2)
log(µ2

0/Λ2)

)]
,

where

Dg(n, µ2
0) ≈ DT

g (n, µ2
0) (20)

=
παs(µ2

0)
24m3

c

〈OJ/ψ(ψ′)[3S1, 8]〉.

In order to obtain the fragmentation function in z
space, it is necessary to perform the inverse transfor-
mation

Dg(z, µ2) ≈ DT
g (z, µ2) =

∫
C

dnz−nDT
g (n, µ2).

(21)

The integration contourC can be transformed in such
a way that

Dg(z, µ2) =
1
π

∞∫
0

dt Im
[
eiφz−nDT

g (n, µ2)
]
, (22)

where n = c + teiφ, c ≈ 2, and φ = π/2. Figure 2
shows the resulting gluon→ J/ψ fragmentation
function multiplied by 104 at µ2 = 30, 100, and
300 GeV2. We emphasize that the curve correspond-
ing to µ2 = 300 GeV2 is in good agreement with the
result previously obtained in [26].
YSICS OF ATOMIC NUCLEI Vol. 68 No. 1 2005
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Fig. 2. Fragmentation functionDg→J/ψ(z, µ2) versus z
for µ2 = (1) 30, (2) 100, and (3) 300 GeV2.

The c-quark → J/ψ (ψ′) fragmentation function
corresponding to the diagram in Fig. 3 was first ob-
tained in [5] at µ2 = µ2

0 and can be represented in the
form

Dc→J/ψ(ψ′)(z, µ
2
0) (23)

=
α2
s(µ

2
0)

m3
c

〈OJ/ψ(ψ′)[3S1, 1]〉

×
(

16z(1 − z)2

243(2 − z)6
(16 − 32z + 72z2 − 32z3 + 5z4)

)
,

where the color-octet contribution is negligible and is
therefore disregarded. The evolution of the fragmen-
tation function Dc→J/ψ(ψ′)(z, µ2) is described by the
equation

µ2∂Dc

∂µ2
(z, µ2) (24)

=
αs(µ2)

2π

1∫
z

dx

x
Pcc

(x
z

)
Dc(x, µ2),

where Pcc(x) is the quark→ quark splitting function
in the leading order in αs.

TheMellinmoment of the splitting functionPcc(x)
is

Pcc(n) =
4
3

[
−2S1(n) +

3
2

+
1

n(n + 1)

]
. (25)

Owing to fast convergence of the hypergeometric se-
ries for 2F1(α, β, γ, z) at z = 1/2, the moment of the
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 1 200
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Fig. 3.Diagram that describes the fragmentation process
c∗ → J/ψ + c (color-singlet state) in the leading order in
the coupling constant αs.

fragmentation function at µ2 = µ2
0 can be represented

in a form convenient for a numerical calculation,

Dc(n, µ2
0) =

16
243

α2
s(µ

2
0)

m3
c

〈OJ/ψ(ψ′)[3S1, 1]〉 (26)

×
[
1
2

2F1

(
6, n + 1, n + 4,

1
2

)
(n + 1)(n + 2)(n + 3)

−
2F1

(
6, n + 2, n + 5,

1
2

)
(n + 2)(n + 3)(n + 4)

+
9
4

2F1

(
6, n + 3, n + 6,

1
2

)
(n + 3)(n + 4)(n + 5)

−
2F1

(
6, n + 4, n + 7,

1
2

)
(n + 4)(n + 5)(n + 6)

+
5
32

2F1

(
6, n + 5, n + 8,

1
2

)
(n + 5)(n + 6)(n + 7)

]
.

A transition to arbitrary µ2 > µ2
0 is performed just as

in (19):

Dc(n, µ2) (27)

= Dc(n, µ2
0) exp

[
2
b0
Pcc(n)log

(
log(µ2/Λ2)
log(µ2

0/Λ2)

)]
.

A numerical transition to z space is performed ac-
cording to an expression similar to (22),

Dc(z, µ2) =
1
π

∞∫
0

dt Im
[
eiφz−nDc(n, µ2)

]
. (28)

Figure 4 shows the resulting c-quark → J/ψ frag-
mentation function multiplied by 104 at µ2 = 30, 100,
and 300 GeV2.

In evaluating the convolutions of the fragmenta-
tion functions with the parton-production cross sec-
tions, we define the argument of the fragmentation
5
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function as

z =
EJ/ψ(ψ′) + |pJ/ψ(ψ′)|

Ec,g + |pc,g|
(29)

and assume that the product J/ψ (ψ′) meson has a
low transverse momentum with respect to the axis of
the gluon or c-quark jet, so that, in the laboratory
frame, the pseudorapidity of the meson is approxi-
mately equal to that of the parton:

ηJ/ψ(ψ′) = ηg,c. (30)

Within the fragmentation model, the cross section for
the production of a J/ψ (ψ′) meson and the cross
section for gluon (or c-quark) production are related
by the equations

σ̂(gg → J/ψ(ψ′)X) (31)

=
∫

dzDg→J/ψ(ψ′)(z, µ
2)σ̂(gg → gg),

σ̂(cg → J/ψ(ψ′)X) (32)

=
∫

dzDc→J/ψ(ψ′)(z, µ
2)σ̂(cg → cg)

in the collinear parton model and by the equations

σ̂(g∗g∗ → J/ψ(ψ′)X) (33)

=
∫

dzDg→J/ψ(ψ′)(z, µ
2)σ̂(g∗g∗ → g),

σ̂(cg∗ → J/ψ(ψ′)X) (34)

=
∫

dzDc→J/ψ(ψ′)(z, µ
2)σ̂(cg∗ → g)
PH
in the kT -factorization approach.

4. AMPLITUDES OF PARTON
SUBPROCESSES

The squared amplitudes of the parton subpro-
cesses (1) and (2) are well known and can be repre-
sented as functions of the Mandelstam variables (ŝ, t̂,
û); that is,

|M(gg → gg)|2 (35)

= 18π2α2
s

(ŝ4 + t̂4 + û4)(ŝ2 + t̂2 + û2)
(ŝt̂û)2

,

|M(cg → cg)|2 (36)

= 16π2α2
s

[
ŝ2 + û2

t̂2
− 4

9

(
û

ŝ
+

ŝ

û

)]
.

At the moment, there are two methods for calculat-
ing the parton amplitudes for processes (4) and (5)
within the kT -factorization approach. Effective Feyn-
man rules for processes involving virtual gluons were
proposed in [13]. A feature peculiar to these rules is a
special choice of the initial-gluon polarization vector,

εµ(kT ) = kµT /|kT |, (37)

where kT = (0,kT , 0) is the gluon transverse 4-
momentum. Fadin and Lipatov [27] considered initial
gluons as Reggeons (or Reggeized gluons) and de-
fined the effective Reggeon–Reggeon–gluon vertex
as

Cλ(k1, k2) = −(k1 − k2)λ (38)

+ P λ
1

(
k2
1

(kP1)
+ 2

(kP2)
(P1P2)

)

− P λ
2

(
k2
2

(kP2)
+ 2

(kP1)
(P1P2)

)
,

where

P1 =
√
s

2
(1, 0, 0, 1) and P2 =

√
s

2
(1, 0, 0,−1)

are the 4-momenta of colliding protons, k1 = x1P1 +
k1T and k2 = x2P2 + k2T are the 4-momenta of initial
virtual gluons, kT = (0,kT , 0), k = k1 + k2 is the 4-
momentum of the final real gluon, and s is the squared
energy of proton–proton interaction.

It can easily be shown that the vertex function
Cλ(k1, k2) satisfies the gauge-invariance require-
ment; that is, (k1 + k2)λCλ(k1, k2) = 0. Omitting
the color factor fabc and using the Feynman rules
formulated in [13], we can represent the amplitude of
process (4) in the form

M = −gελ(k)
kµ1T k

ν
2T

|k1T ||k2T |
[(k + k1)νgλµ (39)
YSICS OF ATOMIC NUCLEI Vol. 68 No. 1 2005
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+ (−k1 + k2)λgµν + (−k1 − k)µgνλ],

where g2 = 4παs and gµν is the metric tensor.
Upon simple transformations, the amplitude in

(39) assumes the form

M = − gελ(k)
2|k1T ||k2T |

x1x2sC̃λ(k1, k2), (40)

where

C̃λ(k1, k2) = −(k1 − k2)λ (41)

+
2P λ

1

x2s

(
k2
1 + x1x2s

)
− 2P λ

2

x1s

(
k2
2 + x1x2s

)
= Cλ(k1, k2).

Thus, the approaches developed in [13] and [27] are
equivalent and yield identical results for the squared
modulus of the vertex function and the amplitude; that
is,

Cλ(k1, k2)Cλ(k1, k2) = −4k2
1k

2
2

x1x2s
(42)

and

|M(g∗g∗ → g)|2 =
3
2
παsp2

T , (43)

where p2
T = (k1T + k2T )2 = x1x2s, pT being the

transverse momentum of the final gluon.
Disregarding the c-quark mass (we study the re-

gion pT � mc), we similarly find for the process in (5)
that

|M(cg∗ → c)|2 =
2
3
παsp2

T , (44)

where pT is the transverse momentum of the final
c quark.

5. CROSS SECTION FOR THE PROCESS
p + p→ J/ψ(ψ′) + X

Within the collinear parton model, it is assumed
that the cross section for a hadronic process—in our
case, σPM(pp→ J/ψ(ψ′)X, s)—and the cross sec-
tion for the corresponding parton subprocess—for
example, σ̂(gg → J/ψ(ψ′)X, ŝ)—are related by the
equation

σPM(pp→ J/ψ(ψ′)X, s) (45)

=
∫

dx1

∫
dx2G(x1, µ

2)G(x2, µ
2)

× σ̂(gg → J/ψ(ψ′)X, ŝ),

where ŝ = x1x2s, G(x, µ2) is the collinear distribu-
tion of gluons in the proton, x1,2 are the proton-
momentum fractions carried by gluons, and µ2 is
a typical scale of the hard-scattering process. The
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 1 200
QCD evolution of the gluon distribution is described
by the Dokshitzer–Gribov–Lipatov–Altarelli–Parisi
equation [25].

Within the kT -factorization approach, the hadro-
nic and the partonic cross sections are related as

σKT(pp→ J/ψ(ψ′)X, s) (46)

=
∫

dx1

x1

∫
dk2

1T

∫
dφ1

2π
Φ(x1,k2

1T , µ
2)

×
∫

dx2

x2

∫
dk2

2T

∫
dφ2

2π
Φ(x2,k2

2T , µ
2)

× σ̂(g∗g∗ → J/ψ(ψ′)X, ŝ),

where σ(g∗g∗ → J/ψ(ψ′)X, ŝ) is the cross section for
the production of a J/ψ (ψ′) meson by two Reggeized
gluons, k2

1 = k2
1T = −k2

1T , k2
2 = k2

2T = −k2
2T , ŝ =

x1x2s− (k1T + k2T )2, and φ1,2 are the azimuthal
angles in the xy plane between the vectors k1T

and k2T and the fixed x axis (pJ/ψ(ψ′) ∈ xz). The
unintegrated distributions of gluons in the proton
satisfy the Balitsky–Fadin–Kuraev–Lipatov [28] or
Ciafaloni–Catani–Fiorani–Marchesini [29] evolu-
tion equations.

In our parton-model calculations, we used the
GRV LO [30] and CTEQ5L [31] parametrizations of
the gluon distributions in the proton. In the calcula-
tions within the kT -factorization approach, we relied
on the following parametrizations of the unintegrated
gluon distributions Φ(x1,k2

1T , µ
2) in the proton: JB

from the Blumlein article [32]; JS from the article of
Jung and Salam [33]; and KMR from the article of
Kimber, Martin, and Ryskin [34].

In Figs. 5 and 6, we present the unintegrated gluon
distributions in the proton versus x at constant k2

T

(Fig. 5) and versus k2
T at constant x (Fig. 6). It is

clear that, in the transverse-momentum region un-
der consideration (k2

T ≈ 100GeV2), the parametriza-
tions differ by more than an order of magnitude.

Taking into account relations (31), (33), (45), and
(46), we can represent the double-differential cross
section for the process p + p→ J/ψ(ψ′) + X in the
parton model and in the kT -factorization approach in
the form

dσPM

dηψdpψT
=
∫

dx1

∫
dzG(x1, µ

2) (47)

×G(x2, µ
2)Dg→J/ψ(ψ′)(z, µ

2)
pgTEg
Eψ

× |M(gg → gg)|2
8πx1x2s(u + x1s)

,

where

u = −
√
s(Eg − pgz), t = −

√
s(Eg + pgz),
5
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Fig. 5.Unintegrated distribution of gluons in the proton,Φ(x,k2
T , µ

2), versusx at k2
T = 10, 30, and 50GeV2 for µ = 10 GeV.
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Fig. 6.Unintegrated distribution of gluons in the proton,Φ(x,k2
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2), versus k2
T at x = 0.001, 0.01, and 0.1 for µ = 10 GeV.
x2 = − x1t

u + x1s
, x1,min = − u

s+ t
,

t̂ = x1t, û = x2u, ŝ = x1x2s;

dσKT

dηψdpψT
=
∫

dz

∫
dφ1

∫
dk2

1T (48)

× Φ(x1,k2
1T , µ

2)Φ(x2,k2
2T , µ

2)Dg→J/ψ(ψ′)(z, µ
2)

× Eg
pgTEψ

|M(g∗g∗ → g)|2
x1x2s

.

Here, we have used the notation

k2T = pgT − k1T , x1 =
Eg + pgz√

s
, (49)
P

x2 =
Eg − pgz√

s
.

Expressions (47) and (48) for the partonic processes
cg → cg and cg∗ → c can be written in a similar form
upon trivial substitutions. The pseudorapidity of the
product J/ψ (ψ′) meson is determined by the J/ψ
(ψ′) emission angle in the laboratory frame,

ηJ/ψ(ψ′) = − ln tan(θJ/ψ(ψ′)/2). (50)

In our calculations, the typical hard-interaction
scale is

µ2 = m2
J/ψ(ψ′) + p2

J/ψ(ψ′)T . (51)
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 1 2005
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Fig. 7. Production spectrum of direct J/ψ mesons with
respect to pT for

√
s = 1800 GeV and |ηJ/ψ | < 0.6

(only the contribution of c-quark fragmentation to the
color-singlet state of the J/ψ meson is taken into ac-
count; 〈OJ/ψ[3S1, 1]〉 = 1.13 GeV3). The experimental
data displayed here and in Figs. 8–10 were taken from [2].
The quantity B is the branching ratio for the decay
J/ψ → µ+µ−.

6. RESULTS OF THE CALCULATIONS

In this section, we present our results and compare
them with experimental data of the CDF Collabo-
ration [1, 2] for the pT spectra of direct J/ψ and ψ′

mesons in pp interactions at
√
s = 1.8 TeV. The cross

section for the production of direct J/ψ mesons does
not include the contribution from the decays of B and
ψ′ mesons to J/ψ mesons or the contribution from
the radiative decays of P-wave charmonia (χcJ →
J/ψγ). The cross section for the production of direct
ψ′ mesons does not include the contribution from the
decayB → ψ′X. Our results obtained in the collinear
parton model do not depend, within 10 to 20%, on the
parametrization of the gluon distribution and agree
with the results obtained previously in [20, 23] by
using a similar approach.

Let us first consider the contribution from c-
quark fragmentation to the cross section for the
production of direct J/ψ and ψ′ mesons. Since, in
these fragmentation processes, the contribution of
the color-singlet production mechanism is domi-
nant, the fragmentation function Dc→J/ψ(ψ′)(z, µ2)
is determined by the nonperturbative matrix element
〈OJ/ψ(ψ′)[3S1, 1]〉, which is related to the value of the
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Fig. 8. Production spectrum of direct ψ′ mesons with
respect to pT at

√
s = 1800 GeV and |ηψ′ | < 0.6

(only the contribution of c-quark fragmentation to the
color-singlet state of the ψ′ meson is taken into ac-
count; 〈Oψ′

[3S1, 1]〉 = 0.573 GeV3). The quantity B is
the branching ratio for the decay ψ′ → µ+µ−.

nonrelativistic J/ψ (ψ′) wave function at the origin as

〈OJ/ψ(ψ′)[3S1, 1]〉 = 2Nc(2J + 1)|ΨJLS(0)|2. (52)

Thus, thematrix element 〈OJ/ψ(ψ′)[3S1, 1]〉 can be ei-
ther theoretically calculated within the nonrelativistic
potential approach (see the results presented in [35]
for various types of the quark–quark interaction po-
tential) or unambiguously extracted from experimen-
tal data on the leptonic-decay width of the J/ψ (ψ′)
meson.

Figures 7 and 8 display the results of our cal-
culations for the pT spectra of J/ψ and ψ′ mesons
with allowance for only the contributions from the
fragmentation of c (c̄) quarks to J/ψ and ψ′ mesons.
One can see that the curves calculated within the kT -
factorization approach lie higher (by a factor of 2 to
3) than the predictions of the collinear parton model,
with the exception of the curve obtained with the
JB parametrization [33] for the unintegrated gluon
distribution.

Figures 9 and 10 show the results of our calcula-
tions for the pT spectra of J/ψ and ψ′ mesons with
allowance for only the contribution of gluon fragmen-
tation to J/ψ and ψ′ mesons. We see that the curves
lie higher by more than an order of magnitude than
the curves obtained by taking into account only the
fragmentation of c (c̄) quarks to J/ψ and ψ′ mesons.
It is also clear from Figs. 9 and 10 that the curves
labeled with GRV and obtained on the basis of the
5
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Fig. 9. Production spectrum of direct J/ψ mesons with
respect to pT for

√
s = 1800GeV and |ηJ/ψ| < 0.6 (only

the contribution of gluon fragmentation to the color-
octet state of the J/ψ meson is taken into account;
〈OJ/ψ[3S1, 8]〉 = 4.4 × 10−3 GeV3). The quantity B is
the branching ratio for the decay J/ψ → µ+µ−.

parton model are below the experimental points, es-
pecially in the region of low pT , where the contribution
of gluon–gluon fusion to the color-octet states 1S0

and 3P0 is dominant [23, 24]. The results obtained
within the kT -factorization approach depend strongly
on the choice of parametrization for the unintegrated
gluon distribution. In the region pT � mc, where
the application of the fragmentation model is well
justified, the results obtained with the JB [32] and
KMR [34] parametrizations are close. However, the
parametrization JS [33] predicts cross-section values
that are approximately two times smaller and which
are closer to the values obtained on the basis of the
collinear parton model with the GRV parametriza-
tion [30]. Thus, the pT spectra of direct J/ψ and ψ′

mesons within the collinear parton model and within
the kT -factorization approach agree within a factor
of 2. We emphasize that our result contradicts the
results obtained previously in [17–19], where the cal-
culations were performed within the model of gluon–
gluon fusion. In contrast to our results, the fit to data
of the CDF Collaboration [1, 2] according to [17–19]
requires a strong suppression (by a factor of 10 to
30) of the contribution from the octet nonperturbative
matrix element 〈OJ/ψ(ψ′)[3S1, 8]〉 in relation to the
values obtained within the parton model.

We can indicate a few reasons for the discrepan-
PH
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Fig. 10. Production spectrum of direct ψ′ mesons with
respect to pT at

√
s = 1800 GeV and |ηψ′ | < 0.6

(only the contribution of gluon fragmentation to the
color-octet state of the ψ′ meson is taken into account;
〈Oψ′

[3S1, 8]〉 = 4.2× 10−3 GeV3). The quantityB is the
branching ratio for the decay ψ′ → µ+µ−.

cies between our results and those reported in [17–
19].

First, we have employed the fragmentation model,
which effectively takes into account higher order cor-
rections in the strong coupling constant αs through
the Dokshitzer–Gribov–Lipatov–Altarelli–Parisi
evolution equation [25].

Second, the authors of [17–19] chose the argu-
ment µ2 of the running coupling constant αs(µ2) to
be µ2 = k2

1T or µ2 = k2
2T , while we took it in the form

µ2 = m2
J/ψ(ψ′) + p2

J/ψ(ψ′)T . The choice of argument

in the constant αs(k2
T ) increases the cross section by

a factor of 2 to 3 [19].
Third, the authors of [17, 18] used the KMS

parametrization for the unintegrated gluon distribu-
tion in the proton [36]. It is clear from Figs. 9 and
10 that the difference in the pT spectra obtained with
different parametrizations can also reach a factor of 2
to 3.

The results of the present study for direct J/ψ
and ψ′ mesons produced in pp interactions, along
with our previous results for the photoproduction of
J/ψ mesons at the HERA energy [16], show that
the predictions for the pT spectra of J/ψ and ψ′

mesons within the kT -factorization approach with
hard amplitudes in the leading order in αs are in good
agreement with the predictions of the parton model in
YSICS OF ATOMIC NUCLEI Vol. 68 No. 1 2005
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the next order in the coupling constant αs. The cal-
culation of the cross section for the photoproduction
of J/ψ mesons in the next order in αs on the basis of
the collinear parton model was performed in [37].

It is clear that the hard subprocess in the next or-
der in αs for gluon production in the kT -factorization
approach coincides with the Born subprocess of
gluon production in the collinear parton model:

g∗ + g∗ → g + g. (53)

The amplitude of the process in (53) has an infrared
divergence even at high values of the transverse mo-
mentum of the final gluon, which later fragments
into a J/ψ (ψ′) meson. On the contrary, both final
gluons must be hard in a similar process within the
parton model but with real gluons in the initial state.
A method for calculating the amplitude of (53) was
proposed in [27], where the initial gluons were treated
as Reggeons and where the infrared divergences in
question are removed. Calculations of the spectra of
J/ψ andψ′ mesons with allowance for the subprocess
in (53) are of considerable interest and are close to
completion at the moment.
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