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Abstract—The needs of experimental nuclear physics for the 48Ca isotope for solving some fundamental
problems are analyzed and justified. A new method is proposed for the separation of calcium isotopes.
This method is based on the threshold dependence of the dipole moment of the CaF2 molecule on the
vibrational quantum number of large-amplitude motions. The conditions necessary for implementing the
electrooptical method of isotope separation are formulated on the basis of examining a number of molecular
systems. c© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

At present, there is a constant need in experi-
mental nuclear physics for the 48Ca isotope. This
nucleus, consisting of 20 protons and 28 neutrons,
is likely to have the highest neutron excess among
stable nuclei, which determines its features that are of
importance for employing this nuclide in some fields
of experimental nuclear physics.

Experimental investigation of the double-beta de-
cay of nuclei is one of these fields. At present, these
investigations pursue two basic objectives:

(i) measurement of the half-life for the standard
two-neutrino (2β2ν) mode of double-beta decay,

N(Z,A) → N(Z + 2, A) + 2e− + 2ν; (1)

(ii) searches for the exotic neutrinoless (2β0ν)
mode,

N(Z,A) → N(Z + 2, A) + 2e−. (2)

The former process is observed and extensively
studied in experiments. Measurement of the 2β2ν
half-life of nuclei is important for verifying the stan-
dard model of weak interaction. Moreover, relevant
experimental data are necessary for improving meth-
ods for calculating nuclear matrix elements, since
nuclear structure is substantial in theoretical calcula-
tions of the 2β decay. Because of the high neutron ex-
cess, the 48Ca nucleus is characterized by a relatively
high probability of 2β2ν decay. However, theoretical
estimates of the decay half-life T1/2(2β2ν) yield very
uncertain results from 1013 to 1018 yr [1]; therefore,
new reliable experimental data would make it possible
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to obtain deeper insights into the phenomenon under
investigation.

The second process, 2β0ν decay, is forbidden in
the standard theory of weak interaction and has not
yet been observed. At the same time, current theo-
retical concepts of the nature of weak interaction go
beyond the standard model. In particular, there is the
popular hypothesis that the neutrino is a Majorana
particle with a nonzero mass. The Majorana hypoth-
esis implies that the neutrino and the antineutrino
are identical and that the lepton number is not con-
served. This hypothesis allows the neutrinoless mode
of double-beta decay. Observation of the 2β0ν decay
mode would be of fundamental importance for weak-
interaction physics because this would be direct ex-
perimental evidence for the failure of the standard
theoretical model of weak interaction. Observation
of this decay mode or even a determination of an
upper limit on the decay probability would very im-
portant at present for a comparison with neutrino-
oscillation data obtained by the Kamiokande collabo-
ration (Japan) in 1998 [2]. If these extremely intrigu-
ing experimental results are not an artifact, they can
be attributed only to the existence of a neutrino rest
mass, which also contradicts the standard model.

The neutron-rich 48Ca nucleus is very interesting
for experimental investigation of double-beta decay.
Studying this process with CaCO3 samples that had
a total mass of 42.2 g and which were enriched in 48Ca
to 73% by the electromagnetic method at the Kur-
chatov Institute, Balysh et al. [3] obtained the value
T 2ν2β

1/2 (48Ca) = (4.3+2.4
−1.1[stat.] ± 1.4[syst.]) × 1019 yr

for the two-neutrino process. For the 48Ca nucleus,
the ordinary beta-decay mode is also possible, but
theoretical calculations predict that its probability
2001 MAIK “Nauka/Interperiodica”
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is much lower than the double-decay probability.
The current experimental constraint on T 0ν2β

1/2 for

the neutrinoless process is T 0ν2β
1/2 (48Ca → 48Ti) >

9.5 × 1021 yr [4].
To improve considerably experimental sensitivity

and to obtain physically significant results on the
neutrinoless mode of the 2β decay of the 48Ca nu-
cleus, it is necessary to have kilograms of this isotope
with extremely low (10−12–10−14 g/g) content of
radioactive impurities. In addition, experimental in-
vestigation of the two-neutrino mode of the 2β decay
in 48Ca samples of a few kilograms would make it
possible to reduce errors in measuring the probability
of the process by one to two orders of magnitude and
to refine the shape of the emitted-electron spectrum.
This information would provide a quantitative test of
the standard model of the 2β decay and would make
it possible to estimate model parameters more accu-
rately. More precise experimental data on 2β decay in
48Ca would also be of use for developing methods for
calculating its nuclear structure.

The accelerator physics of medium-mass and
heavy nuclei is another experimental field where the
use of the 48Ca nucleus is of interest. In addition
to 48Ca beams, accelerated beams of 36S, 58Fe,
64Ni, and other neutron-rich nuclei are used in
accelerator experiments, but the 48Ca nucleus is the
most interesting and promising projectile at present.
Having the highest neutron excess among stable
nuclides, 48Ca is used to bombard targets with the
aim of synthesizing superheavy Z > 110 nuclei of
the so-called stability island. Some nuclear-matter
models predict that the decay period will increase at
still greater values of Z, with the result that such
superheavy nuclei become stable. For this reason,
attempts at synthesizing superheavy nuclei are of
substantial importance for verifying this prediction
and for developing fundamental nuclear physics and
its applications.

Such investigations are being extensively per-
formed at JINR (Dubna) [5] and at GSI (Darmstadt)
[6]. At the Laboratory of Nuclear Reactions, JINR,
the team headed by Yu.Ts. Oganessian obtained
Z = 112 nuclei with a half-life of about 100 s and
Z = 114 nuclei through bombarding uranium and
plutonium targets by accelerated 48Ca nuclei [5, 7, 8],

48Ca + 238U → 283112 + 3n, (3)
48Ca + 244Pu → 289114 + 3n.

Active researches in this field are also performed
at the Lawrence Berkeley National Laboratory by
scientists from Berkeley and Oregon State University
under the supervision of Ken Gregorich. They briefly
P

reported that Z = 118 and 116 nuclei were synthe-
sized through bombarding a 208Pb target by 86Kr ions
accelerated to an energy of 449 MeV at an 88-inch
cyclotron [9].

Thus, experimental data corroborate, at first
glance, the existence of the stability island. These
very interesting results will undoubtedly lead to the
extension of studies devoted to synthesizing super-
heavy nuclei. Such experiments will obviously be
developed at other research centers worldwide that
employ beams of accelerated medium-mass ions.

Experimental data on unstable light and medium-
mass nuclei with a high neutron excess are also of im-
portance for developing nuclear physics. At present,
such nuclei are obtained in the fragmentation of a sta-
ble neutron-rich projectile interacting with a target
at rest. In these experiments, 48Ca nuclei are also
preferable for acceleration and further fragmentation.
There is a program of systematic investigations along
these lines that requires a regular use of 48Ca nuclei.

Accelerated-beam substance is irreversibly con-
sumed in experiments. Therefore, intensification of
accelerator investigations with 48Ca requires stable
and even increasing amounts of this isotope. One
might expect that the total need for 48Ca at accelera-
tor centers worldwide will attain 5–50 g/yr in the next
2–5 years. Note that the use of the 48Ca isotope in
experimental nuclear physics is restricted to a consid-
erable extent by its high commercial cost. Therefore,
development of cheaper and more efficient methods
for separating Ca isotopes can contribute to consid-
erable advances both in nuclear-physics techniques
employing calcium and in fundamental physics.

At present, Ca isotopes are separated exclusively
by the electromagnetic method, which is among the
most power-consuming and low-output techniques
used for the commercial production of isotopes.
Searches for an alternative method of higher output
therefore seem very promising. In this study, we
examine the possibility of separating 48Ca on the
basis of the electrooptical method that was proposed
previously for selecting nonrigid molecules [10–12].

2. BASIC PRINCIPLES
OF THE ELECTROOPTICAL METHOD

FOR SELECTING NONRIGID MOLECULES

Calcium (Z = 20,A = 40–48) is a typical element
in the middle of the periodic system. Available meth-
ods for separating isotopes at the molecular level,
including laser methods, are based on the selective
multiphoton excitation and dissociation of molecules
in infrared laser fields. Since calcium does not form
volatile compounds, it is virtually impossible to apply
HYSICS OF ATOMIC NUCLEI Vol. 64 No. 9 2001
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them to calcium. For this reason, calcium falls within
the so-called dead zone of isotopes of some elements.

In [13, 14], a three-step selective photoionization
of calcium atoms was implemented experimentally
with aid of dye lasers. The first step in [13] was non-
selective because the triplet metastable 4p state was
excited by an electron impact and because the transi-
tion 4s4p 3P2 → 4s5s 3S1 was induced by 616.2-nm
radiation. In contrast to [13], the intercombination
4s2 1S0 → 4s4p 3P1 (λ = 657.3 nm) transition was
selectively excited at the first stage in [14], and extra
excitation occurred through the 4s4p 3P1→4s5s 3S1

(λ = 612.2 nm) transition. The full ionization of cal-
cium atoms was achieved identically in [13, 14] by
means of 488.0-nm argon-laser radiation. Although
the authors of [13, 14] demonstrated that the sepa-
ration of 48Ca atoms is in principle possible, those
studies were unfortunately not developed further.

In the past 10–15 years, a new class of non-
rigid molecules whose individual atoms or fragments
can move almost freely along some directions within
distances commensurate with the dimensions of the
molecular system, not causing its dissociation, has
been revealed owing to application of precise exper-
imental methods for studying molecular systems and
to considerable advances in a computer simulation
of such systems. These displacements, referred to
as large-amplitude motions (LAMs), result in the
anomalous behavior of the dipole moments of some
nonrigid molecules. According to [15–17], the dipole
moment µ of such molecules depends sharply on
the vibrational quantum number n of LAMs, so that
the difference of the dipole moments in the ground
vibrational state [µ(n = 0)] and in excited vibrational
states [µ(n �= 0)] can be as large as about 10 D.

Electrooptical manifestations of large-amplitude
motions can be used in the new molecule-selection
method that was proposed in [10–12] and which
makes it possible to obtain the isotopes of almost all
elements of the periodic table, including those from
the dead zone, through selecting nonrigid molecules
in infrared-laser and nonuniform electric fields. This
removes the existing limitation of molecular isotope-
separation methods that is due to the incompatibility
of the volatility of the objects to be separated with the
productivity and the degree of enrichment.

The basic principles of the electrooptical selec-
tion method for nonrigid molecular systems become
the clearest when they are considered for L[MXk+1]
molecules, where L is an alkali-metal atom; M is
an element of the IIA, IIIA, or VA groups of the
periodic system; X = H, F, O; and k = 2, 3. Figure 1
shows the layout of a setup for laser separation of
isotopes entering into the composition of L[MXk+1]
molecules.
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 9 200
A crucible containing inorganic L[MXk+1] salts
that include aZ and bZ isotopes in natural amounts
is heated to a temperature of T ∼ 1000 K, at which
the vapor over the molten salts is dominated by
monomeric nonrigid molecules of the same compo-
sition. A nonrigid-molecule beam emitted from the
crucible to a vacuum chamber is exposed to infrared
laser radiation, which selectively excites molecules
containing the aZ isotopes to the upper vibrational
state with a small dipole moment µ(n �= 0) � 10 D.
Molecules containing the bZ isotopes remain in the
ground vibrational state with a large dipole moment
µ(n = 0) ∼ 10 D. When occurring in the 20-cm-
long region of a nonuniform electric field of gradient
∇E = 5 CGS units, the nonrigid-molecule beam
is separated in space, within the lifetime of the
vibrational excitation, into two isotopic components,
which are transversally spaced ∆S ∼ 1 cm apart at a
molecule mass of M ∼ 10−22 g and a beam speed of
V ∼ 104 cm/s:

∆S = [µ(n = 0) − µ(n �= 0)]∇E[l2/(2MV 2)]. (4)

As a result, an acceptable spatial separation of the
aZ and bZ isotopes is achieved even at weak fields
(E � 103 V/cm).

The electrooptical method [10–12] for selecting
nonrigid molecules makes it possible to reduce the
electric field by a factor of about 104 in relation to
that in the previously available method [18, 19], where
rigid symmetric AB4 molecules of the spherical-rotor
type that have Td symmetry and which do not have a
dipole moment in the ground vibrational state acquire
it through the excitation of degenerate vibrations in
a strong electrostatic field. A vibrationally excited
spherical rotor develops a constant dipole moment of
about 0.1 D owing to the presence of a mechanical
and an electrooptical molecular anharmonicity. Since
this method requires creating sufficiently strong (up
to 107 V/cm) electric fields E, its applications are
seriously restricted in practice [18, 19].

Although a nonrigid structure is known to be in-
herent in a fairly wide range of molecular systems, the
electrooptical method [10–12] is applicable to only a
relatively small number of compounds, because such
compounds must simultaneously satisfy the following
basic criteria [20]:

(i) They must be light, since the spatial separation
of two isotopic components is inversely proportional
to the molecular mass (∆S ∼ 1/M ).

(ii) Among similar melt–vapor systems, the partial
pressure of the nonrigid-molecule vapor over molten
salts of the same composition must be high at com-
paratively low vapor temperature.
1
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Fig. 1. Layout of a setup for laser separation of isotopes entering into the composition of nonrigid molecules: (1) crucible
containing inorganic L[MXk+1] salts that include aZ and bZ isotopes, (2) vacuum chamber, (3) nonrigid-molecule beam,
(4) infrared laser, and (5) region of a nonuniform electric field whose gradient is ∇E.
(3) The dipole moment µ(n) of a specific non-
rigid molecule must sharply depend on the vibrational
quantum number n of the large-amplitude motions.

(4) A transition of a nonrigid molecule to an ex-
cited vibrational state characterized by a small dipole
moment must be available.

(5) The time and isotope shift must be sufficient for
selection of nonrigid molecules in a molecular beam.

The spectroscopic and electrooptical features of
L[MX3] molecules that were most comprehensively
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Fig. 2. (a) Internal rotations of the cation L+ about
the anion [MX3]− in the plane of the complex L[MX3]
molecule and potential-energy curve along these rota-
tions; (b) dipole moment µ(n) of the L[MX3] molecule as
a function of the vibrational quantum numbern of internal
rotations.
PH
studied in [15–17] among nonrigid molecules are
listed in Table 1. For these molecules, Fig. 2 shows
the characteristic dependences of the dipole moment
µ(n) on the vibrational quantum number n of large-
amplitude motions that are actually the internal rota-
tions of the cation L+ about the anion [MX3]−.

According to the data in Table 1 and in Fig. 2,
the LiPO3 molecule, which was studied in a num-
ber of experiments, is a nonrigid molecule optimally
satisfying the basic criteria of applicability of the
electrooptical isotope-separation method. Through
one of the rigid modes, this molecule can undergo a
transition to an excited vibrational state with a small
dipole moment of µ(n∗ = 9) = 2.7 D (see, for exam-
ple, [21]). The corresponding threshold energy E∗ =
575 cm−1 is attainable for available laser sources, and
the lifetime of the necessary vibrational excitation is
about 3 s.

Because of extremely low volatility, L[MH3] hy-
drides are unsuitable for the separation of the con-
stituent isotopes. In all probability, this is one of the
reasons why there are no experimental data on the
gaseous phase of these compounds. Moreover, the
data in Table 1 indicate that the threshold energies
E∗ for the L[MH3] hydrides fall within the region that
is virtually inaccessible to a vibrational excitation of
a molecule with a small dipole moment. For the
same reason, L[MF3] fluorides show little promise
for isotope separation by the electrooptical method.
Substitution of heavier elements for L and M from
the corresponding subgroups of the periodic system
increases not only the molecular mass but also the
threshold energy E∗ (the case of L = K is no excep-
tion here).

It is obvious that optimal objects for isotope sep-
aration by the electrooptical method [10–12] can be
sought not only among L[MX3] molecules but also
among other types of nonrigid molecules. The non-
rigid CaF2 molecule provides an illustrative example
where the electrooptical method can be used to sepa-
rate 48Ca.
YSICS OF ATOMIC NUCLEI Vol. 64 No. 9 2001
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Table 1. Spectroscopic and electrooptical parameters of internal rotations in L[MX3] molecules

Molecule h3, kcal/mole B, cm−1 τ n∗ µ(n = 0), D µ(n∗), D E∗, cm−1 t, s

LiBeF3 13.7 0.501 4774.9 29 7.7 2.8 3687 7 × 10−3 � t < 0.2

NaBeF3 14.3 0.229 10951.9 >29 >7.7 >3687

LiMgF3 22.7 0.364 10918.8 >29 7.3 >3687

LiPO3 3.2 0.485 1153.8 9 7.6 2.7 575 0.1 � t < 2.7

LiBeH3 20.4 3.154 1131.1 10 7.1 2.5 4068 5 × 10−4 � t < 1 × 10−2

NaBeH3 15.1 2.868 920.7 8 9.4 3.2 2699 1 × 10−3 � t < 1 × 10−2

Note: Here, h3 is the height of the potential barrier separating the b and m molecular configurations (see Fig. 2a); B is
the effective constant of intermolecular rotations; τ = h3/2B; n∗ is that vibrational quantum number of internal rotations
at which the dipole moment of the molecule sharply changes (see Fig. 2b); µ is the dipole moment of the molecule;E∗ is
the threshold energy corresponding to n∗ (see Fig. 2b); and t is the time over which molecules in the molecular beam are
separated by a nonuniform electric field (see Fig. 1).

Table 2. Basic physicochemical parameters of fluorite [22, 23]

Parameter Value

Abundance [%]:
40CaF2 96.94
42CaF2 0.65
43CaF2 0.13
44CaF2 2.09
46CaF2 3 × 10−3

48CaF2 0.19

Density [g/cm3] 3.181

Formation heat, ∆H298 [kJ/mole] −1221

Melting point, Tmelt [K] 1691

Melting heat, ∆Hmelt [kJ/mole] 29.7

Boiling point, Tboil [K] 2803

Boiling heat, ∆Hboil [kJ/mole] 305

Energy of bond break CaF2 → CaF + F [kJ/mole] 585

Angle between bonds F–Ca–F [deg] 142 ± 2

Spacing between nuclei Ca–F [nm] 0.210

Pressure of CaF2 monomers over the melt at T ∼= 1700 K [mm Hg] ∼= 0.8
3. SELECTION OF NONRIGID CaF2
MOLECULES

For separating 48Ca, we took fluorite (CaF2),
whose basic physicochemical parameters are pre-
sented in Table 2. This choice was motivated by
the following reasons. Fluorite, which is sometimes
referred to as fluorspar, is abundant in nature. In
contrast to atomic calcium, which is characterized
by a high chemical activity, CaF2 is inert even in
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 9 200
the presence of chemically aggressive compounds; in
addition, a large formation heat (see Table 2) makes
fluorite highly resistant to reducing agents (primarily,
to molten metals) even at high temperatures [24]. In
contrast to the majority of three-atom metal halides
of the XHal2 type, where X is an alkaline-earth
metal and Hal = F, Cl, Br, I, which have a linear
structure of D∞h symmetry, CaF2 molecules have
a bent configuration whose point symmetry is C2ν
1
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Fig. 3. (a) Potential-energy curve and energy levels of
the large-amplitude motions in the CaF2 molecule and
(b) the dipole moment as a function of the vibrational
quantum number v(ν2) of large-amplitude motions.

[25]. The calcium fluoride molecule has three normal
vibrations that are characterized by the symmetries

Γvib = 2A1 +B1 (5)

and which are manifested both in the infrared and in
the Raman spectrum. Because of the physicochem-
ical features of fluorite (see Table 2), the vibrational
spectra of CaF2 have been obtained to date only
for molecules isolated in low-temperature noble-gas
host surroundings [25–27]. The frequencies of all
three vibrations of the 40CaF2 and 44CaF2 molecules
are given in Table 3, along with the experimental
values of the isotope shifts of these vibrations [25–
27]. In addition, the lower part of Table 3 presents
the frequencies νi and isotope shifts ∆νi that we
estimated for all three vibrational bands of the 48CaF2
isotopic modification using data from [25–27].

In what is concerned with spectroscopic and elec-
trooptical manifestations of nonrigid structure (the
latter being, of course, of greatest importance for
our purposes), the CaF2 molecule is unique in some
respect. The point is that, in contrast to some non-
rigid molecules examined in [15–17], a vibrational
excitation of the CaF2 molecule is accompanied by a
P

very sharp transition from the bent configuration of
C2ν symmetry to a linear structure ofD∞h symmetry
and, hence, by a complete disappearance of the dipole
moment. This process is characterized by a low
energy barrier, which was estimated at 527 cm−1 in
[28] between CaF2 structures of C2ν and D∞h sym-
metries. Owing to this, there can occur a multiphoton
transition of the CaF2 molecule, through one of the
vibrational modes, to an excited vibrational state with
zero dipole moment (see Fig. 3).

Because all three vibrations of the CaF2 molecule
can be involved in dipole transitions, an implementa-
tion of the CaF2(C2ν) → CaF2(D∞h) structural tran-
sition through a multiphoton excitation of molecules
in an infrared laser field requires choosing the wave-
length of laser radiation in such a way that this ra-
diation is in resonance with the corresponding vibra-
tional transition. It is obvious that the nonrigid de-
formation mode ν2(A1) is preferable for a multiphoton
excitation, since it is the mode that is predominantly
responsible for the disappearance of the dipole mo-
ment of the CaF2 molecule. However, the absence
of laser sources with generation frequencies in the
range 150–200 cm−1 and a comparatively small iso-
tope shift ∆ν40−48

1 (see Table 3) dash the hopes that
could be associated with this mode. For excitation
through the symmetric mode ν1, which has the same
symmetry A1 as the deformation vibration ν2, the
problem of a small isotope shift ∆ν40−48

1 (see Table 3)
remains, even though lasers whose frequencies can be
varied within the range 450–500 cm−1 are available.
We deem that excitation through the antisymmetric
mode ν3 of B1 symmetry is preferable in view of the
existence of laser sources in the relevant frequency
range and of a fairly large isotope shift.

The layout of a setup for laser-radiation-induced
calcium-isotope separation based on the use of the
anomalous dependence of the dipole moment of the
CaF2 nonrigid molecule on the vibrational quantum
number of large-amplitude motions can be similar to
that in Fig. 1.

The crucible or Knudsen cell containing natural
fluorite is heated to a temperature of about 1700 K,
at which the vapor phase is dominated by monomeric
CaF2 molecules. The beam of CaF2 molecules emit-
ted from the cell to a vacuum chamber is exposed
to selective infrared laser radiation whose frequency
coincides with the frequency of the ν3 mode of the
48CaF2 isotope. Radiation of the required wavelength
can be obtained from lasers that are excited via res-
onance optical pumping and which are characterized
by an energy in a pulse of duration about 100 ns not
less than 10 mJ (this can be, for example, C2D2 or
NOCl lasers radiating in the frequency range 510–
580 cm−1). Under the effect of this radiation, the
HYSICS OF ATOMIC NUCLEI Vol. 64 No. 9 2001
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Table 3. Vibrational frequencies and isotope shifts of
bands in the infrared spectrum of the mixture 40CaF2 :
44CaF2 = 1 : 1 in the argon host surrounding at a temper-
ature of T = 10 K

Molecule
and its

isotope shift
ν1(A1), cm−1 ν2(A1), cm−1 ν3(β1), cm−1

40CaF2 487.5 163.4 559.8
44CaF2 485.4 161.2 548.0

∆ν40–44
i 2.1 2.2 11.6

48CaF2 483.3 159.0 536.2

∆ν40–48
i 4.2 4.4 23.6

dipole moment of 48CaF2 molecules vanishes com-
pletely. At the same time, molecules containing other
calcium isotopes remain in the ground vibrational
state and have a nonzero dipole moment. Unfortu-
nately, the experimental value of the dipole moment
of the CaF2 molecule is not known. The quantum-
chemical calculations performed in [28] revealed that
the dipole moment of the CaF2 molecule is quite large
(about 5 D). In the 35-cm-long region of a nonuni-
form electric field of gradient about 50 CGS units, the
molecular beam moving at a speed of V ∼= 345 m s−1

is spatially separated predominantly into two com-
ponents spaced ∆S ∼= 1 cm apart [28]. As a result,
the spatial separation of the beam components that is
necessary for collecting 48CaF2 molecules is achieved
at relatively weak fields (E ≈ 15 × 103 V/cm).

There are some open problems, including that
of the relaxation deexcitation of thermally populated
vibrational levels of the CaF2 molecule and that of
the contribution of “hot” bands to the excitation for-
mation of the spectrum. However, estimations per-
formed with allowance for the above electric fields,
the pressure of CaF2 vapor over molten fluorite at
a temperature of 1700 K (see Table 2), and rela-
tively weak laser fields demonstrate that the desired
48CaF2 isotope, whose content in the natural mixture
is 0.19%, can efficiently be separated and collected
at a rate of about 5–10 mg/h, which is more than
one order of magnitude higher than the rate achieved
with a medium-power electromagnetic separator at
the total ion current of up to 15 mA [29].

4. CONCLUSION

The method proposed here for separating Ca
isotopes is based on the threshold dependence of
the dipole moment of the CaF2 molecule on the
vibrational quantum number of large-amplitude mo-
tions. The structure of the energy levels of the CaF2
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 9 200
molecule and a fairly large isotope shift (23.6 cm−1) of
the antisymmetric valence vibration make it possible
to employ infrared laser radiation to excite selectively
the CaF2 molecule to a state where its dipole moment
is zero (that is, to overcome the energy barrier
separating the molecular structures of C2ν and D∞h

point symmetries). Experience gained in studying
the separation of molecular beams gives every reason
to hope that the principle described above will be
implemented as an efficient and relatively economical
procedure for separating calcium isotopes.

Development of this proposal seems topical be-
cause, as was indicated above, many lines of current
experimental investigations in nuclear physics require
the 48Ca isotope in amounts of a few kilograms (from
time to time) and a few grams (regularly). Moreover,
it can be assumed that the reduction of the cost of the
isotope will give further impetus to relevant nuclear-
physics investigations, with the result that more of
it will be needed. Taking into account the uniquely
high neutron excess in the 48Ca nucleus, we can
conclude that, for many nuclear experiments, there is
no alternative to this nuclide.
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14. A. P. Babichev, É. B. Gel’man, I. S. Grigor’ev, et al.,
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Abstract—The multiple emission of intermediate-mass fragments (IMF) is studied for collisions of p, 4He,
and 12C on Au with the 4π FASA setup. The mean multiplicities of IMF saturate at a value of around 2
for incident energies above 6 GeV. An attempt at describing the observed IMF multiplicities in the two-
stage scenario, a fast cascade followed by a statistical multifragmentation, fails. Agreement with the
measured IMF multiplicities is obtained by introducing an intermediate expansion phase and modifying
empirically the excitation energies and masses of remnants. The angular distributions and energy spectra
from p-induced collisions are in agreement with the scenario of “thermal” multifragmentation of a hot
and expanded target spectator. In the case of 12C + Au (22.4 GeV) and 4He (14.6 GeV) + Au collisions,
deviations from a pure thermal breakup are seen in the fragment energy spectra, which are harder than
those both from model calculations and from the measured ones for p-induced collisions. This difference
is attributed to a collective flow with the expansion velocity at the surface of about 0.1c (for 12C + Au
collisions). c© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Nuclear fragmentation was discovered in cosmic
rays 60 years ago [1, 2] as a puzzling phenomenon in
which nuclear fragments are emitted from collisions
of relativistic protons with various targets. The ob-
served fragments were heavier than α particles but
lighter than fission fragments. Now, they are com-
monly called intermediate-mass fragments (IMF),
3 ≤ Z ≤ 20. Later on, in the 1950s, this phenomenon
was first observed in accelerator experiments [3] and
then studied leisurely for three decades. The sit-
uation changed dramatically after 1982, when the
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multiple emission of IMF was discovered in the 12C
(1030 MeV) irradiation of emulsion at the CERN
synchrocyclotron [4]. These findings stimulated the
development of many theoretical models to put for-
ward an attractive idea that copious production of
IMF may be related to a liquid–gas phase transition
in nuclear matter [5–8]. A recent survey of multifrag-
mentation can be found in [9].

About a dozen sophisticated experimental devices
were created to investigate this process by using
heavy ion beams, which are well suited for producing
extremely hot systems. But in the case of heavy
projectiles, nuclear heating is accompanied by com-
pression, fast rotation, and shape distortion which
may cause dynamical effects in the multifragment
disintegration, and it is not easy to disentangle all
these effects and extract information on the thermo-
dynamic properties of hot nuclear systems. The sit-
uation becomes more transparent if light relativistic
projectiles are used. In this case, dynamical effects
are expected to be negligible. Another advantage is
that all the fragments are emitted by a single source: a
slowly moving target remainder. Its excitation energy
might be almost entirely thermal. Light relativistic
projectiles therefore provide a unique possibility of
studying thermal multifragmentation.
2001 MAIK “Nauka/Interperiodica”
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The time scale of IMF emission is a crucial ques-
tion for understanding this decay mode: Is it a “slow”
sequential process of independent emission of IMF,
or is it a new (multibody) decay mode with “si-
multaneous” ejection of fragments governed by the
total accessible phase space? Only the latter pro-
cess is usually called multifragmentation. Simulta-
neous emission means that all fragments are liberated
within a time smaller than the characteristic time of
τc ≈ 10−21 s [10], which is the mean time for the
Coulomb acceleration of fragments. Within this time,
IMF emission is not independent, but IMF interact
via Coulomb forces and are accelerated after freeze-
out in a common electric field. Measurement of the
emission time τem for IMF (i.e., the mean time be-
tween two successive events of fragment emission) is
a direct way to answer the question about the nature
of the multifragmentation phenomenon. An analysis
of the IMF–IMF correlation function with respect
to the relative velocity and also with respect to the
relative angle involves two procedures for extracting
information about the emission time.

By now, it has been shown that thermal multifrag-
mentation does indeed occur in collisions of light rel-
ativistic projectiles (p, p̄, 3He, 4He, π−) with a heavy
target and that fragments are emitted from an ex-
panded, excited residue driven, after an expansion, by
the thermal pressure [11–16]. Deduced from IMF–
IMF correlation data, the fragment emission time is
less than 100 fm/c. This value is considerably smaller
than the characteristic Coulomb time. Thus, the
trivial mechanism of multiple IMF emission (inde-
pendent fragment evaporation) is excluded [17–19].

In this paper, we present results of the experimen-
tal study of the multifragment emission induced by
relativistic helium and carbon ions and compare them
with our data [13] obtained for p + Au collisions. The
measured fragment multiplicities, energy, charge, and
angular distributions are analyzed within the com-
bined approach: cascade model followed by the sta-
tistical multifragmentation model (SMM). Emphasis
is put on the question of thermalization and on a study
of a transition from a pure statistical process to a
behavior showing dynamical effects.

2. DESCRIPTION OF THE EXPERIMENT

2.1. Experimental Setup

The experiments were performed with the beams
from the JINR synchrophasotron in Dubna by using
the modified [20] 4π FASA setup [21]. The device
consists of two main parts: (i) five ∆E (ionization
chambers) × E (Si) telescopes (they are located at
θ = 24◦, 68◦, 87◦, 112◦, and 156◦ with respect to the
beam direction and together cover a solid angle of
PH
0.03 sr), which serve as a trigger for the readout
of the system allowing measurement of the charge
and energy distributions of IMF at different angles;
(ii) a fragment multiplicity detector (FMD) consist-
ing of 64 CsI(Tl) counters (with thicknesses around
35 mg/cm2), which covers 89% of 4π. The FMD
gives the number of IMF in an event and their spatial
distribution. Thin polycrystalline CsI(Tl) films are
prepared by thermal vacuum evaporation onto 2-mm
Plexiglass backings, which are shaped as hexagons
or pentagons. The light is transported onto pho-
tomultipliers of the FEU-110 type by hollow metal
tubes using diffuse reflection. Using such lightguides
instead of solid ones made from Plexiglass signifi-
cantly reduces the background caused by beam halo
(up to a level of a few percent). The background was
continuously controlled by means of a double-gate
mode in processing the photomultiplier pulses. The
scintillator faces were covered with aluminized Mylar
(0.2 mg/cm2) to exclude light cross talk.

A self-supporting Au target 1.5 mg/cm2 was
located at the center of the FASA vacuum chamber
(about 1 m in diameter). The following beams are
used: protons at energies of 2.16, 3.6, and 8.1 GeV;
4He at energies of 4 and 14.6 GeV; and 12C at
22.4 GeV. The average beam intensity was 7 ×
108 p/spill for protons and helium and 1 × 108 p/spill
for carbon projectiles with a spill length of 300 ms and
a spill period of 10 s.

2.2. Analysis of Fragment Multiplicities

By using the FMD array, the associated IMF mul-
tiplicity distribution WA(MA) is measured in events
triggered by a fragment in at least one of the tele-
scopes. The triggering probability is proportional to
the multiplicity M of an event (primary IMF multi-
plicity). Hence, the contribution of events with higher
multiplicities in WA(MA) is enhanced. This is a rea-
son whyWA(MA) should differ from the primary mul-
tiplicity distribution W (M). Another reason is that
the FMD efficiency is less than 100% and depends on
the detection threshold of scintillator counters being
adjusted in such a way as to reduce the admixture
of Z ≤ 2 particles in the counting rate of IMF up
to the level not exceeding 5%. These distributions
are mutually related via the FASA response matrix
Q(MA, M):

WA(MA) =
∑

M=MA+1

Q(MA,M)W (M). (1)

The response matrix includes the triggering proba-
bility, which is proportional to M , and the probability
of detecting (in the FMD) MA fragments among the
YSICS OF ATOMIC NUCLEI Vol. 64 No. 9 2001



MULTIFRAGMENTATION OF GOLD NUCLEI BY LIGHT RELATIVISTIC IONS 1551
remaining M − 1 fragments. The latter probability is
described by the binomial distribution, and one gets

Q(MA,M) (2)

=
M !

MA!(M − 1 −MA)!
εMA (1 − ε)M−1−MA ,

where ε is the detection efficiency.
The FMD efficiency ε was calibrated as described

in [20, 21]. We have the possibility of controlling its
value experimentally using IMF coincidences in the
trigger telescopes. From Eqs. (1) and (2), one finds
that 〈MA〉 and the moments of the primary multiplic-
ity distribution are related by the equation

〈MA〉
ε

=
〈M2〉
〈M〉 − 1. (3)

This expression gives the mean IMF multiplicity
(without one) for events selected by the trigger.

The right-hand side of this equation can also be
obtained from the coincidence rate n12 for IMF in the
triggering telescopes:

n12
n1p2

=
〈M2〉
〈M〉 − 1. (4)

Here, n1 is the counting rate in telescope 1, and p2 is
the detection probability for a coincident fragment in
telescope 2.

The value of p2 is largely determined by the effi-
ciency of the second telescope, ε2, but it also depends
on its position (θ2) and the relative angle θ12: p2 =
ε2 f(θ1) g(θ12). These last corrections are found from
the measured angular distributions and relative angle
correlations. Combining Eqs. (3) and (4), one gets
the following relation for the FMD efficiency:

ε = 〈MA〉/
n12
n1p2

. (5)

There are two options for obtaining the primary
multiplicity distribution W (M) from the measured
one WA(MA). The first is to parametrize the distri-
bution W (M), to fold it with the experimental filter
according to Eq. (1), and then to find the param-
eters of the parametrization by fitting the result to
the experimental distribution. This was done under
the assumption that W (M) is shaped like the Fermi
function, as motivated by calculations within the sta-
tistical multifragmentation model (see below).

The second option is the direct reconstruction of
W (M) by using the inverse matrix Q−1(M,MA):

W (M) =
M−1∑

MA=0

Q−1(M,MA) WA(MA). (6)

Both procedures yield similar results. In Fig. 1, the
multiplicity distributions obtained for the gold-target
fragmentation by 14.6-GeV alphas and 22.4-GeV
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 9 200
carbon ions are compared with those for p(8.1 GeV)+
Au collisions. In these cases, the mean values 〈M〉
are always about 2.1–2.2 (see table), being close
to that obtained by the ISIS group for 3He + Au
collisions at 4.8 GeV [22]. These values correspond
to events with at least one IMF emitted. In this
definition, M is never less than unity. The mean
multiplicity for all inelastic events is smaller by the
factor [1 − P (0)], where P (0) is the probability of
having no IMF in a collision event.

The mean values of the IMF multiplicity can
also be obtained from the counting rates of coinci-
dences for telescopes by using the relation between
(〈M2〉/〈M〉 − 1) and 〈M〉 [23]. It was calculated for
systems at different excitation energies by the statis-
tical multifragmentation model (SMM; see below),
which faithfully reproduces the IMF-multiplicity
distributions, as is seen in Fig. 1.

3. MODEL CALCULATIONS

The reaction mechanism for light relativistic pro-
jectiles is usually divided into two steps. The first
one consists of a fast energy-deposition stage, within
which very energetic light particles are emitted and
a nuclear remnant (spectator) is excited. The second
one is the decay of the target spectator. The fast stage
is usually described in terms of a kinetic approach.
We use a refined version of the intranuclear-cascade
model [24] to get the distributions of nuclear rem-
nants in charge, mass, and excitation energy. The
second stage can be described by multifragmentation
models. The SMM [25] and the expanding emitting
source (EES) model [26] are employed here. It will be
discussed below whether the assumption of thermoe-
quilibrium behavior is justified.

3.1. Refined Cascade Model

The refined cascade (RC) model is a version of
the quark–gluon string model developed in [27] and
extended to intermediate energies in [28]. This is
a microscopic model that is based on a relativistic
Boltzmann-type transport equations and the string
phenomenology of hadronic interactions. Baryons
and mesons belonging to the lowest two SU(3) mul-
tiplets, along with their antiparticles, are included.
The interactions between the hadrons are described
by a collision term, where the Pauli exclusion principle
is applied to the final states. This includes elastic col-
lisions, as well as hadron production and resonance
decay processes. The formation time τf = 1 fm/c
for product particles is incorporated. At moderate
energies in the limit τf → 0, this treatment reduces
to the conventional cascade model [24].
1
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Fig. 1. (a) Measured IMF-multiplicity distributions (symbols) and fits with a Fermi function (folded with the experimental
filter, histograms) associated with a trigger fragment for p+ Au collisions at 8.1 GeV (circles, solid histogram), 4He + Au at
14.6 GeV (squares, dashed histogram), and 12C + Au at 22.4 GeV (triangles, dotted histogram). (b) Reconstructed primary
IMF distributions (symbols; the notation is identical to that in Fig. 1a) and the Fermi distributions used to fit the data in
Fig. 1a (histograms). The smooth curves were calculated within the RC + α+ SMM model (see main body of the text).
Mean-field dynamics is neglected in our consider-
ation. However, we keep the nuclear scalar potential
to be defined for the initial state in the local Thomas–
Fermi approximation, changing in time only the po-
tential depth according to the number of knocked-out
nucleons. This “frozen mean-field” approximation
allows us to take into account nuclear binding ener-
gies and the Pauli exclusion principle, as well as to
estimate the excitation energy of the residual nucleus
by counting excited particle–hole states. This ap-
proximation is good for hadron–nucleus or peripheral
nucleus–nucleus collisions, where there is no large
disturbance of the mean field, but it is questionable
for violent central collisions of heavy ions. However,
in central collisions, the fraction of spectator matter
is small and the available phase space for baryons is
enlarged, so that the role of nuclear binding and the
Pauli effect can be expected to decrease.

It is traditionally assumed that, after the comple-
tion of the cascade stage, the excited residual nucleus
is in an equilibrium state. In general, this is not
evident. The RC model includes the possibility of
describing the attainment of thermodynamical equi-
librium in terms of the preequilibrium exciton (PE)
model [24, 29, 30]. During this equilibration process,
some preequilibrium particles may be emitted, which
will lead to a change in the characteristics of thermal-
ized residual nuclei.

Typical results for the distributions of residual
masses AR versus their excitation energies ER in this
model are shown in Fig. 2.
P

3.2. Statistical Multifragmentation Model

Within the SMM [25], the probability of equilib-
rium decay through a given channel is proportional
to its statistical weight. The breakup volume de-
termining the Coulomb energy of the system is a
key parameter. It is taken to be Vb = (1 + k)A/ρ0,
where A is the mass number of the fragmenting nu-
cleus, ρ0 is the normal nuclear density, and k is a
free parameter. In [12, 13, 18], it was shown that
breakup occurs at low densities. To reach these
density values, it is assumed that the system expands
before breakup. Primary fragments may be excited,
and their deexcitation is taken into account to get
final IMF distributions. Figure 3 shows the IMF
multiplicity as a function of the excitation energy
calculated for k = 2 and k = 5, which corresponds to
the freeze-out densities of about 1/3 ρ0 and 1/6 ρ0,
respectively. The calculations have been performed
with the RC + SMM combined approach for 4He +
Au collisions at 14.6 GeV. The fragment multiplicity
increases with excitation energy up to a maximum
and then decreases because of vaporization of the
overheated system. This so-called “rise and fall” of
multifragmentation is well visible in Fig. 3 and was
first demonstrated experimentally by the ALADIN
group for collisions of 197Au at 600 MeV/nucleon
with Al and Cu targets [31].

The choice of the breakup density has only a slight
effect on 〈M〉. The kinetic energies of fragments
are more affected because they are determined mainly
HYSICS OF ATOMIC NUCLEI Vol. 64 No. 9 2001
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Calculated properties of nuclear remnants from projectile + Au collisions

Eproj, Projectile Experiment Calculations Model

GeV MIMF MIMF ZR AR ZMF AMF ER EMF

2.16 p 1.7±0.2 1.82 77 189 76 185 310 589 RC + SMM

1.02 72 176 62 145 119 266 RC + PE + SMM

1.69 77 188 75 183 288 564 RC + α + SMM

3.6 p 1.9±0.2 2.52 76 187 74 181 371 676 RC + SMM

1.34 70 171 55 134 148 385 RC + PE + SMM

1.89 75 184 73 175 282 568 RC + α + SMM

8.1 p 2.1±0.2 3.58 75 183 73 175 488 808 RC + SMM

1.85 68 167 53 128 177 462 RC + PE + SMM

2.0 72 176 67 158 259 529 RC + α + SMM

4.0 4He 1.7±0.2 3.89 75 184 73 177 484 836 RC + SMM

1.56 68 167 54 130 176 428 RC + PE + SMM

1.77 73 177 69 161 238 502 RC + α + SMM

14.6 4He 2.2±0.2 4.47 71 173 66 159 723 1132 RC + SMM

3.06 63 153 48 116 377 824 RC + PE + SMM

2.19 64 154 48 103 183 404 RC + α + SMM

22.4 12C 2.2±0.3 4.04 67 163 64 153 924 1216 RC + SMM

2.85 60 146 47 113 638 1026 RC + PE + SMM

2.17 59 139 41 86 207 415 RC + α + SMM

Note: The quantity MIMF is the mean number of IMF for events with at least one IMF, while ZR, AR, and ER are the
mean charge, the mass number, and the excitation energy (in MeV), respectively, averaged over inelastic collisions, the
analogous quantities ZMF , AMF , and EMF being averaged only over residues decaying through IMF emission.
by the Coulomb field in the system, which depends
noticeably on its size. The use of a larger value of
the parameter (k = 5) results in the underestimation
of the fragment kinetic energies in relation to the data
from [32]. In further calculations, we use k = 2, based
on our analysis of the correlation data [18].

All calculations are performed in an event-by-
event mode.

4. RESULTS AND DISCUSSION

4.1. Fragment Multiplicity
and Excitation Energy of the System

The mean IMF multiplicities, measured and cal-
culated, are shown in Fig. 4 versus the total beam en-
ergy for various projectiles. The data exhibit a satura-
tion in 〈M〉 for energies above a value of about 6 GeV,
in good agreement with findings of [13, 33, 34]. This
so-called limiting fragmentation may be caused by a
saturation of the residual excitation energy, while the
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 9 200
fragment multiplicity is strongly energy-dependent.
Other possible reasons for the saturation effect are
discussed in [33].

The dashed line in Fig. 4 was obtained by means of
the combined RC + SMM approach. The calculated
mean multiplicities are significantly higher than the
measured ones, with the exception of those from the
measurement at the lowest beam energy. This fact
indicates that the model overestimates the residue
excitation energy. May the emission of preequilib-
rium light particles be responsible for this discrep-
ancy? The inclusion of preequilibrium emission after
the cascade stage (RC + PE + SMM) leads to a
significant decrease in the excitation energy of the
fragmenting target spectator and reduces the mean
IMF multiplicity (dotted line in Fig. 4). However, the
reduction of the multiplicity proves to be overly large
for Eproj < 8 GeV, predicting 〈M〉 to be smaller than
the measured ones. Although the calculated value
of 〈M〉 for the p(8.1 GeV) + Au collisions coincides
1
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with experimental data, the model predictions for the
fragment kinetic energies within this approach are
significantly lower than the experimental values, as
was shown in [13]. Because the IMF energies are
determined predominantly by the Coulomb field of the
source, the RC + PE + SMM approach underesti-
mates the charge Z of the target residue. In addition,
at higher 4He-beam energies, the decrease in the
excitation energy after preequilibrium emission is not
even sufficiently strong to get the observed fragment
multiplicities. All these facts may suggest another
possible mechanism for the energy loss before the
IMF emission.

Calculations with the EES model [26] were per-
formed by using the same characteristics of the RC
remnants. As can be seen from Fig. 4, the values
obtained for the mean fragment multiplicities are in
PH
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Fig. 3. Mean fragment multiplicities versus the ther-
mal excitation energy according to SMM calculations
for freeze-out densities of about (solid curve) 1/3 ρ0 and
(dashed curve) 1/6 ρ0.
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Fig. 4. Mean IMF multiplicities (for events with at least
one IMF) versus the beam energy. The points represent
experimental data. The dashed and dotted lines are drawn
through the values calculated within the RC + SMM
and within the RC + PE + SMM approach at the beam
energies used. The solid and the dash-dotted lines were
obtained by using the RC + α + SMM and the RC +
EES approach, respectively. For the sake of simplicity,
only one curve is drawn for a given model calculation
neglecting the dependence on projectile mass.

accord with data for the beam energies below 10 GeV,
but there is disagreement between the theory and
experiment at higher energies.

We conclude that neither RC nor RC + PE is able
to describe the properties of the target spectator over
YSICS OF ATOMIC NUCLEI Vol. 64 No. 9 2001
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a wide range of projectile energies. One should look
for an alternative approach.

An example of an empirical approach to this prob-
lem was given by the authors of [35], who analyzed
experimental data on multifragmentation in the re-
actions of 197Au on C, Al, Cu, and Pb targets at
E/A = 600 MeV. The parameterized relations (with
seven parameters) were developed to get the mass
and energy distributions of highly excited thermal-
ized nuclear systems formed as the spectator parts
of colliding nuclei. This distribution was used as an
input for SMM calculations, and the parameters were
adjusted to fit experimental results on the multiplicity
distributions of IMF and their yield. It should be
emphasized that the suggested parameterization is
specific to the reaction under consideration.

In our approach, we start from the results of the
cascade calculation and modify them empirically. In
[36], the excitation energies of the cascade remnants
were reduced by a factor α (see below) on an event-
by-event basis, with the mass being unchanged. This
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 9 200
was motivated by the guess that the frozen-mean-
field approximation in the cascade calculation may re-
sult in an overestimation of the high-energy tail of the
distribution. The mean IMF multiplicities obtained
by this procedure are in accord with data for p + Au
collisions in the projectile-energy range 2–8 GeV.

At the next step of our analysis of the same re-
actions [13], the drop in the excitation energy is ac-
companied by a mass loss. This combination holds
both for preequilibrium emission in the spirit of the
exciton model [30] and for particle evaporation during
the expansion, as considered by the EES model [26].

In the present study, we follow the last approach.
The excitation energies ERC

R of the residual nuclei
AR given by the RC code are reduced by a fitting
factor α to get the excitation energy of a multifrag-
menting state, EMF; i.e., EMF = αERC

R . In other
words, the drop in the excitation energy is equal to
∆E = (1 − α)ERC

R . As is known from the cascade
calculations, ERC

R is proportional to the nucleon loss
1
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are for averaging over all inelastic collisions, while EMF

and AMF are for fragmenting residues. The calculations
within the RC + α + SMM approach are labeled with
“α.” Points present data for (circles) proton, (squares)
helium, and (triangles) carbon beams.

during the cascade, ∆ARC; therefore, ∆E = (1 −
α)ε1∆ARC, where ε1 is the mean excitation energy
per ejected cascade nucleon. The loss of mass, ∆A,
corresponding to this drop in the excitation energy is
∆A = ∆E/ε2, where ε2 is the mean energy removed
by a nucleon. Assuming that ε2 ≈ ε1, one gets ∆A =
(1 − α)∆ARC. We denote this empirical combined
model as RC + α + SMM.

In [13], the simple relation

α =
〈Mexp〉

〈MRC+SMM〉
could be applied for p + Au collisions because the
excitation-energy range corresponded to the rising
part of the energy dependence of 〈M〉 shown in Fig. 3.
However, due to the rise-and-fall effect in 〈M〉, this
relation fails for heavier projectiles. For these sys-
tems, the values of α are empirically adjusted to re-
produce the measured mean IMF multiplicities. The
P

charge, mass, and energy characteristics of frag-
menting nuclei resulting from this fitting procedure
are presented in the table for various colliding sys-
tems. The corresponding values for the p + Au case
differ slightly from those given in [13] because a new
cascade code is used here. The values of the parame-
ter α can be found in the table by calculating the ratio
ER(RC + α + SMM)/ER(RC + SMM), which gives
0.93, 0.76, and 0.53 (for p + Au); 0.49 and 0.25 (for
He + Au); and 0.22 (for C + Au), respectively.

As follows from the above values of the parameter
α, a rather large decrease in the residual excitation
energy is required by this empirical procedure to re-
produce the observed saturation effect in 〈M〉, which
is caused mainly by a saturation in EMF. This is
illustrated in Fig. 5, which shows the population of
events in the M–EMF/AMF plane calculated in both
the RC + SMM (left panel) and the RC + α + SMM
(right panel) scenario. According to the first ap-
proach, the excitation-energy distribution is rather
wide and populates states along both the rising and
the falling parts of the multiplicity curve. In the RC +
α + SMM scenario, events are mainly situated in the
rising part, hardly approaching the region of maximal
values of the IMF multiplicity, which is in agreement
with the measured data.

Note that the excitation energies of fragment-
ing nuclei given in the table are thermal by defini-
tion. As will be shown in Subsection 4.3 for both
C(22.4 GeV) + Au and He(14.6 GeV) + Au colli-
sions, the systems at breakup also have a collective
expansion energy, which is estimated to be about
100–130 MeV for both cases. The total excitation
energy E∗

MF for these cases is in fact larger by that
value than the values shown in the table. This is taken
into account in Fig. 6, which presents the calculated
values of the mean residual excitation energies and
mass numbers. The total excitation energy E∗

MF
changes slightly with increasing incident energy. At
the same time, the excitation energy per nucleon in-
creases, while the residual mass decreases; the mean
IMF multiplicity is almost constant.

It would be of interest to compare the extracted
masses and excitation energies of fragmenting nuclei
with those obtained by the EOS collaboration for
Au(1 GeV/nucleon) + C collisions (in inverse kine-
matics) [37]. In that study, the mass- and energy-
balance relations are applied with use of the measured
kinetic energies of all outgoing charged particles after
separation from the prompt stage of the reaction. The
neutron contribution was taken into account on the
basis of cascade and statistical model simulations.
Our value ofE∗

MF/AMF is close to that from [37] if the
collective energy is added. As to the mean massAMF,
the value obtained in the present study (about 90) is
HYSICS OF ATOMIC NUCLEI Vol. 64 No. 9 2001
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remarkably lower, being caused by the larger mass
loss induced by the projectile with twice the energy.

Some examples of the excitation-energy distribu-
tions are displayed in Fig. 7. The IMF emission
occurs on the tail of the distributions; therefore, the
mean excitation of the fragmenting nuclei is much
higher than that averaged over all target spectators.

In Fig. 8, the value obtained for the energy E∗
MF

is confronted with the values predicted by the EES
model [26]. The excitation energy after the cascade
stage is taken as the initial one for the process of
the energy (and mass) loss during the expansion of
the system. Data for p + Au collisions are close
to the predicted values if the excitation energy was
corrected according to the above procedure, while, in
all the cases of 4He and 12C beams, the EES model
overestimates the excitation energy after expansion.
This may be an indication of a possible contribution
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 9 200
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compared with the empirically deduced drop. The dashed
line represents the initial energy (after RC stage). Points
are data for proton (circles), helium (squares), and carbon
(triangle) beams.

from an additional mechanism of the energy loss (e.g.,
preequilibrium emission).

4.2. Angular and Charge Distributions

Let us now consider the question of thermalization
of the system at breakup. To check how close the
emitting system is to thermal equilibrium, the plot
of the fragment probability distribution in terms of
the longitudinal–transverse velocity components is
presented in Fig. 9 for 4He + Au and C + Au colli-
sions. The symbols correspond to constant invariant
cross sections taken for emitted carbon fragments in
the energy region above the spectral peak. The lines
connecting experimental points form circles demon-
strating an isotropic emission in the frame of amoving
source, indicating that the fragment emission pro-
ceeds from a thermalized state. The center positions
of the circles determine the source velocity, βsource.
The mean values of βsource are in the range of (0.01–
0.02)c, which is close to an estimate within the RC +
α + SMM approach for all cases, with the exception
of 4He + Au at 4 GeV, where calculations under-
estimate the source velocity. The calculated mean
βsource values are 0.76 × 10−2, 1 × 10−2, 1.36 × 10−2

and 1.7 × 10−2 for p(8.1 GeV) + Au, 4He(4 GeV) +
Au, 4He(14.6 GeV) + Au, and C(22.4 GeV) + Au
collisions, respectively. The accuracy of βsource deter-
mination is about 5%. The variation of βsource with
the IMF velocity, βIMF, is shown in Fig. 10.
1
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The fragment angular distribution in the labora-
tory frame exhibits a forward peak caused by the
source motion, as is shown in Fig. 11 for carbon frag-
P

ments (points). The data are well reproduced by the
model calculations for all cases, with the exception
of the helium beam case at the lowest energy. The
measured distribution here is more forward-peaked,
which may be considered as an indication that the
momentum transfer is larger than what is predicted.

The charge distributions of IMF are shown in
Fig. 12. The results of the calculations for the RC
+ α + SMM scenario agree nicely with the data. The
general trend of the IMF charge (or mass) distribu-
tions is well described by the power law Y (Z) ∼ Z−τ .
The values obtained for the exponent are τ = 1.9 ±
0.1, 2.0 ± 0.1 and 2.1 ± 0.1 for, respectively, a 4-GeV
helium beam, a 14.6-GeV helium beam, and carbon
projectiles (Fig. 12, right panel).

In earlier studies on multifragmentation [5, 38],
the power-law behavior of the IMF yield was in-
terpreted as an indication of the proximity of the
decaying state to the critical point for a liquid–gas
phase transition in nuclear matter. This was stim-
ulated by the application of the classical Fisher’s
droplet model [39], which predicted a pure power-law
droplet-size distribution with τ = 2–3 at the critical
point. According to [40], the fragmenting system is
not very close to the critical point. Now, the power
law is well explained at temperatures far below the
critical point. As is seen from Fig. 12, the pure
thermodynamical SMM predicts that the IMF charge
distribution is very close to a power law at freeze-
out temperatures of 5–6 MeV, while the critical tem-
perature (i.e., where the surface tension vanishes) is
Tc = 18 MeV. In [41], it was also shown that sev-
eral results concerning the fragment size distribution
can be rendered well by using the kinetic model of
condensation beyond the vicinity of the liquid–gas
critical point.

Thermal multifragmentation can be considered as
a first-order phase transition of nuclear matter inside
a spinodal region characterized by an instability of
the liquid–gas phase. Indeed, it was proven exper-
imentally that fragmentation occurs after expansion
HYSICS OF ATOMIC NUCLEI Vol. 64 No. 9 2001
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driven by thermal pressure [12–14] and that the de-
composition time is short (less than 100 fm/c) [17–
19]. In fact, the final state of this transition looks like
a nuclear fog [42]: liquid drops of IMF surrounded by
a gas of nucleons and light clusters (d, t, and α parti-
cles). This interpretation is in line with the SMM [43].
Later, it was employed in other approaches (see, for
example, [44]).

4.3. Energy Spectra of Fragments

In general, the kinetic energy of fragments is de-
termined by four terms: thermal motion, Coulomb
repulsion, rotation, and collective expansion ener-
gies of the system at freeze out: E = Eth + EC +
Erot + Eflow. The additivity of the first three terms
is quite obvious. For the last term, its independence
from the others may be considered only approximately
when the evolution of the system after freeze-out is
driven only by the Coulomb force. The Coulomb
term is significantly larger than the thermal one. It
was shown in [18] that, for 4He (14.6 GeV) + Au
collisions, the Coulomb part of the mean energy of
the carbon fragment is three times larger than the
thermal energy. These calculations were performed
within the RC + SMM scenario, where the volume
emission of fragments from a dilute system was taken
into consideration.

The contribution of a collective flow for p + Au
collisions at an incident energy of 8.1 GeV was es-
timated in [13]. This was done by comparing the
measured IMF spectra with those calculated within
the SMM, which includes no flow. This analysis
did not reveal any significant enhancement in the
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 9 200
measured energy spectra, constraining the mean flow
velocity as vflow < 0.02c. For the case of heavy-ion
collisions, a collective flow was observed, and it is
the most pronounced in central Au + Au collisions
[45]. In this respect, it would be quite interesting
to analyze the fragment spectra from He + Au and
C + Au collisions with reference to searches for a
possible manifestation of collective flows. The carbon
spectra for proton, helium, and carbon collisions with
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a Au target are presented in Fig. 13. The calculated
carbon spectrum for p + Au collisions (at 8.1 GeV) is
P

consistent with the measured one. A similar situation
is observed for 4He + Au collisions at 4 GeV, but not
for 4He(14.6 GeV) + Au and 12C + Au interactions:
the measured spectra are harder than the calculated
ones.

The mean kinetic energies per fragment nucleon
are displayed in Fig. 14, where only statistical errors
are shown. There is a remarkable enhancement in
the reduced kinetic energy for light fragments from
He + Au and C + Au collisions in relation to the
p(8.1 GeV) + Au case. The calculated values of
the mean fragment energies (shown by lines) were
obtained within the RC + α + SMM approach by
many-body Coulomb trajectory calculations on an
event-by-event basis. In the initial state, all charged
particles are assumed to have only a thermal velocity.
The measured energies are close to the calculated
ones for p + Au collisions in the range of the fragment
charges between 4 and 9. However, for 4He + Au
and 12C + Au interactions, experimental data are
definitely above the calculated values.

The observed deviation cannot be attributed to
the effect of the angular momentum. To estimate
the rotational part of energy, Erot, we consider the
uniform classical rotation of the system with mass
number A and total rotational energy EL. The mean
rotational energy of a fragment with mass AIMF is

〈Erot〉/AIMF =
5
3
〈EL
A

〉〈R
2
Z〉

R2
sys

, (7)

where RZ and Rsys are the radial coordinate of the
fragment and the radius of the system, respectively.
According to the RC calculations for C + Au col-
lisions, the mean angular momentum of the target
spectator is L = 36�. It might be reduced by a factor
of 1.5 due to the mass loss along the way to the
freeze-out point. Finally, 〈EL〉 is estimated to be
only 5 MeV and 〈Erot〉/AIMF ≈ 0.04 MeV/nucleon,
which is an order of magnitude smaller than the en-
ergy enhancement for light fragments. We believe
that this enhancement is caused by the expansion of
the system, which is assumed to be radial, since the
velocity plot (Fig. 9) does not show any significant
deviation from circular symmetry.

An estimate of the fragment flow energy can be
obtained as the difference of the measured IMF ener-
gies and those calculated without taking into account
any flow in the system. This difference for C +
Au collisions is shown in Fig. 15. The error bars
include both statistical and systematic contributions.
The latter one is associated with the calibration of
the energy scale and is estimated at about 5%. In
an attempt at describing the data, we replaced the
SMM code by RC + α + SMM by including a radial
velocity boost for each particle at freeze-out. In other
words, a radial expansion velocity was superimposed
HYSICS OF ATOMIC NUCLEI Vol. 64 No. 9 2001
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on thermal motion in the calculation of the many-
body Coulomb trajectories. A self-similar radial ex-
pansion is assumed, where the local flow velocity is
linearly dependent on the distance of the particle from
the center of mass. The expansion velocity of particle
Z located at radius RZ is given by

vflow(Z) = v0flow
RZ

Rsys
, (8)

where v0flow is the radial velocity at the surface of the
system. In this case, the density distribution changes
in the course of dynamical evolution in a self-similar
way, being a function of the scaled radius RZ/Rsys.
The use of a linear profile for the radial velocity is
motivated by the hydrodynamic-model calculations
for an expanding hot nuclear system (see, for exam-
ple, [46]). The value of v0flow was adjusted to describe
the mean kinetic energy measured for the carbon
fragment. The results are also presented in Fig. 15 as
the difference of the fragment energies calculated for
v0flow = 0.1c and v0flow = 0. The data deviate signifi-
cantly from the calculated values for Li and Be. This
may be caused in part by the contribution of particle
emission, during the early stage of expansion, from a
hotter and denser system. This is supported by the
fact that the extra energy of Li fragments with respect
to the calculated value is clearly seen in Fig. 14 even
for proton-induced fragmentation, where no signifi-
cant flow is expected. This feature of light fragments
was noticed by the ISIS group for 3He + Au collisions
at 4.8 GeV [22].

As to fragments heavier than carbon, the calcu-
lated curve in Fig. 15 is above the data and only
slightly decreases with increasing fragment charge.
In general, such a behavior should be expected. The
mean fragment flow energy is proportional to 〈R2

Z〉.
This quantity changes only slightly with fragment
charge in the SMM code because of the assumed
equal probability for fragments of a given charge
to be formed at any point of the available breakup
volume. This assumption is a consequence of the
model simplification that considers the system to be
uniform with ρ(r) = const for r ≤ Rsys. The dis-
crepancy between the data and the calculations in
Fig. 15 indicates that the density distribution is not
uniform. The dense interior of the expanded nucleus
favors the appearance of larger IMF if fragments are
formed via density fluctuations. This observation is
also in accord with the analysis of the mean IMF
energies performed in [13, 38] for proton-induced
fragmentation. It is also seen from Fig. 14 that, for
p + Au collisions, the measured energies are below
the theoretical line for fragments heavier than Ne.
This may be explained by the preferential location of
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 9 200
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heavier fragments in the interior region of the freeze-
out volume, where the Coulomb field is reduced. The
deviation of data from the calculations becomes less,
but it still remains if one assumes the quadratic radial
profile of the expansion velocity. The result of such
a calculation shown in Fig. 15 was obtained with
v0flow = 0.2c, which was chosen to be close to the
data at Z = 6. An interesting feature of a reduced
flow energy for heavier fragments is also observed
for central heavy-ion collisions (see the review ar-
ticle [47]). This effect is increasingly important at
energies ≤ 100A MeV, and this is in accord with our
suggestion on its relation to the density profile of the
hot system at freeze-out.

The difference of the measured IMF energies and
calculated ones (no flow) was used to estimate the
mean flow velocities of fragments. The results are
presented in Fig. 16. The values for Li and Be are
considered as upper limits because of the possible
contribution of preequilibrium emission. The cor-
responding values of 〈RZ〉/Rsys, obtained under the
assumption of a linear radial profile for the expansion
velocity, are plotted on the right-hand scale of the
figure. Again, the reduced radius value for the carbon
fragment is chosen to coincide with the calculated
one. The dashed line shows the mean radial coordi-
nates of fragments according to the SMM code. As
was noted above, the calculated values of 〈RZ〉/Rsys

decrease only slightly with Z, in contrast to the data.
Effects of the radial collective energy for Au + C

collisions at 1 GeV per nucleon (in inverse kinemat-
1
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ics) were considered in [48] by analyzing the trans-
verse kinetic energies Kt of fragments with Z = 2–7.
This was done for two charged-particle-multiplicity
bins corresponding to peripheral (M1) and central
(M3) collisions. TheBerlin statistical model code [49]
was used with allowance for a radial velocity chosen
properly to explain the experimental values of 〈Kt〉.
In the case of peripheral collisions, the resulting ex-
pansion velocities are close to those given in Fig. 16,
but the corresponding mean IMF multiplicities (in
our definition) are less than 1.5. For central collisions
(〈MIMF〉 � 4), the expansion velocities are greater by
a factor of about 1.5. It would be desirable to compare
our data with those for the intermediate case (bin
M2), which are unfortunately not available. Making
an interpolation, one may see that our analysis gives
slightly lower values of vflow(Z) than those in [48].
This may be caused by the fact that the MMMC
model [49] underestimates the Coulomb part of the
fragment kinetic energy (see [32]), since the freeze-
out density used is too small (ρf = 1/6ρ0).

The total expansion energy can be estimated by
integrating the nucleon flow energy [taken according
to Eq. (8)] over the available volume at freeze-out.
For a uniform system, one gets

Etot
flow =

3
10

AmN (v0flow)2 (1 − rN/Rsys)5, (9)

where mN and rN are the nucleon mass and radius.
For 12C + Au collisions, this yields Etot

flow � 100–
130 MeV, which corresponds to a flow velocity at
the surface of 0.1 c. Similar results are obtained for
4He(14.6 GeV) + Au collisions.

5. CONCLUSION

The emission of intermediate mass fragments
has been studied for p(2.1, 3.6, and 8.1 GeV) + Au,
4He(4 and 14.6GeV) + Au, and 12C(22.4 GeV) + Au
interactions. The measured IMF multiplicities (for
events involving at least one IMF) saturate at a value
around 2 for incident energies above 6 GeV, irrespec-
tive of the projectile size. The angular distributions of
IMF are slightly forward-peaked; the yield distribu-
tions of parallel versus perpendicular velocities exhibit
circular symmetry. These results show that IMF
are emitted from a source that moves with a rather
low velocity (0.01–0.02) c. These findings support
the interpretation of thermal multifragmentation, a
breakup of an expanded system.

Model calculations for the IMF multiplicities us-
ing a two-stage concept with a cascade followed by
the SMM fail to describe the measured values. This
might originate partly from too high an excitation
energy predicted by the cascade model used. Taking
into account preequilibrium particle emission before
PHY
attainment of thermal equilibrium in the system de-
creases the number of IMF but still cannot predict
the observed multiplicity saturation. The employ-
ment of the EES model also fails to reproduce the
measured multiplicities over the whole available en-
ergy range. Only if one applies an empirical modi-
fication of the calculated excitation energies ER and
residual masses AR after the cascade used as input
for the SMM calculations can the IMF multiplicity
saturation effect be reproduced. This study shows
that the widely used approach of dividing the nuclear
multifragmentation process into two distinct stages is
much oversimplified.

The energy spectra of IMF prove to be very sen-
sitive observables. In p + Au collisions, the energy
spectra are well described by the empirically modified
cascade–SMM calculations. However, for 4He- and
12C-induced reactions, the number of higher energy
IMF is larger than that which is given by the cal-
culations. This effect is not caused by any variation
of the residual masses. We attributed this observa-
tion to the occurrence of collective (expansion) flow
in the system possibly caused by a higher thermal
pressure. Under the assumption of a linear radial
profile of flow velocity, its value at the surface is es-
timated at about 0.1c both for 4He- and 12C-induced
reactions. However, a detailed inspection of the vari-
ation of the kinetic energies of fragments, together
with their charges, reveals that the flow velocities are
not constant. This is in contrast with expectations
that assume equal probabilities for the formation of
fragments of a given charge at any available point of
the system with uniform density. The discrepancy
between the extracted flow velocities and the sim-
ple assumption indicates that heavier fragments are
formed predominantly in the interior of the system,
possibly due to a density gradient.

This study of multifragmentation using a range of
projectiles from protons to light nuclei seems to be
quite attractive, furnishing new information on the
various aspects of multifragmentation from a “ther-
mal decay” to a disintegration governed by collision
dynamics.
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Abstract—The properties of neutron emission from fragments formed in the spontaneous fission of 252Cf
and in the thermal-neutron-induced fission of 235U are analyzed on the basis of the statistical model of
nuclear reactions. Upon extracting the mean excitation energies of fission fragments from experimental
data on the mean multiplicities of neutrons, the observables of neutron emission can be described over
wide ranges of total kinetic energies and masses. The observed values of mean fragment spins are also
reproduced. A method for calculating the isomeric ratios of the independent yields of fission fragments that
is based on the cascade–evaporation model of excited-nucleus decay is employed to describe experimental
data on 235U fission induced by thermal neutrons and on 238U fission induced by alpha particles. The effect
exerted on the isomeric ratios for fission fragments by two different assumptions on the spin distributions
of primary-fragment populations—the assumption of the distribution associated with rotational degrees
of freedom and the assumption of the distribution associated with the internal degrees of freedom of fully
accelerated fragments—is investigated. c© 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Since the fission of nuclei is accompanied by a
radical redistribution of the nuclear charge and mass
and by the formation of severely deformed and highly
excited fragments, theoretical analysis of the process
involves formidable difficulties. For this reason, a
detailed description of its dynamics and mechanism
has not yet been developed. As an advancement
toward creating a unified theory of the fission process,
it would therefore be reasonable, in describing specific
features of fission, to invoke consistent theoretical
models that were successfully employed to study the
properties of different reactions.

In the present article, the formation of fission frag-
ments prior to neutron emission and the deexcitation
of these fragments via neutron and photon emission
are chosen as the subject of investigation. It seems
obvious that the deexcitation of fission fragments
must be of a statistical character, because the fis-
sion process itself proceeds through the stage of a
compound nucleus. Hence, the application of the
statistical model of nuclear reactions [1–3] is quite a
logical, albeit rather complicated (from the practical
point of view), step.

The observables of the deexcitation of excited
fragments are averaged over many variables, includ-
ing charges, masses, excitations, kinetic energies,
and total angular momenta. This is precisely the
reason why it is difficult to describe theoretically these
features—the calculations should involve a great
number of parameters. That nuclei appearing as
1063-7788/01/6409-1564$21.00 c©
fission products are usually formed only in the fission
process, with the result that their properties are poorly
known, further aggravates the situation.

In order to successfully apply the statistical model
of nuclear reactions to describing the properties of fis-
sion fragments, it is necessary to answer one question
of fundamental importance—specifically, it is nec-
essary to establish the character of the excitation-
energy and the angular-momentum distribution of
fission fragments. Knowing these distributions and
sidestepping difficulties associated with uncertainties
in the parameters of neutron-rich nuclei, one can
compute almost any observable of fission-fragment
deexcitation, including the neutron and photon mul-
tiplicities and spectra, isomeric ratios, and even the
yields of nuclei.

Investigation of the process through which iso-
meric states of nuclear-fission fragments are pro-
duced may furnish information about the mechanism
of formation and magnitudes of the total angular
momenta of the fragments. The practical aspect of
such investigations is that more detailed and accu-
rate data on the activities and composition of spent
nuclear fuels are required at the current stage of de-
velopment of nuclear power engineering, when the
efforts of researchers are concentrated on creating
new-generation reactors of higher reliability and on
studying the possibility of transmuting and destroy-
ing radioactive wastes of operating reactors.

In the present study, the theoretical approach that
was successfully employed to compute isomers in
2001MAIK “Nauka/Interperiodica”
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various reactions [4–6] and the spectra of photons
from the spontaneous fission of 252Cf [7] is applied
to evaluating the yields of the isomers of fission frag-
ments originating from the reactions 235U(nth, f) and
238U(α, f). The applicability of the statistical model
of nuclear reactions to calculating the emission prop-
erties of fission fragments is substantiated by ana-
lyzing experimental data on neutron emission from
fission fragments over wide ranges of the total kinetic
energies and masses, by extracting the mean excita-
tion energies of fission fragments from experimental
data, and by testing the balance of the resulting ener-
gies.

1. THEORETICAL MODEL

The statistical model of nuclear reactions with-
in the Hauser–Feshbach–Moldauer formalism [1, 2]
and its generalization to the case of gamma decay of
excited nuclei in the form of the cascade–evaporation
model [3] are successfully used in theoretical analyses
of the emission of photons and particles of nonzero
mass, as well as in analyses of the yield of isomeric
levels from various nuclear reactions [4–6]. The ap-
plication of the statistical model of nuclear reactions
and of the cascade–evaporation model to describing
processes that involve emission from fission frag-
ments is hindered by a number of factors. Listed
immediately below are the most important of these:

(i) Since the total kinetic energy of fission frag-
ments lies between 140 and 220 MeV, the excitation
energy of fragments can vary between 0 and 50 MeV.
The distribution of the excitation energy among the
complementary fragments is not known.

(ii) That the excitation energy can vary within
a wide range must lead to significant changes in
the total-angular-momentum distribution of popula-
tions, but the mechanism of formation of these distri-
butions in fission fragments is poorly known.

(iii) In order that calculations be able to reproduce
mean observables of the fission process, it is neces-
sary to perform such calculations for a wide range of
nuclei.

Basic relations of the statistical model of nuclear
reactions are well known and were implemented
as a standard procedure in many computer codes
(GNASH [8], STAPRE [9]). It is therefore not
necessary to quote these relations here. We only
note that the results obtained by calculating the
emission spectra according to the statistical theory
of nuclear reactions are determined by two model-
dependent functionals: the level density of excited
nuclei in the input and the output reaction channel
and the penetrabilities for particles of finite mass and
for photons. The level density was calculated on
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 9 200
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Fig. 1.Number of neutrons as a function of the excitation
energy of the emitting nucleus for 121Cd, 130Sn, 134Te,
and 140Xe. Closed circles represent the experimental
values of 〈ν〉 for the fragments of 252Cf [13].

the basis of the generalized superfluid-nucleus model
in the version proposed in [10]. These calculations
were performed with the parameter values quoted in
the dedicated LDPL-98 library [7], which contains
the asymptotic level-density parameters ã, the shell
corrections δW , the corrections δ for even–odd
distinctions, the quadrupole-phonon energies ω2+ ,
and the diagrams of discrete levels of the excitation
spectrum for nearly 2000 nuclei. The penetrability
factors for neutrons were computed on the basis of
the optical model of the nucleus with the parameters
of the global optical potential from [11].

2. NEUTRON EMISSION

The spectra of neutrons are faithfully reproduced
within the statistical model of nuclear reactions if the
reaction being considered proceeds through a com-
pound nucleus—that is, there is no coupling between
the input and the output reaction channel, with the
exception of those couplings that are associated with
the laws of energy, total-angular-momentum, and
parity conservation. From this point of view, it is
reasonable to deem that the process leading to the
formation of fragments and of their properties is fully
consistent with the requirements ensuring the appli-
cability of the statistical model of nuclear reactions.
1
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Fig. 2. Mean excitation energies of fission fragments and mean multiplicities of neutrons versus the mass of the fragments
originating from the thermal-neutron-induced fission of 233U, 235U, and 239Pu nuclei and from the spontaneous fission of a
252Cf nucleus.
In conventional nuclear reactions, such as
(n . . . α, xn), the excitation energy of the nucleus
emitting neutrons is known to a high precision.
In nuclear fission, the excitation energies of fission
fragments can vary within a broad range between 0
and 50 MeV. Therefore, the first step in applying the
statistical model of nuclear reactions must be that of
determining the mean excitation energy of fragments.

Excitation energy of fragments. Information
about the excitation energies of fission fragments
prior to neutron emission can be extracted from data
on the mean number of neutrons under the assump-
tion that neutrons are emitted from fully accelerated
and fully formed products of nuclear fission [7]. The
reliability of data obtained on the basis of this ap-
proach is ensured by the fact that the number of
neutrons unambiguously depends on the excitation
energy of a given nucleus. In order to demonstrate
typical dependences of the number ν of emitted neu-
trons on the excitation energy of a uranium nucleus,
we choose nuclei that appear as the fragments pro-
duced in 252Cf fission and which have the highest
PH
(121Cd) or the lowest (130Sn) multiplicity of neutrons
[12], as well as nuclei characterized by the maximum
yield (140Xe) or by the ν value corresponding to the
plateau in the dependence ν(U) (134Te) (Fig. 1). The
greatest error in determining the excitation energy
may be 2 to 3 MeV and is due to the fact that, in
the dependence ν(U), there is a plateau around ν = 1
(Fig. 1). This error becomes smaller if the procedure
employs the dependence averaged over a few frag-
ments rather than the dependence for one nucleus.

The probabilities of emission of various numbers
of neutrons from fission fragments excited to energies
not exceeding 80 MeV were calculated for four
processes, the thermal-induced-fission of 233,235U
and 239Pu nuclei and the spontaneous fission of
252Cf. The calculations were performed for A = 70–
160 fragments, whose yields do not fall below 0.1 of
themaximum yield of a fragment with a specific mass.
The input data were taken from the LDPL-98 library
of level-density parameters [7]. The distributions of
the yields of fragments with a specific charge and
YSICS OF ATOMIC NUCLEI Vol. 64 No. 9 2001
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mass, Y (Z, A), were computed on the basis of the
model developed in [12]. The dependences ν(Z, A, U)
were averaged with the weights associated with the
corresponding yields, whereupon the quantities 〈U〉
were determined from a comparison of the calculated
values of ν(A, U) and the experimental values 〈ν(A)〉
[12–14]. The resulting mean excitation energies of
fission fragments and the mean neutron multiplicities
used [12–14] are displayed in Fig. 2 versus fragment
masses. Obviously, the sawtooth structure of 〈ν(A)〉
must be reproduced and is indeed reproduced in the
dependences 〈U(A)〉. It is important to emphasize
that the experimental values of 〈ν(A)〉 are often
known to a poor precision. By way of example,
we indicate that, for 252Cf, the precision is 15%
around A = 120 and that, for 235U, the scatter of
data presented by different authors is as large as 40%
around A = 115–125 [12].

The extracted mean excitation energies of frag-
ments of various masses are shown in Fig. 3 versus
the mean number of neutrons. Use was additionally
made there of data from [15] for various values of the
total kinetic energy of fragments. It is noteworthy
that, for seven cases, the dependences 〈U(ν)〉 ob-
tained here are similar to a considerable extent and
can be described by the formula

〈U〉 = 5 + 4ν + ν2. (1)

That the function in (1) is nonlinear is indicative
of an increase in the mean energy carried away by
neutrons with increasing number of these neutrons as
the residual nucleus approaches the stability band. In
the ensuing calculations, use is made of the resulting
mean energies for fragments of specific masses at
mean total kinetic energies. Considering that the
variance of the total kinetic energies is about 10–
12 MeV and that the width of the distribution affects
only slightly the extracted mean excitation energies,
we adopt a value of 5 MeV for the root-mean-square
deviation in the relevant Gaussian distribution.

Energy balance. The procedure used here to
extract mean excitation energies of fission fragments
takes no account of the energy balance in the fis-
sion process; therefore, its results can be verified by
comparing the total mean energy of the complemen-
tary fragments, 〈U(AL, AH)〉 = 〈U(AL)〉+ 〈U(AH)〉,
with the available energy TXE(AL,AH) calculated by
the formula
TXE(AL, AH) = Q(AL, AH) − TKE(AL, AH), (2)

where Q is the reaction energy; TKE is the total
kinetic energy; and AL and AH are the masses of,
respectively, a light and the complementary heavy
fragment. The present calculations were performed
with the experimental TKE(AL, AH) values from [13,
16] and with nuclear binding energies from [17]. A
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 9 200
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comparison of 〈U(AL, AH)〉 and TXE(AL, AH) is il-
lustrated in Fig. 4 for the fission of 252Cf and 235U
nuclei. Satisfactory agreement between the values
under comparison indicates that the procedure used
to extract mean excitation energies of fragments leads
to results compatible with the energy-conservation
law and that the available energy of fission is con-
verted almost completely into the excitation energy of
fragments. That TXE(AL, AH) exceeds 〈U(AL, AH)〉
by about 10 MeV for 235U in the region of mass-
symmetric fission can probably be explained by con-
siderable uncertainties in 〈νexpt〉.

The verification of the energy balance is incom-
plete if the energy transfer to fragments is not broken
down into the components carried away by neutrons
and photons. On one hand, this partition would make
1
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it possible to test the widely used assumption that the
photon energy Eγ is approximately half the neutron
binding energy (Eγ ≈ Bn/2); on the other hand, it
provides yet another check upon the procedure for
extracting mean excitation energies of fission frag-
ments [7].

That the calculated multidimensional matrices of
the neutron and photon spectra—Nn(Z, A, U, εn)
and Nγ(Z, A, U, εγ ), respectively—are available en-
ables one to obtain theoretical values for any ob-
servables of fission fragments [7]. In particular, the
energies carried away by neutrons and photons can
be calculated as

En = ν(〈εn〉 + 〈Bn〉), Eγ = µ〈εγ〉, (3)

where the mean energies (〈εn〉, 〈εγ〉) and multiplici-
ties (n, µ) are obtained from the corresponding spec-
tra.

Thus, a comparison of 〈U(A)〉 with (En + Eγ)
and of Eγ calc with Eγ expt would make it possible to
demonstrate that the approach used does indeed take
correctly into account all channels of the radiation of
energy. For four fissile systems, the excitation ener-
gies of fragments are displayed in Fig. 5, along with
the energies carried away by neutrons and photons.
P
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Fig. 5. Mean excitation energies of fission fragments
(open circles), sum of the mean energies carried away by
neutrons and photons (closed circles), and mean energies
carried away by neutrons (curves).

Asmight have been expected, the balance of the ener-
gies transferred to the fragments in the fission process
and the energies carried away in the deexcitation of
these fragments is obviously fulfilled. Some modest
deviations are explained by the fact that the energy
balance is verified for mean values.

Photons emitted by fission fragments carry away
up to 50% of the excitation energy (Fig. 5); therefore,
it is of paramount importance to verify whether the
theoretical model used provides a correct descrip-
tion of the radiative deexcitation channel. For the
fragments formed in thermal-neutron-induced fission
of 235U and 239Pu, the experimental mean values
of photon energies [18, 19] are contrasted in Fig. 6
against the calculated values. It is found that Eγ calc
and Eγ expt are in satisfactory agreement. It is inter-
esting that Eγ ranges between 20 and 90% of the
neutron binding energy.

The experimental photon multiplicities µexpt [18,
19] as functions of the fragmentmass have a sawtooth
HYSICS OF ATOMIC NUCLEI Vol. 64 No. 9 2001
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structure (see Fig. 7) similar to that of the dependence
〈ν(A)〉. The calculations failed to reproduce this
dependence. The reason may lie in the disregard of
the radiation mechanism associated with transitions
between the members of rotational bands of excited
nuclei. Qualitatively, this conjecture is confirmed by a
characteristic increase in the number of emitted pho-
tons as one recedes from the A = 130 spherical frag-
ment toward deformed fission fragments with mass
numbers in the range A = 140–150 (see Fig. 7).

Level density. The extracted quantities 〈U(A)〉
depend on the parameters of models used to calculate
the neutron and photon spectra—above all, on the
level-density parameters. In cases where the calcu-
lations poorly reproduce the spectra of neutrons, the
values of mean excitation energies will be strongly
distorted. It is therefore of great interest and impor-
tance to test the description of the spectra of neutrons
originating from fission fragments. In Fig. 8, the
spectra calculated on the basis of the statistical model
of nuclear reactions with the parameter values from
the LDPL-98 library [7] are contrasted against the
experimental spectra of neutrons from [20]. Satisfac-
tory agreement between these spectra indicates that
the data in the LDPL-98 library are quite correct
and that the statistical model of nuclear reactions can
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 9 200
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Fig. 7. Data on the multiplicities of photons from frag-
ments formed in thermal-neutron-induced fission of 235U
and 239Pu: (points) experimental data from [18, 19] and
(curves) results of the calculations.

be successively applied to describing the emission
properties of fission fragments. A comparison of the
parameters from LDPL-98 with the corresponding
empirical values obtained from the neutron spectra
in [13, 20] (Fig. 9) would be an indirect check upon
these parameters. A detailed accurate description
of the shell structure that manifests itself in A =
130 fragments is the most compelling evidence of
the predictive power of the level-density model [10]
used in creating the LDPL-98 library. It should be
borne in mind that the procedure employed in [13,
20] to extract level-density parameters is not free
from drawbacks. First, the data were obtained for
nuclei emitting neutrons, but it is well known that the
spectra are determined by the parameters of residual
nuclei; second, there exists a procedure for extracting
the absolute value of the level density from the emis-
sion spectra [21], but it was not applied; and, third,
the temperature t in the expression U = at2, which
was employed to obtain the parameter a, does not
comply with that which is extracted from the spectra
according to the Le Couteur–Lang relation [22].

Neutron multiplicities. The relations between
the excitation energies were obtained for the mean
values of the total kinetic energies of pairs of com-
plementary fragments. The experimental values
νexpt(TKE, A) from [13, 23] make it possible to
verify these relations over a wider range of excitation
1
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Fig. 8. Spectra of neutrons from fragments formed in thermal-neutron-induced fission of 235U: (points) experimental data
from [20] and (curves) results of the calculations.
energies. Since TXE(AL, AH) is the sum of the
excitation energies of two fission fragments, the
distribution of this energy among the fragments will
affect the calculated dependences νcalc(TKE, A). In
the calculations, the excitation energy of a given
fragment was set to

U(AL,H) = [Q − TKE(AL, AH)]
〈U(AL,H)〉

〈U(AL, AH)〉 ; (4)

that is, it was assumed to be proportional to the
ratio of the mean kinetic energies that was obtained
above. In Fig. 10, the experimental values of ν(TKE,
A) from [13] are contrasted against their calculated
counterparts for six pairs of complementary frag-
ments (125, 127; 123, 129; 122, 130; 121, 131;
120, 132; 124, 128) originating from the spontaneous
PH
fission of 252Cf, for four light fragments (115, 117,
118, 119), and for mass-symmetric fission. That
the dependences νexpt(TKE, A) and νcalc(TKE, A)
are in agreement over a wide range of total kinetic
energies seems quite compelling, the excitation en-
ergies of individual fragments varying between 0 and
40 MeV. Some discrepancies between the absolute
values are due to distinctions between TXE and 〈U〉
(see Fig. 4). A similar comparison of experimental
data from [23] with the results of the calculations for
235U is illustrated in Fig. 11. Since the data from
[14] were used to extract mean energies and since
the values νexpt(TKE, A) were borrowed from [23],
the calculated dependences had to be renormalized
with allowance for the distinctions between the 〈ν〉
values in [14] and [23]. For six pairs of complementary
YSICS OF ATOMIC NUCLEI Vol. 64 No. 9 2001
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fragments originating from 235U fission induced by
thermal neutrons, the calculated and the experimen-
tal values of ν(TKE, A) agree over wide ranges of
total kinetic energies (150–190 MeV) and fragment
masses (90–146) (Fig. 11). Thus, we can conclude
that, in the majority of the cases, neutrons are emitted
from fission fragments occurring at an equilibrium
deformation. A sharp decrease in νexpt(TKE, A) for
TKE ∼ 150 MeV suggests that, for one reason or
another, the fragments are excited to a lesser degree.

Thus, we have obtained a satisfactory description
of the neutron spectra and multiplicities and have
been able to reproduce faithfully the level-density
parameters for A ≈ 130 fragments. In view of this,
a nearly twofold discrepancy between the calculated
and experimental values of the mean neutron ener-
gies 〈εn〉 for the mass range 125–135 (Fig. 12) is
quite surprising. In this connection, the experimental
values of 〈εn〉 ≈ 1.5–1.8 MeV at emitting-nucleus
excitation energies of 5–7 MeV seem unjustifiably
large. For fragments of different masses, the agree-
ment between 〈εn〉expt and 〈εn〉calc is quite acceptable.

Thermodynamic equilibrium. Knowledge of
mean excitation energies of complementary frag-
ments makes it possible to test the energy condition
for the scission of a fissile nucleus—that is, to
assess the available-fission-energy fraction that is
transferred to a given fragment or the proportion in
which the available fission energy is shared between
complementary fragments. The thermodynamical-
equilibrium condition—that is, the equality of the
temperatures of the light and the heavy fragment (tL
and tH , respectively) at the instant of scission—is
often used for this purpose. From this condition, it
follows that the excitation energy of a given fragment
is given by

UL,H =
U

1 + aH,L/aL,H
, (5)

where U is the total excitation energy of complemen-
tary fragments and a is the level-density parameter.
Since the parameter a depends on the excitation en-
ergy within the level-density model proposed in [10],
an iterative procedure was used to solve Eq. (5).

For four fissile systems, a comparison of “true”
excitation energies of fission fragments (Fig. 2)
and the values computed by formula (5) with U =
〈U(AL, AH)〉 is illustrated in Fig. 13. Since the
level-density parameters depend on the excitation
energy and on shell corrections, the distributions of
UL,H are similar to the distributions of 〈U(A)〉. As
might have been expected, it is inappropriate to apply
expression (5) to the case of spontaneous fission,
because a nucleus undergoes spontaneous fission
from the ground state. In the case of induced fission,
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the results are much better, although the excitation
energy of a compound nucleus per fission fragment
(3–4 MeV) constitutes only a small fraction of its
total excitation energy.

In summary, it has been shown that, over wide
ranges of the total kinetic energies and masses of
fission fragments, the observed emission properties
of such fragments can be reproduced on the basis
of the statistical model of nuclear reactions. As a
next step in studying the emission properties of fission
fragments within the approach combining the statis-
tical model of nuclear reactions with the cascade–
evaporation model, we proceed to examine the pop-
ulation of the isomeric states of fragments.

3. ISOMERIC RATIOS

At present, the isomeric ratios of independent
yields [24, 25] are usually calculated by the method
that was proposed in [26] and which is based on the
assumption that the total-angular-momentum (J)
1
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distribution of isomeric-nucleus populations is pro-
portional to the spin distribution of the density of
excited levels; that is,

W (J) ∼ (2J + 1) exp
(
−(J + 1/2)2

2σ2

)
, (6)

where σ2 is the spin-cutoff parameter. According to
[26], an isomeric state is populated via a few gamma
transitions whose probability is determined by the
density of final-state levels. It is assumed here that
the spin-cutoff parameter σ is independent of excita-
tion energy. The method proposed in [26] was tested
by using it to analyze experimental isomeric ratios
for the radiative capture of thermal and resonance
neutrons and the isomeric ratios in (γ, n) reactions
on some nuclei. By varying, within reasonable lim-
its, the parameter σ and the number µ of photons
emitted in the process leading to the population of the
isomeric state, it was possible to obtain a reasonable
description of currently available data for 28 nuclei
in (n, γ) reactions. In photonuclear reactions, the
situation is different. For example, experimental data
on the reaction 115In(γ, n) could be described only by
making σ tend to infinity.

Physically, the method proposed in [26] is based
on the assumption that the isomeric ratio is formed by
a photon cascade that accompanies the decay of the
isomeric nucleus being considered. This assumption
PH
is confirmed by an analysis of isomeric cross sections
for many reactions [4–6]. By way of example, it can
be recalled that, even for (n, γ) reactions induced by
14-MeV neutrons, a direct population of an isomer
following neutron emission is insignificant; that is,
the main contribution to the isomeric cross section
comes from photon cascades removing the excitation
that remained after neutron emission [6]. However,
the shape of the distribution of populations prior to
photon emission that leads to the formation of an
isomer may differ significantly from that in (6) if the
states of the isomeric nucleus are formed owing to
neutron emission and if the relevant compound nu-
cleus is excited to high energies. In this case, the
extracted value of the parameter σ will be overesti-
mated, which was demonstrated in [26]. Since the
excitation energy of fission fragments prior to neutron
emission can be quite sizable (up to 50MeV), it would
be incorrect to apply the method developed in [26]
to an analysis of the isomeric ratios of independent
yields.

As was demonstrated in a great number of studies,
the most consistent way to compute the cross sec-
tions for isomer formation and isomeric ratios is to
make use of the approach combining the statistical
model of nuclear reactions with the cascade evapo-
ration model [1–3]. It was found that a fairly good
description of experimental data could be obtained for
YSICS OF ATOMIC NUCLEI Vol. 64 No. 9 2001
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a wide range of projectile species (from photons to
alpha particles), a wide range of nuclear mass num-
bers (from 20 to 240), and a wide energy range (from
thermal energies to 40 MeV). For isomers formed in
the fission process, the above approach has not been
used so far, however, because of additional complica-
tions and because of uncertainties in the input condi-
tions. Since the mean excitation energies of fission
fragments have already been established and since
the library of the parameter values has been tested,
there are no serious limitations that would restrict
the application of the approach combining the sta-
tistical model of nuclear reactions and the cascade–
evaporation model.

Mechanism of population of fission-fragment
isomers. According to the cascade–evaporation
model, a specific state of a nucleus that emerges as a
product of the fission process can be populated in the
followingways: (i) in the fission process (cold fission),
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(ii) upon neutron emission, or (iii) upon a photon
cascade (the channel involving both neutron emission
and a photon cascade is also possible). According
to this mechanism of isomer population, the isomeric
ratio of independent yields for a (Z, A) nucleus can be
calculated by the formula

R =

n∑
i=0

Yi(Z, A + i)〈Piri〉
n∑
i=0

Yi(Z, A + i)〈Pi〉
, (7)

where Yi is the independent yield of a (Z, A + i)
fragment that emits i neutrons, Pi is the probabil-
ity of emission of this number of neutrons, and ri
is the isomeric ratio for the case where i neutrons
are emitted. Summation in (7) is performed from
zero (the isomeric nucleus in question was directly
formed in the fission process) to some number n of
neutrons such that the isomeric nucleus is formed
upon the emission of precisely this number of neu-
trons. Thus, (n + 1) nuclei appearing as products
of the fission process participate in the formation of
the isomeric state. Here, averaging is performed over
the excitation energies of relevant primary fragments
with allowance for the distribution function f(U). In
calculating Pi and ri, it is necessary to specify, in
1
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addition to the distribution of excitation energies, the
initial total-angular-momentum distribution of the
populations of the levels involved.

In Fig. 14, the quantities appearing in expression
(7) are displayed versus the excitation energy of the
relevant nucleus after the emission of various num-
bers of prompt neutrons that results in the forma-
tion of an isomer in the 123Sn nucleus. Since the
metastable state of the 123Sn nucleus is characterized
by a low spin value (Jπ = 3/2+), an increase in the
excitation energy leads to a decrease in the probability
of population of this state in all channels of 123Sn
formation after the emission of neutrons (ν = 1–4)
and photons (ν = 0). Multiplication of the function
r(U) by P (U) leads to bell-shaped functions hav-
ing nearly identical maxima. Finally, the terms in
the numerator on the right-hand side of (7) that are
obtained upon taking into account the dependence
Y (A + i) are such that, even at 〈U〉 = 10–15 MeV,
it is necessary to allow for the emission of four to five
neutrons in the calculations. Thus, the isomer is pop-
PH
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ulated through a few channels having commensurate
probabilities. If we admit that isomers can also be
formed upon the emission of delayed neutrons, the
calculations become so involved that they require a
dedicated investigation.

Radiative strength functions. The probabilities
of isomer population upon neutron and photon emis-
sion depend on radiative strength functions. This
issue was comprehensively studied in [27], where
a method was proposed for parametrizing radiative
strength functions fE1 for electric dipole transi-
tions (modified Kadmensky–Markushin–Furman
method) and where the effect of various procedures
for calculating fE1 on the results of the calculation
of isomeric cross sections and spectra in the deex-
citation of uniformly excited nuclei was analyzed.
For 235U fission induced by thermal neutrons, the
effect of fE1 on the calculated gamma spectra is
illustrated in Fig. 15. The calculations took into
account photons emitted by fission fragments with
mass numbers A = 80–160. It can be seen that the
description of experimental data compiled in [28] is
considerably improved upon applying the modified
Kadmensky–Markushin–Furman method, and that
is why this was done in the present calculations.
The reasons behind the discrepancies between the
calculated and experimental spectra at energies in
YSICS OF ATOMIC NUCLEI Vol. 64 No. 9 2001
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the region Eγ � 1 MeV and the possible means for
removing these discrepancies are discussed in [7].

Mean fission-fragment spins. In order to apply
the statistical model of nuclear reactions, which takes
into account the laws of total-angular-momentum
and parity conservation, to calculating the emission
properties of fission fragments, it is necessary to know
the spin distributions of their populations, W0(U, J),
prior to neutron emission—specifically, mean spin
values 〈J〉 and the form of the dependence W0(U, J).
In other words, one should specify, in consistently
applying the statistical model of nuclear reactions, the
fission-barrier penetrability as a function of the orbital
angular momentum of the relative motion of fission
fragments at the instant of scission of the nucleus
undergoing fission, Tf (l). This issue, which is of
only marginal importance in calculating the spectra
of radiation from fragments [7], comes to the fore
in calculating isomeric ratios. If, as follows from
the analysis reported in [29], Tf (l) is independent of
the orbital angular momentum l, the total-angular-
momentum dependence of the initial populations of
the fragments has the form

W0(U, J) ∼ (2J + 1)ρ(U, J). (8)

The assumption in (8) can be verified by using
data on the mean spins 〈J〉 of fission fragments [30]
(see Fig. 16). Although the results presented in [30]
are not purely experimental (in order to derive them,
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use was made of the results obtained by calculating
the mean angular momenta carried away by neutrons
and photons), they are sufficiently imformative for a
comparison. By using the mean excitation energies
of primary fragments (these energies were discussed
above in connection with the data in Figs. 2–4) and
two limiting values of the nuclear moment of iner-
tia F —that for a rigid nucleus, Frig, and that for a
semirigid nucleus, Frig/2—the mean spins 〈J〉 were
calculated under the assumption specified by Eq. (8).
It can be seen that, as a rule, the data from [30]
lie within the corridor determined by the results of
the calculations. Hence, the use of this assumption
in the calculations leads to a satisfactory agreement
with observed values of the mean spins of primary
fragments.

Spin distribution of populations. On the basis
of the mean spins of fission fragments, it is impos-
sible to verify the assumption on the shape of the J
dependence in (8), because different dependences can
lead to identical values of 〈J〉. The broad distribution
in (8) can be formed if single-particle levels are pre-
dominantly populated in the fission fragment being
considered and if they are coupled to levels of rota-
tional bands. Otherwise—that is, if nuclear fission
populates collective states and if there is no coupling
between levels of different origins—the distribution
1
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W0(U, J) must have the form

W0(U, J) = δ(J − 〈J〉), (9)

where 〈J〉 is determined according to (8) or from ob-
servable values and δ is a Dirac delta function. From
Fig. 16, we can see that the mean spins of fission
fragments are better reproduced by the calculation
withF = Frig/2; in the following, we therefore use this
version in conjunction with the assumption in (9).

Data from [31, 32] on the mean angular momenta
of the rotational bands in fragments produced in the
spontaneous fission of 252Cf nuclei (these data were
obtained from an analysis of gamma transitions) may
be of use for verifying the assumptions specified by
Eqs. (8) and (9).

The mean spins of fission fragments of mass A
upon the emission of ν neutrons can be determined
from the dependence of Jν on the excitation energy of
a primary fragment. Specifically, we have

Jν(U) =

U−Bν∫
0

∑
J

JWν(x, J)dx

U−Bν∫
0

∑
J

Wν(x, J)dx

, (10)
P
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[under the assumption specified by Eq. (8)] isomeric ra-
tios of the independent yields of fragments produced in
235U fission induced by thermal neutrons: (open cir-
cles) ground states, (open squares) first metastable levels,
(open triangles) second metastable levels, and (closed
circles) data for levels of higher spin values.

where Wν is the population of the nuclear state under
study after the emission of ν neutrons. Integration of
the dependence Jν(U) with respect to the excitation
energy of a primary nucleus with the weight equal to
the product of the distribution function f(U) and the
probability Pν(U) of the emission of a given number
of neutrons yields the mean fragment spin:

〈Jν〉 =

Umax∫

0

Jν(U)Pν(U)f(U)dU. (11)

The mean spins of 102Zr, 104Mo, and 144Ba nu-
clei produced as fragments in the spontaneous fis-
sion of 252Cf upon neutron emission are displayed
in Fig. 17. The mean spins as calculated under the
assumption specified by Eq. (8) considerably exceed
the experimental values even if we take into account
experimental errors and uncertainties in the nuclear
moment of inertia 〈J〉, a basic model parameter that
has the strongest effect on the results of the calcu-
lations. It can be seen that, in this case, a fit to
the experimental values of 〈J〉 requires anomalously
low values of the nuclear moment of inertia. At the
same time, satisfactory agreement with experimental
data from [31, 32] was obtained under the assumption
specified by Eq. (9). Thus, data on the mean angular
momenta of fission fragments favor, in calculations
for low-energy fission, the use of the spin distribution
of primary-fragment populations in the form (9).

Isomeric ratios of independent yields. Exper-
imental data on the isomeric ratios of independent
HYSICS OF ATOMIC NUCLEI Vol. 64 No. 9 2001
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yields for 235U fission induced by thermal neutrons
[25] are available for 48 isomeric pairs of nuclear
fragments with mass numbers in the range A = 79–
148. The basic features of the isomeric levels of the
nuclei under study are compiled in the table. It is
important to note that the features of isomeric levels
are not unique—as a rule, the difference of the spin
values between the ground-state and a metastable
level amounts to a few units of �. At first glance, the
description of the isomeric ratios of the independent
yields of these levels should not therefore involve se-
rious difficulties [4–6]. This is not so only for three
high-spin isomeric levels of the 120,122,130In nuclei.

The experimental isomeric ratios of independent
yields from [25] are displayed in Fig. 18, along with
their theoretical counterparts calculated under the
assumption specified by Eq. (8). It is noteworthy
that the calculated isomeric ratios are systematically
in excess of the experimental values for high-spin
levels and are systematically below them for low-spin
levels, irrespective of whether the level being consid-
ered is ground-state or metastable. Variations in the
parameters of nuclei—for example, a transition from
the spin-cutoff parameter corresponding to the rigid-
body moment of inertia to the value corresponding to
the semirigid-body moment of inertia—or modifica-
tions to the method for calculating radiative strength
functions lead only to slight changes in Fig. 18, but
they do not distort the overall pattern.

A comparison of the experimental isomeric ra-
tios of independent yields and the isomeric ratios
calculated under the two limiting assumptions (8)
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and (9) on the total-angular-momentum distribu-
tion of primary-fragment populations is illustrated in
Figs. 19 and 20. It can be seen that the use of the dis-
tribution in (9) leads to a radical improvement of the
description of experimental data; no such improve-
ment could be achieved by other methods for all nuclei
simultaneously. Of course, there remain some dis-
crepancies after the application of the distribution in
(9), but they may probably be removed upon improv-
ing the description of soft-photon spectra (Fig. 15)
or upon refining the diagrams of discrete levels in
isomeric nuclei appearing as fission fragments.

The conditions under which the spins of fission
fragments are formed and a further evolution of these
spins during the Coulomb acceleration of the frag-
ments can be different for different fissile systems—for
example, in the fission processes induced by thermal
neutrons, on one hand, and by alpha particles, on the
other hand. The excitation energy of a compound
nucleus is 5 to 6 MeV in the first case, but it may
be as high as a few tens of MeV in the second case.
It is obvious that, while, in (nth, f ) reactions, the
distribution given by (9) is dominant, in (α, f ) reac-
tions, the contribution of (8) must be enhanced. This
can be proven by analyzing the energy dependences
of the isomeric ratios of independent yields for the
latter reactions. Figure 21 shows experimental data
on isomeric ratios for eight nuclei versus their mean
excitation energies 〈U〉; these data were obtained
with allowance for multichance fission and neutron
emission [33]. The same figure displays the results of
1
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Features of the isomeric levels of nuclei produced in 235U fission induced by thermal neutrons (the relevant isomeric ratios
were measured in [25]; presented in the table are the spin–parities Jπ of the ground-state and metastable levels and the
energies Em of the metastable levels)

No. Nucleus Jπ
g Jπ

m Em, MeV No. Nucleus Jπ
g Jπ

m Em, MeV

1 79Ge 1/2− 7/2+ 0.188 2 81Ge 9/2+ 1/2+ 0.679

3 82As 1+ 5− 0.022 4 83Se 9/2+ 1/2− 0.231

5 84Br 5− 2− 0.048 6 90Rb 1− 4− 0.107

7 99Nb 9/2+ 1/2− 0.367 8 113Ag 1/2− 7/2+ 0.046

9 115Ag 1/2− 7/2+ 0.043 10 116Ag 2− 5+ 0.083

11 117Ag 1/2− 7/2+ 0.022 12 118Ag 1+ 5+ 0.130

13 119Cd 1/2+ 11/2− 0.149 14 120Ag 5+ 0+ 0.205

15 121Cd 1/2+ 11/2+ 0.149 16 123Cd 3/2+ 11/2+ 0.149

17 123In 9/2+ 1/2− 0.322 18 123Sn 11/2− 3/2+ 0.027

19 124In 3+ 8− 0.192 20 125In 9/2+ 1/2− 0.182

21 126In 6+ 3+ 0.152 22 127In 9/2+ 1/2− 0.162

23 127Sn 11/2− 3/2+ 0.070 24 128In 2+ 7− 0.192

25 128Sn 0+ 7+ 2.093 26 128Sb 8− 5+ 0.107

27 129In 9/2+ 1/2− 0.200 28 129Sn 3/2+ 11/2− 0.037

29 130Sn 0+ 7− 1.949 30 130Sb 8− 5+ 0.022

31 132Sb 4+ 8− 0.022 32 133Te 3/2+ 11/2− 0.336

33 133I 7/2+ 19/2+ 1.636 34 133Xe 3/2+ 11/2− 0.235

35 134Sb 0− 7− 0.020 36 134I 4+ 8− 0.318

37 135Xe 3/2+ 11/2− 0.529 38 136I 2− 6− 0.642

39 138Cs 3− 6− 0.082 40 146La 2− 6− 0.022

41 148Pr 1− 6− 0.092 42 148Pm 1− 6− 0.140

43 120In 1+ 3+ 0.200 44 120In 1+ 8− 0.302

45 122In 1+ 4+ 0.102 46 122In 1+ 8− 0.222

47 130In 1− 10− 0.052 48 130In 1− 5+ 0.402
the calculations performed under two assumptions on
the form of the spin distribution of primary-fragment
populations, that in (8) and that in (9). It can be seen
that, as a rule, the observed isomeric ratios fall within
the corridor determined by the calculated curves. As
might have been expected, the rotation distribution
in (9) prevails at low excitation energies, while the
thermal distribution (8) is dominant at high excitation
energies. This conclusion is also confirmed by data
on the reaction 235U(nth, f ) that are analyzed from
PH
the point of view of the fragment excitation energy
(Fig. 22). Indeed, a transition from the distribution
in (8) to the distribution in (9) improves the descrip-
tion of experimental data most radically for 〈U〉 = 6–
10 MeV; for 〈U〉 = 14–20 MeV, a similar effect is
much less pronounced.

Thus, the spins of fission fragment can be formed
through two mechanisms: the rotational motion of a
fragment upon the scission of a fissile nucleus and the
internal motion of fragment nucleons. During the ac-
YSICS OF ATOMIC NUCLEI Vol. 64 No. 9 2001
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Fig. 22. As in Fig. 19, but versus the mean excitation
energy of a fission fragment.

celeration of fission fragments, which is accompanied
by the transformation of the potential energy of defor-
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 9 200
mation into internal energy, the primary distribution
of the form (9) is smeared in such a way that it takes
the form (8), which is caused by the density of internal
noncollective types of motion.

4. CONCLUSION

The statistical model of nuclear reactions and the
cascade–evaporation model for the decay of excited
nuclei have been used to analyze the emission prop-
erties of fragments formed in low-energy fission and
their isomeric ratios. In order to justify the applica-
bility of the approach combining these two models,
the mean excitation energies of fission fragments as
functions of their mass have been determined from
experimental data on the mean multiplicities of neu-
trons and have been tested by using the condition of
energy balance. The observed spectra of neutrons
emitted by fission fragments of various masses have
been reproduced by calculating the spectra of emit-
ting nuclei at excitation energies equal to the mean
excitation energies of fission fragments. The exper-
imental dependences of the neutron multiplicities on
the total kinetic energy of complementary fragments
have been described in a model-dependent way under
the basic assumption that the total available fission
energy is distributed among fission fragments in pro-
portion to the extracted mean excitation energies.
The mean fission-fragment spins calculated at the
mean excitation energies by using the assumption
that the fission-barrier penetrability is independent of
the orbital angular momentum agree with the anal-
ogous values extracted from experimental data. Two
assumptions on the character of the distribution of the
total angular momenta of fission fragments after their
full acceleration—that using a distribution of a rota-
tional origin and that using a distribution associated
with single-particle motion—have been analyzed. It
has been shown that the form of the spin distribution
of primary-fragment populations is one of the key
factors that affect the isomeric ratios of independent
yields. It has turned out that, in order to describe
the observed isomeric ratios, it is necessary to as-
sume that this distribution may involve a component
characterized by a fixed value of the total angular
momentum.
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Abstract—On the basis of statistical theory and on the basis of the Kramers and Grange–Weidenmüller
diffusion model of fission, the cross section σf (En) for 238U fission induced by 1- to 55-MeV neutrons
is calculated under the assumption that dynamical effects are damped at low excitation energies. It is
shown that the structure of the fission cross section from a statistical calculation differs substantially
from that in a dynamical description. The reduced coefficient of nuclear friction (viscosity) is found to
be β = 4.1× 1021 s−1. This value and the estimate β � 5× 1021 s−1, which was obtained by analyzing
the mean multiplicity of prefission neutrons in heavy-ion-induced fission reactions, suggest supercritical
damping and the one-body mechanism of nuclear viscosity. c© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In [1], the effect of nuclear viscosity (friction) on
fissility within the diffusion model was considered in
analyzing the energy dependence of the fission prob-
ability, Pf (E), for preactinide nuclei. For the fission
reaction 238U (x, xn′f), the statistical and the dy-
namical approach are used in the present study to de-
scribe the cross section by decomposing it into terms
corresponding to different numbers (x = 0, 1, . . . ) of
prefission neutrons (so-called chance structure of the
cross section). An analysis of data on the fission
cross sections for actinide nuclei, σf (En), revealed
[2, 3] that the statistical model reproduces satisfac-
torily the absolute values and the energy dependence
of σf (En) in the traditional region of bombarding-
neutron energies (En < 20MeV). Within this frame-
work, the parameters of the statistical description
(neutron-absorption cross sections, fission barriers,
level-density parameters, and so on) have physically
reasonable values. Difficulties arise, for example,
when attempts are made to reproduce the absolute
values of experimental fission cross sections at higher
energies of Ei � 20 MeV [4]. This disagreement
between the theory and experimental data may partly
be due to nuclear friction, which is disregarded within
the statistical description. A fit to experimental data
that is based on varying parameters—for example, the
absorption cross section in [4]—can mask an actually
existing physical phenomenon.

By studying the effect that dissipative processes
caused by nuclear-matter viscosity can have on var-
ious features of the fission process, one can deduce
1063-7788/01/6409-1581$21.00 c©
information about the magnitude of the coefficient
of nuclear viscosity and clarify the nontrivial physics
behind dissipation and viscosity (or friction) in nuclei.
So far, such data have been insufficiently accurate
to pinpoint the theory (that of one-body or that of
two-body dissipation) adequately describing dynam-
ical effects. The type of viscosity operative in the
processes has a profound effect on the dynamics of
collective motion. The mechanism of one-body dis-
sipation predicts a large viscosity of nuclear matter
and supercritical damping of nuclear motion. At the
same time, two-body dissipation within a nucleus
may appear to be weak because of the Pauli exclusion
principle suppressing two-body collisions, which has
a less drastic effect only in the surface region. In rela-
tion to the case of zero friction, one-body (two-body)
dissipation leads to less (more) prolate configurations
at the scission point [5].

Analyses of the mass–energy distributions [6]
and of the yields [5] of prefission neutrons seems
to suggest collective motion undergoing supercrit-
ical damping, favoring the hypothesis of one-body
(rather than two-body) dynamics. Unfortunately,
independent information about the magnitude of
the coefficient of the nuclear friction is not precise.
In order to obtain deeper insights into dissipation
in nuclei, it is advisable to extend the analysis of
traditionally used data by including new experimental
information about the features of the fission process.

By considering the reaction 238U(n, xn′f) by way
of example, it will be shown in this study that, by ana-
lyzing the experimental cross sections for the fission
2001MAIK “Nauka/Interperiodica”
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of actinide nuclei (these cross sections were mea-
sured over a sufficiently wide range of bombarding-
neutron energy) within the statistical model at low
energies (En < 20 MeV) and within the diffusion
model proposed by Kramers [7] and by Grange and
Weidenmüller [8] at high energies (En > 20 MeV),
one can deduce information about the coefficient of
nuclear-matter viscosity. It should be borne in mind
that, in describing fissility, the application of the dif-
fusion model is complicated by an almost complete
absence of theoretical and experimental information
about the temperature dependence of the coefficient
of viscosity. In the low-temperature region corre-
sponding to En < 20 MeV, we can assume that this
coefficient is close to zero, because the statistical
model provides here an acceptable description of ex-
perimental data. In the high-temperature region cor-
responding to En > 20 MeV, it is believed that the
coefficient of viscosity is nonzero and is virtually inde-
pendent of the excitation energy. In the intermediate
region, between the two values (zero and constant) of
the coefficient of viscosity, its energy dependence was
simulated with the aid of a function that describes the
damping of dynamical effects at low energies. This
function had the form of a smoothed step and ensured
continuity of the computed features over the entire
neutron-energy range under investigation in going
over from the statistical to the diffusion branch of the
calculation.

2. STATISTICAL DESCRIPTION
OF THE FISSION CROSS SECTION

An analysis of the fission cross section for ac-
tinide nuclei and its chance structure has been per-
formed predominantly in the bombarding-neutron-
energy region En < 20 MeV, which is traditionally
studied and which contains the bulk of experimental
data on cross sections for the fission of heavy nuclei.
As a rule, relevant theoretical estimates were obtained
within the statistical model. In deducing them, it was
assumed that the nonequilibrium decay mechanism
contributes only at the first stage of the emission
cascade and that, at all the remaining stages, neutron
emission is purely evaporative.

In previous studies, the statistical calculation in-
cluded nearly the entire variety of concepts of the den-
sity ρin (U, J) of excited states—that is, the constant-
temperature model, the Fermi gas model, the super-
fluid model [9], combinatorial calculations [10], and
hybrid approaches combining different models in a
unified description [11, 12]. This is one of the main
sources of discrepancies between the results of the
calculations and analyses of σf (En).

In the statistical description of the cross section for
238U fission, use is made here of the basic results ob-
tained in [3] from an analysis of σf (En) and its chance
PH
structure up to En < 20 MeV for a chain of nuclei
from 233U to 238U. The calculations of the single-
particle spectrum in [3] were performed for a deformed
Woods–Saxon potential, and this spectrum was then
used as a basis for evaluating the density ρin(U, J)
of internal excitations within the superfluid model of
the nucleus [9]. In contrast to the noninteracting-
particle (Fermi gas) model, the superfluidmodel of the
nucleus takes into account, at low energies, residual
pair interaction of the correlation type. A consistent
description of the level density with allowance for
collective excitations of nuclei has yet to be obtained.
Their contribution is estimated in the adiabatic ap-
proximation [13], where the excitations of various
physical origins are taken into account in terms of
factors [9] as

ρ(U, J) = ρin(U, J) ×Krot(U)×Kvib(U), (1)

where Krot and Kvib are the coefficients of, respec-
tively, rotational and vibrational enhancement of the
level density. In the case of sufficiently hot nuclei,
Kvib can easily be estimated by the formula obtained
within the liquid-drop model [9]. As a rule, the possi-
ble distinction between Kvib values in the fission and
in the neutronic channel was ignored in this study.
This was motivated by the smallness of Kvib and
its variations in relation to Krot. The best that we
can do is to set Kvib,f = Kvib,n. The coefficients of
the rotational and the vibrational enhancement of the
level densityKrot depend strongly on the symmetry of
the nuclear shape (see below).

Let us briefly dwell on the basic elements of a
statistical calculations of σf (En). Reactions of a
type (n, xn′f ) involving various numbers x of prefis-
sion neutrons are often referred to as fission chances.
Specifically, the fission of the primary nucleus A—
239U in our case—is the first chance; accordingly, the
fission of the A− x nucleus is the (x+ 1)th chance.
After the emission of x neutrons, the (x+ 1)th fission
chance comes into play if the excitation energy of the
primary nucleus A satisfies the condition

E � BA−x
f +

x∑

i=1

BA+1−x
n = Ex, (2)

where Bf and Bn are, respectively, the height of
the fission barrier and the deuteron binding energy
for nuclei whose mass numbers are indicated in the
superscripts. At x = 1, the entire right-hand side of
inequality (2)—that is BA−1

f +BA
n = E1, reduces to

the threshold for emission fission. The fission cross
section σf (E) is the sum of the partial cross sections
σfx (E) for individual chances:

σf (E) =
xmax(E)∑

x=0

σfx(E). (3)
YSICS OF ATOMIC NUCLEI Vol. 64 No. 9 2001
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For x = xmax (E)+ 1, the fission of residual nuclei
A− x is not favored energetically. In calculating
σfx (E) and, accordingly, σf (E), we can use the
Hauser–Feshbach formalism (codes of the STAPRE
type) or relationships of the statistical model in the
semiclassical approximation [9, 14]. In the energy
region under consideration, the two approaches lead
to similar estimates of the cross sections. In [3],
the calculation was based on the STAPRE code. In
describing fissility on the basis of the diffusion model,
use is made here of the semiclassical approach, which
admits a convenient inclusion of nuclear-viscosity
effects.

According to general concepts of the compound-
nucleus model, the relations for fissility (fission prob-
ability) can be represented in the form

Pf (E) =
σf (E)
σc(E)

(4)

=
∑

J

σJc (E)
ΓfJ

ΓJf +
∑

i Γ
J
i

/
∑

J

σJc (E),

where σJc is the cross section for the formation of a
compound nucleus having the excitation energy E =
En +Bn and a fixed value of the angular momen-
tum J , σc =

∑
J
σJc is the total cross section for the

formation of a compound nucleus, ΓJf is the fission
width, and ΓJi stands for the widths with respect to
decays competing with fission (i = n, γ, and so on).
By using the formula for the level density in the fissile
nucleus for the transition state and a similar formula
for the level density in the competing channel—the
neutronic one in the present case—the ratio of the fis-
sion width and the neutronic width can be represented
in the form [9, 15]

ΓJf /Γ
J
n = γ(J)Γn/Γn, (5)

where all factors dependent on the angular momen-
tum are included in the factor γ (J) and where Γf and
Γn are, respectively, the fission width and the neutron
widths at zero angular momentum (J = 0).

Within the model of a two-humped barrier, the
mean fission width is described by the relation [9, 16]

Γf(E) (6)

= ΓfA(E)ΓfB(E)/(ΓfA(E) + ΓfB(E)),

where

Γfi =
1

2πρc(E, 0)
(7)

×
E−Bfi∫

0

[
1 + exp

(
2π k
�ωi

)]−1

ρfi(E −Bfi − k)dk
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are the fission widths for the humps (i = A,B) and
Bfi and �ωi are, respectively, the heights and the
curvature parameters of the humps. At J = 0, the
neutronic-channel width has the form

Γn(E) =
1

2π2ρc(E, 0)
(8)

×
E−Bn∫

0

gnk
2
n(εn)σcn(εn, U)ρn(U, 0)dεn.

Here, gnk
2
n = (2sn + 1)2mnεn

/
�
2, where sn, mn,

and εn are, respectively, the spin, mass, and energy of
the emitted neutron; E, U , εn, and Bn are related by
the balance equation E = U + εn +Bn; ρj (U, 0) is
the nuclear-level density for zero angular momentum;
and the index j = c, f, n labels quantities referring
to the compound nucleus, fission channel, and the
neutronic channels, respectively. In Eq. (8), the cross
section σcn (εn, U) for the inverse reaction is set to
the cross section for compound-nucleus formation in
bombarding the ground-state target nucleus (U = 0)
by neutrons with an energy εn and is calculated on
the basis of the optical model. Within the Brink–Axel
model [17], we can estimate the radiative width Γγ ,
thereby taking into account the competition of the γ
channel.

In relation (4), the cross section σJc for compound-
nucleus formation is determined by the expression

σJc = πλ2
ngJTJ(En), (9)

where λn is the wavelength of the incident neu-
trons, gJ = (2J + 1)/ (2sn + 1) (2I0 + 1) is a statis-
tical factor, and TJ stands for sticking coefficients.
In order to simplify the description, we can use, in
(4) and (9), the semiclassical estimate of the sticking
coefficients,

TJ =

{
1 for J � Jmax

0 for J > Jmax.
(10)

It is reasonable to determine the maximal angular
momentum Jmax on the basis of the optical calcula-
tions:

J2
max =

2
∑
J
(2J + 1)TJJ (J + 1)
∑
J
(2J + 1)TJ

= 2〈J2〉opt. (11)

In the semiclassical approximation, expression (4) for
the fissility (without allowance for the competition of
photons) can be represented in the form

Pf (E) = J−2
max

Jmax∫

0

(2J + 1) dJ
1 +

∑
i=A,B

γ−1
i Γn/Γfi

. (12)

Similar expressions can be obtained for the differ-
ential and for the integrated probabili-
1
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ty [dPn (εn, E) /dεn and Pn (E)] of neutron emission
[14]. The fission cross section, the spectrum, and the
total cross section for equilibrium neutron emission
are given by

σf = σcPf , dσn/dεn = σcdPn/dεn, (13)

σn = σcPn.

The cross section σc for compound-nucleus for-
mation is related to the neutron-absorption cross sec-
tion σabs by the equation

σc = σabs − σpr = σabs[1− qpr (E)], (14)

where σpr and qpr (E) are, respectively, the cross
section for nonequilibrium (preequilibrium) neutron
emission and its fraction in σabs. These quanti-
ties can be estimated within the exciton model for
preequilibrium decay [18]. The total spectrum of first-
chance neutrons (x = 1) is the sum of the spectra of
equilibrium and preequilibrium neutrons:

dσn1/dεn = σcdPn (εn, E) /dεn (15)

+ σabsdPpr (εn, E) /dεn.

It is assumed that the spectra of second-chance neu-
trons and of neutrons of further chances (x � 2) are
formed by the purely evaporation mechanism of the
reaction.

The above relations are valid for the calculation
of the decay features of the primary nucleus A at a
fixed value of the excitation energy E. The formulas
for calculating analogous features of A− x nuclei
formed after the emission of x neutrons (x � 1) be-
come somewhat more complicated [14] since these
nuclei are distributed in excitation energy U between
0 and Umax

A−x = E −
∑x

i=1Bn A+1−i. The quantities
σfA−x and dσnx+1/dεn can be obtained by integrat-
ing Pf (UA−x) and dPn (εn, UA−x) /dεn with respect
to the excitation energy for the residual nuclei A− x
(for more details, see [14]).

3. EFFECT OF THE DAMPING
OF THE ROTATIONAL-MODE

CONTRIBUTION TO THE LEVEL DENSITY
ON THE DESCRIPTION OF THE FISSION

CROSS SECTION

The dependence of the coefficient of rotational en-
hancement of the level density, Krot (U), in (1) on
the symmetry of nuclear shapes was investigated in
[13], where one can also find adiabatic estimates of
Krot (U), which are valid at sufficiently low excitation
energies. That the mode of the single-particle motion
in a nucleus and its rotation as a discrete unit are
independent indicates that the problem of calculating
Krot (U) is adiabatic, the ratio of the temperature T
to the quadrupole deformation ε being the measure of
the deviation from adiabaticity. The temperature at
P

which the assumption of adiabaticity becomes mean-
ingless was estimated in [13] as

T0 = �ω̄0ε ≈ 41A−1/3ε, (16)

where ω̄0 is the mean frequency for an anisotropic
oscillator potential. For T � T0, there must occur a
damping effect that is associated with the interaction
of internal and collective (rotational) degrees of free-
dom of a deformed nucleus and which is manifested
in reduction of Krot (U) in relation to the adiabatic
estimate, with Krot (U) tending to unity in the limit
of large U values.

In all probability, Ignatyuk et al. [19] were the
first who made an attempt at taking into account the
damping of rotational modes in describing the proba-
bility of deformed-nucleus fission. The damping func-
tion was determined empirically and was assumed to
be the same in the fission channel and in the neutronic
channel. This contradicts the theoretical estimates
that were presented in [13] and which showed that
this function depends greatly not only on the excita-
tion energy but also on the nuclear deformation. The
more recent numerical calculations of Hansen and
Jensen [20], who used the SU (3) single-particle shell
model to investigate the energy dependence of the
level density in nuclei characterized by various forms
of ground-state symmetry, confirmed the estimates
from [13]. These authors also established that the
rotational-mode contribution can decrease with in-
creasing temperature because of a gradual disappear-
ance of the asymmetry of nuclear shapes. By way of
example, we indicate that, at energies ofU � 20MeV,
the level density in a nucleus having the shape of
a three-axis ellipsoid in the ground state (Kad

rot =√
π

2
σxσyσz ≈

√
π

2
σ‖σ

2
⊥) does not differ from those in

axisymmetric and mirror-symmetric nuclei (Kad
rot =

σ2⊥); at still higher excitation energies, it does not
differ from the level density in a spherical nucleus
(Kad

rot = 1).

In connection with practical applications, it is
convenient to represent Kad

rot(U) for a deformed nu-
cleus as the product of two factors,

Kad
rot(U) = Kad

1 (U)×Kad
2 (U). (17)

The factor Kad
1 (U), which characterizes an addi-

tional enhancement of the level density in axisymmet-
ric and mirror-symmetric nuclei [Kad

rot(U) = σ2⊥ =
Kad

2 (U)] owing to the disappearance of the nuclear-
shape symmetry, is given by
HYSICS OF ATOMIC NUCLEI Vol. 64 No. 9 2001
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Kad
1 (U) =






2 for axisymmetric nuclei that display mirror asymmetry√
π/2σ‖ for nuclei that do not possess symmetries other than that

with respect to a rotation through an angle of 180◦ about three axes√
2πσ‖ for axially asymmetric nuclei that possess mirror symmetry√
8πσ‖ for nuclei that do not possess rotational symmetry.

(18)
The damping of each of the quantitiesKad
i (U) can

be approximated by the expression [20]

Ki(U) = 1− Fi(U) + Fi(U)Kad
i (U), (19)

where the damping function has the form

Fi(U) = [1 + exp(U − Ui)/di]
−1. (20)

Here, the parameters Ui and di depend greatly on
deformation values that characterize specific symme-
try violations (i = 1 for axial symmetry and i = 2 for
spherical symmetry).

The approximate relations for determining Ui and
di can be found in [20]. The estimated values show a
large scatter. On the basis of the numerical calcula-
tions for the nuclear-level density from [20], it can be
stated with confidence that, for U � 20 MeV, there
is no difference in this respect between axisymmetric
andmirror-symmetric nuclei, on one hand, and nuclei
displaying shape asymmetry in the ground state, on
the other hand. This means that K1 (U) = 1 for
U � 20MeV. In describing nuclear fissilities, the fact
that, for axisymmetric nuclei, the characteristic en-
ergies are proportional to the square of the deforma-
tion, U2 ≈ 120A1/3e2 [20], leads to important conse-
quences. The damping of K2(U) = Kad

2 (U) because
of the transition from the axial shape at the saddle
point (εA ∼ 0.6, εB ∼ 0.8) to the spherical shape can
be disregarded in the region of intermediate energies,
U � 100 MeV. In the neutronic channel (ε ∼ 0.24),
deviations of F2(U) from unity become noticeable at
energies of U � 50MeV.

In the present analysis of the cross section for 238U
fission induced by 1- to 55-MeV neutrons, estimates
of the fission width and of the neutronic width were
obtained at K2(U) = Kаd

2 (U). Because the inner
hump A is mirror-symmetric and axially asymmetric
(N � 146) and because the outer hump B is, on the
contrary, axisymmetric and mirror-asymmetric [21],
we have Kаd

1 =
√
2πσ‖ and 2 for A and B, respec-

tively. It can be seen from Fig. 1 that, without taking
into account the damping of the asymmetric compo-
nent, the calculated values of σf (En) for 238U can be
matched with experimental data up to En = 16MeV.
For En > 16 MeV, the calculated curve lies much
higher than the experimental points, which represent
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 9 200
the standard values of the cross section for neutron-
induced fission of 238U from [22]. The cross sec-
tion σf (En) was calculated with model parameters
(including fission barriers and level-density parame-
ters) set to values that are rather close to those that
were obtained by analyzing the experimental cross
sections for 232−238U nuclei within the approach de-
veloped in [3]. The neutron-absorption cross section
σabs = σr − σdir for 238Uwas determined on the basis
of calculating the reaction cross section σr and the
cross section σdir for the direct excitation of low-
lying states in inelastic neutron scattering within
the coupled-channel method as implemented in the
ECIS code [23] with the optical-model parameters for
the deformed Young potential [24].

The theoretical calculations of the cross section
for the neutron-induced-fission of 233−283U that were
performed in [4] up to the neutron energy of En =
100 MeV with the same Young optical potential and
which were based on the assumption that the shape
of the fissile nuclei in question at the saddle point
has no rotational symmetry (Kad

1 =
√
8πσ‖) con-

siderably overestimate σf (En) at En = 7 MeV and
higher energies. Those calculations employed the
internal-excitation density according to the single-
particle spectrum of the Nilsson model. The authors
of [4] included, in their calculations, the damping of
the asymmetric component of the rotational enhance-
ment of the level density at the saddle point accord-
ing to (19) and (20) with parameter values close to
U1 = 7 MeV and d1 = 0.8 MeV. This enabled them
to match the theoretical description with the experi-
mental results up to an energy of 17 MeV. At higher
energies En, the statistical calculation overestimates
the fission cross section.

For two parameter sets—(i) U1 = 7 MeV, d1 =
0.8 MeV and (ii) U1 = 16 MeV, d1 = 1.2 MeV—
Fig. 1 illustrates the effect that the damping of the
coefficient K1 (U) of rotational enhancement of the
level density as given by Eqs. (19) and (20) exerts
on the results of cross-section calculations. In rela-
tion to the results of the original calculation without
damping, which agree with data in the range En =
1–15 MeV, the curve corresponding to the calcula-
tions with the first parameter set begins to deviate
from experimental points at an energy value as low
1
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Fig. 1. (◦) Standard values of the cross section for the
neutron-induced fission of 238U [22] along with a sta-
tistical description represented by the curves that corre-
spond to (dashed curve) the calculations employing the
adiabatic estimate of the coefficient of rotational enhance-
ment of the level density and the calculations allowing
for the damping of the asymmetric component K1 (U)
at the saddle point according to (19) with the damping
function (20) at (dash-dotted curve) U1 = 7 MeV and
d1 = 0.8 MeV and (solid curve) U1 = 16 MeV and d1 =
1.2 MeV.

as En � 7 MeV. The second parameter set provides
the best description of σexpf (En), but there is still
no perfect agreement with experimental data. The
corresponding curve lies closer to the experimental
points than the curve computed without damping,
but it nevertheless goes noticeably higher than the
experimental fission cross section for En � 18MeV.

Lestone and Gavron [4] were able to obtain a
satisfactory description of the experimental data over
the entire range of En under investigation using an
adjustable factor by which they multiplied the ab-
sorption cross section σabs (En). The value of this
factor changed from 1 at En = 17 MeV to 0.82 at
100 MeV. The required modification to σabs (En) can
be obtained by the method proposed in [25]. Specifi-
cally, the Young potential proposed in [24] and taken
as a basis was modified in [25]. At high energies, this
potential leads to smaller values of the cross section
σabs (En) than the original Young potential. Such
ad hoc tricks are not quite correct. Their applica-
tion is not motivated by any actual physical grounds.
By considering the example of 238U fission, it will
be shown below that the discrepancy between the
statistical estimates of the fission cross section and
experimental results can be removed by taking into
account, in theoretical calculations, effects associated
with nuclear-matter viscosity.
PH
4. FISSION CROSS SECTION
IN DIFFUSION MODEL

The application of principles of Brownian motion
in a force field to the problem of propagation of a
nuclear system through a barrier proved to be very
efficient, for example, in explaining the systematic ex-
cess of the experimental multiplicity of prefission neu-
trons in heavy-ion reactions [5, 26] over the results of
the calculations within the statistical model. In the
diffusion model, the fission variable x (deformation)
and the conjugate momentum p = µu are considered
as classical variables. The time evolution of a nuclear
system in two-dimensional phase space is described
in terms of the distribution function (probability den-
sity)W (x, u, t) satisfying the Fokker–Planck equa-
tion [8, 27]

∂W (x, u, t)
∂t

= −u∂W (x, u, t)
∂x

(21)

− k(x)
∂W (x, u, t)

∂u
+ β

∂[uW (x, u, t)]
∂u

+ ϑ
∂2W (x, u, t)

∂u2
,

where k(x) = −µ−1∂V (x)/∂x, V (x) being the po-
tential energy of deformation; β = η/µ is the reduced
coefficient of nuclear friction (the ratio of the coeffi-
cient η of nuclear friction to the reduced mass µ of
the nuclear system); and ϑ = βT/µ is the diffusion
coefficient, T = (E/a)1/2 being the temperature of
the nucleus (heat bath). The reduced mass µ =
M1M2/ (M1 +M2) (M1 and M2 are the masses of
complementary fragments) is equal to µ =M/4 at
M1 =M2 =M/2 .

On the basis of principles of Brownian motion,
it is very difficult to obtain a general solution to the
problem of overcoming a potential barrier by using the
Fokker–Planck equation. Of special interest is the
particular case where the initial quasistationary and
the intermediate state are physically significant. This
means that the potential-barrier height correspond-
ing to the deformation x = x0 is much greater than
the energy of the thermal motion; that is, the condi-
tion Bf 	 T is satisfied. This condition is necessary
for the applicability of the transition-state method
within a statistical analysis of the problem, where it
is assumed that internal degrees of freedom are in
equilibrium with collective degrees of freedom (which
are associated with fission). In contrast to the statis-
tical approach, the diffusion model takes into account
the interaction between them, which was simulated
in [7] by nuclear friction (β 
= 0). In this case, an
equilibrium distribution cannot be established at all
values of x. By virtue of the condition Bf 	 T , only
in a close vicinity of the first minimum of the potential
energy V (x), x = x1, can the actual distribution be
YSICS OF ATOMIC NUCLEI Vol. 64 No. 9 2001
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approximated, to a high precision, by the equilibrium
Maxwell–Boltzmann distribution
WMB(x, u) = C exp[−(µu2/2 + V (x))/T ]. (22)

It can easuly be verified that the function in (22)
satisfies the Fokker–Planck Eq. (21). For x > x0,
it is assumed that the level density is much less
than that which would follow from the equilibrium
distribution (22). A slow diffusion occurring through
the barrier tends to restore equilibrium conditions at
all values of x.

Assuming that the quasistationarity conditions
∂W (x, u, t)/∂t = 0 hold everywhere and approximat-

Wi(x, u) =






WMB
0 (x, u)[(a − β)/2πϑ]1/2

ξ∫

−∞

exp[

WMB
1 (x, u), in the vicinity of(x = x1)

where WMB
i (x, u)=C exp[−

(
µu2
/
2+Vi (x)

)/
T ],

a =
(
β2
/
4 + ω2

0

)1/2 + β/2, and ξ = u− a(x− x0).
The fission width according to Kramers [7], which is
associated with the time-independent solution to the
Fokker–Planck equation is given by

ΓKf = �J0/N1 (25)

= (�ω1/2π) exp (−Bf/T )

×
{[
(β/2ω0)2 + 1

] 1/2
− (β/2ω0)

}
,

where

J0 =

+∞∫

−∞

W0(x = x0, u)udu = C (T/µ)

×[(a− β)/a]1/2 exp (−Bf/T )
is the diffusion current through the saddle point x =
x0 and

N1 =

+∞∫

−∞

+∞∫

−∞

W1(x, u)dxdu = C (2π T/µω1)

is the number of nuclei (states) in the first well of
the potential energy of deformation. If there is no
dynamical friction (that is, under the condition β →
0), we have

ΓKf (β → 0) = (�ω1/2π) exp(−Bf/T ). (26)

Expression (26) is sometimes referred to as the ap-
proximation of the transition-state method.

ForE−Bf � 3MeV, the fission width determined
by the popular Bohr–Wheeler formula

ΓBWf = �
J0(E −Bf )
N1(E)

(27)
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ing the deformation energy V (x) in the vicinity of
the saddle point x = x0 and in the vicinity of the first
minimum x = x1 by the quadratic forms

Vi(x) =

{
Bf − µω2

0(x− x0)2/2 around x = x0

µω2
1(x− x1)2/2 around x = x1, (23)

where ω0 and ω1 are the oscillator frequencies as-
sociated with the curvature of V (x) at the saddle
point x = x0 and in the first potential well x = x1,
respectively, one can obtain a solution to the Fokker–
Planck equation in the form

−(a− β)z2/2ϑ]dz, in the vicinity ofx = x0,

,

(24)

= �
(dE/2π�)

∫ E−Bf

0 ρ (E −Bf − k) dk
ρ (E) dE

,

with the level density corresponding to the constant-
temperature model, ρ (U) = C exp (U/T ), can be ap-
proximated, to a high precision, by the expression

ΓBWf = (T/2π) exp (−Bf/T ) . (28)

As was shown by Strutinsky [28], the factors in front
of the exponential exp (−Bf/T ) in (28) and (26) are
different (T/2π and �ω1/2π, respectively) because
collective-motion states were disregarded in deter-
mining the number of the initial state, N1 (E), in
(27). But it is precisely the space of these states
that should be considered in estimating the current
J0 (E −Bf ) at the fission barrier. With allowance
for collective motion, the number of the initial states
of nuclei having excitation energies between E and
E + dE is given by

N1(E) = (dE/2π�) (29)

×
∫
dx

∫
dpρ(E − Ecol(x, p)).

If we assume, as is usually done, that E 	 Ecol, the
correct formula (29) yields

N1(E) = (T/�ω1) ρ(E)dE. (30)

The corresponding fission width Γ′BWf , which differs
by the factor �ω1/T from that which is traditionally
used, coincides with (26):

Γ′f
BW = (�ω1/T ) ΓBWf = ΓKf (β → 0). (31)

The relationship between ΓKf (E, β) according

to Kramers and Γ′BWf (E) according to Bohr and
1
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Fig. 2. Characteristics of the transient process in the
fission of the excited nucleus 239U at temperature T =
1.5 MeV for two values of the coefficient of friction β (in
units of 1021 s−1): (а) time dependence of the fission
rate λf (t) calculated at the saddle point (the dashed
curves represent the Kramers quasi-steady-state values
λK

f ) and (b) function ϕ(t) = λf (t)/λK
f demonstrating

how the quasi-steady-state value ΓK
f (dashed curve) is

established.

Wheeler (with allowance for the factor �ω1/T ) has
the form

ΓKf (E, β) = Γ
′BW
f (E) (32)

×
[√

(β/2ω0)
2 + 1− (β/2ω0)

]

= Γ′BWf (E)γ̃(β/2ω0).

In many studies, the factor �ω1/T , by which ΓKf
differs from ΓBWf in the case of low friction, was dis-
regarded in the calculations. It follows from (32) that,
for the steady-state case, the presence of nuclear-
matter viscosity (β > 0) leads to a reduction of the
fission width in relation to Γ′BWf , since γ̃ (β/2ω0) <
1. This is due to a decrease in the probability of
penetration of the fissile system through the barrier.
The critical damping occurs at β/2ω0 = 1 (γ̃(1) =√
2− 1).
As a matter of fact, the quasi-steady-state flux

through the fission barrier is established after a
PH
lapse of some characteristic time τ (β) (not instan-
taneously) that depends on the reduced coefficient β
of nuclear friction. The time τ (β) characterizes the
interaction of the fission degree of freedom with the
rest of the system (heat bath). The problem of the
time-evolution of a fissile system can be solved ana-
lytically with the aid of the time-dependent Fokker–
Planck equation (21) [8] if V (x) is approximated by
the harmonic oscillator (23) in the vicinities of x0 and
x1. In this case, the fission width is given by

Γf (t) = �λf (t) =
�σu
√
1− φ2

2πσx
(33)

×
[
1− ϑ

(β +A)σ2u (1− φ2)− ϑ

]1/2

× exp
[
− Bf

(1− φ2)σ2xµω2
1

]
.

Here, φ = exp (−β t),

σ2x =
T

µω2
1

×
{
1−φ

[
2
β2

β21
sinh2

(
1
2
β1t

)
+
β

β1
sinh (β1t)+1

]}
,

σ2u =
T

µ

×
{
1−φ

[
2
β2

β21
sinh2

(
1
2
β1t

)
− β

β1
sinh (β1t)+1

]}
,

A(t) = −α (t)
− Ω[C exp (−2Ωt) + 1] / [C exp (−2Ωt)− 1],

where β1 =
√
β2 − 4ω2

1, C is an arbitrary constant
determined by the initial conditions of the problem,

α (t) = β/2− ϑ
/[
σ2u
(
1− φ2

)]
,

Ω2(t) = α2(t) + ω2
0

+ 2ϑφω2
0

/[
σuσxω

2
1

(
1− φ2

)]
.

Expression (33) is bounded and real-valued even
when β1 is zero or imaginary. Imaginary values of
β1 (β/2ω1 < 1) correspond to low friction, while its
real values (β/2ω1 > 1) are realized in the case of
high friction. In the limit t → ∞, expression (33)
reduces to expression (32) for calculating the steady-
state fission width according to Kramers.

For the fissile nucleus 239U, Fig. 2 shows the
function λf (t, β) and the dimensionless quantity

ϕ(t) = λf (t, β)
/
λKf (β), which demonstrate how the

Kramers equilibrium value is established in the course
of the time-evolution process at low and large values
of the coefficient of friction β.
YSICS OF ATOMIC NUCLEI Vol. 64 No. 9 2001
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The duration τ of the transient process—it is de-
fined as the time over which the width Γf (t, β) =
ϕ(t)ΓKf (β) achieves the value of 0.9ΓKf —was ob-
tained by numerically solving the equation ϕ (τ)−
0.9 = 0. It can be seen from Fig. 3а that τ de-
pends differently on β for low (β/2ω1 < 1) and high
(β/2ω1 > 1) values of the coefficient of friction. In
the calculations, we set �ω0 = 0.6 MeV and �ω1 =
1 MeV. In the first case, an increase in β leads to an
increase in the strength of the interaction between the
internal and collective degrees of freedom, with the
result that the transient time τ decreases as

τ ≈ β−1 ln (10Bf/T ) . (34)

In the second case, collective vibrations are damped
aperiodically and the diffusion process is moderated,
which leads to

τ ≈
(
β
/
2ω2

1

)
ln (10Bf/T ) . (35)

The probability of first-chance fission is given
by [8]

Pf (E, β) =

∞∫

0

dt
Γn
�
exp
(
−Γn

�
t

)
(36)

×



1− exp



−
ΓKf
�

t∫

0

ϕ(t′)dt′







.

For the steady-state case, where ϕ (t) = 1, expres-
sion (36) yields

Pf = PK
f =

ΓKf
Γn + ΓKf

. (37)

Figure 3а also shows the mean time τn(E) =
�/Γn(E) required for the emission of the first-chance
neutron versus the excitation energy of 239U. The
factor f(E, β) = Pf (E, β)/PK

f obtained by numeri-
cally integrating Eq. (36) is presented in Fig. 3b as a
function of the excitation energy E at various values
of the parameter β. This dependence illustrates the
effect of the transient process on the fission probabil-
ity with respect to the Kramers fission probability. For
all β values, we can see the trend toward a decrease
in the fissility with increasing excitation energy, but
the slope of this dependence, |df (E, β) /dE|, depends
greatly on the coefficient of friction. In the case where
it is possible to obtain an analytic representation of
f (E, β), the effect of the parameter β is manifested
more clearly. For example, the approximation of the
transient-process function by a step—ϕ (t) = 0 for
t < τ and ϕ (t) = 1 for t > τ—leads to the analytic
result

f(E, β) = exp [−τ(β)/τn(E)] , (38)
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 9 200
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Fig. 3. (а) Duration of the transient process, τ (β) as a
function of the reduced coefficient of friction β (dashed
curve) and mean time τn(E) it takes for the emission of a
first-chance neutron as a function of the excitation energy
E (solid curve); (b) energy dependence of the function
fE, β) determining the effect of the transient process
on the fission probability with respect to the Kramers
fission probability for various values of β (in units of
1021 s−1): (dashed curve) quasi-steady-state solution
and (dash-dotted curve) approximation of the transient-
process functionϕ (t) by a step.

where τn (E) determines the energy dependence of
f (E, β), while τ (β) determines the slope of the curve
with respect to the steady-state level f (E, β) = 1.
As can be seen from Fig. 3b, the simulation of the
transient process by a step function leads to a slope
|df (E, β) /dE| larger than that following from the
actual dependence ϕ (t) (see Fig. 2) at the same value
of β . Deviations of f (E, β) from unity for the actual
transition process (solid curves in Fig. 3b) become
sizable at E � 40 MeV for β � 0.5× 1021 and β �
10× 1021 s−1.

Thus, the factors γ̃(β/2ω0) and f (E, β), which
are dependent on β, have different effects on the fis-
1
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sion probability:
Pf (E, β) (39)

=
Γ′BWf γ̃(β/2ω0)

Γn(E) + Γ′BWf γ̃(β/2ω0)
f(E, β).

The factor f (E, β) affects the energy dependence
of the fission probability, and its role becomes more
important with increasing excitation energy. At low
energies (E � 20 MeV, which corresponds to T �
1 MeV), we have f (E, β) ≈ 1. The Kramers fac-
tor γ̃(β/2ω0) is independent of E, and its effect on
the fission probability decreases with decreasing β.
Since there is virtually no information confirming the
excitation-energy dependence of viscosity (temper-
ature dependence of β), it is impossible at present
to answer the question of how dynamical effects are
damped with increasing energy, if at all. By damp-
ing, we mean here the vanishing of nuclear friction
(β/2ω0 → 0) at specific values of the excitation en-
ergy.

That the traditional statistical approach was
successfully used in analyses of experimental data,
including the fission cross section [2, 3] for En <
20 MeV, indirectly confirms that nuclear-friction
effects are inoperative at low energies. The results
of the statistical calculation and experimental data
begin to deviate at higher energies (a few tens of
MeV and higher). By way of example, we indicate
that, within the standard statistical model, the exper-
imental multiplicity of prefission neutrons, ν̄pre(E), in
heavy-ion reactions [5] cannot be reproduced without
including, in the description of the fission probability
Pf (U), effects associated with the viscosity of nuclear
matter. The results obtained from an analysis of the
mass–energy distributions of fission fragments [6]
and prefission neutrons [5] give sufficient grounds to
conclude that β > 1× 1021 s−1. This corresponds
to temperatures of T � 2 MeV. At low temperatures
(T � 1 MeV), there is no need for invoking the
diffusion model for estimating the fission probability
because, in this region, the statistical concepts are
consistent with experimental data. This gives every
reason to assume that, at low energies, nuclear
friction is extremely low: β/2ω0 ≈ 0—that is, γ̃ ≈
1. In going over from the statistical description at
low energies (Bohr–Wheeler fission probabilities) to
the description within the diffusion model at high
energies (Kramers fission probability), the continuity
of the calculated characteristics can be ensured by
including, in the description ofPf (U) (39), the energy
dependence of the coefficient of viscosity in the form

β̃(U) = βQ(U), (40)

Q(U) =
[
1 + exp

(
Ud − U

δU

)]−1

.
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Fig. 4. Results of the theoretical calculation of the cross
section for the neutron-induced-fission of 238U: (а) cross
section σf (En) and its components (curves 1) σf0,
(curves 2) σf0 + σf1, (curves 3) σf0 + σf1 + σf3, etc.
The dashed curves represent a statistical description
(these data are analogous to those shown by the dashed
curve in Fig. 1, but the contributions of various chances
are additionally shown here), and the solid curves were
computed on the basis of the diffusion model (β = 4.1 ×
1021 s−1) with allowance for the damping of the asym-
metric component K1 (U) at the saddle point. (b) Data
shown in Fig. 1 by the dashed curve and open circles
(dashed curve and open circles, respectively) and results
of the calculation of σf (En) on the basis of the diffusion
model with β = 10 × 1021 s−1 and with the adiabatic
estimate for the coefficient of rotational enhancement of
the level density (solid curve).

At low excitation energies, the function describing the
damping of dynamical effects is chosen by analogy
with the function describing the damping of the ro-
tational effects at high energies [see Eq. (19)]. The
function Q (U) has the form of a smoothed step at
U = Ud, its smearing being determined by the pa-
rameter δU . If the parametrization in (40) correctly
reflects the dependence of nuclear friction on the
excitation energy, it must be universal—that is, its
extension to a wide range of nuclei must ensure the
description of the fission cross section over the entire
energy range. Relation (40) has no theoretical val-
idation. The parameters Ud and δU are empirically
adjusted.

Figure 4a presents the results obtained from an
analysis of the cross section for 238U fission and its
chance structure for two versions of the calculation:
(i) a statistical description (dashed curves) employ-
ing the adiabatic estimate for the coefficient of rota-
tional enhancement of the level density (these data
HYSICS OF ATOMIC NUCLEI Vol. 64 No. 9 2001
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are analogous to those represented by the dashed
curve in Fig. 1, but they additionally display the
chance structure of the fission cross section) and (ii)
a calculation on the basis of the diffusion model with
allowance for the damping of the asymmetric compo-
nent K1 (U) (19) at the saddle point with parameters
U1 = 16MeV and d1 = 1.2MeV for (20). A satisfac-
tory description of experimental data over the entire
range of En is achieved at the coefficient of friction
equal to β = 4.1× 1021 s−1 and the parameter values
of Ud = 24 MeV and δU = 1.5 MeV for the function
in (40), which describes the damping of dynamical
effects at low excitation energies. If we disregard the
damping of the asymmetric component—that is, if
we set K1(U) = Kad

1 (U)—the overestimation of the
experimental data within the statistical description
can also be compensated within the diffusion model,
but the larger value of β = 10× 1021 s−1 must then
be taken for the coefficient of viscosity. The results
of the calculations are shown in Fig. 4b. Thus, an
analysis of the cross sections for neutron-induced
fission can furnish additional and independent infor-
mation about the magnitude of the reduced coefficient
of friction β. This is especially important because in-
formation about this parameter of the diffusion model
is not fully reliable. At present, there is no commonly
accepted concept of themechanism of nuclear viscos-
ity. The assumptions of the two-body and one-body
viscosity mechanisms lead to β values that differ by
one order of magnitude. The estimates of β that are
obtained in the present study and the results deduced
from an analysis of the neutron yields in (HI, xnf )
heavy-ion reactions (β � 5× 1021 s−1 [29]) favor su-
percritical damping (β/2ω0 > 1).

It can be seen from Fig. 4а that the inclusion
of nuclear friction in calculating σf (En) leads to
changes in the relative contributions of the different
chances, Rx = σfx(En)/σf (En), and in the energy
dependence of the cross section for each individual
chance, σfx(En). The chances in the dynamical
description are damped much faster with increasing
energy than the corresponding chances in the statis-
tical description.

An analysis of the chance structure in the en-
ergy dependence of the fission cross section shown
in Fig. 4a makes it possible to calculate directly the
mean multiplicity of prefission neutrons as a function
of the excitation energy E = En +Bn. Specifically,
we have

ν̄pre(E) =
xmax(E)∑

x=0

xRx(E), (41)

where xRx = ν̄prex is the contribution of the fission
chance upon the emission of x neutrons to the total
multiplicity ν̄pre. Relation (41) determines the yield
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Fig. 5. Relative contributions of different chances, Rx =
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tistical description and (closed boxes) description within
the diffusion model.

of prefission neutrons that have been emitted by the
excited primary nucleus before it reaches the saddle
point. It should be noted that the approach used
here gives no way to estimate the mean multiplicity of
prefission neutrons being emitted over the time over
which the fissle nucleus evolves from the saddle to the
scission point.

Figure 5 shows the relative yield of various chan-
ces, Rx = σfx(En)/σf (En) (

∑
xRx = 1), at En =

45MeV for the same versions of theoretical descrip-
tion of the fission cross section as in Fig. 4a. If
the dynamical delay of fission according to (39), as
described by the diffusion model due to Kramers [7]
and Grange–Weidenmüller [8], is taken into account,

the maximum of the distribution of R(d)
x is shifted

toward greater x values with respect to the maximum

of the statistical distribution of R(s)
x . As a result, the

prediction of the diffusion model for the prefission-
neutron emission proves to be markedly different from
that of the statistical model (ν(d)pre =

∑
x xR

(d)
x = 4.68

versus ν(s)pre =
∑

x xR
(s)
x = 2.68). It is obvious that

a variation k × σabs (En) of the cross section in the
input reaction channel with the aid of the scale factor
k, while changing the value of the calculated fission
cross section [4], will introduce no changes in the
relative contributions of different chances, Rx = (k ×
σfx(En))/(k × σf (En)), and, hence, in ν̄pre.

The mean number ν̄pre(E) of prefission neutrons
that was estimated for the reaction 238U(n, xn′f ) un-
der the assumption that neutrons are emitted before
the saddle point [see Eq. (41)] is presented in Fig. 6
versus the excitation energy, along with the experi-
mental values ν̄exptpre (E) for the U–Cm actinides with
1
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Fig. 6. Results of calculations of ν̄pre and experimental
values for the actinides in theU–Cm region (Z = 91–96)
versus the excitation energy E: (open circles and trian-
gles) reaction induced by light charged particles (protons
and alpha particles, respectively), (closed circles) heavy-
ion reactions, (dash-dotted curve) empirical systemat-
ics from [30], (dashed curve) statistical description, and
(solid curve) results of the calculation within the diffusion
model.

mass numbers in the range 239–243. A compilation
of νexptpre (E) was given in [30]. Open symbols repre-
sent data for the reaction induced by light charged
particles: (circles) p+ 235,236,238U→ 236,237,239Np
[31] and (triangles) α+ 232Th, 233,238U, 239Pu→
236U, 237,242Pu, 243Cm [32]. The closed circles cor-
respond to data obtained in the heavy-ion reactions
[33] 20N + 209Bi → 229Np, 7Li + 232Th → 239Np,
and 28Si + 208Pb → 236Cm. Experimental infor-
mation about ν̄ expt

pre (E) in reactions induced by light
charged particles includes a data set in the narrow en-
ergy range E = 20–40 MeV. Here, the measurement
errors for (α, xnf ) reactions are large. Unfortunately,
there are no data on νexptpre (E) for neutron-induced
reactions. The experimental procedure that makes it
possible to obtain such data was implemented only
by authors of [34] about forty years ago. All this
complicates a verification of the diffusionmodel on the
basis of a simultaneous analysis of the fission cross
sections and the multiplicity of prefission neutrons.
Nevertheless, we can state for a first approximation
that the solid curve representing ν̄pre(E) in Fig. 6 and
corresponding to the chance decomposition within
the diffusion model lies closer to the experimental
points for (α, xnf ) reactions in the vicinity of E =
40 MeV than the dashed curve corresponding to the
traditional statistical description. By using the set
of data on (p, xnf ) reactions that does not include
three boundary points lying on the dashed curve in
PH
the vicinity of E = 30 MeV, it is hardly possible to
discriminate between the two descriptions of ν̄pre(E).

Kozulin et al. [30] noticed a feature that manifests
itself inmatching the high-energy data ( ν̄t, ν̄post, ν̄pre)
measured in (HI, xnf ) reactions with low-energy
data measured in reactions induced by neutrons ( ν̄t)
and light charged particles ( ν̄t, ν̄post, ν̄pre). For the
example of ν̄pre in Fig. 6, this feature consists in
that the empirical systematics based on the analysis
of data on heavy-ion reactions in the energy region
E � 40 MeV yields values of the prefission-neutron
multiplicity that are lower than the values ν̄exptpre

measured in (p, xnf ) and (α, xnf ) reactions and the
values of ν̄pre as obtained on the basis of a theoretical
description of the fission cross section by decom-
posing it into individual chances for the reaction
238U(n, xn

′
f ). The authors of [30] indicated that

this cannot be explained by different contributions
from nonequilibrium neutron emission in reactions
of different types. Partly, the effect can be associated
with the rotational energy Erot, by which we must
reduce, according to [29], the excitation energy for the
values ν̄exptpre measured in (HI, xnf ) reactions. This
energy, which can be disregarded for light particles, is
converted in the fission process into gamma radiation.
It is obvious that available experimental data in the
region of heavy actinide nuclei are insufficient both
for matching the results of measurements in heavy-
ion reactions and reactions induced by light particles
and for testing theoretical models.

5. CONCLUSIONS

An analysis of the cross section for 238U fission in-
duced by 1- to 55-MeV neutrons has been performed
with the parameters of the optical model for the de-
formed Young potential [24]. The basic conclusions
drawn from this analysis are the following:

(i) Within the standard statistical model, it is pos-
sible to fit the results of the calculations to experi-
mental data on σf (En) for En < 16 MeV. At higher
energies, the calculated curve lies considerably higher
than experimental data.

(ii) Perfect agreement between the calculated and
the experimental cross section cannot be achieved by
including, in the statistical description, the damping
of the asymmetric component of the coefficient of ro-
tational enhancement of the level density at the saddle
point.

(iii) Within the diffusion model, the inclusion of
dynamics at high energies makes it possible to de-
scribe the fission cross section over the entire energy
range under investigation and to obtain information
about the magnitude of the reduced coefficient β of
YSICS OF ATOMIC NUCLEI Vol. 64 No. 9 2001
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the nuclear viscosity (friction). The values of β as
estimated in the present study are in agreement with
the results that are obtained from an analysis of the
prefission-neutron yield in heavy-ion reactions and
of the mass–energy distributions of fission fragments
and which furnish evidence in favor of supercritical
damping.

(iv) Simultaneous experimental investigations of
the fission cross section and the mean multiplicity of
prefission neutrons and their global analysis in reac-
tions induced by neutrons and light charged particles
may prove to be useful in testing the diffusion model
and in matching it with the statistical description at
low energies.
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Abstract—The s-wave bound state of the 4α + Λ system is investigated. The relevant solution to the
Schrödinger equation is expanded in the basis formed by the eigenfunctions of Hamiltonian for the 4α
subsystem. Differential equations for Yakubovsky components are employed to calculate basis functions.
Phenomenological potentials for αα and αΛ interactions are used. In the 4α system, additional three-
particle potentials for the interaction between α clusters are introduced in such a way as to reproduce the
experimental data on the binding energies, the root-mean-square radii, and the charge form factors for the
12C and the 16O nucleus. The binding energy, the root-mean-square radius, and the hyperon distribution
in the ground state of the 17

ΛO nucleus are calculated. The results of the calculations are in good agreement
with those obtained on the basis of the 16O + Λ two-particle model with the phenomenological Woods–
Saxon potential. c© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The nucleus plus Λ hyperon two-particle cluster
model has long since been used to describe hypernu-
clei. A local s-wave potential for the (nucleus plus
Λ) system makes it possible to reproduce the exper-
imental values of the Λ-hyperon separation energy
for medium-mass and heavy nuclei. In [1], it was
proposed to take the potential in the Woods–Saxon
form

V (r) =
V0

1 + exp( r−r0a )
. (1)

Various sets of values for the parameters of this
potential were presented in [1, 2], and the analytic
dependence of the parameter r0 on the hypernucleus
atomic number was obtained there. An attempt was
made in [3] to estimate the hyperon binding energy
in the 17

ΛO hypernucleus, for which the experimen-
tal value of the binding energy is not known. The
inputs used there included the potential (1) with the
parameter values from [2]. The potential (1) was also
employed in [4] to calculate the binding energy of
hyperons in double hypernuclei.
The objective of the present study is to describe

the hyperon state in the 17
ΛO nucleus within the α-

particle cluster model, where this nucleus is treated
as a system of five particles (four α clusters and a Λ
hyperon). In view of what was said about the use of
nucleus plus Λ hyperon two-particle model [1, 2], it
is natural to assume that the s-wave approximation
1063-7788/01/6409-1594$21.00 c©
will be sufficient for this purpose. It is of course nec-
essary to ensure, in this approximation, a satisfactory
description of the 16O core of this nucleus—in par-
ticular, the core binding energy, root-mean-square
radius, and charge form factor must be reproduced. A
correct description of the behavior of the charge form
factor would suggest that the wave function of the
4α cluster subsystem closely approximates the wave
function of the 16Onucleus. In [5], we proposed the s-
wave α cluster model for the nucleus 16O and showed
that this model makes it possible to reproduce sat-
isfactorily experimental data on the aforementioned
features for the 12C and 16O nuclei. In addition to the
two-particle αα potential, this model involves three-
particle potentials [5, 6] acting in the 3α subsystem.
In the present study, we use the results from [5]. In or-
der to describe theαα andΛα interactions, we choose
phenomenological potentials that faithfully reproduce
two-particle data and the binding energy of the 13

Λ C
hypernucleus (αααΛ system) [7].

In order to solve the Schrödinger equation for
the 17

ΛO nucleus, we use the simplest version of the
coupled-channel method for the case of strong cou-
pling [8]. Within this method, the required solution is
expanded in a basis that is formed by the eigenfunc-
tions of the Hamiltonians for the subsystem, which
are treated as bound clusters. In the 4α + Λ system,
it is the eigenfunctions of the Hamiltonian for the
4α subsystem that appear to be the basis functions.
Upon taking projections onto the basis elements, the
2001MAIK “Nauka/Interperiodica”
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Schrödinger equation reduces to a set of two equa-
tions for the functions describing the relative motion
of two clusters, 4α and Λ. It should be noted that,
in the 4αΛ system, the pronounced degree of 4α + Λ
clustering is expected to ensure a high rate of con-
vergence of the basic expansion. In order to calculate
the basis in the 4α subsystem, we apply the differ-
ential equations for Yakubovsky components. These
equations, which were first obtained and analyzed in
[9], are solved numerically on the basis of the cluster-
reduction method that we proposed in [10].
The ensuing exposition is organized as follows. In

Section 2, we give an account of our method for solv-
ing the Schrödinger equation for the 4α + Λ cluster
system. In Section 3, we describe the s-wave poten-
tial model based on the effective equations obtained
in Section 2. In Section 4, we present the features
of the 17

ΛO nucleus that were calculated in the s-
wave approximation and compare these results with
those produced by the nucleus plusΛ hyperonmodel
employing the potential (1). In the conclusions, we
formulate the basic results of our study.

2. DESCRIPTION OF THE FORMALISM

We consider the 4αΛ system, which consists of
four bosons (α particles) and one fermion (Λ hy-
peron). The Schrödinger equation for this system has
the form

(H0 + V3 + VC + Vαα + VΛα − E)Ψ = 0, (2)

whereH0 is the kinetic-energy operator, Vαα (VΛα) is
the sum of the two-particle potentials for the αα (Λα)
interaction, VC represents the Coulomb interaction
between the α clusters, and V3 is the sum of the
three-particles potentials for the interaction of the α
clusters. It is obvious that the total wave function
Ψ for the system must be symmetric with respect to
permutations of the α clusters.
In order to describe the system in configuration

space, we use Jacobi coordinates x, y, z, and r, which
can be explicitly expressed in terms of the radius
vectors of the particles constituting the system [11].
Among the possible sets of Jacobi coordinates, we
choose here those that correspond to the 4α+ Λ clus-
tering of the system. The Jacobi coordinates associ-
ated with this clustering are displayed schematically
in Figs. 1a and 1b. The coordinates in Fig. 1a (1b)
correspond to the 3 + 1 (2 + 2) Jacobi coordinates in
the 4α subsystem.
The wave function for the 4αΛ system can be

expanded in the complete basis formed by the eigen-
functions of the Hamiltonians for the subsystems.
Taking into account the 4α+ Λ clustering, we choose
the eigenfunctions of the Hamiltonian for the 4α
subsystem for this basis. The basis functions are
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 9 200
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Fig. 1. Jacobi coordinates for the 4α+ Λ system that cor-
respond to the (a) 3 + 1 and (b) 2 + 2 Jacobi coordinates
in the 4α subsystem.

denoted by ψi(X), i = 1, 2, . . . , whereX = {x,y, z}.
The functions ψi(X) are solutions to the Schrödinger
equation

(H0X + V3 + VC + Vαα − Ei)ψi(X) = 0, (3)

where Ei are the corresponding eigenvalues andH0X

is the kinetic-energy operator for the 4α subsystem.
To construct the basis, we use here the differential
formalism of Yakubovsky equations [11]. The wave
function ψi(X) can be broken down into a set of
components that satisfy the relevant set of integro-
differential equations. In the case of identical par-
ticles, this set is reduced to two equations for the
components U1

i and U
2
i [5],

(H0X + V̄αα + Vc + V3 − Ei)U1
i (4)

+V̄αα(P+
4 + P−

4 )U1
i

= −V̄αα
[
(P+

1 + P+)U1
i + (P+

1 + P+
4 )U2

i

]
,

(H0X + V̄αα+Vc+V3 −Ei)U2
i +V̄αα(P+P+)U2

i

= −V̄αα(P+ + P+
1 )P+U1

i ,

where V̄αα is the two-particle potential of the αα
interaction and P± and Pi± are the operators of cyclic
permutations of, respectively, four and three particles
(the subscript indicates the number of the particle not
involved in a specific permutation). The component
U1
i (U

2
i ) corresponds to the 3 + 1 (2 + 2) partition of

the system. The wave function ψi can be obtained
by applying the particle-permutation operators to U1

i

and U2
i :

ψi = (I + P+ + P+P+ + P−)(I + P+
4 (5)

+P−
4 )U1

i + (I + P+
1 + P−

1 )(I + P+P+)U2
i .
1
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The functions U1
i (X) and U2

i (X) satisfy the con-
ditions

Uk
i (X)|Γ(R) = 0, k = 1, 2,

at the boundary Γ(R) of the region whose typical size
is determined by the radius R. The basis functions
ψi(X) are numbered in the order of increase in the
eigenvalues. At a sufficiently large value of the pa-
rameter R, the function ψ1(X) coincides with the
total wave function of the 4α system (16O nucleus)
in the ground state.
Once the orthogonal basis ψi(X), i = 1, 2, . . . ,

has been constructed, we can write the expansion of
the total wave function for the system in the form

Ψ(X, r) =
∞∑

i=0

ψi(X)fi(r). (6)

It should be noted that, owing to the representa-
tion in (5), the functionΨ(X, r) in (6) is automatically
symmetric under permutations of the α clusters [11].
Projecting Eq. (2) onto the basis elements, we find
that the functions fi(r), which describe the relative
motion of the 4α subsystem and theΛ particle, satisfy
the equation

(H0r − E + Ei)fi(r) (7)

+
∑

j>0

[
〈ψi(X)|

k=4∑

k=1

V̄Λα(|r − rk|)|ψj(X)〉
]
fj(r) = 0,

whereH0r is the kinetic-energy operator for the rela-
tive motion of the 4α subsystem and the Λ particle,
V̄Λα is the two-particle potential of Λα interaction,
and rk are radius vectors of the α clusters. In taking
into account the completeness of the basis ψi(X),
we perform summation in expansion (6) over a finite
number of terms (Nmax) in order to obtain the nu-
merical results [thereby, the set of Eqs. (7) is reduced
to a finite set]. In view of this, it is of paramount
importance to study the convergence of the results
versus Nmax. The efficiency of the aforementioned
cluster reduction of Eq. (2) is entirely determined by
this parameter.

3. DESCRIPTION OF THE MODEL

We consider the bound state of the system formed
by four α particles and aΛ hyperon. The total angular
momentum of the system itself as a discrete unit and
the angular momenta of its subsystems are taken to
be zero (that is, we perform our analysis in the s-
wave approximation). The interaction between the
Λ hyperon and the α clusters is described by the
potential [12]

V̄Λα(r) = V0 exp(−r2/β2
0), (8)
PH
where V0 = −43.97 MeV and β0 = 1.566 fm. This
potential faithfully reproduces the binding energy
of the Λ hyperon in the 5

ΛHe hypernucleus (EΛ =
−3.11MeV).
To describe the two-particle interaction of the α

clusters, we use the s-wave component of the poten-
tial [13] (version “a”),

V̄αα(r) = V1 exp(−r2/β2
1) + V2 exp(−r2/β2

2), (9)

where V1 = 120.0 MeV, β1 = 1.53 fm, V2 =
−30.18MeV, and β2 = 2.85 fm.
In the subsystem of α-particle clusters, we in-

troduce an additional three-particle potential V̄3 that
ensures the existence of a bound state in the subsys-
tems. This potential is taken in the form

V̄3(ρ) = V exp(−(ρ/β)2), (10)

where ρ2 =
∑i=3

i=1 r2
i , ri being the radius vector of the

ith particle in the c.m. frame. For the four-particle
system, we have introduced two three-particle poten-
tials V I

3 (ρ) and V II
3 (ρ). Of these, the first ensures the

existence of a bound state in the three-particle clus-
ter, while the second specifies interaction between the
fourth particle and each pair of particles in the three-
particle cluster. These potentials are chosen in the
form (10), with the parameters being denoted by V I,
βI and V II, βII, respectively. In this way, we take
explicitly into account the 3α + α cluster structure in
the 4α four-particle system.
In [5], we showed that the parameters of these

potentials can be chosen from a fit to experimental
data on the binding energy, the root-mean-square
radius, and the charge form factors for the 12С and
16O nuclei. In constructing this fit, we assumed that
the α-particle clusters in the bound cluster system
are deformed in relation to the free α particle. The
deformation coefficient is defined as

A = (Rα/Rc)
2 ,

where Rα and Rc are the root-mean-square radii
of the α particle (Rα =1.47 fm) and the α cluster,
respectively. The potential model constructed in [5]
reproduces not only the ground state but also the 0+

2

excited s-wave state of the 16O nucleus, its binding
energy being −8.8 MeV (to be compared with the
experimental value of −8.34MeV).
The parameters of the three-particle potential

V I
3 (ρ) are V I = −24.32 MeV and βI = 3.795 fm.
In the present article, the parameters V II and βII

of the three-particle potential V II
3 (ρ) from [5] were

changed. We choose the values of V II = −5.59MeV
and βII = 5.71 fm. In this case, the coefficient A of
the α-cluster deformation takes the values of A = 3
both for the 3α and for the 4α system, while the
YSICS OF ATOMIC NUCLEI Vol. 64 No. 9 2001
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charge form factor calculated according to [5] for
the 4α-cluster system reproduces qualitatively the
experimental behavior of the 16O form factor at high
momentum transfers. Hence, the wave function for
the cluster system being considered can be close to
the 16O wave function at sufficiently small distances.
In Fig. 2, the solid curve represents the behavior of
the form factor for the 4α-cluster system, while the
closed squares correspond to experimental data from
[14] on the 16O form factor.
In [7], the potentials (8)–(10) were employed to

study the 13
ΛC nucleus on the basis of the αααΛ

cluster model; there, the experimental value of the
ground-state binding energy for the 13

ΛC nucleus
(EB = −18.7MeV) was reproduced and the result of
Hiyama et al. [15], who predicted an s-wave excited
bound state in the αααΛ system, was confirmed.
In the s-wave approximation, the set of Eqs. (7)

takes the form
[−as∂2

r − (ε− εi)]fi(r) (11)

+
j=Nmax∑

j=1

〈ψi|
k=4∑

k=1

v̄Λα(Rk)|ψj〉fj(r) = 0,

where

as =
4mα +mΛ

8mΛ
,

mα and mΛ being, respectively, the α-particle and
the Λ-hyperon mass; v̄Λα(x) = V̄Λα(x)mα/�

2; ε =
Emα/�

2; εi = Eimα/�
2; and r = |r|. Thematrix ele-

ments 〈ψi|v̄Λα(Rk)|ψj〉 are calculated by the formula
〈ψi|v̄Λα(Rk)|ψj〉

=

R∫

0

R∫

0

R∫

0

∫

Ω

dxdydzdω

×v̄Λα(Rk)ψi(x, y, z, u, v, w)ψj (x, y, z, u, v, w),
where

dω = sin ΘxdΘx sin ΘydΘy sin ΘzdΘzdφydφz

(Θx, Θy, and Θz; φy ; and φz are the spherical angles
of the vectors x, y, and z, respectively);

v = sinΘx sin Θy cosφy + cos Θx cos Θy;
u = sin Θx sin Θz cosφz + cos Θx cos Θz;

w = sinΘy cosφy sin Θz cosφz
+ sinΘy sinφy sin Θz sinφz + cos Θy cos Θz;

x = |x|, y = |y|, z = |z|,
R2

1 = (z/4)2 + (y/3)2 + (x/2)2 + r2

−xyv/3 + zyw/6 − zxu/4 − zr cos(Θz/2)
−2yr cos(Θy/3) + xr cos Θx;

R2
2 = (z/4)2 + (y/3)2 + (x/2)2 + r2
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Fig. 2. Charge form factor for the nucleus 16O. Solid
curve represents the charge form factor of the 4α-cluster
system at A = 3, dots correspond to the experimental
data from [14].

+xyv/3 + zyw/6 + zxu/4
−zr cos(Θz/2) − 2yr cos(Θy/3) − xr cos Θx;

R2
3 = (z/4)2 + (2y/3)2 + r2 − zyw/3
−zr cos(Θz/2) + 4yr cos(Θy/3);

R2
4 = (3z/4)2 + r2 − 3zr cos(Θz/2).

The functions ψi(x, y, z, u, v, w), i = 1, 2, . . . ,Nmax,
are normalized by the condition

〈ψi|ψj〉 =

R∫

0

R∫

0

R∫

0

∫

Ω

dxdydzdω (12)

×ψi(x, y, z, u, v, w)ψj (x, y, z, u, v, w) = δij .

In configuration space, the parameter R specifies the
rectangular region (in the calculations, we took the
value of 25 fm for this parameter) where the basis
functions ψi(x, y, z, u, v, w) were calculated accord-
ing to expression (5).

4. RESULTS OF THE CALCULATIONS

The cluster reduction of Eq. (2) reduces the prob-
lem to solving the effective Eqs. (11) for the functions
describing the relative motion of the constituent clus-
ters. A numerical solution to the set of Eqs. (11) was
constructed by using a finite-difference approxima-
tion on an equidistant mesh. The basis functions nec-
essary for performing the reduction procedure were
obtained by solving numerically [5] Eqs. (4) for the
Yakubovsky components of the total wave function
for the 4α subsystem; the basis functions ψi(X), i =
1, 2, . . . , were calculated according to (5).
The results obtained by calculating the binding

energy of the Λ hyperon in the 4α + Λ system are
1
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model and (dashed curve) within the 16O+Λ two-particle
model involving the Woods–Saxon potential with the
parameter values from [2] and (dotted curve) results from
[16], where the parameters of theWoods–Saxon potential
were determined from a fit to the hyperon binding energy
obtained within the microscopic approach in [16].
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Fig. 4. Binding energyEB in the ground state of the 4αΛ
system as a function of the number Nmax of the basis
functions involved.

presented in the table. Since there are no experi-
mental data on the binding energy of the Λ hyperon
in the 17

ΛO nucleus, our result is contrasted against
the results of other calculations. By way of example,
we indicate that, in [3], the binding energy was esti-
mated on the basis of data deduced from an analysis
of the experimental values of the binding energies
of medium-mass and heavy hypernuclei. The value
of −13.0 ± 0.4 MeV, which can be referred to as an
experimental one in this sense, was thus obtained
in [3]. From the table, we can see that the value
calculated here for the ground-state energy of 17

ΛO
agrees with this experimental result. The results of
the calculations performed by other authors exhibit a
rather broad scatter. The authors of [16] and [17] used
the microscopic approach involving the reasonable
Jülich potential (version B), but their results differ
considerably from one another. Also presented in
the table are the results of our calculations for the
hyperon binding energy within the nucleus plus Λ
hyperon two-cluster model for the 17

ΛO nucleus with
P

the Woods–Saxon potential whose parameters were
taken to be identical to those from [2].

For theΛ hyperon in the 17
ΛOnucleus, we have also

calculated its distributionΨΛ(r) defined as

ΨΛ(r) =

√√√√
i=Nmax∑

i=1

(fi(r)/r)2

and normalized by the condition
∞∫

0

Ψ2
Λ(r)r2dr = 1.

In Fig. 3, the distribution functionΨΛ(r) is shown
by the solid curve. For the sake of comparison,
the distribution of the Λ hyperon in the 17

ΛO nucleus
according to the calculation within the nucleus plus
Λ hyperon two-particle model involving theWoods–
Saxon potential is shown in the same figure (dashed
curve) for the case where the potential parameters
were taken to be identical to those from [2] and (dotted
curve, borrowed from [16]) for the case where these
parameters were determined from a fit to the hyperon
binding energy (EΛ = −11.83MeV) calculated with-
in the microscopic approach in [16]. The root-mean-
square radius of theΛ-hyperon distribution in the 17

ΛO
nucleus was calculated by the formula

RΛ =
4mα

4mα +mΛ

√√√√√
∞∫

0

Ψ2
Λ(r)r4dr.

The results of calculations are also quoted in the table.
Generally, we can conclude that the results that

we obtained for the features of the 17
ΛO nucleus (bind-

ing energy, root-mean-square radius, and hyperon
distribution) agree with the results of the calculations
within the nucleus plus Λ hyperon model involving
the local potential (1). In our opinion, this indicates
that the ground state of the 17

Λ O nucleus can be
treated as an s-wave state of the 4αΛ system, which
undergoes clustering predominantly in the 4α + Λ
form. In order to clarify this statement, we con-
sider the rate of convergence of the results obtained
within the cluster-reduction method because, from
these results, it can be deduced whether there is
(or there is no) clustering in the subsystems [10].
The binding energy calculated for the 4αΛ system
versus the number Nmax of basis functions retained
in expansion (6) is displayed in Fig. 4. It can be
seen from the figure that, for the convergence of the
calculation of the binding energy, it is sufficient to
take into account the first two basis functions. These
basis functions correspond to the ground state and to
the first excited state of the 16O nucleus, with their
HYSICS OF ATOMIC NUCLEI Vol. 64 No. 9 2001
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Binding energy EΛ and root-mean-square radius RΛ for
the distribution of the Λ hyperon in the 17

ΛO nucleus

References EΛ, MeV RΛ, fm

[16] −11.83 2.47

[17] −15.54 —

[3] (“Experiment”) −13.0 ± 0.4 —

Present study −13.5 2.05

(16O + Λ) model from [2] −13.4 2.18

binding energy being equal to −14.4 and −8.8 MeV,
respectively. Hence, the 4αΛ system is well clustered
in the form 4α + Λ. It should be noted that the s-
wave 4α + Λ cluster model [involving Λα interaction
described by the potential (8)] cannot be reduced to
the 16O + Λ hyperon model with a two-particle s-
wave local potential. Indeed, only atNmax = 1 can the
set of Eqs. (11) be reduced to an equation similar to
the two-particle Schrödinger equation. In this case,
the calculated value of the Λ-hyperon binding energy
is less (in absolute value) than the “experimental”
one (see Fig. 4). The binding energy calculated
with allowance for the excitation of the core (16O
nucleus) complies with the experimental value. The
contribution of the core excited state to the wave
function for the system does not exceed 5%. The
numerical estimate was obtained in the following
way. The probability P that the bound state of the
4αΛ system is clustered in the form 16O + Λ was
calculated by the formula

P = 〈ψ1f1|Ψ〉,
where Ψ is the total wave function for the system,
ψ1 is the wave function for the ground state of the
4α system (16O nucleus), and f1 is the function that
describes the relative motion of the nucleus and the
Λ hyperon. Obviously, the probability of finding the
4αΛ system in the 16O(0+

2 ) + Λ form is 1− P . For P ,
the calculations yield the value of 0.95.

5. CONCLUSION

It has been shown that the ground state of the
17
ΛO hypernucleus can be described, to a high preci-
sion, within the s-wave 4α+ Λ cluster model where
three-particle potentials representing the interactions
between the α-particle clusters have been introduced
in addition to the two-particle Λα and αα potentials.
The idea that the ground state of the nucleus 17

ΛO
is clustered predominantly in the 4α + Λ form has
been confirmed. The 16O+Λ two-particle model [1,
2] involving a local potential provides a good approx-
imation for describing the hyperon states in the 17

ΛO
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 9 200
nucleus. In order to treat the 17
ΛO nucleus more

accurately, it is necessary to take into account the
excitation of the core (16O nucleus).
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Abstract—By including the Z diagram in an analysis performed in the laboratory frame (instantaneous
form of dynamics), the notion of quasielastic pion knockout by protons and electrons [(p, 2p) and (e, e′p)
reactions treated in terms of the relevant pole diagrams] is generalized to the relativistic case where a meson
is quasielastically knocked out of a nucleon by an electron having an energy of a few GeV. The concept of the
wave function is introduced for the pion (and for other mesons), and its relation to the vertex constantGπNN

and the vertex function gπNN(k2) is indicated. The spectroscopic factor SBм
N is defined as the normalization

of the wave function for the meson м. It is shown by two methods that, under the kinematical conditions of
quasielastic knockout that include the conditionEπ � mπ (Eπ is the energy of the knock-on pion) and the
condition that the square Q2 of the virtual pion mass is large, the competing tree diagram is suppressed in
relation to the pole diagram (this is not so in the case of pion photoproduction). From data of a p(e, e′π+)n
experiment involving longitudinal virtual photons γ∗L, the momentum distribution

∣∣Ψnπ
p (k)

∣∣ 2 of pions in the
nucleon is extracted for the first time over the entire range of significant momenta k, and this result is used
to determine the cutoff constant Λπ = 0.7 GeV/c and the value of Snπ

p ≈ 0.2. The momentum distribution
of positive rho mesons in the soft section of the spectrum is determined from experimental data on the
process p(e, e′π+)n proceeding through the mechanism ρ+ + γ∗T → π+ involving transverse photons. A
way to determine the momentum distribution of omega mesons through data on the process p(e, e′π0)p is
indicated. Two forms of dynamics—instantaneous form and that of light-front dynamics (the latter does
not involve the Z diagram)—are compared for the example where the calculations are performed for the
spectroscopic factor SBм

N . c© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

At present, it is commonly recognized that QCD is
the fundamental theory of strong interactions that has
been sought by the scientific community over many
decades. That the class of processes described by
this theory can be effectively partitioned into pertur-
bative and nonperturbative processes (the latter type
includes strong QCD processes) is peculiar to QCD.
In the perturbative region, one is dealing directly with
fundamental degrees of freedom (quarks and gluons)
and applies the formalism of perturbation theory in
the coupling constant. In the nonperturbative re-
gion, perturbation theory is inapplicable, so that a
considerable part of hadron structure and dynamics
should be analyzed in terms of some effective degrees
of freedom that are formed in this region. On the basis
of first principles alone, it is, however, very difficult to
pinpoint the effective degrees of freedom that must be
taken into account; therefore, experimental data and
physical intuition are of prime importance here.

For this reason, it comes as no surprise that
very different hadron models—for example, models
1063-7788/01/6409-1600$21.00 c©
of quark interaction through gluon strings [1–3] or
models of interaction via meson exchange [4–6]—are
being discussed in the literature.

In connection with the construction of the Contin-
uous Electron Beam Accelerator Facility (CEBAF)
at Newport News (USA), interest in studying the
structure of hadrons—in particular, nucleons—has
quickened considerably. The problem of assessing
the degree to which the properties of a hadron (nu-
cleon) are determined by effective (mesonic) degrees
of freedom (so-called question of the mesonic struc-
ture of the nucleon) [8, 9] is one of the important
problems that have been widely discussed in these
realms. Here, the debates that began as far back as
the 1970s [10] are being continued at a new level.

In the present survey that summarizes our recent
investigations, we consider the possibility of probing
the mesonic structure of the nucleon by the simplest
mechanism of pion knockout by high-energy elec-
trons. This makes it possible to determine reliably,
from exclusive coincidence experiments, the momen-
tum distribution of mesons in the nucleon for various
channels.
2001 MAIK “Nauka/Interperiodica”
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Investigation into the structure of a composite
system by means of quasielastic knockout of its con-
stituents has been playing an extremely important
role in the physics of microcosm [11, 12].

In a broad sense, the term “quasielastic knock-
out” means the following: a high-energy projectile
(electron, proton, etc.) instantanously knocks out a
constituent—an electron from an atom, a nucleon or
a cluster from a nucleus, or a meson or a quark from a
nucleon or a nucleus—transferring a high momentum
to it and leading to controllable changes in its internal
state, whereof one can take advantage.

Use can be made of quasielastic effects both in
inclusive and in exclusive experiments. Information
about the structure of a composite system from inclu-
sive experiments is much less definitive than informa-
tion from exclusive experiments, but even the former
can furnish valuable results [13–18].

Exclusive experiments resolve individual states of
the final system (different channels of the virtual decay
of the initial composite system into a constituent
and the final system in a given excited state). As
a result, the quasielastic mechanisms singled out in
such cases provide more detailed information about
the structure of the composite state being studied.

First of all, it should be noted that coincidence ex-
periments of this type measure the missing momen-
tum and energy (that is, the momentum of the con-
stituent and its binding energy in the channel being
considered). By varying kinematical conditions, one
can directly measure the momentum distribution of
constituents in various channels. By way of example,
we indicate that, for nuclei, such experiments make
it possible to determine the momentum distributions
of nucleons in various shells. Second, it is possible
to measure spectroscopic factors (probabilities) for
constituent separation in various channels. For nuclei
and atoms, spectroscopic factors determine the prob-
abilities of excitation of the states of theA− 1 nucleus
upon nucleon knockout from the ground state of the
A nucleus (structure of relevant fractional-parentage
coefficients) [19]. The sum of the spectroscopic fac-
tors over all channels is equal to the total “effective”
number of constituents in the system that belong to
the type being studied.

In the present review article, we address the prob-
lem of how experience gained in studying the exclu-
sive quasielastic knockout of nucleons and clusters
from nuclei can be extended to the case of pion elec-
troproduction on nucleons. In doing this, we rely
both on previous investigations along these lines [20]
and on our recent results [21–23]. We consider the
exclusive knockout of pions and other mesons as a
step that must follow inclusive experiments.

However, this step is nontrivial since, in the kine-
matical region being considered, quasielastic pion
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 9 200
knockout from nucleons is essentially relativistic. In
particular, pion knockout considered in the laboratory
frame receives a significant contribution from the Z
diagram, which represents the decay of a virtual pho-
ton into a meson–antimeson pair.

Quasielastic pion knockout is analyzed here in
the initial-proton rest frame (laboratory frame). It
is the frame where the momentum of the spectator-
baryon (N ′) recoil is low in relation to the momentum
of the knock-on meson (this is the most important
signature of the quasielastic-knockout process).

2. DESCRIPTION OF THE FORMALISM

2.1. General Points

Pion electroproduction on nucleons in (e, e′) pro-
cesses belongs to the general class of reactions de-
scribed by the Feynman diagram in Fig. 1. The
element of the cross section for such processes is
given by the well-known expression [24]

dσ = (2π)4
|Mfi|2

4I
dp′
e

(2π)32p′e0
(1)

× dpx
(2π)32Ex

dpR
(2π)32ER

δ4(q + pT − px − pR),

where Mfi is the relevant invariant amplitude (an
overbar denotes averaging over spins);

I =
[
(pTpe)

2 −m2
eM

2
T

]1/2
is the Møller invari-

ant flux; (pe0,pe) is the initial-lepton (electron)
4-momentum; (p′e0,p

′
e) is the final-lepton (electron)

4-momentum; px and Ex are, respectively, the mo-
mentum and the energy of the product particle (pion);
pR and ER are, respectively, the momentum and
the energy of the final particle (baryon); qµ = (pe −
p′e) is the virtual-photon 4-momentum; pT is the
4-momentum of the target particle; and MT is its
mass.

Having expressed Mfi in terms of the relevant
matrix elements of the hadron current Jµ,

Mfi =
−eūγµu〈pxpR|Jµ|pT 〉

Q2

(here, u and u are the Dirac spinors for the elec-
trons, andQ2 = −q20 = −q2 +q2 is the sign-reversed
square of the virtual-photon 4-momentum), and per-
formed summation and averaging over spins, we rep-
resent the fivefold-differential cross section as

d5σ

dE′
edΩedΩ∗

x

=
α

(4π)4
E′
e

MT

|p∗x|
W

4
Q4

cos2 (θe/2)
Q2

q2

1
ε

×
{
ε |J0|2 +

1
2

(
|J+1|2 + |J−1|2

)
(2)

+
√

2ε(1 + ε)Re (J0 (J+1 − J−1)
∗) cosϕx
1
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Fig. 1. Diagram for pion electroproduction on a nu-
cleon: (pe, p

′
e) momenta of the incident and the scattered

electron, respectively; (q) virtual-photon momentum; (k)
virtual-meson momentum; (p) initial-nucleon momen-
tum; (p′) final-nucleon momentum; and (k′) product-
pion momentum.

− εRe
(
J+1J

∗
−1

)
cos 2ϕx

}
,

where E′
e is the energy of the final electron; Ωe is its

scattering angle; W 2 = (px + pR)2 is the invariant
mass of final hadrons; Jλ = Jµe

µ
λ, e

µ
λ being photon-

polarization unit vectors; p∗
x and dΩ∗

x are, respec-
tively, the c.m. momentum of particle x and its
c.m. scattering angle; ϕx is the angle between the
plane spanned by the (e, e′) momenta and the plane
spanned by the final-hadron momenta; and the quan-
tity

ε =
[
1 +

2q2

Q2
tan2θe

2

]−1

characterizes the degree of longitudinal polarization
of the virtual photon.

Apart from a factor, the matrix elements
〈pxpR|Jµ|pT 〉 coincide with the invariant amplitude
for the transition

γ∗ + pT → px + pR,

where γ∗ is a virtual photon. Therefore, the differential
cross section d5σ/dE′

edΩedΩ
∗
x is usually expressed in

terms of the cross sections dσL/dt, dσT /dt, dσLT /dt,
and dσTT /dt for the production of particle x by
a virtual photon, where t = k2 = (px − q)2. Here,
dσL/dt and dσT /dt are the cross sections for the
cases of, respectively, transverse and longitudinal
polarization, while dσLT /dt and dσTT /dt are in-
terference terms. Obviously, the cross sections
dσi/dt, i = L, T,LT, TT, must be proportional to
bilinear combinations of currents (amplitudes) that
we denote, by convention, as

〈
J2
〉
i
,

dσL/dt ∼
〈
J2
〉
L

= |Jλ=0|2,

dσT /dt ∼
〈
J2
〉
T

= 1/2
{
|Jλ=1|2 + |Jλ=−1|2

}
, (3)
P

dσLT /dt ∼
〈
J2
〉
LT

= Re{Jλ=0 (Jλ=−1 − Jλ=1)
∗},

dσTT /dt ∼
〈
J2
〉
TT

= Re{Jλ=1Jλ=−1}.
The proportionality factors are introduced by analogy
with the definition of the cross section for a real pho-
ton. For the real-photon-induced photoproduction of
particle x by a real photon, the differential cross in the
c.m. frame of the final hadrons Rx is given by

dσT
dΩ∗
x

=

〈
J2
〉
T

(8πW )2
|p∗
x|

|q∗
r |
, (4)

where q∗
r is the real-photon momentum in this frame.

As a rule, the cross sections dσi/dt for electropro-
duction mediated by a virtual photon are defined by
analogy with expression (4), but this is done in such
a way that the momentum q∗

r and the invariant mass
W of final hadrons are related by the equation

|q∗
r | =

W 2 −M2
T

2W
,

which is valid for a real photon. For the electropro-
duction, we therefore have

dσi
dΩ∗
x

=

〈
J2
〉
i

(8πW )2
|p∗
x|

|q∗
r |
, (5)

but, here, q∗
r is taken to be the photon momentum by

convention.
With allowance for the aforesaid, we can represent

the differential cross section (2) in the form

d5σ

dE′
edΩedΩ∗

x

= Γt

{
ε
dσL
dt

+
dσT
dt

(6)

+
√

2ε(1 + ε)
dσLT
dt

cosϕx + ε
dσTT
dt

cos 2ϕx

}
,

where

Γt =
α

(2π)2
E′
e

Ee

W 2 −M2
T

Q2M2
T

1
1 − ε (7)

plays the role of the virtual-photon flux and
dσi
dt

=
dσi
dΩ∗
x

π

|q∗||px|
. (8)

We note that, in (8), q∗ is the virtual-photon momen-
tum in the c.m. frame. Its square is given by

q∗2 =

(
W 2 −Q2 −M2

T

)2

4W 2
+Q2.

Instead of E′
e, Ωe, and Ωx, use is often made of the

invariant variables Q2 = 4EeE′
esin

2 (θe/2), W 2 =
M2
T + 2MT (Ee + E′

e) − 4EeE′
e sin

2 (θe/2), and t =
k2. In this case, we have

d4σ

dW 2dQ2dtdϕx
= 2πΓ

d2σ

dtdϕx
(9)

= Γ
{
ε
dσL
dt

+
dσT
dt
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+
√

2ε(ε + 1)
dσLT
dt

cosϕx + ε
dσTT
dt

cos 2ϕx
}
.

Here, Γ is a different flux of virtual photons:

Γ =
α

(4π)2
W 2 −M2

T

Q2E2
eM

2
T

1
1 − ε. (10)

Experimental results are presented in terms of
dσi/dt.

2.2. Quasielastic Meson Knockout from a Nucleon
The formulas presented in the preceding section

are quite general: they are applicable to atoms,
molecules, nuclei, and hadrons, and no specific
reaction mechanism is implied in them. We will now
specify these formulas for the process of quasielastic
meson knockout from nucleons, in which case the
virtual-photon momentum is entirely transferred to
the product pion. We define the relevant kinematical
variables as pT = pN = p, pR = p′, and px = k′.

In quasielastic knockout, the energy transfer q0
and the momentum transfer |q| must be such that
|q| � |k|, where k is the virtual-meson momentum
(k = k′ − q), and that q0 � EB −MN , where EB
stands for the final-baryon energies. That the dia-
gram in Fig. 2 is dominant formally expresses the
quasielasticity of the process. Postponing the discus-
sion of the question concerning dominance of the pole
diagram to the end of this section, we are now going
to comment on the formal aspects of quasielasticity.

If antiparticle degrees of freedom can be disre-
garded, the differential cross section d5σ/dE′

edΩedΩ∗
π

for the case of the quasielastic mechanism (Fig. 2)
can be expressed in terms of the wave function for the
meson м in the nucleon and the cross section for the
scattering process e+ м→ e′ + π.

In this case, the invariant amplitude Mfi can
indeed be represented in the form

Mfi =
M(p→ p′k)M(pek → p′ek

′)
2εk(Ep −E′

p − εk)
, (11)

where M(p→ p′k) and M(pek → p′ek
′) are the in-

variant amplitudes for the processes indicated par-
enthetically; εk =

√
m2
м + k2, mм being the meson

(pion) mass; and Ep and E′
p are the energies of,

respectively, the initial and the final nucleon. It goes
without saying that all the required kinematical vari-
ables must appear in these amplitudes. According
to conventional rules of field theory [25], the quan-
tity M(p→ p′k)/

(
Ep − E′

p − εk
)

specifies the ma-
trix element 〈p′|akm|p〉, which will be referred to as
the wave function for the meson м in the target T :

ΨRxT (k,m) =
〈
p′
∣∣ akm |p〉 =

eµ∗mMµ(p→ p′k)
Ep − E′

p − εk
,

(12)
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Fig. 2. Diagram for the electroproduction of particle x on
a composite system T .

where akm is the annihilation operator for the meson
м of momentum k, m being the projection of the
meson spin.

For the amplitude in (11), the general formula (2)
for the cross section d5σ/dE′

edΩedΩ∗
π takes the form

d5σ

dE′
edΩedΩ∗

π

= E′2
e

∣∣ΨRмT (k,m)
∣∣2

(4π)3EpE′
pεk

(13)

×
(

1 − E′
k

|k′| cos θπ

)
dσel

dΩπ
,

where θπ is the angle between the momenta of the
emitted electron and pion, dσel/dΩπ is the cross sec-
tion for elastic electron–meson scattering, and the
overbar denotes averaging over spin projections.

The wave function is normalized by the condition∫ ∣∣ΨRмT (k,m)
∣∣2dτ = SRмT , (14)

where SRмT is the spectroscopic factor that was dis-
cussed in the Introduction, while the integration mea-
sure is given by

dτ = d3k/
[
(4π)3 εkEpE

′
p

]
.

The cross section for elastic electron–meson
scattering—it appears in expression (13)—formally
corresponds to the situation where the meson is
bound in the nucleon in the initial state (the binding
energy Eb of the meson being on the same order of
magnitude as its mass), but is free in the final state,
appearing to be high in a continuum. But in our
case, where the energy of the knock-on meson is
much greater than Eb and where, accordingly, its
final momentum k′ is much greater than its initial
momentum k in the nucleon, the cross section for free
eπ scattering under relevant kinematical conditions
provides a highly accurate approximation to the cross
section being discussed, and this fact is employed
in expression (13). In other words, off-mass-shell
effects in the amplitude can be disregarded in our case
in dealing with the pole diagram. A similar problem
is widely discussed in considering the quasielastic
knockout of nucleons and nucleon clusters from
nuclei [26]. But in the case of the tree diagram, such
off-mass-shell effects for a virtual nucleon play an
1
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Fig. 3.Mechanisms of pion production on a proton under
the effect of a virtual photon: (а) direct meson knockout
by a virtual photon and (b) pion production through a
meson-antimeson pair.

important role (see below). Further, the interaction
of the knock-on pion and the spectator nucleon is
disregarded in (13)—that is, use is made there of the
plane-wave impulse approximation (PWIA) rather
than distorted-wave impulse approximation (DWIA)
(for a comparison of these two approximations in
extracting the momentum distributions of the knock-
on particle from experimental data, see [27]). In
discussing specific results below, we will take qual-
itatively into account, however, the consequences of
replacing plane waves by distorted ones.

The sum ∑

R

SRмT = Nм (15)

over final states determines the total number of м-
type mesons in the meson cloud of the nucleon.

The parametrization (13) of the cross section
d5σ/dE′

edΩedΩ∗
π is very convenient in nonrelativistic

physics. A vast body of valuable information about
the structure of nuclei, atoms, and molecules was
obtained on its basis [11, 12]. As a rule, this
parametrization is not used in relativistic physics—
experimentalists present their results in terms of the
parametrization specified by Eqs. (6) and (9), because
it is much more general than the parametrization in
(13): the former includes, in a natural way, many
mechanisms (in particular, resonance ones) and is
valid not only in the quasielastic region. But it
is because of this that it is much less efficient in
the narrow quasielastic region than the quasielastic
parametrization (13) proper.

Since the Feynman diagram in Fig. 2 involves
not only meson knockout but also the production of
meson pairs, it is necessary to generalize expression
(13) in such a way as to incorporate the momentum
distribution in it. This point will be discussed below.

2.3. Probing Meson Cloud

A. Pion cloud of the nucleon. Evaluation of the
Feynman diagram in Fig. 2 is formally very simple,
but it raises two questions of physical significance.
First, these are the relationship between the con-
tributions of the time-ordered diagrams in Figs. 3a
P

(quasielastic knockout proper) and 3b (Z diagram de-
scribing meson-pair production) and the possibility of
extracting the contribution corresponding to Fig. 3a
from that associated with the sum of the diagrams.
Second, mesons of the diagram in Fig. 2 are effective
degrees of freedom. In this connection, there arises
the problem of parametrizing the relevant vertices
(NNм and мπγ) and including form factors.

These questions are common to all mechanisms.
We will consider them for the simplest example of the
pion cloud. We emphasize once again that we perform
our analysis in the laboratory frame, where the recoil
momentum of the final baryon is low. It was indicated
above that, for a first approximation, we can disregard
off-mass-shell effects for the pion. Accordingly, the
matrix element of the current Jλ (amplitude for the
diagram in Fig. 2) is given by the obvious expression

Jλ = e
M(p→ nπ)
k2 −m2

π

Fπ(Q2)(k + k′)eλ, (16)

where Fπ
(
Q2

)
is the pion form factor, which was set

to the free-pion form factor [28],
Fπ

(
Q2

)
= [1 +Q2/0.5 (GeV/c)2]−1;

M(p→ nπ) is the pion-absorption (pion-emission)
amplitude; and 1/

[
k2 −m2

π

]
is the conventional pion

propagator. From Eq. (16), it can be seen that gen-
eral principles of the diagram technique—the pres-
ence of only one amplitude for the two diagrams in
Figs. 3a and 3b—make it possible to relate the
contributions of these diagrams through the wave
function as

M(p→ nπ)
k2 −m2

π

=
M(p→ nπ)

2εk

1
k0 − εk

×
[
1 − k0 − εk

k0 + εk

]
=

Ψnπp (k,m)
2εk

[
1 − k0 − εk

k0 + εk

]
;

that is,
M(p→ nπ)
k2 −m2

π

=
Ψnπp (k,m)

εk
. (17)

In deriving Eq. (17), we considered that, for
∣∣k2

∣∣ �
0.2 (GeV/c)2, the final neutron is nonrelativistic;
therefore, k0 � εk.

It should also be emphasized that the total am-
plitude (that is, the sum of the amplitudes for the
diagrams in Figs. 3a and 3b) is approximately twice
as great as the amplitude for the diagram in Fig. 3a.

The wave function in turn can be related to the
form factor gπNN (k2) for the πNN vertex. For the
πNN interaction in the pseudoscar version usedmost
often [29] (in the situation considered here, the pseu-
doscalar and the pseudovector version are equiva-
lent), we have

Ψnπp (k,m) =
M(p→ nπ)
k0 − εk

(18)
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=
√

2GπNN gπNN (k2)
ū(p′)γ5u(p)
k0 − εk

,

where u(p′) and u (p) are the Dirac spinors for the
initial and final nucleon, respectively; GπNN is the
πNN-vertex constant; gπNN

(
k2
)
is the correspond-

ing form factor; and

γ5 =



 0 −I
−I 0





is the conventional Dirac matrix. The form factor
gπNN

(
k2
)
is usually taken in the form

gπNN (k2) =
Λ2
π −m2

π

Λ2
π + k2

,

where Λπ is the cutoff parameter.
Taking the modulus squared on both sides of

Eq. (18) and performing summation and averaging
over spins, we obtain
∣∣Ψnπp (k,m)

∣∣2 = 2G2
πNN g

2
πNN (k2)

∣∣k2
∣∣

(k0 − εk)2
. (19)

It is convenient to define the radial part of the wave
function in such a way that, in the laboratory frame, it
is normalized to the spectroscopic factor as

∣∣Ψnπp (k,m)
∣∣2

(4π)3EN (k)MN εk
=

∣∣Rnπp (k)
∣∣2

4π
, (20)

where EN (k) =
√
M2
N + k2 and

∫ ∣∣Rnπp (k)
∣∣2k2dk = Snπp . (21)

With the aid of (17), we represent the differential cross
sections in the form

dσi
dt

=
1
16

α

W 2 |q| |qr|
(22)

×
∣∣Ψnπp (k,m)

∣∣2

ε2k
F 2
π (Q

2)
∣∣(k + k′)i

∣∣2,

where i = L, T and
∣∣(k + k′)L

∣∣2 =
4
Q2

(qzk′0 − q0k′z)2,
∣∣(k + k′)T

∣∣2 = 2
(
k′2x + k′2y

)2
.

Expression (12) defines the wave function in the
most direct way. It is of course interesting to compare
this result with other ways of introducing the pion
wave function in the nucleon. They are based on
reconstructing the wave function on the basis of πN
potentials that describe phase shifts for elastic πN
scattering [30, 31].

The potential for πN scattering is defined in terms
of a set of diagrams that cannot be broken down into
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Fig. 4. Diagram representation of the πN-interaction
potential (this potential was used in [30, 31]).

parts by cutting only a nucleon or only a pion line.
The sum of the pole and the contact diagram is taken
here for the potential (Fig. 4). The first diagram has
a pole at the bare-nucleon mass, while the second is
approximated by the factorized potential

V (k, k′, E) =
f0(k)f0(k′)
E −MN0 + iδ

− h0(k)h0(k′), (23)

where MN0 is the bare-nucleon mass and MN is
the physical-nucleon mass. The functions f0 (k)
and h0 (k) are chosen in such a way as to obtain
a satisfactory description of the phase shifts for πN
scattering.

The radial part of the pion wave function in the
nucleon (this is the quantity of our prime interest) is
determined from the residue of the exact πN propa-
gator (a model one in the present formulation of the
problem)G (k, k′, E):

G(k, k′, E) |E→MN
=
f(k,MN )f(k′,MN )

E −MN
. (24)

We then have

Rnπp (k) =
√

2f(k,E = MN )
MN − εk − εN0(k)

, (25)

where

εN0(k) =
√

k2 +M2
N0
.

The function f (k,E) and the mass of the bare nu-
cleon N0 can easily be found from the equations pre-
sented in [31]:

f(k,E) = f0(k,E) + h0(k)τ0(E) (26)

×
∫
k′2dk′h0(k′)f0(k′)DπN (k′, E),

DπN (k,E) = [E − εk − εN0 (k) + iδ]−1,

τ0(E) = −
[
1 +

∫
k2dk |h0(k)|2DπN (k,E)

]−1

.

Since there is a pole term in the potential, the wave
functionRnπp (k) satisfies the nontrivial normalization
condition [32] ∫ ∣∣Rnπp (k)

∣∣2k2dk (27)

+
1

(MN −MN0)2

(∫
Rnπp (k)k2dk

)2

= 1,
1
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which can be used, in particular, to test the results of
a calculation.

Expression (22), which includes, in relation to the
relativistic formalism, the new, essentially relativistic
effect of the Z diagram, specifies the wave function
in terms of the cross section without intermediate
integrations, which would appear for diagrams that
are more complicated than the pole one. But this is
precisely our eventual objective. Following the same
line of reasoning as above, we will generalize below
expression (22) to the case where an electron impact
converts various mesons into pions.

B. Rho-meson cloud of the nucleon. It will
be seen below that, in the quasielastic region, the
cross section dσT /dt is determined by the diagram
in Fig. 2, where a rho meson appears to be a vir-
tual particle. Therefore, experimental data on the
cross section dσT /dt can be used to determine the
structural features of the rho-meson cloud of the
nucleon—specifically, its momentum distribution and
spectroscopic factor.

However, formulas that relate the cross section
dσT /dt to the rho-meson wave function are more
cumbersome than the analogous formulas that relate
the cross section for longitudinal polarization to the
pion wave function.

In order to find these relations, we will need ef-
fective Lagrangians for the ρNN and the ρπγ in-
teraction. For these, we took the traditionally used
expressions [33]

LρNN = −GρNNgρNN (k2) (28)

×Ψ̄
(
γµ − κ

2MN
σµνi∂µ

)
τϕνΨ,

Lρπγ =
gρπγ
mπ

εαβνµ∂αAβϕ∂νϕµ,

where ϕ and ϕµ are the isovector fields of pseu-
doscalar pions and vector rho mesons; Ψ is the nu-
cleon field; Aβ is the photon field; γµ are the Dirac
matrices; σµν = 1/2 × [γµ, γν ]; MN and mπ are, re-
spectively, the nucleon and the pion mass; gρNN

(
k2
)

is the form factor for the ρNN vertex; gρπγ is the ρπγ
vertex constant; κ is the vector magnetic moment
of the nucleon; and τ = (τ1, τ2, τ3) are the isospin
Paulimatrices. In accordance with [33], the constants
were taken to be the following: GρNN = 2.9, gρπγ =
0.0378/e, and κ = 6.1; e = 0.3027 is the electron
charge.

Further, the matrix element of the operator re-
sponsible for absorption of a rho meson carrying the
vector index µ is related to the amplitude

Mµ
(
p→ nρ+

)
=

=
√

2GρNNgρNN
(
k2
)
ū
(
p′
)
Γµu (p)
P

(
Γµ = γµ +

κ

2MN
σµνkµ

)

for the virtual decay p→ nρ+ by the equation
Mµ(p→ nρ)
k0 − εk

=
〈
p′
∣∣aµρ(k)

∣∣p
〉
, (29)

which is analogous to that for the case of pions [25].
Here,

aµρ (k) = akme
µ
m, (30)

where akm is the operator describing the absorption
of a ρ+ meson characterized by the spin projectionm
onto the quantization axis and

eµm =
(

(k · em)
mρ

, em +
k(k · em)

mρ(εk +mρ)

)
(31)

are the unit vectors of free-rho-meson polarization
[em=0 = (0, 0, 1), em=±1 = ± 1√

2
(−m,−i, 0)].

Relation (29) is somewhat nontrivial. The point
is that the quantity 〈p′|aµρ (k)|p〉, which appears in
the residues of the Fourier transform of the Green’s
function 〈n|T{ϕµ (x)ϕν+ (x′)}|n〉 (n is a neutron),
corresponds to the amplitude that is determined by
the total set of diagrams converting a proton into a
neutron and a rho meson and which is multiplied by
the rho-meson (that is, particle) part of the propaga-
tor Dµν (k) ρ for the rho-meson field. However, the
vector-particle propagator

Dµν(k) =
1

k2 −m2
ρ

[
−gµν +

kµkν
m2
ρ

]

can no longer be represented [34] as the sum of the
particle and the antiparticle propagator—in addition,
it involves a contact term,

Dµν(k) =
1

(k0 − εk)2εk

[
−gµν +

k′µk
′
ν

m2
ρ

]

− 1
(k0 + εk)2εk

[
−gµν +

k′′µk
′′
ν

m2
ρ

]
− 1
m2
ρ

δµ0δν0,

where k′µ =
(√

m2
ρ+k2,k

)
and k′′µ =

(√
m2
ρ + k2,−k

)
.

The contact part−δµ0δν0/m2
ρ of the propagator for

the rho-meson field is disregarded in (29). In our case,
this part corresponds to direct γπNN interaction not
mediated by a meson and seems to have no bearing
on the problems concerning the structure of the rho-
meson cloud that are discussed here.

In just the same way as was done for pions, the
quantity 〈p′|akm|p〉 will be referred to as the rho-
meson wave function in the nucleon.

Expressions (3) for the effective electroproduction
cross section involve bilinear matrix elements of the
HYSICS OF ATOMIC NUCLEI Vol. 64 No. 9 2001
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hadronic current Jλ that are related to the amplitude
Mµ(p→ nρ) by the equation

Jλ = e
Mµ(p→ nρ)
k2 −m2

ρ

(
−gµν +

kµkν
m2
ρ

)
(32)

× εµναβeλνqαkβ
gρπγ
mπ

Fπρ(Q2)

or, since we have Mµkµ = 0,

Jλ = e
Mµ(p→ nρ)
k2 −m2

ρ

εµναβeλνqαkβ
gρπγ
mπ

Fρπ(Q2),

(33)

where εµναβ is an antisymmetric tensor, eλν is the
photon polarization vector, and Fρπ

(
Q2

)
is the form

factor for the ρπγ transition. Following [35], we set

Fρπ
(
Q2

)
= [1 + q2/(3mρ)2]−2.

Thus, the problem consists in expressing the bi-
linear combinations JλJ∗

λ of the current in terms of
the radial part of the wave function Rnρp (k,m). This
relation was established by invoking the gρNN

(
k2
)

form factor.
Taking the square of the modulus of Ψnρp (k,m)

and performing summation and averaging over the
spins of the nucleons and the rho-meson involved, we
can easily obtain

|Ψnρp (k,m)|2 =

∣∣eµ∗mMµ(p→ nρ)
∣∣2

(k0 − εk)2
, (34)
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where the overbar denotes the aforementioned aver-
aging.

By directly evaluating the quantity
∣∣eµ∗mMµ(p→ nρ)

∣∣2 in the target rest frame, we find

that |Rnρp (k)|2 and gρNN
(
k2
)
can be related as

∣∣Rnρp (k)
∣∣2 =

G2
ρNNg

2
ρNN (k2)

(k0 − εk)2
2
3

1
(4π)2EN (k)MNεk

×
[
2(1 + κ)2

(
2MN (MN − k0 + εk)

k2

m2
ρ

− (EN (k)MN −M2
N )
)

(35)

+
(
κ2

2MN
(EN (k) +MN ) − 2(1 + κ)

)

× (2MN − k0 + εk)2
k2

m2
ρ

]
,

where εk =
√
m2
ρ + k2, EN (k) =

√
M2 + k2, and k

is the rho-meson momentum in the laboratory frame.

Accordingly, the bilinear combinations
〈
J2
〉
L,T

of

the currents are given by
|JL|2 =B · 2(1+κ)2(EN (k)MN−M2
N )Q2(k2

x+k
2
y), (36)

|JT |2 = B

[
M2
N

{
4(1 − κ2) +

2κ2

MN
(EN (k) +MN )

}
q2

2
(k2
x + k2

y) (37)

−2(1 + κ)2MN (EN (k) −MN )
{
Q2

2
(k2
x + k2

y) − (qzk0 − q0kz)2
}]
,

where

B = 2e2G2
ρNN

g2ρNN (k)
(
k2 −m2

ρ

)2
g2ρπγ
m2
π

F 2
πρ(Q

2)

and kx, ky , and kz are the components of the virtual-
rho-meson 3-momentum.

We note that, in the literature, gρNN
(
k2
)

is usu-
ally parameterized as

gρNN (k2) =
Λ2
ρ −m2

ρ

Λ2
ρ + k2

, (38)

where Λρ is the cutoff parameter.
C. Omega-meson cloud of the nucleon. That

vector mesons make a dominant contribution to the
pion-electroduction cross section σT for the case of
transverse polarization provides a unique possibility
of probing the omega-meson cloud of the nucleon.
This is achieved in experiments implementing the
exclusive quasielastic knockout of neutral pions by
electrons. In contrast to what occurs in the case of
charged pions, there is no direct knockout of neutral
pions here (the matrix element

〈
π0|Jµ|π0

〉
of the

electromagnetic current vanishes because of charge
symmetry), so that all neutral pions arise via the
deexcitation of ρ0 and ω mesons by virtual photons.

That ρ0 and ωmesons are simultaneously involved
here makes it possible to determine not only the pa-
rameters of the omega-meson cloud—the momen-
tum distribution and the spectroscopic factor—but
also the relative sign of the constants GρNN and
GωNN .

A general formalism for analyzing quasielastic
1
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neutral-pion knockout is identical to that outlined in
the subsection devoted to the rho-meson cloud. In
the case being considered, the matrix element Jλ of
the hadronic current has the form

Jλ = J
(ρ)
λ + J (ω)

λ , (39)

where

J
(ρ)
λ = −eGρNNgρNN (k)

ūΓ(ρ)µu

k2 −m2
ρ

gρπγ
mπ

Fρπ(Q2)ε(ρ)λµ ,

(40)

J
(ω)
λ = −eGωNNgωNN (k2)

× ūΓ
(ω)µu

k2 −m2
ω

gωπγ
mπ

Fωπ(Q2)ε(ω)
λµ .

Here, GωNN is the constant of omega-meson cou-
pling to nucleons; gωNN

(
k2
)

is a form factor; mω
is the ω-meson mass; Γ(ρ,ω)µ stands for the effective
vertices for ρ0- and ω-meson emission fromnucleons,

Γ(ρ,ω)µ = γµ +
κρ,ω
2MN

σµνkµ;

Fρπ
(
Q2

)
and Fωπ

(
Q2

)
are the form factors for the

ρ0 → π0 and ω → π0 transitions induced by a virtual
photon; and εµλ ≡ εµσαβeλσqαkβ , εµσαβ being a unit
antisymmetric tensor in Minkowski space.
PH
In order to determine dσL/dt and dσT /dt, we need
the quantities

|Jλ|2 =
∣∣∣J (ρ)
λ + J (ω)

λ

∣∣∣
2

(41)

=
∣∣∣J (ρ)
λ

∣∣∣
2
+
∣∣∣J (ω)
λ

∣∣∣
2
+ 2Re

(
J

(ρ)
λ J

(ω)∗
λ

)
,

where the overbar denotes averaging and summation
over spins.

We denote by Вρω the following combination of
factors:

Bωρ = 2e2GωNNGρNN (42)

× gωNN (k)gρNN (k)
(k2 −m2

ω)
(
k2 −m2

ρ

) gωπγgρπγ
m2
π

Fπω(Q2)Fπρ(Q2).

Similarly, we will denote by Bρ or Bω a product of
the form (42) with the substitution ω→ ρ or ρ→ ω,

respectively. The quantity |J (ρ)
λ |2 was obtained above,

while |J (ω)
λ |2 can be derived from |J (ρ)

λ |2 by means of

the substitution ρ → ω. For Re(J (ρ)
λ J

(ω)∗

λ ) in the
laboratory frame, we have
∣∣∣Re
(
J

(ρ)
λ=0J

(ω)∗
λ=0

)∣∣∣ = Bωρ2(1 + κ)2(EN (k)MN −M2
N )Q2(k2

x + k2
y),

∣∣∣Re
(
J

(ρ)
λ=±1J

(ω)∗
λ=±1

)∣∣∣ = Bσρ

[
M2
N

{
4(1 − κωκρ) +

2κωκρ
MN

(EN (k) +MN )
}

q2

2
(k2
x + k2

y) (43)

−2(1 + κω)(1 + κρ)MN (EN (k) −MN )
{
Q2

2
(k2
x + k2

y) − (qzk0 − q0kz)2
}]
,

where gρNN and gωNN are functions of k2. Instead of them, we can introduce the ρ0- and ω-meson wave
functions ∣∣∣Rnρ(ω)

p (k)
∣∣∣
2

= Aρ(ω)(k)g
2
ρ(ω)NN (k2), (44)

where

Aρ(ω)(k) =
1

(
k0 − ερ(ω)

k

)2

2
3

1

(4π)3ερ(ω)
k EN (k)MN

(45)

×
[
2(1 + κρ(ω))

2

(
2MN (MN − k0+ ∈ρ(ω)

k )
k2

m2
ρ(ω)

− (pp′ −M2
N )

)

+
(

1
2
κρ(ω)

M2
N

(pp′ +M2
N ) − 2(1 + κρ(ω))κρ(ω)

)
(2MN − k0+ ∈ρ(ω)

k )2
k2

m2
ρ(ω)

]
.

2.4. Problems Associated with Dominance
of Diagrams Involving a Pole in the t Channel

We have already indicated that, in the relativistic
energy region, where particles can transform into one
another, the concept of quasielastic knockout can
run into difficulties, which will be exemplified here by
considering pion knockout. Needless to say, a pion
cloud exists in the nucleon, and a virtual photon can
YSICS OF ATOMIC NUCLEI Vol. 64 No. 9 2001
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transfer its momentum and energy directly to a pion
from the cloud. In addition to the pion-in-flight pro-
cess (pole diagram in Fig. 2), there is, however, quite
a peculiar shake-off mechanism (Fig. 5) consisting
in that the proton that has first absorbed the virtual
photon shakes off a pion (tree diagram). The am-
plitudes of these diagrams cannot be separated and
must generally be taken into account simultaneously
[36]. As a result, the total amplitude for pointlike
particles must have the form

Jλ = ie
√

2GπNN ū′γ5 (p̂+ q̂) +M
(p + q)2 −M2

γµeλµu

+ ie
√

2GπNN
ū′γ5u

k2 −m2
π

(
k + k′

)
eλ,

where p̂ = pµγ
µ.

We will demonstrate that, in the case of quasielas-
tic-knockout kinematics, the tree diagram is strongly
suppressed because of high photon virtuality, to a
considerable extent. Since, in the dominant pole
diagram, off-mass-effects for the meson can be dis-
regarded in the region being considered, the case in
question is governed by free eπ interaction, which
can be straightforwardly chosen in a gauge-invariant
form. Thus, we will discuss the contributions of the
diagrams in Figs. 2 and 5 in various situations.

For the case of transverse polarization, the cross
sections for the photo- and the electroproduction
channel at W = 2 GeV and Q2 = 1 (GeV/c)2 are
displayed in Figs. 6a and 6b, respectively. Off-mass-
shell effects are disregarded for the virtual nucleon
and the pion. From these figures, it can be seen that,
for the case of transverse polarization, either diagram
makes a sizable contribution to the cross section. It
should be emphasized, however, that the tree diagram
in Fig. 5 reduces the cross section significantly. This
highlights the importance of taking into account the
rho meson.

For the case of longitudinal polarization, Figs. 7a
and 7b display the pion-electroproduction cross sec-
tions. It can be seen that, without the form factors,
the tree diagram makes but a marginal contribu-
tion to the cross section for longitudinal polariza-
tion. The inclusion of the form factors Fπ(Q2) =
(1+Q2/0.5)−1 and FN (Q2) = (1+Q2/0.7)−2 leads to
a further strong suppression of the tree diagram. As
a result, there arises a situation where the cross
section for a longitudinal polarization must actually
be interpreted in terms of the quasielastic-knockout
mechanism exclusively. For the sake of complete-
ness, it is also necessary to take into account off-
mass-shell effects. For pions, this is of secondary
importance in the case of the pole diagram because
of the smallness of k2 in relation to k′2 [27]. For a
virtual proton (Fig. 5), off-mass-shell effects could be
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 9 200
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of importance for the tree diagram; for the right-hand
vertex involving the pionic decay of a virtual nucleon,
it may prove to be necessary to include, along with the
form factor (38), the form factor

F (W 2) =
(

1 +
W 2 −M2

Λ2

)−2

, (46)

whereW is the total energy of the virtual nucleon and
where it is the quantity W 2 −M2 that characterizes
its virtuality.

This question is addressed in analyzing the con-
tribution of pions to the deep-inelastic scattering of
electrons [9], but, for the exclusive processes consid-
ered here, there are no visible grounds to assume that
it is different from unity—that is, there are no grounds
1
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to eliminate the tree diagram from the analysis of pion
photoproduction.

By and large, the above analysis compellingly con-
firms, from the formal point of view, that, in [21–
23], it was legitimate to use the pole approximation
in the kinematics of quasielastic pion knockout by
electrons. In those studies, we relied on the sim-
plest criterion: for the pole diagram, the momen-
tum distribution of knock-on pions in the nucleon
as determined from experimental data according to
relevant formulas is independent of the kinetic energy
of the knock-on pion, provided that this energy is
sufficiently high.

The studies reported in [20] and [35] are espe-
cially close to the range of problems that we ad-
dress. Pion electroproduction on a nucleon for the
case where the energy transfer from the electron and
the virtual-photon mass satisfy the conditions ν >
2.2 GeV and Q2 < 1 (GeV/c)2, respectively, was
discussed by Guttner et al. [20], who employed
the impulse approximation and factorized the cross
section. In line with the general theory of inclusive
experiments that makes use of light-front dynamics,
they introduced, however, the Bjorken variable x and
P

extracted, from experimental data, the distribution of
pions,

Gπ/p(x) = 1
/
(8π2)

×
tmin∫

−∞

dt(−t)GπNNF 2
πNN (t)

/
(t−m2

π),

where tmin = −x2M2
N/(1 − x) and where the mo-

mentum distribution of pions that is discussed in
the present study appears as the integrand; here,
FπNN (t) is the pion–nucleon form factor expressed in
[20], in a model-dependent way, in terms of the quark-
bag radius R as a parameter. In a similar formulation
of the problem, Speth and Zoller [35] discussed the
pion and the rho-meson wave function. These wave
functions are also parametrized in terms of the bag
radius R, which is estimated on the basis of the
experimental cross sections dσL/dΩπ and dσT /dΩπ.
Thus, we develop the ideas presented in [20] and [35],
going over, in the kinematical region where the pole
diagram is dominant, to the instantaneous form of
dynamics in the laboratory frame. That this results
in the doubling of the number of pole diagrams does
not present any serious problem since the underlying
mechanism is quite simple. This made it possible to
formulate, for the first time, the problem of directly ex-
tracting, from experimental data, the momentum dis-

tributions
∣∣∣ΨN ′π
N (k)

∣∣∣
2
,
∣∣∣ΨN

′ρ
N (k)

∣∣∣
2
,
∣∣∣ΨN ′ω
N (k)

∣∣∣
2
, etc.,

at sufficiently low values of k (in the laboratory frame),
which correspond to quasielastic kinematics, and at
sufficiently high values of the virtual-photon mass
squared Q2, which are peculiar to the quasielastic
mechanism, and to demonstrate that the more com-
plicated mechanism associated with the tree diagram
is inoperative here (that there is an asymptotic trend
toward this with increasing Q2 was indicated in [35]).
A specific relationship between the aforementioned
two forms of dynamics will be discussed by consid-
ering the example of spectroscopic factors.

2.5. Relationship between the Instantaneous Form
of Dynamics and Light-Front Dynamics

The above formulas were obtained within the in-
stantaneous form of dynamics [37]. Meanwhile, there
recently appeared a great number of studies [9, 36–
39] where phenomena allied to those that we consider
were analyzed within light-front dynamics [37, 40].

Here, wewill discuss only the relationship between
the spectroscopic factors within these two forms of
dynamics.

It is well known (see [41]) that the instantaneous
form of dynamics and light-front dynamics are equiv-
alent in the infinite-momentum frame of the initial
HYSICS OF ATOMIC NUCLEI Vol. 64 No. 9 2001
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proton. By virtue of the geometric law of trans-
formations under boosts, results found within light-
front dynamics in the infinite-momentum frame must
coincide with the corresponding results in any other
reference frame related to it by Lorentz transforma-
tions.

As we have already seen, the spectroscopic factor
in the proton rest frame is given by

Snмp =
∫

d3k
(4π)3MNEN (p′)εk

(47)

× |M|2

(MN − EN (p′) − εk)2
.

In an arbitrary rest frame, the spectroscopic factor
can be written as

Snмp =
∫

d3k̃
(4π)3EN (p)EN (p′)εk̃

(48)

× |M|2

(EN (p) − EN (p′) − εk̃)2
,

where k̃ is the meson momentum and р and p′ are
the momenta of, respectively, the initial and the final
nucleon. Going over to the limit рz → ∞, we can
easily obtain

Snмp∞ =
∫

dk̃⊥
(4π)3

dx

x(1 − x)
4|M|2

(M2
N −W 2(k̃⊥, x))2

,

(49)

where x is given by

x = k̃z/pz, (50)

W 2(k̃⊥, x) =
M2

⊥
1 − x +

m2
⊥
x
. (51)

Here, k̃⊥ is the transverse component of the mo-
mentum k̃, M2

⊥ = M2
N + k̃2

⊥, and m2
⊥ = m2

м + k̃2
⊥.

Instead of x and k̃⊥, it is more convenient to introduce
the light-front momentum in the initial-proton rest
frame. This momentum is given by the relations

k̃⊥ = k⊥,

x =
εk + kz

εk + EN (k)
. (52)

In the new variables, expression (51) reduces to the
form W 2(k̃⊥, x) = W 2(k), where W (k) =√
M2
N + k2 +

√
m2
м + k2. We then have

Snмp∞ =
∫
dk̃⊥
(4π)3

dx

x(1 − x)
4|M|2

(M2
N −W 2(k̃⊥, x))2

(53)

=
∫

d3k
(4π)3MNEN (p′)εk

|M|2

(MN − EN (p′) − εk)2
Ck,
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where

Ck = 4MNW (k)
(MN −W (k))2
(
M2
N −W 2(k)

)2 (54)

=
4MNW (k)
M2
N +W 2(k)

< 1.

Since Ck < 1 and since |M|2, which is an invariant,
takes the same value in the two reference frames, then

Snмp∞ < Snмp . (55)

Actually, the difference of these two quantities is quite
small.

3. DISCUSSION OF PHYSICAL RESULTS

3.1. Pion Cloud

The underlying point of our analysis is that the
contribution of the pole diagram is dominant in the
kinematical region specified by the inequalities Q2 �
1 (GeV/c)2 and

∣∣k2
∣∣ � 0.2 (GeV/c)2. This circum-

stance makes it possible

(i) to extract themomentum distribution
∣∣Rnπp (k)

∣∣2

of pions in the nπ+ channel from experimental data on
electroproduction;

(ii) to refine the cutoff parameter Λπ in a popular
parametrization of this distribution;

(iii) to relate investigations of the phase shifts for
πN scattering to pion-electroproduction data through
the πN potential and the pion wave function in the
nucleon;

(iv) to find the spectroscopic factor in the nπ+

channel, an extremely important feature of the pion
cloud indeed.

The pion-electroproduction cross section dσL/dt
for the case of longitudinal polarization generally re-
ceives contributions both from the pion and from the
rho-meson cloud. However, our calculations revealed
that the rho-meson contribution to this cross section
is very small (see Fig. 8). For a first approximation,
we therefore disregard the rho-meson contribution
to dσL/dt. From experimental data reported in [42,
43] for dσL/dt, we found the cutoff parameter Λπ for
the form factor gπNN (k2). The result is 0.7 GeV/c,
which is one-third as great as that for the Bonn
potential [44].

Figure 9 shows the radial parts of the pion wave
function in the nucleon. The thick solid curve rep-
resents the results of the calculation by formula (19)
with the form factor gπNN (k2) found previously, while
the thin solid and the dashed curve were computed
by formula (25) on the basis of the potentials from
[30] and [31], respectively. Figure 10 displays the
1
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Fig. 8. Pion-electroproduction cross section for the cases of (left panel) transverse and (right panel) longitudinal polarization:
(dashed curve) contribution of the diagram in Fig. 2 involving a virtual pion, (thin solid curve) contribution of the diagram in
Fig. 2 involving a virtual rho meson, and (thick solid curve) total cross section. Experimental data were borrowed from [44, 45].
corresponding cross sections. It can be seen that the
wave function from [31] is not compatible with exper-
imental data on electroproduction in the quasielastic-
knockout region. On the contrary, the results from
[30] lead to satisfactory agreement with experimen-
tal data. It should be noted that either separable
potential, that from [30] or that from [31], provides
a good description of low-energy data on πN scat-
tering. Thus, an experimental study of quasielastic
knockout can be considered as an additional check on
πN potentials.

The pion spectroscopic factor is given by the inte-
gral

∫ ∣∣Rnπp (k)
∣∣2k2dk = Snπp (56)

and, for the pion cloud, can be found directly from
experimental data. It proves to be Snπp = 0.13; how-
ever, this value is underestimated, because we dis-
regard final-state interaction—that is, the escape of
pions from the πN channel. Relying on experience
gained in intermediate-energy nuclear physics, where
the corresponding result is underestimated by a fac-
tor of about 1.5, and bearing in mind that we have
taken into account the important off-mass-shell ef-
fect (which is immaterial for loosely bound nucleons
P

in outer nuclear shells), we adopt the value of Snπp =
0.2, which we believe to be quite reliable. Similar
values were obtained in [9], where the pion content
in the nucleon was calculated by perturbation theory
within light-front dynamics.
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Fig. 10. Cross sections dσL/dt for the case of longitu-
dinal polarization that correspond to the following mo-
mentum distributions: (thick solid curve) wave function
in the monopole parametrization, (thin solid curve) wave
function from [30], and (dashed curve) wave function from
[31]. Experimental data were borrowed from [44].

It is interesting to note the Saito–Afnan wave
function [30] normalized by the condition in (27)
leads to the same value of the spectroscopic factor.
If use is made of the parametrization gπNN (k2) =
Λ2
π −m2

π/Λ2
π + k2, Snπp depends greatly on Λπ. At

Λπ = 0.7 GeV/c, we obtain Snπp = 0.18.

3.2. Rho-Meson Cloud

The contributions of the pion and of the rho-meson
cloud to the cross sections dσL/dt and dσT/dt de-
scribing quasielastic pion knockout from a proton for
the cases of, respectively, longitudinal and transverse
polarization are displayed in Fig. 8. It can be seen
that, at Q2 = 0.7 (GeV/c)2, the contribution of the
rho-meson cloud to the cross section dσL/dt for
longitudinal polarization is small—this cross section
is determined almost exclusively by the contribution
of the pion cloud; as to the cross section dσT/dt,
the contributions to it from pions and rho mesons are
on the same order of magnitude. With increasing
Q2, the situation changes—at Q2 = 3.3 (GeV/c)2,
the cross section dσT/dt for transverse polarization
is determined almost exclusively by the contribution
of the rho-meson cloud; this is not so for the cross
section dσL/dt , which, as before, receives the main
contribution from pions.

It follows that analysis of the cross section dσT/dt
at Q2 = 3.3 (GeV/c)2 can in principle answer the
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same questions for the rho-meson cloud as those
posed in discussing the pion cloud. However, avail-
able experimental and theoretical data on the rho-
meson cloud are relatively scanty—for example, ρN
phase shifts have not yet been analyzed, and experi-
mental data have been obtained in the narrow region
|k2| � 0.2 (GeV/c)2 (the wave function is entirely
concentrated in this region in the case of pions, but
it goes far beyond it in the case of rho mesons). Even
on the basis of the available data, we can nevertheless
draw some conclusions on the properties of the rho-
meson cloud.

Figure 11 displays the momentum distribution of
rho mesons in the proton according to the calcu-
lation by formula (35) with the cutoff constant Λρ
determined for the vertex function gρNN (k2) by fitting
the cross section dσT/dt at Q2 = 3.3 (GeV/c)2 for
transverse polarization to experimental data. Satis-
factory agreement is achieved at Λρ = 1.4 GeV/c.

However, only at relatively low values of |k2| �
0.2 (GeV/c)2 is it possible to extract the momentum
distribution directly from experimental data. There-
fore, a determination of the spectroscopic factor will
be much less reliable here than in the case of the pion
cloud. The spectroscopic factor depends greatly on
Λρ and, at Λρ = 1.4 GeV/c, takes the value of 0.07.

3.3. Omega-Meson Cloud

Figure 12 shows the differential cross section
dσT/dt describing neutral-pion electroproduction
for the case of transverse polarization. We con-
sider these results as a guideline for performing
future experiments—there are presently no data on
the quasielastic knockout of neutral pions. Fig-
ure 12а corresponds to quite accessible values of
Q2 = 3.3 (GeV/c)2 andW = 2.65 GeV, at which the
1
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site) signs of the constants GωNN and GρNN ]:
(a) Q2 = 3.3 (GeV/c)2, W = 2.65 GeV and (b) Q2 =
15 (GeV/c)2,W = 2.65 GeV.

reaction p(e, e′π+)n was investigated in experiments
reported in [43, 44]. This is compatible with the
k2 range 0–0.4 (GeV/c)2 considered here (in the
quasielastic-knockout region, we have k2 � Q2, in
which case off-mass-shell corrections are immate-
rial).

In the calculations, we used the values of
g2ωπγ/g

2
ρπγ = 10 [45, 46] and κω = 0.14 ± 0.20 [47].

The values chosen for the constants gρπγ , GρNN ,
and κρ were quoted above. For the cutoff constant
Λω, to which the results presented in Fig. 12a are
weakly sensitive, we adopted the value of Λω = Λρ =
1.4 GeV/c.

Owing to the presence of the interference term in
expression (41), the result depends on the relative
sign of the constants GρNN and GωNN ; as can be
seen from Fig. 12a, this sign can be established ex-
perimentally. Concurrently, the quantity G2

ωNN/4π,
for which there is a scatter from 5 to 30 [48], will be
refined.
P

In order to determine reliably the quantity Λω (and
to test Λρ), it is obviously necessary to expand the k2

range to 3 (GeV/c)2; this in turn requires increasing
Q2 to about 15 (GeV/c)2. Figure 12b, which displays
the expected differential cross section for the afore-
mentioned values of Λω and Λρ, corresponds to these
kinematical conditions, which are more difficult for
exclusive experiments.

4. SUMMARY AND OUTLOOK

The basic point of our analysis has been that, in
the quasielastic-knockout region, where the recoil
momentum k is much less than the momentum k′ of
the knock-on pion and, in addition, k′ � mπ, the pole
mechanism represented by the diagrams in Fig. 3 is
dominant. In favor of this, we have adduced an ana-
lytic argument in Subsection 2.4 and an experimental
one based on the observation that the momentum
distribution of knock-on pions undergoes no changes
in response to variations in the final energy of the
knock-on pion.

The quasielastic-knockout concept adopted in
nonrelativistic physics has been generalized by in-
cluding the Z diagram in Fig. 3b in the analysis
performed in the laboratory frame (it is in this frame
that one can single out low values of k).

Further, we have introduced the notion of the wave
function for the pion (and for vector mesons) in the
nucleon and indicated how this function is expressed
in terms of the vertex constant GπNN and the vertex
function gπNN (k2).

For a fixed N → B + м virtual decay channel, we
have introduced the spectroscopic factor for the prod-
uct meson in the nucleon.

From experimental data on pion electroproduc-
tion by longitudinal virtual photons [43], we have
extracted the momentum distributions of pions in the
channel p → n + π+ and, as a normalization of
the momentum distribution, the pion spectroscopic
factor (Snπp ≈ 0.2). The shape of the momentum
distribution has enabled us to determine reliably the
cutoff parameter Λπ for the vertex function gπNN (k2),
Λπ = 0.65 ± 0.05 GeV/c. This result is in good
agreement with that presented by Loucks et al. [49],
who analyzed data on pion electroproduction in the
delta-isobar region, where the amplitudes of a few
diagrams interfere, but it differs markedly from the
value of Λπ = 2.1 GeV/c, which is used in the Bonn
potential [44]. A generalization of the approach dis-
cussed here to the case of quasielastic pion knockout
from a nucleus is quite obvious. Although the rel-
evant experiment will inevitably be inclusive (∆E >
10 MeV), it will become possible, for the first time,
to deduce information about the form of the pion
HYSICS OF ATOMIC NUCLEI Vol. 64 No. 9 2001
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wave function in a nucleus (more specifically, to find
out whether it reduces to a superposition of the pion
wave functions in individual nucleons) and assess the
number of pions in a nucleus [50].

The problem of the relationship between the pion
spectroscopic factors within the instantaneous form
of dynamics and light-front dynamics (the former be-
ing employed in our studies) has been considered.

By using preliminary, incomplete, experimental
data on pion electroproduction by virtual transverse
photons [42, 43] and taking into account the results
from [35], which demonstrate that these processes
are dominated by the contribution from the spin-flip
nondiagonal ρ+ + γT → π+ amplitude, we have been
able to assess qualitatively, at low values of the rho-
meson momentum [

∣∣k2
∣∣ < 0.4 (GeV/c)2], the mo-

mentum distribution of the rho meson in the channel
p→ ρ+ + n and to estimate the rho-meson spectro-
scopic factor roughly at Snρp = 0.07 and the cutoff
parameter roughly at Λρ = 1.4 GeV/c. In order to
determine this momentum distribution over the entire
region

∣∣k2
∣∣ ≥ 1.2 (GeV/c)2 [in this respect, the case

being presently discussed differs from that of pions,
for which the region

∣∣k2
∣∣ � 0.5 (GeV/c)2, which was

actually studied, is quite sufficient], electron beams of
energy not lower than 10 GeV are required, and this
is of paramount importance (here, it should be borne
in mind that the eta and phi mesons and negative
kaons, as well as tensor mesons, are of positive parity;
see below). The reaction p+ + γT → π+ and the
possibility of extracting the momentum distribution
of rho mesons are so important since, even in the case
of quasielastic kinematics, the most natural process
p+ e→ ρ+ + n+ e′ proceeds according to a totally
different scheme (through an intermediate Pomeron)
because of vector dominance [50] and gives absolutely
no way to explore the aforementioned momentum
distribution of the rho meson in a nucleon.

The momentum distribution and the Snπp value
deduced for the channel p → π+ + n have been
compared (in terms of the wave function Ψnπp ) with
what is obtained for the pion wave function in the
nucleon with various πN potentials determined from
a fit to the energy dependences of the phase shifts for
πN scattering. Excellent agreement has been found
for the case of the πN potential from [30] (it should be
emphasized that the wave function for a pion bound
in a nucleon was not considered there). This is yet
another argument in favor of our approach.

The possibility of probing the omega-meson cloud
of the nucleon in experiments exploring quasielastic
neutral-pion knockout has been considered. Such
experiments would enable an independent determi-
nation of the wave function Ψpωp (k)—in particular,
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 9 200
the magnitude of the constant GωNN and its sign.
This is possible owing to the interference between
the ρ0 + γ∗T → π0 amplitude (which is determined by
the independent reaction ρ+ + γ∗T → π+) and the ω+
γ∗T → π0 amplitude being discussed. The required
electron beams of energy not less than 10 GeV would
make it possible to obtain the entire set of wave func-
tions ΨBπp (k) (whereB can be, for example, the Roper

resonance), ΨΛK+

p (k), ΨΣK
p (k), and Ψpηp (k).

The question of whether it is possible to sin-
gle out the quasielastic-knockout mechanism (е, е′ϕ)
against the background of the diffractive production
of a vector phi meson (which has the s̄s structure)
[51] has been discussed. In addition, there exists yet
another method that can be used to single out, in
the nucleon, the cloud of positive-parity mesons, м+.
This possibility has been deduced from our experience
gained in studying quasielastic alpha-particle knock-
out from light nuclei by protons [52] and electrons
[53] of energy about 1 GeV. Namely, the probability of
finding, in a nucleus, a virtual excited alpha particle
with various values of the intrinsic orbital angular
momentumLintr �= 0 is quite high [52]. A bombarding
particle scattered on one or a few nucleons of this
virtual cluster knocks it out of the nucleus; more-
over, the amplitude for the transition of the knock-
on cluster to the ground state, α∗ → α0, proves to be
sufficiently large in the process. Owing to a change in
Lintr, different partial-wave amplitudes interfere, with
the result that the momentum distributions of the
recoil nucleus (A− 4)f that are expressed in terms
of the angles of orientation of the recoil momentum
k with respect to the beam axis and to the plane
of fast-particle scattering develop anisotropy. The
predicted anisotropy is very strong in the reaction
A(p, pα)A− 4 [52] and is quite sizable in the reaction
A(e, eα)A − 4 [53], where scattering actually occurs
on only one proton of the cluster. Here, we imply
the physically observable momentum distribution of
recoil nuclei A− 4 in a specific excited state f ; for
this, it is not necessary, however, to record the recoil
nucleus itself—measurement of p and α or of e and α
pair correlations furnishes the entire body of needed
information.

Thus, the process e+ м(+) → e′π can in prin-
ciple be recognized by the above anisotropy of the
momentum distributions of recoil nucleons, because
the intrinsic orbital angular momenta of the mesons
м(+) and of the pions are Lintr = 1 and Lintr = 0,
respectively. Here, a key question is that of the mag-
nitude of the off-diagonal amplitudes γ∗T + м(+) → π

or γ∗L + м(+) → π in relation to those amplitudes that
have been analyzed in the present review article. This
is problem for the nearest future.
1
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When the energy of knock-on mesons exceeds
1 GeV, the quasielastic-knockout reaction (p, pм) can
also be of use, in principle, since proton beams of
energies in excess of 10 GeV are available in a few
laboratories worldwide. But even in the simplest
experiment of the 1H(p, pπ+)n type, the situation is
partly complicated by strong diffractive pp interaction
in the initial and in the final state. However, the off-
diagonal amplitudes for meson knockout can inde-
pendently be studied in pion scattering on protons
that is inelastic in the meson state.

In addition, one can also discuss quasielastic-
knockout reactions of the (π, πм) type, which have
been known for a long time in the (π, 2π) version,
but which have hitherto been used only to determine
the phase shifts for ππ scattering [54]. The only
question to be solved here is that of whether it is
possible to obtain intense secondary pion beams of
energy in excess of 10 GeV that are characterized by
a comparatively small energy spread.

To conclude, we note that, although we have de-
scribed here the meson cloud of the nucleon in purely
phenomenological terms for the sake of simplicity,
one has eventually to address the more fundamen-
tal problem of the hadronization of the quark–gluon
vacuum polarized by the baryon charge of the nu-
cleon. More specifically, the problem consists in
projecting quark–gluon wave functions onto B + м
cluster channels [55]; to some extent, this is similar to
projecting the multinucleon wave functions for the A
nucleus onto (A− 4)f +α∗ channels. Variousmodels
have been proposed for this [56]. For example, the
relations between the coupling constants GмBB for
various mesons м and baryonsB were analyzed along
these lines in [57]. The scopes of such an analysis
can be substantially expanded by invoking the results
obtained from an investigation of quasielastic meson
knockout.
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Abstract—The behavior of the inclusive cross sections for the cumulative production of π± mesons and
protons in pA, DA, and 4HeA interactions is studied versus the atomic mass number of fragmenting nuclei.
The primary-beammomenta were 4.5 GeV/c per nucleon. Secondary pions and protons were recordedwith
a fixedmomentum of 0.5GeV/c at an angle of 120◦. Specifically, the experiment explored the fragmentation
of D, He, 6Li, 7Li, C, Si, 58Ni, 64Ni, 64Zn, 114Sn, 124Sn, and Pb nuclei. The energy spectra of π+ and π−

mesons and protons with momenta in the range 0.3–0.7 GeV/c (the emission angle being 120◦) were
measured in an 8.9-GeV/c proton beam for Ni, Zn, and Sn isotopes. The special features in the behavior
of the cross sections are found and discussed, and a comparison is drawn with the results of other studies.
c© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION
The majority of the experiments that studied the

cumulative production of particles (π±, K±, p, n,
p̄, and nuclear fragments) were performed in proton
beams of incident energies in the range 1–400 GeV.
The term “cumulative” implies that the production
of particles with specific features (momenta, masses,
emission angles) is forbidden by the kinematics of
free-nucleon collisions. Cumulative particles can be
observed both in the target- and in the projectile-
fragmentation region. In the first case, the parti-
cles are recorded at emission angles in the range
90◦−180◦ (backward hemisphere). In the present
study, we are dealing with cumulative particle pro-
duction in the target-fragmentation region.
At present, a vast body of experimental informa-

tion about cumulative particle production has been
collected in various scientific centers [1–6]. The orig-
inal premises of the cumulative effect in relativistic
nuclear interactions are presented in [1]; the pioneer-
ing results on cumulative production are summarized
in [2]; and the theoretical models of cumulative pro-
cesses are considered in [3–5]. Experimental data
within various conceptual frameworks and the pos-
sible mechanisms of cumulative particle production
are discussed in [6], which is the latest review on the
subject. The quoted articles contain an exhaustive list
of references to relevant experimental and theoretical
studies.
Investigations into cumulative production re-

vealed [1–6] that the spectra of cumulative particles
1063-7788/01/6409-1618$21.00 c©
are similar for various nuclei, irrespective of the
energy and the type of the incident beam. The A
dependence of the cross sections appeared to be an
equally universal feature. The energy dependences of
the cross sections for various particles are reproduced
quite satisfactorily by many theoretical models [3–
5]. The A dependence of the cross sections remains
incomprehensible in many aspects. The frequently
used approximation of the cross section in terms of
a power-law form like An is quite satisfactory for a
limited number of nuclei within the mass-number
range A � 30–240. In some cases, the exponent n
depends on the mass numbers of nuclei in a rather
specific manner. This concerns the behavior of the
cross sections for isotopically enriched nuclei, which
are usually used in relevant measurements [6]. Here,
we mean the so-called isotopic effect [7], which
consists in that the inclusive cross sections for the
production of π+ andK+mesons and of protons (that
is, of positively charged particles) are independent
of the excessive neutron content at a fixed charge of
fragmenting nuclei (58Ni, 64Ni, 114Sn, 124Sn).

In this article, the results on the cumulative pro-
duction of π± mesons and protons in beams of pro-
tons, deuterons, and He nuclei with momenta of
4.5 GeV/c per nucleon are presented for the case
where secondaries are emitted at an angle of 120◦

with a fixedmomentum of 0.5GeV/c. The experiment
was performed with D, He, 6Li, 7Li, C, Si, 58Ni,
64Ni, 64Zn, 114Sn, 124Sn, and Pb as fragmenting
2001MAIK “Nauka/Interperiodica”
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Fig. 1. A dependence of the inclusive cross sections for
the production of 0.5 GeV/c π+ and π− mesons at an
emission angle of 120◦ in beams of protons, deuterons,
and 4He nuclei with a momentum of 4.5 GeV/c per
nucleon (At is the mass number of target nuclei; the open
triangles correspond to the results for the 64Zn nucleus).

nuclei. For the same value of the emission angle,
the spectra of protons and pions with momenta in the
range 0.3–0.7 GeV/c were additionally measured in
an 8.9-GeV/c proton beam. In that case, 58Ni, 64Ni,
64Zn, 114Sn, 124Sn, and Pb were used as fragmenting
nuclei. The above sets of fragmenting nuclei allowed
us to obtain the overall pattern of the cross sections as
functions of A and to trace finer details of this depen-
dence under the same experimental conditions. The
entire set of the aforementioned fragmenting nuclei
was used in the deuteron beam.
Our experimental data were obtained with the

DISK setup, which includes a time-of-flight spec-
trometer and which makes it possible to combine data
from it with a magnetic analysis of the momenta of
secondary particles and with measurements of ion-
ization losses and of the intensity of Cherenkov light.
The beam of secondary particles was focused onto
scintillation counters by the doublet of quadrupole
lenses. A detailed description of the experimental
procedure can be found in [6, 8]. The tabulated data
on the cross sections for the production of pions,
kaons, protons, and deuterons were reported in [6, 9].

2. EXPERIMENTAL RESULTS

We would like to note those special features in the
behavior of pion and proton cross sections that did not
attract much attention in previous studies. For cross
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 9 200
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Fig. 2. Ratios of the cross sections for the production of
protons and pions on 64Zn and 64Ni nuclei versus the
beam type (Ab is the mass number of beam nuclei; all
incident beams have the same momentum of 4.5 GeV/c
per nucleon; the emission angle is 120◦).

sections, we will henceforth use the representation
[6, 9]

1
A
E
dσ

dp
=

1
A

E

p2

d2σ

dp dΩ
(mb GeV−2 c3 sr−1nucleon−1).

Figure 1 shows the A dependence of the cross
sections for the production of π± mesons in proton,
deuteron, and helium beams. Two features inherent in
the behavior of the cross sections in all types of beams
considered here are worthy of special note. First, the
A dependences of the pion cross sections are similar
for all beam types. Moreover, the similarity manifests
itself in minute detail, since the isotopic effect is pecu-
liar to all beams. It should be emphasized that, here,
the isotopic effect becomes noticeable at an incident
proton momentum one-half as great as that at which
it was observed in the pioneering studies. Another
fact is a noticeable growth of the cross sections in the
mass-number range A � 50–60 and their reduction
on either side of this range. This type of behavior
is peculiar to the specific binding energy of nuclei.
Figure 1 also demonstrates that the isotopic effect for
pions is the most spectacular in proton beams.
Let us consider a pair of 64Zn and 64Ni nuclear

species. They are isobars (that is, they have equal
mass numbers). We use the ratios of the cross sec-
tions for the production of π+ and π− mesons and
of protons on these nuclei and compare the behavior
of these ratios in the different beams. The results
are illustrated in Fig. 2, which shows that there is
virtually no dependence on the beam type in these
ratios. A fit to a constant yields

0.89 ± 0.02, χ2 = 0.3 for π−; 1.06 ± 0.02,

χ2 = 0.5 for π+; 1.09 ± 0.02, χ2 = 0.8 for p.
1
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That the ratios of the cross sections for the pro-
duction of protons and π+ mesons on the nuclei of
nickel and zinc isotopes are nearly equal (Fig. 2; the
pion and protonmomentum is 0.5 GeV/c) gives every
reason to expect that this will be the case for other
proton and pion momenta. Indeed, Fig. 3 (data ob-
tained in an 8.9-GeV/c proton beam) confirms these
expectations. In this case, however, the cross sec-
tions for π− mesons are equal for the nickel and zinc
isotopes within the experimental errors, in contrast to
what was observed at 4.5 GeV/c. A fit to a constant
yields

0.98 ± 0.02, χ2 = 0.4 for π−; 1.12 ± 0.02,

χ2 = 1.5 for π+; 1.12 ± 0.02, χ2 = 1.3 for p.
The kinetic-energy ranges 47–232 and 191–

574 MeV for protons and pions, respectively, cor-
respond to the proton- and pion-momentum range
0.3–0.7 GeV/c. The values of the scaling variable x
in the range 0.6–1.4 for pions and in the range 1.2–
1.7 for protons correspond to the same momentum
range (for an 8.9-GeV/c proton beam at an emission
angle of 120◦). The definition of the scaling variable x
can be found, for example, in [6] (it is traditionally

Nucleonic compositions of isotopic nuclei of targets

Target nucleus Z N N/Z Enrichment, %
58Ni 28 30 1.07 99.7
64Ni 28 36 1.29 93.1
64Zn 30 34 1.13 98.7
114Sn 50 64 1.28 92.0
124Sn 50 74 1.48 97.2
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Fig. 4. Ratios of the cross sections for the production of
π+ and π− mesons on different nuclei versus the pion
momentum (the momentum of the incident proton beam
is 8.9 GeV/c; the emission angle is 120◦).

used in studying cumulative particle production).
We assume that experimentally measured values are
more convenient for illustrating the results that we
obtained. We can conclude that, for the momenta
of secondaries in the range 0.3–0.7 GeV/c, the very
specific behavior of the ratios of the pion and proton
cross sections for nuclei with equal mass numbers
is still observed at the incident-proton momentum
nearly twice as great as that for which we discussed
it first. The data in Figs. 2 and 3 suggest an isobaric
effect in pion and proton production.

The ratio of the cross sections for π+ and π− pro-
duction on nuclei is one of the interesting features of
cumulative production. As was established in various
experiments (see [6] and the references therein), this
ratio is close to unity not only for isoscalar nuclei but
also for nuclei with a high relative content of neutrons.
For a typical example of the latter, we can indicate
the Pb nucleus, for which N/Z is 1.5. A feature
peculiar to our study of this problem is a specific
choice of fragmenting target nuclei. Their nucleonic
compositions are given in the table.

The ratios of the cross sections for π+ and π−
production that were obtained in our study are shown
in Fig. 4 versus the pion momentum. The behavior
of these ratios looks quite peculiar for various nuclei.
First, there are some distinctions between the values
of the ratio at low and high pionmomenta (by conven-
tion, it is adopted here that these are momenta below
and above 0.5 GeV/c, respectively; it should be noted
HYSICS OF ATOMIC NUCLEI Vol. 64 No. 9 2001
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that the scaling variable x, which is traditionally used
in cumulative production, takes a value close to unity
for 0.5-GeV/c pions). Second, there is no correlation
between the π+/π− ratios and the N/Z values. The
ratios of the pion-production cross sections are equal
or close to unity for the Pb, 124Sn, 114Sn, and 64Ni
nuclei in the momentum region around 0.5 GeV/c
and above. The situation is absolutely different for the
58Ni and 64Zn nuclei. Thus, we see that, under the
conditions of the present experiment, the ratio of the
cross sections for π+ and π− production depends on
the pion momenta and on the particular type of target
nuclei.
The available data on cumulative pion and proton

production in an 8.9-GeV/c incident proton beam
make it possible to study the behavior of the relevant
inclusive cross sections for nickel, zinc, and tin iso-
topes versus momentum. Figures 5 and 6 show the
results for pions and protons, respectively. The iso-
topic effect in pion and proton production is observed
there in the momentum range 0.3–0.7 GeV/c. For
the presentation to be more emphatic, a special nota-
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tion is used in the figures for the points corresponding
to the 64Zn nucleus.

3. DISCUSSION OF THE RESULTS

We have considered cumulative particle produc-
tion in various types of incident beam and on various
fragmenting nuclei. A rich variety of fragmenting
target nuclei has enabled us to measure comprehen-
sively the A dependence of the cross sections for pion
and proton production. A comparison of data ob-
tained in the beams of protons and helium nuclei has
revealed that theA dependences of the pion cross sec-
tions are similar. The behavior of the cross sections
for the separated isotopes of nuclei exhibits a detailed
similarity. The shape of theA dependences of the pion
cross sections resembles the behavior of the specific
binding energy of nuclei (a maximum in the mass-
number range A � 50–60, a reduction on either side
of the maximum, and irregularities for magic nuclei
and those close to them).
This shape of the A dependence of the cross sec-

tions was obtained in other studies as well that were
devoted to measurements for light nuclei. We would
like mention the article of Gavrishcuk et al. [10],
who presented experimental data on pion production
at an angle of ϑ = 159◦ in incident proton beams of
momenta in the range 15–65 GeV/c. In particular,
1
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the cross sections for the production of 250- and
500-MeV/c pions on Be, C, Al, Ti, Mo, and W
nuclei exhibit a similar shape of the A dependence.
For higher pion momenta, statistics were insufficient
there for studying the shape of the A dependence.
Pion production at ϑ = 119◦ on Be, Al, Cu, and Ta
nuclei exposed to a 10-GeV proton beam was inves-
tigated in [11]. According to data obtained in that
study, there is an enhancement in the cross sections
for A � 50–60 at a pion momentum of 0.6 GeV/c,
which was the initial pion momentum used there; no
such enhancement was observed for the pionmomen-
tum of 1.077 GeV/c (the cross sections per nucleon
for the production on Cu and Ta nuclei are identical
within the experimental errors). There are some data
on K±-meson production in the same beams [12,
13]; however, large errors in the experimental data
give no way to draw a definitive conclusion on the
shape of theA dependence of the kaon cross sections,
although the cross sections for K+ and K− mesons
show markedly different types of behavior in those
studies. In [14], the cross sections for antiproton
production at an angle of 97◦ were measured in a
10-GeV proton beam. According to those data, the
shape of the A dependence of the cross sections for
antiproton momenta in the range 0.6–1.05 GeV/c is
similar to that for pions. In addition, we would like to
mention the data from [6, 9] on the production of 0.5-
GeV/c π+ mesons at 120◦ in a carbon-nucleus beam
of momentum 4.5 GeV/c per nucleon. The shape of
the A dependence of the pion cross section there is
similar to that in the beams of protons, deuterons, and
4He nuclei (Fig. 1).
According to the semiempirical formula for the

binding energy of nuclei, the shape of the curve is
determined by the total contribution of the volume,
the surface, the symmetry, and the Coulomb energy.
It is possible that the shape of theA dependence of the
pion-production cross section obtained in this study
is determined by the same factors. TheA dependence
of the proton cross section is different from that for
pions—it is an increasing function of the nuclear
mass number (Fig. 6).
Let us now address the results for the isotopically

enriched nuclei. Their properties are listed in the
table. We can see that there are two pairs of isotopes
and a single pair of isobars. A change in the number
of neutrons (the number of nn pairs) at an invariable
nuclear charge leads to an isotopic effect in pion and
proton production. In the case of the 64Ni and 64Zn
nuclei, differing by the replacement of a pp pair by
an nn pair, there is an isobaric effect for pions and
protons. Additionally, we would like to note that,
in [15], the neutron yield was found to be indepen-
dent of the excess content of protons in the nucleus
PH
(isotonic effect). Thus, all available types of nuclei
manifest themselves in the processes under study.
The typical scale of these effects amounts to 10–
20%. In particular, the distinction between the values
of the cross sections for positively charged particles
(protons and π+ mesons; see Fig. 2) is close to 10%
and is commensurate with the ratio of 64Zn and 64Ni
charges, which is equal to 1.07. For π− mesons,
the ratio of the cross sections for the same nuclei is
about 0.9, the ratio of the number of neutrons in them
being 0.94. On the whole, the cross sections for the
production of π+ and π− mesons on 64Zn and 64Ni
nuclei differ by about 20%. Figure 3 shows that the
isobaric effect is independent of the pion and proton
momenta—it does not disappear at the nearly doubled
momentum of incident protons, amounting to about
10%. The isobaric effect was also observed in the
production of 0.5-GeV/c protons at an angle of 180◦

on 58Ni and 58Fe nuclei exposed to an 8.9-GeV/c
proton beam [16]. Its magnitude was 1.14 ± 0.04,
which is commensurate with the data of our study.
On a larger scale, these effects manifest them-

selves in the ratios of the cross sections for π+- and
π−-meson production on specially selected nuclei of
58Ni, 64Ni, 64Zn, 114Sn, 124Sn, and Pb (Fig. 4). As
wasmentioned above, both effects appear in this case,
and they depend on the pion momenta differently.
Since the effects being discussed are associated

with charged particles, it is natural to assume that
they are caused by electromagnetic interaction, which
discerns particles by their electric charges. It is hardly
probable that this is a purely Coulomb interaction,
since, under the conditions of our study, there is no
dependence on the type or energy of incident beams.
Nor do secondaries show any dependence on their
momenta in the measured region. The isotopic effect
has the same scale on nickel and tin isotopes, whose
nuclear charges are markedly different (see table).
The variation in the charge of incident beams (those
of protons and helium nuclei; Fig. 2) does not change
the scale of the effect.
In [17], Coulomb effects were studied in the pro-

cess Ne +NaF→ π± at energies of 380 and 164MeV
per nucleon and in some other processes for which
protons and neutrons were detected. There, Coulomb
corrections to the π−/π+ and n/p ratios were calcu-
lated on the basis of the fireball model. The kinemat-
ical conditions of our study differ substantially from
those considered in [17], so that we need here calcu-
lations that are relevant to the particular experimental
conditions and which are based on a specific model of
cumulative production.
The results obtained in our study highlight an

appreciable role of the nuclear structure, which, in
YSICS OF ATOMIC NUCLEI Vol. 64 No. 9 2001
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our opinion, must be taken into account in a theoret-
ical description of cumulative particle production in
hadron–nucleus and nucleus–nucleus interactions.
As a matter of fact, a detailed study of the A depen-
dence of the pion and proton cross sections reduced
to exploring the properties of the nucleus as a bound
system. The isotopic and isobaric effects, which re-
flect these properties, appeared to be independent of
the properties or energies of the beams used or the
pion and proton momenta. The ratio of the cross
sections for π+ and π− production on the specially se-
lected group of nuclei appeared to be the only property
showing a specific momentum dependence. Further
studies are required for assessing the degree to which
the effects discovered here are universal. As obvi-
ous extensions of the experiment, we could propose
recording a wider range of particles (for example,
one could include K± mesons and antiprotons) and
increasing the charge of incident nuclei or, in con-
trast to this, employing neutron beams to eliminate
electromagnetic interaction at the initial stage. These
problems are described in detail elsewhere [6].
Fragmentation and multifragmentation are other

processes where nuclear effects on isotopically en-
riched target nuclei could manifest themselves to a
greater degree. The first piece of evidence for the
isotopic effects in these processes was obtained as far
back as in [18] in studying 3H, 3He, 4He, 6Li, and
7Li fragments produced on nickel and tin isotopes in
a 660-MeV incident-proton beam.

4. CONCLUSIONS

The basic results of the present study can be sum-
marized as follows:
(i) The inclusive cross sections for π±mesons pro-

duced on an extended set of fragmenting nuclei can-
not be described by a simple power-law dependence
of the An type; their behavior is similar to that of the
specific binding energy of nuclei. This is confirmed by
the data of the other studies.
(ii) The inclusive cross sections for π± mesons

produced with a momentum of 0.5 GeV/c on 64Zn
and 64Ni isobars vary within about 20%, irrespective
of the beam type (protons, deuterons, and 4He nuclei
with a momentum of 4.5 GeV/c per nucleon).
(iii) For 8.9-GeV/c incident-proton beams, the

inclusive cross sections for production processes oc-
curring on 64Zn and 64Ni isobars are different for π+

mesons and protons and show no variations with-
in the experimental errors for π− mesons. This is
so for product-particle momenta in the range 0.3–
0.7 GeV/c.
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 9 200
(iv) The ratios of the cross sections for π+- and
π−-meson production on 58Ni, 64Ni, 64Zn, 114Sn,
124Sn, and Pb nuclei depend on the pion momenta
and on the kind of nuclei.
(v) The isotopic and isobaric effects in pion and

proton production induced by an incident beam of
8.9-GeV/c protons are observed in the momentum
range 0.3–0.7 GeV/c.
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oretical and Experimental Physics, Moscow, 1985).

16. A. M. Baldin et al., Soobshch. Ob’edin. Inst. Yad.
Issled., Dubna, No. R1-83-432 (1983).

17. M. Gyulassy and S. K. Kauffmann, Nucl. Phys. A
362, 503 (1981).

18. V. I. Bogatin et al., Yad. Fiz. 19, 32 (1974) [Sov. J.
Nucl. Phys. 19, 16 (1974)].

Translated by E. Kozlovskiı̆
1



Physics of Atomic Nuclei, Vol. 64, No. 9, 2001, pp. 1624–1627. Translated from Yadernaya Fizika, Vol. 64, No. 9, 2001, pp. 1705–1708.
Original Russian Text Copyright c© 2001 by Dvornikov, Studenikin.

ELEMENTARY PARTICLES AND FIELDS
Theory
Neutrino Oscillations in the Field of a Linearly Polarized
Electromagnetic Wave

M. S. Dvornikov* and A. I. Studenikin**

Department of Theoretical Physics, Faculty of Physics, Moscow
State University, Vorob’evy gory, Moscow, 119899 Russia

Received May 5, 2000; in final form, February 19, 2001

Abstract—Neutrino oscillations νiL � νjR in the field of a linearly polarized electromagnetic wave are
studied on the basis of a recently proposed effective Hamiltonian that describes the evolution of a spin in an
arbitrary electromagnetic field. The condition of resonance amplification of the oscillations is analyzed in
detail. A method is developed for qualitatively studying solutions to the equation of neutrino evolution
in the resonance region. This method can be used to explore neutrino oscillations in fields of various
configurations. c© 2001 MAIK “Nauka/Interperiodica”.
The electromagnetic properties of the neutrino—
in particular, the interaction of the neutrino with elec-
tromagnetic fields—present one of the basic prob-
lems in neutrino physics. The reason is that non-
vanishing electromagnetic form factors for the neu-
trino, together with a nonvanishing neutrino mass,
would indicate that it is necessary to go beyond the
Glashow–Salam–Weinberg Standard Model (SM)
of electroweak interactions.

In the majority of studies performed so far, the
effect of electromagnetic fields on the neutrino and
neutrino oscillations arising under such conditions
(see, for example, [1–11]) was considered for the
specific case of a magnetic field B⊥ that is con-
stant in time and which is orthogonal to the neu-
trino velocity. Recently, an effective Hamiltonian for
in the Schrödinger equation describing the evolu-
tion of neutrinos was derived in [12, 13] from the
Bargmann–Michel–Telegdi equation generalized to
the case of neutrino motion in a classical electromag-
netic field. This Hamiltonian makes it possible to
consider helicity-flip transitions νiL � νjR between
neutrinos of both the same generation and the differ-
ent generations.

The use of the new Hamiltonian allowed the first
analyses of neutrino transitions νiL � νjR. This
resulted in the prediction of a resonance amplification
of the corresponding neutrino oscillations in the field
of a circularly polarized electromagnetic wave and in
the electromagnetic-field configurations involving a
nonzero magnetic field B‖ along the neutrino velocity.

*e-mail: maxim_dvornikov@aport.ru
**e-mail: studenik@srdlan.npi.msu.su
1063-7788/01/6409-1624$21.00 c©
In the present study, we consider neutrino oscil-
lations in the field of a linearly polarized electromag-
netic wave. We propose a method for determining
and qualitatively studying a solution in the resonance
region. This method is particularly efficient in the
cases where it is impossible to find an exact solution
to the Schrödinger equation that describes transitions
between two neutrino states. The proposed approach
can be used to study neutrino oscillations in electro-
magnetic fields of various configurations.

Let us consider the system of two neutrinos ν =
(νR, νL) of different helicity states. The evolution of ν
in the field of an electromagnetic wave of frequency ω
can be described by the equation

i
∂ν

∂t
= Hν, (1)

where the Hamiltonian H can be represented in the
form [12, 13]

H = (n · σ)
(

∆m2A

4E
− Veff

2

)
− µ(σ · B0)

γ
, (2)

where n is a unit vector directed along the neutrino
velocity β, σ = (σ1, σ2, σ3) are the Pauli matrices, Veff
is the difference of the effective potentials representing
the interaction of the neutrino with matter, A is a
function of the vacuummixing angle (the explicit form
ofA for various transitions of the νiL � νjR type can

be found in [9–11]),B0 is the strength of themagnetic
field in the frame where the neutrino is at rest, and
γ = (1 − β)−1/2. We use here the system of units in
which c = � = 1.

We denote by e3 a unit vector parallel to n and
by φ the angle between e3 and the direction of wave
propagation. By using Lorentz transformations for
2001MAIK “Nauka/Interperiodica”
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electromagnetic fields, we then find that, in the par-
ticle rest frame, there arises the magnetic field

B0 = γ
[
(cos φ− β)B1e1 (3)

+ (1 − β cosφ)B2e2 −
sinφ
γ

B1e3
]
,

where the vectors e1,2,3 are unit vectors orthonormal
to one another.

In the case of a linearly polarized electromagnetic
wave, we have

B1 = cosα cosψ, B2 = sinα cosψ, (4)

where ψ = ωt(1 − β/β0 × cosφ) is the phase of the
wave, β0 is its velocity (which, in general, may be less
than unity; β0 ≤ 1), and α is the angle specifying the
orientation of the plane of wave polarization.

Substituting expressions (3) and (4) into the gen-
eral formula (2) and expanding it in powers of the
small parameter 1/γ � 1, we reduce the Hamiltonian
to the form

H = −ρ̃σ3 −A0 cosψ(σ1 cosα− σ2 sinα), (5)

where A0 = −µB(1 − β cosφ) and ρ̃ = Veff/2 −
∆m2A/4E.

For the ensuing investigation, it is convenient to
introduce the evolution operator V (t) that relates the
neutrino state ν(t) at the instant t to the initial state
ν(0): ν(t) = V (t)ν(0). From (1) and (5), we find that
V (t) satisfies the equation

V̇ (t) = i [ρ̃σ3 +A0 cosψ (6)

× (σ1 cosα− σ2 sinα)]V (t).

Note that the operator U(t) defined as

U(t) = exp
(
−iσ3

α

2

)
V (t) exp

(
iσ3

α

2

)

satisfies the equation

U̇(t) = i [ρ̃σ3 +A0σ1 cosψ]U(t). (7)

Thus the dynamics of νiL � νjR neutrino transitions
is independent of the orientation of the polarization
plane.

Seeking a resonance in neutrino oscillations, we
substitute, in Eq. (7), the condition

ρ̃ = 0. (8)

A solution to Eq. (7) then has the form
U1(t) = exp(iσ1f(t)), (9)

where f(t) = A0/ψ̇ sin ψ̇t. For the probability of neu-
trino transitions, we obtain

Pij(t) = |〈νR|V (t)|νL〉|2 (10)

= sin2 2f(t) = sin2

(
A0

ψ̇
sin ψ̇t

)
.
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From this formula, it follows that the transition prob-
ability can attain the value of unity, provided that

∣∣∣∣
A0

ψ̇

∣∣∣∣ ≥
π

2
. (11)

This condition can set limits on the quantities char-
acterizing the neutrino (µ, β) and the electromagnetic
wave (ω,B, φ, β0).

That condition (11) is necessary for the emergence
of a resonance [Pij(t) = 1] can be illustrated by the
graphs representing the dependence Pij(t) for various
values of ξ = |A0/ψ̇| (see Fig. 1 for ξ < π/2 and
Fig. 2 for ξ > π/2). These graphs show that only if
the subsidiary condition (11) is met can the proba-
bility take the value of unity. For ξ ≥ π/2, the basic
concept of an effective oscillation length becomes
meaningless, because the maxima of the probability
do not alternate with the minima at regular intervals.
1



1626 DVORNIKOV, STUDENIKIN

 

0.4

0.2

0.6

 
P

 

ij

 
(max)

 

–

 

|

 

A

 

0

 

| |

 

A

 

0

 

|
ρ

 

~
0

0.8

1.0

Fig. 3. Maximum value of the transition probability as a
function of the parameter ρ̃ for |ρ̃| � |A0| and |ρ̃| � |A0|.

Let us now investigate condition (8) inmore detail.
Suppose that ρ̃� A0; from (7), we then obtain the
equation

U̇ = iρ̃σ3U. (12)

A solution to this equation can be represented in the
form

U = exp(iσ3ρ̃t).
The transition probability vanishes in this case:

Pij =
∣∣〈νR| exp(iσ3ρ̃t)|νL〉

∣∣2 = 0.

We will now prove that the relation in (8) is ac-
tually the condition of resonance amplification of
νiL � νjR oscillations. For this, we consider a small
deviation from the condition in (8); that is, we set
ρ̃ = ε, where ε is a small parameter. Equation (7)
then takes the form

U̇ = i(εσ3 +H1)U, H1 = A0σ1 cosψ. (13)

We seek a solution to Eq. (13) in the form
U = U1F,

where U1 [see Eq. (9)] satisfies the equation

U̇1 = iH1U1. (14)

For the matrix F , we obtain the equation

Ḟ = iεHεF, Hε=σ3 cos 2f(t)+σ2 sin 2f(t). (15)

It is natural to represent a solution to Eq. (15) as the
series

F =
∞∑

k=0

εkF (k),

where F 0 = 1̂ is an identity matrix. The quantities
F (k) satisfy the recursion relation

F (k+1)(t) = i

t∫

0

Hε(τ)F (k)(τ)dτ. (16)
P

To terms of order ε2 inclusive, this yields

F (t) = 1̂ + iε(σ2γ(t) + σ3δ(t))

+ ε2(−A(t) + iσ1B(t)) +O(ε3),
where

γ(t) = −
t∫

0

sin 2f(τ)dτ,

δ(t) =

t∫

0

cos 2f(τ)dτ,

A(t) =

t∫

0

[δ(τ) cos 2f(τ) − γ(τ) sin 2f(τ)]dτ,

B(t) =

t∫

0

[γ(τ) cos 2f(τ) + δ(τ) sin 2f(τ)]dτ.

The νiL � νjR transition probability is then given by

Pij = sin2 f+ε2[2 sin f(B cos f−A sin f) (17)

+ (γ cos f − δ sin f)2] +O(ε4).
Suppose that the condition in (11) is satisfied. We
consider the values of the probability at the points
f(t) = π/2 + πk, k ∈ Z, where it is at a maximum.
Relation (17) then takes the form

P
(max)
ij = 1 + ε2(δ2 − 2A).

It can be shown that, at the points f(t) = π/2 + πk,
the following strict inequality holds:

δ2 − 2A =




t∫

0

sin 2f(τ)dτ




2

< 0,

whence it follows that P (max)
ij (ε �= 0) < 1. Thus, we

have shown that, if there is a small deviation from the
resonance condition (8), the probability cannot reach

the value of unity. The dependence of P (max)
ij on ρ̃

under the condition (11) is illustrated in Fig. 3.
In conclusion, we discuss the origin of the sub-

sidiary condition (11) in more detail. In the case of
oscillations in a constant transverse magnetic field,
the resonance condition can be expressed in terms of
only one relation [similar to Eq. (8)] [4, 5]. In the case
considered here, the emergence of the subsidiary con-
dition (11) is associated with the special configuration
of the electromagnetic field.

Indeed the evolution of a spin was described here
within the approach that was developed in [12, 13]
and which is based on an analog of the Bargmann–
Michel–Telegdi equation [14]. In this approach, the
quantum evolution operator V (t) has the meaning
HYSICS OF ATOMIC NUCLEI Vol. 64 No. 9 2001
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of the evolution matrix for the spin-tensor S = (σS),
where S is the particle spin vector. In the presence of
an electromagnetic field, the particle spin precesses
about a fixed vector l whose direction is determined
by a particular configuration of the electromagnetic
field. The resonance amplification of spin oscillations
occurs in the case where the vector l forms a right
angle with the neutrino velocity. For this reason, the
condition ρ̃ = 0 dictates the required direction of the
vector l.

In a linearly polarized electromagnetic wave, how-
ever, the magnetic-field-induction vector B oscillates
in a plane. Under such conditions, the spin vector
S rotates in opposite directions in the cases where
the vector B is parallel and antiparallel to the e1 axis.
As a consequence, the spin vector oscillates, in our
problem, about the direction orthogonal to the neu-
trino velocity. For the emergence of effective neutrino
oscillations it is necessary that their amplitude be
greater than or equal to π. A detailed analysis reveals
that, for this to occur, one must impose a constraint
on the amplitude of the magnetic field and that this
constraint coincides with the condition in (11).
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Abstract—The recoil-effect-induced part of themα6 contribution to the hyperfine splitting of the positro-
nium ground state is calculated. The method employed is based on noncovariant perturbation theory within
QED. The result is 0.381(6)mα6, which agrees well with the results of previous studies. This means that it
deviates sizably from experimental data. c© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

At present, the hyperfine splitting of the positron-
ium ground state—that is, the difference of the ener-
gies of the 13S1 and the 11S0 state, which is denoted
by ∆ν in the following—has been measured to the
highest precision among all features of positronium.
The best two experimental results for this quantity
were obtained in [1, 2] and [3]; they are, respectively,

∆ν = 203387.5(1.6) MHz (1)

and
∆ν = 203389.10(0.74) MHz. (2)

Themα4,mα5, andmα6 lnα contributions to∆ν
were calculated in [4–9]. Their sum is given by

mα4

[
7
12

− α

π

(
8
9

+
1
2

ln 2
)

(3)

− 5
24
α2 lnα

]
= 203400.29MHz.

In order to compare the experimental results pre-
sented in (1) and (2) with theoretical predictions, it
is necessary to calculate mα6 contributions not in-
volving logarithms. One can break them down into
a few terms and calculate each such term separately.
The contributions associated with one-, two-, and
three-photon annihilation were calculated in [10, 11],
[12], and [13, 14], respectively. The contributions that
are formally proportional to (Zα)4α2m and (Zα)5αm
(here, Ze is the charge of one of the constituent parti-
cles; for positronium, Z = 1) were determined in [15,
16] and [17–19], respectively. There is also a (Zα)6m
contribution. It is induced by the “recoil” effect and
is represented by diagrams where each photon line
links two fermion lines. In what follows, the sum of

1)Novosibirsk State Technical University, pr. K. Marksa 20,
Novosibirsk, 630092 Russia.
1063-7788/01/6409-1628$21.00 c©
them(Zα)6 andm(Zα)6 lnα terms in∆ν is denoted
by ∆νrec; it was calculated in [20–23]. Here, we also
consider this very contribution.
The results presented in [20–22] were different.

The value obtained in [23], 0.3763mα6, complies with
that from [21], 0.3767(17)mα6 . Our present result is
0.381(6)mα6 , which is also in agreement, within the
errors, with the aforementioned results from [21, 23].
Recently, the calculations from [22] were revised by
their authors; the new value of 0.3764(35)mα6 [24] is
now consistent with those quoted immediately above.
In [20], so-called nonrelativistic QED (NRQED)

was formulated and used to calculate ∆νrec. The
calculations in [22] were performed within the Bethe–
Salpeter formalism. In [21] (and, as matter of fact,
in [23]), ∆νrec was computed within the approach
employing an effective nonrelativistic Hamiltonian.
This approach is a combination of NRQED and old-
fashioned noncovariant perturbation theory within
QED. The latter was employed for the first time in
[25] to calculate the spectrum of positronium.
In the present article, we also employ a formal-

ism based on noncovariant perturbation theory within
QED. In calculating relevant integrals with respect
to loop momenta, we break them down into soft and
hard components—that is, those that are associated
with low and high momenta, respectively. Soft con-
tributions are calculated analytically. In dealing with
hard contributions, we reduce the sum of a large
number of noncovariant diagrams to the sum of a few
covariant ones, the latter being calculated numeri-
cally.

2. DESCRIPTION OF THE FORMALISM

The Schrödinger equation for the total (many-
body) wave function can easily be reduced to an
equation involving only a two-body component of this
2001MAIK “Nauka/Interperiodica”
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wave function, with an effective Hamiltonian being
dependent on energy. This equation has the form

(PHP + Va(E) −E)|ψ2〉 = 0, (4)

where |ψ2〉 is the two-body component of the wave
function; P is the operator of projection onto two-
particle space;H is total QED Hamiltonian; and

Va(E) = PHPa
1

(E − PaHPa)
PaHP,

Pa = 1 − P.
In order to calculate the energy spectrum deter-

mined by Eq. (4), we represent the corresponding
effective Hamiltonian PHP + Va(E) as the sum of
the unperturbed partH(0) ≡ PH0P + V0 and the per-
turbation V (E) ≡ Va(E) + PVNP − V0, whereH0 is
the free-motion Hamiltonian of QED and VN and V0
are, respectively, the electromagnetic and the nonrel-
ativistic Coulomb interaction.
The expansion of V (E) + V0 in powers of the elec-

tromagnetic interaction can be illustrated in terms
of two-particle-irreducible diagrams of noncovariant
perturbation theory. The rules of the diagram tech-
nique in the noncovariant formulation can be found,
for example, in [25].
Below, all the operators and wave functions used

refer to the two-particle subspace. It is convenient
to perform calculations in the c.m. frame, where the
momentum p of the first particle is the only variable
(apart from spins). We denote by Vc (Vm) the oper-
ator corresponding to the tree diagram involving the
exchange of a Coulomb (magnetic) photon. We then
rewrite V in the form
V (E) = V1 + V2 + V3 + . . . , V1 = V1c + Vm, (5)

V1c ≡ Vc − V0,

where V2, V3, etc., include irreducible diagrams fea-
turing two, three, etc., photon lines, respectively. The
recoil contribution ∆ν correct to terms of order mα6

inclusive is
〈ψ|V1G

′V1G
′V1 + V2G

′V1 + V1G
′V2 (6)

+ V3 + V1G
′V1 + V2 + V1 |ψ〉

∣∣σ=1

σ=0
.

Here, |ψ〉 stands for the zero-order approximation of
|ψ2〉, that is, a solution to the equation

H(0)|ψ〉 = E2|ψ〉; (7)

σ is the positronium spin; and G′ = G′(E2) is the
Green’s function for Eq. (7), where the ground-state
contribution is subtracted.
It can be shown that, to a sufficient precision for

the case being considered, we can represent the zero-
order wave function as

|ψ〉 ≈ (1 + (S − S0)V0 (8)

+ SV0(S − S0)V0 + L∆T )|ϕ0χ〉.
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 9 200
Here, L ≡ G′
0 − S0 − S0V0S0, S0 (S) is the free non-

relativistic (relativistic) two-particle Green’s func-
tion, G′

0 stands for the Coulomb nonrelativistic
Green’s function where the ground-state contribu-
tion is subtracted, ∆T is the operator of the rela-
tivistic correction to the kinetic energy, χ represents
the spin part of the wave function, and ϕ0 (E0)
stands for the ground-state wave function (energy)
for the ordinary nonrelativistic Coulomb problem. It
is well known that E0 = 2m− γ2/m and ϕ0(p) =
8γ5/2π1/2f−2

p (hereafter, we use the notation γ ≡
αm/2 and fk ≡ k2 + γ2 for an arbitrary momentum
k). In (8) and everywhere below, all Green’s functions
are taken at E0.
We now rearrange the various contributions in (6).

To a sufficient degree of precision, we can first set
G′ ≈ S + SV0S + L. For an arbitrary operator X,
we denote 〈X〉 ≡ 〈ϕ0χ|X|ϕ0χ〉

∣∣σ=1

σ=0
; further, we use

the notation 〈X〉(n) for the sum of the α
n and αn lnα

contributions to 〈X〉. Retaining only the terms of the
required orders, we arrive at

∆νrec = 〈V3 + V2 + UV 2 + UC + UM (9)

+ UMM + UMCM + UMMM + UL〉(6),
where

UV 2 = V2SVm + V2(SVc − S0V0) + h.c., (10)

UC = V1c + UC2 + UC3, (11)

UM = Vm + UM2 + UM3, (12)

UMM = UMM2 + UMM3, (13)

UMCM = VmSVcSVm, (14)

UMMM = VmSVmSVm, (15)

UL = VmLVm + (VmL(∆T + V1c) + h.c.). (16)

Here, we have
UC2 = V1cSV1c + (V1c(S − S0)V0 + h.c.), (17)

UM2 = Vm(SVc − S0V0) + h.c., (18)

UMM2 = VmSVm, (19)

UC3 = V0(S − S0)V1c(S − S0)V0 (20)

+ (V1cSVc(S − S0)V0 + h.c.)
+ (V1cSV1c(S − S0)V0 + h.c.),

UM3 = (VcS − V0S0)Vm(SVc − S0V0) (21)

+(VmSVc(SVc − S0V0) + h.c.),

UMM3 = VmSVm(SVc − S0V0) + h.c. (22)
1
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Fig. 1. Irreducible diagrams associated with the retar-
dation effect (wavy and dashed lines denote, respectively,
magnetic (transverse) and Coulomb photons).

3. COMPUTATIONAL METHOD

The various contributions to ∆νrec can be repre-
sented as integrals with respect to loop momenta. A
contribution will be referred to as a hard one if it is
controlled (to a sufficient degree of precision) by the
region where all the loop momenta are of order m.
Otherwise, a contribution is classed with soft ones.
In order to separate soft and hard contributions, we
expand relevant integrand in powers of momenta. In
order to answer the question of whether one term of
such an expansion or another involves a soft contri-
bution, we assume that all the momenta are of order
αm and, by counting the relevant powers, we then
find out whether this region ofmomenta makes a con-
tribution of order mα6 to ∆νrec—if so, the expansion
term being considered must obviously be associated
with soft contributions. On the other hand, it appears
that, in the problem addressed here, the absence of an
mα6 contribution from the above region implies that
there is no soft contribution in general (at least, within
the computational algorithm presented below).
In breaking down an expression into a soft and

a hard part, there is some degree of arbitrariness;
hence, the soft part can always be chosen in such a
way that its contribution to the integral is analytically
calculable. In calculating the hard contribution, one
can set E0 = 2m in the integrand, whereupon the
resulting integral can easily be computed numerically.
The contributions to ∆νrec can be broken down

into tree (〈V1c, Vm〉(6)), one-loop (〈V2, UC2, UM2,
UMM2〉(6)), and two-loop (〈V3, UV 2, UC3, UM3,UMM3,

UMCM , UMMM 〉(6)) ones (in the second and the third
case, the expression in 〈 〉(6) appears to be, respec-
tively, a single and a double integral with respect
to momenta). In addition, there is the contribution
〈UL〉(6) corresponding to diagrams involving three or
more loops. We consider the contributions of each
type individually.
An arbitrary two-loop contribution has the form

〈X2〉(6), where
X2(p,p′, γ) (23)
P

= α3

∫
d3q1
(2π)3

d3q2
(2π)3

Y2(p,p′,q1,q2, γ).

We define n as the degree of divergence of X2; that
is, Y2 ∼ δn−6 for p, p′, q1, . . ., γ ∼ δ 	 m. For all
n > 0 terms, the main contribution to the integral
comes from the region where p ∼ p′ ∼ γ and q1 ∼
q2 ∼ |q1 − q2| ∼ m and where the dependence of Y2

on p and p′ can be disregarded. As a result, we obtain

〈X2〉(6) =
∣∣ϕ0(r = 0)

∣∣2X2

∣∣σ=1

σ=0

∣∣
p,p′,γ=0

≡ 〈X2〉p.
(24)

For the sake of brevity, we still continue using the
notation 〈 〉p introduced in (24). The integral entering
into the definition 〈X2〉p is independent of the small
parameter α and can easily be computed numerically.
In the case of n ≤ 0, we isolate a soft part Y21

from Y2, so that Y21 and (Y2 − Y21) are characterized
by n ≤ 0 and n > 0, respectively. It is convenient to
do this in such a way that, for p, p′, q1, ...	 m, Y21

is close to a homogeneous function (this is not done
only for the contribution of the graph that is presented
in Fig. 1а and which will be discussed in Section 4).
It can be shown that, for all cases encountered in
the ensuing calculations, this choice of Y21 makes it
possible to calculate the hard part 〈X2〉(6) according
to (24). The result is

〈X2〉(6) = 〈X2 −X21〉p + 〈X21〉(6), (25)

where X21 is an integral of the form (23), where Y21

appears as the integrand. To ensure convergence of
the integrals that determine the first and the second
term in (25), the function Y21 must decrease at a
sufficiently high rate for q1, q2 � m.
In calculating one-loop and tree contributions,

we need to find first- and the second-order correc-
tions in α to the leading contributions. The method
for determining these corrections is obvious. To il-
lustrate it, we will describe the calculation of 〈X〉,
where X = X(p,p′) is a sufficiently smooth func-
tion independent of α and where the expansion of
X(p,p′) −X(0, 0) in p and p′ begins from the third-
order term. We represent 〈X〉 in the form

〈X〉 = A0 +A1 +A2,

A0 = |ϕ0(r = 0)|2X(0, 0)
∣∣σ=1

σ=0
,

A1 = ϕ0(r = 0)
∫

d3p

(2π)3
ϕ0(p)(X(p, 0) (26)

+X(0,p) − 2X(0, 0))
∣∣σ=1

σ=0
,

A2 =
∫

d3p

(2π)3
d3p′

(2π)3
ϕ+

0 (p′) (X(p,p′) (27)

−X(p, 0) −X(0,p′) +X(0, 0))
∣∣σ=1

σ=0
ϕ0(p).
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In order to calculate the first three terms of the expan-
sion of〈X〉 in α, we can replace ϕ0(p) in (26), (27) by
8γ5/2π1/2p−4, whereupon, A0, A1, and A2 prove to
be of order α3, α4, and α5, respectively.
An arbitrary one-loop contribution has the form

〈X1〉(6), where

X1(p,p′, γ) =
∫

d3q

(2π)3
α2 Y1(p,p′,q, γ). (28)

Let n be such that Y1 ∼ δn−2 for p, p′, q, . . ., γ ∼ δ 	
m. In the case of n ≤ 0, we isolate a soft part Y11 from
Y1 in such a way that Y11 and (Y1–Y11) are charac-
terized by n ≤ 0 and n > 0, respectively. In choosing
Y11, it is convenient to require that, for p, p′, q, γ 	 m,
this soft part be close to a homogeneous function (this
is not done only for the contribution of the graph that
is presented in Fig. 1b and which will be discussed
in Section 4). It can be shown that, for this choice of
Y11, the hard part 〈X1〉(6) can be found according to a
relation of the type in (26). The result is

〈X1〉(6) = 〈((X1 −X11) (29)

− (X1 −X11)0)S0V0 + h.c.〉p + 〈X11〉(6),
where we have used the notation ( )0 defined in
such a way that (X)0(p,p′) ≡ X(p,p′)

∣∣
p=p′=0

and
where X11 is an integral of the form (28), where the
integrand involves Y11.
The tree contributions to ∆νrec (〈Vm〉(6), 〈V1c〉(6))

are calculated in a similar way. Each of them is
represented as the sum of the soft and the hard part,
and the latter is calculated according to (27).
In Section 4, soft contributions are isolated in

∆νrec according to (25), (27), and (29), whereby it is
found that

〈V3〉(6) = 〈V3 −WV 3〉p +ESV 3, (30)

〈V2 + UV 2〉(6) = 〈V2SVm + h.c.〉p (31)

+ 〈(V2SVc −WV 2) + h.c.〉p + ESV 2,

〈UC〉(6) = 〈VcSVcSVc −WC〉p + ESC , (32)

〈UM 〉(6) = 〈VcSVmSVc −WM1〉p (33)

+ 〈(VmSVcSVc −WM2) + h.c.〉p + ESM ,

〈UMM 〉(6) (34)

= 〈(VmSVmSVc −WMM ) + h.c.〉p +ESMM ,

〈UMCM 〉(6) (35)

= 〈VmSVcSVm −WMCM 〉p + ESMCM ,

〈UMMM 〉(6) = 〈VmSVmSVm〉p, (36)

where Wi (i = V 3, V 2, C, etc.) stand for the opera-
tors associated with the soft contributions andESi are
the analytically calculable soft contributions to∆νrec.
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 9 200
The first term of 〈 〉p in each of expressions (30)–
(36) is obtained by summing the contribution of a
few noncovariant diagrams, their sum being equal to
the sum of expressions for all two-loop noncovariant
diagrams of the recoil type. It should be noted that, in
applying the procedure 〈 〉p to any diagram, its exter-
nal legs occur on the mass shell. The sum of the cor-
responding integrands for all noncovariant diagrams
having the same topological structure is equal to the
integrand for an ordinary covariant Feynman diagram
(after integration with respect to zero components
of loop momenta). Owing to this fact, the sum of
the contributions of many noncovariant diagrams can
be reduced to the sum of the contributions of only a
few covariant diagrams. Moreover, the sum of the
integrands for all covariant diagrams is independent
of gauge, so that the calculations can be performed in
any gauge.

4. SOFT CONTRIBUTIONS

Here, we apply the general algorithm for extract-
ing soft contributions to various terms in ∆νrec. Be-
forehand, we note that any quantity averaged over
the ground-state wave function can be replaced by
its average over positronium polarizations (that is,
over the directions of the total spin); as a result, the
calculations are somewhat simplified.
Let us discuss the calculation of the retardation-

induced contributions to 〈Vm〉(6), 〈V2〉(6), and 〈V3〉(6);
in the last two cases, we imply the contributions of
the diagrams in Figs. 1b and 1a. From the outset, it
is convenient to consider, instead of the relevant oper-
ators, their spin–spin components averaged over the
directions of the total spin. Each of these quantities
can be represented as the sum of two terms,

〈Vi〉(6) = 〈V reti 〉(6) + 〈V ′
i 〉(6), i = m, 2, 3, (37)

where

V ret2 (p, k) =
∫

d3q

(2π)3
α2 4

3
π2

m2
σ1 · σ2

q

q′2
(38)

×
(

1
(q + fk)(q + fk1)

+
1

(q + fp)(q + fp1)

)
,

V ret3 (p, k) =
∫
d3q1
(2π)3

d3q2
(2π)3

α3 16
3
π3

m2
σ1 · σ2

q

q21q
2
2

×
(

1
(q + fp)(q + fp1)(q + fp2)

(39)

+
1

(q + fk)(q + fk1)(q + fk2)

)

the notation for the momenta is indicated in Fig. 1,

V retm (p, k) =
1
2
Vm0

[
q

q + fp
+

q

q + fk

]
. (40)
1



1632 BURICHENKO

 

+

 

≈

 
(

 
a

 
) (

 
b

 
)

(

 

c

 

)

 

≈

Fig. 2. Cancellation of soft contributions for irreducible
diagrams involving two magnetic photons.

Here,

Vm0 = Vs
∣∣
p = k = γ = 0

=
2
3
απ

m2
σ1 · σ2, q = k− p,

and Vs is the positronium-polarization-averaged
spin–spin contribution to Vm. The softest contri-
butions to 〈Vi〉(6) are entirely contained in the first
terms on the right-hand side of (37). The second
terms in (37) can be found by the method outlined
in the preceding section.
It should be noted that the sum of the first terms in

(37) is equal to zero. This can easily be demonstrated
either by a straightforward evaluation or by means
of the following argument. For a particle of mass
m/2 moving in the field of a particle of large mass
M , we consider, for this purpose, the calculation of
the hyperfine splitting of the ground state taking into
account terms of order α6m2/M . To a precision
sufficient for the present case, we can disregard retar-
dation effects from the outset, assuming the magnetic
interaction to be instantaneous. But if we allow for re-
tardation explicitly, the corresponding contributions
must exactly cancel:

〈V retm + V ret2 + V ret3 〉(6) = 〈Vm0〉(6) = 0. (41)

4.1. Contributions of Irreducible Diagrams

In order to calculate 〈V3〉(6), we must find V30—
that is, that part of V3 which is controlled by an inte-
gral featuring whose degree of divergence is n = 0—
and then apply expression (25) with X21 = V30.
There are only three essentially different diagrams
contributing to V30. These are those in Figs. 2a,
2b, and 1a. However, the total contribution of the
diagrams in Figs. 2a and 2b to V30 can be discarded,
since, in the region of low loop momenta, their sum
reduces to the diagram in Fig. 2c, where the effective
two-photon vertex is independent of spins. Thus, V30
P

is determined by the diagram in Fig. 1a exclusively
and can be set to V ret3 . As a result, we arrive at
expression (30) with

WV 3 = V ret3 , ESV 3 = 〈V ret3 〉(6).

In order to calculate 〈V2〉(6), we follow a similar
procedure. Specifically, we apply expression (29) with
X11 = V20, where V20 is the n = 0 component of V2.
Noticing that 〈UV 2〉(6) = 〈UV 2〉p, we arrive at (31)
with

WV 2 = (V20 + (V2 − V20)0)S0V0, ESV 2 = 〈V20〉(6).

The diagrams involving two Coulomb photons do
not contribute to V20. As to the contributions of
the diagrams with two magnetic photons, they are
cancelled, in just the same way as the analogous
contributions to V30.
Let us now consider the diagrams that involve

one magnetic and one Coulomb photon and which
contribute to V2. The only diagram of this type not
containing pairs is that in Fig. 1b. Its contribution to
V20 can be set to V ret2 . The set of diagrams featuring
pairs can be broken down into two subsets associated
with the covariant graphs A and В displayed in Fig. 3.
The contribution of each subset to V20 can be chosen
in the form

V A20(p,p
′) = V B20 =

∫
d3q

(2π)3
4α2π2

3m3
(42)

× σ1 · σ2
1
q2q′2

((q2 + q′2)Rq − k2Rk)

(the notation for the momenta is indicated in Fig. 3,
k ≡ p′ − p, and Rl ≡ m2/(m2 + l2) for any l). Their
total contribution to ESV 2 is

ESP = (2/3)mα6 lnα.

4.2. Contributions of Reducible Diagrams

We begin by evaluating 〈UL〉(6). As a matter of
fact, this is the contribution of the diagrams involv-
ing a Coulomb ladder that contain more than two
loops. To the required accuracy, this contribution is
controlled by the region where all loop momenta are
of order mα; hence, it can be calculated analytically.
There are two types of such diagrams, those involving
two or one magnetic photon and corresponding to the
first or the second term in (16). The contribution
of the diagrams involving two magnetic photons is
independent, in the order being considered, on the
details of the formalism employed; for the first time,
it was calculated in [26]. The method that we use
here to compute it is basically analogous to that from
HYSICS OF ATOMIC NUCLEI Vol. 64 No. 9 2001
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[27] (calculations in the coordinate representation);
the result is coincident with the previous one:

ESLMM =
(

791
864

− π2

18

)
mα6 ≈ 0.3672mα6. (43)

The contribution of the diagrams involving one
magnetic photon was calculated by two methods: in
the coordinate representation (by a method similar
to that from [27]) and by means of a straightforward
integration in the momentum representation with the
explicit expression for the function L(p, k), for ex-
ample, from [26]. The results obtained by the two
methods are identical:

ESLM = (1/64)mα6 ≈ 0.01562mα6. (44)

Let us now calculate 〈UM 〉(6), the contribution
of reducible graphs involving one magnetic photon
(without the contribution of graphs that contain many
loops and which were treated above). In doing this,
we consider that 〈Vm〉(6) = 〈Vs〉(6). We expand Vs in
powers of momenta as

Vs = V retm + Vm1 + Vm2, (45)

where

Vm1(p, k) =
1

2m2
Vm0

[
p2k2

q2
(Rp +Rk) (46)

− 1
q2

(p4Rp + k4Rk) − (p2Rp + k2Rk)
]
,

where q = p− k. It can be shown that 〈Vm2〉(6) is
then determined by expression (27) withX = Vm2.
In order to calculate 〈UM2〉(6) and 〈UM3〉(6), we

can use the expressions (29) and (25) with X11 =
Vm0(S0V11 + S1V0) + h.c. and X21 =
Vm0S0V0(S0V11 +S1V0) + h.c. Here, S1 ≈ S − S0 in
the region where the momenta are of ordermα; in this
region, V11 is approximately equal to the difference
Vc − V0 averaged over the directions of the total spin.
After some simple algebra, we arrive at (33) with

WM1 = (VcSVm)0S0V0 + h.c.

+ V0S0(V retm + Vm1)S0V0

− ((V0S0(V retm + Vm1))0S0V0 + h.c.),
WM2 = Vm0S0V0(S0V11 + S1V0)
+ (VmS0V0 + Vm0S1V0 + (VmSVc
− VmS0V0 − Vm0S1V0)0)S0V0,

ESM = 〈V retm + Vm1〉(6)
+ 2〈Vm0(S1V0 + S0V11)〉(6)

+ 2〈Vm0S0V0(S0V11 + S1V0)〉(6).

We set V11(p, k) = απ/m2Rp and

S1(p) = −Rp/4 + γ2/(2fp) − γ4/(4f2
p );
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Fig. 3.One-loop covariant diagrams contributing to V20.

we then have

ESM = mα6

(
−1

3
lnα+

53
192

)
+ 〈V retm 〉(6).

The contribution of reducible diagrams involving
only Coulomb photons—that is, 〈UC〉(6)—is calcu-
lated in a similar way. The result has the form (32),
where one must set

WC = V0S0V
′
1cS0V0, ESC = 〈V ′

1c〉(6). (47)

Taking V ′
1c in the form

V ′
1c(p, k)=

1
24

σ1 · σ2
απ

m2

(
− 1

2

(
p4

q2
−p2−p · k

)
Rp

+ (p � k) +
p2k2

q2
Rp

)
,

we arrive at

ESC = − 1
48
mα6

(
lnα+

1
4

)
.

We now calculate the contribution of reducible
diagrams involving two magnetic photons (omitting
the contribution of multiloop diagrams that was con-
sidered above). It is equal to 〈UMM2 + UMM3 +
UMCM 〉(6). In order to calculate 〈UMM2〉(6) and
〈UMCM 〉(6), we make use of expressions (29) and
(25), where we set X11 = VmbS0RVmb and X21 =
VmbS0V0S0RVmb, with Vmb standing for that part of
the Breit Hamiltonian which is induced by the ex-
change of a magnetic photon and R being the op-
erator with kernel R(pp′) = (2π)3δ3(p − p′)Rp. It
can easily be seen that 〈UMM3〉(6) = 〈UMM3〉p. As
a result, we obtain (34) and (35), where we must set

WMM = VmbS0RVmbS0V0

+ (VmSVm − VmbS0RVmb)0S0V0,

WMCM = VmbS0V0S0RVmb,

ESMM = 〈VmbS0RVmb〉(6) =
(
−3

8
lnα− 23

96

)
mα6,

ESMCM = 〈VmbS0V0S0RVmb〉(6)

=
(
− 5

48
lnα− 5

32
+
π2

18

)
mα6.
1
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Table 1.Hard contributions to∆νrec (in units ofmα6) (also displayed are the results from [22])

Calculated value Contribution to∆νrecDiagram Contribution to∆νrec (in the notation of [22]) (according to [22])

4CCC −0.0039 cccx −0.0039

4CMC 0.0042 ctcx 0.0043

4MCC −0.0486 cctx+ tccx −0.0489

4MCM −0.0230 tctx −0.0230

4MMC + 3MMC −0.0209 (cttx+ ttcx) + cttz −0.0209

4MMM 0.0042 tttx 0.0041

3CCC 0.0064 cccz 0.0063

3MCC 0.0268 ctcz + cctz 0.0283

3CMM 0.0530 ttcz + tctz 0.0534

3MMM −0.0012 tttz −0.0011

2CCC −0.0184 cccy + ccx −0.0186

2MCC −0.0661 tccy −0.0681

2MCM 0.0552 tcty + ttcy 0.0558

2MMM −0.0011 ttty −0.0011

1MMM 0.0694 ttt0 0.0694

1CCC −0.0094 – –

1MCM −0.0745 – –

1CMM + 2CMM −0.5112 – –

3CCM −0.0104 – –

2CMC −0.0245 – –

1MCC 0.1795 – –

1CMC −0.0092 – –
This completes the evaluation of the soft contribu-
tions. Their sum is(
−1

6
lnα+

1393
1728

)
mα6 ≈

(
−1

6
lnα+ 0.8061

)
mα6.

In order to check the formalism employed and the
procedure for calculating the soft contributions, we
apply them to calculating the (Zα)6m2/M contribu-
tion to the hyperfine splitting of the ground state of
the hydrogen atom. In calculating this quantity (to
the required order), we can actually reduce the two-
particle problem to that of motion in an external field,
so that the sought value can easily be calculated in
the coordinate representation. The result, 4α6m2/M ,
is identical to that obtained in the momentum repre-
sentation by the method described in this article.

5. HARD CONTRIBUTIONS
There exist four two-loop covariant recoil-type

diagrams that cannot be obtained from one another
P

by particle permutations or time reversal (or by com-
bining those two operations). They are displayed
in Fig. 4. If magnetic and Coulomb photons are
represented by different lines, we have 24 different
diagrams. To indicate magnetic and Coulomb lines
in referring to a specific diagram, we will henceforth
use the indices “M” and “C,” respectively, written in
the order of the emergence of photons along the lower
lines in diagrams 1–4 (Figs. 4) from left to right.
The hard contribution to ∆νrec was calculated by

twomethods. The first, based on the Coulomb gauge,
consists in calculating the contribution of 24 dia-
grams separately. Within the second method, the
total hard contribution was calculated as a whole by
using Feynman gauge.
The result is −0.424(6)mα6 for the individual and

−0.426(6)mα6 for the combined calculations. For
the hard contribution, we take the average of these
two values, −0.425(6)mα6. Adding this to the soft
HYSICS OF ATOMIC NUCLEI Vol. 64 No. 9 2001
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Table 2. Contributions involving a soft part along with the results from [22, 24] (in units ofmα6)

Calculated Calculated Coefficient Constant
value value of lnα Constant (according to [22, 24])

(in the notation of [22])

EH
1CCC + ES

C cc0 + ccc0 −1/48 −0.0146 −0.0148

EH
1MCM + ES

MCM tct0 −5/48 0.3176 0.3138

EH
1CMM+2CMM + ES

MM

ctt0 + ttc0 + ctty+ −3/8 −0.751 −0.749
+tt0 + ttx

EM E′
M 1/3 0.427 0.423
contribution, we obtain 0.381(6)mα6 for the non-
logarithmic part of the recoil contribution, in perfect
agreement with the results from [21, 23, 24].
Table 1 lists the results for the hard contributions

of various diagrams. The errors of the calculations are
not quoted there, since they never exceed 1% for an
individual contribution.
The contribution of the 3-MMC and 4-MMC dia-

grams were calculated together, since these diagrams
involve noncovariant diagrams in Figs. 2а and 2b,
whose contributions to V30 cancel each other. For a
similar reason, we combined the contributions of the
1-CMM and 2-CMM diagrams.
We can compare the results obtained by separately

calculating the individual contributions with the re-
sults from [22], where∆νrec was calculated within the
Bethe–Salpeter formalism (in the Coulomb gauge).
The point is that the correction to the energy can be
represented as a power series in irreducible covariant
diagrams (the tree diagram featuring the exchange of
a Coulomb photon is not included here). It is clear
that the numerical value of any term of this series is
independent of the formalism employed. In addition,
the contribution of the 1-MCM diagram in the order
being considered must be exactly equal to the corre-
sponding contribution from [22]. The majority of the
terms of the expansion in irreducible diagrams involve
only the hard part; their numerical values are pre-
sented in the first part of Table 1. The other terms of

 
1 2

3 4

Fig. 4. Two-loop covariant diagrams of the recoil type
(wavy lines photons in an arbitrary gauge).
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 9 200
this expansion involve soft contributions as well; their
values are given in Table 2. Tables 1 and 2 also quote
the corresponding values from [22] (with allowance
for further corrections reported by the authors). They
agree well with our present results. For example, the
value of EH1CCC in Table 2 means the hard part of the
contribution of the 1-CCC diagram,

EM ≡ EH3CCM + EH2CMC + EH1MCC

+ EH1CMC + ESLM + ESM + ESP ,

E′
M ≡ (ct0 + tc0) + ctc0 + (ctx+ tcx)

+ (cct0 + tcc0) + (ctcy + ccty) + tccz

+∆EhfsMP (∆K0T + T∆K0) + ∆Ehfsd
(in the notation of [22]).

6. CONCLUSION

We have calculated the recoil-effect-induced cor-
rection of order mα6 to the hyperfine structure of
the positronium ground state [in general, its order is
(Zα)6m]. The calculation has been performed within
the noncovariant formulation of perturbation theory in
QED. The result,

∆νrec = mα6 [−(1/6) lnα+ 0.381(6)] ,

is in accord with those obtained in [21, 23, 24]. Thus,
we can state that∆νrec has been reliably determined.
However, this result is at odds with experimental data.
Adding the recoil contribution to other contributions
of the same order (which were also reliably deter-
mined), we find that the nonlogarithmic part of the
totalmα6 contribution to∆ν is

mα6(−0.3928) = −7.33MHz (48)

(in evaluating (48), we have taken, for ∆νrec, the
result from [23] as the most precise among three).
Adding (48) to (3) (that is, to the mα4,mα5, and
mα6 lnα contributions), we obtain the total theoreti-
cal result to ordermα6 inclusive:

∆νth = 203392.96MHz.
1
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This value differs from the experimental result in (2)
by five standard deviations.
The leading contribution of the next order in α

(that is, themα7 ln2 α contribution) was found in [28]
to be

−(7/8π)mα7 ln2 α ≈ −0.92MHz.

With allowance for this correction, the difference be-
tween the theoretical and the experimental value of
∆ν reduces to four standard deviations.
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Abstract—The features of a hypothetical 4ν interaction considered as the possible reason for massive-
neutrino instability required in the cosmological scenario that involve neutrino dark matter are discussed.
New constraints on the 4ν-interaction constant Gχ are obtained: Gχ < (15–42) GF formχ > mZ (GF is
the Fermi constant of weak interaction;mχ is the mass of the 4ν-interaction gauge boson, also known as
χ boson; andmZ is the Z-boson mass) andGχ < (2.8–5.6)GF formχ � mZ . These constraints virtually
rule out the 4ν interaction as a possible version of solution to the cosmological neutrino-instability problem.
c© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The cosmology of unstable hidden mass is one of
the possible solutions to the problem of dark matter in
theUniverse. Aswas shown in [1], a massive neutrino
(of mass in the range 30–100 eV) can be a realistic
candidate for a dark-matter particle if such a neutrino
is unstable (the relevant lifetime must be in the range
108–109 yr) with respect to decays into other weakly
interacting particles. In the case of stable neutrinos,
the large-scale structure of the Universe would evolve
overly fast, with the result that there would emerge a
structure that is incompatible with observations. The
decay of massive neutrinos leads to a reduction of
the matter density in nonhomogeneities and, hence,
to a moderation in the rate of structure evolution.
In order to justify neutrino instability, it is necessary
to extend the Standard Model (SM) of electroweak
interaction. By way of example, we indicate that, in
the horizontal-unification model, which supplements
SM symmetry by the broken symmetry of fermion
generations (for an overview, see [2]), there can occur
the decay process νH → νLα, where νH and νL are,
respectively, the heavy and the light neutrino, while
α is the archion, a Goldstone boson in this theory.
Other models with neutrino decay are also possible.
In the present article, we consider the simplest ver-
sion of realization of neutrino instability, that which
does not require particles of a new type explicitly.
Specifically, we discuss a hypothetical 4ν interaction,
which leads to the decay νH → 3νL.

1)Cosmion Scientific and Educational Center for Cosmoparti-
cle Physics, Miusskaya pl. 4, Moscow, 125047 Russia.

2)Moscow State Engineering Physics Institute (Technical
University), Kashirskoe sh. 31, Moscow, 115409 Russia.
1063-7788/01/6409-1637$21.00 c©
As early as the 1960s and 1970s, such an interac-
tion was considered in [3–5]. It was established that if
a neutrino–neutrino exists, it can produce noticeable
effects only if the dimensional coupling constant Gχ

for the effective 4ν interaction is anomalously large.
The most stringent constraint on Gχ (Gχ < 104GF,
where GF is the Fermi constant) was obtained in [5]
from an analysis of the process νµ +N → µ+ + νµ +
νµ+ hadrons (see [6] for a more detailed analy-
sis). In [6, 7], this 4ν interaction was considered
as a version of solution to the cosmological problem
of neutrino instability. Also, a wide variety of its
possible manifestations—in particular, astrophysical
manifestations—were discussed. It was concluded
in [7] that this version of solution to the cosmological
problem of neutrino instability (that is, for Gχ � 5 ×
103GF) can hardly be realized. It will be shown in the
present study that this conjecture is confirmed and
even strengthened by up-to-date experimental data,
primarily on the Z-boson decay width.

2. PHENOMENOLOGY OF 4ν INTERACTION
We take the Lagrangian of 4ν interaction in the

form [6]

L4ν =
Gχ√

2
JµJ+

µ , (1)

where Jµ is the current-density operator (here, Greek
indices are those of Minkowski space3)). In the most
general case, this operator can be represented as

Jµ =
∑

a,b

ν̄aγ
µ(Vab +Aabγ

5)νb,

3)In what follows, the indices of Minkowski space will appear
only as subscripts.
2001MAIK “Nauka/Interperiodica”
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Fig. 1.One of the diagrams for the process ofZ → νν̄νν̄.
The indices a, b, and c label different neutrino flavors.
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Fig. 2. Constraints on the 4ν-interaction coupling con-
stantGχ from an analysis of experimental data on various
decays. The lower limit corresponding to cosmological
models of unstable neutrinos (Gχ � 5 × 103GF) is in-
dicated. The dashed lines are plotted for cases where
the dimensionless coupling constant for 4ν interaction is
gχ = 1 and 0.1.

where νa,b is the neutrino wave function; the overbar
denotes Dirac conjugation; the indices a, b label neu-
trino flavors; and Vab and Aab are the parameters of,
respectively, the vector and the axial-vector current.

By analogy with weak interaction, we assume that
4ν interaction has a mediator (χ boson) and that
it can be characterized by a dimensionless coupling
constant (gχ). It is worth noting that the description
of the interaction in terms of the Lagrangian in (1)
is legitimate if, in the process being considered, the
modulus of the χ-boson 4-momentum is much less
than the χ-boson mass. Below, a constraint onGχ is
derived from experimental data on theZ-boson decay
width that are analyzed on the basis of Lagrangian (1)
for 4ν interaction (in the case at hand, the proce-
dure used is valid for mχ > mZ). We also obtain a
constraint on Gχ for mχ < mZ using experimental
data on the decays of the Z boson and of the π and
K mesons. For the latter case, it is assumed that
the dimensionless coupling constant gχ, the χ-boson
PH
mass, and the dimensional constantGχ are related by
the equation

Gχ√
2

=
g2
χ

m2
χ

.

3. CONSTRAINT ON Gχ AT mχ < mZ

If a 4ν interaction exists, it must contribute to all
known neutrino processes. In the case of mχ > mZ ,
which is considered in this section, the effective 4ν in-
teraction is characterized by a dimensional constant
Gχ; therefore, the contribution of this interaction to
neutrino processes is proportional to G2

χ∆4, where
∆ is the energy release. For the case of Z-boson
decay, the energy release is determined by a relatively

large Z-boson mass, ∆ ∼ mZ

2
. Therefore, the 4ν

interaction would make a greater contribution to the
neutrino decay of the Z boson than to other known
processes. Moreover, the Z-boson decay width was
measured to a high precision, so that these data can
be highly sensitive to possible effects of 4ν interac-
tion.

The decay Z → invisible objects receives con-
tributions from diagrams of the type in Fig. 1. For
the sake of definiteness, we assume that, in the final
state, there are two neutrinos of the same flavor and
two antineutrinos of two different flavors. The 4ν
interaction is chosen in such a way that, in general,
the lepton number is violated. For the purpose of
illustration, the χ boson is shown in the figure; one
can see there which transitions are possible between
specific neutrino flavors. The total number of such
diagrams is large (360; see below), because different
types neutrino flavors can appear in the χ-boson ver-
tices and because neutrinos and the χ boson can be
permuted in various ways. Here, we present a calcu-
lation of only one diagram. The result is independent
of its choice—the difference lies exclusively in the
parameters Vab and Aab. The total contribution of all
other diagrams will be roughly estimated according to
their number.

For the sake of convenience, we introduce a no-
tation for a set of diagrams involving fixed neutrino
flavors in the final state. The matrix element for the
set of such diagrams also contains crossed terms.
Taking into account all possible permutations (for a
permutation of identical neutrinos, special attention
must be given to the sign of the contribution from
the corresponding diagram to the total amplitude),
one obtains eight diagrams with fixed final-neutrino
flavors. For the set of the diagrams with neutrino
YSICS OF ATOMIC NUCLEI Vol. 64 No. 9 2001
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flavors identical to those in Fig. 1, we introduce the
notation 



a

a

b̄

c̄




,

where the different indices a, b, and c correspond to
different neutrino flavors. The square of the matrix
element for this set of eight diagrams contains 64
terms. Among these, eight have the form MiM

+
i ,

where Mi are matrix elements and where the “+”
sign in the superscript denotes Hermitian conjuga-
tion. The remaining 56 terms are crossed terms
that have the form MiM

+
j , i �= j. Using the above

notation and taking into account all possible neutrino
combinations in the final state, we can represent the
total probability of the decay Z → 4ν as

Γ(Z → 4ν) =
∑

a, b, c
a �= b �= c
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a

ā

ā




+
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ā

ā




+





a

b

ā
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ā

ā










.

The total number of terms is equal to the sum of the
products of the number of terms associated with each
column (this number is equal to 64) and the number
of different neutrino flavors. For the first column,
this number of types is 3, while, for the other seven
columns, it is 6. Thus, the total number of terms is

N = 3 × 64 + 7 × 6 × 64 = 2880. (3)

The width with respect to decay process being
considered can be represented as

Γ(4ν)
Z→4ν = Γ1 + Γ2 + · · · + Γ2880

= Γ1(r1 + r2 + · · · + r2880),

where ri ≡ Γi/Γ1 (the numbering is arbitrary). The
matrix element M1 and the decay width Γ1 for one
diagram corresponding to the first column in (2) are
given by

M1 =
ḡ

4
ν̄a1Ẑ(1 + γ5)

1
k̂

Gχ√
2

PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 9 200
× γµ(Vaa +Aaaγ5)νā2ν̄a3γµ(Vaa +Aaaγ5)νā4,

Γ1 =
GFG

2
χm

7
Z

180(4π)5
√

2
(Vaa +Aaa)2(V 2

aa +A2
aa)

= ΓZ0

(
Gχ

GF

)2 (Vaa +Aaa)2

4
V 2
aa +A2

aa

2
,

where ḡ is the dimensionless coupling constant for
weak interaction, Z is the Z-boson wave function,
k is the 4-momentum of the propagator neutrino (a
hat denotes contraction with the γ matrix; for ex-
ample, k̂ = kµγµ), mZ is the Z-boson mass, and

ΓZ0 ≡ G3
Fm

7
Z

√
2

45(4π)5
= 0.8345 × 10−5 MeV. Introduc-

ing the additional notation

ZZ ≡ (Vaa +Aaa)2

4
V 2
aa +A2

aa

2
× (r1 + r2 + · · · + r2880),

we eventually obtain Γ(4ν)
Z→4ν in the form

Γ(4ν)
Z→4ν = ΓZ0

(
Gχ

GF

)2

ZZ .

The experimental value for the Z-boson decay width
into invisible decay products is [8]

Γ(expt)
Z→invisible = 499.9 ± 2.5MeV.

According to the SM, the Z → 2ν decay width in the
lowest order of perturbation theory is

Γ(SM)
Z→2ν = 3

GFm
3
Z

12
√

2π
= 497.7MeV.

The decay width Γ(4ν)
Z→4ν should not exceed the value

∆ΓZ→invisible = Γ(expt)
Z→invisible (4a)

− Γ(SM)
Z→2ν = 2.2 ± 2.5MeV

or
∆ΓZ→invisible < 5.4MeV (4b)

(at a 90% C.L.).

It follows thatGχ can be constrained as

Gχ <
0.80 × 103

√
ZZ

GF.

We set all the parameters Vab and Aab (a and b are
arbitrary) to unity. We define the factor ZZ under two
assumptions: (i) ri = +1 for all i, or (ii) all crossed

terms in Γ(4ν)
Z→4ν are canceled. In the first case, the

factorZZ is equal to the total number of terms (2880).
In the second case, it is equal to the number of the
diagrams [see Eq. (3)]; that is,

ZZ = 3 × 8 + 7 × 6 × 8 = 360.
1
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Fig. 3.Diagrams for the processZ → νν̄χ for the case of
fixed neutrino flavors, a and b, in the final state.

Using the above two values forZZ , we then obtain the
following constraint onGχ:

Gχ < (15–42)GF.

These values provide rather rough upper limits. They
are not rigorous for deriving a stringent upper limit
on Gχ. At the same time, it is unlikely that a precise
upper limit on Gχ would differ markedly from the
values in the last inequality, because the dependence
on the factorZZ is weak (it is of the square-root type).
For the maximum possible values of Gχ, the region
allowed by this inequality is shown in Fig. 2.

4. CONSTRAINT ON Gχ FOR mχ < mZ

In the case of mχ < mZ , there can occur the
decay process Z → νν̄χ, which also contributes to
the width with respect to the decay Z → invisible
objects. In addition, the π- and K-meson decays
π → lνχ and K → lνχ become possible for mχ <
mπ andmχ < mK , respectively.

In the lowest order of perturbation theory, the
decay Z → νν̄χ resulting in the formation of fixed-
flavor neutrinos in the final state is described by two
diagrams in Figs. 3a and 3b. The neutrino-flavor type
indices a and b are arbitrary in these figures. In just

the same way as for Γ(4ν)
Z→4ν , we take only one diagram

to estimate the width ΓZ→νν̄χ. The matrix element
and decay width corresponding to the diagram in
Fig. 3a are given by

M1 = gχν̄aχ̂(Vab +Aabγ5)
1
k̂

ḡ

4
Ẑ(1 + γ5)νb,

Γ1 = ΓZχ0
Gχ

GF
FZ (mχ/mZ)

(Vab +Aab)2

4
,

where χ is the χ-boson wave function,

FZ(x) = 1 − 8x2(1 − x4) − x8 + 24x4 ln (1/x) ,
and

ΓZχ0 =
G2

Fm
5
Z

8(4π)3
= 0.05404 MeV.

For a finite coupling constant gχ, the above formulas
are not valid in the limitmχ → 0 (this is so for decays
P

 
ν

 

a

 

χ

 

e

 

+

 

P

 

+

Fig. 4. Diagram for the process P → eνχ, where P
stands for a π or a K meson, the index a corresponding
to e, µ, and τ .

considered below as well). The point is that, in this
case, we would haveGχ → ∞, which is incompatible
with the constraints obtained below. For mχ → 0 at
a finite value of gχ, there is an infrared divergence:
Γ → ∞. At very large Γ, it is necessary to consider
next orders of perturbation theory, but, in the limit of
its indefinite growth, perturbation theory becomes in-
applicable. Moreover, the limit mχ → 0 corresponds
to a non-Abelian rigorous gauge group, since the
4ν interaction considered here violates lepton charge.
However, this situation requires a dedicated analysis
for matching the theory with current experimental
data.

The total probability of the process Z → νν̄χ can
be represented as

ΓZ→νν̄χ = ΓZχ0
Gχ

GF
FZ (mχ/mZ)ZZχ.

In the case of fixed final-neutrino flavors, there are
two diagrams. In this case, the total number of
terms is therefore equal to 4; among these, there are
two terms of the form MiM

+
i . The inclusion of all

neutrino flavors (a and b) yields the factor of 3× 3 = 9.
Setting all the parameters Vab and Aab (for arbitrary
a and b) to unity, we obtain ZZχ = 9 × 2 = 18 in the
approximation

∑
i�=jMiM

+
j = 0 and ZZχ = 9 × 4 =

36 under the assumption that all terms are equal to
each other (MiM

+
i = MiM

+
j ). From the condition

ΓZ→νν̄χ < ∆ΓZ→invisible, where ∆ΓZ→invisible is de-
fined in (4a) and (4b), we obtain

GχFZ (mχ/mZ) <
100
ZZχ

GF = (2.8–5.6)GF.

In theGχ–mχ plane, the area allowed by this inequal-
ity is shown in Fig. 2 (here, we have taken the value
of 5.6GF); FZ(mχ/mZ) ≈ 1 formχ � mZ .

Let us now consider π- andK-meson decays into
e, ν, and χ. The diagrams for these decays are
presented in Fig. 4. The symbol P stands for a π or
aK meson. A constraint onGχ can be obtained from
the condition

ΓP→eνχ

Γ(theor)
P→eν

<
Γ(expt)
P→eν(νν̄)

Γ(expt)
P→eν

. (5)
HYSICS OF ATOMIC NUCLEI Vol. 64 No. 9 2001
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The matrix element for the process has the form

M =
GF cos θC√

2
fPpµϕP

×gχν̄χ̂(Vea +Aeaγ5)
1
k̂
γµ(1 + γ5)e,

where θC is the Cabibbo angle; fP is the decay con-
stant; pµ is the P-meson 4-momentum; and ϕP and e
are, respectively, the P-meson and the electron wave
function. Neglecting the electron mass, we find for
the width with respect to the decay P → eνχ that

ΓP→eνχ =
G3

F cos2 θCf2
Pm

5
P

12(4π)3
√

2

×Gχ

GF
FP (mχ/mP )ZP ,

where mP is the π- or the K-meson mass, and the
function FP (x) is given by

FP (x) = 1 + 72x4 − 64x6

− 9x8 − 24x4(3 + 4x2) ln (1/x) .
In the case where the parameters Vea and Aea are
independent of the index a labeling the neutrino flavor,
the factor ZP takes the form

ZP = 3
(Vea +Aea)2

4
, (6)

where the factor of 3 stems from summation over the
neutrino flavors. The width Γ(theor)

P→eν is given by

Γ(theor)
P→eν =

G2
F cos2 θCf2

Pm
3
P

8π
∆(1 − ∆)2, (7)

where ∆ = (me/mP )2, me being the electron mass.
Setting Vea and Aea to unity, we arrive at

GχFP (mχ/mπ)
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 9 200
< 2.635 × 104
Γ(expt)
π→eν(νν̄)

Γ(expt)
π→eν

GF for the π meson,

GχFP (mχ/mK)

< 168.3
Γ(expt)
K→eν(νν̄)

Γ(expt)
K→eν

GF for theK meson.

The experimental values of the branching fractions for
the relevant [see (5)] decays [8] are quoted in the table.
By using these experimental data, we obtain

GχFP (mχ/mπ) < 1.1 × 103GF for the π meson,

GχFP (mχ/mK)

< 0.65 × 103GF for theK meson.

The areas of Gχ and mχ values allowed by these
inequalities are shown in Fig. 2. For mχ � mπ or
mχ � mK , the function FP (mχ/mK) can be set to
unity.

For the decay process K → µνχ, all the above
arguments remain in force (there are no experimental
data for the analogous pion decay). The relevant
decay width can be represented in the form

ΓK→µνχ =
G3

F cos2 θCf
2
Km

5
K

12(4π)3
√

2

× C
Gχ

GF
FK (mχ/mK)ZP ,

where the function FK (mχ/mK) is given by the in-
tegral expression
FK(x) =
12
C

(1−µ)2∫

x2

(s− x2)2(s+ 2x2)((1 + 2µ2)s− s2 + µ2(1 − µ2))
s3

√
((1 − µ)2 − s)((1 + µ)2 − s)ds,
C = 1 + 12µ4 − 16µ6 + 3µ8

− 24µ4 ln (1/µ) = 0.946,

where µ = mµ/mK , mµ being the muon mass; the
factor ZP is evaluated by formula (6); and the co-
efficient 12/C is determined by the requirement that
the function FK (mχ/mK) be equal to unity at zero
χ-boson mass (that is, to the inverse value of the

integral at x = 0). The quantity Γ(theor)
K→µν is determined

by Eq. (7) (with the substitution ofmµ forme). In this
1

case, the constraint is
GχFK (mχ/mK)

< 0.6927 × 107
Γ(expt)
K→µν(νν̄)

Γ(expt)
K→µν

GF.

Substituting the corresponding experimental data
from the table, we obtain

GχFK (mχ/mK) < 65GF.

The area determined by this inequality is presented
in Fig. 2. For mχ � mK −mµ = 388 MeV, we have
FK(mχ/mK) ≈ 1.
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Experimental values of the relevant branching fractions

Decay channel π K

P → eν(νν) < 5 × 10−6 < 6 × 10−5

P → eν 1.230(4)× 10−4 1.55(7)× 10−5

P → µν(νν) – < 6.0 × 10−6

P → µν 0.9998770(4) 0.6351(18)

From Fig. 2, it can be seen that the most strin-
gent constraint is obtained from data on Z-boson
decay. The dashed curves in Fig. 2 correspond to
the dimensionless-coupling-constant values of gχ =
1 and 0.1. For gχ > 1, perturbation theory is inap-
plicable; therefore, the constraints obtained in this
region—in particular, from Z-boson decay for mχ >
mZ—should be considered only as estimates. Also
displayed in Fig. 2 is the lower limit on Gχ corre-
sponding to relevant cosmological models of unstable
neutrinos. We emphasize once again that, in contrast
to constraints from π and K decays, the constraint
from Z-boson decay is very rough. Nevertheless, we
can state with confidence that the present results rule
PH
out the 4ν interaction as a version of solution to the
cosmological problem of neutrino instability.
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Abstract—The question of whether constraints on the anomalous parameters ofWWγ andWWZ three-
boson interactions can be deduced from an analysis of data on the reaction e+e− → W−e+ν that are
expected to come from a future

√
s = 500-GeV e+e− linear collider of integrated luminosity of L= 50, 100,

or 500 fb−1 is discussed. An analysis of relevant differential distributions reveals that, in contrast to pair
W-boson production, the reaction mentioned immediately above is highly sensitive to the parameter λZ

and that the resulting constraints can be viewed as those that supplement the constraints that follow from
data on e+e− → W+W−. For the experiment being discussed, two possible implementations of a detector
are considered that correspond to the kinematical regions | cos θe+ | ≤ cos 7◦ and | cos θe+ | ≤ cos 1.5◦. It is
indicated that the region of small positron-scattering angles is of importance for improving the sensitivity
of the process. In setting constraints on the anomalous parameters, the SEWS scenario for anomalous
boson coupling constants, where interactions responsible for electroweak-symmetry breaking are strongly
coupled, is examined along with the case of the most general parametrization of theWWγ(Z) three-boson
vertices. c© 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Measurement of the coupling constants forWWγ
andWWZ interactions is one of the most important
problems for experiments at e+e− colliders. Within
the Standard Model (SM), the WWγ and WWZ
vertices are strictly defined by the SU(2)L × U(1)
gauge invariance; therefore, precision measurements
of the processes being discussed provide a unique
test of the gauge structure of electroweak theory. In
contrast to low-energy, high-precision experiments
at the pole of the Z0 resonance, collider experiments
make it possible to measure directly—and, what is
of importance, in a model-independent way—three-
boson vertices. Presently, experiments at the LEP II
collider, which are aimed at analyzing data on the
pair production of W bosons, play a key role in such
investigations (see, for example, [1]). For a number
of reasons, however, which include a modest collider
luminosity and a low sensitivity of the processes be-
ing analyzed to anomalous contributions at relevant
energies, experiments at LEP would permit setting
constraints on anomalous three-boson coupling con-
stants at a level of 10%, which is by far insufficient

1)Moscow Institute for Physics and Technology, Instituskiı̆
proezd 9, Dolgoprudnyı̆, Moscow oblast, 141700 Russia.

2)Institute for High Energy Physics, Protvino,Moscow oblast,
142284 Russia.
1063-7788/01/6409-1643$21.00 c©
for pinpointing the mechanism of anomalous boson
interactions and for specifying the class of models that
give rise to them. Searches for and investigations
into anomalous boson interactions are among the
main problems for next-generation linear colliders,
like TESLA, where a high luminosity and a high en-
ergy guarantee the possibility of achieving a percent
level of accuracy in determining anomalous boson pa-
rameters. Moreover, the properties of future colliders
will make it possible to extend fully the analysis for
e+e− → W+W− to reactions other than that, which
include e+e− → Weν and e+e− → e+e−W+W−

and which are difficult for investigation at LEP either
because of their small cross sections or because of
their low sensitivity at LEP energies. Investigation of
a few independent processes would permit separating
contributions from different anomalous parameters
that appear in theWWV vertices.
In the present study, we consider the constraints

that an analysis of data on the process e+e− →
e+W−ν(e−W+ν) from experiments at a 500-GeV
e+e− collider of integrated luminosity L = 50, 100,
or 500 fb−1 could yield for anomalous three-boson
parameters.

1. WWV -INTERACTION VERTEX
For the three-boson interaction of two charged

vector bosons with a neutral vector boson, the general
2001MAIK “Nauka/Interperiodica”
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form of the vertex was extensively discussed in the
literature [2]. The C-, P-, and Lorentz-invariant
part of the Lagrangian for WWV interaction (where
V = γ, Z) can be represented as

Leff/gWWV = igV1

(
W †
µνW

µV ν −W †
µVνW

µν
)
(1)

+ ikVW+
µ WνV

µν +
iλV
M2
W

W †
λµW

µ
ν V

νλ,

where V = γ, Z0; W µ is the W -boson field; Wµν =
∂µWν − ∂νWµ; and Vλν = ∂λVν − ∂νVλ. The gauge
coupling constants gWWV for the photon and the Z0

boson are given by
gWWγ = e, gWWZ = e cot θW, (2)

where e is the positron charge and θW is the Wein-
berg angle. For charged-vector-boson coupling to
the photon, there exists, in the static limit, a simple
interpretation of the parameters appearing in (1): gγ1
determines the charge of the W boson, whereas the
coefficients kγ and λγ are related to the W -boson
magnetic dipole (µW ) and electric quadrupole (QW )
moments as

µW =
e

2MW

(1 + kγ + λγ), (3)

QW = − e

M2
W

(kγ − λγ).

A similar interpretation is valid for the parameters kZ
and λZ of theWWZ0 vertex. Within the SM, we have

gV1 = kV = 1, λV = 0.
The requirement of gauge invariance leads to the
equality gγ1 = 1. Beyond the SM, the scenario be-
ing considered involves five independent parameters.
These are gZ1 , kγ(Z), and λγ(Z) (g

γ
1 ≡ 1).

The above parametrization corresponds to amodel-
independent approach to anomalous three boson
interactions and includes all possible Lorentz struc-
tures that can contribute to the WWV vertices.
In specific scenarios of going beyond the SM, the
requirements of invariance under symmetry-group
transformations may lead to relations between anoma-
lous parameters and, hence, to a reduction of the
total number of those that are independent. There
exist various versions of extension of the SM that
include various mechanisms of symmetry breaking.
Within a wide class of models, it is assumed that
interactions responsible for symmetry breaking are
characterized by strong coupling, so that their effects
must be experimentally manifested as deviations of
observed coupling constants from the form dictated
by the minimal SM—in particular, in the sector of
vector-boson self-interaction.
Alongwith the case of themost general parametriza-

tion of anomalous three-boson vertices, we inves-
tigate here the class of effective models either not
P

involving a Higgs boson or assigning it a very large
mass (at least such that it is inaccessible to a direct
observation at future colliders) and leading to the
emergence of nonstandard coupling constants for
multiboson interactions (so-called SEWS scenario).
Let us consider the minimal effective Lagrangian

describing the interaction of gauge bosons in a theory
where the original SU(2)L × U(1)Y gauge symmetry
is spontaneously broken to U(1)Q. In this case, that
part of the Lagrangian which involves the mass and
kinetic terms for gauge bosons has the form [3]

L(2) =
v2

4
tr
(
DµΣ†DµΣ

)
(4)

− 1
2
tr
(
W µνWµν

)
− 1

2
tr
(
BµνBµν

)
,

where Wµν and Bµν are the field-strength tensors
corresponding to the SU(2) and the U(1) group; that
is,

Wµν =
1
2

(
∂µWν − ∂νWµ +

i

2
g[Wµ,Wν ]

)
, (5)

Bµν =
1
2

(
∂µBν − ∂νBµ

)
τ3.

Here,Wµ ≡ W i
µτi, and the Pauli matrices τi are nor-

malized in such a way that tr(τiτj) = 2δij .
The matrix Σ ≡ exp(iω · τ/v) involves a Gold-

stone boson ωi that ensures the generation of theW -
and Z-boson masses through the Higgs mechanism,
and theSU(2)L×U(1)Y -covariant derivative has the
form

DµΣ = ∂µΣ +
i

2
gW i

µτ
iΣ − i

2
g′BµΣτ3. (6)

The first term in (4) is the SU(2)L × U(1)Y -gauge-
invariant mass term for W and Z. The physical
masses are calculated at v ≈ 246GeV. This nonlinear
realization of a spontaneous breakdown of symmetry
leads to a low-energy phenomenology that coincides
with the minimal SM where the Higgs boson is as-
signed a very large mass [3]. This theory is nonrenor-
malizable; it must be interpreted as an effective field
theory below some scale of Λ ≤ 3 ТeV. In the lowest
order, the interactions between the gauge bosons and
fermions have the same form as in the minimal SM.
The “anomalous” couplings of gauge bosons cor-

respond to other SU(2)L × U(1)Y -gauge-invariant
operators that can be written in addition to those in
(4). For “low-energy” processes occurring at ener-
gies below the energy-breaking scale Λ, it is pos-
sible to represent the effective Lagrangian in a form
that corresponds to an expansion of scattering ampli-
tudes in powers ofE2/Λ2. The next-to-leading-order
(NLO) Lagrangian arising in this context was widely
discussed in the literature [3–7].
HYSICS OF ATOMIC NUCLEI Vol. 64 No. 9 2001
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Let us consider an effective Lagrangian involving
NLO terms that preserve the original SU(2)C sym-
metry (apart from hypercharge coupling). The NLO
effective Lagrangian conserving C and P invariance
then has the form

L(4) =
v2

Λ2

{
L1

[
tr
(
DµΣ†DµΣ

)]2

(7)

+ L2tr
(
DµΣ†DνΣ

)
tr
(
DµΣ†DνΣ

)

− igL9Ltr
(
W µνDµΣDνΣ†

)

− ig′L9R tr
(
BµνDµΣ†DνΣ

)

+ gg′L10 tr
(

ΣBµνΣ†Wµν

)}
.

The terms that involve Li preserve the original
SU(2)C symmetry; for all terms Li to beO(1) quanti-
ties, the factor v2/Λ2 was introduced in the definition
of L(4). In the unitary gauge, where Σ = 1, Feynman
rules can be obtained by expanding the Lagrangians
in (4) and (7) [8]. Within the model considered here,
it is possible to recover the correspondence between
the parameters of the Lagrangians in (1) and (7). The
results are given by

gZ1 =1+
e2

c2W

(
1

2s2
W

L9L+
1

(c2W − s2
W)

L10

)
v2

Λ2
,

gγ1 = 1, (8)

kZ = 1 + e2

(
1

2s2
Wc2W

(
L9Lc

2
W − L9Rs

2
W

)

+
2

(c2W − s2
W)

L10

)
v2

Λ2
,

kγ = 1 +
e2

s2
W

(
L9L + L9R

2
− L10

)
v2

Λ2
,

where cW and sW are, respectively, the cosine and
the sine of the Weinberg angle. It is worth noting
that, in the scenario being considered, the terms that
involve λV correspond to operators of higher dimen-
sions and appear in higher orders of the expansion
of the effective Lagrangian. Thus, the anomalous
boson coupling constants are expressed in terms of
three independent parameters (L9L, L9R, and L10).
It should be recalled that L10 is proportional to the
parameter ε3, which was measured at LEP I, so that
there is a stringent constraint on it [9]. In view of this,
there is no need for varying L10. Hence, there only
remains the set of two independent parameters.3)

3)For the ensuing numerical estimates, we fix the scale of new
physics at Λ = 2 TeV.
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In analyzing data on the process e+e− → eWν,
we will present below the results both for the case
of a model-independent parametrization and for the
SEWS scenario.

2. PROCESS e+e− → eWν

In order to set constraints on the anomalous boson
coupling constants, we analyze here the differential
distributions of e+e− → e+W−ν events with respect
to the scattering angle, transverse momentum, and
energy of final-state particles (positron and recon-
structed W boson). In the ensuing calculations,
the values of MZ = 91.178 GeV, sin θW = 0.47688,
and α = 1/128 are chosen for the input SM param-
eters. In calculating the differential distributions for
the process being considered, use is made here of
the helicity-amplitude method supplemented with a
Monte Carlo integration over phase space (the ac-
cumulated statistics are sufficient for ensuring, in
each bin of the distribution, a precision higher than
0.1% in calculating the relevant differential cross sec-
tions). The calculations were performed for a

√
s =

500-GeV future linear collider of integrated luminos-
ity Ldt = 50, 100, or 500 fb−1, which corresponds to
the first stage of TESLA operation.
In our data analysis, we consider two cases of a

cut on the positron scattering angle with respect to
the incident-electron momentum:

(I)| cos θe| ≤ cos 7◦,
(II)| cos θe| ≤ cos 1.5◦.

This choice of kinematical regions is dictated by a
number of factors. In order to reconstruct the differ-
ential distributions of the cross section—in particular,
with respect to the positron scattering angle, trans-
versemomentum pT , and energy—it is necessary that
the facility used in the experiment being discussed
involve a tracking system that would make it possible
to record reliably final-state positrons. However, the
existing designs of the detector for TESLA would
provide the possibility of reconstructing the final-
electron (final-positron) momentum and the quark-
jet momenta only for scattering angles in excess of
7◦ (at the same time, the tracking system for muons
would make it possible to cover the angular region
down to 1.5◦) [10]. If the importance of reconstruct-
ing the final-particle momenta in the region of small
angles were nevertheless substantiated by sufficiently
strong arguments, the design of the detector could be
modified in such a way that it would become possible
to reconstruct the q and emomenta down to angles of
about 1.5◦. In view of this, we will consider both these
versions and assess the degree to which the sensi-
tivity of data to anomalous contributions changes in
1
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Fig. 1. Total cross section for the process e+e− →
e+W−ν versus variable anomalous parameters for cuts
(а) I and (b) II . The solid, thin dashed, thick dashed,
thin dotted, and thick dotted curves correspond to specific
deviations of the parameters kγ (∆kγ = 0.1), λγ (λγ =
0.1), kZ (∆kZ = 0.1), λZ (∆gZ = 0.1), and gZ (λZ =
0.03), respectively, from the SM values.

response to the inclusion of the positron-scattering-
angle region from 1.5◦ to 7◦ in our analysis.
The calculation of the total cross section for the

process e+e− → e+W−ν within the SM at 500 GeV
yields σtot  1.34 pb for cut I and σtot  1.8 pb for
cut II. At the integrated luminosity of L = 50 fb−1,
this corresponds to statistics of 104–105 events. It
should be noted that the reaction cross section is
highly sensitive to deviations of the parameters gZ1 ,
kV , and λV from the values dictated by the SM.
Figures 1а and 1b show the relevant cross sections
versus variable anomalous parameters. From these
figures, it can be seen that the process in question
shows the highest sensitivity to the parameter λZ .
Therefore, this process is especially interesting from
the point of view of setting constraints on the anoma-
lous parameters, since the competing process of pair
W -boson production is weakly sensitive to deviations
of this parameter from the SM value [1].
Figure 2 displays the differential distributions of

the reaction cross section with respect to W -boson
and positron transverse momentum, scattering angle,
and energy. In Figs. 2а–2f, curves formed by closed
circles (encircled crosses) correspond to cut I (II).
From the transverse-momentum distribution of W
bosons (Fig. 2а), it can be seen that the main con-
tribution to the cross section comes from the region
P
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Fig. 2. Differential distributions of the cross section for
the process e+e− → e+W−ν with respect to (а, d) the
W , e+ transverse momenta; (b, e) theW , e+ scattering
angle; and (c, f) the W , e+ energies. Closed circles
(encircled crosses) correspond to cut I (II).

of small pT and that the more lenient cut leads to
a greater relative contribution of the low-pT region
to the cross section. The angular distribution of W
bosons (Fig. 2b) shows a fast growth of the cross
section in the region of small W -boson scattering
angles. In the case being considered, a transition from
cut I to cut II does not lead to a sizable change in the
shape of the distribution; it is the common normal-
ization of the differential cross section that changes
predominantly here. A similar effect is observed in
the distribution of the cross section with respect to
the W -boson energy: when the more lenient cut is
used, the region of low and intermediate values ofEW
is saturated, but the main contribution to the cross
section comes from the region of maximum energies
(Fig. 2c). The differential distribution of the cross
section with respect to positron transverse momen-
tum exhibits regularities differing from those in the
above cases (Fig. 2d). A transition to themore lenient
cut deforms strongly the distribution at low values of
the positron transverse momentum; at the same time,
HYSICS OF ATOMIC NUCLEI Vol. 64 No. 9 2001
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the region of intermediate and high peT values remains
virtually intact. In the region of small scattering
angles, the distribution with respect to the positron
scattering angle has a pronounced peak (Fig. 2e),
which is due to a dominant contribution of diagrams
involving the exchange of a t-channel photon and the
production of a W boson in the central region. A
transition from cut I to cut II naturally enhances the
contribution of the small-angle region. For the dis-
tribution with respect to the positron energy (Fig. 2f),
the change in the cut leads to a change in the common
normalization of the cross section, whose maximum
receives the main contribution from the region of high
positron energies.

In analyzing the dependence of the process on
anomalous boson parameters, it is of interest to
find out which of the distributions considered above
possesses the highest sensitivity to the anomalous
contributions and to pinpoint the kinematical region
where the sensitivity is the highest. First, this
will enable us to choose the optimum binning of
the distributions for the subsequent χ2 analysis of
data; second, this will provide the possibility of
preliminarily assessing the degree to which relaxing
the kinematical cut on the positron scattering angle
can improve the sensitivity of data to the anomalous
parameters. For this purpose, we consider the
relative deviations that the differential distributions
being studied develop in response to variations in the
anomalous parameters,

(
dσNEW

dx
− dσSM

dx

)/dσSM

dx
,

where dσSM/dx is the differential cross section for
the reaction in question at the SM values of the
parameters gZ1 , kV , and λV and dσNEW/dx is the
differential cross section for this reaction in the case
where one of the parameters x = pT , cos θ, or E for
the positron (W boson) deviates from the SM values.
For the deviations of the parameters gZ1 , kV , and λV ,
we choose, by way of illustration, the values

∆gZ1 = ∆kZ = ∆kγ = λγ = 0.1, λZ = 0.03.

The choice of different values for the deviations of
the parameters from the SM values would lead to a
change in the common normalization of the resulting
dependences, but this would not have a sizable effect
on their shapes.4)

4)For the parameter λZ , we chose a value different from other
parameter values only because we wanted to obtain approxi-
mately identical scales of relative deviations of the differential
cross sections—the point is that the sensitivity of the process
to λZ is much higher than to other anomalous parameters.
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 9 200
For W bosons and positrons, Fig. 3 displays
the relative deviations of the differential cross sec-
tions for the process e+e− → e+W−ν versus the
variable anomalous parameters kγ , λγ , gZ , kZ , and
λZ (curves 1, 2, 3, 4, and 5, respectively). From
Fig. 3a, it can be seen that the differential distribution
with respect to the W -boson transverse momentum
possesses the highest sensitivity to the anomalous
parameters in the region of the highest values of
pT . Comparing Figs. 2a and 3a, we can conclude
that a transition from the kinematical region I to the
kinematical region II does not toughen substantially
the constraints on the anomalous coupling constants
from this distribution; the reason behind this is the
following: when the kinematical cut is relaxed, it is
the low-pT region that is saturated, but the sensitivity
to the anomalous contributions is low there. In the
case of the distribution with respect to theW -boson
scattering angle, one can expect that the resulting
constraints will become more stringent upon relaxing
the cut, since a transition from cut I to cut II changes
the common normalization of the differential cross
section (Fig. 2b)—in particular, at intermediate val-
ues of the angle, where the sensitivity to the anoma-
lous contribution is maximal (Fig. 3b). Moreover,
this distribution is especially sensitive to deviations
of the parameter kγ in the region of W -scattering
into the backward hemisphere, where the differential
cross section is nearly doubled upon relaxing the cut.
Therefore, it is precisely for this parameter that one
would expect the most pronounced toughening of the
constraints in an expanded kinematical region. For
the differential distribution with respect to the W -
boson energy, the behavior of the relative deviations
is more complicated (Fig. 3c); nonetheless, it can be
shown that the highest sensitivity to the anomalous
contributions is observed in the region of intermediate
values ofEW for the parameter kγ (curve 1) and in the
region of its maximum values for the other anomalous
parameters. From an analysis of the behavior of the
differential cross section (Fig. 2c), we can deduce
that, in these regions, the differential cross section
becomes noticeably larger upon relaxing the cut. This
gives every reason to hope for the toughening of the
resulting constraints for cut II in relation to those for
cut I.

A somewhat different situation is observed for the
distributions with respect to the positron transverse
momentum, scattering angle, and energy. A tran-
sition to the more lenient kinematical cut modifies
substantially the differential distributions with respect
to peT and cos θe in the region of low pT and small
positron scattering angles (see Figs. 2d and 2e, re-
spectively). However, these distributions show the
highest sensitivity to the anomalous contributions at
1
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Fig. 3. Relative deviations of the differential distributions for the process e+e− → e+W−ν with respect to (a, d) theW , e+

transverse momenta; (b, e) theW , e+ scattering angles; and (c, f) theW , e+ energies. Curves 1, 2, 3, 4, and 5 correspond to
specific deviations of the parameters kγ (∆kγ = 0.1), λγ (λγ = 0.1), kZ (∆kZ = 0.1), λZ (∆gZ = 0.1), and gZ (λZ = 0.03),
respectively, from the SM values.
high pT values (Fig. 3d) and at large positron scat-
tering angles, which correspond to the scattering of
the positron into the backward hemisphere (Fig. 3e).
For the distribution with respect to the positron scat-
tering angle, this effect is straightforwardly explained
by the fact that the region of angles corresponding
to positron scattering into the forward hemisphere
is dominated by the diagram involving the t-channel
exchange of a photon; this diagram does not contain
anomalous vertices, representing, in this sense, a
pure “background.” Therefore, relaxing the kinemat-
ical cut can hardly have a pronounced effect on the
PH
resulting constraints, but an insignificant toughening
may occur owing to a general increase in the cross
section and, hence, in total statistics. On the other
hand, the constraints on the anomalous parameters
from the energy distribution of positrons are expected
to become more stringent upon relaxing the kinemat-
ical cut, since this leads to a change in the general
scale of the differential cross section over the entire
region of electron energies (Fig. 2f), including the
region of low and intermediate Ee values, where this
distribution is especially sensitive to the anomalous
parameters (Fig. 3f).
YSICS OF ATOMIC NUCLEI Vol. 64 No. 9 2001
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Thus, we have seen that, for the parameters kγ , λγ ,
gZ , kZ , and λZ , the constraints that result from an
analysis of some distributions can be toughened upon
going over from the more stringent cut | cos θe| ≤
cos 7◦ on the positron scattering angle to the more le-
nient cut | cos θe| ≤ cos 1.5◦, but there are no grounds
to expect drastic changes.

3. CONSTRAINTS ON ANOMALOUS
PARAMETERS

3.1. Method for Setting Constraints

Prior to proceeding to consider the potential of
a 500-GeV collider for setting constraints on the
anomalous three-boson parameters, we are going to
discuss the expected experimental situation. Detailed
investigations for a future linear collider reveal [11]
that the systematic error may amount to about 2%.
This value receives contributions from the uncertain-
ties in measurement of the luminosity (δL  1%),
the error in the acceptance (δaccep  1%), the uncer-
tainties in the subtraction of background (δbackgr 
0.5%), and the systematic error in determining the
relevant branching ratio (δBr  0.5%). Estimations
assuming the efficiency εW of W -boson reconstruc-
tion to be in the range 0.5–1 and the integrated lu-
minosity of the collider to be about 50 fb−1 show that
the relative statistical error in the total cross section is
about 0.5%and that it can be as large as a few percent
in individual bins of the distribution. Thus, we can see
that, for the process being discussed, the systematic
error can be commensurate with the statistical errors;
for this reason, we will take into account both kinds
of error in our analysis.
For the ensuing estimates, we set the collider pa-

rameters to the values of
√
s = 500GeV and

∫
Ldt =

50, 100, or 500 fb−1; this corresponds to the first stage
of TESLA operation.

3.2. Procedure for Data Analysis

Investigations similar to that reported here tra-
ditionally use SM predictions as experimental data
and treat the possible effects of new physics as small
deviations from these experimental values. Requiring
that the predictions of a new model be in agreement
with the experimental values within errors, one can
then set constraints on the parameters of this model.
In setting constraints on the anomalous three-

boson parameters, we will analyze the distributions
presented above and use the simplest χ2 functional
defined as

χ2 =
∑

i

(
Xi − Yi
∆i

exp

)2

,
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where

Xi =

zi+1∫

zi

dσSM

dz
dz, Yi =

zi+1∫

zi

dσNEW

dz
dz

are the cross-section values in the ith bin of the z
distribution (specifically, we will consider the distri-
butions with respect to the W -boson and positron
transverse momentum, energy, and scattering angle),
respectively, within the SM and for the kγ , λγ , gZ ,
kZ , and λZ values deviating from the SM values and
∆i

exp are experimental errors in the bins. These errors,
defined as

∆i
exp = Xi

√
δ2
stat + δ2

syst,

δstat =
1√
Ni

=
1√

εWLXi
,

δsyst =
√

δL2 + δ2
accep + δ2

backgr + δ2
Br,

include both systematic and statistical errors.5) Here,
Ni is the number of events in a given bin of the dis-
tribution predicted by the SM, and L is the integrated
luminosity of the collider.

3.3. Case of a Model-Independent Parametrization

In this subsection, the constraints on the anoma-
lous parameters from an analysis of data on the differ-
ential cross sections for the process e+e− → e+W−ν
are considered for the case of a model-independent
parametrization of three-boson vertices (the set of
parameters includes kγ , λγ , gZ , kZ , and λZ). Any
differential cross section is a quadratic form in any
anomalous parameter, whereas the functional χ2 used
in our data analysis is a power-law function of fourth
degree. In the space spanned by five parameters kγ ,
λγ , gZ , kZ , and λZ , a solution to the equation

χ2(kγ , λγ , gZ , kZ , λZ) = χ2
min + ∆χ2 (9)

(where ∆χ2 depends on the chosen confidence level)
generally appears to be a complex surface; for this
reason, we represent the resulting constraints in the
form of the central cross sections of surface (9) by
planes for each pair of the parameters (in doing this,
we admit variations of a given pair of the parameters
and fix the remaining parameters at the SM values).

Distributions for W . For the anomalous three-
boson parameters, Fig. 4 shows constraints (at a
95% C.L.) that follow from an analysis of data on the
differential distributions for theW boson with respect
to its (solid curve) transverse momentum, (dotted
curve) scattering angle, and (dashed curve) energy

5)In calculating the total error, we disregard the correlation
between the statistical and the systematic error.
1
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Fig. 4. Constraints on the anomalous three-boson pa-
rameters (at a 95% C.L.) from an analysis of data on
the differential distributions for theW -boson (cut I) with
respect to its (solid curve) transverse momentum, (dotted
curve) scattering angle, and (dashed curves) energy. The
regions of allowed parameter values are enclosed by the
relavant contours.

for cut I. The regions of allowed parameter values are
enclosed by the relevant contours. From Fig. 4, we
can see that, for the planes of the gZ–λγ , kZ–λγ , λZ–
λγ , kZ–gZ , and λZ–gZ parameter pairs, the most
PH
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Fig. 5. As in Fig. 4, but for cut II.

stringent constraints are obtained from an analysis
of data on transverse-momentum (pT ) distributions.
For the remaining pairs of the parameters, more strin-
gent constraints are achieved by combining data on
pT , cos θ, and E distributions. In the case where only
one parameter is varied, with the remaining four being
YSICS OF ATOMIC NUCLEI Vol. 64 No. 9 2001
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Fig. 6. Constraints on the anomalous three-boson pa-
rameters (at a 95% C.L.) from an analysis of data on
the differential distributions for the positron (cut I) with
respect to its (solid curve) transverse momentum, (dotted
curve) scattering angle, and (dashed curve) energy. The
region of allowed parameter values is enclosed by the
relevant contours.

fixed at the SM values, the individual constraints are
the following:

0.98 ≤ kγ ≤ 1.02,
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Fig. 7. As in Fig. 6, but for cut II.

−2.74 × 10−2 ≤ λγ ≤ 4.1 × 10−2,

0.9 ≤ gZ ≤ 1.22, (10)

0.976 ≤ kZ ≤ 1.074,

−2.0 × 10−3 ≤ λZ ≤ 6.95 × 10−4.

As might have been expected, the process being con-
sidered possesses an extremely high sensitivity to the
parameter λZ—the constraints on λZ are an order of
1
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magnitude more stringent than the constraints on the
remaining parameters.
Figure 5 shows similar constraints on the anoma-

lous parameters for cut II. In just the same way as in
the case represented in Fig. 4, the distribution with
respect to theW transverse momentum is that which
possesses the highest sensitivity, although all the dis-
tributions used must be combined for obtaining some
pair constraints. Here, the individual constraints are

0.985 ≤ kγ ≤ 1.02,

−2.75 × 10−2 ≤ λγ ≤ 4.07 × 10−2,

0.91 ≤ gZ ≤ 1.22, (11)

0.976 ≤ kZ ≤ 1.074,

−2.1 × 10−3 ≤ λZ ≤ 7.0 × 10−4.

We note that, although relaxing the cut did not render
the individual constraints much more stringent, a
comparison of Figs. 4 and 5 reveals that the areas
of allowed regions in the planes of the parameter pairs
decrease considerably. The reason behind this is that
the expansion of the kinematical region (a transition
from cut I to cut II) leads to the growth of the relative
contribution to the cross section from terms asso-
ciated with the crossed products of the anomalous
parameters.

Distributions for e+. For the anomalous param-
eters, Figs. 6 and 7 display pair constraints that follow
from an analysis of the differential distributions with
respect to the positron (solid curve) transverse mo-
mentum, (dotted curve) scattering angle, and (dashed
curve) energy for cuts I and II, respectively. In
contrast to the case of the distributions for the W
boson, the most stringent constraints on the anoma-
lous parameters here come from data on the angular
distribution of positrons. For cut I, the individual
constraints for each parameter are the following here:

0.986 ≤ kγ ≤ 1.018,

−2.5 × 10−2 ≤ λγ ≤ 3.65 × 10−2,

0.905 ≤ gZ ≤ 1.13, (12)

0.978 ≤ kZ ≤ 1.063,

−1.835 × 10−3 ≤ λZ ≤ 6.055 × 10−4.

In the present case, the individual constraints are
determined, to a considerable extent, by the data on
the angular distribution. For cut II, we have

0.986 ≤ kγ ≤ 1.017,

−2.51 × 10−2 ≤ λγ ≤ 3.65 × 10−2,

0.904 ≤ gZ ≤ 1.13, (13)

0.978 ≤ kZ ≤ 1.063,

−1.83 × 10−3 ≤ λZ ≤ 6.05 × 10−4.

In just the same way as in the case of data on the
distributions for W bosons, relaxing the cut did not
P

render the individual constraints more stringent, but
the areas of the allowed parameter values in the planes
of parameter pairs decrease as before. That this effect
is due to the enhancement of the relative contribution
to the cross section from terms associated with the
crossed products of the anomalous parameters can be
demonstrated by considering the example of changes
undergone by the allowed region in the λZ–kZ plane
(compare Figs. 6 and 7): upon going over from the
kinematical region I to the kinematical region II, the
relative orientation of the allowed regions obtained
from data on the angular and energy distributions of
product positrons (regions enclosed by the dotted and
the dashed curve) changes—in the case of cut I, the
allowed regions appear to be coaxial ellipses, while,
in the case of cut II, the ellipse of the allowed region
from data on the positron energy rotates, which is
obviously due to a change in the relative contribution
to the cross section from the term associated with
λZ × kZ . The resulting constraint is then represented
by the intersection of the two ellipses.
By combining data on the distributions for W

and e+, one can obtain eventual constraints on the
deviations of the parameters from the SM values
(since the individual constraints for the two cuts differ
insignificantly, in contrast to the allowed regions for
the parameter pairs, we present these constraints for
cut II):

−0.014 ≤ ∆kγ ≤ 0.017,

−2.5 × 10−2 ≤ λγ ≤ 3.65 × 10−2,

−0.09 ≤ ∆gZ ≤ 0.13, (14)

−0.022 ≤ ∆kZ ≤ 0.063,

−1.83 × 10−3 ≤ λZ ≤ 6.05 × 10−4.

We can compare these results with the constraints
following from an analysis of data obtained at the
Tevatron and LEP II.
For the anomalous three-boson parameters, the

constraints (at a 95% C.L.) obtained from an anal-
ysis of Tevatron data under the assumption that the
boson coupling constants are identical forWWγ and
WWZ vertices are as follows [12]:

−0.43 ≤ ∆kγ,Z ≤ 0.59,
−0.34 ≤ λγ,Z ≤ 0.36,
−0.60 ≤ ∆gZ ≤ 0.81.

For the anomalous coupling constants, a fit to LEP II
data that is aimed at searches for anomalous bo-
son interactions (under the assumption that ∆kZ =
∆gZ − ∆kγ tan2 θW and λZ = λγ) yielded the val-
ues [1]

kγ = 1.11+0.25
−0.25 ± 0.17,

λγ = 0.10+0.22
−0.20 ± 0.10,
HYSICS OF ATOMIC NUCLEI Vol. 64 No. 9 2001



ANOMALOUS THREE-BOSON COUPLING CONSTANTS 1653
gZ = 1.11+0.19
−0.18 ± 0.10,

where the first and the second error are, respectively,
statistical and systematic.
Comparing these constraints with the results that

are presented in (14) and which are expected from
experiments at a future linear collider, we can see
that the existing constraints can be toughened by at
least one order of magnitude.6) It should be empha-
sized that the constraints from data on the process
e+e− → eWν studied at a future linear collider can
compete with the constraints from data on the pair
production of W bosons as well, since, in relation
to e+e− → W+W−, the process e+e− → eWν, for
example, possesses an anomalously high sensitivity
to the parameter λZ .

The constraints in (14) on the anomalous parame-
ters correspond to a future linear collider of integrated
luminosity L = 50 fb−1; however, versions of collider
operation with an integrated luminosity of L = 100 or
500 fb−1 are considered to be quite realistic for the
TESLA project. It would be of interest to trace the
changes that the resulting constraints would under-
go in response to the corresponding increase in the
number of events of the reaction being considered.
Since the most stringent constraints on the anoma-
lous parameters come from an analysis of data on the
distribution of the positron scattering angle, we will
consider the constraints following from precisely this
distribution at the above three values of the integrated
luminosity. For the kinematical cut II, the allowed
regions in the planes of parameter pairs are presented
in Fig. 8 for L = (dashed curve) 50 fb−1, (dotted
curve) 100 fb−1, and (solid curve) 500 fb−1. It can be
seen that the increase in the luminosity leads to much
more stringent (by about 50%) constraints both for
individual anomalous parameters and for their pairs.
This suggests that, for the process being considered,
the statistical error is dominant in the bins of the
distributions.

3.4. SEWS Scenario

Within the SEWS scenario, the model-independ-
ent parametrization (1) and the parameters describ-
ing anomalous boson interactions in this scenario
are related by Eqs. (8); owing to this, the number
of independent parameters reduces to two (for the
chosen new-physics scale of Λ = 2 TeV), L9L and
L9R. The constraints on the parameters L9L and
L9R (at a 95% C.L.) from an analysis of data on the

6)In Figs. 4–7, we do not present constraints from Tevatron
and LEP II data, since these constraints considerably exceed
the scale chosen for these figures.
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Fig. 8. Allowed regions in the planes of the parameter
pairs at L = (dashed curve) 50, (dotted curve) 100, and
(solid curve) 500 fb−1 from an analysis of data on the
positron angular distribution for the kinematical cut II.

transverse-momentum, angular, and energy distri-
butions of W bosons are presented in Figs. 9a and
9b for cuts I and II, respectively. Analogous con-
straints from data on the positron distributions are
displayed in Figs. 9c and 9d. It can be seen that
1
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distributions of the (a, b)W boson and (c, d) positron in
the case of cuts (а, c) I and (b, d) II. The allowed regions
are enclosed by the relevant contours.

the most stringent constraints follow from data on the
transverse-momentum distribution of the W boson
and the angular distribution of the positron. These
data determine individual constraints on the parame-
ters L9L and L9R; at the same time, it is necessary to
combine data on all distributions in order to constrain
a region in the plane of the two parameters, since the
resulting allowed region of their values appears to be
the intersection of the allowed regions obtained from
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Fig. 10. Regions of allowed values of the SEWS parame-
tersL9L andL9R (at a 95%C.L.) according to an analysis
of data on the transverse-momentum distribution of the
W boson for cut II at the collider integrated luminosity
of L = (solid contour) 500, (dotted contour) 100, and
(dashed contour) 50 fb−1.
P

each of the distributions. From Fig. 9, it can be
seen that a transition from cut I to cut II leads to a
noticeable contraction of the allowed regions in the
L9L–L9R plane.
An increase in the collider luminosity also tough-

ens considerably the constraints on the parameters
L9L and L9R. In Fig. 10, this effect is illustrated
by the example of the evolution of the L9L–L9R al-
lowed region obtained from data on the transverse-
momentum distribution of theW boson for cut II.
By combining data on the distributions of the W

boson and the positron, we can obtain individual
constraints on the parameters L9L and L9R. For cut
II, the table lists the resulting constraints (at a 95%
C.L.) for the aforementioned three values of the col-
lider luminosity. These results can be compared with
the constraints from data obtained at other colliders.
Precision measurements of the partial widths of theZ
boson at LEP I [13] suggest that

−28 ≤ L9L ≤ 27, (15)

−100 ≤ L9R ≤ 190.

The constraints that are expected on the basis of the
LEP II data are [14]

−41 ≤ L9L ≤ 26, (16)

−100 ≤ L9R ≤ 330.

Investigations for LHC (for
√
s = 14 TeV and an

integrated luminosity of 100 fb−1) reveal [15] that the
LHC data would make it possible to constrain the
parameter L9 at a level of 10. It can be seen that the
constraints on the parameters L9L and L9R from data
on the process e+e− → eWν studied at a new linear
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Fig. 11. Regions of allowed values of the parameters
L9L and L9R for an electron–positron collider (

√
s =

500 GeV, L = 50 fb−1) from (region encircled by the
solid contour) an analysis of data on the process e+e− →
W+W− and (region encircled by the dashed contour)
an analysis of data on the transverse-momentum dis-
tribution of the W boson originating from the reaction
e+e− → eWν for cut II.
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Table

L, fb−1 L9L L9R

50 −2.27–3.93 −4.60–6.95
100 −2.08–2.67 −3.48–4.63
500 −1.18–1.34 −1.97–2.28

collider will be much more stringent than constraints
attainable at LEP and LHC.
The above constraints on the parameters L9L and

L9R from data on the process e+e− → eWν supple-
ment those that follow from data on pair W -boson
production at a future linear collider. Figure 11
shows the regions of allowed values of the param-
eters L9L and L9R for an electron–positron collider
(
√
s = 500GeV,L = 50 fb−1) (region encircled by the

solid contour) according to an analysis of data on the
process e+e− → W+W− [16] and (region encircled
by the dashed contour) according to an analysis of
data on the transverse-momentum distribution of the
W boson in the process e+e− → eWν for cut II. As
can be seen from the figure, the contours in question
encircle different regions of L9L and L9R values, so
that a global analysis of data on the two processes will
make it possible to reduce considerably the resulting
region of allowed parameter values.

4. CONCLUSION

We have analyzed the possibility of setting con-
straints on anomalous three-boson coupling con-
stants on the basis of data on single W -boson
production in the process e+e− → e+W−ν that are
expected to come from a future 500-GeV linear
electron–positron collider. For the detector to be
used in the relevant experiments, we have considered
two possible implementations corresponding to the
kinematical cuts | cos θe+| ≤ cos 7◦ and | cos θe+| ≤
cos 1.5◦ on the product-positron scattering angle.
We have studied the case of a model-independent
parametrization of anomalous boson interactions
and the so-called SEWS scenario, which also leads
to the emergence of anomalous WWZ(γ) vertices
and which is characterized by a strong coupling of
interactions responsible for electroweak-symmetry
breaking.
For the case of a model-independent parametriza-

tion, it has been shown that, in contrast to the process
of pair W -boson production, the process e+e− →
e+W−ν is highly sensitive to the parameter λZ . By
combining data on the distributions of the cross sec-
tion forW and e+ from the process e+e− → e+W−ν
as implemented at a future 500-GeV linear electron–
positron collider of integrated luminosity 50 fb−1, it
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 9 200
will be possible to set the following constraints on the
anomalous parameters (at a 95% C.L.):

−0.014 ≤ ∆kγ ≤ 0.017,

−2.5 × 10−2 ≤ λγ ≤ 3.65 × 10−2,

−0.09 ≤ ∆gZ ≤ 0.13,
−0.022 ≤ ∆kZ ≤ 0.063,

−1.83 × 10−3 ≤ λZ ≤ 6.05 × 10−4.

These constraints are much more stringent than
those that have already been obtained from LEP II
and Tevatron data.
The corresponding constraints in the case of the

SEWS scenario are
−2.27(Λ/2 TeV)2 ≤ L9L ≤ 3.93(Λ/2 TeV)2,

−4.60(Λ/2 TeV)2 ≤ L9R ≤ 6.95(Λ/2 TeV)2.

It has been shown that, both in the case of a model-
independent parametrization and in the case of the
SEWS scenario, relaxing the cut on the scattering
angle leads to a sizable contraction of allowed regions
in the planes of parameter pairs. The constraints
that can be attained have also been analyzed for the
collider-operation modes characterized by integrated
luminosities of 100 and 500 fb−1. It has been indi-
cated that the constraints that follow from data on the
process e+e− → eWν supplement those that were
previously obtained on the basis of data on pair W -
boson production.
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Abstract—A model (of the type of the Nambu–Jona-Lasinio model) where the t and the b quark
simultaneously acquire dynamical masses mt and mb is constructed to describe a dynamical breakdown of
chiral and weak SUL(2) symmetry. That the ratio x = mb/mt is small may imply that, at high energies, the
energy scales of isoscalar vector exchange and isoscalar scalar exchange between the quarks are markedly
different (MV ∼ √

xMS). The spectrum of composite scalar states of the model and the mechanism that
causes the transformation of Goldstone bosons of the systemunder consideration into components of vector
bosons of local SUL(2) symmetry are investigated. c© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Two unexpected features of third-generation
quarks attract particular attention. These are a very
large value of the t-quark mass, mt � 170–180 GeV,
and a very large difference between the b- and the
t-quark mass, mt/mb ≈ 40.

In the Standard Model (SM), both factors are
fixed by a direct choice of the corresponding Yukawa
coupling constants that determine the interaction of
t and b with the scalar field φ that is common to all
quarks; that is,

∆L = −ft[(t̄Riφ+a
C qaLi) + h.c.] (1)

−fb[(b̄Riφ+aqaLi) + h.c.],

φ =
(
φ+

φ0

)
, φC = iσyφ

∗, qL =
(

t

b

)

L

,

a = t, b, i = 1, 2, . . . , Nc,

where Nc is the number of colors and L and R are
the quark helicities. The difference of mt and mb is
directly represented in (1) with the aid of the phe-
nomenological relation

ft � 40fb. (2)

So large a difference does not seem appropriate
for the interaction with the same fundamental field.
Along with other numerical regularities found in the
SM (for example, the hierarchies of the mass genera-
tions and of the elements of quark-mixing matrices),
relation (2) furnishes yet another reason to conjecture
that the SM and the numerical constants in it have
profound dynamical foundations and that they are
pieces of evidence in favor of the existence of a consis-
tent high-energy scheme for which the Lagrangian in
1063-7788/01/6409-1657$21.00 c©
(1) is as an effective low-energy limit. In this case, ft
and fb would be functions of high-energy properties.
They could arise as different dynamical structures
originating from markedly different sources. A con-
siderable distinction between ft and fb (mt and mb)
would then be quite natural. Searches for physical
explanations of these puzzles began long ago.

The large value of the t-quark mass mt led to
the hypothesis that the Higgs field φ and particle
emerging as the result of a spontaneous breakdown of
chiral symmetry in the system of strongly interacting,
оriginally massless t quarks have a composite char-
acter (t color [1]). The Nambu–Jona-Lasinio model
[2] was proposed as appropriate example to analyze
the possible occurrence of such a situation.

This model is based on four-fermion interaction.
In order to choose its form that would be adequate
to our further objectives, we use the method that,
at low energies and for the simplest case of fb = 0,
leads to a system that reproduces the basic properties
of the SM [3]. For this purpose, we integrate the
system specified by Lagrangian (1) with respect to the
“auxiliary” field φ at a large fixed mass scale M . At
fb = 0, we have

−ft(t̄Rφ+qL) + h.c.−M2φ+φ (3)

= −M2

∣∣∣∣φ +
ft
M2

(t̄RqL)
∣∣∣∣
2

+
f2
t

M2
(q̄LtR)(t̄RqL)

→ f2
t

M2
(q̄LtR)(t̄RqL) → Gt(q̄LtR)(t̄RqL).

The high-energy constant Gt is taken to be an
arbitrary quantity that is different from f2

t /M
2 (ft is

the low-energy Yukawa coupling constant).
2001 MAIK “Nauka/Interperiodica”



1658 DYATLOV
At Nc � 1, the coupling Gt ensures chiral-
symmetry breaking and the emergence of the mass
mt 	= 0 as a solution to the gap equation in the
Nambu–Jona-Lasinio model [2]:

1 − βtJ(mt) = 0, (4)

J(m) =
1

M2

∫
d4p

π2i

1
m2 − p2

fM(p),

βt =
GtNcM

2

8π2
. (5)

Here, M is the cutoff scale in the Nambu–Jona-
Lasinio model. At energies E 
 M , there arises, in
our model, a scalar state that is similar to the Higgs
particle in the SM. An appealing feature of the critical
problem in the Nambu–Jona-Lasinio is that almost
all qualitative properties are independent of the choice
of a cutoff function fM (p)—that is, of the way in
which the quadratically divergent integral in (4) is
treated.

The nonrenormalized four-fermion coupling (3)
can be considered as an effective low-energy (E ∼
mt) interaction for some consistent theory existing at
energies E � M . On the other hand, this coupling
(3) could arise as the high-energy limit (E � mt) for
such an SM where there is no fundamental Higgs
boson, where the field φ is composite, and where the
boundary conditions for the renormalization-group
equations within the SM are dictated by the condi-
tions of the composite nature of the field φ (the cor-
responding renormalization constants are Z = 0 for
p2 > M2). The qualitative properties of such an SM
and of the Nambu–Jona-Lasinio model are similar,
and this similarity was comprehensively studied in [3].

As to the inclusion of the mass mb and of the small
ratio x = mb/mt in the analysis, there are two ap-
proaches to explaining the the enormous distinction
between mb and mt.

(i) The first employs independent spontaneous
symmetry breaking associated with the fb term
[as in (3)]. Two massive scalars are present here
at low energies [4]. Hence, the low-energy limit
of the corresponding Nambu–Jona-Lasinio model
appears to be a nonminimal SM involving two Higgs
scalars φt and φb. The condition x 
 1 is introduced
phenomenologically by assuming that the relevant
dynamical vacuum expectation values satisfy the
strong inequality 〈φt〉 � 〈φb〉.

(ii) In the second approach, radiative corrections
in some new perturbative interaction generate a mass
mb that is expressed in terms of the dynamically
arising mass mt. A perturbative character of the
new interaction explains the smallness of the ratio x.
However, this approach obviously requires inventing
new interactions and fields adequate to the pursued
goal [5].
P

Apart from this, a small mass mb is included in
the scheme of the spontaneous generation of mt in an
ad hoc manner, in which case one neglects SUL(2)
symmetry and resulting inconsistencies (see [3]).

The objective of this study is to construct and
investigate a model where the dynamical generation
of mt and mb occurs simultaneously. In this model,
there arises, in the low-energy region (E ∼ mt), only
one composite scalar state, as in the minimal SM.
At SM energies, we want to have an effective La-
grangian of the type in (1) and to develop, for such
systems, a physical interpretation of the resulting
large distinction between the masses mt and mb .

The model in question partly reproduces mecha-
nisms of the types in (1) and (2). Specific points
of the model-parameter space correspond to these
mechanisms. But apart from these points, a large
distinction between mt and mb in the most natural
and significant part of the parameter space can be
interpreted as existence of two different energy scales,
at high energies (much higher than the SM energies),
for two different physical phenomena, scalar and vec-
tor exchanges between the quarks.

It is also shown how the vector W bosons develop
a longitudinal component under the conditions of the
complex phase transition being considered (see Ap-
pendix).

2. CHOICE OF MODEL

We reproduce the transformation in (3) with La-
grangian (1); that is, we integrate the system specified
by Eq. (1) with respect to the imaginary and the real
part of the auxiliary field φ. At the mass scale M , we
obtain
−ft[(t̄Rφ+a

C qaL) + h.c.] − fb[(b̄Rφ+aqaL) + h.c.] (6)

−M2φ+φ → 2{Gt(t̄RqaL)(q̄aLtR)

+Gb(b̄RqaL)(q̄aLbR) +
1
2

√
GtGb[(q̄aRq

a
L)(q̄a

′
R qa

′
L )

−(q̄aRq
a′
L )(q̄a

′
R qaL) + h.c.]

}
,

where Ga = f2
a/M

2 and a, a′ = t, b. The last brack-
eted term on the right-hand side of Eq. (6) can be
recast into the form√

GtGb[(t̄RtL)(b̄RbL) − (t̄RbL)(b̄RtL) + h.c.].

It should be borne in mind that, if we consider
(6) as an effective interaction arising from a high-
energy consideration, this formula does not involve
all possible four-fermion terms—only those of them
appear that affect the equations for masses and the
spectra of scalar (pseudoscalar) particles.

Obviously, three terms in the braces on the right-
hand side of (6) possess substantially different prop-
erties. The first two of these are invariant under
HYSICS OF ATOMIC NUCLEI Vol. 64 No. 9 2001
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SUL(2) transformations. The symmetry of the third
term is SUL(2) × SUR(2) . If expression (6) is an ef-
fective low-energy interaction calculated within some
theory that is consistent at high energies (E > M),
the distinctions between these three terms in (6) must
be due to dynamical reasons.

One possibility is obvious here. After the Fierz
transformation, the first two terms on the right-
hand side of (6) become vector–vector products
of isosinglets and describe the coupled transitions
t̄RtR � q̄LqL � b̄RbR. These contributions appear
to be a “result” of vector exchanges between the
quarks, the helicity being conserved in their vertices
(L � L, R � R). Exchanges generating the third
term can have vector vertices in none of the channels.
There, R � L transitions occur, which are charac-
teristic of scalar (or tensor) exchanges. Therefore, we
can deal with high-energy exchanges that are indeed
dissimilar and which are characterized by physically
different structures (see Section 1 above).

From the viewpoint of any physical hypothe-
sis, however, it is difficult to explain, within this
conceptual framework, the relation G =

√
GtGb

between three coupling constants of the Nambu–
Jona-Lasinio model because of the independence
of the contributions in Lagrangian (6). The only
reasonable way out is to consider the model specified
by Eq. (6) with fully independent constants Gt, Gb,
and G. Again, these constants are not directly related
(∼ f2

a/M
2) to the low-energy constants ft and fb.

But of course, Gt, Gb, and G are inversely propor-
tional to the squares of their mass scales. Since
the constants Gt and Gb describe the dynamically
coupled channels, their scale factors must be iden-
tical. Therefore, it is natural for Gt and Gb to be
close quantities, parameters on the same order of
magnitude. At the same time, both the scalar scale
and the constant G can have sharply different values.

In this study, we will therefore consider the model
characterized by the interaction

Lint = Gt(t̄RqaL)(q̄aLtR) + Gb(b̄RqaL)(q̄aLbR) (7)

+
1
2
G[(q̄aRq

a
L)(q̄a

′
R qa

′
L ) − (q̄aRq

a′
L )(q̄a

′
R qaL) + h.c.].

Here, the parentheses imply summation over both the
spinorial and Nc color indices. It should be recalled
that, in the Nambu–Jona-Lasinio models, the num-
ber Nc of colors is large: Nc � 1.

To conclude this section, we note that the La-
grangian in (7) represents the most general form
of an SUL(2)-invariant four-fermion interaction that
belongs to the type of a scalar–scalar product. For-
mula (7) is a direct generalization of the well-known
SUL(2) × SUR(2)-symmetric Lagrangian [6]

δL = G[(ψ̄ψ)(ψ̄ψ) + (ψ̄iγ5τψ)(ψ̄iγ5τψ)], (8)
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 9 200
which is often used to simulate a spontaneous break-
down of chiral invariance and the generation of pseu-
doscalar states in QCD [7].

3. SET OF GAP EQUATIONS

If chiral symmetry is broken in quark interaction,
the equations for the quark self-energy have non-
vanishing solutions at a nonzero momentum (p 	=
0). Within Nambu–Jona-Lasinio models involving
a large number of colors, these are precisely masses
generated by symmetry breaking. They are order
parameters in the problem, and it is customary to refer
to these equations for masses as gap equations [2].

For Nambu–Jona-Lasinio models, a conventional
procedure consists in taking into account, in the
lowest order in Nc, the one-loop contributions to
the equations for the self-energies [1–3]. For the
interaction in (7), we therefore have

βtJt + βxJb = 1, βbJb + β
1
x
Jt = 1, (9)

where Jt ≡ J(mt) and Jb ≡ J(mb) [J(m) is defined
by the integral in (4)]. The parameters βt, βb, and β
are expressed in terms of Gt, Gb, and G in just the
same way as in (5), and x = mb/mt.

The quadratically divergent integrals J(m), which
depend on the type of cutoff, can be calculated by
using the simplest cutoff form fM (p) = ϑ(M2 − |p|2).
The result is

J(m) = 1 − m2

M2
ln

M2

m2
. (10)

If we are interested only in a qualitative pattern of
the model, the representation in (10) is of no funda-
mental importance. But it can be used to get a clear
idea of the specific form and properties of J(m). The
choice of cutoff function becomes of importance only
when the Nambu–Jona-Lasinio model is used to ob-
tain numerical estimates—for example, to calculate
the masses of pseudoscalar bosons in QCD [7].

It can be seen from (10) that J(m) ≤ 1 (m > 0),
and this property remains unchanged for all reason-
able forms of cutoff.

A spontaneous breakdown occurs if the set of
Eqs. (9) has the solution mt > 0 and mb > 0. In the
simplest model where βb = β = 0, the equation

βtJt = 1 (11)

has a nontrivial solution at βt ≥ 1 (owing to the prop-
erty Jt < 1). The point βt = 1 is the critical temper-
ature of a phase transition; here, the masses (order
parameters) vanish.

For the set of Eqs. (9), the domain of existence (or
absence) of solutions depends on three parameters.
This comes as no surprise—a similar situation arises
1



1660 DYATLOV
in phase transitions, when, in addition to tempera-
ture, other parameters of the system (external fields,
pressure, and so on) are taken into account. The
region where there is no chiral-symmetry breaking
can easily be traced in Eqs. (9). It is the region where
the parameters are relatively small. Upon leaving this
region in various directions, we arrive at parameter
values yielding mt,b > 0; that is, a phase transition
has already occurred.

By eliminating the explicit dependence on x from
(9), we obtain

x =
1 − βtJt

βJb
=

βJt
1 − βbJb

. (12)

With the aid of (12), one can easily express Jb in
terms of Jt, and vice versa,

Jb =
1 − βtJt

(1 − βtJt)βb + β2Jt
, (13)

Jt =
1 − βbJb

(1 − βbJb)βt + β2Jb
,

and mb in terms of mt (or mt in terms of mb),

x =
(1 − βtJt)βb + β2Jt

β
, (14)

x =
β

(1 − βbJb)βt + β2Jb
.

Formulas (12)–(14) and the formula

(1 − βtJt)(1 − βbJb) − β2JtJb = 0, (15)

which is symmetric with respect to the interchange
of b and t, are of use in the calculations performed
in the sections that follow. From Eqs. (9), it can be
seen that the substitutions t � b, x � 1/x do not
obviously change the above formulas. This symmetry
is extensively used in Sections 4 and 5, and it is also
helpful in checking the calculations. If the quark
masses satisfy the condition mt,b 
 M , relation (15)
implies the need for the fine tuning of the parameters.
Indeed, it follows from (10) and (15) that a nontrivial
solution to the set of Eqs. (9) exists in the region

(1 − βt)(1 − βb) − β2 � O

(
m2

M2

)
(16)

[here, we have disregarded the term ln(M2/m2)].
Such fine tuning is necessary for m 
 M in any
Nambu–Jona-Lasinio model [by way of example, we
indicate that, for (11), βt � 1 + O(m2/M2)] and is
one of the manifestations of the hierarchy problem [3].

Despite the approximate relation (16), we actu-
ally have three parameters for two equations in (9).
Therefore, the existence of solutions with necessary
properties is beyond any doubt. To demonstrate this,
we invert the problem and, at given mt and mb (that
P

is, at given x, Jt, and Jb), express βt and βb in terms
of β:

βt =
1 − βxJb

Jt
, βb =

1 − β(1/x)Jt
Jb

. (17)

Themodel being considered includes both approaches
(i) and (ii) mentioned in the Introduction. Two low-
energy scalars emerge in the region of very small
values of β (at β � m2

t,b/M
2, as will be seen in the

next section) and when the critical parameters βt and
βb are both greater than unity. The radiative version
of the origin of mb would correspond to βb = 0—that
is, x = βJt—when the mass mb is expressed in terms
of mt and the small constant β ∼ x, as it must be
in cases where the mass is calculated in terms of
radiative corrections. On the other hand, β > 0 and
βt remains less than unity—that is, it does not reach
the critical value: mt = 0 if we set β = 0. If, at the
same time, β emerged owing to perturbative scalar
exchanges, we could neglect it without introducing
substantial changes in the spectrum of the system.
Therefore, there is actually no perturbative version of
mb generation in the model being considered (at least
for 1 � x � m2/M2).

Another possible version of a x 
 1 solution could
be realized is the case of three large parameters,
β � x and βt ∼ xβb, |βb| � 1. Here, there of course
arises some version of a nonperturbative mechanism
. However, a large distinction (βt ∼ xβb) between
the uniform vector constants βt and βb seems a mere
statement of the fact (as in Yukawa coupling con-
stants within the SM) rather than a physical ex-
planation of the phenomenon. The point is that
the quantities Gt,b ∼ gt,b/M

2
V (βt,b ∼ Gt,bM

2) can-
not have different scale masses MV , as was indicated
above, since they describe the coupled transitions
t̄RtR � q̄LqL � b̄RbR. Therefore, the distinction
between Gt,b and G(b) is the distinction between the
dimensionless numerical quantities gt and gb.

The region |β| ∼ x, where βt and βb both appear to
be close to the critical point—that is, βt � 1 + O(x2)
and βb � 1 (βt is greater or less than βb, depending on
the the sign of β)—is the most natural region for the
emergence of a x 
 1 solution. Here, the condition
x 
 1 must be interpreted as the distinction between
the mass scales of vector and scalar exchanges:

MV ∼
√
xMS . (18)

In this region and for x � m2
t,b/M

2, the disregard
of small β (as has already been mentioned, this is
possible if β emerges owing to switching on some
perturbative coupling at high energies) does indeed
strongly change the spectrum of the system: at β > 0,
βt and βb are less than unity and we have a subcritical
case; hence, mt = mb = 0. For β < 0, the inequality
HYSICS OF ATOMIC NUCLEI Vol. 64 No. 9 2001



MASSES OF THE t AND THE b QUARK AND THEIR MASS RATIO mb/mt 1661
mb > mt would hold. Therefore, β is not a perturba-
tive quantity. The version in (18) seems the simplest
and most natural explanation of the large distinction
between the masses of the t and the b quark in the
case where both of them arise as the result of a spon-
taneous breakdown of chiral SUL(2) symmetry.

4. SCALAR AND PSEUDOSCALAR STATES

Composite bosons of the scalar and the pseu-
doscalar channel are also the standard subjects of
investigation in Nambu–Jona-Lasinio model. We
now recall how this is done for the simplest case of
βb = β = 0.

In the lowest approximation in Nc, the amplitude
for q̄q scattering is represented as the sum of chain
diagrams. Within each one-loop link, the helicity
of the quark pair can either be conserved or change.
Because of this, the link (one-loop contribution) A
is a matrix in the helicity indices α = L,R; Oα =
1/2(1 ± γ5). The amplitude B—that is, the sum of
the chain contributions—is then expressed in terms
of the matrix reciprocal to 1 − βA:

B =
8π2β

NcM2

1
1 − βA

. (19)

Here, β is the four-fermion coupling constant (5),
and the matrix Aαβ can easily be written in an ex-
plicit form (for qαq̄β with masses m1 and m2). In
a form symmetric with respect to the interchange of
m1 and m2, the one-loop contribution with incoming
4-momentum q has the form (see, for example, [8])

Aαβ(q) = − 1
M2

∫
d4p

π2i
(20)

×1
2
tr
{

m1 − (p̂ + q̂/2)
m2

1 − (p + q/2)2
Oα

m2 − (p̂− q̂/2)
m2

2 − (p − q/2)2
Oβ

}

Aαβ(q) = A
(1,2)
1 δαβ + A

(1,2)
2 δα−β

A
(1,2)
1 = − 1

M2

∫
d4p

π2i
(21)

× (p + q/2)(p − q/2)
[m2

1 − (p + q/2)2][m2
2 − (p− q/2)2]

,

A
(1,2)
2 = −m1m2

M2
I12(q) (22)

I12(q) =
∫

d4p

π2i

1
[m2

1 − (p + q/2)2][m2
2 − (p− q/2)2]

(the cutoff function fM is not presented explicitly). By
using the relation
(
p +

q

2

)(
p− q

2

)
= −1

2

[
m2

1 −
(
p− q

2

)2
]

(23)

−1
2

[
m2

2 −
(
p− q

2

)2
]

+
1
2
(m2

1 + m2
2 − q2),
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A1 can be reduced to the form

A1(q) = −1
2
J1 −

1
2
J2 −

q2

8M2
c (24)

+
1
2
m2

1 + m2
2 − q2

M2
I12(q),

where J1 and J2 are quadratically divergent integrals
of the form (4) and c is a constant that depends on the
choice of cutoff [c = 1 at fM = ϑ(M2 − p2)].

By setting m1 = m2 and taking into account (11),
we obtain the ordinary statement [2] that there exists
a scalar pole at q2 = 4m2 (c = 0) and a pseudoscalar
Goldstone particle (q2 = 0):

BS(q) =
(4π)2

Nc(I(q) + c/4)

× 1
4m2/(1 + c/(4I(q)) − q2

(25)

BPS =
(4π)2

Nc[I(q) + c/4]
1

−q2
.

It should be noted that the residues at the poles do not
depend explicitly on β (they depend on it only through
the mass m).

For the model considered in this study, the cou-
pling constant β and the quantities A and B are the
matrix both in the helicity (α, β) and in the isotopic
(ā, b̄) indices. For the process qαā + q̄βb̄ → qα′ā′ +
q̄β′b̄′ , we write these matrices presenting all indices
explicitly, although their number can be reduced be-
cause, in the leading approximation in Nc, the rela-
tions α = −β and α′ = −β′ hold in the vertices given
by (7). Specifically, we have

βα
′ā′,β′b̄′

αā,βb̄
= [βαā,βb̄δαα′δββ′δāā′δb̄b̄′ (26)

+βδαβ′δβα′(δā′ b̄′δāb̄ − δā′āδb̄′ b̄)]δα−β ,
where βRt,Lb̄ = βLāRt = βt and βRb,Lb̄ = βLāRb = βb.

In the expression for the one-loop contribution
(all indices refer to the internal lines), the matrix is
diagonal in the isotopic indices:

Aα′ā′,β′b̄′

αā,βb̄
(27)

=
(
Aāb̄

1 δα′αδβ′β + Aāb̄
2 δα′−αδβ′−β

)
δα−βδāā′δb̄b̄′ .

According to (26), we seek the reciprocal matrix
(1 − βA)−1 = B̄ in the form

δαα′δββ′
[
B̄1δāā′δb̄b̄′ + B̄2 (δā′ b̄′δāb̄ (28)

−δā′āδb̄′ b̄)] + δα−α′δβ−β′
[
B̄3δāā′δb̄b̄′

+B̄4 (δā′ b̄′δāb̄ − δā′ āδb̄′ b̄)
]
.

The quantities B̄i depend on the isotopic indices
of the scattering channel being considered. Written
immediately below are the equations for B̄i in various
1
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channels (four equations for possible changes in the
isotopic content and helicity).

(i) For t̄t → t̄t and t̄t → b̄b ((1 − βA)B̄ = 1), we
have

(1 − βtA
tt
1 )B̄tt

1 − βtA
tt
2 B̄

tt
3

−Att
2 βB̄

tb
2 −Att

1 βB̄
tb
4 = 1,

−Att
2 βtB̄

tt
1 + (1 − βtA

tt
1 )B̄tt

3

−Att
1 βB̄

tb
2 −Att

2 βB
tb
4 = 0, (29)

−Abb
2 βB̄tt

1 −Abb
1 βB̄tt

3

+ (1 − βbA
bb
1 )Btb

2 − βbA
bb
2 Btb

4 = 0,

−Abb
1 βB̄t

1t−Abb
2 βB̄tt

3 − βbA
bb
2 B̄tb

3

+ (1 − βbA
bb
1 )B̄tb

4 = 0.

(ii) For b̄b → b̄b and b̄b → t̄t, the set of equations is
analogous to that in (29) with the substitution t ⇔ b,
their determinants being coincident.

(iii) For the charged channels t̄b → t̄b, we have

[(1 − βbA
tb
1 ) − βAtb

2 ](B̄1 − B̄2)tb

+ (βAtb
1 − βtA

tb
2 )(B̄3 − B̄4)tb = 1, (30)

(βAtb
1 − βbA

tb
2 )(B̄1 − B̄2)tb

+ [(1 − βtA
tb
1 ) − βAtb

2 ](B̄3 − B̄4)tb = 0

for tR scattering and the analogous set of equations
with the substitution t � b for tR scattering, the
determinant taking the same value in the two cases.

By substituting (22) and (24) into (29) and (30),
we can calculate the determinants of these sets of
equations, which characterize the possible scalar
states. It should be emphasized that |A2| 
 |A1|
at m2

t,b, |q2| 
 M2 and that there are small terms
∼ m2/M2 in A1, which seem negligible. However,
the limiting transition β → 0, in which there must
arise independent low-energy states φt and φb and
charged Higgs particles characteristic of a nonmini-
mal SM, can be traced only if we retain all orders of
smallness. In addition, this makes it possible to follow
the fate of all four scalar states of each channel with
increasing β and to prove that Goldstone states are
present in the system under conditions (9), irrespec-
tive of relations between m2

t,b, q
2, and M2. In view

of all this, the determinants of the sets of Eqs. (29)
and (30) were calculated here without recourse to any
approximation. The single simplification is that we
set the constant c to zero in (24). This, however, does
not change any of the significant features.

For the determinant of the set of Eqs. (29) (neutral
channel), we thus have

Det(0) =
−q2

M2

mtmb

M2
β

(
It

1
x

+ Ibx

)

P

×
[
β

(
It

1
x2

+ Ibx
2

)
+

2mtmb

M2
ηItIb

]

+
1
2

(
−q2

M2

)2

ItIb

[
β2 + 2β

(
It

1
x2

+ Ibx
2

)

× mtmb

M2
η + 2ItIb

(mtmb

M2

)2
η2

]
(31)

+
1
4

(
−q2

M2

)2

β

[
I2
t

(
β

x2
+

2mtmb

M2
Ibη

)

+ I2
b

(
βx2 +

2mtmb

M2
Itη

)]

+
1
4

(
−q2

M2

)3

ηItIb

[
It

(
β

x
+

m2
b

M2
Ibη

)

+ Ib

(
βx +

m2
t

M2
Itη

)]
+

1
16

(
−q2

M2

)4

η2I2
t I

2
b ,

where It = I(q,mt) and Ib = I(q,mb) are determined
by (22) and η = βtβb − β2 characterizes the deviation
from the case where there is one Higgs boson and
where we have G2 ≡ GtGb [see (6)].

In calculating Det0 and in reducing the result to
the form (31), use has extensively been made of (9)
and (12)–(15). It is for this reason that formula (31)
does not involve the quadratically divergent integrals
Jt and Jb. The masses mt and mb appear as solutions
to the set of Eqs. (9); therefore, we must take into
account Eqs. (9) in going over to the limit associated
with masses (for example, mb → 0) in (31). Solutions
to Eq. (31) are composite scalars or pseudoscalars
of the system under investigation. For the neutral
channel, these are the poles of the amplitude for the
three reactions

t̄t → t̄t, b̄b → b̄b, t̄t � b̄b,

which conserve and change the helicity of particles
and antiparticles.

As might have been expected on the basis of trans-
formation (6), Eq. (31) at η = 0 has only two roots,
that for q2 = 0 and that for

q2 = m2
φ ≈ 4mtmb

It(1/x2) + Ibx
2

It(1/x) + Ibx
(32)

= 4
Itm

4
t + Ibm

4
b

Itm4
t + Ibm

4
b

,

which correspond to the Goldstone state and to a
composite analog of the Higgs boson φ. At mt =
mb—that is, at x = 1—we obtain the well-known
Nambu–Jona-Lasinio formula m2

φ = 4m2 [2]. The
functions It(q) and Ib(q) are given by (22) at m1 =
m2. They depend logarithmically on q2. We disregard
this dependence.
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Another limiting case, that of β → 0, was men-
tioned in Section 3. For this case, we have

Det(0) =
1
4

4m2
t − q2

M2

−q2

M2
(βtIt)2 (33)

× 1
4

4mb − q2

M2

−q2

M2
(βbIb)2.

Here, the denominator in expression (19) for the scat-
tering amplitude splits into two independent parts,
the poles corresponding to the neutral components of
two scalar isodoublets (composite Higgs fields φt and
φb) that suffered a spontaneous breakdown of SUL(2)
symmetry. There are four neutral states and, as will
be seen below, four charged states. Three massless
state form a Goldstone isovector. Four massive (two
neutral and two charged) states and one massless
state would be the candidates for observed bosons.
The calculation of the amplitudes in (19) at β = 0
proves a nonminimal character of the system. By
way of example, we indicate that, for the channel
b̄b → b̄b, which conserves the particle helicity, the
denominator of the amplitude [it corresponds to the
minor of Eqs. (29)] can be represented as

βb
2m2

b − q2

2M2
Ib

−q2

2M2
It ·

(4m2
t − q2)

2M2
β2
t . (34)

Substituting this expression into (19) and taking into
account (33), we then arrive at expression (25) with
the pole at 4m2

b . A similar result is valid for other
channels (b � t,mb � mt). The situation with two
scalar fields is conserved up to β � mtmb/M

2.
Let us proceed to analyze the region β ∼ x �

mtmb/M
2. For q2 
 M2, we obtain the approximate

expression

Det(0) =
−q2

M2

mtmb

M2

{
β2

(
It

1
x

+ Ibx

)2

(35)

× [m2
φ(q) − q2] + O

(
mtmb

M2
,
−q2

M2

)}
,

where m2
φ is given by (32). Thus, we see that, at

energies much lower than the cutoff value M , there
are two scalar states corresponding to the minimally
broken SM.

Knowing two roots of Eq. (31)—q2 = 0 and q2 ≈
m2
φ—we can easily determine the positions of the two

other roots. In the region being considered, β ∼ x
and the approximate solution (correct to one power
of m2

t,b/M
2) makes it possible to find two more roots:
(
−q2

M2

)

1

� −2β
It(1/x) + Ibx

ηItIb

+O

(
m2
t ,m

2
b ,mtmb

M2

)
, (36)
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(
−q2

M2

)

2

� −2β
It(1/x) + Ibx

ηItIb
.

The second root does not involve ∼ m2
t,b/M

2 con-
tributions. It can be proven that ∼ m2

t,b/M
2 con-

tributions do not vanish for β → 0. It follows that,
in this limit, one of the roots can be equal to zero,
while the other provides a finite mass, this being
consistent with our calculations for β = 0. In the re-
gionm2

t,b/M
2 
 β ∼ x 
 1, the roots occur near the

cutoff boundary in the model. If we again disregard
the weak dependence of It,b on q2, then

(q2)1,2 ∼ M2β

x

1
η
∼ M2. (37)

Actually, there are therefore no roots (36) in the
model (for β > 0, they can be tachyons); that is, their
inclusion is meaningless within our consideration. It
follows that, with the exception of the point β � 0, the
model specified by Eq. (7) corresponds to the minimal
SM at energies E 
 M .

It only remains to perform a similar analysis for the
charged channel. By substituting formulas (24) and
(22) into the determinant of the set of Eqs. (30), we
obtain (c = 0)

Det(±) =
m2
t −m2

b

2M2
[Itb(q) − Itb(0)] (38)

×
{
βt − βb + η

m2
t −m2

b

2M2
[Itb(q) − Itb(0)]

}

+
−q2

2M2
Itb(q)

[
β

(
x +

1
x

)
+ η

m2
t + m2

b

M2
Itb(q)

]

+
(

−q2

2M2

)2

ηI2
tb(q),

where the function Itb(q) is determined by the integral
in (22) at m1 = mt and m2 = mb. The dependence
on the cutoff mass M is canceled in the difference
Itb(q) − Itb(0). At small q2, we have

[Itb(q) − Itb(0)]
1
q2

=
1
2

m2
t + m2

b

(m2
t −m2

b)
2

(39)

+
m2
tm

2
b

(m2
t −m2

b)
3

ln
m2
t

m2
b

.

Formulas (12)–(15) have been again used widely to
reduce Det(±) to the form (38).

In Det(±), the Goldstone root q2 = 0 is also
present, as it must. At η = 0, the other roots are
absent and we are dealing directly with the minimally
broken SM according to (6). At β = 0, the massive
charged-scalar state

q2 � 2(m2
t + m2

b) + O

(
m2

ln (M2/m2)

)
(40)
1
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manifests itself in addition to the Goldstone root.
In deriving (40), it should be borne in mind that, at

β = 0, βt − βb ∼ (m2
t /M

2) ln (M2/m2
t ) [this follows

from the gap Eqs. (9)]. It was mentioned above that,
at β = 0, there are in total four charged states of finite
mass. Thus, the spectrum of the charged channels
complements the picture up to a nonminimal SM that
involves two Higgs scalars.

At |β| � m2
t,b/M

2, a charged massive particle has
a mass of about M—that is, on the order of cutoff
boundary. There only remain the states that corre-
spond to the minimal SM with a single composite
Higgs particle.

Thus, we have constructed a model that describes
a spontaneous breakdown of chiral SUL(2) symmetry
and which is characterized by a simultaneous dynam-
ical generation of the masses of both components of
the weak doublet of quarks, t and b. At SM ener-
gies, there appears only one composite scalar boson.
Hence, the low-energy situation in this model is fully
analogous to the minimal SM.

The large difference of the t- and the b-quark
mass, x = mb/mt 
 1, can suggest that, at high
energies, there exist phenomena whose energy scales
differ considerably from one another.
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APPENDIX

Here, we demonstrate how the well-known Higgs
phenomenon (even the theorem) of the transforma-
tion of a Goldstone state into the longitudinal com-
ponent of a weak massive vector meson W acts in the
intricate situation being considered.

First, it is useful to recall how this occurs in the
SM with the fundamental Higgs field φ, which is
a doublet of weak SUL(2) symmetry. Breaking the
symmetry, the field φ forms the condensate

φ(x) =
1√
2
(η + χ) exp

[
iϕa(x)

τa

2

](
0
1

)
, (A.1)

where η is a vacuum expectation value, χ(x) is the
field of the massive Higgs boson, and ϕa(x) is the
isovector Goldstone field. The interaction between φ
andW leads to the emergence of the longitudinal self-
energy W not vanishing at q = 0, that is, to the mass
MW ,

Πµν(q) =
(
gµν −

qµqν
q2

)
g2
2η

2

4
,

P

MW =
g2η

2
, (A.2)

where g2 is the semiweak coupling constant. The
point is that, owing to the interaction with the mass-
less field ϕa(x), W may transform into a Goldstone
state. This leads to the existence of the pole in the
self-energy W . Therefore, the propagator W (in an
arbitrary gauge) has the form

Dµν(q) =
gµν − (qµqν/q2)

q2 −M2
W

+
α(q2)
q2

qµqν
q2

=
gµν − (qµqν/M2

W )
q2 −M2

W

+
qµqν
q2

(
1

M2
W

+
α

q2

)
.

(A.3)

For the sake of simplicity, we set α = 0—otherwise,
we would have to consider the Goldstone boson with
mass m2

g = −(1/2)M2
W (it would be generated by the

transition ϕ → W → W → ϕ).
In quark–quark scattering processes, it is neces-

sary to take into account both the exchange of a W
boson and the exchange of a Goldstone boson ϕ. At
q2 ≈ 0, the W -boson contribution is given by

qµqν
q2

1
M2
W

, (A.4)

and the interaction of the W boson and the quark is

Q̄g2Ŵ
a1
2
(1 + γ5)

τa

2
Q, Ŵ a = W a

µγ
µ. (A.5)

While the singular contribution of the Goldstone
boson is −q−2, the contribution of its interaction with
quarks can be represented as

Q̄mQiγ5
τaϕa

2
Q . (A.6)

Formulas (A.5) and (A.6) make it possible to cal-
culate the residues of both poles at q2 = 0.

The calculation of two singular contributions
demonstrates that they are canceled. After that, there
only remains the contribution of the massive part of
the propagator in (A.3).

A similar cancellation of the singular parts must
occur in the present model of a composite Higgs
boson.

The self-energy W is the sum of the contributions
of two diagrams in Fig. 1. But only the diagram in
Fig. 1b involves the contribution of the Goldstone
pole of the quark–quark scattering amplitude. This
diagram determines exclusively M2

W and, hence, the
singular parts of the self-energy (A.2) and of the
W -exchange term in (A.4). The contribution of the
diagram in Fig. 1a does not involve singularities and
can determine only the renormalization of the charge
g2 (see [3]). This contribution involves a quadratically
HYSICS OF ATOMIC NUCLEI Vol. 64 No. 9 2001
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divergent part, and the presence of this indetermi-
nate form can be used to recast the total self-energy
Πµν(q) into a gauge-invariant transverse form, in-
cluding the singular contribution of the diagram in
Fig. 1b. Let us fix the indeterminate form by setting
Πµνqµ = Πµνqν = 0. There is then no need for taking
care that the singular contribution is transverse, and
the mass W can be determined, as in (A.2), directly
from the diagram in Fig. 1b. For the charged boson
W±, we have(

−g2Nc√
2

)∫
d4p

(2π)4i
tr
{
γµ

1
2
(1 + γ5)

× mb + (p̂− q̂/2)
m2
b − (p− q/2)2

×
[
1
2
(1 + γ5)〈tLb̄R| +

1
2
(1 − γ5)〈tR b̄L|

]

× mt + (p̂ + q̂/2)
m2
t − (p + q/2)2

}
|g〉 1

−q2
〈g|

×
(
−g2Nc√

2

)∫
d40

(2π)4i
tr
{
γν

1
2
(1 + γ5)

× mt + (0̂ + q̂/2)
m2
t − (0 + q/2)2

[
1
2
(1 + γ5)|tR b̄L〉

+
1
2
(1 − γ5)|tLb̄R〉

]
mb + (0̂− q̂/2)
m2
b − (0− q/2)2

}
.

We have represented the amplitudes in the symbolic
form 〈tb̄|g〉〈g|tb̄〉/(−q2), since they are different for
different processes. Upon evaluating the traces, we
obtain

Πsing
µν (q) =

1
−q2

2g2
2

[
Nc

(4π)2

]2 ∫ d4p

π2i

d40

π2i

×
[
m2
t

(
p− q

2

)

µ

(
0− q

2

)

ν
〈tRb̄L|tRb̄L〉

+ m2
b

(
p +

q

2

)

µ

(
0 +

q

2

)

ν
〈tLb̄R|tLb̄R〉 (A.7)

+ 2mtmb

(
pµ0ν −

1
4
qµqν

)
〈tLb̄R|tRbL〉

]

× 1[
m]t2 − (p + q/2)2

] [
m2
b − (p− q/2)2

]

× 1[
m2
t − (0 + q/2)2

] [
m2
b − (0− q/2)2

] .

The brackets denote the residues of the amplitudes
(coefficients of −q−2). Apart from a constant under
the logarithm sign in ln(M2/(mtmb)), the integrals
in (A.7) can be expressed in terms of Itb(q) given by
(22); that is,
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Fig. 1. Self-energy diagrams for the weak gauge bo-
sonW .

∫
d4p

π2i

(p∓ q/2)λ
[m2

t − (p + q/2)2][m2
b − (p − q/2)2]

(A.8)

= ∓1
2
qλItb(q).

The charged-channel amplitudes are calculated
according to (19) with the matrices β and B̄ from for-
mulas (26) and (30) in the approximation x ∼ |β| �
mtmb/M

2. For three residues written in (A.7), we
obtain (recall that x = mb/mt)

B(±)(q) =
1

−q2

(4π)2

NcItb(q)
(A.9)

×
(

1
1 + x2

,
x2

1 + x2
,

−x

1 + x2

)
.

The substitution of (A.8) and (A.9) into (A.7)
yields

M2
W =

1
2
g2
2Nc

(4π)2
(m2

t + m2
b)Itb. (A.10)

In order to complete the calculation of the singular
contribution (A.4), it is necessary to apply the product
qµqν to the quark vertices for the interaction in (A.5).
For expression (A.7) or (A.9), we obtain

g2
2

2
(m2

t ,m
2
b ,−mtmb). (A.11)

For the singular part of the contribution ofW , we then
have expression (A.9), but with the inverse sign.

To conclude, we present formulas resulting from
analogous calculations for the neutral channels (W3;
the weak interactions of t and b have opposite signs).
The hypercharge interaction (as in the SM) is not
considered for the sake of simplicity.
1
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The singular part Π(0)
µν (q) arises in the form (as

before, brackets denote the corresponding residues at
q2 = 0)

Π(0)
µν (q) =

qµqν
−q2

g2
2

2

[
Nc

(4π)2

]2

(A.12)

× {m2
t [〈tL t̄R|tL t̄R〉 − 〈tLt̄R|tRt̄L〉]I2

t (q)

+m2
b [〈bLb̄R|bLb̄R〉 − 〈bLb̄R|bRb̄L〉]I2

b (q)

− 2mtmb[〈tL t̄R|bLb̄R〉 − 〈tLt̄R|bRb̄L〉]It(q)Ib(q)}.
The residues can be calculated from the amplitudes of
the corresponding processes [formulas (19), (26), and
(29)] in the same approximation x ∼ β � m2

t,b/M
2.

We present the results according to the order in which
these processes appear in formula (A.12):

B(0)(q) =
8π2

Nc (It(1/x) + Ibx)
(A.13)

×
m2
φ(q)

(−q2)(m2
φ(q) − q2)

λ,

λ =

{
1
x

(
1 + 2

−q2

m2
φ

)
,−1

x
; (A.14)

x

(
1 + 2

−q2

m2
φ

)
,−x;−1, 1 + 2

−q2

m2
φ

}
.

PH
For the W3 mass, we have

M (0)2 =
1
2
g2
2Nc

(4π)2
(Itm2

t + Ibm
2
b). (A.15)

A comparison of the singular contributions from W
and from the Goldstone particle shows that they of
course cancel each other.
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Abstract—Arguments against the traditional Yukawa-type approach to NN intermediate- and short-
range interaction due to scalar–isoscalar and heavy-meson exchanges are presented. Instead of the
Yukawa mechanism for intermediate-range attraction, some new approach based on the formation of a
symmetric six-quark bag in the state |(0s)6[6]X , L = 0〉 dressed owing to strong coupling to π, σ, and
ρ fields is suggested. This new mechanism offers a strong intermediate-range attraction, which replaces
effective σ exchange (or excitation of two isobars in the intermediate state) in traditional force models. A
similar mechanism with the production of a vector ρmeson in the intermediate six-quark state is expected
to lead to a strong short-range spin–orbit nonlocal interaction in the NN system, which may resolve
the long-standing puzzle of the spin–orbit force in baryons and in two-baryon systems. The effective
interaction in the NN channel provided by the new mechanism will be enhanced significantly if the partial
restoration of chiral symmetry is assumed to occur inside the six-quark symmetric bag. A simple illustrative
model is developed that demonstrates clearly how well the suggested new mechanism can reproduce NN
data. Strong interrelations have been shown to exist between the proposed microscopic model and one-
component MoscowNN potential developed by the authors previously and also with some hybrid models
and the one-term separable Tabakin potential. The new implications of the proposed model for nuclear
physics are discussed. c© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Since the mid-1930s, when Yukawa proposed [1]
his classical theory of the nuclear force based on
meson exchange between nucleons, this concept, al-
though improved and also partially modified over the
last half century (see, e.g., [2, 7] and some reviews
of studies done until 1978 in the book of Brown
and Jackson [8]), has basically remained the same:
the nuclear force is assumed to originate from the
exchange of one or a few mesons between isolated
nucleons. Though other channels with one or two
∆ isobars in the intermediate state have also been
added to the nucleon one in the last two decades [5,
6], isobars interact via meson exchange.

A large variety of potential models based on this
concept have been suggested in recent years to de-
scribe the NN interaction, which fit very accurately
experimental data onNN scattering up to the energy
of 300 MeV in the laboratory frame.

However, with the accumulation of many new data
in the field of hadron physics, it has become more and

∗This article was submitted by the authors in English.
1)Institut für Theoretische Physik, Universität Tübingen, Auf
der Morgenstelle 14, D-72076 Tübingen, Germany.
1063-7788/01/6409-1667$21.00 c©
more evident that traditional NN interaction models
(i.e., those that are based on the meson-exchange
concept) suffer from numerous inner inconsistencies
and discrepancies—for example, the same meson–
nucleon form factors must have different types of
short-range behavior in describing very similar pro-
cesses. In particular, the same functional form of
the πNN form factor FπNN (q2) must have very dif-
ferent cutoff parameters ΛπNN in describing elastic
and inelastic NN scattering or in describing two-
body 2N and three-body 3N forces [9], etc. (Some
other examples of such inconsistencies are discussed
in Section 2.)

At the same time, due to radical improvements
in the accuracy and the reliability of dynamical few-
nucleon calculations, one also begins to find some
numerous disagreements between new experimental
data and the results of the most accurate Faddeev
calculations (for a list, although far from complete,
of such disagreements in few-nucleon calculations
see, e.g., [9]). It is very instructive that many of
such disagreements cannot be removed by introduc-
ing phenomenological 3N forces in the calculations
[9–12].
2001MAIK “Nauka/Interperiodica”
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Some recent studies in the field that are based on
chiral perturbation theory (χPT) may serve as a very
clear indicator of the degree of our understanding (or
misunderstanding) of the fundamental NN interac-
tion. This is especially true for the studies reported
in [13, 14]. There, the authors showed that, within
chiral perturbation theory, it is impossible to describe,
without introducing any cutoffs, all the lowest partial
waves even if one incorporates the excitation into
intermediate ∆ isobars and the exchanges of vector
(ρ and ω) mesons. Thus, a quantitative descrip-
tion of the lowest partial waves with L = 0–2 up to
Elab = 300 MeV requires going beyond the frame-
work of χPT. This problem becomes more urgent
in passing to the intermediate-energy region around
Ec.m. � 1 GeV, where a strong coupling to meson-
production channels will render the application of
χPT even more complicated.

On the other hand, we consider critically here the
problem of the existence and the role, in the funda-
mental NN force, of a scalar–isoscalar light meson,
usually referred to as the σ meson. The exchange
of a σ meson is considered in traditional one-boson-
exchange (OBE) models as a main contribution re-
sponsible for the strong intermediate-range attrac-
tion between nucleons and eventually as the main
component of nuclear binding (e.g., in the Walecka
model). Very numerous attempts at finding a well-
developed resonance in the S-wave ππ system have
been undertaken in recent years (see, e.g., the recent
review [15]). According to the latest data [16], there is
only a smooth ππ resonance with a large width.

Moreover, very recent studies of different groups
have demonstrated [13, 14, 17] that the exchange of
a correlated ππ pair in an S state between nucleons
leads to a repulsive rather than an attractive con-
tribution to the NN interaction. Thus, we should
attribute the NN intermediate-range attraction to
the generation of two intermediate ∆ isobars (or at
least to an N∆ intermediate state) [13, 14]. But,
as will be argued in Section 3, this intermediate ∆∆
state strongly overlaps the symmetric six-quark state
|(0s)6[6]X , L = 0, 2〉; thus, the above ∆∆ state can
be replaced by an intermediate symmetric six-quark
state strongly coupled to the 2π channel. Thus, we
have tried to circumvent the problem in the treatment
of lower partial waves by refraining from the basic
Yukawa idea of meson exchange between (isolated)
nucleons and to develop some new interaction mech-
anism on the basis of a quark model where quarks are
strongly coupled to chiral fields.

Our treatment is essentially based on group-
theoretical considerations of symmetries, on alge-
braic recouplings in the six-quark system, and on
the specific role played by the fully symmetric six-
quark state |(0s)6[6]X [fCS ]〉 in the NN interaction
P

in lower partial waves. In particular, one could even
expect that such a fully symmetric 6q state, due to the
maximal overlap of all six quarks (which implies some
enhancement of qq̄ fluctuations inside such a state),
may lead in the direction of a phase transition of the
chiral symmetry restoration. This Goldstone limit, or
even just an approach to this limit, means, in accor-
dance with the variational principle, the appearance
of a strong additional attraction between quarks and,
hence, also between two nucleons at an intermediate
range (i.e., at distances of rNN ∼ 0.7–1.2 fm, where
such a dressed six-quark bag is localized).

The proposed mechanism is illustrated by a simple
model in Section 4. In particular, that simple model
can describe perfectly all lowerNN phase shifts in the
rather wide energy range 0–600 MeV.

The organization of this paper is as follows. In
Section 2, we offer a critical look on OBEmodels and
discuss the difficulties of traditional meson-exchange
models with anomalously high cutoff parameters Λ
and also with respect to their application to few-
nucleon problems. Section 2 also includes a critical
discussion of the scalar-meson puzzle in the light
of some new results. In Section 3, we describe in
detail the new model for intermediate- and short-
range interaction and compare it with the traditional
Yukawa mechanism of σ and ρ exchange. A simple
illustrative model that describes all lower NN phase
shifts in the energy range 0–600 MeV is described
in Section 4. Section 5 is devoted to interrelations
between theNN-interaction model suggested in this
study and other models proposed previously. In the
Conclusion, we summarize the main results of our
study. Some algebraic details required for deriving
the basic formulas and some tables of the group-
theoretical algebraic coefficients are presented in the
Appendix.

2. CRITIQUE OF THE BASIC ASSUMPTIONS
OF OBE MODELS

AND THEIR PREDICTIONS

Despite the relative success in the description
of low-energy NN scattering data up to Elab =
350 MeV, traditional OBE models based on the
initial Yukawa meson-exchange mechanism for the
nucleon–nucleon force suffer from some inner con-
tradictions and inconsistencies. These contradictions
concern not only with the description of NN data
themselves but also with the description of few-body
data. All these contradictions and inner inconsisten-
cies seem to be hardly removable today, because they
concern, as a rule, many independent experiments or
various basic theories.
HYSICS OF ATOMIC NUCLEI Vol. 64 No. 9 2001
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2.1. Range of theNN Force due
to Heavy-Meson Exchange and Quark Radius

of the Nucleon

While the range of the π-exchange force λπ �
1.45 fm is much larger than the quark radius of the
nucleon, 〈rN 〉 � 0.6 fm, so that Yukawa π exchange
may be considered to occur mainly between two sep-
arated nucleons, the exchange of heavy mesons (with
masses m ≥ 600 MeV) occurs mainly at distances
of rm � 0.2–0.8 fm, where two nucleons strongly
overlap. Thus, this heavy-meson exchange happens
mainly in the field of all six quarks of the participat-
ing nucleons. Hence, in OBE models using such
a heavy-meson mechanism, it is necessary, first of
all, to justify the employment of “free-space” meson–
nucleon coupling constants and cutoff form factors.
As a result of this, all existing OBE models have
severe problems with short-range cutoff parameters
Λ [6, 7, 9, 18, 19] (see especially the severe cri-
tique in [18]). Thus, all short-range parts of OBE
potentials are treated in a purely phenomenologi-
cal way [5–8], but by using, at the same time, the
Yukawa framework, which looks rather inadequate
for such short ranges. Very recently, an attempt [13,
14] undertaken to refrain from this short-range phe-
nomenology, but still staying within the framework of
a meson-exchange model (with a perturbative chiral-
field treatment of two-pion exchange), demonstrated
very clearly that models that incorporate one- and
two-boson exchange are able to describe only higher
NN partial waves. Hence, the description of lower
partial waves requires a nonperturbative dynamical
treatment.

This difficulty with cutoff parameters is especially
evident in the values of ΛπNN , which can be de-
rived from the theory of πNN form factors [18, 20–
22] and even from direct N(e, e′π)N ′ experiments in
which a pion is knocked out from the pion cloud of
the nucleon by fast electrons [23]. In any case, the
values of ΛπNN taken in all OBE models to fit NN
data lie in the interval ΛOBE

πNN � 1.3–2.0 GeV [6, 18],
while all the above-mentioned direct estimates and
experiments result in the values of ΛπN+theor

πNN � 0.4–
0.8 GeV; i.e., the discrepancy is within a factor of
1/3 to 1/4 or even less. Moreover, the choice of the
strongly increased values of ΛπNN � 1.3–2.0 GeV in
microscopic nuclear models results in a strong en-
hancement of the pion field inside nuclei [24], which is
in drastic disagreement with many observations (see
numerous examples in the review article [24]).2) Also,

2)For example, the high sensitivity of the pion-cloud terms to
the value of the cutoff ΛπNN in the πNN vertex and the en-
hancement of the pion light-cone momentum distribution in
the nuclear medium were especially emphasized by Thomas
[25] (see also [26]).
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high Λ values were found to be incompatible with
recent experiments on the Drell–Yan process [27].

The large value of ΛπNN � 1.3–2.0 GeV also
seems incompatible with the description of pion
production in the process pp→ pnπ+ [28] and also
with elastic backward p+ d scattering [19]. There
are also many other pieces of evidence that point very
unambiguously to the need for soft cutoff parameters
ΛπNN and ΛρNN for both the πNN and ρNN form
factors (see, e.g., [29]). Last but not least, the 3N-
force models (via pion exchanges), which describe
accurately the 3N and 4N systems [30–32], still
require a soft cutoff parameter ΛπNN .

Quite a similar situation is observed for other
mesons, like σ, ρ, and ω, as well. For these, one
also needs large cutoff parameters Λ in OBE models
in contradiction to values given, e.g., by the vector-
dominance model (in the case of ρ mesons). In
total, the problem with artificially enhanced values of
the cutoff parameters seems almost unavoidable in
OBE models. For example, in attempts at solving
this problem, Ueda [33] proposed adding three-pion-
exchange contributions in the form of πρ and πσ
terms and also some “heavy”-pion (Π) exchange. He
found again that the cutoff parameter ΛΠNN for the Π
meson should be about 3GeV (!) to fitNN scattering
data. A similar critique of the short-range part of
the NN interaction in the current OBE models (but
much less detailed than in the present paper) was
presented by the Bochum group [18].

2.2. Few-Body Puzzles Originating
from the Application of Conventional

NN-Interaction Models
to Precise Few-Nucleon Calculations

In recent years, serious disagreements with ac-
curate modern experimental data were found in
high-precision few-nucleon calculations that use
the most realistic conventional NN potentials for
low (<200 MeV) and intermediate energies (200–
300 MeV) [12, 31, 34, 37].3)

(i) Long-standing disagreements have been found
since the mid-1970s in 3N- and 4N-binding ener-
gies. A strong underbinding found in the 3N and 4N
ground-state energies was explained long ago with a
significant contribution from a meson-exchange 3N
force [30, 31]. However, this 3N force did not help
to understand quantitatively some other 3N puzzles.
For example, it was demonstrated very recently [38,
39] that the conventional 3N forces used, while still

3)The present authors are deeply grateful to Prof. W. Gloeckle
and his coworkers in Bochum for detailed discussions on
their recent few-body calculations and our critique presented
here.
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helping to explain new p�d data, fail in the treatment
of new high-precision experiments that studied �pd
elastic scattering at energies EN � 150–300 MeV
into the backward hemisphere.

(ii) There is the well-known puzzle of the analyz-
ing power Ay for low-energy �nd and �pd scattering
[40]. The contribution of the traditional three-nucleon
force does not help to remove the Ay discrepancy.

(iii) Recently, it was found [38, 39, 41] that the so-
called Sagara puzzle (disagreement for the backward
Nd elastic scattering near the minimum of the cross
section) increases with growing energy. At Elab

N =
200 MeV, the disagreement is as large as 30%.4)

(iv) Quite remarkable disagreements for electro-
magnetic processes, like the reactions pp→ ppγ [42],
3He(e, e′p), and 3He(e, e′pp′) at moderate to high
momentum transfers and energies, were observed
[43, 44].

(v) Some evident discrepancies with data were
also found in recent four-nucleon calculations of the
Lisbon [36] and Grenoble groups [12] even at very
low energies in the range 1–6 MeV. However the
theoretical results of both groups are in very good
agreement with each other.

This list may be continued still further (see, e.g.,
the recent reviews [9]). It should also be noted here
that the current conventional NN models are able to
explain fully quantitatively many various data for few-
nucleon systems, first of all, due to a precise fit of
the on-shell NN amplitudes up to 400 MeV. How-
ever, the above few-body puzzles and disagreements
found very recently, together with long-standing puz-
zles, clearly signal that the existingNN-force models
(based on the meson-exchange mechanism) do not
include some important nontrivial contribution at in-
termediate and short ranges.

2.3. Scalar-Meson Puzzle and Problem
of the Intermediate-Range NN Force

The problem with scalar mesons and their role
in the hadron–hadron interaction attracts much at-
tention today (see, e.g., [15, 16, 45]). This interest
focuses on the experimental identification of scalar
mesons and on their contribution to the description
of hadron collisions—in particular, to the NN inter-
action.

According to the traditional point of view advo-
cated for a long time by many “constructors” of NN

4)If, however, the conventional 3N force is taken into account,
the disagreement is considerably reduced, but there instead
appears some larger disagreement for the vector (Ay) and
the tensor (Axx) analyzing power at the same backward
angles [38].
PH
potentials (see, e.g., [5, 6]), the exchange of the ππ
correlated pair in a relative S wave between two pions
in conjunction with the excitation of intermediate ∆
isobars is responsible for a strong intermediate-range
attraction between nucleons [5, 6, 46]. Further, in the
conventional picture, this strong attraction at short
distances is fully compensated by a strong repulsion
due to ω exchange [8, 47].

Very recently, however, it was found by two groups
independently [14, 17] that the ππ S-wave correlation
is unable to provide any intermediate-range attrac-
tion, but that it even results in a rather strong short-
and intermediate-range repulsion between nucleons
within the two-pion-exchange mechanism. Thus, in
the conventional meson-exchange mechanism, the
main intermediate-range attraction should be associ-
ated only with the excitation of intermediate-state ∆
isobars. Some independent arguments in favor of this
conclusion follow from the obvious failure to get this
strong attraction from various microscopic models
like the model of Skyrme soliton interaction and the
resonating-group-model (RGM) treatment with qq
interaction based on the Goldstone boson exchange
[48] in which the ∆∆-state (or ∆N-state) excitation
was neglected.

A second important argument comes from the ex-
perimental search for the low-mass scalar–isoscalar
meson [15, 45]. While the highly excited scalars
f0(1370) and f0(1500) were identified more or less
reliably in experiments, the identification of low-mass
scalar meson resonances (which one often refers to
as a σ meson and which one relates to the ππ S-wave
resonance) is not well accepted. The scatter of the
mass and width estimates for these states is extremely
large [15]. The estimates accepted today are as
follows [15]: mσ = 400–1200 MeV and Γσ = 300–
500 MeV; i.e., they are rather uncertain, although the
latest data corroborating a wide scalar–isoscalar res-
onance in ππ scattering appeared quite recently [16].
However, as was noted above, the large contribution
of the continuum part of ππ spectrum results in a
repulsive rather than in an attractive contribution to
the NN sector. Therefore, numerous attempts at
interpreting the basic internucleon attraction as that
which originates from a Yukawa-type exchange of a
heavy scalar meson do not seem very conclusive.

Nevertheless, there is no doubt that some scalar-
meson contribution (of the σ-exchange type) is
necessary for understanding numerous processes in
hadron physics, e.g., for πN and NN interactions.
Hence, the above deep contradiction should be some-
how resolved.

We propose here a new approach to solving this
puzzle. This approach is in part based on the assump-
tion that the particle-like scalar–isoscalar excitation
of the QCD vacuum, which is conventionally referred
YSICS OF ATOMIC NUCLEI Vol. 64 No. 9 2001
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to as the σ meson, should not be associated with this
wide resonance in the ππ systemwith a mass ofmσ ∼
600 MeV. Instead of this, the scalar excitation (with
a much lower mass of mσ ∼ 2mπ) must be consid-
ered as some sort of a quasiparticle excitation inside
hadrons—in particular, inside a multiquark bag [49].
On the basis of this assumption, it can be understood
very naturally why it was impossible to date to ob-
serve this “light” scalar particle in the ππ final-state
interaction. In [50], it was suggested that a similar
light scalar meson with a mass of about 2mπ can
be considered as a precursor of the chiral-symmetry-
restoration effect. Therefore, one can conclude that
such an exchange of a “light” scalar–isoscalar quasi-
particle may occur very naturally in the field of a dense
six-quark bag, but that such a “light” quasiparticle
cannot couple to isolated nucleons in free space.

These ideas lead very naturally to a new basic
mechanism of the intermediate-range NN interac-
tion presented in the following section.

3. DRESSED-BAG MECHANISM
FOR THE INTERMEDIATE- AND
SHORT-RANGE NN FORCE

From previous studies (see, e.g., [49–51]) devoted
to chiral-restoration effects in multiquark systems or
in high-density nuclear matter, it follows that some
phase transition may occur when the quark density
or the temperature of the system is increased. This
phase transition leads to a restoration of broken chiral
symmetry. Whatever the particular mechanism of
restoration of the chiral symmetry is, the most prob-
able consequence of the (partial) restoration should
be the strengthening of the σ-meson field in the NN
overlap region. This could be simulated by the “dress-
ing” of the most compact six-quark configurations
|s6[6]XL = 0〉 and |s5p[51]XL = 1〉 inside the NN
overlap region with an effective σ-meson field.

In order to give to the reader some clue to the pro-
posed mechanism, we display the respective graphs
in Fig. 1. The Yukawa one-meson-exchange mecha-
nism displayed in Fig. 1a is confronted with the new
s-channel mechanism of the dressed-bag intermedi-
ate state in Fig. 1b. The two-pion state produced in
the lower vertex in Fig. 1b is modified in the high-
density six-quark bag in which chiral symmetry may
be at least partially restored [49]. The “σ” or a
similar light scalar–isoscalar meson is assumed to
exist only in a high-density environment and not in a
vacuum, in contrast to the π and ρ mesons. It will be
demonstrated here that this mechanism, being com-
bined with an additional orthogonality requirement,
can describe both the short-range repulsion and the
intermediate-range attraction and can replace the t-
channel exchange of σ and ω mesons in the conven-
tional Yukawa-type picture of the NN force.
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 9 200
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Fig. 1. (a) Traditional t-channel meson-exchangemech-
anism, along with the new s-channel “dressed”-bag
mechanism (b) forNN interaction.

Instead of the light “σ” meson in Fig. 1b, other
mesons like π and ρ can also be considered within this
mechanism. The contributions of π, σ, and ρ mesons
will depend on the total angular momentum and on
the spin–isospin and permutation symmetry of the
corresponding six-quark state. Thus, we adopt the s-
channel quark–meson intermediate states, the tran-
sition amplitude being determined by s-channel sin-
gularities in sharp contrast to the Yukawamechanism
driven by t-channel meson exchange (see Fig. 1a).
Surely, together with this specific six-quark mecha-
nism, we should also take into consideration the tra-
ditional Yukawa mechanism for π, 2π, and ρ (but not
σ) exchanges between isolated nucleons. However,
these meson-exchange contributions are significant
only at separations beyond the intermediate six-quark
bag or in high partial waves (L > 3). In the low-
est partial waves, the intermediate dressed six-quark
bag makes a dominant contribution to the total NN
interaction. It is appropriate to refer henceforth to
the present microscopic force model as a Moscow–
Tübingen dressed-bag model.

It is worth noting that the above-mentioned
“compact” s6 and s5p 6q configurations are usually
included in RGM calculations for the NN system,
but they play quite a passive role in the standard
RGM approach, providing only the “dying-out” of
the NN wave function at a short range as the result
of the destructive interference between the nonexcited
s6 and s5p and the nearest excited s4p2(L = 0) and
s3p3(L = 1) configurations in even- and odd-parity
states. In our model, we use the “dressed bags”
(DB) ΨLDB = |s6 + σ〉 or |s5p+ σ〉 instead of the
“bare” quark configurations s6 and s5p in the RGM
approach.

In this analysis, we employ the results of previous
studies in this field [52–58]. The six-quark wave
function in the NN-overlap region in low partial
waves (L = 0–3) can be represented as a restricted
sum of the shell-model configurations satisfying the
Pauli exclusion principle (with the restriction to con-
figurations with only minimal numbers of harmonic-
1
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oscillator quanta) [52–54, 57]:

Ψ6q → |(0s)6[6]X , [fCS ], L = 0;ST 〉 (1)

+
∑

f ′

Cf ′ |(0s)4(1p)2[42]X , [f ′CS ], L = 0(2);ST 〉

for even waves ([fCS] = [23] for ST = 10 and [2212]
for ST = 01) and

Ψ6q → |(0s)5(1p)[51]X , [fCS ], L = 1;ST 〉 (2)

+
∑

f ′

Cf ′ |(0s)3(1p)3[32]X , [f ′CS ], L = 1(3);ST 〉

for odd waves ([fCS] = [2212] for ST = 00 and [321]
for ST = 11), where [f ′CS ] = [42], [321], [23], [313],
[214] are all possible color–spin (CS) Young dia-
grams for the inner product [23]C ◦ [42]S for S =
1 and [f ′CS] = [23]C ◦ [32]S = [32], [412], [2212], [16]
for S = 0.

For example, in the triplet S- and D-wave NN
scattering (in the deuteron channel, L = 0, 2, ST =
10, JP = 1+), the allowed six-quark configurations

d0 = |(0s)6[6]X , [23]CS , L = 0;ST = 10〉, (3)

dL=0,2
f ′ = |(0s)4(1p)2[42]X , [f ′CS ],

L = 0, 2;ST = 10〉
correspond to state vectors of very different nature:
while the unexcited six-quark state d0 corresponds
to the maximal overlap of all six quarks, the states
withmixed symmetry dLf ′ ,L = 0, 2 lead to cluster-like
nodal NN relative-motion wave functions | 2s(r)〉
and | 2d(r)〉 (see, e.g., [56]):

〈N(123)N(456)|d0〉 = Γd0U
NN
f0 | 0s(r)〉, (4)

〈NN |dL=0
f ′ 〉 = Γdf ′U

NN
f ′ | 2s(r)〉,

〈NN |dL=2
f ′ 〉 = Γdf ′U

NN
f ′ | 2d(r)〉,

where r =
1
3

(r1 + r2 + r3 − r4 − r5 − r6), |N(123)〉 =

|s3[3]X [21]CS〉 ∼ exp[− 1
2b

(
1
2
ρ2

1 +
2
3
ρ2

2)], b is the

“quark radius” of the nucleon (about 0.6 fm), ρ1 =

r1 − r2, ρ2 =
1
2

(r1 + r2) − r3, and f0 and f ′ are

the Young diagrams f0 = {[16]CST , [23]CS} and
f ′ = {[f ′CST ] , [f ′CS ]}. The quantities Γd0 = 1 and

ΓdL
f ′

= −
√

4
45

(L = 0, 2) are the coordinate parts of

the fractional-parentage coefficients (f.p.c.) of the
translationally invariant shell model (TISM), while
the UNNf0 and UNNf ′ are the respective CST parts of
them.

Therefore, we propose that, at short NN dis-
tances, the total (antisymmetrized) six-quark wave
PH
function of the system ΨLtot(6q) consists of two mu-
tually orthogonal parts: the “proper NN compo-
nent” ΨLNN (6q), which is dominated by the excited
six-quark configurations s4p2 at L = 0 (or the s3p3

at L = 1), and the “proper 6q component” ΨL0 (6q),
which is dominated by the compact configuration s6

(or the s5p at L = 1). Thus, when projecting the
component ΨLNN (6q) onto the N(3q)N(3q) cluster
channel, we obtain theNN wave function ψLNN (r) =
〈N(123)N(456)|ΨLNN (6q)〉, which should be similar
to the nodal NN wave function of the Moscow po-
tential model [54, 58, 59].

In contrast to this clusterlike state ΨLNN (6q), the
s6 and s5p configurations are dressed by an enhanced
σ field (i.e., the DB components, e.g., ΨLDB = |d0 +
σ(ππ)〉) and play the same role in the hadronic sector
as the ∆∆ + ππ intermediate state in the standard
(hadron) models of the NN interaction (see, e.g.,
[5, 6] and references therein). However, the dressed
bag |6q + σ(ππ)〉 has a much more extended physical
content than the ∆∆ + ππ intermediate state in the
traditional NN models: (i) The six-quark part of the
DB implies a coherent sum over all possible baryon–
baryon pairs in the cluster decomposition 3q + 3q,
e.g., d0 = aNNNN + a∆∆∆∆ +

∑
ij aijCiCj , where

the factors aB1B2 are the (total) f.p.c. (ii) The σ-
meson (or π + π) part of the DB is probably en-
hanced owing to a (partial) chiral-symmetry restora-
tion, which implies the reduction of the σ-meson and
constituent quark masses [49, 51].

Thus, we can treat the DB states as a new com-
ponent in Fock space or a new (closed) channel in the
coupled-channel approach to the NN scattering and
write the total NN six-quark wave function ΨLJtot in
the form

ΨLJtot =



 ΨLJNN (6q)

ΨLJDB(6q + σ)



 , (5)

ΨLJDB(6q + σ) = ΨLJ0 (6q) × σ(ππ),

where the “proper” NN wave function ΨLJNN (6q) is
orthogonal to the six-quark part of the DB compo-
nent ΨLJ0 (6q) [54, 58, 59]:

〈ΨLJNN (6q)|ΨLJ0 (6q)〉 = 0, L = 0, 1. (6)

Our first task here is to evaluate the amplitude of
the transition from the proper NN state ΨL

′J
NN (6q)

[satisfying the orthogonality condition (6)] to the DB
state ΨLJDB(6q + σ). It implies the emission of a σ
meson (or the S-wave correlated π + π state) in a
transition from the initial s4p2(L′ = 0, 2) (or s3p3 at
YSICS OF ATOMIC NUCLEI Vol. 64 No. 9 2001
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L′ = 1, 3) six-quark configurations to the interme-
diate one s6(L = 0) + (ππ) [or s5p+ (ππ) at L = 1]
(see Fig. 2).

In the graph in Fig. 2, the pions are created in
S waves owing to the conservation of parity and
angular momentum. The intermediate six-quark
configuration s5p[51]X (denoted by a vertical dashed
line in the graph) for L = 0, 2 even partial waves in
the NN channel has fixed quantum numbers that
are determined by the initial (NN ) and intermediate
(“dressed”-bag 6q + σ) states. The second (after the
first pion emission) state in the ST = 01, JP = 0+

channel has quantum numbers of the so-called d′

dibaryon (see, e.g., [60, 61]):

|d′〉 = |(0s)5(1p)[51]X [321]CS , (7)

LST = 110, JP = 0−〉.
The transition into the ST = 10, JP = 1+ channel
proceeds via an intermediate state d′′, which is a
partner of d′ with S and T interchanged:

|d′′〉 = |(0s)5(1p)[51]X [2212]CS , (8)

LST = 101, JP = 1−〉.
It should be noted that both configurations d′ and

d′′ cannot decay into two-nucleon states since the
quantum numbers do not satisfy the Pauli exclusion
principle for two nucleons. Due to this feature,
they were considered previously as candidates for
narrow dibaryon resonances that were suggested
to be responsible for a resonance-like structure
observed in (π+, π−) double-charge-exchange pro-
cesses [60, 61].

The transition amplitude is calculated here within
the well-known quark-pair-creation model (QPCM)
[62] (see also [60, 61] for details). In the QPCM,
the transition operator for the emission of the pion πλ

(λ = 0,±) by a single (e.g., the sixth) quark in a six-
quark system can be written in the form [60]

H
(6)
λ (k6) = v τ

(6)
−λe

i 5
6
k6·ρ′

5Ô(6)(ρ5,ρ
′
5) (9)

× σ(6)

[
ωπ

2mq

(
2
i
∇ρ5 +

5
6
k6

)
+

(
1 +

ωπ
12mq

)
k6

]
,

where the nonlocal factor

Ô(6)(ρ5,ρ
′
5) = exp[−i1

2
k6(ρ5 − ρ′

5)]Ψπ(ρ5−ρ′
5),

ρ5 =
1
5

(r1 + r2 + . . . + r5) − r6 is proportional to

the pion wave function Ψπ. For the calculation, we
employ here shell-model quark configurations for the
pion and the σ meson [63],

πλ = |ss̄[2]XLST = 001Tz=λ JP= 0−〉, (10)

σ = |s2s̄2[4]X , LST =000, JP = 0+〉,
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Fig. 2. Graph illustrating two sequential π-meson emis-
sions and absorptions via an intermediate σ (or ρ) meson
and the generation of a six-quark bag.

with Gaussian wave functions, e.g., Ψπ(ρπ) ∼
exp(−ρ2

π/4b
2
π),ρπ(ij) = ri − rj , where bπ is the

“quark radius” of the pion (about 0.5b ≈ 0.3 fm). In
the limit of a pointlike pion [bπ → 0; i.e., Ψπ(ρπ) →
δ(ρπ)], the operator H(6)

λ in (9) tends to the standard
pseudovector (PV) quark–pion coupling and the
phenomenological constant v in (9) becomes the PV
coupling constant:

v = −i fπqq
mπ

1
(2π)9/2(2ωπ)1/2

; (11)

here, fπqq should be normalized to the well-known

pion–nucleon PV coupling constant: fπqq =
3
5
fπNN .

The π + π → σ transition amplitude was found
[63] to be proportional to the overlap of the two pion
and the σ-meson wave functions:
〈π(k)π(k′)|Hππσ|σ〉 = fππσFππσ((k − k′)2), (12)

F (k2) = exp
(
−1

2
k2b2σ

)
.

Here, bσ is a characteristic scale of the σmeson in the
ππ channel. When this expression is compared with
(9) and (11), it becomes obvious that

fππσ=
gππσ

(2π)3/2(2ωπ(k6))1/2(2ωπ(k5))1/2(2ωσ(k))1/2
,

where gππσ is the standard ππσ coupling constant.
The NNL=0,2(s4p2) → d′(d′′) + π → 6q(s6) + σ

transition amplitude can be written as a matrix
element of the transition operator ΩNN→d0+σ (the
nondiagonal coupling potential for the nucleon–
nucleon and bressed-bag states):

A
L=0(2)
NN→d0+σ(E;k) (13)

=
∫
d3rΨL=0(2)

NN (E; r) ΩNN→d0+σ(E; r,k).
1
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Here, ΨL=0(2)
NN (E; r) is the proper NN wave function

in the sense of Eqs. (5) and (6),E = 2mN + p2
N/mN ,

and the plane-wave approximation is used for the
intermediate DB state [this plane-wave state is just
included in the expression for ΩNN→d0+σ in (13)
through the elementary vertices 〈ππ|Hππσ|σ〉 and

〈d′(d′′)|H(5)
−λ|d0〉; see below].

The operator (nondiagonal potential) ΩNN→d0+σ
PH
corresponds to the left half of the graph in Fig. 2,
the six-quark state being projected onto the two-
nucleon clusters of the initial state. For the opera-
tor ΩNN→d0+σ, the total expression can be written
as an integral of the elementary six-quark transition
amplitude with respect to both inner coordinates of
quark clusters [N(123), N(456), π, and σ] and the
pion momenta k5 and k6 (see the triangle diagram in
Fig. 3):
ΩNN→d0+σ(E; r,k) = 15(2π)3

∫
d3k5

∫
d3k6 δ(k5 + k6 − k)

∑

λ

(−1)λ (14)

×
√

10 〈NN |H(6)
λ (k6)| d′(d′′)〉 〈d′(d′′)|H(5)

−λ(k5)| d0〉 fππσFππσ((k5 − k6)2)
[
md′ + k2

6/(2md′) + ωπ(k6) − E
] [
md0 + k2/(2md0) + ωπ(k5) + ωπ(k6) −E

] .
The numerical factor of 15 in front of the integral
takes into account the number of qq pairs in the six-
quark system. In calculating the amplitude in (13),
it is reasonable first to project the initial NN state
onto the basis of six-quark configurations |n, f〉 =
|snspnp [fX ] [fCS ]LST, JP 〉 by inserting the identity
operator

I =
∑

n,f

|n, f〉〈n, f | (15)

into the matrix element 〈NN |H(6)
λ (k6)|d′(d′′)〉 cor-

responding to the left vertex of the triangular graph
in Fig. 3 (the symbols n and f are defined here as
n = {ns, np}, f = {[fX ], [fCS ]}).

In the case of the emission of S-wave pions, only

the excited six-quark configurations dL=0(2)
f ′ in the

sum (15) are important [while the baglike configu-
ration d0 does not contribute to the amplitude (13)
because of the orthogonality condition (6) for the
wave function ΨLNN (E)]. Thus, one can decompose
the vertex matrix element N +N → d′(d′′) in the
integrand of (14) as

〈NN |H(6)
λ (k6)|d′(d′′)〉 (16)

=
∑

f

〈NN |dL=0(2)
f 〉 〈dL=0(2)

f |H(6)
λ (k6)|d′(d′′)〉

and use the overlap factors from (4).

All matrix elements of interest are calculated by
using the f.p.c. technique [53] (see also [60, 61] for
details) and are reduced to a standard form of the
vertex matrix element as the product of the vertex
constant vfπAB, the form factor FπAB(k2

i ), and the
kinematical factor ωπ(ki)/mqb (as was determined
earlier in [60]):

〈dL=0(2)
f |H(6)

λ (k6)|d′〉 (17)

= v
ωπ(k6)
mqb

fLπdfd′
FLπdf d′

(k2
6) Σdfd

′
T
dfd

′

−λ ,

〈d′|H(5)
λ (k5)|d0〉

= v
ωπ(k5)
mqb

fπd′d0Fπd′d0(k2
5) Σd

′d0 T d
′d0

−λ .

In (17), Σdfd
′
and T

dfd
′

−λ are transition operators in the
space of the total spin and isospin, respectively, of the
six-quark states df and d′; the transition form fac-
tors FL depend on the angular momentum L = 0(2)
of the initial state: FLπdfd′

(k2
6) = (1 + aL5k2

6b
2/24) ×

exp(−5k2
6b

2/24) and Fπd0d′(k
2
5) = exp(−5k2

5b
2/24),

where aL=0 = 4/19 and aL=2 = −13/43.
Substituting the vertex amplitudes (12), (16), and

(17) into (14), we find that, in the case of S and D
partial waves in the initialNN channel, the transition
operator (14) is given by the simple expression

ΩLNN→d0+σ(E; r,k) (18)

= gLe
−5k2b2/48DL(E, k) ×





|2s(r)〉, L = 0

|2d(r)〉, L = 2,

where gL stands for the effective strength constants
for the transitions N +N → d0 + σ from the initial
(clusterlike) NN states to the intermediate dressed-
bag configuration. Specifically, they are given by

gL =
f2
πqq

m2
π

gππσ
m2
qb

2 CL, (19)
YSICS OF ATOMIC NUCLEI Vol. 64 No. 9 2001
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CL = 15
√

10 fπd0d′
∑

f

fLπdfd′Γdf
UNNf

=
1

81
√

3






−19
√

5
6

, L = 0

43
3
, L = 2





≈ ∓10−1,

where the coefficients Γdf
and UNNf are defined ac-

cording to (4) and the vertex constants fπd0d′ and
gππσ are taken from (12) and (17).

The function DL(E, k) corresponds to the loop-
integration in Fig. 3. By denoting the variable of in-
tegration as q = k5 − k6, one can recast the integral
in (14) into the form

DL(E, k) =
1

128(2π)3
(20)

×
∫
d3q

[
1 +

5
24
aL

(
k− q

2

)2

b2

]
e−q

2B2

×
[(
md0 +

k2

2md0
+ωπ(

k − q
2

) + ωπ(
k + q

2
) − E

)

×
(
md′ +

1
2md′

(
k− q

2
)2+ωπ(

k− q
2

) − E

)]−1

with B2 = 5b2/48 + b2σ/8 and ωπ(k±q
2 ) =√

m2
π + (

p± q
2

)2.
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Thus, the calculation of the multiloop diagram in
Fig. 2 results in a separable amplitude of the NN
interaction, with left- and right-hand vertices being
represented in the form (18) [with DL(E, k) being
taken from (20)]; the loop integral over the inter-
mediate |0s6 + σ〉 state is expressed in terms of the
function (a generalized propagator of the dressed bag)

GLL′(E) =
4π

(2π)3

∞∫

0

k2 dk (21)

×
exp

(
− 5

24k
2b2

)
DL(E, k)DL

′
(E, k)

2ωσ(k)(E − E(k))
,

ωσ(k) =
√
m2
σ + k2, E(k) = md0 +

k2

2md0
+ ωσ(k).

In accordance with this, the contribution of the
mechanism displayed in the diagram in Fig. 2 to the
NN interaction in the S and D partial waves can be
expressed in terms of the matrix element

AL
′L
NN→d0+σ→NN (22)

=
∫
d3r′d3rΨL

′∗
NN (E; r′)V L

′L
E (r′, r)ΨLNN (E; r),

where V L
′L

E (r′, r) is a separable potential of the form
V L
′L

E (r′, r) =




g2

0G00(E)|2s(r′)〉〈2s(r)| g0g2G02(E)|2s(r′)〉〈2d(r)|

g2g0G20(E)|2d(r′)〉〈2s(r)| g2
2G22(E)|2d(r′)〉〈2d(r)|



 . (23)
This interaction operator mixes S andD partial waves
in the triplet NN channel; thus, it leads to a specific
tensor mixing with a range of about 1 fm (approxi-
mately equal to that of the intermediate DB state).

Thus, the proposed new mechanism of NN in-
teraction at intermediate and short ranges that is
induced by the intermediate dressed six-quark bag
|s6 + 2π〉 results in a specific matrix separable form
of interaction with nodal (in S and P partial waves)
form factors and a specific tensor mixing of new type
(see also [64]). This nodal behavior of form fac-
tors makes it possible to explain, within this mech-
anism, the origin of the NN repulsive core by the
nodes in transition form factors and by the condi-
tions additionally requiring thatNN and intermediate
6q-bag components be orthogonal. We can then
treat the expression derived for the NN-scattering
amplitude as an energy-dependent potential and solve
the Schrödinger equation with this potential. This
means some way of summation of an infinite series
of such loop diagrams.

In the case of (partial) restoration of chiral sym-
metry within the (compact) symmetric six-quark bag,
the effective σ-mesonmass andwidth should be lower
than their vacuum values (mσ tends to the two-pion
mass [50, 51]). It is possible that the d0 mass also
becomes lower because of the respective reduction
of the constituent quark mass. The position of the
branch pointE0 = md0 +mσ of the functionGLL′(E)
in (21)–(23) must then be shifted lower on the energy
scale, and the contribution of this (attractive) mecha-
nism to the low-energyNN interaction must become
more important. We suggest that just this shift of
the branch point (and of the respective cut on the
energy sheet) to lower energies because of a partial
restoration of chiral symmetry may be responsible for
the strong attraction at intermediate distances, which
is usually attributed in conventional OBE models to
1
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Table 1.Model parameters for various partial waves

2s+1LJ Λ, GeV rorth0 , fm λ11 λ22 λ12 r01, fm r02, fm E0, MeV χ2∗

1S0(< 600 MeV) 0.65 0.3943 2.055 0.59686 356 1.09
1S0(< 1.2 GeV) 0.65 0.3943 4.565 0.5106 550 3.9

1D2 0.65 0.02463 0.79403 330 0.028
3S1–3D 0.5936 0.3737 7.201 0.007928 0.2294 0.45469 0.65652 681 1.7

3D2 0.5527 0.01038 0.86037 800 0.062
3D3–3G3 0.5936 0.002927 0.1753 0.02624 0.89971 0.42893 800 0.11

1P1 0.7324 0.46572 28.74 0.44311 600 0.167
3P0 0.65 0.3445 0.02841 0.455 400 0.14
3P1 0.65 0.4491 3.195 0.51749 600 0.13

3P2–3F2 0.65 0.03124 −0.006486 0.000765 0.70995 0.75653 360 0.71

∗ The χ2 value is defined here as usual: χ2 = 1
N

∑N
i=1(δPSA(Ei) − δtheor(Ei))2.
σ-meson exchange (in t channel) between two nucle-
ons. In other words, instead of the (artificial) increase
in the cutoff parameters in the πNN (σNN, ρNN ,
etc.) form factors, as in conventional OBE models,
we adopt a (natural) decrease in the denominator in
(21) due to (partial) restoration of chiral symmetry.

Thus, the proposed new mechanism can resolve a
deep contradiction of the current NN force models
based on the OBE mechanism with new results for
the exchange of a 2π correlated pair [17]. In fact, it
was found in [17] that the exchange of an S-wave
correlated ππ pair between two unexcited nucleons
cannot generate any strong attraction of nucleons
but, instead of this, results in a strong repulsion at
short and intermediate ranges. On the other hand, the
excitation of two intermediate deltas with artificially
enhanced πN∆ form factors may formally explain the
intermediate-range attraction [5–7].

The complicated energy dependence dictated
by (21) may be well approximated by a pole term
proportional to (E − Ē0)−1 with the effective pole
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Fig. 3. Kinematical variables in the triangle diagram cor-
responding to the σ-meson (or ρ-meson) generation from
two π mesons emerging in the transition of two p-shell
quarks into the s orbit (see also Fig. 2).
PH
position Ē0 either calculated from our formulas or
simply fitted to NN phase shifts. In the next section,
we develop a simple illustrative model to test the
proposed new mechanism.

4. SIMPLE MODEL

In this section we study the NN-interaction
mechanism developed in preceding section by con-
sidering the example of a simple illustrative model.
For this purpose, we parametrize the basic potential
components involved in this model via a simple ana-
lytic form that includes the main features of the above
mechanism. We want to emphasize that the simple
model presented here serves only as an illustration
rather than as a demonstration of the quality of the
new formulation of the NN force. The new model
includes only a few basic parameters (e.g., qππ,
σNN , etc., coupling constants) for the NN force.
But the full formulation of the model includes a rather
tedious calculation for all intermediate loop integrals;
for this reason, we postpone this calculation to future
studies.

Thus, the model interaction consists of three
terms: the orthogonalizing potential Vorth providing
the condition of orthogonality between the proper
NN channel and the six-quark intermediate bag
in S and P waves; the one-pion-exchange (OPE)
potential VOPE with a soft dipole truncation; and the
separable term VNqN with an energy dependence de-
scribed by a pole [which is the simplest approximation
to a quark-induced interaction corresponding to the
separable potential V L

′L
E (23) of the virtual transi-

tion NN → (6q + 2π) → NN ] as illustrated by the
graph in Fig. 2: VNN = Vorth + VNqN + VOPE, where
YSICS OF ATOMIC NUCLEI Vol. 64 No. 9 2001
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Fig. 4. NN phase shifts and mixing parameters in our simple model, along with data from a phase-shift analysis (SAID,
solution SP99 [65]).
Vorth = λ0|ϕ0〉〈ϕ0| and λ0 → ∞. In the momentum
representation, the OPE term takes the form

VOPE(k) =
f2
π

m2

1
k2 +m2

(
Λ2 −m2

Λ2 + k2

)2

× (σ1 · k)(σ2 · k)
(τ1 · τ2)

3
.

For the single-channel case, the bag-induced term
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 9 200
VNqN is given by

VNqN =
E2

0

E − E0
λ|ϕ〉〈ϕ|,

while, for coupled channels, it is the 2×2matrix [com-
pare with (23)]

VNqN =
E2

0

E − E0



 λ11|ϕ1〉〈ϕ1| λ12|ϕ1〉〈ϕ2|

λ21|ϕ2〉〈ϕ1| λ22|ϕ2〉〈ϕ2|



 ,

(24)
1
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where it is assumed λ12 = λ21. For all form fac-
tors ϕi(r) in the above equations, we use the simple
Gaussian form with one scale parameter r0,5)

ϕi(r) = NrLi+1 exp

(
−1

2

(
r

r0

)2
)
. (25)

In the calculations, we have used the averaged pion
mass m = (mπ0 + 2mπ±)/3, the averaged pion–
nucleon coupling constant f2

π/(4π) = 0.075, and
a soft cutoff parameter taking values in the range
Λ = Λdipole = 0.50–0.75 GeV.

The results of the fits of the model parameters λk
(or λjk), r0, and E0 to the NN phase-shift analysis
data are displayed in Figs. 4–6. It is quite evident that
this simple model describes low NN partial waves
up to Elab = 600 MeV very well. The model phase
shifts and the mixing parameter ε1 are compared in

5)It is still in accordance with our general algebraic multiquark
formalism due to the appearance of the additional orthogo-
nality condition (see the respective orthogonalizing potential
Vorth above).
PH
Figs. 4–6 with data of a recent phase-shift analysis
(SAID, solution SP99 [65]). There are three ad-
justable parameters for each partial wave: λ (λk or λjk
for coupled channels), r0, and E0. The parameters of
the projection operators (r0 for Vorth) are taken from
[54], where a deep local attractive potential (Moscow
potential) was constructed as an effective NN one-
component potential. The parameter E0 corresponds
to the sum of the six-quark-bag excitation energy
and the effective σ-meson mass inside the six-quark
bag (minus the mass of two nucleons, 2mN ). Its
value is taken here in the range 600–1000 MeV. In
accordance with our suggestions, it should be the
same for all partial waves of definite parity. We have
found that the results depend on E0 only weakly. All
parameters found for S, P , and D waves are given in
Table 1.

It is highly instructive to compare the present sim-
ple model based on the suggested new mechanism for
NN interaction with the well-known phenomenolog-
ical separable potential [66] (so-called Graz poten-
tial), which fits the same phase shifts up to Elab =
500 MeV. From a comparison, the reader can find that
the number of free parameters in the Graz potential is
much larger than that in our simple model, whereas
the energy range is smaller and the quality of the
fit is poorer for the Graz model. Thus, our simple
model describes NN data more adequately than the
Yamaguchi-type phenomenological model.

Moreover, it was very surprising to find that this
simple model provides a very good description of the
1S0 phase shifts even up to Elab = 1200 MeV (see
Fig. 6) (there is presently no np phase-shift analysis
at higher energies).

We want to discuss here especially the description
of phase shifts in the 3S1–3D1 triplet coupled chan-
nels. The crucial point is the behavior of the mix-
ing parameter ε1 with increasing energy. Without a
separable (quark-bag-induced) mixing potential (i.e.,
at λ12 = 0), the behavior of ε1 is correct only at very
low energies, but it is in strong disagreement with the
phase-shift analysis at energies higher than 50 MeV
(see the dashed curve in Fig. 5). The increase in
the cutoff parameter Λ up to values of 0.8 GeV does
not help to obtain better agreement with the data; on
the contrary, this destroys a good description at low
energies (the dotted curve in Fig. 5). Introducing the
quark-bag-induced mixing [λ12 �= 0 in (24)] allows
us to reproduce the behavior of ε1 (and of the 3S1–
3D1 phase shifts as well) with a reasonable accuracy
up to an energy as high as Elab ∼ 600 MeV, but only
for sufficiently small values of ΛπNN . The best fit for
the mixing parameter ε1 is shown on Fig. 5 (solid
curve), with the potential parameter values being
given in Table 1, where ΛπNN = 0.5936 GeV.
YSICS OF ATOMIC NUCLEI Vol. 64 No. 9 2001
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In this case, the condition

λ2
12 = λ11λ22 (26)

is satisfied. It is just this condition that follows
approximately from our preliminary calculations of
the loop integrals incorporated in the potential matrix
(23). The increase in the value ofΛπNN up to 0.8GeV
results in the violation of condition (26) and in a
significant deterioration of the description of ε1 (see
the curve in Fig. 5). Other phase shifts (3S1 and 3D1)
are reproduced for all four versions to the same good
accuracy, so that we present, in Fig. 4, the results for
only one version.

Thus, we can deduce, from the results of our sim-
ple model presented in this section, that the model
is able to describe all phase shifts in low partial
waves (L = 0–2) in a rather broad energy interval
(0–600 MeV). This good description and the above
comparison with the phenomenological Graz model
seems to support the new dressed-bag mechanism
proposed here for the intermediate-range interaction.

5. RELATIONSHIPS WITH OTHER
INTERACTION MODELS

In this section, we will briefly discuss the interrela-
tions of the newNN mechanism suggested here with
other models proposed in previous years and clarify
the microscopic grounds for some of them.

While the symmetry background of the Moscow
potential models [54–59, 67, 68] is rather similar to
that of the present model, the underlying mechanisms
and the particular realizations are very different. In
the above potential models, one starts with a sub-
division of the possible spatial (permutational) six-
quark symmetries of the total wave function into two
types of different physical origins, Ψbag

(
(0s)6[6]

)
+

ΨNN
(
(0s)4(1p)2[42]

)
, which are orthogonal to each

other. By excluding the baglike components from
the proper NN channel, one then arrives at an ef-
fective interaction Hamiltonian in the NN channel
[58, 69] with an additional orthogonality-condition
constraint:(

TR + VME + 10
|f〉〈f |
E − E0

)
χ̃ = Eχ̃, (27a)

〈g|χ̃〉 = 0. (27b)

In these equations, χ̃(R) is the wave function that
describes NN relative motion and which is renor-
malized through the overlap kernel N (R,R′) to have
a probabilistic meaning [69]. Here, VME is the sum
of conventional meson-exchange potentials cut off at
the proper (i.e., soft) values of ΛmNN ; the form factor
f(R) in the separable term of (27a), 〈R|f〉 ≡ f(R) =
〈ψ6q|H|ψNψN 〉, is the matrix element that couples
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 9 200
the six-quark and NN channels; and the function
g(R) in the orthogonality condition (27b) is taken to
be 〈R|g〉 ≡ g(R) = 〈ψ6q|ψNψN 〉.

In the initial version of the one-channel Moscow
NN potential [55, 58, 68], one then replaces both
the separable term in (27a) and the orthogonality
condition (27b) by one deep local potential, where
deeply lying bound states (which are considered as
“forbidden” states in the model) ensure fulfillment of
the orthogonality condition (27b) due to the Hermic-
ity of the underlying potential.

Thus, the previous Moscow NN potential model
is essentially a local effective potential phase-shift-
equivalent to a highly nonlocal and energy-dependent
model (27). Our next step was the generalized
orthogonality-condition model [54], where we still
retained the deep local potential, but where we did
not use the bound-state wave function in the or-
thogonality condition. Thus, from this point of view,
the above-mentioned NN model can be considered
as a generalized orthogonality-condition model ini-
tially proposed by Saito in nuclear cluster physics
[70] as early as 1969. Very similar to the cluster
model, the deep attractive well of the one-channel
Moscow NN potential represents a local phase-
shift-equivalent potential for a nonlocal and energy-
dependent interaction term in (27a), together with the
orthogonality-condition constraint (27b). As a result
of the constraint, the NN phase shifts in low partial
waves (S and P ) display a behavior similar to that of
phase shifts for local repulsive-core potentials [71].
The orthogonality condition results in a stationary
(with respect to the energy variation) short-range
node in the NN wave function of relative motion
rather than in a strong damping of the latter near
the origin. Moreover, the node position (rn � 0.6 fm)
agrees very nearly with the radius of the repulsive core
in the traditional force models like the Reid soft-core
(RSC) model [71].

In this way, the short-range stationary node in the
wave function for relative motion replaces a large por-
tion of the repulsive core; thus, the coupling constant
for ω-meson exchange can be reduced safely to mod-
erate values of g2

ωNN/4π � 5 dictated by SU(3) sym-
metry. Thus, the new dressed-bag model presented in
this study provides a microscopic quark–meson real-
ization of previous Moscow-type NN models (e.g., it
explains the strong intermediate-range attraction in
the Moscow model).

There are also rather tight relationships between
the current mechanism and hybrid models like QCB
[72] suggested previously for NN interaction. The
total wave function for the NN system in the hybrid
models [72, 73] is composed, similarly to our basic as-
sumption, from two components of different origins:
1
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the quark compound-bag part at small distances r ≤
R0 and the proper clusterlike NN component in the
peripheral region r > R0, withR0 being the matching
radius between the two components. Analogously
to our formal derivation [69], the baglike component
is then eliminated in the QCB approach [72], and
one arrives at an effective one-channel Schrödinger
equation for the NN component analogous to (27a).
However, in the hybrid models, in contrast to our
model, two basic components—i.e., Ψ6q and ΨNN—
are taken to be nonorthogonal to each other.6) How-
ever, when the two channels are orthogonalized in
the QCB approach, the scattering wave functions in
the NN channel develop a short-range node rather
similar to that in our case but with a violation of the
continuity at the matching radius R0.

But the main difference between the hybrid-model
approach and the current model lies in the fact that
a typical hybrid model essentially represents a phe-
nomenological approach that does not consider any
microscopic or field-theoretical aspects. However,
the fact that, starting from absolutely independent ar-
guments (in fact, we started, more than two decades
ago, from the old phenomenological Moscow-type
NN potential [74]), we arrive at a model that, in
its formal aspects, has many similarities with hybrid
models, shows that both models reflect the true un-
derlying physical picture rather adequately.

There are also very interesting connections be-
tween our approach and the Tabakin potential. More
than 30 years ago, Tabakin, to facilitate drastically
Faddeev few-nucleon calculations, proposed [75]
a phenomenological one-term separable potential
“with repulsion and attraction.” The characteris-
tic feature of the Tabakin potential is an oscillat-
ing behavior of the potential form factor g(p) in
S waves: VT(p, p′) = λgT(p)gT(p′) with gT(p) =
(p2 − p2

0)f(p2), where f is a smooth nodeless func-
tion.

At that time, the success of the Tabakin poten-
tial was considered to be somewhat “accidental” and
puzzling.7) However, about a decade ago, Nakaishi-
Maeda demonstrated [77] that the Tabakin potential
can be considered, to a very good approximation, as
the first term in the unitary-pole expansion of the t
matrix for the deep localMoscowNN potential, while

6)This nonorthogonality of two basic components in QCB
leads to an appearance of some ghost state at infinity, which
can be considered as an analog of deeply bound “forbidden”
states in our approach.

7)Almost simultaneouslywith the Tabakin study, we suggested
[76] very similar separable potentials to describe cluster–
cluster interaction for systems like 4He4He and 4Hed, where
all lowest partial phase shifts also change sign (from positive
to negative) at rather low energies.
P

the scattering wave functions for both models display
short-distance stationary nodes (at rn � 0.6 fm) in
very similar ways. Moreover, it was shown [77] that
the continuum bound state in the Tabakin potential
has an energy of Elab � 300 MeV and is very similar
in structure to the “forbidden” bound state in the
initial version of the Moscow potential.

However, the analogy between the new quark–
meson mechanism suggested in the present study
and the old Tabakin potential goes much further. In
fact, the overlap factors (4) between three-quark nu-
cleon clusters and six-quark configurations |s4p2[42],
L = 0, ST 〉 and |s6[6], L = 0, ST 〉 inevitably lead to
nodal 2s-type relative-motion form factors in our
separable potential term VNqN . In the momentum
representation, this form factor has the form

g2s(p) = N2s(p2 − p2
0) exp(−3p2

4p2
0

), (28)

which exhibits the same nodal character with the
same node position at p2

0 as the Tabakin form factor.
The use of the 2s-type form factor (28) will project out
all the admixtures of nodeless 0s components in NN
scattering wave functions, giving, in this way, a stable
short-range node in the S wave at r0 � 0.6 fm. Thus,
the use of oscillating 2s-type form factors replaces,
to a good approximation, our orthogonality-condition
constraints, resulting, as a matter of fact, in virtually
the same scattering wave functions. This gives a
quark microscopic interpretation for the success of
the old phenomenological Tabakin potential. From
here, one can conclude that there are many com-
pletely independent arguments in favor of our new
interaction mechanism suggested here.

5. CONCLUSION

We have presented a critique of the conventional
meson-exchange models of nuclear forces at inter-
mediate and short ranges. We have provided many
arguments clearly demonstrating inner inconsisten-
cies and contradictions in modern OBE models for
the short-range part of the interaction. There are also
several observations in few-nucleon systems show-
ing clearly that one cannot explain quantitatively and
consistently many 3N and 4N experimental data with
the existingNN models.

To find an alternative picture of the NN in-
teraction, we have exploited the successful quark-
motivated semiphenomenological models, viz., the
Moscow model [54, 68, 69], the extensive micro-
scopic studies of six-quark system in the shell-
model approach [52, 56, 57, 60, 61], and Tübingen
microscopic quark approaches [78–80], to develop
them further. In this way, we have suggested,
in the present study, some new mechanism for
HYSICS OF ATOMIC NUCLEI Vol. 64 No. 9 2001
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the intermediate- and short-range NN interaction.
This mechanism differs from the traditional Yukawa
concept of meson exchange in the t channel. We
have introduced a concept of the dressed symmet-
ric six-quark bag in the intermediate state with
s-channel propagation. In a tight connection to
this mechanism, we have also proposed a new in-
terpretation of the “light” scalar–isoscalar σ meson
as a quasiparticle. The new interaction mechanism
proposed here has been shown to lead to separable
energy-dependent s-channel resonance-like interac-
tion terms with nodal form factors (in lowest partial
waves) that result from the orthogonality-condition
constraint.

In its final form, the proposed interaction de-
pends only on a few fundamental constants (quark–
meson or diquark–meson coupling constants and
the intermediate-meson masses), so that, eventually,
the total NN force can be parametrized in terms of
only a few free parameters. However, at the present
stage, we prefer to employ the derived form of the
interaction to build a simple model whose main goal
is to illustrate how well the suggested mechanism
can work. We have found that, by adjusting only
three parameters of the model in each partial wave,
it is possible to describe excellently all lowest NN
phase shifts in the broad energy interval 0–600 MeV
and the S waves even up to 1200 MeV in the
laboratory frame. This gives some strong evidence
that the suggested new microscopic mechanism of
the s-channel dressed symmetric bag should work
adequately.

The proposed interaction model has been demon-
strated to give a natural microscopic background for
previous phenomenological interaction models like
the MoscowNN potential and the Tabakin separable
potential “with attraction and repulsion” and also for
the various hybrid models. Thus, it also gives impor-
tant bridges between absolutely disconnected (at first
glance) models developed previously.

Another important result of the present model
could be a possible solution to the long-standing
puzzle of the weak vector-meson contribution to the
baryon spectra and a strong spin–orbit splitting (due
to the vector-meson contribution) in theNN interac-
tion. If one assumes a significant quark–quark force
due to vector-meson (or one-gluon) exchange, vector
coupling will also immediately result in strong spin–
orbit splitting in the baryon spectra. Recently, Gloz-
man and Riska [81] suggested a new model for the qq
interaction mediated essentially by Goldstone boson
exchange to describe baryon spectroscopy. Themodel
can naturally describe the absence of spin–orbit split-
ting in negative-parity excited baryon states. How-
ever, the model fails to explain strong spin–orbit
splitting in the NN sector. Our explanation of the
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 9 200
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Fig. 7. Some graphs illustrating the new type of 3N
forces.

puzzle is based on the fact that there is no signifi-
cant vector-meson contribution to qq forces (in the
t channel) [81], but there is an important contribution
of vector mesons to the dressing of the symmetric
six-quark bag, thereby leading to strong spin–orbit
effects in theNN interaction mediated by the dressed
bag.

Moreover, the proposed model will lead to the
appearance of strong 3N and 4N forces mediated by
2π and ρ exchanges (see, e.g., 3N-force graphs in
Fig. 7). It is easy to see that the new 3N forces in-
clude both central and spin–orbit components. Such
a spin–orbit 3N force is extremely desirable for ex-
plaining the low-energy puzzle of the analyzing power
Ay in Nd scattering [12, 31] and also the behavior of
Ay in the 3N system at higher energies ofEN � 250–
350 MeV at backward angles [38, 39]. The central
components of the 3N and 4N forces are expected
to be strongly attractive; thus, they must contribute
to 3N- and 4N-binding energies, possibly resolving
thereby the very old puzzle of the binding energies of
the extremely light nuclei. Moreover, these strong
contributions (as one can expect) of the above 3N
and 4N forces mediated by the “σ-type” 2π exchange
to nuclear binding, in combination with strong rela-
tivistic effects predicted by our model [9, 55, 59], can
lead very naturally to relativistic hadrodynamics (i.e.,
the Walecka model), where the σ field constitutes the
main agent for nuclear binding. The suggested new
mechanism leads to a large number of new contri-
butions for many nuclear-physics observables, like
enhanced Coulomb displacement energies for isobar
analog states [67, 69], more significant relativistic
effects, and a new interpretation of meson-exchange-
current contributions. Further studies must show the
degree to which such expectations can be justified.
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Table 2. Scalar factors ΓS=1
CS ([fCS ]([f ′CS]×[f ′′CS ]), s56) of the Clebsch–Gordan coefficients for the groupSU(6)CS ⊂

SU(3)C×SU(2)S [see Eq. (A.9)]

[22]CS×[2]CS [212]CS×[12]CS

[22]C×[2]C [212]C×[12]C [22]C×[2]C [212]C×[12]C
[22]S×[2]S [31]S×[12]S [31]S×[12]S [22]S×[2]S

[42]CS

√
1
20

−
√

9
20

0 0

[321]CS

√
8
15

−
√

2
15

√
2
9

√
8
27

[23]CS

√
5
12

√
5
12

√
5
18

−
√

5
54

[313]CS 0 0 −
√

1
18

−
√

25
54

[214]CS 0 0
√

4
9

−
√

4
27
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APPENDIX A

Details of Quark-Model Calculations

Here, we consider some details of the quark-model
calculations of the two-pion-emission amplitude for
the transition from the 3S1(3D1) NN state to the
dressed six-quark bag d0 + π + π. We will demon-
strate here how to use the known f.p.c. technique
[52, 53, 56, 57, 60] in the calculations of the two-step
process df → d′′ + π → d0 + π + π in the ST = 10
JP = 1+ channel. First, we consider two-pion emis-
sion in the two-quark subsystem “56” (where “5” and
“6” are the quark numbers in the six-quark system
“123456”). We start from the 2s(2d) harmonic-
oscillator state of the sixth quark in the df state [see
Eqs. (3), (7), and (8) in Section 3], which, after
S-wave pion emission, goes over to the 1p harmonic-
oscillator state in the 56 subsystem of the intermedi-
ate d′′ configuration. At the next step, the fifth quark
of the 56 subsystem emits another S-wave pion and
the intermediate d′′ configuration goes over to the
final d0 configuration in which the 56 subsystem is in
the 0s harmonic-oscillator state. Therefore, we must
take into consideration the following five nonvanish-
ing elementary q → q+ π transition amplitudes in the
harmonic-oscillator quark basis:
PH
(i) the two amplitudes

T
(6)
2s→1p(j56 =0) ≡ 〈1p, s56 =1(j56 =0), (A.1)

t56 =0|H(6)
πqq|2s, s56 =0, t56 =1〉

= i v

√
2
3
ωπ(k6)
2mqα

(1/2||σ||1/2)

×
√

1
6

(1/2||τ ||1/2)FL=0
2 (k2

6),

T
(5)
1p→0s(j56 =0) ≡ 〈0s, s56 =0, t56 =1|H(5)

πqq|1p,
s56 =1(j56 =0), t56 =0〉

= i v
ωπ(k5)
2mqα′ (1/2||σ||1/2)

√
1
6

(1/2||τ ||1/2)F0(k2
5)

should be taken if the total angular momentum of the
56 subsystem is j56 = 0, and

(ii) the three amplitudes

T
(6)
2s→1p(j56 =1) ≡ 〈1p, s56 =0(j56 =1), (A.2)

t56 =1|H(6)
πqq|2s, s56 =1, t56 =0〉

= −i v
√

2
3
ωπ(k6)
2mqα

(1/2||σ||1/2)

×
√

1
6

(1/2||τ ||1/2)FL=0
2 (k2

6),

T
(6)
2d→1p(j56 =1) ≡ 〈1p, s56 =0(j56 =1),

t56 =1|H(6)
πqq|2d, s56 =1, t56 =0〉

= −i v
√

2
3
ωπ(k6)
2mqα

(1/2||σ||1/2)

×
√

1
6

(1/2||τ ||1/2)FL=2
2 (k2

6),
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T
(5)
1p→0s(j56 =1) ≡ 〈0s, s56 =1(j56 =0),

t56 =0|H(5)
πqq|1p, s56 =0, t56 =1〉

= −i v
√

1
3
ωπ(k6)
2mqα′ (1/2||σ||1/2)

×
√

1
6

(1/2||τ ||1/2)F0(k2
5)

should be taken in the case of j56 = 1.
To simplify matters, we use the shorthand nota-

tion T (6)
2s→1p(j56 = 1), T (5)

1p→0s(j56 = 0), etc., for the
elementary amplitudes and omit spin, isospin, and
angular momentum projections (omitting summation
over these quantum numbers in the ensuing expres-
sions). A further shorthand notation is α =

√
6/5 b

and α′ = −
√

5/2α, where b is the scale parameter
(rms radius) of the harmonic-oscillator basis func-
tions, and

F0(k2
5) = exp

(
− 5

24
k2

5b
2

)
, (A.3)

FL2 (k2
6) =

(
1 +

5
24
aLk

2
6b

2

)
exp

(
− 5

24
k2

6b
2

)
,

where aL = 4/19 if L = 0 and aL = −13/43 if L = 2.
The functions in (A.3) provide the k2 dependence of
the form factors in the πd′′df and πd0d

′′ vertices [see
Eq. (17) in Section 3],

Fπd0d′′(k
2
5) = F0(k2

5), FLπd′′df
(k2

6) = FL2 (k2
6). (A.4)

The reduced matrix elements (1/2||σ||1/2) and
(1/2||τ ||1/2) of the spin(isospin)-flip operators (i.e., σ
and τ matrices in the vertex operatorsH(6)

πqq andH
(5)
πqq)

are defined here in accordance with the Wigner–
Ekkart theorem. Standard calculations yield

(1/2||σ||1/2) = (1/2||τ ||1/2) = −
√

6. (A.5)

Recall that, for the desired amplitude, we use the
parametrization

15 〈d0|H(5)
πqq(k5)|d′′〉 〈d′′|H(6)

πqq(k6)|df 〉 (A.6)

= v2 ωπ(k5)ωπ(k6)
m2
qb

2 fπd0d′′f
L
πd′′df

× Fπd0d′′(k
2
5)FLπd′′df

(k2
6)

[see Eq. (17) in Section 3]. Now, one can calculate
“the coupling constants” fπd′′df

and fπd0d′′ in this
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parametrization, starting from the elementary ampli-
tudes (A.1) and (A.2). For this purpose, one can apply
f.p.c. to separate the two-quark subsystem “56” from
the six-quark configurations df , d′′, and d0 for all
possible color, spin, isospin, and coordinate states
of the quark pair ([f56]C = [2], [12]; s56 = 0, 1; t56 =
0, 1; j56 = 0, 1 for the 2s, 2d, 1p, and 0s radial and
orbital states). Recall that the f.p.c. technique implies
summation over all possible states of the separated
two-quark subsystem instead of summation over all
numbers of quarks in the interaction operator. This
scheme is particularly handy for application of the
group-theoretical algebraic methods.

We use the invariants (i.e., the Young diagrams
[fC ], [fS], [fCS ], [fT ], [fCST ], and [fX ]) of the chain
of symmetry groups (see, e.g., [57, 60])

SU(12)CST ⊃ SU(6)CS×SU(2)T ⊃ SU(3)C
×SU(2)S×SU(2)T , (A.7)

SU(24)XCST ⊃ SU(12)CST×SU(2)X

to classify six-quark, four-quark, and two-quark
states in the systems “123456,” “1234,” and “56,”
respectively. The f.p.c. for separation of the pair
“56” in the total XCST space ΓXCST (q6 → q4×q2)
is the product of the “scalar factors” of the Clebsch–
Gordan coefficients of groups

SU(6)CS ⊃ SU(3)C×SU(2)S ,
SU(12)CST ⊃ SU(6)CS×SU(2)T ,

SU(24)XCST ⊃ SU(2)X×SU(12)CST

taken from the reduction chain (A.7) (ΓCS , ΓCST , and
ΓXCST ) and “orbital” f.p.c. ΓX of the TISM:

ΓXCST (q6 → q4×q2) (A.8)

= ΓCSΓCSTΓXCSTΓX .

The following extended notation for the nontrivial
scalar factors ΓCS is used here (see, e.g., [57]):

ΓS=1
CS ([fCS ]([22]CS×[2]CS), s56 =1)

≡



 [23]C [42]S

([22]C×[2]C)([22]S×[2]S)

∣∣∣∣∣

∣∣∣∣∣
[fCS ]

([22]CS×[2]CS)



 ,

ΓS=1
CS ([fCS ]([22]CS×[2]CS), s56 =0)
≡



 [23]C [42]S

([212]C×[12]C)([31]S×[12]S)

∣∣∣∣∣

∣∣∣∣∣
[fCS ]

([22]CS×[2]CS)



 ,

ΓS=1
CS ([fCS ]([212]CS×[12]CS), s56 =1)
1
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≡



 [23]C [42]S

([212]C×[12]C)([22]S×[2]S)

∣∣∣∣∣

∣∣∣∣∣
[fCS ]

([212]CS×[12]CS)



 ,

ΓS=1
C·S ([fCS ]([212]CS×[12]CS), s56 =0) (A.9)

≡



 [23]C [42]S

([212]C×[12]C)([31]S×[2]S)

∣∣∣∣∣

∣∣∣∣∣
[fCS]

([212]CS×[12]CS)



.
Here, [fCS ] are all the CS Young diagrams from the
inner product

[fCS ] = [23]C ◦ [42]S
= [42], [321], [23], [313], [214]. (A.10)

The values of all necessary scalar factors (A.9) are
given in Tables 2 and 3.
PH
Only the Young diagrams [fCST ] = [2212], [214],

and [16] are important for the configurations df , d′′,

and d0 ([fCST ] = [f̃X ], where [f̃X ] is the Young di-

agram conjugate to [fX ]). All the necessary scalar

factors
ΓT=0
CST ([fCST ] : [fCS]([22]CS×[2]CS), t56 =0)

≡



 [fCS][32]T

([22]CS×[2]CS)([22]T×[12]T )

∣∣∣∣∣

∣∣∣∣∣
[fCST ]

([14]CST×[12]CST )



 , (A.11)

ΓT=0
CST ([fCST ] : [fCS ]([212]CS×[12]CS), t56 =1)

≡



 [fCS ][32]T

([212]CS×[2]CS)([31]T×[2]T )

∣∣∣∣∣

∣∣∣∣∣
[fCST ]

([14]CST×[12]CST )





are given in Table 4. The coefficients ΓXCST are
trivial weight factors ΓXCST ([6]X ([4]×[2])) = 1,
ΓXCST ([51]X ([4]×[2])) =

√
1/5, and

ΓXCST ([42]X ([4]×[2])) =
√

1/9 dependent only on
the dimensions of the irreducible representations
of the symmetric group for given Young diagrams:
n[6] = 1, n[51] = 5, and n[42] = 9. The last factor on
the right-hand side of (A.8), the orbital f.p.c. ΓX of
the TISM, depends on the configuration; i.e., only five
different values of ΓX are necessary:

ΓX(s6[6](s4[4]×s2[2])) = 1, (A.12)

ΓX(s4p2 − s52s[6](s4[4]×s2s[2])) =
√

1/5,

ΓX(s4p2 − s52d[6](s4[4]×s2d[2])) =
√

1/5,

ΓX(s5p[51](s4[4]×sp[2])) = −
√

3/5,

ΓX(s4p2[42](s4[4]×p2[2])L = 0, 2) = −
√

3/10.

Thus, the total transition amplitude (A.6) is ex-
pressed in terms of the product of factors (A.1), (A.2),
(A.9), (A.11), and (A.12) summed over the states of
the pair “56” (summation should be extended over all
possible two-quark states, but fixed quantum num-
bers of the initial, intermediate, and final states im-
pose the restriction that only summation over j56 =
0, 1 and [f56]CS = [2], [12] is allowed):

15 〈d0|H(5)
πqq(k5)|d′′〉 〈d′′|H(6)

πqq(k6)|df 〉 (A.13)

= 15
∑

j56=0, 1

∑

[f56]CS=[2],[12]

ΓX·CST ([6]X([4]×[2]))

× [ΓXCST ([51]X ([4]×[2]))]2

× ΓXCST ([42]X ([4]×[2]))ΓX (s6[6](s4[4]×s2[2]))

×
[
ΓX(s5p[51](s4[4]×sp[2]))

]2

×ΓX(s4p2[42](s4[4]×p2[2])L = 0, 2)

× ΓS=1
CS ([23]CS([f1234]CS×[f56]CS), s56)

×
[
ΓS=0
CS ([2212]CS([f1234]CS×[f ′56]CS), s′56)

]2

× ΓS=1
CS ([fCS ]([f1234]CS×[f56]CS), s56)

×ΓT=0
CST ([16]CST : [23]CS

× ([f1234]CS×[f56]CS), t56)

×
[
ΓT=1
CST ([214]CST : [2212]CS
YSICS OF ATOMIC NUCLEI Vol. 64 No. 9 2001
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Table 3. Scalar factors ΓS=0
CS ([fCS ]([f ′CS ]×[f ′′CS ]), s56) of the Clebsch–Gordan coefficients for the group SU(6)CS ⊂

SU(3)C×SU(2)S [see Eq. (A.9)]

[22]CS×[12]CS [212]CS×[2]CS

[22]C×[2]C [212]C×[12]C [22]C×[2]C [212]C×[12]C

[22]S×[12]S [31]S×[2]S [31]S×[2]S [22]S×[12]S

[2212]CS −
√

3
4

√
1
4

−
√

1
2

√
1
2

Table 4. Scalar factors ΓT=0(1)
CST ([fCST ]([fCS ]([f ′CS ] × [f ′′CS])), t56) of the Clebsch–Gordan coefficients for the group

SU(12)CST ⊂ SU(6)CS×SU(2)T [see Eq. (A.11)]

T = 0 T = 1

[42]CS [321]CS [23]CS [313]CS [214]CS [2212]CS

[2212]CST :

([22]CS×[2]CS) ◦ ([22]T×[12]T ) 1 −
√

3
8

−
√

3
5

0 0

([212]CS×[12]CS) ◦ ([31]T×[2]T ) 0

√
5
8

−
√

2
5

1 1

[16]CST :

([22]CS×[2]CS) ◦ ([22]T×[12]T ) 0 0 −
√

2
5

0 0

([212]CS×[12]CS) ◦ ([31]T×[2]T ) 0 0
√

3
5

0 0

[2212]CST :

([22]CS×[2]CS) ◦ ([22]T×[12]T ) −
√

4
9

([212]CS×[12]CS) ◦ ([31]T×[2]T )

√
1
6

× ([f1234]CS×[f ′56]CS), t′56)
]2

×ΓT=0
CST ([2212]CST : [fCS]([f1234]CS

× [f56]CS), t56)T (5)
1p→0s(j56)T (6)

2s(2d)→1p(j56).

The spin and isospin of the quark pair, s56(s′56)
and t56(t′56), in (A.13) depend on the color quantum
numbers of the pair. For example, t56 = 1 (t′56 = 0)
for [f56]CS = [12] and t56 = 0 (t′56 = 1) for [f56]CS =
[2]. A general rule for s56(s′56) is easy to understand
from the right-hand side of Eqs. (A.9). One can
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 9 200
indicate that, in the case of L = 2 (the 3D1 initial
state), the value of j56 = 0 does not contribute to the
3D1 →3 S1 transition, so that only the j56 = 1 term
should be taken on the right-hand side of (A.13). As
a result, the coupling constant fπd′′df

takes different
values for L = 0 and 2, and this is indicated by the
additional superscript L: fLπd′′df

.

The calculated values of the product fLπd′′df
fπd0d′′

are given in Table 5. Substituting these values into
(19), one obtains the following expression for factors
1
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Table 5.Products of the coupling constants, fπd0d′′ f
L=0(2)
πd′′df

, for the two-step transition df → d′′ + π → d0 + π+ π with

the creation of a scalar–isoscalar π + π pair (“σ meson”) and overlap factor UNN
f between the NN and df states

Quantum numbers of df

(s4p2−s52s(2d))[6]X s4p2[42]X

[23]CS [42]CS [321]CS [23]CS [313]CS [214]CS

81×fπd0d′′ fL
πd′′df

:

L = 0

√
2
15

0 −13
12

√
3
2

−
√

1
30

− 1
20

√
1
15

−1
5

√
2
15

L = 2
13
10

√
1
6

9
10

√
1
30

−31
20

√
1
30

−17
20

√
1
6

−1
8

√
1
3

− 1
10

√
1
6

[4pt] UNN
f

√
1
9

−
√

9
20

√
16
45

√
1
36

−
√

1
18

0

gL in the transition operator (18):

gL = gππσ
f2
πqq

m2
π

1
m2
qb

2

1
81
√

3
×






−19
√

5
6

for L = 0
43
3

for L = 2.

(A.14)
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Abstract—An essentially new approach to solving the problem of elastic and inelastic scattering of a
composite particle on stable nuclei is described. Within this approach, all channels of virtual breakup and
stripping in the intermediate states are included in a nonlocal complex-valued interaction operator with the
aid of the projection-operator technique. The three-particle continuum spectrum of the Hamiltonian for
intermediate states in Q space is calculated within the orthogonalizing-pseudopotential method by intro-
ducing a pseudo-Hamiltonian, which is diagonalized in a full space in terms of a relevant oscillator basis.
As was shown by a number of authors, the use of special quadratures makes it possible to reduce integration
over the continuous spectrum of intermediate states to summation over a discretized continuum. On the
basis of the formalism developed in this study, a closed Schrödinger equation with a nonlocal complex
potential for partial waves is derived for describing elastic scattering of a composite particle by a target, and
an explicit approximate formula for the amplitude of three-particle breakup is obtained on the same basis.
This method has a number of obvious advantages over currently well-known approaches of the type of the
discretized-continuum coupled-channel method, where solving the problem in question reduces to solving
a cumbersome set of coupled equations. c© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The present study is devoted to constructing a new
method for solving the quantum problem of elastic
and inelastic scattering of a composite particle on a
nucleus with allowance for inelastic channels within
the three-particle problem. Processes of this type
are exemplified by the scattering or breakup of a
deuteron or a 7Li nucleus by a heavy nucleus. An
exact solution to this problem is described either by
the set of Faddeev equations (which is very diffi-
cult to solve in the realistic case of complex-valued
potentials featuring Coulomb interaction) or within
the Schrödinger formalism by an infinite (contin-
ual) set of integro-differential equations that relate
the elastic-scattering channel to an infinite num-
ber of breakup and stripping channels. Since it is
hardly possible to solve this set of equations exactly, a
method is required for discretizing the three-particle
continuum of the A+ 2N system in order to reduce
the infinite continual set of coupled equations to a
finite set of equations. Much effort has been devoted
to developing such methods over the past 25 years
[1–10]. They were dubbed discretized-continuum
coupled-channel (DCCC) methods.

Originally, the DCCC method was developed to
solve the problem of the elastic and the inelastic scat-

*e-mail: rubtsova@nucl-th.npi.msu.su
1063-7788/01/6409-1689$21.00 c©
tering (breakup) of a deuteron on a nucleus [1, 2];
later on, it was extended by Sakuragi et al. (see,
for example, [3]) to the cases of the elastic scattering
and the breakup of, say, 6,7Li and 12C nuclei only for
the two-fragment channel of projectile breakup. This
seems justified for 7Li and hardly justified for 6Li, 12C,
etc., nuclei.

Presently, two approaches of this type [9, 10] have
been developed to the greatest extent. Either is based
(for example, in the case of deuteron–nucleus scat-
tering) on discretizing the continuum of excited states
in the coordinate of the relative motion of the np pair.
Within the first of these [1–5], the discretization is
performed by partitioning the continuous spectrum
of the sub-Hamiltonian hnp describing the relative
motion of the np pair into bands, localized wave pack-
ets being constructed within each of these. With-
in the second approach [6–10], the discretization is
performed by expanding the wave functions for the
continuous spectrum of the np subsystem in terms
of square-integrable functions. Upon discretization
by one of the above methods, the number of breakup
channels becomes finite. Further, the full three-
particle wave function for the A+ d system is ex-
panded in a series in a discrete set of functions that
describe the relative motion of the np pair. Finally, one
obtains a set of great, but finite, number of coupled
2001 MAIK “Nauka/Interperiodica”
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second-order differential equations, which is solved
by numerical methods.

Within these approaches, a vast body of experi-
mental data on the elastic and inelastic scattering, as
well as breakup, of 2H, 6,7Li, 9Be, 12C, etc., nuclei
on medium-mass and heavy nuclei was analyzed in
the 1980s and 1990s, predominantly by Japanese
scientists. It was shown that, in many cases, good
agreement with experimental could be obtained at
projectile energies of 10–50 MeV per nucleon [3, 6,
8, 10]. However, the DCCC method has some series
drawbacks hindering the application of this method,
for example, in the case of nonlocal interactions of
fragments with a target nucleus or in currently very
popular cases of the elastic scattering of unstable
6He, 8,9,11Li, 12Be, etc., nuclei on a stable target,
because these cases cannot be reduced to the two-
particle (virtual or real) fragmentation of a projectile
in the interactions with a target. In addition, attempts
at including, in the calculations, virtual excitations of
not only the projectile but also of the target run into
formidable technical difficulties.

Apart from these drawbacks of a fundamen-
tal character, the DCCC approach involves many
methodological difficulties, such as a rather slow
(and, in all probability, nonuniform) convergence
in the number of channels being included and also
the unwieldiness of the calculations. This slow
convergence, which is observed primarily at large
scattering angles is probably due to the fact that, in
the DCCC approach, the interaction between projec-
tile constituents—for example, the np interaction in
the case of deuteron scattering on a stable nucleus—
is considered to be dominant. Therefore, the three-
particle scattering wave functions Ψ(k; r,R) are
expanded in series in the eigenfunctions of the sub-
Hamiltonian hnp for the np interaction. All inter-
mediate states in the three-particle continuum are
then considered as a deuteron occurring in an excited
state and moving as a discrete unit in the field of
the target nucleus, but this is correct only at large
distances from the force center. At the same time,
large-angle deuteron scattering is governed primarily
by the pair interactions of the particles n and p with
the target nucleus, the np interaction playing the role
of a correction. This means that, in the vicinity of
the target nucleus, intermediate states must have
a structure where each projectile constituent moves
in the nuclear field along its orbit, which is weakly
perturbed by the other projectile constituents. In the
scattering of loose nuclei, such as 2H, 6,7Li, and 9Be,
the main contribution is expected to come from those
single-particle orbits whose energies and angular
momenta correspond to the kinetic-energy and total-
angular-momentum distributions of the projectile in
accordance with the fragment masses.
PH
The physical idea of the method formulated in the
present study is based on the observation that, in the
elastic scattering of a composite particle by a nucleus
at medium and large angles, the scattering ampli-
tude receives contributions only from the regions of
the multiparticle configuration space that correspond
to rather small distances between all projectile con-
stituents and the target nucleus. In other words, only
the intrinsic parts of multiparticle-continuum wave
functions must be taken into account. Therefore, a
discretization of the L2 type on the basis of square-
integrable functions similar to those that are used in
the shell model [11] must be sufficient. In math-
ematical terms, this approach amounts to includ-
ing, with the aid of the Feshbach projection-operator
formalism, all three-particle breakup and stripping
channels that appear as intermediate states for elastic
scattering in the nonlocal operator of interaction be-
tween the composite particle and the target nucleus.
Further, the exact wave functions appearing in this
nonlocal interaction operator and corresponding to
inelastic channels are expanded in a three-particle
discrete oscillator basis. This is the way in which the
total intermediate three-particle continuum is dis-
cretized. In this (projection-operator) formulation of
the scattering problem, a full summation over the set
of states of the discretized three-particle continuum
occurs; therefore, we can hope that local errors of
discretization in the intermediate states will not affect
the final results.

The ensuing exposition is organized as follows.
The second section of our study is devoted to

deriving an equation for the elastic-scattering wave
function on the basis of the Feshbach projection-
operator formalism by introducing the operators that
project the full space of functions for the original
Hamiltonian onto the subspace corresponding to
the elastic-scattering channel and the subspace that
is orthogonal to it and which is associated with
breakup channels. We obtain two equations relating
the elastic-scattering channel to inelastic-scattering
channels. By formally eliminating the componentQΨ
that corresponds to the sum of all inelastic channels
from the above set of equations, we arrive at a single
equation for the elastic-scattering component PΨ. In
this equation, the (virtual) contribution of all breakup
and stripping channels is represented by a nonlocal
energy-dependent operator including integration over
the continuous spectrum of intermediate states. For
the wave function describing the elastic scattering
of a composite particle in a given partial wave, we
eventually obtain a single wave equation with a
nonlocal energy-dependent potential.

A method for constructing the spectrum of the
three-particle Hamiltonian for intermediate states in
the subspace Q, which is orthogonal to the intrinsic
YSICS OF ATOMIC NUCLEI Vol. 64 No. 9 2001
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wave function for the incident composite particle, and
its implementation in practice are discussed in Sec-
tion 3. In Section 4, we briefly describe the scheme
of the discretization of the continuum for the case
of the two-fragment projectile breakup on the target
nucleus. In Section 5, we discuss all basic results of
our study. In Section 6, we present a brief summary.

We have also included two appendices in this ar-
ticle. In Appendix A, we present explicit formulas
for the matrix elements corresponding to transitions
from the elastic channel to inelastic channels. In
Appendix B, we describe a method for calculating the
intermediate resolvent for the case of a loose compos-
ite particle like the deuteron or the 7Li nucleus.

2. FORMALISM FOR SOLVING
THE PROBLEM

2.1. Hamiltonian and Projection-Operator
Formalism

Let us describe the proposed approach by consid-
ering the problem of the scattering of a composite
particle {1, 2} by a force center. The total Hamiltonian
of the problem has the form

H = H1(r1) +H2(r2) + V12(|r1 − r2|), (1)

whereH1 = T (r1)+V1(r1) andH2 = T (r2)+V2(r2)
are the single-particle Hamiltonians for the motion of
each of particles 1 and 2 in the force field. Here, r1 and
r2 are the coordinates of particles 1 and 2 with respect
to the force center, T stands for the kinetic energy
operators, and V1 and V2 are the potentials describing
the interaction of the particles with the center, and V12

is the potential representing the interaction between
particles 1 and 2. For the sake of simplicity, we will
assume that m1 = m2 = m and V1 = V2 (that is, the
particles are identical) and that the target-nucleus
mass M is indefinitely large. These conditions sim-
plify only algebraic transformations with the three-
particle oscillator basis and can easily be removed, if
required. In the case of deuteron scattering, V1 and
V2 are the complex-valued optical potentials for the
scattering of, respectively, the neutron and the proton
on the nucleus. We further introduce the Jacobi
coordinates for the relative motion of the constituents
1 and 2 of the composite particle with respect to its
center of mass as

r =
1√
2
(r1 − r2), R =

1√
2
(r1 + r2). (2)

The corresponding momenta are

p =
1√
2
(p1 − p2), P =

1√
2
(p1 + p2).

Under this change of coordinates, the total orbital
angular momentum does not change:

Λ = l1 + l2 = L + l. (3)
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In terms of the new coordinates, the Hamiltonian
takes the form

H = T (R) + V1

(
|r + R|√

2

)
(4)

+ V2

(
|r− R|√

2

)
+ h12(r),

where h12 = T (r)+V12(
√

2r) is the sub-Hamiltonian
for the {1, 2} subsystem. We assume that h12 has
only one bound s-wave state φ0(r):
h12φ0(r) = ε0φ0(r), φ0(r) ≡ φ0(r)Y 0

0 (r̂). (5)

Now, we make use of the well-known Feshbach
method. For this, we introduce the projection op-
erators satisfying the conditions

P 2 = P, Q2 = Q, P +Q = 1, QP = PQ = 0,
where P is the operator of projection onto the elastic
channel andQ is the orthogonal operator of projection
onto all inelastic channels.

The Schrödinger equation for the total Hamilto-
nian,

HΨ = EΨ,
then splits into two coupled equations for the compo-
nents PΨ and QΨ; that is,

(PHP − E)PΨ = −PHQΨ, (6)

(QHQ− E)QΨ = −QHPΨ.
We further introduce the operator Green’s function

G
(+)
Q (E) for the operator QHQ:

G
(+)
Q (E) = [QHQ− (E + iγ)]−1. (7)

Proceeding in a conventional way, we now sub-
stitute the second equation from (6) into the first
equation. For the function PΨ, we then derive the
equation

(PHP −E)PΨ = PHQG
(+)
Q (E)QHPΨ. (8)

On the right-hand side of this equation, there appears
the nonlocal operator representing the interaction of
the {1, 2} particle with the force center and taking
into account all inelastic channels.

In our problem, the kernel of the operator P can be
represented in the form

P (r,R; r′,R′) = φ0(r)δ(R − R′)φ∗0(r
′). (9)

If Ψ(r,R) is an eigenfunction of the total Hamil-
tonian H , its P projection has the form

PΨ = φ0(r)Ψ0(R),

where Ψ0(R) ≡
∫
φ∗0(r

′)Ψ(r′, R)dr′ is the “external”
part of the wave function corresponding to elastic
scattering.

Let {Ψ̃n} be the set of bound eigenstates of the
operatorQHQ, and let {Ψ̃(E,α)} be the set of states
1
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belonging to the continuous spectrum of this oper-
ator, the index α numbering the quantum numbers
in which there is degeneracy in energy. In our case,
the index α depends on the total orbital angular mo-
mentum Λ of the system as a discrete unit and on its
projection M onto the z axis, α = (Λ,M). Suppose
that the two sets form a complete system of functions
(in the space of the Hamiltonian H):

1 =
∑

n

|Ψ̃n〉〈Ψ̃n| +
∑

α

∫
dE|Ψ̃(E,α)〉〈Ψ̃(E,α)|.

For the operator Green’s functionG(+)
Q (E) associated

with the operator QHQ, we use the spectral expan-
sion [12]

G
(+)
Q (E) =

∑

n

|Ψ̃n〉〈Ψ̃n|
En − E

(10)

+
∑

α

∫
dE′ |Ψ̃(E′, α)〉〈Ψ̃(E′, α)|

E′ − (E + iγ)
.

We also have

G
(+)
Q (E) = QG

(+)
Q (E)Q− P

E + iγ
.

The operatorQG(+)
Q (E)Q then takes the form

QG
(+)
Q (E)Q =

∑

n′

|Ψ̃n′〉〈Ψ̃n′ |
En′ − E

(11)

+
∑

α

∫
dE′ |Ψ̃(E′, α)〉〈Ψ̃(E′, α)|

E′ − E

+ iπ
∑

α

|Ψ̃(E,α)〉〈Ψ̃(E,α)|.

In the last formula, the functions |Ψ̃〉 are subjected to
the additional condition

P |Ψ̃〉 = 0, (12)

which leads to a distinction between the eigenfunc-

tions of the operators G(+)
Q (E) and QG(+)

Q (E)Q.

We now proceed to formulate the basic idea of
our approach in these terms. The operator PHQ
describing the transition from the initial elastic chan-
nel into the intermediate states of the three-particle
continuum is localized both in the relative coordinate
r and in the center-of-mass coordinate R. We will
show this by using the Hamiltonian in (4). Since the
commutator [P, T (R) + h12(r)] vanishes and since
the orthogonality condition PQ = 0 is satisfied, we
have PHQ = P{V1 + V2}Q; that is,

PHQ→ 〈φ0(r)|V1 + V2|Ψ̃(r,R)〉.
In the last expression, the three-particle intermediate-
state wave functions Ψ̃(r,R) are effectively cut off
PH
in the coordinates r and R owing to the short-
range potentials V1 and V2 and the function φ0. In
the spectral expansion of the intermediate resolvent

QG
(+)
Q (E)Q (11), only the continuum three-particle

wave functions for |r| < r0, |R| < R0, which are
orthogonal to φ0), are of importance, and this makes
it possible to use efficiently the very convenient L2

discretization for describing intermediate states.
This conclusion is confirmed by the results of the

recent analysis from [5], where the authors showed
explicitly that the use of well-localized (in the r space
of the relative motion of particles 1 and 2) wave pack-
ets leads to a faster convergence to exact results than
the direct use of nondecaying exact scattering wave
functions for the relative motion of particles 1 and 2.

There is no such cutoff in the problem of the
breakup of an incident composite particle. Therefore,
we somewhat modify our approach in this case (see
Section 4).

We now proceed to derive explicitly an equation
for the elastic-scattering wave function. The right-
hand side of Eq. (8) includes the nonlocal operator

PHQG
(+)
Q QHP . As was explained above, the fol-

lowing relation holds:

PHQG
(+)
Q QHP = P{V1+V2}QG(+)

Q Q{V1+V2}P.

It is important to emphasize now that, in or-
der to calculate the intermediate Green’s function
G

(+)
Q (E), we employ, in the ensuing derivation (see

Section 3), its spectral expansion expressed in terms
of the single-particle coordinates r1 and r2. Here,
the expansion includes the entire spectrum (involving
bound states and single-particle resonances) of the
operators H1 and H2. This means that, if use is made
of a sufficiently large expansion basis, the virtual and
real (if the total initial energy is higher than the corre-
sponding thresholds) stripping channels are naturally
included in this spectral expansion along with a great
number of breakup channels, where both constituents
(1 and 2) occur in states belonging to the three-
particle continuum. This treatment of the interme-
diate spectrum of the operator QHQ radically differs
from that in DCCC approaches, where only breakup
channels—but not stripping ones—are taken into ac-
count in intermediate states. That the spectrum of
the operatorQHQ (and, accordingly, the expansion of

the resolvent QG(+)
Q Q) contains no asymptotic states

involving the bound state φ0 of particles 1 and 2 as an
internal function of the composite particle (according
to the meaning of the projection operator Q) is an
important circumstance here. Therefore, relative mo-
tion in the (1, 2) pair always occurs in the continuous
spectrum.
YSICS OF ATOMIC NUCLEI Vol. 64 No. 9 2001
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We now make use of the spectral expansion of

the operator QG(+)
Q (E)Q (11) and, after well-known

simplifications, derive the required equation for the
function ψ0(K,R) describing the elastic scattering of
the center of mass of the {1, 2} particle by the force
center. The result is(

T (R) + V (R) − 1
2
K2

)
ψ0(K,R) (13)

=
∫
dR′F (E;R,R′)ψ0(K,R′),

K =
√

2(E − ε0),
where ε0 is the energy of bound state of the sub-
Hamiltonian h12 [it is defined in Eq. (5)];

V (R) =
∫
drφ∗0(r)

{
V1

(
|r + R|√

2

)
(14)

+ V2

(
|r− R|√

2

)}
φ0(r)

is the so-called folded potential (introduced by Vana-
tabe long ago); and the kernel of the nonlocal operator
on the right-hand side of (13),

F (E;R,R′) =
∑

n

Un(R)U∗
n(R′)

En − E
(15)

+
∑

ΛM

∫
dE′UΛM (E′,R)UΛM (E′,R′)

E′ − (E + iγ)
,

is a nonlocal complex-valued potential involving the
inelastic channels of virtual breakup and stripping.
Here, we have introduced the notation

UΛM (E,R) =
∫
drφ∗0(r)

{
V1

(
|r + R|√

2

)
(16)

+ V2

(
|r− R|√

2

)}
Ψ̃(E,ΛM ; r,R)

and
Un(R) = 〈φ0(r)|V1 + V2|Ψ̃n(r,R)〉. (17)

Let us expand the angular parts of the required solu-
tion ψ0(K,R) and of the nonlocal interaction opera-
tor F (E ; R, R′) in terms of spherical harmonics. We
have

ψ0(K,R) =
∑

LM

Y ∗M
L (K̂)

χL(K,R)
R

YM
L (R̂),

where χL are the scattering partial-wave functions,
and

F (E;R,R′) =
∑

LM

YM
L (R̂)

FL(E;R,R′)
RR′ Y ∗M

L (R̂′),

where

FL(E;R,R′) =
∑

n

ULn (R)U∗L
n (R′)

En − E
(18)
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+
∫
dE′U

L(E′, R)U∗L(E′, R′)
E′ − E

,

with

UL(E,R) = R

∫
dΩRY

∗M
L (R̂)ULM (E;R).

A similar expression is obtained for ULn (R). We
note that, in the last equality, the subscripts LM
on the function U appearing on the right-hand side
represent the total orbital angular momentum of the
system and its projection in the intermediate state,
respectively, while the superscript L on the left-hand
side corresponds to the orbital angular momentum of
the center of mass of the {1, 2} particle. This form of
expansion is associated with the conservation of the
total orbital angular momentum of the system.

We substitute these expansions into (15) and (13),
multiplying them, as usual, by Y m′

l′ and integrating
the results with respect to the angles. In this way,
we arrive at an equation for the partial-wave functions
describing the scattering of the center of mass of the
composite particle by a nucleus with allowance for
the channels of three-particle breakup and stripping.
Specifically, we have[

− d2

dR2
+
L(L+ 1)

R2
+ 2V (R) −K2

]
χL(K,R)

= 2

∞∫

0

dR′FL(E;R,R′)χL(K,R′). (19)

Although the right-hand side of this equation involves
a nonlocal interaction potential, it can be shown that,
in the limit KR→ ∞, the required solution takes the
form

χL(K,R) = BL(K){χ(−)
L (KR) (20)

− χ
(+)
L (KR)SL},

where χ(±) are spherical Hankel functions (see [13])
and SL are the S-matrix elements corresponding to
the scattering of the center of mass of a composite
particle by the total potential from Eq. (19).

Equation (19), together with the definition in (18),
is the basic equation of our approach. It demonstrates
that, in the scattering of a composite particle, all
virtual processes of breakup and stripping can be
included in the energy-dependent nonlocal operator
of finite range. However, the exact form of the ker-
nel of the operator FL(E;R,R′) is still overly com-
plicated for numerically solving, by direct methods,
the equation that we obtained. In the next subsec-
tion, we therefore present a convenient scheme for
its finite-dimensional approximation using a three-
particle harmonic-oscillator basis, which is the ex-
tension of the shell-model basis for particles 1 and 2
over the target-nucleus core.
1
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In the particular case where the incident particle
consists of two loosely bound fragments, a still sim-
pler approximation described in Appendix B can be
used in analyzing large-angle scattering.

2.2. Discretization of the Continuum
of Intermediate States

We will seek the eigenfunctions of the three-
particle intermediate state Hamiltonian QHQ in the
form of the oscillator expansions

Ψ(E,ΛM) =
∑

N

∑

u

CN
u (E)|n1l1, n2l2,ΛM〉 (21)

≡
∑

N

∑

t

AN
t (E)|nl,NL,ΛM〉,

where |n1l1, n2l2,ΛM〉 and |nl,NL,ΛM〉 are two-
particle oscillator functions in terms of the coordi-
nates (r1, r2) and (r,R), respectively [14]. This form
of expansion is associated with (3). The oscillator-
basis functions in terms of the single-particle coordi-
nates (r1, r2) have the form

〈r1, r2|n1l1, n2l2,ΛM〉 (22)

=
∑

m1m2

CΛM
l1m1,l2m2

Ψn1l1m1(r1)Ψn2l2m2(r2),

where C are Clebsch–Gordan coefficients and the
single-particle oscillator functions are given by

Ψnlm(r) = Rnl(r) · Y m
l (θ, φ) ≡ |nlm〉,

Rnl(r) =




2 · n!

Γ(n+ l +
3
2
)





1
2

(23)

× rl exp
(
−1

2
r2
)
L
l+ 1

2
n (r2).

Here, Lαn(x) are the generalized Laguerre polynomi-
als. In expression (21), N denotes the total num-
ber of oscillator quanta (N = 2n1 + l1 + 2n2 + l2 =
2n+ l + 2N + L), u numbers various (n1, l1, n2, l2)
sets, and t numbers various (n, l,N,L) sets at fixed
N . It is remarkable that the coefficients A and C
are related by the purely algebraic Talmi–Moshinsky
transformation [14, 15]

AN
t (E) =

∑

u

〈nl,NL,Λ|n1l1, n2l2,Λ〉CN
u (E),

which, in the case of arbitrary masses m1 and
m2 of the projectile constituents, is generalized
to become the Talmi–Moshinsky–Smirnov trans-
formation [16]. For the transformation brackets
〈nl,NL,Λ|n1l1, n2l2,Λ〉, there exist analytic for-
mulas [14–16] and detailed tables [17]. These
transformation brackets are nonzero only under the
condition 2n+ l + 2N + L = 2n1 + l1 + 2n2 + l2,
PH
which corresponds to the conservation of the total
number of oscillator quanta (that is, energy).

The basic approximation of the method consists in
bounding the number of oscillator quanta from above
by the maximum number Nmax. Instead of an infinite
number of eigenfunctions of the operator QHQ, we
then obtain a finite basis for each set (Λ,M). Instead
of the continuous energy spectrum, we obtain, in this
case, the discrete set {Ep}. As the number Nmax or
the oscillator radius is increased, the density of states
in the discretized continuum also increases, which
makes it possible to control quite straightforwardly
the spectral density of continuum states. In this way,
the spectrum of the operatorQHQ is discretized with
a controllable spectral density.

For the operator QG(+)
Q Q, we obtain, instead of

integration over the entire continuum of intermediate
states, summation over a finite set of states of the
discretized spectrum; as a result, we can easily find
the nonlocal operator F (E;R,R′).

We emphasize once again that, in the limit
Nmax → ∞, this L2 discretization of the intermediate
continuum must lead to a uniform convergence to
the exact solution to the full problem owing to the
short-range character of the transition form factors
UΛM (E,R) and Un(R).

Two problems arise within the proposed approach.
The first is associated with actually constructing the
spectrum of the operator QHQ, while the second
consists in developing an effective algorithm that
would replace integration over the continuum spec-
trum in F (E;R,R′) by summation over a finite set of
the constructed states of the discretized continuum.
The first problem is investigated in detail in the next
part of this study. The second problem can be treated
on the basis of the well-known Stieltjes–Chebyshev
technique of moments or quadratures [18, 19]. A
similar approach as applied to our problem will be
developed elsewhere. Upon successfully solving both
problems, we can construct a good approximation
for the kernel of the operator FL(E;R,R′) (18) and
then solve the basic Eq. (19) by means of iterations.
Finding further complex partial-wave phase shifts
with the aid of (20), we can calculate the partial-wave
amplitudes for the scattering of a composite particle.
In this way, a full solution to our problem is obtained.

3. CONSTRUCTING EIGENFUNCTIONS
OF THE OPERATOR QHQ: METHOD

OF ORTHOGONALIZING
PSEUDOPOTENTIALS

The problem of constructing the total spectrum of
the operatorQHQ is nontrivial even in a finite L2 ba-
sis, because all basis functions must be orthogonal-
ized with respect to the internal wave function of the
YSICS OF ATOMIC NUCLEI Vol. 64 No. 9 2001
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projectile nucleus. As a matter of fact, we have to deal
with continuum functions, and methods that are sim-
ilar to that due to Gram and Schmidt and which are
well known in applied mathematics are inappropriate
here, since orthogonalization (according to Schmidt)
of all continuum functions to one function φ0(r) yields
functions that are nonorthogonal to one another and
violates the completeness property of the initial basis.

In order to determine the eigenstates of the opera-
tor QHQ that satisfy the condition in (12), it is con-
venient to use the orthogonalizing-pseudopotential
method proposed in [20, 21]. The idea of this method
is as follows. Instead of the Hamiltonian QHQ, one
introduces the pseudo-Hamiltonian H̃ :

H̃ = H + λP. (24)

Here, H is given by (4); P is the projection operator
(9), which complements the projection operator Q to
unity; and λ is a positive parameter. As was shown
in [20, 21], the use of the pseudo-Hamiltonian H̃
makes it possible to work in the complete (not in
the truncated) space; this simplifies all calculations
significantly. The additional term λP plays the role of
the penalty function. This operator is positive definite;
therefore, that component of the eigenfunction of the
operator H̃ which is not orthogonal to P will increase
the energy eigenvalue. As λ is increased, the basis
of the eigenfunctions of the operator H rotates in
such a way as to shift the functions involving the P
components upward on the energy scale. In accor-
dance with the variational principle, the admixture
of the P components in the eigenfunctions of the
lower part of the spectrum of H̃ will approach zero for
λ→ ∞. The problem of replacing the operator QHQ
by the operator H̃ was comprehensively analyzed in
[22], where the exact eigenfunctions of the operator
QHQ and the eigenfunctions of the operator H̃ from
(24) were compared for a two-level system. In that
article, it was explicitly shown that the admixture
of the forbidden P component ξ in the allowed Q
eigenfunctions behaves as ξ ∼ O(1/λ2) (see below).

In the present study, the eigenstates of the dis-
cretized continuum of the pseudo-Hamiltonian

H̃ = T (r1) + T (r2) + V1(r1) + V2(r2) + λP (25)

are constructed for the potentials

V1(r1) = U0e
−βr21(1 + δr21), (26)

V2(r2) = U0e
−βr22(1 + δr22),

which, for an appropriate choice of the parameters β
and δ, faithfully reproduce single-particle potentials
with a sharp edge like the Woods–Saxon potential.
In formula (25), we disregarded the interaction V12

for the sake of simplicity. For the function φ0(r)
appearing in the projection operator P , we take the
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deuteron wave function expanded in Gaussian func-
tions (see [23]).

Let us reduce the Hamiltonian to a dimensionless
form with the aid of characteristic parameters of an
oscillator having a frequency ω:

rω =

√
�

mω
, pω =

√
�mω, (27)

H → H

�ω
, V → V

�ω
.

It is convenient to expand the eigenfunctions of H̃
in terms of the functions of the symmetric two-
particle oscillator basis corresponding to the same
frequency [14]:

|n1l1, n2l2,ΛM〉S =
1√
2
(|n1l1, n2l2,ΛM〉 (28)

+ (−1)l1+l2−Λ|n2l2, n1l1,ΛM〉).
This basis is symmetric with respect to the inter-
change of particles 1 and 2. This choice is made
because the spin and the isospin part of the wave
function are taken to be symmetric and antisym-
metric, respectively. Positive-parity (negative-parity)
states are expanded only in those states in (28) for
which l1 + l2 and, consequently, the total number of
quanta N = 2n1 + l1 + 2n2 + l2 are even (odd). If
(n1, l1) = (n2, l2), the factor 1/

√
2 must be replaced

by 1/2. In this case, the state in (28) exists only at
even Λ.

Thus, we write the eigenfunction of H̃ in the form

Ψ̂(Ep,ΛM ; r1, r2) ≡ Ψ̂p,ΛM(r1, r2) (29)

=
Nmax∑

N

∑

u

CN
pu〈r1, r2|n1l1, n2l2,ΛM〉S .

The hat sign is placed over the function Ψ in
order to distinguish it from the exact function (21).
Eventually, the problem of determining the spectrum
of H̃ reduces to diagonalizing the matrix

‖S〈n′1l′1, n′2l′2,Λ|H + λP |n1l1, n2l2,Λ〉S‖ (30)

in the basis in (28). Owing to the choice of basis,
all matrix elements (30) admit a complete analytic
calculation (see, for example, [14] and Appendix А).

For the total orbital angular momentum of Λ = 0
and the maximum number of oscillator quanta that
is equal to Nmax = 14, the spectrum of eigenvalues of
the matrix corresponding to the Hamiltonian (30) was
investigated as a function of the parameter λ. With
increasing λ, the eigenvalues of some forbidden states
are shifted upward on the energy scale (these are the
states for which the expectation value of the operator
P is close to unity); for the others, the eigenvalues
are saturated—these are lower states, for which the
expectation value of the operator P sharply decreases
1
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Fig. 1. Eigenvalues of the matrix of the Hamiltonian H̃ as
functions of the parameter λ at Nmax = 14 for some (a)
lower and (b) upper states. The energies of the states and
the parameter λ are presented in units of the dimension-
less quantities E/U0 and λ/U0, respectively, where U0 is
the depth of the single-particle shell potential (26).

with increasing λ. It is noteworthy that the number of
upper (forbidden) states at given Nmax and given total
orbital angular momentum Λ is given by

K =
1
2
(Nmax − Λ) + 1. (31)

This can easily be explained by recasting the kernel of
the projection operator into the equivalent form

P (r,R; r
′
,R

′
) (32)

=
∑

ΛM

∑

N

〈r,R|φ0, NΛM〉〈φ0, NΛM |r′
,R

′〉.

In the last equality, we have used, instead of the
delta function, the full sum over the single-particle
oscillator basis |NΛM〉 and taken into account the
s-wave form of the function φ0(r). That the total
number of quanta of the two-particle basis is bounded
from above (2n + l + 2N + L ≤ Nmax) and that the
total orbital angular momentum of the system is fixed
PH
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Fig. 2. Expectation values of the projection operatorP for
some lower states of the spectrum of H̃ as functions of the
projection constant λmeasured in units of U0.

(Λ = l + L) mean that, instead the full sum in (32),
one takes the sum involving K terms; that is,

P (r,R; r′,R′) (33)

≈
∑

ΛM

1
2
(Nmax−Λ)∑

N=0

〈r,R|φ0, NΛM〉〈φ0, NΛM |r′,R′〉.

Figures 1a and 1b show some lower and upper
energy eigenvalues of the pseudo-Hamiltonian H̃ as
functions of λ. It can clearly be seen that, for lower
eigenvalues, the saturation in λ occurs at values
larger than some critical value (see Fig. 1а) and that
the energy eigenvalues for upper levels grow in pro-
portion to λ (Fig. 1b). These results are in perfect
agreement with those from [22].

The expectation values of the projection operator
P over some lower states are displayed in Fig. 2
versus λ. The sum of 〈P 〉 averaged over all upper
states is shown in Fig. 3 as a function ofλ. In [22], the
orthogonalizing-pseudopotential method was tested
analytically for a simple two-level system, where one
upper and one lower level are formed with increasing
λ. According to [22], analytic dependences of the P
values averaged over these states are given by

〈P 〉lower = O

(
1
λ2

)
, 〈P 〉upper = 1 −O

(
1
λ2

)
.

(34)

The results of our numerical calculations in the two-
particle oscillator basis agree with (34) for lower
states. For the sum averaged over all K upper states,
we obtain the estimate

1
K

K∑

p=1

〈P 〉p,upper = B −O

(
1
λ2

)
, B < 1.
YSICS OF ATOMIC NUCLEI Vol. 64 No. 9 2001
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The distinction between this result and that in (34) is
due to the fact that the truncated basis ceases to be
complete. It should be noted that, in constructing the
intermediate-state spectrum of the original problem,
we need the wave functions of the lower states, which,
within the method of orthogonalizing pseudopoten-
tials, are therefore obtained to be orthogonal to the
total projection operator (32).

As a result, we have shown that the orthogonaliz-
ing-pseudopotential method is well suited to deter-
mining the spectrum of the three-particle Hamilto-
nian QHQ for intermediate states.

4. SCHEME FOR INELASTIC SCATTERING:
BREAKUP, STRIPPING, AND EXCITATION

OF THE TARGET

In this section, we want to demonstrate that the
representation of the three-particle resolvent in the
oscillator basis can be effectively used to determine
the cross sections for the stripping or breakup of a
composite particle on a target at rest. However, we
will use here a different approach that is based on the
Faddeev formalism, since, in the last case (that is, for
the breakup reaction), there are no explicit cutoff fac-
tors in the integrals for the relevant matrix elements—
there are only the slowly decreasing factors of the 1/r
type.

Let us define the following sub-Hamiltonians of
the total Hamiltonian (1) of our system: H0 = T1 +
T2, which is associated with the free motion of parti-
cles 1 and 2; H3 ≡ H1 +H2 = H0 + V1 + V2, which
is associated with the scattering of particles 1 and
2 in the field of a nucleus without allowance for
the interaction between them; and H12 = H0 + V12,
which takes into account the interaction only between
particles 1 and 2. (We recall that T stands for the
operators of the kinetic energies of the particles, H1

and H2 are the single-particle Hamiltonians for the
interaction of the particles with the center, and V12 is
the potential of the interaction between the particles.)

Let us introduce the Green’s operators corre-
sponding to the above sub-Hamiltonians:

G12(E) = [H12 − (E + i0)]−1, (35)

G3(E) = [H3 − (E + i0)]−1.

According to [13], we further write the Faddeev equa-
tions for the exact wave function Ψε0,P describing
the collision of the {1, 2} particle with the external
potential field that correspond to the above partition
of the total Hamiltonian:

Ψε0,P = Φε0,P −G12(V1 + V2)Ψε0,P, (36)

Ψε0,P = −G3V12Ψε0,P. (37)
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Here, Φε0,P is a function that specifies the state of the
incident particle {1, 2} before the collision event,

Φε0,P =
eiP·Rφ0(r)
(2π�)3/2

,

φ0(r) describing the bound state of the {1, 2} parti-
cle. Equations (36) and (37) must be solved simul-
taneously in order to ensure correct boundary condi-
tions in all independent coordinates [13]. For this, a
solution to the first equation can be substituted into
the second equation, or vice versa.

By substituting (36) into (37), we obtain

Ψε0,P = −G3V12Φε0,P (38)

+G3V12G12(V1 + V2)Φε0,P + . . . .

In order to determine the breakup amplitude,
we can use the conventional formula for the post-
amplitude [13]:

Tbreakup = −〈φ(−)
K1
φ

(−)
K2

|V12|Ψε0,P〉. (39)

Here, φ(−)
K1

and φ(−)
K2

are the single-particle wave func-
tions describing the scattering of particles 1 and 2
on the potentials V1 and V2, respectively, and corre-
sponding to the continuous spectrum and the bound-
ary conditions in the form of converging waves. Sub-
stituting (38) into (39) and retaining only the first
term, we find that the breakup amplitude can be rep-
resented as

Tbreakup = −〈φ(−)
K1
φ

(−)
K2

|V12G3V12|Φε0,P〉. (40)

As was defined above, the resolvent G3 corresponds
to the motion of two noninteracting particles 1 and 2
in a force field; therefore, it can be represented in the
1
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form of the convolution of the single-particle Green’s
operators relevant to the Hamiltonians H1 and H2:

G3(E) =
1

2πi

+∞∫

−∞

dεg
(+)
1 (ε)g(+)

2 (E − ε).

In calculating the breakup amplitude Tbreakup, the
functions appearing in the spectral expansion of this
resolvent are strongly cut off only in the coordinate of
the relative motion of particles 1 and 2 (in contrast
to what occurs in the case of elastic scattering), the
convergence of the relevant integrals in the single-
particle coordinates r1 and r2 being ensured only
by oscillations of wave functions in the continuum.
Despite this, we deem it possible to use an oscillator
basis in this very problem as well. This is due to
the fact that, if we use wave packets instead exact
continuum wave functions (it is precisely the under-
lying principle of the DCCC approach), these packets
are well localized in space, admitting a convergent
oscillator approximation. The representation of G3 in
the two-particle oscillator basis is considered in detail
in Appendix B [see the final formula (A.18)].

If we now also represent the functions φ(−)
K1

and

φ
(−)
K2

in the form of the oscillator expansions, all inte-
grals entering into (39) can be calculated analytically
(by using the relation between the two-particle os-
cillator functions determined in the laboratory frame
and in the c.m. frame of particles 1 and 2). The
last circumstance is an important advantage of the
proposed method.

The next term in the iteration series for multiple
scattering has the form

∆Tbreakup (41)

= 〈φ(−)
K1
φ

(−)
K2

|V12G3V12G12{V1 + V2}|Φε0,P〉.
Such terms correspond to the rescattering of par-
ticles 1 and 2 in the final (or initial) state and are
of importance for a low relative energy (that is, they
take into account final-state-interaction effects of the
Migdal–Watson type [13]), in which case the pole
of the Green’s function G12 is close to the physical
region. In the remaining cases, these corrections
for rescattering in higher orders must be small (an
additional smallness in these corrections is due to the
presence of the absorbing single-particle potential in
the region of a nucleus: this leads to the suppression
of any multiple-rescattering process in the internal
region).

In a similar way, we can find the amplitude for
stripping of, say, particle 1. For this, we use the
formula from [13] for the stripping amplitude and the
first term of the series in (38). As a result, we obtain

Tstripping = −〈φε1φ
(−)
K2

|V12G3V12|Φε0,P〉, (42)
PH
where φε1 is the eigenstate of the Hamiltonian H1 for
the eigenvalues ε1 of the discrete spectrum.

We now briefly discuss the generalization of the
scheme presented in Section 2 to the case where
target excitations are taken into account. Instead of
the potential Hamiltonian H1, there then appears its
matrix analog Ĥ1. By way of example, we indicate
that, for one rotational excitation of the target nu-
cleus, we have

Ĥ1 =



 T1 + V (11) − ε1 V (12)

V (21) T1 + V (22) − ε2



 .

A similar matrix can be written for the sub-Hamilto-
nian Ĥ2. Here, ε1 and ε2 are the energies of, respec-
tively, the ground and the first excited state of a target,
while V (12) and V (21) are the potentials coupling the
channels (for rotational excitations, these are ordinary
the adiabatic folded potentials).

By way of example, we consider the problem of
nucleon scattering by a deformed 12C nucleus, taking
into account coupling to the first 2+ level in 12C.
When use is made of the matrix sub-Hamiltonians
Ĥ1 and Ĥ2, the Green’s function Ĝ3 also becomes
the appropriate matrix (in the space of channels cou-
pled to target-nucleus levels). The remaining part of
the scheme (see Section 2) for solving the problem
also assumes the matrix form without undergoing
conceptual changing. Eventually, all intermediate
summations (over the spectra of the operators Ĥ1

and Ĥ2) acquire an additional index that numbers the
excited target states. In contrast to this, the inclusion
of target excitations in the DCCC approach leads to
a considerable increase in the number of channels,
which was very large even in its original form. As a
result, this approach becomes very cumbersome.

5. DISCUSSION OF THE RESULTS

Let us formulate basic results of this study. We
have demonstrated that the problem of the elastic
scattering of a composite particle on a nucleus with
allowance for virtual breakup and stripping chan-
nels reduces to solving uncoupled Schrödinger equa-
tions for individual partial waves, the potentials in
these equations being complex, nonlocal, and energy-
dependent. Further, we have shown that the transi-
tion form factors PHQ are effectively cut off at small
projectile-to-target distances. This makes it possible
to use the L2 discretization of the intermediate mul-
tiparticle continuum. For this discretization, we have
used the two-particle oscillator basis, which made it
possible to express all radial integrals entering into
the nonlocal kernel in a simple analytic form.
YSICS OF ATOMIC NUCLEI Vol. 64 No. 9 2001



NEW APPROACH TO SOLVING THE PROBLEM 1699
The intermediate three-particle resolvent

QG
(+)
Q Q appearing in the kernel of the nonlocal

operator is expressed in terms of the spectrum of
the corresponding Hamiltonian QHQ; its spectrum
in turn is obtained by diagonalizing the pseudo-
Hamiltonian H̃ = H + λP as the orthogonalizing
constant λ increases.

We have also shown that the proposed method,
which is based on discretizing the continuum of in-
termediate states and on subsequently approximat-
ing the three-particle resolvents, can be extended to
the problem of the inelastic scattering of composite
particles and also to the problem of taking into ac-
count target-nucleus excitations. A transition from
integration over the full continuous spectrum of in-
termediate states to summation over the discretized
continuum in the spectral expansion of the resolvent
can be performed with the aid of quadrature methods
(for example, the Stieltjes–Chebyshev methods [18,
19]). This problem will be considered in detail in our
forthcoming publication.

As the result of the above complete reduction of
the multiparticle-scattering problem, only one equa-
tion (with a complex-valued nonlocal potential ex-
pressed in analytic form) for the scattering wave func-
tion in each partial wave is obtained instead of the ex-
tremely cumbersome set of coupled equations within
the method of the strongly coupled channels (in the
DCCC approach) for calculating elastic scattering.
This provides serious advantages in the practical im-
plementation of this approach, which are briefly listed
below:

(i) The entire scheme for numerically solving the
problem is simpler and faster.

(ii) The number of intermediate channels that are
taken into account and the spectral density of states
of the discretized continuum can easily be controlled
by increasing the dimension of the oscillator basis—
that is, the total number of quanta Nmax. As a matter
of fact, the problem of discretizing the intermediate
continuum can be reduced to diagonalizing the matrix
of the effective Hamiltonian for the shell model, where
considerable advances have recently been made in the
realms of numerical implementation (for example, the
Monte Carlo method for the shell model [24]); this
makes it possible to take into account a great number
of such intermediate states. It is important that codes
for such calculations and the formalism for evaluating
nuclear matrix elements are available.

(iii) It can easily be seen that the solution that we
have obtained for the problem in question admits a
direct generalization to the three- and four-particle
fragmentation of the projectile nucleus and to the
virtual excitation of the target nucleus (this is hardly
possible within the DCCC method).
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(iv) That all effects associated with the virtual
and the real breakup of the projectile and with the
stripping of its fragments are included in the nonlocal
complex-valued operator that appears on the right-
hand side of the basic equation and which can be
treated as a correction to the main folding potential
is an important advantage of the proposed scheme.
Within such a consideration, the nonlocal operator
of the dynamical polarization of a composite particle
can easily be replaced (by using the inverse-problem
method [25]) by an effective complex-valued local
polarization potential, which illustrates the effects of
the dynamical polarization of the incident composite
particle.

6. CONCLUSION

We have proposed a new formalism for solving
the problem of the elastic and inelastic scattering of
a composite particle by a force center at rest. The
method is based on the L2 discretization of the con-
tinuous spectrum of intermediate states of the system
in the two-particle oscillator basis. Inelastic channels
have been included in the nonlocal operator describ-
ing the interaction of the incident particle as a discrete
unit and the target nucleus. This operator involves
summation over a great number of states of the dis-
cretized three-particle continuum; owing to this, it is
very probable that random errors of discretization in
the intermediate states do not affect the final result.

The simplicity of the method owing to the use
of the oscillator basis, the possibility of including
virtual stripping channels, convenience in using it in
conjunction with inverse-problem methods, and the
possibility of generalizing it to the case of scattering
of particles consisting of three or four constituents are
the most important advantages of our approach. The
last circumstance is the most attractive, since the ap-
proaches developed so far (DCCC and so on) do not
admit a viable generalization to four-body problems
or problems involving a greater number of particles.
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APPENDIX А

In the Appendices, we everywhere assume that
the potentials specifying the interaction of particles
1 and 2 with the target nucleus have the form (26).
1
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We approximate the internal s-wave function of a
composite particle by the sum of Gaussian functions:

φ0(r) =
k∑

i=1

Cie
−αir

2
Y 0

0 (r̂). (A.1)

For the folded potential V (R) = 〈φ0(r)|V1 +V2|φ0(r)〉,
which corresponds to the local part of the interaction
between the composite particle and the target nu-
cleus, we then have the analytic expression

V (R) =
k∑

i,j=1

(V10 + V20)CiCj

√
π

4
e−γijR

2

(αi + αj + β)3/2

(A.2)

×
{

1 +
3
4

δ

αi + αj + β/2
+ 2

γ2
ij

β2
δR2

}
,

where

γij = β
αi + αj

2αi + 2αj + β
. (A.3)

The use of the oscillator basis makes it possible to
derive analytic formulas for the transition form factors
UΛM (E;R), which appear in the nonlocal part of the
interaction operator (15). We redefine

UΛM (Ep;R) → Ûp,ΛM(R)

= 〈φ0(r)|V1 + V2|Ψ̂p,ΛM(r,R)〉.
We now calculate this transition matrix element by
using the oscillator expansion (29) of |Ψ̂p,ΛM〉 and
formulas from [26]. We rewrite this form factor in the
expanded form

Ûp,ΛM(R) =
∫
drφ∗0(r)

(
V1

(
|r + R|√

2

)

+ V2

(
|r− R|√

2

))
Ψ̂p,ΛM(r,R),

where Ψ̂p,ΛM is the wave function (29) represented in
terms of the coordinates (r,R),

Ψ̂p,ΛM(r,R) =
Nmax∑

N

∑

t

AN
pt〈r,R|nl,NL,ΛM〉,

with the coefficientsA being related to the coefficients
C by the Talmi–Moshinsky transformation brackets
for symmetric functions (see Sections 2 and 3):

AN
pt =

∑

u

〈nl,NL,Λ|n1l1, n2l2,Λ〉SCN
pu.

According to (28), the symmetric transformation
brackets are expressed in terms of ordinary transfor-
mation brackets as

〈nl,NL, λ|n1l1, n2l2, λ〉S

=
1√
2

(〈nl,NL, λ|n1l1, n2l2, λ〉
P

+ (−1)l1+l2−λ 〈nl,NL, λ|n2l2, n1l1, λ〉) .
By taking into account relations associated with

symmetries with respect to the permutation of indices
on the transformation brackets [15], we obtain

〈nl,NL, λ|n1l1, n2l2, λ〉S (A.4)

=
√

2〈nl,NL, λ|n1l1, n2l2, λ〉,
the symmetric transformation brackets being nonzero
only at even l. In the case of (n1, l1) = (n2, l2), the
factor

√
2 is omitted in the last formula.

Let us first calculate the integral for the Gaussian
part of the potentials (26) (that is, at δ = 0):

Ũp,ΛM(R) =
∫
drφ∗0(r)(U0e

−βr21

+ U0e
−βr22)Ψ̂p,ΛM(r,R).

Owing to the conservation of the total orbital an-
gular momentum of the system, the angular part is
isolated in the form

Ũp,ΛM(R) =
ŨΛ
p (R)
R

YM
Λ (R̂).

For the radial integral, the calculation yields

ŨΛ
p (R) = U0

∑

η,t

AηptC
Λ0
l0,L0

√
(2l + 1)(2L + 1)

2Λ + 1

(A.5)

×
√
π

2
AnlANL

(
1
2
β

)l k∑

i=1

Ci
(wi − 1)n

w
n+l+3/2
i

× e−γiR2
Rl+L+1L

L+1/2
N (R2)Ll+1/2

n (ρiR2),

where Lαm(x) are generalized Laguerre polynomials
(see [26]). Here, we have used the notation

wi = αi +
1
2
β +

1
2
,

ρi =
β2

4wi(wi − 1)
, (A.6)

γi =
1
2

(
1 +

β(2αi + 1)
2αi + β + 1

)
,

Anl =

√
2n!

Г(n+ l + 3/2)
.

It should be recalled that, in the calculations, we
employ dimensionless quantities expressed in the os-
cillator units (27).

In order to determine the transition form factors
relevant to the potentials (26) at δ �= 0, we can invoke
the relation

Ûp,ΛM(R) = Ũp,ΛM (R) − δ
∂

∂β
Ũp,ΛM(R).
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Thus, we can see that closed analytic formulas
are obtained for the nonlocal operator representing
the interaction between a composite particle and a
nucleus.

Here, we present the results of the calculations
for some matrix elements that appear if we use the
oscillator basis.

(а) Let us consider the matrix element

S〈n′1l′1, n′2l′2,Λ|
1
2
(p1)2 + V1(r1) +

1
2
(p2)2 (A.7)

+ V2(r2)|n1l1, n2l2,Λ〉S .
Considering that the wave function is symmetric with
respect to the interchange of particles 1 and 2 and that
the parameters β and δ in (26) for V1(r1) and V2(r2)
are identical, we have

S〈n′1l′1, n′2l′2,Λ|H1 +H2|n1l1, n2l2,Λ〉S
= 2S〈n′1l′1, n′2l′2,Λ|H1|n1l1, n2l2,Λ〉S .

The matrix element (A.7) is calculated in terms of the
matrix elements

〈n′1l′1, n′2l′2,Λ|
1
2
(p1)2

+ U0e
−βr21(1 + δr21)|n1l1, n2l2,Λ〉

=
∑

m′
1,m

′
2

∑

m1,m2

CΛM
l′1m

′
1,l

′
2m

′
2
CΛM
l1m1,l2m2

×〈n′1l′1m′
1|

1
2
(p1)2 + U0e

−βr21(1 + δr21)|n1l1m1〉

× δn′
2n2
δl′2l2δm′

2m2
.

Let us consider the single-particle matrix element

〈n′1l′1m′
1|

1
2
(p1)2 + U0e

−βr21(1 + δr21)|n1l1m1〉.

According to [14], we have

〈n′l′m′|1
2
(p)2|nlm〉 (A.8)

=
1
2

[(
2n+ l +

3
2

)
δnn′ +

[
n

(
n+ l +

1
2

)]1/2

δn′n−1

+
[
(n+ 1)

(
n+ l +

3
2

)]
1/2δn′n+1]δll′δmm′ .

Further, we calculate the matrix element
〈n′l′m′|e−βr2 |nlm〉 ≡ 〈n′l|e−βr2 |nl〉δl,l′δm,m′ . By
using the formulas from [26], we obtain

〈n′l|e−βr2 |nl〉 =

[
(l + 3

2 )n(l + 3
2 )n′

n′!n!

]1/2

(A.9)

× βn
′+n

(β + 1)n′+n+l+3/2 2F1(−n′,−n, l + 3/2; 1/β2),

where 2F1 is a hypergeometric function, which, in our
case, reduces to a polynomial, and

(l + 3/2)n = Γ(l + 3/2 + n)/Γ(l + 3/2).
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The matrix element 〈n′l|e−βr2(1 + δr2)|nl〉 is calcu-
lated by differentiating formula (A.9):

〈n′l|e−βr2(1 + δr2)|nl〉 = 〈n′l|e−βr2 |nl〉

−δ d
dβ

〈n′l|e−βr2 |nl〉.

(b) Further, we consider the matrix elements of the
projection operator P .

In order to calculate them, we need symmetric
transition brackets:

S〈n′1l′1, n′2l′2,Λ|P |n1l1, n2l2,Λ〉S
=

∑

n′,l′,N ′,L′
S〈n′1l′1, n′2l′2,Λ|n′l′, N ′L′,Λ〉

×
∑

n,l,N,L

S〈n1l1, n2l2,Λ|nl,NL,Λ〉

× 〈n′l′, N ′L′,Λ|φ0〉〈φ0|nl,NL,Λ〉.
In the last formula, use has been made of the following
condensed notation for the projection operator P :

P = |φ0〉〈φ0|.
Let us consider the factor

〈n′l′, N ′L′,Λ|φ0〉〈φ0|nl,NL,Λ〉
= 〈n′l′|φ0〉〈φ0|nl〉δNN ′δLL′ ,

where

〈n′l′|φ0〉 = δl′0

∞∫

0

drr2φ0(r)Rn′0(r). (A.10)

Here, φ0(r) is the radial part of the bound-state wave
function φ0(r). If we represent it in the form (A.1), the
integral in (A.10) can easily be calculated by using,
for example, (A.9).

APPENDIX B

The main objective of Appendix B is to demon-
strate that, in some cases, the functions appearing in
the spectral expansion (11) can be found by using a
method simpler than that described in Section 3.

Let us consider the intermediate-state Hamilto-
nian QHQ. We now write the total Hamiltonian of
the system in the form (1):

H = H1(r1) +H2(r2) + V12(r).
We recall that the projection operatorQ is orthogonal
to the projection operator P (9). We conjecture the
following:

(i) QH1Q ≈ H1, since the P projection acts in
the variables (r,R) which are “alien" for the variable
r1. We can expect that the admixture of the P com-
ponents in the eigenfunctions of the single-particle
operator H1 is small. A similar assumption is made
forQH2Q.
1
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(ii) ‖QV12Q‖ � ‖Q(H1 +H2)Q‖. This approxi-
mation is associated with the fact that the operator Q
is orthogonal to the eigenfunction of the bound state
in the potential V12.

Thus, we want to make the substitution
QHQ→ H1 +H2 (A.11)

and, in addition, the substitution

QG
(+)
Q (E)Q→ G

(+)
3 (E)

= [H1 +H2 − (E + i0)]−1, (A.12)

whereG(+)
3 (E) is the Green’s function for two nonin-

teracting particles in the field of the core.
The physical meaning of the above substitution is

that, in the intermediate states, it is the interaction of
particles 1 and 2 with the target nucleus (rather than
the interaction between projectile constituents) that
predominantly affects the composite particle at mod-
erate projectile-to-target distances. These means
that, conjecturing (i) and (ii), we assume, as a matter
of fact, that, in the intermediate state, particles 1 and
2 diverge and move independently of each other in the
field of the target nucleus. It should be emphasized,
however, that this approximation is valid only in the
Q subspace (from which the bound states of particles
1 and 2 are eliminated), but that it is not accurate in
all probability in the full space.

Mathematically, the substitution in (A.12) means
that, for the three-particle intermediate-state resol-
vent, we can use the convolution of the single-particle
resolvents; that is,

QG
(+)
Q (E)Q→ 1

2πi

+∞∫

−∞

dεg
(+)
1 (ε)g(+)

2 (E − ε),

(A.13)
PH
where g
(+)
1 (ε) = [H1 − (ε+ i0)]−1 and g2 has the

analogous form with the substitution H1 → H2. We
further consider the spectral expansion of the Green’s
function g1 in the complete system of eigenfunctions
{ψn, ψ(E, l1m1)} of the Hamiltonian H1:

g
(+)
1 (ε) =

∑

n

|ψn〉〈ψn|
En − ε

(A.14)

+
∑

l1m1

∞∫

0

δE′ |ψ(E′, l1m1)〉〈ψ(E′, l1m1)|
E′ − (ε+ iγ)

.

We can now use the discretization of the single-
particle spectrum of the Hamiltonian H1 in the finite-
dimensional single-particle oscillator basis {|nlm〉}.
For each {lm}, we obtain finite sets of eigenfunctions
of the operator H1 in the form

ψp1,l1m1(r1) =
Nmax∑

n1=0

Al1p1n1
Rn1l1(r1)Y

m1
l1

(r̂1),

where Rnl is given by (23). For the resolvent g1, we
then obtain

g1(ε; r1, r′1) =
∑

p1l1m1

ψp1,l1m1(r1)ψ∗
p1,l1m1

(r′1)

Ep1l1 − (ε+ iγ)
.

(A.15)

Here, the integral over the continuous spectrum of g1
has been replaced by the sum over the states of the
discretized continuum. The approximation in (A.15)
is made for the case of γ �= 0; in the limit γ → 0, it is
necessary to use special quadrature approximations
[18, 19]. In order to evaluate the convolution in
(A.13), it is sufficient to use the form (A.15) for g1 and
g2 (H1 = H2). Calculating the integral in (A.13), we
obtain
G
(+)
3 (E; r1, r2; r′1, r

′
2) ≈

∑

p1l1m1

∑

p2l2m2

|ψp1,l1m1(r1)ψp2,l2m2(r2)〉〈ψ∗
p1,l1m1

(r′1)ψ
∗
p2,l2m2

(r′2)|
Ep1l1 + Ep2l2 − (E + iγ)

. (A.16)
Let us perform rearrangement of the angular momen-
ta, (l1m1, l2m2) → (l1l2,ΛM). As a result, we arrive
at a convenient finite-dimensional representation for
the convolution of two single-particle Green’s func-
tions. Specifically, we have

G
(+)
3 (E) (A.17)

=
∑

p1l1

∑

p2l2

Λ=l1+l2∑

Λ=|l1−l2|,M

[ψp1l1ψp2l2 ]
ΛM [ψ∗

p1l1
ψ∗
p2l2

]ΛM

Ep1l1 + Ep2l2 − (E + iγ)
,

where

[ψp1l1ψp2l2 ]
ΛM

=
∑

m1+m2=M

CΛM
l1m1,l2m2

ψp1,l1m1ψp2,l2m2 .

Taking into account expression (22) for two-particle
oscillator functions, we can eventually recast expres-
sion (A.17) into the form
YSICS OF ATOMIC NUCLEI Vol. 64 No. 9 2001



NEW APPROACH TO SOLVING THE PROBLEM 1703

PHYSIC
G
(+)
3 (E) =

∑

p1n1l1

∑

p2n2l2

∑

ΛM

|Al1p1n1
|2|Al2p2n2

|2|n1l1,n2l2,ΛM〉〈n1l1, n2l2,ΛM |
Ep1l1 + Ep2l2 − (E + iγ)

. (A.18)
This representation is convenient in that fully ana-
lytic expressions presented in Appendix A can used
in calculating transition matrix elements and other
similar quantities. In order to employ formula (A.18)
in the limit γ → 0, one can invoke the quadrature
approximations from [18, 19]. This problem will be
the subject of our forthcoming publication.

Thus we conclude that, if our conjectures (i)
and (ii) and the substitution in (A.12) are correct,
the problem of determining the spectrum of the

intermediate-state resolvent QG(+)
Q Q is considerably

simplified. Instead of diagonalizing the three-particle
Hamiltonian according to the procedure described in
Section 3, it is sufficient to find the spectrum of the
single-particle HamiltonianH1 (and ofH2 if particles
1 and 2 are not identical). This makes it possible to
enlarge considerably the number of basis functions
used in the calculations and to simplify all formulas.
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Abstract—A three-phase modification of the hybrid quark-bag model is considered. In addition to the
asymptotic-freedom and the hadronization phase, it includes the intermediate phase of constituent quarks.
In the (1 + 1)-dimensional version of this model, a self-consistent solution is found with allowance for
fermion-vacuum-polarization effects. Within this solution, the total bag energy, including the one-
loop contribution from the Dirac sea, is investigated as a function of parameters that characterize bag
geometry, the condition of a nonvanishing boson-condensate density in the internal region being imposed.
It is shown that the ground-state bag configuration that is constructed on the basis of the solution
found here, which minimizes the total energy, and which includes all three phases exists and is unique.
c© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Presently, the idea of describing a hadron as a
bounded spatial region (bag) filled with quark and
gluon fields seems the most natural way to construct
an effective quantum field theory that provides the
absolute confinement of color objects [1–12]. For
such regions, boundary conditions are chosen so as
to ensure, in a relativistically covariant way, color-
particle confinement within a bag [1–3]. The pos-
sibility that such an object exists is associated with
a change in the vacuum structure within a hadron.
It is assumed that a nonperturbative vacuum within
a strongly interacting particle is destroyed almost
completely, with the result that there arises an excess
of energy proportional to the bag volume [1–5]. The
stability of the configuration is guaranteed by the
valence-quark contribution to the total energy, this
contribution being in inverse proportion to the bag ra-
dius. Even the first MIT bag model yielded fairly good
results for the mass spectrum and the other static
properties of hadrons at a relatively small number of
parameters [6–8]. A further development of themodel
led to taking into account some effects associated
with a spontaneous breakdown of chiral symmetry
(one of the most important features of strong in-
teractions at low energies) and to including meson
fields in the theory that play the role of Goldstone
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2)Faculty of Physics, Moscow State University, Vorob’evy
gory, Moscow, 119899 Russia.
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oblast, 141980 Russia.

*e-mail: igorch@goa.bog.msu.ru;igorch@thsun1.jinr.
ru
1063-7788/01/6409-1704$21.00 c©
bosons [9–11]. (These are the triplet of pions for
the SU(2) group or the octet of pions and kaons for
the SU(3) group.) Presently, the most consistent
approach to describing the structure of hadrons on
the basis of bagmodels has been developed within so-
called hybrid chiral models [10–12]. In hybrid chiral
models, the nucleon is considered as a small bag that
confines quarks and gluons and which is surrounded
by a large cloud of virtual mesons. This cloud can be
described either by the hedgehog pion configuration
of the Skyrme model or by more complicated models
including vector mesons [13–15].

By and large, models of this type provide a cor-
rect scale for various static features of nonstrange
baryons. At the same time, serious discrepancies in
numerical values and even incorrect signs may occur
for some individual quantities [12, 16]. Furthermore,
the best results within hybrid chiral models are ob-
tained at such values of relevant parameters (like the
vacuum pressure B, the coupling constant αs, the
current quark masses, and the constant Z taking into
account the Casimir energy) that differ from those
derived by other methods [4, 5]. All this demon-
strates that the conventional formulation of hybrid
chiral models is not free from drawbacks.

The most subtle point in the hybrid chiral model
is the Cheshire cat principle as a basis for breaking
down the total configuration space into regions within
which various phases are realized [17]. This principle
essentially relies on the hypothesis [18] that fermionic
theory within the bag and bosonic theory outside it
are in fact equivalent and can be exactly transformed
into each other by means of the bosonization pro-
cedure. As a result, no physical properties of such
a bag depend on the choice of boundary surface,
2001MAIK “Nauka/Interperiodica”
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and the boundary conditions are determined from the
bosonization equations [19]. However, the bosoniza-
tion procedure and, hence, the Cheshire cat hypoth-
esis can be rigorously justified only in (1 + 1) dimen-
sions. At the same time, a solution to the bosoniza-
tion problem for the actual (3 + 1)-dimensioinal world
has yet to be obtained. As a consequence, there exist,
in (3 + 1)-dimensional hybrid chiral models based
on the Cheshire cat hypothesis, only a small set of
features (for example, the topological charge) that
are actually independent of the bag radius [20]. At
the same time, the phenomenology of strong inter-
actions unambigously indicates that a characteristic
scale confinement on the order of 0.5 fm does in fact
exist—that is, irrespective of the degree to which the
bosonization is justified in the (3 + 1)-dimensional
case, the Cheshire cat principle must be strongly
violated in realistic models.

Therefore, it seems quite natural to modify hybrid
chiral models in such a way as to get rid of the
Cheshire cat hypothesis and all constructions that
it entails in the form of an infinitely thin boundary
surface between the phases and the relevant surface
action functional. Such a modification appears to
be possible if the correlation between different bag
phases, which are not assumed now to be equivalent
in the sense of exact bosonization, is ensured by the
actual interaction occurring in a finite-dimension re-
gion, which admits a natural interpretation as a third
intermediate phase of a bag [21]. The emergence
of this additional phase is quite appropriate, since it
enables one to implement the chirally invariant mech-
anism of the dynamical generation of quark masses;
owing to this, it is in part the phase of constituent
quarks (it should recalled that the possibility of their
existence is not considered in the original two-phase
model). At the same time, constituent-quark mod-
els were successfully used in hadron spectroscopy.
From this point of view, the physically most attractive
situation would be that where free, virtually mass-
less current quarks (this corresponds to high squares
of momentum transfers, Q2) are first converted, as
the result of interactions, into dressed massive con-
stituent quarks carrying the same color, flavor, and
spin quantum numbers and only after that does there
arise purely mesonic color-singlet phase.

The three-phase hybrid model involving an inter-
mediate constituent-quark phase instead the bound-
ary characterized by zero radial extension [21] is a
first approximation to such a bag version. This model
permits taking self-consistently into account three
phases: the asymptotic-freedom phase featuring
massless free quarks; the phase of constituent quarks
acquiring effective masses owing to chirally invariant
interaction with a boson field in the intermediate
region of finite dimension; and the hadronization
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 9 200
phase, where free-quark production is suppressed
by an infinitely large mass and where the nonlinear
dynamics of the boson field leads to the emergence of
a boson condensate in the form of a soliton solution,
which is eventually responsible for the quantum
numbers of the entire bag.

In this study, we consider one version of such a
model in (1 + 1) dimensions where, in an intermediate
region, a one-flavor fermion field interacts in a chi-
rally invariant way with a real scalar field possessing
a nonlinear soliton solution in the external region.
A self-consistent solution to the equations of the
model is found with allowance for fermion-vacuum-
polarization effects. Within this solution, the renor-
malized total bag energy is investigated as a func-
tion of parameters that characterize bag geometry,
the condition of a nonvanishing boson-condensate
density in the internal region being imposed. It is
shown that, under specific conditions on the model
parameters, the configuration thatminimizes the total
bag energy and which involves all three phases exists
and is unique.

2. LAGRANGIAN AND EQUATIONS
OF MOTION

The partition of the bag space into separate phases
is implemented by the method described in [3, 22] by
using the system of auxiliary fields θ(x). The funda-
mentals of the method are as follows. We consider the
Lagrangian

L0 =
1
2
(∂µφ)2 − θV (φ) +

1
2
(∂µθ)2 − g2

0W (θ), (1)

where the coupling constant g0 for the self-interaction
of the field θ is so large that, in the first approximation,
we can neglect the effect of the matter fields φ on
the dynamics of the field θ. The solutions to be
obtained can then be used to control their dynamics
[21, 22]. It is obvious that one can construct a
Lagrangian involving the required number of fields
θ(x) with a specific self-interaction that define a
nearly rectangular partition of space into regions
corresponding to different phases. Lorenz covariance
will then be broken only spontaneously, at the level of
solutions to the equations of motion; owing to this,
the formalism of covariant group variables [23] can be
used to restore covariance.

In the following, we assume that the auxiliary fields
θ(x) have already formed the necessary bag configu-
ration and proceed from the Lagrangian

L = ψ̄i∂̂ψ +
1
2
(∂µϕ)2 − θ(x1 < |x| < x2) (2)

×
(

M

2
[
ψ̄, eigγ5ϕψ

]
−

)
− θ(|x| > x2)
1
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×
(

M0

2
[
ψ̄, eigγ5ϕψ

]
− + V (ϕ)

)
.

The commutator of fermion fields in the expressions
specifying the chiral coupling between fermions and
bosons ensures the charge symmetry of the model.

Thus, we originally have the theory of two fields,
the spinor field ψ and the boson field ϕ. In region I
(|x| < x1), both fields are free and massless; in region
II (x1 ≤ |x| ≤ x2), the field ϕ interacts with fermions
in a chirally invariant way, whereby fermions acquire
an effective mass M ; and, in region III (|x| > x2),
the fermion effective mass becomes equal to M0 and
the self-interaction of the field ϕ comes into play,
leading to a soliton solution for the boson field. It
should be noted that, in the model being considered,
the vacuum-pressure term appears to be redundant,
since, as will be seen below, the polarization of the
Dirac sea behaves in a very specific way owing to
the presence of the intermediate region in this model,
ensuring alone the required inward pressure. In ad-
dition, there is no need for valence fermions in our
model, since all quantum numbers of the bag as a
discrete unit—in the simplest case being considered,
this is its baryon number—ensure a boson conden-
sate in the form of a topological soliton. Thus, it
would be difficult to validate the emergence of vacuum
pressure from this standpoint as well.

In order to ensure the confinement of fermions,
we further assume that the mass M0 is very large,
which leads to the dynamical vanishing of the fermion
field in the external region III. In the internal region
I, we have a free (decoupled from fermions) massless
scalar field; this leads to a nonzero boson-condensate
density in the asymptotic-freedom region. This pos-
sibility is compatible with the general concept of bag
models and can be considered as one of the versions
of the formulation of our three-phase model. Another
version—the vanishing of the scalar field in the inter-
nal region—was investigated in detail elsewhere [21].
We also assume that an odd topological soliton-like
configuration is a solution to the equation of motion
for the boson field. The even case, where the scalar
field can be nonzero in the internal region, is of no
interest, because a trivial solution, with the scalar
field being everywhere equal to a constant [one of
the minima of the self-interaction potential V (ϕ)], is
energetically favorable.

Let us consider the behavior of the fields in more
detail. As is customary in hybrid models of the type
in question, the boson field is considered in the mean-
field approximation—that is, it is a c-number quan-
tity. Ignoring, for the time being, a Lorentz-covariant
description, we will consider the c.m. of the bag; the
field ϕ(x) will then be a time-independent classi-
cal field, against whose backgroundand the fermions
PH
evolve. The equations of motion for fields can be
written as

i∂̂ψ = 0, (3а)

ϕ′′ = 0 (3b)

in region I; as (
i∂̂ −Meigγ5ϕ

)
ψ = 0, (4а)

ϕ′′ = ig
M

2
〈
[
ψ̄, γ5e

igγ5ϕψ
]
−〉 (4b)

in region II; and as

(i∂̂ −M0e
igγ5ϕ)ψ = 0, (5а)

−ϕ′′ + V ′(ϕ) = 0 (5b)

in region III. The angular brackets in Eq. (4b) de-
note averaging over a given bag state. In order to
simplify the calculations, we further set g = 1, since
the g dependence can easily be recovered by means of
the substitution ϕ → ϕ/g. The spectral problem for
the wave functions ψω describing fermions of given
energy ω will then have the form

ωψω = −iαψ′
ω + βeiγ5ϕ [Mθ(x1 < |x| < x2) (6)

+ M0θ(|x| > x2)]ψω.

In order to formulate the spectral problem correctly, it
is necessary to specify the boundary conditions. They
can be represented in the form

±iγ1ψω(±x2) + eiγ5ϕ(±x2)ψω(±x2) = 0 (7)

and must be supplemented with the continuity condi-
tion for the function ψ(x) at the boundaries between
regions I and II. We note that the boundary condi-
tions (7) are nothing but the standard chiral boundary
conditions for hybrid models [9–12]. Here, however,
they emerge as a natural consequence of an infinite
fermion mass in region III [21, 24] and not arise from
a local surface action functional (as a matter of fact,
the latter is not quite correct). In region I, Eq. (6) is
the equation for free massless fermions,

ωψI = −iαψ′
I, (8)

while, in the intermediate-phase region (II), we have

ωψII = −iαψ′
II + βMeiγ5ϕψII. (9)

At the boundary between regions I and II, the wave
functions ψI and ψII are matched on the basis of the
continuity condition

ψI(±x1) = ψII(±x1); (10)

at |x| = x2, they satisfy the boundary conditions (7).
In Eq. (9), the field ϕ is not arbitrary, but it is self-
consistently determined from Eq. (4b) with the corre-
sponding boundary conditions requiring that the field
and its derivative be continuous at the points |x| =
x1,2.
YSICS OF ATOMIC NUCLEI Vol. 64 No. 9 2001
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3. SELF-CONSISTENT SOLUTION
TO THE BAG EQUATIONS

That, in the closed intermediate region II of finite
dimension d = x2 − x1, the self-consistent Eqs. (4)
have a simple and physically meaningful solution,
which would be inappropriate in an unbounded space,
is an important feature of the present bag construc-
tion. In order to obtain this solution in the most
consistent way, we first make, in region II, the chiral
Skyrme rotation

ψ = exp(−iγ5ϕ/2)χ, (11)

whereupon Eq. (9) and the boundary condition (7) go
over to (

ω − 1
2
ϕ′
)

χω = −iαχ′
ω + βMχω (12)

and
±iγ1χω(±x2) + χω(±x2) = 0, (13)

respectively.
It is obvious from (12) and (13) that, if we postu-

late a linear behavior of the scalar field in region II,
ϕ′ = const = 2λ, (14)

then Eq. (12) is converted into the equation for mas-
sive free fermions,

νχ = −iαχ′ + βMχ, (15)

with eigenvalues ν = ω − λ. Thus, we can see that,
as was conjectured from the outset, fermions that are
massless in region I acquire, owing to the interaction
with the field ϕ, a mass M in region II, whereby
there arises the intermediate phase describing mas-
sive quasifree constituent quarks. From the condition
requiring that the scalar field be odd and be contin-
uous together with its derivative on the unification
I + II, we obtain

ϕ(x) = 2λx. (16)

Equation (15) possesses the obvious sign sym-
metry, ν → −ν. The unitary transformation of the
fermion wave function corresponding to this symme-
try has the form

χ → χ̃ = iγ1χ. (17)

The axial-current density

j5 = iψ̄γ5e
iγ5ϕψ = iχ+γ1χ (18)

does not change for the sign-symmetric states;
that is,

j5 = iχ+γ1χ = iχ̃+γ1χ̃ = j̃5. (19)

However, the corresponding property for the fermion
spectrum in the problem being considered does not
generally follow from the sign symmetry ν → −ν in
Eq. (15), because this equation is valid only in region
II and because the spectrum is determined from the
solution to the Dirac equation on the unification I +
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II. By directly solving Eqs. (8) and (9) with allowance
for the boundary conditions (7) and relation (10),
we find that, in general, the spectrum satisfies the
equation

exp(4iωx1 − 2iϕ1) (20)

=
1 − e−2ikdM−i(ν+k)

M−i(ν−k)

1 − e−2ikdM+i(ν−k)
M+i(ν+k)

1 − e2ikdM−i(ν−k)
M−i(ν+k)

1 − e2ikdM+i(ν+k)
M+i(ν−k)

,

where ν2 = k2 + M2 and ϕ1 = ϕ(x1). By analyzing
Eq. (20), it is straightforwad to show that the fermion
spectrum has the sign symmetry ν → −ν if

4λx1 − 2ϕ1 = πs, (21)

where s is an integer, because, at such values of the
derivative of the field ϕ(x) in region II, the left-hand
side of Eq. (20) reduces to (−1)s exp(4iνx1). In our
case, however, ϕ1 = 2λx1; therefore, Eq. (21) leads
to a unique possibility, s = 0, but the parameter λ
remains arbitrary. This is the point where our version
of the three-phase model differs fundamentally from
the case considered in [21], where ϕ1 = 0 by virtue of
the condition that the boson condensate vanishes in
region I and where there arises a set of solutions with
different s �= 0, but Eq. (21) then leads to a nontrivial
relation between λ and x1.

We now note that, in region II, we have, on the
right-hand side of Eq. (4b), which determines ϕ′′(x),
the expectation value of the C-odd axial current

J5 =
1
2
[
ψ̄, iγ5e

iγ5ϕψ
]
− =

1
2
[
χ+, iγ1χ

]
− . (22)

By χ, we mean here the second-quantized Dirac field
in the chiral representation (11),

χ(x, t) =
∑

n

bnχn(x)e−iωnt, (23)

where χn(x) stands for the normalized solutions to
the corresponding Dirac equation and bn and b+

n are
the fermion creation and annihilation operators obey-
ing the canonical anticommutation relations

{
bn, b

+
n′
}

+
= δnn′ , {bn, bn′}+ = 0. (24)

By definition, averaging over a given bag state in-
volves averaging over the filled sea of negative-energy
states (ωn < 0 +) and the possible filled valence-
fermion states with ωn > 0, which are omitted for the
time being, since special attention will be given below
to their status. As a result, we arrive at

〈J5〉=〈J5〉sea=

(
1
2

∑

ωn<0

−1
2

∑

n>0

)
χ+
n iγ1χn. (25)

It should be emphasized that, in formula (25), the
partition into sea and valence fermions occurs in ac-
cordance with the sign of their eigenfrequencies ωn,
1
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which differ from the sign-symmetric frequencies νn
by a shift of λ:

ωn = νn + λ; (26)

therefore, they do not possess ω → −ω symmetry. If,
however, we additionally assume that νn and λ are
such that, for all n, the signs of νn and ωn coincide—
that is, none of νn changes sign upon a shift of λ—the
condition ωn ≷ 0 in (25) is equivalent to the condition
νn≷0. By virtue of relation (19), we then have

〈J5〉sea =

(
1
2

∑

νn<0

−1
2

∑

νn>0

)
χ+
n iγ1χn = 0. (27)

But this in turn means that Eq. (4b) in region II
reduces to ϕ′′ = 0; this is in perfect agreement with
our original assumption that ϕ′(x) = const in region
II. In other words, we obtain a solution to the coupled
Eqs. (4) in region II in the form of the linear func-
tion (16) for the scalar field and expression (26) for the
fermion energy spectrum, where νn is in turn deter-
mined from Eq. (20) with substitution of exp(4iνx1)
for the left-hand side.

The conceptual content behind the above solution
involves the following key points. The first of these is
the finiteness of the dimension d of the intermediate
region since, for an unbounded region II, the solution
in (16) is physically unacceptable for obvious reasons.
In our case, however, the dimension of the interme-
diate region is always finite by construction and the
boson field ϕ(x) acquires a soliton character in region
III owing to the self-interaction V (ϕ). Here, the
following circumstance manifests itself once again:
in (1 + 1)-dimensional space, the chiral interac-
tion ψ̄eiγ5ϕψ alone cannot impart a soliton charac-
ter to the dynamics of the scalar field only through
fermion-vacuum-polarization effects—an additional
boson self-interaction is necessary [25].

The second factor has a more profound reason and
is associated with the use of the ν → −ν symmetry in
calculating the expectation value of the axial current
J5 over the Dirac sea. The point is that, for expecta-
tion values of this type, another physically meaningful
definition in terms of the η invariant is possible. This
definition, which is often used in studying fermion-
vacuum-polarization effects [26], has the form

〈J5〉sea = lim
η→0

[
1
2

∑

ωn<0

e−|ωn|ηχ+
n iγ1χn (28)

− 1
2

∑

ωn>0

e−ωnηχ+
n iγ1χn

]
.

Since the spectrum ωn is not symmetric, expression
(28) already is no longer zero, in contrast to the
expectation value in (27). By taking into account the
P

relation between ωn and νn, we can recast expression
(28) into the form

lim
η→0

[
sinhλη

(
∑

νn>0

e−νnηχ+
n iγ1χn

)]
. (29)

In the limit η → 0, the sum over νn in (29) diverges in
proportion to 1/η; therefore, the quantity 〈J5〉 appears
to be proportional to λ and does not vanish as long
as λ �= 0. The right-hand side of Eq. (4b) will then
no longer be zero, and linear functions will not be a
solution to this equation in region II.

Moreover, this is so for other fermion expecta-
tion values—in particular, for the vacuum expectation
value of the fermion charge. Owing to the fact that
the fermion spectrum is discrete, the result that our
computational procedure yields for the vacuum ex-
pectation value of the charge vanishes for the same
reason as the axial current does. Namely, if use is
made of the C-odd expression for the charge,

Q =
1
2

∫
dx [ψ+, ψ]−, (30)

if the same conditions of correspondence of the signs
of ωn and νn are assumed for all n, we obtain

〈Q〉 = 〈Q〉sea =
1
2

∑

ωn<0

−1
2

∑

ωn>0

(31)

=
1
2

∑

νn<0

−1
2

∑

νn>0

= 0.

But if 〈Q〉sea is determined in terms of the η invari-
ant, we have

〈Q〉sea = lim
η→0

[
1
2

∑

ωn<0

e−|ωn|η (32)

− 1
2

∑

ωn>0

e−ωnη

]
�= 0

for λ �= 0, because there is no ω → −ω symmetry.
However, there are serious arguments in favor of
relations (27) and (31) as those that form the most
adequate basis for calculating expectation values over
the sea in our problem. First, the η invariant is in
fact the measure of the asymmetry of the Hamiltonian
rather than the fermion charge in the ground state.
Second, other ways of regularization of divergent
sums of the type in 〈J5〉 and 〈Q〉, apart from the
temperature regularization, are possible, and—this is
the most important point—there are no grounds to
state that the regularized expressions (28) and (32)
will lead to the required quantities for η → 0. It is easy
to exemplify the situation where the parameter depen-
dence in a sum or in an integral is not continuous—
in particular, F (k) =

∫∞
0 dx sin kx/x = π/2 for any

k > 0, but F (0) = 0—that is, the limit of the integral
HYSICS OF ATOMIC NUCLEI Vol. 64 No. 9 2001
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for k → 0 and its exact value at k = 0 are different in
this case.

Let us further consider an adiabatic change in the
gradient λ of the boson field in region II from λ = 0.
At the initial instant, we have ωn = νn; therefore,
all C-odd expectation values over the fermion sea
obviously vanish: 〈 〉sea ≡ 0 for any reasonable way of
regularization. Further, we consider that, in our case,
the fermion spectrum is purely discrete and that the λ
dependence of the spectrum is continuous; therefore,
all ωn will retain sign for sufficiently small values of λ.
On the basis of general considerations, it can then be
conjectured that, as previously, we have 〈 〉sea = 0,
although the spectrum ωn is no longer symmetric,
with the result that the η invariant does not vanish.
Therefore, we have every ground to believe that, for
C-odd quantities (such as the axial current and the
vacuum fermion charge), the temperature regulariza-
tion can give, in this case, values not corresponding to
the physics of the problem. It should be emphasized
here that this situation is markedly different from
that in the case of an unbounded space, where the
spectrum is continuous—this is the reason why, in
the latter case, any arbitrarily small variation in λ
leads to changes in the density of states and, hence,
in all expectation values, whereby there arises the
phenomenon of induced fermion numbers [26].

Finally, we can try to check numerically whether
the solution in (16) is self-consistent. The problem is
then solved on a lattice; therefore, the number of all
degrees of freedom and, as a consequence, the num-
ber of fermion levels are inevitably finite in this case,
so that no regularization is required. The results of the
calculations demonstrate that the linear dependence
(16) and vanishing expectation values represent a
unique self-consistent solution to this problem.

This result can be interpreted as follows. In our
case, the boson field is continuous everywhere (it is
nonzero in all regions, including region I) and is topo-
logically equivalent to that odd soliton which would
occur in the absence of fermions only owing to the
self-interaction V (ϕ). For this reason, the presence of
spatial regions that contain fermions (regions I and II)
and their dimensions has no effect on the topological
charge of the boson field. On the other hand, the
baryon charge of a hybrid bag is by definition the sum
of the topological charge of the boson soliton and the
fermion charge of the internal bag regions. The latter
is zero in our case; therefore, the baryon charge of
the bag is determined exclusively by the topological
charge of the boson field and, as is required by the
ideology of hybrid models, is independent of the di-
mensions of regions I and II, which contain fermions.
Thus, we can see that, in our approach, a hadron
essentially represents a particle formed by a boson
soliton to which a fermion bag is pasted by means
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of interaction in the intermediate region II. We also
note that, although the quantum numbers of this
composite particle are determined by the soliton, this
does not mean that the filled positive-energy fermion
levels must be necessarily absent. This will be so
only at sufficiently small values of the parameter λ.
With increasing λ, the negative levelsωn = −|νn|+ λ
will inevitably begin to go over to the positive section
of the spectrum. The change in sign of each such
level will lead to the decrease in 〈Q〉sea by one unit
of charge. But if we fill the arising positive vacant
levels with a valence fermion, the sumQval + Qsea will
be zero, as previously. Analogously, the total axial
current will be equal to Jval + Jsea and will not change
either, which in turn ensures zero right-hand part of
Eq. (4b) and preserves the status of the linear func-
tion (16) as a self-consistent solution to the equations
of the model. In other words, the ground state of the
bag is by definition the state in which all νn < 0 levels
are filled (the inequality is strict, since ν = 0 levels can
never exist in the case being considered). Therefore,
the presence or the absence of valence fermions in
our construction of the bag ground state depends on
the relationship between λ and |νn|min and appears to
be a dynamical characteristic like other bag parame-
ters (dimensions and mass), which are determined by
minimizing the total bag energy.

4. TOTAL BAG ENERGY

Thus, the boson soliton has, in our case, the form
of the linear function (16) on the unification I + II.
Upon changing the scale of the field according to
the rule ϕ → ϕ/g, this function is matched with the
soliton solution (5b) in the external region by im-
posing the continuity condition on the function and
its derivative. In order to avoid going into details
of the structure of the field self-interaction V (ϕ), we
assume that, in region III, we can use the asymptotic
expansion of solutions to Eq. (5b) at large |x|; that is,

ϕsol(x) =
π

g

(
1 −Ae−mx

)
, x > x2, (33)

where m is the meson mass in the external bag re-
gion and, for x < −x2, the field ϕsol(x) is determined
by considering that it is odd. The coefficient π/g
indicates that we are dealing with a phase soliton;
its topological charge must be an integral multiple
of 2π/g, since this is the period of the bare chiral
interaction ψ̄ exp(iγ5gϕ)ψ. The constant A is deter-
mined by requiring that the boson field be continuous
at the points x = ±x2. It should be noted that, in the
external region, there can never be chiral symmetry
for the following two reasons: the phenomenology
of strong interactions, on one hand, and the special
features of (1 + 1)-dimensional scalar models, where
1
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the presence of a mass is a necessary condition for the
formation of the required soliton profile, on the other
hand.

The matching conditions at x = ± x2 yield

2λx2 = π
(
1 −Ae−mx2

)
, (34а)

2λ = πmAe−mx2 . (34b)

From here, we find that the parameter λ and the
dimension of the bag are related by the equation

2λ = π
m

mx2 + 1
. (35)

The total energy of the boson soliton can now be
represented in the form

Eϕ =
π2

g2

m

mx2 + 1
. (36)

The total bag energy is the sum of the total energy of
the boson soliton, Eϕ, and the fermion contribution
Eψ,

Ebag = Eϕ + Eψ. (37)

As can easily be seen from (36), the energy of the
boson field changes quite smoothly and decreases
in the limit x2 → ∞; it does not therefore gen-
erate a vacuum pressure, although, in the region
I + II, the gradient ϕ gives rise to the constant
positive contribution ϕ′2/2 = 2λ2 to the energy den-
sity. This contribution could be identified with the
vacuum pressure B in the standard hybrid chiral
model. Actually, this is an artifact of the one-
dimensional character of our problem. With in-
creasing bag dimension, the gradient ϕ in the region
I + II will always decrease according to (35) at
the same rate for any number of space dimen-
sions; at the same time, the volume of the region
I+ II in the one-dimensional case increases only as a
linear function, not compensating for the decrease in
λ, as would occur in two and three dimensions. Thus,
we can state that, in the (1 + 1)-dimensional case, a
nontrivial dependence of the total bag energy Ebag on
the parameters of the problem can stem only from the
fermion contribution to the energyEψ. In general, the
fermion contribution is the sum of the term associated
with the Dirac sea of filled negative-energy states and
the the term associated with positive-energy valence
fermions,

Eψ = Eval + Esea. (38)

For the bag ground state that has the structure de-
scribed in the preceding section, the sum in (38)
can be reduced to a single universal expression by
considering that, in the charge-symmetric case, the
energy of the Dirac sea must be determined as [25, 27]

Esea =
1
2

∑

ωn<0

ωn −
1
2

∑

ωn>0

ωn. (39)
PH
If, in going over from ωn to νn, the sign is conserved
for all n, there are no valence fermions in the bag
ground state (otherwise, it is impossible to ensure the
vanishing of the expectation values of the charge and
of the axial current). From Eq. (39), we then obtain

Eψ = Esea =
1
2

∑

νn>0

(−νn + λ) (40)

− 1
2

∑

νn>0

(νn + λ) = −
∑

νn>0

νn.

But if the parameter λ is such that the initially
negative-energy level ωn = −|νn| + λ changes sign
and becomes a filled valence state, it is convenient to
calculateEψ in two steps. First, we take into account
the contribution to Esea from all |νn| > λ states. By
analogy with (40), this contribution is given by

E′
sea = −

∑

νm>λ

νm. (41)

To this expression, we must add the energy of the
arising valence fermion, Eval = −|νn| + λК, and the
contribution of the positive levels ωn = ±|νn| + λ to
the energy of the Dirac sea; for their sum, we have

Eψ = −|νn| + λ− 1
2
[(−|νn| + λ) (42)

+ (|νn| + λ)] + E′
sea = −

∑

νn>0

νn.

This expression is identical to that in (40), which
which was obtained for the energy of fermions in the
absence of filled valence states.

For a further analysis, we introduce a set of new
parameters in terms of which the total bag energy
is expressed in the most convenient form. First, we
introduce the dimensionless quantities

α = 2Mx1, β = 2Md, ρ = 2Mx2 (43)

and analyze in detail Eq. (20), which determines the
levels νn. It has two branches of roots; of these, the
first corresponds to real values of k and, as expressed
in terms of the parameters α and β, has the form

tan
(
α
√

1 + x2
)

=
x√

x2 + 1
(44)

× x cos βx + sin βx

− cosβx + x sin βx
,

where the dimensionless quantity x, which is related
to k by the equation k = Mx, so that we have ν =
M

√
1 + x2, appears to be an unknown. The domain

of real-valued roots xn is the semiaxis 0 ≤ xn < ∞,
since, by virtue of the finite dimensions of the region
where the fermions reside and by virtue of the bound-
ary conditions at the ends, the fermion wave functions
are in fact standing waves degenerate in the sign of k,
YSICS OF ATOMIC NUCLEI Vol. 64 No. 9 2001
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the corresponding frequencies νn lying in the range
M ≤ νn < ∞.

The second branch corresponds to purely imagi-
nary k = iMx, so that ν = M

√
1 − x2 (0 ≤ x ≤ 1),

and can be obtained from (44) by means of an analytic
continuation:

tan
(
α
√

1−x2
)

=
x√

1−x2

x cosh βx+sinhβx

cosh βx+x sinhβx−1
.

(45)

For the second branch, νn changes within the range
0 < νn ≤ M .

Thus, νn and Eψ appear to be functions of two in-
dependent dimensionless parameters α and β, whose
sum determines the dimension ρ of the confinement
region in dimensionless units,

α + β = ρ. (46)

Further, it is convenient to factor the constituent
quark mass M out of the sea energy and the fermion
frequencies in the form of a dimensional factor by
setting

εn = νn/M =
√

1 + x2
n, (47)

so that Eψ = −M
∑
n

εn, and to introduce the dimen-

sionless ratio of two mass parameters of the theory,
µ = m/2M, (48)

and the dimensionless total energy Ebag = Ebag/M .
For the last quantity, we eventually have the expres-
sion

Ebag = Eψ(α, β) +
π2

g2

2µ
µρ + 1

. (49)

Here, α and β are independent dimensionless pa-
rameters specifying the dimensions of the internal bag
regions, while ρ is determined from (46). But these
are the points where the present version of the three-
phase model differs substantially from the version
considered in [21], where α and β were unambigu-
ously determined by µ and ρ. Thus, the total bag
energy nontrivially depends on three dimensionless
parameters µ, α, and β. The parameter µ is fixed by
specifying the masses m and M , while the optimum
values of α and β for the bag ground state at given µ
are determined by minimizing the total energy, which
we now proceed to study. For this, we must first
regularize the dimensionless energy of the fermion sea
in Eψ. This quantity obviously diverges at the upper
limit; therefore, it must be renormalized with the aid
of an appropriate subtraction procedure.

We begin by analyzing the asymptotic behavior
of the roots of Eq. (44) in the ultraviolet region,
where xn � 1. For this, it is convenient to recast this
equation into the form

sin
(
α
√

1 + x2
)

=
1
2

(√
1 + x2 + x

)
(50)
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× sin
(
α
√

1 + x2 + βx + γ
)

+
1
2
(
√

1 + x2 − x)

× sin
(
α
√

1 + x2 − βx− γ
)
,

where γ = arctan x. From (50), we obtain

xn(α, β) =
π/2 + πn

ρ
(51)

+
(−1)n+1 sin [(π/2+πn)α/ρ]+1−α/2

π/2+πn
+O(1/n2).

In expression (51), the first term leads to a
quadratic and a linear divergence in

∑
n εn, while

the second term involves a logarithmic divergence;
that part of the second term which contains the sine
does not lead to a divergence because of its oscillatory
character. Thus, the renormalization problem re-
duces to compensating, in the asymptotic expression
(51), the first term and the divergent contributions in
the second term. As in any procedure of this type,
the first step consists in using the obvious fact that it
is not energy proper but the difference of two energy
values that has a physical meaning. For our bag, it
seems the most natural to choose, as the reference
point for Eψ, the energy of the sea of free fermions con-
tained in the same volume ρ. However, this subtrac-
tion method is inappropriate in our case, since, upon
adding all meaningful counterterms, this energy ap-
pears to be larger than the energy of all configurations
with β �= 0 by an infinite value (see [21]). The pres-
ence of an infinite energy barrier between regularized
Eψ(α, β) and the sea of free fermions is in line with the
intuitive idea that free fermions can hardly be a good
first approximation in the confinement problem.

As a result, we have a situation where there is
no unambiguous prescription for choosing the sub-
traction point in renormalizing Eψ(α, β), this actually
being a feature common to the majority of bag models
[10, 12, 28]. In the classical renormalization proce-
dure, arbitrariness associated with the ambiguity in
choosing the subtraction point is removed by fixing
the physical values of the relevant number of param-
eters. For obvious reasons, we will not address this
problem in our toy (1 + 1)-dimensional model; in-
stead, we consider the most direct method that makes
it possible to compensate for the divergences in the
original sum (42) and which preserves the continuous
dependence of the result of subtraction on the pa-
rameters. The method essentially consists in that we
subtract, from

∑
n εn, another divergent sum where

the general term is identical to the divergent part of
the asymptotic expression (51) and where summation
is performed over the same index n. As a result, we
obtain the finite quantity

Ẽψ=−
∑

n

[
εn−

(
π/2+πn

ρ
+

1+β/2
π/2+πn

)]
. (52)
1
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In this case, no counterterms must be added, be-
cause all divergences have already been compensated
by the subtracted sum. It is natural that the physical
meaning of this procedure is lost to some degree. It
should be noted, however, that only in the (1 + 1)-
dimensional case is the theory with the interaction
LI = Gψ̄(σ + iγ5π)ψ (super)renormalized and do all
counterterms have a clear physical meaning. As one
goes over to a larger number of spatial dimensions,
this is no longer so. Therefore, the procedure for
compensating the energy divergences that is based
on formula (52) should not be considered as a pro-
cedure motivated by no reasons. For the hybrid chiral
model, the problem of extracting a finite part from the
divergent energy of the Dirac sea was investigated in
greater detail elsewhere [28–31].

We now proceed to analyze the regularized total
bag energy

Ebag = Ẽψ(α, β) +
π2

g2

2µ
µρ + 1

(53)

as a function of the parameters α and β. The first
property of Ebag follows from the analysis of the con-
tribution to Ẽψ from the convergent sum of a logarith-
mic order arising from the sine term in the asymptotic
expansion (51). We recast it into the form(

Ẽψ
)

log
(α, β) (54)

=
1
π

∑

n�1

(−1)n
sin [(πα/ρ)(n + 1/2)]

n + 1/2

and then use the well-known relation
∞∑

n=0

(−1)n
sin [z(n+1/2)]

n+1/2
=ln tan(π/4+z/4). (55)

It can easily be seen that the sums in (54) and (55)
involve the general term of the same form. For z → π,
the sum in (55) diverges in proportion to− ln(π − z),
whence it follows that, for πα/ρ → π—that is, for
β → 0 or for α → ∞ and finite β—the sum in (54)
behaves similarly:
(
Ẽψ
)

log
(α, β) → − 1

π
ln(β/α), β/α → 0. (56)

Thus, the regularized fermion energy (52), together
with total bag energy, shows a logarithmic singularity
for β → 0 and, at the same time, a logarithmic growth
for α → ∞ and finite β. From the occurrence of a sin-
gularity for β → 0, it follows that, in fact, the three-
phase bag model being considered does not feature
a smooth transition into the two-phase configuration
for d → 0, although there was formally such a pos-
sibility at the level of the original Lagrangian (2). In
other words, the radial extension of the boundary in
such a three-phase model can be arbitrarily small but
PH
not equal identically to zero—to some extent, this
corresponds to general physical ideas of the structure
of multiphase systems.

The quantity Ebag grows for β → ∞ and finite α
as well. In this case, πα/ρ → 0, since ρ inevitably
grows together with β; therefore, the logarithmic
term in (54) becomes negligibly small, so that the
next terms of the expansion in 1/n become dominant.
Technically, it is more convenient, however, to make
use of the fact that, for ρ → ∞, the fermion spec-
trum becomes quasicontinuous everywhere, with the
exception of a narrow vicinity of the Fermi surface
(zero of energy). This makes it possible to go over
from sums over xn to an integral with respect to
x. In particular, an analysis of the distribution of
roots of Eq. (44) reveals that, in this limit,

∑
n εn is

approximated by the (divergent) integral
∑

n

εn → 1
π

∫
dx
√

1 + x2

(
β +

1
1 + x2

(57)

+ α
x2

x2 + sin2
(
α
√

1 + x2
)

−
sin
(
α
√

1 + x2
)

cos
(
α
√

1 + x2
)

√
1 + x2

(
x2 + sin2

(
α
√

1 + x2
))
)
.

For the sum subtracted in (52), we obviously have
∑

n

(
π/2 + πn

ρ
+

1 + β/2
π/2 + πn

)
(58)

→ ρ

π

∫
dx

(
x +

1 + β/2
ρx

)
.

It can easily be seen that the integrals in (57) and (58)
involve the common divergent part

1
π

∫
dx (ρx + 1/x + β/2x),

so that their difference appears to be a convergent
integral, as it must in accordance with the subtraction
procedure. In this difference, taken with the (cor-
rect) inverse sign, β/8πx3 is the leading term in the
integrand. It is owing to this circumstance that, in
Ẽψ and, accordingly, in Ebag, there arises a positive
contribution proportional to β. Finally, it immediately
follows from the analysis reported in [21] that, for
α → 0 and finite β, there are no singularities in Ẽψ
and Ebag. It was shown in [21] that renormalized Ẽψ
at α = 0 and at finite β �= 0 always differ solely by a
finite value. In this region, the soliton energy Eϕ—
in particular, the values of the parameters µ and g—
therefore begins to play an important role. To be more
specific, we note that, if µ is not overly small, the g
dependence of Eϕ is such that, at sufficiently small g,
YSICS OF ATOMIC NUCLEI Vol. 64 No. 9 2001
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Fig. 1. Total dimensionless energy Ebag(α, β) of a bag for µ = 0.25.
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Fig. 2. Isolines for Ebag(α, β) at µ = 0.25. The minimum at α � 40–50 and β � 0.4 is clearly seen.
Ebag grows sharply for α → 0 and finite β, whereby
the presence of a pronounced minimum is ensured.
On the contrary, a considerable increase in g or the
vanishing of µ (µ → 0) can render the soliton energy
Eϕ negligibly small (nearly constant) over the entire
region of variations in the bag dimensions. In this
case, there can be no minimum in the total energy at
all.

A numerical calculation fully confirms the above
qualitative behavior of Ẽψ and Ebag. However, the
presence of a minimum in the total bag energy as a
function of α and β and, hence, the existence of a
ICS OF ATOMIC NUCLEI Vol. 64 No. 9 200
stable ground state of the bag at given values of µ
and g can be proven or disproved only via a numerical
calculation because there is no singularity in Ebag at
α = 0. In the present study, such a calculation was
performed at µ = 0.25, which approximately corre-
sponds to the ratio mπ/2mQ if the constituent quark
mass is taken to be 300 MeV and if g = 1. Qualita-
tively, the behavior of Ebag as a function of α and β
is illustrated in Fig. 1, whence we can see that there
is only one minimum in the total energy at nonzero
values of α and β. Figure 2 shows relevant isolines,
which make it possible to observe this minimummore
1
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Fig. 3.Diagram of fermion levels for the bag ground state.

clearly. The values of α and β at the minimum differ
approximately by two orders of magnitude; that is,
the dimension of the intermediate region proves to be
much less than the dimension of the internal region—
to some extent, this transition region can be treated as
a smeared boundary between the asymptotic-freedom
region and the purely color-singlet phase. For this
configuration, Fig. 3 displays the diagram of fermion
levels in the vicinity of zero. It can be seen that, in this
case, the ground state has one filled positive-energy
valence level.

5. CONCLUSION

The objective of the present study has been to
construct a consistent meaningful hybrid chiral model
in which it is not assumed, from the outset, that
the fermion and the boson (meson) phase are exactly
equivalent. Our results have revealed that such a
model can indeed be formulated in quite a consistent
way and, in some points, can prove to be a means that
describes low-energy hadron physics more efficiently
than traditional hybrid chiral models.

First of all, we note that the original formulation
of the model is a strictly local field theory and that,
despite the abundance of classical solutions, which
must be taken into account, covariance is broken here
only spontaneously. This breakdown can be removed
by means of the method developed in [23]—that is,
by using covariant group variables of the center of
inertia of the localized quantum-field system. Among
the main advantages of our approach, we would like
to mention the following: (i) The chiral boundary
conditions are specified in a more correct form such
that all components in the Lagrangian have a clear
physical meaning. (ii) It leads to the existence of an
intermediate phase that describes quasifree massive
constituent quarks. (iii) Physically, the resulting be-
havior of the total energy of the bag as function of its
dimensions is quite acceptable.

In addition, the fermion-confinement condition
embedded in the model from the outset is manifested
more clearly therein. This is reflected, in particular,
P

in the fact that there is no need here for introducing
a vacuum-pressure term (which, in the standard
approach, is incorporated in the model on the basis
of ad hoc considerations) since, in the case being
considered, the polarization of the Dirac sea alone
ensures an indefinite growth of energy at large dis-
tances.

A feature that distinguishes the problem consid-
ered here from that which was addressed in [21] is the
following. Here, the condition of a nonzero boson-
condensate density in the internal bag region radically
affects the number of possible bag configurations re-
alizing a local minimum of energy. In [21], the vanish-
ing of the boson field in the internal region led to the
emergence of an infinite series of such configurations
that had indefinitely growing dimensions and energy
and which differed from one another by the value of
the gradient λ of the boson field in the intermediate
region. In the present case, there is not more than
one such configuration, if any, whereas high-energy
bag states can be obtained only with the aid of extra
valence fermions. Thus, we can see that the three-
phase modification of the hybrid bag model admits
a wide variety of types of description of composite
particles such as hadrons and of their excited states.

It is necessary to emphasize once again that the
problem of choosing a method for calculating expec-
tation values over the Dirac sea for fermion bags is
of fundamental importance. The method used here
is based on the discrete character of the fermion
energy spectrum and is capable of producing, via
some obvious arguments, quite a simple solution to
the self-consistent bag equations in the intermediate
region. It should be recalled, however, that, despite
the above argument in favor of precisely this method
for computing expectation values over the Fermi sea,
there are no grounds to reject, out of hand, alternative
approaches like those that are based on temperature
regularization. The problem of pinpointing a method
that is the most adequate to the physics behind the
problem can be resolved only by means of detailed
investigations into realistic models.
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Abstract—The large-distance behavior of adiabatic hybrid potentials is studied on the basis of the QCD
string model. The calculated spectra are shown to result from the interplay of potential-type longitudinal
and string-type transverse vibrations. c© 2001 MAIK “Nauka/Interperiodica”.
General arguments fromQCD and lattice data tell
that the theory, even quenched in quarks, possesses
a nontrivial spectrum, so that effective degrees of
freedom for a constituent glue should be introduced
to describe QCD in the nonperturbative region. As far
as we know, the possibility for mesons with a gluonic
lump to exist was first considered in [1] in 1976.
Modern wisdom tells that the area-law asymptotic
behavior of the Wilson loop implies a kind of string
to be developed between a quark and an antiquark
at large distances, and it is natural to identify the qq̄
system connected by the string in its ground state
with a conventional qq̄ meson, while string vibra-
tions are responsible for gluonic (hybrid) excitations.
This picture, though physically appealing, does not
follow directly from QCD, and one relies on models
to describe these excitations. There are two main
ideas on how to construct such models. One is to
consider pointlike gluons confined by some potential-
type force [2, 3], and the other is to introduce string
phonons [4].

In principle, the best way to discriminate between
these two possibilities is to compare predictions with
experimental data on hybrid mesons. Indeed, there
are many indications that hybrid mesons have already
been found, but conclusive evidence has never been
presented, nor have alternative explanations been
completely excluded [5].

On the other hand, lattice calculations are now
sufficiently accurate to provide reliable data on the
properties of soft glue and to check model predic-
tions. In this respect, recent measurements [6] of
adiabatic hybrid potentials are of particular interest.
These simulations measure the spectrum of glue in
the presence of a static quark and a static antiquark
separated by some distance R. Not only are these

∗This article was submitted by the authors in English.
**e-mail: yulia@heron.itep.ru
***e-mail: kuzmenko@heron.itep.ru
1063-7788/01/6409-1716$21.00 c©
potentials involved in heavy-hybrid-mass estimations
in the Born–Oppenheimer approximation, but the
large-R limit is important per se, since the formation
of a confining string is expected at large distances,
and direct measurements of string fluctuations be-
come available. It is our purpose to investigate the
large-distance behavior of adiabatic potentials in or-
der to establish the kind of effective string degrees of
freedom that are excited at large distances.

We perform these studies within the QCD string
model. This model deals with quarks and pointlike
gluons propagating in the confining QCD vacuum
and is based on the method of vacuum background
correlation functions [7]. The QCD string model
was successfully applied to conventional mesons [8],
hybrids [9, 10, 7], glueballs [11], and gluelump (gluon
bound to the static adjoint source) [12].

The QCD string model for gluons is derived
from perturbation theory against the nonperturbative
background, developed in [13]. This formalism allows
one to introduce constituent (valence) gluons as
perturbations against the confining background. The
latter is given by a set of gauge-invariant field-
strength correlation functions that are responsible for
the area law. Themain feature of this approach is that,
in contrast to the aforementioned models, one is able
here to distinguish clearly between confining gluonic
field configurations and confined valence gluons.

The starting point is the Green’s function for
the gluon propagating in a given background field
Bµ [13],

Gµν(x, y) = (D2(B)δµν + 2igFµν (B))−1, (1)

where the covariant derivativeDca
λ (B) is

Dca
λ (B) = δca∂λ + gf cbaBb

λ. (2)

The term proportional to Fµν(B) is responsible
for the gluon spin interaction; in these first studies,
2001MAIK “Nauka/Interperiodica”
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we neglect it, since it can be treated as a perturba-
tion [11, 12]. The next step is to use the Feynman–
Schwinger representation for the quark–antiquark–
gluon Green’s function [10], which is reduced, in the
case of a static quark and a static antiquark, to the
form

G(xg, yg) =

∞∫

0

ds

∫
Dzg exp(−Kg)〈W〉B , (3)

where Kg =
1
4

∫ s

0
ż2
g(τ) dτ and where the depen-

dence on the vacuum gluonic field Bµ is entirely
contained in the Wilson loop

W = tr(λaΦqλbΦq̄)Φab
Γg

(yg, xg). (4)

Here, Φq and Φq̄ are the parallel transporters given by

Φq = P exp ig

xq∫

yq

Bµ(zq)dzqµ, (5)

Φq̄ = P exp ig

yq̄∫

xq̄

Bµ(zq̄)dzq̄µ.

In (5), the integration is performed along the classical
trajectories zqµ = (τ,R/2) and zq̄µ = (τ,−R/2) of a
static quark and a static antiquark, P means path
ordering,

Φab
Γg

(yg, xg) =
(
P exp ig

∫

Γg

Bµ(zg) dzgµ
)ab

, (6)

a and b are adjoint color indices, λa are the Gell-
Mann matrices, and the contour Γg runs along the
gluon trajectory zg.

The main assumption of the QCD string model
is the minimal area law for the Wilson loop average,
which yields, for the configuration in (4), the form [10]

〈W〉B =
N2
c − 1
2

exp
(
−σ(S1 + S2)

)
, (7)

where S1 and S2 are the minimal areas inside the
contours formed by the quark and gluon and by the
antiquark and gluon trajectories, respectively, and σ
is the string tension.

With the form (7) for 〈W〉B , the action of the
system can be immediately read out of the represen-
tation (3),

A =

T∫

0

dτ

{
−µ

2
+
µ ṙ2

2
(8)

− σ

1∫

0

dβ1

√
(ẇ1w

′
1)2 − ẇ2

1w
′2
1
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− σ

1∫

0

dβ2

√
(ẇ2w′

2)2 − ẇ2
2w

′2
2




 ,

where theminimal surfaces S1 and S2 are parametrized
by the coordinateswiµ(τ, βi), i=1, 2, ẇiµ = ∂wiµ/∂τ ,
w′
iµ = ∂wiµ/∂βi.

In what follows, the straight-line ansatz is chosen
for the minimal surface:

wi0 = τ, w1,2 = ±(1 − β)
R
2

+ βr. (9)

The quantity µ = µ(τ) in expression (8) for the action
is the so-called einbein field [14]; here, one is forced to
introduce it, since this is the only way to obtainmean-
ingful dynamics for a massless particle. Moreover, we
introduce another set of einbein fields, νi = νi(τ, βi),
to get rid of the Nambu–Goto square roots in (8) [8].
The resulting Lagrangian takes the form

L = −µ

2
+
µṙ2

2
−

1∫

0

dβ1
σ2r2

1

2ν1
(10)

−
1∫

0

dβ1
ν1

2
(
1 − β2

1 l
2
1

)

−
1∫

0

dβ2
σ2r2

2

2ν2
−

1∫

0

dβ2
ν2

2
(
1 − β2

2 l
2
2

)
,

l21,2 = ṙ2 − 1
r2
1,2

· (r1,2 · ṙ)2, r1,2 = r± R
2
.

It is clear from Eq. (10) that the einbein field µ
can be treated as the kinetic energy of the constituent
gluon and that the einbeins νi(τ, βi) describe the
energy-density distribution along the string. These
quantities are not introduced by hand, but they are
calculated in the proposed formalism. Indeed, since
no time derivatives of the einbeins appear in La-
grangian (10), it describes a constrained system, with
the equations of motion

∂L

∂µ
= 0,

δL

δνi(βi)
= 0 (11)

playing the role of second-class constraints.
Now, one obtains the HamiltonianH = p · ṙ− L,

with the result

H = H0 +
µ

2
+

1∫

0

dβ1
σ2r2

1

2ν1
(12)

+

1∫

0

dβ2
σ2r2

2

2ν2
+

1∫

0

dβ1
ν1

2
+

1∫

0

dβ2
ν2

2
,

1
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H0 =
p2

2(µ + J1 + J2)
(13)

+
1

2∆(µ+ J1 + J2)

{
(p · r1)2

r2
1

J1(µ+ J1)

+
(p · r2)2

r2
2

J2(µ + J2)

+
2J1J2

r2
1r

2
2

(r1 · r2)(p · r1)(p · r2)
}
,

∆ = (µ + J1)(µ+ J2) − J1J2
(r1 · r2)2

r2
1r

2
2

,

Ji =

1∫

0

dβi β
2
i νi(βi), i = 1, 2.

Since we deal with a constrained system, the extra
variables µ and ν1,2 should be excluded by means of
the conditions

∂H

∂µ
= 0,

δH

δνi(βi)
= 0 (14)

before quantization; the extrema of the einbeins
should be found from Eq. (14) and substituted into
the Hamiltonian. Such a procedure is hardly possible
analytically with the complicated structure specified
by Eqs. (12) and (13) even at the classical level;
after quantization, these extremal values of the ein-
beins would become nonlinear operator functions of
coordinates and momenta, with inevitable ordering
problems arising. In what follows, we use the approx-
imation that treats µ and νi as c-number variational
parameters. We find the eigenvalues of Hamiltonian
(12) as functions of µ and νi and minimize them
with respect to the einbeins to obtain the physical
spectrum. This einbein method works surprisingly
well in the calculations based on the QCD string
model, with the accuracy of about 5–10% for the
ground state [15].

Even with this simplifying assumption, the prob-
lem remains complicated because of the presence of
the terms J1,2 responsible for the string inertia. Sup-
pose for a moment that one can neglect these terms in
the kinetic energy (13). The Hamiltonian then takes
the form [7, 10]

H =
p2

2µ
+
µ

2
+

1∫

0

dβ1
σ2r2

1

2ν1
(15)

+

1∫

0

dβ2
σ2r2

2

2ν2
+

1∫

0

dβ1
ν1

2
+

1∫

0

dβ2
ν2

2
,

PH
which allows one to eliminate einbeins and to arrive
at the potential-model Hamiltonian

H =
√
p2 + σr1 + σr2. (16)

Let us now estimate whether the disregard of
string inertia is justified. To this end, we find the
spectrum of the Hamiltonian given by (15) and (16)
using the einbein method described above. It is given
by the set of equations

En(R) = µn(R) +
4(n + 3/2)2σ2

µ3
n(R)

, (17)

16σ2
(
n +

3
2

)4
= µ4

n(R)
(
4
(
n +

3
2

)2
+R2µ2

n(R)
)

with νi independent of βi,

ν1n(R) = ν2n(R) =
2(n + 3/2)2σ2

µ3
n(R)

, (18)

where n = nz + nρ + Λ, Λ = |L · R/R| being the
projection of the orbital angular momentum onto the
z axis (z ‖ R). Note that, while the angular momen-
tum is not conserved in the exact Hamiltonian (16), it
is a good quantum number in the approximate einbein
method: we have compared the spectrum of the ex-
act and the einbein-field Hamiltonian and found that
the angular momentum is conserved in the potential
problem (16) to within 5%. The same phenomenon is
observed in the constituent gluon model [3] and is the
consequence of linear potential confinement.

Let us first consider the small-R (R 
 1/
√
σ)

limit of the set of Eqs. (17):

En(R) = 23/2σ1/2
(
n + 3/2

)1/2
(19)

+
σ3/2R2

23/2(n + 3/2)1/2
,

µn(R) = 21/2σ1/2
(
n + 3/2

)1/2
− σ3/2R2

25/2(n + 3/2)1/2
,

ν1,2n(R) =
(n + 3/2)1/2σ1/2

21/2
+

3σ3/2R2

27/2(n + 3/2)1/2
.

The last line in (19) yields J1,2/µ ≈ 1/6. The
situation here is similar to that in the light-quark,
glueball, and gluelump QCD string calculations: the
correction due to the string inertia is sizable but not
large and can be taken into account as a perturba-
tion [11, 12]. Note that it is the regime of smallR that
is relevant to heavy-hybrid-mass estimations [16]:
the average distance between the heavy quark and
antiquark is small, 〈R2〉 
 1/σ, so that the qq̄ pair
resides in the oscillator adiabatic potential, which, in
the einbein method, is given by Eq. (19).
YSICS OF ATOMIC NUCLEI Vol. 64 No. 9 2001
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The situation changes drastically in the case of
large R, R  1/

√
σ. Now, a gluon enjoys small

oscillation motion, and one has

En(R) = σR +
3

21/3
σ1/3 (n + 3/2)2/3

R1/3
, (20)

µn(R) =
4σ1/3(n + 3/2)2/3

R1/3
, ν1,2n(R) =

σR

2
,

displaying the (σ/R)1/3 subleading behavior typical
of linear potential confinement at large distances [7].
In this case, we nevertheless have J1,2 = 1

6σR  µn,
so that the potential regime is inadequate at large R.

To obtain deeper insight into what happens at
intermediate and large distances, we consider the
semiclassical limit of large Λ, where only rotations
about z axis are taken into account:

H =
Λ2

2ρ2(J1 + J2)
+
σ2

2

(
ρ2 +

(
z +

R

2

)2)
(21)

×
∫

dβ1

ν1
+
σ2

2

(
ρ2 +

(
z − R

2

)2)∫ dβ2

ν2

+

1∫

0

dβ1
ν1

2
+

1∫

0

dβ2
ν2

2
.

Since no momenta pz and
p · ρ
ρ

appear in the Hamil-

tonian, the system stabilizes itself at the points z0 and
ρ0 given by the conditions

∂H

∂z
= 0,

∂H

∂ρ
= 0. (22)

Combining Eq. (22) with the second condition in
(14), one arrives at the expressions

z0 = 0, ρ0 =
Λ

2σ
√
Ja

, ν1(β) = ν2(β) = ν(β),

(23)

where

J =

1∫

0

dββ2ν(β), a =

1∫

0

dβ

ν(β)
(24)

and the function ν(β) is given by

ν(β) =
√
A√

1 −Bβ2
, (25)

A =
σ2R2

4
+

Λσ
2
√
aJ

, B =
Λσ
2J

√
a

J
.

Substituting the form (25) into (24), one finds for the
energy that

E = 2σ1/2Λ1/2 arcsin
√
B (26)

× {arcsin
√
B +

√
B(1 −B)}1/4

{arcsin
√
B −

√
B(1 −B)}3/4

,
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2ΛB3/2
√

1−B

=
σR2

4
{arcsin

√
B+
√
B(1−B)}1/2

× {arcsin
√
B −

√
B(1 −B)}3/2,

with the large-R limit of (26) given by

E(R) = σR + 2
√

3
Λ
R
. (27)

Here, we have the 1/R subleading behavior typical of
the naive Nambu–Goto string models. For example,
the flux-tube model [4] predicts

E(R) = σR +
πΛ
R

(28)

in the small-oscillation approximation. The energy
curve (26) is shown in Fig. 1, along with the flux-
tube (28) and potential-regime curve (17) for nz =
nρ = 0 and Λ = 1, 2, 3. The large-R limit of the
semiclassical regime (26) is very close to the flux-
tube one and deviates substantially from the potential
regime, while, at small R, the unphysical divergent
1/R behavior is absent.

The case of large R can be treated directly by
using the full Hamiltonian (12), which, in the small-
oscillation limit, takes the form

H =
µ

2
+

p2
z

2µ
+

p2
⊥

2(µ + J1 + J2)
(29)

+ σ2

(
ρ2 +

(
z +

R

2

)2) 1∫

0

dβ1

2ν1

+ σ2
(
ρ2 +

(
z − R

2

)2) 1∫

0

dβ2

2ν2
1
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+
∫ 1

0
dβ1

ν1

2
+
∫ 1

0
dβ2

ν2

2
,

displaying two different kinds of string excitations,
along the z axis and in the transverse direction. In-
deed, for large R, one neglects the contribution of µ
in the third term of (29) because the extremal values
of ν1,2 are σR/2. Oscillations in the longitudinal and
transverse directions then decouple, and one has

En(R) = σR +
3

21/3

σ1/3(nz + 1/2)2/3

R1/3

+
2 × 31/2

R

(
nρ + Λ + 1

)
. (30)

The (σ/R)1/3 regime is established at largeR, but, at
intermediate distances, there are sizable corrections
from the Λ/R string regime, as is seen from Fig. 2.

Since we have not considered the gluon spin, we
cannot yet compare our predictions with lattice re-
sults [6]. Nevertheless, some preliminary conclusions
can be drawn. For separations less than 2 fm, the
measured energies [6] lie much below the Nambu–
Goto curves (28). There is no universal Nambu–
Goto behavior even for R as large as 4 fm. The QCD
string model is able to describe both these features: at
small separations, the potential confinement regime
dominates, while, at large distances, the situation is
more complicated. Indeed, there is the contribution of
the string-type gaps (27), which are due to transverse
vibrations of the string, but the dominant subleading
P

behavior is defined by potential-type longitudinal mo-
tion. In particular, even for semiclassically large val-
ues of Λ, there exists the contribution of oscillations
in the longitudinal direction [second term in (30)].

Such peculiar behavior displays the most pro-
nounced difference between the present approach
and other models of constituent glue. In contrast
to phonon-type models, QCD string vibrations are
caused by a pointlike valence gluon, but, in contrast
to potential models, the confining force follows from
the minimal-area law, giving rise, at large distances,
both to longitudinal vibrations with potential-type
(σ/r)1/3 dominant subleading behavior and to trans-
verse vibrations with string-type Λ/R subleading
behavior, which could be responsible for the observed
Λ dependence. Full QCD string calculations with the
gluon spin involved will provide, if confirmed by the
lattice data, decisive evidence in favor of the QCD
string model of valence glue.
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ELEMENTARY PARTICLES AND FIELDS
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Abstract—The evolution equation for the nonsinglet distribution of partons is solved in the leading order
of perturbative QCD. It is shown that an exact analytic solution to the evolution equations can be found
in the quasielastic limit. The Q2 evolution of the structure function for x→ 1 is in good agreement with
experimental data. c© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Investigation of quark distributions has a direct
bearing on inelastic lepton–nucleon scattering. In
relation to cross sections for other electromagnetic
lepton–nucleon interactions, the inelastic-scattering
cross section decreases more slowly with increasing
momentum transfer (∼ 1/q4). Therefore, inelastic
scattering is a unique tool for studying the structure
of nucleons at extremely small distances.
On the basis of the scaling property of the struc-

ture functions in inelastic scattering, Feynman [1]
and Bjorken [2] proposed, in the late 1960s, the
concept of partons as pointlike constituents of the
nucleon that play the role of objects on which a vir-
tual photon is scattered. This idea made it possi-
ble to interpret SLAC experimental data on inelastic
electron–nucleon scattering [3].
The development of QCD enabled a construction

of a consistent picture of the internal structure of
nucleons that includes, along with valence quarks,
a continuum of virtual sea quarks and gluons. It
turned out that the distribution of partons (quarks and
gluons) within the nucleon at an arbitrary value of the
momentum transfer squared Q2 can be expressed in
terms of the distribution at a fixed value Q2

0. This re-
lation is provided by the evolution equations obtained
by Dokshitzer, Gribov, and Lipatov and by Altarelli
and Parisi [4–7] (DGLAP equations).
Despite a great number of ideas, models, and

approaches proposed for describing inelastic inter-
action, there is no theory at the moment that could
describe the behavior of inelastic form factors over
the entire kinematically allowed region. Informa-
tion about the behavior of the structure functions
in various limiting cases near the boundaries of the
kinematical region could be useful in seeking such a
model.
1063-7788/01/6409-1722$21.00 c©
The quasielastic limit is one of such cases. In this
region, lepton–proton interaction at large values of
the Bjorken variable, xB ∼ 1, is well described within
the quark-parton model on the basis of the DGLAP
equations. In this case, a virtual photon interacts
with partons that carry a major fraction of the target-
proton momentum. We denote by xF the momentum
fraction carried by the interacting parton and refer to
it as the Feynman variable. Usually, the Feynman
variable xF is assumed to coincide with the Bjorken
variable xB. However, it is shown below that, for
xB → 1 and at low momentum transfers, the differ-
ence of xF and xB is not negligible.

In this study, we obtain an expression for the
variable xF and show that, in the limit xF → 1, the
evolution equation for the distribution of the valence
quarks can be solved analytically. The expression ob-
tained forF2 describes theQ2 evolution of the nucleon
structure function in the quasielastic limit and agrees
well with experimental data.

2. INELASTIC SCATTERING AND PARTONS

The cross section for the inelastic scattering of a
charged lepton (an electron or a muon) by a proton in
the laboratory frame (proton rest frame) is expressed
in terms of two structure functions as [8]

dσin
dν dQ2

=
2πα2

Q4E2ν

{(
2EE′ −Q2/2

)
F2 (1)

+
ν

M

(
Q2 − 2µ2

)
F1

}
.

The notation is illustrated in Fig. 1.

In the parton model, the structure functions are
expressed in terms of the sum of quark distributions
2001MAIK “Nauka/Interperiodica”
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qi(xF) weighted with the squared charges. Specifi-
cally, we have

F2 = xF
∑

i

e2i qi(xF), (2)

where xF is the proton momentum fraction (in the
Breit reference frame) carried by the parton that ab-
sorbs the virtual photon. Callan andGross [9] showed
that two structure functions in the simplest parton
model are related by the equation

F2 = 2xFF1. (3)

In [10], it is proposed to use relation (3) for all Q2

values because it provides a reliable description for
Q2 → 0 as well.
The Bjorken variable is defined as

xB =
Q2

2Mν
. (4)

In order to find the expression for the Feynman vari-
able xF, we go over to the Breit reference frame de-
fined as that which moves in the same direction as the
virtual photon at a speed close to the speed of light
with respect to the laboratory frame.
The momentum fraction carried by the parton is

determined by the energy–momentum conservation
law

k̃ + q̃ = k̃′, (5)

where k̃ and k̃′ are the parton 4-momenta before
and after the scattering event, respectively. The tilde
labels indicate that the variables in question are mea-
sured in the Breit reference frame. Squaring Eq. (5),
we arrive at

2k̃q̃ = Q2

or
k̃0q̃0 − k̃3q̃3 = Q2/2. (6)

From the definition of the variable xF, it follows that,
in the Breit reference frame, the energy and the mo-
mentum of the parton are

k̃3 = xFP̃3, k̃0 =
√
m2 + k̃2

⊥ + k̃2
3 . (7)

For the energy and momentum of the virtual photon
in the Breit frame, Lorentz transformations yield

q̃0 =
ν − q3β√

1 − β2
=
νP̃0 + q3P̃3

M
, (8)

q̃3 =
q3 − νβ√

1 − β2
=
q3P̃0 + νP̃3

M
, (9)

wherem is the parton mass; k̃⊥ is the transverse mo-
mentum of the parton; q3 =

√
Q2 + ν2 is the photon

momentum in the laboratory frame; and P̃0 and P̃3

are, respectively, the energy and the momentum of
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 9 200
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Fig. 1. Feynman diagram for the inelastic scattering of a
charged lepton by a proton.

the proton in the Breit frame. The exact equation for
xF is obtained by substituting (7)–(9) into Eq. (6)
and by retaining terms that do not vanish in the limit
P̃3 → ∞. The result is

xFM(q3 + ν) − m2 + k̃2
⊥

MxF
(q3 − ν) = Q2. (10)

The solution to this equation determines that proton
momentum fraction which is used in relation (2):

xF =
Q2

2M
(
ν +

√
ν2 +Q2

) (11)

×



1 +

√

1 + 4
m2 + k̃2

⊥
Q2



 .

We can neglect the quark mass m for the u, d, and s
quarks. Assuming that k̃2

⊥ � Q2, we obtain

xF =
2xB

1 +
√

1 + 4M2x 2
B/Q

2
. (12)

Expression (12) determines the proton-momentum
fraction in the Breit frame carried by the parton that
interacts with the virtual photon. It is clear from (12)
that, at xB ∼ 1, the relation xF ≈ xB is valid only for
Q2 	M2. It is precisely the Feynman variable that
must be substituted into expression (2)—this means
that, at given ν and Q2 values, the structure function
is expressed in terms of the quark distributions at the
point xF determined by expression (12). Although the
expression for the exact proton-momentum fraction
carried by the parton in the quark-parton picture
of inelastic scattering was obtained about 25 years
ago [11–13], the above circumstance is often ignored
in identifying xF with xB.
1
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3. EVOLUTION EQUATION
FOR THE DISTRIBUTIONS
OF VALENCE QUARKS

Quark distributions appearing in (2) satisfy [to-
gether with the gluon distribution g(x,Q2)] the set
of integro-differential evolution equations that was
obtained in the late 1970s [4–7] and which has the
form (in order to avoid encumbering the ensuing ex-
pressions, we will henceforth suppress the subscript
“F” on the Feynman variable using the notation x for
it)

dqi
(
x,Q2

)

d lnQ2 =
αs
(
Q2
)

2π

1∫

x

dy

y

[
qi
(
y,Q2

)
(13)

× Pqq

(
x

y

)
+ g

(
y,Q2

)
Pqg

(
x

y

)]
,

dg
(
x,Q2

)

d lnQ2 =
αs
(
Q2
)

2π

1∫

x

dy

y

[
∑

i

qi
(
y,Q2

)

× Pgq

(
x

y

)
+ g

(
y,Q2

)
Pgg

(
x

y

)]
,

where

αs
(
Q2
)

=
12π

(33 − 2nf ) ln(Q2/Λ2)
is the QCD running coupling constant with Λ =
0.2GeV and nf being the number of flavors.
The splitting functions P are given by

Pqq(z) =
4
3

1 + z2

(1 − z)+
+ 2δ(1 − z), (14)

Pqg(z) =
z2 + (1 − z)2

2
, (15)

Pgq(z) =
4
3

1 + (1 − z)2

2
, (16)

Pgg(z) = 6
(

1−z
z

+
z

(1−z)+
+ z(1−z)

)
(17)

+
(

11
2

− nf
3

)
δ(1 − z).

The symbol 1
(1 − z)+

is spelled out as

1∫

0

dz
f(z)

(1 − z)+
=

1∫

0

dz
f(z) − f(1)

(1 − z)
. (18)

Equations (13) make it possible to obtain the par-
ton distributions for Q2 > Q2

0 if the distributions at
Q2

0 are known. Usually, the value of Q
2
0 is on the

order of a few GeV2. The value used most often is
P

Q2
0 = 4 GeV2. A detailed derivation of the evolution
equations can be found in the review articles by Dok-
shitzer et al. [14], Reya [15], and Altarelli [16].
If we introduce the nonsinglet and singlet combi-

nations of the quark distributions,

qNS
(
x,Q2

)
=
∑

i

(
qi
(
x,Q2

)
− q̄i

(
x,Q2

))
,

qS
(
x,Q2

)
=
∑

i

(
qi
(
x,Q2

)
+ q̄i

(
x,Q2

))
,

the set of evolution equations splits into an equation
for the nonsinglet function and the set that involves
the singlet function and which is symmetric with
respect to quarks and gluons:

dqNS
i

(
x,Q2

)

d lnQ2 =
αs
(
Q2
)

2π
(19)

×
1∫

x

dy

y

[
qNS
i

(
y,Q2

)
Pqq

(
x

y

)]
;

dqSi
(
x,Q2

)

d lnQ2 =
αs
(
Q2
)

2π

1∫

x

dy

y

[
qSi
(
y,Q2

)
(20)

× Pqq

(
x

y

)
+ 2nfg

(
y,Q2

)
Pqg

(
x

y

)]
,

dg
(
x,Q2

)

d lnQ2 =
αs
(
Q2
)

2π

1∫

x

dy

y

[
qSi
(
y,Q2

)
Pgq

(
x

y

)

+ g
(
y,Q2

)
Pgg

(
x

y

)]
.

In the quasielastic limit, the main contribution to
F2 comes from the distributions of uv and dv valence
quarks. They can be represented as

uv = u− ū, dv = d− d̄

and are described by the equation for the nonsinglet
combination.
Instead ofQ2, we now introduce the variable

t =
12

33 − 2nf
ln
(

ln(Q2/Λ2)
ln(Q2

0/Λ2)

)
. (21)

It is more convenient to recast Eq. (19) for the nons-
inglet combination into the form

dqv (x, t)
dt

=
1
2






1∫

x

dy

y
qv (y, t)Pv

(
x

y

)
(22)

− qv (x, t)

1∫

0

dy Pv(y)




 ,
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where

Pv(z) =
4
3

1 + z2

1 − z
. (23)

The evolution equation written in this form is similar
to the equations of cascade theory, the Feynman vari-
able x and t corresponding to the particle energy and
depth, respectively. The first term in Eq. (22) is equal
to the income of valence quarks with the nucleon-
momentum fraction x and the virtual-photon mass
Q2, while the second item is equal to the outcome
of such quarks. In just the same way as in cascade
theory, where the distribution of particles with energy
E is determined exclusively by particles with energies
E′ > E, the distributions of partons with a given
value of the variable x are determined exclusively
by partons that carry nucleon-momentum fractions
x′ > x. It follows that, if we aim at determining the
functions in the region x0 < x < 1, the result will be
independent of the choice of the initial values of the
functions (at Q2 = Q2

0) in the interval (0, x0).
In order to solve Eq. (22) analytically, we first solve

the equation

dqv (x, t)
dt

=
1
2






∞∫

x

dy

y
qv (y, t)Pv

(
x

y

)
(24)

− qv (x, t)

1∫

0

dy Pv(y)




 .

In contrast to Eq. (22), this equation can be solved
analytically. In order to do this, it is necessary to
specify the initial function qv(x, t = 0) in the interval
0 < x <∞. It will be shown later that, if the ini-
tial function vanishes for x > 1, then qv(x > 1, t) =
0 for t > 0. This can be qualitatively explained by
invoking once again the similarity with cascade the-
ory. If we assume that there are no particles with
“energies” x > 1 at the boundary, it is obvious that
no particles with such energies can appear in a fur-
ther development of the cascade. Therefore, Eqs.
(22) and (24) are equivalent in the class of functions
qv(x > 1, t = 0) = 0 under consideration.

4. SOLVING THE EQUATIONS
FOR THE NONSINGLET COMBINATION
In order to solve Eq. (24), we apply the Mellin

transformations
1∫

0

dxxs−1ϕ(x) = ϕ̃(s), (25)

1
2πi

c+i∞∫

c−i∞

ds x−sϕ̃(s) = ϕ(x).
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 9 200
The contour of integration in the inverse transforma-
tion lies to the right of all singularities of the function
ϕ̃(s). The equation for the transform of the valence-
quark distribution assumes the form

dq̃v(s, t)
dt

=
1
2
q̃v (s, t)






1∫

0

dy
(
ys−1−1

)
Pv(y)




. (26)

If we applied the transformation in (25) to Eq. (22), it
would not be possible to take the transform of the dis-
tribution outside the integral sign in expression (26).
But now, the solution for the transform has the simple
form

q̃v(s, t) = q̃v(s, 0) exp [−β(s)t] , (27)

where

β(s) =
1
2

1∫

0

dz
(
1 − zs−1

)
Pv(z). (28)

Accordingly, the evolution of the valence-quark dis-
tribution in the proton is given by

qv(x, t)=
1

2πi

c+i∞∫

c−i∞

ds x−sq̃v(s, 0) exp [−β(s)t] . (29)

By using the Mellin transformation (25), we substi-
tute into (29) the initial condition

q̃v(s, 0) =

1∫

0

dy ys−1qv(y, 0).

As a result, the solution of the evolution equation
for the valence-quark distribution in the nucleon as-
sumes the form

qv(x, t) =
1

2πi

c+i∞∫

c−i∞

ds x−s exp [−β(s)t] (30)

×
1∫

0

dy ys−1qv(y, 0).

By substituting the function Pv(z) into expres-
sion (28), we find that β(s) can be represented in the
analytic form

β(s) =
4
3

(
ψ(s) + ψ(s + 2)

2
+ γ

)
− 1, (31)

where ψ is the logarithmic derivative of the gamma
function and γ is the Euler constant.

Expressions (30) and (31) represent a solution to
the evolution Eq. (22) for the nonsinglet combination
1
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of the parton distributions. Indeed, we recast expres-
sion (30) into the alternative form

qv(x, t) =

1∫

0

dz

z
qv(x/z, 0)

× 1
2πi

c+i∞∫

c−i∞

ds x−s exp [−β(s)t] .

If qv(x, 0) = 0 for x > 1, then qv(x > 1, t) = 0 for
t > 0 as well, because the integrand in the inter-
nal integral decreases exponentially for Re s→ +∞,
so that the integral vanishes [the integrand has no
singularities to the right of the integration contour
in (30)]. Therefore, expression (30) satisfies Eqs. (24)
and (22) simultaneously.

5. QUASIELASTIC LIMIT

In the quark-parton model, the structure function
for inelastic scattering depends on all quark distri-
butions. It has already been shown, however, that
the quark distributions at a given value of x depend
only on the parton distributions for x′ > x. In the
quasielastic limit, the structure function receives a
contribution from the region where only the distribu-
tions of valence quarks are significant.
In order to determine the structure function in the

quasielastic limit, we consider the solution in (30)
to the evolution equation for valence quarks at xB ∼
1. For the initial condition, we take the standard
expression

qv(x, 0) = q0x
k(1 − x)n0, (32)

which is used to fit experimental data. The transform
of the initial condition can easily be found by substi-
tuting (32) into (25). The result is

q̃v(s, 0) = q0B(s + k, n0 + 1), (33)

where B is the beta function.
For t > 0, the expression for the distribution of

valence quarks assumes the form

qv(x, t) = q0x
ke(1−4/3γ)t (34)

× 1
2πi

c+i∞∫

c−i∞

dsB(s, n0 + 1) exp (−s lnx

− 2/3(ψ(s − k) + ψ(s − k + 2))t) .
All singularities of the beta function lie to the left of
the integration contour. Therefore, we can take an
arbitrarily large value of c in calculating the integral in
(34). Using the asymptotic expressions for beta and
psi functions,

B(x, y) −−−→
x→∞

x−yΓ(y), (35)
P

ψ(x) −−−→
x→∞

lnx, (36)

we obtain expression (34) in the quasielastic limit:

qv(x, t) = q0x
ke(1−4/3γ)t Γ (n0 + 1) (37)

× 1
2πi

c+i∞∫

c−i∞

ds exp {−s lnx} s−(n0+1+4/3t).

The integral in (37) is the standard inverse Laplace
transform of s−p:

1
2πi

c+i∞∫

c−i∞

ds
eys

sp
=
yp−1

Γ(p)
. (38)

After some simple algebra, we find that the
evolution of the nucleon structure function in the
quasielastic limit is described by the expression (here-
after, we recover the notation xF for the Feynman
variable)

F2

(
xB, Q

2
)

= F2

(
xB, Q

2
0

) (
1 − xF

)4/3t
(39)

× Γ(n0 + 1)
Γ(n0 + 1 + 4/3 · t) e

(1−4/3γ)t.

A similar solution was obtained by Kuraev and
Fadin [17], who considered radiative corrections to
the cross section for one-photon annihilation.

6. CONCLUSION

Expression (39) describes the Q2 evolution of the
nucleon structure function in the quasielastic limit.
The structure function decreases with increasing mo-
mentum transfer; as xB approaches the kinemati-
cal boundary, F2 decreases ever faster with increas-
ing Q2. Figure 2 displays the results of the calcu-
lations according to expression (39) for the values of
xB = 0.45, 0.55, 0.65, 0.75, and 0.85. Also shown in
Fig. 2 are the available experimental data at large xB
(in EMC and BCDMS experiments, the maximum
value of xB was 0.75; in the SLAC experiment, the
structure function was measured up to xB = 0.85).
We have determined the boundary values of the

structure function atQ2 = Q2
0 = 4GeV2 through fit-

ting F2

(
xB, Q

2
0

)
in terms of the function

c
√
xF
(
1−xF

)n0 , where n0 = 3. We have set the

normalization factor c to c = 1.655. This value
was obtained from a comparison of the function F2

calculated according to expression (39) at xB = 0.85
andQ2 = 10GeV2 with the value of 0.00854 obtained
in the SLAC experiment.
We have derived expression (39) in the limit xB →

1, but it satisfactorily describes experimental data
HYSICS OF ATOMIC NUCLEI Vol. 64 No. 9 2001
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Fig. 2. Proton structure function versus Q2 at large xB: (solid curve) results of the calculation according to expression (39),
(dashed curve) results of the calculation at xF = xB = 0.85, and (points) experimental data taken from [18].
down to xB = 0.65. At lower values of xB, the struc-
ture function calculated according to (39) falls short
of experimental data. This is explained by an increase
in the contribution from sea quarks and heavy flavors.
In order to estimate the effect of the difference of
xF and xB in the region of large xB (about unity),
the results of the calculations according to (39) at
xF = xB = 0.85 are shown in Fig. 2. It is clear that
the logarithmic violation of scaling as obtained in
solving the evolution equations cannot explain quite
an abrupt decrease in F2 with increasing Q2 at large
values of xB. In this region, the violation of scaling is
due primarily to the distinction between the Feynman
and the Bjorken variable.

The asymptotic dependence obtained for the pro-
ton structure function in the quasielastic limit can be
used for a proper normalization of various approxi-
mate functions that describe the inelastic from factors
and for a correct description of the quasielastic region
xB → 1.
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