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Abstract—The motion of neutrons in magnetic traps is considered for various cases of neutron polarization.
The results of implementing such trapsin practice and special features of experiments studying magnetic neu-
tron storage are discussed. The problem of neutron losses during injection via magnetic valves can be solved
by conjoining amagnetic trap with a converter of cold neutronsinto ultracold ones or with a source of ultracold
neutrons. Prospects for expanding neutron-storage experiments by invoking a correlation analysis of neutron
decay and by using the transport properties of charged particles in a nonuniform magnetic field are analyzed.
In such an investigation, the recording of the storage time of neutrons proper can be supplemented with the
detection of decay protons and electrons and with a parallel measurement of the asymmetries of proton and
electron emission with respect to the magnetic field. A set of relative measurements permitsimproving the accu-
racy of an experimental determination of the neutron lifetime and combining this determination with the deter-
mination of correlation coefficients. On thisbasis, it is possible to find directly theratio of the weak-interaction
constants and the constants themselves. The application of the most advanced reactor and accel erator technol-
ogies to subcritical electric nuclear devices optimized for generating cold and ultracold neutrons, along with
the use of solid deuterium and superfluid helium, creates preconditions for developing a neutron plant and for
launching neutron studies at accelerators. Thus, the work that has been done as a devel opment of V.V. Vladimir-
sky’s proposal s on magnetic neutron storage is analyzed, and the potential of afurther use of ultracold neutrons
and magnetic devices for deploying afull-scale precision experiment to study the beta decay of polarized neu-

tronsis demonstrated. © 2000 MAIK “ Nauka/I nterperiodica” .

1. INTRODUCTION

In 1960, V.V. Vladimirsky showed, for thefirst time,
that a nonuniform magnetic field can be used to trans-
port and confine ultracold neutrons (the corresponding
energy range is 108-107 eV) [1]. The energy of neu-
tron interaction with a magnetic field of strength B is
U=-(u-B), wherep=-1.91 x5.05 x 10727 JT isthe
magnetic moment of the neutron. Hence, a neutron of
positive polarization (that is, a neutron whose spin is
aligned with the magnetic field) is repelled into the
region where the field is weaker, while a neutron of
negative polarization (a neutron whose spin is antipar-
ale tothefield) isdrawn into the region wherethefield
isstronger. This effect is used in many devices for neu-
tron storage. For example, the storage of positively
polarized neutrons was implemented in a “magnetic
cup” [2]; at the same time, negatively polarized neu-
trons can be confined in the magnetic field of a straight
current [1, 3]. For the neutron spin to follow adiabati-
cally the magnetic-field direction, it is necessary that

W, < w_ = 2uB/#, (D

where wy, is the frequency of magnetic-field variation
in the reference frame comoving with the neutron,
while wy isthe Larmor frequency of neutron-spin pre-
cession in the magnetic field B. This means that, in the
reference frame associated with the neutron, the mag-
netic field must not be overly weak and must not
change overly fast (or the neutron must move in the

field at a sufficiently small velocity). For ultracold neu-
trons, this condition can be reliably satisfied in mag-
netic fields of some specific configurations.

For the sake of completeness, we note that the
majority of experiments devoted to neutron storage
with the aim of measuring the neutron lifetime were
performed by using wall traps, where there are specific
problems inherent in the method, but these problems
have been solved successfully.

This article presents a brief survey of attempts at
implementing a magnetic storage of neutrons and an
analysis of the potential of magnetic fields for studies
of the nature of weak interaction by using ultracold and
cold neutrons. It is shown that there exists at least one
magnetic-field type that features simultaneously the
properties of a neutron trap and the properties of the
channel for transporting charged particles. In this case,
it is possible to analyze the asymmetry of proton and
electron emission with respect to the neutron spin. By
combining a measurement of the neutron lifetime with
a determination of three correlation coefficients, one
can determine directly not only the ratio of the weak-
interaction constants but also the constants themsel ves.
As soon as afairly high precision is achieved, a simul-
taneous determination of three correlations alone in
cold-neutron beams will be sufficient for testing some
hypotheses.

All the above facets of neutron investigations origi-
nate from Vladimirsky’s work on the subject and may
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become components of a qualitatively new method for
studying weak interaction.

2. MOTION OF A NEUTRON
IN A MAGNETIC FIELD

In the following, we assume that the magnetic field
in the storage volumeis so high that condition (1) is sat-
isfied. It was shown experimentally in [2, 4] that this
conditionismet in astorage ring and in amagnetic cup.
In experiments devoted to neutron storage, neutrons
with energies in excess of the critical confinement
energy for a given trap die out within the first ten sec-
onds from the beginning of storage. The radial and
axial degrees of freedom of a neutron can be mixed in
aringtrap of thistype, aswell asinacylindrical storage
vessel. Inasimply connected cylindrical storage vessel,
this proceeds, for example, owing to scattering on wall
roughnesses, to deviations of the wall shape from an
ideal shape, and to deviations of the vessel axis from
the vertical direction. At any instant of time after filling
the trap, it therefore contains a mixture of a short- and
a long-lived component of the neutron gas. In this
respect, the situation is independent of the trap type. In
order to obtain deeper insightsinto the aforementioned
processes and to assess correctly the contribution of
one channel or another to the dynamics of neutron
escape from thetrap, it isreasonableto perform amath-
ematical simulation of the neutron trajectory. By
changing initial conditions of neutron injection into the
trap and by studying the dependence of, say, the num-
ber of collisions with the trap walls on the injection
angles, one can figure out the role of various structural
elements in a model-dependent way and optimize the
conditions of injection. Once this has been ensured,
only those neutrons are injected into the trap that will
have been stored till their beta decay. This will reduce
uncertainties in experimental results, and this is espe-
cialy important when the experiment isaimed at apre-
cision determination of physical quantities|ike the neu-
tron lifetime and correlation coefficients in neutron
decay. For example, a Monte Carlo simulation of the
neutron trajectory can become an element of the full
model of a given experiment. By combining a code for
computing the neutron tragjectory with the model of the
trajectories of the electron and the proton that are pro-
duced in polarized-neutron decay, one can trace the
entire process—from the injection of aneutron into the
trap to the recording of the neutron or its decay prod-
ucts in detectors.

Theforce acting on aneutron having the massmand
the magnetic moment p and occurring in a magnetic
field B hasthe form

= —Su [d|B/dr + mg, 2)

where g, is the acceleration due to gravity, while S
specifies the orientation of the neutron spin with
respect to the magnetic field [S= +1 (-1) in the case
where the neutron spin is parallel (antiparallel) to the
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field]. We further go over to dimensionless variables by
means of the substitutions

B = B,B, t=tg, 3)

where |, B,, and t, are the maximal values of length,
magnetic induction, and time that are peculiar to a spe-
cific problem. We will write equation (2) for the Carte-
sian coordinates x, y, and z; make the substitution given
by (3); and omit the primes after that. Choosing the z-
axisdirection antiparallel to that of the force of gravity,
we arrive at the set of equations

r=lyl,

d’x _ SoB
dtz B _éaX’ (4.1)
d’y _ SoB
F B _EW, (4'2)
d’z _ SoB
a2 20z -G, “.3)

where G = mg,l,/(2UB,) is a constant that arises in
going over to the dimensionless variables. Under the
condition uB, = mgl,, wherel, isthe height of the ves-
sel, we obtain G = 1/2.

When the above condition is satisfied, equation
(4.3) issimplified to become

d’z _ _SB_1
dt? 20z 2
It is convenient to use the set of equations (4.1),

(4.2), and (4.3a) for solving numerical problems, one of
which will be formulated bel ow.

(4.3a)

3. STORAGE OF NEUTRONS IN A TRAP
OF THE CUP TYPE

A long-term storage of neutrons was implemented
in magnetic traps of two types. Of these, one belongsto
the class of storage rings. The second isreferredto asa
magnetic cup. There, neutrons are confined within a
simply connected region. The hub of such an apparatus
is an electromagnet formed by a set of ring concentric
coils, each having arectangular cross section of dimen-
sions 6 x 8 cm?. These coils lie between ring iron poles
arranged along the bottom and the walls of a cylinder
about 1 m in diameter and about 0.4 m in height (see
Fig. 1). A thin-wall vacuum chamber is inserted inside
the electromagnet and fixed at the surface of the poles.
On the lid of the vacuum chamber, there are vacuum-
tight inputs for an additional coil and a flange sleeveto
which a removable segment of the pipe for oil-free
evacuation is connected. The central coil has no core; it
embraces the neck of the vacuum chamber and serves
as amagnetic valve. Neutrons are delivered to the vac-
uum chamber through the neck with theaid of theinlet—
outlet device (not shown in Fig. 1). The bent neutron-
pipe segment, which can be rotated about the cup axis
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through an angle of 90°, is the main element of the
inlet—outlet device. The lower endface of this segment
can be rotated from the inlet position (neutron pipe
from the reactor used) to the outlet position (detector of
ultracold neutrons) and in the opposite direction from
the latter to the former. The removal of the neutronsis
performed when the magnetic valve is open to the
detector of ultracold neutrons. In the storage mode, the
rotatable segment is directed toward the detector,
whereby the counting of the neutrons penetrating from
the trap through the closed valve is ensured.

The main magnetic field of a cup-type trap can be
described qualitatively by the expressions

B, = Al,(Ar)cos(Az) —BJ,(kr)exp(—kz),
B, = —Aly(Ar)sin(Az) —BJy(kr)exp(-kz),

wherer istheradial coordinate; the coordinate zis mea-
sured along the trap axis from the horizontal plane of
the bottom poles; A and k are constants that describethe
structures of the bottom and of the wall, respectively;
lo(Ar) and I,(Ar) are zero- and first-order modified
Bessdl functions of the first kind; Jy(kr) and J,(kr) are
zero- and first-order Bessel functions; and the constants
A and B depend on the ampere-turns of the coilsand on
the periods of the structures. By equating both field
components to zero, we can easily construct the node
lines of the fields. The number of these lines depends
on the magnitudes of the periods of the magnetic struc-
tures and on the number of these periods. The actual
field of the trap [5] differed somewhat from an ideal
field as represented by (5). The minimal strength of the
field at the lower boundary of the storage region was
2.5kG.

In order to reduce neutron depolarization at the field
nodes, an additional coil was used in the experiment
described in [6, 7]. Owing to the superposition of the
fields of the main coils and the additional coil, the
resulting field configuration was characterized by the
presence of node points rather than by the presence of
node lines. The coil in question was arranged at an alti-
tude inaccessible to neutrons. By using the results pre-
sented in [1], we can show that the probability of depo-
larization in the vicinity of anode point is estimated by
the cross section

&)

_ \_/_f;La2I2+ b2m2+ Cznz
W |abc]
where a, b, and c are the derivatives of the field along

the principal coordinate axes, while |, m, and n are the
direction cosines of the velocity vector.

It can also be shown that the mean depolarization
cross section per unit length of anodelineat H,=0is

a = 0.72./AV/ub,

where V is the mean neutron velocity in the vicinity of
anode line, while b is the derivative of the field in the
direction from the node line to the point of the closest
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Fig. 1. Magnetic trap for ultracold-neutron storage (mag-
netic cup): (1) vacuum chamber; (2) magnetic lid of the
chamber; (3) injection deeve; (4) central coil; (5) main
coils; (6) additional coail; (7) iron ring poles (St3); and (8, 9)
absorbers (heaters) of ultracold neutrons.

approach of the neutron trgjectory to this line in the
plane orthogonal to the node line.

In order to compare the storage time in the depolar-
ization channel with the neutron lifetime, which is not
greater than 900 s, it is necessary to determine the field
parameters, the neutron velocities in the vicinities of
nodes, etc. In the specific trap shown in Fig. 1, the
depolarization time achieved via the above transforma-
tion of nodes was estimated at 1.6 x 10* s [8], which
makesit possibleto study other mechanisms of neutron
escape.

The table lists the results that were reported in [7]
and which were obtained in an experiment devoted to
neutron storage in acup. The background-counting rate
in that experiment was 0.0067 + 0.0002 s'. The pro-
cessing of those data yielded two exponentials. A fast
escape of short-lived neutrons occurred within a stor-
age time of 200 s. The storage time in the slow expo-
nential was estimated in [7] at avalue greater 700 s (at
a95% C.L.). An analysis of the logarithm of the num-
ber of countsat the last four pointsin termsof the linear
form

INN = (—1.025 + 0.20) — (0.0012 + 0.0004)t

Number of neutronsin atrap versus the time of storage

_ Uncertainty Root-mean-
Time numggrnof inthemean| | Squaredeviar
?;gsétoé X N number, | INN | tionof InN,,

, S | neutron - _
S gN) SInN)
20 0.724 0.052 -0.32 0.07
80 0.592 0.042 -0.52 0.07
160 0.415 0.048 -0.88 0.12
280 0.276 0.032 -1.29 0.11
400 0.181 0.039 -1.71 0.22
600 0.156 0.027 -1.86 0.17
880 0.15 0.035 -1.9 0.23
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yielded the mean neutron-storage time of T = 830 s. At
a90% C.L., it lies between 625 and 1250 s. It is the

value of 8305 Sthat must be treated as the result of

the above experiment devoted to neutron storage in a
gravitational magnetic trap of the cup type. The upper
boundary of the confidence interval was determined
there only from the results of the storage experiment
without taking into account the known value of the neu-
tron lifetime.

The initial number of long-lived neutrons can be
estimated at mean value of 0.3 of a neutron per storage
cycle. This value is determined by the reactor power,
the efficiency of the source and the neutron pipe, the
altitude at which the neutrons areraised in the trap, and
the height of the magnetic barrier in the trap. That the
accuracy in determining the storage time is not very
high in that case is partly due to poor statistics, but the
main reason for this is that, in the trap, there are neu-
trons characterized by ashort storage time. The number
of such neutronsis about 0.6 per storage cycle, avalue
that is greater than the number of long-lived neutrons.
It followsthat it is necessary to take measuresto reduce
the number of short-lived neutrons and the time of their
escape from the region of storage.

4. CONDITIONS OF LONG-TERM STORAGE
IN A NONUNIFORM MAGNETIC FIELD

The magnetic field at the bottom and the walls of the
cup wastoo small (at level of 3kG, on average) for pre-
cisely measuring the neutron lifetime. The main objec-
tive of the study reported in [7] was to explore the pos-
sibility of measuring the lifetime of the free neutron
with the aid of magnetic storage and to determine opti-
mal conditions for setting an experiment aimed at this.
By generalizing the results of neutron storage in asim-
ply connected trap and in a storage ring, we can draw
the following conclusions.

In either type of storage devices, the main factor
hindering the improvement of accuracy is the presence
of neutrons having an undesirable polarization and
higher energies beyond the range of storage. We will
refer to such neutrons as short-lived. From the available
results, it isclear that, for removing such neutronsfrom
theregion of storagewithin 10 s, it is necessary to meet
the following conditions. The storage trap must be
equipped with a device that absorbs neutrons of oppo-
site polarization. The volume of the storage region must
be known to a high precision. Any short-lived neutrons
must be removed from the trap (by means of absorption
or heating) upon traversing the boundary of the storage
region. For example, the number of short-lived neu-
trons in the experiment reported in [7] was reduced in
relation to that in [6] by deploying an additional
absorber; as a result, their storage time was pushed
down from 300to 200 s. If the absorber were positioned
precisely at the boundary of the limiting storage vol-
ume, the storage time would be determined more accu-
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rately. Such an arrangement of the absorber is possible,
however, only if the shape of the storage region is suf-
ficiently simple. A further advantage in what is con-
cerned with the accuracy of the result is achieved when
the neutron-injection deviceletsin only long-lived neu-
trons.

We would like to note that the injectors used were
insufficiently adequate both in the case of astoragering
and in the case of a magnetic cup. In the former case,
neutrons were injected through a movable segment of
the neutron pipe, but this prevented diagnostics during
storage. In the magnetic cup, the central, iron-free,
injector provided wider possibilities in what is con-
cerned with diagnostics, but it restricted the magnetic
field that confined the neutrons in the trap. When the
injector was switched on, this gave an accelerating
momentum to some of the neutrons, pushing them
beyond the interval of long-term storage.

For future experiments, it seems reasonable to com-
bine a trap storing neutrons with a source of ultracold
neutrons. For example, aversion is possible where the
magnetic system is conjoined with a cryogenic detector
of ultracold neutrons that is based on liquid helium
(*He) [9]. A vessel containing liquid helium can be sep-
arated from the high-vacuum storage volume by avalve
that ensures filtration of neutrons with required ener-
gies. The parts of the device are arranged one above the
other and are embraced by the coil creating the mag-
netic field. The delivery of cold neutrons to the vessel
containing liquid helium does not invol ve difficulties of
fundamental nature. The main advantage of such an
assembly is that ultracold neutrons are produced
directly within the storage volume. Owing to this, one
can do without magnetic valves, as well as without
switching the current on and off, which isvery difficult
in superconducting systems. The volume of the vessel
containing superfluid helium can be about 10 I. It was
shown in [10] that, even under the conditions of a sub-
critical assembly of power up to 100 kW, it is possible
to ensure superfluidity in such volumes of helium.
However, only aliquid-helium temperature of 1 K was
considered in that study. In respect of neutron-storage
times and the cost of cryogenic equipment, a liquid-
helium temperature of about 0.6 K can be considered to
be optimal. In this case, the time of neutron storage in
helium becomes as long as the neutron lifetime [9],
whereas the density of neutronsin the trap of the source
growsin direct proportion to the storage time. The tem-
peratureof 0.6 K isachievablein an extracted cold-neu-
tron beam shielded thoroughly from fast-neutron and
gammarray background, which is capable of heating
cold helium.

It is reasonabl e to combine the device schematically
described in [10] with a target complex of a 200-MeV
proton accelerator. If such a complex is equipped with
a moderator for neutrons and if the thermal-neutron
flux density initis 10'¢ (cm? s), the production of cold
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and ultracold neutrons will be sufficiently efficient for
implementing the most ambitious projects.

One such project is considered in Section 7.

5. SSMULATING THE DYNAMICS
OF A NEUTRON IN AN ARBITRARY
MAGNETIC FIELD

Thus, it was shown experimentally that it would be
important to optimize the neutron-storage conditions.
In order to ensure fulfillment of these conditions, it is
necessary to perform preliminary calculations; that is,
we need a mathematicall model for describing the
motion of neutronsin atrap. Let us consider the possi-
bilities for developing such a model.

From the set of equations (4.1), (4.2), and (4.3a),
which describe the motion of a neutron in a magnetic
field and the gravitational field of the Earth, we go over
to aset of finite-difference equation for determining the
neutron velocity and coordinate at the (i + 1)th step. We
have

SoB

i+1 _ i___ _
V, = =V, ZaxAt"

i+1 i SoB

= _PAt. 6
\ \ ZayAt" (6)
i+ i B l
Vi = V-8
We further define new coord| nates of the neutron as

X, = X+ VAL,
Yier = Vi +VI+1/2Ati, (7)
Z.,=2 +V|+1/2A “

where
V|+l/2 - (V +V|+l)/2 V|+l/2 (V +V|+l)/2 (8)
VARSEN (VERVAR TP

The values of 0B/0x, 0B/dy, and 0B/0z are taken at the
intermediate point with the coordinates X, ;. Vi 1,
and z,,,. By proceeding from the point of neutron
generation in the trap, checking the convergence condi-
tion at each step, and varying the step length in accor-
dance with the rate of the field variation, we can trace
the trgjectory of the neutron up to its absorption, heat-
ing, or escape to the detector. The finite-difference
scheme specified by equations (6)—(8) belongs to the
class of implicit schemes of second order in accuracy.
Such schemes are widely used to calculate the trajecto-
ries of charged particles[11]. By using analytic depen-
dences of the type specified in (5) or interpolation
tables describing the magnetic field in the storage
region, we can easily determine, on the basis of the
above scheme, the trgjectory of a neutron for given ini-
tial conditions to the required accuracy.
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If the finite-difference equations (6)—8) are supple-
mented with the set of equations describing the evolu-
tion of the spin in an arbitrary magnetic field with
allowance for its nodes, we will arrive at a full model
that will make it possible to compute many channels of
neutron escape and to simulate actual versions of the

traps.

6. POTENTIAL FOR A NEUTRON IN THE FIELD
OF A STRAIGHT CURRENT

In order to provide the simplest example of the pos-
sibilities for storing neutrons of negative polarization
and to test the proposed computational code in a way
easy to trace, we will consider the motion of a neutron
inthefield of astraight current [1].

Suppose that a current-carrying conductor (busbar
of several conductors) is arranged vertically. We asso-
ciatewith it asystem of cylindrical coordinatesz, r, and
¢ and align the z axiswith the axis of the current-carry-
ing busbar. In the z= 0 plane, we place ahorizontal mir-
ror reflecting neutrons. Here, we consider the problem
of confining a negatively polarized neutron in the
region around the current. We assume that a neutron
with an angular momentum M has been generated at a
point  in the magnetic field of a straight current. We
can then consider the motion of this neutron in the
potential

M? 0.2yl

u(r) =
omr? T

, ©))

where we have taken into account the magnetic perme-
ability of a vacuum and where the current is measured
in megaamperes. In the case of a current flowing in the
horizontal plane, it is impossible to confine a neutron
since, under the effect of the gravitational force, the
neutron leaves the stability region after executing one
or two helixes about the current direction. In the fol-
lowing, we will therefore consider only a current flow-
ing in the vertical direction. Any deviation of the cur-
rent from the vertical direction or any deviation of the
mirror from the horizontal plane leads to the mixing of
the degrees of freedom and to losses of neutrons
because of violation of the storage conditions.

The function in (9) attains a minimum when the
neutron-injection radius takes the value

ro = JI/LZ/%J.ZI%I% (10)

where /il = M/m. Since the angular momentum is con-
served in acentral field, the quantity Jl = V,r is deter-
mined by the conditions of injection for a glven neu-
tron. By specifying the value of .l at the point where
the distance between the neutron in question and the
current axis is minimal, r,.;,, we can determine easily
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Fig. 2. Trajectory of anegatively polarized neutron in thefield of astraight current [the z axisis chosen to coincide with the current
axis (x =y = 0); the coordinates of the neutron-production vertex arex = 0.52m, y =0, and z= 0.6 m; V =V, = 6.23 m/s].

the point wherethisdistanceismaximal, r .., by means
of therelation

M? = 0.4 O min"max_[1 11
M Ij‘min + rmax[r ( )
Thisrelation also provides a convenient check upon
the codes used to compute the neutron trajectory. Fig-
ure 2 exemplifies the cal culations of the neutron trajec-
tory in the attractive potential of astraight current. The
initial conditionsfor this specific calculation are formu-
lated in the caption under the figure. The calculated tra-
jectory isin perfect agreement with relation (11). It is
obvious that, in the reference frame comoving with the
neutron, the magnetic field changes quite dowly; that
is, the condition in (1) is satisfied. Figure 3 shows the
calculated electron tragjectory in the same field. Figure
4 presents an example of a calculated trajectory of a
positively polarized neutron in the field of a vertical
straight current. The tragjectory is bounded in the radial
direction by a cylindrica mirror. If this mirror is
replaced by a layer of substance absorbing ultracold
neutrons, the device in question appears to be a highly
efficient polarizer [12].

We note that, by supplementing the above calcula-
tions of the trajectories with a solution to spin-evolu-

tion equations of the type presented in [1], one would
obtain information relevant to experiments measuring
the rotation of the neutron-polarization plane due to
weak interaction [13]. In a number of experimental
studies, this effect was observed for neutrons propagat-
ing through a sample situated within a system of mag-
netic screens in zero field. It seems that no analysis of
spurious effects in small fields induced by external
sources can yield reliable results without thorough cal-
culations and anumerical simulation of spin rotationin
such fields.

7. SPECIAL FEATURES OF NEUTRON STORAGE
IN THE FIELD OF A STRAIGHT CURRENT

An apparatus for neutron storagein amagnetic field
is too complex to be used to measure neutron lifetime
alone. However, the potential of a storage ring or a cup
for any other experiment is not very rich. It istherefore
advisable to consider alternative magnetic systems—
for example, a superconducting system that imple-
ments the magnetic field of a straight current in a
bounded volume. The nonuniform axisymmetric mag-
netic field of a straight current is advantageous in that
its ability to confine neutrons within a limited region
[1] is combined with the appropriate transport proper-
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Fig. 3. Trajectory of an electron in the field of astraight current (6 x 10° A). Asin Fig. 2, the z axis is chosen to coincide with the
current axis.

1
-0.2 -0.1 0.1 0.2 0.3

1
-0.3

Fig. 4. Trajectory of apositively polarized neutron in the field of a straight current (top view). The motion in the radial directionis
bounded by areflecting mirror (not shown in the figure).
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ties of electrons and protons, which are produced in
neutron decays, in such afield. Only the transport prop-
erties of electrons and positrons were considered previ-
oudly in fields of the 1/r type [14, 15].

We note that the highest values of the momenta of
the proton and the electron produced in neutron decay
are equal to each other and that, as follows directly
from the Lorentz equations, their trajectories are deter-
mined by the relevant charge and momentum. It is also
obvious that the protons and the electrons drift in oppo-
site directions along the current axis; the direction of
thisdrift is parallel to the current for the protons and is
antiparallel to it for the electrons. An example of the
electron trgjectoriesis shown in Fig. 3. If the current in
the system implementing the field of a straight current
is sufficiently high for efficiently confining ultracold
neutrons, it follows from the above that, by conjoining
the magnetic system with a source of ultracold neu-
trons, it is possible to ensure the storage of these neu-
trons and the delivery of the protons and electrons orig-
inating from their decays to a detecting system [16].

By measuring the rate of counting for the decay pro-
tons and electrons versus the time of storage and by
determining the number of neutrons in the storage
region—that is, by combining two methods—we can
refine the neutron lifetime, which is presently known to
within 0.2% [17]. Moreover, the confinement of neu-
trons in the devices being discussed ensures a high
degree of polarization [12]. It also becomes possible to
study the asymmetry of the emission of protons and
electrons from neutron decays in the storage region. It
can easily be shown that the angular momentum is con-
served when the motion occurs in a field of the 1/r
form—in particular, the direction of rotation of adecay
particle is conserved, together with the azimuthal
momentum component specified by the relevant decay
event. For particles originating from neutron decays
and moving about the current in the clockwise and
counterclockwise directions, the asymmetry of emis-
sion can be measured by recording these particles with
aradial detector element. Owing to the conditions of
the motion, we can record the decay electrons and pro-
tons both in spatial and in time coincidences, thereby
selecting decay events. It is aso possible to record
event types corresponding to various orientations of the
proton and electron momenta with respect to the neu-
tron spin. All decay events can be classified according
to these orientations of the proton and electron
momenta and according to the level of the azimuthal
momentum component. Without considering here a
discrimination in the momentum level, we associate the
plus subscript (superscript) with proton (electron)
momenta parallel to the neutron spin and the minus
subscript (superscript) with proton (electron) momenta
antiparallel to the neutron spin—for example, we

denote by Nf; the number of events where the elec-

trons are emitted in the direction of neutron spin and
where the protons are emitted in the opposite direction.
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By using the relative contributions of events of these
types, we can find the correlation coefficients A, B, and
a in the well-known formula for the probability of
polarized-neutron decay [18]. Presented immediately
below are equations for determining al these coeffi-
cients:

X P
dN. = 21n 2!
e
PcP, 2 1 PcP,
O 4 LaleChv 25 1 FCHy
*F1*3AE B, 38 2%E PEHP
[8n2n %l——AP €0 + 210N,
0 Ee
D_ 1 PCP _2 1 PCPVD}
1+ 3AEP 38*32 EPDdP

. P,
dNg [8T[2n0%1+1A 0. 2ren,

0 _1 P.cP, g 1PCPV5}
gl 3AEP 3B+ 22 p.0)dP
-2T[2n0P
P.cP, 1 Pc
E.L 1 FeClv, 25 1.FC
“ori- AEePe 3% PEP'P

Here, P, and P, are, respectively, the antineutrino and
electron momenta; cisthe speed of light; E,. isthe elec-
tron energy; and a, A, and B are correlation coefficients
in polarized-neutron decay. For these coefficients, we
have

P.c

A?‘: = 2[(dN}" +dN;;) — (dNG; + de;)]/z N,

PV e+ e+
B = BHL(ANGZ+ dNGD) - (AN + AN/ SN,

~6(dNGL ~dNG)/ Y N, (13)
1 E P e+ e— i
éaEE [(dN5" —dNZD) — (dN3, ~dNE)I/S N,
_%_lﬂm
2P0
where

ZN = (dNp-+dNj, +dNjp, +dND).

Measurement of such effects can be used to determine
the ratio of the axial-vector constant of weak interac-
tion to the vector constant, A = G,/G,,. If the experiment
in question isextended in such away asto include mea-
surement of the free-neutron lifetime tg, it becomes
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possible to determine the vector constant G, and the
axial-vector constant G, separately [19]. It is interest-
ing to note that the parameters describing the contribu-
tion to the weak-interaction Hamiltonian from a hypo-
thetical right-handed vector boson are related to the
correlation coefficients for polarized-neutron decay by
the simple equations [20]

B-A
1-a’
B+ A

Jd-a)(1+3a)

By measuring three correlation coefficients in a single
experiment, we can set limits on some new physical
guantities.

n = cos(2A0,) =
(14)

w = cos(AB,+AB,) =

8. CONCLUSION

Thus, Vladimirsky’s proposals on the magnetic con-
finement of neutrons in a simply connected region
bounded by a nonuniform magnetic field were imple-
mented with the aid of a gravitational magnetic trap of
the cup type. A series of experiments performed from
1983 to 1986 made it possible to ensure a long-term
storage of neutrons in the trap. As a result, a storage

time of 830 5 S Was achieved. On the basis of these

experiments, conditions have been formulated under
which the neutron lifetime can be determined by mea-
suring the storage-time dependence of the number of
neutrons that remain in the trap after storage.

It has been shown that, for choosing the conditions
of injection into the trap that correspond to long-term
storage, it isimportant to perform a numerical simula-
tion of the evolution of a polarized neutron in a mag-
netic field. A possible algorithm for such a smulation
has been described, and the computed trajectories of a
neutron in the field of a straight current have been pre-
sented. It has been indicated that the known property of
the nonuniform field of a straight current to transport
charge particles can be applied to el ectrons and protons
from neutron decays and that it is possible to record the
asymmetry of proton and electron emission with
respect to the neutron spin. The latter will aid in per-
forming a multipurpose experiment where the mea-
surement of the neutron lifetime will be supplemented
with a determination of three spatial correlations in
neutron decay. The results obtained by calculating the
correlation coefficients on the basis of the asymmetries
of proton and electron emission from neutron decaysin
the field of a straight current have been presented. A
multipurpose experiment of the above type may result
in important refinements of the structure of weak-inter-
action Hamiltonian describing semileptonic decays.

The most efficient setting for such experiments can
be based on a beam of cold neutrons from the target
device of an electric nuclear facility. Viathe epithermal
accumulation of neutrons in superfluid helium by plac-
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ing the cryostat in a cold-neutron beam of high flux
density, a record number of neutron decays will be
achieved in acontrollable zone of thefacility under dis-
cussion.

In conclusion, we would like to emphasize that
investigations devoted to a magnetic ultracold-neutron
storage that were initiated by Vladimirsky also gave
rise to correlation studies of polarized-neutron decay.
Here, an experiment that measured the asymmetry of
electron emission with respect to the neutron spin [21]
and which proved to be one of the seminal studiesalong
these lines was performed under his supervision. Possi-
bly, the use of magnetic systems creating afield of the
1/r type will make it possible to perform a complete
experiment to study polarized-neutron decay. The
above arguments prove that, in the program for devel-
oping electric nuclear facilities, such an experiment
could become a valuable component of fundamental
importance. Its practical implementation requires,
however, concerted efforts of several research centers
and, probably, a collaboration of severa countries,
since the facility to be used will combine a cryostat
containing liquid helium, superconducting magnets,
supermirrors for reflecting neutrons, and the most
advanced equipment for analyzing correlations during
neutron storage under conditions of ultralow back-
ground.
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Abstract—Problems concerning the existence of hypothetical superheavy elements for which theoretical
nuclear models predict high stability with respect to various modes of radioactive decay are discussed. The syn-
thesis of superheavy nuclei and the possibilities for performing experiments aimed at detecting rare events of
their production and decay in heavy-ion beams are considered. Experimental results suggesting a considerable
increase in the lifetime of nuclei as they approach the closed proton and neutron shells determining the islands
of stability of superheavy elements are presented. © 2000 MAIK “ Nauka/Interperiodica” .

1. PROLEGOMENA

Throughout 60 years since the discovery of the first
man-made elements, neptunium and plutonium, inves-
tigations into the synthesis of new elements and into
their properties have become one of the most important
and rapidly developing realms in nuclear physics and
chemistry.

A transition from conventional methods for produc-
ing man-made elements in continuous and pulsed neu-
tron fluxes to methods employing heavy-ion reactions
has made it possible to synthesize 12 elements heavier
than fermium (Z = 100) to date.

In the mid-1960s, a theoretical description of the
masses and fission barriers for new nuclei led to the
prediction of islands of stahility of heavy and super-
heavy nuclides near the closed proton and neutron
shells. In the present article, experimental data demon-
strating higher stability of nuclel near the Z = 108 and
N = 162 deformed shells to various modes of radioac-
tive decay, as well as reactions leading to the synthesis
of these nuclei, are discussed from the viewpoint of
advancements toward the as-yet-unexplored region of
heavier (superheavy) and much more long-lived
nuclides occurring near the Z = 114 and N = 184 spher-
ical shells. The results of the first experiments devoted
to the synthesis of superheavy nuclides formed in
nuclear reactions induced by “¥Ca ions are presented.
For various individual nuclei, the observed decay
chains consisting of successive events of alpha decay
and ending in spontaneous fission, as well as decay
energies and times, are consistent with the predictions
of theoretical models that describe the structure of
heavy nuclei. These data furnish the first indication of
the existence of a hypothetical region where super-
heavy elements are stable.

The experiments in question employed the heavy-
ion accelerator installed at the Flerov Laboratory for
Nuclear Reactions at the Joint Institute for Nuclear
Research (JINR, Dubna, Russia). They were performed
in collaboration with physicists from the Lawrence

Livermore National Laboratory (Livermore, USA);
Gesellschaft fur Schwerionenforschungs Institut (GSI,
Darmstadt, Germany); Riken (Saitama, Japan); Insti-
tute of Physics and Department of Physics, Comenius
University (Bratislava, Slovak Republic); and Diparti-
mento di Fisica, Universitadi Messina(Messing, Italy).

2. INTRODUCTION

According to QED, the well-known concept of the
atom as a system featuring a nucleus, which carries
amost entirely the atomic mass, and electron orbits
occurring at a large distance from the charge center is
valid for very heavy atoms (Z < 170). In fact, however,
the limit of existence of atoms (elements) is achieved
much earlier because of instability of the nucleus itself.

Of approximately 2000 nuclear species known at
the moment, only 287 nuclides have survived the time
interval between the completion of nucleosynthesisand
the present instant. It iswell known that changesin the
relationship between the number of protons and the
number of neutrons in these nuclei generates beta
decay. An excess of neutrons in a nucleus leads to the
reduction of the neutron binding energy; the limit is
achieved at E, = 0 (neutron drip line). Similarly, zero
proton binding energy, E, = O (proton drip line), deter-
mines the boundary of existence of proton-excess
nuclei.

Another boundary is associated with the maximal
possible number of nucleons in the nucleus. Formally,
the limiting mass of the nucleus near the boundary of its
stability—even at the most favorable value of the pro-
ton-to-neutron ratio (nuclei having the highest binding
energy and occurring on the beta-stability line)—is
determined by the existence of the nucleus as adiscrete
unit in the case of a high probability of its splitting into
parts of smaller mass. For the first time, this type of
nuclear transformations, spontaneous fission (SF) of
heavy nuclei, was observed for the 28U isotope (T =
10'¢ yr) by Flerov and Petrzhak in 1940 [1]. By that
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time, Hahn and Strassman had already discovered the
induced fission of uranium. In order to describe this
phenomenon, N. Bohr and Wheeler proposed the lig-
uid-drop model of nuclear fission [2].

This beautiful theoretical model, which is essen-
tially classical, is based on the assumption that nuclear
matter is a macroscopic structureless (amorphous)
body similar to adrop of charged liquid. A deformation
of the drop due to Coulomb forces—eventually, this
deformation leads to the fission of this drop into two
parts of approximately identical masses—arises upon
overcoming the potential barrier opposing nuclear
deformations. For the 28U nucleus, the height of thefis-
sion barrier isB; = 6 MeV. With increasing Z, the height
of the fission barrier decreases fast; as a result, the
nucleus becomes absolutely unstable with respect to
spontaneousfission (Tg: ~ 1071 s) at some critical value
of the nuclear charge. According to the estimates of
N. Bohr and Wheeler, this critical situation is reaized
as soon as the charge number reaches values of Z =
104-106. It isinteresting to note that, much later, when
the first transuranium elements were synthesized with
the aid of high-flux reactors, the radioactive properties
of the new nuclides confirmed qualitatively the liquid-
drop analogy of nuclear matter: the probability of spon-
taneous fission in the nuclear chain from 23U to ’Fm
(Z = 100) increased by more than 13 orders of magni-
tude.

The discovery of isomers that can undergo sponta-
neous fission [3] was unexpected insofar as it was at
odds with the liquid-drop model. Presently, it has been
proven that shape isomerism in 33 nuclei known by that
time (isotopes of nuclei occurring between U and Cm)
arises owing to a complicated shape of the potential-
energy surface of nuclei—in particular, owing to the
two-humped shape of their fission barrier. (The reader
can find a comprehensive description of this phenome-
non in the excellent review article of Bjornholm and
Linn [4].) Yet another contradiction to the theory was
revealed in considerable variations of partial half-lives
with respect to spontaneousfission, which hasthe high-
est probabilitiesin theisotopes of Cf and Fm, aswell as
in the isotopes of transfermium elements formed in
heavy-ion reactions [5]. A more detailed analysis of
theoretical and experimental values of nuclear masses
has shown that the deviations of the experimental
nuclear binding energies from the theoretical ones
behave quite regularly: they are maximal (highest bind-
ing energy) at specific magic numbers of protons and
neutronsin a nucleus.

As arule, shell effects are described by correction
termsin nuclear-mass formulas used in practical calcu-
lations. A phenomenological description of shell anom-
aliesin nuclear masses was given in the studies of Swi-
atecki [6a] and Swiatecki and Myers [6b]. Somewhat
later (in 1967), Strutinsky [7] proposed an original and,
in my opinion, very physical method for calcul ating the
shell correction to the liquid-drop energy of the nucleus

OGANESSIAN

[7]. In his approach, the shell correction is defined as
the difference of the sum of single-particle energies for
the actual quantum distribution of nucleons and the
energy for some uniform distribution of levels in the
mean nuclear potential peculiar to a liquid drop. The
total energy of the nucleus is represented as the sum
E.. = E4+ AE,,.;, Where E,, isthe macroscopic (liquid-
drop) energy, while AE,, ., isthe microscopic correction
taking into account shell effects and pair correlations of
nucleons. Calculations performed within the macro-
scopic—microscopic model revealed regular shell phe-
nomena in deformed nuclei. This made it possible to
improve substantially the accuracy in determining their
ground-state masses and shapes. In contrast to the
widespread opinion that shell effects disappear with
increasing nuclear deformation, it turned out that
nucleon states are strongly rearranged in severely
deformed nuclei. As the deformation becomes more
pronounced, shell effects change, rather than disappear,
till considerably correcting the potential energy of the
nucleus [8].

Among the phenomena that were explained on the
basis of the macroscopic—microscopic model, but
which could not be reproduced by the calculations
within the classical liquid-drop model, mention can be
made of shape isomerism in the actinide nuclel, of the
invariability of the heights of their fission barriers, and of
sharp changes in the probability of fission near N = 152.

3. NUCLEAR SHELLS AND STABILITY
OF HEAVY ELEMENTS

Like any theory, the model being discussed pos-
sessed some predictive power—for example, in dealing
with very heavy, as-yet-unknown nuclei. Predictionson
its basis were made in a number studies. Here, we
present the results of Patyk and Sobiczewski [9] and
Smolanczuk [10], who computed the masses of even—
even nuclei with Z=104-120 and N = 140-190 and the
fission barriers for them.

Let usfirst dwell at some length on the probabilities
of spontaneous fission of superheavy nuclei. The lig-
uid-drop fission barrier is about 1 MeV for the 234102
nucleus, but it is nearly zero for the heavier nucleus
270108. At the same time, it can be seen from Fig. la
that the amplitudes of the shell corrections for these
nuclei are 5 and 7 MeV, respectively. Upon the inclu-
sion of the shell correction in the calculation of the
nuclear potential energy, the above nuclei develop fis-
sion barriers of height about 6-8 MeV. The emergence
of the potential barrier upon the deformation of aheavy
nucleus is expected to suppress severely spontaneous
fission.

Indeed, it follows from the theoretical results dis-
played in Fig. 1b that the partial half-lives with respect
to spontaneous fission depend greatly on the amplitude
of the shell correction. A considerable growth of Tgp(N)
for nuclel that recede from the N = 152 shell, which
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manifests itself clearly in the radioactive properties of
the actinide nuclei, is associated with the effect of
another neutron shell, that with N = 162. It should be
noted that either shell is associated with deformed
nuclei to be contrasted against well-known doubly
magic nuclei of the 2%Pb (Z= 82, N = 126) type, whose
ground-state shape is spherical. The highest stability
with respect to spontaneous fission is expected of the
270108 (N = 162) nucleus—the Ty value predicted for
this nuclide can be as large as a few hours. With
increasing number of neutrons, the nuclear deformation
becomes less pronounced because, in that case, we
move away from the N = 162 shell, which is deformed,
and because another closed spherical shell, that with
N = 184, comes into play. For N > 170, it is natural to
expect a significant growth of Tg(N) persisting up to
the 22108 (N = 184) nucleus, whose partial half-life
with respect to spontaneous fission is Tgg ~ 3 % 10% yr,
an enormous value indeed.

Here, there arises an interesting situation. If super-
heavy nuclel possess high stability with respect to
spontaneous fission, they will decay through other
modes, such as alpha decay and, possibly, beta decay.
The probabilities of these decay modes and, hence, the
corresponding lifetimes will be determined by the
ground-state nuclear masses, which can be computed
within theoretical models based on various assump-
tions about the fundamental properties of nuclear mat-
ter (nature of nuclear forces). Under such conditions,
experimental results are of paramount importance for
testing theoretical models. If wefollow the calculations
of Smolanczuk and Sobiczewski, who relied on the
macroscopic—microscopic  model, the deformed
nucleus 28106 (N = 162) will undergo alphadecay with
a half-life of T, = 2 h (according to the calculations of
Maller and Nix [11], this half-life amounts to a few
days). For the heavier spherical nucleus 24110 (N =
184), T, becomes as large as a few hundred—or,
maybe, afew thousand—years (Fig. 1b). Recall that, in
the absence of nuclear structure (that is, in the liquid-
drop model), this nuclear species would undergo spon-
taneousfission within atime of Tz < 107 s. The above
two values differ by more than 30 orders of magnitude!

Other calculations of the energy of anuclear system
treated as a many-body ensemble that were performed
on the basis of the Hartree-Fock—Bogolyubov model
with various options for interparticle forces, as well as
relativistic calculations in a self-consistent mean
nuclear field, also indicate that the binding energy of a
nucleus increases as it approaches the N = 184 shell.

Among theorists, there is presently no consensus on
what the magic number of protons at N = 184 is at
which the binding energy of a spherical doubly magic
nucleus takes a maximum value. Within the macro-
scopic—microscopic model, the amplitude of the shell
correction is maximal for the 2*®114 (N = 184) nucleus
[12, 13], irrespective of the values chosen for the
parameters involved. On the contrary, the calculations
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Fig. 1. (a) Chart of shell corrections (in MeV) to theliquid-
drop nuclear potential energy. (b) Partial half-lives (with
respect to apha decay and spontaneous fission) of even—
even isotopes containing various numbers of neutrons (the
atomic numbers of the el ements areindicated on the curves;
thick solid curve connects the Z = 114 isotopes): (open cir-
cles) results of the calculations from [10] and (closed cir-
cles) experimental values.
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Fig. 2. (a) Schemefor producing transuranium elementsvia
successive neutron-capture events in reactors and nuclear
explosions. (b) Heavy-mass yields in pulsed high-density
neutron fluxes from nuclear explosions (the fluences
achieved in various experiments are indicated parentheti-
caly).

within the Hartree—Fock—Bogol yubov method indicate,
in addition to Z = 114, some other possible candi-
dates—Z = 120, 122, 126, and even 138—depending
on the choice of model parameters [14]. This does not
change, however, the basic conclusion that, in the
region of very heavy nuclei, there can arise stability
islands significantly extending the limits within which
superheavy elements may exist.

4. SYNTHESIS REACTIONS

It is well known that the first man-made elements
heavier than uranium were synthesized in the reactions

OGANESSIAN

of successive neutron captures during long-term expo-
sures at high-flux nuclear reactors. The large lifetimes
of new nuclides made it possible to separate and iden-
tify them by radiochemical methods followed by the
measurements of their radioactive-decay properties.
These pioneering studies performed by Professor
Seaborg and his colleagues between 1940 and 1953 at
the Lawrence Berkeley National Laboratory (for an
overview, see, for example, [15]) resulted in the discov-
ery of eight man-made elements with Z = 93-100, that
of thelargest mass being ’Fm (T, , ~ 100 d). A further
advancement toward the region of heavier nuclei was
hindered by the extremely small lifetime of 25Fm
(Tgr = 0.3 ms). Attempts at overcoming this barrier in
pulsed high-intensity neutron fluxes from underground
nuclear explosions did not produce anything beyond
2’Fm (see Fig. 2).

Transfermium elements with masses A > 257 were
produced in heavy-ion reactions. In relation to what
was achieved within the method based on successive
neutron captures, heavy-ion reactions are advantageous
inthat the entire projectile massisintroduced in the tar-
get nucleusin the case of fusion with a heavy particle.

The excitation energy of the compound nucleus is
given by

Ei=Ep—[Mcy— My + Mp)] = Ep - Q,

where E; is the projectile energy, while My, My, and
M are the masses of the compound nucleus, the target
nucleus, and the projectile ion, respectively. The mini-
mal excitation energy will correspond to the threshold
energy for thefusion reaction; for afirst approximation,
thelatter in turn is associated with the Coulomb barrier:
E;y" = B, — Q. For heavy target nuclei, we have B, ~
5 MeV/nucleon.

In contrast to (n, y) reactions, where the excitation
energy of the nucleusis6-8 MeV, even afusion process
featuring the extremely light nucleus of “He is charac-
terized by E;'" = 20 MeV. With increasing projectile-
ion mass, the excitation energy of the compound
nucleus will increase owing to the growth of the Cou-
lomb barrier. A deexcitation of a hot nucleus to the
ground state (E, = 0) will proceed predominantly
through the emission of neutrons and gammarays. The
cross section for product formation upon the evapora-
tion of neutrons can be represented as

0(Ey) = GCN(EX>Pxn_|ﬁ [{—(E)}

where o\(E,) isthe cross section for the production of
acompound nucleuswith energy E,, P, isthe probabil -
ity of its deexcitation (cooling) via neutron emission,
and I ,/T, is the ratio of the width (probability) with
respect to neutron emission to the total decay width at
each step of successive neutron-emission events.
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Theratio I' /T, can be computed within statistical
theory under certain assumptions on the thermody-
namic properties of ahot nucleus. The quantity o,,(E,),
which characterizes the survival ability of evaporation
products decreases fast with increasing E, (this is
equivalent to an increase in the number of neutron-
evaporation cascades). The situation is aggravated by
the fact that the shell-correction amplitude, which sup-
presses the fission of a nucleus in the ground state,
decreases fast with increasing excitation energy of the
nucleus. Both of these factors lead to an extremely
small survival probability for heavy compound nuclei.

Inrelation to (n, y) reactions that lead to the forma-
tion of actinide nuclei and which are characterized by
cross sections on the order of 10t or 102 b, the cross sec-
tionsfor the formation of nuclei in heavy-ion reactions
areassmall as 10510~ b, exponentially decreasing as
we move further into the region of heavier elements
(see Fig. 3). Despite so strong a decrease in the yields
of required nuclei, heavy-ion fusion reactions are, how-
ever, the only efficient way to synthesize transfermium
elements (Z > 100). Since the relevant cross section is
maximal at the lowest value of E;"", the most asym-
metric reactions, which correspond to the lowest Cou-
lomb barrier, are preferable.

This circumstance played a decisive role over the
next 25-year period of synthesis of new elements.
A great deal of effort went into producing, at high-flux
reactors, sizable amounts of heavy isotopes of transura-
nium elements from Pu to Fm. They were used as atar-
get material for obtaining new elements at heavy-ion
accelerators. The work along these lines that was per-
formed at the Lawrence Berkeley National Laboratory
and at the Flerov Laboratory for Nuclear Reactions at
JINR resulted in the discovery of additional six new
elementswith Z = 101-106. Apart from this, many new
isotopes of already known elements with Z = 92-100
were synthesized in heavy-ion reactions far away from
the beta-stability line.

As was indicated above and as will be explained
below in greater detail, the properties of new nuclides
changed substantially our ideas of stability of heavy
nuclei and contributed substantially to the devel opment
of theoretical concepts in determining the boundaries
of the existence of elements. Unfortunately, the low
survival ability of highly heated heavy nuclei and diffi-
culties associated with the production of atarget mate-
rial in high-flux reactors constrain severely the poten-
tial of the above reactions in the synthesis of Z > 106
elements.

Below, we consider, however, some specia features
of the fusion of complex nuclei.

5. COLD FUSION OF MASSIVE NUCLEI
As the projectile-ion mass is increased, the minimal
excitation energy of the compound nucleus, E;'" =B.—Q,
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Fig. 3. (a) Cross sections for the formation of Cf (Z = 98)
compound nuclei with various excitation energies in reac-
tions induced by '2C (closed circles) and cross sections for
the formation of neutron-evaporation products in the same
reactions (open circles). Datafrom [16] are used in thisfig-
ure. (b) Cross sections for the formation of Z = 96-106 iso-
topes at the peak of the 4n-evaporation channel of the reac-
tions induced by various heavy ions (HI) whose masses are
indicated in the figure.

grows up to a certain limit (see Fig. 4a). A further
increasein the projectile-ion mass (and the correspond-
ing decrease in the target nucleus mass) would result in
the reduction of the excitation energy E, because of a
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Fig. 4. (a) Minimal values of the excitation energies of Fm
and No compound nuclei formed in fusion reactions
induced by ions of various masses. (b) Cross sectionsfor the
formation of Fm isotopes versus the excitation energy E, of
compound nuclei originating from reactionsinduced by 1°0
and *%Ar ions. () Cross sections for the formation of No
i sotopes versus the excitation energy E, of compound nuclei

originating from reactions induced by '>C and *Ca ions.
The arrows indicate the nuclear excitation energies that cor-
respond to the Coulomb barrier.

sizable increase in Q for symmetric reactions. The
greatest effect is achieved with targets from doubly
magic nuclel 2%Pb, for which the mass defect and,
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hence, the Q value are maximal. A similar effect must
be observed in synthesizing Fm isotopesin “°Ar + 2%Pb
interactions, provided that the fusion of such heavy
nuclei isfeasible. This reaction was chosen in 1973 by
the present author [17] in order to verify the idea being
discussed.

The cross sectionsfor the production of Fm isotopes
in 4°Ar + 208Pb interactions are shown in Fig. 4b, along
with the experimental results of Nurmia et al. [18] for
the same product nuclei originating from the more
asymmetric interactions between °O and 23U nuclei.
From the displayed data, it follows that the maximum
yield of Fm isotopes from “°Ar + 2%8Pb interactions cor-
responds to the emission of only two or three neutrons

from the compound nucleus >#Fm (ET" = 30 MeV).

As to '°0O + 233U interactions, which involve a lighter
projectile, final nuclel are formed as the result of the
evaporation of four or five neutrons from the compound

nucleus 2Fm (E" = 45 MeV).

Paradoxical though it may seem, the cross section
for the formation of evaporation products in interac-
tions of the HI + 298Pb type must increase with increas-
ing mass of the projectileion, provided that thereaction
mechanism and, in particular, the probability of the
fusion of such complex nuclei remain unchanged. The
largest cross section (the lowest excitation energy
E;'") corresponds to the case where the target and the
projectile are both magic nuclei. Indeed, the cross sec-
tion for the production of the heavier isotopes of No
(Z=102) in*8Ca + 2%Pb interactions (E}'" =20 MeV)
proved to be one order of magnitude larger than the
cross section for the production of Fm isotopes [19].
The datain Fig. 4c reveal that the channel featuring the
emission of only one neutronisrealized herewith asiz-
able cross section. In further experiments performed at
GSl, it was shown that, when heavier projectiles up to
707Zn are used, the excitation energy of the compound
nucleus decreases—as might have been expected—so
that the one-neutron-emission channel proves to be
dominant in the production of very heavy nuclei [20].

Thus, we can see that, while, in thermal-neutron
capture by a 23U nucleus, an excitation energy of E, ~
6 MeV is introduced in a compound system, in the
fusion of a?%®Pb target nucleus with an ion of mass 50—
70 amu, the emerging compound nucleus has an excita-
tion energy of only 10-15 MeV! In order to distinguish
such reactions from asymmetric hot-fusion reactions
that were used previously and which result in the for-
mation of hotter nuclei, the former are referred to as
cold-fusion reactions.

Cold-fusion reactions changed substantially the
state of affairsin the problem of synthesizing new ele-
ments. Since stable isotopes, 2°42%Pb or 2“Bi, are used
here for atarget material, experimental studiesin these
realms have become accessible to many research
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groups. At this stage, it has been advances in accelera
tor technologies for obtaining intense beams of A > 40
ionsthat have determined the sensitivity of the relevant
experiments. At the same time, compound nuclei origi-
nating from the fusion of 2%®Pb nuclei with the nuclei of
the heaviest stable isotopes used for projectiles display
large neutron deficiency. By virtue of this, eventual
evaporation products are offset from the beta-stability
line by 10-15 amu; this is the reason why their half-
lives decrease considerably.

The two factors underlying the method of cold
fusion—the production of intense beams of A = 50
heavy ions and the need for express procedures to sep-
arate and detect new nuclear species (T,, = 1 ps)—
changed significantly the implementation of experi-
ments devoted to synthesizing new elements.

A successful solution to the problem was found in
1975 at GSl. This solution involved developing the
new-generation heavy-ion accelerator UNILAC and
the SHIP facility, which permits an in-flight separation
(t ~ 10 ps) of atoms of new elements from the heavy
background of side products from incomplete-fusion
reactions. The six heaviest elements with Z = 107-112
were synthesized in the cold fusion of 2°°Pb and **Bi
nuclei with ions from *Cr to °Zn. The relevant experi-
ments and analyses of the results deduced from those
experiments are comprehensively described in the
review articles of Armbruster [21], Munzenberg [22],
and Hofmann [23], which cover the 20-year period of
work along these lines.

In cold-fusion reactions on targets from the same
nuclear species of 2%Pb or 2*Bi, the increase in the
atomic number and the mass of evaporation products of
compound nuclei is determined exclusively by the pro-
jectile charge and mass. From experimental data, it fol-
lowsthat the cross section for the formation of nuclel of
new elements decreases considerably with increasing
atomic number of these nuclei (see Fig. 5). As was
shown for the first time in [24], similar effects are due
to a dynamica suppression of fusion because of an
increase in Coulomb repulsive force when more sym-
metric combinations of the masses and charges of inter-
acting nuclei are used. Here, two factorsthat determine
the cross section for the formation of evaporation prod-
ucts oppose each other: with increasing projectile mass,
the survival of compound nuclei increases by virtue of

a decrease in EM™, whereas the probability of com-

pound-nucleus formation decreases fast.

Prior to addressing the problem of synthesizing
spherical superheavy nucle, it is advisable to summa-
rize the above discussion.

Reactions where beta-stable and neutron-excess
nuclei are formed via successive slow-neutron captures
cannot yield masses in excess of A = 257. In heavy-ion
reactions, there are no similar limitations at a funda-
mental level. However, the cross sections for the forma-
tion of new elements decrease exponentialy with
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Fig. 5. Cross section for the formation of Z = 102-112 iso-
topesin the cold fusion of 2%Pb and 2“Bi with ions of var-
ious masses (which areindicated inthefigure): (closed sym-
bols) experimental values (left scale) for the reaction chan-
nel involving the evaporation of one neutron and (open
symbols) probabilities of the fusion of various ion species
with 298Pb nuclei (right scale) as rescaled from experimen-
tal cross sections.

increasing atomic number both in hot-fusion and in
cold-fusion reactions. The reasons behind this are dif-
ferent in the two cases: while, in hot-fusion reactions,
losses stem from the low survival of evaporation prod-
ucts, in cold-fusion reactions, this is due to the low-
probability of compound-nucleus formation.

6. SEARCHES FOR A COMPROMISE

In asimilar situation, it is reasonable to seek a com-
promising solution and impose, in addition, the condi-
tion requiring that evaporation products possess a max-
imal neutron excess. It should be noted that no versions
of fusion of stable or even long-lived isotopes can lead
to nuclei on top of the stability island with Z = 114 and
N = 184. One may only hope to approach the bound-
aries of this unknown region so closely as to enter the
area affected by the N = 184 spherical shell. But even
this possibility is highly questionable.

From the data presented in Fig. 1, it follows that, in
the transition region between deformed and spherical
shells, nuclei become significantly less stable. This is
due primarily to changes in the ground-state nuclear
masses and shapes and in the structure of the corre-
sponding fission barriers. Only for N = 170 does there
arise a stable spherical configuration—as follows from
macroscopic—microscopic calculations, a stabilizing
effect of the N = 184 spherical shell must already come



1322

Cross section, cm?

Darmstadt-Berkeley—  Livermore-Berkeley
Mainz—LosAlamos- 1978
Bern—-Gottingen

10—32 -

Dubna

—33L
10 Chemical

1985 procedures

Separator of recoil nuclei

10—34 L
10—35 L
10—36 L
I i
Limit on the sens,itivit%/
10_37 | of agiven experimen | |
1076 10° 109
Half-life, s

Fig. 6. Limits on the cross sections for the formation of iso-
topes of the Z = 116 element in *3Ca + 2**Cm interactions
according to data from various experiments (solid curve).
The lower horizontal curve corresponds to the limiting sen-
sitivity achieved to date.

into play in thisregion. Nuclideswith so high aneutron
deficit can in principle be obtained by using heavy
actinide isotopes with Z = 94-98 for a target material
and nuclei of the rare isotope “8Ca for projectiles.

A compromising solution here consistsin that, while
abandoning the idea of using magic target nuclei upon
going over from 2%Pb to neutron-excess isotopes of
actinide el ements, we regain magicity in aprojectileion.

Because of a considerable mass defect in the doubly
magic nucleus “*Ca, the excitation energy of the com-
pound nucleus above the Coulomb barrier is about
30 MeV. The cooling of the nucleus occurs via the
emission of three neutrons and gamma rays. It can be
expected that, at this excitation energy, shell effects are
till noticeablein ahot nucleus, in which case the prob-
ability of survival of evaporation products must be
larger than the analogous probabilities in hot-fusion
reactions (E, = 50 MeV). At the same time, the asym-
metry of nuclear massesin the input channel (Z, x Z, <
2000) must reduce a dynamical suppression of the
fusion of the nuclei being considered and, hence,
increase the cross section for compound-nucleus for-
mation in relation to that in the case of cold fusion.

Despite these obvious advantages, al the preceding
attempts made between 1977 and 1985 at various labo-
ratories [25-27] to synthesize new elements yielded
only upper limits on the cross sectionsfor the formation
of superheavy elements (see Fig. 6). At the same time,
progress in experimental techniques over recent years
and the possibility of obtaining intense beams of “8Ca
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ions at new-generation heavy-ion accelerators make it
possible improve the sensitivity of relevant experi-
ments by two orders of magnitude. We have therefore
chosen this way to advance toward the region of stabil-
ity of superheavy elements.

7. STRATEGIES OF EXPERIMENTS
AND EXPERIMENTAL EQUIPMENT

The strategy of experiments aimed at the synthesis
of superheavy elementsis determined to aconsiderable
extent by their radioactive properties and, above al, by
the lifetimes of the elements to be synthesized. Aswas
indicated above, these lifetimes can vary within broad
limits, their specific values being dependent on whether
theoretical predictions concerning the effect of nuclear
shells on the stability of heavy nuclides with various
values of Z and N are in fact true. Because of this, the
operation of the experimental facility to be used must
be extremely fast. At the same time, neutron-evapora-
tion products, whose yield is very small, must be sepa-
rated within a short period of time from a formidable
background of reaction by-products whose formation
probability is higher by eight to ten orders of magni-
tude. These conditions can be satisfied in the case of in-
flight product separation (within atimeinterval of dura-
tion 10°°-10- s), alowances for the kinematical fea
tures of various reaction channels being required here.

It should be noted that, in a fusion reaction leading
to compound-nucleus formation, the projectile momen-
tum is fully transferred to the compound system; as a
result, the energy of recoil nuclei and the direction of
their motion are well defined. Therefore, the problem
amounts to sorting recoil atoms, which are emitted in
the narrow angular interval 6, = 0° + 2.5° with respect
to the beam direction, according to their velocities (or
energies). This function is performed by Wien velocity
filters (SHIP separator at GSI) [28] or by an energy fil-
ter (VASSILISSA separator at JINR) [29], where reac-
tion products are separated according to electric rigidi-
tiesin transverse electric fields (see Fig. 7a). As amat-
ter of fact, the same functions are fulfilled by facilities
of adifferent type—gas-filled separators, where recoil
nucle are separated by magnetic rigidities in a hydro-
gen or ahelium gas medium at apressure of about 1 torr
[30] (seeFig. 7b).

Upon escaping from the target, recoil and beam
nuclei moving in avacuum haveidentical momentaand
close charges; for this reason, it is impossible to sepa-
rate them by magnetic rigidities. However, they possess
different electric rigidities because of distinctions
between their kinetic energies and can therefore be sep-
arated while propagating in a transverse electric field.
The pattern of motion in agas medium istotally differ-
ent. Within N. Bohr’stheory, it can be shown that, upon
undergoing multiple collisions, an atom moving in such
amedium acquires the equilibrium charge [31]

q0(v/vg)z"?,
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VASSILISSA electrostatic separator for recoil nuclei
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Fig. 7. Layout of kinetic separators used for recoil nuclel in experiments performed at the Flerov Laboratory for Nuclear Reactions
to synthesize new elements:. (a) VASSILISSA separator, (b) gas-filled separator, and (c) detector region used to record recoil nuclei

and their decays.

where Z is the atomic number of the ion being consid-
ered.

Since the heavy recoil nucleus and the projectileion
move at different velocities, their equilibrium charges
differ significantly from each other. The most pro-
nounced effect is observed at |ow recoil-atom velocities
closeto the Bohr velocity (v =2.19 x 108 cm/s). Inthis
case, evaporation products can be separated from beam
ions and other nuclei owing to a high magnetic rigidity
of recoil atoms.

The efficiency of kinematical separators depends on
the ratio of the masses of interacting nuclei. This effi-
ciency isonly afew percent for fusion reactions featur-
ing relatively light projectile ions (A, < 20), but it
becomes as high as 30-50% for projectile ions with
mass numbers not less than 40. The facilities used also
possess a high selectivity: in the focal plane of the sep-
arators, the background from the primary ion beam is
removed almost completely, and the yield of products
from incompl ete-fusion reactions is suppressed by four
to seven orders of magnitude, specific values of the sup-
pression factor being dependent on the kinematical fea
tures of various channels resulting in the formation of
these products. Thisis, however, insufficient for identi-
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fying extremely rare cases of the production of atoms
of new elements. For this reason, a further selection of
sought nuclei is accomplished with the aid of acompli-
cated detecting device that is shown schematicaly in
Fig. 7c.

Recoil atoms that have reached a focal plane are
implanted into a multistrip semiconducting silicon
detector of area about 40-50 cm?. The length and the
width of the strips, as well as their number, are deter-
mined by the image of the object in the focal plane of
the separator. The facilities displayed in Fig. 7 employ
12 and 16 strips of lengths 40 and 60 mm, respectively.
Each strip possesses a longitudinal position sensitivity.
The position resolution of each strip is determined
experimentally. Thisis achieved by choosing reactions
where known recoil atoms undergo successive alpha
decays or spontaneous fission. The position resolution
depends on the type of the recorded particle (recoil
nuclei, alpha particles, or spontaneous-fission frag-
ments). However, more than 95% of all charged parti-
cles accompanying the decay of the implanted object
areresolved, as arule, within the range A, ~ 2 mm.

Thus, the entire area of the frontal detector is effec-
tively partitioned into approximately 500-1000 indi-
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vidual cells, each carrying information about the time
of arrival of recoil nuclei and about their energies, as
well as about the time of subsequent decays accompa-
nied by achangeintheir spectral properties. Thefrontal
detector is surrounded by side detectors in such a way
that the entire apparatus represents awell with an open
front wall. This increases the efficiency of detection of
particles from the decay of an implanted nucleus (alpha
particles or fragments) up to 85-87%. In order to sepa-
rate signals associated with the recoil nucleus from
those that are associated with particles from its decay, a
time-of-flight (TOF) detector recording the velocity of
implanted nuclel is arranged in front of the frontal
detector. The background conditions are substantially
improved by an event selection according to the chains
of radioactive decay of these nuclei. A parent nucleus
implanted in the detector can be reliably identified if
the chain of its successive alpha or beta decaysleads to
nuclides with known properties. This method was used
successfully in experiments devoted to the synthesis of
the Z = 107-112 new elements whose isotopes possess
amodest neutron excess (N — Z < 53). As we advance
further into the region of spherical nuclel with agreater
neutron excess, the above advantage is lost. Here, the
decay of a parent nucleus leads to the formation of
unknown isotopes, whose properties can only be pre-
dicted within atheoretical accuracy.

At the same time, we can state that, if the basic the-
oretical prediction that there exists the island of stabil-
ity of superheavy elementsisvalid, the daughter nuclei
recede ever further from closed shells within any chain
of successive alpha or beta decays. This must lead to a
considerable increase in the probability of their sponta-
neous fission in relation to other decay modes. Eventu-
ally, the decay chains would end in the formation of
spontaneoudly fissile nucle. In principle, such a decay
pattern is compelling evidence for the formation of a
superheavy nucleus. |n the methodol ogical aspect, such
an event differs substantially from those of other possi-
ble correlated decays. Upon the emergence of a signal
indicating the arrival of an implanted nucleus at a cer-
tain point of the frontal detector, with the time of its
flight being measured in the TOF detector, signalsfrom
the emission of alpha particles with an amplitude cor-
responding to their energies of about 8.5-10 MeV will
arise, without a TOF attribute, in the same position win-
dow in definite time intervals. After that, alarge-ampli-
tude signal from spontaneous-fission fragments with
total kinetic energy TKE of about 200 MeV will be
recorded.

8. STABILIZATION OF DEFORMED NUCLEI
NEAR Z = 108 AND N = 162 CLOSED SHELL

The synthesis of nuclidesin this region and investi-
gation of their properties provide a direct test of theo-
retical ideas of the role of shellsin nuclei where there
is virtually no liquid-drop fission barrier. Of greatest
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interest in this respect are isotopes of the element with
charge number Z = 106.

According to the macroscopi c—microscopic calcula-
tions of Patyk and Sobiczewski [9], the Z = 106 even—
even nuclides have commensurate partial half-lives
with respect alpha decay and spontaneous fission over
a wide mass interval, the corresponding numbers of
neutrons at the ends of this interval being N = 152 and
N = 164. Irrespective of the decay type, an increase in
the number of neutrons must stabilize nuclei to a con-
siderabl e extent because of the growth of the shell-cor-
rection amplitude (see Fig. 8b). At the same time, the
calculations of Méller and Nix [32], who considered
the same nuclei within the same model, but who used
somewhat different parameter values, led to a totally
different pattern. It should be noted that either calcula-
tion describes well the decay properties of the 2¢0Sg
(Z=106, N = 154) nucleus, for which experimental data
yield T, = Tgg [33, 34]. According to [32], however, the
half-lives T, and T begin to diverge strongly with
increasing number of neutronsin theregion N > 152: as
we approach the N = 162 shell, the half-life with respect
to apha decay, T,, increases, as might have been
expected, while the half-life with respect to spontane-
ous fission, Tgg, decreases significantly.

This effect results from a considerable change suf-
fered by the deformation energy of a nucleus as its
nascent fission fragments approach the Z =50 and N =
82 closed shells. It was shown in [35, 36] that anew fis-
sion channel (mode) associated with the shortest path
for the collective motion of a nucleus from the ground
state to the point of scission into two fragments of
approximately equal masses opens up in this case. It
can be assumed with a great degree of confidence that,
within a short period of time, the hypothetical nucleus
264Fm will undergo strictly symmetric fission into two
doubly magic nuclear fragments (*2Sn). In the experi-
ments of Hulet et al. [37], it was shown that this phe-
nomenon is observed even in the spontaneous fission of
the N = 158-160 heavy isotopes of Fm, Md, and No. In
the probabilities of the spontaneous fission of heavy
nuclei, it isin Fm isotopes where this effect manifests
itself in the most spectacular way: as we go over from
26Fm (Tgr = 2.9 h) to 2%Fm (T = 0.3 ms), the half-life
changes by afactor of 3 x 107.

For the problem being considered, this circumstance
is of paramount importance. If stability with respect to
spontaneous fission is expected to be higher near Z=
108 and N = 162, the 2°Sg isotope must have a half-life
of afew tens of seconds. Otherwise, this nucleus would
undergo spontaneous fission with a half-life of Ty ~
107 s; here, the distinction between the T values is
five orders of magnitude or even greater. In this situa-
tion, an experimental determination of the decay prop-
erties of heavy isotopes of the Z = 106 element could
provide a direct criterion for testing various computa:
tional procedures, the results that these procedures
yield being depicted in Fig. 8b.
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Fig. 8. (a) Chains of the successive decays of the N = 154 and N = 160 isotopes of the Z = 106 element that are synthesized in *Cr +

207pp and 22Ne + 2*¥Cm interactions. (b) Experimental (closed boxes and circles) and calculated half-lives (with respect to alpha
decay and spontaneous fission) of Sg isotopes (Z = 106). The solid and dashed curves represent the results of the calculations from
[9], while the dotted curve depicts the data from [32], which suggest the fast fission mode.

With the aim of synthesizing heavy isotopes with
Z = 106, we decided to explore ?*Ne + >**Cm interac-
tions at a beam energy in the vicinity of the Coulomb
barrier, in which caseit is natural to expect a maximum
cross section for isotope production in reaction chan-
nels involving the evaporation of four or five neutrons.
In an experiment where a >**Cm target was exposed to
a beam of 22Ne ions for 360 h, so that the total dose of
irradiation was about 1.6 x 10", two isotopes of Z =106
elements with mass numbers 265 and 266 were singled
out with the aid of a gasfilled separator [38]. Each of
the two nuclear species, 6Sg (N = 159) and 2Sg (N =
160), undergoes predominantly alpha decay. The
energy of the apha decay of the even—even nuclide
26Sg (Q, = 8.76 MeV) determines its half-life (T,, =
20 £ 10 s). The chains of the decay of the N = 152 and
N = 160 even—even isotopes of the Z = 106 element are
displayed in Fig. 84. On the basis of six apha—SF cor-
relations observed in the decay of the 2°Sg nucleus, it
was possible to determine the half-life of the daughter
nucleus—*2Rf (Z = 104, N = 158) isotope. It under-
goes spontaneous fission with ahalf-lifeof Tgr = 1.2 s.

The radioactive properties of the new nuclides indi-
cate that, as these nuclides approach the Z = 108 and
N = 162 closed shells, they become more stable with
respect to spontaneous fission (see Fig. 8b). Indeed, the
guantity Tyr grows by more than three orders of magni-
tude when the number of neutronsin theisotopes of the
Z = 106 element is changed by six units. At the same
time, a transition from >®*No (Tgz = 1.2 ms) through
262Rf to 266Sg (addition of four protons) increases Ty
by more than four orders of magnitude. The data
obtained in the aforementioned experiments are in
gualitative agreement with the results of the macro-
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scopic—microscopic calculations performed by Patyk
and Sobiczewski [9]. From the experimental data, it
follows that the spontaneous fission of the 26°Sg
nucleus viathe mode that correspondsto a short path of
tunneling through the fission barrier is severely sup-
pressed, the suppression factor being greater than 10°.

On the basis of data obtained for Z = 106 nuclei, it
can be assumed that, for still heavier nuclides (those
with Z > 106), fission modes are also unlikely to require
revising the optimistic theoretical prediction that there
exists a wide region where superheavy nuclei are sta-
ble. The Z = 106 nuclides are expected to undergo pre-
dominantly apha decay aslong asthe shell corrections
in the deformation energy hinder their spontaneous fis-
sion. These conclusions are confirmed by the experi-
ments performed at GSI, where many new al pha-radio-
activeisotopes with charge numbersup to Z = 112 were
synthesized and studied. To the same extent, thisistrue
for the heaviest isotopes with Z = 106-110 that were
obtained in hot-fusion reactions at the Flerov Labora-
tory for Nuclear Reactions (JNR, Dubna) [38—-40].

Changes in the number of neutrons across the N =
162 closed neutron shell are expected to produce very
specific effects. Here, the energy Q, must undergo a
jump reflecting the strength of the impact that this shell
exerts on the properties of the relevant nuclides. Such
an effect is observed in the isotopes of theZ =110 ele-
ment: the difference of the valuesthat Q, takesfor N =
161 and N = 163 nuclei is about 0.5 MeV, which isin
satisfactory quantitative agreement with the theoretical
results. This difference is approximately four times as
great as the value that AQ, takes when the number of
neutrons traverses the N = 152 deformed shell in No
isotopes, but it is considerably lessthan the correspond-
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ing value for the spherica nucleus ?'°Po (AQ, =
2.4 MeV).

9. TRANSITION TO THE REGION
OF SPHERICAL NUCLEI

The probability of the formation of superheavy
nuclei in reactions induced by “8Ca ions is the most
uncertain element in the problem being considered. Itis
very difficult to compute this quantity to an acceptable
precision, because describing the dynamics of collec-
tive motion of a massive system comprising nearly
three hundred nucleons presents a formidable chal-
lenge. On the other hand, various extrapolations of
known data to the region of superheavy nuclei can
hardly be reliable. We made an attempt at determining
this probability experimentally by studying the fission
of heavy compound nuclei as the main channel of their
decay.

The features of the fission of Z =102 and Z = 112
compound nuclel that are formed in the fusion of ¥Ca
ionswith 2%8Pb and 238U nuclel, respectively, were mea-
sured in series of experiments employing the CORSET
facility that recorded the masses, the energies, and the
spatial distribution of pair fragments[41].

Figure 9a displays the one-dimensional mass distri-
butions of fragments originating from the above inter-
actions. The symmetric mass distribution of fragments
that is observed in ¥Ca + 2%Pb interactions over the
entire energy range under study is associated with the
fission of 2*No compound nuclei. Simultaneously, the
cross sections for 2°No decay through other channels
featuring neutron evaporation were measured by using
separators of recoil nuclei [42]. On the basis of these
data, it is possible to determine the survival of evapora-
tion products at various values of the excitation energy.
This quantity can then be computed on the basis of the
statistical model with the parameters fitted in such a
way as to ensure the best agreement with the experi-
mental values.

A strongly different pattern is observed in ¥Ca +
233U interactions. Here, the yield of pair fragments is
primarily due to an asymmetric disintegration of the
compound system (quasifission). With thefission of the
286112 compound nucleus, we can associate only a
small part of the symmetric mass distribution of frag-
ments. It should be noted that the relative weight of this
part decreases sharply at subbarrier energies.

From Fig. 9b, it can be seen that the maximum yield
of isotopes of the Z = 112 element is expected at ener-
giesof the*¥Caion beamin thevicinity of the Coulomb
barrier. The cross section for their production is as
small as a few pb (1 pb = 10 cnm?). Therefore, it
comes as no surprise that all preceding attempts at syn-
thesizing superheavy elements in reactions induced by
4Ca ions, where limiting cross sections amount to a
few hundred pb, could not lead to positive results. On
the samebasis, we can conclude, however, that, in order
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to observe the formation of superheavy nuclei, the sen-
sitivity of the experiments must be improved, in rela-
tion to previous experiments, at least by two orders of
magnitude.

10. PRODUCING INTENSE BEAMS
OF #Ca IONS

From the above, it follows that producing intense
beams of the rare and very expensive isotope “*Cais a
key problem in attempts at synthesizing superheavy
elements. In order to achieve this goal, the U-400
heavy-ion accelerator was substantially upgraded. The
upgrade included the creation of anew external source
of multiply charged ions (ECR-4M) and a channel for
injecting a low-energy beam of **Ca’* ions (E, =
60 keV) at the center of the accelerator chamber.

Neutral atoms of “Ca were injected into the ionic-
source plasmain the form of metal vapors at a control-
lable crucible temperature. Hot screens whose temper-
ature could be monitored were used in order to avoid
the condensation of metal vapors onto the walls of the
chamber. The experimentsin question employed metal
calcium enriched in the required isotope to about 70%.
The choice of the optimum operation mode for the ECR
source at a minimum consumption of “Ca, as well as
the amount of the substance that remains in the cham-
ber, was monitored by the gamma radiation from the
#ICa isotope (T, = 4.5 d). The production of ¥’Cawas
accomplished by activating the original “*Ca samplein
the (y, n) reaction. The procedure developed for regen-
erating the substance from the chamber of the source
after its long-term operation made it possible to
increase the efficiency of utilization of the original sub-
stance up to 85%. These refinements contributed sub-
stantially to producing an internal beam of 48Ca ions
that carries more than 10'2 particles per second at asub-
stance consumption of about 0.3 mg/h.

The extraction of the beam from the chamber of the
U-400 accelerator was implemented by means of ion
charge exchange on carbon foil of thickness about
40 pg/cnm?. The mean intensity of the beam of “4Caions
on the target was about 4 x 10'? particles per second.
The ion-beam energy could be varied smoothly by
shifting the charge-exchange foil intheradial direction.
During exposures, this energy was determined and
monitored to a precision not poorer than approximately
1 MeV. This was achieved by measuring the energy of
scattered ions with the aid of a gold foil 200 pg/cnm?
thick and with the aid of the TOF technique.

11. SEARCHES FOR A NEW ISOTOPE
OF THE Z = 112 ELEMENT IN *Ca + 2%U
INTERACTIONS

Experiments pursuing this goal were conducted in
March 1998 with the VASSILISSA separator [43]. A
rotating target from enriched 2*8U in the form of alayer
0.3 mg/cm? thick deposited on an aluminum substrate
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1.6 mg/cm? thick was used to receive an intense ion
beam. Two long-term exposures were performed at the
ion-beam energies of E, = 231 and 238 MeV, which
corresponded to the compound-nucleus excitation
energies of E, = 33 and 39 MeV. From the data in
Fig. 9b, it followsthat, under these conditions, it is nat-
ural to expect amaximum yield of isotopes originating
from reactions involving the evaporation of three or
four neutrons from the 286112 compound nucleus.

In thefirst experiment (E, = 33 MeV), two events of
spontaneous fission in the form of two coincident frag-
ments with energies of (162 + 28) MeV and (191 +
21) MeV inthefrontal detector and in the side detectors,
respectively, were recorded at atotal irradiation dose of
3.5 x 10'8 ions. So pronounced adistinction between the
signal amplitudes was due to a deep implantation of a
recoil nucleus with the result that, upon its decay into
two fragments, the entire energy of one fragment and
part of the energy of second fragment were deposited in
thefrontal detector. The side detectors recorded only the
amount of energy equal to the remaining part of the
energy of the second fragment minus the energy lossin
the insensitive surface layers of the detectors.

Neither of these eventswas accompanied by asignal
in the TOF detector, whenceit follows that the eventsin
question originated from the decays of implanted nuclei.
In each casg, all signalswere anayzed in the correspond-
ing position windows over a broad time interval from
5 psto 10000 sin order to find the recoil nucleus and to
perform a search for apha particles preceding spontane-
ous fission. Signals from the implanted ions, with the
amplitudes in the frontal detector and the times of flight
in the TOF detector that were expected for heavy nucle,
were recorded 52 and 182 s prior to the emergence of the
fragments. Within thesetimeintervals, therewereno sig-
nals from al pha particles preceding spontaneous fission.
Other successive-alpha-decay chains that do not end in
spontaneous fission and which could be associated with
the decay of superheavy nuclei (in the energy range E, =
8-13 MeV with ahalf-life of T,, < 1000 s) were not dis-
covered in the experiment either.

Neither spontaneous fission nor alpha-particle
chains that could be associated with the decay of a
heavy nucleus were observed in the second exposure
(Ex = 39 MeV), where the irradiation dose was
2.2 x10%ions.

The half-life determined for the new spontaneously

fissile nuclide on the basis of the two aforementioned
+200

eventsisT,,= 815 S Attheexcitation energy of E, =
33 MeV, it isformed with cross section o = 5ﬁ§ pb; at
E, = 39 MeV, the cross section for its formation was
constrained as g < 7.5 pb. For each spontaneous-fission
event, the total kinetic energy of the fragments was
about 190 and 212 MeV, respectively. It was deter-
mined upon calibrating the detectors by using
implanted nuclei 2>No (T,, = 2.3 s; SF = 25%) origi-
nating from the reaction 2°°Pb(**Ca, 2n).

OGANESSIAN

It should be noted that the properties of nuclei
around 238U are well known. Only very heavy isotopes
with Z= 96, which are offset from 23U by 12—16 nucle-
ons, undergo spontaneous fission. The formation of
these or till heavier isotopesin“®Ca + 2*%U interactions
is energetically forbidden.

Most probably, the observed spontaneously fissile
nuclei are formed in the fusion channel as the result of
the decay of acompound system with excitation energy
E, = 33 MeV. Here, there are dso only very few possi-
bilities. The evaporation of charged particles from a
dlightly heated heavy nucleusis strongly suppressed by
the Coulomb barrier; fusion-reaction products formed
upon the emission of a pha particles and heavier nuclei
are additionally suppressed during separation by more
than two orders of magnitude. Since the effect was
observed at E, = 33 MeV and since it did not become
more pronounced at a higher energy, it ismost probable
that the observed spontaneous-fission events are associ-
ated with the decay of the 8°112 (N = 171) even—odd
nucleus.

A comparative analysis of the decay properties of
the new Z = 112 isotope that are predicted by different
theories is performed in [43]. However, the most
important conclusion rather follows from the experi-
mental observation that, upon going over from the
277112 isotope (T, ~ 0.24 ms) to the 283112 isotope
(Tsg ~ 100 9), the half-life increases by more than five
orders of magnitude.

12. EXPERIMENTS DEVOTED
TO THE SYNTHESIS OF SUPERHEAVY NUCLEI
IN ¥Ca + 2*Pu INTERACTIONS

I sotopes of the Z = 114 element, which are the clos-
est onesto the top of the stahility island, can be synthe-
sized in the fusion of “*Caand ?**Pu nuclei, which pos-
sess the maximum neutron excess. In this reaction, the
maximum yield of isotopes formed in the channels
involving the emission of three or four neutrons is
expected at an energy of ¥Caions that is close to the
Coulomb barrier. According to calculations performed
within various theoretical models, the ground-state
shapes of theZ= 114 nuclel withN=174andN=175are
expected to be spherical; the stabilizing effect of the strong
neutron shell N = 184 must manifest itself in them.

Experiments aimed at synthesizing these isotopes
were performed by using a gas-filled separator of recoil
nuclei [44].

A thin layer (of thickness about 0.4 mg/cm?) of a
plutonium target material enriched in 2*Pu to 98.6%
was deposited on a Ti foil 1.5 um thick. Each of nine
targets—it represented a 40° segment of a circle and
had an area of about 3.5 cm?>—was mounted on a disk
of radius R = 60 mm rotating with a speed of 2000 rpm
about an axis orthogonal to the beam direction.

The energy of theion beam directed at the middle of
the target layer was chosen to be 236 MeV. With allow-
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ance for energy losses in the depth of the target layer
and for dlight changes in the beam energy during long-
term exposures, the excitation energy of 2°2114 com-
pound nuclei could be estimated to lie between 31.5
and 39 MeV. For each recoil nucleus recorded by the
detector assemblage, it was possible to determine, how-
ever, a precise (instantaneous) beam-energy value and
the target number corresponding to a given event.

Under these conditions, two virtualy identical
experiments were performed.

In the first experiment, which spanned a two-month
period covering November and December 1998, three
events of spontaneous fission were observed at a total
irradiation dose of 5.2 x 10'® ions.

Two spontaneous-fission events accompanied by the
energy depositions of 149 and 153 MeV in the detec-
torswere recorded 1.13 and 1.07 ms after the arrival of
recoil nuclei in the corresponding position windows. At
the detector counting rate for recoil nuclei about 2
events per hour, the observed short decays must be
associated with the known spontaneously fissile isomer
244 Am (T = 0.9 ms), which appears as the product of
nucleon exchange with the target nucleus ***Pu. The
third event was recorded as two time-coincident signals
(two fission fragments) accompanied by the energy
release of 172 (120 + 52) MeV. According to detector
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calibrations on the basis of known information about
22No spontaneous fission, the above energy release
corresponds to a fragment TKE of about 190 MeV. By
considering the signals that have been found previously
and which could be generated by alpha particles with
energies E, > 8 MeV at the same positions, we discov-
ered a chain of successive decays that is shown in
Fig. 10a. Upon the implantation of a heavy nucleus
(ER), with residual energy E, = 6.1 MeV and with a
corresponding signa in the TOF detector, an E,;, =
9.71 MeV dpha particle was emitted after a lapse of
30.4 s. After that, a second alpha particle, with energy
E,, = 8.67 MeV, was recorded 15.4 min later. A third
alpha particle was emitted after 1.6 min into the back-
ward hemisphere; having deposited an energy of
4.04 MeV in the frontal detector, it is absorbed in the
side detector with an energy release of 4.79 MeV (Ey; =
8.83 MeV). Findly, the aforementioned spontaneous-
fission event occurred 16.5 min later.

All fivesignas(ER, a,, a,, a, SF) liewithin aposi-
tion interval of 1.5 mm, whence it follows that the
observed decays are tightly correlated. The total time
interval from arrival of the implanted ion to the sponta-
neous-fission event is 34 min. The probability of ran-
dom coincidences mimicking such adecay at any point
of the detector working surface is below 0.6%. For the
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place where the decay event did actually occur (agiven
position window in a given strip), this probability is
much lower (about 10%).

The basic rule of apha decay—that which deter-
mines a relationship between the decay energy Q, and
the decay probability (corresponding half-life T,)—is
fulfilled for al links of the decay chains. For even—even
nuclei, Q, is directly related to the mass difference
between the parent and the daughter nucleus. Accord-
ing to the Geiger—Nutoll rule, the decay energy and
half-life then determine the atomic number of the par-
ent nucleus. In the calculations, it is possible to use the
Viola—Seaborg formula with constant coefficients [10]
that make it possible to describe data on the apha
decays of al known 58 even—even isotopes with Z > 82
and N > 126 for which the values of Q, and T, were
measured [10] (see Fig. 11). For odd nuclei, where
decays can proceed to low-lying states of the daughter
nucleus that are characterized by various spin—parity
values, additional selection rules that forbid some tran-
sitions may be operative, increasing T,, on average, by
a factor ranging between 3 and 10. Also, the expected
half-lives as estimated with allowance for these selec-
tion rules at the measured al pha-particle energiesin the
chain are displayed in Fig. 10 parenthetically.

For the observed alpha transitions, the values of
T,(Q,) are greater than those for all known alpha-parti-
cle emitters, whence we can conclude that we are deal -
ing here with the decay of a heavy nucleus. All events
are correlated in time and in position. They are due to
the alpha decay of the parent nucleus (E, = 9.71 MeV)
and end in spontaneous fission. It is precisely this sce-
nario that is expected for the decay of superheavy iso-
topes of the Z = 114 element.

On the basis of the decay features, we can conclude
that, under the conditions prevalent in the experiment
being discussed, the 22°114 isotope, which isformed in
the reaction channel involving the evaporation of three
neutrons, is the progenitor of the chain. The observed
event corresponds to a cross-section value of about 1 pb.

Of course, we cannot rule out the possibility that, in
so long a chain of successive decays, one alpha particle
has been lost. In this case, the spontaneous-fission
event observed at the end of the chain must be associ-
ated with the decay of a 2?3106 nucleus. If we assume
that the chain consists of five links (and not of four of
them, as was observed experimentally), the probability
of losing any alpha particle when the remaining four
arerecorded isabout 34%. The probability of losing the
first apha particle in the chain is about 8.5%. With the
probability of 91.5%, the first transition that is charac-
terized by the transition energy of E,, = 9.71 MeV and
which was observed t, = 30.4 s after theimplantationis
therefore associated with the decay of the parent
nucleus 291 14.

In the second experiment, which spanned the period
between June and October 1999, the total irradiation
dose was 1.0 x 10" ions. Yet two identical chains of
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successive a phadecays, each ending in a spontaneous-
fission event (see Fig. 10b), were observed here. Below,
we consider these chains individually.

Upon the implantation of aE, = 11.1 MeV nucleus
into strip no. 2, an E,;= 9.87 MeV apha particle was
recorded after a lapse of about 0.8 s. A second alpha
particle, with energy E,, = 9.21 MeV, was emitted
10.3 s later. Finally, spontaneous fission into two frag-
mentsthat deposited the energies of E;; = 156 MeV and
E;, = 65 MeV (E,, = 221 MeV) in the frontal and the
side detector, respectively, was observed after the next
14.3 s. According to data obtained asthe result of calibra
tions, the above values correspond to TKE ~ 235 MeV.
All four signals (ER, a,, a,, SF) fall within a position
interval of size 0.5 mm, afact that suggests atight cor-
relation between the decays being discussed.

In the second chain, an E,; = 9.80 MeV alpha parti-
cle was recorded 4.6 s after the implantation of a
7.8-MeV recoil nucleus into strip no. 8 (asin the first
case, the energy of the recoil nucleus and its time of
flight in the TOF detector are close to values expected
for evaporation products with Z = 114). A second alpha
particle, with energy E,, = 9.13 MeV, was emitted 18 s
later. Finally, spontaneous fission into two fragments
that deposited the energies of E;; = 171 MeV and E;, =
42 MeV (E,, = 213 MeV) in the frontal and the side
detector, respectively, was observed after alapse of the
next 7.4 s. That al four signds (ER, a,, a,, SF) were
recorded within apositioninterval of size 0.4 mm again
indicates that the observed decays are tightly corre-
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lated. Within the detector resolution of AE ~ 0.05 MeV
and the statistical uncertainty in the decay times, the
two eventsare consistent in all 11 parameters measured
experimentally. The probability of random signal coin-
cidencesthat could mimic recoil nuclei and their corre-
lated decays is estimated at less than 5 x 10713, The
probability of losing an alpha particle in the observed
decaysisless than 3%.

It should be noted that only two spontaneous-fission
events were recorded in this long-term experiment.
They are characterized by large energy depositions
from fission fragments and are preceded, in either case,
by identical chains of successive alphadecays. The pro-
jectile-ion energy measured at the instant when the
events in question are detected corresponds to exciting
a 2114 compound nucleus to energies E, of 36 to
37 MeV. The channel involving the evaporation of four
neutrons and leading to the formation of the 283114 iso-
topein the ground state is the most probable one at this
excitation energy. The parent nucleus 2%114 undergoes
alpha decay, the corresponding decay energy and half-

life being Q, = 9.98 + 0.05 MeV and T, = 1.975; s.

It should be recalled that, in the alpha decay of
even—even nuclei, the atomic number of the initial
nucleus can be determined to ahigh precision. By using
the dependence T,(Q,) presented in Fig. 11, it can be
found from the measured values that it is the Z =

114.43‘86 nucleus that decays. Its daughter product, a

new evern—even isotope of the Z = 112 element (A =
284), undergoes a pha decay, the decay energy and the
half-life being, respectively, Q, =9.30 + 0.05 MeV and

T, = 9.872%° s. From the relationship between T, and

Q. the atomic number of this daughter product can be
+15

estimated at Z = 110.2 ;5. Finally, the granddaughter

nucleus 28°110 undergoes spontaneous decay, the corre-
+13.7

sponding half-life being Tgz = 7.5,5 s. For ether of

the two events, the energy deposited by the fragments
in the detectors (E,, = 217 MeV) is 40 MeV greater
than the value obtained for the known spontaneously
fissile nucleus 2°?No (Z = 102). Although the distribu-
tions of the fragment TKE are rather broad, the above
value also suggests that the granddaughter decay prod-
ucts in the chain are due to the fission of a sufficiently
heavy nucleus (Z > 106).

According to the calculations presented in [36], the
288114 (N = 174) nucleus is expected to undergo alpha
decay rather than spontaneous fission since T, = 0.14 s
(Qq =10.3 MeV), while Tg = 35 min. The correspond-
ing partial half-lives of the daughter nucleus 24112
(N= 172) are commensurate (T, = 1.1's, Tz = 4 9);
therefore, it could suffer either alpha decay or sponta-
neous fission with comparable probabilities. However,
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granddaughter nuclei 22°110 (N = 170) should decay via
spontaneous fission into two fragments (Tge/T, ~ 0.1).

The observed chain reproduces entirely the pre-
dicted decay scenario. The decay properties of the
neighboring odd isotope 2114 comply well with the
aforementioned radioactive properties of the even—even
nucleus 2%114. As might have been expected, an
increase in the half-lives T, and T is observed for the
former owing to the presence of an extraodd neutronin
the nucleus.

13. EXPERIMENTS WITH #2Pu TARGETS

If the identification of the superheavy nuclel
obtained in the previous experiments with 2**U and
244pu targetsis valid, we can easily predict the proper-
ties of yet another isotope, 227114 (N = 173). It must
undergo predominantly alpha decay into the daughter
nucleus 23112, which was previously observed among
the products of ¥Ca + 2*¥U interactions. In the case
being considered, we could expect a short decay chain
(0—SF) involving apha decay characterized by a half-
life of afew seconds and followed by spontaneous fis-
sion, whose half-life is much longer in the present case
(aminute or afew minutes). Thisisotope of theZ=114
element can be synthesized in the channel of “¥Ca +
2422Py interactions that involves the evaporation of three
neutrons.

The implementation of the experiment conducted in
March and April 1999 [45] was nearly identical to that
described above in discussing the synthesis of the
283112 isotope in “8Ca + 238U interactions.

A rotating target that was made from 2*?Pu and
which had a thickness of about 0.2 mg/cm? was
exposed to abeam of 235-MeV “8Caions; thetotal irra-
diation dose was 7.5 x 10'® ions. The most probable
channel of deexcitation of the compound nucleus
290114 (E, = 33.5 MeV) involves the emission of three
neutrons and must lead to the formation of the even—
odd isotope 27114 (N = 173).

Four events of spontaneous fission were observed in
this experiment.

In two cases, spontaneous-fission fragments depos-
iting the energies of E,,, = 144 and 175 MeV in the
detector assembly were recorded 59 and 20 pis after the
implantation of recoil atoms into corresponding posi-
tion windows. These events are associated with the
decays of spontaneously fissile isomeric nuclei 4™ Py
(Tgr = 24 ps) formed upon the gjection of one neutron
from the target nucleus >**Pu. Coincident signals from
the two fragments were observed for the remaining two
events with the energy depositions of E;; = 130 MeV
and E;, = 65 MeV (E,, = 195 MeV) in the frontal and
the side detector, respectively, in one event and the total
energy deposition of E;; + E;, = 165 MeV in the other
event.
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Fig. 12. Chains of successive decays occurring in “8Ca + >#?Pu interactions.

Searches for alpha decays preceding spontaneous
fission resulted in the discovery of two chains shownin
Fig. 12.

In one of the chains, only one apha particle (E, =
10.29 MeV) was recorded by the frontal detector 1.32 s
after the implantation of a heavy recoil atom with
energy E, = 10 MeV. The spontaneous-fission event
was observed 559.6 slater. All threesignals (ER, a, SF)
fal within the position interval of size 0.82 mm,
whence we conclude that the observed decays are cor-
related.

In the second case, spontaneous fission was
observed 243 s after the detection of the E, = 13.5 MeV
recoil nucleus. Within thisinterval, the frontal detector
recorded only part of the energy (E,; = 2.31 MeV) of
the alpha particle emitted into the backward hemi-
sphere (open window) after a lapse of 14.4 s from the
implantation of therecoil nucleus. That all three signals
(ER, a, SF) fall within the position interval of size
1.0 mm again evinces the correlation of the observed
decays. The probability that both events are due to a
random coincidence of signals that mimic the decay
cha ns(%R, a, SF) inthe above positionintervalsisless
than 10-°.

In either event, the parent nucleus undergoes apha
decay. It should be noted that, for these events, thetime
intervals corresponding to alpha-particle emission dif-
fer by a factor of about 10. At such low statistics of
events, this comes as no surprise. Since the alpha-parti-
cle energy is not defined in the second case and since
the daughter nuclei possess identical properties, we
have to assume that, in the two cases, alpha decay pro-
ceeds from the same state of the parent nucleus. Its
half-life as determined on the basis of the two casesin

question is T, = 5.5°° s. The daughter nuclei undergo
spontaneous fission. Their decay propertiesare closeto
those observed previoudly in 4Ca + 2*%U interactions.

All four spontaneous-fission events recorded in the two
experiments are described, within the statistical uncer-

tainties, by the same half-life of Tg = 3.0ﬁf‘§ min and

are associated with the decay of the same nucleus. In
#Ca + 23U interactions, this nuclide is formed as the
evaporation product in the 3n channel, whereas, in
“Ca + *Pu interactions, it appears as the daughter
product of the alpha decay of the parent nucleus 27114
(E, = 10.29 MeV).

The cross section for the production of the new iso-
tope of the Z = 114 element is about 2 pb. Its half-lifeis
less than that of the heavier isotope %114 formed in
4Ca + 2*Pu interactions, and the chain of the decays
that follow it is shorter for the former than that for the
latter (Fig. 10a). In accordance with theoretical predic-
tions, such a trend is expected as the number of neu-
tronsis decreased—that is, as the nuclear species being
studied recedes from the N = 184 closed shell.

14. COMPARISON WITH THEORETICAL
PREDICTIONS

Unfortunately, many calculations have not gone
beyond searches for the region of the highest stability
of superheavy nuclides, paying no attention to a deter-
mination of the properties of nuclei that populate this
region. Therefore, we consider only those few cases
where it is possible to draw a direct comparison with
experimental data.

The most consistent quantitative treatment of the
properties of superheavy nuclides was given within the
macroscopic—microscopic model. The properties of
even—even nuclei—in particular, their masses and the
alpha-decay and spontaneous-fission energies and
probabilities—were cal culated by Smolanczuk [10], as
well as by the authors of earlier studies (see, for exam-
ple, [9]). Mdller et al. [46] obtained data on the alpha
decay properties of odd nuclei, but they did not calcu-
late the partial half-lives with respect to spontaneous
fission.

First of all, we note that the heaviest isotopes of Z =
110, 112, and 114 elements from reactions induced by
48Ca projectiles undergo alphadecays. In thisregion of
nuclei, spontaneous fission is observed only for
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(N = 2Z) <61. For the even—odd nuclei 277108 (N = 169)
and 283112 (N = 171), the half-lives with respect to
spontaneous fission proved to be, respectively, five and
three orders of magnitude larger than the values pre-
dicted for the neighboring even—even isotopes. These
distinctions may be due to the presence of an odd neu-
tron, which reduces significantly the probability of the
spontaneous fission of a heavy nucleus. For the even—
even nucleus 28110 (N = 170), the experimental value
(Tsg ~ 10 ) isaso approximately three orders of mag-
nitude larger than the value cal culated in [36]. Although
the calculations of the probability of spontaneous fis-
sion, which is associated with tunneling through a
potential barrier, involves considerable uncertainties,
the above distinctions may suggest a greater contribu-
tion of the shell structure to the deformation energy of
the nucleus.

Some conclusions can be drawn from an analysis of
the ground-state properties of superheavy nuclei.

For all known nuclides with Z = 100 and N > 148,
Fig. 13 displays the experimental values of the alpha
decay energy. The Q, values calculated for all even—
even isotopes of these elements on the basis of the mac-
roscopic—microscopic model [9, 10] are shown in the
same figure. Obviously, the experimental data reflect
well the changesin Q,(N) that are expected in the the-
ory for various values of N and Z, including the region
of superheavy elements, where a transition from
deformed to spherical shells is predicted. Quantita-
tively, a small distinction of AQ, < 0.2 MeV between
the calculated and experimental values is observed for
nuclel in the transition region between the N = 152 and
N = 162 deformed neutron shells. When we go over to
the spherical shell in theregion N = 170-175, this dis-
tinction increasesto AQ, < 0.5 MeV. It should be noted,
however, that most of experimental data refers to the
decay of even—odd nuclei, for which the calculations
take no account of the structure of low-lying states;
moreover, the presence of an odd neutron in a nucleus
can hinder alpha decay, as was indicated above. For the
heaviest nuclides, the measured values of the decay
energy Q, and of the half-lives T, proved to be lessand
greater, respectively, than the values predicted by the
calculations from [9, 10]. The calculations performed
by Moller et al. [46] yield deviations in the opposite
direction: the computed values of Q, are less than the
measured values by about 0.7 MeV; asaresult, the pre-
dicted stability of these nuclidesisthree orders of mag-
nitude higher than that which follows from experimen-
tal data.

The calculations of Cwiok, Nazarewicz, and Heenen
[48], who relied on the Hartree-Fock—Bogolyu-
bov method, choosing specific forces of interparticle
interactions, were performed for the heavy nuclide
289114 produced in ¥Ca + 2*Pu interactions. In this
approach, which can a so be extended to other nuclei, it
is possible to calculate the ground and low-lying
excited states of both even and odd nuclei. This permits

PHYSICS OF ATOMIC NUCLEI  Vol. 63

No. 8 2000

1333

Decay energy O, MeV

|
| |
| |
| |
& |
8¢ |
b »102 i 106
L% 04100
Rete N=162
7 1 A ) 1 1 1 1 1
148 156 164 172

Number of neutrons

Fig. 13. Experimental values of alpha-decay energies for
Z = 100-114 isotopes involving various numbers of neu-
trons. Solid lines depict Q,, values computed on the basis of
the macroscopic—microscopic model [9, 10]. Points repre-
sent datafor (closed boxes) isotopesof theZ =110, 112, and
114 elements from reactions induced by *3Ca ions and
(open circles) 8%Kr + 298pb interactions [47]. Dashed lines
connecting experimental points are drawn to guide the eye.

determining the most probable transitions and the cor-
responding Q, values for the entire chain of successive
decays. Fairly good agreement between the results of the
calculations and experimental data (AQ, < 0.25 MeV)
for the 2#°114-%5112-?%'110 chain (Fig. 10a) seems
astonishing at first glance, since the closed proton shell
correspondsto Z = 126 in the model being discussed.

For heavy nuclel, the apha-decay energies calcu-
lated recently by Bender [49] on the basis of the relativ-
istic self-consi stent-mean-field model, which takesinto
account spin—orbit interaction more precisely (accord-
ing to the opinion of this author), are displayed in
Fig. 14. These results are in excellent agreement with
experimental values of Q, for the 28811484112 chain of
even—even nuclel. For the chain of successive decays of
the even—odd nucleus2#114 (**114-2%5112-21110), the
calculated values of Q, differ from the experimental
values by AQ, < 0.3 MeV. From the spectra of single-
particle proton and neutron levels and from the calcu-
lated quadrupole and hexadecapole moments of even—
even nuclel, it follows that the small values of Q, and
the corresponding large half-lives of the isotopes of the
Z =114 element that are produced in *8Ca + 2*Pu inter-
actions are due to the formation of local deformed sub-
shellswith Z=114 and N = 174. This does not rule out,
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Fig. 14. Alpha-decay energies for Z = 96-116 isotopes con-
taining various humbers of neutrons. In the upper panel,
open circles connected by solid lines represent the Q, val-
ues computed for even—even nuclides within the relativistic
self-consi stent-mean-field approximation, while closed dia-
monds connected by dashed lines correspond to experimen-
tal values. The lower panel displays the (open circles) com-
puted and (closed diamonds) experimental values for the
chains of decays of the even-odd nuclides 277112 and
114.

however, the existence of spherical shellsin nuclei with
a higher neutron excess.

Inall probability, the uncertaintiesin the predictions
of various theoretical models are explained by the fact
that the heaviest isotopes with Z = 108-114 that were
obtained in the experiments of our group are still at the
outliers of the stability island that are far off its top.

Unfortunately, the possibilities for advancements
into theregion of still heavier isotopeswithZ> 114 and
N> 175 are very limited. The N = 176, 177 isotopes of
the Z = 116 element can in principle be synthesized in

OGANESSIAN

the fusion reaction induced by “Ca + >**Cm interac-
tions. A further increase in the number of neutrons can
be achieved by using beams of radioactive nuclei. This
way isbeing presently discussed in connection with the
creation of factories of such beams at some large accel-
erator centers.

15. CONCLUSION AND OUTLOOK

Experiments aimed at producing isotopes of the Z =
108-114 elements in reactions induced by “*Ca ions
have been surveyed. That superheavy nuclides synthe-
sized in thisway proved to be comparatively long-lived
opens the possibilities for studying the chemical prop-
erties of these elements. The problem of determining
the extent to which they are homol ogs of the heavy met-
alsfrom the Os—Pb series and the problem of assessing
the extent to which their chemical properties are influ-
enced by the relativistic effect of the electron shells of
aheavy atom are among key problems of contemporary
chemistry. It should be noted that even—odd and odd—
odd i sotopes that can be obtained in reactions on 2*’Np,
23 Am, and 2#Bk targets may prove to be still more
long-lived.

Yet another question that remains open at present is
associated with a determination of the proton shell and,
hence, with a determination of the half-life of the most
unstable nucleus.

On the basis of macroscopic—microscopic calcula-
tions, the beta-stable N = 182 isotope of theZ=110€ele-
ment is expected to have the longest half-life among all
even—even nuclides, its half-life with respect to apha
decay being T, ~ 10? yr. For the neighboring even—odd
or odd-odd nuclei, the analogous quantity can be
greater: T, ~ 10°~10* yr. At the same time, all experi-
mental values of Q, that were obtained for the isotopes
of the Z = 114 element and for their daughter nuclei are
somewhat less than the corresponding calculated val-
ues. Possibly, this can be explained by a stronger stabi-
lizing effect of the N = 184 neutron shell even when it
is offset by 9-14 atomic masses. The haf-life of the
superstable nucleus can then be much greater than 10% yr.

Since advancements to the region N > 175 present
considerable difficulties, we can step backward to
study the properties of nuclei containing a smaller
number of neutrons, thereby filling the region of neu-
tron-deficient superheavy nuclei. This attempt has
recently been made in the study of Ninovaet al. [47],
who used, for this purpose, the cold-fusion reaction
induced by #Kr + 2%8Pb interactions; data from those
experiments are also presented in Fig. 13. In reactions
induced by “¥Ca projectiles, the aforementioned neu-
tron-deficient isotopes can be synthesized by irradiat-
ing targets from lighter uranium and plutonium iso-
topes within the experimental setting described above.
By correcting the parameters of the calculations, it
would be possible to improve the accuracy of theoret-
ical predictions.
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If the half-lives of some superheavy elements
prove to be longer than 108 yr, it will be impossible to
rule out their existence in nature. Skipping the discus-
sion on the mechanism of the formation of superheavy
elements in the nucleosynthesis process for the time
being—this is a separate problem of interest in
itself—we can consider various versions of such
investigations.

Experiments that were conducted by Flerov and his
colleagues between 1978 and 1988 and which were
aimed at searches for spontaneously fissile nuclei in
natural samples potentialy containing the eka-plati-
num—eka-bismuth isotopes (Z = 110) only yielded
upper limits on their concentrations at alevel of 10-14-
10712 g/g (at T, ~ 10% yr) [50]. According to modern
concepts, it is more probable that the atomic numbers
of the nuclides showing the highest stability do not
exceed 110. The choice of experimental strategies and
especially the problem of producing enriched samples
depends directly on the determination of the chemical
properties of superheavy elements.

The above lines of investigations into superheavy
nuclides do not exhaust the possibilities for the devel-
opment of work in these realms. They will obviously
become more clear-cut side by side with the accumula:
tion of information in this till poorly explored field of
physics.
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Abstract—Interference effects in the angular distributions of products originating from binary and ternary
nuclear fission induced by slow neutrons are reviewed. © 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Investigation of fission processes, which differ sub-
stantialy from other nuclear reactions, sometimes fur-
nishes surprising results. That the angular distributions
of products originating from nuclear-fission processes
induced by photons and fast neutrons proved to be
anisotropic was among the first surprises. This phe-
nomenon, which was discovered in the early 1950s,
could not be explained within the liquid-drop model of
nuclear fission. A satisfactory description of experi-
mental angular distributions was proposed by Strutin-
sky [1], whorelied on A. Bohr’s hypothesis[2] on tran-
sition quasistationary states of a cold severely
deformed nucleus at the saddle point. These states are
characterized by the quantum numbers I, K, and T,
where | is the total angular momentum of the nucleus,
K isits projection onto the axis of nuclear deformation,
and Ttis the parity of a given state. If the total angular
momentum of the nucleus is oriented with respect to
some quantization axis (in the fission of nonoriented
nuclei that isinduced by fast particles, the latter intro-
duce their orbital angular momentum in the target
nucleus, thereby orienting the nucleus with respect to
their momentum), the deformation axis, which coin-
cides with the axis of the emission of the would-be fis-
sion fragments, is also oriented with respect to the
guantization axis, a specific shape of anisotropy being
dependent here on the transition state (fission channel)
through which the fission process proceeds. Of course,
this scheme is substantially simplified. In fact, several
fission channels are open completely or partly at virtu-
aly any energy inducing the fission process, so that the
angular distributions of fission products have a rather
complicated shape. It is common practice to character-
ize the angular distributions in question by a quantity
that is defined as the ratio of the emission probabilities
at angles of 0° and 90° with respect to the quantization
axisand which isreferred to asthe degree of anisotropy
(or merely anisotropy). Generally, the coincidence of
anisotropies does not imply similarity of the corre-
sponding angular distributions. This was demonstrated
compellingly in [3], where a strong dependence of the
angular distributions of fission fragments on their

masses was revealed in subbarrier uranium fission
induced by 1-MeV neutrons.

Considerable advances in describing the angular
distributions of fragments originating from resonance-
neutron-induced fission of oriented nuclei were
recently made by Furman et al. [4], who relied on the
microscopic theory of Barabanov and Furman and who
were able to perform a channel analysis of 2°U fission
in the neutron-energy range from 0.025 to 20 eV. How-
ever, asatisfactory fit to data on the anisotropy and par-
tial spin cross sections required invoking 24 adjustable
parameters. Among other things, it was established in
[4]—and the authors of that study deem that thisis an
important conclusion—that, in describing the fine
structure of the energy dependence of the anisotropy
factor, the interference contribution of thel =J = 1/2
states proves to be sizable.

2. P-ODD CORRELATIONS IN BINARY FISSION

Intensive searches for the admixture of weak inter-
nucleon potential in nuclear forces were performed in
the late 1950s and the early 1960s. In this connection,
Vladimirsky and Andreev [6] proposed investigating a
P-odd correlation in the spontaneous fission of polar-
ized nuclel. They assumed that, owing to nucleons with
high angular momenta, the nucleus on the verge of fis-
sion has a mirror-asymmetric (pearlike) deformation
[7]; because of parity nonconservation, the momentum
of either thelight or the heavy fragment can be oriented
along the spin of the fissile nucleus. That article stimu-
lated experiments aimed at seeking and studying the
following P-odd correlation in 233U fission induced by
polarized thermal neutrons:

W(B) = const {1+aS[P) — 1+acosb. (1)

Here, S is a unit vector along the polarization of the
neutrons, P is a unit vector along the momentum of
thelight fragment, 6 isthe angle between the above two
unit vectors, and a isthe correlation coefficient. By that
time, Abov et al. [8] had already observed a P-odd cor-
relation in the radiative capture of polarized thermal
neutronsby ''3Cd nucle. In view of the degree of parity
nonconservation in the compound nucleus >°U, a still

1063-7788/00/6308-1337$20.00 © 2000 MAIK “Nauka/Interperiodica’



1338

greater effect was therefore expected in the fission pro-
cess, provided that there was no suppression factor (for
example, abarrier factor [6]) in this process.

Indeed, the effect was discovered [9]. The correla-
tion coefficient a proved to be on the same order of
magnitude as that in the radiative capture of polarized
thermal neutrons [8, 10]. Before long, similar P-odd-
correlation effects were discovered in the fission of
29%Pu [11] and 23U [12] nuclei. Thus, it turned out that
the group of light (or heavy) fragments, which consists
of many various nuclei formed in variousfina states of
the fission process (the number of such states is esti-
mated to be on the order of 10%), behavesin the angular
correlations like photons of a certain nuclear transition.
According to the theory of angular correlations, the
coefficient a includes a factor whose sign and magni-
tude depends on the quantum numbers of theinitial and
the final state and on the characteristics of the particle
itself. In applying this theory to the fission process,
where it is necessary to perform summeation over all
final states, it is natural to expect a statistical suppres-

sion of the effect by a factor on order of ,/10°. The
observed effects could be explained within the unreal-
istic assumption of a 100% parity violation in the fis-
sion process, as this occurs in weak interaction. Upon
statistical leveling, effects on the order of 10 could
then be reved ed.

However, an investigation of the neutron-energy
dependence of the correlation coefficient in 23°Pu fis-
sion showed [13] that, in the neutron-energy interval as
narrow as 0.3 eV, the correlation coefficient changed
nearly by afactor of 3. It isclear that so sharp a depen-
dence of the effect on the neutron energy can result
only from the weak-interaction-induced mixing of
opposite-parity levelsin compound nuclei.

Theangular asymmetry (1) arises owing to theinter-
ference of orbital angular momenta that have opposite
parities (in the case of electromagnetic transitions, it is
the interference of electric and magnetic multipoles of
the same order). This brings about the natural question
of how a parity-mixed compound state can lead to the
interference of orbital angular momenta of fragments
characterized by opposite parities. The answer was pro-
vided by Sushkov and Flambaum [14]. In Bohr’s con-
cept of transition states in a severely deformed cold
nucleus, they replaced the wave function of a symmet-
ric dumbbell by the wave functions of a mirror-asym-
metric nucleus (pearlike shape). Therotational levels of
such a nucleus are parity-split into doublets, the intrin-
sic nuclear wave functionsin the split states being iden-
tical—the only difference is that the nucleus rotates in
opposite directions in the doublet components. As a
result, the transitions from opposite-parity states into
the same final state proceed with equal amplitudes, but
the orbital angular momenta of the fragments differ by
unity. It is the interference of these amplitudes that
leads to the angular asymmetry (1).
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3. P-EVEN ANGULAR CORRELATIONS
IN BINARY FISSION

Obviousdly, the above semiclassical mechanism of
the interference between the orbital angular momenta
of the fragmentsis applicabl e to the case where the par-
ity-mixed states of a compound nucleus are formed as
theresult of theinterference of sand p wavesin neutron
capture. Sushkov and Flambaum considered such cor-
relations as well. In the capture of slow polarized neu-
trons by unpolarized nuclel, the interference of sand p
wavesin the input channel generates the following cor-
relation in the output channel:

b(P, [P ccosd

W = constEEl+
U j=1232

()
. O
—Pie E[anS]BjS'nq))%

Here, b is a coefficient dependent on the quantum num-
bers of the levels of the compound nucleus that are
involved in the interference, on their energies, on the
partial neutron and fission widths, on the full widths, on
the K value and the spin of the target nucleus, and on
the neutron energy; P, is a unit vector in the neutron-
momentum direction; ¢ is the relative phase of the
amplitudes of the fission processes occurring from the
opposite-parity states, and B; = 1 for j = 1/2 and 3; =
=1/2 for j = 3/2. A similar correlation can arise in any
other reaction of thea+ A — B + b type.

Thefirst term in the summand on the right-hand side
of (2) isthe forward—-backward asymmetry in the angu-
lar distribution of thelight fragmentswith respect to the
neutron momentum, while the second term is the left—
right asymmetry with respect to the plane spanned by
the vectors S and P,

The effect of theleft—right asymmetry in the angular
distribution of particle b with respect to the plane
spanned by the vector of the polarization of particle a
and the vector of its momentum is well known in
nuclear physics. Eveninthefirst experimentsthat stud-
ied parity violation [8-12], special test measurements
of angular correlations of the type (2) were performed
to verify that the observed asymmetry is not an instru-
mental effect determined by such a correlation that is
associated with an insufficiently precise symmetry of
the facility used. Later on, specia experiments per-
formed by a group headed by L obashev revealed |eft—
right asymmetry in the angular distribution of the light
fragments originating from 23U and 2*Pu fission
induced by polarized thermal neutrons[15]. The asym-
metry coefficients proved to be on the order 10#(2to 3
units). According to the theoretical estimatesfrom [14],
the coefficient b is expected to be about kR, a quantity
equal to 3 x 10 for thermal neutrons. Thus, the excel-
lent agreement between the theory and the data vali-
dates the Sushkov—Flambaum model. The first mea-
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surement of the forward—backward asymmetry was
reported in [16].

For the case where only two levels of opposite pari-
tiesare mixed (two-level approximation), Bunakov and
Gudkov [17] explicitly obtained the coefficients for the
P-even and P-odd correlations as functions of the neu-
tron energy. A globa analysis of data on the energy
dependences of the P-odd asymmetry, the left—right
asymmetry, and the forward—backward asymmetry
makes it possible, in principle, to determine the
unknown parameters of participant resonances and the
effective matrix element of the weak nucleon—nucleon
interaction in the nucleus.

It isworth noting that the forward—backward asym-
metry can of course appear in a nuclear-fission pro-
cesses (or any other 2 —= 2 reaction) not only neces-
sarily induced by thermal neutrons. Attempts at observ-
ing this effect (which distinguishes light and heavy
fragments, because the coefficients for them must be of
opposite signs) in the fission process induced by fast
neutrons have been made since the early days of fission
physics [18], but they have been futile. This comes as
no surprise, because an almost complete set of partial
waves interferes in the fission process induced by fast
neutrons—the averaging of the effect over alarge num-
ber of resonances with various spinsin the input chan-
nel is expected to smooth it out for statistical reasons.

4. P-ODD ANGULAR CORRELATIONS
IN TERNARY FISSION

By ternary nuclear fission, physicists do not usually
imply true fission into three fragments of close masses.
According to common consensus, it is a process where
disintegration into two fragments is accompanied by
the emission of a light charged particle. In 90% of
cases, thisisalong-range a phaparticle, whose angul ar
distribution (Gaussian distribution with a mean angle
of 82° with respect to the light-fragment momentum)
suggests that it was produced in between the two frag-
ments. The relative probability of ternary fission is
about 0.2%. There are many models describing ternary
fission, but none of these relates this process to the
properties of fission channels—within these models, it
is assumed that apha-particle emission occurs only at
the stage of scission of the neck connecting the two
would-be fragments. On thisbasis, it may seem that the
Sushkov—Flambaum mechanism governing the forma-
tion of the angular distributions of fragments has noth-
ing to do with the angular distributions of alpha parti-
cles from ternary fission. Indeed, measurements of the
P-o0dd asymmetry in the emission of fragments of 23U
and >*°Pu ternary fission induced by cold polarized neu-
trons (see [19] and [20], respectively) showed no dis-
tinctions between the correlation coefficients (1) for
ternary and binary fission processes. At the same time,
measurement of the P-odd asymmetry in the angular
distributions of apha particles from ternary fission
revealed [21] that such asymmetry, if any, isafew times
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less than that for the fragments. Since alpha particles
are emitted predominantly in the direction of the light-
fragment momentum (Coulomb-focusing effect), their
angular distribution is expected to feature pseudo-P-
odd asymmetry, which iskinematically related to the P-
odd asymmetry of the fragments. Obviously, thisasym-
metry must be less than the asymmetry of fragment
emission by a factor of (cos 82°)~!. The experimental
accuracy is still insufficient for observing this effect.

5. P-EVEN ANGULAR CORRELATION
IN TERNARY FISSION

Quite recently, a search experiment that employed a
beam of cold polarized neutrons from the high-flux
reactor installed at ILL (Grenoble) revealed a P-even,
T-odd angular correlation in the ternary fission of the
233U nucleus:

W = const {1+ DSP g *xP,]). 3)

Here, D is a correlation coefficient, while P, is a unit
vector along the direction of the alpha-particle momen-
tum. The measured value of the correlation coefficient
iS(2.34 £ 0.07) x 107 [22]. It is clear that the experi-
ment has detected |eft—right asymmetry in the angular
distribution of apha particles with respect to the plane
spanned by the vectors S and P, . The theory predicts
the emergence of such a correlation owing to final-state
interaction—for example, in the decay of a polarized
neutron or in the reaction (n, y,y,) with the detection of
photons belonging to a specific cascade that accompa-
nies the decay of a polarized compound nucleus. In the
case of a correlation in ternary fission, however, the
correlation coefficient must be summed over al final
states; if there were no mechanism prohibiting the
aternation of the signs of the correlation coefficients
for various final states, the total correlation would van-
ish for statistical reasons. The data show that thisis not
the case, and this is a new challenge presented by the
fission phenomenon.

6. CONCLUSION

The standard theory of angular correlations [23] has
failed to describe the angular correlation of nuclear-fis-
sion fragments that is summed over many final states—
it is next to impossible to isolate experimentally an
individual final state. Bohr’sideathat there exist afew
transition states at the top of the fission barrier that gov-
ern angular correlations appeared to be seminal. This
idea was put forth more than forty years ago, but noth-
ing radicaly new has been invented since that time.
Presently, the Bohr—Strutinsky—Sushkov—Flambaum
(BSSF) mechanism makes it possible to reproduce
almost the entire body of available data on angular cor-
relations in binary fission. Since there must be no con-
tradictions with quantum mechanics, it is mandatory to
assume that the BSSF model determines, via some as-
yet-unknown mechanism, the quantum numbers of all
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final states of binary fission in such away that the cor-
relation coefficients prove to be of the same sign for al
final states of the fragments. As to ternary fission, this
process is much more involved than binary fission.
Therefore, it is very unlikely that existing theoretical
approaches (having to deal with the three-body prob-
lem in this case) could clarify, in the near future, the
nature of the emergence and “survival” of three-vector
correlationsin ternary fission.
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Abstract—The current situation in experiments studying double-beta decay is surveyed. The amount of exper-
imental information about the two-neutrino mode of the 7proce&s has grown consi derabI%/ over the last decade.
The two-neutrino double-beta decay of ten nuclei (**Ca, 7°Ge, 32Se, %Zr, 1Mo, '16Cd, '*8Te, 130Te, 15°Nd, and
2381)) was observed in direct and geochemical experiments. However, the main fundamental question—that of
neutrinol ess doubl e-beta decay, which has not yet been recorded, although the sensitivity of present-day facil-
ities featuring germanium detectorsis higher than 10%° yr—remains open. The constraint on the effective Majo-
ranamass on the basis of these resultsis [,k (0.4—1.1) eV. Further advancementsin searchesfor neutrinoless
double-beta decays must rely on developing fundamentally new experimental facilities, since the potential of
those that already exist has been exhausted to a considerable extent. © 2000 MAIK * Nauka/Interperiodica” .

1. INTRODUCTION

More than ten years ago, a group from the Univer-
sity of Californiaat Irvine announced [1] adirect obser-
vation of two-neutrino double-beta decay—a process
where the charge of the decaying nucleus increases by
two units asthe result of a simultaneous transformation
of two neutrons into two protons that is accompanied
by the emission of two electrons and two electron
antineutrinos (232v decay),

A(Z,N) — A(Z+2,N=2)+2e +2U. (1)

By using an ionization chamber that operated in a
magnetic field and which made it possible to observe
and measure the main features of the tracks of two elec-
trons emitted simultaneously from one point of a thin
solid target [so-called time-projection chamber
(TPC)—see Fig. 1], those authors recorded the double-

beta decay process #Se — 3Kr + 2e” + 2V [1]. The
resulting half-life of T,, = 1.1 x 10 yr proved to be in
good agreement with the value of T, = 1.4 x 10% yr
obtained previously [2] from an analysis of the relative

abundances of Kr isotopes in selenium-containing ores
(geochemical method).

In 1990, ajoint group of researchers from the Insti-
tute of Theoretical and Experimental Physics (ITEP,
Moscow) and Yerevan Physics Institute (Y ERPHI, Yere-
van) discovered the two-neutrino double-beta decay of
76Ge nuclei and found that the corresponding half-life
isT;, =1 x 10" yr [3]. That experiment employed an
apparatus that was based on semiconductor detectors
from enriched germanium and which was devel oped at
ITEP for the first time ever (see Fig. 2) [4]. The sensi-
tivity of the detector was improved in this way by two
orders of magnitude, and this made it possible to
observe the rarest radioactive decay discovered in
direct measurements.

The possibility of two-neutrino double-beta decay
was substantiated by Goppert-Mayer as far back as the
mid-1930s [5]. From the outset, it was clear that the
probability of this process is extremely low (GOppert-
Mayer estimated the relevant half-lifeat T, = 10'7 yr).
According to modern concepts, the decay process in
guestion is described in the second order of the Stan-
dard Model of weak interactions, so that the expected
values of the relevant half-lives are not less than 10'° or
10%° yr. Therefore, it comes as no surprise that its dis-
covery required many years of effort from experimental
physicists (the first attempt at detecting double-beta
decay was made in 1948 [6]).

Were it not for two additional circumstances, the
predictions made in [5] could have remained without
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Fig. 1. Facility of the group from the University of Califor-
niaat Irvine [1].
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Fig. 2. Facility of the ITEP-Y ERPHI group.

experimental support so far. In 1939, Furry indicated
[7] that, if the neutrino is a Mgjorana particle (its anti-
particle is identical to the particle itself), double-beta
decay can occur without neutrino emission:

A(Z,N) —~ A(Z+2,N-2) +2¢. )
In this neutrinoless mode, double-beta decay can be
visualized as a two-step process: the first neutron that
has decayed in a nucleus emits a neutrino, which is
absorbed by the second neutron, transforming thereby
into a proton. The neutrino here appears to be a virtual
particle—only two electrons are produced in the final
state; the probability of such a reaction exceeds the
probability of reaction (1) by six to seven orders of
magnitude.

Experiments did not confirm the above possibility.
Thefirst piece of evidence that '3°Te may undergo dou-
ble-beta decay was obtained from an anaysis of
geochemical data [8], but the corresponding half-life
proved to be as great as T,, = 1.4 x 10°! yr. Investiga-
tions along these lines gained additional momentum
upon the discovery of maximal parity violationinweak
decays[9]. It became clear that the small probability of
neutrinoless double-beta decay may be explained by
the opposite helicities of the emitted and the absorbed
neutrino (aright-handed and a left-handed one, respec-
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tively). The discovery of such a process and an inquiry
into it would provide physicists with a unique possibil-
ity for going beyond the Standard Model of wesak inter-
actions. Somewhat later, the hypothesis was put forth
[10, 11] that neutrinoless double-beta decay may pro-
ceed via yet another mode, that involving a neutral
boson (Mgjoron),

A(Z,N) — A(Z+2,N=2)+2e +x°. (3)

The discovery of neutrinoless double-beta decay
would imply violation of thelaw of lepton-number con-
servation. This would require that the neutrino be a
M ajorana particle, have anonzero rest mass, and possi-
bly feature some amount of interaction via right-
handed currents. The decay mode involving Majoron
emission does not conserve the lepton charge, nor does
it respect global (B — L) symmetry (conservation of the
difference of the numbers of baryons and leptons).

The possibility of estimating the rest mass of the
neutrino as a candidate for particles constituting a sig-
nificant part of dark matter in the Universe gave a
strong incentive to searches for neutrinoless double-
beta decay.

From this point on, investigations into double-beta
decay—and above all, searches for its neutrinoless
mode—have been considered as a potential source of
unigue physical information. Despite this, virtually no
evidence that double-beta decay does indeed occur was
obtained beyond geochemical measurements over the
following 30 years. Apart from experiments with the
aforementioned isotopes *2Se and '*°Te, which were
subjected to measurements many times [12], the detec-
tion of the double-betadecay of 'Te[13-16] isworthy
of notein thisrespect. However, the only positive result
from direct measurements with #Se [17] wasin aglar-
ing contradiction with ageochemical analysis: the half-
life of about 10" yr found in [17] differed by morethan
one order of magnitude from the result presented in [2]
(Tl/z = 14 X 1020 yl’)

The situation has been changing rapidly since the
appearance of the studies reported in [1, 3]. Over a
short period of time, direct experiments were able to
detect the two-neutrino double-beta decay of **Ca [18],
100Mo [19, 20], '°Cd [21], PONd [22, 23], and >**U [24]
(the last isotope was singled out by the radiochemical
method). The double-beta decay of *°Zr was discovered
by the geochemical method [25] and was then con-
firmed by laboratory measurements[26]. Barabash et al.
[27] reported on the observation of the two-neutrino
double-beta decay of 1Mo into an excited state of the
final nucleus '"Ru. Repeated measurements were per-
formed with 75Ge [28-30], #2Se [31], Mo [32, 33],
and '16Cd [34]. Presently, there are afew tens of exper-
imental groups studying the problem of double-beta
decay.

The accumulation of a vast body of experimental
data referring to the two-neutrino mode of double-beta
decay isthe main outcome of theinquiriesinto the sub-
No. 8 2000
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Fig. 3. Nuclei unstable with respect to 23~ decay.

ject that have been performed over the last decade. No
evidence for the neutrinoless mode has been revealed.
An analysisof theresults obtained in seeking this mode
only yields constraints on constants that determine the
probability of the process under various assumptions
about its mechanisms—that is, on the Majorana mass
of the neutrino, on right-handed admixtures, on the
neutrino-Majoron coupling constants, and on some
other relevant parameters.

The objective of the present article is to survey a
general picture of the development of the problem and
to highlight changes that have occurred over the past
years in the mainstream lines of investigation in these
realms. | am well aware that an unprecedentedly long
history of the question, which has been studied over
more than 60 years, resulted in the emergence of a
number of review articles dealing with the general and
particular issues of the theory of double-beta decay or
with the current status of relevant experiments. Thethe-
oretical aspects of the problem have been repeatedly
and thoroughly considered in the literature. There are
also comprehensive studies covering almost all aspects
of the modern theory on the subject [35-38]. Among
the articles devoted to the experimental work in this
field, thereview article of Zdesenko [39], who provided
rich information about the early stages of the develop-
ment of the problem, and the more recent studies of
Moe [40] and O.Ya. Zeldovich [41] are worthy of spe-
cia note. Tretyak and Zdesenko [12] presented the
most comprehensive compilation of tabular data from
the studies that had been published by that time. The
history of the problem was described in detail by
Ya.B. Zeldovich [42] and Lazarenko [43].

Since only 23~ decay has been recorded experimen-
tally so far, the present article will deal with questions
that are related to this version of the processin one way
or another. There is, however, no fundamenta differ-
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ence between 23~ and 23* decays. Some specia fea
tures of the latter and prospectsfor inquiriesinto it will
be considered separately.

2. GENERAL REGULARITIES

The energy deposited in 23~ decay is equal to the
atomic-mass difference between theinitial and the final
nucleus, AM = M(A, 2) — M(A, Z + 2). Two-neutrino
double-beta decay is alowed in any version of the the-
ory—the only obvious condition that must be satisfied
for such a decay process to occur isAM > 0. A second
condition isdictated by the extremely small probability
of the process: the beta decay of the parent nucleus
must be forbidden or severely suppressed.

Thirty-five even—even “stable” isobars meeting the
above two conditions are known [44] (see Fig. 3). The
competing beta decays of these nuclei are forbidden
because the ground states of the A(Z + 1) isobars occur
higher on the energy scale. This is not so only for the
48Ca nucleus, but its beta decay is suppressed because
of the large difference of the angular momenta between
the initial nucleus and the intermediate nucleus *8S
Jm=6%).

Two-neutrino double-beta (2p-2v) decay. Therel-
evant half-life can be represented as [36]

(T2)™ = FYIM?* OF% Mg,

where F?’ is the reaction phase space, while M isthe
Gamow-Teller matrix element for the transition from
the 0+ state of the A(Z, N) nucleus to one of the final
states of the A(Z + 2) nucleus.

Neutrinoless double-beta decay. The most general
expression for the probability of the neutrinoless mode
of double-beta decay induced by alight neutrino with a
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Tablel

Nuc- 0, kev F2x107, | F® x 101, | FMx10%,

leus | yriMeve | yrifm? yrtfm?
“8Ca 4271 | 10490 49.06 303.1
%Ge 2041 34.70 6.697 12.60
825 | 2995 | 1151 30.63 108.8
100Mo | 3034 2502 57.60 216.1
128T¢ 868 0.2245 2.701 1.451
130Te | 2533 | 1270 66.40 194.0
136xe | 2479 1275 72.79 207.3
150Nd | 3367 | 31370 345.2 1684

mass of up to afew MeV and by right-handed currents
has the form

(Ty) " = Com(MOM,)* + Coy T + C,, N
+ Cmn( ljnvume) H]D"' Cm)\( ljnvume) D\D
+ Cr])\( anume) D][[}\D

where [in, [is the effective neutrino mass averaged over
light neutrino states, [fCand [Aare the effective values
obtained by similarly averaging the coupling constants
for right-handed currents, and the coefficients C take
into account matrix-element and phase-space contribu-
tions. In the majority of models that consider neutrino-
less doubl e-beta decay, the mass term is dominant. Set-
ting MU= [AC= 0, we obtain

(Tl/z)_l = (mvume)zFov|MGT_MF|2
= (tm,am)°F* M

Neutrinoless double-beta decay
M ajoron emission. The half-lifeis given by

involving

-1 2~M 2
(Ty) ™ = IEQVXEIJ F |MGT_MF| )
Arb. units
0.6
2V Ov, X . Oov
L - "
s, \
0.4+ L \
, \
- Ve \
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// \
B e \
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Fig. 4. Total-energy spectrum of electrons from 23~ decay
for various decay modes.
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where [d),, [is the averaged neutrino—Majoron coupling
constant and where the matrix element has the same
form asin the preceding case, provided that heavy-neu-
trino exchanges are disregarded.

The simplest (triplet) Majoron model was ruled out
by a precise measurement of the Z°-boson width [45].
In order to sidestep this constraint, Berezhiani et al.
[46] and Burgess and Cline [47] considered more
involved versions. A model featuring the emission of
two or more Majorons was proposed by Mohapatra and
Takasugi [11].

The phase-space volume can be caculated pre-
cisely. Table 1 presents the values of F2Y, F%, and FM
from [37] for 0 — O* transitions.

It isworth noting that the different phase-space fac-
tors depend differently on the decay energy: F2 ~ Q!!,
FV~Q, and FM~ Q.

The spectrum of the total energy E of two product
electrons (see Fig. 4) providesthe most important crite-
rion for experimentally separating the different modes
of double-beta decay. The A(Z + 2)-isobar yield
summed over all decay modes is determined on the
basis of the geochemical method.

3. EXPERIMENTAL SITUATION

The two-neutrino double-beta decay of ten nuclei
(48Ca 76Ge SZSe 96Zr IOOMO 116Cd 128'1"e 13OT6 ISONd
and 23%U) was observed in direct and geochemical
experiments.

Table 2 displays the results of the most important
successful experiments. Information about those exper-
iments that recorded the double-beta decay of a given
isotope for the first time is boldfaced. Also presented
for geochemical measurements is the maximal scatter
of the results obtained by different authors (according
to datafrom [12]).

Among the results coming from direct measure-
ments, the longest half-life was recorded for the °Ge
isotope (T, = 10%! yr). For the other nuclei under dis-
cussions, the observed half-life values of T,, = 10"-
102 yr correspond to the actual sensitivity of the exper-
imental facilities used. The '*Te isotope, whose life-
time was estimated by the geochemical method (T, =
10%* yr), is the most long-lived radioactive source dis-
covered on the Earth.

The scatter of the results obtained by the geochemi-
cal method and in direct measurements is quite signifi-
cant, which is associated both with the extreme small-
ness of the measured effect and with methodological
difficulties peculiar to each of the experimental proce-
dures in use. Special features of these procedures will
be described bel ow.

4. GEOCHEMICAL METHOD

The geochemical method consists in determining
the abundances of beta-decay products accumulated
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Table?2
Nucleus Ty Y1 Experimental group Experimental procedure
“8Ca (43777 1y x 1019 UCI/IAE 1997 [18] TPC
+1 Semiconductor germanium
Ge (971 x 1020 ITEP/YERPHI 1988/1990[2] | ooy
92707y x 1020 ITEP/PNL/USC/YERPHI 1991 | Semiconductor germanium de-
(9255) % [28] tector
03+0. ; Semiconductor germanium de-
(142735 023y x 102 Heidelberg/Moscow 1995[29] 2210 g
0L +0. ; Semiconductor germanium de-
(L7795 02y x 102 Heidelberg/Moscow 1997 [30] | 2 - 9
8250 (1479%) x 102 1969 [3] Geochemistry
(1.0-2.8) x 10%° [12] Geochemistry
(1.08°0re ) x 10% UCI/LLL 1987/1992 [1] TPC
(0.837 050" 297y x 1020 NEMO 1998 [31] Counting spectrometer
%zr (3.9795) x 10%° Tokyo 1993 [25] Geochemistry
(2.173%) x 10%° NEMO 1998 [26] Counting spectrometer
100M0 (1.157050) x 1019 Osaka 1991 [19] Counting spectrometer
(11500 ) x 10%° UCI/LLL 1991 [20] TPC
(0.95 508 " os8) x 109 NEMO 1995 [32] Counting spectrometer
(0.68°00n ooy ) X 1019 UCI 1997 [33] TPC
118¢d (2.2°37y x 10%° Osaka 1994 [21] Counting spectrometer
(3.75 05+ 0%y x 1019 NEMO 1995 [34] Counting spectrometer
128T¢ (15702) x 10% 1975 [13] Geochemistry
(1L.4-7.7) x 10** [12] Geochemistry
130Te 1.4 x 104 1950 [8] Geochemistry
(0.6-3.1) x 10% [12] Geochemistry
150N (1.9705+ 039y 1019 ITEP/INR 1993/1994 [22] TPC
(0.68° 00100y ) X 10%° UCI/LLL 1997 [23] TPC
238y (2.0°38y x 102 Chicago/SFI/LANL 1991 [24] | Radiochemistry

over a geological time in minerals containing poten-
tidly 2B-active elements. Basic results were obtained
by determining the abundances of inert gases—%’Kr,

128Xe, and 3°Xe isotopes—originating from the dou-

ble-beta decay of 32Se, '28Te, and '*°Tein minerals con-
taining selenium and tellurium. When such mineral
were formed from amelt or from a solution, inert gases
were removed amost completely. In this way, there
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arose necessary preconditions for discovering negligi-
bly small amounts of decay products accumulated over
the times of existence of the minerals.

For thefirst time, the geochemical method was suc-
cessfully used in 1949 [8] to estimate the half-life of
130Te. Theresult, T,, = 1.4 x 102! yr, appeared to be the
first evidence for the occurrence of the process. Many
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subsequent measurements [12] did not change this esti-
mate significantly. The T,,, values presented by differ-
ent authors lie in the range between 6 x 10%° and 3 x
102! yr. The mean values of the 13°Te half-lifethat were
recommended on the basis of an analysis of the entire
array of data are (1.5-2.8) x 10?! yr [48] and 0.8 x
102! yr [49]. The large scatter of the results may be due
to an insufficiently accurate determination of poorly
controllable parameters, variations in the time of gas
accumulation, and the possible reduction of gas abun-
dances in geological rearrangements within periods
following mineral formation.

Of particular interest is the investigation of the dou-
ble-beta decay of '?8Te because, in this case, the two-
neutrino mode is suppressed in view of a small energy
release (868 keV). The recorded half-life values lie in
therange (1.4-7.7) x 10%* yr [13-16], so that the decay
of 2Teisthe rarest process detected so far. The scatter
of the results can be attributed to factors inherent in
geochemistry and to significant systematic uncertain-
ties that are difficult to take into account because of the
extreme smallness of the effect.

The first measurements of the 32Se half-life were
performed in 1969 [2]. The resulting half-life value of
T, = 1.4 x 10% yr was then confirmed in a number of
later experiments [12], athough the scatter of the
resultsisgreat in this case aswell [(1.0-2.8) x 102 yr].
The recommended values of the 3Se half-lifeare 1.3 x
10%° yr [48] and 1.0 x 10%° yr [49].

In general, the geochemical method is insufficient
for establishing the mechanism of double-beta decay,
but the two tellurium isotopes in question stand out in
this respect owing to noticeably different values of the
energy release. The expected ratio of half-lives
(13°Te/1?8Te) is (2—4) x 10~ for the two-neutrino mode
and (4-6) x 102 for the neutrinoless mode, the phase-
space ratios being 1.8 x 10 and 4.1 x 1072, respec-
tively. By measuring the yields of '2*Xe and *°Xein a
single experiment, we can suppress the main uncer-
tainty in the geochemical method, poor knowledge of
time of accumulation of decay products and poor
knowledge of the rate of gas escape. The most precise
value of thisratio, (3.52 £ 0.11) x 10~ [15, 50], is vir-
tually coincident with the value computed for the two-
neutrino mode. Thus, the observed effect can be associ-
ated with the two-neutrino mode of double-beta decay.

The only successful geochemical study that deter-
mined the abundance of asolid-state product of double-
beta decay (°®Mo) was that in which measurements
were performed with a °°Zr sample [25]. A high con-
centration of uranium in the ore used made it possible
to determineits age (1.7 x 10° yr) to quite a high preci-
sion, but this simultaneously increased the abundance
of Mo because of spontaneous decay. The contribu-
tion of spontaneous fission was determined by means
of measurements with a neutron source. The value of
T, =(3.9+0.9) x 10" yr obtained in this way for the
%7r half-life can be considered as afirst approximation.
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Thediscovery of the double-betadecay of 238U, with
the relevant half-life being (2.0 = 0.6) x 10%! yr [24],
demonstrated the potential of the radiochemical
method. Asin ageochemical analysis, the method con-
sists in determining the abundance of a decay product
(**®Pu in the case being discussed) accumulated in an
ore sample containing a 23-active isotope. The daugh-
ter nucleus 2**Pu decays, with a half-life of 88 yr, emit-
ting a5.6-MeV alpha particle. Owing to this, the num-
ber of product nuclei can be measured in the case of
comparatively small accumulation times, provided that
they are known to a high precision. Unfortunately, the
possibilities for repeating an experiment are severely
limited because of large amounts of 23¥Pu in the atmo-
sphere and on the Earth’s surface due to atomic-weapon
tests. Turkevich et al. [24] were able to perform mea-
surements with 8.5 kg of uranyl nitrate that was stored
underground for 33 years.

5. DIRECT MEASUREMENTS

Any facility intended for studying double-beta-
decay process must ensure extremely low levels of both
intrinsic and extrinsic backgrounds. In designing such
facilities, use is made of thoroughly selected materias
characterized by aslow alevel of intrinsic radioactivity
as possible (contamination with 4K, 233U, and >**Th of
no more than 10-%-10-1° g/g). The facilities in question
are surrounded by astrong passive shielding (1040cm
of lead) and are equipped with a veto system for sup-
pressing a cosmic background. Some facilities operate
in low-background underground laboratories (Baksan,
Gran Sasso, Saint Gothard, Cafranc), where the cosmic
component of the background is reduced to a mini-
mum.

A simultaneous emission of two electrons from one
point of the target is a signature common to all modes
of double-beta decay. Thisis used as a criterion in al
the facilities, with the exception of germanium detec-
tors. Thetotal energy of these two electronsisthe main
measured quantity, the character of the total-energy
spectrum being determined by a specific double-beta-
decay mode (see Fig. 4). The shape of the spectrum
imposes additional constraints on the parameters of the
experimental facility chosen to meet the needs of the
main problem to be solved.

For example, searches for the two-neutrino decay
mode require reducing the background level to the low-
est possible extent over a wide energy range, since the
total-energy spectrum of electrons represents a wide
bell with a maximum at E = Q/3. For the magjority of
nuclei whose two-neutrino double-beta decay was
detected in direct experiments (**Ca, 32Se, **Zr, 1Mo,
150Nd), thevalues of Q lie between 3and 4 MeV. Hence,
it isnecessary to perform athorough analysis of the ori-
gin of backgrounds from energies not higher than 0.8
1.0 MeV. In searches for two-neutrino double-beta
decays in direct experiments, the greatest success was

PHYSICS OF ATOMIC NUCLEI  Vol. 63

No. 8 2000



DOUBLE-BETA DECAY

achieved by the groups who used tracking detectors of
various types.

Thefirst observations of the decays of #Se [1], “¥Ca
[18], %Mo [20], and '5°Nd [22, 23] were made with the
aid of a TPC (a drift ionization chamber in a magnetic
field), which permits afull reconstruction of the geom-
etry and kinematics of each event. For the first time, a
TPC was successfully used in the study of UCI-LLL
[1] to detect the two-neutrino double-beta decay of
82Se. Later on, the same facility and a TPC that was
developed at ITEP [22] were successfully used in
searches for the two-neutrino double-beta decay of
4Ca, 1Mo, and "Nd.

The principle of TPC operation can beillustrated by
considering the example of the facility used by the
UCI-LLL group (see Fig. 1). The hub of the apparatus
isacylindrical (octagonal) planar ionization chamber
of mean diameter 85 cm and height about 25 cm, which
operates in amagnetic field of strength 700 G (Fig. 5).
The chamber isfilled with amixture of 93% Heand 7%
C;H; at atmospheric pressure. A film source having a
thickness of 7 mg/cm? and containing 14 g of Se (97%
82Se) divides the volume of the chamber in height into
two equal parts, so that there arise two drift gaps. Over
the entire areas of the two endfaces of the chamber, sys-
tems of pardlelly stretched field wires of diameter
0.075 mm each are arranged at distances 10 cm from
the source, the pitch between the wires being 2.5 mm.
A voltage of =700 V with respect to this system is
applied to the source, ensuring the velocity of ioniza-
tion-track drift about 5 mm/us over the entire volume of
the chamber. Two planes of a coordinate wire cham-
ber—the anode plane, with apitch of 5 mm between the
wires, and the cathode plane, with a pitch of 2.5 mm—
are mounted immediately behind the field wires, the
wires of the cathode plane being stretched orthogonally
to the anode and field wires. The voltage drop across
the anode—cathode gap is 1500 V. Each wire of the
anode system has its own amplifier and discriminator;
the cathode wires are connected in pairs. The wire
chambers determine the coordinates of the tracksin the
(X, Y) plane versus time, the accuracy of this determi-
nation being 5 mm in each coordinate. For the chosen
drift velocity (see above), the total time it takes for the
track to travel the distance from the source to the coor-
dinate chamber is 20 ps. This time interval is parti-
tioned into 20 subintervals of duration 1 ps each, and
20 coordinates in the Z axis are fixed for each track to
the same accuracy of 5 mm. Thus, the spatial (helical)
pattern of each track isfully reconstructed in the cham-
ber to within 5 mm in each of the coordinates. It is
worth noting that the term “time projection chamber”
(recall that it is abbreviated by convention as TPC)
reflects the method for determining the third coordinate
of the tracks.

In order to single out the possible cases of double-
beta decays, the condition of a simultaneous emission
of two electrons from one point of the source was
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Fig. 5. Schematic view of the TPC from the facility of the
experiment reported in [1].

imposed for each of the two drift gaps; after that, afull
kinematical analysis of each event was performed. It
was shown that the conventional beta decay of nuclei
from the uranium and thorium families was the most
hazardous source of background mimicking double-
beta decay. This background was efficiently sup-
pressed, since the daughter nuclei from the decay of
214Bi and ?'?Bi isotopes bel onging to these families pro-
duced beta—alpha chains that could easily be isolated
by aTPC.

Owing to the possibility of a thorough event-by-
event analysis and to a low level of the intrinsic back-
ground in the apparatus, the UCI-LLL group was able
to achieve a sengitivity level of 10?° yr, which was nec-
essary for disclosing the reasons behind the discrep-
ancy between the results of the geochemical ([2]) and
the direct ([17]) determination of the 32Se half-life. A
similar sensitivity was achieved with the ITEP facility
[22]. Thiscreated preconditionsfor afurther successful
application of TPCs in experiments that performed
searches for the double-beta decays of “4Ca, '““Mo, and
150Nd, whose half-lives proved to be somewhat shorter
(10"—4 x 10" yr).

The counting track detectors ELEGANT-5 and
NEMO were successfully used to detect the two-neu-
trino double-beta decays of Mo [19] (this was done
simultaneously in [20]) ''°Cd [21], and °Zr [26] in
direct measurements.

The operation of the last two detectors was based on
the same principles. A thin source under investigation
was placed in between two wire volume coordinate
chambers, which fixed the tracks of two electrons that
were gjected simultaneously from the same point of the
source in opposite directions. The energy of each elec-
tron was measured by plastic scintillators. The mea-
surements were performed simultaneously with two
sources. Of these, one was manufactured from a mate-
rial highly enriched in the isotope being investigated,
whilethe other had anatural isotope content. The effect
of two-neutrino double-beta decay was singled out by
comparing the total-energy spectra of electrons for the
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two sources. That the intrinsic-background level was
low in either source was a crucial circumstance that
rendered this procedure quite efficient.

Despite its obvious merits, a TPC facility is disad-
vantageous in that it is difficult to study large amounts
of specific isotopes with such facilities. The same
plagues the results of measurements with counting
track detectors. A high-pressure TPC used to study the
double-beta decay of '3¢Xe [51] is free from this flaw.
As aworking gas, this facility employs Xe enriched in
136X e t0 62.5% and pumped at apressure of 5 atm; 180 |
of the chamber useful volume contain 24.2 moles of the
active isotope. Double-beta-decay tracks are selected
by using their specific shape—namely, the shapethat is
characterized by a continuous trace with a sharp
increase in ionization at both ends because of the mod-
eration of the electrons. The sensitivity of the apparatus
to two-neutrino double-beta decay is 4 x 10%° yr, and
Luescher et al. claim that a significant portion of the
experimental spectrum is associated precisaly with this
process. This gives sufficient ground to believe that the
observation of the two-neutrino double-beta decay of
36X ewithahaf-lifeof T,, = 10?! yr will be announced
in the near future.

The semiconductor germanium detectors that were
used in discovering and studying the two-neutrino dou-
ble-beta decay of "°Ge gave no way to anayze event
kinematics. Nonethel ess, the highest sensitivity among
the results obtained in direct measurements, T,, =
10%! yr, was achieved precisely for 7°Ge. The use of
detectors that had a weight of a few kilograms and
which were manufactured from a highly enriched
active isotope (87% °Ge), together with anearly 100%
event-detection efficiency, was the main factor that
ensured this advantage. A high purity of semiconduct-
ing germanium was also of paramount importance for
this.

A group of experimenters from ITEP and Y ERPHI
that was the first to employ detectors from enriched
germanium and which discovered in this way the two-
neutrino double-beta decay of 7°Ge [3] separated the
effect by comparing the spectra from detectors manu-
factured from enriched and natural germanium. Three
germanium detectors—two from enriched germanium
(of total weight 1.2 kg) and one of natura germa
nium—uwere mounted within the same cryostat closeto
one another, which ensured identical levels of the
extrinsic background for them (Fig. 2). This permitted
avoiding a computational reconstruction of this back-
ground, whose main component in germanium detec-
torsis gammaradiation from the structural materials of
the apparatus.

The more recent studies reported in [28-30] relied
on a computational procedure, because a considerable
reduction of the absolute level of the radiation back-
ground rendered this procedure more secure.

To conclude this section, we recall that Barabash
et al. [27] reported the observation of the 2[32v process
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10Mo — 19Ru*(0;, 1130 keV) followed by the

emission of two cascade gamma rays of energies 539
and 591 keV. Those measurements were performed
with powder Mo by using several gammarray detec-
tors made from germanium. A value of T, = 10*! yr
(10" yr for the transition to the ground state) was
obtained there for the half-life.

The neutrinoless mode of double-beta decay was
sought at the same facilities and with the aid of the
same methods as those used in studying the processes
of two-neutrino double-beta decay. Since the neutrino-
less modes of double-beta decay have not yet been dis-
covered, an analysis of the results obtained in seeking
them only constrains the values of the parameters that
determine the probability of the processin various the-
oretical models. The level of these constraints depends
on the sensitivity of the experiments seeking the decay
modes in guestion and on the accuracy in computing
the relevant nuclear matrix elements. Prior to discuss-
ing available experimental data, it is therefore reason-
able to assess the accuracy of the calculations per-
formed for those matrix elements.

6. CALCULATION OF MATRIX ELEMENTS

Theonly indirect possibility for estimating the accu-
racy in computing relevant matrix elements consistsin
comparing experimental data with the results obtained
by calculating the probability of two-neutrino double-
beta decay, since the methods used to evaluate M and
M? are quite Similar.

Two basic models—the shell model of the nucleus
[52-56] and various versions of the quasiparticle ran-
dom-phase approximation (QRPA) [57-62]—were
used in computing nuclear matrix elements. Over the
past few years, the shell model has become more appro-
priate for such calculations owing to evolving codes
that makeit possibleto use vast bases of wave functions
and to invoking the Monte Carlo method in the case of
heavy nuclei. Nevertheless, it is rather difficult to
employ this model for a wide range of nuclei because
the relevant calculations are very involved and cumber-
some, so that QRPA cal culations remain necessary.

The main difficulty in calculating the matrix ele-
ments for two-neutrino double-beta decay—hboth
within the shell model and within the QRPA—stems
from the fact that the [M?"| value extracted from exper-
imental data proved to be one to two orders of magni-
tude less than the single-particle estimates. The point is
that the large components of the wave functions are
canceled ailmost completely; as a result, sight modifi-
cations to the nuclear structure lead to considerable
changes in the results of the calculations. Within the
QRPA, thisimplies a strong dependence of M?¥ on the
quasiparticle coupling constant g,

The predictive power of the original model versions
[37, 57, 58] proved to be very poor. The matrix ele-
ments changed sign (see Fig. 6) at physicaly signifi-

PHYSICS OF ATOMIC NUCLEI  Vol. 63

No. 8 2000



DOUBLE-BETA DECAY

cant coupling-constant values of g,, = 1, which resulted
in a sharp dependence of the decay probability on the
adopted value of g, (“collapse” effect). Later on,
model versions were devel oped that made it possible to
smooth out this dependence to some extent, but the
problem has yet to be solved conclusively [61].

The results of the calculations performed within
various approximations are presented in Table 3,
aong with the measured half-lives (the presumed
half-life of 136X e was estimated on the basis of results
reported in [51]).

The predictions of the latest versions of the shell
model [54, 55] are close to the measured half-life val-
ues, but these predictions have been obtained only for a
small number of nuclei. Calculations within the QRPA
were performed for almost all nuclei that are expected
to be 2[3-active [58, 59], but the agreement with exper-
imental data is somewhat poorer (within a factor of
about 3 for the matrix elements).

Thereis no direct correlation between the values of
M2’ and M%. The matrix element for two-neutrino dou-
ble-beta decay is calculated by performing summation
only over the virtual J™= 1* states of the intermediate
nucleus. In the neutrinoless mode of double-beta decay,
summation must also be performed over stateswith dif-
ferent spin—parity values. Until recently, it was
assumed that this smooths out the g, dependence of
M® and that the reliability of the calculation of M% is
higher for this reason. It was shown in [63], however,
that the inclusion of ground-state proton—neutron cor-
relations is of paramount importance in this case. The
problem isstill far from being resolved completely, and
the most secure criterion of the accuracy in calculating
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Fig. 6. Gamow—Teller matrix element as a function of the
coupling constant gy, [37].

[M?| is provided by the scatter of the resulting half-life
values (see Table 4). It should be noted that, for the
probability of neutrinoless double-beta decay, the cal-
culations on the basis of the maximally full shell model
[55, 56] predict values falling significantly short of the
results of the previous studies.

Table 3. Experimental and calculated values of double-beta-decay half-lives (T4, yr)

Shell model Quiasi particle random-phase approximation
Nucleus Experiment
[53] [54, 55]* [58] [59]

“Ca 4.3 x 101 2.9 x 10%° 5.5 x 10%°
5Ge (0.9-1.8) x 102! 4.2 x 1019 22x 104 3.0x 104 0.26 x 10

3.6 x 1021
8250 (0.8-1.4) x 10%° 2.6 x 10%° 5.0 x 10%° 1.1x 102 0.85 x 1020

8.0 x 10'°
%7y (2-4) x 10%° 2.0x10%
100Mo (0.7-1.2) x 10%° 0.13 x 1019 3.6 x 10%°
16cd (2-4) x 10%° 1.5 x 10%°
128Te (1.4-7.7) x 10?* 8.8 x 10?2 2.6x10% 2.1x10%
130Te (0.8-3.1) x 10%* 1.7 x 109 0.18 x 10%* 7.9 x 10%°
136% e ~10%1? 1.7 x 10?1 46 x 10?1 1.0 x 10?1

2.0x10%
150N d (0.7-1.9) x 10%° 0.74 x 109 1.7 x 100
238y 20x 107 15x10% 0.9 x 10%

* Two estimates for the expected half-lives Ty, are presented in [55].
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Table4
Nudl Shell model Various versions of the quasi particle random-phase approximation

ucleus
[52] [55, 56] [37] [58] [59] [62]

“8Ca 8.8 x 108 mo®
%Ge 1.4 x 10% 1.8 x 10% 1.9 x 10% 2.3 x10% 2.7 x 10% 9.5 x 10%*
825¢ 2.1 x 10% 2.4 x10% 6.1 x 1023 6.0 x 1023 1.9 x 10%
9%67r 5.3 x 108
10\ 0 2.3 x10% 1.3 x 10% 2.6 x 10%
16y 4.9x 108 6.9 x 102
128T¢ 6.9 x 10% 4.4 x 10% 7.8x10% 1.3x10% 1.1x10%
130Te 3.2x10% 4.9 x 10% 7.2 x10%
136y g 1.2 x 10% 2.2 x 10% 4.3x10% 3.4 x10%
150Nd 3.4 x 102 5.6 x 102

Neutrinoless double-beta decay. The problem of
the Mgjorana neutrino massisan intriguing puzzle, and
it is in the pursuit of it that attempts at detecting the
230v process have been made; therefore, it would be
natural to classify various experiments according to the
levels of constraints on [n, L]

Table 5 displays the most significant limits estab-
lished experimentally for the half-livesin question and
the resulting constraints on [m,}(no right-handed cur-
rents are assumed). Three groups of constraints—one
based on the latest version of the shell model [55] and
two based on two QRPA versions[58, 62]—are singled
out there.

Figure 7 gives a clear idea of the relative accuracy
achieved in the measurements with the various nuclel
[15, 16, 51, 64—72] and of the prospects for strengthen-
ing the constraints on [, through the improvement of
the experimental accuracy. There, the maximal scatter
of the results of the calculations from [37, 52-56, 58—
62, 72—78] was taken for a measure of the uncertainty

in the theoretical estimates of T, .

Table5
Upper limit
Nucleus T, Y1 (i, L] eV
(experiment)

[55] | [58] | [62]
5Ge >1.6x10%® [64,65]|<<1.07/<0.38 [<0.77
825e >2.7 x 10% [68] | <94 |<47 | -
100M 0 >5.2 x 102 [65] - |<49 |<22
Hécd >3.2 x 107 [66] - [<39 |<46
128T¢ =22 x 10% [16] - |=19 |22

>7.7x10%*  [15] - |<10 <12
130Te >5,6 x 10?2 [67] - [g29 | -
136x e 4.3 x10% [51] | <5.2 |<22 |<28

The most stringent constraint on [in,Cfrom the mea-
surements with germanium detectors is determined by
the extremely high limit on the half-life from [64, 65].
The advantage of germanium detectors in searches for
neutrinoless doubl e-beta decay becomes obviousif we
compare the sensitivities of the different experiments
by using the simple relation

limT,,, = k(Met/BAE) "2,

where M is the target mass, k is the abundance of the
activeisotope, € isthe efficiency of the detector, Bisthe
background level [measured in event/(keV kg d)], AEis
the detector resolution (in keV), and t is the time of
measurements.

The high energy resolution of germanium detectors,
AE = 4 keV (FWHM), even in the case of long-term
data accumulation (AE/E=0.5% at E=Q =2 MeV) is
a circumstance of crucial importance. For the sake of
comparison, it can be indicated that the energy resolu-
tion of the Xe chamber used in [51] is about 6.5% at
Q=3 MeV (that is, about 200 keV in absolute units).
The possibility of using enriched germanium (k = 0.85)
in amounts weighing a few kilograms at a 100% effi-
ciency of event detection over an almost entire detector
volume is also of importance.

The results of measurements with germanium
detectors made it possible to obtain the most stringent
constraints on the parameters of right-handed currents:
MO< 1.3 x 10® and RO< 1.8 x 10°° (the matrix ele-
ments from [58] were used in deducing these esti-
mates).

In conclusion, it is worth noting that the constraint

T, 2 1.6 x 10% yr [64, 65] for "°Ge was obtained by
means of a conventional statistical treatment of experi-
mental data. Baudis et al. [64] also present the much
more stringent constraint T, , = 5.7 x 10* yr, which was
obtained on the basis of a dedicated statistical
approach, but the reliability of this result is question-
PHYSICS OF ATOMIC NUCLEI  Vol. 63

No. 8 2000



DOUBLE-BETA DECAY

able [65]. For this reason, we display only the conser-
vative estimate in Table 5.

Neutrinoless double-beta decay involving
Majoron emission. Like the dominant neutrinoless
mode of double-beta decay, its mode involving
Majoron emission has not yet been discovered. In
searchesfor 230v, X° decay, the energy resolution of the
detector isimmaterial, and measurements with germa-
nium detectors do have a crucia advantage. A number
of experimental groups (see Table 6) obtained results
that made it possible to set virtually identical con-
straints on the Majoron—neutrino coupling constant
G, ]

The constraints on [g,, [that are listed in Table 6
were obtained by using the matrix elements from [58],
since that article presents the most comprehensive
results on the subject. Among these results, only limits
obtained from geochemical datafor '*Te stand out, but
it was mentioned above that the probability of large
systematic errorsis high in that case. Asto direct mea-
surements, the accuracy achieved in calculating therel-
evant matrix elementsisinsufficiently high for conclu-
sively choosing one of the results displayed here: the
upper bounds on [gj,, [tan change within afactor of 2to
3in either direction.

7. OUTLOOK

Neutrinoless double-beta decay. The nearest pros-
pects for studying neutrinoless double-beta decay are
known. The commissioning of alarge TPC of volume
13 m? filled with Xe at atmospheric pressure, with the
abundance of the '*Xe isotope being 7.5 kg, is
expected at ITEP in thisvery year [82]. The calculated
sensitivity of the experiment to the neutrinolessmodeis
T, = (2-4) x 10** yr, which is an order of magnitude
higher than the current level [51]. This will constrain
the neutrino mass at the level of 1 eV. Inthefuture, itis
planned to use a 1°°Nd target. At the same sensitivity of
the apparatus, this will yield the constraint [,k 0.2
0.3 eV.
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TP/%, yr

104M0 128Te 136Xe
9621. 116Cd 130Te ISONd

48Ca SZSe
76G6

Fig. 7. Calculated values of the half-lives for neutrinoless
double-beta decay (in the calculations, it was assumed that
[, = 1.0 eV and [O= [A0= 0) and experimental limitson
these half-lives: (asterisks) experimental data, (closed
boxes) results of the calculations performed within various
versions of the quasiparticle random-phase approximation,
and (open circles) results of the calculations performed
within the shell model of the nucleus.

The work on constructing the tracking facility
NEMO-3 isnearing completion at present [83, 84]. The
scales of the facility can be characterized by its follow-
ing characteristics. The working chamber has a diame-
ter of 2 m and a length of 3 m, the target area being
20 m?; this makes it possible to perform measurements
with 10 kg of the isotope under investigation or with
several samples simultaneoudly. The tracking detector
contains 6180 Geiger cells of length 2.7 m each. The
weight of plastic scintillators that are used to determine
the electron energies and to perform time-of-flight
measurements is 7 t. The apparatus employs 1960 pho-
tomultiplier tubes. The chamber is placed in amagnetic
field of strength 30 G. The energy resolution is about
10% at 3 MeV, while the calcul ated detection efficiency
is 28%. Measurements at this facility will be per-

Table6
Nucleus Ty Y1 [y, L) % 10 Experimenta procedure
5Ge >10%%(68% C. L.) [2] <2.2 Semiconductor germanium detector ("°Ge)
>7.9%10°4(90% C.L.) [79] <26 Semiconductor germanium detector ("°Ge)
82ge >2.4x10°4(90% C. L.) [31] <16 Counting tracker detector
100Mo >3.1x 10%4(90% C. L.) [80] <20 Counting tracker detector
H6cq >1.2 x 10°%(90% C. L.) [34] <12 Counting tracker detector
128Te >2x10% [16] <0.7 Geochemistry
>7.7 x 10% [15] <0.3 Geochemistry
130Te >8 x 102 [49] <28 Geochemistry
136x e >7.2x10°4(90% C. L.) [81] <2.0 TPC
150N >2.8 x 102°(90% C. L.) [23] <1.0 TPC
PHYSICS OF ATOMIC NUCLEI Vol. 63 No.8 2000
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formed, first of al, with molybdenum enriched in
100M o to 95%. The announced accuracy of the measure-
ments corresponds to a half-life level of T,, = 10% yr
under the assumption of zero background (this trans-
lates into the constraints in,[k 0.2-0.3 eV on the neu-
trino mass). It should be bornein mind that irremovable
background from the two-neutrino mode of double-
beta decay must be taken into account in measurements
with molybdenum (this background can impair the sen-
sitivity of the apparatus significantly).

It isplanned that the first version of afacility featur-
ing low-temperature bolometric TeO, detectors [85,
86] will be put into operation in 2001. The apparatusis
designed as a 14-floor tower with four TeO, crystals on
each floor. Each crystal has dimensionsof 5 x 5 x 5 n?
and amass of 760 g. The energy resolution of the first
four crystals is within 5-10 keV at a background level
of 0.5 event/(keV kg yr). The presumed accuracy of the
measurements after one year of operation with 56
detectors is (3-4) x 10** yr, which corresponds to
[,k 0.3-0.4 eV.

The commissioning of these facilities will make it
possible to advance the sensitivity to the Mg orana neu-
trino mass up to alevel presently ensured by measure-
ments with germanium detectors. For the purposes of
uniformity, al the above estimates are based on the
matrix elements as calculated in [58]. If it turns out that
the trend toward the reduction of |M®| when more
advanced computational models are used is confirmed,
the level of constraints on in,C0may become lower by a
factor of 2 to 3 (alimit of about 0.5-1.0 €V).

In turn, the work with 7°Ge detectorswill be contin-
ued with the aim of achieving alevel of T,, = (5-10) x
10% yr. Here, however, there may appear the saturation
effect associated with the presence of weak background
gamma lines near the expected line at E = 2038.5 keV
from the neutrinoless transition 7°Ge — 7®Se.

Further significant advancements can be ensured by
evolving new facilities that will makeit possibleto per-
form measurements with a few kilograms of an active
isotope under much more favorable background condi-
tions. Obvioudly, this can be possible only when the
same unit playstherole of atarget and adetector simul-
taneously. Presently, several versions of such facilities,
which are capable of detecting neutrinoless double-
beta decay at the Majorana mass of [in,[= 1072 eV, are
being discussed.

The GENIUS project [87] proposes using approxi-
mately 1t of 7°Ge (300400 detectors placed in a com-
mon tank filled with liquid nitrogen). It is expected that
this will make it possible to reduce the background
level by one to two orders of magnitude. The project
foresees the possibility for detecting the double-beta-
decay transitions to the excited states of the final
nucleus 7°Se. Thiswill ensure afurther reduction of the
background level.

The project CUORE [86] is being devel oped to per-
form measurements with 1000 bolometric detectors
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(TeO,) of total massabout 1t aswell. A facility featur-
ing 56 detectors that is being put into operation at
present is considered as the first stage of this project.

Finally, the project of alarge liquid-xenon chamber
that will simultaneously record electrons and a barium
ion appearing asthe product of Xedouble-betadecay is
under discussion now [88, 89]. At the mass of Xeinthe
chamber up to a few hundred kilograms, the back-
ground in such afacility may be nearly zero. However,
the limitation associated with the presence of the two-
neutrino mode still remains.

A practical implementation of al these projects
requires solving a number of technological problems
and formidable financia investments.

Two-neutrino double-beta decay. Investigation of
this mode will be continued along three lines. At
present, the decay of some nuclei with an energy
release in excess of 2.5 MeV has been recorded in a
number of direct experiments (**Ca, %2Se, *Zr, 1Mo,
116Cd, and Nd; only 7°Ge stands out in this respect).
Obviously, the search for double-beta-active nuclei will
be extended to isotopes with smaller decay energies
and, accordingly, with longer half-lives.

Attempts at discovering double-beta-decay transi-
tions to the excited states of final nuclei will be contin-

ued. Transitions to 0] and 0, levels are suppressed

only because of smaller transition energies and, in just
the same way as the two-neutrino double-beta decay
into the ground state, are allowed by all versions of the
theory. Measurements of the probabilities for several
such transitions, in addition to the decay process

10Mo —» 19Ry*(0; ), which has already been discov-

ered, may proveto be useful in discussing thereliability
of the calculated matrix elements both for the two-neu-
trino and for the neutrinoless decay mode [90]. On the
other hand, it isimportant from the experimental point
of view that a ssmultaneous detection of two electrons
and a photon will make it possible to reduce the back-
ground level considerably, thereby compensating in
part a decrease in the decay probability.

Finaly, it is natural to expect that more attention
will be given to searches for 23*-decay processes. In
just the same way as the two-neutrino mode of 23~
decay, the 23+ process accompanied by the emission of
two neutrinos is alowed in all versions of the theory.
Here, however, the decays via the emission of two
positrons do not exhaust all possibilities: the capture of
one or two internal electronsis possible (K capture and
double K capture, respectively):

AZN) —= AZ-2,N+2)+2€e +2v, 232V decay;

e +A(Z,N)— A(Z-2,N+2)+e +2v,
KB"2v decay;

26 +A(ZN) — A(Z-2,N+2)+2v, 2K2v decay.
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Table7
Isotope Q, MeV Decay mode T3, yr[91] Ts),, yr[92] Ty, yr[92]
8Ky 0.833 2Bt 3.7 x10% 2.3x10% 1.6 x 10%
KpB* 2.2x10% 5.3x 10% 6.5 x 10%
2K 1.4 x 10%3 3.7 x 10%2
106¢cq 0.734 2Bt 6.1 x 10% 4.2 x10% 4.8 x 1027
KB* 5.2 x 1023 4.1 x10% 3.4x10%
2K 7.5 x 10%2 8.7 x 100
124x @ 0.822 2Bt 1.6 x 10%® 1.4 x 107 3.0 x 10%7
Kp* 4.3 x10%2 3.0 x 102 1.6 x 10%
2K 6.4 x 104 2.9x 104

The same versions exist for the neutrinoless mode of
23* decay.

Because of the Coulomb barrier for a positron and
because of smaller decay energies, the expected proba:
bilities of all modes of the 2[3*-decay process are much
less than the probabilities of all cases of the 2[3—-decay
process that have already been detected (with the
exception of 128Te 23~ decay). In the case of 23~ decay,
the energy release is equal to the mass difference AM
between theinitial and the final atom. In the case of 23*
decay, the transition energy Q is

Q=AM —4m, for 23+ decay,
Q=AM -2m,-E, for KB* decay,
Q=AM -2E, for 2K decay,

where E, is the electron binding energy in the K orbit.

For this reason, isobars with AM < 2 MeV cannot
decay via the emission of two positrons—only the K-
and the 2K-capture modes are possible in this case; for
AM <1 MeV, 23* decay can occur only via2K capture.

In all, 33 isotopes are known for which 23+ decay is
possible [44]. Of these, only seven nuclear species can
decay via the emission of two positrons ("*Kr, “°Ru,
106Cd, 124Xe, 130Ba, 13¢Ce, 148Gd). A direct detection of
such processes is impossible at present, since the esti-
mated half-lives of even the most short-lived nuclei (see

Table7) lieintherange T3), = 10251026 yr.

Prospects for detecting KB* decay are somewhat
better (T,,, = 10*2-10% yr). However, the sensitivity of
current experiments is at a level of 10"°-10% yr [93—
96], which is obvioudly insufficient for recording the
process. The observation of the neutrinoless modes of
2[3* decay is still less probable, since the most optimis-
tic estimates for the corresponding half-lives exceed
10%6-10%7 yr (i, = 1 eV).
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8. CONCLUSION

The outcome from the last ten years of investiga-
tions into the double-beta-decay process is quite
ambiguous. On one hand, there has arisen anew realm
in nuclear spectroscopy, the spectroscopy of two-neu-
trino double-beta decay, and this field of investigation
israpidly developing. The range of activity is virtually
unlimited both for theorists and for experimentalists.
The periodic table of elements displays 35 pairs of
“quasistable” nuclear species for which 23-2v decays
must occur and 33 nuclear species for which the vari-
ous versions of 23*2v decay are possible (in al, there
are more than 60 such nuclei, including those that may
decay via K capture and double K capture).

The emergence of avast array of new experimental
data has revealed the poor predictive power of theoret-
ical models that were previously used to calculate the
relevant nuclear matrix elements. New models pro-
posed in recent years have made it possible to improve
somewhat the situation, but their predictions are till
unable to describe experimental data very well.

All the above, refers, however, solely to two-neu-
trino double-beta decay, which is allowed by all ver-
sions of the theory. The main fundamental question
remains open—the neutrinoless mode of double beta
decay has not yet been observed, although the sensitiv-
ity of modern experimental facilities featuring germa-
nium detectors (that of the Heidelberg—M oscow collab-
oration and IGEX) hasincreased considerably over the
last decade and now exceeds 10% yr. The constraint on
the Majorana neutrino mass from this results is [in, <
0.4-1.1¢eV.

Further considerable advancements in searches for
neutrinoless double-beta decay requires creating radi-
cally new experimental facilities, since the potential of
the existing devices has been exhausted to a consider-
able extent.
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Abstract—The current status of experimental results on the beta decay of the free neutron is described. An
analysis of these data showsthat, within the present-day accuracy, the dataarefully consistent with the Standard
Model of electroweak interaction. At the sametime, there exists the possibility of deviations from the Standard
Model at alevel of 1%. The possible violations due to the contributions of right-handed (Wg) bosons, as well
as of leptoquark mechanisms introducing anomalous scalar and tensor terms in the effective weak-interaction
Hamiltonian, which include the right-handed neutrinos, are estimated. In the last case, the analysisis performed
by an analytic method that makes it possible to take into account, for the first time, the possibility of CP viola-

tion. © 2000 MAIK * Nauka/Interperiodica” .

1. INTRODUCTION

The approaching 85th anniversary of the birth of
V.V. Vladimirsky, an influential scientist of great origi-
nality and high creative power, who has been working
in the realms of nuclear and el ementary-particle phys-
icsin Laboratory no. 3 (TTL-TEP)—presently, Insti-
tute of Theoretica and Experimental Physics (ITEPR,
M oscow)—since the emergence of thisingtitution, fur-
nishes a strong motivation for addressing retrospec-
tively the late 1950s, when he participated actively in
laying the fundamental s for the modern standard theory
of the beta decay of nuclei. Immediately following the
pioneering study of Lee and Yang [1] on parity viola-
tion, the physicists from ITEP (known at that time as
TTL), who had been completing at that time their
investigations into the physics of heavy-water reactors,
embarked enthusiastically on new research work, plow-
ing into this nascent realm of fundamental physics[2],
proposing experimental methods of their own for
studying the beta decay of the free neutron and nuclel
[3], and evolving the theory of processes governed by
weak interactions [4]. The discovery of parity violation
and the creation of new methods of investigations on
this basis resulted in a complete rearrangement of the
groundwork—the structure of weak interaction—
within only two years: the scalar—tensor form of the
nucleon-epton Hamiltonian, a form that was recog-
nized aimost universally in the early 1950s, gave way
to the modern V-A form, which was commonly
adopted in the early 1960s. This new turn in elemen-
tary-particle theory was stimulated, to agreat extent, by
experimental studies devoted to measuring the elec-
tron—neutrino correlation in free-neutron decay that

* e-mail: gaponov@imp.kiae.ru

were performed for thefirst time ever by an I TEP group
with an active participation of Vladimirsky [3, 5, 6]. As
a matter of fact, these experiments initiated investiga-
tions of correlation parameters in free-neutron decay.
Nowadays, such investigations play akey rolein study-
ing decays of the lepton—hadron type. The results
obtained in this way greatly contributed to establishing,
by the mid-1960s, those experimental factsthat presently
underlie the Standard Model of wesak interaction [7], a
classical scheme adopted in contemporary physics.

In physics, however—in just the same way as in
art—evol ution proceeds from classicism to modernism,
and the past few years have seen many attempts at
going beyond the classical schemes. Although the suc-
cess of the Standard Model in describing awide variety
of experimental facts has become ever more impres-
sive, the problem of the actual structure of the effective
Hamiltonian of weak nucleon-epton interaction has
unceasingly attracted the attention of theorists, both in
the period of consolidation of the Standard Model of
weak interactions and after its universal recognition.
While, in the first period (from the 1960s to the early
1980s), investigations were aimed primarily at seeking
facts that support the Standard Model and at refining
some of itsdetails, including special features of nuclear
processes, in recent years—from the late 1980s—
searches for possible effects beyond the Standard
Model have gradualy come to the fore (for an over-
view, see [8-11]). On one hand, this proceeds via the
development of experimental facilities, which creates
preconditions for harnessing new procedures. for
example, the technique of ultracold neutrons or preci-
sion measurements of angular and polarization fea
tures. As a result, the neutron lifetime can be deter-
mined more precisely, and the beta-decay spectra and
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the correlation parameters of the neutron and nuclei can
be refined. On the other hand, the investigation of free-
neutron beta decay, a fundamental process of nucleon
decay in this respect, as contrasted against the p—e
decay of the purely leptonic type, has ever been gaining
in importance. In this special case, where the effect of
the nuclear structureisabsent, it ispossibleto compute,
to a high precision, radiative corrections of the
exchange type [12]. In principle, this would make it
possible to probe the Wboson contribution in the
region of low energies [13, 14] (usualy, this contribu-
tion is accessible only in the region of high energies)
and to perform searches for nonstandard contributions
at alevel of extremely high precision.

The use of neutron beta decay for seeking effects
beyond the Standard Model is based on the fact that the
standard form of the Hamiltonian for the weak hadron—
lepton interactions is reduced with respect to the most
general Lorentz invariant form. As is well known, the
general form of the effective weak-interaction Hamilto-
nianis[1, 2]

Ho=(Gral /2)} ($0,#)(PO(C,+ Cyd ¥ao),

where G is the universal constant of weak hadron—
lepton interaction of the Fermi type (all the remaining
constants are usually normalized to it), while the index
i labels five possible versions of weak interactions.
These are the scalar (), vector (V), tensor (T), axia-
tensor (A), and pseudoscalar (PS) versions. The quanti-
ties O, can be written as

Oi =1 (5)1 yu (V)1 Guv = 1/(2|)(yuyv_yvyu) (T%!
iVa¥s (A), Vs (PS). @)
The PS version does not contribute to alowed beta

transitions; hence, the general Hamiltonian (1) describ-
ing free-neutron decay can depend on no more than

eight complex constants C; and C; . Under the assump-

tion that weak interaction respects CP invariance, these
eight constants are real-valued.

In contrast to the general form, the effective Hamil-
tonian (1) isreduced in the Standard Model, having the
form [15]

Hear = (Gup//2) (WY (1 -Ays)W,)

X (Wey" (L + Vo) Wye).

Thisreduction stemsfrom thefact that, inrelation to
the general form, the Standard Model invokes three
additional theoretical hypotheses:

(i) It is assumed that CP is not violated in strange-
ness-conserving decays. Thisreduces general complex-

valued constants C, and C; to areal form.

(ii) The V=A form of weak interaction istreated asa
consequence of the assumption that the heavy W boson

3)
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mediating weak interaction between nucleons (quarks)
and leptons is a vector particle. Thisimplies that

Cs=Cr=Cs=Cr =Cps=Cps=0. (4

(iii) The physical neutrinos participating in weak-
interaction processes at low energies and, accordingly,
the W_ bosons mediating weak interactions are left-
handed particles. For the vector and the axial-vector
version, this leads to the equalities

Cy = Cy, C,=C,. (&)

Thus, we can see that, for neutron and nuclear beta
decays described by strangeness-conserving hadron—
lepton interaction, the general Hamiltonian (1) reduces
inthe Standard Modé to atwo-parameter form depend-
ing on two fundamental real-valued constants Gy, and
Ca/Cy = A, the Fermi constant G of the general form
being coincident with the constant Gy of the Standard
Model. The currently adopted experimental values of
the Standard Model parameters are the following (for
details, see below) [16]:

Gyp = 1.4183(18) x 10 I m®,

= —1.2673(10).

Below, we will show that all modern neutron exper-
iments are by and large consistent with the Standard
Modél, but they still leave room for small (at alevel of
a few percent and below) effects beyond it. From this
point of view, the Standard Model dictates the domi-
nant part of the Hamiltonian, whereas observation of
experimental deviations from the two-parameter form
is interpreted as manifestations of phenomena beyond
it. Thus, there arises the problem of seeking nonstand-
ard contributions; here, some versions of the deviations
from the standard Hamiltonian can be associated with
specific physical mechanismsintroduced via additional
hypotheses.

Presently, there exist severa hypotheses that intro-
duce variations of the standard form of the weak-inter-
action Hamiltonian and which are widely discussed in
the literature and are subjected to varioustestsin inves-
tigations into neutron and nuclei beta decays. Listed
below are the most viable of these hypotheses.

(6)

A. CP-VMiolation Hypothesis

Well-known experiments that observed CP viola
tion in K-meson decays naturally raise the question of
whether similar violations are possible in strangeness-
conserving beta-decay processes. No such violations
have been observed so far, but their existence at alevel
of afew tenths of a percent is not ruled out by experi-
ments; therefore, the introduction of CP violation is
admissible. It was indicated above that, if CP violation
occurs, the parameters of the Hamiltonian become
complex. In the simplest case, it is assumed that the
parameter A is complex (the phase of the constant G,
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does not manifest itself in processes that are due
entirely to weak interaction) if we introduce CP viola-
tion in the Standard Model. In model s featuring a more
general form of the Hamiltonian, such violations result
in that the number of real parameters of the model is
nearly doubled (in fact, only the relative phases mani-
fest themselvesin purely weak interaction processes—
the absolute value of aphase can be determined only in
experiments measuring the interference of weak and
strong (or electromagnetic) interactions.

B. Hypothesis of Right-Handed Lepton Currents—
Right-Handed Neutrinos

In the simplest version of this hypothesis, the right-
handed form of neutrinos that is associated with the
heavy right-handed W boson is introduced along with
the left-handed form [17, 18]. This leads to the viola-
tion of equality (5). This possibility has been inten-
sively studied in recent years (see, for example, [9, 19—
21]). In the beta-decay case, these studies were stimu-
lated to a considerable extent by the experimental neu-
tron anomaly—a mismatch between the results of dif-
ferent-type experiments that measured neutron-decay
features (see [20, 22)).

C. Hypothesis of Leptoquark Contribution

According to this hypothesis, weak interaction can
be due not only to the standard mechanism associated
with the exchange of a color-singlet W boson between
alepton and a quark but also to the additional mecha-
nism associated with the exchange of a heavy lepto-
guark boson (LQ) having color and a fractional charge
[23-27]. Such bosons can be emitted in the weak tran-
sition of aquark into alepton. In some cases, the latter
mechanism can generate small scalar (pseudoscalar) or
tensor terms (or both) in the nucleon-epton Hamilto-
nian (1). The general form of such terms can be found,
for example, in [24]. Dedicated searches for such con-
tributions in the beta decay of nuclei and in muon cap-
ture by nuclei have begun in recent years [28-33]. It
should be noted that, in such schemes, the leptoquark
contributions may involve both standard (left-handed)
and nonstandard (right-handed) neutrinos. In the
former case, this implies violation of (4), smulta-
neously requiring fulfillment of the relations

Cs=Cs Cr=Cr. (7
If the right-handed neutrino is included, the relations
CS = _Cls, CT = _C%', CV = _C\'/, CA = _C)‘A (8)

will be satisfied for the corresponding additional terms
in the Hamiltonian. A mixed case is also possible. Of
considerable interest is the version of this hypothesis
where |eft-handed neutrinos are emitted in the vector
and axial-vector versions, while right-handed neutrinos
are emitted in the additional scalar and tensor versions.
For the first time, this version was analyzed in detail
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phenomenologically in [34]; later, it was considered in
[35-40]. This case is characterized by the relations

CV = C\'/, CA = C'AV CS = _Cls, CT = _C%(g)
The hypothesis being considered |leads to some inter-
esting implications whose investigation is still in its
infancy [39, 40]. For this reason, we will comprehen-
sively discuss the possihilities of its verification below
(Section 4).

Free-neutron beta decay is the simplest elementary
process of the hadron- epton type; therefore, it is espe-
cialy appedling for analysis (see above). This process
is described in terms of the following experimental
characteristics: the neutron lifetime; the electron decay
spectrum; and correlation and polarization parameters
that describe the probabilities of the emission of decay
products, including electrons and neutrinos (or recoil
nuclei), as functions of the angles and polarizations of
these products. In the case of alowed betatransitions of
nuclel and the free neutron, the decay probability is
given by

dW(E,, Z, Q. Q,)
= Grp/(2T)°F(£Z, EJ(Ee — Eeo) “EePedE.dQ.dQ,
(10)
X (1+ (bmJ/Eo) V1 —aZ’ + a(p, [h,)/(E.E,)

+AQJ [pe)/Ee+ B(J [py)/E, + DI [Ipe x pu])/(ECE.)),

where J is the polarization of the decaying nucleus; E,
and p., are the electron energy and momentum, respec-
tively; E, and p, are the neutrino energy and momen-
tum, respectively; and F(£Z, E,) is the Coulomb Fermi
function. The quantities a, A, B, and D are the correla-
tion characteristics of the decay process being consid-
ered, while b is a parameter that describes the energy
dependence that deviates from the standard Fermi
form. Free-neutron beta decay can be investigated in
experiments of various types. Of these, five have
already been implemented. These are (i) measurement
of the neutron lifetime; (ii) measurement of the angular
electron—neutrino correlation; (iii) measurement of the
correlation between the spin of a polarized decaying
neutron and the electron momentum; (iv) measurement
of the correlation between the neutron spin and the neu-
trino momentum; and (v) measurement of the triple
correlation between the polarized-neutron spin, the
electron momentum, and the neutrino momentum. The
parameters that are determined in experiments of these
typesare (i) (f1), (ii) a, (iii) A, (iv) B, and (v) D.

In standard analyses of data on neutron decay, it is
usually assumed in addition (often without any discus-
sion) that the spectrum of decay electrons features no
contributions inversely proportional to the electron
energy—so-called Fierz terms that are determined in
the Fermi and Gamow-Teller components by the
parameters b and by, respectively.
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Apart from experiments studying neutron beta
decay, there are also complementary experiments deal-
ing with nuclear beta decays and playing an important
role in determining the basic properties of weak inter-
action. These arefirst of all experiments studying 0*—0*
nuclear beta transitions between different components
of isotriplets, where there occurs a Fermi-type transi-
tion conserving the total nuclear spin equal to unity.
According to modern concepts, the vector current—an
isotopic analog of the electromagnetic current—must
be conserved in such beta transitions (conservation of
the vector current, also known as the CV C hypothesis).
This conservation law is violated by Coulomb correc-
tions, and this makes it possible to estimate the matrix
elements of this transition to a high precision [41-43].
At the sametime, the main characteristic of such atran-
sition in the Standard Model—the coupling constant
Gyg—together with the constant G, for leptonic (p—€)
decay, determines one of the important characteristics
of particle physics, the cosine of the Cabibbo angle
(cosBy); further, this makes it possible to estimate the
element V4 of the Kobayashi—M askawa matrix without
radiative corrections [43]. Thelatter inturnisrelated to
other elements of this matrix, which are determined on
the basis of dataon strange- and beauty-particle decays
by using the unitarity condition

V2 +VE+V2 =1, V4 = cosbe. (11)

This enables one to check the value of the neutron con-
stant Gy by invoking independent experimental data
from particle physics.

For purely technical reasons, other experiments
used in a detailed analysis of data on beta decay have
been implemented only for nuclei. These are experi-
ments measuring the electron and neutrino polariza-
tions and correlation experiments dealing with these
guantities. One has to use the data from these experi-
ments because an implementation of analogous experi-
ments with neutrons is questionable at present for one
reason or another.

From the above listing alone, it can be seen that the
variety of independent datathat can in principal be used
in analyzing free-neutron-beta-decay experiments is
sufficiently wide. The amount of these data is such that
adetailed analysismakesit possible not only to confirm
the validity of the two-parameter Standard Model in
different ways but also to perform, on this basis, an
investigation of the applicability range of some hypoth-
eses beyond the Standard Model. This emphasizes a
special role of neutron experiments. It ismain objective
of our study to perform of such an analysis.

The ensuing exposition is organized as follows. In
Section 2, we present the current status of the Standard
Model. After that, we investigate the boundaries of
admissible deviations from the Standard Model within
the aforementioned hypotheses: the hypothesis of
right-handed currents (Section 3) and leptoquark
hypothesis (Section 4). In the Conclusion (Section 5),
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we summarize the results of our anaysis from the
viewpoint of prospects for further neutron investiga
tions. Here, in particular, we would like to attract the
attention of researchers to the need for addressing the
second mode of neutron decay—that is, the need for
launching experiments devoted to radiative beta decay,
which have never been performed.

2. ASSESSING REALIZATION
OF THE STANDARD MODEL

Let us discuss basic experimental facts used to con-
firm that the Standard Model is realized in beta decay.
We note that, while, in the period of consolidation of
the Standard Model, relevant investigations were
planned in such away asto demonstrate the validity of
basic principles underlying this model and were there-
fore full-scale, presently—when there is no doubt
about its validity at the dominant-contribution level—
the focus of attention is often on proving the consis-
tency of the standard two-component form of the weak-
interaction Hamiltonian. Historically, two alternative
approaches to analysis were used in studies devoted to
beta decay: before the late 1980s, great emphasis was
placed on data concerning 0*-0* nuclear transitions,
along with neutron data; from the early 1990s, how-
ever, the priority in analysis has been given to neutron
data, whereas nuclear data were only invoked to check
the results. The latter version of analysis seems prefer-
able because, intheformer, it istacitly assumed that the
vector constant of weak interaction takes the same
value in nuclear and in elementary beta decay, but this
follows only from the additional use of the conserva-
tion of the vector current (CVC hypothesis, which
requires confirmation itself).

We begin by giving an account of the approach rely-
ing on information about 0-0 nuclear transitions.
Allowed 0*-0* transitions in isotopic triplets of nuclei
present avery convenient object for aprecision investi-
gation of betadecay; for thisreason, experimentsin this
field reached ahigh level of precision earlier than other
relevant experiments. Two properties of 0-0 transitions
set them apart from others: (i) only the Fermi (Sand V)
versions of interaction are realized in them; (ii) nuclear
matrix elements for such beta transitions between the
neighboring components of isotopic triplets have the
simple form

MZ = T(T+1)-T/(T,+1), (12)

where T and T, = (N — 2)/2 are, respectively, the total
isospin and its projection in the fina state of a given
beta transition. In particular, M,f = 2 for the group of
the transitions in question with T =1 and T, = 0. An
analysis of specific experimental data involves intro-
ducing corrections of the Coulomb and the nuclear
type, these corrections being dependent on the structure

of the chosen nucleus [41-43]. Presently, such experi-
ments have been performed for the beta transitions in
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Fig. 1. Experimental values of the quantities (Ft) versusthe

nuclear charge Z and their mean value Ft (hatched band)

with the uncertainty value adopted in the present analysis
(borrowed from [43]).

the following nine nuclei: 1°C, 40, 26MAl, 34Cl, ¥"K,
48¢, 40V, S%Mn, and >*Co. An analysis of the experi-
mental data for these nuclei leads to the following
results[43].

Let us introduce quantities (Ft) that are directly
related to the fundamental weak-interaction constant
Gvoo and which aready include the calculated Cou-
lomb corrections &, and the calculated structural cor-
rections dg, which depend on a specific nucleus. These
guantities and the vector constant of weak interaction
for 0-0 transitions are related to the experimental val-
ues (ft) asfollows:

(Ft) = KIn2/(2GJy) = (ft)(1+8g)(1-3),

K = 21°h c®/(mc?)° (13)

= 8120.271(12) x 10 ° GeV ™" s,

The results of the calculations for (Ft) are displayed in
Fig. 1 [43]. It can be seen from this figure that the
experimental values are concentrated around some

mean value Ft. Concurrently, it turns out that the sta-
tistical scatter is less than the uncertainties in the theo-
retical corrections. According to those experimental
data, the mean values of Ft and G, , are the following:

Ft = 3072.3+0.9 (stat.) + 1.1 (syst.),

Gvoo = 1.4173(11) x 10 I m°.

(14)
The quantity Gvoo can be compared with the muon-
decay constant G,; their ratio, taken with allowance for
the interna radiative corrections A in the decays of the
muon and the neutron [11, 13, 43], determinesthe element
V4 Of the Kobayashi-Maskawa matrix [that this matrix
element entersinto the unitarity relation (11) makesit pos-
sible to check independently the value G ]

Vea = KIn2/(2Gd,)(1+ Ag)Ft,
Ag = 0.0240(8), |V,4 = 0.9740(5),
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IV, = 0.2196(23), |V, = 0.0032(8),
V2, + V2 + V2 = 0.9968(14).

It can be seen from the unitarity relation that, by and
large, the constant G, , as determined from the up-to-
date data on 0-0 transitions agrees with data on ele-
mentary particles, but the possibility of nonstandard
contributions cannot be ruled out completely at alevel
of 2.50. If we disregard this discrepancy, assuming the
strict conservation of the vector current in accordance
with the CV C hypothesis, data on 0-0 transitions deter-
mine the weak-interaction constant Gy

Given the constant G, afull description of neutron
beta decay within the Standard Model requires fixing
the second fundamental parameter of the theory, the
constant A. For this, we can invoke data from one addi-
tional experiment. This can be either measurement of
the neutron lifetime or measurement of any of the neu-
tron correlation parameters (a, A, and B). Within the
Standard Model, these parameters are given by

(f,T,) = KI(GZ)(1+3\) 7,
2 2 5 (16)
a=(1-A)/(1+3)%), A==2A(1+A\)/(1+3)\,
B = —2A\(1-A)/(1+3)\%), f, = 1.71465(14).

In thelast study of Towner and Hardy [43], the value of
f, wasrefined, f, = 1.71489(2); however, wewill usethe
commonly accepted value. It is obvious that, for analy-
Sis, it is convenient to use those parameters that are
characterized by the highest experimental accuracy
achieved so far and by the highest sensitivity to varia-
tionsin A. Detailed surveys of the current experimental
situation concerning the measurements of the above
parameters are given in [8-10]. In the present article,
werestrict ourselvesto brief comments on those exper-
iments, paying special attention to the points that are of
importance for our analysis.

At present, the measurements of the neutron life-
time are characterized by the highest relative accuracy.
Such measurements have been conducted many times,
with an ever improved accuracy, since the early 1950s
[44, 45], but the most impressive advances were made
in the late 1980s, when the experimental errors reached
the level below 10 s and when the modern methods for
the storage of ultracold neutrons began to be devel oped.
Presently, seven experiments of this class have been
performed [46-52]. According to the procedures used,
they can be partitioned into two groups: beam experi-
ments[46, 51] and experiments with ultracold neutrons
[47-50, 52]. In the mgjority of the experiments from
the second group, the simplest properties of ultracold-
neutron interaction with the surface of the neutron-con-
taining vessel were assumed a priori, which made it
possible to extrapolate the resulting data to the limit
where the escape of ultracold neutrons from the vessel
due to surface effects can be disregarded. In recent
years, however, several independent groups discovered

(15)
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anew mechanism of such effects, which was neglected
in the above studies (see, for example, [52]). This casts
some doubt on the values presented previously for sys-
tematic effects. This criticism does not refer only to the
results reported in [50, 52], where the flux of neutrons
leaving the vessel was monitored from outside indepen-
dently. For thisreason, our further analysisrelieson the
results from [52]; in support of this choice, we aso
recall that, owing to the high accuracy of those results,
their contribution to the world-average value (weighted
mean over al data) of the neutron lifetime is dominant
at present. The list of experiments that measured the
neutron lifetime and which achieved accuracy higher
than 10 sisdisplayed in Table 1. For the world-average
value of the neutron lifetime and for the constant A
obtained from it by using data on 0*—0* nuclear transi-
tions, the results of these experimentsyield

T, = 8857+10s, A = -1.2675(10).  (17)

Let us briefly comment on the results obtained by
studying the correlation between the neutron spin and
the electron momentum (spin—electron correlation) in
neutron decay. Only two experiments of this type had
been performed before the mid-1990s [53-55]. The
mean value of the parameter A as extracted from those
experiments differed significantly from the value
obtained by rescaling the neutron lifetime into this cor-
relation through the constant A. An analysis of this sit-
uation, which is known as the experimental neutron
anomaly [20], revealed that it was necessary to perform
additional experiments of this type. This was recently
done by two independent methods [56, 57]. (We
restricted our analysis to the results obtained prior to
1998 and did not include, at this stage, the results
reported in [58].) However, the results of these new
experiments, which removed, by and large, the above
anomaly, still lead to ambiguous conclusions, because
the extremes of the experimental values from [55] and
[57] differ by more than three experimental errors (see
Table 2). If we nevertheless assume that this discrep-
ancy is of a purely statistical origin, the mean experi-
mental value of the parameter A (corrections apart) and
the value of A extracted from it are

= —-0.1161+0.0007, A = —-1.2664(19). (18)

We note that, among the neutron correlation parame-
ters, Aischaracterized by the highest sensitivity to vari-
ations in the constant A. The parameter specifying this
sensitivity isdA/dA = 0.38.

The high accuracy of the results of new measure-
ments of the parameter of the spin—electron correlation
in neutron decay made it possible, in the early 1990s, to
propose and implement an alternative method for deter-
mining the parameters of weak interaction within the
Standard Model. This method is based on the analysis of
purely neutron results without resort to data on 0*—0*
nuclear transitions [8]. Indeed, a set of data on the neu-
tron lifetime, which is determined by two independent
basic weak-interaction constants Gy and Gag = AGyg,
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Table 1. Display of experiments that measured the neutron
lifetime

- Proce- Refe-
Y ear Institute dure T, S rences
1988| Kurchatov Institute |nbeam | 891+9 [46]
1989| Bonn-ILL Ultra- 877+10 | [47]
cold
neutrons|
1989| ILL—Sussex Univ.— |Ultra= |887.6+ 3 [48]
Rhode Island Univ. | cold
neutrons|
1992| PNPI-JINR Ultra- [888.4+4.3| [49]
cold
neutrons
1993| Kurchatov Institute— |Ultra- | 882.6+2.7| [50]
ILL cold
neutrons|
1996 | Sussex Univ.—LL nbeam [889.2+4.8| [5]]
1997| Kurchatov Institute— |Ultra- | 885.4+ 1.3| [52]
ILL cold
neutrons

Table 2. Display of experiments that measured the spin--
electron correlation

Year Institute Procedure A Refe-
rences
1986|ILL PERKEO-I |-0.1146 £ 19| [53]
1991| PNPI-Kur- ep coinci- —0.1116 (first | [54]
chatov Insti- |dences publication)
tute —0.1135 £ 14| [55]
(correction
and adden-
dum)
1995|ILL drift chamber | -0.1160 £ 15 | [56]
1996|ILL PERKEO-II |[-0.1190 % 13| [57]

and data on the spin—electron correlation, which is
dependent on the ratio of these constants, makesit pos-
sible to deduce their experimental values directly with-
out invoking data on nuclear transitions. These values
can then be used to check the results if we additionally
assume fulfillment of the CVC hypothesis (conserva-
tion of weak vector current), which wasin fact assumed
to be valid in analyzing data on 0*—0* nuclear transi-
tion.

In a specific implementation of this method for data
analysis, two bands of the values of Gy and Gpg that
are alowed by experimental data on f.t, and on the
ratio Gpg/Gy as rescaled from the values of the corre-
lation parameter A in accordance with (16) are con-
structed in the plane spanned by these variables. The
intersection of these bands determines the region of
alowed values of the fundamental constants G, and
Gag according to data on neutron decay that are treated



1362

GAB’ J m3
x107021 '

H | ]

i
~179k 1.4173(11)

A=-0.1190(13)

WH%MU—;
~1.80} .
| bA:().usm)

1.4183(18)

1 1 1 1
1.41 1.42 1.43 x 10762
G‘/B, J m3

Fig. 2. Regions of allowed values of the beta-decay con-
stants Gy and Gpg as obtained from a global analysis of

data on the neutron lifetime (world-average value) and data
on the coefficient A of the spin—electron correlation from
[55] [A = -0.1135(14)] and [57] [A = —0.1190(13)], as well
as from the weighted mean value A = -0.1161(7) (see
Table 2) at the same neutron-lifetime value.

on the basis of the basis of the Standard Model. Figure 2
shows three such regions corresponding to the world-
average value of the neutron lifetime from (17) at three
values of the parameter A: the average value from (18)
and two extreme experimental values obtained in [55]
and in [57], respectively. In addition, this figure dis-
plays the values of the constant G, , according to data
on 0*—0* nuclear transitions and the values of the anal-
ogous constant that were extracted from data on ele-
mentary-particle decays by using the sum rule (11) for
the Kobayashi—Maskawa matrix element. From Fig. 2,
it can be seen that the world-average value of the
parameter A leadsto the region of G, valuesthat isvir-
tually coincident with the region of the allowed values
of Gy,_o- However, theresult of aglobal analysisof data
on the neutron lifetime and data from [55] differs con-
siderably from the G, , val ue as obtained from dataon
0-Otrangitions. A similar discrepancy, but in the region
of smaller values of G, is observed when the results
from [57] areincluded inthe analysis. By and large, the
above analysis confirms the agreement of modern data
with the Standard Modél, but it indicates that new pre-
cision measurements of the parameter A are required
for removing the existing discrepancies. { Werecall that
such experiments are being performed at the Laue-
Langevin Ingtitute (Grenoble) [58] and are planned in
LosAlamos at a higher level of precision [59].}

Experiments to measure correlations of the spin—
neutrino type are much more difficult in implementa-
tion than experiments studying the spin—€lectron corre-
lation. This is the reason why only in recent years were
experiments of the former type performed at a precision
level [60, 61]. The accuracy achieved there made it pos-
sible to obtain the following independent estimate of A
(we emphasize that the uncertainty islarge in that case):

B = +0.9820 + 0.0040, A = -1.3388(479). (19)
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In relation to the other correlation parameters, the
guantity B is less sensitive to variations in the constant
A. The parameter determining this sengitivity is
dB/dA =0.084, which is much less than the above value
of dA/dA.

Finally, experimental data on the electron—neutrino
correlation in free-neutron decay can also be used for
the purposes of independent analysis. We have already
indicated that, for the first time, such experiments were
successfully performed by an ITEP group with the par-
ticipation of Vladimirsky in the 1960s [3-5]. Unfortu-
nately, their implementation proved to be extremely
difficult, and only one such experiment has been per-
formed so far at a level of precision better than 10%
[62]. It should be emphasized that this experiment dates
asfar back asthe 1970s. Sinceit was naturally based on
the facilities and procedures of that time, it is highly
desirable to repeat it at a new level. The value of the
parameter a as determined by employing the data from
that experiment and the corresponding value of A are

= —0.1017 +0.0051, A = -1.2591(168). (20)

We would aso like to indicate the sensitivity of this
experiment to variations in the constant A. The param-
eter specifying this sensitivity has a value close to the
corresponding value for A: da/dA = 0.30.

In order to determine the weak-interaction constants
from experimental data on the beta decay of the free
neutron, we have so far analyzed data of independent
experiments, paying no attention to the interplay of the
different experimental parameters. However, such an
analysis can be performed with allowance for thisinter-
play in accordance with equations (16) [63]. Assuming
independent Gaussian distributions in each of the
above-type experiments, we can determine the most

probable value of the constant A (A ) that is consistent
with datafrom the entire set of neutron experiments; by
using this value, we can then again construct the
expected, most probable, values of the neutron param-
eters. Such an analysis was performed in [63]. The
results are

A = —1.2673(10), T, = 88595,
= -0.1042, A = -0.1165, B = 0.9877.

From a comparison of these results with experimen-
tal values of the corresponding parameters, it follows
that almost all of them are consistent with experimental
data within one standard deviation. The greatest dis-
crepancy of 1.50 is observed for the parameter B. This
highlights once again the need for independent experi-
ments for verifying its experimental value.

21

The results for A can in principle be used again in
an independent analysis of neutron data to extract the
values of Gy and Gpg by the method described above
(see Fig. 2). Such an analysis was recently performed
by Towner and Hardy in the report presented at the
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symposium WEIN-98 [43]. They used the above data
on the neutron lifetime and on the coefficient A and
invoked additional data on A from a new experiment
performed at the Laue-Langevin Institute [58]. These

new dataon A [A = -0.1187(8)] shift the mean value A
to the region of larger absolute values and correspond

to the mean value of A = —1.2735(21). Let us now
determine the value of the matrix element V,4 by com-
bining this extreme value and the data on the neutron
lifetime and calculate its contribution to the sumrulein
(11). Theresults are [43]

IV = 0.9714(15),

2 2 2 (22)
Vig+ VstV = 0.9919(30).
Thus, theinclusion of new dataon A leadsto thefur-
ther violation of the sum rule for the Kobayashi—
Maskawa matrix up to alevel of three standard devia-
tions. This conclusion should be taken to be prelimi-
nary. It obviously requires confirmation—for example,
in the experiments planned in Los Alamos.

Thus, we seethat, by and large, the Standard Model
describes well the entire set of current data on neutron
decay. Within this description, further experiments are
required, however, for confirming the self-consistency
of these data and their consistency with independent
experiments studying 0-0 transitions and strange-parti-
cle decays at a precision level. On the other hand, the
above data leave room for deviations from the Standard
Model at alevel of 1%. Thisenablesusto consider now
the problem of quantitatively estimating the possibility
for such violations under specific assumptions about
their form prescribed by the hypothesis under investi-
gation.

3. ESTIMATES FOR THE HYPOTHESIS
OF RIGHT-HANDED CURRENTS

Let us investigate constraints imposed by available
neutron data on the possible admixture of the contribu-
tions from right-handed |epton currents to the Standard
Model. According to modern theoretical concepts, the
right-handed neutrinos exist in the schemes where
heavy right-handed Wy bosons are introduced along
with the standard | eft-handed W, bosons. The simplest
model featuring right-handed currents, the so-called
explicitly symmetric model [17, 18], corresponds to
VQ2), x VQR)g x U(1) symmetry. In this model, two
additional parameters—the mass of the right-handed
boson (it istheratio n of the squared masses of the | eft-
and right-handed bosons that is actudly used) and the
angle of mixing between the left- and right-handed
bosons, {&—are introduced along with the parameters of
the Standard Moddl. In this scheme, the general Hamilto-
nian of the weak nucleorH epton interaction is given by

_ .U .U .U T
Hre = [@d uj1 + bIrujr+ €I ur + dIgyic]s
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(jL)p = (qTeyp(1+y5)vae)v
(R = (WeVu(1-vs)W,e),
(‘]L)p = (Lp_pyu(l_)\Nys)qJn)’

(Jr)y = (LIprp(l +AnYs)Wh).

We note that the universality of the bare axial-current
constant Ay, which can a priori be different from the
well-known experimental value A, is assumed here. In
the explicitly symmetric model conserving CP invari-
ance, theconstantsa, b, ¢, and d of the Hamiltonian Hgc
are related to the basic parameters of the model by the
equations

a = (g°/8)cosB((cosE)’/m: + (sin)?/m?),

(23)

b = (g°/8) cosB((sin&)*/m: + (cost)’/m3), (24)

¢ = d = (g°/8)cosB.sin& cosé (1/m; — 1/m),

where g is the coupling constant for the basic interac-
tion of leptons and quarks with W bosons, while cos 8.
is the cosine of the Cabibbo angle. Exchange weak
interaction is mediated by the physical bosons W, and
W,, which are represented by mixed states of massesm,
and m,, the mixing of theleft- and right-handed bosons
that results in the formation of the W, and W, bosons
being specified by the scheme

W, = W, cos + WrsIng,
W, = Wgcosg — W, sing.

The parametersa, b, ¢, and d and the phenomenol ogical
constants of the Hamiltonian in (1) are related by the
equations

(25)

(Gep/+/2)Cy = a+b+c+d
= (g°/8) cosO[ (1 — sin2&)/m? + (1 + sin28)/m5],

(Geg/+/2)Cy = a—b-c+d
= (92/8) cosB.cos2&[1/ mf -1/ mﬁ] :
(Gep/+/2)Cp = A(@+b—c—d) (26)
= (g°/8) cosB[ (1 + sin2&)/m. + (1 — sin28)/m3],
(Grp/+/2)Cy = (Grg//2)CyAy = Ma—b+c—d)
= (g°/8)cosB.cos28 CA[1/m’ — 1/m7],
(Gyg/+/2) = (g°/8)cosB/m.

(In the scheme featuring right-handed currents, it is
assumed that Ggg = Gyp.) It should be noted that, in the
specific model being considered, there isthe additional
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condition ¢ = d, whence it follows that C, = Cj A,.

The Standard Model is obtained in the limit where
& — 0and m, — oo. It should be emphasized that, in
the schemeinvolving right-handed currents, the univer-
sal constant G is determined as the coupling constant
for W,-boson weak interaction, so that C, —~ 1 only if
the right-handed currents are suppressed.

In general, the Hamiltonian of the model being
investigated depends on four parameters—Gy, Ay, &,

and n = mf /m§—which must be determined from

experimental data. For this reason, a full analysis
requires at least four independent experiments. of
these, one specifies the absol ute scale—that is, the con-
stant G,g—while the three others determine the rel ative
guantities. Our objective isto obtain experimental con-
straints on these parameters by using data on neutron
beta decay and, if those are insufficient, by invoking
supplementary data, thereby estimating the possible
contribution of right-handed currents to the effective
weak-interaction Hamiltonian. Here, we ddiberately
restrict ourselves to the simplest version of the model
featuring right-handed currents since, in more compli-
cated versions, the number of model parameters is
greater, so that the resulting constraints become less
reliable.

Let us establish relations between the experimental
characteristics of neutron beta decay and the aforemen-
tioned four parameters. We begin by discussing relative
measurements that determine the right-handed-current
parameters proper, postponing the estimation of the abso-
lute value of the constant G, to the end of the section.

Let usfirst consider data on the neutron lifetime. In
the explicitly symmetric model involving right-handed
currents, the ratio of the quantity (Ft),_, for Fermi 0-0
trangitions to f,t, including the neutron lifetime is
determined by the relation

2(Ft)ooIn2/(f,1,) = 1+3A\°

= 1e3(C e o)

= 1+3\2[(L+n?) + (1=n?)sin2E]/[(1+ 1)
—(1-n")sin2¢].

(Hereand below, wefirst present the general expression
for the relevant quantity and then its representation
within the explicitly symmetric model.) It can be seen
that, in the scheme featuring right-handed currents, the
above ratio, which is determined by the experimental
constant A, depends on the bare coupling constant Ay
for the axial-vector interaction and on the model
parametersn and & in a complicated way; it should be
borne in mind here that the bare constant can differ sig-
nificantly from the relevant experimental value. In the
absence of right-handed currents, these constants coin-
cide (A = A\y). By assuming that the weighted mean of
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the experimental value A is A = —1.2673(10), wefind a
first equation relating the parameters of the right-
handed currents:

A? = AR[1+n°+(1-n®)sin2E]/[1+n° o8
—(1-n%)sin2&] = (1.2673(10))° = 1.6060(25).

In contrast to other correlation experiments, mea-
surement of the €l ectron—neutron correlation in neutron
decay furnishes no new information in relation to the
neutron lifetime. In order to demonstrate this explicitly,
we note that, with allowance for right-handed currents,
the correlation coefficient a has the form

a = ([c)*+CyI = |CA* = ICAIP)/(ICy)? 00

+ICUP +3[Cy* +3ICH ) = (1-A%)/(1+3)),

where A? is determined by equation (28), as before.
This situation arises when we assume that the W boson
is a vector particle, in which case only the vector and
axial-vector versions contribute to the weak-interaction
Hamiltonian. It will be seen below that the discrepancy
of 0.50 between data on the electron—neutrino correla-
tion and the mean neutron lifetime—previously, we
revealed this discrepancy in analyzing the Standard
Model—may suggest |eptoquark-mechanism-induced
violation of this aspect of the Standard Model. In this
case, the electron—neutrino correlation provides new
information. In analyzing the hypothesis of right-
handed currents, experiments studying this correlation
can at best serve asatest of dataon thelifetime—unfor-
tunately, the accuracy of the former is presently much
poorer than the accuracy of the latter.

Let us analyze the experiments devoted to correla
tions of the spin—electron and spin—neutrino types.
Upon taking into account right-handed currents, the
relevant coefficients take the form

_ —4Re(C,C¥) —2Re(C,Cy + C},C})
ICy|*+|CUI* +3|CAl* + 3ICAI°

A

—2(1-n)cos2¢
1+n°~(1-n")sin2¢

L (1+N)AG+Ay) +(1-n)sin28 DAy

1+ 3)\? ’
‘ . ' 30)
5 = 4RE(CACY) ~2Re(C\Cy +C\C)
|C\|*+CUI” +3|CAl* + 3ICAI°
_ 2(1—-n)cos2&
1+n°—(1-n’sin2¢
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(LN (AR =Ay) + (1—-n)sin28 DAy
1+3\°

In the ensuing analysis, we use both of these relations,
taking the current experimental values of A =
-0.1161(7) and B = +0.9820(40) for the correlation
coefficients.

In analyzing the hypothesis of right-handed cur-
rents, we will need, in addition to data from correlation
experiments for neutron beta decay, data extracted from
polarization experiments. The polarizations of the elec-
tron and the neutrino originating from neutron beta
decay are determined by the experimental parameter

_ 6Re(CACR) + 2Re(C,CY)
" e’ +IC P +3ICd? + 3ICh)
_ (1—n)cos2¢
1+n°=(1-n°sin2g
L (L+N)(1+3A3) +(1-n)sin28 (3N, - 1)
1+3\° ’

which takesthe value of H,, = 1 when there are no right-
handed currents. It isinteresting to note that, within the
explicitly symmetric model featuring right-handed cur-
rents, there exists a correlation between the parameters
A B, H, and A

(A+B)2+ A H, +(1=3\)(B=A)/(4Ay) = 0. (32)

Experimental constraints on H,, could be deduced
from direct measurements of the polarization of the
electron from neutron beta decay. Unfortunately, no
such experiments have been performed so far; for esti-
mates, we can therefore use only indirect data that
make it possible to extract the parameter H, for neu-
trino polarization from experiments aimed at determin-
ing the cross section for inverse-beta decay on aproton
for reactor antineutrinos. Indeed, it was first indicated
in [64] that the experimental cross section o is approx-
imately related to H,, by the equation

o = ay(1+H)/2, (33)

where g, is the cross section in the Standard Model
(that is, without right-handed currents) as determined,
for example, from the neutron lifetime by using the
guantity A. According to the latest data from reactor
experiments measuring the cross section for
antineutrino—proton interactions, H,, is estimated as [65]

H,=>0.96 (67%C.L.). (34)

Unfortunately, this estimate is not optima—
because of the large error, it does not lead to constraints
on the right-handed-current parameters better than a
few percent; for this reason, we will not use it in the
ensuing analysis. From the viewpoint of our purposes,

31

PHYSICS OF ATOMIC NUCLEI  Vol. 63 No. 8 2000

1365

data on the cross sections are disadvantageous in that
the parameter H, appears in the experimental quantity
quadratically, whence it follows that, in order to obtain
the value of H,, with a precision higher than 1%, it is
necessary to measure the cross section with an experi-
mental uncertainty that is an order of magnitude less
than that in the best currently available cross-section
measurements, where this uncertainty is between 2 and
3%. In the experiments being discussed, so high a pre-
cisionisnot attainable at present. Thismakes us seek an
aternative in polarization experiments on nuclei where
some parameter similar to H, would enter into the mea-
sured quantity linearly.

As such an dternative, we invoke data on the polar-
ization of positrons from nuclear beta transitions. Spe-
cifically, we make use of precision measurements of the
longitudinal polarization of positrons from purely
Fermi and purely Gamow—Teller nuclear transitions,
where the polarization coefficients are independent of
nuclear matrix elements. Indeed, the polarization of
decay electrons (positrons) that originate from Fermi

*—0* transitions occurring in the presence of right-
handed currents is determined by the quantity

_2Re(C,C¥)
=+ 2 12
ICy|” +|Cyl
_ p(1=-n)cos2§(1+n—(1-n)sin2g)
1+n°~(1-n"sin2¢

The analogous quantity for Gamow-Teller transitions
has the form

(35)

_2Re(CACR)
T2 "2
|CAl” +|Cal

_ (1-n)cos2&(1+n +(1-n)sin2¢)
1+n°+(1-n)sin2¢

In a number of studies, the ratio of positron polar-
izations in Fermi and Gamow-Teller beta transitions
for close pairs of nuclei was measured to a high preci-
sion. By way of example, we indicate that such mea-
surements were performed in [66] for O —
UN/C — B and in [67] for *MAl —
26Mg /3P — 30Si. From (35) and (36), it follows that
thisratio can be written as

Hor =
(36)

oo He
Hor

_ (1+n-(1-n)sin28)(1+n°+(1-n")sin2§)
(1+n+(1-n)sin2&)(1+n”~(1-n*sin2g)
_ A’(1+n—(1-n)sin2§) GD
A2(L+n+(1-n)sin28)




1366

The experimental values obtained for P in [66, 67] and
the mean value of this quantity are

He/Hgr = 1.003(4) [66],
He/Hgr = 0.9996(37) [67],
(He/Hgr) = P = 1.0012(27).

In our analysis, we will use the last value.

Thus, we have specified the range of experimental
data that will be used to extract the parameters Ay, &,
and n, which characterize right-handed currents. Pro-
ceeding to analyze them directly, we note that, from the
previous experience, it follows that the approximations
n? < 1, sin2g = 2§, and cos2& = 1 are quite legitimate.
In this case, the set of equations for determining the
parameters of right-handed currents in terms of the
experimental characteristics has the form

A% = N2(L+28)/(1-28),
(1+30%)A = 2A(=1-A\(1+ X)),
(1+32\9)B = 2A(=1+Ay(1+ X)),

NI(PAZ) = (1+ X)/(1-X)

(X=2¢(1-n)/(1+n)).

Since n < 1, the signs of X and & coincide, and two
types of solutions are possible:

£20, X=0, AZ<A%
£<0, X<0, Ai=A’

Hence, |\y| is dways less than the experimental value
|A] a positive mixing angles and is greater than it at
negative mixing angles (the equality of these two quan-
tities corresponds to the absence of right-handed cur-
rents). At small mixing angles, the difference Ay — A is
proportional to the mixing angle €.

The set of equations (39) includesfour equationsfor
three unknowns, but it can easily be shown that thereis
therelation

(1+3\°)(A+B) = —4\. (41)

It will be seen below that this relation plays an impor-
tant role in a specific analysis. Theinclusion of relation
(41) makes it possible to confine our consideration in
the following to a set of three equations. It isconvenient
to recast these three equations into the form

A% = A3(L1+28)/(1-28),
(B—A)/(B+A) = -Ay(1+X),
ANI(PAL) = (1+ X)/(1=X).

By performing aglobal analysis of this set of equations
with allowance for the scatter of experimental charac-
teristics, it is possible to determine, within fixed errors,

(38)

39)

(40)

(42)
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the region of values of the right-handed-current param-
eters Ay, &, and n that is compatible with modern exper-
imental data. For example, it can be constructed by per-
forming a step-by-step sampling of triples of these
parameters and by selecting those for which the values
of A, (B—A)/(B+ A), and P determined by (42) are com-
patible with datawithin the chosen error corridors. This
would yield athree-dimensional region in the space of
the above parameters that is analogous to that obtained
previously by one of the present authors (Yu.V. Ga
ponov) in [68], but which is reduced somewhat by tak-
ing into account more recent data. However, we take
another way, using the scheme adopted in the literature.
We begin by making an important comment that estab-
lishes the relationship between the two approaches in
guestion.

In all studies published so far that are devoted to the
problem of right-handed currents (with the exception of
[68]), the authors generally restricted themselves to
constructing the experimentally alowed region of two
parameters, & and ), and to estimating, on thisbasis, the
lower limit on the admissible mass of the right-handed
boson, paying no attention to estimates of the parame-
ter A\. This situation is natural if one uses only part of
data determining thetotal set of the parameters of right-
handed currents—for example, if an analysis employs
only data on the neutron lifetime and the correlation
coefficient B or A (or both of these coefficients), or if
one assumes a priori that Ay = A. In principle, relations
(42) make it possible to eliminate the parameter Ay in
such away that only the unknown parameters & and n
will appear in the reduced set of equations. We then
obtain

(B=A)/((B+A)N) = J(1+28)/(1-28)(1+ X),
(1+28)/((L-28)P) = (1+X)/(1-X), (43)
X =2§(1-n)/(1+n).

This set of equations, together with the additional con-
dition (41), is usualy investigated in the literature
devoted to evaluating the hypothesis of right-handed
currents in neutron and nuclear beta decay [9, 11, 19—
22]. It was emphasized above, however, that, in a full
pattern that is described by the Hamiltonian in (23), the
contribution of right-handed currents depends on all
three parameters. Restricting our consideration to two
of them, we actually pay no attention to the quantity Ay,
an analog of the axial-vector constant in the case of
right-handed currents. However, this elimination of the
bare constant from the analysis can hardly be justified.
For this reason, we deem it necessary to present the
results of a full analysis including constraints on Ay,
which have not yet been considered in the literature. It
isobviousthat our resultsfor the parameters & and n do
not differ from the most recent bounds of these param-
eters (see, for example, [69]). For this reason, we
merely present the resulting bounds of & and n, restrict-
ing ourselves to a brief discussion on them supple-
mented with the relevant references. At the same time,
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we quote the result of our analysis concerning essen-
tially new information about the possible value of the
bare coupling constant for the axial-vector weak inter-
action, a quantity that we believe to be of paramount
importance for theoretical constructions, but which has
not yet been analyzed.

With allowance for the most recent data on neutron
decay and data from nuclear polarization experiments,
the admissible region of the right-handed-current
parameters & and n at a 90% C.L. was presented by
Deutsch at the Symposium WEIN-98 in Santa Fe [69].
Thisregionisdemonstrated in Fig. 3. As can be seen, it
includes the origin of coordinates corresponding to the
Standard Model, so that thereisno reliable evidence for
the existence of right-handed currents. The maximum
values allowed by experiments for the mixing parame-
ter & occur near n =0 and, at aC.L. of 1.50, fall within
the interval

~0.037 < £ < +0.035. (44)

For the parameter n, which determines the mass of the
right-handed boson, the maximal value is achieved at
& =0, amounting ton = 0.067; for thelower limit onthe
mass of the right-handed boson, thisyields

Mg = 310 GeV. (45)

By using the first relation from (42), we can now
estimate the values of the parameter A\ that are consis-
tent with datain the allowed region of the other param-
eters. Ata90% C.L., thisresult is

-1.335< A\ <-1.175 (46)
at an experimental value of A =-1.2673(10). Thus, we
conclude that, in the case of right-handed admixtures,
the bare constant for the ratio of the vector and axial-
vector versions of weak interaction can differ notice-
ably (by 5-7%) from the experimental value even at
moderately small mixing angles (§ = 0.035). The
allowed values of Ay for smaller & can also be derived
from the first relation in (42) by using the fact that the
difference |A — Ay| inthe allowed region is proportional

to [§].

It should be noted here that, in the calculation of the
admissible upper bound on 1, an important role is
played by relation (41), which must be satisfied in the
Standard Model aswell and which includes only exper-
imental data, not involving the parameters of right-
handed currents, since this relation, which must be met
for data sets subjected to analysis, significantly restricts
the allowed region of these parameters.

Thus, we have determined the region of values
admissible for the relative parameters of right-handed
currents. Let us now consider the parameter Gy; in the
case of right-handed currents, it specifies their absol ute
scale. Let us estimate it by using data on 0-0 transi-
tions. With allowance for right-handed currents, the
ratio of the values of (Ft),_, in the Standard Model and
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Fig. 3. Region of allowed values of the right-handed-current
parameters& andn at a90% C.L. (unhatched). Plotted along
the right ordinate are the corresponding values of the mass
of the right-handed Wi boson (borrowed from [69]).

in the scheme involving
(Ft)g/(Ft)g, is given by

right-handed currents,

(F)s/(Ft)g = (|CI| +|cy?)2
= (la+d*+|b+c|*)/Gy= 1+ 2¢.

Hence, a comparison of the experimental value of this
guantity with the value expected in the Standard Model
will give a direct estimate of the parameter €. If we
adopt the validity of the CV C hypothesis and of the uni-
tarity condition for the elements of the Kobayashi—
Maskawa matrix, we can estimate these matrix ele-
mentswith the aid of dataon strange-particle decays. In
this case, the deviation of the value of (Ft); from the
that in the Standard Model would be associated with
the violation of the sum rules (11) for the matrix ele-
ments. An analysis of the possible sum-rule violation
was recently performed by Towner. If hisresult isinter-
preted as the contribution of right-handed currents,
there arises an independent estimate of the mixing
angle for right-handed currents [43]:

& = 0.0015(7). (48)

Thisresult, which corresponds to a deviation from zero
at alevel of two standard deviations, is compatible with
theresults of the above analysis. The estimatein (48) is
one order of magnitude more stringent than that in (44),
but it introduces the CVC hypothesis in the analysis
and unfortunately does not rely on neutron data.

It is useful to compare the constraints on the param-
eters & and n that were obtained from data on neutron

(47)
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Fig. 4. Region of allowed val ues of the right-handed-current
parameters § and n (interna regions of semiellipses) as
obtained from data on p—e decay on the basis of constraints
on the Michel coefficients P &d/p (diamonds) and p
(crosses) [70], aswell as from the possible measurement of
thelongitudinal polarization of electronsin neutron decay to
within 0.1% (squares) [71].

beta decay with the corresponding constraints on the
right-handed currents from the analysis of data on p—e
decay [70]. Experiments of the latter type measure the
polarization of decay positrons. These measurements
make it possible to estimate the Michel coefficients p
and P &d/p, which are presently measured at a preci-
sion of 0.3% (Fig. 4). The resulting constraints on the
parameters of the right-handed currents, -0.04 < & <
+0.04 and n < 0.04, do not contradict the constraints
obtained from neutron data for the mixing angle [see
(44)] and are somewhat more stringent than those for
the ratio of the squared masses [see (45)], but they are
by and large at the same level of precision. At present,
anew series of p—e experiments is under preparation
that are expected to improve the accuracy in the limits
on the various Michel parameters by more than one
order of magnitude [69]. The results of these experi-
ments must strengthen the constraints on the parame-
ters of right-handed currents. However, it should be
emphasized here that, in principle, the contributions of
the right-handed currents to the purely leptonic decay
of the muon and those to the hadron-epton decay of
the neutron can differ, although they are interrelated in
the simplest modelsinvolving right-handed Wy bosons.

In comparing experiments studying neutron and
muon decays, there arise the interesting question of
what the fundamental distinction between these types
of experiments is for the analysis of the right-handed-
current hypothesis and the question of whether it is pos-
sible to obtain, from data on beta decay, constraints
anal ogous to those coming from muon-decay data[71].
It appearsthat this differenceisadirect consequence of
the fact that muon experiments study the polarization of
decay electrons (positrons), whereas such purposes
have not yet been pursued in neutron experiments. At
the same time, such experiments in a direct implemen-
tation or in its modified version aimed at measuring the
degree of polarization of bremsstrahlung photons in
radiative neutron decay or in beta transitions between
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the mirror pairs of nuclel would be extremely interest-
ing, because the constraints that they can set on the
right-handed currents differ qualitatively from those
that exist at present. Predictions of such experiments at
the required level of precision and the corresponding
constraints for the case of a neutron are displayed in
Fig. 4 [71], along with the constraints from p—e decay
at a 0.1% precision of electron-polarization measure-
ments.

4. ESTIMATING SCALAR AND TENSOR
CONTRIBUTIONS

Along with the hypothesis of right-handed currents,
the possibility of violation of the Standard Model due
to the leptoquark-interaction mechanism, which modi-
fiesthe standard Hamiltonian by generating corrections
associated with the scalar and tensor versions of inter-
action, is being actively discussed at present. The gen-
eral theory of leptoquark contributions was given, for
example, in [23-28]. Within a phenomenological
description of the effective weak-interaction Hamilto-
nian (1), whose dominant part corresponds to the stan-
dard theory, there can exist two types of such models:
(i) that in which scalar and tensor corrections involve
the left-handed (standard) neutrino [condition (7)] and
(i) that in which the relevant corrections contain terms
featuring the right-handed neutrino. The latter are
mixed-type models, where the vector and axial-vector
terms of the Hamiltonian describe the physical branch
of the process with the emission of neutrinos having
left-handed helicity and where the scalar and tensor
terms are responsible for the emission of neutrinos hav-
ing right-handed helicity [condition (9)]. The entire set
of experiments devoted to neutron beta decay that have
been performed by now makesit possibleto obtain spe-
cific constraints on the structure of such modelsinvolv-
ing four phenomenological parameters. A more com-
plicated case where leptoquark corrections involve the
right-handed neutrino both in the vector and axial-vec-
tor parts and in the tensor and scalar parts [relation (8)]
can be interpreted as a modified version in which the
model involving right-handed currents (Section 3) is
supplemented with corrections of the second type. In
this case, the total number of phenomenol ogical param-
etersis as great as eight. Since neutron experiments of
only four or five types have been implemented so far, a
precision analysis of such modelson the basis of purely
neutron data is impossible at present; for this reason,
we will not discuss this point any more.

The question of whether the scalar or the tensor con-
tributions (or both of them) can appear in the Hamilto-
nian of beta decay has along history. Since the studies
performed in the 1950s, it has been well known that
precision constraints on these corrections can be
obtained from the estimates of the Fierz terms, which
are proportional to the parameter b in the el ectron spec-
trum of allowed beta transitions [egquation (10)]. In the
general case of the phenomenological Hamiltonian (1),
Vol. 63 No. 8
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the parameters b for Fermi and Gamow—Teller transi-
tions are given by [2, 34]

be = Re(CsCh + CsCi¥)/|CH7,

Re(C;C + CyCi¥)/|Ger|%,

ber =

(49)
ICd? = |cd®+ICsl+|Cu*+ ICy I,

ICerl® = [Ce*+ICHI* +|CAl* + ICAI".

It was emphasized above that, in the absence of
right-handed currents, we can make two basic assump-
tions concerning the physical pattern of additional sca-
lar and tensor contributions. Assuming that these con-
tributions are associated with the left-handed neutrino
and that CP invarianceis conserved and using equation
(7), we obtain

be = CsCv/|CH,

ber = CTCA/|CGT|2!
IC* = [cd*+[c[",
Carl” = [CH* +[Cl".

These relations make it possible to estimate directly the
admixture of the scalar version. But if we assume that
the scalar and tensor contributions are associated with
the right-handed neutrino, then the use of (9) enablesus
to demonstrate that, irrespective of the Cs and C; val-
ues, the Fierz parameters vanish automatically; that is,

b|: = bGT = 0. (51)

We emphasize the specia character of this case, which
will be considered below at some length.

We are now going to derive a quantitative estimate
associated with the contributions of |eft-handed neutri-
nos. Since no special estimates for the possible value of
the Fierz term have been obtained for neutron beta
decay, they will be deduced here from data on nuclear
0*—0* transitions and from data on purely Gamow—
Teller transitions. The first estimates of this kind were
obtained in [43], where they were established by using
admissible deviations of the shape of spectrafor these
transitions from the Fermi shape owing to additional

terms of the E;l type. We note that the inclusion of

(50)

such terms shifts somewhat the adopted values of Ft
for 0-0 transitions and affects the sum rule for the ele-
ments of the Kobayashi-Maskawa matrix. The esti-
mates of Towner yield

Ibe| <0.0077(90% C.L.),

Ft = 3066.4+3.1, |V, = 0.9749(6), (52)
V2 + V2 + V2, = 0.9986(16),
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whence, for the additiona scalar contributions featur-
ing left-handed neutrinos [see equation (7)], we obtain

b = |C4|Cyl/(|C4d* +|C\|) < 0.0077,
IC4/|C\| <0.0077(90% C.L.).

We note that, in relation to the data from the Stan-
dard Model, where the sum rule for the € ements of the
Kobayashi—-Maskawa matrix deviates somewhat from
the rigorous unitarity condition [see equation (11)],
allowances for the possible scalar contributions reduce
the amount of violation of this condition.

The estimates of the Fierz termsin nuclear Gamow—
Teller beta transitions from [9, 27] lead to

ber = —0.0056(51). (54)

For additional tensor contributions involving left-
handed neutrinos [see equation (7)], we obtain

ber = CrCAl(|Cy|* +|C,%) = —0.0056(51),
C./|C, = —0.0056(51).

Thus, the constraints on the Fierz terms allow us to
obtain precision estimates for scalar and tensor contri-
butions featuring | eft-handed neutrinos. Here, however,
no attention is given to the case where the additional
terms in the Hamiltonian describe a process that
involves the emission of neutrinos having right-handed
helicity.

Let usdwell at some length on this case, whichis of
interest from the viewpoint of new physics possibly
involving heavy leptoquark bosons [40]. Physically, it
corresponds to the production of left-handed neutrinos
(right-handed antineutrinos) in the V, A interaction
modes and the production of right-handed neutrinos
(left-handed antineutrinos) inthe S, T modes. Themain
feature of this case is that, owing to the specia condi-
tion (9), the constraints on these contributions are the
weakest, which was demonstrated for the first time
within the phenomenological approach by one of the
present authors (Yu.V. Gaponov) in the review article
[34], published as far back as the early 1960s. Later,
this case was analyzed is a series of studies performed
by the second author (Yu.A. Mostovoy) [35-37], who
proposed an original analytic method valid under the
assumption of CP conservation. Within this method,
admissible scalar and tensor contributions to neutron
decay were constrained in [37] on the basis of experi-
mental data available at that time.

In this section, we develop this method and extend
our analysisto a more general case where the CP-con-
servation hypothesis is not introduced from outset.

By taking into account relation (9), the expression
for the experimental parameters in terms of the con-
stants of Hamiltonian (1) can be represented, in this
case, as

(53)

(55)

fnTn(|GF|2 + 3|GGT|2) = K,
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a(|Cd”+3Ce|") = [Cf* +|Ce" - |Cd"~|CA",
A(ICH" +3|Cqi|") = —2Re(CyC} + C<CY)

2 2 . (56
B(|C¢” + 3|Cqr|") = —2Re(C,Cy —CsCy)

—2Re(CCy —C,C3),

IGel* = GelCd” = Geg(|Cd” +[C["),

|GGT|2 = G§B|CGT|2 = G§B(|CT|2+|CA|2)-

(Here, we use the constant Gy as a normalization fac-
tor, so that C, = 1 in the limit |Cg| — 0.)

By applying the analytic approach developed in [37]
and considering that, in general case, the constants C,
are complex-valued, we derive relations between the
Hamiltonian parameters and the experimental coeffi-
cients 1, a, A, and B. From (56), we can easily obtain
(as before, we assume that Grg = Gyp)

(1+A)N = (Cs—Cy)(Cs—Cy)*
+(Cy—Ca)(Cy—C)*,
(B+a)N = (Cs—Cy)(Cs—Cy)*
+(Cy—Ca)(Cy—Cp)*,
(1-AN = (Cs+ C)(Cs+ Cp)*
+(Cy +CQ)(Cy + Cp)* +4|CT|2+ 4|CA|2’
(B—a)N = (Cs+Cy)(Cs+ Cr)*
—(Cy + CL)(Cy + Cp)* _4|CT|2 + 4|CA|2’
N = (|CS|2+ |Cv|2) +3(|CT|2+ |CA|2)
= KI(Gep(f,Ty)).
From (57), we can deduce two pairs of equations:

(57)

(1+A+B+a)N/2 = |C,-C,°,
(1+ A-B-a)N/2 = |Cs—C4%;
(1—A—B+a)N/2 = |Cy + Cy*+4|C|",
(1-A+B-a)N/2 = |Cs+Cq|* +4C,%.

From the second and the third equation in (58), it fol-
lows that

(L+A)=(B+a), (1-A)=(B-a). (59)
These inequalities are very important because, within
the theoretical scheme being investigated, the experi-
mental parameters A, B, and a must satisfy them.

For the case of real-valued C;, an analytic solution to

equations (58) was found in [37]. It can easily be seen
that, in this case, equations (58) determine completely

(38)
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C,. However, thisis not so if C; can take complex val-
ues. We must then additionally include two experimen-
tal parameters in our analysis that emerge in studying
triple correlationsin allowed betatransitions. These are
the well-known parameter D, which characterizes the
electron—neutrino correlation in the beta decay of
polarized neutrons (or in alowed nuclear beta transi-
tions)—it wasfirst estimated in [72] and was measured
at a precision level in two independent experiments
reported in [73] and in [74] (see Table 3)—and the
parameter E, which is used to describe a J,—e-J, corre-
lation (a correlation between the electron momentum
and the final-nucleus polarization J, in the decay of
nuclel whose polarization is J,—see [34]). The param-
eters D and E are defined by the relations

D(|CF|2 + 3|CGT|2)

= 2Im(-C,C3 - CyCy + CCy +CsCy),

(60)
E(ICe"+3(Cerl)
= 2Im(C,C}¥ + C,Ck —CC¥* —CLC¥),
whence we obtain two additional constraints:
I(D+E)N = (Cs—Cy)(Cs+ Cy)*
—(Cs+ Cy)(Cs—Cy)*, 1)

i(=D+E)N = (Cy—C)(Cy+Cpy*
—(Cy + CA)(Cy—Cp)*.

It follows from thefirst pair of equationsin (58) that
the absolute values of the differences of C, for the V, A
and S, T versions can be determined as simple combi-
nations of the experimental parameters. By analogy
with [37], it is therefore convenient to perform the
ensuing analysis in terms of the differences

Cy—C, = Ny = INv|e®,
lv|> = (1+ A+ B+a)/2,
Cs—C; = NY2u = /Njue®™,
lu? = (1+ A-B-a)/2.

(62)

For the sums of these coefficients, we introduce the
notation

N“% = /N|xe™,
N"y = /Nlyle"”.

Further, we can construct a set of equationsfor x and y.

Cy+C, 63)

Ce+Cr =

PHYSICS OF ATOMIC NUCLEI  Vol. 63 No. 8 2000
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Theresultis
X%+ Ix= v+ v+ [+ ly—ul® +|ul® = 2,
X =Ix=v[*+ v =Iy" +|y—u’~u® = 2a,
(-D+E)/2 = ImvRex—ImxRev
= |v[Ixsin(8, - 6,),
(D+E)/2 = ImuRey-ImyReu
= |ullylsin(6,-8,).

By using this set of equations, we can find that the
phases are related as

(64)

tan(8, —6,) = (E-D)/(IX*+Iyl° + A+a), )
tan(8,-8,) = (E+D)/(IX°+Iy"+ A-a).

By eliminating the dependence on the difference of the
angles from (64), we obtain a set of equations for the
absolute values |x| and |y|:

(X% +1yl” + A)*+a” + D* + E*= 2|x°v|*+ 2]y *|ul’,
XX(vI>=a) - ly(u’ +a) = Aa—DE. 9

We note that, when the parameters D and E vanish and
when x, y, u, and v are real, the set of equations (66)
reduces to that studied in [37].

After straightforward but cumbersome transforma-
tions, we can find that |x|> and |y[* satisfy the equations
(which involve the parameters ju| and |v |)

XU+ [vI®) = 21X °[2lvI*(Jul” + &)
—(lul®+|v|*)(Alul® + a(Ju|® + &) + DE)]
+(Alu®+a(|u’ + a) + DE)*

+(u?+a)*(D-E)’ = 0,

4 2 2,2 2 2 2 2 (67)
V1 (ul® + v ) = 21y [ 2u(v]* - =)

—(lu®+vI*)(Alv|*~a(]v|*—a) - DE)]
+(Alv|*~a(|v|’-a) - DE)*
+(v|*-a)’(D+E)* = 0.

Solutions to these equations can be represented in the
compact form

IXP(ul®+ v = [IvI(ul®+a) £ JaI2lv])]?
+(D-E)’(u’ +v[)71(4lvI?),
VP + vI®)? = [ul(vI® —a) = JA/2lu)]?

+(D+E)’(Ju+ [vI?1(4lul), (68)
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Table 3. Display of experiments that measured the spin—
electron—neutrino correlation

Institute Refe-
Y ear (State) Procedure D rences
1976| ILL (USA- |doublefacility |[-0.0011(17)| [73]
France)
1978| Kurchatov |doublefacility |+0.0022(30)| [74]
Institute
(Russia)

A = 4l |v*(u®v|*~alu®
+alv|®—a" = A(lu* +|v[%)
~2DE(|v|*~|ul) = (D* + E*)(lu* + [v[*)"
For the coefficients C, in the Hamiltonian, we obtain

i(6,-0

2C, = JN(Iv| +|xe @)™,
i,

2C, = JN(=|v] +|xe " *)e™,
2Cs = JN(lul +]yle @ ™™)e™,
2C; = JN(=|ul +|yle®™™)e

Here, the relative phase of the pair of the V, A versions
and the pair of the S T versions are not fixed. Substitut-
ing the quantities [x|, ly|, |ul, and |v| as expressed in
terms of the experimental parameters into (69), we
eventually find that the absolute values of these coeffi-
cients are given by

(69)

i6

u

8/Cy|* = N/(4(1+ A x[J/1+A+B+a

x(3+3A—B+a)+ JAA(L+A+B+a)]
+N(D-E)’/(L+A+B+a),

8/CA° = NI(4(1+ A x[J/1+A+B+a

x(L+A+B-a)FJ4A(1+ A+ B+a)]2
+N(D-E)*/(1+A+B+a),

8/C4° = N/(4(1+A)) x[/1+A-B-a

x(3+3A+ B—a)iJ4A/(1+A—B—a)]2
+N(D +E)*/(1+A-B-a),
8/C|> = NI(4(1+ A x[J/1+ A-B-a

(70)

x(1+A-B+a) ¢A/4A/(1+A—B—a)]2
+N(D +E)*/(1+A-B-a),
AA=[(1+A)°~(B+a)’]



1372

0.2

1.42 1.45 1.48 1.51
X 10762

G]:, J m3

Fig. 5. Probability-density distribution W = dn;/ Zni for
specific values of Gg over small intervals for two sets of

solutionsto the basic set of equations (70) (illustration of the
arguments behind the choice between these solutionsthat is
made for the present analysis and which leads to the value
of Gg close to the independent estimate on the basis of data

on 0-0 transitions).

we _
0.08 D = 0.0003(15)
L E =+0.0030(15)

0.051 D = 0.0003(15)
- E = 0.0000(15)

0.061- D = 0.0003(15)
- E =-0.0030(15)

0.3 0.1 0 0.1 02 x10
Gg,J m3 Gr,J m3
Fig. 6. Probability-density distribution W = dni/Zn1 for
the expected values of the scalar-interaction constant Gg =
Gy|Cs| and the tensor-interaction constant Gt = Gy |Cr | in
the Hamiltonian of beta decay over small intervals at the
mean val ue of the experimental correlation coefficient, D =

0.0003(15), and the values of the coefficient E that are cho-
sen by convention [E = 0, £0.0030(15)]. The number of

solutions dn; is normalized to % n, [that is, to the total

number of events subjected to aMonte Carlo simulation for
the tensor version of interaction at E = +0.0030(15)].
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x[(1—-A)’ = (B—a)’—4A%
_8DE(L + A)(B +a) —4(D*+ E) (1 + A)%,
N = K/(Gug(fTy))-

By way of example, we indicate that, at E=D =0, the
above expressions reduce to those presented in [37]. It
should be emphasized that, if we require that the abso-
lute values of |Cy|, |Cal, |Cg, and |Cy| be redl, this
imposes some additional constraints on the experimen-
tal parameters,

1+A+B+a=0, (L+A)=(B+a), A0, (71)

and the requirement that all values of the squares of the
coefficients C; determined by formulas (70) be positive.
Within the theoretical scheme under investigation and
at known values of the correlation coefficients a, A, B,
and D, thisleads to constraints on the experimental val-
ues of the correlation parameter E, which are presented
below.

We solved the set of equations (70) by the Monte
Carlo method for the experimental coefficients chosen
to be

1=885709)s A =-0.1161(7),
B = +0.9820(40), a = -0.1017(51),  (72)
D = —0.0003(15).

Within this method, we sampled 100000 combinations
for a normal distribution of experimental data with
guoted errors. As aresult, we obtained a set of values
for the Hamiltonian parameters |C,|, |Cy|, |Cg|, and
|C+|, aswéll as of |Cg| and |Cgr|, which determines the
probability density for specific values of agiven param-
eter within some range. The set of the allowed combi-
nations of the signs of square roots appearing in (70)
leads to two possible sets of solutions for the absolute
values of these parameters. Bearing in mind that the
expected value |Gg| = G,;3|C| must be close to the inde-
pendent estimate that was established on the basis of
data on nuclear 0*-0* transitions and data on the
strange decays of elementary particles and must be
consistent with the unitarity condition for the elements
of the Kobayashi—M askawa matrix, we can restrict our
consideration to one set of solutions:

Gr = Gyoo = 1.4173x10°% I m°. (73)
Toillustrate the selection criterion used, two spectra

of Gg values associated with two sets of solutions are
displayed in Fig. 5. Figures 6 and 7 present the calcu-
lated probability densities for the values of the parame-
ters Gg = G;3|Cs| and Gy = G;4|Cy| at various val ues of
the coefficients D and E. For D, we chose the mean
value of D = 0.0003(15) (Fig. 6) or the value of D =
0.0022(30) (Fig. 7) from [74]. Since the coefficient E
has not yet been measured experimentally, theresultsin
Fig. 6 are given for some possible values of this param-
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eter, its sign and absolute value both being varied
around the mean value of the experimental coefficient
D with an error at a level of the mean error in D. The
behavior of the solution for the scalar contribution in
response to the reversal of the sign of E isillustrated in
Fig. 7 for the case of nonzero D. The most important
result of thisanalysisisthat anonzero value of the con-
stant C; (appearing in the Hamiltonian), which has a
virtually stable value at alevel of 6% of A for all cases
investigated here, cannot be ruled out by current exper-
imental data. Specifically, our result is

Gr = GypCr=0.12(4) x 10 % J m°,

IC1|/Cqr = |C4/IN| = 0.065(22).

As to the congstant Cg, its value depends pro-
nouncedly on the unknown experimental coefficient E
of triple correlation. This constant is minimal when the
coefficients D and E are both close to zero, the devia-
tion of thelatter from zero being due, in this case, to the
statistical scatter introduced for these coefficients. At
nonzero E, the constant G = G,;3|Cg| grows, approach-
ing Gg = (0.10-0.14) x 109 J m?, its specific value
being dictated by the relative sign of D and E. On the
whole, the situation concerning the possible scalar con-
tribution is, however, more uncertain, especialy asthe
statistical scatter for it is greater than that for the tensor
contribution by afactor of 2to 3.

In what is concerned with the results presented in
Figs. 57, it is reasonable to make the following com-
ment on the method for cal culating the probability den-
sity for specific values of the constants G; within the
Monte Carlo procedure. For the basic parameters of the
problem, we employed the currently adopted data on
the neutron lifetime and the correlation coefficients a,
A, and B with their experimental uncertainties, so that
they were assigned various values in the sampling pro-
cessthat correspond to a Gaussian distribution for each
of them. In doing this, we determined the values of G, =
Gy;|Ci| by formula (70) and, for them, constructed the
probability distribution for specific values of this quan-
tity in some range—that is, the probability density W, =

dn;/( z n, ), where dn; is the number of relevant solu-

(74)

tions faling within a small range, while  n; is the

total number of solutionsfor the quantity in question. It
should be noted that, by virtue of conditions (71), the
total number of solutions for the scalar and tensor ver-
sions does not always coincide with the total number of
events in the simulation. By way of example, we indi-
catethat, for the quantity Gg (Fig. 5), the area under the
probability-distribution curve is equa to unity and has
a Gaussian shape, while, for |G| and |Gg|, this may not
be so. For such distributions, we normalized dn; to the
total number of solutions for the case where this num-
ber was maximal and obeyed a distribution close to a
Gaussian one. This corresponds to the distribution for
the tensor version in the upper panelsin Figs. 6 and 7
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Fig. 7. Asin Fig. 6, but a D = 0.0022(30) [74] and E =
+0.0030(15).

(denoted by y n,). The resulting graphs of the proba-

bility-density distributions for the Hamiltonian param-
etersmake it possible to determine their expected value
and the statistical error and to reveal cases where the
reduction of the probability distribution occurs owing
to the additional conditions (71).

Thus, it follows from the above analysis that, within
the hypothesis of additional tensor and scalar contribu-
tions that admits the production of right-handed neutri-
nos, available experimental data on neutron decay do
not rule out the existence of tensor contributions at a
level of 6% of the axia-vector contribution. This
evinces the need for remeasuring the coefficient of the
el ectron—neutrino correlation and of the triple correla
tion of the J,—e-J, type (that is, a correlation between
the electron momentum and the final-nucleus polariza-
tion J, in the decay of nuclei with polarization J,) in
order to estimate the possible scalar contribution.
Unfortunately, a direct implementation of such an
experiment for neutron beta decay is hardly possible.
Measurement of the transverse polarization of elec-
trons from polarized-neutron decay could be another
possible method for experimentally estimating the
coefficient E in neutron decay, but it would be rather
hard to perform such a subtle experiment in the current
situation where the polarization of € ectrons from neu-
tron decay has not yet been measured.

5. PROSPECTS FOR NEUTRON EXPERIMENTS

A thorough experimental investigation of free-neu-
tron decay—presently, a prominent line in beta-decay
studies, which was initiated by experiments performed
at ITEP with a direct participation of Vladimirsky—is
now gaining new momentum after a few decades of a
latent development. Novel methods in dealing with
ultracold neutrons and improvements in the technique
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of polarized beams give sufficient grounds to believe
that further advances will soon be made in the entire
variety of such experiments approaching now a preci-
sion level of afew tenths of apercent or even higher. So
high a precision and a comparatively simple theoretical
interpretation of results render neutron decay very
appealing from the viewpoint of searches for nonstand-
ard physics (physics beyond the Standard Model of
weak interaction). As has been shown above, a preci-
sion analysis of neutron experiments demonstrates that,
at the current level of accuracies, a dominant contribu-
tion to the process is determined by the Standard
Model. Within the classical two-parameter Hamilto-
nian of weak interaction, free-neutron decay can be
described at present to within a few percent, which
makes it possible to study, within low-energy physics,
the contributions of virtual processes involving a W,
boson of mass 80 GeV, a circumstance that evinces a
very interesting potential of neutron physics in this
respect. For further advancements along these lines, it
is necessary, however, to implement, at the same level
of precision, some other experiments—above all, those
that measure a spin—electron correlation in the decays
of polarized neutrons (that is, the coefficient A). In
experiments of this type, data presented by different
groups are still inconsi stent.

At the sametime, going beyond the standard form of
weak interaction opens new fields for neutron studies.
So far, attention has been given here primarily to
searches for contributions from right-handed currents.
Of particular interest within these lines are new inde-
pendent experiments studying a spin—neutrino correla
tion in the decays of polarized neutrons. In particular, a
version of experiments with polarized neutrons that
measures directly the combination (B — A)/(B + A) of
the correlation coefficients that enter into the formulas
used in the analysis for the presence of right-handed
currents [see equations (42)] may prove to be of impor-
tance. This modification of the experimental setting is
advantageous in that it enables measurement of the
above ratio in one experiment at the same facility and
in that the sensitivity to the absolute polarization of the
neutron beam is low in this case. Yet another new way
in the same direction may consist in directly measuring
the polarization of electrons in free-neutron decay at a
precision level of afew tenths of a percent. We empha-
size once again that such experiments have not yet been
performed in neutron decay. However, the character of
information to be extracted from them would be anal o-
gous to that from p—e decay and would lead to con-
straints of a qualitatively new type in relation to those
that already exist [71]. Moreover, an implementation of
such an experiment in polarized-neutron beams for
measuring the triple J-e-o correlation and the trans-
verse polarization of eectrons in polarized-neutron
decay would make it possible to determine, for thefirst
time, the extremely important coefficient E, which
leads to CP violation (the important role of this coeffi-
cient in searches for scalar and tensor contributions in
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the case of CP violation was highlighted in Section 4).
M easurements of the polarization of photons accompa:
nying electron emission in the radiative mode of neu-
tron beta decay—interest in this mode was provoked in
recent years by the studies of one of the present authors
(Yu.V. Gaponov) and R.U. Khafizov [ 75]—could be an
anal og to the measurement of electron polarization.

Searchesfor effects beyond the Standard M odel that
are associated with leptoquark degrees of freedom rep-
resent another important line of such investigations.
Here, it seems necessary to perform, at the present-day
methodological level, a precision measurement of the
electron—neutrino correlation in free-neutron decay (a
remake of the ITEP experiments of the 1960s). Such
experiments exhibit the highest sensitivity to anoma-
lous contributions of the scalar and tensor types—in
particular, to a specia version of leptoquark contribu-
tions where the emission of right-handed neutrinos is
associated with these contributions [40]. That the
present-day accuracy of these experiments is insuffi-
cient complicates considerably the analysis of the pos-
sible presence of such contributions, so that advancesin
this direction would be highly desirable. In the above
discussion, we have presented a direct analytic method
for analyzing these contributions that requires perform-
ing at least three independent precision measurements
of the correlation type (five such experiments in the
case where the analysis is performed with allowance
for CP violation). This analysis has revealed the possi-
ble existence of tensor contributions at alevel of 6%. In
order to test theseresults, it isnecessary to perform pre-
cision experiments measuring both the e-v correlation
and the two correlations in polarized-neutron decay.
This highlights once again the need for performing fur-
ther studiesin these important realms.

Yet another possibility for developing studies of
free-neutron decay is also worthy of note. Theradiative
mode of neutron beta decay—for photonswith energies
in excess of 50 keV, its probability must be between 0.1
and 0.2% of the total decay probability [75]—has not
yet been observed experimentally. A direct observation
of this mode of neutron decay would be of interest both
from the viewpoint of experimentally testing the mag-
nitude of radiative corrections in determining the true
coupling constant G, ; and comparing it with the muon-
decay constant and tRe Kobayashi—Maskawa unitarity
condition and from the viewpoint of developing new
experimental procedures for studying neutron decay.
To explain this point in greater detail, we note that, in
observing the radiative mode of neutron beta decay,
there does indeed arise the possibility of studying radi-
cally new correlation and polarization features, addi-
tionally including the momentum or the polarization of
the emitted photon. It should be emphasized that the
radiative-decay process can be observed both in the
region of hard emitted photons with energies of a few
keV and in the case of detection of light photons, a
region where procedures for measuring light polariza-
tion are totally different. The observation of the radia-
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tive mode of neutron beta decay is topical now; as far
as we know, it is planned by a number of experimental
groups.

The process of neutron beta decay has always been
very appealing for fundamental investigations into the
physics of weak interactions. The work along these
lines will continue to be among investigations that are,
because of the relative simplicity of the object under
study, of paramount importance for obtaining deeper
insights into the basic laws of physics. It is a pleasure
for us to remind the reader that V.V. Vladimirsky, who
celebrates the 85th anniversary of his birth this sum-
mer, was among those who initiated thefirst stepsalong
these lines. On behalf of the physicists from the Kur-
chatov Institute, we wish him good health and many
years of creative activity.
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Abstract—The effective pairing interaction in the 'S, channel as cal cul ated microscopically within the Brueck-
ner method for a planar dab of nuclear matter by using the separable version of the Paris nucleon—nucleon
potentia is investigated. The effective interaction is determined for the model space including all negative-
energy single-particle states. An analysis is performed for two values of the chemical potential, u = -8 and
-4 MeV. It is shown that, to a high precision, the effective interaction can be approximated by the off-shell T
matrix for free nucleon—nucleon interaction, the T matrix in question being taken at a negative value of the total
energy of two nucleons E = 2j1. © 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

In [1, 2], a method was proposed for numerically
solving the Bethe—Goldstone equation in nonhomoge-
neous nuclear systemsfor separabl e interaction without
recourse to any form of local approximation. With the

aid of this method, an effective pairing interaction V"%

was found in the 'S, channel for semi-infinite nuclear
matter placed in the one-dimensional Woods-Saxon
potential well V(x). The model space wastaken therein
a form conventional for nuclear physics, so that it
included all negative-energy single-particle states. The
specific calculations were performed for the separable
3 x 3 form[3, 4] of the Paris potential [5]. In that case,

the effective interaction V% is aso a3 x 3 matrix,
whose coefficients A;;(X, X') depend on the center-of-
mass (c.m.) coordinates of two nucleons prior to and

after theinteraction event. A determination of V"% was
reduced to solving a set of six one-dimensional integral
equations for the coefficients A(X, X') (the matrix A;
is symmetric; hence, only six coefficients are indepen-
dent). In principle, it is not hard to solve this set of
equations, but the main computational difficulty con-
sists in calculating their kernels, which represent the
convolution of the two-particle propagator B;; with the
form factors g; and g; of the nucleon—nucleon potential
(for the sake of brevity, we will refer to it as merely the
propagator). In order to determine such propagators, it
is necessary to calculate alarge number of multidimen-
siona integrals, but this consumes a lot of machine
time even if sufficiently fast computers are used. A
solution to the equation for the effective interaction is

D I¢tituto Nazionale di Fisica Nucleare, Sezione di Catania, 57
Corso Itdia, 1-95129 Catania, Italy.

2 Universita di Catania, Dipartimento di Fisica, 57 Corso Italia,
1-95129 Catania, Italy.

represented in the form of some large matrices, which
is not convenient for practical applications.

In order to simplify the cal culation of the propagator
By, aversion of the local approximation was proposed
in[2]. Thismethod, which was dubbed alocal-potential
approximation (LPA), consists in the following. At a
fixed mean value X, = (X + X")/2 of the c.m. coordinates
of the interacting nucleons, the exact value of Bij(Xo, V)
(t=X-X") in the nonhomogeneous system under study

. . LPA
is replaced by the approximate value B;; ™ (X, t) that

coincides with the corresponding value for infinite
nuclear matter placed in the potential well V, = V(X,).
The LPA and the standard local-density approximation
(LDA) are virtualy equivalent within nuclear matter,
but they differ substantially in the surface region, where
thereisno direct local relation between the density and
the potential. In the surface region, the LDA is inappli-
cable almost completely, if for no other reason than the
violation of the Pomeranchuk stability condition [6]; at
the same time, the accuracy of the LPA in semi-infinite
nuclear matter is at alevel of afew percent even at the
point where the potential V(X) decreases at a maximum
rate[1]. In practice, an LPA calculation at afixed value
of the chemical potential i is performed in the follow-
ing way. First, afixed step dV in the magnitude of the
potential-well depth is specified, and a set of two-parti-
cle propagators B, «([V,], t) for infinite nuclear matter
in the potential V,,, = &V(m- 1) is computed. For each
point X of the nonhomogeneous system being consid-
ered, the propagator B*PA(X, t) is found after that by
interpolating B, ([ V], t) corresponding to the V,, values
closest to V(X). The kernels obtained in thisway for the
integral equations describing the components A;;(X, X)
of the effective interaction—and, hence, the effective
interaction itself—retain information about the geome-
try of the problem. The use of the LPA simplifies con-

1063-7788/00/6308-1377$20.00 © 2000 MAIK “Nauka/Interperiodica’
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siderably the determination of the effective interaction
in relation to the method for constructing a precise
solution, but the computational schemeisvery involved
even in this case.

In this study, we use the LPA to calculate V;?A for

the case of planar-slab geometry and find that there is
yet another approximation for the effective interaction,
avery simpleoneindeed. It turnsout that, to ahigh pre-

cision, Vg coincides with the off-shell T matrix for
free nucleon—nucleon scattering at the total energy E of
two nucleonsthat isequal to 2| (recall that isanegative
value). Even within the LPA, the computation of this
guantity is much simpler than the calculation of the
effective interaction.

The ensuing exposition is organized as follows. In
Section 2, we present general formulas relating the

effective interaction V' §; to the T matrix. In Section 3,
we develop a simple and highly accurate method for
calculating the T matrix in the coordinate representa-
tion. In Section 4, we give an account of the results

obtained by calculating the effective interaction V%
and analyze the possibility of approximating it by the T
matrix. The results are summarized and discussed in
Section 5.

2. GENERAL RELATIONS FOR ¥V'%

Following [1, 2], we employ the pairing-gap equa-
tion in the form

A = VAN, (1)

which is commonly accepted in many-body theory [6,
7] and which involves explicitly the two-particle prop-
agator AS = GG® in a superfluid system (G and G® are
single-particle Green's functions for, respectively, a
normal and a superfluid system). In Bethe-Brueckner
theory, the interaction block V" irreducible in the parti-
cleparticle channel is approximated by the free
nucleon—nucleon potential. As usual, an effective inter-
action is introduced via partitioning the full Hilbert
space into the model subspace S, and the complemen-
tary subspace S. As aresult, the two-particle propaga-

tor AS can be represented asthesum As= Aj + A Inthe

second term on the right-hand side, we suppress the
subscript s, because it is assumed that the effects of
superfluidity can be disregarded in the subspace S.

In the model space, equation (1) can be represen-
ted as

A = VEAD, 2)
where V"% obeys the equation
Ve =V +V AV . 3)

BALDO et al.

It was noted above that, in [2], the model subspace
S includesal two-particle states (A, A") whose energies
(», &) are both negative. In this case, the complemen-
tary subspace S includes not only two-particle states
characterized by two positive energies but also states
for which one of the energy values (g, or €, is positive,
while the other is negative (but it is higher than the
chemical potential ).

We consider a planar nuclear-matter slab of thick-
ness 2L placed in the one-dimensional Woods-Saxon
potential well V(x) symmetric with respect to the point
x=0:

Vo
1+ exp((x—L)/d) +exp(—(x+L)/d) 4

The parameter values—the depth of V, = 50 MeV,
the diffuseness of d = 0.65 fm, and the slab half-width
of L = 8 fm—are taken to be close to the corresponding
values for heavy nuclei. In the case of planar-slab
geometry, all relations for the effective interaction are
similar to those that are known for the semi-infinite sys-
tem. For thisreason, we present here only those that are
necessary for understanding the computational scheme,
referring the reader to [1, 2] for details. The separable
form [3, 4] of the Paris potentia is given by

Yk k) = 3 NG (K)g(k?),
ij

V(x) = )

&)

where k (k') is the relative momentum of the nucleons
prior to (after) the scattering event. This form was
tested earlier in the calculations within Brueckner the-
ory for infinite [8, 9] and semi-infinite [1, 2] nuclear
matter. In expansion (5), the original normalization
from [3, 4] was modified in a such away that the con-
dition g;(0) = 1 is satisfied. The absolute values of the
coefficients A;; then furnish direct information about the
strength of the corresponding components of the
nucleon—nucleon interaction. These values (in MeV
fm3 UnItS) are )\11 = —3659, )\12 =2169, )\22 = —1485,
}\13 = _236, )\23 = 57.6, and )\33 = 172 ASC&I’] be seen,
the last three components, which carry the subscript j =
3, are approximately two orders of magnitude smaller
than the first three components, which feature only the
subscriptsj = 1, 2. The small components are operative
only a high momenta, since the form factor g,(k)
increases with increasing k, in contrast to the form fac-
tors g,(k) and g,(k), which decrease fast (see Fig. 1).
But at momentum values around k = 1.5 fm!, which
are important in the pairing problem, the contribution
of the small component does not exceed 10% of the
contribution of the dominant components. Because of
this, only the three large components can be taken into
consideration in the ensuing qualitative analysis of the
effective interaction. Of course, the calculations
include all the terms.

The effective interaction for the nucleon—nucleon
potential (5) aso has a separable form. In the notation

PHYSICS OF ATOMIC NUCLEI  Vol. 63 No. 8 2000
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adopted in [2], it isgiven by
V&K, K Xy, X, Xa, X4 E)
R . (0)
= z/\ij(XlZ Xas: BE)Qi(Ka, X12) 95 (Kas Xas)-
ij
Here, we have introduced the c.m. coordinates and the
relative coordinatesin the x direction [X, = (X; + X,)/2,
X2 =X, — %, and so on]; kg is the two-dimensional
momentum vector in the plane orthogonal to the x axis;

and g;( ké , X) isdetermined by theinverse Fourier trans-
formation of the form factor g;(k? + k%) with respect to
the variable k, .

The coefficients A\;; in this expansion obey the set of
integral equations

/\ij(xlzs Xy, E) = )\ija(X12_X34)

_ ) (7
+ Z)\n_fdxseBlm(Xm Xssy E)Amj(Xee, Xaa5 E),
Im

where the quantities By, are determined by the convolu-
tions of the propagator A' with two form factors:

Bim(X12: X343 E)

— d° K Gnn(va 12)Gnn(k[|, X34) (8)
ZJ’ (2m)® E—-& -
G (KFy X12)

9)

= Idxlzgl(ké’ X12)Yn( X1z + X12/ 2) Y (X2 — X1/ 2).

Here, A = (0, kp); &, = €, + k3/2m; and €, and v, are,
respectively, the eigenenergies and the wave functions
for the one-dimensional Schrédinger equation with the
potential (4). The primed sumin (8) istaken over those
A, \' states that are not included in the model subspace.
Hence, summation over n and n' actually includes sum-
mation over discrete states and integration over the con-
tinuous spectrum with the obvious substitution

. — [dpy/2m If, we set €, < &, (accordingly, €, <

€,) in (8), for the sake of convenience, multiplying the
result by a factor of 2, summation over n and n' and
integration with respect to k; will be constrained by the
conditions g, > 1 and g, > 0.

Asis well known, the strong repulsion core of the
nucleon—nucleon interaction (in particular, this charac-
terizes the Paris potential) leads to a very slow conver-
gence of the integrals with respect to the momentain
(8). In order to improve convergence, it is convenient to
renormalize equation (3) by expressing the effective
interaction in terms of the off-shell T matrix for free
nucleon—nucleon scattering at energy E = 2

T(E) = V +V A%E)T(E). (10)
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gi(k)
6 —

k, fm™!

Fig. 1. Form factors g;(K). Figures on the curves correspond
to the form-factor indices.

Here, A°(E) isthe propagator for two free nucleonswith
total energy E.

Obviously, the T matrix admits a separable expan-
sion of the form (6) with the coefficients T;(t; E)
depending only on the differencet = X— X'. These coef-
ficients obey an equation that coincides in form with
(7), but which differsfrom it by the substitutions A —
Tand B(X, X'; E) — Bt; E):

Ti(t; E) = A;;0(t)

. N y (11
+ IZ)\i,J’dt Bro(t—t; E)Tp(t'; E).

In a compact form, the renormalized equation for
the effective interaction can be represented as

Nj =T+ ZTiI(BIm_BIOm)/\mj- (12)
Im

The difference kernel of this equation possesses a
much better convergence than that in the original equa-
tion (7). The problem of dow convergence reappears
now in the equation for the T matrix, but it can be
solved there much more simply. Let us explain this
point in some detail. First, we are dealing in that equar
tion with the vector Tj(t), which is one-dimensiona in
the coordinate space, ingtead of the two-dimensional
matrix A\;(X, X"). Second, the law of momentum con-
servation in the case of free scatteri ng simplifies signif-
icantly the problem, enabling us to find Tj;(t) by means
of the inverse Fourier transformation of the T matrix
T(P,) calculated in the momentum representation.

Aswill be demonstrated below, the difference (B, —

B|°m) in equation (12) for dominant Im components is
small, so that its solution differs insignificantly from
the free off-shell T matrix. Therefore, this quantity
appearsto be of paramount importance for the theory of
pairing in nuclear systems. For this reason, we describe
in detail a method for calculating it in the coordinate
representation.
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3. CALCULATION OF THE OFF-SHELL T
MATRIX FOR FREE NUCLEON-NUCLEON
SCATTERING

The off-shell T matrix taken at negative energy E =
2u can easily be determined in the momentum repre-
sentation by solving the algebraic set of equations

Ty(Pa E) = Ay + S MiBin(Pyi BTy (Pi E), (13)

where

d’k
I (2m)’E-
The scattering matrix in the coordinate representation,

T;;(1), can be expressed in terms of T;;(P,) by means of
the inverse Fourier transformation

01(K) g (K)

Bi(Py; E) :
P/4m—k/m

(14)

" dP .
Tt E) = I?T_:Tij(Px; E) exp(—iPyt). (15)

Theformfactorsg; intheintegral in (14) arerational
functions of k? [3, 4]—specificaly, they are combina-
tions of the Fourier transforms 1/(k* + [3?) of some
Yukawa functions and their derivatives for various
massvaues 3, (n=1, ..., 4). Thisintegral can be cal-
culated analytically, but this calculation is very cum-
bersome because there are very many individual terms
intheintegrand (about 70 for each Im). It is much more
convenient to calculate it numerically, inwhich casethe
cutoff parameter of k, = 60 fm! [avalue that is chosen
in accordance with the cutoff parameter in (8)] ensures
aprecision higher than 1%.

Upon isolating the constant A;;, the Fourier integral
in (15) was computed in [2] by means of a direct inte-
gration along the real axis P,. This method provides
accurate results at small t; for t in excess of 2to 3 fm,
the integrand involves the quickly oscillating factor
exp(—iP,t) multiplied by the slowly decreasing func-

tion (Ty(P5) — \j) = 1/P%; as aresult, the integral in

(15) becomes poorly convergent. In order to achieve a
sufficient precision at t values between 4 and 5 fm, a

huge cutoff-momentum value of P = 3000 fm! had to
be used in [2] at a very small step of integration. But
even at so large acutoff parameter, the behavior of T;(t)
for t > 5 fm provesto beincorrect—there arise spurious
aperiodic oscillations.

An attempt can be made to improve the convergence
of the integral in (15) by isolating the asymptotic term
in the T matrix. In order to establish the asymptotic
form, we will first consider the free propagator B°. It
can easily be seen that, for P, — o, the asymptotic
behavior in question is given by

Bow(Py) — —bi/PZ, (16)

BALDO et al.

where

3gl(lo )In(P?). (17)

_4J’

In order to regularlze the asymptotic term at the
point P, = 0, we redefineit as
bIm
Pi+y”
whereyisan arbitrary constant. We then have
Bim = Bim+ Bim. (19)

The inverse Fourier transformation of expression (18)
can be performed straightforwardly. Theresult is

B, = — (18)

Bim
Bim(t) = __y rexp(-ylt). (20)

Upon the subtraction of the asymptotic term, the prop-
agator assumes the form

3
3g.(lo )Im(P%)

Bim(Px) = —4mI
21

» [ 1 1 }
Pi+ap’+y; Pi+y)
where yg =-8mu. Thisdifference convergesfor P, —

o faster than By, (namely, B}, = 1/P}).

Let us now address directly the T matrix. It can be
seen from (13) that, for P, — oo, it involves the con-
stant A;; corresponding to adeltafunction inthe x space.
It isreasonableto subtract it from the outset and to ana-
lyze the quantity

5Tij(Pxi E) = Tij(Px; E)_)\ij- (22)

It can easily be seen from (11) that, for P, — oo, we
have

a;;

oT;(Py) — 6Tija(Px) = _Pi +J > (23)
where
alj = z)\ilblom)\mj- (24)
Im
We again obtain
oT;; = = oT? +6T|J, (25)
where
o
dT;(t) = ——yeXp(—yltI) (26)

For P, — oo, the convergence of 8T;;
faster than the convergence of &Tj; (1/ P‘X1 instead of

is again much

PHYSICS OF ATOMIC NUCLEI  Vol. 63 No. 8 2000
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1/P§). In this case, the calculation of the integral in
(15) along the real axis P, with the same cutoff param-
eter and the same step of integration as previously leads
to a correct behavior of 8T;;(X) a X = 5 fm, but
unphysical oscillations again arlse from X = 6 fm. In
order to get rid of them completely, it would be better,
in accordance with the general prescription for integrat-
ing quickly oscillating functions [10], to go over to
integration in the complex plane of P, in (15).

In modifying the integration contour to arrive at a
form convenient for the calculations, we must take into
consideration the singularities of the integrand. As was
indicated above, theformfactors g;(k?) in theintegral in
(14) are rational functions of k?; therefore, the entire
integrand is also arational function of k. We will show

that, in this case, the free propagator B?j (P, E) a neg-
ative energy E has no singularities other than two cuts
going aong the imaginary axis symmetricaly with
respect to the origin and issuing from the branching
points P, = #iy,, wherey, = /—8m . For this purpose,
we first consider the explicit form of one of the typical

terms in the sum that arises upon substituting into (14)
the rational form factors[3, 4]

I —Ik ok r 1 @7)
K + o ’k? +Blk + 35
where
2 = (Pi+yp)l4, (28)

while 3, and 3, are the masses of the corresponding
form-factor terms. Expression (27) emerges from those
form-factor terms that are Fourier transforms of the
Yukawa functions.

Upon some simple algebra, we obtain
T 1

= BB (T P+ By

By a, we mean here the arithmetic value of the square
root of expression (28). It can be seen that the above
branching points are the only singularities of expres-
sion (29) considered as a function of the complex vari-
able P,.

Let usnow consider theterm that is next in the order
of complexity and which arises upon taking the deriva-
tive of the Fourier transform of the Yukawa function in
one of the form factors:

(29)

K2 1
k +a (k +Bl) k +[32

This mtegral can easily be expressed in terms of the
integral in (27) as

Ik dk (30)

B, al,

2 9By 3D

o =1+

PHYSICS OF ATOMIC NUCLEI  Vol. 63 No. 8 2000

1381

ImP

X
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Fig. 2. Contour of integration in the complex plane of P, for
the inverse Fourier transformation (15).

From here, it becomes clear what is to be done to
construct the algorithm for determining other termsin
theintegral in (14), which involve higher derivatives of
the Yukawa function. It can also be seen that, injust the
same way as the integral in (31), these terms do not
have singularities other than those of expression (29).
Thus, we have shown that the two cuts going along the
imaginary axis symmetrically with respect to the origin
(see Fig. 2) exhaust the list of singularities of the func-

tions B?m(PX; E < 0) in the complex plane of P,. It is

convenient to deform the integration contour in such a
way that it embraces the upper cut (in Fig. 2, b — ).
The convergence of the integral in the parameter b is

much faster than the convergence in the parameter P;

inthe case of integration along thereal axis. In practice,
we have used the contour depicted in Fig. 2 with the
following values of the parameters: a=2fm!and b =
130 fm™!. In this case, it lies sufficiently far off the cut,
and the integral in (15) is calculated numerically with
without any difficulties; this leads to a nearly precise
exponentially decaying result at any t values of interest.
As can be seen from (13), the singularities of the prop-
agator B? are present in the T matrix. Apart from this,
the T matrix can develop new poles on the imaginary
axis that correspond to areal or avirtua level. In the
case of the S= 0 singlet channel being considered, this
level isvirtual, and the relevant poles occur on the cuts.
In order to calculate the T matrix, we can therefore use
the same contour as that for the propagator B.

4. RESULTS OF THE CALCULATIONS:
COMPARISON OF ¥'§ WITH THE T MATRIX

Although all equations of Section 2 for planar-dab
geometry coincide formally with the equations for the
semi-infinite system, mirror symmetry in the x direc-
tion results in some obvious simplifications in the
former case. First, the eigenfunctionsy, in the potential
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Fig. 3. Calculated dominant components of (solid curves)

the free propagator B,Om taken with the inverted sign and of
(dashed curves) the difference (B|™ [V = 50 MeV] — B(,,)

as functions of the relative coordinatet = X — X' at p =
-8 MeV.

(4) are characterized by parity [there are even (y,) and
odd (y,) functions]. The full propagator AS = GG® in

equation (1) isthesum AS= Aj,, + Asyq Of the compo-
nents preserving and reversing parity (that is, the even

and the odd component—A,,, and Ay, respec-

tively). The sameistrue for the kernels of equation (7).
Asaresult, all equations can be reduced to the form that
involves only positive x. They are presented in the
Appendix.

Instead of a direct evaluation of the propagator in
(12) for the system being considered, we calculate it
within the LPA. The scheme of this calculation was
briefly described in the Introduction. In practice, we
changed the potential-well depth from zero to 50 MeV
with astep of 8V =2 MeV. At afixed value of the chem-
ical potential |, we first computed a set of two-particle
propagators B, ([V.l, t; E = 2u) for infinite nuclear
matter in the potential V,,= dV(m- 1). This calculation
was performed on a fixed mesh of valuest, = h(k - 1)
withh=01fmandk=1, ..., 61 (fort> 6 fm, al the
propagators being investigated are negligibly small). It
is obvious that the free propagator B%(t) coincides with
Bii([Vin= 1], t; E=2p). After that, we fixed a mesh of X,
values with astep hin the range (0, L + a). The param-
eter a must be taken to be sufficiently large (in the
present calculation, we used the value of a =6 fm). On
this mesh, we constructed the matrix B"*A(X;, X,) for the
nonhomogeneous system under consideration. It was

BALDO et al.

calculated in the following way. At fixed X, and X, [X =
O + X/2, t= X — X,], we computed the potential-well
depth by using equation (4) and determined the
required LPA by performing a linear interpolation
between two neighboring values B, «([V,l, t; E) and
Bini([Vin+ 1], t; E) sothat the condition V,, < V(X) < V41
was satisfied. In order to calculate the kernel for equa-
tion (13), the difference of the resulting propagator
BPA(X;, X E) and the free propagator B® was inte-
grated with the free T matrix; after that, this equation
was solved by the same method as that used for semi-
infinite nuclear matter [1, 2].

Let usfirst consider the value of p =-8 MeV, which
characterizes beta-stable nuclei and analyze the differ-

ences (B (V,) — BY,) for three dominant Im compo-
nents at the maximal potential-well depth of V =V, =

50 MeV. They are displayed in Fig. 3, along with the
free propagator Bf’m. As can be seen, all propagators

By, have a sharp maximum at small t; in this region,

each difference is considerably smaller than the corre-
sponding free propagator. The propagators under con-
sideration differ significantly only in that region of t
where they are both small. For smaller values of V, the
differences (B — B°) are obviously still smaller. In order
to analyze the reason behind this smallness, we break
down the sum in (8) into two parts. In the first, we
include terms corresponding to such states A and A'
whose energies €, and €, are both positive; in the sec-
ond, we include terms for which one of these energies
is positive, while the other is negative (but it is higher
than ). Each part of the sumisthen compared with the
corresponding sum in the free propagator. Within the
LPA, it is easy to draw such a comparison because, in
this case, expression (8) is very similar to the corre-
sponding sum for BY,,. Thefunctionsy, can then indeed
be replaced by plane waves in the constant potential
V, = V(X). Let usnow compare directly each terminthe

inf

first part of thesumin (8) for B,,,, with that termin B?m
which has the same denominator. It can easily be seen
that the numerator of the propagator in nuclear matter
is smaller than that of the free propagator because it
involves the matrix element of the form factor at higher

momentum values of q = JK+ 2mV, in a medium

instead of k in the free case. The form factors g;(k?) for
i =1, 2, which are of interest for the present purposes,
decrease with increasing k (see Fig. 1), so that the first

part of B|" is smaller in absolute value than B,,. We

notethat it isthis part of the propagator By, that wascal-
culated in [1], where it was shown that the difference

under investigation amounts to 20-30% of B|°m. The

second part of the sum has no analog in the free propa-
gator. At first glance, it must be much smaller than the
first part because of a substantial reduction of the phase
PHYSICS OF ATOMIC NUCLEI  Vol. 63
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space. However, its contribution is considerably
enhanced owing to small values of the energy denomi-

inf

nators. Asaresult, the absolute value of thispart of By,
provesto be on the same order of magnitude as the dif-

ference of the first part and B,Om. This means that the
full propagator Bjm ([V,], t) in nuclear matter and the
free propagator B[, (t) at small t (that is, in the region

where both of them are large) appear to be very closeto
each other.

The dominant components of the effective interac-
tion Vg (X = 0, t) inside the slab are displayed in
Fig. 4, dong with the corresponding components of the
free T matrix. Of course, we eliminated here the delta-
function terms A;; &(t) from both amplitudes [see equa-
tions (7) and (11)]. Here, the situation for various ij is
similar to that for the corresponding components of the
propagator—that is, they are very close to each other at
small t, where the quantities under investigation are
both large. In order to draw amore detailed quantitative
comparison between the “precise” effective interaction
(that is, that which was cal culated within the LPA) and
the free T matrix, the zeroth moments of their individ-
ual components—these zeroth moments measure the
corresponding mean intensities—are depicted in Figs.
5and 6. For the effective interaction, they are defined as

Nij(X) = J'dt/\ij(X—tlz,X+t/2). (32)

Obviously, the analogous moments of the T matrix

are independent of X:

Figure 5 demonstrates that, for dominant compo-
nents, the zeroth moments of the effective interaction
[equation (32)] are very close to those of the T matrix
[equation (33). The analogous comparison for the small
component isillustrated in Fig. 6. Here, the distinction
between the effective interaction and the T matrix is
much greater, but it should be recalled that, in absolute
values, these components are much smaller than those
that are shown in Fig. 5. In the calculation of the gap A,
arole more important than that of the individual com-
ponents /\;; is played by their combinations that appear
in the interaction averaged near the Fermi surface [2].
For thisinteraction, we have

Ta(X) = T KOG GKEX),  (34)

ij
where we have introduced the local Fermi momentum
that is defined as kx(X) = ~/2m(u —V(X)) for p—V(X)

> 0 and which otherwise takes zero value. The interac-
tionin (34) isdisplayed in Fig. 7, along with the corre-
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Fig. 4. Calculated dominant components of (solid curves)

the effective interaction V' [V = 50 MeV] and (dashed

curves) the free T matrix as functions of the relative coordi-
natet=X-X'at u=-8MeV. Thesign wasreversed for Im =
11 and 22.

AfX) x 1073, MeV fm?

4
) 12
0_
-2+ 22
B N
1 1 1 1 1 1 1
0 4 8 12
X, fm

Fig. 5. Zero moments of the dominant components of (solid
curves) the effective interaction A, j (X) and (dashed curves)

the free T matrix (T;; ) at = -8 MeV.

sponding local form of the T matrix,

T = 3 Tig(KODg (KE(X).  (39)
I}

It can be seen that these mean values differ more pro-
nouncedly than the dominant components shown in
Fig. 5. Thisisdueto the effect of the small components.
As was indicated above, the third form factor g;(k), in
contrast to thefirst two, grows with increasing momen-
tum (see Fig. 1) and, at momentum values about the
Fermi momentum of ki = 1.4 fm!, exceedsthem nearly
by an order of magnitude. Although the constant A3,
for example, isless than the constant A, by two orders
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Fig. 6. Asin Fig. 5, but for the small components with ij =
13, 23, and 33.
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Fig. 7. Averaged effective interaction Ve (X) at the Fermi

surface (solid curves) and similar averaged value T;f (X) of
the T matrix (dashed curves) at | = —8 MeV.
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N
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—B,,(t) X 10?, MeV fm™
[\

Fig. 8. Asin Fig. 3, but for u =—4 MeV.

BALDO et al.

of magnitude, the contribution of the 13 component to
the sumsin (34) and (35) will therefore be about 10%,
so that this contribution must be taken into account.
The same is true for the remaining small components.
However, the relevant average values at the Fermi sur-
face are aso rather close to one another. Indeed, the
maximal difference of about 15% between two curves
is achieved within the dab, where the average values
being considered are one order of magnitude less than
their maximal values (in modulus) attained at the sur-
face. But in the surface region, this difference is as
small as some 5%. In the case of the application of the
effective interaction that we obtained to calculationsfor
finite nuclei, the matrix elements of this interaction
between the states lying near the Fermi surface will of
course be determined primarily by the surface layer.
The point is that, while, in planar geometry, a tenfold
excess of the surface value of the interaction over its
volume value is compensated to a considerable extent
by the smallness of the surface-to-volume ratio, in the
case of spherical geometry, the contribution of the sur-
face is enhanced by the factor r?, which appears in the
volume element in the integrand of the matrix element.
Therefore, the difference between the effective pairing
interaction and the free T matrix must inevitably beless
than 10% for the matrix elementsin question.

In order to assess the extent to which the resulting
proximity of the effective pairing interaction to the free
off-shell T matrix is universal, we performed anew all
the calculations for the smaller (in modulus) chemical-
potential value of u = -4 MeV, which is peculiar to
nuclei lying away from the beta-stability region. A
comparison of the individual components of the aver-
aged and the free propagator, as well as of the effective
interaction and the T matrix, isillustrated in Figs. 8-11.
We can see that, qualitatively, the situation is close to
that which we observed at p = -8 MeV. Thus, the

approximation of V% by the free off-shell T matrix

W

\S)

—

)

V() x 1073, MeV fm?

S
—_
S}

Fig. 9. AsinFig. 4, but for p =4 MeV.
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Fig. 10. Asin Fig. 5, but for p = -4 MeV.

YEX) x 1073, MeV fm?
Og . ___

-0.8}
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Fig. 11. Asin Fig. 7, but for p = -4 MeV.

remains quite accurate even upon the reduction of the
absolute value of the chemical potential.

5. CONCLUSION

The microscopic effective pairing interaction for the
dab of nuclear matter placed in the Woods-Saxon
potential well has been calculated within Brueckner
theory by using the separable 3 x 3 version of the Paris
potential. The effective interaction has been determined
for the model subspace including all negative-energy
single-particle states. The calculations have been per-
formed within the local-potential approximation,
whose accuracy for semi-infinite nuclear matter was
earlier demonstrated in [2]. The results of the calcula-
tions have been presented for two values of the chemi-
cal potential, the value of g = -8 MeV characteristic of
stable atomic nuclei and the value of p =—4 MeV mim-
icking the approach to the nucleon drip line. It was
shown that, in both cases, the effective interaction
agrees, to within 10%, with the off-shell T matrix for
free nucleon—nucleon scattering at the total energy of
two nucleons that is equal to E = 2 (recall that thisis
a negative value). We have constructed a simple and
efficient method for calculating the T matrix in the
coordinate representation. This method is based on cal-
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culating the inverse Fourier integral in the complex
plane of the total two-nucleon momentum. The above
approximation is convenient for calculating the super-
fluidity features of atomic nuclei, including those that
occur far off the beta-stability region.
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APPENDIX

Smplified Form of the Gap Equation in the Case
of Planar-Sab Geometry

In the case of the separable interaction being consid-
ered, the gap A has also the separable form [1, 2]

Alko X %g) = 5 AOOG(E X, (AD

The gap equation (2) written for the component A,
has the form

Ai(X)

00 00

A2
= 3 [0, [ (X X)B 06, X ().

il e
The superscript “0” on the two-particle propagator

B\ (X;, X,) in (A.2) means that it is calculated in the
model subspace S,. For a planar slab symmetric with
respect to the plane x = 0, the components A;(X) are
obviousy even functions of X. Therefore, equation
(A.2) can be simplified by reducing it to the form
involving only integrals over positive X. Specifically,
we arrive at

Ai(X)

00 00

) N (A3)
= ZIXmj'dXZ/\ij(X, X1)Bji (X1, X2)A1(Xy),
it o 0
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where where
AG(XL X3) = Nij(Xy, X3) + Aj(Xy, =X),  (A4) TG(X, X) = T(IX=X])+T;(X+X). (A9

BY (X1, Xz) = BJ(Xy, Xo) + Bj(Xy, —Xp).  (A.5)

By analogy with (A.5), we further introduce the

symmetrized two-particle propagator BJ-+, (X, X,) for

the complementary subspace S. It obviously satisfies
the identities

B}rl(xl, X;) = B;rl(xla -X;) = B;rl(—xb X3). (A.6)

By using (A.6), we can easily reduce equation (7) to
the form
AG(X, X)) = A8(X = X) + A 8(X + X)

. . (A7)
+ ZAiIIdxlBlm(xl X)) Ami (X1, X).
Im 0

A solution to equation (A.7) can be considered to be
defined only for X, X' = 0; hence, the second nonhomoge-
neous term in this equation isnonzero only a X = X' =0.

In the same way, we transform the renormalized
equation (10). Theresult is

NG(X, X) = Ti(X, X)

(A.8)
+ zIdxlIdXZTﬁ(X, X1) Bi( Xy, XZ)/\+mj(X21 X'),
0

Im o
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Abstract—On the basis of an analysis of experimental data, it is shown that a subthreshold (negative) p-wave
resonance can exist in the 2%“Pb isotope at E, =-16 eV. The presence of this resonance may explain unexpect-
edly large values observed experimentally for the P-odd angle of the rotation of the spin of transversely polar-
ized neutrons about their momentum that are scattered on a natural mixture of lead isotopes. No available data
areat odds with the existence of the E,, =16 €V subthreshold resonancein 2*/Pb. © 2000 MAIK “ Nauka/Inter-

periodica” .

1. INTRODUCTION

Parity-violation effects in neutron scattering on
nuclel provide a rare example of physical phenomena
whose theory was developed [1] long before their
experimental discovery [2] (seealso[3]). Inthistheory,
P-odd effects in complex nuclei are considerably
enhanced owing to a dynamical enhancement of level
mixing in compound nuclei and to special features of
scattering kinematics. The enhancement of parity non-
conservation in neutron scattering near p-wave reso-
nances in compound nuclei was predicted theoretically
for the first time in [1]. Resonance states in compound
nuclei have a complicated multiparticle structure
involving products of a large number N of the wave
functions of excited particles and holes. In the statisti-
cal model of the nucleus, typical values of N are deter-
mined by the strength of strong nucleon—nucleon inter-
action. If we denote by w the scale of this interaction
(spacing between single-particle energy levels) and by
D the spacing between the energy levels of the com-
pound nucleus, then an order-of-magnitude estimate
for N can be represented as

N ~ w/D. (1

This estimate can be obtained, for example, within
the black-nucleus model. The quantity D decreases
exponentially with increasing number of excited parti-
cles (increasing mass number A of the nucleus):

forA~100, D~1-10eV,
forA~240, D~1eV.

Bearing in mind that the typical spacing between
single-particle energy levels is w ~ 1 MeV, we then
obtain

N ~ 10°-109.

Let us consider low-energy neutron scattering on
nuclei viaa compound-nucleus state for the case where
P-odd effects are enhanced. When the neutron energy is
closer to p- than to s-wave resonances in compound

nuclei, P-odd effects are enhanced [4]. The enhance-
ment factor for single-particle P-odd effects estimated
at F = 103(m,/m)?> ~ 107 (m, and m are, respectively,
the pion and the nucleon mass) is determined by N val-
uesasgiven by (1) and isequal to

JN 010°-10°. )

In polarized-neutron scattering on nuclei, there are
two parity-violating effects: the cross-section asymme-
try A, in the scattering of longitudinally polarized neu-
trons on nuclei and the angle ¢ of the rotation of the
spin of neutronstransversely polarized to their momen-
tum. These quantities are both determined by the inter-
ference of the P-even and the P-odd Breit—Wigner scat-
tering amplitude. The P-even amplitude describes neu-
tron scattering from an initia p-wave state into the
same final p-wave state through a resonance p-wave
state of the compound nucleus. The P-odd amplitude
describes neutron scattering from aninitial swave state
into a fina p-wave state. The transition from the s- to
the p-wave state is induced by weak nucleon—nucleon
interaction in the compound nucleus. The expressions
for A, and ¢ are given by

A, = =2,[T(E)IT ,(E)P|V®|SIE,, 3)
¢ = {2/2m/./mE} { P|VF|SITEE}
x JT(E)IT ,(E).

In expressions (3) and (4), E is the neutron energy; E;
and E, are the energies of, respectively, the s- and the
p-wave resonance in the compound nucleus; n is the
number of nuclel in 1 cm?® of the target; PV |isthe
matrix element of the weak-interaction operator
between the single-particle states of the compound
nucleus; and ' (E) and I" ,(E) arethe quantities obtained
by rescaling the partial neutron widths of the s- and
p-wave resonances to the neutron energy E as

r(E) = M(E/E) ", (5)

“)
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where | is the orbital angular momentum of the neu-
trons. In order to avoid encumbering the presentation,
expressions (3) and (4) were written in the approxima-
tion E < Eg p, Which is usually valid for therma and
cold neutrons. The neutron-spin-rotation angle (4) (in
radians) refers to a unit length of the target. From
expressions (3)—(5), it follows that

A,(E) 01/JE, (6)

¢(E) = const. (7)

From (3)—(5), it additionally follows that the cross-
section asymmetry A, in neutron scattering has, in con-
trast to the spin-rotation angle ¢, an extra[in relation to
(2)] enhancement factor (which is especialy pro-
nounced in the '*La nucleus)

JTJdT, 0(pR) ™ 010"-10°,

where p is the neutron momentum, while R is the
nuclear radius. For the weak-interaction matrix element
appearing in (3) and (4), we can use the phenomenol og-
ical expression

PVP|SO= 2x107./D (eV), 8)
where D is the mean spacing between the resonances
in a specific compound nucleus. In deriving expression
(8), it isadvisable to make use of the fact that the weak-
interaction matrix elements are formally similar to the
partial widths with respect to electromagnetic transi-
tions (giant resonance of the MO type) between the
compound-nucleus states. The phenomenological
expression (8) describes quite accurately parity-non-
conservation effects for all nuclel where the effects in
guestion were observed experimentally.

2. PROBLEM OF P-ODD EFFECTS IN LEAD
ISOTOPES

Natural lead is a mixture of four isotopes with mass
numbers of 204, 207, 206, and 208, their fractions
being 1.43, 24.15, 22.4, and 52.4%, respectively. The
208Pb isotope is a doubly magic nucleus—that is, a
nucleus having magic numbers of both protons and
neutrons. For this reason, the level density is not great
in al four isotopes. Moreover, it iswell known that, for
these isotopes, compound nuclei have no appropriate
low-energy s- and p-wave resonance states that could
be responsible for parity-nonconservation effects in
neutron scattering. Neverthel ess, experiments revealed
acomparatively large valuefor the angle (4) of therota-
tion of the spin of transversely polarized neutrons about
their momentum:

b = (2.24+0.33) x 107° [5] )

® = (3.53+0.79) x 107° [6]. (10)

LOBOV

A direct measurement of theangle ¢ for alead target
enriched in 2°7Pb to 87% resulted in

0 <4.3x107° (11)

at a90% C.L. [6]. Oncethelast experimental result had
appeared, it became clear that, in contrast to the state-
ment of the authors of the so-called valence model [7],
the rotation angles (9) and (10) in natural lead are not
associated with the 27Pb isotope. If, in the experiments
reported in [5, 6], thisisotope had been responsible for
the neutron-spin rotation in natural lead, then the effect
in the target enriched in 2’Pb to 87% would have
exceeded the valuesin (9) and (10) approximately by a
factor of four, amounting to 10~. In contrast to the
model featuring the weak-interaction-induced mixing
of opposite-parity compound-nucleus states, the
valence model aims at explaining P-odd effects by the
interference of the p-wave resonance in the compound
nucleuswith the s-wave potential scattering. The exper-
imental constraint in (11) seemsto disprovethe valence
model of P-odd effects.

For lead isotopes, present-day experimental data[8]
show no evidence for s and p-wave resonances that
could explain the P-odd values in (9) and (10) by the
mixing of compound-nucleus states. Thisis not so only
for the 2Pb isotope, which has a broad subthreshold s-
wave resonance at —2.98 keV and the nearest p-wave
resonance at 0.48 keV, their widths being, respectively,

Mo =72eVand ) =3x 107 eV. For these resonance
features, known from experiments, the value of the P-
odd angle (4) is ¢ =5 x 107, which is much smaller
than the observed values from (9) and (10). Those
experimental values can be explained under the
assumption that there exists an as-yet-unobserved neu-

tron p-wave resonance that has a width of Fg =3 x

1073 eV, typical of 2*Pb, and which is mixed, by weak
interaction, with the aforementioned broad s-wave res-
onance. With allowance for the abundance of 2°*Pb in
natural mixtures, expression (4), together with the
experimental values from (9) or (10), then yields an
equation for determining the energy E, of the resonance
in question. Solving this equation, we obtain

E,=-16eV. (12)
Thus, the hypothetical p-wave resonance is sub-
threshold, in the same way as the s-wave resonance.
Our result agrees with data of experimentalistsfrom the
Joint Institute for Nuclear Research (JINR, Dubna) [9],
who were unableto find any p-wave resonance in anat-
ural mixture of lead isotopes at energies in the energy
region E, = 0-100 €V. | do not think that the existence
of a subthreshold neutron resonance in 2*Pb at the
energy quoted in (12) is unnatural. First, its existence
naturally breaks the hierarchy of many known sub-
threshold s-wave resonances. Second, there are no
obvious reasons for subthreshold p-wave resonances to
PHYSICS OF ATOMIC NUCLEI  Vol. 63
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be strongly forbidden, and it should be borne in mind
that everything is allowed, unlessit is forbidden.

A measurement of the spin-rotation angle for the
scattering of transversely polarized neutrons on a sam-
ple enriched in the 2%Pb isotope could be a test of the
existence of ap-wave resonance at the energy presented
in (12). By way of example, weindicate that, for asam-
ple 1.5 cm long and enrichment of 36.6%, the spin-
rotation-angle value rescaled from (9) or (10) is

»=8x10". (13)

The expected value in (13) corresponds to the con-
ditions of the experiments that are being currently per-
formed at the reactor of the Berlin Neutron Scattering
Center (BENSC).

3. OTHER EFFECTS IN NEUTRON SCATTERING
ON 204Pb NUCLEI

In this section, we will study the contribution of the
subthreshold p-wave resonance in 2*4Pb to effects other
than those considered in the preceding section.

For the case of thermal neutrons, the contribution of
this p-wave resonance to the cross section for ny scat-
tering is

Opy = T (E)T,/2MEXE; = 22mbxT,, (14)

whereT, istheradiative width of the p-wave resonance.
Assuming aredlisticvalueintheregionl”, < 0.1 eV, we
find that the cross section in (14) is much smaller than
2 mb, a value well below the experimental error in
determining the total cross section for radiative-ther-
mal-neutron capture by 2**Pb nuclei (661 + 70 mb).
Thus, the contribution of the p-wave resonancein ques-
tion to the cross section (14) is negligibly small.

The cross-section asymmetry (3) and the spin-rota-
tion angle (4) are proportional, respectively, to the
imaginary and to the real part of the difference of the
Breit-Wigner scattering amplitudes corresponding to
opposite neutron helicities [4]. This difference of the
amplitudes is an analytic function that has no singular-
ities in the upper complex half-plane of the neutron
energy. By virtue of this, the quantitiesin (3) and (4) are
related by the equation

¢ = n{(E-E,)/T }Aa, (15)

where n is the number of nuclei in 1 cm? of the target,
I, isthe total width of the p-wave resonance, and

Ao = 2A,(E)o,. (16)

Here, 0, isthetotal cross section for neutron absorption
at a specific energy E [10]. The cross-section asymme-
try in the scattering of longitudinally polarized thermal
neutrons on a natural mixture of lead isotopes was stud-
ied by Abov et al. [11], who found that

A, = (-0.7+08)x107°. (17)
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Substituting the experimental values of ¢ from (9)
and (10), which correspond to the neutron energy of
E=1.75x102eV (A\=6.8 A); thevaluesof 6,=2.25b
and ;=3 x 10~ eV, the abundance of 2**Pb in anatural
mixture of isotopes (1.43%); and the p-resonance posi-
tion at E, = —16 eV into relations (15) and (16) and
solving them for A, we obtain

A,=2x107. (18)

This result is close to the single-particle value. By
rescaling the value in (18) to the therma point (E =
0.025 eV, which corresponds to A = 1.8 A) with g, =
0.65 b at this neutron energy, we obtain

A, =107 (19)

Thus, the assumption that there exists a subthresh-
old p-wave resonance in 2*“Pb does not contradict avail-
able experimental data.

4. CONCLUSION

Unexpectedly large experimental values in (9) and
(10) for the angle of the rotation of the spin of trans-
versely polarized neutrons about their momentum that
are scattered on a natural mixture of lead isotopes have
given impetus to searches for reasons behind this phe-
nomenon. An analysis of experimental data has led to
the conclusion that the effect may be due to the exist-
ence of an as-yet-unobserved subthreshold (negative)
p-wave resonance in 2%Pb. This resonance, whose fea-
tures naturally follow from (9) and (10), makes a negli-
gibly small contribution to thetotal cross section for the
radiative capture of thermal neutrons, and its existence
does not contradict available experimental data.

ACKNOWLEDGMENTS

| am indebted to Yu.G. Abov, O.N. Ermakov,
I.L. Karpikhin, PA. Krupchitskii, and L.B. Pikel’ner
for numerous discussions on rel evant experimental data
and for valuable advice.

Thiswork was supported by the Russian Foundation
for Basic Research (project no. 97-02-16184).

Note added. The width of the negative p-wave neu-
tron resonance can be estimated by using the relevant
strength function and the mean spacing between the
p-wave neutron resonances [8, 9]. The result proves to
be 0.03 eV, which is one order of magnitude greater
than the value used in the present study. A p-wave res-
onance of width 0.03 eV corresponds to an energy of
—29 eV. Thus, the occurrence of a p-wave resonancein
the energy range |(16-29) eV seems to be admissible
theoretically.
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Abstract—The diffractive reaction p + N — [Z*K %] + N induced by 70-GeV protons is investigated at the
SPHINX facility. The measured mass spectrum of the Z*K © system originating from this reaction shows ares-
onance structure with amass of M = 1995 £ 18 MeV and awidth of I' =90 + 32 MeV. The cross section for the
formation of this structure is found to be o = 182 + 38 nb per target nucleon. These data comply well with the
results that we obtained previously in studying the reaction p + N — [Z°K*] + N, where we observed the for-
mation of the X(2000) —» >°K* state, acandidate for an exotic baryon with hidden strangeness. The measured
ratio R of the two branching fractions, R= Br[X(2000) — >*K ]/Br[X(2000) —= °K*]=1.91 + 0.38, iscon-
sistent with the value of R = 2 expected for an isospin-1/2 baryon. © 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The experiments of the SPHINX collaboration have
been implementing a broad program of searches for
exotic hadronic states in diffractive proton-induced
reactions and in transitions characterized by high
momentum transfers. The major results of these inves-
tigations have been reported in [1-11] and summarized
in the review articles[12-15].

The SPHINX facility used in the measurements
being discussed included a wide-aperture magnetic
spectrometer equipped with proportional and drift
chambers, drift tubes, and scintillation hodoscopes; a
Y spectrometer composed of |ead-glass counters; and
a system of Cherenkov detectors, including a RICH
device, for identifying charged secondaries. For fur-
ther details on the apparatus, the reader is referred to
[1, 10] (the latter reference describes the partialy
upgraded apparatus with a new y spectrometer ensur-
ing a more efficient detection of the decay processes
N — prtand Z° — Ay). Some (2—4) x 10° 70-GeV
protons were delivered to the apparatus per accelera-
tor cycle.

Reportedin [4—7, 10, 11] are our previousinvestiga-

D Institute for High Energy Physics, Protvino, Moscow oblast,
142284 Russia.

2) Institute of Theoretical and Experimental Physics, Bol’shaya
Cheremushkinskaya 25, Moscow, 117259 Russia.

tions of the diffractive reaction

p+N —[Z°K"] +N,
L~ Ay (D
|_> 1219

where N denotes either a nucleon or a carbon nucleus
as a discrete unit (for a coherent process). The effec-
tive-mass spectrum of the Z°K* system originating
from this reaction is dominated by a resonance
enhancement with amass of M = 1986 £ 6 MeV and a
width of ' =98 + 20 MeV. The statistical significance
of the enhancement, referred to as X(2000), exceeds ten
standard deviations. The product of the formation cross
section and the relevant branching fraction was esti-
mated as

o = [p+N —= X(2000) + N] o
x Br[X(2000) —» =°K*] = 95 + 20 nb/nucleon.

Apart from having a relatively small width, the
X(2000) state is anomalous in that it predominantly
decays through channels involving the emission of
strange particles: specifically, we found that

R = Br[X(2000) — ZK] .
x (Br[X(2000) —= A(1232); priri 2 1) )

recall that, for ordinary three-quark isobars, this ratio
does not exceed a few percent [15, 16]. On this basis,

1063-7788/00/6308-1391$20.00 © 2000 MAIK “Nauka/Interperiodica’
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Fig. 1. Effectivemass spectrum of the 't system for
events selected to isolate reaction (4) (see main body of the
text). We can see here a distinct peak due to the decay

0 _
Kg —= T,

we tentatively interpret the X(2000) state as an exotic
pentaguark baryon with hidden strangeness (juudss>).

In the near-threshold region, the mass spectrum of
the Z°K* system emitted in the coherent reaction (1)
shows yet another enhancement at M = 1807 £ 7 MeV,
X(1810), its width being I' = 62 + 19 MeV. That this
state is formed at very low transverse momenta ( P$ <
0.01 GeV?) may suggest the Coulomb production
mechanism [11, 17].

The present article reports on our first resultsfor the
diffractive reaction

p+N —[='K’] +N,
Lo mome
pr®
L. 2y
which features a 2°K* system in an isospin state differ-
ent from that in reaction (1). Analyzed are the same

data as in our latest investigation of reaction (1) with
the partially upgraded apparatus (see [10, 11]).

)

2. INVESTIGATION OF THE REACTION
p+N— [Z*KT + N

Among al final states of the transition
p+N —= prTmTTC + N,
Lo 2y

we sought events of reaction (4), which features two
unstabl e particles. For this, we adopted a special proce-
dure consisting of the following successive stages:

&)

VAVILOV et al.

(i) Eventsinvolving three charged secondariesin the
final state and two photon showers detected by the
Yy spectrometer were selected. It was required that the
three charged secondaries be identified as p, 1", and 1T
by the system of Cherenkov counters and that the mea-
sured energy of each photon exceed a lower threshold
of 1 GeV; the latter was necessary for the soft back-
ground in the y spectrometer to be suppressed.

(if) The position of the primary vertex was deter-
mined for afirst approximation as afitted point of inter-
section of all three charged tracks, which was then used
to reconstruct the photon 3-momenta. The effective
mass of two photons was required to lie within the T
window 110 < M,, <160 MeV. In choosing the width of
the 1 window, it was considered that the final-state 1
meson originates from the secondary vertex of the
decay >+ —» prt rather than from the primary vertex,
whereby M,, is effectively reduced by a value not
greater than some 10 MeV.

(iii) The estimate of the ™ momentum was refined
by kinematically constraining the two photonsto corre-
spond to the decay T — vyy.

(iv) A selected event wasrequired to satisfy the elas-
ticity condition65<E,+ E . + E - + E , <75GeV.

(v) The point of intersection of thetrajectories of the
final-state T and 1T mesons and their total momentum
(referred to by convention as the K °%-meson momen-
tum) were found. The longitudinal coordinate of this
secondary decay vertex, Z1, was determined.

(vi) Likewise, the vertex of >* decay was found as
the point of intersection of the trajectories of the final-
state proton and 1 meson, and the momentum of the =+
candidate was estimated as the sum of their momenta.

(vii) The momenta of the proton and the ™ meson
were refined by refitting the trgjectories of these parti-
clesto the estimated vertex of Z*-hyperon decay.

(viii) The position of the primary vertex was deter-
mined more precisely by intersecting the refined 2+ tra-
jectory with the K © and the primary-proton trajectory.
The longitudinal coordinate of the primary vertex esti-
mated in this way was denoted by Z.

(ix) We further studied the effective mass distribu-
tion of the Tt system versus d = (Z1 — 2)/((D(Z1) +
D(Z))"?, where D(Z) and D(Z1) are the uncertaintiesin
determining the coordinates Z and Z1, respectively. The

condition d > O selects the K3-decay vertex down-

stream of the primary vertex; a further increase in the
lower cut on d improves the purity of the selected event
sample, but thisis accompanied by areduction of rele-
vant statistics. Our analysis revealed that the condition
d > 1.0 is optimal. For this selection, Fig. 1 shows the
effective-mass distribution of the 11T system; there,
we can see a prominent peak associated with the
K meson: in the mass window 0.486-0.510 GeV, there
PHYSICS OF ATOMIC NUCLEI  Vol. 63
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is asignal of some 271 events above a smooth back-
ground.

(x) For eventsthat contained K° candidates sel ected
in the way outlined above, we then plotted the effec-
tive-mass spectrum of the pr system (see Fig. 2). That
this spectrum features a distinct signal due to the decay
process >+ — prt’ makesit possible to isolate reliably
reaction (4). In the mass window 1.174-1.204 GeV,
there are 194 events above a smooth background, with
the signal-to-background ratio being close to four.

We can conclude that the above procedure has
enabled us to isolate reliably reaction (4), which fea-
tures two unstable secondaries, and to analyze its kine-
matics.

Figure 3 displays the effective-mass spectrum of the
>*K? system for events of reaction (4) that were
selected from the Z*-hyperon mass window in Fig. 2.
Despite comparatively low statistics, we can state that,
gualitatively, this distribution is consistent with the
analogous data obtained in previous SPHINX experi-
ments for reaction (1) [10, 11]. The Z*K © spectrum in
Fig. 3 shows two resonance enhancements whose
parameters are

M=1812+7MeV, [ =41+x30MeV, N=26=*13;
M=1995+18MeV, =90+32MeV, N=68+12.

Thefirst enhancement, which needs to be confirmed
at ahigher level of statistics (which are being collected
at present), isnot discussed here (see[11]). The param-
eters of the second enhancement suggest that it arises
from Z*K° decays of the baryon state X(2000), which
we detected earlier in the Z*K° decay channel.

In order to compare quantitatively the results of the
present study with those for reaction (1), we estimated
the detection efficiency for events of reaction (4), tak-
ing into account the above selection criteria(seeFig. 4).
In determining the cross section for X(2000) formation,
information about statistics and the efficiency was sup-
plemented with the following inputs:

(a) Thetotal number of primary protons delivered to
the target was 4.3 x 10'°.

(b) Under the assumption that, for one CH, mole-
cule, the effective number of nucleons was 2 + A?3 =

7.24, the effective thickness of the polyethylene target
was estimated at 3.46 x 10?* nucleon/cm?.

(c) The &* —» p1 branching fraction was set to
51.6%.

(d) Fifty percent of all K° mesons were assumed to
be emitted in the form of K2.

€) The KO — TUTT branching fraction was set to
S g
68-6%-

Taking all the above into account, we estimated the
product of the cross section for the formation of
X(2000) in reaction (4) and the corresponding branch-

PHYSICS OF ATOMIC NUCLEI  Vol. 63

No. 8 2000

1393

N/(3 MeV)
40

1.4
M(pr?), GeV

Fig. 2. Effective-mass distribution of the pTl0 system for

eventsselectedinthe Kg window (seeFig. 1). That thisdis-

tribution features a distinct peak due to the decay >* —
pr® allowed us to select events of reaction (4).

N/(40 MeV)
30}

20

10

O 1 1 1 1 1
2.6
M(Z*K9), GeV

Fig. 3. Effective-massdistribution of theZ*K 0 system emit-
ted in reaction (4). The solid curve represents the results of
afitintermsof two Breit—Wigner distributionsand aregular
polynomial background illustrated by the dashed curve (in
al, ten adjustable parameters were used). The fitted param-
eter values are quoted in the main body of the text.

ing ratio at
o[p+ N —= X(2000) + N]Br[ X(2000) — =*K’]

= 182 + 32 nb/nucleon. (0)

Dividing this by the analogous estimate for reaction
(2) from [11], we obtain

R = Br[X(2000) — ='K°]

(7
x (Br[X(2000) —= 3°K*])™ = 1.91+ 0.38.
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0.008 -

0.004 |-

O 1 1 1 1

1.8 2.2 2.6
MK ), GeV

Fig. 4. Estimated detection efficiency for reaction (4) as a
function of the effective mass of the S*K ° System.

We aso have

o[p+ N — X(2000) + N]Br[ X(2000) — ZK+]
= 277 = 72 nb/nucleon. ®)

Only statistical errors are quoted in the above
results. The systematic uncertainties in estimating the
detection efficiency, the absolute normalization, and
the A dependence are about £20 and £15% for, respec-
tively, the absolute cross section and the ratio of the
branching fractions.

Sincethe X(2000)* baryon isformed viathe diffrac-
tive dissociation of a proton, its isospin must be 1/2.
The expected value of the ratio of the branching frac-
tions must then be

R(XT: 12) = 2.
This agrees well with the experimental valuein (7).

3. CONCLUSION

In summary, we have isolated, for the first time, the
diffractive reaction (4) and observed the formation of
the X(2000)* state decaying into Z*K?; originally, the
SPHINX collaboration detected this state in its decay
through another isotopic channel, X(2000)* —» Z°K*.
The results of the new measurements comply well with
previous data on process (1) (see [11]), independently
confirming the existence of the X(2000) state, whichis
interpreted as a candidate for an exotic pentaquark
baryon with hidden strangeness.

Preliminary results of the present experiment were
reported at a symposium in Thilisi [18].

The analysis of reaction (4) will benefit from aten-
fold increase in statistics that is foreseen in the near
future.

VAVILOV et al.
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Abstract—The electromagnetic form factorsfor pions and nucleons are considered within the model of quark—
gluon strings, where the momentum-transfer dependence of hadronic form factors is determined by the inter-
cepts of the corresponding Regge trajectories and by the Sudakov form factor. Analytic expressions found for
form factors in the timelike region admit an analytic continuation to the spacelike region. The resulting form
factors for pions and nucleons comply well with experimental data both for positive and for negative values of
the squared momentum transfer of. It is shown that the distinctions between the absol ute val ues of the pion and
nucleon form factors F,(q?), G(0%), and F(¢?) at positive values of g* and those at negative val ues of this vari-
able are associated with the analytic properties of the double-logarithmic term in the exponent of the Sudakov
form factor. The spin structure of the amplitudes for quark transitions into hadrons that is proposed in the
present study makes it possible to describe fairly well available experimental data on the Pauli form factor F,
and on the ratio G./G,,. © 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

It is well known that, at high momentum transfers
(|Ig°| > M?, where M is nucleon mass), the charge and
the magnetic form factor for nucleons can be closely
approximated by the dipole formula |G, ()| ~ 1/[cPf
(for an overview, see [1]). For the Pauli form factors,
this dependence becomes |F,(¢?)| ~ 1/]g?|? and |F»(0?)| ~
1/|9?F. The experimental data from [2, 3] also indicate
that, at high ||, the absolute value of the nucleon form
factor G,(g?) in the timelike region is approximately
twice as great as that in the spacdike region—specifi-
cally, we have |G(a)| ~ ¢ /|’ for of > 0 and |Gy(a)| ~
G,/|o?F for g* < 0 with ¢, = 2c, (see, for example, the
review article of Gauzzi [3] and references therein).

Available experimental data on the pion form factor
can be similarly described by the power-law expression
F{(¢?) ~ ¢ /% In al probability, the absolute value of
the pion form factor, |F(c?)|, isalso greater in thetime-
like region than in the spacelike region, their ratio being
again equal to two (see [3)]).

As to theoretical studies, they agree in that, at
asymptotically high momentum transfers, a correct
description of the form factors in question is provided
by the hard-scattering model, which is based on the
assumption that soft and hard contributions factorize
(see, for example, [4] and referencestherein). Nonethe-
less, there is the question of whether it is possible to
apply thisapproach (which relies on perturbative QCD)
in the region ¢? < 30 GeV?) (see, for example, [5-8]),
where experimental data are available. In the past few
years, the hard-scattering model has been modified to

D Moscow Institute for Physics and Technology, Institutskii proezd 9,
Dolgoprudnyi, Moscow oblast, 141700 Russia.

takeinto account the k; dependence of the hadron wave
function and to include various parametrizations of the
Sudakov form factor [9-12]. Within this modified
approach, it is possible to perform a self-consistent cal-
culation of perturbative contributions to the form fac-
tors even at comparatively low sguares of the momen-
tum transfers (between about 2 and 3 GeV?). Among
other things, such calculations revedled that, in this
region, the perturbative contribution to the form factors
is overly small to describe experimental data [13-15].
An analysis of the latest studies devoted to computing
electromagnetic form factors on the basis of perturba-
tive QCD showed (see, for example, the survey of Jain
et al. [16]) that the absolute form-factor values cannot
be predicted by calculations in the leading order in the
strong-interaction coupling constant ag. This result
implies that nonperturbative (soft) contributions are of
importance in calculating form factors.

A nonperturbative approach to describing hadronic
form factors at finite ¢ on the basis of the model of
guark—gluon strings (QGS model, aso known as
QGSM) [17] was proposed in [18]. Previoudly, the
QGSM was used to describe soft hadron interactions at
high energies[19, 20]. The QGSM isbased on theideas
of a topological 1/N expansion [21-24] and on the
color-tube model [25-28]. The QGSM can be consid-
ered as a microscopic model describing Regge phe-
nomenology interms of quark degrees of freedom; with
the aid of this model, it proves to be possible to estab-
lish links between many soft hadronic reactions. Within
the QGSM, the ¢ dependence of hadronic form factors
isdetermined by [18] theintercepts of the Regge trajec-
tories of mesons and baryons and by the Sudakov form
factor.

1063-7788/00/6308-1395%$20.00 © 2000 MAIK “Nauka/Interperiodica’
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Fig. 1. Planar diagrams corresponding to the binary reac-
tions (a) . — 00, (b) Tt — NN, and (c)
NN — NN.

In the present study, it is shown that, within the
QGSM, the distinction between the absolute values of
hadronic form factors at positive g and those at nega-
tive values of thisvariable is naturally explained by the
analytic dependence of the Sudakov form factor on g?.
The model is generalized to take into account spin vari-
ables. This is done by introducing the amplitudes for

quark transitionsinto hadrons, T% =™ , and for hadron
transitions into quarks, T~ %. Previoudy, spin
effects within the QGSM were discussed in [18, 29].
The method proposed here differs substantially from
the approach used in [29]. The introduction of spin
variables makesit possible to separate the nucleon form
factors F, and F, and to prove that, at high ¢, the pion
form factor is additionally suppressed within the
QGSM because of helicity conservation.

Relevant formulas are derived in the timelike
region. Since the results are obtained in the form of
analytic expressions, our formulas for the form factors
in question can be continued analytically to the space-
like region. In the model used here, the distinction
between the absolute values of the form factors at pos-
itive ¢f and those at negative ¢ are explained by the
analytic dependence of the double-logarithmic term in
the exponent of the Sudakov form factor.

The ensuing exposition is organized as follows. In
Section 2, we present the fundamentals of the QGSM.
We consider the amplitudes for the transitions of a
quark—antiquark pair into a nucleon—antinucleon pair,

A%~ (g 1) and into aTrTr pair, A° (s 1), and
find the asymptotic behavior of these amplitudes for

large s and finite t. For the transitionsy —> NN and
y — TUTT, the matrix elements, which are defined as

_ + -
g-mTm

KAIDALOYV et al.

the convolution of the amplitudes for the transitions

y — qq and qq — hh in the momentum represen-
tation or as the product of these amplitudes in the
impact-parameter representation, are obtained analyti-
caly for |s| > M? and [t| < M2. In Section 3, we deter-
mine the spin structure of the amplitudes T~ " and
T and derive expressions for the pion form fac-
tor F(s), as well as for the nucleon charge and mag-
netic form factors [G.(s) and G,(s), respectively]. In
Section 4, we consider the suppression of the ampli-

tudesfor thetransitionsy — NN andy — Tr'TT that
is described by the Sudakov form factor. In Section 5,
we present numerical resultsfor the form factors G,(s),
G4(s), and F(s) and compare these results with experi-
mental data. A brief summary of the results obtained in
this study is given in Section 6.

2. MODEL OF QUARK-GLUON STRINGS:

AMPLITUDE FOR THE TRANSITION qg — hh
IN THE LIMIT OF LARGE s AND FINITE t

Let us consider the binary reactions T — TOTC,

T — NN, and pp — NN.Atlarge valuesof s
and finite values of t, these reactions can be described
in terms of planar diagrams featuring t-channel
valence-quark exchanges. In the diagrams presented in
Fig. 1, single and double solid lines represent valence
guarks and diquarks, respectively; no exchanges of soft
gluons are shown there. In accordance with the topo-
logical 1/N; expansion [18, 22], these planar diagrams
are dominant at N; > 1 and N./N; ~ 1. In the case of
nucleonic and pionic reactions, the main contribution
comes from the exchanges of light u, d, and s quarks,
and the expansion parameter is not very small: 1/N; =

1/3. Nonetheless, it is 1/N = 1/10, rather than 1/N;
[22], that appears to be an actual expansion parameter
for the amplitudes of exclusive reactions featuring spe-
cific quantum numbersin the t channel. With each pla-
nar diagram of the topological expansion, we can asso-
ciate a spacetime pattern formulated in terms of the
string model or a color-tube model [17].

By way of example, we will consider the spacetime
pattern of the binary reaction ' — TTC (See

Fig. 1a). At ahigh c.m. energy /s, the reaction occurs
if, in each pion, there arises a rare quark configuration
such that one quark (antiquark), which playsthe role of
a spectator, carries almost the entire hadron momen-
tum, while the valence antiquark (quark) in this system
is slow. In this configuration, the difference of the
rapidities y between the active and the spectator quark
(between the quark and the antiquark) in each hadronis

1, s
Yo=Ya=3INER (1)

PHYSICS OF ATOMIC NUCLEI  Vol. 63 No. 8 2000



ELECTROMAGNETIC FORM

where s, ~ 1 GeV?2,

After that, two slow valence partons—the quark and
the antiquark—from each pion (1t and 1) annihilate,
whereas the fast spectator quark and antiquark continue
moving. Asthefast quarks move apart, agluon string is
stretched between them. The string in question may
rupture, whereby a two-particle hadronic state is
formed via the process in which the generation of a
quark—antiquark pair qg from avacuum isfollowed by
the recombination of the quarks from this pair with the
corresponding spectator quarks. In the specific case
being considered, this leads to the formation of a T’
system. The same spacetime pattern describes the pro-
cess depicted in Fig. 1b. The only difference is that the
rupture of the string leads, in the latter case, to the pro-
duction of a digquark—antidiquark pair from a vacuum
with the subsequent formation of a nucleon—antinu-
cleon system in the final state.

In perfect analogy with the above, the diagram in
Fig. 1c describes the process where a valence diquark

(qg) and a valence antidiquark (gqq) annihilate, which
results in the formation of a quark—gluon string in the
intermediate state. The string then ruptures, producing
a quark—antidiquark pair in the final state. The primary

qq [or (qg)(qq)] structures annihilate if the rapidity
difference between the valence quark g and the valence

antiquark g [or between (qg) and (qq)] issmall, y;=0
(either of the two interacting partonsisnearly at rest in
the c.m. frame), and if the relative impact parameter
[bg— byl is less than the interaction range. The proba-
bility of finding a valence quark with a rapidity y, and
with animpact parameter b in ahadron hastheform [ 18]

W(Yq— Yo, b —bgp)

(bg bomf} )
4R(s) |

where R¥(s) isthe square of the effective range of inter-
action, y, is the hadron rapidity in the reaction c.m.
frame, b is the coordinate of the valence quark in the
impact-parameter representation, and 3 is a parameter.
As was shown in [18], the parameters  and RX(s),
which determine the density of quark distribution in
a hadron, can be expressed in terms of the phenome-
nological parameters of the Regge trajectory ag(r)
that makes the dominant contribution to a given pla-
nar diagram. Specifically, the parameter 3 isrelated to
the intercept of the Regge trajectory as 3= 1 — ag(0),
while R¥(s) = Rf) +a'(Yq— Yo), Where a' = 0k (0) isthe
slope of the dominant Regge trajectory.

For an ab — cd binary reaction involving the for-
mation of a quark—gluon string (or a color tube) in the

intermediate state, the above spacetime pattern leads to
the factorization of the amplitudes in the s channel.

_ c
= pern ) —B(Yq—Yo) —
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Sincethe product color tube does not preserve informa-
tion about the properties of the initial state, the proba-
bility of the formation of an arbitrary state depends nei-
ther on the type of the annihilated quarks nor on the
structure of theinitial state; it isdetermined exclusively
by the type of quarks produced upon the rupture of the
string.

Generalizing the approach developed in[19, 20], we

~ab - qf ~qq - cd
introduce the amplitudes T * (s, bp) and ™ (s,
by that describe, respectively, the formation and the
rupture of aquark—gluon tube. For an ab —» cd binary
reaction, the amplitude that corresponds to the diagram
in Fig. 1a, 1b, or 1c can be represented as the product
of the amplitudes in the impact-parameter representa-
tion,

~ab - cd

A

1 ~ab - qq ~qQg - cd
(sbp) = 5T (sb)T" (s:bp), 3)

or as the convolution of the two amplitudes in the
momentum representation,

ab-.cd

(s ap)

(4
[T (s kT (s 0k, @

(8T[ S)
Let us now find the parameters appearing in the ampli-

tudes T™™ = 9(s, k) and T% = "V (s, k) at asymptot-
ically large values of s. This corresponds to the Regge

parametrization of the amplitudes AT 7T
AT NN and AN NN that s,
An*n‘ﬂnn(s t) _ NMD Sg p(Rth),
TlT[a S B
(50 = Not SE ep(Rot),  (5)
N - s
AT NN(S = NDD Sog p(Rth),

where oy, (t), ag(t), and ap(t) are the dominant meson,
baryon, and quark—diquark Regge trajectories, respec-
tively, while Ny, Ng, and N, are the corresponding nor-
malization constants. For the dominant Regge poles,
we have

aw(0) = 0g(0) = -0.5,

(6)
For the case of light constituent quarks, the relevant
slopes of the Regge trajectories are

a1(0) = ap(0) = ah(0) = 1.0 GeV >, )
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N

Fig. 2. Planar diagrams corresponding to the processes
(@ y— ' and (b) y —= NN.

Taking into account the factorization equations (3)

and (4), we can represent the amplitudes T nﬁ(s, bp)

and T~ NN(S, bp) as
~ qq - T
T (s bp)
w1 sHw©@+v2 O p2 O
L0 sgtP ™ epe D g
2./TRy(9" S 0 8R%(s9)0
~qg - NN ®
T (s, bp)
w 1 gsH®O+v2 O b2 O

—d= —0
? 2./mRy(9)F s 0 8R2(9)0

where the quantities Ry(s) and Ry(s) defined by the
relations

RI(®) = Ro + (@) In1:21

)
RO = Rio *+ ap(0)In1-21

have the meaning of the effective ranges of interaction.
Substituting the amplitudes specified by equations
(8) into (3), we obtain
~ Tt - NN _ 2 1
A (Sv b[l) - (NMND) 4T[RD(S) RM(S)
(10)
1 1
—p2U + D] .
"LBR%(9  8RA(9-
For the equalitiesin (5) and (10) to be consistent, it
is necessary to require that the parameters of the Regge

trajectories [18] and the normalization constants satisfy
therelations

1
= () 0
§ D_EDZ(GD( ) +ay(0)
05,0

exp[

1 o_ 1 1
Re(S)  Ru(s) Ro(s)
2a(0)g = ap(0) +ay(0),

1t
Ro(s)Ru(s) BRé(S)

(11)

(NuNp)”

(12)
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Assuming that only light u, d, and s quarks partici-
pate in the above reactions, we arrive at [18]

ay(0) = ag(0) = ap(0) =a'(0),
Row(0) = Ros(0) = Rop(0) =Ra(0),
(NMND)UZ = Ng.

In this case, relations (11) and (12) hold for all values
of s. Otherwise, these relations are satisfied at suffi-
ciently large values of s (see also [18]).

Within this approach, we can also consider the reac-
tion of electron—positron annihilation into hadrons (see

Fig. 2). In the case of y — NN (Fig. 2b), a virtua
photon produces a quark—antiquark pair. Asthe compo-
nents of the pair move apart, a color tube is stretched
between the fast quarks. The rupture of the tube with
the formation of afinal-state hadron pair is governed by
the same mechanism as that in the processesillustrated
in Fig. 2b. The string ruptures, generating a diquark—
antidiquark pair, which subsequently forms a final
nucleon—antinucleon state via the interaction with
spectator quarks. The corresponding transition form
factors can be expressed in terms of the amplitudes

(s, bp) as

(13)

~qgq - NN

T "% byadT

= 5T 9T (s ba=0). (14

Thus, we find that, at large s, the nucleon form fac-
tors are given by

A~

G o(9) DI 7T (s, by = 0)

1
Ro(®
In the case where a Tt'1T pair is formed in the final
state (see Fig. 2a), the relevant expressions for the
amplitudes and for the form factor can be represen-
ted as

(ap(0)—1)/2 5)

— I_TV - QQ(S)-T—qq -

e (s,by=0), (16)

A’ ()

F(9] 18T (s by, = 0)
1
Ru(®

Taking into account the intercept val ues specified by
(6), we find that the asymptotic behavior of the form
factorsis described by the expressions

F.(s) O|s/sy ™",

(ay(0)=1)/2 (17)

O

| —5/4

|G e(S)] Ols/so
This asymptotic behavior of the form factors differs
from that which is predicted by the quark-counting
PHYSICS OF ATOMIC NUCLEI  Vol. 63
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rules [30] and from that which follows from the calcu-
lations based on perturbative QCD [4]. Moreover, the
asymptotic behavior that we obtained is at odds with
experimental data on the pion and nucleon form fac-
tors, which vary, in experiments, in inverse proportion
to thetotal c.m. energy and its square, respectively; that
is, F(s) ~ s and G, ((S) ~ s The reason behind this
discrepancy is that we took no account of the suppres-
sion of the amplitudes that is due to the Sudakov form
factor. In Sections 3 and 4, it will be shown that, as soon
as the Sudakov form factor isincluded in our theoreti-
cal scheme, a correct g? dependence of the hadron form
factorsis recovered both in the time- and in the space-
like region; moreover, the ratios of the absolute values
of the form factors at positive and negative values of
g? = stake proper values thereupon. Prior to proceeding
to derive the expression for the Sudakov form factor,
wewill consider the spin structure of the amplitudesfor
guark transitionsinto hadronsin order to be ableto take
into account spin effects in various hadronic reactions
and to separate the form factors G, and G,,,. It will also
be shown that helicity conservation leads to an addi-
tional suppression of the pion form factor in proportion

to1/./s at large s.

3. SPIN STRUCTURE OF AMPLITUDES
AND DETERMINATION OF FORM FACTORS

Let us begin by introducing the required notation.
The pion and nucleon form factors are defined as

AL = Fo@)(Po— PR, (18)

NN B O
ALY = uAN{GmmZ)vsz gse(qz)

O-pqui| V)\N’

6. ))(ph Py

(h h)

Ko Fo(q)
2M,,

(19)

= UAN[Fl(qZ)vu—

where p, and p;, are the 4-momenta of final-state had-
rons, vv_hile Kp = Mp — 1, My = 2.793 being the proton
magnetic moment.

L et us now proceed to construct the spin structure of

the amplitudes T* "™ and T ™. We define the
invariants s and t in the standard way as

s = (Pg+ Py)” = (Pn+ D)

(20)
t = (pg—Pn)° = (Pg—Pp)°
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, , 1

and introduce the relative momenta p, = 5 (Pgu = Pau);
1

Pu= Q(phu_ pﬁu)’ and k, = P,

are the 4-momenta of, respectively, the fast quark and
the dlow antiquark (or diquark).

— Py Where py, and k,

Intheregion of large sand finitet, we have { P2, p*} >
{M2, n?}, where m is the light-quark mass and P =
{P5 =0, P,}. For the variablesintroduced immediately
above, we have

2
kz = Pz_pz:%s_MTS
k 220 (21)
+ +
5_m HoE® _m+ ko
02 Js D OJs s O

As can be seen from (21), the component k, is asymp-
totically small in relation to |k|: k, = O(1/s).

Let us now consider the pion form factor. The
amplitude T% "™ can be expressed in terms of two
invariant amplitudes B, and B, as

QQﬂ

(s k)

= (x:qcixm[él(a k2P, + Ba(s, kD) pi].

(22)

We assume that the amplitudes B, and B, are charac-
terized by the same asymptotic behavior. Their s depen-
dence can then be represented as

Br12(s 1)
dM(O)/Z 1

) 23)
“Bhargd RE™

p[3RA1]

We note that, in contrast to the expressionsin (8), these
amplitudes feature no extra power of s', which has
been taken into account in the momenta [P|, |p| ~ s'/>.

It is convenient to recast expression (22) into the
form

Tho (s kp)
2 2 @4
= (X;\rqo-iX)\q)[Bl(S Kp)Pi + Bay(s kp)ki].

Since [ky|/|P| ~ s/, the contribution of the second
term from (24) to the form factors features a small
parameter and can therefore be disregarded, as will be
seen from the formul as given below.

Theamplitude A ~ ™ can bewritten as the convo-
lution of the quark-current amplitude and the amplitude
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for the quark transition into pions [see equations (8)]:

AZ " T(9)
(25)
Id koTh ™ s kBT (s, k7).
(87T s)
The quark-current operator AY ~™ = T(pg, A X

YiV(Pg. Aq) as expressed in terms of two-component
spinorsin the c.m. frame, where p, = —p, = p, hasthe
form

Ay - qq

= 2e+m) X3 [e(e + M5, — p(p [6)]Xa,,

" (26)

where € is the total quark energy. For convenience of
the ensuing transformations, we break down the quark-
current operator into the transverse and longitudinal
components as

AT = 2|:S§ij —%% p{;pj}(XA OiXa,)- 27)

In taking into account spin variables in (25), the transi-

tion amplitude A’ * ™™ can be represented as

AT = : [2tr[0,0,]

o kK20, O kPP,
(£ — (e —m)—S0B; + M+ (e - m) 0
D 2p°0° O p’OP* | (28)

x[By(s ko)P, + By(s k2)ki],

where 65 = §; — PP,/P2. It can easily be shown that,
with respect to B,(s, k), the relative contribution of
the term proportional to B,(s, ké) is of order (m? +

ké )/s. Therefore, we obtain

A 7T
2

(SH S)Idk Ez[m+(s m) } B,(s k2P, (29)

(8 )Id ko, 2mB, (s, kZ)P;,
s

where, in the last expression, we have discarded all
preasymptotic terms of orders s'/2, s, etc.

Here, it isimportant to note that the transverse and
the longitudinal components of the y — qq quark
current behave differently at large s:

KAIDALOYV et al.

A~ 0eo, 050y, G0)
A" Omo,.

The above smallness of the longitudinal component is
due to helicity conservation. This component vanishes
inthe limit m — 0.

Inthe case of thetransition y —» 1t1T, only thelon-
gitudinal component is operative at large s, while the
transverse component does not contribute in this limit.
Thisisthe reason why the pion form factor involves an
additional suppression in proportion to s in relation
to the estimate in (17), which was presented in the pre-
ceding section and which was obtained without allow-
ing for spin effects. We note that this behavior of the
pion form factor was predicted in [31] on the basis of
the parton model. No such suppression is expected for
the transitionsy — mipand y — 1w It follows that
the QGSM predicts that the form-factor ratios F./F,

and F,,/F,,, must decrease in proportion to 1/./s. The
situation is different in perturbative QCD (pQCD),
where the helicity of quarks must be conserved, which
WOU|d yleld (FT[T/FT[p)pQCD ~ (FTITI/FT[(,\)[)QCD ~ S. ThUS,
we can seethat the QGSM predictionsfor y — 1trtand
y — Tip(w) form factors at large s differ drastically
from the corresponding predictions of perturbative
QCD. We notethat, in the case of nucleons, where both
contributions, A, and A,, are operative, there arises no
additional suppression of the magnetic form factor [see
equation (38)].

We will now show that, of the two invariant ampli-
tudes defined above, B, (s, ké) and B,(s, ké), itisthe

amplitude B,(s, k) that makes the main contribution
to the planar pion diagram; that is,

*q 0O; X)\q) (Xikq O X)\q)

™ ™s 48 = —
(8's) 5

x [B¥ (s k2)P; + B3 (s, k)ki]

x [By(s (q—K)2)P; + By(s, (q-k)3)kj]

(31)
= (8'—8) [EIBI (s KO, + B (s kE)k]

x [By(s, (q—K)2)P; + By, (q—k)D)k]

2
(8n Id koBi (s ke)By(s (a4 - k)D)S+od<D’?qEr

Since B, ~ (—s/so)aM(o)/2 , equation (31) yields a cor-

rect s dependence for the amplitude being considered:
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AT (—gs,) ™ . Equation (31) can be used to fix

the normalization of the amplitude B, (s, k).
Thus, the pion form factor F,; is directly expressed
in terms of the amplitude B,(s, k7 ) as

FoS) = m-— %)
N,T S@Mw)/z 1 (32)
RM(S) D 50D ’

where N, is a normalization factor, which is taken here
to be a free parameter.

Let us now proceed to consider the nucleon form
factor. The spin structure of the amplitude for the tran-
sition g — NN can generally be represented in the
form

(o)*

79 "5 ko) = X5 XA

Utnirg AraXa, Xx ,
(33)

(©) —

Xno = ioxa ™,

where U is a spin operator that acts on the spin vari-
ables of the nucleons and quarks involved and which
can be expressed in terms of eight invariant amplitu-
desas

U = Dy(s,qp)1 0L+ Dys kp)(e Ch) 1L
+D4(s, k)1 o' Ch) + Dy(s kp)o, (b
+ Dy(s, k) o, [0, + Dg(s, kp) o, [b,

+ D4(s, k)0, [0, + Dy(s, k) o, Loy,

(34)

where the matrices g; and g; act on the spin variables

of the nucleon and the quark (antinucleon and anti-
quark), respectively, while the unit vector n is defi-
ned as

Pxp
EETE (35)

Let us first consider the case where none of the
amplitudes D;(s, kp) is suppressed and where all of
them have the same asymptotic behavior

- _ OD SdoxD(O)+l)/2 1
Di(s;t) =y R

'Os,d
In taking into account spin variables, the amplitude
for the transition y —»= NN will then assume the form

NN(S) —

exp[%RD(s)zt] (36)

A" >
(81TS)

x IdszTiy “ s k)T MN(s k)
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[ ke Oor
= ZJ’d kaz - (e —m)—[B;
(8T[ S) i 2p 0
(37)
EP P,
+ [m +(e- m) 0—
a P

x (X1,0] X(C))XA X)\C) Uog: 2 Aq)X)\qX)(\(;)

:|(X)\

Let us now present expressions for the longitudinal
and transverse components of the matrix elements of
the relevant current. It can be seen from (37) that, here,
the Sachs form factors are separated—that is, G, con-
tributes only to the longitudinal current component,
while G, contributes only to the transverse component.
From (30), it follows that the leading terms in the
asymptotic expression for the quark current are inde-
pendent of k. Considering that, upon integration with
respect to this two-dimensional vector, terms that are
not invariant under rotations about the z axis must van-
ish, we can represent the transverse and the longitudi-
nal component of the current operator as

zZIdk Dy(s k?)

(XX SXE) X, TnXn.

= 2[86 5+ MG~ X9

~ NN
Al =

(8T[ S)

X (28)X%, On X"

= ZSGm(X)\ GDX)\C)) (38)

sz’dk 1Dy(s k)

(c)
o-n|X)\f

AN =
(8n S)

(c)*

(c)
Y X)\

x ZmX)\ O2XA,

(X)\ )X,

= 2MGd(X}, 0%,

wherel =1, 4,5, and 6. Asaresult, the form factors G,
and G, will be expressed in terms of different linear
combinations of the amplitudes D,, D,, Ds, and D. If
al these amplitudes have the same asymptotic behav-
ior, the form factors G, and G,,, will also have the same
asymptotic behavior:

50 -1)/2

G(S), Go(s) TH- SSOE?G (39)

However, the ratio G,/G,,, may depend on the choice of
specific model for the invariant amplitudes.

Equations (38) also guarantee that the Pauli form fac-
tor F, has an additiona degree of suppression, s, in
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relation to G,, and G,. This suppression is of a purely
kinematical origin and follows from the definition of F,:

Dq

D4|\/|
F(9)

Since specific relations between the amplitudes D,,
D,, Ds, and D¢ are not known, we will perform our cal-
culations for two simple cases: (i) the case where the
amplitude D,, which preserves the helicity of the parti-
cles participating in the reaction, is dominant [model

Fy9) = 1D [Ge(9) —Gu(9)],

(40)
s DuD(O)/z 15

()] and (ii) the case where the amplitude T~ NN can

be described in terms of t-channel scalar-diquark
exchange [model (ii)].
In case (i), we have

TR = Diy(8 k) LI =Dy(s k)3, 5 By 0 (41)

and the expression for the amplitude AY ~ ™ issimpli-
fied significantly to become

A "N = jd kaDa(s, k) (X5, 0,x\%)

0 O kPP, (2
x 2[ —(e- m) EE'),, + M+ (e—m)— }
g 2p g p ‘0 p?

Intheleading order in s, we can disregard terms propor-
tional to ké /p? and represent the amplitude A ~ "Win
the form

[
(81[25)

AN =

(43)
d°k ,D4(s, k ©N x 2| £3 PiPy
* [akoDyts kO, X5 x 2| 28, + |

For the Sachs form factors, it follows from the above
that

Gu(S) = —5—[d’kyDy(s ko)
(81Ts

_C [ sH%O@-2
- RD(S)D SoD ’

(44)

Gs) = oDa(s k)

. m C 0 SdaD(O) 1)/2
" MRy(9U 50 ’

where C is anormalization constant.
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The Pauli form factor F, is directly expressed in
terms of G, and G, as [see equation (40)]

S EF 0 spie@ -2
S = — _ —
Fa(9) = 7 2 MDRD(S) T 0 45)

From expressions (33) and (34), it follows that the
above parametrization corresponds to the correct
NN - NN

Regge behavior of the amplitude T . In the spe-
cific case where the invariant amplitude D,(s, kp) is

dominant, TN =N g expressed directly in terms of

the square of this amplitude as

T "5, q0)
(46)
Id KoDI (s ko)Da(s qo—kp),
(8Tr
whence it follows that
o(-a?)
T M5 ) 0 —jODG “7)

[compare with equation (5)].

In case (ii), the amplitude for the transition qq —

NN can be expressed, in a covariant way, in terms of
the quark and nucleon Dirac spinors:

A A A
ug") HOg Uy ).

In this case, the expression for the nucleon current
Ay ~ NN

79N NAAAA ) = (T (48)

can berecast into the form

AN = jdszA(s, K2 ([(M+m)*+kZ]y,
(49)
—2(M +mk,+2k,K,Y,) =Gy, +2M(G. - G) L.
P

The Sachs form factors G,(s) and G,,(s) can easily be
found from this expression if we consider, in just the
same way asin the case of the pion current, that ké has

the meaning of the square of the diquark momentum
within the nucleon. This quantity is not related directly
to the parametrization of the amplitude for quark tran-
sitions into hadrons; therefore, it is not related to the

exponent in the qq — hh amplitude. For a first
approximation, we can replace ké by the effective

mean value Elké Oas determined from the momentum
distribution of the diquark in the wave function.
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For the Sachs form factors, we then obtain

_ ) C 0 S|jaD(O) /2

G.— =[%l+%1%m2—M2+ k20 + EkéD} (50)

L C D_EljaD(O)—l)/z
Ro(s)H s ’

where C is a normalization constant, which does not
coincide in general with the normalization constant C
in (44).

We note that, in the limit [lké (= 0, expressions (50)
for G,, and G, coincide with the results presented in
(44). Indeed, we can see that, in the case of identical s

dependences, the ratio G,/G,, at Dké [(=0is

G,

G

_m

v (51)

The nucleon form factors (32), (44), and (50) were
obtained for positive values of g = s. Nonetheless, the
formulas for them can be continued analytically to the
spacelike region; hence, these form factors are defined
over the entire complex plane of the variable ?. That
the form factors have no cuts at negative s corresponds
to the presence of the factor (-s/s) in al the expres-
sions for the hadronic form factors.

4. SUDAKOV FORM FACTOR

For a collinear quark configuration, which leads to
the production of a two-particle hadronic state, to be
formed, it is necessary that no hard gluon be emitted at
theinitia stage of the motion of the quarks in opposite
directions. If this condition is not satisfied—that is, if a
hard gluon with a momentum |k;| > R is emitted at

theinitial state—the qq configuration ceasesto be col-
linear, and a hard gluon generates the development of a

hadronic string in addition to the hh system. A separa-

tion of a collinear configuration qq from the entire
spectrum of quark momenta leads to an additional sup-
pression of the amplitude, and this suppression is
described by the Sudakov form factor. The Sudakov
form factor is associated with the initial stage of elec-
tron—positron annihilation into hadrons, a stage that
proceeds at small distances and which is described by
perturbative QCD.

In the double-logarithmic approximation (DLA),
the Sudakov form factor can be represented as (for var-
ious parametrizations of the Sudakov form factor and
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for itsrole in jet-formation processes, see [32] and ref-
erences therein)

ef
s9%s) = Clexp{ —C¢l 2%——?——%} (52)
)

max

where w,,,, Standsfor the maximal value of the emitted-

gluon energy (transverse momentum) at which col-
linearity of the quark—antiquark state is not violated.

The quantities C(Sef " and W, areintroduced in (52) as
free phenomenological parameters. In the following,
wewill vary them within limitsthat are consistent both
with known theoretical considerations and with experi-
mental data.

Here, it isimportant to note that the absolute value
of the Sudakov form factor specified by expression (52)
takes different values at positive and negative values of
s. Thisis associated with the analytic properties of the
double-logarithmic term in the exponent in the expres-
sion for the Sudakov form factor. Specifically, we have

[s7%s) o’
m = eXp|:C|:7T[i|.

At O( = 0.4, theratio in (53) takesthe value of rTS

In the double-logarithmic approximation, the quan-
tity oy is treated as a constant. This approximation
seems appropriate at not very large s such that charac-
teristic transverse momenta of emitted gluons are

k2 O~ 1 GeV? (k2 O< s); in this region, agk?) can
=0.4—

0 _
TS T

(53)

be reasonably approximated by a constant, o f !
0.5[33, 34].

At very large s, however, it is necessary to take into
account the logarithmic dependence of o on s. In this
case, it is convenient to recast the expression for the
Sudakov form factor into the form
S g du

cFI

S(l)(s) Oexp ng

a(w) |, (54

Hz

where the first logarithm In(s/ uf ) corresponds to inte-
gration with respect to the longitudinal momentum

(energy), while the second logarithm 1n(s/p§) corre-
sponds to integration with respect to the transverse
momentum. |f the loop expression for ay(¢?) is chosen
in the form

a,(u%) = 4t Boln- ”ZD} , (55)
where
Bo = TN—3N; = 9, (56)
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Fig. 3. Proton magnetlcform factor Gm(QZ) in the spacelike
region as a function of Q’= q2 (thick and thin solid
curves) results obtained with alowance for the Sudakov
form factor parametrized according to (52) and (57), respec-
tively, and (thick and thin dashed curves) results of the
QGSM calculations without the Sudakov form factor. The
dashed curves were obtained by dividing the results corre-
sponding to the solid curves by the relevant Sudakov form
factor. Experimental data were borrowed from [36].

the Sudakov form factor becomes [35]

ZCF | ms(uz)

1
SY(s) = Cyexp| - Bo u a9 U

}. (57)

The choice of sign in front of s is determined by the
analytic properties of theform factors. In the following,
the constants W, and |, in (57) are assumed to be free
parameters.

The ratio of the absolute value of the Sudakov form
factor SV(s) in the timelike region to its absolute value
in the spacelike region then proves to be less than the
analogous ratio following from (52). Nonetheless, the
phenomenological parameters appearing in the formula
in question can be chosen in such a way that the ratio
will take values close to two in the region 5-15 GeV?2.

At asymptotically large values of s, the ratio r()
assumes the form
oxp 25T
= e0| 3 ins

[compare with equation (53)]. From (58), it can be

seen, however, that, with increasing s, the ratio r( )
tends slowly to unity; asaresult, the effect that |sdeter-
mined by the Sudakov form factor disappears at very
large values of Ins.

res)| (58)

S - ®©

Upon taking into account the Sudakov form factor
given by (57), the effective rate of decrease in hadronic
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form factors is determined according to
(s f%@ - D72 e srENE
| sVg U SODE

DSOD

DS |jaM(O) 2)/2 ) 0 Eﬁ“(S)
PO sP(s) DD"sOD ,

where &,(s) =— (2C¢/By)In[In(-9)] + (0p(0) — 1)/2 for the
nucleon form factors and &,(s) = —=(2C¢/By)In[In(-s)] +
(ay(0) —2)/2 for the pion form factor.

Thus, the hadronic form factors as cal cul ated on the
basis of the QGSM decrease faster than any finite
power of s. At very large s, the dominant contribution is
therefore proportional to a((s)/s for the pion form fac-

Ge,mD

tor and to 0(52 (s)/s? for the nucleon form factor. How-

ever, the exponent &y (s) of the nonperturbative contri-
bution decreases dowly with increasing s—this decrease
is determined by the logarithmic term In[In(-S)]—so
that the scale s at which the nonperturbative contribu-
tion becomes commensurate with the perturbative con-
tribution is far beyond the experimentally accessible
region of s(S > 10? GeV?).

Actually, the nonperturbative contribution is dominant
at currently accessible values of s = 30-50 GeV2. Here,
the gluon virtuality isrelatively low (u?> ~ 1 GeV? < 9),
falling within the region where a(?) is frozen [33]
(nearly independent of the virtuality p?).

Thus, the behavior of the hadronic form factors as
functions of s has a clear physical interpretation in this
region: the probability of the formation of a two-parti-
cle hadronic state in virtual-photon annihilation
involves two suppression factors. Of these, the first is
due to the quenching of the formation of a quark—anti-
guark pair (prohibition of hard-gluon emission) at the
first stage of the process. This suppression factor can be
calculated by perturbative QCD and is determined by
the Sudakov form factor. The second, small, suppres-
sion factor is associated with the probability of the for-
mation of a two-particle hadronic state in the hadroni-
zation of the quark—antiquark system viathe rupture of
the string. This suppression factor is determined by
large-distance physics and is expressed in terms of the
intercepts of the relevant Regge trajectories.

5. NUMERICAL RESULTS AND THEIR
COMPARISON WITH EXPERIMENTAL DATA

In Figs. 3-8, the results of our calculations for the
hadronic form factors G.(9?), G(a?), F»(a?), and F(q?)
are presented along with available experimental datain
the time- and spacelike regions of the variable g?.

In the calculations, the parametersmand Elké COwere
set tom=0.22 GeV and [k’ = 0.2 GeV2. The param-
eter R, was taken to be RS = 3 GeV?2.
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We have used both parametrizations of the Sudakov
form factor: (a) S”(g?) (52) in the double-logarithmic

approximation with frozen a" and (b) SY(?) (57) in
the one-loop approximation with the running coupling
constant ay(u?) (55).

In the case of nucleon transitions, the best descrip-
tion of experimental data was achieved when the

parameters wfnax and af ' appearing in expression (52)

for SO(qP) were set to W’ = 0.35 GeV?2 and af =
0.45. For the Sudakov form factor (57) involving the
running coupling constant o((?), the parameters y,, |,
and Aqcp appearing in the expression for this form fac-
tor were chosen to be u, = 1.3 GeV, |, = 0.6 GeV, and
Ngep = 0.4 GeV.

Figure 3 shows the results of the calculationsfor the
proton magnetic form factor in the spacelike region
(@*=—@* = —9). The solid curves were calculated by
taking into account the Sudakov form factor according
to (thick solid curve) (52) [model (a)] and (thin solid
curve) (57) [model (b)]. For either model, the common
normalization factor C was determined from the best fit
to experimental data. Each model reproduces faithfully
the experimental dependence of the magnetic form fac-
tor G,,on Q°. The dashed curves represent results of the
calculations without the Sudakov form factor on the
basis of (thick solid curve) model (a) and (thin solid
curve) model (b). It can be seen that theinclusion of the
Sudakov form factor is of crucial importance for
describing the Q? dependence of G, By way of exam-
ple, we indicate that, at Q*> = 5 GeV?, the solid and the
dashed curve as obtained on the basis of model (a) dif-
fer by a factor of about two. A similar situation is
observed in model (b), where the corresponding curves
differ by about 1.5 at the same point Q> = 5 GeV2.

Figure 4 shows the proton magnetic form factor in
the timelike region. The solid curves, which were cal-
culated with allowance for the Sudakov form factor,
reproduce the ¢ dependence of the form factor
'G(cf?). Quantitatively, model (a) agrees well with
experimental data (thick solid curve), whereas model
(b) yields results that fall short of those in model (a) by
a factor of about 1.5. It is important to note that the
same value was used for the normalization factor both
in the spacelike and in the timelike region. The dashed
curves represent the results of the QGSM calculation
taking no account of the Sudakov form factor. They
correspond to the form factor *G,(q?), which grows
with increasing g*. The values at ¢> = 5 GeV? on these
curves are less than those on the corresponding solid
curves by afactor of about 1.2 to 1.5.

In Section 3, we have considered two versions of
parametrization of the spin structure of the amplitude
TY "N For the proton magnetic form factor, the

results of our calculations proved to be insensitive to
the choice of spin structure. By fixing the spin depen-
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Fig. 4. Proton magnetic form factor Gm(q2) in the timelike
region as a function of g?. The notation for the curves is
identical to that in Fig. 3. Experimental datawere borrowed
from [37, 38].

1,G(QD/G,(Q%)
1.2r
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Fig. 5. Ratio pyGe(Q%)/Gri(Q?) of the Sachsform factorsfar
the proton in the fimelike region as a function of Q? = —g?.
The spin amplitude is parametrized according to (1), the
quark mass being set to m = 0.22 GeV. Experimental data
were borrowed from [39].

Q°Fx(Q?)
1.4

1.0r

0.6

Fig. 6. Pauli form factor FQ(QZ) for the proton in the space-

like region as a function of Q> = —g. The solid curves cor-
respond to model (i) for the spin structure of the amplitude

A%~ NN, the thick and thin curves representing results
obtained with the Sudakov form factor parametrized accord-
ing to (52) and (57), respectively. Thedashed curvesillustrate
the results of the calculations without the Sudakov form fac-
tor. The dash-dotted curve lying below the experimenta
points corresponds to the modd (ii) of the spin structure and
to the parametrization (52) of the Sudakov form factor. The

parametersmand Elké Overesettom=0.22 GeV and Elké E
0.2GeV?2. Experimental datawere borrowed from [39, 40].
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Fig. 7. Pion form factor F(Q?) in the spacelike region as a
function of Q% = —g?. The notation for the curvesisidentical
tothat in Fig. 3. Experimental datawere borrowed from [41].
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Fig. 8. Pion form factor Fn(qz) in the timelike region as a
function of g%. The notation for the curvesisidentical to that
in Fig. 3. Experimental data were borrowed from [42, 43].

dence, we were able, however, to distinguish between
the Sachs form factors G4(¢?) and G,(¢) and to deter-
mine thereby the Pauli form factor F,(g?). From acom-
parison of expressions (45) and (50), it can be seen that
the difference of G.(q?) and G,(g? and, hence, the

Pauli form factor depend on n?, M?, and Eké O/ model
(ii)] or only on the ratio myM [model (i)]. Thus, we see
that, if we choose the normalization of G, the choice
of the spin structure is dictated by the ratio of the form
factors G, and G, that follows from experimental data.

G
InFig. 5, theratio qu—e of the nucleon form factors
m

is displayed for spacelike ¢ = —Q? values. This ratio
changes slowly in the range Q> = 0.5-0.35 GeV?,
approaching a value of about 0.6-0.7. For the ratio
G./G,,, we accordingly expect G./G,,= 0.2-0.25. In the

KAIDALOYV et al.

spin models considered here, the ratio G,/G,, is inde-
pendent of ¢f (see Section 3):

G .
éi for model (i),

(59)

G, k20 mO N

— ——— =2+ —5 for model (ii).

& (m+Mf% i (i)

The experimental value of the ratio G./G,, is repro-

duced within model (i) at the natural quark-mass value

of m=0.22 GeV. Experimental data on the Pauli form

factor F, [40] correspond to asomewhat greater ratio of

MpGe/Gpy, = 0.7-0.75. Nonetheless, model (i) describes

well available datawithin the errors (at m= 0.22 GeV).
For the ratio G./G,, model (ii) predicts a greater

value than model (i) [see equation (59)]. In order to

describe experimental data on the Pauli form factor F,

(or on theratio G,/G,;), the quantities mand Eké Cmust

be set tom=0and (k3 3= 0.15 GeV/2, but this set of val-
ues does not appear to be a natural option. It should be

noted that, at Eké = 0 (the longitudinal momentum of
the quark is aligned with the nucleon momentum),
model (ii) involving scalar-diquark exchange corre-
sponds to helicity conservation and to the formulas of
model (i).

Figure 6 presentsthe Pauli form factor F,(Q?) ascal-
culated for two parametrizations of the Sudakov form
factor. The thick and the thin solid curve represent the
results of the caculations based on model (a) and
model (b), respectively. The form factor F, correspond-
ing to the spin structure associated with scalar-diquark
exchange is depicted by the dash-dotted curve. For this
curve, the Sudakov form factor was taken in the

approximation of a constant af ' [model ()]. It can be

=M,
M

seen that, even at sufficiently small [ké [J the absolute
value of the Pauli form factor cannot be reproduced
within this model.

Thus, the QGSM reproduces faithfully experimen-
tal data on the nucleon form factors at positive and neg-
ative values of ¢. Either parametrization of the Suda
kov form factor describeswell the experimental depen-
dences at negative ¢, the necessary absolute
normalization of the form factor G,(¢f) in the timelike
region being achieved in model (a). We can also con-
clude that modél (i), which assumes the dominance of

the amplitude D,(s, k), reproduces closely spin

effects even at moderate values of Q> Within model
(i), experimental data can be described only at unnatu-

raly small values of the parameters mand Elké 0

The degree of decrease in the Sachs form factorsfor
the nucleons, 7|, isdetermined by (A) the power-law
decrease in the absolute value of the amplitude for
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quark transitions into nucleons (g?)~!|T™ "~ NN(q2)| ~

g [ 72O O s and (B) the decreasein the
Sudakov form factor, which varies as [S(?)| ~ |g?[# in
the region 10 GeV? < |g?| < 30 GeV? for the nucleons
(in the region of a few tens of GeV? under consider-
ation, either parametrization of the Sudakov form fac-
tor, S» and SV, yields approximately the same power-
law dependence, |o?[4).

Since the behavior of the Sachs form factors G, and
G. is determined by the asymptotic factor

@s) ™% in the amplitude T% "V, the Pauli
form factor (Q?)3F, grows approximately in direct pro-
portion to Q? in the region of small Q?, approaching a
constant at greater values of Q. In order to take this
effect into account, the preasymptotic factor (g*/4M? —
1)~!, which determines a linear growth of (Q?)3F,(Q?%)
in the range Q* = 2-5 GeV?, is retained in expression
(40) for F,(Q?).

The behavior of the pion form factor F(g?) differs
somewhat from the behavior of the nucleon form fac-
tors. Since apair of pseudoscalar particlesisformed by
a virtual photon in the reaction y — T1U°1T, the two
product pions can be formed only in a state whaose rel-
ative orbital angular momentumis| = 1. Inthiscase, the

main contribution comes from the amplitude AZ - aa

associated with the transition suppressed by the helic-
ity-conservation condition, whereby there arises an
additional suppression of the pion form factor in pro-
portion to |g?|'/? [see equation (32)].

The absolute value of the amplitude for quark tran-
sitions into hadrons—it is determined by the meson
Regge trgectory ay(t)—depends on > as
AT (@)~ 12l 0T = e

The parameters of the Sudakov form factor in mod-

els (a) and (b) were determined by fitting experimental
data on the pion form factor. The results are

aff = 045, Wy = 25GeV;
Aoco = 05GeV, My = 1.5GeV, W, = 1.5GeV.

This choice of parameter values makesit possible to
describe the behavior of the pion form factor, °F(¢?) ~
(g%)°, in the region where we have experimental data at
our disposal. Here, model (a), where the ratio rpg (53)

is determined by the choice of af " excl usively, repro-

duces correctly the absolute value of the pion form fac-
tor in the timelike region.

Figure 7 displays the results of the calculations for
the pion form factor in the spacelike region. The thick
(thin) solid curve corresponds to the choice of the
Sudakov form factor in model (a) [model (b)]. The
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dashed curve represents the results of the calculations
taking no account of the Sudakov form factor in either
model [(a) and (b)]. It shows adowly ascending behav-
ior of F(Q*Q? intheregion of Q? values being consid-
ered.

Figure 8 presents the graphs of the pion form factor
in the timelike region. The solid curves correspond to
models (a) and (b) for the parametrization of the Suda-
kov form factors. The thick and the thin dashed curve
depict the results of the calculations without the Suda-
kov form factor that were performed on the basis of
model (a) and model (b), respectively. In just the same
way as in the spacelike region, the function o?F(¢?) is
approximately constant in the region where experimen-
tal dataare available. For model (a), theratio of the abso-
lute value of the pion form factor in the timelike region
to that in the spacelikeregionis |F (P [F{-0?)|=2.5 at
g* = 10 GeV?, asin the case of the nucleon form factors,
and is determined by the anaytic properties of the
Sudakov form factor. In the timelike region, model (b)
fails to reproduce the absolute value of the pion form
factor. The results of the calculations that take no
account of the Sudakov form factor fall significantly
short of experimental values.

We note that, within perturbative QCD, the distinc-
tions between the meson form factors at positive and
negative values of the variable g? were discussed in [44]
with allowancefor Sudakov effects. In the model adopted
in [44], however, the deviation of [F(P))/|F(—c?)| from
unity is dueto the singularities of the hard-rescattering
amplitudes rather than to the Sudakov form factor. A
similar result is obtained within the model that was pro-
posed in [45] and which employs the pion form factor
based on a phenomenological parametrization of the
imaginary part: there, the ratio |F(o?)|/|F{—9%)| proves
to be determined by the energy dependence of the
imaginary part of F(g?). In our model, such corrections
must show a power-law decrease in proportion to M?/cf
and must be small even at ¢> = 10-20 GeV? if the mass
M is chosen to be between 1 and 2 GeV. If, on the other

hand, the Sudakov effect is important, the ratios r?s =

F@VIF-cP)| and rrs = IGu(cVIGn-cP)| will
decreaserather slowly with increasing ¢ [see equations
(53) and (58)]. By way of example, we indicate that, in

model (i), 1'% isindependent of ¢ (r!2 = 2.5). Within

model (ii), r%’ is about 1.8 at > = 5 GeV? and
decreases to about 1.35 at ¢? = 100 GeV?2. Thus, a vari-
ation of rg for the nucleons and for the pion at large ¢
would be of crucial importance for resolving the funda-
mental question of whether the behavior of the had-
ronic form factors in the region ¢ ~ 10-50 GeV? is
governed by perturbative or nonperturbative QCD
dynamics. It would beinteresting to test experimentally
our result predicting, within the present modd, that



1408

KAIDALOYV et al.

o?F () must decrease with increasing ¢? both for ¢ >0  Soviet Union (grant no. INTAS-99-1692), by the Rus-
sian Foundation for Basic Research (project no. 98-02-
17463), and by NATO (grant no. OUTR.LG.971390).

andfor ¢ <O.

6. CONCLUSION

An analysis of the pion and nucleon form factorsin
the space- and timelike regions has been performed on
the basis of the QGSM. Spin effects have been intro-
duced by specifying appropriately the amplitudes
T% =" for quark transitions into hadrons. By taking
into account the spin structure of these amplitudes, it
has become possible to describe spin effects in binary
hadronic reactions and in hadronic form factors. The
approximate asymptotic forms G, . ~ (¢*) and F,, ~
(g?)! extracted for the nucleon and pion form factors
from experimental data for g> < 100 GeV? have been
reproduced here within the QGSM owing to the Regge
behavior of the amplitudes for quark transitions into
hadrons and the Sudakov form factor. The inclusion of
spin variables has enabled us to separate the nucleon
form factors G«(¢?) and G, (¢?) and to caculate the
Pauli form factor F,(g?). For the pion form factor, it has
been shown that, because of approximate helicity con-
servation in the transition y — qQ, the form factor
F(q?) isadditionally suppressed in proportionto (g?)~'/2.
In contrast to what is obtained within perturbative QCD
predicting a linear growth of the ratios F,{0?)/F (0%
and F.{0?)/F Q) with increasing ¢?, it has been found
on the basis of the QGSM that these ratios decrease in

proportion to 1/ «/q_2 . The expressions obtained within
this model for the form factors in question are analytic
in the complex plane of the variable ¢? and can be con-
tinued analytically from the timelike region to the
region of negative ¢ values. That the absol ute val ues of
the hadronic form factors at positive ¢ differ from
those at negative values of this variable is associated
primarily with the analytic properties of the double-
logarithmic term in the exponent of the Sudakov form
factor. The presence of the Sudakov form factor results
in that the hadronic form factors as abtained on the
basis of the QGSM decrease exponentially at very large
g%. However, this decreaseis very slow in the ¢ region
accessible to current experiments. For this reason, the
nonperturbative contributions that emerge in the form
factors within the QGSM may prove to be dominant up
to g ~ 10° GeV?2.
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Abstract—We perform a K-matrix analysis of 1J°¢ = 00, 10"+, 02+, and 12+ meson partial waves using
GAMSdataon rtp — 1°1n, nnn, nn'n that are supplemented with BNL dataon tp — KKn and Crystal

Barrel dataon pp (at rest) — 11, 1nn, 1°rn. The positions of the amplitude poles (physical reso-
nances) are determined, together with the positions of the K-matrix poles (bare states) and the values of bare-
state couplings to two-meson channels. The nonet classification of the bare states found in the present analysis

is discussed. © 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

In this article, we complete the K-matrix analysis of
GAMS data on the reactions Tp —= 11N [1], NnNn
[2], and Nn'n [3] that was begun by the papers [4-6]. A
K-matrix analysis furnishes rich information about
meson states, thereby helping classify qq states and
facilitating searches for exotic mesons. In order to
reconstruct the K-matrix amplitude, it is necessary,
however, to study the complete set of open channels
with sufficiently high statistics. This is the reason why

we are going to extend our fit to dataon tp — KKn
[7] and pp (at rest) —= e, nn, 7°rcn [8].

We note that K-matrix poles, which are the subject
of the present consideration, differ from the amplitude
poles in two respects:

(i) States corresponding to the K-matrix poles
involve no components featuring real mesons that are
inherent in resonances. The absence of a real-meson
cloud alows one to refer to these states by convention
as bare ones|[5, 6].

(it) Owing to bare state — real mesons —» bare
state transitions, the observed resonances appear to be
mixtures of bare states. For quark systematics, bare
states are therefore primary objects rather than reso-
nances.

The bare state — real mesons coupling constants
areresponsible not only for the mixing of states but also
for resonance decays; the relations between the cou-
plingsallow oneto reconstruct the quark—gluon content
of bare states [9, 10].

T Deceased.
* This article was submitted by the authorsin English.

D |ngtitute for High Energy Physics, Protvino, Moscow oblast,
142284 Russia

Our article is organized as follows.

In Section 2, we introduce a set of formulas that are
used in our data fit. We present the S and D-wave K-
matrix amplitudes for the on-mass-shell reactions

nim— 1y KK, nn, and nn', along with those for an
off-mass-shell pion in the initial state: Ttr{t) with t #

mf[. The K-matrix formulas for the final-state interac-

tion in the three-meson-production process, pp —»
three mesons, are also displayed.

In Section 3, we write down the couplings for bare
state — two pseudoscalars transitions, with the
guark-combinatorics constraints imposed both for qq
states (isoscalar and isovector) and for the glueball. The
reconstruction of the couplings in the fit alows us to
determine the quark content of isoscalar states and to
find a candidate for the glueball.

Mesons that belong to the same qg nonet have
approximately equal masses; they also have approxi-
mately equal decay couplings. In addition, the flavor
wave functions for the isoscalars of the same nonet are
orthogonal. In Section 4, we present the results of the
fit with the imposed nonet-classification constraints. A
fit to the 00** wave confirms the result of [6], while, for
the 02**, 10**, and 12** waves, the K-matrix represen-
tation of the amplitudes in the mass region below
1900 MeV isimplemented for thefirst time. The recon-
structed bare states, together with those found in the K1t
Swave K-matrix analysis [11], alow us to construct

the 13P0qq and 13P2qq nonets unambiguously; for

the 2° P,qq nonet, two versions are possible that differ
in the mass of the lightest scalar—isoscalar state.

1063-7788/00/6308-1410$20.00 © 2000 MAIK “Nauka/Interperiodica’
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The origin of the lightest scalars, f,(980) and
a,(980), is crucia for the nonet classification. These

states are located near the KK threshold and give rise
to the question of whether these states are hadronic
KK molecules. In Section 5, we present arguments

based on direct GAMS measurements and on the
results of the performed K-matrix fit that the bare states

from which f,(980) and a,(980) originate have a qQ
nature.
A short summary is given in Section 6.

2. EXPERIMENTAL DATA AND K-MATRIX
AMPLITUDE

Here, we briefly introduce thefitted dataand present
the K-matrix formulas used in our data analysis.

2.1. Experimental Data

A simultaneous analysis of the meson spectrain the
[JPC = 00**, 10**, 02**, and 12** channelsis performed
on the basis of the following data set:

(i) GAMS data on S'wave two-meson production in
the reactions mp — 1°n, Nnn, and nn'n at low
nucleon momentum transfers, |t| < 0.2 (GeV/c)? [1-3];

(i) GAMS data on the S‘wave Ttrtproduction in the
reaction TP — TPM°n at high momentum transfers,
0.30<|t| < 1.0(GeV/c)?[1].

(iii) GAMS data on D-wave Ttrtproduction in the
reaction Tp — T°1°n at small and large |t], 0 < |t| <
0.5 (GeV/c)?[3];

(iv)) BNL dataon o~ — KKn [7];

(v) Crystal Barrel dataon pp (at rest) — 1°r°re,
11N, 1nn [8].

2.2. K-Matrix Amplitude and Analyticity

The K-matrix techniqueis used to describe the two-
meson coupled channels:

A= K(—ipK)™. ()
Here, Kiisan n x n matrix, n being the number of chan-
nels under consideration, while | is an identity matrix.
The phase-space matrix is diagonal: p., = d,,0,. The
phase-space factor p, is responsible for the threshold
singularities of the amplitude: for the amplitude to be

analytic in the physical region under consideration, we
use an analytic continuation for p, below threshold. For

example, the nn phase-space factor p, = (1 — 4m§ [s)'?

isegual to i(4m§ Is— 1)Y2 below the nn threshold (sis
two-meson invariant energy sgquared). The phase-space
factors that we use lead to spurious kinematical singu-
laritiesat s= 0 (in all factors) and at s = (M, —m,)? (in
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the Nn" space factor), but these spurious singularities,
which are peculiar to the K-matrix approach are too far
from the investigated physical region.

For the multimeson phase space in theisoscalar sec-
tor, we use the four-pion phase space defined as either
pp or oo phase space, where o denotes the Swave 1Tt
amplitude below 1.2 GeV. The result is virtually inde-
pendent of whether we use the pp or oo dstate to
describe the multimeson channel: below, we present
formulas and parameter values obtained for the pp
case, for which fitted expressions are less cumbersome.
The multimeson phase spaceinthe | = 1 sector istaken
in aform that, in its low-energy part, simulates the ayp
phase space.

2.3. Isoscalar—Scalar, 00+, Partial Wave

For the S'waveinteraction in theisoscalar sector, we
use a parametrization similar to that in [6]:

Kan(s)
Cge”,  1Gevirss-m2 (@)
= 2 Ms_s ab S+SO 0 S .

Here, K;f) isab x 5 matrix (a, b=1, ..., 5), with the
following notation for meson states: 1 = 1ty 2 = KK,
3=nn,4=nn', and 5 = multimeson states (four-pion
statemainly at ./s < 1.6 GeV). The quantity g;“) isthe

constant of coupling of the bare state a to the meson
channel; the parameters f,, and s, describe the smooth

part of the K-matrix elements (s, > 1.5 GeV?). We use

the factor (s— m,i 12)/sto suppress the effect of the spu-
rious kinematical singularity at s = 0 in the amplitude
near the Ttrtthreshol d.

The phase-space matrix elements are given by

ls—4m:
pa(S) - S ’

a=123, A3)
where m; =mg, m, = M, m;=m,, and
Opay @ s> (my —my)°
Pu(s) = 00 v
oy, @ s<(m,—my)",
(mn + mr]‘)2 (mr] _mn')2
pa = |1 1 )

Pp = 0.
The multimeson phase-space factor is defined as
0Ops a s<1 Gev’

ps(s) = 0O 5
Lphg, a s>1GeV",
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ds, ds,
Ps1 = pof‘ﬁl =

X MT (ST (S,) /(5 + 5, —5,)° — 4ss;
xS (M =s)" + MT(s)]

&)

x[(M*=s,)" + MT*(s)]
P = 1.
Here, s, and s, are the two-pion energies squared, M is
p-meson mass, and I (S) is its energy-dependent width,
M(s) = ypf (s). The factor p, ensures the continuity of
ps(S) at s=1 GeV?2,

The following formulas describe the amplitudes of
Tt nn, and nn' production via t-channel pion
exchange:

A - o = N@nysWh) Fu®) D(t) Ky, a(1 — oK) b,

b = 1, nn, nn’,
~(a) (o) 2
~ g, < .1GeV +sl (6
Krm,a = §%+ fa(t)—SOD (6)
~ Mg-s StS [

x (s—m2/2)/s.

Here, N is a normalization factor; Fy(t) is the nucleon
form factor, and D(t) is the pion propagator,

Fu() = {’\A ﬂ

D(t) = (Mi—1)";
§9t) = g _t _t @ M
) =g"+2 mz%\g ZEg ,
fa(t) = fm%——%\ tzgfa,

where \'s, ¢, and f' are the fitted parameter values.

2.4. |soscalar—Tensor, 02**, Partial Wave

The D-wave interaction in the isoscalar sector is
parametrized by a4 x 4 K matrix, where 1 = 11y 2 =

KK, 3=nn, and 4 = multimeson states:

(a) (0!)
a 1GeVZ+s,0
KER(s) = Da(s)ig L1, D
S+S, [

[Di(9).
)
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The factor D (s) stands for the D-wave centrifugal bar-
rier. We take this factor in the form

k2
Dy(s) = —2>—, a=
: K2+ 3/r2

1,2, ©)]

wherek, = ,/s/4 - m§ isthe momentum of the decaying
meson in the resonance c.m. frame. For multimeson
decay, the factor D4(s) is set to 1. The phase-space fac-
tors used are identical to those for the isoscalar S'wave
channel.

2.5. |sovector—Scalar, 10*+, and | sovector—Tensor,
12++, Partial Waves

For the amplitude in the isovector-scalar and
isovector—tensor channels, weusea4 x 4 K matrix with

1=mm, 2= KK, 3=rmn, and 4 = multimeson states:
(@) (cx) 2
0.9 1.5 GeV” +s,U
k3o = a(s@ 2%y p, 220 Tap,
1 [l
(10)

Here, J = 0O, 2; for the 10" amplitude and for the D-
wave partial amplitude, the factor D (s) is, respectively,
set to unity and taken in the form

2

k;
D.(s) = 55—,
k 3/r3

Dy(s) = 1.

The elements of the phase-space matrix in the isovector
sector are defined as

a=123,
(11)

Dpll a s>(m, mr[)

Pi(s) =
Eblz at s<(m, -my)’,
(m, +m) (m,—m )2 (12
pu = [[1-Dgn o (o]
P = 0,
P(s) = S_imK, (13)

Dpsl a s>(m, —mn)
Ps(s) =
[bsz a s<(my _mn)

Pa1 = J[l—(m”';m”) }[l—(mnl_smn)z]

Pz = 0.

The multimeson phase-space factor p,(s) istakenin a
form that simulates the pa, phase-space factor below

(14)
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s=2.25GeV%

(Pa @ (m,+3m)°<s<225GeV’
1l
P9 = [ps, @ $>2.25GeV’
Cpas @ s<(my+3m,)’,
1-(m,+ 3mn)2/s
Py = > 5
1—(m, +3m,;)/2.25 GeV
Ps = 1,
Psz = 0.

}5/2 (15)

2.6. Amplitudes of Three-Meson Production

The pp (at rest) — 1OMO1C, T°NN amplitudes cor-
responding to the production of the two-meson isosca
lar states are given by

App _ threemesons — A1(23) + A2(13) + A3(12)1

where the amplitude A(ij) stands for diagrams with
particle interaction in intermediate states and the last
interaction involving particles i and j, with particle k
being a spectator. Asin[5, 6], weassumethat pp anni-
hilates at rest from the 'S, level. For the two-particle
interaction block, we use the form

~ 0J N 0J -1
A23) =S X,(23)K ppr a(Spa)[ 1 —iPK -
1(23) J;Z 3(23)Kppr a(S3) [1 —T1PpK T (Sp)] b(16)

where b = i stands for 1’1 production and b =nn
for Tnn. The centrifugal-barrier factor X; is equal to
unity for the production of the S‘wave resonance. For
the production of a D-wave resonance, this factor is

2

X,(23) = %(BCOSZOR— 1)-3-9-;-/-—

> (17)
P1

where ©,, isthe angle between particles 1 and 2 in the
rest frame of particles 2 and 3, p, is the momentum of
particle 1 in thisframe, and Risthe annihilation radius.

The K matrices that describe the prompt resonance
productionin pp annihilation are given by

~ 00

Kppra(s;)
(a) (a) 2
N[00 1GeV® +s,U
= EZM + Qopn [00] TSOD (19)
o Mq _Sj Si] SO D
« OB —mﬁ/ZD
O Si 0
PHYSICS OF ATOMIC NUCLElI Vol. 63 No.8 2000
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~ 02
Kppra(s;)
(19)

A 102]g 1GeVZ+ s,
=[N =Rt 4 [02] ————2[D(S:).
i M2 s, Poomal 21— S DA

a

The mtrtAproduction amplitude is described by (16)—
(19) completely because of the amplitude symmetry
under the rotation of pionindicesi, j, and k.

That piece of the amplitude pp (at rest) —= nmr°

which corresponds to the production of isoscalar reso-
nances reads

AR = T X(2)Kom a(s 1 -iPK (),
J=0,2 (20)
b = nono,
where

(a) (a)
NS [00]g
Kppn, a(s;) = EZ%

o MG_S
’ 1)

1 GeV? + sy, —m2/2
* @y, [ 00] TR

S * So s U

The parameters A, [0J] and @,,.[03] (or Ay, [0J]
and @, [0J]) can be complex-valued and have differ-
ent phases because of three-particle interactions.

That part of the amplitude which corresponds to the
production of isovector resonances in the reaction pp
(at rest) — nnT° iswritten as A;(23) + A,(13) and

~ 1] n 13 1
A (L3) = z X5 (13)Kppn, a(S13)[ 1 =1 PK™(S13) ] aps

J=0,2 (22)
b= r]T[O,
where
(@) (o)
~ 1] Npon[13]192
Kppna(Sy) = Ezpm[z—]g
a Mg —Sj
(23)

1 GeV2+s

g
+ (pppn,a[l’-]] Sij +Sl I%Da(Sj)'

The amplitude of isovector-resonance production in the
reaction pp (at rest) — 1°rn hasthe form A,(23) +
A,(13) and

~ 1] L _
A1 =5 Xy(13)Kpora(si)[1-1pK " (s19)]ap,
J=0,1,2 (24)
b = nno,
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(@) (b)

q Meson
Glueball i : Glueball 4qq Meson
q Meson

()
Meson
Glueball

Meson

Fig. 1. (@) Quark—antiquark loop diagram determining the
glueball width; (b) diagrams for the decay of a qg meson;
and (c) and (d) diagramsfor the decay of aglueball into two
gg-meson states.

where k;fma is given by (23) with the substitutions
AS L] — AL 23] and @ppn 2[13] —> @ppra[L]]-

3. QUARK-COMBINATORICS RULES
FOR DECAY COUPLINGS AND THE qq
CONTENT OF MESONS

The decay couplings of the qg mesons and of the
glueball to a pair of mesons are determined by the dia-
grams with gg pairs produced by gluons. Figures 1b
and 1c provide an example of diagrams that contribute
totheleading termsinthe /N expansion[12] (N=N, =
N;, where N, and N; are numbers of colors and flavors,

ANISOVICH et al.

respectively), and Fig. 1d exemplifies diagrams for the
next-to-leading contribution. The production of soft qq

pairs by gluons violates flavor symmetry, the corre-
sponding ratios of the production probabilities being

ubd:dd:ss=1:1:A, (25)
where A = 0.4-0.8 [13]. In our fit, wefix A = 0.6.

We have calculated the ratios of the decay coupling
constants on the basis of quark-combinatorics rules
previously proposed for high-energy hadron produc-
tion [14] and then extended to hadronic J/{ decays
[15]. For the glueball and for isoscalar—scalar qQ
mesons, the calculations of the decay coupling con-
stants were performed in [5, 9, 10]. The decay cou-
plings for isoscalar and isovector mesons are given in
Tables 1 and 2.

Isoscalar-meson decay couplings depend on the
nonstrange-strange component ratio of the decaying
meson as given by the mixing angle @:

flavor

W decayingmeson = NNCOS® + sSsin®, (26)

where nn = (ub + dd)/./2. This allows us to recon-
struct ® and, at the same time, to determine the decay
couplings.

The glueball decay couplings obey the same ratios
as the couplings of isoscalar—scalar qg mesons with
the mixing angle

It follows from the two-stage decay of the glueball [10]
(see Fig. 1¢) that an intermediate qQ state in the glue-

Table 1. Coupling constants given by quark combinatoricsfor aqg-meson decaying into apair of pseudoscalar mesonsinthe
leading order of the /N, expansion and for glueball decay in the next-to-leading order of the /N, expansion (@ is the mixing

angle for nn and s§ states, and © is the mixing angle for n—' mesons: N = nNcos® — sssin® and ' = NASINGO +
sscos@; glueball decay couplings in the leading order of 1/N, expansion are obtained by the replacements

g/ /2 cos® —» G- and g/sind —» /A GL)

Channel The g -meson decay couplings Glueball decay couplings |dentity factor
in the leading order of 1/N; expansion in the next-to-leading terms of /N, expansion| in phase space
o gcos®/ /2 0 1/2
T gcosd/ /2 0 1
KK g(~/2sin® + /A cosd)/ /8 0 1
KOK® g(J/2sin® + /A cosd)/ /8 0 1
nn g(cos?Ocosd/ /2 + /A SnPsin?O) 295(cosO — «[)_2\ sin@)2 12
nn' gsin®cosO(cos®/ /2 — /A sin®d) 29(cos® — f—z‘ SinO)(sin® + f—z‘ cosO) 1
nn' g(sinOcos®/ /2 + /A sindcos?O) 295(sin@ + f—z‘ cos®)?2 12
PHYSICS OF ATOMIC NUCLEl  Vol. 63 No.8 2000
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ball decay isamixtureof nh and s§ quarks produced in
the proportion given by (25). We fiX ®y,ep = 25°  5°.
The coincidence of the glueball decay couplings
with those for the qq meson at ® = @4 indicates
that there is no simple signature for a determination of
aglueball state: in seeking aglueball, it is necessary to
perform a full qg classification of mesons; thus, the

existence of a state extraneous to the qq classification
is an indication of exoticism.

The normalization in Table 1 is done in such a way
that, for glueball decay, the sum of couplings squared
over al channels is proportional to the probability of
quark-pair production [(2 + A\)>—see (25)]. Thus, we
have

G*(c)l(c) =

channels

ds(0)I(c) =
channels

where I(c) is an identity factor and ¢ = ', 11T, K*K-,
and so on (see Table 1). With this normalization, we
have g;/G = 1/N,. Experience gained in quark—gluon
diagram cal culations teaches us that the factor /N, actu-
ally leads to a suppression on the order of 1/10—in the
fitting procedure, we impose the constraint |g,;/G| < 1/3.

The nonet classification of isoscalar mesonsisbased
on the following two constraints:

(i) The difference of the angles between isoscalar
nonet partners must be 90°. For this value, the corridor
+5° isalowed in our analysis:

(1) - P(2) = 90° +5°. (29)

(ii) The coupling constants g from Tables 1 and 2
must be roughly equal to each other for all nonet part-
ners:

ol f5(D] =0l f5(2)] = gla,] = 9[K,].

The conventional quark model requires exact coinci-
dence of the couplings g, but the energy dependence of
the loop diagram in Fig. 1a, B(s), may violate this cou-
pling-constant balance because of the mass splitting
within a nonet. The K-matrix coupling constant
involves an additional s-dependent factor in relation to
the coupling in the N/D amplitude [10]: g*(K) =
g*(N/D)/[1 +B'(s)]. The factor [1 + B'(s)]"' mostly
affects the low-s region because of the threshold and
left-hand singularities of the partial amplitude. There-
fore, the coupling-constant equality is mostly violated
for the lightest 00** nonet, 13P, qg. We alow for the
members of this nonet, 1 < g[fy[(1)]/g[fy(2)] < 1.5. For
the members of the 2°P, qg nonet, we assume the
equality of the two-meson couplings both for isoscalar
and for isovector mesons. The equality of coupling con-
stantsis also imposed for tensor resonances.

26°(2+))’,
(28)
202240

(30)
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Table 2. Coupling constants given by quark combinatorics

for scalar mesons K, and a, decaying into two pseudosca
lar mesonsin the leading order of the 1/N.. expansion

Crennel| Thest-meson decay | Chen: @%%E%?
RO g%—%g N g%z cos©
K0 g—}é n'rc g—}ésin@
K g—}é (cos® — /2A sin@®)| KoK~ gg

Kn' g% (sn®+ 2\ cos@)| — —_

4. DESCRIPTION OF DATA AND THE RESULTS

Our K-matrix fit provides a good description of data
(see Figs. 2-6). The x? values for the fit are given in
Table 3, while the parameters of the fit are presented in
Tables4—7. Below, we highlight the main results of this
fit.

4.1.13°€ = 00+ Wave

The present fit confirms the results obtained in the
previous analysis of the 00** wave [4—6]. Five K-matrix
poles are needed for describing the 00** wave in the
mass region below 2000 MeV (a four-pole amplitude
fails to describe well the data set under consideration).
Accordingly, we have found five bare states:

fo%(720 % 100),
W' = (0.45+0.1)nn—(0.89 £ 0.05)s3,
fo°(1230 + 50),

LIJfIavor — (Ogjggs)nﬁ + (045:}?3)8-5’

fo*°(1260 + 30),

flavor +0.02

"™ = (0.93°07)nn + (0.37 a5 )SS, (31)

f 2%°(1600 + 50),
"™ = (0.95+0.05)nn + (0.3°05)ss,
fo*°(1810 + 30),

flavor

W

+0.005

0.10 £ 0.05)nn + (0.995_5;5)SS (Solution 1)

O (
=0
[00.67 £ 0.08)nn — (0.74 + 0.08)s5 (Solution I1).
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Table 3. x?valuesfor the K-matrix solutions
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Solution | Solution 11-1 Solution 11-2 Number of points
Crystal Barrel data[8]
pp — 1 152 141 1.42 1338
pp — NN 157 1.60 159 1798
pp — 1rn 1.38 1.43 1.43 1738
o — 1O
Swave GAMS data[1] 1.47 171 159 70
D-wave GAMS data [1] 1.63 2.16 2.14 56
D correlation function [1] 1.82 2.26 212 47
t-Dependent GAMS data [1]
0<|t|<0.20 3.03 3.42 3.37 21
0.30< |t| < 1.00 2.64 3.25 2.98 38
0.35< |t| < 1.00 1.30 155 1.44 38
0.40<|t|<1.00 2.75 2.48 2.79 38
0.45< |t| < 1.00 1.92 1.49 167 38
0.50 < |t| < 1.00 2.29 1.85 204 38
GAMSdata[2, 3]
TI—> NN 0.70 0.97 0.87 16
n—-nn' 0.49 0.65 0.64 8
nm—» KK
BNL data[7] 0.88 0.77 0.97 35

Note: [t|isgivenin (GeV/c)2 units.

The experimental data used in the fit do not fix unam-
biguously the flavor wave function of f¢™°(1810 +
30)—two solutions are found for it.

The scattering amplitude has five poles in the com-
plex plane of energy; four of them correspond to rela-
tively narrow resonances, while the fifth resonance is
very broad:

f4(980) — > (1015 + 15) —i(43 + 8) MeV,
f4(1300) — (1300 % 20) —i (120 % 20) MeV,
fo(1500) —» (1499 + 8) —i(65 + 10) MeV,

+90

f,(1530) — (1530750) —i (560 + 140) MeV,

(32)

f,(1780)

(1780 £ 30) —i(140 + 20) MeV (Solution 1)
%17801 50) —i(220 + 50) MeV (Solution I1).

The broad resonance is crucial for describing the 00
wave, because it is responsible for large interference
effects that are seen in various reactions—namely, the
resonancef,(980) manifestsitself asadip in the Swave
TUT— TTISpectrum (Fig. 2a) and asasharp peak inthe

Tir(t) — Timispectraat large |t | (Fig. 3). The resonance
f,(1300) is seen in the Tti{t) — TiTISpectra at large |t |
as awell-shaped bump (Fig. 3); in the tt— TtTand
nim — KK spectra, it reveals itself as a shoulder
(Figs. 2 and 5). The resonance f,(1500) is seen as adip
in the mrm— 1trtand imt— nn spectra (Figs. 2, 5)
and as a peak in the pp (at rest) — 1O reaction
(Fig. 6). In al these manifestations of f,(980), f,(1300),

and f,(1500), their interference with fo( 153050, ) plays
adecisiverole. In the case of large interference effects,
it is useful to display the amplitude on an Argand plot.
Argand plots for the amplitudes it — 11T TIIT—>
nn, n— KK, mm— nn' and nir(t) — mimare
shown in Figs. 7 and 8.

Four bare statesin (31) can be naturally classified as
nonet partners to the qg multiplets 1°P, and 2°P,. The

fifth bare state is superfluous for the qg classification,
so that it isagood candidate for the lightest scalar glue-
ball. Equation (31) gives two versions for the glueball:
either it is a bare state with amass near 1250 MeV, or it
is located near 1600 MeV. Having imposed the con-
straints in (29) and (30), we accordingly found the fol-
PHYSICS OF ATOMIC NUCLEI  Vol. 63

No. 8 2000
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Table 4. Masses, coupling constants (in GeV), and mixing angles (in deg) for the fga'e resonances for solution | (the errors
reflect the boundaries for a satisfactory description of the data; |1 sheet isfor the Tirtand 4rtcuts; 1V sheet is for the Tt 4T,
KK, and nn cuts; V sheet isfor the ity 41, KK , nn, and nn' cuts)

Solution I-1
a=1 a=2 a=3 a=4 o=5
M 0.651" 0050 1.247"0050 1.253'00se 1.684%00ss 1.7922000
g@ 1.318"5308 05977059 0.879 00 0702059 0.702° 5%
e 0 ~0.135 358 0 0 0
o 0 0.904°01% 0 089875 | 030205
@, (71573 21578 14170 607 89"

o =TI a=KK a=nn a=nn' o =4n
f1a 0.455"310 0.061°010% 0.501 0100 0.448°015% ~0.129'006
fra=0, b=2,34,5,
gl = —025970%% g = _0.275"01% g = 325"

Pole position
+0.008
I sheet 1.006°%%
. 0.008
—i(0.04875 00)
IV sheet 1.303709% 1.4960%8 1.670 0150
(01387018 | i(0.0597°%%) | —i(0.7607°%)
V sheet 1.775°352
—i(0.056/00%%

lowing versions of the nonet classification. For solution |,
. £5%¢(720) and o™ (1260) are 1°P, nonet partners,

fo*°(1600) and o (1810) are 2°P, nonet partners,

f o™ (1230) isaglueball.

Within solution I, two versions describe well the
data set:

11-1. 57 (720) and g™ (1260) are 13P, nonet part-
ners,

fo*°(1600) and f°(1810) are 2°P, nonet part-
ners,

f o™ (1230) isaglueball;

11-2. £57(720) and g™ (1260) are 13P, nonet part-
ners,

fo7°(1230) and f°(1810) are 2%P, nonet part-
ners,

f 2% (1600) is a glueball.

PHYSICS OF ATOMIC NUCLEI  Vol. 63 No. 8 2000

Tables 4 and 5 present parameters corresponding to
these three versions.

Lattice calculations for the gluodynamics glueball
[16] yield the mass of the lightest scalar state in the
range 1550-1750 MeV, which is eguivalent to version
[1-2. However, it should be emphasized that the state

ff;*” ®(1600) cannot be identified as a pure gluodynam-

ics glueball because fo™°’s contains the g compo-

nents associated with the real parts of the loop transi-
tion diagrams: this problem isdiscussed in detail in [10,

17, 18]. An extraction of the qQ component from
fgare(1600) leads to a mass shift for the state, but it is
not large according to [10, 18]: fo™°(1600) —~
fguregluball (1633)

4.2.1J¢ = 10+ Wave

Two isovector—scalar resonances are well seen in
pp annihilation into three mesons[5, 6, 8, 19, 20]. The
lightest one is the well-known a,(980), while the
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Table 5. Masses, coupling constants (in GeV), and mixing angles (in deg) for the fga“* resonances for solutions|1-1 and I1-2

Solution 11-1
a=1 a=2 a=3 a=4 a=>5
M 0.651 3020 1.2467020 1.263 5o 1.595 000 1.832° 000
g@ 1.385010 0.375 o000 0.923 0% 04247059 0.424°330
e 0 ~0.017 o) 0 0 0
g 0 0.705 0100 0 0.552 5070 —0.557 5070
®, ~(70.1%%) 30.07¢ 18.3°¢ 20675 —64.4720
o =T a=KK a=nn a=nn' o =4
f1a 0.440701%0 0064010 0.387701% 0.419701% ~0.165 0%
f=0, b=2 345,
1 0.045 1 0.100 )
gé )= _0-239ro.o45 , gft )= _0-284:ro.100 » = 3-28:r1.0
Pole position
+0.008
I sheet 1.01770%%
~i(0.049705%)
IV sheet 1.3117 000 1.5000 ooe 14707912
—i(0117°0%5) | (0063709 | —j(0.545 0%
V sheet 1.814750;¢
—i(0.082/5615)
Solution 11-2
a=1 a=2 a=3 oa=4 a=5
M 0.651 020 1.219°02% 1.267 0o 1.584 0o 1.817 oo
9@ 1.351 7010 0.435"0970 0.901 558 04330000 0.435"0000
% 0 0 0 ~0.005 o) 0
g 0 0.719" 0100 0 0.542 5070 ~0512%5070
®, ~(695°3) 407" 19675 20073 54”3
o =TT o =KK a=nn a=nn’ o =4m
f1a 0.459" 9100 0.046"9109 0.405"0100 0.420"5108 ~0.214"0000
fba=0, b:21 3; 41 51
o’ = 024100, oY =-0273"010, s=3.05"7,
Pole position
+0.008
Il sheet 1.02070%%€
~i(0.04870%%)
IV sheet 1.3040000 150500 14207010
(0118795 | |i(0.063°°%%) | _i(05400%%)
V sheet 1.809 " 0ens
—i(0.080"092y
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Fig. 2. (a) Squared modulus of the rtrt— 1t S'wave amplitude [1], (b) squared modulus of the D-wave amplitude, (c) SD corre-
lation function, and (d) phase difference between the Sand the D wave. Rel evant events were collected at squared momentum trans-

fersof [t| < 0.20 (GeV/c)? [1]. The solid and the dashed curve correspond, respectively, to solution 11-2 and to solution I

next resonance is the newly discovered resonance
a,(1450) having amass of 1450 + 40 MeV and awidth
of I = 270 + 40 MeV, asis given by the Particle Data
Group [21]. We note that, in fitting the latest high-sta-
tistics Crystal Barrel data on the basis of the T-matrix
method used for this wave [6, 19, 20], the mass of this
resonance appeared to be dightly higher: 1520 *
40 MeV. A similar result is obtained in the present K-
matrix approach.

In order to describe the isovector—isoscalar scatter-
ing amplitude, we use atwo-pole 4 x 4 K matrix featur-
ing two-meson coupling constants given in Table 2.

At thefirst stage of thefit, the coupling of the light-
est a, state was allowed to vary in the interval bounded

by g[ fo*(720)] and g[ f o (1260)]. In all versions of
the fit, the two-meson coupling constant for the lightest

bare

state, g[a, (lightest state)], appeared to be very close
to the coupling constant g[ f ¢ (1260)]: in the final fit,

PHYSICS OF ATOMIC NUCLEI  Vol. 63 No. 8 2000

we set these couplings to each other in line with the
constraint in (30). The two-meson coupling for the next
isovector—scalar state is set to the couplings of the 2°P,
isoscalar—scalar states.

Thefit givestwo solutionsfor the 10** wave that vir-
tually coincide in terms related to the resonance—bare-
state sector and differ in background terms. The param-
eters for the 10" wave and the pole position are given
in Table 6. For the resonance positions and for the bare
states, we have, respectively,

a,(980) —~ (988 + 6) —i(46 % 10) MeV,
ap(1450) — (1535 + 30) —i (146 + 20) MeV,

and

(33)

bare bare

a (964 + 16), ay (1670 + 80). (34)

But these two solutions lead to different predictions for
the scattering amplitudes: for the first solution (without
K-matrix background terms), the 1t — 1T scattering
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Fig. 3. Event numbers versustheinvariant mass of the tmisystem in the Swave for varioust intervalsin the reaction tp — 101
[1] [tisgivenin (GeV/c)? units]. Solid and dashed curves correspond, respectively, to solution I1-2 and to solution I.

amplitude squared (see Fig. 9) hasadip in the a,(1450)
region because of the destructive interference of the
resonance with the background; for the second solution
(with the K-matrix background terms), a dip appears at
1100 MeV. In the present fit, information about the
isovector—scalar wave comes only from Crystal Barrel
data. Since these data are highly sengitive to the pole
structure, they provide poor information about K-matrix
background terms: this is a source of ambiguities in our
K-matrix solution. We emphasize, however, that the
description of other partial wavesisvirtualy independent
of the solution type (first or second one) used: the varia-
tion in the parameter valuesis within the quoted errors.

4.3.13°¢ = 12+ Wave

In just the same way asin the isovector—scalar case,
a4 x 4 two-pole K matrix is used to describe the 12**
wave. The coupling constants for bare states and the
poles of the scattering amplitude are given in Table 7.
We have determined two bare states:

bare

(1314 7), a"*(1670+ 75). (35)

The poles of the amplitude are found at
a,(1320) — (1309 £ 6) —i (58 + 6) MeV,
a,(1640) — (1640 £ 50) —i(122 + 18) MeV.

The lightest state is the well-known a,(1320) reso-
nance; accordingto[21], it hasamassof 1318+ 1 MeV
and awidth of ' = 107 + 5 MeV.

In fitting Crystal Barrel data on the reaction pp (at
rest) — nmtrt the Dalitz plot description is consider-
ably improved in this region upon introducing an
isovector—tensor resonance that has a massin the range
16001700 MeV.

36)

4.4.13¢ = 02+ Wave
The two lightest isoscalar—tensor states, f,(1270)
and f, (1525), arewell known: they are members of the

nonet 13P2qq. Crystal Barrel data suggest the exist-
ence of the resonance f,(1565), which helps describe
the pp — T°r°r® Dalitz plot in the region of large
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Table 6. Masses and coupling constants (in GeV) for the a, resonances (the asterisk denotes that the parameter is fixed)

ag resonances without K-matrix background term
solution I-1 solution 11-1,2
a=1 a=2 a=1 a=2
M 0.963 00> 1.630 0an 0.965 g ens 1.654 0a0
+0.100 +0.100
g 0.879 0100 0.702* 0.901 5700 0.435*
gl 0.598 goer 0511 oo 0.689 0oy 0.687 oo
Pole position
Il sheet 0.987 00 0.989 o o0n
. 0.005 . 0.010
—i(0.045 5005) ~i(0.048 5 010)
+0.015 +0.025 +0.015 +0.025
~i(0.070"2%:% —i(0.1417095 ~i(0.0732919 i (0.1517095
a, resonances with K-matrix background term
solution I-1 solution 11-1,2
a=1 a=2 a=1 a=2
M 0944995 1.624°9°% 0.939 0oe 1.640 90
+0.100 +0.100
g 0.879 0100 0.702* 0.901 5700 0.435*
gl 0.651 gt 0519 00 0.653 0oy 0.687 oo
0.100 2.0 0.100 2.0
f1 = 05297100 = 1003 f11 = 0.731 75100 $=19g
Pole position
Il sheet 0.990 5o 0.993"5005
~i(0.039/00%) ~i(0.042°0010)
11 sheet 0.965 901> 1559”00 0.965 5010 1575052
~i(0.063"9%%) ~i(0.145"3%5) ~i(0.068°2%0) ~i(0.153"99%5)

two-pion masses [8, 17, 20]. Because of this, we also
begin our analysis by introducing athree-pole K-matrix
amplitude. Upon imposing the nonet constraints on the
13P, states [see (28) and (29)], we find, however, that
the couplings of the third state prove to be negligibly
small. Although the description of thereaction pp —»
nnT° becomes slightly poorer under the imposed con-
straints (about 0.1 per degree of freedom for x?), the
description of the reaction pp — 1n°m® {where
f,(1560) is seen according to [8, 17, 20]} leads to an
improvement of 0.07 in x?, yielding virtually the same
total x2.
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The resonance f,(1560) is not seen in GAMS data;
this gives a strong constraint on the partial width with
respect to the resonance decay into the ttrtchannel: it
must be less than 20 MeV.

In our final fit, we have used the two-pole K-matrix
amplitude with the nonet constraints; the parameters
for thisfit are presented in Table 7.

The K-matrix fit gives the following bare isoscalar—
tensor states, the members of the 3P, nonet:

f57°(1235 £ 10), f5*°(1530 + 10),

bare <37)
®[ f57°(1530)] = 86° + 5°.
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N/(20 MeV), 102

800r  h<_;<005 400 905<-r<0.10
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Fig. 4. Event numbers versus the invariant mass of the tiisystem in the D wave for varioust intervalsin thereaction tp — 1rn
[1] [tisgivenin (GeV/c)? units]. The solid and dashed curves correspond, respectively, to solution 11-2 and to solution I.

The K-matrix 02++ amplitude has poles at the complex
mass values

f,(1270) — (1262 + 6) —i(90 + 7) MeV,
(38)
f1(1525) —~ (1518 + 9) —i(71 £ 10) MeV.

These values should be compared with the masses and
half-widths presented by the Particle Data Group [21],
which are, respectively, 1275 £ 5, 92.5 + 10 MeV and
1525 + 5,38 £ 5MeV. Thewidth of f;(1525) foundin
our fit appears to be much larger than that given by the
Particle Data Group. It is quite possible that, in fitting

the present data set, we cannot resolve apossible D-wave
double-pole structure in the region around 1530 MeV
caused by the f, (1525) and the f,(1560) resonance, for
they are located near the edge of the phase space for
Crystal Barrel data, while GAM S data give a constraint
only on the couplingsto the rtrichannel . We believe that
additional information from Crysta Barrel data on
KKt production, together with GAMS [22] and VES
data [23] on wwproduction, will clarify this point.

4.5. Nonet Classification

The results of the above analysis, together with the
results of the K-matrix analysis of the Kt Swave [11],

allow us to construct uniquely the lightest scalar qq
nonet as

1°P,: fo7°(720 + 100),
fo**(1260 + 30),
ac"®(960 + 30),
Ko™(122035),

P[F7°(720)] = —70°7>..

(39)

bare

The lightest scalar, f, (720 = 100), is dominantly a

sS statewith amixing angle closeto theideal octet one,
D, geal octet = —D5°. The situation with the lightest scalar
nonet is similar to that with the lightest pseudoscalar
nonet, where the mixing angle for the n meson is also
close to D,y ocer: this definitively indicates the degen-
eracy of the lightest 00+ and 00— states.
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Table 7. Masses and coupling constants (in GeV) for the f, and a, resonances

f, resonances
solution 1-1 solution 11-1,2

a=1 a=2 a=1 a=2
M 1.236" 000 1.530 000 1.233 o8 1.529"0010
g@ 1.342°01% 1.342°91% 1.038"910% 1.038°01%

2.0 25 2.0 2.5

g ~(84%30) 86.6 5 ~(88%30) 86.25
(a) +0.020 +0.020 +0.020 +0.020
9an 0.318 4,020 0.448_4 090 0.318 020 0.472_ 020

a =T a=nn a =TI a=nn
fia 0.742 o500 ~(1.01°3%0 0.287 0o ~0.143'31%9
fa 1.997 0160 1.077 050 247420150 1.295")160

fi3 = 0.684 £ 0.100 fi3= 0578 £ 0.100
fra=0,b=2, 3 =50
Pole position 1.262°0%% 151470010 126199 1522*0%%
—i(0.092735%) ~i(0.066°3%%) ~i(0.089°3%%) ~i(0.076:2%%)
ap resonances
solution I-1 solution 11-1,2

a=1 a=2 a=1 a=2
M 1.316 0y 1.645 000 1.312° 500 1.695 0 ooy
g@ 1.080 5108 02700100 1.3007 5108 0325/ 0109
gl 0.381 00y 0.597 0% 0.426 350 0.617 00

r = 1.845" 0100 ry = 2.406 0100
Pole position 1.309 0008 1.615 000 1.308 5000 1.667 oo
~i(0.058°05%) ~i(012170%%) ~i(0.059°2%%) -i(0.123709%)

The multiplet of the lightest tensor states appears as Our analysis leads to two versions for the 23P,qq

3 bare nonet:
: +
1Pa: 1,7(1240£ 10), Thefirst version gives

f5*°(1522 + 10),
2 ) 2°Py: £07%(1600 + 50),

bare
a*®(1311 + 3), 40
2 ) (40) f 5¥°(1810 + 30),
K3 (1430), ac®(1650 + 50), 41
®[ f57°(1240)] = —10° + 3°. K¥(1885 "),

The K-matrix analysis of the K D wave has not yet bare  oso s o
been performed: the (J = 2)TKK resonance with a mass P[f, (1810)] = 84°£5°.
of 1431 + 3 MeV isreported in [24]; we have used this bare 50 .. .. _
resonance to complete the multiplet in (40). The state Ky~ (1885_15 ) is fixed by the analysis [11]
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Fig. 5. Swave amplitudes squared for the transitions (a) mnm— KK [7], (b) mm— nn [2], and (c) mt— nn' [3]. Solid and
dashed curves correspond, respectively, to solution |1-2 and to solution I.

of the Kt Swave. In this version, the lightest glueball

(1230°%°). In the second version, the

bare

state is f
lightest glueball state is identified as foo° (1600),

N/(0.027 GeV?), 103 N/(0.029 GeV?), 10°

80 TUTTTT L TITIN o
60[°
40
20+
0 | | | | | 0 | | | |
0.5 1.0 1.5 0.4 0.8 1.2
My GeV My GeV
N/(0.061 GeV?), 10° N/(0.029 GeV?), 103
12r mnn [ g,
i 12+
o i
8 -
4+ 4k
1 1 1 1 0 1 1 1 1
1.0 1.2 1.4 1.6 0.5 1.0 1.5
Mnn’ GeV Mnn, GeV

Fig. 6. Mass projections of the Dalitz plot onto the two-
meson invariant mass for Crystal Barrel data. The curves
correspond to solution [1-2.

namely,
2°P,: £07°(12307%0),
fo**(1810 + 30),
ag(1650 * 50),
Ko™*(1885 1),

P f7°(1810)] = 44° + 10°.

(42)

5. RESONANCE f,(980): ISIT A KK MOLECULE?

We begin by discussing the origin of f,(980). GAMS
data on f,(980) production at high [t| (see Fig. 3)
directly demonstrate that this resonance has a hard

component, while the location of the pole near the KK
threshold definitively indicates that its kaon component
islong-range. The presence of along-range component
gives rise to a discussion on the molecular structure of
this state [25]. The problem to discuss is how substan-
tial these components are in the formation of the reso-
nance. We bear in mind that the short-range component
(withr <1 fm) isthe subject of quark—gluon consider-
ations and quark systematics.

The resonance f,(980) corresponds to the two poles
located at (in MeV units)

M = 1015 —i46 (I sheet, under Ttrtcut),

M =936 —i238 (111 sheet, under rtrtand KK cuts).

The second pole appears owing to the well-known dou-

ble-pole structure caused by the KK threshold (see, for
example, [26]), whilethefirst poleat M = 1015—i46 MeV
generates the leading irregularities in Ttrispectra.

No. 8 2000
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Fig. 7. Argand plots for the Swave scattering amplitudes in solution 11-2: (a) Ttt— 111y (b) TM——> KK, (€) Ttlt—— 1N, and

(d) mtm—=nn".

Thereconstructed K-matrix amplitude allows oneto

see the role of the KK component in the formation of
0(980), thereby clarifying the question of whether this

resonance is adescendant of a qQ state or it isamolec-
ular-type system. To this end, we switch off f,(980)-

decay processes (transitionsinto rrrtand KK ) and look
at the dynamics of pole positions with a gradual onset
of couplings. In order to simulate agradual evolution of
the couplings, we made the following substitution in
the K-matrix 00** amplitude:

g’ &gy’ (43)
Here, the parameter & was constrained to change in the
interval

0<¢<1l (44)

For & — 0, the decay channels are switched off and
we return to abare state, while, at § = 1, therea caseis
recovered.

For & — 0, the masses of the lightest scalar bare
states are 650 and 1260 MeV (the positions of the K-
matrix poles). With increasing &, the trajectories of the
states are shown in Fig. 10.

The crucial point iswhat component, ririor KK is
responsible predominantly for the mass shift from
650 MeV to 1020 —i48 MeV. We can clarify this point

PHYSICS OF ATOMIC NUCLEI  Vol. 63 No. 8 2000
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Fig. 8. Argand plotsfor the tr(t) — miS-wave scattering

amplitudes at various values of t [t is given in (GeV/c)?
units).
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0.4

O 1 1
1.6
M, GeV
Fig. 9. Squared S'wave 1t — TN scattering amplitude:

solutions (a) | and (b) Il for the Ttn —— 1IN Scattering
amplitude.

by switching off the KK component and by leaving it
unchanged, and vice versa. In thefirst case, the mass of
f,(980) stateis

M (without KK) = 974 —i115 MeV. (45)
One sees that the mass shift
S, = M(E = 1) — M(without KK
& = M(E =1)—-M( ) ue
= 41 +i67 MeV

is not large: the KK component which is responsible
for the value of & does not play an important rolein the
formation of the f,(980) mass. In the second case,
where the Ttricomponent is switched off, we abtain the

state that is the nearest to the KK threshold and which
islocated at

M (without TtT) = 810 —i110 MeV. (47
Thus, the mass shift is

0. = M(& = 1) —M(without 1Tt

- (€ =1)—M( ) 48)

= 205+i36 MeV,
which is much greater than 3, . The transition into
real pions,

fo¥*(720) — 1T, (49)

ANISOVICH et al.

/2, GeV (a)
Or 1
1 ¥ X2 # Zj(
L 2 3 2 3
-0.2F
3
_0.4 1 1 1 1 1 1 1
O -
i
EY
—-0.2F )
3
_0.44 1 1 1 1
0.6 1.0 1.4 1.8
M, GeV

Fig. 10. Positions of the poles of the 00** amplitude in the
complex plane of /s (M = Re./s, -T'/2 = Im./s) after the

substitution gg — Egg : (a) on the sheet under the 1Tt

cut and (b) on the sheet under the trtand KK cuts. The case
of £ — 0 givesthe positions of the bare-state masses; & =
1 corresponds to the real case. The points (1), (2), and (3)
correspond to & =0.4, £ = 0.6, and & = 0.9, respectively.

ismainly in charge of the mixing of the lightest scalar
gq state with other scalars, thus shifting its mass by

chance to the region of the next threshold, KK . The

KK component of f,(980) is of the molecule type: rel-
ative kaon momenta are small; therefore, the relative
separations are large. We emphasize once again, how-
ever, that the two-kaon component does not play acru-
cial rolein the formation of the f,(980) mass.

6. CONCLUSION

We have performed a K-matrix analysis of GAMS
S and D-wave 1, nn, and nn' data, together with
data obtained by BNL and Crystal Barrel collaboration.
The partial-wave amplitudes for the 00+, 02+, 10*+,
and 12+ states have been investigated in the mass
region up to 2000 MeV, and the poles of these ampli-
tudes have been found (see Tables 4-7). The pole terms
of the K matrix have been reconstructed; that is, the
No. 8 2000
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00*, 02, 10™, and 12** bare states have been found.
The quark content of these bare states has been deter-
mined on the basis of the relations between the decay
coupling constants: this has enabled us to reconstruct
the 1°P,, 2°P,, and 1°P, quark nonets. Our analysis has
confirmed the result that was presented in [6] and
which is based on the K-matrix analysis of the only
00* wave: in the region 1200-1600 MeV, there exists
ascalar—isoscalar state that is extraneousto the qq sys-
tematics. This state is a good candidate for the lightest
scalar glueball.

Our analysis has reveal ed degeneracy of the lightest
00** and 00~ states.
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Abstract—Using a nonperturbative method based on the asymptotic behavior of Wilson loops, we calculate
the masses of glueballs and the corresponding Regge trajectories. The only input is the string tension fixed by
the meson Regge slope, while perturbative contributions to spin splittings are defined by standard o values.
The masses of the lowest glueball states are in a perfect agreement with lattice results. The leading glueball
trajectory, which is associated with the Pomeron is discussed in detail, and its mixing with f and f' trgjectories
is taken into account. © 2000 MAIK “ Nauka/I nterperiodica” .

1. INTRODUCTION

The problem of the existence of glueballs is one of
the most interesting in QCD. Lattice calculations give
definitive predictions for the spectrum of such states
[1-4], but experimental evidence is not conclusive [5,
6]. Mixing between gluons and qqg pairs complicates
the separation of glueballs. A theoretical study of glue-
ballswithin QCD wasinitiated in [7—10] and is closely
related to the problem of the Pomeron—that is, the
leading Regge pole, which determines the asymptotic
behavior of scattering amplitudes at very high energies.
It is usually assumed that the Pomeron in QCD is
mostly a gluonic object [11], and glueball resonances
with vacuum quantum numbers and spins belong to this
trajectory. Another interesting hypothetical Regge singu-
larity is the “odderon,” which has negative signature and
C parity and can be congtructed from at least three gluons.
Mogt studies of the Pomeron and odderon singularities
within QCD are based on perturbation theory [12].

In this study, we will address both the problem of
spectra of glueballs and the problem of the Pomeron
(odderon) singularity using the method of Wilson loop
path integrals that was developed in [13-15]. The
method is based on the assumption of the area law for
Wilson loops at large distancesin QCD, which isequiv-
alent to the condition of quark and gluon confinement.
It was first applied to calculating the spectra of qg
states in [16], of baryons in [17], and of glueballs in
[18]. In those calculations, the rotation of the string
between quarks or gluons was not taken into account
with the result that there arose some distortion in the
mass spectra—in particular, the Regge slope was 1/80
instead of the string slope of 1/2mo, where o is the
string tension. In the present study, we will use amore
accurate computational method for glueballs that was

developed in [14, 15] for qQ states and which yields a
correct Regge slope (see [19] for numerical data and

* This article was submitted by the authorsin English.

discussion). We a so study in detail possible corrections
to large-distance string dynamics due to small-distance
perturbative gluon exchanges (PGE) and demonstrate
that their effect on the mass spectrum of glueball states
is rather small and can be computed as a correction.
Thisisin contrast to the glueball spectrumin[8], where
PGE in the form of the adjoint Coulomb potential was
assumed, as in many other papers on the subject.
Instead, we argue below that PGE sums up to another
series, the BFKL ladder [12], where loop corrections
strongly suppress the final results, so that PGE can be
disregarded for a first approximation. Our predictions
for the masses of the lowest spin-averaged glueball

states in /o units are in a perfect agreement with
results of recent lattice calculations [1-3]. In addition,
spin—orbit and spin—spin interactions are also calcu-
lated and found to comply well with lattice data.

The leading glueball Regge trajectory is calculated
in the positive-t region and is extrapolated to the scat-
tering region of t < 0. The importance of mixing among
thistrajectory and qq trajectories (f, f") is emphasized;
acalculation of these mixing effects yields the leading
Pomeron trajectory with ap(0) > 1 (ap(0) = 1.1-1.2) in
accord with experimental observations [20]. An inter-
esting pattern of three colliding vacuum trajectoriesin
theregiont > 0 is observed, which can be important for
the decay properties of resonances occurring on these
trajectories.

The present article is organized as follows. Field
operators creating glueball states in the general case
and in the background-field method are introduced in
Section 2 and presented in Appendix 1. Thegeneral for-
malism of the Wilson loop path integrals and the result-
ing relativistic Hamiltonian are discussed in Section 2
and in Appendix 2. The spectrum of spin-averaged
glueball states that follows from this Hamiltonian is
obtained in Section 2 and is compared with the corre-
sponding lattice results. The spin splittings of glueball
masses from both nonperturbative and perturbative
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parts are considered in Section 3 and in Appendices 3
and 4. The resulting glueball spectrum is compared in
Section 3 with the results of lattice calculations. The
PGE effect on the glueball masses and Regge trajecto-
riesis discussed in Section 4. It isindicated that small
distances have only adight effect on the glueball spec-
trum. Three-gluon glueballs are considered in Section 5.
It is shown that the lowest 3g states have arather large
mass of M,, = 3.4 GeV. The relation between the glue-
ball Regge trg ectories and the vacuum Pomeron trajec-
tory is discussed in Section 6. In that section and in
Appendix 5, the effects of mixing between gluonic and

gq Regge trajectories are investigated.

The possible implications and improvements of our
results are discussed in Section 7.

2. GENERAL FORMALISM

Following [13, 21], we break down gluonic fields A,
into a nonperturbative background By, and perturbative
gluonsa,, A, = B, + a,, and consider two-gluon glue-
balls described by the Green’s functions

Gy, v (% YIX, ¥) = B (x WX, y) e ()
— (in) ! n ~ (out)
= [ Guu'(xﬂ X)va'(y1 y)r t

[} + perm.

Here, Win (Yew) gre glueball operators in the initial
(final) state made of gluon fields a, and B, (see Appen-
dix 1 for the explicit form of Wim:©w jn the |owest
states); and G, is the gluon Green's function of the
field a, in the background field B, namely,

Guw(x y) = K|(=D78,, —2igF) 3, ()

where D, =9, —igB,, Fy isthe strength of the field

B, intheadjoint representation, and averaging over the
background fields By, is denoted by angular brackets
(there, the subscript B will be omitted in the following).

Referring the reader for details of the derivation to
[13, 18, 21] and to Appendix 2, we can write the path
integral for (1) intheform

Guv, u‘v'(xﬂ ylxla yl)
%) 0 ke (3)

= const XIdsJ’ds‘DzDze g‘i”)WFr(out)D
0 0

DNote that the background formalism exploiting the 't Hooft iden-
tity [21] allows us to avoid the double-counting problem, and the
principle of the above partition is immaterial here, provided that
the background B, is characterized by the input string tension o
and that the perturbation isin the known o constant.
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where
K = ls(olz/olr)zolr-
= 4J' :
0

K" isthe same with primed z, 1, and s; and

[WO= trPgP,

S s

a . a . a “)
x{ expOgfB,du, + 2igfFdt + 2ig(Fdt'Q.
i E

Here, P, and P, are ordering operators for the color
matrices B, and F, respectively. It will be seen in Sec-

tion 3 that terms involving F generate a spin-depen-
dent contribution of nonperturbative background,
which is calculable and small; for this reason, we will
treat those terms perturbatively.

Neglecting F’sfor afirst approximation and omit-
ting, for the sake of simplicity, the projection operators
rM and rew which do not affect the form of the
resulting Hamiltonian, one arrives at the Wilson loop in
the adjoint representation, for which one can use the
minimal-area law confirmed by numerous lattice data
[22] at least up to the distance on the order of 1 fm,

(W= ZeXp(—0 . Shin)» (%)
where we have included in Z self-energy and nonas-
ymptotic corrections, since (5) is valid for large loops

of size R, T > T,, where T, is the gluon correlation
length.

Note that we could treat (4) by the field-correlation-
function method [13, 23], retaining only the lowest
(Gaussian) correlation function [F(X)F(y) L In this case,
the leading term will again have the form (5); we will
use this method to evaluate the contribution of the

gluon spinterms F in (4); theresult in (5) is more gen-
eral, since 0, in (5) contains the contribution of all

correlation functions and is not associated with the
Gaussian approximation.

Applying now the general method of [14] to the
Green's function (3), one introduces an auxiliary (ein-
bein) function p(t) of the real time t instead of the
proper time sand T, viarelation dt = dt/2j(t), and aux-
iliary einbein function v(B, t) to get rid of the square-
root Nambu—Goto form for S,;,, in (5). As aresult, one
defines the Hamiltonian H through the equality G ~
exp(—=TH), where T is the evolution parameter, taken
here to be the center-of-masstime T, 0<t<T.

The resulting relativistic Hamiltonian for two spin-



1430

Table 1. Effective-mass eigenvalues pg(n, L) (in GeV for
Oung = 0.18 GeV?) obtained from (8) { o = /0 ,; (a(n)/3)¥*

isthe upper entry, and eigenval ues of reduced equation [a(n)]
isthe lower entry}

n
L 0 1 2 3

0 0.528 0.803 1.005 1174
2.3381 4.0879 5.520 6.786

1 0.693 0.917
3.3613 4.8845

2 0.826 1.020
4.2482 5.6297

Table 2. Eigenvalues (in GeV) of relativistic Hamiltonian
forL=0

n 0 1 2 3 4 5
My 201 | 299 | 375 | 437 | 492 | 541

less gluons takes the form [14]

2

Ho = s +h(0) +

L(L+1)

‘ {p + 2{53 —%gvdﬁ}

(6)

0 11
IZV{?JB t)r + ﬂv(s, t)dp.
0

Here, u(t) and v([3, t) are positive auxiliary functions
that are to be found from the extremum condition [14].
Their extremal values are equal to the effective gluon
energy [[Jand the energy density of the adjoint string
N0 respectively.

For the case of L = 0, the extremization with respect
tou and v yields the simple result [14]

= 2«/3?*‘03(11'“ (7

which coincides with the Hamiltonian of therelativistic
potential model. The approximation made in [16-18]
corresponds to the replacement of the operators (1)
and v(t, B) (which are expressed in terms of the opera-
tors p and r by means of extremization) by ¢ numbers
to be found from extremization of eigenvalues of H,,.
Thisyields another form, used in [18],

= E0+Ho+0adjr;

®)

as can be seen from Table 3 of [19], the eigenvalues of
(8) are about 5% higher than those of H,. The value of
0,4 iN (8) can be found from the string tension of the

KAIDALOV, SIMONOV

gqg system, since the Casimir scaling found on alattice
[22] predicts that

o = &) 9.
adj Cz(fund) fund 4 fund*

For light quarks, the value of oy, is found from the
slope of meson Regge trajectories and is given by

)

~0.18 GeV?, (10)

O-fund = 2T[G'
whence we obtain

0. = 0.40 GeV’. (11)

In what follows, the parameter u and its optimal
value ,, which appears in (8), play a very important
role. The way in which they enter into spin corrections
in Section 3 and into magnetic moments shows that 1,
plays the role of an effective (constituent) gluon mass
(or constituent quark mass in the equation for the qQ
system).

In contrast to potential models, where the constitu-
ent gluon and quark massis introduced as afixed input
parameter in addition to the parameters of the potential,
our approach involves calculating |, from the extre-
mum of the eigenvalue of (8); thisyields

o) = BT () = apg(n),

where 0 = g,; for gluons and 0 = gy,,q for massless
guarks and where a(n) isthe eigenvalue for the reduced
equation d2/dp? + (a(n) —p — L(L + 1)/p?)y = 0. The
first few values of a(n) and p,(n) are given in Table 1;
they will be used in Section 3.

We note that our lowest “constituent gluon mass,”
Hg(n =L = 0) = 0.528 GeV (for oy,,q = 0.18 GeV?), is
not far from the valuesintroduced in the potential mod-
els, the drastic difference being that P, depends on n
and L and grows for higher states; it iscalculablein our
case.

Theeigenvaluesof H, (7) forL=0andn=0, 1, 2, ...

9 x 0.18 GeV?2.

aregivenin Table 2 for 0,4; = gofund =2

The mass spectrum for L > Qisgiven by the eigenvalues
of Hy (6) and was studied in [14]. Within a5% accuracy
of the Wentzel-K ramers—Brillouin approximation, one
can exploit much simpler expressions from [19], which
predict for L > 0 the eigenvalues shown in Table 3. An
independent numerical estimation of the rotating string
spectrum from [24] yields similar eigenval ues.

From Tables 1-3 and from [24], one can see that the
mass spectra of the Hamiltonian in (6) are described to
ahigh precision by the very simple formula

MZ

= L+2n, +cy,
2110 !

(12)
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where L is the orbital angular momentum, n, is the
radial quantum number, and ¢, = 1.55 is a constant. It
describes an infinite set of linear Regge trajectories
shifted by 2n, from the leading one (n, = 0). At this
stage, the only difference between light quarks and glu-
onsisthe value of g, which determines the mass scale.

Thus, the lowest glueball statewithL =0andn, =0
according to Table 2 and equation (12) has M? =
4.04 GeV2.

This corresponds to a degenerate 0+ and a2** state:
M =2.01GeV. (13)

In order to compare our results with the correspond-
ing lattice calculations from [1-4], it is convenient to

consider the quantity M/ /0,4, Which is not sensitive
to the choice of the string tension ofund.z) From these

data, we find that, for the L = 0, n, = O states, the value
of the spin-averaged mass
M _ M@O)+2M27) 1
Jouwa 3 /Oina
isequal to 4.61 + 0.1, which isto be compared with our
prediction M (L = 0, n, = 0) 1 /Otung = 4.68.
For aradially excited state, our theory predicts

(14)

— (theor)

A/ Ofund

For this quantity, lattice datafrom [1] yield

(L=0,n,=1) = 7.0. (15)

__(lat)

M

A/ Ofund

For the L = 1, S= 1 states, one can define a spin-
averaged massin asimilar way:

(L=0,n, =1) = 656 0.55. (16)

M__M@O)H+2M@2) 1 .
/\/O-fund 3 /\lofund
lattice data[1-4] yield

__(la)

M

Al Otund

which isin reasonable agreement with our prediction,

(17)

(L=1,n, =0) = 6.11+0.38, (18)

—(theor)

A O-fund

2Note that the value oy, = 0.23 GeV? used in lattice calcul ations
differs by about 20% from the “experimental” value (10).

(L=1,n,=0) = 60. (19)
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Table 3. Eigenvalues (in GeV) of rotating-string Hamilto-
nian (6) forL>0

) L1 2 3 4 5
0 | 265 | 313 | 353 | 388 | 4206
1 | 3645 | 403 | 4366 | 467 | 495
2 | 440 | 4737| 504 | 531 | 556
3 | 502 | 534 | 562 | 587 | 610
4 | 558 | 587 | 613 | 637 | 659
5 | 609 | 636 | 660 | 682 | 7.03

Table 4. Spin-averaged glueball masses Mg/, /0t ng

Quantum | Our L attice data
numbers |study 3] [1]
2-glu-|L=0,n,=0 [ 4.68|4.66+0.14 4.53+0.23
on = = + +
ofetes L=1,n=0|6.0 |6.36+0.6 6.1+0.38
L=0,n=1|70 |6.68+0.6 6.56 + 0.55
L=2,n=0(70 | 9.0£0.7(3™) | 7.7+0.4(3")
L=1,n=1(80 7.94+0.48
3-glu-|K=0 7.61 8.19+ 0.48
on
state

ForL=2,n=0andL =1, n, =1, we havethefol-
lowing values of the spin-averaged mass:

— (theor) _ _
M (L=0,n,=0) = 70
A O
fund (20)
M(theor)
(L=1,n,=1) = 80.
O-fund

Lattice data from [1] yield, respectively, 7.7 + 0.4 and
7.94 + 0.48. Note that, in the first multiplet, lattice data
exist only for 3**. An overall comparison of the spin-
averaged masses computed here and on alatticeisillus-
trated in Table 4.

Thus, we arrive at the conclusion that the spin-aver-
aged masses obtained from a purely confining force
with relativistic kinematics for valence gluons are in
accord with lattice data. This implies that the PGE
shifts of glueball masses in lattice calculations are
small.

3. SPIN SPLITTINGS OF GLUEBALL MASSES

Here, we will treat spin effects in a perturbative
way; a glance at our predictionsin Table 5 and at the
lattice results given in Table 6 tells us that, in glueball
states apart from 2**—0**, the spin splittings are less
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Table5. Masses of glueballswithL =0, 1,2andn=0, 1 (for
Ofund = 0.18 GeV )

JrC n M, GeV || JFC n M, GeV
ot 0 14 2+ 0 3.13,3.11

1 2.4 o 0 3.06
2t 0 2.3 1+ 0 3.07

1 3.3 3t 0 3.14
o+ 0 2.52 4+ 0 3.16

1 3.55 3 0 351
e 0 2.70 2 0 3.23

1 3.7 1— 0 3.04

Table 6. Comparison of predlcted glueball masses with lat-
tice data (for o g = 0.228 GeV?)

M, GeV
Jre |attice data
our study
[1] [3]

o** 1.58 1.73+0.13 | 1.74+0.05
o+ 271 267+0.31 | 314+0.10
2t 2.59 240+ 0.15 | 2.47+0.08
otk 3.73 329+0.16 | 3.21+£0.35
o 2.56 259+0.17 | 237+£0.27
o= 3.77 3.64+0.24

e 3.03 3.1+0.18 | 3.37+0.31
. 4.15 3.89+0.23

3" 3.58 369+022 | 43+£0.34
1— 3.49 3.85+0.24

2= 371 3.93+0.23

3 4.03 4,13+0.29

than 10-15% of the total mass; hence, a perturbative
treatment isjustified to thislevel of accuracy.

Before proceeding to actua calculations of spin
splittings, it is necessary to choose between two possi-
ble strategies (and corresponding physical mecha
nisms) for treating gluon polarizations. In the first
approach, one insists on the transversality condition
and on the resulting two-gluon polarizations as for a
free gluon [7].

In the second approach, it is assumed that the gluon
acquires anonzero mass owing to the adjacent string, in
away similar to that in the case of W* and Z°, where
mass is created by the Higgs condensate. In this case,
one has three massive-gluon polarizations, and the
spin-coupling scheme for two gluons can be taken to be
the LS one with the characteristic J°° pattern of lowest
levels, which is observed in lattice calculations [1-4].

Therefore, we choose the second approach and con-
sider the gluon-spin operator SO, i = 1, 2; the total-spin

KAIDALOV, SIMONOV

operator S = S + S@: the orbital angular momentum
L; and the total angular momentum J = L + S; each
level (mass) is assigned not only the conserved values
of JPC but also the values of L and S (which in some
cases may have an admixtureof L'=L+2and S =S#+
2, but this admixtureis generally small).

A detailed discussion of gluon-mass generation in
the context of gauge invariance and symmetry breaking
(asin the electroweak case) is postponed to a separate
publication.

The two-gluon mass operator can be written as
M = M(n, L) + SCL Mg + S® 8% Mg+ M7, 21)

where M, isthe eigenvalue of the HamiltonianH =H, +
AH,.., and H, is given in (7) [or its approximation in
(8)], while AH,, is due to perturbative gluon
exchanges and is discussed in the next section.

To obtain the other three terms in (21), one should

consider averaging of the operators F in the exponent
of (4) and take into account the relation

P ~(1)
—2iF, = 2(sW BY+s EY), (22)

and asimilar relation for theterm in theintegral Fdr,

with the substitution 1 — 2 for indices. Here, gluon-
spin operators are introduced, for example,

(Sr(nl))ik = —eny, ILk=123,

(S = =iy,

Two remarks are in order here: (i) the gluon spin
appears via the integra IZ(S - B)dt' = J’[(S
B)/u(t)]dt, where p(t) and its extremal value 1, are the
same as those in, respectively, (6) and (8) (for details,
see Appendix 2); (ii) the main part of the Hamiltonian,
Ho, is diagona in the spin indices i and k, while the
spin-dependent part (22) istreated as a perturbation, so
that the admixture of the fourth polarization dueto S in
(23) does not appear in the lowest order.

The detailed derivation of spin-dependent terms is
performed in Appendix 3; here, we only quote the

results. Since the structure of the term F in (4) due to
(22) isidentical to that in the heavy-quark case with the
replacement of the heavy-quark mass by the effective
gluon parameter L, [see (8)], one can use the spin anal-
ysis of heavy quarkoniafrom [25] to represent the spin-
dependent part of the Hamiltonian in aform similar to
that of Eichten and Feinberg [26]; that is,

S D_ Eﬂ-dvl N 1dV2D S(l) ES(Z)

—EF_a—r_ rer

(23)

AHg = ———V,(r)
+ %2(3(5(” th) (S th) = S [B?)V,(r) + AV,
0
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where AV contains higher cumulant contributions,
which can be estimated at about 10% of the main term
in (24) and which will be neglected in what follows.
Note that the spin of the gluon is twice as large as that
of the quark; therefore, the spin—orbit (spin—spin) term
for glueballs is effectively greater than those for the
guarkonium case by afactor of 2 (4).

The functions V,(r) differ from those for heavy
guarkonia[25] only in that the Casimir operators make
them greater by a factor of 9/4; the corresponding
expressions for V(r) in terms of the correlation func-
tions D(x) and D,(x) [23] are given in Appendix 3. Both
D and D, were measured on alattice [27], and D, was
found to be much smaller than D. Therefore, one can
neglect the nonperturbative part of V;(r); that of V, also

proves to be small numericaly, M < 30 MeV,
and we will also neglect it.

The only sizable spin-dependent nonperturbative
contribution comes from the term dV,/dr (Thomas pre-
cession) and can be written at large distances as

O SIL
AHThom = -2 o
F 2u,

We now come to the point of perturbative contribu-
tions to spin splittings. The simplest way to calculate
those to order o, (and this procedure is true for quarko-
nia) isto represent perturbative gluon exchanges by the
same Eichten—Feinberg formulas (24), where only per-
turbative contributions to the correlation functions D
and D; in (A.3.8)«(A.3.11) must beretained in Vi(r); to
order a, one then obtains

(25)

1dvi™ o dv™ _ Cyadi)a,
o - % Tar 2 (26)
Vépert) - 3C2(a::jj)as, (27)
r
VPP = 8nc,(adj)a s (r). (28)

However, this procedure must be corrected for glue-
balls since (i) valence and exchanged gluons are identi-
cal and (ii) thereis afour-gluon vertex in addition. The
corresponding calculations performed in [28] showed
that corrections amount to multiplicationin (26) by the
factor of 3/4 and in (28) by the factor of 5/8.

With allowance for these corrections, the corre-
sponding matrix elementsin (21) are given by

MO 302(a;dj)<a_;>, 29)
4y, r
5nC,(adj
ME = —2(2 ) 59 () (30)
Ho
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Cz(adl)< [3(8(1) Eh)(S(Z) [h)— g ES(Z)]> (3D
I’

0

From (30), one can see that Mg can be written as

5a,
Mss = 4—2IR(0)|2. (32)

Mo

To make simple estimates, we will neglect, first, the
interaction due to PGE between valence gluons.
Indeed, we show in the next section that thisinteraction
cannot be written as a Coulomb potential between
adjoint charges, and comparison with perturbative
BFKL Pomeron theory [12] shows that it is much
weaker than the Coulomb potential. Neglecting this
interaction altogether, one gets a lower bound on spin-
dependent effects, since al matrix elements like
B3E(r)0) /rC) and /r30are enhanced by attractive
Coulomb interaction.

For a purely linear potential, one has asimple rela
tion independent of the radial quantum number n [29],

2 _ |RO)]® _ MoDV'(N)D _ MO
WO = = = === = (3
Using (33) and M, = 4, and taking M, from Table 1,
one obtains
50,0,
Mg = ——4; 34)
s = (

forn.=0, 1and a, = 0.3, the spin—spin splitting is
Mgg(n, = 0) = 0.3 GeV,
Mg(n, = 1) = 0.20 GeV.

For M(0™) and M(2+), one has the values given in
Table5for oy,,y = 0.18 GeV? and, for the sake of com-
parison with lattice calculations, in Table 6 for 0,4 =
0.228 GeV?and a, = 0.3.

For L >0, it isnecessary to compute the spin correc-
tions Mg and M. First of al, the situation can be sim-
plified by using the equation {it is derived in the same
way as that followed in [29] to derive (33); for details,
see Appendix 4}

L(L+ 1)< -1-3> = EZQEV'(r)D
r

(35)

(36)

For V(1) = 0,4, both M$™ and M can easily be
calculated; theresults are listed in Table 7.

The nonperturbative part of spin splittings is due to
the Thomas term, (dV,/dr + dV,/dr), and is calculated

numerically by using the exponential form of D and D,
found on alattice [27] (for details see [25]).

Theresulting valuesfor AMy,,, @egivenin Table 7.
Combining al corrections and values of M, from
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Table7. Spin—orbit and tensor corrections (in GeV) to two-gluon glueball masses (upper entiresarefor n=0and lower entries

arefor n=1; oy g = 0.18 GeV?)

L=S=1 L=S=2
JPC
O—+ 2—+ 0++ 1++ 2++ 3++ 4++
MY .s.L | -0197 -0.0985 ~0.1656 -0.138 -0.083 0 0.110
~0.148 0.074 -0.128 -0.107 ~0.064 0 0.085
m{pe ~0.263 0.0263 -0.072 ~0.036 0.015 0.041 0.020
~0.198 -0.02 ~0.056 ~0.028 0.0116 0.032 0.0155
AMPeY ~0.46 0.072 ~0.238 ~0.174 ~0.068 0.041 0.13
~0.347 0.054 -0.185 ~0.135 -0.053 0.032 0.101
AMrpom - S+ L 0.082 -0.041 0.216 0.18 0.108 0 -0.144
0.05 -0.025 0.138 0.115 0.07 0 -0.092
AMgq -0.38 0.031 -0.022 0.006 0.04 0.041 -0.014
-0.3 0.029 ~0.047 -0.02 0.017 0.032 0.009
(5,00 -2 ~1/5 -2 -1 37 8/7 —47
M -sOo -2 +1 6 -5 -3 0 4

Tables 2 and 3, one obtains the glueball masses shown
in Table 5 for oy,,4 = 0.18 GeV? and compared with | at-
tice datain Table 6 for Oy,q = 0.228 GeV2.

One can see from Table 6 that the calculated spin
splittings of the lowest levels are in good agreement
with lattice data. This is another phenomenological
manifestation of PGE suppression in the glueball sys-
tem; indeed, had we taken PGE in the adjoint Coulomb
form with a, = 0.3, wewould have obtained athreefold
increase in the spin splittings [18].

A genera feature of the spin-dependent contribu-
tion AH isthat it diesout very fast with growing orbital
or radial quantum number, which can be seen in

the appearance of the factor ug in the denominator of

(29)—31).

From (8), one can indeed deduce that My = 4L,
therefore, we have AHg~ [1/M2(n, L)][O(1/r)[Jwhere O
stands for terms like const - 1/r or const' - 1/r® (from
perturbation theory). Hence, spin splittings of the radial
recurrence of 0**, 2 or 0", 2~ states are expected to
be smaller than the corresponding ground states. This
feature is also well supported by the lattice data in
Table 5.

4. PERTURBATIVE GLUON LADDERS
AND GLUEBALLS

In many analytic calculations of glueball masses, it
is postulated that there is a Coulomb-type interaction
between valence gluons, which differs from the qg
case by the Casimir factor, Cy(adj) = 3 instead of
C,(fund) = 4/3. Before going into the details of the
guestion of how the PGEs give rise to the Coulomb ker-

nel, wefirst assume here that thisisindeed the case and
correspondingly calculate the eigenvalues of the
Hamiltonian

37)

where H, is given in (8). The resulting masses are
listed in Table 8 (thefirst threelines) for a, =0, 0.2, 0.3,
0.39.

One can see adrastic decrease in the mass due to the
Coulomb attraction, especialy for L = 0. For a conser-
vative value of ag = 0.3, this mass drops down by
0.5 GeV.

Thisismuch larger thaninthe qq case[13, 19], evi-
dently owing to alarge Casimir factor.

Other characteristics of the Coulomb shift, which
are useful for a comparison with the perturbative

Pomeron approach [12], are the Regge slope o (0) and
the Regge intercept ag(0) of the gluebal trajectory
drawn as a straight line through the L = 0(2**) and L =
04 glueballs3) These values are given in the last
two rows of Table 8 and show a drastic increase of
A0 (0) = 0.64 at a,= 0.3 in theintercept owing to Cou-
lomb interaction.

This will be compared later in this section with a
similar large shift of the perturbative Pomeron trajec-
tory Aap(0) in the lowest O(ay) approximation [12] and
with much smaller value of Aap(0) in the next (one-
loop) approximation [30]. This comparison casts more

3This discussion is rather qualitative. Indeed, Coulomb interaction
modifies linearity of nonperturbative glueball trajectories.
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doubt on the validity of the assumption that the adjoint
Coulomb interaction is present in the form (37).

A similar conclusion can be deduced from spin-
averaged eigenvalues. For the Hamiltonian in (37), the
eigenvalues are given in Table 8.

One can see that, for L = 0, both o = 0.3 and 0.39
strongly contradict the data; this shows that the pertur-
bative gluon ladder strongly differs from the adjoint
Coulomb interaction; moreover, the overall agreement
of our results for M, (where no Coulomb interaction is
present) with spin-averaged lattice massestells one that
PGE is strongly reduced on alattice.

To study this point in detail, one should consider the
set of perturbative gluon exchanges and compare them
with the BFKL diagrams describing the perturbative
Pomeron [12].

First of al, one should inquire into the mechanism
that produces color Coulomb interaction, and it is
instructive to compare quark—antiquark and gluon—
gluon systems from this point of view. For both sys-
tems, there are diagrams of gluon exchanges of order
g?; in addition, the gluon—gluon system is characterized
by the presence of a contact-interaction diagram that is
of the same order and which affects the hyperfine split-
ting [28].

The main point is whether and how these diagrams
are summed up to produce the color Coulomb kernel in
the exponent appearing in the Green’s function of the
system. For the qg system (spin degrees of freedom are
neglected for simplicity of comparison), one has the
exact Feynman-Schwinger representation (FSR)

—K-K

Gy = IdstDzDZe w(cC,,)d (38)
where the Wilson loop is along the paths zand z inte-
grated in (38). One can use a cluster expansion for
purely perturbative gluons in W(C) as was done, for

example, in[13, 21],

2 __dz,dz
W(C)O= exp| ~Cy3 [[——% +0(g") |
L(z-2)

39)

For straight-line trajectories z(t) and z(1") (for
example, for static quarks), the integral in the exponent
in (39) readily yields the color Coulomb potential,
WL exp[(Cag/nt].

For light quarks, one can consider the integral in the
exponent in (39) as the full-fledged relativistic Cou-
lomb kernel. It islegitimate to retain this kernel, which
is an O(g?) quantity, in the exponent and neglect O(g?)
terms, provided that the Coulomb kernel yields some
amplification. This is indeed true in the nonrelativistic
region, where the Coulomb correction is of order a/u,
u << 1, or at smal distances (high energies), where this
kernel yields double-logarithmic terms [31]. Let us
now consider the gg system (the same is true a fortiori
for the three-gluon system).
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Table 8. Effect of the inclusion of Coulomb interactions on
glueball masses (in GeV) and Regge parameters, M(ds,
L=0,1, 2), Opyg = 0.18 GeV?

0s=0 0.2 0.3 0.39
Mo(L=0) | 211 1.776 1.587 1.390
Mo(L=1) | 277 2.56 2.45 2.36
Mo(L=2) | 3.30 3.14 3.05 2.97
ag (0) 0.31 0298 | 0294 | 0290
as(0) 0.617 1.06 1.259 1.44

In (3), we have derived the gg Green's function for
valence perturbative gluons in the nonperturbative
background. A similarity of theformsin (3) and in (38)
is only superficial, since the Wilson loop in (38) con-
tains both perturbative and nonperturbative contribu-
tions, and one may argue that perturbative exchanges
dominate at small distances and, hence, exponentiate as
in (39), eventualy arriving at the color Coulomb kernel.

In contrast to that, in (3), (WOcontains only the
nonperturbative fields B, yielding a confining string
between gluons, but no perturbative exchanges at all.
Within background perturbation theory, the perturba-
tive vertices O(a®) and O(a*) enter into the interaction
Lagrangian, and there is a priori ho guarantee that
gluon exchanges produced by these vertices exponenti-
ateto give acolor Coulomb kernel. (Note that thereisa
difference between gluon exchanges and spin-depen-
dent vertices considered in the preceding section, since
the latter are taken as a perturbation in the lowest order,
and there is no need for them to exponentiate to the
Coulomb ladder.)

Having all thisin mind, we proceed to consider the
subset of graphs that are summed up in the BFKL
approach [12] and distinguished by the principle of
leading diagrams in high-energy scattering, or in
another setting, by the summation of ladders for the
leading Regge trajectory in the t channel. Since these
ladders are dominant perturbative series (see [12]) for
the Pomeron trajectory, we can consider the same con-
tribution in our circumstances—in order to calculate
glueball masses—extending, in thisway, a BFKL-type
analysis from Pomeron-generating glueballs (4, 2*+,
etc.) to al others and bearing in mind that thismay give
only an order of magnitude estimate.

Thus, we now aim at estimating the contribution of
the BFKL diagrams to the glueball masses (perturba-
tive mass shift) and at comparing it with the usual color
Coulomb contribution.

In order to estimate effects of small-distance contri-
butions, we analyze these effects on gluonic Regge tra-
jectories not from the glueball mass spectra at positive
t, but for t = 0. Extensive calculations of the gluonic-
Pomeron-trajectory intercept were performed in the
leading-logarithm approximation [12], and o, correc-
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tions were calculated in [30]. It was shown that the
leading Regge singularity corresponds to the sum of
ladder-type diagrams, where exchanged gluons are
Reggeized. In the leading approximation, the intercept
of this singularity is[12]

4N
ap(0) = 1+a, n°|n2. (40)
The shift from the noninteracting-gluon point ap(0) = 1
isegua to A = ap(0) —1=0.5for a, = 0.2. Thisrather
large a shift is strongly reduced by o, corrections[30]:

A= 1—2|n2><(1 Cay).

41)

The coefficient C is rather large (about 6.5), and the
o, correction strongly reduces A. Its value depends on
the renormalization scheme and on the scale for a,. In
the “physical” (BLM) scheme, A values fall within the
region 0.15-0.17 [30]. In this approximation, the lead-
ing gluonic singularity isaRegge pole, and we can esti-
mate the mass shift for the lowest glueball state by
using this result and by assuming that the slope ap =

1/21ta,; = 0.4 GeV~2 (11) will not be strongly modified
by perturbative effects. Thus, one can expect that the
characteristic shift due to perturbative effects in

M>(L=0,n =0)is M =A/ap =0.38-0.48 GeV2.
The corresponding shift in M(L =0, n, = 0) is M =

SM’/2M = 0.1 GeV. This shift should be compared
with a much larger mass shift from the pure Coulomb
interaction given in Table 8. Thus, the O(a) correction
to the BFKL ladder gives a strong suppression of PGE
series and may be a possible explanation why Cou-
lomb-like attraction is seen neither in spin-averaged
masses M (L, n,) nor in spin splittings. It should be
noted that thisis only arough estimate of the perturba-

tive effects because higher orders of perturbation the-
ory can modify this result.

5. THREE-GLUON GLUEBALLS

The three-gluon system can be considered in the
same way as this was done for the two-gluon glueballs.
The 3g Green's function G®9 is obtained as the back-
ground-averaged product of three one-gluon Green's
functions, in full analogy with (1). Assuming the large-
N, limit for the sake of simplicity and neglecting spin
splittings and projection operators, one arrives at the
path integral [compare with (3)]

3 ®
G(39) = const X rlIdSiDZ(l)e_Ki_US,

i=1p

(42)

where 0 = 0,4, SiNce every gluon is connected by a
fundamental string with each of its neighbors.

KAIDALOV, SIMONOV

Using, as before, the method from [13, 14] and the
three-body treatment from [17], one obtains, omitting
spin-dependent terms, the following Hamiltonian {we
assume a symmetric solution with equal p;(t) = (1),
i =1, 2, 3[no orbital excitationswas assumed asin (8)}:

P +P: 3 i
He9 — _ﬂ.___§+7“+o Z e

o (43)

i<j=1

Here, r;; = |r,—r,|, r; being the spatial coordinate of the
ith gluon whlle§ pz, and n, p,, are defined as

3Eh+fz 0 p =219
s = 2o PeTiae
(44)
- rl_rz - 10
NIRRT

To simplify the treatment further, we will consider
as a constant to be found from the extremum of eigen-
values, as in (8), which provided, in that case, a 5%
increase in eigenvalues (see Table 3 of [19]), and we
expect thisin the case being considered as well.

In order to find the eigenvalues of H®*¢), one can use
the hyperspherical method introduced in [32] and
applied to the 3q system in [17]. Defining the hyperra-
dius p as p? = n? + &2, one obtains a one-dimensional

equation for the eigenfunction an (P) =x(p) (Kisthe
grand orbital, K =0, 1, 2, ..., and nisradia quantum

number),
l n
—ﬁx +Ug(p)X(P) = MX(p), (45)
where
_ 1 150, 32./2
Ugk(p) = Zupza( + 4K + 4D+ == po. (46)

A solution to equation (45) is expressed in terms of
generalized Airy functions.

A reliable (within a few percent accuracy) estimate
of M is obtained by replacing U.(p) by the oscillator
well, with the center at the minimum of U «(p), p = o,
and frequency wy, expressed in terms of U (p). At
K =0, we have

_ . _75m {® _ 045 2
Py = , Wy = . 47)
° " D2 /2po" ° o Gyl
In this way, we obtain
13
W,
M(w) = 3+ 360 T
D45|JT[
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and the minimization of M(j) with respect to p yields
1/4[8051/2
Ho LJ(1.6) Tl

0 4 252
M(Ho) = 6“0"'70 = 6”0"'%%3/ %Eﬂ

(49)

For o = 0.18 GeV?, we obtain wy, = 1.18 GeV and
Ko = 0.44 GeV; hence, the minimal eigenvalueis

M, = 3.23 GeV. (50)

Thisspin-averaged valueis presented in Table 4. Radial
excitations are given by the approximate equation

M, = 6u0+%°+nwo, n=012.. (51
Orbital excitationsyield an increase in mass of
2
am< gl 4K (52)
2UPg
which, for the lowest excitation, yields
AM" ™01 Gev, (53)

which isamost identical to the mass shift for the radial
excitation.

The Coulomb shift (if the Coulomb interaction
existed between gluons) would be enormous; AMg,,; =
—1.3 GeV. Here, one can use, however, the same argu-
ments as for two-gluon glueballs and discard the color
Coulomb interaction between gluons altogether.

Finally, we address the question of quantum num-
bers and spin splittings for the 3g states. According to
(27), perturbative hyperfine interaction is given by
matrix elements

AMgs = Z<S‘ (5,

i>]

5—"C2(f2””d)a56<3)(ri,-)>. (54

Ho

We note that, in the large-N, limit, gluon lines are
replaced by double-fundamental lines and planar gluon
exchanges occur with afundamental charge; hence, the
fundamental Casimir operator appearsin (54).

For the K = 0 state, the wave function depends only
on the hyperradius p, and we have
2
B (r,)0= <2Lg> (55)
mp
Now, for K = 0 state, all internal angular momenta
are zero, and we can express [§, - SLin terms of thetotal
angular momentum J as

JJ+1)-6
S

As a result, we find that, for a, = 0.3 and o =

(8 [5,0= (56)
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0.18 GeV?, AM is
5.2C,(fund
AMg O _[_Z%Era_]_)_g_s [5 (50
TlHoPo (57)
~ 0'644“0%1169:_@'

Hence, the candidate for the JP© = 3-~odderon state
is shifted by 0.28 GeV upward, while 1-~ is shifted by
0.189 GeV downward with respect to the result in (50).
The resulting values of the glueball masses arelisted in
Tables 5 and 6.

6. GLUEBALL REGGE TRAJECTORIES
AND POMERON

The leading Regge trajectory [with the largest inter-
cept ap(0)] isusualy referred to as the Pomeron trajec-
tory. It plays a special role in the Reggeon approach to
high-energy hadronic interactions. The parameters of
the Pomeron trajectory and especially itsintercept play
a fundamental role for asymptotic behavior of diffrac-
tive processes. We have already touched upon the
Pomeron intercept problem in Section 4, where the per-
turbative, small-distance, contribution has been dis-
cussed. We will now consider this problem in more
detail, taking into account both nonperturbative and
perturbative contributions to Pomeron dynamics.

For the leading glueball trajectory (n, = 0), thelarge-
distance nonperturbative contribution gives, according
to (12),

ap(t) = —c; +apt, (58)

where ap = 1/210,;.

Taking into account the spins of “constituent” glu-
ons, but neglecting small nonperturbative spin effects,
we find for the intercept of the leading trajectory that

which leads to ap(0) = 0.5, and this value is substan-
tially below the value found from the analysis of high-
energy interactions, ap(0) = 1.1-1.2 [20].

The perturbative (BFKL) contribution leads to an
increase of 0.2 in the Pomeron intercept, as was
explained in Section 4. The resulting value of ay(0) =
0.7 is till far from the experimental value.

There are other nonperturbative sources that can
lead to an increase in the Pomeron intercept. In our
opinion, one of the most important onesis quark—gluon
mixing or the inclusion of quark loops in the gluon
“medium.” In the /N, expansion, the effect is propor-
tiona to N;/N., where N; is the number of light flavors,
and this mixing is known to be of importance (at least
in the small-t region).

In the leading approximation of the /N, expansion,
there are three Regge trajectories—planar qq trajecto-
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0 1 2 3 4 5
t, GeV?

Fig. 1. Gluebal, f, and f' Reggetraectones as functions of
thet-channel energy squaredt (in GeV2). Dotted curvesrep-

resent the baretrajectories, whilethe solid curvesarethetra-
jectories with the coupling g (t) taken |nto account |n the
form (A.5.7), with parametersk = 1 and A = 2/3 GeV2.

a
5

2 0 2 4
t, GeV?

Fig. 2. AsinFig. 1, but for the coupling parametersk = 2 and
A2 =2/3 GeV?2.

ries [f© made of uo and dd quarks and f '© made of

ss quarks) and purely gluonic trgjectory, G. Thetransi-
tions between quarks and gluons—their contributions
are of order /N.—will lead to the mixing of all these
trajectories. For want of calculations of these effectsin
QCD, wewill consider them in asemiphenomenol ogical
manner. From the mixing of two trgjectories 1 and 2 with
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the transition constant gy, it is easy to obtain the follow-
ing values for new tragjectories (see, for example, [33)]):

o (t)
= 210,00 + 000 2 (o,() — 0,0)° + 4g50)].

We note that, for therealistic case of G, f, and ' tra-
jectories (Fig. 1), all three trgectories before mixing
are close to one another in the small-t region. The tra-
jectory of gluonium intersects the planar f and f' trajec-
tories in the positive-t region (t < 1 GeV?). In this
region, mixing between trajectories plays an important
role even for small coupling matrix g;(t).

The dual-unitarization scheme [34-36] leads to the

conclusion that the quantity gfz decreases fast as t

increases in the positive-t region. This means that, at
large positive t, a.(t) coincide with the trajectories a;

(60)

and a,, asthis happensin (60) for gfz < |o;—0,l:
o g
- 12 ~ 12
a+~al+a—l_a2, o_ a2+a—2—al' 61)

This phenomenon is referred to as asymptotic pla-
narity [36]. We note that mixing effectswill be small in
the large-t region even if the couplings have weak t
dependence because the differences between planar
and gluonic trajectories increase in proportion to t at
larget.

For weak mixing between tra;ectorles(glk < |0((0)

O 0 ), relations (61) can be generalized as

glk

)+ z ©_ o0

For gik ~ 0.1, typical resulting trajectories are
shown in Figs. 1 and 2 by solid lines (for details, see
Appendix 5). The Pomeron trajectory is shifted to the
values ap(0) = 1. For t > 1 GeV?, the Pomeron trajec-
tory isvery close to the planar f trajectory.

The position of the second vacuum trajectory for t <
Oiscloseto a;, while, for t > 1 GeV?, itiscloseto a;..
Thethird vacuum trajectory isbelow a; fort< 0; at t >
1 GeV?, itiscloseto ag. Owing to asymptotic planar-
ity, mixing effects are not very important for the prop-
erties of physical particles on these tragjectories, since
all resonances are in the region t > 1.5 GeVZ2. On the
other hand, they are important for understanding
V(3)-breaking effects for the Pomeron-exchange
amplitudesfor t < 0.

At the end of this section, we consider the “odd-
eron”—the leading Regge trajectory with negative sig-
nature and C parity. The mass of the lowest 3g glueball
with spin—parity 3-- corresponding to this traectory
has been estimated in the preceding section and found

(62)
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to be large (=3.51 GeV for o;,q = 0.18 GeV?), in

accord with lattice data. The slope a3, of this trajec-

tory must be equal to that of the gg trajectory;4) thus,
the intercept of the nonperturbative glueball “ odderon”
isvery low: a;4(0) = -1.5. Mixing with qq trajectories
(w, ¢) is much smaller than in the Pomeron case since
thereisno intersection of the odderon and (w, ¢) trajec-
toriesin the small-t region; therefore, the gluonic “ odd-
eron” isimmaterial for high-energy phenomenology (at
least, in the small-t region).

7. DISCUSSION AND CONCLUSIONS

The basic results of this study can be separated into
two groups. In the first part, we have calculated the 2g
and 3g glueball spectrum analytically and compared
the resulting masses with | attice data, finding very good
agreement. In the second part, the glueball Regge tra-
jectories have been obtained, and their correspondence
with the Pomeron and odderon has been discussed.

In what is concerned with the glueball spectrum, the
spin-averaged results of Section 3 calculated for all
states of 2g and 3g glueballsyield very good agreement
between our results and spin-averaged lattice masses.
We emphasize that our spectrum, in contrast to the
majority of the existing theoretical models, contains no
fitting parameters, and all masses are expressed in
terms of the string tension o, asthisis done on alattice
aswell.

This coincidence and the obvious smallness of the
PGE interaction, which would have been very strong if
it had been the adjoint Coulomb interaction due to the
Casimir factor of three, have called for a more detailed
investigation into the question of whether Coulomb
interaction is indeed appropriate in the systems of
valence gluons. The analysis performed in Section 4
hasled usto the conclusion that the situation in the sys-
tem of valence gluonsis completely different from that
in the system of valence quarks and that the perturba
tive gluon exchanges do not exponentiate into the Cou-
lomb kernel for 2g and 3g systems, in contrast to what

occursin the qgq and 3q systems.

This observation explains qualitatively the absence
of strong Coulomb downward shifts of glueball masses
and moderate spin splittings in lattice calculations. To
make a quantitative estimate, we have considered the
BFKL perturbative seriesfor the Pomeron [12], includ-
ing one-loop correction [30]. This series is not a Cou-
lomb ladder, and, with allowance for corrections of
next-to-leading order, it leads to a mass shift that is
approximately three to four times smaller than that for
the Coulomb interaction.

“The situation is anal ogous here to the case of qg (meson) and
gqq (baryon) Regge trajectories, where the baryon trgjectory dis-
plays the quark—diquark structure and, hence, the meson Regge
slope [17].
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In contrast to Coulomb interaction, the spin split-
tings of glueball masses are obtained from thefirst per-
turbative correction calculated with nonperturbative
wave functions. There is good agreement for spin split-
tings (within a few tens of MeV) between our calcula
tions and lattice data, asis shown in Table 6.

The agreement implies that the main ingredient of
glueball dynamics is the adjoint string (or two funda-
mental strings) occurring between gluons in the two-
gluon glueballs and the triangle construction of funda-
mental strings in the 3g glueballs. String dynamics
reveals that the glueball masses lie on the correspond-
ing straight-line Regge trajectories having the Regge
slope equal to 4/9 of that for meson trajectories. In
other respects, the glueball trajectories are similar to
the qQ trajectoriesfor massless quarks[13-16, 19, 24]:
they are straight to a high precision and have daughter
recurrences that are associated with radial excitations
and which are also approximately straight lines.

In the last part of the article, we have used our
knowledge of the glueball Regge trajectories for inves-
tigating the Pomeron singularity. The Pomeron, which
yields an asymptotically dominant contribution at high
energies, is of course a complicated object, which has
some features associating it with the dominant glueball
trajectory. First of all, Pomeron exchange has a cylin-
drical topology (which is supported by the multiplicity
analysis [37]) similar to that of glueball amplitude—
this becomes obvious when one replaces the adjoint
string by the double-fundamental string.

The idea of the Pomeron as a two-gluon exchange
amplitude has a long history [11] and was exploited in
perturbative [12], nonperturbative [18], and hybrid [38]
approaches. The purely perturbative approach has some
difficulties of internal consistency both because of slow
convergence of perturbative series [30] and because of
sensitivity to large-distance contributions [39]. The lat-
ter suggests that nonperturbative effects may play a
very important role in Pomeron dynamics, and our
study demonstrates this. The character of nonperturba-
tive trgjectories is linear owing to string dynamics and
to the absence of a mass-dimension parameter other
than the string tension. Perturbative singularities in the
j plane are not always poles and are certainly not linear
trajectories.

Our discussion in the preceding sections has arrived
at the conclusion that perturbative effects shift only
slightly nonperturbative trajectories (increase of about
0.2 in the Regge intercept).

With al that, we have arrived at the Regge intercept
of 0.7 for the leading Regge tragjectory. This value dif-
fers considerably from the experimental Pomeron
intercept of 1.07-1.2. And here comes an interesting
observation made earlier in a dightly different context
[33]: owing to the different slopes of the meson and
glueball trgjectories, they must intersect in the region
t < 1 GeV2. We have taken this fact into account in the
three-pole model, where the constants of coupling
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between the f, f', and G channels are introduced phe-
nomenologically.

The results shown in Fig. 1 demonstrate a dramatic
changeinthe course of trgjectories: thelargest intercept
increases by 0.5, reaching the physically reasonable
value of 1.2.°

Both nonperturbative (string dynamics, quark
loops) and perturbative effects areimportant for obtain-
ing ap(0) > 1. It is impossible to separate “soft” and
“hard” Pomerons, asis sometimes done in phenomeno-
logical studies of the high-energy interactions of had-
rons and in the small-x physics of deep-inelastic scat-
tering.

In the theory of a supercritical Pomeron with A =
op(0) — 1 > 0, the corresponding multi-Pomeron
exchanges are important at very high energies. They
allow one to obtain scattering amplitudes that satisfy
the condition of s-channel unitarity and the Froissart
bound for the total interaction cross sectionsas s —
0. From the viewpoint of 1/N, expansion, multi-

Pomeron exchanges contribute in the order (1/ Nf )2n :

where n is the number of exchanged Pomerons, but
they have a faster increase with energy (~(5/sp)™) than
the pole term and must be resummed. This can be done
by using Gribov’s Reggeon diagram technique [40]. In
practical applications of Reggeon theory to describing
high-energy hadronic interactions, multi-Pomeron
exchanges are of importance for a simultaneous
description of the total interaction cross sections and
multiparticle production (for an overview, see [41]).

Looking back to the structure of vacuum trajecto-
ries, we found that each of three new trgjectories a;(t) is
now a mixture of G, f, and f', and only asymptotically
at larget do they tend to the original tragjectories. Ascan
be seen from Fig. 1, the leading trajectory (with the
largest intercept), which must be associated with the
Pomeron, asymptotically tends to f; the second trajec-
tory at positive t is close to f'; and the third trajectory
asymptotically (at large t) coincides with G, while, at
t=0, it isbelow the first two trgjectories. Thus, a rear-
rangement takes place: the G trgjectory is shifted down-
ward, whilethef trgjectory islifted up and becomesthe
Pomeron.

One of immediate consequences of this rearrange-
ment is a special pattern of the Pomeron couplings,
which can be measured experimentally. While the G
trajectory was flavor-blind, one can now calculate,
owing to mixing, the couplings of the Pomeron to light
quarks (viaf), to strange quarks (viaf"), and symmetri-
caly to al flavors (viaG).

SWe discuss here the “bare” Pomeron intercept, which is greater
than the “effective” Pomeron intercept usually extracted from
data on high-energy scattering. Aswas discussed in [41], the bare
Pomeron characteristics are measured in small-x deep-inelastic-
scattering experiments, which yield an intercept value around 1.2.
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Mixing between gluons and qQ pairs has another
important aspect—it leads not only to shifts of Req;(t)
but also to the appearance of Imag(t) and, as a conse-
guence, to nonzero widths of resonances on glueball
trajectories. They must be of the same size as the mass
shift due to the mixing; therefore, they are expected to
be not too large, ' ~ 100 MeV.

The present study can be improved in several
aspects. First, perturbative contributions to the glueball
trgjectory, including spin-dependent terms, must be
studied more systematically. Second, analytic calcula-
tions of g, (t) are necessary to make our theory com-
plete. Finally, adetailed analysis of experimental impli-
cations of our resultsis needed. It is planned for a sep-
arate publication.
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APPENDIX 1
Creation Operators for Glueball Sates
InthisAppendix (see also Tables9 and 10), we con-

sider the operators W™ and W in (1), (A.2.16),
and (A.2.17). These operators specify glueball states
and their quantum numbers JP¢. One may consider
local W(x, X) or nonlocal operators W(x, y) for two-
gluon glueballs and corresponding operators for many-
gluon glueballs, W(x®, ..., xM). For the sake of simplic-
ity, we list below only local versions, since nonlocal
ones can be constructed with the aid of the paralléel
transporters ®(x, y), as this is done in (A.2.16) and
(A.2.17).

First, one can construct W, in a general form, not
assuming separation of A, into background and valence
parts, in just the same way aswas done on alattice. One
then has the vectors E, and D,; the pseudovector B,;
and the color tensors 8, e, and dgpe. It is also neces-
sary to consider that, under charge conjugation C, the
following transformations hold:

CAC =A] = A,
Lot . (ALY
CF,C" = -F,,, CD,C" =-D,.

Hence, one obtainsthefollowing list of statesfor the
two-gluon glueballs (containing two field operators)
and, due to Bose statistics, symmetry with respect to
exchange of all coordinates of two gluons. We aso list
the dimensions of the corresponding operator in the
first columns of Tables 9 and 10.

In the background perturbation theory (BPT), Wi
and W©W can be constructed from the special compo-
nents of the gluonicfield g, i =1, 2, 3, since the fourth

_AT
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Table 9. Two-gluon glueball operators
Dimension Jre Wiin) y(our) W(in). 0u) jn BPT
4 o tr(EE) tr(aa)
4 2+ symmytr(EEy) Symmytr(aay)
4 o+ tr(E;B;) tr(a;(D x a);)
4 1+ tr(E x B) tr(a x (D x a))
4 2 symmgtr(EiBy) symmgtr(g;(D x a)y)
4 o** tr(B;B;) tr(D x a) - (D x a))
4 2" symmytr(BBy) symmtr((D x a); - (D x a)y)
6 3 symMgqmtr(D4ED B + D4ByDIEy) symmgytr((D x &);Dya)
6 4t symmy;ymtr(D;ED|Ey) symmimtr(DiaDiam)
Table 10. Three-gluon glueball operators
Dimension| JPC Wiin) y(out) W(n). W) jn BPT L
6 1= tr{E, B} B) tr{aa} (D x a)) 1
6 3 symmmtr({ Ex, Ei} By syMMgmtr({ ay, a} (D x a)y) 1
6 2t SYMM €t ( Ex, Ei} B SYMMyEnimtr({ a, a} (D x a)y) 1
6 1— tr(E;EEY) tr(aa@y) 0
6 3 symmymtr(E 5 Er) SyMmMygmtr(a@yanm) 0

component a, can be expressed in terms of the back-
ground gauge condition D,a, = 0. Note that & trans-
forms homogeneously [see equation (A.2.4) of Appen-
dix 2]; therefore, one obtains gauge-invariant combina-
tions for WM and WOW  replacing E; in the third
columns of Tables 9 and 10 by a;, whereas J°C does not
change. In the sameway, B, isreplaced by (D x a),, and
one obtains the fourth columns of Tables9 and 10. The
dimension of BPT operators is given in the fifth col-
umn, and the orbital-angular-momentum values can be
found in the last column.

For the three-gluon glueballs, the corresponding
entriesare given in Table 10. One should notice that the
C parity of al listed states is negative here. Again,
the dimensions of BPT operators is given in the last
column.

As can be seen from the results of our calculations
in Tables 4-6, the glueball spectrum isin good agree-
ment with the hierarchy associated with increasing
orbital angular momentum L or increasing BPT dimen-
sion (they differ by two units for two-gluon glueballs).
The same ordering persists in lattice data. The masses
of three-gluon glueball are typically shifted by 1.5—
2 GeV (an exception of 17~ and 3*~ statesin lattice data
waits for explanation). Note the absence of J = 1**
statesin the lattice spectrum. From Table 9, one can see
the only candidate, 1™, but the corresponding local
operator is proportiona to the energy—momentum ten-
sor and, by the arguments of [42], the residue of this
state must vanish.
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In Tables 9 and 10, we have used the notation

2
symmg Tix = Ty + Ty — éaikTII'
Symmetrization of the higher operators T,; and T, iS
performed in a usual way to construct irreducible O(3)
tensors.

APPENDIX 2

Glueball Green's Function and Hamiltonian
in the Background Formalism

In what follows, the Euclidean spacetime is used.

Thetotal gluonicfield A, is split into a nonperturba-
tive background B,, and a valence (perturbative) gluon
field a,,

A, = B,+a,. (A.2.2)
The QCD partition function Z(J),
Z(J
) (A.2.2)

= % Jexpl-S(A) + J'Ju(x)Au(x)d“x] DADYDT,

where S; is the Euclidean action functional, can be
rewritten by using the 't Hooft identity as

z(J) = %J'DBn(B)exp(J’JBd“x) n29

XJ'DaDqJDfpexp[—SE(B +a) +J’Jad4x].
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Here, n(B) is (an arbitrary) weight of integration over
background fields B,,; its exact form is of no interest to
us, since the overall effect of background fields will
enter into our results via the string tension o and (in
some corrections) as anonperturbative field correlation
function [F(X)F(y)L! The two quantities are considered
asinputs.

In what follows, we will expand (A.2.4) in powers
of gah as this is usualy done in background perturba-
tion theory [21, 43]. In the lowest order of 1/N, expan-
sion, quarks are decoupled from gluons, and we will
neglect coupling to quarks till the last two sections of
our article.

It is convenient to prescribe the gauge transforma-
tions

+
a, — U auU,

B,— U %u + éauEb

and to impose on a,, the background gauge condition
_ bepb_c _
D,a; = d,a; +gf”’B,a; = 0. (A.2.6)

In this case, ghost fields have to be introduced, and
one can write the resulting partition function as

(A.2.4)

(A.2.5)

z(J) = %IDBr](B)exp(-]'J“Bud4x)Z(J, B), (A.2.7)

where

7(3,B) = J’DadetDSGaD

By
x exp%’d“x[L(a) - %(Ga)2 + Jjaﬁ}g

with

(A.2.8)

L(a) = Lo+ Li(a) + Ly(a) + Lin(a),

1 a2 A A oA
L,(a) = Qav(D’\éuv_DNDV""gFMV)ap

DcaD\zjld_

1 d d d
= éaj[Dfaoi 3, — D, of“FLla,, (A.2.9)

Dy = 0,8, +9f B = Dy,
1 2
Lo = Z(Fiu(B))", L = a/D(B)Fp,

abc_b_c

a,a,

L = —5(D,(B)a, - D,(B)a,) g
(A.2.10)

1.2 f abc_b_c f aef e _f
- Z_g ap a, ap
The background gauge condition is written as

a _ a abcyb_c _ a
G =d,a,+9f"B,a, = (D,a,)", (A21ll)

KAIDALOV, SIMONOV

and the ghost vertex [21, 43] is found from
a

%G (D, (B)D,(B + a)),, to be

ow

Lgos = —0a(Du(B)D,(B+a)),,0,  (A.2.12)

The linear part of the Lagrangian, L,, vanishesif B,
satisfies classical equations of motion.
We can now identify the a, propagator from the qua-

dratic termsin Lagrangian L,(a) — 2_1€ (Gd%

-1

G = [Dfaw —DuDy +igEu + :E—LDVD“} (A2.13)
ab

It will be convenient sometimesto choose € = 1 and

end up with the well-known form of propagator in—

what one would call—the background Feynman gauge:

ab a2 .o~ -1
Guv = [D)\apv + ZIQFHV]ab- (A.2.14)

We are interested in the glueball Green's function
and must therefore definefirst theinitial- and final-state
vectors of glueballs, consisting of n; valence gluonsin
theinitial and of n; gluonsin the final state. The follow-
ing general nonlocal state vectors can be used for k glu-
ons:

Wk(x(o), x(k_l))
= tr[ fo@x ) ax?, x) £, (ax™M)), ...
oo P @) Y, xXN1.
Here,

(A.2.15)

X

0 0
X, y) = PexpdgfB,(z)dz,O0
o(x,y) ng_y[ u()zp[j

is a parallel transporter; al a, are in the fundamental
representation; and f(a) is a polynomial in a,, which
may contain derivativesin the form of D, =0, —igB,,.

According to (A.2.4) and (A.2.5), W, are color sin-
glets. One can aso have alocal form of W, taking all
x® at one point. The exact form of W, is given in
Appendix 1.

As will be seen below, the state in (A.2.15) will
evolve as a closed fundamenta string with k gluons
“ditting” on the string when al f; are linear (and more
gluons when some f; have larger power). This form of
initial and final states is convenient for multigluon
glueballs and is used for three-gluon glueballs in Sec-
tion 5.

Another form of W, (equivalence to the preceding
onein the limit N, — co) is obtained when one takes
the adjoint string. By way of example, we indicate that,
for two-gluon glueballs, the corresponding state vector
then has the form
Vol. 63 No. 8
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o@D @y s D5 (D) (Dya 2
Wy(x', X' ™) tr[au(x (X, x4, (x )]'(A.2.16)

Here, hats denote the adjoint representation. For
two-gluon glueballs, we use (A.2.17) for theinitial and
final states, and the corresponding Green's function
describes the evolution of the open adjoint string with
adjoint charges (gluons) at the ends.

It can be calculated by using (A.2.4) in the form
given by equation (1) in the main body of the text,
where we neglect terms L;(a) and L;(a) (the first gives
an insignificant correction discussed in [21], while L,
contains higher powers of ga, and will be used to cal-
culate perturbative corrections to the Green’sfunction).

The next step is the FSR [13, 14] for the gluon
Green'sfunction (A.2.15), which allows usto exponen-

tiate B, and Fyy as

G(x y) = const DJ' dsDze “PgP;
(A.2.17)

X S

x exp[i gJ'Budzu - 2igJ'IA:(z(T))dT}.
y 0

Substituting (A.2.17) into (1) and using the fact that
ordering inversion for one of the gluons yields (—BJ ,

~E") instead of B, and £ leads to equations (3) and
(4) of the main body of the text.

Equation (3) [(4)] is another form of equation (1),
[(2)] and involves no approximations [with the excep-
tion of the omission of L, and L;;, which was discussed
above and which was used in writing (1) and (2)].

Another important step made first in [13, 16] and
developed in [14, 15] consists in introducing the auxil-
iary function p(t), which may be called the einbein and
which playsacrucial role of effective gluon massin the
whole formalism. This is done rigorously and without
introducing arbitrary fitting parameters, in contrast to
usual potential models.

Defining
2u(t) = dt/dr, (A.2.18)

where T or sisthe Schwinger proper time, and t is the
Euclidean time at any point of trgjectory z,(t), one can
identically rewrite FSR (3) as

uv, u'v'(x’ yl X ’ y)

t=z,

(A.2.19)
(W]

1 —K-K'

= const q’Dp(t)Dp(t)Dz Dze

where Dz (or Dz, ) isthree-dimensiona path integrals

over the trgjectories z(t) [or z (t)], i, k=1, 2, 3, and
Du(t) is the one-dimensiona path integral over the
functions p(t). The kinetic terms K and K' can be
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expressed in terms of u(t), for example,
T

J'“T (z()*+1]dt, T = x,—v. (A.2.20)
0

where an overdot denotes a time derivative. The form
(A.2.20) resembles a nonrelativistic kinetic energy, but
it is an exact relativistic form. In the case of a massive
relativistic particle with mass m, the corresponding
term in the action functional, K,,, has the form

P-(t) : 2
j@u(t) B0+ 105t (A22))

Introducing the momentum p; = 0K,,/dz (t), one

would obtain, after extremization with respect to u(t),
the usual result for the Hamiltonian:

Hy = A/p?+ . (A.2.22)

In case of zero mass, m= 0, one would obtain, from

(A.2.21), the free Hamiltonian A/p_2 for a free gluon
without spin.

The nonperturbative interaction in the two-gluon
system is given by (4), where the term B, dz, gener-

atesthe adjoint string [see equation (5)]; upon introduc-
ing another einbein function v(t), as was done in [14],
one abtains the Hamiltonian given by (6). The latter
describes the straight-line adjoint string that connects
two gluons and which can rotate and change its length.

The contribution of nonperturbative spin terms is
considered in Appendix 3.

APPENDIX 3
Nonperturbative Spin-Splitting Terms
Introducing the spin matrix of the gluon asin (22)

and using (A.2.18), one can rewrite the terms F in the
exponential on the right-hand side of (4) as

2gJ’(SF('[))2 (t) 2gJ'(SF(t)) (A.312)

2u(t )
where (SF) =SB, + S E; =S, F- Notethat the contri-
bution of the second (primed) gluon to (A.3.1) has an
opposite sign in relation to that of the first gluon. This
isaconsequence of the fact that color and time ordering
of operators B and F, on one hand, and B'and F', on the
other hand, are opposite in the closed loop Wg. One
must therefore use, in W, the transposed operators for
the second (or the first) gluon and write BT = —B'.

To calculate the average of the exponentia in (4),
one can use the following trick: by using the non-Abe-
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lian Stokes theorem and cluster expansion in the Gauss-
ian approximation, one rewrites Wilson loop integral as

[l
(W= tr PF< expg gIFuv(U) do,,(u) %
s (A.3.2

= exp{—%zj"l' (Foy leiﬁowdom}.

Expression (4) can then be recast into the form

j
_ L oodt
OWeD= 1 ex"{ 2200 %50,.
0

(A.3.3)

i
o | S o)
i PR 6%(u)} Was

Evaluating derivatives, one arrives at the expression,
based on the Gaussian approximation,

WeO= trexpD— Ij[dow(u) 2iS,, Zp(t)}
(A.3.4)

[ do(u) + 2@%} EFw(u)Fm(u'mE»

We can supplement the exponent in (A.3.2) with all
higher correlation functionsin spin-independent terms,
thereby recovering the arealaw (5) with exact o,; (that
is, beyond the Gaussian approximation). For spin-
dependent terms, higher correlation functions bring
about higher powers of Sand S.

Since spin-dependent terms are rel atively small cor-
rections, it is legitimate to retain the lowest (Gaussian)
approximation for them and write

(W= Ztr eXp(—0 g Siin) €XP(N; + N, + N12)’(A.3.5)

where the notation used is

N, = ig”[[doyo(u) sw% F (U)o (0(8) 0]

N

(A.3.6)

(A.3.7)
U 2u(t)2p(t)511 vSho [P (U(®) Fao(U ()0

Here, N, is obtained from N, by means of the substitu-
tiont —t'.

The transformations in (A.3.6) and (A.3.7) into the
spin—orbit, spin—spin, and tensor termsin (24) areiden-
tical to those in the corresponding heavy-quarkonium
expressions given in [25], which are similar to (A.3.6)
and (A.3.7) modulo numerical coefficients and differ-
ent gluon spin factors.

KAIDALOV,

SIMONOV

The field correlation functions FFOappear in the
final expression viathe potentials Vi(r) (i = 1, 2, 3, 4),
which are identical to those for heavy quarkonia and
which are given in [25], with the substitution
C,(fund) — Cy(adj). If one introduces two scalar
functions D and Dl, asin [23], one can write

= —Id IR —-5b(7\

1dv,
RdR

1dv,

R (A.3.8)

AdA

Jde
= —Id VR —— 2

V4=J’dv[3D(R V) +3Dy(R V) + R

D(\, v) + Dy (A, v)+A26—D—1]
%

zaDl(R V) (A.3.10)

20D

2

} (A.3.11)
C,(ad))
Cy(fund)

fund

tion holds for D;, where D" and D; = refer to the

fundamental representation. The normalization of D
can be obtained from the relation

ol = ZId xD(x),

where the superscript (2) on g,q; denotes the lowest
(quadratic) correlation-function ‘contribution to the
string tension. As one can argue, the accuracy of this
quadratic approximation is around 10% [23].

Taking asymptotically large Rin (A.3.8) and using
(A.3.12), one abtainsthe asymptotic expression in (25),
given in the main body of the text.

To evaluate the nonperturbative spin—orbit splitting,
we must estimate the matrix element [V, + V, G—that
is, some integrals with D and D,. The latter have been

measured on alattice [27] and found to be of an expo-
nential form,

D(x) = D(0)exp(—xd),

Notethat D = Dfud gnd that the samerela-

(A.3.12)

D,(x) < D(X), (A3.13)

with d= 1 GeV. To estimate [V/; + V, [Jwe neglect D,
and calculate

OV +V,0
20, 2 — XK (X)
= TR0+ = a0

where J,(x) and K,,(X) are Bessel and Macdonald func-
tions, respectively, and where x = or.

(A.3.14)
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From (A.3.14), one can see that asymptotic behav-
ior in (25) isobtained only for r > 751 ~ 1.5fm. There-
fore, the average of AH+,,,, With the square of the glue-
ball eigenfunctionisconsiderably reducedinrelationto
the average of the asymptotic expression in (25), and
the resulting nonperturbative spin—orbit term given in
Table 7 is smaller than the corresponding perturbative
term; therefore, the ordering of the levelsis due to the
perturbative part of the spin-dependent forces.

APPENDIX 4

Derivation of the Relation for the Matrix Element [0

Writing the solution to the Hamiltonian H, [see
equation (8)] intheform

yn(r)

1

ya(r) Or' "4,

r—0, (A4l

lIJ (r) - YIma

we arrive at the equation
v = [2iv) -E) + =520, (42

We will use the procedure proposed in the second
reference quoted in [29]. Multiplying both sides of

(A.4.2) by y,(r)/4mr? and performing three-dimen-
siond integration with respect to d 3r, we obtain

[er
= [ar[2ii(v(n - £y + 2 1)}@
I n r2 2

noa

3 Yn yn
amr’

= —-[ Y01’

(A.4.3)

_ 1 . L(L+1)
Iyn(r)dr[ZuV(r) 2= = }

Taking into account (A.4.1), we have two results:
for L = O, we obtain the well-known relation [29]

Wa(O)* = 5= 0//(1)C (A44)
for L > 0, we have
L(L+1)<13> = pov(r)d (A.4.5)
r

In our case specified by (8), 1, = 20 and V'(r) =
O Note that the left-hand sides in (A.4.4) and in
(A.4.5) are both independent of the radial quantum
number n.
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APPENDIX 5
Mixing of Glueball and f and f' Trajectories

We can begin by considering the amplitude of the
scattering of hadron a on hadron b in the Regge pole
approximation. We have

T = Zg.‘“)T.kgi“’), (A5.1)

wherei, k=1, 2, 3refer to the bare Regge trajectories

j = ai(t), 1 =123, (A5.2)
while the matrix T, has the form
T = (i —at—=9(1))ix. (A5.3)
Here, we have used the notation
aft ik — ﬁi t 6i ,
(a(t))ik = ai(t)d (A54)

(0(1)i = gil(t),

The nondiagonal matrix §(t) describes the mixing
of Regge trgectories. In what follows, we consider
three bare trgjectories. In particular, a, (t) is the glue-
ball trajectory calculated in Section 6. We approximate
itintheregion 0 <t < 6 GeV? by the linear form

a,(t) = d,(0) +@;(0)t = 0.7+0.246t, (A.5.5)

g, =0.

wherethevaluefor @ (0) ischosenin such away asto
reproduce the first glueball 2+ state at M = 2.3 GeV
(Table5).

The bare f and f' trgjectories are denoted by Q. (t)
and 0 (t), respectively, and are taken in the form

@,(t) = 0.55+0.89t, @,(t) = 0.25+ 0.83t.

(A.5.6)

The mixing matrix g, (t) is not known theoretically;
aswas discussed in Section 6, the condition of planarity
[34-36] requires that g (t) fal off at large positive t.
Therefore, we assume that it has the form

(0)
glk

1+ ()"
For explicit calculations in the region t > 0, we set
k=1andA\?=2/3GeV2.

To find the shifted Regge polesin T, one can rewrite
(A5.3) as

Oi(t) = (A5.7)

tik
det(j —a(t) -g(1))’

wheret; areminorsof T. Theroots of the determinant

Tk =

(A.5.8)
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in (A.5.8) are given by the cubic equation

3. . _ o _ _ _
JB—JZZGi"'Jézaiak—gizkm—alazas
” O

k

(A.5.9)
+ Z gizkal_2912g13923 =0
izk#l
We denote the three roots of (A.5.9) by
j=ot), i=123 (A.5.10)

Let us start with t = 0. We assume the values in
(A.5.5) and (A.5.6) for ; (0) and the following values

for gi(f) :6)

09 = 016, (g'9)° = 0.8,

) (A.5.11)
(gég) = 0.01.
The intercepts of the mixed trgectories are then
obtained to be

a(0) = 1.2, 0,(0) = 0.225,

(A.5.12)

04(0) = 0.075.
Thus, we have derived arealistic Pomeron intercept
corresponding to the bare Pomeron intercept observed
in deep-inelastic scattering at small x [20]. Note, how-

ever, that the theoretical uncertainty in gi(f) and in the
Pomeron intercept are larger (~0.1).

The resulting trajectories are depicted in Fig. 1.

From a comparison with the bare trgjectories Q; (t)

in Fig. 1, one can see that the role and ordering of tra-
jectories are changed in relation to the bare ones when
one goes over from the large-t to the small-t region.
This property isvery general and is not associated with
aparticular choice of g(t).

It is also of interest to define the coupling of new
Regge polesto the hadrons a and b and to probe, in this
way, the quark and gluon contents of the poles. To this
end, we express the matrix T;, as

Tik = OinA O, (A.5.13)

®The value of ggg) can be estimated from the model of f domi-
nance and experimental data on residues of the Pomeron and f
poles, ggg) = 0.3-0.5. The ggg) coupling is approximately

0 0 0) (0
"0-59§2) and gés) = 9&2)9§3)-

KAIDALOV, SIMONOV

where the diagonal matrix A is

g—2% 0 0 o
0O —ou(t) 0
. 0O 1 O
A=0 0 ——— 0 0O (A51Y
O j—op(t) O
O ; O
0o 0 ——U
0 j—a,(t) O

and find the matrix elements O,, from the set of equa-
tions
(0 = 01) O + 91202 + 91303,
01201k + (0= 0) Oz + 9505 = O, (A.5.16)
01301k + 92304 + (0 —05) Oy, = 0. (A.5.17)
Equations (A.5.15)—(A.5.17) for k= 1, 2, 3 and the
normalization condition
|0ul* +[0e* +104l” = 1
define O, apart from a common phase.
Physicaly, [0, = |0, gives the probability of
finding the original pole @; in the new pole k.
Since the original indicesi refer to the glueball tra-
jectory (i = 1), the ut + dd trajectory (i = 2), and the
SS trajectory (i = 3), one can define, in thisway, the per-

centage of the corresponding components in the new
trajectory.

0, (A5.15)

(A.5.18)
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Abstract—The QCD sum rulefor the correlation of topological charge densities x(Q?) and for the longitudinal
part of the correlation function for singlet axia currents (the latter isrelated to the former) is considered within
the instanton model. The constant f,, of n'-meson coupling to the singlet axial current is determined. Its value
appears to be in good agreement with that determined recently from the relation between the proton-spin frac-
tion X carried by u, d, and s quarks and the derivative of the QCD topological susceptibility x'(0). On the basis
of the same sum rule, the n—+' mixing angle 6; is found within the model employing two mixing angles. The
value of B; coincides with that in effective chiral theory. The correlation function for topological charge densi-
tiesx(Q?) at large Q* is calculated. It is shown that the Q* dependence at high Q* matches well with that at low
Q?, the latter being determined by the known values x'(0) and by the contributions of the 1t and  mesons.
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1. INTRODUCTION
In [1], the vacuum expectation value of the singlet

axial current fg induced by an external singlet axial
field A, was found to be

0)j,5I00 = 3foA,, )
where s isthe singlet quark current

jus(x) = ZG(X)vuvsq(X), qg=uds (2
q

The term
AL = j A, 3)

was added to the QCD Lagrangian, where A, isa sin-
glet axial field that is constant in space and time, and
the limit of weak A, field was considered. In the limit
of massless u, d, and s quarks, it was found that [1, 2]

f2 = (28+0.7)x 107~ GeV’. )

In order to derive this result, a QCD sum rule in the
externa field A, was formulated in such away that it
determines the proton-spin fraction Z carried by u, d,
and s quarks. The quantity 2 is related to the proton
matrix element of the current j s by the equation

2ms,> = [P, d]ys|p, sL ®
where s, isthe proton-spin 4-vector and misthe proton
mass. The sum rule for < depends substantially on f§ ,

* This article was submitted by authorsin English.
** e-mail: ioffe@vitep5.itep.ru
*** e-mail: sams@heron.itep.ru

and the numerical result in (4) comes out in two ways,
producing the same value: (i) from the requirement that
the phenomenological side of the sum rule and its side
calculated within QCD as functions of the Bord
parameter M? be consistent and (ii) from the use of the
experimental valuefor £ (X =0.3+0.1).

It was shown in [1] that, in the limit of massless u,

d, and squarks, f§ isrelated to thefirst derivative x'(0)

of the correlation function for the topological charge
densities Qx(X):

X(q%) =i fd“xe“‘*mm Qs(x), Qs(0)} 0T (6)
Qs() = 526y, ()G (). ™

Here, G/, (x) is gluonic field strength, while Gyy (X) is
its dual, Gy = (1/2)€116 Gro »

f2 = 12x'(0). (8)
Asfollows from (4),

X'(0) = (2.3+0.6) x 10 GeV>. )

Let us recal the derivation of (8). Using (3), we can
write

[0 j,5[0Ci=lim ijd"xeiqu(DIT{ Jus(X), J,us(0)} [OLA,
-0 (10)
= Iimon(q)Av.
q -

1063-7788/00/6308-1448%20.00 © 2000 MAIK “Nauka/Interperiodica’
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The generd structure of P, (q) is

Pu(@) = —PL(@)3,, + Pr(a))(=8,,9° +q,a,). (11)

Because of an anomaly, there are no massless statesin
the spectrum of the singlet polarization operator P,
even for massless quarks. The quantity PT (D) does
not have kinematical singularities at ¢ = 0 either.
Therefore, the nonvanishing value P \,(0) comes
entirely from P, (g?). Multiplying P,,(q) by q,qv and
using the anomaly condition

0ujus(¥) = 2N¢Qs(x) +2izqu|(X)V5Q(X) (12)

(N; is the number of flavors, Nf = 3), in the limit of
maSI ess quarks we obtain

0P (a) = —PL(q)g” = 36X(q").  (13)
Asis known from [3], x(0) = O if thereis at least one
massless quark. The relation (8) then follows directly
from (1), (10), (11), and (13). According to (1), we aso
have

fo = —(U3)P.(0). (14)

An attempt at determining f§ directly by construct-

ing aspecia QCD sum rule was made in [4]. However,
this attempt failed: it was found that the operator prod-
uct expansion (OPE) used in the sum rule does not con-
verge—the higher order terms of OPE that were not
taken into account must be of importance.

In the present paper, we use the instanton model [5]
(for review, see [6]) to calculate these higher order
terms. The ideathat instantons make the main contribu-
tion to the longitudinal part P,(¢?) of the correlation
function for the singlet axial current P,(q) at interme-
diate values of |o?| ~ 1 GeV? is not original—it was pro-
posed as far back as 1979 [7, 8]. In [7], it was argued
that the appearance of n and n' mesons as amost pure
octet and singlet statesin U(3) flavor symmetry—that
is, the large mixing of Gu + dd and Ss in this chan-
nel—cannot be described by perturbative QCD and can

be attributed only to a dominant instanton contribution.
We construct a sum rule for a direct determination of

f § . At standard values for the parameters of the instan-

ton mode!, the fg value found from thissum ruleisin
good agreement with (4).

For massless quarks, the phenomenological side of
the sum ruleis saturated by n'-meson contribution (plus
contributions of excited states, approximated by a con-
tinuum). The strange-quark mass m can also be taken
into account in the sum rule. In this case, the n-meson
contribution also comesinto play, and the n—' mixing
angle can be found from the analysis. In the model of
two mixing angles [9], the value of the maximal angle
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B3 is determined and appears to be in good agreement
with the values found from chiral theory and phenome-
nology [9-11].

Within the same instanton model, the ¢? dependence
of the correlation function for the topological charge
density x(Q?) is determined at spacelike Q° = —¢? > 0.
At intermediate Q% ~ 1 GeV?, it matches well W|th the
low-Q? form of x(Q?) found in [12] on the basis of (9)
and the contributions of the Goldstone bosons 1° and 1.

2. SUM RULE

Strictly spesaking, the quantity ff, given by (1) is
defined as the nonperturbative part of the vacuum
expectation value [0[j,s[0C} induced by the externa
field A, with perturbative contribution being sub-
tracted. The numerical value (4) corresponds precisely
to this definition. The reason for this definition is that,

in the sum rule for %, from which the value fg in (4)
was determined, all perturbative contributions were

taken into account explicitly, with exception of the non-
perturbative part of [0j,s|0C4, which was parametrized

by unknown constant fg . Similarly, x(g?) in (6) and (8)
has the meaning of the nonperturbative part of the cor-
relation function for the topological charge densities.
This definition is physically reasonable, since the per-
turbative part of (6) isbadly divergent—it depends sub-
stantialy on the renormalization scheme and therefore
has no physical meaning. The same statement applies

to the perturbative contribution to fg . This distinction

between the perturbative and nonperturbative contribu-
tions allows one to avoid any uncertainties in the sum
rule for the physically measurable quantity 2.

The idea of determining fg or the quantity P (0),

which is proportional to fg, was put forth in [4]. We
can briefly summarizeit asfollows.

The imaginary part of P, (¢f?) is represented by the
contribution of the lowest resonance (n' meson) and
that of a continuum:

ImP(q%) = 3rtf o m? 8(o” — m?) +B(a) B(’ — o). (15)

Here, ?n- is the coupling of the n' meson to the singlet
axia current

0]j,5In'0= i/3nq,

in the limit of massless u, d, and s quarks (g, is n'
meson momentum). The second term on the rlght hand
side of (15) represents the contribution of a continuum,
and s, is the continuum threshold. The continuum con-
tribution corresponds to the gluonic bare loop in the

(16)
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correlation function (6) and is given by

905 2

B(q") = (17)

In order to derive the nonperturbative part of ImP;, we
should subtract the perturbative part, equal to B(cf)
from (15). Thisyields

IMP(G)ronp
-m2) —B(a9)8(s—- ).

Aswas shown in [4], the nonperturbative part of P,(0)
is given by

B —2 ) (18)
= 3nfym,d(q

%
_ a2, 1.B(s)
PL(O)nonp = —qu' + ﬁITdS
0
Therefore, the problem reduces to determining the cou-

(19)

pling constant frzl- . This can be done by standard tech-
nique of the QCD sum rule. Let us write OPE for
P, (@) = (36/Q*)x(Q?) at high Q? and use the instanton
liquid approximation to calculate the instanton contri-
bution. (The instanton contribution was not taken into
account in [4].) The OPE for P,(Q?) hasthe form [8]

2 2
PUQ) = @i + 2 12<o SGZO>
8T u 4T[Q T
9052 1 abc a b c 90‘53 abc ¢ ade
+ —=gf |G, GapGpy 0T —= 7
21 Q 21Q (20)

x [0|Gp, Ges Gy Gap + 10G,, GS, Gip Gpy 001

+ 18Q2J’dpn(p)p K3(Qp).

We retain only contributions of operators having
dimensions not lower than eight. The first term on the
right-hand side of (20) is the bare-loop contribution,
while the last one is the contribution of instantons plus
anti-instantons [7, 8]; K,(X) isaMacdonald function, p
is the instanton size, and n(p) is the instanton density.
For n(p), we use the Shuryak model [5, 6] of instanton
density:

n(p) = nNed(P—pc)- (21)

As was demonstrated by Schéfer and Shuryak [6], this
model describes well many hadronic correlation func-
tions in QCD. For the parameters in (21), we choose
numerical values of n, = 0.75 x 103 GeV*4, p, =
1.5 GeV-!, which liewithin the ranges allowed by these
models. At this n, the standard value of gluonic con-
densate,

O(_SGZ

(o

(22)

o> = 0.012 GeV”,

IOFFE, SAMSONOV

may be attributed entirely to instantons. In order to esti-
mate gluonic condensate of dimension eight, we
assume the factorization hypothesis—the saturation by
vacuum intermediate states. We then have [8]

£2°£2°0|G, Go Gy Gag + 10G, Gay Gy Gy [00
15 (23)
= 7e0IGy, Gy, forh

It should be noted that the cal culation of the same term
within the instanton model would give quite a different
result,

(2% x 3r7)nyp.”, (24)

which is one order of magnitude greater than that in
(23) at the accepted values of the model parameters.
This comes an no surprise. For the gluonic condensate
with k gluonic fields, we would indeed have, on a
dimensional basis,

[(D|G |0DDJ’n(p) (25)

2k4

and theintegral in equation (25) diverges at sufficiently
high k for any physical n(p). Therefore, one can hope
that the instanton model overestimates the gluonic con-
densate of dimension eight and accept the estimate in
(23), which is based on factorization hypothesis. This
estimate is supported by the analysis of the sum rules
for heavy quarkoniathat was performed with allowance
for dimension-8 operators [13] and which employed
the factorization hypothesis. Much greater values of
gluonic condensates of dimension eight would contra-
dict the analysisin [13]. Of course, values that are two
or even three times as great as those in (23) cannot be
ruled out, but, fortunately, the contribution of these
condensates to the sum rule is small, and even a three-
fold increase in it would not affect the result signifi-
cantly. For the gluonic condensate of dimension six,
there is no independent estimate other than that given by

the instanton model [8]:

3

L1 miG}, Gl Gelo0= 25 l<o
1217 pe\ I TT

The phenomenological representation of P, (Q?) fol-
lowsfrom (15). By equating the phenomenological and
QCD representations, we arrive at the required sum
rule. Applying the Borel transformation to both sides of
this sum rule, we obtain

O> . (26)

3famie™™ = 2 SM Ela\j‘;g
2(27)
Bl g8 T
+18n5pc B, .Q°K;(Qp.),
PHY SICS OF ATOMIC NUCLEI Vol. 63 No.8 2000
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E,(x) = 1-(1+x)e, (28)

where %Mz stands for aBorel transform. In (27), € cor-

responds to contribution of dimension-6 gluonic con-
densate. The instanton-model estimate (26) gives € =
2.2 GeV2. Since we hope that the instanton model over-
estimates the gluonic condensate of dimension six as
well, we set € = 1 GeV? and include the possible uncer-
tainty in the error. The Borel transformation of the
Macdonald function can be performed using its asymp-
totic expansion. Thisyields (see[14])

18nopé‘%MzQ2K§(Qpc)
_ 3 3 - -M’p; 13 165 1 D (29)

In our M? domain, the next terms of the expansion are
small. In order to verify this fact, we carried out a
numerical calculation using the integral representation
of the Macdonald function.

~2

Theresults of the calculation of f, accordingtothe
sum rule (27) are plotted in Fig. 1. (We set Agcp =
200 MeV; a4 was calculated in the leading order.) The
standard procedure for estimating the M? interval
where the sum rule is reliable (the requirement that
highest order terms of OPE be small) cannot be applied
here because the instanton contribution is dominant—it
saturates about 75-80% of the total result. Therefore,
we have to invoke physical arguments. We assume that
the continuum threshold s, = 2.5 GeV? is close to the
position of the second resonance with n' quantum num-
bers, n'(1440) [probably, n(1295) belongsto the octet],
and require that the continuum contribution to the bare
loop not exceed ~50%. For the lower boundary of the
M2 interval, we choose the M2 value where the M2
dependence begins to rise steeply. These requirements
resultin 1.2 < M2 < 1.6 GeV2. In thisinterval, the M2
dependence is not strong, and we have the estimate

fﬁ- = (2.4 £ 0.6) x 102 GeV2. (The error includes a
15% possible variation of p..) The contribution of the
second term to the right-hand side of (19) is negligible.
From (14) and (8), we finally obtain

f2 = (24+0.6)x 107 GeV?, (30)

X'(0) = (2.0+0.5) x 10~ GeV?, 31)

in good agreement with (4) and with the vaue of
X'(0) =(2.3+0.6) x 10 GeV?2 found in [1].

3. INCLUSION OF THE STRANGE-QUARK
MASS: n'1 MIXING ANGLE

Let us consider the polarization operator P, (g?) with
allowance for the strange quark mass m, and determine
the coupling constant f,. for physical n'. The u- and

PHYSICS OF ATOMIC NUCLEI  Vol. 63

No. 8 2000

1451

£2(f2), GeV?
0.04 -
0.03

I
0.02 -

fr]'
0.01+

| |

|
1.5
M2, GeV?

Fig. 1. Functions ?ﬁ- (M?) and fﬁ. (M?) determined by (27)
and (41), respectively. In (41), 6, = 0.

d-quark masses are chosen to be zero as before. Using
the definition of P, (g) and (12), we have

—P(a)q° = q,9,P,.(9)
=i Id“xe“‘*m)lT{ 2N;Qs(X), 2N;Q5(0)}

+ T{2N;Qs(x), 2im5(0)ysS(0)}
+ T{2im3(x)ys8(x), 2N Qs(0)}

— AMET{ 5(X)YsS(X), S(0)YsS(0)} |00
+ 4m,[0]5(0)s(0)|0C]

Thelast term in (32) is caused by the equal-time com-
mutator. We further perform the OPE on the right-hand
side of (32). In relation to (20), there then appear three
additional terms: the equal-time commutator term; the

termthat isproportional to ms2 and which correspondsto

the bare loop of strange quarks; and the term that arises
from the second and third termsin (32) and whichispro-
portional to the quark—gluon condensate [15]:

—g[0|30,,(A"/2) Gy, S|00= mg[0|ss|0C]

(32)

(33)

Here, m¢ = 0.8 GeV?2 was determined in [16]. After the

Borel transformation, the right-hand side of the sum
rule becomes
%_—8/9

(34)
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where R(M?) isthe right-hand side of (27),

Eo(x) = 1—-¢€~ (35)

L = In(M* A/ In(u®/A?). (36)

The factor L*° takes into account the quark mass
anomalous dimension.

It is also useful to consider the correlation function
P (0) in the case where one of the currents is till
jus(X), but where the other is the that of u and d quarks:
ay,ysu + aypysd. In this case, the right-hand side of
the sum ruleis given by

2
ZR(M?) — 2,0 myssjor (37)
3 ™®
In the phenomenology (left-hand side of the sum rule),
n' and n mesons contribute, and it is necessary to take
into account their mixing. We adopt the two-mixing-
angles model [9], which is based on low-energy effec-
tive chiral theory and which describes the experimental
data better [9, 10] than the single-mixi ng- angle model.
In this model, the couplings of n and n' mesons, f,, and
f, to octet and singlet axial currents are related {0 the
coupl ings of the fictitious octet and singlet pseudosca
lar states, f; and f,, by the equations

fr8] = fSCOSGS, fr]]- = _flgnell (38)
fr. = fgsin@g, f, = f 0080,

The n'- and n-meson contributions to P, (¢?) can easily
be calculated within this model. It is convenient to
present them separately for the cases where one of the

currents is sy, yss or ay,ysu + ayuy5d (The other is

aways j,s). Instead of the left-hand side of (27), we
now have

2mM

my, e f2[cos’0, — J/2(f4/ f,)SiNO4cOSH, ]

2
2 —m2/M?
+mie

39)
f2[sin0, + J/2(f4/ f,)SiNB, COSO,]

for the sy, yss current and

2 m2

m, e 1[2cos 61+J§(f8/f1)sn68cosel]

2

+mie l[2sm 0, — ﬁ(fB/fl)cosegsnel]

for the Oy, ysu + dy,ysd current.

Taking the sum of (39) and (40), setting 8, =6; =0, and
equating it to (34) a m, = 0, we obtain the preceding
result with f, = f,. At nonzero, m, the mixing angles

IOFFE, SAMSONOV

must be taken into account; for the sum of (39) and
(40), we then obtain

2
My (my-mp)/m?
—e

2
W

2 2
2 g2 —My/M 2 .2
3m; fie ™ [cos 0, + sin"0,

m

= R(Mz)—4msE(D|Ss|OD+ SM E0 %.8’9 (41)
—6a, Sm(’m)|ss|om
*1tm®

Let us now take the difference of (39) and one-half of
(40). The corresponding sumruleis

3 o -mim? .
—mye " f,fg SinBgcosh,

/\/é n

2
(m2 —m?)Im?

——de T cosegsinel} = —4m0|ssjo0 (42)

EL*% il °m>|35|om

The theoretical value of 8, found in [9-11] is small:
8, = —(2.7-4)°. (The phenomenological value [10, 11]
is dlightly higher: 8, = —9.2°). To a high accuracy, we
can therefore set 6, = 0in (41) and (42). Equation (41)
then determines ff = fﬁ- . The quantity ff as a func-
tion of M? is presented in Fig. 1. (We used here the
numerical values of [0|3s|00= -1.11 x 102 GeV? and

my(1 GeV) = 150 MeV.) From the curve in Fig. 1, we
derive the estimate

f2 = (32%06) x 107 GeV?,
f, = 178+ 17 MeV.

(43)
Theratio of (42) and (41) gives the mixing angle 6. In
thelimit 8, = 0° and at fg/f, = 1.12 [9-11], itisgiven by

0 = —(17.0x5.0)°. (44)

Upon taking into account the value of 8, = —2.7°, 6
becomes

B = —(18.8+5.0)°. (45)
The values of f,. and 6, agree with those found in [9-

11] from the Iow -energy effective theory or phenome-
nology. They are, respectively,

theory: f,. = 151 MeV, 65 = -21°; 46)
phenomenology: f, = 153 MeV, 65 = -21°.
PHYSICS OF ATOMIC NUCLEI  Vol. 63 No. 8 2000
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4. > DEPENDENCE OF x(Q?)

Using OPE for P, (Q?) [(20) and (13)], we can find
the Q? dependence of x(Q?) at high Q2. Since the per-
turbative part must be subtracted an accordance with
the definition of x(Q?), the first term on the right-hand
side of (20) is omitted, and we have

2 €0
X(@) = 16,T< 0>%1 +
(47)
—%msé@ g2 > - 2n,Q"p2K3(Qpe),

where g parametrizes the gluonic-condensate contribu-
tion of dimension [see (27)] and where equation (23)
has been used. The quantity x(Q?) (47) is plotted in
Fig. 2. Itisinstructiveto compare x(Q?) at large Q> with
X(Q@) at low Q* found in [12],
} (48)
2 k)
n

X(Q) = x(0)-x'(0)Q°
(49)

}szz rm, —myrf m> 1 mﬁ
8" G'”u"'mdDQ2+mT2[ 3Q°+m

where

X(0) = ~

and wherethelast term repr@entsthe contributions of T
and n mesons. The curve representing the low-Q? behav-
ior of X(Q?%) (48) is dso plotted in Fig. 2; for x'(0), we
chosethevaluewasfoundin[1]: x'(0) =2.3x 103 GeV?2.
As can be seen from Fig. 2, the two curves match quite
well in therange Q* = 0.4-1 GeV?2.

LR [(Dluu|OD
+

u

5. DISCUSSION AND COMPARISON WITH THE
RESULTS OF OTHER STUDIES

As was mentioned in the Introduction, instantons
are the most plausible QCD objects for describing
physical n' channels or, what is equivalent, the longitu-
dinal part of the singlet-axial-vector-current correlation
function. The results of the calculations of the correla-
tion function for the flavor-singlet pseudoscalar current

js = Qysq that were performed by Shuryak and Ver-

baarschot [17] and by Schéfer [18] within various
instanton models are in good agreement with a phe-
nomenological coordinate dependence up to distances
of x ~ 0.3 fm (sometimes, even up to larger distances).
Therefore, we could expect that the instanton model is
suitable for considering the problem in question. Here,
we have used the simplest version of the instanton
model—the instanton liquid approximation with the
instanton density given by the Shuryak model (21). For
this reason, the accuracy of our resultsis only modest.

Since the main contribution (about 80%) to the sum

rules that were used to determine fo and fﬁ. comes
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Fig. 2. Functlon x(Qz) at [equations (48)] low and [equation
(47)] high Q? (solid lines). The dashed line represents the
possible matching of the two branches of the curve.

from the instanton term, the main uncertainty is caused
by the instanton parameters n, and p.. These parame-
terswere taken from the best fit (performed by Schafer
and Shuryak [6]) to various hadronic correlation func-
tions, as well as to some other QCD objects, like the
gluonic condensate. Possible uncertainties are included
in the errors. The errors in determining the mixing
angle 65 are smaller because instantons do not contrib-
ute to the right-hand side of (42). If f; and fg are set to
their phenomenological values of f; = 1.28f, and f; =
1.15f; [9-11], instead of f; = f,. found from the sum
rule, the use of equation (42) (at 8, =—2.7°) yields

0 = —(26.5+3.5)°. (50)
The value obtained above for f,. [see (43)] is dlightly
higher than the low-energy result (46); bearing in mind
the uncertainties, we can consider, however, the agree-
ment to be satisfactory.

In our calculation, we have taken no account of o,
corrections, which are of importance for the first term
on the right-hand side of (27) [19], but this term con-
tributes only 5% to the total result. The a, corrections
to gluonic-condensate contributions are masked by
uncertainties in higher order gluonic condensates.

Among terms proportional tom, and ms2 , agcorrections
appear only as correctionsto the two last termsin (34),
not to the main term —4mJ0|3s|00] which is propor-
tional to m.. These corrections are not so great as to
affect the value of the mixing angle. To the term propor-
tional to ms2 , there are also instanton corrections on the
same order of magnitude. Allowances for all these cor-

rections to the terms proportional to ms2 is the subject
of afurther study. We believe that, upon their inclusion,
the value of the mixing angle will still be within the
limits adopted above for errors.
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The slopes of the left- and right-hand sides of (41)
in M? are different: positive on the left-hand side and
negative on the right-hand side. For this reason, it is

impossible to determine m,f, through the derivative of

(41) with respect to M?, as this was done sometimesin
the QCD sum-rule approach: the sum rule is satisfac-
tory, but its derivative is not.

The problem of determining x'(0) or f. within the
standard approach of QCD sum rules without allowing
for instantons was studied in [19]. The result obtained

therefor x'(0) or fﬁ- issmaller than ours (by afactor of

3 to 4). The basic difference from the calculations pre-
sented here (apart from the instanton contribution) is
that the authors of [19] chose much larger valuesfor the
continuum and for the effective Borel parameter: s, =
6 GeV2 and M? ~ 34 GeV?. Therefore, the mode! of the
hadronic spectrum in JP¢ = 0~ flavor-singlet channel
with a gap between the n'-meson mass and 2.5 GeV
was accepted in [19]. However, there are at least three
resonances with n' quantum numbers between the n'-
meson mass and 2.5 GeV. For thisreason, that mode! is
not acceptable physically. The other drawback of the
sum rule used in [19] {equation (D.11) from [19],
which is similar to (41), but which features no n—n'
mixing} is that the main contribution to the sum rule

comes from the terms proportional to m,and ms2 . These

terms saturate 60% of the final result, and SU(3) flavor
symmetry isbadly violated inthe sum rule[19], in con-
tradiction to experimental data. Moreovey, if n—n' mix-
ing were introduced (this was not done in [19]), one
could calculate the n—'" mixing angle, representing the
phenomenological side of the sum rule by (39) and
(40). The result for the mixing angle 8 would then be
05 = 45°; that is, n' isnot mainly flavor-singlet, and n is
not mainly octet—in evident contradiction to experi-
mental data.

In summary, we have shown that, in even the sim-
plest version, the instanton model describes reasonably
well the properties of the correlation function for the
topological density—that is, the value of X'(0), x(Q?) at
high Q?, the values of the n' coupling constant, and the
n'—n mixing angle.
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1. INTRODUCTION

Many models have been proposed to describe the
vacuum state of a gluon field (see [1-38]). However,
attention given to the simplest possibility—that is, to
themodel featuring asemiclassical field that is constant
in time and space—has been insufficient in our opinion.
We mean here coordinate- and time-independent solu-
tions to the Yang—Mills equation with a constant right-
hand side—for example, those of the type

Vi(x) = V&, 1)

where V is a constant having dimensions of mass; u =
0,....,3;anda=1, ..., 8. Thissolution is known in the
literature (see [12, 20-22]) as a hon-Abelian conden-
sate. It satisfies the classical Yang—Mills equation with

external current J; =2g°V3; . Within atheory exhibit-

ing a spontaneous breakdown of trivial-vacuum stabil-
ity, such a condensate can be generated by quantum

corrections to the Yang-Mills Lagrangian at J;; = 0. In

the present study, we do not study the conditions under
which a condensate may arise; instead, we focus on
deriving the one-loop effective Lagrangian in a given
field. Our calculations are performed in the back-
ground-field gauge. Since the results presented in the
literature for SU(2) theory are not aways consistent
and since the effective Lagrangian has not yet been cal-
culated for the morerealistic SU(3) case, we pursue our
goal, invoking two different approaches: that which
relies on evaluating determinants and that which
involves determining the trace of the matrix logarithm
(the results proved to be coincident). In calculating

Léflf) , weignorethe tachyon part of the gluon spectrum,

assuming that quantum corrections are controlled by
the logarithmically divergent contribution from the

Dschmidt Joint Institute of Physics of the Earth, Russian Academy
of Sciences, ul. Bol’shaya Gruzinskaya 10, Moscow, 123810
Russia.

ultraviolet part of the spectrum [19], in which case they
are not sensitive to the region of low momenta.

2. ORIGINAL LAGRANGIAN
The gauge-field Lagrangian L = Lyy + Lgg + Lgp +
JiV, + L, includes the conventional Yang-Mills
Lagrangian
1
Lvw = —3FuFov, @

where

abc

Fov = 0,V5 -0,V +gc

the gauge-fixing Lge term; the Faddeev—Popov ghost
Lagrangian Lgp; the term responsible for coupling to

b
VoVy; 3)

external currents JS ; and the quark Lagrangian L, We

seek solutions close to a constant classical field:
a a a .

V, — V, + v,. For the Lagrangian of quantum

fluctuations vﬁ, we choose the background-field

gauge, setting

1

b 2 2
v“vﬁ) = _E(Dj‘:vﬁ) (4

1 b
Lge = —E(auvﬁ1 +gc™"
where Vﬁ isaconstant. With the aid of the vector oper-
ator (0" = 9,5% + gc®V, , the linearized equations of
motion for small deviations v, from the constant field
V can be conveniently represented as

ad d

abd —b
-M pv vy

= (6va;CD}fd+2gC Fuv)v\c)j = _j31 (5)

where ja stands for small external currents and Fbv =
1l u
ngCdVSVS .

1063-7788/00/6308-1455%$20.00 © 2000 MAIK “Nauka/Interperiodica’
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Equations (5) are valid for any background field—
in particular, they remain in force for arbitrary constant
fields generated by constant currents. The matrix

M3, = Mys involves the term &, 05°05", which is

symmetric under the permutations yv — vy or

ad — da, and the term chabdFﬁv , Which is antisym-

metric under these permutations. Hence, the spectrum
of the matrix MSS depends not only on the invariant

F2= F.,Fp,, but aso on V;V,. However, the final

result contains only F2.

The trandation invariance of the linearized equa-
tions (5) enables us to represent quantum fluctuations
as the sum of plane waves exp(-ip,X,) = exp(-iwx, +
ik - x). The eigenvaues of the momentum p,, = (w, k)
ad

uv » With the sum of the

squared momentum eigenvalues, ZS p7p', being

controlled by the trace of this matrix (to be more spe-
cific, by the trace of the first term &, 020 in Mﬁg ,
since the second term involves no diagonal elements).

are determined by the matrix M

3. CALCULATING ONE-LOOP CORRECTIONS
TO THE YANG-MILLS LAGRANGIAN

In the constant-background-field gauge, the contri-
bution of the time component of fluctuations cancels
half the ghost contribution. The quantity LV is calcu-
lated by the formula

(6)

LY = i%J’

DetM®’

aminus (plus) sign being taken for the spacelike (time-
like) components (the matrix in question involves no
mixed elements).

Thematrix M = MSS appearsin thelinearized equa-

tion of motion Mv =—j and hastheform M = -1 — 2gF,
while the matrix M© is given by the simple expression

MO =37,

3.1. Within SU(2) theory, M has dimensions of 12 x
12 and admits a partial diagonalization. The time sector
(3 x 3) is diagonalized completely by choosing a basis
formed by amplitudes featuring isospin projections of O
and £1 onto the momentum direction. The spatial sector
(9 x 9) can be smplified by using a basis constructed in
terms of the amplitudes characterized by the combined-
spin projections of +2 (two singlets), £1 (two doublets),
and O (triplet) (by the combined spin, we mean the vector
sum s + j, where j is the ordinary spin and s is the isos-
pin). We consider the constant-field condensate

vy = V&, (7)

VLADIMIRSKY, PEREGUDOV

where V isaconstant. It can also be written in the form
Vi = V§ = v§’ =V, with the remaining components
being equal to zero.

All calculations are performed in the Euclidean met-
ric, where the squared four-momentum is p? = k? + «?,
k and w being, respectively, the absolute value of the
3-momentum and the frequency. In integrating, with
respect to angles, power seriesin terms of p and k, we
make use of the relations [K2p20= 3/4, K'p~“0= 5/8,
([?p~2[E= 1/4, and [dy*p*= 1/8. In performing integra-
tion with respect to the radial momentum component,
we set d*p = Tep*dp?®. Thelogarithm of the determinant
of the matrix M can be replaced by the sum of loga-
rithms of the determinants of separate blocks, which
appear to be polynomialsin p? and k. The calculations
are simplified by combining blocks characterized by
spin projections that are equal in absolute value, but
which are opposite in sign. In this case, only even pow-
ersof k survive, so that asmaller number of terms must
be taken into account in the expansion being consid-
ered. The determinants represent products of the eigen-

values A;; therefore, only the products A are

needed to calculate LV, solving the characteristic equa-
tions being unnecessary. The computational technique
will be demonstrated by considering the example of the
product of the blocks characterized by the combined-
spin projections of 1. We have

pP+2+2k -2
-2

Det(+) = ®)

p°+2

Here, the momentum is taken to be a dimensionless
variable that is obtained upon the substitution p> —
p?/g*V 2. Further, we consider the product p® + 8p°® —
4k’p* + 1607°p?* — 16K of the determinants for the matrix
M®©, Dividing this product by p® and taking the loga-
rithm of the quotient, we arrive at

In(L+(8—4K’p)p~ + 16w p °—16K°p™). (9)

Expanding the logarithm in a power series in terms of
p~2, we obtain

(8-4K’p)p +16(w’'p )P
(10)

2 -2

~2(64-64K°p " + 16k )p + ...
Here, the first term leads to a quadratic divergence,
which is discarded. We retain only terms of order p~,
which lead to a logarithmic divergence. Integration
with respect to the angles of a four-dimensional sphere
with allowance for the common sign yields the total pre-
logarithmic factor of y=—-{4—(1/2)(64 — 48 + 10)] = +9.
The contributions of the remaining blocks are calcu-
lated in asimilar way. For SU(2) theory, the numerical
factorsfor all the blocksare presented in Table 1. Inthis
Vol. 63 No. 8
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CALCULATION OF ONE-LOOP CORRECTIONS

table, mis the combined-spin projection, n is the num-
ber of the amplitudesin ablock, yisanumerical factor,
and Det is a characteristic polynomial. We display
spacelike amplitudes in the first three rows, timelike
amplitudes in the two rows that follow, and the sum in
the last row.

Summing the numerical factors for all the blocks
and recovering the dimensional form, we find in the
SJ(2) case that
_—llg4V‘1|n\L2 =

161° p2

2,,2
g H Inﬂz, (11)

LD = L
43811 ]

where [ isthe normalization point and H? = %Fz isthe

square of the constant-chromomagnetic-field strength.
Thisresult is half as great as that obtained in [22], but
it coincides with the result obtained in [1-3] for the
case of a constant Abelian field.

3.2. Going over to SU(3) theory, we first consider
the case of a conventional condensate as given by (7)
(below, it is denoted by NJ). This condensate corre-
sponds to the mapping of the rotation group onto the
U(2) group that appears to be a subgroup of the color
group and which is spanned by the generators T,, T,
and T;. Within this subgroup, al features of the gluon
spectrum and the contributions of individual sectors to
the effective Lagrangian replicate exactly the pattern of
V() theory. Five generators of the SU(3) group
beyond the subgroup form a coset involving 20 ampli-
tudes. The corresponding 20 x 20 matrix can be parti-
tioned into blocks according to the values of the com-
bined spin

S=j+s (12)
and of its projection m onto the momentum direction.
The amplitudes associated with the isospin-singlet gen-
erator Ty do not interact with the condensate and do not
therefore contribute to LY. The generators T,, Ts, T,
and T, corresponding to the isospin of 1/2 give rise to
2 x4 S=3/2 amplitudes and 2 x 2 S= 1/2 amplitudes
in spatial components; they also generate 2 x 2 S=1/2
amplitudes in time components. The combined-spin
projection onto the momentum direction,

m = (STK)/|K|, (13)

is unaffected by any term of the matrix M, while the
sguare of combined spin, (S)?> = S(S+ 1), is conserved
by any term, with exception of V,0,.. In order to estab-

lish the relation between the matrix MSS and the quan-

tum numbers S and m, we write this matrix in the
expanded form

= 6HV(6)\6)\6ad + 2V6icaid + Vzcaicccid)

bd _b
+ 2V,

ad

My

(14)
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Tablel

m n Yy Det
+2 | 2] 5 [pt-ak
+1 | 4 9 | p®+8p°—4k’p* + 160°p? — 16k?

0| 3| 7 |p°+10p*—4k?p?+ 24p>—8k?
+1 2 3 | pt+4u’+4

0] 1| =2 |p?+2

12 | 22

Inthelast term, whichis proportional to Fﬁ\, , thefactor

¢’ vanishes if at least one of the subscripts p or v is
zero. Thetermsinvolving V2 can easily be expressed in
terms of the spin variables as
Calccmd — S(S + 1),
2¢™c™ = 2(j 3)
=j(j+1) +s(s+1)-§(S+1).

The operator 2Va;c3 is proportional to the isospin pro-
jection onto the direction associated with the momen-
tum; it does not conserve the total combined spin, but
conserves its projection onto the momentum direction.
In order to employ the amplitudes characterized by spe-
cific quantum numbers Sand m as a basis, it is neces-
sary to introduce the subspace of amplitudes associated
with al those values of S that are compatible with a
given value of mand to go over, by using conventional
rules for the composition of angular momenta, to the
helicity amplitudes characterized by specific values of
the projections of j and s onto the quantization axis. By
applying this technique to amplitudes associated with
the generators T,, ..., T;, we obtain following results.

For the m = +3/2 sector, the characteristic polyno-
mial is Det = p? + k— 1/4 and the resulting contribution
isy = 3/4. The S= 3/2 amplitudes are unstable even at
k = 0, which results in the existence of tachyons for
kK2< V2,

For the m = +1/2 spacelike amplitudes, the charac-
teristic polynomial is

(15)

(16)

F2./2k/3
p>Fk/3—11/4

p>+ki3—1/4
F2./2k/3

Det =
(17)

= p4+gp2—kzi k—11/16

and the resulting contributionisy = 9/2.

For the sector of m = £1/2 timelike amplitudes, we
have Det =p? + k+ 3/4 and y = 1/4.

Upon summation, the result must be doubled since
each sector makes a double contribution: Y y = 11.

The total contribution of the generators T,, Ts, T,, and
T, amountsto half the contribution of the generators T,



Table 2
jlm|n Y Det
1143 2| 94 |pP+1U2+2k
1]42| 4|-1516|p*+ gpz +2k2 + 1+ k(3p2 + 7/2)
1|+1] 6| 2116|pt+ 121 ot + 2p2@ + 2/ o {2+ 3@ +3
+ k(3p +10p? + 27/4)
1| o| 3| e3/16|pt+ p — A2+ 2p2 312+ 3
0l+2| 2| 74 |p?+32+ 2
0|+1| 2| —5/16|p2+32+k
ol 0| 1| -9/8 |p2+3n2
20| 55/8

T,, and T; spanning the subgroup. For the Ng case
within SU(3) theory, we eventually obtain

2 2,2
L0 = 3B gy = HOH L H g
3211 321 V]

3.3. Thereis another version of the SUJ(3) condensate,
N,,- It corresponds to the mapping of the rotation group
onto an SU(2) subgroup spanned by three SU(3) gener-
ators associated with the structure constants equal to
t1/2—for example, T,, T,, and Ts. In this case, the
remaining five generators (T,, T;, T,, T4, and T;) form a
quintet that corresponds to the formal-isospin value of
2. This partition of eight U(3) generators(8=3+5) is
used to describe quadrupole deformations of nuclei. In
order to assign the triplet of the subgroup generators an
isospin of 1 and the remaining generators an isospin of
2, the common normalization of the generators must be
doubled. We choose the direction of T, for the quanti-
zation axis in the group space and introduce the opera-
tors T, characterized by specific vaues of the isospin

T = O+ RS2, T = s A2, To = 0
|A6)/z\/§, T20 = +)\8, T271 = (—)\4 + I)\G)/’\/é’ and T272 =

(—=A; +i),)/ /2. Onthe right-hand sides of these equal-
ities, we use the conventional notation for the Gell-
Mann matrices, but weimply the matrices of the adjoint
representation, which obey the same commutation rela-
tions. These operators satisfy the standard commuta-
tion relations

[Ty Tql = /s(s+1)Coi,' T (19)

The introduction of the basis T, and the use of the
combined spin (12) simplify considerably the diagonal-

ization of the matrix M, .

SH+V*

VLADIMIRSKY, PEREGUDOV

The classification of 12 s = 1 amplitudes coincides
with that presented in subsection 3.1 for the amplitudes
in SU(2) theory. The set of 20 s = 2 amplitudes can be
partitioned into the m= %3, +2, +1, and 0 blocks of the
spacelike sector, which have dimensions 2 x 2, 4 x 4,
6 x 6, and 3 x 3, respectively, and m= 2, +1, and O
blocks of the timelike sector, which have dimensions
2x2,2x2 and 1 x 1, respectively. The operator
2V, aca'd [see equation (14)] is diagonal within the
basis of amplitudes characterized by a specific value 1
of the projection of the isospin s onto the momentum
directionk (1 = (k - s)/|k|]) and isequal to kVp.. Here, | =
I(i) is an integer-valued function of the index i; it takes
thevaluesof 2,5, and 7 ati =1, 2, and 3, respectively.
The operators quadratic in V are diagonal at a specific
value of the combined spin Sand areindependent of the
combined-spin projection m. Taking into account the
change in the normalization of the generators, we must
use the following relations for the N, condensate
instead of (15) and (16):

aic_cid

c = %s(s+ 1), (20)

anbc bij _ (J(J +1)+S(S+ 1) S(S+ 1))

(21)
For N,,, the contribution of 12 s= 1 amplitudes associ-
ated with the SU(2) subgroup amounts to one-sixteenth
of that obtained in SU(2) theory: Zy = 11/8. The
resultsfor 20 s= 2 amplitudes are displayed in Table 2.

In this table, the expressions for the determinants
involve the dimensionless momenta obtained upon the

substitutions p — p/gV and k — k/gV. Summing the
contributions from the s= 1 [(SU(2) subgroup] and s =

2 sectors, we arrive at Z y =33/4and

2
11 2,2, H
- — 2g H In—2

LD =
- 2
1281 M 321 K

33 gAV4| V 22)

Theratio of the contribution from the amplitudes asso-
ciated with the subgroup to that from the remaining
amplitudesis2: 1for Ngand 1: 5for N,,. Despite such
large differences, the expressions for L(Y(H) are identi-
cal in the two cases.

4. QUARK CONTRIBUTION TO THE ONE-LOOP
CORRECTION TO THE LAGRANGIAN

Quarks interacting with the condensate are treated
as fermions in the fundamental representation of the
color group. The quantity Lél) isdetermined by aninte-

gral of the logarithm of the determinant with respect to
momenta:

_ DetM
LY = I 2. (23)
(2n) "Dt M
PHY SICS OF ATOMIC NUCLEI Vol. 63 No.8 2000
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Here, M, (Méo)) is the matrix for the Dirac equations
featuring a (no) field. Within SU(2) and SU(3) theories,
the dimensions of these matrices are, respectively, 8 x
8 and 12 x 12. Specifically, we have

Mq = iy, 05" —ma°®, 24)
ins® = p,a"-wSP, (25)
WP = gvpasfi2 2

1l - g ub ’ ( 6)

wherea and 3 (a and b) arethe color indicesin the fun-
damental (adjoint) representation, while A, is a Gell-
Mann matrix [within SU(2) theory, it correspondsto the

ordinary isospin matrices IEB ].

In order to evaluate the determinants, it is conve-
nient to go over to a second-order equation in terms of
momenta by means of multiplication by the projection
operator selecting solutions with p, > 0. Since the log-
arithmically divergent part of theintegral in (23) iscon-
trolled by high momenta, we can disregard the mass m.

If Vg =0 and ViID = V6ib , the square of the matrix
M, is given by

Ms = pz—ViVj(pin + ;W —W,W)). (27)

First, we perform our calculations within SU(2) the-
ory. Using the relation yiy; = —(9; + i€;;0y), TiT; = §; +
i€1,T, and 20,1, = 4SS+ 1) - 3/2), we obtain

M; = P+ VpT—2Vi(9-4S(S+ 1)), (28)
where p*> = p,p, and Sis the combined spin, so that
SS+ 1) = (o + T)%4. Further, we go over to the
Euclidean metric, p> = o’ + k?, and break down the
determinant into two blocks associated with S,= 1 and
S, = 0 (the direction of the spatial component of the
momentum p, = k; is chosen for the quantization axis).
For the first block, the result obtained after the Wick
rotationis

Det(1) = (p°+ 14)° —K? (29)
with T; = £1. Within the second block, the operator T;
permutes the functions associated with S= 1 and S=0,
and we have
2
p-+l4 k
k p'+94

Det(2) =
(30)

= p4+ gpz—k2+ 9/16.

In either case, the determinants of M 30) areequal to

p*. The quark spectra are free from the tachyon part.

By using the same procedure as in the preceding
section to calculate the momentum integral in (23), we
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find that Det(1) does not contribute and that the contri-
bution of the second determinant is zy = 1. For the

effective Lagrangian, we obtain
4, ,4 2
LY = ng—y—zln\—/—z,
M

161

where N, is the number of quark types.

Within SU(3) theory, there are two modifications of
the gluon condensate. For the first one, denoted below
by N, the rotation group O(3) is projected onto ordi-
nary SU(2) subgroup of the color group; the generators
of this subgroup can be chosen to be A,/2, A,/2, and
A5/2. For the second type of condensate (we denote it
by N,), the doubled operators A,, A, and —As, which
would have, in the case of a conventional normaliza-
tion, the structure constants of +1/2 (not +1, asin the
preceding version), are taken for the generators of the
subgroup.

We begin by considering the first possibility, in
which case we arrive at a result nearly identical to the
preceding one. For the SU(3) case, the result obtained
instead of (28) in the Euclidean metric is

(€39)

M2 = p?+ Vi, + %v"’(z + 8,0~ £, O A). (32)

The operator g;,c" is equal to 23, for Ng and half as
great asthat for N,,.

In the N, case, the operator 2 + d;; A, is equal to the
tripled projection operator diag(1, 1, 0). Hence, the
third component of the fundamental SU(3) representa-
tion isinoperative completely, and the correction to the
Lagrangian is given by (31).

In the N,, case, all three quark colors must be taken
into account. The constant-potential components are

Vy = VA2, V, = VA2, V, = -VAJ2. (33)

In a condensed notation, we have V; = VA, /2, where A,
takes the form of A,, A5, and —A5 for i = 1, 2, and 3,
respectively. In this case, we can easily show that
dAc= 0. A partial diagonalization of the relevant
matrix is accomplished by partitioning the amplitude
according to the values of the combined-spin projection
onto the momentum direction,

m = (0,/2 +\,)k/K,

m taking the values of +3/2 and £1/2.

In calculating the product o, A,, it is convenient to
use the quark basis

(34)

0,0 0,0 0,0
158 o0 1578065

a, = —0j ay = 0 a = —0_;
20 O 0.0 207 0
0o0Q 010 00O
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in which the matrix A, acts as adiagonal operator:

Aa, = a, Aa =0, Aa = -a. (36)
The m= 1/2 amplitudes
A; = (a,b_+ J2ayb,)/J/3,
s = ( «/—ao ) 3 37)

A, = (J2a.b_—agh,)/ /3

are associated with the combined-spin values of 3/2 and
1/2, with the projection of the combined spin being
+1/2ineither case (b, and b_ arethe eigenvectors of the
ordinary spin, o;b, = +b,).

With theaid of theidentity S(S+ 1) = 3/4 + 2+ g A,
weobtain oA, =—2 and 1 for A, and A, respectively. It
isobvious that m= £3/2 for the S= 3/2 amplitudes. We
also have kA, = tkfor S=3/2 and m=£3/2. Whenm=
+1/2, there is a nondiagonal operator in the basis
formed by A, and A;:

_ EE 1 +/20

k\ = 30 . (38)

O0/2 2 0

The characteristic polynomial for the m = £3/2 sec-

tor coincides with the right-hand side of (29). This sec-

tor does not contribute to L. Inthe m= +1/2 case, we
obtain

+./2/3
p2 +1+2k/3

p>+ U4+ ki3

+,/2/3

_ 4,92
—p+4p

Det =
(39)

+ 14+ k(p° + 1/2).

In summary, ZV = 1/4, and the final result is

Ny 4 4 V2 Ny 2.2, H
—LgV'in— = —Lg"H’In=,

L@ -
g =
64Tt V] 481 M

(40)

5. CALCULATION OF THE LOGARITHMICALLY
DIVERGENT PART OF THE ONE-LOOP
EFFECTIVE LAGRANGIAN WITHIN
ARBITRARY GAUGE THEORY
FOR AN ARBITRARY CONSTANT
BACKGROUND FIELD

The calculations presented in preceding sections
can be considerably generalized and extended if we
focus on the divergent part of the effective Lagrangian.
It turned out that this divergent part can be calculated in
a compact form within an arbitrary gauge theory and
for an arbitrary background field. We begin by intro-
ducing the convenient notation

(A = 9(Te)wpAc (41)

VLADIMIRSKY, PEREGUDOV

for the contraction of a group vector with the group
generators (here, g stands for the coupling constant). In
the adjoint representation, we have (T4, = Ca, IN the
following, we everywhere suppress group indices on
the quantities involved, retaining only Lorentz indices.
The covariant derivative can then bewrittenin theform

0 =0+ V. For the constant field V, the Jacobi identity
yields

. < A
Fw = VWV, = ViV, —V,V,. (42)
Asin preceding sections, we will employ here the cut-

off regularization, denoting the cutoff momentum by A.
The one-loop Lagrangian is given by

LY = In[Det™4(G/G,)Det(D/Dy)Det"(S/'S)]

(43)
- —%InDet(G/Go) + InD&t(D/Dy) + NInDet(S/Sy).
Here, G, D, and S are the quadratic-form operators
defined for gluons, ghosts, and fermions, respectively;
they are obtained upon a shift by the background field
in the Lagrangian. This means that G and S coincide
with the matrices M and M, from the preceding sec-
tions, but they are written in a new notation:

2 ~
Gpv =0 6“V+2Fuw

-1/2

(44)

D=0° S=yO-m (45)

In (43), we have also denoted by G, D,,, and S, the val-
ues of G, D, and S respectively, at zero background
field and by N the number of flavors. In the following,
we disregard fermion masses. In the momentum repre-
sentation, we have d — ip; introducing a unit vector n
directed along the momentum vector, we obtain

~ ~2 ~
_ 2i nV5w _V 6“\) + 2va

(G/Go)pv = 6uv p p2 ) (46)
.o~ \72
DID, = 1-2V_V.

P @47)
S, = 1—(VVL(V”).

Since the divergence in the momentum integral stems
exclusively from the upper limit, it can be isolated in
thefollowing way. We break down the integration inter-
val [0, A] in the regularized integral into the intervals
[0, V] and [V, A], where V is the value of any compo-
nent of the background potential. Only the second inte-
gral diverges upon the removal of regularization; there-
fore, it is sufficient to restrict our consideration to this
integral. Using theidentity InDet A = trIn A and expand-
ing the matrix logarithm into a power series as
1,2 1,3 1,4

—A-ZA-ZA-=-A+ ..,

In(L-A) = SA'-3A'-7

(48)
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we can isolate terms proportional to 1/p*, which lead to
a Iogarithmic divergence:

d* p A(n) 1 N
2DA(n)[In\—/.

49
I(ZT[) p 81 )

(The averaging denoted by angular brackets is per-
formed over the directions of the vector n.) We further
consider the contributions of gluons, ghosts, and fermi-
ons separately.

The gluon contribution is given by

1,2 ~ ~2 A
<tr[—§(v By + 2F) (V'8 + 2F 1)
(50)
_4\72(2inf/)2—(2in\7)4}>.

The mean values of the products of two and four vec-
tors can be determined by the formulas

1
manBD: 250(‘3,
1 (5D
[hyngn,n,00= 2—4(6035”\, + 0y, 0py + 0qyOpy)-

Upon performing al contractions and taking into
account the factor of 1/2 in (43), we obtain

(5/6)tr(FpwFpy ). For the ghost contribution, we simi-
larly arrive at [taking into account the factor of —1 in

(43)] (V/12)tr(FwFuw). Thus, the logarithmically
divergent part of the effective Lagrangian within a fer-
mion-free theory has the form

11

(1)
L 8 o212

=tr(FuFu) In— (52)

The fermion contribution can be represented in the

form —(1/Atr[(yV)(yn)]*. We assume that, in the
Euclidean case, y, = iy, therefore, y,y, + Yy, = =20,
Using the formulafor the average of the product of four
vectors n and the well-known properties of the Dirac
matrices and taking into account the factor —N in (43),
we obtain the fermion contribution in the form

(N/3)tr(Fpy, Fuv), wherethe trace is calculated in that
representation to which the fermions belong.

For any compact group and in any representation,
we have

tr(T,Ty,) Odup. (53)

Therefore, only the product F,F,, appearsin al rele-
vant expressions. This is a nontrivial fact, since we
might have expected the emergence of the combina-
tions tr(V,V,VyVy ) and tr(V,Vy V. Vy ), which appear
in intermediate cal culations; however, only their differ-
ence, as expressed in terms of FF,, enters into the
eventua result.
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In the presence of fermions, the final expression for
the logarithmically divergent part of the effective
Lagrangian is given by

Lot N B%:uv !

L _

(54)

where A and B are factors entering into (53) in the
adjoint representation and in the representation to
which the fermions belong.

For example, A=—2and B = 1/2 for the SU(2) group

and fermions in the fundamental representation, and

= -3 and B = 1/2 for the SU(3) case and fermions in
the fundamental representation.

Two important comments are in order here. It can
easily be seen that the effective L agrangian involves not
only logarithmically divergent but aso quadratically
divergent terms. In order to eliminate them, we need
gluon-mass counterterms, which break gauge invari-
ance. Infact, gauge invarianceis not broken: noninvari-
ant gluon-mass counterterms are required only because
of noninvariance of intermediate cutoff regularization.
Had an invariant regularization procedure (for exam-
ple, dimensional regularization) been employed, nonin-
variant counterterms would not have been necessary.

If the background field features only one dimen-
sional parameter, it ismeaninglessto calculatethefinite
part of the effective Lagrangian. Its background-field
dependence is obvious from dimensional consider-
ations, while the coefficient is absorbed upon renormal -
ization. For the background field of thistype, the diver-
gent part computed above represents the full one-loop
contribution.

The coefficient in (54) is exactly equal to the one-
loop beta function. To the best of our knowledge,
't Hooft [39] wasthefirst to derive thisresult within the
background-field method. By no means is this coinci-
dence accidental since it is necessary to evaluate the
same diagrams in deriving the beta function and the
effective Lagrangian.

6. CONCLUSION

Calculation of quantum corrections to the
Lagrangian is one of the most straightforward and con-
ventional methods for studying the vacuum state in
field theory [40]. The problem can be broken into two
parts: (i) First, the trivial (perturbative) vacuum |00is
analyzed for stability. (ii) If this vacuum isfound to be
unstable, the second step consists in addressing the
problem of establishing the stable vacuum state |vacl]
for the system in question. Within the Yang-Mills the-
ory, the eventual solution to these problems has yet to
be obtained, so that it is worthwhile to explain in some
detail what advances have been made owing to the
above calculations. We begin by discussing method-
ologica questions. Within the background-field
method, both the classical (background) and the quan-
tum (fluctuations) part are traditionally considered by
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means of perturbation theory [32]. A condensate (if
any) cannot be treated as a small perturbation. In view
of this, a procedure employing a complicated propaga-
tor that includes background-field effects in zero
approximation seems preferable. Coleman and Wein-
berg [34] proposed such a procedure for a scalar field
(¢* theory). In the present study, this procedure has
been implemented for a more complicated gauge-field
theory in the one-loop approximation. The interaction
of fluctuations with the background field have been
taken into account nonperturbatively; perturbation the-
ory has been employed only to describe the interaction
between various degrees of freedom of quantum fluctu-
ations.

Addressing the problem of stability of the trivial
vacuum |0CJwe would like to recall that Kabo and Sha-
bad [21] obtained anincorrect sign of the one-loop effec-
tive Lagrangian and, on thisbasis, concluded erroneously
that the vacuum state |000cannot become unstable. Our
calculations correct this result, which is probably due to
an inappropriate choice of the quantization scheme.
Although the region of the possible ingtability of |00is
beyond the validity limits of perturbation theory, a non-
perturbative character of the caculation of the one-loop
contribution to L'V has enabled usto concludethat the sta-
bility of the trivial vacuum can in principle be violated.

Of coursg, it is hardly correct to consider the physi-
cal vacuum |vacClof the Yang—Mills field merely as a

shifted field V;; + v, with fixed V. It is rather an

ensemble—that is, a set of solutions compatible with
the requirement of minimum energy. The results pre-
sented above indicate that, most likely, the degree of
degeneracy of such avacuum is higher than that which
might have been expected in advance. This is because
the expression obtained for LV isinsensitive to conden-
sate parameters of secondary importance: to alogarith-
mic accuracy, LV depends only on F?, the relevant
expressions for the Abelian and the non-Abelian con-
densate configurationsbeing identical. That LV isinde-
pendent of other field invariants of the same dimension
is due not only to the symmetry of Yang-Mills theory
but also to the appropriate choice of gauge. However,
investigation of the gauge dependence of the one-loop
Lagrangian is beyond the scope of the present study.

REFERENCES

1. G.K. Sawvidi, Phys. Lett. B 71, 133 (1977).

2. S. G. Matinyan and G. K. Savvidi, Nucl. Phys. B 143,
539 (1978).

3. I. A. Batalin, S. G. Matinyan, and G. K. Savvidi, Yad.
Fiz. 26, 407 (1977) [Sov. J. Nucl. Phys. 26, 214 (1977)].

4. V. V. Vladimirskii, Yad. Fiz. 58, 107 (1995) [Phys. At.
Nucl. 58, 101 (1995)].

5. V. V. Vladimirsky, Yad. Fiz. 59, 2063 (1996) [Phys. At.
Nucl. 59, 1988 (1996)].

6. V. V. Vladimirsky, Yad. Fiz. 61, 573 (1998) [Phys. At.
Nucl. 61, 508 (1998)].

7.

8.

9.

10.

11

12.

13.

14.

15.
16.

17.

18.

19.
20.

21.

22.

23.
24,
25.

26.
27.

28.
29.
30.

31.

32.
33.
34.
35.

36.

37.
38.

39.
40.

PHYSICS OF ATOMIC NUCLEI

VLADIMIRSKY, PEREGUDOV

H. Pagels amd E. Tomboulis, Nucl. Phys. B 143, 485
(1978).
N. K. Nielsen and P. Olesen, Nucl. Phys. B 144, 376
(1978).
N. K. Nielsen and P. Olesen, Phys. Lett. B 79, 304 (1978).

J. Ambjorn, N. K. Nielsen, and P. Olesen, Nucl. Phys. B
152, 75 (1979).

N. K. Nielsen and P. Olesen, Nucl. Phys. B 160, 380
(1979).

L. S. Brown and W. I. Wiesberger, Nucl. Phys. B 157,
285 (1979).

H. B. Nielsen and M. Ninomiya, Nucl. Phys. B 156, 1
(1979).

J. Ambjorn and P. Olesen, Nucl. Phys. B 170, 60, 265
(1980).

H. Leutwyler, Nucl. Phys. B 179, 129 (1981).

M. Ninomiya and N. Sakai, Nucl. Phys. B 190, 316
(1981).

A.l. Mil'shtein and Yu. F. Pinelis, Phys. Lett. B 137, 233
(1984).

A.V.Yung, Yad. Fiz. 41, 1324 (1985) [Sov. J. Nucl. Phys.
41, 842 (1985)].

L. Maiani et al., Nucl. Phys. B 273, 275 (1986).

A. S.Vshivtsev and D. V. Peregudov, Teor. Mat. Fiz. 104,
435 (1995).

A. Kabo and A. E. Shabad, Tr. Fiz. Inst. Akad. Nauk
SSSR 192, 153 (1988).

R. Parthasarathy, M. Singer, and K. S. Viswanathan,
Can. J. Phys. 61, 1442 (1983).

D. Kay, Phys. Rev. D 28, 1562 (1983).

S. Huang and A. R. Levi, Phys. Rev. D 49, 6849 (1994).
A. I. Mil'shtein and Yu. F. Pinelis, Z. Phys. C 27, 461
(1985).

V. E. Rochev, J. Phys. A 31, 409 (1998).

A. S. Vshivtsev and D. V. Peregudov, lzv. Vyssh.
Uchebn. Zaved., Fiz., No. 7, 18 (1997).

R. Anishetty, Phys. Lett. B 108, 295 (1982).

M. Reuter and C. Wetterich, Phys. Rev. D 56, 7893 (1997).
G. V. Efimov and S. N. Nedelko, Eur. Phys. J. C 1, 343
(1998).

A. V. Averin, A. V. Borisov, and V. Ch. Zhukovskii,
Z. Phys. C 48, 457 (1990).

L. F. Abbott, Nucl. Phys. B 185, 189 (1981).

A. Rebhan, Z. Phys. C 30, 309 (1986).

S. Coleman and E. Weinberg, Phys. Rev. D 7, 1888 (1973).

Yu. A. Simonov, Usp. Fiz. Nauk 166, 337 (1996) [Phys.
Usp. 39, 313 (1996)].

C. D. Raberts and A. G. Williams, Prog. Part. Nucl.
Phys. 33, 477 (1994).

A. Hadice, Int. J. Mod. Phys. A 6, 3321 (1991).

P. A. Kovalenko and L. V. Laperashvili, Yad. Fiz. 62,
1857 (1999) [Phys. At. Nucl. 62, 1729 (1999)].

G. 't Hooft, Nucl. Phys. B 62, 444 (1973).

W. Heisenberg and H. Euler, Z. Phys. 98, 714 (1936);
V. F. Weisskopf, K. Mat. Fys. Medd. Dan. Vidensk.
Selsk. 14, 1 (1936).

Trandated by O. Chernavskaya

Vol. 63 No. 8 2000



Physics of Atomic Nuclei, Vol. 63, No. 8, 2000, pp. 1463-1476. From Yadernaya Fizika, \ol. 63, No. 8, 2000, pp. 1543-1556.

Original English Text Copyright © 2000 by Nikolaev, Speth, Zakharov.

ON THE 85th ANNIVERSARY

OF V.V. VLADIMIRSKY

Nuclear-Medium Modification of the p°(1S) and p'(29)
Mesonsin Coherent Photo- and Electroproduction:
Coupled-Channel Analysis*

N. N. Nikolaevl), J. Spethl), and B. G. Zakharov?
Received October 1, 1999

Abstract—We study medium modifications of the dilepton e*e” and p* ™ mass spectrain coherent photo- and
electroproduction of p°(19)- and p'(2S)-meson resonances on nuclear targets. The analysis is performed within

the coupled p°(19), p'(29), ... channel formalism, where nuclear modifications derive from off-diagonal rescat-
terings. We find that the effect of off-diagonal rescatterings on the shape of the dilepton-mass spectrum in the
p%(1S)-meson mass region is only marginal, but it is very important in the p'(2S) mass region. The main off-
diagonal contribution in the p'(2S) mass region comes from the sequential mechanism y* — p%(19 —~
p'(29, which dominates p'(2S) production for heavy nuclei. Our results also show that, in the p'(2S) mass
region, thereisaconsiderableinterference of the Breit-Wigner tail of the amplitude for the decay p°(19) to e*e
and P~ with the amplitude for the decay of p'(2S) to e and ptu~. © 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The in-medium modification of hadrons in cold
nuclear matter and hot QCD medium has been under
active investigation throughout the last years. In partic-
ular, there was considerable interest in medium effects
for light vector mesons. In several papers, the masses of
vector mesons at rest in nuclear matter were calculated
within various approaches [1-7]. The in-medium
effectsfor moving vector mesonswere discussed in [8—
12]. Recall that, in optics, medium effects are described
by the refraction index, which is calculable for dilute
media in terms of the photon—-atom forward-scattering
amplitude. An extension of this formalism to fast vector
mesons with the wavelength A = 1/p much shorter than
the separation of nucleonsin nuclear matter givesthein-
medium mass shift Am,, and the collision broadening AT,
intheform ([8]; for relevant earlier work, see[13, 14])

Na
A E) = -2m—Ref(E),
m,(E) = ~2m £Ref(E)

] (1)
AT (E) = H’;po(E),

where E and m,, are the meson energy and in-vacuum
mass, respectively; f(E) is vector-meson—nucleon for-
ward-scattering amplitude; and n, is the nuclear matter
density. Theseformulas are quite general and must hold
for any particle speciesin an infinite medium if inelas-

* This article was submitted by the authorsin English.

Dingtitut fir Kernphysik, Forschungszentrum Jilich, D-52425
Julich, Germany.

ILandau Institute for Theoretical Physics, Russian Academy of
Sciences, ul. Kosygina 2, Moscow, 117334 Russia.

tic rescatterings or coupled-channel effects can be
neglected (see below). An experimental observation of
the in-medium mass shift and collision broadening (1)
would be very interesting. Potentialy, it could furnish
information about the VN-scattering amplitude, which
cannot be measured directly.

For the mass shift and collision broadening (1) to be
observed experimentally, the typical decay length L4 ~
E/m\,I"y, must be smaller than the nucleusradius R,; that
is, the momentum of the vector meson must be lessthan

P, <6 GeV, p,<300MeV, p,<200MeV, (2)

for the p° «’, and ¢ meson, respectively [8]. Thus,
only for the p° meson® is there a sufficiently broad
energy interval where the relations (1) could be used.

The applicability limits (2) are purely kinematical
ones: they do not take into account the possible inter-
ference of decays of avector meson inside and outside
the target nucleus and quantum effectsin production of
the vector mesons. Both effects were studied—and
found to be important—in the recent [ 10] Glauber—Gri-
bov multiple-scattering theory [15, 16] analysis of
coherent p°-meson photoproduction observed in e'e
and pru- dilepton modes or in both of them. The dilep-
ton-mass spectrum was shown to have a two-compo-
nent structure corresponding to the decays of p® mesons
inside and outside the target nucleus. The inside com-
ponent can be approximately described by the Breit—
Wigner formulawith the in-medium modified massand
width as predicted by (1). Since the nucleus has afinite
size, this component with a broad width does not

3Hereafter, wherever appropriate, p° will stand for the ground state
p’(1S) meson.

1063-7788/00/6308-1463%20.00 © 2000 MAIK “Nauka/Interperiodica’
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develop, however, a genuine pole in the complex plane
of theinvariant mass M of the lepton pair. The genuine
pole in the complex plane of M comes only from p°-
meson decays in avacuum, and this outside component
can be described by the standard Breit-Wigner formula
with the in-vacuum mass and width. Boreskov et al.
[10] found that, even at alow energy of E ~ 2 GeV, such
that RJ/Ly ~ 2 for heavy nuclei, the interference
between the inside and outside components is substan-
tial and produces a complex dilepton mass spectrum
that cannot be described in terms of the Breit-Wigner
formula with a definite mass and a definite width. By
way of example, we indicate that, at E = 2 GeV, the
dilepton mass spectrum was found to develop a mini-
mum near the p°-meson mass. An experimental obser-
vation of this phenomenon would be of great interest.
On the theoretical side, this calls for a numerical anal-
ysis within tested models of photoproduction in order
to find out how a model analysis of such data would
allow one to distinguish the inside and outside compo-
nents and extract the p®~-meson mass shift and collision
broadening for the inside component.

In the present article, we study the coherent reaction
V*A — VA — e'eA W'uA, where y* isared or a
virtual photon and where the target nucleus remainsin
the ground state. We use the coupl ed-channel approach,
extending thework performed in [10], where numerical
calculations were performed without the off-diagonal
rescatterings of p® mesons. The coupled-channel anal-
ysis presented here is based on our well-tested color
dipole approach (see, for instance, [17] and references
therein), which was earlier successfully used to analyze
data on p® and J/ electroproduction on nuclear targets
at high energies[18-20] and data on vector-meson pro-
duction at HERA [17, 21, 22]. Thisanaysisis of inter-
est for two reasons. First, the inclusion of off-diagonal
rescatterings allows one to check the accuracy of the
one-channel approximation in the p°(1S)-meson mass
region 0.5 <M < 1 GeV studied in [10]. On the other
hand, in the coupled-channel approach, one can extend
the mass region and investigate the medium effects for
the 2S state p'(29), for which the sequential off-diago-
nal mechanism y* — p%19 — p'(29) is potentialy
important. This extension to the p'(2S meson is of
great interest in itself. The key feature of the photopro-
duction of the 2S vector mesons on a free nucleon is
strong suppression due to the nodal structure of the
wave function of the 2S state [18, 23]. In [24], it was
shown that the node effect can lead to anomalous A and
Q? dependences of p'(2S) photo- and electroproduction.
This effect may help resolve the long-standing problem
of the D-wave versus 2Swave assignment for the
p'(1480) and p'(1700) states. The strong suppression of
the cross section for the p'(2S) meson in relation to the
P°%(1S meson renders the experimental study of this
phenomenon a challenging task. In particular, the mass
spectra of the final particles in the p'(2S) mass region
can be affected by the interference with the p°(19-
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meson Breit-Wigner tail. Our color dipole coupled-
channel approach describes very well the suppression
of ' production in relation to J/ observed by the
NMC [25, 26], E687 [27], and H1 [28] collaboration
and provides a sound framework for understanding the
prospects for the experimental study of the p'(29-
meson production y*A —» p%(19A, p'(29A —= e'eA.
Inthe numerical analysisreported here, wefocuson the
energy range of the forthcoming high-luminosity
experiments at TINAF.

The ensuing exposition is organized as follows. In
Section 2, we give basic formulas of the coupled-chan-
nel approach to the coherent reaction y*A — e*e"A,
HUA. In Section 3, we discuss evaluation of the dif-
fraction-scattering matrix. The numerical results on the
nuclear modifications of the in-nucleus decay compo-
nent of the dilepton mass spectrum are presented in
Section 4. The results are summarized in Section 5.

2. COUPLED-CHANNEL FORMALISM

The description of the coupled-channel formalism
for the reaction yA — e*e"A can be found in [10] (see
also our early study in [29]). For thisreason, we discuss
it herebriefly and give only basic formulasthat are nec-
essary for understanding technical aspects of our
approach.

Standard Glauber—Gribov multiple-scattering the-
ory [15, 16] for the coherent interaction of a projectile
of energy E with a nucleusis equivalent to solving the
set of coupled-channel eikonal wave equations [11]

0° 2.~ 2
[——2+m +U(r)} W (r) = E2W(r).
0z ij

3

Here, the z axisis chosen a ong the photon momentum;
Y. isthe wave function for the channel |iCJwhich can be

a hadronic resonance or the initial photon; and m’ is

thediagonal mass operator with eigenvalues mizj = (mi2 —
im[)d;, where m and I; are the in-vacuum mass and
width of the state |iL] For the incident photon, '\ = 0

and mf = —Q?, where Q? is the photon virtuality, and
the optical potential U (r) in (3) is given by

Uii(r) = —4ndlF|jha(r), )
where n,(r) is the nuclear number density and f isthe
forward-scattering matrix in the normalization

PG (iIN—=iN).

Im|flid= m

The boundary condition on the front face of the
nucleus, z=—R,, is[iLF &,
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The probability amplitude for the coherent transi-
tion y*A — e*e’A can be expressed in terms of the
solution W;(r) of (3) as[10]

T(E, M, pp) 5)

=N Z@+e‘|t|i EJ'dzbdzexp[—i(pzz +py )] W(r),

wherer = (b, 2); M istheinvariant mass of the ete pair;
p, and p are its longitudinal and transverse momenta,
respectively; [@e |t |illis the probability amplitude for
i — e*e trangition; and N is a normalization factor,
which isimmaterial from the point of view of the shape
of the ete- mass spectrum. Summation in (5) is per-
formed only over the hadronic states, which, in our
case, are vector mesons p°(1S), p'(29), etc. For aheavy
nucleus with a mass number A > 1 and at E > M, the
nuclear recoil can be neglected, and the longitudinal
momentum of the e'e” pair then becomes

Q°+M”+p?

pz:E_ 2E

(6)

In the coherent production pé =l Rf\ and in what fol-

lows, we focus on p; = 0 and suppress this argument.
By virtue of (6), the p, dependence of the spatial inte-
gra on the right-hand side of (5) then transforms
directly into the M dependence of the amplitude T(E,
M, pp) and the nuclear modification of the e"e~ spec-
trum.

At high energies, the solution to (3) for the hadronic
sector—we need it for evauating the amplitude in
(5)—can be written in the form

Wi(b,2) = MIS(b, 2)ly*exp(ipy.2), )

where the operator S isgiven by

R .0 L . 0
§b.2) = Prexplo— [dE[A+ Q"+ U0, )]0
0 <PyJ 0(8)

Here, P, is the z-ordering operator, and the p- is the
photon momentum. For numerical calculations, it is
convenient to treat in (8) the off-diagona part of the
optical potential in the hadronic sector as a perturba-
tion; the diagonal transitions are included to all orders.
Following [29], one can then represent the matrix ele-

ments of the operator S(b, 2) in the form of the v-fold
off-diagonal rescattering series,

BEb, 0= § HE b IVT  ©)
v=0
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where

~(0) 1 ’
IS (b, Dly* 0= 500 [ dzina(b, 22)
& (10)

. 1
X exp[l Kyn(z—2) - ét(b, Z zl)ohh},

3" (b, 2)y* 0

_ D_1-|j1+1

050 z Ohi, Oi,_, ** Oiy» €XP(iKy<n2)

S CRUCERRETTE

Zy+1

1 .
~5t(b.z zv+1)ohh} [dzna(b. zv)exp[u K. Z

viv-1

(11)

1
~5t0.2,01,2)0,;, |-+ [dzny(b, z)

. 1
X exp[lkily*zl—ét(b, Z;, Zl)oilil}

vl
Here, o;, = 0, — 9,0, the matrix 6 isrelated to the
forward-diffraction-scattering matrix by the equation

= 1Py
f=2xs, (12)

t(b, z,, ;) = IdznA(b, 2)

isthe partial optical thickness, and

(13)

_ miz—imiri—mjz+imjrj
i = 2E !

(14

m>—iml, +Q°

5E (15)

Koy = —Kyen =

The exponential factor exp[ikv*h(z—zl) - %t(b, Z 21)0”}

in (10) and (11) sums elastic, diagonal, and iN rescat-
teringsto al orders.

The real part of (15)—the longitudinal-momentum
transfer inthej — i transition—increaseswith the dif-
ference between m and my. Consequently, the oscillat-
ing exponential factors in (10) and (11) lead to the
form-factor suppression of the contribution from heavy
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intermediate resonance states and to the related form-
factor suppression of heavy-mass production and of the
coherent cross section at high Q? when the longitudi-
nal-momentum transfer k. in the y* — h transition
becomes large. Precisely the same form-factor effect
generates a strong dependence of the probability ampli-
tude (5) on the e'e mass, so that the shape of reso-
nances would differ substantially from the standard
Breit—-Wigner shape.

Equation (5) quantifies the separation of the produc-
tion amplitude T(E, M) into the inside and outside com-
ponents—beyond the target nucleus, the z dependence
of the wave functions W,(z, b) follows the in-vacuum
decay law, while the corresponding outside contribu-
tion to T(E, M) has the familiar form of the sum of
Breit-Wigner amplitudes with residues proportional to
W.(z=+R,, b). Nuclear effects can modify dramatically
both the relative amplitude and the phase of these resi-
duesinrelation to o, for the free-nucleon case. Aswas
explained in the Introduction, the inside contribution is
a Fourier transform over the finite range —R, < Z< R,
and could develop the Breit-Wigner form with the
shifted mass and collision-broadened width only if

Ly <Ry

Thefirst-order term (10) correspondsto the standard
Glauber approximation, where the state |hCproduced in
the y* — h transition then propagates through the
nucleus without inelastic rescatterings. The correction
from the off-diagonal rescatteringsis given by (11) and
is responsible for the color-transparency phenomenon
in the electroproduction of vector mesons at high Q?,
whereit changesdrastically the cross sectionin relation
to the Glauber model predictions. However, as will be
seen from our resultsfor y* A — p'(29A reactions, the
off-diagonal effects come into play even at moderate
values of the photon virtuaity Q* = 1 GeV2. Thisisa
consequence of strong suppression of the direct transi-
tion y* — p'(29). As aresult, the sequential mecha-
nismy* — p%(19 — p'(29), involving the off-diag-
onal p°(1S) — p'(29) rescattering, becomesimportant
evenat Q°=0.

3. CALCULATION OF THE FORWARD-
DIFFRACTION MATRIX

Asaninput to the coupled-channel calculations, one
needs the forward-diffraction matrix. At high energies,
it can be written as the sum of the Pomeron and
Reggeon contributions:

0 = Op+OR. (16)
At energies of E = 2 GeV to be considered below, the
main contribution to 6 comes from Pomeron
exchange. We evaluate Pomeron exchange within the
dipole approach describing the resonances as nonrela-
tivistic qg states. The Pomeron contribution to the dif-
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fraction matrix element o;; for hadronic states can then
be written as

[6pk0= jdzpdzwi*(p, 2)5(P)W(p, 2),

where p is the transverse size of the qq pair, ; (p, 2
are the wave functions describing the qg states, and
o(p) is the cross section for the interaction of the qg
pair with a nucleon.

We adso need the excitation matrix elements

(|6 |y* for y* —= gQ excitation on afree nucleon; in
the nonrelativistic approximation, this proceeds into
gqQq states with the sum of the quark helicities that is
equal to the photon helicity [23]. Using the correspond-
ing perturbative light-cone wave function of the virtual
photon [30], we have [23]

[6ly* 0= qdzpwi*(p, z=0)o(p)Ko(ep), (18)
where K(x) is amodified Bessel function and

(17)

e’ = m +Q’/a, (19)

being the quark mass. In the present article, we
focus on the nuclear-modification of the shape of reso-
nances, paying no specia attention to the absolute
value of the normalizing factor C in (18) [it isimmate-
rial here and in (5) aswell].

We use the oscillator wave functions for the qg
states, which simplify considerably numerical calcula-
tions: because of azimuthal symmetry of ap(p), only
the transverse excitations with zero azimuthal quantum
number can be excited in the intermediate state for off-
diagonal rescatterings. The excitation energy of the
transverse qq oscillator is 24w, where w is the oscilla-
tor frequency. In our analysis, we set the quark massto
m, = m,/2 and the oscillator frequency to w = (M, —

meo )/2 = 0.35 GeV, assuming 1480 MeV for the mass

of the radial excitation of p® meson. For the widths of
the first two excitations, we use the values of Fpo =

150 MeV and ', = 285 MeV; following the string
model [31], we assume I'; O m for higher states. Our
results are not sensitive to this assumption because the
contribution of higher excitations proves to be very
small.

Experimental data on the low-x structure function

F, and on vector-meson electroproduction on a nucleon
can be described by representing o(p) as a sum of the
energy-dependent perturbative and energy-independent
nonperturbative components [17, 22, 32]. Here, we
focus on the energy region E < 20 GeV, where the
energy dependence of the dipole cross section can be
neglected for afirst approximation. In the present anal-
ysis, we are sensitive to a(p) mostly in the nonpertur-
bative region p = 0.5 fm. Here, the gross features of
PHYSICS OF ATOMIC NUCLEI  Vol. 63
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o(p) are well parametrized by the two-gluon exchange
model of the Pomeron [33, 34

a(p)
o [1—exp(iqp)][1- Gz(q,—q)] (20)
= 3 .[
(q°+ ug)
Here, Gy(q;, 0,) = IN|exp(iq; - r, +id, - ry)|NLis the

two-quark form factor for the nucleonand p, = 0.3 GeV
is an infrared cutoff. It reproduces the color-transpar-
ency property a(p) [p 2 at small p, whereby the point-
like qg system, which can be represented as a superpo-
sition of an infinite set of the resonance states, propa-
gates through a nucleus without interaction. In terms of
resonance states, this color-transparency phenomenon
is associated with the exact cancellation of the diagonal
and off-diagonal amplitudes [35]. The coupling con-
stant awas normalized in such away that the Pomeron

contribution to the p°N total cross section is o (p°N) =

[#°|Gp |’k 20 mb. In this case, the two-gluon formula

gives, a p = 0.5 fm, the ao(p) value that is close to the
dipole cross section as extracted from the analysis of
experimental data on vector-meson electroproduction
[17]. Hereafter, we will consider real, Q%> = 0, and vir-
tual, Q% = 1 GeV?, photoproduction. With our nonrela-
tivistic wave functions, we obtain

R2S/1S = @(ZS)IGIV*D
[p°(19)|6]y* O
E021 Q° =0,
EOS Q° = 1GeV?,

1)

which is closeto the predictions from [17] obtained for
the relativized wave functions. At p <= 0.5 fm, the
present parametrization gives o(p) values somewhat
larger than those from [17]. But because of the larger
guark mass in the present nonrelativistic model for qq
states, the resulting diffractive matrix provesto be close
to that from [17]. At this point, it must be made clear
that the two-gluon parametrization (20) of o(p) is
oriented toward describing the combined nonperturba-
tive + perturbative dipole cross section, and 4 is aphe-
nomenological parameter that must not be taken at face
value. The analysis [32] of low-x HERA data on the
proton structure function F,, within the generalized
BFKL equation [36] and the nonperturbative eval uation
of the gluon correlation radius [37] yield clear-cut evi-
dence for the infrared cutoff p, ~ 0.75 GeV for the per-
turbative dipole cross section.

In our calculations, we take into account the first
four transverse excitations. The Pomeron contribution
to the diffraction matrix in terms of these transverse
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oscillator states obtained here from (17) for our param-
etrization (20) of a(p) isgiven by

E 20 -10.1 -4.8 245
[[IloplkD:D -10.1 30.2 -8.0 5.2 Er
D—48 —-8.0 329 65
0 24 52 653410

Here, the matrix elementsin (22) arein mb units, while
i and k arethe radial quantum numbers of thetransverse
oscillators (as was said above, Pomeron exchange does
not change the longitudinal quantum number). The
matrix in (22) shows clearly the decrease of the off-
diagona amplitudes with increasing difference
between the initial and final radial quantum numbers,
[i — k|, which derives from the oscillation of the reso-
nance wave function and which, in conjunction with the
form-factor effect, suppresses the contribution of
higher excitations to the production-amplitude matrix
element (11). Using the three-dimensiona p'(29)-
meson wave function from (22), one obtains the value
tot

of op (P'(29N) = [0'(29)|6 |P'(290= 27 mb for the
Pomeron contribution to the p'(29N total cross section.

In parametrizing the Reggeon contribution to the
diffraction matrix, we assume that secondary Reggeon
exchanges can be treated in terms of scattering ampli-
tudes for the quark (or antiquark) forming the qq state
as predicted by the dua parton model [38] and the
model of quark—gluon strings [39], which is based on
the idea of atopological expansion [40]. In this case,
one can neglect the Reggeon contribution to off-diago-
nal transitions, and, for al excited p' states, the
Reggeon contribution to the amplitudes for diagonal
p'N scattering provesto be equal to the Reggeon contri-
bution to the amplitude for p°(A1SN scattering. This
amplitude is dominated by the contribution of the
Regge pole P, which can be written in the Regge
approach as

(22)

|

- S
Ponp’0= rER

.1+ cosTmo

[ + —————————} 23)
SINTIO

where s = mi + 2Em,. In our analysis, we take the
standard Reggeon intercept of a, = 0.5. Theresiduer .
was adjusted to reproduce, at E ~ 10 GeV, the real part
of the p°N-scattering amplitude extracted in [12] from
experimental data on p°-meson photoproduction by
using the vector-dominance model. For s, = 1 GeV?,
thisyields rp = 15 mb. A nonzero Re/lm ratio for the
diffraction-scattering matrix leads to a mass shift for
resonance states decaying inside the nucleus. For the p°
meson in the energy region E ~ 2—20 GeV considered
in the present article, thisyields Ampo ~50-100 MeV.

In order to evaluate the ete- mass spectrum, we also
need the transition amplitude (& e |t|idwhich enters
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into equation (5). Following [10], we neglect the possi-
ble smooth M dependence of this transition amplitude
against that which comes from the spatial integral on
the right-hand side of (5) and set [é*e|t [iLDy (r = 0)
as predicted by the nonrelativistic model of qg states.

In the nonrelativistic approach, the D-wave qQ state
does not contribute to dilepton production. For thisrea-
son, the absence of splitting of the 2Sand D statesin the
oscillator model is not very important from the point of
view of the e"e mass spectrum.

The applicability of the full-fledged coupled-chan-
nel formalism depends on two spacetime scales. the
formation length L; associated with thei — k transi-
tions,

Lf=%= ZZE -0 22E - =o.25fmx16EeV,
ik m, —my mp-—mpo (24)
and the coherence length
2
1 2E Mo
L. = = ———=0.75 fm x >
¢ khy* M2+Q2 1G VM2+Q (25)

associated with the transition y* — i. Strictly speak-
ing, the evaluation of the diffraction matrix from equa-
tion (17) and of the excitation amplitudes from (18) in
terms of the color dipole cross section is valid only if
L,> Ry and L, > Ry. For the region Q* < 1, which of
interest to us GeV? and for p°(1S) and p'(2S) mesons,
the full-fledged coupled-channel effects develop only
at E ~5-8 GeV. At lower energies, the only change is,
however, the decoupling of higher excitations from the
photon and of off-diagonal diffractive transitionsto and
from higher excitations, and we can extend the formal-
ism even down to E = 2 GeV. At this energy, we have a
single-channel problem with y* —» p° excitation fol-
lowed by diagonal p°N scattering. In order to evaluate
relevant diagonal elastic rescatterings, we only need the
P°N total cross section, and the color-dipole value of
[p°|0p |p°Dstill does agood job for the almost energy-
independent Pomeron contribution. Simultaneously,
[p°|G |y Cappears only as an overall normalization, and
whether it is evaluated from (18) or within a different
approach does not affect nuclear modifications of the
€'e” mass spectrum.

4. NUMERICAL RESULTS
4.1. Input Parameters

We have performed our numerical calculations at
energies of E = 2, 5, 10, and 20 GeV at Q> = 0 and
1 GeV?for the target nuclei °Be, °Fe, and 2°’Ph. For the
parametrization of the diffractive matrix and of the pho-
ton and vector-meson wave functions, the reader is
referred to Section 3. For the nuclear matter density in
the light target nucleus °Be, use was made of the oscil-
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lator shell model with the oscillator frequency adjusted
in such away asto reproduce the experimental value of
the root-mean-square radius of the charge distribution,

I 2[5:; = 2.51 fm [41]. For the target nucleus ¢Fe, we

employed the parametrization of the nuclear density by
the sum of Gaussian functions from [41]. For 27Ph, we
used the Wood—Saxon parametrization of the nuclear
density with parameters borrowed from [41].

4.2. Basis of Vector-Meson Sates

As was stated above, we included four transverse
resonance states in our numerical calculations. For the
number of the off-diagonal rescatterings of the qqQ
state, we takev = 2. We checked that, in our kinematical
region, the contribution from higher excitations and
higher order off-diagonal rescatterings can be safely
neglected. Furthermore, the sum of the first two states
and one off-diagonal rescattering of the qg state is suf-
ficient for all practical purposes. Our principal interest
isintheinterplay of nuclear effects and theinterference
of p°(19) and p'(29), and we did not include the numer-
icaly smaller contributions from the w and ¢ mesons
and their excitations. These long-lived resonances
decay for the most part outside the target nucleus, and
the nuclear effects do not modify considerably their
shapes.

4.3. Presentation of the Results

Because of the aforementioned form-factor effect
associated with the longitudina-momentum transfer
and the suppression of p'(2S) production by the node
effect, the amplitude in (5) decreases strongly with
increasing e'e- mass. In order to facilitate the graphical
presentation of the results, we use, asin [10], the scaled
amplitude

T'(E, M) = M*T(E, M)/A. (26)

Since expression (5) leads to the amplitude propor-
tional to A in the absence of absorption effects, we
alsointroduced the factor /A in (26). Our basic numer-
ical resultsfor the mass spectrum are shown in Figs. 1—
6 inthe form

4
TPDS— s
A" dM"dpg|p, -0

Wefocus onthe massregion M < 1.75 GeV and include
the vector mesons p°(19) and p'(2S) asfinal states.

In order to see better the resonance behavior of pro-
duction amplitudes, we aso display the Argand plots
for T'in Figs. 7-9.

We will now comment on the salient features of the
Q?, energy, and nuclear-target dependences of these
mass spectra.

PHYSICS OF ATOMIC NUCLEI  Vol. 63

No. 8 2000



NUCLEAR-MEDIUM MODIFICATION

1469

S =
10 (@) b)
- 10°
10*E -
. 102 \
£ 10°, :
E C L\
5 = o7 AN
5 E7 \\
= 2 1 1 ) 100 j‘/ 1 1 1 1 \I
L 10
=
=
B 105- 5
c:\: B
i -
S E

103

M, GeV

Fig. 1. Rescaled e*e, u*u~ mass spectrum for coherent real photoproduction (Q* = 0) on a’Be nucleus for the incident-beam ener-
giesof E=(a) 2, (b) 5, (c) 10, and (d) 20 GeV. In Fig. 1a, the solid curve represents the prediction of the Glauber approximation with
mass shift (10) from the Reggeon amplitude (23) included, and the dashed line shows the results obtained without the mass shift. In
Fig. 1b, the thick solid curve represents the spectrum for the nucleon target, while al other curvesillustrate results for the nuclear
target: (thin solid curve) results of thefull coupled -channel calculation[v = 2 in expanson (10)], (dotted curve) result from the diag-
onal approximation[v =0in expanson (10); p°(19-p'(29) interferencein e"e or in - (or in both) decay channelsisincluded),
(short-dashed curve) pure p° signal in the coupled-channel calculation (v = 2), (Iong-dashed curve) p'(2S) signal in the coupled-
channel calculation (v = 2), and (dot-dashed curve) p'(29) signal in the diagonal approximation (v = 2). Figures 1c and 1d show the
same data as Fig. 1b, but for E = 10 and 20 GeV, respectively, the mass spectrum for the free-nucleon target being omitted here.

4.4, Nucleon Target

Thereference e*'e- mass spectrum for the proton tar-
get and the photon energy E = 5 GeV are represented
by thick solid curvesin Figs. 1b—6b. In the approxima-
tion of the energy-independent dipole cross section
o(p), it does not depend on the photon energy E. The
mass spectrum exhibits the well separated p°(760) and
p'(1480) resonance peaks. Recall the factor M#, which
makes the p'(29) tail nearly flat at large M2.

The suppression by the node effect is lifted with
increasing Q7 [see equation (21)], and acomparison of the
mass spectra for real (Q? = 0) and virtual (Q? = 1 GeV?)
photoproduction shows clearly the predicted rise of the
P'(29)/p°(19) ratio with increasing Q? [18, 23, 24]. This
rise of the p'(29) signal with Q? is clearly seen from a
comparison of the Argand diagramsin Figs. 7a and 7b.

4.5, Mass Shift versus Nuclear Form-Factor Effects:
The p° Region at Low Energies

In Figs. 1la—6a, we show the mass spectrum for the
low energy of E =2 GeV, at which p'(29) productionis
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negligible and the single-channel Glauber approxima:
tion (10) holds. The energy of E =2 GeV istoo low for
pC to be expected to decay within the nucleus. Although
thisreasoning is correct, our results show that the effect
of the mass shift (1) dueto thereal part of the amplitude
for forward p°N scattering proves to be marginal in the
nuclear modification of the inside component of the
production amplitude. The point is that the mass shift
appears in the exponent of the integrand on the right-
hand side of (10) viathe extra phase

1 1
0= ét(by z,z))Imo,, = érP'nA(Z_ 21),\/%(2—21)1 (27)

which must be compared with the phase k(2 - z) =
—(z —z)/L, from the finite-coherence length. Obvi-
ously, the significance of the mass shift for the inside
component of the dilepton-production amplitude is

controlled by the parameter
2
= 1' Sio =~ mp E
n 2rF,.nAA/;Lc 0.1N|2+Q2 lleev' (28)
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Fig. 2. Asin Fig. 1, but for virtual photoproduction, Q> = 1 GeV?.

In the numerical evaluation in (28), we used the stan-
dard parameters of p°N interaction as quoted in Section
3 and a normal nuclear density. We see that the mass
shift (1) amounts to the renormalization

ky*thy*h(l_n)' (29)

At E = 2 GeV, we have n < 1. On the other hand, the
coherence length (25) is very short,

2
L(E=2GeV) = 1.5fmx —£—,
M"+Q

much smaller than nuclear radii for heavy nuclei; even
for the light Be nucleus, it is commensurate with the
nuclear radius. For thisreason, nuclear effects are dom-
inated by the attenuation of p° due to the diagonal
p°N — pPN transitions and, most significantly, by dis-

tortions due to nuclear form-factor effects.
Theresultsfor the mass spectrum are represented by
solid curvesin Figs. 1la—6a. For the Be target, the main
effect is that the mass spectrum drops at M = 1 GeV
much faster than for the free-nucleon target. For the
heavy Pb target, the form-factor oscillations lead to an
effective splitting of the p° peak—the mass spectrum
develops a minimum at M ~ m.. At Q=1 GeV?, the
coherence length becomes still smaller, and the distor-

tion of the e*e~ mass spectrum by form-factor effects
becomes much stronger, such that the dip at the p® mass

evolves even for the Be target. The corresponding
Argand diagrams in Figs. 8a and 9a span the mass
range 0.5 <M < 1 GeV and exhibit a structure more
complex than a single resonance loop. Our findings for
real photoproduction on Fe and Pb targets are similar to
those obtained in [10] for the target mass number A =
50 and 200 in the approximation of a uniform nuclear
density.

We note that nowhere does the splitting of the p® mass
spectrum look like a superposition of two Breit—Wigner
peaks with the in-vacuum p° mass and the in-medium
mass shifted by =50 MeV, as quoted in Section 3. The
weak impact of the in-medium shift (1) on the p° split-
ting is obvious from the dashed curves in Figs. 1la—6a,
which show the mass spectrum obtained when the mass
shift (1) isneglected—that is, by setting Re/Im=0. The
distortions of the mass spectrum change little; asamat-
ter of fact, the splitting of the p° peak is even enhanced
somewhat in conformity to the rescaling in (29).
Despite the slow rise of the parameter n with energy,
n < lintherange E = 2-20 GeV, which is of interest
for experiments at the Jefferson laboratory. Further-
more, the contribution from the in-medium decays
decreases at higher energies, and the overall effect of
the mass shift becomes still weaker.

PHYSICS OF ATOMIC NUCLEI  Vol. 63 No. 8 2000
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Fig. 3. Asin Fig. 1, but for the target nucleus °Fe.
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Fig. 4. Asin Fig. 1, but for virtual photoproduction, Q% = 1 GeV2, and the target nucleus *°Fe.
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Fig. 5. Asin Fig. 1, but for the target nucleus 2°Pb.
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Fig. 6. As Fig. 1, but for virtual photoproduction, Q? = 1 GeV2, and the target nucleus 27 Pb.
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Fig. 7. Argand plots for the scaled amplitude T' = M2T(E, M) for (a) real (Q? = 0) and (b) virtual (Q? = 1 GeV2) photoproduction
on the free-nucleon target.
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Fig. 8. Argand plotsfor the scaled amplitude (26) at Q% = 0. The solid, dotted, and dashed curves show the resultsfor the target nuclei

207pp, S6Fe, and *Be, respectively. The curves are given in arbitrary units. The massintervals are 0.5-1 GeV for (a) E = 2 GeV, and
0.5-2 GeV for E = (b) 5, (¢) 10, and (d) 20 GeV. The spacing of mass points along the curvesis 0.25 GeV. The arrows show the
direction of the increasing mass.

4.6. Higher Energies: Opening of the p'(2S Channel by the thick solid curve in Figs. 1b-6b, the mass spec-

channel effects are new feature of high-energy photo- nel results for nuclear targets comprise attenuation;
production. For the purposes of comparison, we show, nuclear form-factor effects; the effects of p2(1S ~——
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Fig. 9. Asin Fig. 8, but for Q%> = 1 GeV?.

p'(29 transitions, including the multistep transitions;
and the resonance mass shift dueto Re/Im # 0. Therel-
ative importance of these effects depends on the mass
region, energy, and the target mass number.

Theimportance of the off-diagonal transitionsin the
target nucleus can be judged from a comparison of the
full coupled-channel results (thin solid curve) with
those from the diagonal approximation (dotted curve),
where off-diagonal rescatterings are switched off (that
is,v =0), and only thedirect y* — p%(19 and y* —
p'(29) transitions followed by elastic p°N and p'(2S9N
rescatterings are included. One can see that, in the p°-
meson mass region 0.5 < M =< 1 GeV, the effect of off-
diagonal rescatterings for both values of Q? proves to
be small. Indeed, the direct y* — p°(19) transition is
strong, whereas both transitions in the off-diagonal
sequence y* — p'(29 — p°(19) are weak (see the
description of diffraction matrix in Section 3). In our
discussion of the off-diagonal effect, we will hence-
forth focus on the p'(29) contribution because the con-
tribution of intermediate states heavier than the p'(2S
meson is still smaller.

Our results for real photoproduction, Q2 = 0, in the
P°(1S) mass region for *6Fe and 27Pb targets are close
to those from [10] obtained for rea photons at the
nucleus mass numbers A = 50 and 200 in the uniform-
nuclear-density approximation.

At Q% = 1 GeV?, the coherence length is also short
at E =5 GeV, and distortions of the shape of the e*e-
mass spectrum in the p%(1S)-meson mass region by the
nuclear form factor as described in Subsection 4.5 per-
sist for E =5 GeV aswell. The dominance of the form-
factor effectsis obvious from the fact that these distor-
tions change insignificantly from the full coupled-
channel to diagonal case.

At higher masses, the coupled-channel effects
become more important. Here, the direct y* — p'(29
transition is weak, and there is a strong interference
with the off-diagonal sequential transition y* —»
p°(1S9 — p'(29), which contains a comparably weak
transition p°(1S — p'(29. For heavy target nuclei,
the sequential mechanism y* — p°(19 — p'(29 is
found to dominate over the direct mechanism y* —»
p'(29). This can be seen as follows. In Figs. 1-6, we
show, by the short-dashed and long-dashed curves, the
Vol. 63 No. 8
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pure p°(1S) and the p'(2S contributions evaluated in
thefull coupled-channel approach, v = 2. The dash-dot-
ted curve represents the pure p'(2S) contribution evalu-
ated in the diagona approximation, v = 0; in this
approximation, the p'(29) signal ismuch weaker thanin
the coupled-channel case, where p'(29) is fed by
sequential transitions. Thisis a very interesting exam-
ple where p'(29 production on heavy nuclei opens the
possibility for extracting the matrix element

[p'(29)|0 |p°(19From the experimental dataon thee'e
mass spectrum in the p'(2S) mass region. Measurement
of thismatrix element could furnish uniqueinformation
about the overlap of the p°(19) and p'(2S) wave func-
tions.

The p%(19—'(29 interference is destructive at
masses M below the p'(2S) peak, but it becomes con-
structive at and above the p'(2S peak, reflecting the
mass dependence of the relative phase of the
P19 — e'e” and p'(2S — e'e Breit-Wigner
amplitudes: (i) the mass spectrum develops a dip in
between the p°(19)- and p'(2S)-resonance peaks, where
the coupled-channel (thin solid) curve goes below the
short-dashed curve for the pure p®(1S) contribution; (ii)
at, and beyond, the p'(2S peak the coupled-channel
(thin solid) curve goes well above the long-dashed
curve for the pure p'(29 contribution. The latter
evinces a substantial contribution from the large-mass
tail of p%(19) in the p'(29) region. Obviously, this pre-
vents experimental extraction of the cross section for
p'(2S production within a probabilistic approach
where theinterference with the Breit—Wigner tail of the
P°(1S) meson is neglected.

4.7. Form-Factor Effectsin the p'(2S) Region

For moderate energies and heavier nuclei, and also
for larger Q2 we encounter the situation where the
coherence length L. for the p'(2S) mass region becomes
commensurate with or even smaller than the nuclear
radius R,. In this case, the p'(2S) signa will be sub-
jected to distortions by the form-factor effect in pre-
cisely the same manner as the p° signal at lower ener-
gies (see Subsection 4.5). By way of example, weindi-
cate that, in real photoproduction of >6Fe target at E =
5 GeV, the p'(29) peak splitsinto two bumpswith adip
at M =m, (seeFig. 3b). That thisdip is associated with
form factor effects is obvious from the shift of the dip
toward smaller values of M and from the devel opment
of the secondary dip with increasing Q? (compare
Figs. 3b and 4b). The results for the heavy target ?°’Pb
(see Figs. 5b-5d) show clearly how the dip—bump
structure moves to higher masses M as the coherence
length L. increases with increasing energy E.

A comparison of the Argand diagram for the free-
nucleon target (Fig. 7) with the anal ogous diagrams for
nuclear targets (Figs. 8 and 9) shows that the resonance
loop corresponding to the p'(2S) meson becomes well
pronounced only at E = 10 GeV. Even in this energy
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region, however, the contribution to the amplitude from
the Breit-Wigner tail of the p°(1S meson cannot be
neglected against that from the p'(2S) meson.

5. CONCLUSIONS

We have performed a coupled-channel analysis of
nuclear-medium maodifications to the p°(1S) and p'(29
mesons in the coherent y* — p°(19A, p'(29A —
e*e"A reactions in the kinematical region specified by
the conditions E ~ 220 GeV and Q? = 1 GeV?2. Our
findings for the interplay of the inside and outside
decays, in-medium modifications of the inside compo-
nent, and the coupled-channel effects can be summa:
rized asfollows:

(i) In the p°(1S-meson mass region 0.5 = M =
1 GeV, the effect of off-diagonal rescatteringsis small.
For heavy nuclei, our results in this mass region agree
with those obtained in [10] within the one-channel
approximation.

(ii) Off-diagonal rescatterings become important for
M = 1 GeV. The main off-diagonal contribution is the
p'(2S production through the sequential mechanism
y* — p°(19 — p'(29). This mechanism dominates
the cross section for p'(2S) production on heavy nuclel.

(iii) For energies not higher than 5 GeV, the shapes
of the p°(1S and p'(2S) resonances are strongly
affected by nuclear effects associated with the interfer-
ence interplay of the resonance decays inside and out-
side the target nucleus and form-factor effects due to
longitudinal-momentum transfer.

(iv) The p'(2S) resonance is seen well only for E =
10 GeV. Even at high energies, its shape is affected by
theinterference with the Breit—-Wigner tail of the p°(19
meson, which must be included properly in an analysis
of experimental data on the e*e” mass spectrum in the
p'(2S) mass region.

In our analysis, we have focused on the dilepton
decay mode. Obviously, very similar effects must be
observed in measurements of p°(1S) and p'(2S) produc-
tion through the Ttrtdecay mode. The major difference
from the dilepton mode would come from the final-
state interaction of the Ttrtsystem, which would reduce
the relative contribution of the inside component in
relation to that for the ete- mode. For this reason, a
comparison of the mass spectra for these two cases
would be of great interest. It is especialy interesting at
low energies of E ~ 2-5 GeV for heavy nuclel, where
the inside component is sufficiently large for the e*e
decay mode and will be strongly suppressed by final-
state absorption for the trtmode. A comparative theo-
retical analysis of coherent p°(1S and p'(2S) photo-
and electroproduction for the e*e~ and Ttrtdecay modes
iSnow in progress.
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Abstract—Theresults obtained from an analysis of the 1974-1998 Yakutsk array data on muonswith threshold
energy E,, = 1.0 X secB GeV and on all charged particles (electrons and muons) in extensive air showers (EAS)
are reporlfled and compared with the results of calculations based on the model of quark—gluon stringswith jets.
For energies of E, < 3 x 10'® eV and zenith angles of 6 < 45°, the results of the model cal culations are consistent
with the measured properties of the showers, while, for higher energy EASs, there are considerable discrepancies,
which are probably due to the change in the development of the shower cascade in the region E, >3 x 108 eV.

© 2000 MAIK “ Nauka/lInterperiodica” .

1. INTRODUCTION

The lateral distribution functions (LDF) obtained
from the Yakutsk array data for muons with threshold
energy E, = 1.0 x sec® GeV and for al charged parti-
cles (electrons and muons) in extensive air showers
(EAS) werereported in [1-4]. The LDF for either EAS
component exhibited anomalous behavior for shower
energies of E; = (3-5) x 10'® eV. According to the opin-
ion put forth in [1-4], this behavior is associated with
some new processes in the development of EASs at
these energies.

In this connection, it is reasonable to analyze the
Yakutsk array data within amodel that would describe
the development of EASs without coming in conflict
with any of the observationsfor energies of E, < (1-3) x
10'® eV. The majority of studies devoted to calculating
the properties of EASs have long since relied on the
model of quark—gluon strings (commonly known as
QGSmodel, or, merely, QGSM) [5]. Somefeatures cal-
culated on the basis of this model (see, for example, [6,
7]) are consistent with experimental datafrom [1, 2, 8]
for E, < (1-3) x 10'8 eV.

In this study, the Yakutsk array data on muons and
al charged particles are compared with the results of
the cal culations based on the QGS model involving jets
(QGSIET model) [9], which faithfully reproduces a
vast variety of experimental data on EASs[10]. More-
over, the study of Erlykin and Wolfendale [11] revealed
that the QGSIET model is the best one at energies
around 10° GeV in the sense that the same estimates for
the mass composition of cosmic rays are obtained near
the cusp of the primary-energy spectrum when the
model is employed to analyze different experimental
features of EASs.

Dinstitute of Nuclear Physics, Moscow State University, Vorob' evy
gory, Moscow, 119899 Russia.

2. EXPERIMENTAL DATA

Subjected to analysis were data on showers with
zenith angles 8 < 60°. In just the same way asin [3, 4],
the LDFsfor charged particles were constructed on the
basis of datafrom only 13 stations located at the center
of the array. Together with the central station, they form
two subarrays, each consisting of six master triangles
with a side of 500 m for one subarray (small master,
SM) and a side of 1000 m for the other subarray (large
master, LM). Each station included two scintillation
detectors of size 2 x 2 m?, which operated in the coin-
cidence mode.

That the mean L DFswere constructed here by using
showers selected at least by one of the aforementioned
master triangles distinguishes the present analysisfrom
those that were reported in [1, 2] and which took into
account relevant events accumulated over the total area
of thearray. Asaresult, statisticswere reduced by afac-
tor of 1.5-3, but the data set selected in this way was
free from showers recorded at the array boundaries,
where the accuracy of the measurement was poorer
than that in the more densely meshed central part of the
array.

Asin [12, 13], the energy of primary particles was
estimated with the aid of the relations

Eo = (482 1.6) x 107(pq 600(0°)) "% [eV], (1)

Ps 600(0°)

2
= P e00(B) EXP((SECO — 1) X 1020/A,) [m ], @

A, = (450 £ 44) + (32 £ 15)10g(Ps 600(0°)) [g/em?],

3)

where pg 400(8) is the charged-particle density mea-
sured by scintillation detectors positioned on the

1063-7788/00/6308-1477%$20.00 © 2000 MAIK “Nauka/Interperiodica’
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Earth’s surface at the distance of R = 600 m from the
shower axis. The axis coordinates and the density
Ps s00(0) Were calculated with the aid of the Linsley for-
mula[14]

fo= NCr(1+1)" ", )

where r = R/R;, Ry, being the Moallier radius, which
depends on the temperature T and pressure P as

Ry = (7.5 x 10*/P)(T/273). 5)

The Ry values were determined for each shower
(according to the Yakutsk data [Ry[ = 70 m). The as-
yet-undefined quantitiesin (4) arethefollowing: C.isa
normalization constant; Ny is the total number of
charged particles at the observation level; a= 1; and by
isthe parameter defined in [15] as

bs = b; +b,cos6 + b;log(ps e00(B)),

where b, = 1.38, b, = 2.16, and b; = 0.15.

Our final analysis included showers for which the
SM (LM) determined the coordinates of their axes to
within 20-30 (50-60) m.

The entire set of showers was partitioned into
groups with step values of Acos® = 0.1 and AlogE, =
0.2. The showers were averaged within each of the
groups. The individual densities in groups were nor-
malized to the mean shower energy [, land were aver-
aged over theintervals of AlogR = 0.04. The averaged

charged-particle densities not less than 4 m2 were cal-
culated by the formula

(6)

Ny

0
p(R)O= DZ pn(R)D’N [particle/m?].  (7)

In order to extend therange of R, especialy for low E,,
we followed the procedure invented in [3, 4], determining
the densities near the detector threshold by the method
used for hodoscopes. The probability of the actuation of
two detectors operating in the coincidence modeis

F = (L-exp{—ps(R)S}H)” = Ny/(N;+ Np), (8)

where N, and N, are the number of stations that were
actuated or not actuated, respectively, in showersat dis-
tances from the axes between logR, and logR, + 0.04,
while S= 2 m? is the area of an individual detector.
From equation (8), it follows that

p(R)0= pnEE) JF) ©)

The coefficient B = ps/p., considersthat relation (9)
is valid for charged particles and that expression (7)
includes readings of the scintillation detectors. At dis-
tances of R =200-1000 m, previous measurements at
the Yakutsk array yielded the value of 3 = 1.23 + 0.07
in E,=10'-10" eV showers[16].

GLUSHKOV et al.

The resulting LDFs for charged particles were
approximated as

p(R) = f 1+ R/2000) %, (10)

wheref, corresponds (4) at a=1.3. At aspecific choice
of values for the parameter g, the functions in (10)
agree better with experimental values than the func-
tions in (4), especidly a large distances from the
shower axis.

Asin [1, 2], the averaged muon densities for E, =
1.0 x secB® GeV were found from the relation

N1

Pu(R)D= szn(R)U(N1+No> (an

where N, and N, are the numbers of, respectively, non-
zero and zero readings of the muon detectors in the
interval between logR;, and logR; + 0.04. Zero read-
ings correspond to cases where the detectors in the
waiting mode recorded no muons. Such events are pos-
sible near the threshold densities. Their number
depends on the effective detector areas varying from 8
to 36 m? in the case under consideration.

The LDFs for muons were approximated as

pu(R) = f,(1+R/2000) ", (12)

wheref, isgiven by thewell-known Greisen relation [17]

fo = N Cro(2+1)"" ™™ (13)
Here, r = R/R, with R, = 280 m, C,, is a normalization
constant, N, is the total number of muons at the obser-
vation level (1020 g/cm* for Yakutsk), and b, is a
parameter.

The most appropriate values of the parameters (b,
g9 and (b,, g,) in (10) and (12), respectively, were
determi neci1 from a least squares flt their significance
being assessed on the basis of a x? test. The procedure
for determining the LDFsfor the two EAS components
was verified by means of a mathematical simulation.

3. COMPUTATIONAL PROCEDURE

The LDFs presented here for charged particles and
muons were calculated on the basis of the QGSIET
model [9, 10] for primary protons and Fe nuclei. A fea
ture peculiar to this model isthat it takes into account a
soft preevolution preceding hard parton scattering.
Thus, asimulation of interactions of hadronsand nuclei
with nuclel includes contributions both from soft par-
ton cascades characterized by low transverse momenta,

QA <Q;

(Qy =2 GeV), and from semihard processes, where
Q> Q.
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In the energy range from the threshold energy E,;, =
E, x 10-3/A, where A is the atomic number of a primary
particle, to E,, the development of the nuclear cascade
was simulated by the Monte Carlo method; below E,,,
the cascade was estimated in terms of averaged quanti-
ties. The equations for the nuclear cascade were solved
numerically to a precision of about 1%. The LDFs for
electrons were calculated at the Mollier radius of Ry, =
70 m to within 10%. The response of the scintillation
detector was not calculated because of difficulties
plaguing the theory of electron—photon cascades.

We aso took into account the deflection of EAS
electrons and muons by the Earth’s magnetic field,
whose effect is pronounced for all showers [7, 18],
including the most intense ones [19]. In the Yakutsk
region, the Earth’s magnetic field hasastrength of [B| =
0.6 G, an inclination of 76°, and a west declination of
19° from the northward direction.

The LDFs for muons were calculated with the
threshold of E, = 1.0 x secB GeV for distancesfromthe
shower axis in the range AR = 150-1500 m, while the
LDFsfor al charged particleswere calculated for AR =
150-1000 m as the sum of the densities of electrons
with energiesE, = 0.5 MeV and of muonswith energies
E, 2 0.3 GeV; that is, py, = p«(20.5 MeV) +
Pu(=0.3 GeV).

The entire set of the data computed for the showers
was partitioned into the same groups in E, and 6 as
those chosen in experimentally deducing the averaged
LDFs. For each value of 8, the number of showers simu-
lated in these groups varied from 3000 for E, intherange
10'8-10'32 eV to 200 for E, intherange 101°0—10'%% V.
Injust the sameway asthe experimental LDFs, thesim-
ulated ones were represented analytically by the func-
tionsin (10) and (12), with the most appropriate values
of the parameters (b, g9 and (b,, g,), respectively,
being determined by the least squares method.

4. COMPARISON OF DATA FOR E; < 3 x 108 eV

All the results presented below were obtained from
an analysis of the averaged LDFs. Figure 1 shows the
theoretical and experimental LDFs of all charged parti-
cles and of muons for [E,J= 2 x 10'® eV. Their param-
etersare listed in Table 1.

The experimental and theoretical LDFs for either
component in nearly vertical EASs are consistent in
shape, but the calculation overestimates the density by
a factor of about 1.4. A similar pattern is observed at
other 6 valuesthat are not very large. Only for strongly
inclined showers (6 = 45°) do we seedeviationsfromiit:
there, the experimental LDFs for charged particles are
much steeper than the cd culated LDFs, intersecting them
at distances from the axis about 400 m (see Fig. 1c).

Our analysis revealed that, at al E, values and 6 <
60°, the calculated LDFs for muons are consistent with
the approximation in (12) at g, = 6.5 and that the same
conclusion follows from our experimental data; it
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Fig. 1. Lateral distributions of (closed circles) all charged
particles and (open circles) muons with threshold energy
E, = 1.0 x secB GeV for Ey =2 x 10'® eV showers at
[¢osBF (a) 0.98, (b) 0.78, and (c) 0.58. Curves 1 and 2 rep-
resent the approximations (10) and (12) of (solid curves) the
experimental dataand (dashed curves) the distributions cal-
culated within the QGSIET model for primary protonswith
the parameters from Table 1.

should be borne in mind, however, that, in [1, 2], our
group used the approximation in (12) with g, = 1. A
possible reason behind so great a distinction between
the g, values is that it is difficult to determine accu-
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Table 1. LDF parameters at [E,[= 1083 eV

[Gos O] 0.98 0.78 0.58
Parameter
B0 Exp. 3.50 £ 0.01 3.06 £ 0.01 2.28 +0.02
Theor. 3.63 £0.01 3.00 £ 0.01 1.66 = 0.01
g5 Exp. 1 1 3
Theor. 1 1 3
log[P, g0l Exp. 0.53 £0.01 0.27 +0.01 ~0.19 £0.01
Theor. 0.64 +0.01 0.36 +0.01 ~0.05 £ 0.01
logV,0 Exp. 8.51+0.01 7.93 +0.01 7.12 £0.02
Theor. 8.73 £0.01 7.97 +£0.01 7.00 £ 0.01
log[V,(100-1000) Exp. 7.72 £0.01 7.30 +0.01 6.69 + 0.02
Theor. 7.88 £ 0.01 7.36 +0.01 6.70 £ 0.01
X2 Exp. 37(32) 29(29) 22(33)
Theor. 5(4) 3(4) 6(4)
(3,0 Exp. 2.21+0.04 1.39 £ 0.05 1.21 £0.06
Theor. 2.08 £0.01 1.36 +£0.01 1.09 £ 0.01
S Exp. 6.5 6.5 6.5
Theor. 6.5 6.5 6.5
loglP,,. 600l Exp. ~0.19 £0.02 ~0.15+0.04 —-0.29 +0.06
Theor. —-0.07 £0.01 ~0.10 £0.01 ~0.15+0.01
logv,,00 Exp. 6.86 + 0.04 6.72 £0.05 6.56 + 0.06
Theor. 6.95 +0.01 6.78 £ 0.01 6.68 +0.01
log[V,,(100-1000)] Exp. 6.66 +0.02 6.57 £ 0.03 6.40 + 0.03
Theor. 6.76 +0.01 6.63 +0.01 6.53 £ 0.01
X2 Exp. 28(25) 15(20) 22(17)
Theor. 5(9) 6(9) 12(9)

rately the muon densities on the periphery of showers
near their detection threshold. In order to avoid misde-
tections, therange of Rwasreducedin[1, 2] by exclud-
ing the periphery; thisled to the value of g, = 1, but dif-
ferent versions were also possible.

by
L ¢ +
2_
- ;
L 2 + + t
3 A
I P SR W
B 5 L_r"- wi! @ —
| S +
C I I | I I | I I |
1017 ]018 1019 1020

Eo, eV

Fig. 2. Parameter b,, asafunction of E for thelateral distri-
butions (points) measured experimentally and (curves) cal-
culated within the QGSIET model for proton-induced
showers with [¢os 8= (closed circles, curve 1) 0.98, (open
circles, curve 2) 0.88, (crosses, curve 3) 0.78, (triangles,
curve4) 0.68, and (squares, curve 5) 0.58. Thelateral distribu-
tions were approximated by the functionsin (12) at g, = 6.5.

Figure 2 shows b, values corresponding to the
approximations given in (12) with g, = 6.5 versus , at
various values of 6. The curves in the figure illustrate
the behavior of the parameter b, from the QGSIET
model for primary protons. The results of the calcula
tions are compatible with the relation

b, = 2.07 +2.32(1 - cosb) + 0.07(logE,—18). (14)

Experimental datafor E, <2 x 10'® eV suggest the
value of db,/0cos8 =2.36 +0.12 in agreement with (14)
within the measurement errors, but they imply the
higher rate of the growth of the parameter ob,/d1ogE,

with energy (db,/d10gE, = 0.19 +£0.09). Thelatter may
be due to a change in the primary composition, from a
mixture enriched at E, ~ 10'7 eV in heavy nuclei {Z =
10-30 nuclei constitute (63 + 7)% [20]} to a lighter
composition [8]. According to our estimates [21], the
fraction of protons is about 80% (OnAC= 0.4) at E, ~
10'® eV. By and large, the data here are in agreement
with the theoretical results. At higher energies, the
LDFsfor muons will be considered below.

The LDF for charged particles is one of the impor-
tant features of EASsbecauseit isused to determinethe
axis coordinates; the density pg ¢00(6); and many other
shower parameters, including the primary-particle
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energy E,. At afixed value of g, the LDF shapeis gov-
erned solely by the parameter b, which depends on E,
and 6.

Thisisobvious from Fig. 3, which shows the b, val-
ues calculated for primary protons and the experimen-
tal results for LDFs (10) at g, = 1. For 6 < 45°, the by
values found from the theoretical LDFs can be approx-
imated by the dependence

whereb,=3.58£0.02,b, =1.9+0.05,and b, =0.14 £
0.01. The experimental data at E, = (3-30) x 107 eV
and 6 < 45° are approximated by expression (15) with
coefficientsb, =3.45 £0.03, b, =1.9£0.11,and b, =
0.30 = 0.05. In more inclined EASs (8 > 45°), the
experimental LDFs exhibit slighter dependence on the
zenith angle: b, = 1.05 £ 0.13.

Injust the same way asfor the parameter b, the dis-
crepancy between the theoretical and experimental
results for the coefficient b,, which characterizes the
rate at which the LDF for charged particles becomes
steeper with increasing E, isinterpreted in terms of the
additional change in the primary-particle composition:
b, =0.14(1 + dlogA/dlogE,). The LDF has asmaller

slope for primary Fe nuclei than for primary protons.
The superposition model yields by(p) — by(Fe) = 0.25.

Let us consider the behavior of the densities
Py 600(0) and pg 400(0). Figure 4 shows the density
Py s00(8) as afunction of E, at [dos6LF 0.98 and 0.58.
Curves [ and 5 represent the QGSJIET results for pri-
mary protons and Fe nuclei. The model density for pro-
ton-induced vertical EASs can be approximated by the
dependence

18, 0.92 +0.01

Pue00(0°) = 0.45(Ey/107) ,

whereas the experiment yields

(16)

0.84+0.02

P eoo(0°) = (0.320.02)(E,/10%) (17)

Inall probahility, aslower growth of the experimen-
tal density p,, 400(8) With E, for E,<3 x 108 eV inrela-
tion to the dependence in (16) is caused by atransition
from a heavy primary composition to a composition
enriched in light nuclei and protons.

The zenith-angle dependence of p, (8) at [ =
2 x 10'8 eV is depicted in Fig. 5a, whence we can see
that the theoretical results and the experiment results
both evince a dlight change in this parameter for 6 <
60°.

Figure 5a also displays the zenith-angle depen-
dences of pg 0o aNd Pg 400 (the latter is the electron den-
Sity at a distance of 600 m from the shower axis).
Experimentally, p. was determined as the difference
Pe = Ps — d(®)p,(E, = 1.0 x secB GeV). The factor
d(0) = 1.25-1.4 was borrowed from the QGSJET cal-
culations for a transition to the density of muons with
threshold E;, > 0.01 GeV.
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Fig. 3. AsinFig. 2, but for the parameter bg. The lateral dis-
tributions were approximated by the function in (10) at

g =1
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Fig. 4. Density p,, 600(8) as afunction of E, for the lateral

distributions (points) measured experimentally and (curves)
calculated within the QGSIET model for (p) primary pro-
tons and (Fe) primary Fe nuclei at [dos®CF (closed circles,
curve 1) 0.98 and (sguares, curve 5) 0.58. The solid and
dashed curves represent, respectively, an interpolation and
an extrapolation of experimental data for [dosOCF 0.58.

The experimental values of the density pg ¢00(6) for
0 < 45° can be approximated as

10g(Ps 600(0°)) = 10g(Ps 600(0)) + ke(sECO —1) (18)

with kg =1.02 £ 0.08. Theresults of the calculations are
compatible with (18) at kg =1.14 + 0.05.

Figure 6 showsthe densities pg 40(8) asfunctions of
E, for [dosB= 0.98, 0.78, and 0.58. Curves /, 3, and 5
represent the results of the calculationsfor primary pro-
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Fig. 5. Densities pg Of (1) al charged particles, (2) muons,
and (3) electrons as functions of secB (0 isthe zenith angle)
atEy=(a)2 x 10'® and (b) 2 x 10" eV: (points) experimen-
tal dataand (dashed curves) results of the QGSJET calcula
tion for primary protons and (F€) Fe nuclei.
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Fig. 6. Density pg 600(0) as afunction of E,. The solid and
dashed curves represent, respectively, an interpolation and
an extrapolation of experimental data (see main body of the
text).

tons. At 8 = 0°, these results comply with the relation
1.0+£0.01

Pen s00(0°) = 2.4(Eg/10™) (19)
The pg g0 Values (like py, 490 Values) deduced from
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the experimental data are less than the theoretical
results. For E,< 3 x 10'® eV vertical showers, we have

Dc 600(0°) = (2.0 0.3)(E,/20®)***%%  (20)
S,
Therelationsinverseto (17) and (16),
Eo = 3.94x 10"°(p,, 600(0°))"** > 21)
Eo = 2.4%x10"%(p, 600(0°))"** %%, (22)

are convenient for determining E, from p,, 40,(0°). The
estimates of energy that are obtained from these rela-
tions differ by afactor of about 1.4 near 108 eV.

From (19) and (20), we similarly obtain the inverse
relations

Eo = (48+0.3) x 10" (p, 60(0°)) %% (23)

Eo = 417 107(peen(09) ™%, (24)

which also differ by afactor of about 1.2 near 108 eV.
The photon contribution disregarded in p,,, can increase
theratio of (23) and (24) up to 1.35-1.4.

Note that relations (23) and (1) involve different
exponents. The exponent is equal to 1.06 £ 0.03 for
E, <3 x 10" eV and to0 0.94 £ 0.03 for higher energies.
This is because the above method was used to deduce
Ps 00(0%) vaues in (23) from the averaged LDFs,
whereas the preliminary processing of showers
recorded by the Yakutsk array relied on the Lindey
functions (4) with a = 1 and b, as determined according
to (6). Theindividual values pg ¢00(8) and E, in showers
were found on the basis of the same functions.

The above data suggest the following. The LDF for
either component measured in the experiment is ~1.4
times less than the corresponding QGSJET result for
primary protons. This difference cannot be associated
with atransition to a heavier primary-particle composi-
tion because this assumption would lead to amore glar-
ing contradiction with the experimental data. If the
results of the calculation are normalized to the experi-
mental data, for example, by reducing the energy E, in
the calculations by afactor of about 1.4 at afixed den-
Sity Ps 600(0°), the LDFs measured for EASs of energies
E, <3 x 10'® eV and those expected on the basis of the
QGSJET model will have similar shapes. In this case,
the dynamical features of the measured L DFs are com-
patible with the hypothesis that the primary-particle
composition becomes lighter with increasing E, with
the result that the primary mixture proves to be domi-
nated by protons at E, = (1-2) x 108 eV.

5. COMPARISON OF DATA FOR E, = 3 x 10'® eV

As was indicated in [1-4] and as can be seen from
Figs. 2-6, the development of E, = (3-5) x 10'® eV
showersis somewhat different from the devel opment of
showers having lower energies. Figure 7 shows the
experimental and theoretical LDFs for charged parti-
Vol. 63
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Fig. 7. Asin Fig. 1, but for E=2 x 10'° eV showers. The
parameters of approximations are listed in Table 2.
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cles and muons at E, = 2 x 10" eV for three zenith
angles whose mean cosines are [dos 6 0.98, 0.78, and
0.58. The LDF parameters are listed in Table 2.

Atfirst glance, it seemsthat, for 8 < 35-40° showers
having such energies, the theory also exhibits some
kind of agreement with the experiment data, especially
for the LDFsfor charged particles. The closed circlesin
Fig. 8 represent all values obtained by reducing the
parameters b, displayed in Fig. 3 to the vertical direc-
tion and averaging the results. For E, > 2 x 10'8 eV, this
parameter approaches the QGSIET theoretical depen-
dence [curve I(p)] for primary protons.

A different pattern is observed in more inclined
EASs. This is clearly seen from Fig. 7c, where the
experimental LDFs for the two components agree for
all R> 100 m. It follows that only muons with energies
E, > 1.8 GeV aredetected in these showers at the above
distances from the axis: there are no softer muons and,
the more so, electrons, in contrast to what is observed
in similar inclined EASs of energies E; < 3 x 10'8 eV
(seeFig. 1c).

Figure 5b showsthe densities pg ¢00(6), Pe 500(8), and
Pu.s00(8) IN E; =2 % 10" eV showers as functions of the
zenith angle. The experimental densities p, 40(0) were
determined in the same way as those in Fig. 5a. Their
behavior with increasing 6 differs considerably from
the model prediction: The experimental densities
Pe 600(8) decrease much faster, while the densities

b
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Fig. 8. Ey dependences of the parameters (open circles) b,
and (closed circles and crosses) bg of the approximation (10)
of lateral distributions in vertical EASs at g5 = 1 and 3.5,

respectively. Curves represent the results of the QGSIET
calculationsfor (1) al charged particlesand (2) muonsfrom
showers induced by primary (p) protons and (Fe) Fe nuclei.
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058 0.98 0.78 0.58
Parameter
B0 Exp. 3.19+£0.04 2.67£0.03 2.15+£0.04
Theor. 3.76 £ 0.01 3.23+£0.01 1.91 £0.01
g5 Exp. 35 3.5 3.5
Theor. 1.0 1.0 3.0
logl@;. 600 Exp. 1.63 £0.02 1.35+£0.02 0.95£0.02
Theor. 1.63 £0.01 1.39 £ 0.01 0.92 £0.01
logv,O Exp. 9.62 £0.03 8.97 £0.04 8.23+£0.03
Theor. 9.82 £0.01 9.17 £0.01 8.05 £ 0.01
log[V,(100-1000)0] Exp. 8.86 £ 0.02 8.40 £ 0.02 7.82 £0.02
Theor. 8.92 +£0.01 8.48 £ 0.01 7.71 £0.01
X2 Exp. 17(18) 26(20) 32(24)
Theor. 7(4) 3(4) 6(4)
b, Exp. 1.92 £ 0.06 2.07 £0.08 1.32£0.03
Theor. 2.12£0.01 1.39 £ 0.01 1.13£0.02
gu Exp. 8.0 8.0 6.5
Theor. 6.5 6.5 6.5
log[®,, 600 Exp. 0.74 £ 0.05 0.92 £0.05 0.98 £0.03
Theor. 0.84 £0.01 0.82 £0.01 0.75£0.01
log[v,0 Exp. 7.82 £0.04 8.04 £ 0.07 7.85£0.06
Theor. 7.87 £0.01 7.69 £0.01 7.59 £0.01
log[V,,(100-1000)0 Exp. 7.62 £0.02 7.83 £0.04 7.69 £0.04
Theor. 7.68 £0.01 7.54 £0.01 7.44 £0.01
X2 Exp. 10(12) 17(12) 17(15)
Theor. 11(9) 6(9) 12(9)

Py 600(0), in contrast, increase, appearing to be in
accord with pg ¢0o(6) for 8 > 45°. The variations in the
densities p, 0(8) go beyond the boundary of the
region compatible with the change in the primary-par-
ticle composition from protons to Fe nuclei, the maxi-
mal excess over this boundary being twofold. A notice-
able increase in the muon contribution is accompanied
by areduction of the number of electrons (Fig. 5b); that
is, the muon-to-electron ratio in the total flux of
charged particles changes. This affects considerably the
measurement of particle densities by ground-based
detectors whose energy absorptionishigh (for instance,
by the water Cherenkov reservoirsin the Haverah Park
Array).

For E,< 10' eV showers, experimental datacomply
well with the approximation in (10) at g, = 1. This can
be seen from Fig. 9, where closed circles represent the
ratio of the measured LDFs to their approximations
given by (10) at g, = 1 for E, = 8 x 10'7 eV showers at
[dosO[F 0.98, 0.78, and 0.58.

The observed pattern is strongly different for E, >
3 x 10" eV. It was indicated in [3, 4] that, here, the
measured L DFs cannot be approximated by expression

(10) at g, =1 over the entire range of distances from the
shower axis. In the region R > 400 m, the densities
show much steeper variations. Thisis clearly seen from
Fig. 9, where open circles represent the ratio of the
LDFs measured in this energy region to the values
extrapolated from the region E; < 10'® eV. The extrap-
olated LDFs were taken with the pg4(6) values
depicted by the dashed curvesin Fig. 6, the parameters
gs being set to unity; asto the parameter b, it was cho-
sen in accordance with Fig. 3 (for E, < 10'8 eV):
by = 3.45-1.9(secO —1) + 0.3(logE,—18). (25)
In order to increase the statistical significance, al
datafor E, =3 x 10'® eV were averaged and rescaled to
E,=2 x 10 eV.

On the whole, the L DFs become more humpbacked.
Analytically, they can be represented by the functions
in (10) at g; = 3.5 (dashed curvesin Fig. 9). The corre-
sponding averaged values of the parameters b in verti-
cal showers are shown by the crosses in Fig. 8. They
were obtained for al five intervals of zenith anglesin
just the same way as the values at g, = 3.5.
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Let us compare the above LDFs for charged parti-
cles with the LDFs measured at the Akeno Giant Air
Shower Array (AGASA), which employs scintillation
detectors similar to ours [22]. According to [23], the
LDFs measured at that array can be approximated by
the form

R) O(R/9L.6) ™"
Ps(R) O( ) 26)

x (1+ R/91.6)27"(1 + (R/1000)%)°°,

which is similar to (10). For E, =2 x 10'8 eV showers
with secB < 1.7, the parameter ) in the exponent on the
right-hand side of (26) can be represented as

N = No—Ny(secO—-1)—n,(logssen—1), (27

where n, = 4.02 £ 0.18, n, = 1.87 £ 0.64, and n, =
0.11 £ 0.43 [the parameter S, iS equivaent to
Ps 600(0°)]. Since the quantity n, is much less than the
measurement errors, the function in (26) with the
parameter n of the simplified form

N = (3.97+0.13) — (1.79 + 0.64)(secO — 1)

was used for all EASs of extremely high energies.

The coefficients of (sec® — 1) in relations (15) and
(28) agree well with each other, although the accuracy
of (28) is very poor. Data represented by closed circles
in Fig. 8 are also compatible with the conclusion that,
for E, =2 x 10'8 eV, the LDF for charged particles is
independent of the EAS energy because the parameter
b, can be taken to be invariable within the errors (along
with the parameter n, it controls the L DF shape). How-
ever, this conclusion is erroneous because, aswas men-
tioned above (Fig. 9), the shape of charged-particle
LDF changes in this energy region.

(28)

6. PHENOMENOLOGY OF EAS DEVELOPMENT

The density pg 600(6) as a function of secB, where 6
isthe zenith angle, is shown in Fig. 10 for awide inter-
val of E, values. The dashed curves represent the above
theoretical LDFs considered for primary protons. To
make a comparison more convenient, all theoretical
values of P, 00(8) (dashed curves) were reduced by a
factor of 1.4.

In the region E, < (5-80) x 10'7 €V, the decrease in
the theoretical density ps40(8) agrees well with the
experimental data up to zenith angles of about 60°. For
E, = 8 x 10" eV, the theoretical values fall somewhat
short of the experimental densities pg(0) for
extremely inclined EASs. As E, is increased further,
thistrend is enhanced and ismanifested in lessinclined
showers. Finaly, it appears in vertical EASs for E, =
(4-5) x 101 eV.

The LDF for muons suffers more considerable
changes in the region E, = 3 x 10'® eV. The data pre-
sented in Figs. 2 and 4 indicate that, in inclined EASs,
the LDF becomes much stegper and greater than that
expected on the basis of an extrapolation from the
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Fig. 9. Ratio of the lateral distribution functions measured
for all charged particlesin EASs of energies (closed circles)

E,=8 x 10'7 eV and (open circles) E, >3 x 10'3 eV to the
lateral distributions approximated by (10) with gs=1 and bg

taken from Fig. 3 for [dosBCF (a) 0.98 (1207 showers), (b)
0.78 (788 showers), and (c) 0.58 (790 showers). The dashed
curves represent the best fits in terms of expression (10)

withgs=35a Ey=3.16 x 10" eV.

region of lower E,. From Figs. 1c and 7c, it can be seen
the QGSIET model for primary protons predicts that,
as E, isincreased by one order of magnitude, the LDF
for muons decreases by a factor of about 1.2; on the
contrary, the experimental L DFs show a nearly twofold
increase. In addition, the datafor E, =3 x 10'® eV in
Fig. 2 suggest a slight zenith-angle dependence of the
LDF shape, but this dependence is within the experi-
mental errors.

Open circlesin Fig. 8 represent the averaged values
of by,. For E; <2 x 10'8 eV showers, the b, values from
Fig. 2 (for five angular intervals) were fi rt rescaled to
the vertical direction and were then averaged. For E; =
3 x 10'8 eV, the experimental points from Fig. 2 were
averaged directly.

Figure 11 displays the ratios of the muon densities
measured in [E, (= 2 x 10" eV EASs with [dosB[1=
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Fig. 10. Densities pg 0(6) as functions of secH (6 is the
zenith angle) for various E, values whose common loga
rithms are indicated on the curves: (closed circles) experi-
mental data and (open circle) pg ¢op(58.7°) = 54 m*2 the
density of the most intense shower (E, = 1.5 x 10%0 eV)
detected at the Yakutsk array [24, 25]. The dashed curves
represent the results of the QGSIET calculations for pri-
mary protons [calculated p,y, ¢00(6) valueswere reduced by
afactor of 1.4].

0.98, 0.78, and 0.58 (points) to the LDF for muons that
was approximated according to (12) and which wasthen
extrapolated from the energy region E, < 2 x 10'8 eV
(horizontal zero line) at g, = 6.5 and at b, values from
Fig. 2. For (E,(= 2 x 10" eV, the LDFs were obtained
by averaging all data corresponding E, = 3 x 108 eV.
The LDF for muons becomes more gently sloping for
nearly vertical EASs and steeper for the most inclined
EASs.

For awide interval of E,, Fig. 12 shows the zenith-
angle dependences of the density p, 00(6), Which
appear to be an additional characteristic of genera
changes in the LDFs for muons. The dashed curves
depict the QGSIET results for primary protons, while
the points represent the measured density. All the cal cu-
lated values of p,, ¢(8) were reduced by afactor of 1.4
in order to eliminate the distinctions between the E,
estimates obtained from the theoretical and experimen-
tal dengities.

AsinFig. 10, thedensity pg 500(0) for Ey<2 x 10'8 eV
as obtained within the QGSIJET model shows a
descending angular dependence that complies with rel-
evant experimental data. In the region of higher ener-
gies—especialy at extremely high energies—the cal-
culated values deviate considerably from experimental
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Fig. 11. Ratio of the lateral distribution of muons that was
measured in the (Ey(= 2 x 10!° eV EASsto the lateral dis-
tribution obtained by extrapol ating approximation (12) from
the energy region Ey < 2 x 10'® eV with g, = 6.5 and by,
taken from Fig. 2 (points) at [dosB[ (a) 0.98 (868 show-
ers), (b) 0.78 (909 showers), and (c) 0.58 (335 showers). The
dashed curves represent the best fitsin terms of expression

(12) at Ey=2 x 10" eV.

data. Experimental data suggest that, in inclined show-
ers (0 > 35-40°), the relative fraction of muons in the
total flux of charged particles increases (Fig. 5b) at all
distances Rin excess of 100 m wherethe measurements
were performed.

Open circles in Figs. 10 and 12 represent densities
for the most intense shower detected at the Yakutsk
array [ps 600(38.7°) = Py, 600(58.7°) = 54 m?] [24, 25].
The arrow in Fig. 10 indicates the rescaling of this den-
Sity to the vertical direction according to (3), with the
absorption range being A, = 530 g/c?. For the energy
of this shower, relation (1) and the QGSIET model
yield the estimated values of E, = 1.5 x 10%° and 2.2 x
10%° eV, respectively.

From the above experimental data, it follows that
the spatial structure of EASs changes at high ener-
Vol. 63 No. 8
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Fig. 12. AsinFig. 10, but for the density p,, 600(8) [the cal-
culated py, 600(B) values were reduced by afactor of 1.4].

gies—specifically, the shape of the LDFs for electrons
and muons is modified considerably (Figs. 2 and 3).
The resulting shape cannot be explained by atransition
to a heavier primary composition up to that dominated
by iron nuclei (see, for example, the behavior of the
LDF for muons in Fig. 5b). Any extrapolations of not
only the experimental but also the calculated depen-
dences to the region of extremely high energies may
result in large errors—in particular, errors in the esti-
mates of the primary-particle energy. In this energy
region, it is necessary to study further the LDFs for
charged particles and muons at arrays including detec-
tors spaced by distances not greater than 200-300 m.

7. CONCLUSION

Theresults of the present analysis can be summarized
asfollows. Inthe energy range E, = (3-30) x 107 eV, the
entire body of experimental datafrom theYakutsk array
for 8 < 45° can be described within the QGSIET mode!
under specific assumptions. The observed 1.4-fold dis-
crepancy between the estimates of E, and the distinc-
tions between the shapes of LDFsfor charged particles
in showers with 8 > 45° require additionally refining
some parameters of the model and calculating the
response of the scintillation detector.

At E, = (3-5) x 10'® eV, ashower developsin a dif-
ferent way. First, itslateral structureischanged (Figs. 9
and 11). Second, the fraction of muons increases notice-
ably in inclined showers with 8 > 35°-40° (Fig. 5), the
muon component undergoing more pronounced
changes (Figs. 10 and 12). These changes cannot be
explained within the QGSIET model for any primary-
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particle composition from that of protonsto that of iron
nuclei. Thus, they require invoking new mechanisms of
the development of EASs at extremely high energies. It
can be assumed that these mechanisms become opera-
tive above the energy threshold of (2-3) x 10'% eV,
where some new processes of nuclear interactions may
come into play.

We are going to continue a global investigation of
the electron and muon EAS components at the Yakutsk
array both by further accumulating shower statistics
and by analyzing data collected to date in greater detail
and within improved processing techniques. A theoret-
ical analysis of the problems discussed above will aso
be continued.
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