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Abstract—An additional Z6 symmetry hidden in the fermion and Higgs sectors of the Standard Model
has been found recently. It has a singular nature and is connected to the centers of the SU(3) and
SU(2) subgroups of the gauge group. A lattice regularization of the Standard Model was constructed that
possesses this symmetry. In this paper, we report our results on the numerical simulation of its electroweak
sector. c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

It is the conventional point of view that all the
symmetries of the Standard Model (SM), which must
be used when dealing with its discretization, are
known. Recently, it was found that there exists an
additional Z6 = Z2 ⊗Z3 symmetry in the fermion and
Higgs sectors of the SM [1]. It has a singular nature
and is connected to the centers Z3 and Z2 of the
SU(3) and SU(2) subgroups.2) The gauge sector of
the SM (in its discretized form) was redefined in such
a way that it has the same perturbation expansion as
the original one, while keeping the aforementioned
symmetry. The resulting model differs from the con-
ventional SM via its symmetry properties. Therefore,
we expect that it would describe nature better than
the conventional discretized SM if the additional
symmetry did take place.

It is worth mentioning that the present status of
the SM on the lattice implies that it must be consid-
ered as a finite cutoff theory [3]. This is in agreement
with the understanding that the SMdoes not describe
physics at extremely small distances. Hence, it is
sufficient to consider a cutoff Λ that is finite but much
larger than all observed energies. The consideration
of the infinite cutoff limit would be an attempt to
continue the SM to infinitesimal distances. Now it is
believed that this attempt leads to a trivial continuum
theory [4]. Nevertheless, at energies much less than
the cutoff, we can calculate any physical variable.

Thus, we can examine ourmodel in order to under-
stand whether the considered additional symmetry is
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important for the discretization of the SM or not. As a
first step in this direction, we investigate numerically
the quenched electroweak sector of the constructed
discretized SM.

2. A HIDDEN SYMMETRY

In this section, we repeat our construction re-
ported in [1] in continuum notation. This is done in
order to demonstrate the universal (regularization-
independent) nature of the additional symmetry found.

2.1. The Standard Model

The SM contains the following variables:
(i) The gauge fields associated with the symme-

try group SU(3) × SU(2) × U(1), which are the ele-
ments of the corresponding algebras:

Zi = Za
i λa ∈ su(3), (1)

Ai = Ab
iσb ∈ su(2),

Bi ∈ u(1) = (−∞,∞).

(Here, λa are the Gell-Mann matrices, and σb are the
Pauli matrices.) The corresponding SU(3), SU(2),
and U(1) field strengths are

Hij = ∂[iZj] + i[Zi, Zj ], (2)

Gij = ∂[iAj] + i[Ai, Aj ],
Fij = ∂[iBj].

(ii) Anticommuting spinor variables, representing
leptons and quarks:

 e µ τ

νe νµ ντ ,


 ,


u c t

d s b


 . (3)
c© 2005 Pleiades Publishing, Inc.



1008 BAKKER et al.
(iii) A scalar doublet

Φα, α = 1, 2. (4)

The action has the form

S = Sg + SH + Sf , (5)

where we denote the fermion part of the action by Sf ,
the pure gauge part by Sg, and the scalar part of the
action by SH .

As usual, we consider Sg in the form

Sg =
1
4

∫
d4x

[
1

3g2
SU(3)

TrH2 (6)

+
1

2g2
SU(2)

TrG2 +
1

g2
U(1)

F 2

]
,

where we introduced the gauge couplings gSU(3),
gSU(2), and gU(1).

The scalar part of the action is

SH =
∫

d4x|(∂µ + iAµ + iBµ)Φ|2 (7)

+
∫

d4xV (|Φ|),

where V (|Φ|) is the potential, which has a minimum
at a nonzero value of Φ = v, causing spontaneous
symmetry breaking.

We expressSf through left-handed doubletsL and
right-handed singlets R of fermions:

L�
1 =

1 − γ5

2


 e

νe


 , L�

2 =
1 − γ5

2


µ

νµ


 , (8)

L�
3 =

1 − γ5

2


 τ

ντ


 , Lq

1 =
1 − γ5

2


u

d


 ,

Lq
2 =

1 − γ5

2


c

s


 , Lq

3 =
1 − γ5

2


t

b


 ,

R�
1 =

1 + γ5

2
e, R�

2 =
1 + γ5

2
µ,

R�
3 =

1 + γ5

2
τ, Rq

1,1 =
1 + γ5

2
u,

Rq
1,2 =

1 + γ5

2
c, Rq

1,3 =
1 + γ5

2
t,

Rq
2,1 =

1 + γ5

2
d, Rq

2,2 =
1 + γ5

2
s,

Rq
2,3 =

1 + γ5

2
b.
PH
The fermion part of the action is

Sf =
∫

d4x{LL
� + LR

� + LL
q + LR,1

q (9)

+ LR,2
q + L�

mass + Lq
mass}.

Here,

LL
� = iL̄�

i(∂µ + iAµ − iBµ)γµL
�
i , (10)

LR
� = iR̄�

i(∂µ − 2iBµ)γµR
�
i ,

LL
q = iL̄q

i (∂µ + iZµ + iAµ + (i/3)Bµ)γµL
q
i ,

LR,1
q = iR̄q

1,i(∂µ + iZµ + (4i/3)Bµ)γµR
q
1,i,

LR,2
q = iR̄q

2,i(∂µ + iZµ − (2i/3)Bµ)γµR
q
2,i,

Lq
mass =

1
v

∑
i

mq
i (L̄

q
i )

αΦαRq
1,i

+
1
v

∑
ij

Mij(L̄
q
i )

αΩαRq
2,j + h.c.,

L�
mass =

1
v

∑
i

m�
i(L̄

�
i)

αΦαR�
i + h.c.

In these expressions, Ω = iσ2Φ (iσ2 is the charge
conjugation operator), ψ̄ = ψ†γ0, and

m�
1 = me, m�

2 = mµ, m�
3 = mτ , (11)

mq
1 = mu, mq

2 = mc, mq
3 = mt.

M is the mass matrix, whose eigenvalues represent
the masses of the d, s, and b quarks. The nondiago-
nality of this matrix gives rise to the phenomenon of
quark mixing.
All necessary information about the Euclidean dy-

namics of the SM is contained in the gauge invariant
correlators:

〈O(fields)〉 =
∫

DZDADBDeDēDνeDν̄e . . . DΦ

(12)

× exp(−S(fields))O(fields).

2.2. Representation of the Standard Model
in Loop Space

The hidden symmetry we are talking about may
be seen after reformulation of the SM through loop
variables. (For the definition of the notation connected
with loop space dynamics, see [5].) The derivation is
as follows.
First, we note that, in Eq. (10), L and R can be

treated as independent two-component Weil spinors.
In the Weil basis of the γ matrices, the Euclidean
fermion Lagrangian contains quadratic terms like
L†(∇0 − i∇iσi)L and R†(∇0 + i∇iσi)R [where ∇µ
YSICS OF ATOMIC NUCLEI Vol. 68 No. 6 2005



AN ADDITIONAL SYMMETRY IN THE WEINBERG–SALAM MODEL 1009
is a covariant derivative and σi (i = 1, 2, 3) are Pauli
matrices] and an interaction term like (L†Φ)R.

For an arbitrary gauge invariant correlator, we
have

〈O(fields)〉 =
∫

DZDADB exp(−Sg)〈O(fields)〉f,s.

(13)

Here, 〈O(fields)〉f,s is an integral over fermions and
over the scalar field. It is calculated in the model with
an external gauge field. First, we perform an integra-
tion over theGrassmann variables. We can do it using
simple Feynman rules. The diagrams contain prop-
agators of Weil spinors, correlation functions of the
scalar field, and interaction vertices that come from
the term L†αΦαR. The loops coming from the fermion
determinant should also be taken into account. We
use the path-integral representation of the propaga-
tors and of the fermion determinant (see, for example,
[5, 6]). In order to calculate the scalar field correlators,
we use lattice regularization. It is well known that the
bosonic path integral for any field correlators in the
external gauge field on the lattice has a representation
as a sum over all possible closed loops. (For the
details of the calculation, see, for example, [7].) After
returning to the continuum representation, we arrive
at a path-integral representation of the scalar field
correlators.

Finally, we represent any correlator Eq. (12) in the
form

〈O(fields)〉 =
∫

DCαO(C)
∫

DZDADB (14)

× exp(−Sg)W(C) =
∫

DCαO(C)〈W(C)〉.

Here, Cα stands for the set of paths. Each path
corresponds to one of the fermions (left- or right-
handed) or to the scalar. It may either be closed
or end in a vertex. Each vertex corresponds to the
transformation of left-handed fermions into right-
handed ones and emission or absorption of a scalar.
The definition of the measure DCα comes from the
path-integral representations of the bosonic correla-
tor mentioned above, the fermion determinant, and
the fermion propagator. It includes all possible paths
described above. The index α enumerates all fermions
and the scalar. The functionalsO do not depend upon
the gauge fields and are, hence, not of interest to
us. The full dependence on the gauge fields is now
concentrated in the loop variable W that is simply a
product of parallel transportersW (Cα) corresponding
to the fermions and to the scalar:

W(C) = Tr
∏

W (Cα). (15)
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 6 200
In Eq. (15), we encounter six different parallel
transporters:

WL�
(C) = P exp


i

∫
C

(Aµ −Bµ)dxµ


 (16)

= ωSU(2)ω
−1
U(1),

WR�
(C) = exp


i

∫
C

(−2Bµ)dxµ


 = ω−2

U(1),

WLq(C) = P exp


i

∫
C

(
Zµ + Aµ +

1
3
Bµ

)
dxµ




= ωSU(3)ωSU(2)ω
1/3
U(1),

WR1
q
(C) = P exp


i

∫
C

(
Zµ +

4
3
Bµ

)
dxµ




= ωSU(3)ω
4/3
U(1),

WR2
q
(C) = P exp


i

∫
C

(
Zµ − 2

3
Bµ

)
dxµ




= ωSU(3)ω
−2/3
U(1) ,

WH(C) = P exp


i

∫
C

(Aµ + Bµ)dxµ




= ωSU(2)ωU(1),

where we introduced Wilson loops corresponding to
SU(3), SU(2), and U(1) gauge fields, respectively:

ωU(1) = exp


i

∫
C

Bµdxµ


 , (17)

ωSU(2) = P exp


i

∫
C

Aµdxµ


 ,

ωSU(3) = P exp


i

∫
C

Zµdxµ


 .

In Eq. (16), each ω corresponds to a path con-
necting different points. However, in Eq. (15), these
parallel transporters are arranged in such a way that
W(C) depends only upon ω corresponding to closed
loops constructed of Cα.
Thus, any correlator can be represented through

vacuum averages of products of those loop variables.
The vacuum average is considered in the pure gauge
5
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theory with the action Sg. Using loop calculus, we can
express 〈W(C)〉 as follows:

〈W(C)〉 =
∫

DωU(1)DωSU(2)DωSU(3) (18)

× exp
(

1
4

∫ {
1

3g2
SU(3)

Tr
δωSU(3)

δσµν(x)

∣∣∣∣
0

δωSU(3)

δσµν(x)

∣∣∣∣
0

+
1

2g2
SU(2)

Tr
δωSU(2)

δσµν(x)

∣∣∣∣
0

δωSU(2)

δσµν(x)

∣∣∣∣
0

+
1

g2
U(1)

δωU(1)

δσµν(x)

∣∣∣∣
0

δωU(1)

δσµν(x)

∣∣∣∣
0

}
d4x

)
W(C),

where σµν is the infinitesimal area, δ/δσµν is the area
derivative, and . . . |0 means that the area derivatives
are calculated for infinitesimal contours. The measure
over the gauge variables is denoted now asDω.

2.3. The Symmetry

Now we are in a position to point out the men-
tioned symmetry. It turns out that W(C), being ex-
pressed through ω corresponding to closed loops, is
invariant under the following transformation:

ωU(1)(C) → exp(−iπL(C,Σ))ωU(1)(C), (19)

ωSU(2)(C) → exp(iπL(C,Σ))ωSU(2)(C),

ωSU(3)(C) → exp(i 2
3πL(C,Σ))ωSU(3)(C).

Here, Σ is an arbitrary closed surface and L(C,Σ)
is the integer linking number of this surface and the
closed contour C. From Eq. (19), it is clear that this
transformation belongs to the Z6 group.

This transformation corresponds to the centers of
the SU(3) and SU(2) subgroups of the gauge group.
It is finite, being applied to the gauge invariant loop
variables ω. However, it becomes singular in terms of
gauge potentials:

Bµ → Bµ − πVµ, (20)

Aµ → Aµ + πVµ
Aνtν

(TrAτ tτ )1/2
,

Zµ → Zµ +
2π
3
Vµ

Zνtν

(TrZτ tτ )1/2
,

where Vµ(x) =
∫

V tµδ(x− y(a, b, c))da db dc is an
integral over the three-dimensional hypersurface
y(a, b, c), the boundary of which is Σ. The normal

vector to V is denoted by tµ =
1
2
εµνρσ

∂yν

∂a

∂yρ

∂b

∂yσ

∂c
.

The invariance of Eq. (15) under the transforma-
tions (19) can be easily proven via direct substitution
of Eq. (20) into Eq. (16).
PH
2.4. Redefinition of the Gauge Action
The whole SM can be represented (at least, for-

mally) in such a way that it possesses the symmetry
with respect to transformation Eq. (19). This can be
done by the following redefinition of the pure gauge
part:

〈W(C)〉 =
∫

DωU(1)DωSU(2)DωSU(3) (21)

× exp
(∑

k

βk

∫
Tr

δWk

δσµν(x)

∣∣∣∣
0

δWk

δσµν(x)

∣∣∣∣
0

)
W(C).

Here, the sum is over the six parallel transporters
mentioned above. For an appropriate choice of cou-
plings βk, the action in Eq. (21) is equal to the action
in Eq. (18) defined in terms of smooth gauge fields.
However, in loop calculus, we are not forced to con-
sider smooth gauge fields. We are allowed to con-
sider piecewise smooth loop variables ω instead.
The main difference is that the action in Eq. (18)
suppresses steplike ω, while Eq. (21) allows the ap-
pearance of loop variables with discontinuities like
Eq. (19).
Instead, Eq. (21) suppresses the discontinuities in

Wk. Therefore, we may apply a transformation like
Eq. (19) to all ω in order to make them smooth. After
that Eq. (21) becomes identical to Eq. (18). So, these
two formulations would define the same theory.
Here, we implied that if the action suppresses

some physical quantity, the latter indeed vanishes.
However, there is another point of view. Namely,
there are some indications that the naively suppressed
quantities may survive due to the entropy factor [8].
We do not discuss here this possibility, but we must
mention that, if this picture emerges in the SM,
Eqs. (18) and (21) may define different models and
correspond to different physics. We also notice here
that, in this case, say, the topological theta term with
θ = 2π being added to the action could, in principle,
change the nonperturbative behavior of the theory
while keeping the same perturbation expansion [9].

2.5. The Standard Model as a Finite Cutoff Theory

It was mentioned in the introduction that the
SM should be regarded as a finite cutoff theory.
So, the correct continuum model must contain a
short-distance part (related to the unification of the
electroweak and strong interactions), which makes
the corresponding lattice model cutoff independent.
The unified model could be the origin of our ad-

ditional symmetry. If so, Eq. (19) emerges in it with-
out any singular transformation of gauge potentials.
Actually, in the corresponding examples considered
in [1], the realization of Eq. (19) written in terms of
the continuum fields is not singular.
YSICS OF ATOMIC NUCLEI Vol. 68 No. 6 2005
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Strictly speaking, the only thing we are able to
consider is the regularized model. The regularization
can be constructed in such a way that it either admits
or does not admit Eq. (19). Each choice of regulariza-
tion is, in essence, the low-energy limit of a regular-
ized unifiedmodel. After the discretization is removed,
the full continuum theory appears. The finite cutoff
SM is an approximation to this hypothetical theory.
Our assumption is that, if we construct the Finite
CutoffStandardModel (FCSM) either keeping or not
keeping the additional symmetry, the degree to which
the resulting model approximates the correct unified
model could be different.
We expect that this difference might manifest itself

at high enough energies. Probably, this could happen
in the intermediate region between the usual SM
scale and the GUT scale. Strictly speaking, in this
region, neither realizations of the FCSM can describe
the physics properly. However, if the symmetry with
respect to Eq. (19) is indeed a fundamental symmetry,
the corresponding model may give results that are
closer to the experimental ones (and vice versa). If so,
we would catch the echo of the unified model already
at intermediate energies and draw certain conclusions
about its structure.
However, we expect that the most important role

of the symmetry with respect to (19) is rather techni-
cal. The convergence of the lattice methods to phys-
ical results could become considerably faster for the
models that respect invariance under Eq. (19). This
can be crucial for consideration of certain processes.
Probably, the same situation takes place, say, for the
SU(2) and SO(3) gaugemodels [10]. They are gener-
ally believed to belong to the same universality class.
However, physical results are practically unachiev-
able via SO(3) lattice theory. The reason is that the
Z2 symmetry is lost.
In general, it is thought that the convergence of

a lattice model to the continuum results is faster if it
keeps as many symmetries of the continuummodel as
possible. It even might occur that models that keep or
do not keep a certain symmetry may lead to different
continuum theories. Therefore, we also do not exclude
that FCSMs that respect or do not respect Eq. (19)
would give essentially different results. In any case,
nothing definite could be said until the corresponding
numerical research is performed.

3. THE LATTICE MODEL

3.1. Discretization of the ContinuumModel

In the remaining part of this article, we shall not
be interested in a discretization of the fermion sector.
We would only notice that there are some difficulties
concerning the problem of keeping the chiral symme-
try while avoiding doubling. There are many different
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 6 200
papers on this subject. For a review, see [11] and
references therein.
Now our aim is to recall the construction of [1].

We construct a lattice SU(3) × SU(2) × U(1) gauge
model coupled to the scalar field in such a way that
it reflects all the required properties of the Weinberg–
Salam model and, in addition, preserves the symme-
try considered above.
The model contains the following variables:
(i) Lattice gauge fields (which live on the links of

the lattice):

Γ ∈ SU(3), U ∈ SU(2), eiθ ∈ U(1).

(ii) A scalar doublet Φα, α = 1, 2 (which lives on
the lattice sites). The action of the model must have
the form

S = Sg + SH , (22)

where we denote the pure gauge part by Sg and the
scalar part of the action by SH .
A possible choice of SH is

SH =
∑
xy

|Uxye
−iθxyΦy − Φx|2 +

∑
x

V (|Φx|),

(23)

where V (r) is the potential, which has a minimum at
a nonzero value of r =

√
γ.

To construct the pure gauge part of the action, we
use the following correspondence between the lattice
and the continuum notation:

ωU(1)(C) →
∏
link∈l

e−iθlink , (24)

ωSU(2)(C) →
∏
link∈l

Ulink,

ωSU(3)(C) →
∏
link∈l

Γlink,

where l is a closed contour on the lattice correspond-
ing to the continuum contour C.
The analog of the continuum transformation is the

lattice transformation:

U → Ue−iπN , (25)

θ → θ + πN,

Γ → Γe(2πi/3)N ,

where N is an arbitrary integer link variable. It rep-
resents a three-dimensional hypersurface on a dual
lattice, the boundary of which corresponds to Σ in
Eq. (19). This symmetry reveals the correspondence
between the centers of the SU(2) and SU(3) sub-
groups of the gauge group.
5



1012 BAKKER et al.
The choice β = βL�
= βR�

= βLq = βR1
q

= βR2
q

and βH = 0 corresponds to a certain class of unified
models [1]. Hence, we choose

Sg = β
∑

plaquettes

(
2
(

1 − 1
2
TrUp cos θp

)
(26)

+ (1 − cos 2θp) + 6
(

1 − 1
6
Re TrΓpTrUp

× exp
(
iθp

3

))
+ 3
(

1 − 1
3
Re TrΓpexp

(
−2iθp

3

))

+ 3
(

1 − 1
3
Re TrΓpexp

(
4iθp

3

)))
,

where the sum runs over the elementary plaquettes
of the lattice. Each term of the action Eq. (26)
corresponds to a parallel transporter along the bound-
ary ∂p of plaquette p. The correspondent plaquette
variables constructed of lattice gauge fields are Up =
ωSU(2)(∂p),Γp = ωSU(3)(∂p), and θp = ArgωU(1)(∂p).

3.2. The Simplified Model

In this paper, we report our results on the numer-
ical simulation of the model, in which we omit the
dynamical fermions, as well as the color subgroup
SU(3). It will be seen below that, even on this level,
certain qualitative differences between this model and
the conventional one exist.

The potential for the scalar field is considered in
the London limit, i.e., in the limit of infinite bare Higgs
mass. The action of the model reduces to

S = SL + SR + SH (27)

= β
∑

plaquettes

((
1 − 1

2
TrUp cos θp

)

+
1
2
(1 − cos 2θp)

)

+
∑
xy

|Uxye
−iθxyΦy − Φx|2 + V (|Φ|).

(Here, β is rescaled as β → β/2 for the convenience of
comparing the results with those of the SU(2) funda-
mental Higgs model.) SL corresponds to the doublet
of left-handed fermions and SR corresponds to the
right-handed singlet. Φ is the Higgs doublet and V is
an infinitely deep potential, giving rise to the vacuum
average 〈|Φ|〉 =

√
γ. It is worth mentioning that the

naive continuum limit of Eq. (27) gives the value of
the Weinberg angle θW = π/6, which is surprisingly
close to the experimental value.
P

After fixing the unitary gauge, we obtain

S = β
∑

plaquettes

((
1 − 1

2
TrUp cos θp

)
(28)

+
1
2
(1 − cos 2θp) + γ

∑
xy

(1 − Re(U11
xye

−iθxy))
)
.

Of course, we keep in mind that this simplification of
the model may lead to some qualitative changes in the
description of the dynamics. Thus, the conclusions
that we draw after performing the numerical investi-
gation of the simplified model must be justified by the
study of the full model, including the color subgroup,
dynamical fermions, and a finite Higgs mass.
Below, we briefly describe some of the quantities

which we investigate in this work.
The following variables are considered as creating

a photon, Z boson, andW boson, respectively:

Axy = Aµ
x = [ArgU11

xy + θxy]mod2π, (29)

Zxy = Zµ
x = [ArgU11

xy − θxy]mod2π,

Wxy = W µ
x = U12

xye
iθxy .

Here, µ represents the direction (xy). After fixing the
unitary gauge, the electromagnetic U(1) symmetry
remains:

Uxy → g†xUxygy, (30)

θxy → θxy + αy/2 − αx/2,

where gx = diag(eiαx/2, e−iαx/2). The fieldsA,Z, and
W transform as follows:

Axy → Axy + αy − αx, (31)

Zxy → Zxy,

Wxy → Wxye
−iαx .

As any other compact gauge theory, our model
contains monopoles. As in other compact gauge
models, their behavior is connected with the possible
confinement of charges. On the other hand, the
continuum Weinberg–Salam model is believed not
to confine any charges and not to be affected by
monopoles.
We investigated two types of monopoles. U(1)

monopoles extracted from 2θ are defined as

j2θ =
1
2π

∗d([d2θ]mod2π). (32)

The electromagnetic monopoles are

jA =
1
2π

∗d([dA]mod2π). (33)

(Here, we used the notation of differential forms on
the lattice. For the definition of that notation, see, for
example, [12].)
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Fig. 1. The phase diagram of the model in the (β, γ)
plane.

The density of the monopoles is defined as follows:

ρ =
〈∑

links |jlink|
4L4

〉
, (34)

where L is the lattice size. To understand the dy-
namics of external charged particles, we consider the
Wilson loops defined in the representations of left-
handed and right-handed leptons:

WL(l) =

〈
ReTr

∏
(xy)∈l

Uxye
−iθxy

〉
, (35)

WR(l) =

〈
Re

∏
(xy)∈l

e−2iθxy

〉
.

Here, l denotes a closed contour on the lattice. We
consider the following quantity constructed from the
rectangular Wilson loop of size a× a:

VR,L(a) = − logWR,L(a× a)/a. (36)

A linear behavior of V(a) would indicate the existence
of a charge–anticharge string with nonzero tension.

3.3. Numerical Results

In our calculations, we investigated lattices L4 for
L = 6, L = 12, and L = 16 with symmetric boundary
conditions.
We summarize our qualitative results in the phase

diagram represented in Fig. 1. The model contains
three phases. The first one (I) is a confinement-like
phase, in which the dynamics of external charged
particles is similar to that of QCD with dynamical
fermions. In the second phase (II), only the behav-
ior of left-handed particles is confinement-like, while
for right-handed ones it is not. The last one (III) is
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 6 200
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Fig. 2. VL(a) calculated at three points that belong to
different phases of the model.

the Higgs phase, in which no confining forces are
observed at all. This is illustrated by Figs. 2 and
3, in which we represent VL(a) and VR(a) at three
typical points that belong to different phases of the
model. One can see that, in the Higgs phase, the
shape of V(a) excludes the possibility of a linear po-
tential to exist. The same behavior is found in phase
II for VR(a). On the other hand, in phase II, the
shape of VL(a) signals the appearance of a linear
potential at sufficiently small distances (up to five
lattice units). However, as for QCD with dynamical
fermions or the SU(2) fundamental Higgs model [13,
14], these results do not mean that confinement oc-
curs. The charge–anticharge string must be torn by
virtual charged scalar particles, which are present in
the vacuum due to the Higgs field. Thus, V(a) may
be linear only at sufficiently small distances, while
starting from some distance it must not increase,
indicating the breaking of the string. Unfortunately,
the accuracy of our measurements does not allow us
to observe this phenomenon in detail. However, it may
be partially illustrated by the shapes of VL(a) and
VR(a) in phase I shown in Fig. 2 and Fig. 3.
The phase structure of the model may also be

seen through the data for the mean action over the
whole lattice S̄ = 〈S〉/(6βL4) (Fig. 4). It appears to
be inhomogeneous in a small vicinity of the phase
transition line.
The connection between the properties of monopoles

and the phase structure of the model is illustrated
by Figs. 5 and 6, which show the monopole density
versus the coupling constants. The electromagnetic
monopole density drops in the Higgs phase, while the
U(1) monopole density falls sharply in both phase II
and phase III. We can see that the behavior of the
5
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U(1) monopoles is connected with the dynamics
of the right-handed particles, while the behavior of
electromagnetic monopoles reflects the dynamics of
the left-handed particles.

It is worth mentioning that the cousin of our
model, the SU(2) fundamental Higgs model, has a
similar phase structure as our model, except for the
absence of the phase transition line between phases I
and II. In the latter model, it was shown that different
phases are actually not different. This means that
the phase transition line ends at some point and the
transition between two states of the model becomes
continuous. Thus, one may expect that, in our model,
the phase transition line between phases I and III
ends at some point. However, we do not observe this
for the considered values of couplings.
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In our model, both phase transition lines join at
a triple point, forming the common line. This is,
evidently, the consequence of the aforementioned
additional symmetry that relates SU(2) and U(1)
excitations. The same picture, of course, does not
emerge in the conventional SU(2) ⊗ U(1) gauge–
Higgs model [15].

We must also note here that the phase diagram
may also contain an unphysical region, correspond-
ing to the unphysical region of the pure SU(2)
model (which is observed at β < βc, where βc is the
crossover point). Our investigation shows that, if this
region of couplings exists in our model, it must be
far from the Higgs phase, which is of main interest
YSICS OF ATOMIC NUCLEI Vol. 68 No. 6 2005
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to us. Indeed, this unphysical region might appear for
β < 2.25 and γ < 0.5.

4. CONCLUSIONS

We summarize our results as follows:
(i) We illustrated an additional symmetry found in

the fermion and the Higgs sectors of the Standard
Model by the consideration of the SM in loop space.
(ii) We performed a numerical investigation of the

quenched electroweak sector of the lattice model,
which respects the additional symmetry.
(iii) The lattice model contains three phases. The

first one is a confinement-like phase. In the second
phase, the confining forces are observed, at suffi-
ciently small distances, only between the left-handed
particles. The last one is the Higgs phase.
(iv) Themain consequence of the emergence of the

additional symmetry is that the phase transition lines
corresponding to the SU(2) and U(1) degrees of free-
dom join at a triple point forming the common line.
This reflects the fact that the SU(2) and U(1) excita-
tions are related due to the aforementioned symmetry.
The same situation does not take place in the conven-
tional SU(2) ⊗ U(1) gauge–Higgs model [15].
Thus, even on this simplified level, we found a

qualitative difference between the conventional dis-
cretization and the discretization that respects the
invariance under Eq. (19).
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Abstract—A series of chemical reactions is suggested to describe primary chemical transformations
induced by Auger electrons from radioactive nuclear decay in glassy and crystalline frozen aqueous media.
The mechanism is based on Mössbauer emission spectroscopy data supplemented by data on reactions in
the tracks of fast positrons and electrons in an aqueous medium. It is shown that variation of temperature,
the degree of crystallinity, the concentration of electron acceptors, etc., results in correlated changes in the
yields of the final reaction products—Fe2+, Fe3+ or Sn2+, Sn4+ ions, positronium atoms, and molecular
radiolytic hydrogen. These correlations indicate the similarity of chemical processes in the nanometer
vicinity of decayed 57Co and 119mSn nuclei and in the tracks of fast positrons and electrons. This similarity
is caused by the same behavior of secondary intratrack electrons produced due to ionization losses of fast
positrons, electrons, and Auger electrons. c© 2005 Pleiades Publishing, Inc.
INTRODUCTION

In this work, we use Mössbauer spectroscopy to
study the mechanism of chemical reactions induced
by radioactive nuclear transformations such as elec-
tron capture and conversion isomeric transition [1].
The general result of these transformations is the
atomic emission of Auger electrons whose total en-
ergy is about several keV. Ionizing the medium in
the vicinity of the radioactive nucleus, Auger elec-
trons initiate radiolysis, i.e., any chemical or physico-
chemical transformation of the substance subjected
to ionizing radiation. Knowledge of these reaction
mechanisms is important not only for understanding
of the physicochemical transformations occurring in
media with radioactive isotopes, but also for a correct
interpretation of Mössbauer spectroscopy results.

At the initial stage of radiolysis, chemical reactions
occur in Auger-electron tracks. Spurs, blobs, and
cylindrical ionization columns are generally picked
out as structural elements of ionizing particle tracks
in radiation chemistry [2, 3]. A nanometer aggregate
of several ion–electron pairs (up to five or six) is
called a spur. Spurs arise as a result of energy transfer
from an ionizing particle to a molecular electron. This
energy ranges from the ionizing potential to 100 eV.

1)Moscow State University, Vorob’evy gory, Moscow, 119899
Russia.

*e-mail: vsevolod.byakov@itep.ru
**e-mail: sergey.stepanov@itep.ru
1063-7788/05/6806-1016$26.00
A blob is a large spur, a pearlike aggregate of 30–40
ion–electron pairs. A blob arises when energy from
100 to 500 eV is transferred to the molecular electron.
Electrons with energy above ∼10 keV form isolated
(spaced far apart from each other) spurs and blobs.
However, spurs begin to overlap, forming a cylindri-
cal ionization column, when the fast-electron energy
decreases to several keV. The final sections of the
tracks of a fast electron and positron are cylindrical
ionization columns with adjacent blobs.

The method of picosecond pulse radiolysis [2] is
the most informative and popular method for study-
ing the intratrack reactions. However, the informa-
tion gained by this method mainly concerns the pro-
cesses occurring in spurs. The point is that the energy
fraction spent on blob formation by γ rays and fast
electrons with energies ∼1 MeV passing through the
condensed medium is not large (about 15%). At the
same time, a great number of closely located ion–
electron pairs in a blob results in some differences
of the intrablob processes from those in spurs. These
peculiarities were mentioned previously in the studies
of low-energy positron annihilation [3, 4].

The objective of this article is to discuss the poten-
tialities of emission Mössbauer spectroscopy (EMS)
together with radiation-chemistry data and positron
annihilation spectroscopy for revealing the mecha-
nism of radiation-chemical transformation in blobs.
Though reactions in frozen aqueous solutions (77 K)
are primarily considered, the results shed some light
c© 2005 Pleiades Publishing, Inc.
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on the processes occurring in ionizing particle tracks
under normal conditions.

PRIMARY CHEMICAL REACTIONS
INDUCED BY AUGER IONIZATION

AND IN TRACKS OF FAST POSITRONS
AND ELECTRONS:

MODEL DESCRIPTION

In the emission version of Mössbauer spec-
troscopy, radioactive nuclei (e.g., 57Co) are intro-
duced into the medium under investigation in a
negligibly low concentration. After E capture, they
produce excited 57Fe nuclei, which are sources of
Mössbauer radiation. It is the measured spectrum
of this radiation that provides information on the
physicochemical state of the daughter atom [1, 5, 6].

The E capture results in an appearance of a va-
cancy in the inner electron shell of the produced Fe
atom. The vacancy is rapidly occupied and moves to a
higher energy level due to an electron transition from
the outer shell. This process is accompanied by the
emission of an x-ray photon or an Auger electron. In
the latter case, two vacancies appear in the higher
shells, and they are occupied by electrons from the
outer shells. The probability of the Auger process in-
creases with the shell number. On the one hand, this
Auger cascade produces a 57Fen+ multiply charged
ion with n up to 8 [7]. On the other hand, the emission
of a considerable number of soft x-ray photons and
Auger electrons with energies of hundreds of elec-
tronvolts gives rise to the ionization of a great number
of molecules in the nearest ion environment. A cluster
of many tens of or even several hundred ion–electron
pairs appears around the 57Fen+ ion 10−14 s after
the E-capture event. Such aggregate is called large
blob in terms of radiation chemistry. We will call it an
Auger blob.

Approximately 10−7 s after the production of the
Fe nucleus, it emits a Mössbauer photon, which
is detected by a detector. The emission time of a
λ-wavelength photon can be estimated as λ/c ≈
10−18 s. It is essential that the photon energy depends
on the number of electrons that exist in the 57Fen+

shell at that time and thereby it provides information
on the ion charge n at the moment of photon emission
[1]. Since the electron affinity2) is much higher than
the first ionization potential of the molecules of a
medium (e.g., water), a decrease in the charge of the
57Fen+ ion (ion reduction) occurs first via stripping off
the outer-shell electrons of the neighboring molecules

2)The electron affinity is defined as the energy released in the
process of electron coupling to an atom, a molecule, or an
ion.
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 6 20
and then via chemical reactions with Auger blob
electrons [8]. By the instant of photon emission,
the electron shell of the Fe ion has been mostly
restored, and the ion appears to be in one of its
chemically stable states, that is, either the Fe3+ or
Fe2+ ion. The ratio between the Fe3+ and Fe2+ ions
is determined by the behavior of Auger electrons
and numerous secondary electrons produced in the
Auger process, by their chemical reactions with the
radiolysis products in an Auger blob, and by their
interaction with the medium [8].

It is natural to suppose that the physicochemical
transformations in the Auger blob must be similar to
the processes both in the final blob of the positron
track, which result in the production of the positro-
nium atom (Ps), and in the blobs formed due to ion-
ization losses of fast electrons e−∗∗.3)

Radiolytic hydrogen (H2) is a product of intrablob
reactions in the aqueous medium [2, 3]. The follow-
ing chemical processes presumably proceed in the
frozen aqueous medium near the 57Co nucleus after
its transformation into an iron nucleus.

(a) Ionization of water molecules by fast Auger
electrons e−∗∗:

e−∗∗ + H2O → e−∗ + H2O+ + e−∗. (1)

(b) Thermalization of the above “hot” electrons
e−∗:

e−∗ + H2O → e− + H2O∗. (2)

(c) Capture of thermal electrons e− into traps,
which are created previously or formed by electrons
themselves that restructure the medium:

e− + trap → e−tr . (3)

Electrons localized in the traps of the latter type are
called solvated (e−s ) or hydrated (e−aq) for the aqueous

medium,4) in contrast to electrons (e−tr ) captured in
the traps of the former type.

(d) Chemical reactions

e− + H2O+� + H2O →




H2 + 2
�

OH,
�

H +
�

OH + H2O,

H2O∗ + H2O → 2H2O,

(4)

3)Traditionally, one or more asterisks used as a superscript
of a chemical reagent symbol means that the reagent has
considerable kinetic energy compared to the heat energy
(for instance, e∗), or that it is in the electron-excited state
(H2O∗).

4)The first term originates from the English word solvent,
while the second one from the Greek word hydro (water).
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H2O+� + H2O → H3O+ +
�

OH, (5)

e− +
�

OH → OH−, (6)

H3O+ + OH− → 2H2O, (7)

e− + H3O+ →
�

H + H2O, (8)

e− + Si → S−
i , (9)

H2O+� + Si →




�
OH + SiH

+,

H2O + S+�
i ,

(10)

Fe3+ + e− → Fe2+. (11)

Here, e− and e−tr are thermalized (quasifree or presol-
vated) and captured (solvated) electrons, respectively;
Si is the chemically active dissolved substance of the
ith type. These reactions are written by analogy with
the primary reactions proceeding in spurs, blobs, and
cylindrical ionization columns of fast-electron tracks
[3]. Only one reaction (11) is added, which yields
the stable final product from the two stable products
in the Mössbauer experiment. It is evident that the
same processes must take place in the vicinity of the
119mSn nuclide after the conversion isomeric transi-
tion [9] forming an electron vacancy predominantly
(62%) in the L shell of the tin atom.

The only possible way to determine the nature
of chemical reactions induced by Auger electrons is
probably measurement of the production probabili-
ties of the stable products—R(Fe3+) and R(Fe2+) =
1−R(Fe3+)—for various chemically active additives,
various medium temperatures, and different aggre-
gate states of the medium (crystalline, glassy), etc.
According to the above discussion, we should expect
similar effects of these factors on the production prob-
abilities (yields) of Fe2+, orthopositronium (o-Ps),
and H2. Indeed, primary chemical transformations
that are induced in blobs and spurs by fast positrons
and electrons are described by a series of reactions
similar to those presented in [2, 3], except for reac-
tion (11). Instead of the last reaction, the following
reaction should be included in the final section of the
positron track:

e+ + e− →


 o-Ps,

p-Ps.
(12)

This reaction involving a positron (e+) yields two
kinds of positronium atom—long-lived orthopositro-
nium and short-lived parapositronium—produced in
P

a 3 : 1 ratio, respectively [3, 4]. Orthopositronium is
detected most often.

We were mainly interested in three-component
systems as objects of Mössbauer emission exper-
iments. These systems are composed of a solvent
(water), a minor additive of some chemical compound
(salt) containing radioactive nuclei (57Co, 119mSn),
and a specially incorporated substance capable of
reacting with ions and radicals produced by Auger
electrons in the vicinity of Mössbauer nuclei. Here-
after, indicating a certain substance introduced into
the sample under investigation, we will not mention
specially the presence of a radioactive additive in it,
because it is self-evident.

As is seen from reactions (1)–(11), we suppose
that the low-temperature reactions initiated by Auger
electrons in a Mössbauer blob involve a quasifree
electron e− rather than a solvated (captured) electron
as was assumed by Bondarevskii and Ablesimov [10].
This supposition is based on the fact that the electron
solvation times in glassy ethanol and n-propanol at
77–130 K are much longer than the mean lifetimes
of the 57Fe (10−7 s) and 119Sn (10−8 s) Mössbauer
nuclei [11, 12].

QUANTITATIVE RESULTS FOLLOWING
FROM THE MODEL

A number of quantitative results follow from the
above reactions. These results primarily concern the
effect of the electron acceptors Si distributed in the
medium on the production yields of positronium, ra-
diolytic hydrogen, hydrated electron (e−aq), and elec-
tron captured by the frozen aqueous medium (e−tr ).
If the concentration cS of the dissolved acceptor is
not too low, the inhibition of these yields—Io-Ps,GH2

,
R(Fe2+), and G(e−aq)—can be approximated by the
expressions [3, 13–15]

Io-Ps = I0
o-Ps/(1 + pcS), (13)

GH2
= G0

H2
/(1 + hcS), (14)

R(Fe2+) = R0(Fe2+)exp(−fcS), (15)

G(e−aq) = G0(e−aq)exp(−qcS). (16)

Here, p, h, f , and q are the inhibition factors for the
yields of o-Ps, H2, Fe2+, and e−aq(e

−
tr ). They char-

acterize the capability of the substance Si to inter-
act with nonionizing quasifree electrons e−, which
have yet to be hydrated, that is, appear in a localized
state because of either aqueous–medium polarization
or capture in the preexisting traps. We treat these
electrons as predecessors of o-Ps, H2, Fe2+, and
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 6 2005
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e−aq(e
−
tr ). The quantities with the superscript “0” are

extrapolated to zero concentration cS. Each inhibition
factor is proportional to k(e− + Si), which is the rate
constant of quasifree-electron capture by the sub-
stance Si:

p ∝ h ∝ f ∝ q ∝ k(e− + Si). (17)

They can serve as a measure of the electron reactivity
of the substance Si. If the above assumptions are cor-
rect, then, for example, the f1/f2 ratio of the experi-
mental inhibition factors for Fe2+ yields by electron
acceptors S1 and S2 determined experimentally must
be close to similar ratios p1/p2, h1/h2, and q1/q2.
Below, we demonstrate that temperature variation
similarly affects the yields of H2, o-Ps, Fe2+, and
e−aq(e

−
tr ). Our further aim is to provide experimental

data in support of these results following from this
model. Unfortunately, it is impossible to carry out
this comparison under identical conditions at present,
because radiation chemical and positronium data that
have been obtained in frozen solutions and can be
directly compared with the Fe2+ yields in the Auger
blob are very scarce. Nevertheless, even a correlation
between the yields that are obtained under nonidenti-
cal conditions indicates the similarity of the intratrack
chemical processes under discussion.

COMPARISON WITH EXPERIMENTS

1.Let us start with considering the Fe2+ yields ob-
tained in [14] for the frozen aqueous solutions of salt
(NaClO4) and acids (H2SO4, HClO4, and HNO3) at
77 K (Fig. 1). At room temperature, these substances
dissociate within the concentration range of in-
terest: NaClO4 → Na+ + ClO−

4 , H2SO4 + H2O ↔
H3O+ + HSO−

4 , HClO4 + H2O→H3O+ + HClO−
4 ,

and HNO3 + H2O → H3O+ + NO−
3 . In the solu-

tions frozen at 77 K, dissociation also likely proceeds
with hydrogen ions H+ appearing in hydroxonium
ions H3O+ [17]. Then, using the data presented in
Fig. 1 and the relation similar to (15)

R(Fe2+) = exp
(
−
∑
i

ficSi

)

with R0(Fe2+) = 1, we can determine the fi inhibi-
tion factors for the Fe2+ production yields by various
ions existing in the medium. The ratios of these values
appeared to be the following:

f(H3O+) : f(ClO−
4 ) : f(NO−

3 ) ≈ 0.04 : 0.05 : 0.1.
(18)

The accuracy of these values and other inhibition
factors presented below is about 10%.
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Fig. 1. Fe2+ yields in the frozen aqueous solutions of
(◦) sulfuric, (�) perchloric, and (•) nitric acids and
(�) in the frozen solution of NaClO4 at 77 K [16]. The
curves are the approximations of these dependences by
the formula similar to (15): R(Fe2+) = exp(−

∑
i ficSi)

with R0(Fe2+) = 1, where fi = 0.005, 0.04, 0.05, and
0.1 M−1 for HSO−

4 , H3O+, ClO−
4 , and NO−

3 , respec-
tively. The fi coefficient for the Na+ ion is set to zero.
Hereafter, the concentration M is presented in terms of
the number of solute moles per liter of solution.

It is natural to compare ratios (18) with the ratios
of the coefficients qi characterizing the reactivity of
the same ions with respect to the quasifree electron
at room temperature [15]:

q(H3O+) : q(ClO−
4 ) : q(NO−

3 ) (19)

≈ (≤ 0.1) : (≤ 0.1) : 2.4.

The latter ratios were determined by the method of pi-
cosecond pulse radiolysis with the use of relation (16).

In positron spectroscopy, the inhibition factor pi
for Ps production from relation (13) is used as a mea-
sure of the reactivity of the acceptor Si of the quasifree
electrons [3, 13]. Experiments at room temperature in
the solutions of different acids yield [18]

p(H3O+) : p(ClO−
4 ) : p(NO−

3 ) ≈ (≤ 0.1) : 0.1 : 3.1.
(20)

As is seen, pulse radiolysis and positron spectroscopy
yield close values of q and p. A monotonic increase
in the f values when passing from H3O+ to NO−

3 is
in agreement with a similar increase in the q and p
values. The closeness of q and p in the liquid medium
at room temperature and their slight difference from
the f values obtained by means of EMS in the frozen
media are quite natural. It is important that ratios
5
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(18)–(20) differ considerably from the ratio of the rate
constants k(e−aq + Si) of the corresponding reactions
between Si and the solvated electron [15]:

k(e−aq + H2O+) : k(e−aq + ClO−
4 ) : k(e−aq + NO−

3 )
(21)

= 1 : 0.1 : 1.

Thus, the suggestion made in [10] that solvated elec-
trons are involved in the chemical reactions in an
Auger blob contradicts the experimental data. More-
over, it is inconsistent with the above-mentioned con-
siderable solvation times of quasifree electrons at low
temperatures. Only glassy methanol could be an ex-
ception, because its solvation time is about 10 ns [11],
which is an order of magnitude lower than the time of
Mössbauer photon emission.

2. Let us compare the effect of electron acceptors
Cu2+ and Cr2+ on the yield R(Sn2+) of double-
charged tin in the frozen aqueous solutions of salts
CrCl2 and CuCl2 at 77 K to their effect on the yield
GH2

of radiolytic hydrogen in these solutions gamma-
irradiated at room temperature. Figure 2 (left panel)
illustrates the same efficiency ofGH2

inhibition by the
Cr2+ and Cu2+ ions due to their capture of quasifree
electrons, which are the main predecessors of ra-
diolytic hydrogen [3, 13]. The right panel in Fig. 2
demonstrates a similar effect of these ions on the
Sn2+ yield. This fact is in favor of the above suppo-
sition that the electrons responsible for H2 and Sn2+

production via reactions (4) and (11) in the Compton-
electron track and Auger blob, respectively, are of the
same origin in spite of a considerable difference in
temperature and in the aggregate state of the solvent.

3. The presence of molecular iodine I2 provides
an atypical effect on the Fe2+ yield in glassy ethanol
frozen at 77 K (Fig. 3). An increase in the I2 con-
centration from zero to 0.43 M leads to a more than
twofold increase in the Fe2+ yield, that is, from 0.28
to 0.72. When the iodine concentration increases
further, the Fe2+ yield decreases slightly to 0.53 at
an iodine concentration of 1.5 M (Fig. 3, left panel).
Mil’grom et al. [19] supposed that an increase in
the Fe2+ yield with increasing the I2 content up to
0.43 M occurred because electron structural traps
disappeared in the glass under the effect of iodine
molecules.

Here, we present a different explanation based on
the following peculiarities of the I2-involving reac-
tions. The reaction of I2 with a quasifree electron
is a dissociative capture of e−, which proceeds with
the formation of an excited anion radical I−∗

2 in the
intermediate state [21]:

e− + I2 ↔ I−∗
2 → I−2 → I + I−. (22)
PH
In spite of a high electron affinity of I2 (2.6 eV) [22],
the electron binding energy in excited I2 is most likely
low [21]. The transition into the ground state, as
well as subsequent dissociation, is hindered in the
solid phase because of the lack of available volume.
Under these conditions, electron migration along I2
molecules is possible if their concentration is suffi-
cient:

I−∗
2 + I2 → I2 + I−∗

2 . (23)

In this case, the electron will drift towards Fe3+ under
the action of the Coulomb field. As a consequence, the
Fe2+ yield must increase with the I2 concentration,
and this is the case up to its concentration of 0.5 M.

In addition to increasing the fraction of captured
quasifree electrons, a further increase in the I2 con-
centration results in the replacement of alcohol cation
radicals C2H5OH+� with cation radicals I+�

2 . This
process is due both to the direct action of Auger
electrons, e−∗∗ + I2 = I+·

2 + 2e−∗, and to indirect
ionization, C2H5OH+� + I2 = C2H5OH + I+�

2 , which
is possible because the ionization potential of iodine
molecules (9.4 eV) is lower than that of ethanol
molecules (10.5 eV) [22]. The dissociation of cation
radicals via I+�

2 → I + I+� is also hardly possible
because of the lack of available volume at 77 K.
Therefore, their interaction with electrons and anions
(I+�

2 + e− = I2, I+�
2 + I−2 = 2I2) is longer and thus

more efficient than that for short-lived ethanol cation
radicals. It is this effect that causes a decrease in
R(Fe2+). It should be borne in mind that the fast
ion–molecular reaction C2H5OH+� + C2H5OH =
C2H5OH+

2 + C2H5O� results in products that are
much less reactive than C2H5OH+�. This reaction
is not limited by the lack of available volume at 77 K,
because the proton leaving the C2H5OH molecule
simply binds to an unshared orbital of a neighboring
molecule.

The addition of I2 similarly affects the probability
of o-Ps production in liquid cyclohexane [20] (Fig. 3,
right panel). In this case, the o-Ps yield also first
increases (although not so markedly as the Fe2+

yield in frozen ethanol) and then decreases. Such an
unpronounced increase in the Ps yield is apparently
caused by the absence of obstacles for fast reaction
(22) of the dissociative electron capture in the liquid
phase.

4. Now, let us consider the correlation of changes
in the yields of Fe2+, radiolytic hydrogen, and positro-
nium with the medium temperature (Fig. 4). We begin
with the cause for the difference between the Fe2+

yields in the solutions of sulfuric and perchloric acids,
which is especially noticeable at low temperatures.
This difference arises because electron capture by
YSICS OF ATOMIC NUCLEI Vol. 68 No. 6 2005
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the products of the dissociation of perchloric acid
molecules is more efficient (Fig. 1) and the efficiency
of this capture increases when temperature decreases.
This difference persists at room temperature as well.
Figure 5 shows the yields of radiolytic hydrogen and
o-Ps in the solutions of sulfuric and perchloric acids.
Both yields in the HClO4 solutions are noticeably
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 6 200
lower than the respective yields in the H2SO4 solu-
tions.

We propose an explanation of the similarity of the
R(Fe2+) temperature dependences in the glassy solid
solutions of sulfuric and perchloric acids (Fig. 4) to
analogous dependences of Io-Ps andGH2

in liquid wa-
ter. This explanation is based on the fact that the tem-
5
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perature coefficients
(

1
GH2

dGH2

dT
and

1
Io-Ps

dIo-Ps

dT

)

of the relative yields of radiolytic hydrogen and o-Ps

in liquid water under pressure in a temperature range

of 300–500 K are close to the temperature coeffi-
P

cient
1

R(Fe2+)
dR(Fe2+)

dT
in the 10 M frozen H2SO4

solution, especially in a temperature range of 78–

130 K. All three coefficients are about 1/770 K−1.

This closeness indicates that the quasifree electron is
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 6 2005
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a common predecessor of all the products—H2, Fe2+,
and Ps—of reactions (4), (11), and (12).

The temperature coefficient in the 12 M frozen
HClO4 solution is higher than that in sulfuric acid,
andR(Fe2+) in this solution is lower than the value in
sulfuric acid, because quasifree electrons are involved
in the reaction with the ClO−

4 anion, which is the
product of perchloric acid dissociation.

If, following [24], we assume that the GH2
and

Io-Ps yields increase with temperature due to an in-
crease in the initial yield of the ion–electron pairs in
medium ionization, then the e−aq(e

−
tr ) yield must have

the same temperature dependence:
G ∝ exp[T/770(K)]. (24)

To verify relation (24), we estimate the e−tr yield for
the case of low-temperature radiolysis using this re-
lation. Assuming G0(e−aq) = 4.8 electron/(100 eV) at
T = 300 K [2], we obtain a G0(e−tr ) value close to
3.5 electron/(100 eV) at T = 77 K.

To test the applicability of this estimate to low-
temperature glasses, we consider the data from [17]
where the gamma radiolysis of glassy acidic solutions
frozen at 77 K was studied. Hydroxonium ions aris-
ing in acid dissociation (see Subsection 1) recapture
thermalized electrons e− formed via radiolysis and
thus produce H atoms stable at liquid nitrogen tem-
perature:

e− + H3O+ →
�

H + H2O. (25)

As a result, the yield of electrons captured by the
medium (e−tr ), which are analogs of hydrated electrons
(e−aq), decreases, and the yield of hydrogen atoms
must increase.

In the aqueous solutions of perchloric acid that are
exposed to a picosecond pulse of ionizing radiation,
the G(e−aq) yield decreases with increasing concen-
tration cS of the acid in accordance with Eq. (16),
in which the coefficient q ≤ 0.1 M−1 [15] at room
temperature. It means that the yield of H atoms pro-
duced in reaction (25) must increase accordingly. The
mentioned yield should be supplemented by the yield
GH of H atoms in intratrack reaction (4). Taking into
account that the contribution of intratrack reaction
(6) is small [28], we obtain the relation

G(H) = GH +G0(e−tr ) −G(e−tr ) (26)

= GH +G0(e−tr )[1 − exp(−qcS)].

Here, G0(e−tr ) is the initial yield of captured elec-
trons prior to their participation in the chemical re-
actions. This yield coincides with the yield of ion–
electron pairs, which has been estimated atG0(e−tr ) =
3.5 electron/(100 eV).
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Figure 6 shows the yields of stabilized hydrogen
atoms for various concentrations of sulfuric and
perchloric acids. The curves in the figure are approx-
imations of the yields by Eq. (26). The presented de-
scription of the experimental data was obtained with
the following parameters: GH ≈ 0.23 atom/(100 eV),
q = q(H3O+) + q(HSO−

4 ) ≈ 0.08 M−1 for H2SO4

and q = q(H3O+) + q(ClO−
4 ) ≈ 0.3 ± 0.1 M−1 for

HClO4. The coefficients q, which characterize the
reactivity of quasifree electrons under the condi-
tions of low-temperature radiolysis, are in semi-
quantitative agreement with the inhibition factors
f for the Fe2+ yield in Auger blobs that were ob-
tained earlier in the same media (Fig. 1) and that
have the same sense as the q coefficients: f =
f(H3O+) + f(HSO−

4 ) ≈ 0.04 M−1 for H2SO4 and
f = f(H3O+) + f(HClO−

4 ) ≈ 0.09 M−1 for HClO4.
The difference between the ratios q/f ≈ 2 for H2SO4

and q/f ≈ (0.3 ± 0.1)/0.09 ≈ 3 ± 1 for HClO4 can-
not be treated as significant, because there is only one
experimental point for perchloric acid (Fig. 6).

We should note that the intratrack yields of
G0(e−tr ) = 3.5 electron/(100 eV) and GH ≈
0.23 atom/(100 eV) also do not contradict the
radiation-chemistry data [2]. All these facts indicate
that the radiation-chemical reactions proceeding in
the nanometer vicinity of the 57Co nucleus after it
5
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captures an electron involve electrons of the same
kind as those involved in gamma radiolysis of low-
temperature solutions.

CONCLUSIONS

The same type of inhibition of the Fe2+, Sn2+,
H2, o-Ps, and e−s yields by dissolved substances, as
well as the close values of their temperature coeffi-
cients obtained by the methods of EMS, positron-
ium spectroscopy, and pulse radiolysis, supports our
statements concerning the similarity of the primary
processes in all track structures—spurs, blobs, and
ionization columns. Differences in their shapes and
dimensions in tracks of different ionizing particles
slightly affect the ratios of the inhibition factors. The
values of these factors indicate that quasifree elec-
trons are involved in the intratrack reactions prior to
their capture by the polar medium.
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Abstract—The application of bent crystals for extracting accelerated beams from high-energy accelerators
is reviewed. The results of realizing highly efficient extraction of protons from the IHEP accelerator are
presented. Proposals on using oriented crystals for designing efficient positron sources at linear colliders
and on developing new undulators are discussed. c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

It seems very inviting to use oriented crystals with
strong intracrystalline electric fields (≥109 V/cm) to
control charged-particle beams. Atoms in crystals
are concentrated in their crystallographic planes and
along axes. The fields of atomic planes and axes form
potential wells in the interplanar space and near the
axes. The motion of charged particles in these wells
becomes steady, and they can penetrate very deeply
into the crystal (the so-called channeling effect). The
motion of particles in oriented crystals is considered
in detail, for example, in [1–4].

To realize the channeling mode for positively
charged particles, crystals oriented along crystal-
lographic planes are used. At the output of such
a crystal, channeled and scattered particles (not
involved in channeling) move in the same direction.
For their spatial separation and controlling the chan-
neled beam, Tsyganov [5] proposed in 1976 to use a
bent crystal and theoretically showed that channeled
particles passing the entire crystal deviate at a bend
angle if crystal bend radii are larger than the critical
value.

For the first time, this idea was corroborated in
the experiment performed in 1979 by the joint JINR–
FNAL group on the 8.4-GeV proton beam extracted
from the JINR (HEL) synchrophasotron [6]. In these
measurements, a silicon crystal that was oriented
along the (111) direction, had a length of 20 mm, and
was bent by an angle of 25.7 mrad was used. About
1% of particles falling on the end face of the crystal
were deviated at this angle. In the subsequent exper-
iments executed at CERN on a nearly parallel 450-
GeV proton beam, a record efficiency of the deviation
of beams (∼50%) for crystal-bend angles∼2 mrad [7]
was achieved using (110) bent silicon crystals.
1063-7788/05/6806-1025$26.00
The emerging possibility of controlling particle
beams using bent crystals became a stimulus for the
development and investigation of various applications
of such crystals at high-energy accelerators [2, 3].
The most advanced works concern the efficient ex-
traction of particle beams from cyclic high-energy
accelerators using bent crystals.

2. EXTRACTION OF PROTON BEAMS
FROM HIGH-ENERGY ACCELERATORS

USING BENT SILICON CRYSTALS
In 1977, Koshkarev [8] proposed to use a bent

crystal for extracting accelerated proton beams. The
first such experiment was performed in 1984 by
Tsyganov’s group at the JINR (HEL) synchropha-
sotron with 8.4-GeV protons [9]. For extraction,
they used an 11 × 10 × 0.4-mm (length× height×
thickness) (111) silicon crystal bent by an angle
of 35 mrad. The accelerated beam was directed to
the crystal by reducing the equilibrium-orbit radius.
The obtained extraction efficiency (the ratio of the
extracted-beam intensity to that of the beam directed
to the crystal) was equal to ∼10−4.

In 1989, 50- and 70-GeV proton beams were
extracted from the U-70 IHEP accelerator into one
of the existing secondary-particle channels [10]. To
direct the extracted beam into this channel, it was
necessary to bend the 65× 15× 0.6-mm (111) silicon
crystal by a large angle of∼85 mrad. The accelerated
beamwas directed to the crystal by the local distortion
of the orbit. The efficiency of this extraction was equal
to several units of 10−4, and it was later increased to
10−3 by using thin carbon films for the preliminary
small-angle scattering of the proton beam.

In 1993, extraction of a 120-GeV proton beam
with an intensity of 5 × 1011 protons per cycle from
c© 2005 Pleiades Publishing, Inc.
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Fig. 1. Efficiency of (1) single-turn and (2) multiturn
extraction vs. the crystal length. The points are the results
of direct computer simulation.

the SPS accelerator using 30 × 18 × 1.5-mm (110)
bent silicon crystals [11] was investigated at CERN.
For directing to the crystal, the accelerated beam was
perturbed in the horizontal plane by the electric field
of capacitor plates. The field between the capacitor
plates had a white-noise spectrum and provided a
standard deviation of ∼0.001 µrad for particles in
each passage. The extraction efficiency was equal to
∼10%, and it reached∼20% at an energy of 270 GeV.

Interesting investigations on the extraction of a
900-GeV proton beam were also performed at the
FNAL superconducting accelerator [12]. In those ex-
periments, a 40 × 10 × 3-mm (110) silicon crystal
bent by an angle of 0.64 mrad was used. The beam
was deviated by the crystal in the vertical plane and it
was directed to the crystal in the horizontal plane. The
beamwas directed to the crystal either by its deviation
by a deflector or by exciting the particle diffusion. It
was shown in experiments that there is the unique
possibility of combining extraction of particles from
the beam halo and the operation of the accelerator
in the collider mode. The beam extraction efficiency
reached ∼30%. The extraction efficiency that was
obtained in those experiments was much lower than
that of the classical slow extraction, which reached
∼98%. The extraction efficiencies were low because,
when the lengths and bend angles of crystals are
large, the capture of particles to the channeling mode
occurs predominantly in the first passage through the
crystal. Particles that are not captured in the chan-
neling mode are strongly scattered and finally lost.
To realize efficient multiturn extraction, it is neces-
sary to provide the conditions under which particles
that are not captured in the channeling mode in the
first passage through the crystal can be captured in
PH
the subsequent passages. Short crystals with small
bend angles are required for this aim according to the
calculations performed in [13, 14] with the software
packages described in [15, 16]. Figure 1 shows the
results of calculations and computer simulation for
the extraction efficiency at the IHEP accelerator us-
ing (110) silicon crystals of various lengths deflecting
the 70-GeV proton beam at a fixed angle of 2 mrad.

As is seen in Fig. 1, multiturn extraction can be
threefold more efficient than single-turn extraction.
Moreover, the maximum efficiency (∼80%) is pro-
vided by short crystals ∼1−2 mm in length. Such
an extraction was performed at the IHEP accelerator.
In this case, one crystal with small (∼1 mrad) bend
angles was insufficient (due to relatively short straight
sections). It was necessary to additionally use several
septummagnets of the existing extraction system and
to guide the beam in the extraction direction.

In various places of the accelerator, we installed
three identical crystal stations: Si19, Si22, and Si106
(see Fig. 2). Here, the subscripts denote the ordi-
nal numbers of straight sections or magnetic units
in which the crystal was installed. The arrangement
scale for the magnetic units (MUs) in the accelerator
and the straight sections (SSs) preceding each of
them is shown in Fig. 3 (at the top).

In addition to the indicated stations, we also ar-
ranged the stations Si30, Si84, and Si86 at the accel-
erator. The crystal station Si30 serves for selecting a
small (∼107) fraction of particles from the extracted
beam and for deviating them (at an angle of∼9 mrad)
into the 22nd channel. The crystal stations Si84 and
Si86 are located in the test area both to test the crys-
tals before their installation in the workstations Si19,
Si22, and Si106 and to perform a number of investi-
gations, in particular, the study of beam-collimation
modes using bent crystals.

We discuss the chosen schemes of extracting an
accelerated beam in more detail. Figure 3 shows two
of these extraction schemes.

In the first scheme, the station Si19 with two
crystals (one is in reserve) was installed in the 19th
straight section of the U-70 accelerator outside the
beam region. It provided independent displacement
of each crystal along the radius and a change in its
angular orientation with respect to the beam. The
beam was directed to the crystal due to local orbit
distortion by two pairs of magnetic units (15/21 and
16/22). The particles that are directed to the crystal
and captured in the channeling mode are deviated
by the crystal at an angle of ∼1.7−2.5 mrad and
fall within the aperture of the septum magnet SM20,
bypassing the septum ∼7 mm thick. Then, being
deviated by the septum magnets SM22 and SM26

(curve 2 in Fig. 3), the particles were extracted from
YSICS OF ATOMIC NUCLEI Vol. 68 No. 6 2005
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the vacuum chamber of the accelerator in the 30th
straight section. This scheme is promising because it
can be used as the basis for organizing simultaneous
extraction of a beam by the crystal and two internal
targetsM24 andM27 (curve 1 in Fig. 3).

When using the other crystal station Si22 placed
in the middle of the 22nd magnetic unit, protons can
be extracted through the septum magnets SM24 and
SM26 (curve 3 in Fig. 3). In this case, also two pairs
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 6 20
of magnetic units are used to direct the beam: 20/26
and 18/30.

When working with the third station Si106 in-
stalled in the 106th straight section (it is not shown
in Fig. 3), two pairs of magnetic units (103/109 in
the feedback mode and 104/110 in the dc mode) are
also used to direct the beam to the crystal. The beam
can be extracted either through the septum magnets
SM20, SM22, and SM26 or through the septummag-
nets SM24 and SM26. Thus, the third scheme can
05
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Fig. 4. Schematic representation of the bending of (a) O and (b) Π crystals.
replace any of the first two schemes in the case of their
malfunction.

To realize the above beam-extraction schemes, it
was necessary to solve a very complicated problem
of bending short silicon crystals by small angles.
We succeeded in solving this problem by using two
nonconventional approaches. In the first of them, the
crystal was manufactured from a monolithic silicon
piece of the shape of the letter O (O crystals), and
the necessary bend was achieved by compressing the
crystal in its middle section (Fig. 4a). This crystal
provided a high extraction efficiency of ∼65% if its
working-part sizes were 5.0 × 5.0 × 0.7 mm and the
lateral walls were ∼1 mm thick. A decrease in the
length of the working section of the crystal to 3.5 mm
reduced the extraction efficiency due to increasing
negative action of lateral walls.

The second method is as follows. A narrow strip
∼2 mm in length and 30–40 mm in height is bent
in the vertical direction by an angle of ∼100 mrad.
In this case, it is bent by an angle of ∼1 mrad in
the transverse direction (see Fig. 4b) due to strains
arising in an anisotropic crystal lattice. Strip-shaped
crystals (Π crystals) with bend angles ∼1 mrad that
were preliminary subjected to special chemical pol-
ishing showed the best beam-extraction efficiency of
∼85%.

Proton-beam extraction was investigated mainly
at energies 70 and 50 GeV using the Π crystals with
the (111) orientation and theO crystals with the (110)
orientation. The characteristics of the crystals and the
experimental results are given in the table.

To introduce the crystal in the channeling mode,
we varied its position in both coordinate and angle.
Figure 5 shows the typical orientation curve for 70-
GeV protons extracted from the accelerator by the
106–24–26 scheme using Π crystal no. 1 (see table).
A small asymmetry of this curve is associated with
extraction of a certain fraction of particles reflected
from crystal planes (this process is considered in [4])
along with channeled particles. The working position
PH
of the crystal corresponds to the peak in the orien-
tation curve. The extraction efficiency (the ratio of
the extracted-beam intensity to the intensity of the
beam fraction directed to the crystal) was determined
by collecting statistics over several hundred cycles.
The extraction efficiencies measured and calculated
using the available software packages are shown in
Fig. 6 for an energy of 70 GeV and for two extraction
schemes: (a) 106–24–26 and (b) 22–24–26.

For the 106–24–26 scheme, the measured effi-
ciency reaching ∼85% decreases by ∼10% when the
fraction of the beam directed to the crystal increases.
This decrease is attributed to the direction angle drift
that breaks the optimal angular orientation of the
crystal with respect to the beam. In Fig. 6a, cal-
culated curve 2 is higher than experimental curve 1
by approximately 3–5%; i.e., they are in satisfactory
agreement with each other.

For the 22–24–26 scheme (Fig. 6b), efficiency
increases (by ∼4%) when the beam fraction directed
to the crystal increases. This increase can be ex-
plained by assuming that the remaining particle beam
partially touches the current partition of a septum
magnet at the beginning of extraction and, hence, a
certain fraction is lost. As the beam emittance de-
creases during extraction, these losses also decrease,
and the extraction efficiency increases. This process
was simulated, and it appeared that, when a certain
beam fraction falls to an edge of the septum magnet
at a depth of 0.3 mm, the experimentally observed de-
pendence (curve 1) is completely repeated (curve 2).
If the crystal position moves closer to the equilibrium
orbit by ≥0.3 mm, the observed effect vanishes, and
the extraction efficiency increases to 90% (curve 3)
at the beginning of the process. Thus, though a quite
high extraction efficiency of ∼85% is reached, calcu-
lations show that it can likely be increased to 90%.

In this study, we also measured other charac-
teristics of 50-GeV proton beams extracted by the
22–24–26 scheme using crystal no. 6 (see table).
Figure 7 shows the extracted-beam profiles in the
YSICS OF ATOMIC NUCLEI Vol. 68 No. 6 2005



USE OF ORIENTED CRYSTALS 1029
Table

Crystal
number

Installation
place Type Bend

angle, mrad
Size l × h×R,

mm
Efficiency,% Energy, GeV Extraction scheme

1 SS-106 Π 1.0 2 × 35 × 0.5 85 70 106–24–26

80 70 106–20–22–26

2 SS-106 О 0.7 3.5 × 5 × 0.7 60 70 106–24–26

3 SS-19 Π 2.0 5 × 45 × 0.5 67 70 19–20–22–26

4 SS-19 О 2.1 5 × 5 × 0.7 65 70 19–20–22–26

5 MU-22 Π 0.8 1.9 × 45 × 0.5 85 70 22–24–26

6 MU-22 Π 0.9 1.8 × 45 × 0.5 80 50 22–24–26
output window of the accelerator vacuum chamber.
It is seen that the extracted beam is quite well formed.
Its horizontal and vertical sizes at half maximum are
equal to 3.7 and 2.0 mm, respectively. They are much
smaller than the output-window diameter of the vac-
uum chamber, which is equal to 38 mm.

Figure 8 illustrates the fairly stable operation of the
extraction system at a time interval of 180 working
cycles of the accelerator. The extraction efficiency at
an energy of 50 GeV reaches 80% and the extracted-
beam intensity is equal to 1012 protons per cycle.

Important results were also obtained when testing
crystals at the unit in the test area. The schematic
drawing of the testbed is given in Fig. 9.

The efficiency of crystals in this case was deter-
mined as follows. When using a kicker magnet, the
entire beam was kicked on the absorber end face and
the total profilometer signal corresponded to 100%
intensity of the beam. The ratio of the integrated
signal when kicking the beam by a crystal installed in
the 84th magnetic unit to the signal obtained using
the kicker magnet gives the absolute value of the
efficiency of the crystal under study. In this case, the
total error does not exceed 5%. The measurements
of efficiency of the Π crystal with a bend angle of
0.8 mrad and a length of ∼1.7 mm along the beam
(see Fig. 10) show the same high efficiency of 85% as
the direct measurements during the beam extraction.
It also follows from these results that the crystal sta-
tion with a bent crystal near the beam absorber can
also be efficiently used for localization of beam losses,
which is especially important for superconducting ac-
celerators.

The efficiency of a crystal 1.8 mm in length and
with a bend angle of 0.8 mrad was obtained as a
function of the accelerated-proton energy in the same
way at the testbed (see Fig. 11). The measured and
calculated efficiencies of the bent crystal are in good
agreement. A decrease in efficiency with the proton
energy is mainly explained by the increase in the rms
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 6 200
angle of the multiple scattering and the decrease in
the dechanneling length. The obtained dependence
also shows that the same crystal can provide the
extraction of beams in a quite wide energy range of
40–70 GeV with an efficiency higher than 60%.

For applying crystals at accelerators, their radia-
tion resistance is of importance. The maximum parti-
cle flux that a silicon crystal can endure was estimated
in the experiments performed at CERN and BNL at
∼2 × 1020 proton/cm2. Our experiments also cor-
roborate this result. The crystals lose no channeling
properties during two 1400-h runs. As for thermal
loadings, our experiment showed that the crystal with
an efficiency of 80–85% provided the extraction of
beams with an intensity to 1012 particles per 1–2 s
cycle, which meets the requirements of the majority
of experiments performed at the IHEP accelerator.
When the crystal is irradiated by a beam with an in-
tensity of∼1013 protons, it loses its channeling prop-
erties. To determine more precisely the upper limit of
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intensity that can be directed to a short crystal, it is
necessary to perform special investigations including
the search for ways to improve the heat removal from
the crystal.
P

The proton-beam extraction using bent crystals
in principle admits the operation of several inter-
nal targets in parallel, which was experimentally
corroborated in 1991 at the IHEP accelerator [17].
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 6 2005
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The realization of such a mode using short crystals
opens the possibility for simultaneous operation of
several experimental installations over the entire
flattop (plateau) of the accelerator magnetic cycle,
which results in a substantial reduction in expenses
for realization of the experiments. We emphasize that
classical resonance extraction is incompatible with
the operation of internal targets in parallel. In this
case, it is necessary to divide the magnetic-cycle
plateau between them.

To realize the simultaneous operation of the ex-
traction by a crystal and internal targets, the crystal
stations Si19 or Si106 were used (see Fig. 3). In this
case, three experimental installations could simul-
taneously operate in the beams, which completely
satisfied the experimental requirements on the in-
tensity, duration, and quality of a beam. Figure 12
shows the time structure of the extracted beam and
the secondary-particle beams from the targets on the
flattop of a magnetic cycle. The number of simultane-
ously performed experiments can be increased to four
by using the Si30 crystal (see Fig. 2).
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 6 200
 

0.8

0 20

Efficiency

0.6

0.4

0.2

40 60

 

E

 

, GeV

Fig. 11. (Curve) Calculated and (points) measured ex-
traction efficiency of the crystal vs. the proton energy.
5



1032 KOTOV et al.

 

0 400

 

M

 

27

 

T

 

, ms

 

M

 

24

 

Crystal

 

I

 

accel.

 

800 1200 1600 2000

Fig. 12. Oscillograms of the signals from the monitors providing the beam to the crystal and to the internal targets.
The developed beam extraction has been used at
the IHEP accelerator since the end of 1999 in each
run of operation. All systems of this extraction were
considered in detail in [18].

3. PROSPECTS AND NEW APPLICATIONS

The application of bent crystals for controlling
high-energy particle beams becomes possible due to
significant advances in the corresponding investiga-
tions. The proton-beam extraction using bent crys-
tals that has been developed at the IHEP accelerator
successfully operates and provides the realization of a
wide physical research program. It would be desirable
to make this extraction competitive with the reso-
nance slow extraction by increasing the intensity of
extracted beams by an order of magnitude (from 1012

to 1013 protons per cycle). It seems possible to solve
this problem by replacing silicon crystals with more
heat and radiation resistant crystals such as artificial
diamonds, for which these parameters are higher by a
factor of 3 and 6, respectively.

For extracting an accelerated beam from low-
energy accelerators, it seems promising to use new
crystalline structures, so-called carbon nanotubes
1–1.4 nm in diameter. The point is that the use of
silicon crystals for extracting accelerated particles
with energies of ≤1 GeV becomes difficult due to a
small dechanneling length of ∼1 mm. In nanotubes,
the dechanneling length is approximately five times
larger, and their use can be decisive.
PH
The field of applications of oriented crystals (not
only bent, but also straight ones) has been ex-
tended considerably. For example, at CERN [19] and
KEK [20, 21], a series of investigations on extract-
ing positron beams was carried out using tungsten
crystals with the 〈111〉 axial orientation as a target
installed in electron beams of energies 6–40 and 3–
8 GeV, respectively. It was shown that the yield of,
e.g., 10-MeV positrons from such a target at an
electron-beam energy of 8–10 GeV is higher than
that from an amorphous target of the same size by
a factor of 2 to 6.5 depending on the crystal length
varying in the range of 9–2.2 mm, respectively. The
results agree well with the calculations made in [22]
and can serve as the basis for designing new positron
sources for linear colliders.

Recently, several proposals on using oriented
crystals as undulators appeared [23–27]. As is known,
the standard method for generating intense x-ray
beams is based on using undulators and wigglers.
However, it is impossible to create such sources with
a period shorter than several centimeters. Therefore,
the radiation energy range cannot be expanded above
100 keV. In crystals oriented along the crystallo-
graphic planes, high-energy positrons mainly emit
hard γ-ray photons (radiation in channeling). To
provide the conditions for undulator radiation, it is
necessary to create one more period in these crystals,
which is much longer than the period of radiation in
channeling. This condition can be achieved, for ex-
ample, by either manufacturing a silicon crystal with
YSICS OF ATOMIC NUCLEI Vol. 68 No. 6 2005
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germanium atoms implanted in a certain order [24]
or deforming the silicon crystal by making grooves
of a given period on its lateral surfaces [26, 27]. The
latter method was tested on an x-ray diffractometer,
which showed that the crystallographic planes in this
case are deformed by approximately a sine law with
the period preset by the grooves. In addition, inves-
tigations of such crystals on a 60-GeV proton beam
confirmed their channeling properties. Investigations
of such crystals as sources of undulator radiation
are scheduled to be performed on positron beams
of energies 2–15 GeV from the IHEP accelerator.
According to the calculations, the expected energy
of photons in the case of operation with a deformed
silicon crystal 3mm in length with ten periods is equal
to∼0.5 MeV.
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Abstract—Investigations of the effect of an electromagnetic wave field on the beta-decay process are used
to analyze the tritium-decay experimental data on the neutrino mass. It is shown that the electromagnetic
wave can distort the beta spectrum, shifting the end point to the higher energy region. This phenomenon
is purely classical and it is associated with the electron acceleration in the radiation field. Since strong
magnetic fields exist in setups for precise measurement of the neutrino mass, the indicated field can appear
owing to the synchrotron radiation mechanism. The phenomenon under consideration can explain the
experimentally observed anomalies in the spectrum of the decay electrons; in particular, the effect of the
“negative square of the neutrino mass.” c© 2005 Pleiades Publishing, Inc.
The effect of electromagnetic fields on beta de-
cay has long been studied. In particular, the effect
of plane-wave fields on this process was considered
in [1–3]. The results show that the spectrum of decay
electrons depends strongly on electromagnetic radia-
tion. However, the spectral distribution of β electrons
is a characteristic most sensitive to the neutrino mass
mν . The authors of [1–3] paid primary attention to
very strong fields. In this paper, we consider very weak
fields and their effect on the beta spectrum.

We assume that the effect of the external field
on the nuclear matrix elements is negligible—this
assumption is quite evident for low-frequency weak
fields. In this case, change in the decay probability
in the field is attributed only to change in the phase-
space volume of the produced particles. Since the
proton mass significantly exceeds the electron mass,
in order to estimate the field effect, it is enough to cal-
culate the transition matrix element with the solution
of the Dirac equation for the electron in the plane wave
rather than with the wave function of the free electron.

If we choose a circularly polarized wave with fre-
quency ω and field strength E as a model of the exter-
nal field and assume that ω � mν (here, we use the
system of units where c = � = 1), the probability of
allowed beta decay with the massive Dirac neutrino in
the leading order in the parameter ω/m is determined
by the expression

W

W̃
=
ξ2

4




t2∫
t1

dt

ε0−µ∫
y1

dyΦ(t, y) (1)

*e-mail: lobanov@th466.phys.msu.ru
1063-7788/05/6806-1034$26.00
+ Θ(ξ0 − ξ)

t1∫
t0

dt

y2∫
y1

dyΦ(t, y)


 ,

where
Φ(t, y) = (t+ y)y(ε0 − y) (2)

×
[
(ε0 − y)2 − µ2

]1/2 [
ξ2 + (y − t)2

]−3/2
,

t0 = 1, ξ0 =
[
2(ε0 − µ− 1)

]1/2
,

β = (1 − 1/t2)1/2.

Here,

ξ = eE/(mω), µ = mν/m, t = p0/m, (3)

ε0 = (Mi −Mf )/m,

where e,m, and p0 are the charge, mass, and total en-
ergy of the electron. For a neutron and, approximately,
for tritium, W̃ = G2

Fm
5(1 + 3α2

0)/(2π
2), where α0 is

the ratio of the axial and vector constants of the
weak interaction and GF is the Fermi constant. The
integration limits in spectral distribution (1) assume
the form

t1,2 = (ε0 − µ)(1 + ξ2/2) ∓ ξ(1 + ξ2/4)1/2 (4)

×
[
(ε0 − µ)2 − 1

]1/2
,

y1,2 = t
[
1 + ξ2/2 ∓ ξ(1 + ξ2/4)1/2β

]
.

Figures 1–5 illustrate the spectrum behavior,
where W0 is the total beta-decay probability in the
absence of an external field.

When ξ � 1,

tmax ≈ ε0 − µ+ ξ(ε20 − 1)1/2. (5)
c© 2005 Pleiades Publishing, Inc.
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Fig. 1. Tritium beta spectrum.
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0; and (solid curve) mν = 0, ξ = 0.00005.
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 6 20
 

3 

 

× 

 

10

 

–10

 

2 

 

× 

 

10

 

–10

 

10

 

–10

 

0
18555 18565 18575

Electron energy, eV

(
 

dW
 

/
 

dE
 
)/
 
W
 

0

Fig. 4. Tritium beta spectrum near the end point: (points)
ξ = 0, mν = 0 and (solid curves) mν = 0, ξ = 0.00005,
0.000034, and 0.000017.

 

3 

 

× 

 

10

 

–10

 

2 

 

× 

 

10

 

–10

 

10

 

–10

 

0
18555 18565 18575

Electron energy, eV

(
 

dW
 

/
 

dE
 
)/
 
W
 

0

Fig. 5. Tritium beta spectrum near the end point: (points)
ξ = 0, mν = 0 and (solid curves) ξ = 0.00005, mν = 0,
5.1, and 6.8 eV.

Relation (5) makes it possible to estimate the field
strengths required to observe the effect. Assuming
that the spectrum-edge shift caused by the external
field is equal to the shift owing to the nonzero neutrino
mass, we obtain

Eλ =
2π√
ε20 − 1

mν . (6)

Here, E is the radiation field strength (in volts per
meter), λ is the radiation wavelength (in meters), and
mν is the neutrino mass (in electronvolts).

The numerical estimates show that the shift of
the beta-electron spectrum for tritium, where ε0 ≈
1.03634, that corresponds to a neutrino mass on the
order of 1 eV (the experimental accuracy in [4, 5])
might be compensated by the SHF radiation field
05
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P

with a strength on the order of several tens of volts
per meter. In the designed experiment KATRIN [6–
9], where the assumed measurement accuracy is on
the order of 0.1 eV, the actually observed shift might
be caused by fields with a strength on the order of
several volts per meter, which is comparable with the
background level.

As is clear from Eq. (1), the analytical expressions
for the spectrum are different for parameters t below
and above t1. It is easy to show that, for µ = 0, ξ � 1,
the spectrum in the region t < t1 under the condition
ε0 − t� 1 is approximated by the expression

d(Weff/W̃ )
dt

= t
√
t2 − 1 (7)

×
[
2(ε0 − t)2 − (ε0 − t)

√
(ε0 − t)2 − µ2

eff

]
,

where

µ2
eff = 2ξ2

[
ε0√
ε20 − 1

ln
(
ε0 +

√
ε20 − 1

)
− 1

]
. (8)

It is the expression that was used in the analysis of
the experimental data in [4, 5] (known as the negative
neutrino mass squared, m2

eff = −m2µ2
eff—see Fig. 6).

The result is more obvious in the Curie diagram

C ∼
√

dW/dt

t(t2 − 1)1/2
(9)

presented in Fig. 7. It is clear from the diagram that
the narrower the energy interval that is used to de-
termine the spectrum edge, the larger the calculated
value of ε0. As a result, the effect of the negative mass
squared is smoothed.

Thus, the experimentally observed anomaly in the
tritium beta spectrum might be caused by electro-
magnetic radiation. We emphasize that the effect un-
der consideration is purely classical. The characteris-
tic parameter ξ does not contain Planck’s constant,
and it is the ratio of the radiation-field work on the
wavelength to the electron mass. It is evident that the
effect can be observed only when the mean free path of
the particle in the region where the field exists is much
larger than the field wavelength.

If experimental data are analyzed with regard to
the described phenomenon, it is necessary to take
into account both the radiation of external sources
(natural and artificial) and the radiation of β electrons.
Indeed, since magnetic fields on the order of several
tesla exist in the chambers of experimental setups, the
maximum of the radiation of the decay electrons falls
into the centimeter range.

It is worth noting that a more detailed consid-
eration should take into account the effects associ-
ated with energy losses, for example, owing to the
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 6 2005
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transition to the excited states of molecular tritium
(see [10]). However, in our opinion, these effects can-
not change the main conclusions of this work.
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Abstract—New experimental data that were obtained by the PNPI–ITEP Collaboration have resolved
some discrete ambiguities in the partial-wave analysis (PWA). These results were used in the new FA02
PWA performed at George Washington University. At the same time, the FA02 PWA has revealed
considerable fewerN∗ and∆ resonances than those listed in the RPP tables. This circumstance aggravated
the known problem of so-called missing resonances. The program for further measurements of the spin
rotation parameters in elastic πN scattering that are required to eliminate the remaining discrete PWA
ambiguities is discussed. c© 2005 Pleiades Publishing, Inc.
INTRODUCTION

Intensive experimental studies of the πN in-
teraction were performed until about 1980. They
were completed by the global partial-wave analyses
(PWAs) KN80 and CMB80 made by the Karlsruhe–
Helsinki group [1] and the Carnegie Mellon–Berke-
ley [2] group, respectively. These and other PWAs
were used to reconstruct the spectrum of the N∗

and ∆ baryon resonances, which was included in the
review of the elementary particles RPP [3]. During the
following decades (up to 2002), the πN interaction
was studied less intensively, and the spectrum of the
discovered baryon resonances was slightly changed
in the RPP 2002 [4].

PROBLEM OF MISSING RESONANCES

Numerous attempts to create a model that would
exactly reproduce the baryon resonance spectrum
that was presented in the RPP [3, 4] failed. The
existing models usually predicted considerably more
resonances (twice or more in number) than were
found in elastic πN scattering [3, 4]. This problem
is known as the problem of missing resonances.

The latest FA02 PWA that was made at George
Washington University (2003) [5] and included the
modern experimental data appearing after 1980 re-
vealed considerably fewer (approximately half) non-
strange baryon resonances than those presented in
the RPP tables [4]. At the same time, the baryon

*e-mail: sumachev@pnpi.spb.ru
1063-7788/05/6806-1038$26.00
resonances found in the FA02 PWA are in surpris-
ingly good agreement with the Skyrme model predic-
tions [6].

Tables 1 and 2 compare the predictions of the
Skyrme model [6] for the spectrum of nonstrange
baryon resonances, the 3P0 model [7], the results of
the PWAs KA84 [1], SM95 [8], FA02 [5], and the data
from the RPP tables [4]. It is seen that the predictions
of the Skyrme model coincide with the results of the
FA02 PWA within 80–90%. At the moment, new
aspects appear in the experimental study of πN inter-
action. It is clear from Tables 1 and 2 that the FA02
PWA keeps only resonances that have the highest
confidence status (****) in the RPP [4] except for
D35(1930) (which has the status ***).

Earlier, the authors of the global PWAs supposed
that the appearance of new experimental data would
allow more reliable determination of those baryon
resonances which had low status (**) and (*) in the
RPP [3]. However, the series of the PNPI–ITEPCol-
laboration experiments that was aimed at resolving
the discrete ambiguities in the PWA procedure and
that was supported by the Russian Foundation for
Basic Research (project no. 99-02-16635 and others)
during 1993–2001 unexpectedly led to the opposite
result. Namely, they confirmed the predictions of the
PWA of the VPI–GWU group for the spin rotation
parameters A and R [9, 10]. This analysis did not
reveal the baryon resonances with low status (**) and
(*) that were presented in the RPP tables [4] (see
Tables 1 and 2).

At the moment, it has become clear that the
program of the PNPI–ITEP Collaboration aimed
c© 2005 Pleiades Publishing, Inc.
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Table 1. Parameters ofN∗ resonances

RPP (2002) LI,2J Status KA84 (1984)
3P0 model
(1994) SM95 (1995) FA02 (2003) Skyrme model

(1985)

N (1440) P11 **** 1410(135) 1540 1467(440) 1468(360)

N (1520) D13 **** 1519(114) 1495 1515(106) 1516(98) 1715

N (1535) S11 **** 1526(120) 1460 1535(66) 1547(178) 1478

N (1650) S11 **** 1670(180) 1535 1667(90) 1651(130)

S11 1712(174)

N (1675) D15 **** 1679(120) 1630 1673(154) 1676(152) 1744

N (1680) F15 **** 1684(128) 1770 1678(126) 1683(134) 1823

N (1700) D13 *** 1731(110) 1625

N (1710) P11 *** 1723(120) 1770 [1770 − i189] 1427

N (1720) P13 **** 1710(190) 1795 1820(354) 1750(256) 1982

N (1900) P13 ** 1870

P11 1880

P13 1910

P13 1950

P11 1975

F15 1980

N (1990) F17 ** 2005(350) 1980 2011

N (2000) F15 ** 1882(95) 1995 1814(176)

P13 2030

S11 2030

D13 2055

S11 2070

N (2080) D13 ** 2081(265) 1960

D15 2080

N (2090) S11 * 1880(95) 1945

D13 2095

N (2100) P11 * 2050(200) 2065

S11 2145

D13 2165

D13 2180

D15 2180

N (2190) G17 **** 2140(390) 2090 2131(476) 2192(726) 2075

S11 2195

N (2200) D15 ** 2228(310) 2095

G17 2205

P11 2210

N (2220) H19 **** 2205(365) 2345 2258(334) 2270(366) 2327

D15 2235

N (2250) G19 **** 2268(300) 2215 2291(772) 2376(924) 2234

Total: 19 18 39 13 10 10
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 6 2005
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Table 2. Parameters of ∆ resonances

RPP (2002) LI,2J Status KA84 (1984)
3P0 model
(1994) SM95 (1995) FA02 (2003) Skyrme

model (1985)

∆(1232) P33 **** 1233(116) 1230 1233(114) 1233(118) 1424

∆(1600) P33 *** 1522(222) 1795 [1675 − i193] 1435

∆(1620) S31 **** 1610(139) 1555 1617(108) 1614(141) 1478

∆(1700) D33 **** 1680(230) 1620 1680(272) 1688(365) 1737

∆(1750) P31 * 1835

∆(1900) S31 ** 1908(140) 2035

∆(1905) F35 **** 1905(260) 1910 1850(294) 1856(334) 1931

∆(1910) P31 **** 1888(280) 1875 2152(760) 2333(1128) 1982

∆(1920) P33 *** 1868(220) 1915 1946

∆(1930) D35 *** 1901(195) 2155 2056(590) 2046(402) 1730

∆(1940) D33 * 2080

∆(1950) F37 **** 1923(224) 1940 1921(232) 1923(278) 1816

P33 1985

∆(2000) F35 ** 1990

D33 2145

D35 2165

∆(2150) S31 * 2140

∆(2200) G37 * 2215(400) 2230 2162

G37 2295

D35 2325

∆(2300) H39 ** 2217(300) 2420 2407

∆(2350) D35 * 2305(300) 2265

∆(2390) F37 * 2425(300) 2370

∆(2400) G39 ** 2468(480) 2295 2083

∆(2420) H3,11 **** 2416(340) 2450 2327

F37 2460

H39 2505

Total: 20 16 27 8 7 13
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 6 2005
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Table 3. Elastic π+p scattering (regions of possible dis-
crete ambiguities)

Momentum
interval,
MeV/c

C.m.s. angular
interval, deg

Differential cross
section, mb/sr

700−900 90−110 0.03−0.18

800−1000 155−175 0.08−0.60

800−1200 80−100 0.13−0.27

1600−1900 50−70 0.08−0.30

1800−2100 130−150 0.03−0.13

Table 4. Elastic π−p scattering (regions of possible dis-
crete ambiguities)

Momentum
interval,
MeV/c

C.m.s. angular
interval, deg

Differential cross
section, mb/sr

600−800 60−80 0.06−0.20

600−800 100−120 1.0−1.4

1200−1400 150−170 0.30−0.53

1200−1500 60−80 0.05−0.23

1200−1500 90−110 0.25−0.40

1800−2100 140−150 0.002−0.010

2000−2100 130−150 0.001−0.003

at resolving the discrete ambiguities of the available
PWAs is completely justified and it should be contin-
ued up to the complete resolution of all presumably
existing discrete ambiguities. It would provide an
unambiguous reconstruction of the πN amplitude
and finally determine the spectrum of nonstrange
baryon resonances.

ON THE PROGRAM OF MEASUREMENTS
OF THE SPIN ROTATION PARAMETERS
A AND R IN THE RESONANCE REGION

OF πN INTERACTION

Comparison of the PWA predictions in a wide
range of pion momenta is conveniently performed
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 6 200
using the Barrelet zero method [10] for the πN ampli-
tude. Analysis of the trajectories of the πN-amplitude
zeros reveals the intervals of the kinematic variables
where discrete ambiguities in the PWA procedure
can appear and where, therefore, the spin rotation
parameters A and R should be measured in elastic
πN scattering [11].

Tables 3 and 4 display the results of the analysis
of the zero trajectories up to a pion momentum of
2100MeV/с and indicate the regions of the kinematic
variables where additional measurements of the spin
rotation parameters A and R are required [12]. The
measurements are expected to be performed at the
J-PARC accelerator under construction in Japan.
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Abstract—In the framework of general relativity, an exact axisymmetric (vortex) solution of the equations
of motion is obtained for the SU(2) symmetric sigma model. This solution is characterized by the
topological charge (winding number) and angular deficit. In the linearized approximation, the Lyapunov
stability of vortices is proved and the deflection angle of a light ray in the gravitational field of the vortex
(gravitational lens effect) is calculated. c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Cosmic strings or vortices could have arisen in the
early Universe as topological defects due to a series
of phase transitions associated with the spontaneous
breaking of several internal symmetries [1]. In certain
scenarios, cosmic strings play an important role in the
formation of galaxies and stratified structures in the
Universe [2, 3]. In turn, chiral fields appear due to the
spontaneous breaking of chiral symmetry in the low-
energy limit of QCD [4]. For this reason, it is natural
to describe cosmic strings in terms of chiral fields.

In this study, in the framework of a simple SU(2)
sigma model, we show that the chiral field equations
combined with the Einstein equations allow static
vortex solutions. Such solutions can be characterized
by the topological charge Q and angular deficit ∆,
which increases monotonically with the distance from
the vortex axis. We find that the angular deficit at
spatial infinity, the topological charge, and the linear
mass density of the vortex are proportional to each
other.

A straightforward calculation shows that the sec-
ond derivative of the vortex energy E with respect
to radial variations of the metric and chiral field is
positive definite. Therefore, the vortex is stable in the
Lyapunov sense. Then we solve the equations for the
photon geodesic in the gravitational field of a string
and evaluate the deflection angle for the photon mov-
ing at a right angle to the vortex axis.

*e-mail: yrybakov@sci.pfu.edu.ru
1063-7788/05/6806-1042$26.00
2. STRUCTURE OF THE VORTEX
SOLUTION

We assume that the Lagrangian density has the
form

L = − 1
4λ2

tr (�µ�µ) +
1

2κ
R. (1)

Here, λ is the length parameter of the model (we use
the system of units in which � = c = 1); κ = 8πG,
where G is the gravitational constant; R is the scalar
curvature of the gravitational field; �µ = U+∂µU is
the left chiral current in terms of the matrix U ∈
SU(2); andGreek indices run the values 0, 1, 2, and 3.
When the Z axis is directed along the vortex, the
axisymmetric metric has the form

ds2 = e2µdt2 − e2αdx2 − e2βdϕ2 − e2γdz2, (2)

where ϕ is the azimuth angle, 0 ≤ ϕ < 2π, and x is
the generalized radial variable, −∞ ≤ x ≤ ∞. In this
case, the value x = −∞ is associated with the vortex
axis, and the value x = ∞, with spatial infinity. The
metric functions µ, α, β, and γ in Eq. (2) depend only
on x and it is assumed that they satisfy the Bronnikov
condition for the coordinates [5]:

α = µ+ β + γ. (3)

We assume that, in the transverse section of the
vortex, the chiral field U(x, ϕ) has a “hedgehog”
structure [6]; that is, it is invariant under the group

G = T (z) ⊗ diag [SO(2)I ⊗ SO(2)S ] , (4)

which involves translations along the Z axis and
combined rotations about the third axis in both iso-
topic (I) and coordinate (S) spaces. The hedgehog
fields have the form
U = exp (iτΘ), τ = τ1 cosψ + τ2 sinψ, ψ = kϕ,

(5)
c© 2005 Pleiades Publishing, Inc.
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where τ1 and τ2 are the Pauli matrices, Θ = Θ(x) is
the chiral angle, and k is an integer (that is assumed
to be positive) that is the winding number or the
topological charge characterizing the mapping Q =
deg

(
S2 → S2

)
. The latter statement can be deduced

as follows. Let the angles Θ and ψ be the coordinates
on the sphere S2 ⊂ SU(2) and

Q =
1
4π

∫
S2

dΘdψ sin Θ. (6)

Then, the equality Q = −k is a consequence of the
boundary conditions

Θ(∞) = 0, Θ(−∞) = π. (7)

Since the corresponding charge for the mapping
S3 → S3 in the Skyrmemodel is treated as the baryon
number, we relate k to the linear density of the baryon
charge of the vortex.

Since metric (2) and chiral field (5) are invari-
ant under transformations (4), we make use of the
Coleman–Palais principle [7] for the determination
of the critical points of invariant functionals so that
only invariant variations are taken into consideration.
Substituting Eqs. (2) and (5) into the expression for
the action

A =
∫
d4x

√
−gL (8)

of system (1), we separate the radial part in expres-
sion (8) that is given by the functional

E =
π

λ2

∫
dxeµ+γ (9)

×
[
− 2λ2

κ
eβ−α

(
β′γ′ + µ′β′ + µ′γ′

)
+ eβ−αΘ′2 + k2eα−β sin2 Θ

]
,

which is the expression for the vortex energy per unit
length.

It should be noted that functional (9) and coordi-
nate condition (3) are invariant under the replacement
µ � γ. For this reason, a particular solution can be
taken in the form µ = γ. In what follows, it is conve-
nient to introduce the variables

w = α− β − 2γ, u = 4(β + γ), v = 4β. (10)

Functional (9) in terms of these variables has the form

E =
π

λ2

∫
dx

[(
1
ν

(
v′2 − u′2

)
+ Θ′2

)
e−w (11)

+ k2 sin2 Θew+u−v
]
,

where ν = 8κ/λ2.
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Since the equation for the field Θ is a consequence
of the Einstein equations, it is sufficient to vary func-
tional (11) with respect to the variables w, u, and v.
In view of Eqs. (10) and (3), we obtain the condition
w = 0 and the system of equations

1
ν

(
u′2 − v′2

)
= Θ′2 − k2 sin2 Θ eu−v, (12)

2
ν
u′′ = −k2 sin2 Θ eu−v, (13)

2
ν
v′′ = −k2 sin2 Θ eu−v. (14)

Here, we consider the simplest symmetric solution
of Eqs. (12)–(14) that satisfies the condition

u = v. (15)

In this case, Eq. (12) with boundary conditions (7)
allows a solution analogous to the domain-wall solu-
tion in the sine-Gordon model:

Θ(x) = 2 arctan e−kx. (16)

When solving the remaining Eqs. (13) and (14), it
is necessary to take into consideration the condition
that space at the vortex axis is locally Euclidean.
Therefore, as x→ −∞, we arrive at

eαdx→ deβ = eβdβ. (17)

Then, we substitute Eq. (16) into (13) or (14); i.e.,
we set

sinΘ = 2e−kx
(
1 + e−2kx

)−1
. (18)

Taking Eqs. (10), (15), and (17) into account, we
obtain the metric parameters

α = β = x− κ

λ2
ln
(
1 + e2kx

)
+ C, (19)

where C is the integration constant and

µ = γ = 0. (20)

It should be noted that, outside the vortex axis
(at x 
= −∞), the resulting metric that is given by
Eqs. (19) and (20) is characterized by the angular
deficit

∆(x) = 2π
(
1 − eβ−αβ′

)
,

that is, by the deviation of the circumference-to-
radius ratio from 2π. Thus, the space outside the
vortex axis is of the conical type, which is typical for
cosmic strings [1]. Using Eq. (19), we compute the
angular deficit at spatial infinity:

∆ ≡ lim
x→∞

2π
(
1 − β′

)
=

4πκ

λ2
k. (21)
5
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It is instructive to compare expression (21) with
the vortex energy E. Substitution of Eqs. (15) and
(18) into formula (11) gives

E =
π

λ2

∫
dx
(
Θ′2 + k2 sin2 Θ

)
=

4π
λ2
k. (22)

A comparison of expressions (21) and (22) shows that
the angular deficit at spatial infinity is proportional to
the linear density of the vortex energy:

∆ = κE = 8πGE. (23)

This result is also a well-known feature of cosmic
strings [1].

3. STABILITY OF CHIRAL COSMIC
VORTICES

We check the Lyapunov stability [8] of the solution
under radial perturbations, taking the energy E of the
perturbed vortex as the Lyapunov functional. Consid-
ering quantities α, β, γ, µ, and Θ as functions of time
t and the generalized radial variable x, we derive the
integral of motion for action (8):

E =
π

λ2

∫
dxeγ

[
− 2λ2

κ
eβ (24)

×
[(
α̇
(
β̇ + γ̇

)
+ β̇γ̇

)
eα−µ

+
(
µ′
(
β′ + γ′

)
+ β′γ′

)
eµ−α

]
+ k2 sin2 Θ eα+µ−β

+ eβ
(
Θ̇2eα−µ + Θ′2eµ−α

)]
,

where a dot denotes the derivative with respect to
time t. To make sure that the minimum of func-
tional (24) corresponds to the unperturbed solution,
we introduce variations of the metric and chiral an-
gle Θ:

δα = a, δβ = b, δγ = c, (25)

δµ = d, δΘ = η.

Since the first variation of functional (24) vanishes
for the unperturbed solution (δE = 0), we should
evaluate the second variation δ2E under the coordi-
nate condition

d+ c = 0 (26)

imposed on perturbations. Under this condition, the
functional δ2E has the form

δ2E =
π

λ2

∫
dx

[
4λ2

κ

[
c′2 − e2α

(
ȧḃ+ ȧċ+ ḃċ

)]
(27)

+ 2e2αη̇2 + Θ′2(b− a)2 + 4Θ′η′(b− a) + 2η′2
PH
+ k2
[
(b− a)2 sin2 Θ + 2η2 cos 2Θ

−2η(b− a) sin 2Θ]
]
.

Linearized equations for perturbations are readily
obtained from the expression for functional (27). It is
important that these equations allow the integral of
motion

a+ b+ 2c = 0, (28)

which implies the hyperbolic equation for perturba-
tion c:

e2αc̈− c′′ = 0. (29)

Equation (29) indicates that c perturbations are sta-
ble in the corresponding functional metric. Excluding
these perturbations with the use of Eq. (28) and tak-
ing into account the equation Θ′ = −k sin Θ for the
unperturbed chiral angle Θ, we reduce Eq. (27) to the
form

δ2E =
π

λ2

∫
dx

[
λ2

κ
e2α
(
ȧ2 + ḃ2

)
(30)

+
λ2

2κ

(
a′ + b′

)2 + e2αη̇2

+
[
η′ + kη cos2 Θ − k(b− a) sin Θ

]2 ]
.

Thus, the second variation of the vortex en-
ergy (30) is reduced to the sum of positive functionals.
Therefore, cosmic strings are stable in the linearized
approximation.

4. LIGHT DEFLECTION
IN THE GRAVITATIONAL FIELD

OF THE VORTEX

Assuming that a ray of light travels in a plane
orthogonal to the vortex and taking time t as a pa-
rameter, we write the geodesic equation in the form

ẍ+ α′ (ẋ2 − ϕ̇2
)

= 0, (31)

ϕ̈+ 2α′ϕ̇ẋ = 0, (32)

where the function α(x) is defined by expression (19).
From formulas (2), (31), and (32) and the equations
dz = ds2 = 0 and α′ = α̇/ẋ, we derive the integrals of
motion
e2α
(
ẋ2 + ϕ̇2

)
= 1, ϕ̇e2α = eα0 = const. (33)

From formula (33) it follows that α0 = α(x0), where
x0 is the coordinate of the ray point closest to the
vortex. Then, the ray trajectory is determined by the
equation

ϕ′ = ϕ̇/ẋ =
(
e2(α−α0) − 1

)−1/2
. (34)
YSICS OF ATOMIC NUCLEI Vol. 68 No. 6 2005
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From fromula (19) it follows that

α′ = 1 − 2kκ

λ2

(
1 + e−2kx

)−1
. (35)

Considering that the value of k is sufficiently small
(such that α′ > 0) and using formulas (34) and (35),
we derive the expression for the total deflection angle
δϕ:

δϕ = −π + 2

∞∫
α0

dα

α′

(
e2(α−α0) − 1

)−1/2
. (36)

In particular, formula (36) at α′ ≈ 1 implies that

δϕ ≈ 2kπκ

λ2

(
1 + e−2kx0

)−1
. (37)

Expression (37) for the deflection angle of light in
the gravitational field of the vortex agrees well with
the result obtained by Vilenkin [1] for exp (−2kx0) �
1, that is, for a sufficiently large topological charge k
at x0 > 0.

5. CONCLUSIONS

As was emphasized in [1], the hypothesis of cos-
mic strings (vortices) can be considered as plausible
if the dimensionless string parameter is on the order
of

GE ∼ 10−6.

With the length parameter λ = 2/Fπ , where Fπ ≈
186 MeV is the pion decay constant [6], that is stan-
dard for low-energy pion physics, formula (22) pro-
vides the following estimate for the topological charge
of a vortex:

k ∼ 1033.

Wenote that the hypothesis of existing cosmic strings
is supported by the gravitational lense effect reported
in [9–13]. In addition, the existence of cosmic strings
is supported by other effects. First, fast moving
strings can generate “wakes,” which give rise to
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 6 200
flat structures in the Universe [14]. Second, cosmic
strings can give rise to additional electromagnetic
radiation of charged particles that can account for
the observed anisotropy of the cosmic background
radiation [15].
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Abstract—In the simple model of massive vector field in a flat spacetime, we derive the kinetic equation of
non-Markovian type describing the vacuum pair creation under action of external fields of different nature.
We use for this aim the nonperturbative methods of kinetic theory in combination with a new element
when the transition of the instantaneous quasiparticle representation is realized within the oscillator
(holomorphic) representation.We study in detail the process of vacuum creation of vector bosons generated
by a time-dependent boson mass in accordance with the framework of a conformal-invariant scalar-tensor
gravitational theory and its cosmological application. It is indicated that the choice of the equation of state
allows one to obtain a number density of vector bosons that is sufficient to explain the observed number
density of photons in the cosmic microwave background radiation. c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

The vacuum creation of massive vector bosons in
intense fields of different nature is widely discussed in
the literature [1–3] because of its twofold role. On the
one hand, massive vector bosons play an important
role in different physical problems [4] and particularly
in cosmology (e.g., [5, 6]). On the other hand, the
massive vector field is the simplest example of a quan-
tum field theory with higher spin and attracts close
attention nowadays [7].

In this contribution, we give a kinetic description
of the vacuum creation of charged massive vector
bosons under the influence of a time-dependent spa-
tially uniform electric field of arbitrary polarization.
We also consider the possibility of a time-dependent
mass that represents a new independent mechanism
of vacuum particle production. The use of kinetic
methods in the formulation allows one to obtain a
rather general solution of the nonperturbative prob-
lem for an arbitrary time dependence of the strong ex-
ternal fields. The nonperturbative approach is partic-
ularly appropriate for fast changing fields such as, for
example, in the case of time-dependent vector-boson
masses in the vicinity of the cosmological singularity
(see Section 4).

∗This article was submitted by the authors in English.
1)Fachbereich Physik, Universität Rostock, Germany.
2)Fakultät für Physik, Universität Bielefeld, Germany; Joint
Institute for Nuclear Research, Dubna, Russia.

**e-mail: smol@sgu.ru
1063-7788/05/6806-1046$26.00
The construction of a kinetic theory of vac-
uum particle creation on a dynamical basis re-
quires the time-dependent quasiparticle representa-
tion (QPR) [8, 9].We use the oscillator representation
for this aim [9] as the most effective instrument for
the derivation of dynamical equations in the QPR
(Section 2). We introduce here two types of QPR: the
complete one (based on the full diagonalization of all
physical quantities in the Fock and spin spaces) and
the incomplete one which leaves the spin projection
uncertain. Further, in Section 3, we use these results
for the derivation of the kinetic equations (KE). A
new feature of the obtained system of KE is the
presence of a tensor distribution function in a rotating
coordinate system with the orientation defined by a
time-dependent kinematic momentum that results in
a new type of non-Markovian processes. A significant
simplification is achieved when the non-Markovian
effects are neglected. The case of the absence of an
electric field is considered in detail when the vacuum
creation is caused entirely by the time dependence
of the mass. The system of KE splits into separate
equations for the transverse and longitudinal compo-
nents, which can be investigated numerically. As an
application, we reinvestigate in Section 4 the creation
of massive vector bosons in the early Universe within
a conformal invariant scalar-tensor theory of gravita-
tion as suggested earlier by Pervushin and collabora-
tors [5, 10]. In this approach, the time dependence
of the scalar field entails a cosmological evolution
of all particle masses, which, according to F. Hoyle
and J.V. Narlikar, may serve as an explanation for
the cosmological redshift alternative to the Hubble
c© 2005 Pleiades Publishing, Inc.



KINETIC DESCRIPTION OF VACUUM CREATION OF MASSIVE VECTOR BOSONS 1047
expansion. In the present approach, we are able to
remove the singularity in the density of the produced
longitudinal vector bosons reported previously [5]. We
present a solution of the KE for a toy model, where
the time dependence of the scalar field is given, and
show that the density of vector bosons created in the
early Universe corresponds to the number density of
cosmic microwave background (CMB) photons. In
Section 5, we summarize and present the conclusion.

We use the metric gµν = diag(1,−1,−1,−1) and
the natural units � = c = 1.

2. THE QUASIPARTICLE REPRESENTATION

We consider here the vacuum creation of charged
massive vector bosons in the flat Minkowski space-
time by the action of two mechanisms: (i) a time vari-
ation of boson mass m(t) and (ii) the action of some
classical spatially homogeneous time-dependent elec-
tric field with 4-potential (in the Hamilton gauge)

Aµ(t) =
(
0, A1(t), A2(t), A3(t)

)
, (1)

where the corresponding field strength is E = −Ȧ
and the overdot denotes the time derivative.

Thus, the field can be considered either as an ex-
ternal field or as a result of the mean-field approxima-
tion, based on the substitution of the quantized elec-
tric field Ãk(t) with its mean value 〈Ãk(t)〉 = Ak(t),
where the symbol 〈. . .〉 denotes some averaging oper-
ation. The time dependence of the vector-boson mass
can be interpreted as a result of the coupling to some
average Higgs field. In the kinetic theory, the consid-
eration of fluctuations leads to collision integrals [11].
Thus, the mean-field approximation corresponds to
the neglect of dissipative effects.

We will restrict ourselves to the simplest version of
the theory with the Lagrange density

L(x) = −D∗
µu

∗
νD

µuν +m2u∗νu
ν , (2)

where Dµ = ∂µ + ieAµ, and e is the charge of the
vector field, including its sign. Equation (2) leads to
the equation of motion

(DµD
µ +m2)uν = 0 (3)

with the additional constraint

Dµu
µ = 0. (4)

The transition to the QPR can be realized in dif-
ferent ways, e.g., by means of the time-dependent
Bogoliubov transformation [2] or with help of the
holomorphic (oscillator) representation (OR) [9]. We
choose the OR, being a simpler method. The OR
can be introduced in the spatially homogeneous case,
and it is based on the replacement of the canonical
momentum by the kinematic one p → P = p− eA
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 6 200
in the dispersion law of the free particle ω(p, t) =√
m2 + P2 in the standard decomposition of the free

field operators and momenta in the discrete momen-
tum space [12]:

uµ(x) =
1√
V

∑
p

1√
2ω(p, t)

eip·x (5)

×
{
a(−)
µ (p, t) + b(+)

µ (−p, t)
}
,

πµ(x) = − i√
V

∑
p

√
ω(p, t)e−ip·x

×
{
a(+)
µ (p, t) − b(−)

µ (−p, t)
}
,

where V = L3 and pi = (2π/L)ni with an integer ni
for each i = 1, 2, 3. The substitution into the Hamil-
tonian

H = −
∫
dx
(
π∗µπ

µ + D∗u∗µDuµ +m2u∗µu
µ
)

(6)

brings it at once to a diagonal form in the Fock space,
which corresponds to the QPR

H = −
∑
p

ω(p, t)
[
a(+)
µ (p, t)a(−)µ(p, t) (7)

+ b(−)
µ (−p, t)b(+)µ(−p, t)

]
.

However, this quadratic form is not positively defined.
In order to exclude the µ = 0 component with the help
of the additional condition (4), it is necessary to derive
the equations for the amplitudes a±, b±.

Substituting (5) into the Hamiltonian equations

u̇µ =
δH

δπµ
= −π∗µ, (8)

π̇µ = − δH

δuµ
= m2u∗µ − D∗D∗u∗µ,

we find the Heisenberg-type equation of motion for
the time-dependent creation and annihilation ampli-
tudes

ȧ(±)
µ (p, t) =

1
2
∆(p, t)b(∓)

µ (−p, t) (9)

± iω(p, t)a(±)
µ (p, t),

ḃ(±)
µ (−p, t) =

1
2
∆(p, t)a(∓)

µ (p, t)

± iω(p, t)b(±)
µ (−p, t),

where

∆(p, t) =
ω̇(p, t)
ω(p, t)

. (10)

Analogous equations were obtained in [9] for the case
of scalar QED on the basis of the principle of least
action.
5
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Thus, the Hamiltonian formalism in the OR leads
to the exact equations of motion (9) for the creation
and annihilation operators of quasiparticles, depend-
ing on the “natural” representation of the quasiparti-
cle energy ω(p, t) in the external field (1).

The additional conditions (4) may be transformed
now with the help of Eqs. (9) to the following form
(i = 1, 2, 3):

ω(p, t)a(±)
0 (p, t) = Pia

(±)
i (p, t), (11)

ω(p, t)b(±)
0 (−p, t) = −Pib(±)

i (−p, t).

These equations allow one to exclude the µ = 0 com-
ponent in the Hamiltonian (7), which gives

H =
∑
p

ω(p, t) (12)

×
{
a

(+)
i (p, t)a(−)

i (p, t) + b
(−)
i (−p, t)b(+)

i (−p, t)

− 1
ω2(p, t)

[(
Pia

(+)
i (p, t)

)(
Pka

(−)
k (p, t)

)

+
(
Pib

(−)
i (−p, t)

)(
Pkb

(+)
k (−p, t)

)]}
.

The next step is the additional diagonalization of
the quadratic form (12) by means of the linear trans-
formations [12]

a(±)(p, t) = Eα(±)(p, t) (13)

≡ e1α
(±)
1 (p, t) + e2α

(±)
2 (p, t) + e3

ω

m
α

(±)
3 (p, t),

b(±)(−p, t) = Eβ(±)(−p, t) ≡ e1β
(±)
1 (−p, t)

+ e2β
(±)
2 (−p, t) + e3

ω

m
β

(±)
3 (−p, t),

where [e1(p, t), e2(p, t), e3(p, t)] determine the local
rotating basis built on the vector e3 = P/|P |. These
real unit vectors form the triad

eikejk = ekiekj = δij , eik = (ei)k. (14)

The presence of the factor ω/m in the nonunitary
matrix E in Eq. (13) leads to a violation of the unitary
equivalence between the (a, b) and (α, β) representa-
tions.

The transformation (13) leads to the positively
defined Hamiltonian

H =
∑
p

ω(p, t) (15)

×
[
α

(+)
i (p, t)α(−)

i (p, t) + β
(−)
i (−p, t)β(+)

i (−p, t)
]
.

Let us write the equations of motion for these new
amplitudes as the result of a combination of Eqs. (9)
and (13):

α̇
(±)
i (p, t) =

1
2
∆(p, t)β(∓)

i (−p, t) (16)
PH
± iω(p, t)α(±)
i (p, t) + ηij(p, t)αj(p, t),

β̇
(±)
i (−p, t) =

1
2
∆(p, t)α(∓)

i (p, t)

± iω(p, t)β(±)
i (−p, t) + ηij(p, t)βj(−p, t).

The spin rotation matrix ηij is defined as

η(p, t) =




0 ė1 · e2
ω

m
ė1 · e3

−ė1 · e2 0
ω

m
ė2 · e3

−m
ω

ė1 · e3 −m
ω

ė2 · e3 −∆m,


 ,
(17)

where ∆m = −ṁ/m+ ∆. Together with the Hamil-
tonian (7), the operators of total momentum and
charge also take a diagonal form. However, the spin
operator

Si = εijk

∫
dx
[
u∗kπ

∗
j + πjuk − u∗jπ

∗
k − πkuj

]
(18)

has a nondiagonal form in spin space in terms of the
operators α(±) and β(±):

Sk = iεijk
∑
p

[
α

(+)
i (p, t)α(−)

j (p, t) (19)

− β
(−)
i (−p, t)β(+)

j (−p, t)
]
.

In particular, the spin projection onto the momentum
3-axis is

S3 = i
∑
p

[
α

(+)
1 (p, t)α(−)

2 (p, t) (20)

− α
(+)
2 (p, t)α(−)

1 (p, t) + β
(−)
2 (−p, t)β(+)

1 (−p, t)

− β
(−)
1 (−p, t)β(+)

2 (−p, t)
]
.

Thus, this representation can be called an incomplete
quasiparticle one with nonfixed spin projection. The
operator (20) can be diagonalized with a linear trans-
formation to the circularly polarized waves basis [12]

c
(±)
i (p, t) = R

(±)
ik α

(±)
k (p, t), (21)

d
(±)
i (−p, t) = R

(±)∗
ik β

(±)
k (−p, t)

with the unitary matrix

R± =
1√
2




1 ∓i 0

±i 1 0

0 0
√

2


 . (22)

As a result, the new amplitudes c(±), d(±) in the QPR
correspond to charged vector quasiparticles with the
YSICS OF ATOMIC NUCLEI Vol. 68 No. 6 2005
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total energy, 3-momentum, charge, and spin projec-
tion on the chosen direction:

H(t) =
∑
p

ω(p, t) (23)

×
[
c
(+)
i (p, t)c(−)

i (p, t) + d
(−)
i (−p, t)d(+)

i (−p, t)
]
,

Π(t) =
∑
p

P
[
c
(+)
i (p, t)c(−)

i (p, t) (24)

− d
(−)
i (−p, t)d(+)

i (−p, t)
]
,

Q = e
∑
p

[
c
(+)
i (p, t)c(−)

i (p, t) (25)

− d
(−)
i (−p, t)d(+)

i (−p, t)
]
,

S3(t) =
∑
p

[
c
(+)
1 (p, t)c(−)

1 (p, t) (26)

− d
(−)
1 (−p, t)d(+)

1 (−p, t)

+ d
(−)
2 (−p, t)d(+)

2 (−p, t) − c
(+)
2 (p, t)c(−)

2 (p, t)
]
.

This representation can be named the complete
quasiparticle one. The equations of motion for these
amplitudes follow from Eqs. (16), (21):

ċ
(±)
i (p, t) =

1
2
∆(p, t)d(∓)

i (−p, t) (27)

± iω(p, t)c(±)
i (p, t) + g

(±)
ij (p, t)c(±)

j (p, t),

ḋ
(±)
i (−p, t) =

1
2
∆(p, t)c(∓)

i (p, t)

± iω(p, t)d(±)
i (−p, t)+

∗
g
(±)

ij (p, t)d(±)
j (−p, t).

The matrix gij is defined as

g(±) =




±iė1 · e2 0
ω

m
ė(∓) · e3

0 ∓iė1 · e2
ω

m
ė(±) · e3

−m
ω

ė(∓) · e3 −m
ω

ė(±) · e3 −∆m


 ,
(28)

where e(±) = (e1 ± ie2)/
√

2.

The transition to this representation from the ini-
tial (a, b) one is defined by the combination of the
transformations (13) and (21):

c(±)(p, t) = U (±)(p, t)a(±)(p, t), (29)

d(±)(−p, t) = U (±)∗(p, t)b(±)(−p, t)
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with nonunitary operator

U (±)(p, t) = R(±)E−1(p, t) (30)

=



e
(∓)
1 e

(∓)
2 e

(∓)
3

e
(±)
1 e

(±)
2 e

(±)
3

m

ω
e31

m

ω
e32

m

ω
e33


 .

The quantization problem is to be solved while
taking into account the equation of motion (27). It
leads to the following noncanonical commutation re-
lations: [

c
(−)
i (p, t), c(+)

j (p′, t)
]

(31)

=
[
d
(−)
j (p, t), d(+)

i (p′, t)
]

= Q
(−)
ik (p, t)Q(+)

jk (p, t)δpp′ ,

where the matrices Q
(±)
ij (p, t) are defined by the

equations

Q̇
(±)
ij (p, t) = g

(±)
ik (p, t)Q(±)

kj (p, t) (32)

with the initial conditions

lim
t→−∞

Q
(±)
ij (p, t) = δij ; (33)

i.e., the commutation relations (31) transform to the
canonical form only in the asymptotic limit t→ −∞.

3. KINETIC EQUATION
The standard procedure of the derivation of KE [8]

is based on the Heisenberg-type equations of mo-
tion (9) or (27). Let us introduce the one-particle cor-
relation functions of vector particles and antiparticles
in the initial (a, b) representation

Fµν(p, t) = 〈0in|a(+)
µ (p, t)a(−)

ν (p, t)|0in〉, (34)

F̃µν(p, t) = 〈0in|b(−)
µ (−p, t)b(+)

ν (−p, t)|0in〉,
where the averaging procedure is performed over the
in-vacuum state [2]. Differentiating the first one with
respect to time, we obtain

Ḟµν(p, t) =
1
2
∆(p, t)

{
F (+)
µν (p, t) + F (−)

µν (p, t)
}
,

(35)

where the auxiliary correlation functions are intro-
duced as
F (±)
µν (p, t) = 〈0in|a(±)

µ (±p, t)b(±)
ν (±p, t)|0in〉. (36)

The equations of motion for these functions can be
obtained by analogy with Eq. (35). We write them out
in the integral form

F (±)
µν (p, t) =

1
2

t∫
−∞

dt′∆(p, t′) (37)
5
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×
[
Fµν(p, t′) + F̃µν(p, t′)

]
e∓2iθ(p;t,t′),

where

θ(p; t, t0) =

t∫
t0

dt′ω(p, t′). (38)

In Eq. (37), the asymptotic conditionF (±)
µν (p,−∞) =

0 (the absence of quasiparticles at the initial time)
has been introduced. The substitution of Eq. (37) into
Eq. (35) leads to the resulting KE

Ḟµν(p, t) =
1
2
∆(p, t)

t∫
−∞

dt′∆(p, t′)[Fµν(p, t′)

(39)

+ F̃µν(p, t′)] cos[2θ(p; t, t′)].

This KE is an almost natural generalization of the
corresponding KE for scalar particles [8].

Thus, the OR turns out to be an effective method
for the diagonalization of the Hamiltonian in the Fock
space. It is sufficient for the derivation of the KE (39).
However, at this stage, there are a number of prob-
lems that are specific for the vector-field theory: the
energy is not positively defined, the spin operator has
a nondiagonal form in the space of spin states, etc.
(Section 2). This circumstance hampers the physical
interpretation of the distribution function (34). In or-
der to overcome this difficulty, it is necessary to pass
on to the complete QPR in which the system has
well-defined values of energy, spin, etc. The simplest
way of deriving the KE is the QPR, based on the
application of the transformations (29) directly into
the KE (39).

3.1. Kinetic Equation in QPR

By analogy with the definitions (34), let us intro-
duce the correlation functions of vector particles and
antiparticles in the complete QPR:

fik(p, t) = 〈0in|c(+)
i (p, t)c(−)

k (p, t)|0in〉, (40)

f̃ik(p, t) = 〈0in|d(−)
i (−p, t)d(+)

k (−p, t)|0in〉.
They are connected with the primordial correlation
functions (34) by relations of the type

fik(p, t) = U+
in (p, t)U−

km(p, t)Fnm(p, t), (41)

where Fnm(p, t) is the “spatial” part of the tensor
function Fµν(p, t) (34) (m,n = 1, 2, 3).

To obtain the resulting KE in the complete QPR,
we differentiate the function fik(p, t) (41) with re-
spect to time and take into account the KE (39):

ḟik(t) = U̇
(+)
ij (t)U (+)−1

km (t)fjm(t) (42)
P

+ U̇
(−)
kj (t)U (−)−1

jm (t)fim(t)

+
1
2
U

(+)
ij (t)U (−)

kl (t)∆(t)

×
t∫

−∞

dt′∆(t′)U (+)−1
jm (t′)U (−)−1

ln (t′)

× [fmn(t′) + f̃mn(t′)] cos[2θ(p; t, t′)].

In comparison with non-Markovian effects of vacuum
tunneling of scalar particles [13], the considered case
has its own characteristics related to the dynamics of
spin twist.

The system of the integro-differential Eqs. (42)
can be reduced to a system of 27 coupled ordinary
differential equations that is convenient for numeri-
cal calculations. We will not analyze here this rather
complicated case and will restrict ourselves below to
the consideration of a simple particular case having
cosmological motivation.

3.2. Deformation of the Energy Gap

Let us consider the vacuum creation of vector
bosons in the case when it is caused by an arbitrary
time-dependent deformation of energy gap, i.e.,m =
m(t) and Ak(t) = 0. This is an isotropic case with
Pk = pk and ėi = 0. As a result, the KE (42) takes
the following form:

ḟik(p, t) = −∆m(p, t)[δi3f3k(p, t) (43)

+ δk3fi3(p, t)] +
1
2
∆(p, t)

×
t∫

−∞

dt′∆(p, t′)Mikjl(p, t, t′)

× [fjl(p, t′) + f̃jl(p, t′)] cos[2θ(p; t, t′)],

where

Mikjl(t, t′) = δ⊥ijδ
⊥
kl +

ω(t′)
ω(t)

m(t)
m(t′)

(44)

×
[
δi3δj3δ

⊥
kl + δk3δl3δ

⊥
ij

+
ω(t′)
ω(t)

m(t)
m(t′)

δi3δk3δj3δl3

]

and δ⊥ik = δik − δi3δk3.
As to be expected, the distribution functions

fαβ(p, t) and Fαβ(p, t) satisfy the same KE (39) for
α = 1, 2. The feature of the complete QPR becomes
apparent only in the component of tensor distribution
function fik(p, t) that contains the preferred values
of spin index i, k = 3. Let us select the KE for the
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 6 2005
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diagonal components of the correlation functions (40)
having a direct physical meaning as the distribution
functions of the transversal (i = 1, 2) and longitudinal
components:

ḟi(p, t) =
1
2
∆(p, t)

t∫
−∞

dt′∆(p, t′) (45)

×
[
1 + 2fi(p, t′)

]
cos[2θ(p; t, t′)],

ḟ3(p, t) = −2∆m(p, t)f3(p, t) (46)

+
1
2
∆(p, t)

m2(t)
ω2(t)

t∫
−∞

dt′∆(p, t′)
ω2(t′)
m2(t′)

×
[
2f3(p, t′) +Q(p, t′)

]
cos[2θ(p; t, t′)].

Here, the shorthand notation fii = fi has been in-
troduced for the diagonal components of the matrix
correlation functions (40), and we have

∆ =
mṁ

ω2
, ∆m = −∆

p2

m2
. (47)

It is possible to show that the distribution functions
of the longitudinal (i = 3) and transversal (i = 1, 2)
components are connected by the relation

f3(p, t) = Q(p, t)f1(p, t), (48)

where Q(p, t) is the function occurring in the com-
mutator of the creation and annihilation operators for
the longitudinal bosons,

[c(−)
3 (p, t), c(+)

3 (p′, t)] = Q(p, t)δpp′ ,

Q(p, t) = exp
[
−2

t∫
t0

∆m(t′)dt′
]

(49)

=
[
m(t)
m(t0)

ω(t0)
ω(t)

]2

.

The remarkable feature of the KE (45) and (46) is the
fact that they are not coupled and that the longitudinal
distribution function has some additive homogeneous
contribution. The presence of this term in the KE (46)
is a new element of the kinetic theory of vacuum
particle creation in comparison with, e.g., the case
of the scalar field [8, 13]. This term leads to some
exponential factors of the type

exp


−2

t∫
t0

dt′∆m(p, t′)


, (50)

which provide an additional influence on the vacuum
tunneling process.

Owing to Eq. (48), it is sufficient to solve the one
equation (45). We use now the well-known procedure
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 6 200
 

0.24

0.18

0.12

0.06

0

1 3 5

Density, cm
 

–3
 

Time, 10

 

–11

 

 s

 

n

 

1

 

n

 

3

 

α

 

 = 1/2

Fig. 1. Time evolution of the particle number density with
initial condition m0t0 = 1 for α = 1/2.

of the reduction of the KE from the integro-differential
form to the corresponding system of ordinary differen-
tial equations [14] in order to study the KE (45) nu-
merically and to investigate the asymptotic behavior
of its solutions for large momenta:

ḟ1 =
1
2
∆u1, u̇1 = ∆(1 + 2f1) − 2ωv1, (51)

v̇1 = 2ωu1.

Here, u1 and v1 are some auxiliary functions respon-
sible for the different effects of vacuum polarization
(see, e.g., [14]). The main characteristic of the vac-
uum creation process is the total number density of
vector bosons

ntot(t) = 2
3∑
i=1

ni(t) (52)

=
1
π2

∞∫
0

p2dp
[
2f1(p, t) + f3(p, t)

]
,

where isotropy of the system was taken into account,
p = |p|. The general factor 2 in Eq. (52) corresponds
to equal numbers of particles and antiparticles. In
order to prove the convergence of the integral (52),
we use the procedure of n-wave regularization [2, 15].
According to this procedure, all unknown functions
in Eqs. (51) are subject to formal decompositions in
asymptotic series with respect to the inverse powers
of the momentum modulus, i.e.,

y(p, t) =
∞∑
n=0

y(n)(t)p−n. (53)
5
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Fig. 2. The dependency of the final particle number density on the initial time for α = 1/2.
The substitution of series (53) into (51) produces the
following leading terms:

f
(6)
1 =

1
16

(mṁ)2, u
(4)
1 =

1
4
(ṁ2 +mm̈), (54)

v
(3)
1 =

1
2
mṁ;

consequently, the integral (52) is convergent.

4. VECTOR-BOSON PRODUCTION
IN THE EARLY UNIVERSE

In order to estimate the vector-boson creation in
the early Universe, we consider a conformal-invariant
cosmological model [10], thus assuming that the
spacetime is conformally flat and that the expansion
of the Universe in the Einstein frame can be replaced
by the change of masses in the Jordan frame due
to the evolution of the cosmological (scalar) dilaton
background field [5].

For our numerical studies, we use as a generic
form of the conformal time dependence of the scalar
field (mass) in the early Universe

m =
(
t

tH

)α
mW , (55)

where tH = (αH)−1 is the age of the Universe, H
is the Hubble constant, and mW = 80 GeV is the
W -boson mass. The parameter α depends on the
choice of the cosmic equation of state (EoS), where,
PH
e.g., α = 1/2 would correspond to a stiff fluid. Such
an EoS will be adopted for the dominance of a mass-
less scalar field in theUniverse. Due to back reactions
and dynamical mass generation during the cosmic
evolution, the detailed mass history remains to be
worked out. The central question, however, is whether
the number density of produced W bosons could
be of the same order as that of the CMB photons,
nCMB ∼ 430 cm−3. If this question could be answered
positively, the vacuum pair creation of W bosons
from a time-dependent scalar field (mass term) could
be suggested as a mechanism for the generation of
matter and radiation in the early Universe. The non-
Abelian nature of the W bosons could even imply
consequences for the generation of the baryon (and
lepton) asymmetry due to topological effects [16].

The numerical analysis of Eqs. (51) is performed
by a standard Runge–Kutta method on a one-
dimensional momentum grid. As one can see from
Fig. 1, the creation process ends very quickly and
the particle density saturates at some final value.
The dependence of the corresponding final value of
density on the initial time is shown in Fig. 2. The final
density n1 of particles with spin projection±1 reaches
a maximum when we let the initial time go to very
early times, when the Universe was born. However,
in the same limit, the density n3 of particles with
zero projection of spin grows beyond all bounds. The
choice of the EoS changes drastically the quantity
of created particles, thus giving values which are too
YSICS OF ATOMIC NUCLEI Vol. 68 No. 6 2005
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small (α = 1/2) or too large (α = 1/3) in comparison
with the observed CMB photon densities. In order
to improve this model, we should use an improved
EoS, assuming that the scalar field as a source of the
particle masses can change during its time evolution.
We can also consider the back-reaction problem by
taking into account that the created particles can
influence mass evolution. Furthermore, we could use
another spacetime model, e.g., Kasner spacetime [17]
instead of the conformal flat de Sitter one. The main
achievement relative to the earlier work [5] is that,
in the present approach, there is no divergence in
the distribution function; thus, we do not need to
introduce some ambiguous regularization procedure.

5. SUMMARY

The present work is dedicated to the kinetic de-
scription of vacuum creation ofmassive vector bosons
caused either by the time dependence of energy gap
or by the action of the nonstationary electric field.
The statement of the problem is stimulated by mod-
ern cosmological problems related to the need for
an explanation of the nature of the recent accelerat-
ing expansion of the Universe characteristic features
of CMB radiation. The resulting KE (42) of non-
Markovian type is obtained on a strong nonpertur-
bative basis within the framework of the OR, which
provides a short way to the QPR, in the language of
which the kinetic theory is constructed.We apply then
this KE for the analysis of the important particular
case of an isotropic gas of vector bosons with the
time-dependent mass which can be justified on the
basis of conformal-invariant scalar-tensor gravita-
tion theories. We show that the kinetic theory leads
to a reasonable density of vector bosons in an early
period of the Universe evolution which is sufficient
for the explanation of the present density of CMB
photons.

The obtained results constitute a foundation for
the subsequent investigation of the dynamics of vec-
tor bosons created from the vacuum (the equation of
state, the long wavelength acoustic excitations, the
back-reaction problem, etc.).
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Abstract—Possibilities that are provided by a lattice regularization of QCD for studying nonperturbative
properties of QCD are discussed. A review of some recent results obtained from computer calculations in
lattice QCD is given. In particular, the results for the QCD vacuum structure, the hadron mass spectrum,
and the strong coupling constant are considered. c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Quantum chromodynamics (QCD) is a theory
that describes strong interactions of elementary par-
ticles. With the aid of perturbation-theory methods,
physicists have obtained many pieces of corroborative
evidence that QCD correctly describes strong inter-
actions at high energies. However, it is well known
that, at low energies, the strong coupling constant αs

grows, which renders perturbation theory inapplica-
ble. It follows that, in order to perform calculations
at low energies, it is necessary to develop a non-
perturbative method that would make it possible to
solve problems such as the calculation of fundamental
QCD parameters (αs and quark masses), the calcu-
lation of the hadron-mass spectrum, and elaboration
of the theory of color confinement. It is the method of
computer calculations within lattice formulations of
QCD that makes it possible to solve these problems
without recourse to uncontrollable approximations.
Thirty years ago, Wilson [1] formulated basic ideas
of the lattice approach to studying QCD. About
twenty-five years ago, Creutz [2] used this approach
to perform the first computer calculations of the
string tension within the SU(2) non-Abelian gauge
model. Considerable advances have been made in
the development of lattice QCD since then, and
many results that deepened our understanding of
the nonperturbative properties of QCD have been
obtained along these lines. The most remarkable of
these results include the calculation of the string
tension, the glueball spectrum, the strong coupling
constant, and the phase-transition temperature.

The above results were obtained in the so-called
quenched approximation, where the contribution of
quark loops is disregarded, which was because of
the lack of adequate computer facilities. Only within
the last five to seven years has a systematic study of
1063-7788/05/6806-1054$26.00
lattice QCDbeen initiated in the unquenched approx-
imation. Computers that are used in current inves-
tigations are about 104 to 105 times more powerful
than those in the first studies and the community of
researchers involved in these investigations includes
about 150 physicists in Europe alone. The results
obtained in lattice calculations are extensively used in
phenomenological calculations. A new breakthrough
is expected in the next two to three years, when com-
puters of speed up to 10 teraflops become available
for use in studying lattice QCD. The problems to be
addressed in this connection can be formulated as
follows:
(i) testing QCD as a theory of strong interactions;
(ii) solving the problems of confinement and spon-

taneous chiral-symmetry breaking;
(iii) calculating fundamental QCD parameters;
(iv) calculating other physical quantities that are

of importance for understanding strong interactions;
(v) seeking new physics.
This article presents a brief review of the mod-

ern state of lattice calculations and their prospects.
For deeper insights into lattice QCD, the interested
reader is referred to the review articles quoted in [3].
The present review is organized as follows. In

Section 2, we recall basic definitions in lattice theory.
Section 3 is devoted to describing errors in lattice cal-
culations. Some important physics results obtained
within lattice QCD are described in Section 4. In
the Conclusion, we discuss the prospects for lattice
QCD.

2. BASIC DEFINITIONS

The lattice formulation of quantum field theory
has the following special features. The theory is for-
mulated in Euclidean space. The expression for the
c© 2005 Pleiades Publishing, Inc.
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generating functional Z becomes similar to that for
the partition function; that is,

Z =
∫ ∫

DADϕe−S(A,ϕ), (1)

where S is the action of the theory in Euclidean
space, Aµ(x) is a gauge field, and ϕ(x) is a matter
field. The analogy with statistical physics becomes
perfect upon going over to a discrete spacetime. In
this case, one considers a finite volume in a four-
dimensional Euclidean space, 0 < x1, x2, x3, x4 ≤ L,
and assumes that the coordinates take discrete val-
ues. Thus, we arrive at a four-dimensional lattice
specified by the nodes at the points s = (s1, s2, s3, s4),
1 ≤ sk ≤ N = L/a, where a is a lattice constant. The
lattice gauge field Uµ(s) is defined on the edges of the
lattice, taking values in the gauge group, while the
matter fields are defined at the nodes of the lattice. The
generating functional of the theory then reduces to a
finite-dimensional integral,

Z =
∫ ∏

s,µ

dUµ(s)
∏
s′

dϕ(s′)e−S(U,ϕ). (2)

A transition from a path integral to a finite-dimensional
integral makes it possible to calculate quantum
expectation values numerically. The continuum limit
corresponds to N → ∞ and a → 0 at L = Na =
const. Actual calculations are performed at finite
N and a, and systematic errors are evaluated in a
standard way by varying the number of lattice nodes
(N4) and the lattice constant (a).
The QCD Lagrangian has the form

L =
1

2g2
TrF 2

µν(x) +
∑
f

ψ̄f (x)(γµDµ + mf )ψf (x),

(3)

where ψf and ψ̄f are quarks fields of flavor f , Fµν is
the strength tensor of the gauge field, Dµ is a covari-
ant derivative, γµ are the Dirac matrices, and mf is
the quark mass. The choice of a lattice analog of this
Lagrangian is ambiguous. The following conditions
are imposed on the lattice Lagrangian:
(i) gauge invariance;
(ii) correct continuum limit (naive limit): for a → 0

and fixed values of the coupling constant and the
quark mass, the lattice Lagrangian must go over to
the continuum-limit Lagrangian (3);
(iii) locality.
These conditions hold for an infinite number of

lattice Lagrangians. The simplest and most natural
form of the lattice action was proposed by Wilson [1]:

S = SG
W + SF

W. (4)
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 6 200
Here,

SF
W = a4

∑
s

ψ̄(s)ψ(s) + κa3 (5)

×
∑
s

ψ̄[(γµ − 1)Uµ(s)ψ(s + µ̂)

− (γµ + 1)U †
µ(s− µ̂)ψ(s − µ̂)]

is the fermion component of the action for one flavor
and

SG
W = β

∑
P

(
1 − 1

3
Re TrUP

)
(6)

is the gauge-field action. In these expressions, κ is a
parameter that determines the quark mass, while β =
6/g2 is the lattice coupling constant. The plaquette
matrix UP is constructed in a standard way from the
edge variables, Uµ(s) = eiaAµ(s), where Aµ(s) is an
SU(3) gauge field. Upon going over to the (naive)
continuum limit, we have

SG
W−−−→

a→0

1
2g2

∫
trF 2

µνd
4x + O(a2), (7)

SF
W−−−→

a→0

∫
ψ̄(γµDµ + m)ψd4x + O(a);

that is, the Wilson fermion action tends to its con-
tinuum limit more slowly than the gauge-field ac-
tion. This drawback was removed in the “improved”
Sheikholeslami–Wohlert (SW) action for fermion
fields [4]. It has the form

SF = SF
W − i

2
κga5cSW (8)

×
∑
s

ψ̄(s)σµν F̂µν(s)ψ(s) ≡ ψ̄M(U)ψ,

where F̂µν is the lattice gauge-field strength tensor,
σµν = [γµ, γν ]/(2i), and the parameter cSW is de-
termined nonperturbatively [5]. The action SF tends
to the continuum limit within O(a2). This form of
fermion action has been widely used over the last
five years. The Kogut–Susskind fermion action [6]
is yet another popular choice. Its chiral properties
are better than the chiral properties of the action
in (8), but the former has a significant drawback,
flavor-symmetry breaking. From the theoretical point
of view, the lattice fermion action whose matrix M
satisfies the Ginsparg–Wilson relation [7]

Mγ5 + γ5M =
a

2r
Mγ5M, 0 < r < 1, (9)

is the best one. Such a fermion action possesses
chiral symmetry even at a nonzero lattice spacing.
Its realizations were found quite recently [8], and its
5
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properties are being vigorously studied, but its prac-
tical applications have so far been hindered by some
technical difficulties [9].
Numerical integration can be performed only with

respect to gauge fields. Integration with respect to
fermion fields is performed analytically,∫

DψDψ̄e−ψ̄M(U)ψ = detM(U), (10)

∫
DψDψ̄ψ̄a(s′)ψb(s)e−ψ̄M(U)ψ (11)

= (M−1
s,s′(U))ba detM(U).

As a result, the integral to be evaluated with the aid of
computers has the form

〈O〉 =
1
Z

∫
DUO(U)e−Seff(U), (12)

where

Z =
∫

DUe−Seff(U), (13)

Seff(U) = SG
W(U) −Nf ln detM(U), (14)

DU =
∏

x,µ dUµ(x), dUµ(x) is the Haar measure on
SU(3), and Nf is the number of flavors of identi-
cal mass. For an operator depending on the fermion
fields—for example,O = (ψ̄ψ)(s′)(ψ̄ψ)(s)—one cal-
culates the integral

〈O〉 =
1
Z

∫
DU(M−1

s,s′(U))ab(M−1
s′,s(U))bae−Seff(U).

(15)

From expressions (4)–(6), it can be seen that lattice
QCD is characterized by the parameters β and κ,
which determine the lattice spacing and the quark
mass, respectively. At the present time, themajority of
the results of lattice calculations have been obtained
in the quenched approximation. In the quenched ap-
proximation, one sets detM(U) = const in (14), this
being equivalent to Nf = 0 (that is, one disregards
the contributions of quark loops). This is an uncon-
trollable approximation, and its application was mo-
tivated by the lack of sufficiently powerful computers
exclusively. Considerable advances have been made
in the past years. Results were obtained for twomass-
degenerate light quarks (Nf = 2), this corresponding
to the inclusion of u and d quarks. The first investi-
gations with the added third quark (s quark) of the
same (Nf = 3) or a higher (Nf = 2 + 1) mass were
also performed.
For the parameters corresponding to actual QCD,

the calculation of integrals belonging to the type
in (12) is a nontrivial problem. In order to do this, the
PH
members of lattice collaborations employ the largest
supercomputers and develop new algorithms for im-
proving the efficiency of the calculations. A discussion
on these algorithms (their description can be found in
the review article of Peardon [10]) is beyond the scope
of the present article. We only note that, in numerical
calculations, the integral in (12) is replaced by the
sum over gluon-field configurations generated with
the weight exp{−Seff}; that is,

〈O〉 ≈ 1
Nconf

Nconf∑
i=1

Oi(U), (16)

whereNconf is the number of statistically independent
gluon-field configurations and O(U)i the value of the
operatorO on the ith configuration.
The required volume of the calculations increases

faster than the number of degrees of freedom. A
semiphenomenological expression for calculations in
QCD with two light quarks can be represented in the
form [11]

volume of calculations ≈ 2.8
(
Nconf

1000

)(
mπ/mρ

0.6

)−6

(17)

×
(

L

3 fm

)5( 1/a
2GeV

)7

teraflop× year,

where mπ and mρ are the masses of, respectively,
the π and the ρ meson (the ratio mπ/mρ determines
the quark-mass value). For example, a 1-teraflop
computer must operate 100 days in order to gen-
erate 100 configurations for the parameter values of
mπ/mρ = 0.6 (that is, the quark mass is approx-
imately 50MeV), L = 3 fm, and 1/a = 2GeV. We
note that the high powers in (17) indicate that the
volume of the calculations grows fast as we approach
the continuum limit or the chiral limit.
A few words about supercomputers used in lat-

tice calculations are in order. The operating speed
of the best supercomputers grows as an exponential
function of the year of production (see Fig. 1). All
dedicated computers presented in this figure (with
the exception of the Earth Simulator) are intended
for calculations in lattice QCD. The Earth Simula-
tor of the NEC enterprise is now the most powerful
computer, its operating speed being about 40 teraflop.
Previously, this supercomputer was used to explore
global phenomena in nature, but it was planned to
perform lattice QCD calculations with it in 2004.

3. SOURCES OF ERRORS IN LATTICE
CALCULATIONS
3.1. Statistical Errors

The statistical errors decrease in proportion to
1/
√
Nconf.
YSICS OF ATOMIC NUCLEI Vol. 68 No. 6 2005
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Fig. 1.Development of the computer speed for the best supercomputers [12].
3.2. Finiteness of the Lattice Spacing a

In order to obtain physical results, one must go
over to the limit a → 0. In practice, the calculations
are performed at several values of the lattice spacing
a, whereupon the results are extrapolated to a = 0.
Typical values of a lie in the range 0.05−0.15 fm.

3.3. Effects of Finite Volume
The contributions of these effects decrease expo-

nentially in proportion to exp{−mπL} [13]. Typical
values of L lie in the interval 2−3 fm, while the π-
meson mass is two to three times higher than its
physical value.

3.4. Extrapolation to the Physical Mass of Light
Quarks (Chiral Extrapolation)

As the light-quark mass decreases, the volume
of the calculations grows very fast for a number of
reasons. In the calculations, it is necessary to find the
inverse of the fermion matrix several times. The com-
puter time required for calculating the inverse fermion
matrix grows fast as its smallest eigenvalue, which
is determined by the lattice quark mass mqa, de-
creases. In addition, a decrease inmπ entails the need
for increasing the lattice size (see Subsection 3.3).
The calculations are performed at several values of
the light-quark mass mu,d from the interval 0.2ms �
mq � ms, whereupon the results are extrapolated to
the physical value of the light-quark mass by means
of chiral perturbation theory. It is believed that the
YSICS OF ATOMIC NUCLEI Vol. 68 No. 6 200
extrapolation based on the chiral effective Lagrangian
must be used for values of mu,d < ms/4. This corre-
sponds tomπ/mρ < 0.4.

3.5. Heavy Quarks

The b and c quarks are very heavy, so that the
necessary conditionmQa � 1 does not hold for them.
Therefore, calculations with heavy quarks cannot be
performed in the same way as with light quarks. This
problem was solved quite recently by using heavy-
quark effective theory and nonrelativistic QCD. The
basic idea is to consider heavy quarks as static or
nonrelativistic ones; as a result, the appropriate action
appears to be an expansion of the original action in
1/mQ. For the c quark, one can also use the ordinary
relativistic approach under the condition that the lat-
tice spacing in the time direction is much smaller than
the lattice spacing in the spatial directions.

3.6. Matching of the Lattice Scheme with the
Modified Minimal Subtraction Scheme (MS)

In order to compare the results of lattice calcula-
tions for nonspectral quantities with their experimen-
tal counterparts, it is necessary to rescale lattice data
to an ordinary scheme—for example, the modified
minimal subtraction scheme (MS). In general, we
have

〈0|Oi(. . . )|0〉MS = Zij〈0|Oj(. . . )|0〉lat (18)

= (δij + O(αs))〈0|Oj(. . . )|0〉lat,
5
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where Zij can be calculated by perturbation theory
and are usually known only in the one-loop approx-
imation. Since the strong coupling constant αs is
large at energy values typically used in lattice calcu-
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lations, higher order corrections can make a contri-
bution of about 10%. Therefore, the problem of non-
perturbatively calculating Zij becomes important.

4. RESULTS FOR PHYSICAL QUANTITIES

The results of numerical calculations are values
corresponding to physical quantities reduced to a
dimensionless form by an appropriate power of the
lattice spacing a. For example, this is ma for the
mass m. In order to rescale physical quantities to
dimensional units, it is necessary to define the lat-
tice scale—that is, a. For this, one takes a physical
quantity whose value is known from experiments—
for example, the mass of a hadron. It is desirable that
the chosen physical quantity be weakly dependent
on the light-quark mass and be readily calculable
on a lattice. In view of this, the quantity r0, which
has dimensions of length and which admits a de-
termination from the potential of static quarks, is a
popular choice. This choice is disadvantageous in that
r0 is taken from the potential model (which gives a
phenomenological value of 0.5 fm) rather than being
directly accessible from experimental data. The ρ-
meson mass and the splitting between the P- and
S-wave levels in the bb̄ or cc̄ quarkonia are other
quantities used to fix a.
YSICS OF ATOMIC NUCLEI Vol. 68 No. 6 2005
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Upon determining the lattice spacing a, any mass
can be expressed in GeV units. Before a comparison
with experimental results, it is necessary, however, to
tune the quark masses mu,d, ms, mc, and mb. For
each quark mass, we then select a hadron whose
mass value will be used for tuning. For this hadron,
lattice results obtained for a number of values of the
bare quark mass are interpolated or extrapolated in
order to find the bare-quark-mass value correspond-
ing to the correct value of the hadronmass. After that,
themasses of other hadrons containing this quark can
be predicted. In order to fixmu,d, use is usually made
of the π-meson mass; the masses of the K, K∗, or φ
mesons are taken to fix ms. In order to fix mc (mb),
one employs the masses of the D(B), Ds(Bs), and
ψ(Υ)mesons.
In the case of lattice QCD involving dynamical

quarks, the above procedure of tuning the parameters
of the QCD Lagrangian is complicated because the
lattice spacing a changes with the bare-quark mass.
Let us consider some examples involving the cal-

culation of physical quantities in lattice QCD.

4.1. Properties of the Vacuum

It was indicated in the Introduction that, back in
the 1980s, lattice calculations produced results im-
portant for understanding nonperturbative phenom-
ena in QCD, although these results concerned gluo-
dynamics. These results include a confirmation of the
conjecture that the potential of interaction between
static quarks is linear at large distances and a cal-
culation of the glueball spectrum in gluodynamics, of
the temperature of the confinement–deconfinement
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 6 200
phase transition, of the topological susceptibility, and
of the gluon condensate. Later, the advent of more
powerful computers and of more efficient computa-
tional algorithmsmade it possible to obtain new, more
precise results for the structure of the vacuum in
gluodynamics, on one hand, and to go over to a more
realistic theory that takes into account dynamical
quarks, on the other hand.
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Errors in lattice calculations (in %) for the coupling con-
stant αs(Mz), the quark masses, the B̂ parameters, and
the decay constants and form factors at zero momentum
transfer at the time of the forecast (2000), in short-term
forecasts (2000–2003), and in long-term forecasts (2003–
2006) [28]

Quantity 2000 2000–2003 2003–2006

αs(Mz) 10 5 3

m̄u,d,s,c 25 10 5

m̄b 5 2.5 1

B̂K 15 10 5

Other B̂ 30 10 5

fDq 15 10 5

fBq , fBq

√
B̂q 20 15 7

F (0)D→M 25 10 5

F (0)B→M 35 15 7

Numerous results have been obtained that high-
light the important role of topologically nontrivial
configurations (monopoles, vortices) in the structure
of the QCD vacuum—in particular, it was found that
such configurations determine the properties of con-
finement and spontaneous symmetry breaking (see
the review articles of Greensite and of Chernodub and
Polikarpov [14]).
Owing to the application of a new algorithm for

calculating the potential of interaction between static
quarks, the force F (r) of the interaction between
static quarks in gluodynamics was calculated in [15]
to a very high precision for distances of r ≈ 1 fm.
The results of this calculation proved to be in very
good qualitative agreement with its counterpart pre-
dicted by the Nambu–Goto string model, c(r) ≡
r3F ′(r)/2 = π(d− 2)/24, where d is the dimension-
ality of the space. However, the high precision of the
calculation in question made it possible to pinpoint
the deviation from the above relation. The origin of
this deviation has yet to be clarified.
The first results obtained in lattice QCD for the

topological susceptibility χt as a function of the light-
quark mass were recently published for Nf = 2 [16]
and Nf = 2 + 1 [17]. It was found in both cases (see
Fig. 2, which shows the results forNf = 2 + 1QCD)
that the numerical results obtained at small values of
the quark mass and upon extrapolation to the contin-
uum limit comply well with the predictions of chiral
perturbation theory [19]:

χt =
f2
πm

2
π

4
, Nf = 2; (19)
P

χt =
f2
πm

2
π

4(1 + mu/2ms)
, Nf = 2 + 1.

The value obtained to a high precision for the tem-
perature Tc of the phase transition in gluodynamics
is 270 MeV. For QCD involving dynamical quarks,
the results are not quite reliable, the phase-transition
temperature being estimated at 150 to 170 MeV [20].

4.2. Hadron Spectrum

A calculation of hadron masses may serve as a
test of lattice QCD. It is of importance to calculate
the masses with small errors of all types in order
to be confident that, in calculating other quantities
(for example, hadron matrix elements), the errors are
under control. Moreover, the masses of some hadrons
are generally used to fix the parameters of the lattice
action (lattice spacing and quark masses).
The hadron masses are calculated from the two-

point correlation functions; that is,

〈0|ΦH(t)Φ†
H(0)|0〉 (20)

=
∑
n

|〈0|ΦH |Hn〉|2e−mnt =
t→∞

|〈0|ΦH |H〉|2e−mH t,

where ΦH is a hadron operator that has appropri-
ate quantum numbers, mH is the hadron mass, and
{|Hn〉} is the complete set of states in the channel
being considered.
The desired accuracy of calculations was attained

in the case of quenched lattice QCD. However, it
should be recalled that the disregard of quark loops
introduces uncontrollable errors, which can be re-
moved only in lattice QCD simulations involving dy-
namical quarks. It was found (see Fig. 3) that, in
the quenched approximation, a typical discrepancy
between the lattice results and experimental values is
10%. It should be noted that, in this approximation,
the result depends on the mass of the particle that is
used to fix quark masses. One can see this in Fig. 3,
which shows the same lattice results obtained by two
methods of rescaling to dimensional units: in order
to fix the s-quark mass, one uses the K- and the
φ-meson mass in the first and the second case, re-
spectively. Rather good agreement with experimental
results for hadron masses gives reasons to hope for
obtaining not very large deviations for other physical
quantities as well.
If one performs calculations within full QCD—

that is, with allowance for quark loops—the result-
ing hadron masses will approach their experimental
values as the u- and d-quark masses tend to their
actual values. In [22], improved agreement with ex-
perimental results for strange mesons was found in
Nf = 2 QCD. There was no systematic improve-
ment for baryons there, but this was due to the use
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 6 2005
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of an insufficiently large lattice in the calculations.
In [23], remarkable agreement with experimental data
on the strange-meson masses was attained for Nf =
3 QCD. In Fig. 4, which was borrowed from [23],
the results obtained in the quenched approximation
(Nf = 0) are contrasted against their counterparts in
Nf = 3 QCD. The results differing by the method
used to fix the s-quark mass are displayed there. The
figure shows that, in contrast to what we have in
quenched QCD, the results in Nf = 3 QCD do not
depend on the method for fixing the quark mass. In
order to obtain similar results for the masses of light
baryons, the lattice size must be increased by a factor
of about 1.5.
As was indicated above, calculations involving dy-

namical c and b quarks would require considerably re-
ducing the lattice spacing (especially, for b quark), but
this is next to impossible. Fortunately, other methods
are applicable in this case—these are heavy-quark
effective theory in studying hadrons that contain one
heavy quark and nonrelativistic QCD in studying
quarkonia. The results obtained in quenched QCD
for the spectra of low-lying levels of charmonium,
bottomonium, and D and B mesons agree well with
experimental data. In just the same way as in the
case of light hadrons, calculations within Nf = 2, 3
QCD led to a considerable improvement of the agree-
ment [24].

4.3. Coupling Constant αs

The calculation of the coupling constant for strong
interactions in lattice QCD is among the indisputable
successes of this approach. In Fig. 5, which was
borrowed from [25], the lattice result is shown along
with the results extracted from experimental data. In
order to calculate αs, one can employ different lattice
quantities: the average plaquette (analog of the gluon
action), the strength of static-quark interaction, the
three-gluon vertex, or the gluon propagator in the
Landau gauge. In order to fix the physical scale, use
was made of the difference of masses in bottomonium
or another physical quantity whose value is known
from experimental data to a high precision and which
can be calculated on a lattice to a high precision as
well. In order to go over from the lattice coupling con-
stant αP(q) toαMS(q), onemakes use of perturbation
theory:

αMS(q) = αP(e5/6q)
[
1 + 2

αP
π

+ O(α2
P)
]
. (21)

The calculations were performed for Nf = 0 and for
Nf = 2, whereupon the results were extrapolated to
Nf = 3. Recently, the result forNf = 3 was obtained
directly [26]. This result for the coupling constant is
in good agreement with the previous results obtained
via extrapolation.
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 6 200
 

0.9 1.0 1.1 0.9 1.0 1.1

 

f

 

π

 

f

 

K

 

3

 

M

 

Ξ

 

–

 

M

 

N

 

2

 

M

 

B

 

s

 

–

 

M

 

ϒ

 

ψ

 

(1

 

P

 

–1

 

S

 

)

 

ϒ

 

(1

 

D

 

–1

 

S

 

)

 

ϒ

 

(2

 

P

 

–1

 

S

 

)

 

ϒ

 

(3

 

S

 

–1

 

S

 

)

 

ϒ

 

(1

 

P

 

–1

 

S

 

)

0.8 0.81.2 1.2

Fig. 6. Comparison of the results obtained in the
quenched approximation of lattice QCD (left panel) and
in Nf = 2 + 1 lattice QCD based on the improved
Kogut–Susskind action (right panel) [6]. The ratios of
the lattice results for the displayed quantities to their
experimental values are given.

4.4. Hadron Matrix Elements

Lattice results for matrix elements in the decays
of B, D, and K mesons are of importance for im-
proving the accuracy in determining the elements of
the Cabibbo–Kobayashi–Maskawa matrix. In par-
ticular, the element Vtd of the Cabibbo–Kobayashi–
Maskawa matrix can be determined upon measur-
ing the mass difference between neutral Bs mesons,
∆Ms. The hadron matrix element required for calcu-
lating Vtd is parametrized as

〈B̄0
q |b̄γµ(1 − γ5)qb̄γµ(1 − γ5)q|B0

q 〉 (22)

=
8
3
f2
Bq

BBq(µb)M2
Bq

,

where fBq is the decay constant. In order to find the
decay constants, we must calculate the expectation
value

〈0|J(t)Φ†
H(0)|0〉, (23)

where J is the corresponding current. Matrix ele-
ments of the form 〈H ′|Q|H〉 can also be calculated
on the lattice according to the relation

〈0|ΦH′(t + t′)Q(t′)Φ†
H(0)|0〉 =

t,t′→∞
〈0|ΦH′ |H ′〉

(24)

× 〈H ′|Q|H〉〈H|Φ†
H |0〉e−m′

H t−mH t′ .

The decay constants fBq and the B parameters were
calculated by several collaborations that employed
different methods to solve the heavy-quark problem.
5
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The results obtained in the quenched approxima-
tion [27] are 10–20% less than the results obtained in
Nf = 2 andNf = 2 + 1 QCD [24]. The lattice values

B̂Bd
f2
Bd

= (1.26 ± 0.10)(196 ± 32MeV)2 (25)

and

B̂Bsf
2
Bs

B̂Bd
f2
Bd

= 1.56 ± 0.26, (26)

where B̂Bq is the B-parameter value invariant un-
der renormalization-group transformations, are pre-
sented in [25].

5. CONCLUSIONS

Lattice gauge theories form a very broad realm
going beyond QCD. A lattice formulation ensures
the well-defined mathematical basis for quantum-
field theory, and this is one of themost attractive prop-
erties of the lattice approach. A lattice regularization
of QCD makes it possible, at least in principle, to
perform nonperturbative calculations. The advances
in lattice QCD over the past decade have been made
both owing to an increase in the power of computers
used in such calculations and owing to the develop-
ment of new concepts, computational methods, and
numerical algorithms. In particular, the application
of the improved fermion action made it possible to
reduce considerably the values of the quark masses
used in computer calculations and, to a considerable
extent, to solve the chiral-limit problem.
In this review, we have not discussed the results

obtained within lattice QCD for the following physical
quantities:
(i) the quark masses,
(ii) the hadron structure functions,
(iii) the spectrum of exotic and hybrid particles,

and
(iv) the η′-meson mass and other flavor-singlet

quantities,
as well as the results obtained in QCD at nonzero

baryon density.
Considerable advances have also been made in

solving these problems in lattice QCD.
A few years ago, a team of experts that carried

out tasks assigned by the European Commission for
Future Accelerators (ECFA) presented, among other
things, a forecast of the development of calculations
within lattice QCD in the form of a table of errors in
lattice calculations for physical quantities of impor-
tance (see table). From this table, it follows that, in
the next few years, lattice calculations are expected to
reach the desired precision of a few percent. The data
given in the present review article demonstrate that
PH
this forecast is coming true. From Fig. 6, which was
borrowed from [6], it follows that this level of precision
has already been attained for many physical quan-
tities. These results seem very optimistic. It should
be noted, however, that many experts recommend
taking the results reported in [6] with caution, since
the possibility that the fermion action employed in
that study is nonlocal cannot be ruled out on purely
theoretical grounds [29].
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Abstract—A covariant method for calculating reaction amplitudes in the diagonal spin basis is presented.
In this basis, amplitudes represent the spin kinematics of the interacting particles in the simplest and
most adequate manner. A matrix is obtained such that differential cross sections for polarized particles and
amplitude combinations that are required to calculate various polarization characteristics of reactions can
be expressed in an arbitrary basis in terms of the amplitudes calculated in one basis. c© 2005 Pleiades Pub-
lishing, Inc.
1. INTRODUCTION

At the moment, the standard method of direct cal-
culation of the reaction amplitude modulus squared
is almost never used, because the difficulty of cal-
culations increases drastically when the number of
particles increases even slightly or when particle po-
larizations should be taken into account.

The idea of direct calculation of amplitudes fol-
lowed by their squaring is quite evident. However, this
approach generates a number of specific problems.
For this reason, works that develop various aspects
of this methodology have appeared for several decades
(see bibliography in the reviews [1, 2].) In theseworks,
a covariant or noncovariant approach is used and cal-
culations are performed in an arbitrary or a particular
spin basis.

The studies by F.I. Fedorov and his disciples are
among the first works in this field (see details in [3]).
They are mainly devoted to the covariant calculation
of amplitudes in an arbitrary spin basis. For example,
the authors of [4] suggested a method that uses the
main “advantage” of the squaring procedure, where
all calculations are reduced to the computation of the
traces of γ-matrix operators.

We illustrate this approach by the example of the
fermion “sandwich”

ūσ
′
(p′, s′)Quσ(p, s) = TrQuσ(p, s)ūσ

′
(p′, s′), (1)

where Q is an arbitrary operator. The main difficul-
ties of this approach are the determination of exact
expressions for the transition operators

uσ(p, s)ūσ
′
(p′, s′), (2)

*e-mail: sikach@dragon.bas-net.by
1063-7788/05/6806-1064$26.00
the calculation of phase factors, elimination of sin-
gularities, calculation of exchange diagrams, inclu-
sion of the specific features of the spin configuration
σ′ = −σ, etc. Certain difficulties can be overcome
by choosing a special spin basis. The transition to
another basis is performed usingWignerD functions,
but this tool is very cumbersome and noncovariant.

In this paper, we show how cross sections for
polarized particles and amplitude combinations that
are required to calculate other polarization charac-
teristics of reactions can be expressed in an arbitrary
basis in terms of the amplitudes (1) in the basis where
they have the simplest form.

In Section 2, we consider single-particle states.
We show that the consistent application of the tetrad
formalism makes it possible to operate with the com-
plete set of bispinors and to reduce the action of
matrix operators to the action of tensor operators.
In Section 3, we obtain matrices that enable the
amplitude modulus squared in a certain spin basis to
be expressed in terms of the amplitudes calculated in
another spin basis. In Section 4, we consider the di-
agonal spin basis (DSB) introduced previously in [5].
In the DSB, the bispinors of initial and final states
have a common set of spin operators and they are
related to each other in the simplest way. As a result,
a compact and simple solution is obtained for the
key problem of this approach—the determination of
the exact expression for transition operators (2). The
diagonal amplitudes have clear physical interpreta-
tion and they are the best “building blocks” for the
calculation of amplitude products with various spin
configurations in an arbitrary spin basis. In Section 5,
we show how to calculate observables in terms of the
diagonal amplitudes.
c© 2005 Pleiades Publishing, Inc.
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2. SINGLE-PARTICLE STATES: TETRADS

A single-particle state is determined by two 4-
vectors: momentum p and spin projection axis s,
where ps = 0. This condition is satisfied if we define
s in terms of an arbitrary vector q:

s =
(pq)p−m2q

m
√

(pq)2 −m2q2
. (3)

If

s0 = v = p/m, s3 = s, (4)

then s20 = −s23 = 1 and s0s3 = 0. Any vector of
the form αs0 + βs3 lies in the 2-plane (s0, s3) in
Minkowski space. The orthogonal 2-plane is defined
in terms of the following two tensors:

gµν|| = vµvν − sµsν , ε̃µν|| = εµνρσvρsσ, (5)

where ε0123 = 1. If an arbitrary vector r does not
belong to the 2-plane (s0, s3), the vectors

sµ1 = (gµν|| − gµν)
rν
r⊥
, sµ2 = −ε̃µν||

rν
r⊥

; (6)

r⊥ =
√
rµ(g

µν
|| − gµν)rν

(where g is the Minkowski tensor) satisfy the con-
ditions s21 = s22 = −1 and s1s2 = 0, and both vec-
tors are orthogonal to s0 and s3. Therefore, the
tetrad {s0, s3, s1, s2} forms the orthonormal basis in
Minkowski space. The vectors s1 and s2 enter into
all spin relations only in the combination s1 ± is2. It
follows from Eqs. (6) that

s1 + iσs2 = Tσ
r

r⊥
, Tσ = g|| − g − iσε̃||. (7)

It is clear that the tensor Tσ plays a special role in
spin calculations. Apart from the evident properties
T ∗
σ = T−σ, T+

σ = Tσ, and T 2
σ = −2Tσ , it satisfies the

relation

T µνσ Tαβσ = T µβσ Tανσ , (8)

from which it follows that

T µνσ rνrαT
αβ
σ = r2

⊥T
µβ
σ . (9)

Changing r to r′ in (7), from Eqs. (7) and (9), we
obtain

s′1 + iσs′2 = eiσϕ(s1 + iσs2), (10)

eiσϕ =
rTσr

′

r⊥r
′
⊥

.

Thus, variations in r result in the rotation by the angle
ϕ in the 2-plane (s1, s2) and in the appearance of an
additional phase factor in spin relations.
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 6 200
By fixing r, we also specify a tetrad in theMinkows-
ki space and obtain the whole set of the spin operators
in the explicit form1)

Σ3 = γ5ŝ3, Σσ = (ŝ1 + iσŝ2)/2, (11)

which act on the bispinor uσ(p, s, r)2) according to
the relations

Σ3u
σ(p, s, r) = σuσ(p, s, r),

Σ−σu
σ(p, s, r) = u−σ(p, s, r), (12)

Σσu
σ(p, s, r) = 0.

The second relation is the known phase agreement:
the action of the spin-flip operator does not result in
any additional phase factor.

We emphasize an important point. Specifying
the tetrad, we can write four equations for the 4-
component bispinor. Namely, in addition to the Dirac
equation and spin-projection equation, we obtain two
equations for the spin-flip operator.

Let us consider one of the consequences. We rep-
resent the tensor g in the form

gµν = vµvν − sµsν − sµ1s
ν
1 − sµ2s

ν
2 . (13)

Then, it follows from Eqs. (11) and (13) that

γµ = gµνγν = vµv̂ − sµŝ− sµ1 ŝ1 − sµ2 ŝ2 (14)

= vµv̂ − γ5{sµΣ3 + (sµ1 − iσsµ2 )Σσ

+ (sµ1 + iσsµ2 )Σ−σ}.
Using the Dirac equation and Eqs. (12), we arrive at
the relation

γµuσ(p, s) = (vµ − σsµγ5)uσ(p, s) (15)

− (sµ1 + iσsµ2 )γ5u
−σ(p, s).

The repeated action of the γ matrix on Eq. (15) gives

σµνuσ(p, s)

= σ
(
[v · s]µνγ5 + i[̃v · s]

µν)
uσ(p, s) (16)

− [(s1 + iσs2) · (σs+ γ5v)]
µν u−σ(p, s),

where

[a · b]µν = aµbν − bµaν . (17)

An arbitrary operator Q can be decomposed in terms
of the complete set of the Dirac matrices

Γ = {1, γ5, γ
µ, γ5γ

µ, σµν} . (18)

Thus, expressions (15) and (16) make it possible
to reduce the action of an arbitrary matrix oper-
ator on the bispinor Quσ(p, s) to a decomposition

1)γ5 = iγ0γ1γ2γ3 can be represented in the form γ5 =
iŝ1ŝ2ŝ3ŝ0.

2)We keep symbols s and, particularly, r only where it is nec-
essary.
5
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in terms of the complete set of bispinors u±σ(p, s),
γ5u

±σ(p, s). The decomposition coefficients are ten-
sors whose rank is equal to the number of the free
Lorentz indices of the operatorQ.

3. TRANSITION MATRICES BETWEEN
DIFFERENT SPIN BASES

Let the set of amplitudes in a certain spin basis be
known,

Mδ′δ = ūδ
′
(p′, s′)Quδ(p, s), (19)

but the axis of spin projections in the initial state is
determined by the vector l. Thus, we consider the
amplitude

M′
δ′σ = ūδ

′
(p′, s′)Quσ(p, l), (20)

or, more precisely, we are finally interested in the
squares of their moduli.

Using the equality∑
δ

1
4
(1 + v̂)(1 + δγ5ŝ)uσ(p, l) = uσ(p, l), (21)

we obtain the following expression for the modulus
squared of amplitude (20) (we omit the arguments of
the bispinors):

|M′
δ′σ|2 = ūδ

′
QuσūσQ̄uδ

′
(22)

=
∑
δ1δ2

ūδ
′
Q

1
4
(1 + v̂)(1 + δ1γ5ŝ)uσūσ

× 1
4
(1 + v̂)(1 + δ2γ5ŝ)Q̄uδ

′

=
∑
δ1δ2

ūδ
′
Quδ1ūδ1uσūσuδ2 ūδ2Q̄uδ

′

=
∑
δ1δ2

Mδ′δ1Kδ1δ2M∗
δ′δ2 ,

where
Kδ1δ2 = ūδ1uσūσuδ2 = Truσūσuδ2 ūδ1 . (23)

Therefore, if we know the explicit form of matrix (23),
we can calculate the modulus squared of ampli-
tude (20) by using relation (19).

If δ1 = δ2 = δ, then [6]

Kδδ =
1
16

Tr(1 + v̂)(1 + σγ5l̂)(1 + v̂) (24)

× (1 + δγ5ŝ) =
1
2

(1 − σδ(ls)) .

Using the spin-flip operators γ5(ŝ1 − iδŝ2)/2, we
arrive at the expression for the configuration δ1 =
−δ2 = δ:

Kδ−δ =
1
32

Tr(1 + v̂)(1 + σγ5 l̂) (25)
P

× γ5(ŝ1 − iδŝ2)(1 + v̂)(1 + δγ5ŝ)

=
1
16

Tr γ5(ŝ1 − iδŝ2)(σγ5 l̂ + σδŝv̂l̂)

= −σ

2
(s1 − iδs2)l.

We derived (25) using the relation (s3 = s, s0 = v)

γ5 = iŝ1ŝ2ŝ3ŝ0. (26)

Explicit forms (24) and (25) of the matrix elements
of the matrix Kδ1δ2 imply that it can be expressed in
terms of the Pauli matrices σi:

Kδ1δ2 = (1 − σσi(lsi))δ1δ2 . (27)

Relation (27) can be represented in a four-dimensional
covariant form. Let us introduce the isotropic 4-vector

L = (1;σ(lsi)) (28)

and take into account that σ0 = 1; then

K = σµL
µ. (29)

Here, 1 is the 4-velocity squared, and l and s3 are the
axes of the spin projections in different spin bases.

We emphasize that Eqs. (27) and (28) contain only
the vectors of the tetrad used in the calculation of
amplitude (19). We can show that the final expression
given by Eq. (22) is independent not only of the phase
vector r, but also of the vectors s1 and s2, because
they enter into Eq. (22) in the combinations sµ1s

ν
1 +

sµ2s
ν
2 = sµ3s

ν
3 − gµν and εµνρσs1ρs2σ = [v0 · s3]µν .

The procedure described by Eqs. (24), (25), (27),
and (29) makes it possible to build the matrix K
for any fermion involved in the reaction; in addition,
the representation by Eqs. (27) and (29) allows the
application of the Fierz transformation if it is required.

We point to the following important fact. Expres-
sion (22) is also applicable when a beam is partially
polarized and the states are not pure. In this case,
it is necessary to make the change σl → a, |a2| < 1
in Eqs. (24), (25), and (28) (where a is the vector of
partial polarization—see [7]).

In addition to amplitude modulus squared (22),
study of polarization phenomena requires the quanti-
tiesMσM∗

−σ,
3) because various polarization charac-

teristics are expressed in terms of the real and imag-
inary parts of these quantities. Thus, in the general
case, we should know the matrix

Kσ1σ2
δ1δ2

= Tr uσ1 ūσ2uδ2 ūδ1 , (30)

and in the case σ2 = σ1, we obtain Eqs. (22) and (23).

3)In the amplitude notation, we retain only the spin projection
of the particle whose polarization is studied.
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 6 2005
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We can show that the matrix K assumes the form
(δαβ is the Kronecker delta)

Kσ1σ2
δ1δ2

=
1
2

{
δσ1σ2δδ1δ2 − σσ2σ1

i σδ1δ2j (lisj)
}
. (31)

We recall that Eq. (31) implies the summation with
respect to δ1 and δ2 with the amplitudes calculated in
the spin basis with the tetrad {v, s3, s1, s2}.

In conclusion, we note that the expression

M′
σ1
M′∗

σ2
=
∑
δ1δ2

Mδ1Kσ1σ2
δ1δ2

M∗
δ2 (32)

is a newmethod for describing the transition from one
spin basis to another without the cumbersome and
noncovariant formalism of WignerD functions.

4. DIAGONAL SPIN BASIS (DSB)

Any process can involve only an even number of
fermions. If the number of free fermions is 2n, each
diagram contains n unclosed fermion lines and it is
described by the structure that consists of the convo-
lutions of n fermion sandwiches of the type

Φ̄σ′(p′, s′)QΦσ(p, s). (33)

For the fermion and antifermion lines, Φ are the
bispinors u [see Eq. (1)] and v, respectively; for
the annihilation and production of a pair, Φ are the
bispinors u and v, respectively. For definiteness, we
consider structures (1) and (2).

We do not discuss here the group-theoretical as-
pects of the DSB introduction; we only note that the
vectors s and s′ in the DSB are chosen so that they
belong to the 2-plane (p, p′) or (v, v′); v = p/m, v′ =
p′/m′. Satisfying this requirement, we obtain

s =
(vv′)v − v′√

(vv′)2 − 1
, s′ = − (vv′)v′ − v√

(vv′)2 − 1
. (34)

Therefore, the reference vectors [see Eq. (3)] for the
states at the beginning and end of the fermion line are
the vectors q = v′ and q′ = −v. With this sign choice,
the vectors s and s′ in the specified reference frames
coincide with the direction of the 3-momentum of
the incident particle and are opposite to that of the
final particle. Here, the specified reference frames are
the Breit frame for the fermion or antifermion lines (t
lines) and the c.m.s. for the annihilating or produced
pair (s lines).

It is clear from Eqs. (34) that the diagonality in
the specified reference frames acquires the sense of
helicity, and δ = λ and δ′ = −λ′. Thus, the DSB is
the covariant description of helicity in the specified
reference frames.
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 6 200
These are the frames where the helicities of a pair
of particles, as well as spin-flip and non-spin-flip am-
plitudes, have clear physical meaning. Indeed, if the
spins of the incident and final particles in an arbitrary
reference frame are projected on the 3-momenta p
and p′, respectively, what can we say about the spin-
flip and non-spin-flip processes? These notions in the
helicity basis have merely a marking meaning.

In our opinion, owing primarily to neglect of this
circumstance, the construction of operators (2) con-
venient in calculations continued for decades. All at-
tempts to construct covariant operators (2) in the
helicity basis are doomed to failure. The helicity of a
massive particle is a “bad” quantum number, because
it is not invariant under Lorentz transformations. Any
declaration of the covariance of operators (2) in the
helicity basis is a hidden transition to a particular
reference frame. Moreover, in this case, covariance
for other fermion pairs is indefinite, because each
pair has its own particular reference frame. The only
exception is the reactions such as e+e− → µ+µ−. It
is not surprising that these reactions are usually taken
as examples for the process calculation (quarks are
usually considered instead of leptons).

Prior to constructing the tetrads for the initial and
final states, we introduce two orthonormal vectors
symmetrized with respect to v and v′ in the 2-plane
(v, v′):

n0 =
v + v′

2V+
, n3 =

v − v′

2V−
; (35)

V± =

√
vv′ ± 1

2
. (36)

It follows from Eqs. (5), (34), and (35) that

gµν|| = vµvν − sµsν = v′
µ
v′
ν − s′

µ
s′
ν (37)

= nµ0n
ν
0 − nµ3n

ν
3 ,

ε̃µν|| = εµνρσvρsσ = εµνρσv′ρs
′
σ = εµνρσn0ρn3σ

=
1

2V+V−
εµνρσvρv

′
σ.

From Eqs. (6) and (37), it follows that the choice
of the common phase vector r′ = r results in the
coincidence of the tetrads for both vectors belonging
to the orthogonal 2-plane, that is

nµ1 = sµ1 = s′
µ
1 = (gµν|| − gµν)

rν
r⊥
, (38)

nµ2 = sµ2 = s′µ2 = −ε̃µν||
rν
r⊥
.

Let us now consider the plane Lorentz transformation
that transforms v into v′. In the representation of the
5
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SL(2, C) group, it has the form

Λ(v → v′) =
1 + v̂′v̂

2V+
, (39)

and Λv̂Λ+ = v̂′. It also follows from Eq. (34) that
ΛŝΛ+ = ŝ′. Transformation (39) does not change the
vectors that lie in the orthogonal 2-plane. Thus, the
Lorentz transformation given by Eq. (39) transforms
the tetrad of the incident particle into that of the final
particle:

Λ(v → v′) {v̂, ŝ, n̂1, n̂2}Λ+(v → v′) (40)

=
{
v̂′, ŝ′, n̂1, n̂2

}
.

In turn, this property means that the relation between
the bispinors of the initial and final states in the DSB
assumes the form

uδ(p′, s′) = Λ(v → v′)uδ(p, s). (41)

In the DSB, we choose the normalization condition

ūδ(p)uδ(p) = ūδ
′
(p′)uδ

′
(p′) = 1. (42)

In this case, relation (41) describes the case m′ �= m
as well.

In order to restore the standard normalization, it is
necessary to multiply the amplitudes calculated in the
DSB by the factor

n∏
i=1

√
2mi · 2m′

i, (43)

where n is the number of unclosed fermion lines.
Using the Dirac equation and Eq. (14), we can

rewrite relation (41) in various representations:

uδ(p′, s′) =
v̂′ + 1
2V+

uδ(p, s) = n̂0u
δ(p, s) (44)

= (V+ − δγ5V−)uδ(p, s).

Using expressions (44), we obtain the following ex-
plicit form of transition operators (2) in the DSB in
terms of the projection operators of the initial (or final)
state:

uδ(p, s)ūδ(p, s) =
1
4
(v̂ + 1)(1 + δγ5ŝ). (45)

Similarly to Eq. (44), transition operators (2) can be
represented in various forms such as

4uδ(p, s)ūδ(p′, s′) (46)

= (v̂ + 1)
(

1
2V+

− δγ5

2V−

)
(v̂′ + 1)

= (V+ + δγ5V−)(1 − δγ5n̂0n̂3) + n̂0 + δγ5n̂3

=
(

1 +
1
2
(V+ + δγ5V−)(n̂0 + δγ5n̂3)

)

P

× (n̂0 + δγ5n̂3),

4uδ(p, s)ū−δ(p′, s′) =
δ

r⊥
(v̂ + 1) (47)

×
(

1
2V−

(
r̂ − r(v + v′)

vv′ + 1

)

− δγ5

2V+

(
r̂ − r(v − v′)

vv′ − 1

))
(v̂′ + 1)

= γ5(V+ + δγ5V− − n̂0)(n̂1 + iδn̂2)

= γ5

(
V+ + δγ5V− − 1

2
(n̂0 + δγ5n̂3)

)
(n̂1 + iδn̂2).

Expression (47) is derived from Eq. (46) using
spin-flip operator (11) and the following relations
valid for an arbitrary orthonormal tetrad:

n̂0(n̂1 + iδn̂2) = δγ5n̂3(n̂1 + iδn̂2), (48)

(n̂0 + δγ5n̂3)2 = 2(1 − δγ5n̂0n̂3) = 2(1 + iδn̂1n̂2).

Since any interaction operator can be decomposed in
terms of the complete set of Dirac matrices (18), it is
interesting to calculate the matrix elements of this set
in the DSB. It follows from Eqs. (1), (46), and (47)
that

ūδ(p′, s′) {1; γ5; γµ; γ5γ
µ;σµν}uδ(p, s) (49)

= {V+; δV−;nµ0 ;−δnµ3 ;V−[n0 · n3]µν

− iδV+
˜[n0 · n3]

µν}
,

ū−δ(p′, s′) {1; γ5; γµ; γ5γ
µ;σµν}uδ(p, s) (50)

= {0; 0; δV−(n1 + iδn2)µ;−V+(n1 + iδn2)µ;
δ [n3 · (n1 + iδn2)]

µν} .

Matrix elements (49) and (50) can be interpreted as
the spin characteristics of the exchange particles for
scalar, pseudoscalar, vector, axial, and tensor inter-
actions, respectively.

It follows from Eq. (50) that the exchange (emis-
sion, absorption) by the pseudoscalar particle does
not change the fermion spin projection in the DSB.
Therefore, the choice of the DSB not only results in
simple calculation expressions, but also adequately
corresponds to the physical essence of the described
processes. In order to confirm this statement, let us
consider the matrix elements of the nucleon current
in the DSB:

Jδ,δ
′

µ = ūδ
′
(p′, s′) (51)

×
(
F1(q2)γµ −

F2(q2)
2m

σµνq
ν

)
uδ(p, s);

q = p′ − p.
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It is clear from Eqs. (49) and (50) that

Jδ,δµ = GEn0µ, (52)

Jδ,−δµ = δV−GM (n1 + iδn2)µ.

It is noteworthy that the form factors F1 and F2 in the
DSB are combined into the Sachs form factors

GE = F1 +
q2

4m2
F2, GM = F1 + F2, (53)

which have clear physical meaning and describe the
distribution of the electric and magnetic moments
of the nucleon, respectively. Thus, it follows from
Eq. (52) that, in the DSB, we obtain the covariant de-
scription of the situation where the non-spin-flip pro-
cesses are responsible for the electric interaction, and
spin-flip processes are responsible for the magnetic
interaction. In these processes, a spacelike (q2 < 0)
virtual photon has scalar and circular polarization,
respectively.

In the helicity basis, combination (53) occurs only
in the Breit frame, where the Fourier transform be-
comes three-dimensional, because

exp(−iqr) = exp i(q · r − q0t) = exp(iq · r).

Expressions (46) and (47) describe a fermion t line.
In order to describe an antifermion line and s lines for
an annihilating or produced pair, it is necessary to use
the relation

vδ(p, s) = −δγ5u
−δ(p, s) (54)

for the bispinors of the particle and antiparticle.

If the normalization ūδ(p)uδ(p) = 2m is restored
in Eqs. (46) and (47) according to Eq. (43), and the
limitm → 0 and (or)m′ → 0 is taken, we arrive at the
transition operators obtained in [8] for the processes
with the massless fermions.

In certain processes, it might be more conve-
nient to use the formalism with the same basis spinor
uδ(n0, n3;n1, n2) for the beginning and end of the
fermion line. This spinor satisfies the conditions

n̂0u
δ(n0, n3) = uδ(n0, n3), (55)

γ5n̂3u
δ(n0, n3) = δuδ(n0, n3).

It is easy to show4) that the plane Lorentz transfor-
mations

Λ(n0 → v) =
1 + v̂n̂0√
2(V+ + 1)

and

Λ(n0 → v′) =
1 + v̂′n̂0√
2(V+ + 1)

4)We use the relation V−/(V+ + 1) = (V+ − 1)/V−.
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transform the tetrad of the basis spinor into the
tetrads of the initial and final states, respectively.
Therefore, transition operators (46) and (47) can be
represented in the form

4uδ(p, s)ūδ
′
(p′, s′) =

2
V+ + 1

(v̂ + 1) (56)

× uδ(n0, n3)ūδ
′
(n0, n3)(v̂′ + 1) =

1
2(V+ + 1)

× (v̂ + 1)(n̂0 + 1)(δδ′δ + γ5n̂
iσiδ′δ)(v̂

′ + 1).

The latter equality uses the Bouchiat–Michel rela-
tion [9]. The vectors v and v′ in Eq. (56) can be
decomposed in terms of the vectors n0 and n3 using
relations (35).

In conclusion of this section, we give the calcu-
lation recipe for exchange diagrams in the DSB. We
take the electron–electron scattering as an example.
For definiteness, let particles 1 and 3, as well as
particles 2 and 4, be united in a pair. In this case, the
direct diagram corresponds to the expression

ūδ3(p3)γµuδ1(p1)ūδ4(p4)γµuδ2(p2) (57)

= Tr γµuδ1(p1)ūδ3(p3)Tr γµuδ2(p2)ūδ4(p4).

Then, the exchange diagram has the structure

ūδ4(p4)γµuδ1(p1)ūδ3(p3)γµuδ2(p2) (58)

= Tr γµuδ1(p1)ūδ3(p3)γµuδ2(p2)ūδ4(p4);

that is, it is expressed in terms of the transition oper-
ators that enter into the direct diagram.

If boson pairs are involved in the process, their
tetrads are constructed similarly to the fermion pairs.
The circular polarization vectors for each boson pair
coincide. In the process with three bosons such as
the e+e− → W+W−Z0 reaction, it is convenient to
choose the common reference vector q = k1 + k2 +
k3 = p1 + p2 and the common vector n2, where n

µ
2 ∼

εµνρσk1νk2ρk3σ. This choice significantly simplifies
the interaction operator Q, which contains up to five
γ matrices.

5. CALCULATION OF OBSERVABLES
IN TERMS OF THE DIAGONAL

AMPLITUDES

The matrix K in Eq. (31) can be represented in the
form

Kσ1σ2
δ1δ2

=
1
2

{
(σ0v

µ)σ2σ1(σ0vµ)δ1δ2 (59)

− (σil
µ
i )
σ2σ1(σjsjµ)δ1δ2

}
=

1
2
(σ̄lµ)σ2σ1(σsµ)δ1δ2

=
1
2
(σlµ)σ2σ1(σ̄sµ)δ1δ2 .
5
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Here, σa = σ0a0 + σiai, σ̄a = σ0a0 − σiai and we
take into account the equality vµsiµ = vµliµ = 0 for
both tetrads. As a result, Eq. (32) assumes the form

M′
σ1
M′∗

σ2
=

1
2
(σ̄lµ)σ2σ1 (60)

×
∑
δ1δ2

Mδ1(σsµ)
δ1δ2M∗

δ2 =
1
2
(σlµ)σ2σ1

×
∑
δ1δ2

Mδ1(σ̄sµ)
δ1δ2M∗

δ2 .

Let us now consider the case where the final particle
v′ in Eq. (20) is also described in a certain basis with
the tetrad {v′, l′i}. Transformations similar to Eq. (22)
give5)

M′
σ′1σ1

M′∗
σ′2σ2

(61)

=
∑

δ1,δ′1,δ2,δ
′
2

Mδ′1δ1

1
2

{
δσ1σ2δδ1δ2

− σσ2σ1
i σδ1δ2j (lisj)

}
M∗

δ′2δ2

1
2

{
δσ′1σ′2δδ′1δ′2

− σ
σ′1σ

′
2

a σ
δ′2δ

′
1

b (l′as
′
b)
}
.

Using Eq. (59) and a similar expression for the final

particle, we obtain
(
M+

δ2δ′2
= M∗

δ′2δ2

)

M′
σ′1σ1

M′∗
σ′2σ2

=
1
4
(σ̄lµ)σ2σ1(σl′ν)σ

′
1σ

′
2 (62)

×
∑

δ1,δ′1,δ2,δ
′
2

Mδ′1δ1
(σsµ)δ1δ2M+

δ2δ′2
(σ̄s′ν)

δ′2δ
′
1

=
1
4
(σlµ)σ2σ1(σ̄l′ν)σ

′
1σ

′
2

×
∑

δ1,δ′1,δ2,δ
′
2

Mδ′1δ1
(σ̄sµ)δ1δ2M+

δ2δ′2
(σs′ν)

δ′2δ
′
1 .

On the right-hand side of Eqs. (61) and (62), the cal-
culations might be performed in arbitrary spin bases.
However, the DSB is the most suitable basis for this
purpose. It follows from the discussion in Section 4
that, owing to the symmetrization of the spin states
of a fermion pair [6, 10], the amplitudes have the
simplest form and adequately describe the spin kine-
matics of the interacting particles. The same is true
for the matrices K that enter into Eqs. (61) and (62),
because they contain tetrads that are constrained by

5)We recall that the spin indices of other particles that are
involved in the reaction are omitted.
PH
Eqs. (35), (37), and (40). In addition, form (62) is
convenient for the Fierz transformations.

Finally, we emphasize the following. Methods that
enable one to avoid the squaring procedure through
the direct calculation of amplitudes have been devel-
oped for more than 40 years. When it is necessary
to change from one basis (e.g., a basis chosen for
the calculations) to another (e.g., a basis where mea-
surements are performed), the formalism of Wigner
D functions or another similar formalism is used.
This procedure is the most cumbersome and time-
consuming step. It follows from our considerations
that it is possible to avoid this step through the “in-
verse trace.” Instead of direct transition from one spin
state to another, it is more convenient to use the
squaring procedure.
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FUTURE PUBLICATIONS
Tensor Analyzing Power for Relativistic-Deuteron Fragmentation as a Means for Studying
the Structure of the Deuteron within Light-Front Dynamics

L. S. Azhgirey, S. V. Afanas’ev, V. N. Zhmyrov, L. S. Zolin, V. I. Ivanov, A. Yu. Isupov, V. P. Ladygin,
A. G. Litvinenko, V. F. Peresedov, A. N. Khrenov, and N. P. Yudin

New data on the vector (Ay) and tensor (Ayy) analyzing powers for the reaction 9Be(d, p)X at a primary
deuteron momentum of 5 GeV/c for a proton emission angle of 178 mrad are obtained by using the
synchrophasotron of the Joint Institute for Nuclear Research (JINR, Dubna). The experimental data on Ayy
are analyzed within the approach based on light-front dynamics, the relativistic wave function obtained by
Karmanov and his colleagues being used for the deuteron. It is shown that, in contrast to what one has from
calculations with standard nonrelativistic deuteron wave functions, all relevant data can be explained in this
approximation without resort to additional degrees of freedom.

Heavy Majorana Neutrinos in the Production of Dileptons in Deep-Inelastic
Lepton–Proton Scattering

A. Ali, A. V. Borisov, and D. V. Zhuridov

The cross section for the deep inelastic production of likely charged leptons in the e+p → ν̄e�
+�′+X

(�, �′ = e, µ, τ) processes induced by the exchange of heavy Majorana neutrinos is calculated. The effect of
the interference of a few neutrino mass eigenstates is studied. The possibilities of observing these processes at
future lepton–proton colliders are considered.

On the Possibility of Observing aaa0
0(980)−−−fff0(980)Mixing in the Reaction π−−−ppp →→→ ηπ0nnn
on a Polarized Target

N. N. Achasov and G. N. Shestakov

It is shown that the spin asymmetry in the reaction π−p → a0
0(980)n → (ηπ0)Sn is highly sensitive to the

mixing of the a0
0(980) and f0(980) resonances. At low momentum transfers (namely, in any of the intervals

0 ≤ −t ≤ 0.025, . . . , 0.1 GeV2), the asymmetry normalized in such a way that it takes values between −1
and 1 must undergo a discontinuity close to unity in the region of the ηπ0 invariant masses between 0.965
and 1.01 GeV. A large jump of the asymmetry is due exclusively to a0

0(980)−f0(980) mixing. A very high
resolution in the ηπ0 invariant mass is not required for observing the discontinuity of the asymmetry. The
energy dependence of the polarization effect is expected to be rather weak; therefore, the polarization effect in
question can be studied at any high energy—for example, in the range between 8 and 100 GeV.

Some Features of the Momentum Spectrum of Protons from 16Оp Collisions
at 3.25 GeV/c per Nucleon

E. Kh. Bazarov, V. V. Glagolev, K. G. Gulamov, S. L. Lutpullaev, K. Olimov, Kh. Sh. Khamidov, A. A. Yuldashev,
and B. S. Yuldashev

The momentum features of protons originating from 16Оp collisions at a momentum of 3.25 GeV/с per
nucleon are analyzed. It is shown that the degree of excitation of the fragmenting nucleus affects predominantly
the shape of the momentum spectrum of protons emitted into the backward hemisphere in the rest frame of
the target nucleus and partly the shape of the spectra of forward protons formed via the mechanisms of Fermi
breakup and evaporation.
1063-7788/05/6806-1071$26.00 c© 2005 Pleiades Publishing, Inc.
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On the Energy Spectrum of Protons Originating from 16Оp Interactions
at 3.25 GeV/c per Nucleon

E. Kh. Bazarov

New experimental data on the mechanisms that can be responsible for the emission of protons emerging
as fragments from the interactions of oxygen nuclei in a hydrogen chamber at high energies are presented.
It is shown that the anomalies observed in the energy spectrum of protons at kinetic energies in the range
70–90 MeV are associated with slow-pion absorption by a quasideuteron nucleon pair.

Interaction of Gold Nuclei with Photoemulsion Nuclei at Energies in the Range
100–1200MeV per Nucleon and the Cascade–EvaporationModel
S. D. Bogdanov, E. Ya. Shablya, S. Vokal, V. F. Kosmach, and V. A. Plyushchev

The interaction of gold nuclei with photoemulsion nuclei at energies in the range 100–1200 MeV per
nucleon was studied experimentally. A consistent comparison of the resulting experimental data with the
results of the calculations based on the cascade–evaporation model is performed.

Indirect Methods for Determining Heavy-Neutrino Masses
G. G. Boyarkina and O. M. Boyarkin

Within the two-flavor approximation, equations that relate the oscillation parameters for both light and
heavy neutrinos to the Yukawa coupling constants and the vacuum expectation values of the Higgs fields are
derived within the left–right model. The contributions from Higgs bosons to the muon anomalous magnetic
moment, to the cross sections for lepton-flavor-violating processes, and to the cross sections for low-energy
light-neutrino scattering are studied in order to determine the Yukawa coupling constants. It is shown that
the heavy-neutrino massesmN1,2 can be expressed in terms of only the triplet Yukawa coupling constants and
the mass of the gauge W2 boson. Data on direct and inverse muon decay and constraints on the masses of

the δ(−), ∆(−−)
1,2 , and W2 bosons are used to obtain bounds on mN1,2 both in the absence of degeneracy and

in the presence of mass degeneracy in the sector of heavy neutrinos. Only in the case of degeneracy are data
concerning the explanation of the (g − 2)µ anomaly used to determine bounds onmN1,2 .

Single-Spin Asymmetry in Inclusive Neutral-Pion Production in pppppp↑↑↑ Interactions at 70 GeV
in the Region−0.4 < xF < −0.1−0.4 < xF < −0.1−0.4 < xF < −0.1

A. N. Vasiliev, V. N. Grishin, A. M. Davidenko, A. A. Derevshchikov, Yu. A. Matulenko, Yu. M. Mel’nik,
A. P. Meshchanin, V. V. Mochalov, L. V. Nogach, S. B. Nurushev, A. F. Prudkoglyad, P. A. Semenov,
L. F. Solov’ev, V. L. Solovianov†, V. Yu. Khodyrev, K. E. Shestermanov, A. E. Yakutin, N. S. Borisov,
V. N. Matafonov†, A. B. Neganov, Yu. A. Plis, Yu. A. Usov, A. N. Fedorov, and A. A. Lukhanin

The single-spin asymmetry in inclusive neutral-pion production in the reaction p+ p↑ → π0 +X at 70GeV
was measured over the region specified by the inequalities −0.4 < xF < −0.1 and 0.9 < pT < 2.5 GeV/c.
According to the results of these measurements, the asymmetry is close to zero in the region −0.2 < xF <
−0.1 and grows in magnitude with decreasing xF, amounting to (−10.6 ± 3.2)% for −0.4 < xF < −0.2.

Independent Yields of Kr and Хе Appearing as Fragments in the Photofission of 237Np
and 243Am Odd Nuclei

Yu. P. Gangrsky, V. I. Zhemenik, G. V. Myshinsky, and Yu. E. Penionzhkevich

Results are presented that were obtained by measuring the independent yields of Kr (A = 89−93) and Хе
(A = 135−142) appearing as fragments in the photofission of 237Np and 243Am odd nuclei. The respective
experiments were performed in a beam of bremsstrahlung photons from electrons accelerated to an energy of
25 MeV at the microtron of the Laboratory of Nuclear Reactions at the Joint Institute for Nuclear Research

†Deceased.
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(JINR, Dubna). Use was made of the procedure involving the transportation of fragments emitted from the
target by a gas flow along a capillary and the condensation of inert gases in a cryostat at liquid nitrogen
temperature. The identification of Kr and Хе appearing as fragments was performed by the gamma spectra
of their daughter products. The mass-number distributions of the independent yields of Kr and Хе isotopes
were obtained, along with those for fragments conjugate to them (Y and La in the fission of 237Np and Nb and
Pr in the fission of 243Am).

Semimicroscopic Description of the Simplest Photonuclear Reactions Involving
the Excitation of a Giant E1 Resonance

M. L. Gorelik and M. H. Urin

A quantitative interpretation of basic properties of a giant E1 resonance is proposed within a semimicro-
scopic approach based on the random-phase approximation that takes exactly into account a single-particle
continuum and on a phenomenological description of the fragmentation effect. For somemagic and semimagic
nuclei, the calculated photoabsorption cross sections and cross sections for partial “direct + semidirect”
photoneutron reactions are compared with their experimental counterparts.

Neutrino Geophysics at Baksan: Searches for Antineutrino Sources and Sources
of Radiogenic Heat in the Earth

G. V. Domogatsky, V. I. Kopeikin, L. A. Mikaelyan, and V. V. Sinev

Antineutrinos produced in the Earth (“geoneutrinos”) carry information that is of crucial importance for
the understanding of the origin and evolution of our planet. It is shown that the Baksan Neutrino Observatory
of the Institute for Nuclear Research (Moscow, Russian Academy of Sciences) may become one of the best
laboratories for studying geoneutrinos with the aid of a large scintillation spectrometer. A brief history of the
development of concepts of the Earth as a source of antineutrinos—it dates back to 1960, spanning a period of
nearly 45 years (1960–2004)—is outlined.

Molecular Structure of Exotic Mesons
M. A. Durnev

The 0−− exotic meson state is considered as theP-wavemolecular state of the ρ′(1465) and η(550) mesons.
The mass and decay width of the 0−− exotic meson are calculated by theN/D dispersion method.

Searches for Effects of the Breakdown of Fundamental Symmetries
in Isomeric Nuclear States

S. D. Kurgalin, I. S. Okunev, T. V. Chuvil’skaya, and Yu. M. Chuvil’sky

The results of broad searches for schemes that are convenient for observing effects of time-inversion-
invariance violation (T violation) simultaneously with parity violation (PT violation) in electromagnetic
transitions in nuclei are presented. The main problems in observing such effects are discussed. A scheme
that seems the most promising for this and which is based on measuring the linear polarization of gamma
radiation accompanying the deexcitation of isomeric states of nuclei that are oriented by a magnetic field at
low temperatures is highlighted.

Yield of 8Be Originating from the Fragmentation of 10B in Emulsion at an Energy
of 1 GeV per Nucleon

F. G. Lepekhin and B. B. Simonov

The branching fraction of the channel 10B → 8Be → 2α is estimated at (18 ± 3)%, while the constants
characterizing angular distributions of product alpha particles and the distribution of the angles between
them are found to be 20.5 ± 0.7 and 31.7 ± 2.0 mrad, respectively. These values agree with their counterparts
calculated before the experiment on the basis of prevalent ideas of the limiting fragmentation of relativistic
nuclei.
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 6 2005
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Hadroproduction of High-Transverse-Momentum Bc Mesons within the kT-Factorization
Approach

A. K. Likhoded, V. A. Saleev, and D. V. Vasin

Within the kТ-factorization approach, the spectra of Bc mesons at the energies of the Tevatron and LHC
colliders are calculated on the basis of the fragmentation and fusion models. The calculations within the fusion
model are performed under the assumption of charm excitation in the proton.

Inclusive Production of a Vector Charmonium in Electron–Photon Annihilation
to Two Photons
A. V. Luchinsky

One of the processes that involve the inclusive production of a vector charmonium state, J/ψ or ψ(2S),
in electron–positron annihilation to two photons at

√
s = 10.6 GeV is considered on the basis of the color-

singlet model. Analytic expressions for the respective differential cross sections, numerical values of the total
cross sections, and graphs representing the distributions of product vector mesons with respect to their
emission angle and energy are given. It is shown that these distributions differ substantially from the analogous
distributions in the case of charmonium production in single-photon electron–positron annihilation. Owing to
this, the process being considered can readily be separated despite the smallness associated with the additional
factor of α.

Rare Radiative Leptonic Decays B̄0
d,s →→→ ���+++���−−−γ

D. I. Melikhov, N. V. Nikitin, and K. S. Toms

The rare radiative leptonic decays B̄0
d,s → �+�−γ are studied. The contributions to the respective amplitude

from the emission of photons from the quark loop, from bremsstrahlung from leptons, and from weak-
annihilation effects are taken into account in relevant calculations. Results are presented for the partial widths
and distributions of leptons in the final state. It is shown that the previously disregarded contributions of
vector resonances associated with virtual-photon emission from the light valence quark of the B meson have
a significant effect on the dilepton-mass spectra.

Static and Statistical Properties of Hot Nuclei in the Macroscopic Temperature-Dependent
Model That Takes into Account the Finiteness of Nuclear Forces

E. G. Ryabov and G. D. Adeev

The macroscopic temperature-dependent model that takes into account the finiteness of nuclear forces
is used to calculate the static and statistical properties of hot rotating compound nuclei. The level-density
parameter is approximated by an expression of the leptodermous type. The resulting coefficients are in good
agreement with their counterparts proposed previously by A.V. Ignatyuk and his colleagues. It is shown that
the simultaneous consideration of the nuclear temperature and angular-momentum effects on the quantities
under study, such as the heights and positions of fission barriers and the effective moments of inertia of nuclei
at the barrier, is important. The fissility parameter (Z2/A)crit and the position of the Businaro–Gallone point
are studied as a function of temperature. It is found that, with increasing temperature, both parameters are
shifted to the region of lighter nuclei. It is shown that the inclusion of temperature leads to qualitatively the
same effects as the inclusion of the angular momentum of a nucleus, but, quantitatively, thermal excitation
leads to smaller effects than rotational excitation.

On the Properties of Charge-Exchange Dipole Excitations and of the TTT>>> Component
of the GiantEEE1 Resonance in Spherical Nuclei

I. V. Safonov, M. L. Gorelik, and M. H. Urin

Within the semimicroscopic approach based on the random-phase approximation that takes exactly into
account a single-particle continuum and on a phenomenological inclusion of the fragmentation effect, it is
proposed to describe the strength functions for charge-exchange giant dipole resonances and cross sections
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for photoabsorption and for partial “direct+ semidirect” (γ, p) reactions in the vicinity of a giantE1 resonance
with allowance for the isospin-splitting effect. The results of the calculations performed for some magic and
semimagic nuclei without resort to free parameters are compared with available experimental data.

On Solving Nonhomogeneous Bethe–Salpeter Equations
S. S. Semikh, S. M. Dorkin, M. Bayer, and L. P. Captar’

A new method for solving nonhomogeneous Bethe–Salpeter equations is developed. The method is based
on expanding the interaction amplitudes and kernels in a basis of four-dimensional spherical harmonics and is
applicable both to scalar and to spinor equations. The method is explained in detail for the nonhomogeneous
Bethe–Salpeter equation for scalar particles in the ladder approximation. The calculated model phase shifts
are in good agreement with the results reported previously.

Project of a Large Superconductor Detector—Calorimeter Where Hot-Electron Diffusion
is One-Dimensional

V. S. Shpinel

Over the past few years, radically new detectors for soft x-ray and gamma radiation have been created
on the basis of superconducting tunnel transitions. These detectors made it possible to obtain a very high
resolution, but the maximum area of the detectors in question was overly small for them to be applied in nuclear
spectroscopy. The present study is devoted to the problem of creating a comparatively large superconductor
detector for recording photons that is appropriate for applications in different regions. The detector will
consist of three parts: an absorber, a calorimeter for hot electrons, and a thermometer based on a tunnel
transition (normal metal–dielectric–superconductor). The absorber has a multilayer structure consisting of
thin superconductor layers that are arranged in the order of the change in the superconductor energy gap
∆. This structure specifies a direction of hot-electron diffusion. Owing to the fact that quasiparticle diffusion
occurs in a specific direction, the diffusion time is shorter than in the case of ordinary diffusion. It is necessary
that this time be shorter than the time of electron–phonon interaction. Calculations of the diffusion time that
were performed for a specific structure and data available in the literature for electron–phonon interaction show
that the working area of the detector may reach 3 to 4 mm2, while its thickness may be about 1 mm. These
dimensions can be increased considerably in the case of especially pure superconductors.

Determination of the Quark–Antiquark Components of the Photon Wave Function
for u, d, and sQuarks

A. V. Anisovich, V. V. Anisovich, L. G. Dakhno, V. A. Nikonov, and A. V. Sarantsev

Based on the data for the transitions π0, η, η′ → γγ∗(Q2) and reactions of the e+e− annihilations, e+e− →
ρ0, ω, φ and e+e− → hadrons at 1 < Ee+e− < 3.7 GeV, we determine the light-quark components of the
photon wave function γ∗(Q2) → qq̄ (q = u, d, s) for the region 0 � Q2 � 1 (GeV/c)2.

Study of the pdpdpd Reaction at Ultralow Energies Using Hydrogen Liner Plasma
V. M. Bystritsky, Vit. M. Bystritskii, G. N. Dudkin, V. V. Gerasimov, A. R. Krylov, G. A. Mesyats, B. A. Nechaev,

V. M. Padalko, S. S. Parzhitsky, F. M. Pen’kov, N. A. Ratakhin, and J. Wozniak

The present work is devoted to the study of the pd reaction (pd → 3He + γ(5.5 MeV)) in the range of
astrophysical energies of collisions of protons with deuterons using a hydrogen liner in the inverse Z-pinch
configuration at the pulsed-power generator MIG (HCEI, Tomsk). Fundamental characteristics of this
and other reactions with light nuclei at ultralow energies are important for problems of basic physics and
astrophysics. The knowledge of the energy distribution of the nuclei participating in these reactions is
important due to their exponential type of dependence on the collision energy. Two experimental techniques
were designed and tested for recovering the energy distribution of liner protons incident on the CD2 target
by using optical detectors and ion collectors. It is shown that the combined use of these two techniques
could provide relevant information on the energy distribution of accelerated protons in a liner. Estimates of
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the upper limits on the astrophysical S factor and the effective cross section for the pd reaction in the proton–
deuteron collision energy range of 2.7–16.7 keV are obtained: S̄pd(Epd = 10.2 keV) ≤ 2.5 × 10−7 MeV b and
σ̃pd(2.7 ≤ Epd ≤ 16.7 keV) ≤ 4 × 10−33 cm2.

Fundamental–Electroweak Scale Hierarchy in the Standard Model
C. D. Froggatt, L. V. Laperashvili, and H. B. Nielsen

The multiple-point principle, according to which several vacuum states with the same energy density exist,
is put forward as a fine-tuningmechanism predicting the ratio between the fundamental and electroweak scales
in the Standard Model (SM). It is shown that this ratio is exponentially huge: ∼e40. Using renormalization
group equations for the SM, we obtain the effective potential in the two-loop approximation and investigate
the existence of its postulated second minimum at the fundamental scale. The investigation of the evolution
of the top-quark Yukawa coupling constant in the two-loop approximation shows that, with initial values of
the top-quark Yukawa coupling in the interval h(Mt) = 0.95 ± 0.03 (here, Mt is the top-quark pole mass), a
second minimum of the SM effective potential can exist in the region φmin 2 ≈ 1016−1022 GeV. A new bound
state of six top-quarks and six antitop quarks, formed owing to Higgs boson exchanges between pairs of
quarks/antiquarks, is predicted to exist. This bound state is supposed to condense in a new phase of the SM
vacuum. This gives rise to the possibility of having a phase transition between vacua with and without such
a condensate. The existence of three vacuum states (new, electroweak, and fundamental) solves the hierarchy
problem in the SM.

Comparative Analysis of the 178m2178m2178m2Hf Yield in Reactions with Various Projectiles
S. A. Karamian

The long-lived high-spin 178m2Hf K isomer can be produced in nuclear reactions with various projectiles.
The reaction yields and cross sections were measured in a series of experiments and the results are now
reviewed. The systematics of isomer-to-ground state ratios is composed and real production capabilities are
estimated for the best reactions. Such a summary is relevant to the significance of the isomer studies both for
nuclear-science knowledge and for possible applications. Potential isomer applications were earlier stressed in
popular publications with probably overestimated expectations. The real possibilities are restricted in part by
the production yield and by other shortcomings as well.

Can Centauros or Chirons Be the First Observations of EvaporatingMini Black Holes?
A. D. Mironov, A. Yu. Morozov, and T. N. Tomaras

We argue that signals expected from the evaporation of mini black holes—predicted in TeV-gravity models
with large extra dimensions and possibly produced in ultrahigh-energy collisions in the atmosphere—are quite
similar to the characteristics of Centauro events, an old mystery of cosmic-ray physics.

Production and Decay of Charmed Baryons: Spectra of Muons and Asymmetry
between µ+++ and µ−−−

N. V. Nikitin and O. I. Piskounova

The spectra of muons from the decay of Λc baryons were calculated on the basis of the description of
recent data on charmed-baryon production in hadronic interactions. Data are described in the framework of
the quark–gluon string (QGS) model that allows us to consider primary proton interactions at arbitrary high
energy. AMonte Carlo codewas built for charmed-baryon semileptonic decay in order to obtain the kinematical
characteristics of resulting particles. It is predicted that the charge asymmetry between the energy spectra of
µ+ and µ− in the laboratory system is clearly seen as the consequence of asymmetry between the spectra of
charmed baryons and antibaryons. This extension of the QGSmodel can be used to correct the calculations of
muon and neutrino spectra in astrophysics.
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Special Case of Sunset: Reduction and ε Expansion
A. Onishchenko and O. Veretin

We consider two-loop sunset diagrams with two mass scalesm andM at the threshold and pseudothresh-
old that cannot be treated by earlier published formulas. The complete reduction to master integrals is given.
The master integrals are evaluated as series in the ratio m/M and in ε with the aid of a differential-equation
method. The rules of asymptotic expansion in the case where q2 is at the (pseudo)threshold are given.

Gravity as the Affine Goldstone Phenomenon and Beyond
Yu. F. Pirogov

The two-phase structure is imposed on the world continuum, with the graviton emerging as a tensor
Goldstone boson during the spontaneous transition from the affinely connected phase to the metric one.
The physics principle of metarelativity, extending the respective principle of special relativity, is postulated.
The theory of metagravitation as the general nonlinear model GL(4, R)/SO(1, 3) in the arbitrary background
continuum is built. The concept of the Metauniverse as the ensemble of the regions of the metric phase inside
the affinely connected phase is introduced, and the possible bearing of the emerging multiple universes to the
fine tuning of our Universe is conjectured.

Dibaryon Model for Nuclear Force and the Properties of the Three-Nucleon System
V. N. Pomerantsev, V. I. Kukulin, V. T. Voronchev, and A. Faessler

The dibaryon model for NN interaction that supposes the formation of an intermediate six-quark bag
dressed with a σ field is applied to the 3N system, where it results in a new three-body force of scalar
nature between the six-quark bag and a third nucleon. A new multicomponent formalism is developed
to describe three-body systems with nonstatic pairwise interactions and nonnucleonic degrees of freedom.
Precise variational calculations of 3N bound states are carried out in the dressed-bag model including the new
scalar three-body force. It is shown that this three-body force gives at least half the 3N total binding energy,
while the weight of nonnucleonic components in the 3H and 3He wave functions can exceed 10%. The new
force model provides a very good description of 3N bound states with a reasonable magnitude of the σNN
coupling constant. A new Coulomb 3N force between the third nucleon and a dibaryon is found to be very
important for a correct description of the Coulomb energy and the root-mean-square charge radius in 3He. In
view of the new results for the Coulomb displacement energy obtained here for A = 3 nuclei, an explanation
for the long-term Nolen–Schiffer paradox in nuclear physics is suggested. The role of the charge-symmetry
breaking effects in the nuclear force is discussed.

Measurements of the Total-Cross-Section Difference∆σLLL(np)(np)(np)
at 1.39, 1.69, 1.89, and 1.99 GeV

V. I. Sharov, N. G. Anischenko, V. G. Antonenko, S. A. Averichev, L. S. Azhgirey, V. D. Bartenev,
N. A. Bazhanov, A. A. Belyaev, N. A. Blinov, N. S. Borisov, S. B. Borzakov, Yu. T. Borzunov, Yu. P. Bushuev,
L. P. Chernenko, E. V. Chernykh, V. F. Chumakov, S. A. Dolgii, A. N. Fedorov, V. V. Fimushkin, M. Finger,
M. Finger, Jr. , L. B. Golovanov, G. M. Gurevich, A. Janata, A. D. Kirillov, V. G. Kolomiets, E. V. Komogorov,
A. D. Kovalenko, A. I. Kovalev, V. A. Krasnov, P. Krstonoshich, E. S. Kuzmin, V. P. Ladygin, A. B. Lazarev,
F. Lehar, A. de Lesquen, M. Yu. Liburg, A. N. Livanov, A. A. Lukhanin, P. K. Maniakov, V. N. Matafonov,
E. A. Matyushevsky, V. D. Moroz, A. A. Morozov, A. B. Neganov, G. P. Nikolaevsky, A. A. Nomofilov,

Tz. Panteleev, Yu. K. Pilipenko, I. L. Pisarev, Yu. A. Plis, Yu. P. Polunin, A. N. Prokofiev, V. Yu. Prytkov,
P. A. Rukoyatkin, V. A. Schedrov, O. N. Schevelev, S. N. Shilov, R. A. Shindin, M. Slunečka, V. Slunečková,

A. Yu. Starikov, G. D. Stoletov, L. N. Strunov, A. L. Svetov, Yu. A. Usov, T. Vasiliev, V. I. Volkov, E. I. Vorobiev,
I. P. Yudin, I. V. Zaitsev, A. A. Zhdanov, and V. N. Zhmyrov

New accurate data on the neutron–proton spin-dependent total-cross-section difference ∆σL(np) at the
neutron-beam kinetic energies of 1.39, 1.69, 1.89, and 1.99 GeV are presented. In general, these data complete
the measurements of the energy dependence of the∆σL(np) over the Dubna Synchrophasotron energy region.
The measurements were carried out at the Synchrophasotron of the Veksler and Baldin Laboratory of High
Energies at the Joint Institute for Nuclear Research. A quasimonochromatic neutron beam was produced
by breakup of extracted polarized deuterons. The deuteron (and hence neutron) polarization direction was
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flipped every accelerator burst. The neutron vertical direction of polarization was rotated onto the neutron
beam direction and longitudinally (L) polarized neutrons were transmitted through a large proton L-polarized
target. The longitudinal target-polarization direction was reversed after one to two days of measurements. Four
different combinations of the beam and target parallel and antiparallel polarization directions, both oriented
along the neutron beam momentum, were used at each energy. A fast decrease in −∆σL(np) with increasing
energy above 1.1 GeV and a structure in the energy dependence around 1.8 GeV, first observed from our
previous data, seem well revealed. The new results are also compared with model predictions and with phase-
shift-analysis fits. The ∆σL quantities for isosinglet state I = 0, deduced from the measured ∆σL(np) values
and known ∆σL(pp) data, are also given. The results of the measurements of unpolarized total cross sections
σ0tot(np) at 1.3, 1.4, and 1.5 GeV and σ0tot(nC) at 1.4 and 1.5 GeV are presented as well. These data were
obtained by using the same apparatus and high-intensity unpolarized deuteron beams extracted either from
the synchrophasotron or from the nuclotron.
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Isotopic Dependence of the Shape of Se Nuclei
in the Collective-Model Representation
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Abstract—The energy structure of low-lying excited states in the nuclei of even selenium isotopes is
considered on the basis of a soft-nucleus model. The nuclei are treated as nonaxial rotors, longitudinal
and transverse vibrations of their surface being taken into account in the quadrupole-deformation ap-
proximation featuring an admixture of an octupole deformation. The parameters of a phenomenological
collective model for the 72,74,76,78,80,82Se nuclei are found both in the case of β vibrations (longitudinal
vibrations) and in the presence of additional γ vibrations (transverse vibrations) of the nuclear surface.
c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Various modes of motion (for example, single-
particle and collective ones) may coexist in nuclei. An
especially wide variety of modes are expected in nuclei
where the number Z of protons or the number N of
neutrons (or both of them) occurs in the middle of
the gap between their magic values. Nuclei of even
selenium isotopes belong to this type (Z = 34, N =
38–48).
The collective character of a nuclear-motion mode

manifests itself first of all in values of nuclear-surface
deformation [1–3], as well as the generation of var-
ious excited-mode components in the configuration
space of a generalized model [4]. The second case
can be reduced to specifying the nuclear shape in
terms of, for example, the total nuclear deformation
β and the nonaxiality γ for various multipolarities. If
the observed static quadrupole moments of excited
2+
1 states in the nuclei of even selenium isotopes
are indicative of a longitudinal deformation of these
nuclei [5], then the structure of the energy spectra
suggests their nonaxiality and softness with respect
to β vibrations of the surface [6]. The aforementioned
properties of selenium nuclei (especially of 76,78Se)
were confirmed by experiments devoted to studying
the scattering of nuclear particles on these nuclei.
We note that the choice of a collective model for
treating their low-lying excited states affects signif-
icantly the quality of the description of experimental
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data on the dynamics of nucleon–nucleus scatter-
ing [7, 8]. In particular, the second 2+ and 0+ states
in 76Se are interpreted in the rotational–vibrational
model as the beginnings of, respectively, the β and
the γ vibrational band [9, 10]. Within the Davydov–
Chaban and Davydov–Kashuba–Porodzinsky col-
lective models (see [1] and [3], respectively), however,
these states are considered in the quadrupole approx-
imation (λ = 2) as the beginning of the first anoma-
lous band in the former case and as the beginning
of the first rotational–vibrational band in the latter
case, the longitudinal and transverse softness of the
nonaxial 76Se nucleus being taken into account here.
The isotopic dependence of the parameters of the

optical nucleon–nucleus potential for even selenium
isotopes was previously studied in [11]. The poten-
tial of the model proposed there can be extended
significantly by taking into account spectroscopic
and dynamical information within a unified approach,
since the same parameters of the nuclear shape are
used both in nuclear spectroscopy and in problems of
nucleon–nucleus scattering.
Even–even nuclei in the Ge–Se mass range are

characterized by the instability of their shape and
the presence of an I = 3 (I is the spin of a level)
negative-parity level among the lowest states of the
nuclei, which is a level that can be interpreted as the
beginning of the octupole (λ = 3) rotational band.
Various versions of the collective model [8, 9]—the
harmonic and anharmonic vibrational models (HVM
and AVM), the rotational–vibrational model (RVM),
and the asymmetric rotational model (ARM), as well
as their modifications [3, 7, 8]—were used to study the
nature of 2+

2 and 3−1 states.
That the quadrupole-deformation parameter for

the 76Se nucleus has a value of β ≈ 0.3 [12] casts
c© 2005 Pleiades Publishing, Inc.
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some doubt upon the applicability of the harmonic
rotational model to this nucleus in a pure form, the
more so as the large quadrupole moment of the 2+

1
state [5] is indicative of a static deformation of the
76Se nucleus. As to describing the states of the (2+

2 ,
4+
1 , 0

+
2 ) triplet, there arise difficulties here as well. In

particular, it follows from data on nucleon scattering
by 76,80Se nuclei [9, 10] that the 0+

2 state is less
collectivized in 80Se than in 76Se; that is, the nature
of the 0+

2 state is dependent on the neutronic com-
position of a selenium isotope, but there is no such
dependence in the harmonic model. In all probability,
this applies, to some extent, to other even selenium
isotopes as well. In nuclei, it is therefore necessary to
take into account the existence of closed structures
such that the addition of a pair of neutrons to them
may manifest itself in a phenomenological pattern as
a smooth variation ofmodel parameters in response to
a transition from one isotope to another or in response
to a variation in the spin and energy of an excited
nuclear state [13, 14].

2. COLLECTIVITY OF A MODE
AND SOFTNESS OF NUCLEUS

Interest in collective modes in soft nuclei is as-
sociated with unsolved problems in describing finite
Fermi systems that involve large shape fluctuations.
Models based onmapping fermion dynamics to boson
variables [15] are used in a number of studies to
describe the structure of such nuclei. The total defor-
mation of a nucleus is then determined primarily by its
deformation and the tensors of orientation of respec-
tive multipole moments [16], while the shape of the
dynamical deformation is controlled by the nuclear-
reactionmechanism. For nuclei whosemass numbers
lie in the vicinity of A ∼ 80, dynamical-deformation
theory [17] predicts, for low-lying states, large three-
dimensional deformations of nuclei. At a model level,
this is manifested in the tensor character of the mass
parameter Bµν in the kinetic-energy operator in the
collective Hamiltonian.
The existence of collective and noncollective

modes in nuclei and the competition between these
modes manifest themselves in the variation of the
nuclear shape upon the transition from one isotope
(or state) to another. This issue was also considered
in detail in exploring the energy-band structures in
74Se [18] and 184Os [19], and it was shown that the
inclusion of the γ softness of nuclei enhances the
degree of nonconservation of the projection K of the
excited-state spin onto the nuclear-symmetry axes
and, hence, affects the identification of the energy
bands of excited nuclear states.
Since a nuclear potential is sensitive to three-

dimensional deformability [18] (and, hence, to the
PH
transverse softness of a nucleus), electromagnetic
transitions in nuclei may also be different in na-
ture, this being confirmed by calculations within the
interacting-boson model [20]: for example, the elec-
tric quadrupole transition from levels of the β band to
levels of the ground-state band may be noncollective,
while the transition to levels of the γ band may be
collective.
In describing the lowest excited nuclear states,

which are characterized by the quantum numbers 2+
1

and 0+
2 , one must of course take into account the

ground-state properties of the respective nuclei [4].
In particular, the wave vector of the 0+

2 state can be
represented, irrespective of the nuclear shape, as a
superposition of two components such that, of these,
either can be dominant, depending on in which of
the variables β and γ the nucleus being considered is
softer. Data on the processes where (p, p′) and (n, n′)
scattering on even selenium isotopes is accompanied
by the excitation of the 3−1 state are indicative of the
change in the shape of the nucleus involved [10] as it
is deexcited, which is confirmed within the asymmet-
ric rotational model by the difference in the nuclear-
nonaxiality parameters for the 2+

1 and 2+
2 states.

3. MODEL DESCRIPTION OF THE SPECTRA
OF EVEN SELENIUM ISOTOPES

The isotopic dependence of the energy normal-
ization factor �ω0 and of the nonaxiality parameter
γ0 for a nucleus in the ground state (or the effective
nonaxiality parameter γeff, which has the same value
for all states of a given nucleus) was previously es-
tablished in [6, 11] for even selenium isotopes in the
quadrupole-deformation approximation (λ = 2); also,
the isotopic dependence of the longitudinal-nuclear-
softness parameter µβ was found there within the
Davydov–Chaban model for the ground-state and
the anomalous β band. By introducing, in the Hamil-
tonian of the model, the γ deformability of the nuclear
surface as an extra parameter (Davydov–Kashuba–
Porodzinsky model), one modifies the parameters of
the Davydov–Chaban model and has to assign nu-
clear states, in addition to the quantum number nβ =
0, 1, . . . , which labels the energy bands of longi-
tudinal vibrations, the quantum number nγ = 0, 1,
. . . , which directly participates in the identification of
excited nuclear states and, hence, in the construction
of its energy-band structure. As a result, the energy
of excited states of an even–even nucleus in the
quadrupole-deformation approximation (λ = 2) can
be represented in the form [3]

EIτnβnγ

�ω0
=

{(
νIτnβnγ +

1
2

)√
4 − 3

pIτnγ
YSICS OF ATOMIC NUCLEI Vol. 68 No. 6 2005



ISOTOPIC DEPENDENCE OF THE SHAPE OF Se NUCLEI 911
+
1
2

(
µβ
pIτnγ

)2

εIτnγ

[
1 +

(
µβ
pIτnγ

)4

εIτnγ

]}
,

where I is the angular momentum of the nuclear state
being considered and τ is the ordinal number of the
eigenvalue of the rigid-nonaxial-rotor operator for a
given spin I [in our case, the inclusion of an oc-
tupole (λ = 3) deformation requires introducing the
quantum number nξ, which takes the value of unity
in describing octupole vibrations and which is equal
to zero for quadrupole deformations]. The quantities
νIτnβnγ are defined as the eigenvalues for parabolic-
cylinder functions in the presence of longitudinal and
transverse vibrations and of their coupling to the ro-
tation of a deformed nonaxial nucleus. The energies
εIτnγ are obtained by solving the eigenvalue problem
specified by a set of coupled equations in the space
of variables β and (γ, θ̂) and by subsequently taking
into account (γ, θ̂) coupling within perturbation the-
ory (θ̂ ≡ (θ1, θ2, θ3) are Euler angles). The quantity
pIτnγ can be considered as a parameter that takes
into account the presence of γ vibrations (nγ �= 0),
along with β vibrations, in the Davydov–Kashuba–
Porodzinsky model and is defined as the ratio of the
longitudinal-nuclear-deformation parameter βIτnγ in
the state specified by the quantum numbers I, τ , and
nγ to the value β0 of the longitudinal-deformation
parameter for the ground state of the nucleus being
considered.
The levels of nuclei studied here are given in the

first columns of Tables 1–6 (Nlevel). The experimental
levels used as a basis in determining model param-
eters are labeled with an asterisk either in the Eexptlevel
columns (Tables 1, 5, 6) if the same set of basis exper-
imental levels, together with their quantum numbers
and energies, is used for all models considered here or
in the Etheorlevel columns (Tables 2, 3, 4) if different sets
of experimental levels are used as a basis in different
models.

3.1. 72Se

Investigations of the 72Se nucleus did not provide
a clear answer to the question of whether collective
models are applicable to describing the energy struc-
ture of this nucleus. In addition to the ground state of
spin equal to zero and positive parity, only one state
Nlevel = 3 (Table 1) of spin–parity 0+, which, with-
in the Davydov–Kashuba–Porodzinsky model, could
be the beginning of the band of transverse quadrupole
vibrations, was discovered among the lowest excited
states [21].
Because of the absence of a state on which the

band of longitudinal quadrupole vibrations could be
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 6 200
built, the parameter µβ cannot be unambiguously
determined. First, the use of the state Nlevel = 10 for
a basis state leads to an unjustifiable overestimation
of µβ ; second, model calculations predict Iπ = 2+ for
this state, while experiments lead to a dubious spin
value of I = 3 for it, the parity remaining without
a proper determination. For the state Nlevel = 6, the
experimental value is I = 2 or 4; however, theoret-
ical calculations, both those that are based on the
Davydov–Chaban model and those that are based
on the Davydov–Kashuba–Porodzinsky model, yield
Iπ = 3+ (the latter is an elaboration of the former;
therefore, the parameters of the Davydov–Chaban
model are used as input values in optimizing the
parameters of the Davydov–Kashuba–Porodzinsky
model).
For basis levels, we choose those experimental

levels that are pure in the spin I and in the quantum
numbers τ and nβ within the Davydov–Chaban
model and in the additional quantum number nγ
within the Davydov–Kashuba–Porodzinsky model.
On the basis of these levels, model parameters and
the energies of excited states were obtained for 72Se
(Table 1), the quantum numbers used to identify
respective levels according to energy bands being
indicated for these states.
The introduction of hard hexadecapole (λ = 4) de-

formations enables one to improve the description
of the energies of high-spin (I > 8) levels for the
lowest rotational band, but this spoils the description
of the lowest states of other bands. The introduction
of symmetric octupole (λ = 3) deformations [8] made
it possible to describe the lowest experimental levels
of negative parity (Nlevel = 8 and 12). However, this
identification of states is ambiguous because the ex-
perimental levelNlevel = 7 or 8 can be associated with
the Etheorlevel = 2.4156MeV state. There arises a similar
situation in comparing the model level at Etheorlevel =
2.9909MeVwith the energy of the experimental state
Nlevel = 11 or 12.
The transverse-softness parameter µKPγ from [3]

involves the total deformation β0 as a factor, differing
by this factor from the analogous parameter µDChγ

from [1]; that is, µDChγ = β0µ
KP
γ . The parameter µDChγ

within the Davydov–Kashuba–Porodzinsky model is
determined for 72Se by using the level Nlevel = 3 as
the beginning of the first γ vibrational band, which is
initiated by the transverse deformability of the nuclear
surface.

3.2. 74Se

The energy structure of the 74Se nucleus has not
yet received adequate study either in a theoretical or
5
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Table 1. Features of the excited states of the 72Se nucleus (experimental and model results)

Nlevel
Experiment [21] DChM (λ = 2) DKPM (λ = 2 and 3)

E
expt
level, MeV Iπ

level Etheor
level , MeV Iπ

level τ nβ Etheor
level , MeV Iπ

level τ nβ nγ nξ

1 0.0 0+ 0.0 0+ 1 0 0.0 0+ 1 0 0 0

2 0.86208∗ 2+ 0.8377 2+ 1 0 0.8265 2+ 1 0 0 0

3 0.93722 0+ 0.9372 0+ 1 0 1 0

4 1.31668∗ 2+ 1.3599 2+ 2 0 1.3485 2+ 2 0 0 0

5 1.63686∗ 4+ 1.6511 4+ 1 0 1.6360 4+ 1 0 0 0

6 1.87620 (2, 4) 1.7854 3+ 1 0 1.7732 3+ 1 0 0 0

7 2.40573 3−

8 2.43376 3− 2.4156 3− 1 0 0 1

9 2.46677∗ 6+ 2.4862 6+ 1 0 2.4704 6+ 1 0 0 0

10 2.58642 (3) 2.5492 2+ 1 1 2.5261 2+ 1 1 0 0

11 2.843 5−

12 2.965 2.9909 5− 1 0 0 1

13 3.4248∗ 8+ 3.3335 8+ 1 0 3.3216 8+ 1 0 0 0

14 4.5043 10+ 4.1991 10+ 1 0 4.1943 10+ 1 0 0 0

15 5.7097 12+ 5.0734 12+ 1 0 5.0741 12+ 1 0 0 0

16 7.0381 14+ 5.9582 14+ 1 0 5.9688 14+ 1 0 0 0

Parameter DChM (λ = 2) DKPM (λ = 2 and 3)

�ω0, MeV 1.0663 1.0663

µβ 0.9852 0.9852

γ0, rad/deg 0.4341/24.9 0.4341/24.9

β0 – 0.236

µDChγ = β0µ
KP
γ – 0.2098

∗ Experimental levels used to determine the collective-model parameters.
in an experimental aspect. This especially concerns
high-spin states and results, in particular, in some
discrepancies between information contained in the
compilation of Fahran [22] and information given in
the study of Döring et al. [18]. For example, not only
did the authors of [18] refine the quantum-mechanical
properties of the 74Se nucleus, but they also arrived
at the unambiguous conclusion, on the basis of the
Hartree–Fock–Bogolyubov approach, that this nu-
cleus has a deformed shape and features a signifi-
cant softness in all three spatial axes. The application
of the Davydov–Chaban or the Davydov–Kashuba–
Porodzinsky model to the nucleus in question also
confirms the conclusions drawn in [18]: the longitu-
dinal and the transverse softness of the 74Se nucleus
are both quite sizable, and there is a correction for
P

deformations that are associated with higher multi-
polarities (see Table 2).

The application of theDavydov–Kashuba–Porod-
zinsky model to the 74Se nucleus made it possible to
describe the band of negative-parity levels (Nlevel =
12, 15, 18, 22) by employing the assumption of
its octupole deformation (λ = 3) characterized by
the quantum number nξ [8] and to refine the spins
and parities of the excited states Nlevel = 11, 13,
17, 20–22.

As to the levelNlevel = 24 (Table 2), it follows from
the calculations based on the Davydov–Kashuba–
Porodzinsky model that it belongs to the octupole
band built on the level Nlevel = 12 and that it can
be assigned a spin of I = 11 and a negative parity.
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 6 2005
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Table 2. Features of the excited states of the 74Se nucleus (experimental and model results)

Nlevel
Experiment [18, 22] DChM (λ = 2) DKPM (λ = 2 and 3)

E
expt
level, MeV Iπ

level Etheor
level , MeV Iπ

level τ nβ Etheor
level , MeV Iπ

level τ nβ nγ nξ

1 0.0 0+ 0.0 0+ 1 0 0.0 0+ 1 0 0 0

2 0.635 2+ 0.622∗ 2+ 1 0 0.5987∗ 2+ 1 0 0 0

3 0.854 0+ 0.8538 0+ 1 0 1 0

4 1.269 2+ 1.258∗ 2+ 2 0 1.243 2+ 2 0 0 0

5 1.363 4+ 1.417∗ 4+ 1 0 1.397∗ 4+ 1 0 0 0

6 1.6574 0+ 1.581 0+ 1 0 1.630∗ 0+ 1 1 0 0

7 1.838 2+

8 1.884 3+ 1.629 3+ 1 0 1.613 3+ 1 0 0 0

9 2.108 4+ 2.299 4+ 2 0 2.279 4+ 2 0 0 0

10 2.2314 6+ 2.251∗ 6+ 1 0 2.2461∗ 6+ 1 0 0 0

11 2.314 (2+) 2.346 2+ 1 1 2.356 2+ 1 1 0 0

12 2.349 3− 2.166 3− 1 0 0 1

13 2.379 (1, 2+) 2.356 2+ 1 1 0 0

14 2.661 5+ 2.560 5+ 1 0 2.552 5+ 1 0 0 0

15 2.842 5− 2.787 5− 1 0 0 1

16 3.198 8+ 3.130∗ 8+ 1 0 3.122 8+ 1 0 0 0

17 3.253 (2–6) 3.272 4+ 1 1 0 0

18 3.516 7− 3.512 7− 1 0 0 1

19 3.525 7+ 3.552 7+ 1 0 3.565 7+ 1 0 0 0

20 3.980 (6+) 4.222 6+ 1 1 0 0

21 4.256 (10+) 4.040 10+ 1 0 4.059 10+ 1 0 0 0

22 4.403 (9−) 4.253 9− 1 0 0 1

23 4.449 9+ 4.558 9+ 1 0 4.599 9+ 1 0 0 0

24 5.492 11+ 5.107 11− 1 0 0 1

25 5.443 12+ 4.981 12+ 1 0 5.023 12+ 1 0 0 0

Parameter DChM (λ = 2) DKPM (λ = 2 and 3)

�ω0, MeV 1.3592 1.4301

µβ 0.5756 0.5499

γ0, rad/deg 0.4341/24.9 0.4341/24.9

β0 – 0.236

µDChγ = β0µ
KP
γ – 0.2606

∗ Experimental levels used to determine the collective-model parameters.
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 6 2005
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Table 3. Features of the excited states of the 76Se nucleus (experimental and model results)

Nlevel
Experiment [26] DChM (λ = 2) DKPM (λ = 2) DKPM (λ = 2 and 3)

E
expt
level, MeV Iπ

level Etheor
level , MeV Iπ

level τ nβ Etheor
level , MeV Iπ

level τ nβ nγ Etheor
level , MeV Iπ

level τ nβ nγ nξ

1 0.0 0+ 0.0 0+ 1 0 0.0 0+ 1 0 0 0.0 0+ 1 0 0 0

2 0.5591 2+ 0.5518∗ 2+ 1 0 0.5345 * 2+ 1 0 0 0.5414∗ 2+ 1 0 0 0

3 1.1223 0+ 1.1223∗ 0+ 1 0 1 1.1223∗ 0+ 1 0 1 0

4 1.2161 2+ 1.2115∗ 2+ 2 0 1.2246 * 2+ 2 0 0 1.2133∗ 2+ 2 0 0 0

5 1.3309 4+ 1.3654∗ 4+ 1 0 1.3944 * 4+ 1 0 0 1.4008∗ 4+ 1 0 0 0

6 1.6889 (3)+ 1.6020 3+ 1 0 1.6535 * 3+ 1 0 0 1.6480∗ 3+ 1 0 0 0

7 1.7876 2+ 1.5101 2+ 1 0 1 1.5145 2+ 1 0 1 0

8 2.1272 (2+) 2.2035 4+ 1 0 1 2.2085 4+ 1 0 1 0

9 2.1706 (0+) 1.9316 0+ 1 1 2.0182 * 0+ 2 1 0 2.0182∗ 0+ 1 1 0 0

10 2.2623 6+ 2.2727∗ 6+ 1 0 2.3900 6+ 1 0 0 2.3948 6+ 1 0 0 0

11 2.3629 (2+, 3, 4+) 2.3188 4+ 2 0 2.4032 4+ 2 0 0 2.4144 4+ 2 0 0 0

12 2.4291 3− 2.4287 3− 1 0 0 1

13 2.4886 (5)+ 2.6195 5+ 1 0 2.7651 5+ 1 0 0 2.7703 5+ 1 0 0 0

14 2.5147 (2+) 2.6322 2+ 1 1 2.5193 2+ 1 1 0 2.5325 2+ 1 1 0 0

15 2.8248 5− 3.0041 5− 1 0 0 1

16 3.2250 (4+, 5+) 3.6063 4+ 1 1 3.3604 4+ 1 1 0 3.3723 4+ 1 1 0 0

17 3.2695 8+ 3.2646∗ 8+ 1 0 3.5244 8+ 1 0 0 3.5291 8+ 1 0 0 0

18 3.4416 7− 3.7207 7− 1 0 0 1

19 4.2994 10+ 4.3127 10+ 1 0 4.6863 10+ 1 0 0 4.7064 10+ 1 0 0 0

20 4.3246 9− 4.6202 9− 1 0 0 1

21 5.4294 12+ 5.4171 12+ 1 0 6.0191 12+ 1 0 0 6.0452 12+ 1 0 0 0

Parameter DChM (λ = 2) DKPM (λ = 2) DKPM (λ = 2 and 3)

�ω0, MeV 1.8476 1.796 1.796

µβ 0.4395 0.533 0.533

γ0, rad/deg 0.4293/24.6 0.4039/23.1 0.4039/23.1

β0 – 0.236 0.236

µDChγ = β0µ
KP
γ – 0.2603 0.2603

∗ Experimental levels used to determine the collective-model parameters.
However, the experimentally observed levels of 74Se
do not include a level that would have a negative
parity and which would be close on the energy scale to
the theoretically predicted level. In all probability, this
discrepancy between the experimental and the theo-
retical parity is due to the impossibility of observing
the corresponding level because of the smallness of its
intensity in relation to the intensity of the Iπ = 11+

state. The choice of various sets of basis levels affects
P

the numerical values of the model parameters and the
quality of the agreement between the theoretical val-
ues of the energies of states and their experimentally
measured counterparts.

3.3. 76Se
The energy-level bands of the 76Se nucleus (Z =

34, N = 42) were studied in many reactions for ex-
ample, 76Gе(α, 2nγ) [23], 76Se(16O, 16O′) [5], and
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 6 2005
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Table 4. Features of the excited states of the 78Se nucleus (experimental and model results)

Nlevel
Experiment [27] DChM(1) (λ = 2) DChM(2) (λ = 2) DKPM (λ = 2 and 3)

Eexpt
level, MeV Iπ

level Etheor
level , MeV Iπ

level τ nβ Etheor
level , MeV Iπ

level τ nβ Etheor
level , MeV Iπ

level τ nβ nγ nξ

1 0.0 0+ 0.0 0+ 1 0 0.0 0+ 1 0 0.0 0+ 1 0 0 0

2 0.6138 2+ 0.6137∗ 2+ 1 0 0.6089 * 2+ 1 0 0.6009∗ 2+ 1 0 0 0

3 1.3086 2+ 1.3091∗ 2+ 2 0 1.3035 * 2+ 2 0 1.2889∗ 2+ 2 0 0 0

4 1.4986 (0+) 1.4985 0+ 1 0 1 0

5 1.5026 (4+) 1.5071∗ 4+ 1 0 1.5162∗ 4+ 1 0 1.4974∗ 4+ 1 0 0 0

6 1.7587 (0+, 1, 2) 1.7478 3+ 1 0 1.7570 3+ 1 0 1.7385 3+ 1 0 0 0

7 1.9960 (2+) 1.9317 2+ 1 0 1 0

8 2.1903 2.1481 0+ 1 1

9 2.3346 (0+, 1, 2) 2.3279∗ 0+ 1 1 2.3279∗ 0+ 1 1 0 0

10 2.5076 3− 2.5076 3− 1 0 0 1

11 2.5374 (0+,1,2) 2.5748 4+ 2 0

12 2.5387 (6+) 2.5085∗ 6+ 1 0 2.2552∗ 6+ 1 0 2.5211∗ 6+ 1 0 0 0

13 2.6476 (0+, 1, 2) 2.6271 4+ 2 0 2.6497 4+ 1 0 1 0

14 2.6801 (1, 2) 2.6047 4+ 2 0 0 0

15 2.8901 2.8891 5+ 1 0

16 2.9145 2.9203 5+ 1 0 0 0

17 2.9477 2.9475 5+ 1 0

18 3.0903 3.1033 2+ 1 1 3.0877 2+ 1 1 0 0

19 3.2551 3.2717 5− 1 0 0 1

20 3.5736 (8+) 3.6049∗ 8+ 1 0 3.6973 8+ 1 0 3.6544 8+ 1 0 0 0

Parameter DChM(1) (λ = 2) DChM(2) (λ = 2) DKPM (λ = 2 and 3)

�ω0, MeV 2.0581 2.2631 2.2631

µDChβ 0.4368 0.4125 0.4125

γ0, rad/deg 0.4383/25.1 0.4415/25.3 0.4415/25.3

β0 0.236 0.236 0.236

µDChγ = β0µ
KP
γ – – 0.1966

∗ Experimental levels used to determine the collective-model parameters.
76Se(p, n) [25] and were analyzed on the basis of vari-
ous collective models [6–11, 23–25], which furnished
evidence in support of its large static nonaxiality and
its three-dimensional deformability (softness).
Interest in the 76Se nucleus is motivated by its
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 6 200
nucleonic composition and by the energy of the first
2+ state: it is minimal among the other even selenium
isotopes, with the result that collective degrees of
freedom are more readily excited in this nucleus than
in the nuclei of the other isotopes, the effect of closed
5
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Table 5. Features of the excited states of the 80Se nucleus (experimental and model results)

Nlevel
Experiment [28, 29] DChM (λ = 2) DKPM (λ = 2) DKPM (λ = 2 and 3)

Eexpt
level, MeV Iπ

level Etheor
level , MeV Iπ

level τ nβ Etheor
level , MeV Iπ

level τ nβ nγ Etheor
level , MeV Iπ

level τ nβ nγ nξ

1 0.0 0+ 0.0 0+ 1 0 0.0 0+ 1 0 0 0.0 0+ 1 0 0 0

2 0.666118∗ 2+ 0.66180 2+ 1 0 0.66610 2+ 1 0 0 0.65628 2+ 1 0 0 0

3 1.44922 2+ 1.5472 2+ 2 0 1.5472 2+ 2 0 0 1.5256 2+ 2 0 0 0

4 1.4790 0+ 1.4793 0+ 1 0 1 1.4792 2+ 1 0 1 0

5 1.70122∗ 4+ 1.7015 4+ 1 0 1.7015 4+ 1 0 0 1.6775 4+ 1 0 0 0

6 1.96005 2+ 1.9749 2+ 1 0 1 1.9680 2+ 1 0 1 0

7 2.1210 (≤4) 2.0375 3+ 1 0 2.0375 3+ 1 0 0 2.0116 3+ 1 0 0 0

8 2.6271∗ (0, 1, 2) 2.6272 0+ 1 1 2.6272 0+ 1 1 0 2.6272 0+ 1 1 0 0

9 2.7166 3− 2.73323 3− 1 0 0 1

10 2.8253 (2–6) 2.8249 4+ 1 0 1 2.8058 4+ 1 0 1 0

11 2.9475 (≤4) 2.9197 4+ 2 0 2.9197 4+ 2 0 0 2.8906 4+ 2 0 0 0

12 3.314 3.3341 5+ 1 0 3.3341 5+ 1 0 0 3.2981 5+ 1 0 0 0

13 3.491 3.4761 2+ 1 1 3.4761 2+ 1 1 0 3.4570 2+ 1 1 0 0

14 3.567 3.6067 5− 1 0 0 1

Parameter DChM (λ = 2) DKPM (λ = 2) DKPM (λ = 2 and 3)

�ω0, MeV 2.5564 2.5564 2.5564

µβ 0.4108 0.4108 0.4108

γ0, rad/deg 0.4189/24 0.4189/24 0.4189/24

β0 0.236 0.236 0.236

µDChγ = β0µ
KP
γ – 0.2466 0.2466

∗ Experimental levels used to determine the collective-model parameters.
shells manifesting itself quite clearly here. In [6, 11],
the 76Se nucleus was considered as a nonaxial rotor
that is soft in β vibrations; the inclusion of its trans-
verse softness and of an octupole deformation, along
with a quadrupole deformation, makes it possible to
identify up to five energy bands. The description of
so great a number of excited states of the nucleus
enables one to employ, with a rather high degree of re-
liability, a phenomenological model in analyzing cross
sections for nuclear processes, including neutron–
nucleus scattering.

Experimental data on the energies Eexptlevel and the
spin–parities Iπlevel of states of the

76Se nucleus [26]
are displayed in Table 3, along with their counterparts
PH
calculated within the Davydov–Chaban and the
Davydov–Kashuba–Porodzinsky model, the identifi-
cation quantum numbers τ , nβ , nγ , and nξ, which are
used to associate an excited nuclear state with one
energy band or another, being indicated. In particular,
the band of quadrupole longitudinal vibrations is built
on the experimental level Nlevel = 9 rather than on
the level Nlevel = 3, as was assumed previously [8] in
the case of a different choice of input values for the
model parameters. If the levelsNlevel = 2, 4, 5, 10, 17
are chosen for a basic set of levels, the ground-state
and the anomalous band are described well within the
Davydov–Chaban model, but the β band (Nlevel = 9,
14, 16) is described more poorly. By introducing
the additional parameter µγ (Davydov–Kashuba–
YSICS OF ATOMIC NUCLEI Vol. 68 No. 6 2005



ISOTOPIC DEPENDENCE OF THE SHAPE OF Se NUCLEI 917
Table 6. Features of the excited states of the 82Se nucleus (experimental and model results)

Nlevel
Experiment [30] DChM (λ = 2) DKPM (λ = 2 and 3)

E
expt
level, MeV Iπ

level Etheor
level , MeV Iπ

level τ nβ Etheor
level , MeV Iπ

level τ nβ nγ nξ

1 0.0 0+ 0.0 0+ 1 0 0.0 0+ 1 0 0 0

2 0.65469∗ 2+ 0.6547 2+ 1 0 0.6392 2+ 1 0 0 0

3 1.4099 0+ 1.4103 0+ 1 0 1 0

4 1.73113 2+ 1.5373 2+ 2 0 1.6053 2+ 2 0 0 0

5 1.73505∗ 4+ 1.7350 4+ 1 0 1.7506 4+ 1 0 0 0

6 2.55009 (2, 4+) 2.0745 3+ 1 0 2.1431 3+ 1 0 0 0

7 3.105 (4+) 3.0857 4+ 2 0 3.1671 4+ 2 0 0 0

8 3.449∗ 0+ 3.4490 0+ 1 1 3.5094 0+ 1 1 0 0

9 3.624 3.5349 5+ 1 0 3.6417 5+ 1 0 0 0

10 4.134 2+ 4.1465 2+ 1 1 0 0

11 4.396 2+ 4.2747 2+ 1 1

Parameter DChM (λ = 2) DKPM (λ = 2 and 3)

�ω0, MeV 3.4306 3.4327

µβ 0.3498 0.4005

γ0, rad/deg 0.4262/24.42 0.4376/25.07

β0 0.236 0.236

µDChγ = β0µ
KP
γ – 0.2446

∗ Experimental levels used to determine the collective-model parameters.
Porodzinsky model), varying µβ , and taking the
experimental level Nlevel = 9 for the beginning of the
band of longitudinal vibrations and the levelNlevel = 3
for the beginning of the band of transverse vibrations,
one can improve the situation on average and de-
scribe four bands in the quadrupole approximation
[Davydov–Kashuba–Porodzinsky model (λ = 2)] or
five energy bands if an octupole deformation, with
the quantum number nξ of an octupole longitudinal
softness, is taken into account [Davydov–Kashuba–
Porodzinsky model (λ = 2, 3)].

3.4. 78Se

The description of the energy bands of 78Se on
the basis of a collective Hamiltonian is illustrated
in Table 4, where the results of the calculations on
the basis of the Davydov–Chaban model for various
sets of basis levels (DChM(1) and DChM(2)) are
given in addition to experimental data from [27]. The
calculations according to the Davydov–Kashuba–
Porodzinsky model (λ = 2, 3) in the quadrupole ap-
proximation with allowance for octupole vibrations
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 6 200
of the nuclear surface (on the basis of the procedure
employed in [8]) make it possible to identify more
reliably low-lying excited states of both negative and
positive parity.

If the levels Nlevel = 2, 3, 5, 12, 20 are chosen for
a basis set (the case of DChM(1)), the model pa-
rameters are determined by taking into account only
the longitudinal softness, and the states of the 78Se
nucleus are identified by using the parameter values
found in this way. In particular, the experimental level
Nlevel = 8 was interpreted as the level on which the
band of longitudinal quadrupole vibrations is built.
The levels Nlevel = 6 and Nlevel = 11 are assumed to
be levels of the anomalous rotational band, which
also contains the level Nlevel = 15, and are therefore
assigned the spin–parities of 3+ and 4+.

But if ones employs the levels Nlevel = 2, 3, 5, 9,
12 for a basis (DChM(2) case), there will arise dif-
ferent parameter values. Thus, the choice of basis set
of levels plays a significant role both in determining
the model parameters and in identifying states, this
5
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being illustrated by a comparison of the results for the
DChM(1) and DChM(2) sets in Table 4.
The calculation of the energy structure of the 78Se

nucleus within the Davydov–Kashuba–Porodzinsky
model is based on the use of the DChM(2) param-
eters, the parameter of the quadrupole transverse
softness being chosen in the course of the ensuing
analysis. Within this procedure, the experimental
level Nlevel = 4 is treated as the beginning of the en-
ergy band of transverse quadrupole vibrations, which
also contains the levels Nlevel = 4, 7, 13. Negative-
parity states (in Table 4, these are Nlevel = 10, 19)
can also be described within the Davydov–Kashuba–
Porodzinsky model if longitudinal octupole deforma-
tions characterized by the quantum number of nξ = 0
or 1 are assumed to be present additionally in the
nucleus and if the model parameters are appropriately
determined for these deformations [8].

3.5. 80Se

In contrast to what we had for the nuclei consid-
ered above, experimental data for the 80Se nucleus do
not contain information about high-spin states [28,
29] in its energy spectrum of excitations (Table 5).
For this reason, it is difficult to construct the low-
est rotational band and, hence, to determine the re-
spective parameters within the Davydov–Chaban or
Davydov–Kashuba–Porodzinsky model.
If, for all models, the experimental levels Nlevel =

2, 3, and 5 are used for basis levels, the parameter
values of �ω0 = 2.9160 MeV, µβ = 0.3791, and γ0 =
0.4428 are obtained on the basis of the Davydov–
Chaban model. There are no experimental data on
states of spin I > 4 in the 80Se nucleus. In choosing
the parameters of the Davydov–Chaban model, we
are therefore deprived of experimental guidelines for
the energies of levels belonging to the lowest rota-
tional band. In view of this, the experimental lev-
els Nlevel = 2, 5, 8 were used for basis ones. For
the Davydov–Chaban model, we thereby obtained
the parameter values that are quoted in Table 5 and
which were used, without varying them further, in
the calculations based on the Davydov–Kashuba–
Porodzinsky model for λ = 2 and for λ = 2, 3 (the
inclusion of octupole vibrations was performed ac-
cording to [8]).
In accordance with our calculations, theNlevel = 8

state was considered as the beginning (Iπ = 0+)
of the energy band of longitudinal quadrupole vi-
brations. But the use of the Eexptlevel = 1.87334 MeV
level (Iπ = 0+ or 2+) [29] for the beginning of this
band leads to an anomalously large value of µβ ,
this contradicting the foundations of the model in
question. The Nlevel = 7, 11 and 12 experimental
PH
states are identified as levels of the nβ = 0 anomalous
rotational band, while the Nlevel = 13 experimental
level, together with the Nlevel = 8, forms the second
band (nβ = 1) of longitudinal quadrupole vibrations
within the Davydov–Chaban and the Davydov–
Kashuba–Porodzinsky model. As to the Nlevel = 10
level [Eexptlevel = 2.8253MeV (Iπ = 2–6)], it is assumed
to belong to the band of transverse quadrupole vibra-
tions characterized by the quantum numbers Iπ = 4+

and nγ = 1.
An analysis of the energy bands of the 80Se nu-

cleus within the Davydov–Chaban or the Davydov–
Kashuba–Porodzinsky model gives evidence in sup-
port of its longitudinal and transverse polarizability.
If the parameters of the Davydov–Chaban model are
taken for a basis and if the Nlevel = 4 experimental
level is considered as the beginning of the transverse-
quadrupole-deformation band, the transverse-nuc-
lear-softness parameters µγ can be determined within
the Davydov–Kashuba–Porodzinsky model both in
the approximation including only a quadrupole de-
formation and in the approximation allowing for an
admixture of octupole (λ = 3) vibrations, the latter
providing the description of negative-parity states
(Nlevel = 9 and 14 in Table 5). In order to attain this,
it was sufficient to take into account only symmet-
ric octupole vibrations characterized by the quantum
numbers nξ = 0 and 1.

3.6. 82Se

In the lower part of the energy spectrum of the
82Se nucleus [30], the sequence of spins is identical
to that in the spectrum of the 76Se nucleus. However,
the levels detected experimentally do not contain an
I > 4 state. For this reason, it is difficult to construct
reliably energy bands on the basis of collective mod-
els. The experimental and theoretical features of the
82Se nucleus are given in Table 6, the values obtained
for the model parameters being indicated.
In analyzing the spectrum of 82Se levels, there

arise ambiguities in associating some states with
specific energy bands. Such ambiguities can be
removed only by performing a global analysis of
the whole spectrum. For example, the Nlevel = 8
level of spin–parity 0+ was chosen for the begin-
ning of the band of longitudinal quadrupole vi-
brations, while the Nlevel = 9 level was assigned a
spin–parity Iπ = 5+ and was identified, both within
the Davydov–Chaban and within the Davydov–
Kashuba–Porodzinsky model, as that which belongs
to the anomalous rotational band.
We considered theNlevel = 3 level as the beginning

of the band of transverse quadrupole vibrations and
YSICS OF ATOMIC NUCLEI Vol. 68 No. 6 2005
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determined the transverse-nuclear-softness param-
eter µDChγ by using this level. The order of levels
on which the bands of longitudinal and transverse
quadrupole vibrations of the 82Se nucleus are built
is identical to that in 76Se; that is, the beginning of
the band of transverse vibrations (Nlevel = 3) is below
the beginning of the band of longitudinal vibrations
(Nlevel = 8).

4. DISCUSSION OF THE RESULTS

Information about the dependence of the nu-
clear shape on the choice of collective model (the
Davydov–Chaban model versus the Davydov–Ka-
shuba–Porodzinsky model) is given in Tables 1–6.
Our analysis of this information has revealed that,
by introducing, in a collective model, the additional
parameter of nuclear softness, µDChγ , in the form of γ
deformability, one can include, in the consideration, a
much greater number of the energy bands of excited
states and identify nuclear states more precisely
than in a phenomenological model that takes into
account only the longitudinal softness of the nucleus.
According to the definition of the parameters of
longitudinal and transverse softness (µβ and µDChγ ,
respectively) [3], they include, in addition to the
parameters of longitudinal and transverse deforma-
tions (β0 and γ0, respectively) in the ground state,
structural parameters such as the mass parameter B
of a nucleus and its stiffness parametersCβ andCγ . In
the majority of the cases, levels predicted within the
Davydov–Chaban model and within the Davydov–
Kashuba–Porodzinsky model have identical sets of
quantum numbers and are close in excitation energy,
this confirming the genealogical relationship between
the models.
The ξ = (N − Z)/A (ξ is the doubled z compo-

nent of the total isospin of a nucleus per nucleon)
dependences of the parameters �ω0, µDChγ , γ0, and µβ
obtained for selenium isotopes (Fig. 1–4) on the basis
of the Davydov–Chabanmodel and on the basis of the
Davydov–Kashuba–Porodzinsky model are qualita-
tively similar. This is not so only within individual
segments for these functions. By way of example,
we indicate that, in both models, the quantity �ω0

(Fig. 1) is an increasing smooth function of the vari-
able ξ, a numerical distinction being observed only for
the isotope (78Se) having the minimum value of µDChγ

(Fig. 2) and the maximum value of the nonaxiality
parameter γ0 (Fig. 3).
As to the behavior of the longitudinal-softness pa-

rameter µβ as a function of ξ (Fig. 4), it is represented,
within the models considered here, by decreasing
smooth dependences, which differ significantly only
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 6 200
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Fig. 2. Parameter µDChγ determined on the basis of the
Davydov–Kashuba–Porodzinsky model as a function of
ξ = (N − Z)/A.

for 76Se, this being due, in all probability, to sizable
changes in the parameters γ0 and µγ for this nucleus.
In the Davydov–Chaban model (γ0 = γeff) and in the
Davydov–Kashuba–Porodzinsky model, the param-
eter γ0 is nearly constant for all selenium isotopes
and is about 25◦ (there is a shallow minimum for
76Se). In the Davydov–Chaban model, the dimen-
sionless parameter µβ changes from 0.9852 for 72Se
to 0.3498 for 82Se. If the transverse nuclear softness
is taken additionally into account, the parameter µβ
changes insignificantly in relation to the predictions
of the Davydov–Chaban model, this being illustrated
in Fig. 4 by means of a comparison of the results ob-
tained within theDavydov–Chaban model and within
the Davydov–Kashuba–Porodzinsky model.

With increasing ξ, the dimensionless parameter
5
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the (crosses) Davydov–Chaban and (closed circles)
Davydov–Kashuba–Porodzinskymodels as a function of
ξ = (N − Z)/A.
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Fig. 4. Parameter µβ determined on the basis of
the (crosses) Davydov–Chaban and (closed circles)
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ξ = (N − Z)/A.

of transverse nuclear softness, µDChγ , changes only
slightly in relative units (approximately within 15%),
from 0.2098 for 72Se to 0.2446 for 82Se.
In studying the probabilities of electric quadrupole

transitions between the lowest states (0+
1 → 2+

1 ,
2+
1 → 2+

2 ), one can also see a monotonic variation
of the reduced probabilities B(E2) [11] versus ξ, this
suggesting a collective character of selenium nuclear
states and, hence, the applicability of the Davydov–
Kashuba–Porodzinsky model to them.
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Abstract—On the basis of spectroscopic information about direct pickup reactions, themultipole magnetic
resonances M2, M4, and M6 of the 26Mg nucleus are calculated within the particle–core coupling
version of the multiparticle shell model. The excitation-energy distribution of the form factors for the
multipole magnetic 1�ω resonances is obtained for momentum transfers to a nucleus up to 2 fm−1.
A comparison of the results of the calculations for the M6 form factors with corresponding experimental
data confirms that the adopted model approximations are realistic. c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Investigation of multipole giant resonances in ef-
fective cross sections for the excitation of nuclei is
one of the important tools for deducing information
about the internal structure of nuclei and about the
role of various components of the intranuclear cur-
rent in the formation of the response of a nucleus
to an excitation. Experimental investigations of cross
sections for the electroexcitation of nuclei at large
angles made it possible to single out, for some nu-
clei, the contributions of magnetic 1�ω resonances
from a general pattern of the response of a nucleus
to an excitation. In contrast to what we have in
analyzing experimental data on hadron–nucleus re-
actions, a theoretical interpretation of electroexcita-
tion does not require invoking model assumptions on
the reaction mechanism, but, in order to construct
it, one must have an adequate description of the
ground state of a target nucleus and of its excited
states. While the problem of obtaining qualitative
wave functions for the initial and final states of a
nucleus can adequately be solved for nuclei close to
magic ones by using the random-phase approxima-
tion within the multiparticle-shell model, attempts at
theoretically describing giant multipole resonances in
nuclei whose ground states are far from closed shells
and subshells run into a number of difficulties. A
possible way to solving the problem of microscopi-
cally describing giant multipole resonances in such
nuclei is provided by the multiparticle-shell-model
version referred to as the particle–core coupling
version [1]. This approach, which takes into account
the fractional-parentage structure of the ground state
of a target nucleus, has already proved to be quite
efficient in studying giant multipole resonances in 1p-
shell nuclei, as well as in some sd-shell nuclei, for

*e-mail: natacha@msx.ru
1063-7788/05/6806-0921$26.00
which the excitation-energy distribution of the multi-
pole strength was adequately interpreted upon taking
into account deviations of the ground state from a
closed shell.

The present article is devoted to theoretically
studying magnetic 1�ω resonances in the cross
sections for the excitation of the 26Mg nucleus.

A number of giant multipole resonances are
excited in inelastic electron scattering on nuclei;
the higher the momentum transfer to the nucleus
involved, the higher the average multiplicity of res-
onances that dominate the respective cross section.
While dipole resonances in the photo- and electroex-
citation of nuclei have received adequate study both
in an experimental and in a theoretical aspect, 1�ω
resonances of higher multipole order are understood
much more poorly. Over the past 10 to 15 years,
the commissioning and running of intermediate-
energy accelerators, along with recording of sec-
ondary electrons at a scattering angle of 180◦, have
greatly contributed to making considerable advances
in studying magnetic multipole resonances of the vi-
brational type, especially maximum-spin resonances
(stretched states). Great interest in this type of giant
multipole resonances is motivated by the fact that
only the spin component of the nucleon current in
the target nucleus is involved in their excitation. In
addition, these states provide a good test for model
approximations because the basis of doorway config-
urations is bounded. The excitation of M6 magnetic
resonances in the 26Mg nucleus was experimentally
investigated in [2, 3] up to excitation energies of
20 MeV. In [4], the M6 states in the 26Mg nucleus
were theoretically calculated by using the basis of
(d5/2)91f7/2 states. The contributions to the same
region from cross sections for magnetic resonances
of lower multipole order have not yet been taken
c© 2005 Pleiades Publishing, Inc.
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into account, although the M4 transitions of p3/2

nucleons to d5/2 holes in the valence shell of the
26Mg nucleus contribute to the cross section for
backward electron scattering in the same region of
momentum transfers to the nucleus as the transitions
d5/2 → f7/2. The excitation-energy and momentum-
transfer distributions of M2 and M4 resonances,
which dominate backward electron scattering at
momentum transfers to the nucleus in the range
between about 0.8 and 1.2 fm−1, have received no
study thus far.

The objective of the present study was to construct
a theoretical description of all magnetic 1�ω reso-
nances in the electroexcitation of the 26Mg nucleus
and to analyze their contributions to the cross section
at momentum transfers to the nucleus that range up
to 2 fm−1.

2. FORM FACTORS FOR GIANT MULTIPOLE
RESONANCES IN (e, e′) CROSS SECTIONS

Investigation of inelastic electron scattering is
the most reliable means for exploring magnetic
multipole resonances in cross sections for nuclear
excitations, since an analysis of (e, e′) reactions
does not involve the problem of interaction dynamics.
All of the observed maxima in the effective cross
sections for electroexcitation reactions—that is, giant
multipole resonances—result from nuclear-charge
and nuclear-current interactions with an electromag-
netic field. The effective differential cross section for
electron–nucleus scattering is related to the features
of the nuclear structure through the longitudinal and
transverse form factors (FL and FT , respectively)
as [5]

dσ

dΩ
=

4πσM
ηT

{
F 2
L(q, ω) +

(
1
2

+ tan2 θ

2

)
F 2
T (q, ω)

}
,

(1)

where σМ is the Mott cross section for scattering on
a pointlike charge, ηT is the nuclear-recoil factor, q is
the momentum transfer to the nucleus involved, and
ω is the excitation energy of the nucleus.

Nuclear-charge-density distributions have been
studied in detail in the scattering of electrons into the
forward hemisphere, in which case the effective scat-
tering cross section is dominated by the longitudinal
form factor. At the present time, it is more important
to study electron scattering into the backward hemi-
sphere, since the special features of intranuclear-
current interaction with an external field manifest
themselves in this process. The effective cross section
for electron scattering at an angle of 180◦ is related
to the properties of the target nucleus through the
PH
transverse form factor squared, which is the sum of
the squares of the transverse multipole form factors,

F 2
T (q, ω) =

Jmax∑
J=1

{F 2
EJ + F 2

MJ}. (2)

The form factors for giant multipole resonances
can be expressed in terms of the matrix elements of
the operators of spin and orbital multipole intranuc-
lear-nucleon-current components. (Giant multipole
resonances determine the response of a nucleus to
an excitation in the excitation-energy region below
50 MeV; in this energy region, the role of meson-
exchange currents in the formation of cross sections
is much less important than the role of the nucleon
components of the intranuclear current.) If the ap-
proximation of pointlike nucleons is used in calculat-
ing the operators of nucleon currents, a finite nucleon
size is taken into account by introducing the coeffi-
cient fsn in the formula for nuclear form factors [6].
The calculation of the matrix elements of single-
particle operators in the approximation of harmonic-
oscillator wave functions requires, in addition, taking
into account the correction fс.m., which is associated
with center-of-mass motion; that is, [5, 6]

FMJ(q, ω) (3)

= fsnfc.m.(2Ji + 1)−1/2〈JfTf ‖ Ômag
J ‖ JiTi〉,

where Jf and Tf are, respectively, the spin and the
isospin of the final state of the target nucleus, while Ji
and Ti stand for their counterparts in its initial state.

The operator of an excitation that is characterized
by a multipolarity J and an isospin T can be repre-
sented as the sum of single-particle operators; that is,

B̂JT
MJMT

=
∑
i

b̂JTMTMJ
(i) =

∑
i

ÔJMJ
TMT

(4)

=
∑
i

R̂J
MJ

(i)τ̂TMTI
(i),

where τ is an operator in isospin space: τ0 = I,
τ1 = τ .

The matrix elements in (3) and (4) can be reduced
to the sum of the matrix elements of one-nucleon
operators; that is,

〈Jf IfMTf
‖ B̂J

TMT
‖ JiIiMTi〉 (5)

=
∑
i,ji,jf

〈jf ‖ ÔJ
TMT

(i) ‖ ji〉

×
√

2
√

2(2Ji + 1)ZJTMTI
(jf ji),

where Z is the spectroscopic transition amplitude.
The operator of an excitation of magnetic transi-

tions characterized by a multipolarity J is the sum of
YSICS OF ATOMIC NUCLEI Vol. 68 No. 6 2005
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three operators; of these, two operators reflect virtual-
photon coupling to the spin nucleon current of the nu-
cleus (ÂJ−1 + ÂJ+1), while the third (B̂J) takes into
account coupling to the orbital (convection) current.
Specifically, we have

Ô
mag
J (q) =

iq

2mN

A∑
i=1

{(
µs + µv τ̂3

2

)
(6)

×
[√

J + 1
2J + 1

jJ−1(qri)[YJ−1 × σ̂i]J

−
√

J

2J + 1
jJ+1(qri)[YJ+1 × σ̂i]J

]

− 2
q

(
1 + τ̂3

2

)
jJ(qri)[YJ × ∇̂i]J

}

= ÂJ−1 + ÂJ+1 + B̂J .

Here,mN is the nucleon mass, µs =
1
2
(µp + µn), and

µv =
1
2
(µp − µn)τ̂3, with µp and µn being, respec-

tively, the proton and neutron magnetic moments.
The dependence of the matrix elements of single-

particle operators on the special features of the struc-
ture of a concrete nucleus is controlled by the spec-
troscopic multipole-transition amplitude

ZJTMT
= 〈Jf IfMTf

‖ ÂJTMT
(jf ji) ‖ JiIiMTi〉, (7)

where the excitation operator Â, which acts on the
ground state of the nucleus, is related to nucleon
(quasiparticle) creation (â+) and annihilation (â) op-
erators by the equation

ÂJMJ
TMT

=
∑
t3f t3i

(−1)1/2−t3f (8)

× 〈1/2t3f1/2 − t3i|TMT 〉
×
∑
mfmi

(−1)ji−mi〈jfmf jimi|JMJ 〉

× â+
jfmf t3f

âjimit3i = [â+
jfmf t3f

× âjimit3i ]
JMJ
TMT

.

3. METHOD OF THE CALCULATIONS

Within the particle–core coupling version, the
wave functions for the initial and final states of the nu-
cleus can be represented in the form of an expansion
in basis configurations:

|JiTi〉 =
∑

CJ ′T ′,ji
i |(J ′T ′E′) × (j) : JiTi〉, (9)

|JfTf 〉 =
∑

α
J ′T ′,jf
f |(J ′T ′E′) × (j′) : JfTf 〉. (10)
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PH
The fractional-parentage coefficients C stem from
expanding the known ground-state wave function for
nucleus A in the products of the wave functions for
the final nucleus (A− 1) and the nucleon wave func-
tion. In theoretically studying giant multipole reso-
nances in 1p-shell nuclei, transition matrix elements
were calculated on the basis of the known fractional-
parentage structure of the ground states [1]. In cal-
culating giant multipole resonances of the 26Mg nu-
cleus, the fractional-parentage coefficients were esti-
mated with the aid of experimental data on the spec-
troscopy of direct nucleon-pickup reactions [7]. The
coefficients α result from diagonalizing the Hamilto-
nian in the basis of particle–core coupling configu-
rations.

Within the particle–core coupling, the spectro-
scopic amplitudes (7) are functions of the fractional-
parentage coefficients C and α; that is,

ZJTMT
(jf ji) =

√
(2Ti + 1)(2Jf + 1) (11)

× 〈TiMTiT0|TfMTf
〉
∑
J ′T ′

CJ ′T ′,ji
i α

J ′T ′,jf
f

× (−1)J
′−Ji+jf−JW (JiJf jijf ;JJ ′)

× (−1)T
′−Ti+1/2−TW (TiTf

1
2

1
2
;TT ′),

whereW are Racah coefficients.
The Hamiltonian was diagonalized in the bases of

the excited-state wave functions (10) for Jf = 2, 4, 6
and final-state isospins of Tf = 1, 2.

In thematrix elements of the total Hamiltonian, we
took into account the energies E′ of states of nucleus
(A− 1) that have a significant fractional-parentage
relation to the ground state of the 26Mg nucleus:

Ĥij = (E′ + εj + Ec)δij + V̂ij . (12)

Here, V̂ij is the operator of residual nucleon–core
interaction, while εj are single-particle nucleon en-
ergies. The matrix elements of residual interactions
between the states in (10) were calculated by the
formula

〈(J ′′T ′′E′′), j2 : JfTf |V̂int|(J ′T ′E′), j1 : JfTf 〉
(13)

=
∑

J,T,j,j′

〈J ′T ′E′|JiTi, j−1〉〈JiTi, j′−1|J ′′T ′′E′′〉

×(2J+1)(2T + 1)
√

(2J ′ + 1)(2T ′ + 1)(2J ′′ + 1)

×
√

(2T ′′ + 1)W (JijJf j1;J ′J)W (Jij′Jfj2;J ′′J)

×W (Ti1/2Tf1/2;T ′T )W (Ti1/2Tf1/2;T ′′T )

× 〈j−1j1 : JT |Vint|j′−1j2 : JT 〉.
The calculation of the matrix elements of particle–

hole interactions in (13) was performed with a zero-
range potential.
YSICS OF ATOMIC NUCLEI Vol. 68 No. 6 2005
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4. MAGNETIC RESONANCES
OF THE 26Mg NUCLEUS

The results of the calculations for theM2 andM4
resonances are displayed in Figs. 1 and 2 for the mo-
mentum transfers of q = 0.8, 1.2, and 1.8 fm−1. The
resonances of isospin T = 1 and Т = 2 are singled
out in the figures. The excitation-energy distributions
of the form factors for the M2 and M4 transitions
in Figs. 1 and 2 reflect the main source of the frag-
mentation of the magnetic-resonance strengths in
the 26Mg nucleus, which features an unfilled valence
shell—this is the distribution of the hole state over
the energies of A = 25 nuclei. According to data on
direct reactions, the separation of a neutron from a
26Mg nucleus leads, with the highest probability, to
the 5/2+ state of the 25Mg nucleus at an energy of
7.79 MeV—this is an isobaric analog of the 25Na
ground state.

The first of the above momentum-transfer values
(0.8 fm−1) approximately corresponds to the mаxi-
mum of the sum of the squares of the form factors
for theM2 resonances. The position of this maximum
is determined by the dominant role of the contribu-
tions to the total M2 form factor from the transi-
tions d5/2 → f7/2. The square of the M2 form fac-
tor for this single-particle transition at q = 0.8 fm−1

is almost an order of magnitude greater than the
contributions of other single-particle transitions of
a d5/2 nucleon. The wave functions associated with
the peaks of the M2 resonances at energies of about
15.5 and 20.2 MeV are dominated by the configu-
rations |(5/2+, E = 7.79 MeV, T ′ = 3/2) × 1f7/2 :
J = 2, T 〉, the isospin being T = 1 and T = 2 for,
respectively, the first and the second peak. The lowest
(in energy) peak of theM2 resonance corresponds to
the configuration |(5/2+, E = 0, T ′ = 1/2)× 1f7/2 :
J = 2, T = 1〉.

Magnetic quadrupole transitions from the d5/2

subshell make a significant contribution to electroex-
citation at the higher momentum-transfer values
inclusive (Figs. 1b, 1c), which correspond to the
maxima of the contributions from the M4 and M6
resonances. The distribution of theM2 transitions in
Fig. 1b is fragmented to a much greater extent than in
the momentum-transfer region around q = 0.8 fm−1.
This fact reflects the more important role of d5/2 →
2p3/2, d5/2 → f5/2, and d5/2 → 2p1/2 transitions, for
which single-particle form factors are close to their
maximum values at this value of the momentum
transfer to the nucleus. At the momentum transfer of
1.2 fm−1, the strongest maxima among the M2 res-
onances are associated with states dominated by the
configurations |(5/2+, E = 7.79 MeV, T ′ = 3/2) ×
1f5/2 : J = 2, T 〉 and |(5/2+, E = 7.79 MeV, T ′ =
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 6 2005
3/2) × 2p3/2 : J = 2, T 〉. (The momentum-transfer
distributions of the form factors for single-particle
M2 transitions from the sd shell are given in [8].)

The role of transitions from the 1p shell in the
form factors for M2 resonances is quite modest.
The contributions of the p3/2 → d5/2, p3/2 → d3/2,
p3/2 → 2s1/2, and p1/2 → d3/2 transitions to the
total M2 form factor is as small as about 12% at
q = 0.8 and 1.2 fm−1. The first of these transitions
makes a nearly 100% contribution to the peak at an
energy of 24.5 MeV. The fraction of these transitions
grows with increasing momentum transfer to the
nucleus, since the single-particle form factors for
the p3/2 → d3/2 and p1/2 → d3/2 transitions become
greater at q = 1.2 fm−1. At q = 1.8 fm−1, the fraction
of transitions from the p shell reaches 16% in the
total M2 form factor, playing a dominant role in the
states at E = 18.7, 24.5, and 29.4 MeV. It should be
emphasized that information about the spectroscopy
of pickup reactions producing final nuclei in negative-
parity states is rather contradictory at the present
time. Here, we make use of averaged data.

Figure 2а shows the distribution of the M4
strength at the momentum-transfer value of q =
0.8 fm−1. This strength is strongly fragmented, the
total contribution ofM4 resonances to the electroex-
citation at q = 0.8 fm−1 being approximately 4 times
less than the contribution to the cross section from
the dominant M2 resonances. Upon the increase in
the momentum transfer to q = 1.2 fm−1, M4 transi-
tions begin to play a leading role in electroexcitation
(Fig. 2b). The origin of the main M4 maxima in
Fig. 2b is similar to the origin of the main peaks
of M2 resonances in Fig. 1а: the wave functions
are dominated by the |(5/2+, E = 7.79 MeV, T ′ =
3/2) × 1f7/2 : J = 4, T 〉 configurations of isospin
T = 1 and T = 2; the wave function for the peak at
the lowest energy is associated almost completely
with the |(5/2+, E = 0, T ′ = 1/2) × 1f7/2 : J =
4, T = 1〉 configuration.

The isospin splitting of peaks into the T = 1 and
T = 2 components of close configuration structures
is about 4 to 6 MeV for almost all magnetic reso-
nances considered here. As in the case of M2 res-
onances, the contribution of transitions from the 1p
shell to the total form factor grows with increasing q,
reaching 12% at q = 1.8 fm−1.

Figures 1c and 2c display the contributions to
electroexcitation from M2 and M4 magnetic 1�ω
resonances in the region around q = 1.8 fm−1, which
is dominated byM6 excitations.

In this momentum-transfer region, the p3/2 →
d5/2 transition plays a special role in M4 excitation.
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M6 resonances in the 26Mg nucleus at q = 1.8 fm−1

Experimental data [2] Model results

T E, MeV F 2, 103 T E, MeV F 2, 103

1 7.5 0.020 1 8.49 0.705

1 9.2 0.180 1 10.46 0.079

1 12.5 0.231 1 12.41 0.044

1 12.9 0.110 1 13.22 0.063

1 13.0 0.050 1 14.36 0.022

1 14.0 0.080 1 14.58 0.181

1 14.5 0.130 1 16.31 0.467

1 15.4 0.140 2 17.90 0.895

1 15.5 0.250 1 19.13 0.056

1 16.5 0.300 2 20.93 0.263

2 18.0 0.810

If the spin of the excitation is J = 4, this transi-
tion, as well as the M6 transition considered be-
low, is a maximum-spin transition. As in the case
of M6 excitations, the M4 resonance is formed in
p3/2 → d5/2 transitions by the spin operator ÂJ−1 ex-
clusively. In the calculation with harmonic-oscillator
wave functions, theM4 form factor for this transition
has only one maximum, in just the same way as the
M6 form factor for the d5/2 → f7/2 transition. Al-
though p3/2 → d5/2 transitions in the 26Mg nucleus
are partly suppressed since the d5/2 subshell is filled,
the spectroscopic factor for the direct pickup reaction
leading to the production of the 3/2− state of the
25Mg nucleus at E′ = 11.7 MeV is not small [7], and
this is the reason why, in the region of target-nucleus
excitation energies above 20 MeV, the contribution
of transitions from the p shell to magnetic multipole
form factors is sizable within the particle-core cou-
pling approach.

Experimental data on the distribution of the M6
strength [2] and the theoretical results of the present
study are quoted in the table.

A comparison of the results obtained on the basis
of the particle–core coupling approach with exper-
imental data shows that this model approximation
reproduces experimental data fairly well. The use of
data concerning the distribution with respect to the
energies of 5/2+ states inA = 25 nuclei and underly-
ing the construction of the basis for 6− configurations
of the excited nucleus 26Mg here leads to eight peaks
associated with the isospin of T = 1 and two peaks
P

associated with the isospin of T = 2. (All of the exci-
tations forming theM6 resonance are associated with
the d5/2 → f7/2 transition.)

The 6− states of isospin T = 2 are constructed on
the basis of the 7.79- and 10.62-MeV configurations.
These are the isospin-3/2 states of the 25Mg nu-
cleus, the respective spectroscopic factors for direct
pickup reactions being 3.86 and 0.81, respectively.
Unfortunately, the experimental distribution of the 6−

states in the 26Mg nucleus is known only over the
energy region E < 20 MeV. Calculations reveal that
a 6−, T = 2 peak dominated by the |(5/2+, E =
10.62 MeV, T ′ = 3/2) × 1f7/2 : J = 6, T = 2〉 con-
figuration must manifest itself at higher excitation
energies as well.

One drawback of the present theoretical calcu-
lation is worthy of note—it overestimates the form
factor for the lower (on the energy scale) peak cor-
responding to the contribution of the |(5/2+, E =
0, T ′ = 1/2) × 1f7/2 : J = 6, T = 1〉 configuration.

In our opinion, the fragmentation of the M6 res-
onance in the cross section for the electroexcitation
of the 26Mg nucleus is a compelling piece of evidence
that the distribution of doorway states over the ener-
gies of levels of (A− 1) nuclei plays a dominant role
in the formation of the response of this nucleus to a
multipole excitation.

5. CONCLUSIONS

(i) A deviation of the ground states of A-nucleon
nuclei from closed shells or subshells manifests itself
over a broad energy range of states excited in (A− 1)
nuclei in direct pickup reactions. The spectroscopic
factors of pickup reactions can be used in calculating
wave functions for the excited states of the target
nucleus within the particle–core coupling version of
the multiparticle shell model.

(ii) The spreading of hole states over the excitation
energies of (A− 1) nuclei is, along with isospin split-
ting, a source of the fragmentation of the multipole
strengths in open-shell nuclei.

(iii) Our calculation of theM2, M4, and M6 res-
onances in the electroexcitation of the 26Mg nucleus
has revealed a high degree of the fragmentation of the
multipole strengths in the excitation-energy range
between 7 and 29 MeV.

(iv) A comparison of the results of the calculations
within the particle–core coupling approach with ex-
perimental data on the distribution of theM6 strength
has proven the validity of our model assumptions.
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 6 2005
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Abstract—The energy and mass dependences of the parameters of the semimicroscopic alpha-particle po-
tential are investigated for the first time in the region of low and intermediate energies. Within the semimi-
croscopic folding model, both elastic and inelastic differential and total cross sections for reactions on
various nuclei are well described by using global parameters obtained in this study. c© 2005 Pleiades Pub-
lishing, Inc.
1. INTRODUCTION

The results of a global analysis of both the angular
distributions for the elastic and inelastic scattering of
alpha particles and light exotic nuclei and the total
reaction cross sections are an important source of
information about the nuclear-matter distributions in
nuclides and about the properties of the potential rep-
resenting nucleus–nucleus interaction. At low and
intermediate energies, the semimicroscopic folding
model based on the double-folding method [1–4] is
a popular method for analyzing experimental angular
distributions.

In connection with the well-justified model as-
sumption that an alpha particle is a core of exotic
light nuclei (6,8He), it is of importance to perform
a systematic analysis of experimental data on the
interaction of low- and intermediate-energy alpha
particles with a broad range of stable nuclei and to
derive generalized dependences for the parameters of
the semimicroscopic folding model.

The energy dependence of a number of parameters
of the simple double-folding model was investigated
for alpha particles in [5].

With the aim of global searches for unified param-
eters of the semimicroscopic folding model, experi-
mental differential and total reaction cross sections
for alpha-particle interactions with A = 12–208 nu-
clei at energies in a broad range are systematically an-
alyzed here for the first time within the double-folding
model [6] on the basis of the total M3Y effective

1)Institute of Nuclear Physics, National Nuclear Center of
the Republic of Kazakhstan, Almaty, 480082 Republic of
Kazakhstan.

*e-mail: kuterbekov@inp.kz
1063-7788/05/6806-0928$26.00
interaction and nucleon densities calculated for all
colliding nuclei by the density-functional method [7].

A theoretical model that claims to be a complete
description of experimental data must reproduce, with
the same set of input parameters, both the absolute
values of differential cross sections and the total reac-
tion cross sections. The choice of optimum parame-
ters for the double-foldingmodel [6] makes it possible
to extract, in the following, reliable information about
the structural features of the nuclei under study by
using a comparative analysis of experimental data
on the scattering of alpha particles and exotic light
nuclei.

In the present article, the energy and mass de-
pendences of the parameters of the semimicroscopic
folding model are proposed for the first time for alpha
particles of energy in a broad range.

2. EXPERIMENTAL DATA USED
FOR AN ANALYSIS

In order to construct the sought global depen-
dence of the parameters of the semimicroscopic fold-
ing model, we chose input experimental data that
include the results of our studies and data available
from the literature [5, 8–20].

The main characteristics of experimental condi-
tions under which the angular distributions used were
obtained are given in Table 1. The experimental an-
gular distributions presented in [11, 14, 16, 18, 20]
and included in the analysis were obtained at the
isochronous cyclotron U-150M, reaction products
being recorded and identified by means of a system
based on the CAMAC–РС/АТ complex [21].
c© 2005 Pleiades Publishing, Inc.



ENERGY AND MASS DEPENDENCES OF THE PARAMETERS 929
Table 1.Main features of experiments that studied elastic alpha-particle scattering

Nucleus Eα, MeV
Target Angular range

(c.m. frame), deg
References

thickness, mg/cm2 enrichment, %

For the energy dependence
90Zr 21.0 0.73 97.0 48–177 [8]
90Zr 23.4 0.73 97.0 48–177 [8]
90Zr 25.0 0.73 97.0 48–177 [8]
90Zr 31.0 1.0 98.0 10–98 [9]
90Zr 35.4 0.520 97.65 10–100 [10]

35.4 0.855 97.67 6–47
90Zr 40.0 ± 0.2 0.84–2.47 97.6 5–175 [5]

40.0 ± 0.5 2.13 ± 0.08 95.0 10–70 [11]
90Zr 50.1 ± 0.5 2.13 ± 0.08 95.0 15–80 [11]
90Zr 59.1 ± 0.3 0.84–2.47 97.6 5–175 [5]
90Zr 65.0 5.0–8.5 95.0 10–76 [12]
90Zr 79.5 ± 0.4 0.84–2.47 97.6 5–175 [5]
90Zr 99.5 ± 0.5 0.84–2.47 97.6 5–175 [5]
90Zr 118.0 ± 0.5 0.84–2.47 97.6 5–175 [5]
90Zr 141.7 ± 0.2 5.9 99.0 5–95 [13]

For the mass dependence
12C 50.5 ± 0.5 1.1–2.0 98.9 13–173 [14]

139.0 ± 0.5 0.88 CH 5–70 [15]
24Mg 50.5 ± 0.5 1.0–3.2 99.1 12–172 [14, 16]
28Si 50.5 ± 0.5 0.59–0.76 92.17 11–171 [14, 16]
40Ca 141.7 ± 0.2 2.1 96.0 5–80 [13]
46Ti 140.1 ± 0.5 5.0 83.8 5–70 [17]
48Ti 50.5 ± 0.5 4.50 ± 0.08 99.2 24–64 [14]

140.1 ± 0.5 5.0 99.1 5–70 [17]
50Ti 50.5 ± 0.5 3.15 ± 0.08 83.2 32–84 [18]

140.1 ± 0.5 5.0 83.2 5–75 [17]
58Ni 50.5 ± 0.5 0.56 99.5 20–65 [14]

139.0 ± 0.5 1.6 ± 0.3 99.0 5–80 [19]
68Zn 50.5 ± 0.5 3.48 ± 0.08 91.2 16–76 [14, 20]
70Zn 50.5 ± 0.5 3.10 ± 0.08 95.0 16–66 [14, 20]
90Zr 50.1 ± 0.5 2.13 ± 0.08 95.0 16–75 [11]

141.7 ± 0.2 5.9 99.0 5–95 [13]
94Zr 50.1 ± 0.5 2.60 ± 0.08 91.2 12–75 [11]
120Sn 50.5 ± 0.5 2.20 ± 0.08 99.2 10–63 [14, 20]
124Sn 50.5 ± 0.5 2.00 ± 0.08 95.1 10–65 [14, 20]
208Pb 139.0 ± 0.5 2.09 ± 0.20 99.0 10–95 [19]
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 6 2005
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Fig. 1. Angular distributions of the differential cross sections for elastic alpha-particle scattering on 90Zr at energies in the
range 21.0–147.7 MeV: (points) experimental data and (solid curves) results of the calculations within the semimicroscopic
folding model.
In [11, 14, 16, 18, 20], the systematic error in the
absolute differential cross sections for scattering re-
ceived contributions primarily from the uncertainties
in the target thickness (4–6%), the solid angle of the
spectrometer (1%), and the calibration of the current
integrator and did not exceed 10%. The statistical
error of the data under analysis was 1–5%; only in
individual cases—at the minima of the angular distri-
butions at large angles—did it become as large as 6 to
15%. All of the targets used were self-sustaining and
were prepared by the thermal-evaporation method.
The target thicknesses were determined by using the
energy losses of alpha particles from 241Am, 243Am,
244Cm, and 239Pu radioactive sources. According to
data reported in the literature [5, 8–10, 12, 13, 15, 17,
19], the errors in the absolute values of the differential
cross sections in the angular distributions for scatter-
ing were in the range 5–10%.

The experimental values of the total reaction cross
sections σR, the errors in them being 4–7% in the
P

energy region under consideration, were borrowed
from [11] and from other sources available in the
literature [22–25].

3. ANALYSIS OF DATA AND GLOBAL
DEPENDENCE OF THE PARAMETERS
OF THE SEMIMICROSCOPIC FOLDING

MODEL
3.1. Semimicroscopic Folding Model

The semimicroscopic optical potential U(R) is
constructed within the double-folding model on the
basis of the total M3Y effective interaction and nu-
cleon densities calculated by the density-functional
method [7]. In the first order in the effective forces, the
potential simulating the interaction of two colliding
nuclei can be represented as the sum

U(R) = UE(R) + UD(R), (1)

where

UD(R) =
∫∫

ρ(1)(r1)V D(s)ρ(2)(r2)dr1dr2 (2)
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 6 2005
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Fig. 2. Total reaction cross sections for alpha-particle
interactions with 90Zr nuclei: (�) experimental data and
their evaluation from [11, 22, 23] and (curve) theoretical
values obtained on the basis of the semimicroscopic fold-
ing model.

is the direct potential in the double-folding model [1].
In expression (2), the factor V D(s) is the direct com-
ponent of the effective interaction (s = r2 − r1 + R)
and ρ(i)(ri) stands for the densities of colliding nuclei
(i = 1, 2). A detailed scheme for computing the ex-
change potential UE(R) was formulated in [6]. The
main contribution to it comes from one-nucleon-
exchange effects [26], which are described within the
density-matrix formalism; that is,

UE(R) =
∫∫

ρ(1)(r1, r1 + s)V E(s)ρ(2)(r2, r2 − s)

(3)

× exp(ik(R) · s/η)dr1dr2,

where V E (s) is the exchange component of effective
nucleon–nucleon forces, ρ(i) (r, r’) (i = 1, 2) are the
density matrices for colliding nuclei of mass number
A1 andA2, and k(R) is the localmomentum of relative
motion in the system of colliding nuclei. For this
momentum, we have the relation

k2(R) = (2mη/�2)[E − U(R) − VCoul(R)], (4)

where η = A1A2/(A1 +A2), E is the c.m. energy,
and VCoul(R) is the Coulomb potential. Thus, we
see that, owing to the inclusion of one-nucleon-
exchange effects, the total potential becomes energy-
dependent. The parameters of effective nucleon–
nucleon forces, together with the proton and neutron
densities in colliding nuclei, appear to be input data
for calculating the potentials in question.

In the semimicroscopic folding model, the total
optical potential involves, in addition to a real part,
an imaginary part, which is responsible for the ab-
sorption of the incident particle in inelastic channels.
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 6 200
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real part in the form [2]

W (R) = i[NwU(R) − ϕwRdU(R)/dR], (5)

where U(R) is the doubly folded potential (1), while
Nw and ϕw are parameters that characterize, respec-
tively, the volume and the surface component of the
absorption potential. A surface term that mimics the
contribution of the dynamical polarization potential
[4] was included in the real part of the potential. The
total optical potential in the semimicroscopic folding
model has the form

Utot(R) = U(R) − ϕvRdU(R)/dR (6)

+ i[NwU(R) − ϕwRdU(R)/dR],

where ϕv ,Nw, and ϕw are adjustable parameters.
In calculating the angular distributions for inelas-

tic scattering, the inelastic-transition form factor was
taken in the form ϕLdUtot(R)/dR [27].

The optimum parameters of the semimicroscopic
folding model were fitted in such a way as to at-
PH
tain, under the condition that the linear depen-
dence of the volume integral JV on the real part
of the semimicroscopic-folding-model potential is
preserved, the best agreement within a global analysis
of experimental angular distributions for elastic scat-
tering and available data on the total reaction cross
section.

At the final stage of this study, we determine an-
alytic dependences for the parameters of the semimi-
croscopic foldingmodel, respecting the above criteria.

The theoretical values of the elastic-scattering
cross section were calculated on the basis of a mod-
ified version of the ECIS-88 code (ECIS-PM) [28].
In this version, the semimicroscopic potentials were
computed by formula (6). The fitting of the theoretical
values of the angular distributions for elastic scat-
tering and of the total reaction cross sections σR to
experimental data was performed by varying the pa-
rameters ϕv , Nw, and ϕw. It should be noted that, in
a global analysis of the differential and total reaction
YSICS OF ATOMIC NUCLEI Vol. 68 No. 6 2005
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Table 2. Parameters of the alpha-particle-interaction
semimicroscopic potential, volume integrals−JV , and rms
radii 〈r2SFM〉1/2 of the folded potentials for 90Zr at various
alpha-particle energies

Eα,
MeV

ϕv Nw ϕw
−JV , 103

MeV fm3
〈r2SFM〉1/2,

fm

21 0.010 0.10 0.010 129.3 4.989

23.4 0.020 0.10 0.010 128.7 4.990

25 0.020 0.10 0.010 128.4 4.990

31 0.017 0.18 0 127.3 4.990

35.4 0.050 0.10 0 126.5 4.991

40 0.045 0.12 0.012 125.7 4.992

50.1 0.052 0.11 0.010 123.9 4.993

59.1 0 0.25 0.015 122.3 4.994

65 0 0.18 0.025 121.3 4.994

79.5 0 0.26 0.030 118.9 4.996

99.5 −0.020 0.35 0.032 115.7 4.999

118 0 0.35 0.024 112.8 5.001

141.5 0.013 0.30 0.022 109.3 5.006

cross sections, the parameters of the semimicroscopic
folding model are determined unambiguously.

In the present study, the nucleon densities were
computed by using theGaussian representation (with
the rms radius being set to 1.57 fm [29]) for alpha
particles and by the density-functional method [7] for
target nuclei.

3.2. Energy Dependence

In order to obtain the energy-dependent compo-
nent of the global dependence of the parameters of
the semimicroscopic foldingmodel for alpha particles,
we analyzed 15 experimental angular distributions for
the elastic scattering of 21.0- to 141.7-MeV alpha
particles on 90Zr nuclei. The 90Zr nucleus was cho-
sen for obtaining the energy dependence in question,
since, in the region of stable A = 12–208 nuclei, the
features of 90Zr as a good average test nucleus and its
behavior in nuclear processes have been extensively
and thoroughly studied [10, 11, 30–35] for many pur-
poses, including that of deriving global dependences
of the macroscopic-optical-potential parameters [5,
29, 36].

For the optimum values found for the parameters
of the semimicroscopic folding model, Fig. 1 shows
the result of our analysis of the angular distributions
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 6 200
Table 3. Rms radii (in femtometers) of the neutron-,
proton-, and nuclear-matter-density distributions for the
A = 12–124 nuclei (also given here are the differences
∆rnp = 〈r2n〉1/2 − 〈r2p〉1/2 at Eα = 50.5 MeV)

Nucleus 〈r2n〉1/2 〈r2p〉1/2 〈r2m〉1/2 ∆rnp

12C 2.40 2.41 2.40 −0.01

24Mg 2.84 2.86 2.85 −0.02

28Si 2.95 2.98 2.97 −0.03

48Ti 3.73 3.69 3.71 0.04

50Ti 3.75 3.69 3.72 0.06

58Ni 3.76 3.76 3.76 0.00

68Zn 3.87 3.81 3.84 0.06

70Zn 3.97 3.86 3.93 0.11

90Zr 4.26 4.19 4.23 0.07

94Zr 4.37 4.24 4.31 0.13

120Sn 4.71 4.59 4.66 0.12

124Sn 4.77 4.61 4.70 0.16

for elastic alpha-particle scattering on 90Zr target
nuclei at various energies. It can be seen that the
experimental data are well described over a broad
angular range.

As an additional criterion for selecting the op-
timum parameters of the semimicroscopic folding
model, we use the values of the total reaction cross
section σR. One can see from Fig. 2 that the σR
values calculated for scattering on 90Zr with the gen-
eralized parameters of the semimicroscopic folding
model faithfully reproduce the evaluated total reaction
cross sections and the trend of their variation with
increasing alpha-particle energy, this confirming that
the theoretical cross sections calculated on the basis
of the above approach are realistic.

The volume integral of a folded potential is one
of the criteria for evaluating the resulting semimi-
croscopic potentials. Figure 3 shows the energy de-
pendence of the volume integral JV (in 103 MeV fm3

units) of the folded potential. One can see a clear-cut
linear dependence on the energy Eα:

−JV = 132.411 − 0.166Eα. (7)

The optimum values obtained for the parameters
of the semimicroscopic folding model are given in
Table 2. The dependence of the parameters of the
semimicroscopic folding model on the energy Eα is
illustrated in Fig. 4.
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Table 4. Parameters of the semimicroscopic alpha-
particle-interaction potential, volume integrals −JV , and
rms radii 〈r2SFM〉1/2 of the folded potentials for the A =
12–124 nuclei at Eα = 50.5 MeV

Nucleus ϕv Nw ϕw
−JV , 103

MeV fm3
〈r2SFM〉1/2,

fm

12C 0 0.37 0 17.36 3.45

24Mg 0 0.27 0.012 30.82 3.77

28Si 0 0.26 0.010 41.16 3.99

48Ti 0 0.25 0 60.40 4.27

50Ti 0 0.26 0.021 62.75 4.30

58Ni −0.011 0.22 0.012 80.13 4.50

68Zn −0.015 0.21 0.022 93.95 4.69

70Zn −0.010 0.24 0.023 96.69 4.73

90Zr 0.052 0.11 0.010 123.9 4.99

94Zr 0.053 0.13 0.010 129.6 5.07

120Sn 0.051 0.104 0.007 165.2 5.39

124Sn 0.051 0.13 0.007 170.5 5.44

For the A = 90 nucleus being considered, the rms
radii (Table 2) of the folded potentials change insignif-
icantly with increasing alpha-particle energy.

From the data in Table 2, one can see that the
parameter ϕv increases as the energy of scattered
alpha particles increases up to 50.1 MeV; at higher
energies, we haveϕv = 0 everywhere, with the excep-
tion of the points at 99.5 and 141.5 MeV. The param-
eter Nw grows gradually with increasing energy. The
parameter ϕw vanishes at the energies of 31.0 and
35.4 MeV; at higher energies, it increases monotoni-
cally in the energy range from 40.0 to 99.5 MeV by a
factor of about 2.7 and then decreases at the energies
of 118.0 and 141.5 MeV.

The least squares approximation of the parameter
ϕv by an analytic function of the energy Eα (Fig. 4а)
has the form

ϕv = −0.111 + 0.0076Eα − 0.0001E2
α (8)

at energies up to 65 MeV and the form

ϕv = −0.0017 + 0.00016Eα (9)

at energies above 65 MeV. For the parameter Nw,
we obtained a linear dependence on the energy Eα
(Fig. 4b):

Nw = 0.023 + 0.003Eα (10)
PH
at energies up to 110 MeV and

Nw = 0.481 − 0.0012Eα (11)

at energies above 110 MeV.
The analytic approximation of the parameterϕw by

a linear function of the energy Eα (Fig. 4c) has the
form

ϕw = −0.0036 + 0.0004Eα (12)

at energies up to 80 MeV and

ϕw = 0.044 − 0.0002Eα (13)

at energies above 80 MeV.

3.3. Mass Dependence

3.3.1. Mass dependence at low energies

At low energies, the mass dependence of the pa-
rameters of the semimicroscopic folding model was
studied for the scattering of alpha particles having
an energy of about 50.5 MeV and interacting with
12C, 24Mg, 28Si, 48,50Ti, 58Ni, 68,70Zn, 90,94Zr, and
120,124Sn nuclei. This was done on the basis of ex-
perimental data reported in [11, 14, 16, 18, 20] and
obtained at the isochronous cyclotron of the Institute
of Nuclear Physics at the National Nuclear Center
of the Republic of Kazakhstan. We used the same
algorithm for fitting the parameters of the semimi-
croscopic folding model as in analyzing the energy
dependence.

One can clearly see from Fig. 5 that the descrip-
tion of the experimental angular distributions for the
elastic scattering of 50.5-MeV alpha particles onA =
12–124 nuclei is quite satisfactory.

In the alpha-particle-energy region being studied,
the trend of the variation of available experimental
values of the total reaction cross sections σR ver-
sus the mass number A is well described with the
resulting set of semimicroscopic-folding-model pa-
rameters (Fig. 6). For want of measured data on σR
at Eα ∼ 50.5 MeV, the experimental values of σR at
the energies of 40 and 69.6 MeV from [22] and [25],
respectively, were used to test its mass dependence.
From Fig. 6, one can see that the theoretical depen-
dence of σR agrees satisfactorily with the aforemen-
tioned experimental data.

In Table 3, the rms radii of the neutron-, proton-,
and nuclear-matter-density distributions are pre-
sented for target nuclei, along with the differences
∆rnp. One can see that, for the 12С, 24Mg, and 28Si
nuclei, the rms radii of the proton-density distribu-
tions exceed the rms radii of the neutron-density
distributions, while, for remaining (A = 48–124)
nuclei, with the exception of the 58Ni nucleus, we
have the inverse situation.
YSICS OF ATOMIC NUCLEI Vol. 68 No. 6 2005



ENERGY AND MASS DEPENDENCES OF THE PARAMETERS 935

 

2800

0 40

 
σ
 

R

 
, mb

 

A

 

80 120 160 200 240

2000

1200

400

141 MeV

50.5 MeV

Fig. 6. Total cross sections for the reactions of alpha particles withA = 12–208 target nuclei at Eα = (dashed curve) 50.5 and
(solid curve) 141 MeV according to the calculations within the semimicroscopic folding model. The displayed experimental
data were obtained at (open circles) 40 MeV [22], (right open triangles) 69.6 MeV [25], (closed boxes) 117.2 MeV [25],
(inverted closed triangles) 129.3 MeV [25], (closed diamonds) 159.7 MeV [25], (right closed triangles) 163.9 MeV [25], and
(crosses) 96 MeV [11].

 

250

40

–
 

J
 

V

 
, 10

 
3

 
 MeV fm

 
3

 

A

 

80 120 160 200

200

150

100

50

0

 

50.5 MeV
141 MeV

Fig. 7. Volume integral JV of the real part of the semimicroscopic potential as a function of the mass number: (closed triangles
and circles) results of the calculationwithin the semimicroscopic foldingmodel at, respectively, 50.5 and 141MeV and (straight
lines) approximation by a linear dependence.
In Table 4, the optimum parameter values and
the integrated properties of the potentials describing
the interaction of 50.5-MeV alpha particles withA =
12–124 nuclei are given according to calculations
within the semimicroscopic folding model. One can
see that the volume integral JV (in 103 MeV fm3

units) increases in magnitude with increasing mass
number at a fixed projectile energy Eα. Analytically,
this dependence can be represented in the form
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 6 200
(Fig. 7)

−JV = −1.420 + 1.386A. (14)

The rms radii (Table 4) of the folded potentials also in-
crease with increasing mass number A at the energy
of Eα = 50.5 MeV.

It was established that there is no significant cor-
relation between the parameters of the semimicro-
scopic folding model and that the parameter set pre-
sented in Table 4 is optimal for each target nucleus.
5
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The parameter ϕv affects the phase shifts to the right
or to the left in the angular distribution, depending
on the sign of this parameter. With increasing mass
number of the target nucleus, the trend of the vari-
ation of the parameter ϕv at Eα = 50.5 MeV is as
follows (Fig. 8а): for the A = 12–50 target nuclei,
the parameter ϕv vanishes—that is, there is no phase
shift; for the A = 58–70 target nuclei, the parameter
ϕv is negative—that is, the theoretical curve would
be shifted to the right with respect to experimen-
tal points if the parameter ϕv were absent; and for
medium-mass nuclei (A = 90–124), the parameter
ϕv is on the contrary positive, leading to a shift to
the left. Tracing the variation in the parameters of the
imaginary part of the potential, one would observe
their monotonic decrease. Since the mass-number
dependence of the parameter ϕv at the fixed energy
of Eα = 50.5 MeV is complicated, we perform an
interpolation of its optimum values in Fig. 8а. An
analytic approximation of the parameters Nw and ϕw
by a linear function of the mass number A (Figs. 8b,
8c) was constructed by the least squares method. The
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result is
Nw = 0.3469 − 0.0021A, (15)

ϕw = 0.01030 − 0.00001A.

3.3.2. Mass dependence at intermediate energies

In the region of intermediate energies, the mass
dependence of the parameters of the semimicroscopic
folding model for alpha particles of energy Eα ∼
141MeV that interact with 12C, 40Ca, 46,48,50Ti, 58Ni,
90Zr, and 208Pb nuclei were obtained on the basis of
experimental data borrowed from [13, 15, 17, 19].

From Fig. 9, one can see that the results of theo-
retical calculations agree well with experimental data
on the differential cross sections for the elastic scat-
tering of alpha particles of energy about 141 MeV on
A = 12–208 nuclei.

As in the case of the calculations at the energy of
50.5 MeV, the theoretical values obtained for the to-
tal reaction cross sections σR within the semimicro-
scopic folding model at an energy of Eα ∼ 141 MeV
YSICS OF ATOMIC NUCLEI Vol. 68 No. 6 2005
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Table 5. Rms radii (in femtometers) of the neutron-,
proton-, and nuclear-matter-density distributions for the
A = 12–208 nuclei (also given here are the differences
∆rnp = 〈r2n〉1/2 − 〈r2p〉1/2 at Eα ∼ 141 MeV)

Nucleus 〈r2n〉1/2 〈r2p〉1/2 〈r2m〉1/2 ∆rnp

12C 2.40 2.41 2.40 –0.01

40Ca 3.34 3.38 3.36 –0.04

46Ti 3.70 3.68 3.69 0.02

48Ti 3.73 3.69 3.71 0.04

50Ti 3.75 3.69 3.72 0.06

58Ni 3.76 3.76 3.76 0.00

90Zr 4.26 4.19 4.23 0.07

208Pb 5.60 5.44 5.54 0.16

are in satisfactory agreement with available experi-
mental data on the total reaction cross sections at
the energies of 117.2, 129.3, 159.7, and 163.9 MeV
from [25] (see Fig. 6).

In Table 5, the rms radii of the neutron-, proton-,
and nuclear-matter-density distributions are pre-
sented for target nuclei along with the differences
∆rnp. These results were obtained on the basis of
the semimicroscopic folding model atEα ∼ 141MeV.
One can see that, for the 12С and 40Ca nuclei, the
rms radii of the proton-density distributions exceed
the rms radii of the neutron-density distributions,
while, for the remaining (A = 46–208) nuclei, with
the exception of the 58Ni nucleus, the situation is
inverse.

For the parameters of the semimicroscopic folding
model, Table 6 gives values that leads to the best
agreement with experimental data at an energy of
Eα ∼ 141 MeV. The integrated properties of the in-
teraction potentials are also presented there.

One can see from Table 6 that the trends of the
variation in the volume integral JV and in the rms
radii at Eα ∼ 141 MeV are similar to those at low
energies.

Themass-number dependence of the volume inte-
gral JV (in 103 MeV fm3 units) can be represented in
a linear form (Fig. 7),

−JV = 1.228 + 1.211A. (16)

At intermediate energies, the parameter ϕv de-
creases with increasing mass number of target nu-
clei from the interval A = 12–208 (Fig. 8a). The
parameter Nw does not change. Figure 8а shows
an interpolation of the mass-number dependence of
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 6 200
Table 6. Parameters of semimicroscopic alpha-particle-
interaction potential, volume integrals −JV , and rms radii
〈r2SFM〉1/2 of the folded potentials for the A = 12–208 nu-
clei at Eα ∼ 141 MeV

Nucleus ϕv Nw ϕw
−JV , 103

MeV fm3
〈r2SFM〉1/2,

fm

12C 0.045 0.30 0.012 15.15 3.504

40Ca 0 0.30 0.03 49.31 4.273

46Ti 0.02 0.30 0.03 57.78 4.258

48Ti 0.026 0.30 0.025 60.08 4.550

50Ti 0.026 0.30 0.022 62.30 4.563

58Ni 0 0.30 0.03 71.27 4.603

90Zr 0.013 0.30 0.022 109.3 5.021

208Pb 0 0.30 0.027 253.3 6.203

the optimum values of the parameter ϕv at the fixed
energy of Eα ∼ 141 MeV. The least squares analytic
approximations of the parameters Nw and ϕw by a
linear function of the mass number A (Fig. 8b, 8c)
have the form

Nw = 0.3, ϕw = 0.027 − 0.000006A. (17)
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4. APPLICATION TO INELASTIC
SCATTERING

Within the semimicroscopic folding model, we
have obtained a good description of the differential
and total reaction cross sections and the trend of the
variation in the volume integral of the folded potential.
We have verified how the resulting generalized poten-
tial describes the experimental angular distributions
for inelastic alpha-particle scattering. In testing the
global dependences of the parameters of the semimi-
croscopic folding model, we have obtained quite a
satisfactory description of the angular distributions
for inelastic scattering accompanied by the excitation
of low-lying collective nuclear states for the example
of the 124Sn isotope (Fig. 10).

5. CONCLUSIONS

In this study, the energy and mass dependences of
the parameters of the semimicroscopic folding model
for the interactions of low- and intermediate-energy
alpha particles with a broad class of A = 12–208
nuclei have been obtained for the first time. In order
to construct these dependences, we have performed a
global analysis of a set of experimental data that in-
cludes angular distributions for scattering processes,
total reaction cross sections, and the trend of the vari-
ation in the volume integrals. This has made it possi-
ble to perform a global search for unified parameters
of the semimicroscopic folding model in the energy
range under consideration. From our analysis, it has
been found that the semimicroscopic folding model
reproduces quite well the shape and the magnitude of
the differential and total cross sections for the reac-
tions on A = 12–208 nuclei over the entire angular
range at low and intermediate energies of incident
alpha particles. We note that, for composite particles,
the identification and localization of the parameters of
the semimicroscopic folding model can be performed
in a reasonable approximation by using the criteria
indicated above.

ACKNOWLEDGMENTS

We are grateful to S.А. Fayans† for support of this
study.

This work was supported in part by the Russian
Foundation for Basic Research (project no. 03-01-
00657).

†Deceased.
PH
REFERENCES
1. G. R. Satchler, Direct Nuclear Reactions (Oxford

Univ. Press, New York, 1983).
2. S. A. Fayans, O. M. Knyazkov, I. N. Kuchtina, et al.,

Phys. Lett. B 357, 509 (1995).
3. O. M. Knyazkov, A. A. Kolozhvari, I. N. Kuchtina,

and S. A. Fayans, Yad. Fiz. 59, 466 (1996) [Phys. At.
Nucl. 59, 439 (1996)].

4. D. B. Bolotov, O. M. Knyazkov, I. N. Kuchtina, and
S. A. Fayans, Yad. Fiz. 63, 1631 (2000) [Phys. At.
Nucl. 63, 1546 (2000)].

5. L. W. Put and A. M. J. Paans, Nucl. Phys. A 291, 93
(1977).

6. O. M. Knyazkov, I. N. Kuchtina, and S. A. Fayans,
Phys. Part. Nucl. 30, 870 (1999); 28, 1061 (1997).

7. A. B. Smirnov, S. V. Tolokonnikov, and S. A. Fayans,
Yad. Fiz. 48, 1661 (1988) [Sov. J. Nucl. Phys. 48,
995 (1988)]; S. A. Fayans, A. P. Platonov, G. Graw,
and D. Hofer, Nucl. Phys. A 577, 557 (1994);
S. A. Fayans, S. V. Tolokonnikov, E. L. Trykov, and
D. Zawischa, Phys. Lett. B 338, 1 (1994).

8. M. Wit, J. Schiele, and K. A. Eberhard, Phys. Rev.
C 12, 1447 (1975).

9. E. J. Martens and A. M. Bernstein, Nucl. Phys.
A 117, 241 (1968).

10. D. Rychel, R. Gyufko, B. van Kruchten, et al.,
Z. Phys. A 326, 455 (1987); B. J. Lund, N. P. T. Bate-
man, S. Utku, et al., Phys. Rev. C 51, 635 (1995).

11. A. D. Duisebaev, K. A. Kuterbekov, I. N. Kuchtina,
et al., Yad. Fiz. 66, 627 (2003) [Phys. At. Nucl. 66,
599 (2003)].

12. C. R. Bingham, M. L. Halbert, and R. H. Bassel,
Phys. Rev. 148, 1174 (1966).

13. D. A. Goldberg, S. M. Smith, and G. F. Burdzik,
Phys. Rev. C 10, 1362 (1974).

14. N. Burtebaev, A. Duisebaev, G. N. Ivanov, et al.,
Preprint No. 88-01, IYaF AN KazSSR (Inst. Nucl.
Phys., Akad. Nauk KazSSR, Alma-Ata, 1988);
N. N. Pavlova, S. Ya. Aisina, K. A. Kuterbekov, et al.,
Preprint IYaF AN KazSSR (Inst. Nucl. Phys., Akad.
Nauk KazSSR, Alma-Ata, 1990); K. A. Kuterbekov,
S. Ya. Aisina, N. N. Pavlova, et al., Preprint, IYaF AN
KazSSR (Inst. Nucl. Phys., Akad. Nauk KazSSR,
Alma-Ata, 1991).

15. S. M. Smith, G. Tibell, A. A. Cowley, et al., Nucl.
Phys. A 207, 273 (1973).

16. A. D. Duisebaev, N. Burtebaev, and G. N. Ivanov,
Izv. Akad. Nauk KazSSR, Ser. Fiz.-Mat., No. 6, 49
(1984).

17. P. L. Robertson, D. A. Goldberg, N. S. Wall, et al.,
Phys. Rev. Lett. 42, 54 (1979).

18. K. A. Kuterbekov, A. D. Duisebaev, and N. Burtebaev,
Izv. Akad. Nauk, Ser. Fiz. 59, 112 (1995).

19. D. A. Goldberg, S. M. Smith, H. G. Pugh, et al.,
Phys. Rev. C 7, 1938 (1973).

20. N. T. Burtebaev, K. A. Kuterbekov, and I. N. Kukhtina,
Yad. Fiz. 51, 1301 (1990) [Sov. J. Nucl. Phys. 51, 827
(1990)].

21. A. Duisebaev, B. A. Duisebaev, K. M. Ismailov, et al.,
Izv. Minist. Nauki i Obraz. - Akad. Nauk Resp. Kaz.,
Ser. Fiz.-Mat., No. 2, 104 (2002).
YSICS OF ATOMIC NUCLEI Vol. 68 No. 6 2005



ENERGY AND MASS DEPENDENCES OF THE PARAMETERS 939
22. G. Igo and B. Wilkins, Phys. Rev. 131, 1251 (1963).
23. R. M. DeVries and J. C. Peng, Phys. Rev. C 22, 1055

(1980).
24. G. Hauser, R. Lohken, R. Rebel, et al., Nucl. Phys.

A 128, 81 (1969).
25. A. Auce, R. F. Carlson, A. J. Cox, et al., Phys. Rev. C

50, 871 (1994); A. Ingemarson, J. Nyberg, P. U. Ren-
berg, et al., Nucl. Phys. A 676, 3 (2000).

26. A. K. Ghaudhuri, D. N. Basu, and B. Sinha, Nucl.
Phys. A 439, 415 (1985).

27. I. Tanihata, T. Kobayashi, O. Yamakawa, et al., Phys.
Lett. B 206, 592 (1988).

28. J. Raynal, Phys. Lett. B 196, 7 (1987).
29. M. Nolte, H. Machner, and J. Bojowald, Phys. Rev.

C 36, 1312 (1987).
30. R. B. Firestone, Table of Isotopes, 8th ed. (Wiley,

New York, 1999).
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 6 200
31. D. J. Horen, G. R. Satchler, S. A. Fayans, and
E. L. Trykov, Nucl. Phys. A 600, 193 (1996).

32. C. Mahaux and R. Sartor, Nucl. Phys.
A 568, 1 (1994).

33. E. A. Romanovsky,O. V. Bespalova, S. A.Goncharov,
et al., Yad. Fiz. 63, 468 (2000) [Phys. At. Nucl. 63,
399 (2000)].

34. O. V. Bespalova, E. A. Romanovsky, and T. I. Spas-
skaya, Izv. Akad. Nauk, Ser. Fiz. 67, 66 (2003).

35. E. Gadioli and P. E. Hodgson, Pre-Equilibrium Nu-
clear Reaction (Oxford Univ., New York, 1992).

36. K. A. Kuterbekov, I. N. Kukhtina, T. K. Zholdybayev,
et al., Preprint No. E7-2002-220, JINR (Joint Inst.
Nucl. Res., Dubna, 2002).

Translated by A. Isaakyan
5



Physics of Atomic Nuclei, Vol. 68, No. 6, 2005, pp. 940–947. Translated from Yadernaya Fizika, Vol. 68, No. 6, 2005, pp. 978–985.
Original Russian Text Copyright c© 2005 by Berezhnoy, Mikhailyuk, Pilipenko.

NUCLEI
Theory
Elastic and Inelastic Scattering
of 800-MeV Protons on 16O and 20Ne Nuclei

Yu. А. Berezhnoy, V. P. Mikhailyuk1), and V. V. Pilipenko2)

Kharkov National University, pl. Svobody 4, Kharkov, 61077 Ukraine
Received October 9, 2003; in final form, May 7, 2004

Abstract—Differential cross sections and polarization observables for the elastic and inelastic scattering
of 800-MeV protons on 16O and 20Ne nuclei are calculated on the basis of the theory of multiple diffractive
scattering and the α-cluster model involving dispersion. The single-particle nucleon-density distributions
obtained within the α-cluster model involving dispersion are used in the calculations. The differential cross
sections and polarization calculated for elastic and inelastic p16O and p20Ne scattering are compatible with
available experimental data. The spin-rotation functions calculated for elastic p16O and p20Ne scattering
within the independent-nucleon model differ qualitatively from their counterparts calculated within the α-
cluster model involving dispersion. c© 2005 Pleiades Publishing, Inc.
At the present time, cluster models are being
successfully employed in various microscopic theo-
ries (see, for example, [1–3] and references therein).
A cluster structure manifests itself in a number of
light nuclei. The 12С nucleus is the most well known
α-cluster nucleus. A cluster structure also manifests
itself in the 9Be [4–6], 13C [7], 16O [3, 8, 9], and
20Ne [10–12] nuclei.

In the simplest version of the α-cluster model, it
is assumed that the positions of the alpha particles
in a nucleus are fixed [13]. The possible exchange of
nucleons between the alpha-particle clusters and the
antisymmetrization of nuclear wave functions over all
filled nucleon states are taken into account in a more
realistic alpha-particle model [14].

In [8, 9, 11, 15], the α-cluster model involving
dispersion was proposed for the 12С, 16О, and 20Ne
nuclei. It is assumed in this model that the carbon
and oxygen nuclei consist of three and four α-particle
clusters located at the vertices of an equilateral tri-
angle and a regular tetrahedron, respectively. These
alpha-particle clusters can execute vibrations with
respect to their most probable equilibrium positions
at the vertices of the above geometric bodies.

Two approaches were proposed in [11, 12] for de-
scribing the properties of the 20Ne nucleus. The neon
nucleus was considered to consist of a core (16О
nucleus) and a complementary alpha-particle cluster,

1)Institute for Nuclear Research, National Academy of Sci-
ences of Ukraine, pr. Nauki 47, Kiev, 03680 Ukraine.

2)Kharkov Institute for Physics and Technology, Akademi-
cheskaya ul. 1, Kharkov, 61108 Ukraine.
1063-7788/05/6806-0940$26.00©
which occurs, with the highest probability, within or
beyond the core.

On the basis of the α-cluster model involving dis-
persion and the theory of multiple diffractive scatter-
ing, various observables for particles of energy in the
region E ≥ 100 MeV per nucleon that are elastically
scattered by 12С, 16О, and 20Ne nuclei were calcu-
lated in [8, 9, 11, 12, 15]. The results of the calcu-
lations were compatible with available experimental
data.

In [8, 9], we also calculated observables for elastic
and inelastic proton scattering by 12С and 16О nuclei,
relying on the theory of multiple diffractive scatter-
ing on target nucleons and employing single-particle
nucleon-density distributions determined for these
nuclei on the basis of the α-cluster model involv-
ing dispersion. In those studies, we showed that the
observables calculated on the basis of the α-cluster
model involving dispersion are in better agreement
with available experimental data than their coun-
terparts determined within the independent-nucleon
model, the calculated spin-rotation functions being
qualitatively different. In the present study, the ap-
proach proposed in [8, 9] is developed for the case of
20Ne nuclei.

According to the α-cluster model involving dis-
persion, the multiparticle density of the 16O nucleus
can be written as

ρ
(O)
∆ (ξ, η, ζ) =

∫
d3ξ′d3η′d3ζ ′ρ0(ξ′, η′, ζ′) (1)

× Φ∆(ξ − ξ′, η − η′, ζ − ζ′),
c 2005 Pleiades Publishing, Inc.
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ρ0(ξ, η, ζ) =
1

(4π)2
δ (ξ − d) δ

(
η −

√
3

2
d

)
(2)

× δ

(
ζ −

√
2
3
d

)
δ(ξ · η)δ(ξ · ζ)δ(η · ζ),

Φ∆(ξ, η, ζ) =
1

8(π∆2)9
(3)

× exp

(
−
(
ξ2 +

4
3
η2 +

3
2
ζ2

)/(
2∆2

))
,

where ξ, η, ζ are the Jacobi coordinates of the α
clusters of the 16O nucleus. The parameters d and
∆ characterize, respectively, the distance between the
alpha-particle clusters and the probability of their
shift from their most probable equilibrium positions
at the vertices of a regular tetrahedron.

The charge form factor of the 16О nucleus is given
by the formula

F (O)(q) = exp
(
−1

6
q2〈r2〉α − 3

16
q2∆2

)
(4)

× j0

(√
3
8
qd

)
,

where j0(x) is a spherical Bessel function, 〈r2〉1/2α =
1.61 fm is the root-mean-square radius of the alpha-
particle clusters forming 16О nucleus, and q is the
momentum transfer. The parameters values of d =
3.157 fm and ∆ = 0.643 fm, which were obtained
in [8, 9], make it possible to describe the measured
form factor of the 16O nucleus in the momentum-
transfer range q ≤ 3 fm−1.

It is well known that the charge-density distri-
bution within a nucleus is determined by the in-
verse Fourier transform of the charge form factor. The
charge-density distribution within the 16О nucleus
can be represented in the form

ρ(O)(r) =
1

4rβ
√
π3α

sinh
(
rβ

2α

)
exp

(
−r

2 + β2

4α

)
,

(5)

where α =
1
6
〈r2〉α +

3
16

∆2 and β =
√

3
8
d.

In [11], the 20Ne nucleus was treated as that which
consists of a core in the form of a 16O nucleus (its
size differs from the size of the free 16O nucleus)
and a complementary alpha-particle cluster, which
occurs, with the highest probability, within the core.
In this approach, the multiparticle density of the 20Ne
nucleus can be represented in the form

ρ
(Ne)
∆ (ξ, η, ζ, χ) = ρ

(O)
∆ (ξ, η, ζ)ρα(χ), (6)
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where χ is the coordinate of the complementary
alpha-particle cluster. The density of the complemen-
tary alpha-particle cluster ρα(χ) is

ρα(χ) =
1

(λ
√
π)3

exp
(
−χ

2

λ2

)
, (7)

where the parameter λ characterizes the shift of the
complementary alpha-particle cluster from the center
of mass of the core.

In this approach, the elastic-scattering form fac-
tor for the 20Ne nucleus can be represented in the
form [11]

F (Ne)(q) = exp
(
−1

6
q2〈r2〉α

)
(8)

×
[

4
5

exp
(
− 3

16
q2∆2

)
j0

(√
3
8
qd

)

+
1
5

exp
(
−q

2λ2

4

)]
.

The charge-density distribution in the 20Ne nu-
cleus is given by

ρ1(r) =
4
5
ρ(O)(r) +

1
40(πα′)3/2

exp
(
− r2

4α′

)
, (9)

where α′ =
1
6
〈r2〉α +

1
4
λ2.

The values of the core (16О nucleus) parameters
d and ∆ differ from those obtained in [8, 9] for the
free 16Оnucleus. Comparing the calculated and mea-
sured form factors for the 20Ne nucleus, we obtained
the following values for the parameters of the α-
cluster density: d = 3.595 fm, ∆ = 0.998 fm, and λ =
1.7 fm.

We note that, for the 20Ne nucleus, one can choose
a number of configurations that make it possible to
obtain an analytic expression for the amplitude of
elastic particle scattering by 20Ne nuclei within theα-
cluster model involving dispersion. In [12], the 20Ne
nucleus was considered as that which is formed by
a core and a supplementary alpha-particle cluster,
which occurs, with the highest probability, beyond the
core.

In this approach, the multiparticle density in the
20Ne nucleus has the form (6), while the density
ρα(χ) is

ρα(χ) =
2

3µ5π3/2
χ2 exp

(
−χ

2

µ2

)
, (10)

where the parameter µ characterized the shift of the
complementary alpha-particle cluster from the center
of mass of the core.
5
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Parameters of the nucleon–nucleon amplitude

gc, fm2 hc, fm4 ac, fm2 gs, fm3 hs, fm5 as, fm2

pp 2.336 + 0.023i 0.064 + 0.248i 0.199 0.541− 0.205i −0.0392 0.053

pn 1.863 + 0.553i 0.044 + 0.204i 0.202 0.436− 0.249i −0.0035 0.137
In this case, the charge form factor of the 20Ne
nucleus is

F (Ne)(q) = exp
(
−1

6
q2〈r2〉α

)
(11)

×
[

4
5

exp
(
− 3

16
q2∆2

)
j0

(√
3
8
qd

)

+
1
5

(
1 − 1

6
q2µ2

)
exp

(
−q

2µ2

4

)]
,

while the charge-density distribution in the 20Ne nu-
cleus has the form

ρ2(r) =
4
5
ρ(O)(r) +

1
40(πα′′)3/2

(12)

×
[
1 − µ2

4α′′

(
1 − r2

6α′′

)]
exp

(
− r2

4α′′

)
,

where α′′ =
1
6
〈r2〉α +

1
4
µ2. The parameters of the α-

cluster density in the 20Ne nucleus, which were found
in this approach from a comparison of the calculated
and measured form factors of this nucleus, are d =
3.848 fm, ∆ = 0.853 fm, and µ = 1.06 fm.

The single-particle nucleon-density distribution
ρ(r) in the 16О and 20Ne nuclei can be determined by
formulas (5), (9), and (12), in which it is necessary to
consider that nucleons have finite sizes. This can be
done approximately by changing, in these formulas,

the quantity 〈r2〉α by 〈r2〉α − 〈r2〉p, where 〈r2〉1/2p =
0.814 fm is the root-mean-square proton radius.

According to the theory of multiple diffractive
scattering, the amplitude for proton scattering by a
nucleus of mass number A has the form

F (q) =
ik

2π

∫
d2b exp(iq · b) 〈f |[1 − Ω(b; {sj})]|i〉 ,

(13)

Ω(b, {sj}) =
A∏
j=1

Ωj(b − sj), (14)

Ωj(b) = 1 − 1
2πik

∫
d2q exp(iq · b)fj(q), (15)

where k is the wave vector; b is the impact parameter
lying in the plane orthogonal to the incident-beam
P

axis; sj is the projection of the radius vector rj of
the jth scatterer onto this plane; |f〉 and |i〉 are the
vectors of, respectively, the initial and the final state of
the nucleus; and fj(q) is the amplitude of nucleon–
nucleon scattering.

Disregarding small charge-exchange effects—
that is, considering separately the amplitudes for
proton–proton and proton–neutron scattering—and
omitting spin–spin terms in the nucleon–nucleon
amplitude, we can represent the amplitude fj(q) in
the form

fj(q) = fc,j(q) + qfs,j(q)(σ · n), (16)

fc,j(q) =
ik

2π
(gc,j + hc,jq

2) exp(−ac,jq2), (17)

fs,j(q) =
ik

2π
(gs,j + hs,jq

2) exp(−as,jq2), (18)

where σ is the spin operator of the incident proton;
n = [k× k′]/|[k × k′]|; and k and k′ are the wave
vectors of, respectively the incident and the scattered
proton.

For the parameters of the amplitude given by
Eqs. (16)–(18), we took, in our calculations, values
that were obtained in [16] from a partial-wave analysis
of elastic nucleon–nucleon scattering. The values of
the parameters of the nucleon–nucleon amplitude are
given in the table.

The amplitude for elastic proton scattering on the
nucleus characterized by the mass number A and the
charge number Z can be represented in the form

F (q) =
ik

2π
exp

(
q2

4γA

)
(19)

×
∫
d2b exp(iq · b) [1 − Ω(b)] ,

Ω(b) = [1 − Ep(b)]Z [1 − En(b)]N . (20)

Here, N = A− Z; γ = 0.358 fm−2 for the 16O nu-
cleus and γ = 0.293 fm−2 for the 20Ne nucleus; and
the functions Ej(b)(j = p, n) are given by

Ej(b) =
1

2πik

∫
d2q exp(−iq · b)fj(q)S(q), (21)
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Fig. 1. Differential cross sections σ(θ) and polarization observables P (θ) and Q(θ) for the elastic scattering of 800-MeV
protons by 16O and 20Ne nuclei. The displayed experimental data were borrowed from [17, 18]. The notation for the curves is
explained in the main body of the text.
where the elastic form factor S(q) has the form

S(q) =
∫
d3r exp(iq · r)ρ(r). (22)

The nucleon-density distributions characterizing
the oxygen and neon nuclei and appearing in (22) are
determined by relation (5) for the 16О nucleus and
by relation (9) or (12) for the 20Ne nucleus. It should
be emphasized that the single-particle densities used
in the ensuing calculations for the 16О and 20Ne
nuclei do not include any adjustable parameters. The
parameters d, ∆, λ, and µ appearing in the expres-
sions for the densities of the 16О and 20Ne nuclei are
determined independently from a comparison of the
calculated and measured charge form factors of the
nuclei in question. Additionally, the expressions used
in this study for the single-particle densities in the
16О and 20Ne nuclei were obtained with the aid of
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 6 200
the α-cluster model involving dispersion, in contrast
to conventional approaches, which employ a direct
parametrization of nuclear densities.

On the basis of the developed approach, the differ-
ential cross sections σ(θ) ≡ dσ/dΩ [mb/sr], the po-
larization P (θ), and the spin-rotation function Q(θ)
were calculated for the elastic scattering of protons
of energy Ep = 800 MeV by 16О and 20Ne nuclei.
The results of these calculations, along with exper-
imental data borrowed from [17, 18], are presented
in Fig. 1 (solid curves). In Fig. 1, we also show the
same observables computed on the basis of the theory
of multiple diffractive scattering and the α-cluster
model involving dispersion (dashed curves).

For the 20Ne nucleus, the dashed curves represent
the results of calculations where the density ρ1(r) is
used in the form (9)—that is, it is assumed that the
5
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20Ne nucleus is formed by a 16О core and a sup-
plementary alpha-particle cluster, which occurs, with
the highest probability, within the core. The dotted
curves in Fig. 1 were calculated under the assump-
tion that the supplementary alpha-particle cluster is
located, with the highest probability, beyond the core
[formulas (6), (10)]. One can see from Fig. 1 that the
approach where it is assumed that the supplementary
alpha-particle cluster is situated, with the highest
probability within the core—that is, it executes vi-
brations with respect to its most probable position
at the core center of mass—enables one to describe
correctly the measured observables for elastic proton
scattering by 20Ne nuclei.

In performing numerical calculations, we have
taken into account the distinctions between the
proton–proton and proton–neutron amplitudes. It
turns out that the use of an averaged nucleon–
nucleon amplitude in similar calculations makes it
possible to obtain results that differ only slightly
from those given in Fig. 1. Moreover, the use of the
averaged nucleon–nucleon amplitude enables one
to generalize, quite readily, the approach described
above to the case of inelastic proton scattering on
nuclei. In the case where use is made of individual
proton–proton and proton–neutron amplitudes, such
a generalization would involve problems associated
with the symmetrization of the expressions for the
profile functions Ω(b) or with their Z ordering [19].
However, it turns out concurrently that the observ-
ables of the scattering process that are calculated on
the basis of the theory of multiple diffractive scattering
with and without allowance for Z ordering differ only
slightly.

The averaged nucleon–nucleon amplitude has the
form

f(q) =
N

A
fn(q) +

Z

A
fp(q). (23)

The transition nuclear density ρtr(r) must ap-
pear in expressions (13)–(15) if low-lying vibrational
states are excited in nuclei. In the case of the ex-
citation of one-phonon states, their orbital angular
momentum being denoted byL, the transition nuclear
density can be represented in the form

ρtr(r) = ρLtr(r)YLM (̂r), (24)

ρLtr(r) = CL
dρ(r)
dr

, (25)

where ρ(r) is the single-particle nuclear density,
which is determined by relation (5) for the 16О
nucleus and by the relation relation (9) or (12) for
the 20Ne nucleus; ρLtr(r) is the radial part of the
transition density; YLM (̂r) are spherical harmonics;
r̂ = r/r; and CL is a parameter that characterizes
P

the dynamical deformation of the nucleus being
considered.

The parameter CL can be determined from the
relation

CL = [Br(EL)]1/2
/Ze√2L+ 1

∞∫
0

dr
dρ(r)
dr

rL+2


 ,

(26)

where Br(EL) is the reduced electromagnetic-transi-
tion branching ratio.

In this study, we considered the inelastic scatter-
ing of 800-MeV protons by 16O and 20Ne nuclei that
is accompanied by the excitation of low-lying 2+ and
3− levels for 16О and 2+ and 4+ levels for 20Ne nuclei.
The expressions for the inelastic-scattering ampli-
tude within this approach are given in [16]. The ex-
perimentally measured values of the electromagnetic-
transition branching ratios Br(EL) and the calcu-
lated values of the parameters CL are the follow-
ing: Br(E2) = 36.4 e2 fm4 [20] and C2 = 0.45213
for the 2+ level of the 16O nucleus at 6.92 MeV,
Br(E3) = 1500 e2 fm6 [21] and C3 = 0.74986 for the
3− level of 16O nucleus at 6.13 MeV, and Br(E2) =
287 e2 fm4 [10] and C2 = 0.9574 for the 2+ level of
the 20Ne nucleus at 1.63 MeV. For the 4+ level of
the 20Ne nucleus at 4.25 MeV, the constant C4 was
treated in the calculations as an adjustable parameter.
Its numerical value was taken to be C4 = 0.312.

On the basis of the approach described above,
the differential cross section σ(θ) ≡ dσ/dΩ [mb/sr],
the polarization P (θ), and the spin-rotation function
Q(θ) were calculated for the inelastic scattering of
800-MeV protons by 16Onuclei (Fig. 2, solid curves).

The results of the calculations of the same quan-
tities for inelastic p20Ne scattering at an energy of
Ep = 800 MeV are shown in Fig. 3. The solid curves
in Fig. 3 represent the results of the calculations in
which it is assumed that the 20Ne nucleus is formed
by a core (16О nucleus) and a complementary alpha-
particle cluster, which is located, with the highest
probability, within the core, while the dashed curves
correspond to the calculations performed under the
assumption that a complementary alpha-particle
cluster is located, with the highest probability, beyond
the core.

Our calculations reveal that the approach used
above makes it possible to describe available exper-
imental data without employing adjustable param-
eters. The assumption that the 16О and 20Ne nu-
clei possess an α-cluster structure enables one (over
the applicability range of the α-cluster model—that
is, for momentum-transfer values in the range q ≤
3 fm−1) to describe better data on the differential
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 6 2005
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Fig. 2. Differential cross sections σ(θ) and polarization observables P (θ) and Q(θ) for inelastic proton scattering on the 16O
nuclei at an energy of 800 MeV versus the scattering angle θ. The displayed experimental data were borrowed from [17].
cross sections for the elastic scattering of 800-MeV
protons by these nuclei and on the polarization ob-
servables for the 16О target nucleus. The description
of the polarization P (θ) for elastic proton scattering
on 20Ne nuclei for the case where the neon nucleus
is considered as that which consists of a core and a
complementary alpha-particle cluster occurring, with
the highest probability, within the core is of the same
quality as that where the alpha-particle cluster is
off the core (Fig. 1, dashed and dotted curves, re-
spectively); however, the independent-nucleon model
seems preferable at small scattering angles (Fig. 1,
solid curves). Also, it turns out that, for elastic proton
scattering on both 16O and 20Ne nuclei, the spin-
rotation functions calculated within the independent-
nucleon model differ qualitatively from their counter-
parts calculated on the basis of the α-cluster model
involving dispersion.

The calculated observables of inelastic proton
scattering on 16О and 20Ne nuclei are also in good
agreement with available experimental data, the
agreement being better for p20Ne than for p16O
scattering. In all probability, the reason is that, with
increasing number of intranuclear nucleons, the
cluster structure of nuclei becomesmore pronounced.
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 6 200
Experimental measurements of the spin-rotation
functions for elastic proton scattering on 20Ne nuclei
and for inelastic p16O and p20Ne scattering would
provide a more reliable answer to this question.

It should be noted that, inmany studies, the elastic
and inelastic scattering of intermediate-energy pro-
tons by 12C and 16O nuclei and by lighter nuclei (6Li,
6He, 9Be, etc.) was studied on the basis of the the-
ory of multiple diffractive scattering by using various
versions of the α-cluster model, as well as by using
the single-particle densities of such nuclei (see, for
example, [4, 5, 22–24] and references therein).

For example, the effect of both alpha-particle
and two-particle nucleon–nucleon correlations on
the differential cross sections for proton–nucleus
scattering was studied in [22], where it was shown
that, in the scattering of intermediate-energy par-
ticles on nuclei, the effects of nucleon correlations
are relatively small, the behavior of the calculated
differential cross sections being determined primarily
by single-particle nuclear densities.

By and large, the results of the calculations per-
formed in the present study are compatible with the
conclusions drawn in [22]. Indeed, the behavior of
5
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Fig. 3.As in Fig. 2, but for 20Ne nuclei. The displayed experimental data were borrowed from [18]. The description of the curves
is given in the main body of the text.
the differential cross sections calculated within the α-
cluster model involving dispersion exhibits only slight
distinctions from the behavior of the analogous quan-
tities calculated by using the single-particle densities
of the 16Оand 20Ne nuclei. As was noted above, how-
ever, the spin-rotation functions calculated within the
independent-nucleon model differ qualitatively from
those calculated on the basis of the α-cluster model
involving dispersion.

It should be noted that, in [19, 25], the observ-
ables of the scattering of intermediate-energy protons
on nuclei were calculated on the basis of the the-
ory of multiple diffractive scattering with allowance
for two-nucleon correlations, the effects of Z order-
ing being taken into account in determining the re-
P

quired scattering amplitudes. In those calculations,
densities found by the Hartree–Fock method with
various Skyrme forces were used for target nuclei;
also, intermediate excitations of target nuclei were
taken into account. Polarization observables calcu-
lated within this approach [25] for the elastic scatter-
ing of 800 MeV protons on 16O nuclei were in worse
agreement with available experimental data than their
counterparts calculated on the basis of the α-cluster
model involving dispersion.
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Abstract—The results are presented for the charge asymmetry of the Dalitz plot parameters g, h, and k
measured forK± → π±π0π0 decays. The experiment has been carried out in the 35-GeV/c kaon beams at
the IHEP accelerator. The g, h, and k parameters appear to be identical forK+ andK− decays within the
experimental uncertainty. In particular, a value of (0.2 ± 1.9)× 10−3 is obtained for the charge asymmetry
Ag = (g+ − g−)/(g+ + g−) of the Dalitz plot slope. c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Since direct CP violation has been observed in
neutral kaon decays [1–3], it can be expected in the
decays of charged K mesons. For example, this ef-
fect can manifest itself as the charge asymmetry of
the Dalitz plot parameters of K± → π±π0π0 decays.
These parameters are coefficients in a series expan-
sion of the squared modulus of the matrix element [4]:

|M(u, v)|2 ∝ 1 + gu+ hu2 + kv2, (1)

where u and v are the standard invariant variables [4].

Theoretical estimates of the charge asymmetry of
the Dalitz plot slope parameter for K± → π±π0π0

decays are rather uncertain and lie in the range be-
tween 10−6 and 10−3 [5–8]. The analysis of the avail-
able experimental data on these decays [4, 9] provides
an estimate of ∆g = g+ − g− = 0.066 ± 0.017. It is
unlikely that CP violation is so strong, and the men-
tioned difference between the g+ and g− parameters
must be caused by the underestimation of the system-
atic uncertainty of the experiments in which decays of
kaons of only one sign were studied.

The K → 3π decays were studied for both K+

and K− mesons in [10–12]. Ford et al. [10] studied
K± → π±π+π− decays and found Ag = −0.0070 ±
0.0053 for the charge asymmetry Ag = (g+ −

†Deceased.
*e-mail: kozelov@mx.ihep.su
1063-7788/05/6806-0948$26.00
g−)/(g+ + g−) of the Dalitz plot slope. Smith et al.
[11] estimated Ag = 0.0019 ± 0.0123 for K± →
π±π0π0 decays. Preliminary analysis of our exper-
imental data [12] that was based on a fraction of
statistics provided an estimate of Ag = −0.0003
with a statistical error of 0.0025 and a systematic
uncertainty below 0.0015 for K± → π±π0π0 decays.
In this paper, we report our final results obtained for
the charge asymmetry of the Dalitz plot parameters.

2. EXPERIMENTAL SETUP

The experiment was carried out at the TNF-IHEP
setup1) [13]; its layout is shown in Fig. 1. To study
K± meson decays, 35-GeV/c hadron beams that
were produced by 70-GeV protons on an external
aluminum target 7 mm in diameter and 300 mm long
were used.We used scintillation counters S1−S4 and
beam hodoscopes BH1−BH4 to monitor the beam
intensity and to measure beam particle trajectories.
The mean hadron flux in the beamline was 4 × 106

per accelerator spill of 1.7 s. K mesons were iden-
tified with three threshold and two differential gas
Cherenkov counters marked in Fig. 1 as C1−C3 and
D1 and D2, respectively. The admixture of other par-
ticles in the K-meson peak at an operating pressure
of 2 atm was far below 1% (Fig. 2). In addition, the
threshold counters were used to select electrons in

1)The Tagged Neutrino Facility (TNF) at the Institute for High
Energy Physics.
c© 2005 Pleiades Publishing, Inc.
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the beam hodoscopes; AC is the anticoincidence counter; and H are the scintillation hodoscopes.
the 10-GeV/c beamwhen theGEPARD electromag-
netic calorimeter was calibrated.

A “decay pipe” 58.5 m long, in which about 20%
of the kaons decayed, was located downstream of
the BH4 hodoscope. Its flanges had thin Mylar win-
dows for a beam. The exit flange 3.6 m in diameter
was manufactured from stainless steel 4 mm thick
(0.23X0). The probability of the conversion of a high-
energy photon into an e+e− pair in this flange is 0.16.

Undecayed kaons were detected by an anticoinci-
dence scintillation counter AC. In order to accurately
measure the position of the beam passing through the
whole setup, theBH5 beam hodoscope was mounted
behind the calorimeter. The BH5 hodoscope oper-
ated in the counting mode; thus, we could detect all
charged particles hitting it.

The products of kaon decays were detected by
three scintillation hodoscopes H1−H3 [14] and the
GEPARD calorimeter. Each hodoscope measuring
the X and Y coordinates of the particles had two
octagonal planes with a distance of 3.85 m between
their opposite sides (Fig. 3). Each plane was di-
vided into independent half-planes. The hodoscope
elements had a cross-section of 14× 12mm, and their
length was from 1.8 to 0.7 m. Scintillation light was
detected by FEU-84-3 photomultiplier tubes.

The GEPARD calorimeter contained 1968 76 ×
76-mm cells (Fig. 4). Each cell comprised 40 alter-
nating Pb (3 mm) and scintillator (5 mm) layers.
Thus, the total radiation length is ≈21X0. Scin-
tillation light was collected onto the FEU-84-3
photomultiplier tubes using wavelength shifting light
guides. The GEPARD calorimeter was calibrated
by two methods: first, by irradiating each cell with
the 10-GeV electron beam at the beginning of data
collection and, second, by analyzing reconstructed
events ofK± → π±π0 decays during the experiment.
Both methods yielded results that were in good
agreement with each other. The π0 mass resolution
appeared to be equal to 12.3 MeV (Fig. 5).
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 6 200
The Level 1 trigger was based on signals from the
scintillation and Cherenkov counters. It was formed
according to the logical formula

T1 = S1 × S2 × S3 × S4 × (D1 +D2)

× C1 × C2 ×C3 ×AC.

The Level 2 trigger analyzed theGEPARD energy de-
position [15]. To this end, the calorimeter was divided
into 16 trigger channels, and the Level 2 trigger was
formed if the pulse height corresponding to the energy
deposition in at least three trigger channels exceeded
∼ 0.8 GeV.

The stability of the beam and detector parameters
was carefully controlled throughout the period of data
collection. To reduce the systematic uncertainty in
measuring the charge asymmetry in the Dalitz-plot
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Fig. 4. Structure of the GEPARD electromagnetic calorimeter.
parameters, the sign of the beam-particle charge was
reversed every day. Figures 6 and 7 show the raw
data prior to their processing in order to illustrate the
operational stability of our setup.

3. EVENT RECONSTRUCTION
AND SELECTION CRITERIA

FOR K± → π±π0π0

The event reconstruction procedure started with
finding energy-deposition clusters in the GEPARD
electromagnetic calorimeter. The coordinates found
for the cluster centers were used in the procedure of
the reconstruction of the decay-product tracks. To
reduce the possible combinatorial background, tracks
P

are considered as reconstructed if they had no less
than three hits in each of the X and Y projections in
theH1–H3 hodoscopes and the GEPARD calorime-
ter. The vertex coordinates were calculated using the
reconstructed tracks. In further processing, we con-
sidered only the events for which the hypothesis on
the intersection of the secondary particle track with
the beam axis had a C.L. of more than 5% and the
vertex itself was inside the fiducial volume of the de-
cay pipe. In addition, the events subjected to further
processing satisfied one of the following criteria:

• Five clusters with the energy depositions above
1 GeV were reconstructed in the calorimeter
and each of the reconstructed tracks was as-
sociated with one of these clusters.
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 6 2005
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• Four clusters with the energy deposition above
1 GeV were found in the calorimeter and one
of the tracks was not associated with these
clusters.

The last two criteria are introduced because there is
a noticeable probability of the conversion of a photon
from the π0 → γγ decay into a e+e− pair in the exit
flange of the decay pipe (see Section 2), and a charged
pion can induce considerable energy deposition in the
calorimeter.
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 6 200
Events that had passed this preliminary selection
were subjected to a kinematic fit; it enabled us to
resolve the ambiguities caused by the combinato-
rial background (e.g., to associate one of the recon-
structed tracks with a π± meson) and to calculate the
kinematic variables u and v.

The fitting procedure involved 21 measured vari-
ables: the energies and coordinates of four photons,
the mean energy and parameters of the K-meson
track, and the parameters of the π±-meson track. The
5
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parameters of the energy-deposition clusters were
accepted as the coordinates and energies of photons;
these parameters were corrected for the transverse
profile of the electromagnetic shower and for the spa-
tial nonuniformity of the calorimeter. The energy of
the π± meson was the only unknown parameter.

Seven constraints were imposed on the fitted pa-
rameter values: four equations corresponding to the
energy–momentum conservation, two equations for
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Fig. 8. χ2 distributions corresponding to the (points)
experimental data and (histogram) MC simulated events
for K± → π±π0π0 decays.
P

the effective masses of a photon pair, and an ad-
ditional equation describing the intersection of the
trajectories of a kaon and a charged pion. The decay-
vertex coordinates were not fixed. The parameters
were determined by minimizing the functional un-
der the constraints using the Lagrange multiplier
method. The reduction of the relative variation of each
fitted parameter down to 10−5 at the last iteration
was a prerequisite to the procedure convergence. For
each event, we tested all possible combinations that
enabled us to associate one of the tracks with the
positive π meson and to combine four photons into
pairs corresponding to two π0 mesons. The combina-
tions providing the least χ2 value were considered as
the best. Figure 8 shows the χ2 distribution for the
experimental and simulated events. Events with χ2 >
20 were rejected because the number of experimen-
tal events systematically exceeded that of simulated
events owing to background events in this region.
Simulation of the detection ofK± → π±π0π0 decays
in the setup demonstrated that this χ2 cutoff reduced
the statistics of desired events by only 28%, while it
considerably reduced the background level.

The setup operation was simulated by the Monte
Carlo (MC) method with the GEANT 3.21 code. In
addition to the detailed description of the setup geom-
etry, the data obtained in the experiment were taken
into account. Among these data were the calibration
coefficients for each channel of the electromagnetic
calorimeter, the dependence of the detection efficiency
of the scintillation hodoscopes on the particle co-
ordinates, and the correlations between the spatial
and angular coordinates of kaons and their momenta.
Figure 9 enables one to compare the distributions
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 6 2005
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of the experimental and simulated events for K± →
π±π0 decays. We note that the simulating code ad-
equately describes the processes in the experimen-
tal setup. Figures 10 shows the setup acceptance
as a function of the Dalitz variables u, v. Figure 11
demonstrates the (u, v) resolutions obtained within
the MC simulation of theK± → π±π0π0 decay.

Figure 12 shows the event distributions versus
the χ2 probability P (χ2) calculated for the six de-
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P

grees of freedom. These distributions were obtained
both for the experimental data and for MC simulated
events of K± → π±π0π0 decays. Only the events
with P (χ2) > 0.1 were used in further analysis, be-
cause the P (χ2) values corresponding to these exper-
imental and simulated data were in agreement with
each other. To avoid uncertainties associated with
the possible nonuniformity of the pulse heights, the
corresponding energies were additionally recalculated
in each of the Level 2 trigger channels. An event
was accepted if the number of channels with energy
above 1 GeV was greater than two. This criterion did
not noticeably reduce the number of K± → π±π0π0

events. However, it was of importance for the selec-
tion ofK± → π±π0 events that were used to calibrate
the calorimeter, to adjust the simulation code, and to
estimate the systematic uncertainties.

The final data sample comprised N+ = 278 398
and N− = 341 015 events. The table shows the frac-
tion of events satisfying the above criteria, and their
number is related to the one at the previous step and
to the total number of detected events.

In spite of careful selection of the events, there is
an admixture of background events in the data sam-
ple of the K± → π±π0π0 decays chosen for physical
analysis. Other decay modes of the K± mesons, the
interaction of beam particles with the setup mate-
rial, and overlapping of events because of the finite
time resolution of the recording instruments can be
physical sources of the background. The simulation
of various processes of particle interaction and decays
indicates that, with the above selection criteria, the
main sources of the background events are theK± →
π±π0 (0.21%) and K± → π±π+π− (0.03%) decays.
Their contribution is independent of the sign of the
kaon charge and hence cannot cause a false charge
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 6 2005
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Event selection criteria

Fraction of events (%)

from previous
step

from total number
of triggers

One or more tracks are reconstructed inH1–H3 95.6 95.6

Position of the decay vertex is inside

the fiducial length of the decay pipe 68.8 65.7

Number of clusters and tracks

corresponds toK± → π±π0π0 6.81 4.48

Passing the kinematic fit with χ2 < 20 17.8 0.80

C.L. P (χ2) of the kinematic fit is>0.1 73.6 0.59

Programmable Level 2 trigger is true 99.8 0.59
asymmetry in the Dalitz plot parameters. The back-
ground from other sources does not exceed 0.01%.

It should be noted that the finite calorimeter
resolution results in a noticeable probability (∼10%)
of “wrong combinations” of photons produced in
π0-meson decays, while the inefficiency of the ho-
doscopes can allow the reconstruction of a false track
(∼5%). However, these effects are taken into account
in the event simulation and are independent of the
sign of the particle charge. Therefore, they do not
introduce a noticeable uncertainty to the final result.

4. RESULTS AND DISCUSSION

4.1. Estimate of the Difference in the Dalitz Plot
Parameters

In order to determine the difference between the
Dalitz-plot parameters for K± → π±π0π0 decays,
the following functional is minimized:

χ
2
(∆g,∆h,∆k) (2)

=
∑
i,j

(rij − 1 − αij∆g − βij∆h− γij∆k)2

σ2
ij

,

where rij = (n+
ij/N

+)/(n−ij/N
−), σ2

ij = r2
ij(1/n

+
ij +

1/n−ij), and n
±
ij is the number of events in the Dalitz

plot bins with the measured coordinates u′i and v′j
(Fig. 13). The coefficients αij , βij , and γij are defined
in formula (A.2) presented in the Appendix and are
calculated using the MC simulated events. In this
way, we obtained the following estimates for ∆g, ∆h,
and ∆k, as well as for the elements of the correlation
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 6 200
matrix:


∆g = −0.0009 ± 0.0067,
∆h = −0.0007 ± 0.0062,
∆k = −0.0014 ± 0.0017,




1.00 0.93 0.35

1.00 0.32

1.00


 .

(3)

The presented uncertainties are statistical. The χ2

value per degree of freedom is χ2/ndf = 319/(279 −
3) = 1.16.

Figure 14 shows the ratios ri(u′) =
(
∑

j n
+
ij/N

+)/(
∑

j n
−
ij/N

−) and rj(v′) =
(
∑

i n
+
ij/N

+)/(
∑

i n
−
ij/N

−) of the normalized distri-
butions that are measured forK± → π±π0π0 decays
and obtained separately as functions of u′ and |v′|,
respectively. Figure 15 demonstrates the rij(u′) ratio
versus u′ for various |v′| intervals.

Since some theoretical models predict that CP
violation in K± → 3π decays can be associated only
with the charge asymmetry of the g parameter, we
also estimated∆g supposing that∆h = ∆k ≡ 0. The
latter supposition does not contradict our results.
This approach provides the estimate

∆g = 0.0002 ± 0.0024 for (4)

χ2/ndf = 319/(279 − 1) = 1.15.

Within the statistical uncertainties of our exper-
iment, the presented results indicate no differences
between the g, h, and k values for kaons of differ-
ent signs. Nevertheless, it does not guarantee the
identity of the event distributions in the correspond-
ing Dalitz plots. In order to check the identity of
the event distributions over (u′, |v′|) and (u′, |v′|)
disregarding a particular form of the matrix element
given by Eq. (1), we used the Kolmogorov nonpara-
metric criterion. This analysis provided the following
5
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results. The probabilities that the u′, |v′|, and (u′, |v′|)
distributions were indistinguishable appeared to be
0.32, 0.85, and 0.55, respectively. In order to compare
the two-dimensional (u′, |v′|) distributions, we used
the modified Kolmogorov criterion from the HBOOK
code, which processed the events combined into a
histogram.

4.2. Estimate of Systematic Uncertainties

Although all measures were taken to provide the
identity of the properties of the beams of positive
and negative kaons, the mean values of the beam
entrance angle with respect to the setup could differ
by ∆AX = 5 µrad and ∆AY = 7 µrad, and the mean
kaon energies could differ by 50 MeV. The systematic
uncertainties that were associated with these values
were estimated by the Monte Carlo method as

δA(∆g) = 0.0004, δA(∆h) = 0.0003,
δA(∆k) = 0.0001,
PH
δE(∆g) = 0.0006, δE(∆h) = 0.0004,
δE(∆k) = 0.0001.

The uncertainties inherent in theα, β, and γ coeffi-
cients in functional (2) are associated with the uncer-
tainties of the g, h, and k parameters [see Eqs. (A.1)
and (A.2) in the Appendix]. Two methods were used
to evaluate the effect of these uncertainties on the
differences ∆g, ∆h, and ∆k: theMonte Carlo method
and analytical method using the approximation of the
ideal resolution in theu and v variables [see Eqs. (A.3)
and (A.4)]. The results obtained by both methods are
in agreement with each other:

δ(∆g)
∆g

≈
√

(0.2δg)2 + (0.6δh)2 + (1.6δk)2,

δ(∆h)
∆h

≈
√

(0.5δg)2 + (1.0δh)2 + (1.5δk)2,

δ(∆k)
∆k

≈
√

(0.4δg)2 + (0.5δh)2 + (2.9δk)2.
YSICS OF ATOMIC NUCLEI Vol. 68 No. 6 2005
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Using the data from [4], we obtain

δ(∆g)
∆g

= 0.014,
δ(∆h)
∆h

= 0.024,

δ(∆k)
∆k

= 0.019.

Other possible sources of the systematic uncer-
tainties were also analyzed. These are the time insta-
bility of the electromagnetic calorimeter calibration
and of the scintillation hodoscope efficiency, the effect
of the Earth’s magnetic field on the particle beams
of different charge signs, the difference between the
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 6 200
cross sections for the interactions of π+ and π− with
matter, and the difference in the composition and
intensity between the beams of positive and negative
hadrons. The total contribution of these factors to the
systematic uncertainty does not exceed 1 × 10−4.

It has been shown that the results are stable with
varying event selection criteria: the minimum photon
energy, the minimum and maximum energies of a
charged π meson, the χ2 C.L. in kinematic fit, and
the number of reconstructed tracks. The results also
remain unchanged if the events in the bins that are
located at the boundary of the Dalitz plot are rejected.
We also found ∆g, ∆h, and ∆k by minimizing the
5
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functional for the differences between the Dalitz plots
for K± → π±π0π0 decays. The results are in agree-
ment with estimates (3) and (4).

Thus, the estimates of the systematic uncertain-
ties are

δ(∆g) = 7 × 10−4, δ(∆h) = 5 × 10−4, (5)

δ(∆k) = 1.4 × 10−4.

They are approximately an order of magnitude less
than the corresponding statistical uncertainties given
by Eqs. (3).

CONCLUSIONS

The differences ∆g, ∆h, and ∆k between the
Dalitz plot parameters have beenmeasured forK± →
π±π0π0 decays at the TNF-IHEP setup. The ex-
periment was performed in the 35-GeV/c beams of
positive and negative kaons at the IHEP accelerator.
Frequent changes in the beam charge sign enabled
us to minimize the systematic uncertainties of the
experiment. The data analysis demonstrates that the
event distributions over the Dalitz variables u and v
are indistinguishable for the decays of K+ and K−

mesons and that the ∆g, ∆h, and ∆k values are
consistent with zero within the uncertainty given
by Eqs. (3) and (5). Supposing that ∆h = ∆k = 0,
the difference between the Dalitz plot slopes ∆g was
estimated as

∆g = 0.0002 ± 0.0024(stat.) ± 0.0007(syst.).

Using g+ ≈ g− = 0.652 [4], we obtain the charge
asymmetry

Ag = ∆g/(g+ + g−) = 0.0002 ± 0.0018(stat.)
± 0.0005(syst.).

This is the most accurate estimate of Ag for the
K± → π±π0π0 decays.

ACKNOWLEDGMENTS

We are grateful to A.A. Logunov, N.E. Tyurin, and
A.M. Zaitzev for their support of the experiment; to
V.N. Mikhailin for his assistance in the construction
and operation of the setup; and to Yu.V. Mikhailov,
A.N. Sytin, and V.A. Sen’ko for their help in man-
ufacturing the electronics. We thank the staff of the
Accelerator Department and the Beam Division who
provided high-quality operation of the accelerator
complex, beam extraction system, and the beam
channels nos. 8 and 23. We appreciate the assistance
of I.N. Belyakov, Yu.G. Nazarov, A.N. Romadanov,
and I.V. Shvabovich in the detector construction.
PH
This study is supported in part by the Russian
Foundation for Basic Research (project nos. 02-02-
17018 and 02-02-17019) and the Council of the
President of the Russian Federation for Support of
Young Russian Scientists and Leading Scientific
Schools (project no. 1305.2003.2).

APPENDIX

CALCULATION OF THE DIFFERENCE
BETWEEN THE DALITZ PLOT

PARAMETERS

In accordance with formula (1), the probability
density function of the Dalitz variables has the form

f(u′, v′)

=

∫
D

G(1 + gu+ hu2 + kv2)dudv∫
D

∫
D′
G(1 + gu+ hu2 + kv2)dudvdu′dv′

,

where u, v and u′, v′ are the true and measured Dalitz
variables, respectively, and G ≡ G(u, v, u′, v′) is the
function that represents the imperfection of the de-
tector and the system of data processing. Integration
is performed within the kinematic boundary of the
Dalitz plot. This relation can be rewritten as

f(u′, v′) =
a+ gb+ hc+ kd

1 + gū+ hu2 + kv2
,

where a ≡ a(u′, v′) =
1
ε

∫
D Gdudv; b ≡ b(u′, v′) =

1
ε

∫
D uGdudv; c ≡ c(u′, v′) =

1
ε

∫
D u

2Gdudv;

d ≡ d(u′, v′) =
1
ε

∫
D

v2Gdudv;

ū =
1
ε

∫
D

∫
D′

uGdudvdu′dv′;

u2 =
1
ε

∫
D

∫
D′

u2Gdudvdu′dv′;

v2 =
1
ε

∫
D

∫
D′

v2Gdudvdu′dv′;

ε =
∫
D

∫
D′

Gdudvdu′dv′;

ū, u2, and v2 are the mean values of the Dalitz vari-
ables and their squares; and ε is the total efficiency of
the experiment (including the efficiency of the recon-
struction and selection of events) if thematrix element
is equal to unity.
YSICS OF ATOMIC NUCLEI Vol. 68 No. 6 2005
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Let us introduce the notation

g = (g+ + g−)/2, h = (h+ + h−)/2,

k = (k+ + k−)/2,

∆g = g+ − g−, ∆h = h+ − h−,

∆k = k+ − k−.

Expanding the f+(u′, v′)/f−(u′, v′) ratio of the
normalized Dalitz plots in series in ∆g, ∆h, and ∆k
and neglecting their quadratic terms, we obtain

r(u′, v′) =
f+(u′, v′)
f−(u′, v′)

(A.1)

≈ 1 + α(u′, v′)∆g + β(u′, v′)∆h+ γ(u′, v′)∆k,

where

α(u′, v′) = [b− au+ h(bu2 − cu) (A.2)

+ k(bv2 − du)]/D(u′, v′),

β(u′, v′) = [c− au2 + g(cu− bu2)

+ k(cv2 − du2)]/D(u′, v′),

γ(u′, v′) = [d− av2 + g(du− bv2)

+ h(du2 − cv2)]/D(u′, v′),

D(u′, v′) = (1 + gū+ hu2 + kv2)(a+ gb

+ hc+ kd).

In the case of u′ = u and v′ = v (“ideal” resolu-
tion), formulas (A.1) and (A.2) have the form

r0(u, v) = 1 (A.3)

+
A0(u, v)∆g +B0(u, v)∆h + C0(u, v)∆k

(1 + gū+ hu2 + kv2)(1 + gu+ hu2 + kv2)
,
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where

A0(u, v) = u− u+ h(uu2 − u2u) (A.4)

+ k(uv2 − v2u),

B0(u, v) = u2 − u2 + g(u2u− uu2)

+ k(u2v2 − v2u2),

C0(u, v) = v2 − v2 + g(v2u− uv2)

+ h(v2u2 − u2v2).
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Abstract—The ηη system produced in charge-exchange π−p interaction at a momentum of 32.5 GeV/с
is studied in an experiment performed with the GAMS-4π spectrometer at the 70-GeV accelerator of
the Institute for High-Energy Physics (IHEP, Protvino). A partial-wave analysis is performed in the
mass range between 1.1 and 3.9 GeV for −t <0.2 (GeV/с)2, S, D, G, and J waves being taken into
account in this analysis. The S wave has a complicated structure, displaying peaks at about 1.5 and
1.7 GeV. These peaks are associated with the f0(1500) and f0(1710) mesons. One of the solutions
(preferable one) involves the f0(2200) and f2(1950) resonances. The mass region above 2.4 GeV is
dominated by the G wave. A broad state of mass about 3 GeV and width 0.7 GeV is found in the J
wave. The parameters of the resonances in question and their production cross sections are measured.
c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

The ηη system has been studied in number of
experiments with the aim of searches for exotic states.
Interest in this system was motivated by the fact that,
according to theoretical ideas, gluon states have an
intense mode of decay to ηη [1]. The presence of only
even waves in the ηη system simplifies the procedure
of a partial-wave analysis significantly.

More than 20 years ago, a candidate for scalar
glueballs, G/f0(1590) meson [2, 3], was discovered
in studying the ηη system in charge-exchange π−p
interaction. The observation of a G meson in the
ηη system in the central-production reaction [4, 5]
confirmed the hypothesis that this state may involve
a significant gluon component. Later on, this state,
denoted as the f0(1500) meson [6], was discovered
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in some other reactions (proton–antiproton annihi-
lation, radiative decay of J/ψ) where it is natural to
expect an enhanced production of gluon-richmesons.
All of this gives sufficient grounds to believe that the
f0(1500) meson is a serious candidate for glueballs.

In the ηη system, there is yet another state, the
f0(1710) meson, which is likely to have an exotic
character. This resonance was observed in many ex-
periments, but its spin had been ambiguous for a long
time (two possible values of J = 0 and 2 had been
considered). The observation of f0(1710) as a scalar
state in the radiative decays of J/ψ [7], as well as data
from the WA102 experiment for π+π− and K+K−

systems, made it possible to establish the scalar na-
ture of the fJ(1710) meson unambiguously [8, 9].
The first observation of the fJ(1710) meson in the
ηη system, together with the determination of its spin
of J = 0, was reported by the WA102 Collabora-
tion [10]. A reliable observation of two scalar states,
f0(1500) and f0(1710), in the central production of
the ηη system and an insignificant contribution to the
mass spectrum of the signal from the f2(1525) meson
remove any arguments against the splitting of the
signal from G/f0(1590) into two states. Indeed, the
main argument against this splitting [11] was based
on the assumption that the reliable peak observed in
the mass spectrum of the KK̄ system in the WA76
experiment [12] was associated with the f2(1525)
meson. However, this assumption contradicts data
c© 2005 Pleiades Publishing, Inc.
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of the WA102 experiment. The presence of two nar-
row scalar states whose parameters agree with the
results of lattice calculations for the glueball mass in
the region around 1.6 GeV calls for pursuing further
investigations of the ηη system.

The tensor sector is also of interest. In the ηη
system, a f2(2175) meson, which is the candidate
for tensor glueballs [4, 5, 10], was discovered in cen-
tral production. According to lattice calculations, the
mass of the lightest tensor glueball must fall within
the range 2200–2300 MeV [13, 14]. One of the so-
lutions [3] contains yet another state, f2(1810). This
state can be associated with the signal seen in the 4π0

system in charge-exchange interaction [15] and in the
central-production reaction [16].

Investigations of high-spin states is yet another
realm in meson spectroscopy. The GAMS Collabo-
ration discovered and studied three such states: the
a4(2020), ρ5(2230), and f6(2520) mesons [6]. So far,
there has been no experimental information about the
ηη system in the high-mass region. Investigation of
this region is one of the main objectives of the present
study.

We have explored the ηη system in charge-
exchange π−p interaction. The reaction

π−p → M0n, (1)
|→ηη → 4γ

was studied at a momentum of 32.5 GeV/c, both η
mesons being recorded by using the mode of decay
to two photons. Our experiment was performed with
the GAMS-4π spectrometer at the 70-GeV proton
accelerator of the Institute for High-Energy Physics
(IHEP, Protvino). A partial-wave analysis was per-
formed in the mass range between 1.1 and 3.9 GeV
for low values of the momentum transfer squared,
−t < 0.2 (GeV/c)2.

2. DESCRIPTION OF THE EXPERIMENTAL
FACILITY

The GAMS-4π spectrometer is a further devel-
opment of the GAMS-2000 facility [17]. The layout
of the equipment used in our apparatus is shown in
Fig. 1. The multiphoton GAMS-2000 spectrometer,
a wide-aperture detector (WAD) of photons, a veto
system, and a hadron calorimeter (GDA-100) are
the main elements of the apparatus. Owing to the
presence of the wide-aperture detector, the GAMS-
4π facilitymakes it possible to attain simultaneously a
high efficiency of the detection of low-energy photons
emitted at large angles, a good separation of photons,
and a high resolution in the effective mass of two
photons in the forward direction. This is due to a
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 6 200
relatively large distance (6.8 m) between the hydro-
gen target used and the GAMS-2000 spectrome-
ter. The central part of the GAMS spectrometer is
supplemented with an 8 × 8 matrix of PWO crystals,
the cell dimensions being 19 × 19 × 200 mm [18].
The wide-aperture detector is a projection electro-
magnetic calorimeter shaped as a lead–scintillator
sandwich [19]. The detector has a sensitive area of
248 × 248 cm and a central hole whose dimensions
are 36× 36 cm and covers the angular range between
0.15 and 1 rad. The wide-aperture detector consists of
four independent blocks of area 124 × 124 cm in each
quadrant partitioned in depth into two modules. Each
module involves 14 converter plates and 5-mm layers
of scintillator plates. A converter plate is formed by a
lead sheet 2 mm thick and two steel sheets 0.8 mm
thick, all three being glued together. A scintillator
layer consists of 48 scintillation “sticks” of width
25.8 mm and length 124 cm each. Each quadrant
has seven layers of sticks arranged horizontally and
seven layers of sticks arranged vertically. All seven
horizontal layers are combined together to form a
horizontal element. Accordingly, a vertical element
is formed by the vertical layers. Thus, each quad-
rant of the wide-aperture detector has 96 (48 × 2)
horizontal and 96 (48 × 2) vertical scintillation ele-
ments. Photomultiplier tubes (FEU-84-3) are used
to record light. The total radiation length of the wide-
aperture detector is 12.5X0. The energy resolution
is 13%/

√
E(GeV) [20]. The distance between the

target and the front plane of the wide-aperture detec-
tor was slightly different in different data-acquisition
runs, being about 1.2 m. All of the particles that
passed through the central hole in the wide-aperture
detector were recorded in the GAMS spectrometer.

A liquid-hydrogen target (LHT) was surrounded
by a scintillation veto system and a lead-glass veto
system, which recorded charged particles and pho-
tons emitted from the target. These particles orig-
inated predominantly from the decays of isobars
formed in hadron interactions. The veto system (VS)
has a high detection efficiency with respect to charged
particles and photons, but it is weakly sensitive to
recoil neutrons from reaction (1).

The trigger and the calibration procedure here
are virtually identical to those described in [17]. The
GAMS-4π spectrometer possesses a high detection
efficiency with respect to reaction (1) in the region of
ηη masses that extends up to 4.5 GeV.

Our experimental data were collected within five
runs of accelerator operation. The total flux of π−

mesons transmitted through the target was about
1.1 × 1012 particles. The sensitivity of our measure-
ments was about 1.5 pb−1.
5
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Fig. 1. Layout of the GAMS-4π spectrometer.
3. EVENT SELECTION

In order separate reaction (1) from reconstructed
events that involve four photons in the final state, we
applied the following selection criteria:

(i) The total energy of four photons must lie in the
range 28.5–35.5 GeV.

(ii) The photon energy must exceed 0.6 GeV in the
GAMS and 0.15 GeV in the wide-aperture detector.

(iii) Two photons that find their way to the GAMS
are considered as one photon if the effective mass
of this pair is less than 25 MeV and if the distance
between the photons is smaller than 35 mm.

(iv) The distance between the beam axis and the
point at which any photon hits the detector exceeds
30 mm.

(v) The invariant mass of a photon pair identified
as an η meson must lie in the range 480 < mγγ <
620 MeV.

(vi) The confidence level of a 2C fit (the masses of
two η mesons were fixed) must be 92%.

In order to suppress the background from more
intense π0π0 and π0η channels of the reaction, we
rejected events if, at least in one of the combinations,

(a) the invariant mass of any photon pair was less
than 200 MeV;

(b) the invariant mass of both photon pairs was
less 260 MeV;

(c) the invariant mass of one photon pair was less
than 260 MeV, while that of the other pair fell in the
interval 420–680 MeV.
PH
Figure 2 shows the momentum-transfer-squared
distributions of events for ηη invariant masses rang-
ing between 1.1 and 1.5, 1.5 and 1.9, 1.9 and 2.3,
2.3 and 2.8, 2.8 and 3.3, and 3.3 and 3.9 GeV. These
distributions were approximated by the exponential
dependence Ae−b|t| at low values of the momentum
transfer, −t < 0.2 (GeV/c)2. For these mass inter-
vals, we obtained the following values of the slope
parameter b: 11.0 ± 0.15, 9.67 ± 0.15, 9.85 ± 0.15,
9.43 ± 0.17, 7.35 ± 0.17, and 4.23 ± 0.17 (GeV/c)−2.
We note that the slope parameter changes signifi-
cantly at mass values above 3 GeV. In order to en-
hance the contribution of single-pion exchange, only
events characterized by −t < 0.2 (GeV/c)2 were se-
lected for the ensuing analysis.

4. DETECTION EFFICIENCY
AND INSTRUMENTAL RESOLUTION

The efficiency and the instrumental resolution
were determined by the Monte Carlo method with
allowance for spectrometer geometry and the reso-
lution of the detectors, the selection procedures and
the procedures for a kinematical analysis of events
also being taken into account in doing this. The
efficiency was represented in the form of an expansion
in spherical functions YM

L (ΩGJ) as

ε(ΩGJ,Mηη , t) =
∑
L,M

εLM (Mηη , t)Re{YM
L (ΩGJ)},

(2)
YSICS OF ATOMIC NUCLEI Vol. 68 No. 6 2005
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Fig. 2. Distribution of the squares of momentum transfers for various intervals of the ηη mass.
where ΩGJ ≡ [cos θGJ, φTY] is the spatial angle in the
Gottfried–Jackson frame.

The efficiency changes smoothly as a function of
the effective mass of the ηη system up to 4.5 GeV, the
dependence of the efficiency on t also being very weak
for −t < 0.8 (GeV/c)2. In Fig. 3, the dashed curve
represents the leading term ε00 of the expansion in (2)
versus the invariant mass of the ηη system. This curve
corresponds to the detection efficiency for events uni-
formly distributed over the phase space. At the ηη
masses of 1.5, 2, 3, and 4 GeV, the instrumental mass
resolution is 17, 35, about 80, and about 160 MeV,
respectively.

5. EFFECTIVE-MASS SPECTRUM
AND ANGULAR DISTRIBUTIONS

The mass spectrum of selected events is displayed
in Fig. 3. This spectrum includes 101 700 events that
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 6 200
passed the selection criterion −t < 0.2 (GeV/c)2.
The spectrum in question exhibits a concentration
of events in the region around 1.3 GeV and a narrow
peak at 1.5 GeV. Some kinds of peaks can also be
seen in the vicinities of 1.7 and 2.2 GeV. As will be
shown below, a partial-wave analysis suggests that a
peak at 1.5 GeV is most likely to be associated with
the f0(1500) meson.

The angular distributions of η mesons in the
Gottfried–Jackson frame can be expressed in the
form of an expansion in spherical harmonics YM

L (ΩGJ)
as

I(ΩGJ) (3)

=
8∑

L=0

[
t0LY

0
L (ΩGJ) + 2

2∑
M=1

tML Re
{
YM
L (ΩGJ)

}]
.

Figures 4 and 5 show the most significant coefficients
tML in the series expansion (3), which are further re-
5
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Fig. 3. Invariant-mass spectrum of the ηη system in reaction (1) for −t < 0.2 (GeV/c)2. The dashed curve represents the
leading term ε00 in the expansion (2) of the spectrometer efficiency.
ferred to as “moments” for the sake of brevity. Under
the assumption of spin coherence, these moments
can be expressed in terms of partial-wave amplitudes.
Table 1 gives expressions for the moments in terms of
the amplitudes of the S, D and G waves for |m| ≤ 1.
From the form of these expressions and the data in
Figs. 4 and 5 alone, one can draw some conclusions
on the relative contributions of partial waves. AllM >
2 moments do not show significant deviations from
zero, and this gives sufficient grounds to assume that
the effect of |m| ≥ 2 waves can be disregarded in
analyzing the ηη-mass range being studied. More-
over, the M = 2 moments do not differ significantly
from zero either. We note in this connection that
the moments in question can be expressed in terms
of the D−, D+, G−, and G+ waves in the form of
linear combinations—(D2

− −D2
+), (G2

− −G2
+), and

(D−G− + D+G+)—this indicating that, in the reac-
tion being studied, the amplitudes of the D− and D+

waves are approximately equal to the amplitudes of
theG− andG+ waves, respectively. This is also so for
higher waves and is well consistent with the Ochs–
Wagner model [21].

The M = 0 moments are an order of magnitude
greater than the corresponding M = 1 models, this
P

being indicative of a dominant role of the m = 0
waves. In this case, the weakD−- andG−-wave am-
plitudes can be observed in the interference with the
more intense S and D0 waves. For the D+- and G+-
wave amplitudes, the situation is different; since they
appear in the expressions for the moments defined by
Eq. (3) in the form of their squares or in the form of
the products of these amplitudes, their contribution
is strongly suppressed. Thus, we see that, in the case
where theD−,D+,G−, andG+ waves are strong, the
M = 2 moments can be small if the amplitudes of the
D− and D+ waves are equal to the amplitudes of the
G− and G+ waves, respectively. There is yet another
scenario in which the amplitudes of the D−, D+, G−,
and G+ waves are merely small. As will be shown
in the next section, the second scenario is preferable.
Finally, we would like to highlight nonzero values of
the moment t010 for mass values in excess of 2.5 GeV,
this suggesting themanifestation of spin-6waves and
waves of higher spin in this mass interval.

6. MASS-INDEPENDENT PARTIAL-WAVE
ANALYSIS

The procedure of a mass-independent partial-
wave analysis within the spin-coherence model was
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 6 2005
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Table 1. Angular momenta (3) in reaction (1) that are expressed in terms of partial-wave amplitudes (use is made here
of the following condensed notation: L2 ≡ |L|2, LL′ ≡ Re(LL′∗))

√
4πt00 = S2 + D2

0 + D2
− + D2

+ + G2
0 + G2

− + G2
+

√
4πt02 = 2SD0 +

2
√

5
7

D2
0 +

√
5

7
(D2

− + D2
+) +

12
7
D0G0 +

2
√

30
7

(D−G− + D+G+) +
20

√
5

77
G2

0 +
17

√
5

77
(G2

− + G2
+)

√
4πt12 =

√
2SD− +

√
10
7

D0D− +
2
√

15
7

D0G− − 4
√

2
7

G0D− +
10

√
3

77
G0G−

√
4πt22 =

√
15

7
√

2
(D2

− −D2
+) − 2

√
5

14
(D−G− −D+G+) +

5
√

30
77

(G2
− −G2

+)

√
4πt04 = 2SG0 +

6
7
D2

0 − 4
7
(D2

− + D2
+) +

40
√

5
77

D0G0 +
10

√
6

77
(D−G− + D+G+) +

486
1001

G2
0 +

243
1001

(G2
− + G2

+)

√
4πt14 =

√
2SG− +

2
√

15
7

D0D− +
17

√
10

77
D0G− +

10
√

3
77

G0D− +
243

√
2

1001
G0G−

√
4πt24 =

√
10
7

(D2
− −D2

+) +
9
√

15
77

(D−G− −D+G+) +
81

√
10

1001
(G2

− −G2
+)

√
4πt06 =

30
√

65
143

D0G0 −
20

√
78

143
(D−G− + D+G+) +

20
√

13
143

G2
0 −

√
13

143
(G2

− + G2
+)

√
4πt16 =

10
√

273
143

D0G− +
5
√

910
143

G0D− +
2
√

1365
143

G0G−

√
4πt26 =

4
√

910
143

(D−G− −D+G+) +
√

1365
143

(G2
− −G2

+)

√
4πt08 =

490
√

17
2431

G2
0 −

392
√

17
2431

(G2
− + G2

+)

√
4πt18 =

294
√

85
2431

G0G−

√
4πt28 =

42
√

595
2431

(G2
− −G2

+)
described in detail elsewhere (see, for example, [22]).
In order to fit angular distributions, the maximum-
likelihood method is used in each mass interval.
This reduces to minimizing, in terms of partial-wave
amplitudes, the functional (see Table 1)

F = −
N∑
i=1

ln I(Ωi
GJ) +

∑
L,M

tML εML , (4)

where N is the number of events in the chosen mass
bin, εML are moments in the expansion of the detection
efficiency, and tML are moments of angular distribu-
tions in terms of partial waves.

In order to analyze data in the range extending up
to 1.7 GeV, the bin width was chosen to be 20 MeV.
Only the J = 0 and 2 waves are significant in this
mass range. Therefore, we have considered the S,D0,
D−, and D+ waves. Two possible solutions are illus-
trated in Fig. 6. The procedure for matching solutions
in neighboring mass intervals is described in [23].
Because of a large intensity of the D wave at the
reaction threshold in the second solution, we consider
it as an unphysical solution. In the physical solution,
the contribution of m = 0 waves is everywhere much
greater than the contribution of |m| = 1 waves. The
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 6 200
phase coherence of the D0 and D− waves (in our
notation, the phase difference between these waves
is π) is yet another special feature of the data, which
was already observed in previous experiments devoted
to studying the production of ηη and KK̄ systems
in charge-exchange reactions and which is in good
agreement with the predictions of the Ochs–Wagner
model. In the mass range extending up to 1.7 GeV,
the contribution of the G wave is negligible, with the
result that the chosen solution is unambiguous. At
the last stage of the analysis, the amplitude of the
G0 wave was fixed, in the mass region bounded from
above by 1.7GeV, on the basis of themass-dependent
solution obtained earlier (see next section).

For a partial-wave analysis in the range of ηη
masses between 1.7 and 2.5 GeV, the bin width
was chosen to be 40 MeV. The contribution of J ≥
4waves is sizable in the moments t06 and t08. Our anal-
ysis revealed that the contribution of higher waves is
negligible in this interval. Only the S, D0, and G0

waves (which corresponds to J = 0, 2, and 4 at m =
0) were taken into account at the initial stage of our
partial-wave analysis. Within this simplified model
of a partial-wave analysis, there are two nontrivial
solutions. At the next stage, the solutions obtained
5
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Fig. 4. Spherical-harmonic moments tM
L at M = 0 versus the invariant mass of the ηη system for L = 2, 4, 6, 8, 10, and 12.
in this way were supplemented with |m| = 1 waves—
namely, withD−,D+,G−, andG+—and the analysis
was repeated. As a result, we found solutions where
the contribution of the D−, D+, G−, and G+ waves
is small. Since the M = 0 moments are everywhere
much greater than the M = 1 moments, only these
solutions are considered in the ensuing analysis.
Thus, two different solutions were found in each mass
interval.

One of the two possible solutions is shown in
Fig. 7. In the S wave, one can observe three relatively
broad peaks at 1.3, 1.6, and 2.2 GeV. In the S-wave
spectrum, there is a narrow spectrum corresponding
to the f0(1500) meson. Only one peak in the region
around 1.6 GeV [G(1590) meson] was observed in
previous experiments of the GAMS Collaboration.
The parameters of this resonance differed from the
parameters of the scalar resonance observed in other
experiments [24, 25]. In the present experiment, we
have obtained an order of magnitude vaster data sam-
P

ple, and this made it possible to separate the signal in
the vicinity ofG(1590) into two resonances, f0(1500)
and f0(1710). This result is in agreement with data
from the WA102 experiment, where a signal from the
scalar meson f0(1710) was observed in the π+π− and
K+K− channels [8, 9]. A peak in the region around
2.2 GeV—it is observed only in this solution—is
also noteworthy. In the D0 wave, one can see three
peaks occurring in the regions around 1.4, 1.9, and
2.4 GeV. Finally, the G0 wave exhibits a signal from
the f4(2050) meson. All of this taken together favors
the interpretation of this solution as a physical one.

The second solution is displayed in Fig. 8. In the
region around 2 GeV, the D wave exhibits a peak of
potentially complicated structure.

In the mass region above 2.5 GeV, two solutions
were found with the aid of a similar procedure. The
mass-bin width was chosen to be 80 MeV. Since the
L = 10 moment shows the presence of higher spin
states, amplitudes corresponding to spin values of up
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 6 2005
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to six were included in the fit. A sharp change in the
slope parameter of the t dependence in the vicinity of
3 GeV is indicative of the possible contribution from
waves involving exchange of natural spin–parity. For
amplitudes of unnatural spin–parity alone, the num-
ber of nontrivial solutions increases to 32 in this case.
In a simplified version of the analysis, we found only
two solutions, which correspond to two solutions in
the region below 2.5 GeV. In the solutions obtained in
this way, the J wave in Fig. 9 exhibits a broad peak in
the vicinity of 3 GeV.

7. MASS-DEPENDENT PARTIAL-WAVE
ANALYSIS

In order to determine the parameters of the res-
onances that are formed in the ηη system, the ex-
perimental moments corrected for the efficiency were
approximated by the moments calculated on the basis
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 6 200
of a model partial-wave analysis. The expression for
the lm partial-wave amplitude has the form

Alm(Mηη) =
Nres∑
k=1

almk eiθkBWk(Mηη), (5)

whereNres is the number of resonances in each partial
wave; ak and θk are, respectively, the amplitude and
the phase of the kth resonance; and BWk are the rel-
ativistic Breit–Wigner amplitudes involving the rele-
vant Blatt–Weisskopf barrier factors [26]. In order to
describe a relatively narrow peak in theD wave in the
region around 1.4 GeV, use was previously made of
two close resonances f2(1270) and f2(1525) [3, 27].
In our fit, the parameters of these resonances were
fixed at their values given by the Particle Data Group.
For f2(1270), we assumed that the ππmode saturates
its total width.
5
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The χ2/ndf values obtained for the first and
second solutions were 1.19 and 1.32, respectively.
The number of degrees of freedom (ndf) at the bin
width of 20 MeV was about 3500. In Tables 2
and 3, we present the parameter values both for
the resonances that clearly manifest themselves in
the mass-independent partial-wave analysis and for
the resonances that we presently consider only as
background resonances. In these tables, the back-
ground resonances are labeled with an asterisk.
Two asterisks there label background resonances
that are discarded in some versions of the fit. The
errors quoted in Tables 2 and 3 are predominantly
systematic ones—they stem from the scatter of the
parameters in different versions of the fit. There is a
rather large systematic uncertainty in the parameters
of the background resonances. By way of example, we
indicate that, in order to describe a broad structure in
P

the D wave in the region around 2 GeV in the second
solution (Table 3), we had to introduce four Breit–
Wigner resonances. At the same time, neither the
mass spectrum nor the behavior of the phase of the
D wave shows clear-cut indications of these objects.
Moreover, the resonances in question do not have
unambiguous analogs in the elementary-particle
table of the Particle Data Group. In view of all this,
we are inclined to believe that the second solution,
which exhibits these resonances, is unphysical.

Tables 2 and 3 also give the cross sections for
the coherent sum in each partial wave. Because of
interference, these cross sections do not reduce to
the sum of the cross sections for all resonances in a
given wave. The relative systematic error in the sum
is much less than the error in individual cross sections
for each resonance. In some versions, a spin-8 back-
ground resonance was included in the fit. Probably,
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 6 2005
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the presence of this wave is responsible a slight dis-
crepancy between the results of the mass-dependent
and the mass-independent (without allowing for the
spin-8 term) fit for the J in the region around 3.4 GeV
and above (see Fig. 9).

By and large, we were able to attain an acceptable
quality of data description with a finite set of reso-
nances that manifest themselves in the physical (in
our opinion) solution of the partial-wave analysis. At
the same time, the method in question has some ob-
vious limitations. First, other resonance-production
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 6 200
and resonance-decay processes were disregarded
in the analysis. Second, it is well known that the
parametrization of amplitudes in the Breit–Wigner
form is very accurate far off reaction thresholds and
in the absence of a strong overlap of resonances.
On the contrary, the presence of many overlapping
resonances in each partial wave is characteristic
of the ηη system in reaction (1), two resonances
of considerable importance, f0(1370) and f2(1270),
being produced near the threshold. In view of this, we
consider our present results as a starting point for a
5
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global analysis that must also include our data on the
π0π0 and KSKS systems.

8. DISCUSSION OF THE RESULTS

In the first (physical) solution, the S wave shows a
series of peaks, this being indicative of the presence of
a few scalar resonances. This behavior of the S wave
is characteristic of the π0π0 system as well [23] and
therefore seems quite natural.

In the mass-independent data analysis, a narrow
peak corresponding to the f0(1500) meson is clearly
seen in the S wave. This peak is also quite distinct
PH
in the effective-mass spectrum of the ηη system, the
signal-to-background ratio there being about 1/6.
Therefore, it comes as no surprise that this peak,
which was also noticeable in the mass spectra in
previous experiments characterized by poorer statis-
tics [2, 3], was not mentioned by the authors of the
respective articles. We note that, in the analysis of
the ηηπ system at the VES facility [28], the peak
associated with the f0(1500) meson is also clearly
seen in the ηη mass spectrum.

The resonance positionM = 1495 ± 15 MeV is in
good agreement with the Particle Data Group value
for the f0(1500) meson; however, the value obtained
YSICS OF ATOMIC NUCLEI Vol. 68 No. 6 2005
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Table 2. Parameters of the resonances obtained from a mass-dependent partial-wave analysis of the ηη system for the
first solution [background resonances (see main body of the text) are labeled with an asterisk; background resonances
that are discarded in some versions of the fit are labeled with two asterisks]

JPC Resonance M , MeV Γ, MeV Cross section, nb

0++ f0(1370) 1350 ± 100 300 ± 50 70 ± 25

f0(1500) 1493 ± 7 90 ± 15 3.0 ± 0.8

f0(1710) 1670 ± 20 260 ± 50 48 ± 12

f0(2200) 2210 ± 50 380 ± 90 180 ± 35

Total cross section in the S wave 240 ± 25

2++ f2(1270) 1275.4 185.1 30 ± 8

f2(1525) 1524.5 76 1.8 ± 0.9

f2(1950) 1930 ± 25 450 ± 50 90 ± 30

∗ 2700 ± 90 850 ± 100 70 ± 25

∗∗ ∼1590 ∼400 ∼20

Total cross section in the D wave 154 ± 12

4++ f4(2050) 2005 ± 10 340 ± 80 11 ± 3

∗ ∼2800 ∼700 ∼60

∗ ∼3500 ∼800 ∼20

∗∗ 1710 ± 7 130 ± 30 ∼0.5

Total cross section in the G wave 70 ± 14

6++ f6 3100 ± 100 700 ± 130 13 ± 4

8++ ∗∗ ∼3600 ∼800 ∼5
for its width, Γ = 90 ± 20 MeV, is somewhat smaller
than its counterpart given in the Particle Data Group
tables.

We interpret the peak in the S wave around
1.7 GeV as the f0(1710) meson. For its mass and
width, we obtained the values

M = 1680 ± 20 MeV and Γ = 260 ± 50 MeV.

The f0(2200) resonance can be seen in only the
physical solution. We note that this state manifests
itself only upon including the G wave in the analysis.

The physical solution also shows evidence for the
production of a f2(1950) meson, which was previ-
ously observed in the ηη system in proton–antiproton
annihilation [29]. On the other hand, this solution
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 6 200
does not exhibit a f2(2150) meson, which was pre-
viously observed in the central-production process in
the WA102 experiment [9, 10].

In either solution, the f0(1370) resonance is ob-
served in the low-mass region. However, one can
see that, while the masses and widths of the other
resonances in the S wave remain more or less stable
in different versions of the fit, the mass and the width
of f0(1370) change within rather broad intervals. The
physical background in the S wave was described as
the subthreshold-resonance tail. It turned out that
the parameters of this background term correlate very
strongly with the parameters of the f0(1370) reso-
nance. In view of this, the parameters of this reso-
5
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Table 3. Parameters of the resonances obtained from a mass-dependent partial-wave analysis of the ηη system for the
second solution (the meaning of the asterisks here is identical to that in Table 2)

JPC Resonance M , MeV Γ, MeV Cross section, nb

0++ f0(1370) 1300 ± 80 250 ± 100 85 ± 10

f0(1500) 1500 ± 15 85 ± 20 2.6 ± 0.9

f0(1710) 1690 ± 25 260 ± 60 44 ± 12

Total cross section in the S wave 120 ± 12

2++ f2(1270) 1275.4 185.1 40 ± 9

f2(1525) 1524.5 76 1.6 ± 0.7

∗ ∼1900 ∼250

∗ ∼2000 ∼350

∗ ∼2000 ∼550

∗ ∼3500 ∼900

Total cross section in the D wave 290 ± 25

4++ f4(2050) 1960 ± 20 380 ± 40 19 ± 3.5

∗ ∼2800 ∼750 ∼70

Total cross section in the G wave 75 ± 14

6++ f6 3230 ± 120 700 ± 140 11 ± 4

8++ ∗∗ ∼3600 ∼900 ∼5
nance have yet to be established precisely. The situ-
ation in other experiments was similar [6].

In either solution of the partial-wave analysis,
there is also a broad state of spin 6. For its mass and
width, we obtained the following estimates:
M = 3150 ± 150 MeV and Γ = 700 ± 150 MeV.

Further, we use the cross section 2.6 ± 0.2 µb
measured at 38 GeV/c for the production of a
f2(1270) meson in the charge-exchange reaction and
introduce the correction for the energy dependence
of this cross section [23] in order to estimate the
branching ratio for the decay f2(1270) → ηη. This
yields

Br(f2(1270) → ηη) = (2.7 ± 0.7) × 10−3,

which is in agreement with the Particle Data Group
value of this quantity and which indicates that the
data of the present experiment are by and large con-
sistent with earlier data.
PH
9. CONCLUSIONS

We have performed a partial-wave analysis of the
ηη system in charge-exchange π−p interaction at
32.5 GeV/c. The analysis covers the mass range
between 1.1 and 3.9 GeV for −t < 0.2 (GeV/с)2 and
takes into account S, D, G, and J waves. The most
probable physical solution has been determined.

In the mass range below 2 GeV, our partial-wave
analysis has revealed the presence of a few over-
lapping resonances of various spins. In particular,
the S wave exhibits three distinct states: f0(1370),
f0(1500), and f0(1710), two partly overlapping states
f0(1500) and f0(1710) being separated in the region
of the G(1590) meson owing to vast statistics of the
experiment.

At high masses of the ηη system, preference in the
partial-wave analysis has been given to the solution
that shows the f2(1950) and f0(2200) resonances.
YSICS OF ATOMIC NUCLEI Vol. 68 No. 6 2005
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Fig. 9. J0 wave obtained from a mass-independent
partial-wave analysis of the ηη system for −t <
0.2 (GeV/c)2 in the mass interval 2.4−3.6 GeV. Shown
are the results for two mass-independent solutions. The
solid curves represent the results of a mass-dependent
partial-wave analysis for two solutions. A slight dis-
crepancy between the results of the mass-independent
and mass-dependent partial-wave analyses at masses of
about 3.4 GeV and higher mass values is likely to be due
the spin-8 effect (see main body of the text).

The mass range above 2.4 GeV is dominated by
the G wave. A broad state of mass 3150 ± 150 MeV
and width 700 ± 150 MeV has been discovered in the
J wave.
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Abstract—Data from the SVD-2 experiment that were obtained at the IHEP accelerator in 70-GeV/с
proton–nucleus interactions are analyzed with the aim of searches for an exotic Θ+ baryon that decays
through the pK0

S channel. The reaction pN → pK0
S +X characterized by a boundedmultiplicity of charged

secondaries is used for this analysis. A resonance of mass M = 1526 ± 3(stat.) ± 3(syst.) MeV/c
2
and

width Γ < 24 MeV/c
2
is observed in the invariant-mass spectrum of the pK0

S system at a statistical
significance of 5.6σ. The mass and the width of this resonance correspond to the recently found positive-
strangeness Θ+ baryon, which was predicted to be an exotic baryon consisting of five quarks (pentaquark),
uudds̄. The total cross section for the production of a Θ+ baryon in pA interactions is estimated at a
value within the range 30–120 µb for xF ≥ 0. An analysis of the A dependence of the cross section for
Θ+-baryon production does not reveal a significant deviation from the A dependence for inelastic events
(∼A0.7). c© 2005 Pleiades Publishing, Inc.
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1. INTRODUCTION

Exotic baryons consisting of five quarks (pen-
taquarks) and their properties were predicted by Di-
akonov, Petrov, and Polyakov on the basis of the chiral
soliton model in 1997 [1], although the first theories
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describing pentaquark hadrons were proposed a few
decades ago [2–6]. In [1], the Θ+ baryon, which
is the lightest member of the antidecouplet of pen-
taquarks, had a mass of 1530 MeV/c2, a width of
Γ ≤ 15 MeV/c2, a spin of 1/2, and a positive parity.
Later on, Stancu and Risca [7] proposed describing
a stable uudds̄ pentaquark within the constituent
quark model. Capstick et al. [8] put forth the idea
of an isotensor pentaquark, while Karliner and Lip-
kin [9] developed a cluster model, considering the
Θ+ baryon as a bound diquark–triquark state. Jaffe
and Wilczek [10] proposed a model where the Θ+

baryon consists of two diquarks (ud) and a strange
antiquark. Simultaneously, attempts were made to
predict pentaquarks of negative and positive parity
by using lattice QCD models [11, 12]. The model of
chiral solitons was described in more detail in the
review article of Kopeliovich [13].

The predictions of Diakonov, Petrov, and Polyakov
[1] gave impetus to experimental searches for pen-
taquarks; as a result, corroborations that the Θ+

baryon exists recently came from several laborato-
ries (LEPS [14], DIANA [15], CLAS(d) [16, 17],
SAPHIR [18], ITEP [19], CLAS(p) [20]). In those
experiments, the Θ+ baryon was observed as a
narrow resonance peak in the nK+ or pK0

S invariant-
mass spectra, its mass being about 1540 MeV/c2.
More recently, the HERMES Collaboration reported
the observation of a narrow baryon state of mass
1528 MeV/c2 in quasireal photoproduction [21],
while the ZEUS Collaboration recorded a peak at
1522 MeV/c2 in the pK0

S channel [22].

In the present study, we report on the results of
our searches for theΘ+ baryon in the proton–nucleus
interactions (in silicon, carbon, and lead targets) in-
duced by a 70-GeV/с proton beam from the acceler-
ator of the Institute for High Energy Physics (IHEP,
Protvino). Specifically, we study the reactions

pN → Θ+ +X, Θ+ → pK0
S , K0

S → π+π−

by using the SVD-2 setup.
The data obtained in this way were analyzed for the

inclusive reaction of bounded charged-particle multi-
plicity in the region of projectile-proton fragmentation
(xF(pK0

S) > 0) [23].

2. SVD-2 SETUP

The main objective of the SVD-2 experiment
is studying charmed-particle production in hadron-
nucleus interactions at threshold energies [24–30].

The layout of the SVD-2 setup is shown in Fig. 1.
The basic elements of the setup are the following:
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 6 200
(1) a high-precision microstrip vertex detector
(MSVD) including

(а) a microstrip beam telescope (MBT) [it con-
sists of three pairs of XY silicon microstrip detectors
(MSD 1–6) having 128 strips spaced by 50 µm],

(b) an active target (AT) [it consists of five mi-
crostrip silicon detectors of thickness 300 µm, a lead
foil 220 µm thick, and a carbon target 500 µm thick
(the distance between all targets is 4 mm)],

(c) amicrostrip silicon detector (MSD) {it consists
of three pairs ofXY microstrip silicon detectors (MSD
7 and 8 have 640 strips spaced by 25 µm, MSD 9 and
10 have 640 strips spaced by 50 µm, andMSD 11 and
12 have 1024 strips spaced by 50 µm) and a UYVX
quadruplet (MSD 13–16) having 1024 strips spaced
by 50 µm [27]};

(2) a large-aperture magnetic spectrometer
(LAMS) including

(а) and electromagnet MC-7А characterized by
an aperture of 1.8 × 1.3 m2 and a distance of 3 m
between the magnetic poles (it creates a uniform
magnetic field of strength 1.18 Т),

(b) two sets of wire proportional chambers (WPC)
(the first set is formed by one UYV triplet character-
ized by a sensitive area of 1.0 × 1.0 m2 and a distance
of 2 mm between the wires and is placed in front of
the magnet in the scattered magnetic field; the second
set consists of five tripletsUYV of sensitive area 1.0 ×
1.5 m2; some chambers of this set are placed in front
of the magnet, while the remaining ones (13 cham-
bers) are positioned between the magnetic poles in a
uniform magnetic field [28]);

(3) amulticell thresholdCherenkov counter (TCC)
(the counter was constructed for identifying charged
particles; it has an entrance aperture of 177 × 130
cm2 and consists of 32 spherical mirrors arranged
in four rows of eight; the threshold momenta of
charged particles are 4 and 21 GeV/c for π mesons
and protons, respectively; the counter is filled with
Freon and is operated at a temperature of 20◦C and
atmospheric pressure; in the momentum range from
4 to 21 GeV/c, the detection efficiency for charged
pions is 70% in the data-acquisition run);

(4) a gamma detector (DEGA) (it consists of 1536
full-absorption lead glass Cherenkov counters; each
counter has an area of 38 × 38 mm2 and a length
of 505 mm; the total sensitive area of the detector is
1.8 × 1.2 m2; the gamma detector ensures the detec-
tion of photons in the energy range from 50 MeV to
20 GeV at a coordinate resolution of 2 to 3 mm).

The SVD-2 trigger system generated a trigger
signal that was based on data obtained with the beam
scintillation detectors placed in front of the active
target, data obtained with the scintillation hodoscope
5
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Fig. 1. Layout of SVD-2 setup.
situated behind the threshold Cherenkov counter, and
data on ionization losses in the silicon detectors of the
active target.

Each of the five planes of the active target was seg-
mented into eight strips. The signal from each strip
was transferred to the input of a three-level compara-
tor. Coded data from the output of the comparators
were fed to the input of a two-level RAM, where the
trigger signal was developed by using lookup-table
modules. This method made it possible to extract
events in which the primary vertex was in any of the
active-target planes [29].

The SVD-2 setup was irradiated with a proton
beam of momentum Pp = 70 GeV/с and intensity
I ≈ (5−6)× 105 protons per accelerator spill. The to-
tal statistics of the experiment were 5 × 107 inelastic
events. With allowance for the trigger efficiency, the
total sensitivity of the experiment was 1600 events/µb
for inelastic pA interactions.

3. PROCEDURE FOR DATA PROCESSING
AND RESOLUTION OF THE SVD-2 SETUP

The algorithm for reconstructing the position of
the primary interaction vertex is based on the so-
called tear-down procedure [31, 32]. At first, straight
lines are drawn through the X and Y counts in the mi-
crostrip tracker by the least squares method. We then
apply quality criteria to the reconstructed tracks in
order to remove fake and badly reconstructed tracks.
The surviving tracks are included in a vertex fit for
which the quantity χ2(Ntr) is calculated. Further,
P

each track is excluded separately from the fit, and
the new quantity χ2(Ntr − 1) is computed for the
remaining tracks. We then select those tracks whose
elimination leads to the maximum value of the differ-
ence χ2(Ntr) − χ2(Ntr − 1) under the condition that
this difference exceeds a threshold ∆max that was
chosen to be three. Such tracks have an increased
impact parameter with respect to the primary vertex
and, because of this, are excluded from it. In the
present analysis, the minimum impact parameter for
the secondary tracks was 40 to 60 µm, depending
on the target used. The above procedure is repeated
as long as there remain tracks that can be excluded.
For a further analysis, we select events involving a
well-reconstructed primary vertex and two or more
tracks having increased impact parameters with re-
spect to the primary vertex. These events are tested
for the presence of a secondary vertex (V0 decay) in
both the X and the Y projection. The application of
different clustering methods [33] makes it possible
to improve the accuracy in determining the primary
vertex. This accuracy (resolution) was estimated at
70 to 120 µm for the Z coordinate and at 8 to 12 µm
for the X and Y coordinates. For secondary vertices,
these resolutions are 250 and 15 µm, respectively. The
impact-parameter resolution for tracks characterized
by momenta in the range 3–5 GeV/с is 12 µm, while
the average angular acceptance of the vertex detector
is±250 mrad.

In order to reconstruct charged-particle tracks in
the magnetic spectrometer, a novel method (variable-
momentum method) was developed for the SVD
setup. In the procedure for track recognition and
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 6 2005
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reconstruction, use is made in this method of the
a priori knowledge of the angular features of the
tracks and of interaction-point coordinates in the
vertex detector [34]. For an analysis of data of the
SVD-2 experiment, the method was improved by
using precalculated tables including the coordinates
of the points of intersection of possible tracks with
the planes of the proportional chambers. This en-
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 6 200
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ables one to increase the speed of the algorithm
by two orders of magnitude. A spectrometer that
involves a vertex detector makes it possible to attain
high resolutions in the effective masses of strange
particles—for example, the standard deviations in
the effective-mass distributions for K0

S mesons and
Λ0 hyperons are, respectively, 4.4 and 1.6 MeV/c2

(see Figs. 2 and 3). The momentum resolution for a
track involving 15 hits measured in the proportional
chambers is 0.5–1.0% for the momentum range
5
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4–20 GeV/c. The errors in measuring angles are
determined by the coordinate resolution of the ver-
tex detector and by the effect of multiple Coulomb
scattering in target materials and in silicon plates and
are estimated at 0.2 to 0.3 mrad. The average angular
acceptance of the magnetic spectrometer is±200 and
±150 mrad for, respectively, the horizontal and the
vertical coordinate.

Figure 4a shows the total effective-mass spectrum
for the π+K0

S and π−K0
S combinations. In this spec-

trum, the K∗(892)-meson peak is quite distinct. In
Fig. 4b, one can observe the Σ+(1385)-hyperon peak
in the effective-mass spectrum of the Λ0π+ system.
Themasses and widths of these peaks and themasses
of K0

S and Λ0 are in good agreement with the values
presented by the Particle Data Group [35].

4. ANALYSIS OF THE EFFECTIVE-MASS
SPECTRUM OF THE pK0

S SYSTEM

Events for which the multiplicity of charged par-
ticles in the primary vertex was not greater than
five were selected for analyzing the effective-mass
PH
spectrum of the pK0
S system. This selection pursued,

first of all, the goal of suppressing the combinatorial
background and the goal of reducing the probability
of the emergence of events involving rescattering on
nuclei and the background from K0

S mesons pro-
duced in the central rapidity region. About 34% of
all inelastic events and about 15% of all detected
K0
S mesons satisfy this selection criterion. For the

selected events, the mean multiplicity of particles,
including π0 mesons and neutral strange particles, is
eight.
K0
S mesons were identified by their decay to two

charged π mesons (K0
S → π+π−), where two un-

likely charged tracks intersected at the common sec-
ondary vertex. Candidates of massM(pπ−) less than
1.12 GeVwere rejected in order to eliminate the back-
ground of Λ0-hyperon decays. The final effective-
mass spectrum of the π+π− system is shown in
Fig. 2. For the ensuing analysis, we selected about
3800 K0

S mesons that decayed before the first plate
of the vertex detector (decay length not larger than
35 mm). The average decay length of K0

S mesons is
≤20 mm.
YSICS OF ATOMIC NUCLEI Vol. 68 No. 6 2005
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S
≤ Pp [38].
Protons were selected as positively charged parti-
cles for the case where the number of recorded counts
in the magnetic spectrometer was not less than ≥15
and where the momentum was within the interval
4 ≤ Pp ≤ 21 GeV/с. In this momentum range, π
mesons must be recorded by the the Cherenkov
counter; therefore, the absence of hits in the threshold
Cherenkov counter was also required.

The effective-mass spectrum of the pK0
S system is

shown in Fig. 5. This spectrum does not show any
noticeable peaks, apart from some excess of events in
the vicinity of 1530 MeV/c2.

In the ensuing analysis of the spectrum, we applied
the cuts

(i) 490 ≤M(π+π−) ≤ 505 MeV/c2

and
(ii) cosα ≥ 0, where α is the pK0

S emission angle
in the c.m.s. of the projectile proton and the target
nucleon involved.

The first of these cuts improves the resolution
in the effective mass of the pK0

S system, while the
second corresponds to the spectrometer aperture and
suppresses the background of π mesons misidentified
as protons.
F ATOMIC NUCLEI Vol. 68 No. 6 200
Figure 6 shows the effective-mass spectrum of
the pK0

S system that was obtained upon the appli-
cation of these cuts. The spectrum exhibits a narrow
peak at a mass value around 1526 MeV/c2, the half-
width being σ 
 10 ± 3 MeV/c2. In order to esti-
mate the background shape, we simulated the back-
ground of inelastic pSi events on the basis of the
FRITIOF code [36]. In the simulation, we took into
account the trigger efficiency, the setup acceptance,
the errors in the track parameters, and the conditions
of K0

S-meson decays. From Fig. 6, one can see that,
in the mass region above 1550 MeV/c2, the resulting
curve does not fully describe the actual background,
and this may be due to the presence of excited Σ∗+

resonances in this region that decay to pK0
S with a

sizable partial cross section [35]. For theKN system,
the presence of broad peaks in this mass region may
be a consequence of the Deck mechanism [37]. In
order to suppress these peaks, it was proposed to ap-
ply the kinematical cut PK0

S
≤ Pp [38], which, in the

mass region above 1550 MeV/c2, leaves around 90%
of allΘ+-baryon decays and efficiently suppresses the
decays of Σ∗+ resonances.

The final effective-mass distribution of the pK0
S

5
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system is shown in Fig. 7. In order to describe the
spectrum in the region 1.3 < M(pK0

S) < 1.7GeV/c2,
we employed a Gaussian distribution for the signal
and a fourth-degree polynomial for the background.
The dotted-line histogram represents the background
obtained in the simulation according to the FRITIOF
code. One can observe 50 events in the peak above
the background of 78 events. The statistical signifi-
cance of the peak within the mass window ∆Meff =
45 MeV/c2 was estimated on the basis of the ratio
NP /

√
NB , where NB is the number of background

events and NP is the number of events in the peak
above the background and was found to be 5.6σ.
By using data on the above inclusive reaction alone,
it is impossible to determine the strangeness of the
observed resonance; however, we interpret the ob-
served state as the recently discovered Θ+ baryon of
positive strangeness, since, in the mass range 1500–
1550 MeV/c2, we did not observe Σ∗+ resonances.

It was verified that the observed peak is not
a reflection of other known resonances (such as
K∗±(892) or ∆0) or an artificially generated peak.
Also, no significant peaks were found in the effective-
mass spectra of the pK0

S system for events in which
the proton mass was assigned to a π+ meson that
was detected by the threshold Cherenkov counter.
In the selected events, the admixture of π+ mesons
was estimated at a level of 10% (upon taking into
account the above selection criteria). The admixture
of K+ mesons was found to be negligible (less than
5%), since K+ mesons of momentum in excess
of 10 GeV/c must be recorded by the Cherenkov
detector.

Since neither the mechanism responsible for the
production of Θ+ baryons nor the dependence of the
cross section on the multiplicity of charged particles
is known, one can only roughly estimate the total
cross section for the production of Θ+ baryons in
the proton–nucleus interactions. The detection effi-
ciency for Θ+ baryons was estimated on the basis
of a simple Monte Carlo model involving variations
in the energy spectrum of the pK0

S resonance. In
estimating the cross section, we took into account
the contributions of the decaysΘ+ → pK0

S (25%) and
K0
S → π+π− (68.6%), the probability of K0

S-meson
detection in the vertex detector, and the acceptance of
the setup. The detection efficiency forK0

S mesons was
refined on the basis of a comparison of the observed
number of events with that expected for the inclu-
sive production of K0

S mesons in the reaction pN →
K0
S +X, the respective production cross section be-

ing well known [39]. The resulting detection efficiency
for Θ+ baryons is 0.07%. The total cross section
PH
for the production of Θ+ baryons in proton–nucleus
interactions was estimated at 30 to 120 µb (in the
region xF ≥ 0). So large a scatter is explained by the
uncertainties in the dependence of the cross section
on the multiplicity of charged particles, the different
numbers of events for different background models,
and the uncertainties in the detection efficiency.

An analysis of the A dependence in the vicinity of
the observed peak did not reveal any significant dis-
tinction from the analogous dependence for inelastic
events (∼A0.7). This result contradicts the conclu-
sions drawn in [19], where it was stated that the cross
section for Θ+-baryon production in νA interactions
depends strongly on A.

5. CONCLUSIONS

The inclusive reaction pN → pK0
S +X has been

studied at the IHEP 70-GeV/с proton accelerator
with the aid of the SVD-2 setup. Upon the appli-
cation of some cuts, a narrow resonance of mass
M = 1526 ± 3(stat.) ± 3(syst.) MeV/c2 and width
Γ < 24 MeV/c2 has been observed in the effective-
mass spectrum of the pK0

S system at a statistical
significance of 5.6σ. The mass and the width of the
resonance correspond to the recently discovered Θ+

baryon of positive strangeness, which was predicted
in [14–21] to be an exotic baryon consisting of five
quarks (pentaquark), uudds̄.
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ELEMENTARY PARTICLES AND FIELDS
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Inclusive Neutral-Pion Production in dC and dCu Interactions
at a Momentum of 4.5 GeV/с per Nucleon
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Abstract—The cross sections for inclusive neutral-pion production in the reactions d+ C → π0 + x and
d+ Cu → π0 + x at a momentum of 4.5 GeV/c per nucleon were measured over the kinematical region
specified by the inequalities θπ ≤ 16◦ andEπ ≥ 2 GeV (in the laboratory frame). From the ratio of the cross
sections for neutral-pion generation on carbon and copper nuclei, the exponent n in the parametrization
Ed3σ/d3p ∼ An

T is obtained as a function of the cumulative number X in the range 0.6 ≤ X ≤ 1.8 and
as a function of the square of the transverse momentum in the range 0.04 ≤ P 2

t ≤ 0.40 (GeV/c)2. The
probabilities of the formation of six-quark configurations in the D, 4He, and 12C nuclei are estimated. The
double-differential cross section for the reaction d+ C → π0 + x is determined for the first time by using a
data sample containing more than 40 000 neutral pions. c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

The present article reports on the results of mea-
surements of inclusive neutral-pion production in the
reactions

d+AT → π0 + x, AT = C,Cu (1)

at a momentum of 4.5 GeV/c per nucleon. This ex-
periment is a continuation of a series of investiga-
tions [1–3] that have been conducted with the 90-
channel Cherenkov γ spectrometer of the Laboratory
of High Energies at the Joint Institute for Nuclear
Research (JINR, Dubna) [4]. The objective of these
investigations is to clarify the mechanism of pion pro-
duction in the vicinity of and beyond the kinematical
boundary for nucleon–nucleon collisions [5].

2. DESCRIPTION OF THE EXPERIMENT

The experiment in question was performed by us-
ing a deuteron beam of momentum 4.5 GeV/c per nu-
cleon (∆p/p = ±2%) and intensity 105 particles per
accelerator spill. The experimental equipment used
made it possible to measure not only the energies of
photons formed in neutral-pion decay but also their
emission directions. The layout of our experimental
facility is displayed in Fig. 1. The facility includes
90 total-absorption Cherenkov detectors from lead

1)Joint Institute for Nuclear Research, Dubna, Moscow
oblast, 141980 Russia.

2)Yerevan State University, ul. A. Manukyana 1, Yerevan,
375049 Armenia.

*e-mail: abraam@sunhe.jinr.ru
1063-7788/05/6806-0982$26.00
glass, scintillation counters of dimension 5 × 5 cm2

(S1, S2, S3) and 15× 15 cm2 (S4, S5), a gas threshold
counter, a scintillation counter operating in the an-
ticoincidence mode, and a hodoscope of scintillation
counters that consists of 40 units having dimensions
of 10 × 100 cm2.

The target thickness along the beam was
12.6 g/cm2 for carbon (0.3 radiation length units)
and 5.4 g/cm2 for copper (0.4 radiation length units).
Events of the nγ type, where n = 2, 3, . . . , that were
generated in a target were recorded by the Cherenkov
γ spectrometer. The detectors of the γ spectrometer
were independent. They were arranged in a 7 × 13
matrix of dimension 140 × 215 cm2. The features of
the spectrometer were quoted elsewhere [2, 4].

In the experiment, the distance from the target
center to the γ spectrometer along the beam was
340 cm for the carbon target and 520 cm for the cop-
per target. Under the geometric conditions specified
above, the ranges of recorded-neutral-pion emission
angles in the laboratory frame were ±16◦ and ±10◦,
respectively.

Charged particles were recorded by the hodoscope
of 40 scintillation counters having dimensions of 2 ×
10 × 100 cm3 each. The scintillation counters were
arranged in front of the γ spectrometer. They ensured
the detection of charged particles with an efficiency
of about 99%. The detectors of the γ spectrometer
were partitioned into 14 groups, each containing six
or seven units. A linear combination of signals was
taken within a group and was transferred to the inputs
of discriminators. In our experiment, the thresholds
c© 2005 Pleiades Publishing, Inc.
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Fig. 1. Layout of the experimental equipment used: (S1–S5) scintillation counters, (C1) gas threshold counter, (A) scintillation
counter operating in the anticoincidence mode, (T) target, (SH) hodoscopic scintillation counters, and (C2) 90-channel lead-
glass Cherenkov γ spectrometer.
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Fig. 2. Effective-mass distributions of photons combined in pairs for the reactions (a) d + C → π0 + x and (b) d + Cu →
π0 + x. The dotted-line histograms represent background distributions obtained by selecting photons at random from different
events. The dashed-line histogram in Fig. 2a was obtained from a Monte Carlo simulation with allowance for the actual
conditions of spectrometer operation and for criteria used in data treatment.
of the discriminators were set to 1.0 GeV. The facility
was triggered by the coincidence of signals from beam
scintillation counters, halo counters (in the anticoin-
cidence mode), and two or more groups of detectors of
the γ spectrometer under the condition that the total
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 6 200
energy deposition in these groups exceeded 2 GeV.
The average rate of data acquisition was about 10
events per acceleration cycle. In the course of the
experiment, 1.51× 109 and 2.48× 109 deuterons were
transmitted through the carbon and the copper tar-
5
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Fig. 3. Differential cross sections for neutral-pion production in the reactions (open circles) d + C → π0 + x and (closed
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frame).
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Fig. 5. Ratio of cross sections obtained by using different methods for estimating the background.
get, respectively, and 200 000 triggers for the carbon
target and 160 000 triggers for the copper target were
logged on magnetic tapes.

3. EVENT SELECTION
Neutral pions were recorded by decays into two

photons and were selected from the peak in the
invariant-mass distribution (see Fig. 2). In the elec-
tromagnetic calorimeter, photons were recognized
as clusters (the region of adjacent units in the γ
spectrometer where the signal exceeded the detection
threshold). The photon energy was calculated on the
basis of the energy deposition in the cluster units
with allowance for losses that are dependent on the
photon-hit location. Under the assumption that pho-
tons are generated in the target, the photon-emission
direction was determined versus the geometry of a
cluster with allowance for the energy deposition in
the units.

Primary information was processed by using the
code for reconstructing the geometry and energy of
events [6]. On the data summary tape, we logged
140 000 events satisfying the following criteria:

(i)Nγ ≥ 2,
(ii)Eγ ≥ 500 MeV,
(iii) kγ ⊥≥ 120 MeV. Here, Nγ is the number of

photons in an event, whileEγ and kγ ⊥ are the photon
energy and transverse momentum respectively.
SICS OF ATOMIC NUCLEI Vol. 68 No. 6 200
4. INCLUSIVE SPECTRA OF NEUTRAL
PIONS

The effective-mass (Mγγ) distribution of photons
combined in pairs such that the total energy satis-
fies the condition Eγ1 + Eγ2 ≥ 2 GeV is displayed in
Fig. 2. The dotted-line histograms there represent the
effective-mass distributions for combinations of two
photons taken at random from different events.

The reactions d+ C → π0 + x and d+ Cu →
π0 + x were simulated by using the code formulated
in [7] on the basis of the GEANT package [8]. In
this simulation, use is made of data on multipar-
ticle neutral-pion production that were obtained in
experiments with the two-meter propane chamber
of the Laboratory of High Energies at JINR [9].
In simulating events, we verified whether photons
hit the facility, generated energy depositions in γ-
spectrometer units, and required fulfillment of trigger
conditions. The events were recorded on the data
summary tape for a subsequent treatment by means
of codes for subsequently reconstructing their geom-
etry and energies. The inclusive cross sections for
neutral-pion production were calculated for angles in
the range θπ ≤ 16◦ and energies of Eπ ≥ 2 GeV (in
the laboratory frame).

The P 2
t distributions obtained experimentally for

neutral pions from the reactions d+ C → π0 + x and
5
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Fig. 6. Exponent n in the parametrization Ed3σ/d3p ∼ An
T as a function of (a) the variable X and (b) the square of the

neutral-pion transverse momentum for the reactions d + AT → π0 + x, where AT = C, Cu.
d+ Cu → π0 + x and integrated over the aforemen-
tioned region of angles and energies are displayed in
Fig. 3.

The invariant inclusive cross sections for neutral-
pion production in dC and dCu interactions are
shown in Fig. 4 versus the cumulative number
X. The variable X is determined from the law of
energy–momentum conservation for XNi +Nt →
(X + 1)Nf + π0 reactions and is given by

X = [MNEπ −M2
π/2]/[ENMN − ENEπ

−M2
N + PNPπ cos θπ],

where MN , PN , and EN are the nucleon mass,
momentum, and energy, respectively; Mπ , Pπ, and
Eπ are the corresponding quantities for the product
pion; θπ is the pion emission angle in the laboratory
frame; and PN = 4.5 GeV/c.

The errors in Figs. 3 and 4 are purely statistical.
PH
5. ESTIMATING SYSTEMATIC ERRORS

Systematic errors may be due an uncontrollable
scatter of monitor counts per recorded events and
errors in estimating combinatorial background.

Deviations from an average value do not exceed
20% at maximum. The same applies to changes in the
number of monitor counts in response to changes in
the number of events recorded within an accelerator
cycle.

Figure 5 exhibits the ratio of cross sections ob-
tained by two different methods: in estimating the
combinatorial background by selecting photons at
random from different events (that is, by means of so-
called mixing) and in estimating the background on
the basis of the results obtained from a Monte Carlo
simulation [7] with allowance for the multiparticle
production of neutral pions. The estimation of the
background by means of mixing was performed by
using two methods of selection: without imposing any
cuts (open circles) and by imposing the following cuts
in selecting events:
YSICS OF ATOMIC NUCLEI Vol. 68 No. 6 2005
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Table

E, GeV
π, deg

2–4 4–6 6–8 8–10

2.0–2.2 10.4 ± 1.2 4.97 ± 0.33 3.81 ± 0.15 3.23 ± 0.12

2.2–2.4 7.0 ± 0.9 3.04 ± 0.21 2.59 ± 0.09 1.96 ± 0.07

2.4–2.6 4.2 ± 0.6 1.79 ± 0.12 1.54 ± 0.05 1.04 ± 0.04

2.6–2.8 1.68 ± 0.27 1.08 ± 0.08 0.850 ± 0.034 0.525 ± 0.024

2.8–3.0 1.10 ± 0.24 0.649 ± 0.052 0.457 ± 0.021 0.278 ± 0.016

3.0–3.2 0.75 ± 0.21 0.325 ± 0.029 0.256 ± 0.014 0.147 ± 0.010

3.2–3.4 0.56 ± 0.19 0.202 ± 0.020 0.144 ± 0.010 0.075 ± 0.006

3.4–3.6 0.34 ± 0.14 0.099 ± 0.012 0.079 ± 0.006 0.042 ± 0.004

3.6–3.8 0.29 ± 0.18 0.052 ± 0.008 0.042 ± 0.004 0.0191 ± 0.0026

3.8–4.0 0.082 ± 0.052 0.034 ± 0.006 0.0208 ± 0.0028 0.0124 ± 0.0021

4.0–4.2 0.061 ± 0.042 0.0164 ± 0.0041 0.0135 ± 0.0024 0.0064 ± 0.0016

4.2–4.4 0.0094 ± 0.0029 0.0063 ± 0.0015 0.0039 ± 0.0014

10–12 12–14 14–16

2.0–2.2 2.39 ± 0.09 1.57 ± 0.08 1.08 ± 0.11

2.2–2.4 1.453 ± 0.055 0.876 ± 0.044 0.486 ± 0.048

2.4–2.6 0.735 ± 0.032 0.465 ± 0.028 0.232 ± 0.025

2.6–2.8 0.365 ± 0.019 0.162 ± 0.012 0.103 ± 0.015

2.8–3.0 0.186 ± 0.012 0.076 ± 0.007 0.040 ± 0.008

3.0–3.2 0.099 ± 0.009 0.0414 ± 0.0056 0.0144 ± 0.0035

3.2–3.4 0.0428 ± 0.0047 0.0191 ± 0.0034 0.0078 ± 0.0029

3.4–3.6 0.0193 ± 0.0028 0.0065 ± 0.0014 0.0014 ± 0.0008

3.6–3.8 0.0110 ± 0.0022 0.0033 ± 0.0010 0.0007 ± 0.0005

3.8–4.0 0.0056 ± 0.0015 0.0033 ± 0.0021
(i) For the total energy in an event, E ≤ 5.5 GeV
(about 99% of all events).

(ii) For the sum of the energies of photons chosen
at random, E1 + E2 ≤ 5.5 GeV.

(iii) For the distance at the spectrometer surface
between photons chosen at random, L ≤ 17 cm (dis-
tances that are not observed in a single event).

From Fig. 5, one can see that, after a more ade-
quate selection of photons from different events, the
discrepancy between the two results decreases sig-
nificantly, not exceeding 20% in the region 0.6 ≤
X ≤ 1.5.

6. ANALYSIS OF OUR DATA
Our experimental data on the invariant cross sec-

tion as a function of X were parametrized by an
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 6 200
exponential function,

(E/AP )d3σ/d3p = A1exp(−B1X), (2)

where Ap = 2 is the mass number of the projectile
nucleus.

For the parameters A1 (mb GeV−2 c3) and B1, we
obtained the values
A1 = 604 ± 32, B1 = 8.34 ± 0.06 for the reaction

d+ C → π0 + x

and
A1 = 1025 ± 117, B1 = 8.21 ± 0.12 for the reac-

tion d+ Cu → π0 + x.
These values of A1 and B1 were obtained by ap-

proximating the data in the rangeX < 1.6 (see Fig. 4)
without taking into account systematic errors.
5
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Fig. 7. Invariant cross section σinv = (E/2)d3σ/d3p (mb GeV−2 c3) for the reaction d + C → π0 + x versus the emission
angle of the product pion and its energy (in the laboratory frame).
The ratio of the invariant cross sections for neutral-
pion production on C and Cu target nuclei was
represented in the form σCu/σC = (ACu/AC)n =
(63.5/12)n . The exponent n as a function of the
variables X and P 2

t is displayed in Fig. 6. One can
see that, in the region X > 0.6, the invariant cross
section for neutral-pion production in deuteron–
nucleus interactions depends only slightly on the
mass number of the target nucleus. The average
value of n is 0.39 ± 0.02. Our results indicate that
the processes in (1) forX > 0.6 involve the peripheral
region of the target nucleus.

Figure 6a shows that the dependence of the invari-
ant cross section on the target-nucleus mass changes
modestly with X, this being in agreement with the
result obtained in [2]. In all probability, this behavior
of the exponent n is associated with the dominance of
the quark-recombination mechanism in meson pro-
duction [10] (see the respective discussion in [2]).

Denoting by pi, where i = 6, 9, . . . , the proba-
bilities of the formation of i-quark configurations in
P

a nucleus, we find that, in the region around X ∼
1, where the contribution of configurations involving
nine or more quarks is insignificant [11], the invariant
cross sections for the reactions in (1) admit the rep-
resentation (we omit here a constant factor)

Ed3σ/d3p ∼ A

{
1 −

∑
i = 6, 9, ...

pi

}
nq/3(X) (3)

+ p6[(A− 2)nq/3(X) + nq/6(X/2)],

where

Xnq/i(X) = [B(η(2)
i , η

(1)
i + 1)]−1(1 −X)η

(1)
i Xη

(2)
i

are the quark distributions in an i-quark configu-

ration according to quark-counting rules at η(1)
i =

2(i− 1)− 1, η(2)
6 = 0.5, η(2)

3 ≈ 0.65 [12],B(. . . , . . . ) be-
ing an Euler beta function.

Assuming that the probability p3 of the absence of
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 6 2005
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nucleon correlations in a nucleus is

p3 = 1 −
∑

i = 6, 9, ...

pi ≈ 1 − p6

and employing formula (3) and data obtained in the
present study (Fig. 4) and in [2, 3] for the region
0.95 ≤ X ≤ 1.1, we deduce the following estimates
for the probabilities of the formation of six-quark
configurations in the deuteron and in the helium and
carbon nuclei:

p6(D) ≈ 2%, p6(4He) = 5−10%, (4)

p6(12C) = 20−40%.

The lower bounds on p6 for the helium and carbon nu-
clei in (4) were obtained without taking into account
the effect of nucleon shadowing and six-quark con-
figurations in a nucleus: in (3), it is assumed that σ ∼
Aαfr , where α = 1 andAfr is the number of fragmenting
centers (nucleons and six-quark configurations). At
the minimum possible value of α = 2/3, the above
values of p6 increase by a factor of about 2.

7. DOUBLE-DIFFERENTIAL CROSS
SECTION

On the basis of a data sample that includes about
45 000 neutral pions, we have determined the double-
differential cross section for the reaction d+ C →
π0 + x as a function of the emission angle of the
product pion and its energy,

(E/A)(d3σ/d3p) = (E/2)∆σ/(p2∆p∆Ω) (5)
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 6 200
≈ (1/2E)∆σ/(sin θ · ∆θ∆E · 2π).

The results (in mb GeV−2 c−3) are given in the
table and in Fig. 7.

The data obtained in this way make it possible to
test the so-called cluster mechanism of pion produc-
tion. If one assumes the existence of an intermediate
object (for example, clusters proposed in [13, 14]),
then the invariant cross section for neutral-pion pro-
duction takes the form

Ed3σ/d3p ∼ exp(−E∗/T0), (6)

whereE∗ is the neutral-pion energy in the cluster rest
frame and T0 ∼ mπ is a universal hadron tempera-
ture. In the laboratory frame, we have

Ed3σ/d3p ∼ exp(−E/T ), (7)

T = T0(1 − β2)1/2/(1 − β cos θ),

where β is the cluster speed.
The values of β that were obtained from (7) at

T0 = 160 MeV (as was accepted in [13]) for vari-
ous neutral-pion emission angles are presented in
Fig. 8. This figure shows that the character of the
dependence β(θπ) in the region θπ < 8◦ is compatible
with the hypothesis that there exists an intermediate
cluster, but the possible cluster speeds appear to be
low: β = 0.66 at T0 = 160 MeV and β = 0.73 at T0 =
140 MeV. In order to explain such velocities, it is
necessary to assume that the reactions in question
involve more than two target nucleons, but this is not
compatible with the observed A dependence on the
target mass number (see Fig. 6).
5



990 ABRAAMYAN et al.
ACKNOWLEDGMENTS

We are grateful to V.V. Arkhipov, S.G. Reznikov,
S.N. Plyashkevich, V.I. Prokhorov, and A.I. Shirokov
for assistance in measurements. We are also indebted
to E.B. Plekhanov and S.S. Shimansky for enlight-
ening comments.

REFERENCES
1. Kh. U. Abraamyan et al., Yad. Fiz. 59, 271 (1996)

[Phys. At. Nucl. 59, 252 (1996)].
2. Kh. U. Abraamyan et al., Phys. Lett. B 323, 1 (1994).
3. Kh. U. Abraamyan et al., Yad. Fiz. 60, 2014 (1997)

[Phys. At. Nucl. 60, 1843 (1997)].
4. R. G. Astvatsaturov et al., Nucl. Instrum. Methods

163, 343 (1979).
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Abstract—Tensor Ayy and vector Ay analyzing powers in the inelastic scattering of deuterons with
a momentum of 5.0 GeV/c on beryllium at an angle of 178 mrad in the vicinity of the excitation of
baryonic resonances with masses up to ∼1.8 GeV/c2 have been measured. The Ayy data are in good
agreement with the previous data obtained at 4.5 and 5.5 GeV/c. The results of the experiment are
compared with the predictions of the plane-wave impulse approximation and ω-meson-exchange models.
c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Deuteron inelastic scattering for hydrogen and
nuclei at high energies has been extensively inves-
tigated at different laboratories in recent years [1–
13]. The interest in this reaction is due mainly to
the possibility of studying nucleon–baryon (NN∗)
interaction.

Firstly, since the deuteron is an isoscalar probe,
inelastic scattering of deuterons, A(d, d′)X, is se-
lective to the isospin of the unobserved system X,
which is bound to be equal to the isospin of the target
A. This feature, for instance, was used to search for
∆∆ dibaryons with an isospin T = 0 in the d(d, d′)X
reaction [6]. Inelastic scattering of deuterons on hy-
drogen, H(d, d′)X, in particular, is selective to the
isospin 1/2 and can be used to obtain information
on the formation of baryonic resonances N∗(1440),
N∗(1520), N∗(1680), and others.

Secondly, deuteron inelastic scattering at rela-
tivistic energies involves high momentum transfers.
Therefore, if the deuteron scattering takes place as
a result of NN collisions, one may expect it to be
sensitive to the structure of the deuteron and, pos-
sibly, to the manifestation of nonnucleonic degrees
of freedom, namely, NN∗ and N∗N∗ components in
the deuteron wave function [14, 15]. In this respect,

∗This article was submitted by the authors in English.
1)Moscow State University, Moscow, Russia.
**e-mail: ladygin@sunhe.jinr.ru
1063-7788/05/6806-0991$26.00
inelastic scattering of deuterons on nuclei at high
transferred momenta can be considered as a com-
plementary method to the elastic pd and ed scat-
terings, deuteron breakup reaction, and electro- and
photodisintegration of the deuteron to investigate the
deuteron structure at short distances.
Thirdly, deuteron inelastic scattering can be sen-

sitive to the amplitudes of NN∗ → NN∗ processes
in the kinematical range, where the contribution of
double-scattering diagrams [7] is significant.
Lastly, since there is a large momentum transfer,

one can hope to get information on the formation of
the 6q configuration in the deuteron.
Differential cross sectionmeasurements of deuteron

inelastic scattering have been performed at Saclay
at 2.95 GeV/c [1, 4] for hydrogen, at Dubna [3, 5,
7] for different targets at deuteron momenta up to
9 GeV/c, and at Fermilab [2] at higher energies for
hydrogen. Calculations performed in the framework of
themultiple-scattering formalism [7] have shown that
the differential cross section of theH(d, d′)X reaction
can be satisfactorily described by hadron–hadron
double scattering. The amplitudes of the elemen-
tary processes NN → NN∗ have been extracted for
N∗(1440), N∗(1520), andN∗(1680) resonances [7].
The availability of polarized deuteron beams at

high energies allowed one to continue the investi-
gation of the (d, d′)X process; however, polarization
data on deuteron inelastic scattering are still scarce.
Polarized deuterons of high energies have been used
to study the tensor analyzing power T20 in the vicinity
c© 2005 Pleiades Publishing, Inc.
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Fig. 1. Layout of the SPHERE setup with beam line VP1. Mi and Li designate magnets and lenses, respectively; IC is the
ionization chamber; T is the target;F61,F62,F63 are trigger counters;F561−4 are scintillationcounters andHT is a scintillation
hodoscope for TOF measurements; H0XY and H0UV are beam profile hodoscopes.
of the Roper resonance (P11(1440)) excitation on
hydrogen and carbon targets at Dubna [8] and on
a hydrogen target at Saclay [9]. Measurements of
T20 in deuteron scattering at 9 GeV/c on hydrogen
and carbon have been performed for missing masses
up toMX ∼ 2.2 GeV/c2 [10]. The experiments have
shown a large negative value of T20 at a momentum
transfer of t ∼ −0.3 (GeV/c)2. Such a behavior of the
tensor analyzing power has been interpreted in the
framework of the ω-meson-exchange model [16] as
due to the longitudinal isoscalar form factor of the
Roper resonance excitation [17]. The measurements
of the tensor and vector analyzing powersAyy andAy
at 9 GeV/c and 85 mrad of the secondary deuteron
emission angle in the vicinity of the undetected
system mass ofMX ∼ 2.2 GeV/c2 have shown large
values. The obtained results are in satisfactory agree-
ment with the plane-wave impulse approximation
(PWIA) calculations [18]. It was stated that the spin-
dependent part of the NN → NN∗(∼2.2GeV/c2)
process amplitude is significant. The measurements
of Ayy at 4.5 GeV/c and 80 mrad [12] have also
shown a large value of the tensor analyzing power.
The exclusive measurements of the polarization ob-
servables in the H(d, d′)X reaction in the vicinity of
PH
the Roper resonance excitation performed recently at
Saclay [13] also demonstrated large spin effects.
In this paper, we report new results on the ten-

sor and vector analyzing powers Ayy and Ay in
deuteron inelastic scattering on a beryllium target at
an incident deuteron momentum of 5.0 GeV/c and
∼178 mrad of the secondary emission angle. Details
of the experiment are described in Section 2. The
comparison with the existing data and theoretical
predictions is given in Section 3. Conclusions are
drawn in Section 4.

2. EXPERIMENT

The experiment was performed using a polarized
deuteron beam at the Dubna Synchrophasotron at
the Laboratory of High Energies of JINR and the
SPHERE setup shown in Fig. 1 and described else-
where [11, 12]. The polarized deuterons were pro-
duced by the ion source POLARIS [19]. The sign
of the beam polarization was changed cyclically and
spill-by-spill, as “0,” “−,” “+,” where “0” means
the absence of the polarization, and “+” and “−”
correspond to the sign of pzz with the quantization
axis perpendicular to the plane containing the mean
beam orbit in the accelerator.
YSICS OF ATOMIC NUCLEI Vol. 68 No. 6 2005
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The tensor polarization of the beam was deter-
mined during the experiment by the asymmetry of
protons from the deuteron breakup on a beryllium
target, d+ Be→ p+X, at zero emission angle and

proton momentum of pp ∼
2
3
pd [20]. It was shown

that the deuteron breakup reaction in such kine-
matic conditions has a very large tensor analyzing
power T20 = −0.82 ± 0.04, which is independent of
the atomic number of the target (A > 4) and of
the momentum of incident deuterons between 2.5
and 9.0 GeV/c [21]. The tensor polarization aver-
aged over the whole duration of the experiment was
p+
zz = 0.716 ± 0.043(stat.) ± 0.035(syst.) and p−zz =

−0.756 ± 0.027(stat.) ± 0.037(syst.) in the “+” and
“−” beam spin states, respectively.

The stability of the vector polarization of the
beam was monitored by measuring the asymmetry
of quasielastic pp scattering on a thin CH2 target
placed at the F3 focus of the VP1 beam line. The
values of the vector polarization were obtained using
the results of the asymmetry measurements at the
momenta 2.5 GeV/c per nucleon and 14◦ of the
proton scattering angle with the corresponding value
of the effective analyzing power of the polarimeter
A(CH2) taken as 0.234 [22]. The vector polariza-
tion of the beam in different spin states was p+

z =
0.173± 0.008(stat.)± 0.009(syst.) and p−z = 0.177±
0.008(stat.) ± 0.009(syst.).

The slowly extracted beam of tensor polarized 5.0-
GeV/c deuterons with an intensity of ∼5 × 108 par-
ticles per beam spill was incident on a 16-cm-thick
beryllium target positioned ∼2.4 m downstream of
the F5 focus of the VP1 beam line (see Fig. 1). The
intensity of the beam was monitored by an ionization
chamber placed in front of the target. The beam po-
sitions and profiles at certain points of the beam line
were monitored by the control system of the accelera-
tor during each spill. The beam size at the target point
was σx ∼ 0.4 cm and σy ∼ 0.9 cm in the horizontal
and vertical directions, respectively.

Data were obtained for four momenta of the sec-
ondary particles between 2.7 and 3.6 GeV/c. The
secondary particles emitted at ∼178 mrad from the
target were transported to the focus F6 by means of
two bending magnets (M0 andM1 were switched off)
and three lense doublets. The acceptance of the setup
was determined via Monte Carlo simulation taking
into account the parameters of the incident deuteron
beam, nuclear interaction and multiple scattering in
the target, in the air, windows and detectors, en-
ergy losses of the primary and secondary deuterons,
etc. The momentum acceptances for four cases of
the magnetic element tuning are shown in Fig. 2.
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 6 200
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Fig. 2. The momentum acceptances of the setup for
deuterons for different magnetic element tuning. Panels
a, b, c, and d correspond to secondary deuteron momenta
of 2.7, 3.0, 3.3, and 3.6 GeV/c, respectively.

The momentum and polar angle acceptances were
∆p/p ∼ ±2% and ±18 mrad, respectively.
The coincidences of signals from the scintillation

counters F61, F62, and F63 were used as a trig-
ger. Along with the inelastically scattered deuterons,
the apparatus detected the protons originating from
deuteron fragmentation. For particle identification,
the time-of-flight (TOF) information with a baseline
of ∼28 m between the start counter F61 and the stop
counters F561 , F562 , and F564 was used in the off-
line analysis. The TOF resolution was better than
0.2 ns (1σ). The TOF spectra obtained for all four
cases of magnetic element tuning are shown in Fig. 3.
At higher momentum of the detected particles, only
deuterons appear in TOF spectra; however, when
the momentum decreases, the relative contribution
of protons becomes more pronounced. In data pro-
cessing, useful events were selected as the ones with
at least two measured TOF values correlated. This
allowed the residual background to be ruled out com-
pletely.
The tensor Ayy and vector Ay analyzing powers

were calculated from the yields of deuterons n+, n−,
and n0 for different states of the beam polarization
after correction for dead time of the setup by means
of the expressions

Ayy = 2
p−z (n+/n0 − 1) − p+

z (n−/n0 − 1)
p−z p

+
zz − p+

z p
−
zz

, (1)
5
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Ay = −2
3
p−zz(n+/n0 − 1) − p+

zz(n−/n0 − 1)
p−z p

+
zz − p+

z p
−
zz

.

These expressions take into account different values
of the polarization in different beam spin states and
are simplified significantly when p+

z = p−z and p
+
zz =

−p−zz.
The data on the tensor Ayy and vector Ay an-

alyzing powers in the deuteron inelastic scattering
obtained in this experiment are given in the table. The
reported error bars are statistical only. The systematic
errors are ∼5% for the both Ayy and Ay.
The values of the secondary-deuteron momentum

p, width (RMS) of the momentum acceptance ∆p,
4-momentum t, and missing mass MX given in the
table are obtained from Monte Carlo simulation. The
averaged momentum of the initial deuteron equals
4.978 GeV/c due to the energy losses in the target.
The values of the missing mass MX given in the

table were calculated under the assumption that the
reaction occurs on a target with proton mass. In this
case, the 4-momentum transfer t and missing mass
MX are related as follows:

M2
X = t+m2

p + 2mpQ, (2)

wheremp is the proton mass and Q is the energy dif-
ference between the incident and scattered deuterons.
PH
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Fig. 4. The kinematical plot of the missing massMX vs.
4-momentum t at the initial deuteron momenta between
4.5 and 5.5 GeV/c. The solid and dashed curves cor-
respond to the conditions (middle of the acceptance) of
the experiment performed at zero angle and at 5.5 and
4.5 GeV/c, respectively [8]. The dashed area demon-
strates the region of 4-momentum t and missing mass
MX covered within the acceptance of the present experi-
ment, while the hatched area shows the conditions of the
experiment performed at 4.5 GeV/c and ∼80 mrad [12].

The dashed area on the kinematical plot given in
Fig. 4 demonstrates the region of 4-momentum t and
missing massMX covered by the setup acceptance in
the present experiment. The solid and dashed curves
correspond to the initial deuteron momenta of 5.5 and
4.5 GeV/c and zero emission angle [8], respectively.
The hatched area shows the conditions of the experi-
ment performed at 4.5GeV/c and∼80mrad [12]. One
can see that the same missing massMX corresponds
to different t under conditions of the previous [8, 12]
and present experiments. In this respect, the data
obtained at 5.0 GeV/c and ∼178 mrad provide new
information on the t and MX dependences of the
analyzing powers Ayy and Ay.

3. RESULTS AND DISCUSSION

In Fig. 5, the data on the tensor analyzing power
Ayy in the inelastic scattering of 5.0-GeV/c deuterons
on beryllium at an angle of 178 mrad are shown
as a function of the transferred 4-momentum t by
closed triangles. The Ayy has a positive value at
|t| ∼ 0.9 (GeV/c)2 and crosses zero at larger |t|.
The data on tensor analyzing power obtained at zero
emission angle at 4.5 and 5.5 GeV/c [8] on hydrogen
are given by open triangles and squares, respectively
(recall that, for these data, Ayy = −T20/

√
2). The
YSICS OF ATOMIC NUCLEI Vol. 68 No. 6 2005
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The tensor Ayy and vector Ay analyzing powers of the inelastic scattering of 5.0-GeV/c deuterons on beryllium at an
angle of ∼178 mrad

p± ∆p, GeV/c t, (GeV/c)2 MX , GeV/c2 Ayy ± dAyy Ay ± dAy

2.747 ± 0.060 −1.461 1.776 0.108 ± 0.120 −0.538 ± 0.168

3.042 ± 0.067 −1.206 1.716 −0.128± 0.106 0.101 ± 0.145

3.340 ± 0.070 −1.023 1.627 0.097 ± 0.068 −0.020 ± 0.097

3.638 ± 0.077 −0.901 1.508 0.182 ± 0.054 0.373 ± 0.076
data obtained at 4.5 GeV/c and at an angle of
80 mrad [12] are shown by open circles. As was
established earlier [8, 12], there is no significant
dependence of Ayy on the A value of the target. The
observed independence of the tensor analyzing power
of the atomic number of the target indicates that the
rescattering in the target and medium effects are
small. Hence, nuclear targets are also appropriate
to obtain information on the baryonic excitations
in deuteron inelastic scattering [8, 10–12]. One
can see the regular behavior of the Ayy data from
our experiment and previous data [8, 12] in a wide
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and open circles, respectively; on hydrogen at 4.5 and
5.5 GeV/c at zero angle [8] shown by open triangles and
squares, respectively, as a function of the 4-momentum
t. The solid, dashed, dotted, and dash-dotted curves are
predictions in the framework of PWIA [18] using DWFs
for the Paris [23] and Bonn A, B, and C [24] potentials,
respectively.
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region of |t|. At small |t| (≤ 0.3 (GeV/c)2), Ayy rises
linearly up to the value of ∼0.3, and then it smoothly
decreases and changes sign at |t| ∼ 1 (GeV/c)2.

The (d, d′)X data on Ayy and Ay obtained at
9 GeV/c and 85 mrad at large |t| in the vicin-
ity of the baryon excitation with the mass MX ∼
2.19 GeV/c2 [11] have been satisfactorily explained
in the framework of PWIA [12] (see Fig. 6). In this
model, the tensor and vector analyzing powers are
expressed in terms of three amplitudes (T00, T11, and
T10) defined by the deuteron structure and the ratio r
of the spin-dependent-to-spin-independent parts of
the elementary processNN → NN∗:

Ayy(q) =
T 2

00 − T 2
11 + 4r2T 2

10

T 2
00 + 2T 2

11 + 4r2T 2
10

, (3)

Ay(q) = 2
√

2r
(T11 + T00)T10

T 2
00 + 2T 2

11 + 4r2T 2
10

. (4)

One can see that the vector analyzing power Ay is
proportional to the ratio r, while the tensor analyzing
power Ayy is sensitive to r very weakly.

The amplitudes T00 and T11 are expressed in terms
of S andD waves of the deuteron as follows:

T00 = S0(q/2) +
√

2S2(q/2), (5)

T11 = S0(q/2) −
1√
2
S2(q/2),

where S0 and S2 are the charge and quadrupole form
factors of the deuteron. They are defined in the stan-
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N N
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N dd

Fig. 6. Diagram of the plane-wave impulse approxima-
tion for deuteron inelastic scattering with the baryonic
excitation.
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dard way

S0(q/2) =

∞∫
0

(u2(r) + w2(r))j0(rq/2)dr, (6)

S2(q/2) =

∞∫
0

2w(r)
(
u(r) − 1

2
√

2
w(r)

)
j2(rq/2)dr,

where u(r) and w(r) are S and D waves of the
deuteron in the configuration space; j0(qr/2) and
j2(qr/2) are Bessel functions of the zero and second
order, respectively; and q2 = −t.
Amplitude T10 is also defined by the S and D

waves of the deuteron:

T10 =
i√
2

∞∫
0

(
u2(r) − w2(r)

2

)
j0(rq/2)dr (7)

+
i
2

∞∫
0

w(r)
(
u(r) +

w(r)√
2

)
j2(rq/2)dr.

The ratio of the spin-dependent-to-spin-indepen-
dent parts of the elementary amplitude of the NN →
NN∗ process r is taken in the simple form [18]

r(q) = aq, (8)
P

where a is a constant.
The curves in Fig. 5 are predictions of the Ayy

behavior in the framework of the PWIA [18]. The solid
curve in Fig. 5 is calculated with the deuteron wave
function (DWF) for the Paris potential [23], while the
dashed, dotted, and dash-dotted curves correspond to
the DWFs for the Bonn A, B, and C potentials [24],
respectively. One can see good agreement of the Ayy
data from the present experiment with the PWIA
calculations [18] using the Paris DWF.
The deviation of the data obtained in the previ-

ous experiments [8, 12] at |t| ∼ 0.3−0.8 (GeV/c)2
from the predictions of PWIA, as well as the dif-
ferent behavior of the tensor analyzing power in the
(d, d′)X process and in ed [25, 26] and pd [27] elas-
tic scattering, indicates the sensitivity of Ayy to the
baryonic resonance excitation via double-collision in-
teractions [7], where the resonance is formed in the
second NN collision or the resonance formed in the
firstNN interaction elastically scatters on the second
nucleon of the deuteron.
The sensitivity of the tensor analyzing power in

deuteron inelastic scattering off protons to the exci-
tation of baryonic resonances has been pointed out
in [16] in the framework of the t-channel ω-meson-
exchange model. The cross section and the polariza-
tion observables can be calculated from the known
electromagnetic properties of the deuteron and bary-
onic resonances N∗ through the vector dominance
model. In this model, the t dependence of the tensor
analyzing power in deuteron inelastic scattering is
defined by the t dependence of the deuteron form fac-
tors and the contribution of the Roper resonance due
to its nonzero isoscalar longitudinal form factor [17].
In such an approximation, the tensor analyzing power
is a universal function of |t| only, without any depen-
dence on the initial deuteron momentum, if the finite
values of the resonance widths are neglected. Since
the isoscalar longitudinal amplitudes of S11(1535)
and D13(1520) vanish due to spin-flavor symmetry,
while both isoscalar and isovector longitudinal cou-
plings of S11(1650) vanish identically, the tensor ana-
lyzing powerAyy in inelastic deuteron scattering with
the excitation of one of these resonances has the value
of +0.25 independent of t [12].
The t dependence of Ayy at MX ∼ 1550 and

1650 MeV/c2 is shown in Figs. 7 and 8, respec-
tively. The closed triangles are the results of the
present experiment, while the open squares, circles,
and triangles are results obtained earlier at 4.5 and
5.5 GeV/c [8, 12]. The solid curves are the results of
the PWIA calculations [18] using the ParisDWF [23].
The dashed lines are the expectations of the ω-
meson-exchange model [16, 17]. One can see that
the behavior of Ayy at MX ∼ 1550 MeV/c2 (Fig. 7)
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 6 2005
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Fig. 8. The same as in Fig. 7, but for the missing mass
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is not in contradiction with the ω-meson-exchange-
model prediction [17], while at MX ∼ 1650 MeV/c2
(Fig. 8) some deviation from the constant value of
+0.25 is observed. However, as we mentioned above,
at these missing masses it may be necessary to
consider additional contributions from the F15(1680)
and P13(1720) resonances, which also have nonzero
longitudinal isoscalar form factors and, therefore, can
significantly affect the t dependence of the tensor
analyzing power. Note also that, since we study
the inclusive (d, d′)X reaction, many resonances
contribute at a fixed MX due to their finite widths,
while the theoretical predictions in Figs. 7 and 8 are
obtained for separate contributions of the S11(1535),
D13(1520), and S11(1650) resonances. In this re-
spect, exclusive (or semiexclusive) measurements
with the detection of the resonance decay products
could help to distinguish between the contributions
of different baryonic resonances.

The values of the vector analyzing power Ay are
small except for the first point atMX ∼ 1500MeV/c2.
In the framework of PWIA [18], such a fact can be
considered as a significant role of the spin-dependent
part of the elementary amplitude of the NN → NN∗

process.

The behavior of the vector analyzing power Ay
obtained in the present experiment is plotted in Fig. 9
versus t. The curves are obtained using expression (4)
with the ratio r of the spin-dependent-to-spin-
independent parts of the NN → NN∗ process taken
in the form (8) with the value a = 1.0. The solid curve
in Fig. 9 is obtained with the DWF for the Paris
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Fig. 9. Vector analyzing power Ay in deuteron inelas-
tic scattering on beryllium at 5.0 GeV/c at an angle of
178 mrad as a function of the 4-momentum t. The solid,
dashed, dotted, and dash-dotted curves are predictions
in the framework of PWIA [18] using DWFs for the
Paris [23] and Bonn A, B, and C [24] potentials, respec-
tively.

potential [23], while the dashed, dotted, and dash-
dotted lines correspond to the DWFs for the Bonn
A, B, and C potentials [24], respectively. The PWIA
calculations give approximately the same results at
the value a ∼ 0.8−1.2. It should be noted that amight
have different values for different MX ; however, we
took a fixed value for simplicity due to the lack of data.

4. CONCLUSIONS
We have presented the data on the tensor and

vector analyzing powersAyy andAy in inelastic scat-
tering (d, d′)X of 5.0-GeV/c deuterons on beryllium
at an angle of ∼178 mrad in the vicinity of the excita-
tions of baryonic masses from 1.5 up to 1.8 GeV/c2.
This corresponds to the range of 4-momentum |t|
between 0.9 and 1.5 (GeV/c)2.
The data on Ayy are in good agreement with the

data obtained in previous experiments at momenta
between 4.5 and 5.5 GeV/c [8, 12] when they are
compared versus variable t.
It is observed also that Ayy data from the present

experiment are in good agreement with PWIA calcu-
lations [18] using conventional DWFs [23, 24]. On
the other hand, the behavior of the Ayy data ob-
tained in the vicinity of the S11(1535) and D13(1520)
5
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resonances is not in contradiction with the predic-
tions of the ω-meson-exchange model [17], while at
higher excited masses this model may require taking
into account the additional baryonic resonances with
nonzero longitudinal form factors.
The vector analyzing power Ay has a large value

at MX ∼ 1500 MeV/c2, which could be interpreted
as a significant role of the spin-dependent part of the
elementary amplitude of theNN → NN∗ reaction.
Exclusive polarization experiments [13] with the

detection of resonance decay products could signif-
icantly advance the understanding of the mechanism
of the different baryonic resonance excitation and spin
properties of their interactions with nucleons.

ACKNOWLEDGMENTS

We are grateful to the LHE accelerator staff and
POLARIS team for providing good conditions for the
experiment. We thank I.I. Migulina for the help in the
preparation of this manuscript.
This work was supported in part by the Russian

Foundation for Basic Research (project no. 03-02-
16224).

REFERENCES
1. J. Banaigs et al., Phys. Lett. B 45B, 535 (1973).
2. Y. Akimov et al., Phys. Rev. Lett. 35, 763 (1975).
3. L. S. Azhgireı̆ et al., Yad. Fiz. 27, 1027 (1978) [Sov.
J. Nucl. Phys. 27, 544 (1978)]; 30, 1578 (1979) [30,
818 (1979)].

4. R. Baldini Celio et al., Nucl. Phys. A 379, 477 (1982).
5. V. G. Ableev et al., Yad. Fiz. 37, 348 (1983) [Sov. J.
Nucl. Phys. 37, 209 (1983)].

6. M. P. Combets et al., Nucl. Phys. A 431, 703 (1984).
7. L. S. Azhgireı̆ et al., Yad. Fiz. 48, 1758 (1988) [Sov.
J. Nucl. Phys. 48, 1058 (1988)].

8. L. S. Azhgirey et al., Phys. Lett. B 361, 21 (1995).
PH
9. Experiment LNS-E250 (unpublished).
10. L. S. Azhgirey et al., JINR Rapid Commun.,

No. 2[88]-98, 17 (1998).
11. L. S. Azhgirey et al., Yad. Fiz. 62, 1796 (1999) [Phys.

At. Nucl. 62, 1673 (1999)].
12. V. P. Ladygin, L. S. Azhgirey, S. V. Afanasiev, et al.,

Eur. Phys. J. A 8, 409 (2000); L. S. Azhgirey,
V. V. Arkhipov, S. V. Afanasiev, et al., Yad. Fiz. 64,
2046 (2001) [Phys. At. Nucl. 64, 1961 (2001)].

13. L. V. Malinina, G. D. Alkhazov, W. Augustyniak,
et al., Phys. Rev. C 64, 064001 (2001).

14. L. Glozman, Prog. Part. Nucl. Phys. 34, 123 (1995).
15. L. S. Azhgirey and N. P. Yudin, Yad. Fiz. 63, 2280

(2000) [Phys. At. Nucl. 63, 2184 (2000)].
16. M. P. Rekalo and E. Tomasi-Gustafsson, Phys. Rev.

C 54, 3125 (1996).
17. E. Tomasi-Gustafsson,M. P. Rekalo, R. Bijker, et al.,

Phys. Rev. C 59, 1526 (1999).
18. V. P. Ladygin and N. B. Ladygina, Yad. Fiz. 65, 188

(2002) [Phys. At. Nucl. 65, 182 (2002)].
19. N. G. Anishchenko et al., in Proceedings of the 5th

International Symposium on High-Energy Spin
Physics, Brookhaven, 1982; AIP Conf. Proc. 95, 445
(1983).

20. L. S. Zolin et al., JINR Rapid Commun., No. 2[88]-
98, 27 (1998).

21. C. F. Perdrisat et al., Phys. Rev. Lett. 59, 2840
(1987); V. Punjabi et al., Phys. Rev. C 39, 608 (1989);
V. G. Ableev et al., Pis’ma Zh. Éksp. Teor. Fiz. 47,
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Abstract—The sensitivity of data on the process e+e− → e+e−bb̄ at a future linear electron–positron
collider to the deviation of the coupling of the Higgs boson to b quarks from the Standard Model
predictions owing to the presence of a pseudoscalar Higgs boson state is analyzed for a collision energy
of

√
s = 500 GeV. The admixture of a new hypothetical pseudoscalar Higgs boson state in the Hbb̄

vertex is parametrized in the form mb/υ(a + iγ5b). On the basis of an analysis of data on the process
e+e− → e+e−bb̄, it is shown that experiments at the future linear collider TESLA will make it possible to
constrain the parameters ∆a = a− 1 and b as −0.056 ≤ ∆a ≤ 0.055 and −0.32 ≤ b ≤ 0.32, respectively.
c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Searches for the Higgs boson and a determination
of its CP nature are one of the key problems in
modern particle physics. Within the Standard Model,
the Higgs boson is responsible for electroweak-
symmetry breaking, fermion masses being directly
related to this symmetry-breaking mechanism.With-
in the simplest version of the theory, an electroweak
scalar doublet characterized by an ad hoc φ4 potential
is responsible for symmetry breaking, predicting an
observable Higgs boson whose quantum numbers
are JPC = 0++. Popular extensions of the Standard
Model predict, in addition to a light scalar state,
the existence of a JPC = 0−+ pseudoscalar Higgs
boson. The minimal supersymmetric standard model
involving two Higgs doublets (2HDM), the three-
doublet model proposed by Weinberg [1], and so on
are the possible extensions of the Standard Model
Higgs sector. Electroweak-symmetry breaking due
to new strong interactions is an alternative possibility,
and a pseudoscalar Higgs boson can exist in this
case inclusive (see the review article of Hill and
Simmons [2] and references therein). In this con-
nection, it is of paramount importance to distinguish
between these scenarios, and this can be achieved
by thoroughly studying the CP properties of the
hypothesized scalar (pseudoscalar) particle.

Experimental data obtained at the LEP collider in
studying the processes e+e− → ZH rule out, within
the Standard Model, the existence of a Higgs boson

*e-mail: andre@mx.ihep.su
1063-7788/05/6806-0999$26.00
whose mass is smaller than 114.4 GeV [3]. With-
in the minimal supersymmetric standard model, the
physical spectrum involves five Higgs bosons. These
are a light and a heavy neutral scalar one (h0,H0),
a CP-odd pseudoscalar one (A0), and two charged
scalar ones (H±), the mass of the lightest scalar state
and the mass of the pseudoscalar state being exper-
imentally constrained from below by, respectively, 91
and 91.9 GeV [4].

A method for analyzing the CP nature of the
Higgs boson on the basis of its decays to fermions or
gauge bosons was developed in [5] and was applied
in [6] to studying Higgs boson production in the
reaction e+e− → ZH . It should be noted that inves-
tigations at a photon–photon collider, where different
polarizations of initial photons will make it possible to
single out different CP states [7], are likely to provide
the most direct means for determining the CP prop-
erties of the Higgs boson. Data on the ZHH cou-
pling constant can also be obtained from an analysis
of the threshold behavior and angular distributions
in the process e+e− → ZH . In particular, the CP
properties of the Higgs boson can be determined in
this way to a fairly high degree of precision [8]. At
future hadron colliders, such as LHC, an analysis
of the azimuthal-angle distribution of detected final
jets in the subprocess of gauge-boson fusion will
provide an efficient possibility of studying the CP
properties ofHWW coupling [9] and special features
of scalar (pseudoscalar) Higgs boson production [10].
Experimental data on the coupling of the Higgs bo-
son to the t quark from the processes pp → tt̄h at
c© 2005 Pleiades Publishing, Inc.
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LHC [11] and the process e+e− → tt̄H at the future
linear electron–positron collider [12] can also be of
use in determining the CP properties of the Higgs
boson. The possibilities of studying theCP properties
of the Higgs boson were also analyzed for the case of
a µ+µ− collider [13].

In the present study, the possibility of determining
the relative contributions of scalar and pseudoscalar
Higgs bosons to the Hbb̄ interaction vertex is ex-
plored for the reaction e+e− → e+e−bb̄ at the fu-
ture linear electron–positron collider TESLA of to-
tal energy

√
s = 500 GeV and integrated luminosity

1 ab−1 [14]. It is assumed that the Higgs boson will
have been discovered earlier at LHC, but a detailed
determination of its CP nature will become the im-
mediate task of experiments at the linear collider.

In contrast to the earlier studies reported in [15,
16], where the authors investigated only the subpro-
cesses of radiative Higgs boson production—for ex-
ample, e+e− → Z∗ → ZH—we analyze here all pos-
sible contributions to the process e+e− → e+e−bb̄—
in particular, we take into account the subprocess of
gauge-boson fusion.

In [17, 18], the possibility of singling out a signal
from the pseudoscalar Higgs boson in the processes
e+e− → νν̄τ+τ− and e+e− → νν̄bb̄ was considered,
and it was shown there that an analysis of these reac-
tions will make it possible to set quite stringent con-
straints on the coupling of the scalar (pseudoscalar)
Higgs boson to fermions. However, the impossibility
of fully reconstructing reaction kinematics is a draw-
back of these processes that restricts substantially the
sensitivity of data to model parameters. The process
e+e− → e+e−bb̄ enables one to reconstruct fully the
final state and the c.m. frame of the Higgs boson,
this giving reasons to hope for improving attainable
constraints.

The ensuing exposition is organized as follows. In
Section 2, we consider the interaction of the scalar
(pseudoscalar) Higgs boson and fermions within
a model-independent approach. In Section 3, we
present the results of an analysis of the process
e+e− → e+e−bb̄. The last section contains general
conclusions and an outlook.

2. STRUCTURE OF Hff̄ INTERACTION

In Standard Model extensions that involve extra
scalar and pseudoscalar bosons, the lightest spinless
particle may be a combination of states that are not
parity eigenstates [16]. In addition, it is reasonable
to assume that the coupling constants characterizing
the interaction of this scalar (pseudoscalar) Higgs
PH
boson with gauge bosons and fermions are indepen-
dent parameters. In this case, the strength of Hff̄
interaction can be parametrized as

mf

v
(a + iγ5b), (1)

where v = 246 GeV and where, in the Standard
Model, a = 1 and b = 0. Considering the process
e+e− → e+e−bb̄, we will investigate the case where
a and b are independent free parameters and the cases
where only one of these parameters deviates from
the respective value in the Standard Model. It will
be shown below that, in the case where a and b are
independent, the resulting constraints on the model
parameters appear to be insensitivity regions around
the circles

√
a2 + b2 = 1 in the ab plane.

It should be emphasized that not only do data on
the process e+e− → e+e−bb̄ (without allowance for
the subsequent decays of b quarks) include a linear
dependence on the parameter a, this dependence be-
ing specified by the contribution of the interference
of diagrams involving Higgs boson exchange and
background diagrams, but they also contain a2 and
b2 dependences, which are determined by the direct
contribution of diagrams involving Higgs boson ex-
change. In view of this, searches for deviations from
the predictions of the StandardModel—such as those
that may arise in supersymmetric models—are pos-
sible even at the level of processes not involving the
subsequent dynamics of b jets.

An analysis of the processes involving the sub-
sequent hadronization of b quarks will provide the
possibility of studying P-odd correlations, which will
make it possible to separate the contributions of the
scalar and the pseudoscalar component of Higgs bo-
son coupling to fermions and to determine the sign of
the pseudoscalar component.

In simulating the aforementioned processes by
the Monte Carlo method, the differential distributions
subjected to analysis were represented in the form of
expansions in powers of the parameters a and b with
coefficients equal to kinematical factors; that is,

dσ

dO = A0 + a ·A1 + a2 ·A2

+ ab · A3 + b · A4 + b2 · A5 . . . ,

whereO is a quantity observed experimentally andAi

are purely kinematical factors that arise upon squar-
ing the amplitudes of the processes and performing
integration over the phase space, which involve no
dependence on the parameters a and b, and which
are the subject of a direct Monte Carlo simulation. It
will be shown below thatA3 = A4 = 0 for the process
e+e− → e+e−bb̄.
YSICS OF ATOMIC NUCLEI Vol. 68 No. 6 2005
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The data were simulated with allowance for the
special features of the TESLA project; the response
of the detector was simulated by using the 3.01 ver-
sion of the SIMDET package [19]. For the process
e+e− → e+e−bb̄, the Higgs boson mass was set to
the value ofMH = 120 GeV.

3. PROCESS e+e− → e+e−bb̄

Within the Standard Model, the cross section for
the reaction e+e− → e+e−bb̄ receives contributions
from 50 Feynman diagrams; of these, two diagrams
(one describes the radiative production of a Higgs
boson, Z∗ → HZ, while the other describes the pro-
duction of a Higgs boson via the fusion of vector
bosons, Z∗Z∗ → H) are signal diagrams, while the
remaining 48 are background diagrams. At MH =
120 GeV and

√
s = 500 GeV, the total cross section

for the reaction e+e− → e+e−bb̄ with allowance for
the cut | cos θee| ≤ 0.9962 on the scattering angle
with respect to the initial-beam axis for the electron
or the positron produced in the final state and the cut
Me+e− ≥ 2 GeV on the invariant electron–positron
mass in the final state is about 4.3 × 10−2 pb.

In exploring the question of whether it is possible
in principle to set constraints on model parameters,
it is interesting above all to analyze the sensitivity
of the process under analysis to these parameters.
Figure 1 shows the total cross section for the reac-
tion e+e− → e+e−bb̄ versus the parameters ∆a and
b (∆a = a− 1). From this figure, one can see that
the dependence on the parameter b has the shape
of a parabola that attains a minimum at b = 0. This
confirms that the expansion of the total cross section
features no term linear in b. A different situation is
observed for the dependence on the parameter a (∆a).
Here, the minimum of the parabola is shifted to the
region of negative values of ∆a, this indicating the
presence of a term linear in a. In addition, the sensi-
tivity of the cross section for the process in question is
higher in the region of positive values of ∆a; hence, it
is natural to expect that the resulting constraints on
the parameter a will be more stringent in the region
of positive values of this parameter. The presence
of terms linear in a is explained by the interference
between the diagrams involving a Higgs boson and
the background diagrams in the Standard Model. No
similar effect occurs for the parameter b since, in the
respective vertex, this parameter is multiplied by an
imaginary unit, with the result that the first powers of
b are canceled in the interference terms

MiM
†
j + MjM

†
i ,

where Mi and Mj are the matrix elements of the ith
and jth diagrams, respectively. Terms that are linear
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 6 200
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Fig. 1. Total cross section for the reaction e+e− →
e+e−bb̄ as a function of the parameters (solid curve) ∆a
and (dashed curve) b.

in the parameter b could arise owing to the emergence
of the antisymmetric tensor iεijkl upon evaluating the
trace tr[γ5γiγjγkγl], because this would lead to the
cancellation of pure imaginary factors. However, the
number of independent momenta is insufficient in the
process being considered; in all probability, this effect
may emerge only upon taking into account the sub-
sequent hadronization of b jets or their polarization.

In studying the process e+e− → e+e−bb̄, we
analyze a standard set of experimentally observed
distributions—namely, the momentum and scatte-
ring-angle distributions of a b jet; the invariant-mass
distribution of a pair of b jets; and, in addition, the
distribution with respect to the quantity

Tcor =
1

(
√

s/2)3
pe · [pb × pb̄],

which is highly sensitive to the possible CP-odd ef-
fects in the Higgs sector [20].

In Fig. 2, the differential distributions of the cross
section for the process e+e− → e+e−bb̄ with respect
to (а) the b-quark momentum, (b) the b-quark scat-
tering angle, (c) the correlation Tcor, and (d) the in-
variant mass of the b jets are presented for the case of
the Standard Model, ∆a = b = 0 (closed circles).

In determining the sensitivity of the process to
the Higgs boson coupling constants, it is of impor-
tance to assess the relative contributions of signal and
background diagrams (in the present case, these are
diagrams involving a Higgs boson and those that do
not involve it, respectively). Figure 2 shows the rel-
ative contribution of the diagrams featuring a Higgs
boson, which include interference diagrams (crosses
circumvented by circles). It can be seen from the
figure that, in all distributions, the relative contri-
bution of the diagrams involving the Higgs boson
5
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Fig. 2. Differential distributions of the cross section for the process e+e− → e+e−bb̄ with respect to (а) the b-quark
momentum, (b) the b-quark scattering angle with respect to the direction of initial beams, (c) the correlation Tcor for the
Standard Model at

√
s = 500 GeV and MH = 120 GeV, and (d) the invariant mass of the bb̄ pair: (•) contribution of all

Standard Model diagrams and (⊕) contributions of the Higgs boson diagrams alone, including the interference diagrams.
is significantly smaller than the contribution of the
StandardModel background diagrams. Nevertheless,
the possibility of reconstructing the full kinematics of
the final state and a high luminosity of the TESLA
collider will make it possible to separate the signal
associated with the diagrams involving the Higgs
boson from the background of the Standard Model
diagrams.

The sensitivity of the process in question to vari-
ations in the parameters ∆a and b can also be il-
lustrated by considering the example of differential
distributions. The distribution of the relevant cross
section with respect to the scattering angle of a b jet
is displayed in Fig. 3 for the case of the contribu-
tion from the diagram involving the Higgs boson in
the Standard Model (a = 1, b = 0) and for the case
of the contribution from the Higgs boson diagrams
with allowance for the pseudoscalar-boson admixture
(a = 1, b = 0.5). From this figure, one can see that
a nonvanishing value of the parameter b leads to a
PH
general growth of the distribution—this is due to the
characteristic b2 dependence of the contribution from
the pseudoscalar Higgs boson.

In setting constraints on the coupling constants
a and b, it is also of importance to find experimental
observables that are the most sensitive to these pa-
rameters. For this, it is reasonable to analyze the so-
called sensitivity function

S =
σNEW
i − σSM

i

∆σ
expt
i

, (2)

which is constructed for each bin of the distribu-
tion under study. In the definition of the sensitivity
function in (2), σSM

i is the value of this distribu-
tion within the Standard Model (a = 1, b = 0) in the
ith bin, σNEW

i is the value of the distribution in the
ith bin for the case where one parameter or both
of them deviate from their Standard Model values,
and ∆σ

expt
i is the expected value of the experimental
YSICS OF ATOMIC NUCLEI Vol. 68 No. 6 2005
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Fig. 3.Differential distribution of the cross section for the
process e+e− → e+e−bb̄ with respect to the scattering
angle of a b jet (•) for the case of the Higgs boson con-
tribution within the Standard Model (a = 1, b = 0) and
(⊕) with allowance for the admixture of the pseudoscalar
Higgs boson (a = 1, b = 0.5).

error in the ith bin (an algorithm for calculating this
error is given below). For each of the distributions
subjected to analysis, Fig. 4 shows the sensitivity
function constructed in the way outlined above. For
the purposes of illustration, the case of a = 1 and b =
0.5 is chosen to exemplify new physics. In calculating
the experimental error in a bin, use was made of the
integrated-luminosity value of

∫
Ldt = 1 ab−1. From

Fig. 4, one can see that the sensitivity of the process
in question to variations in the parameter b is the
highest at intermediate values of the b-jet momentum
and at high invariant masses of b jets. An analysis of
the distributions reveals that the highest sensitivity
is observed for the distribution with respect to the
scattering angle of a b jet, in which case S varies
around a virtually constant high level over the entire
kinematical region; for the other observables, either
the function S is small, or its maximum is localized in
an extremely narrow region of the phase space.

The problem of suppressing the contributions from
background processes is an important point in such
investigations. For the reaction e+e− → e+e−bb̄,
background processes include e+e− → e+e−ZZ →
e+e−bb̄νν̄ and e+e− → ZZZ → bb̄e+e−νν̄. As was
shown in [21], however, either the cross sections
for these processes are extremely small, or their
contribution can be suppressed to a level of 0.2 fb.

In order to determine, for the parameters a and
b, the regions that can be excluded on the basis of
data from experiments at a future linear collider, we
use a conventional χ2 method, where the expected
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Fig. 4.Sensitivity functionsS (2) at a = 1 and b = 0.5 for
the distributions with respect to (а) the b-quark momen-
tum, (b) the b-quark scattering angle, (c) the correlation
Tcor, and (d) the bb̄ invariant mass.

experimental error ∆σ
expt
i is defined as

∆σ
expt
i = σSM

i

√
δ2
syst + δ2

stat, (3)

where the statistical error in a bin of the distribution
being considered is given by

δstat =
1√

σSM
i εbb̄

∫
Ldt

. (4)

Here, εbb̄ is the reconstruction efficiency for a pair of
b jets. The analysis performed in [21] revealed that
the use of the b-trigger algorithm in reconstructing
b jets will make it possible to reach an efficiency of
εbb̄ = 56%. The systematic error receives contribu-
tions from the detector resolution, the uncertainty in
measuring the luminosity (about 0.5%), the errors
in separating background processes, and some other
effects and is on the order of 1% [14].

From an analysis of various kinematical distribu-
tions for the process being studied, it was found that
the most stringent constraints on the model param-
eters can be obtained from data on the differential
distribution with respect to the scattering angle of b
jets in the case where the kinematical region is broken
down into ten bins, this confirming the conclusions
drawn from the above analysis of the sensitivity func-
tion.

For the parameters a and b, the regions that can be
excluded on the basis of data from experiments at the
5
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Fig. 5. Allowed regions of the parameters ∆a and b
at a confidence level of 95% at

√
s = 500 GeV and an

integrated luminosity of 1 ab−1 for the Higgs boson mass
of MH = 120 GeV. In the case where the parameters ∆a
and b are considered to be independent, the allowed region
is enclosed by the elliptic curves. The region between the
horizontal straight lines is the region that is allowed for
the parameter b at∆a = 0. The regions between the pairs
of vertical straight lines in the left and right parts of the
figure are the regions allowed for the parameter ∆a at
b = 0.

TESLA collider [14] are shown in Fig. 5 for the total
collision energy of

√
s = 500 GeV and an integrated

luminosity 1 ab−1 at the Higgs boson mass ofMH =
120 GeV. For the case where the parameters ∆a and
b are taken to be independent, the allowed region at
a confidence level of 95% is bounded by the elliptic
curves. The region between the horizontal straight
lines is the region allowed for the parameter b at∆a =
0. The regions between the pairs of vertical straight
lines in the left and right parts of Fig. 5 are those
that are allowed for the parameter a at b = 0. It can
be seen from the figure that, in the case of two inde-
pendent parameters, the allowed region is the region
of insensitivity to the parameters ∆a and b; within
this region, the individual contributions of these pa-
rameters cannot be separated. In successively varying
the parameters (allowed regions bounded by vertical
and horizontal straight lines), combining the case
where ∆a = 0 and b is a free parameter with the
case where b = 0 and ∆a is a free parameter leads to
the appearance of two disconnected allowed regions.
In Fig. 5, they are labeled with the letters A and В
(regions A and B are determined by the intersection
of the horizontal band and two vertical bands in the
left and right parts of Fig. 5). However, it is quite
obvious that, in this case, the allowed region B is
nonphysical. On the basis of the assumption that the
Standard Model possesses a high predictive power, in
PH
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which case new-physics effects will manifest them-
selves only in the form of small deviations from the
predictions of the Standard Model, it can easily be
shown that, in the case of a perfect experiment, an
increase in the luminosity and a decrease in the sys-
tematic error will lead to a gradual degeneracy of the
region B, with the result that the true allowed region
will appear to be localized around the point specified
by the coordinates ∆a = 0 and b = 0 and predicted
by the Standard Model. In determining the regions
allowed for the parameter values, we will therefore
consider only region A.

The regions allowed for the parameters ∆a and b
(at a confidence level of 95%) are shown in Fig. 6. In
the case where the parameters ∆a and b are indepen-
dent, the allowed region is bounded by the concentric
curves; the region bounded by the horizontal region
bounded by the horizontal straight lines and that
bounded by the vertical straight lines are the regions
that are allowed, respectively, for an free parameter
b at ∆a = 0 and for a free parameter ∆a at b = 0.
The cases where the integrated luminosity is equal to
100 fb−1, 1 ab−1, and 10 ab−1 are represented by the
long-dash, solid, and short-dash lines, respectively.

The resulting constraints on the parameters ∆a
and b can be represented in the form

−0.09 ≤ ∆a ≤ 0.08 for
∫

Ldt = 100 fb−1, (5)

−0.056 ≤ ∆a ≤ 0.055 for
∫

Ldt = 1 ab−1,
YSICS OF ATOMIC NUCLEI Vol. 68 No. 6 2005
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−0.05 ≤ ∆a ≤ 0.05 for
∫

Ldt = 10 ab−1

in the case of b = 0 and free ∆a and in the form

−0.42 ≤ b ≤ 0.42 for
∫

Ldt = 100 fb−1, (6)

−0.32 ≤ b ≤ 0.32 for
∫

Ldt = 1 ab−1,

−0.3 ≤ b ≤ 0.3 for
∫

Ldt = 10 ab−1

in the case of ∆a = 0 and free b. In the case of
Higgs boson masses varied around MH = 120 GeV,
the resulting constraints can be approximated to a
high precision by multiplying the above constraints
by the factor (MH/120 GeV)2.

It can be seen that the constraints in (5) and (6) are
commensurate with the constraints following from
the analysis of data on the processes e+e− → bb̄νν̄
and e+e− → τ+τ−νν̄ [17, 18] and can be used in a
global analysis of data that could be obtained at a
future electron–positron collider.

4. CONCLUSIONS AND OUTLOOK

The possibility of detecting a signal from a scalar
(pseudoscalar) Higgs boson in studying the process
e+e− → e+e−bb̄ in experiments at a future linear col-
lider has been explored in the present study. It has
been shown that data on the reaction e+e− → e+e−bb̄
will provide the possibility of either discovering the
presence of a pseudoscalar Higgs boson state or im-
posing stringent constraints on the region allowed for
the coupling constants.

In particular, data on the process e+e− → e+e−bb̄
from the future linear collider TESLA of integrated
luminosity

∫
Ldt = 1 ab−1 and total energy

√
s =

500GeV would make it possible to obtain constraints
on the region of the parameters a and b at a level of a
few percent (at free a and fixed b) and at a level of ten
percent (at free b and fixed a):

−0.056 ≤ ∆a ≤ 0.055,
−0.32 ≤ b ≤ 0.32.

These results are commensurate with the results of
the analysis performed in [10], where a global fit at∫
Ldt = 500 fb−1 and

√
s = 500 GeV predicted the

relative precision in determining the Yukawa coupling
constant gHbb̄ at a level of 2.2%.

In conclusion, we would like to make a few com-
ments concerning future experiments. Let us assume
that data from a future collider will reveal deviations
fromStandard Model predictions in processes involv-
ing a Higgs boson and that, in addition, there will be
data from an independent measurement of the partial
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 6 200
Higgs boson width ΓH→bb̄ (for example, from data on
the resonance production of a Higgs boson at a muon
collider). It can be seen that, within the parametriza-
tion specified by Eq. (1) and used in this study, the
partial Higgs boson widths are ΓH→ff̄ ∼ (a2 + b2),
while the observables explored above feature a differ-
ent dependence,

dσ

dO = B0 + aB1 + a2B2 + b2B3.

By combining the results obtained by studying the
process e+e− → e+e−bb̄ and data from the measure-
ments of the partial width ΓH→bb̄, it will then be
possible to separate the contributions of the scalar
and pseudoscalar coupling constants a and b and to
obtain thereby a direct indication of the CP nature of
the Higgs sector.

It should be noted that the absence of the depen-
dence of data available for the process under consid-
eration, as well as for the processes e+e− → νν̄bb̄ and
e+e− → νν̄τ+τ− (without specific analysis of subse-
quent decays), on the first power of the parameter b
is a significant drawback of these processes. The pre-
sumed smallness of the parameter b gives no way to
obtain stringent constraints on the parameters of the
coupling of the pseudoscalar Higgs boson, which are
determined by terms proportional b2. However, the in-
clusion of cascade decays—for example, τ → πν and
τ → ρν—makes it possible to deduce additional in-
formation about the nature of the Higgs boson. It was
shown in [22] that, by analyzing the products of ρ+ρ−

decay in the process H → τ+τ− → ρ+ρ−ντ ν̄τ , one
can separate the contributions of the scalar and pseu-
doscalar Higgs bosons. Amore complicated situation
is observed for the cases of processes involving the
production of b quarks. In principle, the inclusion of
b-quark polarization in the final state (for example, on
the basis of the cascade decay b → cµν) would make
it possible to observe terms in the distribution that
are linear in the parameter b [23]. However, it does
not seem possible to observe the weak decays b →
cµν, since a b quark undergoes hadronization into
variousB-meson states faster than decays via weak-
interaction processes. Nevertheless, it was shown
in [24] that there exists a tight correlation between
the polarization of a b quark and the polarization of
the Λb baryon produced by this quark. This gives
grounds to hope for experimentally determining b-
quark polarization and, hence, for separating a signal
from terms linear in the parameter b.
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