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90th ANNIVERSARY OF A.B. MIGDAL’S BIRTHDAY

   
Arkadiœ Benediktovich Migdal
(March 11, 1911–February 9, 1991)
Arkadiœ Benediktovich Migdal, an acclaimed theo-
retical physicist, would have celebrated his 90th birth-
day on March 11. Had it not been for the sudden and
fatal illness that cut short his life a month before he
reached the age of 80, Migdal’s creative activity would
certainly have continued much longer. Indeed, in the
summer of 1990 (that is, just before the first symptoms
of the disease revealed themselves), Prof. Migdal was
still strong enough to challenge his younger colleagues
in the Caucasus mountains, where he spent his vaca-
tion.

Arkadiœ Migdal was born in Lida, a small town in
western Byelorussia, but he shortly moved to Lenin-
grad (St. Petersburg), together with his parents. It was
in Leningrad where he was fascinated by science. That
Migdal came of “nonproletarian” parents was a hover-
ing threat to his scientific career: as a student, he was
evicted from the Leningrad University and even had to
spend 70 days in jail (a relatively mild penalty for those
years of massive repression). Fortunately, Migdal was
able to return to the university and to take his first les-
sons in physics from M.P. Bronshteœn—a brilliant theo-
retical physicist, whom his peers compared to L.D. Lan-
dau. Those lessons proved to be brief: in 1937, Bronsh-
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teœn was arrested and then executed. For a while,
A. Migdal was tutored in Leningrad by V.A. Fock and
then moved to Moscow to join L.D. Landau’s group as
a postgraduate. By that time, A. Migdal had largely
matured as a physicist with an original approach to sci-
entific problems. This could be seen from the very first
studies of his, which date back to the Leningrad period
and which were devoted to neutron–atom interactions.
There, Migdal proposed the shakeup method, which
has since then been included in textbooks on quantum
mechanics and which has found many applications in
various realms of physics. In particular, Migdal himself
employed this method in theoretically describing the
alpha- and beta-decay-induced ionization of atoms.

Migdal’s awesome career in physics may be natu-
rally divided into three periods. Over the first period,
which extended approximately to the mid-1950s,
Migdal tackled a broad diversity of problems in various
areas of physics. His earliest studies were devoted to
atomic physics and the theory of the nucleus. In 1945,
Migdal was appointed head of the theory division at
Kurchatov’s center for atomic energy. Of his collabora-
tors in the “atomic project,” G.I. Budker, V.M. Galitsky,
B.T. Geilikman, and S.T. Belyaev later won broad rec-
ognition. The research agenda was largely dictated by
military needs and included plasma physics and the
theory of nuclear reactors. Yet, Migdal was able to give
much attention to pure physics: in 1946, he addressed
the problem of nuclear photoeffect, where he devel-
oped a theory that predicted, among other things, the
existence of a giant dipole resonance and which made
it possible to estimate its position. It is remarkable that,
within Migdal’s formalism, which was essentially
model-independent, the position of the resonance was
expressed solely in terms of the parameters in the
Weizsäcker formula. Because of the relative isolation
of Soviet science, Western physicists failed to notice
and appreciate Migdal’s predictions in due time.
Shortly after the experimental observation of a giant
dipole resonance in 1947, a model description of the
phenomenon was proposed by M. Goldhaber and
E. Teller, who were wrongly credited as pioneers in the
field. It took the physics community considerable time
to acknowledge finally Migdal’s priority in predicting
the giant dipole resonance and in estimating its posi-
tion.

Yet another outstanding result obtained by Migdal
in that period concerns the resonance final-state inter-
action of slow particles formed in nuclear reactions,
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which has been known since then as the Migdal–Wat-
son effect. Last but not least, Migdal was able to con-
struct a quantitative description of the phenomenon
dubbed the Landau–Pomeranchuk effect and associ-
ated with the coherent multiple rescattering of a relativ-
istic particle in matter. It was with great relish that
Migdal used to recollect an episode when Prof.
I.Ya. Pomeranchuk, whom he held in very high esteem,
took off his hat in appreciation of Migdal’s accomplish-
ment. The thing is that Landau and Pomeranchuk them-
selves provided a qualitative picture of coherent rescat-
tering, but they stopped short of quantitatively tackling
the problem, deeming that this was impossible. Migdal
pledged to do the impossible and succeeded! For this,
he had to devise a novel method of quantum kinetic
equations. Nowadays, the effect of coherent rescatter-
ing plays a key role in our understanding of collisions
between ultrarelativistic nuclei, which is based on
QCD. That this phenomenon is now referred to as the
Landau–Pomeranchuk–Migdal effect duly acknowl-
edges Migdal’s contribution to the subject.

The second period of Prof. Migdal’s career, albeit
rather short (it spans the second half of the 1950s),
proved to be rich in remarkable results. Those years
saw the emergence and rapid development of a new the-
oretical approach to problems in condensed-matter
physics, that which is based on methods of quantum
field theory. Together with his disciples Galitsky and
Belyaev, Prof. Migdal made hefty contributions to the
subject. Of particular importance are his study of 1957,
where he proved the theorem of a jump in the momen-
tum distribution of particles in an arbitrary Fermi sys-
tem (Migdal’s jump), and two studies of 1958. In one
of the last two, he, together with Galitsky, developed a
theoretical description of Fermi systems in terms of
Green’s functions, while, in the other, he successfully
applied this method to electron–phonon interactions in
metals. Since then, these classical results have been
cited in all textbooks on the theory of many-body sys-
tems. Prof. Migdal’s study of 1959, where he applied
his original methods to quantify the superfluidity effect
on nuclear moments of inertia and where he hypothe-
sized, for the first time (this hypothesis is widely used
at present), superfluidity in neutron stars, also belongs
to that period.

The aforementioned analysis of nuclear moments of
inertia marked a transition to the third period of Prof.
Migdal’s investigations, which was entirely devoted to
nuclear physics. In the early 1960s, Migdal and his
pupils were able to develop a quantitative theory of
nuclei treated as many-body systems, which has since
then been referred to as the theory of finite Fermi sys-
tems. These investigations were summarized in a
monograph published in 1965 and translated into
English in 1967 under the title Theory of Finite Fermi
Systems and Application to Atomic Nuclei (Inter-
science, New York). So far, it has been a handbook for
many theoretical nuclear physicists worldwide.
In the early 1970s, Prof. Migdal took interest in phe-
nomena induced by strong fields. This led him to study-
ing pionic and isobar degrees of freedom in nuclei. In
1971, he put forth the elegant idea that the ground state
of a nucleus might undergo rearrangement giving rise
to a Bose condensate of pions modified by nuclear mat-
ter (so-called pion condensate). That exciting idea
spawned a torrent of studies elsewhere. Migdal and his
pupils were the first to realize that, under normal con-
ditions, there is no pion condensate in nuclei. However,
the possibility of its formation in the superdense
nuclear matter of a neutron star or in high-energy ion–
ion collisions has been discussed so far. This idea gave
impetus to the construction of a series of heavy-ion
accelerators and to an intense development of nuclear
physics.

In the 1980s, the focus of Migdal’s attention
switched to QCD, where, as usual, he addressed the
basic problem, that of confinement. Migdal failed to
develop a consistent theory of confinement (no such
theory has been created so far), but he derived a number
of important results, which were highly appraised by
QCD pundits.

Migdal was a gifted teacher of physics. At the Mos-
cow Institute of Engineering Physics, where he taught
for many years, Prof. Migdal delivered a number of orig-
inal lecture courses that provided ample material for two
broadly known monographs (published by him partly in
collaboration with V.P. Krainov): Approximate Methods
in Quantum Mechanics (Benjamin, New York, 1969) and
Approximate Methods in Physics.

Toward the end of his life, Migdal often reflected on
the philosophic and psychological aspects of science
and publicized his ideas on the subject. A passionate
and many-sided personality, Migdal showed true talent
in anything he was keen on. For example, he shot the
first submarine films in the Soviet Union, which won
prizes at many contests, and his sculptures were highly
appraised by professional artists. He was also a great
story teller and easily captivated the attention of any
audience.

Migdal’s impact on science would not be restricted
to his articles and monographs: in fact, he created a
robust scientific school, and many of his pupils rose to
eminence themselves. Of the people who have contrib-
uted to the memorial issues of Yadernaya Fizika (Phys-
ics of Atomic Nuclei), some are lucky to be Migdal’s
immediate pupils, others are pupils of the pupils, and
still others, albeit not directly belonging to his school,
were more or less affected by his ideas and personality.
So many are the received contributions that three con-
secutive issues (instead of a single one planned origi-
nally) of the journal will be devoted to the memory of
Prof. Migdal. In a sense, the physics results reported in
these memorial issues may be viewed as part of
Migdal’s legacy.

E.E. Saperstein
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Abstract—The critical nuclear charge Zcr and the critical distance Rcr in the system of two colliding heavy
nuclei—they are defined as those at which the ground-state level of the electron spectrum descends to the
boundary of the lower continuum, with the result that beyond them (that is, for Z > Zcr or R < Rcr) spontaneous
positron production from a vacuum becomes possible—are important parameters in the quantum electrodynam-
ics of ultrastrong Coulomb fields. Various methods for calculating Zcr and Rcr are considered, along with the
dependence of these quantities on the screening of the Coulomb field of a nucleus by the electron shell of the
atom, on an external magnetic field, on the particle mass and spin, and on some other parameters of relevance.
The effective-potential method for the Dirac equation and the application of the Wentzel–Kramers–Brillouin
method to the Coulomb field for Z > 137 and to the two-body Salpeter equation for the quark–antiquark system
are discussed. Some technical details in the procedure for calculating the critical distance Rcr in the relativistic
problem of two Coulomb centers are described. © 2001 MAIK “Nauka/Interperiodica”.

Dedicated to the blessed memory
of Arkadiœ Benediktovich Migdal

and Mikhail Samuilovich Marinov
Es war … eine Zeit die Riesen brauchte und Riesen zeugte,

Riesen an Denkkraft, Leidenschaft und Character,
an Vielseitigkeit und Gelehrsamkeit.

Friedrich Engels “Dialektik der Natur”1)

Mighty, Immense, and Great is the Distant Astral Law …
1)1. INTRODUCTION
Thirty years ago, there arose interest in the predic-

tions of quantum electrodynamics (QED) in ultrastrong
Coulomb fields—in particular, in the effect of sponta-
neous positron production from a vacuum (see, for
example, [1–30] and the review articles [7, 31–39]). A
feature peculiar to this process is that it has no bearing
on the frequency of an electric field and can occur in the
case of an arbitrarily slow (adiabatic) growth of the
nuclear charge in the region Z > Zcr, a point where it dif-
fers from any other positron-production mechanism
known so far. Moreover, its probability cannot be com-
puted by perturbation theory,2) so that it is necessary to
analyze exact solutions to the Dirac equation in an
external field.

The problem was formulated by Pomeranchuk and
Smorodinsky [40], who considered, as far back as
1945, the energy spectrum of an electron in a Coulomb

1)It was ... a time which called for giants and produced giants—
giants in power of thought, passion and character, in universality
and learning [quoted from Friedrich Engels, Dialectics of Nature
(Progress Publishers, Moscow, 1982; translated from the German
by Clemens Dutt)].

2)The probability of spontaneous positron production exhibits a
nonanalytic (in the parameter ζ = Zα, α being the fine-structure
constant) threshold behavior for Z  Zcr [see Eq. (37) below].
1063-7788/01/6403- $21.00 © 20367
field with allowance for a finite radius of a nucleus and
obtained the first ever estimate for Zcr. After that, how-
ever, the problem was not investigated for a long time.

After the year 1969, there appeared a torrent of the-
oretical studies devoted to this and some other allied
problems. Various aspects of spontaneous positron pro-
duction (as well as of accompanying processes like
induced positron production, which is associated with a
nonzero frequency of the electric field as the nuclei
involved approach; pair conversion in the case of the
Coulomb excitation of colliding nuclei; and delta-elec-
tron production3)) were analyzed in detail both for the
case of an isolated superheavy nucleus and for the case
where two heavy nuclei such that Z1 + Z2 > Zcr—for
example, uranium nuclei—approach each other. The
theoretical description of the structure of the vacuum
electron shell of a supercritical (Z > Zcr) atom in [7, 15–
17] proved to be somewhat out of the ordinary. This
range of problems was comprehensively analyzed in
the review articles [7, 31–39], where the interested
reader can find all necessary details.

3)These accompanying processes must be taken into account in per-
forming relevant experiments. For all these questions, the reader
is referred to [7, 10, 21, 25, 39].
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The present article, whose objective is less ambi-
tious, is aimed at describing and discussing various
methods for calculating the critical nuclear charge Zcr
and the critical distance Rcr for a collision of two heavy
nuclei, as well as at analyzing some equations for the
energies of the levels of the electron spectrum in the
region Z * Zcr. The above quantities are basic physical
parameters of the problem, which appear in all equa-
tions that are used in the theory of spontaneous positron
production. At the same time, these questions have not
yet received adequate attention in the surveys known to
the present author.

In the following, use is made, as a rule, of the system
of units where " = c = m = 1 (m is the electron mass);
distances and ε, the energy of a level, are measured in,
respectively, \/mc = 386.2 fm and mc2 units; α = e2/"c =
1/137; and ζ = Zα. The rest energy is included in ε, so
that the values of ε = 1 and –1 correspond, respectively,
to a free electron at rest (boundary of the upper contin-
uum for solutions to the Dirac equation) and to the
boundary of the lower continuum.

This article is dedicated to the memory of Arkadiœ
Benediktovich Migdal (1911–1991) and Mikhail Sam-
uilovich Marinov (1939–2000). Discussions with Ark-
adiœ Benediktovich (AB as we called him in a narrow
circle of physicists) on various aspects of the QED of
strong fields, as well as on a wider range of physical
(and not only physical) topics, were always extremely
interesting and instructive for me. Recollecting the
past, I would like to mention some features that were
calling cards of his personality as it remained in my
memory. First, it was his desire to understand always
the result of any complicated calculations in simple
physical terms or on the basis of an appropriate model.
Second, it was AB’s love for the semiclassical
approach, which he knew in minute detail and was able
to apply to intricate physics problems (in this connec-
tion, see, for example, his remarkable monograph
[41]). Third, AB was highly democratic: he would have
discussed scientific problems in just the same way with
a student and with an academician, while his disap-
proval of some ideas, which was sometimes expressed
very sharply, never became personal (I know this from
my own experience). Finally, it was his scientific
audacity: for example, AB was not afraid to admit vio-
lation of the Pauli exclusion principle for electrons that
have descended to the lower continuum [30] and had
stubbornly advocated his opinion for quite a long
period of time despite the objections and criticism of
many Soviet theoretical physicists.4) These are the fea-
tures of AB’s scientific style that impressed me most
deeply. It would be no wonder to me, however, if such
a list as composed by some other contemporary of AB
were totally different—is it not true that he was so
forceful and diverse a personality that he could be com-

4)Of course, AB was wrong in this case, but this example is a good
illustration of a feature that was peculiar to his personality—the
total absence of reverence for commonly recognized authorities.
pared (in my opinion) to such creators of the Renais-
sance period as Geronimo Cardano or Benvenuto Cel-
lini?

I would also like to recollect the discussion on the
problem of positron levels that would emerge with
increasing Z from the lower continuum. It was in 1970,
and it was AB, YaB (Yakov Borisovich Zeldovich), and
the present author who participated in this discussion.
At that time, AB firmly believed in the existence of
such states, while YaB and I questioned this and raised
some objections. Our objections annoyed AB, and the
discussion became very hot. Finally, Yakov Borisovich
said, “Kadya, you have forgotten about the Pauli exclu-
sion principle.” The reaction of AB was instantaneous
and tempestuous, and everything ended in the follow-
ing words of Yakov Borisovich: “Kadya, let us finish
today at this point, but do not think, please, that I could
not answer to you properly and in the same tone, but the
presence of Vladimir Stepanovich troubles me some-
what.” This scene is still before my eyes, but I do not
take courage to go in further details, for this requires
greater writing abilities. This episode was reflected in
part in the article written by Zeldovich and the present
author [7].

Many years of friendship and cooperation con-
nected me with Misha Marinov (some results of our
joint work—in particular, those concerning spontane-
ous positron production—were used in the present arti-
cle, especially in Section 3), who was a highly educated
physicist and who possessed a deep knowledge of
mathematics and a great pedagogical talent. I recall
with admiration lectures (brilliant in form and excellent
in content) on exceptional Lie groups, Cayley octan-
ions, and Grassmann numbers that Misha delivered at
the Institute of Theoretical and Experimental Physics
(Moscow) shortly after these mathematical construc-
tions (nearly unknown to theoretical physicists at that
time) had come into use in the theory of elementary
particles.

2. CRITICAL CHARGE OF A NUCLEUS

The discrete spectrum of the energy levels of an
electron moving in the Coulomb field of a nucleus falls
within the range –1 ≤ ε < 1. The problem admits an ana-
lytic solution in the case of a pointlike charge, where
the energy levels are determined by the well-known
Sommerfeld fine-structure formula [42]. For example,
the energy of the 1s1/2 ground-state term in the Cou-
lomb field V(r) = –ζ /r is given by

(1)

The curve of the 1s level terminates at Z = α–1 = 137 and
ε0 = 0, not reaching the boundary of the lower contin-

ε0 ζ( ) 1 ζ 2
– , 0 ζ< Zα 1.<= =
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uum. For the energy-degenerate ns1/2 and np1/2 states for
ζ  1, we similarly have

(1a)

where n = 0, 1, 2, … is the principal quantum number.
A formal analytic continuation of εn(ζ) to the region
Z > 137 leads to imaginary values of energy and com-
plex-valued wave functions, but this is unsatisfactory
from the physical point of view.5) The reason behind
the emergence of this difficulty can easily be traced
with the aid of the effective-potential method [4, 7, 18].

For the sake of simplicity, we begin by considering
the case of spherical symmetry, V = V(r). Upon a sepa-
ration of the variables, the Dirac equation in a central
field reduces to a set of differential equations for the
radial wave functions g(r) and f(r). The substitution

(2)

where g corresponds to the upper component of the
Dirac bispinor [45], recasts these equations into a form
similar to the Schrödinger equation but with an effec-
tive energy E and an effective potential U. Specifically,
we have

(3)

where the quantum number κ =  + 1/2) corresponds
to j = l ± 1/2 states, j and l being, respectively, the total
angular momentum of the electron and its orbital angu-
lar momentum (for the upper component g). We note
that the effective potential U depends on the angular
momentum j and on the energy ε of a level and that it
takes markedly different forms for ε values close to +1
and –1. For the Coulomb field of a pointlike nucleus,
we have

(4)

(a = κ for ε > 1 and a = –1/4 for ε = –1).
At sufficiently large values of the charge Z, a singu-

lar attraction that is in inverse proportion to the radius
squared and which can lead to collapse into the center
[46–49] (a phenomenon well known in quantum
mechanics) arises in the effective potential at small dis-

5)Nonetheless, such a possibility was considered in the literature
[43, 44]. There, complex values arise from the absorption bound-
ary condition imposed for r  0.
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tances. In order to demonstrate this, we consider a trial
function different from zero only in the region 0 < r <
r0. In accordance with the Heisenberg uncertainty rela-

tion, one has 〈p2〉  ≥ 1/4, whence it follows that

For ζ > j + 1/2, the spectrum of the effective Hamilto-
nian H is not bounded from below, since we have
〈H〉   –∞ for r0  0. Such a situation corresponds
to collapse into the center of forces in classical mechan-
ics and to the emergence of complex eigenvalues in the
case of the Dirac equation, but this is precisely what
occurs in the latter case [as can be seen from Eqs. (1)
and (1a)] upon a formal continuation of the energy
spectrum of levels for a pointlike charge to the region
ζ > 1.

From the aforesaid, it is clear that the emergence of
a singularity in the formulas for εn(ζ) at ζ = 1 is due to
the use of the idealized case of a pointlike charge. This
approximation provides a high precision for light
nuclei, but it becomes inapplicable at ζ > 1 for the j =
1/2 states and at ζ > j + 1/2 for states characterized by
the angular momentum j. At such large values of Z, the
Dirac equation must be solved with a potential cut off
at small distances, whereby the finiteness of nuclear
sizes is taken into account. In such a potential,

(5)

the form of the cutoff function f(r/rN) is dictated by the
electric-charge distribution over the nuclear volume
(see Appendix A).

Pomeranchuk and Smorodinsky [40] were the first
to notice this. By introducing finite nuclear sizes, they
showed that the Dirac equation has a solution over the
entire region from Z = 0, ε = 1 to Z = Zcr, ε = –1 and
roughly estimated the critical charge Zcr (however, their
estimate proved to be exaggerated). More precise val-
ues of Zcr were obtained later in [50, 51]. However, it
remained unclear what actually occurs at Z > Zcr. For
more than 25 years, this problem had not attracted
much attention.

A breakthrough occurred in the years 1969 and
1970, when the problem of the critical charge of a
nucleus and physical phenomena in the region Z > Zcr
became the subject of intensive investigations. First of
all, the value of Zcr was calculated precisely for a spher-
ical nucleus. These precise values were obtained inde-
pendently by two methods. Pieper and Greiner [2]
determined the energies of the levels by numerically
solving the Dirac equation and found Zcr as the point of
intersection of the curve representing the level ε0(ζ) and

r0
2
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the boundary of the lower continuum (they assumed
that the nuclear charge is uniformly distributed over the
volume of a sphere of radius rN = r0A1/3, where r0 =
1.2 fm and where the dependence of the atomic number
A on the nuclear charge was approximated by the for-
mula A = 63.6 + 1.30Z + 0.00733Z2, which was
obtained from a dedicated consideration for a region of
superheavy nuclei (100 < Z < 250).

On the other hand, it was noticed in [3] that solu-
tions to the Dirac equation are strongly simplified at ε =
–1. Owing to this, it is possible to derive an equation
immediately for Zcr. The result is

(6)

where z = , ν = 2 , Kiν(z) is a Mac-
donald function,6) and ξ = ξ(ζ, κ) is the logarithmic
derivative of the intrinsic wave function at the nuclear
boundary [see Eq. (A.2) in Appendix A]. A numerical
solution to Eq. (6) was constructed for the case of rN =
r0A1/3 with r0 = 1.1 fm and A = 2.6Z (these values are
typical of heavy nuclei) and for the following two cut-
off models:

6)It is a real-valued function at real ν and z > 0, which decreases in
proportion to exp(–z) for z  ∞ and which features an infinite
number of oscillations for z  0.

zKiν' z( )/Kiν z( ) 2ξ ,=

8ζ crrN ζ cr
2 κ 2

–

I f x( ) 1≡

II f x( ) 3 x
2

–( )/2= 



for 0 x r/rN 1.<≡<

1.7

1.5

1.3

1.1
0 0.1 0.2

rN

ζ cr
2s(I)

1s
I

II

Fig. 1. Critical charge of a nucleus (ζcr = Zcr /137) for the
1s1/2 and 2s1/2 levels (the nuclear radius rN is given in \/mc =
386 fm units). The cutoff models I and II correspond to the
uniform charge distributions over the nuclear surface and
volume, respectively. In each pair of close curves, the upper
and the lower one represent, respectively, the results of the
numerical calculation from [3] and the results obtained with
the semiclassical formula (45).
Of these, the second corresponds to a constant density
of the electric charge in a nucleus. For a few low-lying
levels, the results of the calculations based on model II
are the following:

(7)

(see also Fig. 1). These values are in good agreement
with those from [2].

In this connection, there arises the problem of sensi-
tivity of Zcr values to a detailed form of the nuclear-den-
sity distribution in superheavy nuclei. This problem can
be resolved by comparing the Zcr values as obtained for
the cutoff models I and II—the point is that model I
assumes that the charge is entirely concentrated on the
nuclear surface, while model II corresponds to a uni-
form electric-charge distribution over the nuclear vol-
ume and is therefore quite realistic. Upon going over
from model I to model II, the value of the electrostatic
potential at the center of a nucleus increases by a factor
of 1.5, amounting to V(0) = 1.5ζ /rN . 70mc2 = 35 MeV.
The corresponding values of ζcr at rN = 10 fm are Zcr =
1.271 (I) and 1.243 (II), the difference of Zcr values
within models I and II being 3.8 units. From these
results alone, we can conclude that less significant
modifications (like allowances for the diffuseness of
the nuclear boundary, for deviations from a spherical
shape of nuclei, and for changes in the relationship
between A and Z in superheavy nuclei) would lead to very
modest modifications (of not more than one unit) to Zcr
(these effects were estimated in [13, 18, 25]). For the criti-
cal charge Zcr of a naked nucleus (that is, a nucleus not sur-
rounded by an electron shell), we can take the values in (7).

So far, the nucleus has been considered to be
naked—that is, completely deprived of its electron
shell. But if it is surrounded by such a shell, the shell
electrons reside near the nucleus for some part of the
time, screening its charge; as a result, Z effectively
becomes smaller, so that Zcr increases. Estimating this
effect is especially important in connection with per-
forming experiments to study spontaneous positron
production in heavy-ion collisions. Indeed, the total
charge of nuclei, Z1 + Z2, can exceed the critical charge
Zcr ≈ 170 calculated without allowing for screening
only by 15–20 units; therefore, an increase in Zcr even
by 10 units would considerably complicate an experi-
ment with heavy nuclei available at present.

Since it is very difficult to calculate Zcr in the prob-
lem of two centers, the analysis was actually performed
for a spherical nucleus. The electron-shell density was
taken according to the Thomas–Fermi equation [52].
Although the speed of K-shell electrons is v ~ c, the
majority of electrons occur at distances of r ~ 137Z–1/3 @
1 from the nucleus, so that the use of the nonrelativistic
Thomas–Fermi model is justified. For the screening-
induced increase in the critical charge, the results
obtained in [11] and [19] for the case of a neutral atom
are ∆Zcr = 1.5 and 1.2, respectively. A modest distinc-
tion between these two values seems to be due to the

Zcr 169 1s1/2( ), 185 2 p1/2( ), 230 2s1/2( ) …,=
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use of the different shapes of the electron-charge distri-
bution within the nucleus in those studies. Moreover,
the screening of the nuclear charge was taken into
account more correctly in [11] on the basis of the rela-
tivistic Hartree–Fock–Slater equation (see [12]), and
the value of Zcr = 173 was obtained there. Summing the
different corrections, we find that, upon a transition
from the cutoff model II to a nucleus that has a diffuse
boundary and which is surrounded by an electron shell,
the Zcr values presented in (7) increase by approxi-
mately 3 ± 1 units for the 1s and 2p states (see Table 1).
It is also possible to investigate Zcr as a function of the
degree of ionization of the electron shell, q = (Z – N)/Z,
where N is the total number of electrons in the shell (we
have q = 0 for a neutral atom and q = 1 for a naked
nucleus). With allowance for the screening effect, the
self-consistent potential for an electron now becomes

Vq(r) = – f(r/rN) + e2 for 0 < r < rN; 

Vq(r) = – ϕ(x) + e2 in the region rN < r < r0;

and 

Vq(r) = –(Z – N)e2/r 

for r > r0, where ϕ(x) is a solution to the Thomas–Fermi
equation for an ion, x = (128Z/9π2)1/3r/aB = 0.0425ζ1/3r,
and r0 is the radius of a positive ion in the Thomas–
Fermi model [52] [here, r0  ∞ at q = 0 (r0 @ rN)].

A change in Zcr can be found by perturbation theory
[18]. Specifically, we have

(8)

where ρcr = ψ+ψ is the electron-shell density at the crit-
ical point and β is the slope of the level [see Eq. (12)
below]. Substituting the expression δV = Vq(r) – V0(r)
into (8) and considering that the main contribution to
the relevant integral comes from the region where r ~
rK ! ra (rK is the K-shell radius, and ra is the mean
radius of the atom), we obtain [53]

(9)

The correction ∆Zcr(0) for a neutral atom was found by
numerically solving the Dirac equation for ε = –1 and
V(r) = –ζr–1ϕ0(x). The results of the calculation are
quoted in Table 1; the graph of the function F(q) is
depicted in Fig. 2, where we can see that, in the region
q & 0.5, this function changes insignificantly—for
example, F(0.5) = 0.907 [q values around 0.5 corre-
spond to a (Z1, Z2, e) quasimolecule arising in a colli-
sion of a naked nucleus with a neutral atom, because we
usually have Z1 ≈ Z2)]. Thus, the correction for screen-
ing in an ion whose degree of ionization is q ~ 0.5 is
nearly identical to that in a neutral atom. This can easily
be understood: with increasing degree q of ionization,
the electron shell comes closer to the nucleus, whereby

Z
rN

-----
 Z N–

r0
-------------



Z
r
---

 Z N–
r0

-------------


δζ cr β 1– δV〈 〉 , δV〈 〉 δV r( )ρcr r( )r
2

r,d∫= =

∆Zcr q( ) ∆Zcr 0( )F q( ).=
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a decrease in the screening shell charge, which is equal
to (1 – q)Z, is partly compensated. On the other hand,
the correction ∆Zcr decreases fast when we go over to a
naked nucleus (q  1) since F(q) ∝ (1 – q)1/3  0.

The calculations presented in [53] also took into
account the screening of the nuclear charge by a vac-
uum shell of a supercritical atom (whose Z > Zcr
nucleus attracts such a shell upon positron emission
[26, 54]) and the diffuseness of the nuclear boundary.
The eventual results of those calculations for Zcr are
given in Table 1.

It is interesting to find out how finite nuclear sizes
eliminate the singularity of the energy ε0(ζ) at ζ = Zα =
1. Suppose that the cutoff radius rN is arbitrarily small
in relation to the electron Compton wavelength. In the
limit Λ = ln(1/rN) @ 1 (which is of a somewhat aca-
demic interest), the energy of the 1s level becomes [5, 7]

(10)

In the region Z < 137,  = 1 + exp(–2Λγ) + …
tends to unity exponentially fast, so that, for 1 – ζ @ Λ–2,
the energy ε0(ζ) coincides with expression (1) for a
pointlike charge and is virtually independent of the way
in which the Coulomb potential is cut off within the
nucleus. On the other hand, the point ζ = 1 is no longer
a singular point for the function ε0(ζ) at rN > 0, and

ε0 ζ( ) γ Λγ, γcoth 1 ζ 2
– .= =

Λγcoth

Table 1.  Critical charge for a spherical nucleus (lowest
states with κ = )

1s1/2 2p1/2 2s1/2 3p1/2

168.8 181.3 232 254

∆Zcr 1.2 1.1 3.5 3.3

0 1.5 3.1 4.6

0.5 0.6 0.8 1.0

Zcr 170.5 184.5 239 263

ζcr 1.245 1.346 1.74 1.92

〈r〉 0.500 1.27 2.27 5.76

0.309 0.237 0.552 0.459

ρ(ζ = ζcr) 1.62 0.333 0.994 0.333

Note: The following notation is used here:  is the critical

charge for a naked nucleus with a sharp boundary (cutoff
model II); ∆Zcr is the correction for screening in a neutral

atom;  is the correction for screening by the vacuum

shell;  is the correction due to the diffuseness of the

nuclear boundary; and 〈r〉  is the mean radius of the electron

state in "/mc units: (first row) at  = 1 (for a pointlike

nucleus) and (second row) at ζ = ζcr with allowance for finite
nuclear sizes. The parameter ρ is defined in (31) and (B.13).

1+−

Zcr
0( )

∆Zcr'

∆Zcr''

Zcr
0( )

∆Zcr'

∆Zcr''

ζcr
0( )
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expression (10) can be continued to the region Z > 137
with the result

(10‡)

Expressions (10) and (10a) describe a unified analytic
function that, in the vicinity of the point ζ = 1, is
expanded in a convergent series in integral powers of
1 – ζ2 as

(10b)

where B2n are Bernoulli numbers [B2 = 1/6, B4 ≡ –1/30,
…, B2n/(2n)! ≈ 2(–1)n – 1(2π)–2n for n  ∞]. Expres-
sion (10a) has a pole at  = π/Λ,7) whence we obtain
the asymptotic formula

(11)

We can see from this formula that ζcr as a function of
the cutoff radius rN has a singularity for rN  0.
Therefore, finite nuclear sizes cannot be taken into
account by perturbation theory if Z > 137. Here, col-
lapse into the center for the Dirac equation with a point-
like Coulomb potential clearly manifests itself.

In the zero-range limit (rN = 0), the curve represent-
ing the 1s level reaches the point ε = 0 at ζ = 1 and
steeply terminates after that (the derivative is dε0/dζ =
–∞). This shows that the zero-range approximation is
inapplicable to the problem being considered. At the
same time, the function ε0(ζ) smoothly intersects the

7)In fact, this pole is spurious—it is removed in solving the prob-
lem more accurately, whereby it is shown that, near the critical
point, there is a comparatively narrow region ζcr – ζ ~ Λ–3, where
expression (10a) is inapplicable. The relevant expression for the
energy of the level can be found in [5].

ε0 ζ( ) γ̃ hΛγ̃cot , γ̃ ζ 2
1– .= =

ε0 ζ( ) 1
Λ
---- 1 2

2n B2n

2n( )!
-------------Λ2n

1 ζ 2
–( )

n

n 1=

∞

∑+
 
 
 

,=

γ̃

ζ cr 1 π2

2Λ2
--------- O Λ 3–( ), Λ  @ 1.+ +=

1.0

0.5

0.5 1.0 q

F(q)

0

Fig. 2. Graph of the function F(q) in (9) (q = 1 – N/Z is the
degree of ionization of the electron shell of a superheavy
atom).
line ε = 0 if rN > 0, showing no singularities there, and
enters the lower continuum with a finite slope β:

(12)

(Fig. 3). Here, we have written the potential in the form
V(r) = –ζv(r), assuming that the function v determin-
ing the shape of the potential no longer depends on ζ
[for the potential in Eq. (5), this holds to a high precision,
since the dependence rN ∝ ζ 1/3 is rather weak]. The
parameter β determines the threshold behavior of the
probability of spontaneous positron production [4, 21].

The properties of atomic states for Z > 137 were also
investigated. Presented below are the formulas for the
mean radius of the ground state and for its variance. For
a Z < 137 pointlike nucleus, we have [see Eqs. (B.2)
and (B.9)]

(13)

For the κ = –1 states (that is, ns1/2 states), the results at
the boundary of the lower continuum are

(14)

(see Table 1). For an arbitrary energy of a level, 0 > ε >
–1, the expression for 〈r 〉  is much more complicated
[3]. According to numerical calculations, the mean
radius of the ground state decreases monotonically with
increasing ζ (see Fig. 5 in [3]), this decrease being
especially pronounced when the charge increases from
Z = 137 to Zcr (compare the corresponding numbers in
Table 1); on the contrary, the relative variance ∆r/〈r 〉

β dε
dζ
------–=

ζ ζcr=
v r( )ρcrd

3
r,∫=

ρcr ψ0
2

r( ) ζ ζcr==

r〈 〉  = 1 2 1 ζ 2
–+( )/2ζ , ∆r = 

r〈 〉

1 2 1 ζ 2
–+( )

1/2
----------------------------------------.

r〈 〉
4ζ cr

2
3–( ) 1 0.3ζ cr

2
+( )

2ζ cr 2ζ cr
2

3+( )
----------------------------------------------------, ε 1–= =

15

10

5

0
1.1 1.3 1.5 ζ cr

β

I

II

Fig. 3. Slope β of the ground-state level entering the lower
continuum: (solid curves) results of the numerical calcula-
tion from [4] and (dashed curve) result obtained in the semi-
classical approximation [74] for the cutoff model I.
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increases. The magnetic moment of the electron in a
bound state is given by [6]

(15)

In particular, µcr  2/15 = 0.133 for ζcr  1 and
µcr = 0.350 ≈ 1/3 of the Bohr magneton for ζcr = 1.245
(1s ground state).

Equations (13)–(15) can easily be generalized to
other states of the discrete spectrum (see Appendix B).
Table 1 also quotes the values of the parameter ρ =
w2/w1, which characterizes the relative weight of the
lower and the upper component of the Dirac bispinor
[see Eq. (B.13)]. Since ρ ~ 1, the electron bound state
at the boundary of the lower continuum is fully relativ-
istic (as might have been expected).

Equations (6), (14), and (15) have so simple a form
owing to the fact that, in the case of the Coulomb field
V(r) = –ζ /r, solutions to the Dirac equation at ε = –1
that decrease at infinity are explicitly expressed in
terms of a Macdonald function as

(16)

(the normalization factors are omitted here), where z =
23/2(ζr)1/2, ν = 2(ζ2 – κ2)1/2, ζ > |κ|, and the radial wave
functions g(r) and f(r) correspond to the definition

given in [45], the normalization condition being  +

F2)dr = 1 here (in the limit rN  0, the normalization
factor can be calculated explicitly [4, 21]). From (16),
it follows that, in the limit r  ∞, we have

(17)

the ratio of the coefficients c1 and c2 being c1/c2 =

− . Thus, the electron level that reached the
boundary of the lower continuum remains localized
(compare with the results given in [1]). At large dis-

tances from the nucleus, we then have F/G ∝  @ 1
and the electron-shell density decreases exponentially,

(17‡)

with the numerically large coefficient of c3 = 25/2 =
5.657. 

A considerable simplification in Eqs. (14)–(16) in
relation to the general case of ε ≠ –1 may be due to
some additional symmetry of the Dirac equation. In this
connection, it should be noted that the group of the hid-

µcr µ ζ ζ cr=( )≡ 2 4ζ cr
2

3–( )/3 2ζ cr
2

3+( ),=

κ 1.–=

G r( ) rg r( )≡ Kiν z( ),=

F r( ) rf r( )≡ ζ 1–
rG ' κG+( )=

=  ζ 1– κKiν z( ) 1
2
---zKiν' z( )+

(G
2

0

∞∫

G r( ) c1r
1/4–

8ζ crr–( ),exp≈

F r( ) c2r
1/4

8ζ crr–( ),exp≈

ζ cr/2

ζr

ρcr r( ) G
2

r( ) F
2

r( )+( )/4πr
2

=

≈ const r
3/2–× c3 ζ crr–( ),exp r ∞,
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den symmetry of the hydrogen atom (for the nonrelativ-
istic case, it was discovered by Fock [55] and Barg-
mann [56]; see also [57–62]) was considered in [63–65]
for the relativistic Coulomb problem. However, no spe-
cial analysis has been performed for ε = –1 states at the
boundary of the lower continuum.

3. CRITICAL DISTANCE FOR COLLIDING 
NUCLEI

There are no nuclei with charge Z ~ Zcr > 170 in
nature, and prospects for synthesizing them are abso-
lutely unclear at present.8) It was noted by Gershtein
and Zeldovich [1], however, that supercritical electric
fields are generated for a short period of time in the case
where two ordinary heavy ions (for example two naked
uranium nuclei with total charge Z1 + Z2 = 184 > Zcr)
come to each other within a distance R less than the
critical distance Rcr. Such an experiment is quite feasi-
ble, and the corresponding theoretical problem is that
of two centers for the Dirac equation. Since the nuclei
involved move at nonrelativistic velocities (vN /c ≈
1/20) and since a K electron is relativistic for Zα * 1,
the energies of the electron terms can be calculated in
the adiabatic approximation. The charge of each of the
colliding nuclei is less than 137, whence it follows that
finite nuclear sizes can be taken into account by pertur-
bation theory. Solving the Dirac equation for two point-
like charges at rest that occur at a distance R from each
other and which generate the potential

(18)

where r1, 2 are the distances between the electron and
the nuclei involved, presents the most serious difficulty
in the problem. This problem is much more compli-
cated than the above problem of solving the Dirac equa-
tion for a spherical nucleus.

The Schrödinger equation with the potential (18)
has received a comprehensive study [67] (it has numer-
ous applications in the theory of molecules, in the phys-
ics of muon catalysis, and in some other allied realms).
In this case, variables in the nonrelativistic Schrödinger
equation are separated in the ellipsoidal coordinates
(see [48])9) 

8)In this connection, mention should be made of the last record in
these realms—the formation of Z = 114 and Z = 116 nuclei in
48Ca + 242, 244Pu interactions (in all, seven such nuclei have been
observed so far). In all probability, these nuclear species lie near
the island of stability of superheavy elements—its existence has
long since been predicted by theorists (see, for example, [66]).
Naturally, this also quickens interest in QED predictions in the
region Z > 137.

9)In the mathematical literature [47, 67], they are more often
referred to as prolate spheroidal coordinates.

V r( )
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---------+ 
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and the equation reduces to two ordinary differential
equations. In going over to the relativistic problem of
two Coulomb centers, we run into the following addi-
tional difficulties:

(i) Variables are not separated in any of the known
systems of orthogonal coordinates.

(ii) Near each of the nuclei, the wave function devel-
ops a singularity associated with the term –(1/2)V2 in
the effective potential.

(iii) There is a significant spin–orbit interaction,
because of which the upper and the lower spinor com-
ponent of the wave function are on the same order of
magnitude at Zα ~ 1.

Squaring the Dirac equation at ε = –1, we arrive at
the set of equations

(19)

where the matrix elements Uij depend on r1 and r2 and
on the parameters R and ζ (see Appendix C). Upon sep-
arating the azimuthal angle ϕ, we obtain a set of sec-
ond-order partial differential equations on a plane. A
direct application of standard finite-difference methods
for solving boundary-value problems for elliptic equa-
tions to this set is inappropriate because of the presence
of singularities. The critical distance Rcr was calculated
by the Ritz method [14, 27] or by the Kantorovich
method (see [22, 23]).10) Either method relies on the
variational principle. Within the Ritz method, the ψ
function is represented as a finite sum ψ = ,
where {ϕn} is a fixed set of basis functions, while cn are
variable constants. Within the Kantorovich method,

ψ = (y)ϕn(x), where dn are fixed functions of the
variable y, while ϕn are variable functions of x. Substi-
tuting the ψ function into the quadratic energy func-
tional, one arrives at a bilinear form in the coefficients
cn within the Ritz method or at a functional bilinear in
ϕn within the Kantorovich method.

The condition requiring that the energy be minimal
leads to a set of linear algebraic equations within the
first method or a set of ordinary differential equations
for the functions ϕn(x) within the second method. In
order to achieve a high precision in variational calcula-
tions, it is important to choose correctly the variables x
and y and the functions dn(y); in the Ritz method, suc-
cess depends on the choice of basis functions ϕn.

The following approach was adopted in [22, 23]. We

denote by ρ = , z, and ϕ cylindrical coordi-

10)The idea of reducing a partial differential equation to a set of
ordinary differential equations is due to Kantorovich. Solutions
to Poisson’s and the biharmonic equation were considered in
[68] in various regions on a plane, and it was shown there that,
as a rule, this method converges faster than the variational Ritz
method and is more accurate than it.

∆ψ1 U11ψ1 U12ψ2+ + 0,=

∆ψ2 U21ψ1 U22ψ2+ + 0,=

cnϕnn∑

dnn∑

x
2

y
2

+

                                                            

nates. If the charges of the nuclei are identical, Z1 = Z2 =
Z/2, the wave function of the ground-state term is sym-
metric under the inversion in the z = 0 plane. In addi-
tion, we note that, for the ground-state term, the projec-
tion of the total angular momentum of the relevant
quasimolecule is Jz = Λ + sz = 1/2, while the projection
of the orbital angular momentum Λ is zero for ψ1 and
unity for ψ2. Isolating kinematical factors, we can rep-
resent the spinor components as

(20)

where χ1 and χ2 are real-valued functions that are even
in z. Instead of ρ and z, we now introduce the variables
x = x(ρ, z) and y = y(ρ, z) in such a way that the singular
points of Eqs. (19) occur at x = 0 and ∞, irrespective of
y. For this, it is sufficient that x  0 when r1  0 or
r2  0 and x  ∞ when r1, 2  ∞. The choice of
the variable y is not very important—it is only neces-
sary that the variables x and y be independent. Specifi-
cally, use was made of the variables

(21)

which take values in the curvilinear triangle (x–1 – 1)θ(1 –
x) < y < x–1 on the (x, y) plane. In terms of these vari-

ables, we have V(r) = –2ζR–1 . The trial
functions were represented as

(22)

A minimization of the energy functional leads to the set
of N = m + n equations

(23)

where P, Q, and R are (N × N) matrices dependent on x.
All the coefficients Pij , Qij(x), and Rij(x) are expressed
in terms of elementary functions; by way of example,
we indicate that, at i = j = 1,

(24)
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The functions Pij , Qij, and Rij are continuous at the point
x = 1, together with their first derivatives;11) it is conve-
nient to calculate them with the aid of the recursion
relations from [22]. The boundary conditions for the
functions ϕi(x) for x  0, ∞ follow from the require-
ment that the norm of the ψ function be convergent.

The boundary-value problem specified by Eq. (23)
has a solution only at specific R = Rcr(Z). The functions
ϕk(x) have a power-law singularity for x  0 and an
essential singularity for x  ∞. The character of these
singularities and the expansions near them immediately
follow from Eqs. (23). Introducing the matrix of loga-
rithmic derivatives,

we reduce the set of Eqs. (23) to the matrix Riccati
equation

(25)

where

(25‡)

By numerically solving this equation by the Runge–
Kutta method in the intervals (x0, x1) and (x∞, x1), we
determined the matrices Y0(x1) and Y∞(x1). The condi-

tion of continuity of the function ϕi(x) and (x) at x =
x1 leads to the set of homogeneous equations {Y0(x1) –
Y∞(x1)}ϕ(x1) = 0, which has a nontrivial solution under
the condition

(26)

whence we can determine Rcr at a given charge ζ. In
view of Eq. (24), it is natural to choose the matching
point at x1 = 1; in numerically solving Eq. (25), it is
convenient to make the substitution t = x–1/4, 0 < t ≤ 1.
The choice of the initial points of integration at x0 = t0 =

0.07 and x∞ =  ≈ 4 × 104 has made it possible to
ensure a precision not poorer than 0.15% in calculating
Rcr(ζ).

The choice of trial functions in the form (22) will be
referred to as an (m, n) approximation. With increasing
m or n, the class of trial functions becomes wider and
the accuracy of the (m, n) approximation becomes
higher, which can be seen from Table 2. The calcula-
tions were performed for (m, n) = (1, 0), (2, 0), (2, 1),
and (4, 3). The results for the Z = 90–100 nuclei are
quoted in Table 3.12) In order to assess the accuracy of
various methods, we consider the case of Z = 92 (ura-
nium nuclei) in greater detail (see Table 2). In addition

11)The expressions for the coefficients Pij(x), etc., for x < 1 differ
from those for x > 1 because the topology of the surfaces x(ξ, η) =
c changes at c = 1: they are simply connected for c > 1 and dou-
bly connected for 0 < c < 1.

Y Yij x( ) , ϕ i' Yijϕ j,
j 1=

N

∑= =

Y ' A BY– Y
2
,–=
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Q R '–( ), B P
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R R
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– P '+( ).= =
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to the (m, n) approximations, we present here some
more numbers: the Rcr value as obtained by the Ritz
method [14] and in the monopole approximation (see
also Fig. 4), as well as the Rcr value deduced in [9] by
matching the relevant asymptotic expressions. From
Table 2, it can be seen that, with increasing order of the

12)Unfortunately, an algebraic error was made in [22] in calculating
the coefficients Q13 and Q23 in the equations of the (2, 1)
approximation [these terms die out at small and large distances
from nuclei and do not affect the corresponding asymptotic
expressions for ψ(r); therefore, they are poorly controllable].
This error resulted in overestimating the Rcr values in the (2, 1)
approximation by about 20% (see [23, 24] in this connection);
however, it exerts no effect on the (1, 0) and the (2, 0) approxi-
mation, where the results from [22] remain valid.

Table 2.  Convergence of the (m, n) approximations in the
two-center problem for the Dirac equation

(m, n)

Rcr, fm

Z = 184
(U + U)

Z = 190
(U + Cf) Z = 200

(1, 0) 34.7 – 68.1

(2, 0) 37.4 – 72.4

(2, 1) 38.37 50.8 74.4

(4, 3) 38.42 50.9 74.8

According to [24, 25] 36.8 48 –

Asymptotic values from [9] 35.5 46.7 68.2

Monopole approximation [25] 34.1 44.8 64.8

Table 3.  Parameters of the 1sσ electron state at the critical
point

Z1 = Z2 Rcr A∞ β ρ
numerical asymptotic

90 31.0 28.7 26.5 2.23 0.807 1.478

92 38.4 35.5 34.3 2.51 0.823 1.426

93 42.4 39.1 38.4 2.66 0.832 1.400

94 46.6 42.8 42.6 2.82 0.840 1.376

95 50.9 46.7 47.0 2.99 0.848 1.353

96 55.4 50.8 51.6 3.17 0.857 1.330

97 60.0 55.0 56.3 3.36 0.865 1.307

98 64.8 59.2 61.0 3.56 0.873 1.286

99 69.7 63.7 66.0 3.76 0.881 1.265

100 74.8 68.2 71.1 3.98 0.888 1.244

114 160.0 143.0 – 3.98 0.888 –

126 255.0 – – – – –

Note: The distances  (for pointlike nuclei) and Rcr (with

allowance for finite nuclear sizes) are given in fm. The
former were obtained from a numerical calculation in [23]
and from the asymptotic formula (32). The parameters β and
ρ are defined in (30a) and (31), respectively.

Rcr
0( )

Rcr
0( )
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(m, n) approximation, the relevant values of Rcr
increase monotonically {from the variational principle,
it follows that the exact value of Rcr can only exceed the
result obtained in any (m, n) approximation [8, 18]}.

Let us now consider the Ritz method. In these calcu-
lations, use was made of a system of the Hilleraas basis
functions

(27)

which leads to a fast convergence in the nonrelativistic
problem of two centers. However, these functions are
finite near the nuclei (ξ  1, η  ±1), whereas an
exact solution to the relativistic problem of two centers
has a Coulomb singularity:

(28)

(in the nonrelativistic limit Zα  0, this singularity
disappears). The presence of the singularity impairs

convergence of the expansion in the basis { }.
Within the Kantorovich method, there is no such diffi-
culty, since the functions ϕk(x) automatically have the
required singularity for x = ξ2 – η2  0 [this is
ensured by the set of Eqs. (23) itself]. In all probability,

ψnls
m ξ η,( ) ξ 1–

2a
-----------– 

  Ln
m ξ 1–

a
----------- 

  Pl
m η( )χs,exp=

ψ r( ) ξ2 η2
–( )

σ–
, σ∝ 1 1 Zα( )2

/4– ,–=

Z Z1 Z2+=

ψnls
m

60
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170 180 190

Rcr, fm

Z1 + Z2

U–U

U–Cf

Fig. 4. Critical radius Rcr (fm) for the 1sσ ground-state term
according to [25]: (dashed curve) results for naked nuclei at
rN = 0, (solid curve) results for naked nuclei with allowance
for finite nuclear sizes, (dash-dotted curve) results for the
case of 30 electrons in the atomic shell, and (dotted curve)
results for the case of 100 electrons in the atomic shell.
this explains the fact that, for Z = 92, the Rcr value as
obtained within the Ritz method with 100 trial func-
tions is close to the result from [22] in the (1, 0) approx-
imation, which involves only one function ϕ1(x).

It is also possible to compute the electron wave
function at the critical point ζ = ζcr and quantities asso-
ciated with it (see [23] and Appendix C of the present
study). Figure 5 shows the density ρcr(r) = ψ+ψ for the
1sσ state of the U + U quasimolecule at R = Rcr. Near
each nucleus, as well as at large distances from the
nuclei, the density ρ(r) is spherically symmetric; that
is,

(29)

where σ = . The asymptotic coefficients A0
and A∞ were computed in [23]. Table 3 gives the values
of the coefficient A∞, which determines the probability
of peripheral processes (for example, the probability of
atom ionization in a strong electric field).

Near the boundary ε = –1, the energy of the level is

(30)

The slope parameter β, which determines the threshold
behavior of the cross section for spontaneous positron
production [4, 21], can be calculated by the formula

(30‡)

The results are quoted in Table 3. For nuclei from the
uranium region, β is a nearly linear function of Z
(Fig. 6). The values of the parameter

(31)

which characterizes the magnitude of relativistic
effects for a bound electron, are also given in Table 3.
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Fig. 5. Density ρcr for the 1sσ ground-state term at Z1 =
Z2 = 92. The values of ρcr for neighboring curves differ by the
factor of 101/5. The positions of the nuclei are denoted by Z.
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Finally, the approximate analytic formula

(32)

was obtained in [9] by matching the relevant asymp-
totic expressions for the problem of two centers.13)

This method is usually quite accurate for shallow lev-
els—this can be easily demonstrated by considering the
problem of two delta-function wells at a fixed distance
between them (the simplest example of a two-center
problem). Therefore, it is natural to apply it to the prob-
lem being considered because, here, the effective
energy is E = 0.

In (32), we set g = , g' = , and ζ =
(Z1 + Z2)/137 and denoted by argΓ(z) that branch of this
multifunction for which g–1argΓ(1 + 2ig) = –2C +
O(g2) for g  0 (C = 0.5772…). This simple formula
qualitatively reproduces the ζ dependence of the criti-
cal distance. It is consistent with expression (11) for
δ  0 and, as can be seen from Tables 2 and 3, has an
uncertainty of about 5 to 10% for Z1 + Z2 & 200 (as Z
increases beyond this value, its accuracy deteriorates,
however). Surprisingly, the asymptotic expression (32)
agrees, to a percent precision, with the Rcr values as cal-
culated with allowance for finite nuclear sizes (see
Table 3); therefore, it can be used to obtain a fast esti-
mate of Rcr.

For the case of scalar particles, a similar approxima-
tion was constructed in [8], where the authors also for-
mulated the variational principle for calculating Rcr. For
the case of one spherical nucleus, they found that Zcr
satisfies the equation

(32‡)

where g =  and ξ is the same quantity as in
Eq. (6). A comparison of expression (32a) with the
results of the calculations according to the exact Eq. (6)
reveals that, in the region around rN ~ 10 fm, this for-
mula provide ζ cr to a percent precision.

The last row of Table 2 presents Rcr values calcu-
lated in the monopole approximation, which corre-
sponds to replacing the potential (18) by its zeroth
spherical harmonic:

(33)

For the two-center problem (rN = 0, Z1 = Z2), we have
V0(r) = –2ζ /R for 0 < r < R/2 and V0(r) = –ζ /r for r > R/2.

13)In order to derive this formula, use was made of the fact that an
excess over the critical charge is small in actual collisions: δ =
(Z1 + Z2 – Zcr)/Zcr ! 1 (for example, δ = 0.07 in U + U colli-
sions and δ ≈ 0.1 in U + Cf collisions).
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With allowance for finite nuclear sizes and at Z1 ≠ Z2,
the expression for V0(r) is rather cumbersome {see
Eq. (29) from [25])}, but numerically solving the Dirac
equation presents no serious difficulties because of the
spherical symmetry of the potential. It can be seen from
Table 2 that, for nuclei from the uranium region, the
precision of the monopole approximation is acceptable
(about 10%). The critical-distance values obtained in
this way in [25] are displayed in Fig. 4 both for naked
nuclei and for nuclei with an electron shell featuring 30
and 100 electrons.

So far, we have considered the 1sσ ground-state
term of the relevant quasimolecule. For the next, 2p1/2σ,
term, the result in the monopole approximation at Z1 =
Z2 = 92 is Rcr ≈ 18 fm [25], which is close to the sum of
the radii of the two nuclei involved. In this case, the
deformation of one nucleus by the Coulomb field of the
other nucleus becomes sizable, so that the problem
ceases to be pure.

4. EFFECTIVE-POTENTIAL METHOD

The effective-potential method [7, 18] is useful for
a qualitative analysis of the situation that emerges when
a discrete level approaches the boundary of the lower
continuum. The method consists in going over from the
Dirac equation to the simpler Schrödinger equation fea-
turing an effective energy E and an effective potential
U. In general, the relation between the effective poten-
tial U and the original potential V directly appearing in
the Dirac equation is rather complicated. The relevant
expressions are simplified at the boundary of the lower
continuum because, there, we are dealing with states at
zero (effective) energy (E = 0). Equation (3) then takes
the form

(34)

where v(r) = –V '/V depends only on the form of the
original potential V(r). Let us consider some specific
examples.
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Fig. 6. Slope β of a level in the two-center problem [see
Eq. (30)] versus the ion charge Zi: (straight line 1) results of
the numerical calculation according to formula (30a) and
(straight line 2) results in the WKB approximation [for-
mula (A.7)].
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For power-law attractive potentials

(35)

we have v(r) = ν/r; taking into account the Langer cor-
rection 1/8r2, which improves the accuracy of the semi-
classical approximation at small distances [40],14) we
arrive at

(35‡)

By way of example, we indicate that, in the case of a
Coulomb field, the effective potential has the form

(36)

(see Fig. 7). Thus, we conclude that, for ε values close
to –1, the effective potential involves a broad Coulomb
barrier, owing to which the electron state under analysis
is not delocalized when ε  –1; that is, the wave
function decreases fast at infinity (compare with the
results presented in [1]). For example, relation (17)
holds at the critical point Z = Zcr. This distinguishes the
problem being considered from a typically nonrelativ-

istic situation, where ψ(r) ~ e–λr and λ =   0
for εb  0 (here, εb is the binding energy—that is, the
spacing between the level and the boundary of the con-
tinuous spectrum).

The presence of a Coulomb barrier in the effective
potential affects all features of spontaneous positron
production. For Z > Zcr, the 1s level disappears from the
discrete spectrum, going over to the lower contin-
uum.15) Since ε < –1, the effective energy E is positive,
so that there arises the possibility for the level to decay
by penetrating through the potential barrier (see Fig. 7).

14)It is well known that, in some cases, semiclassical energy spectra
become coincident with exact ones upon introducing this correc-
tion.

15)According to [1], the charge density associated with a single
electron is delocalized for Z  Zcr. However, the preexponen-
tial factor that appears in the asymptotic expression for the wave
function, ψ(r) ∝ rµexp(–λr), and which is associated with the
Coulomb barrier in the effective potential (36) was disregarded

in [1]. Since µ = ζε/λ  –∞ and λ =   0 for

ε  –1, the factor rµ compensates for an ever slower decrease
of the exponential exp(–λr) for r  ∞, when the level
approaches the boundary of the lower continuum (in contrast to
the case of ε  –1, where the Coulomb interaction of the
electron with the nucleus increases 〈r〉  in relation to what occurs
in the case of a short-range potential). Thus, a bound state at the
boundary of the lower continuum remains localized both for
electrons [3] and for scalar mesons [4]. Therefore, there are no
reasons to expect that the polarization charge of the vacuum
increases greatly for Z  Zcr (in the case of fermions, for
which the Pauli exclusion principle is operative [7]); this is fully
confirmed by the numerical calculations of vacuum polarization
that were performed in the 1980s, as well as by those calcula-
tions for the vacuum-polarization-induced shifts of levels in
heavy atoms up to Z = 137 and even up to Z = 170 ~ Zcr.

V r( ) gr
ν–

for 0– r ∞ ν 0>( ),< <=

U r( ) g
2

2r
2ν----------– g

r
ν---- κ 1 ν–

2
------------+ 

  2 1

2r
2

-------.+ +=

U r( ) ζ
r
--

ζ 2 κ 2
–

2r
2

---------------- g ζ= ν 1=,( )–=

2mεb

1 ε2
–

The penetrability of the barrier in the effective potential
determines the probability γ(k) of spontaneous positron

production. At the threshold (k ! 1, where k = 
is the emitted-positron momentum), we have [3, 4]

(37)
(apart from a preexponential factor), where b is a
numerical factor on the order of unity—for example,
b = 1.73 for model I at ζcr = 1.25.

For arbitrary ν < 2, the potential in (35a) involves a
barrier whose penetrability is exponentially small when
k  0. By using the Wentzel–Kramers–Brillouin
(WKB) method,16) one obtains [69, 70]

(38)

(39)

But if ν > 2, the penetrability here is determined by
the centrifugal barrier; at the threshold, we therefore
have

Let us finally consider short-range potentials featuring
an exponential tail,

(40)

From (34), we find in this case that

(41)

therefore, we have ψ0(r) ∝ exp(–µr/2). Thus, we con-
clude that a state that descends to the boundary of the
lower continuum remains localized in this case as well.

The use of an effective potential proved to be very
useful for developing a physical interpretation of elec-
tron states occurring in a lower continuum for Z > Zcr [7].

Finally, we would like to comment on higher spin
(s > 1/2) particles. Solutions to the Proca equation (s =
1) in the Coulomb field of a pointlike charge were con-
sidered in [71, 72], and it was shown there that, for any
ζ > 0, there occurs a collapse into the center. For the
attractive potentials V(r) = –gr–n (n > 0), the effective

16)The condition of applicability of the semiclassical approxima-

tion [41, 47] is satisfied here: (1/p(r)) ∝ ν g–1/2r–(2 – ν)/2 ! 1

for r  ∞.
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potential (35) for states characterized by specific values
of the total angular momentum j has the form

(42)

therefore, collapse into the center occurs here at an
arbitrarily small power-law singularity of V(r) at the
origin [3]. For the Proca equation, the potential that
represents the boundary between regular and singular
potentials has the form

(43)

in which case

. (44)

For g < gcr = (j + 1/2)2/ , this potential is regu-
lar, requiring no cutoff; as soon as the coupling constant
g exceeds the critical value gcr, it becomes singular
(similarly to the Coulomb potential for the Dirac and
the Klein–Gordon equation).

5. WENTZEL–KRAMERS–BRILLOUIN METHOD 
FOR Z > 137

It is of interest to apply the semiclassical approxi-
mation to the case of a strong Coulomb field. The first
attempt along these lines was made by Krainov [73],
but he used the WKB method not only in the Coulomb
field region (r > rN) but also in the interior of the
nucleus, where its accuracy is rather poor. A consistent
application of the WKB method to the relativistic Cou-
lomb problem was developed in [74], where the semi-
classical wave function was matched with a solution to
the Dirac equation in the internal region (0 < r < rN). In
practice, it is more convenient to find not ζcr at a given
nuclear radius but the function

(45)

where ξ is the logarithmic derivative of the internal
wave function at the boundary of the nucleus (see
Appendix A). This formula is convenient for applica-
tions, its accuracy is about 1% in the region of radii
around rN ~ 10 fm, and it correctly reproduces the
dependence of Zcr on the model of cutoff of the Cou-
lomb potential within the nucleus (see Fig. 1). More-
over, its accuracy only improves with increasing rN or
ζ cr [see Fig. 1 and Eq. (A.4)]. For the next, 2s1/2, level,
the precise and the semiclassical curve are indistin-
guishable on the scale of the figure.
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The electron state at the boundary of the lower con-
tinuum remains localized [see Eqs. (17) and (29)
above]. Therefore, the discrete level for Z  Zcr does
not tend to be tangent to the boundary ε = –1, entering
the lower continuum with a finite slope β:

. (46)

The value of β is of some interest for the theory [4, 21].
As can be seen from Figs. 3 and 6, the WKB method
determines the slope parameter β to a satisfactory pre-
cision.

The semiclassical approximation can also be
applied to the relativistic two-center problem. Refer-
ring the interested reader to [75–77] for details, where
the WKB method was consistently developed for ε ≈ –1
states of the Dirac equation, we only present here an
equation that determines the energies of the electron
terms of the quasimolecular system (Z1, Z2, e–) near the
boundary ε = –1. Specifically, we have

(47)

where

ζ = (Z1 + Z2)/137, and ρ = |κ|/ζ (0 < ρ < 1). At ε ≈ –1,
we have x = (1 – ρ2)(ε2 – 1) + …. According to (47), the
energy of the term, ε, depends on the ratio R/Rcr [this is
a corollary of the condition rN ! r ! rK (where rK is the
K-shell radius), which is satisfied, provided that the
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Fig. 7. Original potential V(r) and effective potential U(r)
for the relativistic Coulomb problem at Z ≈ Zcr [here, r± are
the turning points, while r0 = (ζ2 – κ 2)/ζ is the point where
the effective potential peaks].
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total charge of the two nuclei involved exceeds only
slightly the critical charge value, Z1 + Z2 – Zcr ! Zcr].
The value Rcr itself was calculated separately—for
example, by means of the variational method (see Sec-
tion 3). The results are represented by the curves in Fig. 8.

The possible existence of Z @ Zcr nuclei (of course,
stability of such nuclei can be ensured only by some
new mechanism—for example, by the formation of a
negative-pion condensate [28]), referred to as super-
charged ones, was considered in the literature [29, 78].
We denote by nκ and N the number of discrete levels
characterized by a given value of the quantum number
κ that have descended to the lower continuum and the
total number of such levels, respectively, and by Ne the
number of electrons in the vacuum shell of a supercri-
tial atom (such a shell is formed near a supercritical
atom upon positron emission). Obviously, the relations

N =  and Ne =  + 1)nκ then hold; in the
semiclassical approximation, we obtain

(48)

where f+(r) = f(r) if f(r) ≥ 0 and f+(r) = 0 if f(r) < 0. In the
case of the potential given by (5), it follows that, for
ζ @ 1, we have

(49)

where c4 and c5 are numerical constants on the order of
unity that depend on the cutoff model. Figure 9 bor-
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Fig. 8. Energy of the ground-state term in the two-center
problem. The values of the total charge Z = Z1 + Z2 of the
nuclei involved are indicated on the curves.
rowed from [79] demonstrates that the semiclassical
approximation is quite accurate even at relatively small
values of ζ * 2.

Equations (48) suggest that the local density of the
electron cloud in the vacuum shell of a supercritical
atom is ρ(r) = (V2 + 2V)3/2/3π2, and this natural
assumption can indeed be rigorously substantiated
[54]. This makes it possible to write the relativistic
Thomas–Fermi equation [26, 54]

(50)

(where np is the density of protons in a supercritical
nucleus), whose solution determines the properties of
the electron shell in an atom for Z @ 137.

We will not dwell any more on these questions,
referring the interested reader to the aforementioned
studies and to the monographs [38, 39, 78]. The only
objective here was to demonstrate the efficiency of the
WKB method for ultrastrong Coulomb fields.
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Fig. 9. Number N of levels that have descended to the lower
continuum [for the potential (5)]. The stepwise broken line
represents a numerical solution to the Dirac equation, while
the curve Q was computed according to the semiclassical
formula (49).
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Table 4.  Accuracy of the WKB method for the Salpeter equation (case of massless quarks)

nr = 0 1 2 3 5 References

l = 0 0.9724 0.9958 0.9983 0.9991 0.99953 [83]

0.9725 0.9959 0.9982 0.99905 – [84]

l = 1 0.9391 0.9743 0.9858 0.9908 0.9952 [83]

0.9382 0.9744 0.9859 0.9910 – [84]

l = 2 0.9232 0.9590 0.9742 0.9820 0.9897 [83]

l = 3 0.9152 0.9478 0.9642 0.9742 – [84]

Note: Quoted in the table are the meson-mass ratios , where  stands for the results of numerical calculations from [83,

84], while  corresponds to the calculation relying on the modified quantization rule from [74] and taking into account rela-

tivistic kinematics according to [85].

Mnrl
calc( )

Mnrl
⁄ Mnrl

Mnrl
calc( )
    
It should be noted here that the WKB method can be
applied to two-particle relativistic wave equations,
including the Salpeter equation [80–82] for the quark–
antiquark system. In the case of the confining potential
V(r) = σr (where σ is the tension of the string between
the quark and the antiquark involved) in this Salpeter
equation

where p = –i∇ , m1 and m2 are the masses of the quarks
(whose spins are disregarded here), and Mn are the
meson masses, the semiclassical mass spectrum of
mesons agrees, to a percent accuracy, with the spectrum
obtained by numerically solving [83, 84] the Salpeter
equation (especially for l ~ 1 states, including the
ground state, for which nr = l = 0). For further details,
the reader is referred to [85, 86] (see also Table 4).

6. Zcr FOR OTHER PARTICLE SPECIES

In the case of a Coulomb field, the Klein–Gordon
equation has a solution decreasing at infinity,

(51)

where x = 2λr,

(51‡)

and Wµ, iν/2 is the Whittaker function. The energy of the
ground-state level in the field of a pointlike charge is

(52)

[compare with Eq. (1)]. States that are pure in the
orbital angular momentum l now undergo collapse into
the center for ζ > l + 1/2. In the limit ε  –1, which
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corresponds to λ  0, µ  –∞, and µx  –2ζr,
the Whittaker function is simplified significantly to
become

(53)

It can easily be shown that the equation for ζcr can
be written in a unified form for the spin values of s = 0
and 1/2; that is,

(54)

where z = , as in Eq. (6). For the ground state,

we have ν = 2  in both cases.

Under the condition rN ! 1/m, we have ξ = ζ
for the cutoff model I (see Appendix A), as before. Con-
sidering, however, that mrN > 1 for pions, we conclude
that the Klein–Gordon equation must be solved exactly
in the internal region r < rN. In the simplest case (l = 0,
cutoff model I), we obtain

(55)

Equations (54) and (55) were solved with the aid of a
computer [3]. Although Zcr = 1/2α = 68.5 for a pointlike
charge in this case, the value of Zcr exceeds 137 even at
rN ~ 0.1"/mc (see Fig. 4 in [3]). A numerical calculation

for pions ("/mπc = 1.41 fm) yields  ≈ 3300 [87],
which is far beyond any known nucleus.

The situation is similar for muons (\/mµc =

1.87 fm). Solving Eq. (6) led to ζcr = 16.7 or  ≈

2300 for model II and  ≈ 3700 for model I [69].
Thus, we can see that, for rN ! 1/m, the numerical value
of Zcr depends greatly on the choice of model. It should
be emphasized that it was Migdal who suggested the
existence of supercharged nuclei with Z ~ 1373/2 [29];
however, the theory does not provide definitive results
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for their density and for the relation between A and Z.
Let us assume that rN = r0A1/3, where r0 = 1.2δ fm and
A/Z = 2.6ξ, δ and ξ being free parameters (for conven-
tional nuclei, we have δ = ξ = 1). The critical charge

 depends strongly on the parameter ∆ = δξ1/3 (see
Fig. 10). It should also be noted that the above values of
the critical charge should be treated as a first approxi-
mation, since the calculation took no account of the
screening of the potential (5) by the electron shell that
the naked nucleus attracts from a vacuum upon the
spontaneous emission of positrons and their escape to
infinity. The inclusion of the screening effect is
expected to increase Zcr still further.

Thus, the situation where muon or pion levels in a
superheavy nucleus reach the boundary ε = –mc2 can
hardly be realized.

7. MISCELLANEA

Here, we consider some additional questions related
to those discussed in Sections 2–6.

1. From Eq. (4), it can be seen that, for ε ≈ –1, ζ >
j + 1/2 electron states, an effective attraction propor-
tional to 1/r2 arises at small distances (for a pointlike
charge, it leads to a collapse into the center [46–49]).
This attraction, which is a purely relativistic effect,
stems from introducing the Coulomb interaction of the
electron with the nucleus in a minimal way—that is,
through the time component of the 4-potential Aµ. This
can be seen from the example of the Klein–Gordon
equation alone, which is obtained for a spinless particle
from the relation p2 = ε2 – m2 by means of the substitu-
tion pµ  pµ – eAµ. The resulting equation

(56)

is identical to the Schrödinger equation in form if we set

(57)
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Fig. 10. Critical charge of a nucleus for the muon (the cutoff
models I and II were used). For ordinary heavy nuclei, the
parameter ∆ is equal to unity.
The term – V 2 is dominant at small distances, where

|V(r)|  ∞ and leads to attraction, irrespective of the
sign of V(r). For the spin value of s = 1/2, the form of
the effective potential becomes more complicated, but
it undergoes no significant qualitative changes: the
expression for U(r) develops additional terms associ-
ated with the particle spin and spin–orbit interaction
[see Eqs. (3) and (34) and also Appendix C].

2. If light charged scalar bosons (of mass about me)
existed in nature, then effects associated with the
approach of a discrete level to the boundary ε = –mc2

would be observable because Zcr = 68.5 at rN = 0 for
such bosons. However, we have \/mπc = 1.41 fm and
mπrN @ 1 for the pion, and Zcr considerably exceeds
137 in this region, as was shown in the preceding sec-
tion.

A modest (in relation to the case of a pointlike

charge) increase in Zcr from  = 137 for electrons is
associated with the fact that merN ~ 0.03 ! 1.

3. With increasing potential-well depth, the energy
levels ε for bosons and fermions behave differently,
which was first discovered by Schiff et al. [88], who
considered the example of s states in the square well
V(r) = –gθ(r0 – r) for the Klein–Gordon equation.
Namely, the dependence of ε on the coupling constant
g in the case of the Klein–Gordon equation is non-
monotonic—there is a backbending, which occurs near
ε = –1 if the well is sufficiently wide. At some coupling-
constant value g = gcr, two levels going from the contin-
uum boundaries ε = 1 and –1 merge, whereupon there
arise states characterized by a square-integrable wave
function; however, the energies of these states are com-
plex-valued, which is at odds with unitarity. This means
that, at g > gcr, the single-particle Klein–Gordon Hamil-
tonian is no longer a self-conjugate operator and has no
physical meaning.

A physical interpretation of this phenomenon was
given by Migdal [28]: at g ~ gcr, there occur the virtual
production of charged particle–antiparticle pairs and a
strong vacuum polarization, which screens the bare
charge g, thereby preventing it from reaching the criti-
cal charge gcr . It follows that, in the boson case, the the-
ory must inevitably be multiparticle at g ~ gcr. (For elec-
trons, the situation is totally different. Because of the
Pauli exclusion principle, there are only two vacancies
in the K shell at Z > Zcr ~ 170 upon positron emission;
therefore, vacuum polarization leads only to a small
effect of order α and is unable to prevent the descent of
the next levels of the electron spectrum to the lower
continuum [7].)

By developing these considerations further, Migdal
et al. [78] created the theory of pion condensation in
nuclear matter and predicted some interesting effects.
Unfortunately, no experimental evidence for the exist-
ence of a pion condensate in conventional heavy nuclei
has been obtained so far.

1
2m
-------

Zcr
0( )
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4. It should be noted that the problem of establishing
the character of the motion of levels near the boundary
ε = –1 presents considerable difficulties, because its
investigation involves analyzing complicated equa-
tions. After [88], the problem was addressed in [89–
95]; however, some of the results presented in [91, 92]
are erroneous. The relativistic generalization of the
effective-range expansion for states whose energy is
close to the boundary of the lower continuum is a very
convenient means for studying this problem [95]. An
analysis along these lines reveals [69, 95] that, for the
Dirac equation, there are no positron levels that would
arise from the lower continuum and which would have
a positive derivative dε/dζ. At the same time, there are
such levels for the Klein–Gordon equation [88], in
which case, for a short-range potential V(r) = –gv(r),
two bound states merge at some value g = gcr and ε >
−1; for g > gcr, the S matrix for this case develops com-
plex poles on the physical sheet. A remarkable property
of the Dirac equation is that it does not involve such a
difficulty; therefore, the single-particle Dirac equation
retains, to some extent, its meaning in the supercritical
region g > gcr as well [7].

If the potential V(r) possesses a Coulomb tail for
r  ∞, the bound state remains localized even at ε =
–1 and ζ = ζcr owing to the presence of a barrier in U(r)
[see Eq. (17) above]. Therefore, all levels of the dis-
crete spectrum enter the lower continuum at a finite
slope dε/dζ = −β < 0 (both for the spin of s = 1/2 and
for the spin of s = 0 [4]). Nonetheless, the distinction
between the boson and the fermion case still remains at
the fundamental level: the S-matrix pole corresponding
to a bound state at Z < Zcr goes into the complex plane
(for Z > Zcr) on the physical sheet at s = 0 and on the
unphysical sheet at s = 1/2.

5. Let us consider the effect of a magnetic field on
Zcr. In a magnetic field so strong that the Larmor radius

of an electron, l =  =  (in "/mc units), is
less than the mean ground-state radius 〈r 〉 , the electron
shell is squeezed toward the nucleus in the direction
orthogonal to the field B, taking a cigarlike shape [96–
98]; therefore, the electron effectively undergoes a
stronger attraction to the nucleus than in the absence of
a field, whereby the critical charge decreases. The con-
dition l ! 〈r〉 actually corresponds to B @ B0 = m2c3/e" =
4.41 × 1013 G (where B0 is the critical, Schwinger [99],
field17) peculiar to QED).

The problem being discussed was comprehensively
studied in [101]. For a “weak” magnetic field, the
reduction of Zcr can be found by perturbation theory.
The result is

(58)

17)Of course, so strong a field can occur only under extremal condi-
tions (for example, within pulsars [100]).

"c/eB B0/B

ζ cr B( ) ζ cr 0( ) 5π2µ
6 1/rN( )ln[ ] 3
------------------------------- B

B0
-----– O B/B0( )2( ),+=
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where µ is the magnetic moment (15). It follows that,
even at B ~ 0.1B0 ~ 5 × 1012 G, ∆Zcr < 1.

For stronger fields, the dependence Zcr(B) is
obtained from the equations derived in [101], which
were solved numerically. Presented immediately below
are some results referring to the ground state: Zcr ≈ 165
at B = B0, Zcr = 96 at B = 100B0, Zcr = 92 (uranium
nucleus) at B = 133B0 ≈ 5.5 × 1015 G, and Zcr = 41 at B =
2.4 × 104B0 ≈ 1018 G. The next level of the electron
spectrum reaches the boundary ε = –1 at B ~ 1.5 ×
1016 G if Zcr = 92, and so on.

Thus, we conclude that, in the presence of a strong
magnetic field, the boundary of the lower continuum
can be reached at charge values as small as Z < 170—
for example, in the case of a naked uranium nucleus or
even in the case of lighter nuclei. The above estimates
show, however, that this requires magnetic fields of
strength not less than the critical one. It should be
recalled that maximum magnetic fields achieved so far
under laboratory conditions are six orders of magnitude
less than that [102, 103].

6. Some authors considered modifications to QED
and their effect on spontaneous positron production.18)

In particular, Rafelski et al. [107] considered a nonlin-
ear Lagrangian of the Born–Infeld type [108]. For the
case of electrostatics, it leads to the energy density

(59)

where n and E0 are parameters of the theory—for exam-
ple, n = 1 (or E0  ∞), n = 1/2, and the limiting case
of n = 0 correspond, respectively, to Maxwell electro-
dynamics, to Born–Infeld theory, and to Infeld–Hoff-
mann theory.

We denote by EB the E0 value obtained from the con-
dition [108] that the electron mass is entirely of an elec-
tromagnetic origin. We then have EB =1.2 × 1018 V/cm
at n = 1/2, in which case Zcr = 214 for the 1s level [107].
This would naturally dash the hopes for observing
spontaneous positron production in experiments with
known heavy nuclei. However, the above value of E0
contradicts experimental data on atomic levels. In order
to avoid a conflict with the precisely measured energy
differences in the spectra of the 82Pb and 100Fm nuclei,
it is necessary to assume [110] that E0 > 140EB ~ 2 ×
1020 V/cm. As a result, the critical charge can increase
by not more than two units.

Here, we will not consider other modifications to
QED (see, for example, [111, 112]) that were also dis-
cussed in the literature in connection with the effect of
spontaneous positron production.

18)At present, the predictions of QED are in remarkable agreement
with experimental data: in the record case of the electron anoma-
lous magnetic moment, the accuracy is 10–12 [104–106]. In this
connection, the modifications to QED that are discussed below
seem less interesting.
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7. The method of linear combinations of atomic
orbitals (LCAO), which is known from quantum chem-
istry, was used in [113] to solve the relativistic two-cen-
ter problem. For the ground-state term considered in
the case of identical charges of the nuclei involved, one
can set

(60)

where ψ1 and ψ2 are the wave functions of an electron
moving in the field of, respectively, the first and the sec-
ond center, while S = 〈ψ1|ψ2〉  is the overlap integral.
The relativistic wave functions of the hydrogen-like
atom [45] with an effective charge Qα < 1 (which
depends on R and Z) were taken for ψ1 and ψ2. As a
result, an analytic, albeit rather cumbersome, formula
was obtained for the ground-state term. This formula
makes it possible to calculate ε0(R, Z) over a wide
region of R and Z. A comparison with the numerical
results from [27] shows that the error of this formula is
10% at Z/2 = 35 (Br + Br system) and as large as 25%
at Z/2 = 92. Thus, we can see that, in the region 90 ≤
Z/2 ≤ 100, the accuracy of this approximation is insuf-
ficient, so that it is necessary to use a more complicated
trial function featuring a greater number of variational
parameters than in (60).

8. OPTIMISTIC CONCLUSION

Qu’est-ce qu’optimisme? disait Cacambo.
Hélas! dit Candide, c’est la rage de soutenir

que tout est bien quand on est mal.
Voltaire “Candide ou l’Optimisme”19)

Let us briefly touch upon the currently prevalent
experimental situation.

Experiments seeking spontaneous and induced
positron production in heavy-ion collisions (at energies
close to the height of the Coulomb barrier) were per-
formed at the UNILAC heavy-ion accelerator of GSI
(Darmstadt, Germany). There, beams of Pb and U ions
of energies 3 to 6 MeV per projectile nucleon were
obtained. Even the first experiments [114, 115], which
were conducted in the subcritical region (Z1 + Z2 < Zcr),
recorded induced positron production due to the
quickly varying (in time) Coulomb field of colliding
nuclei (the term “quasiatomic” or “induced” positrons
is often used in the literature for this case). The energy
spectra of these positrons comply well with the results
of theoretical calculations for the process. Of particular
interest are the results [116–118] presented by two
experimental groups, EPOS and ORANGE, which
were named after the magnetic spectrometers that they
used. In addition to the theoretically predicted continu-
ous spectrum of positrons, these groups reported the

19)“What is optimism?” said Cacambo. “Alas!” Candide said, “it is
the mania of maintaining that everything is well when we are
wretched.” [Quoted from Candide and Other Romances by Vol-
taire (Dodd, Mead and Company, New York, 1928; translated
from the French by Richard Aldington.]

ψ aψ1 bψ2, a+ b 1/ 2 1 S+( ),= = =
observation of a few relatively narrow positron peaks
(of width not greater than 40 keV). Later on, this effect,
which was much to the surprise of experimentalists and
which was dubbed the Darmstadt effect, was repeatedly
tested and refined, and a few tens of events were
recorded under the areas of the most pronounced peaks
(at  ≈ 255 and 340 keV). Subsequently, narrow

peaks were also observed in the spectrum of electrons
recorded in coincidence with positrons and in the total-
energy (  + ) spectra (see [119–121] and refer-

ences in the review article by Pokotilovsky [122]),
which is puzzling phenomenon indeed.

Naturally, these unusual phenomena inspired keen
interest of theorists. In the period from 1985 to 1992,
there appeared a few tens of theoretical studies that
were devoted to the subject and which put forth various
hypotheses, sometimes exotic ones, to explain the
Darmstadt effect: the decay of a new particle (axion
[123, 124]), composite extended particles, magnetic
quasibound states of the e+e– system [125], a new phase
in the QED vacuum [112], the formation (in heavy-ion
collision) of a quasimolecule whose nuclei are at a dis-
tance R < Rcr for a time period T @ Rcr /v ~ "/mc2 ~
10−21 s [126, 127], and the capture and cooling of
positrons in an expanding open resonator between two
Coulomb centers [128]. Without further extending this
list, we only note that none of these mechanisms could
provide a full and compelling description of all phe-
nomena observed at GSI.

More recently, a critical analysis of these (extremely
difficult) experiments and new experiments that col-
lected much vaster statistics revealed that narrow lines
in the electron and positron spectra were an experimen-
tal error (this was recognized by the authors from GSI
themselves [129, 130]), so that no new physics is
needed, as has already occurred many times in the his-
tory of science, for explaining these phenomena.

It is difficult to say when the Darmstadt experiment
will be continued, if at all, and when a detailed compar-
ison of the theory of spontaneous positron production
with experimental data will be performed, which would
imply a check upon QED and upon the Dirac equation
not in the traditional region of high energies and small
distances but in the new region of ultrastrong external
fields. These experiments are complicated20) and
expensive, while one should not expect sensational dis-
coveries here. At the same time, such experiments do
not require new giant accelerators whose construction

20)The main difficulty here consists in isolating the process of inter-
est among other processes inevitably accompanying it, like
induced positron production and the formation of positrons in
nuclear processes. Moreover, the spontaneous-positron-produc-
tion cross section itself is small near the threshold (E  Ethr =
2(Ze)2/Rcr) [4, 7, 21] because of the Coulomb barrier in (36),
which also ensures a localization of the electron state with
energy ε ≤ –1 in the lower continuum. At energies E * 2Ethr,
however, this cross section no longer has an exponential small-
ness.
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could ruin the budget of a country: the energy that is
necessary to cause the approach of two uranium nuclei
within the critical distance of Rcr ≈ 35 fm is 5 to 6 MeV
per nucleon, an energy value that has long since been
achieved at heavy-ion accelerators available world-
wide. Moreover, considerable advances have recently
been made in producing beams of heavy ions deprived
partly or even completely of their electron shell (it
should be recalled [7, 38, 39] that, for spontaneous
positron production, it is necessary that an unfilled
K-level descend to the lower continuum21)). All this
gives sufficient grounds to regard the future of experi-
mental investigations in these realms of physics with a
refrained optimism (at the same time, the above opin-
ion of Voltaire also deserves attention).

The situation can change drastically if Z * 1373/2

nuclei are discovered some day, which must be sur-
rounded, as the theory indicates, by a dense vacuum
shell consisting of electrons that have descended to the
lower continuum. The possible existence of such super-
charged nuclei (with A > 103 and N = Z) was repeatedly
emphasized by Migdal [29, 78, 131–133]. Their stabil-
ity would be guaranteed owing to the screening of the
proton charge by the negative-pion condensate and by
electrons distributed within the nucleus:

“For Z > Zc ≈ (137)3/2 stable nuclei should exist. At
a sufficient value of Z – Zc such nuclei should be stable
with respect to fission” [29].

“For highly charged nuclei, fission instability is
most important. Fission stability is possible only if the
Coulomb energy is considerably suppressed. This
means that the π– charge should be of the order of Z. As
we have shown, Zπ ≈ Z at Ze3 ~ 1. Thus, the consider-
able suppression of the Coulomb energy at Ze3 ~ 1 can
lead to the stability of supercharged nuclei” [133].

An analysis has revealed that there exist two possi-
ble regions of stability of anomalous nuclei—the
region of superdense nuclei (Z ≈ N, Z & 102) and the
region of superheavy nuclei (Z ≈ N, Z * 103); here, the
electric charge of baryons is fully compensated by the
pion condensate and by the electrons …. In the limiting
case of Z @ 1/e3 ≈ 1600, the interior of a superheavy
nucleus appears to be an electrically neutral plasma
formed by baryons, pion-condensate mesons, elec-
trons, and negative muons. For such nuclei, there are no
upper bounds on A, so that there can in principle exist
stars in the form of a nucleus [78].

These are basic conclusions from those studies on
the possible existence of superheavy nuclei in nature.
Of course, it should be borne in mind that the modern
theory of the nucleus is not celestial mechanics: even

21)It is worthy of note that spontaneous positron production from a
vacuum is possible not only in a collision of two Zu > Zcr nuclei
with unfilled K shells but also in the case where this is so for
only one (Z1) of the nuclei (the second can involve K electrons—
this can be for example, a neutral atom of the target nucleus). In
the latter case, it is necessary that Z1 ≥ Z2, as follows from a
comparison of the molecular terms of the (Z1, Z2, e) system at
small and at large distances between the nuclei [20, 21].
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the law of interaction between two nucleons in a vac-
uum has not been established conclusively, nor can an
ab initio solution to the Schrödinger equation for a
heavy nucleus be obtained. Therefore, a theoretical
extrapolation from conventional nuclei to the far region
around Z ~ 1373/2 can hardly be reliable.22) However,
we would like to complete the present discussion with
the following words: “Cela est bien dit, répondit Can-
dide; mai il faut cultiver notre jardin” [136].23) 
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APPENDIX A

Semiclassical Approximation
in the Relativistic Coulomb Problem

(a) Let us consider the case of a heavy spherical
nucleus. Since we have rN ! "/mc = 1 in Eq. (5) (at ζ =
1.25, the nuclear radius is rN ≈ 0.023), the main contri-
bution to the quantization integral comes from the
region rN < r < r0, where

(A.1)

r0 being the turning point. The semiclassical wave func-
tion corresponding to the upper component of the Dirac

22)In this connection, the following comment is in order. Estimates
from [28, 131] revealed that there are nuclei close to the pion-
condensate instability; in particular, pion condensation may
occur in ordinary heavy nuclei. However, a detailed analysis of
experimental data (absence of the doubling of the 0+ and 0– lev-
els in the 208Pb spectrum, which is known comprehensively;
probabilities of single-nucleon slow-pion capture by nuclei; etc.)
showed that there is no condensate in nuclei [78, 134]. At
present, the variational calculations from [135] indicate that pion
condensation is possible in neutron stars [at a density of ρ ~
(1.5–2.0)ρ0, where ρ0 ≈ 0.15 nuclon/fm3 is the normal nuclear
density].

23)“It is well said,” replied Candide, “but we must cultivate our gar-
dens.” [Quoted from Candide and Other Romances by Voltaire
(Dodd, Mead and company, New York, 1928; translated from the
French by Richard Aldington.]
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bispinor has here the form

The phase γ is determined by matching this wave func-
tion with the internal wave function at the boundary of
the nucleus. The result is

(A.2)

(actually, we have rN/r0 & 0.1 ! 1). For ζ cr, the modi-
fied quantization condition [74] yields

(A.3)

Upon evaluating the integral, Eq. (A.3) reduces to the
form (45). It should be noted that the greater ζ, the
higher the degree to which the condition

(A.4)

which ensures the applicability of the semiclassical
approximation, is satisfied (this is so everywhere with
the exception of the vicinity of the turning point). This
explains the behavior of the curves in Fig. 1.

(b) Let us consider the relativistic problem of two
centers. For nuclei from the uranium region, the radius
of the K shell is five to ten times as great as Rcr; in cal-
culating the energy ε(R) of the electron term, it is there-
fore not necessary to know the wave function in the
region r & R/2, where the special features of the two-
center problem are of importance, but where the ε
dependence of p(r) is immaterial. Equation (47) for
ε(R) follows from a comparison of two quantization
integrals at close energies. We have

(A.5)

where p(r) = r–1F(r, ε) is a semiclassical momentum,

(A.6)

and rt = r0 1 – (1 – κ2/ζ2)(1 + ε) + …  is the position

of the turning point at ε values sufficiently close to –1.
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In Eq. (47), we have x = 0 at ε = –1; the function φ(x)
is given by different formulas for x > 0 and x < 0, but
x = 0 is not a singular point for this function: φ(x) = 1 –

x + O(x2) for x  0. A compact expression for the

slope parameter β can be obtained from Eq. (47) [77].
The result is

(A.7)

In particular β = 12ζ2/(8ζ2 + 13) for the ground-state
term (see straight line 2 in Fig. 6).

(c) The logarithmic derivative ξ appearing in Eqs. (6),
(54), (A.2), and (A.3) can be found from the Riccati
equation [18]

(A.8)

We also have ξ = u(1) and u(0) = |κ| if κ < 0 [here, x =
r/rN , and f(x) is the cutoff function from Eq. (5)]. For
the κ = j + 1/2 > 0 states, we obtain

(A.9)

For example, we find for the ns levels (κ = –1) within
model I that

(A.10)

where ak ≈ –2/π2k for k  ∞; for κ = –(l + 1) < 0, we
have

(A.11)

while for κ = l > 0, we use Eq. (A.9). In particular, we
find for the np1/2 states that

(A.12)

where l is the orbital angular momentum for the upper

component and fl(x) = Γ(l + 1/2)(x/2 Jl – 1/2(x),  fl(0) =
1. For more realistic cutoff models, it is straightforward
to calculate the values of ξ numerically.
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Presented below are some useful expansions. Rep-
resenting the volume charge density in a nucleus as

(A.13)

and setting ρ(x) = ρ0 + ρ1x + ρ2x2 + …, we arrive at

(A.14)

By way of example, we indicate that, for the κ = –1
states, the result for ξ is

(A.15)

In particular, we find for model II that ρ(x) = 3θ(1 – x),
ρ0 = 3, and ρn = 0 for n ≥ 1 and that a1 = 2/5, a2 = 17/40,
a3 = 0.665, ….

In the case of scalar particles, it is only necessary to
replace κ(κ + 1) by l(l + 1) in Eq. (A.8) and to discard
terms involving f '(x). For the cutoff model I, the value
of ξ(ζ, l) is then coincident with that in (A.11).

APPENDIX B

The energy eigenvalues for the Dirac equation with the
pointlike-charge potential V(r) = –ζ /r are given by [45]

(B.1)

where q ≡ nr = 0, 1, 2, … is the radial quantum number;

n is the principal quantum number; ν = 2 ; and
j = 1/2, 3/2, …, n – 1/2 is the angular momentum. The
mean radius of the |njκ〉  state is [6] is

(B.2)

In particular, expression (13) follows from here for the
ground-state (n = N = 1) level; for the energy-degenerate (at
ζ < 1) 2s1/2 and 2p1/2 levels, we have24)

(B.3)

24)It should be emphasized, however, that, at ζ ≈ 1, these formulas,
as well as those in (1) and (13), are valid to a logarithmic preci-
sion [see (10)].
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For the κ = ±1 states, there is a square-root singular-
ity at Z = 137 [see, for example, Eq. (1a)], 

(B.4)

where q = n – 1 and where the upper (lower) sign refers
to the ns1/2 (np1/2) states. 

It is natural to determine the magnetic moment of an
electron in a bound state from the relation µ =

−(∂ε/∂B)B → 0 , where δε = [rα] · B . This yields (in

Bohr magneton units) [6]

(B.5)

and a similar formula for κ > 0 states.

In the particular case of κ = –n (that is, for the 1s1/2,
2p3/2, 3d5/2, etc., states, including the ground state), the
relevant formulas are simplified to become

(B.6)

(the formula for µ was obtained by Breit [137]).

For the ground state of s = 0 or s = 1/2 particles, the
probability-distribution density and its moments are
given by

(B.7)

(B.8)

where

and ε = ε0(ζ) is the energy of this state. In particular, we
have

(B.9)

(ε0 = m + 〈T 〉 + 〈V 〉). Thus, the virial theorem 〈V 〉  =
−2〈T 〉  is valid only for ζ ! 1—that is only in the non-
relativistic case.
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For s = 1/2 (electron), we have ε0 = η =  and
λ = ζ, while, for scalar particles, the results are

In the nonrelativistic limit, we arrive at

(B.10)

(B.11)

where a = 1 at s = 1/2 and a = 5 at s = 0, while aB =
"2/me2 is the Bohr radius.

If ζ ≥ j + 1/2, the pointlike-nucleus approximation is
no longer applicable to states characterized by the
angular momentum j; as a result, the wave functions
become much more complicated [3, 5]. At ε = –1, we
can use, however, the simpler expressions (16). For
ns1/2 (κ = –1) states, this leads to expressions (14) and
(15), while, at κ = 1, we arrive at

(B.12)

It is interesting to note that, for ζcr @ 1, the mean radius

behaves identically, 〈r 〉  = 0.3ζcr[1 + O( )], in the two

cases (κ = ).

We denote by w1 and w2 the relative weights of the
upper and the lower component of the Dirac bispinor
(in other words, the probability that a bound electron
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  ,=
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------------ 4ζ cr

2
3–( ), µcr 0.= =
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Table 5

ζcr

κ = –1 κ = 1

ρ 〈r〉 µcr ρ 〈r〉 µcr

1.00 2.33 0.130 0.133 0.333 0.075 0

1.25 1.61 0.312 0.354 0.333 0.195 0

1.50 1.22 0.447 0.533 0.333 0.300 0
has the orbital angular moment l or l ' = 2j – l),

(B.13)

The parameter ρ = w2/w1 characterizes the degree to
which the electron state being considered is relativistic.
To illustrate this, we note that, in the nonrelativistic

state (ρ = ζ2/4n2 ! 1), we have ρ = (q + )–2 at
ζ = 1 and

(B.14)

for states at the boundary of the lower continuum.

It should be emphasized that these formulas are
valid only under the condition rN ! 〈r 〉 . The numerical
values of the parameters for ε = –1 states are quoted in
Table 5.

The mean radius 〈r 〉  increases quite fast with
increasing ζcr. This increase is not due to the effect of
the internal region r < rN , whose contribution is small.
The probability for the electron to reside within the
nucleus can be roughly estimated as wN ≈ (rN/〈r 〉)3 ~
10–3–10–2 at rN = 10 fm. In this sense, the situation
resembles that in the deuteron, with the difference—a
significant one, however—that the electron, which is
relativistic here (ρ ~ 1), is confined near the nucleus
owing to the Coulomb barrier in the effective potential
(36). The probability wN can be calculated more pre-
cisely by using the formula

(B.15)

where A0 is the asymptotic coefficient in the wave func-
tion at the origin. This yields wN = 0.02, 0.019, and
0.037 for the 1s, 2s, and 2p1/2 states, respectively; for
two nuclei at the distance R = Rcr, we have A0 = 3.56 and
wN 3.6(–3) at Z/2 = 92 and A0 = 1.86 and wN = 1.7(–3)
at Z/2 = 100 (the values of A0 were borrowed from [23]).

The decrease in the critical distance because of cut-
ting off the Coulomb potential within the nucleus can
be computed by the formula

(B.16)

where  is associated with pointlike nuclei (problem
of two centers), β is the slope of the level as given by
Eq. (30a), and ∆ε is the shift of the level upon taking
into account finite nuclear sizes.
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By perturbation theory, we find

(B.17)

where ζ = 2Zα = 2 . The results for the cutoff
models I and II are F(γ) = (2γ + 1)–1 and F(γ) = 3/(2γ +
1)(2γ + 3), respectively. A more precise formula for ∆ε
can be obtained by matching the wave functions at the
boundary of the nucleus. In this way, the Rcr values
quoted in Table 3 were calculated in [23].

APPENDIX C

The Dirac equation for an electron with a static
potential V(r) has the form

(C.1)

where W = 1 + ε – V, while ϕ and χ are, respectively, the
upper and the lower bispinor component (here, the
potential is not assumed to be spherically symmetric).
The substitution ψ = W–1/2ϕ reduces Eqs. (C.1) to the
form

(C.2)

(C.3)

Here, ψ and the effective potential U are both two-com-
ponent quantities. For 1 > ε ≥ –1, W(r) is positive for
any attractive potential; therefore, a transition from the
set of Dirac equations (C.1) to Eq. (C.2) does not
involve singularities.25) Formally, Eq. (C.2) has the
form of the ordinary Schrödinger equation featuring
spin–orbit coupling. The difference, however, is that
the potential U itself depends (in a rather complicated
way) on the energy ε. At the boundary of the lower con-
tinuum, W = –V, expression (C.3) takes the somewhat
simpler form (19). The explicit expressions for the
functions Uij(r) can be found in [22].

In calculating the mean radius, the slope of the level
at the boundary of the lower continuum, and other sim-
ilar quantities, it is necessary to normalize the Dirac
function. It will now be shown how this can be done
without calculating the lower component explicitly.

25)In the case of a repulsive potential, V(r) > 0, the function W can
vanish and become negative. Instead of (C.2), it is therefore nec-
essary to use the equation that is obtained from the set of
Eqs. (C.1) upon the substitution χ = (1 – ε + V)–1/2ψ.
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From Eqs. (C.1), we have

(C.4)

where

(C.5)

and p = –i∇ . Performing integration by parts and using
Eq. (C.2), we arrive at the identity

(C.6)

where f(r) is an arbitrary real-valued function (in our
case, f = W –1/2). Taking into account the relations

and expression (C.3) for the effective potential, we
obtain

(C.7)

(C.8)

Considered immediately below are some cases
where the above formulas can be simplified.

(a) For the central field V = V(r), we have

and ∆V = V '' + 2r–1V '. Equation (C.3) then reduces to
Eq. (3), while Eq. (C.8) yields

(C.9)

where G = rg(r) and F = r f(r) are radial wave functions.
In [18], this formula was obtained directly for spheri-
cally symmetric potentials and was used in the calcula-
tions.
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(b) At the boundary of the lower continuum (ε = –1),
we have W = –V and

(C.10)

It should be noted that, in the problem of two pointlike
Coulomb centers, we can omit, in the above formulas,
terms that are proportional to the Laplacian ∆V. In order
to demonstrate this, we note that W ∝ r–1 for r  0;
hence, W–α∆V ∝ rαδ(r) ≡ 0 for any α > 0. The same is
true for any system of pointlike charges.

(c) At ε = –1 and V(r) = –ζ /r, we have

(C.11)

Similar identities can be obtained for the moments of
the electron-density distribution. They are presented
here in the simplest (and the most important) case of
κ = –1. Denoting

we obtain

(C.12)

Thus, the problem reduces to averaging over the
upper component G(r) exclusively. For the case of the
Coulomb field, we find with the aid of (16) that

(C.13)

For natural values of σ, the last expression reduces to
polynomials:

(C.14)

With the aid of (C.14), we can easily deduce Eqs. (14),
(15), and (B.12).
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Abstract—On the basis of the method outlined in the first part of this review, the properties of superfluid dense
neutron matter are analyzed in the density region where the spin of a Cooper pair and its total angular momen-
tum are S = 1 and J = 2, respectively. An analytic solution to the problem of 3P2 pairing in neutron matter is
presented. Basic features of the structure and of the energy spectrum of superfluid phases are discussed. Degen-
eracy that is absolutely dissimilar to that which is associated with the phase transformation of the order param-
eter in the S-pairing problem is a distinct feature of the structure of the aforementioned phases. It appears that
one or even a few numbers characterizing the weight of components associated with different values of the pro-
jection M of the total angular momentum J = 2 of a Cooper pair can be chosen arbitrarily, while the others adjust
to them in accordance with universal laws. As a result, the structure of any phase depends neither on the density,
nor on the temperature, nor on any other input parameter. The phases found here form two groups degenerate
in energy. One of these groups comprises phases for which the sign of the order parameter remains unchanged
over the entire Fermi surface, while the other consists of phases whose order parameter has a zero. The energy
splitting between the phases from the different groups is calculated analytically as a function of temperature.
The relative magnitude of this splitting changes from approximately 3% at T = 0 to zero in the vicinity of the
critical point Tc . The role of tensor forces in dense neutron matter is analyzed. It is shown that the mixing of
the orbital angular momenta L = 1 and L = 3 of Cooper pairs that is induced by tensor forces completely removes
degeneracy peculiar to the 3P2-pairing problem—the number of phases and their structure at a given tempera-
ture are tightly fixed, while the energy spectrum of the phases splits completely. © 2001 MAIK “Nauka/Inter-
periodica”.
1. INTRODUCTION

This article represents the second part of the review
study devoted to applications of the new method pro-
posed some years ago [1] within Bardeen–Cooper–
Schrieffer (BCS) theory. The first part [2], which was
published two years ago, addressed primarily the prob-
lem of S pairing. In recent years, however, the attention
of theorists and experimentalists switched to the inves-
tigation of systems featuring Cooper pairs whose
orbital angular momenta differ from zero. There are a
few reasons for this. First, pairs in liquid 3He, which is
the only superfluid Fermi liquid on the Earth (the criti-
cal temperature Tc is about 2.6 mK [3, 4]), have the
orbital angular momentum of L = 1 [5, 6]. Second, D
pairing is realized in electron systems of high-tempera-
ture superconductors [7]. Third, the dense neutron liq-
uid filling the core of neutron stars is superfluid, as was
predicted by A.B. Migdal [8] and as was corroborated
by the observations of the damping of sudden varia-
tions (glitches) in the velocity of the rotation of pulsars
[9–13]. These variations are interpreted as a manifesta-
tion of the rearrangement of the vortex structure in a
rotating neutron star [14–16]. In its core, the neutron

density ρ = /3π2 (where pF is the Fermi momentum)
is so high that the S pairing of neutrons is impossible.
Indeed, its existence depends on the sign of the S-wave

pF
3

1063-7788/01/6403- $21.00 © 20393
phase for nn scattering at typical momenta about pF.
This sign is reversed when the density ρ reaches values
of 2 to 2.5ρ0, where ρ0 = 0.17 fm–3 is an equilibrium
nuclear density. Nevertheless, attraction that is respon-
sible for the emergence of a superfluid state is still oper-
ative at such Fermi momenta in the P wave. It turns out
that, upon taking into account the interference between
spin–orbit and tensor forces, the triplet channel of spin
S = 1 and total angular momentum J = 2 is favored [17–
21]. The objective of the present article is to discuss the
phase diagram of superfluid neutron matter at densities
and temperatures from the region dominated by pair
correlations characterized by these quantum numbers.

It should be noted that, in the analogous S-pairing
problem, where the order parameter is real-valued,
everything reduces to calculating the temperature
boundary Tc(P) separating a superfluid and a normal
liquid. In the triplet case, however, the situation is dif-
ferent. The order parameter, which is a complicated
function of spin and angle, is capable of rearranging;
therefore, phase transitions similar to the transition
between the A and the B phase in superfluid 3He are
also possible in dense neutron matter.

Mathematical difficulties associated with determin-
ing phase-transition points—in a broader sense, the
spectrum of superfluid phases—are much more chal-
001 MAIK “Nauka/Interperiodica”
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lenging in the case of triplet pairing than in the case of
S pairing. This is the reason why, in the majority of
studies devoted to such systems, the authors restrict
themselves to investigating the symmetry properties of
the order parameter [22, 23], subsequently constructing
a phenomenological free-energy functional and solving
the relevant Ginzburg–Landau equations. Unfortu-
nately, this approach is applicable only in the vicinity of
Tc—it is insufficient for constructing the total phase
diagram of the system, so that required information has
hitherto been extracted only from numerical calcula-
tions [18, 24–27].

In order to compute numerically the phase diagram
of superfluid neutron matter with allowance for triplet
pairing, it is necessary to solve, with a computer, a set
of at least five nonlinear integral equations. Since the
energy splitting between different phases is extremely
small, this must be done for many points of the (ρ, T)
plane and to a rather high degree of precision. Usually,
such numerical calculations rely on an iterative proce-
dure, which actually involves choosing some initial
state and substituting it on the right-hand side of the set
of equations to be solved. The result obtained on the
left-hand side is then used in the same way—that is, it
is substituted on the right-hand side, and all operations
are repeated anew. A weak point of this method is that
its convergence often depends on the choice of initial
iteration. This is not the whole story, however—the
success or failure of the method is also determined, to
a considerable extent, by the form of the kernel in the
integral equation to which the iterative procedure is
applied. From this point of view, the kernel of the BCS
equation is one of the most inconvenient because it is
singular: at ∆ = 0, the relevant integral diverges loga-
rithmically. It is well known that, for singular kernels,
many methods devised to simplify procedures for solv-
ing the problem in question are inappropriate. In order
to improve the accuracy, very elaborate methods are
employed—for example, those that rely on construct-
ing an energy functional whose variation leads to the
required equation or the required set of equations and
on further minimizing this functional on the basis of all
latest advancements in the variational approach. Unfor-
tunately, a determination of all minima of a rather com-
plicated energy functional is sometimes plagued by dif-
ficulties, especially if the energy landscape is nearly
planar, which occurs if the problem at hand is partly or
totally degenerate. Below, we will see that, in the case
of systems involving 3P2 pairing, we are dealing with
such a situation.

That the calculations are extremely cumbersome
presents yet another problem of significance. The
greater the number of equations to be solved, the lower
the rate at which iterations converge and, hence, the
higher the requirements for the mathematical algo-
rithms to be used for this. So far, it has been the
unwieldiness of the procedure that has been the main
obstacle for performing systematic calculations of the
order-parameter structure in neutron matter in the
entire temperature interval from zero to Tc even in the
simplest approximation ignoring the mixing of the 3P2
and 3F2 channels. But we will see below that this mix-
ing plays a crucial role in the calculation of the phase
diagram for a superfluid system involving J = 2 Cooper
pairs.

That iterative procedures are insufficiently accurate
and that their implementation requires cumbersome
calculations do not exhaust the flaws in this method. A
much more hazardous point is that a process starting
from an arbitrary initial state can miss some solution, as
does indeed frequently occur. For example, only one
two-component phase whose order parameter is a
superposition of harmonics corresponding to the total-
angular-momentum projections of M = 0, ±2 was found
in vast and highly accurate calculations of the proper-
ties of superfluid neutron matter in the problem of pure
3P2 pairing [24]. As will be shown in Section 3, there
are actually two two-component phases. There exist
some more examples of this type. Therefore, it is not
surprising that the total spectrum of superfluid phases
has not yet been found for any system featuring triplet
pairing.

Finally, it is often difficult to interpret and to analyze
results obtained within an iterative method, in particu-
lar, and within any other numerical method, in general.
For example, it could be expected that different interac-
tions would lead to different results for the gap struc-
ture, but this is not so in fact. From a comparison of the
results presented in [24, 26], it can be seen that the ratio
of the calculated energy splitting between different
phases to the gap ∆F takes nearly the same value in the
two studies despite significant distinctions between the
forms of the interactions used there. Of course, the rea-
son behind this stability can hardly be found without
resort to analytic methods similar to those that are used
in the theory of second-order phase transitions. In tack-
ling the problems being discussed and some other
allied problems, we rely here on the method that was
proposed previously in [1] for solving the BCS equa-
tion for the gap ∆ in the S-pairing problem and which
consists in reducing this equation to two virtually inde-
pendent equations—one for the shape factor and the
other for the gap amplitude. It is only necessary to
extend this method to the case of triplet pairing.

The ensuing exposition is organized as follows. Sec-
tions 2 and 3 are devoted to a detailed description of
this procedure implemented in [28]. The results
obtained there are used in Section 4 to find the structure
and the energy spectrum of the superfluid phases in the
problem of pure 3P2 pairing. It is shown that the set of
all phases can be partitioned into two groups—one that
includes phases whose order parameter has no zeros
and the other that comprises phases whose order
parameter vanishes at some point. In this problem, the
structure of multicomponent phases appears to be
degenerate. One (a few in some cases) of the numbers
that determine this structure can be chosen arbitrarily,
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while the others are determined according to a univer-
sal recipe that depends neither on the details of the
interaction between the particles involved nor on den-
sity and temperature. Only the relative energy splitting
of the phases depends on temperature, and only the gap
in the spectrum of single-particle excitations, a type of
scale factor in the problem, depends on all the remain-
ing factors. In Section 5, the effect of contributions that
are induced by tensor forces and which are off-diagonal
in the orbital angular momentum of Cooper pairs is
investigated within perturbation theory. It is demon-
strated that the mixing of the L = 1 and L = 3 channels
completely removes degeneracy peculiar to the 3P2-
pairing problem—the number of different superfluid
phases and their structure at a given temperature are
tightly fixed, while the energy spectrum of the phases
splits completely. The resulting structure of the phases
shows a low sensitivity to variations of interaction
parameters, but it changes sizably with temperature.
The last section is devoted to discussing the results
obtained in the present study.

2. TRIPLET PAIRING: GENERAL FORMULAS

In superfluid dense neutron matter, the Cooper pair
spin is S = 1 and the orbital angular momentum L is
nonvanishing; therefore, the conventional BCS equa-
tion [29]

(1)

which involves the interaction block 9 that is irreduc-
ible in the particle–particle channel—this means that,
in this channel, there are no diagrams connected only
by two lines—transforms into a set of coupled equa-

tions for the components , which are determined
by the expansion

(2)

and which, owing to the T invariance of nuclear forces,
satisfy the relation

(3)

In systems featuring tensor interactions, the expansion
of the block 9 (in neutron matter, it is often replaced by
the nn-interaction potential) includes matrix elements
that are off-diagonal in the angular orbital momentum:

(4)

∆αβ p( ) 9αβγδ p p1,( )
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2T

--------------tanh
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In the triplet case, the spin matrix (n), which
absorbs entirely the angular and spin dependences, can
be written as [24]

(5)

The quasiparticle spectrum has the form

(6)

which is more complicated than that in the case of S
pairing.

In just the same way as in the S-pairing problem, the
single-particle energy ξ(p) of the normal Fermi system
is calculated within the effective-mass approximation,
ξ(p) = pF(p – pF)/M*. As a rule, this approximation pro-
vides a high precision since the main contribution to the
relevant integrals comes from the region near the Fermi
surface. As to the squared gap vector D2(

 

p

 

)

 

, which
appears in Eq. (6) and which is given by [24]
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momentum 
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. This dependence is contained in the
functions
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which arise upon summation over the projections of the
spin and the orbital angular momentum of the Cooper
pair.
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 In order to find the zeros and the maxima of the gap at
the Fermi surface with the aim of analyzing some sym-
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metry properties of the order parameter, it is sufficient
to know the structure function d 2(n) [28],

(11)

which is normalized according to (10) by the condition

(12)

For the purpose of illustration, we present the structure
functions for the single-component states of the 3P2-
pairing problem for the projection M equal to 0, 1, and
2 in absolute value.

The structure function corresponding to zero value
of M,

(13)

is positive everywhere, while the remaining two struc-
ture functions,

(14)

have zeros.
If we introduce the harmonic variables z = cosθ, x =

sinθcosϕ, and y = sinθsinϕ, each of the structure func-
tions in (13) and (14) will obviously depend only on
one of these harmonic variables—the first and the third
on z and the second on y:

(15)

Below, we will see that, in the 3P2-pairing problem, all
multicomponent solutions have the same structure
functions.

By substituting relations (2)–(8) into (1), we arrive
at a set of an infinite number of coupled equations for

the components (p):

(16)

d
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p p1,( )SL'L1
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2T

--------------tanh

2E p1( )
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× ∆L1

J1M1 p1( )
p1

2
d p1dn1

2π2
------------------------.
Our objective is to simplify this set of equations and
to reveal the structure of its solutions and of its energy
spectrum. In order to tackle this problem, it is necessary

to know the matrix function (n). It is more
straightforward to calculate its elements if, in (8), we
go over to 3j coefficients, which are more convenient in
such calculations,

(17)

and if, in performing summation over m and m1, we
make use of the formula [30]

(18)

As a result, we obtain

(19)

Here, summation over magnetic quantum numbers is
performed with the aid of the formula [30]
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(20)

As a result, we arrive at

(21)

The phases of the spherical functions appearing in this
expression are chosen according to [30]:

With the aid of these relations, we can show that, in the

triplet case, the matrix (n) possesses the sym-
metry properties

(22)

which make it possible to halve the volume of the cal-
culations. To complete the presentation of the general
formulas, it only remains to add one more (see [30]),

(23)

where  are associated Legendre polynomials.

3. TRANSFORMED BCS SET OF EQUATIONS 
FOR DESCRIBING TRIPLET PAIRING

We begin our analysis of the phase diagram of
superfluid dense neutron matter by simplifying—more
precisely, by truncating—the set of Eqs. (16). Specifi-
cally, we discard all terms that are off-diagonal in the
orbital angular and in the total angular momentum.
There are a few factors justifying this step. The first one
is the smallness of the contributions of the L1 ≠ L off-

diagonal elements of the functions (n) (this fact
was indicated in [5]). The second one is the relative
smallness of the off-diagonal components of tensor
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forces, which are responsible for the mixing of chan-
nels characterized by different values of the orbital
angular momentum. The final one is the smallness of
corrections associated with the mixing of channels hav-
ing different values of the total angular momentum.
These corrections are of paramount importance in
describing the A phase of superfluid 3He, but they are
immaterial in neutron matter because the matrix ele-

ments  are small in relation to the elements

. In Section 4, the most important of these con-
tributions, which are omitted for the time being, are
analyzed in detail and are taken into account.

Upon all simplifications, the set of Eqs. (16) breaks
down into blocks. On its right-hand sides, there remains
only one summation over the projections M of the total
angular momentum J; therefore, there are (2J + 1)

equations for the component of the vector (p) in
each individual sector:

(24)

We now proceed to transform this set of equations,
following a procedure similar to that used in the case of
S pairing [1, 2]. A generalization to the case of triplet
pairing is quite straightforward [28]. We break down

the diagonal matrix element (p, p1) of the interac-
tion according to the same scheme as in [1, 2]:

(25)

Here, the first term representing a separable part in

which φ(p) = (p, pF)/ 9F, where 9F = (pF,
pF), was singled out in such a way that the residual part
W(p, p1) vanishes identically when one of the argu-
ments p and p1 occurs at the Fermi surface. Owing to
this, the main contributions to the integrals featuring
the block W come from the region far off the Fermi sur-
face, where we can make the substitutions E  |ξ|
and tanh(E/2T)  1. The discarded terms are of order

/( )
2
, where  = /2M is the energy of a perfect

Fermi gas and M is the neutron mass. In dense neutron

matter with  ~ 100 MeV, these terms manifest them-
selves in the fifth to the sixth decimal place, so that we
will ignore them below. The substitution of (25) into
(24) yields

(26)
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where

(27)

By examining the first of these equations, it is easy to
establish that the dependence of the components

(p) on the absolute value of the momentum is

entirely contained in the numbers . By introducing
the shape factor χ(p) via the relation

(28)

and substituting this equality into Eq. (26), we arrive at
the integral equation

(29)

which is essentially identical to the equation for the
shape factor in the S-pairing problem [1, 2], since the
orbital angular momentum L and the total angular
momentum J do not appear in (29) explicitly.

Thus, we conclude that, apart from corrections of

order /( )
2
, all components (p) have the same

p dependence and that the shape factor χ(p) is indepen-
dent of temperature T. Generally, only (2J + 1) complex

coefficients , which determine the structure of the
multicomponent solutions near the Fermi surface are
temperature-dependent. According to the property in
Eq. (3), the real and the imaginary parts of these coeffi-
cients are related as

(30)

The equation for them can be obtained by substituting
(28) into the expression on the right-hand side of (27).
The result is

(31)

The set of Eqs. (29) and (31) is much more convenient
for numerical calculations than the original set of
Eqs. (16) because the problem in question has been
broken down into two independent problems. On the
basis of the nonsingular integral Eq. (29), one first cal-
culates the shape factor χ(p) and then substitutes the
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2π2
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M 0 1± 2± … J .±, , , ,=
resulting solution into Eqs. (31), thereby reducing them
to a set of nonlinear algebraic equations.

Yet another useful relation for the gap ∆F is derived

by multiplying each of Eqs. (31) by ( )* and by per-
forming summation over M. By considering that D2(p) =

(n)χ2(p) ≡ d 2(n)χ2(p),

we then obtain

(32)

This formula can be simplified by using the fact that it
also determines the critical temperature Tc if we set ∆F
to zero in it:

(33)

Equation (32) can then be recast into the form

(34)

Here, the integrand decreases fast with increasing
|ξ(p)|; therefore, the dominant contribution to the inte-
gral comes from the region |ξ(p)| ≤ ∆F, where we can
replace the functions χ(p) and φ(p) by unity and
p2(dp/dξ) by pFM*. As a result, we arrive at

(35)

where E(p) = .

We see that, if the structure function is preset, the
gap ∆F is a universal function of τ = T/Tc . From the
analysis of the case of pure 3P2 pairing in the next sec-
tion, it can be deduced that the structure of solutions to
the set of Eqs. (31) that describe various superfluid
phases is such that it admits structure functions of only
two types. This means that, in the problem being dis-
cussed, the structure of superfluid phases is degenerate
and is independent either of density, or of temperature,
or of other input parameters.

4. 3P2 PAIRING IN DENSE NEUTRON MATTER

4.1. Formulation of the Problem

A nontrivial solution to the BCS equations exists,
provided that the particles involved are attracted in the
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channel being considered. The prevalent opinion, which
is based on an analysis of experimental data on nn scatter-
ing in a vacuum, is that, in dense neutron matter, where
characteristic momenta are such that the vacuum 1S0
phase shift has already changed sign, the most favorable
channel for pairing is that where the spin and the total
angular momentum of Cooper pairs are S = 1 and J = 2,
respectively. This conclusion is drawn on the basis of the
fact that the vacuum phase shift δ(3P2) exceeds all the
remaining ones in the energy region under consideration.

In general, this argument is insufficient because the
interaction between particles in nuclear matter differs
from that in a vacuum, so that vacuum attraction can
easily give way to repulsion in a medium. However, 3P2
scattering is dominated by spin–orbit interaction,
which is followed, in order of importance, by tensor
forces. In the case of S = L = 1 triplet pairing in neutron
matter, spin–orbit forces ensure attraction only for Coo-
per pair states whose spin is parallel to the orbital angular
momentum—that is, precisely in the 3P2 channel. Since
the spin–orbit component of 9 is of a relativistic origin,
it is local in the coordinate representation and its renor-
malization is weak in nuclear matter. To make sure that
this is indeed the case, it is sufficient to examine data on
the spin–orbit splitting of single-particle levels of nuclei.
As to tensor forces, whose amplitude in a vacuum is less
than the amplitude of spin–orbit forces, their contribution
is maximal in zero-helicity states [31] (vol. 1)—that is, in
the 3P0 channel. In the J = 2 channel, their role is insignif-
icant precisely because, in the 3P2 state, pairs do not pos-
sess specific helicity values; as a result, tensor forces only
lead to the mixing of the L = 1 and L = 3 channels.

We postpone a discussion on these problems for the
time being and focus our attention on solving the prob-
lem of pure 3P2 pairing, the most popular one indeed in
the physics of superfluid neutron liquid. On one hand,
rich experience of numerical calculations has been
accumulated here [18, 19, 24, 26]; on the other hand,
the relevant analytic solution was obtained in [28]. The
objective of this section is to give an account of an ana-
lytic method and to compare the results that it produces
with the numerical results.

In the system featuring 3P2 correlations, the set of
Eqs. (31) often is rewritten as that for five real numbers
δ0, δ1, δ2, n1, and n2 that characterize the order parame-

ter (pF, n) and which are related to  as [24]

(36)

additionally, we have δ–2 = δ2,  δ–1 = δ1,  n–2 = –n2,  n–1 =
n1, and n0 = 0. The last equality is equivalent to the well-
known option α = 0 for the phase α of the gap ∆ in the
theory of S pairing.

In terms of the new variables, the function (p)
has the form
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=
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where the shape factor χ(p) is determined by Eq. (29).

In relation to the conventional formula for (p) from
[24], the p dependence of the order parameter is factor-
ized in (37).

In order to write explicitly the transformed set of
BCS equations for the parameters δM and nM, we must

know the matrix function (θ, ϕ). Its nonvanish-
ing elements calculated on the basis of Eq. (21) are

(38)

By substituting these results into the set of Eqs. (31)
and introducing the notation vF = 29F/π and
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(40)

This set of equations has three obvious single-com-
ponent solutions corresponding to the projections of the
total angular momentum of a pair that are equal to M =
0, 1, 2. It should be emphasized that, for the last of
these, the spatial dependence of the order parameter,
∆ ~ (x + iy), is identical in form to that in the A phase of
superfluid 3He. This solution corresponds to the set of
the values δ2 ≠ 0 and δ1 = δ0 = 0. The two others are
obtained from here by means of a permutation of the
indices 0, 1, 2.

We begin a pursuit of multicomponent solutions to
the set of Eqs. (40) by assuming that δ0 ≠ 0. Our search
is simplified considerably upon introducing, instead of
the coefficients δM and nM, the ratios of these coeffi-

cients to the scale factor δ = δ0/ ,

(41)

Owing to this choice of δ, the irrational number  is
eliminated from all relevant relations. The structure
function d2(θ, ϕ) calculated on the basis of Eqs. (11)
and (37) can be represented as
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while the numerical factor d 2 is determined by the nor-
malization condition (12),

(43)

The analysis is further simplified by the circumstance
that seven functions in (38) can be written as linear
combinations of the smaller number of the basis func-
tions fi , where
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Substituting 4π  for , we obtain
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In the set of Eqs. (40), we further go over to λi and κi,
taking into account relations (45); after some simple
algebra, we then find that the parameters λ1, λ2, κ1, κ2,
and δ satisfy the set of five nonlinear equations [28]
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where the integrals Ji, i = 1, …, 5 are given by

(47)

It should be noted that, if we had disregarded the angu-
lar dependence of E(p), all integrals in (47), with the
exception of the last one (J5), would have vanished. It
is the integral J5 that controls the averaged value of the
gap ∆F in the spectrum of single-particle excitations at
the Fermi surface, while all the remaining integrals are
responsible for the gap structure.

We note that the first four integrals are not indepen-
dent. In order to prove this, we introduce an additional
integral of the type in (47) with an integrand that
involves the partial derivative f = ∂d 2(θ, ϕ)/∂ϕ of the
structure function d 2(θ, ϕ) with respect to the angle ϕ.
Integration with respect to this angle obviously yields
zero result. On the other hand, the derivative ∂d 2(θ,
ϕ)/∂ϕ can easily be expressed in terms of the functions
fi (i = 1, …, 5); taking this into account, we find, after
some simple algebra, that

(48)

where c1 = κ1 + λ1κ2 – λ2κ1, c2 = λ1 + λ1λ2 + κ1κ2,

c3 = 2κ2 – κ1λ1, and c4 = 2λ2 – (  – )/2. Relation
(48) plays a key role in seeking multicomponent solu-
tions to the set of Eqs. (46). This becomes obvious upon
multiplying the second, the third, and the fourth equa-
tion in (46) by λ2, 2κ1, and 2λ1, respectively, and then
subtracting the sum of the results obtained by applying
these three operations from the first equation multiplied
by κ2; indeed, this yields (48). Thus, only four of the
five equations in (46) are independent. Since the num-
ber of independent equations is less than the number of
the parameters to be determined by solving these equa-
tions, one of the parameters λi and κi can be chosen
arbitrarily. In just the same way as in [28], we set κ1 =
0 and eliminate the penultimate equation in (46) as that
which follows from the remaining four and relation
(48). As a result, we are left with four equations

(49)

κ1 v F λ2J2– κ2J1–
λ1

2
-----J4––=

+
κ1

4
----- J0 4J5 2J3–+( ) J2+ ,

1 v F
1
3
--- λ2J3 κ2J4– λ1J1 κ1J2–+( )– J5+ ,–=

Ji f i θ ϕ,( )K θ ϕ,( ) θ θ ϕddsin
4π

------------------------.∫∫=

ciJi

i 1=

4

∑ 0,=

λ1
2 κ1

2

λ2 v F λ2 J0 J5+( ) λ1J1– J3–[ ] ,–=

κ2 v F λ1J2 κ2 J0 J5+( ) J4+ +[ ] ,–=

λ1 = v F λ2J1–
λ1

4
----- J0 4J5 2J3+ +( ) κ2J2 J1–+ + ,–

1 v F
1
3
--- λ2J3 λ1J1 κ2J4–+( )– J5+ .–=
PHYSICS OF ATOMIC NUCLEI      Vol. 64      No. 3      2001
Their solutions are real-valued at κ2 = 0 and complex-
valued at κ2 ≠ 0.

4.2. Real-Valued Solutions

This section is devoted to seeking real-valued solu-
tions to the set of Eqs. (49) (those for which κ1 = κ2 =
0). In this case, the number of equations in (49) reduces
again because the second equation is satisfied automat-
ically. Indeed, it follows from (42) that, at κ1 = κ2 = 0,
the structure function assumes the form

(50)

It is invariant under the substitution ϕ  –ϕ, and so
is the function K(θ, ϕ) given by (39). At the same time,
the functions f2(θ, ϕ) and f4(θ, ϕ), which enter into the
integrals J2 and J4 and which are proportional to sinϕ
[see Eqs. (44) and (47)], change sign under this substi-
tution. Upon integration with respect to the angle ϕ,
both integrals then vanish:

(51)

As a result, there remain only three equations in (49):

(52)

One of these equations can be reserved for determining
∆F; therefore, it is sufficient to analyze only two of them
in order to clarify the structure of real-valued solutions
characterized by the numbers λ1 and λ2. It is natural to
expect that solutions are represented by some points on
the (λ1, λ2) plane. We will see below that the majority
of solutions to the 3P2-pairing problem are multiply
degenerate, forming a family of second-order curves on
the (λ1, λ2) plane.

As was indicated above, the equation that deter-
mines the gap ∆F must involve the integral J5, which
governs the magnitude of the gap in the spectrum of
single-particle excitations. Therefore, the best way to
derive two equations appropriate for analyzing the
structure of solutions to the set of Eqs. (52) is to elimi-
nate this integral. The simplest method for implement-
ing this consists in multiplying the last equation first by
λ2 and then by λ1 and in successively subtracting the

d
2 θ ϕ,( ) 1

2 1
1
3
--- λ1

2 λ2
2

+( )+

-------------------------------------------- 1 3 θ -cos
2

+=

+ λ2
2 θsin

2 λ1
2

2
----- 1 θcos

2
+( )+

– 2λ1 1 λ2+( ) θ θ ϕcoscossin

+
1
2
--- λ1

2
4λ2–( ) θ 2ϕcossin

2
.

J2 λ1 λ2,( ) J4 λ1 λ2,( ) 0.= =

λ2 v F λ2 J0 J5+( ) λ1J1– J3–[ ] ,–=

λ1 v F λ2J1–
λ1

4
----- J0 4J5 2J3+ +( ) J1–+ ,–=

1 v F
1
3
--- λ2J3 λ1J1+( )– J5+ .–=
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resulting equations from the first and the second equa-
tion in (52). Prior to doing this, however, we will inves-
tigate the case where one of the parameters λ1 or λ2
vanishes—only in this case will no solution to the orig-
inal set of Eqs. (52) be lost. We do not need to investi-
gate the case of λ1 = λ2 = 0, because λ1 and λ2 cannot
vanish simultaneously in multicomponent real-valued
solutions.

First, we assume that λ2 = 0 and λ1 ≠ 0. In this case,
two parameters, λ1 and ∆F, must satisfy all three equa-
tions in (52). From rather a tedious analysis, it can then
be deduced that this set of equations has no nontrivial
solutions.

In the other case (λ1 = 0, λ2 ≠ 0), the situation is
totally different. The second equation in (52) is now
satisfied automatically; hence, the number of remaining
equations is equal to the number of unknown parame-
ters. This statement must be further clarified. The point
is that, at λ1 = 0, the ϕ-dependent part of the structure
function (50) involves cos2ϕ; therefore, it is invariant
under the substitution ϕ  π + ϕ, while f1 ~ cosϕ
changes sign. At any value of λ2, we therefore have

, (53)

which proves the above statement that the left-hand
side of the second equation in (52) vanishes identically.
The simplest way to draw this conclusion, as well as the
majority of others that are based on the symmetry prop-
erties of the integrals involved, is to use the harmonic
coordinates x, y, and z rather than spherical coordinates.
In terms of the harmonic coordinates, the set of the
basis functions fi (44) is given by

(54)

while the structure function (50) can be written as

(55)

with the normalization factor (43). The integrals with
respect to the angles are calculated with the aid of the
formula

(56)

As a result, we obtain

(57)

In terms of these variables, the vanishing of J1(0, λ2)
follows from the fact that the integrand is odd because

J1 0 λ2,( ) 0=

f 0 1 3z
2
, f 1–

3
2
---xz, f 2

3
2
---yz,= = =

f 3 = 
3
2
--- 2x

2
z

2
1–+( ), f 4 = 3xy, f 5 = 

1
2
--- 1 3z

2
+( ),

d
2

x y z, ,( ) d
2

1 λ2+( )2 λ1
2

4λ2–( )x
2

+[=

– 2λ1 1 λ2+( )xz λ1
2 λ2

2
– 2λ2– 3+( )z

2 ]+

F θ ϕ,( ) θ θ ϕddsin∫∫
=  2 F x y z, ,( )δ 1 x

2
– y

2
– z

2
–( ) x y z.ddd∫∫∫

Ji f i x y z, ,( )K x y z, ,( )∫∫∫=

× δ 1 x
2

– y
2

– z
2

–( )dxdydz
2π

------------------.
the function f1 = 3xz/2 changes sign upon the substitu-
tion x  –x, while the structure function (55) at λ1 =
0 and, hence, the function K(x, y, z) do not change sign.
We then have

(58)

Upon this digression, we now return to the remaining
two equations (52). Upon eliminating the integral J5
from these two equations, we find that λ2 satisfies the
equation

(59)

It has two solutions

(60)

which correspond to different energies.
In order to prove this, we check the vanishing of the

left-hand side of Eq. (59) by successively substituting
all numbers λ2 from (60) into it. It can easily be verified
that, at λ2 = 3, the left-hand side of (59) takes the form

(61)

which involves the difference (x2 – z2). Hence, its sign
is reversed upon the interchange of x and z because,
according to (55), the structure function for this phase,

(62)

and the function K(x, y, z), together with it, do not
change sign upon the above interchange. As a result, the
integral in (59) vanishes because the integrand is odd
under the interchange of x and z.

The situation is similar for the solution λ2 = –1: the
structure function

(63)

and the function K, together with it, depend only on y
and remain invariant under the interchange of x and z,
while the left-hand side of Eq. (59),

changes sign again. Therefore, the integral with respect
to the angles in (59)—it is identical to the above inte-
gral—vanishes again.

J1 xzK x y z, ,( )∫∫∫∼

× δ 1 x
2

– y
2

– z
2

–( )dxdydz 0.=

3λ2J0 0 λ2,( ) λ2
2

3–( )J3 0 λ2,( )+ 0.=

λ2 3, λ2 1,= =

9J0 6J3+ 18 x
2

z
2

–( )K x y z, ,( )∫∫∫=

× δ 1 x
2

– y
2

– z
2

–( )dxdydz
2π

------------------,

d
2

x y z; λ1, , 0 λ2, 3= =( )

=  
1
2
--- 4 3 x

2
z

2
+( )–( ) 1

2
--- 1 3y

2
+( ),=

d
2

x y z; λ1, , 0 λ2, 1–= =( )

=  
3
2
--- x

2
z

2
+( ) 3

2
--- 1 y

2
–( )=

3J0 2J3+( )–

=  6 z
2

x
2

–( )K y( )δ 1 x
2

– y
2

– z
2

–( ) x y zddd
2π

-----------------,∫∫∫
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As to the remaining two solutions—λ2 = 1 and λ2 =
–3—the integrand in (59) is proportional to 3f0 – 2f3 =
−6(2z2 + x2 – 1) in either case, while the structure func-
tion depends only on x. We also have

(64)

(65)

Since the structure function and the function K,
together with it, actually depend only on x in either
case, we can perform integration in (59) with respect to
z and y and obtain the required zero result,

(66)

since

Finally, we must substitute each of the numbers in (60)
into the last equation in (52) and find the corresponding
expressions for ∆F. As can easily be seen, the gap ∆F
and the pairing energy, together with it, are independent
of the sign of λ2. Postponing the analysis of the energy
spectrum to a special section, we will now summarize
some of the above results. We have found two two-
component solutions to the 3P2-pairing problem at δ1 =
0 (and not one as in [24]). Their order parameters are
different: the order parameter for the λ2 = ±3 phases is
positive everywhere, while the order parameter for the
λ2 = ±1 phases vanishes on the equator.

We now proceed to consider the main version,
where λ1 and λ2 are both nonzero. Let us multiply the
last equation in (52) by λ2 and subtract the result from
the first equation. We further multiply the last equation
in (52) by λ1 and subtract the result from the second
equation. In this way, we recast the first two equation in
(52) into the form

(67)

It can easily be verified that, if we set here λ2 = –1, the
left-hand sides of Eqs. (67) will coincide. This is
because the integral J1 then vanishes, which follows
from the invariance of the structure function (55),

(68)

d
2

x y z; λ1, , 0 λ2, 1= =( ) 3
2
--- 1 x

2
–( ),=

d
2

x y z; λ1, , 0 λ2, 3–= =( ) 1
2
--- 1 3x

2
+( ).=

K x( ) 2z
2

x
2

1–+( )δ 1 x
2

– y
2

– z
2

–( ) x y zddd∫∫∫

=  K x( ) x
2z

2
x

2
1–+

1 x
2

– z
2

–
---------------------------- zd

1 x
2

––

1 x
2

–

∫d

1–

1

∫ 0,=

2z
2

x
2

1–+

1 x
2

– z
2

–
---------------------------- zd

1 x
2

––

1 x
2

–

∫ 0.=

3λ2J0 λ1 λ2 3–( )J1 λ2
2

3–( )J3+ + 0,=

3λ1J0 4 λ1
2

3λ2– 3–( )J1 2λ1 2λ2 3+( )J3+ + 0.=

d
2

x y z; λ1 λ2, , , 1–=( ) 3
2
--- x

2
z

2
+( ),=
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and, hence, of the function K under the interchange of
x and z. Therefore, the integrand in the integral in (58),
which determines J1, is antisymmetric; therefore, we
have J1(λ1, λ2 = –1) = 0 at any value of λ1. As a result,
the two equations in (67) appear to be identical:

From (61), it follows that the last equality is valid irre-
spective of λ1 values. Thus, we have found yet another
solution to the 3P2-pairing problem:

(69)

On the (λ1, λ2) plane, this is a straight line parallel to the
abscissa. Thus, we have obtained a line instead of the
expected point—the solution proved to be degenerate.
We will now see that the result in (69) is not the only
degenerate solution to the problem under consider-
ation.

Let us now assume that λ2 ≠ –1. By successively
eliminating first J3 and then J0 from the two equations
in (67), we rewrite them in the more compact equiva-
lent form

(70)

Further, we rotate the axes of the coordinate frame
(x, z) through some angle β, which will be specified
below. We then have

(71)

In terms of the new variables, the structure function
(55) takes the form

(72)

We choose the angle β in such a way as to annihilate the
coefficient of the term involving the product tu,
whereby the expression for d 2(t, u) is reduced to the
form

(73)

3J0 λ1 λ2, 1–=( ) 2J3 λ1 λ2, 1–=( )+ 0.=

λ2 1.–=

3λ1 λ2 1+( )J0 2 λ1
2

2λ2
2

– 6+( )J1– 0,=

λ1
2

4λ2–( )J1 λ1 λ2 1+( )J3+ 0.=

z t βcos u β, xsin+ t βsin– u β.cos+= =

d
2

t u,( ) = d
2

1 λ2+( )2 λ1
2 λ2

2
– 2λ2– 3+( ) βcos

2[+(

+ λ1
2

4λ2–( ) βsin
2

2λ1 1 λ2+( ) β β] t
2

cossin+

+ λ1
2 λ2

2
– 2λ2– 3+( ) βsin

2 λ1
2

4λ2–( ) βcos
2

+[

– 2λ1 1 λ2+( ) β β]u
2

cossin

– 2 λ2 1+( ) λ1 βcos
2 βsin

2
–( ) + λ2 3–( ) β βcossin[ ]tu).

d
2

t u,( ) d
2

1 λ2+( )2 λ1
2 λ2

2
– 2λ2– 3+( ) βcos

2[+(=

+ λ1
2

4λ2–( ) βsin
2

2λ1 1 λ2+( ) β β] t
2

cossin+

+ λ1
2 λ2

2
– 2λ2– 3+( ) βsin

2 λ1
2

4λ2–( ) βcos
2

+[

– 2λ1 1 λ2+( ) β β]u
2 ).cossin
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We then arrive at the condition

(74)

where ζ = . This equation has two solutions

(75)

They exist at all values of the parameters λ1 and λ2,
their product being –1. Thus, the angles β1 and β2 cor-
responding to these solutions are related by the simple
equation β1 = π/2 + β2.

Let us now find out how the integrals Ji change upon
this rotation. We begin by considering the relevant inte-
grands:

(76)

On the right-hand sides, we have already discarded here
the terms involving tu, which are insignificant for the
ensuing analysis because, in calculating the integrals Ji,
they drop out of the final results for the same symmetry
reasons as above—that part of the integrand which
involves tu changes sign upon the substitution t  –t
(or u  –u). As a result, we obtain

(77)

By substituting these expressions into (70), we arrive at
two equations involving only the integrals J0 and J3;
these equations have the form of a linear set of equa-
tions for the unknown J0 and J3:

(78)

ζ 2 λ2 3–
λ1

--------------ζ– 1– 0,=

βtan

ζ1 2, λ1 λ2,( )
λ2 3–
2λ1

--------------
3 λ2–( )2

4λ1
2

--------------------- 1+ .±=

f 0 1 3z
2

1 3t
2

–( ) βcos
2 1

2
--- βsin

2
– 

 –=

–
3
2
--- 2u

2
t

2
1–+( ) β,sin

2

f 3
3
2
--- 2x

2
z

2
1–+( ) 3

4
--- 1 3u

2
–( ) βsin

2
–=

+
3
4
--- 2 βcos

2 βsin
2

+( ) 2t
2

u
2

1–+( ),

f1 = 
3
2
---xz

3
4
--- 2u

2
t

2
1–+( ) 3

4
--- 1 3t

2
–( )+ β β.cossin

J0 βcos
2 1

2
--- βsin

2
– 

  J0 βJ3,sin
2

–

J3
3
4
--- βJ0sin

2
–

1
2
--- 2 βcos

2 βsin
2

+( )J3,+

J1
3
4
---J0

1
2
---J3+ β β.cossin

A11J0 A12J3+ 0,=

A21J0 A22J3+ 0.=
Simple calculations based on relations (77) lead to the
following formulas for the coefficients:

(79)

A straightforward calculation of the determinant for
this set of equations, $ = A11A22 – A12A21, yields

(80)

Recalling condition (74), we conclude that

$ = 0 (81)

at any values of λ1 and λ2. This is possible only if the
coefficients in the first equation in (78) are in the same
proportion as the coefficients in the second equation, so
that the latter replicates the former, carrying no new
information.

Thus, it only remains to solve the single equation

(82)

Its solution—some curve on the (λ1, λ2) plane—can
also be found by analytic methods. In order to demon-
strate how this is done, we return to the structure func-
tion (72). It can easily be seen that, for a specific rela-
tion between the sought parameters λ2 and λ1, we can
find a rotation such that the structure function becomes
a function of only one variable, say, t. From (73), it does
indeed follows that this is so under the condition

(83)

A11 λ1 λ2,( ) 3
2
---λ1 1 λ2+( ) 2 ζ 2 λ1 λ2,( )–( )=

–
3
2
--- λ1

2
2λ2

2
– 6+( )ζ λ1 λ2,( ),

A12 λ1 λ2,( ) 3λ1 1 λ2+( )ζ 2 λ1 λ2,( )–=

– λ1
2

2λ2
2

– 6+( )ζ λ1 λ2,( ),

A21 λ1 λ2,( ) 3
4
---λ1 1 λ2+( )ζ 2 λ1 λ2,( )–=

+
3
4
--- λ1

2
4λ2–( )ζ λ1 λ2,( ),

A22 λ1 λ2,( ) 1
2
---λ1 1 λ2+( ) 2 ζ 2 λ1 λ2,( )+( )=

+
1
2
--- λ1

2
4λ2–( )ζ λ1 λ2,( ).

$ 3λ1 λ2 1+( )2 λ1ζ
4

– λ2 3–( )ζ 3
–[=

– λ2 3–( )ζ λ1 ]+

≡ 3 λ2 1+( )2 ζ 2
1+( ) λ1ζ

2 λ2 3–( )ζ– λ1–[ ] .–

A21 λ1 λ2,( )J0 λ1 λ2,( )
+ A22 λ1 λ2,( )J3 λ1 λ2,( ) 0.=

λ1
2 λ2

2
– 2λ2– 3+( )ζ 2

– 2λ1 1 λ2+( )ζ λ1
2

4λ2–+ 0.=
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We then have

(84)

The set of Eqs. (74) and (83) is solved analytically, its
solution,

(85)

being defined not on the entire (λ1, λ2) plane but on the
curves representing solutions to the equation

which can be simplified to become

(86)

That, under condition (86), expression (85) is a solution
to the set of Eqs. (74) and (83) can be verified by a
direct substitution.

Let us now show that, the constraint in (86), owing
to which the structure function d 2 and the function K,
together with it, become functions of the single variable
t upon the rotation of the axes, makes it possible to sat-
isfy Eq. (82). Indeed, the integral J3 vanishes upon this
rotation because the u dependence in the integrand is
entirely concentrated in f3(u, t) = 3(2u2 + t2 – 1)/2; in
accordance with formula (57), integration with respect
to u in J3 can be performed irrespective of the form of
the function K(t), whereby we find, as before [see
Eq. (66)], that J3 = 0. Hence, it is sufficient to verify
that the coefficient A21 vanishes if Eq. (85) holds—
Eq. (82) is then satisfied automatically. The substitu-
tion of (85) into the expression for the coefficient A21
written in (79) immediately proves this.

Thus, we see that, if Eq. (85) holds, the rotation R
specified by condition (74) makes it possible to achieve
simultaneously two goals—the structure function
becomes a function of one variable, and, additionally, the
two equation in (78) are satisfied. As a result, we find the
missing solutions to the 3P2-pairing problem, and the
spectrum of these solutions appears to be degenerate.

This proves that the iterative procedure for numeri-
cally solving the original set of equations is inadequate
here since it is impossible, even with the aid of the most
elaborate numerical methods, to find out whether we
are dealing with states whose energies are close or with
states that are strictly degenerate.

Relation (86) generates three branches λ2(λ1) (see

Fig. 1). One of these, the parabola λ2 = /2 + 1 issues
from the point λ2(0) = 1. Its structure function is calcu-
lated by using Eq. (72) and by considering that the
value of ζ0 on the parabola is –2/λ1. After some simple
algebra, we obtain

(87)

d
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t( ) = d
2

1 λ2+( )2 λ1
2 λ2

2
– 2λ2– 3+( ) βcos

2[+(

+ λ1
2

4λ2–( ) βsin
2

2λ1 1 λ2+( ) β βcos ] t
2 ).sin+

ζ0 λ1 λ2,( )
λ1

2
4λ2–

λ1 1 λ2+( )
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λ1
4

2λ1
2λ2

2
– 4λ2

3
8λ2λ1

2
– 8λ2

2
2λ1

2
12λ2–+ + + 0,=

λ1
2

2λ2– 2+( ) λ1
2

2λ2
2

– 6λ2–( ) 0.=
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2

d
2

t( ) 3
2
--- 1 t

2
–( ).=
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This result is analogous to those in Eqs. (63) and (64)—
the structure function vanishes as before, but this time
at t = 1.

On two other branches, where  = 2  + 6λ2, we
have ζ0 = 2λ2/λ1 and the structure function calculated
with the aid of (72) has no zeros,

(88)

in just the same way as the corresponding expressions
in (62) and (65).

So far, our consideration has been performed under
the assumption that δ0 ≠ 0. In order to find out whether
there exist two-component solutions for δ0 = 0, we must
investigate the asymptotic behavior of solution (69) and
of the relevant solution to Eq. (86). The first of these
(|λ1|  ∞) corresponds to the situation where δ1 =
const and δ0, δ2  0. In the limit, we arrive at the
|M|  = 1 one-component solution. The asymptotic

behavior of the parabola λ2 = /2 + 1 specifies the
solution for δ2 = const and δ0, δ1  0. This is the one-
component |M | = 2 solution. For the remaining pair of
curves that correspond to Eq. (86) and which are given

by  = 2  + 6λ2, we have |λ1|/ |λ2 |   for
|λ1|  ∞. In this way, there arises the solution for

|δ1| = |δ2 | and δ0 = 0. Thus, we have found the
answer to the above question—in the problem of 3P2
pairing, superfluid phases characterized by δ0 = 0 and
δ1, δ2 ≠ 0 do indeed exist.

An analysis of numerical calculations shows that, in
the 3P2-pairing problem, there are no degenerate real-
valued solutions other than those described by
Eqs. (69) and (86). Thus, the full spectrum of the real-
valued solutions to this problem consists of (i) three
one-component states characterized by the total-angu-
lar-momentum projections |M| = 0, 1, 2; (ii) the points
whose coordinates are (λ1 = 0, |λ2| = 3) and (λ1 = 0,
|λ2| = 1); (iii) the straight line λ2 = –1; and (iv) three
second-order curves specified by Eq. (86).

The structure of any of the above multicomponent
solutions depends neither on density, nor on the tem-
perature, nor on other input parameters. The entire set
of structure functions for the phases found here can be
partitioned into two groups—one including those that
vanish at some point and the other comprising those
that preserve sign. Upon a rotation of the coordinate
axes that reduces the structure function to a function of
one variable, we always obtain d 2(t) = 3(1 – t2)/2 and
d 2(t) = (1 + 3t2)/2 in the first and in the second case,
respectively.

As to the results of the numerical calculations from
[18, 19, 24, 26], the number of the phases found there
is much less than the number of the phases obtained
analytically here, although all numerical solutions also
form two groups according to energy. The distinctions

λ1
2 λ2

2

d
2

t( ) 1
2
--- 1 3t

2
+( ),=

λ1
2

λ1
2 λ2

2
2

2
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between the predictions of the two approaches will be
quantified in the following section.

4.3. Energy Spectrum of Real-Valued Solutions

Physical considerations and Eq. (35) indicate that
the energies of the phases characterized by the same
structure functions are degenerate and that the phases
whose structure functions have no zeros lie lower on
the energy scale than the phases whose structure func-
tions have zeros. First, the difference FS of the pairing
contributions to the free energy F due to the difference
of the phase structure functions will be related to the
difference of the corresponding gaps ∆F . To do this, use
will be made of the method based on integration of the
expectation value 〈Hint〉  with respect to the coupling
constant g, since we can write [32]

(89)

Replacing, as usual, the partial derivative on the right-
hand side of (89) by Hint/g and substituting, for the
expectation value, the expression (see, for example, [24])

(90)

we arrive at

(91)
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Fig. 1. Real-valued solutions to the 3P2-pairing problem: (1)

λ1 = 0, λ2 = 3 two-component state; (2) λ2 = /2 + 1 state;

(3) λ2 = (–3 + )/2 state; (4) λ2 = –1 state; and (5)

λ2 = (–3 – )/2 state.
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where V is the volume of the system. Recalling that

we substitute this sum into (91).
It should be noted that, in the expression

(92)

the integration domain adjacent to the Fermi surface
does not make an appreciable contribution because the
difference [χ(p) – φ(p)] vanishes there. Furthermore,
this difference vanishes for g  0 as well. Conse-
quently, the ratio of the second term in the expression
for D2(p) to the first one appears to be proportional to

the square of the dimensionless pairing constant 9F/
and is therefore disregarded in the following.

With the aid of relation (32), the first term on the
right-hand side of (92) can be recast into the form

(93)

where we have used the equality dg/g = d 9F/9F , since
g differs from 9F insignificantly. It follows from for-
mula (93) that the hierarchy of the pairing energies of
the phases coincides with the hierarchy of the gaps ∆F
in the case of triplet pairing as well—the greater the
gaps, the greater the corresponding pairing energies.

For the pairing energies, we can derive explicit for-
mulas with the aid of (93), which are analogous to those
in the case of S pairing. For this, we differentiate (32)
with respect to 9F. In calculating the resulting integral,
it is convenient to go over to integration with respect to
ξ. An overwhelming contribution to this integral comes
from the domain |ξ| ≤ ∆F, where it is legitimate to make
the substitutions φ, χ  1 and p2dp/dξ  pFM* (M*
is the effective mass). We then have

(94)
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By using relation (91), we can now calculate the
energy splitting of the phases characterized by different
structure functions. The subscripts 0 and 1 will label
quantities corresponding to the phases associated with

(t) = (1 + 3t2)/2 and (t) = 3(1 – t2)/2, respectively.
At T = 0, we can easily find from (94) that

(95)

where N is the total number of particles in the system,

εF = /2M*, and η = ∆1/∆0. This result coincides with
the analogous result obtained in [24] by a different
method. The difference of the quantities ∆i, which
appears in Eq. (95), can be found with the aid of rela-
tion (35). The result has the form

(96)

where E0(ξ, θ) =  and E1(ξ, θ) =

. Integration with respect to ξ is per-
formed analytically, and expression (96) can be
reduced to the form

(97)

The integrals in (97) can be also calculated analytically.
As a result, we obtain [28]

(98)

which is in accord with the result of the numerical cal-
culations from [24, 26].

Thus, we can see that, at T = 0, the phases where the
gap in the spectrum of single-particle excitations has no
zeros at the Fermi surface lie 3% lower on the energy
scale than the phases whose gap in this spectrum has
zeros. Mathematically, this can easily be understood by
analyzing relation (96). Each of the integrals in (96),
with the exception of the conventional logarithmic term
ln(1/∆F), involves an additional (positive!) term propor-
tional to the logarithm of the structure function. The
greater this contribution, the less the corresponding gap
∆F—it would have been maximal had such a contribu-
tion been absent, as this occurs in the B phase in super-
fluid 3He, where the total angular momentum of Cooper
pairs is J = 0 and where the structure function is equal
to unity.
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Analytic calculations can be performed for T  Tc

as well. In this region, the ratio tanhx/x can be expanded
in the series [32]

(99)

and each term of this series is integrated with respect to
ξ. Retaining, for T  Tc, only the leading terms pro-

portional to , we find from (35) that

(100)

This formula differs from the corresponding standard
BCS formula in the theory of S pairing by an additional
factor that stems from the angular dependence of the
gap due to the structure function d 2(z).

Integration with respect to angles yields the same
factor, irrespective of the phase being considered. As a
result, we arrive at

(101)

A similar integral with respect to angles arises in the
expression for the free energy in the limit T  Tc:

(102)

Thus, we can see that, in the vicinity of Tc, the energies
of all phases in the 3P2-pairing problem prove to be
identical and that the jump in the heat capacity C =

−T  for any phase at the critical point differs from the

analogous jump in the S-pairing problem by the same
factor of 5/6 as in the A phase of superfluid 3He.

4.4. Complex-Valued Solutions

As was mentioned above, complex-valued solutions
to the set of Eqs. (49) are characterized by a nonvanish-
ing value of κ2, whereby the second equation in this set
is revived. In the S-pairing problem, these solutions
arise upon the phase transformation ∆  ∆eiα of the
order parameter, the pairing energy remaining
unchanged under this transformation. There are such
solutions in the 3P2-pairing problem as well. One of
these can be obtained from the solution (λ1 = 0, λ2 = 3)

by means of the substitution λ2  (  + )
1/2

.

In seeking κ2 ≠ 0 solutions, we can again make use
of the procedure relying on the diagonalization of the
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structure function with the aid of rotations of the coor-
dinate frame (x, y, z). We now have to deal with two
rotation angles, so that the procedure becomes much
more complicated. Its implementation initiated in [28]
has yet to be completed. For this reason, we restrict our-
selves here to the most general arguments that make it
possible to determine the features of phases character-
ized by a complex-valued order parameter for κ2 ≠ 0.
We return to the structure function (42), setting κ1 = 0
in it, and rewrite its part that is odd under the substitu-
tion ϕ  –ϕ,

in the form

where  = –κ2/(1 + λ2).

In the structure function, we can similarly transform
the part that is even under the substitution ϕ  –ϕ,

As a result, we arrive at

where  = 4κ2/(  – 4λ2).

In general, the angles αodd and αev are independent.
If, however, the relations between λ1, λ2, and κ2 are
such that

(103)

the structure function d 2(n) assumes the same form
(50) as in the κ2 = 0 case considered above. We can ver-
ify that, for condition (103) to be satisfied, the relation
between the parameters κ2, λ1, and λ2 must have the
form

(104)

It can be shown that, if this condition holds, all the
equations in (46) are satisfied automatically.

Relation (104) determines two branches of solutions
κ2(λ1, λ2). On the plane κ2 = 0, the first branch coin-
cides with the straight line λ2 = –1, while the second

coincides with the parabola /2 = λ2 – 1. Thus, all
solutions (104), which are characterized by a complex-
valued order parameter are degenerate. Their structure
functions have zeros; therefore, their energies coincide,
as can easily be verified, with the energy of the group
of phases whose order parameter can vanish.
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In summary, an analytic treatment of the model of
pure 3P2 pairing has revealed that, if the sought param-
eters of the problem satisfy relations (86), a rotation of
the coordinate frame exists such that the structure func-
tion d 2(n) reduces to a function of one variable t. In this
case, all equations are satisfied, and the problem is thus
completely solved along these lines. We have found
that, irrespective of temperature, density, and any
parameters characterizing nn interaction, the set of all
phases can be partitioned into two groups containing
phases whose structure functions reduce either to the
form d 2(t) = (1 + 3t2)/2 (first group) or to the form
d 2(t) = 3(1 – t2)/2 (second group). That the structure
functions of the phases coincide entails the degeneracy
of the energy spectrum of the problem, the energies of
the phases belonging to the first group being lower than
the energies of the phases belonging to the second
group. Their relative splitting, which is a universal
function of T/Tc, can be calculated in a closed form.

5. 3P2–3F2 PAIRING

5.1. Removal of Degeneracy: Perturbation Theory

In this subsection, we analyze the effects of the mix-
ing of the L = 1 and L = 3 channels that is due to tensor
forces. The structure of tensor interaction undergoes no
changes in a medium—in just the same way as in a vac-
uum, the amplitude of the tensor component of the irre-
ducible block 9(p, p1) is proportional to the factor
(s1(p – p1))(s2(p – p1)). In contrast to central forces,
this interaction conserves only the total angular
momentum J = L + S (it does not conserve the orbital
angular momentum L). Because of the mixing of chan-
nels characterized by different values of L, the resulting
formulas will be much more complex than those
obtained in the preceding sections. But what is more
important is that this mixing removes degeneracy pecu-
liar to the 3P2-pairing problem. In this subsection, we
therefore investigate in detail this aspect of the prob-
lem. We assume that the contribution of the tensor com-
ponent, which is responsible for the mixing of the 3P2
and 3F2 channels, can be calculated within perturbation
theory. There is every reason for this in a vacuum, but
it is not obvious whether this assumption is adequate to
what occurs in dense neutron matter. Its verification
requires a dedicated analysis, which is beyond the
scope of the present study.

Application of the formalism from [1] to systems
featuring tensor forces, which mix the orbital angular
momenta of Cooper pairs, does not present serious dif-
ficulties, apart from those of a purely technical charac-
ter. Technical difficulties stem from the fact that we
must also extract separable components in matrix ele-
ments of the block 9 that are off-diagonal in the orbital
angular moment L. Because of this, our procedure
becomes much more cumbersome. In describing it, we
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will follow [33]. The generalization of formula (25)
now takes the form

(105)

where (p) = (p, pF)/  and  =

(pF, pF). The residual (second) term on the right-

hand side of (105), (p, p1), again vanishes identi-
cally when one of the arguments, p or p1, occurs at the
Fermi surface; therefore, the main contribution to the

integrals involving the block  comes from the
domain that is sufficiently far off the Fermi surface,
where we can make the substitutions E  |ξ| and

/2T)  1. Inserting (105) into (16), we obtain

(106)

where

(107)

Here, we have used the notation dτ = p2dp/2π2. In con-
trast to (26), the right-hand side of (106) is a superposi-
tion of a few independent terms. This significantly
modifies the resulting formulas. In particular, relation
(28) is replaced by

(108)

Substituting this equality into (106), we find that the
components of the shape factor satisfy the set of inte-
gral equations
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Setting p = pF in (109), we find that

(110)

9LL'
J

p p1,( )

=  9LL'
J φLL'

J
p( )φLL'

J
p1( ) WLL'

J
p p1,( ),+

φLL'
J 9LL'

J
9LL'

J
9LL'

J

9LL'
J

WLL'
J

WLL'
J

(Etanh

∆L
JM

p( ) 1–( ) L L'–( )/2 WLL'
J

p p1,( )
2 ξ p1( )

----------------------------∆L'
JM

p1( ) τ1d∫
L'

∑+

=  DLL'
JMφLL'

J
p( ),

L'

∑

DLL'
JM 9LL'

J
1–( ) L L'–( )/2 1+

=

× φLL'
J

p( )SL'L1

JM J1M1 n( )

E p( )
2T

------------tanh

2E p( )
-----------------------∆L1

J1M1 p( ) τ n.dd∫∫
L1 J1M1

∑

∆L
JM

p( ) DL1L2

JM χLJ

L1L2 p( ).
L1L2

∑=

χLJ

L1L2 p( ) 1–( ) L L'–( )/2

L'

∑+

× WLL'
J

p p1,( )
χL'J

L1L2 p1( )
2 ξ p1( )
---------------------- τ1d∫ δLL1

φL1L2

J
p( ).=

χLJ

L1L2 pF( ) δLL1
=

PHYSICS OF ATOMIC NUCLEI      Vol. 64      No. 3      2001
for any L2 since any block (p, p') vanishes at the

Fermi surface, while (pF) = 1 at any values of L1

and L2.

Equations for the coefficients  are derived by
substituting (108) into the expression on the right-hand
side of (107). This yields

(111)

As was mentioned above, all coefficients , with

the exception of the leading set , will be calculated
within perturbation theory. This makes it possible to
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the coefficient (pF, n) ≡ (n) is given by (37).
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(113)

where we have used the notation φ =  and 9F =

, which was introduced in the preceding section
for the quantities involved in the 3P2-pairing problem.
In order to simplify these formulas, we first expand the
energy factor in spherical harmonics,

(114)

Retaining only the first term in this expansion, as was
proposed in [34], we obtain quite accurate results in
calculating the gap ∆F(T)—approximately, it can be
calculated on the basis of the equation
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=  9F φ p( )

Eo p( )
2T

--------------tanh

2E
0( ) p( )

-------------------------∫∫–

× S11

2M J1 2M1≠
n( )χ1J1 2≠

11
p( )D11

J1 2M1≠
[

J1M1

∑

+ S11

2M J1M1 n( )χ1J1

13
p( )D13

J1M1

+ S11

2M J1M1 n( )D31

J1M1χ1J1

31
p( )

+ S11

2M J1M1 n( )D33

J1M1χ1J1

33
p( ) S13

2M J1M1 n( )D11

J1M1χ3J1

11
p( )+

+ S13

2M J1M1 n( )χ3J1

13
p( )D13

J1M1 S13

2M J1M1 n( )χ3J1

31
p( )D31

J1M1+

+ S13

2M J1M1 n( )χ3J1

33
p( )D33

J1M1 ]dτdn,

φ11
J  = 2

911
J  = 2

Eo p( )
2T

--------------tanh

2Eo p( )
------------------------- 4π TKκ p( )YKκ n( ).

Kκ
∑=

1 9F φ p( )T00 p( )χ p( ) τ .d∫–=

DLL'
2M

D31
2M 913

J  = 2

9F

-------------D1
2M

– ηD1
2M

.–≡=

D13
2M

D13
2M

D31
2M
making some simplifications, we arrive at the set of
equations

(117)

where all quantities φ(p) and χ(p) have already been
replaced by unity on the right-hand sides, because all
integrals converge near the Fermi surface.

From this set of equations, we can derive a useful
relation for ∆F by multiplying each of these equations

by ( )* and performing summation over M. Divid-
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K13(n), similar calculations yield

(121)

In computing the normalization factor d 2 by formula
(43), we can use the relations between the parameters
λi and κi from the preceding section.

Let us now return to Eq. (118). In order to eliminate
the functions φ and χ from it completely, we introduce
the critical temperature Tc in (118) with the aid of for-
mula (33). This enables us to replace χ(p) and φ(p) by
unity because the resulting integral now converges near
the Fermi surface:
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where

(125)

The substitution of the above results into (122) yields

(126)

where we discarded the second-order terms in η. For
one-component states, the above equation is closed and
can be directly used to calculate the variation in the
quantity ∆F in response to the inclusion of tensor forces.
For multicomponent states, the situation is more com-
plicated because we must also take into account the
variations in the parameters λi and κi on the left-hand
side of (126).

In order to determine these variations, we must per-
form similar transformations in the set of Eqs. (117).
We then obtain five new equations for the same five
numbers characterizing the order parameter in the 3P2-
pairing problem. The new set of equations,

(127)

differs from the old one by the presence of right-hand
sides that are proportional to the coupling constant
associated with tensor forces since, in deriving these
equations, we have written them in such a way as to
retain the original form of the left-hand sides. It should
be emphasized that, on the right-hand sides of the set of
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equations displayed immediately above, the parameters
λi and κi can be taken to be equal to their values found
in the problem of pure 3P2 pairing.

In order to avoid encumbering the presentation, we
restrict our analysis to real-valued solutions. For this, it
is sufficient to investigate only a set of three equations
that are similar to Eqs. (52). It is convenient preserve
the original form of the left-hand side by including all
corrections induced by tensor forces on the right-hand
side. The set of Eqs. (52) then becomes

(128)

The explicit expressions for the right-hand sides can be
written on the basis of (127) and are given by

(129)

where

(130)

(131)

In order to find a solution, we again multiply the first
and the last equation in (128) by –3 and 3λ2, respec-
tively, and sum the results. Further, we multiply the last
and the second equation by 12λ1 and –12, respectively,
and again sum the results. This yields

(132)

We now begin by analyzing the specific solution λ2 =
−1, which existed in the absence of tensor forces. We
set λ2 = –1 + l. If the right-hand sides are small, l is also
small. Dividing one equation of the set in (132) by the
other, we find that the left-hand side of the resulting
equality is close to –1 and that its right-hand side is

λ2 vF λ2 J0 J5+( ) λ1J1– J3–[ ]+ η9Fr2,=

λ1 vF λ2 1+( )J1–[+

+ λ1 J0 4J5 2J3+ +( )/4 ] η9Fr1,=

1 vF λ2J3 λ1J1+( )/3– J5+[ ]+ η9Fr0.=
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2

3–( )J3+ +

=  3η λ2r0 r2–( ),–

3λ1J0 4 λ1
2

3λ2– 3–( )J1 2λ1 2λ2 3+( )J3+ +

=  12η λ1r0 r1–( ).–
some fraction. For this fraction to be –1 in the limit
η  0, the condition

(133)

must be satisfied. Numerical calculations show that this
equation does not have nontrivial solutions. Taking this
into account, we transform Eqs. (132) by successively
eliminating J3 and J0. As a result, we arrive at

(134)

where

(135)

For the ensuing analysis, it is important that the inte-
grals Ji have the same form as in the preceding section.
If the unknown quantities J0 and J3 are calculated on the
basis of Eqs. (134), the determinant $ of the set of
Eqs. (132) remains, in accordance with (80), equal to
zero. In this case, the right-hand sides of (132) must
obey specific relations; otherwise, the set of Eqs. (128)
will not have solutions. We obtain

(136)

where $0 = B1A22 – B2A12 and $3 = –B1A21 + A11B2.
Since $ = 0 at any values of λ1 and λ2, it is necessary
that $0 = $3 = 0. From here, we find that the parame-
ters λ1 and λ2 satisfy the equation

(137)

If the strength of tensor forces is small (only this case
is analyzed here), the right- and the left-hand side of
Eq. (137) are computed for a specific branch of solu-
tions to the 3P2-pairing problem; hence, each of them
actually depends only on λ1. Upon the substitution of
(86), we find that the final equation for obtaining solu-
tions to the problem of 3P2–3F2 pairing has the form

(138)

where ζ0 is calculated with the aid of (85).
The situation is further simplified owing to the fact

that, on all branches of (86), the left-hand side of
Eq. (138) takes the single value of –1/2, as can easily be
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verified. Thus, the final equation for determining λ1
takes the form

(139)

5.2. Basic Results

Equations (126) and (139) were solved numerically,
and the results were presented in [35]. Let us briefly
describe them in this subsection. First of all, we note
that degeneracy peculiar to the 3P2-pairing problem is
entirely removed—the number of different superfluid
phases and all structure coefficients characterizing
these phases are fixed, while the energies of the various
phases no longer coincide. 

At low temperatures, the phase diagram of super-
fluid neutron matter is determined by the competition
between the energies of the phases whose structure
functions are nodeless, since formidable renormaliza-
tions of the parameters of nn interaction are required
for overcoming a 3% barrier [see Eq. (98)] separating
the energies of the phases characterized by the structure
functions with and without zeros. Moreover, tensor
forces have the coupling constant whose sign is such
that this barrier only grows when we take them into
account [24]. Calculations show [35] that, at low tem-
peratures, only five phases can survive as candidates for
forming the phase diagram. These are the M = 0 one-
component solution, the |λ2 | . 3 two-component solu-
tion, and three three-component solutions. One of the
competitors is represented by the quasiparabola that is
given by Eq. (86) and which has the vertex at the point
λ2 = –3, while the remaining pair is associated with the
quasiparabola having the vertex at the origin of coordi-
nates.

It turns out that, irrespective of T, the set of the solu-
tions found here is broken down into a few groups
degenerate in energy. For T  0, the lowest group is

formed by λ1 =  nodeless states
(see Fig. 2). The next group in the order of increase in
energy consists of the M = 0 one-component state and
the |λ2 | = 3 two-component state, which are also node-
less. The most important conclusion that follows from
the calculations presented in [35] is that, in the region
of T around 0.7Tc, the situation is inverted—the second
group proves to be lower than the first one on the energy
scale. The last nodeless solution, that for which λ1 = 6,
comes into play, as all solutions characterized by struc-
ture functions having zeros do (see Fig. 3), in the tem-
perature region T ~ 0.8–0.9Tc , where the phase diagram
can undergo drastic changes since the energy barrier
separating the two groups of phases in the problem of
pure 3P2 pairing decreases very fast with increasing
temperature.

+ = 
λ1r2– 4λ2r1 3λ1λ2r0–+

λ1 2λ2 3+( )r2 2 λ2
2

3–( )r1– 3λ1 λ2 2+( )r0–[ ]
-----------------------------------------------------------------------------------------------------------

=  1.–

3 2 17 3 21±( ) 5⁄
PHYSICS OF ATOMIC NUCLEI      Vol. 64      No. 3      2001
6. CONCLUSION

In 1959, A.B. Migdal put forth the idea of superflu-
idity in neutron stars [8]. This idea was explained in
only a few lines of his article, but it proved to be so
fruitful that an enormous number of articles and a few
tens of books have been written on the subject over the
past 40 years and that, even now, the present study has
been devoted to discussing the phase diagram of super-
fluid neutron matter.

The phrase “the phase diagram of superfluid matter”
has been repeated a few times throughout this review
article. But in this connection, there is the question of
whether it is worthwhile to investigate it when we know
that the manifestations of neutron-star superfluidity are
very scanty. A point in favor of such investigations is
that the rearrangement of the neutron-matter state in a
response to a superfluid transition is accompanied by
phenomena that are observable in principle.

One of these phenomena is associated with the
irregularities in the period of pulsar rotation, which are
observed in many pulsars. Above Tc, a star rotates as a

Fig. 2. Left-hand side +(λ1) of the dispersion Eq. (139) as
calculated for the branches (solid line) λ2 = (–3 +

)/2 and (dashed line) λ2 = (–3 – )/2.9 2λ1
2

+ 9 2λ1
2

+

Fig. 3. As in Fig. 2, but for (solid line) the parabola

 and the straight line λ2 = –1 [in this case,

+(λ1) ; –1].

λ2 λ1
2

2⁄ 1+=

0 2 4 6 λ1
–2

–1

0

1
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rigid body. When some part of its volume goes over to
a superfluid state upon the lowering of temperature, a
fraction of the total angular momentum of the rotating
star is transferred to vortices. In order to find out how
this total angular momentum is distributed between the
vortices and the core of the star, it is necessary to solve
a complicated set of equations. Phase transitions lead to
a change in the moment of inertia in the superfluid sub-
system and, hence, in the moment of inertia of the
whole star; as a result, the angular velocity Ω of the star
changes abruptly. In this way, one could explain giant
glitches whose amplitude exceeds conventional ampli-
tudes by two orders of magnitude. They were discov-
ered for many pulsars. That these variations of the
angular velocity are peculiar precisely to a superfluid
phase is confirmed by data on relaxation processes. Yet
another argument in favor of the above explanation of
giant glitches is that they disappear with the aging
(cooling) of a star [16]. For some pulsars, however, the
number of such abrupt changes in Ω is quite large,
whence it follows that, if one wants to explain giant
glitches in terms of the phase diagram of a superfluid
neutron liquid, this phase diagram must be rather com-
plicated. Of course, we have three different fluids at our
disposal in a neutron star—a proton one and two neu-
tron ones (an external neutron fluid, which has a density
on the order of the equilibrium nuclear density and
which undergoes S pairing, and an internal neutron
fluid, which is characterized by P pairing in the super-
fluid phase). If, in addition, a dense neutron fluid can
undergo phase transitions similar to the transition
between the A and B phases in superfluid 3He, the sys-
tem of vortices must also rearrange in response to this
change in the scenery; as a result, some part of the
angular momentum can again be transferred to the core,
with the result that the period of star rotation exhibits an
irregularity. The number of the phase transitions is
completely determined by the phase diagram.

We have studied in detail one scheme, which is
characterized by neutron pairing in the channel where
the total angular momentum is J = 2 (many researchers
believe that this scheme is the most probable one). This
version is favored by the fact that spin–orbit forces,
which single it out, considerably exceed tensor forces
in vacuum neutron–neutron interactions. For this rea-
son, we have proceeded from pure 3P2 pairing, in which
case we have been able to calculate the structure of the
superfluid phases and their spectra analytically. That
pairing energies of the phases whose structure func-
tions belong to the same type has proved to be degener-
ate is a feature peculiar to this problem. It is this fact
that underlies speculations on the possibility of phase
transitions within the superfluid phase of a neutron liq-
uid owing to the removal of the strong degeneracy of
the energies of different phases in the problem of pure
3P2 pairing upon the inclusion of tensor forces.

We have considered the simplest possibility for the
removal of the above degeneracy, restricting our analy-
sis to perturbation theory in the strength of tensor
forces. Strictly speaking, this assumption does not
seem realistic: in his pioneering studies [36, 37],
Migdal showed that one-pion exchange in nuclear mat-
ter is strongly enhanced with increasing density, so that
one cannot rule out the possibility that, in the region
preceding the emergence of a pion condensate, the
amplitude of tensor forces becomes commensurate
with the amplitude of spin–orbit forces. Not only does
the enhancement of tensor interactions intensify the
mixing of the channels characterized by the orbital
angular momenta of L = 1 and L = 3 and lead to signif-
icant mixing between the channels where the total
angular momenta are J = 2 and J = 0, 1, but it also can
generate a significant dependence of the structure of the
phase diagram of superfluid neutron matter on the
strength of the tensor forces and, hence, on the density
of neutron matter. If this is indeed the case, different
neutron stars can have different phase diagrams and,
hence, different numbers of giant glitches. Unfortu-
nately, it is hardly possible at present to calculate reli-
ably the phase diagram of superfluid neutron matter. A
further investigation of this problem requires knowing
all features of effective neutron–neutron interaction in
greater detail; therefore, it can be performed only in the
future.
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Abstract—Nuclear correlation effects owing to which nuclear wave functions are different from Slater deter-
minants are studied within the theory developed in our previous study. The calculated numbers of nucleons off
the nuclear Fermi surface are in reasonable agreement with the finding from the high-momentum components
of the momentum distributions of nucleons in nuclei. Problems concerning the nuclear binding energy are also
discussed. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Nucleon–nucleon interaction still remains one of
the central problems in nuclear structure theory. It
seems natural to use free-space forces, but the majority
of nuclear-structure theorists prefer effective ones
instead. The basic motivations are as follows:

(a) Historically, the first one arose from the wide-
spread belief in the 1960s that the free-space NN poten-
tial has a hard repulsive core. Clearly, such an interac-
tion does not apply directly because of the divergence
of finite-order Feynman diagrams. The most popular
way to overcome this difficulty is to calculate the
Brueckner G matrix and to use it as an effective inter-
action in the Hartree–Fock problem. This is the Har-
tree–Fock–Brueckner approximation (for details, see
[1] and references therein). But soon, it became clear
that the description of the two-nucleon system—that is,
the properties of the deuteron and phase shifts for elas-
tic NN scattering below the pion-production thresh-
old—does not require a hard repulsive core. As a result,
all contemporary NN potentials are of soft-core charac-
ter, so that the above difficulty is actually nonexistent.
Under such conditions, the calculation of the Brueck-
ner G matrix is not compulsory.

(b) The second factor is associated with the renor-
malization of the free-space interaction due to medium-
polarization effects. Such effects are treated by conven-
tional methods of quantum many-body theory; there-
fore, the above reason is not an argument in favor of
effective forces.

(c) There is medium QCD renormalization due to
the fact that the quark composition of the QCD vacuum
changes in nuclear medium, thus leading to changes in
both mesons and meson–nucleon vertices [2–5]. Such
processes can hardly be described in all details since an
exact theory has not yet been constructed for the non-

  * This article was submitted by the authors in English.
** e-mail: birbrair@thd.pnpi.spb.ru
1063-7788/01/6403- $21.00 © 20416
perturbative region. Nevertheless, there is at least one
exact statement. The QCD-renormalized interaction is
a functional of the nuclear density, and this functional
possesses the following obvious property: it reduces to
the free-space one in the zero-density limit. For this
reason, it can be represented as the functional expan-
sion

(1)

In this way, we conclude that the medium QCD renor-
malization is equivalent to the existence of many-parti-
cle NN forces in addition to the two-particle ones. This
conclusion is confirmed by the fact that the physics of
strong interaction is essentially nonlinear. But nonlin-
earity automatically leads to many-particle forces.

The above reasons are grounds for our starting
point: both two-particle and many-particle NN forces
must be taken into account for the treatment of nuclear
structure.

Three-particle NN forces were indeed included in
the calculations of few-nucleon systems [6]. But there
arises the question of whether this is sufficient for com-
plex nuclei. This point, as well as a number of those
concerning the nuclear structure, can be clarified by
studying model-independent nuclear objects obeying
exactly solvable equations.

As was discussed in our previous study [7], such
objects are exemplified by doorway states for one-
nucleon-transfer reactions. As follows from the theorem
of Baranger [8], such states are eigenstates of a nucleon
in the static field of a nucleus. According to this theorem,
the behavior of the single-particle propagator

(2)

f QCD-r r1 r2; ρ{ },( ) f 2 r1 r2–( )=

+ f 3 r1 r2– r1 r'–,( )ρ r'( ) r'd∫
+ f4 r1 r2– r1 r'– r1 r''–, ,( )ρ r'( )ρ r''( ) r' r''dd∫∫ ….+

S x x'; τ,( ) i A0〈 |Tψ x τ,( )ψ+
x' 0,( ) A0| 〉–=
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at the initial instant t = 0 is determined by the high-
energy asymptotic behavior of the mass operator. Let us
explain this. The quantity in (2) describes the evolution
of the state that arises from one-nucleon transfer at the
initial instant. Its Fourier transform

(3)

which is referred to as a single-particle Green’s func-
tion, obeys the Dyson equation

(4)

where the  is the kinetic energy and M(x, x'; ε) is the
mass operator.

The main content of the Baranger theorem is the
identity

(5)

where the above limit is just the static nuclear field and

where  = ∂S/∂τ. As can be seen from the left-hand side
of (5), the Hamiltonian hst describes the very beginning
of the evolution under consideration. But it can be seen
from the right-hand side that it describes the motion of
a nucleon in the static nuclear field, the eigenstates of
hst thus being doorway states for one-nucleon-transfer
processes. A detailed demonstration of the Baranger
theorem is discussed in [7]. We showed the following:

(i) At least three-particle repulsion and four-particle
attraction must be taken into account in addition to two-
particle forces.

(ii) Nuclear relativity is an actually existing phe-
nomenon rather than the hypothesis of Walecka [9].

(iii) A dominant contribution to the isovector
nuclear potential comes from many-particle forces.

(iv) The observed spectra of doorway states can be
used to specify the neutron-density distributions in
nuclei; the densities specified in this way were indeed
obtained for the closed-shell nuclei 40Ca, 90Zr, and
208Pb.

In the present article, our approach is applied to
“empirical” studies of nuclear correlation effects owing
to which nuclear wave functions are different from
Slater determinants. Such effects are treated by a vari-
ety of approximate methods since exact ones do not
exist. For this reason, it is very important to obtain
model-independent quantitative information about the
above effects. The possibility provided by our approach
is based on the fact that the wave functions of the above
doorway states [7] describe the correlation-free single-
particle states of nucleons rather than Landau–Migdal
quasiparticles [10] (which include the correlations by
definition) or single-particle states in nuclear Hartree–

G x x'; ε,( ) S x x'; τ,( )e
iετ τ ,d

∞–

+∞

∫=

εG x x'; ε,( ) δ x x'–( ) k̂xG x x'; ε,( )+=

+ M x x1; ε,( )G x1 x'; ε,( ) x1,d∫
k̂x

Ṡ x x'; +0,( ) Ṡ x x'; –0,( )–[ ]–

=  hst x x',( ) k̂xδ x x'–( ) M x x'; ε,( )
ε ∞→
lim ,+=

Ṡ
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Fock calculations with effective forces (where the cor-
relations are implicitly included in phenomenological
effective force parameters). Calculating correlation-
free quantities and comparing them with the observed
ones, we therefore derive a quantitative measure of cor-
relation effects. In Section 2, this procedure is applied to
the nucleon density distributions. Problems concerning
the nuclear binding energy are discussed in Section 3.

2. DENSITY DISTRIBUTIONS
The nucleon density distribution in the ground state

of nucleus A is (see [7] for the notation)

(6)

The integration contour C includes the real axis and an
infinite-radius semicircle in the upper half of the com-
plex ε plane. As can be seen from (6), the density is
expressed in terms of single-particle amplitudes of (A –
1) nuclear states. Expanding them in a complete set of
doorway states,

(7)

and substituting (7) into (6), we obtain

(8)

where

(9)

(actually, the coefficients  are real-valued quanti-
ties if parity violation due to weak interaction is disre-
garded). The diagonal elements ρλλ = nλ are the door-
way-state occupation numbers. Indeed, the particle
number is

(10)

since the off-diagonal elements do not contribute
because of the orthogonality of ψλ and ψν. The quanti-
ties nλ and ρλν obey the constraints

(11)

ρ r( ) A0〈 |ψ+
x( )ψ x( ) A0| 〉=

=  A0〈 |ψ+
x( ) A 1–( ) j| 〉 A 1–( ) j〈 |ψ x( ) A0| 〉

j

A 1–( )

∑

=  Ψ j
+

x( )Ψ j x( )
j

A 1–( )

∑ εd
2πi
--------G x x; ε,( ).

C

∫=

Ψ j x( ) C j
λ( )ψλ x( ),

λ
∑=

ρ r( ) nλ ψλ x( ) 2
2 ρλνψλ

+
x( )ψν x( ),

λν
ν λ>

∑+
λ
∑=

nλ ρλλ C j
λ( ) 2

j

A 1–( )

∑ s j
λ( )

,
j

A 1–( )

∑= = =

ρλν C j
λ( )*

C j
ν( )

j

A 1–( )

∑=

C j
λ( )

N ρ r( ) rd∫ nλ ,
λ
∑= =

0 nλ 1, ρλν
1
2
--- nλ nν+( ).< < <
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The first follows from the fact that doorway states are
distributed over the actual states of both the (A – 1) and
the (A + 1) nucleus {see (13c) in [7]}, whereas the sec-
ond is a consequence of the Cauchy–Buniakowski in-
equality.

The relations nλ < 1 and ρλν ≠ 0 reflect the Fermi sur-
face smearing due to correlation effects. The quantities
nλ and ρλν carrying quantitative information about these
effects can be found “empirically” by considering rela-
tion (8) together with constraints (11) as equations for
nλ and ρλν. The results will be published elsewhere.

Owing to correlations, part of the nucleons are off the
nuclear Fermi surface. The number Nout of such nucleons
is calculated by comparing the observed density distribu-
tion with the correlation-free density distribution

(12)

where εF is the Fermi level energy. This comparison is
illustrated in the figure for the proton density distribu-
tion in 40Ca. As can be seen from the figure, the corre-
lation-free density contains more nucleons in the inner
region 0 < r < ri than the observed one; here, ri is the
intersection point at which ρcf(ri) = ρ(ri). The situation
in the outer region ri < r < ∞ is clearly opposite since
both densities correspond to the same number of nucle-
ons. The number of redistributed nucleons is

(13)

This is just Nout because the only reason for the redistri-
bution is the Fermi surface smearing due to correla-
tions.

The numbers Nout in doubly closed-shell nuclei are
quoted in Table 1, which shows that these nucleons
constitute an appreciable part of the total mass number.

ρcf r( ) Θ εF ελ–( ) ψλ x( ) 2
,

λ
∑=

Nout 4π ρcf r( ) ρ r( )–[ ]r
2

rd

0

ri

∫=

=  4π ρ r( ) ρcf r( )–[ ]r
2

r.d

ri

∞

∫

0.16

0.12

0.08

0.04

0 2 4 6 8
r, fm

ρp(r)

Observed (solid curve) and correlation-free (dashed curve)
proton-density distributions in 40Ca.
To the best of our knowledge, this fact was first men-
tioned by Frankfurt and Strikman [11] on the basis of
the analysis of high-momentum components (i.e., those
with k > 300 MeV/c) of the momentum distributions of
nucleons in nuclei. According to their most recent
results for these data [12], the ratio Aout /A is (20 ± 3)%
for heavy nuclei. This is in reasonable agreement with
our results.

It is worth mentioning that our calculations furnish
no information about the nature of the underlying cor-
relations; at the same time, the high-momentum tails of
the momentum distributions arise from the NN interac-
tions at short distances [11, 12]. Therefore, the reason-
able agreement between the two results gives rise to the
conclusion that the main reason for the Fermi surface
smearing in doubly closed-shell nuclei is due to short-
range correlations.

3. BINDING ENERGY
We can also calculate that part of the nuclear bind-

ing energy which is caused by the motion of nucleons
in the static nuclear field. This static energy partly
includes correlation effects since it is expressed in
terms the observed nucleon density distributions. A
comparison of the observed binding energy %b and the
static binding energy %st provides a measure of the
proper correlation energy of the nucleus.

To clarify this point, we derive an exact expression
for the binding energy. Following the procedure pro-
posed in [10], we obtain

(14)

where K(x1, …, xn; , …, ; ε1, …, εn) stands for the
n-particle Green’s functions. We take into account
three- and four-particle forces in addition to two-parti-
cle ones, as well as the possible dependence of the
interactions on the appropriate energy transfers ωi . In
these terms, the single-particle Green’s function is

%b x
εd

2πi
--------tr k̂xG x x; ε,( ) 1

2
--- x x1dd∫∫+

C

∫d∫=

×
ε ε1dd

2πi( )2
--------------- f 2 r r1– ; ω( )K2 x x1; x x1; ε ε1, , ,( )

C

∫∫

+
1
3
--- x x1 x2

ε ε1 ε2ddd

2πi( )3
---------------------∫

χ
∫∫ddd∫∫∫

× f 3 r r1– r r2– ; ω ω1, ,( )
× K3 x x1 x2; x x1 x2; ε ε1 ε2, , , , , ,( )

+
1
4
--- x x1 x2 x3

ε ε1 ε2 ε3dddd

2πi( )4
------------------------------

C

∫∫∫∫dddd∫∫∫∫
× f 4 r r1– r r2– r r3– ; ω ω1 ω2, , , ,( )

× K4 x x1 x2 x3; x x1 x2 x3; ε ε1 ε2 ε3, , , , , , , , ,( ),

x1' xn'

ε k̂x–( )G x x'; ε,( ) δ x x'–( )=
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(15)

Comparing this with the Dyson equation (4), we see
that

(16)

As can be seen from (14) and (16), the binding energy
can be written as

(17)

+ x1

ε1d
2πi
-------- f 2 r r1– ; ω( )K2 x x1; x' x1; ε ε1, , ,( )

C

∫d∫

+ x1 x2

ε1 ε2dd

2πi( )2
--------------- f 3 r r1– r r2– ; ω ω1, ,( )

C

∫∫dd∫∫
× K3 x x1 x2; x' x1 x2; ε ε1 ε2, ,, ,, ,( )

+ dx1dx2dx3

dε1dε2dε3

2πi( )3
-------------------------∫

C

∫∫∫∫∫
× f 4 r r1– r r2– r r3– ; ω ω1 ω2, ,, ,( )

× K4 x x1 x2 x3; x' x1 x2 x3; ε ε1 ε2 ε3, , ,, , ,, , ,( ).

M x x1; ε,( )∫ G x1 x'; ε,( )dx1

=  dx1

dε1

2πi
-------- f 2( r r1– ; ω)K2 x x1; x' x1; ε ε1,,,( )

C

∫∫

+ dx1dx2
dε1dε2

2πi( )2
----------------

C

∫ f 3 r r1– r r2– ; ω ω1,,( )∫∫∫
× K3 x x1 x2; x' x1 x2; ε ε1 ε2, ,, ,, ,( )

+ dx1dx2dx3

dε1dε2dε3

2πi( )3
-------------------------∫

C

∫∫∫∫∫
× f 4 r r1– r r2– r r3– ; ω ω1 ω2, ,, ,( )

× K4 x x1 x2 x3; x' x1 x2 x3; ε ε1 ε2 ε3, , , , , , , , ,( ).

%b x x'
εd

2πi
-------- Tr k̂xδ x x'–( )(

C

∫dd∫∫=

+ M x x'; ε,( ) )G x' x; ε,( ) 1
2
--- x x1dd∫∫–

×
ε ε1dd

2πi( )2
--------------- f 2 r r1– ; ω( )K2 x x1; x x1; ε ε1, , ,( )

C

∫∫

–
2
3
--- x x1 x2

ε ε1 ε2ddd

2πi( )3
---------------------∫∫

C

∫ddd∫∫∫
× f 3 r r1– r r2– ; ω ω1, ,( )
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Taking into account the spectral representation of
G(x, x'; ε) {see Eq. (5) in [7]} and performing the inte-
gration with respect to ε, we reduce the first term in (17)
to the form

(18)

As follows from the Dyson equation (4) and from the
above spectral representation, the amplitudes Ψj(x)
obey the equation

(19)

therefore, we have

(20)

where we have used expansion (7).

In general, the many-particle Green’s functions

Kn(x1, …, xn; , …, ; ε1, …, εn) obey an infinite set
of integro-differential equations, Eq. (15) being the first
one. As was mentioned above, there do not exist exact
methods for solving it. It should also be mentioned that
approximate methods (see [13, 14] and references
therein) were developed only for instantaneous two-
particle forces. For these reasons, an exact calculation
of the nuclear binding energy is impossible at present.
Therefore, it is important to calculate the static energy.

× K3 x x1 x2; x x1 x2; ε ε1 ε2, , , , , ,( )

–
3
4
--- x x1 x2 x3

ε ε1 ε2 ε3dddd

2πi( )4
------------------------------∫∫

C

∫∫dddd∫∫∫∫

× f 4 r r1– r r2– r r3– ω ω1 ω2, , , , ,( )

× K4 x x1 x2 x3; x x1 x2 x3; ε ε1 ε2 ε3, , , , , , , , ,( ).

%b
1( )

xΨ j
+

x( ) k̂xΨ j x( )(d∫
j

A 1–( )

∑=

+ M x x'; E j,( )Ψ j x'( ) x'd∫ ).

k̂xΨ j x( ) M x x'; E j,( )Ψ j x'( ) x'd∫+ E jΨ j x( );=

%b
1( )

E j Ψ j x( ) 2
xd∫

j

A 1–( )

∑ E js j
λ( )

,
j

A 1–( )

∑
λ
∑= =

x1' xn'

Table 1. Nout in doubly closed-shell nuclei

16O 40Ca 90Zr 208Pb

Nout 1.10 3.15 7.34 13.15

Zout 1.15 3.53 6.46 13.22

Aout 2.25 6.68 13.80 26.37

Aout/A, % 14 16.7 15.3 12.7
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Both the static nuclear field and the static energy are
obtained from the above relations by setting

(21)

This means that we neglect the difference between the
many-particle Green’s functions and the unsymme-
trized products of the single-particle ones. This differ-
ence arises from both antisymmetrization and from
higher order terms of perturbation theory—that is, from
effects leading to the proper correlation energy. Substi-
tuting (21) into (16) and (17), we obtain (all energy
transfers ωi vanish in this case)

(22)

(23)

As follows from relations (7) and (9), the first term in
(23) is

(24)

But it can be seen from (20) and from the sum rule

(25)

for the doorway-state energies {see (14c) in [7]} that

the quantity  contains unphysical contributions
from the energies of (A + 1) nuclear states. To eliminate

them, we represent  as the sum of two parts,

(26)

Kn x1 … xn; x1' … xn' ; ε1 … εn, , , , , ,( )

=  G xi xi'; εi,( ).
i 1=

n

∏
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+ f 3 r r1– r r2–,( )ρ r1( )ρ r2( ) r1 r2dd∫∫
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× ρ r1( )ρ r2( )ρ r3( ) r1 r2 r3;ddd

%st Ψ j
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x( ) k̂x Ust r( )+( )Ψ j x( ) xd∫
j

A 1–( )
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–
1
2
--- f 2 r r1–( )ρ r( )ρ r1( ) r r1dd∫∫

–
2
3
--- f 3 r r1– r r2–,( )ρ r( )ρ r1( )ρ r2( ) r r1 r2ddd∫∫∫

–
3
4
--- f 4 r r1– r r2– r r3–, ,( )∫∫∫∫

× ρ r( )ρ r1( )ρ r2( )ρ r3( ) r r1 r2 r3.dddd

%st
1( )

nλελ .
λ
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ελ E js j
λ( )

Eksk
λ( )

k

A 1+( )

∑+
j

A 1–( )
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%st
1( )
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1( )

%st
1( )

%st
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%st
>
, %st

<
+ nλελ ,

λ F≤
∑= =

%st
>

nλελ ,
λ F>
∑=
those including summations over ελ ≤ εF and ελ > εF

states. The doorway states contributing to  are
mainly distributed over the states of the (A – 1) nucleus,
the first term in (25) thus giving a dominant contribu-
tion to ελ in this case. A small unphysical contribution
from the second term in (25) arises from the states of
the (A + 1) nucleus that have the same quantum num-
bers as the low-lying states of the (A – 1) nucleus. Such
states lie either in the continuum or near its boundary.
Therefore, a reasonable estimate for their energies is
Ek ≈ 0, the unphysical contribution thus being negligi-
ble for this case.

The situation is opposite for , because ελ > εF

doorway states are mainly distributed over the states of
the (A + 1) nucleus, a dominant contribution to ελ thus
being unphysical from the viewpoint of the binding
energy. Under such conditions, it is reasonable to use a

more appropriate relation for ,

(27)

It follows that the (A – 1) nuclear states whose quantum
numbers are identical to those of the low-lying states of
the (A + 1) nucleus contribute in this case. There are no
such states among the low-lying states of the (A – 1)
nucleus; therefore, we have

(28)

(see [7] for details). Nevertheless, it is reasonable to use
the estimate

(29)

which provides the least absolute value for . In this
way, we obtain

(30)

so that

(31)

We have taken into account the Lorentz and the iso-
spin structure of two-particle forces and the resulting
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Table 2.  Static and observed binding energies (in MeV), together with the dominant contributions to %st [those from the Cou-
lomb and the isovector terms are not shown, but they are included in %st; the notation corresponds to the terms in (31)]

%st %b

16O –345.6 +1528.4 –1224.0 –451.2 +461.8 –47.0 –127.6
40Ca –991.7 +4456.0 –3570.8 –1346.0 +1411.3 –120.7 –342.0
90Zr –2251.6 +10699.0 –8565.6 –3236.5 +3386.0 –234.2 –783.9
208Pb –4998.2 +26463.4 –21255.6 –8190.9 +8694.0 –233.3 –1636.5

%st
1( ) 1

2
---S–

1
2
---Vω–

2
3
---a3–

3
4
---a4–
expressions of scalar and vector fields (see [7] for
details). We have also considered that only the total
strength parameters of the many-particle forces,

(32)

can be introduced in a model-independent way; there-
fore, we are constrained to the contact forces

(33)

To calculate the first term, we used the following

ansatz for the occupation numbers, setting  = Nout

(see Section 2):

(34)

This is incorrect because the sum  is different
from Nout given by (13). Indeed, both diagonal and off-
diagonal elements of the density matrix [see Eq. (8)]
contribute to Nout. This shortcoming will be corrected in
future by calculating nλ and ρλν (see the discussion in
Section 2). Of course, the ansatz in (34) will then
become unnecessary.

The results of the calculations are given in Table 2,
which shows that the static energy is the sum of a num-
ber of contributions with different sign, the dominant
ones greatly exceeding the total static energy as well as
the observed binding one. This is a source of ambigu-
ities because all disregarded effects can be of impor-
tance in such a situation.

One such effect is associated with a finite range of
many-particle forces. A possible way of estimation is
illustrated for three-particle forces. As can be seen from
(14), the original contribution is

a3 f 3 ξ η,( ) x h,dd∫∫=

a4 f 4 ξ η ζ, ,( ) x h z,ddd∫∫∫=
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2
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ελ µ–
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∑ N , nλ
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∑ Ñout.= =
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%3 = 
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(35)

where

(36)

In this way, we obtain

(37)

The calculated D values are shown in Table 3. A rea-
sonable value of the range parameter is the ω-meson
Compton wavelength—that is, a typical scale of strong

interaction. Hence, we have  =  = 0.1 fm2, the
effect thus being negligibly small.

A second source of possible ambiguity can be seen
from the results (Table 4) presented in [7] for the con-
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tributions of two-, three-, and four-particle forces to the
static nuclear field {Eqs. (44) and (45) in [7]}.

As follows from the table, this sequence does not
seem to converge. This observation suggests the possi-
ble existence of contributions from higher many-parti-
cle forces; therefore, the whole sequence should be
summed up. But this can be done only within some rea-
sonable model for many-particle forces that includes
those of all higher orders, as well as the finite range and
the mechanism for the saturation of the nuclear density.
The corresponding investigation is in progress.

Table 3. Many-particle finite-range effect

16O 40Ca 90Zr 208Pb

D, MeV fm–2 –12.12 –3.29 22.02 34.08

Table 4.  Contributions to the static field

U2 U3 U4

Bonn B –83 +96.5 –104

OSBEP –82 +97 –107
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Abstract—On the basis of an explicit implementation of the projection-operator method and with due regard
to antisymmetrization effects, formulas are constructed for the amplitudes of elastic and inelastic nuclear reac-
tions induced by nucleons and composite particles and for the widths with respect to the nucleonic, alpha-par-
ticle, and cluster decays of nuclei. It is shown that equations governing the behavior of elastic-scattering form
factors represent generalizations of the equations of the resonating-group model and coincide, provided that
ground-state correlations are taken into account, with the analogous equations in the theory of open Fermi sys-
tems. It is demonstrated that the nonretarded part of the effective potential of nucleus–nucleus interaction coin-
cides with the Hartree–Fock potential, which has a deep attractive character in accordance with the Levinson
theorem, and that the retarded part of the effective potential is determined by the fragmentation of the initial
states of colliding nuclei into compound states. It is revealed that the use of different elastic-form-factor repre-
sentations associated with taking into account antisymmetrization effects leads to the same results for the ampli-
tudes of elastic and inelastic nuclear reactions. The formulas obtained here for the amplitudes of direct inelastic
nuclear reactions are found to differ significantly from the corresponding formulas of the distorted-wave
method in the Born approximation. Problems that are concerned with the emergence of potential optical reso-
nances for elastic form factors and with their relation to the shell-model wave functions for a compound system
are investigated. A new regime of interpolation for the amplitudes of cluster form factors from the shell to the
asymptotic region of a decaying nucleus is found. Implications of this interpolation for the calculated alpha-
particle and cluster widths and for understanding the nature of superfluid correlations in nuclei are analyzed.
© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Albeit leading to rigorous formulas, the theory of
nuclear reactions and decays involving composite par-
ticles that was developed in [1] on the basis of the
wave-packet representation and the T-matrix formalism
and which takes into account antisymmetrization
effects is hardly appropriate for a quantitative treatment
of specific problems because this theory employs exact
many-body wave functions.

The unified theory of the nucleus [2]—it considers
the structure of a nucleus and nuclear reactions on the
basis of the nonorthogonal-variation method—devel-
ops an approach that is more detailed than that in [1]
and which makes it possible to extend the resonating-
group method [3, 4] (which was successfully used in
describing nuclear reactions involving light nuclei—
see, for example, [5]) to the case where colliding nuclei
have arbitrary masses. Even in this theory, however,
there nevertheless remain some unclear questions of
fundamental importance that are associated with con-
sistently taking into account antisymmetrization
effects. On this basis, it was concluded in [6–8] that
antisymmetrization effects substantially renormalize,
in relation to conventional computational schemes,
spectroscopic shell factors in the theory of alpha-parti-
cle and cluster decays of nuclei and amplitudes for
1063-7788/01/6403- $21.00 © 20423
inelastic nuclear reactions involving composite parti-
cles. A theory of nuclear reactions was developed in [9,
10] that relies on the projection-operator method and
which made it possible to relate nuclear reactions fea-
turing nucleons to the multiparticle shell model of the
nucleus. Unfortunately, no specific definition of projec-
tion operators was actually given in those studies, so
that the results presented there could not be generalized
to the case of nuclear reactions involving composite
particles. Finally, mention should also be made of yet
another approach to the theory of nuclear reactions, that
[11] which is based on the method of K harmonics and
which appears to be one of the implementations of the
nonorthogonal-variation method [2]. Within this
approach, it was deduced in [12] that, because of the
effect of the Pauli exclusion principle, there is a strong
repulsion in the effective nucleus–nucleus potential.
Within the theory of open Fermi system and the projec-
tion-operator method, equations were derived in [13,
14] that describe elastic and inelastic nuclear reactions
featuring nucleons and composite particles and which
imply the use of various regimes of averaging. The
objective of the present study is to develop further,
within the same conceptual framework as in [13, 14],
the theory of nuclear reactions and decays involving
composite particles toward a consistent inclusion of
antisymmetrization effects.
001 MAIK “Nauka/Interperiodica”
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2. DESCRIPTION OF NUCLEAR REACTIONS 
WITHIN THE T-MATRIX FORMALISM

By using the methods developed in [1], we will
study nuclear reactions of the type

a + A  b + B, (1)

where a, A, b, and B are nucleons or nuclei that have
mass numbers Aa , AA , Ab , and AB (Aa ≤ AA) and the

internal energies , , , and  and which are
described by antisymmetrized intrinsic wave functions
χa , χA , χb, and χB. We denote by the generic index b (a)
the reaction channel including particles b and B (a and

A). In the c.m. frame, the wave function | 〉  describ-
ing the system of particles under study and correspond-
ing to the incident wave in the input reaction channel a
and to diverging waves in all open final reaction chan-
nels c satisfies the Schrödinger equation

(2)

where the total Hamiltonian of the system, H, can be
represented as

(3)

Here, c is any channel of reactions of the type in (1); Hc

and HC are the intrinsic Hamiltonians of particles c and
C, respectively; Vc is the relevant interaction potential;

Tc = "2 /2mc is the kinetic-energy operator;  =

−i  is the wave-vector operator; Rc is the coordinate

of the relative motion of particles c and C; and mc =

m is the reduced mass as expressed in terms of

the nucleon mass m. Since particles a and A (c and C)
consist of nucleons, which can be treated as identical
particles differing only by spatial, spin, and isospin
coordinates, the wave functions of the system being
considered that are defined in the configuration space
of all nucleon coordinates must be antisymmetric under
any permutation of the nucleon coordinates. We intro-
duce the antisymmetrized function |Φa 〉  corresponding
to the unperturbed state of particles in the channel a:

(4)

Here, ka is the wave vector whose absolute value is
determined in terms of the energy Ea of the relative

motion of the particles in the channel a (Ea = E –  –

) from the relation "2 /2ma = Ea , while the anti-

Ea EA Eb EB

Ψa
+

E H–( ) Ψa
+| 〉 0,=

H Hc HC Tc Vc+ + + Hc
0

Vc.+= =

k̂c

2
k̂c

Rc∂
∂

AcAC

Ac AC+
------------------

Φa| 〉 Âa χaχAe
ika Ra⋅

{ }| 〉=

=  Âa χaχAδ Ra Ra
'–( ){ }| 〉 e

ika Ra'⋅
Ra

'd∫ a0| 〉 e
ika Ra⋅

.=

Ea

EA ka
2

symmetrization operator  has the form

(5)

where there appear all permutation operators P
between particles a and A, the quantity  is equal to a
plus (minus) unity for an even (odd) permutation P, and

the normalization constant is Ca = . We

note that the function P{χaχA } is an eigenfunc-

tion of the Hamiltonian  for the same permuta-
tion P, but that there is not, in principle, a Hamiltonian
for which the function |Φa〉 (4) would be an eigenfunc-
tion. This circumstance has far-reaching consequences
for the use of the functions |Φa〉 in the theory of nuclear
reactions. In Eq. (4), we have introduced the vector |a0〉
with which we associated the operator-valued function

| {χaχAδ(Ra – )}〉 corresponding to the channel a
and acting as a nonlocal operator on functions depend-
ing on the relative coordinate Ra . Upon introducing the
function |Φc 〉  by substituting the subscript c for a in
Eq. (4) and considering the corresponding state vector
|c0〉  for an arbitrary channel c of reactions of the type in
(1), we can obtain the condition

(6)

where the nonlocal operator Wca , which is a generaliza-
tion of the operator Waa used in the resonating-group
method [3, 4], is defined as

(7)

Integration in Eq. (7) is performed with respect to all

coordinates of the system, including the coordinate 

related by a linear equation to the coordinate  for all
permutations. By using the methods developed in [1],
we can represent a solution to Eq. (2) as

(8)

where the form |VaΦa 〉  means that the potential Va must
be introduced under the sign of the antisymmetrization

operator  in Eq. (4). With the aid of the formalism
constructed in [1], we can express the differential cross
section for reactions (1) in terms of the amplitude Aba
for reactions (1) as

(9)

Âa

Âa Ca δpP,
P

∑=

δp

Aa!AA!
Aa AA+( )!

------------------------- 
 

1/2

e
ika Ra⋅

PHa
0
P

Âa Ra
'

Φc Φa〈 | 〉 e
ikc Rc⋅

〈 |Wca e
ika Ra⋅

| 〉 ,=

Wca Rc Ra,( ) c0 a0〈 | 〉=

=  Âc χcχCδ Rc Rc
'–( ){ } Âa χaχAδ Ra Ra

'–( ){ }〈 | 〉 .

Ra
'

Rc
'

Ψa
±| 〉 Φa| 〉 1

E H– iδ±
------------------------- VaΦa| 〉 ,+=

Âa

dσba

dΩkb

-----------
kbma

kamb

----------- Aba Ωkb
( ) 2

,=
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where

(10)

Here, Tba is the relevant T-matrix element given by

(11)

After the substitution of the subscript a for the subscript

b and the wave vector , which differs only in direc-
tion from the asymptotic wave vector ka for the input
channel of reactions (1), for the wave vector kb in (9),
expressions (9)–(11) describe the differential cross sec-
tion for elastic scattering.

Although expressions (9)–(11) are quite rigorous, it
is difficult in general to perform specific calculations on
their basis, because they involve the wave functions

| 〉 and | 〉, which appear to be solutions to the
exact multiparticle Schrödinger equation (2).

3. DESCRIPTION OF NUCLEAR REACTIONS 
WITHIN THE FORMALISM

OF THE PROJECTION-OPERATOR METHOD

We will now make use of the projection-operator
method, which was developed previously in [9–11]. We

represent the wave function | 〉  of the system in the
form

(12)

where the sum over c is taken over all open channels of
reactions (1), while the operators Pc and Q possess all

the properties of projection operators:  + Q = 1,

PcQ = QPc = 0, PcPc' = Pc'Pc = Pcδcc' , and Q2 = Q. The
operator Pc projects the wave function of the system of
(Aa + AA) nucleons onto the intrinsic states of particles
c and C for the open channel c, while the operator Q
projects the wave function of the system onto those
states that do not have open decay channels and which
therefore possess discrete energies and are finite in con-
figuration space. Multiplying Eq. (2) from the left by
the operators Pc and Q, we can obtain the set of coupled
equations

(13)

(14)

We further represent Eq. (14) in the form

(15)

Aba

mb

2π"
2

------------Tba.–=

Tba ΦbVb Ψa
+〈 | 〉 Ψb

–
VaΦa〈 | 〉 .= =

ka
'

Ψa
+ Ψb

–

Ψa
+

Ψa
+| 〉 PcΨa

+| 〉
c

∑ QΨa
+| 〉 ,+=

Pcc∑

Pc E H–( ) Ψa
+| 〉 0,=

Q E H–( ) Ψa
+| 〉 0.=

Q E H–( ) QΨa
+| 〉 Q E H–( ) PcΨa

+| 〉
c

∑–=
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and introduce a complete orthonormalized basis in the
subspace of eigenfunctions |ϕp〉 that is singled out by
the operator Q for the Schrödinger equation

(16)

In this case, the projection operator Q can be repre-
sented in the form Q = 〈ϕ p |. By using the

Green’s function  corresponding to this equation,

(17)

we can write a solution to Eq. (15) as

(18)

where

(19)

Substituting solution (18) into Eq. (12) and using
Eqs. (2) and (13), we find that, for a specific channel c,

the equations for the function |Pc 〉  are given by

(20)

The last of these can be represented as

(21)

where

(22)

For a channel c ≠ a, we now introduce the Green’s func-

tion  corresponding to the Schrödinger equation
(21) with zero right-hand side. This makes it possible to

find the function |Pc 〉  in terms of the functions

|Pc' 〉 , c ≠ c'. Continuing this process iteratively, we
can close up the set of equations in question and arrive at
the following equation for the input reaction channel a:

(23)

Ep QHQ–( ) ϕ p| 〉 0.=
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Here, the Hamiltonian  is determined by Eq. (22),
where the projection operator Q is replaced by Qa =

 + Q = 1 – Pa and where the Green’s function

 is replaced by the Green’s function  defined by
formulas of types in (16) and (17). Similarly, we can

construct an equation for the function |Pb 〉 for an
inelastic open channel b ≠ a. It has the form

(24)

where the Hamiltonian  is determined by Eq. (22)

with the substitution of the operator Qba =  +
Q for the operator Q. The set of Eqs. (21) and Eqs. (23)
and (24), which follow from it, include both the direct
coupling of open reaction channels c to the input chan-
nel a and to one another and their coupling through the
Green’s function GQ and discrete compound states |ϕp 〉 .
This means that, in contrast to what occurs in the R-
matrix theory of nuclear reactions [15], the set of equa-
tions in question describes not only multistep direct and
multistep statistical nuclear reactions but also situa-
tions of an intermediate type associated with transitions
between states that are singled out by the operators Pc

and states that are singled out by the operator Q.

4. CONSTRUCTING PROJECTION OPERATORS

We will make use of the properties of the nonlocal

operators  and , which are extensively

used in the resonating-group method [4] and which are
related to the operator Waa specified by Eq. (7) at c = a.
For the input channel a of reactions (1), we define the
nonlocal projection operator Pa as

(25)

where the symbol |a 〉  stands for the vector related to the
vector |a0〉  in (4) by the equation

(26)

From the definition in (26), it follows that |a 〉  is a unit
vector since its norm is equal to unity. For this reason,
the operator Pa possesses the basic property of the pro-

jection operator; that is,  = Pa . The action of the

HQa

+

Pcc a≠∑
GQ

+
GQa

+

Ψa
+

Pb E HQba
)+

PbΨa
+| 〉–( Pb E HQba

)+
PaΨa

+| 〉 ,–(–=

HQba

+

Pcc a b,≠∑

Waa
1

Waa

-------------

Pa Pa Ra Ra',( )=

=  R1 R2 R3 Âa χaχAδ Ra R1–( ){ }| 〉ddd∫
× 1

Waa R1 R2,( )
---------------------------------- 1

Waa R2 R3,( )
----------------------------------

× Âa χaχAδ R3 Ra'–( ){ }〈 | a| 〉 a〈 |,=

a| 〉 a0| 〉 1

Waa

-------------.=

Pa
2

operator Pa on the wave function | 〉  of the system
can be represented in the form

(27)

where the form factor (Ra) is related to the cluster
form factor of the system,

(28)

which is extensively used in describing clustering
effects in nuclei [5], by the equation

(29)

For a specific inelastic channel b, the projection opera-
tor Pb satisfying the conditions PaPb = PbPa = 0 and

 = Pb can be represented in the form

(30)

where the state vector |b1〉  is defined as

(31)

Here,

(32)

|b 〉  is a unit vector similar to the vector |a 〉  (26), and the
operator Wab is defined by (7). From expression (31), it
can be seen that |b1〉  is a unit vector that lies in the plane
spanned by the vectors |a〉  and |b〉  and which is orthog-
onal to the vector |a〉 . By using an iterative scheme
based on the orthogonalization recipe proposed above,
we can construct mutually orthogonal projection oper-
ators Pc for all open reaction channels.

The ensuing analysis can be substantially simplified
for the case where the nucleus A in the input channels
of reactions of the type in (1) is sufficiently heavy. The
operator Wca , which determines the scale of nonorthog-
onality of the vectors |c0〉  and |a0〉 , is then equal to zero
in the asymptotic region of large values of Rc or Ra and
takes a very small value in the region where the densi-
ties of the reaction fragments c and C strongly overlap
and so do the densities of particles a and A. For the pro-
jection operators Pc, we can therefore use formulas of
the type in (25) with the substitution of the subscript a
for c. In this approximation, noticeable deviations for
the operators Pc (c ≠ a) can in principle arise in not very
frequent cases of light colliding nuclei of pronounced
cluster structure. It will be shown below that this choice
of the operators Pc corresponds to the ideas of the the-
ory of open Fermi systems [13] and leads to the impor-
tant property 〈c|ϕp〉 = 0 of the functions |ϕp〉 defined in
the configuration space that is singled out by the oper-

Ψa
+

PaΨa
+| 〉 a| 〉 a Ψa

+〈 | 〉 a| 〉 f̃ a

+
Ra( ),= =
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+

f a
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2
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1 Wba
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Wab
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ator Q. This property implies that the functions |ϕp〉 are
expressed in terms of multiparticle shell functions of a
compound system, provided that the components corre-
sponding to open reaction channels are eliminated from
them.

5. COMPARISON
OF THE PROJECTION-OPERATOR 

AND THE NONORTHOGONAL-VARIATION 
METHOD

The nonorthogonal-variation method was devel-
oped in [2] for describing nuclear reactions and decays
with allowance for antisymmetrization effects. Within
this method, a solution to Eq. (2) is sought in the form

(33)

where the sum over c is taken over all open reaction
channels, the state vector |c0〉  is given by (4), and the
sum over p covers some states of the system that are
characterized by discrete energies and which are finite
in configuration space. Let us consider a variation of

the function | 〉 ,

(34)

where δ (Rc) and δap are independent variations of

the form factors (Rc) and of the coefficients ap . By
successively multiplying Eq. (2) from the left by terms
of the sums appearing on the right-hand side of Eq. (34)

and considering that the variations δ (Rc) and δap are
independent, we then arrive at the set of coupled equa-
tions

(35)

whose number is equal to the sum of the number of
open channels and the number of states |ϕp 〉  used in
Eq. (33). The nonorthogonal-variation method is con-
venient in that it is not necessary, in implementing it, to
require mutual orthogonality of the vectors |c0〉  and the
functions |ϕp〉—it is sufficient to choose a sufficiently
full and physically reasonable set of states |ϕp 〉  in

Eq. (33). For the function | 〉 , the projection-operator
method, which was developed in the preceding sec-
tions, employs expression (12), which can be formally
recast into the form (33) by using the definitions of the
projection operators Pc (25) and relations (18), (27),
and (29). At the same time, the set of Eqs. (13) and (14)
can also be formally reduced to the set of Eqs. (35) if
we use the required number of terms in the expansion
in (33). But this brings about the question of why the

Ψa
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+ Rc( ) ap ϕ p| 〉 ,
p

∑+
c
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c
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+
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+

c0〈 | E H–( ) Ψa
+| 〉 0,=

ϕ p〈 | E H–( ) Ψa
+| 〉 0,=
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+
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projection-operator method should be preferred to the
nonorthogonal-variation method. The answer to this
question is the following. First, the projection-operator
method is exact in the general theoretical sense, since it
employs, from the outset, the complete basis of states in
the configuration space of all coordinates of the system.
Second, the projection-operator method makes it possi-
ble to simplify the resulting formulas in relation to
those in the nonorthogonal-variation method because
of orthogonality of the projection operators Pc for dif-
ferent channels c to each other and to the operator Q.
Finally, the projection-operator method, in contrast to
the nonorthogonal-variation method, permits imparting

clear physical meaning to the form factors (Rc) and
the functions |ϕp〉 and relating them to the properties of

the exact wave function | 〉 of the system. At the
same time, the results obtained in [2] within the nonor-
thogonal-variation method can easily be extended to
the case of the projection-operator method owing to a
formal coincidence of the two representations in ques-
tion.

6. DESCRIPTION OF ELASTIC SCATTERING
IN THE PROJECTION-OPERATOR FORMALISM

Multiplying Eq. (23) from the left by the vector 〈a |,
performing integration with respect to all coordinates
of the system, and using expression (27), we find that

the form factor (Ra) satisfies the equation

(36)

Since the operator  commutes with the operator of
permutation of the nucleon coordinates, we can intro-

duce the expression (E – ) under the sign of the

antisymmetrization operator  appearing in the defi-
nition of the vector |a0〉  in formula (26). By further rep-
resenting the Hamiltonian H of the system in the form
(3) at c = a, we can then recast Eq. (36) into the form

(37)

where the nonlocal potential  is defined as

(38)

Equation (37) differs from the analogous resonating-
group-method equation reduced to the Hermitian form

[4] by the addition of the term ∆  to the potential Va.
This term is of paramount physical importance,
because it ensures the conservation of the total proba-
bility flux in the system under consideration upon tak-
ing into account antisymmetrization effects. Indeed, a

f c
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f̃ a

+
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+
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+
Ra( )– 0.=
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+
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+
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Waa
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decrease in the values of the operator Waa in the region
of a strong overlap of the densities of particles a and A
due to the antisymmetrization effect is accompanied in
Eq. (37) by transitions from the input reaction channel
to all states singled out by the operator Qa = 1 – Pa, but

this is taken into account precisely by the term ∆ .
It should be emphasized that states of the compound
system that are characterized by the wave functions |ϕp〉
and which enter into the definition of the operator

∆  can be treated as intruder states of discrete ener-
gies in the continuous spectrum of excitations of this
system. In the asymptotic region of large values of Ra,

the form factor (Ra) can be represented, apart from
a constant factor associated with its normalization, as

(39)

where the elastic-scattering amplitude Aaa( ) is

given by expression (10), in which the T-matrix ele-
ment (11) is replaced by the matrix element

(40)

By using Eq. (37), this matrix element can be recast
into the equivalent form

(41)

Considering that the function  is a solution to the

equation (Ea – Ta)  = 0, we can represent expres-
sion (41) as

(42)

The explicit form of the operator Ta is Ta = – .

Using this and the Gauss theorem, we can reduce the
volume integral on the right-hand side of Eq. (42) to an
integral over the surface S of a sphere of large radius Ra;
that is,

(43)
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.

Since the operator Waa is equal to unity in the region of
sufficiently large values of Ra, the matrix element (41)
reduced to the form (43) is invariant under multiplica-

tion of the form factor (Ra) by arbitrary positive or

negative powers of the operator  and by arbitrary

functions of Ra that are equal to unity in the region of
large Ra . This implies that the matrix element (41) can
be represented in the equivalent forms

(44)

where the form factor (Ra) is given by (28) and, by
virtue of relation (29), satisfies the Schrödinger equa-

tion (37) with the potential  = 〈a0 |(Va +

∆ )|a0 〉  substituted for the effective potential

 (38). It follows that the matrix element Taa [1],
which is given by expression (11) at b = a and which is
reduced, with the aid of relations (3) and (28), to

expression (44) for the form factor (Ra), coincides
with the matrix element (41).

Thus, the potentials  and  in Schrödinger

equations of the form (37) for the form factors (Ra)

and (Ra) are phase-equivalent from the viewpoint of
describing elastic scattering, albeit their structures dif-
fer substantially. In processing experimental data on the
elastic scattering of nucleons and composite particles
on nuclei, use is made of phenomenological potentials
that do not include the kinetic-energy operator Ta—that

is, those that correspond to the potential . This
means that the Schrödinger equation for the form factor

(Ra) should be preferred to that for the form factor

(Ra), which, in the resonating-group method [4, 6],
stands out among other form factors. This conclusion
can be confirmed by contrasting the results obtained
above against the ideas of the theory of open Fermi sys-
tems [13].

7. ELASTIC SCATTERING AND THEORY
OF OPEN FERMI SYSTEMS

We begin by considering the simplest case where a
nucleon plays the role of particle a in the channel a. We
denote by Ra  its total coordinate, which includes the
aforementioned coordinate of the relative motion of the
nucleon and particle A and the projections of the

f̃ a

+

1

Waa

-------------

T̃aa e
ika' Ra⋅

〈 |Ea Ta f a
+ Ra( )| 〉–=

=  e
ika' Ra⋅

〈 |Va
+

f a
+ Ra( )| 〉 ,

f a
+

Va
+

HQa

+ 1
Waa

---------

Ṽa
+

f a
+

Ṽa
+

Va
+

f̃ a

+

f a
+

Va
+

f̃ a

+

f a
+
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nucleon spin and isospin onto the z axis. For the case of
a sufficiently heavy nucleus A, the vector |a0〉  given by
(4) can be written in the second-quantization represen-
tation as

(45)

where |A〉  ≡ |χA 〉  and ψ+(Ra) is the nucleon creation
operator in the coordinate representation. The quanti-
ties that appear in an equation of the type in (37) for the

form factor (Ra) are given by

(46)

(47)

(48)

where V(r1 – r2) is the pair potential of the interaction
between nucleons having the coordinates r1 and r2; 

(49)

is the nonlocal Hartree–Fock potential; and

and 

are, respectively, the single- and the two-particle den-
sity matrices for nucleus A. 

From the above formulas, it follows, quite unexpect-
edly, that, in the rigorous resonating-group-method
equation, which is obtained from Eq. (37) by eliminat-

ing the operator ∆  from it, expression (48)
involves, in addition to the Hartree–Fock potential

, a term that is determined by the difference of the
two-particle density matrix and the product of single-
particle density matrices for nucleus A and which can
be related to the retarded part of the nucleon self-
energy operator (see below).

Within the theory of open Fermi systems, it was

shown [13] that the form factor (Ra) (46) coincides
with the amplitude of the residue of the exact one-
nucleon Green’s function Ga(r, r', ε) for nucleus A at its
pole occurring at the energy value ε = Ea and corre-

a0| 〉 ψ+ Ra( ) A| 〉 ,=

f a
+

f a
+ Ra( ) A〈 |ψ Ra( ) Ψa

+| 〉 ,=
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– ρ 1( ) r1 r1,( )ρ 1( ) Ra' Ra,( )

+ ρ 1( ) r1 Ra,( )ρ 1( ) Ra' r1,( ) ] 1
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---------dr1,
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HF Ra Ra',( ) V Ra r1–( )ρA

1( ) r1 r1',( ) r1d∫=

× δ Ra Ra'–( ) V Ra Ra'–( )ρA
1( ) Ra' Ra,( )–

ρA
1( ) r1 r1',( ) A〈 |ψ+ r1( )ψ r1'( ) A| 〉≡

ρA
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sponding to the state | 〉  of the system of (A + 1)

nucleons. In this case, the equation for (Ra) has the
form [13, 16]

(50)

where Ma(Ra , , Ea) is the nonlocal nucleon self-
energy operator, whose Lehmann’s expansion is writ-
ten in the form

(51)

By using the method of variational derivatives of the S

matrix, the retarded part  of the above self-energy
operator can be represented as [13]

(52)

where

(53)

Hint being the second-quantized Hamiltonian for
nucleon interaction. Comparing Eqs. (37) and (50), we

can see that they coincide if the Green’s function 

appearing in the definition (21) of the operator ∆  is
supplemented with the sum of pole terms correspond-
ing to a complete set of states of the (A – 1)-nucleon
system that are described by the reduced Hamiltonian

, where the projection operator  differs
from the projection operator Qa = 1 – Pa by the substi-

tution of the operator | 〉  ≡ ψ(Ra)|A〉  for the operator
|a0〉 . The addition of the above terms to the operator

∆  corresponds to taking into account a correlation
between a nucleon and the ground state of the system
of A nucleons.

It follows that, apart from ground-state correlations,

the potential  for the form factor (Ra) coincides
with the nucleon self-energy, the energy-independent

(nonretarded) part of the potential  and its retarded
part, which takes into account the coupling of the form

factor (Ra) to inelastic channels and compound
states, being determined by, respectively, the Hartree–
Fock potential and the retarded part of the self-energy
operator. This means that the operator 1/Waa appearing

in the definition of the potential  plays a very impor-
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+
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tant role, because it is this operator that makes it possi-
ble to separate, in this potential, the term that coincides
with the Hartree–Fock potential from correlation terms
that are associated with the difference of the two-parti-
cle density matrix for nucleus A and the sum of the
products of its single-particle density matrices.

By using the technique of multiparticle Green’s
functions that was developed in [16, 17] for describing
elastic scattering and nuclear reactions involving nucle-
ons and composite particles, the cluster form factor

(Ra) (28) for the channel a can be expressed in terms
of the amplitude of the residue of the Aa-particle two-
time Green’s function  for nucleus A at its pole cor-
responding to the state in which the (Aa + AA)-nucleon
system is characterized by the energy value E and the

wave function | 〉. An equation of the type in (37)

with the potential  for the form factor (Ra)
reduces to an equation of the form (50), where the
effective self-energy operator for the particles in the
channel a has the same structure as expression (51).

The generalized Hartree–Fock potential (Ra, )
is then given by [18, 19]

(54)

where s = Ra + y2 – y1 and µ = . At Aa = 1 and

(y1, y1) = δ(y1), this potential reduces to the one-
nucleon Hartree–Fock potential (49). The retarded part

 of the effective self-energy operator includes, in
addition to the term corresponding to the operator

∆  in the potential , terms corresponding to tran-
sitions to states of the systems of (Aa + AA – 1), (Aa +
AA – 2), …, (AA – Aa) nucleons and taking into account
correlations between particle a and the ground state of
nucleus A. In just the way as in the case of elastic
nucleon scattering on nucleus A, the operator 1/Waa

appearing in the definition of the potential  plays an
extremely important role in describing the elastic scat-
tering of a composite particle a on nucleus A, because
it is this operator that makes it possible to eliminate,
from the matrix element 〈a0|Va|a0〉, the exchange terms
that are associated with the permutations of those
nucleons between particles a and A that do not interact

f a
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GAa
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HF Ra'
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HF Ra Ra',( )

=  V s( )ρa
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1( ) y2 y2,( ) y1 y2δ Ra Ra'–( )dd∫
– V s( )ρA

1( ) y1 y1

AA 1–
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---------------s+, 
 ∫

× ρa
1( ) y2 y2

Aa 1–
Aa

--------------s–, 
  dy1dy2δ Ra Ra'– µs–( ),

Aa AA+
AaAa

-------------------

ρa
1( )

M̃a

HQa

+
Va

+
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+

with one another and which do not therefore contribute
to the Hartree–Fock potential (54). Thus, the T-matrix
element Taa in the form (44), which is directly related

to the standard cluster form factor (Ra) (28) obeying
the Schrödinger equation (50) with an effective poten-
tial that has the form (51) and which takes into account
ground-state correlations, conforms best of all to the
ideas of open Fermi systems.

The calculations of the Hartree–Fock potentials (54)
within various approximations in [18, 19] showed that
these potentials are also attractive and have a large
deepness that corresponds to the Levinson theorem
[20]. No effective repulsion associated with the inclu-
sion of antisymmetrization effects arises in these poten-
tials.

Let us now consider the form factor (Ra) obey-
ing the equation

(55)

which is obtained from Eq. (50) if only the first term is
retained in the effective potential (51).

Because of a large depth of the Hartree–Fock poten-
tial, a potential resonance state arises in this equation at
a certain energy value Ea0. The form factor for this state
can be normalized to unity in the internal region of the
compound system. If the energy-dependent potential

(Ra , , Ea) is included in Eq. (55), the resonance

state (Ra) will fragment into the multiparticle states
|ϕp 〉  of the compound system. Owing to this fragmenta-
tion, the elastic-scattering amplitude Aaa( ) devel-

ops, in addition to potential resonances, multiparticle
resonances associated with the functions |ϕp〉. In order
to describe the regime of this fragmentation, the con-
cept of a strength function introduced previously for
nucleons (see [13, 21]) can be generalized to the case of
arbitrary particles a. The strength function Sa0(Ea) for

the state (Ra)—it coincides with the energy distri-
bution of the weight of this state among the exact states
of the system—has the form of the Breit–Wigner distri-
bution that is peaked at energy Ea0 and which has an
effective width Γa0 determined by the imaginary part of
retarded component (52) of the self-energy operator.
An analysis of the strength function (Ea) averaged
over a sufficiently broad energy interval ∆E shows that
its effective width, which is close to the effective width
of the exact strength function Sa0(Ea), is determined by
the imaginary part of the optical potential of interaction
between particles a and A. In turn, an analysis of the
imaginary parts of phenomenological optical potentials
for arbitrary composite particles a and sufficiently
heavy particles A [21, 22] leads to the conclusion that
the width Γa0, in contrast to the analogous width for the
case where particle a is a nucleon, is commensurate

f a
+

f a0
+

Ea Ta– Va
HF

–( ){ } f a0
+ Ra( ) 0,=

M̃a Ra'

f a0
+

Ω
ka'

f a0
+

Sa0
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with or greater than the energy spacings between the
neighboring resonance states at Ea0 that are character-
ized by fixed integrals of the motion (this situation cor-
responds to the black-nucleus model). The form factor

(Ra) for arbitrary composite particles a that is deter-
mined as a solution to Eq. (52) with allowance for the
retarded part of the self-energy operator will then
involve, at any energy Ea , including the energy Ea0 ,

only a small admixture of the resonance state (Ra).

8. DESCRIPTION OF INELASTIC
NUCLEAR REACTIONS 

WITHIN THE PROJECTION-OPERATOR 
FORMALISM

In order to describe transitions from the input reac-
tion channel a into an inelastic channel b ≠ a, we mul-
tiply Eq. (13) for c = b from the left by the vector 〈b0 |
and perform integration with respect to all nucleon
coordinates. As a result, we arrive at

(56)

Further, we make use of the notation 〈b0 | 〉  ≡

(Rb), where the form factor (Rb) is similar to the

above form factor (Ra) (28) for the elastic-scattering

channel. Introducing the Green’s function Gb(Rb , )
obeying the equation that is obtained from Eq. (56) by

replacing its right-hand side by δ(Rb – ) and consid-
ering its asymptotic behavior at large values of Rb , we
can derive the formula obtained in [1] for the amplitude
Aba of reactions (1), which is related by Eq. (9) to the
differential cross section for reactions (1) and by
Eq. (10) to the T-matrix element Tba (11). This matrix
element in turn can be represented as

(57)

By using the method for going over from Eq. (41) to
Eq. (43), we can recast expression (57) into the form
(43) with the substitution of the subscript b for the sub-

script a, the form factor  for the form factor , and

the wave vector kb for the wave vector . It follows
that the matrix element Tba (57) is invariant under the

multiplication of the form factor  by an arbitrary

positive or negative power of the operator  and
under the multiplication by arbitrary functions of Ra

that are equal to unity in the region of large values of
Ra . The matrix element Tba (57) can then be recast into
the equivalent form

(58)

f a
+

f a0
+
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+〈 | 〉 b0Vb Ψa

+〈 | 〉 .=

Ψa
+

f b
+

f b
+

f a
+
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Tba e
ikb Rb⋅

〈 | Eb Tb–( ) f b
+ Rb( )| 〉 .=

f b
+
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+

ka'

f b
+

Wbb

Tba e
ikb Rb⋅

〈 | Eb Tb–( ) f̃ b

+
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where (Rb) = (Rb). Multiplying Eq. (24)

from the left by the vector 〈b0 | and performing integra-
tion with respect to the nucleon coordinates, we find

that the form factor  satisfies the equation

(59)

where the nonlocal potential  coincides, upon sub-
stituting the subscript b for the subscript a and the oper-

ator Qab for the operator Qa, with the potential ,
which was introduced above. By using the Green’s

function (Rb , R') for Eq. (59) [that is, the Green’s
function that satisfies the equation obtained from Eq.

(59) by replacing its right-hand side by δ(Rb – )], we

can represent the form factor (Rb) as

(60)

Substituting (60) into (57) and transforming the plane

wave  into the distorted wave (Rb) that is
found as a solution to Eq. (59), where the right-hand
side and a plus sign in the superscript are replaced,
respectively, by zero and by a minus sign, we arrive at

(61)

With the aid of formula (58), the matrix element Tba can
be represented in the equivalent form

(62)

A comparison of Eqs. (61) and (62) reveals that the
matrix element Tba remains unchanged upon the addi-

tion of arbitrary powers of the operator  to the
extreme left bra vector on the right-hand side of

Eq. (61). At the same time, the operator  in the

extreme right ket vector in expressions (61) and (62)
plays the same role as in the case of the elastic-scatter-
ing amplitude, correcting the structure of exchange
terms in Eq. (61). It should be noted that, although
expression (61) for the matrix element Tba is exact, it is
close in structure to the similar expression for Tba

within the popular distorted-wave method in the Borne
approximation.
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9. OPTICAL MODEL AND DISTORTED-WAVE 
METHOD FOR AMPLITUDES
OF NUCLEAR REACTIONS

Let us introduce the T-matrix elements  (44) and

 (61) averaged over a certain energy interval ∆E and
associated with the direct mechanism of elastic and
inelastic nuclear reactions. The averaged form factor

, which determines the amplitude , satisfies the
Schrödinger equation (37) with the substitution of the

nonlocal optical potential  for the potential .
For the case of nonoverlapping resonances, it was
shown in [2] that, in the amplitudes describing nuclear
reactions of the type in (1) and arising from the bare
states |ϕp 〉  that appear in the definition of the Green’s

function GQ , the optical potential  coincides with

the potential  upon the substitution of the complex
energy E + i∆E for the energy E in (18). In this case, the

real and the imaginary part of the potential  are
given by

(63)

(64)

where the basis of functions |ϕp 〉  must be constructed
with allowance for ground-state correlations.

If we employ the nucleon-coordinate-displacement
operators, which are expressed in terms of the nucleon-
wave-vector operators, and the methods developed in

[18], the nonlocal optical potential  as given by
Eqs. (63) and (64) can be reduced to the equivalent

local momentum-dependent optical potential (Ra ,

). Considering that a gradient term proportional to

the wave-vector operator  appears in the potential

(Ra , ) [18], we can represent the form factor

(Ra) as

(65)

where the function (Ra) satisfies the Schrödinger
equation

(66)
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Ra( ) Fa Ra( )ϕa

+ Ra( ),=

ϕa
+

Ea Ta– Va
opt Ra Ea,( )–( )ϕa

+ Ra( ) 0=
with the local energy-dependent complex optical

potential (Ra , Ea), while the form factor Fa(Ra),
which was first introduced by Perey [23], is given by

(67)

(Ra , Ea) being the effective reduced mass of parti-
cles a and A [18]. Since the form factor Fa(Ra) tends to

unity at large Ra , Eq. (66) for the function (Ra) is
phase-equivalent to the analogous equation with

(Ra , Ea) for the function (Ra), so that the matrix

element  that is averaged over the interval ∆E and
which describes the direct component of elastic scatter-
ing can be represented as

(68)

It should be emphasized that phenomenological optical
potentials describing the direct component of the elas-
tic scattering of particles a on particles A are always
constructed in the form of local energy-dependent com-
plex potentials Vopt(Ra , Ea) [21]; therefore, phenome-
nological optical wave functions correspond to the

wave functions (Ra). For a global regime of averag-
ing [14], in which case the contribution of the second
term can be disregarded in Eq. (63), the real part of the

optical potential (Ra , Ea) coincides with the Har-
tree–Fock potential (54), which, as was indicated
above, has an attractive character and a depth satisfying
the Levinson theorem [20]. For the inclusion of input-
state fragmentation into compound states in going over
to the internal region of the system, it is not necessary,
in this case, to introduce the effective repulsion in the

real part of the optical potential (Ra , Ea); this frag-
mentation is completely determined by the effect of its
imaginary part, which leads to an exponential suppres-

sion of the absolute value of the function (Ra) in the
internal region of the system.

If we disregard, upon averaging over the interval

∆E, the contribution of the operator ∆ , which has
an oscillatory character, the averaged T-matrix element

 (61) takes the form

(69)

where the optical wave functions  and  obey opti-
cal-model equations of the type in (66). By using the
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properties of antisymmetrized functions of the type
specified by Eqs. (4) and (5), expression (69) can be
recast into the equivalent form

(70)

Expression (70) differs from the analogous expression
corresponding to the popular distorted-wave method in
the Born approximation [23] not only by the presence
of Perey factors in the former but also by a consistent
inclusion of antisymmetrization effects that lead to the

emergence of the operator  in (70).

10. NUCLEONIC AND CLUSTER
DECAYS OF NUCLEI 

WITHIN THE PROJECTION-OPERATOR 
METHOD

The R-matrix theory of nuclear reactions [1, 15] is
usually used to analyze resonances observed in cross
sections for nuclear reactions and the properties of
long-lived nuclear states that decay via the emission of
nucleons, alpha particles, and other composite parti-
cles. However, one has yet to find out conclusively how
the wave functions Xλ that are employed in this theory
to describe the internal region of a compound system
and which correspond to resonances observed in
nuclear reactions are related to the finite wave functions
of the multiparticle shell model that are often invoked
in describing the structural properties of nuclei. The
projection-operator method, which was developed
above, introduces the basis of eigenfunctions |ϕp 〉  of the
reduced Hamiltonian QHQ that are orthogonal by defi-
nition to the channels functions |c0〉; therefore, they cor-
respond neither to the R-matrix functions Xλ nor to mul-
tiparticle shell functions. It follows that, in order to
solve the problems in question with due regard to anti-
symmetrization effects, the projection-operator method
developed above must be recast into a form that would
be in line with the ideas of R-matrix theory, on one
hand, and make it possible to use, in the calculations,
multiparticle shell wave functions for nuclei, on the
other hand.

Let us examine the general case where, in the prob-
lem of particle scattering, the system occurs in the state

that is described by the wave function | 〉  introduced
above and which is characterized by a specific angular
momentum Ji , its projection Mi, and a parity πi . We fur-
ther go over from the vector |a0 〉  that is given by (4) and
which is dependent on the three-dimensional vectors

Ra and  to the analogous radial vector

(71)
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where the channel function Ua has the form

(72)

Here,  is a spherical harmonic associated with the
orbital angular momentum la of the relative motion of
particles a and A in the channel a and its projection ma ,
while the braces denote the vector composition of the
orbital angular momentum la and the spins of particles
a and A into the total angular momentum Ji of the sys-
tem. We can then introduce the radial vector |a 〉  =

|a0 〉  and the radial projection operator Pa = |a 〉〈 a |,

where the radial operator Waa is defined by analogy
with the three-dimensional operator Waa (7) for the
radial vectors |a0 〉 . In order that finite multiparticle shell
wave functions of the compound system with quantum
numbers Ji , Mi , and πi could be used for the eigenfunc-
tions |ϕp 〉  of the reduced Hamiltonian QHQ, we gener-
alize the projection-operator method, following the
lines of reasoning of Wildermuth and Tang [2]. Specif-
ically, we represent the operator Q in the form

(73)

where the sum over p covers the shell states |ϕp〉 of the
compound nucleus that form a set over which a com-
plete fragmentation of potential resonances occurs in
all open channels c. In this case, the radial projection
operators Pc must be redefined in such a way as to
ensure fulfillment of the conditions PcQ = QPc = 0 and
PcPc' = Pc'Pc = δcc'Pc—this means that these operators
are defined in the subspace singled out by the projec-
tion operator 1 – Q; that is,

(74)

where

(75)

Symbolically, the operator  appearing in Eq. (75)
can be written as

(76)

We note that, as a matter of fact, our method for choos-
ing the projection operators Q (73) and Pc (74) con-
forms to the conceptual framework of the study of Baz’
et al. [11], with the only difference that the more tradi-
tional basis of multiparticle shell functions is used here
instead of the basis of K-harmonic functions.

By using the above radial operator (74) instead of
the operator Pc (27), we can recast the set of Eqs. (21)

Ua χaχAYlama
ΩRa

( ){ } JiMiπi
.

Ylama

1

Waa

-------------

Q ϕ p| 〉 ϕ p〈 |,
p

∑=

Pc c1| 〉 c1〈 |,=

c1| 〉 1 Q–( ) c| 〉 1

Wcc

-------------.=

Wcc

Wcc 1 c ϕ p〈 | 〉 ϕ p c〈 | 〉 .
p

∑–=
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into the form

(77)

where the operator  is given by expression (22)

with the Green’s function  (18), where the p = 0
term corresponding to the energy E0, which is close to
the energy E of the system under study, is discarded.
Ignoring the coupling of open channels that is due to

the action of the operator  on the right-hand side of
Eq. (77), multiplying this equation from the left by the
vector 〈c1|, and performing integration with respect to all
coordinates of the system, we find that the radial form

factor (Rc) = 〈c1| 〉 satisfies the equation

(78)

Imposing the condition that the channel a is the input
reaction channel, we seek the relevant solution to this
equation in the form

(79)

where the form factor (Rc) obeys the equation

(80)

Here, the operators Tc and  are defined as

(81)

(82)

while the radial Green’s function  satisfies the
equation obtained from Eq. (80) by substituting δ(Rc –

) for its right-hand side. Multiplying the function in
(79) from the left by the operator 〈ϕ 0 |E – H |c1〉  and
summing the resulting expression over c, we obtain

(83)
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------------------------------------------------------------------------------------------------------ = Dc Rc( ).
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"

2
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Ṽc
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'+
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+
| 〉–

c

∑ Ka
1– ϕ0〈 |E H a1| 〉 f̃ a

'+| 〉 ,–=
where

(84)

Substituting (83) into (79), we represent the form factor

(Rc) as

(85)

For the radial Green’s function , we further use the
expression

(86)

where R< (R>) is the smaller (larger) value of Rc and Rc',

while  and  are, respectively, the irregular and
the regular solution to Eq. (80) that are normalized to
the delta function of energy. Considering the asymp-
totic behavior of the form factor (85), we can then
reduce the S-matrix element Sca to the form

(87)

where  is the phase shift associated with the function

(Rc); Γ0c and Γ0 =  are, respectively, the par-
tial and the total decay width of the resonance state of
the system; and ∆0(E) is the energy shift. Specifically,
we have

(88)

(89)

In Eq. (89),  is the real part of the Green’s function

, while, in Eq. (88), the form factor (Rc) is nor-
malized to the delta function of energy.

In contrast to the form factor (Rc), which is a
solution to Eq. (78) with the vector |c〉 substituted for

the vectors |c1〉, the form factor (Rc) does not
involve potential resonance states associated with the
deep Hartree–Fock potential, since the projection oper-
ator 1 – Q appearing in the definition of the vector |c1〉
and including a sufficiently vast basis of shell wave
functions |ϕp 〉  leads to the elimination of these states

from the form factor (Rc) and to their inclusion, as

Ka E E0– ϕ0〈 |E H c1| 〉 Gc' c1〈 |E– H ϕ0| 〉 .–
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components, in the multiparticle shell functions |ϕp 〉 . In
this case, the phase shift as a function of the energy Ec

shows a rather smooth behavior. Therefore, the S-
matrix element Sca in the form (87) corresponds to the
analogous matrix element in R-matrix theory, so that
the width Γ0c (88) can be treated as the decay width of
the true resonance state of the system of (Aa + AA)
nucleons.

11. DECAY WIDTHS OF NUCLEAR STATES
FOR THE DEEP-SUBBARRIER CASE

Let us now consider the decay of an A0 = (Ac + AC)
nucleus through all open channels c, including the
channel a. A decaying nucleus in the quasystationery
state characterized by a spin Ji , its projection Mi, and a
parity πi will be described by the Gamow function

| 〉  that is normalized in the internal region to
unity and which satisfies the Schrödinger equation (2)

with a complex-valued energy Ei =  –  (Γi ! )

and the asymptotic boundary condition corresponding
to the emergence of diverging spherical waves in all
open decay channels c [22, 24]; that is,

(90)

where Eic = Ei –  – , kic = , and Γic is the

partial width of the A0 nucleus with respect to its decay
through the channel c (it is related to the total width Γi

by the relation Γi = ). Relation (90) is valid in
the case where the decaying state of the A0 nucleus is an
isolated resonance such that the energy spacings

 between the neighboring (on the energy scale)
decaying states characterized by the quantum numbers
Ji , Mi, and πi are much greater than the total decay
widths Γi of the resonances in question.

Let us consider the problem inverse to that of the
decay of the A0 nucleus—that is, the problem where
particle a is incident on a daughter nucleus A, so that
nuclear reactions of the type in (1) occur. In the asymp-

totic region of large Rc values, the above function | 〉 ,
which corresponds to the scattering problem and which
possesses the integrals of the motion Ji , Mi , and πi , can
be represented as [22]

(91)
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2mcEic

"
2
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Γ icc∑

D
JiMiπi

Ψa
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-----Uc Gc iFc–( )δca[




c

∑
– S̃ca Gc iFc+( ) ] ,
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where Fc and Gc are, respectively, the regular and the
irregular radial Coulomb function. Their asymptotic
forms are

(92)

 being the Coulomb phase shift. In (91), the constant

Bc =  is chosen from the condition requiring that

the function | 〉  be normalized to the delta function of

energy; Uc is the channel function (74); and  =

Sca , where Sca is the S-matrix element (87).

The protonic, alpha-particle, and cluster decays of
the ground state and low-lying excited states of A0
nuclei are of a deep-subbarrier character, since the

outer Coulomb turning point  determined from

the condition  = ( ) is far off the point RcB

corresponding to the peak of the potential barrier. In

this case, there exists the region RcB ≤ Rc1 < ,
where Gc(Rc) @ Fc(Rc). Since the channel radius Rc0 ,
off which one can disregard short-range nuclear forces,
belongs to this region, it follows from Eq. (86) that the

potential nuclear phase shift  =  –  is much
less than unity. In the region RcB ≤ Rc ≤ Rc1, the complex
asymptotic condition (90) reduces to the real condition

(93)

This makes it possible to replace, over the entire region

Rc ≤ Rc1, the quasistationary function | 〉  corre-
sponding to a complex-valued energy Ei by the time-

independent function | 〉 that is characterized by
a real-valued energy virtually indistinguishable from

the energy  and by the asymptotic behavior as given
by Eq. (93). If Eq. (86) is used, the asymptotic condi-
tion (91) can be recast, apart from a constant, into the
asymptotic condition (93), whence it follows that, over

the entire region RcB ≤ Rc ≤ Rc1, the function | 〉  can
be represented in the form

(94)
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The S-matrix element Saa for the case of elastic scatter-
ing can be expressed in terms of the T-matrix element
Taa as

(95)

where the explicit form of the matrix element Taa can be
obtained [22] from Eq. (11) by going over to a repre-

sentation where the wave function | 〉  possesses fixed
quantum numbers Ii , Mi, and πi and obeys the asymp-
totic boundary condition (94). The result is

(96)

where (Ra) is a spherical Bessel function normalized
to the delta function of energy. By using the theorem of
the redistribution of potentials [1] and taking into
account Eqs. (95) and (96), one can recast the matrix

element  into the form [22]

(97)

where  is a pointlike Coulomb potential and  is
a regular Coulomb radial function normalized to the
delta function of energy. Substituting (94) into (97) and
comparing the resulting expression with the expression

for  corresponding to representation (87), we can

find that the amplitude  of the partial decay width
can be represented as

(98)

Considering that, in the region Rc ≤ Rc1, the function

| 〉  satisfies the Schrödinger equation

we can reduce expression (98) to the form

(99)

By using the method developed above in going over
from Eq. (41) to Eq. (43), we can recast expression (99)
into the form

(100)
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× F̃a Ra( )
d f 0a Ra( )

dRa

---------------------- f 0a Ra( )
dF̃a Ra( )

dRa

--------------------– ,
where the standard cluster form factor f0a(Ra) is defined

as f0a(Ra) = 〈a0| 〉 and where the radius Ra is taken
in the region RaB < Ra ≤ Ra1. Considering that, in this
region, the channel functions |a0〉  and |c0〉  are strictly
orthogonal for c ≠ a and using the asymptotic formula
(93), we represent the form factor f0a (Ra ) as f0a (Ra ) =

Gc (Ra ). Having substituted this representation

of the form factor f0a(Ra) into the expression on the
right-hand side of Eq. (100) and having used the theo-

rem Ga – Fa  = kia , which is valid for radial

Coulomb functions, we reduce the right-hand side of

Eq. (100) to , which coincides with its left-hand side.
This additionally confirms the correctness of Eq. (98). We
note that the structure of expressions (98) and (100)
conforms fully to the ideas of the R-matrix theory of
nuclear reactions [15], provided that time-independent

functions of the type | 〉 are used for the R-matrix
functions Xλ in the internal region of the decaying
nucleus.

Since the operator Waa is equal to unity in the
asymptotic region of large Ra values, expression (100)
can be reduced to the equivalent form

(101)

where (Ra) = f0a(Ra). This means that, in

expression (100), the replacement of the cluster form

factor f0a(Ra) by the new form factor (Ra), accord-
ing to the terminology adopted in [6–8], does not
change the decay width Γia . Previously, this conclusion
was drawn in [25]. In [6–8], the radius Ra in a formula
similar to that in (101) was continued to the internal
region of the A0 nucleus, where the operator Waa differs
substantially from unity. There, the multiparticle shell
function |ϕ0〉 for the A0 nucleus was used for the func-

tion | 〉, while the Coulomb function Fa was
replaced by a function that satisfies a resonating-group-
method equation of the type in (37) not allowing for
polarization terms. Since the amplitude of the form fac-

tor (Ra) considerably exceeds, in the internal
region, that of the conventional cluster form factor
f0a(Ra), it was conjectured in [6–8] that antisymmetri-
zation effects enhance the widths with respect to the
alpha-particle and cluster decays of nuclei. It should be
emphasized that the method used there to continue
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expression (101) to the internal region of the nucleus
was not substantiated consistently. Therefore, it would
be reasonable to investigate this problem on a sounder
basis.

For the system in question, we consider the wave

function | 〉  that is given by Eqs. (12) and (18) and
which corresponds to the scattering problem. By using
Eqs. (79) and (89), this wave function taken at an
energy E close to the resonance energy in the S-matrix
element (87) can be reduced to the form

(102)

If we make use of the approximation where the S-
matrix resonances are isolated in the energy region
under study and consider that all open channels corre-
spond to the deep-subbarrier region, we can disregard
the first and the last term in expression (102) and reduce
it to the form

(103)

A comparison of this formula with that in (94) reveals

that they fully coincide. For the function | 〉  in
(93)—it describes a decaying state in the internal
region of the system—we have the expression

(104)

which correctly reproduces the asymptotic condition

(93) for the function | 〉  if we consider that, in the

region RcB ≤ Rc, the function  coincides with the
irregular Coulomb function normalized to a delta func-
tion of energy.

With the aid of expressions (104) and (75), we can
now calculate the form factor f0a(Ra) appearing in the
definition (100) of the width of the A0 nucleus with
respect to its decay through the channel a. The result is

(105)
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where  = 〈a0 |ϕ0〉  is the cluster form factor for the
shell state |ϕ0〉 . As was indicated above, the operator

 vanishes in the internal region of the decaying
nucleus, whence it follows that, in this region, the form

factor f0a(Ra) coincides with the form factor  in
absolute value, their signs being opposite. In the
asymptotic region of large Ra values, the operators 
and Waa are equal to unity each, so that the form factor
f0a(Ra) is then determined by the second term in expres-
sion (105), but this term reduces, in this region, to an
expression corresponding to formula (93). On this

basis, we conclude that it is the operator —

rather than the operator , which conforms to the
ideas presented in [6–8]—that controls a transition of
the form factor f0a(Ra) from the internal to the asymp-
totic region of a decaying nucleus. We note that, when
we go over to the internal region of a decaying nucleus,

the operator  decreases faster than the opera-

tor .

The above investigation makes it possible to answer
the question that was posed in [22] and which appears
to be one of the key points in evaluating the alpha-par-
ticle-decay and cluster-decay widths of nuclei. In order
to find these widths, it is necessary to know the regime
of interpolation of the form factor f0a(Ra) from the
internal (shell) region of a decaying nucleus, where the
form factor f0a(Ra) coincides with the shell-model form

factor (Ra), to the external (cluster) region, where
decay fragments have already been formed. In [22, 24],
use was made of the interpolation regime where the
amplitude of the form factor f0a(Ra) in the cluster
region was set to the amplitude of the shell-model form

factor  at the external maximum. The ideas devel-
oped in [6–8] actually imply a different interpolation
regime, that in which the amplitude of the form factor
f0a(Ra) in the cluster region is set to the amplitude of the

“new” shell-model form factor (Ra) at its

external maximum. Finally, the above expression (105)
corresponds to the interpolation regime where the
amplitude of the form factor f0a(Ra) in the cluster region
coincides with the amplitude of the reduced shell-

model form factor (Ra) at its external

maximum. This means that, qualitatively, the results
presented in [6–8] remain in force upon the replace-

ment of the operator  by the operator .
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It was shown in [22, 24] that the inclusion of super-
fluid correlations in evaluating the shell-model form

factors  for alpha-particle and cluster decays of
nuclei leads to a considerable increase in the ampli-
tudes of these form factors; as a result, the interpolation
regime used in those studies leads to theoretical alpha-
and cluster-decay widths close to the corresponding
experimental values. Provided that the same shell-

model form factors  are used with allowance for the
superfluid enhancement coefficients as obtained in [22,
24], a transition to the interpolation regime that follows
from expression (105) leads to theoretical alpha- and
cluster-decay widths that exceed the corresponding
experimental values by one order of magnitude for
alpha decay or by many orders of magnitude for cluster
decay. This suggests that, for the widths being studied,
the superfluid enhancement coefficients as obtained in
[22, 24] are exaggerated and that it is necessary to find
a physical motivation for reducing them considerably.
It was shown in [22] that, for alpha decay, the super-
fluid enhancement coefficient is determined by the
effective number N of those shell states of two-identical
nucleons that are coherently summed when these
nucleons form a Cooper pair. The quantity N in turn is
determined by the range r0 of effective nucleon interac-
tion in the particle–particle channel. In the studies
quoted in [22], the superfluid enhancement coefficients
for alpha- and cluster-decay widths were computed
under the assumption that the range r0 is close to the
range of short-range vacuum nucleon–nucleon interac-
tions (r0 = 1.7 fm). It was shown in [26], however, that
the effective nucleon–nucleon interaction in the parti-
cle–particle channel receives a significant contribution
from nucleon–nucleon interaction associated with col-
lective-phonon exchange. The effective range of this
interaction is about the nuclear range . Obviously,
the inclusion of this interaction must substantially
reduce N and, hence, the scale of the superfluid
enhancement of alpha- and cluster-decay widths. Of
course, it is necessary to continue investigations along
these lines.

12. CONCLUSION

By developing, on the basis of explicit expressions
for projection operators, the theory of nuclear reactions
induced by nucleon–nucleus and nucleus–nucleus col-
lisions and the theory of the decay of nuclei emitting
not only nucleons but also various clusters, it has
become possible to obtain a number of new results for
reaction amplitudes and decay widths with due regard
to antisymmetrization effects and to establish relation-
ships between different theoretical approaches in these
realms. In particular, a relationship between the wave
functions used in R-matrix theory and multiparticle
shell-model wave functions for nuclei has been derived,
which has made it possible to describe the regime of

f 0a
sh

f 0a
sh

RA0
interpolation from the internal to the asymptotic region
of a nucleus (knowledge of this regime is necessary for
theoretically calculating the width of nuclear states
with respect to their nucleonic and cluster decays).
Here, the application of the ideas of the theory of open
Fermi systems, which is in fact an extension of the the-
ory of finite Fermi systems [27] and which employs the
formalism of multiparticle Green’s functions to
describe the structural properties of nuclei and nuclear
reactions within the same conceptual framework, has
proved to be very fruitful in analyzing the structure of
form factors in elastic-scattering channels.
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Abstract—Solutions to the pion dispersion equation in the complex plane of the pion frequency ω are obtained
for symmetric nuclear matter. Three well-known solution branches—a sound, a pion, and an isobar one—exist
on the physical sheet at the medium density below its critical value (ρ < ρc). For ρ > ρc, the fourth branch ωc

appears on the physical sheet. The condition  ≤ 0 is valid for this branch (in general, Re  ≤ 0). This sug-
gests ground-state instability, possibly associated with pion condensation. The behavior of these solutions is
analyzed for various medium densities. The appearance of each solution on the physical sheet of the complex
frequency plane and its disappearance are also studied. © 2001 MAIK “Nauka/Interperiodica”.

ωc
2 ωc
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1. INTRODUCTION

Some time ago, much attention was given to the
interesting pion-condensation phenomenon predicted
in [1] (see [2–4]). This prediction was based on the
observation that, with increasing density, one solution
(we denote it by ωc) to the pion dispersion equation

begins to satisfy the condition (k) ≤ 0 (at a nonzero
momentum k). The emergence of such excitations in a
medium requires a rearrangement of the ground state—
there occurs a phase transition.

One version of this rearrangement consisted in that
a pion condensate, specified in one way or another, was
included in the ground state, and this resulted in the
prediction of pion condensation. A great number of
studies were devoted to searches for this phenomenon.
The eventual opinion as expressed in the monograph
[2] was that pion condensation reveals itself weakly
and that it is unlikely to exist (at least, it is not
observed) at normal nuclear densities. Nevertheless,
this phenomenon can substantially affect the equation
of state of matter at higher densities that can be realized
in heavy-ion collisions and in neutron stars.

In this study, we consider in detail solutions to the
pion dispersion equation in the complex plane of fre-
quency ω. This will make it possible to obtain addi-
tional information about solutions to the dispersion
equation. The pion dispersion equation has the form [1]

(1)

where Π is the pion self-energy in a medium. Solutions
to this equation will be constructed on the physical
sheet and on unphysical sheets of the complex plane of
ω. The path from the physical sheet to unphysical
sheets intersects the logarithmic cut that is determined
by the form of the self-energy Π.

ωc
2

ω2
k

2
– mπ

2
– Π ω k pF, ,( )– 0,=
1063-7788/01/6403- $21.00 © 20440
Our basic results are the following. We consider 0–

excitations in symmetric nuclear matter. At the equilib-
rium density, there are three solutions to the dispersion
equation (1): the solution ωs(k) describing the propaga-
tion of spin–isospin zero sound, the isobar solution
ω∆(k), and the pion solution ωπ(k).

On the physical sheet of the complex plane of ω,
Eq. (1) has logarithmic cuts determined by the form of
the self-energy Π. For the sake of clarity, we assume
that the width of the ∆33(1232) isobar with respect to its
decay into a pion and a nucleon is equal to its vacuum
value of Γ∆ = 115 MeV. In this case, all solutions to the
dispersion equation are shifted from the real (or imagi-
nary) axis to the complex plane. Owing to this, it is eas-
ier to trace the behavior of the solutions as functions of
k. In cases of importance, we will consider the effect of
Γ∆ on the solutions ωi(k).

The branches ωs(k), ωπ(k), and ω∆(k) lie on the phys-
ical sheet at the momenta k within the intervals 0 ≤ k ≤
kf , where kf is dependent on the branch type, the
medium density, and the coupling constants. For k ≥ kf,
the solutions go through the cut to unphysical sheets.
Everywhere on the physical sheet, the aforementioned

solutions are such that  > 0 for Γ∆ = 0 and Re  >
0 for Γ∆ ≠ 0.

Our investigation shows that there are sets of solu-
tions on unphysical sheets. With increasing density,
some branches go over to the physical sheet. By way of
example, we indicate that, for pF ≥ 283 MeV (for our
choice of parameter values), a fourth solution branch
ωc(k) appears on the physical sheet. It issues from the
same point as ωπ(k), moving in an unphysical sheet. It
goes over to the physical sheet at k = k1 and returns to
the same unphysical sheet at k = k2. The momenta k1
and k2 are dependent on the density: at the Fermi

ωi
2 ωi

2
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momentum corresponding to the critical density, we
have k1 = k2 . 1.8mπ. It is precisely for ωc(k) that the

condition Re (k) ≤ 0 is satisfied. The solutions
depend on the isobar width: at Γ∆ = 0, the values of ωc

on the physical sheet are purely imaginary and  ≤ 0.

We denote by ρc the critical density at which the
branch ωc first appears on the physical sheet. We have

obtained ρc = 1.2ρ0, with ρ0 = 2 /3π2, where pF0 =
268 MeV, being the equilibrium nuclear density. The
critical density ρc is determined by the parameters of
the theory, by the choice of models for the πNN and
πN∆ vertices, by the effective charges in these vertices,
and by the choice of the self-energy operators (charac-
terized by the degree to which relativistic effects are
taken into account). In the present study, we do not aim
at calculating anew ρc—our objective is to demonstrate
qualitatively how the solution branch that is responsible
for the rearrangement of the ground state appears on the
physical sheet. For this reason, we decided on the cus-
tomary nonrelativistic expressions for all self-energy
operators [1, 5, 6], with the exception of the scalar part
of the self-energy operator (Subsection 2.1).

Our investigation reveals that ωc(k) has a negative
imaginary part on the physical sheet. This is indicative
of extremely strong damping with time rather than of
the accumulation of the corresponding excitations.
However, the fact that, at the critical density ρ = ρc,

there appears a solution such that (k) = 0 for k ≠ 0
means that, in the system being considered, the ground
state, which was used to derive the dispersion Eq. (1),
must rearrange, whereupon (at ρ > ρc) the sign of the
imaginary part of ωc(k) becomes immaterial.

If, in addition, we consider physical processes like
that in Fig. 1, where an external field interacts with a
pion in a medium, the emergence of ωc(k) generates an
irremovable singularity in the integral with respect to
the intermediate energy in the loop in Fig. 1 (see
below). The divergence of such a diagram can have var-
ious physical consequences depending on the type of
external field. By way of example, we indicate that, in
calculating a scalar quark condensate in a medium, a
closed circle in Fig. 1 stands for the interaction of the
quark current with the pion [7]; here, the divergence in
the integral is due to the restoration of chiral symmetry
in nuclear matter at near-critical densities—in our case,
the densities in question slightly exceed nuclear densi-
ties since ρc = 1.2ρ0.

The ensuing exposition is organized as follows.
First, we consider expressions for the particle–hole
self-energy operator Π. Next, we present solutions to
the pion dispersion equation on the physical sheet and
on unphysical sheets of the complex plane of ω: we
show how the solution branches go to unphysical sheets
across the logarithmic cuts of the self-energy operator.
We discuss in detail the behavior of the condensate

ωc
2

ωc
2

pF0
3

ωc
2
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solution ωc at various values of the density ρ and of the
isobar width Γ∆.

2. SELF-ENERGY OPERATOR 
AND ITS SINGULARITIES

In this section, we consider the expression that we
use for the self-energy operator Π, because it differs
somewhat from the conventional expressions from [1,
8]. The total self-energy operator Π is represented as
the sum of the scalar (ΠS) and the vector (ΠP) term:

(2)

2.1. Scalar Self-Energy Operator

The scalar self-energy operator ΠS is constructed on
the basis of the Gell-Mann–Oakes–Renner (GMOR)
relation [9] for the pion mass in matter:

(3)

Here, κ = 〈NM | |NM〉  is the scalar quark condensate
calculated in nuclear matter; mu and md are the masses

of the u and d quarks, respectively; and  is the pion
decay constant in nuclear matter.

The quantity κ can be expanded into a power series
in the density ρ as [7, 10]

(4)

where κ0 = –0.03 GeV3 is the vacuum value of the sca-
lar quark condensate and 〈N | |N〉  . 8 is the matrix
element of the scalar quark condensate between the
nucleon states. In this problem, it is sufficient to retain
the first two terms in expansion (4) (this corresponds to
the gas approximation for κ [10]). From (3), we then
obtain (here, we assume that  = fπ = 92 MeV)

(5)

On the other hand, we can define  in the dispersion
Eq. (1) as

(6)

Π ω k,( ) ΠS ω k,( ) ΠP ω k,( ).+=

mπ*
2 NM〈 |qq NM| 〉 mu md+( )

2 f π*
2

---------------------------------------------------------.–=

qq

f π*

κ κ0 ρ N〈 |qq N| 〉+=

+ higher order terms,

qq

f π*

mπ*
2 mπ

2 ρ
N〈 |qq N| 〉 mu md+( )

2 f π
2

----------------------------------------------.–=

mπ*
2

mπ*
2 mπ

2 Π ω k 0=,( ).+=

1 12

Fig. 1. Diagram representing the interaction of an external
field with pions in a medium.
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Considering that ΠP(k = 0) = 0 and comparing (5) and
(6), we arrive at

(7)

We note that  decreases with increasing medium
density. This reflects the tendency toward the restora-
tion of chiral symmetry in a dense medium. When the
mass  becomes small, it is necessary to take into
account the next terms in expansion (4).

Expression (7) differs significantly from the expres-
sion constructed on the basis of the vacuum S-wave
amplitudes for pion–nucleon scattering [8]. First, the
signs of ΠS are different. A positive value of ΠS

assumes an increase in the pion mass with increasing
density. In terms of the GMOR relation (3), the pion
can become heavier in a medium in the following case.
The constant  in (3) can depend on κ. Within the

Nambu–Jona-Lasinio model [11],  is proportional
to κ, while the pion mass is in inverse proportion to κ
(in the case of  = fπ = const, we would have  ∝
κ). At extremely low densities, we accordingly have

(8)

However, this approximation is valid only as long as, at
very low densities, the pion remains the lightest particle
and its radius rπ ~ 1/fπ is less than the confinement
radius.

2.2. P-Wave Self-Energy ΠP

Following [1, 2, 6, 8], we represent ΠP as the sum of
the nucleon and the isobar self-energy operator; that is,

where ΠN  (Π∆) is the sum of the nucleon–hole (isobar–
hole) loops without a pion in the intermediate state. Let
us now consider the known expressions [1, 2, 8] for ΠN
and rewrite them in a form that is more convenient for
our purposes. We will also analyze the analytic proper-
ties of ΠN and Π∆ in the complex plane of frequency:

(9)

ΠS ρ
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The contribution of nucleon–hole loops is given by

(10)

where Ep = p2/2m. A similar expression can be written

for .

The vertex of pion production by a baryon, ΓπNB, is
taken in the conventional form

(11)

where χ are the nucleon Pauli 2-spinors, s is the
nucleon spin operator; S+ is the operator transforming
the spin of 3/2 into the spin of 1/2, and f∆/N . 2 [8]. A
nonzero baryon size is taken into account through the

form factor dB(k) = (1 – / )/(1 + k
2
/ ).

The constants γNN , γ∆, and γ∆∆ in (9) are expressed in
terms of the effective coupling constants for quasiparti-
cles as [1, 5]

where C0 = π2/( pFm) is the density of states at the
Fermi surface [1, 2].

We present our results for the following parameter
values: ΛN = 0.667 GeV, Λ∆ = 1 GeV;  = 1.0,  =

0.2,  = 0.8, and gA = 1.

We can perform integration in (10) by two methods.

(i) We can integrate the first and the second term

separately. For , we then obtain

(12)
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For 0 ≤ k ≤ 2pF , the function ΦN(ω, k) appearing in
(12) has the form

(13)

while, for k ≥ 2pF , it reduces to the Migdal function

(14)

where a = ω – (k2/2m) and b = kpF/m.

Let us consider the cuts of (ω, k) (12)–(14) in
the complex plane of ω. It is clear that, for k ≤ 2pF , there
are two cuts (we denote them by I and II). The cuts stem
from the first and the second logarithm in (13) and
occur in the intervals

(15)

The cuts of the function ΦN(–ω, k) lie on the nega-
tive semiaxis symmetrically with respect to the cuts in

(15), and  is symmetric with respect to the transfor-

mation ω  –ω. Therefore,  has four cuts in the
complex plane of ω, which are shown in Fig. 2.

When the momentum k grows, approaching 2pF, cut
I becomes shorter and degenerates into a point at k = 2pF;
for k > 2pF, there is only one cut, as follows from (14).

(ii) The other method for performing integration in
(10) is based on a more compact expression obtained

for  upon the substitution θ(p – pF) = 1 – θ(pF – p) =

1 – n(p) in (10). For , we then arrive at the well-
known expression in terms of the Migdal function [1, 2,
8]. This expression has the same form for all values of
the momentum k. Of course, the same expression (12)
is obtained for the two versions of integration. In the

case being considered, however,  has two overlap-
ping cuts in the complex plane ω instead of four. The
cuts cease to overlap for k > 2pF . It can easily be shown
[12] that cut I is merely the sum of two overlapping
cuts. The reason for which so much attention has been
given to the well-known [13] analytic properties of the
self-energy operator is the following. In constructing
solutions to the dispersion Eq. (1), it is much more con-

ΦN ω k,( ) m
k
---- 1

4π2
--------

ωm– k pF+
2

---------------------------- -----




=

– ωm
ωm

ωm k pF– k
2
/2+

--------------------------------------- 
 ln

+
k pF( )2 ωm k

2
/2–( )

2
–

2k
2

-----------------------------------------------------
ωm k pF– k

2
/2–

ωm k pF– k
2
/2+

---------------------------------------
 
 
 

ln




,

ΦN ω k,( ) 1

4π2
--------m*3

k
3

--------- a
2

b
2

–
2

---------------- a b+
a b–
------------ 

 ln ab– ,=

ΠN
0

I( ) 0 ω
k pF

m
--------

k
2

2m
-------;–≤ ≤

II( ) 
k pF

m
-------- k

2

2m
-------– ω

k pF

m
--------

k
2

2m
-------.+≤ ≤

ΠN
0

     ΠN
0

ΠN
0

ΠN
0

ΠN
0

                                                              
PHYSICS OF ATOMIC NUCLEI      Vol. 64      No. 3      2001
venient to deal with one cut than with two overlapping
cuts. When a solution goes to an unphysical sheet under
cut I, we can explicitly indicate (display), in the first
version, that sheet of the Riemann surface where the
solution resides. In the second version, we obtain the
same solution, but it simultaneously resides on the
upper sheet of one cut and on the lower sheet of the
other cut, which overlaps the first one. Since this
encumbers a graphical presentation, we use the expres-

sions (12)–(14) for .

For (ω, k), we have a conventional expression in
terms of the Migdal function (14) with a = ω – (k2/2m) –
∆m and b = kpF /m. Figure 2 shows the cuts of the func-

tion (ω, k). For ω ≥ 0, the cut lies in the interval

(16)

We recall that the cut is shifted to the complex plane by
–iΓ∆/2.

In this study, we use the Landau expression for the
effective mass of the nucleon [14]:

(17)

The parameter f1 is fixed by the condition m( pF = pF0) =
0.8m0, where m0

 

 = 940 MeV. We assume that the mass
difference between the isobar and the nucleon does not
change in the medium: 

 

Re(

 

∆
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 = 292 MeV.

3. SOLUTIONS TO THE DISPERSION EQUATION

In this section, we present solutions to the disper-
sion Eq. (1). Using the same parameter values as in the
preceding section, we have found that 
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and 
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 = 290 MeV. For cases of interest, we also con-
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. We now proceed to dis-
cuss specific results.
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Fig. 3. Branches of solutions to Eq. (1) in the complex plane of ω: (a) zero-sound wave ωs(k), (b) isobar branch ω∆(k) [the horizontal
dashed line depicts cut (16) at pF = 290 MeV for the momentum value at which ω∆ goes under the cut], (c) pion branch ωπ(k) (the
horizontal dashed line has the same meaning as in Fig. 3b), and (d) pion [ωπ(k)] and condensate [ωc(k)] branches at pF = 290 MeV.
The solid curves 1 (2) correspond to pF = 280 (290) MeV. The dashed curves 1 and 2 lie on unphysical sheets.
increasing k, it moves nearly along the real axis and, at
kf = 0.436mπ for pF = 268 MeV (kf = 0.430mπ for pF =
290 MeV), goes over under cut II (15) to an unphysical
sheet of the second logarithm in (13). In Fig. 3‡, the
solution in question is presented up to k = 1.6mπ for
both values of pF . It can be continued still further.

We note that the point where ωs goes over to another
sheet [kf and ωs(kf )] depends on . With decreasing

, kf and ωs(kf ) also decrease (see Appendix).
Branch wD(k). The isobar branch ω∆(k) (see

Fig. 3b) issues from the point ω = ∆m at k = 0 and ter-
minates under the isobar cut (16) at k = 5.1mπ for pF =
268 MeV (k = 4.8mπ for pF = 290 MeV).

Branch wp(k). The pion branch (Fig. 3c) starts at
the point  (5):

(18)

As was mentioned in Subsection 2.1, the point ωπ(k =
0) at which this branch emerges is shifted to the lower
values if we use the GMOR relation for  [9]. The
pion is lighter in nuclear matter than in a vacuum:
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2 ΠS+= =
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----------------------------------------------.–

mπ*
(k = 0) = 0.8mπ (0.74mπ) at pF = 268 (290) MeV. The
pion branch terminates under the isobar cut—this cor-
responds to the picture of pion decay into a nucleon
hole and an isobar. This occurs at k = 3.5mπ for pF =
268 MeV (k = 3.8mπ for pF = 290 MeV).

Branch wc(k). With increasing matter density, there
arises yet another solution ωc(k) on the physical sheet.
Figure 3d shows the pion branch, ωπ(k), and the con-
densate branch ωc(k) at pF = 290 MeV. That section of
ωc(k) which is shown by the dashed curve lies on the
upper unphysical sheet of the logarithmic cut I (Fig. 2).
The branch ωc(k) issues from k = 0 at the same point as
ωπ(k) and moves over the unphysical sheet. The branch
appears on the physical sheet at k = k1 = 1.3mπ and
returns on the same unphysical sheet at k = k2 = 2.3mπ.

We can trace the position of the other solutions in
the momentum interval (k1, k2) and confirm that ωc does
not coincide with any known branch (ωs, ωπ, and ω∆).

At k = 0, all logarithmic cuts of the first and the sec-
ond logarithm in (13) degenerate into a point, and the
dispersion Eq. (1) can have a solution that issues from
this point on the physical sheet and on other sheets as
well. The branch ωc(k) moves over the upper (with
respect to the physical sheet) sheet and appears on the
physical sheet in the region of the momenta k and pF
considered here. A solution that moves over the lower

mπ*
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Fig. 4. Condensate branch ωc(k) in the complex plane of ω [the dashed (solid) curves represent those parts of the solution branches
that lie on the physical (unphysical) sheet]: (a) branch ωc(k) at pF = 290 MeV for the isobar-width values of Γ∆ = (1) 0, (2) 10, (3)
50, and (4) 115 MeV and (b) branch ωc(k) at Γ∆ = 115 MeV for the Fermi momentum values of pF = (1) 280, (2) 290, (3) 300, and
(4) 360 MeV. Only the parts occurring on the physical sheet are displayed for the curves 3 and 4. Curve 1 for pF = 280 MeV com-
pletely lies on an unphysical sheet.
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sheet, not appearing on the physical sheet (this solution
is of no interest for this reason, but it supplements the
pattern of solutions), was presented in [12].

In just the same way as other branches, the branch
ωc greatly depends on the isobar width Γ∆. As the isobar
width decreases, the isobar cut comes closer to the real
axis; as a result, the branches ωs, ωπ, and ω∆ will then
have imaginary parts that are accordingly reduced. At
Γ∆ = 0, the branches ωs, ωπ, and ω∆ become real. At
the same time, the branch ωc(k) approaches the imag-
inary axis with decreasing Γ∆ (Fig. 4‡); at Γ∆ = 0, we
arrive at a pure imaginary solution on the physical

sheet:  ≤ 0.

Figure 4b displays the branch ωc(k) for various den-
sities (pF = 280, 290, 300, 360 MeV). At pF = 280 MeV
(that is, at ρ < ρc), the solution (curve 1) has not yet
appeared on the physical sheet.

It was mentioned above that, owing to the invariance
of expression (1) under the substitution ω  –ω,
both ωi(k) and −ωi(k) are solutions to the dispersion
equation. Let us examine Fig. 1, which was discussed
in the Introduction. The integral with respect to the
energy of the internal loop corresponds to integration
along the real axis in Fig. 4. At the critical density ρc,
the branch ωc(k) is tangent to the real axis at one point.
At ρ = ρc and Γ∆ = 0, ωc(k)2 = 0, and the branch ωc(k) is
tangent to the real axis at the origin. The symmetric
branches ωc(k) and –ωc(k) then grasp the integration
contour at k = k1 = k2. As a result, there arises an irre-

ωc
2
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movable singularity leading to the divergence of the
relevant integral [7]. If Γ∆ ≠ 0, the integration leads to a
result depending on Γ∆ and having a characteristic den-
sity dependence near ρc [7, 15].

It would be of interest to discuss the physical con-
tent of ω

 

c

 

(

 

k

 

)

 

, but this solution occurs on an unphysical
sheet; its very emergence on the physical sheet implies
a phase transition in nuclear matter. Nevertheless, it is
possible to consider in more detail that cut of the self-
energy operator through which this solution appears on
the physical sheet. Let us return (15) and rewrite cut II
in the form
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appears through cut I, the instability of the ground state
is realized owing to the transition of nucleons from
occupied states below the Fermi surface to the Fermi
surface. This result is supplemented with the result of
an analysis of the Pomeranchuk stability conditions in
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the Appendix. There, we exhibit the solution branch ωP
that ensures instability of the ground state when the val-
ues of the strength constants do not satisfy the stability
condition. It turns out that ωP comes on the physical
sheet through cut I as well.

4. CONCLUSION

We have considered in detail solutions to the pion
dispersion equation. We have shown that, in addition to
known 0– solution branches (a zero-sound, a pion, and
an isobar one), there is a fourth branch ωc(k) satisfying

the condition  ≤ 0. Therefore, it is the solution that
is responsible for the instability of the matter ground
state. This instability can be treated, for example, as the
onset of pion condensation. We have demonstrated that,
at densities below the critical value, ρ < ρc, the branch
ωc(k) lies on an unphysical sheet; it appears on the
physical sheet at ρ ≥ ρc.
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APPENDIX

The method the we have used to analyze the above
solutions can be applied to a well-known case. Let us
consider zero-sound waves in symmetric nuclear mat-
ter that consists of nucleons.

The stability condition for such waves in matter was
obtained by Pomeranchuk in 1958 [16]. The meaning
of this condition is that the frequencies of excitations in

ωc
2
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Fig. 5. Zero sound in nucleon matter (pF = 268 MeV) in the
complex plane of ω for g' = (1) 1.0, (2) 0.3, (3) 0.1, and
(4) 0.0001 and g' = (1m) –1.0, (2m) –0.3, (3m) –0.1, and
(4m) –0.0001.
the system must be positive. In symmetric nuclear mat-
ter governed by effective interaction between quasipar-
ticles (in absence of tensor forces [17]), the stability
condition takes the same form for all effective-interac-
tion constants [5]:

(A.1)

We consider the zeroth harmonics of the interaction
(l = 0). The stability condition then assumes the form

(A.2)

Saperstein proposed checking the validity of condition
(A.2) in our case. In terms of the solutions to the disper-
sion equation for the zero-sound wave, we have

(A.3)

The breakdown of condition (A.2) would then be asso-
ciated with the emergence of a divergent solution at g' <
–1/2. The function ΦN is defined by Eqs. (13) and (14).
If, for a Fermi liquid consisting of a single particle spe-
cies, we consider the limit k, ω  0 and denote s =
ωm/pF k, Eq. (A.3) reduces to the well-known equation
for sound frequencies,

where f0 is the coupling constant for the scalar or the
spin–spin interaction of quasiparticles. We will solve
Eq. (A.3) by varying g'. It is clear from Fig. 5 that, as g'
is reduced from unity to zero, the branches go over to
an unphysical sheet at lower momenta kf and lower val-
ues of ωs(kf ). The dotted curves in Fig. 5 show those
segments of the branches that lie on the unphysical
sheet. We emphasize once again that the branch ωs goes
to the unphysical sheet through cut II (15). For negative
values of g', we obtain solution branches lying in the
lower half-plane of the same unphysical sheet.

We define v = 1/g'. The results of the calculations
then show (see Fig. 5) that, when v decreases smoothly
from large values of 104 to zero and further to –104 (v =
104, 10, 10/3, 1, –1, –10/3, –10, –104), the solution
branches successively transform into one another
(4  3  2  1; upon the reversal of the sign of
v, we move to the branch 1m and further have the
sequence 2m  3m  4m). The branch ωs(k) does
not exhibit any singularity that could result in a phase
transition.

There is, however, yet another set of solution
branches for (A.3); we denoted it by ωP(k). These are
pure imaginary solutions [Re(ωP(k)) = 0], which lead to
instability. They lie on an unphysical sheet for g' > –1/2
and appear on the positive imaginary semiaxis of the
physical sheet for g' < –1/2 (Fig. 6). These branches
come to the physical sheet from under cut I—that is,
from the lower sheet of the Riemann surface of the first
logarithm in (13). From Fig. 6, it can be seen that, for
g' > –1/2, these solutions are under the cut (on the lower

1
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2l 1+
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1 2g' 0, g' 1/2.–> >+
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unphysical sheet) and that, for g' < –1/2 ωP(k), they
appear on the physical sheet in the upper half-plane.
Thus, we have demonstrated that divergent solutions
appear among solutions to Eq. (A.3) for g' < –1/2; that
is, the matter ground state is unstable at those values of
the constants g' that do not satisfy condition (A.2).
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Abstract—Nuclear anapole moments and axial neutral currents are calculated for a set of nuclei. The accuracy
of the leading approximation is studied in detail. The core polarization renormalizing both the anapole moment
and the axial current is treated in the random-phase approximation with effective forces. Parameters of parity-
violating nuclear forces are discussed. The experimental value of the anapole moment of the 133Cs nucleus as
extracted from data with allowance for axial-current renormalization is found to be κ = 0.39 ± 0.06. © 2001
MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The existence of parity nonconservation in atoms
has been firmly established at present (see, for example,
[1]). To be precise, it is nuclear-spin-independent par-
ity-nonconservation effects in heavy atoms that have
received the most detailed study. These effects are
enhanced in proportion to Z2Q. The last enhancement
factor, the so-called weak nuclear charge Q, which is
numerically close to the number of neutron, N = A – Z,
is due to the fact that, in nuclear-spin-independent phe-
nomena, all nucleons act coherently. 

As to the atomic parity-nonconservation effects
dependent on the nuclear spin, they obviously do not
have this coherent enhancement and are therefore much
smaller. There are strong reasons to expect that these
effects are dominated by the contact electromagnetic
interaction of electrons with the nuclear anapole
moment [2, 3].

An anapole is a new electromagnetic moment aris-
ing in a system that has no center of inversion [4]. It
exists even in such a common object as a chiral mole-
cule in a state with a nonzero angular momentum [5]. A
nuclear anapole moment is induced by parity-noncon-
servation nuclear forces.

The first measurement of the anapole moment of
cesium was reported in [6]. An immediate application
of this measurement was an attempt at deducing the
pion–nucleon weak parity-nonconserving coupling
constant fπ [7, 8]. A comparison of the measured ana-
pole moment with that calculated by using a purely sin-
gle-particle model leads to an fπ value that is four times
as great as that deduced from a measurement of parity-
violation in 18F [9]. A more sophisticated comparison
was performed in [10], where the results for 18F, the
anapole moment of 133Cs, and the upper bound on the
anapole moment of 205Tl [11] were used to deduce the

  * This article was submitted by the author in English.
** e-mail: dmitriev@inp.nsk.su
1063-7788/01/6403- $21.00 © 0448
parity-nonconserving coupling constants fπ and fρ. A
combination of the coupling constants was found that
satisfies both the 18F and the 133Cs experiment and
which is consistent with theory. However, these values
are inconsistent with the constraint obtained from a
measurement for 205Tl. This situation, even indepen-
dently of 18F experiments, raises the question of how
accurate the theory of nuclear anapole moments is.

Although the anapole moment makes the largest
contribution to spin-dependent parity-nonconserving
interaction of atomic electrons with a nucleus, other
contributions must be calculated in order to determine
accurately the anapole moment. The interaction of the
vector electron current with the nuclear axial current is
the largest of these [12]. The nuclear axial current is
proportional to the isovector component of the nuclear
spin. It is determined predominantly by the spin of a
valence nucleon. However, the core polarization
changes this value, and this effect must also be taken
into consideration. Here, we present a calculation of the
nuclear anapole moment and the nuclear axial current
using the random-phase approximation with effective
short-range nuclear forces.

2. LEADING APPROXIMATION 
FOR THE NUCLEAR ANAPOLE MOMENT 

AND ITS ACCURACY

Parity-nonconserving interaction in a system mixes
opposite-parity states of the same total angular momen-
tum and creates a spin helical structure in it [1, 4]. In
this way, such a system with a nonzero magnetic
moment acquires a specific magnetic-field configura-
tion of the type created by a toroidal winding. This is
what is referred to as an anapole [4].

The anapole-moment vector can be conveniently
defined as [1–3]

(1)a π d3rr2 j r( ),∫–=
2001 MAIK “Nauka/Interperiodica”
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where j(r) is the current-density operator. The vector
potential produced by the anapole moment is

(2)

In calculating the anapole moment of a heavy
nucleus, we begin with the shell model and the single-
particle approximation. We assume that the nuclear
spin I coincides with the total angular momentum of an
odd valence nucleon and that the other nucleons form a
core with zero angular momentum. The effective P-odd
potential for an external nucleon can be represented as

(3)

where s and p are, respectively, the spin and the
momentum operator of the valence nucleon, while ρ(r)
is the density of core nucleons that is normalized by the
condition  = A (the atomic number is assumed
to be large, A @ 1). In the case of an external proton, the
numerical value of the dimensionless constant gp is
likely to be about 4 to 5 (see below). For an external
neutron, the corresponding constant gn is smaller, most
probably gn ! 1.

The leading approximation for the anapole moment
of a heavy nucleus corresponds to the disregard of the
spin–orbit component of the single-particle nuclear
potential and to the assumption that the density ρ(r) is
constant in space and that it coincides with the mean
nuclear density ρ0. This approximation, first used in
[13], is reasonable if the wave function of the external
nucleon is basically localized in the core region. The
Schrödinger equation for the external nucleon,

(4)

has, to first order in W, the elementary solution (recall
that we assume here that ρ(r) = ρ0 = const)

(5)

where ψ0(r) is the unperturbed wave function of the
external nucleon. Simple calculations using Eqs. (1)
and (5) yield the anapole moment for the spin current
density in the form

(6)

where l is the orbital angular momentum of the external
nucleon. Its mean-squared radius 〈r2〉  is very close to
the squared charge radius of the nucleus:

(7)

Setting ρ0 = (4π /3)–1 and using (6), we finally obtain
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The 
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 dependence of the anapole moment is very natu-
ral. Since the anapole corresponds to the magnetic-field
configuration induced by a toroidal winding, the ana-
pole-moment value must indeed be proportional to the
magnetic flux—that is, to the cross-sectional area of the
torus. This is the origin of 
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 in Eq. (6) and of 
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 in
Eq. (8). The Fermi constant 
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 serves as a natural unit
for the anapole moment, which arises in the first order in
weak interaction, and has dimensions of cm

 

2

 

. In terms of
this unit, a convenient characteristic of the nuclear ana-
pole moment for the atomic-parity-nonconservation
problem is the dimensionless constant 

 

κ

 

 defined as
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where 

 

e

 

 is an elementary charge. According to (8), this
constant is [3]
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The enhancement in proportion to 
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2/3

 

 compensates, to
a large degree, the small fine-structure constant 

 

α

 

 =
1/137. That is why the nuclear anapole moment is per-
haps the main source of nuclear-spin-dependent parity-
nonconservation effects in heavy atoms [2, 3].

To estimate the accuracy of the leading approxima-
tion, we have calculated the admixture of opposite-par-
ity states 
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) using the total single-particle potential
and a realistic nuclear density. The correction 
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be represented in the form
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. The results are different for
two components of the spin–orbit doublet. For the
upper level of the spin–orbit doublet, a typical differ-
ence between exact 
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the leading approximation, is shown in Fig. 1
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. The dif-
ference is insignificant. The main contribution to the
difference comes from the spin–orbit component of the
potential. For the lower state of the doublet, the differ-
ence in the peak heights can reach a factor of two, as
can be seen from Fig. 1  b  . In all cases, the exact correc-
tion and the leading approximation peak near the sur-
face. However, the ratio of the peak heights differs con-
siderably for the upper and the lower states of spin–orbit
doublets. In calculating the contribution of core nucleons
to the anapole moment, we therefore use exact 
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)
instead of that in the leading approximation.

3. MANY-BODY CONTRIBUTION 
TO THE ANAPOLE MOMENT

The effect of core nucleons on the nuclear anapole
moment is twofold. First, core polarization reduces the
single-particle anapole moment. The reduction is due to
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Fig. 1. Admixture of an opposite parity, δR(r) for various components of the spin–orbit doublet: (a) results for the 2d3/2 level and
(b) results for the 1g9/2 level. The solid curves were computed in the leading approximation. The dashed curves represent an exact
solution.
the repulsive nature of the residual spin–spin interac-
tion. Second, core nucleons produce an additional con-
tribution to the anapole moment owing to parity viola-
tion in the single-particle orbitals occupied by core
nucleons. This contribution compensates partly for the
reduction due to core polarization.

A convenient way to describe core polarization is to
use the effective renormalized operators or effective
fields in terms of the theory of finite Fermi systems [14].
In the random-phase approximation, effective fields are
solutions to a set of integral equations describing the par-
ticle–hole renormalization of the bare vertex.

The anapole moment is a T-odd operator. Thus, the
effective two-particle interaction involved in anapole-
moment renormalization must change sign under T
inversion of one of the two particles:

The simplest interaction satisfying this condition is the
same spin–spin interaction that changes nuclear mag-
netic moments:

(12)

Here, C is the normalization constant that we set,
according to [14], C = 300 MeV fm3; we choose  =
1.01 and g0 = 0.63.

The effective interaction between the valence and
the core nucleons changes the interaction of the valence
nucleon with an external field, producing an additional
core field. In the theory of finite Fermi systems, this
effect is taken into account by introducing a dressed
effective vertex V that satisfies the equation [14]

(13)

where V0 is the bare anapole-moment operator

(14)
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and A is the static polarization loop of a particle–hole pair,

(15)

Here (e) is the single-particle nucleon propagator.
In (13), F is the sum of spin–spin interaction (12) and
the effective weak interaction:

(16)

Interaction (16) generates a mean-field weak potential
(3) with the interaction constants

(17)

The propagator (e) must be calculated in the total
mean-field potential, including the weak potential (3).
Strictly speaking, the effective interaction constants gab,
gba, and  must be found from experimental data. On
the other hand, they can be estimated by using the initial
finite-range parity-nonconserving interaction [15] in the
zero-range limit with allowance for short-range particle–
particle repulsion [3, 16]. These “best”-value estimates
lead to gn ! 1, while the constant gp is approximately 4.5. 

It is convenient to disentangle weak-interaction
effects treating them explicitly in the first order of per-
turbation theory. Let δV be a correction to the vertex
from weak forces. For the unperturbed vertex V and the
correction δV, we have the equations

(18)

(19)

where Fw is the weak nucleon–nucleon interaction (16).
The anapole-moment value is given by

(20)
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V V0 Fs
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δV

Fs

W

FsFs
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FwδV

+=
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(I)

W

(a) (b) (b') (c)

(II)

Fig. 2. Feynman diagrams corresponding to equations (18) and (19). (I) The anapole moment renormalization diagram describing
the core polarization effects. The closed circle is the bare anapole operator, and the open triangle is the dressed one. The open square
is the spin–spin residual strong interaction. (II) Additional contribution to the anapole moment due to the parity violation in the core
states: (a) direct contribution of the two-particle effective PNC interaction, (b and b') effective contribution due to parity violation in
the core states, and (c) renormalization diagram. A shaded circle is the single-particle PNC interaction. The shaded square is the two-
particle effective PNC interaction. The shaded triangle is the additional contribution δV.
The Feynman diagrams corresponding to (18) and (19)
are shown in Fig. 2. Equation (18), which is illustrated in
the upper part of Fig. 2 (diagrams I), describes the conven-
tional renormalization of the bare operator V0 in the ran-
dom-phase approximation. The next Eq. (19), which is
illustrated in the lower part of Fig. 2 (diagrams II),
describes an additional contribution from core nucleons
that arises both from the direct P-odd nucleon–nucleon
interaction Fw [see Fig. 2 (IIa)] and from the P-even resid-
ual interaction via the admixture of opposite-parity states
to the wave functions of core nucleons [see Fig. 2 (IIb and
IIb')]. The last term in Eq. (19) [see Fig. 2 (IIc)] is respon-
sible for the renormalization of these contributions.

The values of the anapole moment that result from
solving Eqs. (18) and (19) are compiled in Table 1. For
the sake of comparison, the single-particle values κs.p.
are listed in the second column of this table. The results
of the present calculations are listed in the last column.
One can see that the core-polarization contribution is
about half of the single-particle one and that its sign is
opposite to sign of the single-particle contribution. This
is in accord with the repulsive nature of the residual
spin–spin interaction [see Eq. (12)]. In this case, the
core is responsible for the screening of the valence-
nucleon spin. The terms proportional to the weak-inter-
action constants gab come from δV. They compensate
partly for the reduction induced by core polarization.

The anapole moment of the 133Cs nucleus is κtheor =
0.16 for the “best” values of the weak-interaction con-
stants. This value is to be compared with the experi-
mental value κexpt. To extract this value from data, it is
necessary to estimate other spin-dependent parity-non-
conservation effects.
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4. NUCLEAR AXIAL CURRENT

The nuclear neutral axial current is proportional to
the isovector-spin operator:

(21)

The main contribution to the expectation value of the
isovector spin comes from the valence odd nucleon
since the spin of the core is zero. This single-particle
value analogous to the Schmidt values of nuclear mag-
netic moment is

(22)

where the plus and the minus sign correspond to the
proton and the neutron, respectively. The core polariza-
tion changes this value in the same way as it changes
the anapole and the magnetic moments. Moreover, the

A s jτ j
3.

j 1=

A

∑∼

s〈 〉 I I 1+( ) l l 1+( )– 3/4+
I I 1+( )

---------------------------------------------------------I,±=

Table 1. Anapole moments calculated for the listed nuclei

Nuclei κs.p. × 102 κ × 102

Odd proton nuclei
133Cs 4.9gp + 0.65gpn 2.9gp + 0.18gn + 0.36gpn – 0.02gnp
205Tl 7.8gp + 0.85gpn 4.3gp + 0.1gn + 0.64gpn – 0.06gnp
209Bi 5.4gp + 0.96gpn 2.5gp + 0.3gn + 0.57gpn – 0.04gnp

Odd neutron nuclei
135Ba –6.5gn – 0.25gnp –0.1gp – 4.6gn + 0.01gpn – 0.19gnp
137Ba –6.5gn – 0.25gnp –0.2gp – 5.7gn + 0.01gpn – 0.23gnp
207Pb –9.6gn – 0.16gnp –0.1gp – 6.7gn + 0.01gpn – 0.14gnp
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equations for isovector-spin renormalization are identi-
cal to those for the renormalization of the spin compo-
nent of the magnetic moment. They correspond to the
diagrams in Fig 2 (I).

Although no direct isovector-spin data exist, we can
use the analogy between the magnetic moment and the
isovector spin to extract some information about the
isovector-spin expectation value. The idea is that the
spin part of the magnetic moment is an almost pure
isovector. The isoscalar contribution is less than 20%.
On the other hand, the orbital part of the magnetic
moment is much less affected by the core polarization,
and pure single-particle values can be used for it. On
the basis of these considerations, we can extract, just
from magnetic-moment data, the expectation value of
the isovector spin to within 20%. The results of this
procedure, together with the results of theoretical cal-
culations, are summarized in Table 2. The second and
the third column of this table display the magnetic
moment and its single-particle or Schmidt values. The
fourth and the fifth column present the single-particle
values of the isovector spin and the values extracted
from the magnetic moments. The last column gives the
results of our calculations.

The agreement between the calculated values of the
isovector spin and those extracted from the magnetic
moment is satisfactory within the accuracy of the
extraction procedure. The only case that shows signifi-
cant deviations is that of 209Bi. The reason can be found
in the large orbital angular momentum of the valence
proton. Although it is not renormalized itself by the
core polarization, it can produce, owing to the spin–
orbit potential, an additional contribution to the spin
part of the magnetic moment in higher orders in the
residual interaction [see Eq. (12)].

The total spin-dependent κ value extracted from the
data in [6] is κ = 0.44 ± 0.06 [17]. The contribution of
the nuclear axial current based on the single-particle
value of –0.78 was found in [17] to be 0.06. Therefore,
the anapole-moment contribution was 0.37 ± 0.06 if we
take into account other small spin-dependent effects.
Our renormalized value for the axial nuclear current
leads to a slightly larger value of κ = 0.39 ± 0.006 for
the anapole moment of the 133Cs nucleus.

Table 2. Isovector spin calculated for the listed nuclei

Nuclei µexp µs.p (στ3)s.p (στ3)exp (στ3)theor

Odd proton nuclei
133Cs 2.58 1.72 –0.78 –0.43 –0.46
205Tl 1.63 2.79 1 0.44 0.57
209Bi 4.11 2.62 –0.82 –0.20 –0.43

Odd neutron nuclei
135Ba 0.84 1.15 0.6 0.48 0.41
137Ba 0.94 1.15 0.6 0.53 0.51
207Pb 0.59 0.64 0.33 0.32 0.25
5. PARITY-NONCONSERVING INTERACTION 
CONSTANTS

As was mentioned above, the constants gab and 
of the parity-nonconserving interaction (16) must be
treated as phenomenological ones and must be found
from experimental data. However, we can try to relate
them to the parameters of the free nucleon–nucleon
interaction [15]. The relevant relations are [16]

(23)

where

are the dimensional constants, µ is the isovector

nucleon magnetic moment, and  and fπ are the parity-
nonconserving rho–nucleon and pion–nucleon cou-
plings. The dimensionless factors Wρ and Wπ were
introduced to normalize the matrix elements of the
interaction in (16) to the matrix elements of the original
finite-range interaction [15].

Following [10], we plot, in Fig. 3, the extracted val-

ues of coupling constants  and  in the notation of
Adelberger and Haxton [9]. They are related to fπ and

 as

where gπ and gρ are the strong-coupling constants. The
bands corresponding to the 205Tl and 133Cs data are
slightly different from those extracted in [10], where
our previous results from [18] were used to determine
the coupling constants from the anapole-moment data.

Our improved calculations did not change the gen-
eral situation. The coupling constants extracted from
the 133Cs and 205Tl data are still inconsistent indepen-
dently of the 19F data. This situation eventually raises
the question of how reliable the theory of the nuclear
anapole moment is. Our calculation has been per-
formed in the random-phase approximation. There are
two more calculations including many-body effects
[19, 20] within the shell-model approach. In [20], the
shell-model basis used to calculate the anapole moment
of 205Tl was sufficiently large to take into account
simultaneously the single-particle anapole moment and
core-polarization effects. The value obtained in [20] for
the spin component of the anapole moment of 205Tl is
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κs = 0.35. Our calculation, where we have used the
completely different quasiparticle interaction and the
random-phase interaction, yields κs = 0.37 for the best
values of the coupling constants. Such close values
obtained within the completely different approaches
give sufficient grounds to hope for a weak model
dependence of the anapole moment, although we can-
not rule out the possibility that this is merely a coinci-
dence.

The relation between the effective parity-noncon-
serving-interaction constants and the meson–nucleon
coupling constants given by Eq. (23) is less reliable.
The normalization factors Wπ and Wρ were determined
by comparing the matrix elements of the interaction
(16) and the finite-range Desplanques–Donoghue–Hol-
stein interaction [15] for low-energy N4He scattering.
Therefore, we can hardly expect them to be constant in
a broad range of all bound single-particle states. There
is an additional reason why Eq. (23) can be become
invalid. As was shown in [21, 22], the parity-noncon-
serving nucleon–nucleon interaction can be strongly
renormalized in nuclear media. As a result, the neutron
parity-nonconserving-potential constant gn, which is
small according to estimates based on Eq. (23), can be
comparable with the proton constant gp (see also dis-
cussion in [23]). From this point of view, measurements
sensitive to gn would be extremely interesting. These
could be measurements of the anapole moment of a
nucleus with an odd neutron or, another possibility,
measurement of neutron spin rotation in helium [24].

In order to obtain the measured value of the anapole
moment of 133Cs, the parity-nonconserving-interaction
constants [see Eq. (16)] should be increased approxi-
mately by a factor of 2 in relation to their best values
[see Eq. (23)]. It is interesting to note that a similar con-

8

4

0

–4
–4 0 4 8

H1
π × 106

H
0
ρ × 106

Fig. 3. Regions allowed for the weak-coupling constants

 and  extracted from (light shading) 18F, (medium

shading) 205Tl, and (dark shading) 133Cs experiments. Also
shown are the Desplanques–Donoghue–Holstein [15]
(small closed square) best values and (large open rectangle)
“reasonable range.”

Hπ
1

Hρ
0
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clusion was drawn from a statistical analysis of parity-
nonconservation effects in compound nuclei [25].

ACKNOWLEDGMENTS

The discussions with I.B. Khriplovich are greatly
appreciated. The contribution of the late V.B. Teterin
was invaluable in this field.

This work was supported by the Russian Foundation
for Basic Research (project no. 98-02-17797).

REFERENCES
1. I. B. Khriplovich, Parity Nonconservation in Atomic

Phenomena (Gordon and Breach, London, 1991).
2. V. V. Flambaum and I. B. Khriplovich, Zh. Éksp. Teor.

Fiz. 79, 1656 (1980) [Sov. Phys. JETP 52, 835 (1980)].
3. V. V. Flambaum, I. B. Khriplovich, and O. P. Sushkov,

Phys. Lett. B 146B, 367 (1984).
4. Ya. B. Zel’dovich, Zh. Éksp. Teor. Fiz. 33, 1531 (1957)

[Sov. Phys. JETP 6, 1184 (1957)].
5. I. B. Khriplovich and M. E. Pospelov, Z. Phys. D 17, 81

(1990).
6. C. S. Wood et al., Science 275, 1759 (1997).
7. W. C. Haxton, Science 275, 1753 (1997).
8. V. V. Flambaum and D. W. Murray, Phys. Rev. C 56,

1641 (1997).
9. E. G. Adelberger and W. C. Haxton, Annu. Rev. Nucl.

Part. Sci. 35, 501 (1985).
10. W. S. Wilburn and J. D. Bowman, Phys. Rev. C 57, 3425

(1998).
11. P. A. Vetter et al., Phys. Rev. Lett. 74, 2658 (1995).
12. I. B. Khriplovich, Yad. Fiz. 31, 1529 (1980) [Sov. J.

Nucl. Phys. 31, 793 (1980)].
13. Curtis F. Michel, Phys. Rev. 133B, 329 (1964).
14. A. B. Migdal, Theory of Finite Fermi Systems and Appli-

cations to Atomic Nuclei (Nauka, Moscow, 1982).
15. B. Desplanques, J. F. Donoghue, and B. R. Holstein,

Ann. Phys. (N.Y.) 124, 449 (1980).
16. O. P. Sushkov and V. B. Telitsin, Phys. Rev. C 48, 1069

(1993).
17. I. B. Khriplovich, Usp. Fiz. Nauk 167, 1213 (1997)

[Phys. Usp. 40, 1161 (1997)].
18. V. F. Dmitriev and V. B. Telitsin, Nucl. Phys. A 613, 237

(1997).
19. W. C. Haxton, E. M. Henley, and M. J. Musolf, Phys.

Rev. Lett. 63, 949 (1989).
20. N. Auerbach and B. A. Brown, Phys. Rev. C 60, 025501

(1999).
21. V. V. Flambaum and O. K. Vorov, Phys. Rev. C 49, 1827

(1994).
22. V. V. Flambaum and G. F. Gribakin, Prog. Part. Nucl.

Phys. 35, 423 (1995).
23. B. Desplanques, Phys. Rep. 297, 1 (1998).
24. V. F. Dmitriev, V. V. Flambaum, O. P. Sushkov, and

V. B. Telitsin, Phys. Lett. B 125B, 1 (1983).
25. S. Tomsovich, Mikkel B. Johnson, A. Hayes, and

J.D. Bowman, Phys. Rev. C 62, 054607 (2000).



  

Physics of Atomic Nuclei, Vol. 64, No. 3, 2001, pp. 454–464. Translated from Yadernaya Fizika, Vol. 64, No. 3, 2001, pp. 509–519.
Original Russian Text Copyright © 2001 by Baldo, Lombardo, Saperstein, Zverev.

                                                      

90th ANNIVERSARY OF A.B. MIGDAL’S BIRTHDAY
NUCLEI

                                                            
Simple Microscopic Model for the Scalar–Isoscalar Component
of the Landau–Migdal Amplitude

M. Baldo1), U. Lombardo1), E. E. Saperstein, and M. V. Zverev2)

Russian Research Centre Kurchatov Institute, pl. Kurchatova 1, Moscow, 123182 Russia

Received July 12, 2000

Abstract—A simple microscopic model is proposed that describes the coordinate dependence of the zeroth
harmonic f0(r) of the scalar–isoscalar component of the Landau–Migdal amplitude. In the theory of finite Fermi
systems due to Migdal, such a dependence was introduced phenomenologically. The model presented in this
study is based on a previous analysis of the Brueckner G matrix for a planar slab of nuclear matter; it expresses
the function f0(r) in terms of the off-mass-shell T matrix for free nucleon–nucleon scattering. The result involves
the T matrix taken at the negative energy value equal to the doubled chemical potential µ of the nucleus being
considered. The amplitude f0(r) found in this way is substituted into the condition that, in the theory of finite
Fermi systems, ensures consistency of the self-energy operator, effective quasiparticle interaction, and the den-
sity distribution. The calculated isoscalar component of the mean nuclear field V(r) agrees fairly well with a
phenomenological nuclear potential. Owing to a strong E dependence of the T matrix at low energies, the poten-
tial-well depth V(0) depends sharply on µ, increasing as |µ| is reduced. This effect must additionally stabilize
nuclei near the nucleon drip line, where µ vanishes. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The theory of finite Fermi systems, which was
developed by A.B. Migdal in the early 1960s and which
was set forth in the monograph [1], still appears to be
the most consistent many-body approach to the theory
of the nucleus. Conceptually, it is close to Fermi liquid
theory due to Landau [2], where the amplitude for qua-
siparticle scattering at zero angle near the Fermi sur-
face, the so-called Landau amplitude, plays the role of
effective quasiparticle interaction. For liquid 3He—the
main object to which Landau theory is applied—the
Landau amplitude is the sum of two invariant compo-
nents, a scalar and a spin one (f and g, respectively).
Each of these depends only on one variable, the angle θ
between the momenta of scattered particles. In Landau
theory, the invariant amplitudes are expanded in series
in Legendre polynomials Pl(cosθ), the expansion coef-
ficients, so-called harmonics, being treated as phenom-
enological parameters of the theory. The first terms are
unambiguously related to physical observables. For
example, the zeroth harmonic f0 of the scalar amplitude
determines the compressibility of a Fermi liquid, while
its first harmonic f1 controls the effective mass, by vir-
tue of the so-called Pitaevskiœ identity [3]. In liquid
helium, the effective mass differs strongly from the
bare mass, whence it follows that the harmonic f1 is
great. Higher harmonics of the Landau amplitude

1) Istituto Nazionale di Fisica Nucleare, Sezione di Catania, Corso
Italia 57, I-95129 Catania, Italy.

2) Moscow State Engineering Physics Institute (Technical Univer-
sity), Kashirskoe sh. 31, Moscow, 115409 Russia.
1063-7788/01/6403- $21.00 © 20454
decrease slowly with increasing l. This is due to special
physical reasons, which will not be discussed here.

In nuclei, there are also isospin variables, in addition
to spin variables, so that the structure of effective qua-
siparticle interaction is more complicated. The relevant
analog of the Landau amplitude is referred to as, by
convention, the Landau–Migdal amplitude. In the stan-
dard notation adopted in the theory of finite Fermi sys-
tems, its central component has the form

(1)

where s and t are the spin and isospin Pauli matrices.
The normalization factor C0 in (1) is equal to the
inverse density of states near the Fermi surface: C0 =
(dn/dεF)–1. Following the prescription from [4], we will
use the value of C0 = 300 MeV fm3. It can be seen that
there are now four invariant amplitudes: a scalar–isos-
calar, a scalar–isovector, a spin–isoscalar, and a spin–
isovector one.

Of course, expression (1) is a very rough approxi-
mation of the Landau–Migdal amplitude for actual
nuclei. In order to describe phenomena associated with
spin variables—especially at high momentum trans-
fers—this expression must be supplemented with spin–
orbit and tensor terms. The general tensor structure of
the full Landau–Migdal is rather complicated [5], but
there are many nuclear-physics problems that are virtu-
ally independent of spin–orbit and tensor amplitudes.
These include the problems of calculating the total
energy of a nucleus, the central part of the mean field,
and the distribution of the nucleon density in a
nucleus—that is, problems that are considered within

F C0 f f 't1 t2 g g't1 t2⋅+( )s1 s2⋅+⋅+[ ] ,=
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self-consistent theory of finite Fermi systems [4, 5]. For
these, it is sufficient to use the central amplitude in
(1)—more precisely, its first two terms, f and f '. Only
the zeroth and the first harmonics of these amplitudes
are usually retained in the theory of finite Fermi sys-
tems. Even the first harmonics f1 and  are small,
which follows from the fact that the effective masses of
neutrons and protons in nuclei are close to their vacuum
values (and, hence, to each other). There is also exper-
imental evidence for the smallness of higher harmon-
ics. By way of example, we indicate that the presence
of the second harmonic f2 leads to the dependence of
the mean nuclear field on the nucleon orbital angular
momentum l, but this dependence has not been
observed experimentally.

We can see that, in one aspect, the Landau–Migdal
amplitude for intranuclear nucleons is even simpler
than the Landau amplitude for liquid helium, but there
is another aspect, that which is associated with finite
dimensions of nuclei and which generates additional
complications due to a strong dependence of the zeroth
harmonic f0 of the scalar–isoscalar amplitude f on the
observation point r. Within the theory of finite Fermi
systems [1], such a dependence was introduced on the
basis of an analysis of experimental data for various
quantities. In particular, it is necessary for simulta-
neously describing isotopic and isomeric shifts of lev-
els in conventional atoms and in mesic atoms and the
quadrupole moments of odd nuclei [6]. In [1], it was
proposed to use the simplest form of such a depen-
dence,

(2)

where ρ(r) is the nuclear density at the point r and ρ0 =
ρ(r = 0). It should be emphasized that expression (2)
was considered in [1] as a simple interpolation ansatz

for describing a transition from the internal value  of

the scalar–isoscalar amplitude to the value  outside
the nucleus rather than the actual density dependence.
What is of fundamental importance here is that the

parameters  and  differ greatly: the dimension-

less constant  is approximately equal to –3, while

 is close to zero. If these constants were on the same
order of magnitude, the dependence of the type in (2)
could be of importance only for a precise description of
a vast array of experimental data because the contribu-

tion of  is proportional to the small surface-to-vol-
ume ratio; therefore, it must be retained in the matrix
elements of effective interaction only owing to a large
numerical value of the constant itself.

Phenomenological Skyrme forces, which have
remained popular so far and which are used within the
Hartree–Fock method relying on effective interactions
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[7], yield results that are equivalent to those produced
by the ansatz in (2). There also exist alternative ver-
sions of an interpolation formula of the type in (2), for
example,

(3)

where the exponent α is not equal to unity. But in each

case, the parameters  and  differ considerably.
Modified Skyrme forces, which are often used at
present, correspond to a density dependence of the
form (3) with α = 2/3 or 1/3.

We note that a density dependence of a somewhat
more general form was introduced in [8, 9] for the
isovector–scalar amplitude f ' in order to obtain a
detailed description of the masses and radii of some
long isotope families (Pb, Ba, Sn, etc.). There, the
parameters ( )in and ( )ex are of the same sign and
differ in magnitude by a factor of about 2. It goes with-
out saying that, at the precision to which the properties
of nuclei were described theoretically within the period
when the monograph of Migdal [1] was written, this
distinction could not be noticed.

The problem of microscopically calculating the
constants of the theory of finite Fermi systems (that is,
the parameters that determine the Landau–Migdal
amplitude) was formulated even in the pioneering
monograph of Migdal [1]. The majority of attempts
along these lines have been based on the Brueckner the-
ory of nuclear matter (see, for example, [10, 11]) and
have been aimed at calculating exclusively the internal
values of the invariant amplitudes in terms of the
Brueckner G matrix. Brueckner theory describes rea-
sonably most of the constants of the theory of finite

Fermi systems, but it fails to reproduce an  value
close to zero. The inclusion of polarization corrections
to Brueckner theory cannot improve this situation sub-
stantially [12].

On the other hand, an analysis of expression (2) in
[13, 14] on the basis of Brueckner theory was per-
formed for the surface region of nuclei. The external

constant values  and ( )ex and the analogous
parameters of the spin amplitudes g and g' were calcu-
lated there by considering that the conditions for the
applicability of Brueckner theory are improved in the
surface region. Indeed, it can easily be shown that, with
increasing distance from the nucleus, the polarization
corrections die out faster than the correlation term in
the equation for the G matrix. Owing to this, Brueckner
theory becomes asymptotically exact. At the same time,
the G matrix tends asymptotically to the free T matrix.
As a result, the surface values of the Landau–Migdal
amplitude are expressed in terms of the off-mass-shell
T matrix for free nucleon–nucleon scattering at the neg-
ative energy E = 2µ, where µ is the chemical potential

f 0 r( ) f 0
ex

f 0
in

f 0
ex

–( ) ρ r( )
ρ0

----------- 
  α

,+=

f 0
in

f 0
ex

f 0' f 0'

f 0
in

f 0
ex

f 0'



456 BALDO et al.
of the nucleus being considered [13, 14]. If we treat the

constant  in relation (2) as the asymptotic value of
f0(r) for r  ∞ and if we use the same conjecture for
other invariant amplitudes, then such a calculation of
these parameters in terms of the free T matrix can for-
mally be considered to be exact. Obviously, such calcu-
lations cannot provide the answer to the question of
how fast the asymptotic regime is reached. That the
constants found in [13, 14] proved to be very close to
their phenomenological values suggests that this occurs
immediately beyond the nuclear boundary.

In order to obtain a more detailed description of the
behavior of the function f0(r) in the surface region, it is
necessary to calculate precisely the G matrix for a
nucleus. A method was developed in [15] for solving
the Bethe–Goldstone equation for the G matrix charac-
teristic of a planar slab of nuclear matter. However, it
proved to be very difficult to construct a full solution to
the problem, so that this equation was solved only for
some particular cases. Here, we will make use of the
results presented in [15] to develop a simple micro-
scopically motivated model for f0(r). This model is for-
mulated in Section 2. In Section 3, the proposed model
for f0(r) is used to calculate the central component of
the mean nuclear field V(r) on the basis of the condition
of self-consistency of the theory of finite Fermi systems
[5, 16]. In the same section, the Landau–Migdal ampli-
tude and the mean field induced by it are analyzed as func-
tions of the chemical potential of the nucleus being con-
sidered. The main conclusions are presented in Section 4.

2. MOTIVATION OF A SIMPLE MICROSCOPIC 
MODEL FOR f0(r)

We proceed from the simplest version of Brueckner
theory, where the Landau–Migdal amplitude is deter-
mined in terms of the G matrix as

(4)

where Z(r) is the renormalization factor in the single-
particle Green’s function & (Z factor). This G matrix
obeys the Bethe–Goldstone equation, which takes con-
sistently into account two-particle correlations in a
nuclear medium. Symbolically, it has the form

(5)

where 9 is the potential of pair interaction of free
nucleons, while A is the two-particle propagator, an
integral of the product (&

p
&

p
) of two-particle compo-

nents of the single-particle Green’s function with
respect to the relative energy. We note that the propaga-
tor for the Bethe–Goldstone equation does not involve
the two-hole contribution (&

h
&

h
).

It is convenient to renormalize Eq. (5) with the aid
of the off-mass-shell T matrix describing the scattering

f 0
ex

F r1 r2 r3 r4, , ,( )

=  Z r1( )Z r2( )Z r3( )Z r4( )G r1 r2 r3 r4; E, , , 2µ=( ),

G E( ) 9 9A E( )G E( ),+=
of free nucleons at the negative energy E = 2µ and
obeying the Lippmann–Schwinger equation

(6)

where Afr(E) is the propagator for two free nucleons
whose total energy is E.

The renormalized Bethe–Goldstone equation has
the form

(7)

Let us analyze qualitatively Eq. (7) as applied to the
surface region of a sufficiently heavy nucleus. It is
obvious that, at large distances from the nucleus, (A –
Afr)  0, so that the G matrix asymptotically tends to

the T matrix. At the same time, the constant  in rela-
tion (2) is also the asymptotic value of the amplitude
f0(r) for r  ∞. This circumstance was used in [13,

14] to calculate  and the analogous external values
of other invariant components of the Landau–Migdal
amplitude (1) in terms of the free T matrix in the singlet
and in the triplet S-wave channel. As was indicated in
the Introduction, such a calculation is formally exact,
but there remains the problem of assessing the rate of
convergence to this asymptotic regime. In order to
resolve this problem and to reproduce the Landau–
Migdal amplitude in the surface region more precisely,
it is necessary to solve directly Eq. (5) or (7) for the G
matrix.

A method was developed in [15] for solving the
Bethe–Goldstone equation for a planar slab of nuclear
matter placed in a well created by an external potential
V(x) in the one-dimensional Woods–Saxon form with
realistic nuclear parameters. This system makes it pos-
sible to reproduce the surface properties of nuclei rea-
sonably well. In this formulation, the problem can be
considerably simplified by using the coordinate repre-
sentation only in the direction of the x axis and the
momentum representation in the plane orthogonal to it
(that is, in the slab plane, denoted as the s plane).

A further simplification is associated with the use of
a separable version [17, 18] of the Paris nucleon–
nucleon potential [19]. Previously, this version was
tested in calculations based on the Brueckner method
that were performed for infinite and semi-infinite
nuclear matter (see [20, 21] and [22, 23], respectively).
The last two studies were devoted to the problem of sin-
glet pairing, where it is legitimate to consider only zero
value of the total momentum P⊥  of two nucleons in the
s plane.

The quantity P⊥  appears as a free parameter in the
Bethe–Goldstone equation, but it should be noted that,
in calculating the Landau–Migdal amplitude on the
basis of Eq. (4), there arises an integral over all possible
values of P⊥ . Because of this, the relevant numerical
calculations are extremely cumbersome and have yet to
be fully performed. As a matter of fact, the calculation

T E( ) 9 9A
fr

E( )T E( ),+=

G T T A A
fr

–( )G.+=

f 0
ex

f 0
ex
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of the G matrix in [15] was performed precisely at P⊥  =
0 and approximately at one specific nonzero value of
P⊥ , whose choice will be discussed below. Here, we
will use these results to substantiate microscopically a
simple model for the scalar–isoscalar amplitude f0(r).

Presented immediately below are those basic points
of the calculation from [15] that are necessary for
understanding the ensuing analysis. For the simpler
case of the 1S0 singlet channel, the potential from [17,
18] has the 3 × 3 separable form

(8)

The 3S1 triplet channel is known to be strongly cou-
pled to the 3D1 channel; therefore, a separable expan-
sion of the type in (8) for S = 1 must be generalized with
allowance for channel coupling [17]. As a result, the
form factors gi(k2) are replaced by the two-component
columns

(9)

where L is the orbital angular momentum of relative
motion in the c.m. frame. In the 3S1–3D1 channel, use
was made here of the 4 × 4 PEST4 potential from [17].
For the sake of brevity, we present explicit expressions
only for the singlet channel, suppressing, as a rule, the
index S = 0. A formal transition to the S = 1 triplet chan-
nel is accomplished by making the substitution gi 

 in all the relations involved.

The G matrix was sought [15] in the mixed coordi-
nate-momentum representation by using the ansatz

(10)

where the form factors gi( , x) in the mixed represen-
tation are determined as the inverse Fourier transforms

of the quantities gi(  + ) in the variable kx . In the
direction of the x axis, we have introduced the obvious
notation X and X ' for the c.m. coordinates and x and x'
for the relative coordinates prior to and after the scatter-
ing event, respectively.

A similar expansion is valid for the T matrix as well;
that is,

(11)

9 k k',( ) λ ijgi k
2( )g j k'

2( ).
ij

∑=

ĝi k
2( ) gi

L 0=
k

2( )

gi
L = 2

k
2( ) 

 
 
 

,=

ĝi

G k ⊥
2

k ⊥'
2

P⊥ ; x1 x2 x3 x4; E, , , , ,( )

=  Gij X X '; E P⊥, ,( )gi k ⊥
2

x,( )g j k ⊥'
2

x',( ),
ij

∑

k ⊥
2

k ⊥
2

kx
2

T k ⊥
2

k ⊥'
2

P⊥ ; x1 x2 x3 x4; E, , , , ,( )

=  Tij X X '– ;  E P ⊥ ,( ) g i k ⊥ 
2

 x ,( ) g j k ⊥ ' 
2

 x ' ,( ) , 

ij

 ∑                                       
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the coefficients Tij being of course dependent only on
the difference t = X – X ' of the c.m. coordinates. Substi-
tuting Eqs. (10) and (11) into (7), we arrive at the set of
one-dimensional integral equations

(12)

where

(13)

is the difference of the convolution Blm of the two-par-
ticle propagator A with the form factors gl and gm and

the analogous convolution  for the free propagator
Afr. The explicit expressions for the integrals Blm and

 can be found in [15].

In analyzing the Landau–Migdal amplitude near the
nuclear surface, we make use of the circumstance that,
in the region being discussed, all the momenta are
small, so that we can restrict our consideration to S-
wave scattering. In the same approximation, we can
retain only the zeroth harmonics of the Landau–Migdal
amplitude,

(14)

in which case relation (4) takes the form

(15)

where

 

(16)

 

Recalling the physical meaning of the Landau–
Migdal amplitude, which describes the interaction of
nucleons near the Fermi surface, we conclude that the
quantity 

 

G

 

(

 

r

 

i

 

)

 

 appearing in the integrand in (16) should
be interpreted in some indirect way—namely, the use
of the mixed coordinate–momentum representation
[15] dictates that the absolute values of the momenta
must be fixed at the local Fermi momentum 

 

k

 

F

 

(

 

r

 

) =

 

 in the classically allowed region spec-
ified by the inequality 

 

µ
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V
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 > 0. We note that we must
set 

 

k

 

F

 

(

 

r

 

)

 

 = 0 in the classically forbidden region [23].
A localized representation of the 

 

G

 

 matrix in the
planar-slab model is especially simple at 

 

P

 

⊥

 

 = 0. In the
singlet channel, it has the form [15]
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where

(18)

is a cutoff zeroth moment. For details associated with
the need for introducing a cutoff in the integral in
Eq. (18) and with the choice of value for the parameter
tc , the reader is referred to [15].

For the triplet channel, the quantity similar to that in
Eq. (17) for the average of the G matrix becomes a 2 ×
2 matrix in angular-momentum space; that is,

(19)

It was shown in [15], however, that terms involving L =
2 or L' = 2 are small within the slab; at the surface, they
are negligibly small. For this reason, we will retain only

the leading term 〈 〉(X) ≡ 〈 〉00(X).

The analogs of the averages (17) and (19) of the T
matrix are given by

(20)

where the zeroth moments of the T matrix are intro-
duced in the conventional way (without cutoff):

(21)

Gij
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Fig. 1. Scalar–isoscalar combinations of the components of
the G matrix, γf (X) (solid curve), and the T matrix, tf (X)
(dashed curve), at P⊥  = 0. The dotted curve represents the

combinations γf (X) calculated at  = 0.656 fm–2.P⊥
2

–2

–4

2 6 10 X, fm

γ f (X)

0

By gi for S = 1 in Eq. (20), we mean the form-factor

components . Recall that we consider here the
case of P⊥  = 0. Since we will subsequently have to dif-
ferentiate relations (20) and (21) with respect to the
energy E, it is written down explicitly as the argument
in these relations. Needless to say, the variable E = 2µ
is implied in all the relations (15)–(19).

Let us introduce the dimensionless averaged com-
ponents of the G matrix in the singlet and in the triplet
channel as

(22)

The analogous quantities for the T matrix are given by

(23)

A detailed comparison of the G matrix and the T
matrix was drawn in [15] for the singlet and the triplet
channel individually. Here, we make use of the results
presented in [15] in order to perform a direct compari-
son of those combinations of these components that
correspond to zero spin and zero isospin in the particle–
hole channel:

(24)

(25)

Obviously, these are the combinations that enter into
the scalar–isoscalar amplitude f0 (this is indicated by
the subscript f).

The quantities obtained by averaging, near the
Fermi surface, the combinations (24) and (25) of the G
matrix and the T matrix are compared in Fig. 1 for a
planar slab at P⊥  = 0. It can be seen that the two curves
are close to each other everywhere, with the exception
of the region adjacent to the surface, where the quantity
γf (X) exceeds tf (X) in absolute value by a factor of
about 2. Also shown in Fig. 1 is the quantity γf (X) at the

value of  = 0.656 fm–2, for which the calculations
were performed in [15]. This value was chosen on the
basis of the following considerations. An accurate
method for averaging over P⊥  in calculating f0(X) for a
slab [or f0(r) for spherical nuclei] on the basis of Eq. (4)
has yet to be developed. It is only obvious how we can
do this in the asymptotic region off the slab (nucleus),
where we can set P⊥  = 0, and within the slab, where we
can use a method that is virtually identical to that within
infinite nuclear matter and which involves integration
with respect to P⊥  from 0 to 2kF. In dealing with the sur-
face region, it must be considered that, for actual spher-
ical nuclei, the orthogonal momentum in planar-slab
geometry corresponds to the angular momentum. The
result for f0(r) will then involve a sum over all possible

gi
L = 0

γ0 1, X E,( ) 1
C0
------ GF

S = 0, 1〈 〉 X E,( ).=

t0 1, X E,( ) 1
C0
------ TF

S = 0, 1〈 〉 X E,( ).=

γ f X E,( ) 3
16
------ γ0 X E,( ) γ1 X E,( )+( ),=

t f X E,( ) 3
16
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P⊥
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values of the total two-particle orbital angular momen-
tum +. Strictly speaking, the definition introduced
above for the local Fermi momentum kF(r) is valid only
for + = 0. For + ≠ 0, the classical turning point beyond
which we set kF(r) = 0 is displaced toward smaller val-
ues of r. Obviously, this is of importance only for points
such that r . R, where R is the radius of the nucleus
being considered. At a fixed value of +, we then have

 = +(+ + 1)/R2. In heavy nuclei from the region
around 208Pb, the maximal values of the single-particle
orbital angular momentum, lmax, are 6 to 7. Accord-
ingly, we have +max = 12–14. In order to assess the role
of nonzero values of P⊥ , it is therefore reasonable to
take the intermediate value of + = 6, as was done in
[15]. Setting R = 8 fm (the half-width of the slab in

[15]), we obtain the  value quoted above.

From Fig. 1, it can be seen that a nonzero P⊥  value
affects insignificantly the value of f0(X), but that it lev-
els out the distinction between the f0(X) values at the
surface that were calculated in terms of the G matrix
and in terms of the T matrix corresponding to P⊥  = 0.
The shape of the curve for nonzero P⊥  beyond the slab
boundary is of no concern because only zero value of
+ and, hence, zero value of P⊥  survive in the classically
forbidden region. It follows that, upon a correct averag-
ing over P⊥ , the result of the calculation for f0(X) on the
basis of Eq. (4) must be very close to the result obtained
by applying the simplest recipe relying on the substitu-
tion G  T(P⊥  = 0).

Obviously, the definitions in (17) and (19) and those
that follow can be applied to a sufficiently heavy spher-
ical nucleus upon the substitution X  r.

In the approximation of S-wave scattering, the
zeroth harmonics of the invariant components of the
Landau–Migdal amplitude can easily be found from
(15) in terms of the functions γ0(r) and γ1(r). As a result,
we obtain

(26)

(27)

(28)

(29)

Strictly speaking, relations (26)–(29) are valid only
far off the nucleus being studied, where we have

f0(r)   [ (r)  ( )ex, etc.], on one hand, and
where the quantities γ0, 1 go over to t0, 1, on the other
hand. In Eq. (20), we must set kF = 0 and gi = 1, so that
the functions t0 and t1 reduce to mere numbers at a fixed

P⊥
2

P⊥
2

f 0 r E,( ) 3
16
------Z

2
r( ) γ0 r E,( ) γ1 r E,( )+( ),=
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------Z

2
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------Z

2
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value of µ, Moreover, it is legitimate to assume that Z =
1 in this region. It is the way in which the above rela-
tions were used in [13, 14] to determine the parameters

 and so on. At µ = –8 MeV, we have t0 = –4.60 and
t1 = –9.38 [13, 14]. The substitution of these values into
the expressions on the right-hand sides of (26)–(29)
yields

(30)

These values, found in [13, 14], reproduce
extremely well the empirical constants of the theory of
finite Fermi systems (see the relevant discussion in [13,
14]). This suggests that the asymptotic relation G = T
becomes valid sufficiently fast. Another argument in
support of this is provided by the results in Fig. 1,
which were computed in [15]. On the basis of the above
discussion of the data in this figure, we can replace
γ0, 1(r) by t0, 1(r) on the right-hand side of Eq. (26).

Thus, we conclude that, to a high precision, the sca-
lar–isoscalar amplitude f0(r) can be approximated by
the expression

(31)

which is fully determined by the potential of free-
nucleon interaction and which is microscopic in this
sense.

In support of the model specified by Eq. (31), we
can also adduce the following simple consideration.
Within the self-consistent theory of finite Fermi sys-
tems [4, 5], the scalar–isoscalar component f0(r) of the
Landau–Migdal amplitude determines the central part
of the mean nuclear potential, and the accuracy to
which it is reproduced is the main criterion for correctly
choosing the form of the function f0(r). In calculating
the mean field V(r) in the next section, we will rely on
the exact many-body condition of the self-consistency
of the theory of finite Fermi systems [5, 16]. The sim-
plest form of this condition for spherical nuclei is

(32)

where ρ(r) is the isoscalar nuclear density. We can eas-
ily integrate Eq. (32) with f0(r) in the form (2) [or in the
more general form (3)]. The result is

(33)

At r = 0, this yields

(34)
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It follows, in particular, that a soft density depen-
dence corresponding, for example, to α = 2/3 should be
preferred to the harder linear interpolation (2). Let us
dwell on this point at some length. By taking the realis-
tic nuclear values of V(0) = –50 MeV and ρ0 = 0.16 fm–3

and setting  = –2.62 [see Eq. (30)], we arrive at

 . 0.6 at α = 1 and  . 0 at α = 2/3. However, the

first value of the constant  can be rejected since it
leads to an overly great value of K . 400 MeV for
nuclear-matter compressibility, a value that is approxi-
mately twice as large as experimental values of K = 150–
200 MeV, which were extracted from data on giant reso-
nances [24]. The above compressibility factor is related

to the constant  by the well-known Migdal formula

(35)

where the extra factor of 9, which is absent from the
corresponding formula in [1], was introduced in order
to reduce the normalization of K to that which is used
most often in the current literature and which was
adopted in [24]. From Eq. (35), it follows that the con-

stant  can take either a value close to zero or a small
negative value.

In accordance with the aforesaid, expression (31)

guarantees a correct value of the external constant ,

but it can lead to an error in . Since the contribution

of | | in relation (34) is one order of magnitude

greater than the contribution of | |, even a 100% error

in the quantity  would lead to only a 10% error in the
well depth V(0).

3. DEPENDENCE OF THE MEAN NUCLEAR 
FIELD OF THE CHEMICAL POTENTIAL

In this section, the proposed model expression (31)
for the scalar–isoscalar Landau–Migdal amplitude is
used to calculate the central part of the mean nuclear
potential. Our consideration is based here on the exact
many-body condition that, for a finite Fermi system
that is bound in the absence of external fields, ensures
consistency of the self-energy operator Σ, the effective
interaction, and the single-particle Green’s function &.
This condition is a corollary of a spontaneous break-
down of translation invariance and has the form

(36)
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=  
ε'd

2πi
-------- r1 r1' 8 r r' r1 r1' ; ε ε', , , ,( )

∂& r1 r1' ; ε',( )
∂R1

---------------------------------,dd∫
where R = (r + r')/2, R1 = (r1 + )/2, and 8 is the NN-
interaction block irreducible in the particle–hole chan-
nel.

Within Brueckner theory, we can set 8 = G, and the
approximation specified by Eq. (31) is equivalent to the
condition

(37)

From the above equations, it is obvious that the quan-
tity tf actually depends on the total energy E = ε + ε'. In the
same approximation, we have Σ(r, r'; ε) = Σ(r; ε)δ(r – r');
in a spherical system, the mean field then has the form

(38)

By taking into account (37), we can approximately
recast Eq. (36) into the form [5]

(39)

If the normalization factor Z(r) in the Green’s func-
tion is known, we find from (38) and (39) that the cen-
tral part of the nuclear potential can be represented as

(40)

In principle, the consistency condition (36) can also
be used to compute the Z factor Z(r). However, esti-
mates show that this quantity, which involves the deriv-
ative of the effective interaction with respect to energy,
is more sensitive to details than the mean potential, so
that the substitution G  T is questionable in this
case. For the Z factor, we will therefore use, for the time
being, the phenomenological expression [5]

(41)

where  = ( )2/2m [the normalization value is  =
π2/(mC0)] and the dimensionless constant α2 is equal to
–0.25.

The ensuing calculations are performed as follows.
For the nucleus being considered, we first take an input
mean field in the Woods–Saxon form

(42)

with realistic nuclear-parameter values of V0 = 50 MeV
and d = 0.65 fm and with the potential radius of
R = r0A1/3 (here, r0 = 1.1 fm and A is the mass number).
By way of example, we consider the value of A = 200.
For a preset potential well and a fixed value of the
chemical potential µ, we determine the local Fermi
momentum kF(r) at each point and the function in (25).
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The density ρ(r) is also taken in the simplest Fermi
form

(43)

where the density radius  = R – ∆ is less than the
potential radius by the value of ∆ = 0.5 fm. The constant
ρ0 is determined by the normalization to the total num-
ber of particles.

Figure 2 shows the scalar–isoscalar component f0(r)
of the Landau–Migdal amplitude according to Eqs. (31)
and (41). For the sake of comparison, we also present
the phenomenological amplitude (2) as calculated in [5,
25]. This amplitude can be determined by doubly dif-
ferentiating the effective quasiparticle Hamiltonian of
the self-consistent theory of finite Fermi systems.
Referring the interested reader to [25] for the explicit
form of this Hamiltonian, we only present here the
eventual expressions for the first derivative, which is
nothing but the mean field V(r), and the second deriva-
tive, which represents the amplitude f0(r); that is,

(44)
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Fig. 2. Scalar–isoscalar component f0(r) of the Landau–
Migdal amplitude: (solid curve) results of the calculation
within the microscopic model proposed in the present study
and (dashed curve) phenomenological amplitude in the self-
consistent theory of finite Fermi systems [5]. 
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where

(46)

(47)

We note that the normalization density ρ0 appearing in
(46) is determined by the normalization Fermi momen-

tum  introduced in (41) and can be somewhat differ-
ent from the density ρ0 in (43). For the sake of simplic-
ity, we have omitted here gradient terms: their inclusion
would have been meaningful if we had addressed the
problem of comparing the detailed behavior of the phe-
nomenological amplitude and the detailed behavior of
the microscopic amplitude, but we do not pursue this
goal here. Moreover, we discarded terms that vanish
upon the substitution of the phenomenological param-
eter values adopted in [5] (α0 = –3.25, α1 = –α2 = 0.25,
γ = 3.21). Returning to the data in Fig. 2, we notice that,
in the internal region, the two amplitudes are close to
zero and that they behave similarly in the surface
region, revealing distinctions of about 15% in the exter-
nal region.

Figure 3 shows the mean field V(r) calculated by
three methods: (i) on the basis of relations (40) and
(41); (ii) by integrating Eq. (32) with the Landau–
Migdal amplitude f0(r) as given by (31) (solid curve in
Fig. 2); and (iii) by formula (44) [we recall that this
mean field corresponds to the amplitude f0(r) (45)
depicted by the dashed curve in Fig. 2]. The distinctions
between the results represented by the three curves (of
about 15%) can be treated as a rough estimate of the
accuracy of the proposed simple model.

µ ρ( ) = 
kF

2 ρ( )
2m* ρ( )
-------------------

C0 α0Z ρ( )ρ γZ
2 ρ( )ρ2

/ 2ρ0( )+( )

1 4C0α2ρ/εF
0

–
-------------------------------------------------------------------------------,

m
m* ρ( )
---------------- Z ρ( ) 1 C0α1Z ρ( )ρ/εF

0
+( ).=

kF
0

Fig. 3. Mean field V(r) as calculated (solid curve) by for-
mula (40), (dashed curve) by means of integration of
Eq. (32) with the amplitude given by (31), and (dotted
curve) by formula (44).
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All the interaction amplitudes considered here (the

constant  above all) depend on energy; therefore,
the mean nuclear field must depend on the chemical
potential µ of the nucleus under study. Let us analyze
this dependence in some detail. For various values of µ,

the table presents values of  and of some other
quantities that characterize f0(r). The constants t0 and t1
both grow in absolute value with decreasing |µ| because
of the approach to the T-matrix pole in energy (a virtual
pole at S = 0 and a real, deuteron, pole at S = 1). It is
natural that the effect is stronger in the second case. The

constant , which is proportional to the sum of t0 and
t1, also grows fast. On the basis of relation (34), which
is of course approximate, we can state that, with
decreasing |µ|, the nuclear potential well must become

deeper. Instead of the constant , the combination
(25) of the S = 0, 1 components of the T matrix that is
taken at the point r = 0 and which is proportional to this
constant is presented in the fourth column. Actually, the

f 0
ex

f 0
ex

f 0
ex

f 0
in

Parameters determining the Landau–Migdal amplitude f0(r)
versus the chemical potential µ

µ, MeV t0 t1 tf(r = 0)

–10 –4.40 –8.21 –0.26 –2.36

–9 –4.49 –8.72 –0.26 –2.48

–8 –4.60 –9.38 –0.25 –0.14 –2.62

–7 –4.74 –10.24 –0.25 –2.81

–6 –4.91 –11.43 –0.26 –3.06

–5 –5.13 –13.23 –0.27 –3.44

–4 –5.44 –16.30 –0.30 –4.08

–3 –5.90 –22.91 –0.37 –5.40

–2 –6.66 –49.02 –0.67 –10.44

f 0
in f 0

ex

Fig. 4. Mean field V(r) calculated by formula (40): (solid
curve) results of the calculation at |µ| = 8 MeV and results
of the calculation at |µ| = 4 MeV for V0 = (dashed curve) 50
and (dotted curve) 46 MeV.
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constant , differing from it by the factor Z(r = 0)2, is
quoted only for the chemical-potential value of µ = 8
MeV, at which the Z factor is known. At present, we are
unable to indicate a reliable method for establishing the
µ dependence of the Z factor. Estimates show that, with
decreasing |µ|, it decreases in magnitude, so that the

values of  in the lower part of the table are expected
to be less than |tf (r = 0)| by approximately one order of
magnitude. Anyway, it is clear that, in estimating the

well depth on the basis of relation (34), the term 

can be disregarded against the term .

Figure 4 illustrates variations in the potential well
for the nucleus in response to the reduction of the abso-
lute value of the chemical potential down to |µ| = 4 MeV.
In order to avoid encumbering the picture, we present
here the results obtained by only one method, that
which is based on relation (40). When |µ| is reduced
within the computational procedure used, which fixes
the depth V0 of the well of the input Woods–Saxon
potential (42), we can see two effects. The first is the
growth of the absolute values of the constants t0 and t1.
The second is an increase in the local Fermi momentum
kF(r), the form factors in Eq. (20) changing accord-
ingly. In order to eliminate the second effect, we have
performed an alternative calculation where, changing
µ, we varied accordingly the well depth V0 (from 50 to
46 MeV) in such a way as to ensure invariability of the
difference V(r) – µ, which appears in kF(r). The result
of this calculation is represented by the dotted curve in
Fig. 4. We can see that, with decreasing |µ|, the poten-
tial well becomes much deeper, the effect from the vari-
ation in kF(r) being much weaker than the direct energy
dependence of the T matrix. In this connection, it
should be noted that the present calculation is not fully
self-consistent since the resulting potential differs from
the input one (especially at small values of |µ|). A pro-
cedure that would ensure full self-consistency is very
complicated and must include a recipe for calculating
densities for a preset potential. In the present study, we
did not aim at developing such a procedure. On the
basis of the analysis illustrated in Fig. 4, we can expect,
however, that rendering the procedure self-consistent
would not induce any qualitative changes in the result
because the effect that we found is due primarily to the

direct energy dependence of the constant . The
results of a more systematic analysis of the amplitude
f0(r) and the mean nuclear potential as functions of µ
are illustrated in Fig. 5. It can be seen that the effect
being considered is very large at extremely small values
of |µ|. Estimates show that it is somewhat exaggerated
in the present rough calculation and that the inclusion
of the energy dependence of the Z factor must weaken
the chemical-potential dependence of the potential.
However, the result does not change qualitatively, and

f 0
in

f 0
in

f 0
in

f 0
ex

f 0
ex
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it is necessary to take this result into account in analyz-
ing nuclei far off the beta-stability valley.

4. CONCLUSION

A simple microscopic model has been proposed for
the zeroth harmonic of the scalar–isoscalar component
f0(r) of the Landau–Migdal amplitude, which is usually
introduced phenomenologically in Migdal’s theory of
finite Fermi systems. In constructing the model, we
relied on Brueckner theory, where the Landau–Migdal
amplitude is expressed in terms of the G matrix. In the
surface region of nuclei, which determines, to a great
extent, the form of the function f0(r), the conditions of
applicability of Brueckner theory are better satisfied
than in the interior of nuclear matter. We can therefore
hope that the accuracy of the present approach is higher
than the accuracy of Brueckner theory for nuclear mat-
ter. On the basis of the analysis performed previously
[15] for the Brueckner G matrix in a planar slab of
nuclear matter, we have investigated the combination of
the G matrices for spin values of S = 0 and 1 that corre-
sponds to zero spin and zero isospin in the particle–hole
channel. It has been shown that this quantity, which
determines the scalar–isoscalar component f0(r) of the
Landau–Migdal amplitude, is approximately equal to
the analogous combination of the off-mass-shell T
matrices for free nucleon–nucleon scattering at the neg-

Fig. 5. Scalar–isoscalar component f0(r) of the Landau–
Migdal amplitude (upper panel) and mean nuclear potential
V(r) (lower panel) according to the calculation at various
values of the chemical potential: |µ| = (solid curve) 8, (long
dashes) 6, (dotted curve) 4, and (short dashes) 2 MeV.
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ative energy of E = 2µ. The resulting amplitude f0(r)
induces the mean nuclear field V(r), which, at µ =
−8 MeV, agrees reasonably well with the phenomeno-
logical nuclear potential. Since the T matrix depends
sharply on E at small energies, the depth V(0) of the
computed potential well increases greatly with decreas-
ing |µ|. This effect is of importance for analysis of sta-
bility of nuclei near the nucleon drip line, where µ van-
ishes.
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Abstract—The Q-phonon scheme developed on the basis of the algebraic collective nuclear model is dis-
cussed. It is shown that, within this scheme, low-lying collective states of even–even nuclei can be described to
a precision higher than 90% of the norm by using one or, at maximum, two components of the Q-phonon basis
constructed by applying a fixed number of the quadrupole operators Q to the exact ground state of the system.
Various applications of this approximate scheme are discussed. It is shown that, by using this scheme, the rela-
tions between several E2-transition probabilities or between the energies of the collective states can be derived.
It is also shown that the Q-phonon scheme can be used to extract information about the equilibrium shapes of
nuclei and their fluctuations from data on the E2-transition probabilities. © 2001 MAIK “Nauka/Interperiod-
ica”.
This article is dedicated to the 90th anniversary of
the birthday of Professor A.B. Migdal, who made an
enormous contribution to nuclear physics. It was char-
acteristic of his scientific work to develop quantita-
tively new nonperturbative methods and to use phe-
nomenological approaches. The structure of nuclei is
an interesting field of investigations, which requires
both phenomenological approaches to select the most
important degrees of freedom for describing phenom-
ena and nonperturbative methods since the interaction
is strong.

The nuclear ground states have a very complicated
structure. For their description, they require a huge con-
figuration space. Thus, a complete description of the
ground-state wave functions is beyond the possibilities
of the existing theoretical approaches. However,
excited states can be produced by applying one-body
operators to ground-state wave functions. This is just
the way realized within the Q-phonon approach to
describing collective nuclear states [1–4]. In this
approach, an attempt was made to describe low-lying
collective states of even–even nuclei in terms of multi-
ple Q-phonon excitations of the ground state,

(1)

where | 〉 is the ground-state wave vector.

Within the interacting-boson model (IBM), the qua-
drupole-moment operator Q is expressed in terms of the
monopole s-boson and the quadrupole d-boson opera-
tors as

(2)
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  * This article was submitted by the author in English.
** e-mail: jolos@thsun1.jinr.ru
1063-7788/01/6403- $21.00 © 20465
In general, the Q configurations (1) form a basis, which
can be used to expand the eigenstates of the IBM
Hamiltonian. There arises the question of how many
basis states of the type in (1) are required for describing
eigenstates to a sufficient precision. It was shown that
the wave vectors of yrast states can be described to a
high precision (better than 90% of the norm) over the
whole parameter space of the consistent Q Hamiltonian
H [1, 2],

, (3)

by simple universal expressions containing only one
multiple Q-phonon configuration

(4)

Later, it was shown [3] that the second 2+ state, which
is a two-phonon state in the case of a harmonic vibrator
and a K = 2 one-phonon gamma-vibrational state in the
rotor limit, can be described to a precision higher than
90% over the whole parameter space of Hamiltonian
(3) as a two-Q-phonon configuration

(5)

The state vector (5) is orthogonal to the one-Q-phonon

configuration. To describe a weak decay of the  state
to the ground state, it is necessary to take into account
a small admixture of the one-Q-phonon configuration

(6)

to the state vector (5). In this case, the -state vector is
described to a precision of about 98% of the norm [3].
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The  state, which is interpreted as a two-phonon
state in the case of vibrator nuclei and as a β-vibrational
state in the case of strongly deformed nuclei, was con-
sidered in [4]. It was shown that the  state can be
described to a precision higher than 90% of the norm
over the whole parameter space of Hamiltonian (3) as a
linear combination of only two components

(7)

and

(8)

The wave vectors (7) and (8) are linearly independent,
but they are not orthogonal. In view of this, it is conve-
nient to subtract, from (8), its projection on (7),

whereby the state vector | 〉  is introduced, which is

orthogonal to | 〉 ,

(9)

Now, the  state can be approximately represented as

(10)

In vibrator nuclei or in the isotopes of Sm and Gd
belonging to the beginning of the deformed region, the
first component in (10) is the main one. In the region of
γ-unstable nuclei like heavy Pt isotopes, the second
component becomes the main one.

Summarizing the results described above, we can
write the following approximate expressions for several
low-lying collective states:

(11)

(12)

(13)

(14)

(15)

As a matter of fact, relations (11)–(15) give us the
expressions for the wave vectors belonging to the three
main bands of even–even nuclei: the ground-state band,
the (quasi)β band, and the (quasi)γ band.

Although the consideration above was based on the
IBM, it was shown in [5, 6] that the calculations are
correct for some other models as well. Therefore, we
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hope that the results formulated above have a more gen-
eral applicability. It is also useful to emphasize that, in
expressions (11)–(15), the properties of the ground
state, as well as the properties of the quadrupole opera-
tor, change with the Hamiltonian parameters and with
the number of valence nucleons. Therefore, the proper-
ties of the states represented by the Q-phonon configu-
rations also change. However, the relations between
them undergo virtually no changes. These results can-
not be obtained by perturbation theory near one of the
dynamical symmetry limits. In terms of bosons, the
wave functions of the states considered above seem
complicated. However, the expressions for the wave
vectors of excited states take a much more compact
form since we use the exact ground-state wave function
in (11)–(15).

Having universal expressions for the eigenvectors,
we can derive various relations between the matrix ele-
ments of the quadrupole operator—that is, between
B(E2) and the spectroscopic quadrupole moments. The
accuracy of these relations can be improved if we take
into account a small admixture of the | 〉  component

in the wave function of the  state and, correspond-

ingly, a small admixture of the | 〉  component in the

wave function of the  state.

Using the expressions for the wave vectors of the
low-lying states described above, we can calculate
directly the reduced matrix elements of the quadrupole
operator Q between the ground and the low-lying col-
lective states. As can be seen from the structure of the
wave vectors (11)–(15), these reduced matrix elements
will be determined by the ground-state expectation val-
ues of the scalars constructed from the various numbers
of Q operators like 〈 |(QQ)0 | 〉 , 〈 |(QQQ)0 | 〉 ,
〈 |(QQ)0(QQ)0 | 〉 , and so on up to the scalar of
highest order. The highest order is determined by the
angular momentum of the wave vector under consider-
ation. However, it was shown in [7] that, in the physi-
cally interesting region, this highest order scalar can be
approximately expressed in terms of the lower order
scalars with a sufficient accuracy. Expressing observ-
ables in terms of the smaller number of scalars, we can
eliminate these scalars from the expressions and obtain
relations between the observables.

The first of the relations obtained in this way is the
relation expressing the absolute value of the spectro-
scopic quadrupole moment of the  state in terms of
some B(E2) [8],

(16)
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where

(17)

(18)

(19)

We have checked the accuracy of relation (16) by exact
calculations within the IBM in the full parameter space
of Hamiltonian (3). We compared the exact values of
the Q( ) found in the calculations with those obtained
by substituting the exact values of G, R1, W, and B(E2;

  ) into (16). For the total number N of bosons
equal to 12, the deviations are less than 2.2%. For N =
6, the deviations are less than 8%. The largest devia-
tions are obtained near the limit of the vibrator nuclei
[U(5) dynamical symmetry limit]. However, the qua-
drupole moment tends to zero in this limit.

We used relation (16) to calculate q( ) for a set of
nuclei taking, as an input, the experimental data on the
ratios of B(E2) and their errors. There is satisfactory
agreement between the calculated values and the data;
for instance, for 106Pd, we have qcalc( ) = 1.51 ± 0.32

and qexpt( ) = 1.54 ± 0.22; for 108Pd, qcalc( ) = 1.17 ±

0.30 and qexpt( ) = 1.58 ± 0.34; for 188Os, qcalc( ) =

1.92 ± 0.03 and qexpt( ) = 1.95 ± 0.05; and, for 196Pt,

qcalc( ) = 0.91 ± 0.08 and qexpt( ) = 1.26 ± 0.23.

The ground-state decay of the  state is due to the

admixture of the one Q-phonon configuration | 〉 .
The relative E2 strength for the transition from the

ground state to the  state is much larger and is also

determined by the square of the amplitude of the | 〉
configuration. Thus, the ratio B(E2;   )/B(E2;

  ) is determined by the ratio of the squares of
these amplitudes. An alternative measure of this ratio is
the branching ratio for the E2 decay of the  state,
which can be approximated by the 3-Q-phonon config-
uration | 〉 ≈ 1(3, 1)(QQQ)3 | 〉 , to the lower 2+ states.
It is possible to deduce a formula that makes it possible
to estimate the absolute value of B(E2) for the decay of
the  state from the E2 branching ratio for the 

state and B(E2;   ), which are often known.
This formula is [3]
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(20)

This relation allows one to predict the E2 excitation
strength of the  state from the knowledge of the fol-
lowing two observables: the E2 branching ratio for the

 state and the lifetime of the first excited  state. It
is interesting to compare Eq. (20) with experimental
data. A comparison shows that, while the branching
ratio for the decay of the  state and the ratio of the
E2 excitation strengths for the ground state vary within
an order of magnitude in the nuclei being considered,
Eq. (20) is valid within a factor of about 2. Equation (20)
describes data for all collective nuclei: vibrators, rotors,
γ-soft nuclei, and various types of transitional nuclei. In
rotor nuclei, the relative decay intensity for the  

 transition is rarely known experimentally because
of low transition energies, but data for 168Er, which is
one of the best-studied rotors, support the validity of
(20) for rotors.

The multi-Q-phonon representation of collective
states helps us establish new selection rules for E2 tran-
sitions. It was shown in [2] that, for the yrast states that
can be described approximately as the pure multi-Q-
phonon configurations, there exists a simple selection
rule for the E2-transition probabilities—namely, the E2
transitions between states differing by more than one
unit of Q are weak in relation to the E2 transitions
between states differing by one unit of Q. For instance,
it was shown that the branching ratios B(E2;  

)/B(E2;   ) and B(E2;  

)/B(E2;   ) are very small for all
collective nuclei. Because of this selection rule, the

ratio B(E2;   )/B(E2;   ) is
expected to be much larger than the ratio B(E2;

  )/B(E2;   ). This means that,

at least for γ-soft or nearly γ-soft nuclei, where the 

state is approximated by the | 〉  configuration,

B(E2;   )/B(E2;   ) must be large.

Since, for large γ rigidity, the  state is described

mainly by the | 〉  configuration, the ratio B(E2;

  )/B(E2;   ) is expected to decrease
with increasing γ rigidity. The γ rigidity must increase
when nuclei approach the region of static deforma-
tions—that is, when, for instance, the ratio B(E2;

  )/B(E2;   ) decreases.
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From the results obtained in [4] for the description
of the γ-soft nuclei, it follows that the two lowest
excited collective 0+ states can be described as approx-
imately pure three-Q-phonon and two-Q-phonon con-
figurations. These two multi-Q-phonon configurations
are characterized by different E2 decay properties: the
three-Q-phonon configuration decays mainly to the 
state, but the two-Q-phonon configuration decays
mainly to the  state. A nice example is provided by

the 196Pt nucleus [9]. In this case, B(E2;  

)/B(E2;   ) = 6.32 and B(E2;  

)/B(E2;   ) = 0.16. A similar situation is

realized in 194Pt for  and  states produced in the
Coulomb excitation experiments [10]. In this case,
B(E2;   )/B(E2;   ) = 10.9 and B(E2;

  )/B(E2;   ) = 0.97.

As was indicated above, the Q-phonon representa-
tion of the collective states gives the possibility of
expressing the reduced matrix elements of the E2-tran-
sition operator in terms of the ground-state expectation
values of the scalars constructed by the various num-
bers of Q operators. These scalars are also known as
shape invariants in nuclear-structure physics [11, 12].
In the geometric collective model [13], they are func-
tions of the variables β and γ, which describe the
nuclear shape. By definition, these functions are invari-
ant under the rotation of the coordinate frame.

The lowest order shape invariants are defined as
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The first invariant K2 is almost useless in the Q-phonon
formalism, because, in order to extract the average
value of β2 in the ground state, we must know the effec-
tive charge for the quadrupole transitions. The second
invariant K3 can be used to obtain the average value of
γ in the ground state. The invariants K4, K5, and K6 fur-
nish important information about the fluctuations of β
and 

 

γ

 

.

To obtain the values of these invariants directly from
experimental data by using only the definitions of the
invariants, we need a huge number of experimental
matrix elements of the quadrupole-moment operator
connecting high-lying collective states as well. In prac-
tice, they can be extracted from the Coulomb excitation
data, but with large errors in many cases. Only for low-
lying collective states that are well known or can be
measured to a sufficient precision does the 

 

Q

 

-phonon
scheme provide the possibility of deriving analytic
expressions for the shape invariants in terms of the 

 

E

 

2-
transition probabilities. These expressions are [7]
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A comparison with the results of exact IBM calcula-
tions shows that, in general, expressions (31) and (32)
are correct to a precision higher than 85%. In the entire
region of interest in the full parameter space of Hamil-
tonian (3), the accuracy is still higher. These expres-
sions were used to determine the shape invariants for
several nuclei characterized by different collective
properties [7].
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nuclei and since the heavy Pt and Os isotopes belong to
the region of γ-soft nuclei. These expressions are [4]

(33)

(34)

where z = (35/2) /K4. They can be used to determine
K6 and K5 if K3, K4, and the branching ratios are known.
Let us consider the 196Pt nucleus as an example. The
values of K3 and K4 can be extracted from B(E2) values.

They are K3 = 0.446 and K4 = 1.06. Substituting
these values into (33) and (34) and using experimental
data on the branching ratios, we find for 196Pt that K5 =
1.11 and K6 = 1.69. The deviations of K4, K5, and K6

from unity characterize the amplitudes of fluctuations
of the corresponding dynamical quantities. It can be
seen from the results obtained that, in 196Pt, fluctuations
of γ are much greater than fluctuations of β.

The Q-phonon representation of collective states is
mainly useful for deducing relations between E2-tran-
sition probabilities. As is shown below, this formalism
can also be used to obtain relations between the ener-
gies of collective states.

It was shown in [14, 15] that nearly universal empir-
ical behavior characterizes nuclei between the vibrator

and rotor limits. Specifically, E( ) is empirically lin-

ear in E( ) with a slope of 2.0 for all Z = 38–82 nuclei
with

(35)

Such behavior is described be the equation

(36)

where e4 is a constant for nuclei whose underlying
structure exhibits such variations. To approach this
problem, we consider an yrast (stretched) state (with
I = 2n) in the Q-phonon basis

(37)

In order to avoid encumbering the presentation, we sup-
press the subscript on Q22 in the following. Let us con-
sider a Hamiltonian H and evaluate H |n〉 ≡

HQn | 〉 . The simple relation
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is an example of the general relation
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Equation (39) terminates after (
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 + 1) terms. This

means that, for the  state (
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 = 2), Eq. (39) resembles
the form of Eq. (36) with terms up to 
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. Of course, one
has not yet shown that 
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 in (36) is a constant. Applying

relation (39) to the  state (which is assigned zero
energy) and using the 
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-phonon approximation for
yrast states, we obtain
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 0.04 MeV for a wide range of the parameters of
Hamiltonian (3). This result is close to the experimental
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 value of 0.16 
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 0.01.
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Abstract—The density functional determining the Coulomb energy of nuclei is calculated to the first order in
e2. It is shown that the Coulomb energy includes three terms: the Hartree energy; the Fock energy; and the cor-
relation Coulomb energy (CCE), which contributes considerably to the surface energy, the mass difference
between mirror nuclei, and the single-particle spectrum. A CCE-based mechanism of a systematic shift of the
single-particle spectrum is proposed. A dominant contribution to the CCE is shown to come from the surface
region of nuclei. The CCE effect on the calculated proton drip line is examined, and the maximum charge Z of
nuclei near this line is found to decrease by 2 or 3 units. The effect of Coulomb interaction on the effective pro-
ton mass is analyzed. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Relatively weak Coulomb interaction substantially
affects the properties of nuclei owing to its long-range
character. It is reliably established that the electrostatic
Coulomb energy of the distributed charge is the domi-
nant term in the Coulomb energy of nuclei. This term,
also known as the Hartree energy, is proportional to
Z2e2/R, where Z is the number of intranuclear protons,
R is the nuclear radius, and e is the proton charge; at
large values of Z, it induces the breakup of nuclei. At
the same time, there are a few less significant contribu-
tions to the Coulomb energy. These include the Fock
exchange contribution and a number of terms associ-
ated with the correlated motion of nucleons. It will be
shown below that, in constructing the density func-
tional determining the Coulomb energy of a nucleus, it
is sufficient to calculate all these terms to the first order
in e2. The presence of these terms is clearly illustrated
by the well-known Nolen–Schiffer anomaly [1], which
was discovered more than 30 years ago. This anomaly
was deduced from a comparison of the calculated mass
difference between two mirror nuclei with its experi-
mental value. The comparison revealed that, on aver-
age, the results of the calculations performed without
taking consistently into account the correlation Cou-
lomb energy (CCE) fall short of relevant experimental
values by 10% [2, 3]. This discrepancy can be removed
by introducing charge-dependent forces [4] whose
strength is assumed to be preset by this discrepancy.
However, this is possible if we are sure that nuclear
dynamics is taken properly into account and that all the
Coulomb contributions are consistently included. A
new mechanism that enhances the contribution of Cou-
lomb interaction to the energy of the nuclear ground
state and which is caused by the presence of a surface
(a general property of equilibrium finite Fermi systems)
was found in [5, 6]. This contribution, which is propor-
1063-7788/01/6403- $21.00 © 20471
tional to the nuclear surface (Z2/3), made it possible to
explain a dominant part of the above anomaly.

The main objective of this study is to calculate con-
sistently the density functional determining the Cou-
lomb energy. As the result of this calculation, which
will be performed to the first order in e2 and which will
take into account the mechanism enhancing the CCE
contribution, we will be able to clarify the effect of this
mechanism on the single-particle spectrum of nuclei,
on the effective nucleon mass, and on the position of
the proton drip line. In what follows, we do not high-
light the difference between this functional and the
Coulomb energy unless this leads to confusion.

The ensuing exposition is organized as follows. A
general formulation of our approach to calculating the
Coulomb energy is given in Section 2. Section 3 is
devoted to calculating the systematic CCE-induced
shifts of the single-particle spectrum and the proton
drip line. The effect of Coulomb interaction on the
effective proton mass is considered in Section 4. Sec-
tion 5 summarizes the basic results.

2. COULOMB CORRELATION ENERGY

In order to formulate the aforementioned mecha-
nism and to consider its effect, we will make use of the
Hartree–Fock method employing effective forces,
which was substantiated within density-functional the-
ory [7]. In this case, the energy E of the nuclear ground
state has the form

(1)

where F0 is that part of the functional which is due to
nuclear forces. Since we assume that the charge sym-
metry of nuclear forces, F0 depends identically on the
single-particle densities ρp and ρn of protons and neu-
trons (these densities are determined by minimizing E).
The term Fc is due to other interactions, which are

E F0 ρp ρn,[ ] Fc ρp ρn,[ ] ,+=
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weaker than nuclear forces. The smallness of these
interactions can be characterized by the ratio α of the
potential energy of these interactions between two
nucleons to the Fermi energy εF . 40 MeV. For the
Coulomb interaction, this ratio is α . e2/(r0εF) . 0.03,
where r0 is the mean spacing between nucleons in equi-
librium nuclear matter. Therefore, it is sufficient to cal-
culate the functional Fc in the first order in the relevant
coupling constant. In the case of Coulomb interaction,
which is the main subject of the present study, the func-
tional Fc will be calculated to the first order in e2. This
functional could be approximated by some simple
expression, as was done, for example, for the functional
F0. However, experience gained in calculating the mass
differences between mirror nuclei (these mass differ-
ences are directly determined by the functional Fc)
proves the inefficiency of such attempts. Moreover, this
oversimplified approximation does not reveal the phys-
ics behind the functional Fc. Therefore, it is preferable
to calculate the functional Fc. In doing this, it is
assumed that the functional F0 is known. It can be taken
in the form specified by the Skyrme interaction [8] or in
the form proposed in [9]. The latter is advantageous in
that it is characterized by a high precision, is simple in
use, and involves the bare nucleon mass. By construc-
tion, the functional F0 must contain the unnrenormal-
ized mass M of the proton (neutron) rather than its effec-
tive mass M* because the effective mass, as well as the
nuclear spectrum, cannot be directly included in it [10].

The single-particle distributions of the proton and
neutron densities (ρp and ρn, respectively) are specified
as

(2)

where  and  are the occupation numbers for sin-
gle-particle proton and neutron levels, respectively,

while  and  are, respectively, the proton and neu-
tron single-particle wave functions determined from
the Hartree–Fock equation [8]. The term Fc[ρp] is usu-
ally taken in the first order in the Coulomb interaction
in the Hartree–Fock approximation [7, 8]:

(3)

Here, (r1, r2, ω) is the linear-response function for
noninteracting protons moving in the self-consistent
single-particle field Vp. The first and the second term on
the right-hand side of Eq. (3) are, respectively, the Har-
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exchange term  is usually approximated by the
expression [8]

(4)

However, the equality in (3) is not exact even in the first
order in the Coulomb interaction (e2 order) because it

does not include the functional [ρp(r)] taking into
account the contribution to the Coulomb energy from
the correlated motion of protons under the effect of the
effective (residual) nuclear interaction Rαβ(r1, r2). In

the first order in e2, the CCE functional  has the
form [6]
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where χpp(r1, r2, ω) is the exact function representing
the linear response of intranuclear protons to an exter-
nal electric field. It should be noted that the function χpp
is completely determined by the functional F0 [6] and
that it involves no smallness associated with the Cou-
lomb interaction. The total response function contains
three independent components—χpp, χnn, and χnp—and
satisfies the equation
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plicity. The response function  for noninteracting
nucleons (protons) moving in the self-consistent field
Vp has the form
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potential Vp and the effective interaction Rαβ are gi-
ven by

(9)

where T0[ρp, ρn] is the kinetic-energy functional for
noninteracting nucleons. Thus, we conclude that, to the
first order in e2, the eventual form of the functional Fc is

(10)

Equations (1), (3), (5), and (10) provide a basis for con-
sistently calculating the Coulomb energy and for taking
into account the Coulomb interaction effect on the
properties of nuclei. The poles of the response function
χpp determine the collective spectrum of nuclei, while
the residues at these poles govern the relevant transition
probabilities. As can be seen from Eq. (5), a dominant

contribution to  comes from collective isoscalar
surface vibrations whose excitation energies are much
lower than those of corresponding isovector modes.

Thus, the functional  is controlled by the isoscalar
components of the effective interaction.

It is instructive to consider the CCE for symmetric
infinite nuclear matter [5, 6], in which case the relevant
equations are considerably simplified. The function χpp
assumes the form

(11)

and determines the functional :

(12)

For symmetric matter, we have  =  = χ0/2; the
effective interaction R(ρ) is similar to the local interac-
tion f(ρ) between nucleons that was introduced by
Migdal [11]:

(13)

Considering that the isoscalar amplitude f(ρ  0) is
approximately equal to –2.5 and that pF M/π2 = χ0(0, i0),
one can see from Eq. (11) that, at relatively low densi-
ties corresponding to the surface region of nuclei, the
denominator 1 – R+χ0 vanishes at small values of q and
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ω. Therefore, the function χpp develops poles on the
imaginary axis. These poles, which evince instability of
low-density nuclear matter [11], lead to the divergence
of the integral in Eq. (12), and this prevents a calcula-
tion of the CCE at these nuclear-matter densities. We
can conclude that the main contribution to this integral
comes from the isoscalar response function. From the
above, it also follows that the conventional procedure
based on calculating various quantities in the local-den-
sity approximation (LDA) in infinite uniform matter
fails in this case. In this connection, it is worth noting
that, although an attempt was made in [12] to construct
the functional F0 within the LDA, this is impossible for
the same reason.

It is convenient to calculate the CCE in semi-infinite
nuclear matter, where there is a region of low-density
nuclear matter near the surface. In the generalized
LDA, we then obtain [5, 6]

(14)

where ec(ρp) is the CCE per proton and ρp is the single-
particle proton density. The calculation of the energy
ec(ρp) for semi-infinite nuclear matter revealed that, at
the surface, this energy has a pronounced positive peak,
which corresponds to smoothing the divergence in (12)
for uniform nuclear matter [6]. It is convenient to
approximate the energy ec by the simple expression

(15)

where 2ρ0 = 0.16 fm–3 is the equilibrium nuclear density

and D . 6 MeV. In contrast to the terms  and , the
energy ec(ρp), which has a pronounced peak at the
nuclear surface, makes a noticeable contribution (σc) to
the surface tension:

(16)

Hence, the Weizsäcker mass formula must be supple-
mented with the term ∆E whose contribution to the total
binding energy of a nucleus can be represented as

(17)

where  . –0.1 MeV and  . 1.0 MeV. Thus, we can
see from Eq. (17) that the surface tension has an isovec-
tor component. It will be shown below that this is so for
the effective mass as well. It follows from Eq. (17) that
the surface tension of the proton nuclear Fermi liquid is
effectively greater than that of neutron matter. This
means that, when protons are added to a nucleus, their
binding energy becomes somewhat smaller because of
an increase in the surface of the proton liquid compo-
nent. It will also be proven below that this decrease in
the proton binding energy is sufficient for explaining
the mass difference between mirror nuclei. Further, the
additional surface tension σc and the addition of extra
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neutrons are expected to induce opposite modifications in
the root-mean-square radius 〈rp〉 of the intranuclear-proton
distribution: the former would moderate an increase asso-
ciated with the latter. The preliminary calculations reveal
that this could explain the anomalously small increase in
the radius 〈rp〉 in going over from the 40Ca to the 48Ca
nucleus. The contribution σc must also be taken into
account in considering fission barriers for heavy nuclei.

3. SINGLE-PARTICLE SPECTRUM
AND THE PROTON DRIP LINE

Let us calculate the CCE-induced shift of the single-

particle proton excitation spectrum . For this, we will
use the well-known Landau equation [13]

(18)

It follows from Eqs. (5) and (18) that this shift ∆  can
be represented as

(19)

The variational derivative δ /δ  has the simple
functional form

(20)

where Gp(r1, r2, ω) is the single-particle Green’s func-
tion for the system of Z noninteracting protons moving
in a self-consistent single-particle nuclear potential.

The functional derivative δχpp/δ  is determined by
the matrix equation

(21)

which can be derived by directly varying Eq. (6). Inte-
gration with respect to spatial coordinates is implied in
Eq. (21) in just the same way as in Eq. (6). As can be
seen from Eq. (9), the effective interaction Rαβ is deter-
mined by the form of the functional F0 . In order to sim-
plify the calculations, we took, however, the interaction
Rαβ in the separable representation [14]
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where Vα, β(r) is the self-consistent single-particle pro-
ton (neutron) potential. The value of the parameter λ is
chosen in such a way that the dipole response has a pole
at ω = 0. The above separable form of the effective
(residual) interaction is extensively used and, as was
shown in [7, 15], provides a good description of collec-
tive nuclear excitations. The value calculated here for

the shift ∆  of single-particle proton levels located
near the Fermi level is 0.2–0.4 MeV both for medium-
mass and heavy nuclei, in overall agreement with the
value of the Nolen–Schiffer anomaly. It is worthwhile
to verify these results by using the simple LDA expres-

sions (14) and (15) for [ρp]. The shift ∆  then
assumes the form

(23)

It is convenient to approximate the single-particle den-
sity ρp(r) by the Fermi distribution

(24)

where R is the nuclear radius and the diffuseness
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mined from the normalization condition

The CCE-induced shift of a proton level occurring near
the Fermi surface is given by

After simple transformations of the relevant integrals of
the Fermi functions, we find that, for medium-mass and
heavy nuclei, the sought shift of a proton level near the
Fermi level is
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respectively, taken in the form (10) and specified by
Eqs. (14) and (15). The table demonstrates that the
mass differences between mirror nuclei are closely
reproduced. The remaining disagreement can be used
to determine the coupling constants for forces violating
the charge symmetry of nuclear interaction. Thus, tradi-
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Mass differences between mirror nuclei (in MeV)

Nuclei 15O–15N 17F–17O 39Ca–39K 41Sc–41Ca 48Ni–48Ca

Theory 3.48 3.56 7.23 7.24 66.70

Experiment [2, 16] 3.54 3.54 7.30 7.28 67.06
                
tional nuclear physics can be advantageous in calculating
the constants concerning elementary-particle physics.

Equation (25) shows that the shift ∆εp of a single-
particle level approximately compensates for the level
shift caused by exchange Coulomb interaction. It
should be recalled that the exchange Coulomb interac-
tion reduces the energy of a single-particle level, as can
be seen from Eq. (4). Therefore, the total shift of a sin-
gle-particle level due to Coulomb interaction can be
derived by taking into account solely the direct Cou-
lomb interaction—that is, by retaining only the term

 in Eq. (10). A similar procedure was postulated in
[9, 16]. It should be noted that the recipe assuming
mutual cancellation of the exchange Coulomb interac-
tion and the CCE does not lead to a noticeable value of
the coefficient  in Eq. (17) (recall this coefficient
determines the isovector component of the surface ten-

sion) because the contribution from  and  [see
Eq. (4)] to the surface tension is small. On the contrary,
our calculations indicate that the coefficient  is not
small. It also follows from Eq. (25) that, upon taking the
CCE into account, the last filled single-particle proton
level is shifted upward by 0.3 to 0.4 MeV. As a result, the
maximal charge Z of a nucleus occurring near the proton
drip line decreases by 2 or 3 units, as follows from [17].
Therefore, we conclude that, in calculating the proton
drip line, it is important to take the CCE into account.

4. EFFECTIVE MASS

Let us consider the change ∆M that Coulomb inter-
action induces in the effective proton mass M*. In the
case of uniform nuclear matter, the single-particle spec-
trum depends on the momentum p, while the effective
mass, as follows from Eq. (18), is determined by the
expression

(26)

where pF is the Fermi momentum. In order to calculate
∆M, we use Eq. (26), replacing εp(p) by the shift of the
single-particle spectrum due to Coulomb interaction.
We have
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Evaluating variations in Eq. (27) and considering that,
in the case of uniform matter, Eqs. (6) and (21) reduce
to algebraic equations, we obtain [14, 18]

(28)

where M* is the effective proton mass in the absence of
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, tending to infinity. This state is sim-
ilar to states existing in the surface region of nuclei.
This consideration will enable us to draw qualitative
conclusions on the behavior of the effective mass in a
nucleus. It can be shown that [18]
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mass. It can be said that the effective nucleon mass
acquires an isovector component. This possibility was
discussed in [16]. A theoretical validation of this effect
has been given here.

5. CONCLUSION

The basic results of the present study can be summa-
rized as follows. A consistent scheme for constructing
the density functional determining the Coulomb energy
of a nucleus has been developed to the first order in e2.
Using this functional, we have calculated the single-
particle spectra of nuclei and the systematic shift of
these spectra that is induced by the CCE. It has been
shown that the Nolen–Schiffer anomaly is removed to
a considerable extent by this systematic shift of the sin-
gle-particle spectrum. Owing to the same mechanism,
the proton drip line undergoes a shift of 2 or 3 units
toward smaller values of the charge Z of a nucleus
occurring near this line. It has been shown that the CCE
must be taken into account in calculating the effective
nucleon mass. This opens the possibility of estimating
the coupling constants for forces violating charge sym-
metry. The contribution of these forces must be treated
in the same manner as this has been done for the Cou-
lomb interaction. It can be expected that the proposed
procedure will make it possible to construct a density
functional applicable to describing various properties
of nuclei occurring both in the valley of stability and
beyond it.
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Abstract—The numerical solution of the recently formulated number-projected Hartree–Fock–Bogolyubov
(HFB) equations is studied in an exactly solvable cranked-deformed shell-model Hamiltonian. It is found that
the solution of these number-projected equations involves similar numerical effort as that of bare HFB. We con-
sider that this is significant progress in the mean-field studies of quantum many-body systems. The results of
the projected calculations are shown to be in almost complete agreement with the exact solutions of the model
Hamiltonian. The phase transition obtained in the HFB theory as a function of the rotational frequency is shown
to be smeared out with the projection. © 2001 MAIK “Nauka/Interperiodica”.
The mean-field models with effective forces have
been quite successful in describing the gross features of
quantum many-body systems. Although the mean-field
approaches are appropriate for systems with a very
large number of particles, they have also been quite
useful to describe the properties of finite quantum sys-
tems, for instance, the atomic nucleus. The ground-
state properties of atomic nuclei have been well
described using the Hartree–Fock (HF) and Hartree–
Fock–Bogolyubov (HFB) mean-field approaches with
various effective interactions [1]. However, the mean-
field application to a finite system suffers from a funda-
mental problem that it leads to sharp phase transitions.
The phase transition is an artifact of the mean-field
approach and is not observed in the experimental data.
The phase transition obtained is due to the neglect of
the quantal fluctuations, which become quite strong for
finite systems.

There are various methods in the literature to con-
sider the quantal fluctuations on the mean-field solution
for the finite system. One very powerful method is
through the restoration of the broken symmetries by
employing projection methods [1]. In the present work,
we shall consider the restoration of the gauge symme-
try associated with the particle number. It is known in
the HFB studies that one often obtains a phase transi-
tion from the superfluid paired phase to the normal
unpaired phase. This phase transition is due to the fluc-
tuations in the particle number, since the HFB wave
function does not have a well-defined particle number.
In most of the analyses, the particle-number fluctua-
tions are treated in an approximate way by employing
the Lipkin–Nogami prescription [2–4]. However, it has
been shown that this approach also breaks down at high

  * This article was submitted by the authors in English.
** e-mail: ring@ph.tum.de
1063-7788/01/6403- $21.00 © 20477
rotational frequencies and as a matter of fact violates
the variational principle [5].

The exact particle-number projection can be per-
formed by using gradient methods [1]. But this
approach is numerically quite involved and has been
applied only to separable interactions with restricted
model spaces [6, 7]. There has been an unresolved issue
whether HFB-like equations can be obtained with the
projected-energy functional. This problem has been
recently solved [8], and it has been shown that it is pos-
sible to obtain the HFB equations from an arbitrary
real-energy functional which is completely expressible
in terms of the density matrix and the pairing tensor.
The projected-energy functional can be expressed in
terms of the density matrix and the pairing tensor, and
one obtains the HFB equations with modified expres-
sions for the pair-gap and the Hartree–Fock potential. The
expressions for these quantities acquire a relatively sim-
ple form for the case of particle-number projection [8].

To check the applicability of the number-projected
HFB (PHFB) formalism, detailed numerical analysis is
carried out in a simple cranked-deformed shell model
Hamiltonian [9]. Although this model cannot be used
directly to study the experimental data, it contains all
the basic ingredients of a more realistic model. The
advantage of this model is that it can be solved exactly
and it is possible to check the accuracy of an approxi-
mate method. We consider that it is quite instructive to
test the number-projection method in a cranking model
as the Coriolis forces destroy the pair correlations and
the results become quite sensitive to the treatment of
the pairing interaction. As we shall demonstrate, the
present projection method reproduces almost exactly
the results of the shell model calculations for all the
cases studied.

The model Hamiltonian consists of a cranked-
deformed one-body term h' and a scalar two-body delta
001 MAIK “Nauka/Interperiodica”
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interaction [9]. The one-body term is the familiar
cranked Nilsson mean-field potential which takes into
account the long-range part of the nucleon–nucleon
interaction. The residual short-range interaction is
specified by the delta interaction. The deformed shell
model Hamiltonian employed is given by

(1)
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we use the delta interaction which for a single-j shell is
given by [10]

(5)

where the symbol [ ] denotes the Clebsch–Gordan

coefficient. We use G = g r2dr as our energy unit,

and the deformation energy κ is related to the deforma-
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with

(12)
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Γ 1
2
--- φy φ( ) Y φ( )1
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--- 1 2ie
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 h.c.,+

Λ 1
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---– 2ie
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∆ 1
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∑=
(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

and

(21)

The quantities ρ and κ in the above equations are the
HFB density matrix and the pairing tensor. e' in (8) are
the single-particle energies of the cranked-deformed
Hamiltonian (1), and  in (12)–(14) is the uncoupled
antisymmetric matrix element of the two-body delta
interaction (5).
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The term designated by Λ in (10) does not appear in
the ordinary HFB formalism and it can be immediately
shown that it vanishes for the gauge angle φ = 0. This
term originates from the variation of the pairing energy
with respect to the density matrix. In normal HFB, the
pairing energy depends only on the pairing tensor, but
the PHFB pairing energy also depends on the density
matrix through the norm overlap. Actually, in general
the norm overlap depends on both the density matrix
and the pairing tensor [8]. But for the special case of
number projection, the term in the overlap matrix
which depends on the pairing tensor can be rewritten in
terms of the density matrix by using the HFB relation
(ρ – ρ2 = κκ†). Due to this transformation, the expres-
sion for ∆ in (11) has a very simple appearance and
reduces to the familiar form in the canonical represen-
tation [8, 11].

The integration in (8)–(11) over the gauge angle has
been performed using the Gauss–Chebyshev quadra-
ture method [12]. In this method, the integration over
the gauge angle is replaced by a summation. It can be
shown [12] that the optimal number of mesh points in
the summation which eliminates all the components
having undesired particle numbers is given by

(22)

where N is the number of particles and Ω is the degen-
eracy of the single-j shell. In the present study with N =
6 and Ω = 6, the optimal number of points required is
M = 4.

In the present analysis of a single-j shell, the basis in
which the HFB matrix is constructed is formed by the
magnetic substates of j = 11/2 with m = (11/2, 9/2, …,
–9/2, −11/2). The summation indices n1, n2, n3, and n4
in all the expressions given above run over these mag-
netic states. In order to check the dependence of the
HFB and PHFB results on the pairing interaction, the
calculations have been performed with monopole (L =
0), monopole plus quadrupole (L = 0 and 2), and with
full delta interaction. The results of the HFB and PHFB
will be compared with the exact results for the three
pairing interactions.

The results of the cranking calculations with mono-
pole-pairing force are compared in Fig. 1. In the figure,
we compare the total energy (Etot); the pairing energy
(Epair); and the alignment (〈Jx 〉), which is the expecta-
tion value of the angular momentum along the rota-
tional x axis, as functions of the rotational frequency.
The expression for the total energy is given by

(23)

where

(24)

(25)

M max
1
2
---N Ω 1

2
---–, 

  1,+=

Etot φy φ( ) Hsp φ( ) H ph φ( ) H pp φ( )+ +( ),d∫=

Hsp φ( ) tr eρ φ( )( ),=

H ph φ( ) 1
2
---tr Γ φ( )ρ φ( )( ),=
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(26)

The expressions for the pairing energy and the align-
ment are given by

(27)

(28)

It can be easily shown that for the gauge angle φ = 0, the
normal HFB expressions for these quantities are recov-
ered.

It is apparent from Fig. 1a that the results of the
exact shell model and the PHFB are very similar; the
two curves are almost indistinguishable for all the fre-
quency points. The results of HFB, on the other hand,
deviate considerably from the exact results at lower fre-
quencies. However, it can be seen from Fig. 1 that the
HFB results converge towards the exact results with
increasing rotational frequency. The HFB energy
before the bandcrossing at "ω = 0.5G is shifted from
the exact energy by a constant amount and can be

Hpp φ( ) 1
2
---tr ∆ φ( )κ* φ( )( ).–=

Epair φH pp φ( ),d∫=

Jx〈 〉 φtr Jxρ φ( )( ).d∫=

Fig. 1. The results of (a) the total energy Etot, (b) the pairing
energy Epair , and (c) the alignment 〈Jx〉  for six particles in a
deformed j = 11/2 orbital using the monopole interaction.
The PHFB results are indistinguishable from the exact shell
model results.

–14

–18

–22

0

–4

10

0

(a)

(b)

(c)

"ω/G
0 0.5 1.0

〈J
x
〉

E
to

t/
G

E
pa

ir
/G

HFB
PHFB
Exact



480 SHEIKH et al.
improved by renormalizing the strength of the pairing
interaction. Therefore, for the total energy, the HFB
approach is not a poor approximation. The actual prob-
lem in HFB lies in the analysis of the pairing energy
and the alignment, which are shown in Figs. 1b and 1c.
The HFB pairing energy has a finite value until "ω =
0.45G and then suddenly goes to zero at "ω = 0.5G.
This transition is an artifact of the HFB approach, as is
clearly evident from Fig. 1. The PHFB pairing energy
does drop at the bandcrossing but has a finite value at
all the rotational frequencies. This feature of the pairing
energy is also reflected in the alignment, which is deter-
mined by the competition between the Coriolis forces
and the pairing correlations. The alignment until "ω =
0.45G is very similar in all three cases, but then HFB
value suddenly jumps to 〈Jx〉 = 10; the exact and the
PHFB values, on the other hand, do not show this sharp
transition. The gain in alignment at the first crossing,
referred to as the AB crossing, is quite similar in all the
cases; however, the crossing occurs somewhat earlier in
HFB.

The results of pairing interaction with monopole-
plus-quadrupole terms are shown in Fig. 2. The com-

Fig. 2. The results of (a) the total energy Etot, (b) the pairing
energy Epair, and (c) the alignment 〈Jx〉  for six particles in a
deformed j = 11/2 orbital using the monopole-plus-quadru-
pole interaction.
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parison among HFB, PHFB, and the exact results is
quite similar to Fig. 1. The total HFB energy is shifted
by a constant factor from exact and PHFB energies
before the bandcrossing. After the crossing, the HFB
results become closer to the exact ones. The HFB pair-
ing energy depicts a transition, and the PHFB pairing
energy, on the other hand, drops smoothly at the band-
crossing. However, the HFB gain in alignment at the
AB crossing is much lower than 10 and has a clearly
wrong behavior after the crossing.

The results with the full delta interaction are pre-
sented in Fig. 3. The HFB total energy is now in better
agreement with the exact results and PHFB as com-
pared to the results shown in Figs. 1 and 2. In fact, it is
evident by comparing the three figures that the total
energy improves by including higher multipoles in the
pairing interaction; the maximum deviation is noted for
the monopole case. This appears to be in contradiction
to our basic understanding of the mean-field approach,
in which one normally expects that HFB or BCS is a
better approximation for the pure monopole pairing.
However, it should be mentioned that, in our HFB and
PHFB analysis, we have included all the terms in the

Fig. 3. The results of (a) the total energy Etot, (b) the pairing
energy Epair, and (c) the alignment 〈Jx〉  for six particles in a
deformed j = 11/2 orbital using the full delta interaction.
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Hamiltonian. In particular, the particle-hole contribu-
tion (Γ) amounts to about 6G in the total energy and is
at a maximum with the full delta interaction. If one
excludes this contribution, the discrepancy would be
the largest for the delta interaction.

The pairing energy in Fig. 3 again depicts a phase
transition at "ω = 0.55G, which is slightly higher than
with monopole interaction. The HFB AB crossing with
full delta interaction is now close to the exact result and
PHFB. The gain in alignment at the AB crossing is
lower than 10, as in the case of monopole and quadru-
pole pairing forces. The overall agreement with full
delta interaction appears to be better for HFB. The good
agreement between PHFB and exact result, on the other
hand, is independent of the interaction used.

To conclude, in the present work, the recently devel-
oped number-projected HFB approach has been
applied to an exactly solvable cranked-deformed shell
Hamiltonian. The main motivation has been to check
the numerical applicability of the projection method. It
is clear from the present study that the projected HFB
approach gives an accurate description of the yrast
states of the model Hamiltonian. The transition from a
superfluid to the normal phase obtained in the HFB the-
ory is shown to be smeared out with the projection.

We would like to stress that the main advantage of
the present projection method is that it has the same
structure as that of normal HFB equations. Therefore,
one can use the existing HFB computer codes, and only
the expressions for the HF potential and the pairing
field need to be redefined. Instead of the normal HFB
fields, in the projection method one needs to calculate
the projected quantities as given by (8)–(11). In the
PHYSICS OF ATOMIC NUCLEI      Vol. 64      No. 3      2001
present model study, we find that the numerical work
involved in the projection is similar to performing the
bare HFB calculations. For each rotational frequency,
the average CPU time on a Pentium (166 MHz) was
6.14 s with projection as compared to 5.97 s for normal
HFB. The present projection method, therefore, pre-
serves all the mathematical and computational simplic-
ity of the HFB mean-field approach.
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Abstract—Inclusive electromagnetic reactions in few-nucleon systems are studied based on accurate three-
and four-body calculations. The longitudinal 4He(e, e') response function in the q range of 300–600 MeV/c; the
4He spectral function; the corresponding quasielastic 4He(e, e') response; and the total photoabsorption cross
sections of 3H, 3He, and 4He are considered. Descriptions of the continuum, the role of final-state interactions, sen-
sitivity to nuclear dynamics, and effects of NNN forces are discussed. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION: FORMULATION
OF THE METHOD

Our recent theoretical results on electromagnetic
processes in three- and four-nucleon systems are pre-
sented in the paper. In Sections 2–4, the results on four-
nucleon response functions are reviewed. A consider-
able part of the present discussion is not contained in
work published previously. In Section 2, the issue of
accuracy of the conventional 4N formulation for the
4He(e, e') reaction is addressed. In Section 3, we present
the exact spectral function (SF) of the 4He nucleus and
study the accuracy of the description of the 4He(e, e')
process in the framework of the SF approximation. The
interest in this approximation rests in part on the fact
that, unlike a complete few-body formulation, both the
spectral function and its distorted-wave generalizations
may be readily obtained in the framework of relativistic
kinematics. In Section 4, the total 4He photodisintegra-
tion cross section is studied, and a sizable disagreement
with recent experimental data on the strength of the
giant resonance peak is revealed. In Section 5, the total
photodisintegration cross sections of 3H and 3He are
studied using realistic NN and NNN forces. Sensitivity
of the results to nuclear dynamics and, in particular, the
effect which an NNN force has on the cross section are
considered.

We calculate response functions having the form

(1)

R e( ) Ψn〈 |Ô Ψ0| 〉
2
δ En E0–( ) e–[ ]

Mn

∑
n 0=

N

∑




M0

∑=

+ f Ψ f〈 |Ô Ψ0| 〉
2
δ E f E0–( ) e–[ ]d∫ 




.

  * Thus article was submitted by the authors in English.
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1) Dipartimento di Fisica, Università di Trento, and Instituto Nazio-

nale di Fisica Nucleare, Gruppo collegato di Trento, Italy.
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Here, Mn and M0 are projections of the total spin, Ψn are
bound states (in particular, Ψ0 is the ground state), and
Ψf are continuum states satisfying

where H is the few-nucleon nonrelativistic Hamiltonian,
and all the quantities are “intrinsic” ones, i.e., refer to the
subspace spanning Jacobi coordinates or momenta.
States Ψn plus Ψf form a complete set. Below, we con-
sider 3H, 3He, and 4He nuclei; hence, there is only one
bound state in Eq. (1). In the (e, e') case, the excitation
energy e is equal to ω – q2/(2AM), where q and ω are
momentum and energy transferred to the nucleus. In the
photodisintegration case, we have q = ω. We neglect the
very small nuclear recoil energy, so that e = ω = Eγ.

We obtain the response (1) with the method of inte-
gral transforms. This method eliminates the need to
compute a complete set of final-state continuum wave
functions and to perform summation over their contri-
butions in Eq. (1). At the first step, the Lorentz trans-
form of the response (1)

(2)

(3)

is calculated. Denoting σ = –σR + iσI and writing the
kernel of the transform as

one can see that, if  is independent of e, the transform

is expressed as the norm of the state :

(4)

H En–( )Ψn 0, H E f–( )Ψ f 0,= =

Φ σR σI,( )

=  
Rn

σR en–( )2 σI
2

+
------------------------------------

n 0=

N

∑ e
R e( )

σR e–( )2 σI
2

+
----------------------------------,d

emin

∞

∫+

Rn Ψn〈 |Ô Ψ0| 〉
2

Mn

∑
M0

∑=

K
1

σR en–( )2 σI
2

+
------------------------------------≡ 1

σ* e+( ) σ e+( )
--------------------------------------,=

Ô

Ψ̃

Φ σR σI,( ) Ψ̃ Ψ̃〈 | 〉 ,=
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which satisfies the Schrödinger-like equation with the
source

(5)

Since the transform (2) is finite, the norm (4) exists and

the solution  to Eq. (5) is localized. Therefore,  can
be found with bound-state-type methods, which is a
substantial point of the present approach. Finally, the
response (1) is obtained by inverting the transform (2).

In general, the operator  in (1) depends on both q
and e as parameters, while the method for calculating

the response listed above is applicable directly when 
is independent of e. To avoid this problem in the most

general case, one could replace the operator (q, e)

with (q, ), where  is independent of e; calculate
the extended response R(q, , e); and consider it at  =
e. A simpler way to remove the e dependence of the
operator of the type listed below usually exists. The
photon case, when retardation corrections are taken
into account, can be obtained from the transverse
response Rt(q, e) of the electron cross section by setting
q = e.

If, as in our case, an expansion

(6)

over a complete set of localized functions is used to
solve Eq. (5), then the method allows the following
simple interpretation. Use of expansion (6) is equiva-

lent to expressing  in terms of J + 1 discrete states

 obtained upon the diagonalization of H in the sub-

space spanning the J + 1 states φj . Let  be the

eigenenergies pertaining to , and let  =  –

 be the corresponding excitation energies. The first

N + 1  values are approximations to the energies of
discrete levels in a system. With the aid of Eq. (4), the cor-
responding approximate transform (2) may be written as

(7)

which corresponds to a substitution of the pseudo-
response

(8)

H E0– σ+( )Ψ̃ ÔΨ0.=
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PHYSICS OF ATOMIC NUCLEI      Vol. 64      No. 3      2001
into the continuum part on the right-hand side of Eq. (2).
Thus, the transform provides smoothing of the pseudo-
response (8). When J becomes sufficiently high, this
smoothed pseudoresponse approaches the transform of
the true response. Then, imposing the requirement in
the course of the inversion procedure that the result of
the inversion be a smooth function, one obtains a good
approximation to the true response.

An approach similar to that outlined above can be
applied for calculating other observables. For example,
the cross section d2σ/dedΩ for scattering of a particle
off a few-body system in the Glauber approximation is
obtained if the profile function (expressed in the usual
way in terms of elementary scattering amplitudes) is

substituted for the operator  in Eq. (1).

The Lorentz transform (2) was proposed in [1]. In
[2], it was suggested to study response functions at the
transform level with bound-state techniques using the
transforms with the Stieltjes-type kernels K = 1/(σ + e)n,
where n = 1, 2, …, and σ is real. In [3], the general
method for perturbation-induced inclusive and exclu-
sive reactions and strong-interaction-induced 2  N
reactions was formulated. The kernels K = 1/(σ + e) and
1/(σ + e)2, where σ is real, were employed to produce
specific transforms. In [4], the exclusive d(e, e'p) reac-
tion was studied using the Lorentz transform. In [5], a
procedure for inclusive reactions was given which
eliminates summation over final states in Eq. (1) as
above but has a nonlocalized object as a solution to the
inhomogeneous equation of Eq. (5) type. No inversion
is required in this case. Additional information on the
approach can be found in [6–8].

Independently, a procedure based on the Laplace
transform for calculating inclusive quantities was
developed in condensed-matter physics (see, e.g., [9]).
In this approach, no dynamical equation like Eq. (5) is
solved, and the transform is calculated with path-inte-
gral techniques. An attempt to obtain a few-body
response in this way was made in [10], and in [11] a
comparison of a response with experiment was per-
formed at the transform level. Unlike the Laplace or
Stieltjes transform, the inversion of the Lorentz trans-
form is facilitated by the fact that the kernel of the
transform looks like a smoothed δ function up to a nor-
malization, so that, at a proper choice of the σI value,
the transform considered as a function of σR is already
similar to the response to be obtained. This should be a
practical advantage of the Lorentz transform.

We also want to comment on the description of spe-
cial features of a system like resonances in the frame-
work of the present approach. If the width of a reso-
nance is larger than σI , then the resonance shows up in

 and will “automatically” be reproduced in the final
response. If the width is narrower than σI , then the res-

onance is smoothed or smeared out in . In this case,
in order to reproduce the width of the resonance in the

Ô

Ψ̃

Ψ̃
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final response correctly, either the input transform  of
enhanced accuracy is required or the width found sepa-
rately in advance should be used in the inversion pro-
cess. The same applies to peculiarities of breakup-reac-
tion amplitudes corresponding to long-living sub-
systems.

In our calculations, we solved Eq. (5) with the help
of expansion (6) over the correlated hyperspherical and
hyperradial bases. A selection of the basis states has
been applied. In the three-nucleon case, the Euler
angles were eliminated and the remaining three-dimen-
sional integration was done with Gauss-type quadra-
tures, while in the four-nucleon case the matrix ele-
ments were calculated with the Monte Carlo method.
The convergence of the final results with respect to the
number of terms retained in the expansion, as well as
the stability of the inversion, was checked. Various sum
rules were used as additional checks. Realistic NN plus
NNN forces were employed in the three-nucleon case,
and semirealistic NN forces in the four-nucleon case.
Within the adopted formulations of the problems, the
results below, except those in Section 4, are accurate at
the percent level. While in the three-nucleon case the
calculations are fast, in the four-nucleon case they are
lengthy and to deal with realistic forces an improve-
ment of our techniques for solving Eq. (5) is required.
Along with trying to apply expansion techniques, other
bound-state-type methods should be sought for solving
Eq. (5) for larger systems.

2. LONGITUDINAL 4He(e, e') RESPONSE 
FUNCTION

The longitudinal 4He(e, e') response in the q range
of 300–600 MeV/c has been calculated [12, 13, 7]. A
nonrelativistic 4N Hamiltonian with central even local
NN potentials reproducing the 1S0 and 3S1 NN phase
shifts up to high energy was used as a dynamical input.
This Trento (TN) potential is listed in [7]. It leads to
correct values of binding energy and radius of 4He. The
conventional single-particle transition operator

(9)

has been adopted. Here, τzi is the isospin operator, Q2 =

q2 – ω2, and  denote the Sachs form factors 
times the usual relativistic correction [14]. The spin–
orbit relativistic correction is disregarded in Eq. (9). As
the sum-rule estimates show, its contribution is very
small in our case. In the 4He case, the first and second
term in Eq. (9) lead to T = 0 and T = 1 final states,
respectively. Therefore, there is no interference
between their contributions to the response (1) in this

Ψ̃
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p
Q

2( ) G̃E

n
Q

2( )+[ ] e
iq ri Rc.m.–( )⋅

i 1=

A

∑=

+ 1/2( ) G̃E

p
Q

2( ) G̃E

n
Q

2( )–[ ] e
iq ri Rc.m.–( )⋅

τ zi

i 1=

A

∑

G̃E

p n,
GE

p n,
case. These contributions were calculated separately

with the ω-dependent factors [ (Q2) ± (Q2)]2 sep-
arated out from the calculation.2)

No further approximations have been made, and the
final-state interaction (FSI) is thus fully taken into
account. In Fig. 1, the calculated inelastic longitudinal
response function RL(q, ω) is shown with solid curves
for four values of the transferred momentum q (in
MeV/c) along with the Bates [15] and Saclay [16] data.
One observes a very good agreement with experiment
in the whole range of q values. The drop in the Saclay
data at q = 500 MeV/c in the vicinity of ω = 250 MeV
is at variance with the corresponding sum-rule system-
atics.

To comment on this agreement with experiment, let
us estimate the initial-state momenta contributing sub-
stantially to the response. Let us consider, e.g., the pro-
cesses where only one nucleon is ejected with high
momentum. Let krel be the relative momentum of the
fast nucleon and the remaining A – 1 subsystem,

where kN , KA – 1, and KA = q are the momentum of the
fast nucleon, that of the residual A – 1 subsystem, and
the total momentum, respectively.

The ground-state single-particle momentum probed
in the electrodisintegration process is q(A – 1)/A – krel =
q – kN ≡ kmiss. The predominant contribution comes
from the states with krel directed along q. Adopting the
approximation kmiss . |q(A – 1)/A – krel |, using the

energy conservation in the form ω = A/[2(A – 1)m] +
q2/(2Am) – E0, and setting ω + E0 = q2/(2m) + ∆, one
obtains

Let us consider the response on the right-hand side of
the peak. Setting, for example, q = 600 MeV/c, ∆ ≤
100 MeV (cf. Fig. 1), one gets kmiss ≤ 0.7 fm–1. Further,
let us consider the left-hand side of the peak at q =
600 MeV/c and set ω ≥ ωmin + 50 MeV. Then, one gets
kmiss ≤ 0.9 fm–1. The FSI admixes, to krel, the momenta
lying in the range ∆k. The momenta ∆k are determined
by the nuclear force, and for large enough momentum
transfer they will be much lower than krel , thus affect-
ing the previous estimates of kmiss very little. The reac-
tion mechanism described above is plausible in the
mentioned kinematical regions, so that, even if higher

2)When the ground-state isospin is different from zero, the response
includes a cross term between the isoscalar and isovector compo-
nents of the operator (9) in addition. The calculation can be done
in a similar way if one, e.g., splits the response into the isoscalar–
isoscalar, isovector–isovector, and cross components and sepa-
rates out the corresponding ω-dependent factors.

G̃E

p
G̃E

n

krel A 1–( )/A[ ] kN A 1–( ) 1– KA 1––[ ]=

=  kN A
1– KA,–

krel
2

kmiss . A 1–( )/A[ ] q
2

A/ A 1–( )[ ]2m∆+{ }
1/2

q– .
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Fig. 1. Longitudinal response of 4He (in MeV–1): full results (solid curves) and PWIA calculation (dashed curves). Bates [15] and
Saclay [16] data are represented with open diamonds and closed circles, respectively; q in units of MeV/c.
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ground-state momenta are probed with other reaction
mechanisms, the contributions of those momenta
would be suppressed because of a smaller weight of
higher momenta in the ground state.

From what has been said above, one may conclude
that low ground-state single-nucleon momenta play a
major role in the above kinematical regions for all the q
values we consider. But the semirealistic NN potentials
of the type we used probably lead to the low-momen-
tum content of wave functions close to that for a fully
realistic nuclear force. This is illustrated in Fig. 2,
where the single-particle momentum distribution of
4He for our NN potential is compared with that obtained
from a realistic nuclear force [17]. The probabilities of
higher momenta in the realistic case are considerably
larger due to correlations generated by the tensor force
missing in our potential. As a result, one may suggest
that the agreement above with experiment testifies to a
correct description of the corresponding low-momen-
tum content of wave functions within the adopted 4N
formulation. It also shows that the nonrelativistic
framework and the use of the conventional single-parti-
cle electromagnetic operator are justified. However, at
high q values and ω values close to the threshold, rather
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high nucleon momenta in the ground state kmiss . [(A –
1)/A]q are probed at the left wing of the response. We
plan to consider this region in more detail in the future.

3. SPECTRAL FUNCTION
AND QUASIELASTIC RESPONSE OF 4He

The SF of 4He and the corresponding quasielastic
(QE) response have been calculated exactly with the
same NN potential [13, 7]. The SF (k, E) represents
the joint probability of finding a nucleon with momen-

tum k and a residual A – 1 system with energy E + 
in a ground state at rest:

(10)

Stz

E0
A

Stz
k E,( ) Ψn k–,

A 1–
; k sz tz, , Ψ0

A〈 | 〉
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∑
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Unlike the formulas above, the matrix element is taken
here in the center-of-mass system in the total space, and
not in the subspace of intrinsic variables. In Eq. (10),
the ground state is

(11)

where  is the corresponding wave function, f(P)
represents a narrow peak concentrated in the vicinity of

P = 0, and (P)|2dP = 1. In Eq. (11), we omitted spin

and isospin variables. Further,  and  are
discrete and continuum states of the Hamiltonian of the
A – 1 subsystem having total momenta –k, the quanti-

ties  =  – Am and  =  – (A – 1)m are
the corresponding intrinsic energies of the system and
subsystem, and sz and tz are the spin and isospin quan-
tum numbers of the nucleon.3) The energy E can be

3)In the nonrelativistic case, when the calculation is reduced to the
center-of-mass subspace in the configuration representation, the
exponent pertaining to the free motion with the momentum k in
(10) has the form exp(–ikrel · rrel) = exp{–i[A/(A – 1)]k · (rA –
Rc.m.)}. See also [8], Eqs. (11)–(17), in connection with the defi-
nitions used. (Note the following misprints in [8]: in Eq. (11), the
integral sign was dropped; in Eq. (16), dp1…dpA – 1 should be

replaced by dp1…dpA – 2; in Eq. (17),  should be

replaced by .)

Ψ0
A

f P( ) P k1… kAϕ0
A k1…kA( )dd∫d∫=

× δ ki P–
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Ψn k–,

A 1– Ψ f k–,
A 1–

E0
A

M0
A

En f,
A 1–

Mn f,
A 1–

e
ipA 1– xA 2––

e
ipA 1– xA 1––

0 1 2 3 4 5
k, fm–1

10–6

10–4

10–2

100

N(k), fm3

3–4 body breakup
t–p breakup
Total
Total [17]
t–p breakup [17]

Fig. 2. Total and partial momentum distributions of 4He
with the TN potential and with AV18-plus-UrbanaIX inter-
action [17].
viewed as the removal energy of the nucleon. The cal-
culation of the SF from its definition requires obtaining
the complete set of states of the residual A – 1 sub-
system. Previously, the SF has been calculated in the
A = 3 case, which is essentially the two-body problem,
and, approximately, for nuclear matter (see [18] for the
references). We avoided calculating the complete set of
A = 3 continuum states with the help of the method of
the type outlined in Section 1. The proton SF Sp(k, E),
Eq. (10), obtained in this way includes two contribu-
tions: one from the A = 3 rest subsystem being in the
ground state and the other from the continuum. The
second of these contributions is shown in Fig. 3. The

values of Sp(k, E) ≥  + 1 MeV are plotted. [We

note that Sp(k, ) = 0; thus, Sp(k, E) exhibits a strong
slope at low energy.] For momenta below 2 fm–1, one

finds a sharp maximum at about 2 MeV above . In
Fig. 4, the cut of the calculated spectral function at k =
0.25 fm–1 is shown.

Our SF compares fairly well with experiments per-
formed at k values about 0.5–0.75 fm–1 [19]. For k >
2 fm–1, the calculated spectral function exhibits a ridge
where the peak position shifts to higher E for increasing
k. This ridge should presumably correspond to a proton
struck from the region of a strong two-nucleon correla-
tion, see [18, 20].

The (e, e'N) cross section can be expressed in terms
of the SF if the following approximations are adopted.
The single-particle transition operator is used, as in
Eq. (9). The factorized form for the final-state wave
functions is used: a plane wave describing the knocked-
out nucleon times a final-state wave function of the

Ethr
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Fig. 3. SF Sp(k, E) of 4He with the TN potential in units of

fm3 MeV–1.
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A − 1 subsystem, i.e., the plane-wave impulse approxi-
mation (PWIA). Only the component of the single-par-
ticle transition operator acting upon the knocked out

nucleon is retained. The QE longitudinal response 
can be calculated within the same approximations via
summation over the corresponding (e, e'p) contribu-
tions. This gives

(12)

The approximate response (12) is shown in Fig. 1
with the dashed curve. At q = 600 MeV/c, the height of
the peak is overestimated by about 9% in the frame-
work of the QE approximation. The rate of convergence
at the peak of the QE response towards the true one
slows down when q reaches about 0.5 GeV/c. Within
our dynamical framework, this probably happens due
to strong short-range components of nuclear force.
From these results, one can extrapolate that for q
exceeding 1 GeV/c the relative error of the QE
response approximation at the peak becomes less than
5%. For energies far from the peak value, the relative
contribution to the cross section of disregarded non-
plane wave components of the final-state wave function
increases. At low ω, the PWIA assumption inherent to

 obviously breaks down. As is shown in [8], the
generalized SF that corresponds to a replacement of the
PWIA for the fast knocked-out nucleon with the dis-
torted-wave impulse approximation can also be calcu-
lated with an approach similar to that used above. A rel-
ativistic Glauber-type ansatz may be used for the dis-
torted wave at high q in some cases.

It is seen from Fig. 1 that the QE peak is shifted to
higher energies with respect to the true one. The shift of
the peak can be qualitatively understood considering a
nucleon at rest in a potential well: ωpeak can be esti-
mated as q2/(2m) + Vf (q) – Vi , where Vi and Vf are the
potential energies before and after interaction with the
virtual photon, respectively. While Vf is negative, it
becomes zero in PWIA, leading to an increase in ωpeak.

It is advantageous to have a simple and good
approximation for the QE response. The continuum
part of the SF depicted in Fig. 3 is to be simplified in the
integrand in Eq. (12). It is seen from Fig. 3 that for low
k values relevant to us almost all the strength in this part
is concentrated close to the threshold E = Emin. This
suggests the approximation [to be substituted into (12)]

(13)

where Et*p is the threshold breakup energy of the resid-
ual A = 3 nucleus, and ntp(nt*p) is the proton momentum
distribution in the channel where the residual nucleus is
bound (unbound). The continuum part of SF is repre-

RL
QE

RL
QE

q ω,( ) A G̃E

p
Q( )[ ]

2
kN ESp kN q– E,( )dd∫=

× δ ω E– kN
2

/ 2m( ) KA 1–
2

/ 2 A 1–( )m[ ]–(–[ ] .
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QE

S k E,( ) . ntp k( )δ E E0 H3( )– E0 He4( )+[ ]

+ nt* p k( )δ E Et* p– E0 He4( )+[ ] ,
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sented by the second term in (13). Using (13), one does
not need continuum-state calculations since nt*p(k) =
n(k) – ntp(k), n(k) being the total momentum distribu-
tion. One obtains an even simpler approximation con-
sidering that Et*p . E0(3H):

(14)

Equation (14) was used in the literature (see, e.g., [10]).
At small k values of interest, the second term in (13) is
comparatively small (e.g., the integrated values of ntp
and nt*p are equal to 0.89 and 0.11, respectively), which
improves the quality of the approximations (13) and
(14). In Fig. 5, we show the responses obtained from
Eq. (12) with these approximations relative to that of
Eq. (12) with the full spectral function. Except for
small ω, where the wrong threshold behavior in

S k E,( ) . n k( )δ E E0 H3( )– E0 He4( )+[ ] .
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Fig. 4. The cut of the 4He SF at k = 0.25 fm–1. The values of
SF are in 10–3 fm3 MeV–1.

Fig. 5. QE response (12) at q = 500 MeV/c with the SF of
Eq. (13) (dashed curve) and of Eq. (14) (dotted curve) rela-
tive to that with the full SF (the QE peak is marked by an
arrow).

50 150 250 350
ωlab, MeV

0.9

1.0

1.1

1.2

1.3
RL

QE



488 EFROS et al.
Eq. (14) may play a role, the three responses are very
similar, particularly in the peak region. At q = 300, 400,
and 1000 MeV/c, one has very similar results.

4. PHOTODISINTEGRATION 
OF 4He: STRENGTH OF THE GIANT 

DIPOLE RESONANCE

We have calculated for the first time the total cross
section of the α-particle photodisintegration in the
framework of four-nucleon dynamics with FSI taken
into account [21]. The whole energy range below the
pion threshold was considered. We confined ourselves
to the unretarded E1 approximation for the transition
operator, which is known to be a very good one, at least
for not overly high energies. It is especially accurate for
the total cross section since there is no multipole inter-
ference in this case. According to the Siegert theorem,
the transition current operator may be rewritten exactly
within this approximation as the dipole momentum
operator,

(15)

while MEC are taken into account automatically. The
E2 contributions to the total cross section are small
even at high photon energy [22], and they tend to cancel
with the E1 retardation contributions [23].

D ri Rc.m.–( ),
i 1=

Z

∑=

20 25 30 35
Eγ, MeV

0

2

4
σ, mb

Fig. 6. Theoretical results for the total 4He photoabsorption
cross section at low energy with the MT (dashed curve) and
TN (solid curve) potentials. Also shown is the cross section
based on the experimental results of [25, 26] (dotted curve
with typical size of the experimental error) as well as dou-
bled experimental cross sections for (γ, p)3H (open circles)
[29] and (γ, n)3He (triangles) [28] and (closed circle) [30].
The cross section [33] estimated from the experimental data
on photon scattering off 4He is shown with a rectangular.
We can write down the cross section as

where R is the dipole response function (1) with  =
Dz. The problem was solved with two central even local
NN potentials reproducing the 1S0 and 3S1 NN phase
shifts up to high energy: the TN potential used above
and the Malfliet–Tjon (MT) potential [24].

Our final total cross sections are shown in Fig. 6
along with experimental data. The three-body breakup
threshold at 26.1 MeV is marked with an arrow. The
data include the sum of the (γ, n)X [25] and (γ, p)3H
[26] cross sections, which is shown with the dotted
curve. This sum represents the total cross section if one
disregards the (γ, d)d cross section. Within the frame-
work of the unretarded E1 approximation, the latter
cross section vanishes, and it can safely be neglected
(see, e.g., [27]). We also show the doubled cross sec-
tions of other low-energy (γ, p)3H and (γ, n)3He exper-
iments [28–30]. Below the three-body breakup thresh-
old, these cross sections represent the total cross sec-
tion, provided that the (γ, p)3H cross section is equal to
the (γ, n)3He cross section, which is true with good
accuracy. Above the threshold, they may be considered
as representing the total cross section if one assumes in
addition that the cross sections for three- and four-body
breakups may be disregarded. This seems plausible at
least for small energies above the threshold. According
to the experimental results of [25, 31, 32], the three-
and four-body breakup cross sections are quite small in
the peak region.

Below the three-body breakup threshold, one
observes a rather good agreement of the obtained cross
section with the experimental data. Beyond the thresh-
old, the data show a flattening, while our cross sections
reveal a further increase and become markedly differ-
ent from the experimental ones. On the other hand, in
older experiments [31, 32], a more pronounced giant-
resonance peak has been found, which is in qualitative
agreement with our theoretical cross sections. Our
cross sections agree better with that estimated in [33]
from the data on photon scattering off 4He. The latter
cross section is shown with a rectangle in Fig. 6.

Our results are shown in Fig. 7 on an extended
energy range. The dotted curve represents the same
experimental data as in Fig. 6. Additional two-fragment
disintegration data are also shown. They include the sum
of the (γ, p)3H and (γ, n)3He cross sections from [31] and
the doubled (γ, p)3H cross sections from [29, 34].

Commenting on the results presented in Figs. 6 and
7, one should mention that supplementing the experi-
mental two-body breakup cross sections in these fig-
ures with the corresponding three- and four-body
breakup cross sections does not lead to significant
changes in the peak region. We also indicate that our
calculated cross sections agree nicely with the inverse-
energy-weighted sum rule, which, up to quite small

σtot Eγ( ) 4π2
e

2
/"c( )EγR Eγ( ),=

Ô
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corrections, is model independent and is expressed in
terms of the square of the 4He radius. To achieve an
agreement at the peak with the experimental data pre-
sented in Fig. 7 preserving the agreement with this sum
rule, one would need to put additional strength at high
energy. This strength should be considerable due to the
inverse energy factor, even in presence of retardation
corrections and contributions from other multipoles
omitted in the calculation. Though such an enhance-
ment of the tail cross section does not seem to be plau-
sible, it cannot be totally excluded.

Recently, a calculation of the cross section has been
performed taking into account more terms in the
Eq. (6)–type expansion. It has shown an unexpected
slower convergence pattern for the higher terms. The
calculation has also been performed in a somewhat dif-
ferent approach where an effective interaction in the
hyperspherical formalism was introduced [35], leading
to much faster convergence. The resulting cross section
shifts to some extent to lower energy. However, the
height of the maximum becomes even a few percent
larger, so that our conclusions above remain valid. A
detailed comparison between the two calculations will
be published elsewhere [36]. In principle, use of simpli-
fied nuclear forces in our calculation might lead to the
above disagreement with experiment. Indeed, in the
three-nucleon case, realistic NN + NNN forces lead to
somewhat lower peaks than the above-used semirealis-
tic NN forces (see the next section). However, due to the
above-mentioned sum rule, the cross section in the
peak region is mainly governed by the size of the sys-
tem, while details of the nuclear force are less impor-
tant. In fact, the ratio of the heights of the peaks
obtained in our calculation and in the above-listed
experiments is 1.3–1.5, while the ratio of the heights of
the peaks obtained with the above-used semirealistic
NN forces and with realistic NN + NNN forces in the
three-nucleon case is around 1.1. Therefore, the prob-
lem remains open, and more experimental and theoret-
ical work is required.

5. PHOTODISINTEGRATION OF THREE-BODY 
NUCLEI WITH REALISTIC NN AND NNN 

FORCES

In this section, the total photoabsorption cross sec-
tions of the trinucleons are studied using realistic NN
and NNN interactions, and sensitivity to nuclear forces
is explored.4) Effects of NNN forces on the cross sec-
tion are found, in particular. The only other calculations
of trinucleon photodisintegration covering a larger
range of energies and employing realistic NN forces
are, to our knowledge, those of [38, 39]. However, these
calculations are for the exclusive process of two-body
breakup, while we compute the inclusive (two-body +
three-body breakup) cross sections over a larger energy

4)The results of this section are obtained in collaboration with
Tomusiak [37]. 
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range. It is because we are looking for effects of NN and
NNN forces that energies in the tail region, Eγ >
70 MeV, are included here.

We use the Argonne AV14 NN interaction [40] that
includes central, tensor, ls, l2, and (ls)2 components and
the Bonn-A r-space potential [41] that includes central,
tensor, ls, and p2 components. As NNN potentials, the
Urbana-VIII (UrbVIII) [42] and Tucson–Melbourne
(TM) [43, 44] models are used.

The table gives our results for the ground-state prop-
erties of 3H using the various potential models
described above. In order to obtain the correct binding
energy with the TM NNN potential, we have adjusted
the cutoff mass Λ in the monopole form factor. This
requires Λ = 4.67µ and Λ = 4.07µ, in the notation of
[44], for use with the AV14 and Bonn-A (r-space)
cases, respectively. Previously published ground-state
properties are available [45, 17] for the AV14 and AV14 +
UrbVIII potentials. The corresponding results in the
table are in agreement with these. The last two columns
contain the results obtained for the inverse-energy-

weighted sum σ–1 = (Eγ)dEγ. This sum was

calculated in two ways: (i) by direct integration of the

response giving , and (ii) with the help of the sum
rule, i.e., by use of the ground-state wave function giving

, which is related to the triton point proton radius:

As seen in the table, agreement is obtained to better
than 0.5%.

The value of the cross section at the peak depends
on the ground-state details, especially the radius. This
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Fig. 7. As in Fig. 6, but for an extended energy range up to
140 MeV. Additional two-fragment data from [31] (dia-
monds), [29] (open circles), and [34] (open boxes) are also
shown (for further explanations see text).
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3H ground-state properties for AV14, Bonn-A, AV14 + UrbVIII, AV14 + TM, and Bonn-A + TM potential models

Potential EB, MeV , fm P(D), % , mb , mb

AV14 7.69 1.66 8.94 2.636 2.645

Bonn-A 8.15 1.61 6.88 2.481 2.486

AV14 + UrbVIII 8.49 1.60 9.67 2.442 2.453

AV14 + TM 8.48 1.60 9.67 2.448 2.459

Bonn-A + TM 8.47 1.59 7.25 2.411 2.415

Note: EB is the binding energy,  is the proton root-mean-square radius, and P(D) is the D-wave probability.

rp
2〈 〉 σ 1–

int σ 1–
g.s.

rp
2〈 〉
is evident from the remarks above on the inverse-
energy-weighted sum rule. Figure 8 shows the results
[46] obtained using the MT and TN potentials together
with results obtained for the AV14 and AV14 + UrbVIII
potentials. Ground-state point proton radii computed
from these potentials are 1.61, 1.59, 1.66, and 1.60 fm,
respectively. The similar peak heights for these rather
different potentials are due largely to the similarity of
these radii. However, some sensitivity to a force model
still remains, and while the semirealistic TN and MT
potentials and the realistic AV14 + UrbVIII model give
nearly the same radii, the latter one leads to roughly
10% lower peak height. In this connection, one may
note that, while components of the ground-state wave
function with single-nucleon momenta close to zero are
probed in the peak in the above-considered case of the
(e, e') reaction, components of the ground-state wave
function with higher momenta are probed in the peak
region in the present case. The corresponding single-
nucleon momenta are much higher in the tail region.

0 40 80 120
Eγ, MeV

0.4

0.8

1.2

1.6

2.0

σtot, mb

Fig. 8. Total 3H photoabsorption cross sections predicted by
the TN (dotted curve), MT (dashed curve), AV14 (dash-dot-
ted curve), and the AV14 + UrbVIII (solid curve) potential
models.
Two of the four potentials, AV14 and AV14 + UrbVIII,
produce cross sections with significantly larger high-
energy tails than the semirealistic MT and TN models.
Part of the difference must be attributed to the tensor
force contained in the realistic potential models.

Figure 9 shows the peak region of the T = 1/2 con-
tribution to the absorption cross section as computed
from the five potential models of the table. The addition
of NNN forces lowers the peak height since it increases
the binding energy and decreases the radius in all cases.
The results in the T = 3/2 case are similar.

Figures 10 and 11 show the tail regions of the T =
1/2 and 3/2 contributions to the cross section, respec-
tively. In the T = 1/2 case, despite the increase in the
cross section in the tail region due to NNN forces, no
clear separation between the cross section with and
without NNN forces is seen. We note the importance of
binding in this channel by observing in the tail region
the rather disparate curves for the pure NN cases of
AV14 and Bonn-A. According to the table, these NN

0 10 20 30
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σγ, mb
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Fig. 9. T = 1/2 part of the 3H total photoabsorption cross sec-
tions in the peak region. The AV14 + UrbVIII and AV14 +
TM results are indistinguishable in the figure.
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potentials correspond to 3H binding energies of 7.69
and 8.15 MeV, respectively. In addition, the three curves
corresponding to the inclusion of NNN forces are rather
close and difficult to distinguish, reinforcing the argu-
ment that effects here are mainly due to binding.

Figure 11 shows that the T = 3/2 channel clearly sep-
arates all models containing an NNN force from those
with purely NN forces. This is a 5–10% effect in the
energy range 70–110 MeV. However, contrary to the
T = 1/2 case, binding effects here do not play an impor-
tant role, as evidenced by the nearly overlapping NN
curves in the tail region. As a result, the separation
between the curves in Fig. 11 is dominantly an effect
due to NNN forces; i.e., the T = 3/2 channel is more sen-
sitive to NNN forces in the tail region. The import of
this observation is that it is the three-body breakup
channels which might show more evidence of an NNN
force since they carry all of the T = 3/2 strength. In fact,
the analysis of our theoretical results and the experi-
mental nd and ppn data from [47] lead us to conclude
that, in this energy region, the T = 1/2 content of the ppn
channel is about 1/3.

At this point, one may question the reliability of our
total cross section results, since only the unretarded
dipole operator is used in the calculation. For the total
cross section in deuteron photodisintegration, it is
known that corrections to the unretarded dipole opera-
tor are small in the energy range studied here. In fact, it
is shown in [48] that the combined contributions of E1
retardation and one-body current effects for other mul-
tipoles lead to an enhancement of about 10% for the
total deuteron photoabsorption cross section at Eγ =
80 MeV. Further contributions due to meson exchange
and isobar currents are cancelled by relativistic contri-
butions in the whole energy range from 5 to 100 MeV
[49]. For the photodisintegration of three-body nuclei,
the exact size of these corrections is not known, but we

70 80 90 100 110
Eγ, MeV

0.04

0.07

0.10

0.13
σγ, mb

Fig. 10. T = 1/2 part of the 3H total photoabsorption cross
sections in the tail region. The notation for the curves is the
same as in Fig. 9.
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Fig. 11. As in Fig. 10, but for T = 3/2.
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Fig. 12. Total photoabsorption cross sections for 3H (a) and
3He (b) computed from the AV14 + UrbVIII (solid curve)
and r-space Bonn-A + TM (dashed curve) models. The
shaded area represents the data from [50], while the dots are
the data of [47].
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believe that the picture is not too different from the deu-
teron case. It seems plausible that the main effect of the
above corrections would consist in a relatively small
shift of our curves, while the relative contribution of the
NNN force to the cross section would not change siz-
ably.

Figures 12a and 12b compare to the available data
[47, 50] the total cross sections for 3H and 3He as com-
puted with two of our more complete potential models,
AV14 + UrbVIII and Bonn-A + TM. The 3He calcula-
tions include the full Coulomb interaction between the
protons. Our calculations agree rather closely with the
available data. We note by reference to Fig. 8 that the
semirealistic models do not yield the same level of
agreement with the data.

Thus, the results obtained show clear sensitivity to
the underlying nuclear dynamics. In particular, the tail
region of the T = 3/2 channel appears to be sensitive to
the presence of the NNN forces. Therefore, further the-
oretical and experimental effort should be devoted to
this promising kinematical region. On the theoretical
side, several corrections, expected to be minor, will be
investigated in the future. These are the effects of
higher multipoles, retardation in the one-body opera-
tors, and the inclusion of explicit two-body currents
beyond the Siegert theorem. The most recent NN force
models such as AV18 and Nijmegen will also be
employed. The rather large effect of the NNN force
found in the tail region could imply a much larger effect
in some selected kinematics of the exclusive three-body
breakup reaction.
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Abstract—The Boltzmann (or Vlasov–Uehling–Uhlenbeck) equation for heavy-ion collisions is derived on the
basis of the Dyson equation. Special attention is given to correctly choosing a statistical ensemble. This makes
it possible to determine physically small parameters in the gradient expansion; to establish the range of appli-
cability of kinetic approaches to heavy-ion reactions; to write, in a simple form, generalized Boltzmann equa-
tions consistently taking into account all corrections for medium effects; and to analyze the role of these cor-
rections. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Nowadays, kinetic approaches to heavy-ion colli-
sions are among the most popular methods for physi-
cally describing the dynamics of this process. The dis-
cussion between the supporters of approaches relying
on Vlasov–Uehling–Uhlenbeck equations (see, for
example, [1]), which represent a semiclassical form of
Boltzmann equations, and those who advocate the
method of quantum molecular dynamics (see, for
example, [2, 3]) and who state that they solve multipar-
ticle dynamical equations in the semiclassical approxi-
mation has not yet led to definitive conclusions.

Attempts at finding out which of the aforementioned
approaches makes it possible to obtain deeper insights
into the physics of the process immediately run into
two challenging problems.

The first stems from the fact that researchers follow-
ing the different lines employ different Monte Carlo
codes, making no attempt at relating these codes either
to equations of the Boltzmann type or to dynamical
equations of motion. Some twenty years ago, a similar
situation was discussed in studying the applicability of
various Monte Carlo codes (algorithms for the intranu-
clear-cascade model) to describing nucleon–nucleus
collisions. It turned out (see, for example, [4, 5]) that a
comparison of different intranuclear-cascade codes is
meaningless as long as it is not clear which equations
are solved numerically on the basis of these codes. The
analysis performed in [5, 6] revealed that these are mas-
ter kinetic equations for multiparticle distribution func-
tions rather than Boltzmann equations since the latter,
which are equations for single-particle functions, cannot
in principle describe the results of correlation experi-
ments for reactions products. At the same time, the intra-
nuclear-cascade model describes such experiments quite
successfully (see, for example, [7]).

The second problem is associated with the fact that
nuclear physics borrows all kinds of kinetic equations

* e-mail: vadim.bunakov@pobox.spbu.ru
1063-7788/01/6403- $21.00 © 20494
from other (predominantly, classical) realms of phys-
ics. Therefore, it is necessary to make an attempt at
finding out why these equations describe reasonably
well quantum processes in nuclear physics and whether
we must modify them by taking into account its multi-
particle quantum aspects. An attempt was made in [5]
(see also references quoted in that article) to perform
such an analysis for the case of nucleon–nucleus colli-
sions. Independently, this problem for nucleus–nucleus
collisions was considered by some other authors (see,
for example, [8, 9] and the detailed review article by
Botermans and Malfliet [10]). However, Botermans
and Malfliet [10] only aimed at formally deriving quan-
tum kinetic equations of the Vlasov–Uehling–Uhlen-
beck type rather than at analyzing physical applicabil-
ity of mathematical approximations used in this deriva-
tion. Therefore, the physics behind the derivation of the
equations was lost almost completely. In particular,
those authors paid no attention to the fact that the tech-
nique of nonequilibrium Green’s functions [11–13] that
was used in their derivation was developed for macro-
scopic quantum ensembles in a heat bath. At the same
time, the choice of a statistical ensemble for describing
two colliding finite ground-state nuclei is a problem in
itself [5]. They indicated that, in all practical calcula-
tions performed by that time, use had been made of the
approximation Γ = 0 (Γ is the decay width of a quasi-
particle—that is, the imaginary part of the self-energy
operator, ImΣ) and erroneously concluded that this
approximation (and the kinetic approach in general)
ceases to be valid at projectile-ion energies exceeding a
value of about 100 MeV per nucleon. Those authors
were the first who were able to write, in a closed form,
the set of the generalized Boltzmann equations, which
was introduced by Kadanoff and Baym [12] and which
takes into account first-order corrections to the Γ = 0
approximation. However, the form obtained in [10]
included four coupled equations involving the commu-
tators of rather complicated functions [see Eqs. (38)–
(41) below]. That set of equations must be solved self-
consistently, but its complexity far exceeds the com-
001 MAIK “Nauka/Interperiodica”
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plexity of conventional Boltzmann equations. For this
reason, no attempts have been made so far to find self-
consistent solutions to those equations.

The objective of the present study is to analyze
physical small parameters behind the aforementioned
formal derivation and to check the applicability of rel-
evant approximations in the realistic case of heavy-ion
collisions. The procedure basically consist in introduc-
ing a statistical ensemble that can be used in the case of
two colliding nuclei and in estimating the small param-
eters of the so-called gradient (or semiclassical) expan-
sion that are averaged over this ensemble in order to
determine the region where the kinetic approach can be
applied to heavy-ion reactions.

In particular, it will be proven that it is not Γ/ReΣ
(ReΣ is the real part of the self-energy operator), as was
advocated in [10], but Γ/E (E is the kinetic energy per
projectile nucleon) that plays the role of the expansion
parameter. This removes almost completely the restric-
tion that Botermans and Malfliet [10] imposed on ener-
gies at which the kinetic approach is applicable. It will
also be shown that the choice of an appropriate ensem-
ble (this involves averaging over an interval ∆E of pro-
jectile-beam energies, with the result that all fine fea-
tures of observables are smoothed) makes it possible to
simplify the form of generalized Boltzmann equations
and to represent them as conventional Boltzmann (or
Vlasov–Uehling–Uhlenbeck) equations with some
modifications, which are obviously due to the nuclear-
matter effect on the propagation and collisions of parti-
cles. We will further try to find out how each such mod-
ification affects solutions to the generalized Boltzmann
equations.

The ensuing exposition is organized as follows. In
Section 2, we recall the derivation of quantum kinetic
equations in macroscopic systems in order to highlight
small physical parameters in the gradient expansion.
This is necessary since these parameters were analyzed
very rarely (see [5, 11, 12]). In Section 3, we consider
the model case of uniform nuclear matter and investi-
gate corrections for nonzero values of Γ in that case. It
is the effect of the self-stabilization of matter transpar-
ency due to the reduction of the collision integral with
increasing Γ that is the most interesting and the most
general here. The point is that the width Γ itself is
approximately in direct proportion to the collision inte-
gral, whereby there arises a negative feedback, which,
in particular, reduces the dependence of the free path of
a particle on the cross section for collisions of this par-
ticle with medium particles. In Section 4, we analyze
the parameters of the gradient expansion for realistic
collisions of heavy ions and present a generalized Bolt-
zmann equation that takes into account all gradient cor-
rections and which has the form of a simple modifica-
tion of the conventional Boltzmann equation.
PHYSICS OF ATOMIC NUCLEI      Vol. 64      No. 3      2001
2. DERIVATION OF KINETIC EQUATIONS
FOR AN INFINITE MACROSCOPIC SYSTEM
This derivation is usually performed for a nearly

ideal Fermi gas of temperature Θ about the Fermi
energy EF [11–13]. The method employed to do this
relies on nonequilibrium Green’s functions [10, 13]
expressed in terms of the second-quantized operators

(x) and (x), where x = (r, t) is a 4-vector; that is,

(1)

where the superscript c labels the causal function, Tc is
the chronological-ordering operator, and angular
brackets denote averaging over an ensemble. In the
same way, we introduce the antichronological Green’s
function

(2)

and two functions featuring no chronological ordering,

(3)

(4)

These four Green’s functions are related by the equa-
tion

(5)
Use is sometimes made of the advanced (G+) and
retarded (G–) Green’s functions

(6)

In terms of these functions, we can develop the diagram
technique [10, 11, 13] and introduce the corresponding
self-energy functions Σ_, Σc, a, and Σ± satisfying the
equation

(7)
For a uniform ideal Fermi gas, the corresponding

Green’s function can be expressed in terms of the occu-
pation numbers np as

(8)

where t = t1 – t2, r = r1 – r2, and e(p) = p2/2m. Applying
the Fourier transformation to (8), we obtain

(9)

The analogous expression for G0> has the form
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now takes the matrix form, where

In addition to the difference variables t and r, we
introduce the conventional summary variables forming
the 4-vector X,

These variables are local coordinates of the distribution
function, and we further perform a gradient expansion
near these coordinates.

By using Eq. (11), we can derive a kinetic equation
for the Wigner distribution function f(p, R, T), which is
expressed in terms of G< in the same way as np is
expressed in terms of G0< [see Eqs. (8), (9)]; that is,

(12)

In order to accomplish this derivation, we must take the
components G< from the Dyson equation (11), apply

the operators  = (–i"∂/∂t2 + "2/2m ) and S1 =

(i"∂/∂t1 + "2/2m ) to it, and subtract the second result
from the first one (for details, see [13]). In this way, we
obtain

(13)

Upon replacing the variables x1 and x2 by r, R, t, and
T, we further recast the left-hand side of (13) into the
form

(14)

The integrand on the right-hand side of (13) involves
the sum of terms of the form Σ(1, 3)G(3, 2), which can
be written by using the summary and the difference
coordinates as

(15)

We now go over to the basic approximation often
referred to as the semiclassical approximation. Assum-
ing that the functions G(r, t; R, T) and Σ(r, t; R, T)
change slowly as functions of R and T and that they
have a sharp maximum in the vicinity of the point (r, t),
we expand expression (15) in a Taylor series in the
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vicinity of the point X = (x1 + x2)/2 (usually, this expan-
sion is referred to as a gradient one),

(16)

and retain only the first term in each of the integrands.
In conjunction with expression (5), this approximation
makes possible it to represent the right-hand side of
(13) in the form

(17)

Taking the Fourier transformation of expressions
(14) and (15), we go over from (13) to (below, we will
use the system of units where " = 1)
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In the first Born approximation in the two-particle
interaction V(R1 – R2), the expression for Σ_ assumes
the form
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R, T ). The result is

(20)

The relevant spectral function

(21)

G x3 x2–
x3 x2+

2
----------------, 

 

=  G x3 x2– X,( )
x1 x3–

2
--------------- ∂G

∂X
------- …,+ +

Σ x1 x3–
x1 x3+

2
----------------, 

 

=  Σ x1 x3– X,( )
x3 x2–

2
--------------- ∂Σ

∂X
------- …,+ +

r' t ' G
> r' t '; R T, ,( )Σ> r r'– t t '; R– T, ,( )[dd∫

– G
< r' t '; R T, ,( )Σ< r r'– t t '; R– T, ,( ) ] .

T∂
∂ p

m
---- ∇ R+ 

  G
< p ω; R T, ,( )

=  G
< p ω; R T, ,( )Σ> p ω; R T, ,( )–

+ G
> p ω; R T, ,( )Σ< p ω; R T, ,( ).

Σ_ p ω; R T, ,( )

=  
d

3
p1

2π( )3
-------------

ω1d

2π
---------

d
3
p2

2π( )3
-------------

ω2d

2π
---------

d
3
p3

2π( )3
-------------

ω3d

2π
--------- 2π( )4∫

× δ p p1 p2– p3–+( )1
2
--- V p p2–( ) V p p3–( )–[ ] 2

× δ ω ω1 ω2– ω3–+( )G
+ p1 ω1; R T,,( )

× G
_ p2 ω; R T, ,( )G

_ p3 ω; r T, ,( ).

T∂
∂ p

m
---- ∇ R+ 

  G
>

G
<Σ>

– G
>Σ<

.+=

a p ω; R T, ,( ) i G
>

G
<

–( )=
PHYSICS OF ATOMIC NUCLEI      Vol. 64      No. 3      2001



APPLICABILITY OF KINETIC APPROACHES 497
satisfies the equation

(22)

For an ideal gas [see Eqs. (9), (10)], we have

(23)

so that

(24)

Let us assume that, for a slightly nonideal gas, the
spectral function has the delta-function form (23), as
previously. From expressions (12) and (24), we then
obtain

(25)

Substituting these expressions into Eqs. (18) and (19),
we arrive at the Boltzmann equation.

Let us consider in greater detail the gradient expan-
sion (16) because the disregard of all terms in it but the
first one was the key point in deriving the Boltzmann
equation. First, we restrict our analysis to the time com-
ponents t and T of the 4-vectors. In this case, the disre-
gard of the second term in (16) means that

(26)

These inequalities can be valid if

(27)

where 〈T 〉  is the ensemble-averaged characteristic
interval of G and Σ variations with time T, while 〈t 〉  is
determined by the width of the distribution of the func-
tions G and Σ with respect to the difference variable t.

For the function G, the quantity 〈T 〉  is determined by
the free-path time—that is, it is approximately in
inverse proportion to the quantity

(28)

It can be directly seen from Eq. (8) that, for np specified
by the Fermi distribution at temperature Θ ≈ EF, the
characteristic interval 〈t 〉  can be estimated as

(29)

where E is the mean energy of the particle in the sys-
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V(t1, t2) ~ δ(t1 – t2), the dependence of Σ on T and t is of
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the same character as the corresponding dependence of
G. Therefore, the gradient expansion is valid if

(30)

The disregard of the second term in the gradient expan-
sion is equivalent to the Γ  0 approximation often
referred to as the quasiparticle approximation (it seems
more correct to call it the free-particle approximation).
Keldysh [11] was the first who indicated that this con-
dition is of prime importance for deriving kinetic equa-
tions. As will be seen below, another approximation
that is used in deriving kinetic equations—that in which
the spectral function has a delta-like form—also fol-
lows from the condition Γ  0.

So far, we have considered a uniform medium; as
long as we do this, all derivatives ∂/∂R in the gradient
expansion vanish. Following [11–13], we can analyze
the case of a weakly changing external potential. By
using the same arguments as before, we can demon-
strate that, in this case, 

(31)

is the small parameter in the gradient expansion for this
system. This is an ordinary condition under which the
semiclassical approximation is valid (here, p is the
mean momentum of a particle in the system).

If we retain two spatial-coordinate-dependent terms
of the gradient expansion (16) on the left-hand side of
Eq. (13) and only one such term on its right-hand side,
we obtain the kinetic equation [12]

(32)

where

(33)

(34)

The second term on the right-hand side of Eq. (34) is
the ordinary self-consistent Hartree potential.

Kadanoff and Baym [12] were the first to indicate
that the derivation of Eq. (32) is inconsistent. Retaining
two terms of the gradient expansion on the left- and on
the right-hand side of the relevant equations, they
obtained the so-called generalized Boltzmann equation,
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(35)

and the corresponding equation for the spectral func-
tion,

(36)

Here, [ , ] is the quantum Poisson bracket defined as

Solving Eq. (36), we can find the spectral function
in the form

(37)

It follows that the true form of the spectral function for
interacting particles is given by Eq. (37)—only in the
limit Γ  0 does this expression reduce to the delta-
like form (23).

Botermans and Malfliet [10] were able to write the
generalized Boltzmann equation (35) in the simpler
closed form [trivial terms associated with the external
field U(r), which are immaterial for our problem of
heavy-ion collisions, are discarded here]

(38)

where a is a function that has the form (37) and which
satisfies the equation (we recall that Γ = 2ImΣ+)

(39)

The relevant Green’s functions are now given by

(40)

where the function F(p, ω; R, T) plays the role of the
old distribution function f(p, R, T) [see Eqs. (12), (22),
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and (24)]. The function α in (38) is determined by the
equations

(41)

3. HEAVY-ION COLLISIONS (UNIFORM MODEL)

The set of generalized Boltzmann equations,
together with the equations for Σ [see Eqs. (37)–(41)],
which was obtained in [10], is closed in contrast to the
Kadanoff–Baym equations, and one can in principle try
to solve it. However, these equations are much more
complicated than the standard Boltzmann equations.
For a possible simplification, Botermans and Malfliet
[10] considered only the semiclassical approximation,
going over to the limit Γ  0 and choosing the
strength function a in the delta-function form

They state that this approximation is valid only if

(42)

By comparing the real and the imaginary part of the
nucleon optical potential at various energies per
nucleon, EHI/A, in heavy-ion collisions, those authors
arrived at the conclusion that the semiclassical approx-
imation ceases to be valid at energies higher than
EHI/A ~ 100 MeV, since the ratio in (42) is approxi-
mately equal to 0.2 in this region and exceeds unity at
energies EHI/A higher than 300 MeV.

Since Eqs. (37)–(41) were derived by retaining the
first two terms of the gradient expansion, any estimate
of their applicability can be obtained only by analyzing
the small parameters in this expansion. For the sake of
simplicity, we first perform such an analysis for the
model in which two semi-infinite walls of nuclear mat-
ter collide. In the initial state, we then have, in momen-
tum space, two Fermi spheres whose centers are sepa-
rated by the momentum pb of the beam incident on the
target. This momentum corresponds to the beam energy
per particle, Eb = EHI/A.

In our case, the statistical ensemble over which the
averaging of G is performed can be obtained (see, for
example, [4, 5]) by averaging over the beam-particle
momenta pb (or over beam energies Eb). This averaging
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slightly smears the initial Fermi surfaces over the inter-
vals ∆pb or ∆E = (pb∆pb/m). Such roughening makes it
possible to smooth all possible fine structures in the
behavior of the functions Γ(ω, p) and F(ω) and to treat
Γ as a constant (at least, within the energy interval of
width about Γ itself).

We can now assume that the spectral function has a
Lorentzian form with constant Γ and neglect the
remaining ω dependence of the function F in Eqs. (40).
In this case, the function G< takes the form

(43)

where the quantity

determines the position of the pole of the function a(p,
ω) on the real axis of energy.

By applying the Fourier transformation to (43), we
obtain

(44)

In order to estimate the scale of localization of this
function in the variables r and t, we consider, for the
sake of simplicity, the one-dimensional integral in (44)
(for example, in the incident-beam direction, r || p). For
the case of Eb > EF, the integral

(45)

provides a fairly accurate approximation for the initial
distribution f(p, T = 0) in momentum space. By using
the expansion

we reduce the integral (45) to

(46)

where vb = pb/m is the nucleon velocity in the incident
beam.

It is obvious that the characteristic width 〈r 〉  of the
maximum of G in the vicinity of the point r = 0 is

(47)

The localization of the function in the variable 〈 t 〉  is
determined by the competition between the quantity
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1/Γ arising in the exponential function in (46) and the
quantity 〈 t1〉  associated with the sinusoidal dependence
in this equation:

(48)

For energies Eb > EF, this quantity is much less than
1/Γ. This can easily be confirmed by using experimen-
tal data (see [14]) or estimates obtained within theories
of the Brueckner type [15, 16]. Hence, the characteris-
tic value of 〈t 〉  is

(49)

However, even the first nucleon–nucleon collisions
strongly wash out the Fermi surface. If we do not aim
at precisely describing the initial stages of the process,
we can therefore assume that this parameter can be esti-
mated as

(50)

Here—in just the same way as in (29)—E is the mean
energy of a particle in the system of colliding ions.

Addressing once again the problem of estimating
small parameters in the gradient expansion (16), we
obtain either the inequality

(51)

which enables one to obtain a kinetic description of the
earliest stages of heavy-ion collisions, or the weaker
inequality

(52)

which coincides with the Keldysh estimate (30).
Let us now consider the generalized Boltzmann

equation (38), which is valid to the first order in Γ/E
(see above). In order to take into account ω dependence
of the optical potential ReΣ+(ω, p), we expand it in the
vicinity of the zeros ωp = εp of the expression

As a result, we obtain

(53)

The quantity Z is given by [15]
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where  is the effective E mass of the nucleon in
nuclear matter.

By integrating Eq. (38) with respect to ω, we find
within our uniform-matter model that

(55)

It should be noted that the second Poisson bracket in
Eq. (38) merely vanishes for our constant Γ smoothed
(roughened) in energy. In the Born approximation, the
relevant collision integrals in (55) have the form

(56)

Similar expressions hold for Σ<.
Performing integration with respect to ω1, ω2, and

ω3 in (56), we arrive at

(57)

where δΓ is a Lorentzian function of width Γ = Γ1 + Γ2
+ Γ3. Since Eqs. (38) and (55) were derived by retaining
the gradient terms of order Γ/E, it is quite natural that
Lorentzian functions appear instead of delta functions
in the collision integrals. Physically, their emergence
means that, in the propagation of particles in a medium,
we take into account off-mass-shell effects. The quasi-
particle energies e(p) appearing in (57) were introduced
above as

(58)

where U(p) is the real part of the optical-model poten-
tial (see [15]). Expanding U(p) in the vicinity of the
point p = 0, we arrive at

(59)

The second term in this expression can be related to the
effective mass m* [15] as

(60)
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By substituting (58)–(60) into (57) and using the rela-
tion δΓ(ax) = δΓ(x)/a, we obtain

(61)

It can be seen that, apart from the smearing of the
delta function in the collision term, we have obtained
two more deviations from what we have in the quasi-
particle approximation Γ  0—the quantity Z that is
dependent on the E mass and the quantity b that con-
tains the effective mass m*,

(62)

These effects are direct consequences of particle inter-
action with nuclear matter, thereby representing part of
the off-shell-mass effects in our kinetic approach. In the
majority of calculations for nuclear matter (see [15,
16]), the quantities Z prove to be slightly below unity.
Therefore, their product in Eqs. (55)–(57) can reduce
the collision integrals by a factor of about 2. For ener-
gies on the order of 100 MeV, the mean values of the
ratio m*/m are close to 0.7 [15]. Therefore, b ≈ 0.5,
which reduces the collision integrals by yet another fac-
tor of about 2.

We will now try to analyze off-mass-shell effects
associated with the smearing of the delta functions in
the collision integrals (57) and (61). As a matter of fact,
this is a challenging problem involving ninefold inte-
gration of the distribution functions F, which are solu-
tions to the generalized kinetic Eqs. (55). These effects
must be assessed self-consistently: since the general-
ized kinetic equations are applicable only to the first
order in the parameter Γ/E, the corrections to the colli-
sion integral must also be taken into account only to the
first order in this parameter. In order to achieve a qual-
itative understanding of the effects in question, the cor-
rections to Σ> that are associated with nonvanishing val-
ues of Γ will be estimated analytically without taking
into account blocking due to the Pauli exclusion princi-
ple. This can be a reasonable approximation for the ini-
tial stages of nucleus–nucleus collisions at energies per
nucleon E much greater than EF. We will also neglect
exchange terms in Eq. (61) and consider potentials
(more precisely, Born amplitudes) of the form

where q = p – p2 is the momentum transfer. The results
obtained by estimating the collision integrals and their
derivation are presented in the Appendix.
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From these results, we can see that a nonvanishing
value of Γ reduces the collision integrals. This reduc-
tion is proportional to the parameter

(63)

where 〈q2〉  is the mean square of the momentum trans-
fer and Etr is the mean energy transfer in binary
nucleon–nucleon collisions.

The physical meaning of this effect is quite under-
standable. At nonzero values of Γ, the phase space of
particles breaks down into energy cells of finite size Γ
(since the quasiparticle energy can be specified only to
within this accuracy) and into the corresponding finite-
size momentum cells. If a typical energy transfer in a
collision, Etr, is less than Γ, the colliding particles
remain in their initial cells—the collision event appears
to be overly soft for changing the distribution of quasi-
particles. Because of this, only hard collision events
characterized by energy transfers Etr > Γ contribute to
the collision integral, and this contribution decreases
with increasing Γ/Etr .

As long as Γ is less than 〈q2 〉/m, these corrections
are of purely academic interest since they are expected
to be be beyond the accuracy of the theory (that is, less
than Γ/E). If, however, Γ approaches 〈q2 〉/m, they can
pronouncedly reduce the collision integrals. Typical esti-
mated values of 〈q2〉/m fall within range 50–70 MeV.
Experimental and theoretical estimates (see [14–16])
show that, as Ö grows up to E ≈ 300 MeV, the width Γ
increases linearly up to 20–30 MeV. These values were
obtained, however, for nuclear matter characterized by
a normal density and zero temperature. Calculations of
the Brueckner type (see, for example, [16]) reveal that,
at the density twice as large as the normal one, Γ can
become 50 MeV at E ≈ 300 MeV. This increases the
parameter Γm/〈q2 〉  up to unity and can lead to the
reduction of the collision integrals.

Here, it is worth mentioning the results of
Danielewicz [9], who performed a numerical model
comparison of precise solutions to the Dyson equation
and solutions to the ordinary Boltzmann equations
obtained in the zero-order approximation in Γ/E. In the
collision integrals, use was made there of the Born
approximation for Gaussian potentials for 〈q2〉/m ≈
60 MeV. By varying the coupling constant in the poten-
tial V0, that author noticed that the Dyson equation led
to a lower collision frequency than the Boltzmann
equation at Γ values exceeding approximately 50 MeV.
It is possible that this is a manifestation of the off-mass-
shell effect considered here.

We should recall Eq. (28), which relates the width Γ
to the collision integrals Σ> and Σ< and which, in con-
junction with the aforementioned off-mass shell effect,
can lead to the negative feedback moderating the
growth of Γ with increasing density or cross sections
for pair interactions. This new mechanism of self-stabi-

αΓm
Γm

q
2〈 〉

---------- Γ
Etr
------,≈ ≈
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lization of matter transparency can appear to be of
importance in studying transport phenomena in dense
media. It has long been known that, in the expression
for the free path in a rarefied gas,

it is necessary to take into account corrections for
blocking associated with the Pauli exclusion principle
in Fermi systems (this is the main reason for the self-
transparency of nuclear matter for nucleons). The
medium effects discussed in this section may generate
new corrections, especially in studying extremal states
of nuclear matter and dense media governed by the
long-range interparticle interaction potentials leading
to low energy transfers in binary collisions.

To summarize the discussion in the present section,
the following comment is in order. Any attempt at
improving the accuracy of the kinetic approach by
including, for example, second-order terms in Γ/E in
the gradient expansion would result in that the second
derivatives ∂2/∂t2 and ∂2/∂ω2 would appear in kinetic
equations, whereupon solving them would not be easier
than solving the original Dyson equations.

4. REALISTIC CASE OF HEAVY-ION 
COLLISIONS

We begin this section by presenting a brief analysis
of the spatial small parameters in the gradient expan-
sion for realistic heavy-ion collisions. In perfect anal-
ogy with Eq. (26), the smallness of the second term in
the gradient expansion (16) means that

(64)

(65)

The characteristic width 〈r 〉G of the maximum of the
function G in the vicinity of the point r = 0 was deter-
mined by Eq. (47) as 1/pF at the instant preceding col-
lisions between nucleons. If we do not aim at achieving
a high accuracy in describing the very first collisions,
this estimate changes to become

(66)

where p is the mean nucleon momentum in the system
of two colliding ions. However, the localization in the
variable r of three Green’s functions in the integrals Σ
is smeared over the characteristic interval of width
1/〈q〉 , where 〈q〉  is the mean momentum transfer in a
nucleon–nucleon collision. Therefore, the localization
of Σ in the variable r differs from the localization of G,
the corresponding radius being given by

(67)
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The behavior of the quantities Σ and G in R space is deter-
mined by the gradients of the nuclear density; that is,

(68)

where 〈L〉  is the characteristic interval of nuclear-den-
sity variations; therefore, inequalities (64) and (65)
imply

(69)

The first of these inequalities involves a conventional
small parameter of any semiclassical approximation. It
remains sufficiently small even at energies as low as a
few MeV per nucleon (see, for example, [17], where
the validity of the semiclassical approximation was
demonstrated in numerically constructing semiclassi-
cal solutions to the time-dependent Hartree–Fock equa-
tions at an energy of 3.5 MeV per nucleon).

The second inequality may be the weakest point in
using the gradient expansion. Typical values of 〈q〉 are
1.5–1.7 fm–1. An estimate of 〈L〉 for an uncompressed
stable nuclear system can be obtained from the diffuse-
ness of the nuclear surface (〈L〉 ~ 2–3 fm). In this case,
we have 〈L〉〈 q〉  ~ 3–5, and corrections from the dis-
carded second-order terms are 0.1–0.04. In phenomena
of the shock-wave type, however, 〈L〉 can be on the
order of the internucleon spacing, in which case the
above product decreases to about 2, while the disre-
garded corrections increase approximately to 0.25. It
should be noted that the same parameter 〈L〉〈 q〉 deter-
mines the validity of the so-called T approximation (see
[10]), in which the collision integrals involve the exact
amplitudes for nucleon–nucleon scattering rather than
the Born amplitudes.

We will now try to reduce the generalized kinetic
Eqs. (38) to the simpler and more familiar form. In
order to do this, we make use of the fact that all partial
derivatives with respect to any variable y in the first
Poisson bracket of Eq. (38) can be represented as

where

By expanding the denominators of the functions a(ω, p;
R, T) [see Eq. (37)] in the vicinity of their zeros εp [see
Eq. (53)] and by integrating both parts of (38) with
respect to ω, we obtain
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where  is the effective ä mass, which is determined
by the relation (see [15])

In the Born approximation, the collision terms are
given by

(71)

The expressions for Σ< have a similar form.
The first-order terms in the expression for ReΣ+ rep-

resent the ordinary self-consistent Hartree–Fock poten-
tial (the expressions for higher order terms can be
found in [10]).

Thus, we have obtained equations that are very sim-
ilar in form to the ordinary Boltzmann equations, but
which include all first-order corrections in the gradient
expansion. In Eqs. (70) and (71), all these corrections
take into account the medium effect on the propagation
and collisions of particles. The meaning of the off-
mass-shell corrections associated with δΓ and of the
quantities Z and b was discussed in the preceding sec-
tion. As was indicated above, they all lead to a reduc-
tion of the collision terms (that is, to an increase in free
paths). The effective K mass , which was introduced
in this section, is less than m, whereby the free path
increases at fixed collision integrals. Therefore, all cor-
rections that have been taken into account here lead to
an increase in the transparency of nuclear matter for
nucleons.

5. CONCLUSION

Numerous mathematical transformations that are
necessary for going from the Dyson to kinetic equa-
tions conceal physical approximations that make it pos-
sible to accomplish a transition from quantum equa-
tions that are dynamically reversible in time to simpler
kinetic equations, which are, however, irreversible in
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time. The gradient expansion (16) in small parameters
determined by the characteristics of the system that are
averaged over the statistical ensemble is one of the key
points in this transition. This is precisely the reason
why the present analysis of the applicability of kinetic
equations to our problem has been begun from the
choice of the statistical ensemble for the system of two
colliding nuclei that originally occurred in the ground
states. Following [5, 18], we have introduced the statis-
tical averaging over a small interval ∆E of incident-
beam energies. This interval was chosen in such a way
as to smooth entirely the fine structure of the ω depen-
dences of the functions G and Σ that is associated with
the complex multiparticle excitations of our system.
Such smoothing is completely analogous to the
smoothing that is introduced in constructing the ordi-
nary optical model of the nucleus. Performing such
roughening, we deliberately refuse to take into account
the fine structure of cross sections for various pro-
cesses, but we can instead describe, in a simplified way,
the evolution of our system on the basis of kinetic equa-
tions. Such roughening is a quantum analog of the
roughening of the phase space in classical mechanics,
whereupon (see, for example, [19, 20]) the memory is
lost in the system and a chaotic system becomes irre-
versible.

By choosing the statistical ensemble, we have been
able to find small parameters of the gradient expansion
and to determine the region where kinetic equations can
be applied to nucleus–nucleus collisions. The analysis
of the small parameters for the spatial part of the gradi-
ent expansion has led to relations (51) and (69), which
are satisfied fairly well for heavy-ion collisions. A sim-
ilar analysis of the time variables of the expansion has
made it possible to obtain relations (51) and (52) and
has demonstrated the incorrectness of the statements
from [10] that kinetic approaches are inapplicable at
energies exceeding 100 MeV per nucleon.

The above smoothing of the fine structure of the ω
and p dependences of the functions G and Σ has
enabled us to write the generalized Boltzmann equa-
tions in the simple form of the conventional Boltzmann
equation [see Eqs. (70) and (71)] with modifications
that take consistently into account all first-order correc-
tions in the gradient expansion. An analysis of these
modifications have revealed that they reduce to taking
into account the effect of a medium on the propagation
and collisions of particles in it. The majority of these
modifications are expressed in terms of effective
masses.

Of particular interest is the effect induced by a finite
quasiparticle width Γ. Since the energy (momentum) of
a quasiparticle can be determined only to within this
width, soft binary collisions characterized by low
energy transfers (Etr < Γ) do not contribute to the colli-
sion integral Σ. That Γ is proportional to the collision
integral can induce a negative feedback and a stabiliza-
tion of dense-matter transparency. It is obvious that this
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phenomenon is quite general and can be especially pro-
nounced in dense media characterized by pair-interac-
tion potentials that lead to low energy transfers in colli-
sions. Since the generalized Boltzmann equations
obtained in this study are very similar in form to ordi-
nary Boltzmann equations, it is worthwhile to investi-
gate their solutions numerically and to analyze in
greater detail the role of the aforementioned modifica-
tions. According to rough estimates, all of these lead to
the growth of nuclear-matter transparency to nucleons.
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APPENDIX

Let us estimate the effect of a finite-width Γ of the
spectral function on the collision integrals in Eq. (61).

For the sake of simplicity, we consider the situation
at the very beginning of the nuclear-collision event at
an energy per nucleon greater than EF . In this case, we
can neglect the effect of blocking due to the Pauli
exclusion principle. We also restrict our consideration
to the direct term in the Born amplitude in Eq. (61). In
this case, the collision integral of interest takes the form

(A.1)

where quantity Z ' stands for the product of all Zi in
Eq. (61). Going over to the variables

we obtain

(A.2)

where

(A.3)
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and perpendicular to the vector p, we arrive at

(A.4)
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In order to simplify the calculations further, we will
use, instead of the Lorentzian function δΓ(x), the step
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In this case, the integral in (A.4) can be broken
down into three parts

(A.5)

(A.6)

(A.7)

where

(A.8)

It is important to recall that the generalized Boltz-
mann equations (55) with the collision integrals (57)
were obtained by consistently retaining, in the gradient
expansion, only the zero- and the first-order terms in
the small parameter Γ/E. Therefore, we must further
take into account only the zero- and the first-order cor-
rections in this parameter. The inclusion of higher order
terms (for example, terms of second order in Γ/E) is
meaningless because this is beyond the accuracy of
Eq. (55). Taking into account this important circum-
stance, we can approximately set the integration limits
in (A.8) to

where e = mΓ/p2.
Thus, the above three integrals determining gΓ
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In order to estimate the bracketed integral in expres-
sion (A.9) for I1, we use the expansion of the error func-
tion erf(z) at small values of z. The integral in expres-
sion (A.11) for I3 can be estimated by expanding the
relevant exponential in the vicinity of the point q = p. In
this way, we obtain

(A.12)

It is worthwhile to compare gΓ(p) with the quantity

(A.13)

which is obtained from (A.3) in the quasiparticle
approximation Γ  0.

It can be seen that the difference ∆(p) = gΓ( p) –
g0( p) of expressions (A.12) and (A.13), which arises
owing to a nonzero value of Γ, is given by

(A.14)

We note that, for any value of αΓm, the result in
(A.14) is negative, which means the reduction of the
collision integral.

Let us integrate the function g0(p) in (A.2) with the
distribution function describing the initial stage of the
process (two Fermi spheres in momentum space, its
centers being separated by the incident-beam momen-

tum p = ). In the case being considered, we have
p @ pF, and integration yields
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Performing a similar integration (within the same
approximations) of the difference ∆(p) given by (A.14),
we obtain
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Thus, the relative reduction of the collision integral due
to a nonzero value of Γ is given by
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A similar calculation performed for the distribution

δΓ(x) = e–2 |x |/Γ, whose boundaries are smeared to a

greater extent than those of the step function, leads to a
still sharper dependence of the ratio in (A.17) on the
parameter αΓm. In this case, the relative reduction of
the collision integrals for αΓm ≤ 1 is

(A.18)

Since the Lorentzian distribution used in this study
is even more smeared, one would expect a still more
pronounced dependence of the relative reduction of the
collision integrals on the parameter αΓm.

REFERENCES

1. G. F. Bertsch and S. Das Gupta, Phys. Rep. 160, 189
(1988); C. Gregoire, B. Remaud, F. Sebille, et al., Nucl.
Phys. A 465, 315 (1987).

2. J. Aichelin, Phys. Rep. 202, 233 (1991).
3. G. Peilert, H. Stoeker, W. Greiner, et al., Phys. Rev. C 39,

1402 (1989).
4. V. E. Bunakov, Yad. Fiz. 25, 505 (1977) [Sov. J. Nucl.

Phys. 25, 271 (1977)]; Fiz. Élem. Chastits At. Yadra 11,
1285 (1980) [Sov. J. Part. Nucl. 11, 507 (1980)].

5. V. Bunakov and G. Matvejev, Z. Phys. A 322, 511
(1985).

1
Γ
---

R ' αΓm( )2

4 αΓm( )2
–

----------------------------– O
Γ 2

E
2

----- 
  .+≈
PHYSICS OF ATOMIC NUCLEI      Vol. 64      No. 3      2001
6. A. S. Iljinov, M. V. Kazarnovsky, and E. Ya. Paryev,
Intermediate Energy Nuclear Physics (CRC, Boca
Raton. 1993).

7. V. E. Bunakov, E. N. Vol’nin, and G. V. Matveev, Izv.
Akad. Nauk SSSR, Ser. Fiz. 50, 171 (1986).

8. P. Danielewicz, Ann. Phys. (N.Y.) 152, 239 (1984).
9. P. Danielewicz, Ann. Phys. (N.Y.) 152, 305 (1984).

10. W. Botermans and R. Malfliet, Phys. Rep. 198, 116
(1990).

11. L. V. Keldysh, Zh. Éksp. Teor. Fiz. 47, 1515 (1964) [Sov.
Phys. JETP 20, 1018 (1964)].

12. L. Kadanoff and G. Baym, Quantum Statistical Mechan-
ics (Benjamin, New York, 1962).

13. E. M. Lifshitz and L. P. Pitaevskiœ, Physical Kinetics
(Nauka, Moscow, 1979; Pergamon, Oxford, 1981).

14. A. Bohr and B. R. Mottelson, Nuclear Structure Vol. 1:
Single-Particle Motion (Benjamin, New York, 1969;
Mir, Moscow, 1971).

15. J. P. Jeukenne, A. Lejeune, and C. Mahaux, Phys. Rep.
25, 83 (1976).

16. B. ter Haar and R. Malfliet, Phys. Rep. 149, 3 (1987).
17. C. J. Wong, Phys. Rev. C 25, 1460 (1982).
18. V. Bunakov, Z. Phys. A 297, 323 (1980).
19. G. M. Zaslavsky, Chaos in Dynamical Systems (Nauka,

Moscow, 1984; Harwood, Chur, 1985).
20. G. M. Zaslavsky and R. Z. Sagdeev, Introduction to Non-

linear Physics (Nauka, Moscow, 1988).

Translated by A. Isaakyan



  

Physics of Atomic Nuclei, Vol. 64, No. 3, 2001, pp. 506–515. Translated from Yadernaya Fizika, Vol. 64, No. 3, 2001, pp. 560–569.
Original Russian Text Copyright © 2001 by Gorelik, Urin.

          

90th ANNIVERSARY OF A.B. MIGDAL’S BIRTHDAY
NUCLEI

          
Structure and Direct Protonic Decay of Isobaric Analogous
and Isovector Monopole Giant Resonances

M. L. Gorelik and M. H. Urin
Moscow State Engineering Physics Institute (Technical University), Kashirskoe sh. 31, Moscow, 115409 Russia

Received July 27, 2000

Abstract—A description of the partial protonic widths of isobaric analogous resonances is proposed on the
basis of the continuum random-phase approximation and a partly self-consistent phenomenological version of
the theory of finite Fermi systems. The results of the calculations performed for spherical nuclei over a wide
interval of atomic-mass values are in satisfactory agreement with the corresponding experimental widths. The
probability of the direct protonic decay of an isovector monopole giant resonance in the β– channel is estimated
in connection with some recent experiments. © 2001 MAIK “Nauka/Interperiodica”.
On one of the copies of his monograph [1],
A.B. Migdal wrote, “Nuclear reactions are missing
here ….” We hope that the present study conforms to
the desire of the Teacher, at least to some extent.

1. INTRODUCTION

A vast body of experimental data on the partial pro-
tonic widths of isobaric analogous resonances has been
obtained over the past period of more than 30 years.
These data come primarily from an analysis of reso-
nance reactions involving protons. In the 1970s and
1980s, a serious effort was mounted to obtain a quanti-
tative description of the protonic widths of isobaric
analogous resonances (see, for example, [2, 3] and ref-
erences therein). Those investigations were motivated
by the quest for obtaining deeper insights into the struc-
ture of isobaric analogous resonances and the mecha-
nism of their decays, which is directly related to viola-
tion of isospin symmetry in nuclei. There was also the
hope for implementing an alternative method for deter-
mining single-particle spectroscopic factors by com-
paring the experimental and the calculated single-parti-
cle protonic widths of isobaric analogous resonances
(the single-particle protonic widths of isobaric analo-
gous resonances are calculated under the assumption
that the relevant states of a parent or a product nucleus
are of a single-particle character). In order to accom-
plish this goal, it is necessary to have, among other
things, a sufficiently precise method for calculating sin-
gle-particle partial widths of isobaric analogous reso-
nances that is stable against variations in model param-
eters within reasonable limits. As applied to reduced
single-particle protonic widths of isobaric analogous
resonances (that is, widths divided by the penetrability
of the potential barrier for protons), these requirements
are met in self-consistent approaches developed over
the past decade and based on the random-phase approx-
imation (RPA) or the Tamm–Dankov approximation
1063-7788/01/6403- $21.00 © 20506
(TDA) that take exactly into account a single-particle
continuum (CRPA or CTDA, respectively). A CTDA
description of the relative intensities of the direct pro-
tonic decay of an analog of the 208Pb ground state was
proposed in [4], where use was made of the Hartree–
Fock mean field and Skyrme forces. In [5], the partial
protonic widths of this isobaric analogous resonance
were calculated on the basis of the CTDA as well.

In [6], the partial protonic widths of isobaric analo-
gous resonances were calculated within the CRPA.
Those calculations, actually based on the phenomeno-
logical version of the theory of finite Fermi systems,
employed (i) the phenomenological nuclear mean field
and the isovector (spinless) component of the Landau–
Migdal amplitude, (ii) the condition that ensures partial
self-consistency in isospin [7] and which makes it pos-
sible to avoid a unphysical violation of isospin symme-
try in the phenomenological shell model, (iii) a CRPA
calculation of the S matrix for nucleon–nucleus scatter-
ing [8], and (iv) experimental values of the spectro-
scopic factors for the relevant states of neutron-odd
nuclei. The partial protonic widths of isobaric analo-
gous resonances in spherical nuclei as calculated in [6]
on this basis are in satisfactory agreement with experi-
mental data over a wide range of nuclear masses. There
are, however, some flaws in the approach implemented
in [6]. These include (a) a non-self-consistent calcula-
tion of the mean Coulomb field of a nucleus, (b) the
use of some version of perturbation theory in the for-
mulation of the theory of isobaric analogous reso-
nances in terms of the variable part of the mean Cou-
lomb field of a nucleus, and (c) inability of the
approach to describe direct protonic decays of isobaric
analogous resonances in nuclei featuring well-devel-
oped neutron pairing.

The properties of an analogous resonance treated as
that which corresponds to a compound-nucleus state
characterized by an anomalous isospin are often asso-
001 MAIK “Nauka/Interperiodica”
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ciated with the properties of an isovector giant mono-
pole resonance (see, for example, [2]). In fact, the latter
resonance, which corresponds to a compound-nucleus
state having a “normal” isospin value, can be consid-
ered as an overtone of the corresponding isobaric anal-
ogous resonance. It should be noted that attempts were
made to detect experimentally isovector giant mono-
pole resonances in cross sections for charge-exchange
reactions involving pions [9] or light ions [10].

In order to improve the accuracy in calculating sin-
gle-particle protonic widths of isobaric analogous reso-
nances and to simplify the computational scheme, we
modify here the approach from [6] along the following
lines:

(i) Instead of the S matrix for proton–nucleus scat-
tering, we calculate here, within the CRPA, the proton-
emission amplitude for the relevant reactions [11] (the
two methods for computing the partial nucleonic
widths of giant resonances are equivalent, but the
implementation of the latter is simpler in practice).

(ii) The mean Coulomb field of a nucleus is calcu-
lated self-consistently.

(iii) The single-particle protonic widths of isobaric
analogous resonances are exactly expressed within the
CRPA in terms of the variable part of the mean Cou-
lomb field of a nucleus.

(iv) The approach is extended to nuclei featuring
well-developed neutron pairing.

We also aim here at assessing the branching ratio for
the direct protonic decay of isovector giant monopole
resonances in medium-mass and heavy nuclei. This
part of the study was motivated by a recent attempt at
experimentally detecting an isovector giant monopole
resonance in the cross section for the reaction
208Pb(3He, tp) [10] and by the results of the aforemen-
tioned study of Erell et al. [9].

The ensuing exposition is organized as follows. In
Section 2, we present basic relations of our approach to
calculating the single-particle protonic widths of iso-
baric analogous resonances. In Section 3, we discuss
the choice of values for model parameters and describe
the results of our calculations for the partial protonic
widths of isobaric analogous resonances in nuclei from
a wide atomic-mass interval. In Section 4, we propose
a theory of isobaric analogous and isovector giant
monopole resonances in terms of a variable part of the
mean Coulomb field of a nucleus and assess the branch-
ing ratio for the direct protonic decay of an isovector
giant monopole resonance. The basic results of the
present study are summarized in Section 5.

Previously, a brief account of some of these results
was given in [12, 13].

2. BASIC RELATIONS
Because of approximate isospin conservation, the

decay properties of isobaric analogous resonances in
medium-mass and heavy nuclei can be described in
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terms of the mean Coulomb field of a nucleus, UC(r). In
order to implement this possibility within a phenome-
nological version of the theory of finite Fermi systems,
it is necessary to satisfy the isovector condition of par-
tial self-consistency. In just the same way as in [6, 11],
the CRPA will be developed in terms of the following
phenomenological quantities: isoscalar part of the
mean nuclear field (including the spin–orbit term),
Uo(x), and the isovector component of the Landau–
Migdal amplitude, F(x1, x2)  F 't1 · t2δ(r1 – r2). The
Coulomb field UC(r) is calculated self-consistently (in
the Hartree approximation) in terms of the proton den-
sity np(r). The isovector part of the mean field, U1(x) =
τ(3)v(r)/2 [v(r) is a symmetry potential], is also calcu-
lated self-consistently. Within the RPA, the self-consis-
tency condition that relates v(r) and F ' can be obtained
with the aid of the relation [14]

(1)

where  = (ra) +  is the nuclear Hamiltonian

in the interacting-quasiparticle approximation,  =

 is the single-particle Fermi operator, n(–) = nn –

np is the neutron-excess density, ∆C is the so-called

Coulomb shift energy (it is defined below), and  =

(ra) – ∆C) . Taking into account approxi-
mate isospin conservation and using Eq. (1), we obtain
the isovector self-consistency equation v (r) = 2F 'n(–)(r)

and the Coulomb operator  in a representation that
is convenient for describing the decays of isobaric anal-
ogous and isovector monopole giant resonances.
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Ĥ Hoa∑ F̂

Τ̂ –( )

τa
–( )

a∑

V̂C
–( )

(UCa∑ τa
–( )

V̂C
–( )

NEWSR( )F s〈 |Τ̂ –( )
o| 〉

2

s

∑=

– s'〈 |Τ̂ +( )
o| 〉

2

s'

∑ N Z ,–=

EWSR( )F Es Eo–( ) s〈 |Τ̂ –( )
o| 〉

2

s

∑=

+ Es' Eo–( ) s'〈 |Τ̂ +( )
o| 〉

2

s'

∑ o〈 | Τ̂ +( )
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Here, Es, s' and Eo are, respectively, the energies of states
of isobaric nuclei and the energy of the ground state of
the parent nucleus. Within the model being considered,
we find on the basis of Eqs. (1) and (3) that (EWSR)F =

(r)n(–)(r)dr. From Eqs. (1)–(3), it follows that, if an

isobaric analogous resonance had saturated 100% of
the sum rule in (2) (exact isospin conservation), its
wave function and energy would have been

(4)

But in fact, these relations are satisfied only approxi-
mately.

Owing to the isovector self-consistency condition, an
isobaric analogous resonance can be treated, within the
phenomenological version of the theory of finite Fermi
systems, as a conventional giant resonance. Here, we pro-
ceed to develop such a description. In order to find the par-
tial protonic width of an isobaric analogous resonance, we
will calculate two functions of the excitation energy—
namely, the Fermi strength function and the amplitude for
proton emission under the effect of an external Fermi field.
By definition, the Fermi strength function is given by

(5)

where ω is the isobaric-nucleus excitation energy reck-
oned from Eo. Within the CRPA, SF(ω) is determined by
relations that are well known in the theory of finite Fermi
systems [1] and which can be represented as

(6)

where PF(ω) is the Fermi polarizability; (r2r' 2)–1A(r, r',
ω) is the monopole component of the free response
function in the corresponding charge-exchange chan-

nel; VF(r) = 1; and (r, ω) is the effective Fermi field,
which satisfies the equation

(7)

For nuclei where there is no nucleon pairing, the func-
tion A(r, r', ω) can be represented in a form that takes
exactly into account the contribution of the single-par-
ticle continuum; that is,

(8)
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where λ = ν, π is the set of the quantum numbers nr, j,
l [(λ) = j, l], which determine single-particle quantum
states in the mean nuclear field for neutrons (λ = ν) and
for protons (λ = π) with (ν) = (π); Nλ = nλ(2jλ + 1) is the
number of nucleons on the level λ, nλ being the occu-
pation factor; r–1χλ stands for bound-state radial wave
functions; and (rr')–1g(λ)(r, r', ε) are the Green’s func-
tions for the radial Schrödinger equation

(9)

Here, the radial part of the single-particle Hamiltonian,

(10)

involves an isoscalar, an isovector, and a Coulomb
component. The neutron and the proton density, which
are used in the implementation of the conditions of par-
tial self-consistency, are given by

(11)

In continuous-spectrum problems, where the excita-
tion energy of the nucleus being considered exceeds the
nucleon binding energy, it is convenient to use an alter-
native representation for the strength function [15]. On
the basis of relations (6)–(8), we obtain

(12)

where

(13)

Here, r–1χε, (π)(r) is the continuum radial wave function
for protons that corresponds to the energy of ε = εν + ω
and which is normalized to a delta function of energy;

in addition, we have (π) = (ν). The quantity (ω) has
the meaning of the amplitude for a reaction that is
induced by an external Fermi field and which results in
that the nucleus goes over into a ν–1 neutron-hole state
upon the emission of a proton with energy ε. The
strength function SF(ω) (6) or (12) and the reaction

amplitude (ω) (13) calculated within the CRPA
show a narrow maximum corresponding to the excita-
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* r ω,( )A r r' ω, ,( )ṼF r' ω,( ) r r'dd∫–=
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tion of an isobaric analogous resonance. The Breit–
Wigner parametrization of these quantities,

(14)

makes it possible to find the excitation energy ωA , the
Fermi strength SA , and the partial (Γν) and the total (Γ)
protonic widths of an isobaric analogous resonance
(Γ = ). Prior to comparing the calculated widths

Γν with corresponding experimental widths , it is
necessary to note the following:

(i) The proton energies εA = εν + ωA calculated
within the phenomenological interacting-quasiparticle
model may differ from the experimental energies εexpt.

(ii) Occupation numbers for neutron levels, Nν, in
nuclei featuring no nucleon pairing differ from the cor-

responding spectroscopic factors  = (2jν + 1)

(  is the reduced spectroscopic factor) owing prima-
rily to coupling to low-lying collective states. For the
reasons indicated above, the calculated quantities that
will be compared with the experimental partial protonic

widths of isobaric analogous resonances, , are

(15)

where Pl(ε) is the penetrability of the potential barrier
for protons, while the ratio Γν(εA)/NνPl(εA) is the
reduced single-particle protonic width of an isobaric
analogous resonance as calculated within the CRPA by
using the partly self-consistent phenomenological
model of interacting quasiparticles. It is the reduced
width that appears to be stable to variations of the
model parameters within reasonable limits.

In just the same way as in the case of other giant res-
onances, coupling to multiparticle configurations leads
to the broadening of isobaric analogous resonances
owing to the emergence of a spreading width in expres-
sions of the type in (14) for energy-averaged reaction
amplitudes, but the widths with respect to direct nucle-
onic decays remain unchanged [8, 11]. In contrast to
other giant resonances, the fragmentation width of iso-
baric analogous resonances is strongly suppressed
because of approximate isospin conservation in nuclei
(see, for example, [2, 3]). A theoretical interpretation of
this width is beyond the scope of the present study.
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A vast body of experimental data on partial protonic
widths of isobaric analogous resonances has been accu-
mulated for nuclei with well-developed nucleon pair-
ing. A self-consistent version of the CRPA for such
nuclei has yet to be developed. However, the above
method for calculating single-particle partial protonic

widths (s.p.) of isobaric analogous resonances
provides a satisfactory accuracy for these nuclei as
well. In view of a high excitation energy of isobaric
analogous resonances, we can disregard, to a precision
of order (2∆/ωA)2 (∆ is the energy gap), pairing in the

equation for the effective Fermi field (r, ω). For this
reason, the algorithm for calculating the widths

(s.p.) remains unchanged for parent nuclei featur-
ing the magic number Nm of neutrons or Nm + 1 neu-
trons. As a matter of fact, this circumstance was used in
[6]. Pairing in the neutron subsystem changes the cal-
culated energy εA of a proton in the continuum and the
occupation number nν for neutron levels. Since the
energies εA cannot be calculated to a satisfactory preci-
sion even in the presence of pairing, it is preferable to

find the widths (s.p.) (15) by using the experimen-
tal proton energies εexpt. A modification to the occupa-
tion numbers because of pairing is only one part of the
effect—the second is due to the coupling of quasiparti-
cles to low-lying collective states. In just the same way
as in the case of magic and near-magic parent nuclei,
we therefore either use the experimental values of spec-

troscopic factors, , in the first of relations (15) or
determine the spectroscopic factors with the aid of the

ratio of the widths  and (s.p.).

The conjecture that it is possible to avoid a direct
consideration of pairing in calculating the single-parti-
cle partial widths of isobaric analogous resonances,

(s.p.), is additionally supported by results obtained
with the aid of a method (see below) for approximately
taking into account pairing in the neutron subsystem
[12]. With the aim of preserving the isovector self-con-
sistency condition, we will allow for pairing {within
the Bardeen–Cooper–Schrieffer (BCS) model [16]} only
by modifying the occupation numbers in the CRPA
equation without changing the energy of quasiparticles.
It can easily be verified that, in the case of such a mod-
ification (affecting the neutron-excess density as well),
an isobaric analogous state remains an exact state of the
system with the wave function (4) even in the limit

  0. Our further analysis will be performed
only for an odd-neutron parent nucleus having a quasi-
particle on a level ν (a case of importance for practical
applications indeed). The pairing gap is found here by
fitting the observed neutron-separation energy in the
parent nucleus. In this case, it is necessary to solve only
one BCS equation for determining the chemical poten-

Γν
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calc
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tial. With allowance for the blocking effect, this equa-
tion has the form [16]

(16)

where vν and uν are the well-known coefficients in the
Bogolyubov canonical transformation. Expressions
(11), (12), and (13) for the neutron density, the Fermi

strength function, and the reaction amplitude  [12],
respectively, change appropriately. We note that the
amplitude of the reaction populating the ground state of
the even-neutron product nucleus is given by an expres-
sion of the form (13) where the factor uν is substituted

for the quantity . This is the same factor that
appears in the amplitude of the β– decay of an odd-neu-

tron parent nucleus [16, 17]. The widths (s.p.) (15)
where the aforementioned substitution has been made
is then contrasted against the relevant experimental

widths . Provided that the corresponding condi-
tions of partial self-consistency are satisfied, the differ-

ence of the widths (s.p.) as calculated with and
without allowance for pairing is due to the effect of the
pairing-induced smearing of the Fermi boundary on the

effective field (r, ω). In accordance with the above
estimate of this effect, the distinction between the
above widths is expected to be modest.

3. CHOICE OF MODEL PARAMETERS: RESULTS 
OF THE CALCULATIONS FOR THE PARTIAL 

PROTONIC WIDTH OF ISOBARIC ANALOGOUS 
RESONANCES

As was indicated above, the isoscalar part of the
mean nuclear field and the isovector part of the Lan-
dau–Migdal amplitude are phenomenological quanti-
ties used in implementing the CRPA. The isoscalar part
of the mean field is chosen to be (see, for example, [8])

(17)

where f (r, R, a) = 1 + exp  is the Woods–

Saxon function, R = ro A1/3 and a being, respectively,
the nuclear radius and diffuseness. The parameters are
set to the following values: Uo = 54 MeV, ro = 1.24 fm,

Uso = 14.02 1 + 2  MeV, and Λπ = 1.41 fm.

The mean energy of Coulomb interaction between a
proton and a nucleus was calculated self-consistently in
the Hartree approximation:

(18)
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The strength of the isovector component of the Lan-
dau–Migdal amplitude was chosen in the form F ' = Cf '
with C = 300 MeV fm3 and f ' = 1.0.

The single-particle radial wave functions and the
Green’s functions were calculated on the basis of
Eqs. (9) and (10), while the nucleon densities were
evaluated according to Eq. (11). We recall that, in addi-
tion to the self-consistent method for calculating the
mean Coulomb field of a nucleus, we also made use of
the isovector self-consistency condition, which relates
the symmetry potential to the neutron-excess density
through the constant f '. With due regard to this com-
ment, the above set of model parameters makes it pos-
sible to reproduce satisfactorily, in the calculations, the
nucleon binding energy in mag + one nucleon sub-
systems and the single-quasiparticle spectrum near the
ground state for mag ± one nucleon subsystems in
nuclei from Zr to Pb. The experimental value of the
neutron binding energy was used to calculate the sin-
gle-quasiparticle spectrum and occupation numbers for
odd nuclei featuring neutron pairing.

A CRPA calculation of the Fermi strength function

SF(ω) and the Fermi reaction amplitude (ω) was
performed according to Eqs. (6)–(8) and (13), respec-
tively, at ω values in the vicinity of ωA. The partial pro-
tonic widths Γν(εA), the Fermi strength SA, and the iso-
baric-analogous-resonance energy ωA were computed
on the basis of Eqs. (14). The single-particle protonic

widths of isobaric analogous resonances, (s.p.),
were evaluated according to Eq. (15) with the aid of the
expression for the potential-barrier penetrability Pl(ε)
from the monograph [18]. For the nuclei considered
here, the calculated Fermi strength SA for isobaric anal-
ogous resonances changes between 92 and 98% of
(NEWSR)F (2), while the calculated isobaric-analo-
gous-resonance energy ωA is approximately 4% less
than the value given by relation (4).

Now, we proceed to present the results of our calcu-
lations for the partial protonic widths of isobaric analo-
gous resonances. For a direct protonic decay leading to
the population of the single-hole states of the 207Pb
nucleus, Table 1 displays the calculated partial widths
of the 0+ isobaric analogous resonance in the 208Bi
nucleus (analog of the 208Pb ground state). The calcula-
tions relied on rather old values of the reduced spectro-

scopic factors,  [19], as determined from the cross
sections for the relevant (p, d) reaction. In this connec-

tion, we have also calculated the factors (IAR) as

the partial-width ratio / (s.p.). The width val-

ues  were borrowed from the article of van der
Werf et al. [20], who analyzed the entire body of exper-
imental data on the direct protonic decay of the isobaric
analogous resonance being considered.
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For protonic decays into the ground state of the
product nucleus, the calculated partial widths of the
analogs of the ground state and some excited states of
nuclei containing Nm + 1 neutrons are quoted in Table 2
for nuclei from 49Ca to 209Pb. No account was taken
here of pairing in the even-proton (nonmagic) sub-

system. The values  found for the spectroscopic
factors from the (d, p) cross sections were borrowed
from the compilation presented in [3]. The results of the
calculations are compared with experimental data taken
predominantly from the same compilation.

The tables that follow give the calculated partial
protonic widths of isobaric analogous resonances in
nuclei featuring well-developed neutron pairing. The
analysis covers isobaric analogous resonances studied in
detail by Guzhovskiœ’s group over the 1960s and 1970s in
resonance-proton-scattering reactions. For decays into
the ground states of the Sn and Te nuclei, Table 3 displays
the calculated partial widths of the 1/2+ isobaric analo-
gous resonances in the nuclei of Sb and I isotopes. The

spectroscopic-factor and partial-width values (  and

) were borrowed from [23] and [25, 26], respec-
tively. The calculated single-particle partial widths

(s.p.) of the 3/2+ isobaric analogous resonances in
the nuclei of the Sb and I isotopes are quoted in Table 4
for decays into the ground states of the Sn and Te nuclei,

respectively. The width values  were taken from [25,
26]. For want of experimental data on the spectroscopic

factors ( ), we present the results of the calculations

for (IAR).
The calculations of the single-particle protonic

widths of isobaric analogous resonances—the results
are given in Tables 3 and 4—were performed according
to the scheme where pairing is taken into account
approximately (see Section 2). The same widths were
also calculated without allowance for pairing. In that
case, it was assumed that an odd neutron populates a sin-
gle-particle level ν and that the filling of the core corre-
sponds to its ground state. If the conditions of self-con-

sistency are satisfied, the widths (s.p.) as calculated
with and without allowance for pairing differ by not
more than 3%. For decays into the ground states of the
Cd and Pd nuclei, the single-particle protonic widths of
isobaric analogous resonances in the nuclei of the In and
Ag isotopes, respectively, were calculated without allow-
ing for pairing. The results of these calculations are given

in Tables 5 and 6, along with the values (IAR). The
relevant experimental data were borrowed from [25, 27].

On the basis of the data presented in Tables 1–6, we
can draw the following conclusions:

(i) The calculated partial protonic widths of isobaric
analogous resonances in nuclei are in satisfactory
agreement with available experimental data over a wide
range of atomic masses.
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Table 1.  Partial protonic-decay widths of the 0+ isobaric
analogous resonances in 208Bi

ν  [19] εexpt, MeV 
[3]

, keV 
[20]

, 
keV

 
(IAR)

3p1/2 1.0 11.46 51.9 ± 1.6 72 0.72
2f5/2 0.98 10.91 26.4 ± 2 25 1.03
3p3/2 1.00 10.59 64.7 ± 3.4 88 0.73
1i13/2 0.91 9.74 0.2
2f7/2 0.70 9.15 4.2 ± 0.6 4.8 0.61
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Table 2.  Partial protonic-decay widths of the analogs of
odd-neutron parent nuclei

Parent
nucleus ν

[3, 21]

εexpt, 
MeV [3]

, keV 
[3]

, 
keV

49Ca p3/2 0.93 1.93 1.9 ± 0.2 2.3
91Zr d5/2 0.89 4.67 4.0 ± 0.5 3.3

s1/2 0.72* 5.88* 38 ± 6* 42
d3/2 0.45 6.78 15 ± 3 18

139Ba f7/2 0.7 9.93 16 ± 2 24
p3/2 0.32 10.56 26 ± 3 35
p1/2 0.27 11.01 22 ± 2 28

141Ce f7/2 0.8 9.68 11 ± 1 20
p3/2 0.4 10.33 24 ± 2 40
p1/2 0.4 10.81 19 ± 2 40
h9/2 1.0 11.06 1.2 1.5

209Pb g9/2 0.78 14.83 22.7 ± 0.6 27
i11/2 0.96 15.58 1.6 ± 0.4 1.3
j15/2 0.53 16.30 0.9 ± 0.8 0.75
d5/2 0.88 16.39 50.2 ± 1.0 89
s1/2 0.88 16.87 56.6 ± 3.4 79
g7/2 0.78 17.32 42.9 ± 3.6 42
d3/2 0.88 17.37 62.8 ± 5.4 69

* Data from [22].
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Table 3.  Partial protonic-decay widths of the (1/2)+ isobaric
analogous resonances in the nuclei of the Sb and I isotopes

Parent
nucleus [23]

εexpt, 
MeV*

, keV 
[25]

, keV 
[26]

, 
keV

113Sn 0.491 6.20 10.3 ± 2.1 12.4
115Sn 0.430 6.35 8.0 ± 1.6 11.8
117Sn 0.375 6.87 17.0 ± 0.5 16.5 ± 3.3 15.5
119Sn 0.327 7.26 17.0 ± 3.4 17.0
121Sn 0.285 7.57 17.0 ± 0.6 24.0 ± 4.8 17.2
123Sn 0.249 7.82 18.4 ± 0.7 17.0 ± 3.4 16.4
125Sn 0.220 8.07 11.7 ± 0.4 14.0 ± 2.8 15.7
125Te 0.249 7.49 12.2 ± 2.4 11.6
127Te 0.220 7.80 13.7 ± 2.7 11.8
129Te 0.197 8.06 9.9 ± 2.0 11.7
131Te 0.181 8.38 10.2 ± 2.0 12.0
* Results calculated on the basis of the compilation from [24].
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Table 4.  Partial protonic-decay widths of the (3/2)+ isobaric analogous resonances in the nuclei of the Sb and I isotopes

Parent nucleus εexpt, MeV* , keV [25] , keV [26]  (s.p.), keV  (IAR)

117Sn 7.02 7.5 ± 0.3 12.0 0.63
121Sn 7.50 10.5 ± 0.7 7.5 ± 1.5 15.9 0.66/0.47
123Sn 7.69 8.0 ± 0.5 7.0 ± 1.4 17.5 0.46/0.40
125Sn 7.87 7.6 ± 0.3 9.0 ± 1.8 18.9 0.40/0.48
125Te 7.52 4.8 ± 1.0 12.7 0.38
127Te 7.73 5.7 ± 1.1 14.2 0.40
129Te 7.87 6.2 ± 1.2 15.0 0.41
131Te 8.07 8.5 ± 1.7 16.6 0.51

* Results calculated on the basis of the compilation from [24].
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Table 5.  Single-particle partial protonic-decay widths of the Jπ isobaric analogous resonances in the nuclei of the In isotopes

Parent
nucleus Jπ εexpt,

MeV [25]
,

keV [25]
 

(s.p.), keV
 

(IAR)

Parent
nucleus Jπ εexpt,

MeV [25]
,

keV [25]
 

(s.p.), keV
 

(IAR)
111Cd 1/2+ 6.44 15.5 ± 0.5 38.4 0.40 115Cd 1/2+ 7.14 19.2 ± 0.5 58.5 0.33

5/2+ 6.70 1.6 ± 0.2 10.8 0.15 3/2+ 7.36 9.8 ± 0.3 19.2 0.51
3/2+ 6.80 5.0 ± 0.4 13.7 0.36 117Cd 1/2+ 7.43 21 ± 1.0 67.6 0.31

113Cd 1/2+ 6.80 19.0 ± 0.5 48.6 0.39 3/2+ 7.56 10.2 ± 0.5 21.2 0.48

3/2+ 7.10 9.5 ± 0.5 17.0 0.56
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Table 6.  Single-particle partial protonic-decay widths of the
Jπ isobaric analogous resonances in the nuclei of the Ag iso-
topes

Parent
nucleus Jπ εexpt,

MeV [27]
,

keV [27]
 

(s.p.), keV
 

(IAR)
105Pd 5/2+ 5.97 1.2 ± 0.2 7.5 0.16

1/2+ 6.29 18 ± 0.1 45.4 0.40
3/2+ 6.63 4.0 ± 0.4 16.7 0.24
1/2+ 6.97 3.9 ± 0.5 77.0 0.05

107Pd 5/2+ 6.42 2.0 ± 0.2 11.1 0.18
1/2+ 6.51 19 ± 0.6 51.0 0.37
3/2+ 6.81 4.0 ± 0.3 18.2 0.22
1/2+ 6.86 1.6 ± 0.5 66.4 0.02
3/2+ 6.91 1.9 ± 0.3 19.9 0.10
5/2+ 7.01 1.0 ± 0.5 19.7 0.05

109Pd 5/2+ 6.76 2.8 ± 0.3 13.7 0.20
1/2+ 6.85 19 ± 0.4 62.4 0.30
1/2+ 7.02 2 ± 0.5 70.0 0.03
3/2+ 7.04 5.7 ± 0.5 20.8 0.27

111Pd 3/2+ 7.07 3.6 ± 0.3 7.24 0.18
1/2+ 7.11 15 ± 0.7 70.2 0.21
5/2+ 7.25 4.8 ± 0.3 20.3 0.24
1/2+ 7.26 5.4 ± 0.5 77.0 0.07
1/2+ 7.53 24 ± 0.3 89.4 0.27
5/2+ 7.78 3.9 ± 0.2 30.2 0.13
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(ii) For the reason indicated above, estimating sin-
gle-particle spectroscopic factors by comparing the
experimental and the calculated values of the single-
particle protonic widths of isobaric analogous reso-
nances leads to results that also seem satisfactory.

(iii) Within the proposed method, the calculated sin-
gle-particle protonic widths of isobaric analogous reso-
nances show but a weak dependence on pairing.

The last circumstance has made it possible to include,
in our analysis, a vast body of experimental data on par-
tial protonic widths of isobaric analogous resonances.

4. “COULOMB DESCRIPTION” OF ISOBARIC 
ANALOGOUS AND ISOVECTOR GIANT 

MONOPOLE RESONANCES

Within the phenomenological version of the theory
of finite Fermi systems, Eq. (1) makes it possible to for-
mulate the theory of isobaric analogous resonances in
medium-mass and heavy nuclei in terms of the mean
Coulomb field of a nucleus. Proceeding from the defi-
nition of the Fermi strength function as given in (5) and
using Eq. (1), we can represent SF(ω) as

(19)

SF ω( )
SC ω( )

ω ∆C–
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where SC(ω) is the Coulomb strength function corre-

sponding to the external field  = (ra) .
Within the CRPA, the Coulomb strength function

SC(ω) = (ω)|2 and the Coulomb reaction
amplitude are determined by relations (6), (7), (12), and
(13), where the operator VF = 1 is replaced by the Cou-
lomb operator VC(r) = UC(r) – ∆C. Comparing relations
(19) at an energy ω close to ωA with the first equation
in (14), we arrive at

(20)

From (20), it follows that the Coulomb shift energy ∆C
has an imaginary part proportional to the total (pro-
tonic) width of the relevant isobaric analogous reso-
nance, Γ = . This conclusion is the result of an
accurate CRPA description in terms of the mean Cou-
lomb field of a nucleus. That there is no resonance in
the energy dependence of the Coulomb strength func-

tion SC(ω) and the Coulomb effective field (r, ω)

and, hence, in the Coulomb reaction amplitude (ω)
at ω values in the vicinity of ωA is an important point in
this description. The absence of such resonances—in
other words, the vanishing of the isobaric-analogous-
resonance strength corresponding to the operator

—follows from the first equation in (14) and from
relations (19) and (20). We note that, apart from the
term Im∆C, expression (20) for the width Γν coincides
in form with the corresponding expression from [6],
since the Fermi strength of isobaric analogous reso-
nances is close to N – Z.

The partial protonic widths Γν of isobaric analogous
resonances as calculated according to Eqs. (14) and
(20) coincide, provided that the isovector self-consis-
tency condition is satisfied. However, the description of
processes forbidden in isospin in terms of the variable
part of the mean Coulomb field VC(r) of a nucleus is
preferable (in this connection, see [2, 3]).

The Coulomb strength function (ω) calculated
within the CRPA for a sufficiently wide energy interval
shows a broad isovector giant monopole resonance
associated with the β– charge-exchange channel
(IVGMR(–)), its mean energy ω(–) being about 40 MeV.
Naturally, there also exists a similar resonance associ-
ated with the inverse (β+) charge-exchange channel
(IVGMR(+)). The latter manifests itself as a maximum
in the energy dependence of the strength function

(ω') corresponding to the operator  =

(ra) . We note that the CRPA equations (6)–
(8) are invariant under the simultaneous substitutions
n  p and ω  –ω, so that ω' = –ω is the excitation

V̂C
–( )

VCa∑ τa
–( )

|Mν
C

ν∑

∆C ωA
i
2
---Γ , Γν– 2πSA

1–
Mν

C ω ωA=( )
2
.= =

Γνν∑

ṼC

Mν
C

V̂C
–( )

SC
–( )

SC
+( )

V̂C
+( )

VCa∑ τa
+( )
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energy in the β+ channel of the isobaric nucleus. This
energy is also reckoned from the ground state of the
parent nucleus. In general, the model-dependent non-
energy-weighted sum rule of the form (2),

(21)

is satisfied for charge-exchange excitations.

In order to describe the properties of ,
one usually studies the energy dependence of the

monopole strength functions  corresponding to the

operators r2 . The strength of a charge-exchange

giant resonance is characterized by the ratio  =

(ω)dω/(NEWSR)V , where the integral is taken

over a rather broad vicinity of the resonance maximum.

The quantity  is small, since the isobaric analogous
resonance saturates a major part of the monopole
strength. At the same time, the relative Coulomb

strength  of IVGMR(–) is maximal, since the Cou-
lomb strength of isobaric analogous resonances is equal
to zero. Within the CRPA, we have calculated not only

the Coulomb strength functions (ω) but also the

mean energies  = (ω)dω/ (ω)dω and

the relative Coulomb strengths of  for some

parent nuclei where  excitation was studied
experimentally [9, 10]. The results of the calculations
performed by using the model-parameter values quoted
in Section 3 are compiled in Table 7. Also presented in
this table for the sake of comparison are the results

obtained for the same  parameters from a

CRPA analysis of the monopole strength functions 
that was performed by using the Hartree–Fock mean
field and Skyrme forces [28]. The experimental values

of the  energies, , were borrowed from
[9]. From the quoted data, it follows that, by and large,
the results of our calculations satisfactorily reproduce
the resonance energies. As might have been expected,

the relative Coulomb strength of  proved to
be much greater than the corresponding monopole
strength.

The IVGMR(–) width obtained within the CRPA
proved to be somewhat less than the experimental
width. Since the excitation energy of IVGMR(–) is high,
the last result is not unexpected, implying that, in con-
trast to what occurs for known giant resonances, the
probability of a direct protonic decay of IVGMR(–) is

NEWSR( )V

=  s〈 |V̂
–( )

o| 〉
2

s'〈 |V̂
+( )

o| 〉
2

s'

∑–
s

∑ V
2

r( )n
–( ) r,d∫=

IVGMR +−( )

SM
+−( )

τ +−( )

xV
+−( )

SV
+−( )∫

xM
–( )

xC
–( )

SC
+−( )

ω +−( ) ωSC
+−( )∫ SC

+−( )∫
IVGMR +−( )

IVGMR +−( )

IVGMR +−( )

SM
+−( )

IVGMR +−( ) ωexpt
+−( )

IVGMR +−( )
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Table 7.  Energies and relative strengths calculated for isovector monopole giant resonances associated with the β– and β+

charge-exchange channels

Nucleus
 [28] ω(–) ω(–) [28]  [9]  [28] ω(+) ω(+) [28]  [9]

% MeV % MeV

90Zr 228 51 42.1 42.3 34.6 ± 2.9 123 54 22.3 22.9 22.0 ± 2.0
120Sn 166 33 38.2 39.6 30.0 ± 3.0 72 17 23.4 22.4 21.4 ± 2.2
140Ce 138 – 40.2 – 35.4 ± 3.5 36 – 20.3 – 19.9 ± 2.4
208Pb 121 18 40.3 43.5 37.2 ± 3.5 20 9 14.7 16.3 12.0 ± 2.8

xC
–( )

xM
–( ) ωexpt

–( )
xC

+( )
xM

+( ) ωexpt
+( )
rather high. In order to evaluate this probability, it is
necessary to take into account the contribution to the
total resonance width from the effect of coupling to
multiparticle configurations. Following [8, 11], we take
into account this coupling in terms of a phenomenolog-
ical quantity I defined as the mean fragmentation
widths of 0+ doorway states of the proton + neutron
hole type that form IVGMR(–). The energy-averaged

Coulomb strength function (ω) and the energy-aver-

aged Coulomb reaction amplitude (ω) can be found
with the aid of CRPA equations of the form (6)–(8),

(12), and (13), where the substitution ω  ω +  is

made. The quantity I is found by comparing, for each
nucleus, the total resonance width in the energy depen-

dence (ω) with the experimental width Γexpt. The I
values found in this way proved to be relatively small
(see Table 8), which results in a large probability of the
direct protonic decay of IVGMR(–). The relevant partial
and the total branching ratio were calculated by the for-
mulas [11]

(22)

The calculated b values are quoted in Table 8. In these
calculations, the reduced spectroscopic factors Sν were
taken to be unity for all neutron-hole states of product
nuclei. For the isovector spin-monopole resonance in

SC

Mν
C

i
2
--- I

SC

bν

Mν
C

ω( )
2

ωd∫
SC ω( ) ωd∫

---------------------------------, b bν.
ν
∑= =

Table 8.  Calculated total probability of the direct protonic
decay of isovector giant monopole resonances associated
with the β– charge-exchange channel

Nucleus Γexpt, MeV [9] I, MeV b, %

90Zr 18.9 ± 4.1 1.8 89
120Sn 16.0 ± 4.1 3.0 76
140Ce 16.6 ± 4.2 3.2 76
208Pb 15.0 ± 6.0 4.0 70
the parent nucleus 208Pb, a similar result for b was
obtained in [29].

5. CONCLUSION

On the basis of the continuum random-phase
approximation and the phenomenological partly self-
consistent version of the theory of finite Fermi systems,
we have proposed a description of a direct protonic
decay of isobaric analogous and isovector giant mono-
pole resonances in medium-mass and heavy nuclei.

The partial protonic widths of isobaric analogous
resonances have been computed by using the experi-
mental values of decay-channel energies and of single-
particle spectroscopic factors (the latter being found
from the cross sections for relevant one-nucleon-trans-
fer reactions). For nuclei in a wide range of atomic
masses, the results are in satisfactory agreement with
experimental widths. In this connection, an attempt
made here to determine single-particle spectroscopic
factors by comparing the calculated partial protonic
widths of isobaric analogous resonance with the corre-
sponding experimental widths seems viable. In our
opinion, a practical implementation of this possibility
also requires estimating relevant experimental data.

The use of the isovector self-consistency condition
has enabled us to formulate a method for describing
isobaric analogous and isovector giant monopole reso-
nances in terms of the mean Coulomb field of a
nucleus. On the basis of this method, we have shown,
among other things, that, in contrast to other giant res-
onances in the β– channel (for example, Gamow–Teller
and spin–dipole resonances), IVGMR(–) are strongly
coupled to a single-particle continuum. Estimates of
the probability of direct protonic decay confirm the
above conclusion and make it possible to understand
why IVGMR(–) (as well as the corresponding spin-
monopole resonances [29]) can be observed in the pro-
tonic channel of a reaction involving the excitation of
this resonance [10].
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Abstract—Several problems concerning the deuteron and having simple analytic solutions are considered. The
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the teacher of my teachers.
1. INTRODUCTION

Let us recall the classical question of Fermi: “What
plays the role of the hydrogen atom in this problem?”
In what is concerned with nuclear physics, this is of
course the deuteron.

It is surprising how many nontrivial problems asso-
ciated with the deuteron can be solved by means of suf-
ficiently simple, sometimes quite elementary, analytic
calculations. This is because the deuteron binding
energy of ε = 2.23 MeV is anomalously small on the
nuclear scale. As a result, the deuteron wave function
decreases very slowly beyond the range of nuclear
forces. At large distances, the asymptotic behavior of
this wave function can be described as e–κr, where the

parameter κ is small, κ =  = 45.7 MeV (mp is the
proton mass). Accordingly, the typical length over
which the wave function dies out is large, κ –1 = 4.3 fm;
it is much larger than the range of nuclear forces, r0 ~
1 fm. This enables us to use the deuteron wave function
in the so-called zero-range (with respect to nuclear
forces) approximation, where it assumes the form of its
asymptotic expression

(1)

the factor  ensuring fulfillment of the standard

normalization condition  = 1.

This article presents some results recently obtained
on the basis of the zero-range approximation. Although
the problems that will be considered here are associated
with the deuteron, they have some bearing on various

mpε

ψd
κ

2π
------

e
κ r–

r
--------,=

κ /2π
rψd

2
d∫

*e-mail: khriplovich@inp.nsk.su
1063-7788/01/6403- $21.00 © 20516
realms, including traditional nuclear physics and the
problem of P and T nonconservation.

It is convenient, however, to begin by briefly dis-
cussing a few well-known problems that have long
since been included in textbooks or even belong to
physics folklore. The deuteron ground state involves, in
addition to the 3S1 wave, a small admixture of the 3D1
wave, which can be disregarded, however, in many par-
ticular cases. In the low-energy limit, the wave function
of the 3S1 triplet state of the continuous spectrum of the
neutron–proton system can be represented as

(2)

where αt = 5.42 fm is the triplet scattering length. The
analogous expression for the 1S0 singlet wave function
of the continuous spectrum has the form

(3)

The singlet scattering length is negative and very large
in magnitude, αs = –23.7 fm. Hereafter, the subscript S
on the wave function indicates the S wave, while the
subscripts t and s label quantities referring to the triplet
and the singlet state, respectively. Somewhat more pre-
cise expressions for the wave functions of the S-wave
state of the continuous spectrum—those that take into
account the relative momentum p of scattered particles,
which is small in relation to 1/r0, but which is not small
in relation to 1/αt, s—can be written as [1]

(4)

The simplest of the aforementioned classical results
concerns the relation between the deuteron binding
energy and the triplet scattering length. From the

ψSt 1
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orthogonality of the triplet wave functions (1) and (2)
corresponding to different energy values, it immedi-
ately follows that

(5)

This relation is correct to within 20%.
Let us further consider the cross section for the deu-

teron-photodisintegration process γd  np. It is natu-
ral to begin by discussing the contribution of the E1
transition [2, 3]. The relevant matrix element is

(6)

The corresponding contribution to the cross section is

(7)

where α = 1/137 is the fine-structure constant. The
result of a straightforward calculation with the wave
function (1) was supplemented here with the correction
factors (1 – κrt)–1/2 in the matrix element (6) and the
corresponding correction factor (1 – κrt)–1 in the cross
section (7), where rt = 1.76 fm is the so-called effective
interaction range. The origin of this correction, which
is in fact not small (1 – κrt = 0.59), is the following. The
matrix element (6) is dominated by the contribution of
large distances, where the inclusion of the effective
range modifies the asymptotic behavior of the deuteron
wave function precisely in this way [3, 4]. As usual, the
cross section for the E1 transition near the threshold is
proportional to p3.

At the same time, the M1 contribution to the deu-
teron-photodisintegration cross section decreases in
proportion to first power of p in the threshold region, so
that it is dominant in the immediate neighborhood of
the threshold [5]. We now consider this contribution.
Since the orbital angular momentum of the nucleons in
the deuteron is zero (we neglect here the admixture of
the D wave), the magnetic-moment operator reduces to
the purely spin one,

Here, sp and sn are the proton and the neutron spin
operator, respectively, and µp = 2.79 and µn = –1.91 are
the corresponding magnetic moments. Since the deu-
teron wave function is orthogonal to the wave function
of the 3S1 positive-energy state, the M1 transition pro-
ceeds to the 1S0 singlet state of the continuous spec-
trum. A simple calculation yields [3, 5]

(8)
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Accordingly, we have

(9)

Although this contribution to the cross section is
enhanced by the large numerical factors of µp – µn = 4.7
and 1 – κα s = 6.5, it is dominant only within the region
of 0.2 MeV above the threshold.

Having completed this rather lengthy introduction,
we now proceed to put forth the basic matters of this
review article.

2. AMPLITUDE FOR np SCATTERING
AND DEUTERON QUADRUPOLE MOMENT

In just the same way as the triplet scattering length
αt is related to the asymptotic behavior of the 3S1 deu-
teron wave function for r  ∞—that is, with the
parameter κ [see Eq. (5)]—the limiting threshold val-
ues of the spin-dependent invariant amplitudes are
related to the asymptotic value of the 3D1 admixture in
the deuteron wave function [6].

We proceed from the np-scattering amplitude as
given by a standard expression that is valid if P and T
invariance are not violated and if nuclear forces are
independent of charge (see [7]). Specifically, we have

(10)

where p and p' are, respectively, the initial and the final
relative momentum of the nucleons in the c.m. frame;
s1 and s2 are the nucleon spin operators; and

With the aid of the obvious relation (s1 · n)(s2 · n) =
s1 · s2 – (s1 · n+)(s2 · n+) – (s1 · n−)(s2 · n–), we can
eliminate the structure (s1 · n)(s2 · n) from (10). We
further use the momenta p and p' instead of the unit vec-
tors n± and go over from the operators s1 and s2 to the

total-spin operator S = (s1 + s2) (the latter is done

since we are interested in triplet scattering). As a result,
the triplet np scattering amplitude assumes the form

(11)

where the triplet scattering length is related to the
parameters in (10) by the equation αt = −(a + b), while
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the constants

are independent of the scattering angle θ, in just the
same way as αt. As a matter of fact, expression (11) rep-
resents the momentum expansion of the scattering
amplitude, where only spin-dependent higher order
terms are retained along with αt.

We now proceed to construct the deuteron wave
function at large r, allowing for the D-wave admixture.
We begin by determining the effective delta-function
potential (pseudopotential) U(r) that reproduces the
scattering amplitude (11) in the Born approximation
(see [8]). Taking into account the relation

we obtain

(12)

where

In the wave function for the scattering problem, the
diverging spherical wave can be represented as

(13)

The unperturbed solution Ψ0 is assumed to be the S-
wave one. In this case, expression (13) can be reduced
to the form

(14)

By constructing an analytic continuation of the wave
function (14) to the point p = iκ corresponding to the
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bound state, we find that, at large distances, the deu-
teron wave function assumes the form

(15)

The expectation value of the quadrupole-moment ten-
sor for this state is

(16)

Consequently, the deuteron quadrupole moment is
given by

(17)

Since the main contribution to Q comes from distances
r ~ 1/κ, it is not necessary to introduce the correction
factors (1 – κrt)–1/2 and (1 – κrt)–1 in expressions (15)
and (16), respectively.

An analysis of experimental data on elastic dp scat-
tering and on the stripping reaction yields [6, 9]

(18)

The corresponding value of the deuteron quadrupole
moment is

(19)

The phase-shift analysis of np scattering leads to some-
what larger values [10]:

(20)

At least the last result, that in (20), is not very far from
the data of a direct experimental measurement of the
deuteron quadrupole moment,

(21)

Of course, the accuracy of the direct experimental
result (21) for the deuteron quadrupole moment is
much higher than that of approximations made to
derive (17) and than that of the phase-shift analysis of
the aforementioned elastic processes and of the strip-
ping reaction. It follows that, apart from being of purely
theoretical interest, the relations obtained here can also
be used predominantly to test the phenomenological
description of the these reactions.

3. CIRCULAR POLARIZATION OF PHOTONS 
IN THE REACTION np  dγ INDUCED BY 

POLARIZED NEUTRONS

Deuteron photodisintegration at the threshold
occurs into the 1S0 wave of the continuous spectrum;
likewise, the radiative capture of thermal neutrons
through the process np  dγ proceeds from the same
1S0 state via an M1 transition. It is clear that, within this
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approximation, the polarization of an initial particle
cannot be transferred to the final particle since the ini-
tial state is a pure 1S0 state, which possesses exact
spherical symmetry. Owing to the D-wave admixture in
the deuteron wave function and in the incident wave,
the M1 transition can proceed, however, from the triplet
initial state as well. Moreover, the magnetic dipole tran-
sition from the triplet initial state is also induced by cor-
rections to the M1 operator that are responsible for the
nonadditivity of the magnetic moments of the nucleons
in the deuteron. Finally, the D-wave admixture opens
the possibility for a E2 transition to occur in this case.
All relevant effects are quite small, but an analysis of
these effects may furnish information about some sub-
tle details of the np interaction at low energies.

The circular polarization of the photons emitted in
the radiative capture of polarized thermal neutrons by
unpolarized protons, np  dγ, was first measured in
[11]. The result obtained there,

was significantly improved in a more recent study of
the same group [12],

(22)

This problem was theoretically considered in [13–18].
The present review article follows predominantly [13, 16].

We begin by considering the magnetic-moment
operator

The orbital angular momentum of the proton, lp, is
related to the total orbital angular momentum L by the
obvious equation lp = (1/2)L. It is convenient to repre-
sent the above linear combination of L and sp, n in the
form

(23)

The first term on the right-hand side of Eq. (23) is noth-
ing but half of the total angular momentum I; being an
integral of the motion, it cannot induce any transitions.
The second term is responsible for the ordinary M1
transition from the 1S0 state of the continuous spec-
trum—that is, for the process inverse to deuteron pho-
todisintegration at the threshold. The effective operator
of this (dominant) M1 transition, the coordinate matrix
element of the second term, has the form

(24)

As to the last term on the right-hand side of (23), its
matrix element differs from zero owing, above all, to

Pγ 2.90 0.87±( )– 10
3–
,×=

Pγ 1.5 0.3±( )– 10
3–
.×=

M
e

2mp

---------- lp µpsp µnsn+ +( ).=

1
2
---L µpsp µnsn+ +

1
2
--- L

1
2
---sp

1
2
---sn+ + 

 =

+
1
2
--- µp µn–( ) sp sn–( ) 1

2
--- µp µn

1
2
---–+ 

  sp sn+( ).+

M̂0
e

2mp

----------1
2
--- µp µn–( ) 2πκ

1 κα s–

κ 2
------------------ sp sn–( ).=
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the 3D1 admixture to the deuteron wave function and to
the 3S1 state of the continuous spectrum (ψd and ψSt,
respectively). In order to calculate this matrix element,
we use the orthogonality of the total radial wave func-
tions of the two states,

(25)

Here, the subscripts 0 and 2 label the radial functions of
the S- and D-wave components of the initial and the
final state, respectively. Taking into account (25), we
easily obtain the required matrix element. The result is

(26)

The remaining radial integral is dominated by the dis-
tances that are smaller than the range of nuclear forces.
It is reasonable to assume [13] that, at these distances,
the functions Rd 2 and Rt2 differ by only a normalization
factor; that is,

The matrix element (26) then reduces to

(27)

where Pd is the weight of the D wave in the deuteron.
The deuteron magnetic moment µd is given by the

well-known expression

(28)

its numerical value being µd = 0.8574. Along with the
corrections for the D-wave admixture (term involving
Pd), µd includes relativistic corrections represented by
∆µ. Naturally, the matrix elements of relevant operators
are also dominated by small distances. Again, we
assume that, at these distances, the wave function of the
3S1 state of the continuous spectrum differs from the
deuteron wave function only by a factor. The coordi-
nate matrix element of the operator for the relevant trip-
let–triplet transition is then given by

The resulting total effective operator for the triplet–
triplet M1 transition has the form

(29)

rr
2
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By virtue of (28), it can be rearranged as

(30)

For the M1 contribution to the degree of circular
photon polarization, a standard calculation that employs
expression (24) for the dominant transition yields

(31)

Yet another contribution to the circular polarization
of product photons comes from the quadrupole transi-
tion. Here, the E2 operator has the form

.

Recall that the proton coordinate rp and the argument r
of the wave function are related by the equation rp =
r/2. For the quadrupole contribution to the circular
polarization, the result of a standard calculation with
the wave functions (14) and (15) is

(32)

Our final result,

(33)

is in reasonable agreement with the experimental result
in (22). Also, there is good agreement between (33) and
the eventual results from [17, 18], although the present
results for Pγ(M1) and Pγ(E2) taken separately differ
considerably from the corresponding results in those
articles.

4. P- AND T-ODD ELECTROMAGNETIC 
MOMENTS OF THE DEUTERON

4.1. Generalities on the Anapole Moments

The concept of the anapole moment was introduced
by Vaks (who was then a postgraduate student of
A.B. Migdal) and independently by Zeldovich [19].
The anapole moment is some electromagnetic feature
peculiar to systems where parity is not conserved.

It is characteristic of the anapole moment that its
interaction with a charged test particle is of a contact
character (for a more detailed discussion, see, for
example, [20]). It follows that, for example, the interac-
tion between an electron and the nucleon anapole
moment—it is of order αG (G is Fermi constant of
weak interaction)—cannot be distinguished, in general,
from other radiative corrections to weak electron–
nucleon interaction. This has far-reaching conse-
quences because, within the gauge theory of elec-

M̂
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---------------------------------------------– 0.25 10
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.×–=

Pγ Pγ M1( ) Pγ E2( )+ 1.1 10
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,×–= =
troweak interactions, only the total scattering ampli-
tude—that is, the sum of all diagrams of order αG—is
a gauge-invariant quantity (specifically, a quantity that
is independent of the choice of gauge for the heavy-
vector-boson Green’s function). Thus, the anapole
moment of an elementary particle or a nucleus is not a
gauge-invariant concept in general; therefore, it does
not have direct physical meaning. Nevertheless, there
are special cases where the anapole moment does have
physical meaning. In contrast to ordinary radiative cor-
rections, the anapole moment in heavy nuclei is
enhanced in proportion to A2/3 [21] (where A is the
atomic number).1) Indeed, the anapole moment of the
133Cs nucleus was discovered and measured to a good
precision in the atomic experiment reported in [22].
The result of this experiment is in reasonable quantita-
tive agreement with theoretical predictions first pre-
sented in [21, 23].

There exists yet another object, the deuteron, whose
anapole moment could have physical meaning, pro-
vided that the P-odd πNN coupling constant is suffi-
ciently large [23]. The problem of the deuteron anapole
moment was phenomenologically considered in [1, 23–
25]. Recently, the deuteron anapole moment induced
by P-odd pion exchange has been calculated in [26]
(see also [27]).

4.2. Calculation of the Nucleon Anapole Moment

It is convenient to begin by considering the nucleon
anapole moment in the limit mπ  0. It was calcu-
lated by Vainshtein and the present author in 1980. The
same result,

(34)

(e > 0 is assumed here), was obtained for the proton and
for the neutron.

In the nucleon anapole moment, this is the only con-
tribution that is singular in mπ; therefore, the result in
(34) is gauge invariant. In this respect, it has physical
meaning.

The corresponding contribution to the amplitude of
electron–nucleon scattering is also singular in mπ, but it is
unfortunately small numerically in relation to other radi-
ative corrections to the weak scattering amplitude.
Indeed, the radiative corrections to the effective constants

C2p, n in the operators G/ C2p, nsp, n of the weak neutral
currents for the proton and for the neutron are [28]

(35)

1)Among other things, this means that there exists an intrinsic limit
of about A2/3 on the relative accuracy to which one can determine
the anapole moment of a heavy nucleus. In the 133Cs case, which
is of experimental interest, this limiting accuracy is some 4%.

ap an
egg

12mpmπ
-------------------- 1

6
π
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mπ

mp
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------ln– 
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PHYSICS OF ATOMIC NUCLEI      Vol. 64      No. 3      2001



VARIATIONS ON THE DEUTERON THEME 521
In the same units of G/ , the effective axial constants
induced by the electromagnetic interaction with the ana-
pole moments of the proton and the neutron [see (34)] are

At the “best value” of  = 3.3 × 10–7, we then obtain

(36)

Since this value is much less than those corresponding
to the central points and than the errors in (35), it is
meaningless to consider the anapole moment from the
practical point of view. This is the reason why the result
presented in (34) has never been published by the
authors. It is quoted in the monograph [20] (without the
logarithmic term) just as a theoretical curiosity. This
result was also obtained in [29], while the logarithmic
term in the nucleon anapole moment is discussed in [30].

As was indicated in [31], the P-odd ππNN interac-
tion also generates a lnmπ contribution to the nucleon
anapole moment. The coupling constant for this P-odd
ππNN interaction is known only from purely theoretical
estimations. According to those that Kaplan and Savage
[31] consider to be relatively reliable, the contribution
of the P-odd ππNN interaction to the nucleon anapole
moment is approximately an order of magnitude less
than the result in (34).

However, the situation around the deuteron anapole
moment is quite different not only in that the anapole
moment here receives contributions from the proton
and from the neutron but also in that the isoscalar part
of the radiative corrections is much smaller than each of

the individual contributions  and ; furthermore,
it is calculated to a much higher precision [28],

(37)

In addition, new large contributions that are propor-

tional to  and which are induced by P-odd π-meson
exchange arise in the deuteron anapole moment. We
now proceed to analyze these contributions.

4.3. P-odd π-Meson Exchange

The Lagrangians for strong and for weak P-odd
πNN interaction (Ls and Lw, respectively) are given by

(38)

(39)

where

(40)

2

Cp n,
a αaN e G/ 2( ) 1–

– 0.07 10
5
g.×= =

g

Cp n,
a

0.002.=

C2 p
r

C2n
r

C2d
r

C2 p
r

C2n
r

+ 0.014 0.0030.±= =

mπ
1–

Ls g 2 piγ5nπ+
niγ5 pπ–

+( )[=

+ piγ5 p niγ5n–( )π0 ] ,

Lw g 2i pnπ+
n pπ–

–( ),=

γ5
0 I–

I– 0 
 
 

.=
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The relation between the P-odd πNN coupling constant
 used here and that used conventionally and denoted

by  is  = . We imply the conventional
definition of signs for the coupling constants: g = 13.45
and  > 0 for the region of values discussed in [32].

In the momentum representation, the effective non-
relativistic potential of the P-odd nucleon–nucleon
interaction induced by π-meson exchange has the form

(41)

where q =  – p1 = –(  – p2) =  – pp = –(  – pn).
This P-odd interaction conserves the total spin

but it does not conserve the isospin. In our problem, this
interaction therefore mixes the 3P1 state of the continu-
ous spectrum with the deuteron ground state (3S1). It
should be noted that, when applied to the initial state

(r1) (r2)|0〉 , the interaction potential (41), which
interchanges the proton and the neutron, transforms this

initial state into (r1) (r2)|0〉 = – (r2) (r1)|0〉. On
the other hand, the coordinate wave function of the
admixed 3P1 state is proportional to the relative coordi-
nate r defined as rp – rn. Therefore, it also changes sign
under the permutation p  n. Thus, we conclude
that, in the coordinate representation, this P-odd poten-
tial for the deuteron can be written merely as a function
of r = rp – rn without indicating isotopic variables,

(42)

The relevant direct and inverse imaginary matrix ele-
ments are related as 〈3P1|V |3S1〉 = −〈3S1|V |3P1〉; the sign
in (42) corresponds to 〈3P1|V |3S1〉 .

It is worth noting that the weak interaction (42) gen-
erates a contact current jc. In order to obtain an explicit
expression for this current, we consider the P-odd inter-
action V in the presence of an electromagnetic field, in
which case we have to shift the proton momentum as
p  p – eA and make the substitution q  q + eA
in the interaction potential (41). In the momentum rep-
resentation, the contact current then assumes the form

(43)
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where we have neglected the A dependence. In the
coordinate representation, the contact current is

(44)

4.4. Calculation of the Deuteron Anapole Moment

First, we will discuss the general structure of the
deuteron anapole moment induced by the P-odd np
interaction conserving the total spin, only assuming
that the deuteron is a pure 3S1 state bound by a spherically
symmetric potential. In doing this, we follow essentially
the arguments applied in [23] (see also [20]) to the prob-
lem of a proton in a spherically symmetric potential. In
that case, the anapole-moment operator is [23]

(45)

The corresponding expression for the deuteron has the
form

(46)

The operators (45) and (46) are both orthogonal to r
(neither commutes with r, so that the orthogonality
means here that  · r + r ·  = 0). Therefore, the contact
current (44), which is generated by P-odd pion
exchange and which is directed along r, does not con-
tribute to the nuclear anapole moment.

Let us represent the wave function of the 3S1 state of
the deuteron in the form ψ0(r)χt. Since weak interaction
conserves the total spin I, the 3P1 P-odd admixture can
be written as δψ1(r) = i(I · r/r)ψ1(r)χt, with the wave
functions ψ0(r) and ψ1(r) being both spherically sym-
metric. After some simple algebra, we find that, in the
absence of the contact-current contribution, the expec-
tation value of operator (46) in the state with the wave
function [ψ0(r) + i(I · r/r)ψ1(r)]χt is

(47)

Thus, we conclude that, under the above assumptions,
the deuteron anapole moment must depend on the uni-
versal combination µp – µn –1/3.

The actual calculations will be performed in the
zero-range approximation, where ψ0(r) = ψd(r) [see
Eq. (1)] and where the wave functions of the P states
are free. In applying time-independent perturbation
theory, we can further take plane waves for intermedi-
ate states over which summation is performed, since
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3
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the perturbation V(r) [see Eq. (42)] will automatically
select the P states from the plane waves. The correction
to the wave function is given by

(48)

After rather lengthy calculations, we obtain the matrix
element of the radius vector in the form

(49)

where ξ = κ/mπ = 0.32. Using this matrix element and
the operator in (46), we can represent the deuteron ana-
pole moment as

(50)

in accordance with the general formula (47).
Actually, the range of the P-odd interaction (42) is

commensurate with the range of ordinary nuclear
forces. Therefore, it seems hazardous to use the naive
wave function (1) without any further substantiation.
Nevertheless, numerical calculations with a model
wave function that has more realistic properties lead to
a result that differs from the result in (50) by not more
than 20%. As to sources of P violation other than pion
exchange, their contribution to the deuteron anapole
moment can be shown to be within 5% of that in (50)
(at the “best value” of ).

It seems reasonable to combine the potential contri-
bution (50) with the sum of the proton and neutron ana-
pole moments (34). In this way, we arrive at the final
result for the deuteron anapole moment:

(51)

This result includes all corrections to the ê-odd ampli-
tude of ed scattering that are singular in mπ; therefore,
it is gauge-invariant and physically meaningful.

It only remains to compare the contribution of the
anapole moment (51) with the ê-odd ed-scattering
amplitude induced by ordinary radiative corrections,
which are nonsingular in mπ. For the “best value” of  =
3.3 × 10–7 and a 20% estimate for the error, we obtain

(52)

This value is commensurate with the contribution (37)
of ordinary radiative corrections. Combined together,
they amounts to

(53)
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Yet another contribution to C2d arises from the admix-
ture of strange quarks in the nucleon [33]. This contri-
bution is extremely interesting, but it is very uncertain.

It is very difficult to measure the constant C2d. In
view of the high accuracy of the theoretical predictions,
such an experiment would furnish, however, valuable
information about the P-odd πNN coupling constant
and about the strange-quark admixture in the nucleon.

4.5. P-odd, T-odd Electromagnetic Moments
of the Deuteron

Previously, the P-odd, T-odd multipole moments of
the deuteron—specifically, the electric dipole and the
magnetic quadrupole moment—were considered phe-
nomenologically [34]. In [26], these multipole
moments were calculated within the same approach as
the anapole moment.

It is convenient to classify three independent P-odd,
T-odd effective πNN Lagrangians according to their
isotopic properties,

(54)

(55)

(56)

Since the isospin of two nucleons can assume only the
values of T = 0, 1, the last Lagrangian, which is associ-
ated with |∆T | = 2, is not operative within our approach.

The effective P-odd, T-odd np interaction is derived
in just the same way as the interaction in (42). In the
momentum representation, it has the form

(57)

The deuteron dipole moment (that is, the expecta-
tion value of erp = er/2) can be calculated by means of
a procedure similar to that adopted above for the ana-
pole moment. As a result, we obtain

(58)

The magnetic-quadrupole-moment operator is
expressed in terms of the current density j as (see, for
example, [20, 35])

(59)
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This expression can be recast into the form

(60)

where µ is the total magnetic moment of the particle
being considered, while q is its charge in units of e.

In our case, the orbital contribution to Mmn vanishes
because of the spherical symmetry of the unperturbed
wave function. The contact current here is again
directed along r; therefore, it does not contribute to the
magnetic quadrupole moment. Thus, the deuteron mag-
netic quadrupole moment is induced by the spin term in
(60). It is a given by

(61)

In conclusion, it is worth noting that, presently, the
possibility of searches for the deuteron dipole moment
at a storage ring for polarized nuclei is being discussed
by experimentalists rather seriously.

ACKNOWLEDGMENTS

This review article is based on results obtained
together with A.V. Blinov, A.P. Burichenko, L.A. Kon-
dratyuk, and R.V. Korkin.

The work was supported by the Leading Scientific
Schools Foundation (grant no. 00-15-96811), the Min-
istry for Higher Education of the Russian Federation
(grant no. 3N-224-98) and the Federal Program Inte-
gration-1998 (grant no. 274).

REFERENCES

1. A. I. Mikhaœlov, A. N. Moskalev, R. N. Ryndin, and
G. I. Frolov, Yad. Fiz. 35, 887 (1982) [Sov. J. Nucl. Phys.
35, 516 (1982)].

2. H. Bethe and R. Peierls, Proc. R. Soc. London, Ser. A
148, 570 (1935).

3. V. B. Berestetskiœ, E. M. Lifshitz, and L. P. Pitaevskiœ,
Quantum Electrodynamics (Nauka, Moscow, 1980; Per-
gamon, Oxford, 1982).

4. J. L. Friar and S. Fallieros, Phys. Rev. C 29, 232 (1984).
5. E. Fermi, Phys. Rev. 48, 570 (1935).
6. A. V. Blinov, L. A. Kondratyuk, and I. B. Khriplovich,

Yad. Fiz. 47, 604 (1988) [Sov. J. Nucl. Phys. 47, 382
(1988)].

7. L. Wolfenstein and J. Ashkin, Phys. Rev. 85, 947 (1952).
8. L. D. Landau and E. M. Lifshitz, Quantum Mechanics:

Non-Relativistic Theory (Nauka, Moscow, 1974; Perga-
mon, New York, 1977).

Mmn
e

2m
------- 3µ rmσn rnσm

2
3
--- s r⋅( )–+





=

---+ 2q rmln rnlm+( )




,

} Mzz Iz I=
eg

12πmpmπ
----------------------- 1 ξ+

1 2ξ+( )2
----------------------–= =

× 3g0 g1+( )µp 3g0 g1–( )µn+[ ] .



524 KHRIPLOVICH
9. T. E. O. Ericson and M. Rosa-Clot, Nucl. Phys. A 405,
493 (1984).

10. R. A. Arndt et al., Phys. Rev. D 28, 97 (1983).
11. V. A. Vesna et al., Nucl. Phys. A 352, 181 (1981).
12. A. N. Bazhenov et al., Phys. Lett. B 289, 17 (1992).
13. G. S. Danilov, in Proceedings of the XI LNPI Winter

School, Leningrad, 1976, Vol. 1, p. 203.
14. I. L. Grach and M. Zh. Shmatikov, Yad. Fiz. 40, 440

(1984) [Sov. J. Nucl. Phys. 40, 280 (1984)].
15. I. L. Grach and M. Zh. Shmatikov, Yad. Fiz. 45, 933

(1987) [Sov. J. Nucl. Phys. 45, 579 (1987)].
16. A. P. Burichenko and I. B. Khriplovich, Nucl. Phys. A

515, 139 (1990).
17. J.-W. Chen, G. Rupak, and M. J. Savage, Phys. Lett. B

464, 1 (1999); nucl-th/9905002.
18. T. S. Park, K. Kubodera, D. P. Min, and M. Rho, Phys.

Lett. B 472, 232 (2000); nucl-th/9906005.
19. Ya. B. Zel’dovich, Zh. Éksp. Teor. Fiz. 33, 1531 (1957)

(in this article, mention is made of the fact that similar
results were obtained by V. G. Vaks) [Sov. Phys. JETP 6,
1184 (1958)].

20. I. B. Khriplovich, Nonconservation of Parity in Atomic
Phenomena (Nauka, Moscow, 1988).

21. V. V. Flambaum, I. B. Khriplovich, and O. P. Sushkov,
Phys. Lett. B 146B, 367 (1984).

22. C. S. Woods et al., Science 275, 1759 (1997).
23. V. V. Flambaum and I. B. Khriplovich, Zh. Éksp. Teor.

Fiz. 79, 1656 (1980) [Sov. Phys. JETP 52, 835 (1980)].
24. E. M. Henley and W.-Y. P. Hwang, Phys. Rev. C 23, 1001
(1981).

25. B. Desplanques, in Contributions to the 9th Interna-
tional Conference on High Energy Physics and Nuclear
Structure, Paris, 1981.

26. I. B. Khriplovich and R. V. Korkin, Nucl. Phys. A 665,
365 (2000); nucl-th/9904081.

27. M. J. Savage and R. P. Springer, Nucl. Phys. A 644, 235
(1998); Erratum: 657, 457 (1999); nucl-th/9807014.

28. W. J. Marciano and A. Sirlin, Phys. Rev. D 29, 75 (1984).
29. M. J. Musolf and B. R. Holstein, Phys. Rev. D 43, 2956

(1991).
30. W. C. Haxton, E. M. Henley, and M. J. Musolf, Phys.

Rev. Lett. 63, 949 (1989).
31. D. B. Kaplan and M. J. Savage, Nucl. Phys. A 556, 653

(1993).
32. B. Desplanques, J. F. Donoghue, and B. R. Holstein,

Ann. Phys. (N.Y.) 124, 449 (1980).
33. B. A. Campbell, J. Ellis, and R. A. Flores, Phys. Lett. B

225, 419 (1989).
34. O. P. Sushkov, V. V. Flambaum, and I. B. Khriplovich,

Zh. Éksp. Teor. Fiz. 87, 1521 (1984) [Sov. Phys. JETP
60, 873 (1984)].

35. S. K. Lamoreaux and I. B. Khriplovich, CP Violation
without Strangeness (Springer-Verlag, Berlin, 1997).

Translated by O. Chernavskaya
PHYSICS OF ATOMIC NUCLEI      Vol. 64      No. 3      2001



  

Physics of Atomic Nuclei, Vol. 64, No. 3, 2001, pp. 525–535. From Yadernaya Fizika, Vol. 64, No. 3, 2001, pp. 579–589.
Original English Text Copyright © 2001 by Zelevinsky, Mulhall, Volya.

    

90th ANNIVERSARY OF A.B. MIGDAL’S BIRTHDAY
NUCLEI

        
Do We Understand the Role of Incoherent Interactions
in Many-body Physics?*

V. G. Zelevinsky, D. Mulhall, and A. Volya
Department of Physics and Astronomy and National Superconducting Cyclotron Laboratory, East Lansing, Michigan, USA

Received August 11, 2000

Abstract—Recent developments in many-body quantum chaos show that a quantum system with strong inco-
herent interactions can still be described with the aid of mean quasiparticle occupation numbers as in Fermi
liquid theory. We use these ideas and the geometric chaoticity of angular momentum coupling to explain the
predominance of ground states with zero spin and the maximum possible spin for a system of randomly inter-
acting fermions in a rotationally invariant mean field (an analog of the Hund rule). We show that spin ordering
coexists with the chaotic features of the ground-state wave functions. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The standard description of quantum many-body
systems is largely based on the concept of the mean
field. The mean field determines the symmetry of the
system and possible modes of elementary excitations,
quasiparticles. The residual interaction of quasiparti-
cles may lead both to collective motion and to collision-
like processes responsible for relaxation phenomena
and the finite lifetime of elementary excitations. This
general picture works as a foundation for the Fermi liq-
uid theory [1] for macroscopic systems. Being general-
ized by Migdal [2] for finite Fermi systems, such as
atomic nuclei, various versions of this approach serve
as a basis of nuclear structure theory recently used suc-
cessfully also for atomic clusters and other mesoscopic
systems.

The domain of validity of the Fermi liquid approach
is frequently claimed to be restricted to the low-energy
region of spectra where the quasiparticle collisions are
suppressed by the Pauli exclusion principle and the
quasiparticles have a large lifetime. The emergence of
collective modes does not strongly destroy the quasi-
particle picture because each individual quasiparticle
excitation contributes only a small part to the total col-
lective strength and, therefore, it is only weakly dis-
torted. As excitation energy increases, the frequent col-
lisions reduce the lifetime of the quasiparticles that
seemingly invalidates the Fermi liquid approach
because the response of the system to an external field
should include complicated many-particle excitations.

During the last years, the extensive study of quan-
tum chaos started to gradually change some features of
the traditional paradigm of many-body physics. This is
seen more clearly in the mesoscopic physics of small
quantum many-body systems. Mesoscopic objects are
sufficiently complicated to allow for a statistical

* This article was submitted by the authors in English.
1063-7788/01/6403- $21.00 © 20525
description. On the other hand, they are sufficiently
small to reveal, at least in particular situations, the
properties of individual quantum states. A complex
nucleus is a perfect example of such a system with the
strong interaction between its constituents. At rela-
tively high excitation energy, the description of the
nuclear processes uses such statistical notions as level
density, temperature, strength function, and so on.
However even here, experiments are possible which
deal practically with single wave functions of nearly
stationary states as in the case of isolated neutron reso-
nances [3]. Therefore, it is feasible to study simulta-
neously the global (“secular”) behavior of nuclear
properties along the spectrum and local correlations
and fluctuations of energy levels and eigenfunctions.

The extreme limit of a chaotic local pattern is given
by random matrix theory [4–6]. The Gaussian Orthog-
onal Ensemble (GOE) is appropriate for chaotic time-
reversal invariant systems. The analyses of actual cha-
otic systems (quantum billiards, microwave cavities,
acoustic waves in solids, quantum dots, complex
atoms, molecules and nuclei, quantum fields), as well
as of numerous models, show that the spectral statistics
are universal and close to the GOE limit. The deviations
from universality should be the most interesting,
although quite difficult to analyze because of the neces-
sity to have a large reliable body of data with a mini-
mum of missing levels, and are the object of future
studies. It is even harder to study the statistical proper-
ties of the eigenstates. However, we know that, in
many-body systems, the eigenfunctions are extremely
complicated superpositions of a large number N of
independent particle configurations. This mixing and,
consequently, degree of complexity are smooth func-
tions of excitation energy [7, 8], as is needed for the
successful application of the statistical approach. This
is where one can bridge the gap between quantum
chaos and thermodynamics [8, 9], preparing the way to
the reformulation of the concepts of thermal equilib-
001 MAIK “Nauka/Interperiodica”
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rium, especially for small closed systems. Furthermore,
it turns out that one can still characterize the macro-
scopic observables in terms of the single-particle occu-
pancies even in the presence of strong residual interac-
tions [8, 10]. This means that in fact the Fermi liquid
theory has a much greater domain of validity than was
previously considered.

Another topic of principal interest is the relationship
between coherent and quasirandom parts of the residual
interaction. The mean field itself is a result of averaging
over very complicated intermediate states in the
dynamics of the single-particle density matrix [11]. In
a self-sustaining system, there are integrals of motion,
such as total angular momentum J, that are not
destroyed by chaotic interactions. Within a block of
states with given J, the states can be strongly mixed.
Nevertheless, the different blocks, being governed by
the same original Hamiltonian, can still keep some cor-
relations. For example, even at high excitation energy,
an object can allow collective rotation, so that each
block will include corresponding states which are very
similar but differ by the value of J (collective rotation
frequency). In this case, one would observe “compound
rotational bands” with strong radiative transitions
between the J members of the band [12].

Recent studies [13, 14] show that a random interac-
tion can result in ordered energy levels which resemble
the actual structure of nuclear spectra. The necessary
condition is that the interaction being random in sign
and magnitude still respects the symmetry of the sys-
tem (rotational invariance in the case of a self-sustain-
ing finite system). The appearance of such ordered
spectra again confirms the correlation between the dif-
ferent classes of states governed by the same Hamilto-
nian. The mechanism responsible for the appearance of
quasi-ordered spectra in a system with chaotic dynam-
ics was not explained either in the original work [13] or
in the subsequent publications [14–16], although the
numerical results for various versions of the shell
model and interacting boson model are quite convinc-
ing.

Below, we consider the problem of ordered spectra
from random interactions and suggest an explanation
based on the idea of geometric chaoticity [8, 17] which
appears in a finite many-fermion system with complex
interactions due to exact rotational invariance. In fact,
this should be a generic feature of any self-sustaining
drop of Fermi liquid. To clarify the arguments, we limit
ourselves here to the simplest situation of a single-j
level. The generalization to more realistic situations is
straightforward.

2. THE MODEL

Let us consider a system of N identical fermions
occupying certain orbitals in a common spherically
symmetric field. For simplicity, we assume that all par-
ticles are confined to a single-j level so that the only
quantum number characterizing a single-particle state
is the angular momentum projection m. The complete
degeneracy of all single-particle states ensures the most
effective role of the residual interaction. The capacity
of the level Ω = 2j + 1 should be sufficiently large to
give rise to the possibility of statistical regularities.

The most general residual interaction between the
particles in this space can be written in the particle–par-
ticle pp channel as

(1)

where the creation, , and annihilation, PLΛ, opera-
tors for a pair with total spin L and its projection Λ are
defined according to

(2)

where  ≡ 〈LΛ| jmjm'〉  are the Clebsch–Gordan
coefficients of vector coupling. Note that, due to the
Fermi statistics (anticommutation of the single-particle

operators) and the corresponding symmetry  =

(−1)L + 1  for a half-integer j, only even momenta
L = 0, 2, …, 2j – 1 = Ω – 2 of pairs are allowed. The pair
operators in Eq. (2) are defined in such a way that the

normalized pair state with spin L is |0〉 , where |0〉  is
the vacuum state with no particles.

The same Hamiltonian can be identically trans-
formed to the particle–hole ph channel, where it is
expressed as

(3)

Here, the multipole operators

(4)

are Hermitian  = (–1)κ}K – κ. The effective single-

particle energy in Eq. (3) is e = (1/2) , and the

interaction matrix elements  in the ph channel (K =
0, 1, …, 2j = Ω – 1 can be both even and odd) are related
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to the original matrix elements VL in the pp channel as

(5)

or, inversely,

(6)

Among the multipoles }Kκ, the exact constants of
motion are the particle-number operator

(7)

and the angular-momentum spherical components

(8)

The transition between the pp and ph channels (the
so-called Pandey transformation) was studied from the
dynamical viewpoint by Belyaev [18]. The channels
are complementary in the following sense: the lowest L
components of the pp channel contribute mainly to the
highest K components of the ph channel, and vice
versa. The pairing part of the interaction, L = 0, corre-
sponds to the sum of all multipole interactions,

(9)

This complementarity explains the success of the pop-
ular interpolating model “pairing + multipole–multi-
pole interaction,” where the effective interaction com-
bines phenomenologically the lowest components in
both channels.

3. RANDOM HAMILTONIAN

The analytic solution for the general single-j Hamil-
tonian is not known, although it can be found for spe-
cific cases [19] such as the pure pairing problem, VL =
V0δL0, when the quasispin SU(2) algebra of the opera-

tors P00, , and  provides the additional integral of
motion, seniority [20]. However, the numerical solu-
tion is readily available for not very large values of N
and Ω. The matrix diagonalization can be performed
both on the basis of the m-scheme Slater determinants
and with the preliminary projection of the many-body
states with a certain value of the total angular momen-
tum J (as it is done, for example, in the OXBASH code
[21]) and separate diagonalization within the J blocks.
The maximum spin available for given values of N and
Ω is

(10)
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and the corresponding state is unique so that no diago-
nalization is required. The dimensions d(J ) of other J
blocks can be easily counted, and their statistical distri-
bution can be approximately evaluated assuming the
idea of random coupling of individual angular
momenta similar to that used for deriving [22] the
Fermi gas level density: d(J ) ∝  (2J + 1)exp[–const ×
J(J + 1)]. Here, the constant in the exponent is related
to the effective statistical moment of inertia determined

by the average value  for available single-particle
orbitals. Large-scale shell-model calculations with
realistic residual forces [23] agree on average with this
statistical estimate. In particular, the value J = 0 never
corresponds to the maximum statistical probability.

The empirical fact that even–even nuclei always
have a ground-state spin J0 = 0 is usually traced to the
presence of strong attractive pairing forces, V0 < 0. Sur-
prisingly, it turns out [13] that such forces are not nec-
essary. Even with randomly chosen interaction param-
eters VL , the probability of having J0 = 0 is an order of
magnitude higher than the fraction of states J = 0 in the
entire Hilbert space. Moreover, this result is quite
robust and insensitive to the precise definition of the
random ensemble [14, 15, 24]; it is valid as well for ran-
domly interacting bosons [16].

The random quasiparticle ensemble (RQE) chosen in
[13] considers VL as uncorrelated Gaussian variables
with zero mean and the variance scaled as (2L + 1)–1. The
authors claimed that, under this choice, the interaction

parameters VL and  in the pp and ph channels,
respectively, have identical distribution functions,
which would stress the idea of the randomness of the
interaction. This statement would be correct only if one
could neglect the limitation by even L values in the pp
channel for the pairs formed at the same j level. Due to

the Fermi statistics, the number of different  is

larger than the number of VL so that  cannot be sta-
tistically independent if the VL are. However, discard-
ing this motivation, we still have the RQE as one of
many reasonable ensembles representing the random
two-body interaction.

Below, we mainly use an even simpler ensemble
with a uniform distribution of uncorrelated constants VL
between –1 and 1. As compared to the RQE, here the
weight of high L components is emphasized, but the
general conclusions are qualitatively the same.

4. GROUND-STATE SPIN
FOR A SINGLE-j LEVEL MODEL

For N = 2 particles on a single-j level, only states
with even J are allowed; they are unique, and the
ground state in a trivial way corresponds to the value of
J which is equal to L for the smallest value of VL in a
given copy of the random ensemble. However, already
for N = 4 the results are not trivial, being in general

m2

ṼK

ṼK

ṼK
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agreement with the findings of [13, 14] for Gaussian
ensembles. Below, we give only examples of a large
body of our numerical data.

Figure 1 shows the distribution fJ of ground-state
spins for a system of N = 4 particles on the (a) j = 11/2
and the (b) j = 25/2 level. The dotted line corresponds
to the statistical distribution of possible spins in Hilbert
space, while the solid lines show the actual distribution
in the uniform ensemble. Figure 2 displays analogous
results for N = 6 and j = 17/2. The generic pattern is
characterized by a large excess of the probability f0 for
the zero ground-state spin. Frequently, f0 exceeds 50%.
The fluctuations of the distribution are smoothed for a
larger particle number.

Fig. 1. The ground-state spin distribution fJ in the system of
four fermions (solid line) with (a) j = 11/2 and (b) j = 25/2.
The dotted line shows the statistical distribution of possible
spins J for the system.

Fig. 2. As in Fig. 1, but for six fermions and j = 17/2.

Fig. 3. As in Fig. 1, but for five fermions and j = 15/2. 
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In the previous works [13–16, 24], only systems of
even particle number were considered. Assuming the
ground-state spin of an even system to be zero, one
would expect the ground-state spin of an adjacent odd-
N system to coincide with the level spin j. This is indeed
the case as illustrated by Fig. 3, where, for the system
of N = 5 and j = 15/2, we observe a peak of probability
for J = j = 15/2.

Earlier [24], we noticed that the probability of the
maximum possible spin Jmax is also significantly
enhanced, whereas it is vanishingly small for the statis-
tical distribution since there is only one state with J =
Jmax. This enhancement turns out to be a persistent fea-
ture as seen from Figs. 1–3. It was seen in the interact-
ing boson model as well [16]: for a system of 16 sd
bosons with a random two-body interaction, the unique
state with J = Jmax = 32 turned out to be the ground state
in 18.6% of all cases. The generic results of different
models certainly call for a plausible physical explana-
tion.

5. SEARCH FOR EXPLANATION

The authors of the original work [13] conjectured
that the observed strong enhancement of the fraction f0
is related to the effective pairing correlations which
might appear even from random interaction, although a
specific mechanism of pairing production was not pre-
sented. This aspect of the problem can be related to the
more general question of the role of additional interac-
tions in phenomena of superconductivity and superflu-
idity in Fermi systems.

In the classical BCS theory [25] of macroscopic
superconductivity, it was usually assumed that the non-
pairing parts of the interaction merely create a normal
Fermi liquid dressing of original particles into quasi-
particles. Large-scale nuclear shell-model calculations
with an effective residual interaction [8, 26] show that
this picture is incomplete, at least for small systems. In
the model with pairing as the only residual interaction,
one has a regular picture of families of states labeled by
seniority. The spectrum for the total residual interaction
smears these families and, therefore, removes large dis-
continuities of the level density. However, the pairing
correlations, measured, for example, by the expectation

value 〈 〉  for the individual eigenstates, show a
significant excess (with respect to the normal Fermi
gas) for the low-lying states. This excess rapidly
decreases with excitation energy, revealing a similarity
to the phase transition. It is important for us that, even
with the pairing matrix elements removed from the
residual interaction, one still sees a similar excess of the
same quantity in the lowest states, although of a
reduced magnitude. This means that other parts of the
interaction still generate pairing correlations, suppos-
edly through higher orders of perturbation theory. The
whole picture scales with the angular momentum of the

P00
†

P00
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states under consideration [23] in average agreement
with the semiclassical consideration in [27].

To test the role of the pairing phenomena for the
ground-state spin, we can compare the distribution fJ
for the full random ensemble and for the ensemble with
no pairing (V0 = 0). As seen from the example of Fig. 4
for six particles on j = 11/2, the results are virtually
unchanged after removal of the L = 0 component. On
the other hand, the addition of regular attractive pair-
ing, V0 = –1, increases fJ = 0 noticeably.

Another idea [15] was related to time-reversal
invariance of the Hamiltonian which might support J =
0 for the role of the ground-state spin. As shown in [15],
this is not the case, and the resulting picture does not
change with the addition of a time-reversal-violating
(but still Hermitian and rotationally invariant) Hamilto-
nian. This result could be expected since all imaginary
effects are averaged out to zero by the construction of
the Gaussian random ensemble.

6. BOSON APPROXIMATION

One of the approaches to the theory of collective
motion in Fermi systems is related to the approxima-
tion of fermion pairs by bosons [28, 29]. This approxi-
mation served as a foundation of the interacting-boson
models [30]. It is formally based on the simple alge-
braic properties of pair operators (2). Their commuta-
tion relations can be written as

(11)

The second term on the right-hand side of Eq. (11) is
responsible for the nonbosonic kinematics of compos-
ite fermion pairs. With angular-momentum recoupling,
this term can be presented as a sum of the multipole
operators }Kκ, Eq. (4). Then it is easy to see that the
individual terms in the sum over K are of the order of
N/Ω. Thus, the average value of Eq. (11) (monopole
part, K = 0) gives a result similar to that for the qua-
sispin algebra,

(12)

The nonbosonic correction is small for a small fermion
number, as well as near the completed shell (due to the
particle–hole symmetry, one only needs to interchange
roles of the pair creation and pair annihilation opera-
tors). For the intermediate population of the shell, the
correction is not small. However, the particle-number
operator can then be approximated on average by a con-
stant so that a simple renormalization leads again to
Bose operators. The presence of many contributions
with various values of K should not change the situation
crucially in a system with random interactions since the
multipoles K = 0 and K = 1 correspond to the constants
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of motion (see Section 2), while higher multipoles pre-
sumably will be averaged by random dynamics.

In the boson approximation for fermion pair opera-
tors, PLΛ  bLΛ , the Hamiltonian becomes the sum of
random energies of independent bosons,

(13)

Here, the energies ωL are proportional to the original
interaction parameters VL . An example of the ground-

state spin distribution  in the uniform ensemble for
five bosons in space with allowed even values of L from
0 to 10 is given in Fig. 5, along with the corresponding
statistical distribution (slightly different from that for
fermions). We still see the pronounced effect of
enhancement for J = 0, although it is smaller compared
to typical results for fermions or for interacting bosons,
but not for J = Jmax.

Now, we can argue that the bosonic approximation
is not sufficient for explaining the effect of the enhance-
ment. The source of the enhancement for spin zero in
the bosonic system can be understood in the following
way. In any realization of the random ensemble, one of
the frequencies ωL , let us say for L = L0 , takes the low-
est value. The ground state of the Hamiltonian (12) cor-
responds to the condensation of all N bosons into the
mode L = L0. In the uniform ensemble, each value of L0
can appear with the same probability 1/k, where k is the
number of allowed modes L. However, the results for
the total spin J are different in the cases L0 = 0 and
L0 ≠ 0. In the first case, the ground state necessarily has
the total spin J = 0. In the second case, the bosons with
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Fig. 4. The ground-state spin distribution fJ in the system of
six fermions with j = 11/2; random ensemble (solid line),
random ensemble with no pairing, V0 = 0 (short-dashed
line), random ensemble with regular attractive pairing, V0 =
–1 (dotted line), the statistical distribution of possible total
spins J (long-dashed line).
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L = L0 still can couple to any total J allowed by the
selection rules, so that the probability for any specific
value of total spin is ~1/k2 with all those states being
degenerate in this approximation. This gives rise to the
enhancement of J0 = 0 and no enhancement for J0 =

Jmax. The fraction  ~ 1/k is much smaller than that
observed for a fermionic system. Moreover, it
decreases as j increases because of the increase in the
number of possible L values that contradicts the obser-
vations. Finally, the numerical experiment of Fig. 4
with pairing eliminated from the ensemble (V0 = 0)
shows no suppression of the fraction f0, whereas in the
bosonic case this would correspond to ω0 = 0, when the
condensation to the L = 0 mode would be rather
improbable. Indeed, the value ω0 = 0 would be the low-
est frequency only for the realizations with all ωL ≠ 0 >
0, which happens with a small probability ~2–(k – 1).

We can conclude that the deviations from the pure
bosonic approximation associated with Fermi statistics
are necessary for the manifestation of the enhancement
effects. The kinematic and dynamic effects of pair
interactions lift multiple degeneracies present in the
bosonic picture and give preference to the limiting val-
ues of the total spin.

7. GEOMETRIC CHAOTICITY

The system with random interactions is expected to
have eigenfunctions that are complicated “chaotic”
superpositions of simple configurations of independent
particles [8]. Two exact conservation laws, of the total
particle number N and total spin J, divide the whole
Hilbert space into classes. As mentioned in the Intro-
duction, even the construction of correct linear combi-

f 0
b

Fig. 5. The ground-state spin distribution  in the system

of five independent bosons in the spin states L = 0, 2, …, 10
(solid line) and the statistical distribution of total spins
(dashed line).
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 nations with a given value of J, for example, with the

aid of the projection algorithm, leads to states of a high
degree of complexity. This “geometric” chaoticity
emerges as a consequence of the presence of multiple
schemes of vector coupling of particle spins to the total
spin J. Typically, one has to deal with nearly random
angular-momentum coupling. High-j recoupling coeffi-
cients look almost as elements of random matrices, and
the chains of the fractional parentage coefficients are
close to random walks. The shell-model calculations
invariably show that the angular-momentum projection
is sufficient for obtaining the basis states |k〉  as combi-
nations of the m-scheme Slater determinants (belong-
ing to the same partition) with practically identical
energy dispersion, or spreading width [8, 31].

The idea of geometric chaoticity can be used for
developing approximations in the many-body problem
that are not connected with the weakness of interac-
tions. Instead, the contributions of the perturbation
series can be classified in the degree of chaoticity
related to angular-momentum coupling. This idea was
utilized for the problems of fermions [32] or giant res-
onances [33] coupled to the soft-phonon field. The
resulting technique is similar to the one used for disor-
dered solids [34], and the most important graphs are
rainbow ones which do not carry geometric chaoticity.
It is known that the same graphs are the main ones in
the diagrams for random matrix ensembles.

The notion of angular-momentum coupling as a ran-
dom walk was used long ago in evaluation of the Fermi
gas level density for a given value of J [22]. Roughly
speaking, the result is equivalent to the thermal equilib-
rium of a rotating system with an average statistical
moment of inertia. The analysis of chaotic eigenfunc-
tions of the realistic shell model for nuclei [8] and
atoms [10] shows that, in agreement with the concept of
Fermi liquid, the mean-field orbitals are occupied by
quasiparticles according to the Fermi–Dirac distribu-
tion. Combining these ideas, one could imagine that the
average over the ensemble of random interactions
should lead to the ensemble of ground states close to
the thermal equilibrium of the rotating nucleus with the
angular velocity corresponding to the angular momen-
tum of the energetically favored configuration.

In the single-j model, the effective moment of iner-
tia can be estimated directly from the rotational term,
K  = 1, of the Hamiltonian written in the ph form,
Eq. (3). Using the explicit value of the corresponding 6j
symbol in (6) and the angular-momentum operator (8),
we obtain

(14)

The structure of this expression can be understood in
simple physical terms. The contribution of the pair
interaction for the pair spin L to the moment of inertia
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changes its sign at L2 = 2j2, which corresponds to the
absence of alignment of the partners (their spins are
perpendicular to each other). At low L, pairs are anti-
aligned, L2 < 2j2. If these pair states are attractive, VL <
0, the contribution to the moment of inertia is positive,
preferring a normal rotational spectrum with angular
momentum increasing with excitation energy. Contrary
to that, at high L, the pairs are aligned, L2 > 2j2, so that
the attraction in such pairs leads to a negative contribu-
tion to the moment of inertia that favors the bands with
an inverted spin sequence. The actual result is deter-
mined by the competition of all parts of the interaction.
Being of a purely geometrical nature, the result (14)
does not depend on the particle number, which enters
only via restrictions on the allowed values of J. For
small J, the rotational energy (14) is small as compared
to the total energy found, for example, in the bosonic
approximation. However, it plays an essential role in
lifting the bosonic degeneracies. Another term in the ph
Hamiltonian which corresponds to a constant of
motion, namely, the particle number N, is that for K = 0,

(15)

However, being independent of the particle configura-
tion, this term gives the energy reference point rather
than the angular momentum splitting.

In what follows, we will have to establish an analog
of the atomic physics Hund rule which decides on the
ferromagnetic, J0 = Jmax, or antiferromagnetic, J0 = 0,
character of the ground state. Even from this analogy,
we can anticipate that these two possibilities, the lowest
and the highest values of the ground-state spin, can be
special and energetically favorable. For example, in the
system of N identical interacting spins, the simplest
Hamiltonian would be

(16)

The total ground-state spin S0 will be zero for a positive
constant, and Smax = Ns for a negative constant. If the
constant has a random sign, the probabilities of the two
extremes are 1/2. A similar situation takes place in any
model with a rotational spectrum and an effective
moment of inertia determined by a random interaction.

8. STATISTICAL APPROACH

Now, we can construct a simple statistical ensemble
fulfilling the requirements of Fermi statistics and taking
into account the constraints imposed by the conserva-
tion laws. We expect that the expectation values of
physical quantities over the equilibrium state of the
ensemble will be in approximate agreement with the
average results for the ground state of the system gov-
erned by random interactions.

H0
N

2

2Ω2
---------- 2L 1+( )VL.

L

∑=

Hsp = const sa

a b≠
∑× sb⋅  = const S2

Ns s 1+( )–[ ]× .
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In the presence of random interactions, the only
direction which is singled out in the system is that of
the total angular momentum. Therefore, the particle
orbitals in the equivalent statistical ensemble are
labeled by the projection quantum numbers m and are
characterized by the mean occupancies nm, so that the
linear constraints for the particle number N and for the
total angular momentum M are

(17)

In the standard way, we are looking for the entropy
maximum for the Fermi gas on a single-j level with the
constraints (17). Introducing the Lagrange multipliers,
µ of chemical potential and γ of effective angular fre-
quency, we come to the Fermi–Dirac distribution

(18)

This formulation is analogous to the cranking model
description [3, 35] of the random coupling of individual
spins with the cranking axis along the only available
symmetry axis of the total spin [22, 36]. In contrast to
the cranking model for collective rotation [3], where
the rotational angular momentum is directed perpen-
dicularly to the symmetry axis, here the total projection
is equivalent to the K quantum number of the intrinsic
spin of the nucleus. At the end, we orient our system in
such a way that M is identified with the total spin J. The
presence of the constraints creates an effective
body-fixed frame and splits single-particle energies as
em = γm.

Figure 6 shows typical solutions for the Lagrange
multipliers µ(N, M) and γ(N, M). Time-reversal argu-
ments require that µ and γ be even and odd functions of
M, respectively. Therefore, γ(N, 0) = 0, and one can use
the power-series expansion of Eq. (18) in the region
around M = 0. As seen from Fig. 6, the dependence
γ(M) is close to linear, except for the very edge of max-

N nm, M
m

∑ mnm.
m

∑= =

nm e
γm µ–

1+[ ]
1–
.=
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Fig. 6. γ(N = 10, M) as a function of M and µ(N, M = 10) as
a function of N for j = 27/2. The approximation with the
Taylor expansion around γ = 0 is plotted with the dashed
line; for µ this approximation is indistinguishable from the
exact result.
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imum |M|. In the absence of cranking, M = 0, the distri-
bution of occupancies is uniform,

(19)

Taking into account the change of the chemical poten-
tial in the second order, we find the occupation numbers
for the perturbational cranking:

(20)

Here, we have

(21)

In the same approximation, the relation (17)
between M and γ reads

(22)

where the maximum allowed spin Jmax is given by
Eq. (10). All corrections to the uniform occupation dis-
tribution in Eq. (20) are proportional to the intensity

(1 – ) of fluctuations since the resulting total spin
comes from the random coupling. The ratio M/γ is the
statistical moment of inertia which determines the level
density for given spin of the Fermi gas [22, 3]. It
depends on the particle number and properties of sin-
gle-particle space but not on the interaction parameters.

9. EQUILIBRIUM ENERGY

The expectation value of the Hamiltonian (1) in our
statistical ensemble is given by Wick’s theorem,

(23)

Using the expansion (20) for the occupation numbers
nm , we come to the geometric sums of the Clebsch–
Gordan coefficients squared with linear or bilinear
expressions in m and m'. These sums can be easily cal-
culated as the traces in space of states |LΛ〉  with fixed
L. The remaining cranking parameter γ can now be
expressed in terms of the total spin M  J. The final
result up to the terms of the order J 4 is

(24)
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∑
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∑=

H〈 〉 N J, h0 h2J
2

h4J
4
,+ +=
where the coefficients hp are sums of the contributions
of all components of the interaction,

(25)

and the geometric coefficients are

(26)

(27)

and

(28)

We note that the coefficient h0(L), which in fact does
not depend on L, and h2(L) coincide, up to a factor 2
coming from the correct inclusion of the exchange
interactions, with the scalar part of the Hamiltonian H0,
Eq. (15), and the rotational part Hrot , Eq. (14), respec-
tively. We also see that the coefficients in high order
rotational corrections are quite small.

The ground-state spin J0 in a given realization of the
ensemble of the interaction constants VL is determined
mostly by the sign of the rotational term h2 with a pos-
sible correction from h4. For a negative value of h2, the
energy minimum corresponds to the ground state with
nonzero spin. If h2 ≥ 0 and h4 > 0, the ground state has
spin J0 = 0. If, for a positive h2, the fourth-order correc-
tion is negative, the zero spin still defines the local
energy minimum. This minimum will be absolute if at

the opposite edge, J  Jmax , the sum h2 + h4  is
still positive. Thus, in this approximation, the probabil-
ity f0 of having the ground-state spin equal to zero is
typically close to 1/2 due to the smallness of h4. More
precisely,

(29)

where the probability distribution 3(h2, h4) is deter-
mined by the ensemble of VL according to Eqs. (27) and
(28), while the region S is the part of the positive h2

half-plane where h4 > –(h2/ ). For example, for a
Gaussian ensemble of the parameters VL with zero
mean and variances σL , the linear combinations hp are
again Gaussian variables, and Eq. (29) gives a result
close to 1/2,

(30)
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where the elements of the variance matrix in the (h2, h4)
plane are

(31)

In Fig. 7a, the dashed line shows the smooth behavior
of the probability f0 as a function of j for N = 4 particles.
The solid line gives the results of the exact numerical
diagonalization. Of course, the simple statistical theory
cannot explain the observed staggering effects.

It would be premature to conclude from (24) that the
remaining 50% of cases should reveal the maximum
ground-state spin. Indeed, the expansion used in the
derivation is not valid for large angular momenta. How-
ever, the wave functions for the largest possible spins
are unique and can be constructed explicitly, irrespec-
tive of the interaction parameters. Their energies can be
compared to the energies of lower spins. In this way, we
improve slightly the results obtained above for spin J0
= 0 (this is taken into account in plotting Fig. 7a) and
extract the upper boundary for the probability of the
maximum ground-state spin Jmax (Fig. 7b). The consis-
tency of the statistical approach is confirmed by the
analysis of actual sets of random parameters VL which
lead to J0 = Jmax. The average values VL of this set found
in the numerical data coincide (Fig. 8) with those found
in the statistical model for h2 < 0.

Thus, the statistical approach provides a natural
qualitative explanation and reasonable quantitative
estimate for the dominance of ground spin states J0 = 0
and J0 = Jmax. Additional small corrections can be intro-
duced [16] by taking into account the difference of the
widths of the energy distribution 〈H2〉  for different val-
ues of J. The remaining details of the picture, especially
the nonmonotonic changes, require a more subtle
approach.

10. EIGENFUNCTIONS OF THE RANDOM 
HAMILTONIAN

If the apparent ordered signatures of the ground
state, be it ferromagnetic or antiferromagnetic, are due
to the random spin coupling, we could expect that the
structure of the corresponding wave functions is close
to that characteristic of chaotic dynamics [24]. For the
zero ground-state spin, the appropriate reference func-
tion is that of the fully paired state |0, p〉  of seniority
zero which would be the ground state for the pure pair-
ing attractive interaction in our degenerate model (a
particular choice of the parameters V0 = –1, VL ≠ 0 = 0).
For any set of parameters from the random interaction

X h2 L( )[ ] 2σL
2
, Y

L

∑ h4 L( )[ ] 2σL
2
,

L

∑= =

Z h2 L( )h4 L( )σL
2
.

L

∑=
PHYSICS OF ATOMIC NUCLEI      Vol. 64      No. 3      2001
ensemble, which leads to the zero ground-state spin, we
calculate the overlap

(32)

The histogram of the distribution 3(x) is presented in
Fig. 9b for the case of six particles on the j = 11/2 level.
Clearly, the overlap is very low.

In the extreme chaotic limit, the eigenfunctions are
expected to be nearly random superpositions of the
basis states |k〉  with the uncorrelated amplitudes Ck con-
strained only by the orthonormality requirements. The
distribution function of the (real) components of a
given eigenfunction is the same as that of a multidimen-
sional vector uniformly spread over a unit sphere,

3({Ck}) ∝  δ(  – 1). For the dimension d, this
leads to the distribution function of any given compo-

x J 0 g.s.,= 0 p,〈 | 〉 2
.=

Ck
2

k∑
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Fig. 7. (a) The fraction f0 of ground-state spins J0 = 0 as a
function of (half integer) j: (solid line) numerical results and
(dashed line) statistical theory; (b) the same for the maxi-
mum ground-state spin Jmax; here, the dashed line shows
the upper boundary in the statistical theory.
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Fig. 8. The average values of the random parameters VL as
a function of L for the case where the ground-state spin
J0 = Jmax with the statistical errors (solid line); the results of
the statistical model for h2 < 0 are plotted with the dashed
line.
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nent C (a projection of the eigenvector onto a specified
direction in Hilbert space)

(33)

In the limit of d @ 1, Eq. (33) gives the Gaussian distri-
bution with 〈C2〉  = 1/d, while the weights x = C2 are dis-
tributed according to the Porter–Thomas law. Compli-
cated nuclear shell-model wave functions obtained in
realistic calculations with no random parameters are
close to the chaotic limit. The typical d dependence can
be unfolded [37] into a regular scheme of approxima-
tions, the so-called N scaling, which allows one to clas-
sify various processes going through the compound
nucleus stage. The statistical enhancement of weak
interaction effects observed via parity nonconservation
in neutron resonances [38] is one of the most convinc-
ing illustration of statistical regularities seen on the
level of individual wave functions.

In our examples, the dimensions d are typically not
very large, but the statistical features are brought in by
random interactions. We can look at the distribution of
overlaps (32) as the representative of the distribution of
components of eigenvectors along the pairing basis
vector |0, p〉 . Six particles on a j = 11/2 level give rise to

3 C( ) = 
Γ d/2( )

πΓ d 1–( )/2[ ]
-------------------------------------- 1 C

2
–( )

d 3–( )/2
Θ 1 C

2
–( ).

Fig. 9. The distribution of overlaps (solid histograms), Eq. (32),
of ground states with J0 = 0 with fully paired (seniority zero)
state (a) for the ensemble with random VL ≠ 0 and regular
pairing, VL = 0 = –1, and (b) for the ensemble with all VL ran-
dom. The dashed histograms show the predictions for cha-
otic wave functions of dimension d = (a) 2 and (b) 3.
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d = 3 states of spin J = 0. In the chaotic limit, this would
lead to 3(C) = const, and, therefore,

(34)

(this distribution appears in the problem of pion multi-
plicity from a disordered chiral condensate [39, 40]).
This prediction (the dashed histogram in Fig. 9b) is in
agreement with the numerical results. Another situation
is shown in Fig. 9a, where the data, the solid histogram,
are taken for the ensemble which contains regular
attractive pairing, V0 = –1, plus uniformly random
interactions in all channels with L > 0. The presence of
pairing generates a significant probability for the paired
ground state, a peak at x = 1. However, it is possible to
show that there exists an “antipaired” state with J = 0
but with a vanishingly small probability of being a
ground state, so that the space of the candidates for the
ground-state position is effectively two-dimensional.
For d = 2,

(35)

which agrees qualitatively with the data, Fig. 9a.

11. CONCLUSION

We have taken the first steps towards an understand-
ing of the role of random interactions in the structure of
a small fermion system. Although only the simplest
model with degenerate single-particle orbitals was con-
sidered, we hope that the results correctly emphasize
the important functions of geometric chaoticity which
inevitably appears in a many-fermion system as a con-
sequence of rotational invariance. In fact, the system
behaves as a Fermi liquid of quasiparticles with ran-
domly coupled individual spins. The resulting ordering
of total spins possible in the system is controlled by the
interaction. If all components of interaction are ran-
dom, the lowest and the maximum possible total spins
are preferred for the ground state. In practice, this
should happen if the two-body matrix elements of
residual forces are incoherent. Then, the interaction
induces mainly collision-like scattering processes
which equilibrate the system, keeping, in general, the
geometric (ferromagnetic or antiferromagnetic) spin
ordering. We see here an example of a clear correlation
between the classes of states with different exact quan-
tum numbers but governed by the same Hamiltonian. In
spite of the apparently ordered features of the energy
spectra, the corresponding wave functions within a
given class are close to those expected for chaotic
dynamics (in the extreme limit, to the predictions of the
GOE). In this sense, we would expect the even–even
nuclei to have the ground-state spin J = 0 without
strong pairing forces. The coherent components of the
interaction should be sufficiently strong to introduce
the dynamical energetic structure.

3d 3= x( ) 1

2 x
----------, 0 x 1≤<=

3d 2= x( ) 1

π x 1 x–( )
---------------------------, 0 x 1,≤<=
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The numerical data contain more information than
we explained. We did not discuss the statistical proba-
bilities for sequences of ordered states as rotational or
vibrational bands which seem to appear with an
enhanced probability, in particular, in the randomly
interacting boson model [16], perhaps because of a
sharp dependence of the IBM eigenvectors on the
parameters. Many specific features of the numerical
results, such as, for example, odd–even staggering of
the distribution function fJ , are related to more subtle
physical aspects and cannot be understood without
detailed studies of the vector coupling schemes in the
given spaces along with the dynamical equations of
motion. In general, the physics of the relationship
between geometric chaoticity and pure dynamic effects
in finite many-body systems is a promising subject for
future studies.

The results of this paper were partly presented in
[24] and [41].

ACKNOWLEDGMENTS

The question of the bosonic approximation was
studied together with P. Cejnar during his visit to the
NSCL. The authors are grateful to G.F. Bertsch,
R.A. Broglia, B.A. Brown, V. Cerovski, V.V. Flam-
baum, M. Horoi, F.M. Izrailev, D. Kusnezov, and
H.A. Weidenmüller for constructive discussions. 

The support from the US National Science Founda-
tion, grant nos. 96-05207 and 00-70911, is highly
appreciated.

REFERENCES
1. L. D. Landau, Zh. Éksp. Teor. Fiz. 30, 1058 (1956) [Sov.

Phys. JETP 3, 920 (1956)].
2. A. B. Migdal, Theory of Finite Fermi Systems and Appli-

cations to Atomic Nuclei (Interscience, New York, 1967;
Nauka, Moscow, 1983).

3. A. Bohr and B. M. Mottelson, Nuclear Structure (Ben-
jamin, New York, 1969, 1974; Mir, Moscow, 1981),
Vols. 1, 2.

4. M. L. Mehta, Random Matrices (Academic, Boston,
1991).

5. T. A. Brody, J. Flores, J. B. French, et al., Rev. Mod.
Phys. 53, 385 (1981).

6. T. Guhr, A. Müller-Groeling, and H. A. Weidenmüller,
Phys. Rep. 299, 189 (1998).

7. V. Zelevinsky, M. Horoi, and B. A. Brown, Phys. Lett. B
350, 141 (1995).

8. V. Zelevinsky, B. A. Brown, N. Frazier, and M. Horoi,
Phys. Rep. 276, 85 (1996).

9. M. Horoi, B. A. Brown, and V. Zelevinsky, Phys. Rev.
Lett. 74, 5194 (1995).

10. V. V. Flambaum and F. M. Izrailev, Phys. Rev. E 53, 5729
(1996).
PHYSICS OF ATOMIC NUCLEI      Vol. 64      No. 3      2001
11. V. G. Zelevinsky, Nucl. Phys. A 555, 109 (1993).
12. T. Døssing et al., Phys. Rep. 268, 1 (1996).
13. C. W. Johnson, G. F. Bertsch, and D. J. Dean, Phys. Rev.

Lett. 80, 2749 (1998).
14. C. W. Johnson, G. F. Bertsch, D. J. Dean, and I. Talmi,

Phys. Rev. C 61, 014311 (2000).
15. R. Bijker, A. Frank, and S. Pittel, Phys. Rev. C 60,

021302 (1999).
16. R. Bijker and A. Frank, Phys. Rev. Lett. 84, 420 (2000);

nucl-th/0004002.
17. V. Zelevinsky, Annu. Rev. Nucl. Part. Sci. 46, 237

(1996).
18. S. T. Belyaev, Zh. Éksp. Teor. Fiz. 39, 1387 (1961) [Sov.

Phys. JETP 12, 968 (1961)].
19. I. Talmi, Simple Models of Complex Nuclei (Harwood,

New York, 1993).
20. G. Racah, Phys. Rev. 78, 622 (1950).
21. B. A. Brown et al., OXBASH code, MSUCL-524

(1988).
22. T. Ericson, Adv. Phys. 9, 425 (1960).
23. M. Horoi and V. Zelevinsky, Bull. Am. Phys. Soc. 44 (1),

397 (1999); M. Horoi, J. Kaiser, and V. Zelevinsky, Bull.
Am. Phys. Soc. 45 (1), 78 (2000).

24. M. Horoi, B. A. Brown, D. Mulhall, and V. Zelevinsky,
Bull. Am. Phys. Soc. 44 (5), 45 (1999).

25. J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev.
108, 1175 (1957).

26. V. Zelevinsky, B. A. Brown, and M. Horoi, Bull. Am.
Phys. Soc. 41, 860 (1996).

27. Yu. T. Grin’ and A. I. Larkin, Yad. Fiz. 2, 40 (1966) [Sov.
J. Nucl. Phys. 2, 27 (1966)].

28. S. T. Belyaev and V. G. Zelevinsky, Zh. Éksp. Teor. Fiz.
42, 582 (1962) [Sov. Phys. JETP 15, 1104 (1962)]; Nucl.
Phys. 39, 582 (1962).

29. A. Klein and E. R. Marshalek, Rev. Mod. Phys. 63, 375
(1991).

30. A. Arima and F. Iachello, The Interacting Boson Model
(Cambridge Univ. Press, Cambridge, 1987).

31. N. Frazier, B. A. Brown, and V. Zelevinsky, Phys. Rev. C
54, 1665 (1996).

32. S. T. Belyaev and V. G. Zelevinsky, Yad. Fiz. 2, 615
(1965) [Sov. J. Nucl. Phys. 2, 442 (1966)].

33. V. V. Samoilov and M. G. Urin, Nucl. Phys. A 567, 237
(1994).

34. S. F. Edwards, Philos. Mag. 3, 1020 (1958).
35. R. K. Bhaduri and S. Das Gupta, Nucl. Phys. A 212, 18

(1973).
36. A. L. Goodman, Nucl. Phys. A 592, 151 (1995).
37. V. V. Flambaum and O. P. Sushkov, Nucl. Phys. A 412,

13 (1984).
38. V. V. Flambaum, Phys. Scr. T 46, 198 (1993).
39. A. A. Anselm, Phys. Lett. B 217, 169 (1989).
40. A. Volya, S. Pratt, and V. Zelevinsky, Nucl. Phys. A 671,

617 (2000).
41. D. Mulhall, A. Volya, and V. Zelevinsky, Phys. Rev. Lett.

85, 4016 (2000).



  

Physics of Atomic Nuclei, Vol. 64, No. 3, 2001, pp. 536–539. Translated from Yadernaya Fizika, Vol. 64, No. 3, 2001, pp. 590–593.
Original Russian Text Copyright © 2001 by Okun.

                                     

90th ANNIVERSARY OF A.B. MIGDAL’S BIRTHDAY
ELEMENTARY PARTICLES AND FIELDS

        
Relation between Energy and Mass in Bohr’s Essay 
on His Debate with Einstein

L. B. Okun*
Institute of Theoretical and Experimental Physics, Bol’shaya Cheremushkinskaya ul. 25, Moscow, 117259 Russia

Received July 12, 2000

Abstract—The famous debate between Einstein and Bohr on the (in)consistency of quantum mechanics was
described in detail by Bohr in his essay of 1949. The present article comments not on the main subject of the
debate but only on the terminology that is relevant to the notions of the theory of relativity and which was used
by the participants. In particular, their statement on the equivalence of mass and energy should not be taken
literally. In fact, the rest energy is meant here. The authority of the two great physicists should not be misused
to preserve the confusing terminology. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The debate between Einstein and Bohr on quantum
mechanics achieved a culmination point at the Sixth
Solvay Congress in October 1930. In this debate, the
former tried to prove the intrinsic inconsistency of
quantum mechanics, while the latter aimed at showing
that the gedanken experiments proposed by Einstein do
not lead to such contradictions. This controversy was
skillfully described in Bohr’s article [1] published in
1949 and dedicated to Einstein’s 70th birthday.

Bohr’s article stimulated a wealth of contradictory
responses from physicists, historians of physics, and
philosophers. These include (in chronological order)
M. Born, V. Fock, K. Popper, Y. Aharonov, D. Bohm, L.
Rosenfeld, J. Holton, M. Klein, K. von Weizsäcker, M.
Jammer, and A. Pais. A separate chapter of Jammer’s
monograph [2] is devoted to these responses. Articles
on this theme have appeared in succeeding years as
well (see, for example, [3, 4]). The latest of these was
published in February 2000.

Various aspects of the debate between Bohr and
Einstein and further development of the ideas stated in
it are described in the miscellanea Quantum Theory
and Measurement (over 800 pages) [5], which contains
original articles and comments by the main participants
and other eminent physicists.

2. EINSTEIN’S GEDANKEN EXPERIMENT

In the gedanken experiment proposed by Einstein in
October 1930, there was a box filled with photons and
hung by a spring balance, so that its vertical translation
could be measured with a special scale. Thus, varia-
tions in the box mass could be measured by weighing.

In a lateral wall of the box, there was a small hole
closed by a shutter that was controlled by a clock

* e-mail: okun@heron.itep.ru
1063-7788/01/6403- $21.00 © 20536
placed within the box. The clock opened the hole for a
very short time interval, so that the instant at which a
single photon escaped from the box could be deter-
mined to a precision as high as was desired.

On the other hand—as Bohr wrote [1]—the general
energy–mass relation expressed by Einstein’s famous
formula

made it possible to measure the photon energy, to any
desired precision, by weighing the whole box prior to
and after this event. According to Einstein’s idea, this
resulted in a contradiction with the known uncertainty
relation

where ∆E is the uncertainty in the photon energy, ∆T is
the uncertainty in the instant of its escape, and h is the
Planck constant. Since the aforesaid suggested that
both ∆E and ∆T could be arbitrarily small, their product
could also be arbitrarily small in the gedanken experi-
ment being discussed.

3. FAMOUS FORMULA E = mc2

Prior to considering the way in which Bohr refuted
Einstein’s arguments, it is worth emphasizing that, in
referring to Einstein’s famous formula E = mc2, Bohr
did not specify the definitions of energy and mass. In
[1], Bohr wrote that the discovery of induced radioac-
tivity provided the most direct test of Einstein’s funda-
mental law of mass–energy equivalence.

From these statements of Bohr, a reader that is
insufficiently conversant with these matters could
deduce that a photon with energy E has the mass m =
E/c2, and so does any particle or body.

This false interpretation of Einstein’s famous for-
mula is widespread in the popular-science literature

E mc2=

∆E∆T h,>
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despite attempts at stamping it out (see, for example,
[6–9]). Within the theory of relativity, it inevitably
entails the completely superfluous notion of the rest
mass and the use of nonrelativistic notions like the inertia
mass and the gravitational mass (which were mentioned
by Bohr in connection with the formula E = mc2).

The phrase “equivalence of mass and energy” is
repeated in the monograph [2] and in the articles [3, 4],
where it is stated that energy has a weight. In [4], m is
defined either as a “mass” or as a “rest mass.”

4. E OR E0? 1905–1921

Possibly, there would have been no reason for that
inexact interpretation if Bohr had explained in more
detail that E in Einstein’s formula was the energy inher-
ent in a body of mass m at rest, or, in other words, the
rest energy of the body. It was just this meaning that
was assigned to it by Einstein when he was deducing
his formula in 1905 [10]. This follows from the fact
that, in this article, he considered a body at rest that had
emitted two oppositely directed light waves carrying
away energy but not momentum, so that the body
remained at rest after the emission event.

Einstein’s discovery was as follows: if a body emits
energy L in the form of radiation, then the mass of the
body decreases by L/V2. Obviously, it is of no impor-
tance in this case that the energy emitted by the body is
converted directly into radiant energy. Owing to this,
we arrive at the more general conclusion that the mass
of a body is a measure of its energy content: if the
energy changes by L, the mass changes accordingly by
L/(9 ×1020), the energy and the mass being measured in
ergs and in grams, respectively.

Obviously, V is the speed of light. It is interesting to
note that there was no special symbol for mass in [10].
In present-day notation, L/V2 is the right-hand side of
the equation

where E0 is the rest energy. This notation dates back to
Einstein’s monograph The Meaning of Relativity [11],
where Eq. (44) has the form

and where E0 is referred to as the energy of a body at rest.
It should be emphasized that Einstein was not consis-

tent in the period between the publication of the article
[10] and the publication of the monograph [11]; occa-
sionally, he interpreted E in his famous formula as the
total energy of a body and wrote on mass–energy equiv-
alence. It is possible that this inconsistency helped him to
predict the effect of the gravitational red shift (1907), the
deviation of a light ray by the Sun (1911),1) and even-

1)The angle of deviation as calculated in 1911 was one-half as large
as the correct value predicted by Einstein on the basis of the gen-
eral theory of relativity.

∆m ∆E0/c2,=

E0 mc2=
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tually to create the general theory of relativity (1916).
However, this inconsistency gave rise to the termino-
logical confusion that has existed to date.

5. E OR E0? 1921–1955

An interchange of the correct and incorrect formu-
lations of the mass–energy relation in Einstein’s arti-
cles published in the 1920s–1940s contributed greatly
to this confusion. This can easily be seen in the second
of the four volumes of his collected works.2) He men-
tions the equivalence of energy and inertial mass in his
report [12]. The title of the lecture [13] is “Elementary
Derivation of the Equivalence of Mass and Energy.” At
the same time, it is the rest energy, and not energy in
general, that is mentioned in the main body of this lec-
ture, where he writes that, here, it is natural to assign
the rest energy m (mc2 in standard units) to a particle at
rest and that the supposed mass–energy equivalence
exists as well; a further statement is that the relation
E0 = m proves the equivalence of the inertia mass and
the rest energy.

In the minor note [14], however, which has the same
title “Elementary Derivation of the Equivalence of
Mass and Energy,” the term rest energy is absent, and
the last paragraph says that this relation expresses the
law of energy–mass equivalence. The increase of E in
energy is associated with the increase of E/c2 in mass.
Since the definition of energy usually admits arbitrari-
ness in an additive constant, one can choose this con-
stant in such a way that E = Mc2.

The first phrase of the next article, “E = mc2: An
Urgent Problem of Our Time” [15], comments on the
principle of mass–energy equivalence. Two pages later,
we can find the statement that the equivalence of mass
and energy is usually expressed (although this is not
quite correct) by the formula E = mc2, where c is the
speed of light equal to about 186000 miles per second,
E is the energy content of a body at rest, and m is its
mass.

In the article [16], which was written for an encyclo-
pedia, Einstein omits the term “rest energy” once again.
Summarizing the basic results of the special theory of
relativity, he states that this demonstrates the equiva-
lence of mass and energy.

These “terminological oscillations” are a real psy-
chological puzzle. It seems impossible that Einstein
was annoyed to pinpoint each time that he meant the
rest energy E0. He rather tried to proceed on equal terms
with the reader, who had got used to “the famous for-
mula E = mc2” from his school days. Possibly, Einstein
tried to emphasize the philosophical aspect of the prob-
lem: it is important that mass is related to energy, but it
is not so important to which energy specifically. Only
one thing is doubtless: from 1921 to the end of his life
(1955), Einstein had spoken and written either explic-

2)Translated and published in Russian.
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itly or implicitly about the equivalence of the mass of a
body and its rest energy.

6. BOHR’S COUNTERARGUMENT
Bohr did not sleep all night long, thinking over Ein-

stein’s arguments contra the relation ∆T∆E > h (see, for
example, [2]). In the morning, he disproved these argu-
ments using Einstein’s theory of general relativity.
Bohr described it himself as follows [1]. In order to dis-
cuss the problem, it appeared to be necessary to con-
sider the consequences of identifying the inertia mass
with the gravitational mass that are caused by the use of
the relation E = mc2. It was especially necessary to take
into account the relation between the rate of the clock
and its position in the gravitational field. This relation,
which is well known from the red shift of the lines of
the Sun spectrum, follows from Einstein’s principle of
equivalence of effects of gravity and phenomena
observed in accelerated frames of reference.

Suppose that measurement of the box weight by a
spring balance to a precision ∆m requires estimating its
vertical translation to a precision ∆q. According to the
relation ∆q∆p ≈ h, this generates an uncertainty ∆p in
the box momentum. This uncertainty in turn must be
smaller than the total momentum that body of mass ∆m
can acquire over the weighing period T owing to the
effect of the gravitational field; that is,

where g is the acceleration due to gravity.
The position of the clock that is fixed rigidly within

the box and which controls the shutter must also have
the uncertainty ∆q. But according to the general theory
of relativity, a vertical translation of the clock changes
its rate in such a way that

From the last two relations, it follows that

By using the “famous formula” in the form ∆E = ∆mc2,
Bohr obtained the required relation

Jammer writes that, after the Sixth Solvay Congress,
Einstein concentrated on attempts at proving the
incompleteness of quantum mechanics rather than on
attempts at proving its inconsistency (see [2]).

7. ADDITIONAL COMMENTS 
ON TERMINOLOGY

Many authors who critically analyzed Bohr’s proof
mentioned above discussed various details of time mea-

h
∆q
------- ∆p Tg∆m,<≈

∆T
T

-------
g∆q

c2
----------.=

∆T
h

c2∆m
-------------.>

∆T∆E h.>
surement (so-called internal and external measure-
ment) and the interpretation of the relation ∆T∆E > h.
However, I am unaware of any critical comment on
energy–mass equivalence or on the identity of the iner-
tia mass and the gravitational mass. Moreover, some
authors wrote about weighing energy or stated that
energy has a weight.

It is absolutely obvious that, in order to describe
Einstein–Bohr’s gedanken experiment unequivocally, it
is necessary and sufficient to substitute the clause “rest
energy” for the word “energy.” The same concerns the
weight of energy. As to identifying the inertia mass
with the gravitational mass, these terms, as well as their
identification, belong to the notions of Newtonian non-
relativistic theory. After all, it is widely known that the
inertial properties of relativistic particles are controlled
by their energy and that the gravitational properties are
determined by the energy–momentum tensor, and not
by the mass.

It should be emphasized that Bohr was absolutely
right to explain the red shift of the spectral lines in a
static gravitational field by the variation of the clock
rate—that is, by the shift of atomic levels—and not by
the photon weight. (A comparison of these two alterna-
tive explanations is drawn in [17, 18], where it is
explained in detail that the second is wrong).

8. CONCLUSION
In summary, Bohr’s analysis in [1] does not lead to

the conclusion, despite some terminological faults, that
the photon with energy E has the mass m = E/c2.
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POSTSCRIPT
When I got acquainted with A.B. Migdal fifty years

ago, problems of history and philosophy of physics
were of small interest to him, since he was fascinated
by solving specific scientific problems and taught his
pupils, me among them, to do that. In the late 1970s, the
focus of his interests shifted drastically. He kept study-
ing the articles by Bohr, Einstein, and other classical
scientists. He lectured on the history of physics and on
the psychology of creative activity in science. His pop-
ular-science articles appeared one after another [19–
23], and many of them were translated into foreign lan-
guages. He became the editor-in-chief of the Encyclo-
pedic Dictionary for the Young Physicist [24]. I often
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recollect A.B. Migdal with deep gratitude, and I
thought about him very frequently when I was writing
this note about the debate between Bohr and Einstein. I
believe that he would have taken interest in this note.
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1. PREFACE

Forty years ago, Sasha Migdal introduced me to his
father, the renowned theoretical physicist Arkady
Benedictovich Migdal. That was one of the most
important moments of my life. He became my mentor
and friend.

A.B., as people called him, was at the center of a
highly intensive, if not turbulent, scientific and social
life. At that time, he had just completed a set of admi-
rable papers which I have reread to this day with excite-
ment and fascination. The first one was a precursor of
the Fermi liquid theory. By the courageous use of com-
pletely novel methods of quantum field theory, he
found a discontinuity in the distribution of interacting
Fermi particles. That meant that the notion of a quasi-
particle is well defined, even when the interaction is
strong. This work is fundamental—it started the many-
body theory in its modern form.

My other favorite is the work on electron–phonon
interaction. I am still amazed how he managed to get
through infinite sets of Feynman diagrams, integral
equations, etc. It was like climbing Everest for the first
time (I must say that the work on these topics by some
great physicists like J. Schwinger, done at about the
same time, brought much more modest results). How-
ever, A.B. remembered this work with some sadness.
The reason was that he was actually looking for the
mechanism of superconductivity. He developed this
powerful apparatus, used it for the one-electron Green’s
functions, and planned to look at the two-electron
Green’s function next. At that moment, Bardeen, Coo-
per, and Schrieffer developed the theory of supercon-
ductivity in a simplified model without much formal-
ism but with great physical intuition. A.B. told me this
story, and it was a good lesson for me. There is some
consolation in the fact that, in the modern refined
description of superconductors, the methods developed
by A.B. play a crucial role.

I learned many things about life and about physics
from A.B. There was always an area of excitement sur-

* This article was submitted by the author in English.
1063-7788/01/6403- $21.00 © 20540
rounding him, whether he was talking about physics,
showing his highly original sculptures, or camping in
the mountains. It was interesting to see in the last case
how professional alpinists, usually stern independent
people, respected A.B. and considered him as a high
authority in the problems of life. He was very generous
in everything. Once he nominated me for some prize,
and I said, quite correctly, that I didn’t contribute
enough to deserve it. “Doesn’t matter, you will repay
later” (Nichevo, potom otdash) replied A.B.

He lived in difficult times. It is quite amazing that by
the sheer strength of personality he managed to create
his own fascinating world, well isolated from the hos-
tile environment. He included his friends in this world
and in many cases managed to help and to protect them.

The article that follows this preface would probably
displease A.B. because of its somewhat formal charac-
ter. But his intuition (hopefully) would tell him that
there is something there, and his critique would be
moderate.

2. INTRODUCTION

String theory is a beautiful and dangerous subject.
On the one hand, it is a top achievement of theoretical
physics, exploiting the most advanced and daring meth-
ods. On the other hand, without guidance from experi-
ments, it can easily degenerate into a collection of
baroque curiosities, some kind of modern alchemy
looking for a philosophers’ stone.

This danger can be somewhat reduced if we try to
study string theory in connection with some concrete
physical problem and then extrapolate the experience
gained to the Planck domain unreachable by experi-
ments. This is a well-established strategy in theoretical
physics. For example, one can learn about Cherenkov
radiation while studying supersonic aerodynamics.
And usually, there is the “back reaction”: the technical
progress at the frontier turns out to be helpful in solving
the old problems. Thus, it is conceivable that string the-
ory will provide us with the language for future theoret-
ical physics.
001 MAIK “Nauka/Interperiodica”
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In this paper, I will examine a number of problems
in which the language of string theory is appropriate
and effective. We begin with the problem of quark con-
finement. The task here is to find the string description
of the color-electric flux lines emerging in QCD.
Recently, there has been considerable progress in this
field. Various aspects of it have been reviewed in [1, 2].
I shall not review again these developments and instead
shall concentrate on new results. After that, we will dis-
cuss some general features of D branes, conformal
gauge theories in higher dimensions, and speculations
concerning the cosmological constant.

3. THE IMAGE OF GLUONS AND ZIGZAG 
SYMMETRY

As was explained in the above-mentioned refer-
ences, a string theory, needed to describe gauge fields
in four dimensions, must be formulated in the 5d space
with the metric

(1)

This curved 5d space is a natural habitat for the
color-electric flux lines. If, apart from the pure gauge
fields, there are some matter fields in the theory, they
must correspond to extra degrees of freedom on the
world sheet. In some cases, these extra degrees of free-
dom can be balanced so that the field-theory β function
is equal to zero. These cases are the easiest ones since
the conformal symmetry of the field theory requires
conformal symmetry of the string background and
determines it completely as a(ϕ) ~ eαϕ, where α is some
constant. After an obvious change of variables, the met-
ric takes the form

(2)

where λ is related to the coupling constant of field the-
ory. When λ @ 1, the curvature of this 5d space is small
and the 2d sigma model describing the string in the
above background is weakly coupled. This greatly sim-
plifies the analysis, and we will concentrate on this
case. Our aim in this section will be to demonstrate that
open strings in this background have some very
unusual properties allowing us to identify them with
gluons.

Before starting, let us recall that at present we have
two possible approaches to the question of field–string
correspondence. None of them is fully justified, but
both have certain heuristic power. In the first approach,
one begins with a stack of D branes describing a gauge
theory and then replaces the stack by its gravitational
background. In the second approach, one does not
introduce D branes and starts directly with the sigma-
model action, adjusting the background so that the
boundary states of this string describe the gauge theory.
The key principle here is the zigzag symmetry. This is
a requirement that these boundary states consist of vec-

ds2 dϕ2 a2 ϕ( )dx2.+=

ds2 λ y 2– dy2 dx2+( ),=
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tor gluons (and matter fields, if present) and nothing
else.

The situation is very unusual. Normally we have an
infinite tower of states in both open and closed string
sectors. Here, we need a string theory in which the
closed string sector contains an infinite number of
states, while the open sector has a finite number of
field-theory states. Our first task will be to explore how
this is possible.

To set the stage, let us remember how open strings
are treated in the standard case [3]. One begins with the
action

(3)

where D is a unit disk, ∂D is its boundary, and Aµ is the
vector condensate of the open string states. The possi-
ble fields Aµ are determined from the condition that the
functional integral

(4)

is conformally invariant. The explicit form of this con-
dition is derived by the splitting

(5)

where c is a slow variable, while z is fast, and integrat-
ing out z. Conformal invariance requires vanishing of
the divergent counterterms and that restricts the back-
ground fields. It is convenient to integrate first the fields
inside the disk with the fields at the boundary being
fixed. That gives the standard boundary action

(6)

We see that xµ are the Gaussian fields with the correla-
tion function (in the momentum space)

(7)

Expanding the second term in z, we obtain

(8)

Using the fact that

(9)

where Λ is an ultraviolet cutoff, we obtain as a condi-
tion that the divergence cancels (in this approximation):

(10)
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This is the on-shell condition for the massless string
mode. Qualitatively, the same treatment is applicable to
the massive states as well. In this case, one perturbs SB
with the operator

(11)

where Ψ is the scalar massive mode at the level 2n and
h(s) is the boundary metric on the world sheet needed
for the general covariance of this expression. Confor-
mal invariance of this perturbation means that the h(s)
dependence must cancel. The cancellation occurs
between the explicit h dependence in the above formula
and the factors coming from the quantum fluctuations
of x(s). These factors appear because in the covariant
theory the cutoff is always accompanied by the bound-
ary metric

(12)

(13)

where a is an invariant cutoff.
In the one-loop approximation (which is not, strictly

speaking, applicable here but gives a correct qualitative
picture), we have

(14)

(15)

This is the on-shell condition for the massive string
mode, and it was obtained, let us stress it again, from
the cancellation between the classical and quantum h(s)
dependence.

Now, we are ready to attack the AdS case. Let us
consider the string action in this background:

(16)

where we dropped all fermionic and Ramond–Ramond
(RR) terms. This is legitimate in the WKB limit λ @ 1,
which we will study in this section. To find the counter-
terms, we must calculate once again the boundary
action and 〈zλ(s)zµ(s)〉 . It is not as easy as in the previ-
ous case, but this well-defined mathematical problem
was solved in [4, 5]. The answer has the form

(17)

After introducing variables s = (s1 + s2)/2 and σ =
s1 – s2 and taking the Fourier transform with respect to
σ, we obtain the following asymptotic behavior for the
kernel in the mixed representation:

(18)
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κµν p s,( ) p 3
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------------------ 3

cµ' cν'

c'( )2
---------- δµν– .≈

p → ∞
From this, it follows that

(19)

The remarkable feature of this answer is that it
implies that there is no quantum ultraviolet divergences
on the world sheet. Hence, if we add to the action the
background fields

(20)

and treat it in the one-loop approximation, we come to
the following conclusions. First of all, as far as the A
term is concerned, it is finite for any Aµ(x) and, thus,
describes the off-shell gluons. This situation is in sharp
contrast to the standard case in which conformal invari-
ance implied the on-shell condition.

Now, let us examine the massive mode (11). The
only quantum dependence on the cutoff comes from

(21)

As a result, we obtain the counterterm

(22)

We see that the only way to keep the theory confor-
mally invariant in this approximation is to set Ψ = 0.
There is also a possibility that, at some fixed value of λ,
the h(s) dependence will go away. However, it is impos-
sible to cancel it by a suitable on-shell condition. All
this happens because, due to (19), the kinetic energy for
the Ψ term is not generated.

There is one more “massless mode” in the AdS
string which requires a special treatment. Let us exam-
ine

(23)

where ∂⊥  is the normal derivative at the boundary of the
world sheet (which lies at infinity of the AdS space). In
the more general case of AdSp × Sq, we also have the
perturbation

(24)

Here, we must remember that the string action is finite
only if [5, 6]

(25)

It is easy to see that, when we substitute the decom-
position (5) into this formula, we get the logarithmic
divergence (21) once again. We come to the conclusion
that the above perturbation is not conformal and must
not be present at the boundary. However, in the case of
(24), there is also a logarithmic term coming from the
fluctuations of ni(s). In the presence of spacetime super-
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symmetry, these two divergences must cancel since the
masslessness of the scalar fields is protected by the
supersymmetry. Otherwise, keeping the scalar fields
massless requires a special fine tuning of the back-
ground. It would be interesting to clarify the corre-
sponding mechanism.

Another interesting problem for the future is the fate
of the open string tachyon in the AdS space. So far, we
assumed that it is excluded by the Goddard–Sherk–
Olive (GSO) projection. But in the purely bosonic
string, it may lead to some interesting effects via the
Sen mechanism [7].

We come to the following conclusion concerning
the spectrum of the boundary states in the AdS-like
background. It consists of a few modes which would
have been massless in the flat case. The infinite tower
of the massive states cannot reach the boundary. The
above finite set of states must be associated with the
fields of the field theory under consideration.

The full justification of this assertion requires the
analysis of the Schwinger–Dyson equations of the
Yang–Mills theory. It is still absent, and we give some
heuristic arguments instead. The loop equation express-
ing the Schwinger–Dyson equations in terms of loops
has the form

(26)

where W(C) is the Wilson loop and  is the loop Lapla-
cian and the right-hand side comes from the self-inter-
secting contours. In recent papers [4, 5], we analyzed
the action of the loop Laplacian in the AdS space. It was
shown that, at least in the WKB approximation and in
the four-dimensional spacetime, we have a highly non-
trivial relation

(27)

where T⊥|| (s) is a component of the world sheet energy–
momentum tensor at the boundary. When substituted
into the string functional integral, the energy–momen-
tum tensor receives contributions from the degenerate
metrics only. These metrics describe a pinched disk,
that is, two disks joined at a point. The corresponding
amplitude is saturated by the allowed boundary opera-
tors inserted at this point. That gives Eq. (26) provided
that the boundary operators of the string are the same as
the fields of the field theory. Much work is still needed
to make this argument completely precise.

4. THE D-BRANE PICTURE

An alternative way to understand gauge field–string
duality is based on the D-brane approach. It is less gen-
eral than the sigma-model approach described above,
but in the supersymmetric cases it provides us with an
attractive visual picture. The logic of this method is
based on the fundamental conjecture that D branes can
be described as some particular solitons in the closed

L̂ s( )W C( ) W  ∗ W ,=

L̂

L̂s T ⊥ || s( ),∼
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string sector. One of the strongest arguments in favor of
this conjecture is that both D branes and solitons have
the same symmetries and are sources of the same RR
fields [8]. The gauge field–string duality then follows
from the D-brane–soliton duality in the limit α'  0.
On the D-brane side, only the massless gauge field
modes of the open string survive in this limit. On the
string theory side, we have a near-horizon limit [1] of
the soliton metric [9] given by (1). These two theories
must be equivalent if the basic D-brane conjecture is
correct.

The connection with the sigma-model approach of
the previous section results from the following argu-
ment. First of all, the closed string background is the
same in both cases. As for the open strings, we placed
their ends at the boundary of the AdS space, where
a2(ϕ)  ∞. That means that the effective slope of
these strings behaves as

(28)

and, thus, only the massless modes are present. We said
that the D-brane approach is less general because in the
nonsupersymmetric cases there could exist solitons
with the required boundary behavior, which are not
describable by any combination of D branes in the flat
space.

This fact is related to another often overlooked sub-
tlety. The 3-brane soliton has the metric [9]

(29)

(30)

It is often assumed that this metric is an extremum
of the action

(31)

where the first term contains the modes of the closed
string, while the second is the Born–Infeld action local-
ized on the brane. In the equations of motion, the sec-
ond term will give the delta function of the transverse
coordinates.

Would it be the case where the 3-brane is located?
From (30), it is clear that the singularity of the metric is
located in the complex domain r4 = –L4. Let us try to
understand the significance of this fact from the string-
theory point of view. Consider a string diagram
describing the D-brane world volume in the arbitrary
order in λ = gsN. It is represented by a disk with an arbi-
trary number of holes. At each boundary, one imposes
the Dirichlet conditions for the transverse coordinates.
An important feature of this diagram is that it is finite.
This follows from the fact that the only source of diver-
gences in string theory are tadpoles and for 3-branes
their contribution is proportional to the integral

, where k is the transverse momentum. This

αopen' a 2– ϕ( ) 0∼

ds2 H 1/2– r( ) dx( )2 H1/2 r( ) dy( )2,+=

r2 y2, H r( ) 1
L4

r4
-----.+= =

S Sbulk SBI,+=

d 6k/k2∫
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expression is infrared finite (which is of course very
well known). Thus, D branes in the flat space are
described by the well-defined string amplitudes. But
that contradicts the common wisdom that one must
determine the background from the action (31) because
the flat space is not a solution once the Born–Infeld
term is added. Moreover, if we try to deform the flat
space, the above disk with holes will lose its conformal
invariance.

Let us analyze this apparent paradox. It is related to
the fact that conformal invariance on a sphere is equiv-
alent to the absence of tadpoles since for any (1, 1) ver-
tex operator we have 〈V 〉 sphere = 0. However, this is not
true on a disk; the conformal symmetry does not forbid
the nonzero expectation values of vertex operators. On
a disk, conformal symmetry and the absence of tad-
poles are two different conditions. Which one should
we use?

If we denote the bulk couplings by λ and the bound-
ary couplings by µ, we can construct three different
objects, the bulk central charge c(λ), the “boundary
entropy” [10] b(λ, µ), and the effective action generat-
ing the S matrix, S(λ, µ) = c(λ) + b(λ, µ). To ensure con-
formal invariance, we must have

(32)

(33)

This does not coincide in general with the “no-tadpole
condition”

(34)

In the case of 3-branes, the paradox is resolved in an
interesting way. The metric (30) has a horizon at r = 0.
When we go to the Euclidean signature, the horizon, as
usual, shrinks to a nonsingular point. As a result, we
have a metric which solves Eq. (32) and has no trace of
the D-brane singularity in it! The paradox is pushed
under the horizon.

The conclusion of this discussion is as follows. We
have two dual and different descriptions of the D-brane
amplitudes. In the first description, we calculate the
amplitudes of a disk with holes in the flat space. In this
description, it is simply inconsistent to introduce the
background fields generated by D branes.

In the second description, we forget about the D
branes and study a nonsingular closed string soliton.
The D-brane conjecture implies that we must get the
same answers in these two cases. The situation is anal-
ogous to the one we have in the sine-Gordon theory,
which admits two dual descriptions, either in terms of
solitons or in terms of elementary fermions, but not
both.

Let us touch briefly on another consequence of these
considerations. When minimizing the action (31), one

∂c
∂λ
------ 0,=

∂b
∂µ
------ 0.=

∂S
∂λ
------ ∂S

∂µ
------ 0.= =
can find a solution which is singular on the 3-brane and
is AdS space outside of it [11]. These solutions are
known to “localize” gravitons on the brane and are the
basis of the popular “brane-world” scenarios. It is clear
that for the string-theory branes this is not a physical
solution because the world volume does not contain
gravity (being described by the open strings). As we
argued above, there must be a horizon not a singularity.
Technically, this happens because in string theory the
Born–Infeld action is corrected with the Einstein term

~  coming from the finite thickness of the

brane. It can be shown that the coefficient of this term
(which is fully determined by string theory) is tuned so
that the localization is destroyed. There are no worlds
on D branes. Of course, if one compactifies the ambient
transverse space, the 4d graviton reappears by the
Kaluza–Klein mechanism.

5. CONFORMAL GAUGE THEORIES
IN HIGHER DIMENSIONS

Although our main goal is to find a string-theory
description of the asymptotically free theories, confor-
mal cases are not without interest. They are easier and
can be used as a testing ground for the new methods. In
this section, we briefly discuss conformal bosonic
gauge theories in various dimensions [2]. The back-
ground in these cases is just the AdS space. We have to
perform the nonchiral GSO projection in order to elim-
inate the boundary tachyon (it would add an instability
to the field theory under consideration; we do not con-
sider here an interesting possibility that this instability
resolves itself in some new phase).

The GSO projection in the noncritical string is
slightly unusual. Let us consider first d = 5 (corre-
sponding to the d = 4 gauge theory). In this case, we
have four standard Neveu–Schwartz–Ramond (NSR)
fermions ψµ on the world sheet and also a partner of the
Liouville field ψ5. For the former, we can use the stan-
dard spin fields defined by the OPE

(35)

where we use the usual 4 × 4 Dirac matrices. The spinor

ΣA can be split into spinors  with positive and nega-
tive chiralities. It is easy to check that the OPE for them
have the structure

(36)

(37)

The symbols on the right-hand sides mean the prod-
ucts of an even/odd number of NSR fermions. Notice
that this structure is the opposite to the one in ten
dimensions. In order to obtain the spin operators in 5d,
we have to introduce the Ising order and disorder oper-
ators, σ and µ, related to ψ5. These operators are non-

R gd p 1+ x∫

ψµ ΣA× γµ( )ABΣB,∼

ΣA
±

Σ± Σ±× ψ( ) even[ ] ,∼

Σ± Σ+−× ψ( ) odd[ ] .∼
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holomorphic and correspond to RR states. Their OPE
have the structure

(38)

(39)

Using these relations, we obtain the following GSO-
projected RR spin operator:

(40)

It has the property

(41)

needed for the nonchiral GSO projection, which con-
sists of dropping all operators with an odd number of
fermions. Notice also that the nonchiral-picture-chang-
ing operator has an even number of fermions. The RR
matrix Σ has 16 elements. We can now write down the
full string action in the AdS5 space. It has the form

(42)

where SB is given by (16); SF by

(43)

where M = 1, …, 5; and one has to use the standard spin
connection projected from AdS on the world sheet in
the Dirac operator. So far, we are describing the usual
action of the sigma model with N = 1 supersymmetry
on the world sheet. The unusual part is the RR term
given by

(44)

Here, e–φ/2 is the spin operator for the bosonic ghost
[12], and f is the coupling constant (which is equal to
unity in the one-loop approximation).

I believe that this model can be exactly solved,
although it has not been done yet. A promising
approach to this solution may be based on the non-Abe-
lian bosonization [13] in which the fermions ψM are
replaced by the orthogonal matrix ΩMN with the
WZNW Lagrangian. In this case, the RR term is simply
the trace of this matrix in the spinor representation.
This formalism lies in the middle between the NSR and
the Green–Schwartz approaches and hopefully will be
useful. Meanwhile, we will have to be content with the
one-loop estimates, which are justified in some special
cases listed below and help to get a qualitative picture

σ σ× ψ5( ) even[ ] ,∼

σ µ× ψ5( ) odd[ ] .∼

Σ σΣ+Σ+ µΣ+Σ–

µΣ–Σ+   σΣ 
– Σ 

–  
 
 
 

 

.=

Σ Σ× ψ( ) even[ ]∼

S SB SF SRR Sghost,+ + +=

SF d2ξ ψM∇ ψM
1

λ
------- ψMγµψN( )2

+ ,∫=

SRR f d2ξ tr γ5Σ( )e φ/2– .∫=
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in general. In this approach, one begins with the effec-
tive action

 

(45)
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d

 

 is the RR 

 

d

 

 form, and

 =  … ; 

the form 

 

F

 

d

 

 will be assumed to be proportional to the
volume form. The dilaton field 

 
Φ

 
 is normalized so that

 e  Φ   = , where  g s  is the string coupling constant. Con-
formal cases involve either constant curvature solutions
of the equations of motion or the products of the mani-
folds with constant curvatures. The dilaton in these
cases is also a constant. Such an ansatz is very easy to
analyze. Let us begin with the single AdS

 

d

 

 space. Con-
sider the variation of the metric which preserves the
constancy of the curvature

(46)

 

(47)

(48)

 

That immediately gives the relations

(49)

 

(50)

 

If we assume that the flux of the RR field is equal to

 

N

 

, we get  = 

 

N

 

2

 

. If we introduce the coupling con-

stant 

 

λ

 

 = 

 

g

 

s

 

N

 

 = , we obtain the background AdS
solution [2] with

 

(51)

 

We can trust this solution if 

 

d

 

 = 10 – 

 

e

 

; in this case,
the curvatures and the RR fields are small and the above
one-loop approximation is justified. According to the
discussion in the preceding sections, this solution must
describe the Yang–Mills theory, perhaps with one
adjoint scalar, in the space with dimension 9 – 

 

e

 

. We
conclude that this bosonic higher dimensional gauge
theory has a conformally invariant fixed point! It may
be worth mentioning that it is not atypical for nonrenor-
malizable theories to have such fixed points. For exam-
ple, a nonlinear sigma model in dimension higher than
two, where it is nonrenormalizable, does have a confor-
mal critical point at which the phase transition to the
ferromagnetic phase takes place. However, it is hard to
say up to what values of 

 

e

 

 we can extrapolate this result.
These considerations allow for several generaliza-

tions. First of all, we can consider products of spaces
with constant curvatures by the same method. Take, for

S ddx GeΦ d 10–
2

-------------- R– ∇ Φ( )2–∫=

+ dd∫ xFd
2 G.

Fd
2 G

A1 A1' G
Ad Ad' FA1…Ad

FA1' …Ad
'

gs
2–

δGAB εGAB,=

δR δ GABRAB( ) εR,–= =

δΦ const.=

d 10–
2

--------------- R– 0,=

eΦ 1 d
2
---– 

  R
d
2
---Fd

2– 0.=

Fd
2

gYM
2 N

R λ2 10 d .–∼ ∼
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example, the space AdSp × Sq with curvatures R1 and R2
and d = p + q. To get the equations of motion in this
case, it is sufficient to consider the variations

(52)

(53)

where the first part refers to AdS and the second, to the
sphere. A simple calculation gives the equations

(54)

(55)

(56)

(57)

Here, we assume that the RR flux is permeating the
AdS component of space only, being given by the vol-
ume form. The last equation follows from the normal-
ization condition of this flux and the extra factor pro-
portional to the volume of Sq in the action. Solving
these equations, we get

(58)

(59)

This solution describes bosonic gauge theories with
q + 1 adjoint bosons; again it can be trusted if the cur-
vatures are small. Another generalization is related to
the fact that, strictly speaking, we must include the
closed-string tachyon in our considerations. It was
shown in [14] that there exists an interesting mecha-
nism for the tachyon condensation, following from its
couplings to the RR fields. It is easy to include the con-
stant tachyon field in our action and to show that it does
not change our results in the small curvature limit.
According to [14], in the critical case d = 10, the
tachyon leads to the running coupling constants. In the
noncritical case, there is also a conformal option
described above in which the tachyon condenses to a
constant value.

Finally, let us describe the reasons to believe that the
conformal solutions can be extrapolated to nonsmall
curvatures and, thus, the sigma model (42) has a con-
formal fixed point. The first two terms in (45) are the
expansion of the sigma-model central charge. When the
couplings are not small, we have to replace

(60)

where c(R) is the central charge of the 2d sigma model
with the target space having a curvature R. It decreases,

δGab ε1Gab,=

δGij ε2Gij,=

d 10–
2

--------------- R1 R2–– 0,=

1 2
p
---– 

  R1
10 d–

2
---------------+ e Φ– Fd

2,–=

1 2
q
---– 

  R2
10 d–

2
---------------+ e Φ– Fd

2,=

Fd
2 λ2R2

q.=

R1
10 p– q–

2
------------------------ 

  p q 2+( )
p q–

--------------------,–=

R2
10 p– q–

2
------------------------ 

  q p 2+( )
p q–

--------------------.=

d 10–
2

--------------- R
c R( ) 10–

2
-----------------------,⇒–
according to Zamolodchikov, along the renormaliza-
tion-group trajectory. We can call this the second law of
the renormalization group. Let us conjecture that there
is also a third law

(61)

(62)

The first property follows from the fact that usually
the sigma models with positive curvature develop a
mass gap and, thus, there are no degrees of freedom
contributing to the central charge. The second equation
is harder to justify; we know only that c(R) increases in
the direction of negative curvature.

With these properties and with some general form of
the RR terms, it is possible to see that the conformal
solution to the equations of motion obtained by the
variations (46) continues to exist when e is not small.
Of course, this is not a good way to explore these solu-
tions. Instead, one must construct the conformal alge-
bra for the sigma-model action (42). This has not been
done yet.

6. INFRARED SCREENING 
OF THE COSMOLOGICAL CONSTANT

AND OTHER SPECULATIONS

In this section, we will discuss some speculative
approaches to the problems of vacuum energy and
spacetime singularities. I shall try to revive some old
ideas [15], adding some additional thoughts. The moti-
vation to do that comes from the remarkable recent
observational findings indicating that the cosmological
constant is nonzero, and its scale is defined by the size
of the Universe (meaning the Hubble constant). These
results seem very natural from the point of view advo-
cated in [15], according to which there is an almost
complete screening of the cosmological constant due to
the infrared fluctuations of the gravitational field. This
phenomenon is analogous to the complete screening of
electric charge in quantum electrodynamics found by
Landau, Abrikosov, and Khalatnikov and nicknamed
“Moscow zero.” Here, we will try to argue in favor of
another “zero” of this kind, that of the cosmological
constant.

Let us consider first the Einstein action

(63)

Here, Λ0 is a bare cosmological constant which is
assumed to be defined by the Planck scale. It is clear
from the form of the action that, if we consider the
infrared fluctuations of the metric (with the wavelength
much larger than the Planck scale), their interaction
will be dominated by the second term in this formula
since it does not contain derivatives. To obtain some

c R( ) 0 R +∞( ),

c R( ) ∞ R –∞( ).

S R 2Λ0–( ) gd4x.∫–=
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qualitative understanding of the phenomenon, let us
consider conformally flat fluctuations of the metric

(64)

The action takes the form

(65)

It has the well-known feature of nonpositivity. The
way to treat it was suggested in [16], and we will accept
it, although it does not have good physical justification.
To use S in the functional integral, we will simply analyt-
ically continue ϕ ⇒  iϕ; after that the action takes the form

(66)

The infrared fluctuations of ϕ are relevant and lead
to the screening of Λ0,

(67)

where L is an infrared cutoff. More generally, we could
represent the metric in the form

(68)

It is not known how to treat the unimodular part of the
metric. We can only hope that it will not undo the infrared
screening, although we can change it. Also, the screening
(67) with L ~ H–1 (where H is the Hubble constant) is not
strong enough to explain the fact that Λ ~ H2. It is not
impossible that the two problems cure each other. When
we have several relevant degrees of freedom, the renor-
malization-group equations governing the L dependence
of various coupling constants including Λ may have a
power asymptotic behavior [in contrast to (67)]. Such
examples exist, starting from the cases with two indepen-
dent coupling constants. Thus, the infrared limit of the
Einstein action (perhaps with the dilaton added) may be
described by a conformal field theory giving the cosmo-
logical constant defined by the Hubble scale. The renor-
malization group should take us from Planck to Hubble.

Even if this fantasy is realized, we have to resolve
another puzzle. It is certainly unacceptable to have a
large cosmological constant in the early Universe since
it will damage the theory of nucleosynthesis. At first
glance, it seems to create a serious problem for the
screening theory because, when the Universe is rela-
tively small, the screening is small too and the cosmo-
logical constant is large. The way out of this problem is
to conjecture that, in the radiation-dominated Universe,
the infrared cutoff is provided by the curvature of
spacetime, while in the matter-dominated era it begins
to depend on other quantities characterizing the size of
the Universe. If this is the case, in the early Universe,
we get the screening law Λ ~ R instead of Λ ~ H2. Sub-
stituting it in the Einstein action, we find that at this
stage the infrared mechanism simply renormalizes the
Newton constant and, thus, is unobservable. In the mat-

gµν ϕ2δµν.=

S
1
2
--- ∂ϕ( )2 Λ0ϕ

4– d4x.∫–=

S
1
2
--- ∂ϕ( )2 Λ0ϕ

4+ d4x.∫=

Λ 1
MPlL( )log

-------------------------,∼

gµν ϕ2hµν, det hµν( ) 1.= =
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ter-dominated era, the effective Λ begin to depend on
other things (like the Friedmann warp factor a) and that
can easily give the observed acceleration of the Uni-
verse. Thus, the change in the infrared screening must
be related to the trace of the energy–momentum tensor.
We can say that, in the correct theory, the cosmological
constant vanishes without a trace. To be more precise,
it is disguised as a Newton constant until the trace of the
energy–momentum tensor reveals its true identity. The
above picture has some remote resemblance to the sce-
nario suggested recently in [17].

In spite of the obvious gaps in these arguments, they
give a very natural way of relating the cosmological
constant to the size of the Universe and thus are worth
developing. Perhaps the AdS–CFT correspondence will
be of some use for this purpose. The main technical
problem in testing these ideas is the unusual ϕ-depen-
dent kinetic energy of the h field.

We can also notice that the above scenario can
explain the dimensionality of spacetime. Indeed, if this
dimensionality is larger than four, the infrared effects are
small, the cosmological constant is large, and we end up
in the universe of Planck size, which is not much fun.
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Abstract—Starting from the QCD Lagrangian and separating background and valence degrees of freedom, one
arrives at the effective Lagrangian for valence quarks and gluons. Each term in the Lagrangian contains a prod-
uct of valence quark and gluon operators acting at the end of the fundamental or adjoint string, made of the
background field. A simple procedure is described how to obtain from the Lagrangian self-coupled equations
for quark and gluon Green’s function. © 2001 MAIK “Nauka/Interperiodica”.

Forty years ago, I had a privilege to attend the lectures of such masters like A.B. Migdal and I.Ya. Pomeranchuk and take les-
sons from them, as well as from Migdal’s disciples S.T. Belyaev and V.I. Kogan. Later on, I was happy to meet Arkadiœ Bene-
diktovich frequently with our mutual friends and at seminars and to have many disputes with him. In A.B., as friends and col-
leagues called him, we liked the joy of living and talents not only for physics but also for many other things—his personality
was the incarnation of homo ludens, and his very existence proved the affinity of creative bursts in science and art, in handi-
crafts, and in friendly practical jokes. At the same time, there was a note of raillery in the attitude to A.B. at the Institute of
Theoretical and Experimental Physics, as often occurs in the convent midst toward a man of free arts. The ebullient energy of
A.B. was aimed at many things (maybe too many), and in this did he differ profoundly from Pomeranchuk; but how we miss
now both of them! Science, especially quantum chromodynamics, has recently become much more complicated, and physical
intuition inherent in them to so great an extent would help it out of the present stagnant state.
1. INTRODUCTION

Quarks and gluons in QCD play two different roles
and can be accordingly classified as two distinct kinds:
valence quarks and gluons and background quarks and
gluons. Here one should stress the difference between
the latter. Whereas background quarks (known also as
sea quarks) are a small admixture and have a destruc-
tive role in the vacuum (breaking fundamental string),
background gluons are the essence of the vacuum, cre-
ating strings (confinement) and more than 99% of the
mass of all visible matter in the Universe.

The distinction between background and valence
gluons is difficult to define absolutely rigorously, since
both strongly interact and transform into each other, and
therefore one should start with some gauge-invariant for-
malism avoiding double-counting and obtain equations
connecting the two species, as is done, e.g., in [1].

One can roughly define the bare background gluonic
field as the field in the gluonic condensate and inside
the string, and bare valence gluons as the gluons prop-
agating at the ends of adjoint string in glueballs, and in
the middle of fundamental string in hybrids [2]. Note,
that this definition may differ from that accepted in
DIS, since the string made of background gluons, when
boosted, in the parton picture contributes to the gluon
part of the momentum and may be regarded as valence

* This article was submitted by the author in English.
1063-7788/01/6403- $21.00 © 20548
gluons (as the Coulomb field is represented in the Wil-
liams–Weizsäcker approach by a cloud of incident
“valence” photons).

Our first goal is to integrate out the gluon back-
ground field formally using the cluster expansion theo-
rem and to consider the resulting set of vertices for
valence operators.

When one exploits for the background field a con-
tour gauge [3], the averaging over the background nat-
urally produces strings attached to products of valence
operators. Physically these strings should end up at
another valence vertex, and dynamical degrees of free-
dom of strings should enter in the next approximations
when the background field in strings interacts with
valence gluons. However, in the lowest approximation,
strings do not carry dynamical d.o.f. and can be found
from the minimization of the Euclidean action (maxi-
mization of the Green’s function).

It is clear then that infinite strings disappear because
of infinite action and valence vertices will be connected
by strings of minimal length.

Thus, the second step of our approach is the deriva-
tion of the effective Lagrangians for white hadron-like
combinations.

At this point, one meets with a new unexpected sit-
uation. It appears that the QCD string can be made min-
imally of two elementary fluxes (two gluon operators
Aµ expressed through Fµν via contour integrals); there-
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fore, the most elementary vertex with one string con-
tains four quark operators. This can be considered as a
creation and annihilation of a diquark at the end of the
string.

This vertex is fully defined by the bilocal correlator
〈F(x)F(y)〉  and so is defined the dynamics of the
diquark system.

The situation with valence gluons is different; here,
one has two elementary vertices with the string:
(i)  gluon–gluon–string vertex describing propagation
of a valence gluon at the end of the adjoint string and
(ii) digluon–digluon–string vertex, which is similar to
the diquark vertex discussed above. This set of vertices
has important physical consequences for the structure
of baryons and glueballs, since it produces new dynam-
ical configurations in these systems with specific quan-
tum numbers.

The final step of this paper is the formulation of
Dyson–Schwinger-type equations for hadron states.
Here, one can use, for simplicity reasons, the large-Nc
limit and construct effective mass operators from ele-
mentary vertices and quark and gluon Green’s function.
In the simplest case of heavy–light systems, this was
done in [4] for quarks and in [1] for gluons. Here, the
mass operator, e.g., for the quark, is obtained by con-
tracting two-quark operators in the diquark–diquark–
string vertex and replacing the contracted pair by the
full quark Green’s function.

The same is done for gluons with the digluon–
digluon–string vertex, but in contrast to the quark case
here one has in addition the gluon–gluon–string vertex.

Now, for mesons, baryons, and glueballs, one can
derive equations as was done in [5], writing the full
Green’s function in the lowest approximation as a
direct product of heavy–light Green’s functions, with
one valence quark (or gluon) complemented by a static
source. The common trajectory of these static sources
is defined by the contour (surface) minimization and
does not have its independent dynamical degree of free-
dom.

This is only the first approximation, since perturba-
tive gluon exchanges violate the direct product struc-
ture of the full Green’s function, and one obtains the
Bethe–Salpeter-type equation, which is similar to the
standard one, except for the fact that free one-body
Green’s functions S0, G0 should be replaced by heavy–
light Green’s functions S, G and the minimization of
the contours should be done.

A preliminary analysis of the equations is per-
formed at the end of the paper, and the interrelation of
perturbative and nonperturbative solutions is briefly
discussed.

2. GENERAL FORMALISM

One starts with the background gauge formalism [6,
7] in the Euclidean 4d space, representing the total glu-
onic field Aµ as a sum of the NP background Bµ and
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valence gluon vector potential aµ, with prescribed
gauge transformation properties

(1)

The QCD Lagrangian density L(B + a) is a sum

(2)

where 

(3)

(4)

(5)

(6)

and Lint contains terms O(a3, a4), while Lqa is obtained
replacing Bµ  aµ.

In (2)–(6), the following notation is used:

(7)

and fψaα is the quark operator with flavor f, color a, and
Lorentz index α.

To proceed, we shall separate out the terms contain-
ing valence quark and gluons and the background vec-
tor potential Bµ(x), since we are interested in the effec-
tive action for valence partons attached to a string.

The appropriate terms are contained in (3) and (5)
and in Lint. From the terms in (5), one obtains terms of
the form (we keep the notation of [1])

(8)

(9)

(10)

and from Lint one gets

(11)

where χik, ab ≡ g2f ciaf ckb.
Now to visualize the appearance of the string, one

can choose the generalized contour gauge [3], express-
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ing Bµ(x) through Fµν(z),

(12)

where the contour C(x) starts at the point x and ends up
at x0, which may be at infinity.

The set of contours {C} satisfies certain automor-
phic conditions [3].

As a special case, it is convenient to consider the
gauge [8], where an infinite line is prescribed (one can
call it x = 0, –∞ < x4 < ∞), and the contour C(x) consists
of a perpendicular from point x to the line, and then
along the line to x4 = –∞.

The next step is the averaging over vacuum back-
ground fields, i.e., over the stochastic ensemble of
{Fµν(x)}, which yields the effective action for valence
quarks and gluons [1]

(13)

Using the cluster expansion theorem [9], one can
express Seff as a series of cumulants

(14)

where notation is used for a connected average (cumu-
lant), e.g.,

The series (14) generates an infinite set of vertices each
containing several valence operators and field correla-
tors of two different types

(15)

(16)

In the last case, some of F’s can be replaced by Bµ or
by DF.

For the type (i), one can use (12) to express the
cumulant (15) as the (multiple) integral of the average
of the type (ii). The latter are known to be short-ranged

[10], of the range , and recent precise measurement
in [11] can be unambigiously interpreted [12] as evi-
dence in favor of fast convergence of the cumulant

series and small value of  for n ≥ 4. Indeed, it was
demonstrated in [12] on the basis of data in [11] that the
contribution of quartic and higher cumulants to the
string tension is less than one percent, when they are
calculated on the minimal area surface.

Therefore, we shall consider only the effective ver-
tices generated by the first two terms in (14).
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Moreover, while the terms (ii) are short-ranged, the
terms (i), being the integrals over contour C of 〈〈 FF 〉〉 ,
are long-ranged. Actually, the average

(17)

describes the creation of the string of the width ~  ≡
Tg along the contour C.

At this point, one should remark that the choice of
the contour C and contribution of higher cumulants are
physically interconnected.

The sum over all cumulants does not depend on the
choice of the contour C, which implies that for the cor-
rect choice of contour C, coinciding with the actual
position of the QCD string, the contribution of higher
cumulants is minimal.

The situation here is similar to the choice of the
mass scale µ in αs(µ) in the perturbation series; i.e., for
the optimal choice of µ, related to the inverse size of the
system, the contribution of the higher power terms is
minimal.

As was discussed above, one can represent Seff(a) as
a sum of kinetic terms S0(a) + S0(ψ), plus terms con-
taining string Sstr, and, finally, short-range terms Sloc
proportional to 〈〈 F(x1)…F(xn)〉〉 ,
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(26)

The term Sloc in (18) is obtained from 〈(L1(x) +
L(F)(x))(L1(y) + L(F)(y))〉  and interference terms contain-
ing the average of the products 〈BµFλσ〉; since these
terms contain additional powers of Tg (as compared to
the length of string), we shall disregard them in the first
approximation.

3. ANALYSIS OF QUARK, GLUON, 
AND DIQUARK AND DIGLUON VERTICES

Analysis of the term S4q was done in [4], where
mostly its contracted form, with fψ(x)gψ+(y) 
δfg〈ψ(x)ψ+(y)〉 , was investigated, while its diquark
structure was not studied.

Following [4], we shall rewrite (21) displaying all
color and Lorentz indices as follows:

(27)

with Jµν given in (17), where one can keep in the corr-
elator 〈〈 FF 〉〉  only the dominant part, producing string
tension [13]

(28)

and O(D1) is a full derivative not contributing to σ,
while

(29)

The vertex (27) has the structure of diquark–
diquark–flux vertex, where flux implies the kernel
Jµν(x, y) and, as will be seen, is not yet the string.

The term S4q has two defects. First, it is O(1/Nc), and
second, it does not create the string by itself, since in
the term Jµν(x , y) (17) both coordinates x, y are not cor-
related within the width of the string, but rather may be
far from each other (see Appendix of the first reference
of [4] for the properties of Jµν(x, y)).

Both defects are cured simultaneously when one
contracts two-quark operators, as was done in [4],

(30)

where Gq is the quark Green’s function, which for large
|x |, |y | is proportional to δ(3)(x – y).

This property will be used in the next section, where
the effective mass operators (interaction kernels) will
be constructed.

However, in this operation (30), the diquark–
diquark–flux vertex of (27) transforms into the -
string vertex and the diquark structure is lost. There-
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fore, in what follows, we shall consider the diquark cor-
relation as it appears in the diquark Green’s function
due to the usual string-junction construction.

We turn now to the gluon vertices. The term S(2, 2)

(23) is the basic vertex for the gluon–gluon–string ver-
tex (denoted as gg string), and here the string appears
directly from Jµν(x, x).

Now the term S(4, 2) has exactly the same defects as
the term S4q; namely, the nonlocal flux operator
Jλλ ' (x, y) appearing in (24) is not yet the string and, for
the latter, one should contract two of the gluon opera-
tors, aµ(x)aν(y)  Gµν(x, y), where Gµν is the confined
gluon operator; the resulting vertex is of gg-string type
and will be considered in the next section.

Finally, we come to the term S (5, 2) and S (6, 2), (25)
and (26), respectively. These terms are proportional to
the nonlocal flux kernel Jµν(x, y), and as in the previous
case the string is still missing unless the contraction of
gluon operators is made, which produces ggg-string
and digluon–digluon–string vertices, considered in the
next section.

4. INTERACTION KERNELS FOR QUARK 
AND GLUON GREEN’S FUNCTIONS

In this section, we shall use the vertices obtained in
previous section and compute the effective mass opera-
tors (interaction kernels) for the quark and gluon oper-
ators.

All kernels are proportional to Jµν(x, y) (17), which
we shall write in the gauge [8] as

(31)

where we have defined

Note that D(x, y), as in (28), is defined in the funda-
mental representation and is proportional to the

Casimir operator ; therefore, the kernels for gluon

operators are proportional to (Nc/ )Jµν.

Now we define quark and gluon Green’s functions
Gq(x, y) and Gµν(x, y),
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ant, since they are defined as in the presence of the
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which is equal to unity in the assumed gauge [8]. They
can be made explicitly gauge-invariant when multiplied
with the combination of parallel transporters Φ(x, x4; 0,
x4)Φ(0, x4; 0, y4)Φ(0, y4; y, y4) equal to unity in the
gauge [8].)

Introducing (32) in S4q , (21), one obtains the mass
operator for the quark Green’s function which was
derived in [4]

(34)

For the one-gluon mass operator, one obtains from
S (2, 2), S (4, 2), and S (6, 2) the corresponding contributions
to the string part of the mass,

(35)

where  coincides with the term found earlier in [1],
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and two other terms are obtained from the correspond-
ing S (i, k) contributions by insertion of (33),
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where “perm.” denotes terms obtained by permutation
of indices in JGG.

The total gluon mass operator contains, besides,

(35) also nonstring terms, called local , propor-
tional to correlators of L1 and L(F):
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Using (18) and (22), one obtains integral equations of
the Dyson–Schwinger type for the quark and gluon
Green’s function. For example, for the gluon case, one
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(41)

where M(g) is given in (40) and (35)–(39); and for the
quark Green’s function the corresponding equation is [4]

(42)

where Mq is given in (34).
The kernel M(g) contains a local string piece (36)

behaving as const × |x| at large distances, and the corre-
sponding spectrum is that of the gluelump, which was
studied also on the lattice [14] and in the QCD string
model [15]. The ground-state solution of (42) with the ker-
nel (36) was obtained in [1] with the eigenvalue ω = 1 GeV.

We turn now to the digluon vertex, which is
obtained from the term S (6, 2) (26), by contracting one

pair of gluon operators (in contrast to the term ,
where two pairs of gluons were contracted). In this way,
one obtains in the exponent (13), exp(–aaMaa), where
explicit form of the exponent is
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and M is defined as
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where the explicit form of permutation terms denoted
in (44) as perm. is obtained by interchanging the lower
and upper indices in M (44). Denoting the Hermitian
operators of octet digluon creation and annihilation
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one can write the octet digluon mass operator corre-
sponding to the second term on the right-hand side of
(44) as
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5. DISCUSSION AND CONCLUSIONS

We have obtained equations for the one-gluon and
one-quark Green’s functions Gµν and Gq , (41) and (42),
respectively, and defined their kernels M (g) and Mq in
the lowest order of background perturbation theory and
in the Gaussian approximation of the background field
averaging procedure.

The resulting equations are Lorentz-covariant and
gauge-invariant; the latter property is due to the fact
that, actually, Gµν(Gq) describe propagation of the
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gluon (quark) in the field of a static adjoint (fundamen-
tal) source, and the corresponding system can be made
gauge-invariant with the help of parallel transporters.

The most important property of (41) and (42) is that
they are nonlinear, and therefore the equations may
have solutions of two types. The first one is a perturba-
tive solution which starts with the free Green’s function
and contains all the next-order terms obtained by the
interaction procedure (to this end also additional per-
turbative terms should be included in M (g) and Mq). In
this case the string is absent, since in perturbation the-
ory both confinement and chiral symmetry breaking are
missing, and there is no mechanism for creation of the
background component Bµ and the corresponding corr-
elator D(x). This is a trivial perturbation theory result.

There is, however, another type of solution, which
essentially exploits the nonlinear character of (41) and
(42). This solution, if it exists, cannot be expanded in a
perturbation series. One example was given in [1] for
the case of Gµν. At this point, one should stress that up
to now only nonlinearity in terms of Gµν, Gq was dis-
cussed, while background field correlators D(x), D1(x)
were entered as an input. Now, one can go an essential
step further and connect D(x), D1(x) to the solutions
Gµν. There are two possible justifications of this proce-
dure. The first was suggested in [1] on the basis of large
Nc. Namely, it was argued there that a valence gluon,

having some fixed color index a = 1, …,  – 1, will
keep this color index interacting with the string, since
the string is a white object and does not influence the
color of the valence gluon. Therefore, all the remaining

 – 2 gluons can be considered as a background;
therefore, one obtains a connection of the form [1]

(47)

(48)

Here,  is the digluon operator (44), and one expects

accuracy of this procedure to be O(1/ ).

Another argument in favor of connection (47) and
(48) comes from the precise distinction between pertur-
bative and nonperturbative regimes. Namely, connec-
tion (47) and (48) follows from the definition of the
field operator Fµν through the vector potential; the latter
is represented through the sum of the specific solution
of the nonlinear equation, called Bµ, and perturbative
corrections to that solution, called aµ. In this way, the
self-consistent solution of nonlinear equation (41),
where the kernel is nonlinear not only due to the

appearance of Gµν in  (35)–(39), but also due to
the dependence of D in Jµν on Gµν, is logically sepa-
rated into two pieces, nonperturbative due to Bµ and
perturbative due to aµ.
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The first step in this direction was made in [1],
where the self-constituent solution of (41) with the ker-
nel (36) was obtained. In the next step, one should also
use digluon operators as in (48) and digluon vertex
(43), and the kernels (37), (39). This part is planned for
a subsequent publication.
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Abstract—The phase structure of the QCD vacuum in a magnetic field H is investigated at low temperatures
T. The free energy of the hadronic phase in a constant homogeneous magnetic field is calculated in the one-loop
approximation of chiral perturbation theory. The quark and the gluon condensate are found as functions of tem-
perature and the field strength. It is shown that the order parameter 〈 〉  for the chiral phase transition remains
constant when the temperature T and the magnetic field H change in such a way that H = const × T 2. © 2001
MAIK “Nauka/Interperiodica”.
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1. INTRODUCTION

In recent years, the properties of the vacuum state
under various external conditions have received much
attention in quantum field theory. Within the theory of
strong interactions (QCD), external conditions are
determined by temperature and by the baryon-number
density. At temperatures below the temperature of the
chiral phase transition, T < Tc, quark confinement and a
spontaneous breakdown of chiral symmetry are the
most important dynamical features of the system. At
low temperatures T < Tc, the partition function is domi-
nated by the contribution of the lightest particles of the
physical spectrum. The π meson, which is a Goldstone
excitation over the chiral condensate, represents the
lightest physical particle in QCD. For this reason, low-
temperature physics (hadronic phase) can be ade-
quately described in terms of effective chiral theory [1–
3]. It is important to study the behavior of the order
parameter for the chiral phase transition (quark conden-
sate 〈 〉 ) with increasing temperature. In the ideal-gas
approximation, the contribution of thermal pions to the
quark condensate is of order T2 [4, 5]. Within chiral
perturbation theory (ChPT), the two-loop (~T4) and
three-loop (~T6) contributions to 〈 〉  were calculated
in [5] and [6], respectively.

The physics of the gluon condensate 〈G2〉 ≡ 〈( )2〉
is totally different. The gluon condensate appears to be
something other than an order parameter for any phase
transition. No spontaneous symmetry breaking is asso-
ciated with the gluon condensate. At the quantum level,
scale invariance is violated because of the anomaly in
the trace of the energy–momentum tensor, with the
result that there arises a nonzero value of 〈G2〉 , but no
Goldstone particle is generated. The mass of the light-
est excited state (dilaton) in gluodynamics is directly
related to the condensate, mD ∝  (〈G2〉)1/4. As a conse-
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quence, thermal glueball excitations are suppressed by
the exponential Boltzmann factor ~exp{–mgl/T}; there-
fore, their contribution to the shift of the gluon conden-
sate is negligibly small (∆〈G2〉/〈G2〉 ~ 0.1% at T =
100 MeV) [7]. In the one-loop approximation of ChPT,
pions in the chiral limit can be treated as a gas of non-
interacting massless particles. Obviously, this system is
scale-invariant, so that it does not contribute to the trace
of the energy–momentum tensor and, hence, to 〈G2〉 . It
was shown in [8] that only in the three-loop approxima-
tion of ChPT does the gluon condensate become depen-
dent on temperature in the chiral limit. The effect of
thermal excitations of massive hadrons on the proper-
ties of the quark and the gluon condensate was first
studied in [9, 10] within the generalized nonlinear σ
model invariant under conformal transformations.

The phase structure of the vacuum in an external
magnetic field H is another important subject of inves-
tigation. The magnetic-field dependence of the quark
condensate was first investigated in [11] on the basis of
the Nambu–Jona-Lasinio model. Within QCD, the one-
loop result for the magnetic-field dependence of the
quark condensate 〈 〉  was derived in [12]. In either
case, the condensate was found to increase with H, in
contrast to what we have in the case of conventional
superconductivity, where the condensate of Cooper
pairs is destroyed by a magnetic field. The behavior of
the gluon condensate 〈G2〉  in an Abelian magnetic field
is also nontrivial. Gluons have no electric charge, but
they generate virtual quarks whose interaction with the
magnetic field H leads to a shift of 〈G2〉 . This phenom-
enon was investigated in [13, 14] on the basis of low-
energy theorems. The phase structure of the QCD vac-
uum in an Abelian magnetic field at finite temperatures
was studied in [15]. It should also be noted that long-
wave chromomagnetic fields in the QCD vacuum are
gluon fluctuations governing the nonperturbative
dynamics of the QCD vacuum in the phase of tempera-
ture deconfinement [16–20].
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Low-energy theorems are of crucial importance for
understanding the properties of the vacuum in the quan-
tum field theory. They (for example, the Low theorems
[21]) were established concurrently with the applica-
tion of the methods of quantum field theory to particle
physics. Within QCD, low-energy theorems were
proved in the early 1980s [22]. These theorems follow
from general symmetry properties, so that they are
unaffected by specific (and unknown) details of the
confinement mechanism. For this reason, they some-
times furnish unique information about physical pro-
cesses—that is, information that cannot be obtained by
any other methods. Furthermore, these theorems pro-
vide physically plausible limitations successfully used
in constructing effective field theories. An important
advancement in using low-energy theorems was made
in [23], where they were generalized to the case of
QCD at finite temperatures. Low-energy theorems in
the two-loop approximation of ChPT were deduced in
[14], where the vacuum energy density and the conden-
sates 〈G2〉  and 〈 〉  were also calculated as functions of
H in the same approximation.

In the present study, the free energy of the QCD vac-
uum in a magnetic field at finite temperatures is calcu-
lated within ChPT. The quark and the gluon condensate
as functions of T and H are found on the basis of the
general relations derived here. The freezing of the order
parameter for the chiral phase transition by a magnetic
field as the temperature increases is considered. The
physics behind this new phenomenon is also discussed.

2. LOW-ENERGY THEOREMS FOR QCD
IN A MAGNETIC FIELD AT FINITE 

TEMPERATURES

In the Euclidean formulation, the QCD partition
function in an external Abelian field Aµ can be repre-
sented in the form (T = 1/β is the temperature)

(1)

where the QCD Lagrangian in the background field has
the form

(2)

Here, Qq is the charge matrix for the quarks of flavor
q = (u, d). The gauge-fixing and ghost terms are omitted
in formula (2) for the sake of simplicity. The free-

qq
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energy density is determined by the expression βVF(T,
H, mq) = –lnZ. From (1), it follows that, in the chiral
limit mq  0, the quark (〈 〉) and the gluon (〈G2〉)
condensates are given by

(3)

(4)

The dimensional-transmutation phenomenon gives rise
to the nonperturbative dimensional parameter

(5)

where M is the ultraviolet-cutoff mass, αs = /4π, and
β(αs) = dαs(M)/dlnM is the Gell-Mann–Low function.
If the partition function of a system is given by (1), then
this system can be described by three dimensional
parameters (M, T, and H) in the chiral limit. Since the
free-energy density is renormalization-invariant, its
anomalous dimension is zero. For this reason, F has
only the normal (canonical) dimension of 4. By using
the renormalization invariance of Λ, we arrive at the
general formula

(6)

where f is an unknown function. From Eqs. (5) and (6),
we obtain

(7)

Taking into account expression (4), we find that the
gluon condensate can be represented as

(8)

At T = 0 and H = 0, we arrive at the well-known expres-
sion for the nonperturbative vacuum energy density in
the chiral limit. In the one-loop approximation (β =

−b0 /2π, b0 = (11Nc – 2Nf )/3), it assumes the form

(9)

Using the above relations, one can derive low-
energy theorems for QCD at finite temperatures in a
magnetic field. Strictly speaking, β depends on H, so
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that the low-energy theorems could involve electro-
magnetic corrections of order e4. Since the free energy
is independent of the scale parameter M introduced to
regularize ultraviolet divergences, we can take M2 @ H,
T2, Λ2, in which case the electromagnetic corrections
vanish for β evaluated in the leading order [β(αs) =

−b0 /2π]. Taking the aforesaid into consideration, we

introduce the field σ(τ = x4, x) and the operator  as

(10)

(11)

Differentiating expression (4) with respect to (1/ ) n
times and taking into account Eqs. (7), (10), and (11),
we arrive at

(12)

The subscript c in expression (12) indicates that only
the contribution of connected diagrams is included in
the vacuum expectation value. A similar argument can
be applied to an arbitrary operator O(x) constructed from
the quark and gluon fields, in which case we obtain

(13)

where d is the canonical dimension of the operator O.
If the operator O has an anomalous dimension as well,
we must take into account the relevant γ function.

3. FREE ENERGY OF THE QCD VACUUM 
AT H ≠ 0 AND T ≠ 0

With the aid of the above formulas, the condensates
can be determined as functions of T and H, provided
that the free-energy density is known. Here, we com-
pute the free-energy density within ChPT. At low tem-
peratures T < Tc  (Tc being the temperature of the chiral

phase transition) and weak magnetic fields,1) H <  ~
(4πFπ)2, typical momenta in vacuum loops are small,
whence it follows that it is possible to formulate ade-

1)A transition to the chiral limit implies that  ! H. It was

shown in [13, 14] that the parameter of the ChPT expansion in a
magnetic field is ξ = H/(4πFπ)2. Thus, the domain of ChPT valid-

ity in a magnetic field is /(4πFπ)2 ! ξ < 1. In the chiral limit,

the axial constant is Fπ(Mπ  0)  const ≈ 80 MeV; hence,
we have 0 < ξ < 1.

α s
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µhadr
2

Mπ
2

Mπ
2

quately the theory in question in terms of a low-energy
effective Lagrangian Leff [2, 3] that can be represented
as a power series in momenta (derivatives) and masses:

. (14)

The leading term in (14) is similar to the Lagrangian of
the nonlinear σ model in an external field Vµ and is
given by

(15)

where U is the SU(2) unitary matrix; Fπ = 93 MeV is the
pion decay constant; and the parameter Σ has the mean-
ing of the quark condensate, Σ = |〈 〉| = |〈 〉|. The
external Abelian magnetic field H directed along the z
axis corresponds to Vµ(x) = (τ3/2)Aµ(x), where the vec-
tor potential Aµ is chosen to be Aµ(x) = δµ2Hx1. The
Lagrangian Leff involves only second-order and higher
order terms in the mass difference between the u and d
quarks. Since, in the chiral limit, the quark condensate
can be expressed in terms of the first derivative with
respect to the mass of one of the quarks, the above mass
difference can be neglected, whereupon the quark mass
matrix becomes diagonal,  = .

At T < Tc and H < , the QCD partition function
(1) coincides with the partition function in the effective
chiral theory:

(16)

In the one-loop approximation, it is sufficient to retain
only second-order terms in the pion field when we use
the expansion of the Lagrangian Leff. For the exponential
parametrization U(x) = exp{iτaπa(x)/Fπ}, we arrive at

(17)

where the fields of the charged and neutral mesons (π±

and π0, respectively) are defined as

(18)

Thus, expression (16) can be recast into the form2) 

2)The partition function  describes the Bose gas of charged

(π±) and neutral (π0) mesons in a magnetic field. In terms of
Bose–Einstein condensation and the Meissner effect, the gas of
relativistic Bose particles at finite temperatures and a finite parti-
cle-number density was studied in [24–27].
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(19)

where we removed the divergent expression for the par-
tition function at T = 0 and H = 0:

(20)

Performing integration with respect to the pion fields in
(19), we obtain

(21)

where Dµ = ∂µ – iAµ is the covariant derivative and
where the symbol T indicates that the determinant is
calculated at finite temperature T according to the con-
ventional Matsubara technique. Rearranging the fac-

tors in (21) and taking into account (20), we reduce 
to the form

(22)

The effective free energy can then be represented as

(23)

where  is the free energy of the massive scalar

boson,

(24)

 is the Schwinger result for the density of the vac-

uum energy of charged scalar particles in a magnetic
field,

(25)
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and

(26)

Here, ωn are the Landau levels for the π± mesons in the
constant magnetic field H .3) 

4. QUARK AND GLUON CONDENSATES

The free energy  determines the thermodynamic
properties and the phase structure of the QCD vacuum
in a magnetic field below the temperature of the chiral
phase transition—that is, in the confining phase.

Equations (8) and (23) determine the condensate

〈G2〉  as a function of T and H. Applying the operator 

to , we find that (T) = 0 because, in the chiral

limit,   0, (T) ~ T4, and (4 – T∂/∂T) (T) =

0. Further, a straightforward calculation yields (T,
H) = 0. A nontrivial dependence of 〈G2〉  on H is entirely
due to the Schwinger term (H):

(27)

By virtue of asymptotic freedom in QCD, the β func-

tion is negative, β(αs) = –b0 /2π + …; consequently,
the gluon condensate decreases with increasing mag-
netic field H:

To determine the quark condensate as a function of
T and H, we use the Gell-Mann–Oaks–Renner relation

(28)

Substituting expression (23) into (3), differentiating it with

respect to , and going over to the limit   0, we

3)The expression for the free energy F = trln(  + (p)) for

the vacuum at H = 0 and T = 0 can readily be extended to the case
of H ≠ 0 and T ≠ 0. Without going into details, we merely indicate
that this corresponds to the substitutions p4  ωk = 2πkT (k =

0, ±1, …), ω0 =   ωn = ,

and tr  , where the degeneracy

multiplicity H/2π of the Landau levels has been taken into
account. Performing summation over the Matsubara frequencies,
we arrive at (26).
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obtain

(29)

Let us consider various limiting cases. In the strong-

field case,  @ T(λ @ 1), the main contribution to
(29) comes from the lowest Landau level (n = 0):

(30)

In the weak-field limit,  ! T(λ ! 1), the sum in (29)
can be evaluated, to a required precision, by means of
the Euler–Maclaurin summation formula. Using the
asymptotic expansion of the integral in (29) [28] for
λ ! 1, we obtain

(31)

where C =  – ln4π – , γ = 0.577… is the Euler

constant, and ζ(3) = 1.202 is the Riemann zeta func-
tion. Thus, we find that the limiting expressions for the
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quark condensate in a magnetic field for T ≠ 0 are gi-
ven by

(32)

(33)

where A = ln2 + 8C . 4.93.

Within ChPT, the quark condensate (29) at H ≠ 0
and T ≠ 0 is determined by three dimensionless param-

eters: H/(4πFπ)2, T 2/ , and λ = /T. The quantity λ
is a natural dimensionless parameter in the approxima-
tion used here. The motion of a particle (massless pion)
in a field is characterized by the radius of curvature of
its trajectory; in the magnetic field, this is the Larmor

radius RL =1/ . At the same time, another quantity
having dimensions of length, lT =1/T, arises when T ≠ 0.
It is associated with the thermal motion of the particle.
If the Larmor radius is much less than lT(λ @ 1), the
charged π± mesons in a work magnetic field acquire the

effective mass meff = , which is determined by the
lowest Landau level. The contribution from such
mesons to the chiral condensate is exponentially sup-
pressed by the Boltzmann factor exp{–meff /T}. Within
chiral thermodynamics, π± mesons in a weak magnetic
field make a standard contribution to the quark conden-
sate 〈 〉 . Moreover, there arise some additional tem-
perature and magnetic corrections. The contribution of
the neutral pion to 〈 〉(T, H) is calculated by consid-
ering that it is a massless scalar particle. The quark con-
densate 〈 〉(T, H)/〈 〉 as a function of the variables

x = T/ Fπ and y = H/(4πFπ)2 is shown in the figure.

The phase structure of the QCD vacuum under study
shows an interesting effect. From expression (29), we
can find a function H(T) such that the quark condensate
〈 〉(T, H) remains constant as the temperature T var-
ies along with the magnetic field H∗  = H(T). The quan-
tity H∗  is determined as a solution to the equation

〈 〉(T, H∗ ) – 〈 〉 = 0, where the first term on the left-

qq〈 〉 T H,( )
qq〈 〉

----------------------------

=  1 T2

24Fπ
2

------------–
H

4πFπ( )2
-------------------- 2ln

H3/4T1/2

2π( )3/2Fπ
2

-----------------------e H /T– ,–+

H  @ T ;

qq〈 〉 T H,( )
qq〈 〉

---------------------------- 1 T2

8Fπ
2

---------–
H

4πFπ( )2
--------------------A+=

– 7 HT

48πFπ
2

----------------
H

4πFπ( )2
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T2
-----ln– ,

H  ! T ,

Fπ
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H

H
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hand side is given by (29). Upon introducing the vari-

able λ = /T, this equation takes the form

(34)

By numerically solving Eq. (34), we obtain λ∗  =

0.111…. Thus, the quark condensate 〈 〉(T, H)
remains unchanged when the temperature T and the
magnetic field increase in such a way that H = 0.013T2.
It can be said that the order parameter 〈 〉 for the
chiral phase transition is “frozen” by the magnetic field.
At T = Tc . 150 MeV, we have H(Tc)/(4πFπ)2 . 2 ×
10−4 ! 1, so that the above relations remain valid up to
the point of the chiral phase transition and, hence, to the
point of the confinement–deconfinement phase transi-
tion. In the vicinity of Tc, the effective low-energy
chiral Lagrangian can no longer describe the thermody-
namic properties of the QCD vacuum adequately;
strictly speaking, it is inapplicable there.

5. CONCLUSION

It has been demonstrated that the quark condensate
is “frozen” by a magnetic field when the temperature T
and the magnetic field H are related by the equation H =
const × T2. This effect indicates that the QCD quark
condensate bears no resemblance to the condensate in
the theory of superconductivity. In Bardeen–Cooper–
Schrieffer theory, both temperature and the magnetic
field destroy the condensate of Cooper pairs. The freez-
ing of the condensate can be understood on the basis of
the general Le Chatelier’s principle.4) The external field
contributes H2/2 to the energy density of the system.
The system tends to compensate for this change and to
reduce its free energy by increasing the absolute value
of the quark condensate: ∆εv = – m|Σ(H) – Σ(0)| < 0. On
the other hand, an increase in temperature (say, owing
to heating) gives rise to processes in which heat is
absorbed via the reduction of the condensate. It is the
competition between these two processes that leads to
the freezing of Σ(T, H). Since gluons have no electric
charge, the magnetic field can affect the gluon sector of
the QCD vacuum only through the quark sector. For
this reason, Le Chatelier’s principle cannot be applied
directly to the gluon condensate. This may account for
the nonlinear magnetic-field dependence of the
decrease in the gluon condensate, ∆〈G2〉 ∝ –H2; for the
quark condensate, we have ∆Σ ∝ H.

In Nf = 2 QCD, the temperature phase transition
restoring chiral SU(2)L × SU(2)R symmetry is a second-
order phase transition. As the temperature is increased,
the order parameter Σ(T) decreases monotonically, van-
ishing at the critical point Tc. The existence of the jump
∆Σ(Tc) ≠ 0 would indicate the occurrence of a first-

4)When an external force is applied to a system at equilibrium, the
system adjust so as to minimize the effect of the applied force.

H

1
3

2π2
--------λ2 2ln–

12

π2
------λ2ϕ λ( )+ 0.=

qq

qq
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order phase transition. The order parameter at any non-
zero magnetic field H is greater than that at H = 0;
hence, Σ(T, H) – Σ(T, H = 0) > 0. Because of this, it
may turn out that the chiral phase transition in a mag-
netic field becomes a first-order phase transition. In
order to clarify the character of the phase transition, it
is necessary to investigate the behavior of the system
and of the order parameter in the fluctuation region near
Tc; however, the effects of ππ interaction are substantial
in this region. It follows that, within the approach used
here, it is impossible to establish the change in the order
of the transition, although this seems highly probable.5)

This phenomenon may prove to be of use in investigat-
ing various cosmological scenarios after the Big Bang.
For this reason, it would be interesting to continue
studying the chiral phase transition in a magnetic field.
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Abstract—We review recent developments in understanding the physics of the magnetic monopoles in unbro-
ken non-Abelian gauge theories. Since numerical data on the monopoles are accumulated in lattice simulations,
the continuum theory is understood as the limiting case of the lattice formulation. We emphasize physical
effects related to the monopoles. In particular, we discuss the monopole–antimonopole potential at short and
larger distances as well as a dual formulation of the gluodynamics, relevant to the physics of the confinement.
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1. GENERALITIES

1.1. Introduction

Magnetic monopoles are undoubtedly a fascinating
subject. Not a new one, though. The Dirac magnetic
monopole will soon be 70 years old [1]. And the first
50 years of development of the theory of the magnetic
monopoles were summarized in an illuminating review
by Coleman [2]. Thus, the question may arise why it is
instructive to come back to the monopoles now.

The main development since Coleman’s review is
that monopoles were copiously observed (for review
and further references see, e.g., [3]) and the theory can be
now confronted with the data. True, the monopoles
observed are not exactly those introduced by Dirac, but
rather their close kin, that is, monopoles of non-Abelian
gauge theories (moreover, for the sake of definiteness we
concentrate on the simplest gauge group, that is, SU(2)).
Also true, the data are mostly numerical and obtained on
the lattice, so that their interpretation in terms of the con-
tinuum theory may not be so straightforward. Neverthe-
less, it is a direct challenge to theory to explain the ample
data on the magnetic monopoles which have already
been accumulated in the lattice simulations.

Moreover, the issue of the so-to-say lattice mono-
poles is very rich and varied by itself. Let us mention
here three topics:

(a) The numerical data refer mostly to the mono-
poles with a double magnetic charge, |Qm | = 2, where
the units are fixed by the Dirac quantization condition
for the gluons. Classically, there are no stable solutions
with |Qm | = 2 [4], and, therefore, quantum effects seem
to be absolutely crucial even to introduce such mono-
poles. As a result, the theory of these monopoles is in
its infancy.

(b) There are recent measurements of the interaction
potential between the fundamental monopoles with

* This article was submitted by the authors in English.
1) Institute of Theoretical and Experimental Physics, Bol’shaya Che-

remushkinskaya ul. 25, Moscow, 117259 Russia.
2) Max-Planck-Institut für Physik, München, Germany.
1063-7788/01/6403- $21.00 © 20561
|Qm | = 1 on the lattice [5], which are introduced through
the so-called ’t Hooft loop [6]. Unlike the case of the
|Qm | = 2 monopoles, the interaction of the fundamental
monopoles is in fact quite well understood, a fact that
might not be well appreciated by the community.

(c) There exists a surprisingly simple phenomeno-
logical description of the properties of the |Qm | = 2
monopoles, which are so poorly understood on the
purely theoretical side. We mean here models like the
Abelian Higgs model which provide quantitative sup-
port to the old idea of the dual-superconductor mecha-
nism [7] and work surprisingly well at least in some
cases (for a review and further references see [3, 8]).

In this minireview, we will emphasize some new
points related to each of the items (a)–(c) listed above
and based mostly on the original papers [9–11]. The
new points, although they refer to various topics, are
unified by a common approach. The starting point is
that we consider monopoles within the fundamental
gluodynamics, while the more traditional approach is
to introduce monopoles within an effective theory
intended to mimic QCD in the infrared region [3, 8].
Also, we understand the continuum gluodynamics
rather as the limiting case of the lattice formulation. As
a result, one allows for certain singular gauge transfor-
mations which are not included in more traditional
frameworks.

1.2. Dirac Monopole and Dirac String

The Dirac monopole, by definition, is associated
with a radial magnetic field similar to the electric field

of a pointlike charge, H = . One can easily con-

struct a corresponding vector potential:

(1)

The analogy between the electric and magnetic charges
is somewhat formal, however. Namely, because of the

Qm

4π
------- r

r3
----

Ar Aθ 0, Aφ
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1 θ
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sin

--------------------------.= = =                    
001 MAIK “Nauka/Interperiodica”



562 CHERNODUB et al.

                 
conservation of the magnetic flux, the radial magnetic
field of the monopole should be supplemented by the
magnetic field of a string which brings in the flux
spread out uniformly by the radial component of the
field. Thus, we actually have

(2)

The presence of the string is exhibited, in particular, by
the explicit expression for the potential A above.

The Dirac string is unphysical and there is a number
of constraints imposed on the theory to ensure that the
string does not produce any physical effect. First, there
is the Dirac veto, which forbids any direct interaction
with the string. The best known constraint is the Dirac
quantization condition, which ensures the absence of
the Aharonov–Bohm effect for the electrons scattered
on the string:

(3)

where Qe is the electric charge of the electron and k is
an integer number. Let us also emphasize that naively
the energy of the string is infinite in the ultraviolet:

(4)

where we used the fact that the magnetic flux is quan-
tized (see above) and that the cross section of the string
denoted by (Area) should tend to zero at the end of the

calculation. Thus, we replaced (Area)–1 by .

The radial part of the magnetic field is also associ-
ated with an infinite energy:

(5)

Note that this ultraviolet divergence is linear, i.e., some-
what weaker than the divergence due to the string [see
Eq. (4)].

The infinite magnetic field of the string may have
more subtle manifestations as well. Consider interac-
tion of two magnetic monopoles with magnetic charge
±Qm placed at distance R from each other. Then, by the
analogy with the case of two electric charges, we would
like to have the following expression for the interaction
energy:

(6)

Note, however, that if we substitute the sum of the
radial and string fields for H1, 2 , then we would have an
extra term in the interaction energy:

(7)

H Hrad Hstring.+=

Qe A xd
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3
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ẽint H1 rad, H2 string, H1 string, H2 rad,⋅+⋅( )d
3
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=  +2
Qm

2

4π
------- 1

R
---.
              

In other words, the account of the string field would flip
the sign of the interaction energy! This contribution,
although it looks absolutely finite, is of course a mani-
festation of the singular nature of the string magnetic
field, |Hstring | ~ (Flux)/(Area). Note that the integral in
(7) does not depend on the shape of the string.

To maintain the unphysical nature of the Dirac
string, we should use a regularization scheme which
would allow to get rid of these singularities.

1.3. Lattice Regularization

Since the monopoles naively have divergent energy
(or action) in the ultraviolet, the regularization is a cru-
cial issue. Moreover, we would like to follow the lattice
formulation since the monopoles are observed on the
lattice.

Consider first the U(1) case. As is emphasized in
[12], the lattice formulation implies that the Dirac
string, which produces no Aharonov–Bohm scattering,
costs no action as well. The reason is very simple. The
lattice action is written originally in terms of the con-
tour integrals like (3) rather than field strength Fµν:

(8)

where the sum is taken over all the plaquettes p. Thus,
the condition (3) means absence of both the Aharonov–
Bohm effect and the quadratic divergence (4) in the lat-
tice regularization. Moreover, it is straightforward to
see that the interference term (7) also vanishes. Later,
we will also discuss the case of the Dirac string which
in the limit g  0 corresponds to negative plaquettes
in the lattice formulation. Its energy is infinite in the
continuum limit, in agreement with the naive estimate
(4). The interference term (7), however, disappears in
the lattice formulation in this case as well.

Moreover, the lattice formulation naturally leads to
the monopole–antimonopole potential (6) without the
unphysical string contribution (7).

The radial field, Hrad, may also cause problems with
infinite energy [see (5)]. The lattice regularization is not
very specific in that case, however. The role of r0 is sim-
ply played by the lattice spacing a. Thus, the probabil-
ity to find a monopole on the lattice is suppressed by the
action as

(9)

where L is the length of the monopole trajectory, and

the  factor appears because of the Dirac quantiza-
tion condition (3), which relates the magnetic charge
Qm to the inverse electric charge.

Although Eq. (9), at first sight, rules out monopoles
as physically significant excitations, the fate of the
monopoles in the U(1) case depends in fact on the value
of the charge Qe . The point is that the entropy factor

S Re iQe Aµ x
µ

d

∂p

∫° 
 
 

,exp
p

∑=

e
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2–×– L/a( ),exp∼

Qe
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grows also exponentially with the length of the mono-
pole trajectory:

(10)

where the const' is a pure geometric factor, not related
to any coupling constant like Qe. As a result, for Qe ~ 1,
there is a phase transition corresponding to the conden-
sation of the monopoles. This phase transition, which is
well studied on the lattice, is the first and striking exam-
ple of importance of the UV regularization in the non-
perturbative sector. Indeed, once the UV divergence (4)
is removed by the lattice regularization, the monopoles
can modify the physics completely (for further com-
ments see [13]).

1.4. Classification of Monopoles
in Non-Abelian Theories

From now on, we will discuss monopoles in unbro-
ken non-Abelian gauge theories, having in mind prima-
rily gluodynamics, i.e., quantum chromodynamics
without dynamical quarks. Moreover, for the sake of
simplicity, we will consider only the SU(2) gauge
group.

A natural starting point to consider monopoles in
non-Abelian theories is their classification. There are
actually a few approaches to the monopole classifica-
tion, and it is important to realize both similarities and
differences between them.

The dynamical, or U(1) classification. Within this
approach [14], one looks for monopole-like solutions
of the classical Yang–Mills equations. Here, by “mono-
pole-like” solutions, one understands potentials which
fall off as 1/r at large r [see Eq. (1)]. The basic finding
is that there are no specific non-Abelian solutions and
all the monopoles can be viewed as Abelian-like
embedded into the SU(2) group. Moreover, using the
gauge invariance, one can always choose the corre-
sponding U(1) group as, say, the rotation group around
the third direction in the color space. According to this
classification, the monopoles are characterized by their
charge with respect to a U(1) group and may have,
therefore, charges,

(11)

The topological, or Z2 classification. The Z2 classi-
fication [15] is based entirely on topological arguments.
Namely, independent types of monopoles can be enu-
merated by considering the first homotopy group of the
gauge group. The SU(2) gauge group is trivial since
π1(SU(2)) = 0, while in the case of the SO(3), however,

(12)

and there exists a single nontrivial topological mono-
pole. We will denote the magnetic charge of such
monopoles as |Qm | = 1. Note, however, that the charges
Qm = ±1 are indistinguishable in fact. As for the charges

Entropy( ) +const' L× /a( ),exp∼

Qm 0 1 2 … ., , ,=

π1 SU 2( )/Z2( ) Z2=
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Qm = 2, they are equivalent, from this point of view, to
no magnetic charge at all.

The topological classification (12) is readily under-
stood if one tries to enumerate various types of the
Dirac strings whose end points represent monopoles
under consideration. Then, there is only one nontrivial
string, that is, the one for which Eq. (3) is satisfied for
gluons but not for quarks. Namely, because the U(1)
charge associated with gluons is twice as big as that of
the particles in the fundamental representation
(quarks), we may have

(13)

and such a string is not visible for the isospin-one par-
ticles. On the other hand, the standard plaquette action
is based on the phase factor evaluated for particles in
the fundamental representation. This means, in turn,
that the Dirac string pierces the negative plaquettes.
This observation is the basis for introducing the |Qm| =
1 monopoles via the ’t Hooft loop: one changes the sign
of β (β ≡ 4/g2) on a world sheet. The boundary of this
sheet corresponds to the end points of the Dirac string,
or the monopole trajectory.

1.5. Z2 Monopoles

In principle, the U(1) and Z2 classifications are dif-
ferent. Indeed, while the U(1) classification allows for
any integer charge, the Z2 classification leaves space
only for a single nontrivial charge:

(14)

The reconciliation of the two classifications is that the
U(1) solutions with |Qm | ≥ 2 are in fact unstable because
of the presence of massless charged vector particles
(gluons) [4]. The instability of the solutions implies
that, even if the external sources with |Qm | ≥ 2 were
introduced into the vacuum state of the gluodynamics,
charged gluons would fall onto the center because of
the strong magnetic interactions. Moreover, one can
imagine that, as the result of this instability, the charged
fields A± are built up as well.

In a somewhat related way, one can demonstrate the
apparent irrelevance of the |Qm | = 2 monopoles by pro-
ducing an explicit non-Abelian field configuration
which looks like a |Qm | = 2 monopole in its Abelian part
but has no SU(2) action at all [9]. This field configura-
tion is a Dirac string with open ends, which correspond
to the monopole–antimonopole pair separated by the
distance R. In more detail, such a configuration is gen-
erated from the vacuum by the following gauge rotation
matrix:

(15)
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where ϕ is the angle of rotation around the axis con-
necting the monopoles and AD is the U(1) potential rep-
resenting pure Abelian monopole pair:

(16)

where z± = z ± R/2, ρ2 = x2 + y2, and  =  + ρ2. Note
that the action associated with the Dirac string is con-
sidered in this case zero, in accordance with the lattice
version of the theory (for details see [9]).

In this example, the monopoles with |Qm | = 2 are a
kind of pure gauge field configurations carrying no
action. Note that the Abelian flux is still transported
along the Dirac string and is still conserved for the
radial field. What is lost, however, is the relation
between the Abelian flux and action. In the Abelian
case, nonvanishing flux means nonvanishing magnetic
field and nonvanishing action since the action density is

simply H2. Now, the action is ( )2 and the Abelian

part of the  can be canceled by the commutator
term. This is exactly what happens in the example (15)
above.

It is somewhat more difficult to visualize dynami-
cally the equivalence of the Qm = ±1 monopoles, also
implied by the Z2 classification. The mechanism mixing
the Qm = ±1 solutions seems to be the following. Imag-
ine that we start with, say, the Qm = +1 solution. Then,
a Dirac string carrying the flux corresponding to the
Qm = –2 can be superimposed on this solution. It is
important at this point that such a Dirac string costs no
action (or energy). Then, the radial magnetic field can
also change its direction since it does not contradict the
flux conservation any longer. In a related language, one
could say that the |Qm | = 2 monopoles are condensed in
the vacuum and that is why the magnetic charge can be
changed freely by two units.

As far as interaction of two |Qm| = 1 monopoles is
concerned, one might expect that they would behave as
a monopole–antimonopole pair. Indeed the monopole
and antimonopole would attract each other and thus
represent the lowest energy state of the system.

1.6. Conclusions 1

Thus, the physics of the monopoles in the first
approximation turns out to be very simple.

Namely, there exist only monopoles with |Qm | = 1 ≡
2π/g, where g is the coupling constant of the non-Abe-
lian SU(2) theory. The monopoles are infinitely heavy
and can be introduced only as an external object
through the ’t Hooft loop. Their interaction is Abelian-
like:

(17)

Aµdxµ
1
2
---
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r+
----

z–

r–
----– 

  dϕ AD z ρ,( )dϕ ,≡=

r±
2

z±
2

Fµν
2

Fµν
3

Vmm

Qm
2

4πR
----------–

π
g

2
R

---------,–= =
where R is the separation between the monopoles.
Clearly enough, this first, or classical, approxima-

tion falls far short of an adequate description of the
empirical data on the monopoles (see Introduction).
Thus, we are invited to go into more advanced
approaches which we would try to introduce step by step.

2. LAGRANGIAN APPROACH

2.1. The Zwanziger Lagrangian

There is a long standing interest in constructing the
dual gluodynamics (for a review and further references
see [8]). The dual gluon, by definition, interacts with
monopoles. The motivation is to realize in the field the-
oretical language the dual superconductor model of the
quark confinement [7] according to which the quarks
are connected at large distances by an Abrikosov-type
vortex [16]. The key element is the construction of the
non-Abelian monopoles, which are usually modeled
after the ’t Hooft–Polyakov solution. Namely, one
introduces first non-Abelian dual gluons interacting
with Higgs fields and then assumes condensation of the
Higgs fields, which mimics the condensation of the
monopoles. In the realistic case of the SU(3) gauge
group, one needs an octet of dual gluons and three octets
of the Higgs fields, all of them understood in terms of
effective field theory valid in the infrared region.

While such a construction might be viable as an
effective theory, we need in fact tools to describe inter-
action of non-Abelian monopoles at arbitrary short dis-
tances as well [9]. Indeed, in the lattice version of the
theory, external monopoles can be introduced via the
’t Hooft loop operator [6], and in the continuum limit
these monopoles are pointlike. Thus, we are encour-
aged to consider the dual gluodynamics at short dis-
tances, or at the fundamental level.

It is natural to try a Lagrangian approach to the dual
gluodynamics. Indeed, in the case of the same ’t Hooft
loop operator, it is known that its expectation value
depends only on the boundary and not on the shape of
the Dirac string. Thus, it seems natural to introduce a
dual gluon which would interact directly with pointlike
monopoles. In the context of electrodynamics, the idea
is of course very old and goes back to papers in [17].
There are successes and problems inherent to this
approach (for a review see [18]).

A well-known example of a Lagrangian which
describes interaction of U(1) gauge fields with Abelian
pointlike monopoles is due to Zwanziger [17]:

(18)

LZw A B,( ) 1
2
--- m ∂ A∧[ ]⋅( )2 1

2
--- m ∂ B∧[ ]⋅( )2

+=

+
i
2
--- m ∂ A∧[ ]⋅( ) m * ∂ B∧[ ]⋅( )

–
i
2
--- m ∂ B∧[ ]⋅( ) m * ∂ A∧[ ]⋅( ) i jeA i jmB,+ +
PHYSICS OF ATOMIC NUCLEI      Vol. 64      No. 3      2001



MAGNETIC MONOPOLES, ALIVE 565
where je  and jm are electric and magnetic currents,
respectively; mµ is a constant vector; m2 = 1; and

At first sight, we have introduced two different vector
fields, A and B, to describe interaction with electric and
magnetic charges, respectively. If it were so, however,
we would have solved a wrong problem because we
need to have a single photon interacting with both elec-
tric and magnetic charges. And this is what is achieved
by the construct (18). Indeed, the action (18) is not
diagonal in the A and B fields and one can convince
oneself that the form of the bilinear in A and B interfer-
ence terms in (18) is such that the field strength tensors
constructed on the potentials A and B are in fact related
to each other:

(19)

This means in turn that there are only two physical
degrees of freedom corresponding to the transverse
photons which can be described either in terms of the
potential A or B. Topological excitations, however, can
be different in terms of A and B.

The physical content of (18) is revealed by the prop-
agators for the fields A and B. In the α gauge, one can
derive

(20)

The propagators should reproduce, as usual, the classi-
cal solutions. And indeed, the 〈AA〉  and 〈BB〉  propaga-
tors describe the Coulomb-like interaction of two
charges and magnetic monopoles, respectively, while
the 〈AB〉  propagator reproduces interaction of the mag-
netic field of a monopole with a moving electric charge.
The appearance of the poles in k · m is a manifestation
of the Dirac strings.

To summarize, the Zwanziger Lagrangian in elec-
trodynamics [17] reproduces the classical interaction of
monopoles and charges. Upon the quantization, it
describes the correct number of the degrees of freedom
associated with the photon.

2.2. Dual Gluon as an Abelian Vector Field

Now, if we approach the problem of constructing a
Zwanziger-type Lagrangian for the dual gluodynamics,
we immediately come to a paradoxical conclusion that
the dual field, if any, is Abelian. Indeed, monopoles
associated with, say, SU(N) gauge group are classified

A B∧[ ]µν AµBν AνBµ,–=

m A B∧[ ]⋅( )µ mν A B∧[ ]µν,=

* A B∧[ ]µν
1
2
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----------– 
  ,= =
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according to U(1)N – 1 subgroups [14] and might be real-
ized as a pure Abelian objects. Thus, there is no place
for a non-Abelian dual gluon because the monopoles
do not constitute representations of the non-Abelian
group.

The function of the classical Lagrangian is, first of
all, to reproduce the classical interactions of the mono-
poles and charges. It is rather obvious that the potential
(17) can be derived in the classical approximation from
the Lagrangian:

(21)

where a = 1, 2, 3 is the color index; jm is the magnetic

current; and  is the non-Abelian field strength ten-
sor. The Lagrangian (21) also contains vector field na,
n2 = 1 in the adjoint representation, and the antisym-
metric tensor Gµν is the ’t Hooft tensor [19]:

(22)

Let us add a few comments on the meaning and rules of
using the Lagrangian (21).

(a) First, if the magnetic current is vanishing, jm = 0,
then the integration over the field B reproduces the stan-
dard Lagrangian of the gluodynamics.

(b) As far as the quantization is concerned, the
Lagrangian (21) reproduces the correct degrees of free-
dom of the free gluons. Indeed, in the limit g  0 and
for na = δa, 3, the Lagrangian (21) becomes

(23)

which is essentially the Zwanziger Lagrangian (18).
Quantization at this point is the same as in the case of a
single photon.

(c) Already in the Zwanziger example (18), we have
seen that the fields that are mixed up in the Lagrangian
have a common source. Namely, in case of the electro-
dynamics, ∂*F(A) = ∂F(B) = jm . Since it is known [19]
that the monopoles in non-Abelian theories serve as a
source for the ’t Hooft tensor (22), one expects from the
very beginning that in the case of the gluodynamics the
(dual) field strength tensor built up on the dual gluon
field B is mixed up with the ’t Hooft tensor constructed
in terms of the gluon filed A. And, indeed, this is true
for (21).
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(d) The emergence of the vector na is of crucial
importance in the Lagrangian (21). The point is that the
origin of the vector na goes back to choosing the color
orientation of the monopoles. As is emphasized above,
the monopole solutions are Abelian in nature, which
means, in particular, that they can be rotated to any
direction in the color space by gauge transformations.
Thus, picking up a particular na is nothing else but
using the gauge fixing freedom. Therefore, we can
either average over the directions of na or fix na but
evaluate only gauge invariant quantities, like the Wil-
son loop (note somewhat similar remarks in [20]).

(e) The Z2 nature of the monopoles is manifested in
the freedom of changing na  –na, Bµ  –Bµ.
Indeed, under such transformation, the monopole with
the charge Qm = +1 is transformed into a monopole with
Qm = –1 and vice versa. In the language we used above,
such a transformation corresponds to adding a Dirac
string with a double magnetic flux. We see that the aver-
aging over ±na is a part of the overall averaging over all
possible embedding of the U(1) into the SU(2) gauge
group.

An apparent application of (21) would be evaluating
the running of the coupling g in the expression (17).
And, indeed, exploiting the Lagrangian (21), one can
approach the problem of the running of the coupling in
a way similar to the case of pure electrodynamics (for a
review and further references, see [18]). We comment
on this approach below.

2.3. Radiative Corrections

We will consider now the radiative corrections to the
Coulomb-like interaction (17) at short distances. Obvi-
ously enough, one would expect that the radiative cor-
rections result in the standard, non-Abelian running of
the coupling g2. This is indeed our main conclusion.
Moreover, since for a constant vector na the non-Abe-
lian monopole essentially coincides with the Dirac
monopole, there is not much specific about the deriva-
tion of the running of the coupling. And, indeed, our
considerations overlap to a great extent with those
given in the original papers [21, 22] and in the reviews
[2, 18]. Still, we feel that it is useful to present the argu-
ments, maybe in a new sequence, to emphasize the
points crucial for our purposes.

Let us emphasize from the very beginning that the
evaluation of the radiative corrections addresses in fact
two different, although closely related, problems—that
is, running of the coupling and stability of the classical
solutions. Both aspects are unified, of course, into eval-
uation of a single loop in the classical background.
However, the running of the coupling can be clarified
by keeping track of the ultraviolet logs, lnΛUV alone,
and is universal since in the ultraviolet all the external
fields can be neglected. Therefore, the coefficient in
front of lnΛUV can be found by evaluating the loop
graph with two external legs, i.e., the graph correspond-
ing to the standard polarization operator in perturbation
theory. This is true despite the fact that the monopole
field is strong (i.e., the product of the magnetic and
electric coupling is of order of unity). On the other
hand, the stability of the classical solution is decided by
the physics in the infrared. Here, one needs to consider
the particular dynamical system, monopoles in our
case, and the fact that the magnetic charge is of order
1/g can be crucial.

Consider first the running of the coupling. More-
over, for the sake of definiteness, we concentrate on the
Dirac monopole with the minimal magnetic charge
interacting with electrons and in the one-loop approxi-
mation [18, 21–23]. The crucial point here is that only
loops with insertion of two external (i.e., monopole)
fields can be considered despite the fact that there is no
perturbative expansion at all. Indeed, considering more
insertions makes the graphs infrared sensitive, with no
possibility for lnΛUV to emerge.

Then, the evaluation of, say, first radiative correc-
tion to the propagator 〈BµBν〉  in the Zwanziger formal-
ism (20) seems very straightforward and reduces to tak-
ing a product of two 〈AB〉  propagators and inserting in
between the standard polarization operator of two elec-
tromagnetic currents. The result is [23]

(24)

and we neglect the electron masses so that the infrared
cutoff is provided, in the logarithmic approximation, by
the momentum k.

At first sight, there is nothing disturbing about the
result (24). Indeed, we have a renormalization of the
original propagator, which is to be absorbed into the
running coupling, and a new structure with the factor
(k · m)–2, which is nonvanishing, however, only on the
Dirac string. The latter term would correspond to renor-
malization of the Dirac string self-energy, which we do
not follow in any case since it is included in the self-
energy of the external monopoles. What is actually dis-
turbing is that according to (24) the magnetic coupling
would run exactly the same as the electric charge,

violating the Dirac quantization condition.
The origin of the trouble is not difficult to figure out.

Indeed, using the propagator 〈AB〉  while evaluating the
radiative corrections is equivalent, of course, to using
the full potential corresponding to the Dirac monopole

. Then, switching on the interaction with electrons

would bring terms like . Since AD includes the
potential of the string, electrons do interact with the
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Dirac string and we are violating the Dirac “veto,”
which forbids any direct interaction with the string.

Let us demonstrate that, indeed, the incorrect treat-
ment of the Dirac string changes the sign of the radia-
tive correction. This can be done in fact in an amusingly
simple way. First, let us note that it is much simpler to
remove the string if one works in terms of the field
strength tensor, not the potential. Indeed, we have H =
Hrad + Hstring, while in terms of the potential A any sep-
aration of the string would be ambiguous (see Eq. (1)).

Thus, we start with relating the potential, or energy,
to the interference term in the H2 field:

(25)

Now, it is not absolutely trivial how we should under-
stand the product H1 · H2. Indeed, we emphasized in
Subsection 1.2 that the string field is to be removed
from this interference term [see Eq. (7)]. Thus, in the
zero, or classical, approximation we have

(26)

However, if we use the standard technique of an exter-
nal field,

(27)

and substitute (1) as the classical background, then the
first radiative correction would yield the product of the
total H1 · H2, which also includes the string contribu-
tion.3) Indeed, the result in the logarithmic approxima-
tion would be as follows:

(28)

where at the last step we have used the observation (7).
Now, it is clear how we could ameliorate the situa-

tion. Namely, to keep the Dirac string unphysical, we
should remove the string field from the expression (28),
which arises automatically if we use the propagators
(20) following from the Zwanziger Lagrangian. Thus,
we introduce

(29)

and change H1 · H2 in the expression (28) into (29), so
to say, by hand. The justification is that we should
remove the effect of the string field from any observ-
able.

Then, we reverse the sign of the radiative correction,
and the final result is

(30)

3)At this point, we assume in fact that ΛUV is smaller than the
inverse size of the string, which is convenient for our purposes
here. Other limiting procedures could be considered as well, how-
ever.
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One might wonder how it happens that the cou-
plings in the electric and magnetic potential run in
opposite ways. Indeed, now we reduced the product
H1 · H2 to exactly the same form as the product E1 · E2
in the case of two electric charges (since the radial mag-
netic and electric fields are the same, up to a change of
the overall constants). The resolution of the paradox is
that the renormalization of the electric and magnetic
fields are indeed similar in the language of the
Lagrangian. However, the small corrections to the
Lagrangian and Hamiltonian are related as

(31)

Since E2 and H2 enter with the same sign into the expres-
sion for the Hamiltonian and with the opposite signs into
the Lagrangian, Eq. (31) implies that the runnings of the
couplings in the electric Ve and magnetic Vm potentials
are opposite in sign. This is, of course, in full agreement
with expectations since V

 

e

 

 ~ 

 

g

 

2
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m

 

 ~ 

 

g

 

–2

 

.
Thus, it is not difficult to derive the running of the

magnetic coupling following only the ultraviolet loga-
rithm, ln

 

Λ

 

UV

 

. Note, however, that the same arguments
would go through without change if we started with,
say, monopoles with 

 

Q

 

m

 

 = 2. But such monopoles are
unstable [4], and this is a much more drastic effect than
the would-be running of the coupling. There are also
more subtle mechanisms which can be brought in by
radiative corrections. In case of the same Dirac mono-
pole interacting with electrons [24], consideration of
the modes reveals that the Hamiltonian is in fact non-
Hermitian. As a result, the classical field approximation
is not adequate, and one should consider the corre-
sponding field theory, or the monopole catalysis [25].

Thus, to investigate the stability of the classical
solution one has, generally speaking, to consider all
orders in 

 

g

 

e

 

g

 

m

 

 ~ 1. It is known that single monopoles
with 

 

Q

 

m

 

 = 1 are stable. The stability of the monopole–
antimonopole system, which we are interested in, has
never been investigated analytically in detail because of
the complexity of the problem. However, there is no
known mechanism which could cause instability of the
classical monopole–antimonopole solution. Moreover,
we checked numerically that the classical solution is
indeed stable [9].

 

2.4. Why the “Right Way” Is Correct

 

Thus, our exercise with evaluating the running of
the magnetic coupling has brought mixed results. On
one hand, we were able to derive that the product of
electric and magnetic coupling constants is not renor-
malized, as one would expect. On the other hand, to
derive this, we had to go actually beyond the
Lagrangian approach and remove the effect of the mag-
netic field of the string. Now we ask the next question,
why this removal was the correct procedure.

Let us reexamine the grounds for the Lagrangian
approach, in their generality. Any monopole involves

δL δH .–=
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also a Dirac string and, as a result, a world sheet, not
just particle trajectories. If we stop here, then the con-
clusion would be that there is no Lagrangian approach
to the problem. However, we are aware that the ’t Hooft
loop operator depends only on its boundary, which is
the monopoles’ trajectory, jm . And this is the real basis
for the hopes for the Lagrangian formulation. Now, we
see that the Dirac veto is not respected by the
Lagrangian formulation and, therefore, the possibility
arises that the world sheet swept by the Dirac string is
still somehow important. Thus, we will outline in this
subsection an approach [9] which is based on deriva-
tion of a continuum analog of the lattice ’t Hooft loop
operator and avoids any direct use of Lagrangians.

The general one-plaquette action of SU(2) lattice
gauge theory (LGT) can be represented as

(32)

where g is the bare coupling, ∂p is the boundary of an
elementary plaquette p, the sum is taken over all p, and
U[∂p] is the ordered product of link variables Ul along
∂p. In particular, if Sp(x) = x, then (32) is the standard
Wilson action. The exponent of the lattice field strength
tensor Fp is defined in terms of U[∂p]:

(33)

where  = Faτa/2, |F | = , and we define  =

/ |Fp | for |Fp | ≠ 0, while  is an arbitrary unit vector
for |Fp | = 0.

The lattice action (32) depends only on cos[1/2|Fp |].
Therefore, the action of the SU(2) LGT possesses not
only the usual gauge symmetry, but allows also for the
gauge transformations which shift the field strength
tensor by 4πk, |Fp |  |Fp | + 4πk, k ∈  Z:

(34)

Thus, the symmetry inherent to the lattice formula-
tion can be represented as

(35)

The symmetry (35) is absent in the conventional con-

tinuum limit, d4x. Note that in the continuum

limit,  becomes a singular two-dimensional structure

, which represents the Dirac string world sheet.

So far, we discussed an invisible Dirac string, which
is nothing else but a generalized (or singular) gauge
transformation. The Dirac string corresponding to the
fundamental monopole corresponds to the phase factor
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–1, and we can obtain, therefore, an expression for a
continuum analog of the ’t Hooft loop by substituting

(36)

In this way, we come to the following definition of the
’t Hooft loop operator in the continuum:

(37)

(38)

where the surface  spanned on the contour # is
assumed to be nonintersecting. The unit three-dimen-
sional vector field na(σ), n2 = 1 is defined on the world
sheet:

(39)

(40)

Therefore, na(σ) is not an independent variable; it is
completely determined by the components of the field

strength tensor . On the set of points where t · *Fa =
0, the direction of na(σ) is arbitrary. It can be shown
[10] that Eqs. (37)–(40) define the correct ’t Hooft loop
operator, the expectation value of which depends only
on the contour #, not on the particular position of the
surface Σ# .

Consider now the equations of motion in the pres-
ence of the ’t Hooft loop operator:

(41)

which should be supplemented by the Bianchi identi-
ties:
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To appreciate the meaning of the equation of motion

(41), let us choose the gauge such that  has a con-

stant color orientation characterized by the vector .
A particular solution of (41) may be found within the

anzatz  = Aµ, for which Eq. (41) reduces to
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corresponds to the gauge potential of an Abelian mono-
pole current ∂Σ embedded into the SU(2) group. Thus,
Σµν is the Dirac world sheet.

Derivation of the classical equations of motion (43)
is the first step in deriving the interaction of the funda-
mental monopoles outside any Lagrangian framework.

One could consider along these lines also the radia-
tive corrections [11]. We will not go into detail here, but
let us mention how it comes about that the “Dirac veto”
is observed and virtual particles do not interact with the
Dirac string. We will substantiate this point here on the
example of the spin interaction. Since the Yang–Mills
quanta possess spin, there exists an interaction which is
a generalization of the nonrelativistic expression s · H.
In particular, if there exists a classical field directed in

third direction in the color space, ( )cl, then its inter-

action with the quantum charged fields  contains the
term

(45)

In the Zwanziger formalism, the ( )cl means the
whole magnetic field, including the field of the string.
Then, the interaction (45) brings the term H1, string ·
H2, rad on the level of the quantum corrections. As we
emphasized in Subsection 1.2, this term is actually pro-
portional to H1, rad · H2, rad, which is responsible for the
coupling running. In this way, the term H1, string · H2, rad,
if it arises, brings in a “wrong” sign of the radiative cor-
rection.

On the other hand, in our formulation of the contin-
uum analog of the ’t Hooft loop operator [see Eq. (37)],
there is no spin interaction of the virtual particles with
the string magnetic field. It is crucial to prove [11] that
the coupling governing the monopole–antimonopole
interaction indeed runs as g–2.

2.5. Conclusions 2

We considered in fact two different points. First, we
argued that the dual gluon is a U(1) gauge boson. The
SU(2) invariance is to be maintained either by integrat-
ing over all the possible embedding of the (dual) U(1)
into SU(2) or by constraining calculations to gauge
invariant quantities, like the Wilson loops.

Second, we discussed how far one can go with a
Lagrangian formulation of the dual gluodynamics a la
Zwanziger. To test the Lagrangian approach, we evalu-
ated the running of the coupling in the monopole–anti-
monopole potential. The conclusion is that one can get
the correct running of the coupling by imposing the
Dirac veto, which forbids the interaction of virtual par-
ticles with the Dirac string. This requirement is not
inherent to the Lagrangian approach (the same is true
for the Zwanziger Lagrangian in the U(1) case), how-
ever. It can be derived by studying the continuum ana-
log of the ’t Hooft loop operator.
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3. MONOPOLES WITH Qm = 2

3.1. Qm = 2 Monopoles as Quantum Objects

So far, we discussed the fundamental monopoles
|Qm | = 1, which can be visualized as classical infinitely
heavy objects. Because of infinite mass, they can be
used only as probes of the QCD vacuum but play no
dynamical role by themselves. The monopoles with the
double charge |Qm | = 2 are very different. As discussed
above, they do not exist on the classical level. On the
other hand, there exist very simple arguments that they
can play dynamical role on the quantum level. As far as
the fundamental Lagrangian is concerned, the only role
of the quantum corrections is the running of the non-
Abelian coupling. In particular, if we consider a lattice
coarse enough, then gSU(2) becomes of order unity.
Obviously, the same coupling governs the physics asso-
ciated with any U(1) subgroup of the SU(2). However,
if the coupling gU(1) becomes of order unity, then there
is a phase transition associated with the monopole con-
densation [12]. Thus, one can argue that the running
will be stopped by the monopole condensation, if not
by something else already at smaller values of gSU(2).

Thus, it is very natural to assume that the monopole
condensation also occurs in QCD since the running of
the coupling allows one to scan the physics at all the
values of gSU(2) until one runs into a phase transition.

However, even if one accepts such speculations,
there remains a very important unresolved question.
Namely, it is not clear which U(1) subgroup of the full
non-Abelian group is to be selected as the classification
group for the monopoles. The most common approach
here is to rely on the empirical data. In a way, it is
forced on us since the phase transition is expected to

happen at  ~ 1, where analytic approaches are
hardly possible. From the lattice simulations, it is
known that the monopoles in the Maximal Abelian pro-
jection appear to be the most relevant (see [3] for a
review and further references).

Instead of reviewing this material once more—
which would take us far beyond the scope of the present
article—we will highlight some features of a new kind
of monopoles introduced in [10]. The basic idea behind
this construction is to make monopoles look like geo-
metric objects as much as possible.

3.2. “Geometric” Monopoles

The construction of the new kind monopoles is done
in few steps, which we will briefly outline now.

(i) The usual starting point to introduce monopoles
is to fix some U(1) for the whole lattice and then look
for the Dirac strings and monopoles with respect to this
U(1). The starting point of [10] is somewhat different.
Namely, it is the observation that each Wilson loop
defines in a natural way its own U(1). Indeed, turn back
to the expression (33) for the plaquette action, which is
actually true for any Wilson loop. Then, it is clear that

gSU 2( )
2
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each Wilson loop defines the vector  and the “natu-
ral” U(1) is the group of rotation around this vector (in
the color space). In this way, one can define a U(1)
group for each plaquette. The definition of the U(1)
subgroup varies from one plaquette to another, empha-
sizing the non-Abelian nature of the underlying theory.

(ii) The plaquette action is 1/2cosφ and is invariant
under φp  φp + 2πk, as is emphasized in Subsec-
tion 1.3. Now to detect the Dirac strings we should be
able to somehow define the integer k. For a plaquette,
the natural decomposition is

(46)

where the phases φi (i = 1, …, 4) are associated with the
corresponding links. The decomposition (46) comes
about naturally in the basis of the coherent states.
Indeed, for a particular coherent state, the whole evolu-
tion may be reduced to a phase factor:

(47)
Moreover, the coherent states can be explicitly con-
structed in terms of the link matrices (for details and
further references see [10]). As a result, for any given
lattice fields configuration, one can determine k and
detect the Dirac strings in this way. The monopoles are
defined then as the end points of the strings.

(iii) The phase φ(t) can in fact be decomposed into the
dynamical and Berry phase. It is useful for this purpose
to introduce a single-valued state vector | 〉 defined as

(48)
where T is the period of the motion so that at t = T the
system comes back to the same point in the parameter
space as at the moment t = 0. Then,

(49)

where λi are parameters, λi(T) = λi(0), and C is a closed
contour in the parameter space.

3.3. Choice of the Gauge and the Numerical Results

The steps (i)–(iii) described above fully determine
monopoles as geometric objects. As a mathematical
construct, it certainly appears very appealing. However,
from the physical point of view, the crucial observation
is the gauge dependence of the monopoles constructed
in this way. As a result, the monopoles are devoid, gen-
erally speaking, of any physical meaning. It is amusing
that one can actually specify the conditions for the
monopoles to be physical objects. In particular, the
monopole density ρ should satisfy the renormalization-
group equation:

(50)

F̂p

φp φ1 φ2 φ3 φ4,+ + +=

ψ t( )| 〉 e
iφ t( ) ψ 0( )| 〉 .=

ψ̃
ψ̃ T( )| 〉 ψ̃ 0( )| 〉 ,=

φ T( ) δ γ+=

=  ψ̃〈 |H ψ̃| 〉
0

T

∫– i ψ̃
λ i∂
∂ ψ̃ λ i

,d

C

∫+

ρ const β153/121× 9π2

11
--------β– 

  ,exp=
where β ≡ 4/g2. The condition (50) is a very strong con-
straint, and there is not much surprise that the mono-
poles defined according to the procedure outlined in the
preceding subsection, generally speaking, do not sat-
isfy (50).

To continue with the physics, we need a physically
motivated choice of the gauge. At first sight, such a
choice is impossible. However, one can argue [10, 26]
that the Lorentz gauge is a proper gauge. The Lorentz
gauge on the lattice is defined by the requirement that
the functional

(51)

is minimal on the gauge orbit (Ul denote the link matri-
ces). In the naive continuum limit, (51) reduces to R =

1/4 .

The logic behind the choice of (51) is as follows. In
the continuum limit, both the Dirac strings and mono-

poles correspond to singular gauge potentials . It is
easy to imagine, therefore, that one can generate an
arbitrary number of spurious strings and monopoles by
going to arbitrary large potentials A, so to say, inflated
by the gauge transformations. On the other hand, by
minimizing potentials, one may hope to squeeze the
number of the topological defects to its minimum and
these topological defects may be physically significant.

And, indeed, the numerical simulations indicate that
the geometric monopoles defined in the Lorentz gauge
are physical objects; i.e., their density satisfies the con-
dition (50). There are also other indications that the
geometric monopoles are physical [10]. For example,
there is an excess of the non-Abelian action associated
with them.

3.4. Conclusions 3

Monopoles with Qm = 2 unify properties of field-
theoretical and statistical objects. Namely, on one hand,
the monopoles are defined locally in terms of the link
matrices. However, the link matrices are gauge depen-
dent, and existence or nonexistence of a monopole at a
particular point is devoid of physical meaning for this
reason. On the other hand, if one introduces gauge fix-
ing in a physically reasonable way, the statistical prop-
erties of the monopoles, such as their density, satisfy
very nontrivial renormalization-group constraints and
demonstrate their physical significance.

4. PHENOMENOLOGICAL APPLICATIONS

4.1. The Effective Lagrangian and the Casimir Scaling

The standard way to develop a phenomenology is to
assume that the monopoles condense. We will follow
suit and modify the Zwanziger Lagrangian (21) by add-

R 1
1
2
---tr Ul– 

 
l

∑=

Aµ
a( )2∫

Aµ
a
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ing the effective Higgs interaction where the role of the
Higgs field is played by the monopole field φm:

(52)

where SHiggs is the standard action of the Abelian Higgs
model. The vacuum expectation value of the Higgs, or
monopole, field is, of course, of order ΛQCD .

Despite its apparent simplicity, Eq. (52) is highly
speculative. Namely, it unifies, so to say, fundamental
gluons, Aa; their dual counterpart B, which is an Abe-
lian gauge boson; and φm, which is presumably an
effective scalar field. One may justify the use of (52) by
assuming that the effective size of the monopoles with
Qm = 2 is in fact numerically small, although generi-
cally it is of order ΛQCD. While in our presentation here
we follow mostly the lines of [9, 11, 27], let us note that
similar consequences arise within the models [28, 29]
also introducing a new mass scale.

What is also specific about the Lagrangian (52) is
that the dual gluon is a U(1) gauge boson. The color
symmetry is maintained by averaging over all possible
embeddings of the (dual) U(1) into SU(2) (see the dis-
cussion in Subsection 2.2). The confinement mecha-
nism inherent to (52) is the formation of the Abriko-
sov–Nielsen–Olesen string, which can be considered
on the classical level. More generally, the Lagrangian
(52) exhibits the Abelian dominance in the confining
region which is the dominance of Abelian-like field
configurations in the full non-Abelian theory. This
dominance is common to all the realizations of the
dual-superconductor model of confinement [7] and is
strongly supported by the lattice data [3]. What we
avoid, however, is the breaking of SU(2) to U(1) which
is inherent to the models [8] which start with the dual
gluons in the adjoint representation and then add effec-
tive-isospin-one Higgs fields. Such models have well-
known principal difficulties with, say, describing inter-
action of the adjoint sources (see, e.g., [30]).

On the contrary, the model (52) can be applied to
consider the static interaction of the sources belonging
to various representations of SU(2). One of the basic
facts here, established through the numerical simula-
tions on the lattice [31], is the so-called Casimir scal-
ing. The phenomenon of the Casimir scaling is that the
static potential is described by a sum of the Coulomb-
like and linear terms:

(53)

where j labels the representation (we consider the
SU(2) case) and σ is independent of j. Note that at large
distances one expects qualitatively different behavior
of the potential for integer and half-integer spins j
because of the string breaking in case of the integer rep-
resentations. However, at presently measured dis-
tances, Eq. (53) turns to be a very good approximation
to the potential.

Seff Sdual A
a

B,( ) SHiggs B φm,( ),+=

V j r( ) j j 1+( )
α s

πr
-----– j j 1+( )σr,+≈
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The potential of the type (53) does arise in the clas-
sical approximation in the model (52) because there are
classical string solutions. However, the tension of the
string is now a dynamical quantity which can be found
as a function of the parameters of the model, that is,
vector and Higgs masses:

(54)

In particular, the Casimir scaling holds in the London limit,

(55)

Thus, the model (52) can incorporate the Casimir scaling.
However, the description of the profile of the confin-

ing string is the best if mH ≈ mV [32]. Thus, there is a
mismatch with (55). Since the functions of mH/mV
involved in the fits are rather smooth, it is possible to
get a compromise description which is valid in both
cases, say, with 20% accuracy. This is not bad at all,
keeping in mind that we use a classical approximation.
Nevertheless, the fact that the Casimir scaling works at
a percent level [31] remains a kind of unexplained mys-
tery in the classical approximation. Further analysis of
this point might be needed.

4.2. Unconventional Power Corrections

We introduced (52) as an effective Lagrangian.
Now, we will describe a rather paradoxical situation
that this Lagrangian seems to provide with better phe-
nomenology of the power corrections to the parton
approximation than the conventional QCD approach.
Namely, there are novel 1/Q2 corrections inherent to
Higgs models [27, 28] which are absent in the standard
considerations.4) Moreover, these corrections seem to
fit the data at all the distances measured so far, that is,
r ≥ 0.1 fm. An example of this type was found in [27,
33]. Further support came from instanton physics [28].
We have already reviewed the unconventional power
corrections in [13] and will be brief here.

In the standard approach, the power corrections are
given by matrix elements of various operators con-
structed on the quark and gluon fields [34]. For our
setup, the central point is that for the vacuum state the
simplest matrix element had dimension d = 4,

(56)

and, as a result, there are no /Q2 corrections [34].
On the other hand, the Higgs model has a mass parameter
built it. This mass parameter can thought of as the mass of

the vector particle, . Let us list a few examples where
the two approaches lead to different predictions:

4)Literally, the model (52), which introduces averaging over all the
embedding of the Abelian dual gluon into SU(2), has never been dis-
cussed so far. However, as far as the power corrections are concerned,
there is no difference from the cases considered in [27, 28, 33].

σ σ j mH/mV( ).=

σ j1

σ j2

------
j1 j1 1+( )
j2 j2 1+( )
-----------------------, if mH @ mV .=

0〈 |α s Gµν
a( )2

0| 〉 ΛQCD
4

,∼

ΛQCD
2

mV
2
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(i) First, within the Higgs model, the dual gluon
acquires mass and the monopole potential becomes the
Yukawa type:

(57)

The prediction has already been confirmed by the data
[5]. In the conventional approach, one should have to
remove at least the term –m2r at short distances. The
quality of the data might not be so good as to rule this
out, but the possibility looks quite bizarre.

(ii) Since the dual and “ordinary” gluons are in fact
the same particles (see discussion in Section 2), one
would assume that the massiveness of the dual gluon
implies the massiveness of the gluon interacting with
the color. But this is not true [27]! There is no analytic-
ity in this sense. And the reason is again problems with
the Dirac veto, which we already had a chance to dis-
cuss in connection with the radiative corrections (see
Subsection 2.3). Namely, as far as we discuss only the
“dual world,” one can forget about the Dirac strings.
However, if we introduce color sources  into the
vacuum with 〈φm〉 ≠ 0, we should respect the Dirac veto.
The ordinary operator product expansion or perturba-

tive expansion in /Q2 does not respect this veto—as
ordinary perturbation theory does not do this either (see
Subsection 2.1). The correct treatment demonstrates
that there is a linear correction to the quark potential at
short distances:

(58)

where σ0 is calculable function of mH and mV . Within
the standard approach, there is no such term (for expla-
nations and further references, see [13]). The data do
support the presence of the linear term. Amusingly
enough, the data refer exclusively to the nonperturba-
tive potential, and there is no need for painful separa-
tion of (small) power corrections against the perturba-
tive “background.”

(iii) The linear term (58) can be rephrased as the
statement that the gluon has a tachyonic mass. Indeed,
the ordinary mass would give a negative σ0, as seen from
the expansion of the Yukawa potential at short distances.
The introduction of a tachyonic gluon mass in the frame-
work of the QCD sum rules allows one to resolve in an
absolutely natural way long-standing problems with the
phenomenology based on the QCD sum rules [35].

(iv) The last, but not least, point in our discussion
concerns the instanton density [28]. The conventional
approach predicts that the deviations from the ’t Hooft
instanton density due to nontrivial background vacuum
fields are of the fourth order in the instanton size ρ:

(59)

Vmm
π

g
2
r

-------e
mV r–

.

QQ

mV
2

δVQQ σ0r,=

dn ρ( ) = dnpert ρ( ) 1
π4ρ4

2g
4

----------- 0〈 |g2
Gµν

a( )
2

0| 〉 …+ + 
  .
The data, on the other hand, are beautifully fitted by a
quadratic correction, inherent to (52). Note however,
that the coefficient in front of the quadratic term has
been fitted rather than calculated from (52) so far.

4.3. Conclusions 4

We have proposed in this section a phenomenologi-
cal Lagrangian (52) which unifies the Higgs mecha-
nism for the Abelian dual gluon with full SU(2) sym-
metry of the ordinary gluodynamics. The full study of
the consequences from this formulation is still awaiting
its time to come.

However, it seems promising that the color SU(2) is
not broken at any step despite the Higgs mechanism.
This allows one to broaden applications of the effective
Lagrangian and incorporate, to certain accuracy, the
Casimir scaling.

Also, emergence of the mass of the dual gluon in the
effective Lagrangian approach provides a natural
framework to introduce the novel 1/Q2 corrections.
Phenomenologically, these corrections bring crucial
improvements to the existing phenomenology. More-
over, generically the corrections are of the same type as
those associated with ultraviolet renormalons (see, e.g.,
[36]). However, within the effective Lagrangian
approach, these corrections should disappear in the
limit of infinite Q2, which is not true for the ultraviolet
renormalons and has not been supported by any data so
far.

5. CONCLUSIONS

In this review, we considered various effects related
to the monopoles in unbroken non-Abelian gauge theo-
ries. In conclusion, let us reiterate the main points (see
also conclusions to Sections 1–4):

(i) Fundamental monopoles with the magnetic
charge |Qm | = 1 are introduced as external objects via
the ’t Hooft loop. The corresponding intermonopole
potential (r) can be evaluated at short distances
from first principles. In the Lagrangian approach simi-
lar to that of Zwanziger, the dual gluon interacting with
pointlike external monopoles appears as an Abelian
gauge field (see Section 2 and [9, 11] for details).

(ii) Monopoles with the magnetic charge |Qm | = 2
are pure quantum objects which can be studied so far
only numerically. We discussed briefly the newly intro-
duced [10] geometric monopoles which appear to be
physical objects.

(iii) The effective Lagrangian which assumes con-
densation of the monopoles incorporates the Abelian
dominance at distances where the effects of confine-
ment are crucial, without breaking SU(2) to U(1). In the
London limit, it reproduces the Casimir scaling phe-
nomenon. There are further phenomenological conse-
quences, in particular, the evaluation of the potential

Vmm
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(r) at larger distances (see Section 4 and [9, 11] for
details).
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Abstract—The paper contains a brief review of recent applications of many-body theory to quark matter. We
discuss the progress in theory of dense quark matter during the last two years, especially color superconductiv-
ity. We emphasize that there are two basic dynamical reasons for it: short-range forces induced by instantons
and long-range ones mediated by exchanges of magnetic gluons. For quark matter which is supposed to be
found in neutron stars, both lead to superconducting gaps on the order of 100 MeV. The most surprising facts
are the rather impressive richness of different phases and their robustness in respect to variation of the funda-
mental interaction. © 2001 MAIK “Nauka/Interperiodica”.
1. BRIEF HISTORY

Methods of quantum field theory had been general-
ized to finite temperature and density by the late 1950s,
and A.B. Migdal was among the pioneers who enthusi-
astically applied it to many problems, especially to
finite nuclei. The nucleon pairing, leading to superflu-
idity and superconductivity of nuclear matter, was one
of his favorite subjects. The pion condensation (basi-
cally what we would call today a chiral crystal) was
another one. Very similar ideas to be discussed below
are under intense studies today, but for the next level of
matter—quark matter of high density.

So let me start by attempting to answer a question
(which I would probably get from A.B. right away):
Why did it take so long, about a quarter of a century
counting from the early days of QCD in the 1970s, to
figure out all these phases? Aren’t they more or less a
variation of what was worked out in the 1950s and
1960s for condensed matter and nuclei?

Yes, they are, but the internal logic of science is not
often easy to explain, and the path toward the results is
never a straight line. In the 1970s, the first QCD-based
calculations showed that, in spite of “antiscreening”
(asymptotic freedom) in vacuum, for finite T and/or
density we have Debye screening and other plasma-
type phenomena as in QED, so this phase of matter was
called quark–gluon plasma (QGP) [1]. Its studies are
actively going on in nuclear high-energy collisions,
with RHIC in Brookhaven taking its first data right
now. However, collisions always produce entropy, thus
relatively high temperatures: the part of the phase dia-
gram with cold dense quark matter was not really stud-
ied much.

Early ideas about Color Superconductivity (CSC)
[2] were based on simple observation: unlike electrons,
quarks of different colors are attracted to each other
even by Coulomb forces. Due to Cooper instability, any

* This article was submitted by the author in English.
1063-7788/01/6403- $21.00 © 20574
small attraction is enough: however, the superconduct-
ing gap was estimated to be only ∆ ~ 1 MeV, and appli-
cability of perturbative QCD was in doubt. In addition
to that, gluoelectric exchanges in matter are Debye
screened, and gluomagnetic ones were much more dif-
ficult to account for. Not much work was done on it in
the 1980s.

At that time, the interest of many people shifted
from applications of perturbative methods to nonper-
turbative effects. The 1980s were the prime time of lat-
tice simulations, development of the main ideas about
instanton-induced effects, and continuing attempts to
understand confinement and chiral symmetry breaking.

My own work was devoted to development of the
so-called interacting instanton liquid model (IILM),
which eventually included ’t Hooft effective interaction
to all orders and was able to describe wide range of
phenomena, starting from chiral symmetry breaking in
vacuum (both SU(Nf ) and U(1)A) and ending in quanti-
tative reproduction of the correlation and wave function
of all major hadronic channels, known from data and
lattice. The finite T-phase transition into QGP has also
been understood in this model, with good agreement
with related lattice works. This work has been reviewed
in [3], and I will not describe it here.

The road to dense matter started from the following
observation: not only the lowest baryons were shown to
be bound states in IILM,1) but there was correct split-
ting between octet (N, …) and decuplet (∆, …) baryons.
It was then traced down to finding [4] that in the instan-
ton liquid model the ud scalar diquarks are very deeply
bound,2) by the amount of 200–300 MeV. It is compa-
rable to the constituent quark mass itself, Meff ~ 400 MeV.
This fact should not be surprising: its dynamical roots
are the same as for basic dynamics of the “supercon-

1)There is no confinement in this model.
2)Discussion of phenomenological manifestations of scalar

diquarks can be found in [5].
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ductivity” of the QCD vacuum, the chiral (χ) symmetry
breaking. The forces are microscopically described by
the same ’t Hooft Lagrangian—simply Fierz-trans-
formed from the  to the qq channel. These spin-isos-
pin-zero diquarks are therefore related to pions, which
are even deeper bound, by –2Meff as compared to “nor-
mal” s-wave mesons like ρ and ω.

Further refinement of the argument for deeply bound
diquarks comes from bicolor (Nc = 2) theory: in it the
scalar diquark is degenerate with pions. By continuity
from Nc = 2 to 3, a trace of it should exist in real QCD.3)

Explicit calculations with instanton-induced forces
for Nf = 2, Nc = 3 QCD have been made in two simulta-
neous4) papers [6, 7]. Indeed, very robust Cooper pairs
and gaps ∆ ~ 100 MeV were found. From then on, the
field has been booming.

This phase (called CSC2) has the same symmetries
as discussed before [2]: the χ symmetry is restored, but
color group is broken by the diquark condensate, acting
like Higgs VEV of the Standard Model. A new variety
of color superconductor, CSC3 with color–flavor lock-
ing exists for three or more light flavors Nf = 3 (see Sec-
tion 5). At asymptotically high densities, the perturba-
tion theory must become right (see Section 6). Finally,
we will discuss some more recent findings.

2. PHYSICS OVERVIEW
The QCD phase diagram, as we understand it today,

is shown in Fig. 1. At small T and µ, there is ordinary
hadronic matter with broken chiral symmetry. The
point M (from “multifragmentation”) is the endpoint of
the nuclear liquid–gas phase transition. At the (hypo-
thetical) critical point E, the first-order line either con-
tinues as second-order (for mu , md = 0) or disappears
(for finite masses): according to recent a proposal [8], it
can be found in real heavy-ion collisions. QDQ (quark–
diquark) phase is hypothetical [9]: I will not discuss it
here. The main point is the relative locations of the two
superconducting phases, CSC2 and CSC3. At T = 0
going to large µ, the χ symmetry seems to be first
recovered in CSC2 and then broken again in CSC3.

Let me then explain a few major physics points.
Why is there a transition from particle–hole to particle–
particle pairing? Figure 2 (dispersion curves ω(k) for
quarks in vacuum and superconductor) explains it: it is
better to have a gap at the surface of the Fermi sphere
rather than the Dirac sea.

Why instantons? The reasons are the following: (i)
They are the strongest nonperturbative effect known.
(ii) Unlike one-gluon exchange (OGE), they do explain
quantitatively χ-symmetry breaking in a vacuum. (iii)
The anomaly cannot be eliminated by finite density, so

3)Instanton-induced interaction strength in the diquark channel is
1/(Nc – 1) of that for  one. It is the same at Nc = 2, zero for

large Nc, and is exactly in between for Nc = 3.
4)Submitted to hep-ph on the same day.

qq

qγ5q
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tunneling leads to level crossing at the surface of the
Fermi sphere as well.

Note the following amusing triality: There are three
attractive channels which compete: (i) the instanton-
induced attraction in the  channel leading to χ-sym-
metry breaking; (ii) the instanton-induced attraction in
qq which leads to color superconductivity; (iii) the
light-quark-induced attraction of , which leads to
pairing of instantons into “molecules” in the QGP
phase without any condensates.

How are the calculations actually done? Analyti-
cally, mostly in the mean field approximation, similar
to the original BCS theory in Gorkov formulation. Total
thermodynamical potential consists of “kinetic energy”
of the quark Fermi gas, including mass operators of two
types (shown in Fig. 3, upper part). The “potential
energy” in such an approximation is the interaction
Lagrangian convoluted with all possible condensates.
For example, the instanton-induced one with Nf = 3
leads to two types of diagrams shown in Fig. 3 (lower
part), with 〈 〉3 and 〈qq〉2〈 〉 . Then, one minimizes
the potential over all condensates and gets gap equa-
tions: the algebra may be involved because masses/con-
densates are color–flavor matrices.

3. TWO COLORS: A VERY SPECIAL THEORY

One reason it is special is well known to the lattice
community: its fermionic determinant is real even for

qq

II

qq qq

T

µ

E

M

QDQ

QGP

CSC3
CSC2

Fig. 1. QCD phase diagram at the µ–T plane, baryonic
chemical potential–temperature.

Fig. 2. Pairing in vacuum (left) and in dense quark matter
(right).

mq
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nonzero µ, which makes simulations possible. Early
works by Karsch, Dagotto, et al. (of the mid-1980s!)
showed very strong diquark condensate, but these
papers make sense only now.

The major interest to this theory is related to the so-
called Pauli–Gursey symmetry, due to which diquarks
are degenerate with mesons. The χ-symmetry breaking
is SU(2Nf )  Sp(2Nf ); for Nf = 2, the coset K =
SU(4)/Sp(4) = SO(6)/SO(5) = S5. Those five massless
modes are pions plus scalar diquark S and its antiparti-

cle . The corresponding sigma model was worked out
in [6]: for further development see [10]. As argued in
[6], in this theory the critical value of transition to CSC
is simply µ = mπ/2, the diquark condensate is just a
rotated 〈 〉 one, and the gap is the constituent quark
mass. Recent lattice works [11] and instanton liquid
simulation [12] display it in great detail, building con-
fidence for other cases.

4. TWO-FLAVOR QCD

In Fig. 4, the phase diagram [13] is a rare example
of the calculated T–µ one: the first-order line is dashed,
and the second-order ones are solid lines. Most studies
of this theory [6, 7, 14] are at T = 0. In all these works,
one more possible phase (intermediate between vac-
uum and CSC2), Fermi gas of constituent quarks, with
both M, ∆ ≠ 0, was unstable. However, in the last more
refined calculation [9], it obtains a small window, as
shown by the long-dashed line in Fig. 5. Its features are
amusingly close to those of nuclear matter: but it isn’t,
of course: to get nucleons one should go outside the
mean field. The first attempt to do so in [9] was for

another cluster—the  molecules. At T = 0 it is, how-
ever, only a 10% correction to previous results, but is
dominant as T grows.

S

qq

II

Fig. 3. Green’s functions with ordinary and anomalous mass
insertions (upper part) and the “potential energy” (lower
part). The circle in the center is an instanton, with six quark
lines because it is written for the case of three massless
quark flavors.

Mass operator Anomalous Gorkov 
operator
5. THE Nf = 3 QCD: COLOR–FLAVOR LOCKING

The color–flavor locking phenomenon [15] means

that diquark condensate has the structure 〈 〉  =

δiaδbj + δibδja , where i, j are color and a, b are fla-
vor indices. It is very symmetric, reducing
SU(3)c SU(3)f  SU(3)diagonal . It was verified in [15]
for the OGE interaction, and for the instanton-induced
one in [9]: probably it is always true for that theory.
Gaps δi and masses σi , following from instanton-based
calculation [9], are shown as a function of µ in Fig. 6.

Two-plus-strange flavor QCD (ms ≠ 0) was studied
in several papers [9, 16]. Just kinematically, us and ds
Cooper pairs with zero momentum are difficult to

make: for µu, d = µs, the momenta  ≠ . Instantons

also generate the dynamical operator ms( )(ud). The
resulting behavior is as shown in Fig. 1.

Finally, if this is the phase of color superconductor,
it allows for kaon (K–) condensation [17], even for a

qi
a
Cq j

b

∆1 ∆2

pu d,
F

ps
F

ud

0.15

0.10

0.05

0.2 0.4 0.6
µ, GeV

T, GeV

Fig. 4. The phase diagram at µ–T plane.
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Ω, GeV4
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Fig. 5. The thermodynamical potential versus chemical
potential: the phase 2 appears in the window between phase
1 (chirally asymmetric vacuum) and phase 3 (chirally sym-
metric color superconductor) and has both condensates. It is
as close as we can get to nuclear matter in the mean-field
approximation.
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tiny (few MeV) electron chemical potential. It is very
similar to Migdal’s pion condensate, except that, in the
perverse high-density phase, kaons are lighter than
pions (because strange quark can be traded into a con-
densate).

6. ASYMPTOTICALLY LARGE DENSITIES
Above, we have used forces normalized to what we

know in the QCD vacuum: we argued that those are
mostly due to instantons. However, at high densities
(µ > 1 GeV), instantons are Debye-screened [18]. So
are the electric OGE Coulomb forces. As a result, mag-
netic gluons should be considered as the leading inter-
action. As shown in [19] and subsequent papers, mag-
netically bound Cooper pairs are possible: however, in
order to describe them properly, one has to take care of
time delay effects, using the so-called Eliashberg gap
equation rather than the BCS one. The angular integral
leads to a second log in the gap equation, leading to an

unusual answer: ∆ ~ µexp(–3π2/ g), which implies
that the gap grows indefinitely with µ5) and pQCD
becomes finally justified. However, it is the case for
huge densities, with µ > 10 GeV or so.

7. THE HADRON–QUARK CONTINUITY
As it was pointed out in [21], the CSC3 phase not

only has the same symmetries as hadronic matter (such
as broken χ symmetry), but also has very similar exci-
tations. The original eight gluons become eight massive
vector mesons, and 3 × 3 quarks become 8 + 1 baryons.
The eight massless pions remain massless.6) Can these
phases be separated by symmetries, and if not, should
there be any phase transition between nuclear and
quark matter in the theory with three massless quarks
(Nf = 3)?

Furthermore, the photon and one of the gluons are
recombined into a massless γinside and massive (Meiss-
ner effect) new gluon, quite the same thing as a Z boson
and new photon in the Weinberg–Salam Standard
Model of weak interactions.

Is it then a superconductor, after all? For example, if
one puts a piece of CSC3 into an ordinary magnet, the
field is decomposed on the boundary into these two
components. One, γinside, goes through without the
Meissner effect (see [23] for details), but another is
expelled by some currents. So, in principle, it may still
levitate in the magnet, etc.

8. CHIRAL CRYSTAL?
There is one more possible structure of quark mat-

ter, which is now under study [24]. Superconductivity
is not the only way to minimize energy of the Fermi

5)Numerical details for all densities can be found in recent work [20].
6)Very exotic three-dimensional objects, “superqualitons” [22], the

skyrmions made of pions are among the excitations.

2
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gas: the famous Overhauser effect in solids [25] is
another option, leading to a spin density waves. Simi-
larly, one may minimize energy by making the chiral
condensate waves. (It differs from Migdal’s pion con-
densate, as it is a σ field which is oscillating here.)

In the context of QCD in 3 + 1 dimensions, it has
been shown by Deryagin et al. [26] that, if we use OGE
at high densities, the Overhauser pairing prevails over
the BCS instability in the Nc  ∞ limit. This is based
on the fact that BCS pairing, being a color nonsinglet,
is 1/Nc suppressed as compared to the (colorless) Over-
hauser bound states. A condensate of the latter acquires
a spatial dependence induced by the finite “wave” vec-
tor Q of the pair, which, in the case of the considered
scalar–isoscalar channel [26], represents a chiral den-
sity wave. More recently, Shuster and Son [27] revis-
ited this issue for finite Nc including Debye screening in
the OGE. As a result, the p–h instability only develops
for a very large number of colors. In Nambu–Jona-Las-
inio or instanton-induced interactions, the coupling
strength in the scalar–isoscalar p–h channel is aug-
mented by a factor of (Nc – 1) over the (most attractive)
scalar diquark channel. We find a natural window for it
to be at intermediate densities, i.e., large enough for the
system to be in the quark phase, but small enough to
render nonperturbative forces applicable. This should
roughly correspond to chemical potentials in the range
of µq . 0.4–0.6 GeV.

At finite densities, the formation of a condensate
carrying nonzero total momentum Q is associated with
nontrivial spatial structures, i.e., crystals, with lattice
spacing a = 2π/Q. In three dimensions, a more complete
description thus calls for the inclusion of additional
“wave” vectors. In general, the p–h pairing gap can be
written as

(1)qq〈 〉 r( ) σ j n, e
inQ j r⋅

,
n ∞–=

+∞

∑
j

∑=

0.1

0.01

0.001
0 0.2 0.4 0.6

µ, GeV

δ, σ

σ1, σ2

δ1, δ2

Fig. 6. Calculated gaps [9] due to 〈qq〉  are called δ and to
〈 〉  called σ (in GeV). Superconducting and mass gaps
take two values each, which follows from diagonalization of
the appropriate color–flavor matrices. The gap in the low-
density phase, about 400 MeV, is the constituent-quark
mass.

qq
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where the Qj correspond to the (finite) number of fun-
damental waves, and the summation over |n| > 1
accounts for higher harmonics in the Fourier series.
The matrix propagator formalism allows for the treat-
ment of multiple waves through a straightforward
expansion of the basis states. It was considered up to
nw = 6 waves in three orthogonal directions with Qx =
Qy = Qz and n = ±1, characterizing a cubic crystal
through three standing waves with the fundamental
modes (for simplicity, we will also assume the magni-
tude of the various Overhauser condensates to be equal,
i.e., σj ≡ σ). The energy found (from standard but rather
tedious calculation) is very close to that of the BCS 2-
flavor superconductor with the same forces. Since the
accuracy of the mean-field and other approximations
(like cubic crystal only) are worse than the difference
(few percent), we are not able to tell with confidence
which phase wins.

Furthermore, in the reality of neutron stars, the den-
sities (and their Fermi momenta) of u, d, and s quarks
are different. They negatively affect the instanton-
induced pairing (which is always flavor-asymmetric,
like ud, ds, and us pairs) but not so much the chiral
crystal phase. Although no calculations for asymmetric
matter have been made so far, we think there would be
a window for the chiral crystal phase.

9. CONCLUDING REMARKS

Early realization by Migdal and others that nuclear
matter is both superfluid and superconducting had pro-
found consequences for nuclear structure, and it also
changed forever the physics of neutron stars.

A similar development is now on the way for quark
matter: people calculate how the quark core of the star
should react to rotation, magnetic fields, etc. Phenom-
ena similar to nuclear backbending have been dis-
cussed, with a recent claim [28] that, when an old star
speeds up by accretion, it should be “stuck” at a partic-
ular frequency, about 250 Hz, because of disappearance
of quark matter. Remarkably enough, of about 20 x-ray
sources with millisecond beats found in the last two
years, all are peaked exactly in this window of frequen-
cies!

Superconductivity of the quark core should dramat-
ically change neutrino cooling and propagation [29], as
well as simply specific heat of the core, see [30].

A recent paper by Son and Stephanov [31] has indi-
cated that matter with very high isospin (such as that
made of, say, u quarks and d antiquarks) should have
pion condensate, at practically all densities, including
infinitely large ones!

I can only repeat in the conclusion: quantum many-
body theory is alive and well, and at the quark level
there are many exciting things still waiting to be dis-
covered. It is a pity we do not have A.B., with his intu-
ition and enthusiasm, to share these findings with him.
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Abstract—The influence of the nucleon–nucleon final-state interaction (FSI) on properties of the meson-pro-
duction amplitude near threshold is discussed. For nucleon–nucleon interaction, a simple Yamaguchi potential
and realistic potential models are considered. It is shown that FSI effects cannot be factorized from the produc-
tion amplitude. The absolute magnitude of FSI effects depends on the momentum transfer (or on the mass of
the produced meson) and hence is not universal. Only in the case of the production of rather heavy mesons like
η' or φ FSI do effects become universal. The Jost function approach to FSI effects is critically examined. © 2001
MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Back in the 1950s, Watson [1] and Migdal [2]
showed that the energy dependence for meson produc-
tion reactions NN  NNx near threshold is predomi-
nantly determined by the strong NN interaction in the
final state. Their arguments have been used for justify-
ing a rather simple treatment of effects from the final-
state interaction (FSI) (see, e.g., [3–6]). It consists in
simply multiplying the basic production amplitude
with the on-shell NN T matrix, i.e.,

(1)

where δ = δ(k) is the NN phase shift, aNN the NN scat-

tering length,  the on-shell meson-production
amplitude, and N a normalization factor. This expres-
sion suggests that the FSI effect is universal, i.e., does
not depend on the specific meson emitted.

Recently, some aspects of FSI effects in the reaction
NN  NNx were investigated by Hanhart and
Nakayama [7] and Niskanen [8]. In particular, these
authors pointed out that the evaluation of the total reac-
tion amplitude by just multiplying the production
amplitude by the on-shell NN T matrix is not acceptable
for obtaining quantitative predictions. In the present
paper, we want to study those FSI effects in more detail.
Specifically, we want to shed some light on the validity
of the multiplication prescription (1). We examine the
influence of the NN FSI on the absolute value of the
reaction amplitude by employing realistic models of
the NN interaction. Furthermore, we investigate the
dependence of the FSI effects on the mass of the pro-
duced meson. For that purpose, we will vary the mass

} N Aprod
on eiδ δsin

kaNN

-----------------,–=

Aprod
on
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of x and adopt values corresponding to those of the π,
η, and η' mesons.

In general, the total amplitude for the reaction
pp  ppx can be determined from the DWBA expres-
sion

(2)

where the second term on the right-hand side implies an
integration over the off-shell production amplitude and
the off-shell NN T matrix. Equation (2) corresponds to
the sum of the two diagrams shown in Fig. 1. Meson
production in NN collisions requires a large momentum
transfer between the initial and final nucleons, which is

typically of the order of , where m is the nucleon
mass and mx the mass of the produced meson. Thus, the
range of the production interaction will be much
smaller than the characteristic range of the NN interac-
tion in the final state. Goldberger and Watson argued
that in such a case the meson can be considered to be
produced practically from a pointlike region, so that the
production amplitude can be factored out of the integral
[9], i.e.,

(3)

} Aprod
on Aprod

off G0T NN ,+=

mmx

} Aprod
on Aprod

off G0T NN Aprod
on 1 G0T NN+[ ]≈+=

=  Aprod
on( )ψk

–( )* 0( ).

A A T

N

N

N

N

N

x
N

G

N

N

x

(b)(a)

Fig. 1. Diagrammatic representation of the DWBA expres-
sion (2). A is the elementary meson-production amplitude
and T is the NN T matrix.
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Here (r) is the (suitably normalized) NN wave

function in the continuum [9], where (0) is related

to the Jost function ℑ  via (0) = ℑ –1
(–k) [9].

Clearly, also in this case, one arrives at results where
the FSI effects are reduced to a mere multiplicative fac-

tor | (0)|2 (commonly referred to as an enhance-
ment factor).

The prescription described by (3) has been utilized
by several authors [10–14] in their studies of meson
production. Its validity has been examined by an
explicit calculation of the loop diagram in [10] employ-
ing an OBE model for the production amplitude. How-
ever, one has to keep in mind that this investigation is
based on a simple separable Yamaguchi potential for
the NN FSI. It is well known that the off-shell behavior
of the T matrix for the Yamaguchi potential is rather dif-
ferent from the one resulting from realistic models of
the NN force. This can be seen from Fig. 2, where we
compare the off-shell properties of the Paris [15] and
(one version of) the Bonn [16] NN models with the one
of the Yamaguchi potential for the 1S0 partial wave. The
most striking difference is definitely the zero crossing
by the T matrix that occurs for realistic potential mod-

ψk
–( )

ψk
–( )

ψk
–( )*

ψk
–( )*

1

0

–1

–2

–3
150010005000 2000

q, MeV/c

ReT  matrix, 10–6 MeV–2

Fig. 2. Real part of the NN 1S0 T matrix as a function of the
off-shell momentum q calculated at the fixed on-shell
momentum k = 10 MeV/c. The solid, dashed, and dotted
curves are the results for the Paris [15], Bonn [16], and
Yamaguchi potentials, respectively.

N

N

µ
p

–p

q + P/2 k + P/2

–q + P/2 –k + P/2

–Px
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Fig. 3. Contributions to the total reaction amplitude }: (a)
Born term A; (b) loop diagram including the final-state
interaction.
els at off-shell momenta q ≈ 350 MeV/c, whereas the
one of the Yamaguchi potential never changes sign. As
we will show below, this specific feature has a strong
and important influence on the result for the FSI effects.

The paper is structured in the following way. In Sec-
tion 2, we present our formalism. We specify the
meson-production amplitude that we use in the present
investigation and we give the explicit expression for the
loop diagram of Fig. 1b. In Section 3, we present and
discuss our results. Specifically, we show calculations
for the effects of the FSI considering different NN mod-
els and the production of mesons with different masses.
Furthermore, we take a look at the energy dependence
of the FSI effects and examine the validity of some
commonly used approximations. The paper ends with a
short summary.

2. LOOP-DIAGRAM CALCULUS

For the calculation of the loop diagram of Fig. 1b
with off-shell amplitudes of realistic NN interactions,
we need to specify a model for the production ampli-
tude. We assume that it has the form

(4)

which corresponds to the exchange of a scalar meson µ
of mass mµ in the t channel followed by the production
of a meson x in a rescattering process. The correspond-
ing diagram is shown in Fig. 3a. The coupling g at the
NNµ vertex and the amplitude AµN → x N are assumed to
be constants. For mµ, we take the value of the pion
mass, i.e., mµ = 135 MeV. Furthermore, for simplicity
reasons, we use nonrelativistic kinematics for the inter-
mediate nucleons. The total reaction amplitude for this
production model is then given by the sum of the two
diagrams of Fig. 3, i.e.,

(5)

where

with τ = E – m. Ψ(k) is given by the expression

(6)

Aprod

gAµN xN→

t mµ
2–

-----------------------,=

}
mg
E

------- 
AµN xN→

k P/2–
m
E
----p+ 

 
2

λ2+

----------------------------------------------------Ψ k( ),–=

E m2 p2+ , λ2 m
E
----mµ

2 m2

E2
------τ2,+= =

Ψ k( ) 1

mπ k P/2–
m
E
----p+ 

 
2

λ2+

r
-----------------------------------------------------------------–=

×
qqTNN q k,( )d

q2 k2– i0–
--------------------------------- q r+( )2 λ2+

q r–( )2 λ2+
------------------------------ ,ln

0

∞

∫
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where

TNN(q, k) is the NN half-off-shell T matrix in the 1S0 par-
tial wave. The function FNN(k) = |Ψ(k)|2 can be consid-
ered as a generalization of the FSI enhancement factor

| (0)|2 that follows from the factorization assump-
tion (3). We would like to emphasize, however, that

[contrary to (0) in (3)] Ψ(k) does also contain
information on the production mechanism and not only
on the NN FSI.

In the actual calculations, we want to include the
Coulomb interaction between the outgoing protons.
Therefore, we have to replace the NN half-off-shell T
matrix in (6) by the quantity T cs, i.e., the Coulomb-dis-
torted hadronic T matrix. This quantity is obtained by
the prescription introduced in [17], namely via

(7)

where k and q denote the on-shell and off-shell momen-
tum, respectively. TNN(k, k) and TNN(q, k) are the on-
shell and half-off-shell T matrices for the strong inter-
action alone. The Coulomb penetration factor C is
given by

(8)

with α the fine-structure constant. Furthermore, the
first term on the left-hand side of (6) (the “1”) has to be
replaced by C(γk).

3. DISCUSSION

First, we want to discuss the dependence of Ψ(k) on
the mass of the produced meson. For that purpose, we
start out from a somewhat simpler expression for Ψ
which follows from (6) for the kinematics at the pro-
duction threshold:

(9)

where

r
m
E
----p P/2– .=

ψk
–( )*

ψk
–( )*

Tcs q k,( )
C γq( )
C γk( )
-------------- 

TNN q k,( )
T NN k k,( )
-----------------------Tcs k k,( ),=

C2 γq( )
2πγk

e
2πγk 1–

-------------------; γk
m
2
---- 1

αk
------,= =

Ψ k( ) C γk( )
mπ mmx mµ

2+[ ]

mmx mx
2/4+

------------------------------------- qqTcs q k,( )d

q2 k2– i0–
------------------------------

0

∞

∫–=

× q r̃+( )2 λ̃
2

+

q r̃–( )2 λ̃
2

+
------------------------------ ,ln

r̃
m

m mx/2+
---------------------- mmx mx

2/4+ ,=

λ̃
2 m2

m mx/2+( )2
-----------------------------

mx
2

4
------ m

m mx/2+
----------------------mµ

2 .+=
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For the production of a light meson, mx ! m, we get

 ≈ ,  =  + /4, so that there is a depen-
dence of the integral on the right-hand side of (9) on mx.
In the case of a heavy meson, mx @ m, it follows that

 ≈ m,  ≈ m2 and, consequently, Ψ(k) does not
depend on the mass of the emitted meson x. In other
words, we expect that FSI effects become universal for
the production of heavy mesons via an OBE-type pro-
duction mechanism leading to the amplitude (4).

Let us now come to the results for the FSI factor
FNN = |Ψ(k)|2. In Fig. 4, we show calculations for differ-

r̃ mmx λ̃
2

mµ
2 mx

2

r̃ λ̃
2

15

10

5

0

Fpp(k)

10

5

0

40

20

0 50 100 150 200
k, MeV/c

(a)

(b)

(c)

Fig. 4. The FSI factor Fpp = |Ψ(k)|2 [cf. (9)] for the Paris (a),
Bonn (b), and Yamaguchi (c) potentials and the production
of the π (solid curve), η (dotted curve), and η' (dashed
curve) mesons. The dash-dotted curves are the results based
on the factorization assumption (3), i.e., Fpp(k) = |ℑ (– k)|–2.
Note that different scales are used for each NN model!
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ent NN models and for some typical masses of the emit-
ted meson x. It can be seen from those figures that the
magnitudes of FNN resulting for the Bonn and the Paris
potentials are fairly similar, whereas the one for the
separable Yamaguchi potential is quite different. (Note
that different scales are used for each NN model!) This
result can be understood qualitatively from the features
of the corresponding off-shell T matrices shown in
Fig. 2. The T matrices for the Bonn and Paris potentials
are very similar. In particular, for both models, there is
a change of sign at an off-shell momentum of q ≈
350 MeV/c. Because of this change of sign, cancella-
tions occur in the integral for Ψ(k) [cf. (6)]. The off-
shell T matrix of the Yamaguchi potential does not
change sign. Therefore, no such cancellations take
place in the integration, and, as a consequence, the FSI
factor FNN is significantly larger than the ones for the
realistic interaction models (cf. Fig. 4).

There is also a striking difference in the results with
regard to the mass of the emitted meson. For the Paris
and Bonn potentials, the FSI factor decreases with
increasing mass of the produced meson. However, for
the Yamaguchi potential, we observe the opposite
effect. Here, FNN(k) becomes larger with the mass of
the produced meson increased. These features can
again be understood in terms of the NN off-shell prop-
erties. However, now the off-shell behavior of the pro-
duction amplitude, which enters into the integral (6) as
well, also becomes relevant. With increasing mass of
the produced meson, the required momentum transfer t
increases as well and, accordingly, the production
mechanism becomes more and more short-ranged. As a
consequence, the production amplitude remains con-
stant over a larger (off-shell) momentum range, as can
be seen in Fig. 5. This feature enhances the cancellation
effects for the Bonn and Paris NN T matrices discussed
above and therefore leads to a reduction of FNN for
larger meson masses. In case of the Yamaguchi poten-
tial, no such cancellations can occur, and therefore the

1

0

–1

–2
1000500 1500 20000

q, MeV/c

Aprod
off

/Aprod
on

Fig. 5. Ratio /  of the production amplitude as a

function of the off-shell momentum q calculated at the fixed
on-shell momentum k = 0. The solid, dotted, and dashed
curves correspond to the production of the π, η, and η'
mesons, respectively.

Aprod
off

Aprod
on
FSI factor turns out to be almost independent of the
mass of the produced meson.

Nevertheless, we see that also for realistic NN
potentials the FSI factors become more and more simi-
lar with increasing mass of the produced meson, i.e.,
for high momentum transfers. This is expected. It sim-
ply reflects the universality of FSI effects for the pro-
duction of heavy mesons as discussed above. We would
like to emphasize that the universality of FSI effects at
large t should set in not only for the particular produc-
tion amplitude used in the present investigation [cf.
(4)], but is expected to occur in general. Actually, we
examined the behavior of FNN for the OBE-type pro-
duction amplitude (4) with inclusion of form factors of
monopole and dipole type at the NNµ vertex. Corre-
sponding numerical calculations clearly indicate that
the qualitative behavior of the FSI factors remains basi-
cally unchanged.

However, it is important to realize that the actual
values for the FSI factors do, of course, depend on the
particular production amplitude. Thus, the results pre-
sented in Fig. 4 are by no means absolute predictions
that can be taken from this paper and used blindly for
FSI corrections in any other study of meson production.
Our results demonstrate rather that if one wants to
obtain reliable quantitative predictions, FSI effects
have to be calculated always explicitly by utilizing the
respective production amplitudes and a proper NN off-
shell T matrix. (In this context, we would also like to
draw attention to the requirement of a consistent treat-
ment of both the NN scattering and production ampli-
tudes as discussed in the Appendix of [18].) Specifi-
cally, this means that the apparent universality of the
FSI effects for large meson masses does not imply that
one can use the prescription applied in the studies [10,
12–14], i.e., take the production amplitude out of the
integral in (9). Even though the factor Ψ(k) becomes
independent of the mass of the produced meson, its
actual magnitude is still determined by the off-shell
properties of the NN T matrix as well as by the produc-
tion amplitude. In order to demonstrate this, we also
show results based on the factorization assumption, (3)
(dash-dotted curves in Fig. 4). In this case, the FSI fac-
tor is simply given by the enhancement factor FNN(k) =
|ℑ (–k)|–2. It is really startling how strongly the results
for the Yamaguchi potential and for realistic NN-inter-
action models differ. For the former potential, the
enhancement factor based on the Jost function is larger
than the FSI factor obtained from (2), whereas for the
latter models it turns out to be much smaller than the
DWBA values. Clearly, these results suggest that it is
rather questionable to use the Jost function of some
arbitrary potentials for the evaluation of FSI effects in
meson-production reactions [10, 12–14].

Finally, let us make a remark on the differences
between the results for realistic NN models. Obviously,
these are small (about 20%) for the pion-production
case. But for the η' meson, the Paris result is nearly
PHYSICS OF ATOMIC NUCLEI      Vol. 64      No. 3      2001
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twice as large as that for the Bonn model. This is not too
surprising because for the production of heavier
mesons a larger momentum transfer is required and
therefore the features of the NN interaction at shorter
distances (or larger off-shell momenta) become more
and more important in the actual calculations. As we
can see in Fig. 2, there are fairly large differences in the
off-shell properties of these two models for large off-
shell momenta. Note that such a sensitivity to the off-
shell behavior of realistic NN models at large off-shell
momenta has been also seen, e.g., in proton–proton
bremsstrahlung producing hard photons [19].

By all the variations we see in the magnitudes of the
FSI factors presented in Fig. 4, we would like to point
out that their energy dependence is basically the same
for all the different potentials and for the different
meson masses. If we normalize them to the same value
for small k (e.g., at the peak of FNN at k ≈ 20 MeV/c), all
curves would lie essentially on top of each other. This
means that the energy dependence of the FSI factors is
really primarily determined by the on-shell NN T
matrix. Consequently, the on-shell prescription (1) is
indeed a fairly good approximation, at least for ener-
gies near the production threshold. In order to demon-
strate this, let us compare one of the curves based on the
Paris potential with the result corresponding to (1) (nor-
malized to the Paris curve at k ≈ 20 MeV/c) (cf. Fig. 6).
Nonetheless, we do observe an increasing difference
between these two curves for k ≥ 50 MeV/c, which cor-
responds to excess (cms) energies Q ≥ 3 MeV. For k =
100 MeV/c (Q ≈ 10 MeV), the curves differ already by
a factor of around 2. It is interesting to see that the Jost
function approach (3) deviates even more strongly from
the correct results than the on-shell approximation in
the energy range k ≤ 100 MeV/c.

Let us now investigate the origin of those discrepan-
cies in more detail. For that purpose, we rewrite the
amplitude } (2) in the form given in [7],

(10)

Here, P(k) is proportional to the principal value of the
loop integral (cf. Fig. 3b) and contains information on
the off-shell behavior of both Aprod and TNN. [Note that
we have neglected corrections coming from the Cou-
lomb interaction in (10) for simplicity reasons. Those
terms do not play a role anymore at the energies where
the discrepancies discussed above occur.]

Evidently, corrections to the simple on-shell pre-
scription (1) come from the energy dependence of the
function P(k) as well as from the cotδ term. Actual cal-
culations with the NN potentials utilized in the present
study revealed that the value of P(k) at k = 0 is positive
and about 3 to 5 units larger, which makes it the domi-
nant piece of the terms in the brackets of (10). Further-

} Aprod
on eiδ δsin

kapp

----------------- P k( ) appkcotδ–[ ]–=

=  Aprod
on–

eiδ δsin
kapp

----------------- P k( ) 1 1/2appr0k2– O k
4

( ) …+ + +[ ] .
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more, P(k) slowly decreases with k. The k2 term slowly
increases with k (note that app is negative for the 1S0 par-
tial wave!), so that there is a compensation in the
energy dependence of the terms in the brackets of (10).
This circumstance is certainly partly responsible for the
fact that (1) works relatively well.

As already mentioned above, the value at P(k = 0) is
positive and fairly large (cf. also the comments in [7]).
Note that, in order to get (1) with the normalization N
set to one, as chosen in [5, 6], we have to assume that
P(k) ≡ 0 and omit all the terms proportional to k2, k4,
etc., in the square brackets on the right-hand side of
(10). Therefore, this particular normalization can only
be obtained under very specific conditions (cf. the dis-
cussion in the Appendix of [18]).

4. SUMMARY

In the present paper, we have studied some aspects
of effects from the final-state interaction in the meson-
production reaction NN  NNx near the threshold.
Specifically, we have demonstrated that the nucleon–
nucleon FSI cannot be factorized from the production
amplitude if one wants to obtain reliable quantitative
predictions. This conclusion confirms the arguments
given in paper [7]. Furthermore, we have demonstrated
that the absolute value of the FSI factor depends on the
momentum transfer, i.e., on the mass of the produced
meson. It is not universal! Only for large momentum
transfers, i.e., for the production of heavy mesons, does
the FSI factor become independent of the mass of the
produced meson. Finally, we have shown that the use of
the Jost function of some arbitrary potentials for the
evaluation of FSI effects is rather questionable and may
lead to a considerable overestimation of those FSI
effects.

500 100 150
k, MeV/c

5

10

15
Fpp(k)

Fig. 6. The FSI factor Fpp = |Ψ(k)|2 for the Paris NN poten-
tial and for pion production (solid curve) in comparison to
results based on the approximations (1) (dashed curve) and
(3) (dotted curve). The latter two curves are normalized to
the one of the Paris potential at the peak (k ≈ 20 MeV/c).
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