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Abstract—The needs of experimental nuclear physics for the 48Ca isotope for solving some fundamental
problems are analyzed and justified. A new method is proposed for the separation of calcium isotopes.
This method is based on the threshold dependence of the dipole moment of the CaF5 molecule on the
vibrational quantum number of large-amplitude motions. The conditions necessary for implementing the
electrooptical method of isotope separation are formulated on the basis of examining a number of molecular

systems. © 2001 MAIK “Nauka/Interperiodica”.

1. INTRODUCTION

At present, there is a constant need in experi-
mental nuclear physics for the 4Ca isotope. This
nucleus, consisting of 20 protons and 28 neutrons,
is likely to have the highest neutron excess among
stable nuclei, which determines its features that are of
importance for employing this nuclide in some fields
of experimental nuclear physics.

Experimental investigation of the double-beta de-
cay of nuclei is one of these fields. At present, these
investigations pursue two basic objectives:

(i) measurement of the half-life for the standard
two-neutrino (282v) mode of double-beta decay,

N(Z,A) — N(Z+2,A)+ 2 +2v; (1)

(ii) searches for the exotic neutrinoless (280v)
mode,

N(Z,A) — N(Z +2,A) + 2. (2)

The former process is observed and extensively
studied in experiments. Measurement of the 252v
hali-life of nuclei is important for verifying the stan-
dard model of weak interaction. Moreover, relevant
experimental data are necessary for improving meth-
ods for calculating nuclear matrix elements, since
nuclear structure is substantial in theoretical calcula-
tions of the 23 decay. Because of the high neutron ex-
cess, the ¥ Ca nucleus is characterized by a relatively
high probability of 262r decay. However, theoretical
estimates of the decay hali-life T} /5 (232v) yield very

uncertain results from 10'3 to 10'® yr [1]; therefore,
new reliable experimental data would make it possible
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to obtain deeper insights into the phenomenon under
investigation.

The second process, 280v decay, is forbidden in
the standard theory of weak interaction and has not
yet been observed. At the same time, current theo-
retical concepts of the nature of weak interaction go
beyond the standard model. In particular, there is the
popular hypothesis that the neutrino is a Majorana
particle with a nonzero mass. The Majorana hypoth-
esis implies that the neutrino and the antineutrino
are identical and that the lepton number is not con-
served. This hypothesis allows the neutrinoless mode
of double-beta decay. Observation of the 280v decay
mode would be of fundamental importance for weak-
interaction physics because this would be direct ex-
perimental evidence for the failure of the standard
theoretical model of weak interaction. Observation
of this decay mode or even a determination of an
upper limit on the decay probability would very im-
portant at present for a comparison with neutrino-
oscillation data obtained by the Kamiokande collabo-
ration (Japan) in 1998 [2]. If these extremely intrigu-
ing experimental results are not an artifact, they can
be attributed only to the existence of a neutrino rest
mass, which also contradicts the standard model.

The neutron-rich 8Ca nucleus is very interesting
for experimental investigation of double-beta decay.
Studying this process with CaCOg samples that had
atotal mass of 42.2 g and which were enriched in *8Ca
to 73% by the electromagnetic method at the Kur-
chatov Institute, Balysh et al. [3] obtained the value

T12722’6(48Ca) = (4.372%[stat.] + 1.4[syst.]) x 10" yr

for the two-neutrino process. For the 8Ca nucleus,
the ordinary beta-decay mode is also possible, but
theoretical calculations predict that its probability
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is much lower than the double-decay probability.

The current experimental constraint on Tlo/”;’g for

the neutrinoless process is Tlo/”;’g(‘ls(la — BTi) >
9.5 x 102! yr[4].

To improve considerably experimental sensitivity
and to obtain physically significant results on the
neutrinoless mode of the 23 decay of the 4¥Ca nu-
cleus, it is necessary to have kilograms of this isotope
with extremely low (10712—10"' g/g) content of
radioactive impurities. In addition, experimental in-
vestigation of the two-neutrino mode of the 23 decay
in 4Ca samples of a few kilograms would make it
possible to reduce errors in measuring the probability
of the process by one to two orders of magnitude and
to refine the shape of the emitted-electron spectrum.
This information would provide a quantitative test of
the standard model of the 23 decay and would make
it possible to estimate model parameters more accu-
rately. More precise experimental data on 23 decay in
48Ca would also be of use for developing methods for
calculating its nuclear structure.

The accelerator physics of medium-mass and
heavy nuclei is another experimental field where the
use of the 48Ca nucleus is of interest. In addition
to “8Ca beams, accelerated beams of 36S, 58Fe,
64Ni, and other neutron-rich nuclei are used in
accelerator experiments, but the ¥Ca nucleus is the
most interesting and promising projectile at present.
Having the highest neutron excess among stable
nuclides, *®Ca is used to bombard targets with the
aim of synthesizing superheavy Z > 110 nuclei of
the so-called stability island. Some nuclear-matter
models predict that the decay period will increase at
still greater values of Z, with the result that such
superheavy nuclei become stable. For this reason,
attempts at synthesizing superheavy nuclei are of
substantial importance for verifying this prediction
and for developing fundamental nuclear physics and
its applications.

Such investigations are being extensively per-
formed at JINR (Dubna)[5] and at GSI (Darmstadt)
[6]. At the Laboratory of Nuclear Reactions, JINR,
the team headed by Yu.Ts. Oganessian obtained
Z =112 nuclei with a hali-life of about 100 s and
Z =114 nuclei through bombarding uranium and
plutonium targets by accelerated *8Ca nuclei [5, 7, 8],

BCa + 38U — 23112 + 3n, (3)
BCa+ 24Pu — 29114 + 3n.
Active researches in this field are also performed
at the Lawrence Berkeley National Laboratory by

scientists from Berkeley and Oregon State University
under the supervision of Ken Gregorich. They briefly
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reported that Z = 118 and 116 nuclei were synthe-
sized through bombarding a 2°8Pb target by 8Krions
accelerated to an energy of 449 MeV at an 88-inch
cyclotron [9].

Thus, experimental data corroborate, at first
glance, the existence of the stability island. These
very interesting results will undoubtedly lead to the
extension of studies devoted to synthesizing super-
heavy nuclei. Such experiments will obviously be
developed at other research centers worldwide that
employ beams of accelerated medium-mass ions.

Experimental data on unstable light and medium-
mass nuclei with a high neutron excess are also of im-
portance for developing nuclear physics. At present,
such nuclei are obtained in the fragmentation of a sta-
ble neutron-rich projectile interacting with a target
at rest. In these experiments, *®Ca nuclei are also
preferable for acceleration and further fragmentation.
There is a program of systematic investigations along
these lines that requires a regular use of #8Ca nuclei.

Accelerated-beam substance is irreversibly con-
sumed in experiments. Therefore, intensification of
accelerator investigations with #3Ca requires stable
and even increasing amounts of this isotope. One
might expect that the total need for *Ca at accelera-
tor centers worldwide will attain 5—50 g/yr in the next
2—5 years. Note that the use of the 48Ca isotope in
experimental nuclear physics is restricted to a consid-
erable extent by its high commercial cost. Therefore,
development of cheaper and more efficient methods
for separating Ca isotopes can contribute to consid-
erable advances both in nuclear-physics techniques
employing calcium and in fundamental physics.

At present, Ca isotopes are separated exclusively
by the electromagnetic method, which is among the
most power-consuming and low-output techniques
used for the commercial production of isotopes.
Searches for an alternative method of higher output
therefore seem very promising. In this study, we
examine the possibility of separating *®Ca on the
basis of the electrooptical method that was proposed
previously for selecting nonrigid molecules [10—12].

2. BASIC PRINCIPLES
OF THE ELECTROOPTICAL METHOD
FOR SELECTING NONRIGID MOLECULES

Calcium (Z = 20, A = 40—48) is a typical element
in the middle of the periodic system. Available meth-
ods for separating isotopes at the molecular level,
including laser methods, are based on the selective
multiphoton excitation and dissociation of molecules
in infrared laser fields. Since calcium does not form
volatile compounds, it is virtually impossible to apply
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them to calcium. For this reason, calcium falls within
the so-called dead zone of isotopes of some elements.

In[13, 14], a three-step selective photoionization
of calcium atoms was implemented experimentally
with aid of dye lasers. The first step in [13] was non-
selective because the triplet metastable 4p state was
excited by an electron impact and because the transi-
tion 4s4p 3Py — 4s5s 357 was induced by 616.2-nm
radiation. In contrast to [13], the intercombination
452 1Sy — 4s4p 3P; (A = 657.3 nm) transition was
selectively excited at the first stage in [14], and extra
excitation occurred through the 4s4p 3P, — 4555 35
(A = 612.2 nm) transition. The full ionization of cal-
cium atoms was achieved identically in [13, 14] by
means of 488.0-nm argon-laser radiation. Although
the authors of [13, 14] demonstrated that the sepa-
ration of Ca atoms is in principle possible, those
studies were unfortunately not developed further.

In the past 10—15 years, a new class of non-
rigid molecules whose individual atoms or fragments
can move almost freely along some directions within
distances commensurate with the dimensions of the
molecular system, not causing its dissociation, has
been revealed owing to application of precise exper-
imental methods for studying molecular systems and
to considerable advances in a computer simulation
of such systems. These displacements, referred to
as large-amplitude motions (LAMs), result in the
anomalous behavior of the dipole moments of some
nonrigid molecules. According to [15—17], the dipole
moment g of such molecules depends sharply on
the vibrational quantum number n of LAMs, so that
the difference of the dipole moments in the ground
vibrational state [u(n = 0)] and in excited vibrational
states [u(n # 0)] can be as large as about 10 D.

Electrooptical manifestations of large-amplitude
motions can be used in the new molecule-selection
method that was proposed in [10—12] and which
makes it possible to obtain the isotopes of almost all
elements of the periodic table, including those from
the dead zone, through selecting nonrigid molecules
in infrared-laser and nonuniform electric fields. This
removes the existing limitation of molecular isotope-
separation methods that is due to the incompatibility
of the volatility of the objects to be separated with the
productivity and the degree of enrichment.

The basic principles of the electrooptical selec-
tion method for nonrigid molecular systems become
the clearest when they are considered for L{[MXj1]
molecules, where L is an alkali-metal atom; M is
an element of the IIA, IIIA, or VA groups of the
periodic system; X = H, F, O; and k£ = 2,3. Figure |
shows the layout of a setup for laser separation of
isotopes entering into the composition of LIMXj.1]
molecules.
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A crucible containing inorganic L[MXj4] salts
that include “Z and ®Z isotopes in natural amounts
is heated to a temperature of T' ~ 1000 K, at which
the vapor over the molten salts is dominated by
monomeric nonrigid molecules of the same compo-
sition. A nonrigid-molecule beam emitted from the
crucible to a vacuum chamber is exposed to infrared
laser radiation, which selectively excites molecules
containing the ®Z isotopes to the upper vibrational
state with a small dipole moment u(n # 0) < 10 D.
Molecules containing the Z isotopes remain in the
ground vibrational state with a large dipole moment
pu(n =0) ~10 D. When occurring in the 20-cm-
long region of a nonuniform electric field of gradient
VE =5 CGS units, the nonrigid-molecule beam
is separated in space, within the lifetime of the
vibrational excitation, into two isotopic components,
which are transversally spaced AS ~ 1 cm apart at a
molecule mass of M ~ 10722 g and a beam speed of

V ~10* em/s:
AS = [u(n = 0) — uln # OVE/2MV?)]. (4

As a result, an acceptable spatial separation of the
@7 and Z isotopes is achieved even at weak fields
(E <103 V/cm).

The electrooptical method [10—12] for selecting
nonrigid molecules makes it possible to reduce the
electric field by a factor of about 10% in relation to
that in the previously available method [ 18, 19], where
rigid symmetric AB4 molecules of the spherical-rotor
type that have T,; symmetry and which do not have a
dipole moment in the ground vibrational state acquire
it through the excitation of degenerate vibrations in
a strong electrostatic field. A vibrationally excited
spherical rotor develops a constant dipole moment of
about 0.1 D owing to the presence of a mechanical
and an electrooptical molecular anharmonicity. Since
this method requires creating sufficiently strong (up
to 107 V/cm) electric fields E, its applications are
seriously restricted in practice[18, 19].

Although a nonrigid structure is known to be in-
herent in a fairly wide range of molecular systems, the
electrooptical method [10—12] is applicable to only a
relatively small number of compounds, because such
compounds must simultaneously satisfy the following
basic criteria [20]:

(i) They must be light, since the spatial separation
of two isotopic components is inversely proportional
to the molecular mass (AS ~ 1/M).

(ii) Among similar melt—vapor systems, the partial
pressure of the nonrigid-molecule vapor over molten
salts of the same composition must be high at com-
paratively low vapor temperature.
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Fig. 1. Layout of a setup for laser separation of isotopes entering into the composition of nonrigid molecules: (/) crucible
containing inorganic L[MXj4 1] salts that include ®Z and Z isotopes, (2) vacuum chamber, (3) nonrigid-molecule beam,
(4) infrared laser, and (5) region of a nonuniform electric field whose gradient is VE.

(3) The dipole moment p(n) of a specific non-
rigid molecule must sharply depend on the vibrational
quantum number n of the large-amplitude motions.

(4) A transition of a nonrigid molecule to an ex-
cited vibrational state characterized by a small dipole
moment must be available.

(5) The time and isotope shift must be sufficient for
selection of nonrigid molecules in a molecular beam.

The spectroscopic and electrooptical features of
[[MX3] molecules that were most comprehensively
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Fig. 2. (a) Internal rotations of the cation LT about
the anion [MX3]™ in the plane of the complex L[MX3]
molecule and potential-energy curve along these rota-
tions; (b) dipole moment p(n) of the L[MXs] molecule as
afunction of the vibrational quantum number n of internal
rotations.
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studied in [15—17] among nonrigid molecules are
listed in Table 1. For these molecules, Fig. 2 shows
the characteristic dependences of the dipole moment
w(n) on the vibrational quantum number n of large-
amplitude motions that are actually the internal rota-
tions of the cation Lt about the anion [MX3]~.

According to the data in Table 1 and in Fig. 2,
the LiPO3 molecule, which was studied in a num-
ber of experiments, is a nonrigid molecule optimally
satisfying the basic criteria of applicability of the
electrooptical isotope-separation method. Through
one of the rigid modes, this molecule can undergo a
transition to an excited vibrational state with a small
dipole moment of u(n* = 9) = 2.7 D (see, for exam-
ple, [21]). The corresponding threshold energy E* =
575 cm~ ! is attainable for available laser sources, and
the lifetime of the necessary vibrational excitation is
about 3 s.

Because of extremely low volatility, I[MH3] hy-
drides are unsuitable for the separation of the con-
stituent isotopes. In all probability, this is one of the
reasons why there are no experimental data on the
gaseous phase of these compounds. Moreover, the
data in Table 1 indicate that the threshold energies
E* for the L[MH3] hydrides fall within the region that
is virtually inaccessible to a vibrational excitation of
a molecule with a small dipole moment. For the
same reason, [[MF3] fluorides show little promise
for isotope separation by the electrooptical method.
Substitution of heavier elements for L and M from
the corresponding subgroups of the periodic system
increases not only the molecular mass but also the
threshold energy E* (the case of L = K is no excep-
tion here).

[t is obvious that optimal objects for isotope sep-
aration by the electrooptical method [10—12] can be
sought not only among [JMX3] molecules but also
among other types of nonrigid molecules. The non-
rigid CaFy molecule provides an illustrative example
where the electrooptical method can be used to sepa-
rate 48Ca.
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Table 1. Spectroscopic and electrooptical parameters of internal rotations in [[MX3] molecules

1 *

Molecule | hg, keal/mole | B, ecm~ T n* | u(n=0),D | pu(n*),D|E* cm™? t,s

LiBeFs 13.7 0.501 | 4774.9| 29 7.7 2.8 3687 |7Tx 1072 < t<0.2
NaBeFs; 14.3 0.229 |10951.9 | >29 >7.7 >3687

LiMgFs 22.7 0.364 |10918.8|>29 7.3 >3687

LiPO; 3.2 0485 | 1153.8| 9 7.6 2.7 575 0.1 <t<27
LiBeH; 20.4 3.154 | 1131.1| 10 7.1 2.5 4068 | 5x 107t <t <1x1072
NaBeH3 15.1 2.868 920.7| 8 9.4 3.2 2699 | 1x102<t<1x1072

Note: Here, hg is the height of the potential barrier separating the b and m molecular configurations (see Fig. 2a); B is
the effective constant of intermolecular rotations; 7 = hs/2B; n* is that vibrational quantum number of internal rotations
at which the dipole moment of the molecule sharply changes (see Fig. 26); u is the dipole moment of the molecule; E* is
the threshold energy corresponding to n* (see Fig. 2b); and ¢ is the time over which molecules in the molecular beam are

separated by a nonuniform electric field (see Fig. 1).

Table 2. Basic physicochemical parameters of fluorite [22, 23]

Parameter Value

Abundance [%]:

10CaF, 96.94

12CaF, 0.65

43CaF, 0.13

H“CaF, 2.09

6 CaF, 3x 1073

48CaF, 0.19
Density [g/cm?] 3.181
Formation heat, A Hagg [kJ/mole] —1221
Melting point, Tieit [K] 1691
Melting heat, AH,,q [kJ/mole] 29.7
Boiling point, Ty [K] 2803
Boiling heat, A Hyq; [kJ/mole] 305
Energy of bond break CaFy — CaF + F [kJ/mole] 585
Angle between bonds F—Ca—F [deg] 142+ 2
Spacing between nuclei Ca—F [nm] 0.210
Pressure of CaF2 monomers over the melt at 7= 1700 K [mm Hg] ~0.8

3. SELECTION OF NONRIGID CaF,
MOLECULES

For separating 4®Ca, we took fluorite (CaFy),
whose basic physicochemical parameters are pre-
sented in Table 2. This choice was motivated by
the following reasons. Fluorite, which is sometimes
referred to as fluorspar, is abundant in nature. In
contrast to atomic calcium, which is characterized
by a high chemical activity, CaFy is inert even in

PHYSICS OF ATOMIC NUCLEI

the presence of chemically aggressive compounds; in
addition, a large formation heat (see Table 2) makes
fluorite highly resistant to reducing agents (primarily,
to molten metals) even at high temperatures [24]. In
contrast to the majority of three-atom metal halides
of the XHaly type, where X is an alkaline-earth
metal and Hal = F Cl, Br, I, which have a linear
structure of Dy, symmetry, CaFs molecules have
a bent configuration whose point symmetry is Cs,
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Fig. 3. (a) Potential-energy curve and energy levels of
the large-amplitude motions in the CaFs molecule and
(b) the dipole moment as a function of the vibrational
quantum number v(v2) of large-amplitude motions.

[25]. The calcium fluoride molecule has three normal
vibrations that are characterized by the symmetries

Ly = 241 + By (5)

and which are manifested both in the infrared and in
the Raman spectrum. Because of the physicochem-
ical features of fluorite (see Table 2), the vibrational
spectra of CaFs have been obtained to date only
for molecules isolated in low-temperature noble-gas
host surroundings [25—27]. The frequencies of all
three vibrations of the *°CaF5 and **CaF5, molecules
are given in Table 3, along with the experimental
values of the isotope shifts of these vibrations [25—
27]. In addition, the lower part of Table 3 presents
the frequencies v; and isotope shifts Ay; that we
estimated for all three vibrational bands of the *®CaF,
isotopic modification using data from [25—27].

In what is concerned with spectroscopic and elec-
trooptical manifestations of nonrigid structure (the
latter being, of course, of greatest importance for
our purposes), the CaF, molecule is unique in some
respect. The point is that, in contrast to some non-
rigid molecules examined in [15—17], a vibrational
excitation of the CaFs molecule is accompanied by a
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very sharp transition from the bent configuration of
Cs, symmetry to a linear structure of D, symmetry
and, hence, by a complete disappearance of the dipole
moment. This process is characterized by a low
energy barrier, which was estimated at 527 cm™! in
[28] between CalFy structures of Coy, and Dyop, Sym-
metries. Owing to this, there can occur a multiphoton
transition of the CaF, molecule, through one of the
vibrational modes, to an excited vibrational state with
zero dipole moment (see Fig. 3).

Because all three vibrations of the CaFy molecule
can be involved in dipole transitions, an implementa-
tion of the CaFy(Cy,) — CaFa( Doy, ) structural tran-
sition through a multiphoton excitation of molecules
in an infrared laser field requires choosing the wave-
length of laser radiation in such a way that this ra-
diation is in resonance with the corresponding vibra-
tional transition. It is obvious that the nonrigid de-
formation mode vo( A1) is preferable for a multiphoton
excitation, since it is the mode that is predominantly
responsible for the disappearance of the dipole mo-
ment of the CaFy molecule. However, the absence
of laser sources with generation frequencies in the
range 150—200 cm~! and a comparatively small iso-
tope shift Av{°~*® (see Table 3) dash the hopes that
could be associated with this mode. For excitation
through the symmetric mode v, which has the same
symmetry A; as the deformation vibration vy, the
problem of a small isotope shift Ayf0’48 (see Table 3)
remains, even though lasers whose frequencies can be
varied within the range 450—500 cm~! are available.
We deem that excitation through the antisymmetric
mode v3 of By symmetry is preferable in view of the
existence of laser sources in the relevant frequency
range and of a fairly large isotope shift.

The layout of a setup for laser-radiation-induced
calcium-isotope separation based on the use of the
anomalous dependence of the dipole moment of the
CaFq nonrigid molecule on the vibrational quantum
number of large-amplitude motions can be similar to
that in Fig. 1.

The crucible or Knudsen cell containing natural
fluorite is heated to a temperature of about 1700 K,
at which the vapor phase is dominated by monomeric
CaF9 molecules. The beam of CaFy molecules emit-
ted from the cell to a vacuum chamber is exposed
to selective infrared laser radiation whose frequency
coincides with the frequency of the v3 mode of the
48CaF, isotope. Radiation of the required wavelength
can be obtained from lasers that are excited via res-
onance optical pumping and which are characterized
by an energy in a pulse of duration about 100 ns not
less than 10 mJ (this can be, for example, CoDy or
NOCI lasers radiating in the frequency range 510—
580 cm™!). Under the effect of this radiation, the
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Table 3. Vibrational frequencies and isotope shiits of
bands in the infrared spectrum of the mixture 4°CaFs :

44CaFy = 1: 1in the argon host surrounding at a temper-
ature of T = 10K

Molecule
and its 141 (Al), cm™! 12} (Al), ecm™! Vg(ﬁl), cm™!

isotope shift

0CaF, 487.5 163.4 559.8
44CaF, 485.4 161.2 548.0
Az/j‘o’44 2.1 2.2 11.6
BCaF, 483.3 159.0 536.2
Ay 018 4.2 4.4 23.6

dipole moment of “CaF, molecules vanishes com-
pletely. At the same time, molecules containing other
calcium isotopes remain in the ground vibrational
state and have a nonzero dipole moment. Unfortu-
nately, the experimental value of the dipole moment
of the CaFy molecule is not known. The quantum-
chemical calculations performed in [28] revealed that
the dipole moment of the CaFy molecule is quite large
(about 5 D). In the 35-cm-long region of a nonuni-
form electric field of gradient about 50 CGS units, the
molecular beam moving at a speed of V' 22 345 m s—1
is spatially separated predominantly into two com-
ponents spaced AS =1 cm apart [28]. As a result,
the spatial separation of the beam components that is
necessary for collecting #8CaFy molecules is achieved
at relatively weak fields (E ~ 15 x 103 V/cm).

There are some open problems, including that
of the relaxation deexcitation of thermally populated
vibrational levels of the CaFy molecule and that of
the contribution of “hot” bands to the excitation for-
mation of the spectrum. However, estimations per-
formed with allowance for the above electric fields,
the pressure of CaFy vapor over molten fluorite at
a temperature of 1700 K (see Table 2), and rela-
tively weak laser fields demonstrate that the desired
18CaF, isotope, whose content in the natural mixture
is 0.19%, can efficiently be separated and collected
at a rate of about 5—10 mg/h, which is more than
one order of magnitude higher than the rate achieved
with a medium-power electromagnetic separator at
the total ion current of up to 15 mA [29].

4. CONCLUSION

The method proposed here for separating Ca
isotopes is based on the threshold dependence of
the dipole moment of the CaFy molecule on the
vibrational quantum number of large-amplitude mo-
tions. The structure of the energy levels of the CaFy
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molecule and a fairly large isotope shift (23.6 cm™!) of
the antisymmetric valence vibration make it possible
to employ infrared laser radiation to excite selectively
the CaFs molecule to a state where its dipole moment
is zero (that is, to overcome the energy barrier
separating the molecular structures of Cy, and Dyop,
point symmetries). Experience gained in studying
the separation of molecular beams gives every reason
to hope that the principle described above will be
implemented as an efficient and relatively economical
procedure for separating calcium isotopes.

Development of this proposal seems topical be-
cause, as was indicated above, many lines of current
experimental investigations in nuclear physics require
the *®Ca isotope in amounts of a few kilograms (from
time to time) and a few grams (regularly). Moreover,
it can be assumed that the reduction of the cost of the
isotope will give further impetus to relevant nuclear-
physics investigations, with the result that more of
it will be needed. Taking into account the uniquely

high neutron excess in the 48Ca nucleus, we can
conclude that, for many nuclear experiments, there is
no alternative to this nuclide.
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Abstract—The multiple emission of intermediate-mass fragments (IMF) is studied for collisions of p, *He,
and 2C on Au with the 47 FASA setup. The mean multiplicities of IMF saturate at a value of around 2
for incident energies above 6 GeV. An attempt at describing the observed IMF multiplicities in the two-
stage scenario, a fast cascade followed by a statistical multifragmentation, fails. Agreement with the
measured IMF multiplicities is obtained by introducing an intermediate expansion phase and modifying
empirically the excitation energies and masses of remnants. The angular distributions and energy spectra
from p-induced collisions are in agreement with the scenario of “thermal” multifragmentation of a hot
and expanded target spectator. In the case of 12C + Au (22.4 GeV) and *He (14.6 GeV) + Au collisions,
deviations from a pure thermal breakup are seen in the fragment energy spectra, which are harder than
those both from model calculations and from the measured ones for p-induced collisions. This difference
is attributed to a collective flow with the expansion velocity at the surface of about 0.1c (for 12C + Au

collisions). © 2001 MAIK “Nauka/Interperiodica”.

1. INTRODUCTION

Nuclear fragmentation was discovered in cosmic
rays 60 years ago [1, 2] as a puzzling phenomenon in
which nuclear fragments are emitted from collisions
of relativistic protons with various targets. The ob-
served fragments were heavier than « particles but
lighter than fission fragments. Now, they are com-
monly called intermediate-mass fragments (IMF),
3 < Z < 20. Later on, in the 1950s, this phenomenon
was first observed in accelerator experiments [3] and
then studied leisurely for three decades. The sit-
uation changed dramatically after 1982, when the
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multiple emission of IMF was discovered in the 2C
(1030 MeV) irradiation of emulsion at the CERN
synchrocyclotron [4]. These findings stimulated the
development of many theoretical models to put for-
ward an attractive idea that copious production of
IMF may be related to a liquid—gas phase transition
in nuclear matter [5—8]. A recent survey of multifrag-
mentation can be found in [9].

About a dozen sophisticated experimental devices
were created to investigate this process by using
heavy ion beams, which are well suited for producing
extremely hot systems. But in the case of heavy
projectiles, nuclear heating is accompanied by com-
pression, fast rotation, and shape distortion which
may cause dynamical effects in the multifragment
disintegration, and it is not easy to disentangle all
these effects and extract information on the thermo-
dynamic properties of hot nuclear systems. The sit-
uation becomes more transparent if light relativistic
projectiles are used. In this case, dynamical effects
are expected to be negligible. Another advantage is
that all the fragments are emitted by a single source: a
slowly moving target remainder. Its excitation energy
might be almost entirely thermal. Light relativistic
projectiles therefore provide a unique possibility of
studying thermal multifragmentation.

1063-7788/01/6409-1549$21.00 © 2001 MAIK “Nauka/Interperiodica”
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The time scale of IMF emission is a crucial ques-
tion for understanding this decay mode: s it a “slow”
sequential process of independent emission of IMF,
or is it a new (multibody) decay mode with “si-
multaneous” ejection of fragments governed by the
total accessible phase space? Only the latter pro-
cess is usually called multifragmentation. Simulta-
neous emission means that all fragments are liberated
within a time smaller than the characteristic time of
7.~ 10721 s [10], which is the mean time for the
Coulomb acceleration of fragments. Within this time,
IMF emission is not independent, but IMF interact
via Coulomb forces and are accelerated after freeze-
out in a common electric field. Measurement of the
emission time 7oy for IMF (i.e., the mean time be-
tween two successive events of fragment emission) is
a direct way to answer the question about the nature
of the multifragmentation phenomenon. An analysis
of the IMF—IMF correlation function with respect
to the relative velocity and also with respect to the
relative angle involves two procedures for extracting
information about the emission time.

By now, it has been shown that thermal multifrag-
mentation does indeed occur in collisions of light rel-
ativistic projectiles (p, p, He, He, 7~ ) with a heavy
target and that fragments are emitted from an ex-
panded, excited residue driven, after an expansion, by
the thermal pressure [11—16]. Deduced from IMF—
IMF correlation data, the fragment emission time is
less than 100 fm/c. This value is considerably smaller
than the characteristic Coulomb time. Thus, the
trivial mechanism of multiple IMF emission (inde-
pendent fragment evaporation) is excluded [17—19].

In this paper, we present results of the experimen-
tal study of the multifragment emission induced by
relativistic helium and carbon ions and compare them
with our data [13] obtained for p + Au collisions. The
measured fragment multiplicities, energy, charge, and
angular distributions are analyzed within the com-
bined approach: cascade model followed by the sta-
tistical multifragmentation model (SMM). Emphasis
is put on the question of thermalization and on a study
of a transition from a pure statistical process to a
behavior showing dynamical effects.

2. DESCRIPTION OF THE EXPERIMENT
2.1. Experimental Setup

The experiments were performed with the beams
from the JINR synchrophasotron in Dubna by using
the modified [20] 4w FASA setup [21]. The device
consists of two main parts: (i) five AFE (ionization
chambers) x E (Si) telescopes (they are located at
0 = 24°, 68°, 87°, 112°, and 156° with respect to the
beam direction and together cover a solid angle of
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0.03 sr), which serve as a trigger for the readout
of the system allowing measurement of the charge
and energy distributions of IMF at different angles;
(ii) a fragment multiplicity detector (FMD) consist-
ing of 64 CslI(Tl) counters (with thicknesses around
35 mg/cm?), which covers 89% of 47. The FMD
gives the number of IMF in an event and their spatial
distribution. Thin polycrystalline CsI(Tl) films are
prepared by thermal vacuum evaporation onto 2-mm
Plexiglass backings, which are shaped as hexagons
or pentagons. The light is transported onto pho-
tomultipliers of the FEU-110 type by hollow metal
tubes using diffuse reflection. Using such lightguides
instead of solid ones made from Plexiglass signifi-
cantly reduces the background caused by beam halo
(up to a level of a few percent). The background was
continuously controlled by means of a double-gate
mode in processing the photomultiplier pulses. The
scintillator faces were covered with aluminized Mylar
(0.2 mg/cm?) to exclude light cross talk.

A seli-supporting Au target 1.5 mg/cm? was
located at the center of the FASA vacuum chamber
(about 1 m in diameter). The following beams are
used: protons at energies of 2.16, 3.6, and 8.1 GeV;,
4He at energies of 4 and 14.6 GeV; and '2C at
224 GeV. The average beam intensity was 7 X
108 p/spill for protons and helium and 1 x 10% p/spill
for carbon projectiles with a spill length of 300 ms and
a spill period of 10 s.

2.2. Analysis of Fragment Multiplicities

By using the FMD array, the associated IMF mul-
tiplicity distribution W4 (M4) is measured in events
triggered by a fragment in at least one of the tele-
scopes. The triggering probability is proportional to
the multiplicity M of an event (primary IMF multi-
plicity). Hence, the contribution of events with higher
multiplicities in W4 (M) is enhanced. This is a rea-
son why W4 (M 4) should differ from the primary mul-
tiplicity distribution W (M). Another reason is that
the FMD efficiency is less than 100% and depends on
the detection threshold of scintillator counters being
adjusted in such a way as to reduce the admixture
of Z <2 particles in the counting rate of IMF up
to the level not exceeding 5%. These distributions
are mutually related via the FASA response matrix

Q(MA,M)I
Wa(Ma) = Y Q(Ma, M)W (M). (1)

M=Ms+1

The response matrix includes the triggering proba-
bility, which is proportional to M, and the probability
of detecting (in the FMD) M4 fragments among the
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remaining M — 1 fragments. The latter probability is
described by the binomial distribution, and one gets
Q(Ma, M) (2)
M!
 MAN(M —1— My)!
where ¢ is the detection efficiency.

The FMD efficiency € was calibrated as described
in [20, 21]. We have the possibility of controlling its
value experimentally using IMF coincidences in the
trigger telescopes. From Egs. (1) and (2), one finds
that (M 4) and the moments of the primary multiplic-
ity distribution are related by the equation

(Ma) _ (M?)
—r =L — 1. 3
- o) (3)
This expression gives the mean IMF multiplicity
(without one) for events selected by the trigger.
The right-hand side of this equation can also be

obtained from the coincidence rate ni5 for IMF in the
triggering telescopes:

€MA (1 o E)M—I—MA7

2 _ (M)

nip2 (M)
Here, ny is the counting rate in telescope 1, and py is
the detection probability for a coincident fragment in
telescope 2.

The value of po is largely determined by the effi-
ciency of the second telescope, €2, but it also depends
on its position (A2) and the relative angle 615: p2 =
g9 f(61) g(012). These last corrections are found from
the measured angular distributions and relative angle
correlations. Combining Egs. (3) and (4), one gets
the following relation for the FMD efficiency:

n12
= (My) —. 5
e = (Ma)/ 12 (5)

There are two options for obtaining the primary
multiplicity distribution W (M) from the measured
one W4(My). The first is to parametrize the distri-
bution W(M), to fold it with the experimental filter
according to Eq. (1), and then to find the param-
eters of the parametrization by fitting the result to
the experimental distribution. This was done under
the assumption that W (M) is shaped like the Fermi
function, as motivated by calculations within the sta-
tistical multifragmentation model (see below).

The second option is the direct reconstruction of
W (M) by using the inverse matrix Q=1 (M, M4):

— 1. (4)

M-1
W(M) = > Q7HM,Ma) Wa(Ma).  (6)
Ma=0

Both procedures yield similar results. In Fig. 1, the
multiplicity distributions obtained for the gold-target
fragmentation by 14.6-GeV alphas and 22.4-GeV
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carbon ions are compared with those for p(8.1 GeV) +
Au collisions. In these cases, the mean values (M)
are always about 2.1-2.2 (see table), being close
to that obtained by the ISIS group for 3He + Au
collisions at 4.8 GeV [22]. These values correspond
to events with at least one IMF emitted. In this
definition, M is never less than unity. The mean
multiplicity for all inelastic events is smaller by the
factor [1 — P(0)], where P(0) is the probability of
having no IMF in a collision event.

The mean values of the IMF multiplicity can
also be obtained from the counting rates of coinci-
dences for telescopes by using the relation between
((M?)/{M) — 1) and (M) [23]. It was calculated for
systems at different excitation energies by the statis-
tical multifragmentation model (SMM; see below),
which faithfully reproduces the IMF-multiplicity
distributions, as is seen in Fig. 1.

3. MODEL CALCULATIONS

The reaction mechanism for light relativistic pro-
jectiles is usually divided into two steps. The first
one consists of a fast energy-deposition stage, within
which very energetic light particles are emitted and
a nuclear remnant (spectator) is excited. The second
one is the decay of the target spectator. The fast stage
is usually described in terms of a kinetic approach.
We use a refined version of the intranuclear-cascade
model [24] to get the distributions of nuclear rem-
nants in charge, mass, and excitation energy. The
second stage can be described by multifragmentation
models. The SMM [25] and the expanding emitting
source (EES) model [26] are employed here. It will be
discussed below whether the assumption of thermoe-
quilibrium behavior is justified.

3.1. Refined Cascade Model

The refined cascade (RC) model is a version of
the quark—gluon string model developed in [27] and
extended to intermediate energies in [28]. This is
a microscopic model that is based on a relativistic
Boltzmann-type transport equations and the string
phenomenology of hadronic interactions. Baryons
and mesons belonging to the lowest two SU(3) mul-
tiplets, along with their antiparticles, are included.
The interactions between the hadrons are described
by a collision term, where the Pauli exclusion principle
is applied to the final states. This includes elastic col-
lisions, as well as hadron production and resonance
decay processes. The formation time 77 =1 fm/c
for product particles is incorporated. At moderate
energies in the limit 7, — 0, this treatment reduces
to the conventional cascade model [24].
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Fig. 1. (a) Measured IMF-multiplicity distributions (symbols) and fits with a Fermi function (folded with the experimental

filter, histograms) associated with a trigger fragment for p 4+

Au collisions at 8.1 GeV (circles, solid histogram), “He + Au at

14.6 GeV (squares, dashed histogram), and 12C + Au at 22.4 GeV (triangles, dotted histogram). (b) Reconstructed primary
IMF distributions (symbols; the notation is identical to that in Fig. la) and the Fermi distributions used to fit the data in
Fig. la (histograms). The smooth curves were calculated within the RC + o + SMM model (see main body of the text).

Mean-field dynamics is neglected in our consider-
ation. However, we keep the nuclear scalar potential
to be defined for the initial state in the local Thomas—
Fermi approximation, changing in time only the po-
tential depth according to the number of knocked-out
nucleons. This “frozen mean-field” approximation
allows us to take into account nuclear binding ener-
gies and the Pauli exclusion principle, as well as to
estimate the excitation energy of the residual nucleus
by counting excited particle—hole states. This ap-
proximation is good for hadron—nucleus or peripheral
nucleus—nucleus collisions, where there is no large
disturbance of the mean field, but it is questionable
for violent central collisions of heavy ions. However,
in central collisions, the fraction of spectator matter
is small and the available phase space for baryons is
enlarged, so that the role of nuclear binding and the
Pauli effect can be expected to decrease.

[t is traditionally assumed that, after the comple-
tion of the cascade stage, the excited residual nucleus
is in an equilibrium state. In general, this is not
evident. The RC model includes the possibility of
describing the attainment of thermodynamical equi-
librium in terms of the preequilibrium exciton (PE)
model [24, 29, 30]. During this equilibration process,
some preequilibrium particles may be emitted, which
will lead to a change in the characteristics of thermal-
ized residual nuclei.

Typical results for the distributions of residual
masses Ap versus their excitation energies Eg in this
model are shown in Fig. 2.

3.2. Statistical Multifragmentation Model

Within the SMM [25], the probability of equilib-
rium decay through a given channel is proportional
to its statistical weight. The breakup volume de-
termining the Coulomb energy of the system is a
key parameter. It is taken to be V, = (1 + k)A/po,
where A is the mass number of the fragmenting nu-
cleus, po is the normal nuclear density, and k is a
free parameter. In [12, 13, 18], it was shown that
breakup occurs at low densities. To reach these
density values, it is assumed that the system expands
before breakup. Primary fragments may be excited,
and their deexcitation is taken into account to get
final IMF distributions. Figure 3 shows the IMF
multiplicity as a function of the excitation energy
calculated for K = 2 and k& = 5, which corresponds to
the freeze-out densities of about 1/3 py and 1/6 po,
respectively. The calculations have been performed
with the RC + SMM combined approach for *He +
Au collisions at 14.6 GeV. The fragment multiplicity
increases with excitation energy up to a maximum
and then decreases because of vaporization of the
overheated system. This so-called “rise and fall” of
multifragmentation is well visible in Fig. 3 and was
first demonstrated experimentally by the ALADIN
group for collisions of ¥7Au at 600 MeV/nucleon
with Al and Cu targets [31].

The choice of the breakup density has only a slight
effect on (M). The kinetic energies of fragments
are more affected because they are determined mainly

PHYSICS OF ATOMIC NUCLEI Vol.64 No.9 2001
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Calculated properties of nuclear remnants from projectile + Au collisions
Eyvoj, | Projectile | Experiment Calculations Model
GeV M Mwr | Zr | Ar | Zur | Aur | Er | Enr
2.16 p 1.7£0.2 1.82 77 | 189 76 185 | 310 | 589 RC + SMM
1.02 72 | 176 62 145 119 | 266 | RC+PE+SMM
1.69 77 | 188 75 183 | 288 | 564 RC +a+ SMM
3.6 p 1.94+0.2 2.52 76 | 187 74 181 371 676 RC +SMM
1.34 70 | 171 55 134 148 | 385 | RC+PE+SMM
1.89 75 | 184 73 175 | 282 | 568 RC +a+ SMM
8.1 p 2.1+0.2 3.58 75 | 183 73 175 | 488 | 808 RC + SMM
1.85 68 | 167 53 128 177 | 462 RC + PE + SMM
2.0 72 | 176 67 158 | 259 | 529 RC+a+ SMM
4.0 “He 1.7£0.2 3.89 75 | 184 73 177 | 484 | 836 RC + SMM
1.56 68 | 167 54 130 176 | 428 | RC+PE+SMM
1.77 73 | 177 69 161 238 | 502 RC +a+ SMM
14.6 4He 2.240.2 4.47 71 173 66 159 | 723 | 1132 RC +SMM
3.06 63 | 153 48 116 | 377 | 824 | RC+PE+SMM
2.19 64 | 154 48 103 183 | 404 RC +a+ SMM
22 .4 12¢ 2.240.3 4.04 67 | 163 64 153 | 924 | 1216 RC +SMM
2.85 60 | 146 47 113 | 638 | 1026 | RC+PE+ SMM
2.17 59 | 139 41 86 207 | 415 RC+ a+ SMM

Note: The quantity Myyr is the mean number of IMF for events with at least one IMF, while Zg, Ag, and ER are the
mean charge, the mass number, and the excitation energy (in MeV), respectively, averaged over inelastic collisions, the
analogous quantities Zy;p, Ay, and Epp being averaged only over residues decaying through IMF emission.

by the Coulomb field in the system, which depends
noticeably on its size. The use of a larger value of
the parameter (k = 5) results in the underestimation
of the fragment kinetic energies in relation to the data
from [32]. In further calculations, we use k = 2, based
on our analysis of the correlation data [18].

All calculations are performed in an event-by-
event mode.

4. RESULTS AND DISCUSSION

4.1. Fragment Multiplicity
and Excitation Energy of the System

The mean IMF multiplicities, measured and cal-
culated, are shown in Fig. 4 versus the total beam en-
ergy for various projectiles. The data exhibit a satura-
tion in (M) for energies above a value of about 6 GeV,
in good agreement with findings of [13, 33, 34]. This
so-called limiting fragmentation may be caused by a
saturation of the residual excitation energy, while the
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fragment multiplicity is strongly energy-dependent.
Other possible reasons for the saturation effect are
discussed in[33].

The dashed line in Fig. 4 was obtained by means of
the combined RC + SMM approach. The calculated
mean multiplicities are significantly higher than the
measured ones, with the exception of those from the
measurement at the lowest beam energy. This fact
indicates that the model overestimates the residue
excitation energy. May the emission of preequilib-
rium light particles be responsible for this discrep-
ancy? The inclusion of preequilibrium emission after
the cascade stage (RC + PE + SMM) leads to a
significant decrease in the excitation energy of the
fragmenting target spectator and reduces the mean
IMF multiplicity (dotted line in Fig. 4). However, the
reduction of the multiplicity proves to be overly large
for Eproj < 8 GeV, predicting (M) to be smaller than
the measured ones. Although the calculated value
of (M) for the p(8.1 GeV) + Au collisions coincides
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Fig. 2. Distribution of residual masses A versus excita-
tion energies Fr after the cascade calculation for *He +
Au at (top) 4 and (middle) 14.6 GeV and (bottom) '2C +
Auat 22.4 GeV.

with experimental data, the model predictions for the
fragment kinetic energies within this approach are
significantly lower than the experimental values, as
was shown in [13]. Because the IMF energies are
determined predominantly by the Coulomb field of the
source, the RC + PE + SMM approach underesti-
mates the charge Z of the target residue. In addition,
at higher *He-beam energies, the decrease in the
excitation energy after preequilibrium emission is not
even sufficiently strong to get the observed fragment
multiplicities. All these facts may suggest another
possible mechanism for the energy loss before the
IMF emission.

Calculations with the EES model [26] were per-
formed by using the same characteristics of the RC
remnants. As can be seen from Fig. 4, the values
obtained for the mean fragment multiplicities are in

AVDEYEV et al.

1
20
E/A, MeV

Fig. 3. Mean fragment multiplicities versus the ther-
mal excitation energy according to SMM calculations
for freeze-out densities of about (solid curve) 1/3 po and
(dashed curve) 1/6 po.

20
E

1
25
proj> GeV

Fig. 4. Mean IMF multiplicities (for events with at least
one [MF) versus the beam energy. The points represent
experimental data. The dashed and dotted lines are drawn
through the values calculated within the RC + SMM
and within the RC + PE + SMM approach at the beam
energies used. The solid and the dash-dotted lines were
obtained by using the RC + o + SMM and the RC +
EES approach, respectively. For the sake of simplicity,
only one curve is drawn for a given model calculation
neglecting the dependence on projectile mass.

accord with data for the beam energies below 10 GeV,
but there is disagreement between the theory and
experiment at higher energies.

We conclude that neither RC nor RC + PE is able
to describe the properties of the target spectator over

PHYSICS OF ATOMIC NUCLEI Vol.64 No.9 2001
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Fig. 5. Calculated event distribution in the M—Enr/Amr plane: (left) RC + SMM approach and (right) RC + o + SMM
approach for *He + Au (top) 4 GeV and (middle) 14.6 GeV and (bottom) *2C + Au at 22.4 GeV.

a wide range of projectile energies. One should look
for an alternative approach.

An example of an empirical approach to this prob-
lem was given by the authors of [35], who analyzed
experimental data on multifragmentation in the re-
actions of 19"Au on C, Al, Cu, and Pb targets at
E/A =600 MeV. The parameterized relations (with
seven parameters) were developed to get the mass
and energy distributions of highly excited thermal-
ized nuclear systems formed as the spectator parts
of colliding nuclei. This distribution was used as an
input for SMM calculations, and the parameters were
adjusted to fit experimental results on the multiplicity
distributions of IMF and their yield. It should be
emphasized that the suggested parameterization is
specific to the reaction under consideration.

In our approach, we start from the results of the
cascade calculation and modify them empirically. In
[36], the excitation energies of the cascade remnants
were reduced by a factor « (see below) on an event-
by-event basis, with the mass being unchanged. This
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was motivated by the guess that the frozen-mean-
field approximation in the cascade calculation may re-
sult in an overestimation of the high-energy tail of the
distribution. The mean IMF multiplicities obtained
by this procedure are in accord with data for p + Au
collisions in the projectile-energy range 2—8 GeV.

At the next step of our analysis of the same re-
actions [13], the drop in the excitation energy is ac-
companied by a mass loss. This combination holds
both for preequilibrium emission in the spirit of the
exciton model [30] and for particle evaporation during
the expansion, as considered by the EES model [26].

In the present study, we follow the last approach.
The excitation energies FRC of the residual nuclei
Apg given by the RC code are reduced by a fitting
factor a to get the excitation energy of a multifrag-
menting state, Fyr; i.e., Emr = aE]%C. In other
words, the drop in the excitation energy is equal to
AFE = (1 - a)ERC. As is known from the cascade

calculations, ERC is proportional to the nucleon loss
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Fig. 6. Mean values of the remnant excitation energies
and mass numbers according to the table: Er and Agr
are for averaging over all inelastic collisions, while Eyp
and Awmr are for fragmenting residues. The calculations
within the RC + a + SMM approach are labeled with
“a.” Points present data for (circles) proton, (squares)
helium, and (triangles) carbon beams.

during the cascade, AARC: therefore, AE = (1-—
a)e AARC where ¢ is the mean excitation energy
per ejected cascade nucleon. The loss of mass, AA,
corresponding to this drop in the excitation energy is
AA = AFE /ey, where g9 is the mean energy removed
by a nucleon. Assuming that es &~ 1, one gets AA =
(1 —a)AARC, We denote this empirical combined
model as RC + o + SMM.
In[13], the simple relation

_ (Mexp)

(MRrc+smm)

could be applied for p + Au collisions because the
excitation-energy range corresponded to the rising
part of the energy dependence of (M) shown in Fig. 3.
However, due to the rise-and-fall effect in (M), this
relation fails for heavier projectiles. For these sys-

tems, the values of « are empirically adjusted to re-
produce the measured mean IMF multiplicities. The

o=
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charge, mass, and energy characteristics of frag-
menting nuclei resulting from this fitting procedure
are presented in the table for various colliding sys-
tems. The corresponding values for the p + Au case
differ slightly from those given in [13] because a new
cascade code is used here. The values of the parame-
ter o can be found in the table by calculating the ratio
Er(RC+a+ SMM)/ER(RC + SMM), which gives
0.93, 0.76, and 0.53 (for p 4+ Au); 0.49 and 0.25 (for
He + Au); and 0.22 (for C + Au), respectively.

As follows from the above values of the parameter
«, a rather large decrease in the residual excitation
energy is required by this empirical procedure to re-
produce the observed saturation effect in (M), which
is caused mainly by a saturation in FEyp. This is
illustrated in Fig. 5, which shows the population of
events in the M—FE\p/Anmr plane calculated in both
the RC + SMM (left panel) and the RC + v + SMM
(right panel) scenario. According to the first ap-
proach, the excitation-energy distribution is rather
wide and populates states along both the rising and
the falling parts of the multiplicity curve. In the RC +
o + SMM scenario, events are mainly situated in the
rising part, hardly approaching the region of maximal
values of the IMF multiplicity, which is in agreement
with the measured data.

Note that the excitation energies of fragment-
ing nuclei given in the table are thermal by defini-
tion. As will be shown in Subsection 4.3 for both
C(22.4 GeV) + Au and He(14.6 GeV) + Au colli-
sions, the systems at breakup also have a collective
expansion energy, which is estimated to be about
100—130 MeV for both cases. The total excitation
energy EY;p for these cases is in fact larger by that
value than the values shown in the table. This is taken
into account in Fig. 6, which presents the calculated
values of the mean residual excitation energies and
mass numbers. The total excitation energy Eyp
changes slightly with increasing incident energy. At
the same time, the excitation energy per nucleon in-
creases, while the residual mass decreases; the mean
IMF multiplicity is almost constant.

It would be of interest to compare the extracted
masses and excitation energies of fragmenting nuclei
with those obtained by the EOS collaboration for
Au(1 GeV/nucleon) + C collisions (in inverse kine-
matics) [37]. In that study, the mass- and energy-
balance relations are applied with use of the measured
kinetic energies of all outgoing charged particles after
separation from the prompt stage of the reaction. The
neutron contribution was taken into account on the
basis of cascade and statistical model simulations.
Ourvalue of EK/{F/AMF is close to that from [37] if the
collective energy is added. As to the mean mass Ay,
the value obtained in the present study (about 90) is
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Fig. 7. Distribution of excitation energies obtained within
(dashed histograms) the RC and (solid histograms) the
RC + « approach and (hatched area) the fraction decay-
ing by multifragmentation according to the RC + o +
SMM calculation.

remarkably lower, being caused by the larger mass
loss induced by the projectile with twice the energy.

Some examples of the excitation-energy distribu-
tions are displayed in Fig. 7. The IMF emission
occurs on the tail of the distributions; therefore, the
mean excitation of the fragmenting nuclei is much
higher than that averaged over all target spectators.

In Fig. 8, the value obtained for the energy EYp
is confronted with the values predicted by the EES
model [26]. The excitation energy after the cascade
stage is taken as the initial one for the process of
the energy (and mass) loss during the expansion of
the system. Data for p + Au collisions are close
to the predicted values if the excitation energy was
corrected according to the above procedure, while, in
all the cases of *He and 2C beams, the EES model
overestimates the excitation energy after expansion.
This may be an indication of a possible contribution
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Fig. 8. The loss in the excitation energy during the ex-
pansion calculated by RC + EES model (solid line) is
compared with the empirically deduced drop. The dashed
line represents the initial energy (after RC stage). Points
are data for proton (circles), helium (squares), and carbon
(triangle) beams.

from an additional mechanism of the energy loss (e.g.,
preequilibrium emission).

4.2. Angular and Charge Distributions

Let us now consider the question of thermalization
of the system at breakup. To check how close the
emitting system is to thermal equilibrium, the plot
of the fragment probability distribution in terms of
the longitudinal—transverse velocity components is
presented in Fig. 9 for “He + Au and C + Au colli-
sions. The symbols correspond to constant invariant
cross sections taken for emitted carbon fragments in
the energy region above the spectral peak. The lines
connecting experimental points form circles demon-
strating an isotropic emission in the frame of a moving
source, indicating that the fragment emission pro-
ceeds from a thermalized state. The center positions
of the circles determine the source velocity, Gsource-
The mean values of Bsource are in the range of (0.01—
0.02)c, which is close to an estimate within the RC +
a + SMM approach for all cases, with the exception
of *He + Au at 4 GeV, where calculations under-
estimate the source velocity. The calculated mean
Bsource Values are 0.76 x 1072, 1 x 1072, 1.36 x 1072
and 1.7 x 1072 for p(8.1 GeV) + Au, *He(4 GeV) +
Au, “He(14.6 GeV) + Au, and C(22.4 GeV) + Au
collisions, respectively. The accuracy of Bsource deter-
mination is about 5%. The variation of Bsource With
the IMF velocity, Snvur, is shown in Fig. 10.
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Fig. 10. Source velocities Bsource versus the fragment
velocity Bmmr for (closed circles) p(8.1 GeV) + Au,
(closed squares) “He(14.6 GeV) + Au, (open squares)
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Fig. 11. Angular distributions of carbon (in laboratory
frame) for *He + Au and '2C + Au collisions. The curves
were calculated by the RC + o + SMM approach.

The fragment angular distribution in the labora-
tory frame exhibits a forward peak caused by the
source motion, as is shown in Fig. 11 for carbon frag-
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ments (points). The data are well reproduced by the
model calculations for all cases, with the exception
of the helium beam case at the lowest energy. The
measured distribution here is more forward-peaked,
which may be considered as an indication that the
momentum transfer is larger than what is predicted.

The charge distributions of IMF are shown in
Fig. 12. The results of the calculations for the RC
+ a + SMM scenario agree nicely with the data. The
general trend of the IMF charge (or mass) distribu-
tions is well described by the powerlaw Y (Z) ~ Z77.
The values obtained for the exponent are 7 = 1.9 +
0.1,2.0 £ 0.1 and 2.1 + 0.1 for, respectively, a 4-GeV
helium beam, a 14.6-GeV helium beam, and carbon
projectiles (Fig. 12, right panel).

In earlier studies on multifragmentation [5, 38],
the power-law behavior of the IMF yield was in-
terpreted as an indication of the proximity of the
decaying state to the critical point for a liquid—gas
phase transition in nuclear matter. This was stim-
ulated by the application of the classical Fisher’s
droplet model [39], which predicted a pure power-law
droplet-size distribution with 7 = 2—3 at the critical
point. According to [40], the fragmenting system is
not very close to the critical point. Now, the power
law is well explained at temperatures far below the
critical point. As is seen from Fig. 12, the pure
thermodynamical SMM predicts that the IMF charge
distribution is very close to a power law at freeze-
out temperatures of 5—6 MeV, while the critical tem-
perature (i.e., where the surface tension vanishes) is
T. = 18 MeV. In [41], it was also shown that sev-
eral results concerning the fragment size distribution
can be rendered well by using the kinetic model of
condensation beyond the vicinity of the liquid—gas
critical point.

Thermal multifragmentation can be considered as
a first-order phase transition of nuclear matter inside
a spinodal region characterized by an instability of
the liquid—gas phase. Indeed, it was proven exper-
imentally that fragmentation occurs after expansion
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Fig. 12. Fragment charge distributions obtained at 8 = 89° for p + Au at 8.1 GeV, *He + Au at 4 GeV, *He + Au at 14.6 GeV,
and '2C + Au at 22.4 GeV. The curves (left side) were calculated within the RC + ac + SMM approach (normalized at Z = 3).
Power-law fits are shown in the right panel with 7 parameters given in the inset as a function of the beam energy. The last
point in the inset is for **C + Au collisions at 44 GeV (from a preliminary experiment).

driven by thermal pressure [12—14] and that the de-
composition time is short (less than 100 fm/c) [17—
19]. In fact, the final state of this transition looks like
a nuclear fog [42]: liquid drops of IMF surrounded by
a gas of nucleons and light clusters (d, t, and « parti-
cles). This interpretation is in line with the SMM [43].
Later, it was employed in other approaches (see, for
example, [44]).

4.3. Energy Spectra of Fragments

In general, the kinetic energy of fragments is de-
termined by four terms: thermal motion, Coulomb
repulsion, rotation, and collective expansion ener-
gies of the system at freeze out: E = Ey, + Ec +
FErot + Faow. The additivity of the first three terms
is quite obvious. For the last term, its independence
from the others may be considered only approximately
when the evolution of the system after freeze-out is
driven only by the Coulomb force. The Coulomb
term is significantly larger than the thermal one. It
was shown in [18] that, for *He (14.6 GeV) + Au
collisions, the Coulomb part of the mean energy of
the carbon fragment is three times larger than the
thermal energy. These calculations were performed
within the RC + SMM scenario, where the volume
emission of fragments from a dilute system was taken
into consideration.

The contribution of a collective flow for p + Au
collisions at an incident energy of 8.1 GeV was es-
timated in [13]. This was done by comparing the
measured IMF spectra with those calculated within
the SMM, which includes no flow. This analysis
did not reveal any significant enhancement in the
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measured energy spectra, constraining the mean flow
velocity as vyo, < 0.02c. For the case of heavy-ion
collisions, a collective flow was observed, and it is
the most pronounced in central Au + Au collisions
[45]. In this respect, it would be quite interesting
to analyze the fragment spectra from He + Au and
C + Au collisions with reference to searches for a
possible manifestation of collective flows. The carbon
spectra for proton, helium, and carbon collisions with

Yield, arb. units

Energy, MeV

Fig. 13. Energy distribution of carbon isotopes obtained
for various collision systems at 8 = 89°. The curves were
calculated within the RC + o + SMM scenario under the
assumption of no flow. Stars, crosses, inverted triangles,
triangles, squares, and circles correspond to p (2.1 GeV),
p(3.6 GeV), p(8.1 GeV), *He (4 GeV), *He (14.6 GeV),
and 2C(22.4 GeV) projectiles, respectively.
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Fig. 14. Mean kinetic energies per nucleon of outgoing
fragments measured at = 89° for (circles, dashed line)
p (8.1 GeV), (squares, solid line) *He (14.6 GeV), and
(triangles, dotted line) **C (22.4 GeV ) collisions with Au.
The lines were calculated by using the RC + a + SMM
approach and assuming no flow.
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Fig. 15. Flow energy per nucleon (triangles) obtained as
the difference of the measured fragment kinetic energies
and the values calculated under assumption of no flow

in the system for '2C (22.4 GeV) + Au collisions. The
curves represent calculations assuming a linear radial

profile of the expansion velocity with v3,, = 0.1c (dotted
line) and quadratic profile with vf},,, = 0.2 ¢(dashed line).

a Au target are presented in Fig. 13. The calculated
carbon spectrum for p + Au collisions (at 8.1 GeV) is
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consistent with the measured one. A similar situation
is observed for #He + Au collisions at 4 GeV, but not
for *He(14.6 GeV) + Au and '2C + Au interactions:
the measured spectra are harder than the calculated
ones.

The mean kinetic energies per fragment nucleon
are displayed in Fig. 14, where only statistical errors
are shown. There is a remarkable enhancement in
the reduced kinetic energy for light fragments from
He + Au and C + Au collisions in relation to the
p(8.1 GeV) + Au case. The calculated values of
the mean fragment energies (shown by lines) were
obtained within the RC + o + SMM approach by
many-body Coulomb trajectory calculations on an
event-by-event basis. In the initial state, all charged
particles are assumed to have only a thermal velocity.
The measured energies are close to the calculated
ones for p + Au collisions in the range of the fragment
charges between 4 and 9. However, for “He + Au
and '2C + Au interactions, experimental data are
definitely above the calculated values.

The observed deviation cannot be attributed to
the effect of the angular momentum. To estimate
the rotational part of energy, Fy., we consider the
uniform classical rotation of the system with mass
number A and total rotational energy Er. The mean
rotational energy of a fragment with mass Apyr is

5,Ep, (R%)

(Erot) [Avr = 5 (—

where Rz and Ry are the radial coordinate of the
fragment and the radius of the system, respectively.
According to the RC calculations for C + Au col-
lisions, the mean angular momentum of the target
spectator is L = 36A. It might be reduced by a factor
of 1.5 due to the mass loss along the way to the
freeze-out point. Finally, (E) is estimated to be
only 5 MeV and (FE,q)/Amnr =~ 0.04 MeV/nucleon,
which is an order of magnitude smaller than the en-
ergy enhancement for light fragments. We believe
that this enhancement is caused by the expansion of
the system, which is assumed to be radial, since the
velocity plot (Fig. 9) does not show any significant
deviation from circular symmetry.

An estimate of the fragment flow energy can be
obtained as the difference of the measured IMF ener-
gies and those calculated without taking into account
any flow in the system. This difference for C +
Au collisions is shown in Fig. 15. The error bars
include both statistical and systematic contributions.
The latter one is associated with the calibration of
the energy scale and is estimated at about 5%. In
an attempt at describing the data, we replaced the
SMM code by RC + o + SMM by including a radial
velocity boost for each particle at freeze-out. In other
words, a radial expansion velocity was superimposed
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on thermal motion in the calculation of the many-
body Coulomb trajectories. A self-similar radial ex-
pansion is assumed, where the local flow velocity is
linearly dependent on the distance of the particle from
the center of mass. The expansion velocity of particle
Z located at radius Ry is given by

Rz
vﬁOW(Z) = ’Ugow R
Sys

(8)

where vf__is the radial velocity at the surface of the
system. In this case, the density distribution changes
in the course of dynamical evolution in a self-similar
way, being a function of the scaled radius Rz/Rqys.
The use of a linear profile for the radial velocity is
motivated by the hydrodynamic-model calculations
for an expanding hot nuclear system (see, for exam-
ple, [46]). The value of v was adjusted to describe
the mean kinetic energy measured for the carbon
fragment. The results are also presented in Fig. 15 as
the difference of the fragment energies calculated for
Ve = 0.1c and v, = 0. The data deviate signifi-
cantly from the calculated values for Li and Be. This
may be caused in part by the contribution of particle
emission, during the early stage of expansion, from a
hotter and denser system. This is supported by the
fact that the extra energy of Li fragments with respect
to the calculated value is clearly seen in Fig. 14 even
for proton-induced fragmentation, where no signifi-
cant flow is expected. This feature of light fragments
was noticed by the ISIS group for 2He + Au collisions
at 4.8 GeV [22].

As to fragments heavier than carbon, the calcu-
lated curve in Fig. 15 is above the data and only
slightly decreases with increasing fragment charge.
In general, such a behavior should be expected. The
mean fragment flow energy is proportional to (R%).
This quantity changes only slightly with fragment
charge in the SMM code because of the assumed
equal probability for fragments of a given charge
to be formed at any point of the available breakup
volume. This assumption is a consequence of the
model simplification that considers the system to be
uniform with p(r) = const for r < Rgys. The dis-
crepancy between the data and the calculations in
Fig. 15 indicates that the density distribution is not
uniform. The dense interior of the expanded nucleus
favors the appearance of larger IMF if fragments are
formed via density fluctuations. This observation is
also in accord with the analysis of the mean IMF
energies performed in [13, 38] for proton-induced
fragmentation. It is also seen from Fig. 14 that, for
p + Au collisions, the measured energies are below
the theoretical line for fragments heavier than Ne.
This may be explained by the preferential location of
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Fig. 16. Experimentally deduced mean flow velocities
(triangles) for *>C + Au collisions versus the fragment
charge (left scale) and the mean relative radial coordi-
nates of fragments (right scale) as obtained under the
assumption of a linear radial profile for the expansion ve-
locity. The dashed line shows the mean radial coordinates
of fragments according to the SMM code.

heavier fragments in the interior region of the freeze-
out volume, where the Coulomb field is reduced. The
deviation of data from the calculations becomes less,
but it still remains if one assumes the quadratic radial
profile of the expansion velocity. The result of such
a calculation shown in Fig. 15 was obtained with
v].,, = 0.2¢c, which was chosen to be close to the
data at Z = 6. An interesting feature of a reduced
flow energy for heavier fragments is also observed
for central heavy-ion collisions (see the review ar-
ticle [47]). This effect is increasingly important at
energies < 100 A MeV, and this is in accord with our
suggestion on its relation to the density profile of the
hot system at freeze-out.

The difference of the measured IMF energies and
calculated ones (no flow) was used to estimate the
mean flow velocities of fragments. The results are
presented in Fig. 16. The values for Li and Be are
considered as upper limits because of the possible
contribution of preequilibrium emission. The cor-
responding values of (Rz)/Rsys, obtained under the
assumption of a linear radial profile for the expansion
velocity, are plotted on the right-hand scale of the
figure. Again, the reduced radius value for the carbon
fragment is chosen to coincide with the calculated
one. The dashed line shows the mean radial coordi-
nates of fragments according to the SMM code. As
was noted above, the calculated values of (Rz)/Rsys
decrease only slightly with Z, in contrast to the data.

Effects of the radial collective energy for Au+ C
collisions at 1 GeV per nucleon (in inverse kinemat-
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ics) were considered in [48] by analyzing the trans-
verse kinetic energies K; of fragments with Z = 2—7.
This was done for two charged-particle-multiplicity
bins corresponding to peripheral (M 1) and central
(M3) collisions. The Berlin statistical model code [49]
was used with allowance for a radial velocity chosen
properly to explain the experimental values of (K3).
In the case of peripheral collisions, the resulting ex-
pansion velocities are close to those given in Fig. 16,
but the corresponding mean IMF multiplicities (in
our definition) are less than 1.5. For central collisions
((Mmvr) ~ 4), the expansion velocities are greater by
a factor of about 1.5. It would be desirable to compare
our data with those for the intermediate case (bin
M?2), which are unfortunately not available. Making
an interpolation, one may see that our analysis gives
slightly lower values of vgow(Z) than those in [48].
This may be caused by the fact that the MMMC
model [49] underestimates the Coulomb part of the
fragment kinetic energy (see [32]), since the freeze-
out density used is too small (py = 1/6p9).

The total expansion energy can be estimated by
integrating the nucleon flow energy [taken according
to Eq. (8)] over the available volume at freeze-out.
For a uniform system, one gets

3
Eft"l%gv = _AmN (Ugow)2 (1 - TN/RSYS)Sv (9)

10
where my and ry are the nucleon mass and radius.
For 2C 4+ Au collisions, this yields Eft ~ 100—
130 MeV, which corresponds to a flow velocity at

the surface of 0.1 ¢. Similar results are obtained for
4He(14.6 GeV) + Au collisions.

5. CONCLUSION

The emission of intermediate mass fragments
has been studied for p(2.1,3.6, and 8.1 GeV) + Au,
“He(4 and 14.6GeV) + Au, and 12C(22.4 GeV) + Au
interactions. The measured IMF multiplicities (for
events involving at least one IMF) saturate at a value
around 2 for incident energies above 6 GeV, irrespec-
tive of the projectile size. The angular distributions of
IMF are slightly forward-peaked; the yield distribu-
tions of parallel versus perpendicular velocities exhibit
circular symmetry. These results show that IMF
are emitted from a source that moves with a rather
low velocity (0.01—0.02) ¢. These findings support
the interpretation of thermal multifragmentation, a
breakup of an expanded system.

Model calculations for the IMF multiplicities us-
ing a two-stage concept with a cascade followed by
the SMM fail to describe the measured values. This
might originate partly from too high an excitation
energy predicted by the cascade model used. Taking
into account preequilibrium particle emission before
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attainment of thermal equilibrium in the system de-
creases the number of IMF but still cannot predict
the observed multiplicity saturation. The employ-
ment of the EES model also fails to reproduce the
measured multiplicities over the whole available en-
ergy range. Only if one applies an empirical modi-
fication of the calculated excitation energies Er and
residual masses Ap after the cascade used as input
for the SMM calculations can the IMF multiplicity
saturation effect be reproduced. This study shows
that the widely used approach of dividing the nuclear
multifragmentation process into two distinct stages is
much oversimplified.

The energy spectra of IMF prove to be very sen-
sitive observables. In p+ Au collisions, the energy
spectra are well described by the empirically modified
cascade—SMM calculations. However, for *He- and
12C-induced reactions, the number of higher energy
IMF is larger than that which is given by the cal-
culations. This effect is not caused by any variation
of the residual masses. We attributed this observa-
tion to the occurrence of collective (expansion) flow
in the system possibly caused by a higher thermal
pressure. Under the assumption of a linear radial
profile of flow velocity, its value at the surface is es-
timated at about 0.1¢ both for *He- and *2C-induced
reactions. However, a detailed inspection of the vari-
ation of the kinetic energies of fragments, together
with their charges, reveals that the flow velocities are
not constant. This is in contrast with expectations
that assume equal probabilities for the formation of
fragments of a given charge at any available point of
the system with uniform density. The discrepancy
between the extracted flow velocities and the sim-
ple assumption indicates that heavier fragments are
formed predominantly in the interior of the system,
possibly due to a density gradient.

This study of multifragmentation using a range of
projectiles from protons to light nuclei seems to be
quite attractive, furnishing new information on the
various aspects of multifragmentation from a “ther-
mal decay” to a disintegration governed by collision
dynamics.
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Abstract—The properties of neutron emission from fragments formed in the spontaneous fission of 2°2Cf
and in the thermal-neutron-induced fission of 233U are analyzed on the basis of the statistical model of
nuclear reactions. Upon extracting the mean excitation energies of fission fragments from experimental
data on the mean multiplicities of neutrons, the observables of neutron emission can be described over
wide ranges of total kinetic energies and masses. The observed values of mean fragment spins are also
reproduced. A method for calculating the isomeric ratios of the independent yields of fission fragments that
is based on the cascade—evaporation model of excited-nucleus decay is employed to describe experimental
data on 235U fission induced by thermal neutrons and on 233U fission induced by alpha particles. The effect
exerted on the isomeric ratios for fission fragments by two different assumptions on the spin distributions
of primary-fragment populations—the assumption of the distribution associated with rotational degrees
of freedom and the assumption of the distribution associated with the internal degrees of freedom of fully
accelerated fragments—is investigated. © 2001 MAIK “Nauka/Interperiodica”.

INTRODUCTION

Since the fission of nuclei is accompanied by a
radical redistribution of the nuclear charge and mass
and by the formation of severely deformed and highly
excited fragments, theoretical analysis of the process
involves formidable difficulties. For this reason, a
detailed description of its dynamics and mechanism
has not yet been developed. As an advancement
toward creating a unified theory of the fission process,
it would therefore be reasonable, in describing specific
features of fission, to invoke consistent theoretical
models that were successfully employed to study the
properties of different reactions.

In the present article, the formation of fission frag-
ments prior to neutron emission and the deexcitation
of these fragments via neutron and photon emission
are chosen as the subject of investigation. It seems
obvious that the deexcitation of fission fragments
must be of a statistical character, because the fis-
sion process itself proceeds through the stage of a
compound nucleus. Hence, the application of the
statistical model of nuclear reactions [1—3] is quite a
logical, albeit rather complicated (from the practical
point of view), step.

The observables of the deexcitation of excited
fragments are averaged over many variables, includ-
ing charges, masses, excitations, kinetic energies,
and total angular momenta. This is precisely the
reason why it is difficult to describe theoretically these
features—the calculations should involve a great
number of parameters. That nuclei appearing as

fission products are usually formed only in the fission
process, with the result that their properties are poorly
known, further aggravates the situation.

In order to successfully apply the statistical model
of nuclear reactions to describing the properties of fis-
sion fragments, it is necessary to answer one question
of fundamental importance—specifically, it is nec-
essary to establish the character of the excitation-
energy and the angular-momentum distribution of
fission fragments. Knowing these distributions and
sidestepping difficulties associated with uncertainties
in the parameters of neutron-rich nuclei, one can
compute almost any observable of fission-fragment
deexcitation, including the neutron and photon mul-
tiplicities and spectra, isomeric ratios, and even the
yields of nuclei.

Investigation of the process through which iso-
meric states of nuclear-fission fragments are pro-
duced may furnish information about the mechanism
of formation and magnitudes of the total angular
momenta of the fragments. The practical aspect of
such investigations is that more detailed and accu-
rate data on the activities and composition of spent
nuclear fuels are required at the current stage of de-
velopment of nuclear power engineering, when the
efforts of researchers are concentrated on creating
new-generation reactors of higher reliability and on
studying the possibility of transmuting and destroy-
ing radioactive wastes of operating reactors.

In the present study, the theoretical approach that
was successfully employed to compute isomers in
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various reactions [4—6] and the spectra of photons
from the spontaneous fission of 2°2Cf [7] is applied
to evaluating the yields of the isomers of fission frag-
ments originating from the reactions 33U (ny,, f) and

28U(ay, f). The applicability of the statistical model
of nuclear reactions to calculating the emission prop-
erties of fission fragments is substantiated by ana-
lyzing experimental data on neutron emission from
fission fragments over wide ranges of the total kinetic
energies and masses, by extracting the mean excita-
tion energies of fission fragments from experimental
data, and by testing the balance of the resulting ener-
gies.

1. THEORETICAL MODEL

The statistical model of nuclear reactions with-
in the Hauser—Feshbach—Moldauer formalism [1, 2]
and its generalization to the case of gamma decay of
excited nuclei in the form of the cascade—evaporation
model [3] are successfully used in theoretical analyses
of the emission of photons and particles of nonzero
mass, as well as in analyses of the yield of isomeric
levels from various nuclear reactions [4—6]. The ap-
plication of the statistical model of nuclear reactions
and of the cascade—evaporation model to describing
processes that involve emission from fission frag-
ments is hindered by a number of factors. Listed
immediately below are the most important of these:

(i) Since the total kinetic energy of fission frag-
ments lies between 140 and 220 MeV, the excitation
energy of fragments can vary between 0 and 50 MeV.
The distribution of the excitation energy among the
complementary fragments is not known.

(ii) That the excitation energy can vary within
a wide range must lead to significant changes in
the total-angular-momentum distribution of popula-
tions, but the mechanism of formation of these distri-
butions in fission fragments is poorly known.

(iii) In order that calculations be able to reproduce
mean observables of the fission process, it is neces-
sary to perform such calculations for a wide range of
nuclei.

Basic relations of the statistical model of nuclear
reactions are well known and were implemented
as a standard procedure in many computer codes
(GNASH [8], STAPRE [9]). It is therefore not
necessary to quote these relations here. We only
note that the results obtained by calculating the
emission spectra according to the statistical theory
of nuclear reactions are determined by two model-
dependent functionals: the level density of excited
nuclei in the input and the output reaction channel
and the penetrabilities for particles of finite mass and
for photons. The level density was calculated on
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Fig. 1. Number of neutrons as a function of the excitation
energy of the emitting nucleus for 12! Cd, 3°Sn, 3Te,
and '°Xe. Closed circles represent the experimental
values of (v) for the fragments of 252 Cf[13].

the basis of the generalized superfluid-nucleus model
in the version proposed in [10]. These calculations
were performed with the parameter values quoted in
the dedicated LDPL-98 library [7], which contains
the asymptotic level-density parameters a, the shell
corrections dW, the corrections & for even—odd
distinctions, the quadrupole-phonon energies wq+,
and the diagrams of discrete levels of the excitation
spectrum for nearly 2000 nuclei. The penetrability
factors for neutrons were computed on the basis of
the optical model of the nucleus with the parameters
of the global optical potential from [11].

2. NEUTRON EMISSION

The spectra of neutrons are faithfully reproduced
within the statistical model of nuclear reactions if the
reaction being considered proceeds through a com-
pound nucleus—that is, there is no coupling between
the input and the output reaction channel, with the
exception of those couplings that are associated with
the laws of energy, total-angular-momentum, and
parity conservation. From this point of view, it is
reasonable to deem that the process leading to the
formation of fragments and of their properties is fully
consistent with the requirements ensuring the appli-
cability of the statistical model of nuclear reactions.
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Fig. 2. Mean excitation energies of fission fragments and mean multiplicities of neutrons versus the mass of the fragments
originating from the thermal-neutron-induced fission of 23U, 235U, and 2*°Pu nuclei and from the spontaneous fission of a

252Cf nucleus.

In conventional nuclear reactions, such as
(n...a,zn), the excitation energy of the nucleus
emitting neutrons is known to a high precision.
In nuclear fission, the excitation energies of fission
fragments can vary within a broad range between 0
and 50 MeV. Therefore, the first step in applying the
statistical model of nuclear reactions must be that of
determining the mean excitation energy of fragments.

Excitation energy of fragments. Information
about the excitation energies of fission fragments
prior to neutron emission can be extracted from data
on the mean number of neutrons under the assump-
tion that neutrons are emitted from fully accelerated
and fully formed products of nuclear fission [7]. The
reliability of data obtained on the basis of this ap-
proach is ensured by the fact that the number of
neutrons unambiguously depends on the excitation
energy of a given nucleus. In order to demonstrate
typical dependences of the number v of emitted neu-
trons on the excitation energy of a uranium nucleus,
we choose nuclei that appear as the fragments pro-
duced in 252Cf fission and which have the highest

PHYSICS OF ATOMIC NUCLEI

(121Cd) or the lowest (139Sn) multiplicity of neutrons
[12], as well as nuclei characterized by the maximum
yield (14°Xe) or by the v value corresponding to the
plateau in the dependence v(U) (134 Te) (Fig. 1). The
greatest error in determining the excitation energy
may be 2 to 3 MeV and is due to the fact that, in
the dependence v(U), there is a plateau around v =1
(Fig. 1). This error becomes smaller if the procedure
employs the dependence averaged over a few frag-
ments rather than the dependence for one nucleus.

The probabilities of emission of various numbers
of neutrons from fission fragments excited to energies
not exceeding 80 MeV were calculated for four
processes, the thermal-induced-fission of 233235
and #9Pu nuclei and the spontaneous fission of
252Cf. The calculations were performed for A = 70—
160 fragments, whose yields do not fall below 0.1 of
the maximum yield of a fragment with a specific mass.
The input data were taken from the LDPL-98 library
of level-density parameters [7]. The distributions of
the yields of fragments with a specific charge and

Vol.64 No.9 2001
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mass, Y (Z,A), were computed on the basis of the
model developed in[12]. The dependences v(Z, A,U)
were averaged with the weights associated with the
corresponding yields, whereupon the quantities (U)
were determined from a comparison of the calculated
values of (A, U) and the experimental values (v(A))
[12—14]. The resulting mean excitation energies of
fission fragments and the mean neutron multiplicities
used [12—14] are displayed in Fig. 2 versus fragment
masses. Obviously, the sawtooth structure of (v(A))
must be reproduced and is indeed reproduced in the
dependences (U(A)). It is important to emphasize
that the experimental values of (v(A)) are often
known to a poor precision. By way of example,
we indicate that, for 252Cf, the precision is 15%
around A = 120 and that, for 23°U, the scatter of
data presented by different authors is as large as 40%
around A = 115—125[12].

The extracted mean excitation energies of frag-
ments of various masses are shown in Fig. 3 versus
the mean number of neutrons. Use was additionally
made there of data from [15] for various values of the
total kinetic energy of fragments. It is noteworthy
that, for seven cases, the dependences (U(v)) ob-
tained here are similar to a considerable extent and
can be described by the formula

(U)y =5+ 4v + 12 (1)

That the function in (1) is nonlinear is indicative
of an increase in the mean energy carried away by
neutrons with increasing number of these neutrons as
the residual nucleus approaches the stability band. In
the ensuing calculations, use is made of the resulting
mean energies for fragments of specific masses at
mean total kinetic energies. Considering that the
variance of the total kinetic energies is about 10—
12 MeV and that the width of the distribution affects
only slightly the extracted mean excitation energies,
we adopt a value of 5 MeV for the root-mean-square
deviation in the relevant Gaussian distribution.

Energy balance. The procedure used here to
extract mean excitation energies of fission fragments
takes no account of the energy balance in the fis-
sion process; therefore, its results can be verified by
comparing the total mean energy of the complemen-
tary fragments, (U (AL, Ay)) = (U(AL)) + (U(4n)),
with the available energy TXE(Ay,Ay) calculated by
the formula

TXE(AL, An) = Q(AL, An) — TKE(AL, An), (2)

where @ is the reaction energy; TKE is the total
kinetic energy; and A; and Ay are the masses of,
respectively, a light and the complementary heavy
fragment. The present calculations were performed
with the experimental TKE( A, Ay) values from [13,
16] and with nuclear binding energies from [17]. A
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Fig. 3. Mean excitation energy of fragments as a func-
tion of the mean number of emitted neutrons for (a)
the thermal-neutron-induced fission of (squares) 233U,
(triangles) 23°U, and (circles) 23°Pu nuclei and (b) the
spontaneous fission of a 2*2Cf nucleus for the fragment
total kinetic energies of (circles) 187, (inverted triangles)
14, (triangles) 167, and (diamonds) 207 MeV. The curves
represent the results of the calculations by formula (1).

comparison of (U(Ar, Ay)) and TXE(AL, Ap) is il-
lustrated in Fig. 4 for the fission of 252Cf and 23U
nuclei. Satisfactory agreement between the values
under comparison indicates that the procedure used
to extract mean excitation energies of fragments leads
to results compatible with the energy-conservation
law and that the available energy of fission is con-
verted almost completely into the excitation energy of
fragments. That TXE(A[, Ajy) exceeds (U(AL, Ap))
by about 10 MeV for 23°U in the region of mass-
symmetric fission can probably be explained by con-
siderable uncertainties in (Veypt).

The verification of the energy balance is incom-
plete if the energy transfer to fragments is not broken
down into the components carried away by neutrons
and photons. On one hand, this partition would make
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taneous fission of 2°2Cf and for the thermal-neutron-
induced fission of 225 U.

it possible to test the widely used assumption that the
photon energy FE,, is approximately half the neutron
binding energy (E, ~ B,/2); on the other hand, it
provides yet another check upon the procedure for
extracting mean excitation energies of fission frag-
ments [7].

That the calculated multidimensional matrices of
the neutron and photon spectra—N, (Z, A,U,¢,)
and N, (Z,A,U,¢,), respectively—are available en-
ables one to obtain theoretical values for any ob-
servables of fission fragments [7]. In particular, the
energies carried away by neutrons and photons can
be calculated as

E,=v({en) +(Bn)), Ey= N<5'y>v (3)

where the mean energies ((e,,), (¢y)) and multiplici-
ties (n, p) are obtained from the corresponding spec-
tra.

Thus, a comparison of (U(A)) with (E, + E,)
and of By cac With E, et would make it possible to
demonstrate that the approach used does indeed take
correctly into account all channels of the radiation of
energy. For four fissile systems, the excitation ener-
gies of fragments are displayed in Fig. 5, along with
the energies carried away by neutrons and photons.

PHYSICS OF ATOMIC NUCLEI

A

Fig. 5. Mean excitation energies of fission fragments
(open circles), sum of the mean energies carried away by
neutrons and photons (closed circles), and mean energies
carried away by neutrons (curves).

As might have been expected, the balance of the ener-
gies transferred to the fragments in the fission process
and the energies carried away in the deexcitation of
these fragments is obviously fulfilled. Some modest
deviations are explained by the fact that the energy
balance is verified for mean values.

Photons emitted by fission fragments carry away
up to 50% of the excitation energy (Fig. 5); therefore,
it is of paramount importance to verify whether the
theoretical model used provides a correct descrip-
tion of the radiative deexcitation channel. For the
fragments formed in thermal-neutron-induced fission
of 23U and #Pu, the experimental mean values
of photon energies [18, 19] are contrasted in Fig. 6
against the calculated values. It is found that E,
and E, ey are in satisfactory agreement. It is inter-
esting that E, ranges between 20 and 90% of the
neutron binding energy.

The experimental photon multiplicities freypt [18,

19] as functions of the fragment mass have a sawtooth

Vol.64 No.9 2001
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Fig. 6. Data on the mean energies carried away by
photons from fragments originating from 23*U and
239py fission induced by thermal neutrons: (open circles)
experimental data from[18, 19] and (curves) results of the
calculations. Closed circles represent the mean neutron
binding energies in emitting nuclei.

structure (see Fig. 7) similar to that of the dependence
(v(A)). The calculations failed to reproduce this
dependence. The reason may lie in the disregard of
the radiation mechanism associated with transitions
between the members of rotational bands of excited
nuclei. Qualitatively, this conjecture is confirmed by a
characteristic increase in the number of emitted pho-
tons as one recedes from the A = 130 spherical frag-
ment toward deformed fission fragments with mass
numbers in the range A = 140—150 (see Fig. 7).

Level density. The extracted quantities (U(A))
depend on the parameters of models used to calculate
the neutron and photon spectra—above all, on the
level-density parameters. In cases where the calcu-
lations poorly reproduce the spectra of neutrons, the
values of mean excitation energies will be strongly
distorted. It is therefore of great interest and impor-
tance to test the description of the spectra of neutrons
originating from fission fragments. In Fig. 8, the
spectra calculated on the basis of the statistical model
of nuclear reactions with the parameter values from
the LDPL-98 library [7] are contrasted against the
experimental spectra of neutrons from [20]. Satisfac-
tory agreement between these spectra indicates that
the data in the LDPL-98 library are quite correct
and that the statistical model of nuclear reactions can
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Fig. 7. Data on the multiplicities of photons from frag-

ments formed in thermal-neutron-induced fission of 23U
and #9Pu: (points) experimental data from [18, 19] and
(curves) results of the calculations.

be successively applied to describing the emission
properties of fission fragments. A comparison of the
parameters from LDPL-98 with the corresponding
empirical values obtained from the neutron spectra
in [13, 20] (Fig. 9) would be an indirect check upon
these parameters. A detailed accurate description
of the shell structure that manifests itself in A =
130 fragments is the most compelling evidence of
the predictive power of the level-density model [10]
used in creating the LDPL-98 library. It should be
borne in mind that the procedure employed in [13,
20] to extract level-density parameters is not free
from drawbacks. First, the data were obtained for
nuclei emitting neutrons, but it is well known that the
spectra are determined by the parameters of residual
nuclei; second, there exists a procedure for extracting
the absolute value of the level density from the emis-
sion spectra [21], but it was not applied; and, third,
the temperature ¢ in the expression U = at?, which
was employed to obtain the parameter a, does not
comply with that which is extracted from the spectra
according to the Le Couteur—Lang relation [22].
Neutron multiplicities. The relations between
the excitation energies were obtained for the mean
values of the total kinetic energies of pairs of com-
plementary fragments. The experimental values
Vexpt(TKE, A) from [13, 23] make it possible to
verify these relations over a wider range of excitation
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Fig. 8. Spectra of neutrons from fragments formed in thermal-neutron-induced fission of 233U (points) experimental data

from [20] and (curves) results of the calculations.

energies. Since TXE(Ap, Ay) is the sum of the
excitation energies of two fission fragments, the
distribution of this energy among the fragments will
affect the calculated dependences v ,.(TKE, A). In
the calculations, the excitation energy of a given
fragment was set to

(U(AL,m))
(U(AL, Am))

that is, it was assumed to be proportional to the
ratio of the mean kinetic energies that was obtained
above. In Fig. 10, the experimental values of v(TKE,
A) from [13] are contrasted against their calculated
counterparts for six pairs of complementary frag-
ments (125, 127; 123, 129; 122, 130; 121, 131;
120, 132; 124, 128) originating from the spontaneous

U(ALn) = [Q — TKE(AL, Ag)] ; (4)

PHYSICS OF ATOMIC NUCLEI

fission of 2°2Cf, for four light fragments (115, 117,
118, 119), and for mass-symmetric fission. That
the dependences vei(TKE, A) and v (TKE, A)
are in agreement over a wide range of total kinetic
energies seems quite compelling, the excitation en-
ergies of individual fragments varying between 0 and
40 MeV. Some discrepancies between the absolute
values are due to distinctions between TXE and (U)
(see Fig. 4). A similar comparison of experimental
data from [23] with the results of the calculations for
251 is illustrated in Fig. 11. Since the data from
[14] were used to extract mean energies and since
the values vex,(TKE, A) were borrowed from [23],
the calculated dependences had to be renormalized
with allowance for the distinctions between the (v)
valuesin[14]and[23]. For six pairs of complementary

Vol.64 No.9 2001



EMISSION PROPERTIES OF FISSION FRAGMENTS

fragments originating from 23°U fission induced by
thermal neutrons, the calculated and the experimen-
tal values of (TKE, A) agree over wide ranges of
total kinetic energies (150—190 MeV) and fragment
masses (90—146) (Fig. 11). Thus, we can conclude
that, in the majority of the cases, neutrons are emitted
from fission fragments occurring at an equilibrium
deformation. A sharp decrease in v (TKE, A) for
TKE ~ 150 MeV suggests that, for one reason or
another, the fragments are excited to a lesser degree.

Thus, we have obtained a satisfactory description
of the neutron spectra and multiplicities and have
been able to reproduce faithfully the level-density
parameters for A = 130 fragments. In view of this,
a nearly twofold discrepancy between the calculated
and experimental values of the mean neutron ener-
gies (e,) for the mass range 125—135 (Fig. 12) is
quite surprising. In this connection, the experimental
values of () ~ 1.5—1.8 MeV at emitting-nucleus
excitation energies of 5—7 MeV seem unjustifiably
large. For fragments of different masses, the agree-
ment between (g,,)expt and (€,)calc is quite acceptable.

Thermodynamic equilibrium. Knowledge of
mean excitation energies of complementary frag-
ments makes it possible to test the energy condition
for the scission of a fissile nucleus—that is, to
assess the available-fission-energy fraction that is
transferred to a given fragment or the proportion in
which the available fission energy is shared between
complementary fragments. The thermodynamical-
equilibrium condition—that is, the equality of the
temperatures of the light and the heavy fragment (¢1
and tg, respectively) at the instant of scission—is
often used for this purpose. From this condition, it
follows that the excitation energy of a given fragment
is given by

U
S — (5)
1+anr/aru

where U is the total excitation energy of complemen-
tary fragments and a is the level-density parameter.
Since the parameter a depends on the excitation en-
ergy within the level-density model proposed in [10],
an iterative procedure was used to solve Eq. (5).

Ur.u

For four fissile systems, a comparison of “true”
excitation energies of fission fragments (Fig. 2)
and the values computed by formula (5) with U =
(U(Ar, Ap)) is illustrated in Fig. 13. Since the
level-density parameters depend on the excitation
energy and on shell corrections, the distributions of
Ur, g are similar to the distributions of (U(A)). As
might have been expected, it is inappropriate to apply
expression (5) to the case of spontaneous fission,
because a nucleus undergoes spontaneous fission
from the ground state. In the case of induced fission,
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Fig. 9. Parameters of the level densities in primary frag-
ments produced in the spontaneous fission of 22Cf and in

the thermal-neutron-induced fission of 2**U versus the
fragment mass: (open circles) empirical values obtained
in [13, 20] from neutron spectra and (closed circles) data
from LDPL-98 library [7] that were rescaled to mean
excitation energies.

the results are much better, although the excitation
energy of a compound nucleus per fission fragment
(3—4 MeV) constitutes only a small fraction of its
total excitation energy.

In summary, it has been shown that, over wide
ranges of the total kinetic energies and masses of
fission fragments, the observed emission properties
of such fragments can be reproduced on the basis
of the statistical model of nuclear reactions. As a
next step in studying the emission properties of fission
fragments within the approach combining the statis-
tical model of nuclear reactions with the cascade—
evaporation model, we proceed to examine the pop-
ulation of the isomeric states of fragments.

3. ISOMERIC RATIOS

At present, the isomeric ratios of independent
yields [24, 25] are usually calculated by the method
that was proposed in [26] and which is based on the
assumption that the total-angular-momentum (.J)
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Fig. 10. Multiplicities of neutrons emitted by fragments originating from the spontaneous fission of 252Cf versus the total
kinetic energy. Points represent experimental data from [13] for (open circles) light and (closed circles) heavy fragments. The

curves show the results of the calculations.

distribution of isomeric-nucleus populations is pro-
portional to the spin distribution of the density of
excited levels; that is,

(J +1/2)

W) ~ @+ e (<) @
where o2 is the spin-cutoff parameter. According to
[26], an isomeric state is populated via a few gamma
transitions whose probability is determined by the
density of final-state levels. [t is assumed here that
the spin-cutoff parameter ¢ is independent of excita-
tion energy. The method proposed in [26] was tested
by using it to analyze experimental isomeric ratios
for the radiative capture of thermal and resonance
neutrons and the isomeric ratios in (v, n) reactions
on some nuclei. By varying, within reasonable lim-
its, the parameter o and the number p of photons
emitted in the process leading to the population of the
isomeric state, it was possible to obtain a reasonable
description of currently available data for 28 nuclei
in (n,~y) reactions. In photonuclear reactions, the
situation is different. For example, experimental data
on the reaction M°In(+,n) could be described only by
making o tend to infinity.

Physically, the method proposed in [26] is based
on the assumption that the isomeric ratio is formed by
a photon cascade that accompanies the decay of the
isomeric nucleus being considered. This assumption

PHYSICS OF ATOMIC NUCLEI

is confirmed by an analysis of isomeric cross sections
for many reactions [4—6]. By way of example, it can
be recalled that, even for (n, ) reactions induced by
14-MeV neutrons, a direct population of an isomer
following neutron emission is insignificant; that is,
the main contribution to the isomeric cross section
comes from photon cascades removing the excitation
that remained after neutron emission [6]. However,
the shape of the distribution of populations prior to
photon emission that leads to the formation of an
isomer may differ significantly from that in (6) if the
states of the isomeric nucleus are formed owing to
neutron emission and if the relevant compound nu-
cleus is excited to high energies. In this case, the
extracted value of the parameter o will be overesti-
mated, which was demonstrated in [26]. Since the
excitation energy of fission fragments prior to neutron
emission can be quite sizable (up to 50 MeV), it would
be incorrect to apply the method developed in [26]
to an analysis of the isomeric ratios of independent
yields.

As was demonstrated in a great number of studies,
the most consistent way to compute the cross sec-
tions for isomer formation and isomeric ratios is to
make use of the approach combining the statistical
model of nuclear reactions with the cascade evapo-
ration model [1—=3]. It was found that a fairly good
description of experimental data could be obtained for
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Fig. 11. As in Fig. 10, but for 23U fission induced by
thermal neutrons. Points represent experimental data
from [23].

a wide range of projectile species (from photons to
alpha particles), a wide range of nuclear mass num-
bers (from 20 to 240), and a wide energy range (from
thermal energies to 40 MeV). For isomers formed in
the fission process, the above approach has not been
used so far, however, because of additional complica-
tions and because of uncertainties in the input condi-
tions. Since the mean excitation energies of fission
fragments have already been established and since
the library of the parameter values has been tested,
there are no serious limitations that would restrict
the application of the approach combining the sta-
tistical model of nuclear reactions and the cascade—
evaporation model.

Mechanism of population of fission-fragment
isomers. According to the cascade—evaporation
model, a specific state of a nucleus that emerges as a
product of the fission process can be populated in the
following ways: (i) in the fission process (cold fission),
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Fig. 12. Mean energies of neutrons emitted by fragments
originating from the spontaneous fission of 22Cf and

from the thermal-neutron-induced fission of 2*3U versus
the primary-fragment mass: (points) experimental data
from[13, 20] and (curves) results of the calculations.

(i) upon neutron emission, or (iii) upon a photon
cascade (the channel involving both neutron emission
and a photon cascade is also possible). According
to this mechanism of isomer population, the isomeric
ratio of independent yields for a (Z, A) nucleus can be
calculated by the formula

> Yi(Z, A+i)(Pri)
R=25] ; (7)
> Yi(Z, A+ i)(F)
i=0
where Y; is the independent yield of a (Z,A + 1)
fragment that emits ¢ neutrons, P; is the probabil-
ity of emission of this number of neutrons, and r;
is the isomeric ratio for the case where i neutrons
are emitted. Summation in (7) is performed from
zero (the isomeric nucleus in question was directly
formed in the fission process) to some number n of
neutrons such that the isomeric nucleus is formed
upon the emission of precisely this number of neu-
trons. Thus, (n + 1) nuclei appearing as products
of the fission process participate in the formation of
the isomeric state. Here, averaging is performed over
the excitation energies of relevant primary fragments
with allowance for the distribution function f(U). In
calculating P; and r;, it is necessary to specify, in
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Fig. 13. Distribution of the excitation energy among the
fragments originating from the thermal-neutron-induced
fission of 233U, 235U, and ?*°Pu and from the spon-

taneous fission of 252Cf: (open circles) mean energies
obtained from neutron multiplicities and (closed circles)
values calculated by formula (5).

addition to the distribution of excitation energies, the
initial total-angular-momentum distribution of the
populations of the levels involved.

In Fig. 14, the quantities appearing in expression
(7) are displayed versus the excitation energy of the
relevant nucleus after the emission of various num-
bers of prompt neutrons that results in the forma-
tion of an isomer in the 23Sn nucleus. Since the
metastable state of the 23Sn nucleus is characterized
by a low spin value (J™ = 3/2%), an increase in the
excitation energy leads to a decrease in the probability
of population of this state in all channels of '23Sn
formation after the emission of neutrons (v = 1—4)
and photons (v = 0). Multiplication of the function
r(U) by P(U) leads to bell-shaped functions hav-
ing nearly identical maxima. Finally, the terms in
the numerator on the right-hand side of (7) that are
obtained upon taking into account the dependence
Y (A + 1) are such that, even at (U) = 10—15 MeV,
it is necessary to allow for the emission of four to five
neutrons in the calculations. Thus, the isomer is pop-
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Fig. 14. Isomeric ratios r;(U), probabilities P;(U)r;(U)
of the population, and yields R;(U) of the isomer
128Sn(3/2"7) upon the emission of v =0,1,2,3,4
neutrons (from left to right) as functions of energy.

ulated through a few channels having commensurate
probabilities. If we admit that isomers can also be
formed upon the emission of delayed neutrons, the
calculations become so involved that they require a
dedicated investigation.

Radiative strength functions. The probabilities
of isomer population upon neutron and photon emis-
sion depend on radiative strength functions. This
issue was comprehensively studied in [27], where
a method was proposed for parametrizing radiative
strength functions fg; for electric dipole transi-
tions (modified Kadmensky—Markushin—Furman
method) and where the effect of various procedures
for calculating fg1 on the results of the calculation
of isomeric cross sections and spectra in the deex-
citation of uniformly excited nuclei was analyzed.
For 235U fission induced by thermal neutrons, the
effect of fg1 on the calculated gamma spectra is
illustrated in Fig. 15. The calculations took into
account photons emitted by fission fragments with
mass numbers A = 80—160. It can be seen that the
description of experimental data compiled in [28] is
considerably improved upon applying the modified
Kadmensky—Markushin—Furman method, and that
is why this was done in the present calculations.
The reasons behind the discrepancies between the
calculated and experimental spectra at energies in
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Fig. 15. Spectra of photons from fragments produced
in 23U fission induced by thermal neutrons: (points)
experimental data from [28], (dashed curve) results of cal-
culations employing a Lorentzian form of fg1, and (solid
curve) results of the calculation based on the modified
Kadmensky—Markushin—Furman method [27].

the region £, <1 MeV and the possible means for
removing these discrepancies are discussed in [7].

Mean fission-fragment spins. In order to apply
the statistical model of nuclear reactions, which takes
into account the laws of total-angular-momentum
and parity conservation, to calculating the emission
properties of fission fragments, it is necessary to know
the spin distributions of their populations, Wy(U, J),
prior to neutron emission—specifically, mean spin
values (J) and the form of the dependence Wy (U, J).
In other words, one should specify, in consistently
applying the statistical model of nuclear reactions, the
fission-barrier penetrability as a function of the orbital
angular momentum of the relative motion of fission
fragments at the instant of scission of the nucleus
undergoing fission, T¢(l). This issue, which is of
only marginal importance in calculating the spectra
of radiation from fragments [7], comes to the fore
in calculating isomeric ratios. If, as follows from
the analysis reported in [29], T (1) is independent of
the orbital angular momentum [, the total-angular-
momentum dependence of the initial populations of
the fragments has the form

The assumption in (8) can be verified by using
data on the mean spins (J) of fission fragments [30]

(see Fig. 16). Although the results presented in [30]
are not purely experimental (in order to derive them,
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Fig. 16. Mean spins of fragments originating from (closed
circles) the thermal-neutron-induced fission of 2**U and
(open boxes) the spontaneous fission of 2*8Cm: (points)
data from[30]and (curves) results of the calculations with
(I)F = Figand (2) F = Fg/s.

use was made of the results obtained by calculating
the mean angular momenta carried away by neutrons
and photons), they are sufficiently imformative for a
comparison. By using the mean excitation energies
of primary fragments (these energies were discussed
above in connection with the data in Figs. 2—4) and
two limiting values of the nuclear moment of iner-
tia F'—that for a rigid nucleus, Fig, and that for a
semirigid nucleus, Fjig/o—the mean spins (J) were
calculated under the assumption specified by Eq. (8).
It can be seen that, as a rule, the data from [30]
lie within the corridor determined by the results of
the calculations. Hence, the use of this assumption
in the calculations leads to a satisfactory agreement
with observed values of the mean spins of primary
fragments.

Spin distribution of populations. On the basis
of the mean spins of fission fragments, it is impos-
sible to verify the assumption on the shape of the J
dependence in (8), because different dependences can
lead to identical values of (.J). The broad distribution
in (8) can be formed if single-particle levels are pre-
dominantly populated in the fission fragment being
considered and if they are coupled to levels of rota-
tional bands. Otherwise—that is, if nuclear fission
populates collective states and if there is no coupling
between levels of different origins—the distribution
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Fig. 17. Mean spins of 1°2Zr, ®*Mo, and '*%Ba nuclei
produced as fragments in the spontaneous fission of
252Cf versus the number of neutrons emitted by a pair
of complementary fragments: (points) experimental data
from [31, 32]; (dashed and dotted curves) results of the
calculations performed under the assumption in (8) with
the parameters o, and o7, /,, respectively; and (solid
curves) results of the calculations performed under the

assumption in (9) with the parameter o7, /.

Wy (U, J) must have the form
Wo(U, J) = 6(J = {J)), 9)

where (J) is determined according to (8) or from ob-
servable values and ¢ is a Dirac delta function. From
Fig. 16, we can see that the mean spins of fission
fragments are better reproduced by the calculation
with F' = Fjg/0; in the following, we therefore use this

version in conjunction with the assumption in (9).

Data from [31, 32] on the mean angular momenta
of the rotational bands in fragments produced in the
spontaneous fission of 2°2Cf nuclei (these data were
obtained from an analysis of gamma transitions) may
be of use for verifying the assumptions specified by
Egs. (8)and (9).

The mean spins of fission fragments of mass A
upon the emission of v neutrons can be determined
from the dependence of J, on the excitation energy of
a primary fragment. Specifically, we have

U-B,
[ S JIWy(x, J)dx
0 J

U-B, ’
[ > Wy(z,J)dx
0 J

J(U) = (10)
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Fig. 18. Ratio of the experimental ([25]) and calculated
[under the assumption specified by Eq. (8)] isomeric ra-
tios of the independent yields of fragments produced in
235U fission induced by thermal neutrons: (open cir-
cles) ground states, (open squares) first metastable levels,

(open triangles) second metastable levels, and (closed
circles) data for levels of higher spin values.

where W, is the population of the nuclear state under
study after the emission of v neutrons. Integration of
the dependence J,(U) with respect to the excitation
energy of a primary nucleus with the weight equal to
the product of the distribution function f(U) and the
probability P,(U) of the emission of a given number
of neutrons yields the mean fragment spin:

Unl ax

= |
0

The mean spins of 192Zr, 1%Mo, and **Ba nu-
clei produced as fragments in the spontaneous fis-
sion of 2°2Cf upon neutron emission are displayed
in Fig. 17. The mean spins as calculated under the
assumption specified by Eq. (8) considerably exceed
the experimental values even if we take into account
experimental errors and uncertainties in the nuclear
moment of inertia (J), a basic model parameter that
has the strongest effect on the results of the calcu-
lations. It can be seen that, in this case, a fit to
the experimental values of (J) requires anomalously
low values of the nuclear moment of inertia. At the
same time, satisfactory agreement with experimental
data from [31, 32] was obtained under the assumption
specified by Eq. (9). Thus, data on the mean angular
momenta of fission fragments favor, in calculations
for low-energy fission, the use of the spin distribution
of primary-fragment populations in the form (9).

Isomeric ratios of independent yields. Exper-
imental data on the isomeric ratios of independent

L U)P,U)f(U)dU.  (11)
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Fig. 19. Ratio of the experimental ([25]) and calculated

isomeric ratios of the independent yields of fragments
originating from 23°U fission induced by thermal neu-
trons: (open symbols) results obtained under the as-
sumption specified by Eq. (8) and (closed symbols) re-
sults obtained under the assumption specified by Eq. (9).

yields for 233U fission induced by thermal neutrons
[25] are available for 48 isomeric pairs of nuclear
fragments with mass numbers in the range A = 79—
148. The basic features of the isomeric levels of the
nuclei under study are compiled in the table. It is
important to note that the features of isomeric levels
are not unique—as a rule, the difference of the spin
values between the ground-state and a metastable
level amounts to a few units of 4. At first glance, the
description of the isomeric ratios of the independent
yields of these levels should not therefore involve se-
rious difficulties [4—6]. This is not so only for three
high-spin isomeric levels of the 129:122:130]q nuclei.

The experimental isomeric ratios of independent
yields from [25] are displayed in Fig. 18, along with
their theoretical counterparts calculated under the
assumption specified by Eq. (8). It is noteworthy
that the calculated isomeric ratios are systematically
in excess of the experimental values for high-spin
levels and are systematically below them for low-spin
levels, irrespective of whether the level being consid-
ered is ground-state or metastable. Variations in the
parameters of nuclei—for example, a transition from
the spin-cutoff parameter corresponding to the rigid-
body moment of inertia to the value corresponding to
the semirigid-body moment of inertia—or modifica-
tions to the method for calculating radiative strength
functions lead only to slight changes in Fig. 18, but
they do not distort the overall pattern.

A comparison of the experimental isomeric ra-
tios of independent yields and the isomeric ratios
calculated under the two limiting assumptions (8)
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Fig. 20. Distribution of deviations of the ratios of the
experimental and calculated isomeric ratios of indepen-
dent yields of fragments originated from 2*°U fission in-
duced by thermal neutrons: (solid-line histogram) results
obtained under the assumption specified by Eq. (9) and
(dashed-line histogram) results obtained under the as-
sumption specified by Eq. (8).

and (9) on the total-angular-momentum distribu-
tion of primary-fragment populations is illustrated in
Figs. 19 and 20. It can be seen that the use of the dis-
tribution in (9) leads to a radical improvement of the
description of experimental data; no such improve-
ment could be achieved by other methods for all nuclei
simultaneously. Of course, there remain some dis-
crepancies after the application of the distribution in
(9), but they may probably be removed upon improv-
ing the description of soft-photon spectra (Fig. 15)
or upon refining the diagrams of discrete levels in
isomeric nuclei appearing as fission fragments.

The conditions under which the spins of fission
fragments are formed and a further evolution of these
spins during the Coulomb acceleration of the frag-
ments can be different for different fissile systems—for
example, in the fission processes induced by thermal
neutrons, on one hand, and by alpha particles, on the
other hand. The excitation energy of a compound
nucleus is 5 to 6 MeV in the first case, but it may
be as high as a few tens of MeV in the second case.
[t is obvious that, while, in (ny, f) reactions, the
distribution given by (9) is dominant, in («, f) reac-
tions, the contribution of (8) must be enhanced. This
can be proven by analyzing the energy dependences
of the isomeric ratios of independent yields for the
latter reactions. Figure 21 shows experimental data
on isomeric ratios for eight nuclei versus their mean
excitation energies (U); these data were obtained
with allowance for multichance fission and neutron
emission [33]. The same figure displays the results of
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Features of the isomeric levels of nuclei produced in 235U fission induced by thermal neutrons (the relevant isomeric ratios
were measured in [25]; presented in the table are the spin—parities J7 of the ground-state and metastable levels and the

energies F,, of the metastable levels)

No. Nucleus Jy Jr E,,, MeV No. Nucleus Jy Jr E,,, MeV
1 | ™Ge 1/2- 7/2% 0.188 2 | 8Ge 9/2+ 1/2+ 0.679
3 | 82As 1+ 5 0.022 4 | 83Se 9/2+ 1/2- 0.231
5 | ®Br 5~ 2- 0.048 6 | Rb 1- 4= 0.107
7 | Nb 9/2+ 1/2- 0.367 8 | 13Ag 1/2- 7/2+ 0.046
9 | 15Ag 1/2- 7/2% 0.043 10 | MSAg 2= 5t 0.083

11| Y"Ag 1/2- 7/2% 0.022 12 | M8Ag 1+ 5t 0.130
13 | 119¢d 1/2+ 11/2- 0.149 14 | '20Ag 5t 0t 0.205
15 | '2Cd 1/2+ 11/2+ 0.149 16 | '%Cd 3/2+ 11/2+ 0.149
17 | 2In 9/2+ 1/2- 0.322 18 | 128n 11/2= | 3/2t 0.027
19 | 24In 3t 8~ 0.192 20 | %In 9/2+ 1/2- 0.182
21 1261 6% 3t 0.152 22 | 27In 9/2% 1/2~ 0.162
23 | 1%7Sn 11/2~ 3/27F 0.070 24 | 128n 2+ 7 0.192
25 128Gn 0t 7 2.093 26 128G 8~ 5T 0.107
27 1291 9/2+ 1/2- 0.200 28 1298n 3/2+ 11/2~ 0.037
29 130Gp 0t 7 1.949 30 130G 8~ 5T 0.022
31 132Gh 4+ 8~ 0.022 32 133Te 3/2F 11/2~ 0.336
33 | 133 7/2+ 19/2+ 1.636 34 | 133Xe 3/2+ 11/2- 0.235
35 134Gh 0~ 7 0.020 36 134] 4+ 8~ 0.318
37 | 135Xe 3/2+ 11/2- 0.529 38 | 136] 2~ 6~ 0.642
39 138Cs 3~ 6~ 0.082 40 1461 4 2- 6~ 0.022
41 148py 1- 6~ 0.092 42 | 8pm 1- 6~ 0.140
43 1201 1+ 3t 0.200 44 1201 1+ 8~ 0.302
45 | '22In 1t 4+ 0.102 46 | '22In 1+ 8~ 0.222
47 | 13%n 1- 10~ 0.052 48 | %n 1- 5t 0.402

the calculations performed under two assumptions on
the form of the spin distribution of primary-fragment
populations, that in (8) and that in (9). It can be seen
that, as a rule, the observed isomeric ratios fall within
the corridor determined by the calculated curves. As
might have been expected, the rotation distribution
in (9) prevails at low excitation energies, while the
thermal distribution (8) is dominant at high excitation
energies. This conclusion is also confirmed by data
on the reaction 23®U(ny,, f) that are analyzed from
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the point of view of the fragment excitation energy
(Fig. 22). Indeed, a transition from the distribution
in (8) to the distribution in (9) improves the descrip-
tion of experimental data most radically for (U) = 6—
10 MeV; for (U) = 14—20 MeV, a similar effect is
much less pronounced.

Thus, the spins of fission fragment can be formed
through two mechanisms: the rotational motion of a
fragment upon the scission of a fissile nucleus and the
internal motion of fragment nucleons. During the ac-
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Fig. 21. Data on the isomeric ratios for nuclei produced
in the reactions (open circles) 2®U(a, f), (closed circles)
24P y(ny, f), and (open triangles) 235 U(ng, £)[25]. The
results of the calculations performed under the assump-
tions specified by Egs. (9) and (8) are represented by the
solid and dashed curves, respectively.
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Fig. 22. As in Fig. 19, but versus the mean excitation
energy of a fission fragment.

celeration of fission fragments, which is accompanied
by the transformation of the potential energy of defor-
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mation into internal energy, the primary distribution
of the form (9) is smeared in such a way that it takes
the form (8), which is caused by the density of internal
noncollective types of motion.

4. CONCLUSION

The statistical model of nuclear reactions and the
cascade—evaporation model for the decay of excited
nuclei have been used to analyze the emission prop-
erties of fragments formed in low-energy fission and
their isomeric ratios. In order to justify the applica-
bility of the approach combining these two models,
the mean excitation energies of fission fragments as
functions of their mass have been determined from
experimental data on the mean multiplicities of neu-
trons and have been tested by using the condition of
energy balance. The observed spectra of neutrons
emitted by fission fragments of various masses have
been reproduced by calculating the spectra of emit-
ting nuclei at excitation energies equal to the mean
excitation energies of fission fragments. The exper-
imental dependences of the neutron multiplicities on
the total kinetic energy of complementary fragments
have been described in a model-dependent way under
the basic assumption that the total available fission
energy is distributed among fission fragments in pro-
portion to the extracted mean excitation energies.
The mean fission-fragment spins calculated at the
mean excitation energies by using the assumption
that the fission-barrier penetrability is independent of
the orbital angular momentum agree with the anal-
ogous values extracted from experimental data. Two
assumptions on the character of the distribution of the
total angular momenta of fission fragments after their
full acceleration—that using a distribution of a rota-
tional origin and that using a distribution associated
with single-particle motion—have been analyzed. It
has been shown that the form of the spin distribution
of primary-fragment populations is one of the key
factors that affect the isomeric ratios of independent
yields. It has turned out that, in order to describe
the observed isomeric ratios, it is necessary to as-
sume that this distribution may involve a component
characterized by a fixed value of the total angular
momentum.
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Abstract—On the basis of statistical theory and on the basis of the Kramers and Grange—Weidenmoiller
diffusion model of fission, the cross section o¢(E,,) for 238U fission induced by 1- to 55-MeV neutrons
is calculated under the assumption that dynamical effects are damped at low excitation energies. It is
shown that the structure of the fission cross section from a statistical calculation differs substantially
from that in a dynamical description. The reduced coefficient of nuclear friction (viscosity) is found to
be 3 = 4.1 x 10%! s~1. This value and the estimate 3 > 5 x 102! s~1, which was obtained by analyzing
the mean multiplicity of prefission neutrons in heavy-ion-induced fission reactions, suggest supercritical
damping and the one-body mechanism of nuclear viscosity. © 2001 MAIK “Nauka/Interperiodica”.

1. INTRODUCTION

In [1], the effect of nuclear viscosity (friction) on
fissility within the diffusion model was considered in
analyzing the energy dependence of the fission prob-
ability, Py (E), for preactinide nuclei. For the fission

reaction 238U (x,zn/f), the statistical and the dy-
namical approach are used in the present study to de-
scribe the cross section by decomposing it into terms
corresponding to different numbers (z =0, 1, ...) of
prefission neutrons (so-called chance structure of the
cross section). An analysis of data on the fission
cross sections for actinide nuclei, o (E,), revealed
[2, 3] that the statistical model reproduces satisfac-
torily the absolute values and the energy dependence
of oy (Ey,) in the traditional region of bombarding-
neutron energies (£, < 20 MeV). Within this frame-
work, the parameters of the statistical description
(neutron-absorption cross sections, fission barriers,
level-density parameters, and so on) have physically
reasonable values. Difficulties arise, for example,
when attempts are made to reproduce the absolute
values of experimental fission cross sections at higher
energies of E; > 20 MeV [4]. This disagreement
between the theory and experimental data may partly
be due to nuclear friction, which is disregarded within
the statistical description. A fit to experimental data
that is based on varying parameters—for example, the
absorption cross section in [4]—can mask an actually
existing physical phenomenon.

By studying the effect that dissipative processes
caused by nuclear-matter viscosity can have on var-
ious features of the fission process, one can deduce

information about the magnitude of the coefficient
of nuclear viscosity and clarify the nontrivial physics
behind dissipation and viscosity (or friction) in nuclei.
So far, such data have been insufficiently accurate
to pinpoint the theory (that of one-body or that of
two-body dissipation) adequately describing dynam-
ical effects. The type of viscosity operative in the
processes has a profound effect on the dynamics of
collective motion. The mechanism of one-body dis-
sipation predicts a large viscosity of nuclear matter
and supercritical damping of nuclear motion. At the
same time, two-body dissipation within a nucleus
may appear to be weak because of the Pauli exclusion
principle suppressing two-body collisions, which has
a less drastic effect only in the surface region. In rela-
tion to the case of zero friction, one-body (two-body)
dissipation leads to less (more) prolate configurations
at the scission point [5].

Analyses of the mass—energy distributions [6]
and of the yields [5] of prefission neutrons seems
to suggest collective motion undergoing supercrit-
ical damping, favoring the hypothesis of one-body
(rather than two-body) dynamics. Unfortunately,
independent information about the magnitude of
the coefficient of the nuclear friction is not precise.
In order to obtain deeper insights into dissipation
in nuclei, it is advisable to extend the analysis of
traditionally used data by including new experimental
information about the features of the fission process.

By considering the reaction 233U (n, zn’ f) by way

of example, it will be shown in this study that, by ana-
lyzing the experimental cross sections for the fission

1063-7788/01/6409-1581$21.00 © 2001 MAIK “Nauka/Interperiodica”
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of actinide nuclei (these cross sections were mea-
sured over a sufficiently wide range of bombarding-
neutron energy) within the statistical model at low
energies (F, <20 MeV) and within the diffusion
model proposed by Kramers [7] and by Grange and
Weidenmiiller [8] at high energies (F, > 20 MeV),
one can deduce information about the coefficient of
nuclear-matter viscosity. It should be borne in mind
that, in describing fissility, the application of the dif-
fusion model is complicated by an almost complete
absence of theoretical and experimental information
about the temperature dependence of the coefficient
of viscosity. In the low-temperature region corre-
sponding to F, < 20 MeV, we can assume that this
coefficient is close to zero, because the statistical
model provides here an acceptable description of ex-
perimental data. In the high-temperature region cor-
responding to E, > 20 MeV, it is believed that the
coefficient of viscosity is nonzero and is virtually inde-
pendent of the excitation energy. In the intermediate
region, between the two values (zero and constant) of
the coefficient of viscosity, its energy dependence was
simulated with the aid of a function that describes the
damping of dynamical effects at low energies. This
function had the form of a smoothed step and ensured
continuity of the computed features over the entire
neutron-energy range under investigation in going
over from the statistical to the diffusion branch of the
calculation.

2. STATISTICAL DESCRIPTION
OF THE FISSION CROSS SECTION

An analysis of the fission cross section for ac-
tinide nuclei and its chance structure has been per-
formed predominantly in the bombarding-neutron-
energy region E, < 20 MeV, which is traditionally
studied and which contains the bulk of experimental
data on cross sections for the fission of heavy nuclei.
As arule, relevant theoretical estimates were obtained
within the statistical model. In deducing them, it was
assumed that the nonequilibrium decay mechanism
contributes only at the first stage of the emission
cascade and that, at all the remaining stages, neutron
emission is purely evaporative.

In previous studies, the statistical calculation in-
cluded nearly the entire variety of concepts of the den-
sity pin (U, J) of excited states—that is, the constant-
temperature model, the Fermi gas model, the super-
fluid model [9], combinatorial calculations [10], and
hybrid approaches combining different models in a
unified description [11, 12]. This is one of the main
sources of discrepancies between the results of the
calculations and analyses of o (E,,).

In the statistical description of the cross section for
2381J fission, use is made here of the basic results ob-
tained in [3] from an analysis of o s (E,,) and its chance
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structure up to E, < 20 MeV for a chain of nuclei
from 233U to 238U. The calculations of the single-
particle spectrum in[3] were performed for a deformed
Woods—Saxon potential, and this spectrum was then
used as a basis for evaluating the density pi, (U, J)
of internal excitations within the superfluid model of
the nucleus [9]. In contrast to the noninteracting-
particle (Fermi gas) model, the superfluid model of the
nucleus takes into account, at low energies, residual
pair interaction of the correlation type. A consistent
description of the level density with allowance for
collective excitations of nuclei has yet to be obtained.
Their contribution is estimated in the adiabatic ap-
proximation [13], where the excitations of various
physical origins are taken into account in terms of
factors [9] as

pU,J) = pin(U, J) X Kot (U) x Kyin(U), (1)

where Ko and Ky, are the coefficients of, respec-
tively, rotational and vibrational enhancement of the
level density. In the case of sufficiently hot nuclei,
Ky, can easily be estimated by the formula obtained
within the liquid-drop model [9]. As a rule, the possi-
ble distinction between K., values in the fission and
in the neutronic channel was ignored in this study.
This was motivated by the smallness of K;, and
its variations in relation to K,o;. The best that we
can do is to set Ky r = Kyib,n. The coefficients of
the rotational and the vibrational enhancement of the
level density Ko depend strongly on the symmetry of
the nuclear shape (see below).

Let us briefly dwell on the basic elements of a
statistical calculations of o (E,). Reactions of a
type (n, zn’ f) involving various numbers x of prefis-
sion neutrons are often referred to as fission chances.
Specifically, the fission of the primary nucleus A—
29U in our case—is the first chance; accordingly, the
fission of the A — x nucleus is the (x + 1)th chance.
After the emission of x neutrons, the ( + 1)th fission
chance comes into play if the excitation energy of the
primary nucleus A satisfies the condition

E>B{ " +) B =E, (2)
i=1

where By and B, are, respectively, the height of
the fission barrier and the deuteron binding energy
for nuclei whose mass numbers are indicated in the
superscripts. At z = 1, the entire right-hand side of
inequality (2)—that is B?il + B = Fy, reduces to
the threshold for emission fission. The fission cross
section oy (E) is the sum of the partial cross sections
0tz (E) for individual chances:

l’max(E)

> op(B). (3)

=0

of(E) =
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Forz = zpax (E) + 1, the fission of residual nuclei
A — z is not favored energetically. In calculating
ofz (E) and, accordingly, o (E), we can use the
Hauser—Feshbach formalism (codes of the STAPRE
type) or relationships of the statistical model in the
semiclassical approximation [9, 14]. In the energy
region under consideration, the two approaches lead
to similar estimates of the cross sections. In [3],
the calculation was based on the STAPRE code. In
describing fissility on the basis of the diffusion model,
use is made here of the semiclassical approach, which
admits a convenient inclusion of nuclear-viscosity
effects.

According to general concepts of the compound-
nucleus model, the relations for fissility (fission prob-
ability) can be represented in the form

of(E)
JC(E)

Py(E) = (4)

LeJ
J(py— I
- Z 0 (B) =7 /Z Ie
- INE DI

where ¢/ is the cross section for the formation of a

compound nucleus having the excitation energy £ =

FE, + B, and a fixed value of the angular momen-

tum J, 0. = > o/ is the total cross section for the
J

formation of a compound nucleus, Ff is the fission

width, and T/ stands for the widths with respect to
decays competing with fission (¢ = n,~, and so on).
By using the formula for the level density in the fissile
nucleus for the transition state and a similar formula
for the level density in the competing channel—the
neutronic one in the present case—the ratio of the fis-
sion width and the neutronic width can be represented
in the form [9, 15]

F%/Pi = 'Y(J)Fn/rm (5)

where all factors dependent on the angular momen-
tum are included in the factor v (J) and where Iy and
I',, are, respectively, the fission width and the neutron
widths at zero angular momentum (J = 0).

Within the model of a two-humped barrier, the
mean fission width is described by the relation [9, 16]

Tf(E) (6)
=T;aA(E)Ts5(E)/(Cia(E) +Tsp(E)),

where
1

' S B0) "

E-By;

ork\1 !
1 (E — By — k)dk
X / [+exp(hi)} pril f )
0
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are the fission widths for the humps (i = A, B) and
By; and hw; are, respectively, the heights and the

curvature parameters of the humps. At J =0, the
neutronic-channel width has the form
1
I'(F)=———- 8
)= 52 50) (®)
E-B,
< / k2 () Ton(Ems U) (U, 0) e
0
Here, gnkZ = (25, + 1)2mpe, /h%, where s,, my,

and g, are, respectively, the spin, mass, and energy of
the emitted neutron; £, U, &,, and Bn are related by
the balance equation £ = U + ¢, + By,; p; (U, 0) is
the nuclear-level density for zero angular momentum;
and the index j = ¢, f,n labels quantities referring
to the compound nucleus, fission channel, and the
neutronic channels, respectively. In Eq. (8), the cross
section oy, (en,U) for the inverse reaction is set to
the cross section for compound-nucleus formation in
bombarding the ground-state target nucleus (U = 0)
by neutrons with an energy ¢,, and is calculated on
the basis of the optical model. Within the Brink—Axel
model [17], we can estimate the radiative width I,
thereby taking into account the competition of the ~
channel.

In relation (4), the cross section ¢/ for compound-
nucleus formation is determined by the expression

ol =7A2g,T5(E,), (9)

where ), is the wavelength of the incident neu-
trons, g5 = (2J + 1)/ (25, + 1) (2Ip + 1) is a statis-
tical factor, and T); stands for sticking coefficients.
In order to simplify the description, we can use, in
(4) and (9), the semiclassical estimate of the sticking
coefficients,

1
T:
-{s

[t is reasonable to determine the maximal angular
momentum Jpax on the basis of the optical calcula-
tions:

for J < Jmax

10
for J > Jmax- (10)

25 (20 + )Ty J (J + 1)

g2
max Z (2J + 1)TJ
J
In the semiclassical approximation, expression (4) for
the fissility (without allowance for the competition of
photons) can be represented in the form

= 2(%)opt- (11)

Jlllax
2 1)d
Py(E) = J2, e
=A,B

1=

(12)

Similar expressions can be obtained for the differ-
ential and for the integrated probabili-



1584

ty [dP,, (en, E) /dey, and P, (E)] of neutron emission
[14]. The fission cross section, the spectrum, and the
total cross section for equilibrium neutron emission
are given by

doy/de,, = 0.dP, /dey,

on = 0.P,.

of = o.Py, (13)

The cross section . for compound-nucleus for-
mation is related to the neutron-absorption cross sec-
tion o,ps by the equation

Oc = O0abs — Opr :Uabs[l_Qpr (E)]7 (14)
where oy, and gp (E) are, respectively, the cross
section for nonequilibrium (preequilibrium) neutron
emission and its fraction in o,,s. These quanti-
ties can be estimated within the exciton model for
preequilibrium decay [18]. The total spectrum of first-
chance neutrons (x = 1) is the sum of the spectra of
equilibrium and preequilibrium neutrons:

don1/dey, = 0.dPy, (e, E) /dey,
+ OabsdPpr (0, E) /den,.

[t is assumed that the spectra of second-chance neu-
trons and of neutrons of further chances (z > 2) are
formed by the purely evaporation mechanism of the
reaction.

The above relations are valid for the calculation
of the decay features of the primary nucleus A at a
fixed value of the excitation energy E. The formulas
for calculating analogous features of A — x nuclei
formed after the emission of x neutrons (z > 1) be-
come somewhat more complicated [14] since these
nuclei are distributed in excitation energy U between
0 and Uy, = FE -7 | By a+1—i. The quantities
0fA—z and dop,41/dey, can be obtained by integrat-
ing Py (Ua—,) and dP,, (gy,Ua—z) /de, with respect
to the excitation energy for the residual nuclei A — =
(for more details, see [14]).

(15)

3. EFFECT OF THE DAMPING
OF THE ROTATIONAL-MODE
CONTRIBUTION TO THE LEVEL DENSITY
ON THE DESCRIPTION OF THE FISSION
CROSS SECTION

The dependence of the coefficient of rotational en-
hancement of the level density, Kot (U), in (1) on
the symmetry of nuclear shapes was investigated in
[13], where one can also find adiabatic estimates of
Kot (U), which are valid at sufficiently low excitation
energies. That the mode of the single-particle motion
in a nucleus and its rotation as a discrete unit are
independent indicates that the problem of calculating
Ko (U) is adiabatic, the ratio of the temperature T’
to the quadrupole deformation € being the measure of
the deviation from adiabaticity. The temperature at
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which the assumption of adiabaticity becomes mean-
ingless was estimated in[13] as

Ty = hivge ~ 4147 /3¢, (16)
where @¢ is the mean frequency for an anisotropic
oscillator potential. For T' > Ty, there must occur a
damping effect that is associated with the interaction
of internal and collective (rotational) degrees of free-
dom of a deformed nucleus and which is manifested
in reduction of Ko (U) in relation to the adiabatic
estimate, with Ko (U) tending to unity in the limit
of large U values.

In all probability, Ignatyuk et al. [19] were the
first who made an attempt at taking into account the
damping of rotational modes in describing the proba-
bility of deformed-nucleus fission. The damping func-
tion was determined empirically and was assumed to
be the same in the fission channel and in the neutronic
channel. This contradicts the theoretical estimates
that were presented in [13] and which showed that
this function depends greatly not only on the excita-
tion energy but also on the nuclear deformation. The
more recent numerical calculations of Hansen and
Jensen [20], who used the SU (3) single-particle shell
model to investigate the energy dependence of the
level density in nuclei characterized by various forms
of ground-state symmetry, confirmed the estimates
from [13]. These authors also established that the
rotational-mode contribution can decrease with in-
creasing temperature because of a gradual disappear-
ance of the asymmetry of nuclear shapes. By way of
example, we indicate that, at energies of U > 20 MeV,
the level density in a nucleus having the shape of

a three-axis ellipsoid in the ground state (K24 =

\/gaxayaz R \/ga”ai ) does not differ from those in

axisymmetric and mirror-symmetric nuclei (K24 =
0?); at still higher excitation energies, it does not
differ from the level density in a spherical nucleus
(K24 =1),

ro

In connection with practical applications, it is

convenient to represent K24 (U) for a deformed nu-

cleus as the product of two factors,

Kad

w(U) = K(U) x K34(U). (17)

The factor K34(U), which characterizes an addi-
tional enhancement of the level density in axisymmet-
ric and mirror-symmetric nuclei [K24(U) = 0% =
K34(U)] owing to the disappearance of the nuclear-
shape symmetry, is given by

Vol.64 No.9 2001
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7

\/T/20)

RV 2770”
[V 87TJ||

E(U) =

The damping of each of the quantities K34(U) can
be approximated by the expression [20]

Ki(U) =1-F(U) + KUK U),  (19)
where the damping function has the form
F(U) = [ +exp(U —Up/d]™"  (20)

Here, the parameters U; and d; depend greatly on
deformation values that characterize specific symme-
try violations (i = 1 for axial symmetry and ¢ = 2 for
spherical symmetry).

The approximate relations for determining U; and
d; can be found in [20]. The estimated values show a
large scatter. On the basis of the numerical calcula-
tions for the nuclear-level density from [20], it can be
stated with confidence that, for U > 20 MeV, there
is no difference in this respect between axisymmetric
and mirror-symmetric nuclei, on one hand, and nuclei
displaying shape asymmetry in the ground state, on
the other hand. This means that K; (U) =1 for
U > 20 MeV. In describing nuclear fissilities, the fact
that, for axisymmetric nuclei, the characteristic en-
ergies are proportional to the square of the deforma-
tion, Uy ~ 120A/3¢2 [20], leads to important conse-
quences. The damping of Ko(U) = K34(U) because
of the transition from the axial shape at the saddle
point (e4 ~ 0.6, ep ~ 0.8) to the spherical shape can
be disregarded in the region of intermediate energies,
U < 100 MeV. In the neutronic channel (e ~ 0.24),
deviations of F5(U) from unity become noticeable at
energies of U > 50 MeV.

In the present analysis of the cross section for
fission induced by 1- to 55-MeV neutrons, estimates
of the fission width and of the neutronic width were
obtained at K»(U) = K44(U). Because the inner
hump A is mirror-symmetric and axially asymmetric
(N > 146) and because the outer hump B is, on the
contrary, axisymmetric and mirror-asymmetric [21],
we have de = \/%0” and 2 for A and B, respec-
tively. It can be seen from Fig. 1 that, without taking
into account the damping of the asymmetric compo-
nent, the calculated values of o4 (E,) for 23U can be
matched with experimental data up to E,, = 16 MeV.
For E, > 16 MeV, the calculated curve lies much
higher than the experimental points, which represent

238 U
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2 for axisymmetric nuclei that display mirror asymmetry

for nuclei that do not possess symmetries other than that

(18)

for axially asymmetric nuclei that possess mirror symmetry
for nuclei that do not possess rotational symmetry.

the standard values of the cross section for neutron-
induced fission of 238U from [22]. The cross sec-
tion o (£,) was calculated with model parameters
(including fission barriers and level-density parame-
ters) set to values that are rather close to those that
were obtained by analyzing the experimental cross
sections for 2327-238U nuclei within the approach de-
veloped in [3]. The neutron-absorption cross section
Oabs = Op — oqir for 228U was determined on the basis
of calculating the reaction cross section o, and the
cross section og;, for the direct excitation of low-
lying states in inelastic neutron scattering within
the coupled-channel method as implemented in the
ECIS code [23] with the optical-model parameters for
the deformed Young potential [24].

The theoretical calculations of the cross section
for the neutron-induced-fission of 233=283U that were
performed in [4] up to the neutron energy of E, =
100 MeV with the same Young optical potential and
which were based on the assumption that the shape
of the fissile nuclei in question at the saddle point
has no rotational symmetry (K = +/8moy) con-
siderably overestimate oy (E,) at E, =7 MeV and
higher energies. Those calculations employed the
internal-excitation density according to the single-
particle spectrum of the Nilsson model. The authors
of [4] included, in their calculations, the damping of
the asymmetric component of the rotational enhance-
ment of the level density at the saddle point accord-
ing to (19) and (20) with parameter values close to
U; =7 MeV and d; = 0.8 MeV. This enabled them
to match the theoretical description with the experi-
mental results up to an energy of 17 MeV. At higher
energies F,, the statistical calculation overestimates
the fission cross section.

For two parameter sets—(i) U3y =7 MeV, d; =
0.8 MeV and (ii) U3 =16 MeV, d; = 1.2 MeV—
Fig. 1 illustrates the effect that the damping of the
coefficient K; (U) of rotational enhancement of the
level density as given by Egs. (19) and (20) exerts
on the results of cross-section calculations. In rela-
tion to the results of the original calculation without
damping, which agree with data in the range E,, =
1—15 MeV, the curve corresponding to the calcula-
tions with the first parameter set begins to deviate
from experimental points at an energy value as low
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Fig. 1. (o) Standard values of the cross section for the
neutron-induced fission of 23U [22] along with a sta-
tistical description represented by the curves that corre-
spond to (dashed curve) the calculations employing the
adiabatic estimate of the coefficient of rotational enhance-
ment of the level density and the calculations allowing
for the damping of the asymmetric component K, (U)
at the saddle point according to (19) with the damping
function (20) at (dash-dotted curve) U; =7 MeV and
di1 = 0.8 MeV and (solid curve) U; = 16 MeV and di =
1.2 MeV.

as E, > 7 MeV. The second parameter set provides
the best description of o™ (E,), but there is still

no perfect agreement with experimental data. The
corresponding curve lies closer to the experimental
points than the curve computed without damping,
but it nevertheless goes noticeably higher than the
experimental fission cross section for E,, > 18 MeV.

Lestone and Gavron [4] were able to obtain a
satisfactory description of the experimental data over
the entire range of F,, under investigation using an
adjustable factor by which they multiplied the ab-
sorption cross section oaps (Fy). The value of this
factor changed from 1 at E, =17 MeV to 0.82 at
100 MeV. The required modification to s (E,,) can
be obtained by the method proposed in [25]. Specifi-
cally, the Young potential proposed in [24] and taken
as a basis was modified in [25]. At high energies, this
potential leads to smaller values of the cross section
oabs (Ern) than the original Young potential. Such
ad hoc tricks are not quite correct. Their applica-
tion is not motivated by any actual physical grounds.
By considering the example of 23U fission, it will
be shown below that the discrepancy between the
statistical estimates of the fission cross section and
experimental results can be removed by taking into
account, in theoretical calculations, effects associated
with nuclear-matter viscosity.
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4. FISSION CROSS SECTION
IN DIFFUSION MODEL

The application of principles of Brownian motion
in a force field to the problem of propagation of a
nuclear system through a barrier proved to be very
efficient, for example, in explaining the systematic ex-
cess of the experimental multiplicity of prefission neu-
trons in heavy-ion reactions [5, 26] over the results of
the calculations within the statistical model. In the
diffusion model, the fission variable x (deformation)
and the conjugate momentum p = pu are considered
as classical variables. The time evolution of a nuclear
system in two-dimensional phase space is described
in terms of the distribution function (probability den-
sity) W (z, u, t) satisfying the Fokker—Planck equa-
tion [8, 27]
oW (z,u,t) oW (z,u,t)
ot “ ox (2D
oW (z,u,t) +ﬁ8[uW(ac,u,t)]

ou ou

O?W (z,u,t)
ou? ’
where k(z) = —u=10V (x)/0x, V (z) being the po-
tential energy of deformation; 3 = n/u is the reduced
coefficient of nuclear friction (the ratio of the coeffi-
cient n of nuclear friction to the reduced mass u of
the nuclear system); and ¥ = 8T/ is the diffusion

coefficient, 7' = (E/a)l/2 being the temperature of
the nucleus (heat bath). The reduced mass u =
MiMsy/ (My + Ms) (My and My are the masses of
complementary fragments) is equal to = M/4 at
My =My =M/2.

On the basis of principles of Brownian motion,
it is very difficult to obtain a general solution to the
problem of overcoming a potential barrier by using the
Fokker—Planck equation. Of special interest is the
particular case where the initial quasistationary and
the intermediate state are physically significant. This
means that the potential-barrier height correspond-
ing to the deformation = = xg is much greater than
the energy of the thermal motion; that is, the condi-
tion By > T is satisfied. This condition is necessary
for the applicability of the transition-state method
within a statistical analysis of the problem, where it
is assumed that internal degrees of freedom are in
equilibrium with collective degrees of freedom (which
are associated with fission). In contrast to the statis-
tical approach, the diffusion model takes into account
the interaction between them, which was simulated
in [7] by nuclear friction (5 # 0). In this case, an
equilibrium distribution cannot be established at all
values of z. By virtue of the condition By > T, only
in a close vicinity of the first minimum of the potential
energy V (x), x = x1, can the actual distribution be

— k(z)

+ 9
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approximated, to a high precision, by the equilibrium
Maxwell—Boltzmann distribution

WMB (2, u) = Cexpl—(uu/2 + V(2))/T]. (22)
[t can easuly be verified that the function in (22)
satisfies the Fokker—Planck Eq. (21). For x > x,
it is assumed that the level density is much less
than that which would follow from the equilibrium
distribution (22). A slow diffusion occurring through
the barrier tends to restore equilibrium conditions at
all values of .

Assuming that the quasistationarity conditions
OW (z,u,t)/0t = 0hold everywhere and approximat-
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ing the deformation energy V (x) in the vicinity of
the saddle point x = xg and in the vicinity of the first
minimum x = x1 by the quadratic forms

Vi) = By — pwi(z — x0)?/2
pwi(z —21)%/2  around x = 21,

around x = xg

(23)

where wy and w; are the oscillator frequencies as-
sociated with the curvature of V (x) at the saddle
point x = zy and in the first potential well x = 21,
respectively, one can obtain a solution to the Fokker—
Planck equation in the form

)2 /20]dz, in the vicinity ofz =

E-B;

13
MB _8/9 1/2/ o
Wi(z,u) = Wo = (@, u)[(a — B8) /2w V] exp[—(a
WMB(z,w),in the vicinity of(z = 1),
where  WMB(z, 1) =C exp|— (Mu2/2+v )/T

a=(8%/4+wd )1/2 + 3/2, and £ =u — a(x — xp).
The fission width according to Kramers [7], which is
associated with the time-independent solution to the
Fokker—Planck equation is given by

I'f = hJo/ Ny
= (hwy/2m) exp (=By/T)

<[z +1)" - 3720},

(25)

where

Jo = / Wo(z = zg, u)udu = C (T /)

x[(a—B)/a]'? exp (=By/T)
is the diffusion current through the saddle point z =

xo and
“+00 +0o0

Ny = / / Wi (2, w)dzdu = C (210 T/ )

is the number of nuclei (states) in the first well of
the potential energy of deformation. If there is no
dynamical friction (that is, under the condition 8 —
0), we have

3 (8 = 0) = (hwy/27) exp(=By/T).  (26)
Expression (26) is sometimes referred to as the ap-
proximation of the transition-state method.

For E — By > 3 MeV, the fission width determined
by the popular Bohr—Wheeler formula
F?W _ hJO(E — By)

Ny (B) (27)
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_(aB)2mn) [ p (B~ By — k) dk

p(E)dE ’

with the level density corresponding to the constant-
temperature model, p (U) = C'exp (U/T), can be ap-
proximated, to a high precision, by the expression

W = (T/27) exp (- By/T) . (28)

As was shown by Strutinsky [28], the factors in front
of the exponential exp (—By/T) in (28) and (26) are
different (7'/2m and hwy/2m, respectively) because
collective-motion states were disregarded in deter-
mining the number of the initial state, Ny (E), in
(27). But it is precisely the space of these states
that should be considered in estimating the current
Jo (E — By) at the fission barrier. With allowance
for collective motion, the number of the initial states
of nuclei having excitation energies between E and
E + dFE is given by

= (dE/2rh)

/ da / dpp(E — Eeat(z,1)).

If we assume, as is usually done, that E > E,, the
correct formula (29) yields

Ni(E) = (T/hwr) p(E)dE.

(29)

(30)

The corresponding fission width F’?W, which differs

by the factor fuww; /T from that which is traditionally
used, coincides with (26):

W = (hwoy/T) TR =1%(3 —0).  (31)

The relationship between F?(E,B) according
to Kramers and F’?W(E) according to Bohr and
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Fig. 2. Characteristics of the transient process in the
fission of the excited nucleus 2*°U at temperature T' =
1.5 MeV for two values of the coefficient of friction 3 (in
units of 10%* s™'): (a) time dependence of the fission
rate Ay (¢) calculated at the saddle point (the dashed
curves represent the Kramers quasi-steady-state values

M) and (b) function ¢(t) = Ag(t)/A demonstrating
how the quasi-steady-state value F? (dashed curve) is
established.

Wheeler (with allowance for the factor hw;/T') has
the form

(e, ) =1} (B)
[ <ﬁ/2wO>2+1—<ﬁ/2wO>}
="}V (B)7(8/2wp)-

In many studies, the factor fiw, /T, by which I‘?
FBW

(32)

differs from in the case of low friction, was dis-
regarded in the calculations. It follows from (32) that,
for the steady-state case, the presence of nuclear-
matter viscosity (8 > 0) leads to a reduction of the
fission width in relation to I"?W, since 4 (6/2wp) <
1. This is due to a decrease in the probability of
penetration of the fissile system through the barrier.
The critical damping occurs at /2wy =1 (¥(1) =
V2 —1).

As a matter of fact, the quasi-steady-state flux
through the fission barrier is established after a
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lapse of some characteristic time 7 (3) (not instan-
taneously) that depends on the reduced coefficient 3
of nuclear friction. The time 7 () characterizes the
interaction of the fission degree of freedom with the
rest of the system (heat bath). The problem of the
time-evolution of a fissile system can be solved ana-
lytically with the aid of the time-dependent Fokker—
Planck equation (21) [8] if V' (x) is approximated by
the harmonic oscillator (23) in the vicinities of zg and
x1. In this case, the fission width is given by

Do) = hag(e) = 2/ L=

2mo,
9 1/2
ﬂ—¢%—ﬁ}
X exp [—(

B
1—¢?)o2uwi |’
Here, ¢ = exp (—(1),

(33)

g {1‘ CESLE

sinh (611) 1] .

sinh (611) 1] .

At) = —a(t
— Q[Cexp (—29Qt) + 1] / [Cexp (—20t) — 1],

where 3 = /32 — 4w?, C is an arbitrary constant
determined by the initial conditions of the problem,

a(t)=p6/2-9/[os (1-¢%)],
QQ(t) = aQ(t) + wg

+ 219¢w(2)/[0u0xw% (1 — ¢2)]

Expression (33) is bounded and real-valued even
when f3; is zero or imaginary. Imaginary values of
B1 (/2w < 1) correspond to low friction, while its
real values (3/2w; > 1) are realized in the case of
high friction. In the limit ¢ — oo, expression (33)
reduces to expression (32) for calculating the steady-
state fission width according to Kramers.

For the fissile nucleus 23°U, Fig. 2 shows the
function Af(¢,8) and the dimensionless quantity

o(t) = As(t, ﬂ)/)\;{(ﬂ), which demonstrate how the

Kramers equilibrium value is established in the course
of the time-evolution process at low and large values
of the coefficient of friction .

Vol.64 No.9 2001
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The duration 7 of the transient process—it is de-
fined as the time over which the width T's(¢, ) =

() (3) achieves the value of 0.9TF—was ob-

tained by numerically solving the equation ¢ (7) —
0.9 =0. It can be seen from Fig. 3a that 7 de-
pends differently on 3 for low (/2w < 1) and high
(B/2w1 > 1) values of the coefficient of friction. In
the calculations, we set hiwg = 0.6 MeV and hw; =
1 MeV. In the first case, an increase in 3 leads to an
increase in the strength of the interaction between the
internal and collective degrees of freedom, with the
result that the transient time 7 decreases as

7~ ' n (10B;/T). (34)

In the second case, collective vibrations are damped
aperiodically and the diffusion process is moderated,
which leads to

T~ (B/2w]) In (10B4/T). (35)

The probability of first-chance fission is given

by [8]
P(E,B) = /dtr—f: exp <—F—hnt)
0

t

/ o(tdt

0

(36)

X |1l —exp| —

e

For the steady-state case, where ¢ () = 1, expres-
sion (36) yields

Iy
Pp=rf=—~L_—. 37
N (57)
Figure 3a also shows the mean time 7,(F) =
h/T,(E) required for the emission of the first-chance

neutron versus the excitation energy of 23°U. The
factor f(E, ) = Pf(E,ﬁ)/P}( obtained by numeri-
cally integrating Eq. (36) is presented in Fig. 3b as a
function of the excitation energy E at various values
of the parameter 5. This dependence illustrates the
effect of the transient process on the fission probabil-
ity with respect to the Kramers fission probability. For
all B values, we can see the trend toward a decrease
in the fissility with increasing excitation energy, but
the slope of this dependence, |df (E, 3) /dE|, depends
greatly on the coefficient of friction. In the case where
it is possible to obtain an analytic representation of
f(E, ), the effect of the parameter 3 is manifested
more clearly. For example, the approximation of the
transient-process function by a step—¢ (t) =0 for
t <7 and ¢(t) =1 for t > 7—1leads to the analytic
result

F(E,B) = exp [=7(8)/mu(E)], (38)
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Fig. 3. (a) Duration of the transient process, 7(8) as a
function of the reduced coefficient of friction 8 (dashed
curve) and mean time 7, (F) it takes for the emission of a
first-chance neutron as a function of the excitation energy
FE (solid curve); (b) energy dependence of the function
fE,B) determining the effect of the transient process
on the fission probability with respect to the Kramers
fission probability for various values of 8 (in units of
10*' s71): (dashed curve) quasi-steady-state solution
and (dash-dotted curve) approximation of the transient-
process function ¢ (t) by a step.

where 7, (FE) determines the energy dependence of
f (E, ), while 7 (3) determines the slope of the curve
with respect to the steady-state level f (E,3) = 1.
As can be seen from Fig. 3b, the simulation of the
transient process by a step function leads to a slope
|df (E,3) /dE)| larger than that following from the
actual dependence ¢ (t) (see Fig. 2) at the same value
of # . Deviations of f (E, 3) from unity for the actual
transition process (solid curves in Fig. 3b) become
sizable at £ > 40 MeV for 3 < 0.5 x 10%! and 8 >
10 x 10%t s,

Thus, the factors 4(8/2wq) and f (E,3), which
are dependent on 3, have different effects on the fis-
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sion probability:
Py(E, )

BW5 (5 /2w0) F(E.5)
Ta(B) + TPY(8/2w0) "
The factor f(E, () affects the energy dependence
of the fission probability, and its role becomes more
important with increasing excitation energy. At low
energies (F < 20 MeV, which corresponds to T <
1 MeV), we have f(E,3)~ 1. The Kramers fac-
tor 4(8/2wq) is independent of E, and its effect on
the fission probability decreases with decreasing .
Since there is virtually no information confirming the
excitation-energy dependence of viscosity (temper-
ature dependence of (), it is impossible at present
to answer the question of how dynamical effects are
damped with increasing energy, if at all. By damp-
ing, we mean here the vanishing of nuclear friction
(B/2wy — 0) at specific values of the excitation en-
ergy.

That the traditional statistical approach was
successfully used in analyses of experimental data,
including the fission cross section [2, 3] for E, <
20 MeV, indirectly confirms that nuclear-friction
effects are inoperative at low energies. The results
of the statistical calculation and experimental data
begin to deviate at higher energies (a few tens of
MeV and higher). By way of example, we indicate
that, within the standard statistical model, the exper-
imental multiplicity of prefission neutrons, 7.(E), in
heavy-ion reactions [5] cannot be reproduced without
including, in the description of the fission probability
Py (U), effects associated with the viscosity of nuclear
matter. The results obtained from an analysis of the
mass—energy distributions of fission fragments [6]
and prefission neutrons [5] give sufficient grounds to
conclude that 3 > 1 x 10?* s~ This corresponds
to temperatures of T > 2 MeV. At low temperatures
(T <1 MeV), there is no need for invoking the
diffusion model for estimating the fission probability
because, in this region, the statistical concepts are
consistent with experimental data. This gives every
reason to assume that, at low energies, nuclear
friction is extremely low: (/2w =~ 0—that is, ¥ ~
1. In going over from the statistical description at
low energies (Bohr—Wheeler fission probabilities) to
the description within the diffusion model at high
energies (Kramers fission probability), the continuity
of the calculated characteristics can be ensured by
including, in the description of P¢(U) (39), the energy
dependence of the coefficient of viscosity in the form

BU) = BQU), (40)

QU) = [1 + exp (Udd;U)}l.

(39)
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Fig. 4. Results of the theoretical calculation of the cross
section for the neutron-induced-fission of 23 U: (@) cross
section oy (E,) and its components (curves ) oo,
(curves 2) 050 + o1, (curves 3) o0 + 051 + o3, etc.
The dashed curves represent a statistical description
(these data are analogous to those shown by the dashed
curve in Fig. 1, but the contributions of various chances
are additionally shown here), and the solid curves were
computed on the basis of the diffusion model (8 = 4.1 x
10*' s™') with allowance for the damping of the asym-
metric component Ky (U) at the saddle point. (b) Data
shown in Fig. 1 by the dashed curve and open circles
(dashed curve and open circles, respectively) and results
of the calculation of oy (E») on the basis of the diffusion

model with 8 =10 x 10*! s~! and with the adiabatic
estimate for the coefficient of rotational enhancement of
the level density (solid curve).

At low excitation energies, the function describing the
damping of dynamical effects is chosen by analogy
with the function describing the damping of the ro-
tational effects at high energies [see Eq. (19)]. The
function @ (U) has the form of a smoothed step at
U = Uy, its smearing being determined by the pa-
rameter 6U. If the parametrization in (40) correctly
reflects the dependence of nuclear friction on the
excitation energy, it must be universal—that is, its
extension to a wide range of nuclei must ensure the
description of the fission cross section over the entire
energy range. Relation (40) has no theoretical val-
idation. The parameters Uy and 6U are empirically
adjusted.

Figure 4a presents the results obtained from an
analysis of the cross section for 22U fission and its
chance structure for two versions of the calculation:
(i) a statistical description (dashed curves) employ-
ing the adiabatic estimate for the coefficient of rota-
tional enhancement of the level density (these data

Vol.64 No.9 2001
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are analogous to those represented by the dashed
curve in Fig. 1, but they additionally display the
chance structure of the fission cross section) and (ii)
a calculation on the basis of the diffusion model with
allowance for the damping of the asymmetric compo-
nent Ky (U) (19) at the saddle point with parameters
Uy = 16 MeV and d; = 1.2 MeV for (20). A satisfac-
tory description of experimental data over the entire
range of F, is achieved at the coefficient of friction
equal to 3 = 4.1 x 102! s~! and the parameter values
of Uy = 24 MeV and 6U = 1.5 MeV for the function
in (40), which describes the damping of dynamical
effects at low excitation energies. If we disregard the
damping of the asymmetric component—that is, if
we set K1(U) = K24(U)—the overestimation of the
experimental data within the statistical description
can also be compensated within the diffusion model,
but the larger value of 3 = 10 x 10?! s=! must then
be taken for the coefficient of viscosity. The results
of the calculations are shown in Fig. 4b. Thus, an
analysis of the cross sections for neutron-induced
fission can furnish additional and independent infor-
mation about the magnitude of the reduced coefficient
of friction 3. This is especially important because in-
formation about this parameter of the diffusion model
is not fully reliable. At present, there is no commonly
accepted concept of the mechanism of nuclear viscos-
ity. The assumptions of the two-body and one-body
viscosity mechanisms lead to 3 values that differ by
one order of magnitude. The estimates of 3 that are
obtained in the present study and the results deduced
from an analysis of the neutron yields in (HI, znf)
heavy-ion reactions (3 > 5 x 10%! s~ [29]) favor su-
percritical damping (3/2wg > 1).

[t can be seen from Fig. 4a that the inclusion
of nuclear friction in calculating o¢(£,) leads to
changes in the relative contributions of the different
chances, R, = 0¢,(Ey)/of(Ey), and in the energy
dependence of the cross section for each individual
chance, of,(£,). The chances in the dynamical
description are damped much faster with increasing
energy than the corresponding chances in the statis-
tical description.

An analysis of the chance structure in the en-
ergy dependence of the fission cross section shown
in Fig. 4a makes it possible to calculate directly the
mean multiplicity of prefission neutrons as a function

of the excitation energy F = E,, + B,,. Specifically,
we have
ivmax(E)
Tore(B) = > 2Ry (E), (41)
=0

where R, = Upre, is the contribution of the fission
chance upon the emission of x neutrons to the total
multiplicity Zpe. Relation (41) determines the yield
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Fig. 5. Relative contributions of different chances, R, =
otz (En) /oy (En), at E,, = 45 MeV: (open circles) sta-
tistical description and (closed boxes) description within
the diffusion model.

of prefission neutrons that have been emitted by the
excited primary nucleus before it reaches the saddle
point. It should be noted that the approach used
here gives no way to estimate the mean multiplicity of
prefission neutrons being emitted over the time over
which the fissle nucleus evolves from the saddle to the
scission point.

Figure 5 shows the relative yield of various chan-
ces, Ry =0, (En)/os(Ep) (3o, Re =1), at £, =
45 MeV for the same versions of theoretical descrip-
tion of the fission cross section as in Fig. 4a. i
the dynamical delay of fission according to (39), as
described by the diffusion model due to Kramers [7]
and Grange—Weidenmuiller [8], is taken into account,

the maximum of the distribution of R@ is shifted
toward greater x values with respect to the maximum

of the statistical distribution of RS’. As a result, the
prediction of the diffusion model for the prefission-
neutron emission proves to be markedly different from

that of the statlstlcal model ( Vpre =>, zRY = 4.68

versus upre dow R(S) = 2.68). It is obvious that
a variation k X oaps (Fy,) of the cross section in the
input reaction channel with the aid of the scale factor
k, while changing the value of the calculated fission
cross section [4], will introduce no changes in the
relative contributions of different chances, R, = (k x
or2(En))/(k x of(Ey)), and, hence, in Dy,

The mean number Dy, (E) of prefission neutrons

that was estimated for the reaction 23U(n, zn’ f) un-
der the assumption that neutrons are emitted before
the saddle point [see Eq. (41)] is presented in Fig. 6
versus the excitation energy, along with the experi-

mental values v5e" (E) for the U—=Cm actinides with
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Fig. 6. Results of calculations of #p,,e and experimental
values for the actinides in the U=Cm region (Z = 91—-96)
versus the excitation energy E: (open circles and trian-
gles) reaction induced by light charged particles (protons
and alpha particles, respectively), (closed circles) heavy-
ion reactions, (dash-dotted curve) empirical systemat-
ics from [30], (dashed curve) statistical description, and
(solid curve) results of the calculation within the diffusion
model.

mass numbers in the range 239—243. A compilation
of ' (E) was given in [30]. Open symbols repre-
sent data for the reaction induced by light charged
particles: (circles) p + 235:236:238) _, 236,237,239\
[31] and (triangles) a4+ 232Th, 233:238U, 239py —

23677, 237:242pyy 243Cm [32]. The closed circles cor-
respond to data obtained in the heavy-ion reactions
[33] 20N + 209Bi N 229Np, 7Li + 232Th N 239Np,
and 28Si + 208Pb — 235Cm. Experimental infor-
mation about Effﬁgt(E) in reactions induced by light
charged particles includes a data set in the narrow en-
ergy range E = 20—40 MeV. Here, the measurement
errors for (o, zn f ) reactions are large. Unfortunately,
there are no data on Tk (E) for neutron-induced
reactions. The experimental procedure that makes it
possible to obtain such data was implemented only
by authors of [34] about forty years ago. All this
complicates a verification of the diffusion model on the
basis of a simultaneous analysis of the fission cross
sections and the multiplicity of prefission neutrons.
Nevertheless, we can state for a first approximation
that the solid curve representing 7, (E) in Fig. 6 and
corresponding to the chance decomposition within
the diffusion model lies closer to the experimental
points for (a, znf) reactions in the vicinity of £ =
40 MeV than the dashed curve corresponding to the
traditional statistical description. By using the set
of data on (p,znf) reactions that does not include
three boundary points lying on the dashed curve in
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the vicinity of £ =30 MeV, it is hardly possible to
discriminate between the two descriptions of Do (E).

Kozulin ef al. [30] noticed a feature that manifests
itself in matching the high-energy data ( ¢, Vpost, Vpre)
measured in (HI,znf) reactions with low-energy
data measured in reactions induced by neutrons ( ;)
and light charged particles ( 7y, Upost, Vpre). For the
example of 7y in Fig. 6, this feature consists in
that the empirical systematics based on the analysis
of data on heavy-ion reactions in the energy region
E <40 MeV yields values of the prefission-neutron

multiplicity that are lower than the values e
measured in (p, znf) and (o, znf) reactions and the
values of 7. as obtained on the basis of a theoretical
description of the fission cross section by decom-

posing it into individual chances for the reaction

28U(n,zn f). The authors of [30] indicated that
this cannot be explained by different contributions
from nonequilibrium neutron emission in reactions
of different types. Partly, the effect can be associated
with the rotational energy E,o, by which we must
reduce, according to [29], the excitation energy for the

values I?S’r(gt measured in (HI, zn f) reactions. This
energy, which can be disregarded for light particles, is
converted in the fission process into gamma radiation.
[t is obvious that available experimental data in the
region of heavy actinide nuclei are insufficient both
for matching the results of measurements in heavy-
ion reactions and reactions induced by light particles
and for testing theoretical models.

5. CONCLUSIONS

An analysis of the cross section for 238U fission in-
duced by I-to 55-MeV neutrons has been performed
with the parameters of the optical model for the de-
formed Young potential [24]. The basic conclusions
drawn from this analysis are the following:

(i) Within the standard statistical model, it is pos-
sible to fit the results of the calculations to experi-
mental data on o (E,,) for £, <16 MeV. At higher
energies, the calculated curve lies considerably higher
than experimental data.

(ii) Perfect agreement between the calculated and
the experimental cross section cannot be achieved by
including, in the statistical description, the damping
of the asymmetric component of the coefficient of ro-
tational enhancement of the level density at the saddle
point.

(iii) Within the diffusion model, the inclusion of
dynamics at high energies makes it possible to de-
scribe the fission cross section over the entire energy
range under investigation and to obtain information
about the magnitude of the reduced coefficient g of
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the nuclear viscosity (friction). The values of 3 as
estimated in the present study are in agreement with
the results that are obtained from an analysis of the
prefission-neutron yield in heavy-ion reactions and
of the mass—energy distributions of fission fragments
and which furnish evidence in favor of supercritical
damping.

(iv) Simultaneous experimental investigations of
the fission cross section and the mean multiplicity of
prefission neutrons and their global analysis in reac-
tions induced by neutrons and light charged particles
may prove to be useful in testing the diffusion model
and in matching it with the statistical description at
low energies.
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Abstract—The s-wave bound state of the 4 + A system is investigated. The relevant solution to the
Schrddinger equation is expanded in the basis formed by the eigenfunctions of Hamiltonian for the 4«
subsystem. Differential equations for Yakubovsky components are employed to calculate basis functions.
Phenomenological potentials for ac and aA interactions are used. In the 4« system, additional three-
particle potentials for the interaction between « clusters are introduced in such a way as to reproduce the
experimental data on the binding energies, the root-mean-square radii, and the charge form factors for the
12 and the %0 nucleus. The binding energy, the root-mean-square radius, and the hyperon distribution
in the ground state of the 1{ O nucleus are calculated. The results of the calculations are in good agreement
with those obtained on the basis of the 0 + A two-particle model with the phenomenological Woods—
Saxon potential. © 2001 MAIK “Nauka/Interperiodica”.

1. INTRODUCTION

The nucleus plus A hyperon two-particle cluster
model has long since been used to describe hypernu-
clei. A local s-wave potential for the (nucleus plus
A) system makes it possible to reproduce the exper-
imental values of the A-hyperon separation energy
for medium-mass and heavy nuclei. In [1], it was
proposed to take the potential in the Woods—Saxon
form
Vo

T 1+ exp(TR)

a

Vi(r) (1)

Various sets of values for the parameters of this
potential were presented in [1, 2], and the analytic
dependence of the parameter ry on the hypernucleus
atomic number was obtained there. An attempt was
made in [3] to estimate the hyperon binding energy
in the YO hypernucleus, for which the experimen-
tal value of the binding energy is not known. The
inputs used there included the potential (1) with the
parameter values from [2]. The potential (1) was also
employed in [4] to calculate the binding energy of
hyperons in double hypernuclei.

The objective of the present study is to describe
the hyperon state in the 17O nucleus within the a-
particle cluster model, where this nucleus is treated
as a system of five particles (four « clusters and a A
hyperon). In view of what was said about the use of
nucleus plus A hyperon two-particle model [1, 2], it
is natural to assume that the s-wave approximation

will be sufficient for this purpose. It is of course nec-
essary to ensure, in this approximation, a satisfactory
description of the 18O core of this nucleus—in par-
ticular, the core binding energy, root-mean-square
radius, and charge form factor must be reproduced. A
correct description of the behavior of the charge form
factor would suggest that the wave function of the
4« cluster subsystem closely approximates the wave
function of the 10 nucleus. In[5], we proposed the s-
wave « cluster model for the nucleus 16O and showed
that this model makes it possible to reproduce sat-
isfactorily experimental data on the aforementioned
features for the 12C and 6O nuclei. In addition to the
two-particle a« potential, this model involves three-
particle potentials [5, 6] acting in the 3a subsystem.
In the present study, we use the results from [5]. In or-
der to describe the acv and A« interactions, we choose
phenomenological potentials that faithfully reproduce
two-particle data and the binding energy of the }3C
hypernucleus (aaaA system)[7].

In order to solve the Schrédinger equation for
the O nucleus, we use the simplest version of the
coupled-channel method for the case of strong cou-
pling [8]. Within this method, the required solution is
expanded in a basis that is formed by the eigenfunc-
tions of the Hamiltonians for the subsystem, which
are treated as bound clusters. In the 4ac + A system,
it is the eigenfunctions of the Hamiltonian for the
4o subsystem that appear to be the basis functions.
Upon taking projections onto the basis elements, the
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Schrdodinger equation reduces to a set of two equa-
tions for the functions describing the relative motion
of two clusters, 4o and A. It should be noted that,
in the 4aA system, the pronounced degree of 4a + A
clustering is expected to ensure a high rate of con-
vergence of the basic expansion. In order to calculate
the basis in the 4a subsystem, we apply the differ-
ential equations for Yakubovsky components. These
equations, which were first obtained and analyzed in
[9], are solved numerically on the basis of the cluster-
reduction method that we proposed in [10].

The ensuing exposition is organized as follows. In
Section 2, we give an account of our method for solv-
ing the Schrédinger equation for the 4ae + A cluster
system. In Section 3, we describe the s-wave poten-
tial model based on the effective equations obtained
in Section 2. In Section 4, we present the features
of the YO nucleus that were calculated in the s-
wave approximation and compare these results with
those produced by the nucleus plus A hyperon model
employing the potential (1). In the conclusions, we
formulate the basic results of our study.

2. DESCRIPTION OF THE FORMALISM

We consider the 4aA system, which consists of
four bosons (« particles) and one fermion (A hy-
peron). The Schrodinger equation for this system has
the form

(Ho+ Vs +Ve+Vaa+Vaa — E)¥ =0, (2)

where H is the kinetic-energy operator, Vo (Vaa) is
the sum of the two-particle potentials for the aa (Acr)
interaction, Vi represents the Coulomb interaction
between the « clusters, and V3 is the sum of the
three-particles potentials for the interaction of the «
clusters. It is obvious that the total wave function
¥ for the system must be symmetric with respect to
permutations of the « clusters.

In order to describe the system in configuration
space, we use Jacobi coordinates x, y, z, and r, which
can be explicitly expressed in terms of the radius
vectors of the particles constituting the system [11].
Among the possible sets of Jacobi coordinates, we
choose here those that correspond to the 4o 4+ A clus-
tering of the system. The Jacobi coordinates associ-
ated with this clustering are displayed schematically
in Figs. la and 1b. The coordinates in Fig. la (1b6)
correspond to the 3 + 1 (2 4 2) Jacobi coordinates in
the 4av subsystem.

The wave function for the 4aA system can be
expanded in the complete basis formed by the eigen-
functions of the Hamiltonians for the subsystems.
Taking into account the 4a 4+ A clustering, we choose
the eigenfunctions of the Hamiltonian for the 4«
subsystem for this basis. The basis functions are
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Fig. 1. Jacobi coordinates for the 4 + A system that cor-
respond to the (a) 3 + 1 and (b) 2 + 2 Jacobi coordinates
in the 4 subsystem.

denoted by ¥;(X), i =1,2,..., where X = {x,y, z}.
The functions v;(X) are solutions to the Schrodinger
equation

(H()X —|— ‘/3 + VC + Vaa — EZ)’QZ)Z(X) = O, (3)

where F; are the corresponding eigenvalues and Hyx
is the kinetic-energy operator for the 4ax subsystem.
To construct the basis, we use here the differential
formalism of Yakubovsky equations [11]. The wave
function ;(X) can be broken down into a set of
components that satisfy the relevant set of integro-
differential equations. In the case of identical par-
ticles, this set is reduced to two equations for the

components U} and U2 [5],
(Hox + Voo + Ve + V3 — E;)U} (4)
+Vaa(PI + P4_)Ui1
= —Vaa [(P+ POU! + (P + PHUY]
(Hox + Vaa + Vet Vs — E)UZ 4 Voo (PTPTU?
= —Vaa(PT + P PTU},
where V,, is the two-particle potential of the aa
interaction and P* and P;* are the operators of cyclic
permutations of, respectively, four and three particles
(the subscript indicates the number of the particle not
involved in a specific permutation). The component
Ul (U?) corresponds to the 3 + 1 (2 + 2) partition of
the system. The wave function #; can be obtained
by applying the particle-permutation operators to U}
and UZ:
vi=I+PT+P P +P )T +P (5
+POUL + (I + P+ P + PYPHUY.
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The functions U} (X) and U?(X) satisfy the con-
ditions
UZI{:(X)|F(R) = 07 k= 1727

at the boundary I'(R) of the region whose typical size
is determined by the radius R. The basis functions
1;(X) are numbered in the order of increase in the
eigenvalues. At a sufficiently large value of the pa-
rameter R, the function ;(X) coincides with the
total wave function of the 4a system (10 nucleus)
in the ground state.

Once the orthogonal basis 9;(X), i =1,2,...,
has been constructed, we can write the expansion of
the total wave function for the system in the form

U(X,r) =Y i(X) filr). (6)
1=0

[t should be noted that, owing to the representa-
tion in (5), the function ¥ (X, r) in (6) is automatically
symmetric under permutations of the « clusters [11].
Projecting Eq. (2) onto the basis elements, we find
that the functions f;(r), which describe the relative
motion of the 4a subsystem and the A particle, satisfy
the equation

(Hor — E+ E;) fi(r) (7)

k=4
+ ) [ @iX)] Y Vaallr — el (X)) | £i(x) =0,
3>0 k=1

where Hy, is the kinetic-energy operator for the rela-
tive motion of the 4 subsystem and the A particle,
Vaa is the two-particle potential of A« interaction,
and ry, are radius vectors of the « clusters. In taking
into account the completeness of the basis ¥;(X),
we perform summation in expansion (6) over a finite
number of terms (/N max) in order to obtain the nu-
merical results [thereby, the set of Egs. (7) is reduced
to a finite set]. In view of this, it is of paramount
importance to study the convergence of the results
versus N max. The efficiency of the aforementioned
cluster reduction of Eq. (2) is entirely determined by
this parameter.

3. DESCRIPTION OF THE MODEL

We consider the bound state of the system formed
by four « particles and a A hyperon. The total angular
momentum of the system itself as a discrete unit and
the angular momenta of its subsystems are taken to
be zero (that is, we perform our analysis in the s-
wave approximation). The interaction between the
A hyperon and the « clusters is described by the
potential [12]

Vaa(r) = Voexp(=r?/3), (8)
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where V) = —43.97 MeV and Gy = 1.566 fm. This
potential faithfully reproduces the binding energy
of the A hyperon in the 3He hypernucleus (Ex =
—3.11 MeV).

To describe the two-particle interaction of the o
clusters, we use the s-wave component of the poten-
tial [13] (version “a”),

Vaa(r) =W eXp(_TQ/ﬁ%) + Vs exp(—?”2/ﬁ22), (9)
where V3 =120.0 MeV, (1 =1.53 Vo =
—30.18 MeV, and By = 2.85 fm.

In the subsystem of a-particle clusters, we in-
troduce an additional three-particle potential V3 that

ensures the existence of a bound state in the subsys-
tems. This potential is taken in the form

V3(p) = V exp(—(p/B)%),

(10)
where p? = 3= 12 r; being the radius vector of the
ith particle in the c.m. frame. For the four-particle
system, we have introduced two three-particle poten-
tials Vi (p) and Vil(p). Of these, the first ensures the
existence of a bound state in the three-particle clus-
ter, while the second specifies interaction between the
fourth particle and each pair of particles in the three-
particle cluster. These potentials are chosen in the
form (10), with the parameters being denoted by V!,
prand VI B respectively. In this way, we take
explicitly into account the 3ae + « cluster structure in
the 4« four-particle system.

In [5], we showed that the parameters of these
potentials can be chosen from a fit to experimental
data on the binding energy, the root-mean-square
radius, and the charge form factors for the 2C and
160 nuclei. In constructing this fit, we assumed that
the a-particle clusters in the bound cluster system
are deformed in relation to the free a particle. The
deformation coefficient is defined as

A= (Ra/RC)2 )
where R, and R, are the root-mean-square radii
of the « particle (R, =1.47 fm) and the « cluster,
respectively. The potential model constructed in [5]
reproduces not only the ground state but also the 05
excited s-wave state of the 1O nucleus, its binding
energy being —8.8 MeV (to be compared with the
experimental value of —8.34 MeV).

The parameters of the three-particle potential
Vi(p) are V1= -24.32 MeV and ' =3.795 m.
In the present article, the parameters V' and A
of the three-particle potential Vi!(p) from [5] were
changed. We choose the values of V! = —5.59 MeV

and B = 5.71 m. In this case, the coefficient A of
the a-cluster deformation takes the values of A =3
both for the 3a and for the 4« system, while the

fm,
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charge form factor calculated according to [5] for
the 4a-cluster system reproduces qualitatively the
experimental behavior of the 'O form factor at high
momentum transfers. Hence, the wave function for
the cluster system being considered can be close to
the 10 wave function at sufficiently small distances.
In Fig. 2, the solid curve represents the behavior of
the form factor for the 4a-cluster system, while the
closed squares correspond to experimental data from
[14] on the 50 form factor.

In [7], the potentials (8)—(10) were employed to
study the 13C nucleus on the basis of the aaaA
cluster model; there, the experimental value of the
ground-state binding energy for the 3C nucleus
(Ep = —18.7 MeV) was reproduced and the result of
Hiyama et al. [15], who predicted an s-wave excited
bound state in the acaA system, was confirmed.

In the s-wave approximation, the set of Eqgs. (7)
takes the form

(11)

[~as07 — (e — &)l filr)

j:Nmax k=4
+ D (Wil OaalRi)e) fi(r) =0,
j=1 k=1
where
0 — dmeg + mp

8mp

mg and my being, respectively, the a-particle and

the A-hyperon mass; trq(7) = Vaa(z)ma/h?; € =

Emg/h?;e; = Eymg /h%; and r = |r|. The matrix ele-

ments (¢;|Uaq (Ry)|1;) are calculated by the formula
(Vilvaa(Re)lth;)

R R R

///d:cdydzdw
0 0 Q

XUpa(Ri)Vi(x, Yy, 2,0, v, W), (2, y, 2,0, v, w),
where
dw = sin ©,dO,, sin ©,dO, sin ©,dO,dp,d¢,
(04, Oy, and O; ¢,; and ¢, are the spherical angles
of the vectors x, y, and z, respectively);
v = sin O, sin ©, cos ¢, + cos O cos O ;

o

u = sin O, sin O, cos ¢, + cos O, cos O ;
w = sin O cos ¢, sin O, cos ¢,
+sin ©, sin ¢, sin O, sin ¢, + cos O cos O ,;
x =[x,y =yl z =z,
R = (50 + (y/3)° + (2/2)% + 12
—zyv/3 + zyw/6 — zzu/4 — zr cos(0,/2)
—2yr cos(Oy/3) + xr cos Oy;
R} = (2/4)* + (y/3)* + (2/2)* +r?
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Fig. 2. Charge form factor for the nucleus **O. Solid
curve represents the charge form factor of the 4a-cluster
system at A =3, dots correspond to the experimental
data from[14].

+zyv/3 + zyw/6 + zzu/4
—2rcos(0,/2) — 2yr cos(©,/3) — xr cos O;
RY = (2/4)" + (2y/3)" +71° — zyw/3
—2zrc0s(0,/2) + 4yr cos(0,/3);
R3 = (32/4)* + 1% — 321 cos(0,/2).

The functions ¥;(z,y, z,u,v,w), i =1,2,... Npax,
are normalized by the condition
R R R

o= [ [ [ [awdyizao 12)
00 0 Q

xi(x,y, 2z, u, v, w)Y;(z,y, 2, u,v,w) = ;.
In configuration space, the parameter R specifies the
rectangular region (in the calculations, we took the
value of 25 fm for this parameter) where the basis
functions ¢;(x,y, z,u, v, w) were calculated accord-
ing to expression (5).

4. RESULTS OF THE CALCULATIONS

The cluster reduction of Eq. (2) reduces the prob-
lem to solving the effective Eqs. (11) for the functions
describing the relative motion of the constituent clus-
ters. A numerical solution to the set of Egs. (11) was
constructed by using a finite-difference approxima-
tion on an equidistant mesh. The basis functions nec-
essary for performing the reduction procedure were
obtained by solving numerically [5] Eqgs. (4) for the
Yakubovsky components of the total wave function
for the 4a subsystem; the basis functions ;(X), i =
1,2, ..., were calculated according to (5).

The results obtained by calculating the binding
energy of the A hyperon in the 4o+ A system are



Fig. 3. Distribution of the A hyperon in the 17O nucleus:
results of our calculations (solid curve) within the 4o + A
model and (dashed curve) within the **O+A two-particle
model involving the Woods—Saxon potential with the
parameter values from [2] and (dotted curve) results from
[16], where the parameters of the Woods—Saxon potential
were determined from a fit to the hyperon binding energy
obtained within the microscopic approach in [16].

Eg, MeV
27
-28 [ ] [ ) [ ]
2 3 4
Ninax

Fig. 4. Binding energy E'p in the ground state of the 4aA
system as a function of the number Npax of the basis
functions involved.

presented in the table. Since there are no experi-
mental data on the binding energy of the A hyperon
in the 1{O nucleus, our result is contrasted against
the results of other calculations. By way of example,
we indicate that, in [3], the binding energy was esti-
mated on the basis of data deduced from an analysis
of the experimental values of the binding energies
of medium-mass and heavy hypernuclei. The value
of —13.0 & 0.4 MeV, which can be referred to as an
experimental one in this sense, was thus obtained
in [3]. From the table, we can see that the value
calculated here for the ground-state energy of 17O
agrees with this experimental result. The results of
the calculations performed by other authors exhibit a
rather broad scatter. The authors of [16] and [17] used
the microscopic approach involving the reasonable
Jilich potential (version B), but their results differ
considerably from one another. Also presented in
the table are the results of our calculations for the
hyperon binding energy within the nucleus plus A
hyperon two-cluster model for the 1{O nucleus with
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the Woods—Saxon potential whose parameters were
taken to be identical to those from [2].

For the A hyperon in the 17O nucleus, we have also
calculated its distribution W (1) defined as

i=Nomax
Wa(r) J Z (fi(r)/r)?

=1

and normalized by the condition

o0

/\Il?\(r)Ter =1.

0

In Fig. 3, the distribution function W (r) is shown
by the solid curve. For the sake of comparison,
the distribution of the A hyperon in the YO nucleus
according to the calculation within the nucleus plus
A hyperon two-particle model involving the Woods—
Saxon potential is shown in the same figure (dashed
curve) for the case where the potential parameters
were taken to be identical to those from[2] and (dotted
curve, borrowed from [16]) for the case where these
parameters were determined from a fit to the hyperon
binding energy (Ey = —11.83 MeV) calculated with-
in the microscopic approach in [16]. The root-mean-
square radius of the A-hyperon distribution in the 17O
nucleus was calculated by the formula

The results of calculations are also quoted in the table.

Generally, we can conclude that the results that
we obtained for the features of the 1{O nucleus (bind-
ing energy, root-mean-square radius, and hyperon
distribution) agree with the results of the calculations
within the nucleus plus A hyperon model involving
the local potential (1). In our opinion, this indicates
that the ground state of the 1"O nucleus can be
treated as an s-wave state of the 4aA system, which
undergoes clustering predominantly in the 4a + A
form. In order to clarify this statement, we con-
sider the rate of convergence of the results obtained
within the cluster-reduction method because, from
these results, it can be deduced whether there is
(or there is no) clustering in the subsystems [10].
The binding energy calculated for the 4aA system
versus the number Ny of basis functions retained
in expansion (6) is displayed in Fig. 4. It can be
seen from the figure that, for the convergence of the
calculation of the binding energy, it is sufficient to
take into account the first two basis functions. These
basis functions correspond to the ground state and to
the first excited state of the 150 nucleus, with their
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Binding energy Ex and root-mean-square radius R for
the distribution of the A hyperon in the 17 O nucleus

References E\, MeV RA, Im
[16] ~11.83 2.47
[17] —15.54 —
[3] (“Experiment”) —-13.0+£04 —
Present study —13.5 2.05
(150 + A) model from [2] —13.4 2.18

binding energy being equal to —14.4 and —8.8 MeV,
respectively. Hence, the 4aA system is well clustered
in the form 4« 4+ A. [t should be noted that the s-
wave 4« + A cluster model [involving A« interaction
described by the potential (8)] cannot be reduced to
the 'O + A hyperon model with a two-particle s-
wave local potential. Indeed, only at Ny = 1 can the
set of Egs. (11) be reduced to an equation similar to
the two-particle Schrodinger equation. In this case,
the calculated value of the A-hyperon binding energy
is less (in absolute value) than the “experimental”
one (see Fig. 4). The binding energy calculated
with allowance for the excitation of the core (*¢O
nucleus) complies with the experimental value. The
contribution of the core excited state to the wave
function for the system does not exceed 5%. The
numerical estimate was obtained in the following
way. The probability P that the bound state of the
4a system is clustered in the form O + A was
calculated by the formula
P = ({1 f|¥),

where ¥ is the total wave function for the system,
¥y is the wave function for the ground state of the
4a system (Y0 nucleus), and f; is the function that
describes the relative motion of the nucleus and the
A hyperon. Obviously, the probability of finding the
4aA system in the 10(05 ) + A formis 1 — P. For P,
the calculations yield the value of 0.95.

5. CONCLUSION

It has been shown that the ground state of the
170 hypernucleus can be described, to a high preci-
sion, within the s-wave 4a + A cluster model where
three-particle potentials representing the interactions
between the a-particle clusters have been introduced
in addition to the two-particle Aav and avev potentials.
The idea that the ground state of the nucleus {O
is clustered predominantly in the 4a 4+ A form has
been confirmed. The 1O+A two-particle model [1,
2] involving a local potential provides a good approx-
imation for describing the hyperon states in the 1{O
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nucleus. In order to treat the YO nucleus more
accurately, it is necessary to take into account the
excitation of the core (19O nucleus).

ACKNOWLEDGMENTS

This work was supported by the Contest Center
at the Ministry for Higher Education of the Rus-
sian Federation (grant no. 97-0-14.3-23) and by
the Russian Foundation for Basic Research (project
no. 98-02-18190).

REFERENCES

1. A. Bouyssy, Nucl. Phys. A 381, 445 (1982).

2. D.J. Milliner, C. B. Dover, and A. Gal, Phys. Rev. C
38, 2700 (1988).

3. A. A. Usmani, S. C. Pieper, and Q. N. Usmani, nucl-
th/9502008.

4. J. Caro, C. Garcia-Recia, and J. Nieves, nucl-
th/9801065.

5. L. N. Filikhin and S. L. Yakovlev, Yad. Fiz. 63, 409
(2000) [Phys. At. Nucl. 63, 343 (2000)].

6. K. Fukatsu, K. Kato, and H. Tanaka, Prog. Theor.
Phys. 81, 736 (1989); O. Portilho and S. A. Coon,
Z. Phys. A 290, 93 (1979); H. Ogasawara and
J. Hiura, Prog. Theor. Phys. 59, 655 (1978); D. V. Fe-
dorov and A. S. Jensen, Phys. Lett. B 389, 631
(1996).

7. 1. N. Filikhin, Yad. Fiz. 63, 830 (2000) [Phys. At.
Nucl. 63, 760 (2000)].

8. V. P. Zhigunov and V. N. Zakhar’ev, Methods of
Strong Channel Coupling in Quantum Scattering
Theory (Atomizdat, Moscow, 1974).

9. S.P Merkur’evand S. L. Yakovlev, Dokl. Akad. Nauk
SSSR 262, 591 (1982) [Sov. Phys. Dokl. 27, 39
(1982)]; Teor. Mat. Fiz. 56, 60 (1983).

10. S. L. Yakovlev and 1. N. Filikhin, Yad. Fiz. 56 (12),
98 (1993) [Phys. At. Nucl. 56, 1676 (1993)]; 58,
817 (1995) [58, 754 (1995)]; 60, 1962 (1997) [60,
1794 (1997)]; nucl-th/9809041; 1. N. Filikhin and
S. L. Yakovlev, Yad. Fiz. 62, 1585 (1999) [Phys. At.
Nucl. 62, 1490 (1999)]; 63, 63 (2000) [63, 55 (2000)];
63, 79 (2000) [63, 69 (2000)]; 63, 402 (2000) [63,
336 (2000)].

11. S. P Merkur’ev and L. D. Faddeev, Quantum
Scattering Theory for Few-Body Systems (Nauka,
Moscow, 1985).

12. H. Bando, K. Ikeda, and T. Motoba, Prog. Theor.
Phys. 66, 344 (1981); 67, 508 (1982).

13. S. Aliand A. R. Bodmer, Nucl. Phys. 88, 99 (1966).

14. 1. Sick and J. S. McCarthy, Nucl. Phys. A 150, 631
(1970).

15. E. Hiyama, M. Kamimura, T. Motoba, ef al., Prog.
Theor. Phys. 97, 881 (1997).

16. 1. Vidana, A. Polls, A. Ramos, and M. Hjorth-Jensen,
Nucl. Phys. A 644, 201 (1998); nucl-th/9805032.

17. S. Fujii, R. Okamoto, and K. Suzuki, nucl-
th/9901055.

Translated by O. Chernavskaya



Physics of Atomic Nuclei, Vol. 64, No. 9, 2001, pp. 1600-1617. Translated from Yadernaya Fizika, Vol. 64, No. 9, 2001, pp. 1680-1697.
Original Russian Text Copyright (© 2001 by Neudatchin, Sviridova, Yudin.

NUCLEI

Theory

Probing the Mesonic Structure of the Nucleon by Means of Exclusive
Quasielastic Pion Knockout in (e,e’w) Reactions at High Energies

V. G. Neudatchin, L. L. Sviridova, and N. P. Yudin

Institute of Nuclear Physics, Moscow State University, Vorob’evy gory, Moscow, 119899 Russia
Received February 29, 2000; in final form, November 10, 2000

Abstract—By including the Z diagram in an analysis performed in the laboratory frame (instantaneous
form of dynamics), the notion of quasielastic pion knockout by protons and electrons [(p, 2p) and (e, ¢'p)
reactions treated in terms of the relevant pole diagrams] is generalized to the relativistic case where a meson
is quasielastically knocked out of a nucleon by an electron having an energy of a few GeV. The concept of the
wave function is introduced for the pion (and for other mesons), and its relation to the vertex constant G,y n
and the vertex function g,y (k?) is indicated. The spectroscopic factor Sﬁ'" is defined as the normalization
of the wave function for the meson u. It is shown by two methods that, under the kinematical conditions of
quasielastic knockout that include the condition E; > m, (E; is the energy of the knock-on pion) and the
condition that the square Q2 of the virtual pion mass is large, the competing tree diagram is suppressed in
relation to the pole diagram (this is not so in the case of pion photoproduction). From data of a p(e, e'7")n
experiment involving longitudinal virtual photons ~7, the momentum distribution | \I/;,”’(k)\ % of pions in the
nucleon is extracted for the first time over the entire range of significant momenta k, and this result is used
to determine the cutoff constant A, = 0.7 GeV/c and the value of S,™ ~ 0.2. The momentum distribution
of positive rtho mesons in the soft section of the spectrum is determined from experimental data on the
process p(e, e'mT)n proceeding through the mechanism p* + % — 7 involving transverse photons. A
way to determine the momentum distribution of omega mesons through data on the process p(e, €/7%)p is

indicated. Two forms of dynamics—instantaneous form and that of light-front dynamics (the latter does
not involve the Z diagram)—are compared for the example where the calculations are performed for the

spectroscopic factor SB*. © 2001 MAIK “Nauka/Interperiodica”.

1. INTRODUCTION

At present, it is commonly recognized that QCD is
the fundamental theory of strong interactions that has
been sought by the scientific community over many
decades. That the class of processes described by
this theory can be effectively partitioned into pertur-
bative and nonperturbative processes (the latter type
includes strong QCD processes) is peculiar to QCD.
In the perturbative region, one is dealing directly with
fundamental degrees of freedom (quarks and gluons)
and applies the formalism of perturbation theory in
the coupling constant. In the nonperturbative re-
gion, perturbation theory is inapplicable, so that a
considerable part of hadron structure and dynamics
should be analyzed in terms of some effective degrees
of freedom that are formed in this region. On the basis
of first principles alone, it is, however, very difficult to
pinpoint the effective degrees of freedom that must be
taken into account; therefore, experimental data and
physical intuition are of prime importance here.

For this reason, it comes as no surprise that
very different hadron models—for example, models

of quark interaction through gluon strings [1-3] or
models of interaction via meson exchange [4—6]—are
being discussed in the literature.

In connection with the construction of the Contin-
uous Electron Beam Accelerator Facility (CEBAF)
at Newport News (USA), interest in studying the
structure of hadrons—in particular, nucleons—has
quickened considerably. The problem of assessing
the degree to which the properties of a hadron (nu-
cleon) are determined by effective (mesonic) degrees
of freedom (so-called question of the mesonic struc-
ture of the nucleon) [8, 9] is one of the important
problems that have been widely discussed in these
realms. Here, the debates that began as far back as
the 1970s [10] are being continued at a new level.

In the present survey that summarizes our recent
investigations, we consider the possibility of probing
the mesonic structure of the nucleon by the simplest
mechanism of pion knockout by high-energy elec-
trons. This makes it possible to determine reliably,
from exclusive coincidence experiments, the momen-
tum distribution of mesons in the nucleon for various
channels.

1063-7788/01/6409-1600$21.00 © 2001 MAIK “Nauka/Interperiodica”



PROBING THE MESONIC STRUCTURE OF THE NUCLEON

Investigation into the structure of a composite
system by means of quasielastic knockout of its con-
stituents has been playing an extremely important
role in the physics of microcosm[11, 12].

In a broad sense, the term “quasielastic knock-
out” means the following: a high-energy projectile
(electron, proton, etc.) instantanously knocks out a
constituent—an electron from an atom, a nucleon or
a cluster from a nucleus, or a meson or a quark from a
nucleon or a nucleus—transferring a high momentum
to it and leading to controllable changes in its internal
state, whereof one can take advantage.

Use can be made of quasielastic effects both in
inclusive and in exclusive experiments. Information
about the structure of a composite system from inclu-
sive experiments is much less definitive than informa-
tion from exclusive experiments, but even the former
can furnish valuable results [13—18].

Exclusive experiments resolve individual states of
the final system (different channels of the virtual decay
of the initial composite system into a constituent
and the final system in a given excited state). As
a result, the quasielastic mechanisms singled out in
such cases provide more detailed information about
the structure of the composite state being studied.

First of all, it should be noted that coincidence ex-
periments of this type measure the missing momen-
tum and energy (that is, the momentum of the con-
stituent and its binding energy in the channel being
considered). By varying kinematical conditions, one
can directly measure the momentum distribution of
constituents in various channels. By way of example,
we indicate that, for nuclei, such experiments make
it possible to determine the momentum distributions
of nucleons in various shells. Second, it is possible
to measure spectroscopic factors (probabilities) for
constituent separation in various channels. For nuclei
and atoms, spectroscopic factors determine the prob-
abilities of excitation of the states of the A — 1 nucleus
upon nucleon knockout from the ground state of the
A nucleus (structure of relevant fractional-parentage
coefficients) [19]. The sum of the spectroscopic fac-
tors over all channels is equal to the total “effective”
number of constituents in the system that belong to
the type being studied.

In the present review article, we address the prob-
lem of how experience gained in studying the exclu-
sive quasielastic knockout of nucleons and clusters
from nuclei can be extended to the case of pion elec-
troproduction on nucleons. In doing this, we rely
both on previous investigations along these lines [20]
and on our recent results [21—23]. We consider the
exclusive knockout of pions and other mesons as a
step that must follow inclusive experiments.

However, this step is nontrivial since, in the kine-
matical region being considered, quasielastic pion
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knockout from nucleons is essentially relativistic. In
particular, pion knockout considered in the laboratory
frame receives a significant contribution from the Z
diagram, which represents the decay of a virtual pho-
ton into a meson—antimeson pair.

Quasielastic pion knockout is analyzed here in
the initial-proton rest frame (laboratory frame). It
is the frame where the momentum of the spectator-
baryon (N') recoil is low in relation to the momentum
of the knock-on meson (this is the most important
signature of the quasielastic-knockout process).

2. DESCRIPTION OF THE FORMALISM
2 1. General Points

Pion electroproduction on nucleons in (e, e’) pro-
cesses belongs to the general class of reactions de-
scribed by the Feynman diagram in Fig. 1. The
element of the cross section for such processes is
given by the well-known expression [24]

4 ’Mf1’2 dp:a (1)
AT (2m)*2pl,

do = (2m)

% dpy dpr
(2m)32E, (2m)32FER
where My; is the relevant invariant amplitude (an
overbar  denotes  averaging  over  spins);

1/2
T= |:(pr6)2 —fsz%} is the Mgller invari-

ant flux; (peo,Pe) is the initial-lepton (electron)
4-momentum; (pLy, p..) is the final-lepton (electron)
4-momentum; p, and E, are, respectively, the mo-
mentum and the energy of the product particle (pion);
pr and Ep are, respectively, the momentum and
the energy of the final particle (baryon); g, = (pe —
pl) is the virtual-photon 4-momentum; pr is the
4-momentum of the target particle; and My is its
mass.

Having expressed My; in terms of the relevant
matrix elements of the hadron current J,,,

_e’aﬁyuu<ppr ’ J;L ’pT>

§*(q + pr — px — PR),

My = 02
(here, w and u are the Dirac spinors for the elec-
trons, and Q? = —g3 = —¢® + q? is the sign-reversed

square of the virtual-photon 4-momentum), and per-
formed summation and averaging over spins, we rep-
resent the fivefold-differential cross section as

o a El|pil 4 Q*1
— (& X = 2 v -
T A (it w i < (/2 5 s
1
<Aelnl +5 (1l +11P) @

+/2e(1+¢e)Re (Jo (J41 — J-1)) cos ¢y
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Fig. 1. Diagram for pion electroproduction on a nu-
cleon: (pe, p.) momenta of the incident and the scattered
electron, respectively; (¢) virtual-photon momentum; (k)
virtual-meson momentum; (p) initial-nucleon momen-
tum; (p') final-nucleon momentum; and (k’) product-
pion momentum.

—eRe (J+1Ji1) COSs 29036}7

where E! is the energy of the final electron; Q. is its
scattering angle; W2 = (p, 4+ pg)? is the invariant
mass of final hadrons; Jy = Jyef, e\ being photon-
polarization unit vectors; pX and d2% are, respec-
tively, the c.m. momentum of particle z and its
c.m. scattering angle; ¢, is the angle between the
plane spanned by the (e,€’) momenta and the plane
spanned by the final-hadron momenta; and the quan-
tity
292 ,0.]"
€= [1 + %ta?ﬂg}

characterizes the degree of longitudinal polarization
of the virtual photon.

Apart from a factor, the matrix elements
(pzpr|Ju|pr) coincide with the invariant amplitude
for the transition

¥+ pr — p2 + DR,

where v* is a virtual photon. Therefore, the differential
cross section d®o /dE".dQ.dSY% is usually expressed in
terms of the cross sections doy, /dt, dor /dt, dopr/dt,
and dopp/dt for the production of particle x by
a virtual photon, where t = k% = (p, — q)%. Here,
dor/dt and dor/dt are the cross sections for the
cases of, respectively, transverse and longitudinal
polarization, while dorr/dt and dopr/dt are in-
terference terms.  Obviously, the cross sections
do;/dt, i =L, T, LT, TT, must be proportional to
bilinear combinations of currents (amplitudes) that
we denote, by convention, as (J?)

3’

dopfdt ~ (J?), = |Ihzol?,
dor/dt ~ (J*), = 1/2{1JA:1\2 + ‘J)\:—I‘Q}a (3)
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dopr/dt ~ (J*), . = Re{Jr=o (Ja=—1 — Jr=1)"},
dO'TT/dt ~ <‘]2>TT = RG{J)\:1J)\:_1}.

The proportionality factors are introduced by analogy
with the definition of the cross section for a real pho-
ton. For the real-photon-induced photoproduction of
particle z by a real photon, the differential cross in the
c.m. frame of the final hadrons Rz is given by

dJT — <J2>T |p;<:| (4)
a0~ W Jaz
where q; is the real-photon momentum in this frame.
As a rule, the cross sections do;/dt for electropro-
duction mediated by a virtual photon are defined by
analogy with expression (4), but this is done in such
a way that the momentum q and the invariant mass
W of final hadrons are related by the equation
W2 — M2
2w
which is valid for a real photon. For the electropro-
duction, we therefore have

sy, (8aW)* |qp|”
but, here, g is taken to be the photon momentum by

convention.

With allowance for the aforesaid, we can represent
the differential cross section (2) in the form

lar| =

ddo dor  dor
dELd0.d0; {EF Ta 6)
d d
++1/2e(1 +¢) Z;T CoS @, + € (ZT oS 2<px} ,
where
a ELW?2-MZ 1
t= 2 0202 (7)
2r2E. Q*MZ 1-¢
plays the role of the virtual-photon flux and
do; do; T
= (8)

dt— d |a*|[pe|
We note that, in (8), ¢* is the virtual-photon momen-
tum in the c.m. frame. Its square is given by
W2 — 02 — M2 2
( Q T) + Q2-
4W2

Instead of E., Q., and €2, use is often made of the
invariant variables Q? = 4E.E'sin®(0./2), W? =
M2+ 2M7p(E, + E') — AE.E! sin? (0./2), and t =
k2. In this case, we have

q*2 —

d*o d?o
S A—— S N 9
AW2dQ2dtdp, | dtdps ©)
doy dor
fry F _— _—
{6 at T ar
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++/2e(e + 1)de§T dil%cos ngx}.
Here, I is a different flux of virtual photons:
a W2-M2 1
(4m)2 Q?E2M2 1—¢
Experimental results are presented in terms of
do;/dt.

COS Y + €

F:

(10)

2.2. Quasielastic Meson Knockout from a Nucleon

The formulas presented in the preceding section
are quite general: they are applicable to atoms,
molecules, nuclei, and hadrons, and no specific
reaction mechanism is implied in them. We will now
specify these formulas for the process of quasielastic
meson knockout from nucleons, in which case the
virtual-photon momentum is entirely transferred to
the product pion. We define the relevant kinematical
variables as pr = py = p,pr = p’, and p, = k'

In quasielastic knockout, the energy transfer ¢
and the momentum transfer |q| must be such that
la| > |k|, where k is the virtual-meson momentum
(k =k —q), and that qo > Ep — My, where Ep
stands for the final-baryon energies. That the dia-
gram in Fig. 2 is dominant formally expresses the
quasielasticity of the process. Postponing the discus-
sion of the question concerning dominance of the pole
diagram to the end of this section, we are now going
to comment on the formal aspects of quasielasticity.

If antiparticle degrees of freedom can be disre-
garded, the differential cross section d®c /dE’ d.dS):
for the case of the quasielastic mechanism (Fig. 2)
can be expressed in terms of the wave function for the
meson . in the nucleon and the cross section for the
scattering process e +n — €' + 7.

In this case, the invariant amplitude My; can
indeed be represented in the form

/ / 1./
MfZ:M(p—)pk)M(pek_)pek), (11)
2ex(Ep — B}, — ex)

where M(p — p'k) and M(pek — plk') are the in-
variant amplitudes for the processes indicated par-
enthetically; ex = \/m2 + k2, m,, being the meson
(pion) mass; and Ep and Ej, are the energies of,
respectively, the initial and the final nucleon. It goes
without saying that all the required kinematical vari-

ables must appear in these amplitudes. According
to conventional rules of field theory [25], the quan-

tity M(p — p'k)/ (Ep — E}, — ex) specifies the ma-
trix element (p’|ax,|p), which will be referred to as
the wave function for the meson w in the target 7™

M, (p — p'k)

\I/ka,m — lam :em 14 ,

e m) = (9o ) =
(12)
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Fig. 2. Diagram for the electroproduction of particle z on
a composite system 7'.

where ay,, is the annihilation operator for the meson
m of momentum k, m being the projection of the
meson spir.

For the amplitude in (11), the general formula (2)
for the cross section d°c /dE"dQ.dS)% takes the form

d°o . /2|‘P$M(k,m)‘2

dELdQedQ: ¢ (4m)3EpElex

E; do®!

1— —k -

X ( | cosé?ﬂ> a0

where 6 is the angle between the momenta of the

emitted electron and pion, dael/dQﬂ is the cross sec-
tion for elastic electron—meson scattering, and the
overbar denotes averaging over spin projections.

The wave function is normalized by the condition

/\W(k,m)fm:s#ﬂd, (14)

(13)

where ST is the spectroscopic factor that was dis-
cussed in the Introduction, while the integration mea-
sure is given by

dr = d’k/ [(477)3 skEpEl’D].

The cross section for elastic electron—meson
scattering—it appears in expression (13)—formally
corresponds to the situation where the meson is
bound in the nucleon in the initial state (the binding
energy Ey, of the meson being on the same order of
magnitude as its mass), but is free in the final state,
appearing to be high in a continuum. But in our
case, where the energy of the knock-on meson is
much greater than Ey and where, accordingly, its
final momentum &’ is much greater than its initial
momentum k in the nucleon, the cross section for free
er scattering under relevant kinematical conditions
provides a highly accurate approximation to the cross
section being discussed, and this fact is employed
in expression (13). In other words, off-mass-shell
effects in the amplitude can be disregarded in our case
in dealing with the pole diagram. A similar problem
is widely discussed in considering the quasielastic
knockout of nucleons and nucleon clusters from
nuclei [26]. But in the case of the tree diagram, such
off-mass-shell effects for a virtual nucleon play an
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Fig. 3. Mechanisms of pion production on a proton under
the effect of a virtual photon: (a) direct meson knockout
by a virtual photon and (&) pion production through a
meson-antimeson pair.

important role (see below). Further, the interaction
of the knock-on pion and the spectator nucleon is
disregarded in (13)—that is, use is made there of the
plane-wave impulse approximation (PWIA) rather
than distorted-wave impulse approximation (DWIA)
(for a comparison of these two approximations in
extracting the momentum distributions of the knock-
on particle from experimental data, see [27]). In
discussing specific results below, we will take qual-
itatively into account, however, the consequences of
replacing plane waves by distorted ones.

The sum
Y Sft =N,
R

over final states determines the total number of u-
type mesons in the meson cloud of the nucleon.

The parametrization (13) of the cross section
d®c /dE!d2.dQ2: is very convenient in nonrelativistic
physics. A vast body of valuable information about
the structure of nuclei, atoms, and molecules was
obtained on its basis [11, 12]. As a rule, this
parametrization is not used in relativistic physics—
experimentalists present their results in terms of the
parametrization specified by Egs. (6) and (9), because
it is much more general than the parametrization in
(13): the former includes, in a natural way, many
mechanisms (in particular, resonance ones) and is
valid not only in the quasielastic region. But it
is because of this that it is much less efficient in
the narrow quasielastic region than the quasielastic
parametrization (13) proper.

Since the Feynman diagram in Fig. 2 involves
not only meson knockout but also the production of
meson pairs, it is necessary to generalize expression
(13) in such a way as to incorporate the momentum
distribution in it. This point will be discussed below.

(15)

2.3. Probing Meson Cloud

A. Pion cloud of the nucleon. Evaluation of the
Feynman diagram in Fig. 2 is formally very simple,
but it raises two questions of physical significance.
First, these are the relationship between the con-
tributions of the time-ordered diagrams in Figs. 3a
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(quasielastic knockout proper) and 36 (Z diagram de-
scribing meson-pair production) and the possibility of
extracting the contribution corresponding to Fig. 3a
from that associated with the sum of the diagrams.
Second, mesons of the diagram in Fig. 2 are effective
degrees of freedom. In this connection, there arises
the problem of parametrizing the relevant vertices
(N Nu and mmy) and including form factors.

These questions are common to all mechanisms.
We will consider them for the simplest example of the
pion cloud. We emphasize once again that we perform
our analysis in the laboratory frame, where the recoil
momentum of the final baryon is low. It was indicated
above that, for a first approximation, we can disregard
off-mass-shell effects for the pion. Accordingly, the
matrix element of the current Jy (amplitude for the
diagram in Fig. 2) is given by the obvious expression

5= MO 02k H)er, (16)

2 2
k% —m2

where Fr (Q?) is the pion form factor, which was set

to the free-pion form factor [28],
Fr (Q%) = [1+Q%/05 (GeV/e)!| s

M(p — nm) is the pion-absorption (pion-emission)
amplitude; and 1/[k* — m2] is the conventional pion
propagator. From Eq. (16), it can be seen that gen-
eral principles of the diagram technique—the pres-
ence of only one amplitude for the two diagrams in
Figs. 3a and 3b—make it possible to relate the
contributions of these diagrams through the wave
function as

Mp—nr) Mp—nr) 1
kQ—m% N 25k ko—&'k
iofems) BTem s

ko + ex 2y ko + ex

that is,
M(p — nm) w7 (k,m)
k2 —m2 £k

. (17)

In deriving Eq. (17), we considered that, for ‘k:2| <

0.2 (GeV/c)?, the final neutron is nonrelativistic;
therefore, ky < ex.

[t should also be emphasized that the total am-
plitude (that is, the sum of the amplitudes for the
diagrams in Figs. 3a and 3b) is approximately twice
as great as the amplitude for the diagram in Fig. 3a.

The wave function in turn can be related to the
form factor g,y (k?) for the TN N vertex. For the
mIN N interaction in the pseudoscar version used most
often [29] (in the situation considered here, the pseu-
doscalar and the pseudovector version are equiva-
lent), we have

nr M(p — n)
Uy (k,m) = ————

1
— (18)
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= I\5
= V2GnN ngN(k2)Ma

ko — &k
where u(p’) and wu (p) are the Dirac spinors for the
initial and final nucleon, respectively; G nyn is the
7N N-vertex constant; g-yn (k?) is the correspond-

ing form factor; and

s 0T
I 0

is the conventional Dirac matrix. The form factor
g=nn (K?) is usually taken in the form

2 2
A7r — My

2y
gﬂNN(k )_ A72.‘.+:I€2 )
where A is the cutoff parameter.
Taking the modulus squared on both sides of
Eq. (18) and performing summation and averaging
over spins, we obtain

Ll
(ko — ex)
[t is convenient to define the radial part of the wave

function in such a way that, in the laboratory frame, it
is normalized to the spectroscopic factor as

3
|wnm (k,m)| =2G2 NN Gann (K?) 5. (19)

jwnr(k,m)* |RET(k)|
(47‘(‘)3%]\7(1()]\4]\761( N p47‘(‘ ’ (20)
where Ey(k) = /M% + k2 and
/ | R () [*K2dk = ST, (21)

With the aid of (17), we represent the differential cross
sections in the form
do; 1 o}
— = 22
&~ 16 W2 d ] (22)

onm(k, m)|”
LI g+
€k
where i = L, T and

2 4
(k+ k)| = @(QZ% — qokl)?,

(k4 K)r[? = 2 (K2 + K2)°.

Expression (12) defines the wave function in the
most direct way. It is of course interesting to compare
this result with other ways of introducing the pion
wave function in the nucleon. They are based on
reconstructing the wave function on the basis of 7NV
potentials that describe phase shifts for elastic 7V
scattering [30, 31].

The potential for 7V scattering is defined in terms
of a set of diagrams that cannot be broken down into
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Fig. 4. Diagram representation of the mwN-interaction
potential (this potential was used in [30, 31]).

parts by cutting only a nucleon or only a pion line.
The sum of the pole and the contact diagram is taken
here for the potential (Fig. 4). The first diagram has
a pole at the bare-nucleon mass, while the second is
approximated by the factorized potential

V(k‘,k/,E) _ Efi(];&{vb(li)lé _

where My, is the bare-nucleon mass and My is
the physical-nucleon mass. The functions fy (k)
and hg (k) are chosen in such a way as to obtain
a satisfactory description of the phase shifts for 7V
scattering.

The radial part of the pion wave function in the
nucleon (this is the quantity of our prime interest) is
determined from the residue of the exact 7N propa-
gator (a model one in the present formulation of the
problem) G (k, k', E):

ho(k)ho(K'), (23)

f(kv MN)f(kJa MN) )

Gk, K, E) |p—my= E - My (24)
We then have
V2f(k,E = My)
R'"™(k) = ’ 25
where

evo(k) = /I + M3,

The function f (k, E) and the mass of the bare nu-
cleon Ny can easily be found from the equations pre-
sented in [31]:

f(k, E) = fo(k, E) + ho(k)10(E)
X /k’Qdk’ho(k’)fo(k:’)D,rN(k’,E),

(26)

Dy (k,E) = [E — ey —en, (k) +i6] 7,
-1
T0(E) = — [1 +/k2dk|ho(k)|2D,rN(k,E)

Since there is a pole term in the potential, the wave
function R)™ (k) satisfies the nontrivial normalization
condition [32]

/|Rg”(k)\2k2dk (27)

i ([ mrwea) <
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which can be used, in particular, to test the results of
a calculation.

Expression (22), which includes, in relation to the
relativistic formalism, the new, essentially relativistic
effect of the Z diagram, specifies the wave function
in terms of the cross section without intermediate
integrations, which would appear for diagrams that
are more complicated than the pole one. But this is
precisely our eventual objective. Following the same
line of reasoning as above, we will generalize below
expression (22) to the case where an electron impact
converts various mesons into pions.

B. Rho-meson cloud of the nucleon. It will
be seen below that, in the quasielastic region, the
cross section dop/dt is determined by the diagram
in Fig. 2, where a rho meson appears to be a vir-
tual particle. Therefore, experimental data on the
cross section dop/dt can be used to determine the
structural features of the rho-meson cloud of the
nucleon—specifically, its momentum distribution and
spectroscopic factor.

However, formulas that relate the cross section
dop/dt to the rho-meson wave function are more
cumbersome than the analogous formulas that relate
the cross section for longitudinal polarization to the
pion wave function.

In order to find these relations, we will need ef-
fective Lagrangians for the pNN and the pmy in-
teraction. For these, we took the traditionally used
expressions [33]

Lony = —G,onNgonn (K?) (28)
_ K .
x ¥ <’y“ ~ iy ot 18u> TV,

Lp7r7 gpﬂ'w aﬁuua Aﬂ‘pau(pua
My
where ¢ and ¢, are the isovector fields of pseu-
doscalar pions and vector rho mesons; ¥ is the nu-
cleon field; Ag is the photon field; +* are the Dirac
matrices; o = 1/2 x [v*,4"]; My and m, are, re-
spectively, the nucleon and the pion mass; g,nn (k?)
is the form factor for the pN N vertex; g~ is the pmy
vertex constant; x is the vector magnetic moment
of the nucleon; and 7 = (71,72, 73) are the isospin
Pauli matrices. In accordance with [33], the constants
were taken to be the following: G,yn = 2.9, gpry =
0.0378/e, and k = 6.1; e = 0.3027 is the electron
charge.

Further, the matrix element of the operator re-
sponsible for absorption of a rho meson carrying the
vector index p is related to the amplitude

M (p— npt) =
= V2G,nngonn (K2) @ (0) THu (p)
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K
TH — ~H .
( T oy ”)
for the virtual decay p — np™ by the equation

M (p — np) _ <p/‘ag(k)|p>,

k‘o — &k
which is analogous to that for the case of pions [25].
Here,

(29)

ah (k) = axmeh,,

b (30)

where ay,, is the operator describing the absorption
of a p meson characterized by the spin projection m
onto the quantization axis and

 [(k-ep) k(k-ep)
e%—-< m em 5215:1755) (31)

are the unit vectors of free-rho-meson polarization

[em=0 = (0,0,1), ep=x1 = :I:% (=m,—i,0)].

Relation (29) is somewhat nontrivial. The point
is that the quantity (p'|a}, (k)|p), which appears in
the residues of the Fourier transform of the Green’s
function (n|T{e" (z) ¢** (2')}In) (n is a neutron),
corresponds to the amplitude that is determined by
the total set of diagrams converting a proton into a
neutron and a rho meson and which is multiplied by
the rho-meson (that is, particle) part of the propaga-
tor D, (k) p for the rho-meson field. However, the
vector-particle propagator

DIW(k) =

kuky]

1
k2 — m% [_QW + 'm,%

can no longer be represented [34] as the sum of the
particle and the antiparticle propagator—in addition,
it involves a contact term,

1 Kk,
D,ky=——————1|—0gu Y
o (F) (ko—Ek)%k[ G m;%]
k,// ! 1
S 5,00
(ko + e1)2ek [ vt } m2 Homwe:
where k't = (, /fm2—|—k2 ) and k' =

(VAZEZTEE,_k).

The contact part —6H06,,0/m% of the propagator for
the rho-meson field is disregarded in (29). In our case,
this part corresponds to direct yw N IV interaction not
mediated by a meson and seems to have no bearing
on the problems concerning the structure of the rho-
meson cloud that are discussed here.

In just the same way as was done for pions, the
quantity (p'|axm|p) will be referred to as the rho-
meson wave function in the nucleon.

Expressions (3) for the effective electroproduction
cross section involve bilinear matrix elements of the
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hadronic current Jy that are related to the amplitude
MH(p — np) by the equation

Iy = e—M“(p = ) (-9’“’ + ﬁjﬂ?) (32)
m

2 _ 2
k mg 7

g
X ENVaﬁGquak'ﬁ 7;;7"’7 Fﬂ'p(Q2)
T

or, since we have M*k, = 0,
Mlt(p - TL[))

2 _ 2
k mg

J)\ze

Euya,@ €AVQakﬁ Jomy Fp?T (Q2)7
My
(33)

where ¢#®# is an antisymmetric tensor, ey, is the
photon polarization vector, and F, (Q?) is the form
factor for the pmry transition. Following [35], we set

Fp?T (Q2) = [1 + q2/(3mp)2]_2.

Thus, the problem consists in expressing the bi-
linear combinations JyJ3 of the current in terms of
the radial part of the wave function Rp”(k,m). This
relation was established by invoking the g,nn (k?)
form factor.

Taking the square of the modulus of ¥,” (k,m)
and performing summation and averaging over the
spins of the nucleons and the rho-meson involved, we
can easily obtain

s el Mup— )
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where the overbar denotes the aforementioned aver-

aging.

the
et M (p — np)‘Q in the target rest frame, we find
that | R (k)|* and g,nn (k?) can be related as

By  directly  evaluating quantity

|R2(k)|* = Cownpnn(K) 2 1
P (ko — Ek)2 3 (47T)2EN(k)MN€k

k2
X [2(1 + H)2<2MN(MN — ko + 1)
D

— (En()My - M3)) (35)

12
+ (QMN (En(k)+ Myn) —2(1+ n)>
2

k
X (2MN — :IC() +Ek)2m],
p

where ey = /m2 +k?, Ex(k) = vM? +k?, and k

is the rho-meson momentum in the laboratory frame.

Accordingly, the bilinear combinations (.J?) . of

|0, (k,m)] 5 , (34) the currents are given by
(ko — ex)
TP =B - 2(1+r)* (B (K) My = MR)Q* (kz + k). (36)
—3 2K
\Jr> =B [M?V{zm W)+ M_N(EN(k) + MN)}%(kg + k) (37)
2 Q2 2 2
~2(1+ 1) Muv(Ey (k) = My){ (2 + K2) = (a:ko — aok=)? |
where of probing the omega-meson cloud of the nucleon.
2 2 gonn (k) g2 9 9 This is achieved in experiments implementing the
B =2e"Goyy—2 PLE;(Q7) exclusive quasielastic knockout of neutral pions by

22 T7p
(k2 —m2)? m2
and k;, ky, and k. are the components of the virtual-
rho-meson 3-momentum.

We note that, in the literature, g,nn (k?) is usu-
ally parameterized as

A2 o m2
gonn (k) = L2—2L (38)
P A2+ k2

where A, is the cutoff parameter.

C. Omega-meson cloud of the nucleon. That
vector mesons make a dominant contribution to the
pion-electroduction cross section op for the case of
transverse polarization provides a unique possibility
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electrons. In contrast to what occurs in the case of
charged pions, there is no direct knockout of neutral
pions here (the matrix element (x°|J#|x%) of the
electromagnetic current vanishes because of charge
symmetry), so that all neutral pions arise via the
deexcitation of p” and w mesons by virtual photons.

That p° and w mesons are simultaneously involved
here makes it possible to determine not only the pa-
rameters of the omega-meson cloud—the momen-
tum distribution and the spectroscopic factor—but
also the relative sign of the constants G,ny and
G1wNN~

A general formalism for analyzing quasielastic
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neutral-pion knockout is identical to that outlined in
the subsection devoted to the rho-meson cloud. In
the case being considered, the matrix element J of
the hadronic current has the form

Iy = J 4 @), (39)
where
T (P)u
0 _ _ ul™Mu gpmy 2\_(p)
J)\ = erNngNN(k 12 _m% . pﬂ'(Q )g)wa
(40)
Jﬁw) = —eGunngonn (k%)
ul@hu gors

Fun(Q)eY).

Here, G,y is the constant of omega-meson cou-
pling to nucleons; g.yn (k?) is a form factor; my,
is the w-meson mass; T'(P@H stands for the effective
vertices for p¥- and w-meson emission from nucleons,

u
+2MN

k2 mZ my

rpwn — "k

F,- (Q?) and F,. (Q?) are the form factors for the
p¥ — 70 and w — 7 transitions induced by a virtual
photon; and & = etoeBey ,qokp, #7%F being a unit
antisymmetric tensor in Minkowski space.

|Re (1120035

|Re (124,00 | = Boy [va{zl(l —ary) + o

= B,,2(1 + k)*(Ex(k) My

NEUDATCHIN ef al.

In order to determine doy/dt and dop/dt, we need
the quantities

e 2
2= |+ 7| (41)

2 2 —
= 70|+ [7] + 2Re <J§’J> J§°’>*> ,
where the overbar denotes averaging and summation

over spins.

We denote by B, the following combination of
factors:

(42)

w(Q%) Frp(Q%).

By = 2¢*GynNGonN

ngN(k)gpNN(k) gwwwgpﬂ'yF

(k2 =m2) (k* —m2) m2

Similarly, we will denote by B, or B, a product of
the form (42) with the substitution w — porp — w,
respectively. The quantity \J)(\p) |2 was obtained above,
while ]J)(\W)P can be derived from \J)(\p)P by means of

the substitution p — w. For Re(J)(\p)J)(\w)*) in the
laboratory frame, we have

— M{)Q* (K2 + K2),

264K

Ex9+ 30 P02+ @

—2(1+ kw)(1 + kp)Mn(En(k) — MN){%Q(]%% + k;) — (qzko — QOkz)2}] ;

where g,nn and g,nn are functions of k2. Instead of them, we can introduce the p°- and w-meson wave

functions
2
B2 E)] = Ay (K)o (), (44)
where
1 2 1
Apy (k) = = (45)
p(w)
(ko — £ >) 3 (4m)3ef) B (k) My

x12(1+ /{p(w)) <2MN(MN ko+ Ep(w))

2

— (pp' — M?v))

M p(w)

1Kpw), 2 p(w)\2 k’
+ §W(pp + M3) = 2(1 + Kp(u))Epw) | My — kot €p)? |
N Mp(w)

2.4. Problems Associated with Dominance
of Diagrams Involving a Pole in thet Channel

We have already indicated that, in the relativistic
energy region, where particles can transform into one

PHYSICS OF ATOMIC NUCLEI

another, the concept of quasielastic knockout can
run into difficulties, which will be exemplified here by
considering pion knockout. Needless to say, a pion
cloud exists in the nucleon, and a virtual photon can

Vol.64 No.9 2001
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transfer its momentum and energy directly to a pion
from the cloud. In addition to the pion-in-flight pro-
cess (pole diagram in Fig. 2), there is, however, quite
a peculiar shake-off mechanism (Fig. 5) consisting
in that the proton that has first absorbed the virtual
photon shakes off a pion (tree diagram). The am-
plitudes of these diagrams cannot be separated and
must generally be taken into account simultaneously
[36]. As a result, the total amplitude for pointlike
particles must have the form

b+a+M
(P+a)?—

@' you
oz (it

Jy = ieV2G yNT AP 'y“e,\uu

+ ZefGﬂNN ) e,
where p = p,v*.

We will demonstrate that, in the case of quasielas-
tic-knockout kinematics, the tree diagram is strongly
suppressed because of high photon virtuality, to a
considerable extent. Since, in the dominant pole
diagram, off-mass-effects for the meson can be dis-
regarded in the region being considered, the case in
question is governed by free er interaction, which
can be straightforwardly chosen in a gauge-invariant
form. Thus, we will discuss the contributions of the
diagrams in Figs. 2 and 5 in various situations.

For the case of transverse polarization, the cross
sections for the photo- and the electroproduction
channel at W =2 GeV and Q? =1 (GeV/c)? are
displayed in Figs. 6a and 65, respectively. Off-mass-
shell effects are disregarded for the virtual nucleon
and the pion. From these figures, it can be seen that,
for the case of transverse polarization, either diagram
makes a sizable contribution to the cross section. It
should be emphasized, however, that the tree diagram
in Fig. 5 reduces the cross section significantly. This
highlights the importance of taking into account the
rho meson.

For the case of longitudinal polarization, Figs. 7a
and 7b display the pion-electroproduction cross sec-
tions. It can be seen that, without the form factors,
the tree diagram makes but a marginal contribu-
tion to the cross section for longitudinal polariza-
tion. The inclusion of the form factors F,(Q?) =
(1+Q2/0.5) 1 and Fyx(Q?) = (1+Q?%/0.7)2 leads to
a further strong suppression of the tree dlagram As
a result, there arises a situation where the cross
section for a longitudinal polarization must actually
be interpreted in terms of the quasielastic-knockout
mechanism exclusively. For the sake of complete-
ness, it is also necessary to take into account off-
mass-shell effects. For pions, this is of secondary
importance in the case of the pole diagram because
of the smallness of k2 in relation to k"2 [27]. For a
virtual proton (Fig. 5), off-mass-shell effects could be
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Fig. 5. Tree diagram for pion electro- and photoproduc-
tion.

doy/d|t|, ubn/(GeV/c)?

50r (@)
25k 71_/_?___ - _?___ ___t
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O_
—250,
_ . _
— L L . I :
500 0.2 0.4
)
2+ _— — -
-
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— /—
iR
0_
\
“1E L
-2 1 1 1 L !
0 0.2 0.4
|t], (GeV/c)?

Fig. 6. Cross sections dor/dt for pion (a) photo- and
(b) electroproduction on a proton for transverse polar-
ization according to calculations that take into account
only the diagrams in Figs. 2 and 5: (solid curve) total
cross section, (long dashes) contribution of the pion-in-
flight mechanism, (short dashes) contribution of the tree
mechanism, and (dash-dotted curve) interference of the
two mechanisms (W = 2 GeV, Q = 1(GeV/c)?)

of importance for the tree diagram; for the right-hand
vertex involving the pionic decay of a virtual nucleon,
it may prove to be necessary to include, along with the
form factor (38), the form factor

2 a2\ 2
F(W?) = (1+L AQM > ; (46)

where W is the total energy of the virtual nucleon and
where it is the quantity W?2 — M? that characterizes
its virtuality.

This question is addressed in analyzing the con-
tribution of pions to the deep-inelastic scattering of
electrons [9], but, for the exclusive processes consid-
ered here, there are no visible grounds to assume that
it is different from unity—that is, there are no grounds
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doy /d|t|, ubn/(GeV/c)?
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Fig. 7. Cross section doy,/dt for pion electroproduction
on a proton for longitudinal polarization: (a) result ob-
tained in the approximation of pointlike pions and nu-
cleons and (b) result obtained with allowance for their
electromagnetic form factors. The notation for the curves
is identical to that in Fig. 6.

to eliminate the tree diagram from the analysis of pion
photoproduction.

By and large, the above analysis compellingly con-
firms, from the formal point of view, that, in [2]1—
23], it was legitimate to use the pole approximation
in the kinematics of quasielastic pion knockout by
electrons. In those studies, we relied on the sim-
plest criterion: for the pole diagram, the momen-
tum distribution of knock-on pions in the nucleon
as determined from experimental data according to
relevant formulas is independent of the kinetic energy
of the knock-on pion, provided that this energy is
sufficiently high.

The studies reported in [20] and [35] are espe-
cially close to the range of problems that we ad-
dress. Pion electroproduction on a nucleon for the
case where the energy transfer from the electron and
the virtual-photon mass satisfy the conditions v >
2.2 GeV and Q% <1 (GeV/c)?, respectively, was
discussed by Guttner et al. [20], who employed
the impulse approximation and factorized the cross
section. In line with the general theory of inclusive
experiments that makes use of light-front dynamics,
they introduced, however, the Bjorken variable x and
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extracted, from experimental data, the distribution of
pions,

Grp(z) = 1/(8%2)

tmin
< [ at0Gan P2 )/t~ ),
where tmin = —22M% /(1 — x) and where the mo-

mentum distribution of pions that is discussed in
the present study appears as the integrand; here,
Frnn(t)is the pion—nucleon form factor expressed in
[20], in a model-dependent way, in terms of the quark-
bag radius R as a parameter. In a similar formulation
of the problem, Speth and Zoller [35] discussed the
pion and the rho-meson wave function. These wave
functions are also parametrized in terms of the bag
radius R, which is estimated on the basis of the
experimental cross sections dor,/dQ2; and dop/dS2;.
Thus, we develop the ideas presented in [20] and [35],
going over, in the kinematical region where the pole
diagram is dominant, to the instantaneous form of
dynamics in the laboratory frame. That this results
in the doubling of the number of pole diagrams does
not present any serious problem since the underlying
mechanism is quite simple. This made it possible to
formulate, for the first time, the problem of directly ex-
tracting, from experimental data, the momentum dis-
2 , 2 , 2

tributions ‘W%'”(k) , ‘\IJ% p(k:)‘ , ‘\IJ% ”(k:)‘ , etc.,
at sufficiently low values of k (in the laboratory frame),
which correspond to quasielastic kinematics, and at
sufficiently high values of the virtual-photon mass
squared Q?, which are peculiar to the quasielastic
mechanism, and to demonstrate that the more com-
plicated mechanism associated with the tree diagram
is inoperative here (that there is an asymptotic trend
toward this with increasing Q? was indicated in [35]).
A specific relationship between the aforementioned
two forms of dynamics will be discussed by consid-
ering the example of spectroscopic factors.

2.5. Relationship between the Instantaneous Form
of Dynamics and Light-Front Dynamics

The above formulas were obtained within the in-
stantaneous form of dynamics [37]. Meanwhile, there
recently appeared a great number of studies [9, 36—
39] where phenomena allied to those that we consider
were analyzed within light-front dynamics [37, 40].

Here, we will discuss only the relationship between
the spectroscopic factors within these two forms of
dynamics.

[t is well known (see [41]) that the instantaneous
form of dynamics and light-front dynamics are equiv-
alent in the infinite-momentum frame of the initial
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proton. By virtue of the geometric law of trans-
formations under boosts, results found within light-
front dynamics in the infinite-momentum frame must
coincide with the corresponding results in any other
reference frame related to it by Lorentz transforma-
tions.

As we have already seen, the spectroscopic factor
in the proton rest frame is given by

gni _ / d*k
p (47T)3MNEN(p,)€k
(M[?
(My — En(p') —ex)?
In an arbitrary rest frame, the spectroscopic factor
can be written as

nm __
Syt =

(47)

4k
/ (Am)3En(P)En(P)eg
y (M[*
(En(p) — En(P') — )’
where k is the meson momentum and p and p’ are
the momenta of, respectively, the initial and the final

nucleon. Going over to the limit p, — oo, we can
easily obtain

(48)

. / dk, dzx 4M[?
v = Gme(i =) (0 — W2k, a)?
(49)
where x is given by

x = k./p, (50)

21 Mi  omi
Wo(k,, z) = + - (51)

11—z T

Here, k| is the transverse component of the mo-
mentum k, MJQ_ = MJQ\, +k?, and mi =m2 + ki.
Instead of z and k |, it is more convenient to introduce

the light-front momentum in the initial-proton rest
frame. This momentum is given by the relations

k. =k,

- ek + k.
- €k + EN(k) ’
In the new variables, expression (51) reduces to the
form  W2(k,,z) = W2k), where W(k)=

\/ M% + k2 + \/m2 + k2. We then have

(52)

gk :/ dk,  dzx 41/\/112~ (53)
poo (Ar)3 21 —z) (M3 — W2(ky,z))>

B &k |IM[? o

B / (473 MyEn(p')ek (My — Ex(p/) — k)2
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where
_ (My — W (k))*
Cr = AMNW (k) (va - W2(k))2 (54)
_ AMNW(K)
- M% + W2(k)

Since Cy < 1 and since | M|*, which is an invariant,
takes the same value in the two reference frames, then

Sit < S (55)

Actually, the difference of these two quantities is quite
small.

3. DISCUSSION OF PHYSICAL RESULTS
3.1. Pion Cloud

The underlying point of our analysis is that the
contribution of the pole diagram is dominant in the
kinematical region specified by the inequalities Q% >
1 (GeV/c)* and |k?| < 0.2 (GeV/c)?. This circum-
stance makes it possible

(i) to extract the momentum distribution |RZ”(I<:) ‘2

of pions in the nw channel from experimental data on
electroproduction;

(i) to refine the cutoif parameter A in a popular
parametrization of this distribution;

(iii) to relate investigations of the phase shifts for
N scattering to pion-electroproduction data through
the 7N potential and the pion wave function in the
nucleon;

(iv) to find the spectroscopic factor in the nmx™
channel, an extremely important feature of the pion
cloud indeed.

The pion-electroproduction cross section doy, /dt
for the case of longitudinal polarization generally re-
ceives contributions both from the pion and from the
rho-meson cloud. However, our calculations revealed
that the rho-meson contribution to this cross section
is very small (see Fig. 8). For a first approximation,
we therefore disregard the rho-meson contribution
to dor,/dt. From experimental data reported in [42,
43] for dor,/dt, we found the cutoff parameter A, for
the form factor g-yn(k%). The result is 0.7 GeV/c,
which is one-third as great as that for the Bonn
potential [44].

Figure 9 shows the radial parts of the pion wave
function in the nucleon. The thick solid curve rep-
resents the results of the calculation by formula (19)
with the form factor g nn (k?) found previously, while
the thin solid and the dashed curve were computed
by formula (25) on the basis of the potentials from
[30] and [31], respectively. Figure 10 displays the
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W =2.19 GeV, 0> =0.7 (GeV/c)?
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<) o
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7], (GeV/c)?
W =2.65GeV, 0% =3.3 (GeV/c)?
o 0.8 o L6r
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Fig. 8. Pion-electroproduction cross section for the cases of (left panel) transverse and (right panel) longitudinal polarization:
(dashed curve) contribution of the diagram in Fig. 2 involving a virtual pion, (thin solid curve) contribution of the diagram in
Fig. 2 involving a virtual rho meson, and (thick solid curve) total cross section. Experimental data were borrowed from[44, 45].

corresponding cross sections. It can be seen that the
wave function from [31] is not compatible with exper-
imental data on electroproduction in the quasielastic-
knockout region. On the contrary, the results from
[30] lead to satisfactory agreement with experimen-
tal data. It should be noted that either separable
potential, that from [30] or that from [31], provides
a good description of low-energy data on 7N scat-
tering. Thus, an experimental study of quasielastic
knockout can be considered as an additional check on
mN potentials.

The pion spectroscopic factor is given by the inte-
gral
/ |RI™ (k)| *K2dk = So™ (56)
and, for the pion cloud, can be found directly from
experimental data. It proves to be S)™ = 0.13; how-
ever, this value is underestimated, because we dis-
regard final-state interaction—that is, the escape of
pions from the wN channel. Relying on experience
gained in intermediate-energy nuclear physics, where
the corresponding result is underestimated by a fac-
tor of about 1.5, and bearing in mind that we have
taken into account the important off-mass-shell ef-
fect (which is immaterial for loosely bound nucleons

PHYSICS OF ATOMIC NUCLEI

in outer nuclear shells), we adopt the value of Syt =
0.2, which we believe to be quite reliable. Similar
values were obtained in [9], where the pion content
in the nucleon was calculated by perturbation theory
within light-front dynamics.

RGP

T = = =

1
0 0.1 0.2
k2, (GeV/c)?

Fig. 9. Radial part of the pion wave function (momentum
distribution) in the nucleon: (thick solid curve) result of
the calculation by formula (19), (thin solid curve) result of
the calculation by formula (25) on the basis of the poten-
tial from [30], and (dashed curve) result of the calculation
by formula (25) on the basis of the potential from [31].
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doy Jd|t], [ubn/(GeV/c)?] x 0.7F0.7)/Q*F2(Q?)

30

02 (GeV/c)?
o 0.35
0.70
° 1.19
o 2.00
3.32

20F

10

1
0 0.1 9.21
|t], (GeV/c)?

Fig. 10. Cross sections doyr, /dt for the case of longitu-
dinal polarization that correspond to the following mo-
mentum distributions: (thick solid curve) wave function
in the monopole parametrization, (thin solid curve) wave
functionfrom[30], and (dashed curve) wave function from
[31]. Experimental data were borrowed from [44].

[t is interesting to note the Saito—Afnan wave
function [30] normalized by the condition in (27)
leads to the same value of the spectroscopic factor.

If use is made of the parametrization g,ny(k?) =
AZ —m2 /A2 + k*, SP™ depends greatly on Ar. At
A, = 0.7 GeV/c, we obtain 5,7 =0.18.

3.2. Rho-Meson Cloud

The contributions of the pion and of the rho-meson
cloud to the cross sections doy/dt and dor/dt de-
scribing quasielastic pion knockout from a proton for
the cases of, respectively, longitudinal and transverse
polarization are displayed in Fig. 8. It can be seen
that, at Q% = 0.7 (GeV/c)?, the contribution of the
rho-meson cloud to the cross section doy/dt for
longitudinal polarization is small—this cross section
is determined almost exclusively by the contribution
of the pion cloud; as to the cross section dor/d!t,
the contributions to it from pions and rho mesons are
on the same order of magnitude. With increasing
Q?, the situation changes—at Q% = 3.3 (GeV/c)?,
the cross section dor/dt for transverse polarization
is determined almost exclusively by the contribution
of the rho-meson cloud; this is not so for the cross
section doy/dt , which, as before, receives the main
contribution from pions.

It follows that analysis of the cross section do7/dt
at Q% = 3.3 (GeV/c)? can in principle answer the
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|R(k)P
0.4r
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0 2 4
k2 (GeV/c)?

Fig. 11. Radial part of the rho-meson wave function in
the proton.

same questions for the rho-meson cloud as those
posed in discussing the pion cloud. However, avail-
able experimental and theoretical data on the rho-
meson cloud are relatively scanty—for example, pN
phase shifts have not yet been analyzed, and experi-
mental data have been obtained in the narrow region
k2| < 0.2 (GeV/e)? (the wave function is entirely
concentrated in this region in the case of pions, but
it goes far beyond it in the case of rho mesons). Even
on the basis of the available data, we can nevertheless
draw some conclusions on the properties of the rho-
meson cloud.

Figure 11 displays the momentum distribution of
rho mesons in the proton according to the calcu-
lation by formula (35) with the cutoff constant A,

determined for the vertex function g,nn (k%) by fitting

the cross section dop/dt at Q% = 3.3 (GeV/c)? for
transverse polarization to experimental data. Satis-

factory agreement is achieved at A, = 1.4 GeV/c.

However, only at relatively low values of |k?| <
0.2 (GeV/c)? is it possible to extract the momentum
distribution directly from experimental data. There-
fore, a determination of the spectroscopic factor will
be much less reliable here than in the case of the pion
cloud. The spectroscopic factor depends greatly on
A,and, at A, =14 GeV/e, takes the value of 0.07.

3.3. Omega-Meson Cloud

Figure 12 shows the differential cross section

dor/dt describing neutral-pion electroproduction
for the case of transverse polarization. We con-
sider these results as a guideline for performing
future experiments—there are presently no data on
the quasielastic knockout of neutral pions. Fig-
ure 12a corresponds to quite accessible values of

Q% =3.3(GeV/c)? and W = 2.65 GeV, at which the
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Fig. 12. Neutral-pion-production cross section for

transverse polarization at G2, v /47 = (dashed curves)
5, (solid curves) 10, and (dash-dotted curves) 30
[thin (thick) curves correspond to identical (oppo-
site) signs of the constants Gonny and G,nn]:
(a) Q% =3.3 (GeV/c)?>, W =2.65 GeV and (b) Q* =
15(GeV/e)?, W = 2.65 GeV.

reaction p(e, ¢'7")n was investigated in experiments
reported in [43, 44]. This is compatible with the
k% range 0—0.4 (GeV/c)? considered here (in the
quasielastic-knockout region, we have k? < @2, in
which case off-mass-shell corrections are immate-
rial).

In the calculations, we used the values of
92/ 9oy = 10 [45, 46] and £, = 0.14 £ 0.20 [47].
The values chosen for the constants g,rv, G,nn,
and r, were quoted above. For the cutoff constant
A, to which the results presented in Fig. 12a are
weakly sensitive, we adopted the value of A, = A, =
1.4 GeV/e.

Owing to the presence of the interference term in
expression (41), the result depends on the relative
sign of the constants G,yny and Gunyn; as can be
seen from Fig. 12a, this sign can be established ex-
perimentally. Concurrently, the quantity G2 /4,
for which there is a scatter from 5 to 30 [48], will be
refined.

PHYSICS OF ATOMIC NUCLEI

NEUDATCHIN ef al.

[n order to determine reliably the quantity A,, (and
to test A,), it is obviously necessary to expand the k?

range to 3 (GeV/c)?; this in turn requires increasing
Q? to about 15 (GeV/c)?. Figure 12b, which displays
the expected differential cross section for the afore-
mentioned values of A, and A,, corresponds to these
kinematical conditions, which are more difficult for
exclusive experiments.

4. SUMMARY AND OUTLOOK

The basic point of our analysis has been that, in
the quasielastic-knockout region, where the recoil
momentum k is much less than the momentum &’ of
the knock-on pion and, in addition, ¥ > m, the pole
mechanism represented by the diagrams in Fig. 3 is
dominant. In favor of this, we have adduced an ana-
lytic argument in Subsection 2.4 and an experimental
one based on the observation that the momentum
distribution of knock-on pions undergoes no changes
in response to variations in the final energy of the
knock-on pion.

The quasielastic-knockout concept adopted in
nonrelativistic physics has been generalized by in-
cluding the Z diagram in Fig. 3b in the analysis
performed in the laboratory frame (it is in this frame
that one can single out low values of k).

Further, we have introduced the notion of the wave
function for the pion (and for vector mesons) in the
nucleon and indicated how this function is expressed
in terms of the vertex constant Gy and the vertex
function g-nn (k?).

For a fixed N — B + u virtual decay channel, we
have introduced the spectroscopic factor for the prod-
uct meson in the nucleon.

From experimental data on pion electroproduc-
tion by longitudinal virtual photons [43], we have
extracted the momentum distributions of pions in the
channel p — n + 7" and, as a normalization of
the momentum distribution, the pion spectroscopic
factor (S)™ ~ 0.2). The shape of the momentum
distribution has enabled us to determine reliably the
cutoff parameter A for the vertex function g,y (k?),
Ay =0.6540.05 GeV/e. This result is in good
agreement with that presented by Loucks ef al. [49],
who analyzed data on pion electroproduction in the
delta-isobar region, where the amplitudes of a few
diagrams interfere, but it differs markedly from the
value of A, = 2.1 GeV/¢, which is used in the Bonn
potential [44]. A generalization of the approach dis-
cussed here to the case of quasielastic pion knockout
from a nucleus is quite obvious. Although the rel-
evant experiment will inevitably be inclusive (AF >
10 MeV), it will become possible, for the first time,
to deduce information about the form of the pion
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wave function in a nucleus (more specifically, to find
out whether it reduces to a superposition of the pion
wave functions in individual nucleons) and assess the
number of pions in a nucleus [50].

The problem of the relationship between the pion
spectroscopic factors within the instantaneous form
of dynamics and light-front dynamics (the former be-
ing employed in our studies) has been considered.

By using preliminary, incomplete, experimental
data on pion electroproduction by virtual transverse
photons [42, 43] and taking into account the results
from [35], which demonstrate that these processes
are dominated by the contribution from the spin-flip
nondiagonal p™ + yr — 7 amplitude, we have been
able to assess qualitatively, at low values of the rho-
meson momentum [|k?| < 0.4 (GeV/c)?], the mo-
mentum distribution of the rho meson in the channel
p — pt +n and to estimate the rho-meson spectro-
scopic factor roughly at Sp” = 0.07 and the cutoff

parameter roughly at A, =1.4 GeV/e. In order to
determine this momentum distribution over the entire
region |k?| > 1.2 (GeV/c)? [in this respect, the case
being presently discussed differs from that of pions,
for which the region |k?| < 0.5 (GeV/c)?, which was
actually studied, is quite sufficient], electron beams of
energy not lower than 10 GeV are required, and this
is of paramount importance (here, it should be borne
in mind that the eta and phi mesons and negative
kaons, as well as tensor mesons, are of positive parity;
see below). The reaction p* + v — =+ and the
possibility of extracting the momentum distribution
of rho mesons are so important since, even in the case
of quasielastic kinematics, the most natural process
p+e— pT +n+ € proceeds according to a totally
different scheme (through an intermediate Pomeron)
because of vector dominance [50] and gives absolutely
no way to explore the aforementioned momentum
distribution of the rho meson in a nucleon.

The momentum distribution and the Sg” value

deduced for the channel p — 7™ 4+ n have been
compared (in terms of the wave function W7™) with

what is obtained for the pion wave function in the
nucleon with various 7N potentials determined from
a fit to the energy dependences of the phase shifts for
wN scattering. Excellent agreement has been found
for the case of the 7N potential from [30] (it should be
emphasized that the wave function for a pion bound
in a nucleon was not considered there). This is yet
another argument in favor of our approach.

The possibility of probing the omega-meson cloud
of the nucleon in experiments exploring quasielastic
neutral-pion knockout has been considered. Such
experiments would enable an independent determi-
nation of the wave function Wh*(k)—in particular,

PHYSICS OF ATOMIC NUCLEI

Vol.64 No.9 2001

1615

the magnitude of the constant G,yx and its sign.
This is possible owing to the interference between
the p° + 44 — 7% amplitude (which is determined by
the independent reaction p* +~4 — 7" )and thew +
v — w0 amplitude being discussed. The required
electron beams of energy not less than 10 GeV would
make it possible to obtain the entire set of wave func-
tions \I/f“(k) (where B can be, for example, the Roper

resonance), \I/;}K+(k), UEK(k), and W' (k).

The question of whether it is possible to sin-
gle out the quasielastic-knockout mechanism (e, /)
against the background of the diffractive production
of a vector phi meson (which has the ss structure)
[51] has been discussed. In addition, there exists yet
another method that can be used to single out, in
the nucleon, the cloud of positive-parity mesons, x™.
This possibility has been deduced from our experience
gained in studying quasielastic alpha-particle knock-
out from light nuclei by protons [52] and electrons
[53] of energy about 1 GeV. Namely, the probability of
finding, in a nucleus, a virtual excited alpha particle
with various values of the intrinsic orbital angular
momentum Ly # 0is quite high[52]. A bombarding
particle scattered on one or a few nucleons of this
virtual cluster knocks it out of the nucleus; more-
over, the amplitude for the transition of the knock-
on cluster to the ground state, a* — Y, proves to be
sufficiently large in the process. Owing to a change in
Lint:, different partial-wave amplitudes interfere, with
the result that the momentum distributions of the
recoil nucleus (A —4); that are expressed in terms
of the angles of orientation of the recoil momentum
k with respect to the beam axis and to the plane
of fast-particle scattering develop anisotropy. The
predicted anisotropy is very strong in the reaction
A(p,pa)A — 4[52] and is quite sizable in the reaction
A(e,ea) A — 4 [53], where scattering actually occurs
on only one proton of the cluster. Here, we imply
the physically observable momentum distribution of
recoil nuclei A —4 in a specific excited state f; for
this, it is not necessary, however, to record the recoil
nucleus itself—measurement of p and « or of e and «
pair correlations furnishes the entire body of needed
information.

Thus, the process e+ () — /7 can in prin-
ciple be recognized by the above anisotropy of the
momentum distributions of recoil nucleons, because
the intrinsic orbital angular momenta of the mesons
#) and of the pions are Liy. = | and Ly, = 0,
respectively. Here, a key question is that of the mag-

nitude of the ofi-diagonal amplitudes 7 + x(+) — 7
oryi +x™) — 7 in relation to those amplitudes that

have been analyzed in the present review article. This
is problem for the nearest future.
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When the energy of knock-on mesons exceeds
1 GeV, the quasielastic-knockout reaction (p, pm) can
also be of use, in principle, since proton beams of
energies in excess of 10 GeV are available in a few
laboratories worldwide. But even in the simplest
experiment of the 'H(p, pr¥)n type, the situation is
partly complicated by strong diffractive pp interaction
in the initial and in the final state. However, the off-
diagonal amplitudes for meson knockout can inde-
pendently be studied in pion scattering on protons
that is inelastic in the meson state.

In addition, one can also discuss quasielastic-
knockout reactions of the (m, mum) type, which have
been known for a long time in the (m, 27) version,
but which have hitherto been used only to determine
the phase shifts for w7 scattering [54]. The only
question to be solved here is that of whether it is
possible to obtain intense secondary pion beams of
energy in excess of 10 GeV that are characterized by
a comparatively small energy spread.

To conclude, we note that, although we have de-
scribed here the meson cloud of the nucleon in purely
phenomenological terms for the sake of simplicity,
one has eventually to address the more fundamen-
tal problem of the hadronization of the quark—gluon
vacuum polarized by the baryon charge of the nu-
cleon. More specifically, the problem consists in
projecting quark—gluon wave functions onto B + u
cluster channels [55]; to some extent, this is similar to
projecting the multinucleon wave functions for the A
nucleus onto (A —4) ¢ + a* channels. Various models
have been proposed for this [56]. For example, the
relations between the coupling constants G, gp for
various mesons x and baryons B were analyzed along
these lines in [57]. The scopes of such an analysis
can be substantially expanded by invoking the results
obtained from an investigation of quasielastic meson
knockout.

ACKNOWLEDGMENTS

This work was supported by the Russian Founda-
tion for Basic Research (project no. 00-02-16117).

REFERENCES

1. P Geigerand N. Isgur, Phys. Rev. D 41, 1595 (1990);
47, 5050 (1993).

2. S. Capstick and N. Isgur, Phys. Rev. D 34, 2809
(1986); S. Godfray and N. Isgur, Phys. Rev. D 32,
189 (1985).

3. T.Barnes, F. E. Close, and E. S. Swanson, Phys. Rev.

D 52,5242 (1995).

L.-F. Li and T. P. Cheng, hep-ph/9709293.

K. F. Liu, D. D. Dong, ef al., hep-ph/9806491.

G. Ya. Glozman and D. O. Riska, Phys. Rep. 268, 263

(1996).

SR A

10.

11.

12.

13.

14.

21.

22

23.

24,

25.

26.

27.

28.
29.

PHYSICS OF ATOMIC NUCLEI

NEUDATCHIN et al.
7. C.E. Carlson, Nucl. Phys. A 622, 66 (1997).

8.

9. J. Speth and A. W. Thomas, Adv. Nucl. Phys. 268,

J. D. Sullivan, Phys. Rev. D 5, 1732 (1972).

263 (1997).

V. S. Murzin and L. 1. Sarycheva, Interaction of
High-Energy Hadrons (Nauka, Moscow, 1983);
A. A. Bel’kov, S. A. Bunyatov, K. N. Mukhin, and
O. O. Patarakin, Pion—Nucleon Interaction (Nauka,
Moscow, 1983).

D. G. Ireland and G. van der Steenhoven, Phys. Rev.
C 49, 2182 (1994); M. Traini, Phys. Rev. C 55, 160
(1997); Yahne Jin ef al., Phys. Rev. C 48, R964
(1993).

V. G. Neudachin, Yu. V. Popov, and Yu. FE. Smirnov,
Usp. Fiz. Nauk 169, 1111 (1999).

G. A. Leksin, Zh. Eksp. Teor. Fiz. 32, 445 (1957)
[Sov. Phys. JETP 5, 378 (1957)].

L. S. Azhgirei, 1. K. Vzorov, V. P. Zrelov, et al.,
Zh. Eksp. Teor. Fiz. 33, 1185 (1957) [Sov. Phys.
JETP 6,911 (1958)].

. D. 1. Blokhintsev, Zh. Eksp. Teor. Fiz. 33, 1295 (1957)

[Sov. Phys. JETP 6, 995 (1957)].

. M. Breidenbach, J. I. Friedman, H. W. Kendall, ef al.,

Phys. Rev. Lett. 23, 935 (1969).
D. J. Bjorken, Phys. Rev. 179, 1547 (1969);
R. P. Feynman, Phys. Rev. Lett. 23, 1415 (1969).

. R. K. Bhaduri, Models of the Nucleon (Addison-

Wesley, New York, 1988).

. V. G. Neudachin and Yu. F. Smirnov, Nucleon Clus-

ters in Light Nuclei (Nauka, Moscow, 1969).

. F. Guttner, G. Chanfray, H. J. Pirner, and B. Povh,

Nucl. Phys. A 429, 389 (1984).

V. G. Neudachin, N. P. Yudin, and L. L. Sviridova,
Yad. Fiz. 60, 2020 (1997) [Phys. At. Nucl. 60, 1848
(1997)).

N. P. Yudin, L. L. Sviridova, and V. G. Neudachin,
Yad. Fiz. 61, 1689 (1998) [Phys. At. Nucl. 61, 1577
(1998))].

N. P. Yudin, L. L. Sviridova, and V. G. Neudachin, Yad.
Fiz. 62, 694 (1999) [Phys. At. Nucl. 62, 645 (1999)].
V. Dmitrasinovich and F. Gross, Phys. Rev. C 40,
2479 (1989); P J. Mulders, Phys. Rep. 185, 83
(1990); S. Boffi, C. Giusi, and F. D. Pacati, Phys.
Rep. 226, 1 (1993).

L. D. Blokhintsev, I. Borbel, and E. I. Dolinskii, Fiz.
Elem. Chastits At. Yadra 8, 1189 (1977) [Sov. J. Part.
Nucl. 8,485 (1977)]; R. N. Faustov, V. O. Galkin, and
A. 1. Mishurov, Phys. Lett. B 356, 516 (1995).

J. Hiura and 1. Shimodaia, Prog. Theor. Phys. 34,
861 (1965); V .V. Balashov and J. V. Mebonia, Nucl.
Phys. A 107, 369 (1968); J. W. Watson, H. G. Pugh,
P. G. Roos, et al., Nucl. Phys. A 172, 513 (1971),
D. de Forest, Nucl. Phys. A 392, 232 (1983).

D. S.J. Findley and R. O. Owens, Nucl. Phys. A 292,
53 (1977); P. G. Roos, N. S. Chant, A. A. Cowley,
et al., Phys. Rev. C 15,69 (1976).

A. Braton, Nucl. Phys. A 623, 357¢ (1997).

S. S. Schweber, An Introduction to Relativistic
Quantum Field Theory (Row, Peterson and Co.,

Vol.64 No.9 2001



30.
31.
32.
33.

34.
35.

36.
37.
38.
39.
40.
41.
42,
43.

44,

45.

PROBING THE MESONIC STRUCTURE OF THE NUCLEON

Evanston, 1961; Inostrannaya Literatura, Moscow,
1963).

T.-Y. Saito and I. R. Afnan, Few-Body Syst. 18, 101
(1995).

S. Nozawa, B. Blankleider, and T.-S. H. Lee, Nucl.
Phys. A 513, 459 (1990).

W. Hangeveld, W. H. Dickhoff, and K. Albert, Nucl.
Phys. A 451, 269 (1986).

M. Benmerrouch, N. C. Mukhopodhay,
J. F. Zhang, Phys. Rev. D 51, 3237 (1995).

S. Weinberg, Phys. Rev. 133, B1318 (1964).

J. Speth and V. R. Zoller, Phys. Lett. B 351, 533
(1995).

N. N. Nikolaev, J. Speth, and G. T. Garvey, Z. Phys.
A 349, 59 (1994).

A. Szscurek and J. Speth, Nucl. Phys. A 570, 765
(1994).

A. Szczurek and J. Speth, Nucl. Phys. A 555, 249
(1993).

A. Szczurek, V. Ulechenko, H. Holtman,
J. Speth, Nucl. Phys. A 624, 495 (1997).

G. P Lepage and S. T. Brodsky, Phys. Rev. D 22, 2157
(1980).

J. B. Kogut and D. E. Soper, Phys. Rev. D 1, 2901
(1970).

P. Brauel, T. Canzler, D. Cords, et al., Z. Phys. C 3,
101 (1979).

C.J. Bebek, C. N. Brown, S. D. Holmes, ef al., Phys.
Rev. D 17,1693 (1978).

K. Holinde, Phys. Rep. 68, 121 (1981); J. Haiden-
bauer, K. Holinde, and A. W. Thomas, Phys. Rev. C
49,2331 (1994).

J. Hamilton and G. C. Oades, Nucl. Phys. A 424, 447
(1984).

and

and

PHYSICS OF ATOMIC NUCLEI

Vol.64 No.9 2001

46.
47.
48.

49.

0.

ol.

52.

93.

o4.

9.

56.

o7.

1617

W. Grein and P. Kroll, Nucl. Phys. A 338, 332 (1980).
W. Grein, Nucl. Phys. B 131, 255 (1977).

G. Hohler, E. Pietarinen, 1. Sabba-Stefanescu, ef al.,
Nucl. Phys. B 114, 505 (1976).

S. Loucks, V. R. Phandaripande, and R. Shiavilla,
Phys. Rev. C 49, 342 (1994); Phys. Rep. 149, 1
(1987).

A. Donnachie and P. V. Landshofi, Phys. Lett. B 185,
403 (1987) T. Gousset, Nucl. Phys. A 622, 130c
(1997) M. G. Ryskin and Yu. M. Shabelski, Yad. Fiz.
62, 1047 (1999) [Phys. At. Nucl. 62, 980 (1999)].

E. M. Henley, G. Krein, and A. G. Williams, Phys.
Lett. B281,178(1992); A.I Titov, Y. Oh, S. N. Yang,
and T. Morii, Phys. Rev. C 58, 2429 (1998).

V. G. Neudachin, A. A. Sakharuk, V. V. Kurovskii, and
Yu. M. Chuvil’skif, Yad. Fiz. 58, 1234 (1995) [Phys.
At. Nucl. 58, 1155 (1995)].

A. A. Sakharuk, V. G. Zelevinsky, and V. G. Neu-
datchin, Phys. Rev. C 60, 014605 (1999).

O. O. Patarakin, V. N. Tikhonov, and K. N. Mukhin,
Nucl. Phys. A 598, 335 (1996).

D. S. Isert, S. P. Klevansky, and P. Rehberg, Nucl.
Phys. A 643, 275 (1998).

L. Ya. Glozman, Z. Papp, W. Plessas, ef al., Phys.
Rev. C 57, 3406 (1998); L. Ya. Glozman, Nucl. Phys.
A 629, 121c (1998); 1. T. Obukhovsky, A. Faessler,
G. Wagner, and A. J. Buchmann, Phys. Rev. C 60,
035207 (1999).

V. G. J. Stoks, Nucl. Phys. A 629, 205¢ (1998).

Translated by A. Isaakyan



Physics of Atomic Nuclei, Vol. 64, No. 9, 2001, pp. 1618-1623. Translated from Yadernaya Fizika, Vol. 64, No. 9, 2001, pp. 1698-1704.

Original Russian Text Copyright (© 2001 by Bondarev, Litvinenko, Malakhov, Reznikov.

ELEMENTARY PARTICLES AND FIELDS

Experiment

A Dependence of the Cross Sections for the Cumulative
Production of Pions and Protons in Proton—Nucleus
and Nucleus—Nucleus Interactions

V. K. Bondarev, A. G. Litvinenko, A.l. Malakhov, and S. G. Reznikov

Joint Institute for Nuclear Research, Dubna, Moscow oblast, 141980 Russia
Received May 30, 2000

Abstract—The behavior of the inclusive cross sections for the cumulative production of 7% mesons and
protons in pA, DA, and “HeA interactions is studied versus the atomic mass number of fragmenting nuclei.
The primary-beam momenta were 4.5 GeV/c per nucleon. Secondary pions and protons were recorded with
a fixed momentum of 0.5 GeV/c at an angle of 120°. Specifically, the experiment explored the fragmentation
of D, He, SLi, "Li, C, Si, °®Ni, 64Ni, 64Zn, 14Sn, 124Sn, and Pb nuclei. The energy spectra of 7+ and 7~
mesons and protons with momenta in the range 0.3—0.7 GeV/c (the emission angle being 120°) were
measured in an 8.9-GeV/c proton beam for Ni, Zn, and Sn isotopes. The special features in the behavior
of the cross sections are found and discussed, and a comparison is drawn with the results of other studies.
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1. INTRODUCTION

The majority of the experiments that studied the
cumulative production of particles (7%, K*, p, n,
p, and nuclear fragments) were performed in proton
beams of incident energies in the range 1—400 GeV.
The term “cumulative” implies that the production
of particles with specific features (momenta, masses,
emission angles) is forbidden by the kinematics of
free-nucleon collisions. Cumulative particles can be
observed both in the target- and in the projectile-
fragmentation region. In the first case, the parti-
cles are recorded at emission angles in the range
90°—180° (backward hemisphere). In the present
study, we are dealing with cumulative particle pro-
duction in the target-fragmentation region.

At present, a vast body of experimental informa-
tion about cumulative particle production has been
collected in various scientific centers [1—6]. The orig-
inal premises of the cumulative effect in relativistic
nuclear interactions are presented in [1]; the pioneer-
ing results on cumulative production are summarized
in [2]; and the theoretical models of cumulative pro-
cesses are considered in [3—5]. Experimental data
within various conceptual frameworks and the pos-
sible mechanisms of cumulative particle production
are discussed in [6], which is the latest review on the
subject. The quoted articles contain an exhaustive list
of references to relevant experimental and theoretical
studies.

Investigations into cumulative production re-
vealed [1—6] that the spectra of cumulative particles

are similar for various nuclei, irrespective of the
energy and the type of the incident beam. The A
dependence of the cross sections appeared to be an
equally universal feature. The energy dependences of
the cross sections for various particles are reproduced
quite satisfactorily by many theoretical models [3—
5]. The A dependence of the cross sections remains
incomprehensible in many aspects. The frequently
used approximation of the cross section in terms of
a power-law form like A™ is quite satisfactory for a
limited number of nuclei within the mass-number
range A ~ 30—240. In some cases, the exponent n
depends on the mass numbers of nuclei in a rather
specific manner. This concerns the behavior of the
cross sections for isotopically enriched nuclei, which
are usually used in relevant measurements [6]. Here,
we mean the so-called isotopic effect [7], which
consists in that the inclusive cross sections for the
production of 7 and K+ mesons and of protons (that
is, of positively charged particles) are independent
of the excessive neutron content at a fixed charge of

fragmenting nuclei (°®Ni, %4Ni, 114Sn, 124Sn).

In this article, the results on the cumulative pro-
duction of 7 mesons and protons in beams of pro-
tons, deuterons, and He nuclei with momenta of
4.5 GeV/c per nucleon are presented for the case
where secondaries are emitted at an angle of 120°
with a fixed momentum of 0.5 GeV/c. The experiment
was performed with D, He, SLi, "Li, C, Si, 5®Ni,
64Ni, 64Zn, 114Sn, 124Sn, and Pb as fragmenting

1063-7788/01/6409-1618$21.00 © 2001 MAIK “Nauka/Interperiodica”
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Fig. 2. Ratios of the cross sections for the production of
protons and pions on %*Zn and °*Ni nuclei versus the
beam type (A, is the mass number of beam nuclei; all
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incident beams have the same momentum of 4.5 GeV/c
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Fig. 1. A dependence of the inclusive cross sections for
the production of 0.5 GeV/c #+ and 7~ mesons at an
emission angle of 120° in beams of protons, deuterons,
and *He nuclei with a momentum of 4.5 GeV/c per
nucleon (A, is the mass number of target nuclei; the open
triangles correspond to the results for the 54 Zn nucleus).

nuclei. For the same value of the emission angle,
the spectra of protons and pions with momenta in the
range 0.3—0.7 GeV/c were additionally measured in
an 8.9-GeV/c proton beam. In that case, 58Ni, 54Ni,

647Zn, 114Sn, 124Sn, and Pb were used as fragmenting
nuclei. The above sets of fragmenting nuclei allowed
us to obtain the overall pattern of the cross sections as
functions of A and to trace finer details of this depen-
dence under the same experimental conditions. The
entire set of the aforementioned fragmenting nuclei
was used in the deuteron beam.

Our experimental data were obtained with the
DISK setup, which includes a time-of-flight spec-
trometer and which makes it possible to combine data
from it with a magnetic analysis of the momenta of
secondary particles and with measurements of ion-
ization losses and of the intensity of Cherenkov light.
The beam of secondary particles was focused onto
scintillation counters by the doublet of quadrupole
lenses. A detailed description of the experimental
procedure can be found in [6, 8]. The tabulated data
on the cross sections for the production of pions,
kaons, protons, and deuterons were reported in [6, 9].

2. EXPERIMENTAL RESULTS

We would like to note those special features in the
behavior of pion and proton cross sections that did not
attract much attention in previous studies. For cross

PHYSICS OF ATOMIC NUCLEI

Vol.64 No.9 2001

per nucleon; the emission angle is 120°).

sections, we will henceforth use the representation
(6, 9]

1 E d%

Lpgdo _1EB do
A dp A p?dpdQ
(mb GeV~2 ¢ srtnucleon™).

Figure 1 shows the A dependence of the cross
sections for the production of 7% mesons in proton,
deuteron, and helium beams. Two features inherent in
the behavior of the cross sections in all types of beams
considered here are worthy of special note. First, the
A dependences of the pion cross sections are similar
for all beam types. Moreover, the similarity manifests
itself in minute detail, since the isotopic effect is pecu-
liar to all beams. It should be emphasized that, here,
the isotopic effect becomes noticeable at an incident
proton momentum one-half as great as that at which
it was observed in the pioneering studies. Another
fact is a noticeable growth of the cross sections in the
mass-number range A ~ 50—60 and their reduction
on either side of this range. This type of behavior
is peculiar to the specific binding energy of nuclei.
Figure 1 also demonstrates that the isotopic effect for
pions is the most spectacular in proton beams.

Let us consider a pair of %Zn and ®4Ni nuclear
species. They are isobars (that is, they have equal
mass numbers). We use the ratios of the cross sec-
tions for the production of 7+ and 7~ mesons and
of protons on these nuclei and compare the behavior
of these ratios in the different beams. The results
are illustrated in Fig. 2, which shows that there is
virtually no dependence on the beam type in these
ratios. A fit to a constant yields

0.89 £+ 0.02, x? = 0.3 for 7;1.06 & 0.02,
2 = 0.5for 77;1.09 + 0.02, x? = 0.8 for p.
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Ratio of the cross sections for *Zn
and ®*Ni target nuclei
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Fig. 3. Ratios of the cross sections for the production of
protons and pions on % Zn and %*Ni target nuclei versus
the momenta of these particles (the momentum of the

incident proton beam is 8.9 GeV/c; the emission angle
is 120°).

That the ratios of the cross sections for the pro-
duction of protons and 7™ mesons on the nuclei of
nickel and zinc isotopes are nearly equal (Fig. 2; the
pion and proton momentum is 0.5 GeV/c) gives every
reason to expect that this will be the case for other
proton and pion momenta. Indeed, Fig. 3 (data ob-
tained in an 8.9-GeV/c proton beam) confirms these
expectations. In this case, however, the cross sec-
tions for 7~ mesons are equal for the nickel and zinc
isotopes within the experimental errors, in contrast to
what was observed at 4.5 GeV/c. A fit to a constant
yields

0.98 +0.02, x? = 0.4 for 7—;1.12 4 0.02,

x2 = 1.5forn";1.12 4+ 0.02, x% = 1.3 for p.

The kinetic-energy ranges 47—232 and 191—
574 MeV for protons and pions, respectively, cor-
respond to the proton- and pion-momentum range
0.3—0.7 GeV/c. The values of the scaling variable x
in the range 0.6—1.4 for pions and in the range 1.2—
1.7 for protons correspond to the same momentum
range (for an 8.9-GeV/c proton beam at an emission
angle of 120°). The definition of the scaling variable z
can be found, for example, in [6] (it is traditionally

Nucleonic compositions of isotopic nuclei of targets

Target nucleus | Z | N | N/Z | Enrichment, %
BNi 28 | 30 | 1.07 99.7
64N 28 | 36 | 1.29 93.1
64Zn 30 | 34 | 1.13 98.7
14Sn 50 | 64 | 1.28 92.0
124Sn 50 | 74 | 1.48 97.2
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Fig. 4. Ratios of the cross sections for the production of
7t and 7~ mesons on different nuclei versus the pion
momentum (the momentum of the incident proton beam
is 8.9 GeV/c; the emission angle is 120°).

used in studying cumulative particle production).
We assume that experimentally measured values are
more convenient for illustrating the results that we
obtained. We can conclude that, for the momenta
of secondaries in the range 0.3—0.7 GeV/c, the very
specific behavior of the ratios of the pion and proton
cross sections for nuclei with equal mass numbers
is still observed at the incident-proton momentum
nearly twice as great as that for which we discussed
it first. The data in Figs. 2 and 3 suggest an isobaric
effect in pion and proton production.

The ratio of the cross sections for 7 and 7~ pro-
duction on nuclei is one of the interesting features of
cumulative production. As was established in various
experiments (see [6] and the references therein), this
ratio is close to unity not only for isoscalar nuclei but
also for nuclei with a high relative content of neutrons.
For a typical example of the latter, we can indicate
the Pb nucleus, for which N/Z is 1.5. A feature
peculiar to our study of this problem is a specific
choice of fragmenting target nuclei. Their nucleonic
compositions are given in the table.

The ratios of the cross sections for 7™ and 7~
production that were obtained in our study are shown
in Fig. 4 versus the pion momentum. The behavior
of these ratios looks quite peculiar for various nuclei.
First, there are some distinctions between the values
of the ratio at low and high pion momenta (by conven-
tion, it is adopted here that these are momenta below

and above 0.5 GeV/c, respectively; it should be noted

Vol.64 No.9 2001
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Fig. 5. Isotopic and isobaric effects in the pion-
production cross sections versus the pion momen-
tum (the momentum of the incident proton beam is
8.9 GeV/c; the emission angle is 120°). The open tri-
angles correspond to the results for the % Zn nucleus.

that the scaling variable x, which is traditionally used
in cumulative production, takes a value close to unity
for 0.5-GeV/c pions). Second, there is no correlation
between the 7 /7~ ratios and the N/Z values. The
ratios of the pion-production cross sections are equal
or close to unity for the Pb, ?4Sn, 14Sn, and %4Ni

nuclei in the momentum region around 0.5 GeV/c
and above. The situation is absolutely different for the
58Ni and %4Zn nuclei. Thus, we see that, under the
conditions of the present experiment, the ratio of the
cross sections for 7 and 7~ production depends on
the pion momenta and on the particular type of target
nuclei.

The available data on cumulative pion and proton
production in an 8.9-GeV/c incident proton beam
make it possible to study the behavior of the relevant
inclusive cross sections for nickel, zinc, and tin iso-
topes versus momentum. Figures 5 and 6 show the
results for pions and protons, respectively. The iso-
topic effect in pion and proton production is observed
there in the momentum range 0.3—0.7 GeV/c. For
the presentation to be more emphatic, a special nota-
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Fig. 6. As in Fig. 5, but for protons.

tion is used in the figures for the points corresponding
to the %4Zn nucleus.

3. DISCUSSION OF THE RESULTS

We have considered cumulative particle produc-
tion in various types of incident beam and on various
fragmenting nuclei. A rich variety of fragmenting
target nuclei has enabled us to measure comprehen-
sively the A dependence of the cross sections for pion
and proton production. A comparison of data ob-
tained in the beams of protons and helium nuclei has
revealed that the A dependences of the pion cross sec-
tions are similar. The behavior of the cross sections
for the separated isotopes of nuclei exhibits a detailed
similarity. The shape of the A dependences of the pion
cross sections resembles the behavior of the specific
binding energy of nuclei (a maximum in the mass-
number range A ~ 50—60, a reduction on either side
of the maximum, and irregularities for magic nuclei
and those close to them).

This shape of the A dependence of the cross sec-
tions was obtained in other studies as well that were
devoted to measurements for light nuclei. We would
like mention the article of Gavrishcuk et al. [10],
who presented experimental data on pion production
at an angle of ¥ = 159° in incident proton beams of

momenta in the range 15—65 GeV/c. In particular,
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the cross sections for the production of 250- and
500-MeV/c pions on Be, C, Al, Ti, Mo, and W
nuclei exhibit a similar shape of the A dependence.
For higher pion momenta, statistics were insufficient
there for studying the shape of the A dependence.
Pion production at 9 = 119° on Be, Al, Cu, and Ta
nuclei exposed to a 10-GeV proton beam was inves-
tigated in [11]. According to data obtained in that
study, there is an enhancement in the cross sections
for A ~ 50—60 at a pion momentum of 0.6 GeV/c,
which was the initial pion momentum used there; no
such enhancement was observed for the pion momen-
tum of 1.077 GeV/c (the cross sections per nucleon
for the production on Cu and Ta nuclei are identical
within the experimental errors). There are some data
on K*-meson production in the same beams [12,
13]; however, large errors in the experimental data
give no way to draw a definitive conclusion on the
shape of the A dependence of the kaon cross sections,
although the cross sections for K and K~ mesons
show markedly different types of behavior in those
studies. In [14], the cross sections for antiproton
production at an angle of 97° were measured in a
10-GeV proton beam. According to those data, the
shape of the A dependence of the cross sections for
antiproton momenta in the range 0.6—1.05 GeV/c is
similar to that for pions. In addition, we would like to
mention the data from [6, 9] on the production of 0.5-
GeV/c mt mesons at 120° in a carbon-nucleus beam
of momentum 4.5 GeV/c per nucleon. The shape of
the A dependence of the pion cross section there is
similar to that in the beams of protons, deuterons, and
4He nuclei (Fig. 1).

According to the semiempirical formula for the
binding energy of nuclei, the shape of the curve is
determined by the total contribution of the volume,
the surface, the symmetry, and the Coulomb energy.
[t is possible that the shape of the A dependence of the
pion-production cross section obtained in this study
is determined by the same factors. The A dependence
of the proton cross section is different from that for
pions—it is an increasing function of the nuclear
mass number (Fig. 6).

Let us now address the results for the isotopically
enriched nuclei. Their properties are listed in the
table. We can see that there are two pairs of isotopes
and a single pair of isobars. A change in the number
of neutrons (the number of nn pairs) at an invariable
nuclear charge leads to an isotopic effect in pion and
proton production. In the case of the 4Ni and %4Zn
nuclei, differing by the replacement of a pp pair by
an nn pair, there is an isobaric effect for pions and
protons. Additionally, we would like to note that,
in [15], the neutron yield was found to be indepen-
dent of the excess content of protons in the nucleus

PHYSICS OF ATOMIC NUCLEI

BONDAREV et al.

(isotonic effect). Thus, all available types of nuclei
manifest themselves in the processes under study.
The typical scale of these effects amounts to 10—
20%. In particular, the distinction between the values
of the cross sections for positively charged particles
(protons and 7 mesons; see Fig. 2) is close to 10%
and is commensurate with the ratio of *Zn and %4 Ni
charges, which is equal to 1.07. For 7~ mesons,
the ratio of the cross sections for the same nuclei is
about 0.9, the ratio of the number of neutrons in them
being 0.94. On the whole, the cross sections for the
production of 7+ and 7~ mesons on %4Zn and %4Ni
nuclei differ by about 20%. Figure 3 shows that the
isobaric effect is independent of the pion and proton
momenta—it does not disappear at the nearly doubled
momentum of incident protons, amounting to about
10%. The isobaric effect was also observed in the
production of 0.5-GeV/c protons at an angle of 180°
on °8Ni and 8Fe nuclei exposed to an 8.9-GeV/c
proton beam [16]. Its magnitude was 1.14 + 0.04,
which is commensurate with the data of our study.

On a larger scale, these effects manifest them-
selves in the ratios of the cross sections for 7~ and
7w~ -meson production on specially selected nuclei of
98Ni, 64Ni, 64Zn, 114Sn, 124Sn, and Pb (Fig. 4). As
was mentioned above, both effects appear in this case,
and they depend on the pion momenta differently.

Since the effects being discussed are associated
with charged particles, it is natural to assume that
they are caused by electromagnetic interaction, which
discerns particles by their electric charges. It is hardly
probable that this is a purely Coulomb interaction,
since, under the conditions of our study, there is no
dependence on the type or energy of incident beams.
Nor do secondaries show any dependence on their
momenta in the measured region. The isotopic effect
has the same scale on nickel and tin isotopes, whose
nuclear charges are markedly different (see table).
The variation in the charge of incident beams (those
of protons and helium nuclei; Fig. 2) does not change
the scale of the effect.

In [17], Coulomb effects were studied in the pro-
cess Ne + NaFF — 7 at energies of 380 and 164 MeV
per nucleon and in some other processes for which
protons and neutrons were detected. There, Coulomb
corrections to the 7= /7" and n/p ratios were calcu-
lated on the basis of the fireball model. The kinemat-
ical conditions of our study differ substantially from
those considered in [17], so that we need here calcu-
lations that are relevant to the particular experimental
conditions and which are based on a specific model of
cumulative production.

The results obtained in our study highlight an
appreciable role of the nuclear structure, which, in

Vol.64 No.9 2001
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our opinion, must be taken into account in a theoret-
ical description of cumulative particle production in
hadron—nucleus and nucleus—nucleus interactions.
As a matter of fact, a detailed study of the A depen-
dence of the pion and proton cross sections reduced
to exploring the properties of the nucleus as a bound
system. The isotopic and isobaric effects, which re-
flect these properties, appeared to be independent of
the properties or energies of the beams used or the
pion and proton momenta. The ratio of the cross
sections for 7+ and 7~ production on the specially se-
lected group of nuclei appeared to be the only property
showing a specific momentum dependence. Further
studies are required for assessing the degree to which
the effects discovered here are universal. As obvi-
ous extensions of the experiment, we could propose
recording a wider range of particles (for example,
one could include K* mesons and antiprotons) and
increasing the charge of incident nuclei or, in con-
trast to this, employing neutron beams to eliminate
electromagnetic interaction at the initial stage. These
problems are described in detail elsewhere [6].

Fragmentation and multifragmentation are other
processes where nuclear effects on isotopically en-
riched target nuclei could manifest themselves to a
greater degree. The first piece of evidence for the
isotopic effects in these processes was obtained as far
back as in [18] in studying *H, 3He, *He, SLi, and
"Li fragments produced on nickel and tin isotopes in
a 660-MeV incident-proton beam.

4. CONCLUSIONS

The basic results of the present study can be sum-
marized as follows:

(i) The inclusive cross sections for 7+ mesons pro-
duced on an extended set of fragmenting nuclei can-
not be described by a simple power-law dependence
of the A™ type; their behavior is similar to that of the
specific binding energy of nuclei. This is confirmed by
the data of the other studies.

(ii) The inclusive cross sections for 7= mesons
produced with a momentum of 0.5 GeV/c on %*Zn
and %4Ni isobars vary within about 20%, irrespective
of the beam type (protons, deuterons, and He nuclei
with a momentum of 4.5 GeV/c per nucleon).

(iii) For 8.9-GeV/c incident-proton beams, the
inclusive cross sections for production processes oc-
curring on %4Zn and 54Ni isobars are different for 7+
mesons and protons and show no variations with-
in the experimental errors for 7~ mesons. This is
so for product-particle momenta in the range 0.3—

0.7 GeV/c.

+
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(iv) The ratios of the cross sections for 7+~ and

7~ -meson production on ®®Ni, 4Ni, 4Zn, 114Sn,
124Sn, and Pb nuclei depend on the pion momenta
and on the kind of nuclei.

(v) The isotopic and isobaric effects in pion and
proton production induced by an incident beam of

8.9-GeV/c protons are observed in the momentum
range 0.3—0.7 GeV/c.
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Abstract—Neutrino oscillations v;; < v;p in the field of a linearly polarized electromagnetic wave are
studied on the basis of a recently proposed effective Hamiltonian that describes the evolution of a spin in an
arbitrary electromagnetic field. The condition of resonance amplification of the oscillations is analyzed in
detail. A method is developed for qualitatively studying solutions to the equation of neutrino evolution
in the resonance region. This method can be used to explore neutrino oscillations in fields of various
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The electromagnetic properties of the neutrino—
in particular, the interaction of the neutrino with elec-
tromagnetic fields—present one of the basic prob-
lems in neutrino physics. The reason is that non-
vanishing electromagnetic form factors for the neu-
trino, together with a nonvanishing neutrino mass,
would indicate that it is necessary to go beyond the
Glashow—Salam—Weinberg Standard Model (SM)
of electroweak interactions.

In the majority of studies performed so far, the
effect of electromagnetic fields on the neutrino and
neutrino oscillations arising under such conditions
(see, for example, [I—11]) was considered for the
specific case of a magnetic field B, that is con-
stant in time and which is orthogonal to the neu-
trino velocity. Recently, an effective Hamiltonian for
in the Schrodinger equation describing the evolu-
tion of neutrinos was derived in [12, 13] from the
Bargmann—Michel—Telegdi equation generalized to
the case of neutrino motion in a classical electromag-
netic field. This Hamiltonian makes it possible to
consider helicity-flip transitions v;; = v, between

neutrinos of both the same generation and the differ-
ent generations.

The use of the new Hamiltonian allowed the first
analyses of neutrino transitions v;;, < v;p. This
resulted in the prediction of a resonance amplification
of the corresponding neutrino oscillations in the field
of a circularly polarized electromagnetic wave and in
the electromagnetic-field configurations involving a
nonzero magnetic field B along the neutrino velocity.

e-mail: maxim_dvornikov@aport.ru
e-mail: studenik@srdlan.npi.msu.su

In the present study, we consider neutrino oscil-
lations in the field of a linearly polarized electromag-
netic wave. We propose a method for determining
and qualitatively studying a solution in the resonance
region. This method is particularly efficient in the
cases where it is impossible to find an exact solution
to the Schrédinger equation that describes transitions
between two neutrino states. The proposed approach
can be used to study neutrino oscillations in electro-
magnetic fields of various configurations.

Let us consider the system of two neutrinos v =
(v, vy ) of different helicity states. The evolution of v
in the field of an electromagnetic wave of frequency w
can be described by the equation

Ov

o = Hv, (1)
where the Hamiltonian H can be represented in the
form[12, 13]

H=(n-o) (AEA _ %) - —““’V'BO), )

where n is a unit vector directed along the neutrino
velocity 3, 0 = (01, 09, 03) are the Pauli matrices, Vg
is the difference of the effective potentials representing
the interaction of the neutrino with matter, A is a
function of the vacuum mixing angle (the explicit form
of Aforvarious transitions of the v;; = v, p type can
be found in[9—11]), B® is the strength of the magnetic
field in the frame where the neutrino is at rest, and
v = (1 — B)~'/2. We use here the system of units in
whichec=h=1.

We denote by e a unit vector parallel to n and
by ¢ the angle between eg and the direction of wave
propagation. By using Lorentz transformations for
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electromagnetic fields, we then find that, in the par-
ticle rest frame, there arises the magnetic field

B = ’y[(cos ¢ — B)B1eq (3)

+ (1 — ﬂCOS qb)BQeQ — #Bleg],

where the vectors eq 5 3 are unit vectors orthonormal
to one another.

In the case of a linearly polarized electromagnetic
wave, we have

By =cosacosy, By =sinacosy, (4)

where 1 = wt(1 — /8y x cos ¢) is the phase of the
wave, [ is its velocity (which, in general, may be less
than unity; By < 1), and « is the angle specifying the
orientation of the plane of wave polarization.

Substituting expressions (3) and (4) into the gen-
eral formula (2) and expanding it in powers of the
small parameter 1 /vy < 1, we reduce the Hamiltonian
to the form

H = —pos — Agcos (o1 cosa — ogsina), (5)
where Ay =—pB(1— [Bcos¢) and p=Vy/2 —
Am?A/4AE.

For the ensuing investigation, it is convenient to
introduce the evolution operator V' (¢) that relates the
neutrino state v(t) at the instant ¢ to the initial state
v(0): v(t) = V(t)r(0). From (1) and (5), we find that
V (t) satisfies the equation

V(t) = i[po3 4+ Agcos (6)
X (01 cosa — ogsina)|V ().
Note that the operator U (t) defined as
e e
U(t) = exp (—1035) V (t) exp (’L035)

satisfies the equation

U(t) = i[pos + Agoy cosp| U (t). (7)
Thus the dynamics of v;;, & v neutrino transitions
is independent of the orientation of the polarization
plane.

Seeking a resonance in neutrino oscillations, we
substitute, in Eq. (7), the condition

p=0. (8)
A solution to Eq. (7) then has the form
Ui(t) = exp(io1 f(1)), (9)

where f(t) = Ao /1 sin ¢t. For the probability of neu-
trino transitions, we obtain

P(t) = {wglV ()lv)”

= sin? 2f(t) = sin? (% sin q,z}t> .

(10)
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Fig. 1. Transition probability P;; as a function of time ¢ for
the case of |49 /4| = 1 < 7/2. The zeros of the function
P;;(t) are determined from the equation sin ¢t = 0.

Pi(1)
1.0x
0 ” n

0.8

0.6

0.4

VY]

t

Fig. 2. Transition probability P;; as a function of time ¢ for
the case of |Ao/v)| = 6.2 > 7/2. The zeros of the func-

tion P (t) are determined from the equation 6.2 sin ¢t =
m,n =0, 1.

From this formula, it follows that the transition prob-
ability can attain the value of unity, provided that

A—.O > —. (11)
0 2
This condition can set limits on the quantities char-

acterizing the neutrino (u, ) and the electromagnetic
wave (wa Bv ¢7 50)

That condition (11)is necessary for the emergence
of a resonance [P;;(t) = 1] can be illustrated by the
graphs representing the dependence P;;(t) for various

values of & = |Ay/v| (see Fig. 1 for &€ < x/2 and
Fig. 2 for € > 7/2). These graphs show that only if
the subsidiary condition (11) is met can the proba-
bility take the value of unity. For & > 7/2, the basic
concept of an effective oscillation length becomes
meaningless, because the maxima of the probability
do not alternate with the minima at regular intervals.

™
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Fig. 3. Maximum value of the transition probability as a
function of the parameter pfor |p| < |Ao| and |p| > |Ao|.

Let us now investigate condition (8) in more detail.

Suppose that p > Ag; from (7), we then obtain the
equation

U = iposU. (12)

A solution to this equation can be represented in the
form

U = exp(iospt).
The transition probability vanishes in this case:
Py = |{vg| expliospt)|vr)|* = 0.
We will now prove that the relation in (8) is ac-

tually the condition of resonance amplification of
v, S ViR oscillations. For this, we consider a small

deviation from the condition in (8); that is, we set

p = ¢, where ¢ is a small parameter. Equation (7)
then takes the form

U= i(eos + H1)U, H; = Agoqcosp.
We seek a solution to Eq. (13) in the form
U =UF,
where Uj [see Eq. (9)] satisfies the equation
Uy = iH1Us.
For the matrix F', we obtain the equation

F=icH.F, H.=03cos2f(t)+o2sin2f(t). (15)
[t is natural to represent a solution to Eq. (15) as the

series
[o@)
F=>Y etr®,
k=0

where FO =1 is an identity matrix. The quantities
F*) satisfy the recursion relation

(13)

(14)

t
PO () = / H(F®(rydr. (16)
0
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To terms of order €2 inclusive, this yields
F(t) =1 +ic(oay(t) + 030(t))
+ e2(—A(t) +io1B(t)) + O(e%),

where
v(t) = — [ sin2f(7)dr,
/
5(t) = / cos 2f(7)dr,
0

A(t) = /[5(7’) cos 2f (1) — (1) sin 2f (7)]dr,

0
B(t) = /[’y(T) cos 2f (1) + o(7) sin 2f (7)]dr.

0

Thev,;; = v;p transition probability is then given by
P;j = sin® f+&*[2sin f(Bcos f—Asin f)  (17)
+ (ycos f — dsin f)?] + O(e?).
Suppose that the condition in (11) is satisfied. We
consider the values of the probability at the points
f(t) =7/2+wk, k € Z, where it is at a maximum.
Relation (17) then takes the form
PI™) = 14 (5% - 24).
[t can be shown that, at the points f(t) = n/2 + 7k,
the following strict inequality holds:
. 2

62— 24 = /sin 2f(r)dr | <o,
0

whence it follows that PZ-(]maX) (e #0) < 1. Thus, we

have shown that, if there is a small deviation from the
resonance condition (8), the probability cannot reach

the value of unity. The dependence of Pl-(max) on p
under the condition (11) is illustrated in Fig. 3.

In conclusion, we discuss the origin of the sub-
sidiary condition (11) in more detail. In the case of
oscillations in a constant transverse magnetic field,
the resonance condition can be expressed in terms of
only one relation [similar to Eq. (8)][4, 5]. In the case
considered here, the emergence of the subsidiary con-
dition (11)is associated with the special configuration
of the electromagnetic field.

Indeed the evolution of a spin was described here
within the approach that was developed in [12, 13]
and which is based on an analog of the Bargmann—
Michel—Telegdi equation [14]. In this approach, the
quantum evolution operator V(¢) has the meaning
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of the evolution matrix for the spin-tensor S = (¢8S),
where S is the particle spin vector. In the presence of
an electromagnetic field, the particle spin precesses
about a fixed vector | whose direction is determined
by a particular configuration of the electromagnetic
field. The resonance amplification of spin oscillations
occurs in the case where the vector I forms a right
angle with the neutrino velocity. For this reason, the
condition p = 0 dictates the required direction of the
vector 1.

In a linearly polarized electromagnetic wave, how-
ever, the magnetic-field-induction vector B oscillates
in a plane. Under such conditions, the spin vector
S rotates in opposite directions in the cases where
the vector B is parallel and antiparallel to the e; axis.
As a consequence, the spin vector oscillates, in our
problem, about the direction orthogonal to the neu-
trino velocity. For the emergence of effective neutrino
oscillations it is necessary that their amplitude be
greater than or equal to 7. A detailed analysis reveals
that, for this to occur, one must impose a constraint
on the amplitude of the magnetic field and that this
constraint coincides with the condition in (11).
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Abstract—The recoil-effect-induced part of the ma® contribution to the hyperfine splitting of the positro-
nium ground state is calculated. The method employed is based on noncovariant perturbation theory within
QED. The result is 0.381(6)ma®, which agrees well with the results of previous studies. This means that it
deviates sizably from experimental data. © 2001 MAIK “Nauka/Interperiodica”.

1. INTRODUCTION

At present, the hyperfine splitting of the positron-
ium ground state—that is, the difference of the ener-
gies of the 1357 and the 115y state, which is denoted
by Av in the following—has been measured to the
highest precision among all features of positronium.
The best two experimental results for this quantity
were obtained in [1, 2] and [3]; they are, respectively,

Av = 203387.5(1.6) MHz (1)
and
Av = 203389.10(0.74) MHz. (2)
The ma?, ma®, and ma® In « contributions to Av
were calculated in [4—9]. Their sum is given by
7T a8 1
4 _ pa— pa—
mao [12 7T(9—|-21112> (3)

— 25—4a2 In a] = 203400.29 MHz.

In order to compare the experimental results pre-
sented in (1) and (2) with theoretical predictions, it
is necessary to calculate ma® contributions not in-
volving logarithms. One can break them down into
a few terms and calculate each such term separately.
The contributions associated with one-, two-, and
three-photon annihilation were calculated in [10, 11],
[12], and [13, 14], respectively. The contributions that
are formally proportional to (Za)*a?m and (Za)®am
(here, Ze is the charge of one of the constituent parti-
cles; for positronium, Z = 1) were determined in [15,
16] and [17—19], respectively. There is also a (Za)%m
contribution. It is induced by the “recoil” effect and
is represented by diagrams where each photon line
links two fermion lines. In what follows, the sum of

DNovosibirsk State Technical University, pr. K. Marksa 20,
Novosibirsk, 630092 Russia.

the m(Za)® and m(Za)%In « terms in Av is denoted
by Avrec; it was calculated in [20—23]. Here, we also
consider this very contribution.

The results presented in [20—22] were different.
The value obtained in [23], 0.3763ma’, complies with
that from [21], 0.3767(17)ma®. Our present result is
0.381(6)mab, which is also in agreement, within the
errors, with the aforementioned results from [21, 23].
Recently, the calculations from [22] were revised by
their authors; the new value of 0.3764(35)ma® [24] is
now consistent with those quoted immediately above.

In [20], so-called nonrelativistic QED (NRQED)
was formulated and used to calculate Avy.. The
calculations in [22] were performed within the Bethe—
Salpeter formalism. In [21] (and, as matter of fact,
in [23]), Avr. was computed within the approach
employing an effective nonrelativistic Hamiltonian.
This approach is a combination of NRQED and old-
fashioned noncovariant perturbation theory within
QED. The latter was employed for the first time in
[25] to calculate the spectrum of positronium.

In the present article, we also employ a formal-
ism based on noncovariant perturbation theory within
QED. In calculating relevant integrals with respect
to loop momenta, we break them down into soft and
hard components—that is, those that are associated
with low and high momenta, respectively. Soft con-
tributions are calculated analytically. In dealing with
hard contributions, we reduce the sum of a large
number of noncovariant diagrams to the sum of a few
covariant ones, the latter being calculated numeri-
cally.

2. DESCRIPTION OF THE FORMALISM

The Schrédinger equation for the total (many-
body) wave function can easily be reduced to an
equation involving only a two-body component of this
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wave function, with an effective Hamiltonian being
dependent on energy. This equation has the form

(PHP + Vo(E) = E)|ih2) = 0, (4)
where [12) is the two-body component of the wave

function; P is the operator of projection onto two-
particle space; H is total QED Hamiltonian; and

1
V,(E)=PHP,————
( ) (E_PaHPa)

P,=1-P.

P,HP,

In order to calculate the energy spectrum deter-
mined by Eq. (4), we represent the corresponding
effective Hamiltonian PHP + V,(E) as the sum of

the unperturbed part H®) = PH,P + V{ and the per-
turbation V(E) = V,(E) + PVy P — V, where Hy is
the free-motion Hamiltonian of QED and Vi and Vj
are, respectively, the electromagnetic and the nonrel-
ativistic Coulomb interaction.

The expansion of V(E) + V; in powers of the elec-
tromagnetic interaction can be illustrated in terms
of two-particle-irreducible diagrams of noncovariant
perturbation theory. The rules of the diagram tech-
nique in the noncovariant formulation can be found,
for example, in [25].

Below, all the operators and wave functions used
refer to the two-particle subspace. It is convenient
to perform calculations in the c.m. frame, where the
momentum p of the first particle is the only variable
(apart from spins). We denote by V. (V) the oper-
ator corresponding to the tree diagram involving the
exchange of a Coulomb (magnetic) photon. We then
rewrite V' in the form

VIEY=Vi+Va+Vs+..., Vi=Vi.+ Vi, (5)
Vie=Ve =T,

where Vs, V3, etc., include irreducible diagrams fea-
turing two, three, etc., photon lines, respectively. The

recoil contribution Av correct to terms of order ma®
inclusive is

WIVIG'VIG' VI + VoG'Vi + VAG' Ve (6)
+ V3 + ViGVi + Vo + Vi [9)] 0,

Here, |¢) stands for the zero-order approximation of
|12), that is, a solution to the equation

HOW) = Bal); (7)
o is the positronium spin; and G’ = G'(E») is the
Green’s function for Eq. (7), where the ground-state
contribution is subtracted.

[t can be shown that, to a sufficient precision for
the case being considered, we can represent the zero-
order wave function as

1) ~ (1+ (S — So)Va (8)
+ SV (S — So)Vo + LAT)|poX)-
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Here, L = G{, — So — SoVSo, So () is the free non-
relativistic (relativistic) two-particle Green’s func-
tion, G stands for the Coulomb nonrelativistic
Green’s function where the ground-state contribu-
tion is subtracted, AT is the operator of the rela-
tivistic correction to the kinetic energy, x represents
the spin part of the wave function, and ¢o (FEp)
stands for the ground-state wave function (energy)
for the ordinary nonrelativistic Coulomb problem. It
is well known that Eg = 2m —~2/m and ¢o(p) =
8+°/2r1/2f2 (herealter, we use the notation v =

am/2 and f;, = k? + ~2 for an arbitrary momentum
k). In (8) and everywhere below, all Green’s functions
are taken at Ey.

We now rearrange the various contributions in (6).
To a sufficient degree of precision, we can first set
G' ~ S+ SVypS + L. For an arbitrary operator X,
we denote (X) = <<P0X’X\<P0X>‘Zi(1); further, we use
the notation (X)) for the sum of the o™ and " In «
contributions to (X). Retaining only the terms of the
required orders, we arrive at
Aviee = (V3 +Va+Uva +Uc +Un  (9)

+Unmm +Unen +Unmm + UL) ),

where
Uyg = VoSV, + Va(SVe — SoVp) + he,,  (10)
Uc =Vie+Uc2 + Ucs, (L1)
Upm = Vin + Uno + Ups, (12)
Uvnv = Upnvi2 + Univa, (13)
Up = Vi LV, + (Vi L(AT + Vi) +h.c.). (16)
Here, we have
UCQ = Vlcsvlc + (VlC(S — So)Vo + h.C.), (17)
Unmz = Vi (SVe — SoVo) + h.c,, (18)
Urviniz = Vi SV, (19)
Ucs = Vo(S — So)Vie(S — So)Vo (20)
+ (V1eSVL(S — So)Vp + h.c.)
+ (VlCSvlc(S — So)Vo + h.C.),
Unmsz = (VoS — VoSo) Vi (SVe — So Vo) (21)
+(Vin SVe(SVe — SoVo) + h.c.),
UMM3 = VmSVm(SVC — S()V()) + h.c. (22)



Fig. 1. Irreducible diagrams associated with the retar-
dation effect (wavy and dashed lines denote, respectively,
magnetic (transverse) and Coulomb photons).

3. COMPUTATIONAL METHOD

The various contributions to Ay, can be repre-
sented as integrals with respect to loop momenta. A
contribution will be referred to as a hard one if it is
controlled (to a sufficient degree of precision) by the
region where all the loop momenta are of order m.
Otherwise, a contribution is classed with soft ones.
In order to separate soft and hard contributions, we
expand relevant integrand in powers of momenta. In
order to answer the question of whether one term of
such an expansion or another involves a soft contri-
bution, we assume that all the momenta are of order
am and, by counting the relevant powers, we then
find out whether this region of momenta makes a con-
tribution of order ma® to Av,e.—if so, the expansion
term being considered must obviously be associated
with soft contributions. On the other hand, it appears
that, in the problem addressed here, the absence of an
ma® contribution from the above region implies that
there is no soft contribution in general (at least, within
the computational algorithm presented below).

In breaking down an expression into a soft and
a hard part, there is some degree of arbitrariness;
hence, the soft part can always be chosen in such a
way that its contribution to the integral is analytically
calculable. In calculating the hard contribution, one
can set Ey = 2m in the integrand, whereupon the
resulting integral can easily be computed numerically.

The contributions to Avye. can be broken down
into tree ((Vic, Vin)g)). one-loop ((Va,Uca, Unsa,
Unmmz2) ) ), and two-loop ((V3, Uva, Ucs, Unis, Unis,
Unmcenr, Uninin ) (s)) ones (in the second and the third
case, the expression in ( ) appears to be, respec-
tively, a single and a double integral with respect
to momenta). In addition, there is the contribution
(UL) ) corresponding to diagrams involving three or
more loops. We consider the contributions of each
type individually.

An arbitrary two-loop contribution has the form
(X2) (), where

Xo(p,p',7) (23)
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We define n as the degree of divergence of Xs; that
is, Yo ~ "% for p,p’,qi,..., v ~8 <m. For all
n > 0 terms, the main contribution to the integral
comes from the region where p ~ p' ~~ and ¢; ~
g2 ~ |q; — q| ~ m and where the dependence of Y5
on p and p’ can be disregarded. As a result, we obtain

(X2)(6) = |io(r = 0)]" X3 X2)p-
(24)

For the sake of brevity, we still continue using the
notation ( ), introduced in (24). The integral entering
into the definition (X3), is independent of the small
parameter « and can easily be computed numerically.

In the case of n <0, we isolate a soft part Y
from Y2, so that Y; and (Y2 — Y2;) are characterized
by n <0 and n > 0, respectively. It is convenient to
do this in such a way that, for p,p’, q1,... < m, Yo;
is close to a homogeneous function (this is not done
only for the contribution of the graph that is presented
in Fig. la and which will be discussed in Section 4).
It can be shown that, for all cases encountered in
the ensuing calculations, this choice of Y5; makes it
possible to calculate the hard part (X)) according
to (24). The result is

(X2)(6) = (X2 — Xa1)p + (X21)(6)5 (25)

where Xo, is an integral of the form (23), where Yo,
appears as the integrand. To ensure convergence of
the integrals that determine the first and the second
term in (25), the function Y31 must decrease at a
sufficiently high rate for g1, g2 > m.

In calculating one-loop and tree contributions,
we need to find first- and the second-order correc-
tions in « to the leading contributions. The method
for determining these corrections is obvious. To il-
lustrate it, we will describe the calculation of (X),
where X = X (p,p’) is a sufficiently smooth func-
tion independent of a and where the expansion of
X(p,p’) — X(0,0) in p and p’ begins from the third-
order term. We represent (X) in the form

(X) =40+ A1+ Ay,

o=1 _ <
o=01p,p’,y=0"

Ao = |po(r = 0)[2X(0,0)|7—,,

3
Ay = po(r = 0) / %wo<p><x<p,o> (26)
+X(0,p) —2X(0,0))|72,,
d3 d3 / , ,
Azz/#@:)g%*(p) (X(p,p")  (27)

— X(p,0) = X(0,p") + X(0,0))[7Z; 2o(p).
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In order to calculate the first three terms of the expan-
sion of (X') in «v, we can replace pg(p) in (26), (27) by
82/ 271/2p=4 whereupon, Ao, A, and Ay prove to
be of order a3, a*, and o, respectively.

An arbitrary one-loop contribution has the form
(X1) (), where

d3q 2
X1(p,ps7) = / oy 02 V1P 7). (28
Let n be such that Y, ~ 6" 2 forp,p',q,...., 7~ 6 <K

m. In the case of n < 0, we isolate a soft part Y;; from
Y7 in such a way that Y77 and (Y1—Y71) are charac-
terized by n < 0 and n > 0, respectively. In choosing
Y11, itis convenient to require that, forp, p’, ¢, v < m,
this soft part be close to a homogeneous function (this
is not done only for the contribution of the graph that
is presented in Fig. 16 and which will be discussed
in Section 4). It can be shown that, for this choice of
Y71, the hard part (X)) can be found according to a

relation of the type in (26). The result is

(X1)@) = (X1 = X11) (29)
— (Xl — Xll)O)SO‘/O + h.C.>p + <X11>(6)7
where we have used the notation ( )o defined in

such a way that (X)o(p,p’) = X(p, p’)‘p:p,:O and

where X7 is an integral of the form (28), where the
integrand involves Y71.

The tree contributions to Aviec ((Vin) ), (Vi) (6))
are calculated in a similar way. Each of them is
represented as the sum of the soft and the hard part,
and the latter is calculated according to (27).

In Section 4, soft contributions are isolated in
Avyee according to (25), (27), and (29), whereby it is

found that
(Va)e) = (Vs — Wys)p + Eys,  (30)
(Va+ Uva)e) = (VaSV +hcl),  (31)
+ ((VaSV — Wya) + h.c.)p + B,

(Uc)e) = (VeSVeSVe = We)p + ES, (32)
(U)o = (VeSViSVe — Wart)p (33)

+ ((VinSVSV, — Wasa) + h.c)y, + B3y,
(Unmn) o) (34)

= (VinSVinSVe — Wasar) + hoc)p + E3par,
(Unmom) o) (35)
= (VinSVeSVi — Warenr)p + Exron

(Unmmm)e) = (Vi SV SVin)p, (36)

where W; (i = V3, V2, C, etc.) stand for the opera-
tors associated with the soft contributions and E¢ are
the analytically calculable soft contributions to Avrec.
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The first term of ( ), in each of expressions (30)—
(36) is obtained by summing the contribution of a
few noncovariant diagrams, their sum being equal to
the sum of expressions for all two-loop noncovariant
diagrams of the recoil type. It should be noted that, in
applying the procedure ( ), to any diagram, its exter-
nal legs occur on the mass shell. The sum of the cor-
responding integrands for all noncovariant diagrams
having the same topological structure is equal to the
integrand for an ordinary covariant Feynman diagram
(after integration with respect to zero components
of loop momenta). Owing to this fact, the sum of
the contributions of many noncovariant diagrams can
be reduced to the sum of the contributions of only a
few covariant diagrams. Moreover, the sum of the
integrands for all covariant diagrams is independent
of gauge, so that the calculations can be performed in

any gauge.

4. SOFT CONTRIBUTIONS

Here, we apply the general algorithm for extract-
ing soft contributions to various terms in Avy.. Be-
forehand, we note that any quantity averaged over
the ground-state wave function can be replaced by
its average over positronium polarizations (that is,
over the directions of the total spin); as a result, the
calculations are somewhat simplified.

Let us discuss the calculation of the retardation-
induced contributions to (V;,,) ), (V2)(6), and (V3) );
in the last two cases, we imply the contributions of
the diagrams in Figs. 16 and la. From the outset, it
is convenient to consider, instead of the relevant oper-
ators, their spin—spin components averaged over the
directions of the total spin. Each of these quantities
can be represented as the sum of two terms,

<V>(6) <Vret>( 6) <‘/i/>(6)7 i =m,2,3, (37)
where
o d3 4 2
0 = [T ey
(e merm e e a)
(¢+ fe)la+ fu)  (a+fp)la+ fp))’
ret d3q1 dSQQ 3167T
Vb k= | s @ 3 m% @@
1
39
X<(q+fp)(Q+fp1)(Q+fp2) (59)

1
- (q+ fi)(q+ fry)(qg + sz))

the notation for the momenta is indicated in Fig. 1,

Vi (p, k) =

1 q q
Vi . 0
2 O[q+fp+q+fk] (40)
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(@) (b)

0

Fig. 2. Cancellation of soft contributions for irreducible
diagrams involving two magnetic photons.

Here,

VmO:‘/S‘ 2 am

S 0102,

P k=7 =0 37m2 a=k-p,

and Vy is the positronium-polarization-averaged
spin—spin contribution to V,,,. The softest contri-
butions to (V;)() are entirely contained in the first
terms on the right-hand side of (37). The second
terms in (37) can be found by the method outlined
in the preceding section.

[t should be noted that the sum of the first terms in
(37)is equal to zero. This can easily be demonstrated
either by a straightforward evaluation or by means
of the following argument. For a particle of mass
m/2 moving in the field of a particle of large mass
M, we consider, for this purpose, the calculation of
the hyperfine splitting of the ground state taking into
account terms of order a®m?/M. To a precision
sufficient for the present case, we can disregard retar-
dation effects from the outset, assuming the magnetic
interaction to be instantaneous. But if we allow for re-
tardation explicitly, the corresponding contributions
must exactly cancel:

<V7;Let + ‘/2%‘[ + V?)l‘et>(6) — <Vm0>(6) =0. (41)

4.1. Contributions of Irreducible Diagrams

In order to calculate (V3) ), we must find V3p—

that is, that part of V3 which is controlled by an inte-
gral featuring whose degree of divergence is n = 0—
and then apply expression (25) with Xy = V3.
There are only three essentially different diagrams
contributing to V39. These are those in Figs. 2a,
2b, and la. However, the total contribution of the
diagrams in Figs. 2a and 2b to V3 can be discarded,
since, in the region of low loop momenta, their sum
reduces to the diagram in Fig. 2¢, where the effective
two-photon vertex is independent of spins. Thus, V3
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is determined by the diagram in Fig. la exclusively

and can be set to Vi, As a result, we arrive at
expression (30) with

WV3 — ‘/31‘@[’ E‘%g — <V3ret>(6).

In order to calculate (V) ), we follow a similar
procedure. Specifically, we apply expression (29) with
X171 = Vi, where Vyq is the n = 0 component of V5.
Noticing that (Uyv2) ) = (Uva),, we arrive at (31)
with
Wys = (Voo + (Va — Va0)0)SoVo,  Epa = (Vag)6)-

The diagrams involving two Coulomb photons do
not contribute to V5g. As to the contributions of
the diagrams with two magnetic photons, they are
cancelled, in just the same way as the analogous
contributions to V.

Let us now consider the diagrams that involve
one magnetic and one Coulomb photon and which
contribute to V5. The only diagram of this type not
containing pairs is that in Fig. 156. Its contribution to
Vao can be set to V3. The set of diagrams featuring
pairs can be broken down into two subsets associated
with the covariant graphs A and B displayed in Fig. 3.
The contribution of each subset to V5 can be chosen
in the form

, d3q 4o’n?
Vso(p,p') = Vig —/WW

1
X o7 O'QW(((f + q'2)Rq — k2Rk)

(42)

(the notation for the momenta is indicated in Fig. 3,
k=p’ —p, and B = m?/(m? + [?) for any 1). Their
total contribution to B¢, is

E? = (2/3)ma’Ina.

4.2. Contributions of Reducible Diagrams

We begin by evaluating (UL)). As a matter of

fact, this is the contribution of the diagrams involv-
ing a Coulomb ladder that contain more than two
loops. To the required accuracy, this contribution is
controlled by the region where all loop momenta are
of order ma; hence, it can be calculated analytically.
There are two types of such diagrams, those involving
two or one magnetic photon and corresponding to the
first or the second term in (16). The contribution
of the diagrams involving two magnetic photons is
independent, in the order being considered, on the
details of the formalism employed; for the first time,
it was calculated in [26]. The method that we use
here to compute it is basically analogous to that from

Vol.64 No.9 2001
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[27] (calculations in the coordinate representation);
the result is coincident with the previous one:

864 18

The contribution of the diagrams involving one
magnetic photon was calculated by two methods: in
the coordinate representation (by a method similar
to that from [27]) and by means of a straightforward
integration in the momentum representation with the
explicit expression for the function L(p, k), for ex-
ample, from [26]. The results obtained by the two
methods are identical:

EYy = (1/64)yma® ~ 0.01562ma’.

1 2
ESvy = (79 i ) ma® ~ 0.3672mab.  (43)

(44)

Let us now calculate (UM>(6), the contribution
of reducible graphs involving one magnetic photon
(without the contribution of graphs that contain many
loops and which were treated above). In doing this,
we consider that (Vi) ) = (Vs)(6)- We expand Vs in
powers of momenta as

Vi = VU4 Vit + Vi, (45)
where
1 p2k?
V(0.0 = g Vo [Py R (46

1
— q—Q(p‘iRp +k'Ry) — (®R, + kQRk)} ,

where g = p — k. It can be shown that (V;,2) is
then determined by expression (27) with X = V0.
In order to calculate <UM2>(6) and <UM3>(6), we
can use the expressions (29) and (25) with Xy =
Vmo(SOVH + Slvo) + h.c. and Xo1 =
VimoSoVo(SoVi1 + S1Vo) + h.c. Here, S; ~ S — Sy in
the region where the momenta are of order mc; in this
region, Vi is approximately equal to the difference
V. — Vi averaged over the directions of the total spin.

After some simple algebra, we arrive at (33) with
Wi = (VeSVin)oSoVo + h.c.
+ VoSo (V' + Vin1) SoVo
— (VoSo (V" + Vim1))oSoVo + h.c.),
Wiz = VinoSoVo(So Vi1 + S1Vo)
+ (ViSoVo + VinoS1Vo + (Vi SVe
= VimSoVo — VinoS1V0)0)So Vo,
Efr = (Vs + Vit ) o)
+2(Vino (S1Vo + SoV11)) (6)
+ 2(Vin0SoVo(So Vi1 + S1V0)) 6) -
We set Vi1(p, k) = ar/m?R,, and
S1() = —Ry/4+72/(2f,) — 7 /(4f2);
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p A p p B p’

R G —

Fig. 3. One-loop covariant diagrams contributing to Vag.

we then have

The contribution of reducible diagrams involving
only Coulomb photons—that is, (Uc))—is calcu-
lated in a similar way. The result has the form (32),
where one must set

We =VoSoVieSoVo, B¢ = (Vie)e)-  (47)

Taking V7, in the form

1 am 1 /p*
Vip. k)= o322 (— ! (? Pp. k)Rp

24 2
21.2
- Pk
+(p_>k)+ qg Rp)v

we arrive at

We now calculate the contribution of reducible
diagrams involving two magnetic photons (omitting
the contribution of multiloop diagrams that was con-
sidered above). It is equal to (Unrare + Unrnms +
Umcm)e)- In order to calculate (Unsar2)e) and
(Umcm) ), we make use of expressions (29) and
(25), where we set X117 = VipSoRVimp and Xop =
Vb SoVoSo RVinp, With Vi, standing for that part of
the Breit Hamiltonian which is induced by the ex-
change of a magnetic photon and R being the op-
erator with kernel R(pp’) = (27)383(p — p/)R,. It
can easily be seen that (Unrns) ) = (Unmz)p. As
a result, we obtain (34) and (35), where we must set

Warnr = Vb So RVinp So Vo

+ (Vi SVin = Vi So RV ) 050 Vo,
Wyrer = VipSoVoSo RV e,

3 23
Efine = (VibSoRVib) (6) = <_§ Ino — %> mab,

ESronr = (VanSoVoSoRViw) (6)

5 5 72 6
=—-—haoa— —+ — | ma’.
48 32 18
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Table 1. Hard contributions to Av. (in units of ma®) (also displayed are the results from [22])

Diagram Contribution 0 Avree (in e motation é(1>1fu[22]) C(chtcrébrgit;?t?[gf)m
4CCC —0.0039 cecx —0.0039
4CMC 0.0042 ctex 0.0043
4MCC —0.0486 cctx + tecx —0.0489
AMCM —0.0230 tetx —0.0230

AMMC +3MMC —0.0209 (cttx + ttex) + cttz —0.0209

AMM M 0.0042 tttx 0.0041
3cce 0.0064 ceez 0.0063
3Mcc 0.0268 ctez + cetz 0.0283
3CMM 0.0530 ttcz + tetz 0.0534

SMMM —0.0012 tttz —0.0011
20CC —0.0184 ceey + cex —0.0186
2MCC —0.0661 teey —0.0681
2MCM 0.0552 tety + ttey 0.0558

2M M M —0.0011 ttty —0.0011

1IMMM 0.0694 ttt0 0.0694
1ccc —0.0094 — —
1MCM —0.0745 — —

1CMM +2CMM —0.5112 - -
3CCM —0.0104 - -
20MC —0.0245 - -
1Mcc 0.1795 - -
1CMC —0.0092 - -

This completes the evaluation of the soft contribu-
tions. Their sum is

1 1 1
(—glna + %) mab ~ <_6 Ina + 0.8061) mab.

In order to check the formalism employed and the
procedure for calculating the soft contributions, we
apply them to calculating the (Za)®m? /M contribu-
tion to the hyperfine splitting of the ground state of
the hydrogen atom. In calculating this quantity (to
the required order), we can actually reduce the two-
particle problem to that of motion in an external field,
so that the sought value can easily be calculated in
the coordinate representation. The result, 4a%m? /M,
is identical to that obtained in the momentum repre-
sentation by the method described in this article.

5. HARD CONTRIBUTIONS
There exist four two-loop covariant recoil-type
diagrams that cannot be obtained from one another

PHYSICS OF ATOMIC NUCLEI

by particle permutations or time reversal (or by com-
bining those two operations). They are displayed
in Fig. 4. If magnetic and Coulomb photons are
represented by different lines, we have 24 different
diagrams. To indicate magnetic and Coulomb lines
in referring to a specific diagram, we will henceforth
use the indices “M” and “C',” respectively, written in
the order of the emergence of photons along the lower
lines in diagrams 1—4 (Figs. 4) from left to right.

The hard contribution to Ave. was calculated by
two methods. The first, based on the Coulomb gauge,
consists in calculating the contribution of 24 dia-
grams separately. Within the second method, the
total hard contribution was calculated as a whole by
using Feynman gauge.

The result is —0.424(6)ma® for the individual and
—0.426(6)ma’ for the combined calculations. For
the hard contribution, we take the average of these
two values, —0.425(6)ma®. Adding this to the soft

Vol.64 No.9 2001



“RECOIL’-EFFECT-INDUCED CONTRIBUTION

1635

Table 2. Contributions involving a soft part along with the results from [22, 24] (in units of ma®)

Calculated Calculated Coefficient Constant
value value of In Constant (according to [22, 24])
(in the notation of [22])
Eflcc+ES cc0 + ccc —1/48 —0.0146 —0.0148
Efon + Esrem tct0 —5/48 0.3176 0.3138
1 tt 1t
B s oot + B ctt + 1t + city+ ~3/8 ~0.751 ~0.749
+tt0 + ttx
Euy E, 1/3 0.427 0.423

contribution, we obtain 0.381(6)ma® for the non-
logarithmic part of the recoil contribution, in perfect
agreement with the results from [21, 23, 24].

Table 1 lists the results for the hard contributions
of various diagrams. The errors of the calculations are
not quoted there, since they never exceed 1% for an
individual contribution.

The contribution of the 3-MMC and 4-MMC dia-
grams were calculated together, since these diagrams
involve noncovariant diagrams in Figs. 2a and 20,
whose contributions to V3¢ cancel each other. For a
similar reason, we combined the contributions of the
1-CMM and 2-CMM diagrams.

We can compare the results obtained by separately
calculating the individual contributions with the re-
sults from [22], where Ay Was calculated within the
Bethe—Salpeter formalism (in the Coulomb gauge).
The point is that the correction to the energy can be
represented as a power series in irreducible covariant
diagrams (the tree diagram featuring the exchange of
a Coulomb photon is not included here). It is clear
that the numerical value of any term of this series is
independent of the formalism employed. In addition,
the contribution of the 1-MCM diagram in the order
being considered must be exactly equal to the corre-
sponding contribution from [22]. The majority of the
terms of the expansion in irreducible diagrams involve
only the hard part; their numerical values are pre-
sented in the first part of Table 1. The other terms of

11X
Ho oK

Fig. 4. Two-loop covariant diagrams of the recoil type
(wavy lines photons in an arbitrary gauge).
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this expansion involve soft contributions as well; their
values are given in Table 2. Tables 1 and 2 also quote
the corresponding values from [22] (with allowance
for further corrections reported by the authors). They
agree well with our present results. For example, the
value of EfL, . in Table 2 means the hard part of the
contribution of the 1-CCC diagram,

En = Efben + Esbne + Efce
+ E{tne + Efv + EXr + Ep,

Ejy; = (ct0 4 tc0) + ctc0 + (ctz + tex)
+ (cct0 + tec0) + (ctey + cety) + teez
+AENS(AKGT + TAKy) + AERS
(in the notation of [22]).

6. CONCLUSION

We have calculated the recoil-effect-induced cor-
rection of order ma® to the hyperfine structure of
the positronium ground state [in general, its order is
(Za)®m]. The calculation has been performed within
the noncovariant formulation of perturbation theory in
QED. The result,

Avree = ma® [—(1/6) In a + 0.381(6)]

is in accord with those obtained in [21, 23, 24]. Thus,
we can state that Av. has been reliably determined.
However, this result is at odds with experimental data.
Adding the recoil contribution to other contributions
of the same order (which were also reliably deter-
mined), we find that the nonlogarithmic part of the
total ma® contribution to Av is

ma®(—0.3928) = —7.33 MHz (48)

(in evaluating (48), we have taken, for Avgc, the
result from [23] as the most precise among three).
Adding (48) to (3) (that is, to the ma*, ma®, and
ma® In a contributions), we obtain the total theoreti-
cal result to order ma® inclusive:

Ay, = 203392.96 MHz.
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This value differs from the experimental result in (2)
by five standard deviations.

The leading contribution of the next order in «

(that is, the ma” In? o contribution) was found in [28]
to be

—(7/87)ma’ In? a ~ —0.92 MHz.

With allowance for this correction, the difference be-
tween the theoretical and the experimental value of
Av reduces to four standard deviations.
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Abstract—The features of a hypothetical 4v interaction considered as the possible reason for massive-
neutrino instability required in the cosmological scenario that involve neutrino dark matter are discussed.
New constraints on the 4v-interaction constant G are obtained: G, < (15—42) G form, > mz (GF is
the Fermi constant of weak interaction; m,, is the mass of the 4v-interaction gauge boson, also known as
X boson; and mz is the Z-boson mass) and G, <(2.8—5.6) G form, < mz. These constraints virtually
rule out the 4v interaction as a possible version of solution to the cosmological neutrino-instability problem.

© 2001 MAIK “Nauka/Interperiodica”.

1. INTRODUCTION

The cosmology of unstable hidden mass is one of
the possible solutions to the problem of dark matter in
the Universe. As was shown in[1], a massive neutrino
(of mass in the range 30—100 eV) can be a realistic
candidate for a dark-matter particle if such a neutrino
is unstable (the relevant lifetime must be in the range
108—10? yr) with respect to decays into other weakly
interacting particles. In the case of stable neutrinos,
the large-scale structure of the Universe would evolve
overly fast, with the result that there would emerge a
structure that is incompatible with observations. The
decay of massive neutrinos leads to a reduction of
the matter density in nonhomogeneities and, hence,
to a moderation in the rate of structure evolution.
In order to justify neutrino instability, it is necessary
to extend the Standard Model (SM) of electroweak
interaction. By way of example, we indicate that, in
the horizontal-unification model, which supplements
SM symmetry by the broken symmetry of fermion
generations (for an overview, see [2]), there can occur
the decay process vy — vpa, where vy and vy, are,
respectively, the heavy and the light neutrino, while
« is the archion, a Goldstone boson in this theory.
Other models with neutrino decay are also possible.
In the present article, we consider the simplest ver-
sion of realization of neutrino instability, that which
does not require particles of a new type explicitly.
Specifically, we discuss a hypothetical 4v interaction,
which leads to the decay vy — 3vp.

DCosmion Scientific and Educational Center for Cosmoparti-
cle Physics, Miusskaya pl. 4, Moscow, 125047 Russia.

YMoscow State Engineering Physics Institute (Technical
University), Kashirskoe sh. 31, Moscow, 115409 Russia.

As early as the 1960s and 1970s, such an interac-
tion was considered in[3—5]. It was established that if
a neutrino—neutrino exists, it can produce noticeable
effects only if the dimensional coupling constant G,
for the effective 4v interaction is anomalously large.
The most stringent constraint on G, (G, < 10*G¥,
where Gy is the Fermi constant) was obtained in [5]
from an analysis of the process v, + N — pt + v, +
v+ hadrons (see [6] for a more detailed analy-
sis). In [6, 7], this 4v interaction was considered
as a version of solution to the cosmological problem
of neutrino instability. Also, a wide variety of its
possible manifestations—in particular, astrophysical
manifestations—were discussed. [t was concluded
in [7] that this version of solution to the cosmological
problem of neutrino instability (that is, for G, > 5 x
103G ) can hardly be realized. It will be shown in the
present study that this conjecture is confirmed and
even strengthened by up-to-date experimental data,
primarily on the Z-boson decay width.

2. PHENOMENOLOQGY OF 4v INTERACTION

We take the Lagrangian of 4v interaction in the
form [6]
Gx
V2
where J# is the current-density operator (here, Greek

indices are those of Minkowski space®)). In the most
general case, this operator can be represented as

JH = Z Ijafyu(vab + Aab75)ybu
a,b

Ly, = —XJrJH, (1)

1n what follows, the indices of Minkowski space will appear
only as subscripts.

1063-7788/01/6409-1637$21.00 © 2001 MAIK “Nauka/Interperiodica”
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Fig. 1. One of the diagrams for the process of Z — vivw.
The indices a, b, and c label different neutrino flavors.

Gy /G

10°

10°

+ﬁ

10° 102 10* 100
my, MeV

Fig. 2. Constraints on the 4v-interaction coupling con-
stant G, from an analysis of experimental data on various
decays. The lower limit corresponding to cosmological
models of unstable neutrinos (G > 5 x 103Gr) is in-
dicated. The dashed lines are plotted for cases where
the dimensionless coupling constant for 4v interaction is
gx =1land0.1.

where v, is the neutrino wave function; the overbar
denotes Dirac conjugation; the indices a, b label neu-
trino flavors; and V,; and A, are the parameters of,
respectively, the vector and the axial-vector current.

By analogy with weak interaction, we assume that
4v interaction has a mediator (x boson) and that
it can be characterized by a dimensionless coupling
constant (g, ). It is worth noting that the description
of the interaction in terms of the Lagrangian in (1)
is legitimate if, in the process being considered, the
modulus of the x-boson 4-momentum is much less
than the y-boson mass. Below, a constraint on G, is
derived from experimental data on the Z-boson decay
width that are analyzed on the basis of Lagrangian (1)
for 4v interaction (in the case at hand, the proce-
dure used is valid for m, > mz). We also obtain a
constraint on G, for m, < mgz using experimental
data on the decays of the Z boson and of the 7 and
K mesons. For the latter case, it is assumed that
the dimensionless coupling constant g, the x-boson
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mass, and the dimensional constant G, are related by
the equation

Gy _ 9>2<

V2 my

3. CONSTRAINT ON G, AT m,, < my

If a 4v interaction exists, it must contribute to all
known neutrino processes. In the case of m, > mz,
which is considered in this section, the effective 4v in-
teraction is characterized by a dimensional constant
G; therefore, the contribution of this interaction to
neutrino processes is proportional to GiA‘l, where

A is the energy release. For the case of Z-boson
decay, the energy release is determined by a relatively

Therefore, the 4v

interaction would make a greater contribution to the
neutrino decay of the Z boson than to other known
processes. Moreover, the Z-boson decay width was
measured to a high precision, so that these data can
be highly sensitive to possible effects of 4v interac-
tion.

large Z-boson mass, A ~ %

The decay Z — invisible objects receives con-
tributions from diagrams of the type in Fig. 1. For
the sake of definiteness, we assume that, in the final
state, there are two neutrinos of the same flavor and
two antineutrinos of two different flavors. The 4v
interaction is chosen in such a way that, in general,
the lepton number is violated. For the purpose of
illustration, the y boson is shown in the figure; one
can see there which transitions are possible between
specific neutrino flavors. The total number of such
diagrams is large (360; see below), because different
types neutrino flavors can appear in the x-boson ver-
tices and because neutrinos and the y boson can be
permuted in various ways. Here, we present a calcu-
lation of only one diagram. The result is independent
of its choice—the difference lies exclusively in the
parameters Vg, and Agp. The total contribution of all
other diagrams will be roughly estimated according to
their number.

For the sake of convenience, we introduce a no-
tation for a set of diagrams involving fixed neutrino
flavors in the final state. The matrix element for the
set of such diagrams also contains crossed terms.
Taking into account all possible permutations (for a
permutation of identical neutrinos, special attention
must be given to the sign of the contribution from
the corresponding diagram to the total amplitude),
one obtains eight diagrams with fixed final-neutrino
flavors. For the set of the diagrams with neutrino
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flavors identical to those in Fig. 1, we introduce the
notation

S s

ol

where the different indices a, b, and ¢ correspond to
different neutrino flavors. The square of the matrix
element for this set of eight diagrams contains 64
terms. Among these, eight have the form M; M,
where M, are matrix elements and where the “+”
sign in the superscript denotes Hermitian conjuga-
tion. The remaining 56 terms are crossed terms
that have the form MiMj*, i # j. Using the above

notation and taking into account all possible neutrino
combinations in the final state, we can represent the
total probability of the decay Z — 4v as

;

a a a
b
rZ—4)= Y “I + +
a a b
a,b,c _ _
a#zb#c | \a b b
(2)
a a a a b
a b b a c
- - - + |+
a a a b a
b a ¢ ¢ a

The total number of terms is equal to the sum of the
products of the number of terms associated with each
column (this number is equal to 64) and the number
of different neutrino flavors. For the first column,
this number of types is 3, while, for the other seven
columns, it is 6. Thus, the total number of terms is

N =3x64+7x6x 64 = 2880. (3)

The width with respect to decay process being
considered can be represented as
Fg@@ =T+ T+ +Tasso
=T1(r1 +r2+ -+ 72880)s

where r; = I'; /T’y (the numbering is arbitrary). The
matrix element M7 and the decay width 'y for one
diagram corresponding to the first column in (2) are
given by
J_ 4 1 G,y
M = — V4 Z 1 + ~ =
1= Val ( ’Ys)k 7
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X ’Yu(vaa + Aaa’YS)V&217a3PY;L(Vaa + Aaa75)yé4a
_ GFGimE
180(47m)5+/2
1, (Cx ? (Vaa + Aaa)? V2 + A2,
O\ Gr 4 2
where g is the dimensionless coupling constant for
weak interaction, Z is the Z-boson wave function,

k is the 4-momentum of the propagator neutrino (a

hat denotes contraction with the v matrix; for ex-

ample, k = k,v,), mz is the Z-boson mass, and
Gym? /2

Tz = % = 0.8345 x 107 MeV. Introduc-

ing the additional notation

(Via + Aga)? V2, + A2,

1 (Vaa + Aaa)Q(VaQa + A(Qza)

ZzE 4 2
X (7”1 —|-’I”2 + - +T2880);
(4v)

we eventually obtain I'),”/, in the form
v Gy \*
g7, =Tz (G—§> 22

The experimental value for the Z-boson decay width
into invisible decay products is [8]

plexpt) — 499.9 + 2.5 MeV.

Z—invisible
According to the SM, the Z — 2v decay width in the
lowest order of perturbation theory is

CONNCI)
Z—2v 12\/§7T

The decay width F(Z424V should not exceed the value

= 497.7 MeV.

ATz invisible = F?E?B\'isible (4a)
~THM) =22+25MeV
or
AT 7 _invisible < 5.4 MeV (4b)

(ata90% C.L.).

[t follows that G, can be constrained as
0.80 x 103
VZz
We set all the parameters V,, and Ay, (a and b are
arbitrary) to unity. We define the factor Zz under two
assumptions: (i) r; = 41 for all 4, or (ii) all crossed
terms in F(lei)&j are canceled. In the first case, the
factor Zz is equal to the total number of terms (2880).
In the second case, it is equal to the number of the

diagrams [see Eq. (3)]; that is,
Zz7=3x8+T7x6x8=360.

GX < GF.
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Fig. 3. Diagrams for the process Z — vwy for the case of
fixed neutrino flavors, a and b, in the final state.

Using the above two values for Zz, we then obtain the
following constraint on G :

G, < (15—42)Gr.

These values provide rather rough upper limits. They
are not rigorous for deriving a stringent upper limit
on G. At the same time, it is unlikely that a precise
upper limit on Gy would differ markedly from the
values in the last inequality, because the dependence
on the factor Zz is weak (it is of the square-root type).
For the maximum possible values of G, the region
allowed by this inequality is shown in Fig. 2.

4. CONSTRAINT ON Gy, FOR m, <mgz

In the case of m, < my, there can occur the
decay process Z — vy, which also contributes to
the width with respect to the decay Z — invisible
objects. In addition, the - and K-meson decays
7 — lvx and K — lvx become possible for m, <
my and m, < my, respectively.

In the lowest order of perturbation theory, the
decay Z — vy resulting in the formation of fixed-
flavor neutrinos in the final state is described by two
diagrams in Figs. 3a and 3b. The neutrino-flavor type

indices a and b are arbitrary in these figures. In just
the same way as for F(Z424V, we take only one diagram
to estimate the width I'z_,5,. The matrix element
and decay width corresponding to the diagram in

Fig. 3a are given by

o 1g -
My = g UaX(Vap + Aab'YS);%Z(l + 75,
G Vap + Agp)?
ry :FZxoG—XFZ (my/mz) M’
F

where x is the x-boson wave function,
Fz(z)=1-82%(1 — ") — 2% + 242" In (1 /),
and
Gymy

Tzv0 = <22 = 0.05404 MeV.
230 = Ggmys = 005404 Me

For a finite coupling constant g,, the above formulas
are not valid in the limit m,, — 0 (this is so for decays

PHYSICS OF ATOMIC NUCLEI

BELOTSKY et al.

Fig. 4. Diagram for the process P — evy, where P
stands for a 7 or a K meson, the index a corresponding
toe, p, and 7.

considered below as well). The point is that, in this
case, we would have G, — oo, which is incompatible
with the constraints obtained below. For m, — 0 at
a finite value of g, there is an infrared divergence:
I' — oo. At very large T, it is necessary to consider
next orders of perturbation theory, but, in the limit of
its indefinite growth, perturbation theory becomes in-
applicable. Moreover, the limit m, — 0 corresponds
to a non-Abelian rigorous gauge group, since the
4v interaction considered here violates lepton charge.
However, this situation requires a dedicated analysis
for matching the theory with current experimental
data.

The total probability of the process Z — vvy can
be represented as

FZ—H/DX = FZxOg_;fFZ (mx/mZ) ZZx-

In the case of fixed final-neutrino flavors, there are
two diagrams. In this case, the total number of
terms is therefore equal to 4; among these, there are
two terms of the form M;M;". The inclusion of all
neutrino flavors (a and b) yields the factorof 3 x 3 = 9.
Setting all the parameters Vi and A, (for arbitrary
a and b) to unity, we obtain Zz, =9 x 2 = 18 in the
approximation Y, MiM;" =0 and Zz, =9 x 4 =
36 under the assumption that all terms are equal to
each other (MiMZ-Jr = MiMj*). From the condition
Lz viy < ALz invisible, Where AL z_invisible is de-
fined in (4a) and (4b), we obtain

1
G Fy (my/mz) < -2 G — (2.8-5.6)C.
Z7y

Inthe G, —m, plane, the area allowed by this inequal-
ity is shown in Fig. 2 (here, we have taken the value
of 5.6Gr); Fz(mx/mz) ~ 1 for my < mg.

Let us now consider 7- and K -meson decays into
e, v, and x. The diagrams for these decays are
presented in Fig. 4. The symbol P stands for a = or
a K meson. A constraint on G, can be obtained from
the condition

(expt)

FP—>6VX P—)@V(Vﬁ) (5)
(theor) (expt) °

FP:OGV Flgﬁiez/
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The matrix element for the process has the form
G cos Oc

V2
. 1
X G 7X (Vea + Aea75);7u(1 + 75)e,

M = pr;LSOP

where 6 is the Cabibbo angle; fp is the decay con-
stant; p, is the P-meson 4-momentum; and pp and e
are, respectively, the P-meson and the electron wave
function. Neglecting the electron mass, we find for
the width with respect to the decay P — evy that

3 cos2 2,5
Gy cos“ Oc fpmp

Ipoevy =

e 12(47)3+/2
G
X—XFP(mX/mP)ZP,
Gr

where mp is the - or the K-meson mass, and the
function Fp(x) is given by
Fp(z) =14 722" — 6425
— 928 — 2421 (3 4 42 In (1 /).
In the case where the parameters V., and A., are

independent of the index a labeling the neutrino flavor,
the factor Zp takes the form

ea Aea 2
%’ (6)

where the factor of 3 stems from summation over the

Zp=3

neutrino flavors. The width I‘ghjzy is given by
2 coc2 O £273
i) - GRS IEME A AR, (7)

8

where A = (me/mp)Q, me being the electron mass.
Setting V., and A., to unity, we arrive at

Gy Ep (my/mz)

(1—p)?
12

(s — a)2(s + 222) (1 + 212)s — * + p2(1 — )

1641
(expt)
< 2.635 x 10* m—ev(v7) Gy forthe m meson,
(expt)
mT—ev

G\ Fp (my/mk)
(expt)

< 168.3% for the K meson.

The experimental values of the branching fractions for
the relevant[see (5)] decays [8] are quoted in the table.
By using these experimental data, we obtain

Gy Fp (my/my) < 1.1 x 10°Gg  Tor the 7 meson,

Gy Fp (my/m)

< 0.65 x 103Gy for the K meson.

The areas of G, and m, values allowed by these
inequalities are shown in Fig. 2. For m, < m, or
my < mg, the function Fp(m, /mg) can be set to
unity.

Fyor the decay process K — uvy, all the above
arguments remain in force (there are no experimental
data for the analogous pion decay). The relevant
decay width can be represented in the form

3 a2 2.5
Gy cos” Oc fmye

Ty =
R 12(47)3v/2
X CﬂFK (mx/mK) Zp,
Gr

where the function F (m,/m) is given by the in-
tegral expression

FK(x)

/

72

g3

C

C=1+12u* —16u5 + 348
— 2444 In (1/p) = 0.946,

where = m,/mg, m, being the muon mass; the
factor Zp is evaluated by formula (6); and the co-
efficient 12/C is determined by the requirement that
the function F (m,/mg) be equal to unity at zero

x-boson mass (that is, to the inverse value of the

integral at x = 0). The quantity Fgfj;) is determined

by Eq. (7) (with the substitution of m, for m,). In this

PHYSICS OF ATOMIC NUCLEI Vol.64 No.9 2001

V(A= )2 = s)((1+ p)? — s)ds,

case, the constraint is
Gy Fk (my/mi)
(expt)

< 0.6927 x 107 K= ?) o
F(expt)
K—puv

Substituting the corresponding experimental data
from the table, we obtain

GXFK (mx/mK) < 65 Gr.
The area determined by this inequality is presented
in Fig. 2. For m,, < mg —m, = 388 MeV, we have

Fr(m,/mg) = 1.
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Experimental values of the relevant branching fractions

Decay channel T K
P — ev(vy) <5x1076 <6x107°
P —ev 1.230(4) x 10=* | 1.55(7) x 107°
P — pv(vv) - <6.0x 107
P — uv 0.9998770(4) 0.6351(18)

From Fig. 2, it can be seen that the most strin-
gent constraint is obtained from data on Z-boson
decay. The dashed curves in Fig. 2 correspond to
the dimensionless-coupling-constant values of g, =
1 and 0.1. For g, > 1, perturbation theory is inap-
plicable; therefore, the constraints obtained in this
region—in particular, from Z-boson decay for m, >
mz—should be considered only as estimates. Also
displayed in Fig. 2 is the lower limit on G, corre-
sponding to relevant cosmological models of unstable
neutrinos. We emphasize once again that, in contrast
to constraints from 7 and K decays, the constraint
from Z-boson decay is very rough. Nevertheless, we
can state with confidence that the present results rule

PHYSICS OF ATOMIC NUCLEI
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out the 4v interaction as a version of solution to the
cosmological problem of neutrino instability.
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ELEMENTARY PARTICLES AND FIELDS
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Anomalous Three-Boson Coupling Constants in
the Single Production of W Bosons
at a Future eTe™ Linear Collider
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Abstract—The question of whether constraints on the anomalous parameters of WW+~ and WW Z three-
boson interactions can be deduced from an analysis of data on the reaction ete™ — W~etv that are
expected to come from a future /s = 500-GeV e*e™ linear collider of integrated luminosity of L = 50, 100,
or 500 fb~! is discussed. An analysis of relevant differential distributions reveals that, in contrast to pair
W-boson production, the reaction mentioned immediately above is highly sensitive to the parameter Az
and that the resulting constraints can be viewed as those that supplement the constraints that follow from
dataonete™ — WTW ™. Forthe experiment being discussed, two possible implementations of a detector
are considered that correspond to the kinematical regions | cosf.+| < cos7° and | cos 6.+ | < cos 1.5°. It is
indicated that the region of small positron-scattering angles is of importance for improving the sensitivity
of the process. In setting constraints on the anomalous parameters, the SEWS scenario for anomalous
boson coupling constants, where interactions responsible for electroweak-symmetry breaking are strongly
coupled, is examined along with the case of the most general parametrization of the WW~(Z) three-boson
vertices. © 2001 MAIK “Nauka/Interperiodica”.

INTRODUCTION

Measurement of the coupling constants for W W+~
and WW Z interactions is one of the most important
problems for experiments at ete™ colliders. Within
the Standard Model (SM), the WW+~ and WW Z
vertices are strictly defined by the SU(2) x U(1)
gauge invariance; therefore, precision measurements
of the processes being discussed provide a unique
test of the gauge structure of electroweak theory. In
contrast to low-energy, high-precision experiments
at the pole of the Z° resonance, collider experiments
make it possible to measure directly—and, what is
of importance, in a model-independent way—three-
boson vertices. Presently, experiments at the LEP 11
collider, which are aimed at analyzing data on the
pair production of W bosons, play a key role in such
investigations (see, for example, [1]). For a number
of reasons, however, which include a modest collider
luminosity and a low sensitivity of the processes be-
ing analyzed to anomalous contributions at relevant
energies, experiments at LEP would permit setting
constraints on anomalous three-boson coupling con-

stants at a level of 10%, which is by far insufficient

DMoscow Institute for Physics and Technology, Instituskif
proezd 9, Dolgoprudnyf, Moscow oblast, 141700 Russia.

lnstitute for High Energy Physics, Protvino, Moscow oblast,
142284 Russia.

for pinpointing the mechanism of anomalous boson
interactions and for specifying the class of models that
give rise to them. Searches for and investigations
into anomalous boson interactions are among the
main problems for next-generation linear colliders,
like TESLA, where a high luminosity and a high en-
ergy guarantee the possibility of achieving a percent
level of accuracy in determining anomalous boson pa-
rameters. Moreover, the properties of future colliders
will make it possible to extend fully the analysis for
ete™ — WTW ™ to reactions other than that, which
include ete™ — Wev and ete™ — ete " WTW™
and which are difficult for investigation at LEP either
because of their small cross sections or because of
their low sensitivity at LEP energies. Investigation of
a few independent processes would permit separating
contributions from different anomalous parameters
that appear in the WWV vertices.

In the present study, we consider the constraints
that an analysis of data on the process ete™ —
e™W-v(e-WTv) from experiments at a 500-GeV
eTe™ collider of integrated luminosity L = 50, 100,
or 500 fb~! could yield for anomalous three-boson
parameters.

1. WWV-INTERACTION VERTEX

For the three-boson interaction of two charged
vector bosons with a neutral vector boson, the general

1063-7788/01/6409-1643$21.00 © 2001 MAIK “Nauka/Interperiodica”
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form of the vertex was extensively discussed in the
literature [2]. The C-, P-, and Lorentz-invariant
part of the Lagrangian for WIWV interaction (where
V =7, Z) can be represented as

La/gwwv=ig! (WhLWHV* = WIV,Ww™) (1)

. n v AV g A
+ iky W, W, VI + M—‘%VW’\”W#V ,
where V' =, Z% W# is the W-boson field; W, =
oW, —0,W,; and Vy, = 0\V,, — 0, V\. The gauge
coupling constants gy for the photon and the Z°

boson are given by
Jww~ =€  Gwwz = €cot by, (2)

where e is the positron charge and 6y is the Wein-
berg angle. For charged-vector-boson coupling to
the photon, there exists, in the static limit, a simple
interpretation of the parameters appearing in (1): g
determines the charge of the W boson, whereas the
coefficients ky and A, are related to the W-boson
magnetic dipole (uy;,) and electric quadrupole (Qy;,)
moments as

MW—QM (14 ky +Ay), (3)
QW = _Migv(kv _)‘v)'

A similar interpretation is valid for the parameters kz
and A\ of the W Z9 vertex. Within the SM, we have
gYZkVZL )\VZO.

The requirement of gauge invariance leads to the
equality g7 = 1. Beyond the SM, the scenario be-
ing considered involves five independent parameters.

These are g7, ky(zy, and Ay z) (g] = 1).

The above parametrization corresponds to a model-

independent approach to anomalous three boson
interactions and includes all possible Lorentz struc-
tures that can contribute to the WWV vertices.
In specific scenarios of going beyond the SM, the
requirements of invariance under symmetry-group
transformations may lead to relations between anoma-
lous parameters and, hence, to a reduction of the
total number of those that are independent. There
exist various versions of extension of the SM that
include various mechanisms of symmetry breaking.
Within a wide class of models, it is assumed that
interactions responsible for symmetry breaking are
characterized by strong coupling, so that their effects
must be experimentally manifested as deviations of
observed coupling constants from the form dictated
by the minimal SM—in particular, in the sector of
vector-boson self-interaction.

BRAGUTA et al.

involving a Higgs boson or assigning it a very large
mass (at least such that it is inaccessible to a direct
observation at future colliders) and leading to the
emergence of nonstandard coupling constants for
multiboson interactions (so-called SEWS scenario).
Let us consider the minimal effective Lagrangian
describing the interaction of gauge bosons in a theory
where the original SU(2);, x U(1)y gauge symmetry
is spontaneously broken to U(1)q. In this case, that
part of the Lagrangian which involves the mass and
kinetic terms for gauge bosons has the form [3]

£ = ftr(DﬂZ*D 2)
== .

1 1
() - Le(55,),

where W, and B, are the field-strength tensors
corresponding to the SU(2) and the U(1) group; that
is,

(4)

1 )
Wi = 5 <8MW,, = 0 Wy+ 59(Wy, Wu]>, (5)

1
B,, = 3 (8HB,, — &/Bu> T3

Here, W, = Wfﬁi» and the Pauli matrices 7; are nor-
malized in such a way that tr(7;7;) = 24;;.

The matrix ¥ = exp(iw - 7/v) involves a Gold-
stone boson w; that ensures the generation of the W-
and Z-boson masses through the Higgs mechanism,
and the SU(2), x U(1)y -covariant derivative has the
form

D,¥=0,Y+ gWZ Y- g/BHET;;. (6)
The first term in (4) is the SU(2)r, x U(1)y-gauge-
invariant mass term for W and Z. The physical
masses are calculated at v &~ 246 GeV. This nonlinear
realization of a spontaneous breakdown of symmetry
leads to a low-energy phenomenology that coincides
with the minimal SM where the Higgs boson is as-
signed a very large mass [3]. This theory is nonrenor-
malizable; it must be interpreted as an effective field
theory below some scale of A < 3 TeV. In the lowest
order, the interactions between the gauge bosons and
fermions have the same form as in the minimal SM.
The “anomalous” couplings of gauge bosons cor-
respond to other SU(2) x U(1)y-gauge-invariant
operators that can be written in addition to those in
(4). For “low-energy” processes occurring at ener-
gies below the energy-breaking scale A, it is pos-
sible to represent the effective Lagrangian in a form
that corresponds to an expansion of scattering ampli-

Along with the case of the most general parametriza- tudes in powers of E? /A2, The next-to-leading-order

tion of anomalous three-boson vertices, we inves-
tigate here the class of effective models either not

PHYSICS OF ATOMIC NUCLEI

(NLO) Lagrangian arising in this context was widely
discussed in the literature [3—7].
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Let us consider an effective Lagrangian involving
NLO terms that preserve the original SU(2). sym-
metry (apart from hypercharge coupling). The NLO
effective Lagrangian conserving C' and P invariance
then has the form

— X—Z{Ll [tr(D“ETDuEﬂQ (7)

+ Lgtr(DNZTDVE) tr(D“ET D”E)

r®

—igLg Ltr(W“”DHEDVET )
—ig'Log tr<B“”DHET DVZ>

+ g¢' Lo tr<zBW2T WW> }

The terms that involve L; preserve the original
SU(2) symmetry; for all terms L; to be O(1) quanti-

ties, the factor v? /A% was introduced in the definition

of L& In the unitary gauge, where ¥ = 1, Feynman
rules can be obtained by expanding the Lagrangians
in (4) and (7) [8]. Within the model considered here,
it is possible to recover the correspondence between
the parameters of the Lagrangians in (1) and (7). The
results are given by

2

7 e 1 1 v?
=1+ L L )| —
91 + 2 (28%\/ oL+ (C%V _ 2 ) 10) A2’

Cw W
g1 =1, (8)
1
kr =1 2 ———( Los.c% — Lops>
A +e (25%,0%\,( 9LCW 9RSW
2 02
+ 7L10>—,
(C%V — s%v) A2
e (Lor + Lor v
ky = 1+%(f _L10>F’

where ¢y, and sy, are, respectively, the cosine and
the sine of the Weinberg angle. It is worth noting
that, in the scenario being considered, the terms that
involve A, correspond to operators of higher dimen-
sions and appear in higher orders of the expansion
of the effective Lagrangian. Thus, the anomalous
boson coupling constants are expressed in terms of
three independent parameters (Lgr, Logr, and Lig).
[t should be recalled that Lo is proportional to the
parameter €3, which was measured at LEP I, so that
there is a stringent constraint on it [9]. In view of this,
there is no need for varying Lig. Hence, there only

remains the set of two independent parameters.?)

3For the ensuing numerical estimates, we fix the scale of new
physicsat A = 2 TeV.
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In analyzing data on the process ete™ — eWv,
we will present below the results both for the case
of a model-independent parametrization and for the
SEWS scenario.

2. PROCESS ete™ — eWv

In order to set constraints on the anomalous boson
coupling constants, we analyze here the differential
distributions of eTe™ — eT™W v events with respect
to the scattering angle, transverse momentum, and
energy of final-state particles (positron and recon-
structed W boson). In the ensuing calculations,
the values of Mz = 91.178 GeV, sin 6y, = 0.47688,
and o = 1/128 are chosen for the input SM param-
eters. In calculating the differential distributions for
the process being considered, use is made here of
the helicity-amplitude method supplemented with a
Monte Carlo integration over phase space (the ac-
cumulated statistics are sufficient for ensuring, in
each bin of the distribution, a precision higher than
0.1% in calculating the relevant differential cross sec-
tions). The calculations were performed for a /s =
500-GeV future linear collider of integrated luminos-
ity L dt = 50, 100, or 500 fb~!, which corresponds to
the first stage of TESLA operation.

In our data analysis, we consider two cases of a
cut on the positron scattering angle with respect to
the incident-electron momentum:

()| cos 0| < cos7°,
(I1)| cos B| < cos1.5°.

This choice of kinematical regions is dictated by a
number of factors. In order to reconstruct the differ-
ential distributions of the cross section—in particular,
with respect to the positron scattering angle, trans-
verse momentum p,, and energy—it is necessary that
the facility used in the experiment being discussed
involve a tracking system that would make it possible
to record reliably final-state positrons. However, the
existing designs of the detector for TESLA would
provide the possibility of reconstructing the final-
electron (final-positron) momentum and the quark-
jet momenta only for scattering angles in excess of
7° (at the same time, the tracking system for muons
would make it possible to cover the angular region
down to 1.5°)[10]. If the importance of reconstruct-
ing the final-particle momenta in the region of small
angles were nevertheless substantiated by sufficiently
strong arguments, the design of the detector could be
modified in such a way that it would become possible
to reconstruct the ¢ and e momenta down to angles of
about 1.5°. In view of this, we will consider both these
versions and assess the degree to which the sensi-
tivity of data to anomalous contributions changes in
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response to the inclusion of the positron-scattering-
angle region from 1.5° to 7° in our analysis.

The calculation of the total cross section for the
process ete” — e W v within the SM at 500 GeV
yields oy >~ 1.34 pb for cut I and oy, ~ 1.8 pb for
cut II. At the integrated luminosity of L = 50 fb=1!,
this corresponds to statistics of 10*—10° events. It
should be noted that the reaction cross section is
highly sensitive to deviations of the parameters g7,
ky, and Ay from the values dictated by the SM.
Figures la and 16 show the relevant cross sections
versus variable anomalous parameters. From these
figures, it can be seen that the process in question
shows the highest sensitivity to the parameter A,.
Therefore, this process is especially interesting from
the point of view of setting constraints on the anoma-
lous parameters, since the competing process of pair
W -boson production is weakly sensitive to deviations
of this parameter from the SM value [1].

Figure 2 displays the differential distributions of
the reaction cross section with respect to W-boson
and positron transverse momentum, scattering angle,
and energy. In Figs. 2a—2f, curves formed by closed
circles (encircled crosses) correspond to cut I (II).
From the transverse-momentum distribution of W
bosons (Fig. 2a), it can be seen that the main con-
tribution to the cross section comes from the region

PHYSICS OF ATOMIC NUCLEI

Fig. 2. Differential distributions of the cross section for
the process ete™ — e W v with respect to (a, d) the
W, et transverse momenta; (b, e) the W, e* scattering
angle; and (¢, f) the W, e™ energies. Closed circles
(encircled crosses) correspond to cut I (1I).

of small p, and that the more lenient cut leads to
a greater relative contribution of the low-p, region
to the cross section. The angular distribution of W
bosons (Fig. 20) shows a fast growth of the cross
section in the region of small W-boson scattering
angles. In the case being considered, a transition from
cut I to cut Il does not lead to a sizable change in the
shape of the distribution; it is the common normal-
ization of the differential cross section that changes
predominantly here. A similar effect is observed in
the distribution of the cross section with respect to
the W-boson energy: when the more lenient cut is
used, the region of low and intermediate values of Ey;,
is saturated, but the main contribution to the cross
section comes from the region of maximum energies
(Fig. 2c). The differential distribution of the cross
section with respect to positron transverse momen-
tum exhibits regularities differing from those in the
above cases (Fig. 2d). A transition to the more lenient
cut deforms strongly the distribution at low values of
the positron transverse momentum; at the same time,
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the region of intermediate and high p%, values remains
virtually intact. In the region of small scattering
angles, the distribution with respect to the positron
scattering angle has a pronounced peak (Fig. 2e),
which is due to a dominant contribution of diagrams
involving the exchange of a t-channel photon and the
production of a W boson in the central region. A
transition from cut I to cut Il naturally enhances the
contribution of the small-angle region. For the dis-
tribution with respect to the positron energy (Fig. 2f),
the change in the cut leads to a change in the common
normalization of the cross section, whose maximum
receives the main contribution from the region of high
positron energies.

In analyzing the dependence of the process on
anomalous boson parameters, it is of interest to
find out which of the distributions considered above
possesses the highest sensitivity to the anomalous
contributions and to pinpoint the kinematical region
where the sensitivity is the highest. First, this
will enable us to choose the optimum binning of
the distributions for the subsequent x? analysis of
data; second, this will provide the possibility of
preliminarily assessing the degree to which relaxing
the kinematical cut on the positron scattering angle
can improve the sensitivity of data to the anomalous
parameters.  For this purpose, we consider the
relative deviations that the differential distributions
being studied develop in response to variations in the
anomalous parameters,

dO’NEW dJSM
dx dx

dO_SM
dr ’

where doSM /dzx is the differential cross section for
the reaction in question at the SM values of the
parameters g7, ky, and Ay and doNFW /dz is the
differential cross section for this reaction in the case
where one of the parameters = p;, cosf, or E for
the positron (W boson) deviates from the SM values.
For the deviations of the parameters glz, ky, and Ay,
we choose, by way of illustration, the values

Agf = Aky = Ak, =\, =0.1, Az =0.03.

The choice of different values for the deviations of
the parameters from the SM values would lead to a
change in the common normalization of the resulting
dependences, but this would not have a sizable effect

on their shapes.?)

YFor the parameter Az, we chose a value different from other
parameter values only because we wanted to obtain approxi-
mately identical scales of relative deviations of the differential
cross sections—the point is that the sensitivity of the process
to Az is much higher than to other anomalous parameters.
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For W bosons and positrons, Fig. 3 displays
the relative deviations of the differential cross sec-
tions for the process ete™ — e W v versus the
variable anomalous parameters k., Ay, gz, kz, and
Az (curves [, 2, 3, 4, and 5, respectively). From
Fig. 3a, it can be seen that the differential distribution
with respect to the W-boson transverse momentum
possesses the highest sensitivity to the anomalous
parameters in the region of the highest values of
pp. Comparing Figs. 2a and 3a, we can conclude
that a transition from the kinematical region I to the
kinematical region I does not toughen substantially
the constraints on the anomalous coupling constants
from this distribution; the reason behind this is the
following: when the kinematical cut is relaxed, it is
the low-p,, region that is saturated, but the sensitivity
to the anomalous contributions is low there. In the
case of the distribution with respect to the W-boson
scattering angle, one can expect that the resulting
constraints will become more stringent upon relaxing
the cut, since a transition from cut [ to cut I changes
the common normalization of the differential cross
section (Fig. 2b)—in particular, at intermediate val-
ues of the angle, where the sensitivity to the anoma-
lous contribution is maximal (Fig. 3b). Moreover,
this distribution is especially sensitive to deviations
of the parameter k, in the region of W-scattering
into the backward hemisphere, where the differential
cross section is nearly doubled upon relaxing the cut.
Therefore, it is precisely for this parameter that one
would expect the most pronounced toughening of the
constraints in an expanded kinematical region. For
the differential distribution with respect to the W-
boson energy, the behavior of the relative deviations
is more complicated (Fig. 3c); nonetheless, it can be
shown that the highest sensitivity to the anomalous
contributions is observed in the region of intermediate
values of Ey, for the parameter k (curve /) and in the
region of its maximum values for the other anomalous
parameters. From an analysis of the behavior of the
differential cross section (Fig. 2c), we can deduce
that, in these regions, the differential cross section
becomes noticeably larger upon relaxing the cut. This
gives every reason to hope for the toughening of the
resulting constraints for cut Il in relation to those for
cut .

A somewhat different situation is observed for the
distributions with respect to the positron transverse
momentum, scattering angle, and energy. A tran-
sition to the more lenient kinematical cut modifies
substantially the differential distributions with respect
to p% and cos @, in the region of low p; and small
positron scattering angles (see Figs. 2d and 2e, re-
spectively). However, these distributions show the
highest sensitivity to the anomalous contributions at
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Fig. 3. Relative deviations of the differential distributions for the process e*e™ — e W ~v with respect to (a, d) the W, e™

transverse momenta; (b, e) the W, e scattering angles; and (c, f) the W, e energies. Curves 1, 2, 3, 4, and 5 correspond to
specific deviations of the parameters k, (Aky = 0.1), Ay (Ay = 0.1), kz (Akz = 0.1), Az (Agz = 0.1), and gz (A5 = 0.03),

respectively, from the SM values.

high p,. values (Fig. 3d) and at large positron scat-
tering angles, which correspond to the scattering of
the positron into the backward hemisphere (Fig. 3e).
For the distribution with respect to the positron scat-
tering angle, this effect is straightforwardly explained
by the fact that the region of angles corresponding
to positron scattering into the forward hemisphere
is dominated by the diagram involving the t-channel
exchange of a photon; this diagram does not contain
anomalous vertices, representing, in this sense, a
pure “background.” Therefore, relaxing the kinemat-
ical cut can hardly have a pronounced effect on the

PHYSICS OF ATOMIC NUCLEI

resulting constraints, but an insignificant toughening
may occur owing to a general increase in the cross
section and, hence, in total statistics. On the other
hand, the constraints on the anomalous parameters
from the energy distribution of positrons are expected
to become more stringent upon relaxing the kinemat-
ical cut, since this leads to a change in the general
scale of the differential cross section over the entire
region of electron energies (Fig. 2f), including the
region of low and intermediate E. values, where this
distribution is especially sensitive to the anomalous
parameters (Fig. 3f).
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Thus, we have seen that, for the parameters k-, A,
gz, kz, and Az, the constraints that result from an
analysis of some distributions can be toughened upon
going over from the more stringent cut |cosf,| <
cos 7° on the positron scattering angle to the more le-
nient cut | cos 6| < cos 1.5°, but there are no grounds
to expect drastic changes.

3. CONSTRAINTS ON ANOMALOUS
PARAMETERS

3.1. Method for Setting Constraints

Prior to proceeding to consider the potential of
a 500-GeV collider for setting constraints on the
anomalous three-boson parameters, we are going to
discuss the expected experimental situation. Detailed
investigations for a future linear collider reveal [11]
that the systematic error may amount to about 2%.
This value receives contributions from the uncertain-
ties in measurement of the luminosity (dz ~ 1%),
the error in the acceptance (duccep =~ 1%), the uncer-
tainties in the subtraction of background (dpackgr >~

0.5%), and the systematic error in determining the
relevant branching ratio (dg; ~ 0.5%). Estimations
assuming the efficiency ey, of W-boson reconstruc-
tion to be in the range 0.5—1 and the integrated lu-
minosity of the collider to be about 50 fb~! show that
the relative statistical error in the total cross section is
about 0.5% and that it can be as large as a few percent
in individual bins of the distribution. Thus, we can see
that, for the process being discussed, the systematic
error can be commensurate with the statistical errors;
for this reason, we will take into account both kinds
of error in our analysis.

For the ensuing estimates, we set the collider pa-
rameters to the values of /s = 500 GeV and f Ldt=

50, 100, or 500 tb~1; this corresponds to the first stage
of TESLA operation.

3.2. Procedure for Data Analysis

Investigations similar to that reported here tra-
ditionally use SM predictions as experimental data
and treat the possible effects of new physics as small
deviations from these experimental values. Requiring
that the predictions of a new model be in agreement
with the experimental values within errors, one can
then set constraints on the parameters of this model.

In setting constraints on the anomalous three-
boson parameters, we will analyze the distributions
presented above and use the simplest x? functional

defined as
X; —Yi\?
2 _ % )

4 exp
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where
Zi+1 Zi+1
dO.SM dO'NEW
XZ-—/ P dz, Yi—/ P dz
Z; 23

are the cross-section values in the ¢th bin of the z
distribution (specifically, we will consider the distri-
butions with respect to the W-boson and positron
transverse momentum, energy, and scattering angle),
respectively, within the SM and for the k,, X\, gz,
kz, and Az values deviating from the SM values and
A!__ are experimental errors in the bins. These errors,

exp
% _ Y. 2 2
Aexp =X \/ 5stat + 5syst’

defined as
1 1

(5 = = N
VN VelX

6syst = \/61/2 + 6§ccep + 6t2)ackgr + 5123r’

include both systematic and statistical errors.?) Here,
N; is the number of events in a given bin of the dis-
tribution predicted by the SM, and L is the integrated
luminosity of the collider.

3.3. Case of a Model-Independent Parametrization

In this subsection, the constraints on the anoma-
lous parameters from an analysis of data on the differ-
ential cross sections for the process ete™ — e™W v
are considered for the case of a model-independent
parametrization of three-boson vertices (the set of
parameters includes k., Ay, gz, kz, and Az). Any
differential cross section is a quadratic form in any
anomalous parameter, whereas the functional x? used
in our data analysis is a power-law function of fourth
degree. In the space spanned by five parameters k.,
Ay, 9z, kz, and Az, a solution to the equation

X2(k’ya)\’yagZ7kZ7)‘Z) :X?nin—i_AX2 (9)

(where Ax? depends on the chosen confidence level)
generally appears to be a complex surface; for this
reason, we represent the resulting constraints in the
form of the central cross sections of surface (9) by
planes for each pair of the parameters (in doing this,
we admit variations of a given pair of the parameters
and fix the remaining parameters at the SM values).
Distributions for W. For the anomalous three-
boson parameters, Fig. 4 shows constraints (at a
95% C.L.) that follow from an analysis of data on the
differential distributions for the W boson with respect
to its (solid curve) transverse momentum, (dotted
curve) scattering angle, and (dashed curve) energy

9n calculating the total error, we disregard the correlation
between the statistical and the systematic error.
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Fig. 4. Constraints on the anomalous three-boson pa-
rameters (at a 95% C.L.) from an analysis of data on
the differential distributions for the W-boson (cut I) with . -

respect to its (solid curve) transverse momentl(Jm, (d)otted Fig. 5. As in Fig. 4, but for cut II.

curve) scattering angle, and (dashed curves) energy. The

regions of allowed parameter values are enclosed by the

relavant contours. stringent constraints are obtained from an analysis

of data on transverse-momentum (p;) distributions.
for cut I. The regions of allowed parameter values are ~ For the remaining pairs of the parameters, more strin-
enclosed by the relevant contours. From Fig. 4, we gent constraints are achieved by combining data on
can see that, for the planes of the gz—\, kz—A,, A\z—  pyp, cos @, and E distributions. In the case where only
Ay, kz—gz, and Az—gz parameter pairs, the most one parameteris varied, with the remaining four being
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Fig. 6. Constraints on the anomalous three-boson pa- Fig. 7. As in Fig. 6, but for cut II.
rameters (at a 95% C.L.) from an analysis of data on
the differential distributions for the positron (cut I) with
respect to its (solid curve) transverse momentum, (dotted —2.74x 1072 < Ay <41 x 1072,
curve) scattering angle, and (dashed curve) energy. The 0.9 < gy < 1.22, (10)

region of allowed parameter values is enclosed by the
relevant contours.

fixed at the SM values, the individual constraints are

0.976 < ky < 1.074,
—20x1073 <Ay <6.95 x 1074

As might have been expected, the process being con-
sidered possesses an extremely high sensitivity to the
parameter A ,—the constraints on A, are an order of

the following:
0.98 < ky < 1.02,
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magnitude more stringent than the constraints on the
remaining parameters.

Figure 5 shows similar constraints on the anoma-
lous parameters for cut II. In just the same way as in
the case represented in Fig. 4, the distribution with
respect to the W transverse momentum is that which
possesses the highest sensitivity, although all the dis-
tributions used must be combined for obtaining some
pair constraints. Here, the individual constraints are

0.985 < k, < 1.02,

—2.75x 1072 < A, < 4.07 x 1072,
0.91 < gz < 1.22,
0.976 < kz < 1.074,
—21x 1072 < Az <7.0x 1074

We note that, although relaxing the cut did not render
the individual constraints much more stringent, a
comparison of Figs. 4 and 5 reveals that the areas
of allowed regions in the planes of the parameter pairs
decrease considerably. The reason behind this is that
the expansion of the kinematical region (a transition
from cut I to cut II) leads to the growth of the relative
contribution to the cross section from terms asso-
ciated with the crossed products of the anomalous
parameters.

Distributions for et. For the anomalous param-
eters, Figs. 6 and 7 display pair constraints that follow
from an analysis of the differential distributions with
respect to the positron (solid curve) transverse mo-
mentum, (dotted curve) scattering angle, and (dashed
curve) energy for cuts I and II, respectively. In
contrast to the case of the distributions for the W
boson, the most stringent constraints on the anoma-
lous parameters here come from data on the angular
distribution of positrons. For cut I, the individual
constraints for each parameter are the following here:

0.986 < k, < 1.018,
—25x 1072 <\, < 3.65 x 1072,
0.905 < g7 < 1.13,
0.978 < kz < 1.063,
—1.835 x 1072 < Az < 6.055 x 1072,

In the present case, the individual constraints are
determined, to a considerable extent, by the data on
the angular distribution. For cut I, we have

0.986 < k., < 1.017,
—2.51 x 1072 < A, < 3.65 x 1072,
0.904 < gz < 1.13,

0.978 < kz < 1.063,
—1.83x 1073 < Az <6.05 x 1072

In just the same way as in the case of data on the
distributions for W bosons, relaxing the cut did not

(11)

(12)

(13)
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render the individual constraints more stringent, but
the areas of the allowed parameter values in the planes
of parameter pairs decrease as before. That this effect
is due to the enhancement of the relative contribution
to the cross section from terms associated with the
crossed products of the anomalous parameters can be
demonstrated by considering the example of changes
undergone by the allowed region in the Az—kz plane
(compare Figs. 6 and 7): upon going over from the
kinematical region I to the kinematical region II, the
relative orientation of the allowed regions obtained
from data on the angular and energy distributions of
product positrons (regions enclosed by the dotted and
the dashed curve) changes—in the case of cut I, the
allowed regions appear to be coaxial ellipses, while,
in the case of cut I, the ellipse of the allowed region
from data on the positron energy rotates, which is
obviously due to a change in the relative contribution
to the cross section from the term associated with
A, x k,. The resulting constraint is then represented
by the intersection of the two ellipses.

By combining data on the distributions for W
and e, one can obtain eventual constraints on the
deviations of the parameters from the SM values
(since the individual constraints for the two cuts differ
insignificantly, in contrast to the allowed regions for
the parameter pairs, we present these constraints for
cut II):

~0.014 < Ak, <0.017,
—25x 1072 <\, < 3.65 x 1072,
—0.09 < Agz < 0.13,
—0.022 < Aky < 0.063,
—1.83x 1073 < Az < 6.05 x 1074,

We can compare these results with the constraints
following from an analysis of data obtained at the
Tevatron and LEP I1.

For the anomalous three-boson parameters, the
constraints (at a 95% C.L.) obtained from an anal-
ysis of Tevatron data under the assumption that the
boson coupling constants are identical for W W+~ and
WW Z vertices are as follows [12]:

—0.43 < Ak, 5 < 0.59,
—0.34 < A,z < 0.36,
—0.60 < Agz < 0.81.

For the anomalous coupling constants, a fit to LEP II
data that is aimed at searches for anomalous bo-
son interactions (under the assumption that Ak, =
Ag, — Ak, tan® 6y, and A, = \,) yielded the val-
ues[1]

(14)

0.25

ky = 1.11%532 £0.17,
0.22

Ay = 0.1077 55 £ 0.10,
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gz = 1117012 +0.10,

where the first and the second error are, respectively,
statistical and systematic.

Comparing these constraints with the results that
are presented in (14) and which are expected from
experiments at a future linear collider, we can see
that the existing constraints can be toughened by at
least one order of magnitude.®) It should be empha-
sized that the constraints from data on the process
ete” — eWwv studied at a future linear collider can
compete with the constraints from data on the pair
production of W bosons as well, since, in relation
toete™ — WTIW ™, the process ete™ — eWw, for
example, possesses an anomalously high sensitivity
to the parameter A .

The constraints in (14) on the anomalous parame-
ters correspond to a future linear collider of integrated
luminosity L = 50 fb~!; however, versions of collider
operation with an integrated luminosity of L = 100 or
500 fb~! are considered to be quite realistic for the
TESLA project. It would be of interest to trace the
changes that the resulting constraints would under-
go in response to the corresponding increase in the
number of events of the reaction being considered.
Since the most stringent constraints on the anoma-
lous parameters come from an analysis of data on the
distribution of the positron scattering angle, we will
consider the constraints following from precisely this
distribution at the above three values of the integrated
luminosity. For the kinematical cut II, the allowed
regions in the planes of parameter pairs are presented
in Fig. 8 for L = (dashed curve) 50 fb~!, (dotted
curve) 100 fb~1, and (solid curve) 500 fb~!. It can be
seen that the increase in the luminosity leads to much
more stringent (by about 50%) constraints both for
individual anomalous parameters and for their pairs.
This suggests that, for the process being considered,
the statistical error is dominant in the bins of the
distributions.

3.4. SEWS Scenario

Within the SEWS scenario, the model-independ-
ent parametrization (1) and the parameters describ-
ing anomalous boson interactions in this scenario
are related by Egs. (8); owing to this, the number
of independent parameters reduces to two (for the
chosen new-physics scale of A =2 TeV), Loy and
Lgogr. The constraints on the parameters Lg; and
Log (at a 95% C.L.) from an analysis of data on the

In Figs. 4—7, we do not present constraints from Tevatron
and LEP II data, since these constraints considerably exceed
the scale chosen for these figures.
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Fig. 8. Allowed regions in the planes of the parameter
pairs at L = (dashed curve) 50, (dotted curve) 100, and
(solid curve) 500 fb~! from an analysis of data on the
positron angular distribution for the kinematical cut II.

transverse-momentum, angular, and energy distri-
butions of W bosons are presented in Figs. 9a and
9b for cuts I and II, respectively. Analogous con-
straints from data on the positron distributions are
displayed in Figs. 9c and 9d. It can be seen that



Fig. 9. Regions of allowed values of the SEWS parame-
ters Loz and Lor (at a 95% C.L.) according to an anal-
ysis of data on (solid curve) the transverse-momentum,
(dotted curve) the angular, and (dashed curve) the energy
distributions of the (a, b) W boson and (¢, d) positron in
the case of cuts (a, ¢) I and (b, d) I1. The allowed regions
are enclosed by the relevant contours.

the most stringent constraints follow from data on the
transverse-momentum distribution of the W boson
and the angular distribution of the positron. These
data determine individual constraints on the parame-
ters Loy, and Lgpg; at the same time, it is necessary to
combine data on all distributions in order to constrain
a region in the plane of the two parameters, since the
resulting allowed region of their values appears to be
the intersection of the allowed regions obtained from

Log

20+

10f

Fig. 10. Regions of allowed values of the SEWS parame-
ters Loz and Lgog (ata 95% C.L.) according to an analysis
of data on the transverse-momentum distribution of the
W boson for cut II at the collider integrated luminosity
of L = (solid contour) 500, (dotted contour) 100, and

(dashed contour) 50 fb~*.
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each of the distributions. From Fig. 9, it can be
seen that a transition from cut I to cut II leads to a
noticeable contraction of the allowed regions in the
Lor,—Lgg plane.

An increase in the collider luminosity also tough-
ens considerably the constraints on the parameters
Loy, and Lgg. In Fig. 10, this effect is illustrated
by the example of the evolution of the Lg;—Lgr al-
lowed region obtained from data on the transverse-
momentum distribution of the W boson for cut II.

By combining data on the distributions of the W
boson and the positron, we can obtain individual
constraints on the parameters Loy, and Lgg. For cut
I1, the table lists the resulting constraints (at a 95%
C.L.) for the aforementioned three values of the col-
lider luminosity. These results can be compared with
the constraints from data obtained at other colliders.
Precision measurements of the partial widths of the Z
boson at LEP [[13] suggest that

—28 < Log, < 27,
—100 < Lggr < 190.
The constraints that are expected on the basis of the
LEP Il data are [14]
—41 < Lgp, < 26,
—100 < Lggr < 330.

Investigations for LHC (for /s =14 TeV and an

integrated luminosity of 100 fb=!) reveal [15] that the
LHC data would make it possible to constrain the
parameter Lg at a level of 10. It can be seen that the
constraints on the parameters Loy, and Lgg from data
on the process ete™ — eWv studied at a new linear

(15)

(16)

L9R
30+

20

10|

O_

-10
-10

Fig. 11. Regions of allowed values of the parameters
Loz, and Lgg for an electron—positron collider (/s =
500 GeV, L =50 fb~!) from (region encircled by the
solid contour) an analysis of data on the process eTe™ —
WTW ™ and (region encircled by the dashed contour)
an analysis of data on the transverse-momentum dis-
tribution of the W boson originating from the reaction
ete™ — eWwviorcut I
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Table
L,fb~! Lor, Lgr
50 —2.27-3.93 —4.60—6.95
100 —2.08—2.67 —3.48—4.63
500 —1.18—1.34 —1.97—-2.28

collider will be much more stringent than constraints
attainable at LEP and LHC.

The above constraints on the parameters Lg;, and
Lgg from data on the process ete™ — eW v supple-
ment those that follow from data on pair W-boson
production at a future linear collider. Figure 11
shows the regions of allowed values of the param-
eters Loy, and Lggr for an electron—positron collider
(v/s = 500 GeV, L = 50 fb~!)(region encircled by the
solid contour) according to an analysis of data on the
process ete™ — WHW ™ [16] and (region encircled
by the dashed contour) according to an analysis of
data on the transverse-momentum distribution of the
W boson in the process eTe™ — eWw for cut II. As
can be seen from the figure, the contours in question
encircle different regions of Loy, and Lggr values, so
that a global analysis of data on the two processes will
make it possible to reduce considerably the resulting
region of allowed parameter values.

4. CONCLUSION

We have analyzed the possibility of setting con-
straints on anomalous three-boson coupling con-
stants on the basis of data on single W-boson
production in the process ete™ — e W~v that are
expected to come from a future 500-GeV linear
electron—positron collider. For the detector to be
used in the relevant experiments, we have considered
two possible implementations corresponding to the
kinematical cuts |cosf,+| < cos7° and |cosf.+| <
cos 1.5° on the product-positron scattering angle.
We have studied the case of a model-independent
parametrization of anomalous boson interactions
and the so-called SEWS scenario, which also leads
to the emergence of anomalous WW Z() vertices
and which is characterized by a strong coupling of
interactions responsible for electroweak-symmetry
breaking.

For the case of a model-independent parametriza-
tion, it has been shown that, in contrast to the process
of pair W-boson production, the process ete™ —
e™W v is highly sensitive to the parameter Az. By
combining data on the distributions of the cross sec-
tion for W and e* from the process ete™ — etW v
as implemented at a future 500-GeV linear electron—
positron collider of integrated luminosity 50 fb=!, it
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will be possible to set the following constraints on the
anomalous parameters (at a 95% C.L.):

—0.014 < Ak, < 0.017,
—2.5x 1072 <\, < 3.65 x 1072,
—0.09 < Agz <0.13,
—0.022 < Aky < 0.063,
~1.83x 1073 < Az <6.05 x 107*.

These constraints are much more stringent than
those that have already been obtained from LEP II
and Tevatron data.

The corresponding constraints in the case of the
SEWS scenario are

—2.27(A/2 TeV)? < Loy, < 3.93(A/2 TeV)?,
—4.60(A/2 TeV)? < Lop < 6.95(A/2 TeV)?.

It has been shown that, both in the case of a model-
independent parametrization and in the case of the
SEWS scenario, relaxing the cut on the scattering
angle leads to a sizable contraction of allowed regions
in the planes of parameter pairs. The constraints
that can be attained have also been analyzed for the
collider-operation modes characterized by integrated
luminosities of 100 and 500 fb~!. It has been indi-
cated that the constraints that follow from data on the
process ete™ — eWv supplement those that were
previously obtained on the basis of data on pair W-
boson production.
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Masses of the ¢ and the b Quark and Their Mass Ratio m;/m;
as a Consequence of a Dynamical Breakdown of SUL(2) Symmetry
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Abstract—A model (of the type of the Nambu—Jona-Lasinio model) where the ¢ and the b quark
simultaneously acquire dynamical masses my and my, is constructed to describe a dynamical breakdown of
chiral and weak SUL(2) symmetry. That the ratio = my,/m; is small may imply that, at high energies, the
energy scales of isoscalar vector exchange and isoscalar scalar exchange between the quarks are markedly
different (My ~ /xMg). The spectrum of composite scalar states of the model and the mechanism that
causes the transformation of Goldstone bosons of the system under consideration into components of vector
bosons of local SU7(2) symmetry are investigated. © 2001 MAIK “Nauka/Interperiodica”.

1. INTRODUCTION

Two unexpected features of third-generation
quarks attract particular attention. These are a very
large value of the t-quark mass, m; ~ 170—180 GeV,
and a very large difference between the b- and the
t-quark mass, my/my ~ 40.

In the Standard Model (SM), both factors are
fixed by a direct choice of the corresponding Yukawa
coupling constants that determine the interaction of
t and b with the scalar field ¢ that is common to all
quarks; that is,

AL = —fi[(tridtqt;) + hoc) (1)
—fo[(brid™q;) + h.c.,

_ ¢+ o * _ t
¢_<¢0)7 ¢C_150_y¢7 QL_<b>L7

a=tb, 1=1,2,..., N,

where N, is the number of colors and L and R are
the quark helicities. The difference of m; and my, is
directly represented in (1) with the aid of the phe-
nomenological relation

[t = 40f,. (2)

So large a difference does not seem appropriate
for the interaction with the same fundamental field.
Along with other numerical regularities found in the
SM (for example, the hierarchies of the mass genera-
tions and of the elements of quark-mixing matrices),
relation (2) furnishes yet another reason to conjecture
that the SM and the numerical constants in it have
profound dynamical foundations and that they are
pieces of evidence in favor of the existence of a consis-
tent high-energy scheme for which the Lagrangian in

(1)is as an effective low-energy limit. In this case, f;
and f, would be functions of high-energy properties.
They could arise as different dynamical structures
originating from markedly different sources. A con-
siderable distinction between f; and f; (m; and my)
would then be quite natural. Searches for physical
explanations of these puzzles began long ago.

The large value of the t-quark mass m; led to
the hypothesis that the Higgs field ¢ and particle
emerging as the result of a spontaneous breakdown of
chiral symmetry in the system of strongly interacting,
originally massless ¢ quarks have a composite char-
acter (¢ color [1]). The Nambu—Jona-Lasinio model
[2] was proposed as appropriate example to analyze
the possible occurrence of such a situation.

This model is based on four-fermion interaction.
In order to choose its form that would be adequate
to our further objectives, we use the method that,
at low energies and for the simplest case of f, =0,
leads to a system that reproduces the basic properties
of the SM [3]. For this purpose, we integrate the
system specified by Lagrangian (1) with respect to the
“auxiliary” field ¢ at a large fixed mass scale M. At
fo =0, we have

—fi(trdTqr) + hec. — M2¢T ¢ (3)
Y U (AP SN N /s
=M+ 45 (trqr)| + IV (qLtr)(trar)

2
- %(Q_LtR)(ERqL) — Gi(qrtr)(trar)-

The high-energy constant G} is taken to be an
arbitrary quantity that is different from f2/M? (f; is
the low-energy Yukawa coupling constant).
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At N.> 1, the coupling G; ensures chiral-
symmetry breaking and the emergence of the mass
m¢ # 0 as a solution to the gap equation in the
Nambu—Jona-Lasinio model [2]:

1 — ﬂtJ(mt) = 0, (4)
1 d* 1
J(m) = W/W—;;me(p)a
_ GyN.M?
b= (5)

Here, M is the cutoff scale in the Nambu—Jona-
Lasinio model. At energies £ < M, there arises, in
our model, a scalar state that is similar to the Higgs
particle in the SM. An appealing feature of the critical
problem in the Nambu—Jona-Lasinio is that almost
all qualitative properties are independent of the choice
of a cutoff function fj;(p)—that is, of the way in
which the quadratically divergent integral in (4) is
treated.

The nonrenormalized four-fermion coupling (3)
can be considered as an effective low-energy (E ~
my) interaction for some consistent theory existing at
energies £ > M. On the other hand, this coupling
(3) could arise as the high-energy limit (E > m;) for
such an SM where there is no fundamental Higgs
boson, where the field ¢ is composite, and where the
boundary conditions for the renormalization-group
equations within the SM are dictated by the condi-
tions of the composite nature of the field ¢ (the cor-
responding renormalization constants are Z = 0 for
p? > M?). The qualitative properties of such an SM
and of the Nambu—Jona-Lasinio model are similar,
and this similarity was comprehensively studied in[3].

As to the inclusion of the mass my, and of the small
ratio © = my/my in the analysis, there are two ap-
proaches to explaining the the enormous distinction
between my, and m;.

(i) The first employs independent spontaneous
symmetry breaking associated with the f, term
[as in (3)] Two massive scalars are present here
at low energies [4]. Hence, the low-energy limit
of the corresponding Nambu—Jona-Lasinio model
appears to be a nonminimal SM involving two Higgs
scalars ¢ and ¢;. The condition z < 1 is introduced
phenomenologically by assuming that the relevant
dynamical vacuum expectation values satisfy the
strong inequality (¢¢) > (¢y).

(ii) In the second approach, radiative corrections
in some new perturbative interaction generate a mass
my that is expressed in terms of the dynamically
arising mass my. A perturbative character of the
new interaction explains the smallness of the ratio x.
However, this approach obviously requires inventing
new interactions and fields adequate to the pursued
goal [5].
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Apart from this, a small mass m; is included in
the scheme of the spontaneous generation of m; in an
ad hoc manner, in which case one neglects SUL(2)
symmetry and resulting inconsistencies (see [3]).

The objective of this study is to construct and
investigate a model where the dynamical generation
of m; and my occurs simultaneously. In this model,
there arises, in the low-energy region (E ~ my), only
one composite scalar state, as in the minimal SM.
At SM energies, we want to have an effective La-
grangian of the type in (1) and to develop, for such
systems, a physical interpretation of the resulting
large distinction between the masses m; and my, .

The model in question partly reproduces mecha-
nisms of the types in (1) and (2). Specific points
of the model-parameter space correspond to these
mechanisms. But apart from these points, a large
distinction between m; and my in the most natural
and significant part of the parameter space can be
interpreted as existence of two different energy scales,
at high energies (much higher than the SM energies),
for two different physical phenomena, scalar and vec-
tor exchanges between the quarks.

[t is also shown how the vector W bosons develop
a longitudinal component under the conditions of the
complex phase transition being considered (see Ap-
pendix).

2. CHOICE OF MODEL

We reproduce the transformation in (3) with La-
grangian (1); thatis, we integrate the system specified
by Eq. (1) with respect to the imaginary and the real
part of the auxiliary field ¢. At the mass scale M, we
obtain

—fil(tro&qt) + hc] — fol(bro™q}) +hoc] (6)
—M?*¢T ¢ — 2{G(trq?) (Gt tr)

_ 1 ,
+Gy(brap)(@Lbr) + 5V GiGul(TRaL) (TR 4L )

—(ahat) (@hap) + bl }

where G, = f2/M? and a,a’ = t,b. The last brack-
eted term on the right-hand side of Eq. (6) can be
recast into the form

VGiGy[(trtr)(brbr) — (Erbr)(brtr) + h.c.].

It should be borne in mind that, if we consider
(6) as an effective interaction arising from a high-
energy consideration, this formula does not involve
all possible four-fermion terms—only those of them
appear that affect the equations for masses and the
spectra of scalar (pseudoscalar) particles.

Obviously, three terms in the braces on the right-
hand side of (6) possess substantially different prop-
erties. The first two of these are invariant under
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SUL(2) transformations. The symmetry of the third
term is SUL(2) x SUR(2) . If expression (6) is an ef-
fective low-energy interaction calculated within some
theory that is consistent at high energies (F > M),
the distinctions between these three terms in (6) must
be due to dynamical reasons.

One possibility is obvious here. After the Fierz
transformation, the first two terms on the right-
hand side of (6) become vector—vector products
of isosinglets and describe the coupled transitions
trtr = Gqrqr = bgrbg. These contributions appear
to be a “result” of vector exchanges between the
quarks, the helicity being conserved in their vertices
(L 2 L,R 2 R). Exchanges generating the third
term can have vector vertices in none of the channels.
There, R = L transitions occur, which are charac-
teristic of scalar (or tensor) exchanges. Therefore, we
can deal with high-energy exchanges that are indeed
dissimilar and which are characterized by physically
different structures (see Section 1 above).

From the viewpoint of any physical hypothe-
sis, however, it is difficult to explain, within this
conceptual framework, the relation G = GGy
between three coupling constants of the Nambu—
Jona-Lasinio model because of the independence
of the contributions in Lagrangian (6). The only
reasonable way out is to consider the model specified
by Eq. (6) with fully independent constants Gy, Gy,
and G. Again, these constants are not directly related
(~ f2/M?) to the low-energy constants f; and f;.
But of course, G, Gy, and G are inversely propor-
tional to the squares of their mass scales. Since
the constants G; and G} describe the dynamically
coupled channels, their scale factors must be iden-
tical. Therefore, it is natural for G; and Gy to be
close quantities, parameters on the same order of
magnitude. At the same time, both the scalar scale
and the constant G can have sharply different values.

In this study, we will therefore consider the model
characterized by the interaction

Lint = G(tra7 ) (a1 tr) + Go(brar)(azbr)  (7)
1 ’ ’ ’ ’
+5GUTRaL) (@R AL ) — (TRaL )(TRAL) + hec.
Here, the parentheses imply summation over both the
spinorial and N, color indices. It should be recalled
that, in the Nambu—Jona-Lasinio models, the num-
ber N, of colors is large: N, > 1.

To conclude this section, we note that the La-
grangian in (7) represents the most general form
of an SUL(2)-invariant four-fermion interaction that
belongs to the type of a scalar—scalar product. For-

mula (7) is a direct generalization of the well-known
SUL(2) x SUR(2)-symmetric Lagrangian [6]

6L = G[(WY) () + (QivsTy) (isT)],  (8)
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which is often used to simulate a spontaneous break-
down of chiral invariance and the generation of pseu-
doscalar states in QCD [7].

3. SET OF GAP EQUATIONS

[f chiral symmetry is broken in quark interaction,
the equations for the quark self-energy have non-
vanishing solutions at a nonzero momentum (p #
0). Within Nambu—Jona-Lasinio models involving
a large number of colors, these are precisely masses
generated by symmetry breaking. They are order
parameters in the problem, and it is customary to refer
to these equations for masses as gap equations [2].

For Nambu—Jona-Lasinio models, a conventional
procedure consists in taking into account, in the
lowest order in N., the one-loop contributions to
the equations for the self-energies [1—3]. For the
interaction in (7), we therefore have

1
By Jy + B Jy = 1, BpJy + ﬂngt =1, (9)

where J; = J(my) and J, = J(mp) [J(m) is defined
by the integral in (4)]. The parameters G;, 8y, and 3
are expressed in terms of Gy, Gy, and G in just the
same way as in (5), and x = myp/my.

The quadratically divergent integrals J(m), which
depend on the type of cutoff, can be calculated by
using the simplest cutoff form fus(p) = 9(M? — |p|?).
The result is

m?  M?
5 n— (10)

[f we are interested only in a qualitative pattern of
the model, the representation in (10) is of no funda-
mental importance. But it can be used to get a clear
idea of the specific form and properties of J(m). The
choice of cutoff function becomes of importance only
when the Nambu—Jona-Lasinio model is used to ob-
tain numerical estimates—for example, to calculate
the masses of pseudoscalar bosons in QCD [7].

[t can be seen from (10) that J(m) <1 (m > 0),
and this property remains unchanged for all reason-
able forms of cutoff.

A spontaneous breakdown occurs if the set of
Egs. (9) has the solution m; > 0 and my > 0. In the
simplest model where 3, = 3 = 0, the equation

BrJy =1 (11)
has a nontrivial solution at 8; > 1 (owing to the prop-
erty J; < 1). The point 5, = 1 is the critical temper-
ature of a phase transition; here, the masses (order
parameters) vanish.

For the set of Egs. (9), the domain of existence (or
absence) of solutions depends on three parameters.
This comes as no surprise—a similar situation arises
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in phase transitions, when, in addition to tempera-
ture, other parameters of the system (external fields,
pressure, and so on) are taken into account. The
region where there is no chiral-symmetry breaking
can easily be traced in Egs. (9). It is the region where
the parameters are relatively small. Upon leaving this
region in various directions, we arrive at parameter
values yielding my; > 0; that is, a phase transition
has already occurred.

By eliminating the explicit dependence on z from
(9), we obtain

— 1 - /BtJt — /BJL‘
By 1 — By

With the aid of (12), one can easily express J, in
terms of J;, and vice versa,

(12)

1 — B
Jp = , 13
"= A= BBy + P2 (13)
J = 1— By
(1= By ) B + B2
and my in terms of my (or my in terms of my),
_ 2
v = (1= B¢Ji)By + B Jt’ (14)
B
Tr = b
(1 = Bydy)Bs + 32T
Formulas (12)—(14) and the formula
(1= BeJt) (X = Bpy) — B2 Jy =0, (15)

which is symmetric with respect to the interchange
of b and t, are of use in the calculations performed
in the sections that follow. From Egs. (9), it can be
seen that the substitutions t = b, x = 1/x do not
obviously change the above formulas. This symmetry
is extensively used in Sections 4 and 5, and it is also
helpful in checking the calculations. If the quark
masses satisfy the condition m;;, < M, relation (15)
implies the need for the fine tuning of the parameters.
Indeed, it follows from (10) and (15) that a nontrivial
solution to the set of Egs. (9) exists in the region
2

m

(-8 -2 =0 () (16)

[here, we have disregarded the term In(M?2/m?)].
Such fine tuning is necessary for m < M in any
Nambu—Jona-Lasinio model [by way of example, we
indicate that, for (11), B; ~ 14 O(m?/M?)] and is
one of the manifestations of the hierarchy problem [3].
Despite the approximate relation (16), we actu-
ally have three parameters for two equations in (9).
Therefore, the existence of solutions with necessary
properties is beyond any doubt. To demonstrate this,
we invert the problem and, at given m; and m;, (that
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is, at given x, J;, and Jy), express (; and [ in terms

of 3:
1Bz _1-8@1/x) )
B = 5 By = 7, .

The model being considered includes both approaches
(i) and (ii) mentioned in the Introduction. Two low-
energy scalars emerge in the region of very small
values of 3 (at 3 < mj7,/M?, as will be seen in the

next section) and when the critical parameters 3; and
Oy are both greater than unity. The radiative version
of the origin of m; would correspond to 3, = 0—that
is, z = BJ;—when the mass my, is expressed in terms
of m; and the small constant 8 ~ x, as it must be
in cases where the mass is calculated in terms of
radiative corrections. On the other hand, 8 > 0 and
(¢ remains less than unity—that is, it does not reach
the critical value: m; = 0 if we set 3 =0. Ii, at the
same time, § emerged owing to perturbative scalar
exchanges, we could neglect it without introducing
substantial changes in the spectrum of the system.
Therefore, there is actually no perturbative version of
my, generation in the model being considered (at least
for1 >z > m?/M?).

Another possible version of a z < 1 solution could
be realized is the case of three large parameters,
B> xand B, ~ x0, |G| 2 1. Here, there of course
arises some version of a nonperturbative mechanism

However, a large distinction (8; ~ x3;) between
the uniform vector constants 8; and 3, seems a mere
statement of the fact (as in Yukawa coupling con-
stants within the SM) rather than a physical ex-
planation of the phenomenon. The point is that
the quantities Gy p ~ geo/ME (Brp ~ GipM?) can-
not have different scale masses My, as was indicated
above, since they describe the coupled transitions
trtr = qrqr. = bgrbgr. Therefore, the distinction
between Gy, and G(b) is the distinction between the
dimensionless numerical quantities g; and gp.

The region | 3| ~ z, where 3, and 3, both appear to
be close to the critical point—that is, 8; ~ 1 + O(2?)
and By, ~ 1 (G, is greater or less than 3, depending on
the the sign of 3)—is the most natural region for the
emergence of a z < 1 solution. Here, the condition
x < 1 must be interpreted as the distinction between
the mass scales of vector and scalar exchanges:

My ~ \/xMsg.

In this region and for z > mfﬁb/M2, the disregard

of small § (as has already been mentioned, this is
possible if 5 emerges owing to switching on some
perturbative coupling at high energies) does indeed
strongly change the spectrum of the system: at 8 > 0,
B¢ and [, are less than unity and we have a subcritical
case; hence, my = my = 0. For § < 0, the inequality

(17)

(18)
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myp > my would hold. Therefore, 3 is not a perturba-
tive quantity. The version in (18) seems the simplest
and most natural explanation of the large distinction
between the masses of the ¢ and the b quark in the
case where both of them arise as the result of a spon-
taneous breakdown of chiral SUL(2) symmetry.

4. SCALAR AND PSEUDOSCALAR STATES

Composite bosons of the scalar and the pseu-
doscalar channel are also the standard subjects of
investigation in Nambu—Jona-Lasinio model. We
now recall how this is done for the simplest case of
Py =p=0.

In the lowest approximation in N,, the amplitude
for gq scattering is represented as the sum of chain
diagrams. Within each one-loop link, the helicity
of the quark pair can either be conserved or change.
Because of this, the link (one-loop contribution) A
is a matrix in the helicity indices a = L, R; O, =
1/2(1 £+ ~5). The amplitude B—that is, the sum of
the chain contributions—is then expressed in terms
of the matrix reciprocal to 1 — BA:

8723 1

B N.M21—-BA" (19)
Here, (3 is the four-fermion coupling constant (5),
and the matrix A,g can easily be written in an ex-
plicit form (for g.gg with masses my and mg). In
a form symmetric with respect to the interchange of
my and ma, the one-loop contribution with incoming
4-momentum g has the form (see, for example, [8])

1 d*p
Aaplq) = _W/E (20)

thr{ mi = (p+/2) , m2= (= q/2) Oﬁ}
m2 — (p+q/2)? “m3— (p—q/2)?
Aas(q) = A5, + A8Y5,_ g

4
ALY :—#/% (21)
(p+a/2)(p—q/2)
i} — (o + ¢/2)2m3 — (0 — ¢/2)7]
A = TR (o) (22)
_ [ 1
10 = [ B o

(the cutoff function fjs is not presented explicitly). By
using the relation

(D623t 6-97] @

1 2] 1
-5 m§—<p—§) ]+§(m%+m§—q2),
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A; can be reduced to the form
A(q) = —sgy — 20y — @ (24)
1\9q) = 9717 572 8M26
lm%—l-mg—qQ
§T112(Q),

where J; and Jy are quadratically divergent integrals
of the form (4) and ¢ is a constant that depends on the
choice of cutoff [c = 1 at fy; = 9(M? — p?)].

By setting m; = my and taking into account (11),
we obtain the ordinary statement [2] that there exists
a scalar pole at ¢ = 4m? (¢ = 0) and a pseudoscalar
Goldstone particle (¢% = 0):

B (47T)2
Bs0) = @y v o/
1
“ I+ (A1) - & (25)
(47T)2 1
Bps =

Ne[I(q) +c/4] —¢*°
[t should be noted that the residues at the poles do not

depend explicitly on 3 (they depend on it only through
the mass m).

For the model considered in this study, the cou-
pling constant  and the quantities A and B are the
matrix both in the helicity (a, 8) and in the isotopic
(a,b) indices. For the process gaa + qs5 — qorar +
dpy, wWe write these matrices presenting all indices

explicitly, although their number can be reduced be-
cause, in the leading approximation in NN, the rela-

tions « = —B and o/ = — ' hold in the vertices given
by (7). Specifically, we have
53555 " = [Boa.gp00ar 05500 by (26)

+00ap 0par (355 0a5, — 0a'adys)10a—p;

where B, 15 = Brart = Bt and Bgy, 15 = Brars = B
In the expression for the one-loop contribution
(all indices refer to the internal lines), the matrix is
diagonal in the isotopic indices:
a/a/7ﬁ/5/

oa,b

- (A?baa,aag,g + Agb%'—a‘sﬁ’*ﬂ) Oa—p0aa' Opjy -

(27)

According to (26), we seek the reciprocal matrix
(1 — BA)~! = B in the form
Sac'8pr [B1aa Oy + Bz (3515 9p
~0aa0y3)] + da—ar05—g' [Badaw Ogiy
+B4 (03w 935 — Savadys)] -
The quantities B; depend on the isotopic indices

of the scattering channel being considered. Written
immediately below are the equations for B; in various

(28)
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channels (four equations for possible changes in the
isotopic content and helicity).

(i) For tt — tt and tt — bb ((1 — BA)B =
have

1), we

(1-BAY)BY — B AY By
AYBBY — AYBBY = 1,
—AYBiBY + (1 - B AT) By
—A{pBY — AYBBY =0,
—AY BB — BBy
+ (1= BAP)BY — 3, AYBY =0,
—APBBIt — APBBY — B, AY BY
+ (1= 3AY) B = 0.

(29)

(ii) For bb — bband bb — #t, the set of equations is
analogous to that in (29) with the substitution ¢ < b,
their determinants being coincident.

(iii) For the charged channels tb — tb, we have
(1= 3 AY) — BAD)(B) — Ba)"
+ (BAY — BiA) (B — By)" =1,
(BAY — By AD)(B1 — B2)"
+[(1 = BAY) = BAT)(Bs — Ba)"" = 0
for tp scattering and the analogous set of equations

with the substitution ¢ < b for tg scattering, the
determinant taking the same value in the two cases.
By substituting (22) and (24) into (29) and (30),
we can calculate the determinants of these sets of
equations, which characterize the possible scalar
states. It should be emphasized that |As| < |A;]
at m,,|q*| < M?* and that there are small terms

(30)

~m?/M? in A;, which seem negligible. However,
the limiting transition 8 — 0, in which there must
arise independent low-energy states ¢; and ¢, and
charged Higgs particles characteristic of a nonmini-
mal SM, can be traced only if we retain all orders of
smallness. In addition, this makes it possible to follow
the fate of all four scalar states of each channel with
increasing B and to prove that Goldstone states are
present in the system under conditions (9), irrespec-
tive of relations between m7,, ¢* and M?. In view

of all this, the determinants of the sets of Egs. (29)
and (30) were calculated here without recourse to any
approximation. The single simplification is that we
set the constant ¢ to zero in (24). This, however, does
not change any of the significant features.

For the determinant of the set of Egs. (29) (neutral
channel), we thus have

—q? 1
el mtmbﬁ <It; + Ibilf)

0
Det(® = 2 2
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tmb

1
X [5 (It—2 + be2> +
X
1 2 1
2 2

memy memyp\ 2
x o n+201, ( e ) 772}

1 2 3 2
3 (W) 5[13 <ﬁ+ ﬂﬁmbfb>

2
+ 12 <ﬂ:c2 + TX;TI]IWH

1 (="’ B,
1 (W) nlely l:It ( MQIb"?

; 1 (=a*\" 500
+ Iy (590—1— M21t77>:| T (W) Iy Ly,
where I} = I(q,m) and I, = I(q, mp) are determined
by (22) and n = 3;3, — 3% characterizes the deviation
from the case where there is one Higgs boson and
where we have G% = GG [see (6)].

In calculating Det’ and in reducing the result to
the form (31), use has extensively been made of (9)
and (12)—(15). It is for this reason that formula (31)
does not involve the quadratically divergent integrals
Jiy and J. The masses m; and my, appear as solutions
to the set of Eqgs. (9); therefore, we must take into
account Egs. (9) in going over to the limit associated
with masses (for example, my — 0)in (31). Solutions
to Eq. (31) are composite scalars or pseudoscalars
of the system under investigation. For the neutral
channel, these are the poles of the amplitude for the
three reactions

tt — tt,

nIth]

(31)

bb — bb,

which conserve and change the helicity of particles
and antiparticles.

tt < bb,

As might have been expected on the basis of trans-
formation (6), Eq. (31) at n = 0 has only two roots,
that for ¢> = 0 and that for

L;(1/2?) + Iyx?
Ii(1/z) + Lyx
It'm;l + Ib'm;)l

q2 = mé = dmymy

(32)

Im} + Iym}’

which correspond to the Goldstone state and to a
composite analog of the Higgs boson ¢. At m; =
mp—that is, at x = 1—we obtain the well-known
Nambu—Jona-Lasinio formula m? = 4m?® [2]. The
functions I;(q) and I,(q) are given by (22) at m; =

me. They depend logarithmically on ¢?. We disregard
this dependence.
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Another limiting case, that of 8 — 0, was men-
tioned in Section 3. For this case, we have

B 14m% — q2 —q2

Det(®) = 1T W(ﬂtft)Q (33)
14my — ¢* —¢>
iar e

Here, the denominator in expression (19) for the scat-
tering amplitude splits into two independent parts,
the poles corresponding to the neutral components of
two scalar isodoublets (composite Higgs fields ¢; and
¢p) that suffered a spontaneous breakdown of SUL(2)
symmetry. There are four neutral states and, as will
be seen below, four charged states. Three massless
state form a Goldstone isovector. Four massive (two
neutral and two charged) states and one massless
state would be the candidates for observed bosons.
The calculation of the amplitudes in (19) at 3 =0
proves a nonminimal character of the system. By
way of example, we indicate that, for the channel
bb — bb, which conserves the particle helicity, the
denominator of the amplitude [it corresponds to the
minor of Egs. (29)] can be represented as

2mp — g —q® . (4mi —¢*)
bz tooup onpz P (34
Substituting this expression into (19) and taking into
account (33), we then arrive at expression (25) with
the pole at 4m?. A similar result is valid for other
channels (b <= t,m, = my). The situation with two
scalar fields is conserved up to 8 < mymy/M?2.

Let us proceed to analyze the region § ~ z >

mymy/M?. For ¢*> < M?, we obtain the approximate
expression

2 2
Det(0) = — L T {52 (Ité + be> (35)

Iy -

Iy

M? M?

2
mimp —q
< D) - 2+0 (Tt T ) b
where mi is given by (32). Thus, we see that, at

energies much lower than the cutoff value M, there
are two scalar states corresponding to the minimally
broken SM.

Knowing two roots of Eq. (31)—¢? = 0 and ¢* ~
mi—we can easily determine the positions of the two

other roots. In the region being considered, g ~ z
and the approximate solution (correct to one power
of m7,/M?) makes it possible to find two more roots:

—_q2 N_2ﬁft(1/x)—|—fbx
M? 1_ i1y

2 2
™y, My, 1M
t Ty, TTUETTLD
+0 (—>,

e (36)
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__q2 ~ _QﬁIt(l/x) + Lpx
M? 2 N i1y .

The second root does not involve ~ m?, /M? con-

tributions. It can be proven that ~m7,/M?* con-
tributions do not vanish for 8 — 0. It follows that,
in this limit, one of the roots can be equal to zero,
while the other provides a finite mass, this being
consistent with our calculations for 8 = 0. In the re-
gion m?,b/M2 < 3 ~ x < 1, theroots occur near the

cutoff boundary in the model. If we again disregard
the weak dependence of I, ;, on ¢, then
61
z 1
Actually, there are therefore no roots (36) in the
model (for 8 > 0, they can be tachyons); that is, their
inclusion is meaningless within our consideration. It
follows that, with the exception of the point § ~ 0, the

model specified by Eq. (7) corresponds to the minimal
SM at energies F < M.

[t only remains to perform a similar analysis for the
charged channel. By substituting formulas (24) and
(22) into the determinant of the set of Egs. (30), we
obtain (¢ = 0)

(q2)172 ~ ]\42 ~ M2. (37)

2 2

Det(®) — e — [Li(q) — I (0)]

o (38)

2 _ 2
x {@ — By + bt lin(q) Itb<0>]}

_q2 1
+ mftb(Q) [ﬁ (33 + E) +n

—q? 2
+ (m) 77[t2b(Q)a
where the function Iy, (¢) is determined by the integral
in (22) at m; = m; and mg = my. The dependence
on the cutoff mass M is canceled in the difference
Iy (q) — I1(0). At small g%, we have

1 1 m% + mg
Lu(q) — Itb(o)]? = 2 (2 —m2)? (39)
mimi . mj

(m? —mP
Formulas (12)—(15) have been again used widely to
reduce Det™) to the form (38).

In Det™®), the Goldstone root ¢ =0 is also
present, as it must. At n =0, the other roots are
absent and we are dealing directly with the minimally
broken SM according to (6). At 8 =0, the massive
charged-scalar state

2

f:ﬂm%w@+0<ﬁd%%§> (40)
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manifests itself in addition to the Goldstone root.

In deriving (40), it should be borne in mind that, at
B=0, B — By~ (m?/M?)In (M?/m?) [this follows
from the gap Eqgs. (9)]. It was mentioned above that,
at 8 = 0, there are in total four charged states of finite
mass. Thus, the spectrum of the charged channels
complements the picture up to a nonminimal SM that
involves two Higgs scalars.

At (5] > m?’b/MQ, a charged massive particle has
a mass of about M—that is, on the order of cutoff
boundary. There only remain the states that corre-
spond to the minimal SM with a single composite
Higgs particle.

Thus, we have constructed a model that describes
a spontaneous breakdown of chiral SUL(2) symmetry
and which is characterized by a simultaneous dynam-
ical generation of the masses of both components of
the weak doublet of quarks, ¢ and b. At SM ener-
gies, there appears only one composite scalar boson.
Hence, the low-energy situation in this model is fully
analogous to the minimal SM.

The large difference of the ¢- and the b-quark
mass, z = my/my < 1, can suggest that, at high
energies, there exist phenomena whose energy scales
differ considerably from one another.
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APPENDIX

Here, we demonstrate how the well-known Higgs
phenomenon (even the theorem) of the transforma-
tion of a Goldstone state into the longitudinal com-
ponent of a weak massive vector meson W acts in the
intricate situation being considered.

First, it is useful to recall how this occurs in the
SM with the fundamental Higgs field ¢, which is
a doublet of weak SUL(2) symmetry. Breaking the

symmetry, the field ¢ forms the condensate

7_(1

1 0
ota) = —sta+ e i@ | (1), @
where 7 is a vacuum expectation value, x(z) is the
field of the massive Higgs boson, and ¢%(x) is the
isovector Goldstone field. The interaction between ¢
and W leads to the emergence of the longitudinal self-
energy W not vanishing at ¢ = 0, that is, to the mass

My,
2.2
quqv \ g93Mn
M, (q) = (gw— ;2 )2—,

4
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921
=5 (A2)
where g9 is the semiweak coupling constant. The
point is that, owing to the interaction with the mass-
less field ¢*(z), W may transform into a Goldstone
state. This leads to the existence of the pole in the
seli-energy W. Therefore, the propagator W (in an
arbitrary gauge) has the form

My

9w — (u0/3?) . ald?) quay
Dy (q) = 2 2 2 2
q* — My, “ q
_ 9w — (Q/LQV/M%/) 4 e 1 I o
q? — My, @ \My  ¢)
(A.3)

For the sake of simplicity, we set « = 0—otherwise,
we would have to consider the Goldstone boson with

mass m? = —(1/2) M, (it would be generated by the
transition o — W — W — o).

In quark—quark scattering processes, it is neces-
sary to take into account both the exchange of a W
boson and the exchange of a Goldstone boson ¢. At

q* =~ 0, the W-boson contribution is given by
Quqpr 1
¢ Mg’

and the interaction of the W boson and the quark is

(A.4)

_ .1 T¢
Qg2wa§(1 + 75)5@7
While the singular contribution of the Goldstone
boson is —g ™2, the contribution of its interaction with
quarks can be represented as

We=Wiy'.  (A5)

a, AQ

290 Q. (A.6)
Formulas (A.5) and (A.6) make it possible to cal-
culate the residues of both poles at ¢? = 0.

The calculation of two singular contributions
demonstrates that they are canceled. After that, there
only remains the contribution of the massive part of
the propagator in (A.3).

A similar cancellation of the singular parts must
occur in the present model of a composite Higgs
boson.

The self-energy W is the sum of the contributions
of two diagrams in Fig. 1. But only the diagram in
Fig. 1b involves the contribution of the Goldstone
pole of the quark—quark scattering amplitude. This
diagram determines exclusively Mg, and, hence, the
singular parts of the self-energy (A.2) and of the
W -exchange term in (A.4). The contribution of the
diagram in Fig. 1a does not involve singularities and
can determine only the renormalization of the charge
g2 (see[3]). This contribution involves a quadratically

Qmgivs
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divergent part, and the presence of this indetermi-
nate form can be used to recast the total seli-energy
I1,,(q) into a gauge-invariant transverse form, in-
cluding the singular contribution of the diagram in
Fig. 1b. Let us fix the indeterminate form by setting
I1,,9, = 11,,,q, = 0. There is then no need for taking
care that the singular contribution is transverse, and
the mass W can be determined, as in (A.2), directly
from the diagram in Fig. 1b. For the charged boson
d*p

W=, we have
1
) [t {eg e

(_92Nc
V2
mp + (p—4/2)
mi — (p— q/2)?

X [%(1 + v5){tLbr| + %(1 - ’Y5)<tRbL|}
V2 27)

}miw|
X ( 4itr{ (I+75)
me + (0 +¢/2)
m; — ({+q/2)?

1 _
[5(1 +75)[trbL)
my + (£ — 4/2)
m2 — (£~ q/2)?
We have represented the amplitudes in the symbolic

form (tb|g)(g|th)/(—¢?), since they are different for
different processes. Upon evaluating the traces, we

obtain )
[(4@2} /

X [mf( - 2>u (e— g>y<tRBL|tRBL>

£), (0+3), i

my + (P +¢/2)
m? — (p+q/2)?

_gch) / (d4€

1
7V2

+ %(1 - 75)|tLbR>]

1
—q?

N, d*p d*e

2

1508 (q) = —5295

T2

q

+mi (p+ (A7)

1 _
+ 2mymy, (pugu - Z@hﬂb) <tLbR|tRbL>]
1

"l = o+ a2 [ — - a2y

X

[m? = (+q/2° [m} — (¢~ a/2?]

The brackets denote the residues of the amplitudes
(coefficients of —g~2). Apart from a constant under
the logarithm sign in In(M?/(mymy)), the integrals
in (A.7) can be expressed in terms of I;;(q) given by
(22); that is,
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(@)
p+q/2
q q
pP—ql2
(b)
p+ql2 [+q/2
B(q)
q q
pP—ql2 l—ql2

Fig. 1. Seli-energy diagrams for the weak gauge bo-
son W.

d'p (P F /2
/w%mﬁ—@+memﬁwp—wmﬂ(A&
= :F%Q)\Itb(Q)-

The charged-channel amplitudes are calculated
according to (19) with the matrices 8 and B from for-
mulas (26) and (30) in the approximation z ~ |3| >
mymy/M?. For three residues written in (A.7), we
obtain (recall that x = my,/my)

@)y L _(4m)?
B2 = e M@ (2.9)
1 2 —x

X :
(1—1—:1:2’1—1—362’1—1—362)

The substitution of (A.8) and (A.9) into (A.7)
yields

2 :lg%Nc
W9 (4n)2

In order to complete the calculation of the singular
contribution (A.4), it is necessary to apply the product
quqyv to the quark vertices for the interaction in (A.5).
For expression (A.7) or (A.9), we obtain

9

2

For the singular part of the contribution of W, we then
have expression (A.9), but with the inverse sign.

To conclude, we present formulas resulting from
analogous calculations for the neutral channels (W3;
the weak interactions of ¢ and b have opposite signs).
The hypercharge interaction (as in the SM) is not
considered for the sake of simplicity.

(mi 4+ mi) 1.

(A.10)

(mg,

(A.11)

mg, —mymy).
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The singular part HE?)(q) arises in the form (as
before, brackets denote the corresponding residues at
2
q-=0)

2 2
H(O)( ): Q;LQVQQ |: Nc :| (Al?)

pv —q2 9 (47)2
x {mi[(tLtrltLtr) — (tLtrltREL)]I} (q)
+mi[(brbr|brbr) — (bLbr|brOL)II; (q)
— 2mymy[(tLtr|brbr) — (tLtRIDROL)IH(9)Ib(q)}-

The residues can be calculated from the amplitudes of
the corresponding processes [formulas (19), (26), and

(29)] in the same approximation x ~ 3 > m7,/M?.
We present the results according to the order in which
these processes appear in formula (A.12):

( ) . 87'(2
B (q) = N (h(L2) + Tor) (A.13)
2
y mg(q) N

(—a*)(mZ(q) — ¢%)
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For the W3 mass, we have
o2 _ 1 g2Ne

2 (4m)?

A comparison of the singular contributions from W

and from the Goldstone particle shows that they of
course cancel each other.

(Iym7 + Iym3). (A.15)
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Abstract—Arguments against the traditional Yukawa-type approach to NN intermediate- and short-
range interaction due to scalar—isoscalar and heavy-meson exchanges are presented. Instead of the
Yukawa mechanism for intermediate-range attraction, some new approach based on the formation of a
symmetric six-quark bag in the state |(0s)%[6]x, L = 0) dressed owing to strong coupling to 7, o, and
p fields is suggested. This new mechanism offers a strong intermediate-range attraction, which replaces
effective o exchange (or excitation of two isobars in the intermediate state) in traditional force models. A
similar mechanism with the production of a vector p meson in the intermediate six-quark state is expected
to lead to a strong short-range spin—orbit nonlocal interaction in the NN system, which may resolve
the long-standing puzzle of the spin—orbit force in baryons and in two-baryon systems. The effective
interaction in the NN channel provided by the new mechanism will be enhanced significantly if the partial
restoration of chiral symmetry is assumed to occurinside the six-quark symmetric bag. A simple illustrative
model is developed that demonstrates clearly how well the suggested new mechanism can reproduce NN
data. Strong interrelations have been shown to exist between the proposed microscopic model and one-
component Moscow NN potential developed by the authors previously and also with some hybrid models
and the one-term separable Tabakin potential. The new implications of the proposed model for nuclear

physics are discussed. © 2001 MAIK “Nauka/Interperiodica”.

1. INTRODUCTION

Since the mid-1930s, when Yukawa proposed [1]
his classical theory of the nuclear force based on
meson exchange between nucleons, this concept, al-
though improved and also partially modified over the
last half century (see, e.g., [2, 7] and some reviews
of studies done until 1978 in the book of Brown
and Jackson [8]), has basically remained the same:
the nuclear force is assumed to originate from the
exchange of one or a few mesons between isolated
nucleons. Though other channels with one or two
A isobars in the intermediate state have also been
added to the nucleon one in the last two decades [5,
6], isobars interact via meson exchange.

A large variety of potential models based on this
concept have been suggested in recent years to de-
scribe the NV interaction, which fit very accurately
experimental data on NN scattering up to the energy
of 300 MeV in the laboratory frame.

However, with the accumulation of many new data
in the field of hadron physics, it has become more and

*This article was submitted by the authors in English.
Dlnstitut fiir Theoretische Physik, Universitit Tibingen, Auf
der Morgenstelle 14, D-72076 Tiibingen, Germany.

more evident that traditional NIV interaction models
(i.e., those that are based on the meson-exchange
concept) suffer from numerous inner inconsistencies
and discrepancies—for example, the same meson—
nucleon form factors must have different types of
short-range behavior in describing very similar pro-
cesses. In particular, the same functional form of
the T NN form factor Fyyn(¢?) must have very dif-
ferent cutoff parameters A,y in describing elastic
and inelastic NN scattering or in describing two-
body 2N and three-body 3N forces [9], etc. (Some
other examples of such inconsistencies are discussed
in Section 2.)

At the same time, due to radical improvements
in the accuracy and the reliability of dynamical few-
nucleon calculations, one also begins to find some
numerous disagreements between new experimental
data and the results of the most accurate Faddeev
calculations (for a list, although far from complete,
of such disagreements in few-nucleon calculations
see, e.g., [9]). It is very instructive that many of
such disagreements cannot be removed by introduc-
ing phenomenological 3N forces in the calculations
[9—12].

1063-7788/01/6409-1667$21.00 © 2001 MAIK “Nauka/Interperiodica”
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Some recent studies in the field that are based on
chiral perturbation theory (xPT) may serve as a very
clear indicator of the degree of our understanding (or
misunderstanding) of the fundamental NN interac-
tion. This is especially true for the studies reported
in [13, 14]. There, the authors showed that, within
chiral perturbation theory, it is impossible to describe,
without introducing any cutoffs, all the lowest partial
waves even if one incorporates the excitation into
intermediate A isobars and the exchanges of vector
(p and w) mesons. Thus, a quantitative descrip-
tion of the lowest partial waves with L = 0—2 up to
Eya, = 300 MeV requires going beyond the frame-
work of xPT. This problem becomes more urgent
in passing to the intermediate-energy region around
FEem. >~ 1GeV, where a strong coupling to meson-
production channels will render the application of
xPT even more complicated.

On the other hand, we consider critically here the
problem of the existence and the role, in the funda-
mental NN force, of a scalar—isoscalar light meson,
usually referred to as the o meson. The exchange
of a 0 meson is considered in traditional one-boson-
exchange (OBE) models as a main contribution re-
sponsible for the strong intermediate-range attrac-
tion between nucleons and eventually as the main
component of nuclear binding (e.g., in the Walecka
model). Very numerous attempts at finding a well-
developed resonance in the S-wave 77 system have
been undertaken in recent years (see, e.g., the recent
review [15]). According to the latest data [16], there is
only a smooth 77 resonance with a large width.

Moreover, very recent studies of different groups
have demonstrated [13, 14, 17] that the exchange of
a correlated 7m pair in an S state between nucleons
leads to a repulsive rather than an attractive con-
tribution to the NN interaction. Thus, we should
attribute the NN intermediate-range attraction to
the generation of two intermediate A isobars (or at
least to an NA intermediate state) [13, 14]. But,
as will be argued in Section 3, this intermediate AA
state strongly overlaps the symmetric six-quark state
1(05)%[6] x, L = 0,2); thus, the above AA state can
be replaced by an intermediate symmetric six-quark
state strongly coupled to the 27 channel. Thus, we
have tried to circumvent the problem in the treatment
of lower partial waves by refraining from the basic
Yukawa idea of meson exchange between (isolated)
nucleons and to develop some new interaction mech-
anism on the basis of a quark model where quarks are
strongly coupled to chiral fields.

Our treatment is essentially based on group-
theoretical considerations of symmetries, on alge-
braic recouplings in the six-quark system, and on
the specific role played by the fully symmetric six-
quark state |(0s)°[6]x[fcs]) in the NN interaction
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in lower partial waves. In particular, one could even
expect that such a fully symmetric 64 state, due to the
maximal overlap of all six quarks (which implies some
enhancement of ¢q fluctuations inside such a state),
may lead in the direction of a phase transition of the
chiral symmetry restoration. This Goldstone limit, or
even just an approach to this limit, means, in accor-
dance with the variational principle, the appearance
of a strong additional attraction between quarks and,
hence, also between two nucleons at an intermediate
range (i.e., at distances of ryny ~ 0.7—1.2 fm, where
such a dressed six-quark bag is localized).

The proposed mechanism is illustrated by a simple
model in Section 4. In particular, that simple model
can describe perfectly all lower N N phase shifts in the
rather wide energy range 0—600 MeV.

The organization of this paper is as follows. In
Section 2, we offer a critical look on OBE models and
discuss the difficulties of traditional meson-exchange
models with anomalously high cutoff parameters A
and also with respect to their application to few-
nucleon problems. Section 2 also includes a critical
discussion of the scalar-meson puzzle in the light
of some new results. In Section 3, we describe in
detail the new model for intermediate- and short-
range interaction and compare it with the traditional
Yukawa mechanism of o and p exchange. A simple
illustrative model that describes all lower NN phase
shifts in the energy range 0—600 MeV is described
in Section 4. Section 5 is devoted to interrelations
between the N N -interaction model suggested in this
study and other models proposed previously. In the
Conclusion, we summarize the main results of our
study. Some algebraic details required for deriving
the basic formulas and some tables of the group-
theoretical algebraic coefficients are presented in the
Appendix.

2. CRITIQUE OF THE BASIC ASSUMPTIONS
OF OBE MODELS
AND THEIR PREDICTIONS

Despite the relative success in the description
of low-energy NN scattering data up to Fpp, =
350 MeV, traditional OBE models based on the
initial Yukawa meson-exchange mechanism for the
nucleon—nucleon force suffer from some inner con-
tradictions and inconsistencies. These contradictions
concern not only with the description of NN data
themselves but also with the description of few-body
data. All these contradictions and inner inconsisten-
cies seem to be hardly removable today, because they
concern, as a rule, many independent experiments or
various basic theories.
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2.1. Range of the NN Force due
to Heavy-Meson Exchange and Quark Radius
of the Nucleon

While the range of the m-exchange force A\; ~
1.45 im is much larger than the quark radius of the
nucleon, (ry) ~ 0.6 fm, so that Yukawa 7 exchange
may be considered to occur mainly between two sep-
arated nucleons, the exchange of heavy mesons (with
masses m > 600 MeV) occurs mainly at distances
of rp = 0.2—0.8 fm, where two nucleons strongly
overlap. Thus, this heavy-meson exchange happens
mainly in the field of all six quarks of the participat-
ing nucleons. Hence, in OBE models using such
a heavy-meson mechanism, it is necessary, first of
all, to justify the employment of “free-space” meson—
nucleon coupling constants and cutoff form factors.
As a result of this, all existing OBE models have
severe problems with short-range cutoff parameters
A [6, 7, 9, 18, 19] (see especially the severe cri-
tique in [18]). Thus, all short-range parts of OBE
potentials are treated in a purely phenomenologi-
cal way [5—8], but by using, at the same time, the
Yukawa framework, which looks rather inadequate
for such short ranges. Very recently, an attempt [13,
14] undertaken to refrain from this short-range phe-
nomenology, but still staying within the framework of
a meson-exchange model (with a perturbative chiral-
field treatment of two-pion exchange), demonstrated
very clearly that models that incorporate one- and
two-boson exchange are able to describe only higher
NN partial waves. Hence, the description of lower
partial waves requires a nonperturbative dynamical
treatment.

This difficulty with cutoff parameters is especially
evident in the values of A npn, which can be de-
rived from the theory of # NN form factors [18, 20—
22] and even from direct N (e, e’m) N’ experiments in
which a pion is knocked out from the pion cloud of
the nucleon by fast electrons [23]. In any case, the
values of A,y taken in all OBE models to fit NNV
data lie in the interval ABY, ~ 1.3—-2.0 GeV [6, 18],
while all the above-mentioned direct estimates and
experiments result in the values of AT %" ~ 0.4—
0.8 GeV; i.e., the discrepancy is within a factor of
1/3 to 1/4 or even less. Moreover, the choice of the
strongly increased values of Ay yny ~ 1.3—2.0 GeV in
microscopic nuclear models results in a strong en-
hancement of the pion field inside nuclei [24], which is
in drastic disagreement with many observations (see

numerous examples in the review article [24]).2) Also,

DFor example, the high sensitivity of the pion-cloud terms to
the value of the cutoff Axyn in the TN N vertex and the en-
hancement of the pion light-cone momentum distribution in
the nuclear medium were especially emphasized by Thomas
[25] (see also [26]).
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high A values were found to be incompatible with
recent experiments on the Drell—Yan process [27].

The large value of Aryny ~ 1.3—2.0 GeV also
seems incompatible with the description of pion
production in the process pp — pnn™ [28] and also
with elastic backward p 4 d scattering [19]. There
are also many other pieces of evidence that point very
unambiguously to the need for soft cutoff parameters
Axnn and A,y for both the tNN and pNN form
factors (see, e.g., [29]). Last but not least, the 3N-
force models (via pion exchanges), which describe
accurately the 3N and 4N systems [30—32], still
require a soft cutoff parameter A;yn.

Quite a similar situation is observed for other
mesons, like o, p, and w, as well. For these, one
also needs large cutoff parameters A in OBE models
in contradiction to values given, e.g., by the vector-
dominance model (in the case of p mesons). In
total, the problem with artificially enhanced values of
the cutoff parameters seems almost unavoidable in
OBE models. For example, in attempts at solving
this problem, Ueda [33] proposed adding three-pion-
exchange contributions in the form of mp and wo
terms and also some “heavy”-pion (IT) exchange. He
found again that the cutoff parameter Ay for the IT
meson should be about 3 GeV (!) to fit NN scattering
data. A similar critique of the short-range part of
the NN interaction in the current OBE models (but
much less detailed than in the present paper) was
presented by the Bochum group [18].

2.2. Few-Body Puzzles Originating
from the Application of Conventional
NN -Interaction Models
to Precise Few-Nucleon Calculations

In recent years, serious disagreements with ac-
curate modern experimental data were found in
high-precision few-nucleon calculations that use
the most realistic conventional NN potentials for
low (<200 MeV) and intermediate energies (200—
300 MeV)[12, 31, 34, 37].3)

(i) Long-standing disagreements have been found
since the mid-1970s in 3N- and 4N -binding ener-
gies. A strong underbinding found in the 3N and 4NV
ground-state energies was explained long ago with a
significant contribution from a meson-exchange 3N
force [30, 31]. However, this 3N force did not help
to understand quantitatively some other 3NV puzzles.
For example, it was demonstrated very recently [38,
39] that the conventional 3NN forces used, while still

$The present authors are deeply grateful to Prof. W. Gloeckle
and his coworkers in Bochum for detailed discussions on
their recent few-body calculations and our critique presented
here.
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helping to explain new pd data, fail in the treatment
of new high-precision experiments that studied pd
elastic scattering at energies Exn ~ 150—300 MeV
into the backward hemisphere.

(ii) There is the well-known puzzle of the analyz-
ing power A, for low-energy 7id and pd scattering
[40]. The contribution of the traditional three-nucleon
force does not help to remove the A, discrepancy.

(iii) Recently, it was found [38, 39, 41] that the so-
called Sagara puzzle (disagreement for the backward
Nd elastic scattering near the minimum of the cross

section) increases with growing energy. At BR3P =
200 MeV, the disagreement is as large as 30%.%)

(iv) Quite remarkable disagreements for electro-
magnetic processes, like the reactions pp — ppy [42],
3He(e, €'p), and 3He(e,e'pp’) at moderate to high
momentum transfers and energies, were observed
(43, 44].

(v) Some evident discrepancies with data were
also found in recent four-nucleon calculations of the
Lisbon [36] and Grenoble groups [12] even at very
low energies in the range 1—6 MeV. However the
theoretical results of both groups are in very good
agreement with each other.

This list may be continued still further (see, e.g.,
the recent reviews [9]). It should also be noted here
that the current conventional NN models are able to
explain fully quantitatively many various data for few-
nucleon systems, first of all, due to a precise fit of
the on-shell NN amplitudes up to 400 MeV. How-
ever, the above few-body puzzles and disagreements
found very recently, together with long-standing puz-
zles, clearly signal that the existing NV N -force models
(based on the meson-exchange mechanism) do not
include some important nontrivial contribution at in-
termediate and short ranges.

2.3. Scalar-Meson Puzzle and Problem
of the Intermediate-Range NN Force

The problem with scalar mesons and their role
in the hadron—hadron interaction attracts much at-
tention today (see, e.g., [15, 16, 45]). This interest
focuses on the experimental identification of scalar
mesons and on their contribution to the description
of hadron collisions—in particular, to the NN inter-
action.

According to the traditional point of view advo-
cated for a long time by many “constructors” of NN

YIf, however, the conventional 3N force is taken into account,
the disagreement is considerably reduced, but there instead
appears some larger disagreement for the vector (Ay) and
the tensor (A,) analyzing power at the same backward
angles [38].
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potentials (see, e.g., [5, 6]), the exchange of the 7
correlated pair in a relative S wave between two pions
in conjunction with the excitation of intermediate A
isobars is responsible for a strong intermediate-range
attraction between nucleons [5, 6, 46]. Further, in the
conventional picture, this strong attraction at short
distances is fully compensated by a strong repulsion
due to w exchange [8, 47].

Very recently, however, it was found by two groups
independently [14, 17] that the 77 S-wave correlation
is unable to provide any intermediate-range attrac-
tion, but that it even results in a rather strong short-
and intermediate-range repulsion between nucleons
within the two-pion-exchange mechanism. Thus, in
the conventional meson-exchange mechanism, the
main intermediate-range attraction should be associ-
ated only with the excitation of intermediate-state A
isobars. Some independent arguments in favor of this
conclusion follow from the obvious failure to get this
strong attraction from various microscopic models
like the model of Skyrme soliton interaction and the
resonating-group-model (RGM) treatment with ¢q
interaction based on the Goldstone boson exchange
[48] in which the AA-state (or AN-state) excitation
was neglected.

A second important argument comes from the ex-
perimental search for the low-mass scalar—isoscalar
meson [15, 45]. While the highly excited scalars
fo(1370) and fy(1500) were identified more or less
reliably in experiments, the identification of low-mass
scalar meson resonances (which one often refers to
as a 0 meson and which one relates to the 77 S-wave
resonance) is not well accepted. The scatter of the
mass and width estimates for these states is extremely
large [15]. The estimates accepted today are as
follows [15]: m, = 400—1200 MeV and T', = 300—
500 MeV; i.e., they are rather uncertain, although the
latest data corroborating a wide scalar—isoscalar res-
onance in w7 scattering appeared quite recently [16].
However, as was noted above, the large contribution
of the continuum part of w7 spectrum results in a
repulsive rather than in an attractive contribution to
the NN sector. Therefore, numerous attempts at
interpreting the basic internucleon attraction as that
which originates from a Yukawa-type exchange of a
heavy scalar meson do not seem very conclusive.

Nevertheless, there is no doubt that some scalar-
meson contribution (of the o-exchange type) is
necessary for understanding numerous processes in
hadron physics, e.g., for 7N and NN interactions.
Hence, the above deep contradiction should be some-
how resolved.

We propose here a new approach to solving this
puzzle. This approach is in part based on the assump-
tion that the particle-like scalar—isoscalar excitation
of the QCD vacuum, which is conventionally referred
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to as the o meson, should not be associated with this
wide resonance in the 7 system with a mass of m, ~
600 MeV. Instead of this, the scalar excitation (with
a much lower mass of m, ~ 2m,) must be consid-
ered as some sort of a quasiparticle excitation inside
hadrons—in particular, inside a multiquark bag [49].
On the basis of this assumption, it can be understood
very naturally why it was impossible to date to ob-
serve this “light” scalar particle in the 77 final-state
interaction. In [50], it was suggested that a similar
light scalar meson with a mass of about 2m, can
be considered as a precursor of the chiral-symmetry-
restoration effect. Therefore, one can conclude that
such an exchange of a “light” scalar—isoscalar quasi-
particle may occur very naturally in the field of a dense
six-quark bag, but that such a “light” quasiparticle
cannot couple to isolated nucleons in free space.

These ideas lead very naturally to a new basic
mechanism of the intermediate-range NN interac-
tion presented in the following section.

3. DRESSED-BAG MECHANISM
FOR THE INTERMEDIATE- AND
SHORT-RANGE NN FORCE

From previous studies (see, e.g., [49—51]) devoted
to chiral-restoration effects in multiquark systems or
in high-density nuclear matter, it follows that some
phase transition may occur when the quark density
or the temperature of the system is increased. This
phase transition leads to a restoration of broken chiral
symmetry. Whatever the particular mechanism of
restoration of the chiral symmetry is, the most prob-
able consequence of the (partial) restoration should
be the strengthening of the o-meson field in the NNV
overlap region. This could be simulated by the “dress-
ing” of the most compact six-quark configurations
|s6[6]x L = 0) and |s®p[51]x L = 1) inside the NN
overlap region with an effective o-meson field.

In order to give to the reader some clue to the pro-
posed mechanism, we display the respective graphs
in Fig. 1. The Yukawa one-meson-exchange mecha-
nism displayed in Fig. la is confronted with the new
s-channel mechanism of the dressed-bag intermedi-
ate state in Fig. 16. The two-pion state produced in
the lower vertex in Fig. 16 is modified in the high-
density six-quark bag in which chiral symmetry may
be at least partially restored [49]. The “o” or a
similar light scalar—isoscalar meson is assumed to
exist only in a high-density environment and not in a
vacuum, in contrast to the m and p mesons. It will be
demonstrated here that this mechanism, being com-
bined with an additional orthogonality requirement,
can describe both the short-range repulsion and the
intermediate-range attraction and can replace the ¢-
channel exchange of ¢ and w mesons in the conven-
tional Yukawa-type picture of the NNV force.
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Fig. 1. (a) Traditional ¢-channel meson-exchange mech-
anism, along with the new s-channel “dressed”-bag
mechanism (b) for NN interaction.

Instead of the light “o” meson in Fig. 1b, other
mesons like 7 and p can also be considered within this
mechanism. The contributions of 7, o, and p mesons
will depend on the total angular momentum and on
the spin—isospin and permutation symmetry of the
corresponding six-quark state. Thus, we adopt the s-
channel quark—meson intermediate states, the tran-
sition amplitude being determined by s-channel sin-
gularities in sharp contrast to the Yukawa mechanism
driven by t-channel meson exchange (see Fig. 1a).
Surely, together with this specific six-quark mecha-
nism, we should also take into consideration the tra-
ditional Yukawa mechanism for 7, 27, and p (but not
o) exchanges between isolated nucleons. However,
these meson-exchange contributions are significant
only at separations beyond the intermediate six-quark
bag or in high partial waves (L > 3). In the low-
est partial waves, the intermediate dressed six-quark
bag makes a dominant contribution to the total NIV
interaction. It is appropriate to refer henceforth to
the present microscopic force model as a Moscow—
Tiibingen dressed-bag model.

It is worth noting that the above-mentioned
“compact” s% and s%p 6¢ configurations are usually
included in RGM calculations for the NN system,
but they play quite a passive role in the standard
RGM approach, providing only the “dying-out” of
the NN wave function at a short range as the result
of the destructive interference between the nonexcited
s5 and s®p and the nearest excited s*p?(L = 0) and
s3p3(L = 1) configurations in even- and odd-parity
states. In our model, we use the “dressed bags”
(DB) W, =|s®+ o) or |s°p+ o) instead of the
“bare” quark configurations s® and s°p in the RGM
approach.

In this analysis, we employ the results of previous
studies in this field [52—58]. The six-quark wave
function in the NN-overlap region in low partial
waves (L = 0—3) can be represented as a restricted
sum of the shell-model configurations satisfying the
Pauli exclusion principle (with the restriction to con-
figurations with only minimal numbers of harmonic-
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oscillator quanta) [52—54, 57]:
Vg — |(05)°[6]x, [fes), L = 0;5T) (1)
+ Y Cpl(0s)*(1p)*[42]x, [fes], L = 0(2); ST)
f/
for even waves ([fos] = [23] for ST = 10 and [221?]
for ST = 01) and
Ve, — [(0s)°(1p)[51]x, [fos], L = 1;ST)  (2)
+ Y Cpl(0s)*(1p)°[3°]x, [fes) L = 1(3); ST)
f/
for odd waves ([fos] = [221%] for ST = 00 and [321]
for ST = 11), where [f5g] = [42], [321], [23], [313],
[214] are all possible color—spin (CS) Young dia-
grams for the inner product [23]c o [42]s for S =
Land [fog] = [2°]c o [3%]s = [3%), [417], [2°1%), [1°]
for S = 0.

For example, in the triplet S- and D-wave NN
scattering (in the deuteron channel, L = 0,2, ST =

10, JP = 17), the allowed six-quark configurations
do = 1(0s)°[6]x, [2%]cs, L = 0; ST = 10),  (3)
dym"* = 1(0s)" (1p)*[42]x, [fEs),
L=0,2;ST =10)

correspond to state vectors of very different nature:
while the unexcited six-quark state dy corresponds
to the maximal overlap of all six quarks, the states

with mixed symmetry d]Lc,, L = 0,2lead to cluster-like

nodal NN relative-motion wave functions |2s(r))
and | 2d(r)) (see, e.g.,[56]):

(N(123)N(456)|dy) = Ty, U}ZN| 0s(r)),
(NN|dF=") = Tq, UNN|25(r)),
(NNdf=?) =Tq, UpN| 2d(x)),

(4)

1
wherer = g(l“l +ro+r3—rg—r;—rg), |N(123)) =
11 2
[ Blx21los) ~ expl—sr (50t +2pd)), b is the
“quark radius” of the nucleon (about 0.6 fm), p; =

ry—Tr3, p2= §(r1+r2)—1‘3, and fo and f' are

the Young diagrams fo = {[1%cst, [2%]cs} and

[ =Alfbsrls [fbs]}. The quantities Ty, =1 and
4
=\ (L = 0,2) are the coordinate parts of

the fractional-parentage coefficients (f.p.c.) of the
translationally invariant shell model (TISM), while

the U}XN and U;YN are the respective C'ST parts of
them.

Therefore, we propose that, at short NN dis-
tances, the total (antisymmetrized) six-quark wave
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function of the system WZ, (6¢q) consists of two mu-
tually orthogonal parts: the “proper NN compo-
nent” W% (6g), which is dominated by the excited
six-quark configurations s*p? at L = 0 (or the s3p3
at L = 1), and the “proper 6¢ component” W% (6q),
which is dominated by the compact configuration s°
(or the s°p at L =1). Thus, when projecting the
component Wk \(6¢) onto the N(3¢)N(3q) cluster
channel, we obtain the NN wave function 1%\ (r) =
(N(123)N(456)| ¥k \; (6¢)), which should be similar

to the nodal NN wave function of the Moscow po-
tential model [54, 58, 59].

In contrast to this clusterlike state U4 /(6¢), the
s5 and s®p configurations are dressed by an enhanced
o field (i.e., the DB components, e.g., \IlﬁB = |dp +
o(mm))) and play the same role in the hadronic sector
as the AA + 7w intermediate state in the standard
(hadron) models of the NN interaction (see, e.g.,
[5, 6] and references therein). However, the dressed
bag |6¢g + o(mm)) has a much more extended physical

content than the AA + 77 intermediate state in the
traditional NN models: (i) The six-quark part of the

DB implies a coherent sum over all possible baryon—
baryon pairs in the cluster decomposition 3¢ + 3¢,
e.g.,dg =avnyNN + aapAAA + Zij aijCiCj, where
the factors ap, g, are the (total) f.p.c. (ii) The o-
meson (or w4+ 7) part of the DB is probably en-
hanced owing to a (partial) chiral-symmetry restora-
tion, which implies the reduction of the o-meson and
constituent quark masses [49, 51].

Thus, we can treat the DB states as a new com-
ponent in Fock space or a new (closed) channel in the
coupled-channel approach to the NNV scattering and
write the total NN six-quark wave function U/ in
the form

Uiy (6q) ) ’ 5)

Uil =
vk (6q + o)
Uih(6g + o) = UG (6q) x o),

where the “proper” NN wave function Wk, (6¢) is
orthogonal to the six-quark part of the DB compo-
nent Wi/ (6q) [54, 58, 59]:

(Ui (69) T/ (6g)) =0, L=0,1. (6)

Our first task here is to evaluate the amplitude of
the transition from the proper NN state W& (6q)
[satisfying the orthogonality condition (6)] to the DB
state WL (6g + o). It implies the emission of a o
meson (or the S-wave correlated m + 7 state) in a
transition from the initial s*p?(L’ = 0, 2) (or s3p? at
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L' =1, 3) six-quark configurations to the interme-
diate one s8(L = 0) + (77) [or s’p + (77) at L = 1]
(see Fig. 2).

In the graph in Fig. 2, the pions are created in
S waves owing to the conservation of parity and
angular momentum. The intermediate six-quark
configuration s°p[51]y (denoted by a vertical dashed
line in the graph) for L = 0,2 even partial waves in
the NN channel has fixed quantum numbers that
are determined by the initial (NN') and intermediate
(“dressed”-bag 6q + o) states. The second (after the
first pion emission) state in the ST =01, J =07
channel has quantum numbers of the so-called d’
dibaryon (see, e.g., [60, 61]):

|d') = |(0s)°(1p)[51]x [321] s, (7)
LST =110, J” =07).

The transition into the ST = 10, J¥ = 1% channel
proceeds via an intermediate state d”, which is a
partner of d’ with S and T interchanged:

|d") = |(0s)°(1p)[51] x [2°1%]cs, (8)
LST =101, JZ =17).

[t should be noted that both configurations d’ and
d” cannot decay into two-nucleon states since the
quantum numbers do not satisfy the Pauli exclusion
principle for two nucleons. Due to this feature,
they were considered previously as candidates for
narrow dibaryon resonances that were suggested
to be responsible for a resonance-like structure
observed in (7, 7~) double-charge-exchange pro-
cesses [60, 61].

The transition amplitude is calculated here within
the well-known quark-pair-creation model (QPCM)
[62] (see also [60, 61] for details). In the QPCM,
the transition operator for the emission of the pion 7
(A =0,=£) by a single (e.g., the sixth) quark in a six-
quark system can be written in the form [60]

1Y (ko) = 073 6% 00 (ps, pf) - (9)

O |97 (2g 4O 1+ 27 )k
e [mq(z 5 ) T T o, ) )

2

where the nonlocal factor

R 1
0O (ps, p) = eXP[—Z§k6(05 — P5)] ¥ (p5—pP5),

1
ps = g(rl +r2+ ...+r5) —1rg is proportional to

the pion wave function W,. For the calculation, we
employ here shell-model quark configurations for the
pion and the o meson [63],

™ = |s5[2]x LST = 001 T, =\ J'=07),
o = |s*5%[4]x, LST =000, J = 0T),

(10)
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Fig. 2. Graph illustrating two sequential m-meson emis-
sions and absorptions via an intermediate o (or p) meson
and the generation of a six-quark bag.

with Gaussian wave functions, e.g., U (pg) ~
exp(—p2/4b2), pr(ij) = r; —r;, where by is the
“quark radius” of the pion (about 0.5b ~ 0.3 fm). In
the limit of a pointlike pion [b — 0; i.e., Ur(pr) —
d(pr)], the operator H§\6) in (9) tends to the standard
pseudovector (PV) quark—pion coupling and the
phenomenological constant v in (9) becomes the PV
coupling constant:

- fraq 1
v 1 M, (27‘[‘)9/2(2(4}7.‘.)1/2’ ( )

here, frqq should be normalized to the well-known

pion—nucleon PV coupling constant: fr,q = %f,rNN.

The 7+ m — o transition amplitude was found
[63] to be proportional to the overlap of the two pion
and the o-meson wave functions:

<7T(k)77(k/)’H7r7w, 0) = frnoFrro((k — k/)2), (12)
F(k?) = exp (—%k%ﬁ) .

Here, b, is a characteristic scale of the & meson in the
7w channel. When this expression is compared with
(9)and (11), it becomes obvious that

_ Irro
f7r7r(7 -

(2m P2 (2wl ) )2 (2wr (s))!/ 2 (2wo (k) ) /2
where g, is the standard 77o coupling constant.

The NNE=02(s1p?) — d'(d") + 7 — 6q(s5) + o
transition amplitude can be written as a matrix
element of the transition operator Qny_4,+o (the
nondiagonal coupling potential for the nucleon—
nucleon and bressed-bag states):

L=0(2) .
ANNHdoJro' (E’ k)

(13)

_ / B W50 (B 1) Qs (Bi 1, ).
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Here, \1/37\?(2)(& r) is the proper NN wave function

in the sense of Egs. (5) and (6), F = 2my +p?v/mN,
and the plane-wave approximation is used for the
intermediate DB state [this plane-wave state is just
included in the expression for Qyy_gy+o in (13)
through the elementary vertices (wm|H ry|o) and

(d’(d”)]Hg\d@; see below].
The operator (nondiagonal potential) Qnny_—dy+o

ONNdoto(E;r, k) = 15(27)3 /d3k5/d3k6 d(ks + kg —k) Y _(-1)*
A

KUKULIN et al.

corresponds to the left half of the graph in Fig. 2,
the six-quark state being projected onto the two-
nucleon clusters of the initial state. For the opera-
tor QnN_dy+0, the total expression can be written
as an integral of the elementary six-quark transition
amplitude with respect to both inner coordinates of
quark clusters [N(123), N(456), m, and o] and the
pion momenta ks and kg (see the triangle diagram in
Fig. 3):

(14)

VIO(NNIHY (ke)| d'(@")) (&' (@) H®) (ks)| do) frroFrro((ks — ko)?)

* T + K2/ @ma) + wn(ks) — E] [ + k2/(2may) + wr (ko) + wr (ko) — B]

The numerical factor of 15 in front of the integral
takes into account the number of gq pairs in the six-
quark system. In calculating the amplitude in (13),
it is reasonable first to project the initial NV state
onto the basis of six-quark configurations |n, f) =
|s"sp" [ fx] [fes|LST, J¥) by inserting the identity
operator

=" "|n, f)(n, f] (15)
n,f

into the matrix element (NN|H>(\6)(k6)|d’(d”)> cor-
responding to the left vertex of the triangular graph
in Fig. 3 (the symbols n and f are defined here as
n={ns,np}, f = {lfx], [fesl})-

In the case of the emission of S-wave pions, only
the excited six-quark configurations dje,:O(Q) in the
sum (15) are important [while the baglike configu-
ration dy does not contribute to the amplitude (13)
because of the orthogonality condition (6) for the
wave function Wk (FE)]. Thus, one can decompose
the vertex matrix element N+ N — d'(d”) in the
integrand of (14) as

(NNIHY (ke)|d'(d")) (16)
_ Z<NN‘dJI::O(2)> <dJLc:0(2) ’H)(\6)(k6)‘d/(d”)>
f

and use the overlap factors from (4).

All matrix elements of interest are calculated by
using the f.p.c. technique [53] (see also [60, 61] for
details) and are reduced to a standard form of the
vertex matrix element as the product of the vertex
constant vf;4p, the form factor F,TAB(k:Z-Q), and the
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kinematical factor wr(k;)/mqb (as was determined
earlier in [60]):

(df =" (ko)) (17)
ded’

wﬂ(k'ﬁ) ’
=g FrasaFia,a (kg) 244 THS,
(@' |H (ks)|do)
wﬂ(kg))

2\ \d'dy '
=0 JrardoFrardy (k) X700 T,
mgb

In(17), 2% and Tilf\d/ are transition operators in the
space of the total spin and isospin, respectively, of the
six-quark states dy and d’; the transition form fac-

tors F depend on the angular momentum L = 0(2)
of the initial state: FﬂLdfd,(kg) = (1+ ar5k3b?/24) x

exp(—bk2b?/24) and Frq,q (k2) = exp(—5k2b?/24),
where ar—9 = 4/19 and ap—o = —13/43.

Substituting the vertex amplitudes (12), (16), and
(17) into (14), we find that, in the case of S and D
partial waves in the initial NN channel, the transition
operator (14) is given by the simple expression

QXN oo (E;1,K) (18)

|2s(r)), L =0

— gL€_5k2b2/48DL(E, ,IC) «

|2d(r)>7 L=2,
where g;, stands for the effective strength constants
for the transitions N + N — dg + o from the initial
(clusterlike) NN states to the intermediate dressed-
bag configuration. Specifically, they are given by

2
_ Jmqq Grmo C
 m2 m2b? ’
m T

(19)
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Cp = 15V10 fragar Y, fra,ala, UMY
f

19v/5
. ——\/—,Lzo
5| 4 ~ 10T
?,L:2

where the coefficients I'q, and U}VN are defined ac-

cording to (4) and the vertex constants fr4,# and
Jrro are taken from (12) and (17).

The function D(E, k) corresponds to the loop-
integration in Fig. 3. By denoting the variable of in-
tegration as q = k5 — kg, one can recast the integral
in (14) into the form

1
DYE k) = — 20
(B.5) = T35 (20)
5 k—q2 202
3 e 2 q°B
x/dq 1+24aL( 5 >b e

k2 k—q k+q
X Kmd0+2md0 +wa( 5 )+ wﬂ(T) — E)
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Thus, the calculation of the multiloop diagram in
Fig. 2 results in a separable amplitude of the NN
interaction, with left- and right-hand vertices being
represented in the form (18) [with D(E, k) being
taken from (20)]; the loop integral over the inter-
mediate |0s® + o) state is expressed in terms of the
function (a generalized propagator of the dressed bag)

G (E) = 53 (21)
G (-2 k%0%) DY (B, k) DY (E, k)
2we(k)(E — E(F)) ’
2

k
we (k) =/m2 + k2, E(k) = mg, + — + wo (k).
d

0

In accordance with this, the contribution of the
mechanism displayed in the diagram in Fig. 2 to the
NN interaction in the S and D partial waves can be
expressed in terms of the matrix element

1 k- k — -1 L'L
% [ mg+ A2y =9 p ANN—do+o—NN (22)
a2 i = / Uk (B WVE L (0 (B )
with B2 =502/48 +b2/8 and  w.(XE7) = NN IR NN
+ /
m2 + (%)2 where VA L(r/, r) is a separable potential of the form
2 / !
/ 95Goo(E)|2s(r"))(2s(r)|  gog2Goz(E)|2s(r"))(2d(r)|
VER o = | (23)

9290G20(E)[2d(x"))(25(r)] g3 Gaa(E)|2d(x")) (2d(x)

This interaction operator mixes S and D partial waves
in the triplet NN channel; thus, it leads to a specific
tensor mixing with a range of about 1 fm (approxi-
mately equal to that of the intermediate DB state).

Thus, the proposed new mechanism of NN in-
teraction at intermediate and short ranges that is
induced by the intermediate dressed six-quark bag
|s5 + 27) results in a specific matrix separable form
of interaction with nodal (in S and P partial waves)
form factors and a specific tensor mixing of new type
(see also [64]). This nodal behavior of form fac-
tors makes it possible to explain, within this mech-
anism, the origin of the NN repulsive core by the
nodes in transition form factors and by the condi-
tions additionally requiring that N IV and intermediate
6g-bag components be orthogonal. We can then
treat the expression derived for the NN-scattering
amplitude as an energy-dependent potential and solve
the Schrodinger equation with this potential. This
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means some way of summation of an infinite series
of such loop diagrams.

In the case of (partial) restoration of chiral sym-
metry within the (compact) symmetric six-quark bag,
the effective o-meson mass and width should be lower
than their vacuum values (m, tends to the two-pion
mass [50, 51]). It is possible that the dy mass also
becomes lower because of the respective reduction
of the constituent quark mass. The position of the
branch point Ey = mg, + m, of the function G/ (E)
in (21)—(23) must then be shifted lower on the energy
scale, and the contribution of this (attractive) mecha-
nism to the low-energy N N interaction must become
more important. We suggest that just this shift of
the branch point (and of the respective cut on the
energy sheet) to lower energies because of a partial
restoration of chiral symmetry may be responsible for
the strong attraction at intermediate distances, which
is usually attributed in conventional OBE models to
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Table 1. Model parameters for various partial waves

sHlp, A, GeV | 758 fm A1l A22 A12 ro1,Im | 72, Tm |Ep, MeV| x2*
1Sp(< 600 MeV)| 0.65 0.3943 2.055 0.59686 356 1.09
185(< 1.2 GeV)| 0.65 0.3943 4.565 0.5106 550 3.9
1D, 0.65 0.02463 0.79403 330 0.028
38,—3D 0.5936 | 0.3737 7.201 0.007928 | 0.2294 0.45469 | 0.65652 681 1.7
3Dy 0.5527 0.01038 0.86037 800 0.062
3D3—3G3 0.5936 0.002927 | 0.1753 0.02624 | 0.89971 | 0.42893 800 0.11
lp 0.7324 | 0.46572 | 28.74 0.44311 600 0.167
3Py 0.65 0.3445 0.02841 0.455 400 0.14
3Py 0.65 0.4491 3.195 0.51749 600 0.13
SP—3F, 0.65 0.03124 | —0.006486 | 0.000765 | 0.70995 | 0.75653 360 0.71

* The X2 value is defined here as usual: x> = & SN | (6PSA(B;) — theor ()2,

o-meson exchange (in ¢ channel) between two nucle-
ons. In other words, instead of the (artificial) increase
in the cutoff parameters in the tNN (¢ NN, pNN,
etc.) form factors, as in conventional OBE models,
we adopt a (natural) decrease in the denominator in
(21) due to (partial) restoration of chiral symmetry.

Thus, the proposed new mechanism can resolve a
deep contradiction of the current NN force models
based on the OBE mechanism with new results for
the exchange of a 27 correlated pair [17]. In fact, it
was found in [17] that the exchange of an S-wave
correlated w7 pair between two unexcited nucleons
cannot generate any strong attraction of nucleons
but, instead of this, results in a strong repulsion at
short and intermediate ranges. On the other hand, the
excitation of two intermediate deltas with artificially
enhanced w N A form factors may formally explain the
intermediate-range attraction [5—7].

The complicated energy dependence dictated
by (21) may be well approximated by a pole term
proportional to (E — Eg)~! with the effective pole

Fig. 3. Kinematical variables in the triangle diagram cor-
responding to the o-meson (or p-meson) generation from
two 7 mesons emerging in the transition of two p-shell
quarks into the s orbit (see also Fig. 2).

PHYSICS OF ATOMIC NUCLEI

position Fy either calculated from our formulas or
simply fitted to VIV phase shifts. In the next section,
we develop a simple illustrative model to test the
proposed new mechanism.

4. SIMPLE MODEL

In this section we study the N N-interaction
mechanism developed in preceding section by con-
sidering the example of a simple illustrative model.
For this purpose, we parametrize the basic potential
components involved in this model via a simple ana-
lytic form that includes the main features of the above
mechanism. We want to emphasize that the simple
model presented here serves only as an illustration
rather than as a demonstration of the quality of the
new formulation of the NN force. The new model
includes only a few basic parameters (e.g., gnm,
oN N, etc., coupling constants) for the NN force.
But the full formulation of the model includes a rather
tedious calculation for all intermediate loop integrals;
for this reason, we postpone this calculation to future
studies.

Thus, the model interaction consists of three
terms: the orthogonalizing potential V¢, providing
the condition of orthogonality between the proper
NN channel and the six-quark intermediate bag
in S and P waves; the one-pion-exchange (OPE)
potential Vopg with a soft dipole truncation; and the
separable term V4w with an energy dependence de-
scribed by a pole [which is the simplest approximation
to a quark-induced interaction corresponding to the

separable potential VXL (23) of the virtual transi-
tion NN — (6¢ + 27) — NN] as illustrated by the
graph in Fig. 2: Vwn = Vorn + Vivgv + Vopg, Where

Vol.64 No.9 2001



ARGUMENTS AGAINST ONE-BOSON-EXCHANGE MODELS 1677

deg
0

~10
-20
30
—40

200 ) 04

150F

100

S N B~ O

20
15+
10+
5 -
§ Il Il Il Il Il J
0 200 400 600
Elab’ MeV

1

1 1

— 1

Il
0 200

Il J I Il J
400 600 O 200 400 600
Elab’ MeV Elab’ MeV

Fig. 4. NN phase shifts and mixing parameters in our simple model, along with data from a phase-shift analysis (SAID,
solution SP99[65]).

Vorth = Aoleo) (po| and A9 — oo. In the momentum Vg is given by
representation, the OPE term takes the form 2

E
VNqN = E OE )\’80><90‘7
2 2 2\ 2 -0
Vopr (k) = f_,r 1 (A —m > while, for coupled channels, it is the 2x2 matrix [com-
m2 k2 +m?2 \ A2 + k2 pare with (23)]
% (o1 -K) (o - k) TLT2). B [l (el Aalen) (el
3 YN = 5,

0\ Aztlp2) (1] Azzlw2) (2]

For the single-channel case, the bag-induced term (24)
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Fig. 5. Mixing parameter €; for various values of the
cutoff parameter Axnn (see main body of the text).
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Fig. 6. 'Sy phase shifts fitted by means of our simple
model for Ej,p up to 1200 MeV.

where it is assumed M9 = A91. For all form fac-
tors ¢;(r) in the above equations, we use the simple

Gaussian form with one scale parameter 7,

1 2
@i(r) = Nrltitlexp (—5 (:—0) > .

In the calculations, we have used the averaged pion
mass m = (myo + 2m_+)/3, the averaged pion—
nucleon coupling constant f2/(4r) = 0.075, and

a soft cutoff parameter taking values in the range
A= Adipole = 0.50—0.75 GeV.

The results of the fits of the model parameters A
(or Ajr), 7o, and Eq to the NN phase-shiit analysis
data are displayed in Figs. 4—6. [t is quite evident that
this simple model describes low NN partial waves
up to Fjup = 600 MeV very well. The model phase
shifts and the mixing parameter €; are compared in

(25)

9t is still in accordance with our general algebraic multiquark
formalism due to the appearance of the additional orthogo-
nality condition (see the respective orthogonalizing potential
Vorth above).
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Figs. 4—6 with data of a recent phase-shift analysis
(SAID, solution SP99 [65]). There are three ad-
justable parameters for each partial wave: X (Ag or Ajz
for coupled channels), 79, and Ey. The parameters of
the projection operators (7 for Vi,¢y) are taken from
[54], where a deep local attractive potential (Moscow
potential) was constructed as an effective NN one-
component potential. The parameter Ey corresponds
to the sum of the six-quark-bag excitation energy
and the effective o-meson mass inside the six-quark
bag (minus the mass of two nucleons, 2my). Its
value is taken here in the range 600—1000 MeV. In
accordance with our suggestions, it should be the
same for all partial waves of definite parity. We have
found that the results depend on Ej only weakly. All
parameters found for S, P, and D waves are given in
Table 1.

[t is highly instructive to compare the present sim-
ple model based on the suggested new mechanism for
N N interaction with the well-known phenomenolog-
ical separable potential [66] (so-called Graz poten-
tial), which fits the same phase shifts up to F., =
500 MeV. From a comparison, the reader can find that
the number of free parameters in the Graz potential is
much larger than that in our simple model, whereas
the energy range is smaller and the quality of the
fit is poorer for the Graz model. Thus, our simple
model describes NN data more adequately than the
Yamaguchi-type phenomenological model.

Moreover, it was very surprising to find that this
simple model provides a very good description of the
1Sy phase shifts even up to Ej., = 1200 MeV (see
Fig. 6) (there is presently no np phase-shift analysis
at higher energies).

We want to discuss here especially the description
of phase shifts in the 35;—3D; triplet coupled chan-
nels. The crucial point is the behavior of the mix-
ing parameter £; with increasing energy. Without a
separable (quark-bag-induced) mixing potential (i.e.,
at A1o = 0), the behavior of g1 is correct only at very
low energies, but it is in strong disagreement with the
phase-shift analysis at energies higher than 50 MeV
(see the dashed curve in Fig. 5). The increase in
the cutoff parameter A up to values of 0.8 GeV does
not help to obtain better agreement with the data; on
the contrary, this destroys a good description at low
energies (the dotted curve in Fig. 5). Introducing the
quark-bag-induced mixing [A12 # 0 in (24)] allows
us to reproduce the behavior of £1 (and of the 35;—
3D, phase shiits as well) with a reasonable accuracy
up to an energy as high as Ej,, ~ 600 MeV, but only
for sufficiently small values of A;nn. The best fit for
the mixing parameter ¢; is shown on Fig. 5 (solid
curve), with the potential parameter values being
given in Table 1, where Axnyn = 0.5936 GeV.
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In this case, the condition
My = A1) (26)

is satisfied. It is just this condition that follows
approximately from our preliminary calculations of
the loop integrals incorporated in the potential matrix
(23). Theincrease in the value of Ay up to 0.8 GeV
results in the violation of condition (26) and in a
significant deterioration of the description of €; (see
the curve in Fig. 5). Other phase shifts (351 and 3Dy)
are reproduced for all four versions to the same good
accuracy, so that we present, in Fig. 4, the results for
only one version.

Thus, we can deduce, from the results of our sim-
ple model presented in this section, that the model
is able to describe all phase shifts in low partial
waves (L = 0—2) in a rather broad energy interval
(0—600 MeV). This good description and the above
comparison with the phenomenological Graz model
seems to support the new dressed-bag mechanism
proposed here for the intermediate-range interaction.

5. RELATIONSHIPS WITH OTHER
INTERACTION MODELS

In this section, we will briefly discuss the interrela-
tions of the new NN mechanism suggested here with
other models proposed in previous years and clarify
the microscopic grounds for some of them.

While the symmetry background of the Moscow
potential models [54—59, 67, 68] is rather similar to
that of the present model, the underlying mechanisms
and the particular realizations are very different. In
the above potential models, one starts with a sub-
division of the possible spatial (permutational) six-
quark symmetries of the total wave function into two
types of different physical origins, Wpag ((0s)°[6]) +
U ((0s)*(1p)?[42]), which are orthogonal to each
other. By excluding the baglike components from
the proper NN channel, one then arrives at an ef-
fective interaction Hamiltonian in the NN channel
[58, 69] with an additional orthogonality-condition
constraint:

)]

T V3 10
(R—i- ME + E— By

{glx) = 0. (27b)

In these equations, x(R) is the wave function that
describes NN relative motion and which is renor-
malized through the overlap kernel N'(R,, R’) to have
a probabilistic meaning [69]. Here, Vg is the sum
of conventional meson-exchange potentials cut off at
the proper (i.e., soft) values of A,,nn; the form factor
f(R) in the separable term of (27a), (R|f) = f(R) =
(Yeq|H|tyNYN), is the matrix element that couples

) X=£Ex,  (27a)
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the six-quark and NN channels; and the function
g(R) in the orthogonality condition (27b) is taken to
be (Rlg) = g(R) = (Y6q|tnton).

In the initial version of the one-channel Moscow
NN potential [55, 58, 68], one then replaces both
the separable term in (27a) and the orthogonality
condition (27b) by one deep local potential, where
deeply lying bound states (which are considered as
“forbidden” states in the model) ensure fulfillment of
the orthogonality condition (27b) due to the Hermic-
ity of the underlying potential.

Thus, the previous Moscow NN potential model
is essentially a local effective potential phase-shift-
equivalent to a highly nonlocal and energy-dependent
model (27). Our next step was the generalized
orthogonality-condition model [54], where we still
retained the deep local potential, but where we did
not use the bound-state wave function in the or-
thogonality condition. Thus, from this point of view,
the above-mentioned NN model can be considered
as a generalized orthogonality-condition model ini-
tially proposed by Saito in nuclear cluster physics
[70] as early as 1969. Very similar to the cluster
model, the deep attractive well of the one-channel
Moscow NN potential represents a local phase-
shift-equivalent potential for a nonlocal and energy-
dependent interaction term in (27a), together with the
orthogonality-condition constraint (27b). As a result
of the constraint, the NN phase shifts in low partial
waves (.S and P) display a behavior similar to that of
phase shifts for local repulsive-core potentials [71].
The orthogonality condition results in a stationary
(with respect to the energy variation) short-range
node in the NN wave function of relative motion
rather than in a strong damping of the latter near
the origin. Moreover, the node position (r, ~ 0.6 fm)
agrees very nearly with the radius of the repulsive core
in the traditional force models like the Reid soft-core
(RSC) model [71].

In this way, the short-range stationary node in the
wave function for relative motion replaces a large por-
tion of the repulsive core; thus, the coupling constant
for w-meson exchange can be reduced safely to mod-
erate values of g2 /47 ~ 5 dictated by SU(3) sym-
metry. Thus, the new dressed-bag model presented in
this study provides a microscopic quark—meson real-
ization of previous Moscow-type NN models (e.g., it
explains the strong intermediate-range attraction in
the Moscow model).

There are also rather tight relationships between
the current mechanism and hybrid models like QCB
[72] suggested previously for NN interaction. The
total wave function for the NN system in the hybrid
models [72, 73] is composed, similarly to our basic as-
sumption, from two components of different origins:
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the quark compound-bag part at small distances r <
Ry and the proper clusterlike NN component in the
peripheral region r > Ry, with Ry being the matching
radius between the two components. Analogously
to our formal derivation [69], the baglike component
is then eliminated in the QCB approach [72], and
one arrives at an effective one-channel Schrodinger
equation for the NN component analogous to (27a).
However, in the hybrid models, in contrast to our
model, two basic components—i.e., Ug, and ¥ yn—

are taken to be nonorthogonal to each other.®) How-
ever, when the two channels are orthogonalized in
the QCB approach, the scattering wave functions in
the NN channel develop a short-range node rather
similar to that in our case but with a violation of the
continuity at the matching radius Ry.

But the main difference between the hybrid-model
approach and the current model lies in the fact that
a typical hybrid model essentially represents a phe-
nomenological approach that does not consider any
microscopic or field-theoretical aspects. However,
the fact that, starting from absolutely independent ar-
guments (in fact, we started, more than two decades
ago, from the old phenomenological Moscow-type
NN potential [74]), we arrive at a model that, in
its formal aspects, has many similarities with hybrid
models, shows that both models reflect the true un-
derlying physical picture rather adequately.

There are also very interesting connections be-
tween our approach and the Tabakin potential. More
than 30 years ago, Tabakin, to facilitate drastically
Faddeev few-nucleon calculations, proposed [75]
a phenomenological one-term separable potential
“with repulsion and attraction.” The characteris-
tic feature of the Tabakin potential is an oscillat-
ing behavior of the potential form factor g(p) in
S waves: Vr(p,p') = Agr(p)gr(p’) with gr(p) =
(p? — p3) f(p?), where f is a smooth nodeless func-
tion.

At that time, the success of the Tabakin poten-
tial was considered to be somewhat “accidental” and
puzzling.”) However, about a decade ago, Nakaishi-
Maeda demonstrated [77] that the Tabakin potential
can be considered, to a very good approximation, as
the first term in the unitary-pole expansion of the ¢
matrix for the deep local Moscow N N potential, while

®This nonorthogonality of two basic components in QCB
leads to an appearance of some ghost state at infinity, which
can be considered as an analog of deeply bound “forbidden”
states in our approach.

" Almost simultaneously with the Tabakin study, we suggested
[76] very similar separable potentials to describe cluster—
cluster interaction for systems like *He*He and *Hed, where
all lowest partial phase shifts also change sign (from positive
to negative) at rather low energies.
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the scattering wave functions for both models display
short-distance stationary nodes (at r, ~ 0.6 fm) in
very similar ways. Moreover, it was shown [77] that
the continuum bound state in the Tabakin potential
has an energy of Ej,, ~ 300 MeV and is very similar
in structure to the “forbidden” bound state in the
initial version of the Moscow potential.

However, the analogy between the new quark—
meson mechanism suggested in the present study
and the old Tabakin potential goes much further. In
fact, the overlap factors (4) between three-quark nu-
cleon clusters and six-quark configurations |s*p?[42],
L =0,ST) and |s®[6], L = 0, ST) inevitably lead to
nodal 2s-type relative-motion form factors in our
separable potential term Vign. In the momentum
representation, this form factor has the form

2
2:(0) = N — 1R exp(~ 25,
Do

which exhibits the same nodal character with the
same node position at p as the Tabakin form factor.
The use of the 2s-type form factor (28) will project out
all the admixtures of nodeless 0s components in NN
scattering wave functions, giving, in this way, a stable
short-range node in the S wave at rg ~ 0.6 fm. Thus,
the use of oscillating 2s-type form factors replaces,
to a good approximation, our orthogonality-condition
constraints, resulting, as a matter of fact, in virtually
the same scattering wave functions. This gives a
quark microscopic interpretation for the success of
the old phenomenological Tabakin potential. From
here, one can conclude that there are many com-
pletely independent arguments in favor of our new
interaction mechanism suggested here.

(28)

5. CONCLUSION

We have presented a critique of the conventional
meson-exchange models of nuclear forces at inter-
mediate and short ranges. We have provided many
arguments clearly demonstrating inner inconsisten-
cies and contradictions in modern OBE models for
the short-range part of the interaction. There are also
several observations in few-nucleon systems show-
ing clearly that one cannot explain quantitatively and
consistently many 3N and 4N experimental data with
the existing N NV models.

To find an alternative picture of the NN in-
teraction, we have exploited the successful quark-
motivated semiphenomenological models, viz., the
Moscow model [54, 68, 69], the extensive micro-
scopic studies of six-quark system in the shell-
model approach [52, 56, 57, 60, 61], and Tiibingen
microscopic quark approaches [78—80], to develop
them further. In this way, we have suggested,
in the present study, some new mechanism for
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the intermediate- and short-range NN interaction.
This mechanism differs from the traditional Yukawa
concept of meson exchange in the ¢ channel. We
have introduced a concept of the dressed symmet-
ric six-quark bag in the intermediate state with
s-channel propagation. In a tight connection to
this mechanism, we have also proposed a new in-
terpretation of the “light” scalar—isoscalar ¢ meson
as a quasiparticle. The new interaction mechanism
proposed here has been shown to lead to separable
energy-dependent s-channel resonance-like interac-
tion terms with nodal form factors (in lowest partial
waves) that result from the orthogonality-condition
constraint.

In its final form, the proposed interaction de-
pends only on a few fundamental constants (quark—
meson or diquark—meson coupling constants and
the intermediate-meson masses), so that, eventually,
the total NN force can be parametrized in terms of
only a few free parameters. However, at the present
stage, we prefer to employ the derived form of the
interaction to build a simple model whose main goal
is to illustrate how well the suggested mechanism
can work. We have found that, by adjusting only
three parameters of the model in each partial wave,
it is possible to describe excellently all lowest NN
phase shifts in the broad energy interval 0—600 MeV
and the S waves even up to 1200 MeV in the
laboratory frame. This gives some strong evidence
that the suggested new microscopic mechanism of
the s-channel dressed symmetric bag should work
adequately.

The proposed interaction model has been demon-
strated to give a natural microscopic background for
previous phenomenological interaction models like
the Moscow N N potential and the Tabakin separable
potential “with attraction and repulsion” and also for
the various hybrid models. Thus, it also gives impor-
tant bridges between absolutely disconnected (at first
glance) models developed previously.

Another important result of the present model
could be a possible solution to the long-standing
puzzle of the weak vector-meson contribution to the
baryon spectra and a strong spin—orbit splitting (due
to the vector-meson contribution)in the NV interac-
tion. If one assumes a significant quark—quark force
due to vector-meson (or one-gluon) exchange, vector
coupling will also immediately result in strong spin—
orbit splitting in the baryon spectra. Recently, Gloz-
man and Riska [81] suggested a new model for the gq
interaction mediated essentially by Goldstone boson
exchange to describe baryon spectroscopy. The model
can naturally describe the absence of spin—orbit split-
ting in negative-parity excited baryon states. How-
ever, the model fails to explain strong spin—orbit
splitting in the NN sector. Our explanation of the
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Fig. 7. Some graphs illustrating the new type of 3N
forces.

puzzle is based on the fact that there is no signifi-
cant vector-meson contribution to gq forces (in the
t channel)[81], but there is an important contribution
of vector mesons to the dressing of the symmetric
six-quark bag, thereby leading to strong spin—orbit
effects in the NN interaction mediated by the dressed
bag.

Moreover, the proposed model will lead to the
appearance of strong 3N and 4N forces mediated by
27 and p exchanges (see, e.g., 3N-force graphs in
Fig. 7). It is easy to see that the new 3N forces in-
clude both central and spin—orbit components. Such
a spin—orbit 3V force is extremely desirable for ex-
plaining the low-energy puzzle of the analyzing power
A, in Nd scattering [12, 31] and also the behavior of
A, inthe 3N system at higher energies of £y ~ 250—
350 MeV at backward angles [38, 39]. The central
components of the 3N and 4N forces are expected
to be strongly attractive; thus, they must contribute
to 3N- and 4N -binding energies, possibly resolving
thereby the very old puzzle of the binding energies of
the extremely light nuclei. Moreover, these strong
contributions (as one can expect) of the above 3N
and 4N forces mediated by the “o-type” 2w exchange
to nuclear binding, in combination with strong rela-
tivistic effects predicted by our model [9, 55, 59], can
lead very naturally to relativistic hadrodynamics (i.e.,
the Walecka model), where the o field constitutes the
main agent for nuclear binding. The suggested new
mechanism leads to a large number of new contri-
butions for many nuclear-physics observables, like
enhanced Coulomb displacement energies for isobar
analog states [67, 69], more significant relativistic
effects, and a new interpretation of meson-exchange-
current contributions. Further studies must show the
degree to which such expectations can be justified.
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APPENDIX A
Details of Quark-Model Calculations

Here, we consider some details of the quark-model
calculations of the two-pion-emission amplitude for
the transition from the 3S;(3D;) NN state to the
dressed six-quark bag do + 7+ 7. We will demon-
strate here how to use the known f.p.c. technique
[52, 53, 56, 57, 60] in the calculations of the two-step
process dy — d" +m — dop+ 7+ 7 in the ST = 10
JP = 1% channel. First, we consider two-pion emis-
sion in the two-quark subsystem “56” (where “5” and
“6” are the quark numbers in the six-quark system
“123456”). We start from the 2s(2d) harmonic-
oscillator state of the sixth quark in the dy state [see
Egs. (3), (7), and (8) in Section 3], which, after
S-wave pion emission, goes over to the 1p harmonic-
oscillator state in the 56 subsystem of the intermedi-
ate d” configuration. At the next step, the fifth quark
of the 56 subsystem emits another S-wave pion and
the intermediate d” configuration goes over to the
final dg configuration in which the 56 subsystem is in
the Os harmonic-oscillator state. Therefore, we must
take into consideration the following five nonvanish-
ing elementary ¢ — ¢ + 7 transition amplitudes in the
harmonic-oscillator quark basis:
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(i) the two amplitudes

T2(S)—>1p(j56 =0) = (1p, s56 = 1(j56 =0),

t56:0|H7(r2)q|28, S56 :O, t56 == 1>

= oy 22508) o

3 2mya

(A.1)

1 _
SR,
TSLOS(J'% =0) = (0s, s56=0, ts5s =1/ HS) | 1p,
856 =1(jis6 =0), 156 =0)

(1/2||0||1/2)\/%(1/2IITII1/2)F0(1<:§)

should be taken if the total angular momentum of the
56 subsystem is js¢ = 0, and

wﬂ(k?g))

/
2mgya

=0

(ii) the three amplitudes

Tg(gllp(jf)ﬁ:l) = (Ip,s56=0(js6 =1), (A.2)

t56: 1’H7(r?1)q’28, S56 :1, t56 :0>

V2wnlk) (4 1o115111/2)

3 2mgya

x \/2(1/2\17\11/2)1?%0(/@3),

6 . .
Tz(dL1p(J56 =1) = (1p, s56 =0(js6 = 1),
tso=1|H\")12d, s56=1,t56=0)

— i Y2n0) (o i112)

3 2mgya

x \/%(1/2||T||1/2)F2L2(k§),
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Tl(p)—>05(j56: ) = <08 856:1(j56:0)7
t56 =0 ﬂqq!1p7856—0 tss=1)

. Wﬂ(kfi)
= -0/ 320 ol

x \/%(1/2IITII1/2)F0(1€§)

should be taken in the case of jsg = 1.

To simplify matters, we use the shorthand nota-
tion T2(S)_>1p(j56 =1), Tl(p)_@s(j% =0), etc., for the
elementary amplitudes and omit spin, isospin, and

angular momentum projections (omitting summation
over these quantum numbers in the ensuing expres-

sions). A further shorthand notation is a = \/6/5b

and o = —4/5/2a, where b is the scale parameter
(rms radius) of the harmonic-oscillator basis func-
tions, and

5
Fy(k2) = exp (—ﬂkélP) L (A3

) )

FL(k} = ( 24%;%52) exp (—ﬂkglﬂ),
whereay, =4/19if L =0and ap, = —13/43if L = 2.
The functions in (A.3) provide the k? dependence of
the form factors in the 7d”d; and wdpd” vertices [see
Eq.(17)in Section 3],

Fragar(K2) = Fo(R2), Flyg, (K2) = FE(2). (A4)
The reduced matrix elements (1/2||o||1/2) and
(1/2]|7]|1/2) of the spin(isospin)-flip operators (i.e., o
and 7 matrices in the vertex operators H(q)q and H7(r2)<1)

are defined here in accordance with the Wigner—
Ekkart theorem. Standard calculations yield

(1/2llol1/2) = (1/2]]7]]1/2) = V6. (A5)

Recall that, for the desired amplitude, we use the
parametrization

15 (do | Hgy (ks)|d") (d"| H{G, (ke)ldy) — (A.6)
wr (ks)wr (ke)
v? 5)2b2( : fﬂdod”ffd”df

X Fraoar (K3) ﬂd”df(kg)

[see Eq. (17) in Section 3]. Now, one can calculate
“the coupling constants”™ frgra, and fraoe in this

2%]c[42]s

B (([212]C><[12]C)([31]5><[12]5)
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parametrization, starting from the elementary ampli-
tudes (A.1)and (A.2). For this purpose, one can apply
f.p.c. to separate the two-quark subsystem “56” from
the six-quark configurations df, d”, and dy for all
possible color, spin, isospin, and coordinate states
of the quark pair ([fs6]c = [2], [1%]; s56 = 0,1; t56 =
0,1; jsg = 0,1 for the 2s, 2d, 1p, and Os radial and
orbital states). Recall that the f.p.c. technique implies
summation over all possible states of the separated
two-quark subsystem instead of summation over all
numbers of quarks in the interaction operator. This
scheme is particularly handy for application of the
group-theoretical algebraic methods.

We use the invariants (i.e., the Young diagrams

[fcl, [fs], [fes), [fr], [fest], and [fx]) of the chain
of symmetry groups (see, e.g., [57, 60])

SU(12)csT D SU(6)csxSU(2)r D SU(3)c
xSU(2)sxSU(2)r, (A.7)
SU(24)xcsT D SU(IQ)CSTXSU(Q)X
to classify six-quark, four-quark, and two-quark
states in the systems “123456,” “1234,” and “56,”
respectively. The f.p.c. for separation of the pair
“56” in the total XCST space I'xcsr(q® — ¢*xq?)

is the product of the “scalar factors” of the Clebsch—
Gordan coefficients of groups

SU(6)cs D SU(3)exSU(2)s,
SU(12)cst D SU(6)csxSU(2)r,
SU(24)xcst D SU(2)x xSU(12)csr

taken from the reduction chain (A.7)(I'¢cs, I'cst, and

I'xcsr)and “orbital” f.p.c. I'x of the TISM:
I'xcsr(d® — ¢*xq?) (A.8)

=TeoslesrlxosTl'x-

The following extended notation for the nontrivial
scalar factors I'cg is used here (see, e.g., [57]):

s ([fosl([2%losx [2)os), ss6=1)
_ ( [2%]c[42]s [fos) )
-\ (22ex2e)(22sx[2)s) || ([22esx[2les) |
15 ([fosl([2%losx [2)os), 56 =0)

‘ [fcs] )
(2%)esx[2les)

I ([fes)(21%os % [1P]es), ss6=1)
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_ ( 23042
(217 x[1%)e)([2%]5%[2]s)
I8 ([fesl(21%]es x [1%]es), s56=0)

( 2%]0[42)
(21212 (3Lsx(2]s)

Here, [fcs] are all the C'S Young diagrams from the
inner product

[fes] = 2] o [42]s
= [42], [321], [2%], [31%], [21%). (A.10)

The values of all necessary scalar factors (A.9) are
given in Tables 2 and 3.

I'&gr([fesr) -

_ ( s3]
(12%)esx[2les) (1227 < [1%]7)
[fes)([21%)cs % [1]os

I'Esr((fest) :

[fes][3%]r

) ( ([21%]cs x[2]es) (317 < (2)r)

are given in Table 4. The coefficients I'xcogr are
trivial weight factors I'xcsr([6]x([4]%x[2])) =1,

Ixesr((51]x ([41%[2])) = /1/5, and

I'xcsr([42]x ([4]x[2])) = \/1/9 dependent only on
the dimensions of the irreducible representations
of the symmetric group for given Young diagrams:
ne = 1, ns1) = 5, and nyg = 9. The last factor on
the right-hand side of (A.8), the orbital f.p.c. I'x of
the TISM, depends on the configuration; i.e., only five
different values of I'x are necessary:

D (s°[6)(s* [4]xs°[2])) = 1, (A.12)
Dx(sp® — s°2s(6)(s*[4]xs2s(2))) = V/1/5,
Dx(sp? — $°2d[6)(s* [4] x s2d[2])) = \/1/5,

Dx (s°pl51](s" [4]xsp[2]) = —/3/5.
D x (sp?[42)(s* 4] xp*[2])L = 0,2) = —/3/10.

Thus, the total transition amplitude (A.6) is ex-
pressed in terms of the product of factors (A.1), (A.2),
(A.9), (A.11), and (A.12) summed over the states of
the pair “56” (summation should be extended over all

[fesl([2P]esx[2es
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[fes]
([21%)cs x[1%]os)

(A.9)

' [fcs] )
([212]csx(1%]cs)

Only the Young diagrams [fcsr]

= [2217], [214),
and [19] are important for the configurations dy, d”,

and do ([fest] = [fx], where [fx] is the Young di-
agram conjugate to [fx]). All the necessary scalar

factors

), t56=0)

(A.11)

[fosT] )
(1esrx[1?]esT)
),ts6=1)

[fosT] )
((MMesrx(1?lest)

possible two-quark states, but fixed quantum num-
bers of the initial, intermediate, and final states im-
pose the restriction that only summation over jsg =

0, 1and [fs6]cs = [2], [1%] is allowed):

15 (do| H) (ks)|d") (d"|H) (ke)|ds)  (A.13)

=15 > > Txesr((6]x([4]x[2)

956=0, 1 [fs6]cs=[2],[1?]
x [Txcsr([51]x ([4]x[2])))?
x Txosr([42)x ([4]% [2]))Tx (s°[6] (s [4] x s>
% [Px(sp[51)(s* (4] sp[2]))]
xTx (s"'p?[42](s* 4] xp?[2]) L = 0,2)
x 1251 (128 s ([ fraza) s % [fs6) ), 856)
x [PE5°(22 2 os ([framlos <[ flelos) she)]”

(
x T35 ([fos)(Lfizsales x [fssles), s56)
(

21))

xésr(1%csr: [2%)es
X ([f1234]cs %[ f56]C5), t56)

x [TEsr([21%)cst: [2°1%0s
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Table 3. Scalar factors T'23°([fos]([fos) X[ fes]), s56) of the Clebsch—Gordan coefficients for the group SU(6)cs C

SU(3)exSU(2)s [see Eq. (A.9)]

2%]csx[1%es 21%]cs x[2los
[2%)ex[2]c [21%]ex[1%]c 2%]ex[2]c 21%]ex[1%]c
2%]sx[1%]5 31]s%[2]s 31]s%[2]s 2%]5x[1%]5
3 1 1 1
[2*los V1 1 V3 3

Table 4. Scalar factors T'go ) ([fest)([fes)([fog] X [fés]) tse) of the Clebsch—Gordan coefficients for the group

SU(12)csT C SU(6)csxSU(2)r [see Eq. (A.11)]

T=0 T=1
[42]cs 321]cs [2%]cs 31%]cs [21Ycs [2%1%)cg
2212 csr :
(2%]esx[2los) o ([22rx [12]7) 1 - /3 0 0
(21%)es x[12es) o (B1]rx[2)r) 0 -3 1 1
19)osr :
(2Z]esx[2los) o (22 [12]7) 0 0 /3 0 0
(21%esx[1Zes) o (BUrx[2l) | 0 0 : 0 0
2212 csr :
(12%cs x [2es) o ([22)rx[1%)7) s
(2125 X [1%]cs) © (317 x[2r) :

% ([frzsalosx [figlos)s the) ]

xTEsr (221 ost: [fos)([fizsalos

X [fs6]cs) t56)T1(§)—>05 (‘756)T2(S()2d)ﬂlp (J56)-

The spin and isospin of the quark pair, s56(s5g)
and t56(t5g), in (A.13) depend on the color quantum
numbers of the pair. For example, t56 = 1 (55 = 0)
for [f56]CS = [12] and tsg = 0 (t/56 = 1) for [f56]05’ =
[2]. A general rule for sz¢(skg) is easy to understand
from the right-hand side of Egs. (A.9). One can
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indicate that, in the case of L =2 (the 3Dy initial
state), the value of jss = 0 does not contribute to the
3Dy —3 S transition, so that only the js6 = 1 term
should be taken on the right-hand side of (A.13). As
a result, the coupling constant frqv4, takes different

values for L = 0 and 2, and this is indicated by the
additional superscript L: f,fd,,df.

The calculated values of the product f#d,,df Frdod”

are given in Table 5. Substituting these values into
(19), one obtains the following expression for factors
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Table 5. Products of the coupling constants, frgyd ff;%(f), for the two-step transitiondy — d” +m — do + 7 + 7 with

the creation of a scalar—isoscalar 7w + 7 pair (“o meson”) and overlap factor U}VN between the NNV and dy states

Quantum numbers of dy
(s*p? —552s(2d))[6] x s1p?[42] x
2%]cs [42]cs [321]cs 2%]cs 31%]cs 21%cs
81X frdoar f#d//df :
2 1 1 1 1 1 /2
L0 El o | B T | 1T 12
15 12V 2 30 20V 15 5V 15
I _9 13 /1 9 1 31 1 17 /1 1 /1 1 1
B 10V 6 10V 30 20V 30 20V 6 8V 3 10V 6
1 9 16 1 1
NN Z ]2 0 = A
et Uy 9 20 15 36 18 0
gz, in the transition operator (18): 12. Proceedings of 16th European Conference on Few-
19\/5 Body Problems in Physics, Autrans, France, 1998,
f,% 1 1 — 2 " for L=0 Few-Body Syst. Suppl. 10 (1999).
gL = Grro (éq 552 X 436 13. M. Kaiser, R. Brockman, and W. Weise, nucl-
mz mgb® 81v/3 = for L=2. th/9706045
3 A 14 14. M. Kaiser, S. Gerstendorfer, and W. Weise, nucl-
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Abstract—An essentially new approach to solving the problem of elastic and inelastic scattering of a
composite particle on stable nuclei is described. Within this approach, all channels of virtual breakup and
stripping in the intermediate states are included in a nonlocal complex-valued interaction operator with the
aid of the projection-operator technique. The three-particle continuum spectrum of the Hamiltonian for
intermediate states in @ space is calculated within the orthogonalizing-pseudopotential method by intro-
ducing a pseudo-Hamiltonian, which is diagonalized in a full space in terms of a relevant oscillator basis.
As was shown by a number of authors, the use of special quadratures makes it possible to reduce integration
over the continuous spectrum of intermediate states to summation over a discretized continuum. On the
basis of the formalism developed in this study, a closed Schrodinger equation with a nonlocal complex
potential for partial waves is derived for describing elastic scattering of a composite particle by a target, and
an explicit approximate formula for the amplitude of three-particle breakup is obtained on the same basis.
This method has a number of obvious advantages over currently well-known approaches of the type of the
discretized-continuum coupled-channel method, where solving the problem in question reduces to solving

a cumbersome set of coupled equations. © 2001 MAIK “Nauka/Interperiodica”.

1. INTRODUCTION

The present study is devoted to constructing a new
method for solving the quantum problem of elastic
and inelastic scattering of a composite particle on a
nucleus with allowance for inelastic channels within
the three-particle problem. Processes of this type
are exemplified by the scattering or breakup of a
deuteron or a "Li nucleus by a heavy nucleus. An
exact solution to this problem is described either by
the set of Faddeev equations (which is very diffi-
cult to solve in the realistic case of complex-valued
potentials featuring Coulomb interaction) or within
the Schrodinger formalism by an infinite (contin-
ual) set of integro-differential equations that relate
the elastic-scattering channel to an infinite num-
ber of breakup and stripping channels. Since it is
hardly possible to solve this set of equations exactly, a
method is required for discretizing the three-particle
continuum of the A + 2N system in order to reduce
the infinite continual set of coupled equations to a
finite set of equations. Much effort has been devoted
to developing such methods over the past 25 years
[1-10]. They were dubbed discretized-continuum
coupled-channel (DCCC) methods.

Originally, the DCCC method was developed to
solve the problem of the elastic and the inelastic scat-

“e-mail: rubtsova@nucl-th. npi.msu.su

tering (breakup) of a deuteron on a nucleus [1, 2],
later on, it was extended by Sakuragi et al. (see,
for example, [3]) to the cases of the elastic scattering
and the breakup of, say, %7Li and '2C nuclei only for
the two-fragment channel of projectile breakup. This
seems justified for Li and hardly justified for L, 12C,
ete., nuclei.

Presently, two approaches of this type [9, 10] have
been developed to the greatest extent. Either is based
(for example, in the case of deuteron—nucleus scat-
tering) on discretizing the continuum of excited states
in the coordinate of the relative motion of the np pair.
Within the first of these [1—5], the discretization is
performed by partitioning the continuous spectrum
of the sub-Hamiltonian h,, describing the relative
motion of the np pairinto bands, localized wave pack-
ets being constructed within each of these. With-
in the second approach [6—10], the discretization is
performed by expanding the wave functions for the
continuous spectrum of the np subsystem in terms
of square-integrable functions. Upon discretization
by one of the above methods, the number of breakup
channels becomes finite. Further, the full three-
particle wave function for the A + d system is ex-
panded in a series in a discrete set of functions that
describe the relative motion of the np pair. Finally, one
obtains a set of great, but finite, number of coupled

1063-7788/01/6409-1689$21.00 © 2001 MAIK “Nauka/Interperiodica”
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second-order differential equations, which is solved
by numerical methods.

Within these approaches, a vast body of experi-
mental data on the elastic and inelastic scattering, as
well as breakup, of 2H, 57Li, 9Be, '2C, etc., nuclei
on medium-mass and heavy nuclei was analyzed in
the 1980s and 1990s, predominantly by Japanese
scientists. It was shown that, in many cases, good
agreement with experimental could be obtained at
projectile energies of 10—50 MeV per nucleon [3, 6,
8, 10]. However, the DCCC method has some series
drawbacks hindering the application of this method,
for example, in the case of nonlocal interactions of
fragments with a target nucleus or in currently very
popular cases of the elastic scattering of unstable
6He, 3%11Li, ?Be, etc., nuclei on a stable target,
because these cases cannot be reduced to the two-
particle (virtual or real) fragmentation of a projectile
in the interactions with a target. In addition, attempts
at including, in the calculations, virtual excitations of
not only the projectile but also of the target run into
formidable technical difficulties.

Apart from these drawbacks of a fundamen-
tal character, the DCCC approach involves many
methodological difficulties, such as a rather slow
(and, in all probability, nonuniform) convergence
in the number of channels being included and also
the unwieldiness of the calculations.  This slow
convergence, which is observed primarily at large
scattering angles is probably due to the fact that, in
the DCCC approach, the interaction between projec-
tile constituents—for example, the np interaction in
the case of deuteron scattering on a stable nucleus—
is considered to be dominant. Therefore, the three-
particle scattering wave functions ¥(k;r,R) are
expanded in series in the eigenfunctions of the sub-
Hamiltonian hy,), for the np interaction. All inter-
mediate states in the three-particle continuum are
then considered as a deuteron occurring in an excited
state and moving as a discrete unit in the field of
the target nucleus, but this is correct only at large
distances from the force center. At the same time,
large-angle deuteron scattering is governed primarily
by the pair interactions of the particles n and p with
the target nucleus, the np interaction playing the role
of a correction. This means that, in the vicinity of
the target nucleus, intermediate states must have
a structure where each projectile constituent moves
in the nuclear field along its orbit, which is weakly
perturbed by the other projectile constituents. In the
scattering of loose nuclei, such as 2H, %7Li, and Be,
the main contribution is expected to come from those
single-particle orbits whose energies and angular
momenta correspond to the kinetic-energy and total-
angular-momentum distributions of the projectile in
accordance with the fragment masses.

PHYSICS OF ATOMIC NUCLEI
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The physical idea of the method formulated in the
present study is based on the observation that, in the
elastic scattering of a composite particle by a nucleus
at medium and large angles, the scattering ampli-
tude receives contributions only from the regions of
the multiparticle configuration space that correspond
to rather small distances between all projectile con-
stituents and the target nucleus. In other words, only
the intrinsic parts of multiparticle-continuum wave
functions must be taken into account. Therefore, a
discretization of the Ly type on the basis of square-
integrable functions similar to those that are used in
the shell model [11] must be sufficient. In math-
ematical terms, this approach amounts to includ-
ing, with the aid of the Feshbach projection-operator
formalism, all three-particle breakup and stripping
channels that appear as intermediate states for elastic
scattering in the nonlocal operator of interaction be-
tween the composite particle and the target nucleus.
Further, the exact wave functions appearing in this
nonlocal interaction operator and corresponding to
inelastic channels are expanded in a three-particle
discrete oscillator basis. This is the way in which the
total intermediate three-particle continuum is dis-
cretized. In this (projection-operator) formulation of
the scattering problem, a full summation over the set
of states of the discretized three-particle continuum
occurs; therefore, we can hope that local errors of
discretization in the intermediate states will not affect
the final results.

The ensuing exposition is organized as follows.

The second section of our study is devoted to
deriving an equation for the elastic-scattering wave
function on the basis of the Feshbach projection-
operator formalism by introducing the operators that
project the full space of functions for the original
Hamiltonian onto the subspace corresponding to
the elastic-scattering channel and the subspace that
is orthogonal to it and which is associated with
breakup channels. We obtain two equations relating
the elastic-scattering channel to inelastic-scattering
channels. By formally eliminating the component QW
that corresponds to the sum of all inelastic channels
from the above set of equations, we arrive at a single
equation for the elastic-scattering component PW. In
this equation, the (virtual) contribution of all breakup
and stripping channels is represented by a nonlocal
energy-dependent operatorincluding integration over
the continuous spectrum of intermediate states. For
the wave function describing the elastic scattering
of a composite particle in a given partial wave, we
eventually obtain a single wave equation with a
nonlocal energy-dependent potential.

A method for constructing the spectrum of the
three-particle Hamiltonian for intermediate states in
the subspace @, which is orthogonal to the intrinsic
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wave function for the incident composite particle, and
its implementation in practice are discussed in Sec-
tion 3. In Section 4, we briefly describe the scheme
of the discretization of the continuum for the case
of the two-fragment projectile breakup on the target
nucleus. In Section 5, we discuss all basic results of
our study. In Section 6, we present a brief summary.
We have also included two appendices in this ar-
ticle. In Appendix A, we present explicit formulas
for the matrix elements corresponding to transitions
from the elastic channel to inelastic channels. In
Appendix B, we describe a method for calculating the
intermediate resolvent for the case of a loose compos-

ite particle like the deuteron or the "Li nucleus.

2. FORMALISM FOR SOLVING
THE PROBLEM

2.1. Hamiltonian and Projection-Operator
Formalism

Let us describe the proposed approach by consid-
ering the problem of the scattering of a composite
particle {1, 2} by a force center. The total Hamiltonian
of the problem has the form

H = Hi(r1) + Ha(r2) + Via(Jr1 — r2]), (1)

where Hy = T(I‘l) + ‘/1(7”1) and Hy = T(I‘Q) + ‘/2(?”2)
are the single-particle Hamiltonians for the motion of
each of particles | and 2 in the force field. Here, ry and
ro are the coordinates of particles 1 and 2 with respect
to the force center, T" stands for the kinetic energy
operators, and V; and V5 are the potentials describing
the interaction of the particles with the center, and V34
is the potential representing the interaction between
particles 1 and 2. For the sake of simplicity, we will
assume that my; = mo = m and V; = V5 (that is, the
particles are identical) and that the target-nucleus
mass M is indefinitely large. These conditions sim-
plify only algebraic transformations with the three-
particle oscillator basis and can easily be removed, if
required. In the case of deuteron scattering, V; and
Va are the complex-valued optical potentials for the
scattering of, respectively, the neutron and the proton
on the nucleus. We further introduce the Jacobi
coordinates for the relative motion of the constituents
| and 2 of the composite particle with respect to its
center of mass as

1 1
r=—(r;—r3), R=—(r1+rs). 2
\/5( 1—T2) \/5( 1+12).  (2)
The corresponding momenta are
1 1
= — —_ s P = — —|— .
p \/5(131 P2) \/5(131 P2)

Under this change of coordinates, the total orbital
angular momentum does not change:

A=1+1,=L+1. (3)
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In terms of the new coordinates, the Hamiltonian
takes the form

H=TR)+ " (""f/;') (4)
+ Vs (|1°\—/§R|> + hia(r),

where hya = T(r) 4+ Vi2(v/2r) is the sub-Hamiltonian
for the {1,2} subsystem. We assume that hj has
only one bound s-wave state ¢g(r):

hi2¢o(r) = godo(r), do(r) = ¢o(r)Yy (£). (5)
Now, we make use of the well-known Feshbach

method. For this, we introduce the projection op-
erators satisfying the conditions

P2:P7 Q2:Q7 P+Q:17 QP:Pona
where P is the operator of projection onto the elastic
channel and @ is the orthogonal operator of projection
onto all inelastic channels.

The Schrédinger equation for the total Hamilto-
nian,

HV = EV,
then splits into two coupled equations for the compo-
nents PW¥ and QV; that is,
(PHP — E)PV = —PHQV, (6)
(QHQ — E)QY = —QHPV.
We further introduce the operator Green’s function
Ggr) (E) for the operator QHQ:

Gy(B) = [QHQ— (E+in)] . (7)

Proceeding in a conventional way, we now sub-
stitute the second equation from (6) into the first
equation. For the function PW, we then derive the
equation

(PHP — E)PY = PHQGY, (E)QHPU.  (8)
On the right-hand side of this equation, there appears
the nonlocal operator representing the interaction of
the {1,2} particle with the force center and taking
into account all inelastic channels.

In our problem, the kernel of the operator P can be
represented in the form

P(r,R;r",R’) = ¢o(r)d(R — R)p5(r)).  (9)

If ¥(r,R) is an eigenfunction of the total Hamil-
tonian H, its P projection has the form
PV = qbo(r)\lfo(R),
where ¥o(R) = [ ¢5(r')¥(r', R)dr’ is the “external”
part of the wave function corresponding to elastic
scattering.

Let {U,} be the set of bound eigenstates of the
operator QHQ, and let {¥(F, )} be the set of states



1692

belonging to the continuous spectrum of this oper-
ator, the index o numbering the quantum numbers
in which there is degeneracy in energy. In our case,
the index o depends on the total orbital angular mo-
mentum A of the system as a discrete unit and on its
projection M onto the z axis, « = (A, M). Suppose
that the two sets form a complete system of functions
(in the space of the Hamiltonian H):

1= 180+ 3 [ B E, )@ (E.a).

For the operator Green’s function G(QH (E) associated
with the operator QH(Q, we use the spectral expan-

sion [12] o
+) E) = Z |Zn>i\IJEn|

< (E'a)|

(10)

We also have

G(Q+)(E)

P
E+iy’
The operator QG(QJF) (E)Q then takes the form

o |\ijn’><\ijn’|
@= ; E, —E

U (E, o)) (T (E, o
o5 [apE D E )

+im » [U(E, ) (¥(E,a)l.

= QG (B)Q -

In the last formula, the functions [¥) are subjected to
the additional condition

P|¥) =0, (12)
which leads to a distinction between the eigenfunc-
tions of the operators Gg)(E) and QG(QJF) (B)Q.

We now proceed to formulate the basic idea of
our approach in these terms. The operator PHQ
describing the transition from the initial elastic chan-
nel into the intermediate states of the three-particle
continuum is localized both in the relative coordinate
r and in the center-of-mass coordinate R. We will
show this by using the Hamiltonian in (4). Since the
commutator [P,T(R) + hi2(r)] vanishes and since
the orthogonality condition PQ = 0 is satisfied, we
have PHQ = P{V; + V»}Q; that is,

PHQ — (¢o(r)|V1 + Va|¥(r,R)).

In the last expression, the three-particle intermediate-
state wave functions ¥(r,R) are effectively cut off
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in the coordinates r and R owing to the short-
range potentials V4 and V4, and the function ¢g. In
the spectral expansion of the intermediate resolvent

QGg) (E)Q (11), only the continuum three-particle

wave functions for |r| <rg, |R| < Ry, which are
orthogonal to ¢g), are of importance, and this makes
it possible to use efficiently the very convenient Lo
discretization for describing intermediate states.

This conclusion is confirmed by the results of the
recent analysis from [5], where the authors showed
explicitly that the use of well-localized (in the r space
of the relative motion of particles 1 and 2) wave pack-
ets leads to a faster convergence to exact results than
the direct use of nondecaying exact scattering wave
functions for the relative motion of particles 1 and 2.

There is no such cutoff in the problem of the
breakup of an incident composite particle. Therefore,
we somewhat modify our approach in this case (see
Section 4).

We now proceed to derive explicitly an equation
for the elastic-scattering wave function. The right-
hand side of Eq. (8) includes the nonlocal operator

PHQG(QJF)QHP. As was explained above, the fol-
lowing relation holds:

PHQGS QHP = P{Vi+V2}QGS) Q{Vi +Va}P.

[t is important to emphasize now that, in or-
der to calculate the intermediate Green’s function
Gg) (E), we employ, in the ensuing derivation (see
Section 3), its spectral expansion expressed in terms
of the single-particle coordinates r; and ro. Here,
the expansion includes the entire spectrum (involving
bound states and single-particle resonances) of the
operators Hy and Ho. This means that, if use is made
of a sufficiently large expansion basis, the virtual and
real (if the total initial energy is higher than the corre-
sponding thresholds) stripping channels are naturally
included in this spectral expansion along with a great
number of breakup channels, where both constituents
(I and 2) occur in states belonging to the three-
particle continuum. This treatment of the interme-
diate spectrum of the operator Q HQ radically differs
from that in DCCC approaches, where only breakup
channels—but not stripping ones—are taken into ac-
count in intermediate states. That the spectrum of
the operator Q HQ (and, accordingly, the expansion of

the resolvent QG(Q+)Q) contains no asymptotic states

involving the bound state ¢ of particles 1 and 2 as an
internal function of the composite particle (according
to the meaning of the projection operator Q) is an
important circumstance here. Therefore, relative mo-
tion in the (1, 2) pair always occurs in the continuous
spectrum.

Vol.64 No.9 2001
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We now make use of the spectral expansion of

the operator QGS)(E)Q (11) and, after well-known

simplifications, derive the required equation for the
function ¥y (K, R) describing the elastic scattering of
the center of mass of the {1, 2} particle by the force
center. The result is

(T(R) +V(R) - %K2> do(K,R) - (13)
_ / dR'F(E; R, R')¢o(K,R),

= v/ 2(E — 60),
where ¢y is the energy of bound state of the sub-
Hamiltonian hqs [it is defined in Eq. (5)];

wm-/m%mﬁﬂ?;?> (14)

(A o

is the so-called folded potential (introduced by Vana-
tabe long ago); and the kernel of the nonlocal operator
on the right-hand side of (13),

F(E;R,R) =) —U”(?)(f;ém (15)
U E ,R)Urr(E',R)
i Z/dE — (E+iv) ’

is a nonlocal complex-valued potential involving the
inelastic channels of virtual breakup and stripping.
Here, we have introduced the notation

WMEM—/M%mﬁﬂﬁiﬂ><M>

V2
+ V4 <‘r\_/§R’> }@(E, AM;r,R)
and )
Un(R) = <¢0(r)’VI + V2’\I/n(rv R)> (17)

Let us expand the angular parts of the required solu-
tion 1o(K, R) and of the nonlocal interaction opera-
tor F(E ; R, R) in terms of spherical harmonics. We
have

XL (K, R)

=2 Vi)

where x, are the scattermg partial-wave functions,
and

Y (R),

F(E;R,R/) = 2{:331 fﬂ;fijglfil (I{U,
where
L L (ot
FL(E;R,R") = Zw (18)

E,— E
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UL(EI R)U*L (El Rl)
El 9 9

* / d E—E :
with

ULE,R)=R / AORYFM(R)UL (E;R).

A similar expression is obtained for ULX(R). We
note that, in the last equality, the subscripts LM
on the function U appearing on the right-hand side
represent the total orbital angular momentum of the
system and its projection in the intermediate state,
respectively, while the superscript L on the left-hand
side corresponds to the orbital angular momentum of
the center of mass of the {1, 2} particle. This form of
expansion is associated with the conservation of the
total orbital angular momentum of the system.

We substitute these expansions into (15) and (13),
multiplying them, as usual, by Yl’,“/ and integrating
the results with respect to the angles. In this way,
we arrive at an equation for the partial-wave functions
describing the scattering of the center of mass of the
composite particle by a nucleus with allowance for
the channels of three-particle breakup and stripping.
Specifically, we have

d? L(L+1
[—dR2 + (R2 )+2V(R)—K2 xi(K,R)
—2/dR’FL(E;R,R’)XL(K,R’). (19)
0

Although the right-hand side of this equation involves
a nonlocal interaction potential, it can be shown that,
in the limit K R — oo, the required solution takes the
form

XL(K, R) = BL(K){x{(KR)
(+)(KR)S }

where y(#) are spherical Hankel functions (see [13])
and Sy, are the S-matrix elements corresponding to
the scattering of the center of mass of a composite
particle by the total potential from Eq. (19).

Equation (19), together with the definition in (18),
is the basic equation of our approach. It demonstrates
that, in the scattering of a composite particle, all
virtual processes of breakup and stripping can be
included in the energy-dependent nonlocal operator
of finite range. However, the exact form of the ker-
nel of the operator F(E; R, R') is still overly com-
plicated for numerically solving, by direct methods,
the equation that we obtained. In the next subsec-
tion, we therefore present a convenient scheme for
its finite-dimensional approximation using a three-
particle harmonic-oscillator basis, which is the ex-
tension of the shell-model basis for particles 1 and 2
over the target-nucleus core.

(20)
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In the particular case where the incident particle
consists of two loosely bound fragments, a still sim-
pler approximation described in Appendix B can be
used in analyzing large-angle scattering.

2.2 Discretization of the Continuum
of Intermediate States

We will seek the eigenfunctions of the three-
particle intermediate state Hamiltonian QHQ in the
form of the oscillator expansions

U(E,AM) = ZZCN Vnily, naly, AM) (21)

_ZZAN

where |n1l1,n2l2,AM> and |nl, NL,AM) are two-
particle oscillator functions in terms of the coordi-
nates (rq1,72) and (r, R), respectively [14]. This form
of expansion is associated with (3). The oscillator-
basis functions in terms of the single-particle coordi-
nates (ry,ry) have the form

(r1,ralnily, noly, AM)
AM
= Z Cllml,lgmg\ljnlllml(rl)\IIHQIQmQ(rQ)?
mimsa

where C are Clebsch—Gordan coefficients and the
single-particle oscillator functions are given by

\Ilnlm(r) = Rnl(r) : Ylm(ev ¢) =

)nl, NL, AM),

(22)

[nlm),

1 I+3
x 7l exp (—57“2) L2 (r2).

Here, LS (x) are the generalized Laguerre polynomi-
als. In expression (21), N denotes the total num-
ber of oscillator quanta (N = 2nqy + 1y + 2ng + Iy =
2n + 1+ 2N + L), u numbers various (ni,11,ne,l2)
sets, and ¢ numbers various (n,l, N, L) sets at fixed
N. 1t is remarkable that the coefficients A and C
are related by the purely algebraic Talmi—Moshinsky
transformation [14, 15]

AN(E) =" (nl, NL, Alnyly, nola, AYCY (E),

which, in the case of arbitrary masses mj and
my of the projectile constituents, is generalized
to become the Talmi—Moshinsky—Smirnov trans-
formation [16]. For the transformation brackets
(nl, NL,Alnqly,nala, A), there exist analytic for-
mulas [14—16] and detailed tables [17].  These
transformation brackets are nonzero only under the
condition 2n+1+2N + L =2nq1 + 11 + 2n9 + 1o,
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which corresponds to the conservation of the total
number of oscillator quanta (that is, energy).

The basic approximation of the method consists in
bounding the number of oscillator quanta from above
by the maximum number Mpy.x. Instead of an infinite
number of eigenfunctions of the operator QHQ, we
then obtain a finite basis for each set (A, M). Instead
of the continuous energy spectrum, we obtain, in this
case, the discrete set {E,}. As the number Nyax or
the oscillator radius is increased, the density of states
in the discretized continuum also increases, which
makes it possible to control quite straightforwardly
the spectral density of continuum states. In this way,
the spectrum of the operator Q HQ is discretized with
a controllable spectral density.

For the operator QGg)Q, we obtain, instead of

integration over the entire continuum of intermediate
states, summation over a finite set of states of the
discretized spectrum; as a result, we can easily find
the nonlocal operator F'(F; R, R’).

We emphasize once again that, in the limit
Npax — 00, this Lo discretization of the intermediate
continuum must lead to a uniform convergence to
the exact solution to the full problem owing to the
short-range character of the transition form factors
Uam (E,R) and U, (R).

Two problems arise within the proposed approach.
The first is associated with actually constructing the
spectrum of the operator QHQ, while the second
consists in developing an effective algorithm that
would replace integration over the continuum spec-
trum in F(E; R, R’) by summation over a finite set of
the constructed states of the discretized continuum.
The first problem is investigated in detail in the next
part of this study. The second problem can be treated
on the basis of the well-known Stieltjes—Chebyshev
technique of moments or quadratures [18, 19]. A
similar approach as applied to our problem will be
developed elsewhere. Upon successfully solving both
problems, we can construct a good approximation
for the kernel of the operator Fr(E; R, R") (18) and
then solve the basic Eq. (19) by means of iterations.
Finding further complex partial-wave phase shiits
with the aid of (20), we can calculate the partial-wave
amplitudes for the scattering of a composite particle.
In this way, a full solution to our problem is obtained.

3. CONSTRUCTING EIGENFUNCTIONS
OF THE OPERATOR QHQ: METHOD
OF ORTHOGONALIZING
PSEUDOPOTENTIALS

The problem of constructing the total spectrum of
the operator Q H() is nontrivial even in a finite Lo ba-
sis, because all basis functions must be orthogonal-
ized with respect to the internal wave function of the

Vol.64 No.9 2001
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projectile nucleus. As a matter of fact, we have to deal
with continuum functions, and methods that are sim-
ilar to that due to Gram and Schmidt and which are
well known in applied mathematics are inappropriate
here, since orthogonalization (according to Schmidt)
of all continuum functions to one function ¢ (r) yields
functions that are nonorthogonal to one another and
violates the completeness property of the initial basis.

In order to determine the eigenstates of the opera-
tor QH (@ that satisfy the condition in (12), it is con-
venient to use the orthogonalizing-pseudopotential
method proposed in [20, 21]. The idea of this method
is as follows. Instead of the Hamiltonian QH(Q), one

introduces the pseudo-Hamiltonian H:
H=H + \P. (24)

Here, H is given by (4); P is the projection operator
(9), which complements the projection operator @ to
unity; and A is a positive parameter. As was shown

in [20, 21], the use of the pseudo-Hamiltonian H
makes it possible to work in the complete (not in
the truncated) space; this simplifies all calculations
significantly. The additional term AP plays the role of
the penalty function. This operator is positive definite;
therefore, that component of the eigenfunction of the
operator H which is not orthogonal to P will increase
the energy eigenvalue. As X is increased, the basis
of the eigenfunctions of the operator H rotates in
such a way as to shift the functions involving the P
components upward on the energy scale. In accor-
dance with the variational principle, the admixture
of the P components in the eigenfunctions of the
lower part of the spectrum of H will approach zero for
A — o0. The problem of replacing the operator Q HQ
by the operator H was comprehensively analyzed in
[22], where the exact eigenfunctions of the operator
QHQ and the eigenfunctions of the operator H from
(24) were compared for a two-level system. In that
article, it was explicitly shown that the admixture
of the forbidden P component £ in the allowed Q
eigenfunctions behaves as & ~ O(1/A?) (see below).
In the present study, the eigenstates of the dis-
cretized continuum of the pseudo-Hamiltonian

H =T(r1) +T(rz) + Vi(r1) + Va(r2) + AP (25)
are constructed for the potentials

Vi(r1) = Upe P (1 + 6r),

Va(ra) = Upe 3 (1 + 613),

which, for an appropriate choice of the parameters 3
and ¢, faithfully reproduce single-particle potentials
with a sharp edge like the Woods—Saxon potential.
In formula (25), we disregarded the interaction Vi5
for the sake of simplicity. For the function ¢g(r)
appearing in the projection operator P, we take the

(26)
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deuteron wave function expanded in Gaussian func-
tions (see [23]).

Let us reduce the Hamiltonian to a dimensionless
form with the aid of characteristic parameters of an
oscillator having a frequency w:

TUJ = h ) pw =V hmw?

— (27)
mw
H — %, V — %

It is convenient to expand the eigenfunctions of A
in terms of the functions of the symmetric two-
particle oscillator basis corresponding to the same
frequency [14]:

1
V2
+ (—1)ll+l27A|n2l2, nlll, AM>)

This basis is symmetric with respect to the inter-
change of particles | and 2. This choice is made
because the spin and the isospin part of the wave
function are taken to be symmetric and antisym-
metric, respectively. Positive-parity (negative-parity)
states are expanded only in those states in (28) for
which I + lo and, consequently, the total number of
quanta N = 2n; + 1 + 2ny + lo are even (odd). If
(n1,11) = (ng,l2), the factor 1/\/5 must be replaced
by 1/2. In this case, the state in (28) exists only at
even A.

Thus, we write the eigenfunction of H in the form
U(Ep, AM;r1,12) = Upanr(r,r2)  (29)
Nmax

= Z Z CpNu<I‘1, r2|n1l1, nglg, AM>S
N  u

|n1l1,n2l2,AM>S = (|n1l1,n2l2,AM> (28)

The hat sign is placed over the function ¥ in
order to distinguish it from the exact function (21).
Eventually, the problem of determining the spectrum

of H reduces to diagonalizing the matrix
H5’<n/1 llan/2l/27A’H+)‘P’n1l17n2l27A>SH (30)

in the basis in (28). Owing to the choice of basis,
all matrix elements (30) admit a complete analytic
calculation (see, for example, [14] and Appendix A).

For the total orbital angular momentum of A =0
and the maximum number of oscillator quanta that
is equal to Nipax = 14, the spectrum of eigenvalues of
the matrix corresponding to the Hamiltonian (30) was
investigated as a function of the parameter \. With
increasing A, the eigenvalues of some forbidden states
are shifted upward on the energy scale (these are the
states for which the expectation value of the operator
P is close to unity); for the others, the eigenvalues
are saturated—these are lower states, for which the
expectation value of the operator P sharply decreases
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Fig. 1. Eigenvalues of the matrix of the Hamiltonian H as
functions of the parameter A at Mmax = 14 for some (a)
lower and (b) upper states. The energies of the states and
the parameter A are presented in units of the dimension-
less quantities E/Ug and \/U, respectively, where Up is
the depth of the single-particle shell potential (26).

with increasing A. It is noteworthy that the number of
upper (forbidden) states at given M.y and given total
orbital angular momentum A is given by

1

5 (Nmax -

This can easily be explained by recasting the kernel of
the projection operator into the equivalent form

P(r,R;r,R) (32)
= > " (r,Rlgo, NAM)(¢o, NAM[r',R').

AM N

K= A)+ 1. (31)

In the last equality, we have used, instead of the
delta function, the full sum over the single-particle
oscillator basis [NAM) and taken into account the
s-wave form of the function ¢o(r). That the total
number of quanta of the two-particle basis is bounded
from above (2n + [ + 2N + L < Mpuax) and that the
total orbital angular momentum of the system is fixed
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Fig. 2. Expectation values of the projection operator P for

some lower states of the spectrum of H as functions of the
projection constant A measured in units of Up.

(A =1+ L) mean that, instead the full sum in (32),
one takes the sum involving K terms; that is,

P(r,R;r,R/) (33)

%(Nmafo)
~> Y (r,Rlge, NAM){(¢o, NAM|r',R).
AM N=0

Figures la and 1b show some lower and upper

energy eigenvalues of the pseudo-Hamiltonian H as
functions of A. It can clearly be seen that, for lower
eigenvalues, the saturation in A occurs at values
larger than some critical value (see Fig. la) and that
the energy eigenvalues for upper levels grow in pro-
portion to A (Fig. 10). These results are in perfect
agreement with those from [22].

The expectation values of the projection operator
P over some lower states are displayed in Fig. 2
versus A\. The sum of (P) averaged over all upper
states is shown in Fig. 3 as a function of A. In[22], the
orthogonalizing-pseudopotential method was tested
analytically for a simple two-level system, where one
upper and one lower level are formed with increasing
A. According to [22], analytic dependences of the P
values averaged over these states are given by

(Phower = O (%) , {P)upper =1 -0 (%) .
(34)

The results of our numerical calculations in the two-
particle oscillator basis agree with (34) for lower
states. For the sum averaged over all K upper states,
we obtain the estimate

1 & 1
= > (P)pupper = B— 0 (ﬁ> , B<Ll.
p=1
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The distinction between this result and that in (34) is
due to the fact that the truncated basis ceases to be
complete. It should be noted that, in constructing the
intermediate-state spectrum of the original problem,
we need the wave functions of the lower states, which,
within the method of orthogonalizing pseudopoten-
tials, are therefore obtained to be orthogonal to the
total projection operator (32).

As a result, we have shown that the orthogonaliz-
ing-pseudopotential method is well suited to deter-
mining the spectrum of the three-particle Hamilto-
nian QHQ for intermediate states.

4. SCHEME FOR INELASTIC SCATTERING:
BREAKUP, STRIPPING, AND EXCITATION
OF THE TARGET

In this section, we want to demonstrate that the
representation of the three-particle resolvent in the
oscillator basis can be effectively used to determine
the cross sections for the stripping or breakup of a
composite particle on a target at rest. However, we
will use here a different approach that is based on the
Faddeev formalism, since, in the last case (that is, for
the breakup reaction), there are no explicit cutoff fac-
tors in the integrals for the relevant matrix elements—
there are only the slowly decreasing factors of the 1/r
type.

Let us define the following sub-Hamiltonians of
the total Hamiltonian (1) of our system: Hg =Ty +
T5, which is associated with the free motion of parti-
cles 1 and 2; H3 = Hy + Hy = Hy + V4, + V5, which
is associated with the scattering of particles 1 and
2 in the field of a nucleus without allowance for
the interaction between them; and Hio = Hy + Vio,
which takes into account the interaction only between
particles 1 and 2. (We recall that 7" stands for the
operators of the kinetic energies of the particles, H;
and Hy are the single-particle Hamiltonians for the
interaction of the particles with the center, and V1 is
the potential of the interaction between the particles.)

Let us introduce the Green’s operators corre-
sponding to the above sub-Hamiltonians:

Glg(E) = [ng — (E =+ ’iO)]_l,
G3(E) = [Hy — (E +i0)] "
According to [13], we further write the Faddeev equa-
tions for the exact wave function ¥, p describing
the collision of the {1,2} particle with the external

potential field that correspond to the above partition
of the total Hamiltonian:

(35)

\IIE(),P = @eo,P - Gl?(‘/l + ‘/2)\:[]60,137 (36)
Ve p = —G3Vi2V, p. (37)
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Fig. 3. Quantity obtained by averaging the sum of the

matrix elements of the operator P over all up states,
K

1

= (P)p,up, as a function of the projection constant
p=1

A measured in units of Up.

Here, ®., p is a function that specifies the state of the
incident particle {1, 2} before the collision event,

eiP'quO(r)

(2mh)3/2
¢o(r) describing the bound state of the {1, 2} parti-
cle. Equations (36) and (37) must be solved simul-
taneously in order to ensure correct boundary condi-
tions in all independent coordinates [13]. For this, a

solution to the first equation can be substituted into
the second equation, or vice versa.

By substituting (36) into (37), we obtain
Veop = —G3Vi2®, p
+ G3V12G12(V1 + Vg)q)gmp + ...,

@éo,P -

(38)

In order to determine the breakup amplitude,
we can use the conventional formula for the post-
amplitude [13]:

Tbreakup = - <¢£(_1) ¢i{_2) ‘ V12 ’ \Ijao,P> . (39)

Here, qbi{f and ¢§€2) are the single-particle wave func-

tions describing the scattering of particles 1 and 2
on the potentials V7 and V4, respectively, and corre-
sponding to the continuous spectrum and the bound-
ary conditions in the form of converging waves. Sub-
stituting (38) into (39) and retaining only the first
term, we find that the breakup amplitude can be rep-
resented as

Tbreakup = _<¢§{_1) ¢§{_2) ‘V12G3V12 ’(I)Eo,P>'

As was defined above, the resolvent G5 corresponds
to the motion of two noninteracting particles 1 and 2
in a force field; therefore, it can be represented in the

(40)
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form of the convolution of the single-particle Green’s
operators relevant to the Hamiltonians H; and Ho:

“+o0
1
Go(B) = 5 [ desf (007 (E - o)

In calculating the breakup amplitude Tyreakup, the
functions appearing in the spectral expansion of this
resolvent are strongly cut off only in the coordinate of
the relative motion of particles | and 2 (in contrast
to what occurs in the case of elastic scattering), the
convergence of the relevant integrals in the single-
particle coordinates ry and ry being ensured only
by oscillations of wave functions in the continuum.
Despite this, we deem it possible to use an oscillator
basis in this very problem as well. This is due to
the fact that, if we use wave packets instead exact
continuum wave functions (it is precisely the under-
lying principle of the DCCC approach), these packets
are well localized in space, admitting a convergent
oscillator approximation. The representation of G3 in
the two-particle oscillator basis is considered in detail
in Appendix B [see the final formula (A.18)].

If we now also represent the functions qbi{_l) and

¢§<_2) in the form of the oscillator expansions, all inte-

grals entering into (39) can be calculated analytically
(by using the relation between the two-particle os-
cillator functions determined in the laboratory frame
and in the c.m. frame of particles 1 and 2). The
last circumstance is an important advantage of the
proposed method.

The next term in the iteration series for multiple
scattering has the form

AT’breakup

= <¢£€1)¢£€2)|V12G3V12G12{V1 + Va}|®e p)-

Such terms correspond to the rescattering of par-
ticles 1 and 2 in the final (or initial) state and are
of importance for a low relative energy (that is, they
take into account final-state-interaction effects of the
Migdal—Watson type [13]), in which case the pole
of the Green’s function G2 is close to the physical
region. In the remaining cases, these corrections
for rescattering in higher orders must be small (an
additional smallness in these corrections is due to the
presence of the absorbing single-particle potential in
the region of a nucleus: this leads to the suppression
of any multiple-rescattering process in the internal
region).

In a similar way, we can find the amplitude for
stripping of, say, particle 1. For this, we use the
formula from [13] for the stripping amplitude and the
first term of the series in (38). As a result, we obtain

Tstripping = _<¢51 qbi{;) |V12G3V12|q)so,P>u (42)

(41)
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where ¢, is the eigenstate of the Hamiltonian H; for
the eigenvalues ¢; of the discrete spectrum.

We now briefly discuss the generalization of the
scheme presented in Section 2 to the case where
target excitations are taken into account. Instead of
the potential Hamiltonian Hy, there then appears its

matrix analog H;. By way of example, we indicate
that, for one rotational excitation of the target nu-
cleus, we have

~ T1 + V(H) — &1 V(12)

Hy =

V(Ql) T1 + V(Qz) — &2
A similar matrix can be written for the sub-Hamilto-
nian Ho. Here, e; and ¢4 are the energies of, respec-
tively, the ground and the first excited state of a target,

while V(12 and V(21 are the potentials coupling the
channels (for rotational excitations, these are ordinary
the adiabatic folded potentials).

By way of example, we consider the problem of
nucleon scattering by a deformed 2C nucleus, taking
into account coupling to the first 2% level in 12C.
When use is made of the matrix sub-Hamiltonians
H, and H,, the Green’s function G5 also becomes
the appropriate matrix (in the space of channels cou-
pled to target-nucleus levels). The remaining part of
the scheme (see Section 2) for solving the problem
also assumes the matrix form without undergoing
conceptual changing. Eventually, all intermediate

summations (over the spectra of the operators H;

and H,) acquire an additional index that numbers the
excited target states. In contrast to this, the inclusion
of target excitations in the DCCC approach leads to
a considerable increase in the number of channels,
which was very large even in its original form. As a
result, this approach becomes very cumbersome.

5. DISCUSSION OF THE RESULTS

Let us formulate basic results of this study. We
have demonstrated that the problem of the elastic
scattering of a composite particle on a nucleus with
allowance for virtual breakup and stripping chan-
nels reduces to solving uncoupled Schrodinger equa-
tions for individual partial waves, the potentials in
these equations being complex, nonlocal, and energy-
dependent. Further, we have shown that the transi-
tion form factors PH() are effectively cut off at small
projectile-to-target distances. This makes it possible
to use the Lo discretization of the intermediate mul-
tiparticle continuum. For this discretization, we have
used the two-particle oscillator basis, which made it
possible to express all radial integrals entering into
the nonlocal kernel in a simple analytic form.
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The

QGgr)Q appearing in the kernel of the nonlocal

operator is expressed in terms of the spectrum of
the corresponding Hamiltonian QHQ); its spectrum
in turn is obtained by diagonalizing the pseudo-

Hamiltonian H = H + AP as the orthogonalizing
constant X increases.

We have also shown that the proposed method,
which is based on discretizing the continuum of in-
termediate states and on subsequently approximat-
ing the three-particle resolvents, can be extended to
the problem of the inelastic scattering of composite
particles and also to the problem of taking into ac-
count target-nucleus excitations. A transition from
integration over the full continuous spectrum of in-
termediate states to summation over the discretized
continuum in the spectral expansion of the resolvent
can be performed with the aid of quadrature methods
(for example, the Stieltjes—Chebyshev methods [18,
19]). This problem will be considered in detail in our
forthcoming publication.

As the result of the above complete reduction of
the multiparticle-scattering problem, only one equa-
tion (with a complex-valued nonlocal potential ex-
pressed in analytic form) for the scattering wave func-
tion in each partial wave is obtained instead of the ex-
tremely cumbersome set of coupled equations within
the method of the strongly coupled channels (in the
DCCC approach) for calculating elastic scattering.
This provides serious advantages in the practical im-
plementation of this approach, which are briefly listed
below:

(i) The entire scheme for numerically solving the
problem is simpler and faster.

(ii) The number of intermediate channels that are
taken into account and the spectral density of states
of the discretized continuum can easily be controlled
by increasing the dimension of the oscillator basis—
that is, the total number of quanta Nyax. As a matter
of fact, the problem of discretizing the intermediate
continuum can be reduced to diagonalizing the matrix
of the effective Hamiltonian for the shell model, where
considerable advances have recently been made in the
realms of numerical implementation (for example, the
Monte Carlo method for the shell model [24]); this
makes it possible to take into account a great number
of such intermediate states. It is important that codes
for such calculations and the formalism for evaluating
nuclear matrix elements are available.

(iii) It can easily be seen that the solution that we
have obtained for the problem in question admits a
direct generalization to the three- and four-particle
fragmentation of the projectile nucleus and to the
virtual excitation of the target nucleus (this is hardly
possible within the DCCC method).

intermediate  three-particle  resolvent
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(iv) That all effects associated with the virtual
and the real breakup of the projectile and with the
stripping of its fragments are included in the nonlocal
complex-valued operator that appears on the right-
hand side of the basic equation and which can be
treated as a correction to the main folding potential
is an important advantage of the proposed scheme.
Within such a consideration, the nonlocal operator
of the dynamical polarization of a composite particle
can easily be replaced (by using the inverse-problem
method [25]) by an effective complex-valued local
polarization potential, which illustrates the effects of
the dynamical polarization of the incident composite
particle.

6. CONCLUSION

We have proposed a new formalism for solving
the problem of the elastic and inelastic scattering of
a composite particle by a force center at rest. The
method is based on the Ly discretization of the con-
tinuous spectrum of intermediate states of the system
in the two-particle oscillator basis. Inelastic channels
have been included in the nonlocal operator describ-
ing the interaction of the incident particle as a discrete
unit and the target nucleus. This operator involves
summation over a great number of states of the dis-
cretized three-particle continuum; owing to this, it is
very probable that random errors of discretization in
the intermediate states do not affect the final result.

The simplicity of the method owing to the use
of the oscillator basis, the possibility of including
virtual stripping channels, convenience in using it in
conjunction with inverse-problem methods, and the
possibility of generalizing it to the case of scattering
of particles consisting of three or four constituents are
the most important advantages of our approach. The
last circumstance is the most attractive, since the ap-
proaches developed so far (DCCC and so on) do not
admit a viable generalization to four-body problems
or problems involving a greater number of particles.
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APPENDIX A

In the Appendices, we everywhere assume that
the potentials specifying the interaction of particles
| and 2 with the target nucleus have the form (26).
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We approximate the internal s-wave function of a
composite particle by the sum of Gaussian functions:

k
=D Ciem " YP(®)
=1

For the folded potential V/(R) = (¢
which corresponds to the local part of the interaction
between the composite particle and the target nu-
cleus, we then have the analytic expression

(A.1)

k P2
\/— 7’YUR
V(R) = Vio + Vo) C;C
( ) ijl( 10 20) J g (al—l—oz]—l—ﬂ)3/2
(A.2)
3 0 ’YZJ 2
S e s
where
g Mt
i _ﬂ2ai+2aj + 4 (A3)

The use of the oscillator basis makes it possible to
derive analytic formulas for the transition form factors
Uanm (E; R), which appear in the nonlocal part of the
interaction operator (15). We redefine

Usm(Ep; R) — Ap,AM(R)
= (¢o(r)[Vi + Va| ¥y an(r, R)).

We now calculate this transition matrix element by

using the oscillator expansion (29) of |\ilp,AM> and
formulas from [26]. We rewrite this form factor in the
expanded form

Upant(R) = /dwg(r) (V1 (|r$§RI>

o (lr;;'» W00 (v, R),

where \i!vaM is the wave function (29) represented in
terms of the coordinates (r, R),
Nmax

P

with the coefficients A bemg related to the coefficients
C by the Talmi—Moshinsky transformation brackets
for symmetric functions (see Sections 2 and 3):
Aé\{ = Z (nl, NL, A|n1l1, nglg, A>SCIJ)\£
According to (28), the symmetric transformation

brackets are expressed in terms of ordinary transfor-
mation brackets as

(nl, NL, )\|n1l1, nglg, )\>S

W, an(r, R) (r,Rinl, NL,AM),

1
= E ((nl, NL, )\\nlll, n2l2, )\>
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+ (_1)l1+l2

By taking into account relations associated with
symmetries with respect to the permutation of indices
on the transformation brackets [15], we obtain

(nl, NL, )\|n1l1, nglg, )\>S
= V2(nl, NL, \|nily, nala, \),
the symmetric transformation brackets being nonzero
only at even [. In the case of (n1,l1) = (ng,l2), the

factor v/2 is omitted in the last formula.

Let us first calculate the integral for the Gaussian
part of the potentials (26) (that is, at 6 = 0):

() = [ i) e
YW, Ap(r, R).

Owing to the conservation of the total orbital an-
gular momentum of the system, the angular part is
isolated in the form

. UMR)
Upam(R) = R

For the radial integral, the calculation yields

20+ 1)(2L + 1)
UOZA lOLO\/ oA -1

A (nl, NL, N|naly, nily, \)) .

(A.4)

+ er_g

Y (R).

(A.5)

k
VT 1\ (w; — 1)"
< g Audn (30) 26
% e_%'RQRHLHL@H/Q(R2)Ll+1/2(piR2),
where L% (z) are generalized Laguerre polynomials
(see [26]). Here, we have used the notation

1 1
w; = o + 525 t5
"= % ( - 2@52?-511)1)
A, = 2n!

F(n+1+3/2)

It should be recalled that, in the calculations, we
employ dimensionless quantities expressed in the os-
cillator units (27).

In order to determine the transition form factors
relevant to the potentials (26) at § # 0, we can invoke
the relation

~

Upant(R) = Upant(R) — 6 (R).

%Up,AM
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Thus, we can see that closed analytic formulas
are obtained for the nonlocal operator representing
the interaction between a composite particle and a
nucleus.

Here, we present the results of the calculations
for some matrix elements that appear if we use the
oscillator basis.

(a) Let us consider the matrix element

)2+ Va(ry) + %(P2)2 (A7)

+ Va(re)|nily, nala, A)s.

Considering that the wave function is symmetric with
respect to the interchange of particles 1 and 2 and that
the parameters 5 and ¢ in (26) for Vi(r1) and Va(rz)
are identical, we have

s(nily, n5ly, A|Hy + Halnily, nala, A) g
= 25(n} 1}, nbly, A|H|nily, nala, A)s.

The matrix element (A.7) is calculated in terms of the
matrix elements

1
S(”l 17”2l A’§(P1

1
<n/1l/17 nIQZév A’ §(p1)2
+ Upe P (1 + 6r2) naly, n2z2, A)

E § : C tml lhml l1m1,l2m2

m,ml M1,m2
<l 3 (p1)” + Uoe™ (14 6r)malyom)
X Ontyriy Ot 15 Oty s -
Let us consider the single-particle matrix element
(n} imﬂ%(pl)Q + er*m%(l + 6r2)|nylymy).
According to [14], we have
('t (9)? )

1 3 1\1"?

3
+ |:(Tl + 1) <n + 1+ §>:| 1/25n’n+1]5ll/6mm’~

Further, we calculate the matrix element
(W I'm!|eP* |nlm) = (n’l!e*mg]nl>5l,l/5m,m/. By
using the formulas from [26], we obtain
(l + %)n(z + %)n’

n'In!

(A.8)

1/2

n1)e=77 |nl) = (A.9)

ﬁn’Jrn
x (B + 1)n/+nti+3/2

where o F is a hypergeometric function, which, in our
case, reduces to a polynomial, and

(14 3/2)n = T(+3/2 +n)/T( + 3/2).

) —TL,Z + 3/27 1//82)7

oF1(—n
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The matrix element (n'lje=7"* (1 + 6r2)|nl) is calcu-
lated by differentiating formula (A.9):
(1= (1 + 6r2)|nl) = (nl]e™P"" [nl)
d / —,@7’2
—5%@2”6 |nl).
(b) Further, we consider the matrix elements of the
projection operator P.

In order to calculate them, we need symmetric
transition brackets:

s(nil, n5ly, A|Plnqly, nala, A) g
= Y s(nily,nbly, Al N'L!, A)
n'/,N',L’'
x D
nI.N,L
« (W', N'L, M) (olnl, NL, A).

In the last formula, use has been made of the following
condensed notation for the projection operator P:

P = |¢0)(¢ol-
Let us consider the factor
<n/l/7 NlL/? A’¢0> <¢0‘nl7 NL, A>

= (n'U'|go) (do|nl)dNN/OL L,

5<n1l1, nglg, A\nl, NL, A>

where
(n'l'|o) = 5l’0/dTT2¢0(T)Rn/o(T). (A.10)
0

Here, ¢o(r) is the radial part of the bound-state wave
function ¢o(r). If we represent it in the form (A.1), the
integral in (A.10) can easily be calculated by using,
for example, (A.9).

APPENDIX B

The main objective of Appendix B is to demon-
strate that, in some cases, the functions appearing in
the spectral expansion (11) can be found by using a
method simpler than that described in Section 3.

Let us consider the intermediate-state Hamilto-
nian QHQ. We now write the total Hamiltonian of
the system in the form (1):

H = Hl(rl) + HQ(I'Q) + Vlg(T).

We recall that the projection operator @ is orthogonal
to the projection operator P (9). We conjecture the
following:

(i) QH1Q ~ H;, since the P projection acts in
the variables (r, R) which are “alien” for the variable
ri. We can expect that the admixture of the P com-
ponents in the eigenfunctions of the single-particle
operator H; is small. A similar assumption is made

for QHQQ
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(ii) |QV12Q| < ||Q(H1 + H2)Q)||. This approxi-
mation is associated with the fact that the operator @
is orthogonal to the eigenfunction of the bound state
in the potential V1s.

Thus, we want to make the substitution
QHQ — Hy + H
and, in addition, the substitution
a(E)Q - cS(E
QG, (E)Q — G5 (E)
= [Hy + Hy — (E +i0)] 7,
where G:(;r) (E) is the Green'’s function for two nonin-
teracting particles in the field of the core.

The physical meaning of the above substitution is
that, in the intermediate states, it is the interaction of
particles 1 and 2 with the target nucleus (rather than
the interaction between projectile constituents) that
predominantly affects the composite particle at mod-
erate projectile-to-target distances. These means
that, conjecturing (i) and (ii), we assume, as a matter
of fact, that, in the intermediate state, particles 1 and
2 diverge and move independently of each other in the
field of the target nucleus. It should be emphasized,
however, that this approximation is valid only in the
@ subspace (from which the bound states of particles
1 and 2 are eliminated), but that it is not accurate in
all probability in the full space.

Mathematically, the substitution in (A.12) means
that, for the three-particle intermediate-state resol-
vent, we can use the convolution of the single-particle
resolvents; that is,

(A.11)

(A.12)

“+00

QG (B)Q - 5 [ del Vel (B o)

(A.13)

G(+)(E r,To; Ty, T5)

|¢p1 limy I'1 Q/)1!22,l2T712 (r2)><¢;1711m1 (rl) ;Q,lng(r2)|
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where g(+)( ) =[H; — (e +140)]7! and go has the
analogous form with the substitution H; — Hy. We
further consider the spectral expansion of the Green’s
function g1 in the complete system of eigenfunctions

{tn, V(E, l1m1)} of the Hamiltonian Hy:
Z %l _¢: (A.14)
AY(E lima)) (D(E' lymy)|
* Z oE E' — (e +1iv) )

l1m1 0

We can now use the discretization of the single-
particle spectrum of the Hamiltonian H; in the finite-
dimensional single-particle oscillator basis {|nlm)}.
For each {lm}, we obtain finite sets of eigenfunctions
of the operator H; in the form

Nmax
Vpy limy (rl) = Z Ai;llmRmh (Tl)YZ’“ (fl)v

where R,,; is given Tl:l)ly:(23). For the resolvent g1, we
then obtain

gi(ery,ry) =

wpl,llml (rl)w;,llml (rll)
Z Epu, — (e+1dy)
(A.15)

Here, the integral over the continuous spectrum of g;
has been replaced by the sum over the states of the
discretized continuum. The approximation in (A.15)
is made for the case of v # 0; in the limit v — 0, it is
necessary to use special quadrature approximations
[18, 19]. In order to evaluate the convolution in
(A.13), it is sufficient to use the form (A.15) for g; and
g2 (Hy = H»). Calculating the integral in (A.13), we
obtain

p1lima pily

/ /

~ D D

p1lima palama

Let us perform rearrangement of the angular momen-
ta, (lymq,loma) — (l1l2, AM). As a result, we arrive
at a convenient finite-dimensional representation for
the convolution of two single-particle Green’s func-
tions. Specifically, we have

(A.17)
A=l1+12

=20 >

pil1 p2la A=|li—12|,M

G(+) (E)
* ]AM

[¢p111¢p2l2] [ p1l1 Vpalo
Eplll + Epglg (E + /L’Y) ’
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(A.16)

Epﬂl + Ep212 - (E + Z.’Y)

where

AM
[wp1l1 wpzb]
= Z Cllml,lgmg wphllml ¢p2712m2'

mi+mao=M

Taking into account expression (22) for two-particle
oscillator functions, we can eventually recast expres-
sion (A.17) into the form
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Aé;lﬂn p2n2‘ ‘nlll,nglg,AMMnlll,nglg,AM’ (Al8)
Ep 1y, + Epyly, — (E+ 'VY)

-y Ty

pinily panals AM

This representation is convenient in that fully ana-
lytic expressions presented in Appendix A can used
in calculating transition matrix elements and other
similar quantities. In order to employ formula (A.18)
in the limit v+ — 0, one can invoke the quadrature
approximations from [18, 19]. This problem will be
the subject of our forthcoming publication.

Thus we conclude that, if our conjectures (i)
and (ii) and the substitution in (A.12) are correct,
the problem of determining the spectrum of the

intermediate-state resolvent QGSL)Q is considerably

simplified. Instead of diagonalizing the three-particle
Hamiltonian according to the procedure described in
Section 3, it is sufficient to find the spectrum of the
single-particle Hamiltonian H; (and of Hs if particles
1 and 2 are not identical). This makes it possible to
enlarge considerably the number of basis functions
used in the calculations and to simplify all formulas.
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Abstract—A three-phase modification of the hybrid quark-bag model is considered. In addition to the
asymptotic-freedom and the hadronization phase, it includes the intermediate phase of constituent quarks.
In the (1 + 1)-dimensional version of this model, a self-consistent solution is found with allowance for

fermion-vacuum-polarization effects.

Within this solution, the total bag energy, including the one-

loop contribution from the Dirac sea, is investigated as a function of parameters that characterize bag
geometry, the condition of a nonvanishing boson-condensate density in the internal region being imposed.
[t is shown that the ground-state bag configuration that is constructed on the basis of the solution
found here, which minimizes the total energy, and which includes all three phases exists and is unique.
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1. INTRODUCTION

Presently, the idea of describing a hadron as a
bounded spatial region (bag) filled with quark and
gluon fields seems the most natural way to construct
an effective quantum field theory that provides the
absolute confinement of color objects [1—12]. For
such regions, boundary conditions are chosen so as
to ensure, in a relativistically covariant way, color-
particle confinement within a bag [1—3]. The pos-
sibility that such an object exists is associated with
a change in the vacuum structure within a hadron.
[t is assumed that a nonperturbative vacuum within
a strongly interacting particle is destroyed almost
completely, with the result that there arises an excess
of energy proportional to the bag volume [1—=5]. The
stability of the configuration is guaranteed by the
valence-quark contribution to the total energy, this
contribution being in inverse proportion to the bag ra-
dius. Even the first MIT bag model yielded fairly good
results for the mass spectrum and the other static
properties of hadrons at a relatively small number of
parameters [6—8]. A further development of the model
led to taking into account some effects associated
with a spontaneous breakdown of chiral symmetry
(one of the most important features of strong in-
teractions at low energies) and to including meson
fields in the theory that play the role of Goldstone
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bosons [9—11]. (These are the triplet of pions for
the SU(2) group or the octet of pions and kaons for
the SU(3) group.) Presently, the most consistent
approach to describing the structure of hadrons on
the basis of bag models has been developed within so-
called hybrid chiral models [10—12]. In hybrid chiral
models, the nucleon is considered as a small bag that
confines quarks and gluons and which is surrounded
by a large cloud of virtual mesons. This cloud can be
described either by the hedgehog pion configuration
of the Skyrme model or by more complicated models
including vector mesons [13—15].

By and large, models of this type provide a cor-
rect scale for various static features of nonstrange
baryons. At the same time, serious discrepancies in
numerical values and even incorrect signs may occur
for some individual quantities [12, 16]. Furthermore,
the best results within hybrid chiral models are ob-
tained at such values of relevant parameters (like the
vacuum pressure B, the coupling constant ay, the
current quark masses, and the constant Z taking into
account the Casimir energy) that differ from those
derived by other methods [4, 5]. All this demon-
strates that the conventional formulation of hybrid
chiral models is not free from drawbacks.

The most subtle point in the hybrid chiral model
is the Cheshire cat principle as a basis for breaking
down the total configuration space into regions within
which various phases are realized [17]. This principle
essentially relies on the hypothesis [18] that fermionic
theory within the bag and bosonic theory outside it
are in fact equivalent and can be exactly transformed
into each other by means of the bosonization pro-
cedure. As a result, no physical properties of such
a bag depend on the choice of boundary surface,
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and the boundary conditions are determined from the
bosonization equations [19]. However, the bosoniza-
tion procedure and, hence, the Cheshire cat hypoth-
esis can be rigorously justified only in (1 + 1) dimen-
sions. At the same time, a solution to the bosoniza-
tion problem for the actual (3 + 1)-dimensioinal world
has yet to be obtained. As a consequence, there exist,
in (3 + 1)-dimensional hybrid chiral models based
on the Cheshire cat hypothesis, only a small set of
features (for example, the topological charge) that
are actually independent of the bag radius [20]. At
the same time, the phenomenology of strong inter-
actions unambigously indicates that a characteristic
scale confinement on the order of 0.5 fm does in fact
exist—that is, irrespective of the degree to which the
bosonization is justified in the (3 + 1)-dimensional
case, the Cheshire cat principle must be strongly
violated in realistic models.

Therefore, it seems quite natural to modify hybrid
chiral models in such a way as to get rid of the
Cheshire cat hypothesis and all constructions that
it entails in the form of an infinitely thin boundary
surface between the phases and the relevant surface
action functional. Such a modification appears to
be possible if the correlation between different bag
phases, which are not assumed now to be equivalent
in the sense of exact bosonization, is ensured by the
actual interaction occurring in a finite-dimension re-
gion, which admits a natural interpretation as a third
intermediate phase of a bag [21]. The emergence
of this additional phase is quite appropriate, since it
enables one to implement the chirally invariant mech-
anism of the dynamical generation of quark masses;
owing to this, it is in part the phase of constituent
quarks (it should recalled that the possibility of their
existence is not considered in the original two-phase
model). At the same time, constituent-quark mod-
els were successfully used in hadron spectroscopy.
From this point of view, the physically most attractive
situation would be that where free, virtually mass-
less current quarks (this corresponds to high squares
of momentum transfers, Q?) are first converted, as
the result of interactions, into dressed massive corn-
stituent quarks carrying the same color, flavor, and
spin quantum numbers and only after that does there
arise purely mesonic color-singlet phase.

The three-phase hybrid model involving an inter-
mediate constituent-quark phase instead the bound-
ary characterized by zero radial extension [21] is a
first approximation to such a bag version. This model
permits taking self-consistently into account three
phases: the asymptotic-freedom phase featuring
massless free quarks; the phase of constituent quarks
acquiring effective masses owing to chirally invariant
interaction with a boson field in the intermediate
region of finite dimension; and the hadronization
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phase, where free-quark production is suppressed
by an infinitely large mass and where the nonlinear
dynamics of the boson field leads to the emergence of
a boson condensate in the form of a soliton solution,
which is eventually responsible for the quantum
numbers of the entire bag.

In this study, we consider one version of such a
model in (1 + 1) dimensions where, in an intermediate
region, a one-flavor fermion field interacts in a chi-
rally invariant way with a real scalar field possessing
a nonlinear soliton solution in the external region.
A self-consistent solution to the equations of the
model is found with allowance for fermion-vacuum-
polarization effects. Within this solution, the renor-
malized total bag energy is investigated as a func-
tion of parameters that characterize bag geometry,
the condition of a nonvanishing boson-condensate
density in the internal region being imposed. It is
shown that, under specific conditions on the model
parameters, the configuration that minimizes the total
bag energy and which involves all three phases exists
and is unique.

2. LAGRANGIAN AND EQUATIONS
OF MOTION

The partition of the bag space into separate phases
is implemented by the method described in 3, 22] by
using the system of auxiliary fields (x). The funda-
mentals of the method are as follows. We consider the
Lagrangian

Lo = 5(0,0)" ~ 0V(0) + 5(@.6)" = AW (O). (1)

where the coupling constant g for the self-interaction
of the field @ is so large that, in the first approximation,
we can neglect the effect of the matter fields ¢ on
the dynamics of the field . The solutions to be
obtained can then be used to control their dynamics
[21, 22]. It is obvious that one can construct a
Lagrangian involving the required number of fields
f(x) with a specific self-interaction that define a
nearly rectangular partition of space into regions
corresponding to different phases. Lorenz covariance
will then be broken only spontaneously, at the level of
solutions to the equations of motion; owing to this,
the formalism of covariant group variables [23] can be
used to restore covariance.

In the following, we assume that the auxiliary fields
6(x) have already formed the necessary bag configu-
ration and proceed from the Lagrangian

L= iy + 5(0u0) — Bar < o] <22)  (2)

< (% [, = 0el > 2
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The commutator of fermion fields in the expressions
specifying the chiral coupling between fermions and
bosons ensures the charge symmetry of the model.

Thus, we originally have the theory of two fields,
the spinor field ¥ and the boson field ¢. In region |
(Jz| < x1), both fields are free and massless; in region
I (z1 < |z| < x2), the field ¢ interacts with fermions
in a chirally invariant way, whereby fermions acquire
an effective mass M; and, in region III (|z| > x2),
the fermion effective mass becomes equal to My and
the self-interaction of the field ¢ comes into play,
leading to a soliton solution for the boson field. It
should be noted that, in the model being considered,
the vacuum-pressure term appears to be redundant,
since, as will be seen below, the polarization of the
Dirac sea behaves in a very specific way owing to
the presence of the intermediate region in this model,
ensuring alone the required inward pressure. In ad-
dition, there is no need for valence fermions in our
model, since all quantum numbers of the bag as a
discrete unit—in the simplest case being considered,
this is its baryon number—ensure a boson conden-
sate in the form of a topological soliton. Thus, it
would be difficult to validate the emergence of vacuum
pressure from this standpoint as well.

In order to ensure the confinement of fermions,
we further assume that the mass M, is very large,
which leads to the dynamical vanishing of the fermion
field in the external region III. In the internal region
[, we have a free (decoupled from fermions) massless
scalar field; this leads to a nonzero boson-condensate
density in the asymptotic-freedom region. This pos-
sibility is compatible with the general concept of bag
models and can be considered as one of the versions
of the formulation of our three-phase model. Another
version—the vanishing of the scalar field in the inter-
nal region—was investigated in detail elsewhere [21].
We also assume that an odd topological soliton-like
configuration is a solution to the equation of motion
for the boson field. The even case, where the scalar
field can be nonzero in the internal region, is of no
interest, because a trivial solution, with the scalar
field being everywhere equal to a constant [one of
the minima of the self-interaction potential V' (¢)], is
energetically favorable.

Let us consider the behavior of the fields in more
detail. As is customary in hybrid models of the type
in question, the boson field is considered in the mean-
field approximation—that is, it is a c-number quan-
tity. Ignoring, for the time being, a Lorentz-covariant
description, we will consider the c¢.m. of the bag; the
field p(x) will then be a time-independent classi-
cal field, against whose backgroundand the fermions
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evolve. The equations of motion for fields can be
written as
i =0, (3a)
¢ =0 (3b)
in region [; as
(ié - Meig%“") b =0, (4a)
M-
i 197@1)[)’ yse gwwﬂ ) (4b)
in region II; and as
(i0 — Mye'975%)yp = 0, (5a)
"+ V() =0 (5b)

in region III. The angular brackets in Eq. (4b) de-
note averaging over a given bag state. In order to
simplify the calculations, we further set g = 1, since
the g dependence can easily be recovered by means of
the substitution ¢ — ¢/g. The spectral problem for
the wave functions v, describing fermions of given
energy w will then have the form

Wi, = o, + B [MO(w, < [¢] < 33) (6)
+ M()H(’{lf‘ > xg)] Py

In order to formulate the spectral problem correctly, it
is necessary to specify the boundary conditions. They
can be represented in the form

iy o, (£ao) + e5PER) Y (£a) =0 (7)

and must be supplemented with the continuity condi-
tion for the function ¢ (x) at the boundaries between
regions I and II. We note that the boundary condi-
tions (7) are nothing but the standard chiral boundary
conditions for hybrid models [9—12]. Here, however,
they emerge as a natural consequence of an infinite
fermion mass in region II1 [21, 24] and not arise from
a local surface action functional (as a matter of fact,
the latter is not quite correct). In region I, Eq. (6) is
the equation for free massless fermions,

wipy = —iay, (8)
while, in the intermediate-phase region (II), we have
wibyy = —ieyy + BMe PPy (9)

At the boundary between regions I and 11, the wave
functions v and 1y are matched on the basis of the
continuity condition

Y(£x1) = Yy (E21); (10)
at |z| = 9, they satisfy the boundary conditions (7).
In Eq. (9), the field ¢ is not arbitrary, but it is self-
consistently determined from Eq. (4b) with the corre-
sponding boundary conditions requiring that the field
and its derivative be continuous at the points |z| =
x1,2-
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3. SELF-CONSISTENT SOLUTION
TO THE BAG EQUATIONS

That, in the closed intermediate region II of finite
dimension d = xo — x1, the self-consistent Eqgs. (4)
have a simple and physically meaningful solution,
which would be inappropriate in an unbounded space,
is an important feature of the present bag construc-
tion. In order to obtain this solution in the most
consistent way, we first make, in region II, the chiral
Skyrme rotation

Y = exp(—iv5¢0/2)X; (11)

whereupon Eq. (9) and the boundary condition (7) go
over to

1
<w - 590/) Xw = _Z.OCX{_U + ﬁMXw (12)

and
iy X (£22) + xw(Ez2) =0,
respectively.

[t is obvious from (12) and (13) that, if we postu-
late a linear behavior of the scalar field in region II,

(14)
then Eq. (12) is converted into the equation for mas-
sive free fermions,

vy = —iax' + BMYx,

(13)

¢’ = const = 2,

(15)

with eigenvalues v = w — A. Thus, we can see that,
as was conjectured from the outset, fermions that are
massless in region [ acquire, owing to the interaction
with the field ¢, a mass M in region II, whereby
there arises the intermediate phase describing mas-
sive quasifree constituent quarks. From the condition
requiring that the scalar field be odd and be contin-
uous together with its derivative on the unification
[ + II, we obtain

o(x) = 2Az. (16)

Equation (15) possesses the obvious sign sym-
metry, v — —v. The unitary transformation of the
fermion wave function corresponding to this symme-
try has the form

X = X =imX (17)
The axial-current density
Js = ipyse P = ixTyx (18)

does not change for the sign-symmetric states;
that is,

s = ixTyx = iXTmx = Js. (19)
However, the corresponding property for the fermion
spectrum in the problem being considered does not
generally follow from the sign symmetry v — —v in
Eq. (15), because this equation is valid only in region
Il and because the spectrum is determined from the
solution to the Dirac equation on the unification I 4
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[1. By directly solving Egs. (8) and (9) with allowance
for the boundary conditions (7) and relation (10),
we find that, in general, the spectrum satisfies the
equation

exp(4diwxy — 2i¢p1) (20)
1— —szdM i(vtk) szdM M—i(v—k)
_ —i—F) M—i(v k)
1 —szdw 1 _ o2ikd MFi(v+k) M+Z(V+k)
M+i(v+k) M+i(v—k)

where v2 = k? + M? and ¢, = (7). By analyzing
Eqg. (20), it is straightforwad to show that the fermion
spectrum has the sign symmetry v — —v if

(21)

where s is an integer, because, at such values of the
derivative of the field ¢(x) in region II, the left-hand
side of Eq. (20) reduces to (—1)® exp(4ivzy). In our
case, however, 1 = 2Ax1; therefore, Eq. (21) leads
to a unique possibility, s =0, but the parameter A
remains arbitrary. This is the point where our version
of the three-phase model differs fundamentally from
the case considered in [21], where 1 = 0 by virtue of
the condition that the boson condensate vanishes in
region | and where there arises a set of solutions with
different s # 0, but Eq. (21) then leads to a nontrivial
relation between A and z;.

We now note that, in region II, we have, on the
right-hand side of Eq. (4b), which determines ¢ (z),
the expectation value of the C'-odd axial current

1. 1
Js =3 [, iy5e5%2p] = 3 X, ivx]

By x, we mean here the second-quantized Dirac field
in the chiral representation (11),

t) = Z ann(x)e

where x,(z) stands for the normalized solutions to
the corresponding Dirac equation and b,, and b, are
the fermion creation and annihilation operators obey-
ing the canonical anticommutation relations

{bn, A {bn, b }+ =0.

By definition, averaging over a given bag state in-
volves averaging over the filled sea of negative-energy
states (w, < 0 +) and the possible filled valence-
fermion states with w,, > 0, which are omitted for the
time being, since special attention will be given below
to their status. As a result, we arrive at

<J5> J5 sea < Z -5 Z) Xn i1 Xn- 25)

wn <0 n>0
[t should be emphasized that, in formula (25), the
partition into sea and valence fermions occurs in ac-
cordance with the sign of their eigenfrequencies wy,,

4 1 — 21 = s,

(22)

—twnt
b

(23)

(24)

= 5nn’ )
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which differ from the sign-symmetric frequencies v,
by a shift of A:

(26)

therefore, they do not possess w — —w symmetry. If,
however, we additionally assume that v, and A are
such that, for all n, the signs of v, and w,, coincide—
that is, none of v, changes sign upon a shift of A—the
condition w, 2 0in(25)is equivalent to the condition
v, 20. By virtue of relation (19), we then have

<‘]5>sea = <% Z _% Z) X:zri’Yan = 0. (27)

v <0 vn >0

Wp = VUp + A

But this in turn means that Eq. (4b) in region II
reduces to ¢” = 0; this is in perfect agreement with
our original assumption that ¢/(x) = const in region
[1. In other words, we obtain a solution to the coupled
Egs. (4) in region II in the form of the linear func-
tion (16) for the scalar field and expression (26) for the
fermion energy spectrum, where v, is in turn deter-
mined from Eq. (20) with substitution of exp(4ivz)
for the left-hand side.

The conceptual content behind the above solution
involves the following key points. The first of these is
the finiteness of the dimension d of the intermediate
region since, for an unbounded region II, the solution
in (16) is physically unacceptable for obvious reasons.
In our case, however, the dimension of the interme-
diate region is always finite by construction and the
boson field ¢(x) acquires a soliton character in region
[1I owing to the self-interaction V(y). Here, the
following circumstance manifests itself once again:
in (1 + 1)-dimensional space, the chiral interac-
tion ve?5¥1) alone cannot impart a soliton charac-
ter to the dynamics of the scalar field only through
fermion-vacuum-polarization effects—an additional
boson self-interaction is necessary [25].

The second factor has a more profound reason and
is associated with the use of the v — —v symmetry in
calculating the expectation value of the axial current
Js over the Dirac sea. The point is that, for expecta-
tion values of this type, another physically meaningful
definition in terms of the 7 invariant is possible. This
definition, which is often used in studying fermion-
vacuum-polarization effects [26], has the form

|1 o ,
(Js)sea = limy [5 > erlrliivixn (28)

wn<0

1 _ .

B 5 Z € wnnXZZleXn] .
wn>0

Since the spectrum w,, is not symmetric, expression

(28) already is no longer zero, in contrast to the
expectation value in (27). By taking into account the
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relation between w,, and v,,, we can recast expression
(28) into the form

. . —Unn .+
71713(1) [smh An (Z e Xr Z’Yan)] . (29)
vp >0

In the limit n — 0, the sum over v, in (29) diverges in
proportion to 1/n; therefore, the quantity (J5) appears
to be proportional to A and does not vanish as long
as A # 0. The right-hand side of Eq. (4b) will then
no longer be zero, and linear functions will not be a
solution to this equation in region II.

Moreover, this is so for other fermion expecta-
tion values—in particular, for the vacuum expectation
value of the fermion charge. Owing to the fact that
the fermion spectrum is discrete, the result that our
computational procedure yields for the vacuum ex-
pectation value of the charge vanishes for the same
reason as the axial current does. Namely, if use is
made of the C'-odd expression for the charge,

Q=3 [alwtul-

if the same conditions of correspondence of the signs
of w,, and v,, are assumed for all n, we obtain

(30)

@=@u=y > 5> 6
wn<0 wn>0
1 1
=32 752 =0
vn <0 vn>0

Butif (@), is determined in terms of the n invari-
ant, we have

1
— i - E —lwn|
<Q>sea - }]E}% [2 e n

wn<0

1 o
_526 77]#0

wn>0

(32)

for A # 0, because there is no w — —w symmetry.
However, there are serious arguments in favor of
relations (27) and (31) as those that form the most
adequate basis for calculating expectation values over
the sea in our problem. First, the n invariant is in
fact the measure of the asymmetry of the Hamiltonian
rather than the fermion charge in the ground state.
Second, other ways of regularization of divergent
sums of the type in (J5) and (Q), apart from the
temperature regularization, are possible, and—this is
the most important point—there are no grounds to
state that the regularized expressions (28) and (32)
will lead to the required quantities forn — 0. It is easy
to exemplify the situation where the parameter depen-
dence in a sum or in an integral is not continuous—
in particular, F(k) = [, dx sinkxz/x = /2 for any
k > 0, but F(0) = 0—that is, the limit of the integral
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for £ — 0 and its exact value at k = 0 are different in
this case.

Let us further consider an adiabatic change in the
gradient A of the boson field in region II from A = 0.
At the initial instant, we have w, = v,; therefore,
all C-odd expectation values over the fermion sea
obviously vanish: ( )., = 0for any reasonable way of
regularization. Further, we consider that, in our case,
the fermion spectrum is purely discrete and that the A
dependence of the spectrum is continuous; therefore,
all wy, will retain sign for sufficiently small values of \.
On the basis of general considerations, it can then be
conjectured that, as previously, we have { )., =0,
although the spectrum w,, is no longer symmetric,
with the result that the n invariant does not vanish.
Therefore, we have every ground to believe that, for
C-odd quantities (such as the axial current and the
vacuum fermion charge), the temperature regulariza-
tion can give, in this case, values not corresponding to
the physics of the problem. It should be emphasized
here that this situation is markedly different from
that in the case of an unbounded space, where the
spectrum is continuous—this is the reason why, in
the latter case, any arbitrarily small variation in A
leads to changes in the density of states and, hence,
in all expectation values, whereby there arises the
phenomenon of induced fermion numbers [26].

Finally, we can try to check numerically whether
the solution in (16) is self-consistent. The problem is
then solved on a lattice; therefore, the number of all
degrees of freedom and, as a consequence, the num-
ber of fermion levels are inevitably finite in this case,
so that no regularization is required. The results of the
calculations demonstrate that the linear dependence
(16) and vanishing expectation values represent a
unique self-consistent solution to this problem.

This result can be interpreted as follows. In our
case, the boson field is continuous everywhere (it is
nonzero in all regions, including region I) and is topo-
logically equivalent to that odd soliton which would
occur in the absence of fermions only owing to the
self-interaction V(). For this reason, the presence of
spatial regions that contain fermions (regions [ and II)
and their dimensions has no effect on the topological
charge of the boson field. On the other hand, the
baryon charge of a hybrid bag is by definition the sum
of the topological charge of the boson soliton and the
fermion charge of the internal bag regions. The latter
is zero in our case; therefore, the baryon charge of
the bag is determined exclusively by the topological
charge of the boson field and, as is required by the
ideology of hybrid models, is independent of the di-
mensions of regions I and I, which contain fermions.
Thus, we can see that, in our approach, a hadron
essentially represents a particle formed by a boson
soliton to which a fermion bag is pasted by means
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of interaction in the intermediate region II. We also
note that, although the quantum numbers of this
composite particle are determined by the soliton, this
does not mean that the filled positive-energy fermion
levels must be necessarily absent. This will be so
only at sufficiently small values of the parameter .
With increasing A, the negative levels w, = —|vy,| + A
will inevitably begin to go over to the positive section
of the spectrum. The change in sign of each such
level will lead to the decrease in (Q),., by one unit
of charge. But if we fill the arising positive vacant
levels with a valence fermion, the sum Qya + Qqe, Will
be zero, as previously. Analogously, the total axial
current will be equal to Jy, + Jg, and will not change
either, which in turn ensures zero right-hand part of
Eq. (4b) and preserves the status of the linear func-
tion (16) as a self-consistent solution to the equations
of the model. In other words, the ground state of the
bag is by definition the state in which all ,, < 0 levels
are filled (the inequality is strict, since v = 0 levels can
never exist in the case being considered). Therefore,
the presence or the absence of valence fermions in
our construction of the bag ground state depends on
the relationship between X and |vy, |min and appears to
be a dynamical characteristic like other bag parame-
ters (dimensions and mass), which are determined by
minimizing the total bag energy.

4. TOTAL BAG ENERGY

Thus, the boson soliton has, in our case, the form
of the linear function (16) on the unification I 4 II.
Upon changing the scale of the field according to
the rule ¢ — /g, this function is matched with the
soliton solution (5b) in the external region by im-
posing the continuity condition on the function and
its derivative. In order to avoid going into details
of the structure of the field seli-interaction V' (¢), we
assume that, in region III, we can use the asymptotic
expansion of solutions to Eq. (5b) at large |z|; that is,

ool () = g (1—Ae™™), 2>y,  (33)

where m is the meson mass in the external bag re-
gion and, for z < —x2, the field ¢_ () is determined
by considering that it is odd. The coefficient 7/g
indicates that we are dealing with a phase soliton;
its topological charge must be an integral multiple
of 27/g, since this is the period of the bare chiral
interaction v exp(iy59¢)1. The constant A is deter-
mined by requiring that the boson field be continuous
at the points x = +x5. It should be noted that, in the
external region, there can never be chiral symmetry
for the following two reasons: the phenomenology
of strong interactions, on one hand, and the special
features of (1 + 1)-dimensional scalar models, where
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the presence of a mass is a necessary condition for the
formation of the required soliton profile, on the other
hand.

The matching conditions at z = £ x5 yield
2 o =1 (1 — Ae_m“) , (34a)
2\ = mmAe” M2, (34b)

From here, we find that the parameter A\ and the
dimension of the bag are related by the equation

2= m

T 35
mxg + 1 (35)
The total energy of the boson soliton can now be
represented in the form

7'1'2 m

E,=———. 36
Y g2 may +1 (36)
The total bag energy is the sum of the total energy of
the boson soliton, E,, and the fermion contribution
Ey,
By = Ey + Ey,. (37)

As can easily be seen from (36), the energy of the
boson field changes quite smoothly and decreases
in the limit o — oo; it does not therefore gen-
erate a vacuum pressure, although, in the region
[+1I, the gradient ¢ gives rise to the constant
positive contribution ¢"2/2 = 22 to the energy den-
sity. This contribution could be identified with the
vacuum pressure B in the standard hybrid chiral
model.  Actually, this is an artifact of the one-
dimensional character of our problem. With in-
creasing bag dimension, the gradient ¢ in the region
[+1I will always decrease according to (35) at
the same rate for any number of space dimen-
sions; at the same time, the volume of the region
[ + Il in the one-dimensional case increases only as a
linear function, not compensating for the decrease in
A, as would occur in two and three dimensions. Thus,
we can state that, in the (1 + 1)-dimensional case, a
nontrivial dependence of the total bag energy E},,q on
the parameters of the problem can stem only from the
fermion contribution to the energy F;. In general, the
fermion contribution is the sum of the term associated
with the Dirac sea of filled negative-energy states and
the the term associated with positive-energy valence
fermions,

E¢ = By + B, (38)

For the bag ground state that has the structure de-
scribed in the preceding section, the sum in (38)
can be reduced to a single universal expression by
considering that, in the charge-symmetric case, the
energy of the Dirac sea must be determined as [25, 27]

1 1
eazgzwn_izwn- (39)

wn<0 wn>0
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If, in going over from wy, to v,, the sign is conserved
for all n, there are no valence fermions in the bag
ground state (otherwise, it is impossible to ensure the
vanishing of the expectation values of the charge and
of the axial current). From Eq. (39), we then obtain

E,=E :—Z —vp + A) (40)
vn >0
- = Z Un + A) Z Vp.
Vn>0 vp >0

But if the parameter A is such that the initially
negative-energy level w, = —|v,| + A changes sign
and becomes a filled valence state, it is convenient to
calculate Ey, in two steps. First, we take into account
the contribution to E,, from all |v,| > A states. By
analogy with (40), this contribution is given by

(41)

To this expression, we must add the energy of the
arising valence fermion, Ey, = —|v,| + AK, and the
contribution of the positive levels w,, = £|v,| + A to
the energy of the Dirac sea; for their sum, we have

1
By = —|val + A= Sl(=lval + ) (42)
+ ([val + V] + Elg = = ) v
vn >0

This expression is identical to that in (40), which
which was obtained for the energy of fermions in the
absence of filled valence states.

For a further analysis, we introduce a set of new
parameters in terms of which the total bag energy
is expressed in the most convenient form. First, we
introduce the dimensionless quantities

a=2Mzy, [=2Md, p=2Mzxs (43)
and analyze in detail Eq. (20), which determines the
levels v,,. It has two branches of roots; of these, the

first corresponds to real values of k£ and, as expressed
in terms of the parameters « and 3, has the form

tan (oz\/ 1+ x2> =
241

x cos Bz + sin fx

(44)

— cos fx + zsin Sz’

where the dimensionless quantity z, which is related
to k by the equation k = Mz, so that we have v =

M+/1 + 22, appears to be an unknown. The domain
of real-valued roots z,, is the semiaxis 0 < z,, < oo,
since, by virtue of the finite dimensions of the region
where the fermions reside and by virtue of the bound-
ary conditions at the ends, the fermion wave functions
are in fact standing waves degenerate in the sign of k,
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the corresponding frequencies v, lying in the range
M <y, <oo.

The second branch corresponds to purely imagi-
nary k =iMz, so that v = Mv1—22 (0 < 2 < 1),
and can be obtained from (44) by means of an analytic
continuation:

x x cosh Bx+sinh Sz
tan (ay/1-22) = .
an e v V/1—22 cosh Bz+x sinh Bz —1
(45)
For the second branch, v, changes within the range
O<vy, <M.

Thus, v, and E,, appear to be functions of two in-
dependent dimensionless parameters a and 3, whose
sum determines the dimension p of the confinement
region in dimensionless units,

a+ B =np. (46)
Further, it is convenient to factor the constituent
quark mass M out of the sea energy and the fermion
frequencies in the form of a dimensional factor by

setting
en = Un/M = /14 22, (47)
so that Ey, = —M ) e, and to introduce the dimen-

sionless ratio of two mass parameters of the theory,
ju=m/2M, (48)

and the dimensionless total energy &pag = Ehag/M.
For the last quantity, we eventually have the expres-
sion

w2 2u

Epae = Ep(a, B) + — .

Here, o and ( are independent dimensionless pa-
rameters specifying the dimensions of the internal bag
regions, while p is determined from (46). But these
are the points where the present version of the three-
phase model differs substantially from the version
considered in [21], where o and 3 were unambigu-
ously determined by p and p. Thus, the total bag
energy nontrivially depends on three dimensionless
parameters pu, «, and 3. The parameter p is fixed by
specifying the masses m and M, while the optimum
values of a and 3 for the bag ground state at given u
are determined by minimizing the total energy, which
we now proceed to study. For this, we must first
regularize the dimensionless energy of the fermion sea
in £y. This quantity obviously diverges at the upper
limit; therefore, it must be renormalized with the aid
of an appropriate subtraction procedure.

We begin by analyzing the asymptotic behavior
of the roots of Eq. (44) in the ultraviolet region,
where x,, > 1. For this, it is convenient to recast this
equation into the form

1
sin(a\/l—i—xQ) 25( 1—|—x2+:1:>
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1
xsin(a 1+x2+ﬂx+’y> +§(\/1+x2—x)
xsin(a\/l—FxQ—ﬂx—'y),

where v = arctan z. From (50), we obtain
/247

znle,f) = = (51)
(=) Lsin[(7/2+mn)a/p]+1—a/2
+ /241N +0/n7).

In expression (51), the first term leads to a
quadratic and a linear divergence in ) ey, while
the second term involves a logarithmic divergence;
that part of the second term which contains the sine
does not lead to a divergence because of its oscillatory
character. Thus, the renormalization problem re-
duces to compensating, in the asymptotic expression
(51), the first term and the divergent contributions in
the second term. As in any procedure of this type,
the first step consists in using the obvious fact that it
is not energy proper but the difference of two energy
values that has a physical meaning. For our bag, it
seems the most natural to choose, as the reference
point for &y, the energy of the sea of free fermions con-
tained in the same volume p. However, this subtrac-
tion method is inappropriate in our case, since, upon
adding all meaningful counterterms, this energy ap-
pears to be larger than the energy of all configurations
with 8 # 0 by an infinite value (see [21]). The pres-
ence of an infinite energy barrier between regularized
Ey(a, B) and the sea of free fermions is in line with the
intuitive idea that free fermions can hardly be a good
first approximation in the confinement problem.

As a result, we have a situation where there is
no unambiguous prescription for choosing the sub-
traction point in renormalizing £y (v, ), this actually
being a feature common to the majority of bag models
[10, 12, 28]. In the classical renormalization proce-
dure, arbitrariness associated with the ambiguity in
choosing the subtraction point is removed by fixing
the physical values of the relevant number of param-
eters. For obvious reasons, we will not address this
problem in our toy (1 + I)-dimensional model; in-
stead, we consider the most direct method that makes
it possible to compensate for the divergences in the
original sum (42) and which preserves the continuous
dependence of the result of subtraction on the pa-
rameters. The method essentially consists in that we
subtract, from ), &,, another divergent sum where
the general term is identical to the divergent part of
the asymptotic expression (51) and where summation
is performed over the same index n. As a result, we
obtain the finite quantity

fee S [€n_ <7r/2:m+7r1/;ifn>] )

n
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In this case, no counterterms must be added, be-
cause all divergences have already been compensated
by the subtracted sum. It is natural that the physical
meaning of this procedure is lost to some degree. It
should be noted, however, that only in the (1 + 1)-
dimensional case is the theory with the interaction
L1 = GY(o + iysm)y (super)renormalized and do all
counterterms have a clear physical meaning. As one
goes over to a larger number of spatial dimensions,
this is no longer so. Therefore, the procedure for
compensating the energy divergences that is based
on formula (52) should not be considered as a pro-
cedure motivated by no reasons. For the hybrid chiral
model, the problem of extracting a finite part from the
divergent energy of the Dirac sea was investigated in
greater detail elsewhere [28—31].

We now proceed to analyze the regularized total
bag energy
~ ™ 2u
Evae = Ep(a, B) + —
bag = Ey (v, B) Zap 1

as a function of the parameters o and J. The first
property of &, follows from the analysis of the con-

2

(53)

tribution to ((jw from the convergent sum of a logarith-
mic order arising from the sine term in the asymptotic
expansion (51). We recast it into the form

(60),,,(@8) (54)
_ 1 Lsin [(ma/p)(n +1/2)]
7; n+1/2
and then use the well-known relation
= psin [z(n+1/2)]
;)(—1) il =Intan(w/442/4). (55)

[t can easily be seen that the sums in (54) and (55)
involve the general term of the same form. For z — ,
the sum in (55) diverges in proportion to — In(7 — z),
whence it follows that, for ma/p — m—that is, for
B — 0 or for « — oo and finite f—the sum in (54)
behaves similarly:

(&), (@8 =~ 1a(3/a), Bla—0. (56)

Thus, the regularized fermion energy (52), together
with total bag energy, shows a logarithmic singularity
for 3 — 0 and, at the same time, a logarithmic growth
for &« — oo and finite 3. From the occurrence of a sin-
gularity for g — 0, it follows that, in fact, the three-
phase bag model being considered does not feature
a smooth transition into the two-phase configuration
for d — 0, although there was formally such a pos-
sibility at the level of the original Lagrangian (2). In
other words, the radial extension of the boundary in
such a three-phase model can be arbitrarily small but
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not equal identically to zero—to some extent, this
corresponds to general physical ideas of the structure
of multiphase systems.

The quantity &, grows for 3 — oo and finite «
as well. In this case, ma/p — 0, since p inevitably
grows together with [3; therefore, the logarithmic
term in (54) becomes negligibly small, so that the
next terms of the expansion in 1/n become dominant.
Technically, it is more convenient, however, to make
use of the fact that, for p — oo, the fermion spec-
trum becomes quasicontinuous everywhere, with the
exception of a narrow vicinity of the Fermi surface
(zero of energy). This makes it possible to go over
from sums over z, to an integral with respect to
x. In particular, an analysis of the distribution of
roots of Eq. (44) reveals that, in this limit, ) &, is
approximated by the (divergent) integral

ana /dx\/1+x2(ﬁ+1+ 5 (57)

562

22 + sin® (a\/l—l——xQ>
sin (a\/l—i——x?) Cos (a\/l—l——xQ)
- V14 22 (:c2 + sin? (a\/H—:c?>) >

For the sum subtracted in (52), we obviously have

Z (w/Q: ™ Wl/;ffﬂ)

n

p 1+ /2
%%/dx(:c—k o >

[t can easily be seen that the integrals in (57) and (58)
involve the common divergent part

%/dm (pr+1/z + B/2x),

so that their difference appears to be a convergent
integral, as it must in accordance with the subtraction
procedure. In this difference, taken with the (cor-
rect) inverse sign, 3/8wz? is the leading term in the
integrand. It is owing to this circumstance that, in
&y and, accordingly, in &,s, there arises a positive
contribution proportional to 5. Finally, it immediately
follows from the analysis reported in [21] that, for
a — 0 and finite 3, there are no singularities in &y,

and &p,g. It was shown in [21] that renormalized &y,
at o = 0 and at finite 8 # 0 always differ solely by a
finite value. In this region, the soliton energy £,—
in particular, the values of the parameters p and g—
therefore begins to play an important role. To be more
specific, we note that, if u is not overly small, the ¢
dependence of &, is such that, at sufficiently small g,

+ o

(58)
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Fig. 2. Isolines for Epag(av, B) at w = 0.25. The minimum at o >~ 40—50 and 8 =~ 0.4 is clearly seen.

Epag grows sharply for o — 0 and finite 3, whereby
the presence of a pronounced minimum is ensured.
On the contrary, a considerable increase in g or the
vanishing of p (;# — 0) can render the soliton energy
&, negligibly small (nearly constant) over the entire
region of variations in the bag dimensions. In this
case, there can be no minimum in the total energy at
all.

A numerical calculation fully confirms the above
qualitative behavior of &y and &,,,. However, the

presence of a minimum in the total bag energy as a
function of o and B and, hence, the existence of a

PHYSICS OF ATOMIC NUCLEI Vol.64 No.9 2001

stable ground state of the bag at given values of
and g can be proven or disproved only via a numerical
calculation because there is no singularity in &,, at
a = 0. In the present study, such a calculation was
performed at p = 0.25, which approximately corre-
sponds to the ratio m /2mg if the constituent quark
mass is taken to be 300 MeV and if g = 1. Qualita-
tively, the behavior of &,g as a function of a and 3
is illustrated in Fig. 1, whence we can see that there
is only one minimum in the total energy at nonzero
values of a and . Figure 2 shows relevant isolines,
which make it possible to observe this minimum more
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Fig. 3. Diagram of fermion levels for the bag ground state.

clearly. The values of o and 3 at the minimum differ
approximately by two orders of magnitude; that is,
the dimension of the intermediate region proves to be
much less than the dimension of the internal region—
to some extent, this transition region can be treated as
a smeared boundary between the asymptotic-freedom
region and the purely color-singlet phase. For this
configuration, Fig. 3 displays the diagram of fermion
levels in the vicinity of zero. It can be seen that, in this
case, the ground state has one filled positive-energy
valence level.

5. CONCLUSION

The objective of the present study has been to
construct a consistent meaningful hybrid chiral model
in which it is not assumed, from the outset, that
the fermion and the boson (meson) phase are exactly
equivalent. Our results have revealed that such a
model can indeed be formulated in quite a consistent
way and, in some points, can prove to be a means that
describes low-energy hadron physics more efficiently
than traditional hybrid chiral models.

First of all, we note that the original formulation
of the model is a strictly local field theory and that,
despite the abundance of classical solutions, which
must be taken into account, covariance is broken here
only spontaneously. This breakdown can be removed
by means of the method developed in [23]—that is,
by using covariant group variables of the center of
inertia of the localized quantum-field system. Among
the main advantages of our approach, we would like
to mention the following: (i) The chiral boundary
conditions are specified in a more correct form such
that all components in the Lagrangian have a clear
physical meaning. (ii) [t leads to the existence of an
intermediate phase that describes quasifree massive
constituent quarks. (iii) Physically, the resulting be-
havior of the total energy of the bag as function of its
dimensions is quite acceptable.

In addition, the fermion-confinement condition
embedded in the model from the outset is manifested
more clearly therein. This is reflected, in particular,
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in the fact that there is no need here for introducing
a vacuum-pressure term (which, in the standard
approach, is incorporated in the model on the basis
of ad hoc considerations) since, in the case being
considered, the polarization of the Dirac sea alone
ensures an indefinite growth of energy at large dis-
tances.

A feature that distinguishes the problem consid-
ered here from that which was addressed in [21] is the
following. Here, the condition of a nonzero boson-
condensate density in the internal bag region radically
affects the number of possible bag configurations re-
alizing a local minimum of energy. In[21], the vanish-
ing of the boson field in the internal region led to the
emergence of an infinite series of such configurations
that had indefinitely growing dimensions and energy
and which differed from one another by the value of
the gradient A of the boson field in the intermediate
region. In the present case, there is not more than
one such configuration, if any, whereas high-energy
bag states can be obtained only with the aid of extra
valence fermions. Thus, we can see that the three-
phase modification of the hybrid bag model admits
a wide variety of types of description of composite
particles such as hadrons and of their excited states.

[t is necessary to emphasize once again that the
problem of choosing a method for calculating expec-
tation values over the Dirac sea for fermion bags is
of fundamental importance. The method used here
is based on the discrete character of the fermion
energy spectrum and is capable of producing, via
some obvious arguments, quite a simple solution to
the self-consistent bag equations in the intermediate
region. It should be recalled, however, that, despite
the above argument in favor of precisely this method
for computing expectation values over the Fermi sea,
there are no grounds to reject, out of hand, alternative
approaches like those that are based on temperature
regularization. The problem of pinpointing a method
that is the most adequate to the physics behind the
problem can be resolved only by means of detailed
investigations into realistic models.
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Abstract—The large-distance behavior of adiabatic hybrid potentials is studied on the basis of the QCD
string model. The calculated spectra are shown to result from the interplay of potential-type longitudinal

and string-type transverse vibrations. © 2001 MAIK “Nauka/Interperiodica”.

General arguments from QCD and lattice data tell
that the theory, even quenched in quarks, possesses
a nontrivial spectrum, so that effective degrees of
freedom for a constituent glue should be introduced
to describe QCD in the nonperturbative region. As far
as we know, the possibility for mesons with a gluonic
lump to exist was first considered in [1] in 1976.
Modern wisdom tells that the area-law asymptotic
behavior of the Wilson loop implies a kind of string
to be developed between a quark and an antiquark
at large distances, and it is natural to identify the @
system connected by the string in its ground state
with a conventional g meson, while string vibra-
tions are responsible for gluonic (hybrid) excitations.
This picture, though physically appealing, does not
follow directly from QCD, and one relies on models
to describe these excitations. There are two main
ideas on how to construct such models. One is to
consider pointlike gluons confined by some potential-
type force [2, 3], and the other is to introduce string
phonons [4].

In principle, the best way to discriminate between
these two possibilities is to compare predictions with
experimental data on hybrid mesons. Indeed, there
are many indications that hybrid mesons have already
been found, but conclusive evidence has never been
presented, nor have alternative explanations been
completely excluded [5].

On the other hand, lattice calculations are now
sufficiently accurate to provide reliable data on the
properties of soft glue and to check model predic-
tions. In this respect, recent measurements [6] of
adiabatic hybrid potentials are of particular interest.
These simulations measure the spectrum of glue in
the presence of a static quark and a static antiquark
separated by some distance R. Not only are these

*This article was submitted by the authors in English.
"e-mail: yuliaGheron.itep.ru
" e-mail: kuzmenko@heron. itep.ru

potentials involved in heavy-hybrid-mass estimations
in the Born—Oppenheimer approximation, but the
large- R limit is important per se, since the formation
of a confining string is expected at large distances,
and direct measurements of string fluctuations be-
come available. It is our purpose to investigate the
large-distance behavior of adiabatic potentials in or-
der to establish the kind of effective string degrees of
freedom that are excited at large distances.

We perform these studies within the QCD string
model. This model deals with quarks and pointlike
gluons propagating in the confining QCD vacuum
and is based on the method of vacuum background
correlation functions [7]. The QCD string model
was successfully applied to conventional mesons [8],
hybrids [9, 10, 7], glueballs [11], and gluelump (gluon
bound to the static adjoint source)[12].

The QCD string model for gluons is derived
from perturbation theory against the nonperturbative
background, developed in[13]. This formalism allows
one to introduce constituent (valence) gluons as
perturbations against the confining background. The
latter is given by a set of gauge-invariant field-
strength correlation functions that are responsible for
the area law. The main feature of this approach is that,
in contrast to the aforementioned models, one is able
here to distinguish clearly between confining gluonic
field configurations and confined valence gluons.

The starting point is the Green’s function for
the gluon propagating in a given background field
By, [13],

Gy (2,y) = (D*(B)dw, + 2igFu (B)™', (1)
where the covariant derivative D§*(B) is

D§Y(B) = 8ca0y + gfe B8, (2)

The term proportional to Fj,, (B) is responsible
for the gluon spin interaction; in these first studies,

1063-7788/01/6409-1716$21.00 © 2001 MAIK “Nauka/Interperiodica”
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we neglect it, since it can be treated as a perturba-
tion [11, 12]. The next step is to use the Feynman—
Schwinger representation for the quark—antiquark—
gluon Green’s function [10], which is reduced, in the
case of a static quark and a static antiquark, to the

form
o0

Glagug) = [ds [D2yexp(=K)W)s, (3
0

where K, = i/ z':g(r) dr and where the depen-
0

dence on the vacuum gluonic field B, is entirely
contained in the Wilson loop

W= trAa@ M) (v, zy).  (4)
Here, ®, and ®; are the parallel transporters given by

Tq

P, —PeXpiQ/Bu(zq)quw (5)
Yaq
Ya

®; = Pexpig / By(2)dzg,.
g

In (5), the integration is performed along the classical
trajectories z4, = (7,R/2) and z5, = (1,—R/2) of a
static quark and a static antiquark, P means path
ordering,

ab
(I)F (ygaxg) (PeXng/B (Zg) dzgu) , (6)
Iy

a and b are adjoint color indices, A\, are the Gell-
Mann matrices, and the contour I'y runs along the
gluon trajectory z,.

The main assumption of the QCD string model
is the minimal area law for the Wilson loop average,
which yields, for the configuration in (4), the form [10]

N2 —
Wi = — o(S1+S2)),  (7)
where S7 and Sy are the minimal areas inside the
contours formed by the quark and gluon and by the
antiquark and gluon trajectories, respectively, and o
is the string tension.

With the form (7) for (W)p, the action of the
system can be immediately read out of the represen-

tation (3),
T .9
~ i
A / dT{ L (8)
0

dB1\/ (ruh)? — iu?

L exp(—

|
Q
o _
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—a/ﬁ@¢mm%y—@wg,

0

where the minimal surfaces Sy and Sy are parametrized
by the coordinates w;, (7, 3;), i=1, 2, w;, = Ow;, /0T,
w;u = 8ww/8ﬂl

In what follows, the straight-line ansatz is chosen
for the minimal surface:

Wi0 = T, :i(l—ﬂ)%
The quantity 4 = p(7) in expression (8) for the action
is the so-called einbein field [14]; here, one is forced to
introduce it, since this is the only way to obtain mean-
ingful dynamics for a massless particle. Moreover, we
introduce another set of einbein fields, v; = v;(7, 5;),
to get rid of the Nambu—Goto square roots in (8)[8].
The resulting Lagrangian takes the form

W12

+Br. (9)

2 2,.2
H o
L=-E42 _ 10
5 T3 You (10)
0

/ / 452 (1 - 313).
0
. 1 ) R
fo=7"——5-(r12-1)°% rma=r+.
1o 2

[t is clear from Eq. (10) that the einbein field p
can be treated as the kinetic energy of the constituent
gluon and that the einbeins v;(7, ;) describe the
energy-density distribution along the string. These
quantities are not introduced by hand, but they are
calculated in the proposed formalism. Indeed, since
no time derivatives of the einbeins appear in La-
grangian (10), it describes a constrained system, with
the equations of motion

oL oL
— =0, —— =0
O ovi ()
playing the role of second-class constraints.

Now, one obtains the Hamiltonian H = p -t — L,

with the result

(11)

2.2

H:m+ﬁ+/ 7h (12)

2 21/1
0
1 - 1
1% 1%

/dﬁ2—+/dﬁlé+/dﬁ2§2,
0 0 0
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p2

H=— - 13

O T 2ut Ji+ ) (13)
1 (p-11)?

J J

+2A(M+J1+J2){ 2 gt )

(p - o)

+ 5 J2(p + J2)
T3
2J1 J
i %mm)(p-rl)(p-m)} ,
SR
2
IrM-r
A= (p+J1)(p+J2) - J1J2%,
T3
1
Ji= /dﬂi FBui(Br). i=1.2.
0

Since we deal with a constrained system, the extra
variables p and vq 2 should be excluded by means of
the conditions

H H
OH _o O __,

o ovi(B;)

before quantization; the extrema of the einbeins
should be found from Eq. (14) and substituted into
the Hamiltonian. Such a procedure is hardly possible
analytically with the complicated structure specified
by Egs. (12) and (13) even at the classical level;
after quantization, these extremal values of the ein-
beins would become nonlinear operator functions of
coordinates and momenta, with inevitable ordering
problems arising. In what follows, we use the approx-
imation that treats p and v; as e-number variational
parameters. We find the eigenvalues of Hamiltonian
(12) as functions of p and v; and minimize them
with respect to the einbeins to obtain the physical
spectrum. This einbein method works surprisingly
well in the calculations based on the QCD string
model, with the accuracy of about 5—10% for the
ground state [15].

(14)

Even with this simplifying assumption, the prob-
lem remains complicated because of the presence of
the terms J; 2 responsible for the string inertia. Sup-
pose for a moment that one can neglect these terms in
the kinetic energy (13). The Hamiltonian then takes
the form [7, 10]

2 2..2
p H o
N S d 15
2H+2+/512V1 (15)
0
1 9 o 1 1
o-r 11 1%0)
df,—2 dp — dfy—=
+/522V2+/512+/5227
0 0 0
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which allows one to eliminate einbeins and to arrive
at the potential-model Hamiltonian

H = \/p? 4+ or| + ors. (16)

Let us now estimate whether the disregard of
string inertia is justified. To this end, we find the
spectrum of the Hamiltonian given by (15) and (16)
using the einbein method described above. It is given
by the set of equations

_ 4(n +3/2)%0?
En(R) = pn(R) + TR (17)
1602 (n + 2)4 = ul(R) (4<n + ;)2 + R%%(R))
with v; independent of 3;,
B _ 2(n+3/2)%**
vip(R) = V2n(R) = W? (18)

where n=n; +n,+A, A=|L-R/R| being the
projection of the orbital angular momentum onto the
z axis (z || R). Note that, while the angular momen-
tum is not conserved in the exact Hamiltonian (16), it
is a good quantum number in the approximate einbein
method: we have compared the spectrum of the ex-
act and the einbein-field Hamiltonian and found that
the angular momentum is conserved in the potential
problem (16) to within 5%. The same phenomenon is
observed in the constituent gluon model [3] and is the
consequence of linear potential confinement.

Let us first consider the small-R (R < 1/1/0)
limit of the set of Egs. (17):

1/2
E,(R) = 2%%6'/ (n+3/2) " ()
o3/2 R2
+ )
23/2(n + 3/2)1/2
1/2 0.3/2R2
_ 9l/2_1/2 _
pin(R) = 2125172 (n 4 3/2) s 3D
) 1/251/2 3/2 p2
V12n(R):(n+3/) o 30°/°R .
’ 21/2 27/2(n + 3/2)1/2
The last line in (19) yields Jyo/p~1/6. The

situation here is similar to that in the light-quark,
glueball, and gluelump QCD string calculations: the
correction due to the string inertia is sizable but not
large and can be taken into account as a perturba-
tion[11, 12]. Note that it is the regime of small R that
is relevant to heavy-hybrid-mass estimations [16]:
the average distance between the heavy quark and
antiquark is small, (R?) < 1/0, so that the qg pair
resides in the oscillator adiabatic potential, which, in
the einbein method, is given by Eq. (19).
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The situation changes drastically in the case of
large R, R>1/y/o. Now, a gluon enjoys small
oscillation motion, and one has

E,(R)=0R+ 5173 7 e . (20)
4013 (n + 3/2)2/3 oR

displaying the (¢/R)'/3 subleading behavior typical
of linear potential confinement at large distances [7].
In this case, we nevertheless have J; o = %UR > i,
so that the potential regime is inadequate at large R.

To obtain deeper insight into what happens at
intermediate and large distances, we consider the
semiclassical limit of large A, where only rotations
about z axis are taken into account:

2 0.2
m-i- (+* +(z+§)2) (21)
S B

1

1
%41 1]
dfB, — dfBs—= .
5/m2+/ﬂ%
0

0
Since no momenta p, and Ll appear in the Hamil-

tonian, the system stabilizes itself at the points zg and
po given by the conditions

OH

— =0 — =0.

0z ' Op
Combining Eq. (22) with the second condition in
(14), one arrives at the expressions

(22)

zwﬂ,mz%&E,WWZWWZMW
(23)
where
1 1 a8

J= [ dBp*v = 24
Jﬁﬁ a me (24)

and the function v(3) is given by

VA
= 25

o2 R? Ao Ao

A:

p=1ho e
1 T oug 57\ 7

Substituting the form (25) into (24), one finds for the
energy that

E = 20Y2AY2 arcsin VB

{arcsm\/——k\/ (1— B)}V*
{arcsm\/— VB = B)}3/4’
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E, GeV

Fig. 1. Adiabatic hybrid potentials in various regimes.
The semiclassical (solid), potential (dashed), and flux-
tube (dotted) curves forn, =n, =0and A =1, 2,3 are

presented here. The lowest curveis o R (o0 = 0.22 GeV?).

2AB*?\/1-B
2
= %{arcsin VB+y/B(1-B)}!/?
x {arcsin VB — \/3(17_3)}3/2’

with the large- R limit of (26) given by

A
E(R) = 0R+2\/§E. (27)
Here, we have the 1/R subleading behavior typical of
the naive Nambu—Goto string models. For example,
the flux-tube model [4] predicts

A

E(R)=0R+ I

in the small-oscillation approximation. The energy

curve (26) is shown in Fig. 1, along with the flux-

tube (28) and potential-regime curve (17) for n, =

n,=0 and A =1,2,3. The large-R limit of the

semiclassical regime (26) is very close to the flux-

tube one and deviates substantially from the potential

regime, while, at small R, the unphysical divergent
1/R behavior is absent.

The case of large R can be treated directly by
using the full Hamiltonian (12), which, in the small-
oscillation limit, takes the form

p? 2
= AR —

(28)

(29)

2 2u m

1
()]
e () [

0
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\
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Agi ........... |
3¢
e

5 6 7

Fig. 2. Corrections to the linear behavior of the potentials.
The QCD string (solid), potential (dashed), and flux-tube
(dotted) curves for n, = n, = 0 and o = 0.22 GeV? are
presented here.

1 1

141 120}

[ an [ an2,

0 2 Jo 2
displaying two different kinds of string excitations,
along the z axis and in the transverse direction. In-
deed, for large R, one neglects the contribution of u
in the third term of (29) because the extremal values

of v1 9 are o R/2. Oscillations in the longitudinal and
transverse directions then decouple, and one has

3 o3(n, +1/2)%/3
21/3 R1/3
2 x 31/2

E,(R)=0R+

(np+A+1). (30)
The (0/R)"/? regime is established at large R, but, at
intermediate distances, there are sizable corrections
from the A/R string regime, as is seen from Fig. 2.

Since we have not considered the gluon spin, we
cannot yet compare our predictions with lattice re-
sults [6]. Nevertheless, some preliminary conclusions
can be drawn. For separations less than 2 fm, the
measured energies [6] lie much below the Nambu—
Goto curves (28). There is no universal Nambu—
Goto behavior even for R as large as 4 fm. The QCD
string model is able to describe both these features: at
small separations, the potential confinement regime
dominates, while, at large distances, the situation is
more complicated. Indeed, there is the contribution of
the string-type gaps (27), which are due to transverse
vibrations of the string, but the dominant subleading
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behavior is defined by potential-type longitudinal mo-
tion. In particular, even for semiclassically large val-
ues of A, there exists the contribution of oscillations
in the longitudinal direction [second term in (30)].

Such peculiar behavior displays the most pro-
nounced difference between the present approach
and other models of constituent glue. In contrast
to phonon-type models, QCD string vibrations are
caused by a pointlike valence gluon, but, in contrast
to potential models, the confining force follows from
the minimal-area law, giving rise, at large distances,
both to longitudinal vibrations with potential-type
(o/r)'/3 dominant subleading behavior and to trans-
verse vibrations with string-type A/R subleading
behavior, which could be responsible for the observed
A dependence. Full QCD string calculations with the
gluon spin involved will provide, if confirmed by the
lattice data, decisive evidence in favor of the QCD
string model of valence glue.
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Abstract—The evolution equation for the nonsinglet distribution of partons is solved in the leading order
of perturbative QCD. It is shown that an exact analytic solution to the evolution equations can be found
in the quasielastic limit. The Q? evolution of the structure function for z — 1 is in good agreement with
experimental data. © 2001 MAIK “Nauka/Interperiodica”.

1. INTRODUCTION

Investigation of quark distributions has a direct
bearing on inelastic lepton—nucleon scattering. In
relation to cross sections for other electromagnetic
lepton—nucleon interactions, the inelastic-scattering
cross section decreases more slowly with increasing
momentum transfer (~ 1/¢*). Therefore, inelastic
scattering is a unique tool for studying the structure
of nucleons at extremely small distances.

On the basis of the scaling property of the struc-
ture functions in inelastic scattering, Feynman [1]
and Bjorken [2] proposed, in the late 1960s, the
concept of partons as pointlike constituents of the
nucleon that play the role of objects on which a vir-
tual photon is scattered. This idea made it possi-
ble to interpret SLAC experimental data on inelastic
electron—nucleon scattering [3].

The development of QCD enabled a construction
of a consistent picture of the internal structure of
nucleons that includes, along with valence quarks,
a continuum of virtual sea quarks and gluons. It
turned out that the distribution of partons (quarks and
gluons) within the nucleon at an arbitrary value of the
momentum transfer squared Q2 can be expressed in
terms of the distribution at a fixed value Q3. This re-
lation is provided by the evolution equations obtained
by Dokshitzer, Gribov, and Lipatov and by Altarelli
and Parisi [4—7] (DGLAP equations).

Despite a great number of ideas, models, and
approaches proposed for describing inelastic inter-
action, there is no theory at the moment that could
describe the behavior of inelastic form factors over
the entire kinematically allowed region. Informa-
tion about the behavior of the structure functions
in various limiting cases near the boundaries of the
kinematical region could be useful in seeking such a
model.

The quasielastic limit is one of such cases. In this
region, lepton—proton interaction at large values of
the Bjorken variable, z ~ 1, is well described within
the quark-parton model on the basis of the DGLAP
equations. In this case, a virtual photon interacts
with partons that carry a major fraction of the target-
proton momentum. We denote by x the momentum
fraction carried by the interacting parton and refer to
it as the Feynman variable. Usually, the Feynman
variable x is assumed to coincide with the Bjorken
variable x. However, it is shown below that, for
xrg — 1 and at low momentum transfers, the differ-
ence of z and x5 is not negligible.

In this study, we obtain an expression for the
variable z- and show that, in the limit z; — 1, the
evolution equation for the distribution of the valence
quarks can be solved analytically. The expression ob-

tained for F describes the Q2 evolution of the nucleon
structure function in the quasielastic limit and agrees
well with experimental data.

2. INELASTIC SCATTERING AND PARTONS

The cross section for the inelastic scattering of a
charged lepton (an electron or a muon) by a proton in
the laboratory frame (proton rest frame) is expressed
in terms of two structure functions as [8]

doin 2ra’?

dvdQ? ~ QiE?v
1%
+ M (Q2 - 2#2) Fl}.

The notation is illustrated in Fig. 1.

{CEE - @) R (1)

In the parton model, the structure functions are
expressed in terms of the sum of quark distributions

1063-7788/01/6409-1722$21.00 © 2001 MAIK “Nauka/Interperiodica”
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¢i(xp) weighted with the squared charges. Specifi-
cally, we have

F = OCFZG? ¢i(zp), (2)

where z; is the proton momentum fraction (in the
Breit reference frame) carried by the parton that ab-
sorbs the virtual photon. Callan and Gross [9] showed
that two structure functions in the simplest parton
model are related by the equation

F2 = QIEFFl. (3)
In [10], it is proposed to use relation (3) for all Q2
values because it provides a reliable description for
Q? — 0as well.

The Bjorken variable is defined as
2

: (4)
2Mv
In order to find the expression for the Feynman vari-
able xp, we go over to the Breit reference frame de-

fined as that which moves in the same direction as the
virtual photon at a speed close to the speed of light
with respect to the laboratory frame.

The momentum fraction carried by the parton is
determined by the energy—momentum conservation
law

xrg =

k+q=F, (5)

where k and k' are the parton 4-momenta before
and after the scattering event, respectively. The tilde
labels indicate that the variables in question are mea-
sured in the Breit reference frame. Squaring Eq. (5),
we arrive at

or
kodo — ks = Q*/2. (6)
From the definition of the variable x, it follows that,

in the Breit reference frame, the energy and the mo-
mentum of the parton are

]~€3ZIBFP3, IEO:\/mQ—i-l%i—l—l%%. (7)

For the energy and momentum of the virtual photon
in the Breit frame, Lorentz transformations yield

do = v vPy + q3Ps
0 /—1 — ﬁQ M )
. @B-vB a3 Py + vP;
q3 m M )
where m is the parton mass; k| is the transverse mo-

mentum of the parton; g3 = \/Q? + v2 is the photon

momentum in the laboratory frame; and Py and P
are, respectively, the energy and the momentum of

(8)

(9)
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p=(E,p)
p'=(E,p")

=0 4=(v,q)

s=(P+q)2

P=(M,0) v

Fig. 1. Feynman diagram for the inelastic scattering of a
charged lepton by a proton.

the proton in the Breit frame. The exact equation for
xp is obtained by substituting (7)—(9) into Eq. (6)
and by retaining terms that do not vanish in the limit
P; — oco. The result is

m2—|—l~€i

rpM (g3 +v) — e (i3 —v)=Q% (10)

F

The solution to this equation determines that proton
momentum fraction which is used in relation (2):

_ Q’
Y <V+ 1/2+Q2>

Tp (11)
m2—|—l~€i

x |1+ 02

144

We can neglect the quark mass m for the u, d, and s
quarks. Assuming that k2 < Q?, we obtain

— 2z
L+ 1+ 4M223/Q?

Tp

(12)

Expression (12) determines the proton-momentum
fraction in the Breit frame carried by the parton that
interacts with the virtual photon. It is clear from (12)
that, at 3 ~ 1, the relation xp ~ x}; is valid only for
Q? > M?. It is precisely the Feynman variable that
must be substituted into expression (2)—this means
that, at given v and Q? values, the structure function
is expressed in terms of the quark distributions at the
point x. determined by expression (12). Although the
expression for the exact proton-momentum fraction
carried by the parton in the quark-parton picture
of inelastic scattering was obtained about 25 years
ago [11—13], the above circumstance is often ignored
in identifying z. with z.
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3. EVOLUTION EQUATION
FOR THE DISTRIBUTIONS
OF VALENCE QUARKS

Quark distributions appearing in (2) satisfy [to-
gether with the gluon distribution g(z, Q?)] the set
of integro-differential evolution equations that was
obtained in the late 1970s [4—7] and which has the
form (in order to avoid encumbering the ensuing ex-
pressions, we will henceforth suppress the subscript
“F” on the Feynman variable using the notation x for
it)

1

in (CC,Q2) o Qg (Q2) dy
ot = [ e e 09
<t () ro@r ()]
1
dg (z,Q%) _ as(Q°) [ dy
dan2 - 21T /? ;qz (y7Q2)

xT

X Pyq (g) +9(97Q2)P9

x
()
where -
s
as (Q%) = (33 —2ny) In(Q?/A2?)
is the QCD running coupling constant with A =
0.2 GeV and ns being the number of flavors.
The splitting functions P are given by

2
Pue) = 3 s + 200 -0. (1)
2 _ )2
Pylz) = 2020 (15
— )2
Pz = 2N )

1-2 z
Pyy(2) —6( —+ i, —|—z(1—z)> (17)

+ (% - %) 5(1— 2).

The symbol L
Y (I —2)+

1 1
16 [, 6=
O/dz(l_z)+_0/d S (18)

Equations (13) make it possible to obtain the par-
ton distributions for Q2 > Q3 if the distributions at
Q2 are known. Usually, the value of Q3 is on the
order of a few GeV?2. The value used most often is

is spelled out as
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Q2 = 4 GeV2. A detailed derivation of the evolution
equations can be found in the review articles by Dok-
shitzer et al. [14], Reya [15], and Altarelli [16].

[f we introduce the nonsinglet and singlet combi-
nations of the quark distributions,

™ (2,Q%) = Y (4 (.0) - @ (.09).

qS (3?, Q2) = Z(qt (3?, Q2) + G (3?, Q2))7
the set of evolution equations splits into an equation
for the nonsinglet function and the set that involves

the singlet function and which is symmetric with
respect to quarks and gluons:

dg}® (2,Q%) 0, (Q?)

dln Q? T 9¢ (19)
1
d
g /Zy [q%\ls (y, QQ) Pyq <§>] ;
quS (x7Q2) i g (Q2) dy g 9
dln@Q®> 2« /z [Qi (yaQ ) (20)

s ()]

In the quasielastic limit, the main contribution to
F5 comes from the distributions of u, and d, valence
quarks. They can be represented as

Up=u—1T, dy=d—d

and are described by the equation for the nonsinglet
combination.

Instead of Q2, we now introduce the variable
. 2 In(Q?%/A?)
= n .
33 — 2ny In(Q3/A2)

[t is more convenient to recast Eq. (19) for the nons-
inglet combination into the form

o (1) ;{ [won(Z) e

xT

g (t) / dymy)},

0

(21)
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where

414 22

31—z
The evolution equation written in this form is similar
to the equations of cascade theory, the Feynman vari-
able x and ¢ corresponding to the particle energy and
depth, respectively. The first term in Eq. (22) is equal
to the income of valence quarks with the nucleon-
momentum fraction x and the virtual-photon mass
Q?, while the second item is equal to the outcome
of such quarks. In just the same way as in cascade
theory, where the distribution of particles with energy
FE'is determined exclusively by particles with energies
E' > E, the distributions of partons with a given
value of the variable z are determined exclusively
by partons that carry nucleon-momentum fractions
x' > x. It follows that, if we aim at determining the
functions in the region zy < x < 1, the result will be
independent of the choice of the initial values of the
functions (at Q? = Q3) in the interval (0, z).

In order to solve Eq. (22) analytically, we first solve
the equation

dqy (x, [d
0y i (s) o

Py(2)

(23)

xT

1
— Qv (xat)/dypv(y)} :
0

In contrast to Eq. (22), this equation can be solved
analytically. In order to do this, it is necessary to
specify the initial function g,(z,¢ = 0) in the interval
0 <z < oo. It will be shown later that, if the ini-
tial function vanishes for x > 1, then g,(z > 1,¢) =
0 for t > 0. This can be qualitatively explained by
invoking once again the similarity with cascade the-
ory. If we assume that there are no particles with
“energies” x > 1 at the boundary, it is obvious that
no particles with such energies can appear in a fur-
ther development of the cascade. Therefore, Egs.
(22) and (24) are equivalent in the class of functions
gv(z > 1,¢t = 0) = 0 under consideration.

4. SOLVING THE EQUATIONS
FOR THE NONSINGLET COMBINATION

In order to solve Eq. (24), we apply the Mellin
transformations

1
[ o o(w) = os), (25)
0
1 c+1i00
P dsx°p(s) = p(z)
211
c—100
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The contour of integration in the inverse transforma-
tion lies to the right of all singularities of the function
@(s). The equation for the transform of the valence-
quark distribution assumes the form

B 1
mﬁgj)iawaw{/ﬁywslnfz@%.<m»

0

[f we applied the transformation in (25) to Eq. (22), it
would not be possible to take the transform of the dis-
tribution outside the integral sign in expression (26).
But now, the solution for the transform has the simple
form

Gu(s,t) = Gu(s,0) exp [-B(s)t], (27)
where
. 1
B(s) = 3 /dz (1 -2 Py(2). (28)
0

Accordingly, the evolution of the valence-quark dis-
tribution in the proton is given by

c+100

Qu(z,t)= 1 /ds x " %qy(s,0) exp [—0(s)t] . (29)

211
c—100

By using the Mellin transformation (25), we substi-
tute into (29) the initial condition

1
Gv(s,0) = /dy y* gy (y,0).
0

As a result, the solution of the evolution equation
for the valence-quark distribution in the nucleon as-
sumes the form

1

c+1i00
=5 dsx ™% exp [—((s)t]

c—100

1

x /dy y* g, (y, 0).

0

qu(z,t) (30)

By substituting the function P,(z) into expres-
sion (28), we find that 3(s) can be represented in the
analytic form

PERETEOETES

—I—’y) -1, (31)

where ) is the logarithmic derivative of the gamma
function and ~y is the Euler constant.

Expressions (30) and (31) represent a solution to
the evolution Eq. (22) for the nonsinglet combination
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of the parton distributions. Indeed, we recast expres-
sion (30) into the alternative form
1

dz
wloit) = [ Z anfo/20)
0

1 c+1i00

5 dsxz~°exp [—0(s)t].
If ¢y(z,0) =0 for z > 1, then ¢,(z > 1,t) =0 for
t >0 as well, because the integrand in the inter-
nal integral decreases exponentially for Re s — +o0,
so that the integral vanishes [the integrand has no
singularities to the right of the integration contour

in (30)]. Therefore, expression (30) satisfies Egs. (24)
and (22) simultaneously.

5. QUASIELASTIC LIMIT

In the quark-parton model, the structure function
for inelastic scattering depends on all quark distri-
butions. It has already been shown, however, that
the quark distributions at a given value of x depend
only on the parton distributions for ' > z. In the
quasielastic limit, the structure function receives a
contribution from the region where only the distribu-
tions of valence quarks are significant.

In order to determine the structure function in the
quasielastic limit, we consider the solution in (30)
to the evolution equation for valence quarks at zg ~
1. For the initial condition, we take the standard
expression

¢ (z,0) = oz (1 — )™, (32)
which is used to fit experimental data. The transform
of the initial condition can easily be found by substi-
tuting (32) into (25). The result is

Gv(s,0) = qoB(s + k,no + 1),
where B is the beta function.
For ¢t > 0, the expression for the distribution of
valence quarks assumes the form

Qv(xy t) _ qoxke(lf4/3'y)t

c+100

dsB(s,no+ 1)exp (—slnz

(33)

(34)

1
X -
2711
c—100

—2/3(W(s —k)+ (s —k+2))t).

All singularities of the beta function lie to the left of

the integration contour. Therefore, we can take an

arbitrarily large value of ¢ in calculating the integral in

(34). Using the asymptotic expressions for beta and
psi functions,

B(z,y) —— 27T'(y),

r—00

(35)
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(36)

P(x) — Inzx,

we obtain expression (34) in the quasielastic limit:

qv(z,t) = qoxke(k‘l/g'm I'(ng+1) (37)
] c+1i00
L B —(no+1+4/3t)
X 5 A ds exp{—slnz}s .

The integral in (37) is the standard inverse Laplace

transform of s77;
c+1i00 1
1 eys . ypf

2mi 2 D(p)

c—100

(38)

After some simple algebra, we find that the
evolution of the nucleon structure function in the
quasielastic limit is described by the expression (here-
aiter, we recover the notation x for the Feynman

variable)

" D(ng +1) (1—4/3)t
L(ng+1+4+4/3-1t) '
A similar solution was obtained by Kuraev and

Fadin [17], who considered radiative corrections to
the cross section for one-photon annihilation.

4/3t (39)

6. CONCLUSION

Expression (39) describes the Q? evolution of the
nucleon structure function in the quasielastic limit.
The structure function decreases with increasing mo-
mentum transfer; as xp approaches the kinemati-
cal boundary, F» decreases ever faster with increas-
ing Q2. Figure 2 displays the results of the calcu-
lations according to expression (39) for the values of
zg = 0.45, 0.55, 0.65, 0.75, and 0.85. Also shown in
Fig. 2 are the available experimental data at large zg
(in EMC and BCDMS experiments, the maximum
value of zg was 0.75; in the SLAC experiment, the
structure function was measured up to zy = 0.85).

We have determined the boundary values of the
structure function at Q% = Q3 = 4 GeV? through fit-
ting Fy (z5,Q3) in terms of the function

cy/zp(1—2p)", where ng=3. We have set the

normalization factor ¢ to ¢=1.655. This value
was obtained from a comparison of the function F3
calculated according to expression (39) at zy = 0.85
and Q? = 10 GeV? with the value of 0.00854 obtained
in the SLAC experiment.

We have derived expression (39) in the limit z; —
1, but it satisfactorily describes experimental data

Vol.64 No.9 2001
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Fig. 2. Proton structure function versus Q? at large z: (solid curve) results of the calculation according to expression (39),
(dashed curve) results of the calculation at xp = 2y = 0.85, and (points) experimental data taken from [18].

down to xy = 0.65. At lower values of zy, the struc-
ture function calculated according to (39) falls short
of experimental data. This is explained by an increase
in the contribution from sea quarks and heavy flavors.
In order to estimate the effect of the difference of
zp and zp in the region of large xp (about unity),
the results of the calculations according to (39) at
zp = vy = 0.85 are shown in Fig. 2. It is clear that
the logarithmic violation of scaling as obtained in
solving the evolution equations cannot explain quite
an abrupt decrease in Fy with increasing Q? at large
values of z;. In this region, the violation of scaling is
due primarily to the distinction between the Feynman
and the Bjorken variable.

The asymptotic dependence obtained for the pro-
ton structure function in the quasielastic limit can be
used for a proper normalization of various approxi-
mate functions that describe the inelastic from factors
and for a correct description of the quasielastic region
xg — L
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