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Abstract—The cross sections for (d, xn), (d, pxn), (p, xn), and (p, pxn) reactions on enriched tin isotopes
are obtained at a projectile energy of 3.65 GeV per nucleon. The yields in the energy range 0.66–8.1 GeV
are analyzed with resort to experimental data obtained previously. Experimental data are compared with the
results of theoretical calculations performed within the cascade–evaporation model. The dependence of the
yields on the number of emitted neutrons, the projectile type, and the isotopic composition of a target is
investigated. The cross sections for the (p, xpyn) reactions on a 120Sn target are presented at a primary-
proton energy of 0.66 GeV. c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Nuclear reactions where a target nucleus loses
only a few nucleons occur much more frequently than
other processes such as spallation and deep-inelastic
scattering. It is assumed that such reactions proceed
via a peripheral interaction and that a nuclear cascade
does not play a significant role here. They were in-
vestigated predominantly at projectile energies below
1 GeV [1–4]. Such processes are also classified as
simple reactions. Their mechanism can be explained
either by

(i) a direct interaction in which a projectile particle
interacts with a bound target neutron, knocking it
out, with the result that the target nucleus acquires an
excitation energy not greater than 10 MeV (knock-
out), or by

(ii) inelastic projectile-proton scattering on sur-
face nucleons that is accompanied by the transfer of a
moderate (10 to 20MeV) excitation energy and which
is followed by the evaporation of a small number
nucleons (the class of processes described in terms
of this mechanism includes charge-exchange reac-
tions).
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At high projectile-proton energies, reactions of the
(p, xn), (p, pxn), and (p, 2pxn) types were investi-
gated in [5]. High energies are not expected to change
the mechanism of such reactions substantially.

The objective of the present experiment was to
study the cross sections for such reactions on en-
riched tin isotopes versus the projectile type, the
number of emitted neutrons (x), and the nucleonic
composition of the target and to analyze the excitation
functions for (p, xn) and (p, pxn) reactions with the
aid of data obtained previously at proton energies of
0.66, 1, and 8.1 GeV [6, 7].

2. EXPERIMENTAL PROCEDURE

Samples from enriched tin isotopes
112,118,120,124Sn were irradiated with protons and
3.65-GeV/nucleon deuterons from the nuclotron
and the synchrophasotron of the Laboratory of High
Energies at the Joint Institute for Nuclear Research
(JINR, Dubna). For targets, we used metallic foils,
three layers of them for 118,120,124Sn and one layer
for 112Sn. The duration of the irradiation run was
6.42 h in the case of protons and 1.083 h in the
case of deuterons. The cross section of the deuteron
beam had the shape of an ellipse, its axes being 3
and 2 cm. The diameter of the proton beam, which
was round in shape, was 2 cm. For beam monitor-
ing, we employed the reactions 27Al(d, 3p2n)24Na
and 27Al(p, 3pn)24Na, their cross sections being
14.2 ± 0.2 [8] and 10.6 ± 0.8 mb [9], respectively.
On the basis of this monitoring, we obtained the
c© 2005 Pleiades Publishing, Inc.
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Table 1

Target Enrichment, % Thickness, g/cm2 Weight, g
112Sn 92.6 0.378 2.658
118Sn 98.7 0.201 0.805
120Sn 99.6 0.198 0.791
124Sn 95.9 0.204 0.816

Integrated beam intensities

proton deuteron

3.21× 1013 2.0× 1013

following beam intensities: 1.33 × 1013 d/h (112Sn),
0.768 × 1013 d/h (118,120,124Sn), 2.35 × 1013 protons
(0.366 × 1013 p/h) (112Sn), and 0.73 × 1013 protons
(0.114 × 1013 p/h) (118,120,124Sn). The features of the
targets and the integrated beam intensities are given
in Table 1.

The induced-activity method was used to explore
the yields of radioactive residual nuclei formed in the
targets. The gamma spectra of residual nuclei were
measured by means of ultrapure germanium detec-
tors at the Research and Experimental Department
of Nuclear Spectroscopy and Radiochemistry at the
Laboratory of High Energies at JINR. These mea-
surements were performed within a year after the
irradiation. The residual nuclei formed in the targets
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Fig. 1. Ratio of the cross sections for the formation
of residual nuclei in deuteron- and proton-induced nu-
clear reactions versus the number of emitted neutrons:
(closed circles) experimental data for all targets and (open
circles) results of the calculations within the cascade–
evaporation model.
P

were identified by characteristic gamma lines and by
the respective half-lives. The measured spectra were
processed on the basis of the DEIMOS code [10].

3. EXPERIMENTAL RESULTS AND THEIR
DISCUSSION

In the present study, we explored the formation of
Sb and Sn isotopes in 112,118,120,124Sn targets. Ta-
bles 2 and 3 present the cross sections for the forma-
tion of products—independent (I) and cumulative (C)
ones—along with the reaction types. Data calculated
on the basis of the cascade–evaporation model [11]
are given parenthetically. The values quoted in Ta-
bles 2 and 3 as the errors in the respective quantities
were obtained as the largest deviation of the results
of various measurements from the averaged cross-
section value. These errors include statistical uncer-
tainties in determining the detector efficiencies, the
numbers of particles in a beam, and the number of
nuclei in a target.

The data obtained here make it possible to com-
pare the reactions under study for two projectile
types, protons and deuterons. A feature peculiar to
the reactions induced by deuterons is associated with
the looseness of the deuteron structure, so that the
question of whether both nucleons of the projectile
deuteron are involved in the nuclear interaction is of
interest in studying such processes. Figure 1 displays
(a) the ratio of the cross sections for the relevant
(d, pxn) and (p, p(x− 1)n) reactions and (b) the ratio
of the cross sections for the relevant (d, xn) and
(p, (x− 1)n) reactions versus the number of emitted
neutrons. In individual measurements, the yields
from the reactions induced by protons and deuterons
proved to be in agreement within the errors (115Sb
and 110Sn from a 118Sn target). In the majority of the
reactions being studied, these ratios were on average
1.5 to 2 within the errors and exceeded the ratios
obtained from the calculations within the cascade–
evaporation model, which yielded values of 1 to 1.2.
It can be assumed that these theoretical calculations
are insensitive to the fact that the incident deuteron
involves two nucleons.

Investigation of the energy dependences of the
yields from (p, xn) and (p, pxn) reactions shows that
these yields decrease with increasing projectile en-
ergy [12–14]. In the present study, the energy depen-
dences of the yields from the reactions being studied
are discussed with resort to the data measured pre-
viously at 0.66, 1, and 8.1 GeV [6, 7]. From Figs. 2
and 3, one can see that, at energies of a few GeV,
the (p, xn) and (p, pxn) cross sections for x ≤ 3 grow,
the slope that characterizes this growth decreasing as
the number of emitted neutrons increases. At a large
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 2 2005
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Table 2. Cross sections for the formation of products of (d, xn) and (d, pxn) reactions

Reaction type Residual
nucleus

Cross-
section
type

Cross section, mb Reaction type Residual
nucleus

Cross-
section
type

Cross section, mb

118Sn(d, 2n) 118mSb I 1.6 ± 0.3 (0.03) 112Sn(d, p) 113gSn C 15.7± 0.3
120Sn(d, 2n) 120mSb I 1.5 ± 0.3 118Sn(d, p2n) 117mSn C 46.9± 3.5 (105.2)
124Sn(d, 2n) 124Sb I 4.5 ± 0.6 (1.011) 124Sn(d, p2n) 123mSn C 94.9± 1.0
118Sn(d, 3n) 116mSb H 2.6 ± 0.2 123gSn 40.6± 4.0
120Sn(d, 4n) 118mSb I 3.8 ± 0.3 (2.4) 112Sn(d, p3n) 110Sn C 37.8± 0.9 (39.9)
124Sn(d, 4n) 122Sb I 10.5± 1.5 (1.75) 120Sn(d, p4n) 117mSn C 33.9± 1.2 (24.2)
118Sn(d, 5n) 115Sb C 5.6 ± 0.5 (1.10) 118Sn(d, p6n) 113gSn C 22.8± 1.0
120Sn(d, 6n) 116mSb I 2 ± 0.3 (1.3) 124Sn(d, p8n) 117mSn C 20.8± 2.4 (8.1)
124Sn(d, 6n) 120Sb I 3.9 ± 0.3 (1.76) 120Sn(d, p8n) 113gSn C 11.3± 0.6 (10.5)
120Sn(d, 7n) 115Sb C 4.3 ± 0.6 (0.76) 118Sn(d, p9n) 110Sn C 3.3± 0.3 (5.3)
124Sn(d, 8n) 118mSb I 2.4 ± 0.4 (0.554) 120Sn(d, p11n) 110Sn C 1.5± 0.2 (2.6)
124Sn(d, 10n) 116mSb I 1.1 ± 0.3 (0.032) 124Sn(d, p12n) 113gSn C 5.9± 0.3 (6.2)
124Sn(d, 11n) 115Sb C 1.2 ± 0.2 (0.21) 124Sn(d, p15n) 110Sn I 0.7± 0.1 (1.5)

Table 3. Cross sections for the formation of products of (p, xn) and (p, pxn) reactions

Reaction type Residual
nucleus

Cross-
section
type

Cross section, mb Reaction type Residual
nucleus

Cross-
section
type

Cross section, mb

118Sn(p, n) 118mSb I 0.98± 0.05 (0.694) 124Sn(p, 10n) 115Sb C 0.81± 0.4 (0.125)
120Sn(p, n) 120mSb I 0.64± 0.07 (0.662) 118Sn(p, pn) 117mSn C 28.1± 0.9 (87.88)
124Sn(p, n) 124Sb I 1.7 ± 0.2 (0.324) 124Sn(p, pn) 123gSn I 54.5± 1.5 (83.13)
120Sn(p, 3n) 118mSb I 1.5 ± 0.1 (1.64) 112Sn(p, p2n) 110Sn C 22.4± 0.7 (40.09)
124Sn(p, 3n) 122Sb I 3.9 ± 0.2 (1.94) 120Sn(p, p3n) 117mSn C 15.6± 1.2 (23.39)
118Sn(p, 3n) 116mSb I 2.1 ± 0.3 118Sn(p, p5n) 113gSn C 15.6± 1.1 (14.3)
118Sn(p, 4n) 115Sb C 4.7 ± 0.4 (1.16) 124Sn(p, p7n) 117mSn C 8.7± 0.7 (12.29)
120Sn(p, 5n) 116mSb I 1.1 ± 0.2 (1.152) 120Sn(p, p7n) 113gSn C 7.8± 0.3 (9.37)
124Sn(p, 5n) 120mSb I 1.5 ± 0.2 (1.89) 118Sn(p, p8n) 110Sn C 3.1± 0.1 (5.52)
120Sn(p, 6n) 115Sb C 1.5 ± 0.1 (0.613) 120Sn(p, p10n) 110Sn C 1.6± 0.1 (3.36)
124Sn(p, 7n) 118mSb I 0.93± 0.03 (1.52) 124Sn(p, p11n) 113gSn C 2.7± 0.1 (6.33)
124Sn(p, 9n) 116mSb I 1.07± 0.10 (0.29) 124Sn(p, p14n) 110Sn C 0.55± 0.06 (0.99)
number of emitted neutrons, the respective depen-
dences on the projectile-proton energy remain un-
changed. Figure 2 displays curves that represent the
energy dependences for the residual nuclei (Fig. 2a)
116mSb and (Fig. 2b) 110Sn. The slope that charac-
terizes the growth of the cross section with energy for
the residual nucleus 110Sn changes within the range
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 2 200
2.2 ± 0.054 for a 112Sn target and within the range
−0.048± 0.033 for a 124Sn target. Calculations based
on the cascade–evaporation model do not show a
growth of the reaction yields in this energy region.

It should be noted that the activation-analysis
procedure, which was applied in the present study,
gave no way to distinguish between reaction channels
5
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Fig. 2. Cross sections for the formation of residual nuclei
versus the projectile-proton energy (a) for 116mSb from
(closed circles) 118Sn, (inverted closed triangles) 120Sn,
and (right closed triangles) 124Sn targets and (b) for
110Sn from (closed circles) 112Sn, (right closed trian-
gles) 118Sn, (inverted closed triangles) 120Sn, and (closed
boxes) 124Sn targets.

involving different numbers of emitted pions if these
channels led to identical final nuclei. Obviously, the
above growth of the cross sections can be explained
by the contribution of such processes. Calculations
within the cascade–evaporation model show that the
contribution of meson-production processes is large
at energies of 1.84, 3.2, and 6 GeV (see [11, p. 360])
for A ∼ 100, but that there is virtually no such effect
at 0.66 GeV. Our analysis revealed that, in charge-
exchange reactions of the (p, n) and (p, pn) types,
the contribution of these interaction channels may be
significant at high energies.

The character of the dependence of the (d, xn) and
(p, xn) yields on the number of emitted neutrons can
be seen in Figs. 3a and 3b. The cross sections for
these processes first increase and then decrease with
increasing number of emitted particles. For the most
part, independent yields are given in the figures, but
only the isomeric-state (116mSb, 118mSb, 120mSb)
yields were determined for the majority of the nuclei.
The residual nuclei in the ground states are formed
with substantially higher probabilities, and the devia-
tions of the experimental points referring to the yields
of 124Sb, 122Sb, and 115Sb are explained by precisely
this circumstance. A similar dependence was found
in (p, xn) reactions at an energy of 0.66 GeV and in
(γ, π±xn) reactions [6, 15]. That the dependences of
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Fig. 3. Cross sections for the (a) (d, xn) and (b) (p, xn)

reactions on 124Sn targets versus the number of emitted
neutrons. The solid line represents the results of the cal-
culation on the basis of the cascade–evaporation model.

the cross sections for these reactions on the number of
emitted neutrons are similar gives sufficient grounds
to assume that the mechanisms of neutron forma-
tion in the (d, xn) and (p, xn) reactions are similar.
The (d, pxn) and (p, pxn) reactions are character-
ized by substantially larger (by more than one order
of magnitude) cross sections than the (d, xn) and
(p, xn) reactions, whose cross sections decrease with
increasing number of emitted neutrons. As can be
seen from Fig. 3 and from Tables 2 and 3, this pattern
is described within the cascade–evaporation model—
the shape of the experimental curve is in good quali-
tative agreement with the predictions of this model.
In some cases, it is difficult to perform a quantitative
comparison since the measured yields are cumulative
in those cases and since experimental information is
insufficient in the case where one measures only one
state of the isomeric pair of a residual nucleus.

Data on such reactions at low energies are in-
dicative of a pronounced mass dependence of their
cross sections for light targets (A ≤ 65). For heav-
ier targets, the cross sections were measured with
large uncertainties, which prevent the isolation of the
effect of an increase in the number of nucleons in
a nucleus. The set of targets used in the present
experiment made it possible to refine the behavior of
the cross sections for these reactions in the mass
range 112–124 and to verify the effect of the nucleonic
composition of the target on the probability of the
emission of a few nucleons from the surface of the
nucleus. Within the accuracy of our measurements,
the presence of the dependence of the reaction yields
YSICS OF ATOMIC NUCLEI Vol. 68 No. 2 2005
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Fig. 4. Cross sections for the formation of residual nuclei versus their mass numbers for 120Sn targets at a projectile-proton
energy of 0.66 GeV: (closed boxes) experimental results and (open circles) results of the calculation based on the cascade–
evaporation model.
on the nucleonic composition of the targets could not
be established by analyzing the yields found here in
the form of the ratios of the cross sections for the
reactions on tin isotopes in the mass range 118–
124 (1.36 ≤ N/Z ≤ 1.48) in various combinations:
(p, 3n)/(p, n), (p, 5n)/(p, 3n), (p, 5n)/(p, n), etc. We
can assume that reactions belonging to the class un-
der study proceed via a local interaction of a projectile
particle at the target surface with a small number of
target nucleons, so that the contribution of the whole
target nucleus (including the neutron excess) does
not have a significant effect on the yields.

The cross sections for the formation of about
60 residual nuclei have been measured for 120Sn tar-
gets irradiated with a proton beam accelerated to an
energy of 0.66GeV at the phasotron of the Laboratory
of Nuclear Processes at JINR. The values obtained in
this way for the reaction yields were compared with
their counterparts calculated within the cascade–
evaporation model [11]. Figure 4 displays the reaction
cross sections versus the mass number of a residual
nucleus. In comparing the experimental values with
the results of the calculations, use was made of the
parameter [16]

H = 10

√
〈(log(

σcalc i
σexpt i

))2〉
,

PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 2 200
whose standard deviation is S(〈H〉) = 10
√

a, where

a =

〈(∣∣∣∣ log
(
σcalc i

σexpt i

) ∣∣∣∣− log(〈H〉)
)2
〉
.

Here, 〈 〉 denotes averaging over all cases under
comparison (i = 1, . . . , Ns, where Ns is the number
of experimental and calculated values subjected to a
comparison). The resulting values of 〈H〉 = 3.18 and
S(〈H〉) = 2.07 indicate that there is no satisfactory
agreement between the experimental and calculated
values.

4. CONCLUSIONS

New data have been obtained for the (p, xn)
and (p, pxn) processes on enriched tin isotopes
112,118,120,124Sn for 1 ≤ x ≤ 14 at an energy of
3.65 GeV/nucleon.

(i) The cross sections for the (p, xn) and (p, pxn)
reactions for x ≤ 3 first decrease and then increase
in the energy region above 1 GeV. The character
of changes in the cross sections over the range 1–
8.1 GeV can be approximated by a linear depen-
dence whose slope decreases with increasing number
of emitted neutrons. The above growth of the cross
5
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sections can be explained by the presence of the con-
tributions to the yields of measured residual products
from pion-production channels.

For reactions involving the emission of more than
four neutrons, the cross sections remain virtually
constant over the above energy range, this being in
agreement with the results of the calculations based
on the cascade–evaporation model.

(ii) Changes in the reaction yields versus the
number of emitted neutrons—that is, the presence
of a maximum followed by a decrease—can be qual-
itatively described within the cascade–evaporation
model.

(iii)Measured ratios of the reaction cross sections,
(d, xn)/(p, (x − 1)n) and (d, pxn)/(p, p(x− 1)n), do
not agree with the predictions of the model proposed
in [11]—on average, the experimental values exceed
their calculated counterparts by a factor of 1.5 to 2.

(iv) No pronounced dependence on the isotopic
composition of the targets has been observed. This
can be a consequence of a local character of the in-
teraction, in which case only a few nucleons are emit-
ted. The primary charge-exchange process involves
a small number of neutrons, and an increase in the
total number of neutrons in the target nucleus does
not manifest itself in the reaction yield.

The cross sections for the spallation reactions
on the 120Sn isotope at a projectile-proton energy
of 0.66 GeV have been obtained. Respective calcu-
lations within the cascade–evaporation model have
made it possible to obtain a qualitative pattern that
is consistent with the experimental dependence of
the cross sections on the mass number of a residual
nucleus. A quantitative comparison on the basis
of the criterion proposed in [16] indicates that this
description of our experimental data is unsatisfactory.
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Abstract—The fragment mass yields in fission of 235U induced by thermal neutrons for A = 145−160 and
EK = 50−75MeV were measured using a mass spectrometer. The fine structure is observed at A = 153,
154 and EK = 50−60MeV. The obtained results were described in the framework of a model based on the
dinuclear system concept. The analyzed correlation between the total kinetic energy and mass distribution
of fission fragments is connected with the shell structure of the formed fragments of fission. From this
correlation and the time dependence of the calculated mass distribution of the binary reaction products, one
can conclude that the descent time from a saddle point to a scission point for the more deformed fragments
is longer than that for fragments of more compact shape. c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

The complete understanding of the nuclear fis-
sion mechanism and dynamics of mass distribution
is yet to be achieved. Nuclear fission is one of the
most complex nuclear transformations, related to a
strong change of compound nucleus shape, leading to
formation of two or three (ternary fission) fragments
having an excitation energy that is sufficient for emis-
sion of several neutrons and γ quanta. It is difficult to
obtain complete information reflecting the dynamics
of fission processes during experiment. The process
of fission allows us to observe a nucleus of abnormally
high deformation and large surplus of neutrons, which
opens opportunities of research of such properties of
the nucleus as collective movement with large ampli-
tude, strength functions of β decay, and viscosity and
friction of a nuclear matter.

The exploration of mass and charge distributions
of fission fragments and their kinetic energy is an
important task in the analysis of the fission process.
In Section 2, we present and discuss the results of
measurements of mass and kinetic energy distribu-
tions of the fission products of 236U. Section 3 is
devoted to the calculation of the mass distribution
between fragments of fission in the framework of the
dinuclear system model. In Section 4, the theoretical
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1)Institute of Nuclear Physics, Tashkent, Uzbekistan.
2)Heavy-Ion Physics Department, Institute of Nuclear
Physics, Tashkent, Uzbekistan.

3)Bogolyubov Laboratory of Theoretical Physics, Joint Insti-
tute for Nuclear Research, Dubna, Moscow oblast, 141980
Russia.
1063-7788/05/6802-0177$26.00
and experimental results are compared and discussed.
Conclusions are in Section 5.

2. EXPERIMENT

We carried out measurements of mass (A) and
kinetic energy (EK) distributions of the heavy fission
products of 236U in a region where there are not
enough experimental data, namely,A = 150−160 and
EK = 50−75 MeV. Measurements were performed
using an electromagnetic mass spectrometer for
the unslowed fission products [1]. It was placed on
the horizontal channel nuclear reactor VVR-SM of
the Institute of Nuclear Physics of the Academy
of Sciences of Uzbekistan. The accuracies of mea-
surements of kinetic energy and mass of fission
products were equal to 0.02 and 0.06%, respec-
tively.
Mass distributions of the heavy products with

kinetic energiesEK = 50, 55, 60, 65, 70, and 75MeV,
which were measured in fission of 235U induced
by thermal neutrons [2], are presented in Fig. 1.
The structure at A = 144−146 in the range EK =
50−60 MeV (Fig. 1) is, most likely, connected to
large probability of formation of complementary light
fragments withA = 90−92 [2]. The contour diagrams
of the shell corrections, which are designed on the
Wilkins model [3], show (Fig. 2) that there are areas
with the minima of the potential energy correspond-
ing to the small deformations of fragments with the
magic numbers Z = 50 of protons and N = 50, 82 of
neutrons and to the large deformations β = 0.6−0.7
of fragments with the proton numbers Z = 40, 44 and
the neutron numbersN = 66, 88 of fission fragments.
c© 2005 Pleiades Publishing, Inc.
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Fig. 1.Mass distributions of fragments by energiesEK = 50−75MeV in fission of 235U induced by thermal neutrons.
The distance between centers of fragments is around
15.5 fm for the small deformations of fragments and
it is equal to 17 fm for the large deformations of
fragments. The total kinetic energy (TKE) of the
fission fragments was determined from the measured
values of EK for a heavy fragment by formula

TKE = EK(A0/(A0 −AH − νH)). (1)

Here, A0 is the mass number of a compound nucleus,
AH is the mass number of a heavy fragment, EK

is the kinetic energy of a heavy fragment, and νH
is the number of neutrons from a heavy fragment
determined by the formula [4]

νH = 0.531ν + 0.062(AH − 143), (2)

where ν is average number of neutrons emitted from
a fissionable nucleus (in the case of fission of 235U
induced by thermal neutrons, ν = 2.35). From the
definition of TKE, the distance between centers of
ellipses at a scission point was calculated by the
formula [5]

D = Z2Rae
2/(TKE(1 +Ra)2), (3)

where Z is the charge of a fissionable nucleus, Ra

is the mass relation AH/AL, and e2 = 1.44MeV fm.
PH
AssumingD = c1 + c2, we can find the shape of frag-
ments at the scission point. The deformation param-
eter of fragments was calculated using the expression

β = 1.05(ci − ai)/(a2
i ci)

1/3, (4)

where ci and ai are the large and small axes of ellipse,
respectively.
The mass yields of fragments in fission of 235U

induced by thermal neutrons were calculated in [3] as
a function of the distance between centers of fission
fragments at the scission point. Two-dimensional
contour diagrams of these dependences have been
constructed. In these contour diagrams, the corre-
lation between the distance D and different values of
TKE (Fig. 2) can be established. Rather good agree-
ment between the mass yields measured by us and
calculated using the Wilkins model [3] is observed.
The large probability of formation of fission frag-
ments with A = 146−150 with relatively low kinetic
energies is connected with the increase in the shell
corrections for deformation parameters β = 0.6−0.7,
which corresponds to the distance between centers
of fragments D ≈ 17 fm (Fig. 2), because the values
of TKE for the given pair of fragments are defined
by their deformation parameters β at the scission
YSICS OF ATOMIC NUCLEI Vol. 68 No. 2 2005
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point. The shell structure of a nucleus is determined
by the deformation parameters and vice versa. At the
scission point, the fission fragments have such values
of β which correspond to minima of potential energy.
The position of these minima depends strongly on
the number of protons and neutrons in nuclei. It is
well known that the value and shape of the potential
energy surface of a fissionable nucleus determine the
mean value and dispersion, respectively, of the kinetic
energy of fission fragments and their mass and charge
distributions.
The excitation energy on the scission point can be

found using the value of TKE frommeasurements, the
number of all the emitted neutrons by formula (2),
and the Qgg value obtained from the half-empirical
mass formula in [6] and the tables by Milton [7].
We think that further development of this method by
inclusion of the factors influencing the dynamics of
the fission process (for example, friction forces) will
make it possible to find a change in the form of a
nucleus descending from a saddle point to a scission
point.

3. MASS DISTRIBUTION OF FISSION
FRAGMENTS IN THE DINUCLEAR-SYSTEM

MODEL
The nuclear-physical research with heavy ions

at low energies has opened a new class of nuclear
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 2 200
processes: deep-inelastic nucleon transfer, fusion–
fission, and quasi-fission reactions [8, 9]. In the
dinuclear system (DNS) concept, the formation of
the transient nuclear complex DNS is supposed to
be a common mechanism in these processes [8, 10–
12]. In heavy-ion collisions at low energies, after
complete dissipation of kinetic energy of the relative
motion, a DNS is formed. Such a system differs from
nuclear molecules in its instability and variable mass
asymmetry due to nucleon transfer from one nucleus
to another. These peculiarities of the DNS carry a
statistical property and proceed on the large fluctu-
ation of the charge and mass numbers and on the
dispersion of TKE of fragments at its decay. The main
feature in the behavior of the DNS is the preservation
of individuality of its component nuclei that is caused
by their shell structure. It does not mean that nuclei
are frozen. Nucleon exchange between components
of the DNS occurs, while the system evolves to
a configuration with the minimal surface energy.
Motion of the fissioning nucleus from the saddle point
up to a scission point can be considered as a slow
relative motion of two fragments being formed, since
its shape looks like a DNS. At this stage, the mass
yields of fission fragments could be calculated in the
framework of a model DNS [10–12]. This is opposite
to the case of fusion of nuclei, when mass (charge)
5
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transfer between interacting nuclei causes evolution
of the DNS in the direction of complete fusion
(transfer of all nucleons of a light nucleus into a heavy
one). In this paper, we consider fission of the 235U
nucleus induced by a neutron in the framework of the
DNS concept. The aim is an estimation of the mass
distribution between fragments during the fission
process. We did not consider dynamics of elongation
of the dividing system. The elongation of the system
is a slow changing variable in comparison with the
nucleon-exchange process between the fragments
being formed. The DNS is assumed to have some
initial charge asymmetry Z and ZCN − Z (ZCN is the
charge of the dividing nucleus) after overcoming the
saddle point. During slow descent of the fissioning
system from the saddle point to the scission point,
its mass and charge asymmetries fluctuate due to
continuous nucleon exchange between the fragments
being formed. This fluctuation is considered as a
diffusion process and may be simulated as a nucleon
transfer between fragments up to the scission point.
This kind of evolution of the DNS by nucleon transfer
can be calculated by the master equation of Pauli

dPZ(t)/dt = ∆(+)
Z−1PZ−1(t) (5)

+ ∆(−)
Z+1PZ+1(t)−∆ZPZ(t),

where ∆Z = ∆(+)
Z + ∆(−)

Z . Here, PZ(t) is the prob-
ability that one of the fragments of the DNS has
the charge Z, while the other fragment has the

charge ZCN − Z; the transition coefficients ∆(+)
Z

and ∆(−)
Z are responsible for transforming the DNS

from the charge-asymmetry state {Z;ZCN − Z} into
{Z + 1;ZCN − (Z + 1)} and {Z − 1;ZCN − (Z − 1)}
states, respectively.∆(+)

Z and∆(−)
Z were calculated by

averaging the nucleon-exchange probability between
nuclei Z and (ZCN − Z) over∆t = 10−22 s:

∆(+)
Z = 2

∑
ij

∣∣∣g(Z)
ij

∣∣∣2 (2li + 1) (6)

× (2lj + 1)n(ZCN−Z)
i (1− n(Z)

j )

× (E(ZCN−Z)
i − E(Z)

j )−2W
(Z)
ij /∆t,

∆(−)
Z = 2

∑
ij

∣∣∣g(Z)
ij

∣∣∣2 (2li + 1)(2lj + 1)n(Z)
j (7)

× (1− n(ZCN−Z)
i )(E(ZCN−Z)

i − E(Z)
j )−2W

(Z)
ij /∆t,

where

W
(Z)
ij = sin2[(E(ZCN−Z)

i − E(Z)
j )∆t/�]; (8)

n
(ZCN−Z)
i , E(ZCN−Z)

i , li and n
(Z)
j , E

(Z)
j , lj are occupa-

tion numbers, energies, and degeneracy factors of the
P

single-particle states in one and the other fragment

of the DNS, respectively, and g(Z)
ij are the matrix el-

ements of nucleon transition between single-particle
states i and j of fragments (ZCN − Z) and Z of the
DNS, respectively. Matrix elements g(Z)

ij describe a
nucleon exchange between nuclei of the DNS, and
their values were calculated microscopically using
the expression obtained in [13]. The relaxation of the
mass asymmetry degree of freedom achieves the equi-
librium value in time τmass = 2× 10−21 s (see Fig. 3).
The single-particle occupation numbers are found
as a solution of the master equation in the frame-
work of the model presented in [14]. Equation (5)
with coefficients (6) and (7) at the initial condition
PZ(0) = δZZp has been solved numerically, and the
primary isotope distributions are found for a certain
descent time tfis from the saddle point to the scission
point. The final result of calculations is obtained after
averaging the solution of Eq. (5) with the different
initial conditions for the charge asymmetry of the
DNS {Zp, ZCN − Zp} (Zp = 2, 4, 6, . . . , 46) after
overcoming the saddle point of the fission path. The
analysis showed that the solutions of Eq. (5) for
different initial conditions starting from Zp > 32 are
qualitatively alike at tfis > 1.5 × 10−20 s. The quanti-
tative description of the yield of fission products was
performed in the way suggested in [10, 11], but for

the matrix elements g(Z)
ij , the expressions obtained

in [13] have been used. To take into account decay of
the DNS, the term Λfis

ZPZ(t) was subtracted from the
right side of Eq. (5),

dPZ(t)/dt = ∆(+)
Z−1PZ−1(t) (9)

+ ∆(−)
Z+1PZ+1(t)−∆ZPZ(t)− Λfis

ZPZ(t),

where Λfis
Z is “Kramer’s rate” for the decay probability

of the DNS to fragments with charge numbers Z
andZCN−Z [12] and is proportional to exp(−Bfis

Z /T )
with the fission barrier Bfis

Z and DNS temperature T
at formation of fragments Z and ZCN − Z. The yield
of fission products with the charge Z during time tfis
is found by the expression

YZ = Λfis
Z

tfis∫
t0

PZ(t)dt, (10)

where t0 is the start time of descent from the saddle
point and it is equal to zero. The results of calculation
(Fig. 3) reflect peculiarities of the experimental data
(Fig. 1) for the case of superasymmetric fission of a
235U nucleus induced by neutrons. There are bumps
in the mass distribution of fragments at charge num-
bers Z = 50 and 54. Analyzing the evolution of mass
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 2 2005
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asymmetry as a function of time, we found that, in
fission induced by neutrons, the relaxation time of the
degree of freedom connected with the mass (charge)
asymmetry of the breaking-up dinuclear system is
10−20 s (Fig. 4). The time dependence of the calcu-
lated mass yield of fragments shows that, inmass dis-
tribution, the appearance of the fine structure around
AH = 134, 144, 150, and 154 is enhanced with in-
creasing fission time, because large shell corrections
in this region lead to an increase in the transition
probability to this region of mass asymmetry from the
other configurations.We should stress that the effects
of shell structure are included in the expressions of

the transition coefficients ∆(+)
Z (6) and ∆(−)

Z (7) of
the master equation by means of occupation num-
bers, energies, and degeneracy of the single-particle

states and matrix elements g(Z)
ij of nucleon transition

between single-particle states i and j in fragments
(ZCN − Z) and Z. The theoretical results obtained
in this paper show good agreement with the well-
known behavior of the mass distribution shape of the
236U fission fragments, which has two wide bumps
around mass numbers A = 102 and 134 [15] and
charge numbers Z = 40 and 52 [16]. We confirm that
the reason for location of the bumps at thesemass and
charge regions is an increase in shell effects due to the
neutron number N = 82 in the heavy fragment A =
134. Notice that the neutron emission is not taken
into account in calculation of this mass distribution.

4. COMPARISON OF THE MEASURED
AND CALCULATED MASS YIELDS

FOR A = 145−160

Comparison of the experimental and calculated
results on mass yields of the fission fragments allows
us to establish a correlation between the shape of
nuclei at the scission point and descent time of the
nuclear complex from the saddle point to the scis-
sion point. The experimental data showed (Fig. 1)
a fine structure for fission fragments with small ki-
netic energies in the region of masses A = 145−152.
It was explained by the large shell corrections at
larger deformation parameters of the heavy fragment
(Fig. 2). The yield of fragments with low kinetic en-
ergies is several times larger than that with larger
kinetic energies EK > 65 MeV (see Fig. 1). In the
calculations, which were performed in the framework
of the presented model (Section 3), we found that the
appearance of the fine structure in the yield of fission
products is enhanced more strongly by an increase
in descent time of fission (tfis) from the saddle point
to the scission point (Fig. 4). Based on the calcu-
lated mass distribution, we assume that the hillock
on the experimental curves corresponding to the yield
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 2 200
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236U nucleus calculated in the DNS model: solid, dotted,
and dash-dotted curves correspond to the descent times
from a saddle point to a scission point tfis = 2 × 10−20,
10−20, and 2 × 10−21 s, respectively.

of fragments with kinetic energies EK = 50, 55, and
60 MeV is a consequence of the large shell effects
in the conjugate light fragments having the mass
number A = 82 and charge number Z = 32 (N =
50). The curves describing theoretical results have
peaks around the mass numbers A = 134, 144, 150,
154, and 158 (Fig. 3). Three of them at the mass
numbers A = 144, 150, 154 are seen in the measured
yields of mass fragments with lower kinetic energies
(Fig. 5). The theoretical results obtained for the short
descent time tfis ≤ 2× 10−21 s (solid curve, Fig. 5) do
not show any fine structure. Therefore, the absence
of the fine structure in the curves corresponding to
the yield of fragments with the kinetic energies EK =
65, 70, and 75 MeV is explained by the short fission
time of 236U, which is too short for the appearance
of shell-structure effects. The conclusion is that the
fine structure in the mass yield appears more strongly
if the descent time of the system from the saddle
point to the scission point increases. This indicates
the existence of a correlation between the shape of
fragments at the scission point and formation time of
mass distribution. We conclude as well that, if a for-
mation of mass distribution occurs during the descent
time from the saddle point, then the more deformed
fragments are formed for a longer time than frag-
ments of more compact shape (Fig. 4). The strong
appearance of peculiarities of shell structure in one or
both fragments being formed causes the fine structure
5
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even at short descent time. This is connected with
the increase in nuclear shell effects for the neutron
number N = 82 in the light fragment. Due to strong
shell effects for the configuration of the nuclear sys-
tem with the charge numbers Z1 = 40 and Z2 = 52
P

and atomic mass numbers A1 = 102 and A2 = 134
of its fragments, the main bumps in the calculated

mass yield of the primary fragments in fission of 236U

appear even at small values of the descent time. The
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 2 2005
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fission time must be greater than 1.2× 10−21 s for the
formation of this shape of mass distribution.

5. CONCLUSION
The experimental data on the mass yield of fis-

sion of 235U induced by thermal neutrons for A =
145−160 andEK = 50−75MeVmeasured by amass
spectrometer are presented. The fine structure is
found at A = 153, 154 and EK = 50−60MeV. In the
A = 145−160 region of mass distribution, the yield of
fragments with lower kinetic energies is several times
higher than that with larger kinetic energies (see
Fig. 1). It was explained by the increase in shell cor-
rections at larger deformation parameters of the heavy
fragment (Fig. 2). The time dependence of the mass
yields of fragments was analyzed in the framework of
a model based on the dinuclear system concept and
using transport equations for nucleon transfer. Our
theoretical results showed that the fine structure in
the fragment mass distribution is pronounced more
strongly with the increase in the descent time (tfis)
from the saddle point to the scission point. Assuming
the existence of the correlation between the shape of
fragments at the scission point and formation time of
mass distribution, we can conclude that the formation
time of the fragments with lower kinetic energies
(more deformed nuclear shape) is longer than that
for fragments having higher kinetic energies (more
compact nuclear shape). The main maxima of the
calculated mass yields of primary fragments in fission
of 235U induced by thermal neutrons are placed at
charge numbers Z1 = 40 and Z2 = 52 and atomic
mass numbers A1 = 102 and A2 = 134, which is in
good agreement with the experimental data [15, 16].
The theoretical results showed peaks in the mass
yield around the mass numbers A = 134, 144, 150,
154, and 158 (Fig. 3). Three of them at the mass
numbers A = 144, 150, 154 are seen in the measured
yields of mass fragments with lower kinetic energies
(Fig. 5) in the experiment using the electromagnetic
mass spectrometer at the Institute of Nuclear Physics
of the Academy of Sciences of Uzbekistan. The
hillock in the mass yield at A1 < 78 (A2 > 158) was
observed in the experiment byA.Goverdovsky and his
colleagues [15]. Complete analysis of experimental
data demands the performance of dynamical calcula-
tions, which include the dependence of deformation
parameters of nuclei on the peculiarities of shell
structure.
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Abstract—The two-proton decay of spherical nuclei is investigated on the basis of the formalism developed
in constructing the quantum-mechanical theory of ternary fission. The proposed method for determining
the amplitudes of partial widths with respect to two-proton decay and the asymptotic behavior of the wave
function for a decaying nucleusmakes it possible to solve the problemof describing two-proton radioactivity
without recourse to the traditionally used (inR-matrix approaches) cumbersome procedure of matching the
internal and the external wave function for the decaying nucleus within the three-body formulation. In the
diagonal approximation and with allowance for the properties of the potential describing the interaction of
the products of two-proton decay, the structure of the wave function for the Cooper pair of two protons
bound in the parent nucleus is analyzed, along with the behavior of the wave function describing the
potential scattering of the products of binary decay, the coupling of decay channels being taken into account
in this analysis. c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

The phenomenon of two-proton radioactivity was
predicted in [1] and was analyzed in detail in the
monograph of Baz’ et al. [2]. This phenomenon con-
sists in the simultaneous emission of two protons that
accompanies the deep-subbarrier decay of the ground
state of a parent nucleus that is even in Z and which
lies in the vicinity of the proton-drip line determining
the stability boundary of the region of proton-rich
nuclei in nature. In principle, two protons can be
emitted by a nucleus sequentially, but, in this case,
two-proton decay reduces to the one-proton decays
of a parent and the respective intermediate nucleus.
Such a situation is realized, with an overwhelming
probability, for nuclei like 6Be and 12O. For true two-
proton radioactivity to be observable experimentally,
it is necessary that the channel of sequential pro-
ton emission be strongly suppressed because of a
deep-subbarrier character of one-proton decay and
a negative or a small positive energy Q1p of proton
separation from a parent nucleus.

The first case of two-proton radioactivity was dis-
covered in 2002 for the 45Fe nucleus [3, 4]. In that
case, the energyQ2p required for the separation of two
protons proved to be 1.1± 0.1 MeV [3] and 1.14 ±
0.05 MeV [4], while the half-life T1/2 of the 45Fe nu-
cleus took values of 3.2+2.6

−1.0 ms [3] and 4.7+3.4
−1.4 ms [4].

The branching fraction of the two-proton decay of

*e-mail: kadmensky@phys.vsu.ru
1063-7788/05/6802-0184$26.00
this nucleus ranged between 70 and 80% [4]. The
experimental energy Q2p proved to be in fairly good
agreement with the predictions of a number of sys-
tematics: Q2p = 1.15 ± 0.09 MeV [5], Q2p = 1.28 ±
0.18 MeV [6], andQ2p = 1.22± 0.05 MeV [7]. At the
same time, the proton-separation energyQ1p in these
systematics takes values in the range between −24
and 10 keV, this leading to times of the one-proton
decay of the 45Fe nucleus in excess of one hour, which
are considerably longer that the observed half-life of
this nucleus. Therefore, the mechanism involving the
sequential two-proton decay of the 45Fe nucleus can
be disregarded.

Two theoretical approaches are presently used to
describe two-proton radioactivity. Within the first ap-
proach [8, 9], two emitted protons are considered
to be strongly correlated. Also, they are assumed to
occur, on the energy scale, in the vicinity of their s-
resonance state at an energy of about 0.55 MeV, this
corresponding to the two-body diproton decay mode,
in which case two particles (a diproton and a daughter
nucleus) are considered in the asymptotic region of
the wave function for the decaying nucleus. In order
to describe this decay mode, the authors of [8, 9] used
R-matrix theory [10].

The second approach treats the two-proton decay
of nuclei in a more consistent way, via a three-body
formulation [11, 12] where three particles (two pro-
tons and a daughter nucleus) appear in the asymp-
totic region of the wave function for the decaying
nucleus and where use is made of the formalism of
c© 2005 Pleiades Publishing, Inc.
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three-particle nuclear reactions, the method of hy-
perspherical functions [13–15], which is natural for
describing such reactions, being applied in this case.
The calculations performed in [16] for rather heavy
parent nuclei (A ≥ 40) revealed that the two-proton-
decay widths obtained within the diproton approach
are more than one order of magnitude larger than
the analogous widths calculated within the three-
body approach. This means that, if the calculations
reported in [16] are correct, then the role of the dipro-
ton decay mode is likely to be strongly exaggerated
in [8, 9].

Unfortunately, significant uncertainties in experi-
mentally measured energies Q2p of separation of two
protons [3, 4] and the more so in their counterparts
predicted by the systematics in [5–7] hinder the ver-
ification of validity of these two approaches via a
comparison of the two-proton widths obtained within
them with respective experimental values for the 45Fe
nucleus, for example. Indeed, a deep-subbarier char-
acter of two-proton decay results in that the diproton
width changes by a factor of about 20 in response to a
change of 100 keV in the separation energy Q2p from
1.09 to 1.19 MeV.

Within the three-particle approach, the multipar-
ticle problem of describing two-proton radioactivity
reduces [11, 12] to solving the three-body problem of
finding the wave function for two interacting protons
in the field of a daughter nucleus. The method used
in [11, 12] to solve this problem is based on match-
ing two functions in a multidimensional configuration
space, the internal wave function that describes the
bound state of two protons in the parent nucleus with
allowance for pairing effects and the external wave
function that describes the motion of two interacting
protons in the field of the daughter nucleus in the
region of the continuous spectrum. This procedure
is extremely cumbersome and generates a number of
uncertainties in its practical implementation.

In order to describe the two-proton decay of nuclei,
it is therefore natural to invoke the results obtained
within the quantum-mechanical theory of ternary fis-
sion [17, 18], since this theory also deals with the
problem of the three-body decay of nuclei. The theory
in question is based on methods used in the multi-
particle theory of nuclear reactions [10] (including the
theory of three-particle nuclear reactions [13–15]),
on the unified theory of the nucleus [19], and on the
theory of open Fermi systems [20]. Within the theory
of the ternary fission of nuclei [17, 18], the aforemen-
tioned difficulty associated with the need for matching
the internal and the external component of the wave
function for the decaying nucleus can be sidestepped
owing to the use of the projection-operator method
and the integral formula for the amplitude of the
partial width with respect to the three-particle decay
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 2 200
of nuclei [19, 20]. The formalism of the quantum-
mechanical theory of ternary nuclear fission can be
generalized to the case of the two-proton decay of
nuclei, and this is the objective of the present study.

2. WAVE FUNCTION FOR A NUCLEUS
UNDERGOING TWO-PROTON DECAY
A further consideration will be performed for the

case where a spherical parent nucleus of atomic
weight A and charge number Z decays to two inter-
acting protons and a daughter nucleus (A− 2,Z − 2).
The wave function ΨJM

σ (ξ) describing an isolated
quasistationary parent-nucleus state characterized
by a spin J , its projection M onto the z axis of
the laboratory frame, other quantum numbers σ,
and a full set of intrinsic coordinates ξ satisfies the
Schrödinger equation

(HA − ĒJ
σ )ΨJM

σ (ξ) = 0, (1)

where HA is the Hamiltonian for the parent nucleus
A in the c.m. frame and ĒJ

σ = (EJ
σ − iΓJ

σ/2) is a
complex-valued energy whose real part EJ

σ coincides
with the sign-reversed binding energy of the nucleus
and whose imaginary part is related to the total width
ΓJ

σ with respect to the decay of nucleus A through all
open channels. Following the ideas developed in the
unified theory of the nucleus [19] and in the theory of
open Fermi systems [20], we can represent the wave
function ΨJM

σ (ξ) in the form

ΨJM
σ (ξ) = P̂ΨJM

σ (ξ) + Q̂ΨJM
σ (ξ). (2)

The operator P̂ projects states of nucleus A onto
the internal (shell) region of the configuration space
defined by the full set of coordinates of nucleons form-
ing nucleus A, its center-of-mass coordinates being
excluded from this set. In this region, nucleus A is
simply connected and can be described in terms of an
orthonormalized basis ΨJM

n (ξ) of multiparticle shell
functions that are constructed with allowance for nor-
mal and superfluid nucleon–nucleon correlations and
collective modes of nuclear motion, where the index
n runs through a discrete and finite set of values. The
operator P̂ can then be represented in the form

P̂ =
∑

n

|ΨJM
n 〉〈ΨJM

n |.

The operator Q̂ = 1− P̂ projects the decaying-
nucleus state onto the configuration-space region
(cluster region) where the products of two-proton
decay have already been formed. In the cluster region,
the parent-nucleus wave function Q̂ΨJM

σ can be
represented in the form [19, 20]

Q̂ΨJM
σ (ξ) = 〈GJM (ξ, ξ′)|Q̂(HA − EJ

σ )P̂ |ΨJM
σ (ξ′)〉,

(3)
5
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where GJM (ξ, ξ′) is the multiparticle Green’s func-
tion in the cluster region; it satisfies the equation

Q̂(HA − EJ
σ )Q̂GJM (ξ, ξ′) = δ(ξ − ξ′). (4)

In order to describe the relativemotion of two-proton-
decay products in the cluster region, it is natural
to employ the relative coordinates R = R1 − R2 and
r = R3 − (R1 + R2)/2, where R1, R2, and R3 are the
center-of-mass coordinates of the two protons and
the daughter nucleus. The solid angles Ωr and ΩR
specify the directions of the radius vectors r and R
in the laboratory frame. In order to describe three-
particle decay channels, it is natural to use [13, 14],
instead of the variables R and r, the variables ρ and ε,

r =
(
Ma

Mb

)1/4

ρ sin ε, R =
(
Mb

Ma

)1/4

ρ cos ε, (5)

where the reduced masses Ma and Mb are defined
as Ma = m/2 and Mb = 2(A − 2)m/A, with m be-
ing the proton mass, while the phase-space element
R2dRr2dr is transformed as ρ5 sin2 ε cos2 ε dρdε. In
formula (5), the angle ε lies in the interval 0 ≤ ε ≤
π/2 and specifies [13] the asymptotic kinetic energies
of the emitted protons and the daughter nucleus. In
the cluster region, one can then introduce [17, 18] the
channel function UJM

α (x) possessing correct trans-
formation properties under time inversion [10]; that is,

UJM
α (x) = {{ΨJ ′M ′

σ′ (ξ′){χ1/2m1
χ1/2m2

}SMS
}IMI

(6)

× {iLYLML
(ΩR)ilYlMl

(Ωr)}L0M0}JM
R(L, l, λ, ε)
sin ε cos ε

,

where α ≡ cβLlλ; c = J ′σ′; β ≡ SIL0; and the set
x of coordinates includes all coordinates ξ of the
parent nucleus, with the exception of the hyperradius
ρ. In (6), ΨJ ′M ′

σ′ (ξ′) is the daughter-nucleus wave
function, for which one can take, to a high accuracy,
its shell component P̂ΨJ ′M ′

σ′ (ξ′); χ1/2mi
is the spin

function for the ith proton (i = 1, 2); YLML
(ΩR)

and YlMl
(Ωr) are spherical harmonics that describe

the relative angular motions of decay products, the
respective orbital angular momenta being L and l;
and braces denote the vector composition of angular
momenta. The normalized functions
R(L, l, λ, ε)/(sin ε cos ε) [13] are solutions to the
three-particle Schrödinger equation in the asymp-
totic region, where the Coulomb interactions of
ternary-decay products are screened. The functions
R(L, l, λ, ε) coincide with Jacobi polynomials [13],
since the quantity λ takes integral values of λ = 0,
1, . . . . The channel functions in (6) are general-
izations of six-dimensional hyperspherical functions
characterized by the grand-orbital momentum K =
L+ l + 2λ and used in [11, 12] to a multidimensional
PH
case. The energy of the relative motion of two-proton-
decay products in the channel c is given by Qc =
EJ

σ − EJ ′
σ′ . At the same time, the asymptotic kinetic

energy E3 of the daughter nucleus is related to the
quantity ε by the equation E3 = 2Qc/A cos2 ε [14].

In order to find the Green’s function (4), we can
introduce the wave function ΨJM

α (ξ) that describes,
in the cluster region, the potential scattering of
two-proton-decay products and which satisfies the
Schrödinger equation

Q̂(HA −E)Q̂ΨJM
α (ξ) = 0. (7)

By using the orthogonal-projection method [21], we
can go over from the operator Q̂(HA−E)Q̂ to the op-
erator (H̃A −E), where H̃A = H0

A + Ṽ = H0
A + V +

χP̂ , with H0
A and V being, respectively, the Hamil-

tonian of noninteracting two-proton-decay products
and the potential of interaction of these products. The
quantity χ is taken in the limit χ→∞, which ensures
the orthogonality of the functionsΨJM

α (ξ) to the set of
shell functions ΨJM

n (ξ) specifying the projection op-
erator P̂ . Owing to the presence of the term χP̂ in the
effective Hamiltonian H̃A, the function ΨJM

α (ξ) de-
scribes the potential scattering of two-proton-decay
products without the formation of multiparticle res-
onances corresponding to the shell structure of the
parent nucleus. The function ΨJM

α (ξ) can be sought
in the form of the expansion [18]

ΨJM
αE (ξ) =

∑
α′

UJM
α′ (x)

fJ
α′α(ρ)
ρ5/2

. (8)

Here, the form factor fJ
α′α(ρ), normalized to a delta

function of energy, satisfies a set of coupled equations
of the form(

d2

dρ2
− L̄′

0(L̄
′
0 + 1)
ρ2

+ k2
c′

)
fJ

α′α(ρ) (9)

− 2M
�2

∑
α′′

Ṽ J
α′α′′(ρ)fJ

α′′α(ρ) = 0,

where L̄0 = L+ l + 2λ+ 3/2 for the channel α and
Ṽα′α′′(R) = 〈UJM

α′ |Ṽ |UJM
α′′ 〉, with boundary condi-

tions corresponding to a regular solution to the set
of Eqs. (9); that is,

fJ
α′α(ρ) −−−→

ρ→0
0; (10)

fJ
α′α(ρ) −−−→

ρ→∞
− 1

2i

√
2

π�vc′

{
exp
[
−i
(
kcρ−

L0π

2

)]

× δα′α − SJ
α′αexp

[
i

(
kc′ρ−

L′
0π

2

)]}
.

YSICS OF ATOMIC NUCLEI Vol. 68 No. 2 2005



DESCRIPTION OF TWO-PROTON RADIOACTIVITY 187
In (10), SJ
α′α is an element of the S matrix, kc =√

2MQc/�2, vc = �kc/M for the channel α, and
M = m

√
(A− 2)/A. By using the representations

specified by Eqs. (2) and (3) and finding the asymp-
totic behavior of the Green’s function GJM (ξ, ξ′) (4)
for ρ→∞, we can obtain [18, 22] an asymptotic
expression for the decaying-nucleus wave function
ΨJM

σ in the form

ΨJM
σ −−−→

ρ→∞

∑
α

UJM
α

ρ5/2
(11)

× exp
[
i

(
kcρ−

L̄0π

2
+ δJα

)]√
ΓJ

σα

�υc
,

where the potential-scattering phase shift δJα and the
real amplitude

√
ΓJ

σα of the partial width with re-
spect to the two-proton decay of the parent nucleus
through the channel α are determined by the integral
formula [18, 22] √

ΓJ
σαe

iδJ
α (12)

=
√

2π
∑
α′

〈
UJM

α′
f

J(−)
α′α (ρ)
ρ5/2

∣∣HA − EJ
σ

∣∣ P̂ΨJM
σ

〉
,

where f
J(−)
α′α (ρ) is the time-inversed form factor

fJ
α′α(ρ),

f
J(−)
α′α (ρ) = (−1)L̄0 [fJ

α′α(ρ)]∗. (13)

We note that, for deep-subbarrier two-proton decay,
the potential-scattering phase shift δJα is very close
to the phase shift (δJα)Coul, which is determined ex-
clusively by the Coulomb interactions of two-proton-
decay products.

In [23], the integral formula that was obtained
previously in [24] for the case of deep-subbarrier two-
body decays of nuclei and which was widely used to
describe two-proton alpha decay [25, 26], the protonic
decay of spherical [27, 28] and deformed [29] nuclei,
and cluster radioactivity [30] was generalized to the
case of three-body decays in order to describe the
amplitude

√
ΓJ

σα of the partial width with respect
to two-proton decay. Unfortunately, the generalized
formula from [23] possesses serious drawbacks. First,
it is valid only in the case of deep subbarrier decays.
Second, it can be employed only upon determining
the parent-nucleus wave function not only in the shell
region, where the structure of this function can be
reconstructed quite reliably, but also in the transition
region between the shell and cluster regions. But
in the transition region, two-proton-decay products
undergo not only Coulomb but also intense nuclear
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 2 200
interaction, so that this determination of the parent-
nucleus wave function requires applying the afore-
mentioned (see Introduction) cumbersome procedure
of matching the internal and the external component
of the decaying-nucleus wave function.

We note that the integral formula (12) does not
possess the above drawbacks. Indeed, the method of
its derivation proves to be valid not only for deep-
subbarrier but also for above-barrier two-proton
decays. But what is of greatest importance in cal-
culating the amplitudes of two-proton-decay partial
widths by formula (12) is that the procedure for
matching the internal and external components of the
parent-nucleus wave function is not invoked at all.
The determination of the partial width by formula (12)
reduces to three successive operations. First, it is
necessary to find the parent- and the daughter-
nucleus wave function [P̂ΨJM

σ (ξ) and P̂ΨJ ′M ′
σ′ (ξ′),

respectively] in the shell region by using the mul-
tiparticle shell model with allowance for normal
and superfluid nucleon–nucleon correlations. This is
not a difficult challenge since, at the present time,
there exist quite elaborate methods for constructing
such wave functions for a broad range nuclei [31,
32]. Second, it is necessary to calculate the form

factors fJ(−)
α′α (ρ), which are determined by Eqs. (9)–

(13) and which are appropriate for describing the
three-body potential scattering of two-proton-decay
products with allowance for both nuclear and long-
range Coulomb forces. This is a difficult problem,
but one can employ, in solving it, experience gained
in [11, 12], where the authors actually solved the
problem of reconstructing form factors of the type
fJ

α′α(ρ) over the entire external region. Finally, the
use of the results obtained for the shell parent- and
daughter-nucleus wave functions and for the form

factors fJ(−)
α′′α′ (ρ) makes it possible to calculate, by the

integral formula (12), the amplitudes of two-proton-
decay partial widths.

With the aid of the asymptotic expression (11) for
the parent-nucleus wave function, we can calculate
the multipaticle current density jp in the direction of
the hyperradius ρ:

jp =
i�

2M

[
ΨJM

σ

d

dρ
(ΨJM

σ )∗ − (ΨJM
σ )∗

d

dρ
ΨJM

σ

]
.

(14)

Multiplying this current density by
ρ5 sin2 ε cos2 ε dεdΩrdΩR and performing integration
with respect to the spin coordinates of the protons
and with respect to the internal coordinates ξ′ of the
daughter nucleus, we can obtain the triple-differential
total two-proton-decay width, which characterizes
5
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the angular distribution of two-proton-radioactivity,
in the form

d3ΓJ
σ

dΩrdΩRdε
=
∑

cSIMI

∑
L0LlλM0

∑
L′

0L′l′λ′M ′
0

{Y ∗
lml

(Ωr)

(15)

× Y ∗
LML

(ΩR)}L0M0C
JM
L0IM0MI

{Yl′ml′ (Ωr)

× YL′ML′ (ΩR)}L′
0M ′

0
CJM

L′
0IM ′

0MI
R(L, l, λ, ε)

×R(L′, l′, λ′, ε)(−1)λ−λ′

× exp[i(δJcSIL0Llλ − δJcSIL′
0L′l′λ′)]

×
√

ΓJ
σcSIL0Llλ

√
ΓJ

σcSIL′
0L′l′λ′ .

3. TWO-PROTON DECAY OF SPHERICAL
NUCLEI IN THE DIAGONAL

APPROXIMATION

In pursuing further our investigation into the two-
proton decay of rather heavy spherical nuclei, we
will restrict ourselves to the diagonal approxima-
tion, which was previously used to classify alpha-
particle [25, 26] and protonic [27, 28] transitions. This
approximation, which is aimed at describing a favored
transition where only one parent-nucleus state σ′0
whose shell wave function has a structure close to
that of the shell wave function for the parent-nucleus
core is predominantly populated in the two-proton
decay of the ground state of the daughter nucleus, is
valid if matrix elements of the Ṽ J

α′α′′ type for the mul-
tiparticle potentials V1 A−2 and V2 A−2 simulating the
interaction of the first and the second emitted proton
with the daughter nucleus [such matrix elements are
used in (9)] are diagonal in the channel indices c and
c′. In this approximation, the multiparticle problem of
two-proton decay reduces to the three-particle prob-
lem of the interaction of two protons and the daughter
nucleus occurring in a specific σ′ = σ′0, J

′ = J ′
0 state.

As amatter of fact, the approximation in question was
employed in describing two-proton radioactivity in [1,
2, 8, 9, 11, 12].

In this approximation, the multiparticle potentials
V1 A−2 and V2 A−2 can be replaced by their diagonal
matrix elements for the daughter-nucleus shell wave

function P̂ΨJ ′
0M ′

σ′
0

(ξ′), which coincide with the real

parts of the optical potentials of proton interactions
with the daughter nucleus, ReV opt

1 A−2(R+ r/2) and

ReV opt
2 A−2(R− r/2), and which depend only on the

relative coordinates R and r. At the same time, one
can perform integration with respect to all internal
variables ξ′ of the daughter nucleus in formula (12),
P

which determines the amplitude of the partial width
with respect to favored two-proton decay through the
c0 = J ′

0, σ
′
0 channel, and express this formula in terms

of an integral with respect to six variables, drdR =
dΩrdΩRρ5dρ sin2 ε cos2 ε dε, upon the substitution of
the potentials ReV opt

1 A−2 and ReV opt
2 A−2 for the po-

tentials V1 A−2 and V2 A−2 and upon introducing an
effective shell wave function ϕ(1, 2) for two protons
bound in the parent nucleus, this function being given
by

ϕ(1, 2) = 〈P̂ΨJ ′
0M ′

σ′
0
|P̂ΨJM

σ 〉. (16)

The form factors fJ(−)
α′α (ρ), which describe the po-

tential scattering of two-proton-decay products and
which are determined by Eqs. (9)–(13), then become
diagonal in the channel indices c and c′ and do not
vanish at c = c′ = c0 = J ′

0, σ
′
0.

In order to construct the shell wave function
P̂ΨJM

σ for the ground state of a rather heavy spherical
parent nucleus even in Z, one can use the superfluid
model of the nucleus [30, 31], where

P̂ΨJM
σ = Ψ00

Z ΨJM
N . (17)

Here, ΨJM
N and Ψ00

Z are the wave functions for,
respectively, the neutron subsystem of the parent
nucleus and its proton subsystem, which is even
in Z. For a diagonal favored two-proton decay, the
daughter-nucleus shell wave function can be repre-
sented in the form

P̂ΨJ ′M ′
σ′
0

= Ψ00
Z−2Ψ

JM
N δJ ′JδM ′M (18)

for the case where the neutron subsystem of the par-
ent nucleus appears to be a spectator for favored two-
proton decay.

Within the superfluid model of the nucleus, the
shell wave function Ψ00

Z is represented as [26]

Ψ00
Z =

∏
ν,m>0

(u(Z)
ν + v(Z)

ν (−1)j−m+la+
νma

+
ν−m)|0〉,

(19)

where a+
νm is the operator of proton creation in the

nljm ≡ νm shell state characterized by the wave

function ϕνm(1), while u(Z)
ν and v(Z)

ν are the coef-
ficients of the Bogolyubov u–v transformation. The
shell wave function Ψ00

Z−2 for the proton subsystem
of the daughter nucleus is given by the analogous
formula where the index Z is replaced by the index
(Z − 2). For the effective wave function ϕ(1, 2) (16),
which describes the system of two protons, we can
then obtain the expression [26]

ϕ(1, 2) =
∑

ν

√
2j + 1

2
(−1)lu(Z−2)

ν v(Z)
ν (20)
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× {ϕνm(1)ϕν−m(2)}00,
which in fact represents the wave function for a
Cooper pair of two protons having zero spin and a
positive parity. The wave function ϕ(1, 2) (20) can be
represented as a superposition of two terms for which
the total spin of two protons is S = 0 and S = 1, with
the total orbital angular momentum being L0 = S.
By using the generalized Talmi transformation [25],
we can go over from the proton coordinates r1 and
r2 reckoned from the center of mass of the daughter
nucleus to the relative coordinates r and R. The
specific calculations performed in [33] revealed that,
because of coherent superfluid mixing, the S = 0,
L0 = 0 spin-singlet component, where states of
orbital angular momenta l and L equal to zero are
the most significant, plays the main role in the
function ϕ(1, 2) (20). This result is confirmed by the
calculations of Grigorenko et al. [16], who relied
on the SU3-symmetry scheme. Since the potentials
ReV opt

1 A−2(R+ r/2) and ReV opt
2 A−2(R− r/2) and the

potential V12(r) of the interaction of two outgoing
protons are scalar, their effect on the wave functions
for two-proton-decay products cannot change the
total relative orbital angular momentum L0 = L+ l
of these products. At the same time, the potentials
in question can change the relative orbital angular
momenta l and L of two-proton-decay products
individually by, respectively, ∆l and ∆L—but in such
a way that ∆l+ ∆L = 0—since these potentials are
nonspherical, depending on the angle θrR between
the vectors r and R. Because of the properties of
the integrand in (12), one can therefore expect that
the partial widths for the S = 0, L0 = 0, and l = L
two-proton-decay channels will play a dominant role
for favored two-proton decay, the quantities l and
L taking only even values owing to the structure
of the potentials simulating the interaction of decay
products.

In this case, the triple-differential two-proton-
decay width (15) assumes a simpler form,

d3ΓJ
σ

dΩrdΩRdε
=
∑
lλl′λ′

{Y ∗
lml

(Ωr)Y ∗
lML

(ΩR)}00 (21)

× {Yl′ml′ (Ωr)Yl′ML′ (ΩR)}00R(l, l, λ, ε)

×R(l′, l′, λ′, ε)(−1)λ−λ′

× exp[i(δJlλ − δJl′λ′)]
√

ΓJ
lλ

√
ΓJ

l′λ′ ,

where, in the notation used above, ΓJ
lλ and δJlλ coin-

cide with ΓJ
σJσ′

00J0llλ and δJσJσ′
00J0llλ, respectively. If

we use the formula

{Ylml
(Ωr)YlML

(ΩR)}00 = Yl0(θrR)
1
4π

(22)
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and integrate formula (21) with respect to ε, the
angular distribution of products originating from the
favored two-proton decay of nuclei takes the form

d2ΓJ
σ

dΩrdΩR
=
∑
λll′

Yl0(θrR)Yl′0(θrR) (23)

×
√

ΓJ
lλ

√
ΓJ

l′λ[δll′ + 2cos(δJlλ − δJl′λ)(1− δll′)].

At the same time, integration of formula (21) over
all directions of proton emission yields the energy
distribution for these products; that is,

dΓJ
σ

dε
=
∑
lλλ′

√
ΓJ

lλ

√
ΓJ

lλ′R(l, l, λ, ε)R(l, l, λ′, ε) (24)

× [δλλ′ + 2cos(δJlλ − δJlλ′)(1− δλλ′)].

4. CONCLUSION

By using methods employed in studying pro-
tonic [29] and alpha [30] decays and the binary and
ternary fission of deformed nuclei [17, 18], the formal-
ism developed above for describing the two-proton
decay of spherical nuclei can readily be generalized to
the case of the two-proton decay of deformed nuclei.
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Abstract—Within the method of matching experimental data obtained in the neutron-stripping and
neutron-pickup reactions on 40,42,44,46,48Ca isotopes, the single-particle energies and probabilities that
neutron states are filled are obtained for the even–even calcium isotopes. These data are analyzed within
the dispersive optical model, and good agreement between the calculated and experimental values of the
energies of states is obtained. The dispersive optical potential is extrapolated to the region of the unstable
50,52,54,56Ca nuclei. The calculated single-particle energies of bound states in these isotopes are compared
with the results of the calculations within the multiparticle shell model, the latter predicting a new magic
numberN = 34 for Z = 20 nuclei. c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Searches for and investigation of newmagic nuclei
form one of the most important lines of experimen-
tal and theoretical studies stimulated by advances in
the realms of obtaining and accelerating radioactive
nuclei and by the development of new computational
procedures in nuclear-structure theory.

In the past years, a full set of parameters of ef-
fective interaction for pf-shell nuclei has been de-
termined on the basis of experimental information
about the energies of single-particle states andmatrix
elements of two-particle interactions for the doubly
magic nuclei 40

20Ca20 and 48
20Ca28 and nuclei closest

to them. By using the new set of effective-interaction
parameters, the energies of 2+

1 states in the even–
even calcium isotopes from 42Ca to 56Ca inclusive
were calculated in [1] on the basis of the multiparticle
shell model (MSM).

For the even–even calcium isotopes from the
mass-number range 42 ≤ A ≤ 52, the calculated
energies of 2+

1 states are in good agreement with their
experimental counterparts. For 54Ca, the calculated
energy of the 2+

1 state is identical to that in the
48Ca nucleus, while its counterpart in 56Ca is close
to the energies of the 2+

1 states in 42,44,46Ca. Also,
the single-particle energies of the 1f and 2p neutron
states were calculated in [1] for the even–even nuclei
42–56Ca. It was shown that the energy gap between

*e-mail: besp@monet.npi.msu.ru
1063-7788/05/6802-0191$26.00
the 1f5/2 and 2p1/2 states increases as the mass
number A grows from 50 to 54, reaching a value
of about 4 MeV—that is, this gap proves to be
commensurate with the gap between the 1f7/2 and
2p3/2 states in the doubly magic nucleus 48

20Ca28.
On the basis of the fact that the gap between the
1f5/2 and 2p1/2 states is correlated with the energy
of the 2+

1 level in 54Ca, it was assumed in [1] that, in
the 54Ca nucleus, the 2p3/2 and 2p1/2 subshells are
completely filled; therefore, N = 34 is a new magic
number for Z = 20 isotopes, and the 54

20Ca34 nucleus
is a candidate for a doubly magic nucleus.

In order to test the assumption that the number
N = 34 is magic, it is important to determine exper-
imentally the energy of the first 2+

1 level in the 54Ca
nucleus and to calculate the energy gap between the
1f5/2 and 2p1/2 states in the 50,52,54,56Ca nuclei on the
basis of a model that is different from the multiparticle
shell model and which would make it possible to ob-
tain reliable data on the single-particle energies Enlj

of neutron states specified by the quantum numbers
n, l, and j.

However, it is necessary to assess the reliability
of the experimental values of single-particle energies
before proceeding to compare the results of respec-
tive calculations with them. We address this issue
in the second section of this article. Our analysis of
experimental data has made it possible to find, for
the 40,42,44,46,48Ca nuclei, sets of reliable experimental
values of energies for single-particle states.
c© 2005 Pleiades Publishing, Inc.
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In the third section of the article, the refined exper-
imental data on the single-particle energies of states
are compared with the results obtained by other au-
thors on the basis of various models. For the 40Ca
nucleus, we analyze the quantities

χ2 =
∑
nlj

(
Etheor

nlj − Еexpt
nlj

∆expt
nlj

)2

,

where ∆expt
nlj is the error in determining Eexpt

nlj for states
in the vicinity of the Fermi energy EF. It is shown
that minimum values of χ2 correspond to the EDOM

nlj

values calculated within the dispersive optical model
(DOM).

In the fourth section of the article, it is shown
that the use of the traditional version of the dispersive
optical model in calculating the energies of levels
in the stable even–even isotopes 42–48Ca runs into
serious difficulties because of scarcity of experimental
data on neutron-scattering cross sections. In order
to describe experimental information obtained for the
single-particle properties of states of the 42,44,46,48Ca
nuclei, we therefore employ a new version of the dis-
persive optical model.

In the fifth section, we investigate the accuracy to
which it is possible to match the single-particle ener-
gies calculated for neutron states in the 42,44,46,48Ca
nuclei on the basis of the new version of the dispersive
optical model with their experimental counterparts. It
is shown that, for valence states, the calculated and
experimental values of the energies Enlj agree within
the experimental errors.

In the sixth section, we discuss issues associated
with extrapolating some parameters of the dispersive
optical potential from the region of stable nuclei to the
region of unstable nuclei, present the results obtained
by calculating the single-particle energies of neutron
states for the 50,52,54,56Ca nuclei, and explore the
possible magicity of the number N = 34 in Z = 20
nuclei.

2. SINGLE-PARTICLE ENERGIES
AND PROBABILITIES OF THE FILLING
OF NEUTRON STATES IN 40,42,44,46,48Ca

The parameters of the neutron shell structure of
the 40,42,44,46,48Ca nuclei in the vicinity of EF were
determined by the method based on matching the
data obtained in stripping and pickup reactions on
the same nucleus. The single-particle energies Enlj

of subshells characterized by the quantum numbers
n, l, and j and their occupation numbers Nnlj were
calculated with allowance for the spectroscopic fac-
tors Snlj . A detailed description of this method is
P

given in [2]. Below, we only present the formulas for
calculating Nnlj and Enlj .

For levels characterized by the energy Ex and the
quantum numbers n, l, and j, we denote by S∓

nlj(Ex)
the spectroscopic factors determined from data on
pickup (−) and stripping (+) reactions and by S∓

nlj

the total spectroscopic factors:

S−
nlj =

∑
x

S−
nlj(Ex), S+

nlj =
∑

x

S+
nlj(Ex). (1)

In Eq. (1), the quantity S−
nlj(Ex) is proportional to the

number of particles in the respective subshell (in the
case of a pickup reaction), while S+

nlj(Ex) is propor-
tional to the number of vacancies in the subshell (in
the case of a stripping reaction).

From the energies Ex of the levels and the quan-
tities S∓

nlj(Ex), one determines the energies of the
centroids of single-particle levels in final nuclei:

e−nlj =

∑
x
ExS

−
nlj(Ex)

S−
nlj

, e+nlj =

∑
x
ExS

+
nlj(Ex)

S+
nlj

.

(2)

A transition from the energies e−nlj and e+nlj reck-
oned from the ground-state energies of the final nuclei
(A− 1) and (A+ 1) to the energies E−

nlj and E+
nlj

reckoned from the ground-state energy of the nu-
cleus A is accomplished by the formulas

E−
nlj(A) = −B(A)− e−nlj , (3)

E+
nlj(A+ 1) = −B(A+ 1) + e+nlj, (4)

whereB(A) andB(A+ 1) are the neutron-separation
energies in the nuclei whose mass numbers are A and
A+ 1, respectively.

For each nucleus, experimental information about
the stripping and pickup of neutrons was recast into a
mutually consistent form by renormalizing the spec-
troscopic factors in such a way that respective sum
rules were valid for them. The renormalized values of
S∓

nlj were used to calculate the average occupation
numbers for single-particle states by the formula

Nnlj =
[S−nlj + (2j + 1− S+

nlj)]

2(2j + 1)
. (5)

The single-particle energies Enlj of states were de-
termined from the relation

Enlj =
S−nljE

−
nlj + S+

nljE
+
nlj

S−
nlj + S+

nlj

. (6)
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From Eqs. (3)–(6), we obtain

−Enlj = (1−Nnlj)[B(A+ 1)− e+nlj ] (7)

+Nnlj [B(A) + e−nlj ].

In order to determine Nnlj and Enlj , we used the ex-
perimental data on the reactions of neutron stripping
and pickup from [3–6; 7–10; 4, 8, 11, 12; 13–17; 18–
22] for 40Ca, 42Ca, 44Ca, 46Ca, and 48Ca, respectively.

The spins of the levels in the A−1Ca and A+1Ca
nuclei were borrowed from the “Adopted Levels” sec-
tion of the ENSDF international database of nuclear
properties [23]. For a large number of levels excited in
A−1Ca and A+1Ca nuclei in the pickup and stripping
reactions, the spin values are ambiguous or unknown;
therefore, the calculation was performed for each pos-
sible spin value. For the sake of brevity, the set ofEnlj

values found from such calculations will be referred to
as a “solution.” An analysis of all solutions makes it
possible to determine the total range of energies and
occupation numbers for each single-particle state.

It is well known that Snlj(Ex) values calculated
by the distorted-wave method involve an uncertainty
not less than 20%, which contains both a systematic
and a statistical component. The first is caused by
the method used to derive spectroscopic factors as the
coefficients of proportionality between the experimen-
tal values of the cross sections and their counterparts
calculated by the distorted-wave method. Calcula-
tions within the distorted-wave method are based on
the use of standard codes, the geometric parameters
of the real and spin–orbit potentials being fixed, as
a rule. The depth of the real potential is determined
for each state. The calculations reveal that a 1% vari-
ation in the range parameter of the Woods–Saxon
(WS) real potential for the n+A system leads to
a change of 10% in the calculated differential cross
section for the stripping or pickup reaction. The sys-
tematic uncertainty in Snlj(Ex) also receives con-
tributions from the ambiguities in the parameters of
the optical potentials for projectile and emitted par-
ticles, uncertainties in the effective nucleon–nucleus
interaction, and uncertainties in the sum rule. The
application of the method based on matching data
on stripping and pickup reactions makes it possible
to remove, to a considerable extent, these sources
of systematic uncertainties, the remaining statistical
uncertainty in determining the individual values of
renormalized Snlj(Ex) being estimated at a value not
greater than 10%. The errors inNnlj values are about
0.05 near their boundaries of 0 and 1, falling to about
0.1 between their boundaries [2]. The use of the sums
of the spectroscopic factors in our calculations cre-
ates a new source of uncertainties, since the quantum
number j is unknown for many spectroscopic factors,
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so that the inclusion of such a spectroscopic factor
in the sum in (1) or (2) or the disregard of this form
factor would change the value of the respective sum.
The method used in our analysis makes it possible
to estimate these uncertainties by sampling all of the
acceptable values of j. Therefore, the total error in
determining Snlj and Nnlj is taken here to be a root-
mean-square value that takes into account the error
because of the uncertainty in the spins of states and
an error of about 10% in determining the individual
values of renormalized Snlj . The errors in the single-
particle energies are determined in a similar way.

The Nnlj and Enlj values found for 40,42,44,46,48Ca
are given in Table 1, along with their total errors in
parentheses. One can see that, because of incom-
pleteness of experimental data, we were unable to
determine the features of some states. The values
N

expt
nlj and Eexpt

nlj quoted in Table 1 for single-particle

states in the vicinity of EF for the 40,42,44,46,48Ca
isotopes were determined by using a unified method
for all nuclei and are the most complete data. We
note that, here, we define single-particle energies with
allowance for coupling to collective degrees of free-
dom, which affect the occupation numbers for single-
particle states and the energy centroids appearing in
Eq. (7).

Figure 1 shows, according to data in Table 1, the
energy positions of single-particle neutron orbits in
calcium nuclei. From this figure, one can see that
an increase in the number of neutrons in the 1f7/2

subshell leads to an increase in the absolute value of
the energy of the 1f7/2 state and to a modest decrease
in the absolute value of the energy of the 2р3/2 state,
with the result that an individual shell in 48

20Ca28 and
the magic numberN = 28 appear.

The single-particle energy Enl of the state char-
acterized by the quantum numbers n and l can be
expressed in terms of spin–orbit splitting ∆so(nl) =
Enlj=l−1/2 − Enlj=l+1/2 as

Enl = Enlj=l−1/2 −∆so(nl)
l + 1
2l + 1

, (8)

Enl = Enlj=l+1/2 + ∆so(nl)
l

2l + 1
.

According to the data in Table 1, the values of Enl

for the 1f states in 40Ca, 46Ca, and 48Ca are −4.92,
−6.70, and −6.44 MeV, respectively, while the corre-
sponding values for the 2p states are −5.49, −5.09,
and −4.08 MeV. With increasing number of neutrons
in calcium isotopes, the energy gap between the p and
f states proves to be approximately four times larger
in 48Ca than in 40Ca. As N increases from 20 to 28,
the energy gap between the 2р3/2 and 1f7/2 subshells
increases approximately in the same proportion.
5
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Table 1. Mean neutron occupation numbers Nnlj for subshells in the 40,42,44,46,48Ca nuclei and their single-particle
energies−Enlj (in MeV)

Subshell
Nnlj −Enlj Nnlj −Enlj Nnlj −Enlj Nnlj −Enlj Nnlj −Enlj

40Ca 42Ca 44Ca 46Ca 48Ca

2s1/2 >0.92 17.2(18) 0.93(4) 15.44(154) 1.00(0) 15.07(152)

1d3/2 0.83(3) 15.2(20) 0.91(4) 13.03(184) 0.94(6) 13.91(159) 0.99(1) 15.22(179)

1f7/2 0.02(2) 7.52(75) 0.20(4) 7.70(107) 0.49(8) 9.23(112) 0.77(7) 10.07(100) 1.00(0) 10.10(101)

2p3/2 0.02(2) 6.10(67) 0.01(0) 5.73(57) 0.07(3) 5.92(75) 0.10(5) 5.84(60) 0.01(1) 4.68(47)

2p1/2 0.01(1) 4.27(43) 0.00(0) 4.10(41) 0.01(0) 3.63(36) 0.04(4) 3.58(39) 0.00(0) 2.87(28)

1f5/2 0.02(2) 1.46(20) 0.06(5) 2.20(45) 0.03(3) 1.57(40)
On the basis of data quoted in Table 1, one can
trace variations in the particle–hole gap ∆expt =
E1f7/2

− E1d3/2
for the 40,42,44,46Ca nuclei. The gap

value of ∆expt = E2p3/2 − E1f7/2 = 5.42(111) MeV
for 48Ca is smaller than ∆expt for 40Ca approximately
by 2 MeV.

From the data in Table 1, it follows that, for
40,42Ca, the sequence of the levels is 2s1/2–1d3/2,
while, for 48Ca, there is an experimental indication
that the sequence of the levels changes to become
1d3/2–2s1/2, but the uncertainties in Eexpt

nlj give no
way to draw a definitive conclusion. Calculations on
the basis of the relativistic mean-field approximation
(RMFA) [24, 25] predict the sequence 1d3/2–2s1/2,
while the results reported in [26–28] favor the inverse
sequence 2s1/2–1d3/2.

It seems necessary to compare the data on Eexpt
nlj

for 40–48Ca in Table 1 with those that are available in
the literature. In Table 2, we quote data on Eexpt

nlj for

the 2s1/2, 1d3/2, 1f , and 2p states in the 40,48Ca nuclei

from articles in which the compiled values ofEexpt
nlj are

contrasted against Etheor
nlj .

From an analysis of the data on Eexpt
nlj (see Ta-

bles 1, 2) for 40Ca, it follows that the average value
found in the present study for the energy of the 2s1/2

state is smaller in absolute value than its counter-
part quoted in [5, 29–33] approximately by 1 MeV.
It should be noted that, in those studies, only the
39Ca state at Ex = 2.463 MeV, which possesses the
highest spectroscopic factor, was taken into account
in determining the energy of the 2s1/2 level. A modest
distinction between the average energy of the 1d3/2

state and that which is given in [5, 29, 31–33] is
explained in a similar way. From Table 2, it can be
P

seen that, according to data from [5, 29–33], the
spacing between the 1f7/2 and 2p3/2 levels lies in the
range 1.9–2.5 MeV; according to our data, it is as
small as 1.4 MeV. It is noteworthy that our result
for the central value of the single-particle energy of
the 1f7/2 state in the 40Ca nucleus is approximately
0.8 MeV less than its counterparts in other studies.
This is explained by taking here into account the
fragmentation of the stripping strength for the 1f7/2

state and its distribution over various states of the
41Ca nucleus. The use of full arrays of data on the
spin–parities of the 41Ca nucleus made it possible to
conclude that the 1f7/2 spectroscopic strength is dis-
tributed among several states, including, in addition
to the ground state, at least three more states of 41Ca
at 6567.4, 6686.2, and 6748.1 keV. Because of the
fragmentation of the 1f7/2 state, the centroids of the
1f7/2 and 2p3/2 states prove to be quite close to each
other, so that the corresponding occupation numbers
are identical (see Table 1).We also note that our result
for the energy of the 1f5/2 state is consistent with the
data from [5], but that it is two times less in absolute
value than the result quoted in [31] and 2.5 times less
than its counterpart in [32].

Table 2 presents the valuesEexpt
nlj for 48Ca from [29,

33]. We note that, within the errors, the energies of the
1f and 2p states from [29, 33] agree with our results,
but that the energies of the 2s1/2 and 1d3/2 states
according to our data are much greater in absolute
value than their counterparts in those studies. With
allowance for what will be said in the next section,
the data on Etheor

nlj in the vicinity of EF that were

calculated for 40–48Ca by different authors within var-
ious theoretical approaches will be compared with the
values Etheor

nlj obtained in the present study.
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Fig. 1. Experimental values of the energies of neutron single-particle states in 40,42,44,46,48Ca.
3. COMPARISON
OF THE SINGLE-PARTICLE ENERGIES Eexpt

nlj

OF NEUTRON STATES IN 40,42,44,46,48Ca
WITH THE CALCULATED ENERGIES Etheor

nlj

In [34], information aboutEexpt
nlj for deep hole levels

was obtained from an analysis of the quasielastic-
deuteron-knockout reaction 40Ca(p,np)39Ca atEp =
1.0 GeV. Data from [34] on Eexpt

nlj for deep levels and

our present data on Eexpt
nlj in the vicinity of EF (from

Table 1) are contrasted against Etheor
nlj for 40Ca in

Table 3. In a great number of studies, the theoretical
valuesEtheor

nlj were calculated either for deep hole or for
valence states. The number of studies where calcula-
tions were performed for all bound states of 40Ca is
relatively small. Some comments on the arrangement
of data in Table 3 are in order here.

In column 4, we present the values Etheor
nlj calcu-

lated with the standard Woods–Saxon (WS) poten-
tial of the shell model. The depth of the neutron–
nucleus interaction potential was chosen by fitting
Etheor

nlj to Eexpt
nlj for states in the vicinity of the Fermi

energy [35].

The energies EDOM
nlj calculated on the basis of

the dispersive optical model are given in columns 5
and 6 [31, 36]. By and large, the agreement between
EDOM

nlj and Eexpt
nlj is quite good. At the same time, the

value of EDOM
nlj = −2.73 MeV [31] for the 1f5/2 state

is in sharp contradiction with the experimental value
of Eexpt

nlj = −1.46 MeV; for the 1s1/2 state, EDOM
nlj =

−66.12 MeV [36], which is greater in absolute value
than Eexpt

nlj = −61.5(10) MeV [34] by approximately
5 MeV.
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Columns 7–10 display the Etheor
nlj values calcu-

lated by the Hartree–Fock (HF) method with a phe-
nomenological effective interaction between intranu-
clear nucleons. This interaction differs from the inter-
action of two free nucleons and depends strongly on
the intranuclear density. In [37], use was made of the
effective Skyrme interaction (HFS). In [38], Hartree–
Fock calculations were performed with a potential
whose density dependence is nonlinear, while, in [39],
a new set of Skyrme interaction parameters that was
proposed for calculating Etheor

nlj in conventional and
exotic nuclei was employed. The calculations in [28]
were performed with a density-dependent effective
Gogny interaction.

In column 11, we give the results of the calcula-
tions performed within the self-consistent theory of
finite Fermi systems (TFFS) [40]. The effective in-
teraction of quasiparticles was introduced there phe-
nomenologically as well (the quoted values Etheor

nlj

were calculated in [40] by using set no. 5 of the
parameters of the quasiparticle Lagrangian). From a
comparison of the values Etheor

nlj from [40] with the
analogous values from [28, 37–39], one can see that
the valuesEtheor

nlj calculated within the self-consistent
theory of finite Fermi systems are in better agreement
with Eexpt

nlj than their counterparts calculated within
the Hartree–Fock method by using various versions
of effective density-dependent interaction. This is as-
sociated in part with the energy and velocity depen-
dence of the effective quasiparticle interaction used in
the self-consistent theory of finite Fermi systems; as
a result, the mean field acting on a quasiparticle also
depends on its energy and velocity within this theory.

In [24, 25, 27], the energies of single-particle lev-
els in some spherical nuclei, including 40Ca, were
calculated within the relativistic mean-field approx-
imation (RMFA). Column 12 of Table 3 gives the
values Etheor

nlj from [24], since only in that study did
5
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Table 2. Experimental values −Eexpt
nlj (in MeV) for 40,48Ca

2s1/2 1d3/2 1f7/2 2p3/2 2p1/2 1f5/2 References

40Ca

17.2(18) 15.2(20) 7.52(75) 6.10(67) 4.27(43) 1.46(20) Our study

18.2 15.6 8.4 6.3 4.3 2.9 [29]

8.364 6.264 4.464 1.864 [30]

18.19 15.64 8.36 6.29 4.23 2.86 [31]

18.29 15.64 8.36 5.86 4.20 1.38 [5]

18.11 15.64 8.36 6.42 4.75 3.48 [32]

18.11 15.64 8.36 6.42 [33]

48Ca

15.07(152) 15.22(179) 10.10(101) 4.68(47) 2.87(28) 1.57(40) Our study

12.4 12.4 9.9 5.1 3.1 1.2 [29]

12.55 12.53 9.95 5.15 3.13 1.56 [33]

Table 3. Experimental energies Eexpt
nlj of single-particle neutron states along with their calculated counterparts Etheor

nlj

for 40Ca

Subshell

−Eexpt
nlj , MeV −Etheor

nlj , MeV

[34] our study
WS DOM DOM HFS HF HFS HF TFFS RMFA

[35] [36] [31] [37] [38] [39] [28] [40] [24]

1 2 3 4 5 6 7 8 9 10 11 12

1s1/2 61.5(10) 45.61 66.12 61.00 55.33 62.20 58.15

1p3/2 42.1(4) 33.65 43.8 41.00 39.22 42.80 40.73

1p1/2 37.5(8) 30.84 39.12 37.00 36.08 39.00 36.01

1d5/2 23.6(1) 21.80 22.48 22.25 23.26 24.50 23.00 19.50 23.98

2s1/2 18.2(1) 17.2(18) 18.14 17.53 17.49 17.08 18.00 15.70 18.00 16.00 17.29

1d3/2 15.6(1) 15.2(20) 15.64 15.79 16.08 17.53 17.70 14.60 16.00 14.60 16.36

1f7/2 7.52(75) 8.35 8.54 8.30 8.34 8.00 9.90 9.00 9.10 8.57

2p3/2 6.10(67) 6.44 5.59 5.65 3.02 5.50 3.90 6.80 3.74

2p1/2 4.27(43) 4.29 4.19 4.43 1.56 3.80 1.50 4.50 2.02

1f5/2 1.46(20) 2.72 1.50 2.73 1.21 2.60 0.30 2.40 0.23
the calculations cover all bound states of the 40Ca
nucleus. Only the conclusion that there is qualitative

agreement between ERMFA
nlj and Eexpt

nlj can be drawn

from a global analysis of the valuesEtheor
nlj from [24, 25,

27]. According to [41], all versions of the relativistic
mean-field approximation that have been developed
P

thus far are based on the use of energy-independent
scalar and vector potentials. Therefore, the relativistic
mean-field approximation provides a good description
of the ground-state properties of nuclei and of the or-
der of single-particle levels, but it is unable to describe
their density in the vicinity of the Fermi energy.

In summary, we can state that, at the present time,
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 2 2005
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Table 4. Experimental energies Eexpt
nlj of single-particle neutron states according to the present study along with the

calculated energiesEtheor
nlj for 42,44,46,48Ca

−Enlj , MeV
References

2s1/2 1d3/2 1f7/2 2p3/2 2p1/2 1f5/2

42Ca

15.44(154) 13.03(184) 7.70(107) 5.73(57) 4.10(41) Our study

17.44 16.85 8.81 3.86 2.19 1.80 [24]

17.80 16.40 9.00 4.00 1.80 0.40 [28]

18.10 15.40 7.80 6.30 1.80 0.30 [42]

8.80 5.60 5.60 4.00 [1]

44Ca

17.61 13.91(159) 9.23(112) 5.92(75) 3.63(36) Our study

17.39 9.10 3.97 2.34 0.64 [24]

17.80 16.70 9.00 4.10 2.00 0.60 [28]

9.00 5.20 3.70 1.00 [1]

46Ca

17.81 10.00(100) 5.85(60) 3.58(39) 3.20(45) Our study

17.97 9.43 4.10 2.50 0.90 [24]

9.20 4.30 2.20 0.80 [28]

9.30 5.00 3.20 1.00 [1]

48Ca

15.07(152) 15.22(179) 10.10(101) 4.68(47) 2.87(28) 1.57(40) Our study

12.59 12.51 9.90 5.14 3.09 1.15 [37]

18.10 18.95 9.10 4.13 2.60 2.02 [39]

20.50 20.70 10.40 5.10 [35]

15.10 13.60 8.80 5.80 4.20 1.90 [38]

18.20 17.60 9.50 4.60 2.50 1.10 [28]

13.70 13.00 8.30 6.50 4.00 1.50 [40]

18.02 18.69 9.83 4.19 2.64 1.15 [24]

9.80 5.00 3.00 1.00 [1]
the calculations within the dispersive optical model
and within the self-consistent theory of finite Fermi
systems lead to the best agreement between Etheor

nlj

and Eexpt
nlj for 40Ca.

For 42,44,46,48Ca, there are no data on Eexpt
nlj for

deep hole states. In Table 4, data available in the liter-
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ature for Etheor
nlj are therefore contrasted only against

the values Eexpt
nlj in the vicinity of EF that were found

in the present study.

From the experimental and theoretical values of
Enlj that are presented in Table 4 for 42,44,46Ca, one
can see that the valuesEMSM

nlj calculated in [1] exhibit
5
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Fig. 2. (a) Volume integral JI of the imaginary part of
the optical potential and (b) volume integral Js of the vol-
ume component of the imaginary optical potential for the
n + 40Ca system versus energy: (points) experimental
values of JI(Ek) and Js(Ek) and (curves) parametriza-
tions of JI(E) and Js(E) (see explanations in the main
body of the text).

smaller deviations from E
expt
nlj than the values Etheor

nlj

from [24, 28, 42].

The values Etheor
nlj for 48Ca in Table 4 were bor-

rowed from the same articles as those for 40Ca. The
calculated values ETFFS

nlj [40] and EMSM
nlj [1] show the

smallest deviations from Eexpt
nlj .

Since the best agreement betweenEtheor
nlj andEexpt

nlj

for 40Ca was obtained in the case of the calculations
within the dispersive optical model, it is of importance
to address the following issues: the application of
the dispersive optical model to describing Eexpt

nlj for

the 42,44,46,48Ca nuclei and the investigation of the
possibility of employing the dispersive optical model
to calculate the single-particle energies of the bound
states of neutrons in neutron-rich calcium isotopes.
This is done in the sections of this article that follow.
P

4. ANALYSIS OF THE SINGLE-PARTICLE
FEATURES OF NEUTRON STATES IN 40Ca

WITHIN THE DISPERSIVE OPTICAL
MODEL

The method of a dispersive optical-model analysis
is based on the idea to employ information about
neutron (proton) scattering on a nucleus to calculate
the single-particle features of neutron (proton) bound
states in this nucleus. The method for calculating
single-particle features of levels in spherical nuclei on
the basis of the dispersive optical model was described
in detail in a number of studies (see [43] and refer-
ences therein).

For the n+A system, the dispersive optical po-
tential can be represented in the form

U(r,E) = −Un(r,E) − Uso(r,E), (9)

where Un(r,E) is a complex-valued central potential
and Uso(r,E) is a spin–orbit potential. The central
potential is the sum of three components of the real
part and two components of the imaginary part; that
is,

Un(r,E) = VHF(r,E) + ∆Vs(r,E) (10)

+ ∆Vd(r,E) + i[Ws(r,E) +Wd(r,E)].

In (10), VHF is the Hartree–Fock component;
∆Vs,d and Ws,d are, respectively, the dispersive and
imaginary parts of the dispersive optical potential; and
the indices s and d label, respectively, the volume and
surface parts. Within the dispersive optical model,
∆Vs(r,E) and ∆Vd(r,E) are calculated with the aid
of dispersion relations where Ws(r,E) and Wd(r,E)
appear as integrands. The dispersion relations are
also valid for the volume integrals of the correspond-
ing parts of the dispersive optical potential.

Within the traditional version of the dispersive op-
tical model, one analyzes experimental data on the
differential cross sections σexpt(θ) for the respective
scattering process and on the corresponding polar-
ization P expt(θ) at a specific energy value Ek. Data
on the volume integrals per nucleon of the resulting
imaginary potentials Js(Ek), Jd(Ek), and JI(Ek) =
Js(Ek) + Jd(Ek) are parametrized by analytic depen-
dences Js(E), Jd(E), and JI(E) that are symmetric
with respect to EF. These dependences are then used
to calculate the volume integrals of the dispersive
components of the dispersive optical potential.

In order to determine the parameters of the disper-
sive optical potential, the experimental values σexpt(θ)
and P expt(θ) for the n + 40Ca system were analyzed
in [44] for 9.9 ≤ En ≤ 40 MeV, in [36] for 5.3 ≤ En ≤
40 MeV, and in [31] for 11 ≤ En ≤ 40 MeV. By using
the optical-potential parameters found previously by
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 2 2005



INVESTIGATION OF THE NEUTRON SHELL STRUCTURE 199
other authors, Js(Ek), Jd(Ek), and JI(Ek) were de-
termined in [31, 36, 44]; of these, Js(Ek) and JI(Ek)
are shown in Fig. 2, and they are seen to have the
largest scatter.

In [44], the dependences JI(Ek) and Js(Ek) were
parametrized by means of the Brown–Rho formula,

JI(E) =
αI

1 +
(

βI

E − EF

)2 , (11)

Js(E) =
αI

1 +
(

βs

E −EF

)2 ,

where αI , βI , and βs are parameters.
In [31], use was made of a parametrization where

E0 was substituted for EF in (11). It is assumed that,
in the interval from EF to E0 and in the interval from
(2EF − E0) to EF, the imaginary potential vanishes,
so that single-particle states are not fragmented.

In Fig. 2a, curve 3 was calculated by formula (11)
with the parameters set to the values of αI =
113.6 MeV fm3, βI = 6.46 MeV, and E0 =
−5.86 MeV [31]; also, the parameter values used in
this figure were αI = 130 MeV fm3, βI = 15 MeV,
and EF = −12.0 MeV [36] for curve 4 and αI =
128 MeV fm3, βI = 16.5 MeV, and EF =
−12 MeV [44] for curve 5.

In [44], use was made of the Jeukenne–Mahaux
approximating formula,

JI(E) =
αI

1 +
(

βI

E − EF

)4 , (12)

Js(E) =
αI

1 +
(

βs

E −EF

)4 .

Curve 6 in Fig. 2a was calculated by formula (12)
with the parameter values of αI = 116 MeV fm3,
βI = 18.8 MeV, and EF = −12.0 MeV [44].

In Fig. 2a, the point at Ek = 65 MeV was bor-
rowed from data reported in [45]. This value of JI(Ek)
was not taken into account in determining the pa-
rameters αI and βI in [31, 36, 44]. From the above
list of values of the parameters αI and βI , one can
see that they have a considerable scatter for a specific
approximating dependence.

In Fig. 2b, curves 4 and 3 were calculated by
formula (11) with the parameter values of αI =
130 MeV fm3, βs = 130 MeV, and EF =
−12.0 MeV [36] for the former and the parameter
values of αI = 113.6 MeV fm3, βs = 86.5 MeV, and
E0 = −5.86 MeV [31] for the latter.
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In practice, the application of the above version
of the dispersive optical model involves considerable
difficulties because of the absence of information
about σexpt(θ) and P expt(θ) at various values of Ek

for many nuclei. This comment applies perfectly to
the 42,44,46,48Ca nuclei. This explains the fact that,
in various studies, an analysis within the dispersive
optical model was performed only for a few nuclei.
The version of the dispersive optical model where
the parameter αI for the p+A and n+A systems
is determined by the method described below was
proposed in [43, 46] in order to overcome these
difficulties.

In [47], the СН89 systematics of the average
(global) parameters of a traditional (nondispersive)
optical potential was proposed on the basis of an
analysis of information about σexpt(θ) and P expt(θ)
for p+A systems in the range 16 ≤ E ≤ 65 MeV
and n+A systems in the range 10 ≤ E ≤ 26 MeV
for nuclei in the mass-number range 40 ≤ A ≤ 209.
In this systematics, the strength parameters depend
on E and A, the range parameters depend on A, and
the diffuseness parameters of the real and imaginary
potentials are fixed at aV = as = ad = 0.69 fm. The
СН89 systematics was composed without including
experimental data on the total reaction cross sections
σr(E). Later on, σr(E) was measured for some
p+A systems to a precision of about 3% [48].
The σCH89

r (Ek) values calculated with the СН89

parameters agree with σexptr (Ek) [43] to within about
15%. In [49], it was shown that, for each p+A
system, one can determine individual values of the
parameters a∗s = a∗d for each nucleus such that the
use of these values, together with the remaining
parameter values of the СН89 systematics, leads to
the cross sections σCH89

r (Ek) that are consistent with
σ
expt
r (Ek) to within 3%. The version of the СН89

systematics where, instead of the average value of
as = ad = 0.69 fm, use is made of individual parame-
ters a∗s = a∗d for each nucleus was denoted by СН89∗

in [49]. The use of individual values of a∗s = a∗d reduces
the root-mean-square deviations χ2 of σCH89∗(θ)
and PCH89∗(θ) from σexpt(θ) and P expt(θ) to values
close to those found by freely varying all parameters
of the potential of the traditional optical model. The
average parameters of the СН89 systematics make it
possible to describe well the positions of the maxima
and minima of the experimental differential cross
sections for elastic scattering and of the respective
polarization, but the results for their absolute values
prove to be inadequate. The description of the ab-
solute cross-section and polarization values depends
predominantly on the imaginary part of the optical
potential; in order to improve this description, it is
5
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necessary to go over from the average values of the
geometric parameters of the imaginary part of the
optical potential for all nuclei to individual parameters
for each nucleus. It turned out that this individu-
alization can be implemented by varying only the
parameters as = ad. The use of the СН89∗ system-
atics of parameters underlies the dispersive-optical-
model version developed in [43]. Within this version,
a subsequent determination of the parameters of the
dispersive optical potential is based on analyzing the
model dependences σCH89∗(θ) and PCH89∗(θ) instead
of σexpt(θ) and P expt(θ). In [43, 46], it was shown that,
for p+A systems, the procedure for determining the
average parameters of the dispersive optical potential
is simplified considerably within this version without
loss of accuracy.

In the СН89 systematics, the geometric param-
eters of the optical potential are identical for p+A
and n+A systems. In the СН89∗ systematics, the
parameters a∗s = a∗d take individual values for each
p+A system. There arises the question of whether
the parameters a∗s = a∗d found for p+A systems are
appropriate for n+A systems. In [50], it was shown
that the values of a∗s = a∗d make it possible to describe
experimental data on σ(θ), the total reaction cross
sections σr, and the total interaction cross sections
σt for n+A systems as well.

A new global systematics of the parameters of
the traditional optical potential was proposed in [51],
and individual (local) parameters were determined
there for some nuclei. The values of the parame-
ter αI that were obtained from an analysis of the
model cross sections σCH89∗(θ) and σ[51](θ) for
calcium isotopes differ from one another within 2
to 3%. In the present study, the volume integrals
JCH89∗

s (E) and JCH89∗
I (E) are approximated by the

expressions in (12), where αI = JCH89∗
I (Ek) forEk ≈

50–60 MeV.
In order to determine the parameter βI , one needs

experimental information about σexpt(θ) and P expt(θ)
at low energies. Since there are no such data for
even–even calcium isotopes, with the exception of
40Ca, it would be reasonable to determine βI in (12)
as an adjustable parameter that corresponds to the
minimum deviation of the energies EDOM

nlj calculated

within the dispersive optical model from E
expt
nlj in the

vicinity of EF.
In order to determine βs within the traditional ver-

sion of the dispersive optical model, it is necessary to
have information about the values of Js(Ek) for Ek ≈
30–60 MeV. Because of the aforementioned scarcity
of experimental information, the parameter βs was
found here on the basis of data on Js(Ek = EF −
PH
E1s1/2) from the systematics presented in [47, 51]. In
doing this, it was assumed that E1s1/2 ≈ −60 MeV.

For 40Ca, the parameter αI , which appears in (12),
was determined in this study to be 103.5 MeV fm3.
Curve 1 in Fig. 2a was calculated by using this value
of the parameter αI , E

expt
F = −11.36 MeV, and βI =

18 MeV. From Fig. 2a, one can see that curve 1
is consistent with the empirical values of JI(Ek) at
Ek ≤ 10 MeV and Ek = 40 and 65 MeV. In the re-
gion of low energies, the dependence JI(E) calcu-
lated with the parameters of the systematics from [51]
(curve 2) agrees poorly with JI(Ek).

In Fig. 2b, curve 1 was calculated by formula (12)
with the parameter values of αI = 103.5 MeV fm3,
βs = 65 MeV, and Eexpt

F = −11.36 MeV; for curve 2,
use was made of the parameters from [51].

Within the traditional version of the dispersive op-
tical model, the geometric parameters rs,d(Ek) and
as,d(Ek) are found from an analysis of σexpt(θ) and
P expt(θ) under the condition that the volume inte-
grals Js,d(Ek) are fixed in accordance with an ana-
lytic dependence chosen for them (in the Jeukenne–
Mahaux, the Brown–Rho, or some other form). After
that, the parameters rs,d(Ek) and as,d(Ek) are aver-
aged over energy. In [43, 46], it was shown that the
parameters of the СН89∗ systematics can be taken
for the average parameters rs, rd, as, and ad.

A method for determining the energy dependence
of the strength parameter of the Hartree–Fock com-
ponent VHF(E) was proposed in [43, 46]. As in [43],
the dependence VHF(E) was represented here as

VHF(E) = V
(1)
HF (EF) (13)

+ V (2)
HF (EF)exp

[
−λ(E − EF)

V
(2)
HF (EF)

]
for E > EF

and as
VHF(E) = VHF(EF)− λ(E − EF) for E < EF,

(14)

where

VHF(EF) = V
(1)
HF (EF) + V (2)

HF (EF). (15)

The parameters VHF(EF), λ, rHF, and aHF were
determined according to the following procedure. The
dispersive components of the real part of the disper-
sive optical potential (10), ∆Vs(r,E) and ∆Vd(r,E),
were calculated with the parameters αI , βI , βs, rs,
rd, as, and ad fixed at the values found for them.
The parameters rso and aso were taken in accordance
with [47] or [51], while the parameter Vso was varied.

It turned out that, to within 3%, the JHF(EF) and
VHF(EF) values determined within various versions
YSICS OF ATOMIC NUCLEI Vol. 68 No. 2 2005
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Table 5. Parameters of the dispersive optical potential for the n + 40–56Ca systems

A
rd = rs,

fm
ad = as,

fm
αI ,

MeV fm3
βs,
MeV

βI ,
MeV

rso, fm aso, fm
rHF,
fm

aHF,
fm λ

−EF,
MeV

Vso,
MeV fm3

40 1.207 0.600 103.5 60 18 0.989 0.63 1.179 0.79 0.580 11.36 5.9

42 1.209 0.605 88 60 9 0.995 0.63 1.160 0.760 0.561 10.36 6.2

44 1.211 0.610 90 60 12 1.000 0.63 1.190 0.667 0.572 11.57 6.5

46 1.213 0.615 90 60 12 1.005 0.63 1.200 0.636 0.577 12.3 6.8

48 1.214 0.540 83 54 15 1.010 0.63 1.205 0.619 0.557 7.4 7.0

50 1.216 0.53 80 53 18 1.014 0.63 1.170 0.760 0.576 7.2 7.2

52 1.217 0.54 80 53 18 1.018 0.63 1.150 0.850 0.563 2.2 7.5

54 1.217 0.54 80 53 18 1.018 0.63 1.150 0.850 0.579 2.2 8.0

56 1.220 0.53 80 53 15 1.026 0.63 1.150 0.850 0.573 2.3 8.0
of the dispersive optical model for various n+A and

p+A systems agree with the J [51]
V (EF) and V [51](EF)

values calculated by the formulas from [51]. We note
that the identity JHF(EF) ≡ JV (EF) holds by defini-
tion of the dispersion relations (see [52]). This made
it possible to determine, for each trial value of rHF,
the corresponding diffuseness parameter aHF from the

equality gHF = g
[51]
V , where

gHF =
∫
f(r, rHF, aHF)dr, (16)

g
[51]
V =

∫
f(r, r[51]V , a

[51]
V )dr.

For several fixed values of Vso and trial pairs of
rHF and aHF, the values of VHF(Enlj) were found

from a fit to Eexpt
1s1/2, E

expt
1d3/2, and E

expt
1f7/2 in solving the

Schrödinger equation for bound states. The parame-
ters VHF(EF) and λ, which appear in (13) and (14),
were determined for 40Ca by the formulas

VHF(EF) =
VHF(Eexpt

1d3/2) + VHF(Eexpt
1f7/2)

2
, (17)

λ =
VHF(Eexpt

1s1/2)− VHF(EF)

E
expt
1s1/2 − E

expt
F

. (18)

The energies EDOM
nlj for the 2s1/2, 1d3/2, 1f , and 2p

states in the vicinity of EF were calculated by the
iteration method (for details of the relevant calcu-
lation, the interested reader is referred to [43]) in
solving the Schrödinger equation at fixed values of
the dispersive-optical-potential parameters Vso, rso,
aso, VHF(EF), λ, rHF, and aHF. The optimum set of
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trial parameters was determined by minimizing the
functional

χ2 =
∑
nlj

(
EDOM

nlj − Eexpt
nlj

∆expt
nlj

)2

.

The values found in this way for the parameters of the
dispersive optical potential are given in Table 5.

The criterion according to which the parameters
of the dispersive optical potential are self-consistent
if, in the energy range EF – 10 MeV < E < EF +
10 MeV, the volume integral ∆JI of the sum of the
dispersive corrections ∆Vs and ∆Vd is a nearly linear
function of energy was discussed in [41]. Figure 3
displays the dependences ∆JI,s,d, which illustrate
self-consistency according to this criterion for the
dispersive-optical-potential parameters given in Ta-
ble 5.

The calculated values of single-particle energies
Enlj of states and their occupation numbersNnlj (the
formulas for calculating Nnlj can be found in [5])
are given in Table 6. Column 2 there contains the
experimental values Eexpt

nlj obtained in [34] for the
1s1/2–1d5/2 states and in the present study for the
2s1/2–1f5/2 states; columns 3 and 4 present the val-
ues EDOM

nlj and NDOM
nlj , respectively, calculated in the

present study; and column 5 gives the values N expt
nlj

determined in the present study. In order to demon-
strate the dependence of the energies EDOM

nlj on the

choice of the parameter βI , the values EDOM
nlj cal-

culated at βI = 15 MeV are quoted in column 6.
The results calculated in the present study with βI =
18 MeV correspond to the minimum of the sum of the
squared deviations ofEDOM

nlj calculated in [31, 36] (see
5
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Table 6. Experimental values of the single-particle energiesEnlj and of the respective occupation numbersNnlj in 40Ca
along with their counterparts calculated on the basis of the dispersive optical model

Subshell −Eexpt
nlj , MeV −EDOM

nlj , MeV NDOM
nlj N

expt
nlj −EDOM

nlj , MeV (βI = 15 MeV)

1 2 3 4 5 6

1s1/2 61.5(10) 61.47 0.934 61.35

1p3/2 42.1(4) 40.53 0.921 40.36

1p1/2 37.5(8) 35.30 0.915 35.00

1d5/2 23.6(1) 21.24 0.894 20.23

2s1/2 17.2(18) 17.61 0.891 0.67–0.79 16.80

1d3/2 15.2(20) 15.01 0.874 0.81–0.85 14.25

1f7/2 7.52(75) 7.72 0.113 0.02–0.04 7.36

2p3/2 6.10(67) 5.63 0.072 0.00–0.04 5.39

2p1/2 4.27(43) 4.08 0.060 0.00–0.06 3.93

1f5/2 1.46(20) 1.46 0.072 0.00–0.02 1.48

Note: The values E
expt
nlj for the 1s1/2–1d5/2 and 2s1/2–1f5/2 states were obtained in [34] and in the present study, respectively.
Table 3, columns 6, 5) from Eexpt
nlj for the 2s1/2–1f5/2

states. We note that the values NDOM
nlj calculated

on the basis of the dispersive optical model in the
present study and in [31, 36] for the 1f7/2, 2p3/2, and
1f5/2 states exceed their experimental counterparts.

In [8], it was shown that the calculated valuesNDOM
nlj

for states in the vicinity of EF can be reduced upon
considering that the imaginary potential is nonlocal,
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of the dispersive components of the dispersive optical
potential for the n + 40Ca system.
PH
which violates the symmetry of absorption with re-
spect to EF at high |E|.

The results obtained in this section provide
grounds to employ the proposed version of the disper-
sive optical model to describe the features of single-
particle states in the 42,44,46,48Ca nuclei. This is done
in the next section.

5. COMPARISON OF EXPERIMENTAL
SINGLE-PARTICLE FEATURES

OF NEUTRON STATES IN 42,44,46,48Ca
WITH THEIR COUNTERPARTS
CALCULATED ON THE BASIS

OF THE DISPERSIVE OPTICAL MODEL

In the even–even isotopes 42,44,46Ca, there occurs
the successive filling of the 1f and 2p subshells. In
describing nuclei that involve open shells, it is neces-
sary to take into account superfluid correlations. We
assume that nucleon-pairing effects can be taken into
account by selecting individual parameters of the dis-
persive optical potential for each nucleus. According
to [53], the experimental values of the ground-state
spins and parities are 7/2− in 43,45,47Ca and 3/2−

in 49Ca. If use is made of the values Eexpt
nlj for the

1d3/2 and 1f7/2 states in 42,44Ca (see Table 1), then
the average values of the Fermi energy for these two
nuclei are EF = −10.36 and −11.57 MeV, respec-
tively. For 46Ca, there are no data on the energy of the
1d3/2 state. Assuming that the average value of the
YSICS OF ATOMIC NUCLEI Vol. 68 No. 2 2005
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energy of the 1d3/2 state in 46Ca is equal to the half-
sum of the energies of the analogous states in 44Ca
and 48Ca, we obtain, for 46Ca, the average value of
EF = −12.3 MeV estimated on the basis of the data
in Table 1. For 48Ca, the data in Table 1 lead to the
average value of EF = −7.4 MeV, which is in good
agreement with the value of −7.55 MeV found from
data on the binding energies. The deviation of the
EF values calculated for 42,44,46Ca by using data on
the binding energies (−9.70, −9.27, and −8.84 MeV,
respectively) from those determined on the basis of
information about Eexpt

nlj indicates that the structure
of levels in these nuclei differs from the single-particle
structure.

In order to determine the parameters of the dis-
persive optical potential for 42,44,46,48Ca, we employed
the dispersive-optical-model version described in the
preceding section, slightly changing the procedure for
evaluating the parameter Vso.

For a large number of magic nuclei and nuclei
close to magic ones, Koura and Yamada [33] pre-
sented a compilation of the single-particle energies
E

expt
nlj of proton and neutron states in a tabular form.

They compared the experimental values of Enlj with
the theoretical results found within the relativistic
mean-field approximation. The shell potential was
written in the standard form by using the Woods–
Saxon form factors. Expressions for calculating the
parameters of the shell potential and tables of these
parameters were also given in that article. We used
the tables of the parameters from [33] and calculated
the volume integrals of the spin–orbit potentials for
40Ca and 48Ca. It turned out that the volume integral
for 48Ca is approximately 15 to 20% greater than that
for 40Ca.

At the present time, the isospin dependence of
the spin–orbit potential is being studied in detail by
many authors. Interest in this problem was stimu-
lated by the development of studies within the rel-
ativistic mean-field approximation (see [54–56] and
references therein). However, there is no unambigu-
ous solution here because of the scarcity of relevant
experimental data.

If the geometric parameters of the spin–orbit po-
tential are fixed, for example, in accordance with the
СН89 systematics, then an increase in the volume
integral for 48Ca can be associated with an increase
in the strength parameter Vso. A slight increase in Vso
in response to a change in A from 40 to 48 can be
described by using the formulas proposed in [57],

V n
so =

(NVnn + ZVnp)
A

K [MeV fm2], (19)
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where

K = 0.263
[
1 + 2

N − Z
A

]
, (20)

Vpp = Vnn = 19.7, Vpn = Vnp = 87. (21)

It can readily be shown that, for the n + 42,44,46,48Ca
systems, the quantity V n

so can be represented in the
form

V n
so(A) = V n

so(A = 40)ξ, (22)

where

ξ = 1 + 0.018(A − 40). (23)

For each calcium isotope, we have calculated V n
so(A)

by formulas (22) and (23) at the fixed value of V n
so(A =

40) = 5.9 MeV fm2.

The parameters αI for the n + 42,44,46,48Ca sys-
tems were determined by the method applied to the
n + 40Ca system. By using data on σr from [48]
for the p + 42,44,48Ca systems and the values of
σr for 46Ca that were estimated on the basis of da-
ta from [48], we determined the СН89∗ parameters
for the n + 42,44,46,48Ca systems by the method
proposed in [50] and found that αI = 88, 90, 90,
and 83 MeV fm3, respectively. If one employs data
from [51], the values of the parameter αI for these
systems appear to be 93, 92, 90, and 88 MeV fm3,
respectively. The maximum distinction between the
values ofαI that were determined with the parameters
from [51] and from the СН89∗ systematics was 5%.
The error of 5% in determining αI does not have
a significant effect on the accuracy in determining
EDOM

nlj . In the following, we will use the values of
αI that were calculated on the basis of the СН89∗
parameters.

The values of the parameters βs were calculated,
while the values of βI , rHF, and aHF were selected for
each n+A system by using the same procedure as
that which was described for the n + 40Ca system
in Section 3. The resulting set of dispersive-optical-
potential parameters for the 42,44,46,48Ca nuclei is
given in Table 5.

The values EDOM
nlj calculated with the parame-

ters from Table 5 are given in Table 7. Comparing
the values EDOM

nlj for the 2s1/2–1f5/2 states in the
42,44,46,48Ca nuclei with the data in Table 1, we can
conclude that these results agree within the exper-
imental errors. The agreement between NDOM

nlj and

N
expt
nlj for the 42,44,46,48Ca nuclei is of approximately

the same character as in the case of 40Ca. For the 1f
and 2p states, the values EDOM

nlj agree well with the
5
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values EMSM
nlj from [1]. For the 42,44,46,48Ca isotopes,

the spin–orbit splitting ∆DOM
1p calculated on the ba-

sis of the dispersive optical model changes within
the range 5.1–5.8 MeV, which is in agreement with
the value of ∆expt

1p = 4.6(9) MeV for 40Ca. For the

1d state, the values ∆DOM
d range between 6.3 and

8.3 MeV, this being in agreement with the value of
∆expt

d = 8.0(2) MeV for 40Ca. The values ∆DOM
1f and

∆DOM
2p agree with ∆expt

1f and∆expt
2р , respectively, within

the errors in the experimental values.
Figure 1 clearly demonstrates that, in 48Ca, the

filling of the 1f7/2 subshell leads to an increase in the
absolute values of the energies of the respective states
and that the Fermi energy EF undergoes a jump upon
going over from 46Ca to 48Ca. From Table 5, one
can see that, for the n + 40,42,44,46,48Ca systems, all
of the dispersive-optical-potential parameters, with
the exception of EF, take close values and that the
parameter Vso increases smoothly. If, in calculating
EDOM

nlj for 48Ca, one employs, for EF, the average

value for the 40,42,44,46Ca isotopes, there will be no
agreement between EDOM

nlj and Eexpt
nlj .

On the basis of a comparison of the results of
calculations and experimental data, we can conclude
that the proposed version of the dispersive optical
model provides a fairly accurate description of ex-
perimental single-particle energies of bound states in
calcium isotopes both for doubly magic nuclei and for
nuclei featuring unfilled shells. Good agreement be-
tween EDOM

nlj and Eexpt
nlj for 40,42,44,46,48Ca gives suf-

ficient grounds to apply this version of the dispersive
optical model to calculating the positions of single-
particle 1f and 2p levels in 50,52,54,56Ca. It would
then be reasonable to compare the results derived in
this way with their counterparts obtained in [1] on
the basis of the multiparticle shell model. Questions
associated with these calculations and comparison
are considered in the next section.

6. CALCULATION
OF THE SINGLE-PARTICLE ENERGIES

OF NEUTRON LEVELS
IN THE NEUTRON-RICH NUCLEI 50,52,54,56Ca

The neutron-rich nuclei 50,52,54,56Ca are unstable.
They undergo beta decay, with the half-lives T1/2 [53]
being 14 s for 50Ca, 4.6 s for 52Ca, and 10 ms for
56Ca (there are presently no data on T1/2 for 54Ca).
The ground-state spin–parities determined experi-
mentally for the 51Ca and 53Ca nuclei in [53] involve
ambiguities, (3/2−) and (3/2−, 5/2−), respectively.
PH
There are no data on the spins of the 55,57Ca nu-
clei. If the spin–parity of 51Ca is 3/2−, then EF =
−7.2 MeV according to data from [1] on EMSM

1f7/2 and

EMSM
2p3/2. If the spin–parity of 53Ca is 3/2−, EF =
−7.35 MeV, but, if it is 5/2−, then EF = −2.2 MeV.
According to data from [1], EF takes nearly identical
values for 54Ca and 56Ca—they are approximately
equal to−2.2 MeV.

The ∆1f and ∆2p values estimated for the
50,52,54,56Ca nuclei on the basis of data from [1] do not
decrease with increasing A, remaining approximately
identical to those for 48Ca. The calculations that were
performed in [24] and which were based on the rel-
ativistic mean-field approximation yield, for ∆RMFA

1f ,
values that decrease slightly with increasing A and,
for ∆RMFA

2р , values that, on the contrary, increase
slightly with increasing A. In this connection, we
calculated the values of Vso by formulas (22) and (23)
as in the case of 42,44,46,48Ca.

In order to determine λ by formula (18), it is nec-
essary to estimate the energy of the 1s1/2 state for
50,52,54,56Ca. According to [24], the values ERMFA

1s1/2 for
50,52,54,56Ca range between −58.7 and −57.4 MeV.
For the 40Ca nucleus, ERMFA

1s1/2 = −58.15 MeV, but

E
expt
1s1/2 = −61.5(10) MeV. Since the average energy

of this state for the 50,52,54,56Ca isotopes is ERMFA
1s1/2 =

−58.0 MeV (that is, it is equal toERMFA
1s1/2 for 40Ca), we

estimated the respective energy for them at Eest
1s1/2 =

−61.5(10) MeV. The parameters of the dispersive
optical potential for 50,52,54,56Ca are given in Table 5.

The calculated values EDOM
nlj for 50,52,54,56Ca are

presented in Table 8. For the sake of comparison, we
also quote there the respective energies calculated
within the relativistic mean-field approximation [24],
on the basis of the Hartree–Fock model with Skyrme
forces [58], and within themultiparticle shell model [1]
(ERMFA

nlj , EHFS
nlj , and EMSM

nlj , respectively).

The last five columns of Table 8 display the results
of the calculations based on the data of this table and
performed for the energies ∆p,∆d,∆f , and ∆2p of the
spin–orbit splitting of the 1p, 1d, 1f , and 2p states
and for the energy gap ∆ = E1f5/2 −E2p1/2 between
the 1f5/2 and 2p1/2 states.

For 52Ca, Table 8 gives the calculated values
EDOM

nlj corresponding to the presumed spin–parity of
the 53Ca ground state, 5/2−.

From Table 8, one can see that the aforementioned
models predict approximately identical results for the
YSICS OF ATOMIC NUCLEI Vol. 68 No. 2 2005



INVESTIGATION OF THE NEUTRON SHELL STRUCTURE 205
Table 7. Single-particle neutron-state energies −EDOM
nlj (in MeV) calculated for 42,44,46,48Ca on the basis of the

dispersive optical model with the parameter values from Table 5

A 1s1/2 1p3/2 1p1/2 1d5/2 2s1/2 1d3/2 1f7/2 2p3/2 2p1/2 1f5/2

42 61.55 41.31 36.16 19.79 15.69 13.52 7.59 5.52 4.06 1.52

44 61.50 42.25 36.64 21.34 16.54 14.73 8.53 5.13 3.51 1.69

46 61.63 43.07 37.28 22.37 17.05 15.40 9.52 5.46 3.72 2.18

48 61.55 43.12 37.54 24.11 17.36 15.83 9.47 5.18 3.27 1.65

Table 8. Calculated values −Etheor
nlj (in MeV) for 50,52,54,56Ca

Subshell
DOM RMFA HFS MSM DOM RMFA HFS MSM DOM RMFA HFS MSM DOM RMFA HFS MSM

50Ca 52Ca 54Ca 56Ca

1s1/2 61.52 58.69 61.50 58.58 62.20 58.15 61.00 57.44

1p3/2 41.22 42.09 40.50 41.99 40.91 41.78 40.65 41.40

1p1/2 35.97 38.34 35.43 38.14 35.54 37.99 35.57 37.88

1d5/2 22.64 25.45 22.50 25.50 22.96 25.53 23.30 25.57

2s1/2 17.57 18.43 17.48 18.78 17.58 19.01 17.49 19.24

1d3/2 15.07 18.62 14.30 18.71 14.18 18.92 14.16 19.26

1f7/2 8.72 9.96 8.90 9.50 8.43 10.14 9.00 9.20 8.81 10.41 9.20 9.00 8.77 10.70 9.00 9.00

2p3/2 5.64 4.63 5.40 5.00 5.80 5.01 5.00 5.50 5.89 5.36 4.60 6.00 5.91 5.68 4.80 6.00

2p1/2 3.70 2.95 3.60 3.50 3.86 3.25 3.20 4.00 3.81 3.56 3.00 4.20 3.92 3.88 3.20 4.20

1f5/2 0.90 1.53 2.00 0.70 0.67 1.92 2.20 0.50 0.50 2.37 2.50 0.30 0.84 2.90 2.60 0.50

∆p 5.25 3.75 5.07 3.85 5.37 3.79 5.08 3.52

∆d 7.57 6.83 8.20 6.79 8.78 6.61 9.14 7.31

∆f 7.82 8.43 6.90 8.80 7.76 8.22 6.80 8.70 8.31 8.04 6.70 8.70 7.93 7.80 6.40 8.50

∆2p 1.94 1.68 1.80 1.50 1.94 1.76 1.80 1.50 2.08 1.80 1.60 1.80 1.99 1.80 1.60 1.80
spin–orbit splitting of the 1f and 2p states in the
50,52,54,56Ca nuclei. The predictions are substantially
different for ∆. Only the values ∆DOM calculated in
the present study agree with ∆MSM [1].

Studying in detail the question of which parame-
ters of the dispersive optical potential are responsible
above all for the agreement of EDOM

nlj with EMSM
nlj

and of ∆DOM with ∆MSM, we found that, within the
dispersive-optical-model version used here, these are
the parameters EF, rHF, aHF, and Vso. We note that
this agreement takes place only at the EF value from
Table 5. If we fix the parameters rHF and aHF, then
∆DOM increases with increasing Vso. The calcula-
tions that we performed for EDOM

nlj at fixed values of
Vso and various trial pairs of rHF and aHF (see the
procedure described in Section 4) revealed that an
increase in aHF (accompanied by the respective slight
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 2 200
decrease in rHF) leads to the growth of ∆DOM. This
increase in aHF (see Table 5) is consistent with the
idea of the growth of the surface diffuseness of nuclei
as the number N of neutrons in them increases (see,
for example, [59] and articles quoted therein).

We note that, within the relativistic mean-field
approximation, the energies ∆so of the spin–orbit
splitting of states decrease with increasing number
of neutrons in neutron-rich nuclei [54–56]. Within
nonrelativistic mean-field models, a spin–orbit po-
tential is introduced as an additional parameter, and
it would be natural to expect a decrease in Vso with
increasing number of neutrons. However, it follows
from the results of the present study that the depen-
dence of Vso on N has some special features that call
for a dedicated investigation. That such an investi-
gation is necessary is also suggested by the results
reported in [41], which show that an additional term
5
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that takes into account the coupling between single-
particle motion and collective degrees of freedom of
a nucleus at energies in the vicinity of EF must be
included in the computational scheme of the relativis-
tic mean-field approximation. In [41], this was done
phenomenologically by introducing an additional po-
tential that changes linearly with E. The introduction
of such a potential leads to a change in the spin–orbit
splitting of states.

Thus, the prediction of the multiparticle shell
model [1] that the energy gap between the 1f5/2 and
2p1/2 levels in neutron-excess calcium isotopes must
increase as the number N of neutrons increases from
28 to 34 is reproduced by the calculations within the
dispersive optical model. This reproduction within a
model that is different from the multiparticle shell
model is an additional argument in support of the
assumption put forth in [1] that the number N = 34
can be magic for Z = 20 nuclei.

7. CONCLUSIONS

(i) By using the method of matching data obtained
in neutron-stripping and neutron-pickup reactions
on the same nucleus, the neutron single-particle en-
ergies of valence states in the even–even isotopes
40–48Ca and their occupation numbers have been
determined in the present study. The regularities of
changes in the particle–hole energy gap between the
1f and 2p states of these nuclei and in the energies of
their spin–orbit splitting have been investigated.

(ii) A new version of the dispersive optical model
has been proposed. This version is appropriate for
determining the parameters of the dispersive optical
potential for n+A systems, information about p+A
systems being partly used for this. The potential of
this version of the dispersive optical model has been
tested by comparing the results that it yields for the
energies of single-particle neutron states in 40Ca and
for their occupation numbers with their experimen-
tal counterparts. It has been shown that the calcu-
lated values of these quantities are in good agreement
with corresponding experimental data for the valence
states of this nucleus.

(iii) On the basis of the proposed version of the dis-
persive optical model, we have calculated the single-
particle energies of neutron states in the 42,44,46,48Ca
nuclei. For the valence states, the energy values cal-
culated with the dispersive-optical-potential param-
eters determined individually for each nucleus have
been found to agree, within the experimental errors,
with the respective experimental results. This exam-
ple illustrates advantages of this version of the disper-
sive optical model over the traditional version.
P

(iv) Problems associated with extrapolating the
dispersive optical potential from the region of stable
to the region of unstable nuclei have been investi-
gated. The parameters of the dispersive optical po-
tential for calculating the spectra of single-particle
neutron states in the 50,52,54,56Ca nuclei have been
determined.

(v) Single-particle energies of neutron states in
the 50,52,54,56Ca nuclei have been calculated on the
basis of the dispersive optical model. It has been
shown that the values EDOM

nlj for the 1f and 2p states

are consistent with the values EMSM
nlj . This result is

the consequence of a slight increase in the diffuseness
parameter аHF (this is accompanied by a slight re-
duction of rHF) and the strength parameter Vso. With
increasing number of neutrons in nuclei, the energy
gap ∆ between the 2p1/2 and 1f5/2 states increases,
reaching a maximum value at N = 34, this being in
accord with the assumption put forth in [1] that the
numberN = 34 is magic for Z = 20 nuclei.
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Abstract—Within the nuclear-matter approximation, the local-density approximation, and perturbation
theory, an approach to constructing a microscopic nucleon–nucleus optical potential at finite nuclear
temperatures is developed on the basis of effective density-dependent nucleon–nucleon forces. The real
and the imaginary part of the neutron–nucleus optical potential and the mean free paths of neutrons in
nuclear matter are calculated at various neutron energies and various nuclear temperatures. The effect
of the inclusion of the rearrangement potential on the quantities under consideration is studied, and its
importance is demonstrated. c© 2005 Pleiades Publishing, Inc.
1. Optical models underlie many important the-
oretical approaches to analyzing nucleon–nucleus
and nucleus–nucleus collisions. Although a phe-
nomenological approach that relies on parametrizing
a complex-valued optical potential is quite elaborate
and makes it possible to describe experimental data
successfully, the problem of constructing microscopic
nucleon–nucleus and nucleus–nucleus optical po-
tentials on the basis of a preset nucleon–nucleon
interaction still remains a problem of importance in
nuclear physics.

According to the formal microscopic theory devel-
oped for optical potentials long ago in [1], an optical
potential can be represented as the sum of the main
term, where the interaction between a projectile parti-
cle and a target nucleus is averaged over their ground
state, and the polarization term, which is caused by
intermediate excitations of colliding nuclei. Because
of the presence of the polarization term, the problem of
calculating an optical potential is extremely difficult.
In view of this, specific calculations are always per-
formed within some approximations, where the first
term in the formal expression for the optical potential
actually plays a dominant role, the contributions from
the polarization term being taken into account either
approximately or phenomenologically.

Folding models for nucleon–nucleus collisions
and double-folding models for nucleus–nucleus col-
lisions (see, for example, [2–10]) have been used
most extensively in constructing microscopic optical
potentials that are intended for quantitatively de-
scribing experimental data on angular distributions
in nuclear scattering. These models are based on

1)Academy of Fire Safety of Ukraine, Kharkov, Ukraine.
1063-7788/05/6802-0208$26.00
calculating an optical potential in the form of the fold-
ing of an effective nucleon–nucleon interaction with
single-nucleon densities of colliding nuclei. Among
the proposed versions of effective nucleon–nucleon
forces, the M3Y forces from [11] and the DDM3Y
forces, which are a generalization [12] of the M3Y
forces to the case where nucleon–nucleon interaction
is explicitly dependent on the nuclear density, have
become the most popular. Since the effective forces
being considered are real-valued, the folding model
only yields the real part of an optical potential, the
imaginary part, which is associated in this case with
the polarization term exclusively, usually either being
chosen in a standard phenomenological form (see,
for example, [2, 4]) or being constructed on the basis
of the calculated real part of the optical potential
by introducing the minimum necessary number of
parameters [5–7]. The use of a complex-valued
nucleon–nucleon interaction—this makes it possible
to include part of the polarization-term effects in the
main (folded) term—is yet another method [8–10] for
deriving the imaginary part of the optical potential
within the folding model.

In [13], it was shown that, from the point of view
of many-body theory, a nucleon–nucleus optical po-
tential can be identified with the mass operator in the
single-particle Green’s function, specific calculations
being performed, in particular, within the nuclear-
matter approximation with a subsequent application
of the local-density approximation [14]. In [15], an
optical potential for nuclear matter was determined
from leading terms of the expansion of the mass op-
erator under the assumption of a low nucleon density
by using the Brueckner–Hartree–Fock method and
the complex reaction matrix, which is similar to the
c© 2005 Pleiades Publishing, Inc.
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BruecknerGmatrix. A conceptually similar approach
was proposed in [16], where the Bethe–Goldstone
equation was solved with the Hamada–Johnston and
hard-core Reid potentials.

It is well known (see, for example, [17, 18]) that
many properties of nuclei can be described satisfacto-
rily on the basis of Hartree–Fock theory by using ef-
fective nuclear-density-dependent nucleon–nucleon
forces of the Skyrme type, which have a rather sim-
ple form convenient for calculations. It seems quite
tempting to make an attempt at constructing a mi-
croscopic nucleon–nucleus optical potential on the
basis of Skyrme forces. Previously, it was shown
in [19] that the Hartree–Fock potential calculated by
using Skyrme forces makes it possible to take into
account general properties of the real part of an opti-
cal potential and to reproduce data on elastic nucleon
scattering on nuclei, at least for energies in the region
E < 50 MeV.

In the present study, we consider a nucleon–
nucleus optical potential at finite target-nucleus
temperatures in the nuclear-matter approximation.
An expression for the optical potential is obtained
here by calculating the mass operator in the single-
particle Green’s function [13, 20] on the basis of an ef-
fective nuclear-density-dependent Skyrme nucleon–
nucleon interaction [21–24]. We note that the con-
cept of a microscopic potential presumes, from the
outset, a calculation with exact wave functions for
finite nuclei. Therefore, the potential that is calculated
here within the aforementioned approximations can
be referred to as a semimicroscopic potential.

Theoretical investigations of the properties of hot
nuclei (for T > 0) have become ever more important
in the past years in connection with the develop-
ment of the physics of heavy-ion collisions. Prior
to the present time, calculations of a microscopic
nucleon–nucleus optical potential both at T = 0 and
at finite nuclear temperatures were performed within
the aforementioned approach in a number of stud-
ies (see [25–27]) by using Skyrme nucleon–nucleon
forces. Indicating that nucleon absorption by nuclei,
which is characterized by the nucleon mean free path
in a nucleus, l, can be described in terms of the
imaginary part of an optical potential, the authors
of [25–27] gave much attention, among other things,
to the temperature dependence of l. This interest was
motivated by the fact that the mean free path in
question is directly determined by the intranuclear-
nucleon density and by the cross section for nucleon–
nucleon interaction.

Taking into account nuclear temperature, the au-
thors of [26, 27] did not include, however, the rear-
rangement (saturation) potential in their calculations,
which arises because of the nuclear-density depen-
dence of the effective forces used and which plays
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 2 200
an important role in describing the structure of nu-
clei within Hartree–Fock theory and within nuclear-
matter theory [28–30]. The effect of the rearrange-
ment potential on the real and imaginary parts of an
optical potential at T = 0 was investigated in [31–
33], and it was shown there that its inclusion is of
importance for describing nucleon–nucleus scatter-
ing, since this suppresses, to a considerable extent,
the intensity of nucleon attraction to nuclei, reducing
nucleon absorption significantly, and leads to better
agreement between calculated optical potentials and
their phenomenological counterparts determined for
finite nuclei.

In the present study, the approach developed
in [25–27, 31–33] is generalized to the case of
calculating optical potentials for nucleon scattering
on hot nuclei (T > 0) with allowance for the re-
arrangement potential. A nucleon–nucleus optical
potential is constructed here by calculating the mass
operator in the nuclear-matter approximation within
perturbation theory to the second order inclusive, the
Fermi distribution being taken into account for occu-
pation numbers at finite temperatures. By employing
the local-density approximation, we then derive an
optical potential for finite nuclei from the resulting
potential for nuclear matter. We have calculated
optical potentials for symmetric and for asymmetric
nuclear matter and for the finite nuclei 40Ca and
208Pb. We have also investigated the effect of the
rearrangement potential and of finite temperatures on
the properties of optical potentials and on the nucleon
mean free path in nuclear matter and in finite nuclei.

2. In microscopically calculating a nucleon–
nucleus optical potential, we rely on an effective two-
particle nucleon–nucleon interaction in the form of
density-dependent generalized Skyrme forces, which,
according to [21–24], can be represented as

v ≡ vij = v1(r) + v2(r, ρ), (1)

where i and j are the numbers of interacting nu-
cleons and the quantities v1(r) and v2(r, ρ) defined
as the interaction components that are, respectively,
independent of and dependent on the nuclear density
ρ = ρn + ρp are given by

v1(r) = t0(1 + x0Pσ)δ(r) +
1
2
t1(1 + x1Pσ) (2)

× [k′2δ(r) + δ(r)k2] + t2(1 + x2Pσ)k′ · δ(r)k
+ iW0(σi + σj) · [k′ × δ(r)k],

v2(r, ρ) =
1
6
t3(1 + x3Pσ)ργ(R)δ(r) (3)

+
1
2
t4(1 + x4Pσ)[k′2ρ(R)δ(r) + δ(r)ρ(R)k2]

+ t5(1 + x5Pσ)k′ · ρ(R)δ(r)k.
5
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Here, r = ri − rj ; R = (ri + rj)/2; Pσ = (1 +
+ σiσj)/2 is the spin-permutation operator; and k =
−i∂/∂r and k′ = i∂/∂r′ are the momentum operators
for the relative motion of nucleons in, respectively, the
initial and the final state. The rest of the notation is
identical to that in [21–24].

Since a nucleon–nucleus optical potential can be
identified with the mass operatorMαβ = 〈α|M |β〉 (α
and β are the indices of final and initial single-particle
states) in the single-particle Green’s function, we
construct the potential in question by calculating this
mass operator in the nuclear-matter approximation
by perturbation theory (to the second order inclu-
sive). The fact that the success of such calculation
within the perturbation theory used depends greatly
on the effective inclusion of contributions from some
of higher order diagrams (see, for example, [34]) is
an important special feature of the calculations to be
performed here. An appropriate choice of zero-order
approximation is of importance for correctly taking
into account such contributions. In view of this, we
choose the mean self-consistent Hartree–Fock po-
tential for a zero-order approximation to the mass
operator. Since the nucleon–nucleon interaction is
density-dependent, fulfillment of the self-consistency
condition in varying the Hartree–Fock potential re-
quires taking into account, in addition to standard
direct and exchange Hartree–Fock terms, the so-
called rearrangement (saturation) term that arises
in varying the effective forces proper with respect
to density. Various effects associated with nucleon
correlations are included through the density depen-
dence of effective nucleon–nucleon forces in nuclear
matter. Changes in the nuclear density lead to the
rearrangement of a multinucleon system (that is, to
changes in the distribution of nucleons over single-
particle levels). As a result, the effective interaction
itself changes, which is reflected in the emergence
of the rearrangement potential. In the zero-order ap-

proximation, the required mass operator M
(0)
αβ can

therefore be represented in the form

M
(0)
αβ = U

(HF)
αβ = U

(0)
αβ + U

(R)
αβ , (4)

where the standard Hartree–Fock potential U (0)
αβ and

the rearrangement potential U (R)
αβ are given by

U
(0)
αβ =

∑
λ

[〈αλ|v|βλ〉 − 〈αλ|v|λβ〉]nλ (5)

=
∑

λ

〈αλ|v(1 − P12)|βλ〉nλ,

U
(R)
αβ =

∑
λµ

〈α|
〈
λµ

∣∣∣∣12δ(r− R) (6)
PH
×∂v

∂ρ
(1− P12)

∣∣∣∣λµ
〉
nλnµ|β〉.

Here, nλ are the occupation numbers for the eigen-
states ϕλ of the single-particle Hartree–Fock Hamil-
tonian,

(t̂ + U (HF))ϕλ = ελϕλ, (7)

while P12 is the particle-permutation operator. In (6),
it is implied that the states |α〉 and |β〉 depend on r
and that |λ〉 and |µ〉 depend on r1 and r2; also, we have
R = (r1 + r2)/2 [35].

As is well known, a certain class of diagrams is
canceled in all orders of perturbation theory upon
taking into account, in the zero-order approximation,
the mean field in the form of the standard Hartree–
Fock potential U (0)

λµ (see, for example, [36]). In par-
ticular, this annihilates first-order diagrams in the

interaction in (1) for the mass operator M (1)
αβ . As to

the rearrangement (saturation) potential U (R)
αβ , its in-

clusion in the zero-order approximation corresponds
to taking into account a number of higher order di-
agrams (specifically, from the third order) inducing
corrections to the occupation probabilities for single-
particle states in the exact multiparticle wave func-
tion (see [29, 30, 34]). The standard Hartree–Fock
term in (5) describes the interaction of a nucleon
with medium nucleons in the occupied states λ, the
occupation numbers for these states at T = 0 be-
ing equal to unity. The above higher order diagrams
take into account the interaction of a nucleon in an
occupied state λ with particle–hole excitations, this
interaction leading to a decrease in the occupation
numbers for the original (standard) Hartree–Fock set
of states. It was precisely the corresponding correc-
tions to the potential of nucleon interaction with a
medium that were referred to as the rearrangement
(saturation) potential in [28–30]. The rearrangement
term in (6) also describes similar effects of a change
in the occupation probabilities for states λ [34], re-
defining the chosen set of single-particle states. The
rearrangement potential arising from the variational
principle is closely related to rearrangement correc-
tions induced by Goldstone diagrams (see [29, 30,
34]). In connection with the aforesaid, we will assume
that the real part of the sought microscopic nucleon–
nucleus optical potential is determined by the chosen
zero-order approximation for the mass operator in the
form of the Hartree–Fock field with allowance for the
rearrangement potential.

In the case of the effective interaction specified
by Eqs. (1)–(3), the first nonvanishing contribution
to the imaginary part of the optical potential arises
in the second order of perturbation theory, and we
YSICS OF ATOMIC NUCLEI Vol. 68 No. 2 2005
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will restrict ourselves to this contribution. We disre-
gard the contribution of the second-order diagrams
to the real part of the optical potential, since esti-
mations demonstrate its smallness [25]. Considering
that density-dependent effective forces simulate the
reaction matrix, we can assume that the main part
of the second-order Goldstone contribution has al-
ready been taken into account in the canceled first-
order diagrams. The contribution of the second-order
diagrams to the imaginary part of the mass operator
(that is, to the imaginary part of the optical potential)
has the form (see [25–27, 32, 33])

ImM
(2)
αβ ≡Wαβ = −π

2

∑
λµν

〈αµ|v (8)

× (1− P12)|λν〉〈λν|v(1 − P12)|βµ〉
× [nµ(1− nλ)(1− nν) + nλnν(1− nµ)]

× δ(εα + εµ − ελ − εν).

The occupation numbers for single-particle states
at finite temperatures (T > 0) are determined by the
Fermi distribution

nλ =
{

1 + exp
[

1
T

(ελ − µ)
]}−1

, (9)

where µ is the chemical potential.

The first term in the bracketed expression on the
right-hand side of (8) yields the retarded part of the
mass operator and is the main one. The second term
yields the advanced part and can make a significant
contribution only at rather low energies and high
temperatures [26, 27]. At T = 0, this term makes no
contribution at all.

As in [25–27, 31–33], we consider the nuclear-
matter approximation in deriving specific expressions
for a nucleon–nucleus optical potential. In this case,
the functions ϕα, which satisfy Eq. (7), have the form
of plane waves,

ϕα = Ω−1/2exp(ikα · r)χσαχτα , (10)

whereχσ andχτ are, respectively, the spin and isospin
functions; Ω is the normalization volume; and the
wave vector kα obeys the dispersion relation

k2
α =

2mτα

�2
[εα − U (HF)

αα ]. (11)

The chemical potential µτα at a given temperature T
and a given density ρτα of nucleons belonging to the
type τα (τα = n, p) is determined from the equation

ρτα =
1
π2

∞∫
0

dkαk
2
α{1 + exp[(ετα(kα)− µτα)/T ]}−1.

(12)
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Taking into account relations (1)–(3), we derive the
quantity U (HF)

αβ from (5) and (6) in the form

U
(HF)
αβ = δ(kα − kβ)δσασβ

δτατβ
Uα, (13)

where the real part Uα of the optical potential is

Uα =
�

2

2mτα

(
mτα

m∗
τα

− 1
)
k2

α + U (0)
τα

+ U (R), (14)

U (0)
τα

= ρg0 − ρταh0 +
1

4π2
[g1 + g2 (15)

+ ρ(g4 + g5)](Jn + Jp) +
1

4π2
[−h1 + h2

+ ρ(−h4 + h5)]Jτα +
1
6
ργ(ρg3 − ρταh3),

U (R) =
1
12

γργ−1[ρ2g3 − (ρ2
n + ρ2

p)h3] (16)

+
1

4π2
[ρ(g4 + g5)(Jn + Jp)

+ (−h4 + h5)(ρnJn + ρpJp)],

mτα

m∗
τα

= 1 +
mτα

2�2
{ρ[g1 + g2 + ρ(g4 + g5)] (17)

+ ρτα [−h1 + h2 + ρ(−h4 + h5)]},

Jτα =

∞∫
0

dkk4{1 + exp[(ετα(k)− µτα)/T ]}−1, (18)

gi = ti

(
1 +

1
2
xi

)
, hi = ti

(
1
2

+ xi

)
. (19)

In (14), the term U
(0)
τα stems from the standard

Hartree–Fock potential, while U (R) emerges from
the rearrangement potential; also, we have introduced
an effective nucleon mass m∗

τα
. The dispersion rela-

tion (11) can be recast into the form

k2
α =

2m∗
τα

�2
[εα − U (0)

τα
− U (R) − VC]. (20)

Here, we have also taken into account the Coulomb
potential VC for the case of proton scattering (for neu-
trons, VC = 0). Employing relations (14) and (20), we
eventually obtain the following expression for the real
part of the optical potential at a nucleon energy E:

V = Vτα(E) (21)

=
m∗

τα

mτα

[(
mτα

m∗
τα

− 1
)

(E − VC) + U (0)
τα

+ U (R)

]
.

Knowing the dispersion relation (20) and using
Eq. (8), we can now obtain an expression for the
5
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imaginary part of the mass operator. The result is
similar to that presented in [26, 27] and has the form

Wαβ = δ(kα − kβ)δσασβ
δτατβ

Wτα(E), (22)

where the sought imaginary partWτα(E) of the opti-
cal potential at a nucleon energy E is given by

W = Wτα(E) = − 1
64π5

7∑
i=1

Wi, (23)

W1 =
(

2g00 +
1
18

g33ρ
2γ +

2
3
g03ρ

γ

)
× [I1(τα, n) + I1(τα, p)]

−
(

2h00 +
1
18

h33ρ
2γ +

2
3
h03ρ

γ

)
I1(τα, τα),

W2 =
[
2(g01 + g04ρ) +

ργ

3
(g13 + g34ρ)

]
[I2(τα, n)

+ I2(τα, p)]−
[
2(h01 + h04ρ)

+
ργ

3
(h13 + h34ρ)

]
I2(τα, τα),

W3 =
(

1
2
g11 +

1
2
g44ρ

2 + g14ρ

)
[I3(τα, n)

+ I3(τα, p)]−
(

1
2
h11 +

1
2
h44ρ

2 + h14ρ
γ

)
I3(τα, τα),

W4 = 2
[
2(g02 + g05ρ) +

ργ

3
(g23 + g35ρ)

]
(24)

× [I4(τα, n) + I4(τα, p)],

W5 = 2[g12 + ρ(g15 + g24) + g45ρ
2]

× [I5(τα, n) + I5(τα, p)],

W6 = 2(g22 + g55ρ + 2g25ρ)[I6(τα, n) + I6(τα, p)]
− 2(h22 + h55ρ + 2h25ρ)I6(τα, τα),

W7 = 4W 2
0 [I7(τα, n) + I7(τα, p) + I7(τα, τα)],

where gij = titj[1 + xixj + (xi + xj)/2], hij = titj ×
[xi + xj + (1 + xixj)/2], and we have also introduced
the integrals (which were considered in [26, 27])

Ii(τα, τµ) =
∫

dkµdkλdkνfi(Kαµ,Kλν) (25)

× [nµ(1− nλ)(1− nν) + nλnν(1− nµ)]
× δ(E + εµ − ελ − εν)δ(kα + kµ − kλ − kν).
P

In the above expressions, we have also used the
following notation: τλ = τα, τν = τµ, Kαµ = (kα −
kµ)/2, Kλν = (kλ − kν)/2, and

f1 = 1, f2 = K2
αµ + K2

λν , (26)

f3 = (K2
αµ + K2

λν)
2, f4 = Kαµ · Kλν ,

f5 = (K2
αµ + K2

λν)(Kαµ · Kλν),

f6 = (Kαµ · Kλν)2, f7 = (Kαµ × Kλν)2.

It should be noted that a method for calculating the
integrals in (25) for the case where the occupation
numbers nλ are given by (9) is described in [26].

In the above formulas, the rearrangement potential
does not appear directly in the imaginary part of the
optical potential, but our calculations reveal that its
inclusion affects the imaginary part significantly be-
cause of the change in the dispersion relation. This
circumstance was also indicated in [32, 33] for the
case of cold nuclei (T = 0).

Within the approach being considered, the formu-
las obtained above for the case of infinite nuclear mat-
ter and the local-density approximation are used to
calculate a microscopic optical potential for nucleon
scattering on finite nuclei. In the local-density ap-
proximation, the local values of the nuclear densities
ρ(r) and ρτα(r) for the point being considered are
substituted into formulas (15), (16), (21), and (23)–
(26) in calculating the required quantities. Concur-
rently, the chemical potential µτα(r) is also treated as
a function of r and is calculated according to Eq. (12)
for local values of the density. In the case of nucleon
scattering on finite nuclei, the energy E is related
to the laboratory energy Elab by the equation E =
AElab/(A+ 1). As in [25, 26, 31–33], the semiempir-
ical Negele formulas [14] for the proton and neutron
densities are used here in the calculations for finite
nuclei.

On the basis of the complex-valued nucleon–
nucleus optical potentials found here, we have also
calculated the nucleon mean free path l in nuclear
matter and finite nuclei in order to study the effect of
the rearrangement potential on this feature at various
values of energy and temperature. The neutron mean
free path is related to the optical potential by the
equation (see, for example, [26])

l =
�

2m∗
τα
|Wτα(E)| {2mτα [E − Vτα(E)]}1/2. (27)

3.On the basis of the approach outlined above, the
real (V ) and the imaginary (W ) part of the nucleon–
nucleus optical potential have been calculated here
both for symmetric and asymmetric (for Z/A =
82/208) nuclear matter and for finite nuclei at various
values of the neutron energy and temperature in the
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 2 2005
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ranges 0 ≤ E ≤ 50 MeV and 0 ≤ T ≤ 15 MeV, re-
spectively. The calculations were performed by using
various parameter sets known from the literature for
generalized Skyrme forces. For basic versions of the
effective interaction, we took the Ska forces [23] and
the SGI forces [24], since, as became clear from
our calculations, they provide the best description of
the experimental energy dependence of the volume
integrals JV and JW for the real and imaginary parts
of the optical potential for finite nuclei.

Our calculations revealed a significant effect of
the rearrangement potential on the calculated real
(V ) and imaginary (W ) parts of the optical poten-
tial and on the neutron mean free path l at finite
temperatures. For nuclear matter, the results of the
calculations with the Ska forces [23] are displayed in
Fig. 1. These results are similar for symmetric and
asymmetric nuclear matter. From Fig. 1, one can see
that the real part of the optical potential depends on
temperature only slightly, but that the effect of the
rearrangement potential U (R) is much more signif-
icant: as T changes from 0 to 15 MeV, V changes
by not more than 10%, while the inclusion of U (R)

reduces |V | by approximately 25% both at T = 0
and at T = 15 MeV. We note that, in all cases, the
slope of the curve that represents the E dependence
of V undergoes no changes, since it depends on the
effective massm∗

τα
, whose value is determined exclu-

sively by the chosen version of Skyrme forces (for the
case of the Ska forces, we have m∗

τα
= 0.588mτα ).

The imaginary part of the optical potential features a
significant dependence both on T and on the inclusion
of U (R). By way of example, we indicate that, as T
increases from 0 to 15 MeV, the value of |W | for
symmetric nuclear matter at E = 40 MeV increases
by a factor of about 1.6, while the inclusion of U (R)

leads to a sizable decrease in the quantity |W | at all
values of E and T and to a moderation of its growth
with increasing E.

The inclusion of the rearrangement potential has
the most significant effect on the neutron mean free
path at low temperatures of nuclear matter, but this
effect decreases with increasing E. At T = 15 MeV,
the effect in question becomes rather small over the
entire range of energies E considered here. From
our calculations, it also follows that l decreases with
increasing T and E, this being due to a reduction
of the effect of the Pauli exclusion principle for final
states of colliding nucleons. For the same reasons,
the influence of temperature effects on l becomes
less pronounced with increasing E. We note that
the mean free paths for symmetric and asymmetric
nuclear matter differ significantly at low temperatures
and that, at high temperatures (T = 15 MeV), they
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 2 200
are weakly dependent on the energy E and are vir-
tually identical in the two cases in question (l = 3–
7 fm).

The effect of the rearrangement potential on the
radial dependences V (r), W (r), and l(r) for n40Ca
scattering at various values of temperature and en-
ergy is illustrated in Fig. 2. The inclusion of U (R) in
the calculation of the real part of the optical potential
leads to the same effect at all values of E: the depth of
the real-valued potential well decreases significantly,
the absolute value of this change being nearly iden-
tical (approximately 20–40%) for different values of
E. This conclusion is valid for all T values consid-
ered here, since the radial dependence V (r) is weakly
dependent on temperature. With increasing E, the
value of |V | at r = 0 (the potential-well depth) de-
creases. A change in E and T and the inclusion of
the potential U (R) have a significant effect on the
value of the imaginary part of the optical potential,
especially in the interior of a nucleus. The disregard
of the rearrangement potential leads to an increase
in the depth of W (r), so that, at E ≤ 30 MeV, for
example, the potential W (r) ceases to be superficial,
acquiring a volume character. An increase in E and
T leads to the same effect. For example, the potential
W (r) calculated at E = 10 MeV and T = 15 MeV is
nearly coincident with that calculated atE = 30MeV
and T = 10 MeV.

This dependence of the potentials V (r) and W (r)
on E and T determines the character of the energy
and temperature dependence of the mean free path
l: with increasing E and T , the value of l in the
interior of the nucleus decreases—by way of example,
we indicate that, at E = 50 MeV, the value of l at
the center of the 40Ca nucleus changes from 6 fm at
T = 0 to 3.5 fm at T = 15 MeV.

We note that, in the case of neutron scattering
on 208Pb nuclei, the calculations of the quantities
V (r), W (r), and l(r) lead to a pattern similar to that
obtained for 40Ca nuclei, the results differing only in
absolute value. At r = 0 and E = 50 MeV, we have
l = 7.5 fm at T = 0 and l = 4 fm at T = 15 MeV. It
is noteworthy that the above values of l are close for
40Ca and 208Pb nuclei, as well as for nuclear matter.

In the energy and temperature ranges being con-
sidered, the mean free path l in finite nuclei is longer
at the center of a nucleus; as r increases up to the
nuclear surface, l decreases smoothly to some value,
whereupon it increases sharply at r values exceeding
the nuclear radius R. This behavior of l(r) differs
significantly from that predicted in [27], where, even
at E = 40 MeV, l assumes a constant value over the
entire region within the nucleus, r ≤ R. This differ-
ence in the behavior of l(r) as a function of radius
5
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Fig. 1. Dependences of the real (V ) and imaginary (W ) parts of the optical potential and of the neutron mean free path l on the
incident-neutron energy E for (a) symmetric and (b) asymmetric nuclear matter at T = 0 (the solid and dashed curves were
calculated, respectively,without and with allowance for the rearrangement potential) and at T = 15MeV (the dotted and dash-
dotted curves were calculated, respectively,without and with allowance for the rearrangement potential). The calculationswere
performed with the Ska forces.
is due to the circumstance that the inclusion of the
rearrangement potential leads, as can be seen from
Fig. 2, to the emergence of at least a modest sur-
face hump in the potential W (r) for E ≤ 50 MeV,
while the disregard of the potential U (R) results in a
purely volume behavior of the potential W (r) even at
E = 40 MeV. The presence of a surface hump in the
radial dependence of the imaginary part of the optical
potential leads to a decrease in l as r increases from
0 to R. It is interesting to note that, at each value
of the nuclear temperature, the curves representing
l(r) for different values of the energy E (see Fig. 2)
intersect at r ≈ R irrespective of whether one takes
into account U (R).

For the sake of comparison, we present in Fig. 3
the results obtained by calculating the optical poten-
PH
tials for asymmetric nuclear matter and for n208Pb
scattering by using the Ska forces and SGI forces;
as a matter of fact, the latter are an improved version
of the former (see [24]). The results for the real part of
the optical potential for nuclear matter (see Fig. 3a)
differ only slightly for these two versions of nucleon–
nucleon forces, the main distinction consisting in
different slopes of the curves representing V (E) (be-
cause of different effective-mass values). The distinc-
tions between the calculated imaginary parts W (E)
of the optical potential are more pronounced, but they
are relatively small as well. The growth of the depth of
the potential |W | with increasing energy E is slower
for the Ska than for the SGI forces. At low tem-
peratures, there are some distinctions between the
values of the mean free path for the Ska and SGI
forces, but they decrease with increasing energy; at
YSICS OF ATOMIC NUCLEI Vol. 68 No. 2 2005
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Fig. 2.Dependences of the optical potentialV + iW and of themean free path l on the radius r for n40Ca scattering atE = 10,
30, and 50 MeV (curves from top to bottom for V and l and from bottom to top for W ) for various temperatures: (a) results
obtained at T = 15 MeV (solid curves) with and (dashed curves) without allowance for the rearrangement potential and (b)
results obtained at (solid curves) T = 0, (dashed curves) T = 10 MeV, and (dotted curves) T = 15 MeV with allowance for
the rearrangement potential. All calculations were performed with the Ska forces.
rather high temperatures, the distinctions in question
are very small. Figure 3b shows that the use of the
Ska and SGI forces leads to close results for the
radial dependence V (r); at the same time, the func-
tion W (r) exhibits some distinctions in the nuclear
interior (the SGI forces yield a deeper imaginary part
of the optical potential). The mean free paths l(r) also
differ somewhat in the nuclear interior: the Ska forces
yield greater values for l.
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 2 200
We have also performed calculations with tempe-
rature-dependent generalized Skyrme forces, whose
parameters were determined in [37] from calculations
of the Brueckner reaction matrix. Even at T = 0,
these forces yielded results that differ drastically from
those obtained with phenomenological forces. At the
same time, the inclusion of a temperature dependence
in these forces has but a slight effect on the behavior of
the quantities under study. In view of this, we do not
5
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(b) Dependences of the real (V ) and imaginary (W ) parts of the optical potential and of the neutron mean free path l on r for
n208Pb scattering at T = 10 MeV and E = 10, 30, and 50 MeV (curves from top to bottom for V and l and from bottom to
top forW ) in the cases of the SGI and Ska forces (solid and dashed curves, respectively).
quote here the results of the calculations with such
forces.

Let us finally consider Fig. 4, where, for the real
[JV (E)] and imaginary [JW (E)] volume integrals of
the optical potential for neutron scattering on 40Ca
and 208Pb nuclei,

JV = − 1
A

∫
d3rV (r), JW = − 1

A

∫
d3rW (r), (28)
PH
where A is the mass number of the target nucleus,
we present the energy dependences calculated with
the Ska forces. It should be recalled that these vol-
ume integrals are important features of not only the
radial distribution of the optical potential but also
the scattering processes being studied. The results
of the calculations reveal that the inclusion of the
rearrangement potential has a significant effect on
both volume integrals. For the integral JV , this effect
is stronger than the effect of the change in tempera-
YSICS OF ATOMIC NUCLEI Vol. 68 No. 2 2005
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ture in the range T = 0–15 MeV, which is considered
here. For the integral JW , the growth of energy leads
to a decrease in the effect of a change in temperature
and to an increase in the effect of the inclusion of the
rearrangement potential.

4. In the present study, a microscopic neutron–
nucleus optical potential and neutron mean free
paths in nuclear matter have been calculated at
finite nuclear temperatures and various values of
energy by using the nuclear-matter approximation.
The calculations have relied on perturbation theory
with allowance for the rearrangement potential in
the zero-order approximation and have employed
density-dependent effective nucleon–nucleon forces
of the Skyrme type. The calculations have been
performed both for infinite symmetric and asymmetric
nuclear matter and for the finite nuclei 40Ca and
208Pb in the local-density approximation. The effect
of the rearrangement potential on the features being
considered has been investigated at various values of
energy and temperature, and the importance of taking
this potential into account has been demonstrated.
The energy, temperature, and radial dependences of
the real and imaginary parts of the neutron–nucleus
optical potential and of the neutron mean free paths
have been studied.

Our results for symmetric and asymmetric nu-
clear matter and for 40Ca and 208Pb are qualitatively
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 2 200
similar. It has been found that the real part of the
optical potential is weakly dependent on T , so that the
effect of the rearrangement potential is much stronger
than the temperature effect. A strong temperature
dependence is characteristic of the imaginary part of
the optical potential. Even in this case, however, the
effect of the rearrangement potential is quite signif-
icant (on the order of changes in the imaginary part
of the optical potential in the temperature interval
being considered), this effect increasing with energy,
in contrast to what we have in the case of the real
part. The effect of the rearrangement potential on
the mean free paths is especially pronounced at low
temperatures, but it decreases with increasing energy.
At high temperatures, this effect is moderate, slowly
changing with energy. The neutron mean free paths
in symmetric and asymmetric nuclear matter differ
sizably at low temperatures, but they are close at high
temperatures.
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Abstract—For the effective-range function kcotδ, a pole approximation that involves a small number of
parameters is derived on the basis of the Bargmann representation of the S matrix. The parameters of this
representation, which have a clear physical meaning, are related to the parameters of the Bargmann S
matrix by simple equations. By using a polynomial least squares fit to the function kcotδ at low energies,
the triplet low-energy parameters of neutron–proton scattering are obtained for the latest experimental
data of Arndt’s group on phase shifts. The results are at = 5.4030 fm, rt = 1.7494 fm, and v2 = 0.163 fm3.
With allowance for the values found for the low-energy parameters and for the pole parameter, the pole
approximation of the function kcotδ provides an excellent description of the triplet phase shift for neutron–
proton scattering over a wide energy range (Tlab � 1000MeV), substantially improving the description at
low energies as well. For the experimental phase shifts of Arndt’s group, the triplet shape parameters vn

of the effective-range expansion are obtained by using the pole approximation. It turns out that they are
positive and decrease with increasing n. The description of the phase shift by means of the effective-range
expansion featuring values found for the low-energy parameters of scattering proves to be fairly accurate
over a broad energy region extending to energy values approximately equal to the energy at which this phase
shift changes sign, this being indicative of a high accuracy and a considerable value of the effective-range
expansion in describing experimental data on nucleon–nucleon scattering. The properties of the deuteron
that were calculated by using various approximations of the effective-range function comply well with their
experimental values. c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

The S matrix [1], which was first introduced by
Heisenberg [2], is a fundamental quantity in scat-
tering theory. At a fixed value of the orbital angular
momentum 
, the S matrix is a function of the wave
number k related to the energyE of two colliding par-
ticles in the c.m. frame by the equationE = �

2k2/2m,
where m is the reduced mass of the system and �

is Planck’s constant. In the following, we restrict
our consideration to the case of zero orbital angular
momentum (in order to avoid encumbering formulas
given below, we omit the index 
 = 0). The fact that
a unified description of both scattering and bound
states in two-particle systems can be constructed on
the basis of the respective S matrix is an important
consequence of the analytic properties of this matrix.
In general, the analytic properties of the S matrix in
the k plane are rather complicated; however, a number
of important results can be obtained in considering
specific physical systems by using an S matrix whose
analytic properties are simple. In the k plane, the S

*e-mail: pet@online.com.ua
1063-7788/05/6802-0219$26.00
matrix satisfies the relation [1]

S∗(k∗) · S(k) = 1. (1)

At real k values, this relation coincides with the uni-
tarity condition.

In potential-scattering theory, the Smatrix S(k) is
expressed in terms of the Jost function F (k) as [3, 4]

S(k) = F (−k)/F (k). (2)

At complex values of k, the Jost function F (k) satis-
fies the condition

F ∗(−k∗) = F (k). (3)

The S-matrix property (1) immediately follows from
this condition with allowance for (2). The behavior of
the Jost function at high energies is determined by the
relation

lim
k→∞

F (k) = 1. (4)

The behavior of the S matrix at high energies directly
follows from (2) and (4):

lim
k→∞

S(k) = 1. (5)
c© 2005 Pleiades Publishing, Inc.
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In the case of elastic scattering, the S matrix can
be expressed in terms of the phase shift δ(k) as

S(k) = e2iδ(k). (6)

Using relation (6) and considering that the S matrix
possesses the symmetry property [1]

S(−k) = S−1(k), (7)

one can easily see that, at real values of k, the phase
shift δ(k) is an odd function of k; that is,

δ(−k) = −δ(k). (8)

From relations (5) and (6), one readily establishes
the asymptotic behavior of the phase shift at high
energies:

lim
k→∞

δ(k) = 0. (9)

In practice, it is very useful to introduce the
effective-range function

k cot δ = ik
S(k) + 1
S(k) − 1

. (10)

In the physical region, the function k cot δ is real by
virtue of the unitarity of the S matrix, while, in the
k plane, this function is analytic everywhere, with
the exception of the points where S(k) = 1, where
it has poles. The introduction of the function k cot δ
simplifies the investigation of the analytic properties
of the S matrix. It follows from (8) that the function
k cot δ is an even function of k.
In studying nucleon–nucleon scattering at low

energies, it is useful to employ the well-known
effective-range expansion

k cot δ = −1
a

+
1
2
r0k

2 + v2k
4 + v3k

6 + . . . , (11)

which involves only even powers of k. The effective-
range approximation corresponds to retaining only
the first two terms in (11). In expansion (11), the
quantities a and r0 are, respectively, the scattering
length and the effective range, while the quantities vn

are related to the potential shape. It should be noted
that the quantity r0 is a measure of the effective-
interaction region. In the case of nucleon–nucleon
interaction, the effective range r0 is approximately
equal to the range of nuclear forces (R). If, however,
one deals with the doublet neutron–deuteron (nd)
interaction, the effective range is anomalously large
(r0 ∼ 500 fm), so that the statement that it is approxi-
mately equal to the range of nuclear forces (R ∼ 2 fm)
does not hold here. This is because, for nd interaction,
the function k cot δ has a pole in the vicinity of the
point k2 = 0 owing to the existence of a low-energy
virtual triton state [5].
P

In a number of studies (see, for example, [6–8]),
the authors approximated the S matrix by rational
functions, this leading to so-called Bargmann poten-
tials [4, 9]. The use of a Bargmann S matrix makes
it possible to find explicit solutions to the direct and
inverse scattering problems. Of particular importance
are special cases where the Bargmann S matrix is
determined by a small number of parameters such
that physical observables are directly expressed in
terms of these parameters. In [5], we showed that the
use of the Bargmann S matrix corresponding to the
presence of two states in the system being consid-
ered leads to the pole structure of the effective-range
function (van Oers–Seagrave formula [10]). At low
energies, this structure makes it possible to describe
well doublet nd scattering on the basis of parameters
that characterize the bound and the virtual state of the
triton.
In the present study, we use the Bargmann rep-

resentation of the S matrix to construct the pole
approximation of the effective-range function, bear-
ing in mind that the pole approximation is the most
optimal for describing nucleon–nucleon scattering
and that it involves a small number of parameters. The
pole-approximation parameters have a clear physical
meaning, and the values found for these parameters
from an analysis of low-energy experimental data
make it possible to obtain an excellent unified de-
scription of a bound state in the two-nucleon system
(deuteron) and the triplet phase shift for neutron–
proton scattering over a very wide energy range
(0−1000MeV).

2. BARGMANN REPRESENTATION
OF THE S MATRIX AND POLE

APPROXIMATION
OF THE EFFECTIVE-RANGE FUNCTION

In order to investigate the interaction in the sys-
tem of two particles, we will use the corresponding
Bargmann S matrix [4, 9], which possesses simple
analytic properties in the k plane. In this case, the Jost
function F (k) can be chosen in the simplest way in
the form of a rational function,

F (k) =
N∏

n=1

k − iαn

k + iλn
. (12)

It has N simple zeros at the points k = iαn and N
simple poles at the points k = −iλn and exhibits the
correct asymptotic behavior (4) at high energies.
As a simple example of a Bargmann S matrix,

one can consider the S matrix corresponding to the
Hulthén potential

V (r) = −V0(er/R − 1)−1, (13)
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 2 2005
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for which we have

αn =
g − n2

2nR
, λn =

n

2R
, (14)

where

g =
2m
�2

V0R
2, (15)

andN →∞.
The scattering matrix

S(k) =
N∏

n=1

k + iαn

k − iαn

k + iλn

k − iλn
, (16)

which corresponds to the Jost function (12), has N
simple “physical” poles at k = iαn in the k plane.
The poles lying on the imaginary axis in the up-
per half-plane (αn > 0) correspond to bound states,
while the poles in the lower half-plane correspond to
resonances or virtual states. The resonances in the
lower half-plane are grouped in pairs symmetric with
respect to the imaginary axis, while the virtual states
are on the imaginary axis (αn < 0). In addition to
the physical poles corresponding to resonances and
bound and virtual states, the Bargmann S matrix (16)
has N so-called extra poles at k = iλn in the upper
half-plane, which do not correspond to any physical
states. The presence of the same number of redundant
poles serves as some kind of a compensation factor,
ensuring the correct asymptotic behavior [see Eq. (4)]
of the Jost function at infinity.
With allowance for Eqs. (2) and (3), the effective-

range function (10) at real values of k can be ex-
pressed in terms of the real and the imaginary part of
the Jost function as

k cot δ = −kReF (k)
ImF (k)

. (17)

From the Bargmann representation (16) of the S
matrix, it immediately follows that the effective-range
function k cot δ can then be written in the form of a
rational function of k2,

k cot δ =
PN (k2)
QN−1(k2)

, (18)

where the degrees of the polynomials PN (k2) and
QN−1(k2) of k2 are N and N − 1, respectively, and
where the coefficients in these polynomials are com-
pletely determined by the quantities αn and λn.
The representation in (18) for the function k cot δ

can be considered as a Padé approximation of this
function [11] if the expansion of the function
PN (k2)/QN−1(k2) ≡ [N/(N − 1)] in a Taylor–Mac-
lauren series coincides with the effective-range ex-
pansion (11) up to terms of order 2N − 1. In other
words, the coefficients of 1, k2, . . . , k2(2N−1) in the
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Taylor expansion of the function [N/(N − 1)] must
coincide with the corresponding coefficients in the
series in (11). The Padé approximation method was
used by various authors to study nucleon–nucleon
scattering (see, for example, [12–15]). It is of impor-
tance in our case that, from the Bargmann represen-
tation (16) of the S matrix, it automatically follows
that the degree of the polynomial P in the numerator
of the Padé approximant (18) must be greater by
unity than the degree of the polynomial Q in its
denominator, this being in accord with the condition
of the theorem [12] on the solvability of the inverse
scattering problem. In addition, one can see that, in
the majority of cases, the condition L = M + 1 for
the Padé approximant [L/M ] of the function k cot δ is
optimal for specific fits [13–15].
Let us now consider in detail the important partic-

ular case where the Bargmann S matrix corresponds
to the presence of two physical states (N = 2) in the
system. This is so, for example, in the doublet scat-
tering of a neutron on a deuteron [5], in which case
there are two triton states in the system, a bound and
a virtual one. The scattering matrix corresponding to
the presence of two states in the system can also be
used to describe triplet neutron–proton scattering.
Since the second state has not yet been observed
experimentally in that case, the energy of this state
must be considerably higher than the deuteron bind-
ing energy. If, in this case, the second state is a bound
state of two nucleons, such a situation corresponds
to the phenomenology of nodes that is described by
a short-range deep attractive potential involving for-
bidden states [16–18].

If the system has two physical states, the ratio-
nal Jost function and the Bargmann S matrix corre-
sponding to it are given by

F (k) =
k − iα
k + iλ

k − iβ
k + iµ

, (19)

S(k) =
k + iα

k − iα
k + iβ

k − iβ
k + iλ

k − iλ
k + iµ

k − iµ. (20)

The first and second factors in the S-matrix repre-
sentation (20) correspond to either bound or virtual
states of the system, while the third and fourth factors
correspond to redundant poles of the S matrix. The
negative energies of the bound and virtual states of
the system are

Eα = −�
2α2/(2m), (21)

Eβ = −�
2β2/(2m). (22)

The expression describing the effective-range
function k cot δ and corresponding to the presence
5
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of two states in the system immediately follows
from (17) and (19). The result is

k cot δ = −1
a

1− c2k2 + c4k
4

1 +Dk2
, (23)

where, for the sake of convenience, we have explicitly
isolated the scattering length a. The parameters ap-
pearing in the pole representation (23) of the function
k cot δ and the parameters α, β, λ, and µ of the
Bargmann S matrix (20) are related by the equations

a =
1
α

+
1
β

+
1
λ

+
1
µ
, (24)

c2 =
1
αβ

+
1
αλ

+
1
αµ

+
1
βλ

+
1
βµ

+
1
λµ

, (25)

c4 = 1/(αβλµ), (26)

D = −1
a

α+ β + λ+ µ

αβλµ
. (27)

The parameter D appearing in (23) determines the
pole of the effective-range function k2

0:

k2
0 = −1/D. (28)

Expression (23), which was obtained for the func-
tion k cot δ by the above method from the Bargmann
representation of the S matrix, is a one-pole rep-
resentation and involves four independent parame-
ters. It can easily be shown that, apart from the
form of presentation, the pole expression (23) coin-
cides with the well-known empirical formulas that
were given by van Oears and Seagrave [10] and by
Cini, Fubini, and Stanghellini [19] and which are ap-
plied to describe, respectively, neutron–deuteron and
nucleon–nucleon scattering. It is worth noting that
various forms of the pole structure of the effective-
range function k cot δ have been repeatedly discussed
for a rather long time and have been successfully
used to describe neutron–deuteron [5, 10, 20–30]
and nucleon–nucleon interactions [19, 31–35]. In the
majority of cases, however, the formulas for k cot δ
were obtained empirically. But in our case, the pole
formula for the function k cot δ immediately follows
from the Bargmann S matrix, which possesses simple
properties and which takes into account basic phys-
ical properties of the interaction in the system being
considered.
In [5], we showed that, in the case of neutron–

deuteron interaction, the presence of the pole of the
function k cot δ is a direct consequence of the ex-
istence of a virtual triton state at a low energy. In
the present study, the effective-range function having
a pole structure will be used to describe neutron–
proton interaction in the triplet (t) spin state 3S1.
PH
In this case, the neutron–proton system has one
bound state (deuteron), the scattering of a neutron
on a proton at low energies (up to energies of about
10 MeV) being well described in the effective-range
approximation. In this connection, it is convenient to
recast the pole-approximation formula (23) into the
form

k cot δ = − 1
at

+
1
2
rtk

2 +
v2k

4

1 +Dk2
, (29)

where at and rt are, respectively, the scattering length
and the effective range, while the parameter v2 deter-
mines the dimensionless shape parameterPt, which is
widely used in the literature, according to the relation

Pt = −v2/r
3
t . (30)

The first two terms of the representation in (29) cor-
respond to the effective-range approximation, while
the last, pole, term describes the deviation from this
approximation. The presence of this pole term makes
it possible to improve, with the aid of only two addi-
tional parameters, the description of the phase shift
significantly and to extend the range of applicability of
this description greatly. Thus, the pole approximation
(29), which was derived from the Bargmann repre-
sentation of the S matrix, is a direct generalization of
the effective-range approximation to the case where
there are two physical states in the system. We note
that the form (29) of the pole formula is more conve-
nient for describing nucleon–nucleon scattering than
that in (23), since, in (29), the low-energy scattering
parameters at, rt, and v2 are isolated explicitly.
The parameters at and D appearing in (29) are

related to the parameters of the Bargmann S matrix
(20) by Eqs. (24) and (27), while the effective range rt
and the shape parameter v2 are given by

rt =
2
at

(D + c2), (31)

v2 = −
(

1
2
Drt +

c4
at

)
, (32)

where c2 and c4 are related to the S-matrix parame-
ters by Eqs. (25) and (26).
Let us now consider the specific case where the S

matrix in (20) for the case of two states reduces to the
S matrix for one state,

S(k) =
k + iα

k − iα
k + iλ

k − iλ . (33)

In this case, the second state goes to infinity: β →∞
and µ→∞. It can easily be seen that the coefficients
D and v2 then vanish in formula (29), which reduces,
after that, to the effective-range-approximation for-
mula

k cot δ = − 1
at

+
1
2
rtk

2, (34)
YSICS OF ATOMIC NUCLEI Vol. 68 No. 2 2005
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where the scattering length at and the effective range
rt are given by

at =
1
α

+
1
λ
, (35)

rt =
2

α+ λ
. (36)

The dimensionless asymptotic normalization fac-
tor Cd characterizing the bound state of the two-
nucleon system (deuteron) can be expressed in terms
of the residue of the S matrix at the pole k = iα as

C2
d =

i

2α
Res
k=iα

S(k). (37)

In the case of the S matrix for one state, Cd is given
by

C2
d =

λ+ α

λ− α. (38)

Upon expressing λ in terms of α and C2
d , formu-

las (35) and (36) for the scattering length at and the
effective range rt, respectively, can be recast into the
form [36]

at =
2
α

C2
d

1 + C2
d

, (39)

rt =
1
α

(
1− 1

C2
d

)
. (40)

Thus, formulas (39) and (40) give explicit expressions
for the low-energy scattering parameters at and rt
in terms of parameters that characterize the bound
state of the two-nucleon system (deuteron) in the
case where the interaction in the system is described
by the S matrix for one state. The inverse statement
is also valid—namely, the parameters characterizing
the deuteron can be expressed, in this case, in terms
of the scattering parameters at and rt as

α =
1
rt

[
1−

(
1− 2rt

at

)1/2
]
, (41)

C2
d =

1
(1− 2rt/at)1/2

. (42)

The case where, at finite values of β and µ, the
coefficient D vanishes, while the parameter v2 differs
from zero, is yet another important specific case of
formula (29). This is so if the system has a virtual
state whose wave number β is given by

β = −(α+ λ+ µ). (43)

It can be seen from (27) that, in this case, the pa-
rameter D is equal to zero, while expression (29) for
the effective-range function reduces to the expression
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 2 200
corresponding to the shape-parameter approxima-
tion,

k cot δ = − 1
at

+
1
2
rtk

2 + v2k
4, (44)

where

rt = 2c2/at, (45)

v2 = −Ptr
3
t = −c4/at, (46)

with at, c2, and c4 being given by (24)–(26). The
effective-range approximation (34) and the shape-
parameter approximation (44) are among the most
popular and important methods for parametrizing da-
ta on nucleon–nucleon scattering at low energies
[37, 38].

In the triplet spin state, the neutron–proton scat-
tering length at is positive. It follows that, in the
approximation specified by Eq. (44), the sign of the
shape parameter Pt is determined by the sign of the
parameter c4 in accordance with (46). Since the re-
dundant poles k = iλ and k = iµ of the S matrix lie
in the upper half-plane and since α > 0 and β < 0, it
follows from (26) that c4 is negative. Therefore, the
dimensionless shape parameter Pt is also negative in
this approximation:

Pt < 0. (47)

The authors of [37, 38] studied the relation be-
tween the parameters a, r, and P for a great number
of regular potentials. It was established, among other
things, that the shape parameter P takes values in the
range between−0.05 and+0.15. However, the intro-
duction of a hard core reduces the shape parameter
P significantly—in fact, the parameter P is negative
for the majority of potentials that involve a hard core.
This agrees with the estimate in (47), which was
derived on the basis of the Bargmann representation
of the S matrix.

Thus, we have shown that the shape-parameter
approximation (44) directly follows from the Barg-
mann representation of the Smatrix in the case where
the system has two physical states of which at least
one is virtual. If the system has two virtual states (α <
0, β < 0), the shape-parameter approximation (44)
follows from the Bargmann representation of the S
matrix under the condition

(α+ β) = −(λ+ µ) (48)

and corresponds to the description of the neutron–
proton interaction in the singlet spin state.
5
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Table 1. Triplet phase shift for np scattering as a func-
tion of the laboratory energy Tlab according to calcula-
tions within the effective-range (ER) approximation, the
shape-parameter (SP) approximation, and the pole (P1
and P2) approximations (for the shape-parameter values
v2 = 0.163 and v2 = 0.168 fm3, respectively)

Tlab,
MeV

Phase shift δt, deg

ER SP P1 P2 experiment
[39]

1 147.84 147.83 147.83 147.83 147.83

5 118.34 118.23 118.23 118.23 118.23

10 102.93 102.56 102.55 102.54 102.55

25 81.87 80.36 80.26 80.20 80.26

40 71.19 68.44 68.11 68.01 68.11

50 66.23 62.68 62.14 62.01 62.11

75 57.51 52.16 50.90 50.70 50.77

100 51.64 44.80 42.60 42.34 42.34

125 47.30 39.25 35.95 35.66 35.58

150 43.93 34.89 30.37 30.05 29.94

175 41.19 31.35 25.53 25.19 25.09

200 38.92 28.42 21.23 20.90 20.84

225 36.99 25.95 17.36 17.04 17.03

250 35.32 23.84 13.81 13.53 13.57

275 33.86 22.01 10.53 10.29 10.37

300 32.57 20.42 7.47 7.28 7.38

325 31.41 19.02 4.60 4.47 4.56

350 30.38 17.78 1.88 1.82 1.87

375 29.44 16.68 −0.71 −0.69 −0.71

400 28.58 15.69 −3.18 −3.07 −3.20

425 27.79 14.79 −5.54 −5.34 −5.61

450 27.06 13.99 −7.82 −7.51 −7.94

475 26.39 13.25 −10.02 −9.59 −10.21

500 25.77 12.58 −12.14 −11.60 −12.41

3. CHOICE OF PARAMETERS
AND DESCRIPTION OF SCATTERING
IN THE TWO-NUCLEON SYSTEM

An investigation of the phase shift δ as function of
energy plays a fundamental role in an analysis of data
on nucleon–nucleon scattering. A traditional way to
study this dependence at low energies consists in
applying the effective-range approximation (34) and
the shape-parameter approximation (44) [37, 38]. In
P

order to determine the parameters at, rt, and Pt, one
employs experimental data on scattering and also the
experimental value of the deuteron binding energy εd.
It was shown in [38] that, in this case, the determi-
nation of the parameters at, rt, and Pt involved am-
biguities, and this is at odds with the meaning of the
effective-range expansion (11). The ambiguity in the
determination of the low-energy parameters was due
primarily to an insufficient accuracy of experimental
data at low energies. At the present time, the accu-
racy of experimental data is such that the ambiguity
in the determination of the scattering length at, the
effective range rt, and the shape parameter Pt is quite
removable.
By using the least squares method to construct a

polynomial fit to the function k cot δ at low energies
(Tlab � 10MeV) and relying on the latest experimen-
tal data of Arndt’s group on nucleon–nucleon phase
shifts [39], we obtain the following values of the triplet
low-energy scattering parameters at, rt, and v2:

at = 5.4030 ± 0.0001 fm, (49)

rt = 1.7494 ± 0.0003 fm, (50)

v2 = 0.163 ± 0.002 fm3. (51)

Here, we have also given our theoretical estimates of
the respective errors in determining the low-energy
parameters. The resulting dimensionless shape pa-
rameter, Pt = −v2/r

3
t = −0.0304, proved to be neg-

ative. This is in agreement with the estimate in (47),
which was obtained on the basis of the Bargmann
representation of the S matrix.
In order to describe triplet scattering and the

bound state in the two-nucleon system, we will use
the pole approximation of the effective-range function
(29). In doing this, we set the low-energy parameters
at, rt, and v2 to the values in (49)–(51) and choose
the value of the pole parameter D to be

D = −0.225526 fm2. (52)

With allowance for (28), this corresponds to the lab-
oratory energy

T0 = 368.026 MeV, (53)

at which the experimental value of the triplet phase
shift [39] changes sign. Thus, it can be seen that, if the
pole parameter D is fixed by using the experimental
point δ(T0) = 0, the quantity D can be considered as
an experimental parameter directly determined to a
rather high degree of accuracy.
If one uses the parameter values in (49)–(52),

then, as can be seen from the results of phase-shift
calculations in Table 1 (the pole approximation P1),
the pole approximation (29) describes the experimen-
tal triplet phase shift [39] up to laboratory energies of
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 2 2005
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about 500 MeV with an absolute error not exceeding
0.5◦. For the sake of comparison, the results obtained
by calculating the phase shift within the effective-
range approximation (ER) and within the shape-
parameter approximation (SP) with the low-energy
parameters set to the values in (49)–(51) are also
presented in Table 1. As might have been expected,
the effective-range approximation (34) describes well
the phase shift only in the region of very low energies
(Tlab � 10 MeV). The shape-parameter approxima-
tion (44) describes well the experimental phase shift
up to energies of about 50 MeV (to within about
0.5◦). At the same time, the pole approximation (29)
provides an excellent description of the phase shift
within a broad energy range, considerably improving
the description in the low-energy region—for exam-
ple, the experimental phase shift in the energy range
Tlab � 40 MeV is described by formula (29) with an
error not exceeding 0.01◦. In the above energy range,
one can therefore consider the parametrization of the
phase shift by the pole formula (29) as an alternative
to the data of a partial-wave analysis (PWA). As a
matter of fact, the approximation specified by Eq. (29)
with the parameters given in (49)–(52) provides an
excellent description of the phase shift in much wider
energy interval than that which was used to find the
parameters of this approximation. As can be seen
from Fig. 1, the accuracy of the description of the
phase shift undergoes virtually no deterioration up
to an energy of 900 MeV, being 0.6◦ for laboratory
energies of Tlab � 900 MeV. Along with the phase
shift corresponding to the pole approximation (29),
the phase shift calculated within the effective-range
approximation (34) and that calculated within the
shape-parameter approximation (44) are also dis-
played in Fig. 1 for the sake of comparison.

By slightly varying the shape parameter v2 and
leaving the parameters at, rt, and D unchanged, one
can improve further the quality of description of the
phase shift in the energy range Tlab � 400 MeV. The
minimum absolute error of description of the phase
shift in this energy range is attained at

v2 = 0.168 fm3 (54)

and is about 0.1◦, as can be seen in Table 1 (pole ap-
proximation P2). Thus, the pole approximation (29)
makes it possible to describe, by using a small num-
ber of parameters, the phase shift over a wide energy
range to a precision close to that in determining ex-
perimental data.

It should be noted that the value of the pole pa-
rameterD is very well determined by the experimental
phase shift even at low energies and is close to the
above value in (52). This can be shown most clearly
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 2 200
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Fig. 1. Triplet phase shift for neutron–proton scatter-
ing as a function of the laboratory energy according to
calculations within the effective-range (ER), the shape-
parameter (SP), and the pole (P1) approximation. The
points represent experimental data borrowed from [39].

by analyzing the dependence of the absolute error of
the description of the phase shift,

∆ = max
0�T�Tmax

|δexpt(T )− δtheor(T )|, (55)

on the parameter D in a given range 0 � T � Tmax.
Our calculations reveal that the minimum error is
achieved at negative values of D that are close to
the value in (52), the dependence ∆(D) having quite
a sharp character in the vicinity of the minimum,
so that any significant deviation of the parameter
D from the point of the minimum leads to a con-
siderable deterioration of the quality of phase-shift
description. We note that the value of D = 0 cor-
responds to the shape-parameter approximation and
that, for D →∞, we obtain the effective-range ap-
proximation. The calculations also show that, at the
value of D = −0.2147 fm2, which corresponds to the
minimal deviation ∆, the absolute error of the de-
scription of the phase shift on the basis of (29) does
not exceed 0.006◦ in the energy range being consid-
ered. At the same time, ∆ takes values of 1.16◦ and
0.064◦ for, respectively, the effective-range and the
shape-parameter approximation. Thus, we see that,
even at low energies, the quality of the description
of the phase shift by the pole formula is an order
of magnitude higher than the quality of the descrip-
tion within the shape-parameter approximation, the
value of the parameter D being negative and close
to that in (52). We emphasize that the energy of
T0 = 386.6 MeV, at which the calculated phase shift
changes sign and which is in good agreement with
the experimental value in (53), corresponds to the
value ofD = −0.2147 fm2. The analysis revealed that
the pole parameter D is a quantity that admits an
unambiguous determination yielding results that are
5
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rather weakly dependent on the interval of fitting.
In fact, any fit to the phase shift leads, even at low
energies, to negative values of the parameter D that
are close to the value in (52). Thus, we see that, in
just the same way as the parameters at, rt, and v2,
D is a low-energy parameter that can be determined
reliably and to a high precision.

The pole formula (29) for the function k cot δ
coincides in form with the well-known empirical
Cini–Fubini–Stanghellini (CFS) formula [19], which
was used to describe nucleon–nucleon scattering [19,
31–35] and which is generally written as

k cot δ = − 1
at

+
1
2
rtk

2 − pk4

1 + qk2
. (56)

A distinctive feature of the Cini–Fubini–Stanghellini
approach is that the parameters p ≡ −v2 and q ≡ D
in formula (56) are not independent—they are deter-
mined on the basis of the one-pion-exchange theory
of nucleon–nucleon interaction. Thus, the quantities
p and q in (56) are rather complicated functions of the
scattering length at, the effective range rt, the pion
mass mπ, and the pion–nucleon coupling constant
G2. According to one-pion-exchange theory, the ex-
pressions for the parameters q and p can be written in
the form [32, 33]

q = λ2
π

2− f2M(3/
√

2− 4λπ/at − rt/2λπ)
1− f2M(1/2

√
2−λπ/at)

, (57)

p = (λ2
π − q/2)(2

√
2λπ − rt − 4λ2

π/at), (58)

whereM ≡ mN/mπ is the ratio of the nucleon mass
to the pion mass, λπ ≡ �/mπc is the pion Compton
wave length, and f2 ≡ (mπ/2mN )2G2. For the low-
energy scattering parameters at and rt, we will use, in
the following, the values obtained above and quoted
in (49) and (50). On this basis, one can readily calcu-
late the shape parameter v2 and the pole parameterD
within the Cini–Fubini–Stanghellini approach. The
results are

vCFS2 = −0.121 fm3, (59)

DCFS = 3.777 fm2. (60)

It can be seen that the parameters v2 andD calculated
within the Cini–Fubini–Stanghellini approach dif-
fer considerably from the “experimental” values that
are quoted in (51) and (52) and which are deter-
mined quite reliably from present-day data on the
triplet phase shift [39]. It should be noted that the
distinction is not only quantitative but also quali-
tative since the parameters v2 and D have oppo-
site signs within the Cini–Fubini–Stanghellini ap-
proach. The phase shift is described poorly with the
PH
Cini–Fubini–Stanghellini parameters. The explana-
tion for so sharp a discrepancy with experimental
data is likely to be the following. It has been firmly
established that one-pion exchange is not the only
mechanism and even is not the main mechanism
of nucleon–nucleon interaction—the contribution of
other mechanisms to nucleon–nucleon interaction
is much more significant. Therefore, it comes as no
surprise that the oversimplified one-pion-exchange
scheme predicts erroneous values for the parameters
v2 and D. For want of a theory that would make it
possible to calculate the low-energy parameters of
nucleon–nucleon interaction on the basis of a mi-
croscopic approach (QCD), one has to treat them
as adjustable parameters that are determined directly
from experimental data.
Along with the aforesaid, we note that the recent

calculation of the shape parameter v2 within effective
field theory (EFT) in [40, 41] also yielded an incorrect
sign of v2, vEFT2 = −0.95 fm3, although calculations
within this theory generally led to good agreement
with experimental data for many computed features
of the nucleon–nucleon and neutron–deuteron sys-
tems (see references quoted in [39, 40]). These dis-
crepancies indicate that the shape parameter v2 and
the higher order parameters vn are rather subtle and
sensitive characteristics of the nucleon–nucleon in-
teraction. In [40, 41], it was also indicated that the
contribution to the nucleon–nucleon interaction from
more “short-range” mechanisms than the one-pion-
exchange mechanism is of importance.

4. LOW-ENERGY PARAMETERS
OF THE EFFECTIVE-RANGE EXPANSION

Much attention has permanently been given to
studying the low-energy parameters of the effective-
range expansion (11) [12–15, 32–35, 37, 38, 40–50].
It should be noted that, while the scattering length a
and the effective range r0 can be determined directly
from experimental data to a fairly high degree of pre-
cision [42–45], the higher order parameters vn (n =
2, 3, 4, . . .) are less convenient for an experimental
determination, their theoretical calculation becoming
more involved as the parameter order increases. At
the same time, the shape parameters vn, along with
the scattering length a and the effective range r0, are
of particular importance for constructing and com-
paring various realistic models of nucleon–nucleon
interaction and for describing nucleon–nucleon scat-
tering. Moreover, the shape parameters are of impor-
tance for investigating the physical properties of the
bound state in the two-nucleon system (deuteron)—
in particular, their role in the useful expansion for
the root-mean-square radius of the deuteron was
demonstrated in [51–55]. The correlations between
YSICS OF ATOMIC NUCLEI Vol. 68 No. 2 2005
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the properties of the deuteron and the parameters of
nucleon–nucleon scattering that are determined by
the expansion in (11) are also studied [51–56]. It
should be noted that, in the past years, the param-
eters vn were discussed and calculated in consider-
ing nucleon–nucleon interaction within effective field
theory [40, 41].
In connection with the aforesaid, the determina-

tion of the parameters of the effective-range expan-
sion (11) is of great importance. An explicit expansion
of the function k cot δ in a power series in k2 follows
directly from the pole representation (29):

k cot δ = − 1
at

+
1
2
rtk

2 +
∞∑

n=2

v2(−D)n−2k2n. (61)

Therefore, all of the shape parameters vn can also be
obtained explicitly for this case. We have

vn = (−1)nv2D
n−2, n � 3. (62)

Thus, we see that, in the pole approximation, all
parameters vn (n = 3, 4, 5, . . .) of the effective-range
expansion are determined explicitly in terms of the
shape parameter v2 and the pole parameter D ac-
cording to the simple formula (62) and can easily be
calculated to any order n. In our case, the parameter
D is negative by virtue of (52). In view of this, it is
convenient to recast formula (62) into the form

vn = v2|D|n−2, n � 3. (63)

Since we also have v2 > 0 and |D| < 1, one can easily
see that all of the parameters vn are positive and
decrease in absolute value; that is,

v2 > v3 > . . . > vn > vn+1 > . . . > 0. (64)

In Table 2, the low-energy scattering parameters
at, rt, and v2 are presented along with the parameters
v3 and v4 calculated by formula (63) at the experi-
mental value of D = −0.225526 fm2 and the shape-
parameter value of v2 = 0.163 fm3 (approximation
P1). For the sake of comparison, the parameters of
the expansion in (11) that were found in [50] by
using the partial-wave-analysis data on nucleon–
nucleon scattering that were obtained by the Ni-
jmegen group [57] (Nijm version) are also given in
Table 2. We note that, at the present time, the partial-
wave-analysis data obtained by Arndt’s group [39]
and the Nijmegen group [57] are the most accu-
rate and frequently used data on the phase shifts for
nucleon–nucleon scattering. The values found here
for the shape parameters vn (n = 3, 4) on the basis of
the pole approximation of the effective-range function
are rather stable with respect to the variations in the
shape parameter v2. It can easily be shown that the
parameters vn are also rather weakly sensitive to the
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Table 2. Triplet low-energy scattering parameters ob-
tained by using the data of the partial-wave analysis per-
formed by Arndt’s group (version P1 corresponds to the
pole approximation at the shape-parameter value of v2 =
0.163 fm3) and the data of the partial-wave analysis per-
formed by the Nijmegen group [50, 57] (Nijm version)

Version at, fm rt, fm v2, fm3 v3, fm5 v4, fm7

P1 5.4030 1.7494 0.163 0.037 0.0083

Nijm 5.420 1.753 0.040 0.672 –3.96

variation in the pole parameterD. Thus, formula (62)
ensures a stable determination of the parameters vn.
The following important comment concerning the

applicability and accuracy of the simple one-pole ap-
proximation (29) for determining the parameters vn is
in order. Since the smooth interpolation curve speci-
fied by (29) provides an excellent description of exper-
imental data of Arndt’s group on the phase shift [39]
over a wide energy range (in particular, to a preci-
sion not poorer than 0.01◦ for energies up to Tlab =
40 MeV), this curve determines the parameters vn

with the degree of reliability and stability as high as
that to which they can in principle be determined by
present-day experimental data on the phase shift, the
error in these data being �0.01◦. This means that,
if a different interpolation curve also described well
the experimental phase shift and, for some parameters
vn, gave values considerably differing from those ob-
tained here, one could conclude that these parameters
vn are not determined by experimental data. As a
matter of fact, the calculations show that only the
parameters to v4 inclusive are determinedmore or less
reliably.
Table 2 shows that the results obtained here for

the partial-wave-analysis data presented by Arndt’s
group [39] are radically different from the results of the
calculations performed in [50] for the partial-wave-
analysis data of the Nijmegen group [57], the distinc-
tion being not only quantitative but also qualitative—
that is, all shape parameters vn calculated here on the
basis of the phase shifts of Arndt’s group are posi-
tive and decrease, while the analogous parameters vn

calculated for the phase shifts of the Nijmegen group
increase in absolute value and include a negative
parameter (v4).
A detailed investigation of the parameters of the

effective-range expansion (11) will be given in our
future publications. Here, we restrict ourselves to
mentioning briefly the following: in order to reveal
possible reasons behind such a discrepancy between
the results, we have studied the stability of the cal-
culation of the shape parameters vn to variations in
the scattering length at. We have shown that their
5
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Fig. 2. Triplet effective-range function k cot δ versus
the laboratory energy for various approximations of the
effective-range expansion (11). The figures on the curves
indicate the order of approximation. The upper curve cor-
responds to experimental data borrowed from [39].

sensitivity to variations in this quantity is extremely
high. In particular, a change in the scattering length
at as small as a few tenths of a percent can lead to a
severalfold change in the shape parameter v2. This is
in accord with the comment in the preceding section
that the shape parameter v2, as well as the higher
order parameters vn, is a rather subtle and sensitive
characteristic of nucleon–nucleon interaction. Thus,
so sharp a distinction between the shape parameters
vn for Arndt’s and the Nijmegen phase shifts is due
to a significant difference in the scattering length: the
value of aArndtt = 5.4030 fm, whichwas obtained in the
present study, differs from a

Nijm
t = 5.420 fmmore than

by 0.3%. This difference in the values of the scattering
length leads to a decrease in the shape parameter
v2 by a factor of 4 for the phase shifts of the Ni-
jmegen group in relation to the phase shifts of Arndt’s
group—that is, from the value of vArndt2 = 0.163 fm3

to the value of vNijm2 = 0.040 fm3. The discrepancy
between the corresponding higher order parameters
vn is still larger. At the same time, Table 2 shows that
the values of the effective range rt for Arndt’s and Ni-
jmegen phase shifts are close to each other. It should
also be noted that our results on the shape parameter
v2 are close to the results of some earlier studies. In
particular, the value of v2 = 0.137 fm3 corresponding
to Pt = −0.027 for the soft-core Reid potential [58]
agrees well with the value of v2 = 0.163 fm3, which
was obtained in the present study.
We note that the Nijmegen value of the triplet

scattering length aNijmt is rather close to the presently
P

recommended experimental value [59]

a
expt
t = 5.424 fm, (65)

while the value calculated here on the basis of Arndt’s
phase shifts, aArndtt = 5.4030 fm, is close to some of
the experimental values obtained previously for the
triplet scattering length [32, 42, 43]. It should be
emphasized that, for the experimental values of the
triplet scattering length at, various authors [32–35,
38, 39, 42–46, 58–61] present values changing with-
in a broad range—from 5.37 [38, 60] to 5.44 fm [45,
61]. We also note that the present-day experimental
value of the triplet scattering length in (65) leads to
exaggerated (in relation to experimental data) values
of the root-mean-square radius rd of the deuteron [52,
53, 56] and the asymptotic normalization constant
AS for it [56]. From all of the aforesaid, we can
therefore draw the following important conclusion: in
order to remove the existing discrepancies between
the current experimental value of at in (65), on one
hand, and the present-day values of the quantities
rd and AS for the deuteron and the partial-wave-
analysis data of Arndt’s group, which lead to the
value of aArndtt = 5.4030 fm, on the other hand, it is
of paramount importance to refine the experimental
value of the triplet scattering length at. The value
of the triplet scattering length at is of particular im-
portance since it is often used as one of the input
values in fitting the parameters of realistic potentials
of nucleon–nucleon interaction. We note that the
value of aArndtt = 5.4030 fm, which corresponds to the
partial-wave analysis performed by Arndt’s group, is
in perfect agreement with the experimental values of
the quantities rd and AS for the deuteron [56].

In a wide energy range [approximately to the
energy corresponding to the pole of the function
k cot δ(53)], the experimental phase shift [39] is
well described by the effective-range expansion (11)
with the low-energy scattering parameters at, rt,
v2, v3, . . . set to the values determined here. This
is a direct corollary of the fact that, for the phase
shift borrowed from [39], all of the shape parameters
vn appear to be decreasing in absolute value. For
example, a fifth-degree polynomial in k2 describes the
experimental phase shift in the energy range Tlab �
200 MeV to within about ∼1◦ and in the energy
range Tlab � 50 MeV to within about 0.02◦. The
description of the function k cot δ by various-degree
polynomials corresponding to various approximations
of the effective-range expansion (11) is shown in
Fig. 2.We see that a successive increase in the degree
of a polynomial leads to an improved description of
the function k cot δ (and, accordingly, of the phase
shift) and to the extension of the interval where this
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 2 2005
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description is valid. Thus, the use of the effective-
range expansion with a small number of terms pro-
vides a good description of the phase shift over a
wide energy range (0−250 MeV) if the low-energy
parameters are set to the values found here. This
indicates that, in contrast to statements advocated
in some articles (see, for example, [50]), the effective-
range expansion is highly accurate and very useful in
describing nucleon–nucleon scattering.

The potential of the effective-range expansion (11)
is directly related to the radius of its convergence. The
function k cot δ considered in the complex plane of
k2 is an analytic function of k2 within some region
near the origin of coordinates; therefore, it can be
expanded in a Taylor–Maclaurin series (11) in powers
of k2 in the vicinity of the point k2 = 0. Thus, a
particular importance of the function k cot δ is associ-
ated with its analyticity near the point k2 = 0. Noyes
and Wong [62] showed that the one-pion-exchange
model for nucleon–nucleon interaction leads to the
appearance of a cut in the scattering amplitude on the
negative axis of energy for k2 � −m2

πc
2/4�

2; there-
fore, the radius of convergence of the series in (11)
is extremely small in the one-pion-exchange model,
T0 = m2

π/2mN = 9.7 MeV. This contradicts the fact
that the experimental phase shift [39] is well described
by the pole formula (29) with the parameters set to
the values in (49)–(52), since, for the radius of con-
vergence of the series in (11), formula (29) gives the
value of T0 = 368.026 MeV, which we chose on the
basis of the “experimental” condition δ(T0) = 0 (the
circle of convergence is determined by the condition
|k2| < 1/|D|). In connection with this contradiction,
we recall the comments at the end of the preceding
section that concern the limited applicability of the
one-pion-exchange mechanism. As was indicated by
Noyes himself [33], there is no a priori method for
estimating the accuracy or the region of applicability
of the phenomenological expansion (11), so that this
question must be solved on the basis of experimental
data.

Numerical values of the shape parameters vn pro-
vide direct information about the radius of conver-
gence of the series in (11). In the case under consid-
eration, the increase in the parameters vn in absolute
value indicates, as is the case for the phase shift of
the Nijmegen group, that the effective-range expan-
sion (11) has a small radius of convergence, so that it
is not very useful [50]. On the contrary, the decrease in
the shape parameters vn for the phase shift of Arndt’s
group suggests that the radius of convergence of the
series in (11) is large and that this expansion is very
useful in this case. This is corroborated by a high
quality of the description of the phase shift in the case
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where the function k cot δ is approximated by poly-
nomials of relatively low degrees. Thus, the present-
day data from the partial-wave analyses performed by
the two main groups in [39] and [57] do not agree
with each other both in what is concerned with the
low-energy scattering parameters calculated on their
basis and in what is concerned with the applicability
of the effective-range expansion to them. At the same
time, it is important to note that the numerical val-
ues obtained for the phase shifts by Arndt’s and the
Nijmegen group are rather close to each other. This
indicates once again that the low-energy parameters
are subtle and sensitive characteristics of nucleon–
nucleon scattering.

5. DESCRIPTION OF THE PROPERTIES
OF THE DEUTERON

Following the same line of reasoning as in the case
of constructing the effective-range expansion (11),
one can write an expansion of the function k cot δ
in a power series at the point k2 = −α2—that is, at
the energy equal to the deuteron binding energy εd =
�

2α2/mN . This expansion has the form

k cot δ = −α+
1
2
ρd(k2 + α2) +w2(k2 (66)

+ α2)2 + . . . ,

where ρd ≡ ρ(−εd,−εd) is the effective deuteron ra-
dius corresponding to S-wave interaction. The def-
inition and the properties of the effective deuteron
radius ρd and of the function ρ(E1, E2) are discussed
in detail elsewhere [38]. Using Eqs. (29) and (66), we
can easily establish that the quantities α and ρd for
the deuteron are related to the parameters of the pole
representation of the effective-range function as

α =
1
at

+
1
2
rtα

2 − v2α
4

1−Dα2
, (67)

ρd = ρm −
2v2α

2

(1−Dα2)2
, (68)

where ρm ≡ ρ(0,−εd) is the so-called mixed effective
radius given by

ρm =
2
α

(
1− 1

αat

)
. (69)

Using formulas (67) and (69), we can recast the
expression for the mixed effective radius ρm into the
form

ρm = rt −
2v2α

2

1−Dα2
. (70)

From formulas (70) and (68), one can easily obtain
expansions of the effective range rt for scattering and
5
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Table 3. Features of the deuteron according to calcula-
tions within various approximations of the effective-range
expansion (ER, SP) and in the pole approximation P1

Version εd, MeV ρd, fm Cd AS , fm−1/2

ER 2.2387 1.7494 1.2979 0.8846

SP 2.2236 1.7145 1.2876 0.8761

P1 2.2237 1.7151 1.2878 0.8763

Experiment 2.224589 1.7251 1.2904 0.8781

the effective deuteron radius ρd in power series in α2.
We have

rt = ρm − 2
∞∑

n=1

(−1)nvn+1α
2n, (71)

ρd = ρm + 2
∞∑

n=1

(−1)nnvn+1α
2n, (72)

where the parameters vn are given by (62). The di-
mensionless asymptotic normalization factor Cd for
the deuteron is expressed in terms of the effective
deuteron radius ρd as

C2
d = (1− αρd)−1. (73)

The constant Cd and the asymptotic normalization
factor AS , which is widely used in the literature [47,
63], are related by the equation

A2
S = 2αC2

d . (74)

For various approximations of the effective-range
function, we have calculated the following parameters
characterizing the deuteron: the binding energy εd,
the effective radius ρd, and the asymptotic normaliza-
tion factors Cd andAS . In Table 3, the results of these
calculations are given along with their experimental
counterparts from [64, 65]. We note that the deuteron
binding energy was calculated by using a relativistic
formula, which is more accurate than (21). It can be
seen from Table 3 that the features of the deuteron
that were calculated in the pole approximation (29)
with the parameter values from (49)–(52) are in good
agreement with their experimental values. The results
obtained in the shape-parameter approximation (SP)
differ insignificantly from their counterparts in the
pole approximation, while the results of the calcula-
tions that take into account the cubic term in energy
in the effective-range expansion are nearly coincident
with those in the pole approximation. It can be seen
from Table 3 that the convergence of the calculated
features of the deuteron versus the number of terms
that are taken into account in the effective-range
expansion is very fast—the shape-parameter approx-
imation yields a highly precise result, the inclusion
P

of higher order terms in energy introducing virtually
no changes in this result. This is a consequence of
the fact that the shape parameters vn are decreas-
ing quantities in this case. It should be emphasized
that, the features of the deuteron were calculated on
the basis of the scattering-parameter values in (49)–
(52), which correspond to the phase shifts of Arndt’s
group, and this means that we have very good agree-
ment between the experimental data of Arndt’s group
on scattering [39] and the experimental data on the
bound state (deuteron) from [64, 65].
The values found for the features of the deuteron

in the effective-range approximation (ER) are some-
what exaggerated in relation to their experimental
counterparts and the results obtained in the pole
approximation. This is due primarily to an insuffi-
ciently accurate determination of the deuteron bind-
ing energy in the effective-range approximation with
the low-energy parameters at = 5.4030 fm and rt =
1.7494 fm. If one uses the experimental values for the
deuteron binding energy and for the triplet scattering
length (εd = 2.224589 MeV and at = 5.4030 fm, re-
spectively), the effective-range approximation yields
the following values for the effective radius of the
deuteron ρd and for the asymptotic normalization
factor AS : ρd = 1.7331 fm and AS = 0.8795 fm−1/2,
these results being in good agreement with the corre-
sponding experimental values and with the results of
the calculations in the pole approximation. This is in
accord with the results obtained in [56], where it was
established that the asymptotic normalization factor
AS depends only slightly on the model of nucleon–
nucleon interaction; at the experimental value of the
deuteron binding energy εd, 99.7% of it is determined
by the triplet scattering length at.

6. PARAMETERS OF THE BARGMANN
S MATRIX

The parameters α, β, λ, and µ of the Bargmann
S matrix (20), which corresponds to the presence of
two physical states in the system, are unambiguously
related to the parameters of the pole approximation
of the effective-range function (29) and, as can easily
be seen, are the roots of the fourth-degree algebraic
equation

v2x
4 − (1−Dx2)

(
1
at

+
1
2
rtx

2 − x
)

= 0. (75)

Solving Eq. (75) with the parameters set to the values
in (49)–(52), we obtain the following values for the
parameters of the Bargmann S matrix (in fm−1):

α = 0.2315, β = 1.2293, (76)

λ = 2.5603 + i3.5248, µ = 2.5603 − i3.5248.
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 2 2005
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In the case being considered, the two-nucleon system
has two bound states. In accordance with the phe-
nomenology of nodes that employs potentials involv-
ing forbidden states [16–18], the lowest, deeply lying,
state, characterized by the energy

ε0 = 63.7555 MeV, (77)

is unobservable, while the excited state of binding
energy

εd = 2.2237 MeV (78)

corresponds to the deuteron.
Thus, the use of the pole approximation in describ-

ing triplet neutron–proton scattering automatically
leads to considering deep potentials involving forbid-
den states.
In the shape-parameter approximation (44) (D =

0), we have the following values for the parameters of
the Bargmann S matrix (20) (in fm−1):

α = 0.2315, β = −2.7787, (79)

λ = 1.2736 + i0.3784, µ = 1.2736 − i0.3784.
In this case, the second state is a virtual state at the
energy

εv = 353.4732 MeV, (80)

while the ground state, whose binding energy is

εd = 2.2236 MeV (81)

[in fact, it coincides with that in (78)], corresponds
to the deuteron. As might have been expected, the
parameters in (79) satisfy relation (43).

7. CONCLUSION

Our basic results and conclusions can be formu-
lated as follows. Relying on the Bargmann repre-
sentation of the S matrix, we have formulated the
pole approximation for the effective-range function
k cot δ. At specific values of the S-matrix parameters,
the effective-range approximation and the shape-
parameter approximation immediately follow from
this approximation. The pole approximation of the
function k cot δ is optimal for describing nucleon–
nucleon scattering and involves a few parameters.
The parameters of this approximation have a clear
physical meaning. They are related to the parameters
of the Bargmann S matrix by simple equations. It
has been shown that the pole approximation deduced
from the Bargmann representation of the S matrix is
a direct generalization of the effective-range approxi-
mation to the case where there are two physical states
in the system. The presence of the pole term makes it
possible to improve significantly, by using only two
additional parameters, the description of the phase
shift and to expand sizably the applicability range of
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this description. In the shape-parameter approxima-
tion corresponding to the Bargmann representation of
the S matrix, one can obtain an important constraint
on the shape parameter, P < 0—that is, the shape
parameter is negative.
By using a least squares polynomial fit to the

function kcotδ at low energies, we have obtained, on
the basis of the analysis of the latest experimental
data on phase shifts that was performed by Arndt’s
group, the triplet low-energy parameters of neutron–
proton scattering: at = 5.4030 fm, rt = 1.7494 fm,
and v2 = 0.163 fm3. With these values of at, rt, and v2
and the pole parameter D, the pole approximation of
the function k cot δ provides an excellent description
of the triplet phase shift for neutron–proton scat-
tering over a wide energy range (Tlab � 1000 MeV),
the description in the low-energy region also being
improved considerably.
For the experimental phase shifts of Arndt’s group,

the values that we have obtained in the pole approx-
imation for the triplet shape parameters vn of the
effective-range expansion are positive and decrease
with increasing n. On the basis of the effective-range
expansion with the values found for the low-energy
scattering parameters at, rt, v2, v3, . . ., the phase shift
is described well over a wide energy range extending
approximately to the energy at which the phase shift
changes sign, this being a direct consequence of a
decrease in the shape parameters vn with increasing
n. This circumstance is indicative of a high precision
of the effective-range expansion and its high potential
for describing experimental data on nucleon–nucleon
scattering, in contrast to the statements of some au-
thors (see, for example, [50]).
The results obtained here for the shape parame-

ters by using the data of the partial-wave analysis
performed by Arndt’s group differ drastically from
the results of the calculations in [50] for the data of
the partial-wave analysis performed by the Nijmegen
group, this distinction being not only quantitative but
also qualitative—that is, all of the shape parame-
ters vn calculated here by using the phase shifts of
Arndt’s group are positive and decrease, while the
analogous parameters vn calculated for the Nijmegen
phase shifts increase in absolute value and include
a negative parameter (v4). In our opinion, so sharp
a discrepancy between the shape parameters vn for
Arndt’s and the Nijmegen phase shifts is due to quite
a significant difference in the scattering length: the
value aArndtt = 5.4030 fm obtained here differs from
a
Nijm
t = 5.420 fm by more than 0.3%. This difference
in the scattering length leads to the decrease in the
shape parameter v2 by a factor of 4 for the Nijmegen
phase shifts in relation to the phase shifts obtained
by Arndt’s group—that is, from the value vArndt2 =
5
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0.163 fm3 to the value of vNijm2 = 0.040 fm3—the
discrepancy between the corresponding values of the
higher order parameters vn being still greater. This
confirms that the shape parameter v2, as well as the
higher order parameters vn, is a rather subtle and sen-
sitive characteristic of nucleon–nucleon interaction.
The aforesaid leads to the important conclusion that
an experimental refinement of the triplet scattering
length at is of paramount importance since it is nec-
essary to remove the existing discrepancies between
the current experimental value of aexptt = 5.424 fm,
on one hand, and the present-day values of rd and
AS for the deuteron [ 56] and the present-day data
of the partial-wave analysis performed by Arndt’s
group, which lead to the value of aArndtt = 5.4030 fm,
on the other hand. It should be emphasized that the
value of the triplet scattering length at is of particular
importance because at is often used as one of the
input quantities in fitting the parameters of realistic
potentials of nucleon–nucleon interaction.

For various approximations of the effective-range
function, we have calculated the main features of
the deuteron—the binding energy εd, the effective
radius ρd, and the asymptotic normalization factors
Cd and AS . The results obtained for them in the pole
approximation agree very well with their experimen-
tal counterparts. The results in the shape-parameter
approximation differ insignificantly from those in the
pole approximation. We have found that the conver-
gence of the calculated features of the deuteron versus
the number of terms that are taken into account in
the effective-range expansion is very fast—the shape-
parameter approximation gives a nearly precise result,
which undergoes virtually no changes upon taking
into account higher order terms in energy. Thus, we
can state that, on the basis of the Bargmann rep-
resentation of the S matrix, a good unified descrip-
tion has been obtained for the bound state of the
two-nucleon system and the triplet phase shift for
neutron–proton scattering up to energies of about
1000 MeV.
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ELEMENTARY PARTICLES AND FIELDS
Experiment
Inverse-Beta-Decay Reaction in the Antineutrino Flux
from the Fragments of 232232232Th and 233233233U Fission

G. V. Domogatsky1), V. I. Kopeikin2), L. A. Mikaelyan2), and V. V. Sinev2)*

Received May 20, 2004

Abstract—The energy spectra of antineutrinos produced in the beta decay of fragments originating from
233U and 232Th fission induced by neutrons are calculated. The relevant cross sections and the spectra of
positrons produced in inverse beta decay are found. This study was motivated by the hypothesis (discussed
over the past decade) that a self-sustained chain reaction proceeds at the center of the Earth (“georeactor”).
According to the author of this hypothesis, the georeactor provides energy necessary for maintaining
the Earth’s magnetic field. It is 235U and, probably, 232Th and 233U that serve as a nuclear fuel in this
reactor. Data obtained in the present study can be guidelines in future experiments aimed at testing the
hypothesis of the georeactor and at estimating the composition of its nuclear fuel within the development
of geophysical and astrophysical investigations based on the observation of antineutrino fluxes in nature.
c© 2005 Pleiades Publishing, Inc.
INTRODUCTION

Owing to advances demonstrated by the
KamLAND Collaboration in refining methods for
detecting low-energy electron antineutrinos [1], it
becomes feasible to study ν̄e fluxes in nature, which
carry information about the properties of their sources,
which is otherwise inaccessible.

The underground Baksan neutrino observatory of
the Institute for Nuclear Research (Russian Academy
of Sciences) is one of the laboratories most conve-
nient for constructing a massive scintillation spec-
trometer for detecting antineutrinos and for perform-
ing investigations in this field (see the discussion in
[2]). Their program could involve the following:

(i) determination of uranium and thorium concen-
trations in the Earth by detecting ν̄e from the beta
decay of their daughter products (geoneutrinos) (this
problem has been discussed since the early 1960s [3]
and more intensively in recent years [4]);

(ii) investigation of the frequency of gravitational
collapses in the Universe by detecting an isotropic
electron-antineutrino flux [5].

Along with these studies, one can use the same
spectrometer at the Baksan neutrino observatory to
test the hypothesis [6] of the possible self-sustained
chain reaction (georeactor) proceeding at the center

1)Institute for Nuclear Research, Russian Academy of
Sciences, pr. Shestidesyatiletiya Oktyabrya 7a, Moscow,
117312 Russia.

2)Russian Research Centre Kurchatov Institute, pl. Kurchato-
va 1, Moscow, 123182 Russia.

*e-mail: sinev@polyn.kiae.su
1063-7788/05/6802-0234$26.00
of the Earth. In this hypothetical reactor, 235U and,
probably, 232Th and 233U serve as a nuclear fuel. In
this article, we present the results obtained by calcu-
lating the spectra of antineutrinos produced in the be-
ta decay of fragments originating from 233U and 232Th
fission and find the cross sections for the inverse-
beta-decay reaction and the spectra of positrons from
this reaction. These data can be useful in planning fu-
ture experiments aimed at discovering the georeactor
and at estimating its power and the composition of its
nuclear fuel by means of neutrino spectroscopy.

Below, we briefly describe the procedure for cal-
culating the spectra of antineutrinos originating from
the fragments of 232Th and 233U fission, present the
relevant ν̄e and positron spectra in the detected reac-
tion

ν̄e + p→ e+ + n, (1)

and compare them with known spectra for 235U.

ANTINEUTRINO AND POSITRON SPECTRA

1. For each of the fissile nuclei considered here,
the antineutrino spectra ρi

calc(E) were calculated by
summing about 550 beta-decay spectra of individ-
ual fission fragments with allowance for their fission
yields. The fragment yields and decay diagrams were
taken from, respectively, the compilation presented in
[7] and the library of data accumulated at the Kurcha-
tov Institute over the past two decades.

2. Previously, the neutrino group at the Kurchatov
Institute and many other authors repeatedly calcu-
lated the spectra of antineutrinos produced in 235U,
c© 2005 Pleiades Publishing, Inc.
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Fig. 1. Average ratio K(E) of the calculated antineutrino
spectra and the spectra obtained at the Laue–Langevin
Institute (solid line). The dashed lines represent uncer-
tainties found from the scatter of the Ki(E) values [see
Eq. (2) in the main body of the text].

239Pu, 241Pu, and 238U fission (for a brief list of rele-
vant references, see, for example, [8]). As a result, it
was found that

(a) the antineutrino spectra of different fissile nu-
clei differ significantly from one another;

(b) the calculated spectra involve large uncertain-
ties caused by imperfect knowledge of decay diagrams
for many short-lived fission fragments;

(c) the ratios of the spectra of antineutrinos from
different fissile isotopes are calculated with a smaller
uncertainty than the spectra themselves.

The last circumstance enables us to correct the
antineutrino spectra calculated for 232Th and 233U
fission.

The correction procedure is as follows. We use the
“true” ρILL spectra found for 235U, 239Pu, and 241Pu
isotopes at the Laue–Langevin Institute by recon-
structing the measured spectra of beta-decay elec-
trons for the set of fission fragments of each of these
isotopes [9]. For each isotope, we find the energy-
dependent ratio Ki(E) of the calculated spectrum
ρi

calc and the spectrum ρi
ILL,

Ki(E) = ρi
calc/ρ

i
ILL. (2)

Averaged over the 235U, 239Pu, and 241Pu iso-
topes, the ratio K(E) (Fig. 1) is used to obtain the
corrected spectra ρ(E)icorr; that is,

ρ(E)icorr = ρ(E)icalc/K(E), (3)

where i = 2 and 3 refer to 232Th and 233U, respec-
tively.

3. The antineutrino spectra derived by means of
this procedure for 232Th and 233U fission are pre-
sented in Table 1, along with the spectrum obtained
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 2 200
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Fig. 2. (а) Spectra S(Evis) of positrons from the inverse-
beta-decay reactions for 232Th, 233U, and 235U and
(b) ratios of the positron spectra for 232Th and 233U to
the respective spectrum for 235U.

for 235U at the Laue–Langevin Institute. The un-
certainties in these spectra involve those of the cor-
rection procedure—that is, the uncertainty in K(E)
(Fig. 1)—and the uncertainties in the spectra ρILL.
The resulting uncertainty estimated here amounts to
7–10% (at a 68% C.L.) in the antineutrino-energy
range 1.8–6 MeV and increases to about 15% in the
range 6–8 MeV.

The calculated spectra S(Evis) of positrons from
inverse-beta-decay reactions in the case of 232Th,
233U, and 235U are shown in Fig. 2 versus the energy
deposited upon positron absorption in the scintilla-
tor. This energy is Evis ≈ E − (1.80 − 1.02) MeV ≈
E − 0.8 MeV, where E is the absorbed-antineutrino
energy and 1.80 MeV is the threshold for the reac-
tion (1). The total cross sections σf obtained for this
reaction upon averaging over these spectra are given
in Table 2.

It follows from these results that the antineutrino
and positron spectra for 232Th are much harder than
the spectra for 235U, which in turn are harder than the
spectra for 233U. This fact might have been expected
from qualitative considerations about the relationship
5
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Table 1. Spectra of antineutrinos from 232Th, 233U, and
235U fission [in (MeV fission)−1 units]

E, MeV 235U 233U 232Th

1.75 – 1.27 1.82
2 1.30 1.08 1.61
2.5 0.900 0.675 1.13
3 0.637 0.443 0.812
3.5 0.437 0.290 0.587
4 0.283 0.177 0.405
4.5 0.172 0.992(−1) 0.268
5 0.105 0.564(−1) 0.176
5.5 0.617(−1) 0.314(−1) 0.114
6 0.370(−1) 0.159(−1) 0.672(−1)
6.5 0.203(−1) 0.778(−2) 0.372(−1)
7 0.105(−1) 0.374(−2) 0.201(−1)
7.5 0.429(−2) 0.137(−2) 0.861(−2)
8 0.136(−2) 0.403(−3) 0.272(−2)

Note: For 235U, the spectra obtained at the Laue–Langevin
Institute were borrowed from [9].

Table 2. Inverse-beta-decay total cross sections σf (in
units of 10−43 cm2/fission) averaged over the fission-
antineutrino spectra for 232Th, 233U, and 235U

235U 233U 232Th

6.39± 2.7%∗ 3.87± 10% 9.70± 10%

∗ The value calculated on the basis of the spectrum obtained at
the Laue–Langevin Institute and presented in [9].

between the numbers of neutrons and protons in the
fissile nuclei under study.

CONCLUSION

The spectra of antineutrinos emitted from frag-
ments originating from 233U and 232Th fission in-
duced by neutrons have been calculated for the first
time, and the cross sections for the relevant inverse-
beta-decay reactions and the spectra of positrons
PH
produced in these reactions have been found. These
data can serve as a guideline for future experiments
aimed at discovering the georeactor and at estimating
its power and composition of its nuclear fuel within
the general program of development of neutrino geo-
physics and astrophysics.
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Abstract—The results are presented that were obtained by analyzing arrival directions for cosmic rays
that the Yakutsk array for studying extensive air showers recorded between 1974 and 2002 in the energy
region E0 ≥ 5× 1017 eV for zenith angles in the region θ ≤ 60◦. It is shown that quasars for which the
redshift lies in the region z ≤ 2.5 can be sources of these cosmic rays. Ordered structures are observed in
the disposition of quasars and in the cosmic-ray arrival directions. These structures can be associated in
one way or another with the large-scale structure of the Universe. c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Searches for sources of primary cosmic rays are
among the most difficult problems in studying the
structure of the Universe. Primary cosmic rays of
ultrahigh energy (E0 ≥ 1017 eV) are investigated by
exploring extensive air showers. In recent years, there
appeared reports [1–4] suggesting that quasars char-
acterized by redshifts of the spectral lines of their
radiation in the region z ≤ 0.3 may be sources of
ultrahigh-energy cosmic rays.

Quasars are the most puzzling objects in the
Universe and the most powerful sources of radiation
there. For the overwhelming majority of quasars,
the redshifts exceed 0.1, but, for some of them,
the redshifts are as large as about 4 to 5 [5]! This
suggests that they occur at cosmological distances
exceeding many hundred megaparsecs. It is assumed
that quasars characterized by the largest redshifts are
the most remote from us and belong to the group of
the very first galaxies formed upon the beginning of
the Big Bang in the expanding Universe [6].

A periodicity in the argument log(1 + z) was dis-
covered in the distribution of quasars [7]; later on,
this periodicity was repeatedly confirmed and refined
(see, for example, [8, 9]). In the spectra of quasars,
Ryabinkov et al. [9] observed cosmological variations
of the spacetime distribution of 847 absorptive sys-
tems. These variations manifest themselves as a suc-
cessive appearance of maxima and minima of func-
tions in the arguments ln(1 + z) and (1 + z)−1/2. It
is believed that this structure is due to the alternation
of distinguished and depressive eras in the course of a
cosmological evolution that are separated by a char-
acteristic time interval in the range 520± 160 million

*e-mail: a.v.glushkov@ikfia.ysn.ru
1063-7788/05/6802-0237$26.00
years, its specific duration being dependent on the
choice of cosmological model.

Presented below are experimental results obtained
from an analysis of correlations between the arrival
directions of cosmic rays having energies in the region
E0 ≥ 5× 1017 eV and the disposition of quasars
characterized by redshifts not exceeding z = 2.5.
These results reveal some new features of ultrahigh-
energy primary cosmic rays and provide the possi-
bility for studying, along these lines, the large-scale
structure of the Universe.

2. METHOD OF ANALYSIS

In the present study, we consider extensive air
showers characterized by zenith angles in range θ ≤
60◦ and recorded by the Yakutsk array over the period
between 1974 and 2002. Our analysis covers showers
whose arrival directions were found on the basis of
data from four or more stations and whose axes fell
within the central circle of the array with a radius of
1700 m. The primary-particle energy E0 was deter-
mined from the relations

E0 = (4.8 ± 1.6) (1)

× 1017(ρs,600(0◦))1.0±0.02 [eV],

ρs,600(0◦) = ρs,600(θ)exp((sec θ − 1) (2)

× 1020/λρ) [m−2],

λρ = (450 ± 44) + (32± 15) (3)

× log(ρs,600(0◦)) [g/cm2],

where ρs,600(θ) is the charged-particle density mea-
sured by ground-based scintillation detectors at a
distance of R = 600 m from the shower axis.
c© 2005 Pleiades Publishing, Inc.
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In [3, 4], it was shown that quasars characterized
by a redshift satisfying the condition z ≤ 0.3 may be
sources of primary cosmic rays whose energies lie in
the region E0 ≥ 1017 eV. The present study is de-
voted to pursuing further the analysis of correlations
between the disposition of more distant quasars and
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Fig. 2. Distribution of the number of quasars, N , from
the catalog of Hewitt and Burbidge [5] versus the mean
redshift in a bin (with a step∆z = 0.07) upon successive
shifts along the z axis by 0.01. The horizontal line repre-
sents the level of 50 events.
PH
arrival directions of primary cosmic rays. The analysis
relies on the catalog of Hewitt and Burbidge [5],
which contains 3594 objects. A more comprehen-
sive catalog presented by M.-P. Veron-Cetty and
P. Veron-Cetty [10], which includes 13 214 quasars,
was not quite convenient for solving this problem
because of an enhanced nonuniformity of the distribu-
tion of quasars over the celestial sphere. An increase
in the number of objects in it was achieved owing
primarily to a deeper survey of individual areas having
moderate dimensions.

Figure 1 shows the distribution of quasars from
the catalog of Hewitt and Burbidge [5] in terms of
galactic coordinates. The SG curve represents the
Supergalaxy disk (local supercluster of galaxes). In
the vicinity of the Galaxy disk, there are virtually
no objects because of a strong light absorption. In
some individual places, one can see local regions of
a relatively high density of quasars, which frequently
form groups characterized by different redshift values.
Two such regions that are situated near the north and
south pole of the Galaxy and which are associated
in all probability with the large-scale structure of the
distribution of matter in the Universe are especially
distinct.

Figure 2 shows the distribution of the number of
quasars with respect to the redshift. This distribution
reflects the change in the number of objects in the
YSICS OF ATOMIC NUCLEI Vol. 68 No. 2 2005
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Fig. 3.Maps of the disposition (in terms of galactic coordinates) of (a) 50 quasars characterized by redshift values in the range
z ≤ 0.08 [5] and (b) 138 showers of energy in the region E0 ≥ 8 × 1018 eV that were recorded by the Yakutsk array at zenith
angles in the range θ ≤ 60◦. The equatorial coordinates are also shown in this figure.
range (bin)∆z = 0.07 upon successively shifting this
bin along the z axis by 0.01. The horizontal line cor-
responds to the level of 50 events. We have set it as an
upper limit for samples of quasars at any position of
the bin on the z axis in order that the maximum pos-
sible number of the objects being considered would
have the same value throughout the ensuing analysis.
In other words, only 50 quasars chosen at random
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 2 20
were used in all cases. One can see that this condition
always holds for z ≤ 2.5.

3. CORRELATIONS
BETWEEN THE ARRIVAL DIRECTIONS

OF PRIMARY COSMIC RAYS
AND THE DISPOSITION OF QUASARS
Let us first consider the correlation between the

disposition of quasars for which redshift values lie
05
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Fig. 4. Function kσ (4) characterizing full correlations of
the minimum angular distances dmin ≤ 1.5◦ between the
arrival directions of 138 showers of energy in the region
E0 ≥ 8 × 1018 eV (Fig. 3b) with samples of 50 quasars
(Fig. 3a) in independent bins with a step of ∆z = 0.05
upon successively shifting the beginning of the bin from
z = 0 to 2.5 by 0.05. The histogram and circles corre-
spond to the partition of dmin with a step of 1.5◦ and 0.5◦,
respectively.

in the range z ≤ 2.5 and the arrival directions of
138 showers whose energies do not fall below 8×
1018 eV. Figure 3a shows, in terms of galactic coor-
dinates, the disposition of 50 quasars characterized
by redshift values not exceeding 0.08. For the pre-
sentation to be clearer, the equatorial coordinates are
also indicated in this figure. The objects were taken
with inclinations of δ ≥ 0◦, in which case they are
visible from the Yakutsk array. Since, in the catalog
of Hewitt and Burbidge [5], there are virtually no
data concerning the equatorial region of the Galaxy
(|bG| ≤ 30◦), we eliminated, from the ensuing analy-
sis, all quasars (and showers—see Fig. 3b) from this
region of the sky. This is a typical distribution of input
data, where only samples of 50 quasars were changed
in accordance with the position of a bin on the z axis.

Figure 4 shows the function

kσ = (Nobs −Nran)/
√
Nran, (4)

which characterizes the correlation of the minimum
angular distances dmin between the arrival directions
of 138 showers (see Fig. 3b) with the disposition of
50 quasars in independent bins with a step of ∆z =
0.05. The measured distributions (Nobs) and those
that are expected for random events (Nran) were ob-
tained as sums of 50 input distributions (= 2.5/0.05
for successive shifts of a bin by 0.05). The expected
distributions for random quantities were obtained by
P

replacing right ascensions for 138 actual showers by
those generated by the Monte Carlo method from
0◦ to 360◦. In doing this, all events characterized
by a galactic latitude in the range |bG| ≤ 30◦ were
eliminated from the analysis, and they were generated
anew. The results for the partition of dmin with a step
of 1.5◦ (0.5◦) are shown by a histogram (circles).

It can be seen that, within the angular range
dmin ≤ 1.5◦, there is a statistically significant (4.5σ,
where σ is a standard deviation) excess of the mea-
sured number of events over their expected number.
Over a broader angular interval of dmin ≤ 3.0◦, the
respective excess is (1312 − 1168)/

√
1168 ≈ 4.2σ.

The probability of a random outcome on this order of
magnitude is about 10−5, which means that quasars
can indeed be sources of primary cosmic rays having
the energies indicated above.

However, Fig. 4 gives no indication of z values at
which this result was obtained. To disentangle this
situation, we considered individual values of kσ versus
the positions of the bins (with a step of ∆z = 0.07)
subjected to successive shifts by 0.01. They are repre-
sented by closed circles in Fig. 5a. The dashed curve
shows the behavior kσ on average upon smoothing
the original distribution over 30 neighboring points.

In Fig. 5a, the following details of importance are
worthy of note. First, one can clearly see here a peak
for z ≤ 0.3, which was previously reported in [3, 4].
Second, there is a series of other peaks, which, for
1.0 ≤ z ≤ 2.5, yield a total positive effect of correla-
tions between quasars and the arrival directions of
primary cosmic rays for angular distances in the range
dmin ≤ 1.5◦. Although the significance of these peaks
is 1.5 to 2.5 standard deviations, their total effect is
about 4.5σ (see Fig. 4). This means that primary
cosmic rays of ultrahigh energy may originate from
not only closely lying but also more remote quasars.

The complicated shape of the distribution in
Fig. 5a raises new questions—for example, the
question of whether the positions of these peaks
are random; if no, there arises the question of their
origin. In seeking an answer to these questions, we
considered two more samples of showers that have
substantially different energies, E0 = 1018.4–1018.6

and 1017.7–1017.8 eV.1) For the input conditions under
which the results are obtained to be identical, we took,
in each of these samples, only 138 events chosen at
random and treated them in just the same way as in
the preceding case. The results are shown in Figs. 5b
and 5c, where use is made of the same notation as in
Fig. 5a. It can be seen that, for E0 = 1018.4–18.6 eV,
there is a positive effect of the correlations in question

1)In the following, we use the notation E0 = 1018.4–18.6 and
1017.7–17.8 eV.
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Fig. 5.Distributions of the function kσ (4) characterizing angular correlations (for dmin ≤ 1.5◦) between the arrival directions
of 138 to 163 showers of energy satisfying the conditions E0 ≥ (a) 8 × 1018, (b) 1018.4–18.6, and (c) 1017.7–17.8 eV and the
disposition of 50 quasars (in bins with a step of ∆z = 0.07) with respect to the mean redshift associated with quasars. The
dashed curves represent the behavior of kσ on average. The arrows directed upward and downward point to, respectively, peaks
and dips in the spacetime distribution of 847 absorptive systems in the spectra of quasars [9].
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Fig. 6. Changes in the mean absolute stellar quantities
of quasars (from the catalog of Hewitt and Burbidge [5])
versus their mean redshifts (in bins with a step of ∆z =
0.07). The straight line represents relation (5). Themean-
ing of the arrows is identical to that in Fig. 5.

for the interval 0.7 ≤ z ≤ 1.4 (dashed curve), but that
this effect is of the highest significance (about 4σ) in
the interval 1.2 ≤ z ≤ 1.4. Showers of energy in the
range E0 = 1017.7–17.8 eV also reveal a trend toward
the arrival from the loci of quasars. This suggests that
quasars may be sources of primary cosmic rays even
in the region of their lower energies. A weaker effect
of the correlations in Figs. 5b and 5c is likely to be
due to a smaller fraction of extragalactic particles
in the respective samples of showers. The authors
of [1–4, 11–13] believe that, for E0 ≥ 8× 1018 eV,
the sources of primary cosmic rays are predominantly
extragalactic, but that, at lower energies, the fraction
of galactic cosmic rays is significant. A comparison
of the distributions in Fig. 5 gives sufficient grounds
to assume that the effective contribution of quasars
featuring various redshift values is different in different
regions of primary-cosmic-ray energy.

However, almost perfect agreement between the
positions of the peaks and dips in Figs. 5a–5c is the
most surprising circumstance. In turn, they are at
approximately the same positions as the analogous
peaks (arrows upward) and dips (arrows downward)
observed in the spacetime distribution of 847 absorp-
tive systems in the spectra of quasars [9]. [The fig-
ures and horizontal dashes near the arrows indicate,
respectively, their statistical significance (in units of
standard deviation σ) and the uncertainty in their
localization.] It is the opinion of the present author
that this circumstance is indicative of a nonrandom
character of the appearance of the peaks and dips in
Fig. 5. Ryabinkov et al. [9] explain their results by a
periodic alternation of eras of a high quasar luminosity
P

and phases within which the activity of quasars is
relatively low. They referred to this hypothesis as that
of a cosmological variation of the activity of quasars.

We note that absorption lines arise if cold clouds of
a gas consisting of atoms and molecules in low-lying
states occur on the the path of light from a quasar.
These atoms and molecules “eat out” (absorb), from
the continuous spectrum of a quasar, those waves
whose energies correspond to transitions in excited
states [6]. Families of absorption lines are likely to
arise as light from a quasar traverses galaxies that lie
on the ray of sight from an observer to this quasar.
Since the redshift in absorptive systems frequently
reaches z values characteristic of quasars themselves,
there are galaxies at distances where they can no
longer be observed by radiation.

In all probability, changes in the correlation func-
tion kσ reflect the actual trend of primary cosmic
rays toward grouping in the vicinity of quasars at
the maximum of their cosmological activity. On the
contrary, a relatively low frequency of the appearance
of primary cosmic rays in the vicinity of quasars (for
dmin ≤ 1.5◦) is observed within in the region of the
dips. Within this hypothesis, it appears that cosmic
rays having energies indicated above were generated
with different intensities in different cosmological eras
of the activity of quasars. A dominant fraction of
these rays is associated with periods within which the
luminosity of quasars was high. Within the phases of
their reduced activity, the rate of primary-cosmic-ray
production was likely to be substantially lower.

The data in Fig. 6, which shows the measured
mean absolute stellar quantities of quasars in bins of
width ∆z = 0.07, support the hypothesis of a cos-
mological variation of the luminosity of quasars. The
straight line corresponds to the dependence

〈M〉 = 17.14 + 0.55〈z〉, (5)

which reflects the increase in the luminosity of
quasars with increasing redshift. The arrows indicate
the peaks and dips that are shown in Fig. 5. Here,
one can clearly see periodic variations in the absolute
brightness of quasars, these variations correlating
with our data.

In [1–4, 11–14], it was shown that primary cosmic
rays of ultrahigh energy consist of two components.
Of these, one is characterized by an isotropic distri-
bution and is likely to be associated with the diffusion
propagation of charged particles through the Galaxy,
its fraction being dominant forE0 ≤ (2–5)× 1018 eV.
The other component has an extragalactic origin. It
forms a number of clusters within solid angles of
3◦ and consists, in all probability, of stable neutral
particles—otherwise, these particles would lose, be-
cause of the motion in the magnetic fields of the
galaxy, the memory of the directions in which they
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 2 2005
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are emitted by the sources and could not disclose the
aforementioned structure of the distribution of matter
in the Universe.

Let us revisit showers of energy in the range E0 =
1017.7–17.8 eV. The isotropic and the cluster compo-
nent contribute about, respectively, 75 and 25% to
their flux [13, 14].We consider the correlations of each
of these components with quasars. We found clusters
in the following way. We partitioned all showers into
seven samples, each featuring about 1000 events. The
only difference between these samples was that the
axes of showers belonging to different samples were
within different annular areas of the central circle of
the array. Each of the seven samples was analyzed
for the presence of local groups of showers on the
celestial sphere. To do this, all neighbors within the
angular distance of d ≤ 3◦ were found around the
arrival direction of any shower. If there were three
or more showers within this circle, their coordinates
were averaged and were used in the following as new
points (below they are referred to as nodes). The
nodes were additionally analyzed for the presence of
not less than two intersections within each of the
seven samples (the condition of intersection was that
their centers were within the angular distance of d ≤
3◦). If there were such nodes, then the arrival direction
of all showers belonging to them were averaged anew,
and the resulting larger node (cluster) was used for a
further analysis.

For angular distances of dmin ≤ 1.5◦, the closed
circles in Fig. 7a show the factor (4) characteriz-
ing correlations between 50 quasars in various bins
with a step of ∆z = 0.07 and the positions of ac-
tual and generated clusters. The generated clusters
were found in just the same way as actual ones. In
Fig. 7b, the open circles represent the version for the
isotropic component. It corresponds to samples of
actual showers distributed at random in the sky that
do not enter into clusters. The rest of the notation is
analogous to that in Fig. 5.

One can see that, within different redshift inter-
vals, clusters correlate with quasars at a level of six
to eight standard deviations, the peaks and dips in
Fig. 7a being in agreement, as before, with the hy-
pothesis of a cosmological variation of the activity
of quasars. As to showers not belonging to clusters
(Fig. 7b), they do not produce such a pattern—here,
the angular-correlation factor kσ exhibits virtually no
outliers beyond approximately two standard devia-
tions and takes values that are close to random ones.
In all probability, some kind of correlation between the
positions of the peaks and dips in Figs. 7a and 7b
is due to the presence of a small number of showers
generated by quasars in the samples featuring no
clusters.
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 2 200
4. ORDERED STRUCTURE
IN THE DISTRIBUTION OF QUASARS

The majority of modern cosmological models are
based on the assumption that all points of space
are equivalent; therefore, the Universe is on average
uniform and isotropic. This hypothesis is confirmed
by the observations of isotropic cosmic microwave
background radiation [6]. However, the distribution of
matter is extremely nonuniform in the close vicinity
of the Galaxy; moreover, there is a distinct hierarchy
on a larger scale (from a few hundred kpc to a few
hundred Mpc). Galaxies enter into the composition
of clusters and superclusters, which in turn form a
cellular structure of the Universe, with the character-
istic size of nonhomogeneities being 100 to 130 Mpc
(see, for example, [15, 16]). The cellular structure of
the Universe was reliably established on the basis of
the statistical analysis of the distribution of galaxies
for moderate redshift values of z ≤ 0.5. Cosmic rays
of ultrahigh energy also confirm the existence of such
a structure [1–4].

The above results suggest that an ordered struc-
ture of matter might exist over much larger scales of
the Universe. We will now present some experimen-
tal facts in support of this point of view. In Fig. 8,
the closed circles represent the angular-correlation
factor (4) for the minimal angular distances dmin be-
tween 50 quasars in independent bins with a step of
∆z = 0.07 and the arrival directions of 138 showers
having energies in the range Е0 = 1017.7–17.8 eV and
belonging to the clusters in Fig. 7a. The measured
distributions and those that are expected for random
quantities were derived as the sum of 35 original
distributions (this number is obtained as the ratio
2.5/0.07 in the case of successively shifting the bin
by 0.07). In constructing the distributions in ques-
tion, all events characterized by galactic latitudes in
the range |bG| ≤ 30◦ and inclinations satisfying the
condition δ ≥ 30◦ were excluded each time from this
analysis.

In Fig. 8, a series of alternating peaks and dips
at a level of about two to four standard deviations
is noteworthy. In my opinion, there is some kind of
interrelation in their arrangement. This can be seen
from the example of a simulation whose results are
shown by open circles in Fig. 8. We have considered
angular distances between two nodes of a square lat-
tice of edge length about 2.23◦ on a spherical surface
that were chosen at random. A version where the
lattice constant is about 4.48◦ is also quite realistic.
In all probability, this means that quasars may belong
to some large-scale ordered structure of the matter
distribution in the Universe.

From the results of the simulation, it follows,
among other things, that quasars may form a struc-
ture that roughly resembles a cubed-sphere grid.
5
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similar to that in Fig. 5.
This three-dimensional lattice consists of a series of
concentric spheres, their radii being

ri = r0qi−1, (6)

where q = const and i is the ordinal number of a
sphere. Since (ri+1 − ri)/ri = q − 1 = const, the
shape a volume element of the lattice is approximately
cubic, irrespective of ri. All of its nodes are projected
along the radii onto one point; that is, they form a
planar square network considered above (see Fig. 8).

From the structure of the type in (6), it follows
that, for any redshift values, the number of quasars
must be constant in a spherical layer of any fixed
width. The actual distribution of objects in Fig. 2
confirms this roughly for z ≤ 1.8. The catalog of M.-
P. Veron-Cetty and P. Veron-Cetty [10] yields the
same pattern. In all probability, the peak in Fig. 2 for
P

1.8 ≤ z ≤ 2.4 is associated with an individual struc-
tural feature.

Let us now consider the small-scale anisotropy
of quasars. In Fig. 9, the closed circles represent
the distribution of minimal angular distances dmin

between the objects from the catalog of Hewitt and
Burbidge [5] in bins with a step of ∆z = 0.1. The
measured distribution and that which was expected
for random quantities were derived as sums of 25 in-
dependent distributions (this number is obtained as
the ratio 2.5/0.1 in the case of successively shift-
ing the bin by 0.1). The expected distribution was
found with allowance for a decrease in the number of
events in the region of the Galaxy disk (see Fig. 1).
This distribution was derived by “smearing,” with the
aid of the Monte Carlo method, the actual coordi-
nates of each quasar over the adjacent part of the
sky (∆α = ±20◦ and ∆δ = ±5◦). Figure 9 displays
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 2 2005



QUASARS AS SOURCES OF ULTRAHIGH-ENERGY COSMIC RAYS 245

 

0 5 10 15

0

–5

5

10

 

d

 

min

 

, deg

 
k

 

σ

Fig. 8. Angular correlation factor kσ (4) for the minimum
angular distance dmin between 50 quasars in independent
bins with a step of ∆z = 0.07 and the arrival direc-
tions of 138 showers having energies in the range E0 =
1017.7–17.8 eV and belonging to the clusters in Fig. 7a
(closed circles). The open circles in the figure correspond
to the distances dmin between the nodes of a square lattice
of edge length 2.23◦ on the surface of a sphere.

data for 1436 objects within the latitude band 30◦ ≤
bG ≤ 75◦ (in the northern hemisphere of the Galaxy).
One can see that quasars form a number of dense
groups (nodes), which are characterized by angular
distances of dmin ≤ 1.5◦. Within this angular inter-
val, the fraction of their excess over random events
with respect to the entire sample is (354–90)/1436 ≈
0.18. In the angular interval dmin ≈ 3◦–6◦, there is,
on the contrary, a deficit of actual events, which is
indicative of the presence of voids between the nodes
of quasars.

In Fig. 10, the closed circles represent the dis-
tribution of 580 quasars (without objects for which
|bG| ≥ 75◦) in nodes with dmin ≤ 1.5◦ versus the bin
position (with a step of ∆z = 0.07). The open circles
there show the analogous distribution for the sample
of 1974 quasars that does not contain the aforemen-
tioned events entering into nodes. The arrows indi-
cate the data from [9], which were considered above
(see Figs. 5–7).

The distributions in Fig. 10 exhibit a certain re-
semblance. Both distributions develop peaks and dips
that frequently correlate with each other; somewhere,
they have a negative correlation. By and large, all of
them correlate with the analogous peaks and dips
associated with absorptive systems in the spectra
of quasars [9]. However, there are also distinctions
between the two samples in Fig. 10. For exam-
ple, the mean numbers of the majority of quasars
(1974/2554 ≈ 0.77) not belonging to nodes undergo
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 2 200
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between 1436 objects from the catalog of Hewitt and
Burbidge [5] within the latitude band 30◦ ≤ bG ≤ 75◦ and
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circles represent the expected distribution for random
events.

virtually no changes over the entire redshift range
considered here (dashed line); as to quasars entering
into nodes, they are likely to have a different spatial
structure.

5. ANISOTROPY OF QUASARS

5.1. Harmonic Analysis

Let us additionally consider some special features
of the spatial distribution of quasars. We will ana-
lyze their global distribution over the celestial sphere
in terms of galactic coordinates by means of the
harmonic-analysis method [17], which is extensively
used to study the arrival directions of primary cosmic
rays (see, for example, [13, 14]). The method consists
in choosing the best values of the amplitude A1 and
the phase l1 of the function

f(lG) = f0(1 +A1 cos(lG − l1)) (7)

by minimizing the quantity

χ2 =
n∑

i=1

(fi −Ni)2/fi, (8)

where Ni is the number of quasars in the ith sector
(∆lG)i,

f0 =

(
n∑

i=1

Ni

)
/n = N/n,
5
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and

A1 = (fmax − fmin)/(2f0) (9)

= (fmax − fmin)/(fmax + fmin).

In Fig. 11, the phases l1 of the first harmonic for
the samples of quasars from Fig. 10 are shown versus
the mean redshifts in bins with a step of∆z = 0.1. We
partitioned the sky into 36 spherical sectors. Here, we
also excluded, from the analysis, all objects such that
|bG| ≥ 75◦ for them, which produce anomalously high
concentrations in the directions to the Galaxy poles
(Fig. 1). One can see that quasars not belonging to
nodes (open circles) have a stable phase of the first
harmonic for all z ≤ 2.5, the maximum of events be-
ing within the galactic sector ∆lG ≈ 100◦–150◦. We
note that this sector intersects the Supergalaxy plane
at lG ≈ 137◦ (see Fig. 1). Previously, it was indicated
in [1, 2] that enhanced fluxes of ultrahigh-energy pri-
mary cosmic rays come from the Supergalaxy plane
and from the regions symmetrically adjacent to it at
angles of±bSG ≈ 6.5◦. In these regions, one observes
relatively high concentrations of galaxy and quasar
clusters. In [3, 4], it was assumed that this may be
associated with a cubic structure of the distribution of
matter in theUniverse, in which case the Supergalaxy
plane is likely to be aligned with one of the three main
planes of the hypothetical lattice.
PH
Quasars entering into nodes with angular dis-
tances of dmin ≤ 1.5◦ also show a significant anisot-
ropy (closed circles in Fig. 11). Here, the phases of the
first harmonic are frequently different from the phases
l1 of the preceding sample; they have relatively stable
values of about 45◦ and 225◦, which are indicated by
dashed lines in Fig. 11.

Figure 12a shows the distributions of 580 and
1974 z ≤ 2.5 quasars (which are presented in Fig. 10)
in galactic spherical sectors with a step of∆lG = 10◦
in longitude. The horizontal lines there correspond
to mean values. The dashed curves represent ap-
proximations of the data in terms of the function
in (7). Here, anisotropy can be seen even more
distinctly in either case. For example, quasars in
nodes (closed circles) yield a first-harmonic phase of
l1 = 39◦ ± 17◦ and an amplitude ofA1 = 0.35± 0.07,
while quasars not belonging to nodes (open circles)
yield l1 = 129◦ ± 11◦ and A1 = 0.27 ± 0.04 for these
two quantities. The two amplitudes proved to be in
agreement within the errors, while the phases are
shifted by about 90◦.

Within a harmonic analysis, the amplitude A1

measures a global anisotropy. If its excess over the
amplitude ∆A1 of an equivalent isotropic flux pro-
ducing the same number N of events is above three
standard deviations, then it is assumed that the phase
YSICS OF ATOMIC NUCLEI Vol. 68 No. 2 2005
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l1 reflects actual anisotropy. The amplitude ∆A1 can
be found by means of a Monte Carlo simulation or
analytically as [17]

∆A1
∼= 1.25

√
2/N. (10)

From relation (10), it follows that, even in the absence
of an actual anisotropy, nonzero amplitudes will al-
ways be observed in an experiment, their values be-
coming greater as the number N of events decreases.
This means that a random distribution can mimic the
anisotropy expected on the basis of some physical
considerations.

The distribution of the parameters of the observed
vector of anisotropy that arises because of a bounded
character of a sample of N events was considered
by Linsley [17], who introduced the coefficient η =
N(A1/2)2 and a formula for estimating the probabil-
ity of obtaining the observed (or a greater) value ofA1

in the case of an isotropic flux,

p(≥ A1) = ехр(−η). (11)

For the distributions of quasars in Fig. 12a in nodes
and beyond them, we have η = 17.9 and 25.2, respec-
tively, the probability (11) of such random outcomes
being below 10−7. It is noteworthy that, in both dis-
tributions, there are individual peaks deviating from
the approximations in terms of the functions in (7) by
more than three standard deviations. The majority of
them correlate with one another and form an intrigu-
ing sequence (see below).

Let us now consider values of the mean redshifts
for quasars in individual spherical sectors in Fig. 12a.
They are shown in Fig. 12b (the notation is similar).
The horizontal lines correspond to values of 〈z〉 =
1.64 ± 0.04 and 1.24 ± 0.02, which were obtained by
means of averaging over all data. The dashed curves
represent the best approximations in terms of the
function in (7). Here, we also observe systematic
changes in the mean redshifts (dashed curves) ver-
sus the galactic longitude, the minimum being at
lG ≈ 150◦. These anomalies confirm the presence of
anisotropy in the global distribution of quasars, but
they yield less significant values. The amplitudes of
the first harmonic for quasars in nodes and beyond
them are A1 = 0.18 ± 0.06 and 0.06 ± 0.03, respec-
tively.

The anisotropy in Figs. 11 and 12 is not caused by
low statistics of the objects considered above. A sim-
ilar pattern is also observed for the data from the cat-
alog presented by M.-P. Veron-Cetty and P. Veron-
Cetty [10], which is more comprehensive. The ab-
sorption of light from quasars in the Galaxy disk does
not have a significant effect on the results either, since
the influence of this factor is approximately identical
in all of the sectors.
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5.2. Central Asymmetry of Quasars

We will now try to obtain deeper insight into the
results obtained above. In the ensuing discussion, we
will distinguish between the concept of the Universe
and the concept of the Metagalaxy. We will assume
that the Metagalaxy is smaller than the Universe and
is only one of its objects (in all probability, it is the
largest object presently accessible to observation).
As any other object, it then has a finite dimension
and a finite mass. Within a different approach, the
Universe and the Metagalaxy are the same, in which
case there is nothing else in the world. However, it is
well known that matter is structured from the micro-
to the macrocosm. From general considerations, it is
clear that very grave causes are required for the struc-
tural staircase of matter to be completed in the region
of either small or large masses—for example, the self-
closure of space around an enormously large mass.
But if there is one closed world, we can also imagine
yet another one, identical to it, since it is unlikely that
nature produces only one specimen of anything. In
view of this, we will assume that there are no reasons
to restrict our world, so that the Metagalaxy is only
part of the large Universe, which is infinite, in all
probability. Within this approach, we now associate
all that was said above about the Universe with the
Metagalaxy.

The idea of the Metagalaxy itself is not new and is
sometimes developed by researchers (see, for exam-
ple, [18–21]). In [20, 21], it was proposed to consider
the Universe as that which consists of a number
of “miniuniverses”; possibly, one of such miniuni-
verses” is precisely our Metagalaxy. In any case, this
idea makes it possible, in my opinion, to develop a
schematic pattern that enables one to interpret, in one
way or another, the results obtained above, especially
those that concern the anisotropy of the space distri-
bution of quasars.

Let us consider once again the distributions in
Fig. 12a and plot them in terms of polar coordinates
(see Fig. 13); this system of coordinates is arranged
here in the Galaxy plane. We also introduce a sys-
tem of Cartesian coordinates xyz in such a way that
the north pole of the Galaxy forms the third axis z,
which passes approximately through the center of the
Supergalaxy. The y axis points to the north pole of
the Supergalaxy, while the x axis coincides with the
line of intersection of the Galaxy and Supergalaxy
planes. The numbers in Fig. 13 indicate the galactic
longitudes in the real three-dimensional space.

The open and closed circles represent the numbers
Ni of quasars in the ith sector (with a step of ∆lG =
10◦ in galactic altitude) that are presented in Fig. 12a.
The solid-line circle corresponds to the mean value of
f0 = 55 for the sample of quasars beyond the nodes.
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Fig. 11. Phases l1 of the first harmonic for two samples of quasars (from Fig. 10) versus the mean redshifts in bins with a step
of∆z = 0.1. The notation is identical to that in Fig. 10.
One can see there a distinct anisotropy, with the
center being displaced in the direction of the x ax-
is. As to the dashed-line circle, it is the solid-line
circle whose center is shifted in direction lG = 129◦
by ∆XY = A1f0 = 0.27 · 55 ≈ 14.8. The dashed-line
circle corresponds to the dashed curve in Fig. 12a.
The dash-dotted curve represents the version closest
to the observed distribution of quasars—this is an
ellipse characterized by a contraction coefficient of
k ≈ 0.75. Its center (O′) coincides with the center of
the dashed-line circle, and its major axis y′ forms an
angle of about 26◦ with the y axis.

This distribution of quasars can be interpreted as
an indication of the possible spherical (or ellipsoidal)
structure of theMetagalaxy, a structure that is similar
to elliptic galaxies or spherically symmetric super-
clusters of galaxies. If this is so, then our Galaxy
is likely to be not far off the Metagalaxy center. It
does not undergo the effect of giant gravitational
forces that arise in the external regions of the Meta-
galaxy, since the force of gravity vanishes at the center
of a spherically symmetric system. One cannot rule
out the possibility that there is some interplay be-
tween the growth of the luminosity of quasars and the
growth of the gravitational force as the distance from
the Metagalaxy center increases.

The shaded region in Fig. 13 reflects the distribu-
tion of quasars in the nodes (see Fig. 10). Here, one
can see narrow peaks, and the analogous peaks in
the opposite direction correspond to them. The peaks
P

are rotated with respect to one another through an
angle of about 30◦ (or are discrete with this pitch) and
frequently correlate with the peaks of the preceding
sample of quasars. It can be conjectured that all of this
is associated in one way or another with the presumed
cubed-sphere grid specified by Eq. (6).

In Fig. 14, the distributions of 〈z〉 that are pre-
sented in Fig. 12b are given in polar coordinates (the
notation here is similar to that in Fig. 13). If use is
made of the Hubble law

r = v/H0 = βR0 [Mpc], (12)

where r is the distance to the object being consid-
ered, β = v/c (here, v and c are, respectively, the
speed of the object and the speed of light), and H0 ≈
75 km/s Mpc is the Hubble constant, then these
results can be treated as the distances 〈r〉 from the
observation point (O) to a “mean quasar” in preset
galactic sectors. A value of R0 ≈ cT ≈ 1026 m ≈
4000 Mpc characterizes the limiting dimensions of
the Metagalaxy (T ≈ 1/H0 ≈ 13 billion years is the
age of the Metalaxy since the beginning of the Big
Bang [6]). In the relativistic case, the quantity β is
related to the Doppler redshift z by the equation [6]

β = ((1 + z)2 − 1)/((1 + z)2 + 1), (13)

which will be used below in estimating the dis-
tances r.

Circles 1 and 2 in Fig. 14 correspond to the
central cuts of the spheres having radii of 〈r〉1 ≈
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 2 2005
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Fig. 12.Distributions of (closed circles) 580 and (open circles) 1974 z ≤ 2.5 quasars (presented in Fig. 10) in galactic spherical
coordinates: (a) distributions in the number of events and (b) distributions of mean redshifts in individual spherical sectors. The
horizontal lines correspond to mean values, while the dashed curves represent the best approximations of the data in terms of
the function in (7).
0.67 × 4000 ≈ 2670 Mpc (〈z〉 ≈ 1.24) and 〈r〉2 =
0.75 × 4000 ≈ 3000 Mpc (〈z〉 ≈ 1.64), respectively,
by a plane parallel to the Galaxy plane. For the
sake of comparison, the region corresponding to
r3 ≈ 1026 Mpc (z ≈ 0.3) and housing the majority
of the observed superclusters of galaxies is shown by
circle 3. It can be seen that a spherical distribution of
quasars beyond the nodes (open circles) is roughly
compatible with circle 1. A more realistic approx-
imation (dashed curve in Fig. 12b) corresponds to
circle 1whose center is shifted by∆XY = −A1〈r〉1 =
−0.06 × 2670 ≈ −160 Mpc (it is not shown in order
to avoid encumbering the figure).
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 2 200
The closed circles in Fig. 14 represent the dis-
tribution of quasars in the nodes. They proved to
be farther from the observation point and reveal a
sizable anisotropy, which decreases with respect to
the dashed-line circle centered at O′, this circle being
nothing but circle 2 shifted by ∆XY = −A1〈r〉2 =
−0.18 × 3000 ≈ −540 Mpc in the direction lG ≈
330◦. However, an ellipse whose axes are denoted by
x′ and y′ that is characterized by a contraction factor
of k ≈ 0.78 yields the best central symmetry. Its major
axis y′ forms an angle of about 28◦ with the y axis. For
the total sample of quasars characterized by redshifts
5



250 GLUSHKOV

 

270°

180°

90°

 

l

 

G

 

 = 0°

 
Y

X

X

 

'

 
Y

 
'

 

O

 

'

 

Supergalaxy

plane
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Fig. 12a) in polar coordinates. The figures indicate the
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in terms of the function in (7), and the dash-dotted-line
ellipse shows the best approximation of these data (open
circles).

in the range z ≤ 2.5, we have 〈r〉XY = 2770Mpc and
∆XY = 0.08〈r〉XY ≈ 220 Mpc.

In this representation, the anisotropy of redshifts
for quasars becomes more comprehensible from
the physical point of view. From the distributions
in Fig. 14, it can be seen that the Galaxy is shifted,
in all probability, with respect to the center O′ of
the presumed Metagalaxy in the direction lG ≈ 150◦.
Since the Metagalaxy has a finite size R0, this shift is
in fact reflected in the mean values of the redshifts
in Fig. 12–14—namely, the closer an observer to
quasars, the greater the number of weak objects (that
is, those that are characterized by smaller values of
〈z〉) that he sees.

Let us now estimate the possible asymmetry of
z ≤ 2.5 quasars along the z axis. Since this axis is
orthogonal to the Galaxy plane, we consider the mean
redshifts for quasars in solid angles for which |bG| ≥
75◦. For the north and the south pole of theGalaxy, we
have 〈z〉N = 1.376± 0.048 and 〈z〉S = 1.665± 0.038,
respectively. By employing Eqs. (12) and (13) and the
relation
〈r〉N/〈r〉S ≈ (〈r〉Z −∆Z)/(〈r〉Z + ∆Z) ≈ 0.928,

(14)

we obtain ∆Z/〈r〉Z ≈ 0.037. For the total sample of
quasars in both pole cones specified by the inequality
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Fig. 14. Distribution of the mean redshifts for (closed
circles) 580 and (open circles) 1974 z ≤ 2.5 quasars
(which are presented in Fig. 12b) in polar coordinates.
The figures indicate longitudes in galactic coordinates.
The solid-line circles correspond to various values of the
mean redshift: 〈z〉 = (1) 1.24, (2) 1.64, and (3) 0.3. The
dashed-line circle represents an approximation of the data
on quasars in the nodes (closed circles) in terms of the
function in (7), while the dash-dotted-line ellipse corre-
sponds to the best approximation of these data (closed
circles).

|bG| ≥ 75◦, the mean redshift is 〈z〉 = 1.545 ± 0.03.
This corresponds to 〈r〉Z = 2930 Mpc and to the
shift of ∆Z ≈ 108 Mpc with respect to the symmetry
center of this sample in the direction to the north pole
of the Galaxy.

From the ratio 〈r〉XY /〈r〉Z = 2770/2930 ≈ 0.94,
it follows that, in all probability, the projection of
“average quasars” from the z ≤ 2.5 sample onto the
xz plane also has the shape of an ellipse. The total
absolute shift of the observation point with respect
to the presumed center of symmetry of the volume
distribution of average quasars is

∆ =
√

(∆XY )2 + (∆Z)2 ≈ 245 Mpc. (15)

This point is nearly in the Supergalaxy plane, its
coordinates being lSG ≈ 116◦ ± 21◦ and bSG ≈ 0◦ ±
5◦ (the respective equatorial coordinates are α ≈ 79◦
and δ ≈ 74◦). Within our hypothesis of the Meta-
galaxy, the direction opposite to it in the Supergalaxy
plane (lSG ≈ 296◦) points to theMetagalaxy center in
a rough approximation.

6. ANISOTROPY OF E0 ≥ 8× 1018 eV
PRIMARY COSMIC RAYS

Let us now return to ultrahigh-energy cosmic
rays. We would like to emphasize one intriguing
detail in their anisotropy. In [13, 14], it was indicated
YSICS OF ATOMIC NUCLEI Vol. 68 No. 2 2005
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that, in the energy regions E0 ≈ 1017.7–17.8 eV and
Е0 ≥ 8× 1018 eV, the global primary-cosmic-ray
fluxes as expressed in terms of equatorial coordinates
have a pronounced anisotropy, the phase of the first
harmonic being l1 ≈ 40◦, which indicates, in super-
galactic coordinates, the intersection of the Galaxy
and the Supergalaxy plane at lSG ≈ 93◦. This direc-
tion is roughly compatible with the aforementioned
anisotropy of the space distribution of quasars.

Let us consider the anisotropy of giant air showers
of energy in the region E0 ≥ 1019 eV, which have
aroused particular interest since the detection of the
first events at the largest arrays worldwide, such as
Volcano Ranch (USA) [22], Haverah Park (United
Kingdom) [23], SUGAR (Sydney University Giant
Airshower Recorder, Australia) [24], and the Yakutsk
array [25]. To a considerable extent, this interest is
motivated by the fact that a sharp change in the
shape of the energy spectrum of primary cosmic rays
toward a slower decrease with increasing energy was
observed at all arrays in the above energy region.
However, primary particles of limiting energy in the
region E0 ≥ 1020 eV are the most puzzling. It is still
unclear whether they exist in nature [26]. A great
many experimental and theoretical studies have been
devoted to solving the problem of the origin of giant
air showers, but it still remains one of the most com-
plicated and contradictory problems.

Recently, a local region in the arrival directions
of primary cosmic rays of energy in the range E0 ≈
(1–2)× 1019 eV was found at a significance level of
0.007 on the basis of data from the Yakutsk array by
using the wavelet-analysis method [27]. Its pole fea-
turing the maximum number of events has equatorial
coordinates of αmax ≈ 35◦ ± 20◦ and δmax ≈ 52.5◦ ±
7.5◦ and lies in the Supergalaxy plane. This supports
our hypothesis of an extragalactic origin of the bulk of
primary cosmic rays that have energies in the region
E0 ≥ 1019 eV. However, Mikhailov [28–31], who also
relied on an analysis of data from the Yakutsk array,
arrived at a drastically different conclusion; accord-
ing to Mikhailov, primary cosmic rays of energy in
the range E0 ≤ 4× 1019 eV are predominantly of a
galactic origin. He states that a few pulsars closest to
the Earth that occur at the side of the inlet of a local
arm of the Galaxy and which generate predominantly
iron nuclei are sources of this radiation.

In order to disentangle this contradiction, we re-
visit the anisotropy of arrival directions for giant air
showers of energy in the regionE0 ≥ 8× 1018 eV that
were recorded by the Yakutsk array over the period
between 1974 and 2002 for zenith angles satisfying
the condition θ ≤ 60◦. For our analysis, we select
only those events for which the arrival directions were
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 2 200
found on the basis of data from four or more sta-
tions and in which the shower cores were within the
perimeter of the array. The primary-particle energy
E0 was determined from relations (1)–(3). In all, we
selected 559 showers in this way.

In addition, we use 522 events from the catalog
presented in [32] that were recorded by the SUGAR
array. These showers predominantly refer to the
southern hemisphere of the Earth. Together with the
data from the Yakutsk array, they provide a rather
comprehensive pattern of the anisotropy of giant air
showers in the surrounding space. The accuracy in
determining the arrival directions of showers in [32]
was about 5◦.

We have investigated the deviations of the ob-
served number of events,N1, from the expected mean
number 〈N〉 = N2(Ω1/Ω2) in units of a standard de-
viation σ =

√
〈N〉,
nσ = (N1 − 〈N〉)/σ, (16)

where N1 and N2 are the numbers of showers in
the solid angles Ω1 = 1− cos θ1 and Ω2 = 1− cos θ2
(θ1 = 8◦, θ2 = 45◦), respectively. The values of the
deviation in (16) were found upon successively shift-
ing a 1◦ × 1◦ area over the entire sphere.

Figure 15 shows the distribution of the quantities
in (16) over the developed celestial sphere in terms of
(а) galactic and (b) supergalactic coordinates. Cir-
cles 1 and 2 represent, respectively, the pole of a local
excess of primary cosmic rays [27] and the outlet of
a local arm of the Galaxy. The range of nσ is shown
at the bottom of the figure by the shaded scale. The
darkest and the lightest regions correspond to the
deviation of the giant-air-shower flux from the mean
value by |nσ| ≥ 3σ.

A few interesting and important features imme-
diately attract attention in Fig. 15. First, numerous
local regions where the fluxes of giant air showers are
relatively high or low are seen over the entire sphere.
Second, there is virtually no excess of radiation in the
Galaxy disk, apart from the locus of intersection of the
Galaxy and Supergalaxy planes at lG ≈ 137◦. There is
no indication of excess radiation even from the center
of the Galaxy, where there occur the most vigorous
processes of matter transformation. Nonetheless, a
significant anisotropy is observed in this region ac-
cording to AGASA (Akeno Giant Air Shower Ar-
ray) [33] and SUGAR [34] data in the energy range
E0 ≈ (8–20) × 1017 eV. One cannot see excess ra-
diation of giant air showers at the outlet of the local
arm of the Galaxy (circle 2) either. In his studies,
Mikhailov erroneously interpreted, as this excess, ra-
diation from neighboring regions occurring approxi-
mately in the Galaxy disk, but∆lG ≈ 25◦–45◦ aside.
The error resulted from a very rough partition of the
5
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Fig. 15. Deviations of the observed number N1 of showers from the expected mean number 〈N〉 in nσ = (N1 − 〈N〉)/
√

〈N〉
units over the developed celestial sphere in (a) galactic and (b) supergalactic coordinates for giant air showers of energy
in the region E0 ≥ 8 × 1018 eV and zenith angles in the range cos θ ≤ 60◦ according to data from the Yakutsk array and
SUGAR [32]. Circles 1 and 2 represent, respectively, the pole of a local excess of primary cosmic rays [27] and the outlet of a
local arm of the Galaxy; the dark curves correspond to the (a) Supergalaxy and (b) Galaxy planes; and the shaded scale shows
the range of nσ .
sphere into plates of dimensions∆lG ×∆bG = 30◦ ×
10◦ (see, for example, [31]).

There is yet another argument against the point of
view advocated in [28–31]. It is provided by the distri-
bution of pulsars in the Galaxy itself. This distribution
is shown in Fig. 16 for 450 objects [35] in galactic
P

coordinates. There, one can see a high concentration
of pulsars in the vicinity of the Galaxy plane, but
their concentration at the inlet of the local arm of
the Galaxy (lG ≈ 90◦, bG ≈ 0◦) is rather low. If these
objects had indeed been sources of ultrahigh-energy
primary cosmic rays, they would have determined, to
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 2 2005
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a considerable extent, the anisotropy of the arrival
directions of giant air showers. However, a totally
different pattern emerges in fact from observations. In
Fig. 15, a correlation between the arrival directions of
giant air showers and the Supergalaxy plane is clearly
seen in the northern hemisphere of the Earth. This
correlation can be characterized by the average values

〈nσ〉 =
(

k∑
i=1

(nσ)i

)
/k, (17)

which are shown in Fig. 17. These values were ob-
tained by averaging all nσ for δ ≥ 0◦ in intervals
of width ∆bSG = 1◦. At bSG ≈ −3◦, a pronounced
peak can be seen here, which was reported previously
in [11, 12].

Figure 18a shows the changes in the quantity de-
fined by Eq. (16) in response to successively shifting
the scanning solid anglesΩ1 andΩ2 along the latitude
of bSG ≈ −3◦. The dashed curve reflects the behavior
of this distribution (versus the supergalactic longi-
tude) on average after smoothing it over 30 neighbor-
ing points. Here, one can also see a very strong peak
in the sector∆lSG ≈ 0◦–210◦, its maximum being at
lSG ≈ 120◦. However, there is no such pronounced
correlation in the southern hemisphere, with the ex-
ception of an excess of giant air showers in a local sky
region around the point whose coordinates are α ≈ 0◦
and δ ≈ −85◦ (Fig. 15b). It is interesting to note
that this excess occurs near the Supergalaxy plane
in the direction nearly opposite to the region where
one observes the most pronounced excess of primary
cosmic rays in the northern hemisphere. Maybe, this
coincidence is not purely accidental.

For the sake of comparison, the changes in the
quantity defined in (16) as the result of scanning the
Galaxy disk (within the latitude band |bG| ≤ 8◦) are
shown in Fig. 18b. It can be seen that the aver-
aged distribution (dashed curve) peaks at lG ≈ 137◦,
where the Supergalaxy plane passes (see Fig. 15). Its
magnitude (about one standard deviation) is approx-
imately one-half as large as the analogous maximum
in Fig. 18a at lSG ≈ 120◦, this suggesting a predom-
inant role of the Supergalaxy in the formation of the
excess flux of primary cosmic rays in the region of
intersection of the Galaxy and Supergalaxy planes.

7. DISCUSSION OF THE RESULTS

The results presented in Figs. 15–18 unambigu-
ously indicate that the overwhelming majority of pri-
mary particles whose energies lie in the region E0 ≥
8× 1018 eV are of an extragalactic origin. However,
these results contradict, at first glance, the results
displayed in Fig. 5a and our hypothesis that quasars
may be sources of primary cosmic rays in this energy
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 2 200
region. Indeed, there immediately arises the question
of the relation between quasars and the Supergalaxy,
which are separated by enormous (cosmological) dis-
tances.

Nevertheless, such a relation is likely to exist. In
my opinion, this is suggested by the shape of the
distribution in Fig. 18a. As was emphasized above,
it is not the whole the Supergalaxy plane but only
some sectors of it that are regions of an enhanced flux
of giant air showers. The central region (lG ≈ 192◦),
which features the superdense Virgo cluster of galax-
ies, manifests itself only slightly. All of this suggests
that, in all probability, the sources of giant air showers
are beyond the Supergalaxy, the Supergalaxy itself
playing the role of a target where there occur some
nuclear interactions at ultrahigh energies.

The meaning of this assumption is reflected in
Fig. 19. Of course, this is a very rough scheme, where
many proportions have been violated because of the
incommensurability of the scale of the Supergalaxy
and the scale of the Galaxy; nevertheless, it enables
us to develop some specific pattern within the ideas
outlined above. We have denoted by R0 the outer
boundary of the Metagalaxy, whose mass M0 is ap-
proximately

M0 ≈ (4π/3)(R0)3ρ ≈ 4× 1052 [kg], (18)

where ρ ≈ 10−26 kg/m3 is the average matter density
in the Metagalaxy [6]. The shaded region includes
quasars. In all probability, lacertides (BL Lac objects)
and Seifert galaxies, which are likely to be other
sources of giant air showers [36, 37], may also appear
there. Objects of all three types form so-called active-
core galaxies, which are among the most powerful
sources in the Metagalaxy.

The position of our Solar System in the Meta-
galaxy is denoted by S. As was shown above (see
Figs. 12–14), it is shifted from the center O in the
direction of the vector A—that is, toward the closest
region of quasars. The numbers in Fig. 19 indicate
supergalactic longitudes. The dashed line BC repre-
sents the Galaxy plane. The Supergalaxy is depicted
in the form of a circle centered at D. We assume
that the Supergalaxy plane is oriented in such a way
that its edge faces the Supergalaxy center. By and
large, this picture gives an idea of the relative posi-
tions of the objects in which we are interested. This
view arises upon cutting the Metagagalaxy by the
plane that is parallel to the Galaxy plane and which
traverses the Metagalaxy center.

If this scheme, which is quite rough, is correct,
then one can easily understand the physical meaning
of the results given in Fig. 18a. It is obvious that par-
ticle fluxes going from external regions of the Meta-
galaxy to its center (arrows in Fig. 19) will “radiate”
different sectors of the Supergalaxy disk differently.
5
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factors are reflected in the distribution of the giant-
air-shower flux in Fig. 18.

 

–60 0 60
–1

0

1

2

 

b

 

SG

 

, deg

 
〈
 
n
 

σ

 
〉

Fig. 17. Distribution of E0 ≥ 8 × 1018 eV showers in
units of 〈nσ〉 values obtained by averaging all nσ in
Fig. 15 over the intervals ∆bSG = 1◦ for δ ≥ 0◦ (in the
northern hemisphere of the Earth) versus the supergalac-
tic latitude.
P

Further, we consider some interesting facts from
astronomy that, in my opinion, favor the existence
of a finite Metagalaxy. It is well known that Seifert
galaxies are, as a rule, spiral galaxies, but that they
are characterized by an enhanced growth of lumi-
nosity toward the center. With respect to ordinary
spiral galaxies, their number is about 1% [6]. It is
astounding that the overwhelming majority of Seifert
galaxies are oriented flatwise with respect to a ter-
restrial observer [6]. This fact has so far remained
unexplained. However, the answer is clear within the
hypothesis of a Metagalaxy: the axes of rotation of
Seifert galaxies are aligned with the force lines of the
gravitational field directed to the Metagalaxy cen-
ter. In this case, periodic oscillations of the energy
of gravitational coupling between the rotating parts
of Seifert galaxies and the gravitational field of the
Metagalaxy are minimal. Moreover, the fact that the
axes of rotation of Seifert galaxies are directed toward
us is yet another piece of evidence that our Galaxy is
not far off the Metagalaxy center.

At the present time, there are indications [38,
39] of some formidable structures in space. For
example, the measurements of the peculiar velocities
of 400 elliptic galaxies in [38] exhibit the presence
of an “enormous motion” of matter. All clusters
and superclusters occurring in the vicinity of our
Galaxy move toward the point whose equatorial
coordinates are α = 208.1◦ and δ = −55.5◦—this is
the so-called Grand Unification point. A simulation
of this gravitating mass yields an estimate of MА ∼
5× 1016M� ≈ 1047 kg, whereM� is the mass of the
Sun. The radius RА of the sphere of this attractor can
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 2 2005
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The dashed curves represent the behavior on average after
smoothing over 30 neighboring points.

be estimated by using the relation

RА = R0(MА/M0)1/3 ≈ 56 Mpc.

One can see that this radius is quite commensu-
rate with the shift of the observation point with re-
spect to the presumed center of symmetry of the vol-
ume distribution of “average quasars” [see Eq. (15)].
The attractor itself is situated approximately in the
same direction (the supergalactic coordinates of its
center are lSG ≈ 269◦ and bSG ≈ −5◦) as the Meta-
galaxy center. Thus, we see that the motion of matter
now becomes more comprehensible—it is a motion in
the field of metagalactic gravitational forces.

In this connection, the magnitude and the spatial
distribution of the gravitational potential of theMeta-
galaxy are of considerable interest. In regions beyond
the Metagalaxy (for r ≥ R0), it is given by the well-
known Newton formula

ϕ(r) = −GM0/r, (19)
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 2 200
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where G = 6.67 × 10−11 kg−1 m3 s−2 is the gravita-
tional constant. The question of the distribution of the
gravitational potential within the Metagalaxy is more
involved. Within a uniform sphere, it is given by [6]

ϕ(r) = −GM0(3− (r/R0)2)/2. (20)

At r = R0, the two formulas match each other, yield-
ing the same result, ϕ0 = ϕ(R0) ≈ 3× 1016 m2/s2.
At the Metagalaxy center, this potential is 1.5 times
greater, the gravitational field itself vanishing there.
The gravitational potential is the work that must be
performed to remove a unit mass from a given grav-
itational field. In order to escape from the gravita-
tional field of the Metagalaxy, a body of massmmust
perform the work A = −mϕ0. For this, it must have
the kinetic energyK = mv2/2 = −A and, hence, the
speed v =

√
−2ϕ0 ≈ 2.5× 108 m/s, which is close to

the speed of light.
The following intriguing fact is noteworthy. The

square of the speed of light, c2 = 9× 1016 m2/s2, is
nearly equal to the Metagalaxy potential within the
errors in the estimate of ϕ0. The Einstein mass–
energy relation states that the total energy of a body
is E = mc2. It appears that this energy is approx-
imately equal to the gravitational potential created
by the entire mass of the Metagalaxy. Yanchilin [40]
5
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considered some surprising consequences from this
circumstance, but we will not dwell on them here.

Particles forming primary cosmic rays of ultrahigh
energy are of great interest. It was stated above—
and previously in [1–4, 11–14]—that, in all prob-
ability, these particles must be neutral and stable.
At the present time, it is difficult to determine their
sort, but some of their properties are already known.
These cannot be photons, since, according to various
model estimates, photons initiate extensive air show-
ers where the number of muons is approximately ten
times smaller than in showers from primary cosmic
rays of ordinary composition—in experiments, there
were no such deviations of the muon fraction in the
overwhelming majority of events.

We cannot rule out the possibility that these are
neutrinos. The calculations performed in [41] revealed
that, under certain conditions on the growth of the
cross section for neutrino–nucleon interaction (σνN )
in the region of ultrahigh energies, there can arise
extensive air showers that are similar in many re-
spects to showers initiated by primary cosmic rays
of ordinary composition. The hypothesis of ultrahigh-
energy neutrinos interacting with relic neutrinos in
the vicinity of the Earth and generating “Z-boson”
showers was considered in [42, 43].

According to [44], neutral pions can also appear
as the presumed neutral particles of primary cosmic
rays. It was shown there that stable pions can exist in
the composition of cosmic rays whose energy lies in
the region E0 ≥ 1019 eV. The respective calculations
relied on the model of quark–gluon strings [45] with
allowance for the Landau–Pomeranchuk–Migdal
effect [46] and admitted a very weak violation of
Lorentz invariance in accordance with the Coleman–
Glashow hypothesis. It is of paramount importance
that, within this hypothesis, pion interaction with relic
photons is kinematically forbidden, which makes it
possible to resolve the Greisen–Zatsepin–Kuz’min
paradox [47, 48]. The calculations performed in [44]
revealed that neutral pions and protons lead to
patterns of giant-air-shower development that are
similar in many respects, although there are some
distinctions between them.

Possibly, neutral pions are produced not only in lo-
cal sources characterized by a vigorous energy release
but also in collisions of ultrahigh-energy primary cos-
mic rays with a metagalactic gas. In my opinion, such
processes in the Supergalaxy and in other large-scale
structures of the Metagalaxy could lead to the results
displayed in Figs. 17 and 18a. In this connection, a
further development of the hypothesis that long-lived
neutral pions can be present in primary cosmic rays
seems quite promising.
PH
However, we will assume that extragalactic pri-
mary cosmic rays can also involve other neutral par-
ticles generated by active-core galaxies. An attempt
at experimentally estimating the nuclear-interaction
range of puzzling neutral particles at an energy of
E0 ∼ 1017 eV was made in [4]. It turned out to be
about (3–4)× 10−2 g/cm2, which is approximately
1000 times smaller than the nuclear-interaction
range of ultrahigh-energy protons. Therefore, these
particles initiate the development of extensive air
showers much earlier than primary cosmic rays of
ordinary composition. But after the first interaction
event, they are likely to disappear, giving way, in the
development of extensive air showers, to a normal
cascade of secondary particles; otherwise, showers
generated by them would differ considerably from
conventional showers and would be readily identifi-
able.

Because of so short a range to the first nuclear
interaction, showers from the presumed neutral par-
ticles are expected to cause an enhanced develop-
ment of extensive air showers, with the cascade-curve
maximum lying higher in that case than in the case
of primary protons. In view of this, showers from iron
nuclei can mimic showers from puzzling neutral par-
ticles. The point is that the majority of themethods for
determining the composition of primary cosmic rays
are indirect: they rely on a comparison of observed
features of extensive air showers with their calculated
counterparts that are found on the basis of model
concepts of the development of extensive air showers
for one preset composition of primary cosmic rays
or another. Here, one cannot rule out the situation
where effects of any primary particles having very
short ranges can be misinterpreted by researchers as
those which are associated with an increase in the
fraction of heavy nuclei.

8. CONCLUSION

The above results can be partitioned into two
groups that are independent to some extent. The first
group has some bearing on the origin of ultrahigh-
energy primary cosmic rays. The results presented
in Figs. 4–9 can be interpreted as the indication that
quasars characterized by redshift values satisfying the
condition z ≤ 2.5may be among the probable sources
of cosmic rays whose energies lie in the region E0 ≥
5× 1017 eV. On the basis of a comparison of the
distributions in Fig. 5, it can be assumed that the
effective contributions of quasars for which z takes
different values are different in different regions of the
energy of primary cosmic rays. That quasars forming
clusters play a more important role in the formation
of primary cosmic rays than the remaining events not
entering into these clusters can most clearly be seen
YSICS OF ATOMIC NUCLEI Vol. 68 No. 2 2005
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(at a significance level not lower than five standard
deviations) from the example of the data in Fig. 7.

Our results are consistent with the hypothesis [9]
that the activity of quasars can undergo variations—
that is, there are periods of their high and low lumi-
nosity. The angular correlations between the arrival
directions of primary cosmic rays and the positions
of quasars are the most pronounced in those redshift
intervals that are associated with the high-activity
periods.

The results presented in Figs. 1, 2, and 8–14 re-
flect the spatial structure of quasars. It is hardly con-
sistent with the hypothesis of a uniform and isotropic
universe on a scale where z ≤ 2.5. For example, the
data in Fig. 8 are indicative of the possible existence of
an ordered structure belonging to the cubed-sphere-
grid type. The total distribution of quasars over the
celestial sphere (Fig. 1) is characterized by a small-
scale anisotropy accompanied by the presence of a
large number of nodes (see Fig. 9). Objects forming
nodes and those that do not enter into them are likely
to have different spatial structures (Figs. 10–12).

The results displayed in Fig. 12 indicate that
there can exist a global anisotropy of quasars. This
anisotropy is characterized by a central asymmetry of
the spatial distribution of quasars (see Figs. 13 and
14). Its structure does not rule out the existence of a
Metagalaxy, a gravitationally bound set of matter in
the Universe within which we live and beyond which
our sight cannot penetrate in principle. In my opinion,
the hypothesis that the Supergalaxy is situated near
the center of the Metagalaxy (see Fig. 19) makes
it possible to obtain deeper insight into the results
concerning the anisotropy of the spatial distribution
of quasars and the anisotropy of the arrival directions
of the global flux of giant air showers.

The results in Figs. 15–18 evince an extragalactic
origin of primary cosmic rays whose energies lie in
the region E0 ≥ 8× 1018 eV. Some of these parti-
cles (possibly neutral pions [44]) are formed in the
Supergalaxy. It can be assumed that they are formed
in collisions of neutral particles generated by quasars
with a supergalactic gas. Here, further investigations
are required, and they are under way now.
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Abstract—Experimental data accumulated over a long-term exposure of the big liquid-argon spectrometer
BARS at the Institute for High Energy Physics (IHEP, Protvino) in a horizontal flux of cosmic rays
are analyzed with the aim of selecting events that correspond to muon-pair production by muons in the
sensitive volume of the detector. The results obtained in this way make it possible to perform, for the first
time, a direct experimental test of various theoretical estimates of the total cross section for electromagnetic
muon-pair production by high-energy muons. c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

The production of muon pairs is a relatively
rare process of the electromagnetic interaction of
high-energy muons. In relation to the production of
electron–positron pairs, muon pairs are generated at
much shorter distances from the nucleus involved;
therefore, the cross section for this process depends
greatly on nuclear form factors and can serve as an
additional source of information about their behavior.
On the other hand, this process leads to the formation
of narrow muon groups, which may be a source of a
heavy background in various experiments performed
at accelerators and in cosmic rays—such as those
that are aimed at studying particles that decay to
muons, seeking new muon-generation processes,
and investigating inelastic muon scattering and mul-
timuon events in extensive air showers.

The beginning of theoretical and experimental in-
vestigations into muon-pair production by muons
dates back to the late 1960s, when it became possible
technically to perform cumbersome calculations and
when there appeared muon beams at accelerators and
cosmic-ray muon detectors reaching dimensions that
ensure the accumulation of fairly high statistics with-
in a reasonable time interval. The first calculations of
the cross sections for prompt muon-pair production
by muons [1–4] were performed by numerically in-
tegrating the squared matrix element corresponding
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142284 Russia.

2)Moscow Engineering Physics Institute (State University),
Kashirskoe sh. 31, Moscow, 115409 Russia.

3)Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, via
Livornese 1291, S. Pietro a Grado (PI), I-56010 Pisa, Italy.
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to the sum of dominant Feynman diagrams for this
process. From the results obtained in this way, it
was deduced that the respective total cross section
is determined primarily by elastic muon interaction
with the nucleus involved [4], quasielastic (nonco-
herent interaction with target protons) and inelastic
interactions with nuclei playing a less significant role.
It was also shown [1] that, at moderate muon ener-
gies, it is necessary to take into account exchange
effects caused by the presence of identical particles
in the final state. However, investigations conducted
in [1–4] were aimed, by and large, at analyzing data
from specific accelerator experiments, so that the cal-
culations there were performed for concrete primary
muon energies and target nuclei and for fixed energy
thresholds for final-state particles.
The first attempt at deriving the cross section

for muon-pair production by muons in a convenient
analytic form was undertaken by Bugaev, Kotov,
and Rosental’ (BKR) [5]. The BKR formula for the
cross section in question was obtained from the
corresponding cross section for the production of
electron–positron pairs [6] by merely replacing the
electron mass by the muon mass. In doing this, use
was made of the formula for the limiting case of
complete screening, which is realized for muon pairs
only at very high energies; also, the aforementioned
effect of nuclear form factors was disregarded in [5].
As a result, the BKR formula yielded overestimated
(sometimes by an order of magnitude) cross-section
values, this leading to misinterpretation of relevant
experimental data. Nonetheless, the BKR formula
had been widely used for a long time [7–12].
For any degree of screening, the cross section with

allowance for nuclear and atomic form factors was
c© 2005 Pleiades Publishing, Inc.
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obtained by Kelner, Kokoulin, and Petrukhin (KKP)
in [13, 14] in the form of an analytic expression for
the differential distribution with respect to muon en-
ergies. A comparison of the results based on this
expression with the results of a numerical integration
for specific energies and target nuclei [1, 3, 4] showed
good agreement.
The first attempt at experimentally recording

muon-pair production by muons was made in the
experiment that was reported in [15] and which was
performed in cosmic rays at large zenith angles;
33 events interpreted as muon triples formed in an
iron target were found in that experiment. This num-
ber of events led to an exaggerated estimate of the
cross section (approximately two orders of magnitude
larger than the expected value). Amuch smaller upper
limit on the cross section was obtained in [16] on the
basis of underground measurements with a facility
formed by a set of lead plates interspersed with a
scintillator. The contradiction between the results of
the two experiments in question stems from serious
difficulties in reliably identifying muon pairs. The
possible reason behind the misinterpretation of the
data in [15] consisted in significantly underestimating
the background of spurious tracks from electromag-
netic showers generated by a muon—in particular, in
disregarding correlations between the actuations of
the detectors in different coordinate planes.
The cross section for muon-pair production was

first measured in an accelerator experiment with a
beam of 10.5-GeV muons incident on an iron tar-
get, the energy threshold for each final-state particle
being 1.5 GeV [17]. The results of this experiment
proved to be in good agreement with their counter-
parts obtained from numerical calculations by the
Monte Carlo method, but it should be noted that the
selection criteria used corresponded to a relatively
small fraction of the total cross section (about 13%
according to the estimate of the authors). Under sim-
ilar conditions, the results of that experiment were
confirmed by later measurements reported in [18].
Unfortunately, only the region of high transverse mo-
menta (which is the most interesting from the point
of view of studying the structure of the nucleons),
where it is difficult to distinguish between trimuons
originating from an electromagnetic process and the
background associated with deep-inelastic processes
(see, for example, [19]), was explored in accelerator
experiments at higher muon energies.
An attempt at studying the production of muon

pairs at an intermediate incident-muon energy of
about 200 GeV was undertaken in experiments re-
ported in [11, 12]. An excess above the value expected
from muons in extensive air showers was observed
in the MACRO experiment (which was performed in
the Gran Sasso underground laboratory at a mean
P

depth of 3800 g/cm2) for pairs of muons (a third
muon could be stopped in rock, or its trajectory could
not be covered by the detector used) flying short
distances (smaller than 1.6 m) apart. Quantitative
agreement between this excess and the results of the
calculations by the BKR formula was interpreted by
the researchers who performed this experiment as
evidence that they observed muon pairs. However,
the calculations by the KKP formula in [13, 14, 20]
revealed that the flux of muon couples and triples
that is expected for the Gran Sasso depth is three
times smaller. Obviously, it is necessary to seek other
reasons for the excess of narrow muon pairs in the
MACRO experiment (for example, an admixture of
penetrating particles, including muons and hadrons
formed via the photonuclear interaction of muons in
the rock above the detector).
Thus, no reliable experimental data on the pro-

duction of muon pairs by high-energy muons (of
energy about 100 GeV) have been obtained so far.
The main reason for this was that the experimental
facilities used were inadequate to this task. In the
present article, we analyze muon triples generated
by muons from the horizontal cosmic-ray flux in the
Big liquid-ARgon Spectrometer (BARS) at the In-
stitute for High Energy Physics (IHEP, Protvino).
The structure of this apparatus guarantees an efficient
and unambiguous selection of events corresponding
to muon-pair production within the sensitive volume
of the spectrometer. Preliminary results of this inves-
tigation were presented at the conferences reported
in [21, 22].

2. EXPERIMENTAL DATA

The BARS facility [23, 24] is a finely structured
large-volume detector constructed for the tagged-
neutrino facility at IHEP. The detector consists of two
identical calorimeters, BARS-1 and BARS-2, filled
with liquid argon. Each calorimeter contains 216 t of
liquid argon, 154 t of it being in the sensitive volume.
Two types of detecting elements—sections of ioniza-
tion chambers and scintillation planes—are placed
in cryostats. The layout of the detector is shown in
Fig. 1.
The ionization chambers are formed by alternat-

ing grounded and signal aluminum plates, the latter
being segmented into 48 strips of width 61 mm each
that are separated by 2-mm gaps. The signal and
grounded plates have a thickness of 3 and 6 mm,
respectively. The signal strips in neighboring planes
of the chambers are successively rotated through an
angle of 120◦, whereby a system of three coordinates
in the cross section of the detector is formed. In
each cell, the thickness of the liquid-argon layer is
2× 24 mm; in each section of the chambers, there
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 2 2005
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are 12 such two-gap structures (288 in the whole
cryostat). Electronics for measuring ionization sig-
nals include low-noise preamplifiers, bipolar amplify-
ing pulse shapers characterized by a pulse maximum
at 2 µs and recovery time of 15 µs, and 12-bit analog-
to-digital converters (ADC). The total number of
spectrometric channels in each calorimeter is 13 824;
a typical signal-to-noise ratio in recording a single
muon in a calorimeter cell is about 4 : 1.

The triggering system of a calorimeter consists
of 24 planes of scintillation counters based on poly-
methylmethacrylate (PMMA) and installed in front of
the sections of the ionization chambers. Each plane
consists of eight counters 22 mm thick and 334 mm
wide. Scintillation light is collected by shifter bars
placed between the counters to photomultiplier tubes
positioned on the two sides. The time resolution of
the triggering plane is about 5 ns (FWHM), while a
typical efficiency of the detection of a single particle is
90 to 95%.

The outer diameter of the system of electrodes of
the ionization chambers is approximately 3 m, while
the total length of the detector is 18 m. The thickness
of the calorimeter along the axis of the apparatus
is 2880 g/cm2 (138 radiation-length units, which is
about 25 units of the hadron-interaction length). The
mean matter density within the sensitive volume is
1.60 g/cm3, while the mass content corresponds to
70.4% argon + 27.4% aluminum + 2.2% PMMA,
with Z/A = 0.461 and Z2/A = 7.50 being the re-
spective mean values. The spectrometer energy res-
olution for electromagnetic cascades that was mea-
sured with a prototype is 4% at 1 GeV [25]. Good
spectrometric properties of the detector are due to the
fact that more than 65% of ionizing-cascade-particle
energy is released in the working substance (liquid
argon).

Since 1996, one of the BARS calorimeters
(BARS-2) has been used to study muons in the hori-
zontal flux of cosmic rays. The main objective of those
experiments was to measure the energy spectrum
of muons by the new muon-spectroscopy method
based on employing the energy dependence of the
cross section for the direct production of electron–
positron pairs by muons (pairmeter method). Some
preliminary results concerning the pairmeter method
were presented in [26, 27]. Owing to a large target
thickness, a low threshold, good tracking properties
of the detector, and high statistics of events, the
accumulated experimental data make it possible
to perform simultaneously investigations into the
interactions of high-energy muons and searches for
rare events in cosmic rays.
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 2 200
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Fig. 1. Layout of the BARS calorimeter: (1) triggering
scintillation counters and (2) sections of the ionization
chambers.

In order to select muons arriving in a nearly hor-
izontal direction, we used triple coincidences of sig-
nals from three groups of scintillation planes occur-
ring at the beginning (2–4 planes), at the middle
(12–14 planes), and at the end (18–20 planes) of
the calorimeter. Triggering electronics were tuned
in such a way as to ensure the detection of muons
arriving from both sides of the facility. For events
selected by triggering logic, the amplitudes of sig-
nals in calorimeter cells in excess of some threshold
value (approximately 0.8 of the probable ionization
generated by a single muon, or 28 counts of the
ADC) were recorded. We processed data accumu-
lated within the period from December 1996 to June
1998. Over 5480 hours of the “live” time of facility
operation, 3.07 million muons arriving in the nearly
horizontal direction were detected. For a physical
analysis, we used 1.914 million tracks that traversed
the third and the nineteenth plane of the scintillation
counters (that is, at least two planes in each group of
triggering planes). Under such selection conditions,
the efficiency of the trigger for single muons exceeds
97%, the geometric factor of the detector is about
0.22 m2 sr, and the track length within the sensitive
volume is not shorter than 1900 g/cm2. The interval
of zenith angles is 75◦–90◦, with the mean value
being 84◦; the evaluated average energy of a muon is
close to 70 GeV.

3. SELECTION OF MUON TRIDENTS

The selection of events corresponding to muon-
pair production by muons is based on analyzing the
longitudinal ionization profile within a ±40-cm cor-
ridor around a reconstructed muon track. For each
event, ionization was measured at 200 to 288 points.
For the resulting quantitative estimates to be justi-
fiable, particular attention was given to reliability in
identifying trimuons and to the possibility of measur-
ing the parameters of an event. Therefore, we bounded
the sensitive volume for the possible interaction ver-
tex in the following way: on one hand, the interac-
tion must occur not earlier than an incident particle
reaches the 24th plane of ionization chambers after it
5
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had entered the internal volume of the calorimeter, in
which case it is clear that a single muon was observed
before the interaction event being considered; on the
other hand, the residual path of the particles in the de-
tector after the interaction event must not be shorter
than 90 planes (900 g/cm2, which is approximately
equal to eight units of the hadron-interaction length,
or more than 40 radiation-length units). The last
condition specifies the minimum energy of each of
the three muons in the final state (1.5 GeV). Since
the expected number of muon tridents is very small
(about 10−5 of the total number of events), the search
for muon pairs was organized in two steps: a fast
computer-aided selection aimed predominantly at re-
ducing the number of candidates to an acceptable
level was followed by a visual analysis of the remain-
ing events.
The following criterion was used in the computer-

aided selection. An event was considered as a can-
didate for muon pair if it involved a track segment
of length 90 successive chamber planes where the
measured ionization exceeded the threshold of 60
ADC counts (that is, more than approximately 1.7 of
the probable ionization generated by a single muon)
in 70 planes. The choice of the minimum number
of planes (70) where signals were in excess of the
threshold and the choice of the threshold value it-
self were optimized in such a way as to preserve a
high efficiency of the selection of useful events and,
at the same time, to ensure the maximum possible
factor characterizing the rejection of the background
(single muons). In order to verify the efficiency of the
computer-aided selection, artificial trimuon profiles
were formed from the measured longitudinal profiles
of ionization caused by actual single muon events.
In the most unfavorable case where the interaction
vertex occurs in the vicinity of the end of a track in
the detector (90 planes before leaving the detector)
and where the trajectories of final particles diverge
widely, the efficiency is close to 95% for the chosen
selection parameters; it is improved fast for longer
secondary tracks and for smaller angles of divergence.
At these parameters, the background-rejection factor
amounts to about 400. In all, 4816 candidate events
were selected among the total number of 1.914million
muons.
Events selected by the computer code used in-

volved predominantly “ordinary” muon interactions:
single high-energy electromagnetic cascades (about
17%), chains of a few low-energy cascades initiated
by delta electrons and electron–positron pairs from
high-energy muons (about 69%), and nuclear show-
ers resulting from inelastic muon interactions with
target nuclei (about 14%). Of course, this classifi-
cation is arbitrary to some extent since the bound-
aries between the classes (especially between the first
P

two) are rather vague. However, it is important to
emphasize that, owing to a characteristic shape of
electromagnetic cascades (with dips between them to
the level of ionization generated by a single particle)
and to a “loose” structure of nuclear showers, which
are often accompanied by short hadron tracks at large
emission angles, these events differ strongly, as a rule,
from the cases of muon-pair production by muons.
We also note that the fraction of nuclear cascades
in this sample is markedly greater than the ratio of
nuclear and electromagnetic cascades at a commen-
surate energy that are initiated by cosmic-ray muons
(about 5 to 10%), this being due to a long range of
hadronic showers.
All 4816 events were independently viewed by

three experts. In all cases, this resulted in selecting
the same 22 events containing three genetically
related muon tracks. These events can be partitioned
into the following four groups:
(i) The first group includes seven events where the

muon-interaction vertex is within the bounded sensi-
tive volume of the calorimeter and where one observes
ionization from a single muon before the interaction
event and tripled ionization after it, all three particles
emerging after the interaction event traverse more
than 90 detector planes (900 g/cm2). In all of these
cases, one distinctly sees spatially separated particle
tracks (at least in one of the three projections of the
detector). It is of importance to emphasize, how-
ever, that the last feature was not crucial in select-
ing events—first of all, we applied criteria based on
measuring the ionization profile. These seven events
are cases of prompt muon-pair production by muons.
In one of the events, the secondary muons originate
from the region of an electromagnetic cascade whose
energy is about 30 GeV. In principle, this muon pair
could be produced by a cascade photon. The prob-
ability of such a process, as well as the probabili-
ties of processes occurring in nuclear cascades and
mimicking the reaction under study, is estimated in
Appendices A and B.
(ii) The second group contains two events where

the interaction vertex is also within the sensitive vol-
ume, but where the length of one (in one event)
or both (in another event) secondary tracks (500–
700 g/cm2) is less than the threshold value. We did
not include these events in the ultimate statistics,
since the estimate of the efficiency of their selection is
less reliable; moreover, the background level becomes
higher for short secondary tracks.
(iii) Further, there are twelve narrow muon groups

that traversed the detector and which admit in-
terpretation in terms of cases in which muon-pair
production by muons occurs in surrounding mat-
ter (neutrino-channel absorber, steel toroids of the
magnetic spectrometer, other parts of the facility,
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 2 2005
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Fig. 2. Muon-pair production by a cosmic-ray muon in the BARS volume: (a) one of the three projections of the detector
(points correspond to calorimeter cells where signals are in excess of the threshold) and (b) ionization (in “muon-peak” units)
measured along a reconstructedmuon track (the number of an ionization-chamber plane is plotted along the abscissa).
etc.). These events are characterized by diverging
tracks, a typical spacing between the tracks being
less than 50 cm at the inlet of the facility; the angles
between the tracks range between 5 and 100 mrad.
Some of these tracks end in the calorimeter. In such
cases, the interaction vertex is not observed, and the
respective events can be interpreted in different ways
(for example, in terms of muons from hadron decays
in nuclear showers formed beyond the detector).
Since the reconstruction of the interaction vertex—
and, hence, the determination of the substance in
which the interaction event in question occurred—is
ambiguous and since the estimation of the detection
probability and of the efficiency of selection is rather
difficult for such events, we did not use them in the
ensuing quantitative analysis.
(iv) Finally, one event involves a group of three

muons formed in the atmosphere. In this case, the
particle tracks are parallel to one another within the
errors of the measurements (less than 3 mrad). The
distance between twomuons is about 30 cm, the third
track being 2 m apart. The zenith angle for this event
is 81◦. It is interesting to note that all three muons
are accompanied by a few secondary electromagnetic
cascades, which are indicative of high particle ener-
gies (about a few TeV).
An example of an event from the first group is given

in Fig. 2. The interaction vertex where there occurs
muon-pair production is near the 65th plane of the
ionization chamber, and this is reflected in the tran-
sition from ionization typical of a single particle to the
three-particle level. Individual narrow peaks against
the background of the longitudinal profile correspond
to low-energy electromagnetic cascades initiated by
muons.
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4. COMPARISON WITH THE RESULTS
OF THE CALCULATIONS

At a specific energy threshold for secondary par-
ticles, the number of muon triples that is expected
in the case where the interaction vertex is within the
sensitive volume of the facility can be calculated by
the formula

Nexp =
∫
σ(E,Ethr)R(E)dE, (1)

where σ(E,Ethr) is the total cross section (in cm2/g)
for muon-pair production by a muon of primary en-
ergy E in a target material, the energies of all final-
state particles being in excess of Ethr, and R(E)dE
is the total range of muons (in g/cm2 units) that
traversed the facility and which have energies in the
range between E and E + dE within the sensitive
volume of the detector. In the calculation of R(E),
we employed the formulas from [28] for the energy
and angular distributions of muons produced in the
decays of pions and kaons in the upper layers of the
atmosphere, setting the exponent of the integrated
spectrum of parent mesons to γ = 1.70 and the ratio
of the generation spectra to K/π = 0.15. At these
parameter values, the muon spectrum describes well
the results of the measurements with a magnetic
spectrometer from [29] at a zenith angle of θ = 85◦ for
muon energies in the region E > 50 GeV; the major-
ity of other data on the muon spectrum in the range
from a few GeV to a few TeV are also in agreement
with this model of the spectrum at γ values from 1.6
to 1.8.
In the calculations, we used two different analytic

expressions (from [5] and from [14]) for the muon-
5
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Fig. 3.Cross section formuon-pair production by amuon
in the BARS material according to calculations by the
formulas from (dashed curves) [5] and (solid curves) [14].
The upper curves represent the total cross-section value
(Ethr = µ), while the lower curves correspond to the
muon threshold energy of Ethr = 1.5 GeV.

pair-production cross section. The total cross section
obtained on the basis of these formulas for the process
in the BARS material (about 70% argon and 30%
aluminum) for two values of the minimal energy of
final particles [Ethr = µ (muon mass) and 1.5 GeV]
is given in Fig. 3. From this figure, one can see that
the difference of the two theoretical cross sections is
very large in the vicinity of the threshold and that it
decreases slowly with increasing muon energy, re-
maining rather large (within a factor of 3 to 5) in the
TeV energy range.
As was indicated above, the average muon energy

was about 70 GeV in our experiment. Owing to a
fast increase in the cross section near the threshold,
the average energy of muons producing muon pairs
was, however, much higher, about 270 GeV atEthr =
1.5GeV. At such energies, the cross section atEthr =
1.5 GeV is about 70% of the total cross section.
The expected number of events involving muon-

pair production by muons is given in the first and the
second column of the table according to the calcu-
lations by the theoretical formulas from [5] and [14],
respectively. A variation of 0.10 in the exponent γ

Expected and observed number of muon triples

Direct muon-pair
production Mimicking in showers

Observed
number

[5] [14] electro-
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Fig. 4. Average number of muon pairs formed by cas-
cade photons for (solid curve) a primary photon, (dotted
curve) a primary electron, and (dashed curve) a primary
electron–positron pair. The minimum muon energy Ethr

is 1.5 GeV for each particle from a pair.

of the parent-meson spectrum changes the expected
number of events by 10%, while a change of 0.05
in the K/π ratio has virtually no effect on the re-
sults of the calculations. The estimated number of
background events associated with electromagnetic
and hadronic showers is also presented in the table.
The observed number (seven) of events satisfying the
above selection criteria agrees well with the results of
the calculations based on the KKP formula.

5. CONCLUSION
With the aid of the liquid-argon spectrometer

BARS, we have studied the rare process of muon-pair
production by muons. The unique properties of the
BARS detector—a combination of large dimensions
(in nuclear and radiation-length units) with a fine
segmentation in the longitudinal and the transverse
dimension, a good energy resolution for electromag-
netic showers, and a high efficiency of detection of
particles producing a minimal ionization—has made
it possible to single out reliably, for the first time,
events involving the electromagnetic production of
muon pairs by cosmic-ray muons of energy as high
as a few hundred GeV. A comparison of the results
obtained in this way with theoretical estimates has
revealed that the KKP approximation is consistent
with experimental data, but that the BKR formula
leads to markedly exaggerated values for the total
cross section.
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APPENDIX A

Production of Muon Pairs by Photons
in Electromagnetic Showers

Apart from being directly produced by muons,
muon pairs may also be generated by secondary
processes in electromagnetic cascades initiated by
muons propagating in a target material. First of all,
this is the process of muon-pair production by real
photons of a cascade. In order to estimate the proba-
bility of such imitations, we applied the computational
procedure employed in [30].
The average number of muon pairs produced in a

cascade with an energy ε can be estimated as the con-
volution of the total cross section σµµ(ω, Ethr) for the
process with the equilibrium range g(ε, ω) of photons
in a cascade, where ω is the photon energy and Ethr is
the minimum energy of muons that is determined by
selection criteria. Only high-energy photons are of
importance for the formation of muon pairs; therefore,
one can employ approximation A of cascade theory.
Since the high-energy section of the photon spectrum
depends on the sort of particle that initiated the cas-
cade being considered, the average number of muon
pairs takes different values for a primary photon, a
primary electron, or a primary electron–positron pair
(and, accordingly, for cascades initiated in different
muon-interaction processes such as bremsstrahlung,
the production of delta electrons, and the generation
of electron–positron pairs).
Simple formulas for approximating the spectra of

cascade photons are given in [30]. We took from [31]
the analytic expression that describes the cross sec-
tion for muon-pair production by a photon and which
is valid for any degree of screening with allowance
for a nuclear form factor. Figure 4 displays the av-
erage number of muon pairs that was calculated as
a function of the cascade energy (for the minimum
muon energy of Ethr = 1.5 GeV, in accordance with
the selection criteria used in our analysis). The prob-
ability of muon-pair production grows almost linearly
with the cascade energy everywhere, with the excep-
tion of the threshold region. However, it is always
small in the energy range being considered. For the
statistics subjected to the analysis here, integration
over the energy spectrum of cascades initiated by
electromagnetic muon interactions in the sensitive
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volume of the BARS spectrometer yields a value of
0.3 for the average number of background events,
this being much less than the observed number of
muon triples. On the other hand, the above value does
not rule out the possibility that one of the selected
events (featuring secondary muons that issue from
the region of an electron–photon shower—see the
respective discussion in Section 3) was due to the
production of a muon pair by a cascade photon.
The contribution of other electromagnetic pro-

cesses—for example, the prompt muon-pair produc-
tion by cascade electrons—is small and is disre-
garded, since the total range of high-energy cascade
electrons is commensurate with the photon range
and since the cross section for this process is much
smaller than the cross section for pair production by a
photon (next order in the fine-structure constant α).

APPENDIX B

Upper Limit on Imitations from Nuclear Showers

Yet another possible source that could mimic
muon triples in the experiment being discussed is
associated with hadrons in nuclear–electromagnetic
showers that are initiated upon the inelastic inter-
action of muons in a target. It should be emphasized,
however, that, within the scheme used here to analyze
data, such imitations are possible only in the case
where the energy transfer and the hadron multiplicity
are low in the interaction event, so that it is difficult to
recognize the respective nuclear shower.
The probability that two hadrons from a shower

traverse, without being involved in secondary inter-
actions, a thickness of 900 g/cm3, which is specified
by the selection criteria used, is very small. Hadron
decays involving the production of muons in flight
are more hazardous. For example, the probability of
the decay of a 2-GeV pion within the BARS spec-
trometer (the average matter density of its material
is 1.6 g/cm3) is about 1%. Nuclear showers featur-
ing one long-range secondary particle were observed
both in experimental data and in the results of simu-
lations.
In order to estimate the background associated

with muon-pair production by secondary hadrons, we
used simulated events. A total Monte Carlo simu-
lation of the BARS response was performed on the
basis of a modified version of the GEANT 3.21 pack-
age. Since the cross section for the photonuclear
interaction of a muon was considerably underesti-
mated in the original code [32], the formulas for the
inelastic-muon-interaction cross section from [33],
which involve the energy-dependent parametrization
of the photon–nucleon cross section [34] and the
corrections for the screening of a nucleus within the
5
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vector-meson-dominance model [35], were used to
describe this process. A more detailed description of
the simulation procedure can be found in [36].
We have analyzed 4.72 million simulated events

(this number is approximately 2.5 times greater
than the number of experimental events). Of these,
approximately 16 000 contain inelastic muon inter-
actions involving an energy transfer in excess of
3 GeV. In the latter sample, 1503 events passed the
criteria of the preliminary computer-aided selection
(see Section 3) of candidates for muon pairs. We
note that the frequency of such events is in reason-
able agreement with that observed experimentally
(approximately 670 candidates featuring nuclear
showers per 1.9 million recorded muons). No event
that could be associated with the case of muon-
pair production by a muon was found at the stage
of visual inspection. This means that the upper limit
on the average number of such imitations in the
experimental-data sample analyzed here is 0.94 at a
90% confidence level.
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Abstract—With the aim of a further investigation of the nonperturbative Hamiltonian approach in gauge
field theories, the mass spectrum of QED-2 is calculated numerically by using the corrected Hamiltonian
that was constructed previously for this theory on the light front. The calculations are performed for a wide
range of the ratio of the fermion mass to the fermion charge at all values of the parameter θ̂ related to
the vacuum angle θ. The results obtained in this way are compared with the results of known numerical
calculations on a lattice in Lorentz coordinates. A method is proposed for extrapolating the values obtained
within the infrared-regularized theory to the limit where the regularization is removed. The resulting
spectrum agrees well with the known results in the case of θ = 0; in the case of θ = π, there is agreement
at small values of the fermion mass (below the phase-transition point). c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

The Hamiltonian approach to quantum-field the-
ory in light-front coordinates x± = (x0 ± x3)/

√
2,

x⊥ = (x1, x2), where x+ plays the role of time [1],
is one of the nonperturbative methods for solving
the problem of strong interaction [2, 3]. Within this
approach, the quantization is performed in the x+ = 0
plane, the generator P+ of a shift along the x+ axis
playing the role of the Hamiltonian. The generator
P− of a shift along the x− axis does not displace
the quantization surface; therefore, it is a kinemat-
ical generator (according to Dirac’s terminology) in
contrast to the dynamical generator P+. As a result,
the momentum operator P− appears to be quadratic
in fields and does not depend on interaction. At the
same time, the operator P− is nonnegative and has
zero eigenvalue only on the physical vacuum. This
results in that the field Fourier modes corresponding
to positive and negative values of p− play the role of,
respectively, creation and annihilation operators over
the physical vacuum and can be used to construct
the Fock space. Thus, we see that, in light-front
coordinates, the physical vacuum formally coincides
with the mathematical vacuum.
The spectrum of bound states in the theory can be

sought by solving the Schrödinger equation

P+|Ψ〉 = p+|Ψ〉 (1)

in the subspace specified by fixed p− and p⊥ and by
employing the expression m2 = 2p+p− − p2⊥ for the
mass. This search for bound states can be performed
beyond perturbation theory—for example, with the

*e-mail: paston@pobox.spbu.ru
1063-7788/05/6802-0267$26.00
aid of the so-called method of discrete light-cone
quantization [2, 4].
However, the light-front Hamiltonian formal-

ism involves a specific divergence at p− = 0 [2,
3], and it must be regularized. The introduction
of a cutoff |p−| ≥ ε > 0, which violates Lorentz
and gauge invariance, is one of the methods for
its regularization. A cutoff |x−| ≤ L that involves
imposing (anti)periodic boundary conditions in x−

(discrete light-cone quantization method, which
respects gauge invariance) is yet another possible
regularization. In this case, the lightlike momentum
p− becomes discrete (p− = pn = πn/L, where n is an
integer), the field zero mode corresponding to n = 0
being separated explicitly. In principle, the canonical
formalism makes it possible to express this zero mode
in terms of other modes by solving the constraint
equation, but this is difficult as a rule [5, 6].
The regularization of the above divergence usually

renders a theory in light-front coordinates nonequiv-
alent to its conventional formulation in Lorentz coor-
dinates [7–9]. This can be revealed even in the lowest
orders of perturbation theory [10]. As a result, there
arises the problem of correcting the canonical light-
front Hamiltonian (which is the result of a “naive”
canonical quantization in light-front coordinates)—
that is, the problem of seeking counterterms to it
that compensate for the above distinctions between
the Hamiltonians. If this problem can be solved for a
specific theory in all orders of perturbation theory, the
resulting corrected light-front Hamiltonian can then
be used to perform nonperturbative calculations.
The aforementioned formal coincidence of the

physical and the mathematical vacuum becomes
c© 2005 Pleiades Publishing, Inc.
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rigorous only after the introduction of regulariza-
tion, upon which the vicinity of the point p− = 0
is eliminated—for example, after the introduction
of the cutoff |p−| ≥ ε > 0. If the corrected light-
front Hamiltonian can be constructed for a theory
regularized in this way, then vacuum effects inherent
in the original theory in Lorentz coordinates must be
taken into account with the aid of additional terms of
this Hamiltonian.
The problem of constructing the corrected canon-

ical light-front Hamiltonian was successfully solved
both for nongauge field theories of the Yukawa model
type [11] and for QCD in the gauge A− = 0 [12].
In the last case, however, the corrected light-front
Hamiltonian was constructed only for specific ul-
traviolet and infrared regularizations violating gauge
invariance. As a result, it appears that the corrected
Hamiltonian involves a large number of indetermi-
nate coefficients; only for some, a priori unknown,
dependence of these coefficients on the regularization
parameter does it reproduce, in the limit where the
regularization is removed, the results of the Lorentz-
covariant theory in all orders of perturbation theory.
The practical calculations with the resulting Hamil-
tonian are very cumbersome because of the presence
of unknown coefficients and because of a complicated
structure of regularization (the regularized Hamilto-
nian involves a large number of additional fields).
In view of these circumstances, it is desirable to

seek alternative methods for constructing the correct
light-front Hamiltonian for gauge theories. In this
connection, it is of interest to study the simplest
models that admit a nonperturbative approach—
in particular, those where one can study the be-
havior of infinite series of perturbation theory in all
orders. Two-dimensional QED (QED-2) featuring
a nonzero fermion mass (it is also known as the
massive Schwinger model) is one of such models.
In recent years, this two-dimensional model has
attracted attention as an object of application of
new methods for studying QCD, since it possesses
many properties similar to those of QCD: confine-
ment, chiral-symmetry breaking, and a topological
θ vacuum (see [13] and references therein, as well
as [14–16]). Information obtained in analyzingQED-
2 can also be used in developing new methods that
take into account nonperturbative vacuum effects
and which are appropriate for constructing the light-
front Hamiltonian for four-dimensional gauge theo-
ries. It should be noted that attempts at extracting
information about four-dimensional gauge theories
on the light front from an analysis of QED-2 were
undertaken earlier [17].
For QED-2, there exists the possibility of going

over to an equivalent scalar theory [18] (belonging
to the type of the sine-Gordon model). This can be
P

done by means of the bosonization procedure—that
is, by going over from the fermion variables to boson
ones [9, 19]. Upon this transition, the mass term
of the fermion field in the QED-2 Hamiltonian be-
comes the interaction term for a scalar field, while the
fermion mass M becomes the interaction constant
in the boson theory. In the boson theory, the fact
that the quantum vacuum in QED-2 has a nontrivial
character associated with instantons (θ vacuum) [18,
15] is taken explicitly into account with the aid of
the parameter θ in the interaction term. At M = 0,
QED-2 reduces to the Schwinger model, while the
equivalent boson theory appears to be free.

Perturbation theory for a boson theory (pertur-
bation theory in the fermion mass) is usually re-
ferred to as chiral perturbation theory. For this kind of
perturbation theory, ultraviolet finiteness was proven
in [20, 21]. By analyzing perturbation theory in all
orders of M , one can construct a corrected light-
front Hamiltonian in terms of bosons and, after this,
return to the fermion variables [21, 22]. It should be
noted that boson perturbation theory differs radically
from perturbation theory in the coupling constant of
the original theory involving fermions (in QED-2, the
latter perturbation theory does not exist at all because
of infrared divergences, and this was the reason for
introducing bosonization). Therefore, the resulting
light-front Hamiltonian can take into account non-
perturbative (in the conventional coupling constant)
effects. But at the same time, it can fail to describe
effects that are nonperturbative in the fermionmass—
for example, phase transitions.

It is well known that, at least at the vacuum-
angle value of θ = π, there is a phase transition in
QED-2 at some value of the fermion mass M (see,
for example, [13]). It should be expected that, in the
presence of a phase transition, which is accompa-
nied by the appearance of nonzero vacuum expec-
tation values of some operators, the correct light-
front Hamiltonian must have different form for dif-
ferent phases, since the light-front vacuum itself is
always trivial. Therefore, the results of calculations
performed with a specific Hamiltonian must be valid
only within one phase. The calculations performed
in the present study corroborate these considerations
and make it possible to determine the presence and an
approximated position of the phase-transition point.
A similar phenomenon was discovered previously in
the simple two-dimensional λϕ4 scalar-field model
(see [9, 23], where an approximate method was pro-
posed for going over to the Hamiltonian describing a
different phase).

In this study, we perform a numerical nonpertur-
bative calculation of the mass spectrum of the cor-
rected light-front QED-2 Hamiltonian constructed
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 2 2005
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in [21, 22]. The results obtained in this way are com-
pared with the results of numerical calculations on a
lattice in Lorentz coordinates from [13, 14].

2. CORRECTED LIGHT-FRONT
HAMILTONIAN FOR QED-2

The QED-2 Lagrangian density in Lorentz coor-
dinates has the form

L = −1
4
FµνF

µν + Ψ̄(iγµDµ −M)Ψ, (2)

where Fµν = ∂µAν − ∂νAµ, Dµ = ∂µ − ieAµ, Aµ(x)
is an Abelian gauge field, Ψ and Ψ̄ = Ψ+γ0 are two-
component fermion fields of massM , e is the coupling
constant, and the matrices γµ are chosen in the form

γ0 =


0 −i
i 0


 , γ1 =


0 i

i 0


 . (3)

In terms of Lorentz coordinates, the Lagrangian den-
sity for the boson theory equivalent to QED-2 can be
written in the form [21]

L =
1
8π
(
∂µϕ∂

µϕ−m2ϕ2
)

(4)

+
γ

2
eiθ : eiϕ : +

γ

2
e−iθ : e−iϕ :,

γ =
MmeC

2π
, m =

e√
π
,

where C = 0.577 216 is the Euler constant, θ is
a quantity that parametrizes the θ vacuum of the
fermion formulation of the theory, and the normal-
ordering symbol means that diagrams with connected
lines are excluded in perturbation theory in γ (this
corresponds to the usual meaning of the normal-
ordering symbol in the Hamiltonian)—it is equivalent
to perturbation theory inM .
In [21, 22], the light-front Hamiltonian generating

a theory that describes a one-component fermion field
ψ and which, in the limit where the regularization
is removed, is equivalent in all orders in γ to the
Lorentz-covariant theory specified by the Lagrangian
density (4) was found by using the method described
in the Introduction. The theory defined by this Hamil-
tonian was regularized by the discrete-light-cone-
quantization method mentioned in the Introduction:
the cutoff |x−| ≤ L and the antiperiodic boundary
conditions in x− were introduced for the field ψ. The
resulting corrected light-front Hamiltonian has the
form

H =

L∫
−L

dx−
(
e2

2
(
∂−1
− [ψ+ψ]

)2
(5)
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− eMe
C

4π3/2

(
e−iθ̂(M/e,θ)eiωd+

0 + h.c.
)

− iM
2

2
ψ+∂−1

− ψ

)
,

where brackets denote the omission of the zero mode
in x−. The field ψ is expanded in terms of creation and
annihilation operators as

ψ(x) =
1√
2L

(6)

×


∑

n≥1

bne
−i π

L (n− 1
2)x−

+
∑
n≥0

d+
n e

i π
L(n+ 1

2)x−


 ,

{bn, b+n′} = {dn, d
+
n′} = δnn′ , bn|0〉 = dn|0〉 = 0.

(7)

The operator ω is the quantity canonically conjugate
to the charge operator Q,

Q =
∑
n≥1

b+n bn −
∑
n≥0

d+
n dn, (8)

which specifies the physical subspace of states,
|phys〉:

Q|phys〉 = 0. (9)

The operator ω possesses the properties that com-
pletely define it [9, 19],

eiω|0〉 = b+1 |0〉, e−iω|0〉 = d+
0 |0〉, (10)

and

eiωψ(x)e−iω = ei
π
L

x−
ψ(x), (11)

whence it follows that

eiωbne
−iω = bn+1, eiωd+

n e
−iω = d+

n−1, (12)

n ≥ 1, eiωd+
0 e

−iω = b1.

The parameter θ̂ appearing in the Hamiltonian
in (5) is a function of the ratio M/e and the vacuum
angle θ. This function is defined as a perturbation-
theory series inM ; therefore, its explicit form remains
unknown. Details concerning the appearance of the
parameter θ̂ in the Hamiltonian are considered in
the Appendix. Among other things, it is established
there that, in the first-order inM , we have θ̂ = θ and
that, at any value of M , the parameter θ̂ is an odd
function of θ and takes the value of θ̂ = π at θ = π. In
particular, it follows from the oddness of the function
θ̂(θ) that θ̂ = 0 at θ = 0. It should be noted that the
parameter θ̂ can be related to the values of the vacuum
condensates in the Lorentz-covariant theory [21, 22].
5
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In calculating the mass spectrum of bound states,
the quantity θ̂ is an independent parameter of the the-
ory, along with M and e; the relation between θ̂ and
θ for θ �= 0, π can in principle be found by comparing
the results obtained by calculating themass spectrum
of the theory in Lorentz coordinates and the theory
on the light front. We note that expression (5) for
the corrected light-front Hamiltonian and the expres-
sion obtained upon the naive canonical quantization
of the original fermion theory (2) in the light-front
coordinates differ only by the addition of the second
term, which is linear in the field operators and which
depends on θ̂ and, hence, on the vacuum angle θ.
Thus, we see that the naive canonical quantization
does not take into account vacuum effects.
The lightlike-momentum operator P− has the

form

P− =
∑
n≥1

b+n bn
π

L

(
n− 1

2

)
(13)

+
∑
n≥0

d+
n dn

π

L

(
n+

1
2

)
.

This expression is used to calculate the mass spec-
trum of bound states.

3. CALCULATION OF THE MASS
SPECTRUM OF BOUND STATES

In order to find the mass spectrum of bound states
of the theory, we will seek the eigenvalues Ei of the
fermion light-front Hamiltonian (5) (the subscript i
numbers eigenvalues in ascending order),

H|Ψi〉 = Ei|Ψi〉, (14)

in the subspace of physical states at a fixed value
of the lightlike momentum (13). This subspace is
specified by the conditions

Q|Ψ〉 = 0, P−|Ψ〉 = p−|Ψ〉. (15)

In view of the antiperiodic boundary conditions and
the first of the equalities in (15), the eigenvalue p− has
the form

p− =
π

L
N, (16)

where N is a nonnegative integer. The bound-state
massesMi are given by

M2
i = 2p−Ei =

2π
L
NEi. (17)

If, in expression (5) for the Hamiltonian, one performs
the change of integration variable x− = (L/π) z and
uses expansion (6), the operator (2π/L)NH , which
determines the quantities M2

i , does not involve the
regularization parameter L explicitly, but it depends
P

on N . The quantity L affects the mass spectrum only
through relation (16). Since p− does not depend on
L, one can deduce from (16) that the limit N →∞
corresponds to the limit where the regularization is
removed, L→∞.
Since we use the antiperiodic boundary condi-

tions, the subspace specified by the conditions in (15)
appears to be finite. This occurs because there exists
a minimum positive value of the lightlike momentum
p− (π/(2L)) and because the creation operators cor-
respond only to positive values of p−. An arbitrary
state satisfying the conditions in (15) has the form

|Ψ〉 = d+l2N

N−1 . . . d
+
0

lN+1b+1
lN . . . b+N

l1
∣∣∣0〉, (18)

li = 0, 1;
2N∑
i=1

sgn
(
N − i+ 1

2

)
li = 0,

2N∑
i=1

∣∣∣∣N − i+ 1
2

∣∣∣∣ li = N,

where sgn is the signum function. The exponents li
take here only the values of 0 or 1 by virtue of the
anticommutation relations (7).
The finiteness of the subspace that is specified

by formulas (18) and where it is necessary to solve
Eq. (14) reduces the problem to finding the eigenval-
ues of an Nmat ×Nmat finite matrix whose elements
are specified by the matrix elements of the operator
(2π/L)NH between the states in (18). A precise
solution to this problem can be found numerically.
The resulting eigenvalues will determine the squares
M2

i of bound-state masses. It should be noted that
the dimension of the matrix, Nmat, grows fast as the
parameter N increases—this is reflected in Table 1.
In this study, the maximum achieved values of N are
N = 30 for the cases of θ̂ = θ = 0 and θ̂ = θ = π and
N = 28 for the remaining cases.
As was mentioned above, the limit N →∞ cor-

responds to the removal of the regularization. For
this reason, it is not sufficient to calculate the mass
spectrum M2

i at the maximum accessible value of
N—it is necessary to analyze the behavior of the
spectrum as a function of N and to find a way to
extrapolate the calculated values to the region ofN →
∞. We propose the followingmethod of extrapolation.
We introduce the quantity u = 1/N and consider the
function M2

i (u). It is necessary to extrapolate the
values of this function to zero. Our calculations re-
veal that the bound-state masses are sensitive to the
parity of N—that is, there can occur a sharp change
in M2

i in response to the reversal of the parity of N .
Therefore, it is reasonable to extrapolate the function
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Table 1. Relation between the parameterN and the dimensionality Nmat of the space of states

N 9 10 12 14 16 18 20 22 24 26 28 29 30

Nmat 31 43 78 136 232 386 628 1003 1576 2437 3719 4566 5605
M2
i (u) to zero by two methods, individually in even

and in odd values ofN .
In order to extrapolate the functionM2

i (u) to zero,
we approximate the dimensionless ratioM2

i (u)/e2 by
polynomials of various degrees by the least squares
method. We denote by Pi(n) the value of a polynomial
of degree n at zero. It is obvious that the maximum
degree n that can be used is less by unity than the
number of points at which the approximated function
is known. In the present study, this degree is equal to
ten for the cases of θ̂ = θ = 0 and θ̂ = θ = π and to
nine in the remaining cases (as the minimum value of
N , we adoptN = 9 in our calculations).
At different values of the ratio M/e and the pa-

rameter θ̂, there arise different types of behavior of
Pi(n) as a function of n. In some cases, the function
Pi(n) tends to a saturation and changes slowly with
increasing n (see Fig. 1a). In these cases, the value at
which the saturation occurs will be considered as the
result of extrapolating the functionM2

i (u)/e2 to zero.
Sometimes, there arise oscillations against the

background of a saturation (see Fig. 1b). This occurs
if the error with which one calculatesM2

i (u) becomes
sizable. In this case, a function that involves a notice-
able random noise is approximated by a polynomial of
high degree. This usually takes place at large values of
the ratioM/e, in which case the coefficients of various
terms of theHamiltonian in (5) differ from one another
considerably. Conceptually, this situation does not
differ from the preceding one. The value obtained by
averaging the oscillations in the region of saturation
will then be treated as the result of the extrapolation
of the function M2

i (u)/e2 to zero. It is obvious that
the value found in this way will have an error larger
than that in the preceding situation.
In the remaining cases, there arises the situa-

tion where the saturation cannot be seen—the func-
tion Pi(n) strongly changes with increasing n (see
Fig. 1c). In order to discriminate between this case
and the two preceding versions of behavior of the
function Pi(n), we introduce the measure of its rela-
tive variation in response to a considerable variation
in the degree n of the polynomial (in the region of
accessible values), for example, in the form

ξ =

√
(Pi(4) − Pi(9))

2

(Pi(4)2 + Pi(9)2) /2
. (19)
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This quantity characterizes the error with which the
calculated values of the mass spectrumM2

i describe
its limiting value. We will assume that, if ξ < 0.1, the
saturation takes place for the function Pi(n), so that
its value obtained at accessible n describes well the
limiting value of the bound-state mass. But if ξ > 0.1,
the calculated values of Pi(n) do not characterize
the behavior of M2

i in the limit N →∞. Moreover,
the most frequently occurring form of the depen-
dence Pi(n) suggests its linearly decreasing character
(Fig. 1c). The same applies to the original dependence
of the quantityM2

i on the parameter N (see Fig. 1d).
This gives sufficient grounds to assume that, at these
values of the ratio M/e and the parameter θ̂, the
quantity M2

i tends to −∞ in the limit N →∞ . The
possible reasons behind this effect are discussed in the
next section.
It should be noted that the choice of the value of

0.1 as a boundary one for the error in ξ and the specific
choice of formula (19) are arbitrary to a considerable
extent, but, unfortunately, our calculations could not
provide a more rigorous way to discriminate between
the situations where the limit of the quantity M2

i for
N →∞ exists and where M2

i tends to −∞ in the
same limit.

4. RESULTS OF THE CALCULATIONS

4.1. Case of θ̂ = θ = 0

In the case of θ = 0, the mass spectrum of the
massive Schwinger model in Lorentz coordinates has
received quite an adequate study (see [13, 16] and
references therein). Usually, one studies the masses
M1 and M2 of the first two bound states, which are
referred to as a vector and a scalar state, respectively.
The most accurate results were obtained in [14] with
the aid of lattice calculations. Table 2 presents the
values of (M1 − 2M)/e and (M2 − 2M)/e (it is pre-
cisely these quantities that were calculated in [14])
that were found by the method proposed here (with
the aid of an extrapolation to the limit N →∞) and
the values of these quantities from [14]. In the case of
θ = 0, the error ξ does not exceed the threshold of 0.1
at any values of the ratio M/e that were considered
here (more specifically, ξ < 0.01 forM1 and ξ < 0.03
forM2)—that is, the above procedure of extrapolation
to the limitN →∞ provides quite reliable results.
5
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Fig. 1. Examples of the dependence of the extrapolated value of P1(n) on the degree n of the approximating polynomial (а–c)
and example of the dependence of themass of the lowest bound state onN (d) for the following parameter values: (a) θ̂ = θ = 0

and M/e = 1, (b) θ̂ = θ = 0 and M/e = 27, and (c, d) θ̂ = θ = π and M/e = 0.5. The open circles and asterisks represent
the results of the extrapolation in, respectively, even and odd values ofN .
Figure 2a gives the extrapolated values of (M1 −
2M)/e along with the results obtained in [14]. The
displayed errors were found from the corresponding
values of the relative error ξ. In this figure, we also
present the results corresponding to the maximum
accessible value of N = 30—that is, the results ob-
tained without extrapolation. It can be seen that these
results are accurate only at small values of M/e; at
the same time, the extrapolated values give a very
good result up to M/e = 8. For M/e > 8, the ex-
trapolated values reproduce a correct result within the
error, which begins growing fast in this region. This is
because the ratio M/e becomes large in this region,
with the result that the absolute error of the difference
(M1 − 2M)/e appears to be large even at a small rel-
ative error in the calculated quantityM2

1 /e
2. In order

to depict the calculated results over the entire wide
region ofM/e, it is convenient to plot the normalized
values

Mnorm
i =

Mi√
m2 + (2M)2

(20)

as was proposed in [16]. These normalized values
possess the property thatMnorm

1 → 1 both in the limit
M → 0 and in the limit e→ 0. In Fig. 2b, we show the
curves forMnorm

1 that correspond to those in Fig. 2а.
PH
One can see that the extrapolated values agree with
the results from [14] to a high precision over the entire
range ofM/e.

In Fig. 3, the extrapolated values of Mnorm
1 that

were calculated on the basis of the corrected Hamil-
tonian (5) are contrasted against the analogous val-
ues corresponding to the Hamiltonian obtained upon
the naive light-front canonical quantization of the
fermion theory specified by Eq. (2) {that is, to ex-
pression (5), where one discards the second term
[see the comment before formula (13)]} and those
corresponding to the Hamiltonian obtained upon the
naive light-front canonical quantization of the boson
theory specified by Eq. (4) {that is, to expression (5)}
where one discards the third term and replaces θ̂ by
θ, as was shown in [21, 22]. One can see from this
figure that the naive light-front canonical quantiza-
tion of the fermion formulation of the theory gives
good results at large values of the ratioM/e—that is,
in the region of weak coupling—while the analogous
quantization of the boson formulation of the theories
gives good results at small values of this ratio—that
is, in the region of strong coupling. In order to obtain
a light-front Hamiltonian that would provide good
results at any values of the ratioM/e, it is necessary
YSICS OF ATOMIC NUCLEI Vol. 68 No. 2 2005
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to implement the procedure of correcting the naive
Hamiltonian, as was done in [21, 22].
In Fig. 4, we give the curves that represent the

mass M2 of the scalar bound state and which are
analogous to those in Fig. 2a for the mass M1 of
the vector bound state. The behavior of the curves is
identical to that in the case of the vector state: the val-
ues corresponding to N = 30 give good results only
at small values ofM/e, while the extrapolated values
give very good results up to M/e = 4 and reproduce
the correct result within the error forM/e > 4.

4.2. Case of θ̂ = θ = π.

The value of θ = π is of particular importance in
the theory. It was predicted in [18] that, at θ = π, a
phase transition occurs in the theory at some value
of the ratio M/e, so-called semiasymptotic fermions
appearing in the region below the phase transition. In
the region above the phase transition, as well as in the
case where θ �= π, confinement takes place. More re-
cent calculations, performed for θ = π, revealed (see,
for example, [13]) that the phase transition occurs at
M/e = 0.33.
By means of lattice calculations, the mass of the

lowest state in the electron–positron (two-particle)
sector as a function of M/e at θ = π was studied
in [13]. Within our approach, this mass corresponds
to the quantityM1.
In Fig. 5, the extrapolated values ofM1/e are given

along with the results reported in [13]. One can see
that, at small values of the ratio M/e, these results
agree well, but that this agreement deteriorates as
the ratio M/e grows. For M/e > 0.14, the extrapo-
lation error ξ [see formula (19)] exceeds 0.1; therefore,
the corresponding points on the graph are not quite
reliable. For M/e > 0.21, there sharply appear very
large oscillations in the behavior of the corresponding
functions P1(n) describing the dependence of the ex-
trapolated values on the degree of the approximating
polynomial [see Section 3, the text before Eq. (19)].
At M/e = 0.4, the oscillations virtually disappear,
whereupon the dependence begins displaying a lin-
early decreasing character. By way of example, this
dependence atM/e = 0.5 is depicted in Fig. 1c, while
the corresponding dependence of the quantityM2

1 /e
2

onN (it is also manifestly linear) is shown in Fig. 1d.
ForM/e > 0.2, the extrapolation error ξ exceeds 0.5.
The linear decrease in M2

1 /e
2 with increasing N

gives sufficient grounds to assume that this quantity
tends to −∞ in the limit N →∞. This means that,
at the above values of the ratioM/e and the param-
eter θ̂, the spectrum of the Hamiltonian in (5) upon
the removal of the regularization appears to be not
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Table 2. Masses of the vector (M1) and scalar (M2)
bound states according to the calculations performed in the
present study and in [14] at θ̂ = θ = 0 and various values
of the ratioM/e

M/e

(M1 − 2M)/e (M2 − 2M)/e

our study [14] our study [14]

2−10 0.564 1.13

2−9 0.564 1.13

2−8 0.563 1.13

2−7 0.563 1.14

2−6 0.561 1.15

2−5 0.559 1.17

2−4 0.554 1.20

2−3 0.545 0.543 1.23 1.22

2−2 0.524 0.519 1.24 1.24

2−1 0.489 0.485 1.20 1.20

20 0.445 0.448 1.12 1.12

21 0.393 0.394 0.99 1.00

22 0.339 0.345 0.84 0.85

23 0.295 0.295 0.75 0.68

24 0.279 0.243 0.74 0.56

25 0.302 0.198 0.84 0.45

26 0.368 1.08

27 0.497 1.41

28 0.619

bounded from below, so that the theory specified by
this Hamiltonian is incorrect. This situation is possi-
ble in the case where there arise effects that are purely
nonperturbative from the point of view of perturbation
theory in the fermion massM since the Hamiltonian
in (5) was constructed by analyzing such a pertur-
bation theory (in all orders). Obviously, the presence
of the aforementioned phase transition is a nonper-
turbative effect in this case. One can conclude that
above the phase-transition point (M/e = 0.33), the
theory generated by the light-front Hamiltonian (5)
becomes incorrect; at the same time, the original
theory in Lorentz coordinates, which is specified by
Eq. (2), remains correct, this being corroborated by
the results reported in [13] for the region above the
phase-transition point.

The appearance of the aforementioned strong os-
cillations of the functions P1(n) in the range 0.2 <
5
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Fig. 2. Calculated mass M1 of the vector bound state at
θ̂ = θ = 0: (asterisks) results obtained by extrapolation
to the limit N → ∞, (open triangles) results of the cal-
culation at N = 30, and (open boxes) results borrowed
from [14].

M/e < 0.4 is likely to be associated with the prox-
imity of the phase-transition point, where the regu-
larization, which is parametrized by the number N ,
can distort the theory more strongly than as usual.
It can also be conjectured that a sizable deviation
of the extrapolated values of M1/e from the results
of Byrnes et al. [13] in the upper part of the region
M/e < 0.2 is due to the same factor.

4.3. Case of Intermediate Values of θ̂
As was indicated above, the quantity θ̂ is a func-

tion of the ratioM/e and the parameter θ, this func-
tion being specified in the form of an infinite series in
PH
M . Therefore, the relation between θ̂ and θ is a priori
unknown [this is not so only in the particular cases of
θ = 0, π (see above)]. In principle, this relation can be
sought by comparing the mass spectrum calculated
on the basis of the light-front Hamiltonian (5), which
depends on θ̂, and the spectrum calculated in Lorentz
coordinates at a specific vacuum angle θ.
It can be shown that the mass spectrum of the

theory is invariant under the reversal of the sign of the
quantities θ̂ and θ (it should be recalled that θ̂ is an
odd function θ). This can be seen most straightfor-
wardly in the boson form of the theory [see Eq (4)],
where the reversal of the sign of θ is equivalent to
the replacement of ϕ by −ϕ, which does not change
the mass spectrum. However, this invariance can be
directly seen from the Hamiltonian in (5). One can
show that it does not change if we reverse the sign
of θ̂ and simultaneously interchange the operators
dn and bn+1 (in this case, ω is replaced by −ω).
This is a unitary transformation and does not change
the mass spectrum. Thus, it is sufficient to perform
calculations of the mass spectrum for the case where
the parameter θ̂ lies between 0 and π.
For the lowest bound state, the mass M1 calcu-

lated in this way and normalized according to (20) is
displayed in Fig. 6. Each curve corresponds to a fixed
value of the quantity θ̂ from the set
0, 0.05π, 0.1π, . . . , π. Each successive curve (for in-
creasing θ̂) lies below the preceding one. In the cases
of θ̂/π = 0 and θ̂/π = 0.05 (the first and the second
curve from above), the extrapolation error ξ [see (19)]
does not exceed 0.1 at any values ofM/e.

In the case of θ̂/π = 0.1, ξ > 0.1 atM/e values in
the range between 2 and 24; therefore, it is meaning-
less to plot the corresponding points on the graph, so
that the curves decompose into two parts. In this re-
gion, the corresponding functions P1(n) (used in the
extrapolation) display a manifest linearly decreasing
character. This situation is similar to that considered
in Subsection 4.2 for the case of θ = π. It can be
concluded that, in the region being considered, the
theory specified by the Hamiltonian in (5) becomes
incorrect upon the removal of the regularization, and
it can be assumed that, in the vicinity of the point
M/e = 2, there exists some nonperturbative effect as
in the case of θ = π (see Subsection 4.2).
In principle, it can be assumed that a nonperturba-

tive effect exists in the vicinity of the pointM/e = 24

as well, above which the error ξ again falls below 0.1.
However, it seems more probable that, in the region
of large values ofM/e, the Hamiltonian remains un-
bounded from below upon the removal of the regu-
larization, but the decrease in the mass of the lowest
YSICS OF ATOMIC NUCLEI Vol. 68 No. 2 2005
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state with increasing regularization parameterN is so
slow that ξ appears to be less than 0.1. This is favored
by the dependence P1(n), which, at large values of
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M/e, has the form of a linear function with amoderate
slope that yields ξ < 0.1. As was discussed at the
end of Section 3, there is unfortunately no method for
discriminating between the situations where, in the
limit N →∞, there exists the limit of the mass of the
lowest state and where this mass tends to −∞.
In the cases of θ̂/π = 0.15, . . . , 0.3, the situation

is perfectly analogous to that in the case of θ̂/π = 0.1
(only the width of the region where ξ > 0.1 changes),
5
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which was considered immediately above, while, at
θ̂/π = 0.35, . . . , 1, the difference consists in that the
region where ξ < 0.1 at large values of M/e is not
reached at theM/e values considered here.
In Fig. 7, the points where the extrapolation error ξ

is less than 0.1 are shown in the plane spanned by the
parametersM/e and θ̂. It is natural to assume that, in
the region where there are no points in the figure, the
light-front Hamiltonian (5) is unbounded from below
upon the removal of the regularization,N →∞.

5. CONCLUSION

A numerical nonperturbative calculation of the
mass spectrum of QED-2 (massive Schwinger
model) has been performed by the method of discrete
light-cone quantization. In doing this, use has been
made of the corrected light-front Hamiltonian (that
PH
is, that which generates a theory that is equivalent in
all orders of perturbation theory in the fermion mass
M to the Lorentz-covariant formulation of QED-
2) constructed in [21, 22]. The results obtained in
this way have been compared with the results of
the numerical calculations on a lattice in Lorentz
coordinates from [13, 14].
Since actual calculations are performed at a finite

value of the infrared-regularization parameter N , a
method has been proposed for extrapolating the re-
sults of these calculations to the region of N tending
to infinity, this corresponding to the removal of this
regularization. As the result of this extrapolation, it
becomes clear that, at some values of the parameters
of the theory, its mass spectrum is not bounded from
below in the limit where the regularization is removed.
This occurs only at rather large values of the fermion
mass M ; therefore, it is natural to assume that, in
this region, the Hamiltonian used becomes incorrect,
since it was constructed via an analysis of perturba-
tion theory inM .
The calculations have been performed over a wide

range of the fermion mass M for all values of the
Hamiltonian parameter θ̂, which is a function of the
ratio M/e and the vacuum angle θ. This function,
which is a priori unknown, possesses the property
that it vanishes at θ = 0 and is equal to π at θ = π.
At zero value of the vacuum angle θ, the resulting

spectrum is bounded from below at any value of M ,
and the values obtained in this case for the two low-
est bound states reproduce well the results reported
in [14].
At the vacuum-angle value of θ = π, which is

special for the theory being considered, the masses
found here for the lowest bound state agree well with
the results of Byrnes et al. [13] for rather low values
of M ; as the mass M increases, there first arises a
discrepancy, whereupon the spectrum of the theory
become unbounded from below. Since theM value at
which this takes place is approximately equal to that
at which there occurs a phase transition in the theory
(see, for example, [13]), it would be reasonable to
assume that, atM values above the phase-transition
point, the light-front Hamiltonian used here, which
was constructed on the basis of an analysis of pertur-
bation theory inM , becomes incorrect.
Our calculations have revealed that, in the case

of QED-2, the procedure employed in [21, 22] to
construct the corrected light-front Hamiltonian leads
to a Hamiltonian that yields good results in non-
perturbative calculations. By exploring the question
of how the spectrum of the Hamiltonian changes in
response to changes in the parameters of the theory
from the perturbative region of their values, one can
determine the boundaries of the applicability region
YSICS OF ATOMIC NUCLEI Vol. 68 No. 2 2005
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of this Hamiltonian—that is, one can find the region
where it is necessary to take additionally into account
nonperturbative (for example, vacuum) effects. This
may be of use in studying more realistic gauge field
theories.
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APPENDIX

Let us find out how the parameter θ̂, which is a
function of the ratio M/e and the vacuum angle θ,
appears in the light-front Hamiltonian (5). It was
shown in [21, 22] that the coefficient of the operator
eiωd+

0 in the integrand on the right-hand side of (5) is
the limit of the quantity−B∗ (∗ denotes the operation
of complex conjugation) in the limit w →∞ (which
corresponds to removing the intermediate ultraviolet
regularization), where B is given by

B = − 1
2w

+

√
1

4w2
+
A′

w
−A′′2 + iA′′. (A.1)

Here, A′ and A′′ are, respectively, the real and the
imaginary part of the sum (calculated in terms of
Lorentz coordinates and in all orders in γ, including
the first order)

A =
γ

2
eiθ +

∞∑
k=2

Akγ
k (A.2)

of all connected diagrams of the boson theory speci-
fied by the Lagrangian in Eq. (4) that are obtained by
connecting the external lines with the vertex (γ/2)eiθ
[the propagators of the external lines and a common
factor that depends on their number are not included
in the definition ofA, as can be seen from the first term
in (A.2)]. In [21], it was established that, in the limit
w →∞, the quantities Ak for k �= 2 are finite, while
A2 behaves as

A2 =
γ2

4
w + const. (A.3)

Expression (A.1) was deduced from an analysis of
perturbation theory in γ (in all orders). As a matter of
fact, the series that can be obtained by substituting
expansion (A.2) into (A.1) provides the definition of
the quantity B. One can see that the first term of
this series is linear in γ and, at large w, its radius
of convergence varies in proportion to 1/w. As was
mentioned above, it is necessary to find the limit of
the quantity B for w →∞. Since the aforementioned
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 2 200
radius of convergence tends to zero in this limit, it is
obvious that, before going to the limit, the quantity
B must be continued analytically in γ to the region
of positive γ values, which lie beyond the disk de-
termined by this radius of convergence. For this, we
determine the behavior of the radicand on the right-
hand side of (A.1) at large w and γ of about 1/w.
Taking into account (A.3), we obtain√

1
4w2

+
A′

w
−A′′2 (A.4)

=
1

2w

√
(1 + wγ cos θ)2 +O

(
1
w

)
.

From here, we find that there exist two branch points,
whose positions are given by the formula

γ1,2 = − 1
w cos θ

+O
(

1
w3/2

)
. (A.5)

It can be concluded from formulas (A.4) and (A.5)
that, in the limit w →∞, the sought analytic contin-
uation of the quantity B has the form

B = sgn(cos θ)

√
γ2

4
−A′′2 + iA′′ =

γ

2
eiθ̂. (A.6)

The form of this expression corresponds to the form of
the coefficient of the operator eiωd+

0 in Hamiltonian
(5). Expression (A.6) differs by the presence of the
signum function sgn(cos θ) from the corresponding
expression presented in [21, 22], where the singular-
ities of the analytic continuation of B were not taken
into account. In the first order in γ (and, hence, inM ),
we find from (A.6), with the aid of expansion (A.2),
that θ̂ = θ.
Upon the Euclidean rotation in the diagrams de-

termining the quantity A, it becomes clear that A
is a real-valued function of m, γ, eiθ, and e−iθ. It
follows from here that the reversal of the sign of the
parameter θ is equivalent to the complex conjugation
of the quantity A, this quantity being real-valued at
θ = π. By using these facts and formula (A.6), one
can easily see that θ̂ is an odd function of θ and, in
addition, that θ̂ = π at θ = π.
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Abstract—New relations between the Borel sum rules in QCD for the magnetic moments of the Σ0 and
Λ hyperons are derived. It is shown that, on the basis of the sum rule for the magnetic moment of the Σ0

hyperon, one can directly obtain the corresponding sum rule for the magnetic moment of the Λ hyperon,
and vice versa, as well as the corresponding sum rule for the Σ0 → Λγ transition. c© 2005 Pleiades Pub-
lishing, Inc.
1. INTRODUCTION

QCD sum rules for the masses and magnetic mo-
ments of baryons were first derived more than twenty
years ago [1]. This resulted in calculating the masses
of the nucleons [1, 2] and strange baryons [3] and
the magnetic moments of the proton and neutron [2].
Later on, this analysis was extended to the strange
hyperons Σ± and Ξ0,− and to the Σ0 → Λγ transi-
tion [3–6]. Also, the magnetic moment of Λ was cal-
culated in some approximations [5]. This formalism
was somewhat modified in [7, 8], where Borel sum
rules were constructed for the neutron-beta-decay
and leptonic-hyperon-decay axial-vector constants
and for the magnetic moments of the octet baryons
p, n, Σ±, and Ξ0,−. Difficulties in calculating the
magnetic moment of Λ were overcome in [9, 10]. Re-
cently, these sum rules and their modifications were
used to calculate the magnetic moments of Σ, Σc,b,
Λ, andΛc,b baryons and the corresponding transitions
Σ→ Λγ [11–18], the calculations for Σ- and Λ-like
baryons and for transitions of the Σ→ Λγ type being
performed independently.

WithinQCD sum rules, the properties of theΛ and
Σ hyperons [19, 20] and the Σ→ Λ transition [21] in
nuclear matter were also investigated independently,
which seemed natural since the corresponding wave
functions have different structures.

However, the calculations with Λ-like baryons in-
volve difficulties indicated back in [5]. Moreover, the

1)Institute of Nuclear Physics, Moscow State Univer-
sity, Vorob’evy gory, Moscow, 119899 Russia; e-mail:
zamir@depni.npi.msu.ru

2)International Centre for Theoretical Physics, Strada
Costiera 11, PO Box 586, I-34014 Trieste, Italy.

3)Faculty of Physics, Moscow State University, Vorob’evy
gory, Moscow, 119899 Russia.
1063-7788/05/6802-0279$26.00
results of rather complicated and cumbersome calcu-
lations for the masses, the magnetic moments, and
other properties of Σ- and Λ-like baryons can hardly
be compared with one another. In view of all this, it is
necessary to seek relations between the correspond-
ing Borel sum rules.

The objective of the present study is to construct
relations between theBorel sum rules for theΣ0 andΛ
hyperons. They are based on the relations between the
wave functions for baryons characterized by specific
isospins and U and V spins.

At first, we construct the sought relations within
the simple nonrelativistic quark model, where they
are trivial. Further, we construct similar relations for
polarization operators and analyze them with the aid
of the Borel sum rules for the masses and magnetic
moments of the Σ0 and Λ hyperons and for the Σ0 →
Λγ transition.

2. RELATION BETWEEN THE MAGNETIC
MOMENTS OF Σ0 AND Λ

WITHIN THE NONRELATIVISTIC QUARK
MODEL

Let us write the magnetic moments of the Σ0 and
Λ hyperons of the baryon octet within the nonrela-
tivistic quark model as [22]

µ(Σ0(ud, s)) =
2
3
µu +

2
3
µd −

1
3
µs, (1)

µ(Λ) = µs.

The magnetic moment of any octet baryon, with the
exception ofΛ, can immediately be obtained bymeans
of the corresponding substitutions for the quark sym-
bols in the expression for µ(Σ0(ud, s)). It turns out,
however, that the magnetic moment of Λ can also be
obtained from µ(Σ0(ud, s)) by means of a nonlinear
transformation.
c© 2005 Pleiades Publishing, Inc.
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Upon performing the formal substitutions d↔ s
and u↔ s in (1), we obtain the auxiliary quantities

µ(Σ̃0
d↔s) =

2
3
µu +

2
3
µs −

1
3
µd, (2)

µ(Λ̃d↔s) = µd,

µ(Σ̃0
u↔s) =

2
3
µd +

2
3
µs −

1
3
µu, (3)

µ(Λ̃u↔s) = µu.

The following relations hold:

2(µ(Σ̃0
d↔s) + µ(Σ̃0

u↔s))− µ(Σ0) = 3µ(Λ), (4)

2(µ(Λ̃d↔s) + µ(Λ̃u↔s))− µ(Λ) = 3µ(Σ0).

Similarly, one can obtain

µ(Σ̃0
d↔s)− µ(Σ̃0

u↔s) =
√

3µ(Σ0Λ), (5)

µ(Λ̃d↔s)− µ(Λ̃u↔s) = −
√

3µ(Σ0Λ).

The existence of these relations is due to the structure
of the nonrelativistic-quark-model wave functions for
the baryons of isospin I = 1, 0 and its third projection
equal to zero, I3 = 0; that is,

2
√

3|Σ0(ud, s)〉↑ = |2u↑d↑s↓ + 2d↑u↑s↓ (6)

− u↑s↑d↓ − s↑u↑d↓ − d↑s↑u↓ − s↑d↑u↓〉,
2|Λ〉↑ = |d↑s↑u↓ + s↑d↑u↓ − u↑s↑d↓ − s↑u↑d↓〉,

where q↑ (q↓) is the wave function for a quark q (here,
q = u, d, s) of helicity +1/2 (−1/2). It can be verified
that the substitutions d↔ s and u↔ s lead to baryon
states corresponding to states characterized by spe-
cific U and V spins. For example, the substitution
d↔ s leads to the U = 1, 0 and U3 = 0 baryon wave
functions

−2|Σ̃0
d↔s(us, d)〉 = |Σ0(ud, s)〉+

√
3|Λ〉,

−2|Λ̃d↔s〉 = −
√

3|Σ0(ud, s)〉+ |Λ〉,
while the substitution u↔ s leads to the V = 1, V3 =
0, and V = 0 baryon wave functions

−2Σ̃0
u↔s(ds, u) = |Σ0(ud, s)〉 −

√
3|Λ〉,

2|Λ̃u↔s〉 =
√

3|Σ0(ud, s)〉 + |Λ〉.
It can be seen that relations (4) and (5) are obtained
with the aid of these expressions. In the quark model,
these relations are trivial, but, in QCD, they make it
possible to construct essentially nonlinear relations
between Borel sum rules.

3. RELATIONS
BETWEEN THE POLARIZATION

OPERATORS FOR THE Σ0 and Λ CURRENTS
IN QCD

By using the Borel sum rules for the masses and
magnetic moments of baryons as an example, we
P

will now show how the above considerations can be
applied to QCD sum rules.

As a starting point, we employ the polarization
operators for the Σ0 and Λ hyperons of the baryon
octet. They are given by [1]

ΠΣ0,Λ = i

∫
d4xeipx〈0|T{ηΣ0 ,Λ(x), ηΣ0,Λ(0)}|0〉,

(7)

where the baryon-current operators—an isovector
one with I3 = 0 (for Σ0) and an isoscalar one (for
Λ)—can be chosen in the form [14, 23]

ηΣ0
=

1√
2
εabc[(uaTCsb)γ5d

c (8)

+ (daTCsb)γ5u
c − t(uaTCγ5s

b)dc

−t(daTCγ5s
b)uc],

ηΛ =
1√
6
εabc[2(uaTCdb)γ5s

c + (uaTCsb)γ5d
c

− (daTCsb)γ5u
c + 2t′(uaTCγ5d

b)sc

+ t′(uaTCγ5s
b)dc − t′(daTCγ5s

b)uc].

Here, a, b, and c are color indices; u, d, and s are the
quark wave functions; C is the charge-conjugation
matrix; and the index T denotes the transposition
operation. At t = t′ = −1, we return to the current
obtained in [1]. By the way, currents characterized by
t, t′ �= −1 were analyzed in [1], but it was concluded
there that their use in the sum rules is not advisable.

In order to obtain the sought relations, we will
specify, along with the above isospin operators, the
corresponding U- and V -spin operators.

First, we introduce field operators transforming as
a U vector (with U3 = 0) and a U scalar by making
the formal substitution d↔ s in (8). We have

η̃Σ0(d↔s) =
1√
2
εabc{(uaTCdb)γ5s

c (9)

+ (saTCdb)γ5u
c − t(uaTCγ5d

b)sc

− t(saTCγ5d
b)uc},

η̃Λ(d↔s) =
1√
6
εabc[2(uaTCsb)γ5d

c

+ (uaTCdb)γ5s
c − (saTCdb)γ5u

c

+ 2t′(uaTCγ5s
b)dc + t′(uaTCγ5d

b)sc

− t′(saTCγ5d
b)uc].

Similarly, we introduce a V vector (with V3 = 0) and
a V scalar by means of the substitution u↔ s in (8):

η̃Σ0(u↔s) =
1√
2
εabc[(saTCub)γ5d

c (10)

+ (daTCub)γ5s
c− t(saTCγ5u

b)dc− t(daTCγ5u
b)sc],
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η̃Λ(u↔s) =
1√
6
εabc[2(saTCdb)γ5u

c

+ (saTCub)γ5d
c − (daTCub)γ5s

c

+ 2t′(saTCγ5d
b)uc + t′(saTCγ5u

b)dc

− t′(daTCγ5u
b)sc].

At t = t′, the field operators (9) and (10) are related
by the equations

−2η̃Λ(d↔s) =
√

3ηΣ0 − ηΛ, (11)

−2η̃Σ0(d↔s) = ηΣ0
+
√

3ηΛ,

2η̃Λ(u↔s) =
√

3ηΣ0
+ ηΛ,

2η̃Σ0(u↔s) = ηΣ0 −
√

3ηΛ.

By using the equalities in (9)–(11), we can relate, un-
der the condition t = t′, the polarization operators (7)
for the Σ0 and Λ hyperons as follows:

2[Π̃Σ0(d↔s) + Π̃Σ0(u↔s)]−ΠΣ0
= 3ΠΛ, (12)

2[Π̃Λ(d↔s) + ΠΛ̃(u↔s)]−ΠΛ = 3ΠΣ0
. (13)

These relations show that, if we obtain, for example,
the sum rule for a Σ-like baryon, we can go over to
the sum rule for the corresponding Λ-like baryon by
merely replacing the quark fields (this is an essentially
nonlinear operation), and vice versa.

Moreover, we can obtain the sum rules for the
transition Σ0 → Λγ by using the relations

2[Π̃Σ0(d↔s) − Π̃Σ0(u↔s)] =
√

3[ΠΛΣ0
+ ΠΣ0Λ],

(14)

2[Π̃Λ(d↔s) −ΠΛ̃(u↔s)] = −
√

3[ΠΛΣ0
+ ΠΣ0Λ]. (15)

The above is valid for the pairs of charm and
beauty baryons: Σ+

c (udc) and Λ+
c (udc), Σ0

b(udb) and
Λ0

b(udb), Ξ
′+
c (usc) and Ξ+

c (usc), and so on.

4. RELATIONS BETWEEN THE BOREL SUM
RULES FOR THE MASSES OF THE Σ0

AND Λ HYPERONS

We tested the above relations for the example of
the light cone QCD sum rules derived in [14, 15] for
the masses and magnetic moments. Here, we write
in detail only the sum rule for theΣ0-hyperon mass at
t = t′, retaining terms proportional tomu andmd. We
have

SR(Σ0) =
M6E2(x)

256π4
(5 + 2t+ 5t2) (16)

− m2
0

24M2
[6(−1 + t2)(〈ūu〉+ 〈d̄d〉)〈s̄s〉
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+ (−1 + t)2〈ūu〉〈d̄d〉]− m2
0

192π2
(2(2 + 2t+ 2t2)

× [−2ms〈s̄s〉+md〈d̄d〉+mu〈ūu〉]
− 39(−1 + t2)ms(〈d̄d〉+ 〈ūu〉)− 3(−1 + t)2

× (mu〈d̄d〉+md〈ūu〉) + 33(−1 + t2)

× (mu +md)〈s̄s〉) +
M2E0

32π2
((5 + 2t+ 5t2)

× [ms〈s̄s〉+md〈d̄d〉+mu〈ūu〉]− 6(−1 + t2)

×ms(〈d̄d〉+ 〈ūu〉)− 2(−1 + t)2

× (mu〈d̄d〉+md〈ūu〉)− 6(−1 + t2)

× (mu +md)〈s̄s〉) +
1
6
[3(−1 + t2)

× (〈ūu〉+ 〈d̄d〉)〈s̄s〉+ (−1 + t)2〈ūu〉〈d̄d〉]

− 3m2
0

32π2
(−1 + t2)[ms(〈ūu〉+ 〈d̄d〉)

+ (md +mu)〈s̄s〉]
(
γEM − ln

M2

Λ2

)
= λ2

Σe
−M2

Σ/M2
.

Here, 〈q̄q〉 (q = u, d, s) are the vacuum expectation
values of the quark fields; λΣ is the Borel residue
for the Σ hyperon; M2 is the Borel parameter; Λ
is the QCD characteristic scale; γEM is the Euler–
Mascheroni constant; and En(x) is the factor intro-
duced to suppress the continuum contributions [1],

En(x) = 1− e−x(1 + x+ . . .+ xn/n!),

x = W 2
B/M

2, B = Σ0,Λ.

The quantitym2
0, which is given by the formula

〈q̄q〉m2
0(q) = −〈gcq̄σ ·Gq〉, q = u, d, s,

is assumed to be degenerate (although this constraint
can be removed). At md = mu = 0, expression (16)
can be reduced to that presented in [14].

For Σ0
s↔d, we will now construct the auxiliary

expression SR(Σ0
s↔d) corresponding to the U = 1,

U3 = 0 state by performing the substitution s↔ d.
We have

SR(Σ0
s↔d) =

M6E2(x)
256π4

(5 + 2t+ 5t2) (17)

− m2
0

24M2
[6(−1 + t2)(〈ūu〉+ 〈s̄s〉)〈d̄d〉

+ (−1 + t)2〈ūu〉〈s̄s〉]− m2
0

192π2
(2(2 + 2t+ 2t2)

× [−2md〈d̄d〉+ms〈s̄s〉+mu〈ūu〉]
− 39(−1 + t2)md(〈s̄s〉+ 〈ūu〉)− 3(−1 + t)2

× (mu〈s̄s〉+ms〈ūu〉) + 33(−1 + t2)

× (mu +ms)〈d̄d〉) +
M2E0

32π2
((5 + 2t+ 5t2)
5
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× [ms〈s̄s〉+md〈d̄d〉+mu〈ūu〉]
− 6(−1 + t2)md(〈s̄s〉+ 〈ūu〉)− 2(−1 + t)2

× (mu〈s̄s〉+ms〈ūu〉)− 6(−1 + t2)

× (mu +ms)〈d̄d〉) +
1
6
[3(−1 + t2)

× (〈ūu〉+ 〈s̄s〉)〈d̄d〉+ (−1 + t)2〈ūu〉〈s̄s〉]

− 3m2
0

32π2
(−1 + t2)[md(〈ūu〉+ 〈s̄s〉)

+ (ms +mu)〈d̄d〉]
(
γEM − ln

M2

Λ2

)
.

For Σ0
s↔u, we similarly construct the auxiliary ex-

pression SR(Σ0
(s↔u)) corresponding to the V = 1,

V3 = 0 state by performing the substitution s↔ u.
On the basis of (12), we can now obtain the following
nonlinear relation for the Λ-hyperon mass:

2[SR(Σ0
s↔d) + SR(Σ0

s↔u)]− SR(Σ0) = 3SR(Λ).
(18)

After some algebra, we have

SR(Λ) =
M6E2(x)

256π4
(5 + 2t+ 5t2) (19)

+
m2

0

72M2
(−1 + t)[4(2 + t)(〈ūu〉+ 〈d̄d〉)〈s̄s〉

+ (23 + 25t)〈ūu〉〈d̄d〉]− m2
0

192π2
{−2(2 + 2t

+ 2t2)[−2ms〈s̄s〉+md〈d̄d〉+mu〈ūu〉]
− (−1 + t)2[−(mu〈d̄d〉+md〈ūu〉) + 2ms(〈d̄d〉

+ 〈ūu〉) + 2(mu +md)〈s̄s〉] + (−1 + t)2

× [−4(mu〈d̄d〉+md〈ūu〉) + 35ms(〈ūu〉+ 〈d̄d〉)

− 37(mu +md)〈s̄s〉]} −
1
18

(−1 + t)

× [(11 + 13t)〈ūu〉〈d̄d〉+ (5 + t)

× (〈ūu〉+ 〈d̄d〉)〈s̄s〉]− m2
0

32π2
(−1 + t2)

× [ms(〈ūu〉+ 〈d̄d〉) + (mu +md)〈s̄s〉

+ 4(mu〈d̄d〉+md〈ūu〉)]
(
γEM − ln

M2

Λ2

)

= λ2
Λe

−M2
Λ/M2

.

This relation exactly reproduces the sum rule for the
Λ-hyperon mass from [14]. Similar relations between
P

the sum rules for the magnetic moments from [14, 17]
also hold exactly. Since they are much more cumber-
some, we do not present them here.

Thus, relations (12)–(15) hold exactly, which
proves their validity for the Borel sum rules, on one
hand, and the self-consistency of our calculations, on
the other hand. However, it would be more interesting
and more compelling to verify our relations by consid-
ering examples from other studies, because this would
mean independent tests.

We will begin by considering the Borel sum rules
for theΣ0- and Λ-hyperon masses. We will repeat the
calculation of the first of the sum rules for the Σ0-
hyperon mass in [11], keeping the features of the u
and d quarks nondegenerate; that is,

M6

8
L−4/9E2 +

bM2

32
L−4/9E0 +

auad

6
L−4/9 (20)

−
auad(m2

0(u) +m2
0(d))

48M2
L−2/27

− 1
4
[asms − (au − ad)(md −mu)]M2L−4/9E0

− 1
48

[3muadm
2
0(d) + 3mdaum

2
0(u) −muaum

2
0(u)

−mdadm
2
0(d)]L

−26/27 −
auadm

2
0(s)

24
L−26/27

= β2
Σ0e

−(M2
Σ0/M2),

where aq, b, and aqm
2
0(q) are defined in a standard

way [1, 12],

aq = −(2π)2〈q̄q〉, b = 〈gcG2〉, (21)

aqm
2
0(q) = (2π)2〈gcq̄σ ·Gq〉,

q = u, d, s, L = ln(M2/Λ2)/ln(µ2/Λ2),

µ being the normalization point for the operator-
product expansion. At m2

0(u) = m2
0(d), we return to

the Borel sum rule given by Eq. (21) in [11]. In order
to obtain SR(Σ̄0

d↔s) and SR(Σ̄0
u↔s), we perform the

substitutions d↔ s and u↔ s, respectively, in the
expression on the left-hand side of Eq. (21) from [11]
for the mass of Σ0; employing relations (12) and (18),
we then represent the Borel sum rules for the Λ-
hyperon mass in the form
M6

8
L−4/9E2 +

bM2

32
L−4/9E0 +

2as(au + ad)− auad

18
L−4/9 (22)

−
(au + ad)as(2m2

0(s) +m2
0(u) +m0(d))− auad(m2

0(u) +m2
0(d))

144M2
L−2/27
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P

− M
2

12
L−4/9E0ms[3as − 2(au + ad)]−

M2

12
L−4/9E0[3(muau +mdad) +mdau +muad

− 2(mu +md)as]−
1
48

[2ms(aum
2
0(u) + adm

2
0(d))− (aum

2
0(u) − adm

2
0(d))(au − ad)]L−26/27

− 1
24

(mu +md −ms)asm
2
0(s)L

−26/27 = β2
Λe

−(M2
Λ/M2).
It exactly coincides with the Borel sum rule (22)
from [11] atm2

0(u) = m2
0(d). These relations do not re-

quire resort to the Gell-Mann–Okubo mass formula
and fulfillment of the conditions of linearity in ms,
a0(s)/a0(u,d), etc., which were used in the pioneering
study of Belyaev and Ioffe [3] in constructing the sum
rules for the Λ-hyperon mass. Relying on the Borel
sum rules for the Λ-hyperon mass Eq. (24) in [11]
with nondegenerate values ofm2

0(u) andm
2
0(d),

(2au + 2ad − as)M4

12
E1 (23)

− (2au + 2ad − as)b
216

+
αs

π

L−1/9

243M2
[108auadas

+ as(a2
u + a2

d)− 2(auad + a2
s)(au + ad)]

+
M6

12
L−8/9E2(2mu + 2md −ms)−

bM2

96
L−8/9

× E0(2mu + 2md −ms) +
1
36

[12msauad

− 2msas(au + ad) + 12as(muad +mdau)]

+
1
36

[as(muau +mdad)− 2(mu +md)auad]

= β2
ΛMΛe

−(M2
Λ/M2),

and performing calculations that are similar to those
described above, but which now involve relation (13),
we obtain the Borel sum rule for the Σ0-hyperon
mass:

asM
4

4
E1 −

asb

72
+
αs

π
(24)

× [−(a2
u + a2

d) + 36auad]as

81M2
L−1/9

+
msM

6

4
L−8/9E2 −

msbM
2

32
L−8/9E0

+
msauad

3

+
as(4muad + 4mdau −muau −mdad)

12
= β2

Σ0MΣ0e
−(M2

Σ0/M2).

It coincides with Eq. (23) in [11]. If we additionally
set a0(u) = a0(d) = a andmu = md = 0, this formula
reduces to the Borel sum rules for masses from [1] in
the form given in Eq. (3) from [8].
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Thus, we have demonstrated the validity of re-
lations (12) and (13) for the example of the Borel
sum rules for the Σ0- and Λ-hyperon masses—
specifically, we exactly reproduced formulas (22) and
(23) from [11], employing formulas (21) and (24) from
the same article as a starting point.

5. RELATIONS BETWEEN THE BOREL SUM
RULES FOR THE MAGNETIC MOMENTS

OF THE Σ0 AND Λ HYPERONS

Let us now consider the more complicated prob-
lem of constructing Borel sum rules for baryon mag-
netic moments.

In the Borel sum rules for the magnetic moments,
we will use, in addition to the quantities aq, b, and
aqm

2
0(q) defined by formulas (21), the quantities [1, 8]

〈q̄σµνq〉F = eqχq〈q̄q〉Fµν , (25)

〈q̄gsGµνq〉F = eqκq〈q̄q〉Fµν ,

εαβµν〈q̄gsGµνγ5q〉F = ieqξq〈q̄q〉Fαβ .

We will repeat the calculations for the first of the
Borel sum rules for the magnetic moments of the
octet baryons from [8], relying on the results from [1];
following [8]; and taking the masses, the vacuum
expectation values, and other properties of the u, d,
and s quarks to be nondegenerate. We do not present
the derivation of these Borel sum rules but focus on
the transition from the Borel sum rules for the Σ0

hyperon to the Borel sum rules for the Λ hyperon and
to the Borel sum rules for the magnetic moment of the
Σ0 → Λ transition, using relations (12) and (14) as a
basis. We have

2SR(Σ0) =
M6

4L4/9
· 2(eu + ed) (26)

− L4/9

18M2
auad × 2(eu + ed + 3es) +

M2b

24L4/9
(2eu

+ 2ed + es)−
M2b

144L4/9

[
ln
(
M2

Λ2

)
− 1− γEM

]

× 2(eu + ed + 2es)−
M2b

36L4/9

[
ln
(
M2

Λ2

)

− γEM −
M2

2Λ2

]
× 2(eu + ed)−

1
3L4/27
5
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×
[(
M2 −

m2
(d)0

8L4/9

)
eu(χuau)ad

+
(
M2 −

m2
(u)0

8L4/9

)
ed(χdad)au

]
+
L4/9

18
× [eu(2κu − ξu)auad + ed(2κd − ξd)adau]

− M2

8L4/9
· 4[2(euau + edad)ms − (euad

+ edau)ms + 2es(mu +md)as + (eumd

+ edmu)as] +
M2

2L4/9

[
ln
(
M2

Λ2

)
− 1− γEM

]

× 2(eumu + edmd)as −
M2

4L28/27

× [2(euauχumd + edadχdmu)− 2(euauχumu

+ edadχdmd)] +
[
1
6
(2κu − ξu)M2 − M

2

2
κu

×
[
ln
(
M2

Λ2

)
− 1− γEM

]]
euaumd

+
[
1
6
(2κd − ξd)M2 − M

2

2
κd

[
ln
(
M2

Λ2

)

− 1− γEM
]]
edadmu = 2β2

Σ0µΣ0(1 +AM2)

× e(−M2
Σ0/M2) + . . . .

Following our method, we will first construct the aux-
iliary quantities SR(Σ̃0

s↔d) and SR(Σ̃0
s↔u) and then,

with the aid of relation (12), obtain the sum rule for
the magnetic moment of the Λ hyperon. We have

2[SR(Σ̃0
s↔d) + SR(Σ̃0

s↔u)]− SR(Σ0) = 3SR(Λ).
(27)

Finally, we arrive at the Borel QCD sum rule for the
magnetic moment of the Λ hyperon. For the sake
of a direct comparison, we present it in the same
approximations as in [9]—namely, at mu = md = 0,
au = ad = a, as = (1 + f)a, auχu = adχd = aχ, and
asχs = aχφ:

SR(Λ) =
M6

12L4/9
(eu + ed + 4es) (28)

+
M2b

144L4/9
(4eu + 4ed + 7es)−

L4/9

108M2
[2(7eu

+ 7ed + es) + 8f(2eu + 2ed + es)]a2 − M2b

192L4/9

×
[
ln
(
M2

Λ2

)
− 1− γEM

]
(5eu + 5ed + 2es)

− M2b

108L4/9

[
ln
(
M2

Λ2

)
− γEM −

M2

2Λ2

]

PH
× (eu + ed + 4es) +
{
−χa2

18L4/27

(
M2 −

m2
(s)0

8L4/9

)

+
L4/9

108
(2κ − ξ)a2

}
{(eu + ed)(1 + 2f) + 4esφ}

− 15M2

36L4/9
ms(eu + ed)a+

2msaesM
2

3L4/9

×
[
ln
(
M2

Λ2

)
− 1− γEM

]
+ (eu + ed)

×
[

1
18

(2κ− ξ)M2 − M
2

6
κ

[
ln
(
M2

Λ2

)

− 1− γEM
]]
ams −

M2

6L28/27
(eu + ed

− 2esφ)msaχ = β2
ΛµΛe

−(M2
Λ/M2)(1 +AΛM

2) + . . . .

This is in perfect agreement with the result presented
in [9], apart from the coefficient 15/36 (instead of
19/36 in [9]) of the seventh term.

By using Eq. (14), we construct the sum rule for
the Σ0 → Λγ transition. The result is

SR(Σ̃0
s↔d)− SR(Σ̃0

s↔u) =
√

3SR(Σ0Λ). (29)

Finally, we obtain the QCD Borel sum rule for the
Σ0 → Λγ transition in the same approximation,

SR(Σ0Λ) = (eu − ed)
{
M6

4L4/9
+
L4/9

9M2
asa (30)

+
M2b

24L4/9
− M2b

144L4/9

[[
ln
(
M2

Λ2

)
− 1− γEM

]

+ 4
[
ln
(
M2

Λ2

)
− γEM −

M2

2Λ2

]]
+
[
−χ

6L4/27

×
(
M2 −

m2
0(s)

8L4/9

)
+
L4/9

36
(2κ− ξ)

]
aas

+
M2

L4/9

1
4
msa−

M4

4L28/27
msaχ+

[
1
18

(2κ − ξ)M2

− M
2

6
κ

[
ln
(
M2

Λ2

)
− 1− γEM

]]
msa

}

= βΣ0βΛ

√
3µΣ0Λe

−(m̄2/M2)(1 +AΣ0ΛM
2) + . . . ,

m̄ = (MΣ +MΛ)/2.

This formula agrees with the result obtained in [13],
apart from the coefficient of the seventh term as
before—we have 1/4 instead of 1/3 in [13].

At present, we are unable to disclose the rea-
son behind this discrepancy because the contribu-
tion from the corresponding group of diagrams to the
magnetic moment of the Σ0 hyperon was not given
in [9, 13] in sufficient detail. Anyway, this reason
cannot be associated with our relations.
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In order to test our relations additionally, we have
constructed a series of sum rules for magnetic mo-
ments that is associated with the Λ hyperon and
verified that we exactly reproduce the sum rule (26)
for Σ0, relying on the sum rule obtained for Λ in the
form (28) and employing relations (13) and (15).

6. CONCLUSION

We have obtained nonlinear equations that relate
the QCD sum rules for the Σ0 and Λ hyperons.

First, we have considered relations (12) and (13)
for the example of the light-cone QCD sum rules
proposed in [15]. It has been shown that they hold
exactly. (The sum rules written within this formalism
formagnetic moments also hold exactly. These results
will be presented in a separate publication because
of their unwieldiness.) We assumed that it would be
more compelling to verify the validity of the proposed
relations for the known sum rules previously obtained
by other authors. For the example of the Borel QCD
sum rules for the masses and magnetic moments of
the Σ0 and Λ hyperons, we have shown that, relying
on the sum rules for the Σ hyperon, one can directly
obtain the corresponding sum rules for the Λ hyperon
with the aid of relation (12). At the same time, rela-
tion (14) makes it possible to derive straightforwardly
the sum rule for the Λ→ Σ0γ transition (the only
discrepancy with the results presented in [9, 13] was
discussed above).

We have tested the validity of the inverse rela-
tion (13) for the example of the Borel sum rules for
the hyperon masses and verified, without explicitly
presenting the results, that, from the sum rule for the
magnetic moment of the Λ hyperon, one can obtain,
with the aid of relation (13), the original sum rule for
the magnetic moment of the Σ0 hyperon.

Relations (12)–(15) can be used to obtain various
sum rules for Λ-like baryons from the corresponding
sum rules for Σ-like baryons, and vice versa; also,
these relations can be used to perform a crosscheck
of expressions for them, which are frequently very
cumbersome and complicated.
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Note added in proof. Apart from a change in
the notation, our formula (12) coincides with formula
(2.26) from [24].
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Abstract—It is shown that data of the BELLE Collaboration on the exclusive production of charmed-
meson pairs via the one-photon mechanism of e+e− annihilation can be adequately described within
the constituent quark model. It is also shown that the cross section for the central production of two D
mesons in the process e+e− → e+e−γγ → e+e−DD̄ +X is commensurate with the cross section for their
production in one-photon annihilation. c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

The exclusive production of meson pairs at high
energies offers a unique possibility for studying the
asymptotic behavior of the form factors for these
mesons within perturbative QCD. Mesons involving
a heavy quark are of particular interest because
they can be considered on the basis of heavy-quark
effective theory, which relates the production of such
mesons to their decay [1]. The asymptotic behavior
of the form factors can be described in terms of a
factorized amplitude that involves both the valence-
quark wave function f(x,Q) and the hard-scattering
amplitude [2]. To the leading order in the strong cou-
pling αs, the hard-scattering amplitude is described
in terms of one-gluon exchange, while the wave
function f(x,Q) peaks at x = ΛQCD/M , whereΛQCD
is the scale of strong interactions andM is the meson
mass. With increasing heavy-quark mass, the width
of the distribution f(x,Q) decreases, which makes it
possible to use the approximate expression

f(x,Q) ∼ δ
(
x− mq

M

)
. (1)

This implies that the meson-momentum fraction car-
ried by a constituent quark is proportional to its quark
mass,

xi � mi/M.

Within models like that proposed in [2], only a hard
“tail” of the meson wave function is taken into ac-
count, whereas the preasymptotic terms caused by
the “soft” component of the wave function are ne-
glected. Nevertheless, such models can be employed
as useful parametrizations that adequately describe

1)Institute of Nuclear Physics, Moscow State Univer-
sity, Vorob’evy gory, Moscow, 119899 Russia; e-mail:
aber@ttk.ru

2)Institute for High Energy Physics, Protvino,Moscow oblast,
142284 Russia; e-mail: likhoded@mx.ihep.su
1063-7788/05/6802-0286$26.00
both the threshold behavior and the asymptotic be-
havior for Q2 →∞. At the same time, the inclusion
of the quark binding energy in a meson does not lead
to a substantial deviation from the above approxima-
tion [3] despite the fact that relation (1) does not hold
in this case.

In the present study, we will analyze recent da-
ta of the BELLE Collaboration [4] on the produc-
tion of D∗+D∗− pairs in e+e− annihilation at

√
s =

10.6 GeV. On the basis of the model employed for
this analysis, we will also obtain predictions for the
production ofD(∗)-meson pairs in γγ collisions.

2. e+e− ANNIHILATION

The cross sections determined by the BELLECol-
laboration forD(∗)+D(∗)− production are [4]

σ(e+e− → D∗+D∗−) = 0.65 ± 0.04 ± 0.07 pb,

σ(e+e− → D+D∗−) = 0.71 ± 0.05 ± 0.09 pb.

This group also measured the respective angular dis-
tributions.

At an energy as high as 10.6 GeV, the meson
form factor is described by the leading asymptotic
contribution

F (Q2) � αsf
2
M/Q2,

where fM is the meson weak decay constant and
Q2 = s = (ke+ + ke−)2 is the square of the total en-
ergy of e+e− collisions. However, it can be seen from
the diagrams in Fig. 1 that, in the approximation used
in this study, the virtuality of the gluon producing the
quark–antiquark pair qq̄ is somewhat lower,

q2 ∼ x2
qQ

2,

where xq is the meson-momentum fraction carried by
a light quark. In the presence of large preasymptotic
contributions, this fact could reduce the predictive
c© 2005 Pleiades Publishing, Inc.
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power of our model. However, the results obtained
in [3] suggest that this is not so in the case under
study.

Returning to the model based on the valence-
quark approximation, we recall that it describes ad-
equately the threshold cross-section behavior [(s/4−
M2)3/2] associated with the P-wave character of me-
son production. As M →∞, this model leads to the
same cross-section ratios as heavy-quark effective
theory; that is,

σPP : σPV : σV V = 1 : 4 : 7,

where P and V are the pseudoscalar and the vector,
respectively [5]. The asymptotic behavior at high en-
ergies,

σ ∼ α2α2
s/s

3,

is common to all three cases.
The distributions of product DD̄ and DD̄∗ pairs

in the meson emission angle θ reckoned from the
direction of colliding e+e− beams are given by

dσ(DD̄)
d cos θ

∼ sin2 θ,

dσ(DD̄∗)
d cos θ

∼ 1 + cos2 θ.

The latter case is dominated by the contribution of
the transverse component of the D∗ meson because
the production of longitudinally polarized mesons
is forbidden by the laws of parity and angular-
momentum conservation. To demonstrate this, we
note that, in the reference frame comoving with the
center of mass of a e+e− pair, the matrix element
describing the production of a DD̄∗ pair in the 1−
state is proportional to(

[εD∗ × p] · εq

)
ϕD,

where εD∗ and εq are, respectively, theD∗-meson and
virtual-photon polarization vectors and p is the D∗-
meson momentum. It follows that the contribution of
the longitudinal component of the D∗-meson polar-
ization vector,

ε‖ = n(n · εD∗)
E

M

(where n = p/|p| and E and M are the D∗-meson
energy and mass, respectively), is zero. The contri-
bution of the longitudinal component could be gen-
erated in the two-photon annihilation of a e+e− pair
into a DD̄∗ pair; however, it was shown in [6] that
this contribution is negligible. In the reference frame
comoving with the center of mass of a e+e− pair, the
P-wave production of two vector mesons D∗D̄∗ can
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 2 200
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Fig. 1.Feynman diagrams for the production of charmed-
meson pairs in e+e− annihilation.

be described in terms of two independent symmetric
structures,

M1 ∼ (ε1 · p)(ε2 · εq) + (ε2 · p)(ε1 · εq)

and

M2 ∼ (ε1 · ε2)(p · εq).

The former matrix element corresponds to theD∗
LD

∗
T

polarization state, whereas the latter involves all ad-
missible polarization states. Within the model under
consideration, relative contributions of these states
depend on the ratio of constituent quark masses.

To obtain a good global fit to the BELLE data on
the total cross sections and angular distributions, we
choose the following values of the model parameters:

αs = 0.3, fD = 200 MeV,

mq = 0.17 GeV, mc = 1.5 GeV.

As a result, the cross-section ratios appear to be (σ
in pb)

σ(D∗+D∗−) : σ(D+D∗− + D−D∗+) : σ(D+D−)
= 0.73 : 0.58 : 0.02.

It can be seen that the cross section for the pro-
duction of two pseudoscalar mesons is an order of
magnitude smaller than that for the production of two
vector mesons. The experimental angular distribu-
tions dσ/d cos θ for D∗+D∗− and D+D∗− (D−D∗+)
pairs are shown in Fig. 2, along with the respective
distributions predicted by our model. The best fit to
the experimental data corresponds to the parameter
values ofmq = 0.17 GeV andmc = 1.5GeV.

It should be noted that the proposed model of pair
production is nothing but a rough approximation that
5
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Fig. 2. Predicted distribution of the cross section with
respect to cos θ along with experimental data for (a)
e+e− → D∗+D∗− and (b) e+e− → D+D∗− (D−D∗+).
The parameter values were set to mc = 1.5 GeV, mq =
0.17GeV, fD = 200MeV, and αs = 0.3.

includes only the hard “tail” of the meson wave func-
tion. The relative motion of quarks, which is described
by the “soft” component of the wave function, is
disregarded in our model. As a consequence, the total
cross section for the production of two pseudoscalar
mesons does not vanish in our predictions, in contrast
to what one has in the model proposed in [1], where
the motion of a light quark is described within heavy-
quark effective theory. At the same time, the latter
predicts a cross section that is an order of magni-
tude larger than its experimental counterpart. As has
already been mentioned, the inclusion of the quark
binding energy in a meson does not lead to significant
deviations from the simplest approximation, as was
shown in [3], despite the fact that the approximate
relation (1) is not justified in that case.

3. TWO-PHOTON PRODUCTION OF D(∗)D̄(∗)

PAIRS

The exclusive two-photon production of D(∗)D̄(∗)

pairs was considered in [7] in the context of a compar-
ison with predictions of heavy-quark effective theory.
In the leading order in αs, there are 20 Feynman
diagrams for this process. It should be noted that
the inclusive production of Bc mesons is described
by similar diagrams [8]. As in [7], the diagrams for
photon–photon production can be partitioned into
PH
 

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15 16

17 18 19 20

Fig. 3.Feynman diagrams for the production of charmed-
meson pairs in photon–photon collisions.

three gauge-invariant groups. The first six diagrams
describe the production of a pair of heavy quarks with
subsequent hadronization via the one-gluon produc-
tion of a pair of light quarks (diagrams 1–6 in Fig. 3).
The next six diagrams are associated with the per-
mutations Q↔ q (diagrams 7–12). In the processes
described by the third group of diagrams (diagrams
13–20), the independent production of heavy and
light quarks in the subprocesses γ → QQ and γ → qq̄
is followed by meson formation in their interactions
via gluon exchange. The contribution of the diagrams
of the third group is dominant at moderately low
momentum transfers. Such contributions to the cross
section for inclusive production violate the factoriza-
tion theorem in this momentum region [8]. In particu-
lar, the cross section for inclusive production depends
greatly on the light-quark charge eq both near the
threshold and at high energies. We obtained such a
dependence on eq in studying the energy dependence
of the cross section for the two-photon production of
D(∗)D̄(∗) pairs. Previously, this was indicated in [9],
but only for asymptotically high energies. In what
follows, we will continue analyzing the predictions of
YSICS OF ATOMIC NUCLEI Vol. 68 No. 2 2005
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Fig. 4. Cross section for the production of neutral D
mesons as a function of k =

√
s − sthr (closed symbols),

alongwith the analogous dependence for chargedmesons
(open symbols): (◦, •) σPP , (�, �) σPV , and (�, �) σV V .

ourmodel, based on the diagrams in Fig. 3, for various
kinematical domains.

We will now consider D(∗)D̄(∗) production near
the threshold. It was noted above that, in the thresh-
old region,D∗D̄∗ andDD̄ pairs are produced in the S
wave (the dependence of the respective amplitudes on
the relative momentum of the D mesons in the c.m.
frame has the k2L+1 form). The S-wave production
implies that the total angular momentum and parity
of the two-photon system are 0++. In contrast, D∗D̄
pairs are produced in the P wave because the S-wave
production is forbidden, in this case, by the Landau–
Yang theorem. In the S-wave state, the total angular
momentum and parity of the system are 1+. The P-
wave state of the D∗D̄ system implies that the total
angular momentum and parity of the γγ system are
0−; therefore, the respective cross section for D∗D̄
production in the threshold domain increases in pro-
portion to k3. It can be seen from Fig. 4 that, although
the quantum numbers of the D(∗)D̄(∗) system are
independent of the electric charge, the cross sections
for the production of particles having different electric
charges are different in magnitude, being, however,
similar in energy dependence. The dependence of the
angular distributions on the light-quark charge is
even more pronounced.

Within our model, the production of D0D̄0,
D∗0D̄0, D0D̄∗0, D+D−, and D∗+D∗− pairs in the
threshold domain is virtually isotropic,

dσ

d cos θ
≈ const,
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Fig. 5. Differential cross section for the production of
D+D∗− and D−D∗+ pairs in e+e− annihilation at k =√

s − sthr = 0.1GeV as a function of cos θ (at small k, the
production of other pairs of charmedmesons is isotropic).

whereas production of aD+D∗− pair has a peripheral
character even at the threshold (see Fig. 5). However,
it can be seen from Fig. 4 that the production of such
pairs in the threshold region is suppressed.

It should also be noted that, in the threshold re-
gion, the total cross section for the production of
neutral mesons is approximately three times larger
than the cross section for the production of charged
mesons.

At high energies, the dependence of the produc-
tion cross section is typical of the peripheral pro-
duction mechanism, displaying pronounced peaks at
cos θ equal to +1 and −1. This fact was also noted
in [9], where the amplitude for the production of a
pseudoscalar-meson pair was calculated analytically
in the high-energy limit,

APP ∼
[
(eQ − eq)2

1 + β2 cos2 θ

1− β2 cos2 θ
+ 2e2

Q

]
,

where

β =
√

1− 4m2/s.

At large values of s, the cross sections for the produc-
tion of charged and neutral mesons differ in asymp-
totic dependence on energy. All three cross sections
for the production of charged mesons behave as 1/s2;
at the same time, the different cross sections for the
production of neutral mesons at asymptotically high
energies are in the ratio

σD0D̄0 : σD∗0D̄0 : σD∗0D̄∗0 ∼
1
s3

:
1
s4

:
1
s2

.

It should be noted that the asymptotic regime is
reached only for

√
s > 20 GeV; therefore, it is only

of theoretical interest today. Moreover, logarithmic
corrections generated in next-to-leading orders of
perturbation theory can play a significant role at such
energies.
5
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Fig. 6. Differential cross sections for the production of
(a) charged- and (b) neutral-meson pairs in collisions of
effective photons versus cos θ: (solid curves) results for a
pair of vector mesons, (dashed curves) results for a pair
involving a vector and a pseudoscalar meson, and (dotted
curve) results for a pair of pseudoscalar mesons.

4. POSSIBILITY OF STUDYING
TWO-PHOTON PRODUCTION OF D(∗)D̄(∗)

PAIRS AT THE BELLE SETUP

It was shown in [6] that the contribution of two-
photon annihilation

e+e− → γ∗γ∗ → DD̄ (2)

to the total cross section for the production of
charmed-meson pairs is rather small. However,
charmed-meson pairs can also be produced in col-
lisions of effective (equivalent, or virtual) photons
emitted by initial-state fermions,

e+e− → e+γe−γ → DD̄ + e+ + e−. (3)

The cross section for this reaction can be described
within the “parton” model as

σ =
∫ ∫

σγγ(ŝ)fγ(x1)fγ(x2)dx1dx2,

where x1 and x2 are, respectively, the initial-positron-
and initial-electron-momentum fractions carried away
by colliding photons. In this model, the photon den-
sities fγ(x) are given by the Weizsäcker–Williams
formula

fγ(x) =
αem
2πx

((
1− (1− x)2

)
ln

Q2
max

Q2
min
P
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Fig. 7. Differential cross sections for the production of
(a) charged- and (b) neutral-charmed-meson pairs in
the interaction of effective photons versus z = 2|pD|/

√
s.

The notation is identical to that in Fig. 6.

−m2
ex

2

(
1

Qmin
− 1

Qmax

))
,

whereme is the electronmass,Q2
min = m2

ex
2/(1−x),

and Q2
max � 1GeV2.

Since the amplitude for the process in (3) is not
suppressed, in contrast to that for the process in (2),
by the s-channel photon propagators, it is of interest
to evaluate the cross section for the production of
charmed-meson pairs in the interaction of effective
photons. For the same parameter values as in the case
of e+e− annihilation, we obtain (σ in pb)

σ(D∗+D∗−) : σ(D+D∗−) : σ(D+D−)
= 1.52 : 0.33 : 0.13,

σ(D∗0D̄∗0) : σ(D0D̄∗0) : σ(D0D̄0)
= 1.39 : 0.43 : 0.40.

These results are quite unexpected. It can be seen
that these cross sections are commensurate with the
production cross section in e+e− annihilation. As can
be seen from Fig. 6, the shapes of the angular distri-
butions in the case under consideration are similar to
those in the case of the production of charmed-meson
pairs in e+e− annihilation. At the same time, the
energy of mesons produced in the interaction of ef-
fective photons is lower. From the dependences of the
cross sections on z = 2|pD|/

√
s (pD is theD-meson

momentum in the reference frame comoving with the
center of mass of the e+e− pair) in Fig. 7, it follows
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 2 2005
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that the average value of z in this process is about
0.3, the corresponding momentum being estimated at
1 GeV.

It should also be noted that, in our model, the
main contribution to the cross section comes from the
production of two pairs of vector mesons.

5. CONCLUSION

Our analysis of the production of charmed-meson
pairs in e+e− annihilation has revealed that the
BELLE data at

√
s = 10.6 GeV are in good agree-

ment with the predictions of the constituent quark
model, where the hard component of the amplitude
is calculated within perturbative QCD. In the case of
e+e− annihilation, the production mechanism is the
simplest: a cc̄ pair is produced by a virtual photon,
and hadronization is due to a light-quark pair, whose
production can be described within perturbation the-
ory. As a consequence, the production cross section
is independent of the light-quark electric charge.

In contrast, the production processes in γγ colli-
sions feature a strong dependence on the light-quark
charge both at low and at high energies. The reason
is that the main contribution to the cross section for
γγ → DD̄ comes from a set of diagrams rather than
from a single one, the diagrams involving direct cou-
pling of a photon to a light quark playing a significant
role.

It has also been shown that the cross section for
the central production of two D mesons in the reac-
tion

e+e− → e+e−γγ → e+e−DD̄ + X
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 2 200
is commensurate with the analogous cross section in
the case of one-photon annihilation.
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Abstract—The crossed channels of generalized γN → γN reactions are considered. The coefficients in the
transformation from independent helicity amplitudes to invariant functions are calculated. Explicit expres-
sions for the invariant functions are derived with allowance for the contribution from the Born diagrams in
the s, u, and t channels and the diagrams for six resonances in the s and u channels. It is shown that the
calculated invariant functions satisfy the crossing-symmetry requirements. c© 2005 Pleiades Publish-
ing, Inc.
1. Photon–nucleon interaction is one of the fun-
damental processes in elementary-particle physics.
At photon energies below 1 GeV, pion photoproduc-
tion, bremsstrahlung, and Compton scattering are
the main channels of this process. In the present
study, we consider generalized γN → γN reactions,
which include three crossed channels: the Comp-
ton scattering of a photon on a nucleon, γN → γN
(s channel); the Compton scattering of a photon on
an antinucleon, γN̄ → γN̄ (u channel); and the anni-
hilation of a nucleon–antinucleon pair into two pho-
tons, NN̄ → γγ (t channel).

Some new experimental data were obtained in [1,
2] for Compton scattering on a proton and in [3, 4]
for Compton scattering on a deuteron. At low photon
energies, experiments of this type make it possible
to perform precise measurements of static nucleon
properties, such as an electric charge, a magnetic
moment, and electric and magnetic polarizabili-
ties. At photon energies above the pion-production
threshold, the process involving the excitation of
the P33(1232) resonance becomes dominant; as the
photon energy increases further, processes involving
the excitation of the Roper resonance P11(1430) and
resonances of the second [S11(1500), D13(1505)]
and the third [S31(1620), D33(1700)] energy region
come into play. There are several approaches to
describing Compton scattering: the use of disper-
sion relations [5, 6], the method of effective La-
grangians [7, 8], and chiral perturbation theory [9, 10].
In the present study, we use the method of effective
Lagrangians to derive general analytic formulas for
invariant functions describing generalized γN → γN
reactions, taking into account the contribution of the

*e-mail: loginov@npi.tpu.ru
1063-7788/05/6802-0292$26.00
Born diagrams in the s, u, and t channels and the
diagrams for six resonances in the s and u channels.
The availability of explicit expressions for invariant
functions reduces considerably the machine time
required for simulating the processes in question and
is necessary for calculating the amplitudes for these
processes on nuclei analytically.

This article is organized as follows. In Section 2,
we present a general expression for the P- and T -
invariant amplitude of γ− + 1/2+ → γ− + 1/2+ re-
actions. In Section 3, we derive the coefficients in the
transformation from independent helicity amplitudes
for γ− + 1/2+ → γ− + 1/2+ reactions to invariant
functions. In Section 4, we discuss the Lagrangians
that are used to construct Feynman diagrams—in
particular, we dwell upon the question of gauge in-
variance and the question of coupling to a spin-3/2
fermion field. In Section 5, we consider the crossing-
symmetry properties of the invariant functions and
the crossing transformation of the amplitude from
the s channel to the u and t channels. In Section 6,
we present Feynman diagrams that are taken into
account in writing the amplitude for Compton scat-
tering and give a brief description of the method that
we use to calculate the contributions of the Born
diagrams in the s, u, and t channels and the con-
tributions of the diagrams for the resonances in the
s and u channels to the invariant functions. In the
Appendix, we give explicit expressions for the La-
grangians used and for the results obtained with the
aid of these Lagrangians for the contributions of the
Born diagrams and diagrams for the resonances to the
invariant functions.

2. The most convenient way to derive general ex-
pressions for the amplitude and invariant functions
c© 2005 Pleiades Publishing, Inc.
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is to consider γN → γN reactions in the s chan-
nel. The amplitudes for other channels can then be
obtained by applying the crossing transformation to
the amplitude for the s channel. In order to con-
struct the amplitude for the s channel of γN → γN
reactions, it is necessary to determine the number
of independent invariant functions appearing in the
expression for the amplitude. It is equal to the num-
ber of independent helicity amplitudes for γN → γN
reactions with allowance for P and T invariance. The
total number of helicity amplitudes for γ− + 1/2+ →
γ− + 1/2+ reactions is 2s1(2s2 + 1)2s3(2s4 + 1) =
16. These amplitudes satisfy relations that follow from
the P invariance of electromagnetic interaction; that
is,

T (λ3, λ4;λ1, λ2) (1)

= η(−1)(λ1−λ2)−(λ3−λ4)T (−λ3,−λ4;−λ1,−λ2),

where η = η1η2η3η4(−1)s3+s4−s1−s2 , ηi and si being,
respectively, the intrinsic parities and intrinsic spins
of the particles involved in the reaction; λ3 and λ1 are
the photon helicities in, respectively, the final and the
initial state; and λ4 and λ2 are the nucleon helicities
in, respectively, the final and the initial state. One can
easily see that, owing to these relations, the number
of independent helicity amplitudes decreases to eight.
Further constraints on the number of independent
helicity amplitudes follow from the T invariance of
electromagnetic interaction. For elastic processes, T
invariance leads to the following relations between the
helicity amplitudes:

T (λ3, λ4;λ1, λ2) (2)

= (−1)(λ1−λ2)−(λ3−λ4)T (λ1, λ2;λ3, λ4).

As a result, the number of independent helicity am-
plitudes for Compton scattering decreases to six. For
independent helicity amplitudes of Compton scatter-
ing, we chose here the following:
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The remaining 10 helicity amplitudes can be ex-
pressed in terms of the independent helicity ampli-
tudes (3) by using Eqs. (1) and (2).

Let us consider the general structure of the am-
plitude for the Compton scattering of a photon on
a nucleon, γ− + 1/2+ → γ− + 1/2+. We denote by
k1 and k2 the 4-momenta of, respectively, the initial
and the final photon; by p1 and p2 the 4-momenta of,
respectively, the initial and the final nucleon; by ε(k1)
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and ε(k2) the polarization 4-vectors, of, respectively,
the initial and the final photon; and by u(p1) and
u(p2) the bispinors of, respectively, the initial and
the final nucleon. In order to reveal the symmetry of
the amplitude with respect to spatial reflection and
time reversal, it is convenient to employ a symmetric
and an antisymmetric combination of the photon 4-
momenta:

K = (k1 + k2)/2, Q = (k2 − k1)/2. (4)

By adding, toK and Q, the symmetric 4-vector

P ′ = P − P ·K
K2

K,

where P = (p1 + p2)/2, and the pseudovector Nµ =
iεµνλσ × P ′

νKλQσ, we obtain four mutually orthogo-
nal vectors in terms of which it is convenient to de-
scribe the gauge-invariant structure of the amplitude
for γ− + 1/2+ → γ− + 1/2+ reactions. The invariant
variables s, t, and u are expressed in terms of the 4-
vectorsK, P , and Q as

s = (P +K)2, t = 4Q2, (5)

u = (P −K)2, s+ t+ u = 2M2,

whereM is the nucleon mass.
The general expression for the amplitude of 2→ 2

reactions involving arbitrary spins of participant par-
ticles has the form

T (p2, p1;P ) =
∑

i

fi(s, t)Ri, (6)

where fi(s, t) are invariant functions, which are de-
pendent on the 4-momenta of initial and final particles
only through the invariant variables s and t, and Ri

are invariant linear combinations of the wave func-
tions of all particles involved in the reaction. In the
case of γ− + 1/2+ → γ− + 1/2+ reactions, the num-
ber of independent invariant functions fi(s, t) is equal
to six with allowance for P and T invariance. For Ri,
we took here the independent invariant combinations

R1 = ū(p2)(P ′ · ε∗(k2))(P ′ · ε(k1))P ′−2
u(p1), (7)

R2 = ū(p2)(P ′ · ε∗(k2))(P ′ · ε(k1))K̂P ′−2
u(p1),

R3 = ū(p2)(N · ε∗(k2))(N · ε(k1))N−2u(p1),

R4 = ū(p2)(N · ε∗(k2))(N · ε(k1))K̂N−2u(p1),

R5 = ū(p2)((P ′ · ε∗(k2))(N · ε(k1))

− (P ′ · ε(k1))(N · ε∗(k2)))γ5P
′−2
K−2u(p1),

R6 = ū(p2)((P ′ · ε∗(k2))(N · ε(k1))

+ (P ′ · ε(k1))(N · ε∗(k2)))γ5K̂P
′−2
K−2u(p1),

where K̂ = Kµγ
µ, P ′−2 = 1/P ′2, N−2 = 1/N2, and

K−2 = 1/K2. It can easily be seen that Ri are
5
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P-invariant quantities. We will now show that Ri are
also C-invariant quantities. Under the charge conju-
gation of the amplitude for γ− + 1/2+ → γ− + 1/2+

reactions, the particle wave functions and 4-momenta
are transformed as [11]

ε(k1)→ −ε∗(k2), ε(k2)→ −ε∗(k1), (8)

p1 → −p2, p2 → −p1, k1 → −k2,

k2 → −k1, K → −K, P → −P, P ′ → −P ′,

Q→ Q, N → N.

In addition, it is necessary to transpose Ri
kl in the

Dirac indices k and l and multiply it from the left
and from the right by the charge-conjugation matrix
C = γ2γ0. The resulting transformation Ri

kl can be
represented in the form

Ri
kl(ε

∗(k2), k2, p2; ε(k1), k1, p1)→ CkmR
i
nm (9)

× (−ε(k1),−k1,−p1;−ε∗(k2),−k2,−p2)Cnl.

By using the properties of the charge-conjugation
matrix [12, 13], we can readily show that, under the
transformation in (9), all of the combinations in (7)
go over to themselves—that is, they are C-invariant
quantities. The invariant variables s, t, and u and,
hence, the invariant amplitudes fi(s, t) remain un-
changed under the transformations in (8). If use is
made of the invariant combinations (7), the amplitude
in (6) is P- and C-invariant; therefore, it is also T -
invariant by virtue of the CPT theorem.

The invariant combinations Ri are also gauge-
invariant, since all Ri vanish upon the substitution
ε(k1)→ k1 or ε(k2)→ k2. To demonstrate this ex-
plicitly, we note that, since k1 = K −Q and k2 =
K +Q, we do indeed have

P ′ · k1 = P ′ · (K −Q) = P ′ ·K − P ′ ·Q = 0,
(10)

P ′ · k2 = P ′ · (K +Q) = P ′ ·K + P ′ ·Q = 0

by virtue of the orthogonality of the 4-vectors P ′, K,
and Q. The scalar product of the 4-vectors N and k1

and the scalar product of the 4-vectorsN and k2 also
vanish,

N · k1 = iεµνλσP ′
νKλQσk1µ (11)

= iεµνλσP ′
νKλQσ(Kµ −Qµ) = 0,

N · k2 = iεµνλσP ′
νKλQσk2µ

= iεµνλσP ′
νKλQσ(Kµ +Qµ) = 0,

since each of these scalar products is the convolution
of tensors that are fully antisymmetric and symmetric
in two tensor indices. From (10) and (11), it follows
that Ri is a gauge-invariant quantity.
P

Finally, we will present a general expression for the
P-,C-, T - and gauge-invariant helicity amplitude for
γ− + 1/2+ → γ− + 1/2+ reactions. We have

T (λ3, λ4, λ1, λ2) = f1(s, t)ū(p2, λ4) (12)

× (P ′ · ε∗(k2, λ3))(P ′ · ε(k1, λ1))P ′−2
u(p1, λ2)

+ f2(s, t)ū(p2, λ4)(P ′ · ε∗(k2, λ3))

× (P ′ · ε(k1, λ1))K̂P ′−2
u(p1, λ2)

+ f3(s, t)ū(p2, λ4)(N · ε∗(k2, λ3))

× (N · ε(k1, λ1))N−2u(p1, λ2) + f4(s, t)ū(p2, λ4)

× (N · ε∗(k2, λ3))(N · ε(k1, λ1))K̂N−2u(p1, λ2)

+ f5(s, t)ū(p2, λ4)((P ′ · ε∗(k2, λ3))(N · ε(k1, λ1))

− (P ′ · ε(k1, λ1))(N · ε∗(k2, λ3)))γ5P
′−2

×K−2u(p1, λ2) + f6(s, t)ū(p2, λ4)

× ((P ′ · ε∗(k2, λ3))(N · ε(k1, λ1))

+ (P ′ · ε(k1, λ1))(N · ε∗(k2, λ3)))γ5K̂P
′−2

×K−2u(p1, λ2).

In expression (12), the convention concerning the
phase factor of a two-particle helicity state from [14]
must be taken into account in defining helicity
bispinors for nucleons.

3. Let us derive the transformation matrix relating
the six independent helicity amplitudes in (3) to
the six invariant functions fi. Upon numbering the
independent helicity amplitudes in (3) from one to six,
we can write them explicitly. For this, it is necessary
to substitute, into the general expression (12) for the
helicity amplitude, the explicit expressions for the
4-vectors K, Q, P ′, and N ; the explicit expressions
for the helicity bispinors u(p1, λ2) and u(p2, λ4) of
nucleons with allowance for the convention from [14];
and the explicit expressions for the polarization
4-vectors ε(k1, λ1) and ε(k2, λ3) of photons. As a
result, we obtain a nonhomogeneous linear set of
equations of the form

Ti(s, t) =
6∑

j=1

Aijfj(s, t), (13)

where Ti(s, t) are the independent helicity amplitudes
given by (3). By using the Mathematica package for
symbol calculus, one can show that the determinant
of the matrix that specifies the set of Eqs. (13) does
not vanish, which confirms the linear independence of
the invariant combinations in (7). By means of the
Mathematica package, the nonhomogeneous linear
set of Eqs. (13) can be solved for the invariant func-
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 2 2005
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tions fi(s, t); that is,

fi(s, t) =
6∑

j=1

uijTj(s, t). (14)

Of 36 elements of the matrix ||uij ||, eight vanish.
The remaining 28 nonzero matrix elements can be
partitioned into four groups:

u11 = −1
2
u13 = u15 = −u31 = −1

2
u33 (15)

= −u35 = Mu61 = −Mu65 = −M
2 sec(θ/2)
s−M2

,

u12 = −2u14 = 2u16 = −u32 = −2u34

= 2u36 = −2u54 = −2u56 =
2M
√
s cosec(θ/2)
s−M2

,

u21 = −1
2
u23 = u25 = −u41 = −1

2
u43

= −u45 =
M(M2 + s) sec(θ/2)

(M2 − s)2
,

u22 = −2u24 = 2u26 = −u42 = −2u44

= 2u46 = −4M2√s cosec(θ/2)
(M2 − s)2

,

u51 = u52 = u53 = u55 = u62 = u63

= u64 = u66 = 0.

In formulas (15), θ is the photon scattering angle in
the c.m. frame of the s channel:

cos θ = 1 +
2st

(M2 − s)2
. (16)

4. In calculating the invariant functions f1−f6,
we will take into account here the contribution of
the Born terms in the s, u, and t channels and the
contribution of six resonances P33(1232), P11(1430),
S11(1500), D13(1505), S31(1620), and D33(1700) in
the s and u channels. In doing this, there arises
the problem of choosing appropriate interaction La-
grangians corresponding to vertices of Feynman di-
agrams. In choosing interaction Lagrangians, we did
not make here any simplifying assumptions. In other
words, the interaction Lagrangians were written in
the most general form compatible with the require-
ments of Hermitian conjugacy and P , T , and C in-
variance. In what is concerned with the gauge in-
variance of the Lagrangians used, we can say the
following. The Lagrangians describing the interac-
tion with a photon, which involve an electromagnetic
field via the gauge-invariant tensor Fµν = −i(kµεν −
kνεµ), are gauge-invariant themselves, irrespective
of whether the particles involved are on or off the
mass shell, since the tensor Fµν vanishes identically
under the substitution ε→ k. With the exception of
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the Dirac part of the Lagrangian for photon–nucleon
interaction [see formula (30) in the Appendix], almost
all of the Lagrangians used in the present study be-
long to this type. The Dirac part in question is gauge-
invariant only if both nucleons are on the mass shell,
this being a corollary of the Dirac equation for a free
nucleon. If one or both nucleons are off the mass shell,
then the vertex corresponding to the Dirac part of
the Lagrangian in (30) for photon–nucleon interac-
tion is formally gauge-noninvariant. It can easily be
shown, however, that the sum of two nucleon Born
diagrams in the s and u channels is gauge-invariant,
in just the same way as that for Compton scattering
on an electron. Thus, all of the observables of the
reactions in question are gauge-invariant quantities.
For the Lagrangian describing the pion–nucleon in-
teraction, we take here its pseudoscalar version. It
should be noted that, in the case of Compton scat-
tering, both nucleons of the t-channel Born diagram
corresponding to pion–nucleon interaction are on the
mass shell; therefore, the pseudovector version of the
pion–nucleon interaction is equivalent in this case
to the pseudoscalar version. In the case of Compton
scattering, the pseudoscalar and the pseudovector
coupling appear to be different only in considering
loop diagrams, where one nucleon or both of them are
off the mass shell. We note that the use of pseudovec-
tor coupling leads to extra degrees of the momentum
in the numerator of the integrand, this impairing the
convergence of the respective integral at high loop
momenta. From the mathematical point of view, it is
therefore preferable to use a pseudoscalar coupling in
loop diagrams. In contrast to what occurs in the case
of Compton scattering, one of the nucleons in the
pion–nucleon–nucleon vertex of the Born diagrams
for pion photoproduction on a nucleon is always off
the mass shell, this violating the equivalence of the
pseudoscalar and the pseudovector coupling even at
the level of Born diagrams.

Let us consider the Lagrangian corresponding to a
possible contact four-particle interaction of two pho-
tons and two nucleons. This Lagrangian is obtained
via the minimal substitution ∂µ → ∂µ − ieAµ from
the Pauli part of the Lagrangian for photon–nucleon
interaction [see Eq. (30) below]; that is,

Lcont =
e2

2M
AµN̄σµνNA

ν , (17)

where Aµ is the electromagnetic-field 4-potential,
N is the nucleon field, and σµν is an antisymmetric
matrix tensor that is defined as in [15]. It can be shown
that, in the case of on-shell nucleons, the vertex cor-
responding to the Lagrangian in (17) does not van-
ish identically upon the gauge substitution εµ → kµ,
appearing to be a quantity proportional to (s−M2).
Thus, the Lagrangian in (17) is not gauge-invariant
5



296 LOGINOV, STIBUNOV
within the approach of relativistic perturbation theory.
We note that, in the three-dimensional form of the
amplitude for Compton scattering in the c.m. frame,
there are contact terms proportional to ε1 · ε2 or ε1 ×
ε2, but they arise as a three-dimensional reduction of
noncontact relativistic diagrams.

Of six resonances whose contribution is taken into
account in the direct and crossed channels, three
have a spin of 3/2. The Rarita–Schwinger propagator
corresponding to these resonances [see Eq. (42) in
the Appendix] describes solely a transition between
spin-3/2 states only if the respective spin-3/2 particle
is on the mass shell. If the spin-3/2 particle is off
the mass shell, then the Rarita–Schwinger propa-
gator involves an unphysical sector corresponding to
transitions between states such that at least one of
them has a spin of 1/2. In order to eliminate the
contribution of these undesirable transitions to ana-
lytic expressions corresponding to diagrams involving
the exchange of a spin-3/2 resonance in the s or
the u channel, it is necessary to impose a subsidiary
condition on the Lagrangian for the N∗Nγ interac-
tion. We will consider the interaction of a spin-3/2
particle with the electromagnetic-field tensor Fµν . In
this case, the interaction Lagrangian has the form

Lint = N̄∗µOµνσNF
νσ + h.c., (18)

where N∗µ is a spin-3/2 field; here and below, the
symbol h.c. stands for the Hermitian conjugate term,
which is necessary for the Lagrangian to be an Her-
mitian operator. In order to suppress the contribution
of transitions in the unphysical sector of the Rarita–
Schwinger propagator, it is necessary to subject the
vertex Oµνσ to the condition [16]

γµOµνσ = 0. (19)

This condition can be realized in the following way.
Suppose that, on the mass shell, the vertex Γµνσ pos-
sesses all the required properties of relativistic invari-
ance and C, P , and T invariance. We now introduce
the vertex [16, 17]

Oµνσ = Γµνσ −
1
4
γµγ

ηΓηνσ. (20)

The vertex Oµνσ obviously satisfies the condition
in (19) and, on the mass shell, is equivalent to the
vertex Γµνσ, since the Rarita–Schwinger spinors
N∗µ satisfy the condition γµN

∗µ = 0. The vertices
associated with all Lagrangians used in the present
study to describe the interaction of spin-3/2 particles
satisfy the condition in (19).

It should be noted that a different condition that
completely eliminates the contribution of transitions
in the unphysical sector of the Rarita–Schwinger
propagator was proposed in [18, 19]. It consists in
requiring that the interaction Lagrangian be invariant
PH
under a local gauge transformation of a spin-3/2 field:
N∗µ(x)→ N∗µ(x) + ∂µε(x), where ε(x) is a spinor
field. This invariance guarantees that the spin-3/2
field involved in the interaction has a correct number
(equal to four) of degrees of freedom. In momen-
tum space, this invariance results in that the N∗Nγ-
interaction vertex must satisfy the condition

PµΓµνσ = 0, (21)

where Pµ is the 4-momentum of the spin-3/2 parti-
cle involved. The use of the interaction Lagrangians
satisfying the condition in (19) and those satisfying
the condition in (21) leads to amplitudes differing by
terms of a contact form [19].

The Lagrangians used to specify expressions for
Feynman diagrams are given in the Appendix, along
with explicit expressions for the propagators describ-
ing spin-1/2 and spin-3/2 particles.

5. Considering γN → γN as a generalized reac-
tion that proceeds through three crossed channels,
s, t, and u, we can establish the crossing-symmetry
properties of the invariant amplitudes fi. For an arbi-
trary generalized reaction, the crossing symmetry of
invariant amplitudes arises in the case where, among
four particles involved in the reaction, there are two
identical particles, particles that belong to the same
isomultiplet being treated as identical ones (this con-
cerns, for example, nucleons or pions). In our case,
there are two pairs of identical particles, two photons
and two nucleons. The crossing within each of these
particle pairs leads to an effective permutation of two
invariant variables, s↔ u, whereupon the amplitude
resulting from the crossing of two photons must co-
incide with the original one by virtue of the general-
ized Pauli exclusion principle, while that which arises
upon the crossing of two nucleons must differ from
the original amplitude only in sign. It is the most
straightforward to consider the crossing of two pho-
tons. In order to perform the crossing of two photons,
it is necessary to make the following transformations
in the original amplitude (12) [11]:

k1 → −k2, k2 → −k1, K → −K, (22)

P → P, P ′ → P ′, Q→ Q, N → −N,
s→ u, u→ s, t→ t,

ε(k1)→ −ε∗(k2), ε(k2)→ −ε∗(k1).

The invariant combinations Ri in (7) then transform
as follows:

R1 → R1, R2 → −R2, R3 → R3, (23)

R4 → −R4, R5 → R5, R6 → R6.

By virtue of the generalized Pauli exclusion principle,
the permutation of two identical photons must not
lead to a change in the sign of the amplitude in (12);
YSICS OF ATOMIC NUCLEI Vol. 68 No. 2 2005
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therefore, the invariant functions f1−f6 transform as
follow:

f1(s, t)→ f1(u, t), f2(s, t)→ −f2(u, t), (24)

f3(s, t)→ f3(u, t), f4(s, t)→ −f4(u, t),
f5(s, t)→ f5(u, t), f6(s, t)→ f6(u, t).

In order to reveal the symmetry properties of the in-
variant functions f1−f6 under the permutation s↔
u, we can perform, on equal footing, the crossing of
identical nucleons instead of the crossing of identical
photons. Instead of (22), we will then have

p1 → −p2, p2 → −p1, K → K, (25)

P → −P, P ′ → −P ′, Q→ Q, N → −N,
s→ u, u→ s, t→ t,

u(p1)→ u(−p2) ≡ v(p2),
u(p2)→ u(−p1) ≡ v(p1),
ūi(p2)Mij(p2, p1)uj(p1)

→ −v̄i(p1)Mij(−p1,−p2)vj(p2)
= ūi(p2)M̃ij(−p1,−p2)uj(p1),

where ūi(p2)Mij(p2, p1)uj(p1) is the reaction am-
plitude, in which we have explicitly indicated the
bispinor indices i and j over which one performs
summation and the nucleon 4-momenta p1 and p2.
The tilde symbol denotes transposition in the bispinor
indices. In the last transformation in (25), we have
used the equalities v(p) = C˜̄u(p) and v̄(p) = −ũ(p)C
and the properties of the charge-conjugation matrix
C = γ2γ0 [12, 13]. It can easily be shown that the
invariant spin combinations Ri (7) transform in just
the same way as in (23), whence it again follows
that the invariant functions fi possess the crossing-
symmetry properties (24).

The use of the crossing-symmetry properties (24)
in calculating the invariant functions f1−f6 leads
to a significant reduction of the volume of calcu-
lations. To demonstrate this, we note that, if one
knows an analytic expression for the contribution
of the nucleon Born diagrams or a resonance dia-
gram in the s channel, f s

i (s, t), then the expression
for the corresponding contribution in the u channel
must have the form fu

i = ηif
s
i (u, t) ≡ ηif

s
i (2M2 −

s− t, t), where η1 = η3 = η5 = η6 = 1 and η2 = η4 =
−1, no summation over the index i being performed.
The crossing-symmetry properties (24) can also be
considered a tool for verifying the mathematical cor-
rectness of rather complicated expressions for the in-
variant functions; however, the contribution of the u-
channel diagrams must be calculated independently.

In calculating the invariant functions f1−f6, we
have considered the s channel of γN → γN reac-
tions. By means of the crossing transformation, one
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Diagrams whose contribution is taken into account in
calculating the invariant functions f1−f6: (a, b, c) dia-
grams corresponding to the Born contributions in the s,
u, and t channels and (d, e) diagrams corresponding to
the resonance contributions in the s and u channels.

can go over from the reaction amplitude (12) for
the s channel to the reaction amplitudes for the u
and t channels. In order to go over from the reac-
tion amplitude (12) for the s channel γ(k1)N(p1)→
γ(k2)N(p2) to the reaction amplitude for the u chan-
nel γ(k1)N̄(p̄1)→ γ(k2)N̄ (p̄2), it is necessary to per-
form the following substitutions in (12):

p1 → −p̄2, p2 → −p̄1, (26)

u(p1)→ u(−p̄2) ≡ v(p̄2),
ū(p2)→ ū(−p̄1) ≡ v̄(p̄1).

Upon these substitutions, the 4-vectors K and Q
remain unchanged, while the 4-vectors P , P ′, and N
and the invariant variables s, t, and u are defined as

P = −1
2
(p̄1 + p̄2), P ′ = P − P ·K

K2
K, (27)

Nµ = iεµνλσP ′
νKλQσ,

s = (k1 − p̄2)2, t = (k1 − k2)2, u = (p̄1 + k1)2.

In order to go over from the reaction ampli-
tude (12) for the s channel to the reaction amplitude
for the t channel N(p)N̄(p̄)→ γ(k)γ(k′), it is neces-
sary to make the following substitutions in (12):

p1 → p, p2 → −p̄, k1 → −k, k2 → k′, (28)

u(p1)→ u(p), ū(p2)→ ū(−p̄) ≡ v̄(p̄),
ε(k1)→ ε(−k) = −ε∗(k), ε∗(k2)→ ε∗(k′).

As a result, the 4-vectors K, Q, P , P ′, and N and
the invariant variables s, t, and u are defined in the t
channel as

K =
1
2
(k′ − k), Q =

1
2
(k + k′), (29)

P =
1
2
(p− p̄), P ′ = P − P ·K

K2
K,
5
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Nµ = iεµνλσP ′
νKλQσ, s = (p − k)2,

t = (k + k′)2, u = (p̄− k)2.

6. In calculating the invariant functions f1−f6,
the amplitude of Compton scattering was written in
accordance with Feynman rules for the diagrams in
the figure. The vertices of the diagrams correspond
to the Lagrangians presented in the Appendix. In
the expression for the amplitude, use is made of the
propagators for spin-1/2 and spin-3/2 resonances.
These propagators are also given in the Appendix [see
formulas (41), (42)].

By employing explicit expressions for the nucleon
helicity bispinors and photon polarization 4-vec-
tors [20], one can obtain, by means of the Mathemat-
ica package for symbol calculus, expressions for the
six independent helicity amplitudes in (3) for Comp-
ton scattering. With the aid of the transformation
matrix (15), which relates the independent helicity
amplitudes (3) to the invariant functions f1−f6, one
can then derive explicit expressions for the latter. The
results of the calculations for the contribution of the
Born diagrams in the s, u, and t channels and for
the contributions of the diagrams for the P33(1232),
P11(1430), S11(1500), S31(1620), D33(1700), and
D13(1505) resonances in the s and u channels to the
invariant functions for Compton scattering are given
in the Appendix. The cases of Compton scattering
on a proton and on a neutron have been considered.
The invariant variables s and t have been taken for
independent arguments of the invariant functions
f1−f6. By means of a direct calculation at a few
points of phase space, it has been verified that the
analytic expressions for the contributions of the
Born diagrams and the resonance diagrams satisfy
the crossing-symmetry conditions (24), this being
indicative of the absence of mathematical errors.
The total expressions for the invariant functions
describing Compton scattering on a proton and on
a neutron can be obtained by summing the corre-
sponding contributions of the Born diagrams and
resonance diagrams. The invariant functions f1−f6
for Compton scattering that are subjected to the
crossing transformations (26) and (28) can be used to
construct the generalized-reaction amplitudes for the
u channel γN̄ → γN̄ and the t channel NN̄ → γγ.
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APPENDIX

Presented below are the explicit expressions for
the interaction Lagrangians employed in this study.
In all of the formulas used for the Lagrangians, we
adopt the following notation: N∗µ is the field of a
spin-3/2 resonance, N∗ is the field of a spin-1/2
resonance, N is the nucleon field, πi is the pion field
carrying the isotopic index i, η is the eta-meson
field, Aµ is the electromagnetic-field 4-potential,
and Fµν = ∂µAν − ∂νAµ is the gauge-invariant
electromagnetic-field-strength tensor. The notation
for masses is the following:M is the nucleon mass, µ
is the pion mass, and µη is the eta-meson mass. The
Dirac matrices γµ and γ5, the antisymmetric matrix
tensor σµν , and the metric tensor gµν are defined in
just the same way as in [15]. In the isotopic part of the
Lagrangians, τi is an isotopic Pauli matrix, while Si is
the isotopic matrix for the 3/2→ 1/2 transition [21].

The Lagrangian for photon–nucleon interaction
has the form

LNNγ = N̄
1
2
(FS

1 + F V
1 τ3)ÂN (30)

− F
αβ

4M
N̄σαβ

1
2
(FS

2 + F V
2 τ3)N,

where FS
i = F p

i + Fn
i and F V

i = F p
i − Fn

i are, re-
spectively, the isoscalar and isovector nucleon form
factors; F p

1 and Fn
1 are the proton and neutron Dirac

form factors; and F p
2 and Fn

2 are the proton and neu-
tron Pauli form factors. In the present study, similar
conventions are used for the form factors character-
izing all isospin-1/2 resonances (P11, S11,D13): the
indices p and n label the form factors for the isodou-
blet components whose isospin projections onto the
z axis are 1/2 and −1/2, respectively. The nucleon
form factors are normalized at the photon point (k2 =
0) according to the conditions FS

1 = F V
1 = 1, FS

2 =
κp + κn, and F V

2 = κp − κn, where κp and κn are the
anomalous magnetic moments of the proton and the
neutron, respectively.

The interaction Lagrangians employed in calcu-
lating the t-channel Born diagrams for Compton
scattering are given by

Lπγγ =
1
4
F πεµναβFµνFαβπ0, (31)

LπNN =
2iMf
µ

N̄γ5τiNπi, (32)

Lηγγ =
1
4
F ηεµναβFµνFαβη, (33)

LηNN =
2iMfη
µη

N̄γ5Nη, (34)
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where F π, F η, f , and fη are the corresponding
coupling constants. The Lagrangians in (32) and (34)
correspond to the pseudoscalar version of meson–
nucleon coupling, while the Lagrangians in (31)
and (33) have a manifest gauge-invariant structure.

The Lagrangian for theNS11γ interaction has the
form

LNS11γ = −F
αβ

4M
(35)

× [N̄σαβγ5(GS
NS11γ + τ3GV

NS11γ)N∗

− N̄∗σαβγ5(GS
NS11γ + τ3GV

NS11γ)N ],

where GS
NS11γ = Gp

NS11γ +Gn
NS11γ and GV

NS11γ =
Gp

NS11γ −Gn
NS11γ are, respectively, the isoscalar and

isovector form factors forNS11γ coupling.
The Lagrangian for theNS31γ interaction has the

form

LNS31γ = −GNS31γ

2M
Fαβ (36)

× [N̄σαβγ5S3N
∗ − N̄∗σαβγ5S

†
3N ],

where GNS31γ is the isovector form factor for the
NS31γ interaction. In the present case, the isoscalar
form factor is absent, since only an isovector photon
can be absorbed or emitted in the process of NS31γ
interaction. In the case of other isospin-3/2 reso-
nances, the situation is similar.

The Lagrangian for theNP11γ interaction is given
by

LNP11γ = −F
αβ

4M
(37)

× [N̄σαβ(GS
NP11γ + τ3GV

NP11γ)N∗

+ N̄∗σαβ(GS
NP11γ + τ3GV

NP11γ)N ],

where GS
NP11γ = Gp

NP11γ +Gn
NP11γ and GV

NP11γ =
Gp

NP11γ −Gn
NP11γ are, respectively, the isoscalar and

the isovector form factor for theNP11γ interaction.
The Lagrangian for theNP33γ interaction has the

form

LNP33γ =
G1NP33γ

4M

{
N̄∗λ

[
(gλαγβ − gλβγα) (38)

+
i

2
γλσαβ

]
γ5S

†
3N + h.c.

}
Fαβ − G2NP33γ

8M2

×
{
N̄∗λ

[
i
(
gλβ
←→
∂α − gλα

←→
∂β

)

− i
4
γλ

(
γβ
←→
∂α − γα

←→
∂β

)]
γ5S

†
3N + h.c.

}
Fαβ

+
G3NP33γ

4M2

{[
N̄∗λ

(
−gλβ +

1
4
γλγβ

)
iγ5
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× S†
3N + h.c.

]
∂αF

αβ

+
[
N̄∗λ

(
gλα −

1
4
γλγα

)
iγ5S

†
3N + h.c.

]
∂βF

αβ

}
,

where G1NP33γ , G2NP33γ , and G3NP33γ are the iso-
vector form factors for the NP33γ interaction. In for-
mulas (38)–(40), the symbol

←→
∂ acts on the neigh-

boring functions as follows: u
←→
∂ v = u(∂v) − (∂u)v.

The Lagrangian for theND33γ interaction has the
form

LND33γ =
G1ND33γ

4M

{
N̄∗λ

[
(gλαγβ − gλβγα) (39)

+
1
2
γλσαβ

]
S†

3N + h.c.
}
Fαβ − G2ND33γ

8M2

×
{
N̄∗λ

[
i
(
gλβ
←→
∂α − gλα

←→
∂β

)

− i
4
γλ

(
γβ
←→
∂α − γα

←→
∂β

)]
S†

3N + h.c.
}
Fαβ

+
G3ND33γ

4M2

{[
N̄∗λi

(
−gλβ +

1
4
γλγβ

)

× S†
3N + h.c.

]
∂αF

αβ

+
[
N̄∗λi

(
gλα −

1
4
γλγα

)
S†

3N + h.c.
]
∂βF

αβ

}
,

where G1ND33γ , G2ND33γ , and G3ND33γ are the
isovector form factors for the ND33γ interaction.

The Lagrangian for theND13γ interaction is given
by

LND13γ =
1

4M

{
N̄∗λ

[
(gλαγβ − gλβγα) (40)

+
1
2
γλσαβ

]
1
2
[GS

1ND13γ

+GV
1ND13γτ3]N + h.c.

}
Fαβ − 1

8M2

×
{
N̄∗λ

[
i
(
gλβ
←→
∂α − gλα

←→
∂β

)

− i
4
γλ

(
γβ
←→
∂α − γα

←→
∂β

)]1
2
[GS

2ND13γ

+GV
2ND13γτ3]N + h.c.

}
Fαβ

+
1

4M2

[
N̄∗λi

(
−gλβ +

1
4
γλγβ

)
1
2
[GS

3ND13γ

+GV
3ND13γτ3]N + h.c.

]
∂αF

αβ
5



300 LOGINOV, STIBUNOV
+
1

4M2

[
N̄∗λi

(
gλα −

1
4
γλγα

)
1
2
[GS

3ND13γ

+GV
3ND13γτ3]N + h.c.

]
∂βF

αβ,

where GS
iND13γ = Gp

iND13γ +Gn
iND13γ and

GV
iND13γ = Gp

iND13γ −Gn
iND13γ are, respectively, the

isoscalar and the isovector form factor for theND13γ
interaction. The Lagrangians in (35)–(40) are gauge-
invariant, since the 4-potential Aµ appears in them
through the gauge-invariant tensor Fµν . It should be
noted that, in the Lagrangians given by (38)–(40),
the contribution of the terms that are proportional
to ∂µF

µν vanish for real photons (k2 = 0, ε · k = 0).
In the present study, the propagator for spin-1/2
resonances (S11, S31, P11) is taken in the form

G(P 2;P ) =
P̂ +M∗

P 2 −M∗2 + iM∗Γ(P 2)
. (41)

For the spin-3/2 resonances (P33, D33, D13), we
employ the Rarita–Schwinger propagator

Gµν(P 2;P ) =
P̂ +M∗

P 2 −M∗2 + iM∗Γ(P 2)
(42)
PH
×
{
−gµν +

γµγν

3
+

2PµP ν

3M∗2 −
Pµγν − γµP ν

3M∗

}
.

In expressions (41) and (42), M∗ and Γ(P 2) are the
mass and the width of the corresponding resonance
whose 4-momentum is denoted by P . The resonance
width Γ(P 2) in (41) and (42) vanishes for P 2 < (M +
µ)2—that is, in the resonance u-channel diagrams.

Below, we present explicit expressions for the
contributions of the Born diagrams and the contribu-
tions of the diagrams for six resonances [P33(1232),
P11(1430), S11(1500), S31(1620), D33(1700),
D13(1505)] to the invariant functions f1−f6 in the
amplitude given by (12).

The contribution of the Born diagrams to the in-
variant functions f1−f6 for Compton scattering on a
proton has the form
{
−2MtF p

1
2

(M2 − s)(M2 − s− t) ,
(2M2 − 2s − t)F p

1
2

(−M2 + s)(−M2 + s+ t)
,
(2F p

1 − F
p
2 )F p

2

M
,
(−2M2 + 2s + t)(F p

1 − F
p
2 )2

(M2 − s)(M2 − s− t) , (43)

2M2tF p
1

2 + 2(M4 − 2M2(s+ t) + s(s+ t))F p
1 F

p
2 − (M2 − s)(M2 − s− t)F p

2
2

2M(M2 − s)(M2 − s− t)

+
2fMtF π

µ(t− µ2)
+

2F ηMtfη

µη(t− µ2
η)
,
−2M2tF p

1
2 + 2M2tF p

1F
p
2 + (M2 − s)(M2 − s− t)F p

2
2

2M2(M2 − s)(M2 − s− t)

}
.

In the case of Compton scattering on a neutron,
the following substitutions must be made in formu-
las (43):

F p
1 → Fn

1 , F p
2 → Fn

2 , f → −f. (44)

It should be noted that the t-channel Born diagram
involving the exchange of a pion or an eta meson
contributes to only one invariant function, f5.

The contributions of P33 to the invariant functions
f1 − f6 for Compton scattering (they have the same
form for Compton scattering on a proton and on a
neutron) are given by{

− 1
576M4Ds∆M

2
∆

(16M2(M −M∆) (45)

× (M4 −M2s+ 3(M3 −Ms)M∆

+ 3tM2
∆)G2

1NP33γ − 16M(M2(M2 − s)s
+ (M5 −Ms2)M∆ − 3s(−M2 + s+ 2t)M2

∆

YS
+ 6M(−M2 + s+ t)M3
∆)G1NP33γG2NP33γ

+ (Ms(M4 + 2M2s− 3s2)− 2s(−3M4

+ 2M2s+ s2)M∆ + 3M(5M4 − 22M2s

+ s(17s + 16t))M2
∆ − 6(M4 − 6M2s+ s(5s

+ 8t))M3
∆)G2

2NP33γ) +
1

576M4Du∆M
2
∆

× (16M2(M −M∆)(M2(M2 − s− t)
+ 3M(M2 − s− t)M∆ − 3tM2

∆)G2
1NP33γ

− 16M(M2(2M4 − 3M2(s+ t) + (s+ t)2)

+M(3M4 − 4M2(s + t) + (s+ t)2)M∆

+ 3(2M4 + s2 − t2 +M2(t− 3s))M2
∆

− 6(M3 −Ms)M3
∆)G1NP33γG2NP33γ

+ (M(14M6 − 27M4(s+ t) + 16M2(s + t)2
ICS OF ATOMIC NUCLEI Vol. 68 No. 2 2005
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− 3(s + t)3) + (20M6 − 34M4(s+ t)

+ 16M2(s+ t)2 − 2(s+ t)3)M∆

− 3M(29M4 + 17s2 + 18st+ t2

− 2M2(23s + 7t))M2
∆ + 6(9M4 + 5s2

+ 2st− 3t2 + 2M2(−7s+ t))M3
∆)G2

2NP33γ),

− 1
576M4Ds∆M2

∆

(16M2(M2(M2 + s)

+ 4M3M∆ + 3(−3M2 + s+ t)M2
∆)G2

1NP33γ

− 8M(Ms(3M2 + s) + 2(M4 + 3M2s)M∆

+ 3M(3M2 + s)M2
∆ + 6(−5M2 + s

+ 2t)M3
∆)G1NP33γG2NP33γ + (s(M4

+ 6M2s+ s2) + 8Ms(M2 + s)M∆

+ 3(5M4 − 34M2s+ s(5s+ 16t))M2
∆ + 24M

× (M2 + s)M3
∆)G2

2NP33γ) +
1

576M4Du∆M2
∆

× (16(M4(3M2 − s− t) + 4M5M∆ − 3M2

× (M2 + s)M2
∆)G2

1NP33γ − 8M(M(10M4

− 7M2(s+ t) + (s+ t)2) + 2M2(7M2

− 3(s+ t))M∆ + 3M(5M2 − s− t)M2
∆

− 6(3M2 + s− t)M3
∆)G1NP33γG2NP33γ

+ (34M6 − 37M4(s+ t) + 12M2(s+ t)2

− (s + t)3 + 8M(6M4 − 5M2(s+ t)

+ (s+ t)2)M∆ − 3(43M4 − 5s2 + 6st

+ 11t2 − 2M2(7s + 23t))M2
∆

+ 24M(3M2 − s− t)M3
∆)G2

2NP33γ),

1
576M4Ds∆M2

∆

(16M2(M +M∆)(M4

−M2s− 3(M3 −Ms)M∆ + 3tM2
∆)G2

1NP33γ

− 16M(M2 − s)2(M − 3M∆)M∆G1NP33γ

×G2NP33γ + (M2 − s)2(Ms+ 2sM∆

+ 15MM2
∆ − 18M3

∆)G2
2NP33γ)

− 1
576M4Du∆M

2
∆

(16M2(M +M∆)

× (M2(M2 − s− t) + 3M(−M2 + s+ t)M∆

− 3tM2
∆)G2

1NP33γ + 16M(−M2 + s+ t)2

× (M − 3M∆)M∆G1NP33γG2NP33γ − (−M2

+ s+ t)2(M(2M2 − s− t) + (4M2

− 2(s + t))M∆ + 15MM2
∆ − 18M3

∆)G2
2NP33γ),
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1
576M4Ds∆M

2
∆

(16M2(M2(M2 + s)

− 4M3M∆ + 3(−3M2 + s+ t)M2
∆)G2

1NP33γ

− 8M(Ms(−M2 + s) + 2(M4 −M2s)M∆

− 3(M3 −Ms)M2
∆ − 6(M2 − s)M3

∆)G1NP33γ

×G2NP33γ + (M2 − s)2(s+ 15M2
∆)G2

2NP33γ)

− 1
576M4Du∆M

2
∆

(16(M4(3M2 − s− t)

− 4M5M∆ − 3M2(M2 + s)M2
∆)G2

1NP33γ

− 8M(M(2M4 − 3M2(s + t) + (s+ t)2)

+ 2M2(−M2 + s+ t)M∆ + 3M(M2

− s− t)M2
∆ + 6(M2 − s− t)M3

∆)G1NP33γ

×G2NP33γ + (−M2 + s+ t)2(2M2

− s− t+ 15M2
∆)G2

2NP33γ),

− 1
288M4Ds∆M2

∆

(8M2M∆(2M4

− 2M2s+ 3tM2
∆)G2

1NP33γ

− 4M(M2(M2 − s)s+M∆(2M(M2 − s)s
+ 3M∆(M4 −M2s+ 2st+ 2M(−M2

+ s)M∆)))G1NP33γG2NP33γ + (M2 − s)
× (Ms2 + s(M2 + s)M∆ − 9MsM2

∆

+ 3(M2 + s)M3
∆)G2

2NP33γ)− 1
288M4Du∆M2

∆

× (−8M2M∆(2M2(M2 − s− t)
− 3tM2

∆)G2
1NP33γ + 4M(M2(M2 − s− t)

× (2M2 − s− t) +M∆(2M(M2 − s− t)
× (2M2 − s− t) + 3M∆(M4 + 2t(s+ t)

−M2(s+ 5t) + 2M(−M2 + s+ t)M∆)))

×G1NP33γG2NP33γ − (M2 − s− t)
× (M(−2M2 + s+ t)2 + (2M2 − s− t)
× (3M2 − s− t)M∆ + 9M(−2M2

+ s+ t)M2
∆ + (9M2 − 3(s + t))M3

∆)G2
2NP33γ),

− 1
576M4Ds∆M2

∆

(16M2(M4 −M2s

+ 3(−M2 + s+ t)M2
∆)G2

1NP33γ

− 8M(M(M2 − s)s+ 2(M4 −M2s)M∆

+ 3(M3 −Ms)M2
∆ + 6(−M2

+ s+ t)M3
∆)G1NP33γG2NP33γ + (s(M4 − s2)
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+ 4M(M2 − s)sM∆ − 9(M4 − s2)M2
∆

+ 12(M3 −Ms)M3
∆)G2

2NP33γ)

+
1

576M4Du∆M2
∆

(16(M4(M2 − s− t)

− 3(M4 −M2s)M2
∆)G2

1NP33γ

− 8M(M(2M4 − 3M2(s + t) + (s+ t)2)

+ 2M2(M2 − s− t)M∆ + 3M(M2 − s− t)M2
∆

− 6(M2 − s)M3
∆)G1NP33γG2NP33γ + (6M6

− 11M4(s+ t) + 6M2(s+ t)2 − (s + t)3

+ 4M(2M4 − 3M2(s+ t) + (s + t)2)M∆

− 9(3M4 − 4M2(s+ t) + (s + t)2)M2
∆

+ 12M(M2 − s− t)M3
∆)G2

2NP33γ)
}
.

In formulas (45), M∆ is the mass of the P33 reso-
nance, while Ds∆ = s−M2

∆ + iM∆Γ∆(s) and
Du∆ = u−M2

∆ + iM∆Γ∆(u) are the denominators
of the propagator for the P33 resonance in, respec-
tively, the s and the u channel.

The contributions of P11 to the invariant functions
f1−f6 for Compton scattering on a proton are{

−
(M2 − s)Gp2

NP11γ(M −MP11)

4M2DsP11

(46)

+
(M2 − s− t)Gp2

NP11γ(M −MP11)

4M2DuP11

,

−
Gp2

NP11γ(M2 + s− 2MMP11)

4M2DsP11

+
Gp2

NP11γ(3M2 − s− t− 2MMP11)

4M2DuP11

,

(M2 − s)Gp2
NP11γ(M +MP11)

4M2DsP11

−
(M2 − s− t)Gp2

NP11γ(M +MP11)

4M2DuP11

,

Gp2
NP11γ(M2 + s+ 2MMP11)

4M2DsP11

−
Gp2

NP11γ(3M2 − s− t+ 2MMP11)

4M2DuP11

,

(M2 − s)Gp2
NP11γMP11

4M2DsP11

−
(M2 − s− t)Gp2

NP11γMP11

4M2DuP11

,

PH
−
(M2 − s)Gp2

NP11γ

4M2DsP11

+
(M2 − s− t)Gp2

NP11γ

4M2DuP11

}
.

In formulas (46), MP11 is the mass of the P11 reso-
nance, while DsP11 = s−M2

P11
+ iMP11ΓP11(s) and

DuP11 = u−M2
P11

+ iMP11ΓP11(u) are the denom-
inators of the propagator for the P11 resonance in,
respectively, the s and the u channel. In the case of
Compton scattering on a neutron, the substitution
Gp

NP11γ → Gn
NP11γ must be made in formulas (46).

The contributions of S11 to the invariant functions
f1−f6 for Compton scattering on a proton are{

−
(M2 − s)Gp2

NS11γ(M +MS11)

4M2DsS11

(47)

+
(M2 − s− t)Gp2

NS11γ(M +MS11)

4M2DuS11

,

−
Gp2

NS11γ(M2 + s+ 2MMS11)

4M2DsS11

+
Gp2

NS11γ(3M2 − s− t+ 2MMS11)

4M2DuS11

,

(M2 − s)Gp2
NS11γ(M −MS11)

4M2DsS11

−
(M2 − s− t)Gp2

NS11γ(M −MS11)

4M2DuS11

,

Gp2
NS11γ(M2 + s− 2MMS11)

4M2DsS11

−
Gp2

NS11γ(3M2 − s− t− 2MMS11)

4M2DuS11

,

−
(M2 − s)Gp2

NS11γMS11

4M2DsS11

+
(M2 − s− t)Gp2

NS11γMS11

4M2DuS11

,

−
(M2 − s)Gp2

NS11γ

4M2DsS11

+
(M2 − s− t)Gp2

NS11γ

4M2DuS11

}
.

In formulas (47), MS11 is the mass of the S11 reso-
nance, while DsS11 = s−M2

S11
+ iMS11ΓS11(s) and

DuS11 = u−M2
S11

+ iMS11ΓS11(u) are the denom-
inators of the propagator of the S11 resonance in,
respectively, the s and the u channel. In the case of
Compton scattering on a neutron, the substitution
Gp

NS11γ → Gn
NS11γ must be made in formulas (47).

The contributions of S31 to the invariant functions
f1−f6 for Compton scattering (they have the same
YSICS OF ATOMIC NUCLEI Vol. 68 No. 2 2005
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form for Compton scattering on a proton and on a
neutron) are{

−
2(M2 − s)G2

NS31γ(M +MS31)
3M2DsS31

(48)

+
2(M2 − s− t)G2

NS31γ(M +MS31)
3M2DuS31

,

−
2G2

NS31γ(M2 + s+ 2MMS31)
3M2DsS31

+
2G2

NS31γ(3M2 − s− t+ 2MMS31)
3M2DuS31

,

2(M2 − s)G2
NS31γ(M −MS31)

3M2DsS31

−
2(M2 − s− t)G2

NS31γ(M −MS31)
3M2DuS31

,

2G2
NS31γ(M2 + s− 2MMS31)

3M2DsS31

−
2G2

NS31γ(3M2 − s− t− 2MMS31)
3M2DuS31

,

−
2(M2 − s)G2

NS31γMS31

3M2DsS31

+
2(M2 − s− t)G2

NS31γMS31

3M2DuS31

,

−
2(M2 − s)G2

NS31γ

3M2DsS31

+
2(M2 − s− t)G2

NS31γ

3M2DuS31

}
.

In formulas (48), MS31 is the mass of the S31 reso-
nance, while DsS31 = s−M2

S31
+ iMS31ΓS31(s) and

DuS31 = u−M2
S31

+ iMS31ΓS31(u) are the denomi-
nators of the propagator for the S31 resonance in,
respectively, the s and the u channel.

The contributions of D33 to invariant functions
f1−f6 for Compton scattering (they are identical for
Compton scattering on a proton and on a neutron) are{

1
576M4DsD33M

2
D33

(16M2(M +MD33) (49)

× (M4 + 3M2s− 4s2 − 3(M3 −Ms)MD33

+ (−4M2 + 4s + 3t)M2
D33

)G2
1ND33γ − 8M

× (s(−3M4 + 2M2s+ s2) + 2(M5 −Ms2)
×MD33 + (M4 − 6M2s+ s(5s+ 12t))M2

D33

− 12M(M2 − s− t)M3
D33

)G1ND33γG2ND33γ

+ (Ms(M4 + 2M2s− 3s2) + 2s(2M2s

+ s2 − 3M4)MD33 + 3M(5M4 − 22M2s
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+ s(17s + 16t))M2
D33

+ 6(M4 − 6M2s+ s(5s

+ 8t))M3
D33

)G2
2ND33γ) +

1
576M4DuD33M

2
D33

× (16M2(M +MD33)(9M
4 − 13M2(s+ t)

+ 4(s+ t)2 + 3M(s −M2 + t)MD33

+ (4s+ t− 4M2)M2
D33

)G2
1ND33γ

+ 8M(10M6 − 17M4(s+ t) + 8M2(s+ t)2

− (s + t)3 − 2M(3M4 − 4M2(s+ t)

+ (s+ t)2)MD33 + (9M4 + 5s2 − 2M2(7s− 5t)

− 2st− 7t2)M2
D33

+ 12(M3 −Ms)M3
D33

)

×G1ND33γG2ND33γ + (M(14M6 − 27M4(s + t)

+ 16M2(s+ t)2 − 3(s+ t)3) + 2(−10M6

+ 17M4(s+ t)− 8M2(s+ t)2 + (s+ t)3)MD33

− 3M(29M4 + 17s2 + 18st+ t2 − 2M2(23s

+ 7t))M2
D33
− 6(9M4 + 5s2 + 2st

− 3t2 + 2M2(−7s + t))M3
D33

)G2
2ND33γ),

1
576M4DsD33M

2
D33

(16M2(M4 + 7M2s

+ 2s2 − 4(M3 − 2Ms)MD33 + (−15M2

+ s+ 3t)M2
D33
− 8MM3

D33
)G2

1ND33γ

− 16M(−2Ms(M2 + s) + (M4 + 3M2s)MD33

− 4M3M2
D33

+ 3(−5M2 + s+ 2t)M3
D33

)

×G1ND33γG2ND33γ + (s(M4 + 6M2s+ s2)

− 8Ms(M2 + s)MD33 + 3(5M4 − 34M2s

+ s(5s + 16t))M2
D33
− 24M(M2 + s)

×M3
D33

)G2
2ND33γ) +

1
576M4DuD33M

2
D33

× (16M2(23M4 − 15M2(s+ t) + 2(s+ t)2

+ 4M(3M2 − 2(s + t))MD33 − (13M2

+ s− 2t)M2
D33
− 8MM3

D33
)G2

1ND33γ

+ 16M(2M(6M4 − 5M2(s + t)

+ (s+ t)2) +M2(−7M2 + 3(s+ t))MD33

+ 4M3M2
D33

+ 3(3M2 + s− t)M3
D33

)

×G1ND33γG2ND33γ + (34M6 − 37M4(s+ t)

+ 12M2(s + t)2 − (s+ t)3 − 8M(6M4

− 5M2(s + t) + (s+ t)2)MD33 − 3(43M4

− 5s2 + 6st+ 11t2 − 2M2(7s+ 23t))M2
D33

− 24M(3M2 − s− t)M3
D33

)G2
2ND33γ),



304 LOGINOV, STIBUNOV
1
576M4DsD33M

2
D33

(16M2(M5 −M3s

+ 2(M4 − 3M2s+ 2s2)MD33 + 3M(−M2 + s

+ t)M2
D33

+ (4M2 − 4s− 3t)M3
D33

)G2
1ND33γ

− 8M(M2 − s)2(−s+ 2MMD33

+ 7M2
D33

)G1ND33γG2ND33γ + (M2 − s)2

× (Ms− 2sMD33 + 15MM2
D33

+ 18M3
D33

)

×G2
2ND33γ)− 1

576M4DuD33M
2
D33

× (16M2(M3(M2 − s− t)− 2(3M4

− 5M2(s+ t) + 2(s + t)2)MD33 − 3(M3

−Ms)M2
D33

+ (4M2 − 4s − t)M3
D33

)G2
1ND33γ

− 8M(−M2 + s+ t)2(2M2 − s− t− 2MMD33

− 7M2
D33

)G1ND33γG2ND33γ − (−M2 + s+ t)2

× (M(2M2 − s− t) + 2(−2M2 + s+ t)

×MD33 + 15MM2
D33

+ 18M3
D33

)G2
2ND33γ),

1
576M4DsD33M

2
D33

(16M2(M4 −M2s

+ 2s2 + 4(M3 − 2Ms)MD33 + (−7M2 + s

+ 3t)M2
D33

+ 8MM3
D33

)G2
1ND33γ

− 16M(M2 − s)MD33(M
2 + 2MMD33

− 3M2
D33

)G1ND33γG2ND33γ + (M2 − s)2

× (s+ 15M2
D33

)G2
2ND33γ)− 1

576M4DuD33M
2
D33

× (16M2(7M4 − 7M2(s+ t) + 2(s + t)2

− 4M(3M2 − 2(s + t))MD33 − (5M2 + s

− 2t)M2
D33

+ 8MM3
D33

)G2
1ND33γ

+ 16M(M2 − s− t)MD33(M
2 + 2MMD33

− 3M2
D33

)G1ND33γG2ND33γ + (s+ t−M2)2

× (2M2 − s− t+ 15M2
D33

)G2
2ND33γ),

1
288M4DsD33M

2
D33

(8M2(2Ms(s −M2)

+ 2(M4 − 3M2s+ 2s2)MD33 + 2(M3 −Ms)
×M2

D33
+ (4M2 − 4s + 3t)M3

D33
)G2

1ND33γ

− 4M(s(M4 − s2) + 2Ms(−M2 + s)MD33

+ (3M4 − 4M2s+ s(s+ 6t))M2
D33

+ 6(M3 −Ms)M3
D33

)G1ND33γG2ND33γ
PH
+ (Ms2(s −M2) + s(M4 − s2)MD33

+ 9M(M2 − s)sM2
D33

+ 3(M4 − s2)M3
D33

)

×G2
2ND33γ) +

1
288M4DuD33M

2
D33

× (8M2(2M(2M4 − 3M2(s+ t) + (s+ t)2)

+ 2(3M4 − 5M2(s+ t) + 2(s+ t)2)MD33

+ 2M(s + t−M2)M2
D33

+ (−4M2 + 4s

+ 7t)M3
D33

)G2
1ND33γ + 4M(6M6

− 11M4(s+ t) + 6M2(s+ t)2 − (s + t)3

− 2M(2M4 − 3M2(s+ t) + (s + t)2)MD33

+ (M4 − s2 − 12M2t+ 4st+ 5t2)M2
D33

+ 6M(M2 − s− t)M3
D33

)G1ND33γ

×G2ND33γ + (M(M2 − s− t)(s+ t− 2M2)2

+ (−6M6 + 11M4(s+ t)− 6M2(s+ t)2

+ (s+ t)3)MD33 − 9M(2M4 − 3M2(s + t)

+ (s+ t)2)M2
D33
− 3(3M4 − 4M2(s + t)

+ (s+ t)2)M3
D33

)G2
2ND33γ),

1
576M4DsD33M

2
D33

(16M2(M4 +M2s

− 2s2 + (−5M2 + 5s+ 3t)M2
D33

)G2
1ND33γ

− 16M(Ms(−M2 + s) + (M4 −M2s)MD33

+ (−M3 +Ms)M2
D33

+ 3(−M2 + s

+ t)M3
D33

)G1ND33γG2ND33γ + (s(M4 − s2)
+ 4Ms(−M2 + s)MD33 − 9(M4 − s2)M2

D33

− 12(M3 −Ms)M3
D33

)G2
2ND33γ)

− 1
576M4DuD33M

2
D33

(16M2(5M4 − 7M2(s+ t)

+ 2(s+ t)2 + (−5M2 + 5s + 2t)M2
D33

)G2
1ND33γ

+ 16M(M(2M4 − 3M2(s + t) + (s+ t)2)M2

× (−M2 + s+ t)MD33 +M(M2 − s− t)M2
D33

+ 3(M2 − s)M3
D33

)G1ND33γG2ND33γ + (6M6

− 11M4(s+ t) + 6M2(s+ t)2 − (s + t)3

− 4M(2M4 − 3M2(s+ t) + (s + t)2)MD33

− 9(3M4 − 4M2(s+ t) + (s+ t)2)

×M2
D33
− 12M(M2 − s− t)M3

D33
)G2

2ND33γ)
}
.

In formulas (49), MD33 is the mass of the D33 reso-
nance, whileDsD33 = s−M2

D33
+ iMD33ΓD33(s) and
YSICS OF ATOMIC NUCLEI Vol. 68 No. 2 2005
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DuD33 = u−M2
D33

+ iMD33ΓD33(u) are the denom-
inators of the propagator for the D33 resonance in,
respectively, the s and the u channel.

Since the D33 and D13 resonances have the same
spin and parity of 3/2− and differ only in isospin
and mass, the contributions of D13 to the invariant
functions f1−f6 for Compton scattering on a proton
can be obtained from the corresponding formulas (49)
forD33 by means of the substitutions

DsD33 → DsD13 , DuD33 → DuD13 , (50)

MD33 →MD13 ,

G1ND33γ →
√

3
2
Gp

1ND13γ ,

G2ND33γ →
√

3
2
Gp

2ND13γ ,

where DsD13 = s−M2
D13

+ iMD13ΓD13(s) and
DuD13 = u−M2

D13
+ iMD13ΓD13(u) are the denom-

inators of the propagator for the D13 resonance in,
respectively, the s and the u channel. For Compton
scattering on a neutron, the last two rows in (50)
must be replaced as follows:

G1ND33γ →
√

3
2
Gn

1ND13γ , (51)

G2ND33γ →
√

3
2
Gn

2ND13γ .
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ELEMENTARY PARTICLES AND FIELDS
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Relativistic Description of PPPγ∗∗∗γ Transition Form Factors
within the Quasipotential Approach
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Abstract—The possibility of a nonperturbative description of the π0γ∗γ, ηγ∗γ, and η′γ∗γ transition form
factors is investigated. The description is performed within the quasipotential approach in the lowest
order approximation in the electromagnetic coupling constant. This makes it possible to obtain analytic
expressions for these form factors in terms of the corresponding relativistic meson wave functions. The
quasipotential wave functions chosen for pseudoscalar mesons in a natural way permit obtaining a
quantitative description of present-day experimental data. A comparison of the parameters of the wave
functions for π0, η, and η′ mesons demonstrates clearly the relativistic character of quark motion in light
mesons. c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Investigation of electromagnetic hadron decays
plays an important role in elementary-particle phy-
sics. Advances in QCD and the development of
the fundamental concept of confinement related the
physics of soft processes—that is, interactions at long
distances—to this realm of investigations. Although
the type of experiments that would be crucial for the
problem of confinement has not been specified so
far, measurement of phenomenological properties of
hadrons—such as form factors, magnetic moments,
and polarizations—can furnish required information.
In other words, information about the distribution
of various quark configurations in hadron matter
can be quite accessible owing to the interaction of
photons with the electric charges of quark fields.
Such electromagnetic processes are relatively simple
and admit theoretical interpretations that are less
ambiguous than those in the case of purely hadron
interactions. Thus, electromagnetic processes play
the role of a testing ground for any theory describing
the structure of strongly interacting particles.

The vector-meson-dominance model was one of
the early models that were used to describe meson–
photon transitions. According to this model, the
hadron current is proportional to the fields of the vec-
tor mesons ρ, ϕ, and ω [1]; as a result, virtual mesons
of these types mediate photon–hadron interactions.

Experimental data on Pγ∗γ transition form fac-
tors (here, γ∗ and γ are, respectively, a virtual and
a real photon, while P is a pseudoscalar meson) as

*e-mail: Savrin@theory.sinp.msu.ru
1063-7788/05/6802-0306$26.00
functions of the momentum transfer squared Q2 are
usually approximated by the dipole formula

FP (Q2) =
fP

1 +Q2/Λ2
P

(1)

(or by a superposition of dipole formulas), where fP

is the P → γγ decay constant. The vector-meson-
dominance model predicts that ΛP �MV , whereMV

is the vector-meson mass. As a matter of fact, this
model is purely phenomenological, but it had been
among basic ones for some time in the past.

Transition form factors cannot be calculated di-
rectly on the basis of QCD. However, they can be
estimated by using perturbative QCD combined with
sum rules and other theoretical methods.

A factorization procedure that separates perturba-
tive effects at short distances from nonperturbative
effects (at long distances) is one of the important
concepts in methods based onQCD. The former have
received adequate study and can be calculated on
the basis of perturbative QCD, whereas the latter
can be estimated only asymptotically in the limit of
high momentum transfers. In calculations based on
perturbative QCD, the transition form factor FP (Q2)
is represented as a combination of the hard-scattering
amplitude and a soft nonperturbative wave function
for the corresponding meson [2, 3].

In [4], the asymptotic behavior of the π0γ∗γ transi-
tion form factor in the limit of highQ2 was calculated
within perturbative QCD in the region of spacelike
virtual-photon momentum q2 = −Q2. The result can
be represented in the form

lim
Q2→∞

Q2Fπ0(Q2) =
√

2fπ,
c© 2005 Pleiades Publishing, Inc.
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where fπ � 0.128 GeV is the pion-decay constant. It
was also found that, in this limit, any meson wave
function tends to an asymptotic wave function of a
specific form [2, 5].

For Q2 →∞, the Pγ∗γ transition form factors
are predicted by perturbative QCD, whereas their
behavior in the limit Q2 → 0 was investigated with
the aid of current algebra and with allowance for an
electromagnetic anomaly. For the neutral pion, this
yields [2]

lim
Q2→0

Fπ0(Q2) ≡ f0 =
√

2
(2π)2fπ

in the first order inm2
q/M

2
0 , wheremq is the u- or the

d-quarkmass andM0 is the neutral-pionmass. In the
above expression, f0 is the π0 → γγ decay constant.
Information about the behavior of Pγ∗γ transition
form factors in the region of timelike virtual-photon
momenta—in particular, in the limit q2 = Q2 → 0—
can be obtained by studying P → ��̄γ Dalitz decays
(here, � and �̄ are a lepton and an antilepton, respec-
tively).

To describe effects to order m2
q/Q

2 inclusive, use
was made of the following interpolation between the
two limits in question:

Fπ0(Q2) =
√

2fπ

Q2 + (2πfπ)2
. (2)

In order to calculate the long-distance effect in the
soft nonperturbative region, the sum-rule method
was employed in [5] with the aim of deriving the
pion wave function in the experimentally accessible
region of Q2. It was shown that the proposed wave
function describes some experimental data fairly well.
However, this wave function suffers from large un-
certainties because of the dependence on the strong
coupling constant αs.

By using small QCD corrections in calculating
the π0γ∗γ transition form factor, it was further shown
in [6, 7] that, in contrast to the results obtained with
the asymptotic wave function, the data for this form
factor with the wave function from [5] deviate signif-
icantly from experimental results. Approximately at
that time, however, there appeared articles where the
authors disregarded QCD corrections and took into
account corrections to quark momenta. The results
obtained in this way were equally satisfactory for the
two wave functions.

Although methods based on perturbative QCD
are often used to estimate and describe experimental
data, the applicability of these methods at experi-
mentally accessible momentum transfers (about a few
gigaelectronvolts) has yet to be established conclu-
sively within the theory of strong interactions.
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 2 200
In order to avoid such ambiguities in calculations
within perturbative QCD, an alternative approach
was developed in [8] on the basis of the sum-rule
method. This approach was used to predict the π0γ∗γ
transition form factors. In this case, predictions de-
pend on the model of the hadron spectrum, which is
chosen in a special way, and on the vacuum conden-
sate, which is represented by a nonperturbativematrix
element. Thus, it should be emphasized that, at the
present time, a nonperturbative treatment of various
exclusive processes is the subject of considerable in-
terest in the theory.

In this study, we employ the quasipotential ap-
proach [9] to calculate the π0γ∗γ, ηγ∗γ, and η′γ∗γ
transition form factors. This approach, as well as
the approach that is based on the Bethe–Salpeter
equation [10] and which is similar to it, has already
been used successfully a number of times to describe
various meson decays [11]. For the time being, we will
disregard radiative QCD corrections; as to electro-
magnetic interaction, we will take it into account in
the lowest order of perturbation theory. The simplicity
of this model makes it possible to obtain analytic ex-
pressions for relevant transition form factors in terms
of relativistic meson wave functions, which include
all soft nonperturbative contributions. It is shown
that this model permits describing experimental data
satisfactorily, the inclusion of the relativistic motion of
quarks within mesons being essential. An expression
for a transition form factor is derived from an analysis
of the corresponding Dalitz decay, this being the most
natural way for the quasipotential approach. After
that, it is smoothly continued to the region of space-
like vitual-photon momenta, whereupon the asymp-
totic behavior of the form factor is studied for Q2 →
∞. A specific choice of the model quasipotential wave
function enables one to describe form factors over the
entire domain of Q2, this function taking the form of
the asymptotic wave function [2, 5] in the reference
frame comoving with the fast meson.

2. FORM FACTOR FOR THE DECAY P → γ∗γ

According to the quasipotential approach, the am-
plitude for the decay of a meson consisting of a quark
and an antiquark to a lepton–antilepton pair and a
photon is given by [12]

M(p,p�|P ) =
∫

d3ωkqT (p,p�;kq|P, εP ) (3)

×
∫

d3ωk′
q
G̃(0)

q (kq;k′
q|P, εP )

⊗
∫

d3ωk′′
q

[
G̃(−)

q

]−1
(k′

q;k
′′
q |P, εP )Φ̃(−)

P (k′′
q ),
5
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Fig. 1. Diagram illustrating the application of the
quasipotential approach to quarkonium decay.

where p and p� are the momenta of, respectively,
the photon and one of the leptons; kq is the quark

momentum; d3ωkq = dkq/
(
2(2π)3

√
k2

q +m2
q

)
is a

momentum-volume element on the mass hyper-
boloid; P is the meson 4-momentum; εP = (λP )
is the invariant meson energy, λ being a unit 4-
vector (λ2 = 1) (in considering particle decays, it
is natural to set λ = P/M , in which case εP = M ,
where M is the meson mass); T is the off-energy-
shell amplitude for the transition in which a quark–
antiquark pair transforms into a lepton–antilepton

pair, emitting a photon; G̃(0)
q and G̃(−)

q are theGreen’s
functions for, respectively, a free and an interacting

quark–antiquark system; and Φ̃(−)
P is the single-

time relativistic pseudoscalar-meson wave function.
It should be noted that expression (3) involves, in
addition to integration with respect to the momenta
of the participant quarks, summation over their po-
larizations.

If one disregards intermediate-state quark–anti-
quark interaction (radiative QCD correction), for-
mula (3) assumes a very simple form,

M(p,p�|P ) =
∫

d3ωkqT (p,p�;kq|P, εP )Φ̃(−)
P (kq).

(4)

In the covariant formulation of the quasipotential
approach—and we consider precisely this formula-
tion—the 4-momenta involved satisfy the relations

p+ p� + p�̄ − (εp + εp�
+ εp�̄

)λ (5)

= kq + kq̄ − (εkq + εkq̄)λ = P − εPλ,

where the indices q̄ and �̄ label 4-momenta associated
with antiquarks and antileptons, respectively.

In the lowest order in the electromagnetic inter-
action within the quasipotential approach, the ampli-
tude in (4) for the annihilation of a quark–antiquark
PH
system to a lepton–antilepton pair via photon emis-
sion takes the form

T (p,p�;kq|P, εP ) =
4πα
√

3e2q
Q2

ev̄
(+)
� (p�) (6)

× γµv
(+)
� (p�̄)⊗

[
v̄(−)
q (kq̄)γµ

×
{
p̂− k̂q − (εp − εkq + q0)λ̂−mq

2q0(q0 + εkq̄ − εP + εp − i0)

+
p̂− k̂q − (εp − εkq − q0)λ̂−mq

2q0(q0 + εkq − εp − i0)

}

× ê∗(p)v(−)
q (kq)− v̄(−)

q (kq̄)ê∗(p)

×
{
p̂+ k̂q − (εp + εkq + q′0)λ̂+mq

2q′0(q′0 + εkq − εP + εp − i0)

−
p̂+ k̂q − (εp + εkq − q′0)λ̂+mq

2q′0(q′0 + εkq̄ − εp − i0)

}
γµv

(−)
q (kq)

]
,

where Q2 = (p� + p�̄)
2, q0 =

√
q2 +m2

q , q′0 =√
q′2 +m2

q , and

q2 = (εp − εkq)
2 − (p − kq)2, (7)

q′2 = (εP − εp − εkq)
2 − (P − p− kq)2.

In addition, we indicate that, here,
√

3 is the color
factor and eq is the quark charge and that we have as-
sumed the equality of the u- and d-quark masses. In
view of quark-flavor mixing within mesons, we must
obviously set e2q = (e2u − e2d)/

√
2 = 1/(3

√
2) for π0

and e2q = (e2u + e2d)/
√

2 = 5/(9
√

2) for η and η′ (if we
disregard the strange-quark admixture). In the ap-
proximation adopted here, the diagram correspond-
ing to the amplitude in (4) is shown in Fig. 1. The
most general form of the single-time wave function
for a pseudoscalar bound state of a fermion and an
antifermion is

Φ̃(−)
P (kq) =

v̄
(+)
q (kq)γ5v

(+)
q (kq̄)

2εkq̄

ϕP (kq), (8)

where ϕP (kq) is its scalar part. Substituting (8)
and (6) into (4), we obtain the decay amplitude in
the form

M(p,p�|P ) (9)

=
4πα
Q2

FP (Q2)iεµνρσev̄
(+)
� (p�)γµv

(+)
� (p�̄)e

∗νpρP σ.

Going over to the meson rest frame (P = 0) and
performing integration with respect to angles in the
YSICS OF ATOMIC NUCLEI Vol. 68 No. 2 2005
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S state, we obtain

FP (Q2) =

√
3e2q2mq

(2π)2pMP

∞∫
0

dkqkq

k0
q

(10)

× ln

∣∣∣∣∣∣
(√

(p+ kq)2 +m2
q + k0

q −MP + p
)

(√
(p− kq)2 +m2

q + k0
q −MP + p

)

×

(√
(p+ kq)2 +m2

q + k0
q − p

)
(√

(p− kq)2 +m2
q + k0

q − p
)
∣∣∣∣∣∣ϕMP

(kq),
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where ϕMP
(kq) is the scalar part of the single-time

wave function for an S-state pseudoscalar meson [see
Eq. (8)] considered in its rest frame and MP is the
pseudoscalar-meson mass. In terms of the dimen-

sionless variables x = Q2/M2
P (for the case of the

Dalitz decay, we have 4m2
�/M

2
P ≤ x ≤ 1) and y =

2kq/MP , the photonmomentum and energy reduce to

p = p0 = (1− x)MP /2, while the expression for the
form factor becomes
(1− x)FP (x) =

√
3e2qzP

(2π)2

∞∫
0

ydy√
y2 + z2

P

ln

∣∣∣∣∣∣∣
(√

(y + 1− x)2 + z2
P +

√
y2 + z2

P − 1
)2

− x2

(√
(y − 1 + x)2 + z2

P +
√
y2 + z2

P − 1
)2

− x2

∣∣∣∣∣∣∣ϕMP
(y), (11)
where zP = 2mq/MP . Within the quasipotential
approach, the normalization condition for the wave
function has the form∫

d3ωkq2εkq |ϕP (kq)|2 = 2εP . (12)

In terms of the above variable, it reduces to
∞∫
0

dyy2|ϕMP
(y)|2 =

(4π)2

M2
P

. (13)

3. BEHAVIOR OF THE Pγ∗γ TRANSITION
FORM FACTOR IN THE SPACELIKE REGION

Above all, we are interested in the behavior of the
integrand in expression (11) for the meson form factor
as a function of the momenta of constituent quarks.
In the timelike region (x > 0), such an analysis is
not very convenient: the logarithmic function in the
integrand has second-order discontinuities stemming
from poles of the expression under the logarithm sign.
These singularities have no effect on the divergence
of the integral, since they are integrable logarithmic
singularities. However, the presence of poles hinders
the expansion of the integrand in a power series at
small y. Moreover, it is difficult to perform experi-
ments in the timelike region because of a small kine-
matical region of the processes in question, and all
of the latest experimental data refer to the spacelike
case—a transition to this case is accomplished by a
mere substitution of−x for x in (11). Considering the
form factor in the spacelike region, we then deal with
lepton–meson scattering rather than with a Dalitz
decay—these two processes are related by crossing
symmetry. As a result, we obtain
(1 + x)FP (x) =

√
3e2qzP

(2π)2

∞∫
0

ydy√
y2 + z2

P

ln

(√
(y + 1 + x)2 + z2

P +
√
y2 + z2

P − 1
)2

− x2

(√
(y − 1− x)2 + z2

P +
√
y2 + z2

P − 1
)2

− x2

ϕMP
(y). (14)
Here, we have removed the modulus sign, since the
expression under the logarithm sign is positive over
the entire domain of integration and over the entire
kinematical region 0 ≤ x <∞. Thus, we have ob-
tained an analytic expression for the Pγ∗γ transition
form factor in terms of the relativistic meson wave
function ϕMP

(y). Knowledge of this wave would en-
able us to calculate the form factor (14) explicitly.
In the present study, we will consider two simple
versions of the calculation of the form factor by for-
mula (14), a calculation in the so-called static ap-
proximation and a calculation by the method of a trial
wave function.

4. STATIC APPROXIMATION
The static approximation implies a slow motion

of quarks within mesons—as a matter of fact, it is
equivalent to the nonrelativistic approximation, y �
1. From the point of view of formula (14), this approx-
imation would be valid if the wave function ϕMP

(y)
5



310 ZARZHITSKY, SAVRIN
decreased very fast at large y. In that case, it is legit-
imate to expand the integrand (with the exception of
ϕMP

) in y. Discarding all terms of order y4 and higher
order terms, we then have

FP (x) =
16
√

3e2qϕ̃MP
(0)

M
5/2
P

√
(1 + x)2 + z2

P

(15)

×

(√
(1 + x)2 + z2

P + zP − 1
)

(√
(1 + x)2 + z2

P + zP − 1
)2

− x2

,

where we have introduced the value of the normalized
(to unity) wave function at the origin of spatial coor-
P

dinates,

ϕ̃MP
(0) =

M
5/2
P

(4π)2

∞∫
0

dyy2ϕMP
(y), (16)

this quantity appearing here as an unknown parame-
ter. In the same approximation, we can also calculate
the P → γγ decay constant as

fP =
16
√

3e2qϕ̃MP
(0)

M
5/2
P

√
1 + z2

P

(√
1 + z2

P + zP − 1
) . (17)

As a result, the form factor in (15) assumes the form
FP (x) =
fP

√
1 + z2

P√
(1 + x)2 + z2

P

(√
1 + z2

P + zP − 1
)(√

(1 + x)2 + z2
P + zP − 1

)
(√

(1 + x)2 + z2
P + zP − 1

)2

− x2

. (18)
Thus, we have seen that, in the static approxima-
tion, we have a simple analytic formula describing the
form factor and featuring one unknown parameter, zP

(or the quark mass mq), since the decay constants
fP are known to a high precision from independent
experiments.

It should be noted that formula (18) is not the
nonrelativistic approximation in a literal sense, since
we did not assume that the quark binding energy
within mesons is small, so that the parameter zP in
this formula can deviate arbitrarily fromunity.We only
assumed that the momenta of the quarks are small
against their masses. Of course, formula (18) differs
from the simplest dipole approximation in (1), but one
must choose the parameter zP in order to find out
how well it describes experimental data. This can be
done by using an extrapolation of experimental data
either for the slope parameter of the form factor in the
vicinity of the pointQ2 = 0 or for the parameter ΛP of
the dipole formula for Q2 →∞. Expanding the form
factor (18) at small x, we obtain

FP (x) � fP (1− bPx), (19)

where

bP =
2
√

1 + z2
P + zP − 1

(1 + z2
P )
(√

1 + z2
P + zP − 1

) . (20)

Bearing in mind that the static approximation is
applicable above all to heavy mesons, we begin our
analysis by considering the η′ meson. Attempts at
experimentally determining the parameter bP have
been undertaken many times. We will rely on one of
the latest studies of the CELLO Collaboration [13],
H

where these parameter was estimated at bη′ = 1.46.
As a result, we obtain zη′ = 0.743; that is, mq =
0.356 GeV, which is quite in accord with our ideas
of the constituent quark mass. Using this quark-
mass value, we arrive at bη = 0.685 and bπ0 = 0.0540,
these values differing from the results of the CELLO
Collaboration by a factor of about 1.5. This may
suggest that the static approximation is not quite
adequate to describing the form factors for the η and
π0 mesons. On the other hand, the slope parame-
ter at the point x = 0 is “measured” by extrapolat-
ing experimental data; therefore, the accuracy of its
determination is quite uncertain—it depends on the
momentum-transfer region where the measurements
were performed and on the extrapolation method.

Let us now consider the region of large x. The
asymptotic behavior of the form factor is readily cal-
culable and is coincident with the asymptotic behav-
ior of the dipole formula (1):

lim
Q2→∞

Q2FP (Q2) = fP Λ2
P . (21)

Within the model considered here, we have

Λ2
P =

√
1 + z2

P

(√
1 + z2

P + zP − 1
)
M2

P

2zP
. (22)

As above, we will first consider the η′-meson form
factor. From relatively recent data of the CLEO Col-
laboration [14], we have Λη′ = 0.859 GeV; from (22),
we therefore obtain zη′ = 0.702—that is, mq =
0.336 GeV, which is in excellent agreement with the
quark mass extracted from the slope parameter of the
form factor at Q2 = 0. From here, one can conclude
YSICS OF ATOMIC NUCLEI Vol. 68 No. 2 2005
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that the η′-meson form factor is fully described within
the static approximation. Using the same quark-
mass value for the other two mesons, we arrive at
Λη = 0.591 GeV and Λπ0 = 0.290 GeV, which devi-
ates from the experimental extrapolation (especially in
the case of the π0 meson) significantly (by more than
a factor of 2.5). The only conclusion to be drawn from
this is that the static approximation is inappropriate
for describing light mesons, so that it is necessary
to take into account the relativistic motion of quarks
within them.

5. DESCRIPTION OF A TRIAL
QUASIPOTENTIAL WAVE FUNCTION

In order to perform a more accurate comparison
of the behavior of the form factor with experimental
data, it is necessary to calculate the integral in (14)
with a wave function ϕMP

(y) that, unfortunately, is
unknown at the present time. In principle, one could
find it by solving the quasipotential equation for the
wave function. For want of a complete understanding
of the quark-confinement phenomenon, however, we
had to employ a phenomenological approach to spec-
ifying the quasipotential of quark–quark interaction.
Since one cannot avoid the use of free parameters, it
is therefore more reasonable to introduce, from the
outset, a trial wave function that decreases rather
fast at high quark momenta and which satisfies the
normalization condition (12).

Since the wave function for a pseudoscalar meson
moving with an arbitrary momentum, ϕP (kq), is a
Lorentz-invariant quantity, one can represent it in the
S state, taking into account symmetry with respect to
the momenta of the quark and the antiquark, as

ϕP (kq) = ϕMP

(
P (kq + kq̄)

MP

)
; (23)

that is, it depends on only one invariant combination
in the form of the scalar product of 4-momenta, since,
in the quasipotential approach, the momenta of the
particles themselves lie on the mass hyperboloids:
k2

q = k2
q̄ = m2

q and P 2 = M2
P . Now, the simplest way

to choose a trial wave function is to take it in the
form of an exponentially decreasing function of the
invariant variable introduced above; that is,

ϕMP

(
P (kq + kq̄)

MP

)
= AP exp

{
−aPP (kq + kq̄)

M2
P

}
,

(24)

where aP is the dimensionless slope parameter. It is
the only parameter introduced here since the param-
eter AP is determined by the normalization condi-
tion (12). In the meson rest frame, we eventually have

ϕMP
(y) = AP exp

{
−

2aP k
0
q

MP

}
(25)
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= AP exp
{
−aP

√
y2 + z2

P

}
,

where k0
q =

√
k2

q +m2
q . Obviously, the parameter aP

controls the quark-momentum distribution within
a meson. Small values of this parameter (aP � 1)
correspond to the case where the main contribution
comes from high values of the quark momenta. On
the contrary, low momenta are dominant at aP � 1.

It is interesting to find out which form the trial
wave function introduced above takes in the reference
frame comoving with a fast meson, P 0 →∞. In this
limit, we readily find, upon disregarding the masses,
that

k0
q =

√
k2

q +m2
q = xP 0 +

k2
T

2xP 0
(26)

and

k0
q̄ =

√
(P− kq)2 +m2

q (27)

= (1− x)P 0 +
k2

T

2(1 − x)P 0
,

where kT is the transverse component of the quark
momentum and x = k||/P

0. As a result, the wave
function

ϕP (kq) ≡ ϕMP
(x,kT ) = AP exp

{
− aP k

2
T

2MPx(1− x)

}
(28)

coincides with the asymptotic wave function used
in [2, 5].

The chosen trial wave function (25) makes it pos-
sible to perform some calculations in an analytic form.
For example, its substitution into the normalization
condition (12) yields

AP =
4π

MP zP

√
2aP

K2(2aP zP )
, (29)

where K2 is a second-order Bessel function of the
second kind. From (14), it follows that

lim
Q2→∞

Q2FP (Q2) =
2
√

3e2qM2
P zPAP

(2π)2
(30)

×
∞∫
0

ydy√
y2 + z2

P

ln

√
y2 + z2

P + y

zP

× exp(−aP

√
y2 + z2

P ) =
2
√

6e2qMP

π

× K0(aP zP )√
aPK2(2aP zP )

= fP Λ2
P ,
5
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Parameters of pseudoscalar-meson wave functions and corresponding form-factor parameters

π0 η η′

calculation experiment calculation experiment calculation experiment

zP 6.21 1.53 0.88

aP 0.08 2.0 18.8

cP 1.716 0.039 0.004

fP [GeV−1] 0.27 0.27 0.26 0.26 0.34 0.34

ΛP [GeV] 0.70 0.77± 0.02 0.76 0.77± 0.02 0.92 0.84± 0.02

bP 6.1× 10−3 (3.3± 0.3)× 10−2 0.32 0.43± 0.06 1.0 1.5± 0.2
where K0 is a zero-order Bessel function of the
second kind. By virtue of the above comments, the
limit of this formula for aP →∞ corresponds to
the static approximation. On the contrary, the limit
aP → 0 corresponds to the ultrarelativistic motion
of the quarks. It turns out that experimental data
cannot be described satisfactorily on the basis of
formula (30) in this asymptotic regions. This means
that values of the parameter aP lie somewhere in
the intermediate region; therefore, it is necessary to
calculate the relevant integrals numerically.

6. RESULTS OF THE NUMERICAL
CALCULATION

In the preceding sections, we tried to establish
analytically special features in the behavior of the
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the static approximation (dashed curve) and according to
calculations with a trial relativistic wave function (solid
curve).
PH
Pγ∗γ electromagnetic-transition form factors for the
π0, η, and η′ mesons. In doing this, we were able to
reveal a significant difference in the applicability of
two limiting cases (the static and the ultrarelativis-
tic one) to this group of mesons. In order to obtain
deeper insight into this difference in the behavior of
the form factors and to perform a detailed comparison
of our results with experimental data, it is desirable to
calculate FP (x) over the entire regionQ2 where mea-
surements have been performed. For this purpose, we
have calculated, in the present study, relevant inte-
grals numerically, taking a trial wave function in the
more general form

ϕMP
(y) = AP exp

(
−aP

√
y2 + c2P

)
, (31)

which involves two unknown parameters, aP and cP .
All of the above comments concerning the wave func-
tion in (25) remain in force for (31) as well, and the
new free parameter cP , which we introduced in (31),
affects the behavior of ϕMP

(y) more subtly than aP .

A comparison of our theoretical results with ex-
perimental data is given in the table.

All of the results for zP correspond to the quark-
mass value of mq = mu = md = 420 MeV. The val-
ues of all free parameters were obtained by fitting the
form-factor values at the origin to the corresponding
constants of meson decays into two photons under
the fixed normalization condition (13) for the wave
function (31).

Data on ΛP and bP were averaged over the results
from [13–16]. Experimental data directly on form-
factor values were borrowed from [13, 14]. The graph-
ical results for π0, η, and η′ are given in Figs. 2, 3, and
4, respectively.

The solid curves in the figures represent the results
of the numerical calculation of the integral for the
form factor with the trial wave function (31). The
dashed curves show the results for the static case
YSICS OF ATOMIC NUCLEI Vol. 68 No. 2 2005
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with the parameter zP corresponding to the numerical
calculations for a given meson.

From a comparison of two descriptions—that in
the static case and that which was obtained with a
trial wave function that makes it possible to take into
account the contribution from the whole region of
quark momenta—one can draw the following conclu-
sions. First, a large discrepancy between the results
in the static approximation and experimental data
for the π0 meson is indicative of high characteristic
(mean) momenta of its constituent quarks. Second,
perfect agreement between the two descriptions for
the η′ meson gives sufficient grounds to state that
characteristic quark momenta are low in that case. In
all probability, the ηmeson represents an intermediate
case. The values in the table for the slope parameter
aP of the wave function clearly illustrate these con-
clusions.

7. CONCLUSION

The problem of describing the π0γ∗γ, ηγ∗γ, and
η′γ∗γ transition form factors has been considered
with the aim of obtaining deeper insight into the
regularities of the internal motion of quarks within
mesons. Figures 2, 3, and 4 shows graphical results
for the π0, η, and η′ mesons, respectively. The best
description of the form factors with the trial wave
function in (31) is represented by the solid curves.
One can see that agreement with experimental data
is quite satisfactory. Moreover, it is not poorer than
that which is provided by the most successful mod-
ern models, which employ more exotic assumptions
(see [14]). Our results corroborate the traditional idea
that the higher the binding energy of quarks in a
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 2 200
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Fig. 4. As in Fig. 2, but for the η′γ∗γ transition form
factor.

hadron, the higher the characteristic kinetic energy of
its constituent quarks. This statement does not follow
directly from any modern model that attempts to de-
scribe strong interactions; therefore, such a clear-cut
corroboration of it is an important result.

Thus, results that agree with modern experimen-
tal data have been obtained by a more economical
method on the basis of a relatively simple quasipo-
tential model (see Fig. 1). This gives every reason
to believe that, at the present-day accuracy of mea-
surements, a modification to the wave function and
the inclusion of QCD corrections can hardly lead to
significant changes. At the same time, the quasipo-
tential approach makes it possible to obtain more
detailed information about meson wave functions and
to take into account, in the future, radiative QCD
corrections.
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ELEMENTARY PARTICLES AND FIELDS
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Character of Interaction
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Abstract—Nonperturbative corrections to an interaction Hamiltonian that are associated with relativistic
motion and a large coupling constant are determined on the basis of an investigation of the asymptotic
behavior of the polarization loop for charged scalar particles in an external gauge field. The mass spectrum
of a bound state is determined analytically. The mechanism responsible for the emergence of the constituent
mass of particles that form a bound state is explained. It is shown that the contribution of the vector
potential and the contribution of the potential associated with a nonperturbative character of interaction
cancel each other and that the slope of the Regge trajectory is determined in terms of the string tension.
c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

The development of the idea of gauge invari-
ance [1] led to the emergence of QCD, which de-
scribes the interaction of color objects. Gross and
Wilczek [2] and Politzer [3] showed that the coupling
constants for quark–gluon interaction are small at
short distances, but that they grow with increasing
spatial scale. At the present time, this has been con-
firmed by numerous experimental data—in particular,
by data on the deep-inelastic scattering of electrons
on protons and neutrons. According to [2, 3], the
strength of attraction between quarks is modest at
short distances, and the Coulomb law is valid in
this case; at long distances, the attraction must be
much stronger and ensure quark confinement. Thus,
the interaction of color quarks goes over from the
confining to the deconfining phase, depending on
the distance. The phenomenological potential quark
model [4–7], which describes well the spectra and
the properties of charmonia [7] and bottomonia [8–
11], satisfies this condition best of all. However, the
phenomenological potential quark model does not
follow from the underlying principles of QCD.

Throughout the past three decades, theorists have
attempted to deduce an effective quark-interaction
Hamiltonian that would explain the conditions of
confinement and deconfinement for composite objects
on the basis of the underlying principles of QCD (for
details, see [11]). There exist a great many potential
quark models that are constructed on the basis of
various physical assumptions. By and large, these
models describe the physics of hadrons consisting of

*e-mail: diney@physics.kz
1063-7788/05/6802-0315$26.00
heavy quarks. In studying the properties of hadrons
consisting of light quarks, it is necessary, however,
to consider that the interaction there has a rela-
tivistic and a nonperturbative character. There is no
generally accepted recipe for taking into account
the nonperturbative character of interaction within
phenomenological quark models. At the same time, it
is well known that the problems of strong coupling—
that is, the description of the properties of bound
states at a large coupling constant—are essentially
relativistic; possibly, they can be solved only within
quantum field theory.

Within relativistic quantum field theory, the main
features of a bound state are generally determined on
the basis of the position of the pole of the amplitude
for the transition characterized by the corresponding
quantum numbers. It is precisely in the transition am-
plitude that there arises a nonperturbative character
of interaction due to a large coupling constant. This
character is determined by an integral equation of
the Bethe–Salpeter type. In specifying the nonper-
turbative character of interaction within conventional
quantum field theory, one usually faces the problem of
solving an integral equation with an arbitrary kernel.
Of course, it is very difficult to find a solution to such
an equation. At the same time, the mechanism ac-
cording to which only nonlocal interactions between
constituent particles can lead to the formation of a
bound state has been widely discussed (see, for ex-
ample, [12]). In view of this, it is of great interest to
investigate the quark-hadronization mechanism with
allowance for a nonperturbative character of inter-
action. Thus, the relativistic character of interaction
is taken into account within perturbation theory—
that is, only the contributions of various classes of
c© 2005 Pleiades Publishing, Inc.
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diagrams are summed. However, this is possible only
in the case of a rather small coupling constant. In
describing the properties of bound states at a large
coupling constant, summation of the contributions of
specific types of diagrams does not reflect the true
character of the interaction; moreover, perturbation-
theory series do not converge in this case. For this
reason, allowances for a nonperturbative and a rela-
tivistic character of the interaction require a dedicated
consideration in describing the properties of bound
states.

A unique method for taking into account a non-
perturbative character of interaction in describing the
properties of a relativistic bound state was proposed
in [13], where use was made of the Fock–Feynman–
Schwinger representation. Later on, this method was
refined in [14, 15] and was successfully applied in [16]
to describing the mass spectrum of hadrons and glue-
balls. Here, we report on one of the direct contin-
uations of those studies. The representation of the
polarization-loop function in the form of a path in-
tegral is a key point of this approach, whereby, the
main task here is reduced to calculating the integral
in question. Of course, the path integral cannot be
calculated in a general form; therefore, this is usually
done under some specific physical assumptions. In
the present study, we propose one of the alternative
versions of the calculation of the path integral and
determine, for the interaction potential, an analytic
form that corresponds to a nonperturbative character
of the interaction.

The ensuing exposition is organized as follows. In
Section 2, we present some details of a determination
of bound-state masses in terms of the polarization-
loop function. In Section 3, we calculate nonpertur-
bative corrections to the interaction Hamiltonian. In
Section 4, we derive the mass spectrum of a two-
gluon bound state for various forms of potential. In
the Conclusion, we summarize our basic results. In
the Appendix, we expound on some details of the
calculations.

2. MODEL DESCRIBING THE MASS
SPECTRUM OF A BOUND STATE

In this section, we will describe one of the alterna-
tive methods for determining the bound-state mass
with allowance for a nonperturbative and a relativistic
character of interaction.

The problem of determining the mass of the sys-
tem is one of the fundamental problems that arise in
describing the mechanism of bound-state interaction.
We will now consider the interaction of two charged
scalar particles in an external gauge field. We will as-
sume that the system of these particles forms a bound
state. We will determine the mass of the bound state,
PH
relying on an investigation of the asymptotic behavior
of the polarization-loop function for a charged scalar
particle in an external gauge field. This function can
be written in the form

Π(x− y) =
〈
Gm1(x, y|A)G∗

m2
(y, x|A)

〉
A
. (2.1)

Here, averaging is performed over the external gauge
field Aα(x). The Green’s function Gm(y, x|A) for a
scalar particle in an external gauge field can be de-
termined from the equation[(

i
∂

∂xα
+

g

c�
Aα(x)

)2

(2.2)

+
c2m2

�2

]
G(x, y|A) = δ(x− y),

where m is the scalar-particle mass and g is the cou-
pling constant. In averaging over the external gauge
field Aα(x), we will restrict ourselves to the lowest
order terms—that is, we take into account only a two-
point Gaussian correlation function,〈

exp
{
i

∫
dxAα(x)Jα(x)

}〉
A

(2.3)

= exp
{
−1
2

∫ ∫
dxdyJα(x)Dαβ(x− y)Jβ(y)

}
,

where Jα(x) is a real current. The gauge-field propa-
gator has the form

Dαβ(x− y) = 〈Aα(x)Aβ(y)〉A = δαβD(x− y).
(2.4)

The bound-state mass is generally determined in
terms of the polarization-loop function Π(x− y) as

M = − lim
|x−y|→∞

lnΠ(x− y)
|x− y| . (2.5)

It can be seen from (2.1) that, in order to obtain the
loop function, it is first necessary to determine the
Green’s function.

A solution to Eq. (2.2) can be represented in the
form of a path integral as (for details, see [17])

G(x, y|A) (2.6)

=

∞∫
0

ds

(4sπ)2
exp
{
−sm2 − (x− y)2

4s

}

×
∫
dσβ exp


ig

1∫
0

dξ
∂Zα(ξ)
∂ξ

Aα(ξ)


 ,

where we have introduced the notation

Zα(ξ) = (x− y)αξ + yα − 2
√
sBα(ξ), (2.7)
YSICS OF ATOMIC NUCLEI Vol. 68 No. 2 2005
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dσβ = NδBβ exp


−12

1∫
0

dξB′2(ξ)


 ,

N being a normalization factor; the normalization
conditions are taken to be

Bα(0) = Bα(1) = 0,
∫
dσβ = 1.

Substituting (2.6) into (2.1) and performing averag-
ing over the external gauge field according to (2.3),
we obtain the loop function in the form

Π(x) =

∞∫
0

∞∫
0

dµ1dµ2

(8xπ2)2
(2.8)

× exp
{
− 1
2
x

(
m2

1

µ1
+ µ1

)

− x

2

(
m2

2

µ2
+ µ2

)}
J(µ1, µ2),

where the path integral is

J(µ1, µ2) = N1N2

∫ ∫
δr1δr2 (2.9)

× exp


−12

x∫
0

dτ
(
µ1r

′
1
2(τ) + µ2r

′
2
2(τ)
)


× exp {−W1,1 + 2W1,2 −W2,2} ,
the notation here being

Wi,j =
g2

2
(−1)i+j

x∫
0

x∫
0

dτ1dτ2Z
′(i)
α (τ1) (2.10)

×Dαβ

(
Z(i)(τ1)− Z(j)(τ2)

)
Z

′(j)
β (τ2).

The path integral in (2.9) is similar to the Feyn-
man path integral in nonrelativistic quantum me-
chanics [18] for the motion of two particles whose
masses are µ1 and µ2. The interaction between these
particles is described by expression (2.10), which in-
volves both potential and nonpotential interactions.
In particular, the terms W1,1 and W2,2 specify nonpo-
tential interactions, while the termW1,2 is responsible
for a potential interaction of a nonlocal character.
From (2.5), it follows that, upon determining the
loop function, one can determine the bound-state as
well. However, the path integral appearing in (2.8)
and (2.9) cannot be calculated in a general form.
According to (2.5), it is necessary to determine the
asymptotic behavior of the loop function. Suppose
that, in the limit |x− y| → ∞, the path integral spec-
ified by (2.9) is defined as

lim
|x|→∞

J(µ1, µ2) =⇒ exp{−xE(µ1, µ2)}, (2.11)
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where E(µ) is a quantity that depends on µ1 and µ2

and on the coupling constant g. In this approxima-
tion, the integral in (2.9) is calculated by the saddle-
point method. As a result, we find for the bound-state
mass from (2.5) that

M =
√
m2

1 − 2µ2E′(µ) (2.12)

+
√
m2

2 − 2µ2E′(µ) + µE
′
(µ) + E(µ)

and determine the parameter µ from the equation

1
µ
=
1
µ1
+
1
µ2

(2.13)

=
1√

m2
1 − 2µ2E

′(µ)
+

1√
m2

2 − 2µ2E
′(µ)

,

where we have used the notation

E
′
(µ) = ∂E(µ)/∂µ.

The parameters µ1 and µ2 will be considered as the
masses of constituent particles in a bound state.
These masses differ from the free-state masses
m1 and m2. In describing the mass spectrum of
a relativistic bound state, one usually introduces
the constituent mass of constituent particles [4–
10], which differs from the mass of the original free
particle. In particular, a description of the mass
spectrum of hadrons consisting of quarks usually
involves introducing the valence-quark and current-
quark masses, which differ from each other.

If a bound state is formed by two gluons, it follows
from (2.13) that the constituent gluon mass is not
equal to zero. In this case, a two-gluon bound state
can be identified with a Pomeron, which is widely
used in describing the mechanism of inelastic particle
scattering.

3. NONPERTURBATIVE CORRECTION
TO THE INTERACTION HAMILTONIAN

In a standard calculation that takes into account a
nonperturbative character of interactions, one usually
retains only the lowest degree of the ratio v/c, but our
approach includes the ultrarelativistic limit—that is,
we determine the form of interaction by summing an
infinite series in powers of v/c.

Let us now proceed to determine the structure
of the interaction Hamiltonian. Taking into account
Eq. (2.7) and employing the Fourier transform of the
gluon propagator (2.4), we recast the expression for
Wi,j into the form

Wi,j =
g2

2
(−1)i+j (3.1)
5
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×
x∫

0

x∫
0

dτ1dτ2

(
n+

1
c
r′i(τ1)

)
·
(
n+

1
c
r′j(τ2)

)

×
∫

dq
(2π)3

∞∫
−∞

ds

2π
D̃

(
q2 +

s2

c2

)

× exp
{
is(τ1 − τ2) +

is

c

(
r
(4)
i (τ1)− r

(4)
j (τ2)

)

+ iq · (ri(τ1)− rj(τ2))
}
,

where n = r/r with r = r1(τ)− r2(τ) and r = |r|,
while D̃ is the Fourier transform of the function D.
Constituent particles interact via the exchange of
gauge fields; therefore, we represent the propagator in
the standard form,

D̃

(
q2 +

s2

c2

)
�
(
q2 +

s2

c2

)−1

(3.2)

=

∞∫
0

dη exp
{
−η
(
q2 +

s2

c2

)}
.

According to (3.1), we find for the interaction poten-
tial after integration with respect to q that

Wi,j =
2
3
g2(−1)i+j (3.3)

×
t∫

0

t∫
0

dτ1dτ2

∞∫
−∞

ds

2π

∞∫
0

dη

(2
√
πη)3

× exp
{
− r2

4η

} ∞∑
k=0

k∑
n=0

(−1)n+k

n!(k − n)!
ηnr(4)(k−n)

×
(
is

c

)n+k

eisτΘij ,

where we have introduced the notation

τ = (τ1 − τ2), r = ri(τ1)− rj(τ2), (3.4)

r(4) = r
(4)
i (τ1)− r

(4)
j (τ2),

Θij = 1 +
n
c
·
(
r′i(τ1) + r′j(τ2)

)
+

r′i(τ1) · r′j(τ2)
c2

.

Here, τ1 and τ2 are treated as the proper times of
the relative motion of constituent particles 1 and 2,
respectively. Further, we assume that, at the initial
instant of time, the constituent particles are at rest
and interact with each other only via an electric or
a chromoelectric field. We will now investigate the
asymptotic behavior of the polarization-loop function.
From (2.11), it follows that, in the asymptotic limit
x→∞ (or t→∞), Wi,j must depend on t linearly.
P

On the other hand, the Euclidean time r(4) depends
on the proper time τ of the constituent particle. In
view of this, we choose the τ dependence of r(4) in
the form

r(4) = c(τ1 − τ2)u ≡ cτu, (3.5)

where u is a new variable. Taking into account
Eqs. (3.4) and (3.5) and performing integration with
respect to s and u, we find from (3.3), after some
simple algebra, that

Wi,j = (−1)i+j g
2

6π
(3.6)

×
t∫

0

t∫
0

dτ1dτ2
δ(τ1 − τ2)

|ri(τ1)− rj(τ2)|

+ (−1)i+j g
2

6π

∞∑
k=1

(−1)k
(2k)!c2k

t∫
0

dτ
∂2k

∂τ2k

× |ri(τ)− rj(τ)|2k−1 ≡W
(1)
i,j +W

(2)
i,j .

Let us now consider each term in (3.6) individually.

The first term W
(1)
i,j corresponds to the one-photon-

exchange (one-gluon-exchange) contribution, which
involves both a diagonal and an off-diagonal inter-
action, the diagonal (i = j) interaction determining a
mass renormalization,

−W (1)
1,1 + 2W

(1)
1,2 −W

(1)
2,2 (3.7)

=

t∫
0

dτ

{
−4
3
αs

r(τ)
+ V (0)

}
,

where

r(τ) = |r1(τ)− r2(τ)|, (3.8)

V (0) =
4
3
αs

∫
dq
(2π)2

1
q2
.

The term V (0) corresponds to the usual renormal-
ization of the mass operator in the nonrelativistic
limit, and we will consider this term as a constant
parameter in the ensuing calculations. Within phe-
nomenological potential models, one resorts to an ad
hoc introduction of a new parameter [19, 20],

V0 = −2
√
λ exp{−(γ − 1/2)},

γ = 0.577215665,

which makes it possible to ensure perfect agreement
with experimental data. This parameter can be asso-
ciated with a nonpotential character of the interac-
tion. From (3.6), one can see that the second term

W
(2)
i,j generates only an off-diagonal contribution
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 2 2005



DETERMINATION OF THE GLUEBALL MASS 319
(i �= j), the diagonal (i = j) contribution being equal
to zero.

We will now determine nonperturbative correc-
tions. The parameter τ will be treated as the proper
time of the relative motion of constituent particles.
The quantity

v(τ) =
∂

∂τ
(r(τ)) (3.9)

then determines the relative velocity of constituent
particles.

Let us first consider the case where the velocity of
the relative motion is constant:

∂v(τ)/∂τ = 0. (3.10)

In this case, the contribution of the nonperturbative
correction to the interaction Hamiltonian is repre-
sented as the sum in (3.6),

I =
∞∑

k=1

(−1)k
(2k)!с2k

∂2k

∂τ2k

(
r2k−1(τ)

)
, (3.11)

where r = |r|. In order to perform summation, we
will first calculate the partial derivatives of the radius
vector:

v =
∂r
∂τ

,
∂r

∂τ
= (n · v), (3.12)

n =
r
r
, v′ =

∂v
∂τ
= 0.

In this approximation, we find for various values of k
that

k = 1
∂2r

∂τ2
=
[r,v]2

r3
=
+̂2

r3
,

k = 2
∂4r3

∂τ4
=
9+̂4

r5
,

...
...

k = n
∂2nr2n−1

∂τ2n
=

+̂2n

r2n+1

n∏
j=1
(2j − 1)2,

(3.13)

where

+̂ = [r,v] (3.14)

is the orbital-angular-momentum operator. Using
the relation

k∏
j=1

(2j − 1)2 =
[
(2k − 1)!
2k−1(k − 1)!

]2
(3.15)

=
Γ2(2k)

Γ2(k) · 22(k−1)

with allowance for the identity

Γ(2k) =
22k−1

√
π
Γ(k)Γ(k + 1/2) (3.16)
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and taking into account Eq. (3.13), we recast the
original series in (3.11) into the form

I =
∞∑

k=1

(−1)k
(2k)!c2k

+̂2k

r2k+1

Γ2(2k)
Γ2(k) · 22(k−1)

(3.17)

=
1√
πr

∞∑
k=1

(−1)kAk

(k)!
Γ(k + 1/2),

where we have introduced the notation

A = +̂2/(c2r2). (3.18)

By using the integral representation for the function
Γ(k + 1/2), we ultimately find from (3.17) that

I =
1√
πr

∞∑
k=1

(−1)kAk

(k)!

∞∫
0

dx
xk

√
x
e−x (3.19)

=
1√
πr

∞∫
0

dx√
x
e−x(e−Ax − 1)

=
1
r

[
1√

1 + +(++ 1)/(c2r2)
− 1
]
.

Taking into account (3.7), (3.11), and (3.19) and us-
ing (3.6), we then obtain the interaction Hamiltonian
with allowance for the nonperturbative correction.
The result is

H = H0 +�H0
nonper, (3.20)

where H0 is the nonrelativistic Hamiltonian and
�H0

nonper is the nonperturbative correction,

H0 =
1
2µ

P2 − 4
3
αs

r
+ V (0), (3.21)

�H0
nonper = −

4
3
αs

r

[
1√

1 + +(++ 1)/(c2r2)
− 1
]
.

Thus, we have obtained a nonperturbative correc-
tion to the interaction Hamiltonian, this correction
being associated with the relativistic nature of the
system. We have established that, in the nonrela-
tivistic limit (c→∞), there is no such correction.
We assumed, among other things, that our system
consists of quarks and antiquarks that move at a
constant velocity with respect to each other. Similar
results were obtained in [16].

4. CALCULATION OF THE GLUEBALL
MASS SPECTRUM

4.1. Mass Spectrum of a Glueball Consisting
of Scalar Gluons

In this subsection, we will consider a two-gluon
bound state of mass µ1 ≡ µ2 = 2µ. Since a gluon
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occurs only in a bound state, the interaction Hamil-
tonian is chosen in such a way as to satisfy the gluon-
confinement condition. The Schrödinger equation for
such a system then has the form[

1
2µ

P2 + σadr

]
Ψ = E(µ)Ψ, (4.1)

where σad is the string-tension parameter. In or-
der to determine the eigenvalue and wave function
from (4.1), we will apply the oscillator-representation
method. Before proceeding to determine the energy
spectrum and the wave functions for the Schrödinger
equation by the oscillator-representation method [21,
22], it is advisable to recall that this method is based
on the ideas and methods of the quantum theory of
a scalar field. One of the substantial distinctions be-
tween quantum field theory and quantum mechanics
is that quantized fields, which form a set of an infinite
number of oscillators for the ground state or the vac-
uum, retain their oscillator nature in quantum-field
interactions. In quantum mechanics, the behavior of
eigenfunctions for the majority of potentials differs
from the Gaussian behavior of an oscillator wave
function. In order to apply the methods and ideas of
quantum field theory to solving quantum-mechanical
problems, it is necessary to perform a change of vari-
ables in the original Schrödinger equation in such
a way that the sought wave function would have
Gaussian behavior at long distances and that the
transformed equation could be identified with a radial
Schrödinger equation in a space of higher dimension.
It should be noted that, for the first time, this idea
was discussed by Fock in solving the problem of the
hydrogen spectrum by means of a transformation to
four-dimensional momentum space [23].

In accordance with the aforesaid, we make the
change of variables (for details, see [24])

r = q2ρ, (4.2)

Ψ⇒ Ψ(q2) = q2ρ�Φ(q2),

where the parameter ρ controls the behavior of the
wave function at long distances. We use here the
atomic system of units (� = c = 1). The resulting
Schrödinger equation obtained from (4.1) after some
standard simplifications has the form{

− 1
2

(
∂2

∂q2
+
d− 1
q

∂

∂q

)
(4.3)

+ 4ρ2µσadq
2(3ρ−1) − 4ρ2µEq2(2ρ−1)

}
Φ(q2) = 0,

where

d = 2 + 2ρ+ 4ρ+ (4.4)
P

is the dimensionality of the auxiliary space. Thus, we
have obtained, upon the above change of variables,
a modified Schrödinger equation in d-dimensional
space Rd. From (4.3) and (4.4), it follows that the
orbital quantum number + appears in the definition
of the dimensionality d of the above auxiliary space.
By means of this trick, we can determine all of the
features in which we are interested (namely, the spec-
trum and the wave function), solving the modified
Schrödinger equation only for the ground state in the
auxiliary d-dimensional space Rd.

The ground-state wave function Ψm(q2) in Rd

depends only on the variable q2. Therefore, we identify
the operator

∂2

∂q2
+
d− 1
q

∂

∂q
≡ �q (4.5)

with the Laplacian �q in the auxiliary space Rd as
applied to the ground-state wave function, which
depends only on the radius q. On the basis of the
modified Schrödinger equation

HΦ(q) = ε(E)Φ(q), (4.6)

we find in accordance with (4.3) that the energy spec-
trum ε(E) in Rd is equal to zero,

ε(E) = 0. (4.7)

We will consider this relation as the condition for de-
termining the energy spectrum E of the Hamiltonian
from (4.3). Following the oscillator-representation
method, we express canonical variables in terms of
the creation (a+) and annihilation (a) operators in the
space Rd as

qj =
aj + a+

j√
2ω

, Pj =
√
ω

2
aj − a+

j

i
, (4.8)

j = 1, ..., d, [ai, a
+
j ] = δi,j,

where ω is the oscillator frequency, which is unknown
at the present stage. Substituting (4.8) into (4.3)
and introducing normal ordering with respect to the
creation operators a+ and the annihilation operators
a, we obtain

H = H0 + ε0(E) +HI , (4.9)

where H0 is the free-oscillator Hamiltonian

H0 = ω(a+
j aj), (4.10)

while ε0 is the ground-state energy in the zero-
order approximation of the oscillator-representation
method. The interaction Hamiltonian HI can also
be represented in a normal form with respect to the
creation operators a+ and the annihilation operators
a. It should be noted that the interaction Hamiltonian
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 2 2005
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does not involve terms that are quadratic in the
canonical variables; that is,

HI =
∫ (

dk

2π

)d

W̃ (k2) exp
{
− k

2

4ω

}
: e−i(kq)

2 :,

(4.11)

where

W (q2) =
∫ (

dk

2π

)d

W̃ (k2)e−i(kq). (4.12)

Here, : ∗ : is the normal-ordering symbol, and we
have used the notation

e−x
2 = e−x − 1 + x− x2/2

and

W (q2) = 4ρ2µσadq
2(3ρ−1) − 4Eρ2µq2(2ρ−1). (4.13)

Some details of the procedure used here to reduce the
Hamiltonian to a normally ordered form are given in
the Appendix (see also [24]).

The contribution of the interaction Hamiltonian
HI is considered as a small perturbation. Upon ex-
pressing the canonical variables of a quantum field
theory in terms of creation and annihilation operators
and representing the respective interaction Hamil-
tonian in a normal form, the requirement that the
interaction Hamiltonian not involve field operators
raised to the second power is essentially equivalent
in quantum field theory to renormalizing the coupling
constant and the wave function [25–27]. Moreover,
this procedure enables one to take into account the
main contribution through a mass renormalization
and the vacuum energy. In other words, all quadratic
forms are fully included in the free-oscillator Hamilto-
nian. This requirement makes it possible to formulate,
according to the oscillator-representation method,
the condition

∂ε0(E)/∂ω = 0 (4.14)

for determining the oscillator frequency ω, which
specifies the main quantum contribution. Taking into
account relation (4.9), we can then calculate the
energy E on the basis of Eqs. (4.7) and (4.14).

Within the oscillator representation, it was repeat-
edly verified for various potentials [28–30] that the
first-order correction associated with the interaction
Hamiltonian is identically equal to zero and that the
second-order correction is less than 1%. Therefore,
we consider only the zero-order approximation.

We now present ultimate results for the ground-
state energy in the zero-order approximation of the
oscillator representation:

ε0(E) =
dω

4
+
4ρ2µσad

ω3ρ−1

Γ(d/2 + 3ρ− 1)
Γ(d/2)

(4.15)
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− 4Eρ
2µ

ω2ρ−1

Γ(d/2 + 2ρ− 1)
Γ(d/2)

.

According to (4.14)—that is, the oscillator-represen-
tation condition—the oscillator frequency ω is given
by

ωρ =
[
4ρ2µσad

Γ(d/2 + 3ρ− 1)
Γ(d/2)

]1/3

. (4.16)

Taking into account (4.15) and (4.16), we find the
energy spectrum E from (4.7) as a function of the
parameter µ:

E(µ) =
3

2µ1/3

1
Γ(d/2 + 2ρ− 1) (4.17)

×
[
σ2

adΓ(d/2 + 1)Γ
2(d/2 + 3ρ− 1)
4ρ2

]1/3

.

The variational parameter ρ is usually found from
equations that minimize the energy E(µ); that is,

Ψ(2 + 2ρ++ ρ)(1 + 2+) (4.18)

+ 2Ψ(2ρ++ 4ρ)(4 + 2+)− 2/ρ
− 3Ψ(2ρ++ 3ρ)(3 + 2+) = 0,

where the function Ψ is

Ψ(x) =
∂

∂x
ln Γ(x). (4.19)

We now proceed to determine the glueball masses.
According to (2.13), the parameter µ for the bound
state of gluons is found from the equation

2 +
dE(µ)
dµ

= 0. (4.20)

Taking into account (4.17) and using (4.20), we then
obtain

µ =
[
σ2

adΓ(d/2 + 1)Γ
2(d/2 + 3ρ− 1)

256ρ2Γ3(d/2 + 2ρ− 1)

]1/4

. (4.21)

After some simplifications, we find that the glueball
mass is

M = 2
√
σad

[
Γ(2 + ρ+ 2ρ+)Γ2(4ρ+ 2ρ+)

ρ2Γ3(3ρ+ 2ρ+)

]1/4

,

(4.22)

and that the constituent gluon mass is

µG =
√
σad

2

[
Γ(2 + ρ+ 2ρ+)Γ2(4ρ+ 2ρ+)

ρ2Γ3(3ρ+ 2ρ+)

]1/4

.

(4.23)

From (4.22) and (4.23), it can be seen that, at specific
values of the orbital quantum number +, the glueball
(Pomeron) mass and the constituent gluon mass are
5
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Table 1. Mass spectrum of the glueball and the gluon in a
bound state without allowance for spin interaction

l ρ µG, GeV M , GeV

0 0.57241 0.5279 2.1116(2.11)

1 0.57392 0.69306 2.77224 (2.77)

2 0.57493 0.82612 3.304487 (3.30)

3 0.57513 0.94063 3.762514

Note: Here and in Tables 2 and 3, the results reported in [16] are
given in parentheses.

functions of the string-tension parameter σad. Table 1
gives numerical results obtained at the value

σad = 9σf/4, σf = 0.18 GeV2. (4.24)

Also given in Table 1 are the results reported in [16],
our results being in good agreement with them.

4.2. Contribution of One-Gluon Exchange
to the Glueball Mass

As is well known, gluons interact with one an-
other; therefore, we address here the problem of deter-
mining the contribution of one-gluon exchange to the
glueball mass. The Schrödinger equation for a bound
state of a two-gluon system with allowance for one-
gluon exchange has the form[

1
2µ

P2 + σadr −
4
3
αs

r

]
Ψ = E(µ)Ψ, (4.25)

where αs is the coupling constant for strong in-
teraction. Relying on Eq. (4.25) and employing the
oscillator-representation method, we first determine
the energy spectrum E(µ) as a function of µ. After
a change of variables, we find from (4.25) that the
modified Schrödinger equation in Rd space takes the
form [

1
2
P2

q + 4ρ
2µσadq

2(3ρ−1) (4.26)

− 16
3
αsρ

2µq2(ρ−1) − 4ρ2µE(µ)q2(2ρ−1)

]
Φ(q2) = 0.

After some standard simplifications that were de-
scribed above, the ground-state energy in the zero-
order approximation of the oscillator-representation
method can be reduced to the form

ε0(E) =
dω

4
+
4ρ2µσad

ω3ρ−1

Γ(d/2 + 3ρ− 1)
Γ(d/2)

(4.27)

− 4ρ
2µE

ω2ρ−1

Γ(d/2 + 2ρ− 1)
Γ(d/2)
P

Table 2. Mass spectrum of the glueball and the gluon in a
bound state with allowance for one-gluon exchange

αs ρ µ, GeV µG, GeV M , GeV

0 0.5735 0.26398 0.52795 2.1116 (2.11)

0.1 0.6300 0.28568 0.57135 1.95543

0.2 0.700 0.31561 0.63121 1.78442 (1.776)

0.3 0.795 0.35950 0.71899 1.59448 (1.587)

0.39 0.885 0.41961 0.83921 1.39809 (1.39)

− 16αsρ
2µ

3ωρ−1

Γ(d/2 + ρ− 1)
Γ(d/2)

.

In this case, we restrict our consideration to the case
of the ground state; that is, we set + = 0. After some
simplifications, we then find for E(µ) that

E(µ) = min
ρ

{
Z2

8ρ2µ

Γ(2 + ρ)
Γ(3ρ)

(4.28)

+
σad

Z

Γ(4ρ)
Γ(3ρ)

− 4αsZ

3
Γ(2ρ)
Γ(3ρ)

}
.

Here, the parameter Z = ωρ is determined from the
equation

Z3 − Z2 16ρ
2µαsΓ(2ρ)
Γ(2 + ρ)

− 4ρ
2µσadΓ(4ρ)
Γ(2 + ρ)

= 0,

(4.29)

which was obtained from the oscillator-representa-
tion condition. Taking into account Eqs. (4.28) and
(4.29), we determine the parameter µ from Eq. (4.20).
From Eq. (2.12), we then find that the glueball mass
is

M = 2µ+ E(µ), (4.30)

and that the constituent gluon mass is

µG = 2µ. (4.31)

The respective numerical result is given in Table 2.

4.3. Mass Spectrum of the Glueball with Allowance
for a Nonperturbative Character of the Interaction

Potential

We now proceed to calculate the mass spectrum
of a two-gluon bound state with allowance for one-
gluon exchange and a nonperturbative character of
the interaction. According to (3.20), the total inter-
action Hamiltonian has the form

H =
1
2µ

P2 + σadr (4.32)
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− 4
3
αs

r
− 4
3
αs

r

[
1√

1 + +(++ 1)/r2
− 1
]
.

The eigenvalues of this Hamiltonian are also deter-
mined by the oscillator-representation method. After
a change of variables, the modified Schrödinger equa-
tion for this case assumes the form{

1
2
P2

q + 4ρ
2µσadq

2(3ρ−1) (4.33)

− 4ρ2µEq2(2ρ−1) − 16
3

× q2(ρ−1)ρ2µαs√
1 + +(++ 1)/q4ρ

}
Φ(q2) = 0.

After some simplifications (the details are given in
the Appendix), we obtain the following result for the
ground-state energy in the zero-order approximation:

ε0(E) =
dω

4
+
4ρ2µσad

ω3ρ−1

Γ(d/2 + 3ρ− 1)
Γ(d/2)

(4.34)

− 4ρ
2µE

ω2ρ−1

Γ(d/2 + 2ρ− 1)
Γ(d/2)

− 16αsρ
2µωd/2

3Γ(d/2)

∞∫
0

du
ud/2+2ρ−2e−ωu√
u2ρ + +(++ 1)

.

Taking into account relation (4.34) and using
Eqs. (4.7) and (4.14), we obtain the energy spectrum
of the original Hamiltonian in the form

E(µ) = min
ρ

{
Z2

8ρ2µ

Γ(2 + ρ+ 2+ρ)
Γ(3ρ+ 2+ρ)

(4.35)

+
σad

Z

Γ(4ρ+ 2+ρ)
Γ(3ρ+ 2+ρ)

− 4αs

3ρ
Z

Γ(3ρ+ 2+ρ)

∞∫
0

dt
t2+2� exp

(
−t1/ρ

)
√
t2 + Z2+(++ 1)

}
,

where the parameter Z can be found from the equa-
tion

Z3 − 4ρ
2µσadΓ(4ρ+ 2+ρ)
Γ(2 + ρ+ 2+ρ)

(4.36)

− 16Z2ρ2µαs

3Γ(2 + ρ+ 2+ρ)

∞∫
0

dt
t2+2� exp

(
−t1/ρ

)
√
t2 + Z2+(++ 1)

×
[
3ρ+ 2ρ+− t1/ρ

]
= 0.

Taking into account relations (4.35) and (4.36), we
determine the glueball mass and the constituent
gluon mass from Eqs. (4.30) and (4.31). The respec-
tive numerical results are given in Table 3.
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Table 3. Mass spectrum of the glueball and the gluon in a
bound state with allowance for a nonperturbative character
of the interaction

αs ρ µ, GeV µG, GeV M , GeV

l = 1

0 0.574 0.3465 0.6931 2.772 (2.77)

0.1 0.58 0.3553 0.7106 2.684

0.2 0.59 0.3644 0.7288 2.594 (2.56)

0.3 0.595 0.3739 0.7478 2.5002 (2.45)

0.39 0.60 0.3827 0.7654 2.418 (2.36)

l = 2

0 0.5745 0.4131 0.8261 3.304 (3.30)

0.1 0.575 0.4184 0.8373 3.239

0.2 0.58 0.4245 0.8489 3.173 (3.14)

0.3 0.58 0.4302 0.8603 3.106 (3.05)

0.39 0.585 0.4354 0.8707 3.045 (2.97)

l = 3

0 0.5751 0.4703 0.9406 3.762

0.1 0.5752 0.4744 0.9488 3.710

0.2 0.5755 0.4784 0.9556 3.656

0.3 0.5765 0.4824 0.9647 3.603

0.39 0.585 0.486 0.9719 3.555

4.4. Determination of the Slope of the Regge
Trajectory for the Glueball

In this subsection, we will determine the slope of
the Regge trajectory for a two-gluon bound state. At
high values of the orbital quantum number, +� 1,
the contributions of the potentials corresponding to
one-gluon exchange and a nonperturbative interac-
tion cancel each other. As to the interaction between
the constituent particles, it is determined by the con-
fining potential. The glueball mass spectrum is given
by (4.22). From this relation, we determine the depen-
dence of the glueball mass on + for +� 1, employing
the asymptotic formula for the Euler gamma function,

Γ(az + b) ∼
√
2πe−az(az)az+b−1/2. (4.37)

As a result, we obtain

M2 = 8σad+. (4.38)

This result is in good agreement with experimental
data (for details, see [14]). From Tables 1, 2, and 3,
one can see that, with increasing coupling constant
αs, the bound-state mass decreases, while the con-
stituent mass of the particles forming the bound state
increases.
5



324 DINEYKHAN et al.
5. CONCLUSION
On the basis of studying the asymptotic behavior

of the polarization loop for charged scalar particles
in an external gauge field, we have determined a
relativistic correction to the interaction Hamiltonian.
We have proposed a scheme for summing an infi-
nite power series in the ratio v/c. A nonperturbative
correction to the interaction Hamiltonian has been
obtained. This correction vanishes in the limit c→∞.

The mass spectrum of a bound state has been
determined analytically. The mechanism responsible
for the formation of the constituent mass forming the
bound state in question has been explained. It has
been shown that the constituent masses of these par-
ticles differ from the free-state mass—in particular, a
gluon becomes massive when it forms a bound state.

On the basis of our analytic calculations, we
have determined the mass spectrum of glueballs
(Pomerons) and the constituent gluon mass. At high
values of the orbital quantum number, the vector
potential is completely annihilated, and the inter-
action between gluons is determined by the scalar
confining potential. Within conventional potential
quark models, this behavior of the interaction is
ensured through the introduction of quark–gluon
hybrids. The slope of the respective Regge trajectory
has been determined. At high values of the orbital
quantum number—that is, in the limit +⇒∞—the
contribution of the vector potential and the contribu-
tion of the potential associated with a nonperturbative
character of the interaction cancel each other, and the
slope of the Regge trajectory is determined in terms of
the string tension. These results faithfully reproduce
experimental data.

APPENDIX
The representation of canonical variables in a nor-

mally ordered form is an important element of the cal-
culations on the basis of the oscillator-representation
method [22]. In view of this, we will specify below such
representations for various potentials:

(a) For a growing potential, we have

q2n = (−1)n dn

dxn
e−xq2

∣∣∣∣
x=0

= (−1)n (A.1)

× dn

dxn

∫ (
dη√
π

)d

e−η2(1+x/ω) : e−2i
√

x(qη) :
∣∣∣∣
x=0

=
1
ωn

Γ
(
d

2
+ n

)

Γ
(
d

2

) + : q2 :
n

ωn−1

Γ
(
d

2
+ n

)

Γ
(
d

2
+ 1
)

+
(−1)n
ωn

dn

dxn

∫ (
dη√
π

)d
PH
× e−η2(1+x) : e−2i
√

xω(qη)
2 :

∣∣∣∣
x=0

,

where n = 1, 2, ... is a positive integer.

(b) For a decreasing potential, the respective result
is

q2τ =

∞∫
0

dx

Γ(−τ)x
−1−τe−xq2

(A.2)

=

∞∫
0

dx
x−1−τ

Γ(−τ)

∫ (
dη√
π

)d

× e−η2(1+x/ω) : e−2i
√

x(qη) :

=
1
ωτ

Γ
(
d

2
+ τ

)

Γ
(
d

2

) + : q2 :
τ

ωτ−1

Γ
(
d

2
+ τ

)

Γ
(
d

2
+ 1
)

+
1
ωτ

∞∫
0

dx

Γ(−τ)x
−1−τ

∫ (
dη√
π

)d

× e−η2(1+x) : e−2i
√

xω(qη)
2 : .

In particular, we find from (A.1) that, at n = 1, 2, 3,

q2 =
d

2ω
+ : q2 :, (A.3)

q4 =
d(d+ 2)
4ω2

+
d+ 2
ω

: q2 : + : q4 :,

q6 =
d(d+ 2)(d + 4)

8ω3
+
3(d+ 2)(d + 4)

4ω2
: q2 :

+
3(d+ 4)
2ω

: q4 : + : q6 : .

Let us now derive a number of useful relations
for creation and annihilation operators. These rela-
tions are frequently encountered in calculating matrix
elements for various physical processes within the
oscillator-representation method.

Suppose that the operators a+
j and aj satisfy the

commutation relations (4.8). For these operators, we
then have the standard identity

eik·aeip·a+
= eip·a+

eik·ae−(kp), (A.4)

where k and p are vector in d-dimensional space.

Let us consider the expression

Yj(k) = eik·aa+
j e

−ik·a. (A.5)

At k = 0, we find from (A.5) that

Yj(0) = a+
j . (A.6)
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Taking into account (A.6) and using (A.5), we obtain
an expression for dYj(k)/dkl in the form

dYj(k)
dkl

= eik·ai
[
al, a

+
j

]
e−ik·a = iδjl. (A.7)

Performing integration with respect to kl and taking
into account (A.6), we arrive at

Yj(k) = eik·aa+
j e

−ik·a = a+
j + ikj . (A.8)

In a similar way, one can derive the relations

e−ip·a+
aje

ip·a+
= aj + ipj, (A.9)

eαa+·aaje
−αa+·a = aje

−α,

eαa+·aa+
j e

−αa+·a = a+
j e

α.

Using these representations, we have derived expres-
sions for the ground-state energy ε0(E) and the in-
teraction Hamiltonian HI .
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Abstract—The antideuteron production rate at high-energy heavy-ion collisions is calculated based on
the concept of d̄ formation by antinucleons which move in the mean field of the fireball constituents (mainly
pions). The explicit formula is presented for the coalescence parameter B2 in terms of deuteron binding
energy and fireball volume. c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Recent measurements have reported the produc-
tion of antideuterons in heavy-ion collisions [1–3].
The theoretical description of this interesting effect is
complicated, because the antideuterons are produced
at the intermediate stage of fireball evolution, when
the hadrons are already formed andmay be considered
as a hadronic gas, but the particle collisions are still
important. In other words, they are produced at the
“dense-gas” stage of fireball evolution.

Here, we present the theoretical picture of this
stage and calculate the d̄ production. The basic ideas
of our approach are the following. The dominant
mechanism of d̄ production is the formation of an-
tideuterons through the fusion reaction p̄+ n̄→ d̄.
The fusion reaction is not possible if all participating
particles are on the mass shell. However, in the
fireball at the dense-gas stage of its evolution, p̄,
n̄, d̄ are not on the mass shell, since they interact
with surrounding matter. The interaction with the
fireball constituents leads to the appearance of the
mass shift and widths of all particles propagating in
the medium (or width broadening for unstable ones),
analogous to refraction and attenuation indices in
the case of photon propagation. The fusion reaction
rate is strongly enhanced in comparison with the
main process of d̄ production in vacuum p̄+ n̄→
d̄+ π. Another important ingredient of the theoretical
picture is the balance of the antideuteron formation
and disintegration rates. This balance is achieved
because of a large number of produced pions and high
rate of π + d̄ collisions leading to d̄ disintegration.

∗This article was submitted by the authors in English.
**e-mail: ioffe@vitep1.itep.ru
***e-mail: shushpan@heron.itep.ru
****e-mail: zyablyuk@heron.itep.ru
1063-7788/05/6802-0326$26.00
The balance does not imply a statistical equilibrium,
but rather a stationary process, like a balance in
the isotope concentrations in a radiative chain. The
formation rate p̄+ n̄→ d̄ vanishes when the d̄ size
increases, i.e., its binding energy ε→ 0. This fact
explicitly manifests itself in our calculations. The pre-
vious theoretical investigations of the problem were
performed in statistical models [4, 5], in the model
of (anti)nucleon sources in the fireball [6], and in the
Wigner function approach (see [7, 8] and references
therein). In all these approaches, the interaction of
nucleons, forming d (or p̄ and n̄ forming d̄) with the
fireball constituents, as well as d̄ (d) disintegration,
was not taken into account (in [4, 5], the results do
not depend on ε).

According to the dominant coalescence mecha-
nism, it is convenient to characterize d̄ production in
heavy-ion collisions by the coalescence parameter

B2 = Ed̄

d3Nd̄

d3pd̄

(
Ep̄

d3Np̄

d3pp̄
En̄

d3Nn̄

d3pn̄

)−1

, (1)

where we can set d3Np̄/d
3pp̄ = d3Nn̄/d

3pn̄, pp̄ =
pn̄ = pd̄/2. In what follows, we will consider only the
central heavy-ion collisions at energies of the order of√
s = 4.8AGeV or higher.

2. THEORY

Consider the dense-gas stage of fireball evolution,
which follows after the so-called “chemical freeze-
out” stage [9, 10]. Assume that particle propagations
at this stage may be described classically using ki-
netic equations. We use the notation qi(x, p), i = p̄,
n̄, d̄, π, . . ., for the double densities in coordinate and
momentum spaces, ni(x) =

∫
qi(x, p)d3p being the

densities (qi(x, p) are Lorentz invariant). Let us work
c© 2005 Pleiades Publishing, Inc.
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in the c.m.s. of colliding ions. The kinetic equation for
qd̄(pd̄, x) reads

md̄

Ed̄

∂qd̄(pd̄, x)
∂xµ

ud̄
µ =

∂qd̄

∂t
+ vd̄∇qd̄ (2)

=
∫

d3pp̄d
3pn̄qp̄(pp̄)qn̄(pn̄)σp̄n̄→d̄v

rel
p̄n̄

× δ3(pp̄ + pn̄ − pd̄)− qd̄(pd̄)

×
[∫

d3pπqπ(pπ)σπd̄v
rel
πd̄ + . . .

]
,

where ud̄
µ = (1,vd̄)/

√
1− v2

d̄
is the d̄ 4-velocity, the

ellipsis means similar terms for collisions of d̄ with
other constituents of the fireball (p, n, etc.), and vrelp̄n̄

and vrel
πd̄

are the relative p̄, n̄ and π, d̄ velocities: vrelp̄n̄ =√
(vp̄ − vn̄)2 − [vp × vn]2, etc. The terms when d̄

appears or disappears in the momentum interval pd̄ +
∆pd̄ due to elastic collisions are small and can be ne-
glected. The necessary applicability condition of (2) is
λ = p−1

i � d, where d is the mean distance between
fireball constituents.

The cross section σp̄n̄→d̄ = σpn→d is equal to

σpn→d =
3
4
π

4
g2

EpEnEd

1
vrelpn

δ(Ep +En − Ed), (3)

where Ep, En, and Ed are p, n, and d total energies,
3/4 is the spin factor, and g is the coupling constant of
low-energy effective pnd interaction (in the d c.m.s.).
The value of g2 was found by Landau [11] from the
requirement of coincidence (at the deuteron pole) of
the pn-scattering amplitude in effective theory with
the amplitude in the Bethe–Peierls theory of low-
energy pn scattering [12]. In the limit of zero range
of nuclear forces, g2 is

g2 = 128πmN
√
mNε, (4)

where mN is the nucleon mass and ε = 2.2 MeV
is the deuteron binding energy. The account of
nonzero range r0 increases g2 by a factor of (1−√
mNεr0)−1 ≈ 1.6 [12, 13].
The mass of the particle moving in the medium

is shifted in comparison with its vacuum value.
Similarly, due to interaction with constituents of the
medium, the width Γ appears (or width broadening,
if the particle has its proper width). The mass shift
∆m(E) and Γ(E) are expressed through the forward
scattering amplitude f(E) of the particle on the
medium constituent (see [14, 15] and references
therein):

∆m(E) = −2π
n

m
Ref(E), (5)
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Γ(E) = 4π
n

m
Imf(E) =

np

m
σ(E), (6)

where E, p, and m are particle energy, momentum,
andmass, and n is the density of the constituent in the
medium. Equations (5), (6) apply in the system where
the constituents are at rest. In the case of moving
constituents, the corresponding Lorentz boost must
be done. (By definition, ∆m and Γ are Lorentz invari-
ant; for details, see [16].)

Therefore, p̄, n̄, and d̄ in the reaction p̄+ n̄→ d̄
can be considered as Breit–Wigner resonances with
varying masses distributed according to the Breit–
Wigner formula. In the process of fireball expansion,
these Breit–Wigner resonances smoothly evolve to
their stable counterparts. So we integrate the first
term on the right-hand side of (2) after substituting
(3) over the masses m′ of the Breit–Wigner reso-
nances:

I =
∫

dm′
p̄dm

′
n̄dm

′
d̄

Γp̄/2π
(m′

p̄ −mp̄)2 + Γ2
p̄/4

(7)

× Γn̄/2π
(m′

n̄ −mn̄)2 + Γ2
n̄/4

Γ̃d̄/2π
(m′

d̄
−md̄)2 + Γ̃2

d̄
/4

× 3π
16

g2

E′
d̄

∫
d3pp̄

E′
p̄

d3pn̄

E′
n̄
qp̄(pp̄)qn̄(pn̄)

× δ3(pp̄ + pn̄ − pd̄)δ(E
′
p̄ + E′

n̄ − E′
d̄),

where E′
p̄ =

√
p2

p̄ +m′
p̄
2, etc. We assume that the

widths Γ� m are much smaller than the typical
momenta in p̄, n̄ distributions. Then the distributions
qp̄(pp̄) = qn̄(pn̄) can be taken outside the integral
sign at the values pp̄ = pn̄ = pd̄/2. The result of cal-
culation is given by

I =
3π2

16Ed̄

g2

√
Γp̄ + Γn̄ + Γ̃d̄

mN
q2
p̄(pp̄) (8)

[the mean mass shift ∆m̄ ≡ m̄d̄ −mp̄ −mn̄ ∼
30 MeV is small in comparison with the width Γ ∼
300 MeV and neglected in (8)]. Later, we assume
Γp̄ = Γn̄ ≡ Γ. Γ̃d̄ generally is not equal to the an-
tideuteron width Γd̄ ≈ 2Γ ∼ 600 MeV. The p̄n̄ sys-
tem with d̄ quantum numbers at high excitations will
not evolve to d̄ in the process of fireball expansion, but
may decay in other ways. One may expect Γ̃d̄ < Γd̄.
We shall keep the ratio a ≡ Γ̃d̄/Γd̄ as a free parameter
in the calculations. However, the results weakly
depend on this ratio: the variation within the limits
0 < a < 1 may change the coalescence parameter (1)
by at most

√
2 times, but in real cases about 20%.

This uncertainty is within the accuracy of the whole
method, estimated at 50%.
5
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Fireball at the dense-gas stage. The effective volume Veff
is half of the outer shell of thickness lann, from which the
antiprotons reach the detector.

The contributions of direct processes p̄+ p̄→ d̄+
π−, n̄+ n̄→ d̄+ π+, and p̄+ n̄→ d̄+ π0 are small,
all together about 20% in comparison with (8). If
these processes were essential, the coalescence pa-
rameter B2 (1) would be meaningless, since the an-
tideuteron distribution d3Nd̄/d

3pd̄ is given by a com-
plicated integral over the antinucleon distributions in
this case.

At large pp̄⊥, the p̄ spectrum decreases steeply,
so the approximation pp̄ = pd̄/2 becomes inaccurate.
The case of large pp̄⊥ > 1 GeV is not considered here.

After using (6) and performing Lorentz boost to
the heavy-ion c.m. frame, the term in square brackets
in (2) can be brought to the form (md/Ed̄)Γd̄, where

Γd̄ =
∑

i

∫
d3piqi(pi)vrelid̄ σid̄(d̄ at rest) (9)

and the summation runs over all medium con-
stituents.

Suppose that the rate of antideuteron collisions
with other constituents of the fireball resulting in an-
tideuteron disintegration is much larger than the rate
of fireball expansion. This happens during collisions of
heavy nuclei at high energies, when the fireball size is
large because of the large number of produced pions.
In this case, one may expect a balance: the first term
on the right-hand side of (2) is equal to the second
one and

qd̄(pd̄) =
I

Γd̄(md̄/Ed̄)
(10)

=
3π2

32mN

√
1 + a

2ΓmN
g2q2

p̄(pp̄).

The momentum distribution d3Nd̄/d
3pd̄ entering

into (1) is obtained from (10) by integration over the
fireball volume

d3Nd̄(pd̄)
d3pd̄

=
∫

d3xqd̄(pd̄, x). (11)
PH
Using (1), (10), (11), and (4) (with r0 correction),
we find for the coalescence parameter

Bth
2 =

24π3

Ep̄
× 1.6

√
(1 + a)ε

2Γ
(12)

×
∫
d3xq2

p̄(pp̄, x)[∫
d3xqp̄(pp̄, x)

]2 .
Since the x dependence of qp̄(pp̄, x) is not known, we
replace (12) by

Bth
2 =

24π3

Ep̄
× 1.6

√
(1 + a)ε

2Γ
2
V

n2
p̄

(n̄p̄)2
, (13)

where V is the fireball volume, and n̄p and n2
p are the

mean and mean square p̄ densities in the fireball. (The
coordinate dependence of

√
Γ is neglected.) Bth

2 is
Lorenz invariant, as it should be. The volume V may
be understood as a mean value of the fireball volume
at a stage where, on one hand, hadrons are already
formed, i.e., mean distances between them are larger
than the confinement radius Rc ∼ 1/mρ ∼ (1/4) fm,
but, on the other hand, hadron interactions are still
essential. The antinucleon distributions np̄(r), nn̄(r)
inside the fireball are nonuniform: at the dense-gas
stage and before it, the antinucleons strongly an-
nihilate in the internal part of the fireball and to a
much less extent in its external layer of thickness of
order p̄(n̄) annihilation length lann (this effect was
considered in [6]). For this reason, n2

p/n̄
2
p may be

remarkably larger than 1. For the same reason, the
antinucleons and antideuterons from the backside of
the fireball (relative to the observer) are absorbed in
the fireball and cannot reach the detector (see fig-
ure). Therefore, only one-half of the fireball volume
contributes to the number of recorded p̄, n̄, and d̄.
The corresponding factor approximately equal to 2 is
taken into account in (13).

In fact, the fireball evolution after the balance may
reduce the antideuteron number as Nd̄ → Nd̄e

−Γd̄∆t,
where ∆t is a typical time required for the an-
tideuteron to leave the interaction region. (Such ≈
50% reduction of K− mesons was observed in [17].)
However, this effect does not change the coalescence
parameter B2. Indeed, in this case, B2 should be
multiplied by the factor e−Γd̄∆t/(e−Γp̄∆t)2; the time
∆t is the same for both antideuteron and antiproton
under consideration, because they move with equal
velocities. But since Γd̄ = 2Γp̄ with good accuracy
[we checked it explicitly by Eq. (9)], this factor is close
to unity regardless of the evolution details.

The width Γmay be calculated if the spectrum and
densities of the fireball constituents at the hadronic
gas stage are known. At a high energy of heavy-ion
YSICS OF ATOMIC NUCLEI Vol. 68 No. 2 2005
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collisions (SPS, RHIC), the main contributions to
Γp̄, Γn̄, Γd̄ come from the collisions of p̄, n̄, d̄ with
pions. Therefore, Γp̄, Γn̄, Γd̄ essentially depend on
the pionic density in the fireball, the dependence of
Γ on the densities of other fireball constituents being
much weaker. The dependence of Γ on the spectrum
of the fireball constituents is also weak, since themain
contribution to Γp̄ (Γn̄, Γd̄) arises from the collisions
at high energies in the c.m.s. of p̄(n̄, d̄) + π, where
the cross sections are approximately constant. For
this reason, without a serious error, for the calculation
of Γ we can take the spectra from the experimental
data, i.e., corresponding to the final stage of fireball
evolution. Moreover, since the widths enter as

√
Γ

in (13), the errors are reduced twice. If Γ is known,
then, by comparison with the data, the parameter
V −1(n2

p̄/n̄
2
p̄) can be found, which would allow one to

check various models of fireball evolution.

3. COMPARISON WITH THE DATA

Consider the NA44 experiment at SPS (CERN):
Pb + Pb collisions at

√
s = 17AGeV [1]. Antideute-

rons were observed at 0.6 < pd̄t < 1.6 GeV and in
the rapidity interval from 1.9 to 2.1 in the labora-
tory system, which corresponds to p̄p̄t = 0.55 GeV,
(Ep̄)c.m. = 1.5 GeV. The spectra and particle yields
under such collisions are given in [18]. The number of
active nucleons participating in collision (“wounded”
nucleons), NN , and the number of produced pions
are presented in [19]: NN = 362, Nπ = 1890, Qπ =
Nπ/NN = 5.2 (see also [20] for a review of the data
on heavy-ion collisions).

We accept the following model for the dense-gas
stage of fireball evolution [15]. (A related model had
been suggested long ago [21, 22]: it may be called
the Fermi–Pomeranchuk model). Neglect for a mo-
ment contributions of all particles except for nucleons
and pions. Assume that any participant—nucleon or
pion—occupies the volume vN or vπ, respectively.
Then

nN =
NN

V
=

n0
N

1 +Qπβ
, (14)

nπ =
Nπ

V
=

n0
NQπ

1 +Qπβ
,

where n0
N = 1/vN , β = vπ/vN . For numerical es-

timations, we take n0
N = 0.26 fm−3, 1.5 times the

standard nucleus density, and β = (rπ/rN )3 ≈ 0.55,
where rπ = 0.66 fm and rN = 0.81 fm are pion and
nucleon electric radii. It must be stressed that n0

N
is the only essential uncertain parameter in our ap-
proach. Even if Qπ at the dense-gas stage differs
from the ones at the final stage, the arising error is
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essentially compensated by the appearance of Qπ in
both the numerator and the denominator in (14). (As
was already mentioned, the nucleon contribution to Γ
is small.)

Check first the applicability conditions of our ap-
proach. We have n = nN + nπ ≈ 0.42 fm−3 and the
mean distance between the fireball constituents is
d = 1/n1/3 = 1.3 fm. Evidently, the condition λp̄ =
1/pp̄ � d is well satisfied. The calculation of Γ ac-
cording to (9) (Γ = Γd̄/2) gives Γ ≈ 300 MeV. (Only
inelastic cross sections were taken into account; the
pion contribution comprises about 75%, and the nu-
cleon one about 25%. The Glauber screening cor-
rection, reducing Γ, is not taken into account. Note
that the value of Γ is close to the momentum in-
tegration interval in the Wigner function approach,
∆P ≈ 200−300 MeV, found in [8].) Check now the
balance condition—that the deuteron disintegration
rate exceeds the fireball expansion rate. The former
is given by 2Γ(mN/Ep̄). The estimate for the escape
rate (or fireball expansion) is w ∼ (1/4) fm−1. We
have 2Γ(mN/Ep) ≈ 2.0 fm−1 � 0.25 fm−1. So, this
condition is also fulfilled. Evenmore, the balance con-
dition would be fulfilled atmuch lower hadronic densi-
ties than that chosen above, up to n0

N ≈ 0.05 fm3, i.e.,
up to densities not much higher than that supposed
for thermal freeze-out [10, 23, 24]. However, such low
densities would lead to much lower values of B2 than
the ones obtained in experiments. Equation (6) is
legitimate if Imf(E)� d [14, 15]. Since Imf ≈ 1 fm,
this condition is not well satisfied. For this reason, the
value of Γ presented above has a large (maybe 50%)
uncertainty and, probably, is overestimated (the effect
of screening). This fact, however, does not influence
too much the value Bth

2 , since
√

Γ enters (12). One
may expect that, because of their slightly larger ve-
locities in comparison with nucleons, pions form a
halo around the fireball. This effect also may lead to
an overestimation of Γ.

For the parameters used above, the fireball volume
turns out to be V = 6.2 × 103 fm3 (15% correction
for other particles, except for pions and nucleons, was
taken into account). This value is about 2 times larger
than the ones found in [9] at chemical freeze-out and
about 2 times smaller than at thermal freeze-out [23,
24]. (Note that the dense-gas stage is an intermediate
between these two.) In the case of a sphere, its radius
is equal to R = 11.4 fm. If we assume that antipro-
tons are mainly concentrated in the outer shell of the
fireball of thickness lann ≈ 3 fm, then n2/n̄2 ≈ 2 and
we get for the coalescence parameter

Bth
2 = 3.0× 10−4 GeV2 (15)
5
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(we set Γ̃d̄ = Γ, or a = 1/2). Experimentally [1], for
the average value of the most central 10% of events,
it was found that Bexp

2 = (4.4± 1.3) × 10−4 GeV2.
However, Bexp

2 strongly depends on centrality: the
results for 0–5% centrality are about 1.5 times lower.
Bearing in mind all uncertainties, theoretical and ex-
perimental, we believe that the NA44 data for the coa-
lescence parameter are in agreement with theoretical
expectation.

Turn now to the STAR experiment at RHIC: Au+
Au collisions at

√
s = 130A GeV [2]. Antideuterons

were measured at 0.5 < pt < 0.8 GeV, and in the
rapidity interval |∆yc.m.| < 0.3, 18% of central col-
lisions were collected. We take Ēp̄,c.m. = 1.05 GeV.
The number of wounded nucleons in the 18% of
central Au+Au collisions can be estimated asNN =
320 [25]. The multiplicity of negative hadrons h̄
(mainly, pions) was measured in [26] at pseudorapid-
ity η = 0 only, and an increase in dh̄/dη|η=0 of 52%
as compared with the SPS data at

√
s = 17AGeV

was found. But it is known that dh̄/dη/η=0 increases
faster with energy than the total multiplicity. We
estimate Qπ = Nπ/NN ≈ 7± 1. (A value close to
the one presented above can be found from the data
compilation [27].) AtNN = 320 with account of 20%
correction for K mesons and hyperons, V = 7.2 ×
103 fm3. The coalescence parameter is equal to

Bth
2 = 3.8× 10−4 GeV2 (16)

(Γ = 320 MeV, n2/(n̄)2 was set to 2). Experimen-
tally, STAR found B

exp
2 = (4.5 ± 0.3± 1.0) ×

10−4 GeV2.
The main uncertainty of Bth

2 comes from the fire-
ball volume V which was calculated by (14). The
width Γ depends on the hadronic density; i.e., for
a fixed number of hadrons, it also depends on the
fireball volume. So, Bth

2 ∼ 1/
√
V , which suppresses

this uncertainty twice. We expect the accuracy of our
estimates (15), (16) to be about 50%.

In the E864 experiment [3] at AGS, the an-
tideuterons were observed in Au + Pt collisions at√
s = 4.8A GeV and 10% of central collisions were

selected. From the data we take pp̄t = 0.17 GeV,
E p̄,c.m. = 0.99 GeV. The number of wounded nucle-
ons and the π/N ratio are NN = 350 and Qπ = 1.6
(see [20] and references therein). In the same way
as before, we find V = 2.8 × 103 fm3, Γ = 220 MeV,
lann = 1.2 fm. In this case, the validity conditions of
our approach are at the edge of their applicability. So,
the theoretical expectations for B2 are valid only in
order of magnitude:

Bth
2 ∼ 1.5× 10−3 GeV2 (17)
PH
in comparison with B
exp
2 = (4.1 ± 2.9± 2.3) ×

10−3 GeV2.

4. SUMMARY

The coalescence parameter B2 for the antideute-
ron production in heavy-ion collisions was calculated.
It was supposed that the d̄ production proceeds at the
stage when the fireball may be treated as a dense gas
of interacting hadrons. The d̄ production is described
as the formation process p̄+ n̄→ d̄, where p̄, n̄, d̄ are
moving in the mean field of the fireball constituents
(mainly pions). It was shown that, in the case of a
large Nπ/NN ratio, one may expect a balance: the
number of produced antideuterons is equal to the
number of disintegrated d̄ due to collisions with pions.
The balance condition determines the d̄ production
rate and the value of coalescence parameter B2. The
latter is expressed in terms of deuteron binding energy
and mean fireball volume at this stage. The compar-
ison with data demonstrates that d̄ production pro-
ceeds at the stage intermediate between chemical and
thermal freeze-out—the dense-gas stage of fireball
evolution. The theoretical values of B2 are in satis-
factory agreement with experimental data at SPS,
RHIC, and AGS, butmore data for various nuclei and
various energies of collision and d̄ energies would be
very desirable. Comparison of the data with theory
would allow one to check various models of fireball
evolution.
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Abstract—The modification of the jet fragmentation function due to the parton-energy loss in dense
quark–gluon matter is studied in channels involving the production of leading particles. The “softening”
effect for the jet fragmentation function is shown to be determined by the angular distribution of gluons
emitted in matter. This effect anticorrelates with the “suppression” of the total yield of jets owing to
the energy loss of jet partons outside the jet cone. The possibility of measuring the jet fragmentation
function by using leading electromagnetic clusters in heavy-ion collisions at the LHC energies is analyzed.
c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Jet production is one of the important tools
for studying the properties of superdense strongly
interacting matter, quark–gluon plasma, which is
expected to be produced in heavy-ion collisions in
experiments at the RHIC and LHC colliders. Parton
energy losses (far more pronounced in quark–gluon
plasma than in “cold” nuclear matter) may result
in observable effects (for an overview, see [1] and
references therein). In particular, some authors [2–
9] studied the possibility of the “softening” of the
jet fragmentation function and, as a consequence,
the suppression of the yield of hadrons having high
transverse momenta pT in nucleus–nucleus colli-
sions in relation to the model of independent binary
nucleon–nucleon collisions. The latest RHIC data
on the inclusive production of high-pT charged and
neutral hadrons in the STAR [10], PHENIX [11],
PHOBOS [12], and BRAHMS [13] experiments
confirm the existence of such a suppression and agree
with the hypothesis that hard partons lose energy
in quark–gluon plasma [14]. However, an event-
by-event reconstruction of jets and their properties
was not performed in those experiments; therefore,
the assumption that all high-pT particles are jet-
fragmentation products is not well justified (see, for
example, [15]). A new regime of heavy-ion-collision
physics, where hard and semihard production pro-
cesses will probably dominate over soft effects and
where statistics are expected to be sufficiently high
for a systematic analysis of various aspects of “QCD

*e-mail: igor@lav01.sinp.msu.ru
1063-7788/05/6802-0332$26.00©
physics” in a medium of initial energy density sig-
nificantly exceeding the critical value for the quark–
hadron phase transition [16], will become possible
at the LHC energies. An adequate reconstruction
of hadronic jets and electromagnetic clusters in a
wide acceptance of hadronic and electromagnetic
calorimeters will become possible, in particular, under
conditions of the CMS (Compact Muon Solenoid)
experiment [16–18]. Thus, the identification of lead-
ing particles in jets (that is, particles that carry the
maximum fraction of the jet momentum) will enable a
direct measurement of the jet fragmentation function.
A comparison of the jet fragmentation functions in
AA and pp collisions (or in central and peripheral
AA collisions) will furnish information about the
modification of the jet fragmentation function in
matter.
The angular distribution of emitted gluons, which

determines the gluon-energy fraction leaving the jet
cone [19–23], is an important point in studying the
jet fragmentation function. The coherent gluon ra-
diation from hard partons (the QCD analog of the
Landau–Pomeranchuk–Migdal effect in QED) re-
sults in a strong angular dependence of the energy
loss by radiation; this radiation softens the particle
distribution in the jet, increases the multiplicity of the
secondary particles, and—to a lesser extent—affects
the total jet energy. As a matter of fact, the energy
loss of hard partons by collisions does not depend
on the angular dimension of the jet cone, because
the main part of thermal particles knocked out of
the medium by elastic collisions travel in directions
virtually orthogonal to the jet axis [19], thus reducing
its energy. In addition, the total energy loss of a jet
c 2005 Pleiades Publishing, Inc.
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will also be sensitive to such experimental restrictions
on the detection of low-pT particles as the minimum
energy threshold for the signal in the calorimeter and
the impact of the strongmagnetic field (4 T for CMS).
The objective of this study is to analyze the pos-

sibility of measuring the jet fragmentation function
modified in matter by means of leading particles in
ultrarelativistic heavy-ion collisions. In Section 2, we
present the main expressions for the jet fragmentation
function and for the integral factor of jet suppression.
In Section 3, we describe the model used in our
calculations and discuss results obtained on the basis
of this model. In Section 4, we study the possibility
of measuring the modified jet fragmentation function
under conditions of the CMS experiment: we describe
the algorithms developed for reconstructing jets and
electromagnetic clusters in heavy-ion collisions and
compare the results obtained by calculating the mod-
ification of the jet fragmentation function at the parti-
cle level with the results of a Monte Carlo simulation.
In the Conclusion, we formulate the main results of
this study.

2. JET FRAGMENTATION FUNCTION
AND ITS MODIFICATION IN MATTER
We recall that, in the leading order of perturbative

QCD, the cross section for the production of a jet in
nucleon–nucleon collisions that is characterized by
a transverse momentum pT and a rapidity y has the
form

dσjet(k)

dp2
Tdy

=
∑
ij

∫
dxidxjf

i
a(xi, Q

2) (1)

× f j
b (xj , Q

2)
dσ̂

dt̂
(ij → kl)δ(ξ − 1),

where xi = pi/pa and xj = pj/pb are the initial
nucleon-momentum fractions carried by partons (the
indices a and b label nucleons, while the indices i
and j label partons); f i

a(xi, Q
2) and f j

b (xj , Q
2) are

the parton structure functions of nucleons; ŝ, t̂, and
û are the Mandelstam variables for the hard parton
subprocesses; dσ̂(ij → kl)/dt̂ is the Born cross sec-
tion for the hard scattering subprocess ij → kl;Q2 =
p2

T = (t̂û)/ŝ; ξ = (exp (y)/xi + exp (−y)/xj)pT /
√
s

is the parton-momentum fraction carried by the jet
for parton k; and

√
s =

√
ŝ/(xixj) is the energy of

colliding nucleons in their c.m. frame. The inclusive
cross section for the generation of a hadron h having
a rapidity yh and a transverse momentum ph

T is given
by the product of the jet-formation cross section and
the k → h fragmentation functionDh

k(z′, p2
T ),

dσh(k)

d(ph
T )2dyhdz′

=
dσjet(k)

dp2
Tdy

1
z′2

Dh
k(z′, p2

T ), (2)
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where yh = y and z′ = ph/pk = ph
T /pT is the parton-

momentum fraction carried by the final hadron.
The parton structure functions f i

a(xi, Q
2) are

measured in deep-inelastic-scattering experiments—
for example, at HERA [24]—and in e+e− annihi-
lation at PETRA, PEP, and LEP [25]. The gluon
fragmentation functions are determined from the data
on hadron collisions [26].
In nucleus–nucleus collisions, the hard-parton

energy losses induced by a medium can modify the
yield of high-pT hadrons and jets (other effects, like
nuclear shadowing or higher order corrections in αs

are assumed to be insignificant for rather hard jets
and hadrons, xi,j � 0.2 [27]). In AA collisions at an
impact parameter b, the yield of k-type jets of angular
cone dimension θ0 in the central rapidity region that
have a transverse momentum p

jet
T can be calculated

as

dN
jet(k)
AA

d(pjetT )2dy
(θ0, b) =

2π∫
0

dψ

rmax∫
0

rdrTA(r1) (3)

× TA(r2)
dσjet(k)(pjetT + ∆p

jet
T (r, ψ, θ0))

dp2
Tdy

,

where r1,2(b, r, ψ) are the distances from the centers
of the nuclei to the jet-production vertex
V (r cosψ, r sinψ); rmax(b, ψ) ≤ RA is the maximum
possible transverse distance from the axis of the
nuclear collision to V ,RA being the radius of nucleus
A; and TA(r1,2) is the nuclear-thickness function (a
detailed description of the nuclear geometry used can
be found in [27]). The effective shift ∆p

jet
T (r, ψ, θ0) of

the jet-momentum spectrum depends on the jet-cone
dimension θ0.
Further, it is assumed that the fragmentation

functions in a hadronic medium have the same form
as in a vacuum (corrections to the parton fragmenta-
tion functions in a thermal medium were considered
in [28, 29]). Here, we consider only the fragmentation
of leading partons and neglect the fragmentation of
emitted gluons, because we study leading particles in
a jet. The yield with high-pT hadrons (from jets) can
be estimated as

dN
h(k)
AA

d(ph
T )2dydz′

(b) =

2π∫
0

dψ

rmax∫
0

rdrTA(r1) (4)

× TA(r2)
dσjet(k)(pT + ∆pT (r, ψ))

dp2
Tdy

1
z′2

Dh
k (z′, p2

T ),

where the shift ∆pT of the hadron-momentum spec-
trum is not equal in general (owing to an abrupt
power-law decrease in the pT spectrum) to the av-
erage energy loss of partons in a medium [3].
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The integral jet-suppression factor Q can be de-
fined as the ratio of the number of jets that underwent
energy losses to the number of jets that did not lose
energy; that is,

Qjet(pjetT min) =
∫

p
jet
T min

d(pjetT )2dy (5)

× dN
jet(k)
AA

d(pjetT )2dy

/ ∫
p
jet
T min

d(pjetT )2dy
dN

jet(k)
AA

d(pjetT )2dy

× (∆p
jet
T = 0),

where the jet fragmentation function has the form

D(z) =
∫

zp
jet
T min

d(ph
T )2dydz′

dN
h(k)
AA

d(ph
T )2dydz′

(6)

× δ(z − ph
T /p

jet
T )

/ ∫
p
jet
T min

d(pjetT )2dy
dN

jet(k)
AA

d(pjetT )2dy

and approximately coincides with Dh
k(z, (pjetT min)

2) in
the case without an energy loss if the jet type is

specified. We note that z ≡ ph
T /p

jet
T (= z′pT/p

jet
T ) is an

observable quantity that depends on the jet-cone size
θ0. Hereafter, we will use the relation

D(z > z0)
D(z > z0,∆pT = 0)

(7)

≡

1∫
z0

dzD(z)

1∫
z0

dzD(z,∆pT = 0)
=
Qh(pjetT min, z0)

Qjet(pjetT min)
,

where the integral hadron-suppression factor

Qh(pjetT min, z0) =

1∫
z0

dz

∫
zp

jet
T min

d(ph
T )2dydz′ (8)

× dN
h(k)
AA

d(ph
T )2dydz′

δ(z − ph
T/p

jet
T )

/ 1∫
z0

dz

×
∫

zp
jet
T min

d(ph
T )2dydz′

dN
h(k)
AA

d(ph
T )2dydz′

(∆pT = 0)

× δ(z − ph
T /p

jet
T )

differs from the differential suppression factor, which
PH
is usually defined in the literature as [3, 6–18]

Q̄h(ph
T ) =

∫
dydz′

dN
h(k)
AA

d(ph
T )2dydz′

/∫
dydz′ (9)

× dN
h(k)
AA

d(ph
T )2dydz′

(∆pT = 0).

3. MODEL AND NUMERICAL
RESULTS

We used the PYTHIA 6.2 [30] generator, with
the CTEQ5M structure functions, to simulate the
initial jet distribution in nucleon–nucleon collisions
at the LHC energy of

√
s = 5.5 TeV. After that, we

performed an event-by-event Monte Carlo simulation
of the rescattering and energy loss of jet partons in
quark–gluon plasma (see [19, 27] for a detailed de-
scription of the model used). In this model, energy
losses by collisions and radiation are associated with
each scattering event in an expanding medium, in-
terference effects being included in gluon radiation by
modifying the emission spectrum dE/dl as a function
of decreasing temperature. The basic kinetic integral
equation for the energy loss ∆E as a function of the
initial energy E and the total range L has the form

∆E(L,E) =

L∫
0

dl
dP (l)
dl

λ(l)
dE(l, E)

dl
, (10)

dP (l)
dl

=
1

λ(l)
exp (−l/λ(l)),

where l is the current transverse (with respect to
the nuclear-collision axis) parton coordinate; dP/dl
is the scattering-probability density in a medium;
dE/dl is the energy loss per unit length; and λ =
1/(σρ) is the parton range in a medium, ρ ∝ T 3 and
σ being, respectively, the medium density at temper-
ature T and the integrated cross section for parton
interaction in this medium. This numerical simula-
tion of the range of hard jet partons in quark–gluon
plasma makes it possible to obtain distributions with
respect to any kinematical features of jets and leading
particles of the jet in the final state. In addition, we
can also simulate various scenarios of the spacetime
evolution of the medium.

In our calculations, we used the collision part of
the energy loss in the form [19, 27]

dE

dl

col

=
1

4Tλσ

3TE/2∫
µ2
D

dt
dσ

dt
t (11)
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and the dominant contribution to the differential cross
section,

dσ

dt
∼= C

2πα2
s(t)
t2

, (12)

αs =
12π

(33 − 2Nf ) ln (t/Λ2
QCD)

,

for the scattering of a hard parton of energy E on
a thermal parton of energy (or effective mass) m0 ∼
3T 
 E. Here, C = 9/4, 1, and 4/9 for, respectively,
gg, gq, and qq scattering; αs is theQCD running cou-
pling constant for Nf active quark flavors; and ΛQCD
is the QCD scale parameter, which is on the order of
the critical temperature, ΛQCD � Tc � 200MeV. The
integrated cross section σ is regularized at the lower
limit by the square of the Debye screening mass,
µ2
D(T ).

The energy spectrum of coherent gluon radia-
tion induced by the medium and the corresponding
dominant part of the energy loss by radiation per
unit length were calculated here within the Baier–
Dokshitzer–Mueller–Schiffmodel [20] as

dE

dl

rad

=
2αs(µ2

D)CR

πL
(13)

×
E∫

ωmin

dω

[
1− y +

y2

2

]
ln |cos (ω1τ1)|,

ω1 =

√
i

(
1− y +

CR

3
y2

)
κ̄ ln

16
κ̄
, (14)

κ̄ =
µ2
Dλg

ω(1− y)
,

where τ1 = L/(2λg), y = ω/E is the hard-parton-
energy fraction carried by the emitted gluon, and
CR = 4/3 is the quark color factor. A similar expres-
sion can be obtained for a gluon jet by substituting
CR = 3 and by replacing the bracketed expression
in (13) by the result found in [20] for gluons. Inte-
gration in (13) is performed from the minimum gluon
energy in the Landau–Pomeranchuk–Migdal coher-
ent regime, ωmin = ELPM = µ2

Dλg (λg is the gluon
range), to the maximum possible energy, which is
equal to the initial energy of the hard parton, E. We
note that, although gluon radiation is a dominant
mechanism of the parton energy loss in relation to
losses by collisions, the relative contribution of the
latter for a jet of finite angular size increases as this
size increases, since the angular distributions of the
losses for the two different mechanisms are differ-
ent [19].
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In the ensuing calculations, we describe the evolu-
tion of a dense medium within one-dimensional scal-
ing (Lorentz-invariant) fluid dynamics, in which case
particle production occurs on a hypersurface of the
same proper time τ [31]. For the sake of definiteness,
we used the initial conditions for the formation of the
gluon-rich plasma that are expected for central Pb–
Pb collisions at LHC [32]: τ0 ≈ 0.1 fm/c, T0 ≈ 1GeV,
Nf = 0, and ρg ≈ 1.95T 3. For noncentral collisions,
we assume that the initial energy density is propor-
tional to the ratio of the nuclear-overlap function
to the effective cross-sectional area of nuclear over-
lap [27].

In each ith event of scattering on an accompany-
ing medium constituent (that is, that which moves
at the same longitudinal velocity), a fast parton loses
energy both by collisions and by radiation, ∆ei =
ti/(2m0) + ωi, where ti and ωi are simulated ac-
cording to Eqs. (11) and (13), while the distribution
with respect to the coordinates of the jet-production
vertex was simulated in accordance with Eq. (3). In
each event the energy of the initial parton is then
reduced by ∆pT (r, ψ) =

∑
i ∆ei, while the jet en-

ergy loss is ∆p
jet
T (r, ψ, θ0) = ε∆pT (r, ψ), where ε is

the hard-parton-energy-loss fraction that is carried
outside the jet cone and which is considered as a
phenomenological parameter. We note that the use
of this parametrization simplifies the simulation con-
siderably, because a complete calculation of the an-
gular spectrum of gluon radiation is a complicated
task [19–23]. In principle, the parameter ε is de-
termined by the jet-cone size θ0; the corresponding
dependences were studied numerically in [20, 22],
where the authors considered ε values in the interval
between 0 and 1 (although ε can even exceed unity at
small θ0 [20, 22]).

In this study, only neutral pions are considered as
leading particles in a jet, but similar numerical results
are expected for charged hadrons as well. However,
a complete tracking in heavy-ion collisions at LHC
is a very complicated (albeit solvable) problem from
the methodological point of view, whereas the recon-
struction of jets and electromagnetic clusters by us-
ing calorimeter systems seems quite feasible now [16,
18] (see the next section). At a rather high transverse
momentum of π0 (not less than 15 GeV for CMS),
both photons from π0 decay hit the same crystal of the
electromagnetic calorimeter, in which case the tradi-
tional procedure for reconstructing π0 on the basis
of the invariant-mass spectrum of the photon pairs
is inapplicable. However, such an electromagnetic
cluster can be identified as a leading neutral pion in
a jet if it belongs to a hard jet and carries away a
significant part of its energy.
5
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Fig. 1. Jet fragmentation function for a leading neutral
pion in (a) central Pb–Pb collisions and (b) those in-
tegrated over all values of the impact parameter (E jet

T >

100 GeV, |ηjet| < 3). The solid curves represent the re-
sults in the absence of the parton energy loss, while the
remaining curves correspond to the presence of parton
energy losses: ε = (dashed curves) 0, (dashed-dotted
curves) 0.3, and (dotted curves) 0.7.

Figure 1 displays the calculated jet fragmentation
functions (6) for leading π0 in the cases with and
without parton energy losses in (a) central Pb–Pb
collisions and (b) those integrated over all values
of the impact parameter. For a minimum threshold
used for the energy of a reconstructed jet, EjetT min =
100 GeV, the statistics estimated within the geomet-
ric acceptance of the CMS facility, |ηjet| < 3, are on
the order of 107 jets over a month of LHC operation
with lead beams. Figure 2 demonstrates the ε depen-
dence of the jet suppression factorQjet and of the ratio
(7) of the jet fragmentation functions for the cases
with and without energy losses, D(z > z0)/D(z >
z0,∆pT = 0), for the fixed values of z0 = 0.5 and
0.7. We note that, in the absence of energy losses,
the fraction of events where a leading neutral pion
carries more than 50% (70%) of the jet transverse
momentum is 7× 10−3 (1× 10−3) of the total number
of jets characterized by ET > 100 GeV. If the pa-
rameter ε is close to zero (radiation at small angles
is dominant), the softening of the jet fragmentation
function is maximal, which is clear from Fig. 1, while
the jet suppression factor Qjet (5) is close to unity
(that is, there is virtually no jet-yield suppression). An
PH
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Fig. 2. Jet suppression factorQjet (solid curves) and ratio
of the jet fragmentation functions for the cases with and
without an energy loss, D(z > z0)/D(z > z0, ∆pT =
0), for z0 = (dashed curves) 0.5 and (dashed-dotted
curves) 0.7 in (a) central Pb–Pb collisions and (b)
those integrated over all impact-parameter values (E jet

T >

100 GeV, |ηjet| < 3).

increase in the parameter ε (that is, an increase in the
contribution from large-angle radiation and collision
losses) leads to an increase in the jet suppression
effect and to the respective decrease in Qjet, while the
softening of the jet fragmentation function becomes
weaker (especially for large values of z). In Fig. 2, we
can see a typical anticorrelation between the suppres-
sion of the jet yield and the softening of the jet frag-
mentation function [the ratio in (7) can even exceed
unity for rather large values of ε and z]. The physical
reason for this anticorrelation, which is determined
primarily by the hard-parton-energy fraction carried
outside the jet cone, is that an increase in ε leads to a
decrease in the jet final transverse momentum p

jet
T =

p
jet
T (∆p

jet
T = 0)− ε∆pT [which is the denominator in

the definition of z ≡ ph
T /p

jet
T in the jet fragmentation

function (6)], but it does not change the numerator
in the definition of z. As a result, the softening of
the jet fragmentation function becomes weaker, while
the integral jet-suppression factor (5) decreases. It is
interesting to note that the jet-suppression effect is
expected to be commensurate with the effect of the
softening of the jet fragmentation function at a value
of ε ∼ 0.3.
YSICS OF ATOMIC NUCLEI Vol. 68 No. 2 2005
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4. RECONSTRUCTION OF JETS
AND ELECTROMAGNETIC CLUSTERS
AND POSSIBILITY OF MEASURING
THE JET FRAGMENTATION FACTOR

AT LHC

In this section, we will illustrate the possibility
of measuring the jet fragmentation function and its
modifications in ultrarelativistic collisions of nuclei by
considering the example of the CMS calorimeter sys-
tem [17, 18]. The central part of the CMS facility cov-
ers the pseudorapidity range |η| < 1.5, the cell dimen-
sions of the electromagnetic and hadron calorimeters
in the η−ϕ space being∆η ×∆ϕ = 0.0174 × 0.0174
and∆η ×∆ϕ = 0.0872 × 0.0872, respectively.
An adequate reconstruction of jets in heavy-ion

collisions characterized by a high multiplicity and the
reconstruction of electromagnetic clusters in such
jets are important conditions for measuring the jet
fragmentation function. The developed algorithms for
seeking jets and electromagnetic clusters can solve
this problem.

4.1. Jet Reconstruction

The developed algorithm is based on the search
for jet clusters above the average energy and on an
event-by-event background subtraction. Each event
is processed by applying the following sequence of
operations:
(1) Within each η ring, we first calculate the aver-

age transverse energyEtowerT (η) of a tower and the re-
spective variance, σtowerT (η) =√

(EtowerT (η))2 −
(
EtowerT (η)

)2
. The tower size cor-

responds to the cell size of the hadron calorimeter.
(2) We then rescale the energy of each tower ac-

cording to the expressionEtower *T = EtowerT −EtowerT −
σtowerT , where EtowerT is the initial transverse energy of
a tower. If the transverse energy of a tower becomes
negative after this subtraction, we assign the value
zero to this energy.
(3) We find jets by using a standard cone iteration

algorithm that gathers the corrected tower energy
around the tower characterized by the maximum en-
ergy deposition in a given cone R =

√
∆ϕ2 + ∆η2

(R = 0.5 in our case).
(4)We rescale the average energy and the variance

for each tower by using only those towers that do
not belong to any jet found previously (this rescaling
employs the initial energy values).
(5) The average energy of each tower is once

again rescaled according to the expression Etower *T =
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EtowerT −EtowerT − σtowerT (if the rescaled transverse en-
ergy of the tower becomes negative upon this sub-
traction, it is assigned the value zero).
(6) The final jet reconstruction is performed by us-

ing the iteration cone algorithm with the new energy
values for each tower.
We performed a GEANT simulation of the re-

sponse of the CMS calorimeter system. Signal jets
were generated by the PYTHIA 6.2 generator [30].
Events of central Pb–Pb collisions simulated by
the HIJING generator of nucleus–nucleus inter-
actions [33] with the charged-particle density per
unit rapidity dN±/dy(y = 0) = 5000 were used as a
background. We obtained the following basic results:
(i) The reconstruction efficiency for jets of energy

in the regionEjetT > 100GeV (the ratio of the number
of reconstructed jets to the total number of generated
jets) is close to 100%, the fraction of spurious jets
being not greater than 1% of the total number of
reconstructed jets.

(ii) The mean reconstructed jet energy EjetT (reco)
is a linear function of the mean generated jet en-
ergy EjetT (MC), the shape of this dependence being
identical in the presence and in the absence of the
background from Pb–Pb events (that is, pp colli-
sions can be used for a comparison with Pb–Pb col-
lisions). The energy resolution [approximately 17%
for EjetT (MC) = 100 GeV] in Pb–Pb events is poorer
than in pp events by a factor of about 1.3.
(iii) The attainable precision of the space reso-

lution of jets is rather high; it is less than the size
of a hadron-calorimeter tower [δη ∼ δϕ ∼ 0.03 for
E
jet
T (MC) = 100 GeV in the Pb–Pb events].

4.2. Reconstruction of Electromagnetic Clusters

The developed algorithm is based on the search
for electromagnetic clusters above the average energy
and on an event-by-event background subtraction.
Each event is processed by applying the following
sequence of operations:
(1) We first find the average energy 〈E〉i and the

variance Di within each ith crystal ring in η.
(2) We then subtract, from the energy in each jth

crystal of the ith ring,Eij , the average energy and the
variance, E′

ij = Eij − 〈E〉i −Di. If the value of E′
ij

appears to be negative, it is replaced by E′
ij = 0.

(3) We find the crystal of maximum energy after
the initial background subtraction, E′

ij , and assume
it to be the center of an electromagnetic cluster.
(4) At the stage of the reconstruction of the

electromagnetic-cluster energy, we consider the 5× 5
5
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Fig. 3.Modification factor for the jet fragmentation function,D(z)/D(z, ∆pT = 0), in central Pb–Pb collisions for ε = 1: (�)
result at the particle level and (◦) result at the level of reconstructed responses.
cell centered at the above crystal of maximum energy.
For crystal rings in η that involve the 5× 5 cell
selected above, we recalculate the average energy
〈E〉′′i and the dispersion D′′

i , omitting the crystals
inside the 5× 5 cell.

(5) From the energy of each jth crystal of the cell
from the ith ring, Eij , we subtract the average energy
and dispersion, E′′

ij = Eij − 〈E〉′′i −D′′
i . If a negative

value is obtained for E′′
ij , it is taken to be zero.

(6) The sumof the energiesE′′
ij over the 25 crystals

of the 5× 5 cell is taken to be the energy of the
electromagnetic cluster.

We simulated the responses of the CMS calorime-
ters for the same conditions as in the jet case (see
Subsection 4.1).

We considered photons, individual neutral pions,
and leading neutral pions in a jet of transverse energy
above 20 GeV.

The results are the following:

(i) The efficiency of the search for electromagnetic
clusters is about 100% for individual particles and
about 90% for a leading neutral pion in a jet.

(ii) The energy resolution is about 5% in all three
cases.

(iii) In all cases, the spatial resolution (the preci-
sion in determining the centers of electromagnetic
clusters) is ση ∼ 0.03 and σϕ ∼ 0.01, this being
on the same order of magnitude as the size of the
electromagnetic-calorimeter crystals.
PH
4.3. Simulation of the Jet Fragmentation Function

We compared the factor characterizing the in-
mediummodification of the jet fragmentation function
for central Pb–Pb interaction, D(z)/D(z,∆pT = 0).
We estimated it (a) at the particle level within the
model described in Section 3 and (b) at the level
of reconstructed responses of the CMS calorimeter
system. Since the calculation of the angular distribu-
tion of gluons emitted in a medium is a complicated
problem, which is not fully solved, we considered, for
the sake of simplicity, the case where gluons emitted
in amedium do not contribute to the energy measured
within the jet cone R = 0.5 (that is, the case of ε =
1). Figure 3 presents the ratio D(z)/D(z,∆pT = 0).
We note that, for ε = 1 and for rather high z (not
less than 0.3), this ratio is greater than unity (that
is, the jet fragmentation function undergoes “hard-
ening” rather than “softening”) owing mainly to a
decrease in the effective virtuality at which the jet
fragmentation function is determined in a medium. It
is clear that the modification factor calculated at the
particle level agrees within the statistical errors with
the modification factor calculated in reconstructing
electromagnetic clusters.

5. CONCLUSION

We have studied the possibility of measuring the
jet fragmentation function in ultrarelativistic heavy-
ion collisions by using leading neutral pions in a jet.
Within the developed model, we calculated the modi-
fied jet fragmentation function in heavy-ion collisions
at the LHC energy, allowing for the rescattering and
energy loss of jet partons in quark–gluon plasma. An
analysis of the spectra of leading particles in a jet has
enabled us to predict the anticorrelation between the
softening of the jet fragmentation function and the
YSICS OF ATOMIC NUCLEI Vol. 68 No. 2 2005
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suppression of the total jet yield owing to the energy
loss of jet partons outside the jet cone. The use of a
typical anticorrelation of these two effects has made
it possible to compare the relative contributions of
various mechanisms of losses of the jet energy (by
radiation and collisions) carried outside the jet angu-
lar cone, and this will be of importance in analyzing
actual experiments.
We have shown that the algorithms developed for

reconstructing jets and electromagnetic clusters in
high-multiplicity events create preconditions for ade-
quately solving the problem of measuring the jet frag-
mentation function in heavy-ion collisions at LHC.

ACKNOWLEDGMENTS

We are grateful to U.A. Wiedemann, Yu. Dok-
shitzer, P. Epes, O.L. Kodolov, S.V. Petrushanko, and
B.G. Zakharov for stimulating discussions.
This work was supported by the Russian Founda-

tion for Basic Research (project no. 04-02-16333).

REFERENCES
1. R. Baier, D. Schiff, and B. G. Zakharov, Annu. Rev.
Nucl. Part. Sci. 50, 37 (2000).

2. M. Gyulassy and X.-N. Wang, Phys. Rev. Lett. 68,
1480 (1992).

3. R. Baier, Yu. L. Dokshitzer, A. H. Mueller, and
D. Schiff, J. High-Energy Phys. 0109, 033 (2001).

4. M. Gyulassy, P. Levai, and I. Vitev, Phys. Lett. B 538,
282 (2002).

5. E. Wang and X.-N. Wang, Phys. Rev. Lett. 89,
162301 (2002).

6. C. A. Salgado and U. A.Wiedemann, Phys. Rev. Lett.
89, 092303 (2002).

7. B. Müller, Phys. Rev. C 67, 061901 (2003).
8. C. A. Salgado and U. A. Wiedemann, Phys. Rev. D

68, 014008 (2003).
9. I. P. Lokhtin and A.M. Snigirev, Phys. Lett. B 567, 39
(2003).

10. STARCollab. (C. Adler et al.), Nucl. Phys. A 698, 64
(2002); Phys. Rev. Lett. 89, 202301 (2002).

11. PHENIX Collab. (K. Adcox et al.), Nucl. Phys. A
698, 511 (2002); Phys. Rev. Lett. 88, 022301 (2002).
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 2 200
12. PHOBOS Collab. (B. B. Back et al.), Nucl. Phys. A
698, 655 (2002).

13. BRAHMSCollab. (I. G. Bearden et al.), Nucl. Phys.
A 698, 29 (2002).

14. X.-N. Wang, Phys. Lett. B 579, 299 (2004).
15. E. V. Shuryak, Phys. Rev. C 66, 027902 (2002).
16. A. Accardi et al., hep-ph/0310274.
17. CMS Collab., Technical Proposal, CERN/LHCC

94-38.
18. G. Baur et al., CERN CMSNote 2000/060.
19. I. P. Lokhtin and A. M. Snigirev, Phys. Lett. B 440,

163 (1998).
20. R. Baier, Yu. L. Dokshitzer, A. H. Mueller, and

D. Schiff, Phys. Rev. C 60, 064902 (1999); 64, 057902
(2001).

21. B. G. Zakharov, Pis’ma Zh. Éksp. Teor. Fiz. 70, 181
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Abstract—We study the possibility of detecting sleptons at post-WMAP benchmark points at
LHC(CMS). We find that, at Ltot = 30 fb−1, it would be possible to detect sleptons at points B, C, D,
G. We also investigate the production and decays of right and left sleptons separately. We find that, at
Ltot = 30 fb−1, it would be possible to detect right sleptons with a mass up to 200 GeV and left ones with a
mass up to 300 GeV. c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

One of the supergoals of the Large Hadron Col-
lider (LHC) [1] is the discovery of the supersymmetry
(SUSY). In particular, it is very important to investi-
gate the possibility of discovering nonstrongly inter-
acting superparticles (sleptons, higgsino, gaugino).
In [2–4], the slepton discovery potential was inves-
tigated for direct slepton production via the Drell–
Yan mechanism and a “generic” LHC detector. In [4],
the production of sleptons from chargino and neu-
tralino decays was considered. In [5], the LHC slepton
discovery potential was investigated within the min-
imal supersymmetric model (MSSM) in the minimal
supergravity (mSUGRA) scenario (tan β = 2 case)
for the Compact Muon Solenoid (CMS) detector.
In [6, 7], the LHC(CMS) slepton discovery potential
and the possibility of discovering lepton-number vio-
lation in sleptons decays were investigated for direct
production of right and left sleptons within MSSM.

In this paper, we investigate the possibility of
discovering sleptons at LHC(CMS) for post-WMAP
supersymmetric benchmark scenarios [8]. These
benchmark points take into account WMAP and
other cosmological data, as well as the LEP and b→
sγ constraints. We also reanalyze the LHC(CMS)
discovery potential for the case of direct production of
right and left sleptons in the MSSM with arbitrary
relation between the mass of the lightest stable
superparticle (LSP) and the slepton mass. One of
the important “technical” differences between this
paper and the previous studies is that we use PYTHIA

∗This article was submitted by the authors in English.
1)Institute for Nuclear Research, Russian Academy of
Sciences, pr. Shestidesyatiletiya Oktyabrya 7a, Moscow,
117312 Russia.

**e-mail: bityukov@mx.ihep.su;Serguei.Bitioukov@
cern.ch
1063-7788/05/6802-0340$26.00
program [9] for both simulation of background and
signal supersymmetric events, whereas in [5–7] the
PYTHIA program was used for the simulation of
background events and the ISAJET program [10]
for simulation of supersymmetric events. As in [5–
7], we use the CMS fast detector simulation program
CMSJET [11]. We find that, at total luminosityLtot =
30 fb−1, it would be possible to detect sleptons at
post-WMAP points B, C, D, G. We also find that,
at Ltot = 30 fb−1, it would be possible to detect right
sleptons with a mass up to 200 GeV and left ones
with a mass up to 300 GeV.

The organization of the paper is the following.
In Section 2, we review the main features of the
mSUGRA model [12] and describe post-WMAP
benchmark points for SUSY proposed in [8]. In Sec-
tion 3, we describe sleptons production mechanisms
and sleptons decays relevant to this study. Section 4
is devoted to a discussion of the background and
cuts used to suppress the background. In Section 5,
we present the results of our numerical calculations.
Section 6 contains concluding remarks.

2. POST-WMAP BENCHMARKS

In theMSSM, SUSY is broken at some high scale
M by generic soft terms, so in general all soft SUSY-
breaking terms are arbitrary, which complicates the
analysis and spoils the predictive power of the theory.
In themSUGRAmodel [12], the universality of differ-
ent soft parameters at Grand Unified Theory (GUT)
scale MGUT ≈ 2× 1016 GeV is postulated. Namely,
all the spin-zero particle masses (squarks, sleptons,
Higgses) are postulated to be equal to the universal
value m0 at the GUT scale. All gaugino particle
masses are postulated to be equal to the universal
value m1/2 at the GUT scale. Also, the coefficients
in front of quadratic and cubic soft SUSY-breaking
c© 2005 Pleiades Publishing, Inc.
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Table 1. The mSUGRA parameters and some sparticle masses for proposed post-WMAP benchmarks (all masses in
GeV), as calculated in ISASUGRA 7.67

Point m1/2 m0 tanβ sgn(µ) A0 χ̃0
1 χ̃0

2 ẽL, µ̃L ẽR, µ̃R ν̃e, ν̃µ τ̃1 τ̃2 ν̃τ

A 600 107 5 + 0 242 471 425 251 412 249 425 411

B 250 57 10 + 0 95 180 188 117 167 109 191 167

C 400 80 10 + 0 158 305 290 174 274 167 291 273

D 525 101 10 − 0 212 415 376 224 362 217 376 360

E 300 1532 10 + 0 112 184 1543 1534 1539 1521 1534 1532

F 1000 3440 10 + 0 421 610 3499 3454 3492 3427 3485 3478

G 375 113 20 + 0 148 286 285 185 270 157 290 266

H 935 244 20 + 0 388 750 679 426 665 391 674 657

I 350 181 35 + 0 138 266 304 227 290 150 312 278

J 750 299 35 + 0 309 598 591 410 579 312 579 558

K 1300 1001 39.6 − 0 554 1064 1324 1109 1315 896 1251 1239

L 450 303 45 + 0 181 351 434 348 423 194 420 387

M 1840 1125 45.6 + 0 794 1513 1660 1312 1648 796 1504 1492
terms are postulated to be equal. The renormalization
group equations are used to relate GUT and elec-
troweak scales. The equations for the determination
of the nontrivial minimum of the electroweak potential
are used to decrease the number of unknown param-
eters by two. So the mSUGRA model depends on
five unknown parameters. At present, a more or less
standard choice of free parameters in the mSUGRA
model includes m0,m1/2, tan β,A, and sign(µ) [12].
All sparticle masses depend on these parameters. For
instance, the slepton masses of the first two genera-
tions are determined by the formulas [12]

m2
l̃R

= m2
0 + 0.15m2

1/2 − sin2 θWM
2
Z cos(2β), (1)

m2
l̃L

= m2
0 + 0.52m2

1/2 (2)

− (1− 2 sin2 θW)M2
Z cos(2β)/2,

m2
ν̃ = m2

0 + 0.52m2
1/2 + cos2 θWM

2
Z cos(2β)/2. (3)

Charged left sleptons are the heaviest sleptons,
whereas the right sleptons are the lightest sleptons.
For gaugino masses, the following approximate for-
mulas are used:

Mχ̃0
1
≈ 0.45m1/2, (4)

Mχ̃0
2
≈Mχ̃±

1
≈ 2Mχ̃0

1
, (5)
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Mχ̃0
2
≈ (0.25–0.35)Mg̃ . (6)

In the mSUGRA model, the χ̃0
1 gaugino is LSP.

As has been mentioned before in the mSUGRA
model, sparticle masses depend on five unknown
parameters, which complicates numerical analysis of
the LHC SUSY discovery potential. In [13], bench-
mark sets of supersymmetric parameters (13 post-
LEP points) within mSUGRAmodel were suggested
for further careful analysis. The suggested points take
into account the constraints from LEP, Tevatron, b→
sγ, gµ − 2, and cosmology. Recently, in [8], upgraded
benchmark sets (post-WMAP benchmarks) were
proposed. These post-WMAP benchmarks take into
account new WMAP data on dark matter density
of the Universe. The mSUGRA model parameters
and some sparticle masses for these post-WMAP
benchmark points are given in Table 1 (see Table 2
in [8]).

3. SLEPTON PRODUCTION AND DECAYS

When sleptons are heavy relative to χ̃±1 , χ̃
0
1, slep-

tons are produced at the LHConly through theDrell–
Yan mechanism (direct slepton production), via qq̄
annihilation with neutral or charged boson exchange
in the s channel, namely, pp→ l̃Ll̃L, l̃R l̃R, ν̃ν̃, ν̃ l̃,
5
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l̃L l̃R. The left sleptons decay to charginos and neu-
tralinos via the following (kinematically accessible)
decays:

l̃±L → l± + χ̃0
1,2, (7)

l̃±L → νl + χ̃±, (8)

ν̃ → νl + χ̃0
1,2, (9)

ν̃ → l± + χ̃∓1 . (10)

For right sleptons, only decays to neutralino are pos-
sible and they decay mainly to LSP:

l̃±R → l± + χ̃0
1. (11)

Note that an account of the mixing between left and
right charged sleptons slightly complicates the situ-
ation and allows decays (7), (8) for eigenstates of l̃L
and l̃R. If decays to second neutralino or first chargino
are kinematically possible, the most interesting de-
cays of χ̃±1 , χ̃

0
2 are the following:

χ̃0
2 → χ̃0

1 + l+l−, (12)

χ̃0
2 → χ̃0

1 + νν̄, (13)

χ̃0
2 → χ̃0

1 + Z0, (14)

χ̃±1 → χ̃0
1 + l± + ν, (15)

χ̃±1 → χ̃0
1 +W±. (16)

If sleptons are light relative to χ̃±1 , χ̃
0
1, sleptons

can be produced besides the Drell–Yan mechanism
from chargino and neutralino decays (χ̃±1 , χ̃

0
2 indirect

production), namely,

χ̃0
2 → l̃±L,Rl

∓, (17)

χ̃0
2 → ν̃ν, (18)

χ̃±1 → ν̃l±, (19)

χ̃±1 → l̃±ν. (20)

4. SIGNATURE AND BACKGROUND

The slepton production and decays described
in the previous section lead to the signature with
the simplest event topology: two leptons + Emiss

T +
no jets. This signature arises for both direct and indi-
rect slepton-pair production. In the case of indirectly
produced sleptons, event topology not only with two
leptons but also with single, three, and four leptons
is possible. Besides indirect slepton production from
PH
Table 2. The parameters of the cuts used

Cut p
lept,0
T ,
GeV

Emiss,0
T ,
GeV

∆Φ0
ll,

deg
E

jet,0
T ,
GeV

δMZ ,
GeV

∆Φ0,
deg

1 20 50 130 30 10 160

2 20 50 – 30 10 160

3 50 140 140 60 10 150

4 50 100 130 30 10 150

5 100 200 130 60 10 150

6 60 150 130 45 10 150

7 80 120 140 70 10 145

8 75 170 160 100 10 160

9 30 75 130 45 10 150

10 40 90 130 50 10 150

Table 3. The SM background cross sections after cuts

Cut 1 2 3 4 5 6 7 8 9 10

σB , fb 288 775 3.6 6.7 0.68 1.9 3.3 3.0 101 24

Table 4. Slepton discovery points at Ltot = 30 fb−1

Point Cut NS NB S

B 4 180 212 10.5

C 3 84 112 6.8

D 3 61 110 5.2

G 6 49 57 5.5

decays of squarks and gluinos through charginos,
neutralinos can lead to the following event topology:
two leptons + Emiss

T + (n ≥ 1) jets.
In this paper, we use the event topology two

leptons + Emiss
T + no jets to detect sleptons at

LHC(CMS).Our simulations aremade at the particle
level with parametrized detector responses based on
a detailed detector simulation. The CMS detector
simulation program CMSJET 4.704 [11] is used. It
incorporates the full ECAL and HCAL granular-
ity. The energy resolutions for electrons (photons),
hadrons, and jets are parametrized. Transverse and
longitudinal profiles are also included according to
parametrizations.
YSICS OF ATOMIC NUCLEI Vol. 68 No. 2 2005
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Fig. 1. Lepton p
lept
T distributions formain SMbackground

(WW , tt̄) before any cuts (Ltot = 10 fb−1).

All the SUSY processes except the particle spec-
trum are generated with PYTHIA 6.215 [9]. Spar-
ticle masses for updated post-WMAP benchmark
points were taken from [8]. TheStandardModel (SM)
backgrounds are also generated with PYTHIA 6.215.
In our calculations, we used the CTEQ 5L parton
distribution set. The signature used for the search
for sleptons at LHC is two same-flavor opposite-
sign leptons +Emiss

T + no jets [2–7]. Our cuts are the
following:

For leptons:

pT cut on leptons (pleptT ≥ plept,0T ) and lepton
isolation within ∆R < 0.3 cone with ISOL < 0.1
(CMSJET default);

effective mass of two opposite-sign leptons of
the same flavor: outside MZ ± δMZ band (δMZ =
10 GeV);

∆Φ(l+l−) < ∆Φ0
ll cut.

For Emiss
T :

Emiss
T > Emiss,0

T cut;

∆Φ (Emiss
T , ll) > ∆Φ0 cut for relative azimuthal

angle between two same-flavor opposite-sign lep-
tons.

For jets:

jet veto cut:Njet = 0 for someEjet
T > E

jet,0
T thresh-

old in pseudorapidity interval |ηjet| < 4.5.
Such type of cuts is the standard one and it was

used previously [2–7].
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Fig. 2. Emiss
T distributions for main SM background

(WW , tt̄) eventswith two isolated leptonsplept
T > 20GeV

(Ltot = 10 fb−1).
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Fig. 3. Lepton plept
T distributions formain SMbackground

(WW , tt̄) for cut 3 (Ltot = 10 fb−1).

In this paper, we use a set of ten cuts (see Table 2).
The main SM backgrounds are WW ,WZ,Wtb̄,

tt̄, τ τ̄ , bb̄. The distributions of the SM background
on pleptT and Emiss

T are presented in Figs. 1–4. The
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(WW , tt̄) events for cut 3 (Ltot = 10 fb−1).

contribution of WW background is 40–80% de-
pending on the cut number. There are also internal
SUSY backgrounds which arise through q̃q̃, g̃g̃, and
q̃g̃ productions and subsequent cascade decays with
jets outside acceptance or below threshold. SUSY
backgrounds depend on SUSY masses and, as a
rule, they are small compared to SM backgrounds.
Note that, when we are interested in a new physics
discovery (the first stage of any data analysis), we
have to compare the calculated number of standard
background events NB with new physics signal
events Nnew physics = Nslept +NSUSY,B, so SUSY
background events increase the discovery potential
of new physics.

SMbackground cross sections after cuts are given
in Table 3.

5. RESULTS

For post-WMAP points (A–M ), our results are
the following. We found that, at Ltot = 10 fb−1,
it would be possible to discover sleptons only at
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Fig. 5. Emiss
T distributions for main SM background

(WW , tt̄) and signal at point B for events with two
isolated leptons plept

T > 50 GeV for cut 3 before cuts on
Emiss

T and ∆Φ0 (Ltot = 10 fb−1).

point B.2) For cut 3, we found that NS = 45, NB =
38, S = 5.9. For Ltot = 30 fb−1, it is possible to
discover sleptons at pointsB,C,D,G (see Table 4).3)

At Ltot = 100 fb−1, the slepton discovery points
are A, B, C, D, G, and I.4) We also investigated
the slepton discovery potential for post-LEP bench-
mark points [13] and found that the LHC(CMS) slep-
ton discovery potential for post-LEP points coincides
with the slepton discovery potential for post-WMAP
points.

2)In our calculations, we used the approximate formula for
the significance S = 2NS/

(√
NB +

√
NS + NB

)
(here,NS

and NB are the numbers of signal and background events,
respectively),which is an appropriate characteristic for future
experiments (see [14, 15]).

3)See also Figs. 5 and 6 for an illustration of the dependence of
the background and the signal on the cut parameters.

4)We did not take into account pileup effects; therefore, the
results for high luminosityLtot = 100 fb−1 are rather prelim-
inary. We think that the use of “hard” cuts 3–8 allows us to
minimize the influence of pileup effects on the significance.
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Fig. 6. Emiss
T distributions for main SM background (WW , tt̄) and signal at point B for cut 3 (Ltot = 10 fb−1).
In this paper, we also studied the production and
decays of right and left sleptons separately.5) In this
study, we assumed that sleptons decay mainly into
LSP and leptons:

l̃−R → l− + χ̃0
1, (21)

l̃±L → l± + χ̃0
1. (22)

Of course, in real life, we expect that the decays of
other sparticles will also contribute to the signature:
two leptons+Emiss

T + no jets. But if we are interested
in new physics signal discovery, an additional con-
tribution only increases the new physics discovery
potential of this signature.

5)To be precise, we considered the production and
decays of the first- and second-generation sleptons
ẽR, ẽL, ν̃eL , µ̃R, µ̃L, ν̃µL . An account of the third-generation
sleptons with the masses equal to the masses of the first-
and second-generation sleptons is not essential since
Br(τ → leptons) ≈ 0.35.
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Wemade simulations for LSPmassmLSP equal to
0.2ml̃, 0.4ml̃, 0.6ml̃, and 0.8ml̃.

6) The dependence of

6)We assume that mẽR = mµ̃R and mẽL = mµ̃L .
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Table 5. The left and right slepton LHC(CMS) 5σ discov-
ery potential for different luminosities

L,
fb−1 mLSP/mẽ

mẽ, GeV

100 150 200 250 300 350 400 450

Left sleptons

10 0.8 − − − − − − − −

0.6 + − − − − − − −

0.4 + + − − − − − −

0.2 + + + − − − − −

30 0.8 − − − − − − − −

0.6 + + + − − − − −

0.4 + + + + + − − −

0.2 + + + + + − − −

100 0.8 − − − − − − − −

0.6 + + + + + − − −

0.4 + + + + + + − −

0.2 + + + + + + + −

Right sleptons

10 0.8 − − − − − − −

0.6 − − − − − − −

0.4 − − − − − − −

0.2 + − − − − − −

30 0.8 − − − − − − −

0.6 − − − − − − −

0.4 + − − − − − −

0.2 + + + − − − −

100 0.8 − − − − − − −

0.6 + − − − − − −

0.4 + + + + − − −

0.2 + + + + + − −

the cross section for the production of right and left
sleptons for the case of two flavor degenerate right
and left charged sleptons is presented in Fig. 7. Our
results are given in Table 5.

As follows from our results, the slepton discovery
P

potential depends on the LSP mass. For mLSP =
0.2 ml̃, it would be possible to detect right sleptons
with a mass up to 200 GeV and left ones with a
mass up to 300 GeV. For instance, for a right slep-
ton with mass ml̃R

= 200 GeV and LSP with mass
mLSP = 40 GeV, we found that NS = 70, NB = 108,
S = 5.9 (cut 3, Ltot = 30 fb−1). For a left slepton with
mass ml̃L

= 300 GeV and LSP with mass mLSP =
120 GeV, we found that NS = 140, NB = 108, S =
10.7 (cut 3, Ltot = 30 fb−1).

6. CONCLUSION

In this paper, we studied the possibility of de-
tecting sleptons at LHC(CMS). For post-WMAP
benchmark points, we found that it is possible to
discover sleptons at point B, points B,C,D,G, and
points A,B,C,D,G, I for total luminosities Ltot =
10, 30, and 100 fb−1, respectively. We also investi-
gated the possibility of detecting sleptons for the case
when they decay predominantly to leptons and LSP.7)

For Ltot = 30 fb−1, we found that it is possible to
discover right sleptons with masses up to 200 GeV
and left sleptons with masses up to 300 GeV.
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1. The overwhelming majority of present-day neu-
tron sources belong to the type of solid-state gen-
erators where neutrons are produced in solid-state
targets via nuclear reactions induced by fast ions or
energetic bremsstrahlung photons. Plasma neutron
sources, whose operation is based on initiating re-
actions in a relatively cold plasma upon irradiation
with a particle beam, have not yet received adequate
study. At the same time, reactions in plasmas possess
important special features, the main of these being the
suppression of the channel of ionization losses—that
is, of the useless loss of the charged-particle energy
by medium ionization. This leads to an increase in the
projectile-particle range and to the enhancement of
the yield of nuclear reactions in plasma targets. For
example, it was shown in [1, 2] that plasma sources
of neutrons can ensure sizable fluxes; therefore, they
can be applied in solving a number of scientific and
technological problems.

Employing electron beams in creating neutron
sources may prove to be efficient, at least from the
economic point of view. At present, relatively cheap
and reliable facilities for producing intense beams
of fast electrons have been developed, the efficiency
of the input-energy transformation into the beam
energy being there as high as 85 to 90%. In neutron
sources, an electron beam can perform two functions.
First, it is able to transform the target into a plasma
state; second, it can initiate nuclear processes in the
target that are accompanied by neutron generation.
These are the electrodisintegration of target nuclei
via (e, e′n) reactions and secondary photonuclear
reactions (γ, n) induced by bremsstrahlung photons.
Photonuclear reactions have already been employed
in experimental neutron sources. As to electrodis-
integration processes, the question of whether their
application will be promising has so far received very
little study. However, the traditional opinion is that, in
all probability, their role cannot be significant because
of the smallness of the cross sections for (e, e′n)
reactions.

*e-mail: kukulin@nucl-th.sinp.msu.ru
1063-7788/05/6802-0348$26.00
In this article, we state, however, that, under
some conditions, there are grounds to revise this
pessimistic conclusion. We show that, if use is made
of intense electron beams and if the composition of
the target is chosen appropriately, the flux of neutrons
from electrodisintegration processes can become as
great as 2× 1013 neutron/s.

2. Beryllium-9 may be a promising material for
manufacturing targets for neutron sources. The 9Be
nucleus is characterized by the lowest neutron-
separation energy of Esep = 1.67 MeV. In addition,
it has a nonspherical charge distribution and a
pronounced cluster structure n+ 2α [3], where the
valence-neutron wave function extends over large
distances. Back in the early experiments reported
in [4, 5], it was demonstrated that, even at com-
paratively weak electron beams (I = 10–100 µA
and E < 3 MeV), the yield of neutrons from a thick
beryllium target can be quite sizable, reaching a level
equivalent in activity to 0.5–1 Ci. These studies have
so far remained nearly the only source of experimental
information about the electrodisintegration of 9Be at
low energies. Therefore, there presently arises the
interesting and important question of assessing the
expected level of neutron generation in beryllium for
the case where use is made of modern high-intensity
electron beams.

In order to answer this question, we consider the
electrodisintegration of 9Be in the plasma formed
upon the evaporation of a solid-state target under
the effect of a beam. We assume that the medium is
fully ionized and that the velocity distribution of ions
in it is Maxwellian. It is also reasonable to assume
that, in such plasma formed under the effect of fast
electrons, the electron temperature Te exceeds the
ion temperature Ti. For typical values, we take Te =
1 keV and Ti = 100 eV; by and large, they correspond
to the state of such a medium. Further, we set the
ion density ni to 1023 cm−3, which corresponds to
the occurrence of reactions before the beginning of
hydrodynamic plasma expansion.
c© 2005 Pleiades Publishing, Inc.
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Fig. 1. Probability F of the electrodisintegration reaction
9Be(e, e′n)2α in a plasma as a function of the initial
electron energy E0.

The probability F that a fast electron entering
a plasma at an initial energy E0 initiates the elec-
trodisintegration reaction 9Be(e, e′n)2α within the
time of deceleration to the threshold energy of Esep =
1.67 MeV is

F = 1

− exp




E0∫
Esep

dEeniσ(Ee)ve

〈dEe/dt〉Coul + 〈dEe/dt〉 brem


 ,

where σ is the cross section for the reaction
9Be(e, e′n) andEe and ve are, respectively, the kinetic
energy and the velocity of the electron, which are re-
lated by the relativistic equation ve =

c

√
1− [mec2/(mec2 + Ee)]

2. The terms 〈dEe/dt〉Coul

and 〈dEe/dt〉brem represent the electron energy losses
by, respectively, Coulomb recoil [6] and bremsstrah-
lung [7] in elastic ee(i) scattering. Formula (1) does
not take into account the effect of thermal motion
of plasma ions, but we can disregard this process
since we consider the case of a relatively cold plasma
(Ti � Ee).

The calculations were performed for initial electron
energies in the range between 2 and 10 MeV. The
cross sections for the reaction 9Be(e, e′n) were set to
the experimental values from [5] for E ≤ 3 MeV and
were determined by means of an extrapolation proce-
dure for high energies in the range E = 3–10 MeV.
In order to test the reliability of this extrapolation, we
rescaled these cross sections to the cross sections for
the photodisintegration reaction 9Be(γ, n), which has
been well studied. It turned out that the (γ, n) data
extracted in this way are in satisfactory agreement
with the results of direct measurements from [8, 9].

The calculated reaction probability F is given in
Fig. 1. One can see that F grows fast with increasing
energy of electrons in the beam and reaches a value of
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 2 200
 

I

 

,

 

 

 

ÏÄ

10

 

13

 

10 100
10

 

12

 
J

 

n

 
, neutron/s

Fig. 2. Neutron flux from a beryllium plasma at various
values of the current of a 10-MeV electron beam.

3.37 × 10−5 at an energy as low as 10 MeV, the ther-
malization of electrons occurring within a very short
time interval of about 1 ns. It has also been found
that a variation in the plasma temperature within the
range 0.1–5 keV has virtually no effect on the results.
This unexpected circumstance has a simple explana-
tion. The point is that the deceleration of an electron
depends on the relative velocity of colliding particles,
which, in the case being considered, is determined
by the energy of the electron beam, since even its
minimum energy Esep is much higher than Te(i).

We will now estimate the neutron flux Jn from a
beryllium plasma. It is obvious that Jn = FJe, where
F is the calculated probability of the relevant (e, e′n)
reaction and Je is the electron flux in the beam. We
consider a beam characterized by a current in the
range I = 10–100 mA and an electron energy of
10 MeV. Considering that a current of 1 mA corre-
sponds to a flux of 6.24 × 1015 electrons per second,
we obtain Jn [neutron/s] = 2.10 × 1011I [mA]. This
relation is shown in Fig. 2. Thus, the expected inte-
grated neutron flux appears to be at a high level of 2×
(1012–1013) neutron/s. It can easily be found that,
in the pulsed electron-gun-operation mode charac-
terized by a mean current of Ī = 100 mA/s and a
pulse duration of τ = 1 µs, the number of neutrons
per pulse may amount to 2× 1019.
3. This neutron yield is ensured by the single-

step reaction 9Be(e, e′n) alone. However, there exist
additional neutron-generation channels in a beryl-
lium plasma. These are the cascade reactions like
(e′, e′′n), (e′′, e′′′n), etc.; the disintegration reaction
9Be(γ, n) induced by bremsstrahlung photons; the
neutron-multiplication reaction 9Be(n, 2n); and neu-
tron knockout by the fast beryllium-breakup prod-
ucts, 9Be(α,αn). For a 10-MeV electron beam, an
upper limit on the enhancement of neutron generation
due to cascade processes is about 85%. Moreover, the
role of photodisintegration may prove to be signifi-
cant, since, over a broad interval of photon energies
5
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from the threshold, the cross section for the reaction
9Be(γ, n) is quite sizable, about 0.5 to 1 mb [8, 9].
Finally, the multiplication processes must also lead to
an additional enhancement, whose degree has yet to
be established.

All of this suggests that the irradiation of a beryl-
lium target with an intense electron beam can induce
neutron-flux generation at the level of the intensities
of the fluxes expected from sources that are being cre-
ated in a number of large physics centers worldwide.
In view of this, we believe that the results presented
here provide a serious argument in favor of performing
thorough experimental and theoretical investigations
into the interaction of intense electron beams with
beryllium targets.
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1. INTRODUCTION

CP violation in B0
d decay leads to a difference

between the rates of B0
d and B̄

0
d decay into a CP

eigenstate f (for details, see, e.g., [1]). In terms of
the normalized proper time τ = Γt and the mix-
ing parameter xd = ∆m/Γ (t is the proper time of
flight of Bd, Γ is the decay width, and ∆m is the
mass difference between the B0

d mass eigenstates),
the time-dependent CP asymmetry can be written
as

A(τ) =
N(B0

d → f ; τ)−N(B̄0
d → f ; τ)

N(B0
d → f ; τ) +N(B̄0

d → f ; τ)
(1)

= Adir cos(xdτ) +Amix sin(xdτ),

where Adir is the asymmetry arising directly from
the decay amplitudes and Amix is the asymmetry
from interference effects between B0

d−B̄0
d mixing and

decay processes, respectively. For f ≡ J/ψKs, Adir
is expected to be very small and Amix = sin(2β),
where β is the angle in the unitarity triangle of the
CKM matrix. For f ≡ π+π−, the asymmetry Adir
is not negligible anymore and both terms in (1) are
significant.

Equation (1) can be solved by experimentally fit-
ting the measured time-dependent asymmetry A(τ)
with two free parametersAmix andAdir. The asymme-
tries Amix and Adir can also be obtained using time-
integrated measurements proposed here in a properly
chosen wide τ range.

2. THE METHOD

From (1), the time-integrated asymmetry in the
range τl ≤ τ ≤ ∞ (in practice, the lower limit of

∗This article was submitted by the author in English.
1063-7788/05/6802-0351$26.00
integration τl should be taken greater than 0 in order
to select B particles with reduced background)

A(τ ≥ τl) = AmixIs(τl) +AdirIc(τl), (2)

where Is(τl) denotes eτl
∫∞
τl
e−τ sin(xdτ)dτ and

Ic(τl) denotes eτl
∫∞
τl
e−τ cos(xdτ)dτ .

For

τl ≡ τm =
arctan(1/xd)

xd
(3)

(τm = 1.37 for xd = 0.7),

the second integral in (2) vanishes: Ic(τm) = 0. This
range τm ≤ τ ≤ ∞ is adequate for Amix measure-
ment, since

A(τ ≥ τm) = AmixIs(τm) (4)

contains only one free parameter Amix. The direct
asymmetry Adir can then be measured using the full
available range of τ [with fixedAmix obtained from (4)]
by the expression

A(τ ≥ τl) = Afix
mixIs(τl) +AdirIc(τl), (5)

which again contains only one free parameter Adir.

3. CONCLUSION AND REMARK

The time-integrated method proposed here may
be useful for current experiments at e+e− collid-
ers and at Fermilab and for future experiments
at LHC–LHCb since it is less sensitive to the
precision of τ measurements and, contrary to the
time-dependent measurements, the value of Amix
defined from (4) is not correlated with the value of
Adir.
The method also gives a way to measure CP

asymmetries in experiments without particle identi-
fication at hadron colliders. In such experiments, it
is impossible to separate kinematically B0

d → π+π−
c© 2005 Pleiades Publishing, Inc.
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events from B0
s → K+K− ones. But asymmetries

which could arise from B0
s → K+K− decays will be

very much diluted for time-integrated asymmetries
because of the large value of the mixing parameter
for B0

s : xs > 20 (dilution factor is ∼xs/(1 + x2
s)).

The detailed study of application of the method to
the CMS at LHC (as an example) is given else-
where [2].
PH
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Yu. P. Tsupa, N. А. Shalanda, М. D. Shafranov, А. I. Yukaev, and V. I. Yakimchuk

(CVD Collaboration)
The data from the CVD experiment that were obtained at the IHEP accelerator in 70-GeV/с pA inter-
actions are analyzed with the aim of seeking an exotic Θ+ baryon that decays through the pK0

S channel.
The reaction pA→ pK0

S +X characterized by a bounded multiplicity of secondary charged particles is taken

for this analysis. A resonance of mass M = 1526 ± 3(stat.)± 3(syst.) MeV/c2 and width Γ < 24 MeV/c2 is
observed in the invariant-mass spectrum of the pK0

S system at a statistical significance of 5.6σ. The mass
and the width of this resonance correspond to the recently found positive-strangeness Θ+ baryon, which was
predicted as an exotic baryon consisting of five quarks (pentaquark), uudds̄. The total cross section for the
production of a Θ+ baryon in pN interactions is estimated at a value within the range 30–120 µb for xF ≥ 0.
An analysis of the A dependence of the cross section for Θ+-baryon production does not reveal a significant
deviation from the A dependence for inelastic events (∼A0.7).
Some Features of the Production of Baryons with Heavy Quarks in e+e−e+e−e+e− Collisions
S. P. Baranov and V. L. Slad

The production of various baryons with heavy quarks in e+e− annihilation is considered. On the basis
of exact formulas that we obtained previously within full perturbation theory, new numerical calculations of
cross sections are performed, and simple approximate expressions are then constructed for the results of these
calculations. The dependence of the total cross sections on the masses of constituent quarks is discussed.
The application of the Peterson fragmentation function and a fragmentation function of the Regge type to
describing differential cross sections is analyzed.
Employing a Spheroidal Global Potential to Estimate the Quadrupole Deformation
of Nuclei

B. S. Ishkhanov and V. N. Orlin

A spheroidal global shell potential is constructed on the basis of an optical model whose global parameters
are extracted from experimental data on nucleon–nucleus scattering. This potential is used to estimate the
quadrupole deformation of a large number of light, intermediate, and heavy nuclei in the mass-number range
10 � A � 240. The results are compared with the results of similar calculations for the Nilsson potential and
with the estimates of the quadrupole deformation that follow from data on the static quadrupole moments of
the nuclei considered in the present study.
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Photonuclear Data and Contemporary Physics of Giant Resonances
S. P. Kamerdzhiev and S. F. Kovalev

The results of the development (renaissance) of giant-resonance physics are discussed briefly from the
point of view of their application to creating a database of photonuclear processes. It is indicated that,
among recommendations from the existing databases, the part that is used within this methodology does
not correspond to the current state of the art. The most reliable experimental data on the M1 resonance
are parametrized for seven spherical nuclei, and it is shown that the width of this resonance is severalfold—
sometimes, an order of magnitude—smaller than the value of Γ0 = 4 MeV, which is recommended for all
nuclei. The need for microscopically taking into account more complicated configurations than those included
within the RPA or QRPA—or, more precisely, coupling to phonons—is demonstrated by proving that this
changes the functional dependence of damping on temperature in relation to that used previously and is
necessary for explaining the properties of the pygmy dipole resonance in the region of the nucleon binding
energy. The calculations of the mean energies of this resonance in the Ca and Sn isotopes within the
microscopic generalized theory of finite Fermi systems revealed that the inclusion of coupling to phonons
reduces this energy considerably, rendering it closer to the experimental value. The idea of creating a database
of photonuclear processes for unstable nuclei, including fission fragments, by relying on the generalized theory
of finite Fermi systems is discussed in view of the fact that information necessary for fitting the parameters of
phenomenological theories is absent or scanty for these nuclei.
Spectroscopic Factors and Barrier Penetrability in Cluster Radioactivity
S. N. Kuklin, G. G. Adamian, and N. V. Antonenko

Themodel of cold cluster decay is presented within the concept of a dinuclear system. The calculated barrier
penetrabilities and experimental half-lives are used to extract spectroscopic factors. The effect of the defor-
mations of the light cluster and the residual nucleus on the nucleus–nucleus potential and decay properties
is demonstrated. The half-lives of neutron-deficient actinides and medium-mass nuclei are predicted. The
interplay between spontaneous fission and cluster radioactivity is discussed.
Is It Still Interesting to Seek Lepton-Flavor Violation in the Rare Decays ofKKK Mesons?
L. G. Landsberg

Further possibilities of experiments to seek lepton-flavor violation in kaon decays at present and future
intermediate-energy accelerators are considered. It is shown that such investigations are complementary
to searches for muonic lepton-flavor-violation processes and can possess, in some models featuring partly
conserved quantum numbers of the generations, a very high and even record sensitivity. Searches for lepton-
flavor-violation processes in kaon decays should be considered as a very important and independent part of the
general program of searches for the violation of lepton flavors in processes involving charged leptons.
Investigation of Anomalous Constants of Four-Boson Interaction in Collisions
of High-Energy Photons
I. B. Marfin and Т. V. Shishkina

The production of two and three bosons in γγ collisions at high energies makes it possible to study the
anomalous constants of four-boson interaction. Three anomalous constants appearing in the cross section
for the production of a W+W− pair are considered at the TESLA energies (

√
s ∼ 1 ТeV). A full analysis of

the anomalous contributions to the cross section for the process and to the respective angular distribution is
performed.
Electroproduction ofD∗±D∗±D∗± Mesons at High Energies
V. А. Saleev and D. V. Vasin

A comparative analysis of the predictions of the collinear parton model and the kT -factorization approach
is performed for the case of theD∗-meson electroproduction at the HERA ep collider. It is shown that, owing
to effectively taking into account, in noncollinear distributions, next-order corrections in the strong coupling
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constant αs, the kT -factorization approach increases, in contrast to the predictions of the collinear parton
model, the absolute value of the cross sections for charmed-meson electroproduction approximately by a
factor of 1.5 to 2. As a result, the agreement with experimental data is improved. This is not so only for the
pseudorapidity spectrum, where the shape of the spectrum differs considerably from the experimental one and
depends greatly on the choice of parametrization of the noncollinear gluon distribution within the proton.
Character of Coulomb Shifts of Nuclear Scattering Resonances
N. Sh. Takibaev

Relations determining the shift of energies and widths of scattering resonances are obtained within the
method of evolution in the coupling constant. These relations generalize the known relations for the shift
of levels in a discrete spectrum. The problem of determining the Coulomb shifts of low-energy resonances
appearing in the cross section for the scattering of some light nuclei is solved. Examples that are of importance
for nuclear astrophysics and the problem of the production of chemical elements are considered. The character
of Coulomb shifts is studied within simple nuclear models. Respective numerical estimates are given, which
agree satisfactorily with experimental data.
Quark–Antiquark Composite Systems: The Bethe–Salpeter Equation
in the Spectral-Integration Technique in the Case of Different Quark Masses

A. V. Anisovich, V. V. Anisovich, V. N. Mаrkov, M. A. Mаtveev, and A. V. Sarantsev

The Bethe–Salpeter equations for quark–antiquark composite systems involving different quark masses,
such as qs̄ (with q = u,d), qQ̄, and sQ̄ (Q = c,b), are written in terms of spectral integrals. For mesons
characterized by a massM , a spin J , and a radial quantum number n, the equations are written for the (n,M2)
trajectories with fixed J . Mixing between states with different quark spins S and angular momenta L is also
discussed.
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