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Abstract—The levels in 162Gd were identified in spontaneous fission studies. Its transition energies are
remarkably similar to those in 160Gd. From that work, an analysis of yrast bands in even–even proton to
neutron-rich Ba to Pb nuclei led to the discovery of a new phenomenon, shifted identical bands (SIB). SIBs
are yrast bands in neighboring nuclei (a, b) with moments of inertia which are identical when shifted by a
constant amount κ, so J1a(1 + κ) = J1b, from 2+ to 8+ and higher to 16+. Out of over 700 comparisons,
55 SIBs were found from stable to the most neutron-rich Ce–W nuclei with |κ̄| between 1.5% and 13%,
where the spread in κ is less than ±1%, and only four identical bands (κ̄ ∼= 0). As examples, we found for
158Sm–160Gd, κ̄ = (−3.2+0.1

−0.2)% (where the ± is the total spread in κ from −3.1 to −3.4); 156Nd–160Gd,
(−10.6+0.4

−0.2)%; 158Sm–160Sm, (3.4+0.5
−0.3)%. The J1 values were fitted to a variable moment of inertia model

with parameters J0 andC whose values correlate with the SIB J1 values. The SIBs are not correlated either
with deformation or with the NpNn product of the IBA model. c© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The discovery of identical bands (IB) in both su-
perdeformed and normal deformed bands was a major
highlight of nuclear structure research in the 1990s
[1]. Bands in two neighboring nuclei with essentially
equal transition energies and moments of inertia for
every spin state in the band are classified as iden-
tical bands. As noted [1], IBs test our theoretical
understanding of large amplitude collective motion,
demanding more precise microscopic approaches to
calculatingmoments of inertia. Almost all IBs involve
even–even and even–odd neighbors in proton-rich
nuclei [1]. A series of nearly “IBs” was reported for
the α chain 156Dy to 172W compared to 180Os [2].
There, energy similarities were somewhat correlated
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with NpNn. Two IBs have been reported in neutron-
rich nuclei, 98, 100Sr and 108−110Ru [3].

While investigating the structure of neutron-rich
nuclei in prompt γ–γ–γ coincidence studies in the
spontaneous fission of 252Cf, we discovered a new
phenomenon, which we call shifted identical bands
(SIB). We identified levels in 160Sm and 162Gd [3, 4]
and new high spin states in the heavy partners in
neutron-rich Ba to Gd nuclei [3]. The new 162Gd
yrast transition energies were so similar to 160Gd
that this initiated a comparison of the moments
of inertia of neighboring even–even nuclei in the
A = 140−162 region. We classified shifted identical
bands as occurring when two yrast cascades in
nuclei separated by two to eight nucleons have their
transition energies and moments of inertia become
identical when Eγ and J1 for one nucleus are shifted
by a constant amount with less than ±1% total
spread in the constant κ, where J1a(1 + κ) = J1b for
every state from 2+ to 8+ and higher to 16+. We
extended this analysis to even–even nuclei from Ba
to Pb, from proton- to neutron-rich nuclei, and to
some excited superdeformed bands. The SIBs are
grouped in stable to the most neutron-rich Sm to
Yb nuclei known, while SIBs are not seen in their
lighter mass nuclei nor in Ba, Ce, or Os nuclei, except
2001MAIK “Nauka/Interperiodica”
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Fig. 1. Percentage differences in transition energies for
isotopes of Sm (Z = 62), separated by 2n. Theoretical β2

deformations are given for each nucleus.

for 152Ce. Some SIBs are seen in the Pt–Pb very
neutron deficient nuclei for 4+ to 14+ states. This
new phenomenon of SIBs provides new challenges
for microscopic theories.

2. PROCEDURE

In our analysis, the percentage differences in tran-
sition energies Eγ between corresponding pairs of
levels in two neighboring nuclei were calculated as

∆Eγ

Eγ
=
Eγnuclide a

− Eγnuclide b

Eγnuclide b

= κ

= −∆J1

J1
= −J1nuclide a

− J1nuclide b

J1nuclide a

,

where nuclide b is the heavier mass nuclide. J1 is the
kinematic moment of inertia, so Eγa = (1 + κ)Eγb

and J1a(1 + κ) = J1b. We define an identical band as
one in which ∆Eγ/Eγ remains constant within±1%
of zero, and a shifted identical band as one that is
constant within ±1% of a κ̄ ≥ 1%. For the SIBs
observed, the absolute value of κ̄ falls between one
and thirteen percent. We calculated the experimental
J1 values and did variable moment of inertia fits to
these data. We also calculated ∆J2/J2.

In the variable-moment-of-inertia (VMI) model
[5], J1 is allowed to vary as a function of two pa-
rameters: J0, the ground-state moment of inertia,
and C, the restoring force constant that measures the
hardness of a nucleus to stretching (the smallerC, the
PH
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Fig. 2. Percentage differences in transition energies for
158−178Yb and 160−180Hf, separated by 2p. Theoretical β2

deformations are given. The experimental values show
the same peaking effect as the theoretical values.
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Fig. 3. Percent differences in the kinematic and dy-
namic moments of inertia for the comparisons 158−160Sm,
156Nd–158Sm, and 156Nd–160Sm.

softer the nucleus). In the VMI model, assuming no
component along the symmetry axis, J1 is

J1th =
1
6

(
2J0
YSICS OF ATOMIC NUCLEI Vol. 64 No. 7 2001



SHIFTED IDENTICAL BANDS 1159

 

2

 

I 

 

(initial state)
6 10 14

 

3.1 3.4 3.2 3.1 3.3 3.6 3.9
 

45

40

45

40

 

J

 

1

 

J

 

1

158–160

 

Sm/

 

160

 

Sm

 

158
62

 

Sm

 

96

160
62

 

Sm

 

98

 

VMI fit

VMI fit~~

 
∆

 
E

 

γ 

 

E

 

γ

Fig. 4. VMI fits and ∆Eγ/Eγ for 2+ to 14+. For 2n

separation, ∆Eγ/Eγ and ∆J1th/J1th (in %) are 3.4+0.5
−0.3

and −3.4 ± 0.3, where the “+” and “–” values give
the total spread. J0 (in �

2/MeV), C (in MeV3/�4),√
(J1th − J1exp)2 (in �

2/MeV) are 41.5, 5.63 × 10−3,
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)1/3)
,

where x = I(I + 1). Values of J0 andCwere adjusted
to obtain a least squares fit for the J1th values vs. the
J1exp values at each spin. The root-mean-squares of
the differences between the J1th and J1exp values were
calculated along with ∆J1th/J1th for each point.

3. RESULTS

As a test of our approach, we investigated two
superdeformed bands in superdeformed double magic
(at high spins) 192Hg and its neighbor 194Hg, which
have “one of the most spectacular examples of IBs”
[1]. The SD-1–SD-1 and SD-1–SD-3 bands of
192, 194Hg were compared, including VMI fits to the
experimental J1 data. The average ∆Eγ/Eγ values
from 14+ to 46+ and average∆J2/J2 values from 12+

to 44+ are (1.0± 0.2)% and (−1.3+1.6
−1.8)% for the two

SD-1 bands and are (−0.1+0.3
−0.9)% and (−0.1+2.2

−2.4)%
for the SD-1–SD-3 bands. The J1, J2 shifts are
correlated with the difference in J0, 0.9% and 0.2%,
respectively, between the two pairs of bands in 192Hg
and 194Hg. In the first case, one has a small SIB and
in the second case the “spectacular” IB. Note that
∆J2/J2 values have a greater spread than ∆J1/J1.
Superdeformed nuclei are thought of as being very
hard, and the SD-1 bands of 192, 194Hg have large
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 7 200
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C = 4.62, 4.46 MeV3/�4, respectively. It is surpris-
ing that even larger values ofC are found for a number
of SIB bands. Values of C are nearly equal for shifted
identical bands, as they are for 192, 194Hg.

The values of ∆Eγ/Eγ were calculated for the
following even–even nuclei separated by 2n, 2p, α,
4n, 4p, α+ 2n, α+ 2p, 2α, and 2n–2p: 126−148Ba,
128−152Ce, 128−156Nd, 132−160Sm, 138−162Gd,
148−166Dy, 150−170Er, 154−178Yb, 160−184Hf, 164−186W,
170−192Os, 176−184Pt, 178−186Hg, 186−188Pb, and the
1p, 1n, 1n−1p cases involving 177−185Au, 178−186Hg,
and 183−187Tl nuclei.

In essentially all cases, as the neutron number in-
1
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creases for a given Z, there is a progression from very
uncorrelated yrast transition energies (where there
are no SIBs) to strongly correlated energies, which

Table 1. ∆Eγ/Eγ for examples of SIB and IB in ground-
state yrast bands

2n separation in yrast bands

Z/N pair Imax ∆Eγ/Eγ ,%

62/94–96 156−158Sm 14 3.2± 1.0

62/96–98 158−160Sm 14 3.4+0.5
−0.3

64/96–98 160−162Gd 10 5.3+1.0
−0.9

66/96–98 162−164Dy 14 9.1+0.8
−0.6

66/98–100 164−166Dy 8 −5.0+0.8
−1.2

68/96–98 164−166Er 12 12.8+0.8
−0.7

68/100–102 168−170Er 12 1.5± 0.7

70/102–104 172−174Yb 14 2.6+0.4
−0.3

70 /104–106 174−176Yb 12 −6.5+1.3
−0.4

10 −6.7± 0.2

70/106–108 176−178Yb 8 −2.6+0.4
−0.8

72/104–106 176−178Hf 12 −5.4+0.9
−0.6

72/108–110 180−182Hf 8 −3.7± 0.9

Table 2. ∆Eγ/Eγ for examples of SIB and IB in ground-
state yrast bands

1α separation in yrast bands

Z/N pair Imax ∆Eγ/Eγ ,%

60–62/94–96 154Nd–158Sm 10 −4.0+1.4
−1.6

60–62/96–98 156Nd–160Sm 14 −4.6+0.5
−0.3

62–64/94–96 156Sm–160Gd 10 0.1+0.7∗

−0.6

62–64/96–98 158Sm–162Gd 10 1.9+1.1
−0.9

8 1.6+0.7
−0.6

64–66/94–96 158Gd–162Dy 12 −1.8+0.4
−0.2

64–66/96–98 160Gd–164Dy 8 3.0+1.0
−0.4

64–66/98–100 162Gd–166Dy 8 −6.9+1.0
−0.9

66–68/94–96 160Dy–164Er 10 −5.7± 0.7

66–68/98–100 164Dy–168Er 8 −8.8+0.8
−1.0

68–70/94–96 162Er–166Yb 12 −0.4+0.4∗

−1.0

68–70/98–102 166Er–170Yb 8 −5.1+0.7
−1.1

68–70/100–102 168Er–172Yb 14 1.9+0.9
−0.6

70–72/94–96 164Yb–168Hf 8 0.5+0.9∗

−1.0

∗ Identical bands.
P

we have termed shifted identical bands, in the most
neutron-rich nuclei known, as illustrated in Figs. 1, 2.
Examples of∆J1/J1 and∆J2/J2 are shown in Fig. 3.
The VMI model was used to obtain fits to the above
isotopes. Both identical and shifted identical bands
were found among the comparisons of these iso-
topes. Identical bands were found to occur where
J0a ∼ J0b and large Ca ∼ Cb, and shifted identical
bands were found in comparisons with large Ca ∼ Cb

but the J0’s were different. Note that SIBs only
occurred for large C values, corresponding to hard
nuclei with small stretching. For example, 134Sm
and 136Sm are soft nuclei (both with C = 2.23 ×
10−3 MeV3/�4), and these yrast bands are not SIBs
(see Fig. 1). The SIB in 158−160Sm has C = 5.63 ×
10−3 and 4.86 × 10−3 MeV3/�4, respectively (see
Fig. 4), with Eγ(158Sm) = (1.034)Eγ (160Sm) for ev-
ery transition from the 2+ to the 14+ state, and a
spread of only 1.031 to 1.039. Theoretical values of
J1 for each point have ∆J1th/J1th values with con-

Table 3. ∆Eγ/Eγ for examples of SIB and IB in ground-
state yrast bands

2p separation in yrast bands

Z/N pair Imax ∆Eγ/Eγ ,%

60–62/94 154Nd–156Sm 10 −7.0+0.7
−1.0

60–62/96 156Nd–158Sm 14 −7.7+0.4
−0.3

62–64/90 152Sm–154Gd 14 −1.5+0.6
−0.4

62–64/94 156Sm–158Gd 10 −3.6+1.2
−1.0

8 −3.9+0.9
−0.7

62–64/96 158Sm–160Gd 10 −3.2+0.1
−0.2

62–64/98 160Sm–162Gd 10 −1.3+1.1
−0.8

64–66/98 162Gd–164Dy 14 −1.5+1.0
−0.7

10 −1.8± 0.4

66–68/100 166Dy–168Er 12 −3.9± 0.3

68–70/102 170Er–172Yb 12 0.3± 0.5∗

70–72/108 178Yb–180Hf 10 −9.3+1.2
−0.7

8 −9.7+0.7
−0.3

72–74/112 184Hf–186W 8 −11.4+0.6
−1.0

∗ Identical bands.
HYSICS OF ATOMIC NUCLEI Vol. 64 No. 7 2001
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Table 4. ∆Eγ/Eγ for examples of SIB and IB in ground-
state yrast bands

4p separation in yrast bands

Z/N pair Imax ∆Eγ/Eγ ,%

60–64/94 154Nd–158Gd 12 −10.3+0.7
−0.3

10 −10.4± 0.2

60–64/96 156Nd–160Gd 10 −10.6+0.4
−0.2

62–66/96 158Sm–162Dy 8 −8.8+1.2
−0.7

62–66/98 160Sm–164Dy 8 −3.3+0.7
−0.5

4n separation in yrast bands

62/94–98 156−160Sm 14 6.6+0.9
−0.6

64/94–98 158−162Gd 10 9.4+0.9
−1.1

8 9.6+0.7
−1.0

70/102–106 172−176Yb 12 −4.0+1.0
−0.5

10 −4.2+0.2
−0.3

70/104–108 174−178Yb 8 −9.2+0.3
−0.5

72/106–110 178−182Hf 8 −5.4+0.7
−1.1

siderably smaller errors since they are averaged over
all points. Examples of 2p and α separation SIBs are
given in Figs. 5 and 6. Nearly the same constancy
found in ∆J1/J1 is also found in ∆J2/J2, where J2

is the dynamical moment of inertia, as seen in Fig. 3.
The ∆J2/J2 spreads are larger than those of ∆J1/J1

for SIB, as for superdeformed bands. Surprisingly,
the SIB J2 spreads are often smaller (Fig. 3) than the
J2 spreads for SD bands. So, when shifted, SIBs are
more identical than the “most spectacular” IBs.

Tables 1–4 show the IB and SIB that start at 2+

for the 2n, α, 2p, 4n, 4p separations. No IB or SIB
occur for any combination with Ba or Os nuclei. Out
of over 700 comparisons in Ba–Os nuclei, 55 cases
of SIBs that begin at the 2+ state were found and all
involve stable to the most neutron-rich known nuclei
with N = 90−112 (Table 5). As Z increases, the
SIBs move up in N to the most neutron-rich nuclei.
There are marked differences in magnitude (factors
up to 9) and sign of κ for neighboring pairs for 2n,
2p, and α separations. Only 4 IBs were found in the
over 700 comparisons. All β2 values for SIBs nuclei
range from 0.23–0.30 theoretically and are somewhat
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 7 200
Table 5. Location by Z and N of SIBs from 2+ to 8+ and
higher (underlining indicates the most neutron rich isotope
whose levels are known to 8+)

SIB for ranges 2+ to 8+, 10+, 12+, or 14+

❜
❜

❜
❜

❜
❜

❜❜ Atomic
number
Z

Neutron
numberN

58 60 62 64 66 68 70 72 74

90 X X

92 X X X

94 X X X X X

96 X X X X X

98 X X X X X

100 X X X

102 X X

104 X X X

106 X X

108 X X

110 X

112 X X

larger up to 0.35 experimentally, corresponding to
well-deformed nuclei. In proton-rich W, Pt, Hg, and
Pb nuclei, there are SIB and IB starting at 4+ or
6+, which are not considered in this paper. Their
2+ and sometimes 4+ states are perturbed by shape
coexistence [6]. There are only four ground-state
identical bands seen in e–e Ba to Pb, so SIBs are a
different phenomenon.

We observed 55 cases of ground-state SIB: one
case in 152Ce; 9 in 152−156Nd; 20 in 152−160Sm; 21 in
154−162Gd; 18 in 160−166Dy; 14 in 160, 164−170Er; 17 in
170−178Yb; 9 in 168, 176−184Hf; and one in 186W (note
there is double counting since each of the 55 cases
involves a pair of isotopes). Eighty-two percent of
SIBs occur in the stable to most neutron-rich well-
deformed Sm to Yb nuclei. However, there are other
nearby nuclei with equally large deformations that do
not exhibit SIBs. We also note that the 2p SIBs
cluster in Sm and Gd (11 of 22), the 2n SIBs are
nearly uniformly spread from Sm to Hf, and the α
SIBs are clustered in Gd to Er (13 of 20), somewhat
1
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Table 6. Examples of ∆Eγ/Eγ values for comparisons of ground-state yrast bands in nuclei with identicalNpNn values
(a, b, c, d indicate the same (NpNn)(N ′

pN
′
n))

Type Pair (NpNn)(N ′
pN

′
n) Range ∆Eγ/Eγ ,%

4α 156Dy–172W (16, 8) (8, 16) 2–14 7.8+4.1
−3.3

3α 158Dy–170Hf (16, 10) (10, 16) 2–14 1.0+2.5
−2.9

2α 160Dy–168Yb (16, 12) (12, 16)a 2–14 0.5+1.9
−1.6

2α 160Er–168Hf (14, 10) (10, 14)b 2–12 1.5+0.4
−0.5

α 162Dy–166Er (16, 14) (14, 16)c 2– 8 0.8+1.0
−0.7

α 162Er–166Yb (14, 12) (12, 14)d 2–12 −0.4+0.4
−1.0

4p 152Gd–156Er (14, 6) (14, 6) 2–12 −11.8+11.7
−6.2

4p 154Gd–158Er (14, 8) (14, 8) 2–12 −21.2+11.2
−14.8

4p 156Gd–160Er (14, 10) (14, 10)b 2–12 −20.1+7.9
−9.2

4p 158Gd–162Er (14, 12) (14, 12)d 2–12 −15.8+7.6
−6.3

4p 160Gd–164Er (14, 14) (14, 14) 2–10 −14.8+3.5
−2.8

4p 162Gd–166Er (14, 16) (14, 16)c 2–10 −8.9+2.8
−1.6

8p 158Sm–166Yb (12, 14) (12, 14)d 2–12 −21.3+8.9
−7.6

8p 160Sm–168Yb (12, 16) (12, 16)a 2–12 −13.8+8.2
−5.7

8p–4n 156Gd–168Hf (14, 10) (10, 14)b 2–14 −19.0+8.2
−9.3

6p–2n 158Sm–162Er (12, 14) (12, 14)d 2–12 −20.9+9.6
−7.6

6p + 2n 158Gd–166Yb (14, 12) (12, 14)d 2–12 −16.2+6.8
−6.1

4p–4n 160Sm–160Dy (12, 16) (16, 12)a 2–12 −14.0+6.3
−4.3

2p–2n 158Sm–158Gd (12, 14) (14, 12)d 2–12 −6.2+2.9
−2.2

2p–2n 162Gd–162Dy (14, 16) (16, 14)c 2–10 −10.1+0.8
−0.8
correlated with the 2p cases. Since the results to
some degree cluster around neutron midshell, where
the saturation of collectivity is expected, one could
expect that saturation may play a role. Clearly there
is no correlation with A5/3, for example, for 158Sm–
160Sm, κ̄ = 3.4 and for 158Sm–160Gd, κ̄ = −3.2, so
adding 2p gives the opposite sign to adding 2n and
has the opposite change in Eγ , J1. More importantly,
there is no correlation with deformation. For example,
look at the two 158−160Gd–162−164Dy α cases of SIB
where κ̄ = −1.8 and +3.0, respectively. The experi-
PH
mental β2 for Gd are 0.348 and 0.353, and for Dy are
0.341 and 0.348, respectively. The Gd deformations
are larger in both cases, and so one expects their
transition energies to be smaller. This is consistent
with the first case but exactly opposite in the latter
case. As another example, the 2p chain of Yb to Hf
is shown in Fig. 2. Note that the deformations peak
at midshell around N = 102 but no IB or SIB are
seen there. The only SIB is in the most neutron-rich
nuclei known with N = 108 and lower deformation.
YSICS OF ATOMIC NUCLEI Vol. 64 No. 7 2001
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Table 7. ∆Eγ/Eγ values for 1α separated SIBs compared with ∆Eγ/Eγ values of their associated 2n and 2p
comparisons (a line over a component indicates the average is taken over a spread of values with two examples)

1α pair ∆Eγ/Eγ , % 2n+ 2p 2p+ 2n

154
60Nd–158

62Sm −4.0+1.4
−1.6 2.6 −7.7 –7.0 +3.2

156Nd–160Sm −4.6+0.5
−0.3 Unknown –7.7 +3.4

156
62Sm–160

64Gd 0.1+0.7
−0.6 3.2 −3.2 –3.6 +3.9

158Sm–162Gd 1.9+1.1
−0.9 3.4 −1.3 –3.2 +5.3

158
64Gd–162

66Dy −1.8+0.4
−0.2 3.9+1.7

−2.0 –5.4+1.8
−1.2 –6.3+2.9

−2.1 +4.9+2.7
−3.1

160Gd–164Dy 3.4+1.4
−0.8 5.3 −1.5 –5.4 +9.1

162Gd–166Dy −6.9+1.0
−0.9 Unknown –1.5−5.1

160
66Dy–164

68Er −5.7± 0.7 4.9 –10.1 –11.8 +7.1

164Dy–168Er −8.8+0.8
−1.0 –5.0 –3.9 −7.8 –1.0

162
68Er–

166
70Yb −0.4+0.4

−1.0 5.8+5.8
−6.2 –5.8± 4.9 –9.1+6.6

−8.2 +10.0+10.5
−8.8

168Er–172Yb 1.9+0.9
−0.6 1.5 +0.3 –1.8 +3.9
Thus, collectivity and saturation of collectivity are not
correlated with SIB occurrence.

Now look at the NpNn scheme suggested earlier
[2], where NpNn are the smaller number of particles
or holes from magic numbers. First the “identical
bands in widely dispersed nuclei” noted earlier [2] in
156Dy to 172W α chain compared to 180Os do have
relatively small average κ’s but their spreads in κ

are large, 0.2+6.1
−5.4, −0.2+7.2

−4.7, −0.5+7.1
−6.2, −1.6+6.9

−4.7, and
−7.1+4.2

−2.3, respectively. So, they are not really identical
in the usual sense. In Table 6 are shown the six pairs
with the same (NpNn)(N ′

pN
′
n) values noted earlier

[2], 156Dy–172W, 160Er–168Hf, 158Dy–170Hf, 162Er–
166Yb, 160Dy–168Yb, and 162Dy–166Er along with
eight other such cases, and six of eight Gd–Er cases,
which form a long chain of identical NpNn nuclei
that go from spherical 148Gd–152Er to well-deformed
162Gd–166Er. As seen in Table 6, in the earlier noted
six cases [2] there is one SIB and two IBs but with
the exception of an SIB in 162Gd–162Dy, all the others
have large κ̄with large spreads, including all the Gd–
Er chain with two cases left out. Note (Table 6) four
of the earlier six cases [2] have multiple other same
NpNn pairs all with large κ̄ and large spreads. NpNn

for the SIB nuclei go from 80 to 288 but many others
in this range are not SIBs. The absence of SIBs in
many cases and of any consistency for equal NpNn

nuclei suggests the global collective features tracked
byNpNn cannot account for the observed SIBs.

Finally, the SIBs for α, α+ 2n, α+ 2p, 4n, 4p,
and 2n–2p separations have the following differences:
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 7 200
For Nd to Dy SIBs, their ∆Eγ/Eγ are obtained by
adding, including sign, the 2n and 2p values even
when the 2n and 2p values are different in magnitude
and sign (see Table 7). For Er, Yb, and Hf nuclei,
the SIBs for α separation are the result of combining
2n and 2p neighboring nuclei with no SIB where the
∆Eγ/Eγ change in 2n is in the opposite direction so
as to cancel the 2p non-SIB variation. For example,
in 160Dy–164Er, from 2+ to 10+, ∆Eγ/Eγ for 1α
is (–5.7±0.7)%, but over the same range ∆Eγ/Eγ

for 160Dy–162Er goes from –14.9% to –8.7%, and
∆Eγ/Eγ for 162−164Er goes from 11.6% to 2.6%.

In summary, this new phenomenon of SIBs is
found most often in stable to the most neutron-rich
Sm to Yb nuclei known with N = 94–108. Studies
of their heavier nuclei could give us insight into why
such bands occur but will have to await radioactive
ion beam accelerators. Comparisons of SIB with
theNpNn scheme and deformation and its saturation
indicate that one must go beyond global collective
features to find an understanding of this new phe-
nomenon. These SIBs with remarkably constant Eγ

shifts and marked differences in size and sign of κ for
even neighboring pairs clearly present challenges for
more microscopic theoretical approaches.
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Abstract—We present new theoretical results of the flux-averaged 12C(νe, e
−)12N and 12C(νµ, µ

−)12N
cross sections with νµ(νe) coming from the decay-in-flight (decay-at-rest) of π+(µ+). These cross
sections are relevant for the interpretation of the recent experiments on neutrino oscillation performed by
the LSND and KARMEN collaborations. The microscopic approaches used are charge-exchange random
phase approximation (RPA), charge-exchange RPA among quasiparticles (QRPA), and the Shell Model.
We show that the exclusive cross sections are in nice agreement with the experimental values for both
reactions when a large-scale shell-model calculation is performed. Concerning the inclusive cross section
for νµ coming from the decay-in-flight of π+, the calculated value keeps overestimating the experimental
one by 20–30%, while the inclusive cross section due to νe coming from the decay-at-rest of µ+ is in
agreement within experimental error bars with the measured values. The shell-model prediction for the
decay-in-flight neutrino cross section is reduced compared to the RPA one because of the different kind of
correlations in the calculation of the spin modes (in particular, the quenching of the 1+) and partially due
to the shell-model configuration basis, which is not large enough, as we show using arguments based on
sum rules. c© 2001 MAIK “Nauka/Interperiodica”.
In current experiments on neutrinos, either aiming
at studying the properties of neutrinos such as their
mass or using neutrinos to learn something on astro-
physical objects like the sun and supernovae, nuclei
are often used as neutrino detectors. For example,
12C has been used in recent experiments performed
both by the LSND and the KARMEN collabora-
tions, looking for νµ → νe [1, 2], ν̄µ → ν̄e [3, 4], or
νµ → νx [5] oscillations with neutrinos produced by
accelerators. An accurate knowledge of the cross
sections of the reactions induced by neutrinos on 12C
is therefore necessary to interpret these experiments.
In fact, recently, significant discrepancies between the
experimental values and the theoretical predictions of
some cross sections have stimulated many calcula-
tions: (i) a discrepancy up to a factor of 4 on the
cross section for the charged-current (CC) reaction
νe +12 C → e− +12 Ng.s. with νe coming from the
decay-at-rest (DAR) of µ+; (ii) a discrepancy up to a
factor 2 on the cross section of νµ +12 C → µ− +12 N
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3) Department of Physics, College of Humanities and Science,
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with νµ coming from the decay-in-flight (DIF) of
π+. If, on one hand, the former has been measured
by different collaborations, the latter has only been
measured by the LSND collaboration, the detector
used being the same as the one used in the oscillation
experiments. Because only one experimental value is
available in this case, it is even more important to
understand from the theoretical point of view what
can be at the origin of these discrepancies. The
microscopic theoretical approaches used are either
the charge-exchange random phase approximation
(RPA) or the shell model (SM). Both these models
present approximations that render it difficult to take
into account the many aspects of the nuclear struc-
ture of the nuclei involved in these reactions, aspects
which are necessary for an accurate prediction of the
cross sections. In fact, it has been known since
the very first shell-model calculations in light nuclei
[6] that 12C is not a well-closed subshell nucleus.
Actually, a good prediction of the exclusive cross
sections (inwhich 12N is left in its ground state) needs
a good description of the ground state to ground
state transition probability. On the other hand, the
inclusive cross sections (in which 12N is left either
in the ground state or in an excited state) require
the use of approaches capable of describing high-
lying excited states, in the giant resonance region or
2001MAIK “Nauka/Interperiodica”
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above, the average energy transferred to the nucleus
being of several tens of MeV. Within RPA, it is easy
to perform calculations in large model spaces and
therefore to include high-lying states, whereas the
ground state to ground state transition probability
is not well described, as is known from other weak
processes in these nuclei, namely, 12N(β+)12C and
12C(µ−)12B. On the contrary, within SM, it is not
so easy to perform large-scale calculations because
of computational reasons. The prediction of these
cross sections is therefore a challenging task from the
theoretical point of view.
We present new theoretical results on the exclu-

sive and inclusive cross sections, both for the reac-
tion νe +12 C → e− +12 Ng.s. with νe coming from the
DAR of µ+ and the reaction νµ +12 C → µ− +12 N
with νµ coming from the DIF of π+ [7]. The cal-
culations are performed within two microscopic ap-
proaches. The first is the RPA among quasiparticles
(QRPA) where we introduce the configuration mixing
present in the ground state of 12C by including “ad
hoc” pairing, as was first suggested in [8]. In [9], this
is done by performing RPA with fractional occupan-
cies. The second approach used is SMwhere we use a
model space which is larger than the one used in [10].
The expression for the cross section of the reaction

νl +12 C → l +12 N (l = e, µ) is [11]

σ =
G2

2π
cos2 θC

∑
f

plEl

1∫
−1

d(cos θ)Mβ, (1)

whereG cos θC is the weak coupling constant, θ is the
angle between the directions of the incident neutrino
and the outgoing lepton, andMβ is given by

Mβ ≡MF|〈f |1̃|i〉|2 +MG0
1
3
|〈f |σ̃|i〉|2 +MG2Λ,

(2)
where the expression for the squared nuclear matrix
elements which are related either to Fermi type or
Gamow–Teller type transitions can be found in [11].
A correction to (1) must be introduced to account for
the distortion of the outgoing lepton wave function
due to the Coulomb field of the daughter nucleus,
either by multiplying (1) by the Fermi function [12] or
by using the “Effective Momentum Approximation”
[13], according to the energy of the outgoing leptons.
Concerning the transition matrix elements (2), we

perform a self-consistent RPA calculation where the
residual interaction among particle–hole states is de-
rived from the same Skyrme force used to produce
the mean field. The forces used are either SGII [14]
or SIII [15]. We have checked that the results are
not very sensitive to the choice of the force. To
go beyond the closed-subshell approximation for the
PH
12C ground state, pairing correlations are taken into
account in the HF+BCS approximation. Constant
pairing gaps∆p and ∆n for protons and neutrons are
introduced and are set at 4.5 MeV. A large pairing
gap is unrealistic for states far from the Fermi surface,
and an energy cutoff is required, such that the states
above this cutoff have ∆ = 0. The cutoff is set at
the 2s1/2 state. We have then performed a QRPA
calculation [16] in order to get the transition matrix
elements. We simply note that the particle–particle
matrix elements are renormalized here by means of a
parameter gpp that has been chosen to be smaller than
1 (typically 0.7) to avoid the well-known ground-
state instabilities.
Concerning the SM approach, we perform calcu-

lations in the 0s–0p–1s0d–1p0f shell-model space
and include configurations up to 3�ω excitations for
negative parity states and up to 2�ω excitations for
positive parity states. No 4He core is assumed in the
present calculations. The spurious center-of-mass
states are eliminated here by using the method of
Lawson [17]. We adopt here the effective interaction
of Warburton and Brown [18] for use in the present
0s–0p–1s0d–1p0f model space, and we use the set
WB10 [19], which is based on the WBT interaction
[18]. In the shell model, the reduced matrix elements
of transition operators are expressed as linear com-
binations of the reduced matrix elements of single-
particle states with coefficients given by one-body
density matrix elements. The form factors in the
coefficients MF, MG0, MG2 in (2) have to be cor-
rected for the center-of-mass motion. This is done by
multiplying thematrix elements by the Tassie–Barker
function, exp(b2q2/2A), with b being the oscillator
length parameter [20].
In order to compare the theoretical cross sections

to the experimental data, the energy-dependent cross
section (1) is weighted by the neutrino impinging flux
f̃(Eν) (depending on the neutrino source used)

〈σ〉f =
∫
dEνσ(Eν)f̃(Eν). (3)

Tables 1, 2, and 3 show the calculated flux-
averaged cross sections obtained in the different
approaches used in comparison with the results of [9]
and [10] and with the experimental data. First, let us
discuss the results obtained for the exclusive cross
sections. As we mentioned above, the RPA value
presents a factor 4 discrepancy with the experimental
data. This disagreement is strongly reduced when
RPA with fractional occupancies is used [9], whereas
theQRPA value is only slightly different from theRPA
one. Within SM in a 0s–0p–1s0d ((0 + 1 + 2)�ω)
model space, the exclusive cross sections for both
the DIF and the DAR cases agree with the experi-
mental data. These results are not very sensitive to
YSICS OF ATOMIC NUCLEI Vol. 64 No. 7 2001
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Table 1. Flux averaged exclusive cross sections 〈σ〉f within the different approaches used, namely, SM, RPA, and
QRPA [7]

(νµ, µ
−)DIF (νe, e

−)DAR

〈σ〉f , 10−40 cm2 〈σ〉f , 10−42 cm2

RPA 2.09 49.47

QRPA 1.97 42.92

CRPA [9] 1.06(1.03) 13.88(12.55)

SM(HF wf) (0 + 1 + 2)�ω 0.65 8.11

SM(WS wf) (0 + 1 + 2)�ω [10] 0.58 8.4

Experiment 0.66 ± 1.0 ± 1.0 [21] 10.5 ± 1.0 ± 1.0 [22]
9.1 ± 0.4 ± 0.9 [23]
9.1 ± 0.5 ± 0.8 [24]

Note: In the SM calculation in the (0 + 1 + 2)�ω model space, Hartree–Fock wave functions (HF wf) have been used. Comparison
with CRPA with fractional occupancies [9] and a recent shell-model calculation [10] is made. In the former case, the results are
obtained with the finite-range G matrix derived from the Bonn NN potential (BP) and with the Landau–Migdal (LM) force (in
brackets). In the latter case, Woods–Saxon wave functions (WS wf) have been used.
the choice of the wave functions, which are either
Hartree–Fock (HF) in our calculation or Woods–
Saxon (WS) in [10]. Concerning the inclusive cross
section without the contribution of the ground state
to ground state transition for the DAR case (Table 2),
we see that calculations within RPA and RPA with
fractional occupancies give values in agreement with
the experiment. This cross section is very sensitive to
any shift of the strength distribution. In fact, the cross
section (1) goes almost like the square of the lepton
energy El, which is equal to the difference between
the energy of the impinging neutrino and the energy
transferred to the nucleus, i.e.,Eν −Efi. As a conse-
quence, for example, we can see that the QRPA result

Table 2. Same as Table 1 for flux-averaged inclusive cross
sections but excluding the ground state [7] (our results
are obtained within the (0 + 1 + 2 + 3)�ω model space,
whereas the results of [10] in the same model space (in
brackets) are obtained by extrapolation)

(νe, e
−)DAR

〈σ〉f , 10−42 cm2

RPA 5.63

QRPA 9.08

CRPA [9] 5.4(5.6)

SM(HF wf) (0 + 1 + 2 + 3)�ω 8.28

SM(WSwf) (0 + 1 + 2 + 3)�ω [10] (3.8)
Experiment 5.4 ± 1.9 [22]

5.7 ± 0.6 ± 0.6 [23]
5.1 ± 0.8 [24]
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 7 200
is almost a factor 2 larger than the RPA value. This is
because the QRPA strength functions are, as a rule,
shifted downward in energy compared to RPA due
to the particle–particle correlations. The SM cross
sections are very close to the experimental values
both in our calculation and in the one of [10] with the
difference that our result slightly overestimates the
data, whereas the one in [10] slightly underestimates
it. Finally, let us look at the inclusive cross sections
for the DIF case. We see (Table 3) that the QRPA and
RPA with fractional occupancies give cross sections
very similar to RPA, that is, a factor 2 larger than
the experimental values, as we expect because the
inclusion of configuration mixing does not strongly
affect the transition probabilities to high-lying states
with respect to the RPA values. On the contrary, the
SM results are very close to the experimental cross
section within error bars. This reduction of the cross
sections compared to the RPA values is due partially
to the better description of certain modes such as the
Gamow–Teller transition between the ground states
and the spin dipole modes and partially due to the
shell-model space. In fact, we have evaluated energy-
weighted sum rules for different multipolarities. This
has shown that, for some of them, the sum rules
were not completely satisfied and pointed out that the
model space should be enlarged.

In conclusion, we have shown that detailed large-
scale calculations are needed to accurately predict
the reaction cross sections induced by neutrinos on
12C. The exclusive cross sections for the charged-
current νl +12 C → l− +12 N (l = e, µ) with νe com-
ing from the DAR of µ+ or with νµ coming from the
DIF of π+ are in agreement with the experimental
1
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Table 3. Same as Table 1 for the flux-averaged DIF in-
clusive cross section [7] (our results are obtained within
the (0 + 1 + 2 + 3)�ω model space, whereas the results of
[10] in the same model space (in brackets) are obtained by
extrapolation)

(νµ, µ
−)DIF

〈σ〉f , 10−40 cm2

RPA 19.23

QRPA 20.29

CRPA [9] 18.18 (17.80)

SM(HF wf) (0 + 1 + 2 + 3)�ω 15.18

SM(WSwf) (0 + 1 + 2 + 3)�ω [10] (13.2)
Experiment 12.4 ± 0.3 ± 1.8

[9, 21]

values, when a SM calculation is performed with-
in 0s–0p–1s0d–1p0f model space, showing that
the inclusion of configuration mixing is necessary.
Concerning the inclusive reaction cross sections, the
values obtained within SM are (i) 16.4 × 10−42 cm2

for the reaction due to νe coming from the DAR of
µ+, which agrees within experimental error bars with
the measured values; (ii) 15.2 × 10−40 cm2 for the
one due to νµ coming from the DIF of π+, to be
compared to the experimental value of (12.4 ± 0.3 ±
1.8) × 10−40 cm2. The latter SM result is much
closer to the data than the RPA one. This is due,
on one hand, to a better description of the 1+ and
spin dipole contribution and, on the other hand, to the
model space used. In fact, the calculation of energy-
weighted sum rules for some multipolarities shows
that the model space used is not large enough for
them to be satisfied.
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N. Van Giai, Phys. Rev. C 62, 015501 (2000).

8. N. Auerbach, N. Van Giai, and O. K. Vorov, Phys.
Rev. C 56, R2368 (1997).

9. E. Kolbe, K. Langanke, and P. Vogel, Nucl. Phys. A
652, 91 (1999).

10. A. C. Hayes and I. S. Towner, Phys. Rev. C 61,
044603 (2000).

11. T. Kuramoto, M. Fukugita, Y. Kohyama, and K. Ku-
bodera, Nucl. Phys. A 512, 711 (1990).

12. D. H. Wilkinson and B. E. F. Macefield, Nucl. Phys.
A 232, 58 (1974).

13. J. Engel, Phys. Rev. C 57, 2004 (1998).
14. N. Van Giai and H. Sagawa, Phys. Lett. B 106B, 379

(1981).
15. M. Beiner, H. Flocard, N. Van Giai, and Ph. Quentin,

Nucl. Phys. A 238, 29 (1975).
16. K. Grotz and H. V. Klapdor, The Weak Interaction

in Nuclear-, Particle- and Astrophysics (Adam
Hilger, Bristol, 1990).

17. D. H. Gloeckner and R. D. Lawson, Phys. Lett. B
53B, 313 (1974).

18. E. K. Warburton and B. A. Brown, Phys. Rev. C 46,
923 (1992).

19. B. A. Brown, A. Etchegoyen, and W. D. M. Rae,
MSU Cyclotron Laboratory Report No. 524 (1986)
(OXBASH – The Oxford, Buenos-Aires, Michigan
State, Shell Model Program).

20. L. J. Tassie and F. C. Barker, Phys. Rev. 111, 940
(1958).

21. C. Athanassopoulos (LSND Collab.), Phys. Rev. C
56, 2806 (1997); M. Albert et al., Phys. Rev. C 51,
R1065 (1995).

22. D. A. Krakauer et al., Phys. Rev. C 45, 2450 (1992);
R. C. Allen et al., Phys. Rev. Lett. 64, 1871 (1990).

23. C. Athanassopoulos (LSND Collab.), Phys. Rev. C
55, 2078 (1997).

24. B. E. Bodmann (KARMEN Collab.), Phys. Lett. B
332, 251 (1994); J. Kleinfeller et al., in Neutrino 96,
Ed. by K. Enquist, H. Huitu, and J. Maalampi (World
Sci., Singapore, 1997).
YSICS OF ATOMIC NUCLEI Vol. 64 No. 7 2001



Physics of Atomic Nuclei, Vol. 64, No. 7, 2001, pp. 1169–1173. From Yadernaya Fizika, Vol. 64, No. 7, 2001, pp. 1246–1250.
Original English Text Copyright c© 2001 by Kuz’min, Tetereva, Junker.

Proceedings of the International Conference
“Nuclear Structure and Related Topics”
Strength of Spin–Isospin Transitions in A = 28 Nuclei*

V. A. Kuz’min**, T. V. Tetereva1), and K. Junker2)

Joint Institute for Nuclear Research, Dubna, Moscow oblast, 141980 Russia
Received October 25, 2000

Abstract—The relations between the strengths of spin–isospin transition operators extracted from direct
nuclear reactions, magnetic electron scattering, and processes of semileptonic weak interaction are
discussed. c© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Studies of spin–isospin excitations in nuclei have
a long history. Detailed discussions of it are given
in [1, 2]. We dwell upon only a few points that are
important for our purposes. The first manifestation of
spin–isospin transitions was detected in beta decay
as Gamow–Teller transitions (∆Jπ = 1+) for which
we have

ft1/2 =
6135

(gA/gV )2B±(GT)
,

where the strength of the Gamow–Teller (GT) tran-
sition is introduced as

B±
f (GT) =

1
2Jf + 1

∣∣∣∣〈Jf

∥∥∥∥
A∑

k=1

σk t
±
k

∥∥∥∥Ji〉
∣∣∣∣
2

. (1)

In this article, we will only discuss the 0+ → 1+

transitions. The discovery of isobar analog states
in (p, n) reactions was followed by the prediction of
a new nuclear collective excitation—the giant GT
resonance—as the reason for the lack of σt− strength
observed in β-decay studies. In the early 1980s, giant
GT resonances were experimentally discovered and
studied in (p, n) and other nuclear charge-exchange
(CEX) reactions at intermediate energies. By using
some additional assumptions, it was shown in [3] that
the zero-angle (p, n) cross sections are proportional
to B(GT). A comparison of B(GT) values extracted
from the cross sections of CEX reactions with those
obtained from β decay reveals that there are some
distinctions between them [4]. The origin of these
distinctions was explained by the fact that transitions
characterized by small B(GT) are observed even in
fast beta decay. For smallB(GT), however, other spin

∗This article was submitted by the authors in English.
1)Institute of Nuclear Physics, Moscow State University,
Vorob’evy gory, Moscow, 119899 Russia.

2)Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland.
**e-mail: kuzmin@thsun1.jinr.ru
1063-7788/01/6407-1169$21.00 c©
multipoles strongly contribute to CEX cross sections,
leading to a considerable deviation from the propor-
tionality between the zero-angle cross sections and
B(GT) values. Therefore, large errors may appear in
B(GT) values obtained from CEX cross sections [5].

Recent experiments that study exclusive muon
capture in sd-shell nuclei [6] make it possible to
compare the characteristics of strong GT transitions
measured in a weak interaction process with those
obtained from CEX reactions. The energy released
in nuclear muon capture is determined by the muon
mass. Limitations on the transition energy that exist
in beta decay are absent in muon capture. During
muon capture, the nucleus acquires a nonzero linear
momentum. Therefore, kinematics in muon capture
differs from that in beta decay and zero-angle CEX
reactions. For this reason, the matrix elements for the
0+ → 1+ transition obtained in muon capture cannot
be compared directly with B(GT) values extracted
from (p, n) reactions. One is therefore forced to ad-
dress a different problem, that of assessing the extent
to which the wave functions of the isovector states
will simultaneously describe the experimental B(GT)
values and the rates of ordinary muon capture (Λf ).

2. RATE OF NUCLEAR MUON CAPTURE

Our calculations of exclusive-muon-capture rates
are based on the approach described in [7]. If the

matrix elements of the operator
A∑

k=1

j0(Eνrk)σk t
+
k

are dominant, the rates of the 0+
g.s. → 1+

f partial tran-
sitions are given by (only the final result is shown
here)

Λf ≈ 2
3
V g2

A[101]2
{

1 +
2
3
η +

8
3
gV + gM

gA
η (2)

−2
3
gP

gA
η +

1
3

(
gP

gA
η

)2
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+

√
8
9

[
2
(

1 +
gV + gM

gA
− gP

gA

)
η +

(
gP

gA

)2
]

[121]
[101]

+2
(

1 − gP

gA

)
η

[111p]
M [101]

−
√

8
9
gV

gA

[011p]
M [101]

}
,

where η =
Eν

2Mp
and the nuclear matrix elements are

defined by

[101] =

√
1
4π

〈1+
f ‖

A∑
k=1

ϕµ(rk) j0(Eνrk)

× Y0(r̂k)σk t
+
k ‖ 0+

g.s.〉,

[121] =

√
1
4π

〈1+
f ‖

A∑
k=1

ϕµ(rk) j2(Eνrk)

×
[
Y2(r̂k) ⊗ σk

]
1
t+k ‖ 0+

g.s.〉,

[111p] =

√
1
4π

〈1+
f ‖

A∑
k=1

ϕµ(rk) j1(Eνrk)

×
[
Y1(r̂k) ⊗∇k

]
1
t+k ‖ 0+

g.s.〉,

[011p] =

√
1

12π
〈1+

f ‖
A∑

k=1

ϕµ(rk) j1(Eνrk)Y1(r̂k)

×
(
∇k,σk

)
t+k ‖ 0+

g.s.〉.
Here, ϕµ(r) is the muon radial wave function. We
approximate ϕµ, as one usually did for light and
medium-mass nuclei, by the average value calculated
in [8].

3. COMPARISON OF THE RESULTS
OF CALCULATIONS

WITH EXPERIMENTAL DATA

The calculations were performed on the basis of a
many-particle shell model by using the Hamiltonian
of Wildenthal [9] and an unrestricted sd-shell space.
The computer code OXBASH [10] was employed in
the calculations. Theoretical and experimental GT-
and M1-strength functions are presented in the fig-
ure. The theoretical results obtained with the eigen-
functions of Wildenthal’s Hamiltonian are labeled
with (a). The quantities B(GT) for the 1+ states with
excitation energies below 6 MeV are shown in the
upper left part of the figure. The energies are mea-
sured from the ground state of 28P. The experimental
GT strength function was obtained from the cross
sections for the reaction 28Si(p, n)28P [11]. All states
whose excitation energy is below 5 MeV are shown
in the figure. Only a small fraction of entire exper-
imental GT strength goes to the states with higher
excitation energies [11]. Additionally, the exact spins
PH
and parities of high-lying states have not yet been
determined experimentally. For these two reasons, we
neglect high-lying states that are not shown in the
figure in the ensuing analysis. In the energy region
up to 12.6MeV, one observes an experimentalB(GT)
strength of 2.595; the B(GT) values summed over
the states shown in the figure amount to 2.301. The
theoretical B(GT) values summed over the first ten
eigenstates with Jπ, T = 1+, 1 (shown in the figure)
give 3.492. Therefore, a rather standard value of GT

quenching,

∑
Bexpt(GT)∑
Btheor(GT)

= 0.66, is obtained from

this comparison.

The figure also shows the theoretical and experi-
mental M1 strength functions. It is known [12] that
the shell model with the Hamiltonian from [9] faith-
fully reproduces the energies of 1+ isovector states
in 28Si. However, the theoretical dependence of
B(M1) values on the excitation energy considerably
differs from the experimental dependence obtained in
[13]. The calculations were performed with a “free”
value of gs, and the summed theoretical B(M1) is

larger than the experimental one:

∑
Bexpt(M1)∑
Btheor(M1)

=

7.360
8.623

= 0.85. Even in that case, however, the ex-

perimental B(M1) value exceeds considerably the
theoretical value for the strongest transition that goes
to the 1+ isovector state at 11.445 MeV (see figure).

Therefore, we can conclude that the shell model
with the Hamiltonian from [9] describes qualitatively
the main features of GT and M1 strength func-
tions in the sense that small theoretical B(GT) and
B(M1) values correspond to small experimental val-
ues. However, the theoretical distributions of the
transition strength over the states that absorb the
largest part of the total strength differ considerably
from the experimental strength functions.

According to (2), the nuclear matrix element [101],
having the σt+ operator as the spin–angular part,
contributes mainly to the rate of fast allowed muon
capture. Therefore, the differences between the theo-
retical and experimental values ofB(GT) and B(M1)
led to the discrepancies between the theoretical and
experimental values of Λf . The Λf values calculated
with the eigenfunctions of the Wildenthal Hamilto-
nian are shown in the table (column a). Also, the
values of B(M1) and B(GT) for the members of
the same isotopic triplets are presented in the table,
together with the corresponding experimental val-
ues. The only conclusion that one can draw from a
comparison of experimental data with the results of
calculation (a) is that the difficulties in the description
YSICS OF ATOMIC NUCLEI Vol. 64 No. 7 2001
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Fig. 1. Strength functions of GT and M1 transitions in 28Si. Experimental data and the results of calculations are represented
by, respectively, closed and open bars. The calculations have been performed (a) with the eigenfunctions of the Hamiltonian
from [9] and (b) with transformed wave functions.
of GT and M1 transitions have a counterpart in the
description of muon capture rates.

In this situation, it might be reasonable to use
available experimental information about GT andM1
strength functions in the calculations of muon cap-
ture rates. For this purpose, an orthogonal transfor-
mation acting in the subspace spanned by the wave
functions of the 1+ isovector states was proposed in
[14]. According to that study, the parameters of the
transformation must be chosen in such a way that the
GT andM1 strength functions calculated with trans-
formed wave functions differ from the experimental
GT and M1 strength functions only by a constant
factor. Therefore, the transformation parameters do
not depend on any relation between the experimental
and theoretical values of the summed GT and M1
strengths and are determined only by the shapes of
experimental GT and M1 strength functions. The
orthogonality of the transformation will support the
mutual orthogonality and normalization of the re-
sulting wave functions. For the same reason, the
theoretical total GT andM1 transition strengths will
be conserved.
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 7 200
Isotopic invariance of strong interactions ensures
that the transformation of the 1+ isovector states in
28P will induce the transformations of the 1+, 1 states
in 28Si and 28Al. In addition, the transformation ma-
trix will not depend on the value of the third compo-
nent of the total isospin. Therefore, exactly the same
transformation will be applied to the corresponding
subspaces of the wave functions for 28Si and 28Al.

The next section describes how this transforma-
tion can be constructed.

4. TRANSFORMATION
OF WAVE FUNCTIONS

The transformation of the wave functions for ex-
cited states,

φk → ψk = Uk,k′ φk′ (k = 1, 2, . . . , N),
causes a transformation of the transition matrix ele-
ments,

〈φk|O|Φ〉 → 〈ψk|O|Φ〉 = U∗
k,k′〈φk′ |O|Φ〉

= 〈φk′ |O|Φ〉U †
k′,k.
1
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Considering the transformation within the subspace
of multiparticle wave functions as a transformation in
a linear space of the vectors composed of the transi-
tion amplitudes, we simplify the determination of the
transformation matrix.

An orthogonal N ×N matrix is determined by
N(N − 1)/2 free parameters. To reduce the number
of required parameters, one should use matrices of
a less general structure. The simplest orthogonal
transformation of a vector is its reflection with respect
to a plane [15, 16],

v = v‖ + v⊥ → v′ = v‖ − v⊥.

Here, the vector v‖ is parallel to a plane, while v⊥
is orthogonal to it. If the plane is determined by
the equation (b, x) = bkxk = 0, where b is a nonzero
vector, (b, b) > 0, then the transformation is given by
[15, 16]

vk → v′ = R(b) v (3)

with Rk,l(b) = δk,l − 2
bkbl
(b, b)

.

This equation also gives a solution to our problem: for
any two vectors u andw of the same length, |u| = |w|,
the matrix R(b) with b = u− w will transform u into
w, and vice versa.

From the calculations within the shell model, we
know the vector formed by the theoretical GT am-
plitudes. A second vector is assembled from the
experimental amplitudes. After proper normalization,
we can construct the matrix given by (3). However,
we can get only the absolute values of the transition
amplitudes from experimental data. Therefore, we are
forced to consider all possible distributions of signs
within the “experimental vector.” Each distribution
has its own reflection matrix that will transform the
wave functions in such a way that the new theoretical
GT strength function will coincide in shape with the
experimental one. In order to select the best trans-
formation, we consider the M1 strength function in
28Si. Due to isotopic invariance, the 1+ states in
28Si and 28P are transformed by the same matrix.
Therefore, the theoretical M1 strength function will
change too. The magnetic-dipole-transition operator
differs from the GT transition operator, and the vec-
tors constructed from the GT andM1 amplitudes will
be linearly independent. Therefore, the transformed
theoretical M1 strength function will have a shape
differing from the experimental one. We use the trans-
formation that leads to the smallest deviation of the
theoretical from experimentalM1 shapes.
PH
Properties of spin–isospin transitions in A = 28 nuclei
(references to experimental data and details of the calcu-
lations are given in the main body of the text)

Ef , Experiment Calculations

MeV (a) (b)

Λf (in 103 s−1) for 28Si(0+
g.s.) (µ, ν) 28Al(1+

f )

1.62 12.9 ± 2.1 3.1 7.6 ± 0.2

2.20 62.8 ± 7.4 34.1 63.6 ± 2.4

3.11 14.7 ± 2.6 26.1 11.2 ± 0.5

Bf (M1) (in µN ) for 28Si(0+
g.s.) (e, e′) 28Si(1+

f )

10.90 0.90 ± 0.02 0.538 1.044

11.45 4.42 ± 0.20 3.064 4.461

12.33 0.87 ± 0.06 1.387 0.764

B−
f (GT ) for 28Si(0+

g.s.) (p, n) 28P(1+
f )

1.59 0.109 ± 0.002 0.069 0.165

2.10 0.956 ± 0.005 0.774 1.451

2.94 0.146 ± 0.003 0.613 0.222

5. CALCULATIONS
WITH TRANSFORMED WAVE FUNCTIONS

The GT and M1 strength functions calculated
with the transformed wave functions are presented in
the right panels of the figure (b). The subspace where
the transformation acts includes all states shown in
the figure. The transformation causes a significant re-
distribution of transition strengths over the excitation
energies. As a result, the shape of the GT strength
function is exactly restored and the shape of the M1
strength function is approximately reproduced. The
muon-capture rates calculated with the transformed
wave functions are given in the table (column b).
The new theoretical rates are very close to the ex-
perimental ones. The errors in Λf are the estimated
uncertainties in the calculated rates as induced by
the errors in the experimental values of B(GT) and
B(M1) used in constructing the transformation. It
should be pointed out again that the experimental val-
ues of B(GT) and B(M1) themselves have not been
used in the transformation matrix; only the shapes
of the experimental GT and M1 strength functions
were important for the transformation. Moreover, no
effective charges were introduced in the calculations.
The B(GT) and B(M1) values calculated with the
transformed wave functions can be compared with the
experimental values. The result is given in the table
(column b).

The calculations for the strongest transitions with
the transformed wave functions produce surprising
YSICS OF ATOMIC NUCLEI Vol. 64 No. 7 2001
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results: the theoretical ordinary-muon-capture rates
are very close to the experimental values; the theo-
retical B(M1) values are close to the experimental
ones, but the theoretical B(GT) values are 1.5 times
greater than those extracted from the cross sections
for the reaction 28Si(p, n)28P. Due to the similarity
of the spin–isospin parts of the operators describing
CEX reactions, magnetic electron scattering, and
muon capture, this disagreement could not have been
expected.

6. CONCLUSION

Wehave constructed a set of wave functions for the
excited 1+ isovector states in A = 28 nuclei, starting
from the wave functions calculated within a many-
particle shell model, using the Hamiltonian from [9],
and introducing phenomenological corrections by
means of an orthogonal transformation in a subspace
of shell-model wave functions. Some characteristics
of spin–isospin transitions have then been calculated
with the new wave functions. The calculations have
been performed without introducing any effective
charges. From a comparison of the theoretical
results with experimental data, the following has
been deduced for the strongest 0+ → 1+ isovector
transitions:

(i) The theoretical ordinary-muon-capture rates
are very close to the relevant experimental values.

(ii) The theoretical B(M1) values are close to the
experimental ones.

(iii) The theoretical B(GT) values are 1.5 times
greater than those extracted from the cross sections
for the reaction 28Si(p, n)28P. This disagreement is
unexpected mainly because of the similarity of the
spin–isospin parts of the operators describing CEX
reactions, magnetic electron scattering, and muon
capture.

We have shown that experimental data on partial
muon-capture rates can be used to obtain impor-
tant spectroscopic information, because fast spin-flip
transitions were observed and because the rates of
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 7 200
weak-interaction processes were measured for such
fast transitions.

In contrast to the generally accepted opinion, the
relation between cross sections for CEX reactions
and B(GT) can be quite complicated even for strong
GT transitions. It seems necessary to find how spin-
quadrupole transitions and two-step processes can
contribute to cross sections for CEX reactions even
for strong GT transitions.
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The results of the particle–core version of the shell model are compared with experimental data on E1 and
M6 multipole resonances. c© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Multipole resonances in reaction cross sections
provide themain piece of information about themodes
of nuclear response to an excitation. The possibility
of varying the momentum transfer to a nucleus in
inelastic-electron-scattering reactions opens broad
vistas in studying nuclear excitations. The structure
of the electroexcitation cross section changes dras-
tically as the momentum transfer q becomes higher.
The behavior of transverse multipole resonances in
nuclear cross sections versus momentum transfer is
determined primarily by the interplay of the orbital and
spin nucleon currents. The relative contribution of the
spin components grows with momentum transfer and
with the multipolarity of multipole resonances.
Nuclear theory must give an adequate interpre-

tation of data obtained in (e, e′) reactions in a wide
range of momentum transfers. There is a very well
established fact that the higher the momentum trans-
fer, the higher the multipolarity of the multipole reso-
nances dominating electroexcitation; in addition, the
cross section is strongly affected by individual proper-
ties of the target nucleus. Special features of nuclear
structure are most clearly revealed in reactions on
light nuclei. The excitation spectra of light nuclei
give a clear manifestation of the properties of single-
particle transitions contributing to multipole reso-
nances, while the spectra of heavier nuclei are usually
governed by collective effects.
The objective of this study is to analyze the trans-

verse and longitudinal isovector form factors for 1-
�ω transitions in self-conjugate sd-shell nuclei (28Si,
32S, and 40Ca) within the particle–core-coupling

∗This article was submitted by the authors in English.
**e-mail: ngg@srdlan.npi.msu.su
1063-7788/01/6407-1174$21.00 c©
(PCC) version of the shell model. The role of the
interference between the orbital and spin components
of the intranuclear current in the transverse form
factors at various momentum transfers will also be
considered.

2. FORM FACTORS
FOR THE ELECTROEXCITATION

OF sd-SHELL NUCLEI

For the inclusive cross sections of electron scat-
tering on a nucleus, the entire body of information
about the nuclear structure is concentrated in the
longitudinal (Coulomb) and transverse form factors
F 2

L and F
2
T [1],

dσ

dΩ
=

4πσM

ηR
(1)

×
[
F 2

L(q, ω) +
(

1
2

+ tan2 Θ
2

)
F 2

T (q, ω)
]
.

Here, Θ is the electron-scattering angle, σM is the
Mott cross section for electron scattering on a struc-
tureless charge, and ηR is the recoil factor. The longi-
tudinal form factor F 2

L can be represented as the sum
of multipole form factors F 2

CJ related to the charge
density through the matrix elements of the multipole
operator M̂Coul

J . The transverse form factorF 2
L can be

represented as the sum of electric (F 2
EJ ) andmagnetic

(F 2
MJ ) multipole form factors related to the nuclear

current density through the matrix elements of the
multipole operators T̂ el

J and T̂mag
J , respectively,

F 2
L =

∞∑
J=0

F 2
CJ = (2Ji + 1)−1

∞∑
J=0

∣∣∣〈Jf‖M̂Coul
J ‖Ji〉

∣∣∣2 ,
(2)
2001MAIK “Nauka/Interperiodica”
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F 2
T =

∞∑
J=1

{
F 2

EJ + F 2
MJ

}
(3)

= (2Ji + 1)−1

×
∞∑

J=1

{∣∣∣〈Jf‖T̂ elJ
‖Ji〉

∣∣∣2 +
∣∣∣〈Jf‖T̂mag

J ‖Ji〉
∣∣∣2} ,

M̂Coul
J =

A∑
j=1

êjjJ
(qrj )YJ

(Ωj), (4)

T̂ el
J

=
q

2M

A∑
j=1

{
µ̂jjJ (qrj )[YJ × σ̄j ]

J (5)

+
2êj

q

(√
J + 1
2J + 1

j
J−1

(qrj )[YJ−1
(Ωj) × ∇̄j ]

J

−
√
J + 1
2J + 1

j
J+1

(qrj )[YJ+1
(Ωj ) × ∇̄

J
]J
)}

,
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T̂mag
J =

iq

2M
(6)

×
A∑

j=1

{
µ̂j

(√
J + 1
2J + 1

j
J−1

(qrj )[YJ−1
(Ωj) × σ̄j ]

J

−
√

J

2J + 1
j

J+1
(qrj )[YJ+1

(Ωj ) × σ̄j ]
J

)

−
2êj

q
j

J
(qrj)[YJ+1

(Ωj ) × ∇̄
J
]J
}
.

All transverse multipole form factors for the elec-
troexcitation of sd-shell nuclei, except forM6 excita-
tion, contain contributions from both the spin and the
orbital currents.
Analysis of the contribution from the spin and

orbital components of the nucleon current to the sd-
shell nuclei is based on studying the single-particle
form-factor structure of 1-�ω transitions forming
multipole resonances. The behavior of the squared
transverse and longitudinal form factors for single-
particle isovector E1 transitions is shown in Fig. 1.
The contributions to the transverse form factors from
the spin and orbital components of nucleon current
are represented in Fig. 1 by the dashed and the
dotted curves, respectively. The matrix elements for
single-particle transitions were calculated by using
the harmonic-oscillator wave functions.
The most significant feature of this set of pictures

is the behavior of the dipole transverse form factor for
the 1d5/2 → 1f7/2 transition. Because of the destruc-
tive interference between the orbital and spin com-
ponents of the nucleon current, the transverse form
factor goes through zero at a momentum transfer of
about 0.5 fm−1. At this q value, the longitudinal form
factor of the same single-particle transition is close to
a maximum. Analysis of transverse and longitudinal
form factors for 1lj=l+1/2 → 1(l + 1)j=l+3/2 single-
particle transitions revealed that this effect is univer-
sal and follows from the expressions

FEJ(y) = K(J, l) exp(−y) (7)

×
[
µT y

J+1
2 F (−l + J − 1

2
;
2J + 3

2
; y)

− eT
d

dy
y

J+1
2 F (−l + J − 1

2
;
2J + 3

2
; y)
]
,

FCJ (y) = D(J, l) exp(−y)eT yJ/2 (8)

×F (−l + J − 1
2

;
2J + 3

2
; y),

which describe form factors for all EJ transitions.
On the contrary, the q dependences of transverse

and longitudinal form factors are similar for all EJ
1lj=l+1/2 → 1(l + 1)j=l+1/2 transitions.
1
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Analysis of the form-factor behavior for single-
particle C1 and E1 transitions (Fig. 1) shows that the
ratio F 2

C1/F
2
E1 for individual resonances is sensitive

to the details of the configuration structure of dipole-
excitation wave functions. Therefore, a comparison of
the q dependences of the longitudinal and transverse
form factors at q < 1.0 fm−1 can help to identify the
quantum numbers of the transition dominating the
multipole-resonance wave function.
The interference between the orbital and spin cur-

rents is also revealed in the minimum of the E3
form factors for the 1d5/2 → 1f7/2 transitions at q ≈
0.75 fm−1 and, owing to the appearance of this non-
diffraction minimum, in the small values of the trans-
verse E3 form factors compared to the longitudinal
C3 ones for all excited states where this transition is
dominant. For all other octupole transitions from 1d
subshells, the contribution of the orbital current to E3
excitations is small and the structure of the transverse
form factors is determined exclusively by the contri-
bution of the spin current. In this case, the E3 and
C3 form factors exhibit similar q dependences. The
contributions of the orbital currents to E3 transitions
from the 2s subshell are completely absent [2].
The contribution of the orbital current to the E5

form factors is very small for all transitions from sd
shell, and theE5 andC5 form factors behave similarly.
ForM2 resonances in sd shell nuclei, the interplay

of orbital and spin currents is revealed most signifi-
cantly in the 1d3/2 → 1f5/2 and 1d3/2 → 2p1/2 tran-
sitions leading to small values of the corresponding
M2 form factors at low q. For otherM2 form factors,
the contribution of the orbital current is rather small;
it is manifested only in a small shift of the position of
the diffraction minimum.
The contribution of the orbital current to the M4

form factors is negligible for all transitions. The M6
resonances in the sd shell are generated exclusively
by the contribution of the spin current.

3. MULTIPOLE RESONANCES IN sd-SHELL
NUCLEI IN PARTICLE–CORE-COUPLING

APPROACH

In the PCC version of the shell model, the wave
functions of excited nuclear states are expanded in
a set of low-lying states of residual (A− 1) nuclei
coupled to a nucleon in a free orbit [3],

|JfTf 〉 =
∑

αf |(J ′T ′E′)A−1 × (n′l′j′) : JfTf 〉.
(9)

The PCC approach takes into account the frag-
mentation of hole configurations among the states of
residual nuclei. This version of the shell model also
naturally restricts the full 1-�ω basis by including
PH
Spectroscopic factors for 28Si, 32S, and 40Ca

E′, MeV Jπ Sj

28Si

0 5/2+ 3.4

0.84 1/2+ 0.8

1.01 3/2+ 0.5

2.73 5/2+ 0.41

2.98 3/2+ 0.5

3.68 1/2+ 0.06

4.05 1/2− 1.5

4.41 5/2+ 0.29
32S

0 1/2+ 0.93

1.27 3/2+ 0.98

2.23 5/2+ 1.84

3.13 1/2+ 0.11

3.30 5/2+ 0.67

4.19 5/2+ 0.65

4.78 5/2+ 0.20

5.26 1/2+ 0.10

5.89 5/2+ 0.15

6.33 1/2+ 0.11

7.16 5/2+ 0.79

7.98 1/2− 0.82
40Ca

0 3/2+ 3.7

2.52 1/2+ 1.65

2.81 7/2− 0.6

4.10 1/2+ 0.1

5.26 5/2+ 0.9

5.60 5/2+ 0.65

6.36 5/2+ 1.25

7.43 5/2+ 0.47

only core states with a nonvanishing coefficient of
fractional parentage connected with the ground state
of a target nucleus A,

|JiTi〉 (10)

=
∑

j,J ′E′T ′

CJ ′E′T ′
j |(J ′E′T ′)A−1 × (nlj) : JiTi〉.
YSICS OF ATOMIC NUCLEI Vol. 64 No. 7 2001
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Fig. 2. Isovector dipole form factors and mean energies of E1 and C1 resonances for 28Si.
For self-conjugate nuclei discussed in this study—
28Si, 32S, and 40Ca—the basis for excited states was
constructed in terms of all states of A− 1 nuclei
with nonzero spectroscopic factors of direct pickup
reactions listed in the table [4–6]. Without violating
the Pauli exclusion principle, the PCC basis can
easily be extended to include the doorway configura-
tion coupled to the collective excitation of the target
nucleus.

In the following parts of this article, we will discuss
the E1 and M6 resonances in the electroexcitation
of self-conjugate sd-shell nuclei. The structure of
dipole resonances at various momentum transfers is
strongly influenced by the interplay of the orbital and
spin currents. Hole fragmentation over the states of
residual nuclei plays an important role in the dipole-
resonance structure, but its effect is partly overshad-
owed by the influence of configuration mixing and
interference of current components. The structure of
M6 resonances reveals the hole fragmentation most
ICS OF ATOMIC NUCLEI Vol. 64 No. 7 200
clearly, since its wave function consists of the con-
figuration |(5/2+, E′, 1/2) × (1f7/2) : 6 1〉, and M6
excitations are created exclusively by the spin-current
operator.

4. DIPOLE RESONANCES
IN THE ELECTROEXCITATION

OF sd-SHELL SELF-CONJUGATE NUCLEI

The results of the PCC calculation of isovector
dipole form factors for 28Si, 32S, and 40Ca nuclei
are shown in Figs. 2, 3, and 4 for three values of
the momentum transfer. These pictures also show
the dependences of the mean energies for C1 and E1
(transverse) dipole resonances in these three nuclei.

At q = ω (photon point), the pictures of electroex-
citation are very close to the cross sections for pho-
tonuclear reactions [7–9], and the E1 and C1 form
factors behave similarly. At lowmomentum transfers,
1



1178 GONCHAROVA, DZHIOEV

         

0 1 2 0 1 2

 

q

 

, fm

 

–1

 

20.5

 

〈

 

E

 

〉

 

E

 

1

 

, MeV

16 20 24 28 16 20 24 28

 

E

 

, MeV

0

1 

 

×

 

 10

 

–3

 

3 

 

×

 

 10

 

–3

 

q

 

 = 1.0 fm

 

–1

 

0

 

q

 

 = 0.5 fm

 

–1

 

0

2 

 

×

 

 10

 

–3

 

4 

 

×

 

 10

 

–3

 

0

2 

 

×

 

 10

 

–3

 

0

4 

 

×

 

 10

 

–3

 
F

 
2

 

E

 

1

 
(

 
E

 
), MeV

 
–1

 

q

 

 = 

 

ω

 

0

 
F

 
2

 

C

 

1

 
(

 
E

 
), MeV

 
–1

 

E

 

, MeV

 

q

 

, fm

 

–1

 

21.5

22.5

20

21

22

 

〈

 

E

 

〉

 

C

 

1

 

, MeV

2 

 

×

 

 10

 

–3

 

1 

 

×

 

 10

 

–2

 

3 

 

×

 

 10

 

–2

 

2 

 

×

 

 10

 

–2

 

6 

 

×

 

 10

 

–3

 

2 

 

×

 

 10

 

–2

 

4 

 

×

 

 10

 

–2

 

6 

 

×

 

 10

 

–2

 

2 

 

×

 

 10

 

–3

 

4 

 

×

 

 10

 

–3

Fig. 3. Isovector dipole form factors and mean energies of E1 and C1 resonances for 32S.
the E1 distribution is dominated by the giant-dipole-
resonance bump, which is formed by the orbital com-
ponent of the nucleon current. At a momentum
transfer of about 0.5 fm−1, similarity of the C1 and
E1 form factors disappears for all nuclei. The dipole
“photonuclear” peak in 28Si is formed by transitions
not only from the 1d5/2 subshell but also from the

1p shell. The transverse form factor for 32S under-
goes the most significant changes, because the main
peak of the E1 resonance near 19 MeV receives the
main contribution from the |(5/2+, 2.2 MeV, 1/2) ×
(1f7/2) : 1 1〉 configuration. The destructive interfer-
ence between the nucleon components of the current
is responsible for the vanishing of the transverse E1
strength at E < 22 MeV. Similar configurations in
40Ca are embedded in the resonances occurring at
22–24 MeV. The 1d5/2 → 1f5/2 spin-flip transitions
are responsible for dipole excitations above 23 MeV
in 28Si and 32S and above 25 MeV in 40Ca. Their
contributions to transverse form factors grow with q
P

in the range 0.5–1.0 fm−1 and cause a shift of the
mean energies of E1 resonances shown in the figures.

5. STRETCHED-STATE DISTRIBUTIONS
IN 28Si, 32S, AND 40Ca NUCLEI

In the last decade, special attention has been given
to stretched states (or maximum-spin states) in nu-
clei because of their unique features: (1) only the spin
component of the nucleon current is responsible for
the excitation of these transitions; (2) on the level of a
doorway excitation, stretched states in self-conjugate
nuclei consist of a unique particle–hole configuration
coupled to the maximum angular momentum allow-
able in the 1�ω basis; and (3) a comparative analy-
sis of the excitation of stretched states with various
test particles makes it possible to separate nuclear-
structure effects from the dynamics of interaction be-
tween a test particle and a target nucleus.
Owing to the simplicity of the structure, stretched

states can be used to test nuclear models. The M6
form factors in sd-shell nuclei have been investigated
HYSICS OF ATOMIC NUCLEI Vol. 64 No. 7 2001
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Fig. 4. Isovector dipole form factors and mean energies of E1 and C1 resonances for 40Ca. 
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by using various test particles. Experimental data

for 28Si show the main part of the entire observable

stretched isovector strength found in a single peak
CSOF ATOMIC NUCLEI Vol. 64 No. 7 200
[10]. In contrast to this result, the M6 distribution

in 32S is strongly fragmented [11]. So far, no M6

peaks have been observed in the electroexcitation of
1
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the 40Ca nucleus. From the point of view of the
PCC shell-model approach, the distribution of the
M6 strength in all these nuclei is strongly affected
by the fragmentation of hole configurations among
the states of residual nuclei. The results of the PCC
calculations for the M6 form factors are shown in
Fig. 5, together with the summed spectroscopic fac-
tors for these resonances. The energy distributions
of the M6 strength for 28Si and 32S are close to the
experimental distributions. According to the PCC
model, theM6 state in 40Ca has a smaller strength in
relation to those in 28Si and 32S and is rather strongly
fragmented.

6. CONCLUSIONS

(i) The destructive interference between the orbital
and spin components of the nucleon current leads to
the appearance of zeros of a nondiffractive origin in
the transverse form factors for some single-particle
1-�ω transitions. For all 1lj=l+1/2 → 1(l + 1)j=l+3/2

1-�ω electric transitions, the zeros of the transverse
form factors FEJ are close, on the q axis, to the
positions of the maxima of the longitudinal form fac-
tor FCJ . For all 1lj=l+1/2 → 1(l + 1)j=l+1/2 1-�ω
electric transitions, the transverse (FEJ ) and longitu-
dinal (FCJ ) form factors exhibit similar momentum-
transfer dependences. A comparison of the q depen-
dences of the longitudinal and transverse form factors
for an electric resonance could be used to identify the
wave-function configuration structure.
(ii) Multipole resonances in the electroexcitation

of 28Si, 32S, and 40Ca have been described on the
basis of the PCC version of the shell model by tak-
ing into account experimental data on direct pickup
reactions. The results on the energy dependence
of E1 strengths at low momentum transfers for all
PH
these nuclei are close to photonuclear-cross-section
data. Analysis of transverse (E1) and longitudinal
(C1) form factors for all these nuclei has revealed that,
because of the orbital and spin components of the
nucleon current in the transverse form factor, the E1
and C1 energy distributions cease to be similar at q =
0.5 fm−1. The mean energies of multipole resonances
in backward electron scattering would shift upward as
q grows from the photon point up to 1 fm−1.

(iii) Experimental data on M6 strength distribu-
tions in the (e, e′) cross sections for the 28Si and 32S
nuclei agree well with the results of the calculations
based on the PCC version of the shell model. The
deviation of the ground states of the sd-shell self-
conjugate nuclei 28Si, 32S, and 40Ca from the closed
subshell is the main origin of the observed fragmen-
tation of the multipole strength.
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Abstract—We report results from a pioneering experiment to measure the g factors of isomeric states
of neutron-rich nuclei around 68Ni, far from the valley of β stability. For the first time, the time-
dependent perturbed angular distribution method was applied in combination with the heavy-ion–γ
correlation technique to study g factors of spin-aligned isomers produced in a projectile fragmentation
reaction and mass-separated. Some technical aspects are discussed and illustrated with preliminary
results. c© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Nuclear magnetic moments are very sensitive
probes of the intrinsic structure and especially of
the single-particle nature of nuclear states. Mea-
surements of nuclear magnetic moments can also
serve as a stringent test for the spin and parity
assignments of nuclear states, especially in regions
where they are based on systematics and comparison
with theoretical predictions.

The nuclear shell model describes well the prop-
erties of nuclei close to the β-stability line. Some
recent experiments on nuclei far from stability [1–3]
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have shown evidence for disappearance of the shell
closures. Another interesting phenomenon is the
appearance of new shell closures. Indications for
the presence of a new subshell closure in the vicinity
of 68Ni were given by the observation of a relatively
high excitation energy of the first 2+ state and the
identification of a 5− isomer by Broda et al. [4].
Many yrast isomers in neighboring nuclei have been
identified. Their structure is explained as particle–
hole excitations from the νfp shell into the ν1g9/2

orbit [4–7] across the subshell gap. On the other
hand, the two-neutron separation energies S2n for the
Ni isotopes [8] do not provide evidence for subshell
closure. Relativistic mean field theory [9] predicts the
appearance of a subshell closure at N = 40. Mea-
surements of the g factors of the isomeric states in the
vicinity of 68Ni can shed more light over the nuclear
structure in the region and test the presence of a
subshell closure at N = 40. In the current work, we
report a measurement of several g factors of isomeric
states in the region of 68Ni.

2. EXPERIMENTAL METHOD

The experimental method which we used is the
Time-Dependent Perturbed Angular Distribution
(TDPAD) [10] method in combination with ion–
γ correlations. So far the TDPAD method was
applied to nuclei produced in a fusion-evaporation
2001 MAIK “Nauka/Interperiodica”
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Fig. 1. Schematic drawing of the experimental setup used
for the g-factor measurement at GANIL (top view).

reaction, where a high amount of spin orientation is
obtained. Such a type of reaction is not applicable
for production of very neutron-rich nuclei for which
one is forced to other production mechanisms like
projectile fragmentation. Schmidt-Ott et al. [11]
have proven that a spin-aligned ensemble of isomeric
states can be obtained in a projectile-fragmentation
reaction as well. We applied the TDPAD for the first
time to measure g factors of nuclei produced in a
projectile-fragmentation reaction and separated via
in-flight mass separation.

Following the fragmentation process, the spin-
aligned ensemble is obtained with its symmetry axis
parallel to the primary beam. During the passage of
the ensemble through the spectrometer, the nuclear
spins interact with the magnetic field of the dipole
magnets, which causes a Larmor precession of the
spin orientation. Finally, at the exit of the spectrom-
eter, the spin-orientation axis is deflected at an angle
α with respect to the beam axis [12]:

α = θC

(
1 − gAµN

Z�

)
, (1)

where θC is the rotation angle in the spectrometer
(90◦ in this case), g is the isomeric g factor, A is the
mass of the implanted ion, and Z is charge.

In a TDPAD experiment, the spin-oriented en-
semble of nuclei is immersed in a magnetic field B
with a direction perpendicular to the spin-orientation
axis. This causes a Larmor precession of the nu-

clear spins around B, with a frequency ωL = −gµNB

�
which depends directly on the g factor of the nuclear
state of interest. The precession of the nuclear spins is
monitored via measurement of the γ asymmetry as a
function of time. For this reason, γ-ray detectors are
positioned at 90◦ with respect to each other in a plane
P

perpendicular to the magnetic field. A signature of the
precession pattern is the R(t) function [10, 13]:

R(t) =
I1(θ, t) − εI2(θ + π

2 , t)
I1(θ, t) + εI2(θ + π

2 , t)
(2)

∼ A2B
0
2(t = 0)cos(2(ωLt+ α− θ)),

where ε is the relative efficiency between both detec-
tors, A2 is the radiation parameter of the γ transition,
B0

2 is the orientation of the isomeric state at the
moment of implantation, θ is the angle between the
beam axis and the first γ detector, and α is the angle
between the beam axis and the symmetry axis of the
spin-oriented ensemble. Note that both the frequency
ωL and the phase α (1) depend on the g factor and we
used this dependence to fit the data.

In order to perform a TDPAD measurement, one
needs to preserve the spin orientation after the im-
plantation of the nuclei till the moment of their ra-
dioactive decay. For this reason, we choose a high-
purity Cu foil as a stopper. Copper has a cubic
crystal-lattice structure that is free of perturbation,
and the nuclei which we investigated (Cu, Ni, and
Co) are expected to take a substitutional [14] site as
they have the same electronegativity and very similar
atomic radius as Cu.

In our experiment, the isomers of interest were
produced via the fragmentation of a 76Ge, 61.4
MeV/u beam onto a 145 mg/cm2 9Be target which
was mounted on the rotating target wheel at the
entrance of the LISE spectrometer at GANIL. In
order to maintain the spin orientation during the
passage of the nuclei through the LISE spectrometer,
it is important that fully stripped ions are being
selected [15]. We could not avoid that some fragments
pick up an electron when passing through a 300-µm
Si detector which was used for the ion identification
[16]. The ion arrival time also served as time t = 0
signal to start the Larmor precession measurement.
The probability of electron pickup was estimated to be
of the order of 30–40% using the LISE [17] and the
ETACHA [18] programs. This means that for 30–
40% of the implanted nuclei the spin orientation is
reduced due to interaction of the coupled electron and
nuclear spins with the external magnetic field [19–
21]. This will reduce the measured amplitude of the
oscillations in the γ anisotropy as a function of time.

3. EXPERIMENTAL SETUP

The setup we used in this experiment (Fig. 1) was
positioned at the focal plane immediately after the
LISE spectrometer in order to decrease as much as
possible the time of flight of the produced species
and this way to decrease the amount of nuclei which
decay in flight and are lost for the measurement. The
HYSICS OF ATOMIC NUCLEI Vol. 64 No. 7 2001
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∆E Si detector and the Cu foil in which the nuclei
are implanted are both fixed in a vacuum chamber
positioned between the poles of an electromagnet.
This magnet provides a constant magnetic field of
B = 0.3753(50) T in a direction perpendicular to the
plane of the beam and the orientation axis. The
Larmor precession of the aligned isomeric spins is
monitored by measuring the γ decay as a function of
time, using two Clover Ge detectors and three BaF2

detectors positioned in the horizontal plane. The two
Clover detectors are positioned at 0◦ and 90◦ with
respect to the beam axis.

The data collection was done in an event-by-event
mode. The data acquisition system was triggered
from a coincidence between the heavy-ion passing
through the Si detector and a delayed γ, registered
within a 20-µs time window, in any of the γ detectors.
A two-dimensional plot of ∆E in the Si detector
vs. time of flight (TOF) is shown in Fig. 2 (“potato
plot”). Each of these “potatoes” represents a different
isotope which is clearly distinguished from the oth-
ers. As a delayed γ is triggering the data acquisition
system, mainly isotopes containing an isomer are
detected. During the off-line analysis, projections
for different isotopes were made and this way each
heavy-ion was correlated to the γ rays detected spon-
taneously after its implantation.

Gamma-ray time spectra were started by the ion
arrival time, and stopped by detection of a delayed γ.
To extract the precession pattern out of the individual
time spectra, detectors at 90◦ with respect to each
other are combined to find the R(t) function (2).

4. RESULTS AND DISCUSSION

For three of the produced isomers (69mCu, 67mNi,
and 66mCo), the lifetimes and the implantation rates
were suitable for g-factor measurements. Here, we
present the results from the analysis of the 13/2+,
T1/2 = 354(2)-ns isomer in 69Cu. The results for
the isomers in 67Ni and in 66Co will be finalized and
published soon.

Projection of the data for the different isotopes was
made using the “potato plot” (Fig. 2). This way, we
created separate data sets for the different isotopes
produced in the reaction. In the best case, one would
expect that all of the γ in each data set are coming
from the decay of that particular isomer (100% pure
identification) without any contaminating γ lines from
other isomers or isotope decays. In reality, there is
also a contamination from noncorrelated γ-ray back-
ground from long-lived activities like long-lifetime
isomers or β decay. This contamination depends on
the isomeric ratio and on the lifetime of the selected
isomer.
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 7 200
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Fig. 2. ∆E vs. time of flight for the heavy ions passing
through the Si detector (“potato plot”). In circles are
shown the “potatoes” for the different nuclei.

In the case of 69Cu, each of the stronger γ lines
was identified and for each of them a decay curve
was produced and the lifetime was measured. During
the fitting procedure, a sum of exponential function
together with a constant background was used.
We have found that all of the γ lines (also the
contaminants) have a similar lifetime (in the range
of 300–380 ns). This is due to the fact that no
γγ coincidences were required and under each photo
peak line there is a time-dependent Compton back-
ground. The Compton background have two different
components—one comes from Compton scattered γ
originating from the isomer decay, and the second one
comes from Compton scattered γ of contaminating
lines.

Choosing a line that is not correlated to the decay
of the isomer, one has the inversed situation—the
events that are in the photopeak have random time
distribution and contribute to the background in the
time spectra, while some of the Compton scattered
events (originating from the isomeric decay) have
the correct timing and contribute to the exponential
decay in the time spectrum. Thus, one has to be very
careful assigning a certain γ line to a particular isomer
using only lifetime arguments.
1
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Fig. 3. Some typical TDPAD curves obtained for the 190,
680, and 486 keV transitions (from top to bottom) in 69Cu
isomer. The spins and parities of the connected nuclear
levels are shown as inset.

Several γ lines from the decay of 69mCu had suffi-
cient statistics to be analyzed using theR(t) function.
The TDPAD curves for the 190, 680, and 486 keV
transitions are presented in Fig. 3. Note that there
is a phase difference of π between the different tran-
sitions which is due to the difference in their mul-
tipolarities. The experimental asymmetry parame-
ter A2 for the 680 keV ((9/2+) → (7/2−)) [22, 23]
transition has opposite sign to that of the 190 keV
((13/2+) → (9/2+)) transition. This is in agreement
with the assumption that the former is an E1 transi-
tion and the latter is an E2 transition. Note that the
486 keV transition ((11/2−) → (9/2−)) which is ex-
pected to be M1, has the same phase as the 190 keV
transition. This indicates that 486 keV is not a pure
M1 transition but has mixed M1/E2 multipolarity.
From the experimentally measured amplitudes of the
wiggles, we can set a lower limit on the mixing ratio
(δ > 0.3).

For the fit shown in Fig. 3, we use both the de-
pendence of frequency and the phase of the g factor.
There then arises the question of whether the sign
of the g factor can be determined from a TDPAD
measurement after a fragmentation reaction. Nuclei
with different g factors have different rotation (α) of
their spin ensembles passing through the spectrome-
ter and consequently different direction of their initial
orientation. Thus, from the phase of the wiggles in
PH
a TDPAD experiment, one can determine the sign of
the g factor. But there are some specific configura-
tions in which due to internal symmetries of the sys-
tem this is not possible. The geometry in which this
experiment was performed, selecting the secondary
beam, with the LISE spectrometer (θC = 90◦) and γ
detectors positioned at 0◦ and 90◦ with respect to the
beam does not allow one to deduce the sign of the g
factor. In this particular case, the R(t) formula has
the form

R(t) =
I1(0, t) − εI2(π

2 , t)
I1(0, t) + εI2(π

2 , t)
(3)

∼ A2B
0
2(t = 0)cos(2(ωLt+ α));

introducing the explicit dependence of α on the g
factor, one gets

R(t) ≈ A2B
0
2(t = 0)cos(π + g · const) (4)

≡ A2B
0
2(t = 0)cos(π − g · const).

Thus, in our experiment (choosing this particular
arrangement of the detectors), we are only sensitive
to the absolute value of the g factor.

Note that the data depend on the isomeric g fac-
tor and not on the magnetic moment (which is µ =
gIµN ). This means that when comparing experimen-
tal results to magnetic moment calculations from a
shell model, we need to assume a particular spin for
the isomer, which has not been derived experimentally
for all cases.

From the fit of the R(t) function of the 190, 680,
and 486 keV transitions of the Iπ = 13/2+ isomer
in 69Cu, we deduced the results shown in the ta-
ble. The mean value is g(69Cu, 13/2+) = 0.195(9).
Corrections for knight-shift are negligible, and also
paramagnetic corrections are less than the mentioned
uncertainties [24]. The error bars correspond to sta-
tistical errors only. An additional systematic error of
about 2% due to the uncertainty in the field should
also be included. This value is in a reasonably good
agreement with the value for a pure πp3/2νp

−1
1/2g9/2

configuration (g = +0.244) or a πp3/2νf
−1
5/2g9/2 con-

figuration (g = +0.237), if one uses empirical single-
particle moments for the individual orbits. The g fac-
tors of these two configurations are very close to each
other, which does not allow us to distinguish between
them. In [22], the configuration is assigned to be
πp3/2νp

−1
1/2g9/2 based on analogy to the 5− isomer

observed in 68Ni. In a shell-model calculation using
a realistic interaction (S3V [25]) and single-particle
energies fitted to data in this mass region to correct for
the monopole term of the two-body matrix element,
these 13/2+ states occur at an energy difference of
only a few hundred keV. The shell-model g factors
YSICS OF ATOMIC NUCLEI Vol. 64 No. 7 2001
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List of the measured g factors for the 190, 680, and 486 keV
transitions in 69Cu. (The quoted value for the lifetime is
the mean value of the most intense γ transitions observed
in the current work)

Ion Iπ T1/2, µs Eγ , keV gexp

69Cu 13/2+ 0.360(50)∗ 0.354(2)∗∗ 190 0.199(13)

680 0.187(17)

486 0.196(17)

Mean 0.195(9)
∗ Value reported in [6].

∗∗ Value derived in the present work.

using free nucleon g factors are g = +0.280 and g =
+0.304, respectively. The best agreement with the
experimental result is achieved when effective M1
matrix elements from measured g factors are used,
giving corrected values of g = +0.194 and +0.189,
respectively.

5. CONCLUSION

In a pioneering experiment, we have shown the
feasibility of application of TDPAD in combination
with ion–γ correlation on nuclei produced in frag-
mentation reactions. This opens a new area for
studies of nuclear moments of high-spin isomeric
states in neutron-rich nuclei which are not reachable
with fusion-evaporation reactions. There are still
some possibilities for optimization of such type of
experiments like using a primary beam having higher
energy which will avoid pickup of electrons in the
Si detector. Using more Ge Clover detectors would
increase the sensitivity of the setup and would push
down the necessary intensity (in this experiment we
had a rate of a few hundred implanted isomers per
second). BaF2 detectors have proven not to be very
useful unless a single isomer with few γ transitions is
selected.
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Abstract—A convergent method to extract the nuclear level density and the γ-ray strength function from
primary γ-ray spectra has been established. Thermodynamical quantities have been obtained within the
microcanonical and canonical ensemble theory. Structures in the caloric curve and in the heat capacity
curve are interpreted as fingerprints of breaking of Cooper pairs and quenching of pairing correlations. The
strength function can be described usingmodels and common parametrizations for theE1,M1, and pygmy
resonance strength. However, a significant decrease of the pygmy resonance strength at finite temperatures
has been observed. c© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Investigation of nuclear level density is an old
problem in nuclear physics. The first theoretical
attempt to describe nuclear level density was done
by Bethe in 1936 [1]. In order to do so, he intro-
duced thermodynamical quantities like temperature
and entropy, showing how closely related nuclear level
density and thermodynamics in nuclei are. With
the discovery of pairing correlations, their effect on
nuclear level density, temperature, and heat capacity
was explored early in schematic calculations [2]. To-
day, the Monte Carlo shell model technique [3] can
estimate nuclear level density [4] reliably for heavy
midshell nuclei like dysprosium [5].

On the experimental side, the main sources of in-
formation on nuclear level density have been counting
of discrete levels in the vicinity of the ground state
(see, e.g., [6]) and neutron resonance spacing data
(see, e.g., [7]). Recently, the Oslo group has reported
on a new method to extract level density and γ-ray
strength function from primary γ-ray spectra [8].

Important applications of nuclear level densities
are Hauser–Feshbach type of calculations [9] of nu-
clear reaction cross sections. These reaction cross
sections are important input parameters in large net-
work calculations of stellar evolution [10]. The re-
action cross sections can also be used to estimate
the efficiency of accelerator-driven transmutation of
nuclear waste.

Also, radiative strength functions have been ex-
amined for a long time. The first estimate of γ-
ray strength functions within the single-particle shell
model was done by Weisskopf in 1951 [11]. However,

∗This article was submitted by the authors in English.
**e-mail: Andreas.Schiller@fys.uio.no
1063-7788/01/6407-1186$21.00 c©
this model of energy-independent strength functions
failed particularly badly with E1 transitions. First,
some ten years later [12], experimental data on elec-
tric dipole transitions over a large energy range could
be explained consistently within one model. Today,
refined schematic models of the giant dipole reso-
nance, taking into account temperature dependence,
are available [13, 14], while low-lying dipole strength
can be reliably estimated withinmicroscopic random-
phase approximation calculations for rare earth nuclei
[15, 16].

Experimentally, the total radiative strength func-
tion can be measured by absorption methods [17]. At
energies below the neutron separation energy, it can
be estimated from radiative neutron capture, usually
assuming a model for the nuclear level density. These
experiments involve either the total γ-ray spectrum
[18] or two-step γ cascades [19] (see also the talk of
A.M. Sukhovoj in this issue). Our newly developed
method [8] gives now for the first time the opportunity
to extract level density and radiative strength func-
tion simultaneously without assuming any model for
either of them.

Applications of radiative strength functions can
again be found in nuclear astrophysics. Especially,
the existence of a soft dipole mode in neutron-rich
nuclei can have a large impact on the (n, γ) reaction
rates of r-process nuclei [20].

In Section 2, we discuss the experimental de-
tails and the main assumptions of our data analysis
method. In Section 3, results for the level density and
thermodynamical quantities are shown. In Section 4,
the radiative strength function is discussed, and we
conclude the talk in Section 5.
2001MAIK “Nauka/Interperiodica”
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2. EXPERIMENTAL DETAILS
AND DATA ANALYSIS

The experiments were carried out at the Oslo Cy-
clotron Laboratory at the University of Oslo, using an
MC35 Scanditronix cyclotron with a 3He beam en-
ergy of 45MeV and a beam intensity of typically 1 nA.
The experiments were usually running for two weeks.
The targets consist of self-supporting, isotopically
enriched (∼95%) metal foils of ∼2.0 mg/cm2 thick-
ness, glued on an aluminum frame. Particle identifi-
cation and energy measurements were performed by
a ring of 8 Si(Li) particle telescopes mounted at 45◦

with respect to the beam axis. The telescopes consist
of a front and end detector with thicknesses of some
150 and 3000 µm, respectively, and can effectively
stop α particles with energies up to 60 MeV. The γ
rays were detected by an array of 28 5′′ × 5′′ NaI(Tl)
detectors (CACTUS) [21] covering a solid angle of
∼15% of 4π. Three 60% Ge (HP) detectors were
used to monitor the selectivity of the reaction and
the entrance spin distribution of the product nuclei.
During one experimental run, data can be recorded
and sorted out simultaneously for the (3He,3He′) and
the (3He,α) reaction on the same target.

In the data analysis, the ejectile energy can be
transformed into excitation energy of the product nu-
cleus, since the reaction kinematic is uniquely de-
termined. In the next step, the γ-ray spectra are
unfolded [22], using measured response functions of
the CACTUS detector array. Afterwards, the primary
γ-ray spectra can be extracted, using the subtraction
technique of [23]. In order to be able to apply this
technique, the entrance point in excitation energy of
the product nucleus has to be known and all excita-
tion energies up to a certain limit have to be scanned
in the experiment. The basic assumption behind the
first-generation method is that the γ-ray spectrum
of any excitation-energy bin is independent of the
way that states in this bin are populated (e.g., direct
population by a nuclear reaction, or population by the
same nuclear reaction at some higher entrance energy
and followed by one or several subsequent γ rays).
This assumption is not completely valid at low ex-
citation energies where γ decay competes effectively
with thermalization processes and the nuclear reac-
tions applied exhibit a more direct than compound
character. Also, possibly different spin and parity
distributions of levels populated at different excitation
energies by the same nuclear reaction can violate this
assumption. However, in a recent investigation of this
matter, we could not find any severe problemswith the
first-generation method [24].

The primary γ-ray spectra (see Fig. 1) are the
starting point of the discussion in this talk. According
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 7 200
to the Brink–Axel hypothesis [25, 12], the primary γ-
ray matrix can be factorized into two functions of one
variable using

Γ(Ex, Eγ) ∝ ρ(Ex − Eγ)F (Eγ), (1)

where ρ is the level density and F is a γ-ray energy-
dependent factor, proportional to the total radiative
strength function, i.e.,

F (Eγ) ∝
∑
XL

E(2L+1)
γ fXL(Eγ). (2)

In (1), a temperature-independent radiative strength
function f is assumed. Today, we know that at least
the E1 strength function is temperature dependent,
a fact which has already been incorporated in several
models [13, 14]. However, we found for our data
that the factorization according to (1) works remark-
ably well (see Fig. 1), which indicates that, for low
and slowly varying temperatures, as in our case, the
Brink–Axel hypothesis is approximately valid.

The details of the method to extract level density
and radiative strength function from primary γ-ray
spectra can be found in [8]. An extension of this
method to temperature-dependent radiative strength
functions is discussed in Section 4. One detail of the
method should be mentioned here. The method does
not yield absolute values of the level density and the
radiative strength function. Also, the slope of these
two functions is undetermined. Actually, all functions
ρ̃ and F̃ obtained by the transformation

ρ̃(Ex − Eγ) = A exp(α [Ex − Eγ ]) ρ(Ex − Eγ),
(3)

F̃ (Eγ) = B exp(αEγ)F (Eγ) (4)

of any particular solution (ρ, F ) will fit our primary
γ-ray matrix equally, since the areas of the first-
generation spectrum are normalized to unity for every
excitation energy bin Ex, i.e.,

Γ(Ex, Eγ) =
ρ(Ex − Eγ)F (Eγ)∑
Eγ
ρ(Ex − Eγ)F (Eγ)

. (5)

In order to determine the parametersA and α, i.e., the
absolute value and the slope of the level density, we fit
our extracted level density curve to the known number
of discrete levels in the vicinity of the ground state
[6] and to the level density estimate obtained from
neutron resonance spacing data [7] at the neutron
binding energy. The only remaining free parame-
ter then is the absolute value of the γ-ray energy-
dependent factor F , which can be determined from
the average total radiative width of neutron capture
resonances [26] by

〈Γγ(E, I,Π)〉 =
1

ρ(E, I,Π)
(6)
1
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Fig. 1. Normalized experimental primary γ-ray spectra with estimated errors (data points) and fit using the factorization of (1)
(solid curves). The data are taken from the 162Dy(3He,3He′)162Dy reaction.
×
∑
XL

∑
If ,Πf

E∫
Eγ=0

dEγ E
2L+1
γ fXL(Eγ)

×ρ(E − Eγ , If ,Πf )

(see, e.g., [27]).
In this talk, we will discuss the level density and

radiative strength function of 161,162Dy and 171,172Yb
obtained from (3He, α) reaction data and the radiative
strength function of 162Dy obtained from (3He,3He′)
reaction data.

3. LEVEL DENSITY
AND THERMODYNAMICAL QUANTITIES

In Fig. 2, the nuclear level density and the γ-
ray energy-dependent factor F (Eγ) for the nuclei
PH
161,162Dy and 171,172Yb are shown. In this section,
we will mainly discuss the physics of the nuclear level
density. First of all, the experimental curves can be
compared to popular parametrizations of the nuclear
level density, like those of Gilbert and Cameron [28]
or of von Egidy et al. [29]. This has been done in
[30], and the conclusion is that neither of the two
parametrizations can describe our data well. How-
ever, the data favor the concept of a composite level
density formula as proposed in [28] with a constant-
temperature level density part from above 1–2 MeV
and up to approximately the neutron binding energy
Bn. Another important aspect is that the experi-
mental data of the odd and even nuclei show a rel-
ative shift of the order of the effective pairing en-
ergy∆eff(N,Z) = ∆p(N,Z) + ∆n(N,Z)−∆p(N −
YSICS OF ATOMIC NUCLEI Vol. 64 No. 7 2001
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error bars show the experimental uncertainties. The solid curves are extrapolations based on a shifted Fermi gas model. The
isolated points at the neutron binding energy were obtained from neutron resonance spacing data.
1, Z) [30]; thus, the data support the concept of
shifted level density formulas.

From level densities, one can easily calculate ther-
modynamical quantities like entropy S, temperature
T , heat capacity CV , the canonical partition function
Z, and the average excitation energy in the canonical
ensemble 〈E〉. Within the microcanonical ensemble,
one obtains (in this work kB = 1)

S(Ex) = lnρ(Ex) + S0, (7)

T (Ex) =
(
∂S(Ex)
∂Ex

)−1

V

, (8)

CV (Ex) =
(
∂T (Ex)
∂Ex

)−1

V

, (9)

and in the canonical ensemble, one gets

Z(T ) =

∞∫
0

Nρ(Ex) exp(−Ex/T )dEx, (10)

S(T ) =
∂

∂T
[T lnZ(T )], (11)
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 7 200
〈E(T )〉 = T 2 ∂

∂T
lnZ(T ), (12)

CV (T ) =
(
∂〈E(T )〉
∂T

)
V

. (13)

The quantities S0 andN are necessary, since the level
density is only proportional to the energy surface in
the phase spaceW .

In principle, one should only consider the micro-
canonical ensemble, since the nucleus is a closed
system. However, the canonical and even the grand-
canonical ensemble have often been used [1, 3] to
describe thermodynamical properties of nuclei. In
[31], the microcanonical and canonical entropy is
discussed and compared to a simple model. One
result of this discussion is that the small bumps in
the experimental level density curves (see Fig. 2) can
be interpreted in terms of breaking of Cooper pairs.
These bumps can even be enhanced by derivation [see
(8)], yielding the experimental caloric curve in the
microcanonical ensemble (see data points in Fig. 3
and discussion in [32]). Another important result is
that the entropy excess of the odd nuclei relative to
1
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the even nuclei can be used to calculate the entropy of
one quasiparticle. It is surprising that the quasipar-
ticle entropy is constant 1.70(15) kB over the whole
excitation energy region investigated in [31].

When calculating the partition function in the
canonical ensemble [see (10)], a strong smoothing
is introduced due to the Laplace transformation in-
volved. It is also worth noting that, in order to
calculate thermodynamical quantities reliably up to
T ∼ 1 MeV, one has to know the level density up to
about 40 MeV. Since the experimental level density
curves are only known up close to the neutron binding
energy, they had to be extrapolated by a model. We
have chosen the shifted Fermi gas parametrization of
von Egidy et al. [29] multiplied by a constant factor in
order to match the neutron resonance spacing data.

Due to this strong smoothing over a huge range
of excitation energies, one does not expect to see
fine structures in the canonical ensemble. This is
clearly demonstrated in Fig. 3, where the canonical
caloric curve is smooth and the breaking of individual
Cooper pairs is completely washed out. However, the
quenching of pairing correlations is manifested in the
P
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Fig. 4. Semiexperimental heat capacity as function of
temperature in the canonical ensemble for 161,162Dy and
171,172Yb (solid curves). The dashed lines describe the
approximateFermi gas heat capacity. The arrows indicate
the first local maxima of the experimental curves relative
to the Fermi gas estimates. The dash-dotted curves
describe estimates according to a constant-temperature
level density formula, where T is set equal to the critical
temperature Tc (vertical lines).

canonical heat-capacity curves (see Fig. 4). Devi-
ating from a Fermi gas estimate, the heat-capacity
curves show pronounced S shapes with local maxima
relative to the smooth Fermi gas estimate. This
behavior can be explained by the fact that the level
density exhibits a constant-temperature part at low
excitation energies. Therefore the canonical heat
capacity curve CV = (1 − T/τ)−2 for a constant-
temperature level density ρ = Cexp(E/τ) has been
fitted to the data at low temperatures, and the pa-
rameter τ is interpreted as the critical temperature
for the quenching of pairing correlations [33]. The
resulting critical temperatures are given as horizontal
and vertical lines in Figs. 3 and 4, respectively. We
interpret the S shape of the heat capacity as a fin-
gerprint of a second-order phase-transition-like phe-
nomenon in finite systems, where the transition goes
from a phase with strong pairing correlations (usually
HYSICS OF ATOMIC NUCLEI Vol. 64 No. 7 2001
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from other experimental systematics and nothing was
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referred to as a superfluid phase) to a phase with weak
pairing correlations (normal fluid phase). This phase-
transition-like phenomenon has been anticipated by
many theoretical works [2, 4, 34, 35].

4. RADIATIVE STRENGTH FUNCTION

Figure 5 shows the radiative strength functions
of 161,162Dy and 171,172Yb compared to model cal-
culations. For the theoretical calculation, we have
used the E1 model of Sirotkin [14], where we take
the expression for the temperature-dependent width
of Kadmensky et al. [13]. The parameters are taken
from an interpolation of the experimental systemat-
ics of [17]. The temperature has been assumed as
constant with T ∼ 500 keV. For the M1 model, we
simply take a Lorentzian, where the parameters for
the centroids and widths are taken from [27] and
the parameters for the resonance strengths are taken
from fM1/fE1 systematics [36], evaluated at Eγ =
Bn − 1MeV. For the pygmy resonance, we use again
a Lorentzian with parameters from an interpolation
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γ with n ≈ 1.2 in order to enhance the
pygmy resonance structure. The solid curves are Gaus-
sian fits to the pygmy resonance structure.

based on the experimental systematics [18]. It is
amazing that the model calculation can fit our data
so well. Both the absolute value and the slope of the
experimental strength functions could be reproduced
without fitting any parameter from the models except
kσp of [18]. Here, we had to reduce the parameters
for the pygmy resonance strength kσp by 30–70%
compared to [18] as the only compromise to our data.

In the following, we want to investigate the
strength of the pygmy resonance, which is the only
parameter we had to fit in order to describe our data.
For this reason, we divide our primary γ-ray matrix
into four subsets of distinct excitation energy bins.
Each excitation energy bin is 1 MeV broad; thus, we
can assume that the nuclear temperature within every
excitation energy bin is constant and the Brink–Axel
hypothesis remains valid. However, for the different
excitation energy bins the nuclear temperature is
1
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in general different. We extract radiative strength
functions from those four excitation energy bins. In
that way, we obtain radiative strength functions for
four different nuclear temperatures. This provides an
easy way to investigate the temperature dependence
of the radiative strength function.

In Fig. 6, the relative radiative strength functions
from the different excitation energy bins are plotted.
P

One can see immediately that the pygmy resonance
strength is highly temperature dependent. On the
other hand, the general slope of the radiative strength
function is constant; thus, the gross features of the
strength function are rather independent of nuclear
temperature, justifying the use of the Brink–Axel
hypothesis for our data analysis. The fit parameters
of the pygmy resonance for the different excitation
energy bins are shown in Fig. 7. Obviously, only the
resonance strength of the pygmy resonance shows
a pronounced temperature dependence, whereas the
centroid and the width are nearly independent of tem-
perature. The temperature dependence becomes even
much more obvious when we actually translate the
excitation energy bins into nuclear temperature using
the canonical caloric curve of Fig. 3. The result is
given in Fig. 8, where the temperature dependence
of the pygmy resonance strength is shown. A clear
quenching of the pygmy resonance strength as a
function of temperature is observed.

We have to speculate on the physical origin of the
observed quenching. In the first place, it is not at
all clear if the pygmy resonance is a phenomenon
in the electric or magnetic dipole strength function.
Igashira et al. [18] favor electric dipole strength with-
out measuring the parity of the transition, whereas,
in other works, spin-flip [37] or orbital [38] (scissors
mode)M1 strength has been proposed. Anyhow, we
might assume a strong dependence of the pygmy res-
onance strength on the deformation parameter δ (as
is observed for the scissors mode [39]). A quenching
of the pygmy resonance strength would then corre-
spond to a shape transition of the nucleus from de-
formed to spherical. This temperature-induced shape
transition was indeed anticipated for 170Dy in [3] at
temperatures around 500 keV. Therefore, we specula-
tively interpret the quenching of the pygmy resonance
strength as a fingerprint for a temperature-induced
shape transition.

5. CONCLUSION

A method to extract simultaneously level density
and radiative strength function from primary γ-ray
spectra without assuming any model for either of
them has been presented. Thermodynamical quan-
tities have been deduced within the microcanonical
and the canonical ensemble. We observe structures in
these quantities which can be interpreted as breaking
of Cooper pairs and quenching of pairing correlations,
and we observe a fingerprint of the phase-transition-
like phenomenon from a superfluid-like phase to a
normal-fluid-like phase. Further, the critical tem-
perature of this transition has been determined. We
are able to reproduce our experimental strength func-
tions by the use of models, where all parameters
save the pygmy resonance strength are taken from
HYSICS OF ATOMIC NUCLEI Vol. 64 No. 7 2001
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other experimental systematics. The temperature de-
pendence of the pygmy resonance strength has been
investigated, and a significant quenching around T ≈
500 keV has been observed, which we interpret ten-
tatively as the result of a temperature-induced shape
transition.

The authors are grateful to E.A. Olsen and
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discussions. We wish to acknowledge the support
from the Norwegian Research Council (NFR).
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Abstract—Investigations of two-step γ cascades following thermal-neutron capture by heavy nuclei reveal
that the density of excited levels is significantly smaller than that which is predicted by an exponential
extrapolation like that of the back-shifted Fermi gas model. Data on two-step cascades allow one to
determine in a model-independent way the most probable energy dependences of the level density and
radiative strength functions, virtually over the whole excitation-energy interval below the neutron binding
energy Bn. Data for more than 30 heavy nuclei cannot be understood without assuming a considerable
change in the nuclear properties at Eexc � 3–4 MeV. c© 2001 MAIK “Nauka/Interperiodica”.
The level density ρ(Jπ, Eexc) and the partial ra-
diative widths Γλi(Eγ) for states at an arbitrary ex-
citation energy Eexc contain information on the wave
functions for these states. Below the neutron binding
energy Bn, there are a few other similar parameters
that can be measured experimentally and used to test
nuclear models.

The excitation energy region Eexc < Bn is of spe-
cial interest because, here, nuclear structure under-
goes radical changes: states described by the sim-
plest (often, one-component) wave functions trans-
form into Bohr compound states. From a comparison
with physical phenomena of macrocosm, one can
assume that an experimental study of this change will
provide exclusive information about the properties of
nuclear matter.

Therefore, an experiment should be aimed at ob-
taining data as complete, precise, and reliable as pos-
sible on ρ(Jπ) and Γλi in the widest interval of nuclear
excitation energies. Unfortunately, available infor-
mation about these nuclear properties does not meet
these demands. The level density for 3–5 MeV <
Eexc < Bn is extracted from nuclear-reaction cross
sections by using some model assumptions (with un-
known accuracy) about reaction yields. The situation
concerning the determination of the partial widths Γλi

and the corresponding radiative strength functions
with respect to E1 andM1 transitions,

f = 〈Γλi〉/(E3
γ ×A2/3 ×Dλ), (1)

∗This article was submitted by the authors in English.
**e-mail: suchovoj@nf.jinr.ru
1063-7788/01/6407-1194$21.00 c©
is even worse (here, A is the nuclear mass and Dλ

is the spacing between decaying states). Therefore,
new experimental methods for independently deter-
mining the parameters of a cascade γ decay in the
nuclear-excitation-energy region around Eexc � Bn

are required. The first example of such a method is an
analysis of the intensities of two-step γ cascades pro-
ceeding between neutron resonances and low-lying
levels [1]. This analysis shows that the actual number
of cascades populating a given low-lying level is many
times less than theoretical predictions based on the
following two assumptions: (a) ρ is an exponential
function of the excitation energy [2] [a consequence
of the idea that (n, γ) reactions are nonselective].
(b) Fluctuations of primary transition widths follow
the Porter–Thomas distribution [3].

The unique possibility of simultaneously estimat-
ing ρ and radiative strength functions for dipole tran-
sitions is provided by the study of the cascade of two
successive γ transitions following thermal-neutron
capture. Using ordinary Ge detectors, one can mea-
sure intensity

iγγ = (Γλi/Γλ) × (Γif/Γi) (2)

of an individual cascade connecting three states (λ→
i→ f ) up to the energy Ei ∼ 3–5 MeV and the total
intensity of the cascades,

Iγγ =
∑
J,π

(Γλi/(〈Γλi〉mλi)) (3)

×nλi × (Γif/(〈Γif 〉mif )).

Summation in (3) is performed over a certain set
of the quantum numbers J and π of nλi = ρi × ∆E
2001MAIK “Nauka/Interperiodica”
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intermediate and, if necessary, initial and final cascade
states. This summation takes into account the parity
selection rule.

Simple algorithms [4] applied to analyze this ex-
periment are physically substantiated and easily re-
alized within the maximum-likelihood method. As
a result, the total cascade intensities (summed over
0.5-MeV energy bins) as functions of the energy of
the cascade intermediate level were obtained nearly
up to Eexc � Bn. The level schemes and main modes
of their decay up to Eexc � 3–4 MeV were also de-
rived.

The experimental distribution of random devia-
tions of the cascade intensities from their mean value
was approximated by some function. An extrapo-
lation of this function to the region below the de-
tection threshold Lc of the spectrometer 0 < iγγ <
Lc allowed one to estimate ρ independently up to
Eexc � 3–4 MeV in many nuclei from the mass re-
gion 114 ≤ A ≤ 200 [5]. The results of the analysis
confirmed the conclusions [1] that the density of levels
excited in (n, γ) reactions deviates significantly from
the exponential extrapolation [2] and manifested an
unexpected effect—ρ is almost constant or slowly
increases with Eexc in the interval from 1–2 to 3–
4 MeV.

The only theoretical elaboration providing a simi-
lar result is the analysis by Ignatyuk [6] of the pairing-
interaction effect on ρ. This analysis, performed
within the generalized model of a superfluid nucleus,
predicted a stepwise behavior of the level density due
to breaking of nucleon pairs.

Unfortunately, the modern version of the gener-
alized model of a superfluid nucleus [7] considers
the pairing-interaction effect in terms of Bardeen–
Cooper–Schrieffer theory [8] as a phase transition
only between a purely boson and a purely fermion
system. This condition cannot be realized in a nu-
cleus because, at the energy of an expected phase
transition (exceeding Bn), some part of Cooper pairs
have already been broken. This effect is well known
for a mixture of liquid He isotopes. The authors of
[9] made an attempt at extrapolating this effect to
a nucleus by using an extremely simple model and
found that the energy and temperature Tc of a phase
transition from a superfluid to a normal phase can be
considerably less than a known thermodynamic value
[8] Tc = 0.567δ.

The conclusions drawn in [5] were confirmed
by using a new probabilistic, model-independent
method for simultaneously estimating basic param-
eters of cascade γ decay. An analysis of experi-
mental data revealed that the cascade intensities Iγγ

(3) observed for N energy intervals of intermediate
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 7 200
levels and the experimental total radiative widths of
capturing states,

Γλ = 〈Γλi〉mλi
, (4)

combined with the physical constraints

ρ(π = +) > 0; ρ(π = −) > 0, (5)

Γ(E1) > 0; Γ(M1) > 0

(separately for primary and secondary transitions) ef-
fectively restrict the interval of allowed level densi-
ties and partial radiative widths, which provides an
explanation of the values of Γexpt

λ and Iexpt
γγ . It is

implied in Eqs. (3) and (4) that the parameters under
investigation can be expressed in terms of sums over
m or n levels excited by the corresponding transitions
and the mean (for this interval) partial widths. This
approach is necessary for comparing experimental
data and the results of the calculations.

At present, such an extraction of the most prob-
able parameters of a cascade γ decay requires only a
few assumptions concerning the spin dependence of
ρ and the ratio of the energy dependences of the ra-
diative strength functions for primary and secondary
cascade transitions [10]. Moreover, the results of
a simulation should be compared, first of all, with
the sums ρ(π = +) + ρ(π = −) and f(E1) + f(M1).
This compromising approach is due to a rather strong
mutual correlation of deviations of the parameters
from their most probable values. It can be seen from
(3) that, in general, ρ and f values satisfying relations
(3) and (4) can be determined only numerically by
using some random simulations—i.e., via an iterative
process. The possibility of realizing this procedure
and its convergence to some narrow interval of ρ and
f values were established in simulations [10] for a
wide set of initial ρ and f values (some of them were
quite unrealistic).

By way of example, Figs. 1 and 2 show the inter-
vals of the most probable values of ρ and f for several
nuclei. It should be noted, however, that, in contrast
to [10], these results were obtained without using the
assumption that ρ(π = +) = ρ(π = −). Experimen-
tal cascade intensities employed in the simulations
can be found elsewhere [11].

The intensities of the two-step cascades following
thermal-neutron capture in nuclei from the region of
the 4s resonance of the neutron strength function
and the densities of levels excited by primary dipole
transitions were analyzed by the algorithms devel-
oped in [5, 10]. The basic result of the analysis is
that ρ is noticeably less than that which is predicted
by the Fermi gas model [2] for Eexc ≥ 1 MeV in N-
odd nuclei and for Eexc ≥ 2 MeV in N-even nuclei.
The discrepancy is maximal at Eexc ∼ 3–4 MeV. The
question of whether it is true for the total nuclear level
1



1196 KHITROV, SUKHOVOJ

 

181

 

Hf

86420

10

 

3

 

10

 

1

80

 

Br

97531

10

 

4

 

10

 

2

156

 

Gd

10

 

0

 

531
10

 

0

 

10

 

2

 

10

 

4

190

 

Os

97531

10

 

2

114

 

Cd

6420

10

 

4

 

10

 

2

170

 

Tm

10

 

0

 

731
10

 

0

 

10

 

2

 

10

 

4

 

10

 

0

 

10

 

4

 

5

 
N

 

lev

 
/100 keV

 

E

 

exc

 

, MeV

 
N

 

lev

 
/100 keV

Fig. 1. Number of levels of both parities with errors (circles with bars) in 80Br, 114Cd, 156Gd, 170Tm, 181Hf, and 190Os. The
histogram represents the data [5], while the triangles show the number of intermediate levels of intense cascades. The upper
and lower curves represent the predictions of the models proposed in [2] and [6], respectively.
density (or this effect results from a strong selectivity
of (n, γ) reactions) is still open.

In order to understand processes occurring in a
nucleus at low excitation energies, serious theoret-
ical investigations of nuclear properties at Eexc >
1–2 MeV are nevertheless required. If the model
proposed in [6] is valid, the description of nuclear
properties at this excitation energy calls for a more
correct treatment of pairing correlations than in the
existing nuclear models. Most probably, this should
be done for a bounded region of excitations because
the pairing-interaction effect on nuclear properties
may become weaker at low excitation energies be-
cause the Bogolyubov coefficients u and v are not
equal to unity. It is obvious that the consequences
of incorrectly treating the pairing interaction are not
so dramatic at higher excitations.

If the hypothesis of a phase transition in a nu-
cleus is valid, the energy of a captured neutron is
P

shared not only among quasiparticle excitations but
also among phonon-type excitations. It is possible
that, at higher energies, there is a multiquasiparticle
state whose wave function has a structure markedly
different from the wave function for low-lying states
and involves one or several phonons. According to
[14], the fragmentation of so complicated a state must
be very weak and its strength can be concentrated
on one or a few neighboring levels. Possibly, this
effect was observed in [15] as an equidistant spacing
between intermediate levels or their multiplets of the
most intense two-step cascades.

As can be seen from Fig. 2, a decrease in the level
density is followed by an increase in the sum of the
radiative strength functions for cascade transitions.
On one hand, this means that the assumed influence
of boson-type excitations manifests itself in the prob-
ability of the primary transition. On the other hand,
HYSICS OF ATOMIC NUCLEI Vol. 64 No. 7 2001
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this explains the impossibility of observing this effect
in experiments of other types.

The proposed picture of the processes occurring in
a nucleus at excitation energy of a few MeV seems
very preliminary. A further improvement of experi-
mental techniques can make it more adequate, but
the final conclusion on the dynamics of intranuclear
processes can be obtained only upon a serious the-
oretical analysis or in the conjunction of it with the
relevant experiments.

The data obtained can form a basis for developing
new models of heavy nuclei for predicting at least the
parameters of γ decays with a required accuracy as
well as for better understanding processes that occur
in nuclei at low excitation energies.

ACKNOWLEDGMENTS
This work was supported by the Russian Founda-

tion for Basic Research (project no. 99-02-17863).
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 7 200
REFERENCES
1. V. A. Khitrov et al., in Proceedings of the Interna-

tional Symposium on Neutron-Capture Gamma-
Ray Spectroscopy (Plenum, NewYork, 1979), p. 655.

2. W. Dilg, W. Schantl, H. Vonach, and M. Uhl, Nucl.
Phys. A 217, 269 (1973).

3. C. F. Porter and R. G. Thomas, Phys. Rev. 104, 483
(1956).

4. S. T. Boneva et al., Nucl. Phys. A 589, 293 (1995).
5. A. M. Sukhovoj and V. A. Khitrov, Yad. Fiz. 62, 24

(1999) [Phys. At. Nucl. 62, 19 (1999)].
6. A. V. Ignatyuk, in Proceedings of the IAEA Con-

sultants Meeting on the Use of Nuclear Theory
in Neutron Nuclear Data Evaluation, Italy, 1976,
IAEA-190, Vol. 1, p. 211.

7. E. M. Rastopchin, M. I. Svirin, and G. N. Smirenkin,
Yad. Fiz. 52, 1258 (1990) [Sov. J. Nucl. Phys. 52, 799
(1990)].

8. J. Bardin, L. Cooper, and J. Schrieffer, Phys. Rev. 108,
1175 (1957).

9. S. T. Boneva, V. A. Khitrov, Yu. P. Popov, and
1



1198 KHITROV, SUKHOVOJ
A. M. Sukhovoj, in Proceedings of the 9th Interna-
tional Symposium on Capture Gamma-Ray Spec-
troscopy and Related Topics, Budapest, Hungary,
1996 (Springer-Verlag, Berlin, 1997), Vol. 1, p. 483.

10. E. V. Vasilieva, A. M. Sukhovoj, and V. A. Khitrov,
Preprints Nos. R3–99-202, R3–99–203, OIYaI
(Joint Institute for Nuclear Research, Dubna, 1999).

11. P. Axel, Phys. Rev. 126, 683 (1962).
12. S. G. Kadmensky, V. P. Markushev, and V. I. Furman,
P

Yad. Fiz. 37, 581 (1983) [Sov. J. Nucl. Phys. 37, 345
(1983)].

13. S. T. Boneva et al., Yad. Fiz. 62, 892 (1999) [Phys.
At. Nucl. 62, 832 (1999)].

14. L. A. Malov and V. G. Soloviev, Yad. Fiz. 26, 729
(1977) [Sov. J. Nucl. Phys. 26, 384 (1977)].

15. A. M. Sukhovoj and V. A. Khitrov, Izv. Akad. Nauk,
Ser. Fiz. 61, 2068 (1997).
HYSICS OF ATOMIC NUCLEI Vol. 64 No. 7 2001



Physics of Atomic Nuclei, Vol. 64, No. 7, 2001, pp. 1199–1205. From Yadernaya Fizika, Vol. 64, No. 7, 2001, pp. 1275–1280.
Original English Text Copyright c© 2001 by Soloviev, Sushkov, Shirikova.

Proceedings of the International Conference
“Nuclear Structure and Related Topics”
Gamma Deexcitation of the 180mTa Isomer*

V. G. Soloviev†, A. V. Sushkov**, and N. Yu. Shirikova
Joint Institute for Nuclear Research, Dubna, Moscow oblast, 141980 Russia

Received October 25, 2000

Abstract—Vibrational states built on theKπ = 9− isomer and on the ground state (Kπ = 1+) in 180Ta are
calculated within the quasiparticle–phonon nuclear model using the 178Hf nucleus as a core. A procedure
for calculating the rates ofK-allowed γ-ray transitions from vibrational states built on the isomer to those
built on the ground state is presented. The probabilities of two-step processes consisting of a dipole
excitation of the isomer and successive E1 and E2 transitions from them to vibrational states built on
the ground state of the 180Ta nucleus are calculated. Two-step transitions from the isomer to vibrational
states below 2.7 MeV and to the vibrational states built on the ground state appear to be very weak. There
are many E1 transitions from the vibrational states built on the isomer to the vibrational states built on the
ground state. They are weak and cannot be responsible for the strong deexcitation of 180mTa in the relevant
(γ, γ′) reaction. A decisive role is played by collective E2 transitions from dipole excitations in several
excitation energy intervals ranging between 2.7 and 4.0 MeV. These highly intense K-allowed two-step
γ-ray transitions can be responsible for the strong deexcitation of the 180mTa state in the (γ, γ′) reactions.
c© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The problem of the production and survival of the
very long-lived isomeric state in the 180Ta nuclide is a
real challenge for the theory of nucleosynthesis. The
isomeric state 180mTa identified as a IπK = 9−9 two-
quasiparticle configuration has an energy of 75.3 keV
and a half-life of 1.2 × 1015 yr, whereas the ground
state of 180Ta, with IπK = 1+1, has a half-life of only
8.1 h. Despite so long a half-life of the isomer, the
existence of its sizable amount at present raises some
questions. Indeed, after the birth of 180mTa, indirect
transitions from this state to the ground state of 180Ta
seem possible. This may proceed via an excitation
into a higher lying intermediate state due to γ capture
and a subsequent decay to the short-lived ground
state.

Intensive experimental efforts were devoted to
studying the level structure of 180Ta [1–3] and seeking
γ transitions that link the isomer and the ground
state. A depletion of 180mTa to the ground state in
(γ, γ′) reactions was studied in [4–8]. The activation
function for the 180mTa(γ, γ′)180Ta reaction was mea-
sured in the energy range 2–7 MeV, and intermediate
levels can be identified at 2.8 and 3.6 MeV [4]. Im-
proved photoactivation experiments with 180mTa were

∗This article was submitted by the authors in English.
†Deceased.
**e-mail: sushkov@thsun1.jinr.ru
1063-7788/01/6407-1199$21.00 c©
performed at the Stuttgart Dinamitron facility by the
Darmstadt–Karlsruhe–Munich–Stuttgart collabo-
ration and succeeded in observing the depopulation
of the isomer state down to bremsstrahlung-endpoint
energies of about 1.1 MeV [9]. The depopulation
of 180mTa was the subject of several investigations
in Coulomb excitation experiments with heavy ions
[10–12] and p and α beams [13].
Theoretical investigations, based on a two-quasi-

particle-configuration picture, were conducted to
seek γ-ray transitions linking the isomer and the
ground state in 180Ta, but without any success.
Therefore, it seems promising to investigate γ-ray
transitions linking the isomer and the ground state
in 180Ta by using collective (e.g., one- and two-
phonon) configurations built on the isomer and on the
ground state. These studies are performed within the
quasiparticle–phonon nuclear model (QPNM) [14–
16] by using the formalism developed in [17].
We assume the following picture of the two-step

process of γ deexcitation of the isomer. At the first
step, dipole transitions from the isomer 180mTa with
IπK = 9−9 feed the dipole states built on it (|ism〉 ⊗
|vibr〉). At the second step, the states |ism〉 ⊗ |vibr〉
decay into various excited states of the type |grs〉 ⊗
|vibr〉—i.e., into vibrational states built on the ground
state. After that, the last states decay into the ground
state itself. These transitions seem to be the most
important because they are of the most probable one-
phonon-exchange type.
2001MAIK “Nauka/Interperiodica”



1200 SOLOVIEV et al.

 

0

1

4

3

2

 

6

 

–

 

6

 

1

 

6

 

–

 

6

 

3

 

6

 

+

 

6

 

1

 

6

 

+

 

6

 

4

 

7

 

–

 

7

7

 

–

 

7

8

 

–

 

8

 

4

 

6

 

+

 

6

 

3

 

6

 

+

 

6

 

5

 

7

 

–

 

7
7

 

–

 

7

7

 

+

 

7

8

 

–

 

8
8

 

–

 

8

8

 

–

 

8
8

 

+

 

8

8

 

+

 

8
8

 

–

 

8

8

 

–

 

8

8

 

–

 

8

8

 

–

 

8

9

 

+

 

9

 

E

 

1
II

I

 

E

 

2.....
.....

.....
.....

..

.........
.........

..

 
E

 
, MeV

III

 

E

 

1

 

9

 

–

 

9

 

M

 

1

 

1

 

+

 

1

 

g.s. 

 

ν

 

3

 

 = 

 

ν

 

1

 

624

 

↑

 

 – 

 

π

 

4

 

404

 

↓

 

Isomer 

 

ν

 

1

 

624

 

↑

 

 + 

 

π

 

2

 

514

 

↑

γ

 

-ray cascades

Fig. 1. Three steps of the deexcitation of 180mTa. The first
step is the dipole excitation of the isomer. The second step
is (thin lines)E1 or (thick lines and points)E2 transitions
from the dipole vibrational states built on the isomer to
the vibrational states built on the ground state. The third
step is γ cascades involvingmany intermediate states and
finally reaching the ground state.

2. BRIEF DESCRIPTION OF THE MODEL
The description of the QPNM can be found else-

where [15, 16]. We briefly recall here the basic points
of the model. The QPNM Hamiltonian in terms of
nucleon variables contains average fields of a neutron
and a proton systemwith the shape of the axisymmet-
ric Woods–Saxon potential. As effective nucleon–
nucleon forces, the QPNM Hamiltonian includes
the monopole (Bardeen–Cooper–Schrieffer) pairing
and isoscalar and isovector particle–hole (ph) and
particle–particle (pp) interactions. The last terms
have a separable form and are written as a series of
multipoles and spin-multipoles.
To describe nonrotational states of an even–even

nucleus, we use a trial wave function consisting of the
sum of one- and two-phonon terms,

Ψn(µ̄π, σ) = Ω+
nσ(λ̄µ̄)Ψ0, (1)

Ω+
nσ(λ̄µ̄) =

∑
i

Rn
i (λ̄µ̄)Q

+
λ̄µ̄iσ

(2)

+
1
2

∑
g5g6
σ5σ6

Sµ̄
g5g6

δσ5µ5+σ6µ6,σµ̄P
n
g5g6

(λ̄µ̄)Q+
g5σ5

Q+
g6σ6

,

PH
where g5 = λ5µ5i5 and g6 = λ6µ6i6; the index n =
1, 2, 3, . . . numbers µ̄π states in accordance with their
excitation energies; Ψ0 is the phonon vacuum state
and, at the same time, the wave function of the ground
state of an even–even nucleus; and

Sµ̄
g5g6

= (1 + δg5g6)
−1/2[1 + δµ̄0(1− δµ50)]−1/2.

We follow the procedure developed in [18] in de-
scribing two-quasiparticle configurations in odd–odd
nuclei. The basic idea is to use the so-called “frag-
mented” phonons in the wave function of an excited
state, in accordance with that suggested in [15]. The
same procedure was used to describe low-energy
dipole transitions in odd-mass deformed nuclei [19],
as well as transitions to vibrational states built on
isomers [17].
The wave function of a two-quasiparticle state

consisting of one quasineutron and one quasiproton is

α+
s1σ1

α+
r2σ2

Ψ0, (3)

where the indices sσ and rσ stand for single-particle
neutron and proton quantum numbers, respectively.
Our trial wave function is

Ψn(Kπ, λ̄µ̄) (4)

= δσ̄µ̄+σ1K1+σ2K2,KΩ+
nσ̄(λ̄µ̄)α

+
s1σ1

α+
r2σ2

Ψ0,

where λ̄µ̄ characterizes the operator Ω+
nσ(λ̄µ̄) on the

two-quasiparticle configuration. The normalization
condition for (4) is

δσ̄µ̄+σ1K1+σ2K2,K (5)

×{
∑

i

(Rn
i (λ̄µ̄))

2[1− L(s1σ1, ḡσ̄)− L(r2σ2, ḡσ̄)]

+
∑

g5≥g6

(Pn
g5g6

(λ̄µ̄))2[1 +Kµ̄(g5g6)]} = 1,

where ḡ = λ̄µ̄i and
L(q1σ1, ḡσ̄) (6)

=
∑

q

{(φ̃ḡ
q1q)

2δσ1(K1−K),σ̄µ̄ + (φ̄ḡ
q1q)

2δσ̄,σ1δK1+K,µ̄}.

The L and K functions appearing in (5) and (6) take
into account the Pauli blocking effect in, respectively,
one- and two-phonon terms of the wave function (4).
The reduced probability of the Eλ transition from

the two-quasiparticle state (3) to the excited state (4)
has the form

B(Eλ; Iπ
s1r2

Ks1r2→IπKn(λ̄µ̄)) (7)

= 〈Is1r2 Ks1r2 λ̄ ± µ̄|I K〉2

×|
∑

i

Rn
i (λ̄µ̄)M

ph
i (Eλ̄µ̄)|2,

whereMph
i is thematrix element for theEλ transition

to the one-phonon state i. The reduced probability of
theM1 transition has a similar form.
YSICS OF ATOMIC NUCLEI Vol. 64 No. 7 2001
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We assume that the isomer wave function is a pure
two-quasiparticle one,

Ψis(9−) = α+
s1,+1α

+
r2,+1δK1+K2,9Ψ0, (8)

with the one-quasineutron s1 = ν624↑ and one-
quasiproton r2 = π514↑ configurations. We consider
only those vibrational states built on the isomer that
have the projections K0 ≤ 9 onto the symmetry axis
and which are excited by M1 and E1 transitions
from the isomer. We do not take into account the
vibrational states built on theK0 > 9 isomer because
there are no γ transitions from these states to the
vibrational states built on the ground state with an
energy below 4 MeV. The wave function of the state
|ism〉 ⊗ |vibr〉 is

Ψn0(K
π0
0 , λ0µ0) = δ−µ0+K1+K2,K0 (9)

×Ω+
n0,σ0=−1(λ0µ0)α+

s1,+1α
+
r2,+1Ψ0

with λ0µ0 = 21, 30, and 31.
The ground state of 180Ta with quantum num-

bers Kπg.s
g.s. = 1+ is identified as a ν624↑–π404↓ two-
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 7 200
quasiparticle configuration. Its wave function is sup-
posed to be

Ψg.s(1+) = α+
s1,+1α

+
r4,−1δK1−K4,1Ψ0, (10)

where s1 = ν624↑ and r4 = π404↓. The wave func-
tion of the state |grs〉 ⊗ |vibr〉 is assumed to have the
form

Ψnf
(Kπf

f , λfµf ) = δµf +K1−K4,Kf
(11)

×Ω+
nf ,σf=+1(λfµf )α+

s1,+1α
+
r4,−1Ψ0.

The operator Ω+
nσ(λ̄µ̄) is given by (2), while λfµf =

55, 65, 66, 76, and 77.

Let us consider Eλ transitions from states (9) to
theKf ≤ K0 states (11). TheEλ transitions toKf >
K0 states are very weak, and we do not take them into
account. The reduced Eλ transition probability has
the form
B(Eλµ, σ = −1; Iπ0
0 K0n0(λ0µ0)→I

πf

f Kfnf (λfµf )) = 〈I0 K0 λ−µ|If Kf 〉2 (12)

×|(Ψ∗
nf
(Kπf

f , λfµf )Msp(Eλ, µ = K0 −Kf )Ψn0(K
π0
0 , λ0µ0))|2,

whereMsp is the single-particle matrix element of the Eλ operator. Equation (12) involves three terms. Let
us write them in a symbolic form,

B(Eλµ, σ = −1; Iπ0
0 K0n0(λ0µ0)→I

πf

f Kfnf (λfµf )) (13)

= |(exchange of quasiproton) +
∑
if i0

R
nf

if
Rn0

i0
MI +

∑
if i0i1

R
nf

if
Pn0

i0i1
MII|2.
The first term in (13) is the contribution of the di-
rect Eλ transition between two-quasiparticle com-
ponents of the initial and final states. Only proton
single-particle states participate in Eλ transitions.
The second term in (13) is the contribution of the
transition between one-phonon components. The
third term in (13) is the contribution of the transition
between the two-phonon components of the initial
wave function and the one-phonon components of the
final wave function. The quantitiesMI andMII are
the corresponding matrix elements of the Eλ oper-
ator. There are no Eλ transitions between the one-
phonon components of the initial state |ism〉 ⊗ |vibr〉
and the two-phonon components of the final state
|grs〉 ⊗ |vibr〉 at energies below 4 MeV.
As was mentioned in the Introduction, we con-

sider the transition from the isomer to the ground
state in the reaction 180mTa(γ, γ′)180Ta as a three-
step process. The three steps are shown in Fig. 1.
According to our calculation, the rates of the M1
transitions from the states |ism〉 ⊗ |vibr〉 to the states
|grs〉 ⊗ |vibr〉 in 180Ta are very low; for this reason, we
do not take these transitions into account.

3. NUMERICAL RESULTS
AND DISCUSSION

In the present calculations, we use the even–even
nucleus 178Hf as a core; i.e., the properties of phonons
are calculated for that nucleus [20].
Calculating the Eλ transition rate, we take into

account γ transitions between all relevant rotational
states. The intensities of E1 and E2 transitions
between the rotational states are three times as large
as the intensity between the heads of the rotational
bands.
We calculate only the probabilities ofK-allowed γ

transitions. The Coriolis interaction is not taken into
account because it does not affect the total transition
strength.
1
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We compute the B(E1) and B(M1) values and
the intensities per second W of the corresponding
transitions from the isomer states (8) to states (9).
We also compute the B(E1) (∆K = 1) and B(E2)
values and the relevant intensities per second for tran-
sitions from states (9) to states (11). The correspond-
ing formulas are

W (E1) = 1.59 × 1015E3
γB(E1), (14)
PH
W (E2) = 1.22 × 10 9E5
γB(E2),

W (M1) = 1.76 × 1013E3
γB(M1).

Here, Eγ is in MeV, B(Eλ) is in units of e2 fm2λ,
and B(M1) is in units of µ2

N . The total intensities
of the relevant γ transitions per second for two-step
cascades are
W (IS→vib.st. on IS(Iπ0
0 K0n0, λ0µ0)→vib.st. on g.s.(Iπf

f Kfnf , λfµf ))

=
(

1
W ( IS→ vib.st. on IS)

+
1

W ( vib. st. on IS→ vib. st. on g.s.)

)−1

. (15)
In our case, the intensities of the first step are the
intensities of the M1 and E1 transitions from the
isomer to the dipole excitations built on the isomer.
The intensities of the second step are the intensities
of the E1 and E2 transitions from the |ism〉 ⊗ |vibr〉
states to |grs〉 ⊗ |vibr〉. If the first transition is fast
and if the second transition is slow, the intensity of
the two-step process is approximately equal to the
intensity of the slow transition. For the majority of the
two-step processes being considered, the intensityW
of the E1 or theM1 transition from the isomer to the
|ism〉 ⊗ |vibr〉 states in the energy range 2–4 MeV
is much greater than the intensity W of the E1 or
the E2 transition from the |ism〉 ⊗ |vibr〉 state to the
|grs〉 ⊗ |vibr〉 one. Therefore, the intensities of the
two-step processes are virtually identical to the in-
tensitiesW (E1) orW (E2) of the transitions from the
vibrational states built on the isomer to the vibrational
states built on the ground state. The intensities of the
two-step processes summed in bins of 0.1 MeV are
shown in Fig. 2.
There are very many E1 and E2 transitions be-

tween the |ism〉⊗ |vibr〉 and |grs〉⊗ |vibr〉 states. The
majority of these transitions are very weak. Neverthe-
less, there aremany relatively weak and several strong
transitions. In the table, we therefore give the B(E1)
and B(E2) values in the excitation energy range
2.4–4.0 MeV that are summed in bins of 0.1 MeV.
In the table, we include the B(E1) values larger
than 10−11e2 fm2 and the B(E2) values larger than
10−3 s.p.u. There are also very many γ transitions
withB(E1) < 10−11e2 fm2 and B(E2) < 10−3 s.p.u.
The rates of ∆K = 0 M1 and E1 transitions are

very low. Therefore, they are not included in the nu-
merical results presented in the table or in the figures.
Let us consider the E1, ∆K = 1 transitions from

the dipole states built on the isomer to the vibrational
states built on the ground state. These E1 transi-
tions, with B(E1) > 10−11e2 fm2, proceed only from
a small part (10–20%) of the dipole excitations to one
to six final states built on the ground state. The num-
ber of nonrotational initial states in the energy interval
of width 0.1 MeV varies from one to five. In several
cases, the number of E1 transitions from the energy
range of width 0.1 MeV is quite large. For example,
the number of E1 transitions from the Kπ0

0 = 8−

states in the energy range 3.7–3.8MeV to theKπf

f =
7− states is equal to 18. TheE1 strength for the tran-
sitions from the Kπ0

0 = 9+(λ0µ0 = 30) states in the
energy range 2–4MeV to theKπf

f = 8−(λfµf = 77)
states is equal to 2.5 × 10−7e2 fm2. The E1 strength
for the transitions from the Kπ0

0 = 8+(λ0µ0 = 31)
states in the energy range 2–4 MeV to the Kπf

f =
7−(λfµf = 76) states is 10−5e2 fm2. The Kπ0

0 =
8−(λ0µ0 = 21)→K

πf

f = 7+(λfµf = 66) transitions
are weak. The E1 strength summed in the energy
range 2.0–3.8 MeV is 5× 10−10e2 fm2. All the E1
transitions from the dipole states built on the isomer
to the vibrational states built on the ground state play
a minor role. These transitions proceed through the
first and second terms in expression (13); therefore,
they are weak.

As can be seen from the table, the largest B(E1)
values are 10−6–10−8e2 fm2. According to exper-
imental data, the B(E1) values for the transitions
between one-phonon components in the nuclei 168Er
[21] and 156Gd [22] are 10−4–10−7e2 fm2. According
to the calculations within the QPNM [23, 24], similar
small B(E1) values are obtained for E1 transitions
between one-phonon states in many nuclei. The
computed B(E1) values for the transitions from the
dipole excitations built on the isomer to the states
|grs〉 ⊗ |vibr〉 are smaller than the B(E1) values for
transitions between one-phonon states. These small
B(E1) values cannot be responsible for the fast de-
YSICS OF ATOMIC NUCLEI Vol. 64 No. 7 2001
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excitation of the isomeric state 180mTa in the relevant
(γ, γ′) reaction.
The E2 transitions from the states |ism〉 ⊗ |vibr〉

proceed through the second and the third term in
expression (13). The third term is very important.
According to our present calculations, the B(E2)
value for the E2 transitions from the initial Kπ0

0 =
8−(λ0µ0 = 21) 2.71-MeV state to the final Kπf

f =
6−(λfµf = 55) states at energies 1.7 and 2.2 MeV
(including E2 transitions between rotational levels)
is 3 s.p.u. So strong an E2 transition is due to
the large two-phonon component {(22)1, (33)2} in
the wave function of the initial state. The value
of B(E2) = 5.25 s.p.u. for the transitions from
the three initial Kπ0

0 = 8+(λ0µ0 = 31) states in the
energy range 3.66–3.67 MeV to the four final Kπf

f =
6+(λfµf = 65) states in the energy range 2.4–
3.0 MeV and relevant transitions between rotational
levels. The two-phonon components {(22)1, (43)1}
and {(22)2, (43)1} are responsible for these very
strong E2 transitions. There are many E2 transitions
with B(E2) in the range from 0.1 to 1.4 s.p.u. and
very many weak transitions.
Collective E2 transitions from two-phonon com-

ponents of the wave functions of the initial states
play such an important role owing to the gamma-
vibrational (22)1 or (22)2 phonon. These strong E2
transitions demonstrate a very important role of the
two-phonon components of the excited states built on
the isomer.
Below 2.4 MeV, there are a few E1 transitions

with W values equal to 107 s−1 or less. All these γ
transitions proceed through very small components of
the initial-state wave functions.
The high intensities of the two-step processes

from the isomer to the Kπ0
0 = 8± states and to the

K
πf

f = 6± states built on the ground state are dis-
played in Fig. 2 as a histogram. There are very intense
two-step processes in the excitation energy inter-
vals 2.7–2.8, 2.9–3.0, 3.1–3.5, 3.6–3.7, and 3.8–
4.0 MeV. The peaks of this distribution correspond to
the strong B(E2) transitions shown in the table.
The running sum of the intensities per second

of the two-step processes consisting of the dipole
excitations of the isomer and further E2 transitions
to the states |grs〉 ⊗ |vibr〉 is also given in Fig. 2.
This running sum in the energy interval 2.7–2.8MeV
increases by a factor of 500 in relation to its value for
energies below 2.7 MeV. The running sum increases
by an order of magnitude from 2.8 MeV to 3.6 MeV.
Such high intensities of the two-step process can be
responsible for a strong deexcitation of 180mTa in the
relevant (γ, γ′) reaction.
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 7 200
 

10

 

13

 

10

 

11

 

10

 

9

 
W

 

tot

 
, s
 

–1
 

10

 

13

 

10

 

11

 

10

 

9

 

2.5 3.0 3.5 4.0

 

E

 

n

 

0

 

, MeV

 

∑

 

W

 

, s

 

–1

Fig. 2. Computed high intensitiesWtot per second of the
two-step transitions from the isomer to the dipole excita-
tions and from the dipole excitations built on the isomer to
the vibrational states built on the ground state in the 2.4–
4.0 MeV excitation-energy range. The displayed results
represent the intensities summed in a bin of 0.1 MeV
(upper panel) and the running sum of them (lower panel).

As soon as the states |grs〉 ⊗ |vibr〉 in 180Ta are
populated, the third step of the process starts. Prob-
ably, there are several γ cascades from these states
to many intermediate states and finally to the ground
state of 180Ta. It is possible that γ cascades proceed
through strong K-mixed states at fairly low excita-
tion energies. In any case, the γ transitions finally
reach the ground state.
We consider backward γ transitions from the vi-

brational state built on the ground state, including
the vibrational states populated from the vibrational
states built on the isomer, to the vibrational states
built on the isomer. According to our estimates,
backward γ transitions from the vibrational states
below 3 MeV to the vibrational states built on the
isomer are very weak.
Our final conclusions are the following:
(i) There is strong deexcitation of the isomer

180mTa in the relevant (γ, γ′) reaction by the three-
step process. Strong two-step γ transitions are
determined by the fast dipole excitation of the isomer
through the one-phonon components of the vibra-
tional states built on the isomer, as a first step, and
the successive collectiveE2 transitions from the two-
phonon components of these states to the vibrational
1
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ComputedB(E1) andB(E2) values for transitions from the vibrational states that occur at energyE and which are built
on theKπ = 9− isomer to the vibrational states built on theKπ = 1+ ground state of 180Ta.

E, MeV

B(E1;Kπ0
0 (λ0µ0)→K

πf

f (λfµf )), e2 fm2 B(E2;Kπ0
0 (λ0µ0)→K

πf

f (λfµf )), s.p.u.

9+(30) →
8−(77)

8+(31) →
7−(76)

8−(21) →
7+(66)

total
8+(31) →
6+(65)

8−(21) →
6−(55)

total

2.4–2.5 – – – – – 0.06 0.06

2.5–2.6 – – – – – – –

2.6–2.7 – 4× 10−8 – 4× 10−8 – – –

2.7–2.8 2× 10−7 2× 10−8 1× 10−11 2.2× 10−7 – 3.0 3.0

2.8–2.9 3× 10−9 – – 3× 10−8 – 0.11 0.11

2.9–3.0 – – 2× 10−10 2× 10−10 – 1.4 1.4

3.0–3.1 4× 10−8 2× 10−7 – 2.4× 10−7 – – –

3.1–3.2 1× 10−8 7× 10−6 5× 10−11 7× 10−6 4× 10−3 0.71 0.71

3.2–3.3 – – – – – 0.14 0.14

3.3–3.4 – – 5× 10−11 5× 10−11 – 0.14 0.14

3.4–3.5 – – 3× 10−11 3× 10−11 9× 10−3 0.05 0.06

3.5–3.6 – – 1× 10−10 1× 10−10 0.04 0.02 0.06

3.6–3.7 – 6× 10−9 1× 10−10 6× 10−9 5.25 0.47 5.72

3.7–3.8 – 2× 10−6 – 2× 10−6 0.47 – 0.47

3.8–3.9 – 7× 10−7 – 7× 10−7 0.008 0.13 0.014

3.9–4.0 – – 1× 10−8 1× 10−8 0.002 0.07 0.072
states built on the ground state, as a second step.
Several γ-ray cascades from the vibrational states
built on the ground state to many intermediate states
finally reach the ground state of 180Ta. This is the third
step. The strong deexcitation of the isomer 180mTa in
the (γ, γ′) reaction is due to collective E2 transitions
from the vibrational states built on the isomer to the
vibrational states built on the ground state.

(ii) Very large probabilities per second of the two-
step process via intermediate states that occur near
2.7 and 3.6 MeV and which are built on the isomer
generally agree with the deexcitation of the isomer in
the (γ, γ′) reaction observed in [4].

(iii) The probability of deexcitation of 180mTa from
the dipole excitations built on it below 2.7MeV is very
weak. A strong deexcitation of the isomer occurs in
several energy intervals from 2.7 to 4.0 MeV.

(iv) Since the present analysis employs the phonons
calculated for the 178Hf nucleus, all constants are
fixed (see [20]) and there are no free parameters in
our calculations.
PH
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Abstract—IsovectorM1 transitions between low-lying T = 1 and T = 0 states in odd–oddN = Z nuclei
are discussed. The data on low-spin states in the odd–odd nuclei 46V and 50Mn investigated with the
46Ti(p, nγ)46V and 50Cr(p, nγ)50Mn fusion evaporation reactions at the FN–TANDEM accelerator in
Cologne are reported. A simple explanation of the enhancement of the M1 transitions is given in terms
of quasideuteron configurations. The fragmentation of the strongM1 transitions is shown to be due to the
coupling of the two-particle configurations to the rotating core. c© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Investigation of the proton–neutron interaction in
different isospin channels is one of the most active
areas of current research in nuclear structure physics
(see [1] and references therein). This direction is nat-
urally related to theN = Z nuclei, where the proton–
neutron pairing is expected to play a much more
important role as in N > Z nuclei. The odd–odd
N = Z nuclei are especially interesting objects. In
these nuclei, the T = 0 and T = 1 states are almost
degenerate, which makes it convenient to study their
properties by means of γ-ray spectroscopy. As was
recently shown [2, 3], the phenomenon of degeneracy
of the T = 0 and T = 1 states means that in odd–
oddN = Z nuclei the symmetry and pairing energies
are equal in magnitude, i.e., almost exactly cancel
each other. Another interesting phenomenon is an
occurrence of very strong M1 transitions in odd–odd
N = Z nuclei. The enhancement ofM1 transitions in
near-spherical odd–odd N = Z nuclei was recently
understood to be due to the positive interference of
orbital and spin parts ofM1 matrix elements for two-
nucleon (one proton and one neutron) configurations
in single j = l + 1/2 orbital [4]. The fragmentation of
this strength in deformed odd–oddN = Z nuclei can
be understood as the coupling of these configurations
to the axially symmetric rotor [5].
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Dubna, Russia.
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2. REGULARITIES FOR M1 TRANSITIONS
IN ODD–ODD N = Z NUCLEI

The interesting properties of the odd–odd N = Z
nuclei mentioned in the previous section motivate the
study of the T = 0 and T = 1 states in heavy odd–odd
N = Z nuclei. Recently, the low-spin structure of the
odd–oddN = Z nucleus 54Cowas investigated up to
an excitation energy of 4 MeV [6].
To get a qualitative understanding of the structure

of the low-lying states in 54Co, we have performed
spherical-shell-model calculations. With the calcu-
lated B(E2) and B(M1) values, we can reproduce
the new experimental branching ratios and E2/M1
mixing ratios.
It is interesting to note that theM1 strengths are

found to be very large in the shell-model calculations

and the
[
π(f−1

7/2) × ν(f−1
7/2)

]
J,T

configurations domi-

nate in the wave functions of the low-lying states in
54Co. To get a feeling of how strong realistic M1
transitions could be in 54Co, we have supposed that
B(E2; 2+

1 → 0+
1 ) values for the nuclei belonging to

one isospin triplet, e.g., for 54Fe, 54Co, and 54Ni, are
rather similar. Then (see for details [6]) using the
known B(E2; 2+

1 → 0+
1 ) value for

54Fe and the inten-
sity ratio I(2+

1 → 0+
1 )/I(2

+
1 → 1+

1 ) for the 54Co nu-
cleus, we can get the value ofM1 2+

1 → 1+
1 transition

strength of 4.2 µ2
N , which is in very good agreement

with the shell-model value of 4.17 µ2
N . Furthermore,

we found that the shell model predicts very strongM1
0+
1 → 1+

1 transition with the strength of 12 µ
2
N .

To get an understanding of the phenomenon, we
have analyzed the known experimental data for odd–
odd N = Z nuclei and a simple model was proposed
2001MAIK “Nauka/Interperiodica”



TOWARD ISOVECTOR M1 TRANSITIONS 1207
for the interpretation of the data [4]. We have found
that some of the odd–odd N = Z nuclei, as, e.g.,
6Li, 10B, 18F, 22Na, 26Al, and 42Sc, exhibit very
strong isovector M1 transitions between low-lying
states with quantum numbers (Jπ

i , T ) = (0+
1 , 1) and

(1+
1 , 0), while other odd–odd N = Z nuclei, as, e.g.,

14N, 30P, 34Cl, 38K, have considerably weaker tran-
sitions, in some cases with almost vanishing M1
strengths. We have shown that the strong M1 tran-
sitions are due to the one-proton one-neutron con-
figurations within the single-j orbital with “spin-up”
orientation (j = l + 1/2). In generalization of the
deuteron case, we denoted such configurations as
quasideuteron configurations. In other cases (“spin-
down”, j = l − 1/2), M1 strengths vanish due to the
destructive interference of the orbital and spin parts of
the matrix elements ofM1 transition operator:

B(M1; 0+ → 1+) =
3
4π
j(j + 1)

(
gj
p − gj

n

)2

(µ2
N ),
(1)

where

gj
p − gj

n =
l + 4.706

j
for j = l + 1/2

and

gj
p − gj

n =
l − 3.706
j + 1

for j = l − 1/2.

The results of calculations using (1) and the exper-
imental data are given in [4]. For spherical nuclei like
6Li, 18F, and 42Sc, the total largeM1 strength is con-
centrated in one 1+

1 state, while in other nuclei which
are deformed it is distributed among several low-lying
1+ states. To understand the fragmentation, we have
considered another model which we discuss in the
following section.

3. DISTRIBUTION OF QUASIDEUTERON M1
STRENGTHS

It was shown already in the 1960s that the
symmetric-core collective model can explain quite
successfully the low-lying level structure of odd–
odd nuclei in the sd shell [7, 8]. However, the
available experimental data at that moment were not
sufficient to investigate M1 transitions. Here, we
applied the simplified version of this model called
rotor plus quasideuteron model [5] in order to explain
the distribution of the strengths of isovector M1
transitions between low-lying states in odd–oddN =
Z nuclei. The basic assumption of our approximation
is that one has one proton and one neutron outside
a deformed rotating core. Then, the model basis
is taken to be similar to the one for the rotor plus
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 7 200
particlemodel in a strong-j-coupling approximation
[9]:

|JMKT 〉 (2)

=
∑
R,Js

√
2(2R + 1)

2J + 1
CJK

R0JsK

[
|R〉 ⊗ |Js〉

]JT

MK

,

where the single-particle wave function |Js〉 is to be
replaced with the two-particle (one proton and one
neutron) wave function |Jq〉 of the following form:

|Jq〉 ≡ |JqMqKT 〉 (3)

=
∑
jp,jn

χ
Ωp

jp
χΩn

jn
C

JqK
jpΩpjnΩn

[
|jp〉 ⊗ |jn〉

]JqT

Mq

,

where Ωp (Ωn) is the Nilsson asymptotic quantum
number of angular-momentum projection onto the
symmetry axis for odd proton (neutron). The χΩ

j

coefficients (see [10]) are projection amplitudes of the
Nilsson basis onto the spherical basis, CJqK

jpΩpjnΩn
are

Clebsch–Gordan coefficients, T is isospin, K is total
angular-momentum projection on the symmetry axis,
and R is angular momentum of the core. Using
wave functions (2) defined in the laboratory frame and
expressed in terms of spherical shell-model weak-
coupled [|jp〉 ⊗ |jn〉]JqT

Mq
configurations, we have cal-

culated M1 reduced matrix elements [5]. We have
obtained the following analytical expressions for the
B(M1;Ji → Jf ) values:

B(M1;Ji,K = 0 → Jf ,K) (4)

=
3
4π

[
C

JfK
Ji01K

∑
j

χΩ
j χ

Ω′
j C

jΩ′

jΩ1K

√
(2j + 1)j(j + 1)

× (gj
p − gj

n)
]2

(µ2
N ),

where gj
p − gj

n is given by (1),Ω′ = |K| ± |Ωg|, andΩg

is the Nilsson asymptotic quantum number of single-
particle angular-momentum projection which is used
for the building of theKπ = 0+ band.
It is interesting to note that, for the 0+ to 1+

transitions, taking just one of the spherical orbitals
in (4) (for example, quasideuteron j = l + 1/2) and
summing up over all allowed Ω′ and K values, one
obtains an expression which is identical to the formu-
las given by (1). It means that coupling of the two-
nucleon configurations to the rotating core results in
the fragmentation of the strength of M1 transition
caused by these two-particle quasideuteron configu-
rations. It is one of the best examples of the inter-
play between collective and single-particle motions in
odd–odd nuclei.
In order to test the model, we have applied it to

sd-shell nuclei and have obtained reasonably good
1
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Calculated and experimental B(M1; Ji → Jf ) values (in µ2
N units) for 46V and 50Mn. (In the column labeled with

R + QD, the results of the rotor plus quasideuteron model are given; in column KB3, shell-model results are given
with KB3 interaction; and “Expt.” denotes experimental data)

Ji → Jf

(∆T = 1)

46V 50Mn

R + QD KB3 Expt. R + QD KB3

0+
1 → 1+

1 2.46 3.80 ≥2.31 5.9 8.7
0+
1 → 1+

2 6.56 5.01 – 3.3 –
0+
1 → 1+

3 8.20 – – 5.6 –
2+
1 → 1+

1 0.99 0.80 – 2.37 1.94
3+
1 → 2+

1 0.0 0.21 ≤0.012 2.54 3.73
3+
2 → 2+

1 1.06 1.25 1.98(71) 0.0 0.0
4+
2 → 3+

1 0.0 0.08 – 2.63 2.71
4+
2 → 3+

2 1.10 0.85 ≥0.52 0.0 0.0
5+
1 → 4+

2 0.0 0.02 ≥0.02 0.0 0.04
5+
2 → 4+

2 1.12 1.17 ≥0.41 2.69 3.46
agreement with experimental data. As an example,
in Fig. 1 the experimental M1 strengths for the 22Na
nucleus are compared to the calculated B(M1) val-
ues using (4). One can note rather good agreement
for many M1 transitions. Having these interesting
results for the sd shell, it is intriguing to find what can
be expected for the heavier odd–odd N = Z nuclei
in pf shell.

4. COLLECTIVITY AND M1 TRANSITIONS
IN 46V AND 50Mn

Recently [11–13], the low-spin structure of the
odd–odd N = Z nuclei 46V and 50Mn up to an
excitation energy of Ex ≈ 3.5 MeV was investigated
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units) for the isovector transitions in 22Na nucleus.
PH
in Cologne. Low-spin states of 46V and 50Mn were
populated using the fusion evaporation reactions
46Ti(p, nγ)46V and 50Cr(p, nγ)50Mn, respectively,
at a proton beam energy Ep = 15 MeV. The beam
was delivered by the FN–TANDEM accelerator
of the University of Cologne. From the analysis
of coincidence spectra, many new transitions were
placed in the level scheme, establishing new levels
and confirming some of the previously observed levels.
Our new data together with some recent high spin
data for 50Mn from Svensson et al. [14] and for
46V from O’Leary et al. [15] give a consistent and
extensive level scheme for the studied nuclei.
The experimental data were compared to shell-

model (SM) calculations of the positive-parity states
of both nuclei in the full pf shell without truncation
[11, 13]. The Hamiltonian matrix in the full pf shell
was diagonalized without any truncation using the
Tokyo shell-model code [16]. The calculated exci-
tation energies for the T = 0 and T = 1 positive-
parity levels with spin quantum numbers J = 0–7
below 3 MeV were compared to the data in [11, 13].
The calculations lead to reasonable agreement with
experiment. We have found that observed and calcu-
lated branching ratios, as well as E2/M1 multipole-
mixing ratios δ, agree rather well. It indicates that
relative intensities of observed electromagnetic tran-
sitions are reproduced well by the shell model. Fur-
thermore, the absolute values of calculated E2 tran-
sition strengths were carefully analyzed [5]. We have
found that B(E2) values from the shell model are well
matched by the rotor plus quasideuteron model, in
which the expression for B(E2) values is the same as
in the Bohr–Mottelson geometrical model [9]. This
comparison helps to assign additional quantum num-
ber Kπ = 0+ to T = 1 states and to separate T = 0
states into Kπ = 0+ and Kπ = 3+ bands in 46V and
into Kπ = 0+ and Kπ = 5+ bands in 50Mn, as is
YSICS OF ATOMIC NUCLEI Vol. 64 No. 7 2001
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Fig. 2. Experimental low-energy spectra of 50Mn and
46V. The construction of the bands is based on the anal-
ysis of the experimental and theoretical E2 transition
strengths.

shown in Fig. 2. The interpretation of the experi-
mental and shell-model results for E2 transitions in
terms of the rotor plus quasideuteronmodel imme-
diately explains why strong isovector M1 transitions
can be observed between T = 1, Kπ = 0+ and T =
0, Kπ = 0+ states (∆K ≤ 1 selection rule for M1
transitions) and why there are no strong isovector
M1 transitions between T = 1, Kπ = 0+ and T = 0,
Kπ = 3+ (Kπ = 5+ for 50Mn) states in 46V (M1
transitions are forbidden for∆K > 1). Moreover, the
rotor plus quasideuteronmodel gives a quantitative
description of the M1 transitions in 50Mn and 46V.
The results of this model (4), of the shell model (KB3
interaction), and some experimental data for 50Mn
and 46V are shown in the table. From this compar-
ison, one can note that very strong M1 transitions
are expected in both nuclei. One can also expect
fragmentation of the total M1 0+ → 1+ transition
strength over three low-lying 1+ states. These ex-
pected strong M1 transitions, as follows from the
rotor plus quasideuteron model, are caused by odd
proton and odd neutron motions; i.e., they are not
collective in contrast to the E2 transitions, which are
related mainly to the core’s rotational motion.

5. SUMMARY

The spectroscopy of the low spin structure of odd–
odd N = Z nuclei is of great current interest, and
many laboratories around the world are working in
this field. We focus here on experimental and the-
oretical study of the electromagnetic transitions in
odd–odd N = Z nuclei. The interesting result of
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 7 200
our study is an identification of strong noncollective
(quasideuteron mechanism) isovectorM1 transitions
between low-lying states. The enhancement of M1
strengths in nearly spherical nuclei is found to be
due to the constructive interference of orbital and
spin parts of the M1 reduced matrix elements be-
tween the states having predominantly quasideuteron
(πj × νj)J,T structure, where j = l + 1/2. Cou-
pling of the quasideuteron configurations to the col-
lective rotating core results in the fragmentation of
the M1 strengths in deformed odd–odd N = Z nu-
clei. A comparison of the results obtained within the
shell model and within the rotor plus quasideuteron
model gives evidence for strong isovectorM1 transi-
tions in 46V and 50Mn.
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Abstract—Gamma-rays associated with the decay of states in the 102Ag nucleus have been identified,
sixty-four of them for the first time following the reaction 50Cr (56Fe, 3pn)102Ag at a mean energy of
195 MeV. Identification was made using an array of nine escape-suppressed Ge detectors coupled to
the Daresbury Recoil Separator. Excited states in 102Ag were identified using recoil-gamma and γγ
coincidences. From the intensity balance and the coincidence data, a new set of levels was identified
which may be interpreted as reminiscent of “three-quasiparticle” bands in neighboring odd-mass nuclei
and similar to a four-quasi-particle band observed in 106Ag. c© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The study of the transitional odd–odd silver
isotopes such as 102Ag, which can provide infor-
mation on different modes of coupling mechanisms
between the odd proton and the odd neutron, is
challenging, both experimentally and theoretically.
Treherne et al. [1] produced the 102Ag nucleus and
compared its high-spin level structure with two-
quasiparticle rotor-model calculations. Then, Kumar
et al. [2] extended the negative-parity band in the
level scheme of the 102Ag nucleus up to 19−, and
they also observed a new band in their study. In the
present work, the heavy-ion reaction 50Cr (56Fe, 3pn)
at 195 MeV energy was used to study the in-beam
gamma-ray spectroscopy of the 102Ag nucleus.

2. EXPERIMENTAL PROCEDURE

Gamma rays from the reaction 50Cr (56Fe, 3pn)
were detected using an array of nine BGO shielded,
intrinsic germanium detectors coupled to the Dares-
bury recoil separator to record the recoil-gamma and
γγ-coincidence events on tapes.

A full description of the design and performance
of the Daresbury recoil separator has been given by
James et al. [3]. In brief, it allows one to determine
A and Z for the recoils in coincidence with an array of
BGO Compton suppressed Ge detectors.

∗This article was submitted by the author in English.
**e-mail: samadr1@yahoo.com
1063-7788/01/6407-1210$21.00 c©
3. ANALYSIS OF THE DATA

Manipulation of the data permitted a “pure” 102Ag
gamma-ray spectrum to be created (Fig. 1). The
energies and relative intensities of the gamma rays
obtained from this spectrum are shown in the table.
One hundred twelve gamma-ray lines were identified,
64 of them for the first time. Comparisons were made
with the data published by Treherne et al. [1] and
Kumar et al. [2]. Good agreements were obtained
in both cases. Almost all gamma rays seen by both
authors are observed here too. Also, 64 new gamma
rays are observed here, which are marked by asterisks
in the table.
A careful analysis of the coincidence data was

made in order to establish the sequence of decays
of sidebands in order to get information on various
experimentally unknown coupling mechanisms of the
two unpaired particles but predicted by the theory
[2, 4]. Due to poor statistics, we were not able
to arrive at firm conclusive evidence of these decay
patterns. However, from the intensity balance and
the coincidences, a new set of levels was found from
which the 473-keV line feeds the 1706-keV level,
which in turn mainly feeds the band head of the 8−
band through the 157-keV line. Figures 2 and 3 show
the spectra corresponding to gates set on the 473-
and 404-keV gamma lines, respectively. Figure 4
shows the level scheme for 102Ag. New transitions
and new levels are indicated by * and **, respectively.
The rest of the level scheme has been taken from
Kumar et al. [2] and Treherne et al. [1].

4. DISCUSSION

In 102Ag (Z = 47), an odd–odd transitional nu-
cleus, the unpaired proton is likely to fill up a large
2001MAIK “Nauka/Interperiodica”



102Ag: IN-BEAM GAMMA-RAY SPECTROSCOPY 1211
A compilation of gamma-ray energies and relative intensities assigned to 102Ag (D stands for the doublet and the new
transitions are indicated by asterisks)

E, keV Iγ (rel.) E, keV Iγ (rel.) E, keV Iγ (rel.) E, keV Iγ (rel.)

40.0 ± 0.2 20 ± 4 349.4 ± 0.2 100 ± 12 686.0 ± 0.2 6 ± 3 1120.4 ± 0.2 9 ± 4

46.0 ± 0.2 21 ± 4 ∗354.2 ± 0.2 45 ± 9 ∗695.9 ± 0.3 8 ± 3 1147.2 ± 0.2 D

∗76.3 ± 0.3 6 ± 2 397.7 ± 0.2 113 ± 0.2 705.0 ± 0.3 22 ± 5 ∗1164.9 ± 0.4 D

89.7 ± 0.2 36 ± 7 ∗403.7 ± 0.2 40 ± 8 ∗714.9 ± 0.3 5 ± 3 1183.1 ± 0.4 8 ± 4

97.5 ± 0.2 45 ± 8 415.1 ± 0.3 8 ± 4 ∗721.8 ± 0.3 5 ± 3 ∗1185.0 ± 0.4 7 ± 4
∗108.1 ± 0.4 3 ± 2 ∗420.5 ± 0.4 Weak ∗742.0 ± 0.3 4 ± 2 ∗1196.4 ± 0.4 Weak
∗116.0 ± 0.4 5 ± 3 ∗428.8 ± 0.2 6 ± 3 746.0 ± 0.3 20 ± 7 1247.4 ± 0.3 25 ± 7

130.2 ± 0.3 6 ± 3 ∗452.0 ± 0.5 6 ± 4 748.0 ± 0.3 7 ± 4 ∗1264.3 ± 0.2 4 ± 3

141.0 ± 0.2 100 466.6 ± 0.2 170 ± 20 ∗758.0 ± 0.3 9 ± 4 ∗1291.5 ± 0.3 7 ± 3

149.2 ± 0.2 78 ± 9 ∗473.2 ± 0.2 80 ± 16 ∗776.0 ± 0.3 D ∗1320.9 ± 0.3 10 ± 4

157.5 ± 0.2 124 ± 12 483.4 ± 0.3 55 ± 12 ∗788.8 ± 0.3 8 ± 4 ∗1356.6 ± 0.3 6 ± 3
∗167.5 ± 0.4 5 ± 4 ∗489.3 ± 0.3 35 ± 9 816.2 ± 0.3 Weak ∗1365.2 ± 0.3 28 ± 6

174.5 ± 0.2 30 ± 7 ∗494.9 ± 0.4 9 ± 4 819.6 ± 0.3 20 ± 7 1367.8 ± 0.3 20 ± 5

180.8 ± 0.4 7 ± 4 503.0 ± 0.3 46 ± 8 ∗831.2 ± 0.3 14 ± 5 ∗1387.4 ± 0.2 25 ± 7

187.2 ± 0.2 26 ± 7 ∗510.3 ± 0.2 30 ± 7 839.1 ± 0.2 220 ± 15 ∗1417.0 ± 0.3 5 ± 4

196.2 ± 0.2 28 ± 6 517.4 ± 0.2 32 ± 7 ∗851.4 ± 0.2 105 ± 12 ∗1427.4 ± 0.2 7 ± 4
∗214.2 ± 0.4 7 ± 3 ∗524.8 ± 0.3 12 ± 5 860.7 ± 0.2 26 ± 6 ∗1446.0 ± 0.3 Weak
∗229.0 ± 0.4 5 ± 2 ∗529.4 ± 0.3 30 ± 7 875.7 ± 0.2 158 ± 13 ∗1483.5 ± 0.5 Weak

236.0 ± 0.3 30 ± 6 540.1 ± 0.2 36 ± 8 ∗888.5 ± 0.2 61 ± 10 ∗1501.2 ± 0.5 Weak
∗240.5 ± 0.3 24 ± 6 ∗548.0 ± 0.2 12 ± 4 920.9 ± 0.3 Weak ∗2287.4 ± 0.3 5 ± 3

260.7 ± 0.3 60 ± 10 555.0 ± 0.2 13 ± 4 951.0 ± 0.2 114 ± 12 ∗2298.6 ± 0.3 6 ± 3
∗262.3 ± 0.3 25 ± 7 ∗577.8 ± 0.3 Weak ∗967.0 ± 0.3 D ∗2336.9 ± 0.3 Weak

268.1 ± 0.4 7 ± 4 ∗617.6 ± 0.3 8 ± 4 ∗985.2 ± 0.3 D

274.5 ± 0.2 95 ± 15 ∗626.4 ± 0.3 6 ± 3 ∗998.3 ± 0.3 Weak

279.5 ± 0.2 61 ± 10 637.0 ± 0.2 50 ± 9 ∗1043.9 ± 0.4 7 ± 4
∗284.0 ± 0.5 7 ± 3 ∗646.7 ± 0.3 23 ± 7 ∗1052.5 ± 0.4 7 ± 4

304.8 ± 0.3 38 ± 8 651.0 ± 0.3 17 ± 6 ∗1076.9 ± 0.4 6 ± 4
∗309.8 ± 0.4 12 ± 4 ∗656.0 ± 0.3 18 ± 6 1084.0 ± 0.3 Weak
∗329.0 ± 0.4 D 664.2 ± 0.2 90 ± 11 ∗1087.4 ± 0.3 Weak

336.1 ± 0.2 36 ± 8 ∗673.5 ± 0.2 25 ± 7 ∗1103.9 ± 0.3 9 ± 4
Ω(7/2, 9/2) state arising from the πg9/2 orbital,
whereas the neutron Fermi level lies near the low Ω
states of the νd5/2, g7/2 orbitals. Therefore, the Cori-
olis response of the neutron and proton motion to the
rotation of the core will be quite different. Since there
are many excited states with configurations such as
(νh11/2 ⊗ πg9/2), (νg7/2 ⊗ πg9/2), (νd5/2 ⊗ πg9/2),
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 7 200
(νh11/2 ⊗ πp1/2), etc., one would expect to find
different types of coupling mechanisms in the level
structure. This idea is confirmed by the richness of the
number of new gamma rays seen in the present work.
As is seen from Fig. 4, the level diagram of

102Ag can be grouped into five bandlike structures.
Three of them (the two positive-parity bands and
1
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the main negative-parity band) were observed by
Treherne et al. [1], and the one shown on the left
was observed by Kumar et al. [2]. The positive-parity
P

bands based on the two 7+ states at energies 181
and 382 keV have been interpreted as quasirotational
bands with band head configurations [πg9/2 ⊗ νd5/2]
HYSICS OF ATOMIC NUCLEI Vol. 64 No. 7 2001
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and [πg9/2 ⊗ νd7/2], respectively. The main nega-
tive-parity band based on the 1549 keV state was
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 7 200
interpreted as a two-quasiparticle band based on
the [πg9/2 ⊗ νh11/2] configuration. The fourth one
1
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shown on the left has been suggested to have
a four-quasiparticle configuration similar to
[π(g9/2)2(p1/2)1 ⊗ ν(d5/2)1]10− .
The new set of levels observed at the present

work and shown in the middle of the level diagram
is suggested to be the fifth band with the head at
2179 keV. From the coincidences, it was observed
that this level was fed from the 12− state in the main
negative-parity band through the 742-keV transition.
It has been observed in 106Ag, 104Ag, 102Ag, and
other nuclei in this region that, in general, parity-
changing transitions are highly retarded and cannot
compete with M1 or E2 transitions of comparable
energy. In fact, almost all gamma rays for which their
multipolarities have been measured in 102Ag [2] are
M1, E2, or M1 + E2. Therefore, the spin of the
2179-keV level should be 10 or higher, but based
on systematics, spin 11 or more should happen at
higher energies. This argument was used to assign
spin and parity 10− tentatively to the 2179-keV state.
Suggested spins and parities to the states at 2533
and 2937 keV are based on the similarities to the
spins between 10− to 12− states in 106Ag (Fig. 5).
Since all these spins and parities are tentatively
assigned, they were placed in parentheses. If these
assignments are correct, then the 2179-keV level
observed in the present work might be viewed as
the head of a band with low energy, ∆I = 1 γ rays.
A similar negative-parity band with the band head
energy at 2442 keV has been observed in 106Ag
and suggested to have a four-quasiparticle structure
[4]. In fact, the new band observed in the present
PH
work is very reminiscent of “three-quasiparticle”
bands in neighboring odd-mass nuclei, both in
terms of band head energy and level spacing. For
example, there is a ∆I = 1 band in 103Pd based on
17/2+ state at 2109 keV with γ-ray energies of
237 and 311 keV [5], or there is a ∆I = 1 band in
105Pd based on 17/2+ state at 2552.3 keV with γ-
ray energies of 255 and 313 keV [6]. Therefore, the
(10−) state at 2179 keV observed in the present work
is suggested to have a four-quasiparticle structure
similar to the one observed at the 2441 keV state in
106Ag with spin and parity 10− (Fig. 5). However,
transition probability data and four-quasiparticle
calculations are required to get some more insight
into the possible structures of these bands.
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Abstract—Modern few-body methods for investigating Borromean two-neutron halo nuclei are discussed
together with recent experiments. Advances in the studies of 6He and 11Li are analyzed. Some new
problems created by a large neutron excess and a halo phenomenon are considered. c© 2001 MAIK “Nau-
ka/Interperiodica”.
1. INTRODUCTION

Triggered by Tanihata’s discovery [1] of nuclei ab-
normally extended in space (6,8He, 11Li, 11Be) at the
neutron drip line, the initial idea of (binary) halos was
suggested by Hansen and Jonson [2]. Subsequent
developments deepened and enriched the picture of
halos as outstanding structural drip-line phenomena
with extreme clustering into an ordinary core nucleus
and a veil of halo nucleons forming exceptionally di-
lute neutron matter. The origin of the stratification is
of purely quantum-mechanical character and is only
partly understood, but prerequisites are a low angular
momentum for halo particles and few-body dynamics
such as in Borromean nuclei [3] characterized by
pairwise constituents with no bound states. In the
limit of vanishing binding, extremely large halos may
occur.

Few-body dynamics plays a crucial role in any
adequate description of halo properties, since, for
halo bound states, the wave function is predomi-
nantly concentrated in the classically forbidden re-
gion, where the behavior is dictated by the type of
dynamics—from two-body to extremely rich three-
and few-body. The chain of He isotopes with an alpha
core has become particularly useful as benchmark
systems. The binding of 6,8He and the observation, a
few years ago, of a narrow low-lying 10He resonance,
as well as in 5H, gave clear evidence that genuine
few-body features of the neutron veil have to be taken
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seriously. Thus, a diversity of few-body-inspired
methods with different virtues have been developed
and tested against each other for the 6He and 11Li
benchmark systems. For 14Be and 19B, we are only at
the very beginning of detailed explorations. Presently,
the only two-proton halo candidate is 17Ne, while
6Be and 12O are precursors of diproton radioactivity.
These systems are topics of current explorations of
isospin and charge symmetries in the presence of a
substantial proton excess.

A variety of few-body methods, such as Faddeev,
hyperspherical-harmonic (HH), resonating-group,
and Green’s function Monte Carlo methods, were
used for bound states, but only a few of these are suit-
able for a continuum analysis. Wewill, however, focus
on the three-body structure of Borromean halo nuclei,
explored in a core+ n+ n cluster decomposition
within a full range of three-body dynamics. In relation
to a two-body problem, there appear new features: the
Efimov effect [4] and the Thomas collapse [5].

Experimentally, the entire body of information
about drip-line nuclei is extracted from elastic and
breakup reactions. Apart from highly integrated
observables like elastic and reaction cross sections
and momentum distributions of fragments, it is
still possible, in modern experiments, to measure
different correlations between fragments, including
a kinematically complete experiment.

An important probe is the Coulomb breakup cross
section for cases where nuclei are incident on highly
charged targets. Experiments find an unusually large
electromagnetic-dissociation (EMD) cross section
per unit charge and a strong concentration of the
dipole breakup strength for halo nuclei at low contin-
uum energies. There has been much debate among
theorists on the question of whether (or not) the par-
ticles still attract each other sufficiently to form a “soft
2001MAIK “Nauka/Interperiodica”
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dipole” excited state or a resonance at low energies in
the breakup continuum.

The kinematically complete breakup of 6He on
heavy and light targets was measured at GSI [6].
This allows energy and angular correlations of various
subsystems to be measured, as well as the full three-
body breakup energy distribution.

The 11Li nucleus is still very puzzling, despite
the great number of experiments and theories that
attempt to elucidate its structure. A soft dipole mode
in 11Li was detected in three recent experiments [7–
9]. Angular and energy correlations in two-body
subsystems were also measured [10]. A comparison
of the dipole-mode predictions of the intruder-state
models with these EMD data shed further light on the
importance of the s intruder state.

The experimental advances are discussed in recent
reviews of experiments [11, 12].

There are open problems created by new features,
such as a halo structure, soft modes, and three-body
continuum effects (continuum pairing): (1) extraction
of the matter radii of halo nuclei from experimental
data (for example, three Glauber-type methods using
the total matter density [13], core + valence neutron
density [14], and granularity of the 6He structure
with quantum interference [15] give the rms radii of
2.48, 2.57 ± 0.1, and 2.54 ± 0.04 fm, respectively);
(2) the longitudinal- and transverse-momentum dis-
tributions of the core and the valence neutron in
fragmentation experiments (these can be explained
by two extreme models: the Serber (or sudden) ap-
proximation without final-state interaction (FSI) and
nuclear breakup via halo excitation with FSI fully
taken into account); and (3) the nature of soft dipole
modes in halo nuclei (there arises the question of
whether they represent a resonance or a giant induced
dipole moment; the second aspect is that the most
elaborate three-body calculations give an overly soft
dipole response in relation to experimental data on
6He and 11Li).

2. THEORETICAL DEVELOPMENTS

When experiments indicate a cluster structure
in many light nuclei, theorists can approximate the
many-nucleon problem by a few-body one, and a
number of methods have been developed for the
treatment of the latter problem. Faddeev’s [16]
and Schrödinger’s effective few-body formulations
have successfully been solved with the aid of direct,
variational [17–19], hyperspherical-harmonic [3],
and Faddeev equations with adiabatic hyperspherical
methods [20]. All of them treat clusters as pointlike
particles and use few-body dynamics. Interactions
between the species are realistic as much as possible,
PH
but they are still effective, describing the bound-state
and continuum properties in each binary subsystem.
For that, we need to know their properties, which
are sometimes poorly defined because of experi-
mental difficulties; sometimes, we have absolutely
no information. The complex structure of clusters
leads to nonlocal interactions, instead of which the
phase-equivalent l-dependent local interactions can
be employed. Antisymmetrization with respect to
valence nucleons is easily performed correctly, but the
general Pauli exclusion principle is usually treated in
an effective way.

Within few-body cluster models such as the
resonating-group method (RGM) [21–24] and the
generator-coordinate method (GCM) [25], the com-
posite structure of clusters manifests itself through
nonlocal exchange integral kernels. They treat clus-
ters as “frozen” objects with their wave functions
(as simple as possible) describing the main char-
acteristics of the free clusters. The relative motion
of their centers of mass is then calculated in some
restricted basis. A full antisymmetrization of the
total wave function guarantees a strict treatment of
the Pauli exclusion principle between all nucleons.
The effective NN interaction has as many realistic
features as possible and has the same form for all
(sub)systems. A good effective interaction will give
a simultaneous description of the internal properties
of clusters and two-cluster subsystems and will rarely
be a freeNN interaction.

The orthogonality-condition model [26], derived
from theRGM, reduces the complicatedHill–Wheeler
equation to a Schrödinger one with a physically
transparent projection of Pauli-blocked states out
of the spectrum of the binary Hamiltonian. An
alternative method, generating a spectrally equivalent
Hamiltonian, is to use the double supersymmetric
transform [27]. The two approaches give the same
on-shell behavior, but they are different off the shell,
the latter becoming critical in the three-body situa-
tion.

The strict calculations of A-nucleon system—
Green’s function Monte Carlo method—should be
mentioned as well [28].

Within some of these methods, only a few con-
tinuum explorations were performed. There are full-
scale 3 → 3 scattering, complex energies (Gamow
states) [29] and the Feshbach-type approach [29] in
the method of hyperspherical harmonics [30]; 3 →
3 scattering, complex energies in the adiabatic hy-
perspherical method [31]; and 3 → 3 scattering in
the algebraic version of the RGM [32] and the J-
matrix method [19], the complex rotation method in
the RGM [21], and the cluster oscillator-shell model
[33].
YSICS OF ATOMIC NUCLEI Vol. 64 No. 7 2001
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The method of hyperspherical harmonics [30],
which treats bound states and a continuum on equal
footing, was incorporated in developed four-body
Glauber theory [15] and the DWBA [34].

2.1. Three-Body Ground States
6He. All models listed above give similar weights

of partial components of the wave function in the
ground state of 6He. However, the effective three-
body methods with any realistic pair interactions
show the common problem of underbinding, with
three-body energies of about −0.4 MeV instead of
−0.97 MeV. This underbinding is most likely caused
by the influence of other closed channels, the most
important of these being t+ t [22, 23, 35], or the
polarization of the α cluster [22, 36]. Calculations of
the RGM type [22, 23, 35, 36] show that the inclusion
of the t+ t closed channel (or the polarization of the
α particle) gives a value very close to the total needed
correction to the binding energy and improves the
small radius of 6He. In the shell-model language,
this corresponds to polarizing theα particle by adding
two extra nucleons. This can be taken approximately
into account in two ways: (i) by increasing (as in
[3]) the radius of the α particle and, consequently, the
radius Rαn of the αn interaction or (ii) by effectively
renormalizing the force [30].

We compare the calculated ground states for all
methods treating the Pauli exclusion principle, and
rather similar characteristics for 6He emerge once
again. The matter radii are 2.43–2.44 fm for a Gaus-
sian basis and 2.44–2.61 fm for a hyperspherical one.

Few-body cluster approaches (RGM-based) give
a similar partial content but smaller matter radii
(2.36–2.46 fm). This could be due to an incorrect
asymptotic behavior or to an effective character of
NN forces, which do not contain a strong repulsion
at short distances.

11Li. The 11Li nucleus is still very puzzling,
despite a great number of experiments and theories
that attempt to elucidate its structure. A study of
11Li analogous to that of 6He is hampered by the
lack of information about the n–9Li channel. Since
the n–9Li interaction is not accurately known, it is
necessary to explore a range of scenarios with varying
mixtures of s-wave intruder states and p-wave reso-
nances.

In recent years, there has been considerable the-
oretical interest in the possible role of the s-wave
intruder state in the structure of the 11Li halo [37].
There are various pieces of experimental evidence for
virtual states in 10Li, and they are sometimes con-
flicting [38, 39]. The antisymmetrized RGM [40] and
GCM [41] models are unable to find s-wave poles,
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 7 200
but few-body core + nucleon(s)models can begin to
explain their presence in a semimicroscopic treatment
[42] by the coupling of a quadrupole core deformation
(which simulates the mixture of configurations) to s-
and d-wave single-particle states.

The observed momentum distributions [43] are
found [37] to support strongly an intruder state, but
the predicted matter radii are overly large in relation
to the analysis of the data from [44]. There is now
evidence [15] that the radii from [44] are overly small,
but an independent probe of the halo structure would
still be useful.

An n−9Li virtual state increases the s2 compo-
nents and the matter radius of the ground state. We
may conclude that a model with a p2 admixture of
about 60% in the 11Li ground state and a radius close
to that which fits [15] the experimental reaction cross
section fits best. This is also in approximate agree-
ment with the results of calculations [45] analyzing
the 11Li β-decay experiments.

2.2. Three-Body Continuum

An extended analysis of three-body continuum
theory was performed in [30].

Resonances and other structures. Physically,
long-lived states of three types can exist in three-
body systems [46]: (I) “true” three-body resonances;
(II) long-lived binary virtual states or resonances; and
(III) multichannel resonances due to the distributed
moderate coupling of all channels [47]—in particular,
so-called “coupled channel” (CC) resonances.

Spatial correlations. The difference of the corre-
lated densities of an exact solution and an (antisym-
metrized) six-dimensional plane wave as a reference
is an original measure of spatial correlations, which
are analogous to ground-state spatial correlations. In
the case of 6He, the former exhibited dineutron and
cigar configurations [3], which were observed in the
Dubna experiment reported in [48].

Correlated spatial densities for narrow resonances
(2+

1 in 6He) revealed a compact internal structure
and large-scale spatial correlations for monopole and
dipole modes in the same nucleus.

6He. Summarizing the extended analysis that
was performed in [30], we present the positions and
widths of possible resonances in the table. We also
list the positions obtained in the complex-scaling
(CS) methods of [21, 33]. All of the methods give
very similar positions, but somewhat different widths
should be tested experimentally.

11Li. In [50], in just the same way as in [51] for
6He, many resonances were indicated (even though
1
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Comparison of resonance positions and widths in 6He

HH [30] CS1 [21] CS2 [33] Expt. [49]

Jπ E, MeV Γ, MeV E, MeV Γ, MeV E, MeV Γ, MeV E, MeV Γ, MeV

0+
1 −0.98 −0.6 −0.78 −0.97

2+
1 0.8 0.10 0.74 0.06 0.8 0.26 0.822 0.113

2+
2 2.7 1.2 – – 2.5 4.7 – –

1− Not found Not found Not found – –

1+ 3.2 1.8 – – 3.0 6.4 – –
6He, 0+

2 5.4 6.0 – – 3.9 9.4 – –
all of these did not manifest themselves unambigu-
ously in the phase shifts).

Channels other than dipole excitations may be
generated in nuclear collisions with smaller impact
parameters. The two neutrons in 11Li begin (in our
inert-core model) in a 0+ state, but they may be
excited to 1− and 2+ states by E1 and E2 excitations,
respectively, and also to 0− states, to a second 0+

state, and to 1+ states by nuclear mechanisms.
Experimental evidence for excited states of the 11Li

halo points to a state at 0.9 MeV above the thresh-
old [52] and possibly further states at 2.1, 4.55, and
5.9 MeV [53]. We have more than one, however: a 0+

resonance at 0.3 MeV, a 0− resonance at 0.5 MeV,
a 1+ resonance at 1.6 MeV, and a 1− “bump” at
0.5 MeV. It is not clear which of our three resonances
and a bump corresponds to the observed peak at
0.9 MeV. The 0+ continuum states are orthogonal
to the ground state and will be excited only weakly.
To understand this and other experiments, our con-
tinuum wave functions will be used to calculate the
transition densities and then breakup cross sections,
as has already been done for 6He [34].

3. NUCLEAR BREAKUP AND MOMENTUM
DISTRIBUTIONS OF THE NEUTRONS

AND THE CORE

The momentum distributions of fragments are the
most integrated characteristics of the system, which
can be obtained from the six-dimensional differential
cross section integrated with respect to the unob-
served five Cartesian momenta. Let us discuss two
extrememodels for the fragmentation of halo nuclei—
the Serber approximation and nuclear breakup via
halo excitation.

In the Serber approximation, the transition oper-
ator is unity, and a plane wave is a final state in the
transition-matrix element. It corresponds to the sud-
den approximation, and the observed longitudinal-
and transverse-momentum distributions of the core
PH
and valence neutron are momenta in the ground state,
which reflect the extension of the halo structure due to
the uncertainty principle.

Only the natural parity states (Jπ = 0+, 1−, 2+)
and the lowest pair angular momenta must be con-
sidered in nuclear breakup via halo excitation for 6He,
11Li, and other Borromean nuclei.

A simple analytic expression was derived in [54],
where the Breit–Wigner energy dependence of a res-
onance was replaced by a delta function.

Analytically, the ratio of the half-width at half-
maximum (HWHM) ΓHWHM for, say, the neutrons
and the core is

Γn
HWHM

Γcore
HWHM

=

√
1
2

(1 + 1/Acore). (1)

Taking into account only the lowest 2+ state, we
find for the 6He nucleus that Γn

HWHM = 22 MeV/c
and Γcore

HWHM = 29MeV/c; these results are very close
to experimental values. In the case of 11Li, the lowest
peak, identified in almost all experiments, is located
at about 1 MeV above the three-body threshold.
With this value, we have Γn

HWHM = 26 MeV/c and
Γcore

HWHM = 35 MeV/c, results that are also very close
to experimental values.

This fact brings about the question of what we
observe in momentum distributions, the size of the
halo or low-energy resonances in halo excitation.
Recently, a four-body DWIA theory for the breakup
of Borromean nuclei was developed in [34] and was
applied to 6He nuclei in [55]. The results on both
4He and neutron-momentum distributions confirm
our qualitative estimates. This should be clarified
in correlation experiments since the Serber mecha-
nism will give correlations in the ground state, but
diffraction-type breakup will reveal the structure of
excited states (2+ in the 6He nucleus and 0− or 1−

in 11Li in relation to the mutual 0+ ground state).
YSICS OF ATOMIC NUCLEI Vol. 64 No. 7 2001
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4. SOFT DIPOLE MODE

At present, the origin of accumulation of the dipole
strength at a very low continuum energy is a key
question. Nevertheless, the nature of the so-called
“soft dipole mode” [12] responsible for abnormally
large EMD cross section still needs clarification. Var-
ious attempts, based on the same cluster representa-
tion of 6He, have not given a definite answer [18, 21,
51, 56] as to the presence of dipole resonance state in
6He.

In [57], several Pauli principle treatments at the
level of one-neutron–core exchange were applied to
the soft dipole mode, and a rather significant dif-
ference was found because of the sensitivity of the
three-body problem to the off-shell behavior of binary
interactions. But the first experimental result on 6He
EMD [6] shows the absence of a peak at 1 to 2 MeV
in the dipole strength function.

It could be a manifestation of the need for taking
into account “two-neutron–core” exchange, which,
at the physical level, corresponds to a change in the
NN interaction within the core. At a phenomeno-
logical level, this means that, if the attractive NN s-
wave interaction is replaced by a repulsive one within
the core, we improve the dipole response but hardly
change the ground state (see Fig. 1).

5. TWO-DIMENSIONAL ENERGY
CORRELATIONS: INSIGHT

INTO THE NATURE OF RESONANCES

Actually, all possible information about the three-
body continuum structure is extracted from nuclear
reactions, where the interplay of the reaction mecha-
nism and the structure of the initial and final states
make this task very difficult. Only one-step nu-
clear reactions and reactions with well-defined mech-
anisms (e.g., electromagnetic, charge-exchange) en-
able us to perform reasonable analysis.

There are several main sources of the amplification
of the continuum cross sections: (i) true three-body
resonances, which are due to the interaction of all
three particles in the interior domain; (ii) a long-
lived binary resonance in one of the pairs; and (iii)
the response of an extended system to long-range
transition operators, as was mentioned above.

The existence and the properties of any intrinsic
resonance states should not depend on the excitation
mechanism (electromagnetic, strong or weak inter-
action, etc.) that produces them.

To conclude our discussion of three-body prop-
erties or, in particular, of binary subsystems, it is
necessary to inspect FSI (resembling ground-state
energy–momentum correlations); intrinsic contin-
uum correlations; and FSI transitions, where the
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 7 200
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Fig. 1. Dipole response for 6He: (solid and dash-dotted
lines) results of new theoretical calculations; (dashed and
dotted lines) results of theoretical calculations from [30]
and [51], respectively; and (dark squares) distribution
boundaries from [6], which were derived experimentally.

intrinsic properties of the continuum are intertwined
with ground-state correlations. From the theoretical
point of view, the Jacobi coordinates and the corre-
sponding energies of the relative motion of two parti-
cles (εx) and of the center of mass of these particles
and the third particle (εy) are the most adequate to
describing the internal excitations of the system.

The expression for the correlation function can
be obtained from the differential cross section [30,
34] for 3 → 3 scattering (intrinsic properties of the
continuum) or for reactions (transition properties)
by performing integration with respect to the four-
dimensional angular part of the momenta of scattered
particles, averaging over the initial spins, and sum-
mation over the final spins.

Ground-state energy–momentum correla-
tions. If we take an antisymmetrized plane wave
for the final state, the correlated response gives the
ground-state energy–momentum correlations for the
T000 transition operator, which is often used as the
Serber-type reaction cross section (Fig. 2). Other
transition multipoles Tjls serve as “no-FSI” breakup
reaction cross sections with zero-range perturbation
V (r) =

∑
ηiδ(r− ri). They reflect only ground-state

correlations and, every time, should be treated as a
reference for the cases where the FSI is switched on.

Intrinsic and transition energy–momentum
correlations. The intrinsic properties of halo exci-
tations are contained in scattering amplitudes, which
characterize the large-distance asymptotic behavior
of the wave function. For sharp three-body reso-
nances, the poles in the S matrix coincide with the
1
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peak energy in the resonance amplification of the in-

terior part of the wave function, and intrinsic energy–
P

momentum correlations for 3 → 3 scattering should

almost coincide with transition energy–momentum
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correlations for reactions. This can serve as a unique
signal of the three-body resonance nature of the ob-
served resonance-like enhancement in the cross sec-
tion.

For qualitative understanding, we can apply the
above analytic properties to the 3 → 3 scattering
amplitudes in the true three-body resonance region
(E0,Γ0). For the former, we have

d2σ(3)
dεxdεy

∼ A2
3(E)

(E − E0)2 + Γ2
0/4

√
εxiεyi. (2)

Considering that E = εxi + εyi is invariant (for any
pair and the third particle), we can clearly see that the
correlation plot should have a straight-line maximum
E0 = εxi + εyi and equilateral surfaces (contour plot)
of an elliptic type with a “width” of about Γ influenced
by the phase space √

εxiεyi and the partial structure
of the state.

This can serve as a discriminating tool in cases of
doubt, as was mentioned in the Introduction.

We will illustrate the general properties of correla-
tions using 6He as an example.

The ground-state-correlation plot for the 0+

monopole and the continuum demonstrates the un-
certainty principle for the ground state: the spatial
correlations reflect the “Pauli-focusing” effect [3]
generating “dineutron” and “cigar” configurations,
which correspond to two wings in the En–n–Ec–nn

correlation plot. A higher probability of the nar-
row core–nn energy distribution should be seen,
to some extent, in the distributions of longitudinal
and transverse momenta measured in fragmentation
experiments.

The correlation plots for the well-known 2+ res-
onance (Fig. 2) represent a classical example of a
three-body resonance, where, in both coordinate sys-
tems, the maximum lines follow the E0 = εxi + εyi

law, which results from the analytic structure of the
scattering amplitude.

Wemay draw a number of conclusions. The corre-
lations between the 0+ monopole and the continuum
reveal the absence of three-body resonance behavior
and reflect the strong influence of FSI.

The correlations between the 1− dipole and the
continuum (Fig. 2) are very similar to those involving
the monopole and also reflect the strong influence of
FSI.

Thus, the well-known 2+
1 state is the real three-

body resonance, while the 1− and 0+ excitations are
not.

A correlation analysis of the 2+
2 and 1+ states

confirms their three-body resonance nature.
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6. CONCLUSION

Advances in few-body dynamics have deepened
and enriched the understanding of halos as an out-
standing structural drip-line phenomenon with ex-
treme clustering into an ordinary core nucleus and a
veil of halo nucleons. A large neutron excess creates
new phenomena, such as the rearrangement of shells
and the intruder s level, which seems to be a feature
common to extremely light drip-line nuclei. Then,
there is a soft dipole mode, which is responsible for
abnormally large EMD cross sections. There are
some unsolved problems, such as the structure of halo
excitations, the nature of the dipole mode, the matter
radii of halo nuclei, and the nature of extremely narrow
momentum distributions in fragmentation reactions.
These new phenomena and problems stimulate fur-
ther theoretical and experimental developments and
will bring deeper insights into nuclear physics.
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Abstract—A microscopic approach to breakup into the low-energy continuum of Borromean two-
neutron-halo nuclei is developed by quantum mechanically taking into account both Coulomb and nuclear
dissociation. The crucial role of both elastic and inelastic fragmentation is demonstrated for 6He breakup
on C and Pb targets at intermediate energies in kinematically complete experiments. For the first time,
recent GSI experimental data are analyzed quantitatively, and a rich and complex interplay of reaction
mechanisms and low-lying halo excitations is revealed. c© 2001 MAIK “Nauka/Interperiodica”.
At least four-body dynamics is necessary for prob-
ing the detailed Borromean halo excitation structure.
Within a microscopic four-body distorted-wave the-
ory, it was shown in [1] that, in diffractive (elastic)
breakup of Borromean halo nuclei on proton target,
the correlated continuum excitations play a crucial
role for fragment momentum distributions. We have
extended this approach to breakup reactions on heav-
ier targets. It is especially suitable for a complete
kinematic experiment, which furnishes information
about all beam and fragment momenta (with the ex-
ception of the recoil of the target nucleus). Such
experiments allow a sophisticated analysis of the data
and make it possible to reconstruct projectile excita-
tion spectra and various correlations between frag-
ments. Yet, some uncertainty remains since the en-
ergy transfer to the target can be distributed in differ-
ent ways between internal excitations and center-of-
mass motion. Theoretical models must take into ac-
count the presence of different reaction mechanisms
leading to elastic and inelastic fragmentations—i.e.,
when the target remains in the ground state or goes
over to excited states, respectively.
1063-7788/01/6407-1223$21.00 c©
TheBorromean nucleus that has received themost
thorough theoretical and experimental study is 6He,
the testbench for a series of Borromean halo nuclei,
such as 11Li and 14Be. Nevertheless, the question
of the nature of low-lying soft modes—in particular,
a dipole mode—is still under discussion since the
theoretical analysis of [2–5] disagrees with recent
experimental results [6].

Below, we present the first study of continuum
excitations for both elastic and inelastic 6He breakup
on 12C (nuclear interaction dominates) and 208Pb
(Coulomb dissociation is the main process) targets
and compare our theoretical results with recent ex-
perimental data from GSI [6] at a collision energy
of 240 MeV per projectile nucleon. Other breakup
scenarios are discussed in [7].

The amplitude Tfi of the breakup reaction a+
A→ α+ n1 + n2 +A′ induced by a collision of the
projectile a (two-neutron halo) and the target A in-
cludes entirely interaction dynamics and is given by
Tfi = 〈Ψ(−)
A′ (kx, ky, kf ) ΦA′ |

∑
p,t

Vp,t − UaA | Ψ0 Φ0 χ
(+)
0 (ki)〉, (1)
where Ψ0 is the halo ground-state wave function,

while Ψ(−)
A′ (kx,ky,kf ) is the exact continuum wave

∗This article was submitted by the authors in English.
1)Russian Research Centre Kurchatov Institute, pl. Kurcha-
tova 1, Moscow, 123182 Russia.

2)SENTEF, Department of Physics, University of Bergen,
Allégaten 55, N-5507 Bergen, Norway.

**e-mail: ershov@thsun1.jinr.ru
function, which describes the relative motion of halo
fragments and the target in the excited state ΦA′

(A′ = 0 labels the ground state). The Jacobi vec-
tors (kx,ky) characterize the relative motion of three
projectile-breakup fragments, and kf characterizes
the relative target–projectile center-of-mass motion
[2, 8]. The sum

∑
p,t Vp,t is composed of effectiveNN
2001MAIK “Nauka/Interperiodica”
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interactions Vp,t between the projectile p and target
t nucleons and governs the fragmentation process in
the breakup reactions. The optical potential UaA de-
pends on the center-of-mass distance between the a

and A nuclei and defines the distorted wave χ(+)
0 (ki),

which describes the relative motion of colliding nuclei

in the input channel. To get Ψ(−)
A′ , some approxi-

mations are required. We use approximations at the
level of the reaction mechanism, but we treat the
three-body structure of the halo projectile in a con-
sistent way, retaining the characteristics of the halo
structure. These are contained directly in the halo
ground-state wave function and in the spectra of low-
lying excitations, where the strength concentration of
transitions of different multipolarities, so-called “soft
PH
modes,” is formed. If there is no direct knockout of
a projectile fragment, we cannot neglect any of the
mutual interactions. All projectile fragments take
a similar part in the interaction process. This is
realized for the soft section of the halo spectrum,
where the relative fragment velocities are small and
are restricted kinematically by a low excitation energy
E∗. At low E∗, there are no spectator particles. Also,
the reaction should be fast, and the loss of energy has
to be small in relation to the initial collision energy.
Hence, we factorize the exact scattering wave func-

tion Ψ(−)
A′ (kx,ky,kf ) explicitly, isolating the wave

function of the excited projectile. Thus, the reaction
amplitude can be written as
Tfi = 〈χ(−)
A′ (kf ) ΦA′ Ψ(−)(kx, ky) |

∑
p,t

Vp,t | Ψ0 Φ0 χ
(+)
0 (ki)〉 , (2)
where Ψ(−)(kx, ky) is the three-body continuum

wave function of the halo system, while χ(−)
A′ (ki,f ) is

a distorted wave that describes the relative motion of
the projectile and target in the state A′. The optical
potential UaA does not contribute to (2) because of
the orthogonality of the bound state Ψ0 and the ex-
cited states Ψ(−)(kx, ky) of a halo projectile. The
post and prior forms of the breakup amplitude are
equal in our approximation, since the decomposition
of the Hamiltonian in the perturbed and the unper-
turbed part is the same for the input and the output
channel. According to this approach, the nature of
breakup is inelastic excitations of the projectile di-
rectly to a continuum. Whether this continuum state
will be resonant or nonresonant depends on the final-
state interactions between the fragments.

To calculate the reaction amplitude, it is necessary
to precompute the bound-state (Ψ0) and continuum
[Ψ(−)(kx,ky)] wave functions. For the 6He nucleus,
the essential halo structure was obtained within the
three-body α+N +N model [2, 9]. In this model,
the total wave function is represented by the product
of wave functions describing the internal structure of
the α core and the relative motion of three interacting
constituents. The method of hyperspherical harmon-
ics [2] was used to treat the three-body dynamics of
both bound and scattering states and gave [1, 8, 10]
a comprehensive description of a variety of data for
A = 6 systems. For the present calculations, the
hyperspherical-harmonic method was extended in an
effective way to include core polarization and two-
nucleon exchange with the core by modifying the
NN interaction within the core. The details of the
method will be published elsewhere. We used the
Feshbach reduction to an active subspace and, in
all partial states, reduced the initial K ∼ 40 hyper-
harmonic space (sufficient for practical convergence)
to K ∼ 10, which gives the same results as a strict
calculation in a large initial space. Exchange ef-
fects are responsible for the difference between the
dipole strength functions as calculated in the simple
[2, 5] and the improved cluster model, but they affect
only slightly the ground-state wave function. In the
present calculations, we used the improved cluster
wave functions, which give a dipole strength distribu-
tion (solid line in Fig. 1) that is consistent with GSI
experimental data. The boundaries of the theoretical
uncertainties are shown by the dash-dotted lines. It
is important to emphasize that, in the calculations
of the continuum wave functions Ψ(−)(kx,ky), the
final-state interaction (the pair interactions between
all projectile constituents) is fully taken into account.

For a consistent treatment of electromagnetic dis-
sociation, Coulomb and nuclear interactions must
be treated on equal footing. The interactions Vp,t

between projectile and target nucleons have a short-
range part due to strong forces, but they also include
the Coulomb repulsion for the case where the two
nucleons involved are protons. This allows quantum-
mechanical calculations of nuclear and Coulomb ex-
citations, including their interference, without an ad
hoc partition into different mechanisms.

Inclusive cross sections take into account both
elastic and inelastic breakup reactions. To single out
these contributions, we use the method from [11–
13]. Thus, the inclusive cross section σ = σel + σin

is decomposed into the elastic (σel) and the inelastic
YSICS OF ATOMIC NUCLEI Vol. 64 No. 7 2001
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Theoretical (integrated over the excitation-energy region E∗ ≤ 10 MeV) cross sections (mb) for the inelastic excitation
of 6He on the 208Pb and 12C targets at an energy of 240 MeV per nucleon {N (C) label calculations with purely nuclear
(Coulomb) forces; (a) [15] and (b) [16] label the optical potentials used in the calculations; experimental data [6] include
cross sections up to E∗ ≤ 12.3 MeV}

Total Elastic Inelastic 0+ 1− 2+ 2+
res

208Pb

N 218 73 145 20 112 87 41

C 299 267 32 0 293 1.3 0.4

N + C 480 333 147 20 378 82 40

Expt. [6] 650 ± 110 14 ± 4
12C

Na 16.9 8.6 8.3 1.3 6.9 8.7 4.5

Ca 1.9 1.7 0.2 0 1.9 0.02 0.01

(N + C)a 16.8 9.3 7.5 1.3 7.2 8.4 4.4

(N + C)b 20.6 11.0 9.6 2.7 9.2 8.7 4.5

Expt. [6] 30 ± 5 4 ± 0.8
(σin) part given by

σel =
(2π)4

�vi

∫
dkx dky dkf δ(εi − εf − E∗)

× | 〈χ(−)
0 (kf )Φ0Ψ(−)(kx, ky) |

×
∑
p,t

Vp,t | Ψ0Φ0χ
(+)
0 (ki)〉 |2,

σin =
(2π)4

�vi

∫
dkx dky

∫
dr

1
π

(−Im UaA(r))

× | 〈Gopt(r, ω)Φ0Ψ(−)(kx, ky) |
×
∑
p,t

Vp,t | Ψ0Φ0χ
(+)
0 (ki)〉 |2,

where εi,f are the kinetic energies of relative center-
of-mass motion in the channels, ω = εi − E∗, and
the optical-model Green’s function Gopt(r, r′, ω) is a
solution to the Schrödinger equation with the optical
potential UaA.
The calculations employed an effective NN in-

teraction with the parametrization of [14] for the
nucleon–nucleon tmatrix. The optical potentials [15]
for 12C scattering on 12C and 208Pb at 200 MeV per
nucleon were used with the radius parameters scaled
to the number of nucleons in 6He and are the same for
both the input and the output channel.
The table shows total theoretical cross sections

integrated with respect to the excitation energy up to
10 MeV for inelastic excitations of 6He on 208Pb and
12C targets. Figures 2 and 3 show the corresponding
spectra, along with experimental data [6]. The cal-
culations correctly describe the absolute values and
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 7 200
the spectral shape for both reactions, in spite of their
different mechanisms. Yet, the theory somewhat un-
derestimates the total cross sections because of insuf-
ficient contributions at higher E∗. In this respect, the
calculations can be improved by including excitations
of higher multipolarities [8] currently not taken into
account.
The contributions (Fig. 2a) of various multipole

excitations in 6He to the inclusive spectra for the
reaction on the lead target display a small monopole
contribution; the dipole is dominant; and the well-
known three-body 2+ resonance at 1.8 MeV is
strongly excited (the total cross section is about
40 mb). Since the calculated resonance width
(about 60 keV) is less than the experimental value
(about 113 keV) and since no energy averaging with
experimental resolution is performed, the peak in the
theoretical cross section exceeds the experimental
one. A steep increase in the cross section at the
threshold is due exclusively to dipole excitations.
Figure 2b shows the cross sections calculated with
allowance for only the Coulomb or for only the nu-
clear interaction. Coulomb dissociation is dominant,
but it cannot alone saturate the absolute values of
experimental data. The contributions to the cross
section from elastic and inelastic fragmentation are
shown in Fig. 2c. Although the elastic fragmentation
dominates the low-energy part of the spectrum, both
contributions must be taken into account simultane-
ously to obtain an adequate quantitative description.
The elastic-fragmentation cross section decreases
fast with energy, while the inelastic component is
rather flat. In total, σin for the reaction on 208Pb
1
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Fig. 1. Dipole strength distributions for 6He. The solid
and dash-dotted lines show the distribution and the theo-
retical uncertainty in the present improved calculations.
The dashed and dotted lines represent the results of
the theoretical calculations from [2] and [5], respectively.
Dark squares indicate the experimentally derived bound-
aries from [6].

contributes about 30% to the total cross section for
E∗ ≤ 10 MeV.
Figure 3 shows the results of the theoretical cal-

culations, along with experimental data from [6] for
6He + 12C interactions at 240 MeV per nucleon. The
peak, the most pronounced feature in the spectrum,
is again due to the excitation of the 2+ resonance
(Fig. 3a), with the total cross section being about
4 mb. Above the resonance, approximately half of
the strength in the flat part of the spectrum is due
to the dipole, third quadrupole, and the rest of the
monopole excitations. For a carbon target, the inclu-
sive excitation spectrum is completely determined by
the nuclear interaction, the contributions from elas-
tic and inelastic fragmentation being approximately
equal (Fig. 3c).
Figure 4 illustrates, in particular, the (a, c) quadru-

pole and (b, d) dipole excitations of 6He for a reaction
on 12C and 208Pb targets. For quadrupole transitions,
the Coulomb interaction is immaterial. The rate of
dipole nuclear fragmentation on 12C is more than
twice as high as that of Coulomb fragmentation. Its
cross section for 208Pb is roughly an order of magni-
tude larger, but that for dipole Coulomb dissociation
increases by more than two orders of magnitude.
This factor is similar to the square of the ratio of
the target charges and is expected for pure Coulomb
excitations. When both interactions are present,
the picture becomes more complicated: there are
a destructive interference in the internal region and
Coulomb excitation in the external region.
To check sensitivity to optical potentials, the cal-

culations for fragmentation on 12C have also been
P
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Fig. 2. Theoretical 6He excitation spectrum (thick solid
line) for 6He + 208Pb breakup at 240 MeV per nucleon,
along with experimental data [6]. (a) The thin solid,
dashed, and dotted lines show the dipole 1−, quadrupole
2+, and monopole 0+ contributions; (b) the dashed (dot-
ted) lines represent the results of the calculations taking
into account only nuclear (Coulomb) interactions; and (c)
the dashed (dotted) lines correspond to the contributions
from elastic (inelastic) fragmentation.

performed with the potential from [16]. This optical
potential has a shallow imaginary part and may rep-
resent a reasonable variation of a potential family. The
calculations show only minor changes for quadrupole
transitions; at the same time, the dipole cross sections
increase by 30%, and the contribution frommonopole
excitations is doubled. The total cross section for
E∗ ≤ 10 MeV increases by 20%. It is clearly demon-
strated that the use of a transparent potential more
strongly affects the excitations concentrated more
deeply in the interior of the nucleus.

Figure 5 shows the energy spectra of different
fragments for 6He breakup on a 208Pb target. The α–
neutron and neutron–neutron relative-energy distri-
butions are compared with experimental data [6] in
Figs. 5a and 5c. The α-particle and neutron en-
ergy spectra in the projectile rest frame are shown
in Figs. 5b and 5d. The thick solid, thin solid,
dashed, and dotted lines represent the total, dipole
1−, quadrupole 2+, and monopole 0+ contributions,
respectively. The theoretical two-body energy corre-
lations (Figs. 5a and 5c) correctly reproduce the fall
of the cross section with increasing fragment relative
HYSICS OF ATOMIC NUCLEI Vol. 64 No. 7 2001
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Fig. 3. As in Fig. 2, but for 6He + 12C interactions.

energy, but there are some deviations from the mea-
sured data at low energies. For a fair comparison with
experimental data, the results of theoretical calcula-
tions must be convoluted with an instrumental re-
sponse in order to correct for the efficiency and for the
solid-angle acceptance of fragment detectors. Since
these experimental distortions are not included in the
calculations, it is premature to draw definitive con-
clusions from this comparison. Decays from dipole
excitations dominate the energy spectra and define
the slope at high energies. Decays from quadrupole
states (from the three-body 2+ resonance) are impor-
tant at low energies. The neutron–neutron spectrum
(Fig. 5c) from the 2+ resonance has a peak close
to the threshold, revealing strong nucleon–nucleon
correlations. The shapes of the 2+ α-particle and
neutron spectra (Figs. 5b and 5d, dashed lines) are
qualitatively similar to the shapes that were measured
for the decay of the 2+ resonance populated in the
reaction 7Li(d, 3He)6He(Jπ = 2+, E∗ = 1.8 MeV)
[17, 18]. It is interesting to note that the shape of
the total α-particle spectrum (Fig. 5b, thick solid line)
is in perfect agreement with experimental data for
neutron–α correlations (Fig. 5a). To demonstrate
the importance of final-state interactions, the dash-
dotted lines in Fig. 5 represent the results of the cal-
culationswithout taking into account the interactions
of the fragments in the output channel (the relative
motions of the fragments are described by three-body
plane waves), but the halo ground-state wave func-
tion preserves a complex correlated structure. We see
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 7 200
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resent the results of the calculations taking into account
only Coulomb (nuclear) interactions.

that only the spectrum of the single heavy fragment
(Fig. 5b) has a shape qualitatively similar to that in
a full calculation (yet, the width of the peak is signifi-
cantly broader), while all other spectra differ markedly
from it.
In summary, we have developed a microscopic

four-bodyDWIA theory for two-neutron halo breakup
reactions that is suitable for elastic and inelastic frag-
mentation processes leading to low-lying halo exci-
tations. Within this approach, Coulomb and nuclear
dissociation have been included in a consistent way
with allowance for Coulomb–nuclear interference.
The method of hyperspherical harmonics has been
used to describe consistently the genuine features
of the halo bound state and final-state interactions
between all halo fragments. The procedure can
be applied to an analysis of complete kinematic
experiments, which allow a reconstruction of the halo
excitation spectrum and single out events carrying
the most valuable information about correlations
peculiar to two-neutron halo systems. The model
has been used to analyze recent experimental data
[6] on 6He fragmentation on 12C and 208Pb targets
at an energy of 240 MeV per projectile nucleon. In
addition to accurate simultaneous descriptions of
absolute cross sections and excitation spectra for
both reactions, new insights into the intertwining
of reaction mechanisms and correlated continuum
1
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Fig. 5. Theoretical spectra of the relative energy of the
(a) α particle and the neutron and (c) two neutrons for
6He + 208Pb breakup at 240 MeV per nucleon, along
with experimental data [6]; (b) α-particle and (d) neutron
energy spectra in the projectile rest frame. The thick solid,
thin solid, dashed, and dotted lines represent the total,
dipole 1−, quadrupole 2+, and monopole 0+ contribu-
tions, respectively. The dash-dotted lines correspond to
the calculations of the total spectra without final-state
interactions.

structure have been obtained. The important role
found for inelastic fragmentation and Coulomb–
nuclear interference is consistent with experimental
data. Application of the approach to other Borromean
nuclei is in progress.
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Abstract—The experimental Tanihata density distributions for both protons and neutrons in 6,8He are
very well reproduced here without an increase of the 1p neutron orbital size. Instead, an internal collective
rotation, due to the invalidity of the adiabatic approximation, leads to the same measurable increase in
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1. INTRODUCTION

Light exotic nuclei constitute a hot subject of
nuclear physics today, due to new very interesting
phenomena observed during their research. These
phenomena include the neutron (or even proton) halo,
the weak binding of the last one or two neutrons, the
inverse sequence of energy levels, the huge moment
of inertia of certain rotational bands, etc. [1–3]. This
exciting new physics stimulated new experimental
research and attracted many theorists for its expla-
nation. The first experiments referring to nucleon
distributions of 6He, 8He, and 11Li are interpreted
by assuming that the nucleons responsible for the
very large radius are, in some unusual way, far
away from the nuclear core [1]. This assumption
leads simultaneously to the increase in the nuclear
radius and to the weak binding of the halo nucleons.
However, this assumption does not explain either
the inversion of levels or other phenomena observed
in halo nuclei. Moreover, this assumption does not
explain due to what mechanism nucleons, despite the
apparent attractive forces, prefer to stay far away from
the core and, in general, why light nuclei should differ
so much from the other nuclei. Through the present
work, an alternative explanation of the halo phe-
nomenon and other related phenomena mentioned
above is attempted. This alternative explanation
considers that halo (and in general exotic) nuclei have

∗This article was submitted by the authors in English.
1)Institute of Nuclear Research and Nuclear Energy, Sofia,

Bulgaria.
2)“Horia Hulubei” National Institute of Physics and Nuclear

Engineering, Bucharest, Romania.
**e-mail: anagnos@mail.demokritos.gr
1063-7788/01/6407-1229$21.00 c©
a structure similar to other nuclei and what is really
different in these nuclei is an extra degree of freedom
responsible for all related phenomena. This additional
degree of freedom is an internal collective rotation
mixed with the usual internal motion (of shell-model
type) and is an indispensable part of the nucleon
motion even in the nuclear ground state. This mixing
is inevitable due to the adiabatic approximation
invalidity (since ωrot ≈ ωintr) in very light nuclei in
contrast to heavy nuclei where this approximation is
valid (since ωrot � ωintr) and the collective rotation
appears as an excitation in rotational bands. The
reason behind this internal collective rotation is the
polarization of the core, which leads to an internal
angular momentum J = 2+, which should be com-
pensated (counterbalanced) by a rotation R = 2+ of
opposite direction in such a way that, for example,
in even–even nuclei, the total angular momentum is
zero, i.e., I = J + R = 0. This polarization, which in
other words means no perfect pairing of the nucleon
angular momenta, is the result of a huge deformation
appearing in very light nuclei. Indeed, these nuclei
can have an even planar average structure. The good
results obtained here lend support to our alternative
explanation of halo and related phenomena.

2. THE MODEL

The model employed here is the isomorphic shell
model (ISM), which is a microscopic nuclear struc-
ture model that incorporates into a hybrid model
the prominent features of single-particle and col-
lective approaches in conjunction with the nucleon
finite size.
2001 MAIK “Nauka/Interperiodica”



1230 ANAGNOSTATOS et al.
The model consists of two complementary parts,
namely, the semiclassical part [4] and the quantum
mechanical part [5]. Both the parts give very good
results which are consistent with each other.

2.1. The Quantum Mechanical ISM

The Hamiltonian of the model is analyzed into
partial state-dependent Hamiltonians which are dif-
ferent for neutrons (N ) and for protons (Z) as follows,
where crossing terms between partial Hamiltonians
of different shells,Hij , have been omitted:

H = NH1s + NH1p + NH1d2s + ... (1)

+ZH1s + ZH1p + ZH1d2s + ...,

where a harmonic oscillator is taken as the central
potential.

The different ωi are not taken as adjusted pa-
rameters, but all are determined from the harmonic
oscillator relation

�ωi =
(

�
2

m〈r2i 〉

)(
ni +

3
2

)
, (2)

where 〈r2i 〉1/2 is the root-mean-square radius of nu-
cleon centers for the particular neutron or proton shell
under consideration and is estimated in the semiclas-
sical part of the model (given below) with respect to
only two numerical parameters.

In addition to eigenvalues for the energy derived
from (1), Coulomb, spin-orbit, isospin, and last odd
nucleon (neutron or proton, if it exists) energies are
introduced in the estimation of the binding energy of
a nucleus as usual.

2.2. The Semiclassical ISM

This part of the model is based on two assump-
tions, namely, that of an equilibrium of nucleon aver-
age positions on spherical shells and that of packing
of the average forms of nuclear shells. The first leads
uniquely to the conclusion that the average forms
PH
of nuclear shells have the high symmetry of equi-
librium (regular) polyhedra, while the second leads
uniquely to the sizes of these polyhedra, when they
are considered superimposed with a common center
and nucleons are taken with finite size (rp = 0.860 fm
and rn = 0.974 fm).

Figure 1 shows the average forms of the first three
neutron shells and those of the first three proton shells
in relative size and orientation, while Fig. 1 of [4]
shows the average polyhedral forms of all nuclear
shells up to 208Pb. The sizes of these polyhedra are
also given at the bottom of each block of these figures.
From Fig. 1 here and from Fig. 1 of [4], it is apparent
that a magic number is reproduced, all the way up to
208Pb, each time a polyhedron is completed.

One should further notice in Fig. 1 that the
vectors labeled nθ

m
l precisely represent the orbital

angular momentum quantization of directions and
that the value labeled ρ at the low right corner of
each block of Fig. 1 stands for the maximum possible
distance of the polyhedral vertices from these vectors.
These ρ values are used for the estimation of the
kinetic-energy part due to nucleon orbiting, as will
be understood shortly.

In this part of the model, the binding energy of a
nucleus is given by

EB =
∑
ij

Vij +
∑
nlm

〈Tnlm〉 +
∑
ij

(EC)ij (3)

+
∑

(ESO) + EISO + Eodd n,

where the expressions for the last four terms are
taken in the usual way as mentioned in the quantum-
mechanical part of the model [4, 5], while the first
two terms are computed by using the following two
equations:
Vij =

[
3.7 (10)16 exp(−30.187rij) − 363 exp(−1.632rij)

]
rij

, (4)
〈Tnlm〉 =
�

2

2m

[
1

R2
max

+
l(l + 1)
ρ2nlm

]
, (5)

where Rmax is the outermost polyhedral radius (R)
plus the relevant nucleon radius (i.e., rn = 0.974 fm
and rp = 0.860 fm), i.e., it is the radius of the nuclear
volume in which the nucleons are confined, and ρnlm
is as explained earlier.
The mass nuclear radius for both the parts of the
model is given by

〈r2〉1/2
mass (6)

=

[∑Z
i=1R

2
i +
∑N

i=1R
2
i +Z(0.8)2 +N(0.91)2

Z +N

]1/2

,

from which one can get the expression for the neu-
tron radius by taking Z = 0 or the expression for
YSICS OF ATOMIC NUCLEI Vol. 64 No. 7 2001
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Fig. 1. First three average neutron shells and first three average proton shells in relative size and orientation [4].
the charge radius by taking N = 0. In the latter
case one could consider an extra small term equal to
−0.116(N), where −0.116 fm2 is the mean square
charge radius of a neutron.

2.3. The Model for Very Light Nuclei

When either of the two parts of the model is applied
to determine binding energies and radii for all existing
nuclei, the following observation is made. The pre-
dictions for both properties are in very good agree-
ment with the experimental data except for the very
light nuclei, where the model binding energies are
systematically larger than the experimental values,
while the model radii are systematically smaller than
the data. This observation implies that for very light
nuclei there is a phenomenon which is not sufficiently
described in the framework of the model so far [6].

Here, we rewrite the Hamiltonian of (1) to include
rotation:

H = H0(r′) +Hrot +H ′, (7)

where the three terms on the right-hand side describe
the motion of the internal degree of freedom [of shell-
model type as in (1)], the collective rotation of nu-
cleons, and the coupling between the previous two
terms, respectively.

By taking I = R + J (where R is the angular
momentum due to rotation, J is the internal angular
momentum, and I is the total angular momentum),
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 7 200
for the ground state where I = 0, e.g., for even–even
nuclei, (7) becomes

H = H0(r′) +
�

2

2�J2, (8)

where � is the moment of inertia and both terms on
the right-hand side refer to the internal motion of the
nucleons. That is, even for the ground state with
I = 0, there is an additional term in the Hamiltonian
if the internal angular momenta do not couple to zero.
In other words, if the spins (s) or the individual total
angular momenta (j) of certain nucleons do not pair
perfectly but they lead to an internal total angular
momentum J, then an internal rotation R is needed
to compensate J and to lead to total nuclear angular
momentum I = 0. It is considered that the afore-
mentioned deviations of the binding energies and radii
are due to this internal rotation. In other words, one
may say that for the very light nuclei the deformation
is very large and does not permit perfect pairing, a
fact which leads to an internal J �= 0. In addition,
the internal rotation R, necessary to compensate J,
cannot be separated from the usual internal motion
since the adiabatic approximation is not valid for these
nuclei, where ωrot ≈ ωintr. This is in contrast to what
happens in nuclei of the well-deformed region where
ωintr ≈ 100ωrot and the total wave function can be
written as a product of the internal wave function and
the rotational wave function. Under the valid condi-
tions for very light nuclei, the internal wave function
(up to a normalization factor) can be assumed as

ψ ∝ χτ
K=0(r

′), (9)
1
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whereK is the projection of the total angular momen-
tum on the axis (z′) and τ stands for the rest of the
quantum numbers. In other words, the usual internal
motion and the internal collective rotation are coupled
in the form of (9).

It can be derived from (8) that the mass radius of a
nucleus is given by

〈r2〉mass =
∑Z

i=1〈r2i 〉 +
∑N

i=1〈r2i 〉 + �Z + �N

Z +N
,

(10)

where �Z and �N are the proton and the neutron
moments of inertia due to the rotation coming from
the second term of (8). If the proton or the neutron
radii are needed, they can be derived from (10) in an
obvious way.

3. APPLICATIONS TO SPECIFIC
VERY LIGHT NUCLEI

3.1. Support of Internal Collective Rotation
from 6He and 8He

The isotopes 6He and 8He are employed to demon-
strate that the assumption of an internal collective
rotation of certain nucleons leads to the same mea-
surable density distribution like the assumption of an
increase in the radius of certain orbitals.

Figure 2 demonstrates the proton and the neu-
tron density distributions for 6He (Fig. 2a) and 8He
(Fig. 2b) according to Tanihata’s experiments [1].
Tanihata was able to fit these curves by assuming
that the same orbitals, namely 1s and 1p, are involved
as in the conventional shell model, and that the only
difference is the size of the 1p neutron orbital, which
takes on the values 3.22 and 3.05 fm for 6He and
PH
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Fig. 2. Tanihata and ISM neutron (higher curve) and
proton (lower curve) density distributions for (a) 6He and
for (b) 8He.

8He, instead of 2.13 and 2.24 fm, respectively. As
a consequence of this increase in the orbital size,
the separation energy of a 1p neutron is reduced.
Equation (11) is the Tanihata equation for the proton
and neutron density distributions, and only one free
parameter, as explained in [1], is necessary for the
reproduction of each of the four curves in Fig. 2:

ρX(r) =
1
4π
[
2
2

1s(r) + (X − 2)
2
1p(r)

]
, X = N,Z.

(11)

Here, we present the density distributions in the
natural orbital representation (e.g., [7]), which is a
convenient method to describe nucleon–nucleon cor-
relation effects in a given correlated nuclear state.
This method reflects the depletion of the states below
the Fermi level (hole states) and the partial occupancy
of the states above it (particle states). Such a particle
state is the 1d state for nucleons in 6He and 8He. The
neutron and proton densities for both isotopes have
the form
ρX(r) =
1
4π

[
2λ1s
2

1s(r) + (X − 2)λ1p
2
1p(r) +

X

2
10λ1d
2

1d(r)
]
, X = N,Z. (12)
According to our approach, the occupancy of the
1s state is reduced (λ1s < 1) and, keeping λ1p = 1,
again only one free parameter (λ1s) is needed to de-
scribe the density distributions due to the relationship

2λ1s + (X − 2)λ1p +
X

2
10λ1d = X. (13)

This is true since all �ω of 
nl functions come from
the geometry of ISM and (2). As can be seen from
Fig. 2, the reproduction of the densities via (12) is
almost identical to that of Tanihata to the degree that
the two fittings cannot be distinguished from each
other in the figure. The identity of the two fittings is
also apparent from the neutron, proton, and mass rms
radii of 6He and 8He [1]. The values of these radii up to
the second decimal are identical for both the Tanihata
(11) and the present (12) approach. The parameter
values of the ISM approach are as follows:

for protons: in 6He λ1s = 0.96, λ1d = 0.008,
�ω1s = 25.76 MeV, and �ω1d = 439.87 MeV; in 8He
λ1s = 0.98, λ1d = 0.004, �ω1s = 25.76 MeV, and
�ω1d = 28.13 MeV;

for neutrons: in 6He λ1s = 0.655, λ1p = 1.0, λ1d =
0.0345, �ω1s = 42.71 MeV, �ω1p = 16.44 MeV, and
�ω1d = 11.22 MeV; in 8He λ1s = 0.555, λ1p = 1.0,
λ1d = 0.0297, �ω1s = 42.71 MeV, �ω1p = 16.44 MeV,
and �ω1d = 10.94 MeV.

The extra state 1d appearing in (12), as explained
in [6], could be attributed to the rotation implied by
YSICS OF ATOMIC NUCLEI Vol. 64 No. 7 2001
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Table 1. ISM predictions for internal vibrational, internal rotational, and binding energies, together with the experimental
binding energies (in MeV) for the isotopes 7−10Be [also, model predictions for total (finite nucleons), neutron, and proton
(point nucleons) moments of inertia (in fm2)]

Nucleus Vertex config. Eintr.vibr. Eintr.rot. EB model EB expt �n+p �n �p

7Be p : 3, 4, 12, 14 50.39 –13.96 36.43 37.60 8.91 3.16 4.30

n : 1, 2, 8
8Be p : 3, 4, 12, 14 64.30 –7.37 56.93 56.50 16.44 6.31 8.61

n : 1, 2, 6, 8
9Be p : 3, 4, 12, 14 65.12 –7.65 57.47 58.17 16.26 9.12 4.30

n : 1, 2, 6–8
10Be p : 3, 4, 12, 14 63.91 – 63.91 64.98 – – –

n : 1, 2, 5–8
(8). Indeed, the parameters of 1d states given above
come from the rotation properties of the valence neu-
trons and protons of 6He and 8He.

From the discussion in this section, one can real-
ize that, according to the present work, exotic nuclei
are equally compact as the usual nuclei and what
really gives the increase of nuclear radius and the de-
crease of separation energy for certain nucleons is an
extra degree of freedom, that of an internal collective
rotation, appearing due to the adiabatic approxima-
tion invalidity in these nuclei.

In the analytical expression for the density (12)
based on the natural orbital representation, the phe-
nomenon of the internal collective rotation is reflected
by the existence of the term containing the particle d
state (above the Fermi level in the He isotopes) which
is occupied with probability value λ1d. The latter is
closely related to beyond-mean-field correlations at
short distances between nucleons [7].

3.2. Support from the Chain of 7–10Be

Further support to the existence of an internal
collective rotation in explaining experimental data on
very light nuclei (either exotic or not) is provided here
by the chain of Be isotopes with A = 7–10.

Taking 7Be as a usual nucleus (i.e., equally com-
pact as any other nucleus), it has been found that,
if the places numbered 1, 2, and 8 for neutrons and
3, 4, 12, and 14 for protons (among all possibilities
offered from Fig. 1) are chosen to accommodate the
average positions of the three neutrons and of the
four protons in 7Be, the maximum binding energy (3)
results (50.39 MeV). For such a nucleus, the point
proton rms radius is 2.11 fm. Further, if a rotation
is considered around the axis (x, y) (i.e., around the
axis in 45◦ with both +x, +y axes), the moment of
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 7 200
inertia of the valence (finite size) nucleons is 8.91 fm2

(namely, 4.30 fm2 for the point protons and 3.16 fm2

for the point neutrons), for which the rotation energy
for J = 2 is 13.96 MeV, according to the formula (�
being in fm2)

ER =
�

2

2m
J(J + 1)

� . (14)

Hence, the model binding energy is 36.43 MeV
(= 50.39 − 13.96). Also, the corresponding point
proton rms radius due to rotation is 1.04 fm, accord-
ing to the formula

r2p(rot) =
�p

Z
. (15)

Thus, the effective point proton rms radius, due to the
intrinsic proton distribution and to the internal collec-
tive rotation, is 2.35 fm, according to the formula

r2p(eff) = r2p(intr) + r2p(rot). (16)

It is satisfying that the experimental point proton
rms radius for this nucleus is 2.36(2) fm [8], thus be-
ing in good agreement with our prediction. Following
a similar reasoning, the point neutron intrinsic (shell-
model type) rms radius is 1.65 fm and that due to
internal rotation is 1.03 fm and, hence, that of effective
radius is 1.95 fm. For these neutron radii, there are
not experimental values for comparison. All afore-
mentioned values of moments of inertia, energies, and
radii for 7Be are listed in Tables 1 and 2.

Thus, considering for 7Be an internal collective
rotation of the valence nucleons, we simultaneously
find a rotational energy and a rotational radius that
are needed to lead to binding energy and the effective
point proton rms radius very close to the experimental
1
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Table 2. ISM proton, neutron, and mass rms radii for point nucleons, together with available experimental values [8]
(in fm)

Nucleus rp intr.vibr. rp intr.rot. rp model rp expt rn intr.vibr. rn intr.rot. rn model rm model

7Be 2.11 1.04 2.35 2.36(2) 1.65 1.03 1.95 2.19
8Be 2.11 1.47 2.57 – 1.91 1.26 2.29 2.43
9Be 2.11 1.04 2.35 2.34(1) 2.04 1.35 2.45 2.41
10Be 2.11 – 2.11 2.24(8) 2.13 – 2.13 2.12

Table 3. Same as in Table 1, but for the low excitation spectrum of 11Be

State Vertex config. Eintr.vibr. Eintr.rot. EB model Eexc. model Eexc. expt �n+p �n �p

1/2+ p : 3, 4, 12, 14 77.34 –9.87 67.47 0.0 0.0 12.61 12.05 –

n : 1, 2, 5–8, 27

1/2− p : 3, 4, 11, 14 80.02 –13.15 66.87 0.60 0.32 9.46 – 8.61

n : 1, 2, 5–9

5/2+ p : 3, 4, 12, 14 72.15 –6.47 65.68 1.79 1.778 19.23 9.21 8.61

n : 1, 2, 5–8, 27

3/2− p : 3, 4, 12, 14 72.30 –9.05 63.25 4.22 3.956 13.75 – 12.91

n : 1, 2, 6–10

Table 4. Same as in Table 2, but for the low excitation spectrum of 11Be

State rp intr.vibr. rp intr.rot. rp model rn intr.vibr. rn intr.rot. rn model rm model rm expt

1/2+ 2.11 – 2.11 2.39 1.31 2.73 2.52 2.58(2) [9]

1/2− 2.11 1.47 2.57 2.19 – 2.19 2.33 –

5/2+ 2.11 1.47 2.57 2.39 1.17 2.66 2.62 –

3/2− 2.11 1.80 2.77 2.19 – 2.19 2.42 –
values, without considering any adjustable parameter
and any increase for the size of the 1p orbitals in-
volved.

Similar calculations for the remaining isotopes of
the chain up to 10Be are listed in Tables 1 and 2. The
previous explanations given for 7Be are sufficient for
understanding all pieces of information provided in
these tables for all remaining isotopes of the chain.
It is interesting to notice that 10Be does not possess
the internal collective rotation and, indeed, its bind-
ing energy and radius are sufficiently reproduced by
considering this nucleus as a usual nucleus, where a
binding energy and a radius are reproduced by con-
sidering shell-model type motion alone.

3.3. Support from the Low Excitation Spectrum
of 11Be: 2s1/2 Intruder State

The calculations for determining the low-energy
excitation spectrum of 11Be are summarized in Ta-
bles 3 and 4, and are similar to those of Tables 1 and 2.
P

First, the vertex configuration corresponding to
each of the low-lying states of this nucleus is de-
termined (namely, the vertex configurations for the
states 2s+1/2, 1p−1/2, 1d+5/2, and 1p−3/2). The con-
figuration chosen for each state corresponds to the
maximum binding energy for this state. Then, for
each of such configurations, all quantities included in
the tables are computed. According to the net energy
of each of these states from Table 3, we conclude
that the order of the levels is 1/2+, 1/2−, 5/2+, and
3/2−, i.e., exactly as the experimental order. The
appearance of the 2s1/2 intruder state in the ground
state of 11Be is well understood here, as a cumulative
effect of all energy components included in Table 3 for
this nucleus.

In Table 4, one also observes the relative size of
the rms neutron and proton radii for each state. Thus,
for the ground state of 11Be, it is apparent that the
neutron radius is much larger than that of the protons,
HYSICS OF ATOMIC NUCLEI Vol. 64 No. 7 2001
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while for the state 5/2+ both the neutron and proton
radii are extended but are almost equal, and for the
state 1/2− the proton radius is much larger than that
of the neutrons, what is also true for the 3/2− state.
Thus, in the low-lying excitation spectrum of 11Be,
the relative size of neutron and proton radii changes
from state to state.

3.4. Support from the 3/2
−

Rotational Band of 11Be

In [3], the experimental rotational band of 11Be is
provided with the state 3/2− as a band head. The ex-
perimental moment of inertia of this band is 91.23 fm2

and is interpreted as due to a large (∼5–6 fm) sep-
aration of the two α-like particles in this nucleus.
In the model here, a compact structure of 11Be leads
to a large moment of inertia, 92.32 fm2, by sim-
ply considering a simultaneous rotation around three
perpendicular axes (which is almost equivalent to a
rotation around the nuclear center), instead of a rota-
tion around a single axis as usual. This is possible
in the framework of the model, where the nucleon
average positions constitute a distinct and not a con-
tinuous structure. For such an average structure,
there are several axes of symmetry and several axes
of rotation. The specific components of the moment
of inertia for finite nucleons rotating around the x, y, z
axes are �x = 27.52 fm2, �y = 28.68 fm2, and �z =
36.18 fm2, respectively.

4. CONCLUSIONS

A new approach in studying exotic nuclei is pre-
sented according to which these nuclei are equally
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 7 200
compact as ordinary nuclei. The main difference
between these two groups of nuclei is that the exotic
ones have an extra degree of freedom—the internal
collective rotation. It appears due to the adiabatic
approximation invalidity which is responsible for the
new phenomena observed in these nuclei.

Ground-state properties of 6,8He and 7−11Be and
excited-state properties (including the 2s 1/2 intruder
state and the rotational band based on the 3/2− state)
of 11Be lend support to the present approach.
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Abstract—A feature peculiar to light neutron-rich nuclei is that their lowest decay thresholds are only
slightly above their ground states. Among them, 6He and 11Li are two most striking examples. The energy
needed to break 6He (11Li) into an alpha particle (9Li) and two neutrons is about 1 MeV (300 keV).
So small a value prompts one to construct their theory by analogy with the zero-range-nuclear-force
approximation previously applied to the deuteron. A more detailed analysis shows, however, that the
simple version of this approximation applied to systems that decay through a three-particle channel does
not take into account some important features of these systems and requires significant improvements.
First, with increasing distance between three particles, the potential energy decreases, in contrast to what
is observed for binary systems, in inverse proportion to the hyperradius cubed. Second, the Pauli exclusion
principle adds complexity even in the asymptotic domain, and we meet its demands in constructing the
6He and 11Li wave functions in the continuum. An approach is proposed to analyze weakly bound three-
cluster systems that takes into account the aforementioned features and which describes correctly the
experimentally observed structure of bound and unbound states above the threshold for three-particle decay.
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1. INTRODUCTION

Anumber of interesting properties of light neutron-
rich nuclei were found in experimental and, later, in
theoretical studies. In this article, I consider two
examples of these nuclei, 6He and 11Li. The first has
become the best known member of the family, while
the latter has happened to receive the most thorough
study.

In each of these nuclei, there is one bound state
just below the threshold for three-body decay. The
binding energies of 6He and 11Li are about 1MeV and
300 keV, respectively. Such small values of the bind-
ing energies imply the possibility of considering them
within a theoretical framework similar to the zero-
range-nuclear-force approximation for the deuteron.
The most important consequence of this approxima-
tion is that the deuteron is a weakly bound system
extending far beyond the range of nuclear forces. Let
me recall how one arrives at this conclusion. Beyond
the range of nuclear forces, the wave function ψ(r)
of the deuteron falls exponentially with increasing
distance r between the proton and the neutron,

ψ(r) → C
exp(−αr)

r
, (1)

∗This article was submitted by the author in English.
**e-mail: gfilippov@gluk.org
1063-7788/01/6407-1236$21.00 c©
α =

√
2mε
�2

, r =
|r1 − r2|√

2
,

where ε = 2.3 MeV is the binding energy of the
deuteron. It is the small value of ε that causes a
large value of the deuteron root-mean-square (r.m.s.)
radius in relation to the range of nuclear forces.

Being applied to 6He and 11Li, this approximation
leads to the conclusion that these nuclei have large
r.m.s. radii. The radius of 6He should be much
larger than that of 4He (6He breaks into 4He and two
neutrons), and, similarly, the radius of 11Li should
be much larger than that of 9Li. This is confirmed
by experimental data. Moreover, both nuclei feature
neutron halos, in agreement with what is predicted
within the zero-range-nuclear-force approximation.

A more detailed analysis shows, however, that,
if applied to nuclear systems having a three-body
decay channel, the simplest version of the zero-range
approximation proves to be too naive and requires
significant modifications. First, with increasing dis-
tance between three particles, the potential energy
of the nucleon–nucleon interaction decreases much
more slowly than in the binary case. Second, the
Pauli exclusion principle affects the picture even in
the asymptotic region, and it should be taken into ac-
count in constructing the continuum wave functions
for 6He and 11Li.
2001MAIK “Nauka/Interperiodica”
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2. THREE-CLUSTER MODEL

In the case of three-body decay of, say, 6He,
Eq. (1), written in the c.m. frame, must be modified
as

Ψ(ρ) → φ0
exp(−αρ)
ρ5/2

, (2)

α =

√
2mε
�2

, ρ =
√
r2 + q2,

r =
r2 − r3√

2
, q =

2√
3

(
r1 −

r2 + r3

2

)
,

where r1 is the c.m. position vector of the 4He clus-
ter, r2 and r3 are the position vectors of the valence
neutrons (neutron clusters), and ρ is the so-called
hyperradius. A normalization of the Jacobi vectors r
and q involves the reduced mass of the clusters. The
factor ρ5/2 in the denominator of the wave function
(2) appears for the same reasons as the factor r in
the denominator of the wave function (1). Finally,
the factor φ0 ensures antisymmetrization of the wave
function.
In the attempt at extending the ideas of the zero-

range approximation to systems having three-body
decay channels, we must clarify the limiting expres-
sion (2) for the wave function. Before that, however,
let us specify the model to be applied here. The model
wave function Ψ for the 6He nucleus is to be found
within the resonating-group method (RGM) in the
form of the antisymmetrized product

Ψ = Â{ψ1ψ2ψ3f(r,q)}, (3)

where Â is the antisymmetrization operator (the op-
erator of nucleon-coordinate permutations), ψ1 is the
predefined wave function for the ground-state 4He
cluster, ψ2 and ψ3 are predefined wave functions for
the neutron clusters, and f(r,q) is the wave function
describing the relative motion of three clusters. The
form (3) of the wave function as such does not ensure
any practical advancements, so that further simplifi-
cations are needed. It is convenient to represent the
function f as an expansion in the three-body hyper-
harmonics ΦK,λ(θi), where K is the hyperspherical
number (grand orbital), all additional quantum num-
bers are denoted by λ, and {θi} are the hyperangles;
that is,

f(r,q) =
∑
K,λ

φK,λ(ρ)ΦK,λ(θi). (4)

In the six-dimensional space spanned by two vectors
r and q, the grand orbital plays a role similar to that
of the angular momentum l in the three-dimensional
space, while the hyperharmonic ΦK,λ is a natural
generalization of the spherical harmonic Ylm. Har-
monic functions are eigenfunctions of the Laplace
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 7 200
operator; hyperharmonics in turn are eigenfunctions
of the same operator defined in a multidimensional
space.

It is known that, for a two-nucleon system at low
energies, states characterized by low values of the
angular momentum l are of greatest physical impor-
tance. For a three-cluster system at low energies, the
most important states appear to be those that have
low values of the grand orbital. The version of the
hyperharmonic method where the value of the grand
orbital is restricted to the lowest one is referred to as
the minimal approximation.

If the ground state of 6He is expanded as in (4),
there arises the question of whether it is possible to
apply the minimal approximation with the restriction
K = 0. The answer is negative. Antisymmetrization
of the wave function produces the K = 2 hyperhar-
monic from the K = 0 one. Therefore, the simplest
function of 6He respecting the Pauli exclusion princi-
ple has the form of a superposition of the K = 0 and
K = 2 states, their weights being about 5 and 95%,
respectively. By the way, the same weight factors
appear in the grand-orbital expansion of the Lπ = 0+

state in the oscillator shell model.
Our conventional approach, the algebraic version

of the RGM (AVRGM) [1], utilizes an expansion of
the wave function (3) in the basis of the Pauli-allowed
states Φν,µ of the harmonic oscillator,

Ψ =
∑
ν,µ

Cν,µΦν,µ. (5)

The expansion coefficients Cν,µ are then determined
by solving the set of AVRGM equations. The
summation index ν is the number of hyperradial-
oscillator-excitation quanta, while all other quantum
numbers are denoted by µ. The allowed basis states
are in general some superpositions of hyperharmon-
ics with different values of K. Maybe, the most
interesting property of the coefficients Cν,µ is that
they are known at large values of ν, because they
can be expressed in terms of the S matrix. This is
the key point of our approach. As soon as we have
realized this fact, it becomes clear that the set of
linear equations for the coefficients Cν,µ can easily
be solved.
One may wonder why the hyperharmonics are

used even if their superpositions are to be con-
structed. The answer is the following. First, the
minimal approximation involves only hyperharmonics
with the lowest values ofK. Thus, the hyperharmon-
ics are of use in classifying various approximations.
Second, the asymptotic behavior of hyperharmonics
at large value of the hyperradius (or at large values of
the number ν of quanta) is well known and simple,
1
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and this fact is employed when the asymptotic values
of Cν,µ are determined.
Thus, the index µ is set to some value µ0 in the

minimal approximation, and a set of equations for
Cν,µ0 is constructed,

∞∑
ν̃=0

{〈ν, µ0|Ĥ|ν̃, µ0〉 − Eδν,ν̃}Cν̃,µ0 = 0, (6)

0 ≤ ν ≤ ∞.

Evidently,

〈ν, µ0|Ĥ|ν̃, µ0〉 (7)

= 〈ν, µ0|T̂ |ν̃, µ0〉 + 〈ν, µ0|Û |ν̃, µ0〉,
and we have to decide whether we can neglect the
second term on the right-hand side of (7) within
the minimal, zero-range-nuclear-force approxima-
tion. This problem is discussed in the next section.

3. NUCLEON–NUCLEON INTERACTION
IN ALLOWED STATES

In a state characterized by a specific value of K,
a short-range nucleon–nucleon potential decreases
in proportion to A/ρ3 with increasing ρ. This result
may seem unexpected, but it is well known to special-
ists who use the hyperharmonic method. It is valid
for almost any kind of nucleon–nucleon interaction,
be it of an exponential or of a Gaussian form, or a
potential well, etc. So slowly decreasing a potential
energy cannot be neglected in calculating the matrix
elements 〈ν, µ0|Û |ν̃, µ0〉 to be substituted into (7).
Nevertheless, there is a very important property of
these matrix elements that was proven in [2]. At large
values of ν and ν̃, the matrix

||〈ν, µ0|Û |ν̃, µ0〉||
is identical to a diagonal matrix with the elements

Vν,ν̃ = δν,ν̃
A

(4ν + q0)3/2
, (8)

where q0 is the doubled number of the zero-point-
oscillation quanta.
The factor A in (8) (it is negative because of the

attractive character of the potential) can easily be
calculated for a semirealistic interaction. For some
reasons, we prefer the Minnesota interaction, al-
though it is not ideal. For instance, as opposed to
the popular Volkov force, the Minnesota interaction
does not bind two neutrons, which is important in
describing systems that have two neutron clusters.
The inclusion of the matrix Vν,ν̃ provides for an

explanation of the high diffuseness of 6He and 11Li.
Within the potential range, the ground-state wave
function decreases more slowly than an exponential
P

like that in (2), with the result that the r.m.s. radius
appears to be large.
The second consequence of taking into consid-

eration the matrix Vν,ν̃ is related to the continuous-
spectrum states above the threshold. The phase shift
for 3 → 3 scattering is proportional to the square
root of energy, and this dependence is formed in the
asymptotic region, where an attractive potential de-
creases slowly.

4. RESULTS

On the basis of the above, we have considered a
wide range of practical problems.
We have calculated the wave functions for the

ground 0+ state of 6He and for the 1− state, which
lies in the continuum and which is responsible for the
formation of the soft dipole mode [3]. The latter is
due both to the proximity of the 6He ground state to
the decay threshold and to the 1− resonance, whose
existence does not contradict theoretical estimates.
At the same time, it was clarified how one can define
the angular and energy distributions of products of the
electric-dipole photodisintegration of 6He.
It was shown how we must treat clusters having a

structure more complicated than that of an α particle,
like 6He, 8He, and 9Li, and, in particular, how we can
consider degrees of freedom that are responsible for
the excitation of these clusters [4]. It has become clear
how it is possible to study the origin of the soft dipole
mode in 11Li [5]. The energy and the r.m.s. radius of
the ground 3/2− state of 11Li has been explained, as
well as of the continuum of the final states fed by E1
transitions from the ground state. The theory predicts
two resonances in 11Li: 3/2+ and 5/2+. The total
effective cross section for dipole photodisintegration
with the excitation of these resonances appears to be
in good agreement with experimental data. Also, the
cross section for two-neutron radiative capture by 9Li
has been calculated. It may be of interest for those
who study neutron stars with large neutron fluxes.

Our calculations have shown that 10He is un-
bound, but that there exists a resonance at Er ∼
1.6 MeV with a width Γ ∼ 0.5 MeV [6]. At present,
experimental data only set an upper limit on the width,
Γ < 1.4 MeV.
In addition, we have estimated the energy and the

width of a resonance state of another three-cluster
nucleus, 5H [7].
We have given special attention to the problem of

neutron scattering on 9Li and to 9Li–n interaction [8].
The energy and the width of the 1/2+ state in 10Li
have also been found.
HYSICS OF ATOMIC NUCLEI Vol. 64 No. 7 2001
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5. CONCLUSION

We conclude that our relatively simple theoretical
approach has been checked for many cases. It opens
exciting prospects for studying new interesting ob-
jects that are of interest for both theorists and, we
hope, experimentalists.
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Abstract—On the ground of a relationship between the rms radius and the separation energy, we compare
halo nuclei to diffuse diatomics. It underlines the essential difference between these two kinds of weakly
bound systems: whereas the two-body approximation seems well justified in the case of diatomics, it
becomes questionable in the nuclear case when the separation energy approaches zero. Because of this
particular situation, we conjecture that the Efimov states have less chances to be observed in nuclear than
in molecular cases. Discussing possibilities of measuring accurately the rms radius of halo wave function,
we propose a strategy based on the parallel momentum distribution measured in dissociation experiments,
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The purpose of the present work is to compare
two kinds of weakly bound systems with respect to a
general property. We consider two bodies in a relative
s state, linked by such a weak potential that only
one single bound state exists. The eigenvalue E1s

necessarily equals the separation energy S. In this
framework, we have studied [1, 2] the dimensional
relationship

〈r2〉 =
3�

2

2µ
1
S
ϕ with

1
6
≤ ϕ ≤ 1. (1)

Here, r is the relative distance between the two bod-
ies, and µ the reduced mass. The conditions of
applicability of (1) are given explicitly in [1]. The
factor ϕ depends on the potential. However, we have
shown that for finite range potentials having a hard-
core component, ϕ admits a kind of universal behavior

ϕ(ε) ∼= 1
6
(1 + 2

√
ε+ 2ε), (2)

where

ε = S/E1s, max.

For each considered potential, E1s depends on the
strength of the attractive part. Increasing this
strength, E1s, max is the maximum of the eigenvalue
under the condition of a single bound state. Equation
(2) is strictly valid for a hard-core radius rc → ∞. In
practice however, it constitutes already an excellent
approximation for very finite values of rc, typically
rc ≥ 2.5 fm in the nuclear case. In order to give an
insight into the actual influence of rc, we first display
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the factor ϕ(ε) calculated by using the modified
Pöschl–Teller potential for the attractive part:

V (r) =



∞ for r ≤ rc,

−V0

cosh2(r − rc)
for r ≥ rc.

In three dimensions, the ground state solution of the
Schrödinger equation is of the form [3]

Ψ1s(r) =
N0

r
sinh(r − rc) cosh−λ(r − rc) . (3)

The eigenvalue is given by

E1s = −1
2
(λ− 1)2 ; V0 =

λ(λ+ 1)
2

. (4)

The maximal value E1s,max is given by the critical λ
for the � = 1 state, i.e., the λ for whichE1p = 0. It has
been determined numerically, requiring an accuracy
of the order of 10−7. The resulting ϕ(ε) are drawn
in Fig. 1 for rc = 0.2 and 0.4 fm. At rc = 1 fm, the
universal curve (2) is already met at better than 1%.
In view of the systems we are considering, it means
that the universal curve (2) can be used safely.

The variable ε is not measurable. Thus, except for
the limit ε→ 0, which is independent of the potentials
and yields an absolute lower bound, ϕ is not directly
given by S. Consequently, (1) does not yield the rms
radius of the weakly bound system in terms of the
separation energy. However, if the two quantities
〈r2〉 and S are known, either from experiments or
models, ϕ can be determined and the comparison be-
tween various values brings interesting information.
Roughly speaking, it gives a way of comparing weakly
bound systems governed by different forces. This is
001 MAIK “Nauka/Interperiodica”
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Fig. 1. The three curves ϕ(ε) correspond to the modified
Pöschl–Teller potential with a hard-core component of
rc = 0.2 fm (dotted curve), rc = 0.4 fm (dashed curve)
and the asymptotic expression (2) (solid curve). In in-
creasing order, the filled circles are the experimental val-
ues of ϕ for 19C, 11Be, 17C, 15C, and 14B, respectively,
displayed on the asymptotic curve. The filled squares are
the experimental values for 11Li and 6He treated in the
dineutron approximation.

illustrated here by comparing the results obtained for
halo nuclei and diffuse diatomic molecules.

As far as nuclei are concerned, we select a few
relevant cases of single neutron halo nuclei, namely,
11Be, 14B, 15C, 17C, and 19C. Values of 〈r2〉 were
derived from the data analysis by Al-Khalili, Tostevin,
and Thompson [4], as well as Liatard et al. [5]. For
19C, we take the recent measurements of Nakamura
et al. [6].

To this sample, we add the two-neutron halo nu-
clei 6He and 11Li, treated in the two-body approxi-
mation. The rms radius of their halo wave function
has been calculated by using values obtained in [4],
assuming a pinpoint dineutron.

The derived values of ϕ have been drawn in Fig. 1,
on the universal curve at their corresponding ε. The
way the points fall on the curve indicates that ε is
roughly proportional to the separation energy, but not
quite. The error bars are much too large to draw
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 7 200
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Fig. 2. The two curves ϕ(ε) correspond to the modified
Pöschl–Teller potential with a hard-core component of
rc = 0.4 fm (dotted curve) and to the asymptotic expres-
sion (2) (solid curve), respectively. In increasing order,
the filled circles are the values of ϕ for 4He–6Li, 3He–
23Na, 4He–7Li, 4He–40K, 3He–40K, 4He–85Rb, and
3He–85Rb, respectively. These values are derived from
the calculations of [8].

conclusions concerning the possibility of a universal
potential for halo nuclei.

The same analysis, has been made for loosely
bound diatomics. Experimentally, the dimer molecule
(4He–4He) has been observed [7]. This object is
bound by 1.1 × 10−13 MeV, and the mean interdis-
tance 〈r〉 = 62 ± 10 Å. Assuming a wave function of
the form sin(kr/r) leads to 〈r2〉1/2 = 72± 12 Å. With
these figures, we get from (1) ϕ = 0.18, which comes
very close to the absolute lowest limit.

For the sake of comparison, a sample of diffuse
diatomics have been considered. The ensemble con-
sists of seven cases: 4He–6Li, 3He–23Na, 4He–
7Li, 4He–40K, 3He–40K, 4He–85Rb, and 3He–85Rb.
These molecules have not been observed yet. Con-
sequently we rely on the calculations that have been
performed by Kleinekathöfer, Lewerenz, and Mladen-
ović [8] by using various sophisticated potentials. We
have selected about half of the calculated cases; the
chosen set is well representative of the situation. The
1
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results displayed on Fig. 2 represent an average over
3–4 potentials for each case. Particularly interesting
is the molecule 4He–6Li, because its binding energy
is predicted to be even smaller than for the dimer. The
prediction yields ϕ = 0.175.

While comparing Figs. 1 and 2, the striking differ-
ence is the fact that the diffuse diatomics are spread
over the whole range of ε. Some cases approach
closely the lower limit, like 4He–6Li. This result is
more or less expected, since the calculations have
been made in the very frame of two-body quantum
mechanics. In this respect, the actual observation
of the dimer provides the calculations with a key
support.

On the contrary, the halo nuclei all lie above ϕ =
0.27. Even if a lower value is not yet excluded, due to
the size of the error bars (the lowest value compatible
with experiments is ϕ = 0.19 for 19C), there seems
to be a qualitative difference between the two kinds
of weakly bound systems. It represents a different
regime: the range of molecular forces is certainly
larger than the one of nuclear forces. It also suggests
the two-body approximation to be more justified in
the molecular than in the nuclear case.

Further arguments confirm that a halo nucleus
has less chances to approach ε = 0 than a diatomic
molecule. They stress the many-body aspect of the
nuclear case, which cannot be forgotten in the ex-
treme limit. Relevant to this discussion is the fact
that, in a nucleus, one has to distinguish the sepa-
ration energy and single-particle energy. This can be
illustrated as follows. For instance, if use is made of
the density functional method, it is possible to gen-
erate a s-state neutron with a single-particle energy
approaching zero, accompanied with a large exten-
sion of the wave function. This is achieved by suitably
varying the parameters of the functional. As concrete
examples, calculations have been performed for 21C
and 23O. In these two nuclei, the valence neutron lies
in the 2s orbital. In both cases, however, the nucleus
is found to be particle unstable much before the limit
E2s = 0 is reached. This result is rather general and is
not expected to depend sensitively on models, i.e., on
the specific form of the functional. It is corroborated
by the observation that 21C is actually unstable [9].

Going beyond the mean-field approximation re-
quires introducing dynamical correlations. This was
done, for instance, in a perturbative way for the de-
scription of 11Be by Vinh Mau [10]. In this model, the
ground state is obtained by coupling the 1d neutron
to the collective states of the core, especially the 2+

state. The coupling is proportional to the reduced
transition probabilityB(E2) of the core phonon. Thus,
to soften the coupling and give the ground state a
chance to approach zero energy, it suffices to weaken
P

the B(E2) value. However, it is well known that, in
practice, the fraction of the sum rule that is taken by
the low-energy phonon is constant. In other words,
the product E2B(E2) is a constant. It means that
loweringB(E2) must be accompanied by an increase
of E2, in order to remain in a realistic situation. The
immediate consequence is that the coupling cannot
be made arbitrarily small since the phonon energy will
reach the threshold of particle instability.

Obviously, these two arguments are not a proof
but merely a challenging conjecture. It deserves fur-
ther experimental and theoretical investigations.

If this conjecture is confirmed—in other words,
if the coupling in nuclei cannot be made arbitrarily
small—its immediate consequence is that the Efi-
mov states [11] have more chances to be observed
in molecular systems than in nuclei. Again, this
deduction is a conjecture, because the step from the
two- to the three-body situation is not straightfor-
ward. Equation (2) cannot be applied to three-body
case, except in the dineutron approximation, which is
too crude to enforce the conjecture. In this respect,
the points drawn in Fig. 1 merely indicate that the
two-neutron halo nuclei behave similarly to the one-
neutron case in the dineutron limit.

In view of the large error bars displayed in Fig. 1, it
is clear that precise measurements of both the sep-
aration energies and the rms radii of the halo wave
functions are very desirable. The separation energy
of 19C, for instance, is known only within 25%. As far
as the radii are concerned, many values are coming
from total reaction cross sections, the analysis being
subject to a number of controversies.

Relying on a few-body description, one can mea-
sure the halo wave function in elastic scattering at
sufficient energy for the Glauber model to be valid
[12]. However, it requires a beam quality capable
of disentangling the elastic channel from the others,
which is not met at present.

On the other hand, the parallel momentum distri-
bution of inclusive dissociation scattering has been
claimed on several occasions to be the clue to the
problem [13]. Considering single neutron halo nuclei,
in the Glauber model [12], this distribution takes the
form

dσ

dk‖
=
∫

|Γ(x,β)|2 |φ(β, k‖)|2d2x d2β . (5)

This is a convolution integral between the interaction,
represented by the profile function Γ, and the square
of the equivalent to the thickness function

φ(β, k‖) =
( 1

2π

)1/2
∞∫

−∞

eik‖σΨ(ξ)dσ. (6)
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Here, Ψ(ξ) is the halo wave function, ξ = (β, σ)
with σ directed along the incident direction and β
in a plane perpendicular to it containing the impact
parameter. The total profile function has Coulomb,
neutron-target, and core-target components:

Γ(x,β) = ΓC(x − β) + e−iηc(x−β) (7)

×
[
ΓnT (x) + ΓcT (x − β) − ΓnT (x)ΓcT (x− β)

]
.

The single and double scattering structure of Γ is
easily recognized. The contributions to dσ/dk‖ can
be collected in two parts. For the simple one, two-
dimensional integration with respect to x and β are
separable and the results take the form

dσ(s)

dk‖
= Σ0 S2

d(k‖), (8)

where Σ0 is a number, and S2
d(k‖) =

∫
|φ(β, k‖|2d2β.

The mixed contributions, dσ/dk(m)
‖ , actually re-

quire a convolution integral. If the halo wave function
is separable in β and σ, like the Gaussian, it is easy
to show that these terms also take the simple form
(8). On the other hand, we have verified on a specific
example that the modification of the shape brought by
the mixed terms is relatively small. Negligible in the
forward direction, it reaches about 5% at half of the
height. The calculation was done [12] with

Ψ(ξ) = N0

[
e−µξ/2 − 5

4
e−µξ +

1
4
e−2µξ

]
/ξ. (9)

This wave function has the advantage of behaving like
a Yukawa at large distances while remaining finite at
the origin. The profile functions were taken as Gaus-
sian, ignoring the Coulomb interaction. Although
more critical tests would be desirable, it suggests a
way of combining data to achieve a fair analysis.

Since the corrections to (8) are small, they can
be estimated numerically, by using realistic or even
semirealistic ingredients. Furthermore, the impor-
tance of the corrections, as well as the departure
from a Gaussian, can be checked quantitatively by
comparing

S2
d(k‖) =

dσ

dk‖
/
dσ

dk‖
(0) (10)

obtained from different targets and energies.

The next step consists in analyzing S2
d(k‖) in a

model-independent way. This can be performed by
noticing that

S2
d(k‖) =

∫
|Sd(k)|2d2k⊥ , (11)

with

Sd(k) =
( 1

2π

)3/2
∫
eik·ξΨ(ξ)d3ξ. (12)
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Then, by using an Abel transform and assuming
spherical symmetry, we have

|Sd(k)|2 = − 1
2π

1
k

∂

∂k
S2

d(k), (13)

where k = |k|. This procedure gives access to the
Fourier transform of the wave function, which is han-
dled by means of usual techniques.

In conclusion, the comparison between halo nu-
clei and diffuse diatomic molecules underlines the
essential difference between these two kinds of weakly
bound systems. Whereas the two-body approxima-
tion seems well justified in the case of diatomics, it
becomes questionable in the nuclear case when the
separation energy approaches zero.

It suggests that the extreme limit of zero binding
energy, which is required to observe the Efimov states,
has more chance to be met in molecules than in
nuclei. This is, however, only a conjecture, which
deserves more theoretical and experimental investi-
gations.

The quantities relevant to the present work are
still poorly known, and more accurate experimental
data are needed, for the rms radii of the halo wave
functions as well as for the separation energies. As far
as the measurements of the radii are concerned, we
propose a strategy based on the parallel momentum
distribution. It consists in the extraction of S2

d(k‖)
from the data, followed by an Abel transform leading
to the Fourier transform of the wave function.
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Abstract—The neutron-transfer reaction d(6He, p)7He is investigated. The data obtained show that, in
the range between 1 and 7 MeV above its ground-state resonance, 7He does not have well-pronounced
narrow excited states with a single-particle structure. A resonance state of 5H with an energy of 2 MeV
above the n+ n+3H decay threshold is obtained for the first time by making use of the reaction p(6He,
2He)5H. c© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The 7He nucleus has been repeatedly studied for
30 years, and its well-known ground-state resonance
decaying into n+6He has been obtained in many
reactions (see [1]). However, excited states (E∗ <
10 MeV, Γ < 2 MeV) were not found in this nucleus
until very recent time. Particularly, a negative con-
clusion has been drawn from the energy spectra of
7Be and 8B obtained, respectively, in the reactions
7Li(7Li, 7Be)7He and 9Be(6Li, 8B)7He [2]. More
recent experiments that employed transfer reactions
with stable heavy-ion beams also yielded negative
results in what is concerned with excited states in 7He
[3–5].

It is evident that radioactive nuclear beams provide
the best conditions for studying nuclei with a high
neutron excess, such as 7He. As reactions that are
induced by neutron-rich projectiles and which lead
to 7He become simpler, their cross sections grow,

∗This article was submitted by the authors in English.
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while physical backgrounds decrease. These obser-
vations were justified in [6], where a 7He nucleus
was obtained in the reaction p(8He, d)7He at a 8He
beam energy of 50 MeV per projectile nucleon. The
detection of deuterons in correlation with other parti-
cles emitted in the decay of 7He allowed the authors
to obtain, for the first time, an excited state of 7He
at 3.3 ± 0.3 MeV above the n+6He threshold. The
width of this resonance state is Γ = 2.2 ± 0.3 MeV.
It decays predominantly into 3n+4He, though the
energy of its n+6He decay is higher. One can put
forth arguments in favor of the assumption [6] that,
most likely, this state has a structure with a neutron
in the p1/2 state coupled to the 6He core, which itself
is in the excited 2+ state. A tentative spin–parity
assignment for this state is Jπ = 5/2−. To all ap-
pearance, 8He is a “suitable” projectile for populating
this excited state in 7He after one-neutron stripping
because, as is expected (see [6, 7]), the ground state of
8He contains mainly a 6He subsystem in the excited
2+ state.

In this connection, the question of whether there
are excited states in 7He with a single-particle struc-
ture is still open, despite the fact that this problem
remains persistently interesting. It was expected that
7He could have an excited 1/2− state of this nature.
The observation of such a state in 7He could shed
light upon spin–orbit interaction in neutron-halo nu-
clei. Theoretical predictions (see [8] and references
001MAIK “Nauka/Interperiodica”
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therein) also attract one’s attention to searches for
new excited states in 7He.

The question of whether there exists a super-
heavy hydrogen 5H has been discussed for more than
40 years. Simple physical arguments were invoked to
show that a resonance state of 5H should exist [9, 10].
In [11], a complete dynamical investigation of 5Hwas
performed within the three-body n+ n+3Hmodel.

Numerous attempts at observing either a stable
or a resonance state of 5H yielded negative results
(see the review article [12] and references therein).
At the same time, there were several claims to the
observation of the 5H nucleus among the products
of reactions with pions [13, 14] and with stable (6Li)
[15] and radioactive (6He) [16] nuclear beams. In
addition to the fact that all these results are mutually
conflicting, there are other reasons to conclude that
searches for a resonance state of 5H still make a
topical problem.

2. EXPERIMENTAL LAYOUT

We used the pickup reaction d(6He, 7He)p to carry
out searches for new excited states in the 7He nu-
cleus. One could anticipate a relatively high popu-
lation probability for a single-particle 1/2− state in
this reaction, which would be a single-step transfer
in contrast to the stripping reaction p(8He, 7He)d,
where a two-step process is required, if one assumes,
for 8He, the structure [6, 7] mentioned above.

The reaction p(6He, 5H)2He was employed in ex-
periments devoted to the superheavy hydrogen iso-
tope 5H. The presented notation underlines that ac-
cent was placed on the detection of two correlated
protons emitted from the decay of 2He at small angles
in the laboratory frame. The measurement of the en-
ergy and angle for each proton allowed us to know the
energy of the residual system 5H. This is an analog
of the missing-mass method where a recoil particle d
from a reaction a(b,c)d is unstable (the virtual state
of 2He), and this particle is detected by measuring the
characteristics of its decay products.

The experiments were carried out at the U-400M
cyclotron of the Flerov Laboratory of Nuclear Re-
actions (JINR, Dubna). The experimental setup is
shown schematically in Fig. 1. A primary beam of
11B ions with an energy of 42 MeV per projectile
nucleon was used to obtain a secondary 6He beam
of energy 37 MeV per nucleon in the focal plane
of the ACCULINNA separator [17]. In long-term
experimental runs, the average intensity of the 6He
beam on the target was 5×104 s−1. Of the total beam
flux hitting the target, tritons and 8Li ions comprised,
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 7 200
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Fig. 1. Schematic diagram of the experimental
setup: (1) group of units symbolizing one-half of the
ACCULINNA beam line (i.e., a dipole magnet with two
pairs of quadrupole lenses on the two sides); (2, 3) time-
of-flight plastic scintillators, (4, 5) multiwire proportional
chambers, (6) gas target, (7) detector telescope used in
experiments aimed at 7He, (8) detector telescope used
in experiments dedicated to 5H, (9) telescope involving
one Si detector and one large-area thick BGO crystal for
∆E × E measurements of long-range charged reaction
products emitted from the target in the forward direction.

respectively, ∼55% and <1%. While the energy
spread of the beam ions amounted to 5% (FWHM),
the energy of individual 6He ions was defined with an
accuracy of ∆E/E ≤ 2% by means of time-of-flight
(TOF) measurements. For each event associated
with the detection of reaction products, the measured
time of flight and the energy loss in the second TOF
plastic (plastic 3 in Fig. 1) allowed us to identify
unambiguously the incoming ion that had generated
the reaction products. Two multiwire proportional
chambers (positions 4 and 5 in Fig. 1) were used for
tracking individual beam ions.

The GANIL gas target filled with pure hydrogen
isotopes was employed in these experiments. The
length of the target cell along the beam axis was
10 mm, its entrance and exit window diameters be-
ing 15 mm. In the case where the reaction d(6He,
7He)p was studied, the target filling was 3 atm of
pure deuterium gas cooled down to 40 K. The target
windows were 10-µm stainless steel foils. In the case
of the reaction p(6He, 5H)2He, the target cell having
20-µm stainless-steel windows was filled with a pure
hydrogen gas at a pressure of 11 atm. The gas was
cooled down to 35 K.

An array of three annular Si-strip detectors from
the RIKEN telescope [6] was employed to observe
protons originating from the reaction d(6He, 7He)p.
Covering an angular range between 170.8◦ and
154.3◦ in the laboratory frame (see Fig. 1, position
7), this array was intended for detecting low-energy
(E = 2.5–6.0 MeV) protons emitted at small c.m.
1
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Fig. 2. Excitation-energy spectrum of 7He nuclei from
the reaction 6He+d →7He+p (thick solid line). The
background obtained with the deuterium gas evacuated
from the target is shown with a thin line.

angles. In the case of an event being detected, the
time delay between the signals coming from the Si
detector telescope and plastic 3 was used to derive
the particle velocity. The energy–velocity correlation
allowed us tomake a selection for protons. In addition
to protons, we detected 6He nuclei originating from
the decay of 7He into 6He+n. The∆E ×E telescope
9 (see Fig. 1) provided an unambiguous identification
of those 6He nuclei that moved in a axis close to the
beam axis and had, on average, the energy 15% lower
than that of the 6He beam ions traversing the target.

When 5H obtained in the reaction p(6He, 5H)2He
was the subject of interest, the RIKEN telescope
equipped with eight annular strip detectors was in-
stalled in the forward direction (position 8 in Fig. 1).
The telescope could detect proton pairs emerging
from the target with their center of mass moving in
the laboratory frame within the angular range 10◦–
18◦. The maximum energy of protons stopped in the
telescope was about 30 MeV. The particles involved
were identified on the basis of ∆E × E data. Apart
from the two protons, the charged particle (3H) from
the decay 5H→ n+ n+3H was detected by telescope
9 at small angles in the laboratory frame.

For either of the reactions d(6He, 7He)p and
p(6He, 5H)2He, the angle between the trajectories
of the detected protons and the 6He beam ion was
measured with a precision of 0.4◦ in the laboratory
frame. The same was true for the angle between the
trajectories of two protons emitted as a pair in the
second reaction.

The total fluxes of 6He ions that traversed the
deuterium and hydrogen targets were, respectively,
PH
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0
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840–4

Fig. 3. Energy distribution obtained for the 5H system
formed in the reaction 6He +p →5He +p + p. The upper
and lower panels show the same distribution in two dif-
ferent bin widths. The distribution was obtained from the
energy–angle correlations of the two protons emerging in
this reactions. The condition of coincidence with tritons
from the decay 5H → n + n+3H was included in the
analysis. The observed resonance state of the 5H nucleus
shows up as a maximum in the spectrum centered at
about 2 MeV above the threshold for the decay 5H →
n + n+3H. The bump seen on the right side is due to
space–volume events extending to the left of this bump
and smoothly vanishing at zero energy. The right-side
cutoff of the space–volume distribution is caused by the
energy threshold. Only a very few events were obtained
in the background spectrum when the hydrogen gas was
evacuated from the target.

5.4×109 and 3.2×1010. Each experimental run was
supplemented with the irradiation performed with the
gas evacuated from the target. The doses of the 6He
beam in these background measurements amounted
to one-half of the values achieved in the measure-
ments of the effect.

3. RESULTS AND DISCUSSION

One could readily see the locus of protons orig-
inating from the reaction d(6He, 7He)p in the Ep ×
θlab plot constructed for protons coinciding with 6He
nuclei observed as 7He decay products (Ep and θlab
are the measured proton energy and angle in the
laboratory frame). The proton energy–angle values
were converted to obtain the 7He excitation-energy
spectrum shown in Fig. 2. The peak corresponding
to the population of the 7He ground-state resonance
is well seen in this spectrum. The background lying
under this peak is negligible. Any other resonance
states of 7He are not seen in the excitation-energy
region extending up to 8 MeV.
YSICS OF ATOMIC NUCLEI Vol. 64 No. 7 2001
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Fig. 4. The same distribution as in Fig. 3 (thick solid
line), except that the coincidence with tritons was not
required. The thin solid line represents the background
obtained with the hydrogen gas evacuated from the tar-
get.
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Fig. 5. Excitation-energy spectrum of 4He nuclei from
the reaction 6He+p →4He+3H (thick solid line). The
finite width of the maximum corresponding to the 4He
ground state displays the limited energy resolution of the
setup. The background obtained with the hydrogen gas
evacuated from the target is shown by the thin line.

As was noted above, the reaction used appears
to be the most favorable for populating a single-
particle 1/2− state in 7He. One could assume that,
if this nucleus had such a narrow state notable for
its simple, single-particle structure it would show a
clear resonance that would be comparable in value
with the 7He ground-state resonance seen in Fig. 2.
Therefore, the absence of any other resonance in the
spectrum shown in Fig. 2 gives a strong support
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Fig. 6. Excitation energy spectra of tritons (thick solid
lines) from the reactions (upper panel) 6He +p → p+3H
+X and (lower panel) 6He+p → p+3H+3H. The back-
ground obtained with the hydrogen gas evacuated from
the target is shown by thin lines in the two panels.

to the conclusion that, in the range between 1 and
7 MeV above is ground-state resonance, 7He does
not have well-pronounced narrow excited states with
a single-particle structure.

After the irradiation of the hydrogen target, a clear
picture was obtained when, for each detected event,
the energy of the 5H nucleus was derived from the
energies and angles of two protons detected in co-
incidence with 3H originating from the decay 5H→
n+ n+3H. Two spectra shown in Fig. 3 with respect
to the 5H energy counted from the n+ n+3H decay
threshold were obtained after such a data treatment.
A distinct peak centered at about 2 MeV above this
threshold obviously represents the sought resonance
of 5H. A similar spectrum (see Fig. 4) obtained when
all detected proton pairs, irrelative to the 3H ob-
servation, were involved in the analysis also shows
this resonance peak. The consistency of the peak
characteristics seen in Figs. 3 and 4 gives additional
grounds to believe that this state of 5H does indeed
exist. The analogous spectra that were obtained for
α particles emitted as the result of 2n transfer p(6He,
α)3H and for tritons from 6He + p → p + 3H +X
1



1248 GOLOVKOV et al.
and 6He + p → p + 3H + 3H processes and which
are shown in Figs. 5 and 6 prove the proper operation
of the whole setup and, hence, the correctness of the
5He resonance seen in Fig. 3.

Thus, the data obtained make us confident that,
for the first time, we have found a resonance state
of 5H lying at an energy of about 2 MeV above the
5H→ n + n + 3H decay threshold. This is the only
channel of 5H decay because its energy is below the
threshold of the decay 5H→ n + 4H.

A more comprehensive analysis of the data will
be made in the near future. Therefore, one should
regard the results presented here as preliminary ones.
In particular, the intrinsic width of the 2-MeV 5H
resonance has not yet been obtained, though one
could expect that it will be quite small, on the order
of or even less than 1 MeV.
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Abstract—The algebraic version of the resonating-group method is extended to cover cases where one
of the clusters has an open p shell. A basis of Pauli-allowed states labeled with the symmetry indices
of irreducible representations of the SU(3) group is constructed in the Fock–Bargmann representation.
Dynamical variables that describe nonspherical degrees of freedom of the cluster are introduced. Thematrix
elements of the nucleon–nucleon interaction are analytically found by using the operator-representation
method. The nuclear system 9Li + n is taken as an example. c© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Recent developments of experimental techniques
opened new possibilities for exploring drip-line and
exotic nuclei. This in turn gave impetus to searches
for new approaches to theoretically describing var-
ious features of such nuclei like a neutron skin, a
halo, or the inverted order of energy levels. Many of
those nuclei involve A = 10, ..., 20 nucleons and have
a well-defined cluster structure. One typical example
is provided by the 11Li nucleus, which is very weakly
bound below the 9Li+2n threshold. In view of this,
it is necessary to find a microscopic approach that
takes into account the Pauli exclusion principle and
the cluster structure and which is able to allow for
internal degrees of freedom of nonspherical clusters
such as 9Li.

At present, the computational technique within
the resonating-group method (RGM) or its algebraic
version (AVRGM) [1] has been developed for those
cases where the clusters involved are spherical. In
terms of Elliott’s model [2], their wave functions are
transformed according to the irreducible representa-
tion (λ, µ) = (0, 0). In [3], one of the present au-
thors discussed for the first time an extension of the
AVRGM to the case of p clusters. In that study,
the three-cluster case was discussed and a universal
basis of allowed states was constructed. Here, we
analyze binary systems, where it is simpler to take
exactly into account the Pauli exclusion principle.

∗This article was submitted by the authors in English.
1)Present address: Graduate School of Science, Hokkaido
University, Sapporo 060, Japan.

**e-mail: korennov@nova.sci.hokudai.ac.jp
1063-7788/01/6407-1249$21.00 c©
In the following, we consider the interaction of a
9Li cluster with a valence neutron. Nevertheless, the
procedure is basically applicable to a wide range of
cluster systems.

2. ANSATZ: BRINK ORBITALS
AND NORM OVERLAP

2.1. Brink Orbitals for the Core

Having adopted the (1, 2) representation space for
the core (9Li), we make no further restrictions, thus
allowing the angular momentum L9 of the core to
be 1, 2, or 3 and negative parity. The introduction
of Brink orbitals is similar to any calculation within
the generator-coordinate method (GCM) with some
technical modifications. First, we define the normal-
ized s-shell orbit for four nucleons as

|s〉 =
1

π3/4
exp{−r2/2}. (1)

Second, we define the p orbit as

|p1〉 =
√

2
π3/4

(u · r) exp{−r2/2}, (2)

where u is a unit vector directed along the z axis of
the frame rigidly bound to the core. We place the
remaining proton and two neutrons on this orbital.
Along with the ket states, we introduce bra states in
the form

〈s| =
1

π3/4
exp{−r2/2}, (3)

〈p1| =
√

2
π3/4

(u∗ · r) exp{−r2/2}. (4)
2001MAIK “Nauka/Interperiodica”
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The overlaps 〈m | n〉 =
∫
|n〉〈m|dr are

〈s | s〉 = 1, 〈p1 | p1〉 = (u · u∗), 〈s | p1〉 = 0. (5)

For the remaining two neutrons, another p orbit must
be defined,

|p2〉 =
√

2
π3/4

([w × u∗] · r)
(u · u∗)

exp{−r2/2}, (6)

〈p2| =
√

2
π3/4

([w∗ × u] · r)
(u · u∗)

exp{−r2/2}, (7)

where the vectorw (w∗) is orthogonal to u (u∗). Due
to biorthogonality, the total overlap for the core is

〈Ψ9|Ψ9〉 = (u · u∗)(w ·w∗)2. (8)

2.2. Brink Orbital for the Valence Neutron

The valence neutron is a separate cluster with
(0, 0) symmetry; therefore, its Brink orbitals are

|R〉 =
1

π3/4
exp{−r2/2 +

√
2(R · r) − R2/2}, (9)

〈R| =
1

π3/4
exp{−r2/2 +

√
2(R∗ · r) − R∗2/2},

(10)

where R (R∗) is the (cluster) generating vector for the
harmonic-oscillator basis. Clearly, the form of the
basis reflects the cluster structure.
The function in (9) is obviously not biorthogonal

to the core orbitals. Biorthogonalization leads to the
following orbital:

|n〉 = |R〉 − |s〉 − (u∗ ·R)
(u · u∗)

|p1〉 −
([w × u∗] ·R)

(u · u∗)
|p2〉,
(11)

〈n| = 〈R| − 〈s| − (u ·R∗)
(u · u∗)

〈p1| −
([w∗ × u] ·R∗)

(u · u∗)
〈p2|.
(12)

The norm overlap is
〈n | n〉 = exp(R ·R∗) − 1 − (R · R∗) (13)

+
(w ·R)(w∗ ·R∗)

(w · w∗)
.

The norm overlap for the entire nucleus is the product
of (8) and (13). Upon the separation of the center-of-
mass part, the result takes the form

〈Ψ10 | Ψ10〉 =
∞∑

n=2

CnNn +
∞∑

n=1

BnMn, (14)

Nn = (u · u∗)(w · w)2(R ·R∗)n,

Mn = (u · u∗)(w ·w)(w ·R)(w∗ · R∗)(R ·R∗)n−1,

Cn =
1
n!
{1 + (−1)n

10n− 1
9n

}, Bn =
1
n!

(−1)n−110n
9n

.

PHY
3. PROJECTION OF THE NORM OVERLAP
The norm overlap depends on the generating pa-

rameters u, w, and R and those conjugate to them.
These parameters express the degrees of freedom we
are interested in. Our basis functions will depend on
them, being images of real-space harmonic-oscillator
basis functions. The space of generating parameters
will be referred to as Fock–Bargmann space, and we
will be work in this representation.
In this space, the relation between the norm over-

lap and the basis functions has the simple form

〈Ψ10 | Ψ10〉 =
∑
α

N2
αψα(R)ψα(R∗) , (15)

where, for the sake of brevity, we denote by α all
quantum numbers and by R the set of the vectors u,
w, and R and where N2

α is the weight of a function in
the norm kernel (in other words, the squared norm of
a function).
As discussed above, the basis will be labeled with

the indices (λ, µ) of an SU(3) irreducible represen-
tation in accordance with which the functions trans-
form. The overlap in (14) is a superposition of terms
having different SU(3) symmetries. Nevertheless, it
is possible to define the most symmetric (leading)
term. Other terms and their weights are obtained
by iteratively applying the Casimir operator Ĝ2 of the
U(3) group to the leading state.
The result of this operation is shown in Table 1.

Thus, we arrive to the expansion
〈Ψ10 | Ψ10〉 =

∑
n,(λ′,µ)

(CnW(n+λ′,µ)Nn,(λ′,µ) (16)

+BnV(n+λ′,µ)Mn,(λ′,µ)),
where λ = λ′ + n. Evidently, n is yet another quan-
tum number, the number of oscillator quanta. It is
easy to verify that n = 2ν + 1 and n = 2ν correspond
to, respectively, a positive and a negative parity. In
this manner, the parity projection is performed.
The expressions for Nn,(λ′,µ) and Mn,(λ′,µ) must

be further projected onto the overlaps of basis states
with definite angular momenta. This procedure
was described by Elliott and involves expansions in
Wigner’sD functions. The result of this projection is
the following expansion:

〈Ψ10 | Ψ10〉 (17)

=
∑

n,(λ′,µ),L

(CnW(n+λ′,µ),LNn,(λ′,µ),L

+ BnV(n+λ′,µ),LMn,(λ′,µ),L).
The construction of the basis functions in the

Fock–Bargmann space is performed in a straightfor-
ward way. Some basis functions and their weights are
shown in Table 2. Their norms are defined as
N2

n,(λ′,µ),L = CnW(n+λ′,µ),L + BnV(n+λ′,µ),L. (18)
SICS OF ATOMIC NUCLEI Vol. 64 No. 7 2001
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Table 1. SU(3) projections Nn and Mn (g2 is the eigenvalue of Ĝ2, and dλ
11d

µ
33 is the leading function in this

representation)

(λ, µ) g2(λ, µ) W (λ, µ) V (λ, µ) dλ
11d

µ
µ

1 (n + 1, 2) n + 1 1 dn+1
11 d2

33

2 (n− 1, 3) 0 n
n+1 dn−1

11 d3
33

3 (n, 1) −3 8n
3(n+4) 1 dn

11d33

4 (n− 2, 2) −(n + 3)
2(n−1)
n+3

(n−1)
n dn−2

11 d2
33

5 (n− 1, 0) −(n + 5)
8n(n−1)

(n+3)(n+2)
3(n−1)
2(n+2) dn−1

11

6 (n− 3, 1) −2(n + 2)
6(n+1)n(n−2)

(n+2)(3n+5)(2n+1)
(n−2)
(n+1) dn−3

11 d33

Table 2. Some SU(3) basis functions

(λ, µ) n L Explicit form W (L)

(2ν + 2, 2) 2ν + 1 0 (u ·R)w2R2ν − ν

ν + 2
(u ·R)(w · R)2R2ν−2 ν + 2

(2ν + 3)(2ν + 5)

(2ν, 0) 2ν + 1 0 (u ·R)(w · R)2R2ν−2 1
(2ν + 1)

(2ν − 2, 2) 2ν 0 ([u × w] · R)(w ·R)R2ν−2 ν

(2ν − 1)(2ν + 1)

(2ν + 1, 1) 2ν + 1 1 {[u× w]R2ν − 2ν[w × R](u · R)R2ν−2}(w · R)
3

2(2ν + 1)
4. MATRIX ELEMENTS
OF THE INTERACTION

Calculation of the matrix elements of nucleon–
nucleon interaction is the most tedious task in mi-
croscopic approaches like those based on the RGM
[4]. In the AVRGM, the task is divided into two parts:
first, we find the GCM kernel of the interaction; then,
we project it onto the basis states, thereby determin-
ing the matrix elements.
In the following, the nucleon–nucleon interaction

is assumed to be of the Gaussian form

Ûr1,r2 = U0 exp{−(r1 − r2)2/b2}.
If Brink orbitals are biorthogonal (as in our case), the
GCM kernel is calculated by the formula

〈Ψ10 | Û | Ψ10〉
=
∑
i<j

(Ud〈i(r1), j(r2) | Û | i(r1), j(r2)〉

−Ue〈i(r1), j(r2) | Û | i(r2), j(r1)〉)
〈Ψ10 | Ψ10〉
〈i | i〉〈j | j〉 ,

where Ud and Ue are spin–isospin-averaged con-
stants for direct and exchange interactions, respec-
tively, while |i〉 and |j〉 are Brink orbitals (|s〉, |p1〉,
|p2〉, and |n〉).
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 7 200
There is a large number of terms in (19). However,
there is a way to calculate all of them if we know just
one term; namely,

〈R∗(r1),S∗(r2) | Û | R(r1),S(r2)〉 (19)

= exp
{

1
2
[(R + S) · (R∗ + S∗)]

+
z

2
[(R − S) · (R∗ − S∗)]

+
z − 1

4
[(R − S)2 + (R∗ − S∗)2]

}
,

where z = (1 + 2/b2)−1 and the orbital |R(r)〉 has the
same form as in (9). We can define all other orbitals in
terms of |R〉; for example, we have

|s〉 = |R〉 |R=0, |p1〉 = (u∇R)|R〉 |R=0,

|p2〉 =
1

(uu∗)
([wu∗]∇R)|R〉 |R=0, etc.

By way of example, the expression 〈p1, s | Û | p1, s〉
can be calculated as

〈p1, s | Û | p1, s〉
= (u∗ · ∇R∗)(u · ∇R)〈R∗,S∗ | Û |R,S〉 |0

=
z + 1

2
(u · u∗).
1
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In this way, all terms in (19) can be found analytically.
For each of the terms in (19), it is now necessary

to construct an expansion in the basis states, which is
similar to the expansion (15) of the norm overlap. One
way to do this is to integrate the product of the kernel
and the basis functions with respect to all variables.
However, it is next to impossible to do this analytically
(even with the help of computers). As to a numerical
way, it will take a huge amount of computer time,
since the process must be repeated for each pair of
basis functions. To solve this problem, wemake use of
the operator representation of the interaction kernel.
In other words, we find the corresponding operator
in the Fock–Bargmann space for each of the terms
entering into (19).

In general, 〈Ψ10 | Û | Ψ10〉 consists of a number of
terms u having the form [5]

u = u0P (R,R∗) (20)

× exp{A(R ·R∗) + BR2 + B∗R∗2},
where A,B,B∗, and u0 are some constants, while
P (R,R∗) is the product of k scalar products (k can
be equal 1 or 0, too). In turn, each of these scalar
products can be of the form (X · Y), (X · ∇Y), or
(∇X · ∇Y), where X and Y are variables from the
sets R and R∗. The presence of the polynomial
P (R,R∗) = 1 is due to a nonspherical shape of the
core cluster.
We first consider the case where B = B∗ = 0 and

A = u0 = 1. We then have
u = P (R,R∗) exp{(R ·R∗)} (21)

=
∑
α∗α

|α〉〈α | u | α∗〉〈α∗|,

where α ≡ {n, (λ′, µ), L}. Let us now compare this
formula with the expansion of the reduced norm over-
lap [see Eq. (14)]:

〈Ψ10 | Ψ10〉red = (u · u∗)(w · w∗)2 exp(R ·R∗)
(22)

=
∑
α

1
n!

Wα|α〉〈α|.

Suppose that we have found an operator PR that
satisfies the equation

PR〈Ψ10 | Ψ10〉red = P (R,R∗) exp(R ·R∗). (23)

From (23) and (22), we then obtain

PR〈Ψ10 | Ψ10〉red =
∑
α

1
n!

Wα〈α|(PR|α〉)

=
∑
α

∑
β

|β〉〈β | u | α〉〈α|,

where
PR|α〉 =

∑
β

P β
α |β〉, (24)
PH
〈β | u | α〉 =
1
n!

WβP
β
α .

The last formula is nothing but the sought-for matrix
element.
It is easy to generalize this formula to the case

of u0 �= 1 and A �= 1 (by scaling R → R/
√

A). It
is also straightforward to expand the expressions
exp{BR2}|β〉 (and exp{BR∗2}〈α|) [6].
Finally, we present a general formula for thematrix

element of operator (20) between the basis states
|n, (λ′, µ)〉 (they are diagonal in L; therefore, this
index is dropped here):

〈n∗, (λ′, µ)∗ | u | n∗, (λ′, µ)〉 (25)

=
z3/2u0

Nn∗,(λ′,µ)∗Nn,(λ′,µ)

×
min(n−p,n∗)∑

m=0(1)

{
W(n+λ′,µ),L P

m+p,(λ,µ)′

m,(λ′,µ)

× AmB(n−p−m)/2(B∗)(n
∗−m)/2

(n−p−m
2 )!( (n∗−m)

2 )!m!

}
.

Here, the parity of m must be identical to that of n
and n∗. The index p is one of {0, 2,−2, 4,−4, ...},
depending on the ratio of creation and annihilation
operators in PR.

5. SOLVING THE AVRGM EQUATIONS

In the AVRGM, the set of equations to be solved
is ∑

ν∗,β∗

〈ν∗β∗ | Ĥ − E | ν, β〉Cβ
ν = 0, (26)

where all quantum numbers, with the exception of ν,
are denoted by β and take those values that are of
physical interest, thereby specifying a channel. Fi-
nally, Cβ

ν are the sought-for coefficients in the expan-
sion of the total wave function in the basis states.
If the continuum spectrum is under investigation,

the coefficients Cβ
ν oscillate, mimicking the wave-

function behavior. If the basis is truncated at νmax

and if Eq. (26) is solved, this means that Cβ
ν = 0 for

all ν > νmax. We refer to this way as a diagonalization
method. But νmax cannot be set to very large value
because of computational limitations. Therefore, it is
advisable to determine the asymptotic behavior of the
coefficients Cβ

ν and match it with a solution to (26) at
νmax, thereby closing up the set of equations. We refer
to this as an asymptotic method.

The asymptotic behavior of the coefficientsCβ
ν was

studied in [7].
YSICS OF ATOMIC NUCLEI Vol. 64 No. 7 2001
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The 0−, (λ, µ) = (2ν − 2, 2) phase shift. The result of the
calculations with the Minnesota potential and the Volkov
potential no. 2 are represented by the solid and dashed
curves, respectively. For the Minnesota potential, the
results of the calculations based on the diagonalization
method are shown by crosses and X-shaped symbols for
the dimensions of 50 and 70, respectively.

The figure shows the behavior of the phase shift
in the 9Li + n system for the case of β = {(2ν −
2, 2), L = 0} (0− spectrum). The difference between
the behavior of the phase shift obtained by the diago-
nalization and by the asymptotic method is noticeable
at higher energies. Also, the dependence on the N–
N interaction is evident. In any case, however, the
phase shift shows a nonresonance behavior.

6. CONCLUSION

Extending the applicability region of the AVRGM
to the nuclear systems featuring clusters with an
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 7 200
open p shell, we have developed an algorithm for
constructing the basis of harmonic oscillator Pauli-
allowed states in the Fock–Bargmann space. The
generating-coordinate technique has been used to
construct the norm and Hamiltonian overlaps (ker-
nels). In the two-cluster case, the indices of the irre-
ducible representation of the SU(3) group have been
chosen to classify the basis states. The projection
of the kernels onto the states with definite values of
the quantum numbers has been performed. In terms
of the operator-representation technique, we have
presented an algorithm for calculating the matrix ele-
ments of a Gaussian nucleon–nucleon interaction.

By way of example, we have illustrated the imple-
mentation of the method for the 9Li + n system. At
present, the analysis of this case is still under way. We
also intend to use the results to study the 9Li+ n + n
system and other systems of interest.
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Abstract—The energy spectrum, the angular distributions, and the linear polarizations of gamma radiation
emitted by 158Gd are measured in the (n, n′γ) reaction induced by fast reactor neutrons. The known dia-
gram of levels and gamma transitions is extended. The multipole-mixing ratio δ is found for many gamma
transitions between levels with known spin–parity values. c© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

A review of data on the energies of the levels
and gamma transitions in 158Gd can be found in [1].
That the cross section for thermal-neutron capture by
157Gd is very large made it possible to obtain, with
the aid of a diffraction spectrometer and an internal-
conversion-electron spectrometer, a vast body of in-
formation about the energies, intensities, and conver-
sion coefficients for almost 1000 transitions in 158Gd.
In view of this, the 158Gd nucleus is the most conve-
nient object for drawing a comparison with new the-
oretical concepts. Therefore, additional information
about this nuclear species would of course be useful.

Our procedure of measurement and data treat-
ment [2, 3] is advantageous in that it enables us to
deduce information about multipole-mixing ratios in
gamma transitions (prior to the present investigation,
there was virtually no such information for 158Gd,
with the exception of estimates that were obtained
from the internal-conversion ratios, which are in-
sufficient for determining the sign of the multipole-
mixing ratios). Measurement of the gamma spectrum
and analysis of photon linear polarizations and angu-
lar distributions with respect to the direction of the
beam of fast reactor neutrons permitted us to draw
conclusions on the multipole-mixing ratios or on the
multipole order for 50 gamma transitions in 158Gd;
we were also able to discover previously unknown
gamma transitions and to extend the known diagram
of levels for energies above 2 MeV.

2. RESULTS OF THE MEASUREMENTS

The gamma spectra of 158Gd were measured in
our experiment by using the (n, n′γ) reaction induced
by a fast-neutron beam extracted from the IR-8
reactor installed at the Russian Research Centre
Kurchatov Institute (Moscow). The measurements
1063-7788/01/6407-1254$21.00 c©
were performed with a 158Gd2O3 sample of mass 23 g
and thickness 1.13 g/cm2, its enrichment in 158Gd
being 97.3% (the concentrations of theA = 155, 156,
157, and 160 gadolinium isotopes were 0.17, 0.33,
0.78, and 1.42%, respectively). The gamma radiation
in question was recorded by a detector from ultrapure
germanium with an efficiency of 10% and a resolution
of 2.1 keV at Eγ = 1.3 MeV. In the measured gamma
spectra, we singled out 410 gamma lines associated
with 158Gd. The angular distributions were investi-
gated at angles of 90◦, 105◦, 115◦, 125◦, 135◦, 142◦,
and 150◦ with respect to the neutron beam. In order
to normalize the intensities of gamma radiation at
the various angles, we used the isotropic 1663.54-
keV 0+

4 –2+
1 gamma transition. The linear polariza-

tion of the radiation from 158Gd was measured by a
two-crystal Compton polarimeter. A more detailed
account of our experimental procedure is given in [2].

Table 1 displays the energy values for the angle
of θ = 90◦ between the direction of gamma-radiation
detection and the neutron-beam direction and data on
the relative intensities of gamma transitions in 158Gd
at θ = 125◦. The energies (Ei) of the 158Gd levels
from which the aforementioned gamma transitions
proceed are quoted in the third column of Table 1. The
spectrum of photons from the reaction 158Gd(n, n′γ)
induced by fast neutrons was previously measured
at a reactor in Riga with a resolution of 3 keV at
1.3 MeV [4]. While being consistent, for intense
gamma lines, with the results presented in [4], our
data show many deviations from those for transitions
of low intensity (the authors of [4] did not eliminate
some background gamma lines and the gamma lines
associated with the capture of intermediate-energy
neutrons that are present in the beam). For this
reason, we deemed it appropriate to quote here our
data on the spectrum in Table 1.
2001 MAIK “Nauka/Interperiodica”



MULTIPOLE MIXTURES 1255
Table 1. Energies and intensities of gamma transitions in 158Gd

Eγ , keV Iγ , arb. units Ei, keV

79.51(2) − 80

135.25(14) 0.26(2) 1159

155.09(18) 0.20(2) 1636?

181.94(2) 100 261

212.98(6) 0.62(4) 1372

218.01(7) 0.49(4) 1717

230.14(12) 0.21(2) 1407

235.42(9) 0.48(4) 1717

255.65(2) 3.18(22) 1636

277.54(2) 17.0(12) 539

282.75(8) 0.38(3) 1260

301.1(2) < 0.08 2018

314.9(2) < 0.08 1814

332.65(11) 0.115(14) 1814

336.21(5) 0.51(4) 1717

339.14(10) 0.20(2) 1381

341.75(14) 0.104(14)

365.10(3) m 1.87(16) 904

1407

408.63(12) 0.32(3)

410.75(19) 0.20(2)

417.90(11) 0.20(2) 1917

435.48(14) 0.30(3) 1917

439.21(7) 0.45(4)

444.87(25) 0.080(16)

455.1(3) 0.109(13) 1954?

466.65(13) 0.19(2) 2260

475.64(15) m 0.15(2) 1452?

1517

479.71(9) 0.22(2) 1743

502.85(12) ∼ 0.27(2) 1862

518.55(18) ∼ 0.30(3) 2018

524.77(17) 0.116(13)

528.13(4) m 0.67(5) 1792

1794

537.05(8) 0.51(4)

Eγ , keV Iγ , arb. units Ei, keV

539.58(5) 1.05(8) 1920

546.4(3) 0.057(11)

558.20(10) 0.28(2)

587.43(15) 0.26(2)

∼ 592.87(17) − 1856

606.52(4) 1.40(11) 1794

619.4(2) 0.134(16) 1978

622.5(3) 0.031(10)

631.31(12) 0.16(2) 1895

637.46(3) 1.57(12) 1176

646.47(11) 0.22(2) 2049

654.1(2) 0.18(2)

670.0(4) 0.099(17) 1856

672.30(7) 0.72(6)

674.31(8) 0.52(4) 1862

676.3(2) 0.162(19) 1941+159Gd

680.85(11) 0.35(3) 2084

688.74(5) m 1.07(8) 1952

1954

698.88(14) 0.33(3) 1964

701.2(3) 0.19(2)

707.82(7) 0.53(4) 1895

713.31(10) 0.36(3)

725.3(4) 0.068(12) 1901

735.36(7) 0.61(5)

743.05(5) 1.01(8) 1930

750.06(4) 1.05(8) 1792

768.60(10) 0.58(5) 2034

771.9(2) 0.18(2)

777.34(17) 0.161(15) 1964

780.16(2) 7.0(5) 1042

782.65(8) 0.50(4) 1941

785.66(13) 0.21(2) 2049

790.97(12) 0.35(3) 1978

795.0(2) 0.27(2) 1954

800.1(5) 0.054(11)
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Eγ , keV Iγ , arb. units Ei, keV

808.9(4) < 0.05

814.69(8) 0.43(4) 1792

816.45(12) 0.31(3) 1794

820.01(6) m 0.67(6) 1861

2084

824.10(6) 0.73(6) 1848

832.97(5) m 1.08(9) 1372

1856

836.3(3) 0.137(20)

843.4(3) 0.047(10)

847.13(18) 0.23(3) 2034?

851.15(5) 0.89(7)

852.84(5) 0.96(8) 1894

856.2(3) 0.16(2)

859.83(11) 0.45(4) 1901

865.94(11) −
867.90(4) < 1.34(11) 1407

870.74(3) m 2.41(19) 1848

1894

874.9(2) 0.23(2) 2034

879.28(5) 0.80(6) 1856

884.7(3) 0.138(19) 1862

887.51(14) 0.22(2) 2084

891.9(3) 0.030(10)

897.59(2) m 19.6(8) 977

1159

902.38(4) 0.88(7) 2090

906.64(10) 0.25(2) 1930

915.00(2) 5.2(4) 1176

917.54(3) m 1.34(11) 1894

1895

922.65(8) 0.41(4) 1964

925.52(18) 0.178(21) 1187

928.3(2) 0.074(16)

934.2(5) 0.085(18)

936.1(3) 0.057(16) 1978

Eγ , keV Iγ , arb. units Ei, keV

944.13(2) 23.4(18) 1024

948.51(18) 0.190(18)

953.34(9) 0.31(3)

955.05(16) 0.28(3)

962.08(2) 14.9(10) 1042

977.13(2) 13.2(8) 977

982.50(10) 0.29(3)

987.50(8) 0.38(3) 1964?

994.29(11) 0.28(2)

1003.95(2) 2.61(17) 1265

1007.25(9) 0.45(4) 2049

1010.35(14) 0.30(3) 2034

1018.9(2) 0.17(2) 2215?

1021.9(2) 0.132(19)

1024.93(10) 0.35(3) 2049?

1028.31(9) 0.38(3) 2215

1034.67(8) 0.45(4) 2222?

1046.07(6) 0.62(5)

1050.7(2) 0.129(19)

1052.9(2) 0.22(2) 2095?

1060.64(9) 0.30(3) 2326

1062.31(9) 0.29(3) 2249?

1072.08(16) 0.23(2)

1077.32(11) 0.41(4)

1080.86(9) 0.38(3)

1090.75(14) 0.19(2)

1094.17(4) 0.75(6)

1097.03(2) 5.6(4) 1359

1100.74(12) 0.22(2) 1640

1107.63(2) 10.6(8) 1187

1116.47(2) 4.7(3) 1196

1119.20(2) 9.4(7) 1381

1126.06(15) 0.171(19)

1128.91(12) 0.20(2) 1667?

1130.59(14) 0.162(18)

1141.45(2) 3.6(3) 1403
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Eγ , keV Iγ , arb. units Ei, keV

1145.35(5) 0.75(6) 1407

1153.7(3) 0.058(13)

1157.4(3) 0.063(14)

1159.8(2) 0.089(15)

1166.81(12) 0.22(2)

1173.26(11) 0.113(16)

1180.38(4) 1.99(14) 1260

1184.05(4) 7.6(5) 1264

1185.87(4) 12.1(9) 1265

1187.13(3) 5.8(4) 1187

1196.4(2) 0.140(15)

1204.68(11) 0.30(3)

1208.5(3) 0.106(15)

1215.55(11) 0.18(2)

1218.77(3) 0.47(4) 2260

1220.15(2) 2.6(2) 1482

1221.41(3) 0.55(4)

1234.8(2) 0.149(18)

1237.60(2) 2.8(2) 1499

1244.3(3) 0.191(17)

1250.21(18) 0.20(2)

1256.00(4) 0.89(7) 1517

1259.90(4) 3.6(3) 1260

1263.58(4) 4.6(3) 1264

1271.85(8) 0.27(2)

1275.84(16) 0.159(18)

1279.01(3) 1.77(13) 1359

1284.6(2) 0.122(13)

1301.20(3) 2.12(17) 1381

1312.23(14) 0.173(17)

1314.81(16) 0.110(15)

1323.44(2) 4.1(3) 1403

1327.26(3) 2.5(2) 1407

1347.98(6) 0.45(4) 2325

1353.97(5) 0.76(6)

1360.67(15) 0.26(3)

Eγ , keV Iγ , arb. units Ei, keV

1371.38(3) 1.09(9)

1372.98(3) 2.29(16) 1452

1378.19(11) 0.36(3) 1640

1386.3(3) 0.068(14)

1389.39(9) 0.30(3)

1392.62(8) 0.48(4)

1401.8(2) 0.119(16)

1405.84(4) 0.87(7) 1667

1419.6(2) 0.117(14)

1428.48(14) 0.155(16)

1437.89(3) 2.6(2) 1517

1455.10(17) 0.25(3)

1460.0(4) 0.126(19)

1483.2(4) 0.045(11)

1499.5(4) 0.055(12)

1504.7(3) 0.036(9)

1509.04(19) 0.150(16)

1517.36(3) 1.85(15) 1517

1522.3(4) 0.122(13) 159Gd?

1530.09(6) 0.55(5) 1792

1540.3(3) 0.104(12)

1564.05(17) 0.125(14)

1570.7(7) 0.058(11)

1577.2(7) 0.073(12)

1587.71(5) 0.97(7) 1667

1617.6(6) 0.043(14) 2805

1622.2(3) 0.098(17)

1625.8(3) 0.110(16)

1632.8(7) 0.048(11) 1894

1637.5(2) 0.172(19)

1640.4(3) 0.113(17) 1901

1644.2(2) 0.163(18)

1650.8(2) 0.149(17) 2675

1657.5(3) 0.040(9)

1663.54(5) 0.69(6) 1743

1674.0(2) 0.138(15)
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Eγ , keV Iγ , arb. units Ei, keV

1682.39(18) 0.156(16)

1692.46(18) 0.26(2) 1954

1697.3(6) 0.030(9) 2675

1703.0(3) 0.100(17) 1964

1707.4(3) 0.138(19)

1721.7(3) 0.119(18)

1725.9(5) 0.135(18)

1735.5(5) 0.060(15)

1739.1(4) 0.087(16)

1749.9(2) 0.20(2)

1756.5(4) 0.15(2)

1774.44(17) 0.49(4) 2035?

1782.03(12) 0.30(3) 1862

1786.2(2) 0.17(2)

1799.2(5) 0.096(13)

1815.30(18) 0.32(3) 1895

1833.73(16) 0.30(2) 2095

1838.9(3) 0.073(11)

1856.38(6) 0.49(4) 1856

1858.83(8) 0.31(3)

1864.81(7) 0.35(3)

1877.76(9) 0.40(3) 1957

1884.64(14) 0.31(3) 1964

1891.4(3) 0.076(17)

1930.9(3) 0.137(15) 1930?

1940.78(10) 0.52(4)

1944.35(9) 0.45(4) 2024

1955.76(6) 0.84(7) 2035

1971.0(2) 0.23(2)

1977.8(3) 0.25(2)

1988.6(6) 0.071(17)

1998.5(3) 0.074(13)

2009.9(3) 0.24(2) 2090?

2014.8(3) 0.20(2) 2095?

2023.77(12) 0.33(3) 2024

2028.0(4) 0.089(16)

Eγ , keV Iγ , arb. units Ei, keV

2035.6(6) 0.076(15) 2035

2040.63(8) 0.34(3)

2060.40(14) 0.21(2)

2068.3(2) 0.21(2)

2071.51(14) 0.30(3)

2073.88(16) 0.151(18)

2102.3(5) 0.056(16)

2107.3(2) 0.19(2)

2122.48(15) 0.29(2)

2135.26(13) 0.31(3) 2215

2138.51(8) 0.63(5)

2148.80(13) 0.27(2)

2154.48(14) 0.22(2)

2163.07(13) 0.24(2)

2170.90(19) 0.126(14)

2180.52(14) 0.45(4) 2260

2187.9(2) 0.20(2) 2267

2196.26(17) 0.29(3)

2202.83(10) 0.59(4)

2210.2(3) 0.161(15) 2289?

2215.18(17) 0.33(3) 2215

2233.3(2) 0.153(16)

2242.20(17) 0.23(2)

2246.48(12) 0.33(3) 2326

2250.5(4) 0.121(16)

2260.16(16) 0.31(3) 2260

2267.04(12) 0.37(3) 2267

2273.29(17) 0.25(2)

2276.3(2) 0.155(18)

2289.44(12)m? 0.33(3) 2289?

2304.42(13) 0.30(3)

2314.01(9) 0.27(2)

2327.4(2) 0.19(2)

2337.4(2) 0.117(13)

2344.6(5) 0.058(10)

2366.8(2) 0.20(2) 2446
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Eγ , keV Iγ , arb. units Ei, keV

2369.7(2) 0.19(2)

2389.6(5) 0.17(2)

2395.2(3) 0.134(19)

2401.3(3) 0.171(19)

2412.3(2) 0.145(18)

2418.30(17) 0.27(3)

2434.8(3) 0.119(16)

2437.8(3) 0.100(16)

2446.26(16) 0.26(2) 2446

2450.70(12) 0.37(3) 2451

2458.51(12) 0.20(2)

2474.4(5) 0.064(11)

2485.7(4) 0.057(11) 2565

2498.8(2) 0.125(14)

2505.5(3) 0.048(11)

2515.2(2) 0.29(3) 2595

2520.8(3) 0.18(2) 2600

2550.8(4) 0.071(11)

2564.82(18) 0.24(2) 2565

2577.04(16) 0.21(2)

2600.1(3) 0.25(2) 2600

2607.5(4) 0.103(13) 2687

2626.5(6) 0.113(14)

2641.5(5) 0.094(17)

2646.8(5) 0.14(2)

2654.0(4) 0.119(17)

2663.7(5) 0.117(16)

2670.2(6) 0.122(17) 2750

2674.8(4) 0.17(2) 2675

2678.2(6) 0.096(16)

2686.3(8) 0.16(2) 2687

2702.0(3) 0.31(3) 2702

2720.4(7) 0.071(16)

2727.8(5) 0.120(18)

2742.0(8) 0.147(17) 2822

2750.4(2) 0.141(17) 2750

Eγ , keV Iγ , arb. units Ei, keV

2767.1(7) 0.068(14)

2775.4(5) 0.095(16) 2855

2783.1(6) 0.085(16)

2791.2(7) 0.051(10)

2798.9(6) 0.093(16)

2805.1(3) 0.14(2) 2805

2816.4(6) 0.118(16)

2822.8(7) 0.063(16) 2822

2832.0(3) 0.21(2) 2832

2839.4(6) 0.095(17)

2850.0(10) 0.059(14)

2854.6(5) 0.125(16) 2855

2869.0(11) 0.056(16)

2879.6(7) 0.082(16)

2885.1(10) 0.077(16) 2964

2895.9(7) 0.062(15)

2904.7(6) 0.090(15)

2916.1(7) 0.062(13)

2920.6(6) 0.061(14)

2932.5(5) 0.119(16)

2946.6(12) 0.041(15)

2952.2(11) 0.039(14)

2964.2(5) 0.137(15) 2964

2980.4(6) 0.077(16) 3060

2986.0(7) 0.074(15) 3065

3006.4(5) 0.101(16)

3026.9(4) 0.078(12)

3038.1(4) 0.109(13) 3038

3059.8(9) 0.053(12) 3060

3064.7(5) 0.093(14) 3065

3083.2(4) 0.072(13)

3097.9(8) 0.027(11)

3109.9(14) 0.022(12)

3119.3(8) 0.064(14)

3135.2(6) 0.035(8)

3175.5(8) 0.077(11)
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Eγ , keV Iγ , arb. units Ei, keV

3188.1(9) 0.048(9)

3227.6(11) 0.047(10)

3237.1(5) 0.072(11)

Eγ , keV Iγ , arb. units Ei, keV

3299.2(6) 0.050(9)

3318.1(6) 0.053(11)

3341.8(8) 0.056(11)

Note: The label “m” indicates cases where we are dealing with a multiplet.
The diagram of 158Gd levels and of the relevant
gamma transitions that was composed on the basis
of our results is given in Table 2, along with the
results that we found for the coefficients a2 and
a4 in the Legendre polynomial expansion W (θ) =
A0 (1 + a2P2 (cos θ) + a4P4 (cos θ)) of the angular
distributions; also displayed in this table are the rela-
tive populations Ps =

∑
Iout
γ −

∑
I in
γ of the levels in

the (n, n′γ) reaction induced by fast reactor neutrons
and the values found for the multipole-mixing ratio δ
or for the multipole order ML. The uncertainties in a2,
a4, and δ correspond to a 68% confidence level. The
uncertainties in the δ values and their signs are given
according to the system adopted in [5]: for example,
δ =–4.5 (+20,−17) = –2.8 > δ >–6.5. Here, we
will not consider the dependence Ps (Ei) for 158Gd,
since it was discussed in [6] on the basis of data from
[4] and the diagram of gamma transitions that was
composed in [7].

Table 3 lists the results obtained by measuring
the linear polarization of photons for 158Gd. The last
column of this table presents the conclusion on the δ-
ellipse branch on which the required value of δ resides
(a4 ∼ 0 or |a4| > 0, which usually corresponds to
small or large values of |δ|, respectively).

3. DISCUSSION OF THE RESULTS

In composing Table 2, we relied on information
compiled in the review article of Helmer [1]. In partic-
ular, the features of the levels other than those based
on our new data were borrowed from that review
article. An analysis of the dependence Ps (Ei) and
the fact that the most intense transitions have al-
ready been included in the diagram give every reason
to state that the 158Gd nucleus has no other J < 5
levels at energies below 1.7 MeV. At energies above
2 MeV, the diagram of 158Gd levels is obviously not
complete. In this section of the diagram, we either
present the deexcitation of a level that is known from
a different reaction or propose an alternative version of
deexcitation; there are also cases where we introduce
an additional level, provided that this is suggested by
the population of the level, the presumed diagram of
deexcitation, and the angular distributions of emitted
photons. For some levels, such arguments will be
specified below.
PH
In order to choose unambiguously δ (from two
possible values) on the basis of measurement of an-
gular distributions of photons alone, it was necessary
that errors in determining the coefficient a4 be very
small. Since it was impossible to achieve this for
many transitions, the choice among the two possible
values of δ was sometimes based on the conclusion
drawn from the data in Table 3 or on the values of the
internal-electron-conversion coefficient from [1].

Discussed below are the results that we obtained
for some individual levels.

1187-keV level. The δ value that we obtained
for the 1107.63-keV transition complies with the E2
multipolarity found in studying internal-conversion
electrons. The second, very small, value of δ is ruled
out by the data on the linear polarization.

1260-keV level. A comparison of the multipole-
mixing ratio expected on the basis of the known con-
version ratio and the δ value that we found for the
1180.38-keV transition leads to the conclusion that
there is a contribution from an E0 transition. The
value of δ =–0.70 (7) for this transition was chosen
here by taking into account the value of Pγ . Since the
lifetime of the initial level is known, we can find, for
this level, the reduced matrix element ρ (0) for the E0
transition in question.

1264-keV level. The internal-conversion coeffi-
cient for the 1184.05-keV transition is indicative of
the presence of an (E1 +M2) mixture. For an E1
transition, we expect α = 0.00085, but the observed
value is α = 0.00196 [1]. Our data (δ = +0.11 (8))
also suggest the presence of a nonzero contribution
from anM2 radiation. The second value of δ = −6 (3)
is inconsistent with the known value of α.

1265-keV level. For the 1185.87- and 1003.95-
keV transitions, the values of δ are determined un-
ambiguously on the basis of large a4 values for both
transitions. The value chosen here for the 1003.95-
keV gamma transition is confirmed by the value ofPγ .

1358-keV level. The value of α for the 1097.03-
keV transition favors the greater value δ. The second
value is shown parenthetically. The data on Pγ give
no way to make a reliable choice.

1381-keV level. For the 1119.20-keV transition,
the second value of δ = −1.6 (4) cannot be ruled out
reliably on the basis of the value of α; however, the
data on Pγ definitively indicate that this value of δ is
impossible.
YSICS OF ATOMIC NUCLEI Vol. 64 No. 7 2001
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Table 2. Diagram of levels and gamma transitions in 158Gd

Ei, keV Jπ
i Eγ , keV Iγ , arb. units Ef , keV Jπ

f Ps a2 a4 δ,ML

79.51(2) 2+ 79.51 − 0 0+

261.45(3) 4+ 181.94 100 80 2+ 23 +0.237(18) −0.070(20) E2

538.99(4) 6+ 277.54 17 261 4+ 12.3

904.1 8+ 365.10 m ∼ 1.4 539 6+ ∼ 1.4

977.13(2) 1− 977.13 13.2 0 0+ < 28 −0.108(15) 0 E1

897.59 m < 19.6 80 2+

1023.64(3) 2− 944.13 23.4 80 2+ 19.5

1041.60(3) 3− 962.08 14.9 80 2+ 17.1 −0.166(16) +0.001(22) E1

780.16 7.0 261 4+

1158.85(14) 4− 897.59 m < 19.6 261 4+ < 18.7

135.25 0.26 1024 2−

1176.45(4) 5− 915.00 5.2 261 4+ 6.6

637.46 1.57 539 6+

1187.13(3) 2+ 1187.13 5.8 0 0+ 10.9 +0.284(26) −0.100(35) E2

1107.63 10.6 80 2+ 0.066(15) −0.029(22) +80 < δ < −25

925.52 0.18 261 4+

1195.98(3) 0+ 1116.47 4.7 80 2+ 4.5 +0.028(22) +0.035(32)

1259.90(7) 2+ 1259.90 3.6 0 0+ 10.4 +0.247(15) −0.083(20) E2

1180.38 1.99 80 2+ −0.144(15) −0.008(25) −0.70(7)

998.47 4.7 261 4+ +0.081(19) +0.002(21) E2

282.75 0.38 977 1−

1263.57(4) 1− 1263.58 4.6 0 0+ 9.3 −0.150(15) +0.003(22) E1

1184.05 7.6 80 2+ −0.037(15) 0 +0.11(8)

1265.40(4) 3+ 1185.87 12.1 80 2+ 11.5 +0.105(25) +0.091(35) +30(+32,−14)

1003.95 2.61 261 4+ −0.132(14) +0.075(21) −23(+19,−7)

1358.50(4) 4+ 1279.01 1.77 80 2+ 7.1 +0.271(16) −0.072(22) E2

1097.03 5.6 261 4+ −0.078(15) −0.024(23) +6.4(+14,−10)
or (−0.73(4))

1371.94(15) 6− 832.97 m ∼ 0.98 539 6− ∼ 1.6

212.98 0.62 1159 4−

1380.68(4) 4+ 1301.20 2.12 80 2+ 7.5 +0.276(21) −0.071(27) E2

1119.20 9.4 261 4+ −0.219(14) −0.066(22) −4.5(+20,−17)

339.14 0.20 1041 3−

1402.93(3) 3− 1323.44 4.1 80 2+ 7.5 −0.182(15) +0.029(23) −0.02(3)

1141.45 3.6 261 4+ −0.03(2) +0.02(4) −0.04(+4,−2)
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Ei, keV Jπ
i Eγ , keV Iγ , arb. units Ef , keV Jπ

f Ps a2 a4 δ,ML

1406.78(4) 4+ 1327.26 2.5 80 2+ 5.3 +0.33(2) −0.03(3) E2

1145.35 0.75 261 4+ +0.30(5) −0.06(7) +1.0(2)

867.90 < 1.34 539 6+

365.10 m ∼ 0.5 1042 3−

230.14 0.21 1176 5−

1452.50(4) 0+ 1372.98 2.29 80 2+ 2.3

475.64? < 0.15 977 1−

1481.60(4) 5+ 1220.15 2.6 261 4+ 1.5

1499.05(4) 5+ 1237.60 2.8 261 4+ 1.7

1517.39(3) 2+ 1517.36 1.85 0 0+ 5.5 +0.254(16) −0.107(21) E2

1437.89 2.6 80 2+ −0.227(17) −0.021(24) −1.5(4)

1256.00 0.89 261 4+ +0.082(20) +0.002(24) E2

475.64 < 0.15 1042 3−

1636.33(4) 4− 255.65 3.18 1381 4+ 3.4

155.09? 0.20 1482 5+

1639.69(11) (5−) 1378.19 0.36 261 4+ 0.58

1100.74 0.22 539 6+

1667.26(5) 4+ 1587.71 0.97 80 2+ 2.0 +0.28(3) −0.01(4) E2

1405.84 0.87 261 4+ −0.09(4) −0.02(5) +6(2) or (−0.76(11))

1128.91? 0.20 539 6+

1716.95(6) 5− 336.21 0.51 1381 4+ 1.5

235.42 0.48 1482 5+

218.01 0.49 1499 5+

1743.06(5) 0+ 1663.54 0.69 80 2+ 0.91

479.71 0.22 1264 1−

1791.60(5) 2+ 1530.09 0.55 261 4+ < 2.7 +0.09(3) 0 E2

814.69 0.43 977 1−

750.02 1.05 1042 3−

528.13 m < 0.67 1264 1−

1793.60(5) 2− 816.45 0.31 977 1− < 2.2

606.52 1.40 1187 2+

528.13 m < 0.67 1265 3+

1814.25(12) 6− 332.65 0.115 1482 5+ < 0.2

314.9 < 0.08 1499 5+

1847.74(7) 1+ 870.74 m ∼ 0.70 977 1− ∼ 1.4

824.10 0.74 1024 2−
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Table 2. (Contd.)

Ei, keV Jπ
i Eγ , keV Iγ , arb. units Ef , keV Jπ

f Ps a2 a4 δ,ML

1856.40(5) 1− 1856.38 0.49 0 0+ ∼ 1.0

879.28 0.33 977 1−

832.97 m ∼ 0.10 1024 2−

670.0 0.099 1187 2+

592.87 − 1264 1−

1861.45(9) 3− 1782.03 0.30 80 2+ ∼ 1.3

884.7 0.138 977 1−

820.01 m ∼ 0.08 1042 3−

674.31 0.52 1187 2+

502.85 ∼ 0.27 1358 4+

1894.40(4) (2+) 1632.8 0.048 261 4+ ∼ 3.4

917.54 m? ∼ 0.68 977 1−

870.74 m ∼ 1.71 1024 2−

852.84 0.96 1042 3−

1894.93(8) 2− 1815.30 0.32 80 2+ ∼ 1.6

917.54 m? ∼ 0.66 977 1−

707.82 0.53 1187 2+

631.31 0.16 1264 1−

1901.49(11) 4+ 1640.4 0.113 261 4+ < 0.63

859.83 < 0.45 1042 3−

725.3 0.068 1176 5−

1917.00(11) (4, 5, 6)− 435.48 0.30 1482 5+ 0.50

417.90 0.20 1499 5+

1920.26(6) 4+ 539.58 1.05 1381 4+ 1.05 +0.35(4) +0.02(6) –0.02(9) (or
+1.08(17))

1930.21(6) 1+ 1930.9? 0.137 0 0+ 1.26

906.6 0.25 1024 2−

743.05 1.01 1187 2+ −0.05(3) 0.00(5) +0.17(15)

1941.50(16) 3+ 782.65 0.50 1159 4− 0.66

676.3 0.162 1265 3+

1952.3 (0)+ 688.74 m ∼ 0.50 1264 1− ∼ 0.5

1953.90(18) 4− 1692.46 0.26 261 4+ ∼ 1.1

795.0 0.27 1159 4−

688.74 m ∼ 0.57 1265 3+

455.1? 0.109 1499 5+

1957.28(9) 0+ 1877.76 0.40 80 2+ 0.40 −0.03(6) 0.00(10) E2
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Table 2. (Contd.)

Ei, keV Jπ
i Eγ , keV Iγ , arb. units Ef , keV Jπ

f Ps a2 a4 δ,ML

1964.24(8) 2+ 1884.64 0.31 80 2+ 1.31 +0.21(9) −0.01(15) –0.08(12) or
+2.9(+18,−9)

1703.0 0.100 261 4+

922.65 0.41 1042 3−

777.34 0.161 1187 2+

698.88 0.33 1265 3+

1978.01(12) 3− 936.1 0.057 1042 3− 0.54

790.97 0.35 1187 2+

619.4 0.134 1358 4+

2017.9(2) (5+) 518.55 ∼ 0.30 1499 5+ ∼ 0.3

301.1 < 0.08 1717 5−

2023.83(9) 1 2023.77 0.33 0 0+ 0.78 −0.08(7) −0.02(12) M1 or E1

1944.35 0.45 80 2+

2034.00(11) 3+ 1010.35 0.30 1024 2− 1.11

874.9 0.23 1159 4−

847.13? 0.23 1187 2+

768.60 0.58 1265 3+

2035.28(6) 2+ 2035.6 0.076 0 0+ 1.41?

1955.76 0.84 80 2+ +0.30(3) +0.03(5) +0.06(6) or
+2.0(3)

1774.44? 0.49 261 4+

2049.09(9) 2− 1024.93? 0.35 1024 2− 1.23?

1007.25 0.45 1042 3−

785.66 0.21 1264 1−

646.47? 0.22 1403 3−

2083.64(7) 2+ 887.51? 0.22 1196 0+ ∼ 1.16

820.01 m ∼ 0.59 1264 1−

680.85 0.35 1403 3−

2089.51(5) 3+ 2009.9 0.24 80 2+ 1.12 +0.26(15) −0.05(20) +0.45(20) or
+7(+70,−4)

902.38 0.88 1187 2+ +0.49(4) +0.09(5) +1.5(7)

2094.8(2) 4+ 2014.8 0.20 80 2+ 0.72 +0.35(17) −0.09(23) E2

1833.73 0.30 261 4+ +0.18(9) −0.02(13) –0.25(13) or
+1.8(6)

1052.9 0.22 1042 3−

2120.22(8) 2+, 3 2040.63 0.34 80 2+ 0.65 −0.22(8) −0.08(12)

1858.83 0.31 261 4+
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Table 2. (Contd.)

Ei, keV Jπ
i Eγ , keV Iγ , arb. units Ef , keV Jπ

f Ps a2 a4 δ,ML

2214.93(13) 1 2215.18 0.33 0 0+ 0.81 −0.07(10) 0 E1 orM1

2135.26 0.31 80 2+

1018.9 0.17 1196 0+

2215.44(9) (1, 2)+ 1028.31 0.38 1187 2+ 0.38

2221.80(9) 2−, 3− 1034.67 0.45 1187 2+ 0.45

2249.44(9) 1062.31 0.29 1187 2+ 0.29

2260.11(14) 2+ 2260.16 0.31 0 0+ 0.76 +0.35(11) −0.04(15) E2

2180.52 0.45 80 2+

2260.36(4)? 1218.77 0.47 1042 3− 0.47

2267.15(12) (1)2+ 2267.04 0.37 0 0+ 0.57 +0.09(9) +0.01(12)

2187.9 0.20 80 2+

2289.46(12) 1, 2+ 2289.14 0.33 0 0+ 0.49

2210.2 0.161 80 2+

2325.11(6) 1347.98 0.45 977 1− 0.45

2326.02(9) 2246.48 0.33 80 2+ 0.63

1060.64 0.30 1265 3+

2446.28(16) 2446.26 0.26 0 0+ 0.46

2366.8 0.20 80 2+

2450.72(12) 2+ 2450.70 0.37 0 0+ 0.37 +0.13(7) −0.02(13) E2

2564.88(18) 1(+) 2564.84 0.24 0 0+ 0.30 −0.09(8) 0 E1 orM1

2485.7 0.057 80 2+

2594.7(2) 2515.2 0.29 80 2+ 0.29

2600.2(3) 1(+) 2600.1 0.25 0 0+ 0.43 −0.04(8) 0 E1 orM1

2520.8 0.18 80 2+

2674.5(4) (1), 2+ 2674.8 0.17 0 0+ 0.35 +0.10(15) −0.10(25) (E2)

1697.3 0.030 977 1−

1650.8 0.149 1024 2−

2686.9(4) 1 2686.3 0.16 0 0+ 0.26 −0.09(9) 0.00(14) E1 orM1

2607.5 0.103 80 2+

2702.0(3) 2+ 2702.0 0.31 0 0+ 0.31 +0.10(7) −0.01(10) E2

2750.3(2) 1(2+) 2750.4 0.141 0 0+ 0.26 −0.05(20) 0

2670.2 0.122 80 2+

2805.1(3) 1 2805.1 0.14 0 0+ 0.18

1617.6? 0.043 1187 2+

2822.2(7) 1− 2822.8 0.063 0 0+ 0.21

2742.0 0.147 80 2+
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Table 2. (Contd.)

Ei, keV Jπ
i Eγ , keV Iγ , arb. units Ef , keV Jπ

f Ps a2 a4 δ,ML

2832.0(3) 1 2832.0 0.21 0 0+ 0.21 −0.11(13) 0 E1 orM1

2854.8(5) 1, 2+ 2854.6 0.125 0 0+ 0.22

2775.4 0.095 80 2+

2964.2(5) 2+ 2964.2 0.137 0 0+ 0.21 +0.11(16) −0.04(21) E2

2885.1 0.077 80 2+

3038.1(4) 1 3038.1 0.109 0 0+ 0.11

3059.9(6) 1, 2+ 3059.8 0.053 0 0+ 0.13

2980.4 0.077 80 2+

3065.0(5) 1, 2+ 3064.7 0.093 0 0+ 0.17

2986.0 0.074 80 2+
1407-keV level. For the 1145.35-keV transition,
we found that δ = +1.0 (2), which leads to αK =
0.0023. It is likely that, in the review article of
Helmer [1], this transition was assigned the E2 type
on the basis of the value of αK = 0.0018 (6) quoted in
[8]. For the E2 transition, it is expected that αK =
0.00177. The second value (δ ∼ 0) is ruled out by the
value of αK .

1499-keV level. From the data on Pγ for the
1237.60-keV gamma transition, it follows that |δ| >
1, which is consistent with the value of α (see [1]).

1517-keV level. In a study devoted to the
Coulomb excitation of 158Gd, the value of
δ = –1.6 (15) was obtained for the 1437.89-keV
transition; we found δ = –1.5 (4). That the con-
version coefficient is large suggests the presence
of an E0 transition. The lifetime of this level is
known, which makes it possible to find ρ (0) for the
1437.89-keV transition. That δ and P calc

γ have been
determined unambiguously is due to the proximity of
the experimental value of a2 to the minimum possible
value calculated for the δ ellipse.

1667-keV level. The angular distribution for the
1587.71-keV transition complies with that which is
expected for the (4+–2+) transition; therefore, this
level can be definitively assigned the spin–parity of
Jπ = 4+. The value of Pγ favors δ = +6 (2) for the
1405.84-keV transition, while the value of α (see [1])
suggests the presence of a contribution from an E0
transition. The second value of δ = −0.76 (11) is
given parenthetically.

1920-keV level. Of the two values of δ for the
539.58-keV transition, we have chosen the smaller
one, since the value of a4 favors it as the more prob-
able. This value is consistent with the M1 multipo-
larity, which follows from the data on the conversion
PH
ratio. However, a contribution from an E0 transition
can be expected for the transition being considered,
since the initial and the final state both haveKπ = 4+

(see [1]).

1957-keV level. An isotropic angular distribution
of 1877.76-keV photons and a relatively low popu-
lation of this level are consistent with the Jπ = 0+

assignment for it.

2024-keV level. The angular distribution of
2023.77-keV photons is at odds with the Jπ = 2+

assignment for this level, but it complies with J = 1.
2089-keV level. The spin–parity value of Jπ =

2+ was adopted in [1] for this level. The angular
distribution of 902.38-keV photons complies neither
with Jπ = 2+ nor with 4+ for this level. We assume
that Jπ = 3+.

2120-keV level. The value of a2 for the 2040.63-
keV transition rules out the assumption of Jπ = 4+

or 2− for the level being discussed.

2215-keV level. The angular distribution of
2215.18-keV photons does not comply with Jπ = 2+

for this level.
2260.1-keV level. The value of a2 for the

2260.16-keV transition is at odds with the spin
value of J = 1 for the level being considered. The
relationship between the intensities of the 2180.52-
and 1218.77-keV transitions that was found in our
previous study and which was quoted in [1] gives
sufficient grounds to assume that they proceed from
different levels. There are no strong arguments in
support of the introduction of a level at 2260.4 keV.

2451-keV level. The value of a2 for the 2450.70-
keV transition does not comply with the spin value of
J = 1 for this level.
YSICS OF ATOMIC NUCLEI Vol. 64 No. 7 2001
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Table 3. Results obtained by measuring the linear polarization of gamma rays from 158Gd

Eγ , keV Jπ
i Jπ

f

P calc
γ P

expt
γ Conclusions

a4 ∼ 0 |a4| > 0

780.16 3−1 4+
1 1.2 (2) Corresponds to E1

944.13 2−1 2+
1 0.56 (10) Corresponds to E1

962.08 3−1 2+
1 1.8 (+4, –3) Corresponds to E1

977.13 1−1 0+
1 1.36 (6) 1.5 (3) Corresponds to E1

998.47 2+
3 4+

1 1.30 (8) 1.3 (3) Corresponds to E2

1003.95 3+
1 4+

1 0.84 (2) 0.60 (1) 0.49 (13) |a4| > 0

1097.03 4+
2 4+

1 1.61 (6) 0.51 (1) 1.2 (+3, –2)

1107.63 2+
2 2+

1 2.00 (2) 0.81 (1) 0.88 (16) |a4| > 0

1116.47 0+
2 2+

1 1.00 (3) 0.94 (20)

1119.20 4+
3 4+

1 1.00 (13) 0.63 (8) 0.47 (10) |a4| > 0

1180.38 2+
3 2+

2 1.64 (4) 0.96 (3) 1.7 (+8, –5) a4 ∼ 0

1237.60 5+
2 4+

1 1.4 (+4, –3) |a4| > 0, |δ| > 1

1259.90 2+
3 0+

1 2.2 (2) 1.9 (+8, –5) Corresponds to E2

1263.58 1−2 0+
1 1.52 (6) 1.3 (3) Corresponds to E1

1323.44 3−2 2+
1 1.7 (2) 2.6(+13, –6) Corresponds to E1

1405.84 4+ 4+
1 1.70 (15) 0.59 (1) 0.7 (+6, –4) |a4| > 0

1437.89 2+
4 2+

1 1.3 (3) 1.9 (+9, –5)

1517.36 2+
4 0+

1 2.2 (3) 2.0(+19, –8) Corresponds to E2

Table 4. Some features of the gamma transitions in the deexcitation of theKπ = 0+
2 and 0+

3 levels

Ei, keV Eγ , keV Jπ
i K–Jπ

f K δ q2 ρ (0)

1260 1180.38 2+02–2+01 −0.70(7) 0.79(65) 0.055(23)

1517 1437.89 2+03–2+01 −1.5(4) 6.8(13) 0.44(6)

1407 1145.35 4+02–4+01 +1.0(2) ∼0.0 –

1667 1405.84 4+03–4+01 +6(2) 3.4(6) –
2565- and 2600-keV levels. The values of a2 for
the transitions from these levels to the ground state
support the J = 1 assignment.

2687- and 2832-keV levels. The angular dis-
tributions of photons that are associated with the
transitions to the ground state rule out the spin-parity
of Jπ = 2+, but they are consistent with J = 1.

2702- and 2964-keV levels. The values of a2
for the transitions to the ground state comply with
Jπ = 2+.

At energies above 2100 keV, we introduced only
a few previously unknown levels in Table 2 (those
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 7 200
at 2214.93, 2289.46, 2674.5, 2686.9, 2854.8, and
2964.2 keV), relying on the occurrence of gamma
transitions to the ground state and to the first 2+

level (with the exception of 2674.5-keV level). The
remaining levels in Table 2 at energies in excess of
2100 keV manifested themselves either through a
gamma transition in the (n, γ) reaction from a state
formed upon neutron capture or in the (γ, γ′), (d, p),
and (d, t) reactions. In such cases, we present our
version of the deexcitation of such levels. For the
levels at 2215.41, 2260.08, and 2326.28 keV, the
diagrams of deexcitation adopted in [1] are incorrect
1
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since they lead to unrealistically high populations Ps

of the levels in the reactions being studied.

4. DEEXCITATION OF THE Kπ = 2+
γ , 0+

2 ,
AND 0+

3 ROTATIONAL BANDS

In the sample of data that we obtained for multi-
pole mixtures, information about the deexcitation of
the levels that belong to the Kπ = 2+

γ , 0+
2 , and 0+

3

rotational bands is of particular interest. In [9], it
was found that, for the majority of even–even nuclei
where the number of neutrons is in the range 90 <
N < 110, the values of δ have the same sign for
the (2+2γ–2+01) and (4+2γ–4+01) transitions and
opposite signs for the (2+2γ–2+01) and (2+0β–2+01)
transitions. Here, the indices γ, β, and 1 correspond
to, respectively, gamma rotational bands, beta rota-
tional bands, and rotational bands built on the ground
state. For the 158Gd nucleus, we were unable to
establish the sign of δ for the (2+2γ–2+01) transition
(Eγ = 1107.63 keV). If, however, we assume that
it is identical to the analogous sign for the (4+2γ–
4+01) transition, the second rule of opposite signs is
satisfied for bothKπ = 0+

2 and 0+
3 bands.

Data on some features of gamma transitions from
the 2+ and 4+ levels of these bands are quoted in
Table 4. These include q2 = JK (E0) /JK (E2), the
ratio of the intensity of K electrons for the E0 tran-
sition to the intensity of K electrons for the E2 tran-
sition, and ρ (0), the reduced nuclear matrix element
for the E0 transition (see [10]). The value of ρ (0)
for the 1180.38-keV transition is close to that which
is expected for the deexcitation of the levels of the
gamma rotational band; this is due to the mixing of
PH
theKπ = 2+
γ and 0+

2 bands because of their proximity
in the excitation energy. For the 1437.89-keV transi-
tion, the value of ρ (0) corresponds to that which is
observed in the neighboring nuclei in the deexcitation
of the beta rotational band. For the 1145.35- and
1405.84-keV (4+–4+) transitions, the relationship
between the relevant values of q2 is similar to that
in (2+–2+) transitions. Unfortunately, the lifetimes
of the 1407- and 1667-keV levels are not known;
therefore, we do not quote the relevant values of ρ (0).
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Abstract—The asymmetryΣ in 236U and 238U photofission induced by linearly polarized photons obtained
by passing electrons through a silicon crystal under conditions close to the conditions of planar channeling
is measured. This asymmetry is found to depend on the mass of the nucleus. The measured asymmetry is
compared with data from other studies performed either with a polarized or an unpolarized photon beam.
It is shown that the asymmetry value cannot be explained by a dominant role of any of the dipole fission
channels, but that it is in accord with the currently prevalent idea that E1 transitions play the most impor-
tant part in the energy region under investigation. It is assumed that the asymmetry Σ is sensitive to the
relative height of the inner and the outer hump of the fission barrier, and this is manifested in the distinctions
between the asymmetry values for nuclei having the same Z. c© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION
The use of polarized photons in studying nuclear

fission opens new possibilities for exploring themech-
anism of the fission process and the structure of ex-
cited nuclear states. The first studies along these
lines were performed in Hessen [1, 2] and in Kharkov
[3]. The data from those experiments revealed that
the contributions of the electric-quadrupole and the
magnetic-dipole fission channel are not observed in
the photon-energy region studied there.

The present article reports on the results obtained
by experimentally studying 236U and 238U photofis-
sion induced by linearly polarized photons in the re-
gion of a giant dipole resonance. Our experiment was
performed at the LUE-2000 Kharkov linear electron
accelerator. A beam of polarized photons was formed
by passing 1200-MeV electrons through a silicon
crystal under conditions close to the conditions of
channeling. The silicon crystal was arranged in a
goniometer and was oriented with respect to the elec-
tron beam to a precision of 5 × 10−5 rad. The ori-
entation of the crystal was monitored by determining
the photon yield in the soft section of the spectrum
with the aid of an ionization chamber. The number
of electrons that had traversed the crystal was esti-
mated bymeasuring the current of secondary electron
emission in the crystal. The total photon flux was
measured by a quantameter. The degree of linear
polarization of the photon beam, Pγ , was determined
with a gas deuterium polarimeter by measuring the
yield of protons from the reaction �γd→ pn by a sil-
icon semiconductor detector. The recorded protons
1063-7788/01/6407-1269$21.00 c©
were interpreted as those that originate from direct
deuteron photodisintegration, and the photon energy
was reconstructed on the basis of this hypothesis.
Upon traversing the polarimeter, the photon beam hit
the nuclear target being investigated. The targets
were prepared in the form of 236U and 238U films 186
and 233 µg/cm2 thick, respectively, deposited onto
aluminum substrates of thickness 10 µm. Fission
fragment were recorded at an angle of 90◦ with re-
spect to the photon-beam direction by using a silicon
semiconductor detector of thickness 100 µm posi-
tioned at a distance of 35 mm from the target.

The amplitude spectra of the yield of protons from
the reaction �γd→ pn and of the fragments originat-
ing from the fission of 236U and 238U nuclei were
measured simultaneously for each of three positions
of the silicon crystal; that is, N‖ and N⊥ are the
yields for the photon-polarization-vector direction,
respectively, parallel and orthogonal to the reaction
plane, whileNp are the relevant yields for a disoriented
crystal.

From the amplitude spectra of the proton yields,
we deduced the quantity β =

(
N‖ +N⊥

)
/2Np, which

gives the ratio of the intensity of the radiation from
the oriented crystal to the intensity of the radiation
from the disoriented crystal. From the values of β,
we can see that, with increasing energy, the relative
yield of photons decreases sharply from 5.6 at 5 MeV,
approaching 1 at 18 MeV; that is, the photon spec-
trum from the oriented crystal is enriched in heavy
nuclei at energies in the region of the giant dipole
2001MAIK “Nauka/Interperiodica”
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Fig. 1. Result obtained by evaluating the convolution of
the cross sections for uranium-isotope photofission with
the photon spectrum used in the present experiment.

resonance. In order to eliminate the effect of photons
with energies above 18 MeV on the yield of reaction
products, we subtracted the yield of reaction products
for the disoriented crystal from the analogous yield
for the oriented crystal; that is, we obtained the result
only for the coherent part (β − 1)Nbr

γ of the photon
spectrum (Nbr

γ is the spectrum of photons from the
disoriented crystal). For a detailed description of
our experimental setup and of the procedure used
to process the results of our measurements, the
interested reader is referred to [3].

The majority of previous experiments devoted to
fission employed bremsstrahlung photons. The spec-
trum of the photons used in our experiment differs
from the bremsstrahlung spectrum. In order to take
into account special features of the spectrum of the
polarized photons that we obtained and to determine
the region of nuclear excitation energies, we evaluated
the convolution of the polarized-photon spectrum
with the cross sections for 236U and 238U fission. The
results are presented in Fig. 1. The cross sections
for 236U and 238U fission were taken from [4]. From
P

Fig. 1, it can be seen that we have investigated the
photofission process in the energy region of the giant
dipole resonance andmeasured its major part up to an
energy of 18 MeV.

The theoretical formalism developed in [1, 5] for
describing the fission process makes it possible to
relate, provided that the multipole structure of photon
interaction with a nucleus is known, the asymmetry
in fission induced by polarized photons to the co-
efficients in the angular distribution of fission frag-
ments from measurements with unpolarized photons.
Previous investigations into the fission of the nu-
clei being discussed revealed the dominant role of
E1 transitions in the energy region around the giant
dipole resonance. The contribution of theE2 andM1
components that was discovered in [6, 7] is much less
than the E1 contribution.

In theE1 approximation, the asymmetry in fission
has the form

Σ = b/ (a+ b) (1)

with
σ (θ) = a+ b sin2 θ. (2)

The coefficients a and b can be expressed in terms
of the cross sections σ (Jπ,K) for the excitation of
nuclear states characterized by fixed values of the fol-
lowing quantum numbers: J , the spin of a compound
nucleus; π, its parity; andK, the projection of J onto
the symmetry axis of the nucleus. Specifically, we
have

a =
3
2
σ
(
1−,±1

)
, (3)

b =
3
4
σ
(
1−, 0

)
− 3

4
σ
(
1−,±1

)
.

If there is only one state in the energy region being
studied, the asymmetry has an excitation-energy-
independent value:

Σ
(
1−, 0

)
= 1, (4)

Σ
(
1−,±1

)
= −1.

2. ASYMMETRY Σ OF 236U PHOTOFISSION

The value that we obtained for the asymmetry
in 236U fission; the result presented in [2]; and the
asymmetry values from [8], which were rescaled from
the coefficients a and b, are displayed in Fig. 2
versus themaximum energyEmax

γ in the photon spec-
trum. The value of the asymmetry Σ according to [2]
was obtained on the basis of the polarization degree
quoted in [1]. The result of our measurements for
the asymmetry Σ is given at the energy of Emax

γ =
18 MeV.

From Fig. 2, it can be seen that neither the (1−,
0) nor the (1−,±1) state is dominant in the region
HYSICS OF ATOMIC NUCLEI Vol. 64 No. 7 2001
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Fig. 2. Asymmetry in 236U fission: (•) data from [2], (�)
data from [8], and (�) data from our present study.

of the giant dipole resonance. The asymmetry in the
fission process from [2] and our result have the same
sign, but the former is much greater in magnitude.
This may be due to a dominant role of the (1−, 0)
state at low energies. With increasing Emax

γ , the
contribution of the (1−,±1) state increases and the
coefficient b (or the ratio b/a) tends to zero (the an-
gular distribution of fission fragments becomes ever
more isotropic), with the result that the asymmetry
decreases. The measurements in [8] were performed
in the region closest to ours. There, the ratio b/a
decreases with increasing energy, approaching zero
atEmax

γ = 14MeV; it follows from expression (1) that
the asymmetry will also tend to zero in this case. Our
value of the asymmetry Σ complies with the behavior
of the asymmetry deduced from the data presented in
[8], but it should be borne in mind that the value that
we obtained still differs from zero; that is, the angular
distribution of fission fragments must not be isotropic
in the region of the giant dipole resonance.

3. ASYMMETRY Σ IN 238U PHOTOFISSION

Figure 3 shows the result of our measurements
for the asymmetry in 238U fission and the values of
Σ that were obtained from the coefficients a and b
for various Emax

γ values under the assumption of the
E1 transition. Presented here is the entire body
of currently available data corresponding to Emax

γ in
excess of 12 MeV, with the exception of data from [9],
which were taken at Emax

γ = 12.01 and 14.02 MeV
and which agree, within the experimental errors, with
the values displayed in Fig. 3. In order to obtain a
clearer graphical representation, the value based on
the data from [12] at Emax

γ = 20 MeV is shifted by
0.3 MeV. Our experimental value of the asymmetry
Σ is shown at Emax

γ = 18 MeV.
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 7 200
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In just the same way as for 236U, the measured
value of Σ differs markedly from the value of Σ for any
dipole channel of fission [(1−, 0) or (1−,±0)].

From a comparison of the results of our measure-
ments with the data obtained by means of rescaling
from the coefficients a and b, it can be seen that, al-
though themeasurements of the angular distributions
were performed by different experimental groups who
used photon spectra somewhat different from that
in our experiment, the results of these calculations
comply with the data from a direct measurement of
the asymmetry. Thus, the new experimental data on
the asymmetry Σ of the cross section do not show de-
viations from the pattern based on the E1 transition.

4. MASS DEPENDENCE OF ASYMMETRY

The asymmetry values obtained in our experi-
ments for the even–even nuclei 236U and 238U and
previously for 232Th [3] markedly differ from one an-
other. In Fig. 4a, the results of our measurements
for the asymmetry Σ are plotted versus the nuclear
mass number A. It can be seen that the asymmetry
decreases with increasing A.

Since, for all three elements, the numerical value of
asymmetry is described well, within the experimental
errors, in terms of the coefficients a and b under the
assumption of the E1 transition, it would be of inter-
est to analyze the behavior of the asymmetry rescaled
from these coefficients as a function of the nuclear
mass number A near the fission threshold, where
the errors are much less than those in the available
experimental data around Emax

γ = 20 MeV. In order
to rule out systematic effects that could be different
in different experiments, it is advisable to compare
data obtained for the coefficients a and b by the same
experimental group. For Emax

γ = 7 MeV, Fig. 4b dis-
plays the asymmetry Σ as a function of A according
to our calculations on the basis of data from [13, 14].
1
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If there were no data for this Emax
γ value, the required

result was obtained by means of a linear interpolation
between the two neighboring values of Emax

γ . From
Fig. 4b, it can be seen that the rescaled asymmetry
values have a pronounced dependence on the nuclear
charge, but they show virtually no variations in re-
sponse to changes in the number N of neutrons for
nuclei with the same Z. Such a dependence is a
corollary of the well-known effect that manifests itself
as an anomaly in the angular distribution of fission
fragments and which stems from the Z dependence
of the relative height of the inner and the outer fission
barrier (see, for example, [15]).

The accuracy in the asymmetry value that we
obtained is much higher than the accuracy of the
rescaled data in the close region of Emax

γ . The asym-
metries for 236U and 238U differ by three standard de-
viations, and it is highly improbable that this distinc-
tion is accidental. That the asymmetry depends not
only on Z but also onN suggests either the presence
of the contribution in it from multipoles other than
E1 (for example, E2 or M1) or a high sensitivity of
measurements like that described here to the relative
height of the humps in the fission barrier (and the
latter is observed in our experiment for nuclei with
identical Z).

5. CONCLUSION

Our measurements of the asymmetry Σ of the
cross sections for 236U and 238U fission induced by
polarized photons in the region of the giant dipole
resonance have revealed (as previously for 232Th [3])
P

that the fission cross section is sensitive to the direc-
tion of the photon-polarization vector. The resulting
value of the asymmetry cannot be explained by a
dominant role of any channel, (1−, 0) or (1−,±1),
but it corresponds to modern concepts according to
which the E1 transition prevails in the energy region
being studied.

The asymmetry in the fission process has been
found to depend on the nuclear mass. The existence
of this dependence cannot be explained on the basis
of the E1 transition and available experimental data
obtained with an unpolarized-photon beam. In this
connection, it would be of great interest to perform a
systematic investigation of the asymmetry as a func-
tion of nuclear mass for even–even nuclei, especially
in the region closer to the threshold.
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Abstract—Within the Glauber–Sitenko approach, a procedure for calculating cross sections for
intermediate-energy heavy-ion reactions is developed by using the analytic form of the eikonal phase for
the symmetrized Woods–Saxon potential. The differential and total cross sections obtained on this basis
comply well with the results derived by numerically solving the wave equation. A clear and instructive
model of the phase is constructed, which makes it possible to separate, in total reaction cross sections, the
contributions of the internal and the peripheral region of interaction. It is found that the nuclear surface
plays an important role in the formation of reaction cross sections, and the effect of the Coulomb field on
these cross sections is investigated. The origin of a continuous ambiguity in optical potentials is revealed
in interpreting total cross sections. c© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Interest in investigations into total cross sections
for heavy-ion reactions at energies E ranging from a
few tens of MeV to 1 GeV per nucleon is provoked
both by the fundamental problem of the mechanism
of nuclear interaction and by applied problems—for
example, the problem of transmutation of nuclear
wastes (see [1]). Under such conditions, where E �
U , kR � 1 (U is the potential of nuclear interaction
with a characteristic radius R, and k is the momen-
tum of the relative motion of the nuclei involved), the
cross sections can be calculated within the Glauber–
Sitenko approach [2, 3]; that is,

σR = 2π

∞∫
0

db b (1− e−2Im ΦN ), (1.1)

where b is the impact parameter andΦN is the nuclear
component of the total eikonal phase

Φ(b) = − 1
�v

∞∫
−∞

dz U(
√
b2 + z2) = −U0

�v
I(b),

(1.2)

which is expressed in terms of the profile integral

I(b) =

∞∫
−∞

dz u(
√
b2 + z2). (1.3)

1)Institute of Atomic Energy, Otwock-Swierk, Poland, and
Warsaw University of Technolgy, Warsaw, Poland.
1063-7788/01/6407-1273$21.00 c©
Here, U0 = V0 + iW0, where V0 andW0 are the depth
parameters of, respectively, the real and the imaginary
part of the optical potential, and u(r) is its spatial
distribution. Integration in (1.3) is performed along
the trajectory of motion—more specifically, along the
z axis that is chosen to be aligned with the projectile
momentum ki.

In general, heavy-ion optical potentials are ob-
tained by fitting the differential cross sections for
elastic scattering and total cross sections at a given
collision energy to experimental data. Their energy
dependence can be established if the phase Φ(b) is
calculated in the approximation of multiple diffractive
scattering, where it is expressed in terms of the total
cross section σNN (E) for nucleon–nucleon scatter-
ing, a quantity whose energy dependence is known.
In this approximation, we can also determine the
impact-parameter (b) dependence of the phase by
taking the convolution of the distributions of nucleons
in the projectile and in the target nucleus (ρp and
ρt, respectively); eventually, this requires evaluating
profile integrals that belong to the type in Eq. (1.3)
and which involve the function ρ(

√
b2 + z2) in the

integrand.

As a rule, such calculations rely on Gaussian
distributions, since this makes it possible to obtain
analytic expressions for total cross sections (see, for
example, [4–6]). However, Gaussian distributions of
potentials and densities are adequate to the purpose
predominantly for light nuclei—in medium-mass and
heavy nuclei, the relevant distributions are quite ex-
tended. Most often, these are the Fermi functions
2001MAIK “Nauka/Interperiodica”
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uF(r), but their emergence leads to serious mathe-
matical and computational difficulties. Sometimes,
they can be overcome by representing uF(r) as the
sum of Gaussian functions [7]

uF(r,R, a) =
1

1 + exp[(r −R)/a]
(1.4)

=
N∑

n=1

cn exp
(
− r2

d2
n

)
,

which yields

IF(b) =

∞∫
−∞

dz

1 + exp[(
√
b2 + z2 −R)/a]

(1.5)

=
N∑

n=1

√
π cn dn exp

(
− b2

d2
n

)
.

Here, the quantities cn, dn, and N are fitted to a
preset form of uF(r); for each set of specific values of
the radius R and the diffuseness parameter a in the
Fermi function (1.4), such a fit must be constructed
anew. Alternatively, Shepard and Rost [8] proposed
to represent the function in (1.3) as

IF(b) = 2R− 2πia
∞∑

p=1,3,5...

{
b+p

λ
(+)
p

+
b−p

λ
(−)
p

}
, (1.6)

where b±p = R± iπap, p = 1, 3, 5, ... are the poles

of the function uF(b) and λ
(±)
p = (b±p

2 − b2)1/2 and

where the condition Imλ
(±)
p ≥ 0 must be satisfied.

Retaining, in expression (1.6), a few tens of the terms
in the sum, we can reproduce the behavior of the
function IF(b) in the region of b from zero to values
slightly exceeding the radius R. At larger values of b,
however, a correct exponential decay of IF(b) cannot
be obtained even with a few hundred terms.

In order to calculate total reaction cross sections,
we propose here to use a different, rather simple, ana-
lytic expression that can represent the profile integral
(1.3) and which was obtained in [9] for a realistic dis-
tribution in the form of the symmetrized Fermi func-
tion uSF. This expression faithfully reproduces the
exact behavior of the above function over the entire
region of real b values and retains the aforementioned
pole singularities at b = b±p . The differential cross
sections computed in [10] on this basis proved to be
in agreement with the results obtained by numerically
solving the wave equation.

The ensuing exposition is organized as follows. In
Section 2, we show that the same expression can be
used to calculate total cross sections. In Section 3,
we construct a clear and instructive model for ana-
lytically calculating total reaction cross sections that
makes it possible to separate the contributions from
PH
the internal and the peripheral region of interaction,
to trace the mechanism through which the Coulomb
field affects the distribution of these contributions,
and to study the nuclear-transparency effect. In the
last section, we indicate one of the factors that can be
responsible for the ambiguity of the optical potentials
used in a fit to experimental data and draw general
conclusions.

2. EIKONAL PHASE
FOR THE SYMMETRIZED FERMI

FUNCTION AND CALCULATION OF TOTAL
REACTION CROSS SECTIONS

The spatial distribution of an extended Woods–
Saxon potential, which is very popular in nuclear
physics, corresponds to the behavior of the Fermi
function uF(r) as given by (1.4). However, it is more
justifiable to use its symmetrized form

uSF(r) =
sinh(R/a)

cosh(R/a) + cosh(r/a)
= uF(r)− δ(r),

(2.1)

where

δ(r) =
exp(−R/a)

exp(r/a) + exp(−R/a) . (2.2)

Indeed, the potential in (2.1) has ever more often
taken the place of uF since the studies reported in [11,
12] and devoted to calculating nuclear form factors.
For R � a, in which case we have δ(r)� 1, the
functions uF(r) and uSF(r) nearly coincide in the
region r ≥ 0—that is, they can be used with the same
degree of reliability to parametrize the distributions of
matter in medium-mass and heavy nuclei and to con-
struct nucleus–nucleus potentials. However, these
forms are markedly different for light nuclei, which
have a highly developed surface (a � R). Strictly
speaking, a parametrization of the distributions in
terms of a conventional Fermi function is inappro-
priate from the physical point view, since uF has
a nonzero derivative at the center of the nucleus,
u′F(0) 	= 0, whereas u′SF(0) = 0. Because of the same
flaw in the Fermi function, the use of it in the complex
plane in calculating scattering amplitudes involves
serious problems: for some integrals, it is difficult to
obtain explicit expressions with it (see, for example,
[13, 14]). At the same time, it was with the function
uSF that a fairly accurate explicit expression was ob-
tained in [9] for the profile integral, and this expression
will be used below. Inserting (2.1) into (1.3) and
making the substitutions ζ = z/a, β = b/R, andC =
R/a, we represent the profile integral in the more
convenient form

I(b) ≡ I(βR) = 2RI(β), (2.3)
YSICS OF ATOMIC NUCLEI Vol. 64 No. 7 2001
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I(β) = 1
C

∞∫
0

sinhC dζ

coshC + cosh
√
(βC)2 + ζ2

(2.4)

= uSF(β)P (β,C).

It turns out that, here, the impact-parameter or the
β dependence is determined primarily by the sym-
metrized Fermi function

uSF(β) =
sinhC

coshC + cosh βC
(2.5)

and that the second, correcting, function P (β,C)
depends only slightly on β at a fixed value of C. For
this function, it is possible to obtain the compact
expression [9]

P (β,C) � Pa(x) =
1
C
ln(4/x), (2.6)

where

x(β,C) =
2
κ

1

1 +
coshC
cosh βC

{
1 +

κ− 1
cosh βC

}
. (2.7)

Here, the parameter κ is related to C and is given by

log κ = 0.47909 + 0.15025C − 0.001938C2. (2.8)

This expression was deduced in [9] by fitting the
results obtained by calculating the integral I(β) ac-
cording to an approximate analytic expression [right-
hand side of (2.4)] to precise values of this integral
that result from a numerical integration with a mesh
of the parameters β and C from the region of their
typical physical values that is specified by the inequal-
ities 0 < β < 2 and 5 ≤ C ≤ 20. We consider that,
for heavy ions, the main contribution comes from the
region of the nuclear surface; that is, b = R or β = 1.
We then have x � 1/κ, and the correcting function
assumes the simple form

Pa(1, C) �
1
C
ln 4κ (2.9)
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 7 200
=
1
C

[
2.489453 + 0.34597C − 0.0046C2

]
. (2.10)

The corresponding nuclear phase becomes

ΦN (b) = −2RU0

�v

sinh(R/a)
cosh(R/a) + cosh(b/a)

Pa(1, C).

From Fig. 1, it can be seen that the profile in-
tegrals calculated for various combinations of col-
liding nuclei by using the analytic formula (2.6) for
Pa(β,C) show nearly the same behavior in the most
important impact-parameter region 0 ≤ b ≤ 2R. The
agreement is somewhat poorer for Pa(1, C). This is
noticeable, however, only for b < R in the strong-
absorption region, and it will be shown below that
such a distinction affects only slightly the behavior of
the cross sections. The C = R/a values indicated in
the figure correspond to the geometric parameters of
the Fermi distributions for the Woods–Saxon poten-
tials fitted to experimental data in [15, 16]. In order
to assess the degree to which the analytic expres-
sions for nuclear eikonal phases make it possible to
reproduce the differential cross sections obtained by
numerically solving the wave equation, we will draw
a relevant comparison. Within the Glauber–Sitenko
approach [2, 3], the scattering amplitude has the form

f(q) = ik

∞∫
0

db bJ0(qb) (1− eiΦN+iΦc),

q <
√
2k/R. (2.11)

A feature peculiar to nucleus–nucleus scattering
is that Coulomb interaction plays an important role
here. As a rule, it is legitimate to use the explicit
expression for the eikonal Coulomb phase Φc for the
potential generated by a uniform charge distribution
over a sphere of radiusRu, in which case this phase is
given by
Φuc(b) =



2η

[
ln(kRu) + ln

(
1 +

√
1− b2

R2
u

)
− 1

3

√
1− b2

R2
u

(
4− b2

R2
u

)]
, b ≤ Ru

Φpc(b), b > Ru,


 , (2.12)
where η = Z1Z2e
2/�v is the Sommerfeld parameter

and Φpc(b) = 2η ln(kb) is the eikonal phase shift for
scattering in the field of a pointlike charge. It follows
that, as soon as the Coulomb phases are included
in the scattering amplitude (2.11), divergent terms
of the form exp(2ηi ln(kb)) generate the problem of
integration at large distances. This problem can be
sidestepped by adding and subtracting, in the paren-
thetical factor of the integrand on the right-hand side
of (2.11), the eikonal function for a pointlike charge,
exp(iΦpc). We then obtain

f(q) = fpc(q) (2.13)

+ ik

∞∫
0

db bJ0(qb) eiΦpc

(
1− eiΦN+iδΦuc

)
,

where the quantity δΦuc = Φuc − Φpc added to the
nuclear phase no longer involves a logarithmic term
at large b, while ΦN (b → ∞) = 0. The quantity
1
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Fig. 1. Comparison of precise (solid curves) and approximate profile functions calculated with the correcting functions
Pa(β, C) (2.6) (boxes) and Pa(1, C) (2.9) (dashed curves) for symmetrized Fermi functions.
fpc(q) that represents the amplitude for scattering by
a pointlike charge and which now appears as a sepa-
rate term in (2.13) is known in the explicit form [2]

fpc(q) = −ik
∞∫
0

db b1+2iηJ0(qb) (2.14)

= −2kη
q2

e−2iη ln(q/2k)+2i arg Γ(1+iη).

This is the way in which one can solve the problem
of numerically integrating the scattering amplitude at
high energies in the presence of the Coulomb phase.

In the case of heavy-ion scattering, one has to
make yet another modification to the amplitude in
(2.11), because the original trajectory deflects from
a straight line in the field of a long-range Coulomb
potential. This distortion effect can be taken into
account [17] by adding, to the momentum transfer q
in (2.11), the momentum qc = 2k sin(θc(b)/2), where
θc is the angle of deflection of the trajectory in the
Coulomb field. But if use is made of the transformed
amplitude (2.13), one must here merely replace, in
the nuclear eikonal, the impact parameter b in the
asymptotic region by bc in the region where the nuclei
involved come into contact and the probability flux v
by (b/bc)v [18]. The quantity

bc = ā+
√
b2 + ā2, (2.15)

where ā = η/k = (Rc/2)(Uc(Rc)/E) is half the dis-
tance of the closest approach of the nuclei in the
Coulomb field at b = 0, while Uc = Z1Z2e

2/Rc is the
potential of interaction between the charges Z1e and
Z2e occurring at a distance of about the characteristic
radius Rc of the charged system being considered.

By way of example, the calculated differential cross
sections for 12,13С and 16О scattering on some nuclei
are shown in Fig. 2 at various energies. Relevant
experimental data were borrowed from [15, 16, 19].
P

Also presented in this figure are theoretical curves
that were obtained by fitting numerical solutions of
the wave equation with the Woods–Saxon optical
potential to experimental points. The relevant values
of the potential parameters are used in our ensuing
calculations based on the approach proposed here. It
can be seen that the Glauber–Sitenko approach em-
ploying analytic eikonal phases provides fairly good
agreement with experimental data. Here, one can use
(see 12C+ 12Cand 16O+ 40Ca cross sections) either
the Pa(β,C) [Eq. (2.6)] or the Pa(1, C) [Eq. (2.9)]
approximation (solid or dashed curves, respectively).
For 13C + 208Pb interactions at E = 390 MeV, we
also present (dashed curve) the results of the cal-
culations performed without taking into account the
Coulomb distortion of the trajectory. It can be seen
that the inclusion of this distortion is of importance
in this case, but that this has virtually no effect on
the result in the other two cases considered here. As
might have been expected, such distortions manifest
themselves in scattering on heavier nuclei and at
comparatively low energies; otherwise, their effect is
insignificant.

In Table 1, the results of our calculations of the
total reaction cross sections by formula (1.1) with
the analytic phases of nuclear eikonals are contrasted
against the results of precise calculations on the basis
of numerical solutions to the wave equation [15, 16].
It should be borne in mind that the precise calcu-
lations employed the Woods–Saxon potential, while
our calculations relied on its symmetrized analog,
these two potential types being markedly different for
light 12C+ 12C systems. Yet another distinction is
that the precise calculations take automatically into
account the effect of both the real and the imaginary
part of the optical potential, and not only of the lat-
ter as in the high-energy approximation specified by
Eq. (1.1). Nonetheless, the distinction between the
HYSICS OF ATOMIC NUCLEI Vol. 64 No. 7 2001
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Fig. 2.Differential cross sections for heavy-ion scattering. Experimental data are represented by boxes. The theoretical results
in the left and the middle panel were calculated with analytic phases by using Pa(β, C) (solid curve) and Pa(1, C) (dashed
curves). The dashed curve in the right panel was computed without allowing for the Coulomb distortion of the trajectory.
results does not exceed 1% of the cross-section val-
ues for all cases considered here, with the exception
of 12C+ 12C interaction at 360 MeV, where it is 9%,
which is due to the enhanced role of the real part of
the potential at this comparatively low energy.

3. POLYGONAL-TRAPEZOID MODEL
AND REACTION CROSS SECTION

In the preceding section, we have shown that
the eikonal nuclear phase with the profile integral
(2.4) in the form of the symmetrized Fermi distri-
bution uSF(b) describes fairly well the differential
cross sections for scattering and total reaction cross
sections. The form of this function is such that the
surface of radius R, where uSF(R) � 1/2 and where
the derivative of this function is u′SF(R) = −1/4a, is
singled out explicitly in it; therefore, it falls off over a
distance of 4a from a value of uSF(b < R− 2a) � 1
to uSF(b > R+ 2a) = 0. One can approximate this
form by a conventional trapezoid (see, for example,
[20]) and obtain an analytic expression for the total
reaction cross section (1.1). However, this model is
overly rough for heavy-ion reactions, since it does
not take into account smoother variations in the
function uSF in the region b < R2 = R− a and in
the region b > R3 = R+ a. This drawback can be
remedied by introducing additional cusps at the ends
of these regions and by setting the slopes of sides in
the corresponding sections to u′SF(R1 < b < R2) =
−1/2a and u′SF(R3 < b < R4(5)) = −1/2a(−1/3a)
(see Fig. 3), where R1 = R− 3a and R4(5) = R+
3a(4a). On the basis of this model, we will present
the required calculations and a perform a comparison
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 7 200
with the results of precise computations and an
analysis of experimental data.

The total cross section (1.1) will be given in the
approximation where expression (2.10) is taken for
the eikonal nuclear phase and where effects asso-
ciated with the distortion of the trajectory by the
Coulomb field are taken into account through the
above substitutions b → bc(b) and v → (b/bc)v �
[1− Uc(Rc)/E]1/2v, with bc being represented in the
form (2.15). Transforming bdb = (bc − ā)dbc on the
basis of (2.15), we then obtain

σR = 2π

∞∫
0

db b
(
1− T̃ (bc)

)
(3.1)

= 2π

∞∫
2ā

dbc (bc − ā)
(
1− T̃ (bc)

)
,

where the transparency function is defined as
T̃ (bc) = e−χ(bc)

=
(
T̃0

)uSF(bc)
, T̃0 = e−χ̃0 , (3.2)

χ̃0 � χ0√
1− Uc(Rc)/E

, χ0 =
4RW0

�v
Pa(1, C).

The symmetrized Fermi function is now approxi-
mated by a polygonal trapezoid as uSF(b) � ubt(b),

ubt = Θ(R1 − b) +
∑

n=2,3,4(5)

u
(n)
bt (b). (3.3)

Here, each of the three sections in the surface region
is specified by the function

u
(n)
bt =

[
An +

1
an
(Rk(n) − b)

]
Θ(Rn (3.4)
1
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Table 1. Total cross sections for heavy-ion reactions in
the Glauber–Sitenko approach, along with the results of
precise calculations from [15, 16, 19]

Reaction Elab, MeV σappr
R (SF), mb σprecise

R (F), mb

16O+40Ca 1503 1983 1996
16O+90Zr 1503 2711 2749
16O+208Pb 1503 3614 3602
13C+208Pb 390 2868 2898
12C+12C 1016 1093 1040
12C+12C 360 1147 1258

− b)Θ(b−Rk(n)),

where

An =
6− n− δn,4

4
, an = 4(n − 2 + 2δn,2)a,

(3.5)

n = 2, ..., 5;

Rp = R+ (2p − 5− δp,5)a, p = 1, ..., 5; (3.6)

k(n) = n− 1− δn,5, n = 2, ..., 5.

Substituting (3.3) into (3.2) and then into (3.1)
and introducing the width of each of the sections,
∆n = Rn −Rk(n) = (2 + δn,5)a, n = 2, ..., 5,

(3.7)

we find, after an elementary integration, that

σR = πR2
1

[
1− 2ā

R1

] (
1− T̃0

)
(3.8)

+
∑

n=2,3,4(5)

{
2π∆nRk(n)Ck(n) + π∆2

n

− 2π
anRk(n)Ck(n)

χ̃0
T̃

An−∆n/an

0

×
[
1− ∆n

Rk(n)Ck(n)
− T̃

∆n/an

0

+
an

Rk(n)Ck(n)

1
χ̃0

(
1− T̃

∆n/an

0

)]}
,

where

Ck(n) = 1−
ā

Rk(n)
= 1− 1

2
Rc

Rk(n)

Uc(Rc)
E

(3.9)

is a factor that appears along with other modifications
in (3.1) and (3.2) owing to taking into account the
Coulomb distortion.

In the absence of a Coulomb field, we have η = 0
and ā = 0; we must then make the substitution
PH
Ck(n) = 1 in (3.8) and consider that T̃ → T0 =
exp(−χ0). As a result, we obtain

σR = πR2
1 (1− T0) +

∑
n=2,3,4(5)

{
2π∆nRk(n) (3.10)

+ π∆2
n − 2π

anRk(n)

χ0
T

An−∆n/an

0

[
1

− ∆n

Rk(n)
− T

∆n/an

0 +
an

Rk(n)

1
χ0

(
1− T

∆n/an

0

)]}
.

As a rule, the parameters of the potentials in
intermediate-energy heavy-ion collisions are such
that χ0 � 1 and T0 � 1 (strong absorption in the
interior of the nuclei involved). For a rough estimate
of the relevant cross sections, we can make use of the
expression

σR � πR2
1 +

∑
n=2,3,4(5)

(
2π∆nRk(n) + π∆2

n

)
,

(3.11)

which represents, as might have been expected, the
sum of the area of the internal region of a circle of
radiusR1 = R− 3a and the areas of the external rings
having a total width of 6a to 7a.

The calculated total cross sections for the reac-
tions induced by collisions of 16O projectile nuclei
with 40Ca, 90Zr, and 208Pb target nuclei are com-
piled in Table 2, where the contributions from indi-
vidual regions of interaction are singled out in ac-
cordance with the values of the impact parameter b
that are given in Fig. 3 for the polygonal trapezoidal
model. The results are quoted for three models of
the distribution of the imaginary part of the optical
potential: the symmetrized Fermi function (SF); a
polygonal-trapezoid (PT); and a step, which is repre-
sented by a uniform distribution (U) of radius Ru =
R[1 + (7/3)(πa/R)2 ]1/2 and which is equivalent to
the SF form. In all cases, the calculations were
performed with (+C) and without allowance for the
Coulomb distortion of the trajectory. The kinetic
energy of projectile nuclei, E = 94MeV per nucleon,
and the values of the parameters R and a were taken
to be identical to those in [19], where the cross sec-
tions were calculated on the basis of numerical so-
lutions to the wave equation with the Woods–Saxon
potential (F distribution). These cross sections are
quoted in Table 1 and are equal to 1996, 2749, and
3602 mb for 40Ca, 90Zr, and 208Pb target nuclei,
respectively. From a comparison of the precise values
and the results of the calculations performed in the
Glauber–Sitenko approach (see Table 2), we can
conclude that the square-well model (U distribution),
which is sometimes used to analyze experimental
data (see, for example, [6]), is very rough. Indeed,
YSICS OF ATOMIC NUCLEI Vol. 64 No. 7 2001
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Table 2. Distribution of the contributions to the cross sections from the internal and the peripheral region in various
models with andwithout allowance for the Coulombdistortion of the trajectory (partition of the contributions into sections
I–V are given in Fig. 3)

Target Model I II III IV (V) (R5,∞) σR, mb
40Ca SF 517.7 425.5 538.4 462.5 (494.9) 59.8 2036.3

SF+C 517.7 425.4 533.3 382.4 (454.6) 51.7 1982.7

PT 517.7 425.5 537.5 407.1 (590.3) 2050.9

PT+C 517.7 425.5 531.8 465.5 (549.2) 2025.3

U 517.5 424.8 528.3 13.4 (13.4) 1530.7

U +C 517.5 424.9 537.5 50.8 (50.8) 1484.0
90Zr SF 568.3 500.7 657.3 707.9 (917.2) 172.8 2816.8

SF+C 568.3 500.7 656.8 667.7 (845.1) 139.9 2710.8

PT 568.3 500.7 657.2 770.6 (1008.5) 2734.7

PT+C 568.3 500.7 656.7 749.1 (934.7) 2660.4

U 568.3 500.7 656.2 96.6 (96.6) 1821.8

U +C 568.3 500.7 655.3 13.9 (13.8) 1738.1
208Pb SF 1495.2 687.2 805.7 634.2 (765.3) 95.6 3849.0

SF+C 1495.2 687.2 783.9 500.9 (587.5) 60.2 3614.1

PT 1495.2 687.2 804.7 737.6 (899.6) 3886.8

PT+C 1495.2 687.2 784.5 634.8 (683.4) 3650.3

U 1495.0 686.1 715.9 2897.0

U+C 1495.0 685.2 513.0 2693.1
the calculations based on the realistic SF model and
the polygonal-trapezoid (PT) model reveal that the
contributions to the total cross section from the in-
ner and the outer region of interaction, which are
by convention separated by the value of b = R, are
approximately equal to each other. This indicates that
the specific form of potential in the surface region of
colliding nuclei plays an important role in the for-
mation of the total reaction cross section. Owing to
its simplicity, the trapezoid model makes it possible
to visualize the mechanism of addition of the cross
sections from different segments in the interaction-
surface region. As to the Coulomb distortion of the
trajectory, it also manifests itself predominantly in the
peripheral region, and the inclusion of this effect in
the computational scheme reduces the cross section
by about 20% for the heavy target nucleus 208Pb and
by 10% for the interaction with medium-mass nuclei.
It is clear that, with decreasing collision energy, the
deflection of Coulomb trajectories from the region
where the nuclei involved would come into contact
becomes more pronounced; therefore, the reaction
cross section decreases faster.
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 7 200
4. AMBIGUITY OF THE POTENTIAL
AND CONCLUSIONS

Yet another advantage of our analytic approach is
that it enables us to obtain deeper insight into the
mechanism behind the manifestation of the so-called
continuous ambiguity in the choice of potential pa-
rameters. This ambiguity is associated with the fact
that, because of strong absorption in the interior of the
nucleus, a fit to experimental data is determined pri-
marily by the peripheral region of interaction [21]. For
the first time, this was demonstrated by Igo [22], who
employed, in calculating the cross sections for the
scattering of fast alpha particles by nuclei, the expo-
nential potential [U exp(R/a)] exp(−r/a) instead of
theWoods–Saxon potential. Although these two po-
tentials coincide only for r � R—they are markedly
different in the nuclear interior—a sample of data
on the differential cross sections could be explained
with the above exponential potential by varying, in
it, the parameter a and the “strength” [U exp(R/a)].
Obviously, the same value of the bracketed expression
can be obtained for continuous sets ofR andU values.
In Section 3, we have seen that experimental data
1
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Fig. 3. Symmetrized Fermi function (dashed curve) with
the parameter R equal to the radius value at which this
function decreases by a factor of 2 and the parameter
a characterizing the surface-layer thickness and its ap-
proximation by a three-section polygonal trapezoid in
the surface region (solid broken line). The dotted curve
represents the phase for a square-well potential having an
equivalent radiusRu.

can also be reproduced when the original phase is
replaced by a polygonal trapezoid, which, in contrast
to the above exponential function, preserves the form
of the phase in the nuclear interior, approximating its
behavior in the peripheral region by different, linear,
functions.

In order to investigate the origin of the ambiguity
within our approach, it is not necessary to replace the
original potential by a different one—in particular, by
that which approximates it at the surface of interac-
tion. The mechanism behind its manifestation can
be revealed in the very expression (3.1) for the cross
section. In order to prove this, we represent this cross
section, by means of the substitutions b = βR and
C = R/a, in the form

σR = 2πR2

[
1− Uc(Rc)

Ec.m.

]
F (C,D), (4.1)

where

F (C,D) =

∞∫
0

dβ β
[
1− e−0.4391 D uSF(β,C)Pa(β,C)

]
,

(4.2)

D =
√

A2

A1 +A2

1
εc.m.

RW0, εc.m. =
Ec.m.

A1
. (4.3)

Here, the symmetrized Fermi function
uSF(β,C) and the correcting function Pa(β,C) are
given by (2.5) and (2.6), respectively. The above
expressions, which provide a solution to the prob-
lem in question, involve the combined parameter
D depending on the following input quantities: the
PH
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Fig. 4. Pattern of a continuous ambiguity of the fitting
parameters R, a, and W0 of the imaginary part of the
potential in the form of a symmetrized Fermi function,
in which case the reaction cross section depends on their
combinationsC = R/a and D = 9.11RW0/�v.

atomic numbers of the nuclei involved,A1 andA2; the
collision energy εc.m.(MeV) per projectile nucleon;
the depth of the imaginary part of the potential,
W0(MeV); and the radius R(fm). The function
F (C,D) is calculated once for the entire region of
possible values ofC andD and is further used to scan
these values in а comparison with experimental data.
By way of example, the curves representing F (C,D)
are plotted in Fig. 4 in the interval of D from 25 to
350 with a step of 25 units as a function of C in the
range 5–20. As a matter of fact, such curves cover
the figure plane continuously.

A procedure for choosing the parameters of the
imaginary part of the optical potential can be conve-
niently constructed in the following way. The exper-
imental value of the cross section at a given energy
is divided by 2πR2[1− Uc(Rc)/Ec.m.] in order to ob-
tain F (C,D) with the aim of comparing it with the
calculated curves in Fig. 4. After that, one selects the
values of the radiiR andRc in order to fix this quantity.
Further, the corresponding horizontal straight line
is drawn in the plane where the function F (C,D)
is depicted and the values of C and D (continuous
set) are determined at the intersection points and are
then used to find the diffuseness parameters a and
W0. It is interesting to note that, at each given value
of the radius R, there exists a continuous set of a
values, so that all phase curves ΦN (b) intersect in
the surface region at one point b = R, an individual
value of W0, different from other of its values, cor-
responding to each such curve. Since a, R, and
W0 are potential parameters, an ambiguity in the
YSICS OF ATOMIC NUCLEI Vol. 64 No. 7 2001
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phases is a manifestation of an ambiguous choice of
potential—for example, the point of intersection of the
potentials in the diffuseness region r � R cos−1 θc,
where θc � Uc(Rc)/Ec.m., corresponds to the point of
intersection of the phases at b = R. In order to select
sets of physically significant parameter values, we can
use the condition of conservation of the volume of the
potential and the condition of conservation of its root-
mean-square range, as well as some other physical
criteria. The procedure of fitting is entirely repeated
if different values of the radii R and Rc are specified
initially. Thus, we can see that the transparency T (b)
depends not on the three parameters a, R, and W0

individually but on two combinations of these quanti-
ties, RW0 and C = R/a. These combinations repre-
sent a kind of calibration that one can use in fitting
the calculated cross sections to experimental data,
thereby constraining the possible parameter sets.

In summary, we can conclude that, at projec-
tile energies in excess of 10 MeV per nucleon, the
Glauber–Sitenko approach is applicable to calcu-
lating and analyzing differential cross sections for
scattering and total cross sections for heavy-ion re-
actions. Within this framework, the use of the an-
alytic expression (2.4), which represents the profile
integral for a realistic optical potential with the SF
distribution and which has been tested here, makes
it possible not only to construct faster computational
procedures but also (and this is more important) to
develop analytic methods for calculating observables,
whereby one can analyze the mechanism responsi-
ble for the formation of the relevant cross sections
and investigate explicit dependences on potential pa-
rameters. Having at our disposal explicit expres-
sions for reaction amplitudes and cross sections, we
can easily take into account, by means of a formal
renormalization of the impact parameter, the effect
of Coulomb distortion on the eventual results of the
calculations. This can be done without changing the
original scheme of the high-energy approximation.
In all the cases where the results of our calcula-
tions based on the above analytic expressions have
been compared, for the same choice of potentials,
with the results obtained by numerically solving the
Schrödinger equation, the agreement was fairly good
in the case of differential cross sections for elastic
scattering and in the case of total cross sections for
heavy-ion collisions.
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ELEMENTARY PARTICLES AND FIELDS
Theory
Effects of Vacuum Polarization and of Proton Polarizability in the Lamb
Shift of Muonic Hydrogen
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Abstract—The contributions to the Lamb shift in muonic hydrogen from hadronic vacuum polarization
and from the correction associated with electron vacuum polarization and with the proton polarizability are
calculated by using present-day experimental data on the cross section for e+e− annihilation into hadrons
and on structure functions for deep-inelastic ep scattering. The numerical value of the total contribution to
the (2P–2S) shift in muonic hydrogen is found to be 10.95 µeV. c© 2001 MAIK “Nauka/Interperiodica”.
Extremely simple atomic systems like positron-
ium, muonium, the hydrogen atom, muonic hydro-
gen, dimuonium, and pionium appear to be a unique
laboratory for studying various types of elementary-
particle interactions. Experimental accuracies in
measuring energy levels of hydrogen-like atoms and
the anomalous magnetic moments of the electron and
the muon have been considerably improved in recent
years. In some problems, these accuracies have
achieved so high a level that a theoretical evaluation of
the relevant quantities requires correctly taking into
account the contributions of strong and even weak
interactions. By way of example, we indicate that,
according to the calculations of various authors [1–
6], the contribution of hadronic vacuum polarization
(HVP) to the anomalous magnetic moment of the
muon is

aHVP
µ = (6738 ± 70)× 10−11. (1)

It is assumed that, in the E821 experiment to
be performed at the Brookhaven National Labora-
tory (BNL), the accuracy in measuring the muon
anomalous magnetic moment will be as high as one
to two 10−10 units [6]. In a new Los Alamos ex-
periment aimed at measuring the hyperfine splitting
of the muonium ground state, the accuracy of the
measurement reached a few hundredths of a kilohertz:
∆ν = 4463302765(53) Hz [7]. This requires taking
into account, in the hyperfine structure, both higher
order contributions in α (α is the fine-structure con-
stant) and the contribution from hadronic vacuum
polarization, the latter being [8]

∆EHVP
hfs (µe) = 0.2397 ± 0.0070 kHz. (2)

1)Scientific Council for the Interdisciplinary Problem Cyber-
netics, Russian Academy of Sciences, ul. Vavilova 40,
Moscow, 117967 Russia.
1063-7788/01/6407-1282$21.00 c©
In the near future, it is planned to measure the
Lamb shift in the muonic-hydrogen atom (µp). This
may present yet another problem that admits an
experimental verification of the contribution from
hadronic vacuum polarization [9]. The energy lev-
els of this system are determined in just the same
way as for conventional hydrogen. However, ef-
fects associated with the distribution of the proton
charge, magnetic moment, and polarizability, as well
as corrections stemming from vacuum polarization
(including hadronic vacuum polarization), are much
greater for muonic hydrogen since the electron-
to-muon mass ratio is me/mµ = 4.836332 × 10−3.
Measurement of the (2P-2S) Lamb shift in muonic
hydrogen would make it possible to estimate, with
a higher precision, the proton charge radius Rp =√

〈r2〉 [10, 11], an important characteristic of the
proton indeed. One method for determining the
proton charge radius—that which involvesmeasuring
the Lamb shift in muonic hydrogen [12]—leads to the
value of Rp = 0.883(14) fm [13]. Another possibility
of obtaining a more precise value of Rp is based on
measuring the Lamb shift in the muonic-hydrogen
atom to within 2 µeV. In view of this, it is necessary
to calculate various contributions to the Lamb shift
with the same or a higher precision. In the present
study, we evaluate some corrections to the Lamb shift
in (µp) that are associated with hadronic vacuum
polarization, electron vacuum polarization, and the
proton polarizability.

Within the quasipotential approach to describ-
ing the energy spectrum of muonic hydrogen, the
particle-interaction operator that takes into account
1γ and 2γ interactions has the form [14]

V = V1γ + V2γ = V c + ∆V, (3)
2001MAIK “Nauka/Interperiodica”
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V1γ = T1γ , V2γ = T2γ − T1γ ×Gf × T1γ , (4)

where V c is the Coulomb potential; T1γ and T2γ are
the off-energy-shell amplitudes for 1γ and 2γ interac-
tion, respectively; and [Gf ]−1 = (b2 − p2)/2µR. The
main contribution of hadronic vacuum polarization to
the Lamb shift in muonic hydrogen is represented by
the diagram in Fig. 1. The corresponding modifica-
tion to the photon propagator is

−igµν

q2 + iε
→ −i

q2 + iε
Πµν(q)

−i
q2 + iε

. (5)

The self-energy operator Πµν(q) = (gµνq2−
qµqν)×Π(q2) satisfies the dispersion relation

Π(q2) =
q2

π

∞∫
4mπ

2

ImΠ(s)ds
s(s− q2 − iε)

. (6)

In the coordinate representation, the corresponding
correction to the quasipotential of muon–proton in-
teraction then assumes the form [15]

∆V HVP
Ls (r) = −4α(Zα)

∞∫
4m2

π

ρ(s)ds
s

δ(r), (7)

where the spectral function ρ(s) is related to the
well-known cross section for e+e− annihilation into
hadrons, σh, by the equation

ρ(s) =
R(s)
3s

=
σh(e+e− → hadrons)
3sσµµ(e+e− → µ+µ−)

, (8)

while σµµ(e+e− → µ+µ−) = 4πα2/3s is the cross
section for e+e− annihilation into a muon pair. The
shift of S levels in muonic hydrogen is obtained by av-
eraging expression (7) over the Coulomb wave func-
tions. The result has the form

∆EHVP
Ls = −4α(Zα)4µ3

πn3

∞∫
4m2

π

ρ(s)ds
s

. (9)

The accuracy in measuring the cross section σh for
various energy intervals has been improved consid-
erably in recent years [16, 17]. The main contri-
bution to σh comes from the process e+ + e− →
π+ + π−, whose cross section is proportional to the
squared modulus of the π-meson form factor Fπ . Our
calculation of the contribution from hadronic vac-
uum polarization will employ experimental data on
the form factor Fπ in the energy range 0.61 ≤ √

s ≤
0.96GeV that were obtained in new experiments with
the CMD-2 detector in Novosibirsk. These data are
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 7 200
 
µ
 

p

Fig. 1. Diagram for the one-photon hadronic-vacuum-
polarization contribution to the Lamb shift in (µp).

well described by the Gounaris–Sakurai model with
allowance for ρω interference:

Fπ(s) =
BWGS

ρ(770)(s)
1+δ BWω(s)

1+δ + β BWGS
ρ(1450)(s)

1 + β
.

(10)
The values of the parameters of ρ(770), ρ(1450),

and ω and the values of β and δ were borrowed from
[16, 18]. Upon substituting expression (10) into the
spectral function

ρππ(s) =
(s− 4m2

π)
3/2

12s5/2
|Fπ(s)|2, (11)

we have performed a numerical integration in (9) for
the energy interval 4m2

π ≤ √
s ≤ 0.95 GeV. The con-

tribution from other energy intervals to ∆EHVP
Ls was

evaluated in just the same way as in [3, 8, 19]. The
results of a numerical integration of expression (9) are
quoted in the table. As can be seen from the table,
themain contribution to∆EHVP

Ls comes from the form
factor Fπ; therefore, it was instructive to compare the
contributions to the shift of S levels for expression
(11) and for the π-meson form factor proposed in [20].
It turned out that the corresponding contributions to
∆EHVP

Ls are identical.
Let us now consider the two-photon contribu-

tion of hadronic vacuum polarization to the Lamb
shift of the energy levels in muonic hydrogen (see
Fig. 2). The required correction associated with
hadronic vacuum polarization in the one-loop am-
plitudes T2γ arises if, in the propagator of one of
exchange photons, use is made of the substitution

1
k2 + iε

→ α

π

∞∫
sth

ρ(s)ds
k2 − s+ iε

. (12)

The shift of the energy levels of S states can then
be represented as [21]

∆EHVP
Ls, 2γ = − 2µ3

π2n3
δl0α(Zα)5

∞∫
0

V (k)dk

∞∫
sth

ρ(s)ds
k2 + s

,

(13)

V (k) =
2kF 2

1

m1m2
+

k3

2m3
1m

3
2

[
2F 2

1 (m
2
1 +m2

2) (14)
1
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Contributions from hadronic vacuum polarization to the (2P–2S) Lamb shift in (µp) for various energy ranges

Final state Energy range
√
s, GeV ∆EHVP

Ls (µp), µeV

ρ, ω → 2π, ω → 3π (0.28, 0.95) 7.035± 0.193

φ 0.625± 0.023

J/ψ 0.115± 0.010

Υ 0.001

Hadrons (0.95, 1.4) 1.766± 0.073

" (1.4, 2.2) 0.602± 0.039

" (2.2, 3.1) 0.279± 0.024

" (3.1, 5.0) 0.181± 0.012

" (5.0, 10.0) 0.099± 0.002

" (10.0, 40.0) 0.034± 0.001

"
√
s ≥ 40.0 0.003

Contribution of the diagram in Fig. 1 10.740± 0.377

Contribution of the diagrams in Figs. 2a and 2b 0.047

Contribution of the diagram in Fig. 2c –0.015

Total contribution 10.772 ± 0.377
+ 4m2
1F1F2 + 3m2

1F
2
2

]
+

√
k2 + 4m2

1

2m3
1m2(m2

1 −m2
2)

×
[
k2(2m2

2F
2
1 + 4m2

1F1F2 + 3m2
1F

2
2 ) + 8m4

1F1F2

+
16m4

1m
2
2F

2
1

k2

]
−
√
k2 + 4m2

2m1

2m3
2(m

2
1 −m2

2)

×
[
k2(2F 2

1 + 4F1F2 + 3F 2
2 )− 8m2

2F1F2

+
16m4

2F
2
1

k2

]

 

+

(
 

a
 

) (
 

b
 

)

(

 

c

 

) (

 

d

 

)

+

 

Diagrams
involving cross
photon lines and
subtraction
diagrams

Fig. 2. Diagrams for the two-photon hadronic-vacuum-
polarization contribution to the Lamb shift in (µp).
P

+
8m1[F2(0) + 4m2

2F
′
1(0) − 2m2

2/k
2]

m2(m1 +m2)
,

where the contribution of the iterative component was
taken into account in constructing the quasipoten-
tial (4). Expression (13) does not involve infrared
divergences. In performing numerical calculations on
the basis of this expression, the proton form factors
F1 and F2 were parametrized as (dipole parametriza-
tion) [22]

F1(k2) =
GE − k2

4m2
2

GM

1− k2

4m2
2

, F2(k2) =
GM −GE

1− k2

4m2
2

,

(15)

GM =
1 + κ(

1− k2

Λ2

)2 , GE =
1(

1− k2

Λ2

)2 ,

where the proton-structure parameter isΛ = 0.898m2

[22] and κ = 1.792847337 is the proton anomalous
magnetic moment. With allowance for (11), the
numerical value of the contribution in (13) to the shift
(2P–2S) is

∆EHVP
Ls, 2γ(a+b) = 0.047 µeV. (16)

The hadronic-vacuum-polarization-induced con-
tribution of the same order in α to the energy spec-
trum is determined by the diagram in Fig. 2c. As-
suming that the muon and proton momenta are on
HYSICS OF ATOMIC NUCLEI Vol. 64 No. 7 2001
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the mass shell, we can represent this contribution as

∆E2γ (c) =
µ3(Zα)4

m2
1n

3
(17)

×
[
4m2

1ρ
′
HVP(0)δl0 + fHVP(0)

Cjl

2l + 1

]
,

Cjl = δl0 + (1− δl0)
j(j + 1)− l(l + 1)− 3/4

l(l + 1)
,

(18)

where the quantities ρ′HVP(0) and fHVP(0) stand for
the contributions of hadronic vacuum polarization
to, respectively, the slope of the muon charge form
factor and the muon anomalous magnetic moment.
In order to calculate fHVP(0), use is usually made of
the integral representation

fHVP(0) =
1
3

(α
π

)2
∞∫

sth

R(s)ds
s

1∫
0

y2(1− y)dy

(y2 +
s

m2
1

(1− y))
.

(19)

The numerical value of fHVP(0) has been refined in
recent years as the result of new calculations [1],
and we take it to be fHVP(0) = 673.8 × 10−10. The
contribution of hadronic vacuum polarization to the
slope of the charge form factor can also be represented
in an integral form of the type in (19). To do this, we
consider the on-mass-shell vertex of the interaction
of a virtual photon with a muon (see the diagram in
Fig. 2c). We have

Γµ = e3ū(q1)γλ

∫
q̂1 − q̂ +m

(q1 − q)2 −m2 + iε
γµ (20)

× p̂1 − q̂ +m

(p1 − q)2 −m2 + iε
γσu(p1)

d4q

(2π)4
4π
q2

Π(q2)
q2

×
(
gλσ − qλqσ

q2

)
.

By using the Feynman parametrization in calcu-
lating the relevant loop integral and the dispersion
relation (6) for the self-energy operator [23], we can
single out the contributions to the form factors ρ(k2)
and f(k2) and represent the slope of the charge form
factor as

ρ′HVP(0) =
1
12

(α
π

)2 1
m2

1

∞∫
sth

R(s)ds
s

1∫
0

ydy (21)

×
[

1
30
y2(36y − y2 − 40)

D2(y, s)
− 1

6
(22− 14y − y2)

D(y, s)

+
m2

1

s
ln
(

y2

D(y, s)

)]
,D(y, s) = y2 +

s

m2
1

(1− y).
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 7 200
The integral with respect to y in (21) can be calcu-
lated exactly. According to the calculations based on
expressions (19), (21), and (11), the numerical value
of the correction in (17) to the (2P–2S) Lamb shift in
muonic hydrogen is

∆EHVP
Ls, 2γ(c) = −0.015 µeV. (22)

The contribution of the diagram in Fig. 2d to the
energy spectrum is an O(α8) quantity and can there-
fore be disregarded. The total value of the hadronic-
vacuum-polarization-induced correction to the (2P–
2S) Lamb shift in muonic hydrogen is quoted in the
table. It is in fairly good agreement with the results
presented in [24, 25].

The strong-interaction contribution to the energy
spectrum of (µp) comes not only from hadronic vac-
uum polarization but also from the proton polariz-
ability [21, 26–29]. In just the same way as in
the case of hadronic vacuum polarization, strong-
interaction effects can be taken into account here
phenomenologically on the basis of present-day data
on the structure functions F2(x,Q2) and R(x,Q2)
for deep-inelastic scattering [30, 31]. Since electron
vacuum polarization plays a dominant role among
various QED corrections to the (2P–2S) Lamb shift
in (µp), we have evaluated the contribution of the
diagrams in Fig. 3. They are associated with two
effects, electron vacuum polarization and the proton
polarizability. By using the substitution in (12), we
can represent the corresponding correction to S levels
in muonic hydrogen as [21]

∆ELs
vp, pol = −16µ3α(Zα)5m1

π3n3
(23)

×
∞∫
0

dk

k

π∫
0

sin2 φdφ

∞∫
ν0

dy
1

k2 + 4m2
1 cos2 φ

×
∞∫

sth

ρ(s)ds
s+ k2

F2(y, k2)
(y2 + k2 cos2 φ)

×


(1 + 2 cos2 φ)

(
1 + k2

y2

)
cos2 φ

1 +R(y, k2)
+ sin2 φ


 ,

where R(y, k2) = σL/σT is the ratio of the cross
sections for the absorption of longitudinally and
transversely polarized photons by hadrons and ρ(s) =√

1− 4m2
e/s

(1 + 2m2
e/s)

3s
. In order to perform nu-

merical calculations on the basis of expression (23),
we need experimental data on the structure function
F2(x,Q2) and on the ratio R(x,Q2). There exist
a number of parametrizations of experimental data
on the function F2(x,Q2) over a wide region of Q2
1
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crossed
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Fig. 3. Diagrams for the electron-vacuum-polarization
and the proton-polarizability contribution to the Lamb
shift in (µp).

and x [31]; we have used that which was proposed in
[30, 31]. For the contribution in (23), the numerical
integration eventually yields

∆ELs
vp, pol = −1.52

1
n3

µeV. (24)

Other corrections of order α6 that are associated
with the proton polarizability are much less. For
example, the muon self-energy correction (Fig. 4) is
determined by the following substitution in the muon
propagator [32]:

1
p̂−m1

→ 1
p̂−m1

Σ(R)
1γ (p)

1
p̂−m1

, (25)

Σ(R)
1γ (p) = (p̂ −m1)2

(
− 3αp̂

4πm2
1

)
1

1− ρ
(26)

×
[
1 +

ρ

1− ρ
ln ρ
]
, ρ =

m2
1 − p2

m2
1

.

Averaging the relevant amplitude over the proton
and muon spins, we can represent its contribution to
the shift of S levels in the form [21]

∆ELs
se, pol =

3α(Zα)5µ3

2n3π4m2
1

∫
d4k

(k2)2

∞∫
ν0

dy

(y2 − k2
0)

(27)

× F2(y, k2)

{(
1
2
m1 − 3k0 −

2m1k
2
0

k2

)

×

(
1 + y2

k2

)
k2
0

y2

1 +R(y, k2)
+

3
2
m1 − k0 −

7
2
m1k

2
0

k2
+

+
k3
0

k2
+

2m1k
4
0

k4

}

× 1
1− ρ1

[
1 +

ρ1

1− ρ1
ln ρ1

]
, ρ1 = −k

2 + 2m1k0

m2
1

.

Going over to integration over four-dimensional
Euclidean space (k0 → ik0), as in evaluating expres-
sion (23), we obtain

∆ELs
se, pol = 0.092

1
n3

µeV. (28)
PH
Fig. 4. Diagrams for the muon-self-energy and the
proton-polarizability contribution to the Lamb shift in
(µp).

The above analysis of strong-interaction contribu-
tions has revealed that, in the Lamb shift of muonic-
hydrogen levels, the contribution of hadronic vacuum
polarization is on the same order of magnitude as
corrections associated with the proton polarizability
and structure [21, 24, 26, 27]. The contributions ob-
tained in the present studymake it possible to improve
the theoretical accuracy in determining the Lamb
shift of (µp) levels. In order to demonstrate this,
we note that, by taking into account the hadronic-
vacuum-polarization-induced contribution evaluated
in the present study [see Eqs. (24) and (28)], the main
contribution of the proton polarizability from [21], and
the results quoted in [9, 25], we can reprsent the total
expression for the (2P–2S) Lamb shift in muonic
hydrogen in the form

∆ELs = (206.085(2) − 5.1975R2
p) µeV. (29)

The uncertainty in the first term in expression
(29) is associated with the experimental errors in
measuring the structure functions for deep-inelastic
ep scattering [30] and the cross section σh [16, 17].
Expression (29) must be used in extracting the proton
charge radius Rp from data of future experiments
aimed at measuring the Lamb shift in muonic hydro-
gen.
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Abstract—Effects of dijet angular distributions coming from a model of quark compositeness are pre-
sented. The influence of the parton distribution, calorimeter nonlinearity, and energy resolution is
investigated. The sensitivity of data to the quark-compositeness scale for a low and a high LHC luminosity
is studied. c© 2001 MAIK “Nauka/Interperiodica”.
The existence of an underlying substructure will
be a good key to understanding unresolved problems
of the Standard Model (SM), such as the presence
of a few generations of quarks and leptons and the
fundamental properties of particles.

The quark substructure would appear as an ex-
cess of the high-PT jets in relation to the level pre-
dicted by QCD, with dijet angular distributions be-
ing more isotropic than what is expected from a
pointlike-quark theory, and/or as the discovery of
excited quarks. Dijet angular distributions were stud-
ied by the CDF [1] and D0 [2] experiments at a
c.m. energy of 1.8 TeV. The highest ET reached
so far at the Tevatron, about 500 GeV, corresponds
to a distance scale of 10−17 cm. The data from
these experiments were compared with QCD predic-
tions, including compositeness. No evidence of quark
substructure was found. Previous studies of dijet
invariant-mass spectra reported by UA1 [3] and UA2
[4] at

√
s = 630GeV and byCDF [5] also showed that

the data were consistent with QCD predictions. The
CDF [6] and D0 [7] results of high-mass Drell–Yan
cross section measurements set a lower limit on the
quark–electron compositeness scale (about 5.5 TeV).
From the measurement of the ratio of charged-to-
neutral-current cross sections in the CCFR fixed-
target neutrino experiment [8] at the Tevatron, a limit
of Λ ∼ 8 TeV was achieved.

Searches for the quark substructure will continue
at future hadron colliders. Here, we investigate the
effect of quark compositeness in dijet angular dis-
tributions as would be seen by ATLAS [9] at LHC.
The same problem for high-ET jet spectrum was
indicated earlier [10]. The event generator PYTHIA-
5.7 [11] was used to simulate a scenario with quark

∗This article was submitted by the authors in English.
**e-mail: usubov@nusun2.jinr.ru
1063-7788/01/6407-1288$21.00 c©
substructure. This allowed us to use a simple phe-
nomenological approach of contact interactions be-
tween quark constituents with a compositeness scale
Λ [12], where the sign of the effective Lagrangian
for a flavor-diagonal current of definite chirality is
positive (destructive interference) or negative (con-
structive interference). The data simulated within
the SM are compared with those obtained under the
assumption of quark compositeness. The analysis is
based on a sample of about 280800 pp interactions
at

√
s = 14 TeV, which corresponds to the sample of

dijet events expected after one month of LHC op-
eration at a luminosity of L = 1033 cm−2s−1. The
simulated event sample included the following hard-
scattering subprocesses: qq, qg, gg, gγ, qγ, and γγ.
The γ∗/Z, W , tt production subprocesses were also
taken into account. To get a sufficiently large num-
ber of events with high-PT jets within a reasonable
central-processor-unit time, a cut on the transverse
momentum of the hard scattering subprocess was
set to 600 GeV. Under these conditions, the contri-
butions from the qq, qg, and gg processes saturate
97.5% of the total cross section of 3.370 × 10−7 mb.
Initial- and final-state QCD and QED radiation, the
fragmentation and decay of partons and particles,
and multiple interactions were taken into account.
First-order running αs calculations were applied. The
ΛQCD value was chosen according to the parton-
distribution parametrizations used in PYTHIA. For
the Q2 scale in the 2 → 2 hard-scattering process,
Q2 = (m2

T1 +m2
T2)/2 was used. The detector per-

formance was simulated by using the ATLFAST [13]
package, which provides a reliable estimate of the
detector response to hadronic jets. Jets were re-
constructed with ATLFAST by using the standard
procedure for summing the energy deposited in a cone
of radius ∆R =

√
∆η2 + ∆φ2 = 0.7. All calorime-
2001MAIK “Nauka/Interperiodica”
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Characteristics of the invariant-mass bins for high-ET

jets

Mass bins,
GeV

ET thresholds,
GeV

Nev
AverageMjj ,

GeV

2000–2300 400 18562 2136

2300–2800 400 15781 2512

2800–3400 400 7722 3050

> 3400 400 5228 4048

ter cells with ET > 1.5 GeV were taken as possible
initiators of clusters. The total transverse energy ET

summed over all cells in a cone ∆R should be greater
than 15 GeV. Jets were reconstructed down to |η| ≤
5.0.

The analysis was performed in terms of the angular
variableχ ≡ e|η1−η2|, where η1,2 are the pseudorapidi-
ties of the two leading jets. For the case of 2 → 2
parton scattering, it is related to the c.m. scattering
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Fig. 1. Dijet angular distributions for various mass bins
for the case of constructive interference (two quarks are
composite): (•)SMprediction, (�) Λud = 8000GeV, (◦)
Λud = 10000 GeV, and (*) Λud = 14000 GeV.
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angle θ∗ by the equation

χ =
1 + | cos θ∗|
1 − | cos θ∗| . (1)

This definition renders a comparison with theorymore
straightforward [14]. The investigation of the dijet
angular distribution (1/N)(dN/dχ) was performed in
four dijet-invariant-mass bins. The dijet invariant
mass is defined as

Mjj =
√

(E1 + E2)2 − (P1 + P2)2, (2)

where (E1,2, P1,2) are the 4-momenta of the two lead-
ing jets. For all dijet-invariant-mass bins, the ET

threshold for the highest-ET jet was 400 GeV. The
table shows the selection cuts for the highest-ET jet
for various invariant-dijet-mass bins, together with
the averageMjj and the number of events per bin.

The dijet angular distributions for these dijet-mass
bins are shown in Fig. 1 for constructive interference.
The case of destructive interference is similar. From
this figure, one can see that quark compositeness
leads to an enhancement in the distribution at low
values of χ in relation to the SM prediction. The
dijet mass region above 3400 GeV is good for de-
termining isotropic contributions to the dijet angular
distribution in pp interactions at

√
s = 14 TeV for

Λ up to 8 TeV. It should be noted that the effect is
slightly lower for destructive interference and that the
sensitivity is higher for constructive interference than
for destructive interference.

To estimate limits on the quark-compositeness
scale, the CDF group used the variable Rχ defined
as the ratio of the number of events with χ < χ0 to
the number of events with χ > χ0. In our case, a
value of χ0 = 5 was used. For the constructive case
where all quarks are composite, Fig. 2 shows Rχ as
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Fig. 2. Rχ as a function of the dijet mass Mjj for various
values of the compositeness scale Λ (all quarks are com-
posite): (•) SM prediction, (�) Λ = 8000 GeV, (◦) Λ =
10000GeV, (*)Λ = 14000GeV, and (�) Λ = 16000GeV.
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Fig. 3. Rχ as a function of the scale Λ: (◦ and �) con-
structive interference (two and all quarks are composite)
and (� and�) destructive interference (two and all quarks
are composite).

a function of the dijet mass for various values of the
compositeness scale Λ. The case where two quarks
are composite is very similar. The data are plotted
at the average mass for each mass bin. In the case
where all quarks are composite and for the compos-
iteness scale of Λ = 16 TeV, the data differ from the
SM predictions by 1.5σ and 3.5σ for destructive and
constructive interference, respectively.

Figure 3 displays Rχ as a function of the scale Λ
for the constructive and destructive cases and for the
case where two and all quarks are composite. It is
clear that the sensitivity is insufficient for distinguish-
ing the case where two quarks are composite from the
case where all quarks are composite.

From the study of Rχ with different parton distri-
butions, it was found that the quark-compositeness
effect is not sensitive to the parton distribution. Note
that, in the rest of the analysis, PYTHIA was used
with the default structure function CTEQ2L. The
quantity Rχ is also insensitive to the jet cone radius
∆R.

The sensitivity to the calorimeter resolution was
studied in [15]. In ATLFAST, the jet energy is
smeared according to σE/E ∼ 50%/

√
E + 2% in the

central region (|η| < 3) and σE/E ∼ 100%/
√
E +

7% in the forward calorimeters (3 < |η| < 5).
In order to investigate the influence of a change in

the constant term on (1/N)(dN/dχ), we simply mul-
tiplied and divided the constant term by two. Changes
in the stochastic term were also considered. There
is no significant effect of those changes on the dijet
angular distribution.

The nonlinear response of the hadron calorimeter
can affect the observed difference between the SM
PH
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Fig. 4. Influence of the calorimeter nonlinearity on the
quark-compositeness effect. (• and �) SM prediction
without and with calorimeter nonlinearity and (◦ and ✩ )
Λall = 8000 GeV without and with calorimeter nonlin-
earity.
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Fig. 5. Difference of the quark-compositeness and SM
predictions that is divided by the SM predictions for
the dijet angular distribution at an integrated luminos-
ity of L = 30 fb−1: (�) Λall = 15000 GeV, (�) Λall =
20000 GeV, and (◦) Λall = 25000 GeV.

and compositeness scenario or mimic a composite-
ness signal. To study this effect, we considered the
nonlinearity of the jet ET scale according to the rela-
tion [16]

ET (meas) (3)

= ET
1.0

c(1.0 + (e/h − 1.0) · 0.11 · lnET )
,

where ET (meas) and ET are, respectively, the mea-
sured and true jet transverse energy; e/h = 1.36; and
c is adjusted in such a way that the scale is unchanged
at 50 GeV. Such a dependence on ET leads to a
deviation of 6.5, 9.3, and 12.3% from linearity for
400, 1000, and 3000 GeV, respectively. In Fig. 4
we compare the SM and quark-compositeness pre-
dictions with and without nonlinearity effects. For
this choice of dijet-mass-bin intervals and jet ET , we
see that no spurious signal is created and that the
YSICS OF ATOMIC NUCLEI Vol. 64 No. 7 2001
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Fig. 6. As in Fig. 5, but for L = 300 fb−1: (�) Λall =
20000 GeV, (�) Λall = 30000 GeV, and (◦) Λall =
40000 GeV.

angular distribution is quite insensitive to effects of
nonlinearity.

To study the sensitivity of data to the quark-
compositeness signal for a higher scale Λall, an anal-
ysis was performed for integrated luminosities of 30
and 300 fb−1. For dijet angular distributions, Figs. 5
and 6 show the difference of the quark-compositeness
and SM predictions divided by the SM predictions.
The integrated luminosity of 300 fb−1 can allow one
to reach a 95% C.L. limit of Λ = 40 TeV.

In conclusion, the study based on a sample of
events generated by PYTHIA-5.7 and processed
through ATLFAST shows that high-mass-dijet an-
gular distributions have a high potential for dis-
covering quark compositeness. A low sensitivity
to the choice of parton distributions, the energy
resolution of the calorimeter, and nonlinearity effects
make the dijet angular distribution a powerful tool for
future high-statistics data analyses. One month of
LHC operation at 1033 cm−2s−1 and

√
s = 14 TeV

would allow the discovery of quark substructure if
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 7 200
the constituent coupling constant is on the order of
14 TeV. To reach a lower limit of 25 (40) TeV for
the coupling constant, data taking at an integrated
luminosity of 30 (300) fb−1 would be required.
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Abstract—A phenomenological model is developed for describing the production ofπ+π− pairs on a proton
by virtual photons in the energy region of nucleon-resonance excitation. The cross sections are calculated
for the channels γp→ π−∆++, γp→ π+∆0, and γp→ ρp, which make a dominant contribution to pion-
pair production, and the results are compared with available experimental data. The contributions of
nucleon resonances to the cross section for the reaction γp→ π−∆++ are predicted within the developed
approach. c© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Investigation of the exclusive channel of pion-
pair production on a proton by photons is an effi-
cient tool for exploring the structure of high-lying
nucleon resonances N∗ (MN∗ > 1.6 GeV) and for
seeking nucleon resonance states that are predicted
by constituent quark models, but which have not yet
been discovered experimentally (missing resonances
[1]). Presently, a vast program of investigations of
nucleon resonances in the exclusive reactions of pion-
pair production on a proton by virtual photons is being
performed at the Thomas Jefferson National Acceler-
ator Facility (TJNAF, USA) [2, 3]. A feature peculiar
to these exclusive channels is that they receive a
considerable contribution from nonresonance chan-
nels, and this impedes the use of model-independent
approaches in extracting information about the struc-
ture of nucleon resonances. Data on their structure
can be obtained only within models that relate the
electromagnetic form factors for nucleon resonances
to the measured differential cross sections for the
reactions γr,vp→ π+π−p. 4)

1)Istituto Nazionale di Fisica Nucleare, Sezione di Genova,
Genova, Italy.

2)Faculty of Physics, Moscow State University, Vorob’evy
gory, Moscow, 119899 Russia, and Institute of Nuclear
Physics, Moscow State University, Vorob’evy gory, Moscow,
119899 Russia.

3)Universitá di Genova, via Dodecaneso 33, I-16146 Genova,
Italy.

4)The subscripts r and v label real and virtual photons, respec-
tively.
1063-7788/01/6407-1292$21.00 c©
A description of interactions in the initial and the
final reaction state with open inelastic channels is an
important problem in studying nucleon resonances.
Models that make it possible to take into account
channel-coupling effects by using the entire body of
data on processes featuring both hadrons and pho-
tons and leading to the formation of the state being
studied were proposed in [4–6] to solve this problem.
These approaches take consistently into account the
requirements imposed by the unitarity of the S matrix.
The set of meson- and baryon-interaction mecha-
nisms is parametrized at the level of effective model
Lagrangians. The number of such mechanisms be-
comes greater with increasing total energy W . Since
our knowledge of the effective vertices for meson–
baryon interaction (above all, of their off-mass-shell
behavior) is incomplete and since it is difficult to
allow for a large number of different mechanisms,
approaches similar to those presented in [4–6] are
applied predominantly to the channel of single-meson
production in the region W < 1.7 GeV. Presently,
such calculations have been performed only for reac-
tions induced by real photons.

Nucleon resonances of mass in excess of 1.6 GeV
predominantly decay into final states featuring a few
pions. In order to study high-lying nucleon reso-
nances, it is therefore of crucial importance to ex-
amine exclusive reaction channels leading to the pro-
duction of a few pions. The cross section for pion-
pair production on a proton increases fast from the
threshold at W = 1.21 GeV, becoming commensu-
rate with the cross section for single-pion production
2001 MAIK “Nauka/Interperiodica”
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at W = 1.5–1.7 GeV. Concurrently, the contribution
of this channel to the total cross section for photon–
proton interaction grows with increasing W .

Thus, investigation of pion-pair production on a
proton by real and virtual photons is of great interest
both for exploring the structure of nucleon resonances
and for examining the dynamics of nonresonance
mechanisms in the region of nonperturbative QCD.
Moreover, an analysis of pion-pair production makes
it possible to determine the cross sections for the re-
actions γr,vp→ π−∆++ and γr,vp→ ρp, which lead
to the formation of unstable particles in the final state.

Information about the cross sections for such re-
actions is necessary for extending models of the type
from [4–6] to the region W > 1.7 GeV.

In [7–11], a model was developed for describing
dominant quasi-two-body channels of the reaction
γr,vp→ π+π−p:

γr,vp→ π−∆++, (1)

γr,vp→ π+∆0, (2)

γr,vp→ ρp. (3)

In that model, the quasi-two-body processes (1)–
(3) are described as a superposition of nucleon-
resonance excitations in the s channel and nonreso-
nance processes, which, for channels (1) and (2), are
determined by a minimal set of Born tree diagrams
in terms of meson–baryon degrees of freedom. For
channel (3), nonresonance processes are treated in
the diffraction approximation [12]. In describing
channels (1) and (2) for W > 1.6 GeV, it is especially
important to take into account the coupling of the
initial and the final state with open inelastic channels.
For the quasi-two-body reactions (1) and (2), an ap-
proach was developed in [7–11] that makes it possible
to obtain a model-dependent description of initial-
and final-state interaction. The set of these effects is
considered as the absorption of incident and emitted
particles in the initial and in the final reaction state
[13]. The coefficients of transmission (absorption)
are related to the amplitudes for elastic π∆ and ρp
scattering. These amplitudes in turn are calculated
within the isobaric model [14], which employs the set
of world-averaged data on the amplitudes of pion–
nucleon scattering.

In [7, 8, 15], a model was proposed for describing
the cross sections for the reaction γp→ π+π−p at
the photon point (Q2 = 0) by using the model from
[9–11] for the quasi-two-body processes (1)–(3).
In the present study, this approach is generalized
to describe the fivefold differential cross sections for
the virtual-photon-induced reaction γr,vp→ π+π−p
in a full kinematics. The only limitation on the
approach is that the square of the virtual-photon
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 7 2001
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Fig. 1. Dominant mechanisms of the reaction γr,vp →
π+π−p.

4-momentum, Q2 = −q2
µ, must lie in the region

where the reaction amplitude can be described in
terms of meson–baryon degrees of freedom. The
question of the boundary where a transition between
meson–baryon and quark–gluon degrees of freedom
occurs remains open; it can only be solved on the
basis of a comparison of theoretical results with future
experimental data. The expected applicability range
of the proposed approach corresponds to Q2 < 3 − 4
GeV2.

2. DESCRIPTION OF THE PRODUCTION
OF π+π− PAIRS ON A PROTON BY VIRTUAL

PHOTONS

The Dalitz distributions of π+π− and π+p systems
show pronounced features—these are bands corre-
sponding to the formation of particles in the inter-
mediate state and their subsequent decays, ∆++ →
π+p, ∆0 → π−p, and ρ→ π+π−. In accordance with
these data, the mechanisms of the reaction γvp→
π+π−p are represented by the sum of diagrams in
Fig. 1. The set of other processes contributing
to the amplitude of the reaction γvp→ π+π−p is
described by the amplitude C(W,Q2) that depends
neither on the helicities of the particles involved in
the reaction being considered nor on the kinematical
variables of the final state, but which is dependent
on W and Q2. In the model used, the amplitude
C(W,Q2) is the only free parameter, which is deter-
mined from a fit to the measured double differential
cross section d2σ/(dMπ+π−dMπ+p) or dσ/dMπ+π−

and dσ/dMπ+p (or all of them), where Mπ+π− and
Mπ+p are the invariant masses of the π+π− and π+p

systems at various values of W and Q2.
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Fig. 2. Diagrams describing π∆ photo- and electropro-
duction on a proton.

For the processes described by the diagrams in
Fig. 1, the amplitude is calculated in the Breit–
Wigner approximation. The total amplitude
〈λf |T |λγλp〉 for the reaction γr,vp→ π+π−p is given
by

〈λf |T |λγλp〉 (4)

=
∑

λ∆++

〈λ∆++π− |T |λγλp〉〈π+λp
′ |T |λ∆++〉

Sπ+p −M2
∆ + iΓ∆(Sπ+p)M∆

+
∑
λ∆0

〈λ∆0π+ |T |λγλp〉〈π−λp′ |T |λ∆0〉
Sπ−p −M2

∆ + iΓ∆(Sπ−p)M∆

+
∑
λρ

〈λρλp′ |T |λγλp〉〈π+π− |T |λρ〉
Sπ+π− −M2

ρ + iΓρ(Sπ+π−)Mρ

+ C(Q2,W ),

where the amplitudes 〈λ∆++π− |T |λγλp〉,
〈λ∆0π+ |T |λγλp〉, and 〈λρλp

′ |T |λγλp〉 correspond
to the quasi-two-body processes (1)–(3) with the
initial-state photon and proton helicities equal to λγ

and λp, respectively, and the final-state ∆++, ∆0,
ρ, and p

′
helicities equal to λ∆++ , λ∆0 , λρ, and

λp
′ , respectively; the amplitudes 〈π+λp

′ |T |λ∆++〉,
〈π−λp′ |T |λ∆0〉, and 〈π+π− |T |λρ〉 describe the

decay processes ∆++ → π+p, ∆0 → π−p, and ρ→
π+π−, respectively; M∆ and Mρ are the masses of
∆ and ρ; Γ∆(Sπp) and Γρ(Sπ+π−) are their widths;
C(Q2,W ) is the amplitude corresponding to the
three-body phase space; and Sπ+π− , Sπ−p, and Sπ+p
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Fig. 3. Diagrams describing ρp photo- and electropro-
duction (the quantities A and b are defined according to
[12]).

are the squares of the invariant masses of the π+π−,
π−p, and π+p systems, respectively. A detailed
account of the models for describing the amplitudes
for the quasi-two-body processes (1)–(3) is given
in [9–11]. The amplitudes for the decay processes
∆++ → π+p, ∆0 → π−p, and ρ → π+π− were cal-
culated in the approximation of effective Lagrangians
with the s-channel form factors [16] depending on the
invariant mass of the products in the initial state and
were discussed in detail elsewhere [15]; the relations
between the amplitudes in Eq. (4) and the fivefold
differential cross sections for the reactions γr,vp→
π+π−p are also presented in [15]. Here, we focus on
special features in describing the amplitudes for the
quasi-two-body reactions (1)–(3) induced by virtual
photons.

The nonresonance mechanisms in the quasi-two-
body reactions being considered are described by
the set of diagrams in Figs. 2 and 3. In deal-
ing with virtual-photon interaction, the γππ vertex
function Fγππ(Q2) is introduced in the diagram in
Fig. 2c (pion in flight), the effects of the internal
structure of the π, р, and ∆ particles in the strong-
interaction vertex being taken into account in our ap-
proach through the vertex function Fπp∆(t), which is
determined from data on nucleon–nucleon scattering
[17]. Data from [18] on the pion electromagnetic form
factor are used as input information for reconstructing
the vertex function Fγππ(Q2) [18]. In [18], the pion
form factor was determined from experimental data
on single-pion electroproduction at small c.m. angles
of θ < 5◦(t � 0) under the assumption of Fπp∆ = 1.
Therefore, the vertex function Fγππ(Q2) used in our
approach is related to the pion electromagnetic form
factor Fπ(Q2) defined in [18] by the relation

Fγππ(Q2) =
Fπ(Q2)

Fπp∆(t = tmin)
, (5)

where tmin is the Mandelstam t invariant at zero pion
emission angle in the c.m. frame. The vertex function
YSICS OF ATOMIC NUCLEI Vol. 64 No. 7 2001
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Fig. 4. Integrated cross sections for the reaction γvp →
π−∆++ versus Q2: (dashed curve) results of the cal-
culations that take into account the contributions from
only nonresonance terms and (solid curve) results of the
calculations that take into account the contributions from
nucleon resonances and from nonresonance processes.
Experimental data were borrowed from [19].

for the contact term, Fc(Q2, t) (Fig. 2b), is given
by [9]

Fc(Q2, t) = Fγππ(Q2)Fπp∆(t). (6)

In describing the nucleon term (see Fig. 2d), the
proton form factorFp(Q2) in the dipole approximation
of experimental data, which has the form

Fp(Q2) =
1

(1 +Q2/0.71)2
, (7)

where Q2 is measured in GeV2, is introduced in the
electromagnetic vertex. In our model, the initial- and
the final-state interaction with open inelastic chan-
nels is effectively described by the complex-valued
absorption factors f j

ISI and f j
FSI, which are dependent

on the total channel spin J and which are related to
the S-matrix elements for elastic ρp and π∆ scatter-
ing by the equations [7, 11]

f j
ISI = 〈ρp

∣∣SJ
∣∣ ρp〉1/2 (8)

f j
FSI = 〈π∆

∣∣SJ
∣∣ π∆〉1/2.

Within the approach proposed in [7, 11, 14], these
matrix elements were determined from experimental
data on pion–nucleon scattering. That the photon
is off the mass shell leads to the Q2 dependence of
initial-state-interaction effects. Assuming that tran-
sitions of the initial-state photon into hadrons are
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 7 200
governed primarily by vector dominance, we obtain
the Q2 dependence in the form

f j
ISI(Q

2) =
Λ2

πf
j
ISI(Q

2 = 0) +Q2

Λ2
π +Q2

, (9)

where the parameter Λ2
π determined from data on

single-pion electroproduction is 0.46 GeV2 [18].
The Q2 dependence of nonresonance processes in

the quasi-two-body reaction (3) is described within
the diffraction vector-dominance model [18]. The
relevant amplitude determined at the photon point is
multiplied by the quantity

g(Q2) =
1

1 +
Q2

m2
ρ

√
Pγ(Q2 = 0)
Pγ(Q2)

, (10)

wheremρ is the ρ-meson mass and Pγ is the absolute
value of the photon momentum at given W . The first
factor on the right-hand side of Eq. (10) is the ρ-
meson propagator, while the second corresponds to
the transformation of the flux in going over from real
to virtual photons.

3. DISCUSSION OF THE RESULTS

Experimental data on the reaction γvp→ π+π−p
and on its quasi-two-body channels (1)–(3) are sys-
tematized in [19]. The integrated cross sections for
the quasi-two-body channel (1) that were calculated
within the approach proposed here are displayed in
Fig. 4 versus Q2, along with data from [19]. The
nucleon-resonance electromagnetic form factors as
functions of Q2 were obtained on the basis of the
approach developed by Burkert [20], who used the
entire body of available experimental data on the Q2

dependences of the electromagnetic form factors for
nucleon resonances. In the case where there were
no relevant data, the electromagnetic form factors
for nucleon resonances were determined from the re-
lations of SU(6) symmetry for the electromagnetic-
transition operator and the wave functions for states
entering into the SU(6) multiplets. In order to in-
vestigate the nucleon-resonance contributions to the
cross section for reaction (1), we have performed cal-
culations with allowance for only Born terms (dashed
curves in Fig. 4) and with allowance for the super-
position of Born terms and nucleon-resonance con-
tributions (solid curves in Fig. 4). In comparing
the results of the calculations with experimental data
from [19], it should be borne in mind that these data
were averaged over wide regions of W (≥ 0.26 GeV)
and Q2 (≥ 0.26 GeV2) (this was necessary for ex-
perimentally collecting required statistics). Over the
interval of averaging, the cross section changes with-
in a factor of 1.5, these changes being even more
1
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Fig. 5. As in Fig. 4 but for model calculations employing
γpN∗ vertices from the study of Burkert [20], who relied
on an SU(6) interpolation of experimental data (solid
curve), and the γpN∗ vertices as computed within the
quark models from [21] (dashed curve) and from [22]
(dash-dotted curve).

pronounced at small W . As can be seen from Fig. 4,
the calculations faithfully reproduce the entire body
of experimental data on the quasi-two-body channel
(1). The observed deviations are within the afore-
mentioned systematic uncertainty in the experimental
data.

The nucleon-resonance contribution to the inte-
grated cross section for channel (1) grows sharply
with increasing Q2. In the interval of W from 1.5
to 1.7 GeV at Q2 above 0.8 GeV2, the nucleon-
resonance contribution exceeds 50%, while it is be-
low 20–30% at the photon point. Thus, experi-
ments with virtual-photon beams at 0.8 GeV2 open
a good possibility for obtaining experimental data
on the structure of nucleon resonances at distances
corresponding to the transition between confinement
and perturbative QCD.

The integrated cross sections for channel (1) that
were calculated with the nucleon-resonance electro-
magnetic form factors as determined from the analy-
sis of experimental data in [20] are displayed in Fig. 5,
along with analogous results based on the form fac-
tors calculated on the basis of quark models [21, 22].
Within the model used in [22], a nucleon resonance is
described as a system of three constituent quarks in a
one-gluon-exchange confining potential, the SU (6)
configurations being mixed here. Additionally, al-
lowances are made for the effects of three-particle
interactions between the quarks. In the model devel-
oped in [21], the motion of the quarks in a nucleon
PH
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Fig. 6.Results obtained from a fit to experimental data on
the contribution R of the three-body phase space to the
cross section for the reaction γvp → π+π−p by varying
the amplitude C(W, Q2) [see Eq. (4)] in accordance with
the concepts of the model proposed in the present study.

resonance is described in the approximation of two-
particle interactions between the quarks; however,
the algebraic approach used leads to a significant
expansion of the basis configuration space in relation
to the model from [22], with the result that two-
particle correlations in the motion of the quarks can
efficiently be taken into account within this approach.
From Fig. 5, we can see that the calculations per-
formed in [20–22] reproduce basic features in the
behavior of experimental data, and we can hardly
give preference to one of the approaches in view of
the aforementioned uncertainties in the data. How-
ever, there are noticeable distinctions between the
cross sections calculated with the different nucleon-
resonance electromagnetic form factors from [21] and
[22]. By comparing the results obtained by calculat-
ing, within the model proposed here, the integrated
cross sections for the processes γr,vp→ π+π−p with
effective nucleon-resonance form factors evaluated
on the basis of various model approaches and the
future precision experimental data from TJNAF [2,
3] on the Q2 dependences of the integrated cross
sections, one would therefore be able to choose the
most adequate model approximations for describing
the structure of nucleon resonances and to reveal
thereby mechanisms that determine the formation of
this structure in the transition region between con-
finement and the asymptotic freedom of quarks.

It was noted above that, in describing the total
cross sections for the reaction γvp→ π+π−p, our
model involves only one free parameter, the amplitude
C(W,Q2), which was determined from a fit to exper-
YSICS OF ATOMIC NUCLEI Vol. 64 No. 7 2001
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imental data from [19] on the relative contribution of
the three-body phase space to the cross section for
the reaction γvp→ π+π−p. This fit is illustrated in
Fig. 6, while the resulting values of C(W,Q2) are
given in Fig. 7. At intermediate kinematical points
(W,Q2), the amplitude C(W,Q2) was determined by
interpolating the values displayed in Fig. 7.
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present study and performed for the relative contribution
R of the quasi-two-body channels (1)–(3) to the cross
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1.3–1.5 GeV.
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Figures 8–10 show the experimental data from
[19] on the relative contribution of the quasi-two-
body channels (1)–(3) to the total cross section for
the reaction γvp→ π+π−p. Within the model devel-
oped in the present study, we have calculated the total
integrated cross sections for this reaction as func-
tions of Q2 and determined the contributions of the
quasi-two-body channels (1)–(3) to the total cross
section for this reaction. The results are shown in
Figs. 8–10 by solid curves. The data from [19] are
faithfully reproduced in the regionsW = 1.3–1.5 GeV
and 1.5–1.7 GeV. In the interval W = 1.7–2.0 GeV,
the calculated contribution of channel (1) is above
the data from [19], while the calculated contribution
of channel (3) is below them. These discrepancies
may be due both to the aforementioned uncertainties
in the data (they are especially pronounced in the
range W = 1.7–2.0 GeV) and to additional mech-
anisms that manifest themselves in nonresonance
processes of the quasi-two-body channel (1), where
the t-channel diagram (Fig. 2b) may receive con-
tributions not only from the exchange of a π meson
but also from exchanges of other particles. Accord-
ing to [23], such processes can be effectively taken
into account by replacing the exchange of a π me-
son by the exchange of the π-meson Regge trajec-
tory. The discrepancies can also be associated with
the contributions of high-lying nucleon resonances
(MN∗ > 1.9 GeV). For want of experimental data,
the electromagnetic form factors for such resonances
were estimated on the basis of the model from [20].
There is yet another factor that could be invoked in
explaining the above discrepancies: according to [24],
the energy region being discussed may house missing
resonances, baryonic states involving a considerable
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Fig. 10.As in Fig. 8, but for the range W =1.7–2.0 GeV.

fraction of decays into final states that contain pion
pairs.

4. CONCLUSION

A phenomenological model has been developed for
describing the production of π+π− pairs on a proton
by virtual photons in the energy region of nucleon-
resonance excitation (W ≤ 2.0 GeV). The proposed
approach can be used to study this exclusive channel
forQ2 less than 3 to 4 GeV2, in which case the ampli-
tude of the process can be defined in terms of meson–
baryon degrees of freedom. Our model describes sat-
isfactorily the entire body of experimental data on the
Q2 dependences of the cross sections for the reaction
γvp→ π+π−p and for its quasi-two-body channels
in the energy region of nucleon-resonance excitation
(W 
 2.0 GeV) and forQ2 < 1 GeV2. The nucleon-
resonance contribution to the cross section for the
reaction γvp→ π+π−p increases sharply with Q2,
exceeding 50% at Q2 around 1.0 GeV2 (Fig. 5). A
comparative analysis has revealed considerable dis-
tinctions between the cross sections calculated by
using different model descriptions of the electromag-
netic form factors for nucleon resonances. A com-
parison of the calculated integrated and differential
cross sections for the reactions γr,vp→ π+π−p with
TJNAF experimental data [2, 3] would make it possi-
ble to choose the most adequate description of these
form factors and to pinpoint specific mechanisms that
form the structure of nucleon resonances in the tran-
sition region between confinement and perturbative
QCD.
PH
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Abstract—The constraints from LEPII on the mass of the lightest Higgs boson are such that, in the
parameter space of the minimal supersymmetric standard model (MSSM), a considerable part of the region
that corresponds to the scenario of an infrared fixed point is virtually ruled out by available experimental
data. In a nonminimal supersymmetric standard model (NMSSM), the mass of the lightest Higgs boson
takes its maximum value in the regime of strong Yukawa coupling, in which case the Yukawa coupling
constants are much greater than the gauge coupling constants at the Grand Unification scale (Yi(0) �
α̃i(0)). In this limiting case, solutions to the renormalization-group equations are attracted to Hill
and infrared fixed lines or surfaces in the space of Yukawa coupling constants; for Yi(0) → ∞, they are
concentrated in the vicinities of quasifixed points. However, this attraction is quite weak. For this reason,
solutions to the renormalization-group equations are grouped near some line on the Hill surface when all
Yi(0) are close to unity. Approximate solutions for the Yukawa coupling constants within the NMSSM are
presented. In addition, the possibility of unifying the Yukawa coupling constants for the b quark and the τ
lepton at the scaleMX is discussed. c© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The existence of quasifixed points is among the
most spectacular and the most interesting properties
of renormalization-group equations. A feature char-
acteristic of those solutions to renormalization-group
equations that approach such points is that a number
of fundamental parameters of the theory are focused
in a narrow interval in the infrared region. This means
that, at the electroweak scale, some constants or
their combinations cease to depend on the boundary
conditions. That solutions to renormalization-group
equations behave in so peculiar a way in the vicini-
ties of quasifixed points results in that the parameter
space of the theory being considered is constrained for
a wide class of such solutions. As a result, the predic-
tive power of the theories being discussed becomes
higher near these points. Nonetheless, it turns out
that, within the minimal Standard Model (SM), the
quasifixed-point scenario leads to overly high a value
for the mass of the t quark, that which contradicts
experimental data obtained at FNAL.
In contrast to the SM, its supersymmetric (SuSy)

generalization—the minimal SuSy standard model
(МSSМ)—features two Higgs doublets (not one),
H1 and H2. Upon a spontaneous breakdown of
symmetry, they develop nonzero vacuum expectation
values v1 and v2, with the constraint v2 = v2

1 + v2
2 =

(246GeV)2 being satisfied. In relation to what occurs
1063-7788/01/6407-1299$21.00 c©
in the SM, the t-quark running massmt that is gen-
erated within SuSy models upon the breakdown of
SU(2)×U(1) gauge symmetry involves an additional
factor sin β,

mt(M
pole
t ) =

ht(M
pole
t )√
2

υ sin β, (1)

where tan β = v2/v1 and ht is the Yukawa coupling
constant for the t quark. Since sin β ≤ 1, mt(M

pole
t )

is always less in the MSSM than in the SM at
the same values of the Yukawa coupling constants.
Recent experimental data on the t-quark mass make
it possible to determine mt(M

pole
t ) within the MS

scheme [1]. It proves to be mt(M
pole
t ) = 165 ±

5 GeV. The uncertainty in the determination of the
running mass of the t quark stems predominantly
from the experimental error with which its pole mass
was measured (Mpole

t = 174.3 ± 5.1GeV [2]).
Equation (1) unambiguously relates tan β to the

value of the Yukawa coupling constant for the t quark
at the electroweak scale. At modest values of tan β
(tan β 	 50 − 60), the Yukawa coupling constants
for the b quark, hb, and for the τ lepton, hτ , are
negligibly small, which makes it possible to obtain an
analytic solution to the renormalization-group equa-
tion within the MSSM [3]. In this case, the bound-
ary conditions are imposed at the scale MX ≈ 3 ×
2001MAIK “Nauka/Interperiodica”
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1016 GeV, where the gauge coupling constants are
naturally unified within the MSSM. For the t-quark
Yukawa coupling constant, it is convenient to repre-
sent an exact solution to the renormalization-group
equations in the form

Yt(t) =
E(t)
6F (t)

(
1 +

1
6Yt(0)F (t)

)−1

, (2)

where Yt(t) = h2
t (t)/(4π)2 and t = ln(M2

X/q2). The
explicit expressions for the functions E(t) and F (t)
are presented in the Appendix [see (A.4)]. At the
electroweak scale, the second term in parentheses is
much less than unity for h2

t (0) ≥ 1. The dependence
of h2

t (t) on the initial conditions at t = 0 is weak,
and the relevant solution to the renormalization-
group equations approaches a quasifixed point [4]:
YQFP(t) = E(t)/6F (t). Formally, a solution of
this type can be obtained by making Yt(0) tend to
infinity in expression (2). The situation here is,
however, different from that near the Pendleton–
Ross infrared fixed point [5–8], which solutions to
the renormalization-group equations approach only
in the asymptotic regime for q2 → 0: the deviation
from YQFP(t) at finite values of Yt(0) is determined
by the ratio YQFP(t)/(E(t)Yt(0)), which is of order
1/(10h2

t (0)) at the electroweak scale and which is
small at comparatively large h2

t (0) (h
2
t (0) ≥ 1). For a

wide class of solutions, this interesting property of the
renormalization-group equations within the MSSM
makes it possible to predict quite precisely the value
of the Yukawa coupling constant for the t quark at the
scale q = Mpole

t ,

h2
QFP(t0) = 0.87g2

3(t0) = 1.26, (3)

where g3 is the gauge coupling constant for strong
interaction and t0 = 2 ln(MX/Mpole

t ). The accuracy
of this prediction becomes higher with increasing
h2

t (0). At sufficiently large initial values of Yt(t), it
would be illegitimate to restrict the analysis to one-
loop renormalization-group equations—it is neces-
sary to take into account higher order perturbative
corrections. Moreover, the value of the Yukawa cou-
pling constant for the t quark at the electroweak scale
depends on the strong-interaction coupling constant,
which we set to α3(MZ) = 0.118. Nevertheless, all
these uncertainties do not lead to significant devia-
tions from (3). By way of example, we indicate that
the calculations that were performed in [9] and which
employed the four-loop beta function showed that
deviations from (3) are within 2%.
For each fixed value of Yt(0), the Yukawa coupling

constant for the t quark at the electroweak scale can
be evaluated by using the exact analytic solution (2),
whereupon tan β can be determined by substituting
PH
the resulting value of ht(t0) into (4). The theo-
retical analysis performed in [10–13] revealed that,
for the renormalization-group equations within the
MSSM, a broad class of solutions corresponding to
the infrared-quasifixed-point regime leads to tan β
values ranging between 1.3 and 1.8. With increas-
ing Yukawa coupling constant for the t quark, the
corresponding trilinear coupling constant At for the
interaction of scalar particles and the combination
M2

t = m2
Q +m2

U + m2
2 of the scalar-particle masses

cease to depend on the initial conditions. In the
vicinity of the quasifixed point, they are expressed in
terms of only the gaugino mass at the scale MX ,
with the result that the parameter space is further
constrained. In the infrared-quasifixed-point regime
at tan β ∼ 1, the properties of solutions to the set of
renormalization-group equations and the spectrum of
particles were investigated in [8, 12–16].
Finally, there is yet another circumstance that

appears as an incentive to study the limit of strong
Yukawa coupling within the MSSM. Minimal sche-
mes that are used to unify gauge interactions and
which are based on gauge groups like SU(5), E6, or
SO(10) predict the equality of the Yukawa coupling
constants hb and hτ for, respectively, the b quark
and the τ lepton at the scale MX [17]. Within the
MSSM, hb and hτ are unified at two specific values of
ht(M

pole
t ). One of these falls within a narrow region

near hQFP(t0), while the other corresponds to the
scenario of large tan β. In more detail, the problem
of bτ unification within the MSSM was discussed in
[7, 15, 16, 18–20].
The spectrum of the Higgs sector of the MSSM

contains four massive states: two СР-odd states, one
СР-even state, and one charged state. The presence
of a light Higgs boson in the СР-even sector is an
important feature of SuSy models. The upper limit on
its mass greatly depends on tan β. A reduction of the
number of independent parameters in the infrared-
quasifixed-point regime made it possible to deter-
mine, to a sufficiently high degree of precision, an
upper limit on the mass of the lightest СР-odd Higgs
boson. In the case being considered, comparatively
small values of tan β result in that its mass does not
exceed 94± 5GeV [11–13]. This limit is 25–30 GeV
lower than the absolute upper limit in the minimal
SuSy model. At the same time, the lower limit on the
mass of the lightest Higgs boson from LEPII data—
in the case of a heavy spectrum of SuSy particles, it
coincides with the corresponding limit on the Higgs
boson mass in the SM—is 113.3 GeV [21]. Actually,
this means that a major part of solutions approaching
the infrared quasifixed point within the MSSM have
already been ruled out by the existing LEPII data.
In order to meet the experimental constraints on the
YSICS OF ATOMIC NUCLEI Vol. 64 No. 7 2001
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Values of the Yukawa coupling constants at the electroweak scale for various initial values κ2(0), λ2(0), and h2
t (0)

κ2(0) λ2(0) h2
t (0) κ2(t0) λ2(t0) h2

t (t0)
h2

t (t0)+
0.506λ2(t0)

h2
t (t0) + 0.72×

λ2(t0) + 0.33κ2(t0)

0 10 10 0 0.3220 1.1538 1.3180 1.3857

0 6 10 0 0.2879 1.1675 1.3143 1.3747

0 2 10 0 0.1911 1.1987 1.2962 1.3363

0 10 6 0 0.3492 1.1327 1.3108 1.3841

0 6 6 0 0.3167 1.1475 1.3090 1.3755

0 2 6 0 0.2203 1.1815 1.2939 1.3402

0 10 2 0 0.4209 1.0513 1.2659 1.3543

0 6 2 0 0.3901 1.0715 1.2704 1.3524

0 2 2 0 0.2941 1.1160 1.2660 1.3277

10 10 10 0.1480 0.2480 1.1737 1.3002 1.4011

10 6 10 0.1995 0.1969 1.1904 1.2908 1.3980

10 2 10 0.2956 0.0979 1.2193 1.2692 1.3874

10 10 6 0.1256 0.2801 1.1527 1.2956 1.3958

10 6 6 0.1760 0.2279 1.1712 1.2875 1.3934

10 2 6 0.2785 0.1192 1.2047 1.2655 1.3825

10 10 2 0.0865 0.3601 1.0734 1.2570 1.3612

10 6 2 0.1305 0.3060 1.0984 1.2545 1.3618

10 2 2 0.2385 0.1775 1.1458 1.2363 1.3523

2 10 10 0.0655 0.2941 1.1608 1.3108 1.3942

2 6 10 0.1055 0.2482 1.1767 1.3033 1.3903

2 2 10 0.2059 0.1396 1.2092 1.2804 1.3777

2 10 6 0.0521 0.3244 1.1395 1.3049 1.3903

2 6 6 0.0875 0.2798 1.1567 1.2994 1.3870

2 2 6 0.1865 0.1663 1.1929 1.2778 1.3742

2 10 2 0.0322 0.4007 1.0582 1.2625 1.3573

2 6 2 0.0578 0.3581 1.0810 1.2637 1.3580

2 2 2 0.1464 0.2361 1.1297 1.2501 1.3480
mass of the lightest Higgs boson, it is necessary
either to go over to studying solutions that lead to
large values of tan β within the MSSM or to extend
the Higgs sector of the minimal SuSy model. The
detailed investigations that were performed in [13, 16,
19, 22] revealed that, at tan β ≈ 50–60, solutions to
the renormalization-group equations also approach
the infrared quasifixed point, the basic properties of
the solutions remaining unchanged.

The nonminimal SuSy SM (NMSSM) [23–25]
whose Higgs sector contains, in addition to the dou-
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 7 200
blets H1 and H2, an extra superfield Y that is a
singlet with respect to SU(2) × U(1) gauge inter-
actions is the simplest extension of the MSSM. In
the parameter space of the NMSSM, the region that
corresponds to the limit of strong Yukawa coupling,
in which case the Yukawa coupling constants Yi(0)
at the Grand Unification scaleMX are much greater
than the gauge coupling constant α̃(0), is that which
is the most appealing from the point of view of a
theoretical analysis. It is the region where the upper
limit on the mass of the lightest Higgs boson takes
1
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a maximum value that is a few GeV greater than the
corresponding absolute limit within the MSSM [26].
Moreover, it is possible, in the case being considered,
to choose coupling constants in such a way as to ob-
tain the unification of the Yukawa coupling constants
for the b quark and the τ lepton at the scaleMX .
For the Yukawa coupling constants in the limit

of strong Yukawa coupling, we study here basic
properties of solutions to the renormalization-group
equations within the NMSSM. We show that, in
the limit Yi(0) → ∞, all solutions in the nonminimal
SuSy model are concentrated, as in the MSSM,
near quasifixed points that arise as the result of
intersections of Hill lines or surfaces with some
invariant line in the space of Yukawa coordinates.
However, the solutions are rather weakly attracted
to these points. For Yi(0) � α̃(0), all solutions to
the renormalization-group equations are therefore
nonuniformly distributed near Hill lines or surfaces.
Approximate solutions to the set of nonlinear differ-
ential equations that describe the evolution of Yi(t)
within the NMSSM are presented in the Appendix.
The approximate solutions that are obtained in the
present study are compared with the results of nu-
merical calculations within the nonminimal SuSy
model.

2. UPPER LIMIT ON THE MASS
OF THE LIGHTEST HIGGS BOSON
AND RENORMALIZATION-GROUP
EQUATIONS IN THE NMSSM

By construction, the superpotential of the NMSSM
is invariant under the discrete transformations y′α =
e2iπ/3yα of the Z3 group [24]. The term µ(H1H2) in
the superpotential of the NMSSM does not satisfy
this requirement. For this reason, an extra superfield
Y that is a singlet with respect to SU(2) × U(1)
gauge interactions is introduced in the NMSSM. The
superpotential of the Higgs sector of the NMSSM
[23–25] has the form

Wh = λY (H1H2) +
κ

3
Y 3. (4)

Upon a spontaneous breakdown of SU(2) × U(1)
symmetry, the field Y develops a nonzero vacuum
expectation value (〈Y 〉 = y/

√
2) and there arises an

effective µ term (µ = λy/
√

2).
The introduction of the neutral field Y in the su-

perpotential of the NMSSM leads to the emergence
of the corresponding F term in the potential of the
interaction of Higgs fields. As a result, the upper limit
on the mass of the lightest Higgs boson proves to be
greater than in the MSSM. Specifically, we have

mh ≤
√

λ2

2
υ2 sin2 2β + M2

Z cos2 2β + ∆1 + ∆2,

(5)
P

where ∆1 and ∆2 stand for, respectively, one- and
two-loop corrections. At λ = 0, the expressions for
the above upper limit within the MSSM and the
NMSSM coincide. In the tree approximation, rela-
tion (5) was obtained in [25]. The inclusion of loop
corrections to the effective potential of Higgs fields
leads to a considerable growth of the upper limit on
mh. The main contributions to∆1 and∆2 come from
loops involving a t quark and its superpartners. In
the leading approximation, the contribution of loop
corrections to the upper limit on the Higgs boson
mass within the NMSSM is approximately equal to
that within the minimal SuSy model. In calculating
the corrections ∆1 and ∆2 within the NMSSM, it
is necessary, however, to replace the parameter µ by
λy/

√
2. One- and two-loop corrections within the

MSSM were studied in [27] and [28], respectively.
In the leading approximation, these corrections are
proportional to m4

t ; they depend logarithmically on
the scale of SuSy breaking, MS = √

mt̃1
mt̃2

(mt̃1

and mt̃2
are the masses of the superpartners of the

t quark), and are virtually independent of the choice
of tan β. The Higgs sector in the nonminimal SuSy
model and one-loop corrections to this sector were
studied in [29–31]. The possibility of a spontaneous
CP violation in the Higgs sector of the NMSSM was
considered in [31, 32]. In [33], the upper limit on the
mass of the lightest Higgs boson within the NMSSM
was compared with the corresponding limits within
the minimal SM and minimal SuSy models. The
most recent investigations revealed that, in the non-
minimal SuSy model, mh does not exceed 135 GeV
[26].

From relation (5), it follows that the upper limit
on mh grows with increasing λ(t0). It should be
emphasized that only in the region of small tan β is
this limit markedly different from the corresponding
limit within the MSSM. At large values of this pa-
rameter (tan β � 1), the quantity sin 2β vanishes, so
that the upper limits on the mass of the lightest Higgs
boson within the MSSM and the NMSSM virtually
coincide. But only in the case of sufficiently large
ht(t0) is the scenario of small tan β realized, tan β be-
coming smaller with increasing ht(t0), as can be seen
from relation (1). An analysis of the renormalization-
group equations within theMSSM and the NMSSM
reveals that the growth of the Yukawa coupling con-
stants at the electroweak scale is accompanied by an
increase in ht(0) and λ(0) at the Grand Unification
scale. Thus, it becomes clear that the upper limit
on the mass of the lightest Higgs boson within the
nonminimal SuSy model attains a maximum value in
the limit of strong Yukawa coupling, in which case
Yt(0), Yλ(0) � α̃(0).
HYSICS OF ATOMIC NUCLEI Vol. 64 No. 7 2001
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From the point of view of a renormalization-group
analysis, investigation of the NMSSM presents
a much more complicated problem than inves-
tigation of the minimal SuSy model. The full
set of renormalization-group equations within the
NMSSM can be found in [30, 34]. Even in the one-
loop approximation, this set of equations is nonlinear
and its analytic solution has yet to be obtained.
All equations forming this set can be partitioned
into two groups, the first containing equations that
describe the evolution of gauge and Yukawa coupling
constants. In analyzing the nonlinear differential
equations entering into this group, it is convenient
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 7 200
to go over from ht, λ, and κ to the quantities ρt, ρλ,
and ρκ, which are defined as the ratios of the squares
of the corresponding Yukawa coupling constants and
the gauge coupling constant for strong interaction,

ρt(t) =
Yt(t)
α̃3(t)

, ρλ(t) =
Yλ(t)
α̃3(t)

, ρκ(t) =
Yκ(t)
α̃3(t)

,

where α̃3(t) = g2
3(t)/(4π)2, Yt(t) = h2

t (t)/(4π)2,
Yλ(t) = λ2(t)/(4π)2, and Yκ(t) = κ2(t)/(4π)2. The
one-loop renormalization-group equations for ρi(t)
have the form



dα̃3
dt

= 3α̃2
3,

dρ1
dt

= −α̃3ρ1

(
33
5 ρ1 + 3

)
,

dρ2
dt

= −α̃3ρ2 (ρ2 + 3) ,

dρt
dt

= −α̃3ρt

(
6ρt + ρλ − 7

3 − 3ρ2 − 13
15ρ1

)
,

dρλ
dt

= −α̃3ρλ

(
3ρt + 4ρλ + 2ρκ + 3 − 3ρ2 − 3

5ρ1

)
,

dρκ
dt

= −α̃3ρκ (6ρλ + 6ρκ + 3) ,

(6)
where ρ1(t) = α̃1(t)/α̃3(t), ρ2(t) = α̃2(t)/α̃3(t),
α̃1(t) = g2

1(t)/(4π)2, and α̃2(t) = g2
2(t)/(4π)2. The

second group includes equations for the parameters
of a soft breakdown of SuSy, which are necessary for
obtaining a phenomenologically acceptable spectrum
of the superpartners of observable particles. Since
boundary conditions for three Yukawa coupling con-
stants are unknown, it is very difficult to perform a
numerical analysis of the equations belonging to the
first group and of the full set of the equations given
above. In the regime of strong Yukawa coupling,
however, solutions to the renormalization-group
equations are concentrated in a narrow region of
the parameter space near the electroweak scale, and
this considerably simplifies the analysis of the set of
equations being considered.

3. INVARIANT AND QUASIFIXED LINES:
A DETERMINATION

OF THE QUASIFIXED POINT

Let us first consider the simplest case of κ = 0.
The growth of the Yukawa coupling constant λ(t0) at
a fixed value of ht(t0) results in that the Landau pole
in solutions to the renormalization-group equations
approaches the Grand Unification scale from above.
At a specific value λ(t0) = λmax, perturbation theory
1

at q ∼ MX ceases to be applicable. With increas-
ing (decreasing) Yukawa coupling constant for the
b quark, λmax decreases (increases). In the (ρt, ρλ)
plane, the dependence λ2

max(h
2
t ) is represented by a

curve bounding the region of admissible values of the
parameters ρt(t0) and ρλ(t0). At ρλ = 0, this curve
intersects the abscissa at the point ρt = ρQFPt (t0).
This is the way in which there arises, in the (ρt, ρλ)
plane, the quasifixed (or Hill) line near which so-
lutions to the renormalization-group equations for
the initial values of the Yukawa coupling constants
in the range 2 ≤ h2

t (0), λ
2(0) ≤ 10 are grouped (see

Figs. 1а, 1b). With increasing λ2(0) and h2
t (0), the

region where the solutions in question are concen-
trated sharply shrinks. At initial values of the Yukawa
coupling constants from the range between 20 and
100, they are grouped in a narrow region near the
straight line

ρt(t0) + 0.506ρλ(t0) = 0.91, (7)
which can be obtained by fitting the results of nu-
merical calculations (these results are presented in
Figs. 1c and 1d). Moreover, it follows from the data in
the table that the combination h2

t (t0) + 0.506λ2(t0) of
the Yukawa coupling constants depends much more
weakly on λ2(0) and h2

t (0) than λ2(t0) and h2
t (t0)

individually. In other words, a decrease in λ2(t0)
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Fig. 1. Boundary conditions imposed on the renormalization-group equations within the NMSSM at the scale q = MX for
κ2 = 0 and uniformly distributed in the (ρt, ρλ) plane: (а) 2 ≤ h2

t (0), λ
2(0) ≤ 10 and (c) 20 ≤ h2

t (0), λ
2(0) ≤ 100. Also

shown in this figure are the corresponding values of the Yukawa coupling constants at the electroweak scale (b, d). The thick
solid and the thin solid curve in Fig. 1b represent, respectively, the invariant and the Hill line. The dashed lines in Figs. 1b and
1d were obtained as fits to the values of (ρt(t0), ρλ(t0)) for 20 ≤ h2

t (0), λ
2(0) ≤ 100.
compensates for an increase in h2
t (t0), and vice versa.

To illustrate this, we indicate that, at initial values
λ2(0) and h2

t (0) from the interval (2, 10), the following
occurs upon an increase in λ2(0) and a decrease in
h2

t (0): the constant λ
2(t0) increases monotonically

from 0.191 to 0.421, while h2
t (t0) decreases from

1.199 to 1.051; at the same time, the sum h2
t (t0) +

0.506λ2(t0) at identical λ2(0) and h2
t (0) ranges be-

tween 1.266 and 1.318. The results in Figs. 2a
and 2b, which illustrate the evolution of the above
combinations of the Yukawa coupling constants, also
confirm that this combination is virtually independent
of the initial conditions.
In analyzing the results of numerical calcula-

tions, our attention is engaged by a pronounced
nonuniformity in the distribution of solutions to the
renormalization-group equations along the infrared
quasifixed line. The main reason for this is that, in the
regime of strong Yukawa coupling, the solutions in
question are attracted not only to the quasifixed but
also to the infrared fixed (or invariant) line. The latter
connects two fixed points. Of these, one is an infrared
fixed point of the set of renormalization-group equa-
tions within the NMSSM (ρt = 7/18, ρλ = 0, ρ1 =
PH
(α̃1/α̃3) = 0, and ρ2 = (α̃2/α̃3) = 0) [6], while the
other fixed point (ρλ/ρt = 1) corresponds to values of
the Yukawa coupling constants in the region Yt, Yλ �
α̃i, in which case the gauge coupling constants on
the right-hand sides of the renormalization-group
equations can be disregarded [35]. The infrared
fixed line is invariant under renormalization-group
transformations—that is, it is independent of the
scale at which the boundary values Yt(0) and Yλ(0)
are specified and of the boundary values them-
selves. If the boundary conditions are such that
Yt(0) and Yλ(0) belong to a fixed line, the evolution
of the Yukawa coupling constants proceeds further
along this line toward the infrared fixed point of the
set of renormalization-group equations within the
NMSSM.With increasing t, all other solutions to the
renormalization-group equations are attracted to the
infrared fixed line and, for t/(4π) � 1, approach the
stable infrared fixed point. Solutions in the regime
of strong Yukawa coupling undergo the strongest
attraction to the infrared fixed point. From the data in
Figs. 1b and 1d, it follows that, with increasing Yt(0)
and Yλ(0), all solutions to the renormalization-group
equations are concentrated in the vicinity of the point
YSICS OF ATOMIC NUCLEI Vol. 64 No. 7 2001
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of intersection of the infrared fixed and the quasifixed
line:

ρQFP
t (t0) = 0.803, ρQFP

λ (t0) = 0.224.

Hence, this point can be considered as the quasifixed
point of the set of renormalization-group equations
within the NMSSM at κ = 0.
Infrared fixed lines and surfaces, as well as their

properties in the minimal Standard Model and in the
minimal SuSy model, were studied in detail by B.
Schrempp [7], B. Schrempp and Wimmer [20], and
B. Schrempp and F. Schrempp [36]. Within the
NMSSM, the emergence of fixed lines can be traced
at λ = 0, in which case the set of renormalization-
group equations for the Yukawa coupling constants
reduces to two independent differential equations—of
these, one coincides with the equation for Yt(t) in the
minimal SuSy model, while the other describes the
evolution of Yκ(t). In the limit being considered, the
set of one-loop renormalization-group equations has
the exact analytic solution

Yκ(t) =
Yκ(0)

1 + 6Yκ(0)t
, Yt(t) =

Yt(0)E(t)
1 + 6Yt(0)F (t)

, (8)

α̃i(t) =
α̃i(0)

1 + biαi(0)t
,

where the expressions for E(t), F (t), and bi are pre-
sented in the Appendix. The quasifixed line in the
(ρt, ρκ) plane includes two straight lines parallel to
the coordinate axes (see Fig. 3b),

ρt = E(t0)
6α̃3(t0)F (t0)

≈ 0.876,

ρκ = 1
6α̃3(t0)t0

≈ 0.280,
(9)

which intersect at the point (0.876, 0.280). Since the
above solutions to the renormalization-group equa-
tions are attracted to the invariant line at t/(4π) � 1,
unity can be disregarded in the denominators of Yt(t)
and Yκ(t). The infrared fixed line can then be specified
parametrically:


ρt(t) = E(t)

6α̃3(t)F (t) ,

ρκ(t) = 1
6α̃3(t)t

.
(10)

It can easily be shown that the limit t → 0 corre-
sponds to the values ρt and ρκ � 1 belonging to
this curve, ρt and ρκ being virtually coincident in
this limit. By using the expansions of the functions
E(t) and F (t) in the vicinity of the origin, F (t) ≈
t + 0.5E′(0)t2 + ... and E(t) ≈ 1 + E′(0)t + ..., we
obtain

ρκ = ρt −
4
9
− ρ2

4
− 13

180
ρ1. (11)
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 7 200
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The equality ρκ = ρt corresponds to the stable fixed
point of the renormalization-group equations in the
regime of strong Yukawa coupling (ρκ, ρt � 1).
As α3(t) tends to the Landau pole for t → tc =
1/[3α̃3(0)], however, the line given by Eq. (12)
approaches the stable infrared point (see Fig. 3b);
that is, ρt(t) tends to 7/18, while ρκ(t) vanishes:
ρκ ∼ (ρt − 7/18)9/7. The curve given by (10), which
connects the fixed points ρκ/ρt = 1 and ρκ = 0, ρt =
7/18 intersects the quasifixed line at the point (0.876,
0.280). As can be seen from Fig. 3b, solutions to the
renormalization-group equations are concentrated
precisely in the vicinity of this point.

Near the infrared fixed point, the curve being in-
vestigated is tangent to another invariant line, that
which is specified by the equation ρκ = 0. This line
connects the unstable fixed point ρκ/ρt = 0, which
arises in the regime of strong Yukawa coupling (ρt �
1), with other fixed points, those at ρκ = 0, ρt = 7/18
and at ρκ = ρt = 0, the last also being unstable. Yet
another infrared fixed line—the attraction of solutions
to the renormalization-group equations to this line is
the weakest—passes through the points ρt/ρκ = 0
and ρt = 7/18, ρκ = 0. At α̃1 = α̃2 = 0, it appears
to be a straight line parallel to the coordinate axis,
1
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Fig. 3. (а) Boundary conditions imposed on the
renormalization-group equations within the NMSSM at
the scale q = MX for λ2 = 0 and 2 ≤ h2

t (0), κ
2(0) ≤ 10

and uniformly distributed in the (ρt, ρκ) plane and (b)
corresponding values of the Yukawa coupling constants
at the electroweak scale. The thick solid and the thin solid
curve in Fig. 1b represent, respectively, the invariant and
the Hill line.

ρt = 7/18. However, the inclusion of electroweak
interactions leads to a monotonic decrease in ρt(t)
with increasing ρκ(t). In the vicinity of the stable
infrared fixed point for t → tc, the equation for this line
has the form


ρt(t) = 7

18 − 7
4ρ2(t) − 91

180ρ1(t),

ρκ(t) = 1
6α̃3(t)t

.
(12)

Apart from the replacement of ρκ by ρλ, the
same infrared fixed lines are involved in the anal-
ysis of renormalization-group equations within the
NMSSM in the case where κ = 0. As before,
the invariant line that connects the stable fixed
points ρλ/ρt = 1 and ρt = 7/18, ρλ = 0 attracts
most strongly solutions to the renormalization-group
equations. Nevertheless, the asymptotic behavior of
the curve being studied changes for ρλ, ρt � 1, where
it becomes

ρλ = ρt −
8
15

− 2
75

ρ1, (13)

and in the vicinity of the point ρt = 7/18, ρλ = 0,
where we have ρλ ∼ (ρt − 7/18)25/14. In analyz-
ing the behavior of solutions to the renormalization-
group equations, the other two invariant lines have
but a marginal effect. One of these is specified by the
PH
equation ρλ = 0. The second connects the unstable
fixed point in the regime of strong Yukawa coupling,
ρt/ρλ = 0, with the stable infrared point, near which
we have ρλ ∼ (7/18 − ρt)25/18.

4. INVARIANT AND HILL SURFACES

In amore complicated case where all three Yukawa
coupling constants in the NMSSM are nonzero,
analysis of the set of renormalization-group equations
presents a much more difficult problem. In particular,
invariant (infrared fixed) and Hill surfaces come to the
fore instead of the infrared fixed and quasifixed points.
For each fixed set of values of the coupling constants
Yt(t0) and Yκ(t0), an upper limit on Yλ(t0) can
be obtained from the requirement that perturbation
theory be applicable up to the Grand Unification scale
MX . A change in the values of the Yukawa coupling
constants ht and κ at the electroweak scale leads to a
growth or a reduction of the upper limit on Yλ(t0). The
resulting surface in the (ρt, ρκ, ρλ) space is shown in
Figs. 4a and 4b. In the regime of strong Yukawa
coupling, solutions to the renormalization-group
equations are concentrated near this surface. In just
the same way as in the case of Yκ = 0, a specific linear
combination of Yt, Yλ, and Yκ is virtually independent
of the initial conditions for Yi(0) → ∞:

ρt(t0) + 0.72ρλ(t0) + 0.33ρκ(t0) = 0.98. (14)

For 2 ≤ h2
t (0), κ2(0), λ2(0) ≤ 10, this combination

of the coupling constants, h2
t (t0) + 0.72λ2(t0) +

0.33κ2(t0), ranges between 1.35 and 1.40; at the
same time, we have 1.058 ≤ h2

t (t0) ≤ 1.219, 0.032 ≤
κ2(t0) ≤ 0.296, and 0.098 ≤ λ2(t0) ≤ 0.401 (see ta-
ble). The evolution of ρt(t) + 0.72ρλ(t) + 0.33ρκ(t)
at various initial values of the Yukawa coupling
constants is illustrated in Fig. 5.
On the Hill surface, the region that is depicted

in Fig. 4 and near which the solutions in question
are grouped shrinks in one direction with increasing
initial values of the Yukawa coupling constants, with
the result that, at Yt(0), Yκ(0), and Yλ(0) ∼ 1, all
solutions are grouped around the line that appears
as the result of intersection of the quasifixed sur-
face and the infrared fixed surface, which includes
the invariant lines lying in the ρκ = 0 and ρλ = 0
planes and connecting the stable infrared point with,
respectively, the fixed point ρλ/ρt = 1 and the fixed
point ρκ/ρt = 1 in the regime of strong Yukawa cou-
pling. In the limit ρt, ρκ, ρλ � 1, in which case
the gauge coupling constants can be disregarded,
the fixed points ρλ/ρt = 1, ρκ/ρt = 0 and ρκ/ρt = 1,
ρλ/ρt = 0 cease to be stable. Instead of them, the
stable fixed point Rλ = 3/4, Rκ = 3/8 [35] appears
in the (Rλ, Rκ) plane, where Rλ = ρλ/ρt and Rκ =
YSICS OF ATOMIC NUCLEI Vol. 64 No. 7 2001
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Fig. 4. Quasifixed surface in the (ρt, ρκ, ρλ) space. The
shaded part of the surface corresponds to the region
near which the solutions that correspond to the initial
values (a) 2 ≤ h2

t (0), κ
2(0), λ2(0) ≤ 10 and (b) 20 ≤

h2
t (0), κ

2(0), λ2(0) ≤ 100 are concentrated.

ρκ/ρt. In order to investigate the behavior of the solu-
tions to the renormalization-group equations within
the NMSSM, it is necessary to linearize the set of
these equations in its vicinity and set αi = 0. As a
result, we obtain

Rλ(t) =
3
4

(15)

+

(
1
2
Rλ0 +

1√
5
Rκ0 −

3(
√

5 + 1)

8
√

5

)(
ρt(t)
ρt0

)λ1

+

(
1
2
Rλ0 −

1√
5
Rκ0 −

3(
√

5 − 1)

8
√

5

)(
ρt(t)
ρt0

)λ2

,

Rκ(t) =
3
8

+

√
5

2
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×
(

1
2
Rλ0 +

1√
5
Rκ0 −

3(
√

5 + 1)
8
√

5

)(
ρt(t)
ρt0

)λ1

−
√

5
2

(
1
2
Rλ0 −

1√
5
Rκ0 −

3(
√

5 − 1)

8
√

5

)(
ρt(t)
ρt0

)λ2

,

where Rλ0 = Rλ(0), Rκ0 = Rκ(0), ρt0 = ρt(0), λ1 =
(3 +

√
5)/9, λ2 = (3 −

√
5)/9, and ρt(t) = ρt0/(1 +

7ρt0t). From (15), it follows that the fixed point Rλ =
3/4, Rκ = 3/8 arises as the result of intersection of
two fixed lines in the Rλ, Rκ plane. The solutions are
attracted most strongly to the line 1

2Rλ + 1√
5
Rκ =

3
8(1 + 1√

5
), since λ1 � λ2. This line passes through



1308 NEVZOROV, TRUSOV
three fixed points in the (Rλ, Rκ) plane: (1, 0),
(3/4, 3/8), and (0, 1). In the regime of strong Yukawa
coupling, the fixed line that corresponds, in the
(ρt, ρκ, ρλ) space, to the line mentioned immediately
above is that which lies on the invariant surface
containing a stable infrared fixed point. The line of
intersection of the Hill and the invariant surface can
be obtained by mapping this fixed line into the quasi-
fixed surface with the aid of the set of renormalization-
group equations. For the boundary conditions, one
must then use the values λ2(0), κ2(0), and h2

t (0) � 1
belonging to the aforementioned fixed line.
In just the same way as infrared fixed lines, the in-

frared fixed surface is invariant under renormalization-
group transformations. In the evolution process, so-
lutions to the set of renormalization-group equations
within the NMSSM are attracted to this surface. If
boundary conditions are specified on the fixed surface,
the ensuing evolution of the coupling constants pro-
ceeds within this surface. To add further details, we
note that, near the surface being studied and on it, the
solutions are attracted to the invariant line connect-
ing the stable fixed point (ρλ/ρt = 3/4, ρκ/ρt = 3/8)
in the regime of strong Yukawa coupling with the
stable infrared fixed point within the NMSSM. In the
limit ρt, ρκ, ρλ � 1, the equation for this line has the
form


ρλ =

3
4
ρt −

176
417

+
3

139
ρ2 −

7
417

ρ1,

ρκ =
3
8
ρt −

56
417

− 18
139

ρ2 −
68

2085
ρ1.

(16)

As one approaches the infrared fixed point, the quan-
tities ρλ and ρκ tend to zero: ρλ ∼ (ρt − 7/18)25/14

and ρκ ∼ (ρt − 7/18)9/7. This line intersects the
quasifixed surface at the point

ρQFP
t (t0) = 0.82, ρQFP

κ (t0) = 0.087,

ρQFP
λ (t0) = 0.178.

Since all solutions are concentrated in the vicin-
ity of this point for Yt(0), Yλ(0), Yκ(0) → ∞, it
should be considered as a quasifixed point for the
set of renormalization-group equations within the
NMSSM. We note, however, that the solutions
are attracted to the invariant line (16) and to the
quasifixed points much more weakly than to the
infrared fixed surface and to the quasifixed line on
the Hill surface. This conclusion can be drawn from
an analysis of the behavior of the solutions near
the fixed point Rλ = 3/4, Rκ = 3/8 [see Eq. (15)].
Once the solutions have approached the invariant

line 1
2Rλ + 1√

5
Rκ = 3

8

(
1 + 1√

5

)
, their evolution

is governed by the expression [ε(t)]0.085, where ε(t) =
ρt(t)/ρt0. This means that the solutions begin to be
PHY
attracted to the quasifixed point and to the invariant
line (16) with a sizable strength only when Yi(0)
reaches a value of 102, at which perturbation theory is
obviously inapplicable. Thus, it is not the infrared
quasifixed point but the quasifixed line on the Hill
surface (see Fig. 4) that, within the NMSSM, plays
a key role in analyzing the behavior of the solutions
to the renormalization-group equations in the regime
of strong Yukawa coupling, where all Yi(0) are much
greater than α̃(0).
Along with the invariant surface, which was stud-

ied in detail above, at least three infrared fixed surfaces
exist in the (ρt, ρκ, ρλ) space. They attract solutions
to the renormalization-group equations much more
weakly. Two of these are specified by the equations
ρλ = 0 and ρκ = 0. Yet another infrared fixed sur-
face can be found by analyzing the behavior of the
solutions in question near the stable infrared fixed
point. Integrating the linearized renormalization-
group equations, we obtain

ρt(t) =
7
18

(17)

+
(
ρ′t0 −

7
33

ρλ0 +
7
4
ρ20 +

91
180

ρ10 −
7
18

)

×
(

α̃30

α̃3(t)

)7/9

+
7
33

ρλ(t) − 7
4
ρ2(t) −

91
180

ρ1(t),

ρλ(t) = ρλ0

(
α̃30

α̃3(t)

)25/18

,

ρκ(t) = ρκ0

(
α̃30

α̃3(t)

)
,

where ρ′t0, ρi0, and α̃30 are constants of integration.
In the limiting case of ρ1 = ρ2 = 0, the equation
of a nontrivial invariant surface is ρt = 7

18 + 7
33ρλ.

This surface contains nontrivial infrared fixed lines
that lie in the ρλ = 0 and ρκ = 0 planes and which
weakly attract solutions to the renormalization-group
equations. The inclusion of electroweak interactions
significantly modifies the asymptotic behavior of this
surface near the infrared fixed point. Nonetheless, a
solution to the linearized equations (17) does not fix
unambiguously an equation for this surface. Consid-
ering that, at ρλ = 0, the equation of the surface being
studied must reduce to the equation for the invariant
line (12), we find, for t → tc, that

ρt =
7
18

+
7
33

ρλ − 6tc

(
7
4
α̃2(tc) +

91
180

α̃1(tc)
)
ρκ.

(18)
Relation (18) between ρt, ρλ, and ρκ is valid for ρκ �
ρλ. By analyzing the behavior of the solutions in
the vicinity of the stable infrared point (17), it can
be shown that the invariant surface (18) plays a sec-
ondary role in the NMSSM.
SICS OF ATOMIC NUCLEI Vol. 64 No. 7 2001
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5. APPROXIMATE SOLUTIONS
FOR THE YUKAWA COUPLING CONSTANTS

By way of example, the emergence of quasi-
fixed lines and surfaces within the NMSSM can be
traced by considering approximate solutions to the
renormalization-group equations from the Appendix.
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 7 200
Recently, approximate solutions of this type were

studied within the minimal SuSymodel for tan β � 1
[37], in which case Yt ∼ Yb ∼ Yτ . In the regime of

strong Yukawa couplingwithin the nonminimal SuSy

model, these solutions are given by
ρt(t) =
Et(t)

α̃3(t) [6Ft(t)(6Ft(t) + 2Rλ0Fλ(t))]1/2
+ O

(
1

Yt(0)

)
+ ...,

ρλ(t) =
Rλ0Eλ(t)

α̃3(t) (6Rλ0Fλ(t) + 6Rκ0t)
1/3 (6Rλ0Fλ(t))1/6 (6Ft(t) + 2Rλ0Fλ(t))1/2

+ O

(
1

Yt(0)

)
+ ..., (19)

ρκ(t) =
Rκ0

α̃3(t) (6Rλ0Fλ(t) + 6Rκ0t)
+ O

(
1

Yt(0)

)
+ ...,
where the expressions for the functions Ei(t) and
Fi(t) are presented in the Appendix. Expressions
(19) for ρi(t) were formally obtained by expanding
approximate solutions in a power series in 1/Yt(0).
Each subsequent term in such an expansion is always
much less than the preceding one because, in the
approximate solutions, the Yukawa coupling constant
for the t quark always appears in the form of the com-
bination Yt(0)Ft(t), which, in the regime of strong
Yukawa coupling, leads to values 1

Yt(0)Ft(t)
	 1

at t ∼ t0. From relations (19), it follows that, to
O(1/Yt(0)) terms, solutions to the renormalization-
group equations depend only on the ratios of the
Yukawa coupling constants Rλ0 and Rκ0 at the
Grand Unification scale. Setting t = t0, we obtain
a surface in the (ρt, ρκ, ρλ) space. This surface is
specified parametrically; that is, ρi = Gi(Rλ0, Rκ0).
Deviations from it are determined by O(1/Yt(0))
terms, which are negative and small in magnitude
in the limit of strong Yukawa coupling.

However, the approximate solutions (19) poorly
describe the evolution of ρκ(t). By way of example,
we indicate that, at the electroweak scale, the relative
error is about 20 percent at κ2(t0) ∼ 0.1. This is due
above all to the fact that the self-interaction constant
for the scalar field Y is not renormalized by gauge
interactions. The greater the contribution of gauge
interactions to the renormalization of Yukawa cou-
pling constants, the higher the accuracy to which the
approximate solutions describe their evolution. For
example, the relative error in ρt(t0) [ρλ(t0)] is 2 to
3 percent (about 5 to 6 percent) at Yt(0) ∼ Yκ(0) ∼
Yλ(0).

An approximate solution for Yκ = 0 and Yt(0),
Yλ(0) � α̃i(0) can be obtained by setting Rκ0 = 0 in
Eqs. (19). In the regime of strong Yukawa coupling,
ρt(t) and ρλ(t) then depend only on Rλ0, with the
result that, in the (ρt, ρλ) plane, there arises, at t = t0,
the Hill line

ρ2
t +

1
3

(
Et(t0)
Eλ(t0)

)2(Fλ(t0)
Ft(t0)

)2

ρ2
λ = ρ2

QFP, (20)

where ρQFP = Et(t0)
6Ft(t0)α3(t0)

. With increasing initial

values of the Yukawa coupling constants,O(1/Yt(0))
terms, which determine the deviation of the so-
lutions in question from the quasifixed line (20),
decrease, so that the approximate solutions to the
renormalization-group equations within theNMSSM
are attracted to this line. The explicit form of the
dependences ρt(t) and ρλ(t) in (19) makes it possible
to find that the invariant line lying in the (ρt, ρλ) plane
and corresponding to Rλ0 = 1 can be approximately
parametrized as


ρt(t) = Et(t)
α̃3(t) [6Ft(t)(6Ft(t) + 2Fλ(t))]1/2 ,

ρλ(t) = Eλ(t)
α̃3(t) [6Fλ(t) (6Ft(t) + 2Fλ(t))]1/2 .

(21)

The values ρt(t0) and ρλ(t0) as calculated by for-
mulas (21) are the coordinates of the point where
the Hill fixed line (20) intersects the infrared fixed
line (21), which appears to be a quasifixed point for
the set of renormalization-group equations within the
NMSSM at Yκ = 0. Our numerical results, which
are displayed in Fig. 6, demonstrate that relations
(20) and (21) reproduce quite accurately the quasi-
fixed and the invariant line at Rλ0 ≤ 1. Significant
deviations are observed only in the infrared region
(t → tc) and for Rλ0 � 1. In general, the relative
deviation of the approximate solution in question from
the exact one is 5 to 6 percent at ρκ = 0 and Rλ0 ∼ 1
and grows fast with increasing ρλ/ρt.
1
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(thick solid curve). The thin solid curve represents the
quasifixed line.

6. UNIFICATION OF THE YUKAWA
COUPLING CONSTANTS hb AND hτ

As was indicated above, Grand Unified Theories
impose additional constraints on the parameter space
of SuSy models. Among such constraints, the uni-
fication of the Yukawa coupling constants for the b
quark and the τ lepton at the scale MX is worthy
of note above all. In the nonminimal SuSy model,
hb and hτ are unified if the constants Yt, Yλ, and Yκ
satisfy the relations

Yt(0)
Yt(t0)

=
[
Rbτ (0)
Rbτ (t0)

]21/2 [α3(t0)
α3(0)

]68/9 [α2(t0)
α2(0)

]9/4

×
[
α1(t0)
α1(0)

]463/396 [ Yλ(0)
Yλ(t0)

]1/4

,

Yt(0)
Yt(t0)

=
[
Rbτ (0)
Rbτ (t0)

]9 [α3(t0)
α3(0)

]56/9

(22)
P

×
[
α2(t0)
α2(0)

]3/2 [α1(t0)
α1(0)

]197/198

×
[
Yλ(0)
Yλ(t0)

]1/2 [Yκ(t0)
Yκ(0)

]1/6

,

where Rbτ (t0) = mb(t0)/mτ (t0) is the ratio of the
running masses of the b quark and the τ lepton at
the electroweak scale; in the minimal unification

schemes, we have Rbτ (0) =
√

Yb(0)
Yτ (0)

= 1. The equa-

tion determining Rbτ (t) is presented in the Appendix
[see Eq. (A.2)]. The first relation in (22) corresponds
to the case of κ = 0, whereas the second implies a
κ value different from zero. Relations (22) can be
obtained by directly integrating the renormalization-
group equations. Setting Rbτ (t0) = 1.61, which
corresponds to mb(t0) = 2.86 GeV and mτ (t0) =
1.78GeV, we find, for the ratio of the Yukawa coupling
constants for the t quark, that

Yt(0)
Yt(t0)

≈ 3.67
[
Yλ(0)
Yλ(t0)

]1/4

, (23)

Yt(0)
Yt(t0)

≈ 2.57
[
Yλ(0)
Yλ(t0)

]1/2 [Yκ(t0)
Yκ(0)

]1/6

.

The second equation in (23)—it relates Yt, Yλ, and
Yκ—determines a surface in the (ρt, ρλ, ρκ) space;
at Yκ = 0, this surface degenerates into a line in the
(ρt, ρλ) plane. In this case, bτ unification is possible
under the condition Yt(0) � Yt(t0), which is realized
only in the regime of strong Yukawa coupling within
the NMSSM. In the (ρt, ρλ) plane, Fig. 7 shows the
Hill line and the curve that corresponds to Yb(0) =
Yτ (0). As might have been expected, the spacing
between them is quite small. In addition, we note that
only at sufficiently large values of the t-quark Yukawa
coupling constant at the electroweak scale, Yt(t0) >
Y 0

t , is bτ unification possible. A lower limit on the
Yt(t0) implies that there exists an upper limit on tan β
[see Eq. (1)]. By varying the running b-quark mass
at the scale q = mb between 4.1 and 4.4 GeV, we
found that only for tan β ≤ 2 can the equality of the
Yukawa coupling constants at the Grand Unification
scale be achieved. The possibility of unifying the
Yukawa coupling constants within the NMSSM was
investigated in detail elsewhere [38]. The condition
Yb(0) = Yτ (0) imposes stringent constraints on the
parameter space of the model being studied. Since hb

and hτ are small in magnitude at tan β ∼ 1, they can
be generated, however, at the Grand Unification scale
owing to unrenormalized operators upon a sponta-
neous breakdown of symmetry, in which case hb and
hτ can take different values.
HYSICS OF ATOMIC NUCLEI Vol. 64 No. 7 2001
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7. CONCLUSION

The present analysis has revealed that, in the
regime of strong Yukawa coupling, solutions to the
renormalization-group equations within theNMSSM,
Yi(t), are attracted to quasifixed lines and surfaces
in the space of Yukawa coupling constants and that
specific combinations ρi(t) are virtually independent
of their initial values at the Grand Unification scale.
It is for Yi(0) � α̃i(0) that the upper limit on the
mass of the lightestHiggs boson attains its maximum
value. It has also been proven that, in the limit being
considered, the values of the constants ht, λ, and κ
can be chosen in such a way as to ensure unification
of the Yukawa coupling constants for the b quark
and the τ lepton at the scale MX , a feature usually
inherent in Grand Unified Theories. For Yi(0) → ∞,
all solutions to the renormalization-group equations
are concentrated near quasifixed points. These points
emerge as the result of intersection of Hill lines or
surfaces with the invariant line that connects the
stable fixed point for Yi � α̃i with the stable infrared
fixed point. For the renormalization-group equations
within the NMSSM, we have listed all the most
important invariant lines and surfaces and studied
their asymptotic behavior for Yi � α̃i and in the
vicinity of the infrared fixed point.
With increasing Yi(0), the solutions in question

approach quasifixed points quite slowly; that is, the
deviation is proportional to (εt(t))δ , where εt(t) =
Yt(t)/Yt(0) and δ is calculated by analyzing the set
of renormalization-group equations in the regime of
strong Yukawa coupling. As a rule, δ is positive and
much less than unity. By way of example, we indicate
that, in the case where all three Yukawa coupling
constants differ from zero, δ ≈ 0.085. Of greatest
importance in analyzing the behavior of solutions
to the renormalization-group equations within the
NMSSM at Yt(0), Yλ(0), Yκ(0) ∼ 1 is therefore not
the infrared quasifixed point but the line lying on the
Hill surface and emerging as the result of the inter-
section of the Hill and the invariant surface. This line
can be obtained by mapping the fixed line connecting
the fixed points (1, 0), (3/4, 3/8), and (0, 1) in the
(Rλ, Rκ) plane for Yi � α̃i into the quasifixed surface
by means of renormalization-group equations.
The emergence of Hill lines and surfaces in the

space of Yukawa coupling constants can be traced
by considering the examples of approximate solutions
that are presented in the Appendix. These solutions
lead to qualitatively correct results. However, the
approximate solutions poorly describe the evolution
of Yκ(t), since the neutral field Y is not renormalized
by gauge interactions. At the same time, it has been
shown that, at Yt(0) ∼ Yλ(0), the relative deviation
of the approximate solution from the exact one is
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 7 200
as small as 2 to 3 percent in Yt(t0) and about 5 to
6 percent in Yλ(t0). With increasing Yλ(t0)/Yt(t0),
such relative deviations grow quite fast.
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APPENDIX

Set of Renormalization-Group Equations
within the NMSSM for Yukawa Coupling Constants

and Approximate Solution to It

In the present study, we have analyzed one-
loop renormalization-group equations within the
NMSSM. These equations can be represented as [34]

dα̃i

dt
= −biα̃

2
i , (A.1)

dYt

dt
= −Yt

(
Yλ + 6Yt −

16
3
α̃3 − 3α̃2 −

13
15

α̃1

)
,

dYλ

dt
= −Yλ

(
4Yλ + 2Yκ + 3Yt − 3α̃2 −

3
5
α̃1

)
,

dYκ

dt
= −6Yκ(Yλ + Yκ).

On the right-hand sides of these differential equa-
tions, we have discarded terms proportional to the
Yukawa coupling constants Yb and Yτ , since their
contribution at tan β 	 10 is negligibly small. The
index i runs through the values from 1 and 3, b1 =

33/5, b2 = 1, b3 = −3, α̃i(t) = αi(t)
4π =

(
gi(t)
4π

)2

,

Yt(t) =
(
ht(t)
4π

)2

, Yλ(t) =
(
λ(t)
4π

)2

, and Yκ(t) =(
κ(t)
4π

)2

. The variable t is defined in a standard way:

t = ln
(
M2

X/q2
)
, whereMX = 3 × 1016 GeV.

In analyzing bτ unification, use was made of the
evolution equation for the ratioRbτ (t) =

√
Yb(t)/Yτ (t)

of the Yukawa coupling constants for the b quark and
the τ lepton,

dRbτ

dt
= −Rbτ

(
1
2
Yt −

8
3
α̃3 +

2
3
α̃1

)
, (A.2)
1
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≈

where Yb(t) =
(
hb(t)
4π

)2

and Yτ (t) =
(
hτ (t)
4π

)2

.

The value of Rbτ (0) = 1 corresponds to the unifica-
tion of the Yukawa coupling constants hb and hτ . For
the Yukawa and gauge coupling constants, the set of
two-loop renormalization-group equations within the
NMSSM is presented in [30].
The corresponding one-loop equations for the

gauge coupling constants can easily be integrated.
The result has the form

α̃i(t) =
α̃i(0)

1 + biα̃i(0)t
. (A.3)

Since the gauge coupling constants within the
MSSM and within the NMSSM coincide at the
Grand Unification scale, we have α̃i(0) = α̃(0) =
α̃GUT for all of them. In the case where λ = 0,
there exists an exact analytic solution to the set of
renormalization-group equations (A.1). It is specified
by relations (2) and (8), with E(t) and F (t) being
given by

E(t) = exp


 t∫

0

H(t′)dt′




=
[
α̃3(t)
α̃(0)

]16/9 [ α̃2(t)
α̃(0)

]−3 [ α̃1(t)
α̃(0)

]−13/99

,

F (t) =

t∫
0

E(t′)dt′,

where

H(t) =
16
3
α̃3(t) + 3α̃2(t) +

13
15

α̃1(t). (A.4)

In the regime of strong Yukawa coupling, in which
case all Yi(0) are much greater than α̃(0), an exact
analytic solution to the set of Eqs. (A.1) has not yet
been found. An explicit t dependence of the Yukawa
coupling constants can be obtained on the basis of an
approximate solution to the renormalization-group
equations within NMSSM. An approximate solution
of this type was first obtained by Kazakov [37], who
studied the renormalization-group equations within
the MSSM in the limit tan β � 1. For the Yukawa
coupling constants, it has the form

Yλ(t) = Yλ(0)Eλ(t)PH2(t)PH1(t)PY (t), (A.5)

Yκ(t) = Yκ(0)P 3
Y (t),

Yt(t) = Yt(0)Et(t)PQ(t)PU (t)PH2(t),

where

Et(t) = E(t), Eλ(t) =
(
α̃2(t)
α̃(0)

)−3( α̃1(t)
α̃(0)

)−1/11

,

P

and Pi(t) is the contribution of the Yukawa coupling
constants to the renormalization of Yi(t) from each of
the external legs entering the corresponding vertex:

d lnPQ(t)
dt

=
1
2
d lnPU (t)

dt
= −Yt(t), (A.6)

d lnPH2(t)
dt

= −3Yt(t) − Yλ(t),

d lnPH1(t)
dt

= −Yλ(t),

d lnPY (t)
dt

= −2Yλ(t) − 2Yκ(t).

SettingPQ(t)PU (t)PH2(t) ≈ PH2(t)PH1(t)PY (t) ≈
P 3

Y (t) ≈ P0(t) andPA
Q (t) ≈ PB

U (t) ≈ PC2
H2

(t) ≈ PC1
H1

(t)
PD

Y (t) ≈ P0(t), we find that A,B,C1, C2, and D
satisfy the relations

1
A

+
1
B

+
1
C2

= 1,
1
D

+
1
C1

+
1
C2

= 1, D = 3.

Since the contribution of the t-quark Yukawa cou-
pling constant to the renormalization of external legs
is much greater than the contribution of Yλ, the con-
stantsA,B, andC2 also satisfy the approximate rela-
tionsB ≈ A/2 andC2 ≈ A/3, whichmake it possible
to find, for A, B, C1, and C2, that

A = C1 = 6, B = 3, C2 = 2

and to obtain, with the aid of the differential equations
(A.6) for Pi(t), approximate solutions. The results are

PU (t) =
1

(1 + 6Yt(0)Ft(t))1/3
= P 2

Q(t), (A.7)

PH2(t) =
1

(1 + 6Yt(0)Ft(t) + 2Yλ(0)Fλ(t))1/2
,

PH1(t) =
1

(1 + 6Yλ(0)Fλ(t))1/6
,

PY (t) =
1

(1 + 6Yλ(0)Fλ(t) + 6Yκ(0)t)1/3
,

where

Ft(t) = F (t), Fλ(t) =

t∫
0

Eλ(t′)dt′.

Substituting the resulting expressions (A.7) for Pi(t)
into relations (A.5), we obtain approximate solu-
tions for the Yukawa coupling constants within the
NMSSM. In just the same way, we can find ap-
proximate solutions for Yt(t) and Yλ(t) at κ = 0. As
a result, it can easily be proven that the required
solutions are obtained by setting Yκ(0) = 0 in (A.5)
and (A.7).
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Abstract—We investigate squark and gluino pair production at LHC (CMS) with subsequent decays into
quarks and an LSP for the case of nonuniversal gaugino masses. Visibility of a signal by an excess over
the SM background in (n ≥ 2)jets + Emiss

T events depends rather strongly on the relation between the
LSP, gluino, and squark masses and decreases with increasing LSP mass. For a relatively heavy LSP
mass close to the squark or the gluino mass and for mq̃,mg̃ ≥ 1.5 TeV, the sygnal is overly small to be
observable. c© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

One of the LHC supergoals is the discovery of
supersymmetry. In particular, it is very important
to investigate the possibility of discovering strongly
interacting superparticles (squarks and gluinos). In
[1] (see also [2]), the LHC potential for discover-
ing squarks and gluinos was investigated within the
minimal SUGRA–MSSM framework [3], where all
sparticle masses are determined mainly by two pa-
rameters: m0 (common squark and slepton mass at
the GUT scale) and m1/2 (common gaugino mass
at the GUT scale). The signature used to seek
squarks and gluinos at LHC is (n ≥ 0)leptons +
(n ≥ 2)jets + Emiss

T events. The conclusion of [1] is
that LHC is able to detect squarks and gluinos with
masses up to (2–2.5) TeV.

In this article, we investigate the LHC potential
for discovering squarks and gluinos in the case of
nonuniversal gaugino masses. Despite the simplicity
of the SUGRA–MSSM framework, it is a very
particular model. The mass formulas for sparticles
in this model are derived under the assumption
that, at the GUT scale (MGUT ≈ 2 × 1016 GeV),
soft supersymmetry-breaking terms are universal.
However, we can generally expect that real sparticle
masses can differ in a drastic way from the sparticle-
mass pattern of the SUGRA–MSSM framework for
many reasons (see, for instance, [4–7]). Therefore,

∗This article was submitted by the authors in English.
1)Institute for High Energy Physics, Protvino,Moscow oblast,
142284 Russia.
1063-7788/01/6407-1315$21.00 c©
it is more appropriate to investigate, in a model-
independent way, the LHC potential for discovering
SUSY.2)

The cross section for the production of strongly
interacting superparticles,

pp → g̃g̃, q̃g̃, q̃q̃, (1)

depends on the gluino and squark masses. Within the
SUGRA–MSSM framework, the sparticle masses
satisfy the approximate relations

m2
q̃ ≈ m2

0 + 6m2
1/2, (2)

mχ̃0
1
≈ 0.45m1/2, (3)

mχ̃0
2
≈ mχ̃±

1
≈ 2mχ̃0

1
, (4)

mg̃ ≈ 2.5m1/2. (5)

The decays of squarks and gluinos depend on the
relation between the squark and gluinos masses. For
mq̃ > mg̃, squarks decay predominantly into gluinos
and quarks,

q̃ → g̃q,

while gluinos decay, as a rule, into a quark–antiquark
pair and a gaugino,

g̃ → qq̄χ̃0
i ,

g̃ → qq̄′χ̃±
1 .

For mq̃ < mg̃, gluinos decay mainly into squarks
and quarks,

g̃ → q̄q̃, q ¯̃q,

2)The early version of this study was published in [8].
2001 MAIK “Nauka/Interperiodica”
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Table 1. Cuts (a) and corresponding number of back-
ground events for L = 105 pb−1

Cut number Emiss
T , GeV ET1, GeV ET2, GeV Nb

1 200 40 40 4995783

2 200 100 100 3292494

3 200 100 150 3097944

4 200 50 100 4478452

5 400 200 200 180868

6 400 200 300 173889

7 400 100 200 247991

8 600 300 300 8992

9 600 300 450 7771

10 600 150 300 17662

11 800 400 400 1120

12 800 400 600 963

13 800 200 400 2708

14 1000 500 500 229

15 1000 500 750 183

16 1000 250 500 616

17 1200 600 600 38

18 1200 600 900 28

19 1200 300 600 115

whereas squarks decay mainly into quarks and a
gaugino,

q̃ → qχ̃0
i ,

q̃ → q′χ̃±
1 .

The lightest chargino χ̃±
1 has several leptonic de-

cay modes giving a lepton and missing energy:
the three-body decay

χ̃±
1 −→ χ̃0

1 + l± + ν

and the two-body decays

χ̃±
1 −→ l̃±L,R + ν,

|−→ χ̃0
1 + l±

χ̃±
1 −→ ν̃L + l±,

|−→ χ̃0
1 + ν

χ̃±
1 −→ χ̃0

1 + W±.
|−→ l± + ν

The leptonic decays of χ̃0
2 give two leptons and miss-

ing energy. These are the three-body decays

χ̃0
2 −→ χ̃0

1 + l+l−
PH
Table 2. Cuts (b) and corresponding number of back-
ground events for L = 105 pb−1

Cut
number

Emiss
T ,

GeV
ET1,
GeV

ET2,
GeV

ET3,
GeV

Nb

1 200 40 40 40 2953667

2 200 100 125 150 957089

3 200 167 208 250 315594

4 200 233 292 350 104932

5 200 300 375 450 79970

6 400 100 125 150 151076

7 400 167 208 250 20392

8 400 233 292 350 9025

9 400 300 375 450 4113

10 600 100 125 150 8774

11 600 167 208 250 4547

12 600 233 292 350 2599

13 600 300 375 450 1701

14 800 100 125 150 1693

15 800 167 208 250 754

16 800 233 292 350 372

17 800 300 375 450 194

18 1000 100 125 150 425

19 1000 167 208 250 234

20 1000 233 292 350 147

21 1000 300 375 450 59

22 1200 100 125 150 99

23 1200 167 208 250 58

24 1200 233 292 350 31

25 1200 300 375 450 22

χ̃0
2 −→ χ̃±

1 + l∓ + ν,

|−→ χ̃0
1 + l± + ν

and the two-body decay

χ̃0
2 −→ l̃±L,R + l∓.

|−→ χ̃0
1 + l±

In addition to the classical signature

(n ≥ 2) jets + Emiss
T ,

the signatures

(k ≥ 1) leptons + (n ≥ 2) jets + Emiss
T

YSICS OF ATOMIC NUCLEI Vol. 64 No. 7 2001
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Table 3.Numbers of events for the cut with the maximal value of the “significances” S2 and S12 and corresponding values
of the 5σ discovery probability for L = 105 pb−1 (case A)

mq̃ (mg̃), GeV mχ̃0
1
, GeV Cut

number
Signal S2 S12

Probability of discovery

Nback = Nb Nback = 2Nb

2450 400 18 33 4.23 2.52 0.667 0.211

(3050) 1200 17 21 2.73 1.52 0.055 0.006

2050 350 19 176 10.32 6.33 1.000 1.000

(3000) 1025 19 63 4.72 2.62 0.684 0.198

1500 Ns/Nb < 0.5

1950 Ns/Nb < 0.5

1550 260 16 1773 36.27 24.06 1.000 1.000

(2000) 770 13 1697 25.57 14.33 1.000 1.000

1162 Ns/Nb < 0.5

1395 Ns/Nb < 0.5

1050 175 10 18793 98.43 58.03 1.000 1.000

(2000) 525 10 10954 64.75 36.26 1.000 1.000

788 19 74 5.38 3.02 0.900 0.417

945 19 86 6.07 3.45 0.983 0.681

550 92 7 180270 275.47 156.43 1.000 1.000

(2000) 225 10 20210 103.85 61.71 1.000 1.000

412 10 9939 59.82 33.24 1.000 1.000

495 13 2560 35.27 20.54 1.000 1.000

Note: The Nb values were taken from Table 1.
with leptons and jets in the final state arise owing to
the leptonic decays of the chargino and the second
neutralino. As was mentioned above, these signa-
tures were used in [1] to investigate the LHC(CMS)
potential for discovering squarks and gluinos. This
was done within the SUGRA–MSSM framework,
where the gaugino masses mχ̃0

1
and mχ̃0

2
are deter-

mined predominantly by the common gaugino mass
m1/2.

In our study, we consider the general case where
the relation between mχ̃0

1
and mg̃ is arbitrary. We

investigate the detection supersymmetry using the
classical signature (n ≥ 2)jets + Emiss

T . Signatures
featuring several leptons in the final state are more
model-dependent; in addition, the classical signature
leads to the highest discovery potential within the
SUGRA–MSSM framework. We find that LHC
potential for discovering squarks and gluinos depends
rather strongly on the relation between the χ̃0

1, g̃, and
q̃ masses and decreases with increasing LSP mass.
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 7 200
2. SIMULATION OF THE DETECTOR
RESPONSE

Our simulations were performed at the particle
level with parametrized detector responses based on
a detailed detector simulation. To be more specific,
our estimates were obtained for the CMS (Compact
Muon Solenoid) detector. We used the program
CMSJET [9] for a CMS detector simulation. The
main aspects of the CMSJET relevant to our study
are the following.

Charged particles are tracked in a 4 T magnetic
field. A 90% reconstruction efficiency per charged
track with pT > 1 GeV within |η| < 2.5 is assumed.

The geometric acceptances for µ and e are |η| <
2.4 and 2.5, respectively. The lepton momentum is
smeared according to parametrizations obtained from
full GEANT simulations. For a 10-GeV lepton, the
momentum resolution∆pT /pT is better than 1%over
the full η coverage. For a 100-GeV lepton, the resolu-
tion becomes approximately (1–5)×10−2, depending
1
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Table 4.Numbers of events for the cut with the maximal value of the “significances” S2 and S12 and corresponding values
of the 5σ discovery probability for L = 105 pb−1 (case B)

mg̃ (mq̃), GeV mχ̃0
1
, GeV Cut

number
Signal S2 S12

Probability of discovery

Nback = Nb Nback = 2Nb

2000 350 24 18 2.57 1.43 0.031 0.004

(2950) 1000 Ns/Nb < 0.5

1500 251 16 720 21.79 13.75 1.000 1.000

(1950) 750 15 456 13.11 7.32 1.000 1.000

1125 Ns/Nb < 0.5

1350 Ns/Nb < 0.5

1000 175 7 10970 61.94 34.29 1.000 1.000

(1950) 500 11 3050 34.99 19.73 1.000 1.000

750 14 1271 23.34 13.29 1.000 1.000

900 14 1100 20.81 11.70 1.000 1.000

500 94 2 1164159 530.81 300.77 1.000 1.000

(1950) 250 7 30710 135.85 83.26 1.000 1.000

Note: The Nb values were taken from Table 2.

Table 5.Numbers of events for the cut with the maximal value of the “significances” S2 and S12 and corresponding values
of the 5σ discovery probability for L = 105 pb−1 (case C, cuts a)

mq̃ (mg̃), GeV mχ̃0
1
, GeV Cut

number
Signal S2 S12

Probability of discovery

Nback = Nb Nback = 2Nb

2400 400 19 85 6.01 3.41 0.980 0.661

(2300) 1150 Ns/Nb < 0.5

1700 Ns/Nb < 0.5

2100 350 19 191 10.92 6.77 1.000 1.000

(2000) 1000 19 63 4.72 2.62 0.684 0.198

1500 Ns/Nb < 0.5

Note: The Nb values were taken from Table 1.
on η. We assumed a 90% triggering plus a recon-
struction efficiency per lepton within the geometric
acceptance of the CMS detector.

The electromagnetic calorimeter of CMS ex-
tends up to |η| = 2.61. There is a pointing crack
in the ECAL barrel/endcap transition region be-
tween |η| = 1.478–1.566 (six ECAL crystals). The
hadronic calorimeter covers |η| < 3. The Very For-
ward calorimeter extends from |η| < 3 to |η| < 5.
Noise terms were simulated with Gaussian distribu-
tions, and zero suppression cuts were applied.

The e/γ and hadron-shower development are
taken into account by parametrizing the lateral and
longitudinal profiles of showers. The starting point
P

of a shower is fluctuated according to an exponential
law.

For jet reconstruction, we used a slightly modified
UA1 Jet Finding Algorithm, with a cone size of ∆R =
0.8 and a 25 GeV transverse-energy threshold for
jets.

3. BACKGROUNDS AND SUSY KINEMATICS

All SUSY processes with a full particle spec-
trum, couplings, production cross section, and de-
cays were generated with ISAJET 7.32 and ISAS-
USY [10]. The SM backgrounds were also generated
with ISAJET 7.32.
HYSICS OF ATOMIC NUCLEI Vol. 64 No. 7 2001
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Table 6. Numbers of the cut with the maximal value of the “significances” S2 and S12 and corresponding values of the
probability of discovery (case C, cuts b)

mg̃ (mq̃), GeV mχ̃0
1
, GeV Cut

number
Signal S2 S12

Probability of discovery

Nback = Nb Nback = 2Nb

2300 400 22 73 5.55 3.16 0.943 0.508

(2400) 1150 24 18 2.57 1.43 0.031 0.004

1700 Ns/Nb < 0.5

2000 350 16 283 11.06 6.30 1.000 1.000

(2100) 1000 22 51 4.15 2.29 0.446 0.088

1500 Ns/Nb < 0.5

1500 251 14 2910 42.89 26.70 1.000 1.000

(1550) 750 14 1180 22.01 12.45 1.000 1.000

1125 Ns/Nb < 0.5

1350 Ns/Nb < 0.5

1000 167 7 51260 191.50 124.88 1.000 1.000

(1050) 500 7 24240 114.74 68.46 1.000 1.000

750 10 5700 47.38 26.64 1.000 1.000

900 14 1460 26.00 15.00 1.000 1.000

500 84 1 4330000 1604.4 980.20 1.000 1.000

(550) 250 1 3456000 1365.1 813.11 1.000 1.000

375 1 1794000 823.3 460.28 1.000 1.000

450 6 108528 213.0 120.83 1.000 1.000

Note: The Nb values were taken from Table 2.
The following SM processes make the main con-
tribution to the background: WZ, ZZ, tt̄,Wtb, Zbb̄,
bb̄, and QCD (2 → 2) processes.

As was mentioned above, we consider only the
classical signature (n ≥ 2)jets + Emiss

T for squark
and gluino detection. We considered three different
kinematical regions:

(A) mg̃ � mq̃,

(B) mq̃ � mg̃,

(C) mq̃ ∼ mg̃, mq̃ > mg̃.

We also considered the case where all sparticles
are heavy, with the exception of the third-generation
sfermions and LSP [11]. For case A, squark produc-
tion through the process pp → q̃q̃ dominates at LHC.
Squark decays into quarks and LSPs, q̃ → qχ̃0

1, lead
to the signature 2jets+Emiss

T . For case B, gluino pair
production pp → g̃g̃ is dominant. The gluino decays
g̃ → qq̄χ̃0

1 lead to the (n ≥ 3)jets + Emiss
T signature.

For case C, both squarks and gluinos are produced,
pp → q̃q̃, g̃g̃, q̃g̃, at a similar rate. Their decays give
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 7 200
events featuring either two jets or (n ≥ 3) jets. We
considered two types of cuts:

Cuts (a). (n ≥ 2) jets withET jet1 ≥ ET1,ET jet2 ≥
ET2, and Emiss

T ≥ ET0.

Cuts (b). (n ≥ 3) jets withET jet1 ≥ ET1,ET jet2 ≥
ET2, ET jet3 ≥ ET3, and Emiss

T ≥ ET0.

Cuts (a) and (b) are appropriate for investigating
the kinematical points A and B, respectively; for the
point C, cuts (a) and (b) are both useful. We have
calculated the SM backgrounds for various values of
ET jet1, ET jet2, ET jet3, and ET0 of the cut parameters.
Our results are presented in Tables 1 and 2 for a given
total luminosity L.

In this article, we have considered the case where
all squarks have the same mass and mχ̃0

2
,mχ̃±

1
>

min(mg̃,mq̃). The last requirement leads to the sup-
pression of events featuring leptons, only the classical
signature with (n ≥ 2)jets + Emiss

T being essential.
The shape of the squark and gluino differential de-
cay width depends rather strongly on the relation
1
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T distribution for various LSP masses (mḡ = 1000 GeV, mq̄ = 1950 GeV): case B.
between the squark, gluino, and LSP masses. We
have considered various values of the squark and
gluino masses. We set the LSP mass to mχ̃0

1
= k ×

min(mg̃,mq̃) with k = 1/6, 0.5, 0.75, and 0.9. The
value of k = 1/6 corresponds approximately to the
standard case with universal gaugino masses.
PH
4. RESULTS
The results of our calculations are presented in

Tables 3–6 and in Fig. 1–6. In assessing the LHC
(CMS) potential for gaugino discovery, we have used
the significance defined as S12 =

√
Ns + Nb −

√
Nb,

which is appropriate for estimating discovery poten-
tial in the case of future experiments [12]. We also
YSICS OF ATOMIC NUCLEI Vol. 64 No. 7 2001
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Fig. 4. Signal events versus the LSP mass (mḡ =
2000 GeV, mq̄ = 1550 GeV): case A, cut 16a.

imposed the additional requirement that the signal-
to-background ratio be larger than 0.5 (S/B > 0.5).
For the sake of comparison, we also give the values
of the frequently used significance [1] defined as S2 =
Ns/

√
Ns + Nb and the 5σ discovery probability [12]

for two values of the background, Nback. Here, Ns =
σsL is the average number of signal events and Nb =
σbL is the average number of background events for a
given total luminosity L.

From our results, it follows that, for fixed values of
the squark and gluino masses, the visibility of signal
decreases with increasing LSP mass. This fact has a
trivial explanation. In the squark or gluino rest frame,
YSICS OF ATOMIC NUCLEI Vol. 64 No. 7 200
8000 1200400
M(LSP), GeV

Events
800
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Fig. 5. Signal events versus the LSP mass (mḡ =
1500 GeV, mq̄ = 1950 GeV): case B, cut 16b.

the jet spectrum does indeed become softer with in-
creasing LSP mass. In addition, product squark pairs
and gluinos have total transverse momenta close to
zero in the parton model. For high LSP masses,
there is a partial cancellation of missing transverse
momenta from two LSP particles. The fact that, with
increasing LSP mass, the Emiss

T spectrum becomes
softer is explicitly seen in Fig. 1–3.

Figures 4–6 demonstrate that, within a well-
defined cut, the number of signal events decreases
with increasing LSP masses; for this reason, the
1
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detection of supersymmetry is complicated for LSP
masses close to the gluino or squark masses.

5. CONCLUSION

We have presented the results of the calculations
for the production of squark and gluino pairs at LHC
(CMS) with their subsequent decays into jets for
the case of nonuniversal gaugino masses. We have
found that the visibility of the signal by an excess over
the SM background in (n ≥ 2)jets + Emiss

T events
depends rather strongly on the relation between the
mass of the LSP χ̃0

1 and the q̃, g̃ masses. The visibility
of the signal for fixed values of the squark and gluino
masses decreases with increasing the LSP mass. For
a relatively large LSP mass close to the gluino or the
squark masses and for mg̃,mq̃ ≥ 1.5 TeV, the signal
is too small to be observable.
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Chastits At. Yadra 28, 1125 (1997) [Phys. Part. Nucl.
28, 441 (1997)].

4. V. S. Kaplunovsky and J. Louis, Phys. Lett. B 306,
269 (1993).

5. N. Polonsky and A. Pomarol, Phys. Rev. Lett. 73,
2292 (1994).

6. N. V. Krasnikov and V. V. Popov, Preprint
No. 976TH/96, INR (Institute for Nuclear Research,
Moscow, 1996).

7. C. Kolda and J. March-Russell, Phys. Rev. D 55,
4252 (1997).

8. S. I. Bityukov and N. V. Krasnikov, Nuovo Cimento A
112, 913 (1999).

9. S. Abdullin, A. Khanov, and N. Stepanov, CMS
NOTE TN/94-180.

10. H. Baer, F. Paige, S. Protopopesku, and X. Tata,
Preprint No. EP-930329 (Florida State Univ., 1993).

11. See, for instance, J. Bagger, J. L. Feng, and N. Polon-
sky, hep-ph/9905292.

12. S. I. Bityukov and N. V. Krasnikov, Mod. Phys. Lett.
A 13, 3235 (1998); Nucl. Instrum. Methods Phys.
Res. A 452, 518 (2000).
YSICS OF ATOMIC NUCLEI Vol. 64 No. 7 2001



Physics of Atomic Nuclei, Vol. 64, No. 7, 2001, pp. 1323–1325. Translated from Yadernaya Fizika, Vol. 64, No. 7, 2001, pp. 1399–1401.
Original Russian Text Copyright c© 2001 by Nasriddinov, Kuranov, Takhtamyshev, Merkulova.

ELEMENTARY PARTICLES AND FIELDS
Theory
Pole Contributions in Semileptonic Decays of D Mesons

K. R. Nasriddinov, B. N. Kuranov, G. G. Takhtamyshev, and T. A. Merkulova
Institute of Nuclear Physics, Uzbek Academy of Sciences,
pos. Ulughbek, Tashkent, 702132 Republic of Uzbekistan

Received April 7, 2000

Abstract—The contributions of the axial-vector and vector resonance states to D → P (V )lν̄l decays are
investigated on the basis of phenomenological chiral Lagrangians. It is shown that inclusion of such inter-
mediate states improves agreement with experimental data. c© 2001 MAIK “Nauka/Interperiodica”.
In [1], semileptonic D → P (V )lν̄l decays were in-
vestigated on the basis of the method of phenomeno-
logical chiral Lagrangians [2]. However, no account
of pole resonance states was taken there in these
decays. The present study is devoted to exploring
the contributions of such states to the probabilities of
D → P (V )lν̄l decays.

Within this method, the weak-interaction La-
grangian has the form

LW =
GF√

2
(J11−i12

µ sin θC + J13−i14
µ cos θC)l+µ ,

where GF � 10−5/m2
p is the Fermi constant, θC is the

Cabibbo angle, lµ = ūlγµ(1 + γ5)uνl
is the leptonic

current, and J11−i12
µ and J13−i14

µ are the hadronic
currents.

The axial-vector and vector meson currents are
defined as

J i
µ =

m2
v

g
vi
µ +

m2
a

g
ai

µ,

where mv and ma are the masses of, respectively, the
vector and the axial-vector mesons; g is the universal
coupling constant; and vi

µ and ai
µ are the fields of,

respectively, the 1− and the 1+ mesons (i = 1, ..., 15).
The Lagrangians that describe the strong interac-

tion of pseudoscalar mesons with vector mesons and
of axial-vector mesons with vector and pseudoscalar
mesons can be written [3, 4], respectively, as

LS(1−, 0−) = gfklmϕl∂µϕ
kvm

µ (1)
and as

LS(1+, 1−, 0−) = −Fπg
2fklmak

µv
l
µϕ

m, (2)
where Fπ = 93 MeV, fklm are the structure constants
of the SU(4) group (k, l,m = 1, ..., 15), and ϕl are the
fields of 0− mesons.

Within the method of phenomenological chiral
Lagrangians, the Lagrangian that describes the
strong interaction of vector mesons with vector and
pseudoscalar mesons has the form [5]
1063-7788/01/6407-1323$21.00 c©
LS(vvϕ) = −gvvϕεµναβtr(∂µV̂ν∂αV̂βϕ̂), (3)
where gvvϕ = 3g2/16π2Fπ is the coupling constant,

V̂µ =
1
2i

λiv
i
µ, and ϕ̂ =

1
2
λiϕ

i.

The amplitudes of these decays can be represented
as [6]

lM (D(p) → P (p1)l(kl)ν(kv))
= GFū(kv)[f1 + g1γ5 + p̂ (f2 + g2γ5)

+p̂1 (f3 + g3γ5)]u(kl),
M (D(p) → V (p1)l(kl)ν(kv))

= GFε
λ
µ(p1)ū(kv)γµ[f1 + g1γ5 + p̂ (f2 + g2γ5)

+ p̂1 (f3 + g3γ5)]u(kl),
where ελ

µ(p1) is the polarization vector of the 1−

mesons, fi and gi are form factors (i = 1, 2, 3) de-
pending on the momenta of outgoing particles, q =
p− p1, and kl and kv are the 4-momenta of the lep-
tons (p̂i ≡ piµγ

µ).

Table 1. Probabilities Γ(1010 s−1) of semileptonic D →
Plν̄l decays

Decays I [1] II Experimental data from [8]

D− → K0µ−ν̄µ 10.3 5.2 6.62+2.84
−1.89

D− → π0µ−ν̄µ 0.47 0.24 —

D̄0 → K+µ−ν̄µ 10.2 5.2 8 ± 1

D̄0 → π+µ−ν̄µ 0.94 0.48 —

D−
s → K̄0µ−ν̄µ 0.81 0.41 —

D− → K0e−ν̄e 11.0 5.6 6.24 ± 0.85

D− → π0e−ν̄e 1.0 0.5 —

D̄0 → K+e−ν̄e 11.0 5.6 9.16 ± 0.53

D̄0 → π+e−ν̄e 1.0 0.51 0.94+0.29
−0.24

D−
s → K̄0e−ν̄e 0.84 0.43 —
2001 MAIK “Nauka/Interperiodica”
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Table 2. Probabilities Γ(1010 s−1) of semileptonic D → V lν̄l decays

Decays I [1] II Experimental data from [8]

D− → K∗0µ−ν̄µ 2.47 3.38 4.26 ± 0.57

D− → ρ0µ−ν̄µ 0.93× 10−1 2.1× 10−1 (1.89+1.42
−1.23) × 10−1

0.22 ± 0.07 ± 0.05 [11]

D̄0 → K∗+µ−ν̄µ 2.48 3.37 —

D̄0 → ρ+µ−ν̄µ 1.85× 10−1 4.19× 10−1 —

D−
s → K̄∗0µ−ν̄µ 1.89× 10−1 4.02× 10−1 —

D− → K∗0e−ν̄e 2.73 3.59 4.54 ± 0.47

D− → ρ0e−ν̄e 1.01× 10−1 2.26× 10−1 < (3.5 ± 0.1) × 10−1

0.20 ± 0.07 ± 0.05 [11]

D̄0 → K∗+e−ν̄e 2.76 3.72 4.84 ± 0.79

D̄0 → ρ+e−ν̄e 2.02× 10−1 4.36× 10−1 —

D−
s → K̄∗0e−ν̄e 2.05× 10−1 4.19× 10−1 —
With the aid of these Lagrangians, we have calcu-
lated the probabilities of semileptonic D → P (V )lν̄l

decays with allowance for the axial-vector and vector
pole contributions by using the BETA package (see
Tables 1 and 2). The pole contributions of the vector
mesons D∗− and D∗−

s and of the axial-vector mesons
D−

A and D−
s1 were included in the calculations acord-

ing to Lagrangians (1)–(3) (use was also made of
the approximation mD−

A
� mD−

s1
for a unknown D−

A-

meson mass). The relevant probabilities calculated
without taking into account the pole contributions of
the 1± mesons [1] are additionally included in Tables 1
and 2 for the sake of comparison.

The diagrams representing these decays are dis-
played in Fig. 1. It should be noted that the diagram
in Fig. 1c contributes about 7% to the partial widths
with respect to D → V lν̄l decays.

It can be seen that, upon the inclusion of the
contributions of the pole 1± mesons, the calculated
probabilities of D → Plν̄l decays are nearly one-half
as great as the probabilities without these contribu-
tions and are in good agreement with available exper-
imental data [8] within the experimental error. This is
not so only for D̄0 → K+l−ν̄l channels. At the same
time, our results for these decays agree well with the
predictions from [9] and with the experimental data
from [10].

The calculated probabilities of D → V lν̄l decays
(see Table 2) are also in good agreement with avail-
able experimental data [8, 11] within the experimental
error. It can be seen that, for D → K∗l−ν̄l chan-
nels, these probabilities taking into account the pole
contributions agree better with experimental data;
PH
for D → ρl−ν̄l channels, the probabilities calculated
with allowance for the pole contributions better cor-
relate with the predictions of heavy-quark effective
theory [12] and of lattice QCD [13–16] than those
without these contributions [1].

A comparison of the relative probabilities (the no-
tation used here is identical to that in [1]) with the
experimental data from [8, 11] yields

R3 ≡ Γ(D− → K0µ−ν̄µ)
Γ(D− → K0e−ν̄e)

= 0.94,

Rexpt
3 = 1.06+0.48

−0.34;

R4 ≡ Γ(D̄0 → K+µ−ν̄µ)
Γ(D̄0 → K+e−ν̄e)

= 0.93,

Rexpt
4 = 0.84 ± 0.12;

R5 ≡ Γ(D− → ρ0e−ν̄e)
Γ(D− → K∗0e−ν̄e)

= 0.064,

Rexpt
5 = 0.045 ± 0.014 ± 0.009;

R6 ≡ Γ(D− → ρ0µ−ν̄µ)
Γ(D− → K∗0µ−ν̄µ)

= 0.061,

Rexpt
6 = 0.051 ± 0.015 ± 0.009;

R7 ≡ Γ(D− → ρ0l−ν̄l)
Γ(D− → K∗0l−ν̄l)

= 0.061,

Rexpt
7 = 0.047 ± 0.013;

R8 ≡ Γ(D̄0 → K∗+e−ν̄e)
Γ(D̄0 → K+e−ν̄e)

= 0.66,

Rexpt
8 = 0.51 ± 0.18 ± 0.06;
YSICS OF ATOMIC NUCLEI Vol. 64 No. 7 2001
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Diagrams representing D → P (V )lν̄l decays with al-
lowance for pole contributions, W and S being, respec-
tively, the weak and the strong-interaction vertex.

R9 ≡ Γ(D− → K∗0e−ν̄e)
Γ(D− → K0e−ν̄e)

= 0.64,

Rexpt
9 = 0.65 ± 0.09 ± 0.10;

R10 ≡ Γ(D− → K∗0µ−ν̄µ)
Γ(D̄0 → K+µ−ν̄µ)

= 0.67,

Rexpt
10 = 0.43 ± 0.09 ± 0.09.

It can be seen that, for D → P (V )lν̄l decays, the
theoretical and experimental ratios of the decay prob-
abilities comply well. We note that the method of
phenomenological chiral Lagrangians that allows for
the pole contributions from intermediate axial-vector
and vector mesons makes it possible to reproduce
better the relative probabilities R8, R9, and R10 than
other theoretical approaches [8].

In summary, the method of phenomenological chi-
ral Lagrangians describes well D → P (V )lν̄l decays.
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Abstract—The decay process τ− → φπ−ντ is investigated on the basis of the method of chiral phe-
nomenological Lagrangians. It is shown that the calculated value of the decay probability is very sensitive
to variations in the angle of ω–φ mixing. The resulting value of this probability is compared with
available experimental data and with the results of other theoretical calculations. c© 2001 MAIK “Nau-
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Presently, much attention is being given to the
decay processes τ− → (ω, φ)π−ντ . Investigations
of various channels of these decays would pro-
vide a clue to solving the problem of the existence
of second-class currents [1] and the problem of
ω–φ mixing in these decays. Previously, the decay
channels τ− → (ω, φ)π−ντ were studied within the
conserved-vector-current (CVC) hypothesis [2] and
the vector-dominance model [3]. Here, we consider
the decay channel τ− → φπ−ντ on the basis of
the method of phenomenological chiral Lagrangians
[4]. Within this method, τ → V Pντ τ-lepton decay
channels were investigated in [5]. In order to study
these decays, it was found there that the weak
hadronic currents between pseudoscalar and vector
meson states are given by

J i
µ = Fπgv

a
µϕ

bfabi, (1)

where Fπ = 93 MeV; g �
√

12.8π is a universal cou-
pling constant; vi

µ andϕ
i are the fields of, respectively,

1− and 0− mesons; and fabi are the structure con-
stants of the SU(3) group (a, b, i = 1, ..., 8).

From expression (1) for the currents, it follows,
however, that the probabilities of the decay processes
τ− → (ω, φ)π−ντ vanish, so that these decays can
occur only owing to second-order effects. In [6], the
decay channel τ− → ωπ−ντ was therefore investi-
gated on the basis of the Lagrangian for anomalously
strong interaction. The present study is devoted to
an analysis of the decay channel τ− → φπ−ντ within
the method of phenomenological chiral Lagrangians.
With the aid of this method, the hadronic decays of
the τ lepton into final states containing up to three
pseudoscalar mesons were investigated in [7, 8].

Within the formalism of phenomenological chiral
Lagrangians, the Lagrangian of anomalously strong
1063-7788/01/6407-1326$21.00 c©
interaction has the form [4]

LS(vvϕ) = −gvvϕεµναβtr(∂µV̂ν∂αV̂βϕ̂), (2)

where V̂µ =
1
2i

λiv
i
µ, ϕ̂ =

1
2
λiϕ

i, and gvvϕ =

3g2/16π2Fπ is the coupling constant. According to
(2), the Lagrangian describing ρ−-meson interaction
with φ and π− mesons has the form

LS(ρ− → φπ−) (3)

= −0.0016igvvϕεµναβ∂µφν∂αρ
+
β π−,

where it is assumed that the angle of ω–φ mixing is
39◦.

The weak-interaction Lagrangian has the form

LW =
GF√

2
Jh

µ l
+
µ + h.c. (4)

Here, GF � 10−5/m2
p is the Fermi constant; lµ is

the leptonic current, lµ = ūlγµ(1 + γ5)uνl
; and the

hadronic currents are given by

Jh
µ = J1+i2

µ cos θC + J4−i5
µ sin θC,

where θC is the Cabibbo angle. In the case being
considered, the ρ-meson current has the form

J1+i2
µ =

m2
ρ

g
ρµ.

In accordance with the Lagrangians in (3) and
(4), we define the amplitude for the decay process
τ− → φπ−ντ as

M =
0.0016GFm

2
ρgvvϕ cos θC√

2g[S1 −m2
ρ − i(mρΓρ)]

(5)

×εµναβP
φ
αKρ

µε
φ
βūνl

γν(1 + γ5)uτ ,

where εφβ is the φ-meson polarization vector; P φ
α and

Kρ
µ are the 4-momenta of the φ and the ρ meson,
2001MAIK “Nauka/Interperiodica”



DECAY τ− → φπ−ντ 1327
respectively; Γρ is the decay width of the ρmeson; and
mρ is its mass. It follows that the decay amplitude
squared has the form

| M |2= −K[m2
φm

2
π(0.5(S2 −m2

π)

+0.5(S3 −m2
φ)) −m2

φ(0.5(S2 −m2
π))2

−m2
π(0.5(S3 −m2

φ))2 + 0.25(S2 −m2
π)

×(S3 −m2
φ)(S1 −m2

π −m2
φ)

−(0.5(S1 −m2
π −m2

φ))2

×(0.5(S2 −m2
π) + 0.5(S3 −m2

φ))],

where

K =
2.4 × 10−5G2

Fm
4
ρ(g cos θC)2

(16π2Fπ)2[(S1 −m2
ρ)2 + (mρΓρ)2]

.

Here, S1 = (kτ − kν)2, S2 = (kτ − Pφ)2, and S3 =
(kτ − Pπ−)2 are the Mandelstam variables.

The diagram describing the decay process in ques-
tion is depicted in the figure. The τ− → φπ−ντ decay
diagram was calculated with the aid of the BETA
subroutine [9]. In these calculations, we used ω–φ
mixing [10] in the form

ω = V8 sin θV + V0 cos θV ,

φ = V8 cos θV − V0 sin θV .

At θV = 39◦, the result for the rate of the decay pro-
cess τ− → φπ−ντ is

Γ(τ− → φπ−ντ ) = 0.38 × 106s−1.

This result complies well with the experimental value
of Γ(τ− → φπ−ντ ) < (12.04 ± 0.07) × 108s−1 from
[10], but it is below the predictions of the vector-
dominance model [3], Γ(τ− → φπ−ντ ) = (0.41 ±
0.17) × 108 s−1, and is four orders of magnitude less
than the upper limit on this quantity within the CVC
hypothesis [2], Γ(τ− → φπ−ντ ) < 0.31 × 1010s−1.
But in the case of ideal mixing, θV = 35.3◦, we obtain,
for this channel, the value of Γ(τ− → φπ−ντ ) =
1.27× 108 s−1, which is above the prediction from [3].
It should be noted that the value that we found here
for the rate of the decay process τ− → φπ−ντ is very
sensitive to the choice of the mixing angle, varying
with it in proportion to

1
2
√

3
cos θV − 1

2
√

2
sin θV .

As to the decay process τ− → ωπ−ντ , its rate is
proportional to

1
2
√

3
sin θV +

1
2
√

2
cos θV ;

that is, the decay rate is virtually independent here of
the mixing angle [6]. Hence, the decay channel being
studied can serve as an ideal source of information
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 7 200
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Diagram representing the decay channel τ− → φπ−ντ ,
W and S being, respectively, the weak- and the strong-
interaction vertex.

about ω–φ mixing. A more accurate measurement
of the decay process τ− → φπ−ντ at cτ factories in
the future would permit a precise determination of
the angle of ω–φ mixing. It is worth noting that the
result obtained in [3] differs from ours in that, there,
the sensitivity of the relative probabilityRωφ of the ωπ
and φπ channels to variations in the mixing angle was
demonstrated only at specific values of the parameter
r characterizing the approach adopted in that study.

In our calculations for the probability of the de-
cay process τ− → φπ−ντ , we took into account the
contributions from the ρ(770), ρ(1450), and ρ(1700)
mesons, whose widths are 151, 310, and 235MeV, re-
spectively. Here, in just the same way as in case of the
decay mode τ− → ωπ−ντ [6], the contributions of the
vector intermediate states ρ(1450) and ρ(1700) are
dominant, exceeding considerably the ρ(770) contri-
bution. We note that, in [3], this decay channel was
studied with allowance for only a ρ′ meson in addition
to a ρmeson.

In summary, the method of phenomenological chi-
ral Lagrangians makes it possible to describe accu-
rately the decay channel τ− → φπ−ντ , which is of in-
terest, in particular, as an ideal source of information
for precisely determining the angle of ω–φmixing.
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Abstract—The leading-twist pion-distribution amplitude is obtained at a low normalization scale of order
ρc (inverse average size of an instanton). Pion dynamics, consistent with gauge invariance and low-energy
theorems, is considered within the instanton vacuum model. The results are QCD-evolved to higher
momentum-transfer values and are in agreement with recent data from CLEO on the pion transition
form factor. It is also shown that some previous calculations violate the axial Ward–Takahashi identity.
c© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

At high momentum transfers, the amplitudes of
exclusive hadron processes due to factorization of
large- and short-distance dynamics [1–3] are ex-
pressed, in the leading logarithmic approximation,
as the convolution of hard and soft scattering am-
plitudes. The first ones are calculable in perturba-
tive QCD; they are dominated by hard one-gluon-
exchange diagrams. The second ones describe the
soft transition of initial and final hadron states into
quarks; they are determined in terms of hadron dis-
tribution amplitudes (DA) [1]. These phenomenolog-
ical functions have the meaning of the amplitude of
hadron decay (in the infinite-momentum frame, ph →
∞) into a quark–antiquark pair (in the meson case),
with momentum fractions xph and x̄ph(x̄ = 1− x)
and a virtuality µ2. Since DAs depend on dynamics
at large distances, they can be calculated only by a
nonperturbative technique.

The first attempt at calculating hadron DAs was
made in [4]. It resulted in a two-humped shape
for the pion DA. However, the applicability of this
form of DA to exclusive processes at high momen-
tum transfers was questioned some time ago [5]. It
was shown that, in the collinear approximation, soft
one-gluon exchange, which corresponds to large val-
ues of the strong coupling constant, is dominant at
momentum-transfer values far from the asymptotic
region. Moreover, the prediction based on this DA
overshoots large Q2 data on the pion transition form
factor published recently by the CLEO collaboration
[6] (for discussions, see, e.g., [7]).

∗This article was submitted by the authors in English.
1)Instituto de Fı́sica Teórica, Univ. Estadial Paulista

(UNESP), Rua Pamplona 145, BR-01405-900 São Paulo,
SP, Brazil.
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By using a refined technique to extract hadronic
DAs based on QCD sum rules with nonlocal conden-
sates [9], it was shown later on [8] that the pion DA at
a low-energy scale is closer in form to the asymptotic
one. It was also found that the form of hadron DAs
is very sensitive to the structure of the nonpertur-
bative vacuum in terms of nonlocal condensates. In
[10, 11], nonlocal condensates were modeled within
the instanton model.

In this article, quark–pion dynamics developed on
the basis of the instanton vacuum model (for a recent
review, see, e.g., [12]) is used to calculate the leading-
twist pion DA at a low normalization point of order ρc
(inverse effective size of an instanton). The instanton
model of the QCD vacuum gives a dynamical mecha-
nism of chiral symmetry breaking, provides a solution
to the UA(1) problem, and leads to understanding
the physics of light pseudoscalar mesons. Moreover,
it dynamically generates the momentum-dependent
effective quark mass Mq and quark–pion vertex gπqq
and, as a consequence, provides inherently a natural
ultraviolet cutoff parameter in quark-loop integrals
through the effective instanton size ρc.

The instanton-model parameters are naturally re-
lated to basic quantities of low-energy physics. The
inverse effective instanton size ρ−1

c directly measures
the average virtuality of quarks that flow through the
vacuum with a momentum kq , where

〈
k2
q

〉
≡ λ2

q ≈
2ρ−2
c [10] ≈ 0.5 GeV2 [13]. The quark-mass param-

eter Mq is given by the Goldberger–Treiman relation
Mq = gπqqfπ, with the quark–pion coupling constant
being fixed by the compositeness condition. Finally,
the effective instanton density nc is determined via the
gap equation.

Earlier attempts [14] (see also [15]) at calculating
the pion DA were made within the model developed
2001 MAIK “Nauka/Interperiodica”
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in [16], which was further improved. The effective
action proposed in [16] is valid only in the chiral limit
and was modified consistently in [17]. The effective
quark Lagrangian involving contributions of nonzero
quark modes was considered in [18]. In [11], it
was shown that the kernel of the effective instanton-
induced four-quark interaction can be expressed in
terms of a gauge-invariant quantity, nonlocal quark
condensate, whereby nonperturbative effects of the
instanton field are effectively resummed. What is
important in the context of the present study is that,
within nonlocal models, the form of conserved cur-
rents is generally different from that of usual local
currents (see, e.g., [19]). These points lead to the
conclusion that the approach of [16] is not fully con-
sistent with low-energy theorems. In view of these
facts, it is necessary to revise some of the previous
calculations. In particular, the approach of [16] fails
to satisfy the axial Ward–Takahashi identity (WTI).
As was shown in [19], the local part of the axial
current is modified by a nonlocal term. Physically, this
means that usual local currents are defined via (free)
current quarks and that a modification by nonlocal
terms occurs owing to the transition from current-
to constituent-quark description in effective models.
These additional terms are not suppressed by a small
instanton-density parameter and lead to a correction
on the order of 30% to the pion decay constant Fπ.
Since the pion decay constant is an integral measure
of the pion DA, the main motivation of the present
study is to estimate the effect of such terms on the
leading term of the wave function.

This article is organized as follows. In Section 2,
we define the pion DA. In Section 3, we write the
effective instanton-induced action in terms of quark
fields gauged by P-ordered exponential phase factors.
The gauge fields in the phase factor (vector, axial-
vector, etc.) are in general unphysical; however, their
introduction is convenient for generating conserved
currents of the model. The results and main con-
clusions are presented in the last section. In the
Appendix, we show how the axial WTI is satisfied
within the nonlocal four-quark model.

2. PION-DISTRIBUTION AMPLITUDE
AT A LOW-ENERGY SCALE

The axial projection of the pion light-cone DA
ϕA(x) defines the leading asymptotic behavior of the
pion form factor. It parameterizes the structure of the
matrix element

〈0|JAµ (z,−z)|π+(p)〉 (1)

= ipµFπ

1∫
0

dxei(2x−1)p·z ϕA(x)
PH
of the bilocal operator

JAµ (z,−z) (2)

= d̄(z)γµγ5P exp


i

z∫
−z

Aµ(z)dzµ


u(−z),

where the light-cone limit is considered; zµ = λnµ,
nµ being the lightlike vector, n2 = 0, normalized by
the condition p · n = 1; Fπ = 130 MeV is the weak
pion decay constant; and the leading-twist pion light-
cone DA is normalized by the condition

1∫
0

dxϕA(x) = 1. (3)

The path-ordered Schwinger phase factor is required
for gauge invariance, and the integration is performed
along the lightlike direction z. This factor will be
neglected in the following, since the possible contri-
bution of a classical field (instanton) produces higher
twist corrections to the DA and that of a quantum
field gives corrections in a small instanton-density
parameter.

The bilocal current (2) is defined in terms of cur-
rent quarks, and the effective low-energy model that
we are going to use is described in terms of con-
stituent quarks U and D. In order to derive the
matrix element (2), we therefore consider the vertex〈
0
∣∣JAµ (z,−z)

∣∣U(k)D̄(k)
〉
, which, after the extrac-

tion of the pion pole, takes the form〈
0
∣∣JAµ (z,−z)

∣∣U(k)D̄(p− k)
〉

(4)

=
〈
0
∣∣JAµ (z,−z)

∣∣ π+(p)
〉 1
m2
π − p2

Γaπq (k, p) ,

where
Γaπq (k, p) =

〈
π+(p)|U(k)D̄(p− k)

〉
.

Expressing the matrix element〈
0
∣∣JAµ (z,−z)

∣∣U(k)D̄(p− k)
〉

in terms of a loop integral, taking into account
constituent-quark rescattering, and selecting the
pion pole, we can then reduce the expression for the
DA to the form2)

pµFπϕA(x) = 2Nc
∫

d4k

(2π)4 i
δ (x− k · n) (5)

×tr{Γaπq (k, p)S(k)AΓµa(k, p)S(k − p)},
where x is the pion-momentum (p) fraction carried
by a quark. The delta function in (2) accumulates

2)This expression generalizes that which was given previously
in [14] (and also in [15]). In those studies, the local-axial-
current vertex γµγ5 was used instead of the dressed one,
Γµ(k, q). As will be seen below, this approximation is in-
consistent with the axial WTI.
YSICS OF ATOMIC NUCLEI Vol. 64 No. 7 2001
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information about all the moments of the DA and is
related to them by the Mellin transformation.

In the above expression, S(k), AΓµa(k, p), and
Γaπq (k, p) are the dressed quark propagator, the
quark-axial-current vertex, and the quark–pion ver-
tex, respectively. The main subject of the rest of this
article is to specify these functions. To this end, we
use a covariant effective low-energy model with a
separable nonlocal four-quark interaction. Moreover,
the actual calculations will be done within a model
where interquark interaction is induced by instanton
exchange. The advantages of the instanton model are
the following:

(i) The form of the nonlocal interaction is given by
quark zero modes.

(ii) The parameters of the model are directly related
to the fundamental low-energy constants.

One can verify that the numerical dependence of
the results on the pion mass and current quark mass
is negligible and can be ignored within the following
considerations: mπ = 0 and mcurr = 0. However,
the interplay of the effective quark mass Mq and the
scale of nonlocality of the vacuum field, λ2

q , has an
important effect on the form of the DA.

3. GAUGED NONLOCAL FOUR-FERMION
MODEL AND CONSERVED CURRENTS

1. Let us consider the nonlocal chirally invariant
action given by

S = S0 + S4q (6)

with

S0 =
∫

d4xd4y δ (x− y) Q̄(x,X)i∂̂yQ(X, y), (7)

S4q =
1
2
GI

∫
d4X

∫ 4∏
n=1

d4xnKI(x1, x2, x3, x4)

(8)

×
{∑
i

[
Q̄R(X − x1,X)ΓiQL(X,X + x3)

]

×
[
Q̄R(X − x2,X)ΓiQL(X,X + x4)

]
+ (R ↔ L)

}
,

whereQR(L)(x, y) =
1 ± γ5

2
Q(x, y) are gauged quark

fields of definite chirality and the matrix combinations
Γi ⊗ Γi are given by

1 ⊗ 1 − τa ⊗ τa, (9)
1

2 (2Nc − 1)
(σµν ⊗ σµν − τaσµν ⊗ τaσµν).
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 7 200
Here, τa are the Pauli matrices for the flavor space,
and Nc = 3 is the number of colors. The form of the
action is motivated by the instanton vacuum model;
in the local limit, it reduces into the ’t Hooft vertex.
In the following, we neglect the terms induced by
tensor interaction in (9) since they do not contribute
to scalar channels. The action in (6) effectively de-
scribes the instanton-exchange-induced interaction
between quarks and is a nonlocal generalization of
the Nambu–Jona-Lasinio (NJL) model. We assume
that the nonlocal kernel KI(x1, x2, x3, x4) has the
separable form

KI(x1, x2, x3, x4) = f(x1)f(x2)f(x3)f(x4) (10)

and relate, in what follows, the function f(x) to the
profile function for the quark zero mode in the instan-
ton field.

In order to render the nonlocal action (6)–(8)
gauge-invariant with respect to external fields, the
quarks are coupled by path-ordered phase factors:

Q(x, y) ≡ P exp


−i

y∫
x

dzµ Λaµ(z)
τa

2


 q(y),

Λaµ(z) = V aµ (z) +Aaµ(z)γ5.

We use a formalism based on the path-independent
definition of the derivative of the line path integral [20],

∂

∂yµ

y∫
x

dzν Λν(z) = Λµ(y). (11)

This means that the terms induced by nonminimal
couplings are ignored. This formalism was used in
[21] (see also [22, 23]) for gauging nonlocal interac-
tions. The incorporation of a gauge-invariant inter-
action with gauge fields is very relevant to correctly
treating the hadron characteristics probed by external
sources, such as hadron form factors [19] and parton
distribution functions [11].

2. Conserved currents are given by the derivatives
of the action with respect to the external fields at
zero. In the presence of a nonlocal interaction, the
currents involve both local and nonlocal terms. For
our purpose, it is sufficient to regard a vertex featuring
one external isovector axial-vector current. It is given
by3)

AΓµa4q (k1, k2, k3, k4, q) (12)

= γµγ5τ
a/2 + GIf(k1)f(k2)f(k3)f(k4)

3)Here, we follow spin–isospin classification of currents that
was given in [19]. Our definitions and those from that study
differ in the definition of the path integral. This difference is
displayed in the form of (momentum) space nonlocal form
factors Fµ(k′, k). Still, the longitudinal components of the
currents are identical in the two approaches, as this must be.
1
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×
III∑
j=I

∑
i

[(Γαi )13 (Ωiα )24]
a
j H

µ
j (k1, k2, k3, k4, q) ,

where ki are the quark in(out)-going momenta and q
is the momentum flowing through the current. The
usual local piece of the vertex is obtained by gauging
the kinetic term (7), which is equivalent to the appli-
cation of a covariant derivative, iD̂y = i∂̂y + V̂ (y) +
Â(y)γ5.

The nonlocal four-quark part of the current is
generated from the interaction term (8). In order to
expand the path-ordered exponentials entering into
the interaction, we use the technique described in
[21] (see also [24]). This method consists, first, in
obtaining the Fourier transform and constructing the
Taylor expansion of the kernelKI(x1, x2, x3, x4); after
that, it is necessary to convert the powers of momenta
into derivatives acting on the path-ordered exponen-
tials and quark fields, to make the inverse Fourier
transformation, and then to perform resummation.

There are two types of nonlocal vertices that
are generated from (8) and which contribute to the
isovector axial current: type I and type III. A type-I
vertex is given by

HµI (k1, k2, k3, k4, q) (13)

= Fµ (k1 + q, k1) + Fµ (k3 − q, k3) ,

with the corresponding matrix combinations
[(Γαi )13 (Ωiα )24]

a
I , (14)

εabc(τ c ⊗ iγ5τ
b), −εabc(iγ5τ

b ⊗ τ c);

a type-III vertex is given by
HµIII (k1, k2, k3, k4, q) (15)

= Fµ (k2 + q, k2) + Fµ (k3 − q, k3)
−Fµ (k1 + q, k1) − Fµ (k4 − q, k4) ,

with the matrix terms
(iγ5τ

a ⊗ 1), −(iγ5 ⊗ τa). (16)

In the above expressions, the nonlocal vertex function
Fµ (k ± q, k) is defined as

Fµ (k ± q, k) = (2k ± q)µ
[f (k ± q) /f (k) − 1]2

(k ± q)2 − k2

and we use the same notation for the function f
and its Fourier transform. The law of energy–
momentum conservation is implicitly given by the
factor (2π)4 δ(k1 + k2 + q − k3 − k4).

3. The vertices given in the preceding subsection
are bare ones. It is now necessary to “dress” the
model by taking into account rescattering processes.
The first step is to construct the dressed quark propa-
gator by means of the Schwinger–Dyson equation.
We treat it in the ladder approximation, which is
PH
equivalent to retaining only the leading order in the
1/Nc expansion. In the chiral limit, this equation is
given by

M(p) = i2NcGIf2(p) (17)

×
∫

d4k

(2π)4
tr
[
k̂ + M(k)

]
k2 −M2(k)

f2(k),

where a momentum-dependent quark mass
M(p) = MqQ̃(p) (Q̃(0) = 1) is defined by the dressed
quark propagator

S−1
F (p) = p̂−MqQ̃(p). (18)

A solution to Eq. (3) can be written simply as
M(p) = Mqf

2(p). On the other hand, the momen-
tum dependence of the nonperturbative part of the
quark propagator in the nonperturbative vacuum,
Q̃(p), describes the nonlocal properties of the quark
condensate and is given by

Q̃(p) = p2NQ

∫
d4x

(2π)4
exp(−ip · x)Q(x2), (19)

Q(x) = 〈: q̄(0)Eg(0, x)q(x) :〉/〈: q̄(0)q(0) :〉,
where the Schwinger factor Eg(0, x) = P×
exp

(
i
∫ x
0 Aµ(z)dzµ

)
in terms of the vacuum gluon

field Aµ(z) guarantees gauge invariance and NQ
gives normalization. Through a solution to the gap
equation (17), the function f(p) is therefore related to
the nonperturbative scalar propagator (19) as

f(p) =
√

Q̃(p). (20)

We now specify the QCD vacuum model as given by
the instanton-induced interaction. In this case, the
scalar part of the quark propagator is4)

QI(x) =
8ρ2
c

π

∞∫
0

drr2

∞∫
−∞

dt (21)

×cos [(r/R) (arctan(t + |x|/R)− arctan(t/R))]
[R2 + t2]3/2[R2 + (t + |x|)2]3/2

,

where R2 = ρ2
c + r2 and the cos [...] factor, which

comes from the Schwinger factor, effectively sums
an infinite set of quark–instanton interaction terms.
The normalization factor in (19) is NQI

= 2π2ρ−2
c .

The explicit expressions for the instanton field and
quark zero mode were used [10, 25] to obtain the
above equation. Equation (3), which is obtained

4)The nonlocal condensate Q(x) and the form factor f(k)
are naturally defined in the Euclidean region, where they
decrease fast. All loop integrals, like that in (3), are evaluated
in Euclidean space (k2 → −k2

E, d4k → id4kE). Physical re-
sults are then obtained by means of an analytic continuation
back to Minkowski space.
YSICS OF ATOMIC NUCLEI Vol. 64 No. 7 2001
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in the chiral limit, determines the parameter GI as
GI = M2

q /(Nfnc), where nc is the effective instanton
density, and coincides with the result presented in
[16].

The pion mass5) and the quark–pion vertex are
obtained by using the Bethe–Salpeter equation for
the quark–antiquark scattering amplitude. The pion
state is manifested as a pole in the amplitude, and, in
the ladder approximation with a separable kernel, the
quark–pion vertex near the pole is given by

Γaπq (k, p) = gπqf (p− k) f (k) iγ5T
a, (22)

where the quark–pion coupling is defined by the com-
positeness condition

1
g2
πq

=
dJPP (p)

dp2

∣∣∣∣
p2=m2

π

(23)

and

JPP (p) = i2Nc
∫

d4k

(2π)4
f2(k+)f2(k−) (24)

×tr [iγ5SF (k−)iγ5SF (k+)]

is the pion-field-polarization operator. In Eq. (3),
we have used the dressed quark propagator and in-
troduced the notation kµ± = kµ ± pµ/2. Explicitly, the
quark–pion coupling constant is given by [16](

1
gπqq

)2

=
Nc
4π2

∫
d4k

π2i
f2 (k) (25)

×

[
f2 (k)− 2k2f (k) f ′ (k) + 4k4 (f ′ (k))2

]
(
k2 −M2

q (k)
)2 ,

where f ′(k) ≡ ∂f(k)/∂k2.
4. The nonlocal four-quark vertices Γ4q induce

the two-quark dressed vertices Γ2q if one quark line
is closed into a loop. The longitudinal part of the
dressed two-quark axial-vector vertex resulting from
(3) is given by [19]

AΓµa2q (k, q) = γµγ5
τa

2
− γ5

qµ
q2

τa

2
(26)

×
{

[M (k + q) + M (k)] −i4NcNfGIf (k + q) f (k)

×
∫

d4l

(2π)4
M
(
l2
)

l2 −M (l2)
f (l) [f (l − q) + f (l + q)]

}
,

where the gap equation (3) is used to obtain the first
term in the braces. This vertex is a bare one—in
particular, it is free from singularities. To obtain the

5)In the chiral limit, which is used in the present study, the pion
mass is zero in accordance with Goldstone theorem; at finite
current quark masses, it is deduced from the Gell-Mann–
Oakes–Renner relation.
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full axial-vector vertex, we must take into account the
transition of the current into the constituent quarks
through their rescattering in the channel with pion
quantum numbers. In the Appendix, we explicitly
demonstrate that the full axial-vector current is given
by

AΓµafull (k, q) (27)

=
[
γµ − M (k + q) + M (k)

q2
qµ
]
γ5

τa

2
.

It has a physical singularity corresponding to the pion
and obviously satisfies the axial WTI:

qµAΓµ(k, q) = S−1
F (k + q)γ5 + γ5S

−1
F (k).

The WTI and the requirement that the vertices con-
tain no unphysical singularities uniquely define the
longitudinal part of the vector and axial-vector ver-
tices. The transverse part is model-dependent and,
within the present approach, depends on the definition
of the path integral.

4. RESULTS AND CONCLUSIONS

The pion DA is computed from (5) by using the
dressed quark propagator (18), the quark–pion vertex
(22), and the quark-axial-vector-current vertex (27).
The momentum dependence of the dressed quantities
is defined by the nonlocality of the quark condensate
(19), which, in the present approach, is specified
by the instanton model (3). The parameter values
used in the present calculations are the following [11]:
ρc = 1.7 GeV−1, Mq = 230 MeV, and nc = 0.7 fm−4.
They are consistent with the low-energy observables
as discussed in the Introduction. In the calculation
of the integral in (2), we use the Laplace transform
technique described in [11]. In the present study, we
do not use the constant-mass approximation.

The graph of ϕA(x) is presented in Fig. 1 (solid
curve), where we can see that its shape is similar to
that of the asymptotic expression DA ϕ

asympt
A (x) =

6xx̄. The main contribution comes from the local part
of the vertex (dash-dotted curve), and the contribu-
tion of the nonlocal part (dashed curve) is flat. The
flat shape of the nonlocal contribution results from a
summation of various nonlocal terms, which have a
more complicated shape.

The pion DA that we found is defined at a low-
energy scale µ0 ∼ ρ−1

c , where the application of the
instanton model is expected to be justified. It serves
as input data for the QCD evolution to the higher
momentum-transfer scales µ2

F = Q2. To obtain this
relation, it is convenient to expand the DA in Gegen-

bauer polynomials C3/2
n (x), which are the eigenfunc-

tions of the kernel of the QCD evolution equations:

ϕA(x, µF ) = ϕ
asympt
A (x) (28)
1
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Fig. 1. Axial projection of the pion-distribution amplitude
(solid curve) at the low-energy scale of µ2

0 = 0.5 GeV2:
(dash-dotted curve) contribution of the local part of the
vertex, (dashed curve) contribution of the nonlocal part,
and (dotted curve) asymptotic distribution amplitude.

×


1 +

∞∑
n=2,4,...

Bn(µ0)
(
αs(µF )
αs(µ0)

)γn
C3/2
n (2x− 1)


 .

Here, γn are the anomalous dimensions calculated in
the leading order in the coupling constant αs(µ) and
Bn(µ0) are the coefficients in the Gegenbauer poly-
nomial expansion. The model DA is well reproduced
by the above expansion with only the first few nonzero
coefficients:

B2(µ0) = 0.069, B4(µ0) = −0.061, (29)

B6(µ0) = −0.017, Bn≥8(µ0) = 0.

The resulting distribution is extrapolated to higher
experimentally accessible momentum scales by using
perturbative QCD, so that a comparison with exper-
imental data could be performed. For the QCD scale
parameter, we choose the value of Λ3

MS
= 250 MeV.

The pion DA evolved to the scales of 1 and 10 GeV2

is shown in Fig. 2, along with the initial distribution
at the scale of µ2

0 = λ2
q = 0.5 GeV2.

New data on the pion transition form factor at
rather high Q2 are available from [6]. For the high-
Q2 behavior of the form factor, perturbative QCD
predicts [3]

Fπγγ
(
Q2
)
=

J√
2
Fπ
Q2

, (30)

with the constant J being defined in terms of the pion
DA as

J =
2
3

1∫
0

dx

x
ϕA(x).
PH
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Fig. 2. Axial projection of the pion-distribution ampli-
tude (solid curve) at the low-energy scale of µ2

0 = 0.5
GeV2 and its evolution to higher momentum transfers
squared of Q2 = (dashed curve) 1 and (dash-dotted
curve) 10 GeV2. The asymptotic distribution amplitude
is shown by the dotted curve.

At asymptotically high Q2, the DA evolves to
ϕ

asympt
A (x) with Jasympt = 2. At the highest presently

available momenta of Q2 ≈ 10 GeV2, this predic-
tion is reduced by the lowest order QCD radiative
corrections [26] to Jasympt(10 GeV2) = 1.6 and fits
CLEO data well. Our predictions for noncorrected
J is very stable with respect to Q2 evolution—
Jmodel

(
µ2

0

)
= 1.98 and Jmodel

(
10 GeV2

)
= 2.01—

and is thus indistinguishable from the predictions of
perturbative QCD.

In summary, we have presented here some the-
oretical predictions for the pion-distribution ampli-
tude. The nonperturbative formalism is based on
the instanton model of the QCD vacuum, expressing
hadron observables in terms of fundamental charac-
teristics of the vacuum state. The effective instanton
size ρc and the quark mass Mq appear to be the
parameters of the model. The first one is given by
the average virtuality of the vacuum quarks, while the
second one is related to the pion decay constant by
the Goldberger–Treiman relation. It has been shown
that a correct normalization of the DA is obtained
by using the compositeness condition and the strict
implementation of PCAC, which improves some pre-
vious calculations given in [14, 15].

Our calculations are restricted to the instanton
vacuum model. In the extended nonlocal NJL, where
other spin–flavor terms in the interaction are possi-
ble, the pion DA can receive a contribution from the
vertex with a vector insertion. The contribution of
this piece to Fπ is small and is estimated at −10%
[19]. However, it would be interesting to consider its
YSICS OF ATOMIC NUCLEI Vol. 64 No. 7 2001
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effect on the form of the DA. We must also be aware
that the nonlocality in this model is not fixed by any
microscopic principle.

The extracted pion DA corresponds to a low nor-
malization scale, where the effective instanton ap-
proach is justified. We have obtained the pion DA
via a standard perturbative evolution to higher mo-
mentum values that are accessible by experiment.
Reasonable agreement with the CLEO data on the
pion transition form factor at high momentum trans-
fer has been found. The formalism used to derive
the above results constitutes a complementary ap-
proach to lattice simulations, QCD sum rules, and
phenomenological fits to experimental data.
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APPENDIX

For the sake of completeness, we present an ex-
plicit derivation of the full axial-vector vertex and
demonstration of the axial WTI. After allowing for
constituent-quark rescattering in the channel with
pion quantum numbers, the full vertex becomes
AΓµafull (k, p) =A Γµa (k, p) +A Γµarescat (k, p) , (A.1)
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where AΓµa (k, p) is the bare vertex given by Eq. (26)
and

AΓµarescat (k, p) (A.2)

=
pµpν
p2

JνPA (p)
GI

1 −GIJPP (p)
1
g2
πq

Γaπq (k, p) ,

with Γaπq (k, p) and JPP (p) being defined by (22) and
(24), respectively, and JµPA (p) being given by

JµPA (p) = i2Nc
∫

d4k

(2π)4
f (k) f

(
k′
)

(A.3)

×tr
{
AΓµa (k, p)

[
k̂ + M (k)

]−1

× iγ5

[
k̂′ + M

(
k′
)]−1

}

with k′ = k + p. By virtue of the gap Eq. (17), the
vertex in (A.2) has a pole at p2 = m2

π. Comparing the
residues at the poles in Eqs. (27) and (4) at z = 0,
one obtains an expression for the pion decay constant.
The integral in (A.3) reduces to the integral defining
g−2
πq in (23) on the pion mass shell, and Eq. (A.3)

can be written as JµPA (p) = 2iMq

gπq
pµ. On the other

hand, this matrix element defines the decay constant
JµPA (p) = 2Fπipµ. Thus, the pion decay constant Fπ
is reproduced as given by the Goldberger–Treiman
relation [19], Fπ =

√
2Mq/gπq. In a similar way, one

derives Eq. (5) by substituting, into the integral
in (A.3), the factor exp [−i (p− 2k) z] projecting the
quark with momentum k along lightlike direction z.

The full vertex can be rewritten in a form that
explicitly satisfies the WTI. The first two terms on the
right-hand side of Eq. (26) clearly satisfy the WTI. In
order to compensate the third term of this equation,
the rescattering term AΓµarescat (k, p) can be reduced,
by using Eq. (26), to the form
−i
pµ

p2

GINcNf
1 −GIJPP (p)

f(k′)f(k)

[
GIJPP (p)

∫
d4l

(2π)4
M
(
l2
)

l2 −M2(l2)
f(l) [f(l + p) + f(l − p)] (A.4)

−
∫

d4l

(2π)4
tr
{[

p̂−M
(
l2
)
−M

(
l′2
)] [

l̂′ + M
(
l′2
)]

γ5

[
l̂ + M

(
l2
)]

γ5

}
(l′2 −M2 (l′2))(l2 −M2 (l2))

× f(l′)f(l)


 ,
where l′ = l + p. By canceling one of the factors
l2 −M2

(
l2
)

in the denominator of the integral with
the term from the Dirac trace in the numerator and
by properly shifting the variables of integration, the
first term in the bracketed expression on the right-
hand side of (A.4) can be rewritten in the same form
1

as the second one. This demonstrates the required
cancellation, and the full vertex is given by (27).
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Abstract—The Hamiltonian for a scalar field that satisfies the boundary condition −∂nϕ = (1/δ)ϕ must
include a surface potential energy. The corresponding term in the Casimir energy ẼC proves to be a leading
one when the dimension of the region is l ∼ δ. The energy ẼC does not involve arbitrariness associated
with regularization and is an unambiguously determined function of the field mass m, the size l, and the
penetration depth δ. The inclusion of the surface term is of importance for ensuring that the derivative
−∂ẼC/∂l is equal to the ll component of the vacuum energy–momentum tensor. The Casimir energy ẼC

is related to its volume component EC by a Legendre transformation where the quantity conjugate to 1/δ
is the product of the vacuum surface energy and δ. If δ is negative and if �/mc >| δ |, there exists a critical
value l = lc(δ) above which (l > lc) the vacuum is unstable; if a self-interaction of the form ϕ4 is taken into
account, this will lead to a phase transition accompanied by the formation of a condensate of the field ϕ. If
δ = +0 or∞ and if the dimensionalities are even, it is possible to construct a vacuum energy–momentum
tensor (not only energy) that is finite over the entire space. Specially chosen counterterms leave unchanged
the analytic dependence of the vacuum energy on the dimensionality of space and the character of the
coordinate dependence of the energy density for x > �/mc. c© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Evaluation of the vacuum energy for fields that are
defined in finite regions is a key point in calculating
Casimir pressure in QED [1] and the properties of
hadrons obtained in the QCD bag model [2]. At the
same time, a finite and unambiguous expression for
the vacuum energy as a function of the parameters of
the region being considered can be derived only for a
specific class of field models and for specific geome-
tries of the boundaries. By way of example, we indi-
cate that, in the case of a scalar model, the Casimir
energy—and the Casimir pressure together with it—
can be determined ambiguously, which is associated
with the dependence of the counterterms on the di-
mensions of the finite-size region being considered [3,
4]. Specific calculations for the Dirichlet or Neumann
boundary conditions and a spherical boundary were
performed in [5–7]. General considerations that were
put forth in [8] reveal that surface singularities in
the vacuum energy–momentum tensor and, hence,
the counterterms in the expression for the energy are
independent of the dimensions of the region. The
discovery of such a dependence in the aforementioned
studies was due to the coincidence of the dimensional
parameters that determine the local (curvature) and

*e-mail: lebedev@td.lpi.ac.ru;lsl@chuvsu.ru
1063-7788/01/6407-1337$21.00 c©
global (volume) properties of a sphere. This can be
seen, for example, from the fact that the vacuum
energy admits a geometric expansion, whose first few
terms were found in [9, 10] for a massless scalar field
and for an electromagnetic field.1) In connection with
the aforesaid, it would be of interest to investigate the
vacuum energy of a massive field for more general
boundary conditions and also in the presence of a
dimensional quantity that characterizes the boundary,
but which is not associated with the volume.

Specifically, we consider a massive scalar field de-
fined in aD-dimensional space�t × [0, l] ×�D−2. In
the absence of the curvature of the surface, we intro-
duce a dimensional penetration depth in the boundary
condition:2)

∂1ϕ(t, 0,x⊥) =
1
δ
ϕ(t, 0,x⊥), ϕ(l) = 0. (1)

1)For a flat space, the terms of the series are expressed in
terms of surface integrals of (increasing) powers of curva-
tures, the integrals themselves being additionally multiplied
by coefficients (which are in general divergent) whose form is
determined only by the field type and the type of the boundary
conditions, but not by the geometry of the boundary.

2)Here, we perform our calculations in the system of units
where � = c = 1 and use the notation xµ = (t, x1,x⊥) and a
metric of signature (+,−,−, . . .). For the sake of simplicity,
we consider a nonsymmetric boundary condition.
2001MAIK “Nauka/Interperiodica”
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The characteristic length δ in Eq. (1) should be
treated as a macroscopic parameter that determines
the strength of the boundary interaction

1
2δ

∫
dD−2x⊥ ϕ2(t, 0,x⊥). (2)

The surface interaction in (2) is associated with
the divergence-operator term in the (symmetrized)
energy–momentum tensor [11]

T̃µν =
1
2

[∂µϕ, ∂νϕ]+ − 1
2
gµν(∂ϕ)2 (3)

+
1
2
gµνm

2ϕ2 + ξ∂λ(gµν [ϕ, ∂λϕ]+ − gµλ [ϕ, ∂νϕ]+)

with a fixed coefficient ξ, which takes the same value
of 1/4 for all dimensionalities of space. Only at this
value of ξ is the energy of the system (that is, the inte-
gral of T̃00) conserved and can its vacuum expectation
value be represented in the form of the sum of the half-
frequencies.

The presence of a dimensional parameter in the
boundary condition drastically changes the character
of the dependence of the Casimir energy in a region
on the dimensions of this region—for example, we
obtain, atm = 0, a van der Waals curve with an equi-
librium point at l � 1.8δ (see Fig. 1) instead of the
monotonic behavior EC ∼ l−3 [1]. The contribution
of the surface energy (2) to the Casimir energy is
especially pronounced at δ ∼ l. It also turned out that
the inclusion of the surface energy (2) is of crucial
importance for fulfillment of the adiabatic condition

−∂ẼC

∂l
= 〈T̃11〉δ,l, (4)

which relates two known methods for calculating the
Casimir force (the meaning of the notation used is
explained below). The finite vacuum energy ẼC in
Eq. (4) is defined unambiguously despite the fact
that the singular behavior of the vacuum energy–
momentum tensor at the boundary becomes much
more complicated for 0 < δ <∞ [11].

Of considerable interest is also the case of negative
values of δ. For m|δ|c/� < 1, there exists a critical
dimension lc(δ) � |δ| above which the vacuum be-
comes unstable, with the result that modes of imagi-
nary frequencies appear in the system; however, the
vacuum is stable for 0 < l < lc. In order to define
unambiguously the Casimir energy ẼC for l < lc, one
can no longer use the requirement that this energy
vanish for l → ∞ (see [1].) For this purpose, we
propose invoking the relation ẼC|δ→−∞ = ẼC|δ→+∞,
which stems from the coincidence of the sets of res-
onator modes for δ = +∞ and for δ = −∞. In the
last section, the problem of the boundary divergences
is solved by the dimensional-regularization method
PH
for the case of δ = 0 or δ = ∞. As a result, finite
expressions are also obtained for local densities and
not only for energy, as in the ζ-regularizationmethod.
The result admits a generalization to the case of any
even dimensionality of space. Similar points from
other studies—in particular, the physical meaning of
the wall vacuum energy Sm3c4/48π�

2 (S is the wall
area), which was found previously in [6, 11, 12]—are
discussed in the Conclusion.

2. ENERGY–MOMENTUM TENSOR
AND VACUUM ENERGY

Normalized solutions to the Klein–Gordon equa-
tion are given by

ϕ̃k(x) = (2ω)−1/2(2π)1−D/2 (5)

× exp [−iωt + iq · x⊥]ψk(x1),

where ω =
√
m2 + q2 + k2 and the discrete set of

functions
ψk(x) = Nk sin k(x− l), (6)

Nk =
[
l

2

(
1 − sin 2kl

2kl

)]−1/2

describes resonator modes. The wave number
k = z/δ (l̃ ≡ l/δ) is found from the spectral equation

∆(z) ≡ z−1 tan zl̃ + 1 = 0, (7)

which follows from the boundary conditions in (1).
Equation (7) has only the real-valued solutions z =
znδ; by virtue of invariance under the substitution
(k → −k), it is sufficient here to take into account
only the positive branch znδ > 0. The poles of ∆(z)
at the points

zn∞ l̃ =
π

2
+ nπ, n = 0, 1, ..., (7a)

correspond to the Neumann boundary conditions
(δ = ∞). Further calculations rely on the expansion
of the field ϕ(x) in the basis of the functions in (5)
and employ a conventional definition for creation and
annihilation operators and for the vacuum state.3)

Using the argument principle for the function
∆(z), one can transform the sums over the transcen-
dental roots in Eq. (7) into corresponding integrals
(see Appendix), whereby the renormalized vacuum
energy–momentum tensor can eventually be defined
as

〈T̃µν〉δ,l =
KD

δ

∞∫
µ

dt(t2 − µ2)
D−1

2 (8)

3)It should be borne in mind that a canonical quantization of
the system specified by Eq. (3) must take into account its
degeneracy since it is a system featuring higher (second)
derivatives (see [11]).
YSICS OF ATOMIC NUCLEI Vol. 64 No. 7 2001
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×




(1 − t)e−tl̃

sinh tl̃+ t cosh tl̃
diag




cosh 2tx′ − 1
t2(1 −D)
t2 − µ2

(1 − cosh 2tx′)I




+ e−2tx′
diag




1

0

−I




 ,

where

KD =
δ1−D

2(4π)
D−1

2 Γ
(

1 +D

2

) , (9)

µ = mδ, x′ = (l − x1)/δ,
and where expressions of the same type appear on the
(D − 2)-dimensional diagonal corresponding to x⊥.

The vacuum energy can also be defined directly
as the sum of half-frequencies that is interpreted, for
example, via ζ-function regularization [3, 13]. At
the same time, evaluation of the same quantity by
the Green’s function method [1, 13] must rely on the
modified tensor T̃µν rather than on its first three terms
[11] [we denote by Tµν their sum on the right-hand
side of Eq. (3)].

The 11 component of the tensor in (8) determines
the Casimir pressure P = 〈T̃11〉δ,l, which, by virtue of
translational invariance, coincides with 〈T11〉δ,l; that
is, the additional term that involves the divergence
operator does not affect the pressure. The role of such
a term on the right-hand side of Eq. (3) is that the
value of ξ = 1/4 is the only one at which the adiabatic
relation (4) is satisfied. A point that is of importance
for proving this relation is that the vacuum energy per
unit area has the form

Ẽvac =

l−y0∫
x0

dx1 〈T̃00〉δ,l = ẼC(l, δ) (10)

+ Ẽw1(x0, δ) + Ẽw2(y0, 0) + . . . ,

where the ellipsis stands for terms that vanish both in
the limit x0, y0 → 0 and in the limit l → ∞. Thus, we
conclude that, in the limit x0, y0 → 0, only the finite
part (Casimir energy)

ẼC(l, δ) = KD

∞∫
µ

dt
(t2 − µ2)

D−1
2 e−tl̃

sinh tl̃ + t cosh tl̃
(11)

×
[
l̃(t− 1) − 1

t+ 1

]
,

which vanishes for l → ∞, is dependent on the di-
mension of the region. The boundary divergences are
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 7 200
present in (10) in the form of isolated-wall energies
Ẽw1,2; for example,

Ẽw1(x0, δ) = KDµ
D−1 (12)

×
∞∫
1

dξ

2ξ
(ξ2 − 1)

D−1
2

1 − µξ

1 + µξ
e−2mx0ξ.

A specific representation of Ẽw1,2 depends on the
regularization method. At the same time, the Casimir
energy ẼC is defined unambiguously. By analogy with
the energy Ẽvac (10), we can determine its volume
(Evac) and surface (Πvac = Ẽvac − Evac) terms, the
term Evac being calculated in terms of T00 [the first
three terms in expression (3)]. For the volume and
the surface contribution, we then have expansions of
the form (10), which lead to EC(l, δ) and ΠC(l, δ),
respectively; for example,

ΠC(l, δ) = KD(1 −D) (13)

×
∞∫

µ

dt
t2(t2 − µ2)

D−3
2 e−tl̃

(t + 1)(sinh tl̃ + t cosh tl̃)

and EC = ẼC − ΠC.
From Eq. (4), it follows that the volume term

EC cannot be used to calculate the Casimir force if
the parameter δ is considered as a quantity that is
independent of l. On the other hand, differentiation
with respect to the parameter yields

δ
∂ẼC

∂δ
= −ΠC. (14)

Introducing the notation λ = δ−1 and f = ΠC/λ, we
then find that ẼC and EC are related by the Legendre
transformation

ẼC(l, λ) = EC(l, f(l, λ)) + λf(l, λ),

so that (
∂EC

∂l

)
f

=

(
∂ẼC

∂l

)
λ

. (15)

Expression (15) provides a means for calculating
the Casimir force in the case where the product f =
ΠCδ is constant and where the parameter δ is treated
as a function of f and l:(

∂EC

∂f

)
l

= −1/δ. (15a)

The parameter f corresponds to one-half of the
Casimir part of the expectation value 〈ϕ2(0)〉 [see
Eq. (2)].

Asymptotic properties. The behavior of the inte-
gral on the right-hand side of Eq. (11) in the Dirichlet
1
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Fig. 1. Wall-interaction energy ẼC(l, δ) (11) in units of
KD [see Eq. (9)] as a function of l̃ = l/δ (the dimension
is D = 4, and the mass is m = 0).
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(δ � l) and theNeumann (δ � l) regime is especially
clear in the massless case (m = 0):

ẼC(δ, l) = KD
ζ(D)Γ(D)

(2l̃)D−1
(16)

×
[
−1 + C1

D−1 l̃
−1 −C2

D l̃−2

+C3
D+1

(
1 +

ζ(D + 2)
2ζ(D)

)
l̃−3

]
,

ẼC(l, δ) = KD l̃
−D+1 (17)

×


 AD − (D − 1)AD−2 l̃, D = 3, 4, . . . ,

A2 + l̃ ln(4γE l̃/π) − l̃, D = 2.

Here, Cm
n are binomial coefficients, AD = 21−D(1 −

21−D)Γ(D)ζ(D), and ln γE = 0.577; in expression
(17), we have retained only the leading corrections.
P

For the pressure, the expansion that corresponds to
Eq. (16) has the form (δ � l)

〈T̃11〉δ,l =
(D − 1)Γ(D)ζ(D)

(4π)
D−1

2 Γ
(

1+D
2

) (2l)−D (18)

×
[
−1 + C1

D l̃
−1 − C2

D+1l̃
−2

+ C3
D+2

(
1 +

ζ(D + 2)
2ζ(D)

)
l̃−3 + . . .

]
.

With the exception of the anomalous term involv-
ing the ratio of ζ functions, the remaining four terms
in the bracketed expression on the right-hand side of
Eq. (18) can be obtained by expanding (l + δ)−D in

powers of l̃−1. Thus, Eq. (18) confirms the interpre-
tation of δ as a penetration depth [14].

It is interesting to compare the expansion in (18)
at D = 4 with the analogous expression for an elec-
tromagnetic field in a region bounded by impedance
walls. We have

〈T̃11〉δ,l =
π2

480l4

[
−1 + 4

δ

l
− 10

δ2

l2
(19)

+20
(

1 +
9π2

185

)
δ3

l3
+ · · ·

]
,

P =
π2

240l4

[
−1 +

16
3
δ

l
− 24

δ2

l2
(20)

+
640
7

(
1 +

9π2

740

)
δ3

l3
+ ...

]
.

Here, expression (20) (the last term apart) was bor-
rowed from [1, 14], while δ is the depth of the skin
layer. The growing distinction between the corre-
sponding expansion coefficients in expressions (19)
and (20) is likely to be associated with spin effects,
whose role must become more pronounced with in-
creasing depth of field interaction with the boundary.

Numerical calculations. The gross behavior of
the energy ẼC as a function of l̃ = l/δ (at m = 0) is
illustrated in Fig. 1. The calculations also reveal
that, in the region l =(1–5)δ, the contribution of
the surface energy ΠC exceeds in absolute value the
contribution of the energy EC by a factor of 3 to 5.
That the signs of ΠC(l, δ) andEC(l, δ) are opposite in
this region shifts the point of minimum from l � 4.5δ
for EC to the point l � 1.8δ for ẼC.
HYSICS OF ATOMIC NUCLEI Vol. 64 No. 7 2001
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3. NEGATIVE δ

For δ ≡ −δ1 < 0, solutions to the equations of
motion have the former form specified by (5) and (6),
but the spectral equation changes to become (z =
kδ1, l̃ = l/δ1)

∆1(z) ≡ z−1 tan zl̃ − 1 = 0. (21)

Along with the real-valued roots znδ, it now has the
imaginary roots z = ±iκδ1. In view of this, the total
set of states includes the surface Tamm modes (see
also [9])

ϕ̃b(x) = (2ωb)−1/2(2π)(1−D)/2 (22)

× exp [−iωb t+ iq · x⊥]ψb(x1),

where
ψb(x) = Nb sinhκ(x− l), (23)

Nb =
[
l

2

(
sinh 2κl

2κl
− 1

)]−1/2

,

ωb =
√
m2 + q2 − κ2. (24)

The parameter κ is the only (positive) solution to the
equation

κδ1 = tanhκl . (25)

It exists under the condition l > δ1 and is of or-
der δ−1

1 if l � δ1. When δ1 → l − 0, we have κ ∼√
3(l − δ1)/l3 → 0.
For m > κ, expression (24) specifies real-valued

frequencies of surface modes. Ifm < κ, the spectrum
develops imaginary frequencies (see also [1, 11]). The
reason behind the emergence of time-dependent so-
lutions in the set of functions specified by (22) is that
it is impossible to localize a particle in a region of
dimensions κ−1, which are less than the Compton
length. The regions А and B of the parameters µ =
mδ1 and l̃ = l/δ1 in Fig. 2 represent the case of
m > κ. The region C in this figure corresponds to an
unstable vacuum. In this region of parameter values,
a consistent description is possible if the Lagrangian
of the model is supplemented with terms that describe
the self-interaction of the field ϕ (for example, of the
form (λ/4)ϕ4). By using the arguments presented in
[1, 15], it can be shown that the presence of a tachyon
surface mode will result in the decay of an unstable
vacuum with the formation of the condensate ϕ(x) =
Qminψb(x), where ψb(x) is the surface mode (23) and

Qmin =

√
κ2 −m2

λ̄
,

λ̄ =
λ

4δ1
sinh2(2κl) + 6(l̃ − cosh2(κl))

(l̃ − cosh2(κl))2
.
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For the sake of simplicity, we have considered here a
two-dimensional case. In the following, we disregard
self-interaction and assume thatm > κ.

The boundary of the region C is the graph of l̃ =
l/δ1 = l̃c(κδ1) of the implicit function in (25). From
the figure, we can see that, for µ < 1, only the values
in the range 0 < l̃ < l̃c are admissible; that is, the
limit l̃ → ∞ cannot be used to define unambiguously
the Casimir energy [in a way similar to that adopted
in Eq. (10) for δ > 0]. In view of this, we will give
a brief account of the procedure for calculating the
vacuum energy–momentum tensor and the Casimir
energy for the case where the parameters µ and l̃ lie in
the region A or B (see Fig. 2).

The contributions of surface and resonator modes
appear additively in the unrenormalized expectation
value 〈T̃µν〉 = 〈T̃µν〉(b) + 〈T̃µν〉(res). The regularized
sums that are taken over the transcendental roots of
Eq. (21) and which appear in 〈T̃µν〉(res) transform into
integrals with the aid of the function ∆′

1/∆1 taking
the place of ∆′/∆ in (A.4). Upon deforming the
contour of integration in such a way that it circum-
vents the positive imaginary semiaxis k = it/δ1 (t ≥
0) [see Eqs. (A.4)–(A.7)], the integral receives a con-
tribution not only from the cut (im, i∞) but also from
the pole at k = iκ, which lies below the branch point
im. It turns out that the contribution of the pole to
the eventual expression for the renormalized energy–
momentum tensor [see Eq. (9), where δ must be
replaced by δ1]

〈T̃µν〉δ,l = KDδ
−1
1

∞∫
µ

dt(t2 − µ2)
D−1

2 (26)

×




(1 + t)e−tl̃

sinh tl̃ − t cosh tl̃
diag




cosh 2tx′ − 1
t2(1 −D)
t2 − µ2

1 − cosh 2tx′




+e−2tx′
diag




1

0

−I






is exactly canceled by the contribution of the sur-
face modes, 〈T̃µν〉(b). The renormalization in (26)
reduces to the subtraction of the contribution from
Minkowski space [see Eq. (A.6)]. In passing, we note
that 〈T̃µν〉(b) features the factor Γ

(
1−D

2

)
; therefore, it

formally goes to infinity at odd D (D = 3, 5, . . . ). Of
course, the total vacuum energy–momentum tensor
(26) is finite for anyD ≥ 2.
1
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The definition of the Casimir energy for µ =
mδ1 > 1 is identical to that in the case of δ > 0,
since the passage to the limit l̃ → ∞ (along with
the passage to the limit x0, y0 → 0) is possible. In
accordance with Eq. (10), we therefore obtain

ẼC(l, δ1) = KD

∞∫
µ

dt
(t2 − µ2)

D−1
2 e−tl̃

sinh tl̃ − t cosh tl̃
(27)

×
[

1
1 − t

− l̃(t + 1)
]
.

We also have
Ẽw1(x0, δ1) (28)

= KD

∞∫
µ

dt

2t
(t2 − µ2)

D−1
2

1 + t

1 − t
e−2tx̃0 ,

where
x̃0 = x0/δ1.

Algebraic transformations that involve discarding
terms of order x0 and y0 and which lead (for δ <
0 as well) to the right-hand side of Eq. (10) can
be repeated, without any changes, for the case of
µ < 1.4) However, the wall contributions Ẽw1 and
Ẽw2 involve ambiguities, since it is impossible to use
the limiting transition l̃ → ∞. This comes as no
surprise since Ẽw1 cannot be defined for a half-space
in view of the emergence of imaginary frequencies
[11]. The partition of the energy Ẽvac [see Eq. (10)]
into three terms must be interpreted in the sense that
all l̃-independent terms of its asymptotic expansion
for x̃0, ỹ0 → 0 are contained in the expressions for
Ẽw1 and Ẽw2 (the first of these involves δ); of terms
of this asymptotic expansion that depend on l̃, it is
necessary to discard only those that vanish in the limit
x̃0, ỹ0 → 0. Since there are no terms on the right-
hand side of (10) that are dependent on l and which
are singular in this limit, ẼC is defined apart from an
additive constant independent of l. For δ > 0, this
arbitrariness is removed by the condition ẼC(∞, δ) =
0 [1]. We now require that two Neumann limits be
coincident (see Introduction):

ẼC

∣∣∣
δ→−∞

= ẼC

∣∣∣
δ→+∞

. (29)

The eventual expressions for the energies ẼC(l, δ1)
and Ẽw1(x0, δ1) for µ < 1 and l < lc are obtained
from (27) and (28) by applying the principal-value

4)The vacuum tensor in (26) is defined in the regionB in Fig. 2,
and the corresponding integrand for m > κ does not have
poles here.
P

prescription to the integrals appearing there. This rule
of circumvention of the pole at t = 1 is chosen in order
to ensure that the result is real-valued. However,
any other prescription for the circumvention of the
pole, while leading to the emergence of an imaginary
part, would produce, in the sum of expressions (27)
and (28), a contribution of order x̃0, which must be
discarded. The last circumstance stems from the fact
that the residue of the integrand in (27) at the point
t = 1 is independent of l̃.

To conclude this section, we present, for reference,
the Neumann asymptotic expansion of the Casimir
pressure for the massless case. With the aid of Eqs.
(8) [or (4) and (17)] and (26), it is obtained in the form

〈T̃11〉δ,l =
Γ(D) l−D

2(4π)
D−1

2 Γ
(

D+1
2

) (30)

×
[
BD−1(D − 1)ζ(D) ∓BD−3ζ(D − 2) l̃ + . . .

]
,

where l̃ = l/|δ| � 1, BD = 2−D(1 − 2−D), and the
upper (lower) sign corresponds to the case of δ > 0
(δ < 0). The emergence of the correction term in
brackets on the right-hand side of (30) is entirely due
to the surface contributionΠC (13) to the Casimir en-
ergy, and this is the point where the Neumann regime
differs from the Dirichlet regime (that at positive δ).
Finally, it should be noted that relations (4) and (14)
hold for negative values of δ as well, which correspond
to the stability regions А and B in Fig. 2.

4. INTERPRETATION OF BOUNDARY
DIVERGENCES AT δ = 0 OR ∞

The boundary singularities in the vacuum energy–
momentum tensor5) is a stumbling block for any field
theory where the local properties of the model used
are related to observables.6) Analytic-regularization
methods, which are extensively used at present [16],
make it possible to assign finite values to quantities

like Evac =
∑

ν

1
2
ων , infinite terms being included in

the renormalization of bare constants (see, for exam-
ple, [3, 6, 17]). However, there remains the problem
of a singular behavior of renormalized 〈Tµν(x)〉 at
the boundary [8]. For δ = +0 or ∞ and even D, it
will be shown below that, by changing somewhat the
computational prescription, we can define a local, ev-
erywhere finite expression for renormalized 〈Tµν(x)〉.
The vacuum energy obtained with the aid of this ex-
pression coincides with relevant results of alternative

5)The expansion of the tensor in (8) for x → 0 involves
x−D, δ−1x1−D, mx1−D , etc., terms [11].

6)The history of the problem can be traced in [8, 10, 13, 19]; see
also [16, p. 145].
HYSICS OF ATOMIC NUCLEI Vol. 64 No. 7 2001
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calculations (for example, calculations based on the
method of ζ-function regularization).

In (10), boundary singularities are represented by
the wall energies; therefore, we consider the 00 com-
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 7 200
ponent of expression (8) in the limit l → ∞, δ = +0

(the limit δ = ∞ differs from the above limit only by

the sign). We have
〈T̃00〉0,∞ =
(
m2

2π

)D/2

 ρ−D/2 KD/2(ρ), 0 < ρ � 1, x/l → 0, (31a)

(ρ′)−D/2 KD/2(ρ′), 0 < ρ′ � 1, x′/l → 0, (31b)
where ρ = 2mx and ρ′ = 2mx′ = 2m(l − x). By us-
ing recursion relations between Macdonald functions
[18], we transform the energy density (31a) of the left
wall as

〈T̃00〉0,∞ = 〈T̃00〉0,∞ − d

dρ
fD(ρ) (32)

=
(
m2

2π

)D/2
ρ1−ε Kε−1(ρ)

(1 −D)(3 −D) · · · (1 − 2ε)
.

Here, ε ≡ D/2 − n→ 0; n = 1, 2, . . . ; and the func-
tion

fD(ρ) =
(
m2

2π

)D/2

(33)

×
[
ρ1−D/2KD/2(ρ)

1 −D
+
ρ2−D/2KD/2−1(ρ)
(1 −D)(3 −D)

+ · · · +
ρ1−εKε(ρ)

(1 −D)(3 −D) · · · (1 − 2ε)

]
possesses the following properties:

(i) For the valuesD (Re ε < −n), which were con-
tinued to the left half-plane, we have

fD(0) = fD(∞) = 0, (34)

so that the term in (32) that involves the divergence
operator does not contribute to the wall energy,

Ẽw1(0, 0) =
(
m2

2π

)D/2

(35)

×
∞∫
0

dx ρ−D/2 KD/2(ρ) =
mD−1Γ

(
1−D

2

)
8(4π)

D−1
2

(see [6, 11, 12]). We note that the energy of
the Neumann wall is Ẽw1(0,∞) = −Ẽw1(0, 0) =
−Ew1(0, 0).

(ii) At physical values of D = 2, 4, 6 . . . , the term
f ′D on the left-hand side of (32) plays the role of a
counterterm that eliminates all nonintegrable singu-
larities in the energy density (31а).

(iii) The counterterm does not change the expo-
nential character of the asymptotic behavior of the
energy density at large distances (x� 1/m) from the
boundary. Thereby, the Compton length determines
1

the distance beyond which the absence of transla-
tional symmetry does not have a noticeable effect on
the local properties of the vacuum.

The energy density (32) is not defined unambigu-
ously: any regular function that possesses the prop-
erty specified in (34) can be added to fD(ρ) (see § 6.6
in [13]).

As a result, we conclude that, according to (10),
the total vacuum energy at δ = +0 involves the
Casimir term

ẼC(l, 0) (36)

= − mDl

(4π)
D−1

2 Γ(D+1
2 )

∞∫
1

dξ
(ξ2 − 1)

D−1
2

e2ξml − 1

and the double wall energy (35). For δ = ∞, ẼC(l, 0)
(36) is replaced by a similar integral differing from
that in (36) by a plus sign in the denominator of
the integrand and by the common factor (–1), the
energies of the Neumann (x1 = 0) and the Dirichlet
(x1 = l) wall being mutually canceled.

The dimensional-regularization method does not
yield a satisfactory result for the wall energy when
0 < δ <∞. From expression (12) (x0 = 0), it can be
seen that, at even D, finite values cannot be assigned
to µ-dependent corrections of orders µ, µ2, . . . to the
energy in (35). At oddD ≥ 3, the energy in (35) itself
is indefinite; as to the aforementioned corrections,
they are finite, but their sum leads to a logarithmic
singularity in the Neumann limit µ→ ∞. It should be
noted that, in the massless case, the vacuum-energy
density (32) of the Dirichlet wall [in contrast to that
in (31)] vanishes, which is peculiar to conformally
symmetric models as well [13, 19].

5. CONCLUSION

Here, it is advisable to dwell at some length on
a few studies whose results have a direct bearing on
the subject matter of the present article. A scalar
massless model of dimensions D = 2 and 3 was
considered in [14] and [20], respectively; the results
obtained there for the vacuum energy or for the vac-
uum energy–momentum tensor are consistent with
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our Eqs. (8) and (11) if we set there m = 0 and D =
2 or 3. The analysis in [20] employed the idea [21] of a
nonlocal regularization of the interaction between the
field ϕ and a concentrated potential that represents
the boundary; as a matter of fact, this is equivalent
to introducing the potential energy (2). In [14], a
correct expression for ẼC was obtained by discard-
ing an “inconvenient” term—this is also equivalent
to taking into account the surface energy (2) (see
[11]). The first term in (18) (its dependence on D is
implied here) was obtained in [12] (m = 0, δ = 0, and
D is arbitrary). Upon correcting an obvious misprint,
expression (2.18) from [12] is consistent with (36).
The doubled energy (35) also appears in [12], but it
is not associated there with the energy of a half-space
(see below).

Our expression (8) for 〈T̃11〉δ,l at δ = 0,

〈T̃11〉0,l =
mD(1 −D)

(4π)
D−1

2 Γ
(

1+D
2

) (37)

×
∞∫
1

ξ2(ξ2 − 1)
D−3

2

e2mlξ − 1
dξ

∣∣∣∣∣∣
ml�1

= − mD

(4πml)
D−1

2

e−2ml

[
1 +

(D − 1)(D + 5)
16ml

+ · · ·
]
,

does not agree with the result presented by Albu-
querque [22], whose expression (2.13) taken at zero
temperature differs from (37) and involves the depen-
dence of the pressure on an arbitrary renormalization
parameter. This seems unphysical—the regulariza-
tion independence of the pressure in our case follows
from relation (10), which is associated with a simple
geometry of the boundaries. It was indicated above
that such a dependence is peculiar to curved surfaces,
provided that the parameters determining the curva-
ture of the boundary and the dimensions of the region
being considered coincide.

Let us consider the problem of physically inter-
preting expression (35). In the absence of other di-
mensional parameters, the expressionmD−1 cD/�D−2

is the only energy characteristic of a hypersurface.
In [6, 12, 23], it was proposed to apply the finite-
renormalization principle to the energy in (35) (δ = 0,
D = 4); this is essentially equivalent to changing the
reference point of the vacuum energy by Sm3/48π,
where S is the area of the boundary (D = 4). The
basic argument of [6] in favor of the above shift of
the reference point reduces to the requirement that
the vacuum energy tend to zero as the region is
indefinitely expanded. The energy ẼC(l, 0) = EC(l, 0)
satisfies this condition [see Eq. (11)]. However, a
transition to the limit lm→ ∞ (or Rm→ ∞ in the
case of a sphere [6]) is ambiguous: an observer can be
PH
near one of the boundaries, or it can move away from
any of them, remaining at the center of the resonator.
In the first case, translational invariance remains
violated and the vacuum-energy density must be
nonzero in the surface layer of thickness about 1/m.
On the other hand, we recall that, for m→ ∞,
the energy density (32) tends to zero everywhere,
with the exception of the surface region indicated
above, thereby satisfying the second requirement of
suppression of vacuum effects for m→ ∞ [23], but
only away from the boundary.

The expression

∫
dx⊥

∼�/mc∫
0

dx1 〈T00(x)〉0,∞

corresponds to measuring the distinction between the
vacuum energy in the bounded region 0 < x1 � �/mc
and the same quantity in Minkowski space (because
of the presence of the boundary, the coordinate x
specifies not only the location but also the extension
of the space interval). Such a measurement must
lead to perturbations of aboutmc2 in energy [24] that
are multiplied by the statistical weight of the event,
which is proportional to S/(�/mc)2, whence we ob-
tain the required estimate Evac ∼ m3c4/�2 for the
vacuum energy divided by S. Thus, the signs of the
vacuum energies of the Dirichlet and the Neumann
wall seem to suggest that the perturbation depends
on the dynamical properties of the boundary.
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APPENDIX

The integrals with respect to themomentum q [see
Eq. (5)] that were used to derive expressions (8) and
(26) can be evaluated by means of the technique of
D-dimensional integration:∫

dD−2q

ω
= π

D−3
2 MD−3Γ

(
3−D

2

)
, (A.1)

∫
dD−2q

ω
q2
i = 1

2π
D−3

2 MD−1Γ
(

1−D
2

)
, (A.2)

∫
m2

⊥
ω

dD−2q = −1
2π

D−3
2 MD−3Γ

(
1−D

2

)
(A.3)

×
[
m2 + (2 −D)k2

]
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{see Eq. (4.3.1) in [25]}. Here, we adopted the

notation ω =
(
m2

⊥ + k2
)1/2,M = (m2 + k2)1/2, and

m2
⊥ = m2 + q2; note also that there is no summation

over i on the left-hand side of (A.2).
Summation over the transcendental roots of

Eq. (7) can be performed with the aid of the Cauchy
residue theorem. By using the argument principle
[26], it can be shown that

1
2πi

∫
D∨ ∧

f(z)

1 − sin 2zl̃/2zl̃

∆′(z)
∆(z)

dz = (A.4)

=
∑

znδ>0

f(znδ)

1 − sin 2znδ l̃/2znδ l̃
−

∞∑
n=0

f(zn∞),

where f(z) is a function that is analytic in the right
half-plane. The roots znδ and the function ∆(z) are
defined in (7), while zn∞ is specified in (7a). Equality
(A.4) renders obvious the basic idea of choosing the
function ∆(z): in addition to the poles zn∞ and znδ,
the expression∆′/∆ also has zeros that coincide with
the poles of the second factor in front of the integral.
The positively oriented contour of integration goes
along the axis Im z and is closed at infinity [it is
schematically shown in Eq. (A.4)]. The requirements
for f(z) that are necessary for closing the contour in
this way are satisfied in the case being considered.
For δ > 0, all roots znδ, as well as zn∞, lie on the
real axis and are embraced by this contour. The
second term on the right-hand side of Eq. (A.4) is
calculated with the aid of the Abel–Plana formula
[1, 27]. Performing elementary transformations and
discarding the integral along the circle in (A.4), we
reduce the sum in question to the form∑

znδ>0

f(znδ)

1 − sin 2znδ l̃/2znδ l̃
(A.5)

=
l̃

π

∞∫
0

f(z) dz − l̃

2πi

×
∞∫
0

(1 − t)[f(it) − f(−it)]
sinh tl̃ + t cosh tl̃

e−tl̃ dt.

Upon the substitution of the expressions correspond-
ing to the unrenormalized expectation values 〈T̃µν〉
for f(z), the first integral on the right-hand side of
(A.5) develops terms that are removed by subtracting
the quantity 〈Tµν〉M (contribution from Minkowski
space):

〈Tµν〉M =
Γ(1−D

2 )
√
π(4π)D/2

(A.6)
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×
∞∫
0

dk MD−3 diag




−M2

k2(1 −D)

M2


 .

Thus, expressions (A.5) and (A.6) can be used to find
the eventual integral representations of the renormal-
ized tensors 〈T̃µν〉δ,l or 〈Tµν〉δ,l.

The computational procedure described above is
applicable to the case of negative δ as well if m > κ.
Under this condition, the integrals with respect to the
momentum q take the former values in (A.1)–(A.3)
for the resonator modes; for the surface modes (22),
the result is obtained from (A.1)–(A.3) by means
of the substitution k → iκ. The contribution of the
surface modes to vacuum expectation values requires
no renormalization. The aforementioned singular de-
pendence on D disappears from the total expression
(26). The mechanism of its cancellation can easily be
understood by using the analog of Eq. (A.5) for the
case of δ ≡ −δ1 < 0:

∑
znδ>0

f(znδ)

1 − sin 2znδ l̃

2znδ l̃

− l̃

π

∞∫
0

f(z) dz (A.7)

=
−l̃
2πi

∞∫
0

�

(1 + t)[f(it) − f(−it)]
sinh tl̃ − t cosh tl̃

e−tl̃ dt

+
f(z∗)

sin 2z∗ l̃

2z∗ l̃
− 1

.

The principal-value prescription in the integral
takes into account the presence of the pole at t∗ =
−iz∗ = κδ1, whose contribution is represented by the
last term on the right-hand side of Eq. (A.7). In order
to derive this equation, one can make use of the prop-
erties of the function ∆′

1/∆1 [see Eq. (21)]. Making
the relevant substitutions for the function f(z), one
can verify that, each time, the contribution of the
pole at z∗ exactly cancels the contribution 〈T̃µν〉(b) of
surface modes to the components of the renormalized
tensor in (26).
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NEWS ITEMS
75th Anniversary of Boris Lazarevich Ioffe’s Birthday
On July 6, 2001, Professor Boris Lazarevich Ioffe,
eminent theoretical physicist, a corresponding mem-
ber of the Russian Academy of Sciences, head of
the Laboratory of Theoretical Physics at the Insti-
tute of Theoretical and Experimental Physics (ITEP,
Moscow, Russia), celebrated his 75th birthday.

On December 31, 1949, Boris Lazarevich gradu-
ated from the Faculty of Physics at Moscow State
University; immediately after that (on January 1,
1950), he joined the Laboratory of Theoretical Physics
at Laboratory no. 3 (USSR Academy of Sciences),
which was later named Thermal Physics Laboratory
(TPL), currently known as the Institute of Theo-
retical and Experimental Physics. At that time,
A.I. Alikhanov was the director of Laboratory no. 3
(TPL) and I.Ya. Pomeranchuk headed its Laboratory
1063-7788/01/6407-1347$21.00 c©
of Theoretical Physics. In addition to exams compul-
sory for all students of the Moscow State University,
Ioffe was able to pass nine exams introduced by
Landau (who was the examiner himself at that time)
to select young talented theoretical physicists (so-
called theoretical minimum) and was reckoned since
then among representatives of Landau’s scientific
school. Thus, Ioffe had a privilege of being tutored by
three renowned physicists, Alikhanov, Landau, and
Pomeranchuk.

Throughoutmore than 50 years of creative activity,
Ioffe greatly contributed to the development of the
theory of elementary particles, high-energy physics,
the theory of nuclear reactors, and applied nuclear
physics. Listed below are only the most important of
his results.

In an investigation that Ioffe performed with
L.B. Okun and A.P. Rudik in 1956, it was estab-
lished for the first time that parity violation must be
accompanied by the violation of charge symmetry or
symmetry with respect to time reversal and that an
experimental observation of P-odd pair correlations
of particle spins and momenta would imply charge-
symmetry violation. This conclusion, which was of
fundamental importance for the theory of elementary
particles, was obtained prior to the discovery of parity
nonconservation and served as a basis for Landau’s
hypothesis of CP conservation and for the two-
component theory of neutrinos. This result of Ioffe,
Okun, and Rudik was registered as a discovery and
was quoted in the Nobel lectures of T.D. Lee and
C.N. Yang.

Shortly after the emergence of the Gell-Mann–
Feynman hypothesis of a conserved vector current
(CVC) in weak interactions, Ioffe, together with
V.G. Vaks, proved, in 1958, that, in such a theory,
the structural part of the vector current in the am-
plitude for the pion radiative decay π → e+ ν + γ is
determined by the neutral-pion lifetime. This relation
is of paramount importance since it represents one
of the few corollaries of the CVC hypothesis that
were confirmed experimentally (this was done in 1963
by P. Depommier, J. Heintze, C. Rubbia, and W.
Soergel).

In 1967, Ioffe, together with E.P. Shabalin, showed
that the theory of weak interactions that involves only
ordinary and strange hadrons becomes inappropriate
2001MAIK “Nauka/Interperiodica”
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at energies of about a few GeV. These results are of
fundamental importance—in particular, they served
later on as a basis for the Glashow–Iliopoulos–
Maiani hypothesis of the existence of charmed parti-
cles and of the form of the weak interaction of hadrons
(GIM mechanism).

In 1969, Ioffe found that, in deep-inelastic lepton–
hadron scattering, the interaction occurs in a space-
time region near the light cone and is characterized
by longitudinal distances linearly growing with time.
In the literature on high-energy physics, times corre-
sponding to such longitudinal distances are referred
to as Ioffe times. These results, which were registered
as a discovery, form a basis of a modern description of
deep-inelastic processes that relies on the method of
an operator-product expansion near the light cone; in
particular, they are widely used in analyzing the inter-
action of virtual photons with nucleons and nuclei.

In 1976, Ioffe proposed an efficient method for
seeking the Higgs boson in electron–positron anni-
hilation, where it can be produced in association with
a Z boson, e+e− → ZH . It is in this way that the H
boson is being sought presently at CERN.

Some results of prime importance were obtained
by Ioffe in studying the properties of baryons within
QCD. In particular, he showed that baryon masses
emerge owing to the presence of a quark condensate.
The equation that he derived and which relates the
proton mass to the quark condensate is referred to as
the Ioffe formula, while the quark current describing
the proton is known as the Ioffe current. Ioffe in-
troduced the concept of the magnetic susceptibility
of a quark condensate and showed that it determines
the magnetic moments of baryons. He calculated
the magnetic moments of the proton, of the neutron,
and of hyperons—that is, he solved the problem that
Feynman thought to be the most important for prov-
ing that QCD is a true theory of strong interactions.

In studying the spin structure of the proton,
Ioffe established an elegant relationship between
the Gerasimov–Drell–Hearn sum rule for hadron
production by polarized photons and the Bjorken and
Ellis–Jaffe sum rules for spin-dependent structure
functions for deep-inelastic scattering. He also
developed a method for nonperturbatively computing
quark distributions in the nucleons, mesons, and
the photon. The resulting quark distributions in
the pion and in the photon are in good agreement
with experimental data and can be used as initial
conditions for solving evolution equations. Ioffe’s
PH
investigations of the properties of hadrons in nuclear
matter at finite temperatures and densities also led to
some interesting results.

Noteworthy are the results that Ioffe obtained in
the theory of nuclear reactors and in applied nuclear
physics. He developed the theory of a deep deteriora-
tion of a fuel material in nuclear reactors. This the-
ory, which, according to Yu.B. Khariton, was highly
appreciated by I.V. Kurchatov, is presently used as
a basis in calculations underlying measurements of
the reactivity and other physical properties of atomic
power plants. Ioffe supervised the physical calcu-
lations of the power heavy-water reactor for the A-
1 power station in the Czech and Slovak Republic
(commissioned in 1973) and of research reactors in
the Soviet Union (ITEP), China, and Yugoslavia.

Ioffe made an important contribution to the work
on the hydrogen bomb in the Soviet Union (1951–
1953): among other things, he calculated the thermal
conductivity of a fully ionized gas containing rela-
tivistic electrons and determined the energy transfer
to photons in such a gas with allowance for their
anisotropy. Together with the group of researchers
headed by Ya.B. Zeldovich, he proved the impossi-
bility of implementing the “Tube” hydrogen-bomb
project. In connection with this project, Ioffe studied
the effect of polarization on the propagation of pho-
tons in a fully ionized gas. The results of this inves-
tigation are applied in analyses of some astrophysics
problems.

Boris Lazarevich is the author of two discover-
ies, 290 scientific studies, and two monographs. In
1994, he was awarded an Alexander von Humboldt
prize (Germany); in the same year, he was elected
to fellowship in the American Physical Society. He
is also a member of the Executive Committee of the
United Physical Society of the Russian Federation.
Apart from scientific articles, Ioffe wrote the historical
narrative “ATop-Secret Task” (Novyi Mir, Nos. 5, 6,
1999).

The Bureau of the Editorial Board of the journal
Yadernaya Fizika (known in the English-speaking
word as Physics of Atomic Nuclei); the members
of the ITEP staff; and his colleagues, friends, and
disciples congratulate heartily Boris Lazarevich on
the 75th anniversary of the his birth and wish him
good health and many years of creative activity.

Editorial Board
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