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Abstract—The excitation function of elastic α-particle scattering on 14C has been measured in the
laboratory energy range 16.3–19.2 MeV using a backscattering technique with a thick target. These data
were analyzed together with the old low-energy data ofG.L.Morgan et al. in the framework of theR-matrix
formalism. Spin–parity assignments weremade for 32 states in 18O in the excitation range 9–20MeV. The
estimates of the widths of the states are also presented. The 0+ and 0− α-cluster bands appeared to be well
separated by 5.6 MeV (as in 16O and 20Ne). We have not found a confirmation of existence of the negative-
parity molecular states proposed by M. Gai et al.We observed an effect of a doubling of α-cluster levels in
18O similar to that found in 22Ne. c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

The α-cluster structures of light N = Z atomic
nuclei, 8Be, 12C, 16O, 20Ne, and so on, have been
a goal of long-term investigations. However, it was
only recently shown (see [1, 2]) that similar α-cluster
structures can be observed in the N > Z nucleus
22Ne. These data were obtained in 18O+ α-particle
elastic scattering. These works also claimed the sur-
prising finding of a doubling of the α-cluster states
in 22Ne, corresponding to well-known states in 20Ne
and 16O. Subsequent theoretical work [3] supported
this experimental finding. Evidently, the data on the
18O α-cluster states, which might be obtained in the
14C+ α interaction, would be very useful for a better
understanding of the phenomenon in question. The
available experimental data on the α-cluster struc-
ture in 18O are fairly scarce. An interesting piece of
experimental evidence for cluster structure of low-
lying states in 18O was found in the observation and
classification of E1 transitions by Gai et al. [4]. For
the higher members of the band, which should man-
ifest their α-cluster nature by large reduced widths,
no quantitative data are available. They made a sur-
prising suggestion that alternative-parity molecular
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bands in 18O were mixed and were formed by 0+

(3.63 MeV), 1− (4.46 MeV), 2+ (5.26 MeV), 3−

(8.29 MeV), and 4+ (10.26 MeV). The 16O and 20Ne
nuclei do not demonstrate such molecular bands. On
the contrary, the Kπ = 0+ and 0− states are well
separated by several MeV. There is no definite exper-
imental information about the lowest members of the
K = 0− α-cluster band in 18O. The known 1− lev-
els have small α-particle reduced widths and exhibit
nonselective weak E1 transitions [4]. Zhao et al. [5]
observed a broad peak of “unknown origin” in the
α-particle spectra of the β-delayed α-particle emis-
sion from 18N. This finding was also experimentally
consistent with a broad 1− state around 9.0-MeV
excitation energy in 18O. A search for this state in
β-delayed neutron decay of 18Nwas unsuccessful [6].
A single experiment on elastic resonance scatter-
ing of α particles on 14C was performed 35 years
ago [7]. The authors of that work used a carbon
target enriched to 31% in 14C to study the reaction
14C(α, α)14C over the bombarding energy range 3.5–
16.5MeV. Yield curves at eight angles were measured
over the entire energy range. An analysis was at-
tempted only for the data below 8.2MeV and spin as-
signments were made for several strong resonances,
but only qualitative estimates of the α strength for
some sharp strong resonances were given. With the
aim to obtain more information on α-cluster states in
18O, we reanalyzed the old data on elastic resonance
scattering of α particles on 14C [7] using the figures
of that work. These data were analyzed for the exci-
tation region 3.5–8.5 MeV. We have also made new
measurements of the excitation functions and angular
distributions of the elastic scattering of α particles
c© 2005 Pleiades Publishing, Inc.
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on a 14C target in the energy region 16.3–19.2 MeV
using a novel thick-target method [8].

2. EXPERIMENTAL PROCEDURE
AND ANALYSIS

The old data of [7] were obtained in a conventional
way using helium ions from a tandem accelerator.
Generally, data were taken in intervals of 20 keV, and
in the vicinity of some resonances below 8.3-MeV
bombarding energy, these steps were reduced to ei-
ther 5 or 10 keV. The claimed uncertainty in the
cross sections is about 25%. We have observed large
discrepancies (about a factor of two) in the abso-
lute values, while the shapes were similar, in the
calculated and measured excitation functions at a
few angles. The reason for these discrepancies could
not be cleared up due to absence of feedback with
the authors of the experimental work. Taking into
account the character of the experimental data, as
taken from the graphs, the level assignments should
be considered as a “preliminary” result.
The new experimental data in the high-energy

region of the α+ 14C elastic scattering from 16.3
to 19.2 MeV were obtained at the Åbo Akademi
isochronous 103-cm cyclotron. We used our thick-
target method [8], which is based on the ideas of
backscattering element analysis. The method allows
one to measure the desired elastic-scattering energy
range in rather large lab-energy steps, thus sub-
stantially saving beam time. The measurements of
continuous excitation functions were made with four
movable detectors set in 13 laboratory angles, at 170◦
and 160◦−124◦ in steps of 3◦ and 4◦, and using a fixed
monitor at −20◦. The 14C targets, enriched to 71%
in 14C, were thick enough only to degrade the beam
energy by 100 keV when tilted by 45◦ with respect to
the beam direction. Absolute values of cross sections
were obtained with about 10% precision.
The purpose of the present analysis was to obtain

properties of the main structures in the elastic scat-
tering data with as few parameters as possible. The
excitation functions shown in Figs. 1 and 2 were an-
alyzed according to the procedure outlined in [9] and
successfully used by the Wisconsin group (see [10]
and references therein). The scattering amplitude was
separated into a nonresonant term plus the sum of
resonant partial waves. For spinless particles, the
scattering amplitude can be written as

f(θ) = fC(θ) + ρ(θ) exp(iχ) (1)

− i

2k

∑
m

(2lm + 1)
Γlm
Γ
[
exp(2iβlm) − 1

]

× exp
(
2i(φlm + ωl)

)
Plm(cos θ),
PH
where ρ and χ are the background amplitude and
phase shift, βlm is a resonant phase shift, φlm is a
relative background phase shift, and fC(θ) and ωl
are the Coulomb amplitude and phase shift. Then the
cross section will be

dσ

dΩ
= |f(θ)|2. (2)

The resonance phase shift is given by

βlm = arctan
[

Γ
2(Eresm − E)

]
. (3)

In order to reduce the number of free parame-
ters, the background amplitude ρ and the background
phase shift χ were taken to be zero. The phase shifts
φlm were fixed for each resonance and were not varied
with energy and angle.
Some examples of the fits to the angular distribu-

tions, which were measured in [7], are given in Fig. 2.
As can be seen, there is qualitative agreement be-
tween the experimental data and calculations. Table 1
gives the resonance parameters of the fit. It is difficult
to confirm that the fits we have obtained are unique.
Attention was paid to the stability of the evaluated
resonance parameters and to the possibilities of an
alternative description. In particular, it was found that
the inclusion of different combinations of weak reso-
nances can improve the general agreement, but they
do not greatly affect the parameters of the resonances
of Table 1.

3. RESULTS

Figures 1 and 2 give examples of the data and their
description in terms of Breit–Wigner resonances.
The strong high-spin resonances, which were found
at high energy, manifest themselves as rapidly oscil-
lating functions versus angle, as P 2

l (cos θ) functions.
Therefore, besides the R-matrix analysis, several
angular distributions corresponding to the maxima
in the excitation function were tested. Figure 3 gives
examples of �-value determination. The extracted
resonance parameters are given in Table 1. In the fol-
lowing, we comment on the different energy regions.
In the analysis, the prominent peaks that could

be related to levels with large α-cluster widths were
investigated, and only some weak resonances were
included to get more confidence in the extracted pa-
rameters of the dominant structures. Alternative spin
assignments for weak resonances are given in Table 1
in parentheses.
An important uncertainty in the analysis of the

low-energy region is the spin determination of the
level atElab = 3.6MeV, which is assigned a 1− value.
Due to the weak angular dependence of low-order
YSICS OF ATOMIC NUCLEI Vol. 68 No. 7 2005
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Table 1.Summary of resonance parameters for structures observed in the α + 14C elastic-scattering excitation function

Level Jπ Eres, MeV± keV Ex, MeV Γα, keV Γα/Γtot Reference

1 1−, (0+) 3.600+150
−30 9.027 500+150

−50 0.80 ± 0.20 This work

2 2+ 3.710 ± 10 9.113 380+5
−15 0.12 This work

3 3− 4.070 ± 20 9.393 200 ± 20 0.79 ± 0.10 This work
(2+) 9.33 [11]

4 (1−) 4.470 ± 20 9.704 180 ± 30 0.40 ± 0.10 This work
(2−) 9.65 [12]

5 3− 4.480 ± 15 9.711 75 ± 10 0.27 ± 0.05 This work
6 3− 4.560 ± 20 9.774 300 ± 30 0.90 ± 0.10 This work
7 0+, (2+) 4.650 ± 30 9.844 400 ± 50 1.0−0.2 This work
8 (1−) 4.780 9.945 300 0.30 This work
9 3− 4.980 ± 10 10.100 45 ± 8 0.35 ± 0.07 This work

3− 4.97 10.10 Large [7]
10 4+ 5.220 ± 10 10.287 30 ± 7 0.90 ± 0.10 This work

4+ 5.23 10.29 Large [7]
4+ 10.30 [11]

11 3− 5.320 ± 10 10.365 45 ± 8 0.30 ± 0.06 This work
3− 5.34 10.38 Large [7]

12 2+ 5.400 ± 150 10.427 500 ± 150 0.40 ± 0.10 This work
13 1− 5.450 ± 100 10.466 800+200

−100 1.0−0.2 This work
14 3− 5.840 ± 30 10.769 180 ± 40 0.45 ± 0.15 This work
15 (0+) 5.940 10.847 250 0.80 This work
16 (3−) 6.300 11.127 600 0.80 This work
17 4+ 6.670 ± 5 11.415 45 0.90 ± 0.10 This work

4+ 6.67 11.42 Large [7]
18 5− 6.920 ± 10 11.609 60 ± 5 0.90 ± 0.10 This work

5− 6.93 11.62 Large [7]
5−, 6+ 11.59 [11]
5−, 6+ 11.60 [12]

19 6+ 7.030 ± 10 11.695 35 ± 5 1.0−0.1 This work
6+ 7.03 11.69 Large [7]

20 5− 7.830 ± 10 12.317 80 ± 10 1.0−0.1 This work
5− 7.85 12.33 Large [7]

21 6+ 8.100 ± 10 12.527 32 ± 5 1.0−0.1 This work
6+ 8.10 12.53 Large [7]
5− 12.60 [12]

22 7− 15.700 18.438 60 0.13 This work
23 7− 16.050 ± 30 18.710 320 0.63 This work

5− 18.95 350 [12]
24 7− 16.660 ± 40 19.185 145 0.34 This work
25 7− 17.010 ± 30 19.456 113 0.46 This work
26 7− 17.260 ± 40 19.651 52 0.24 This work
27 5− 17.550 ± 50 19.876 21 0.12 This work
28 7− 17.600 19.916 43 0.06 This work
29 8+ 18.000 20.227 326 0.35 This work
30 6+ 18.450 20.577 36 0.24 This work
31 6+ 18.800 20.849 170 0.30 This work
32 6+ 19.300 21.238 67 0.25 This work
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 7 2005
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Fig. 1. Experimental data and the fits for the high-energy region of the α+14C elastic scattering from 16.3 to 17.7 MeV.
polynomials and the absence of measured excitation
functions at angles smaller than 90◦, it was not pos-
sible to exclude the 0+ value for that level. In addition,
there are local deviations in absolute cross sections
in some regions between fits and the experimental
data. This disagreement could be partly attributed to
the contribution of the resonances outside the energy
region investigated.

Fairly broad 1− and 2+ resonances were found
in the energy region above Eα = 5 MeV. The shape
of these resonances could not be fitted with a zero-
phase Breit–Wigner expression. For this reason, one
should include a phase dependence for these reso-
nances. In fact, we observed that a 1% change in the
phase improved the fit. We leave these corrections to
future analysis, which also should take into account
PH
the background, and in the framework of the present
approach, we give large uncertainties in the positions
of the broad levels and in their widths.
In the intermediate-energy region, between 6.2

and 8.5 MeV, in the previous work [7], the spins were
identified by the qualitative behavior of the excitation
functions, and for the 4+ level at 6.67 MeV, only a
tentative assignment was made. We have fitted the
regions around the peak at all the measured angles
and extracted the parameters for the levels in the
vicinity of maxima in the angular distributions. The
spin assignments thus obtained are in fair agreement
with the earlier analysis [7]. Also, it can be seen in Ta-
ble 1 that the present results agree with data obtained
by other methods.
The analysis in the region covered by the present
YSICS OF ATOMIC NUCLEI Vol. 68 No. 7 2005
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Fig. 2. Low-energy α+ 14C elastic scattering adopted
from the graphs in [7] and the fits.

measurements, Eα = 16.3−19.2 MeV, suffers from
the absence of data outside both borders. Strong
resonances outside the region can influence the cal-
culated excitation functions. The region is dominated
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high-lying resonances. It is clearly seen (top panel) that
� = 7 (solid curve) fits the data very well, whereas � = 8
(dashed curve) does not. The middle and bottom panels
correspond to � = 8 and 6, respectively.

by 7− resonances. This is evident if the measured
angular distributions are compared with a squared
Legendre polynomial of order 7. The deep minima at
90◦ definitely exclude the nearest 6+ or 8+ assign-
ments. Due to rather broad structures in comparison
with the c.m.-energy interval of about 2.3MeV, it was
necessary to include some strong resonances outside
of this region. For those, only tentative parameters
were found. Tentative parameters were also used for
some weak resonances that were evident only at the
minima of the 7− levels. These resonances were in-
cluded to obtain more reliable assignments of the
parameters of the main 7− states.

4. DISCUSSION

It is evident thatα clusterization is a rather general
phenomenon, at least for light nuclei. Also, many α-
cluster states have α-particle reduced widths that are
close to the Wigner limit. Therefore, it seems natural
to use a potential approach to describe the common
features of the α-cluster states in atomic nuclei as
well as (potential) elastic scattering of α particles.
(For the formulation of the goals and earlier activ-
ity in this direction, see [13, 14].) Reidemeister and
Michel [15] considered the lowest α + 14Cmolecular
bands in 18O using the potential model. The param-
eters of the model were fixed using elastic scattering
5
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Fig. 4. Potential-model [15] predictions for α-cluster states in 18O.
in the energy region 28–54 MeV and were in general
agreement with those ones found [16] for theα + 12C
and α + 16O cases. Figure 4 presents results of

Table 2. Comparison of relative excitation energies E∗ vs.
threshold energies (7.17 and 6.23 MeV, respectively) and
reduced widths in 16O (left) and 18O (right)

Jπ Eres,
MeV

Γα,
MeV

Jπ Eres,
MeV

Γα,
MeV

1− 2.41 1.33 1− 2.80 0.44

4+ 3.19 1.54 3− 3.15 1.02

3− 4.43 1.31 3− 3.52 0.97

5− 7.49 1.32 4+ 4.06 0.23

6+ 9.11 1.35 1− 4.24 0.25

7− 13.69 0.78 4+ 5.19 0.09

5− 5.38 0.51

6+ 5.46 2.48

5− 6.09 0.36

6+ 6.30 0.78

7− 12.48 0.39

7− 12.99 0.11

7− 13.25 0.35

7− 13.45 0.05

7− 13.86 0.12
PH
the calculations of [15] together with experimental
results. The previous experimental results [17] include
levels up to 6+ of the positive-parity band, based on
the (0+) excited state at 3.63 MeV, and the states
in the second column represent the negative-parity
band, which is a tentative compilation from [15]. Our
data for the negative-parity cluster band are in the
right column. Only the levels with large reduced α-
particle widths have been chosen for the comparison.
We show a 1− level at 9.027 MeV as the lowest level
of the negative-parity band (however, we could not
totally exclude a 0+ assignment for this level). At 9.0-
MeV excitation energy in 18O, a broad structure with
Γ ∼ 500 keV, populated in the β decay of the 18N nu-
cleus, was observed [5], and a 0+ assignment should
be excluded due to β-decay selection rules. Simulta-
neously, the α-cluster structure of this level explains
why the search for this level using β-delayed neutron
decay of 18N was unsuccessful [6]. (Unfortunately,
this level would be a source of serious background in
an experiment for parity violation, which is planned
by the authors of [5].) We also added calculations,
as well as experimental data, for the levels with the
highest spins in both bands, the 8+ and 7− states.
It is seen that there is general agreement between
calculations and the data in Fig. 4. The slight global
shift in energy observed in Fig. 4 could easily be
compensated, as was noted in [15], by a slight de-
crease in the volume integral of the potential, an effect
YSICS OF ATOMIC NUCLEI Vol. 68 No. 7 2005
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expected from both antisymmetrization and disper-
sion relation effects. Before, this agreement seemed
questionable, because the available negative-parity
levels were too narrow to be considered as α-cluster
states [15]. The present data with reduced widths of
∼ 0.5 of the single-particle limit (see below) make
the agreement much more reliable, although both the
analysis and the experimental data around 9-MeV
excitation energy deserve a more careful examination.
Detailed theoretical results were presented in the ar-
ticle of Descouvemont and Baye [18]. They used anti-
symmetric α+ 14Cg.s. and α+ 14C(2+

1 ) wave func-
tions in generator coordinate formalism to investi-
gate molecular bands in 18O. These calculations give
well-separated (by about by 6 MeV) 0+ and 0− α-
cluster bands, as predicted in earlier studies (see, for
instance, [19]). Several detailed predictions of [18]
agree remarkably with our findings. They predicted
the band head of the 0− molecular band, a broad 1−
state at 9.6-MeV excitation energy, and a very small
splitting between 1− and 3− states of the band. As
can be seen in Fig. 4, we found 1− cluster states
at 9-MeV energy and two 3− states were positioned
between the 1− states. Also, the prediction for the 8+

state of the 0+ band, at 17.7 MeV, appeared to be
very close to the observed level at 18 MeV. Table 2
gives a compilation of well-known α-cluster levels
in 16O with these ones found in 18O. The reduced
widths of 18O are given relative to the widths of the
corresponding levels in 16O. To obtain an estimate of
the absolute values of the reduced widths, we have
calculated the single-particle widths in the Woods–
Saxon potential, which generates a spectrum of α-
cluster levels similar to that found in 18O [2]. The
potential parameters used are V = −300 MeV, r0 =
1.1 fm, and a = 0.7 fm. As an example, the absolute
reduced width of the 6+ level is 0.33 of the single-
particle (or α) width, which is given by the potential.
One can conclude from the data in Table 2 that the
general features of levels in 16O and 18O have much
in common. Therefore, one can conclude that there is
strong theoretical and experimental evidence for the
main negative-parity cluster band in 18O to be well
separated from the positive-parity band, starting with
a (0+) state at 3.63MeV. In this sense, the situation is
very similar to the 16O or 20Ne cases and differs from
the ideas [4] on the existence of the negative-parity
α-cluster band in question at a much lower excitation
energy. (It is worthwhile to note that no fully micro-
scopic calculation of the resonating group method or
the generator coordinate method has succeeded to
support the existence of this “mixed” parity band. The
only exception is a semimicroscopic orthogonality-
condition model calculation [20], which was specially
designed to reproduce these features. Obviously, this
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 7 200
study does not bring conclusive information about
the very existence of the band.) Although there exist
quantitative differences in the results of the calcula-
tions, they all predict the existence of molecular bands
that are decoupled in parity. However, no former cal-
culations predicted a doubling of α-cluster states for
N = Z + 2 nuclei, 18O or 22Ne, which was observed
in [1, 2]. Rogachev et al. [1] put forth speculations
of an exotic nuclear analog to the Josephson effect
to explain the doubling. Recently [3], the effect of the
doubling of the negative-parity α+ cluster states in
22Ne was interpreted as a strong mixing of α+ 18O∗

configurations. The present work presents new evi-
dence for the doubling of the states in 18O (see Fig. 4).
Indeed, there are only two close 5− resonances, both
with large α widths (see also Table 1), and two 3−
resonances included in Fig. 4 have reduced widths
five times larger than the others. Therefore, one can
conclude that the doubling in question is a more
general feature of the α clusterization than it would
seem after observation of the effect in 22Ne. It is
interesting whether the explanation [3], based on the
considerations of the specific nuclear configurations
in 22Ne, could be applied to a new case of 18O.

5. CONCLUSION

The present work has demonstrated a rich
α-cluster structure in the 18O nucleus. In partic-
ular, we have found new experimental evidence for
positive- and negative-parity α-cluster bands in 18O.
Their global characteristics, including an upward
energy shift of the negative-parity band, are in ac-
cordance with most theoretical predictions and are
similar to those in the 16O and 20Ne nuclei. Thus,
the additional two neutrons do not affect the global
α-cluster structure; however, we have observed the
doubling of the cluster levels in 18O, which seems
analogous to the findings in 22Ne. As it seems, some
common explanation should be found for this phe-
nomena. We have analyzed only part of the available
old data. We believe that it will be more reliable and
more rewarding to make new measurements and to
use the old data mainly as an additional reference. We
hope this work will stimulate new efforts to obtain
more detailed experimental data and a better analysis.
The energy region near the α-particle threshold in
18O is of special interest.
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Abstract—The 0− states in the 156Gd nucleus at E = 1952.38 keV and in the 158Gd nucleus at E =
2269.16 keV are established on the basis of an analysis of available data on even–even deformed nuclei.
From data on the deexcitation of the levels and on the probability of their population by beta transitions, it
is found that these states have a two-particle proton structure. A comparison of our data with information
about the 0− levels in the 170Yb and 176Hf nuclei makes it possible to conclude thatKπ = 0− two-particle
states exist at an excitation energy of about 2 MeV and higher. c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

In the rare-earth region, only a few excited lev-
els of spin–parity Jπ = 0− have been discovered in
deformed even–even nuclei. Their number is much
smaller than the numbers of levels characterized by
the spin–parities of 0+, 1+, 1−, etc. This is not an
accidental fact. The first and foremost reason for this
is associated with a theoretical treatment of 0− states.
The simplest shell model assumes that two-particle
proton or neutron states of even–even nuclei are
formed via the rupture of a pair in the ground state
with the transition of one of the nucleons to a higher
lying level. As a result, there arises a doublet of states
such that Ω = Ω1 + Ω2 or Ω = Ω1 − Ω2 in it, where
Ωi is the projection of the total angular momentum
of the respective nucleon onto the symmetry axis.
The energy of excited states is obtained by adding,
to the pair energy of E ≈ 1.5 MeV, the difference
of the single-particle energies of the nucleons being
considered. There can arise the rupture of a pair at
the Fermi surface, in which case a particle–particle
level is formed, or the rupture of a pair occurring below
the Fermi surface, in which case the emerging excited
state is of a particle–hole character. The positions of
the levels in a doublet is determined by the Galagher–
Moshkovsky law. A systematics shows that the re-
spective splitting is 100 to 200 keV.

Upon taking into account, in the Hamiltonian,
collective motion in a nucleus, there arises the col-
lectivization of Kπ = 0− states. Because of the sym-
metry properties of the wave functions, states of even
angular momenta, including Jπ = 0− states, disap-
pear in the corresponding rotational bands. In ex-
periments, one observes bands that contain 1−, 3−,
5−, etc., levels, but which do not contain states of

*e-mail: epgrig@nuclpc1.phys.spbu.ru
1063-7788/05/6807-1087$26.00
even angular momenta, including Jπ = 0− states.
These states are collective, and they are of special
interest from the point of view of their interpretation.
In discovering them, one clarifies the position of the
boundary below which there occurs the collectiviza-
tion of octupole-type levels. States of spin–parity 0−
are observed at an excitation energy of about 2 MeV
and higher.

It should be borne in mind that there exist ex-
perimental difficulties that hinder the discovery of 0−
levels. Their decay to the ground state of even–even
nuclei may occur only via second-order effects—for
example, through a “nuclear–electron bridge” in-
volving the emission of an electron (but not of a
photon). Only an M2 transition, whose relative in-
tensity is usually modest, can proceed to the first 2+

level. The deexcitation spectrum is dominated byM1
transitions 1− levels and E2 transitions to 2− levels.
Also possible are E1 transitions to 1+ levels, which
usually lie higher than levels of octupole bands. Levels
of spin–parity 0− were observed in the beta decay of
parent nuclei, but they were not observed in nucleon-
transfer reactions or in (n, n′γ) reactions.

2. 0− LEVEL AT 1952.38(1) keV IN 156Gd

2.1. Identification of the 0− Level

The 0− level at 1952.41 keV was preliminarily
identified in [1, 2] on the basis of data on 156Eu decay
with allowance for the results obtained by studying
(n, γ) reactions with filtered neutrons. This identifi-
cation was accepted in the review article of Reich [3],
and the energy of the level was refined there to be
1952.385(7) keV by invoking data on the relevant
(n, γ) reaction with thermal neutrons [4]. In previous
studies included in the review article of Helmer [5], the
level in question was established, but it was assigned
c© 2005 Pleiades Publishing, Inc.
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Fig. 1. Fragment of the diagram of 156Eu decay: population and depopulation of the Jπ = 0−, 1−, and 2− levels.
a spin–parity of Jπ = 1−. Figure 1 shows a fragment
of the diagram of 156Gd levels.

The quantum numbers 0− found experimentally
were confirmed on the basis of an analysis of the
intensities of primary M1 gamma transitions arising
upon the capture of 1.9- and 58-keV neutrons [6, 7].

For case of 1.9-keV neutrons, whose scatter-
ing is dominated by the s wave, the value of Iγ =
8.9(5) arb. units was obtained for the relative intensity
of primary gamma transitions. For the same normal-
ization, the value of Iγ = 14 arb. units is expected
according to the statistical model if Jπ = 1− or 2−;
but if Jπ = 0− or 3−, the predicted value is Iγ =
7 arb. units. The prediction of the statistical model
at Jπ = 0− is in agreement with experimental data.
It should be noted that 3− levels are not populated in
the decays of the 156Eu nucleus, whose ground state
has the spin–parity of Jπ = 0+.

In experiments with neutrons of energy En =
58 keV, the fraction of the p wave is 40%, and the sta-
tistical model predicts Iγ = 22 arb. units for 0− levels,
60 arb. units for 1− and 2− levels, 38 arb. units for 3−
levels, and 15 arb. units for 4− levels. In 156Gd, there
is a 1952.36-keV level of known spin–parity 4− near
the level at 1952.38 keV under study. Subtracting
Iγ = 15 arb. units, which is the fraction of population
of the 4− level, from Iγ = 44(9) arb. units, which is
the total intensity of population of the two levels in
question, we find that the level being considered is
populated with an intensity of 29(9) arb. units, which
also favors the Jπ = 0− assignment for this level. A
complete table of experimental data from experiments
with filtered neutrons can be found in [6].
P

The 0− state is deexcited only via M1 and E2
transitions to negative-parity levels (see Table 1). A
systematics indicates that 1− levels are deexcited by
strong E1 transitions to the ground and the first
excited state; at the same time, no such transitions
were observed from the level at 1952.38 keV. This
circumstance alone gives sufficient grounds to pre-
fer the Jπ = 0− to the 1− assignment. The gamma
transition to the ground state from the 0− level is
impossible; only the 1872.87-keV M2 transition is
expected to proceed to the first 2+ level, but this
transition has not yet been observed.

On the basis of data on the levels of 156Gd and
on the spectrum of gamma transitions in the relevant
(n, γ) reaction, the diagram of the deexcitation of the
level in question was supplemented with a 171.870-
keV transition, which was included in Table 1. The
inclusion of this transition in the set of transitions that
depopulate the 0− level was motivated by ambigui-
ties in determining its position in the level diagram.
According to data refined in [3, 4], two levels have
very close energies: the 0− level at 1952.385(7) and
the 4− level at 1952.364(9) keV. From each of these,
there can proceed a 171.870(11)-keV transition or
one of the components if this is a doublet of levels.
The transition intensity indicated in Table 1 must be
considered as an upper limit, and this circumstance is
taken into account in Table 2.

2.2. Quantum Numbers of the Level

Information about the asymptotic quantum num-
bers of a 0− level can be deduced from the results
of the calculations based on the quasiparticle vibra-
tional model [8]. The 0− neutron level characterized
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 7 2005
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Table 1.Deexcitation of the 0− level at 1952.38 keV in 156Gd

JπKf Ef , keV
156Eu (n, γ)

Eγ , keV Iγ , arb. units σL Eγ , keV Iγ , arb.units σL

1−1 1242.480(7) 709.86(5) 9.03 M1 709.942(9) 26 M1

2−1 1319.658(2) 632.79(8) 0.40 E2 632.719(9) <3.0 E2

1−0 1366.462(4) 585.90(4) 0.54 M1 585.830(15) 1.6 M1 (+E2)

2−2 1780.486(9) – – 171.870(11) <0.18 E2

Note: Here and in Tables 2, 4, and 5, JπKf are the quantum numbers of the final state, while Ef is its energy.
by the asymptotic quantum numbers NnzΛ n651↑–
n521↑ of two unpaired neutrons is expected at an
energy of 2.0 MeV, while the 0−, n402↓–n521↑ level
is expected at 2.3 MeV; as to the 0− proton level of
quantum numbers p532↑–p413↓, it is expected at
an energy of 2.4 MeV. This seems to give grounds
to prefer the first two-neutron version, although the
error of the calculations is estimated at 0.2 MeV.
In order to establish the structure of the levels, one
can employ the Galagher–Moshkovsky law. The 3−,
n651↑ + n521↑ state is expected to be the upper one
in the doublet of levels in the two-neutron version.
The possible candidates have energies of 1936, 2011,
and 2024 keV. It is difficult to indicate that which is
a partner of the 0− level. Considering E1 transitions
from the level at 1934 keV, we can assume that its
quantum number satisfies the condition K < 2 and
that it is not a member of the doublet being studied.
Under the assumption that the 0− level has a proton
structure, its 5− partner must have a lower energy. No
such level has been observed so far.

An analysis of the beta decay of 156Eu, 0+ leads
to important conclusions. In accordance with the
Nilsson diagram of levels, the structure of the 156Eu
ground state has the form p413↓–n642↑. The beta
transition to the 0− level at 1952.385 keV is impos-
sible if we assume that this level has the neutron
structure considered above—this would be a two-
particle transition changing the states of two nu-
cleons. In the case of a proton structure, there oc-
curs the n642↑→ p532↑ transformation. Here, one
deals with a nonhindered first-order-forbidden beta
transition 1u. The experimental value of log ft = 8.82
is somewhat higher than what is obtained from a
systematics of such transitions. This result can be
explained by the fact that the final state is already
occupied by a nucleon pair—that is, by the effect of
Pauli blocking. FromFig. 2, one can see that the state
that is populated is below the Fermi surface.

In [8], there is information about levels excited in
the relevant neutron-transfer reaction (d, p). Among
these, there is no state at 1952 keV, and this may be
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 7 200
indicative of its two-proton character, but numerical
estimates are required here for drawing a correct con-
clusion.

2.3. Deexcitation of the 0− Level
It is of interest to establish or to estimate the

partial half-lives with respect to gamma transitions
deexciting the 0− level and the respective hindrance
factors. The investigation of the 170Yb nucleus in [9]
provides an example of such an analysis. In this nu-
cleus, the deexcitation of the 0− level at 2819.6 keV
proceeds via 16 gamma transitions. It was shown
that the M2 0− → 2+ transition is hindered by a
factor of 200 and that the hindrance factors for M1
transitions proceeding to low-lying octupole states lie
in the range 103–104. The transition to the head of the
Kπ = 2−, Jπ = 2− band at 1717.85 keV was taken
for a reference one. Adopting the same hypothesis
for the 156Gd nucleus—that is, assuming that the
171.87-keV E2 transition proceeding to the 2− level
at 1780.486 keV has a single-particle partial half-
life, T 0 = Tsp—we find that the resulting hindrance
factors of Fh = 30 and 103 to 104 for, respectively, the
competing E2 transition to the 2−2 level and theM1
transition from the same 0− level (Table 2) are close to
the expected values. These results should be treated
as the respective lower limits.

The calculations were performed in the following
way. Taking, for the 171.87-keV transition, T 0 = 7 ×
10−8 s for a reference value, we calculate the “exper-
imental” partial half-lives Ti = T 0I0/Ii. For 156Gd,
we have Ti = 1.3 × 10−8/Ii s. The hindrance factor
for the ith transition is determined from the relation
Fh = Ti/Tsp.

The set of data quoted above suggests that the 0−
state at 1952.38 keV involves a two-proton compo-
nent. Concurrently, we cannot rule out the possibility
that an admixed part of the two-neutron wave func-
tion is also present there. Unfortunately, there are no
grounds for establishing the rotational levels of the
band built on the 0− bandhead.
5
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65Еu95 (+) in accordance with [8]. Shown in
the figure are the beta transitions from 156Eu to the 0− level in 156Gd and from 158Eu to the 0− level in 158Gd.
3. J = 1 LEVEL AT 2267.15(12) keV
AND Jπ = 0− LEVEL AT 2269.16(1) keV

IN 158Gd

A very rich spectrum of levels in the even–even
deformed nucleus 158Gd that are excited in the beta
decay of 158Eu, 1−, and in various nuclear reactions,
among which (n, γ) and (n, n′γ) are the most im-
portant [10–12], was investigated. A detailed analy-
sis of available information about the excited states
of 158Gd was performed in [13, 14], and new levels
were discovered there; in addition, the energies and
quantum numbers were refined for some states. Also,
a few doublets of closely spaced levels were revealed.
One of these contains a Jπ = 0− state.

3.1. J = 1 Level at 2267.15(12) keV

At an energy of about 2268 keV, there are two
closely lying levels (not one, as was indicated in the
review article of Helmer [10]). Inelastic photon scat-
tering results in the excitation of states characterized
by a high probability of decay to the ground (0+) and
the first excited (2+) state. The spin–parities of those
excited states are Jπ = 1+, 1−, and sometimes 2+.
Usually, their decays to other, higher lying, levels are
not observed.

In 158Gd, the state at E = 2268 keV is excited
in the relevant (γ, γ′) reaction; it is deexcited via
dipole transitions, so that its spin is J = 1. In Ta-
ble 3, it is shown that this state manifests itself in the
corresponding (n, n′γ) reaction and in 158Eu decay.
In all of the three cases, the ratio of the intensities
takes the same value within the errors. The 2267-
P

and 2188-keV transitions were not observed in the
(n, γ) reaction because of a low sensitivity of the
spectrometer in this energy region. The energies of
the transitions and of the level were fixed according
to data on the respective (n, n′γ) reaction from [12],
where the smallest error was indicated. The energies
of gamma transitions in 158Eu in the range E =
2.0−2.5 MeV are somewhat overestimated, as was
clarified by considering some gamma transitions in
this region. Considering that the level at 2267.15 keV
is populated with an intensity of 0.09% in the beta
decay of 158Eu, we obtain the value of log ft = 8.6 for
this beta-decay branch.

In the decay of 158Eu, only one transition from
Table 3 was associated with the deexcitation of
the level at 2267.15 keV. The position of the more
intense 2268.2-keV transition in the energy-level
diagram could not be found. From a comparison
of the data in Table 3, it follows that, in all of the
three processes, both transitions proceed from the
level at 2267.15 keV. Transitions of close energy
may be involved in the deexcitation of the level at
2269.16 keV, but these transitions are characterized
by a much lower intensity. They were not included
in Table 4, which shows the deexcitation of the level
at 2269.16 keV, because there are no data on these
transitions.

3.2. 0− Level at 2269.16(3) keV

3.2.1. Identification of the 0−−− level. In the pre-
ceding section, it was shown that the Jπ = 0− level
in 156Gd is populated in the beta decay of 156Eu,
0+. There is a similar situation in the neighboring
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 7 2005
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Table 2.Hindrance factors for gamma transitions deexciting the 0− level at 1952.38 keV in 156Gd

JπKf Eγ , keV Iγ , arb. units σL Tsp, s Ti, s Fh

1−1 709.86 100 M1 7 × 10−14 1.3 × 10−10 2000

2−1 632.79 4.4 E2 1 × 10−10 3 × 10−9 30

1−0 585.90 6.0 M1 2 × 10−13 2 × 10−9 10 000

2−2 171.87 <0.18∗ E2 7 × 10−8 ≡ 7 × 10−8 ≡ 1
∗ The value of Iγ = 0.18 should be considered as an upper limit on a transition intensity. Accordingly, the hindrance factors Fh for
other gamma transitions may increase.

Table 3.Deexcitation of the J = 1 level at 2267.15 keV

(γ, γ′) (n, n′γ) 158Eu

Eγ , keV Iγ , arb. units Eγ , keV Iγ , arb. units Eγ , keV Iγ , arb. units

2268 100 2267.04(12) 37(3) 100 2268.2(5) 0.21(3) 100

2188 41(11) 2187.9(4) 20(2) 54(7) 2189.3(8) 0.09(2) 43(12)
nucleus 158Gd. Figure 3 shows a fragment of the
energy-level diagram for 158Gd. The Jπ = 1− parent
nucleus 158Eu of beta-decay energy Q = 3485 keV
decays to levels of the daughter nuclide 158Gd [10].
Among these, a state at 2269.29 keV was discovered
and was assigned a spin of J = 1, its refined energy
being 2269.16 keV. However, its deexcitation (see
Table 4) proved to be similar to the deexcitation of
the 0− level in 156Gd (see Table 1). In either case,
three final levels have identical quantum numbers.
The present consideration made it possible to sup-
plement the diagram of deexcitation of this level with
the 1245.1(4)-keV transition to the 2− level of the
Kπ = 1− octupole band. Its position in the diagram
of 158Eu decay could not been found. The spectrum
of the relevant (n, γ) reaction features a transition of
close energy, 1244.58 keV, but its relative intensity
of Iγ = 10.6 arb. units proved to be 40 times higher
than that in the decay of 158Eu, so that a very weak
component of the possible γ1245 keV doublet refers
to the deexcitation of the 0− level. The 2189.3-keV
transition proceeding from the level at 2267.15 keV to
the first excited 2+ level (see Table 3 and Fig. 3) was
excluded from the spectrum. The above comments
and refinements furnish further pieces of evidence in
support of the 0− assignment.

3.2.2. Quantum numbers of the level. The
asymptotic quantum numbers of the 0− level are
determined from calculations based on the quasipar-
ticle vibrational model [8]. One expects an n642↑–
n523↓ two-neutron state at 1.8 MeV, an n651↑–
n521↑ two-neutron state at 2.2 MeV, and a p532↑–
p413↓ two-proton state at 2.3 MeV. In two cases,
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 7 200
the partner state in the doublet has a spin–parity
of Jπ = 5− and lies higher than the 0− level, in
accordance with the Galagher–Moshkovsky law.

An analysis of beta decay leads to a more certain
result. According to the Nilsson model, the features
of the 158Eu ground state are Jπ = 1− and p413↓–
n521↑. A value of log ft ≈ 6 is expected for the al-
lowed hindered ah decay n521↑→ p532↓ to a two-
proton state. The higher observed value of log ft =
7.26 is likely to be associated with the Pauli blocking
effect, as in the neighboring nucleus 156Gd (Fig. 2).
Beta decay to neutron states would be of a two-
particle character—that is, it would be accompanied
by a change in the state of two nucleons—or would
be the beta transition n651↑→ p413↓, which is very
strongly hindered in the asymptotic quantum num-
bers.

3.2.3. Deexcitation of the 0−−− level. The hin-
drance factors Fh for deexcitation gamma transitions
were determined by applying the same procedure as
in the case of 156Gd. The gamma transition to the
JπK = 2−2 level was not observed (recall that, in
the case of 156Gd, the analogous transition was used
for normalization in estimating the hindrance factors
Fh). The energy of this transition was expected to be
475 keV. It was assumed that theE2 transition to the
JπK = 2−1 level is hindered by a factor of 30, as in
156Gd. The results are displayed in 5.

The hindrance factors for M1 transitions to 1−
states are 102 to 103, this being in agreement with a
systematics. They proved to be much less than those
in the neighboring nuclei 156Gd. We cannot rule out
5



1092 GRIGORIEV

 

Q

 

 = 3485 keV

45.9 min

 
158

63

 
Eu

 

95

 

7.26
7.00

7.91
7.26
7.37

log

 

ft

 

158
64

 

Gd

 

94

 

1

 

–

 

 

 

p

 

 413  –

 

n

 

 521

 

p

 

 413  –

 

p

 

 532
0

 

–

 

1

1

 

–

 

0
2

 

–

 

1
1

 

–

 

1

2

 

+

 

0
0

 

+

 

0

 

E

 

, keV

2269
2267
2023
1930

1263

80
0

 

J

 

π

 

K

 

7.24
7.00

1

 

–

 

1
1

 

+

 

1

1024
977

Fig. 3. Fragment of the decay diagram for 158Eu: population and depopulation of the Jπ = 0−, 1−, 2−, and 1+ levels.

 
615
512
510

514
624

512

521
633

642

523
651

 

N

 

 = 108

 

N

 

 = 102

 

Nn

 

z

 

Λ

 

Neutrons Protons

 

Z

 

 = 76

 

Z

 

 = 70

532

 

Nn

 

z

 

Λ

 

402

541
404
514

411

523
411

532
413

Fig. 4. Fragment of the Nilsson diagram for (asterisks) 170
71Lu99 and (crosses) 176

73Ta103: (straight line with an arrow) formation
of the 0− four-particle state in 176Hf and (bent lines with arrow) two versions of the formation of two-particle states in 170Yb.
the possibility that this is associated with the choice of
normalization for partial half-lives for both nuclei. It is
necessary to measure the lifetimes of relevant levels,
but this is a difficult experimental task.

4. COMPARISON OF THE PROPERTIES
OF LEVELS IN THE 156Gd, 158Gd, 170Yb,

AND 176Hf NUCLEI

The properties of the 156Gd and 158Gd nuclei were
compared with allowance for information about the
170Yb nucleus, in which five excited states of spin–
parity Jπ = 0− are known [9, 15, 16], and about the
176Hf nucleus, where two such states were found [17].
Table 6 presents available data on the probabilities of
beta decay to the 0− levels in daughter nuclei.
PH
4.1. 0− Levels in 170Yb

First of all, it should be noted that the Jπ = 0+,
p404↓–n633↑ state of 170Lu decays to two-particle
0− states via unhindered first-order-forbidden beta
transitions 1u. Two versions are possible here.

(i) There occurs the p523↑→ n633↑ transforma-
tion. From Fig. 4, it can be seen that all neutron levels
up toN = 100 are filled in 170

70Yb100. A p404↓–p523↑
particle–hole state arises in a proton well.

(ii) There occurs the 1u beta decay p404↓→
n514↓. As a result, a n633↑–n514↓ two-neutron
state of spin–parity 0− is formed in 170Yb.

Usually, 1u beta transitions are characterized by
log ft = 6−7. It is necessary to find out why there
arises an additional hindrance factor of 100. It can
YSICS OF ATOMIC NUCLEI Vol. 68 No. 7 2005
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Table 4.Deexcitation of the 0− level at 2269.16(3) keV in 158Gd

JπKf Ef , keV
158Eu (n, γ)

Eγ , keV Iγ , arb. units σL Eγ , keV Iγ , arb. units σL

1−1 977.147(2) 1292.3(2) 0.89(11) – 1292 <5 –

2−1 1023.695(3) 1245.1(4)∗ 0.10(4) – 1244.58(13) <10.6 –

1−0 1263.514(3) 1005.4(3) 4.1(5) – 1005.8(9) 11.3(12) –

1−1 2023.76(5) 245.33(17) 0.32(4) M1,E2 245.417(5) 0.68(5) M1, E2
∗ This transition was introduced in the present study.

Table 5.Hindrance factors for gamma transitions deexciting the 0− level at 2269.16 keV in 158Gd

JπKf Eγ , keV Iγ , arb.units σL Tsp, s Ti, s Fh

1−1 1292.3 22 M1 1.1 × 10−14 1.3 × 10−11 1200

2−1 1245.1 2.4 E2 4 × 10−12 ≡ 1.2 × 10−10 ≡ 30

1−0 1005.4 100 M1 2.4 × 10−14 3 × 10−12 120

1− 245.33 7.8 M1 1.6 × 10−12 4 × 10−11 30

2−2 475 <10 E2 4 × 10−10 >3 × 10−10 >0.1
be deduced from the data in Fig. 4 that, in the decay
of 170Lu, this factor is not associated with the Pauli
blocking effect. Calculations within realistic models
are required for explaining the above result.

These results can be compared with the data on
156Eu decay in Fig. 1. The large experimental value
of log ft = 8.82 can be associated with the fact that
the beta transition n642↑→ p532↑, which was con-
sidered in Section 2 for 156Gd, proceeds to the already
filled level of structure p532↑, as can be seen from the
fragment of the Nilsson diagram in Fig. 2.

Let us compare the beta decay of 156Eu to two
Kπ = 0− levels in 156Gd. By these, we mean the
Jπ = 0− state found at 1952.38 keV and the 1−0 level
at 1366.46 keV. The beta decay to this level (log ft =
9.65) may proceed through the same wave-function
component as in the 0− state—that is, n642↑→
p532↑. According to the calculation performed in [8],
however, its fraction in the wave function of the 1−0
collective state at 1366.46 keV is 3.8%, and one
can expect that the probability of the beta decay in
question is 15 times lower than that to the 0− level.
However, the calculations in [8] also indicate that the
wave function for the 1−0 level has a 6% admixture
of the wave function for the n642↑–n523↓ state, and
a 1u beta transition is possible through this admixed
wave function as well. In view of the possible errors
in the calculations, no glaring discrepancy in the
population of the 0−0 and 1−0 levels can be revealed.
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 7 200
In the case where the structure of the level being
considered is n402↓–n521↑ or n651↑–n521↑, beta
decay to neutron levels has a two-particle character,
changing the state of two nucleons. Its probability is
extremely small in this case.

4.2. 0− Levels in the 176Hf Nucleus
The 176Hf nucleus is the fourth nucleus in which

0− levels were observed. The levels were excited in the
beta decay of 176Ta [17]; their energy was refined in
the compilation of Browne and Huo Junde [18]. The
lowest of the 0− states has an energy of 1818.91 keV.
It was included in the Kπ = 0− band. This is some-
what bizarre, since, in all deformed rare-earth nuclei,
low-lying Kπ = 0− bands are of a collective charac-
ter; therefore, they do not contain even-spin states.
In 176Hf, the band in question is partitioned into two
pairs of levels: the 1− and 3− levels at, respectively,
1643.43 and 1710.43 keV form the first pair, while
the 0− and 2− levels at, respectively, 1818.92 and
1856.99 keV form the second pair. In [17], there is
no unambiguous experimental evidence that the level
at 1818.92 keV has a spin–parity of 0−. It should
be noted that one transition from this level comes to
the 1− “rotational” level at 1643.43 keV; possibly, the
transition to the 2− level at 1247.68 keV also comes
from it. In view of the aforementioned ambiguity, a
dedicated discussion on the level at 1818.92 keV is
required.
5
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Table 6. Beta decay to Jπ = 0−, 1−, 1+, and 2− levels

Nucleu
Initial state Final state

log ft
Jπ Nucleus,NnzΛ Eexpt, keV, JπKf NnzΛ Ecalc, MeV

156Gd 0+ 156Eu
p413↓–n642↑

1952.38, 0− p413↓–p532↑ 2.4 8.82

n651↑–n521↑ 2.0

n402↓–n521↑ 2.3

1242.48, 1−1 Collective 9.42

1319.66, 2−1 Collective 11.2

1366.46, 1−0 Collective 9.65
170Yb 0+ 170Lu

p404↓–n633↑
2052.48, 0− p404↓–p523↑ 2.3 9.40

2351.54, 0− n514↓–n633↑ 2.2 8.02

2367.48, 0− n642↑–n512↑ 2.0 7.72

2497.91, 0− 8.27

2819.6, 0− 7.16

1364.5, 1−1 Collective 9.04

1397.0, 2−1 Collective –

1512.3, 1−0 Collective 9.20
158Gd 1− 158Eu

p413↓–n521↑
2269.16, 0− p413↓–n532↑ 2.3 7.26

n642↑–n523↓ 2.1

n651↑–n521↑ 2.2

977.15, 1−1 Collective 7.37

1023.70, 2−1 Collective 7.26

1263.51, 1−0 Collective 7.91

1847.80, 1+1 7.55

1930.17, 1+1 7.00
176Hf 1− 176Ta

p404↓–n512↑
2912.27, 0− [p404↓–n512↑]–[p514↑–n514↓] 4.7

1247.69, 2−2 Collective 7.11

1643.41, 1−0 n633 ↑–n514↓, 93%∗ 7.42

1722.05, 1−1 p514 ↑–p404↓, 93%∗ 7.74
∗ The fraction of the wave function according to the calculation in [8].
The structure p404↓–n512↑ of the Jπ = 1− level
in 176Ta (Z = 73, N = 103) was determined accord-
ing to the Nilsson diagram (see Fig. 4). According
to the calculations in [8], which were based on the
quasiparticle vibrational model, the lowest 0− state
in 176Hf has an energy of 1.7 MeV and the structure
n633! ↑–n514↓. It cannot be populated in the beta
decay of 176Ta. In experiments, one observes the beta
transition to the 1−0 level at 1643.43 keV (log ft =
7.42). It can proceed owing to the admixture gener-
P

ated in the wave function by the JπK = 1−1 state at
1722.05 keV. The beta decay to this state is charac-
terized by log ft = 7.74. The structure p514↑–p404↓
of the 1−1 level corresponds to the ah transition
p514↑→ n512↑, which is hindered in the quantum
numberΛ. The present calculation revealed that there
occurs a Coriolis mixing of states in the K = 0 and
K = 1 bands, the mixing parameters being within the
ranges that follow from the systematics reported by
the present author in [19].
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 7 2005
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The second 0− level in 176Hf was discovered at an
excitaion energy of 2912.27 keV. Its spin and parity
were established on the basis of deexcitation transi-
tions, while its structure was found by using the small
value of log ft = 5.2, which corresponds to the au
beta transition p514↑–n514↓ (see Fig. 4). The only
0− four-particle state established in the rare-earth
region ([p404↓–n512↑]–[p514↑–n514↓]) is not of a
collective character. Therefore, it is beyond any doubt
that this level is associated with the rotational band
that contains the 1− level at 2920.26 keV and the 2−
level at 2969.07 keV [17, 18]. Both are populated by
au beta transitions characterized by log ft = 5.0 and
5.4, respectively. Data on the 0− level in the 176Hf
nucleus are included in Table 6.

5. CONCLUSION

The problem of determining the boundary between
Kπ = 0− levels of collective and single-particle na-
ture has been formulated. In addition to the known
examples of the Jπ = 0− levels in the 170Yb and 176Hf
nuclei, information about the analogous levels and
about their properties has been obtained for 156Gd
and 158Gd at an excitation energy of about 2 MeV. As
to the rotational bands associated with them, they can
only be hypothesized. At E = 2912.27 keV, a rota-
tional band that involves 0−, 1−, and 2− levels, whose
excitation nature is four-particle rather than collec-
tive, manifested itself in the 176Hf nucleus. Scanty
available data suggest that Kπ = 0− noncollective
states—in particular, a Jπ = 0− state—maymanifest
themselves in even–even nuclides from the rare-earth
region at an excitation energy of about 2 MeV.

This problem deals with states of positive parity. In
the Kπ = 0+ collective bands, there are no levels of
odd spin (1, 3, 5, . . . ). Here, there arises an additional
difficulty. It is necessary to determine the quantum
number K for known Jπ = 1+ states. Unfortunately,
Alaga rules do not provide a reliable criterion for
establishing K for E > 2 MeV. This is suggested
by a very large scatter of values of R = B(M1; 1 →
2+)/B(M1; 1 → 0+) for gamma transitions to the
ground-state band. The scatter of R values is ex-
plained by a different mixing of wave functions in al-
most all of the Jπ = 1+ states above 2MeV. The same
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 7 200
reason complicates the analysis of the properties of
Kπ = 0− levels.
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Abstract—Results are presented that were obtained from experiments devoted to storing very cold
neutrons in vessels whose walls are made from structures involving a spatial inhomogeneity of the average
Fermi potential. The possibility of storing neutrons owing to diffusion reflection from the walls is shown,
and prospects of elaborating the method are discussed. c© 2005 Pleiades Publishing, Inc.
The discovery of the confinement of ultracold neu-
trons gave a strong impetus to studying the funda-
mental properties of the neutron. Advances in these
realms were due to a considerable increase in the
time of residence of neutrons within measuring fa-
cilities owing to their storage. However, the inter-
val of speeds for neutrons that can be stored within
vessels owing to a total reflection from media char-
acterized by a positive coherent-nuclear-scattering
length is rather modest, 0–7 m/s. In view of this,
it is of interest to seek radically new methods, those
for storing neutrons of higher speed, their fraction in
the reactor-moderator spectrum being much higher.
In [1], it was shown that the phenomenon of diffusion
reflection from inhomogeneous media can be used to
store neutrons.

In the present article, we describe experiments de-
voted to storing cold neutrons in vessels whose walls
are manufactured from artificial structures that are
characterized by a pronounced spatial inhomogeneity
of the average Fermi potential (boundary energy).
Neutrons incident to the walls return to a vacuum
upon diffusion reflection, and this ensures neutron
storage in the volume of the vessel.

DESCRIPTION OF THE METHOD

Let us consider the interaction between a neutron
of energy E and a structure of thickness l consist-
ing of the main phase in which the second phase is
embedded in the form of small grains, the boundary
energies of the substances of the first and the second
phase being Elim 1 and Elim 2 �= Elim 1, respectively. If
the energy of the neutrons is higher than the bound-
ary energy in both phases, either the neutrons are
reflected at the phase boundaries, or their trajectory

1)Institut Laue-Langevin, rue Jules Horowitz 6, BP156-
38042 Grenoble Cedex 9, France.
*e-mail: bond@foton.polyn.kiae.su
1063-7788/05/6807-1096$26.00
is refracted. In this case, the motion of a neutron
acquires a diffusion character, with the result that it
has three possibilities: that of returning to a vacuum
(this corresponds to reflection), that of traversing the
structure layer, and that of undergoing absorption or
inelastic scattering to the region of thermal energies.
The diffusion process is characterized by the diffusion
length L; if L� l, the transmitted neutron flux be-
comes negligible, the bulk of neutrons being reflected.
It was shown in [2] that, for an isotropic neutron flux
incident to such a structure, the probability of losses
per collision with the wall is given by

µ =
4
ν̄

(
1 − Elim 1

E

)√
D

τ
, (1)

where ν̄ is the mean speed of neutrons in the struc-
ture; D is the diffusion coefficient, which depends
on the difference of Elim 1 and Elim 2, the dimensions
of the grains, and their relative concentration in the
volume of the main phase; and τ is the neutron life-
time in the structure with respect to the capture and
inelastic-scattering channels, which are character-
ized by the cross sections σc and σin. In a vessel whose
walls have such a structure, the number of neutrons
as a function of time t, N(t), is expected to behave
as N(t) = N(0)exp(−λlt), where the probability of
losses per unit time is λl = 1/τst = pµ, with p and
τst being, respectively, the frequency of collisions with
the wall and the neutron-storage time. In order to
minimize the quantity µ, one must obviously cre-
ate artificial inhomogeneous structures that possess
the minimum possible diffusion coefficient and the
longest possible neutron lifetime in the structure.

In [2, 3], it was shown that, in order to store
cold neutrons of speed in the range 7–50 m/s, it is
necessary to employ structures where the character-
istic size of spatial inhomogeneities of the potential is
larger than and, at the same time, is commensurate
c© 2005 Pleiades Publishing, Inc.
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Fig. 1. Layout of the experimental facility used: (1) input neutron guide, (2) energy spectrum of neutrons in the upper horizontal
neutron guide (3), (4) vertical neutron guide, (5) bent channel, (6) neutron detector, (7) input shutter, (8) vacuum chamber,
(9) copper storage vessel, (10) deposited-substance layer, (11) pipes of the system for cooling the storage vessel with liquid
nitrogen, (12) gas-phase injector for layer deposition, (13) neutron guide of the detector, (14) hole for neutron passage to the
detector, and (15) copper diaphragms. Shown in the figure are the injector positions during (a) surface-layer deposition and
(b) neutron storage.
with the neutron wavelength of 80 to 600 nm. Esti-
mations show that, by cooling, to low temperatures,
structures manufactured from materials in which the
capture and inelastic-scattering cross sections are
small (beryllium, carbon, deuterium, oxygen, fluo-
rine), the probability µ of losses can be suppressed to
a level of 10−3 to 10−2.

DESCRIPTION OF THE EXPERIMENTAL
FACILITY USED

In order to test directly the possibility of storing
cold neutrons in vessels whose wall are made from
artificial structures, we employed the facility shown
in Fig. 1. Neutrons were stored in a copper vessel
(9) whose walls were covered with layers of reflecting
structures (10). By using a Π-shaped neutron guide
from stainless steel, ultracold neutrons from a source
(1) whose spectrum fell within the range 50–200 neV
were raised to an altitude of 42 cm, their spectrum (2)
being softened to 10–160 neV. Further, neutrons fell
in the gravity field along a vertical neutron guide (4)
to a depth of 270 cm and, along a bent channel (5),
arrived at the storage vessel, having a mean speed of
8.3 m/s and the boundaries of the spectrum at 7.4 and
9.2 m/s.
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 7 2005
The storage vessel 30 cm in length and 9.2 cm in
diameter was installed in a vacuumchamber (8) evac-
uated to a pressure of 10−5 mbar. Pipes for cooling
the vessel with liquid nitrogen (11), which made it
possible to change the vessel temperature in the range
100–300 K, were arranged at the outer surface of the
vessel. The inlet hole equipped with a fast shutter (7)
for letting neutrons in the vessel and for subsequently
locking them there was at the front flange of the ves-
sel. At the rear flange, there was a small hole (14) of
area 5 cm2, through which neutrons accumulated in
the vessel flew to a detector (6) along a bent neutron
guide from nickel (13). For the detector, we used a gas

Table

Structure type T , К τst, s µ, 10−2

Teflon 300 0.11(1) 6.4(6)

100 0.22(3) 3.2(4)
Graphite–liquid
fluoropolymer

300 0.17(3) 4.1(7)

100 0.22(2) 3.2(3)
Diamond–liquid
fluoropolymer

300 0.27(3) 2.6(3)

100 0.37(4) 1.9(2)

Condensate heavy water 100 0.82(6) 0.86(6)
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Fig. 2. Detector counting rate as a function of the mass
m of condensed water for an open position of the shutter.
In the absence of the condensate at the walls (m = 0),
the detector records a low flux of neutrons hitting it upon
reflection from the walls of the copper vessel.

proportional counter based on 3He. In order to pre-
vent a direct passage of neutrons from the inlet hole
to the detector, four copper diaphragms (15) covered
with a reflecting-structure layer were installed within
the vessel, each diaphragm covering half of the vessel
cross section.

Reflecting layers of the following four kinds were
deposited onto the inner surface of the vessel:

(i) solid-state fluoropolymer (CF2)n (industrial
Teflon) 1 mm thick characterized by a boundary speed
of 5 m/s (the spatial inhomogeneity of the potential
there was due to the presence of giant molecules
featuring structural distortions);

(ii)mixture of liquid fluoropolymer (OCFCF3CF2)n
and a graphite micropowder of grain size 5 to 20 µm
(the packing density was 0.2 to 0.3; the layer thick-
ness was 0.5 mm; the boundary velocity was 5.6 m/s
in graphite and 4.65 m/s in the fluoropolymer; the
difference of the boundary energies between the
phases was u0 = 88 neV);

(iii) mixture of a liquid fluoropolymer and a dia-
mond micropowder of grain size 250 nm (the pack-
ing density was 0.2 to 0.3; the layer thickness
was 0.3 mm; the boundary speed in diamond was
7.65 m/s; and the difference of the boundary energies
in the two phases was u0 = 200 neV);

(iv) low-temperature microcrystal condensate of
a heavy-water vapor (the boundary velocity was
5.0 m/s; the condensate had the form of a vacuum–
ice structure whose properties of importance were
the following: the difference of the boundary energies
between the two phases was u0 = 125 neV; the
P

crystalline-grain size was on the order of 102 to
103 nm; and the packing density was 0.2 to 0.4).

The coating was created via the condensation
of heavy-water vapor through a movable evapora-
tor (12) onto the vessel surface cooled to 100 K.
The evaporator had the form of a cylindrical pipe
1.2 cm in diameter heated from inside. There were
100 holes of total area 1 cm2 in the side surface
of the pipe. In order to implement condensation,
the evaporator was introduced in the volume of the
evacuated vessel, whereupon helium was supplied to
the vessel under a pressure of 3 to 4 mbar (Fig. 1a).
After performing the condensation of water vapor
onto the vessel surface, the evaporator was withdrawn
from the storage volume, helium was evacuated, and
neutrons were stored (Fig. 1b).

In order to fill the vessel with neutrons, the inlet
shutter was opened for 3 to 5 s, which was necessary
for maximum filling; after that, it was closed, which
took 0.05 s. Within the interval of filling and storing,
we measured the detector counting rate as a function
of time, J(t). After closing the vessel, the detector
counting rate behaved as

J(t) = J(0)exp(−t/τ),
where 1/τ = 1/τst + 1/τd; here, τst is the time of neu-
tron storage in the vessel, while τd = 1.28(12) s is the
time it takes for neutrons flowing from the hole in the
vessel to reach the detector. From the value obtained
for τ , we determined the time τst and the probability of
losses,

µ = 4Ω/(νSτst),

where Ω = 2 × 103 cm3 is the volume of the vessel
and S = 1.3× 103 cm2 is the area of the inner surface.

RESULTS OF THE MEASUREMENTS

Neutron storage owing to diffusion reflection was
observed for all coatings studied here (see table).

From the table, it can be seen that the best result
was obtained for a fine-grained heavy-water conden-
sate. Figure 2 shows the detector counting rate as
a function of the condensed-water mass m for the
case where the shutter is open. In the absence of a
condensate at the walls (m = 0), the detector records
a low flux of neutrons that hit it upon undergoing
reflections from the walls of the copper vessel. With
increasing condensed-layer mass and with increasing
diffusion-reflection probability, the detector counting
rate becomes higher owing to an increase in the
number of neutrons in the vessel. As soon as the
condensed-layer thickness begins to exceed the dif-
fusion length considerably, so that the penetration of
neutrons through the layer becomes insignificant, the
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 7 2005
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counting rate stabilizes. Figure 3 displays the detec-
tor counting rate as a function of time for a condensed
layer of thickness m = 6.7 mg/cm2. After closing
the shutter (t = 4.4 s), the number of neutrons in
the vessel decreases exponentially, the characteristic
time being τ = 0.50(3) s. This is suggested by the
fact that the counting rate decreases with the same
characteristic time. Taking into account the leakage
of neutrons to the detector, we estimate the time of
storage in the vessel at τst = 0.82(6) s. At a neutron
mean free path of 6.5 cm and a collision frequency of
142 s−1, this corresponds to a value ofµ = 8.6× 10−3

for the coefficient of losses; that is, a neutron under-
goes about 120 diffusion reflections before leaving the
volume of the vessel.

Figure 4 shows the detector counting rate as a
function of time for the case where the vessel walls
are coated with a mixture of a diamond powder and
a liquid fluoropolymer at temperatures of 300 and
100 K. One can see that, at the lower temperature
value, the probability of neutron losses is lower ow-
ing to a decrease in the cross section for inelastic
scattering, which is main channel of neutron escape
here. However, the effect associated with the decrease
in the inelastic-scattering cross section σin is in-
significant, since, according to (1), µ ∝

√
(σin + σc)

At T = 100 K, the storage time is τst = 0.37(4) s, the
corresponding value of the coefficient of losses is µ =
1.9 × 10−2, and the number of diffusion reflections
prior to escape is 50.

From the very first results, it can be seen that
Teflon, mixtures of liquid fluoropolymer with graphite
and diamond powders, and a heavy-water condensate
are efficient cold-neutron reflectors that can be used
in accumulating neutrons in vessels, as well as in
other problems that require a short-term storage of
PH
cold neutrons. In particular, they can be employed
as reflectors and storage units in ultracold-neutron
sources based on cooling cold neutrons in superfluid
helium [4] and on using nanoparticles [5]. A further
development of the method would require seeking
structures that would make it possible to reduce the
resulting coefficients of losses to a level of 10−3. The
creation of nanostructures (characterized by a grain
size of about 10 nm), where a vacuum, which does
not contribute to absorption, plays the role of themain
phase and where the difference of the effective poten-
tials is maximal, is an obvious way to achieve this
goal. In particular, structures from diamond nanopar-
ticles at temperatures of 4 to 80 K and nanocrystal
condensates of heavy water and, possibly, of oxygen
at temperatures of about 4 K seem promising.
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Abstract—Explicit expressions are obtained for the energy dependence of the particle transmission coeffi-
cient and phase tunneling time through two rectangular barriers near resonance. The resonance half-width
and the phase tunneling time for neutrons in resonance are calculated. c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

The duration of the neutron interaction with the
so-called neutron interference filter has been mea-
sured recently [1]. The potential structure of the filter
comprised two rectangular barriers separated by a
potential well. The neutron precession phase shift
during the interaction was a directly measurable
quantity. The Larmor neutron tunneling time in the
resonance corresponding to the quasi-bound state
of neutrons in the potential well between the barri-
ers was found from the measured phase shift. The
measured tunneling time was also compared with the
calculated phase tunneling time in [1]. In this paper,
we analyze the energy dependence of the particle
phase tunneling time through the double barrier near
resonance.

2. THE RESONANCE CONDITION

Let us consider the tunneling of particles with an
effective massm and energy E through two identical
rectangular barriers of width a and height U0 sepa-
rated by distance l. In this case, the amplitude of the
transmitted wave is defined by the relation [2, 3]

AT (k) = exp(−2ika)/D(k), (1)

where

D(k) = cosh2(qa) +
1
4
sinh2(qa)[σ2 cos(2kl) − δ2]

(2)

+ isinh(qa)
[
δcosh(qa) +

1
4
σ2sinh(qa) sin(2kl)

]
,

k =
√

2mE/�, q =
√

2m(U0 − E)/�, δ = (q2 −
k2)/kq, and σ = (k2 + q2)/kq. Since |AT (k)|2 = 1

*e-mail: olkhovsk@kinr.kiev.ua
1063-7788/05/6807-1101$26.00
[2–5] in resonance, the resonance can be defined by
the condition

|D(k)|2 = 1. (3)

Substituting (2) into (3) yields the equation

cot(kl) = −(1/2)δtanh(qa). (4)

This equation is the same general resonance condi-
tion as Eq. (3). Therefore, it can be used to determine
the resonance values of any of the parameters a, k, l,
m (for electrons [6]), and U0 (if all of the remaining
parameters are known). For example, the resonance
values of the wave number k and the distance l be-
tween the barriers were shown to satisfy Eq. (4) in [2]
and [3], respectively.

3. THE BEHAVIOR OF THE TRANSMISSION
COEFFICIENT NEAR RESONANCE

The analysis of the energy dependence of the
transmission coefficient P (k) = |AT (k)|2 near res-
onance can be simplified considerably by introducing
the functions

u = cosh2(qa) − 1
4
δ2sinh2(qa), (5)

v = δcosh(qa)sinh(qa), w =
1
4
σ2sinh2(qa)

that are related by

u2 + v2 = (1 + w)2, uu′ + vv′ = (1 + w)w′, (6)

u′
2 + v′

2 − w′2 = (u′v − uv′)2,

where the prime denotes differentiation with respect
to one of the parameters, a, k, l,m, orU0. Using these
functions, the denominator D(k) in Eq. (1) can be
represented as

D = u+w cos(2kl) + i[v + w sin(2kl)]. (7)
c© 2005 Pleiades Publishing, Inc.
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Retaining the first two terms in the expansion ofD(k)
in a power series of the deviation of particle energy
E from the resonance value Er, we obtain near reso-
nance

D(k) = Dr + Cr(E − Er) (8)

= Cr(E − Er +DrC
∗
r /|Cr|2),

where Dr = D(kr), kr = (2mEr)1/2/�, Cr =
mD′

r/(�
2kr), and the prime denotes differentiation

with respect to k. It follows from Eq. (4) that, at the
resonance, we have

cos(2krl) = −ur/(1 + wr), (9)

sin(2kr l) = −vr/(1 + wr),

where ur, vr, and wr are the values of the functions u,
v, and w at k = kr. Using formulas (5)–(7) and (9),
we can easily verify that

DrC
∗
r = i/β, |Cr|2 = β−2, (10)

where

β =
�

2kr
m

[
u′rvr − urv

′
r

1 + wr
+ 2lwr

]−1

. (11)

Differentiating functions (5) with respect to k and
substituting the derivatives obtained into (11) yields

β = (�2krqr/m)[δrkra+ σ2
rcosh(qra)sinh(qra)]

−1,
(12)

where δr, σr, and qr are the values of δ, σ, and q at
k = kr.

It follows from formulas (8) and (10) that

D(k) = Cr(E − Er + iβ). (13)

Substituting (13) into (1) and taking into account
(10), we find that the energy dependence of the trans-
mission coefficient near resonance is described by the
Breit–Wigner formula

P (k) =
β2

(E − Er)2 + β2
(14)

with the half-width (12). The same formula forP (k) is
also obtained in the quasi-classical approximation [7].

4. THE ENERGY DEPENDENCE
OF THE PHASE TUNNELING TIME NEAR

RESONANCE

According to the general definition, the particle
phase tunneling time through two barriers is given by
the expression [8]

τ = �∂ arg{AT exp[ik(2a+ l)]}/∂E. (15)

It follows from (1) and (15) that

τ = �∂ arg[exp(ikl)/D]/∂E. (16)
PH
Substituting (13) into (16), we obtain the expression
for the energy dependence of the phase tunneling time
near resonance

τ =
m

�k
l +

�β

(E − Er)2 + β2
. (17)

The first term in this expression is the time it takes for
the particles to freely traverse the distance between
the barriers, and the second term is the time delay at-
tributable to the localization of particles in the quasi-
bound state in the space between the barriers.

5. COMPARISON WITH EXPERIMENTAL
DATA

A neutron beam with a wavelength of λ = 20.1 Å
at the half-width of the spectrum ∆λ/λ ∼= 4.8% was
used in [1]. The calculated width of the angular distri-
bution was 3.2 mrad. The measurements were carried
out in a grazing-angle geometry.

During the experiment, neutrons tunneled through
two identical rectangular barriers of width a = 300 Å
and height U0 � 230 neV separated by a potential
well of width l = 195 Å with a nearly zero potential.
There was only one resonance level with an energy
of Er = 127 neV and a half-width of 4 neV in
this potential structure. The neutron delay time in
resonance was (2.17 ± 0.2) × 10−7 s; the delay time
far from resonance (1.9 × 10−8 s) was determined by
the neutrons that were not involved in the tunneling.

The phase tunneling time in resonance calculated
in [1] was 4.26 × 10−7 s.

At the experimental values of the parameters a and
l, the resonance energy Er = 127 neV is obtained
from Eq. (4) at U0 = 243 neV. At such a barrier
height, the half-width of the resonance level β calcu-
lated using formula (12) is 1.6 neV, while the tunnel-
ing time in resonance calculated using formula (17) is
0.42 µs for this value of β.

As in [1], the calculated tunneling time in res-
onance is almost twice its experimental value. This
discrepancy is most likely attributable both to the ex-
perimental factors (the neutron nonmonochromatic-
ity, the angular divergence of the neutron beam, and
the finite energy resolution of the detectors) and to
the approximate nature of the phase tunneling time.
The experimental factors result in an averaging of the
resonance value of the tunneling time over a wide
energy range; therefore, the value averaged over the
entire transmission line is given in [1] along with the
phase tunneling time at the resonance peak. It is
the averaged phase tunneling time (2.27 × 10−7 s)
that proved to be close to the experimental value. In
our case, averaging the calculated tunneling time in
resonance over the range [Er − 4 neV, Er + 4 neV]
YSICS OF ATOMIC NUCLEI Vol. 68 No. 7 2005
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also yields a value (τ̄ = 0.2 µs) close to the experi-
mental one. Wave packets [3, 9, 10] must be used to
determine the tunneling time more accurately.
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Abstract—Optical phenomena that arise in the interaction of a neutron wave with matter characterized
by a variable interaction potential are considered. The time dependence of the potential is assumed to
be due to a change in the magnetization vector in matter with time. Since the interaction in question is
time-dependent, the neutron energy is not conserved. If a neutron interacts with a sample that has a plane
boundary, only the neutron-velocity component orthogonal to the matter boundary changes. Thus, reflected
waves are characterized by a reflection angle that is different from the angle of incidence. Waves transmitted
through a plane sample can also change direction. The changes in the neutron energy and in the neutron-
velocity direction are closely related to the reversal of the neutron-spin projection. The question of whether
a slab featuring a rotating magnetization vector can be used as a spin flipper or as a coherent wave splitter
is considered. c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Time-dependent quantum phenomena have at-
tracted an ever greater attention of physicists involved
in neutron-optics studies. At the present time, we
can say that there has appeared time-dependent neu-
tron optics employing concepts such as diffraction in
time, time focusing, and time interferometry. A time-
dependent effect on a neutron wave makes it possible
to change substantially all of its basic parameters—
namely, polarization, intensity, wavelength, and the
direction of propagation. One can hope that not only
is this dynamical approach to neutron optics of purely
theoretical interest, but it will also be of use in de-
veloping new experimental methods and quantum de-
vices.

It seems that a radio-frequency spin flipper based
on a concerted effect of a constant magnetic field
and an alternating magnetic field crossed with it was
the first nonstationary device used in neutron optics.
The theory of this phenomenon was formulated by
Rabi [1], who also proposed employing this device
for resonance neutron-spin flip with the aim of mea-
suring the neutron-magnetic moment. The viabil-
ity of the method was demonstrated in experiments
with molecular beams [2]. Before long, Alvarez and
Bloch measured the neutron magnetic moment by
this method [3]. Over many decades, Rabi’s flipper, as
well as Ramsey’s resonance method [4], which was

1)The address at the present time is Weizmann Institute of
Science, Rehovot, 76100 Israel.

*e-mail: frank@nf.jinr.ru
1063-7788/05/6807-1104$26.00
proposed on its basis, has been employed in neutron
experiments.

A resonance spin flip in a magnetic field is ac-
companied by a change in the total neutron energy.
Drabkin and Zhitnikov [5] proposed employing this
circumstance to slow down neutrons by applying a
combination of a resonance flipper and a flipper based
on the use of static fields. Twenty years later, a similar
idea was discussed by Kruger [6]. Before long, this
was followed by the observation of a change in the
neutron energy upon a resonance spin flip in the ex-
periments reported in [7, 8] and a direct detection of a
change in the frequency ω of the neutron wave func-
tion in experiments with neutron interferometers [9,
10]. Obviously, a change in the neutron energy can
be interpreted as the result of photon exchange with
an electromagnetic field. Multiphoton exchange in
the interaction of a neutron with a variable field was
studied theoretically and experimentally in [11–13].

An observation of a change in the energy of neu-
trons interacting with a crystal where ultrasonic vi-
brations were excited was reported in [14] and in some
of the earlier studies. A nonstationary neutron-wave
diffraction at surface acoustic waves was experimen-
tally observed in [15]. This possibility was previously
indicated in [16]. In such cases, one can speculate
about the exchange of energy between a neutron and
phonons.

The presence of a variable field is not a necessary
condition for the emergence of a nonstationary state.
It is sufficient that any parameters of the quantum
c© 2005 Pleiades Publishing, Inc.
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problem at hand be time-dependent. A vivid illustra-
tion of this circumstance is provided by the classic
study of Moshinsky [17], who considered the problem
of neutron-wave evolution after the instantaneous
removal of an ideal absorber positioned at the coor-
dinate origin, x = 0, from a beam of monochromatic
neutrons. The solution ψ(x, t) has the form of a Fres-
nel integral and describes both the propagation of the
wave front along the x axis and its gradual smearing,
which has the same character as the spreading of a
wave packet. The situation here is similar to the wave
pattern in the case of spatial wave diffraction at the
sharp boundary of a screen. Taking advantage of the
symmetry in the Schrödinger equation between the
variables x and k, on one hand, and the variables ω
and t, on the other hand, Moshinsky called this phe-
nomenon diffraction in time. Interest in Moshinsky’s
study was revived in connection with the articles writ-
ten by Golub and Gäler together their coathors, who
discussed the possibility of experimentally observing
short time cold-neutron bunches prepared with the
aid of a fast quantum chopper from a beam that was
originally monochromatic [18–20]. This experiment
was implemented later [21].

In the Moshinsky problem, a beam is subjected
to a single aperiodic action. A generalization to the
case of a periodic action of an absorber (chopper)
was given in [22]. In accordance with the idea of
quasienergy [23], the spectrum of states appears to
be discrete in that case, the transmitted beam having
a complicated structure characterized by beats. A
similar situation must arise in the case of a periodic
modulation of the transmitted-wave phase. In that
case, one deals with a phase modulator of a wave
rather than with a chopper. It was found that, under
certain conditions, the original monochromatic wave
can be restored upon transmitting the resulting mul-
tiwave state through a second modulator. The effect
of two modulators can be interpreted as diffraction
in time at two diffraction gratings. In this way, there
arose the idea of a time interferometer [24, 25]. The
problems of time interferometry were also considered
in [26].

In order to prepare a state that has a discrete
energy spectrum, it is not necessary to interrupt or
modulate a neutron beam over its entire cross sec-
tion simultaneously. It is quite sufficient that such a
periodic modulation occur at each point of the beam,
with the modulation phase changing from one point to
another. Thus, there arose the problem of the motion
of a periodic structure across the beam. Nonstation-
ary phenomena in neutron diffraction at a moving
grating were analyzed in [27] and were experimentally
demonstrated in [28]. The idea of a spacetime interfer-
ometer involving two moving gratings was discussed
in [26].
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 7 200
In the articles quoted above, the authors consid-
ered, as a rule, motion along one coordinate axis,
in which case a change in the neutron velocity ap-
peared to be the result of a time-dependent action.
The possibility of applying a time-dependent action
to a neutron in order to implement the time focusing
of neutrons was discussed in [29]. That a quantum
time lens for neutrons can be realized was recently
demonstrated in the experiment reported in [30]. A
similar idea was put forth and implemented for the
time focusing of cold atoms [31]. A discrete spectrum
arising upon wave modulation was observed in exper-
iments with slow atoms as well [32].

Time-dependent action on a wave can also change
the transverse component of the wave vector, this
leading to a change in the direction of wave prop-
agation. A dynamic nonspecular reflection of neu-
trons from a vibrating surface was observed in [33].
Obviously, only the wave-number component ortho-
gonal to the matter surface changes in that case. If
the amplitude of such vibrations is commensurate
with (k⊥)−1, where k⊥ is the wave-vector component
orthogonal to the surface, this phenomenon can be
interpreted as the result of reflected-wave modulation.

The dynamic reflection of neutrons is also possible
in the case of an immobile surface of matter if an effec-
tive potential that is responsible for particle interac-
tion with matter oscillates. This idea dates back to the
study of Gerasimov and Kazarnovsky [34], who con-
sidered a number nonstationary quantum phenomena
that can in principle be observed in experiments with
ultracold neutrons, including the problem of neu-
tron reflection from an oscillating potential. The last
problem was solved in terms of perturbation theory—
that is, for a relatively small amplitude of oscillations.
An exact mathematical formulation of this problem
reduces to an infinite number of equations [35]. The
study reported in [34] is noteworthy in a different
respect. In that study, the authors considered for the
first time the interaction of neutrons with a variable
field in the presence of matter. The interaction with
matter was described by a constant effective potential,
the variable part of the total potential being gener-
ated by the time-dependent magnetization. The con-
ceptual framework of the present study is intimately
related to this idea. Below, we consider a number
of nonstationary neutron-optics phenomena arising
in coherent neutron interaction with matter that is
characterized by a variable magnetization vector.

This article is organized as follows. In Section 2,
we describe an approximate method that can be used
to solve the problem of reflection from an oscillat-
ing potential at not overly high frequencies of oscil-
lations. Obviously, this problem is of quite general
importance, but, within neutron optics, the situation
corresponding to it is realized most easily via a quick
5
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reversal of the magnetization of a magnet. The con-
tent of this section was previously exposed in [36].
We deemed it reasonable to reproduce it here because
it is intimately related to the issues considered in
the subsequent parts of our article. In Section 3, we
present an exact solution to the problem of neutron
reflection and refraction at the boundaries of matter
whose magnetic-induction vector rotates. In Sub-
sections 3.1 and 3.2, we consider in detail the prob-
lems of, respectively, dynamic reflection from a semi-
infinite medium and neutron transmission through a
thin film of magnetic substance.2) In Subsection 3.3,
it is shown that, by slightly modifying the formulas
presented in Subsection 3.2, one can arrive at the so-
lution to the problem of Rabi’s flipper in the presence
of matter. In that case, the magnetic field in matter is
described by the sum of two vectors: a constant vector
and a rotating vector orthogonal to it.3) Section 4 is
devoted to the possibility of an experimental obser-
vation and applications of dynamic effects considered
above.

2. REFLECTION OF A WAVE
FROM AN OSCILLATING

POTENTIAL BARRIER:
QUASISTATIONARY APPROACH

Let us consider reflection of the plane wave

ψ(x, t) = exp[i(kx− ωt)] (2.1)

from the boundary of matter that occupies the half-
space x > 0 and which is characterized by an effective
potential

V (t) = U + u(t) (2.2)

that changes periodically with time, the period being
T . By virtue of the invariance of the problem with
respect to translations along the boundary of matter,
the longitudinal component of the wave number un-
dergoes no change upon reflection, so that the prob-
lem is effectively one-dimensional. We will show that
an approximate solution can be found in the general
form, provided that the frequency Ω = 2π/T is not
overly high (Ω � ω).

The time variation of the effective potential leads
to a synchronous variation of the complex-valued

2)A brief exposition of these results was given in [37].
3)The recent article of V. Ignatovich and F. Ignatovich [38]

was devoted to the same problem. Referring to [37], those
authors erroneously stated that only the case of a semi-
infinite medium was considered there.
PH
amplitudes r(t) and θ(t) of the reflected and trans-
mitted waves. At small distances from the surface, the
resulting state can be represented in the form

ψ(x, t) (2.3)

=

{
exp[i(kx− ωt)] + r(t)exp[−i(kx+ ωt)], x < 0,

θ(t)exp[i(kx− ωt)], x > 0,

|x| � 1/kγ1, 1/kγ2,

where

γ1 =
�Ω
E

, γ2 =
�Ω

|E − U | , (2.4)

γ1,2 � 1, Ω =
2π
T

.

The state of reflected waves,
ψr(x, t) = r(t)exp[−i(kx− ωt)], (2.5)

can easily be found by applying the procedure used
in [24, 25] for the case of a quantum modulator. We
represent the amplitude r(t) in the form of a Fourier
expansion in the frequencies nΩ and substitute this
expansion into (2.5). In the vicinity of the boundary,
the wave function of the reflected wave then takes the
form

ψr(x, t) ∼=
∑
n

anexp[−i(kx+ ωnt)], (2.6)

ωn = ω + nΩ, x < 0, |x| � 1/kγ1,

where an are the Fourier coefficients for the function
r(t).

Since the reflected waves propagate in free space,
the usual dispersion relation holds for them. At arbi-
trary distances from the boundary, we therefore have

ψr(x, t) =
∑
n

anexp[−i(knx+ ωnt)], (2.7)

kn = k(1 + nγ1)1/2, x < 0.

Thus, the state in the left half-space is a nonstation-
ary superposition of waves characterized by different
frequencies and wave numbers. From Eq. (2.7), one
can see that, at small distances from the boundary,
|x| � 1/kγ1, the phases of all waves are virtually
coincident (knx ∼= kx), this proving the validity of the
approximation specified by Eqs. (2.3) and (2.6).

In order to solve the problem at hand, it only re-
mains to find the modulation function for the reflected
wave, r(t). We know the wave functions at the bound-
ary, and the continuity condition for these functions
and their derivatives leads to the usual Fresnel formu-
las. For the quasistationary amplitude of the reflected
wave, we find in this way that

r(t) =

√
E −

√
E − V (t)√

E +
√

E − V (t)
. (2.8)
YSICS OF ATOMIC NUCLEI Vol. 68 No. 7 2005
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We note that the form of the wave function in the
interior of matter remains unknown. The partial-wave
amplitudes an, which are the Fourier coefficients in
the expansion of r(t), are therefore determined by the
form of the time dependence of the potential and can
be found for any periodic function V (t).

In the case of grazing incidence to the boundary,
the above formulas remain valid if one employs, in-
stead of the wave vector k, its component k⊥ orthog-
onal to the surface and by energy means the quantity
E⊥ = (�2/2m)k2

⊥. In accordance with Eqs. (2.7) and
(2.8), reflection gives rise to a set of waves character-
ized by different normal wave-number components,

k⊥n = k⊥

[
1 + n

(
2mΩ
�k2

⊥

)]1/2

. (2.9)

Since the longitudinal component of the wave vector
undergoes no change upon reflection, reflected waves
corresponding to different satellites labeled with the
index n differ in energy and have different reflection
angles. The emerging pattern is qualitatively illus-
trated in Fig. 1.

The situation here resembles that in the case of
diffraction at a plane grating; however, this similarity
is purely apparent. Ordinary diffraction is described by
the Fourier transform of coordinates and wave vec-
tors, the difference of the wave vectors characterizing
diffracted waves being determined by the reciprocal-
lattice vector. In the case being considered, time and
frequency (and, accordingly, energy) are conjugate
variables of the Fourier transformation. All compo-
nents of the pattern that arises upon reflection are
associated with one quasienergy of the particle in-
volved [23]. The energies of neighboring satellites
differ by �Ω, the difference of their wave numbers
being dependent on the satellite number n in a more
a complicated way. Following the terminology pro-
posed in [35], we will refer to this phenomenon as
dynamic reflection.

Specifying the problem in order to adapt it to the
potential of neutron optics and following [34], we
assume that matter is a ferromagnet characterized by
a time-dependent magnetic induction. The constant
part of the potential V is then the effective rescatter-
ing potential

U =
2π�

2

m
ρb, (2.10)

which determines the neutron-optic properties of
matter. Here, m is the neutron mass, ρ in the number
of nuclei of matter per unit volume, and b is the
coherent-scattering length. The time-dependent part
of the potential is due to magnetic interaction and is
given by

u(t) = −(µ · B)(t), (2.11)
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 7 200
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Fig. 1. Dynamic multiray reflection.

where µ is the neutron-magnetic-moment operator
and B is the magnetic-induction vector in matter. We
assume that the incident neutron beam is polarized.
In order to eliminate the spin-flip effect, we consider
the situation where the magnetic-induction vector is
aligned with the neutron spin.

By way of example, we consider a simple case
where the intrinsic induction B changes sign instan-
taneously at regular time intervals of T/2. We then
have

r±(t) =

√
Ep −

√
Ep − Uopt ± µB√

Ep +
√

Ep − Uopt ± µB
. (2.12)

The partial-wave amplitudes have the form

a0 =
r+ + r−

2
, an =

r+ − r−
π(2n − 1)

, (2.13)

where n is an integer.
To conclude this section, we note that a nonsta-

tionary character of dynamic reflection considered
above distinguishes it from the phenomenon that
consists in nonspecular neutron reflection from mag-
nets in the case of noncollinear orientation of the
neutron spin and the magnetization vector and which
was discovered a few years ago [39, 40]. In the latter
case, the spin is flipped without any change in the
total energy because the problem is stationary. In the
presence of an external magnetic field B0, the change
in the potential energy by 2µB0 is accompanied by
a change in the wave number and, hence, in the
direction of wave propagation. There is no such effect
in the absence of an external field.

3. NEUTRON REFLECTION
AND REFRACTION AT THE BOUNDARIES

OF MATTER FEATURING A ROTATING
MAGNETIC-INDUCTION VECTOR

3.1. Reflection from a Semi-infinite Medium

In the preceding section, we excluded the problem
of reflected-wave polarization from our considera-
tion, assuming that the magnetic-induction vector is
aligned with the neutron spin. We now consider the
case where the magnetic induction in matter rotates
at a constant frequency Ω. In contrast to the problem
considered above, this problem can be solved exactly.
Spin effects now become significant, and it is conve-
nient to orient the initial spin along the z axis. We
5
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Fig. 2. Reflection of neutrons from a mirror featuring a
rotating magnetization vector.

assume that, in a magnet, there is a magnetic field
B that rotates in the xy plane and that the angular-
velocity vector is aligned with the positive direction
of the z axis. The orientation of the matter surface is
arbitrary in a sense. The case where the induction-
rotation plane is parallel to the matter boundary z =
0 seems realistic. The formulation of the problem is
illustrated in Fig. 2.

Assuming an idealized picture, we set the mag-
netic field beyond matter to zero. As before, we solve
the problem for the case of normal neutron incidence
to the interface. Formulas (2.2), (2.10) and (2.11) for
the interaction potential remain valid for this case as
well.

For the region occupied by matter, the Schrödinger
equation has the form

i�
∂Ψ±(z, t)

∂t
= − �

2

2m
∂2Ψ±(z, t)

∂z2
(3.1)

+ [U − µ̂ · B̂]Ψ±(z, t), z > 0.

Considering that

Bx = B cos(Ωt), By = B sin(Ωt), (3.2)

µ̂ · B̂Ψ±(z, t) = µ(σxBx + σyBy)Ψ±(z, t) (3.3)

= µBexp(∓iΩt)Ψ∓(z, t),

where σi are the Pauli matrices, we recast Eq. (3.1)
into the form

i�
∂Ψ±(z, t)

∂t
= − �

2

2m
∂2Ψ±(z, t)

∂z2
(3.4)

+ UΨ±(z, t)− µBexp(∓iΩt)Ψ∓(z, t),

where Ψ± are the wave functions corresponding to
two spin projections onto the z axis. For the sake of
definiteness, we assume that a plane wave incident to
the mirror from the left is polarized along the positive
direction of the z axis. From Eq. (3.4), it immediately
follows that, in the solution, the time dependence
factorizes explicitly in the form

Ψ+(z, t) = exp

(
− iEt

�

)
ψ+(z), (3.5)
PH
Ψ−(z, t) = exp

(
− i

�
(E − �Ω)t

)
ψ−(z), E ≥ �Ω.

(3.6)

Since the wave functions ψ±(z) depend only on
the coordinate, we will omit in the following the ar-
gument z for the sake of brevity. In the left half-
space, where the motion being considered is free, the
Schrödinger equation has the standard form

i�
∂Ψ±(z, t)

∂t
= − �

2

2m
∂2Ψ±(z, t)

∂z2
, z < 0. (3.7)

Substituting into it the wave functions (3.5) and (3.6)
and following the conventional procedure, we obtain

∂2ψ±
∂z2

+ k2
±ψ± = 0, (3.8)

k+ =

√
2m
�2

E, k− =

√
2m
�2

(E − �Ω),

z < 0.

From (3.8), it immediately follows that spin-flip re-
flection is accompanied by changes in the energy and
in the wave number. In the left half-space z < 0, the
wave function has a conventional plane-wave form,

ψ+ = exp(ik+z) + r+exp(−ik+z), (3.9)

ψ− = r−exp(−ik−z),

where r± are the spin-flip and non-spin-flip ampli-
tudes of reflected waves.

In the right half-space, which is occupied by mat-
ter, we have

�
2

2m
∂2ψ+

∂z2
+ ε±ψ+ + µBψ∓ = 0, (3.10)

ε+ = E − U, ε− = E − U − �Ω,

z > 0.

The solution within matter will also be sought in
the form of plane waves,

ψ± = τ± exp(iηz), z > 0. (3.11)

We must rely on the assumption—and our sub-
sequent calculation confirms this assumption—that
several waves having different wave numbers η cor-
respond to the solution within matter. In order to find
them, we substitute (3.11) into (3.10). We have(

ε± − �
2

2m
η2

)
τ± + µBτ∓ = 0. (3.12)
YSICS OF ATOMIC NUCLEI Vol. 68 No. 7 2005



DYNAMIC REFLECTION AND REFRACTION OF NEUTRONS 1109
For nonzero values of the amplitudes τ±, we find
an expression for the square of the wave number of a
neutron wave in matter. The result is

(η1,2)2 =
2m
�2

(
ε+ + ε−

2
±
√

(ε+ − ε−)2

4
+ (µB)2

)
.

(3.13)

Since, in taking yet another square root, one must
use both signs, four solutions are possible in general
for the wave number in matter; that is,

ψ± = A±exp(iη1z) +B±exp(−iη1z) (3.14)

+ C±exp(iη2z) +D±exp(−iη2z),

where
η1,2 (3.15)

= +

√√√√√2m
�2


(ε+ − �Ω

2

)
±

√(
�Ω
2

)2

+ (µB)2


;

here, only a positive sign is now taken in front of the
outer radical. The indices 1 and 2 correspond to the
plus and minus signs in front of the inner radical.

By assumption, the medium is not absorptive;
therefore, η1,2 can take only real or pure imaginary
values. Since, in the region z > 0, there are no neu-
trons moving to the left and since the amplitude of
a wave cannot grow, only the terms in (3.14) that
feature the exponent +iη1,2z can have a physical
meaning, irrespective of whether the wave number η
has a real or a pure imaginary value. Therefore, the
solution within the medium is sought in the form

ψ± = A±exp(iη1z) +C±exp(iη2z), z > 0.
(3.16)

The relation between the amplitudes of the waves
corresponding to two spin projections can easily be
found from the set of Eqs. (3.12):

A− = ξ1A+, C− = ξ2C+, (3.17)

ξ1,2 =
1
µB

(
�

2

2m
η2
1,2 − ε+

)
.

Matching the wave functions and their derivatives
at the boundary of the medium in a conventional way,
we find for the amplitudes of reflected waves that

r+ =
2(1− ν)

(1 + Λ1)− ν(1 + Λ2)
− 1, (3.18)

r− =
2(ξ1 − νξ2)

(1 + Λ1)− ν(1 + Λ2)
,

where

Λ1 =
η1

k+
, Λ2 =

η2

k+
, ν =

ξ1

ξ2

k− + η1

k− + η2
. (3.19)
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As to the reflection coefficients, their determina-
tion in the present case of waves featuring different
wave numbers is somewhat different from the tra-
ditional one. Assuming, as usual, that the reflection
coefficient specifies the reflected flux, we obtain

R+ = |r+|2, R− =
k−
k+

|r−|2 (3.20)

if the incident flux is normalized to unity.

For the normal-incidence case, which was consid-
ered above, the reflected waves corresponding to two
spin projections are superposed in space. They differ
in frequency and wave vector. In this case, the state
of the reflected waves can be represented in a spinor
form,

Ψ(z, t) =

(
r+e−i(k+z + ω+t)

r−e−i(k−z + ω−t)

)
(3.21)

=

(
r+e−ik+z

r−ei[−k+(1−γ)1/2z + Ωt]

)
e−iωt,

where γ = �Ω/E. A wave function of this form corre-
sponds to a state that features a precessing spin. The
precession angle is determined by the phase difference
between the two spin components:

ϕ(z, t) = (k− − k+)z +Ωt, k− = k+(1− γ)1/2,
(3.22)

k2
+ − k2

− =
2m
�

Ω.

Taking this into account and introducing the av-
erage velocity ṽ for the two components in ques-
tion [41], we arrive at an expression for the azimuthal
angle of the spin vector. We have

ϕ(z, t) = Ω

(
t− z

ṽ

)
, ṽ =

�

m

k+ + k−
2

. (3.23)

In the approximation of low frequencies, γ � 1, the
effective velocity ṽ coincides with the classical veloc-
ity. From (3.23), it follows that the direction of neu-
tron spin is conserved in the rest fame moving at the
neutron velocity ṽ. However, it depends periodically
on time, with the frequency Ω, at a fixed observation
point z.

We will now analyze our results from the point
of view of the energy dependence of the reflection
coefficient. On the basis of formula (3.15), which
determines the wave vectors η1,2 in the medium, we
can draw some conclusions on the character of re-
flection. For the sake of convenience, we introduce
5
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Fig. 3. Total reflection coefficient as a function of velocity.
The calculation was performed at U = 150 neV, B =
0.5 T, and f = 10 MHz.

the following notation for two characteristic values of
energy:

E1 = U +
�Ω
2

−

√√√√
(

�Ω
2

)2

+ (µB)2, (3.24)

E2 = U +
�Ω
2

+

√√√√
(

�Ω
2

)2

+ (µB)2. (3.25)

In the limit of low frequencies, this reduces to the
trivial relation E1,2

∼= U ∓ µB.
The range of incident-neutron energies can be

partitioned into four regions. At extremely low en-
ergies, E < �Ω, the incident wave is completely re-
flected without changes in the spin projection or the
frequency. In the subbarrier region �Ω ≤ E < E1,
there are two reflected waves differing in spin projec-
tion and frequency. Since the wave numbers η1,2 are
pure imaginary in this case, reflection is complete, so
that the total flux in the reflected waves is equal to the
incident flux. In the transition region near the barrier,
E1 < E < E2, the wave vector η1 is still imaginary,
while η2 is real-valued. The total reflection coefficient
is less than unity. Finally, η1 and η2 are both real-
valued in the above-barrier region E > E2. In this
case, both waves propagate freely in the medium, the
reflection coefficient decreasing fast with increasing
energy.

Figure 3 shows the calculated dependence of the
total reflection factor R = R+ +R− on the velocity.
The ratio of the neutron velocity to the boundary
velocity v0 =

√
2U/m is plotted along the abscissa.

For the sake of comparison, we also present the curve
representing the reflection coefficient for the usual
static case, where matter is characterized exclusively
PH
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Fig. 4. Pattern of dynamic reflection from matter with
a rotating induction vector for two orientations of the
incident-wave spin.

by the effective potential. It can clearly be seen that
the curve is characterized by two threshold velocities,
which correspond to the energies E1,2.

In the case of grazing incidence, all of the calcu-
lations remain valid if, by k+ and k−, one means the
wave-number components orthogonal to the surface
of matter. In this case, we have two reflected waves
that possess different normal and identical tangential
components of the wave vector. As to the wave of ini-
tial polarization, it can be called a “usual” wave. For
this wave, the reflection angle is equal to the incidence
angle. A wave of inverse polarization is “unusual” in
a sense. For it, reflection is not specular—that is, the
reflection angle is not equal to the incidence angle.
This distinction is determined by the frequency Ω
exclusively. Both waves are coherent; therefore, the
state of reflected waves can be described by a unified
wave function

Ψ(z, t) =

(
r+ei(kxx + kyy + k+z)

r−ei[kxx + kyy + k+(1−γ)1/2z − Ωt]

)
e−iωt,

(3.26)

which is similar to that in (3.21).

It is obvious that, if the incident wave is polarized
in the negative direction of the z axis—that is, against
the direction of the vector of the angular velocity of
the magnetic induction—then the wave whose spin
projection has changed has the frequency E/� +Ω,
its wave number being greater than that of the inci-
dent wave. Both cases are illustrated in Fig. 4. In the
case of an arbitrary spin orientation, there arise three
reflected waves whose wave numbers have normal
components equal to k, k(1 + γ)1/2, and k(1− γ)1/2.

3.2. Transmission of Neutrons through a Thin Film
Featuring a Rotating Magnetization Vector

The intensity of the unusual wave is sizable if
the energy of incident neutrons does not differ sig-
nificantly from the boundary energy (see Fig. 7 be-
low). Above the barrier, the total reflection coefficient
decreases fast. For neutrons of higher energy, it is
YSICS OF ATOMIC NUCLEI Vol. 68 No. 7 2005
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therefore of interest to consider the problem of neu-
tron transmission through a slab of matter featuring a
rotating magnetization vector.

Suppose that matter occupies the region −L <
z < L. The problem at hand differs from that consid-
ered above by the presence of transmitted waves, their
amplitudes being denoted by θ±. As before, a plus
sign corresponds to the wave whose spin projection
remains unchanged. In addition, there are now four
waves propagating in the region |z| < L, which is oc-
cupied by matter, and having the wave numbers η1,2

determined, as above, by Eq. (3.15). The correspond-
ing wave function is still given by (3.14), while the
relation between the amplitudes of the waves differing
only by the spin projection is specified by formulas
that are similar to (3.17).

In the region z < −L, the solution has the
form (3.9), as before; for z > L, we obtain

ψ+ = θ+exp(ik+z), ψ− = θ−exp(ik−z). (3.27)

The calculations are simplified considerably if use
is made of a well-known trick that consists in break-
ing down the wave function ψ± into the odd and
the even component [42]. After that, the problems
characterized by opposite parities are separated. For
|z| > L, one can write

ψ±(z) = Φ± + ϕ±, ψ±(−z) = Φ± − ϕ±, (3.28)

|z| > L,
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where Φ± and ϕ± are, respectively, the even and the
odd component of the wave function.

From (3.28), we obtain

Φ± =
ψ±(z) + ψ±(−z)

2
, (3.29)

ϕ± =
ψ±(z)− ψ±(−z)

2
.

Substituting into (3.29) the solutions given by (3.9)
and (3.27), we obtain

Φ+ =
1
2
[exp(−ik+z) + α+exp(ik+z)], (3.30)

Φ− =
1
2
α−exp(ik−z),

where

α+ = r+ + θ+, α− = r− + θ−. (3.31)

Within matter, the even component of the wave
function can be represented in the form

ψ+ = A cos(η1z) +B cos(η2z), (3.32)

ψ− = ξ1A cos(η1z) + ξ2B cos(η2z).

Matching the wave functions Φ± with ψ± at the
point z = L in a conventional way, we obtain expres-
sions for α+ and α− in the form
α+ = exp(−2ik+L)
ξ(Θ + Λ1Λ2g1g2) + i[Λ2g2(ξ2 + ξ1Θ)− Λ1g1(ξ1 + ξ2Θ)]
ξ(Θ− Λ1Λ2g1g2) + i[Λ2g2(ξ2 − ξ1Θ)− Λ1g1(ξ1 − ξ2Θ)]

, (3.33)

α− = exp[−i(k+ + k−)L]
2iξ1ξ2(Λ2g2 − Λ1g1)

ξ(Θ − Λ1Λ2g1g2) + i[Λ2g2(ξ2 − ξ1Θ)− Λ1g1(ξ1 − ξ2Θ)]
, (3.34)
where we have introduced the notation

g1,2 = tan η1,2L, (3.35)

Θ =
k−
k+

=

√
E − �Ω

E
, (3.36)

Λ1,2 = η1,2/k+, ξ = ξ1 − ξ2. (3.37)

For the odd solution in the region |z| > L, we have

ϕ+ =
1
2
[β+ exp(ik+z)− exp(−ik+z)], (3.38)
ϕ− =
1
2
β− exp(ik−z),

where

θ+ − r+ = β+, θ− − r− = β−. (3.39)

The odd component of the wave function in matter
is

ϕ+ = B sin(η1z) +D sin(η2z), (3.40)

ϕ− = ξ1B sin(η1z) + ξ2D sin(η2z), |z| < L.

From the continuity equations, we find for β± that
5
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β+ = exp(−2ik+L)
ξ(Θg1g2 + Λ1Λ2) + i[Λ1g2(ξ1 + ξ2Θ)− Λ2g1(ξ2 + ξ1Θ)]
ξ(Λ1Λ2 −Θg1g2) + i[Λ2g1(ξ2 − ξ1Θ)− Λ1g2(ξ1 − ξ2Θ)]

, (3.41)

β− = exp[−i(k+ + k−)L]
2iξ1ξ2(Λ1g2 − Λ2g1)

ξ(Λ1Λ2 −Θg1g2) + i[Λ2g1(ξ2 − ξ1Θ)− Λ1g2(ξ1 − ξ2Θ)]
. (3.42)
We can now readily find the amplitudes of the re-
flected and transmitted waves by using relations (3.31)
and (3.39). We have

r+ =
α+ − β+

2
, θ+ =

α+ + β+

2
, (3.43)

r− =
α− − β−

2
, θ− =

α− + β−
2

.

Defining, as before, the reflection and transmission
coefficients as the densities of, respectively, the
reflected- and the transmitted-wave flux under the
assumption that the incident flux is equal to unity, we
obtain

R+ = |r+|2, R− =
k−
k+

|r−|2, (3.44)

T+ = |θ+|2, T− =
k−
k+

|θ−|2.

It is obvious that, in the case of normal incidence,
the reflected and transmitted waves are superposed in
space and are described by spinors that are similar
to (3.21). For transmitted waves, we have

Ψ(z, t) =

(
θ+eik+z

θ−ei[k+(1−γ)1/2z + Ωt]

)
e−iωt, z > L.

(3.45)

Since transmitted waves corresponding to differ-
ent spin projections differ in frequency and in the wave
number, we deal, in the case of oblique incidence,
with spatially separated waves, as before, the unusual
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Fig. 5. Dynamic neutron reflection and refraction at the
boundaries of a slab featuring a rotating magnetization
vector.
PH
wave, whose spin projection has changed, propagat-
ing in a direction that is different from the direction
of incident-wave propagation. This difference is de-
termined exclusively by the frequency Ω of rotation of
the magnetic-induction vector. The emerging pattern
is illustrated in Fig. 5.

3.3. Crossed Fields:
Rabi’s Flipper in the Presence of Matter

Having considered the case of neutron transmis-
sion through a slab featuring a single rotating field,
we now address, for the sake of completeness, the
case where there are in matter a constant magnetic
field and a rotating magnetic field orthogonal to it [38].
Obviously, this is the problem of Rabi’s resonance
flipper in the presence of matter. As a matter of fact,
a solution to this problem can be obtained from the
above formulas. Suppose that we have a magnetic
field of thickness 2L, as before, and that, within it,
there is a variable magnetic induction B whose com-
ponents are

Bz = B0, Bx = B1 cos(Ωt), By = B1 sin(Ωt).
(3.46)

As before, the spin of a neutron incident to this film is
aligned with the z axis. The neutron now moves along
the x axis (see Fig. 6).

For the region occupied by matter, the Schrödinger
equation has the same form as that in (3.1). Substi-
tuting (3.46) into it, we obtain

i�
∂Ψ±(x, t)

∂t
= − �

2

2m
∂2Ψ±(x, t)

∂z2
(3.47)
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Fig. 6. Rabi’s flipper in the presence of matter.
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+ (U ∓ µB0)Ψ±(x, t)− µB1exp(∓iΩt)Ψ∓(x, t).

The Schrödinger equation for the coordinate part of
the wave function differs from (3.10) in the form of the
magnetic field and in the definition of the quantities
ε±. We now have

�
2

2m
∂2ψ+

∂x2
+ ε±ψ± + µB1ψ∓ = 0, (3.48)

ε+ = E − U + µB0,

ε− = E − U − µB0 − �Ω.

With allowance for (3.48), all formulas of the preced-
ing section remain valid upon the substitution of B1

for B. Further, we have
η1,2 (3.49)

= +

√√√√√2m
�2


(ε+ − �Ω

2

)
±

√(
�Ω
2

)2

+ (µB1)2


,

ξ1,2 =
1

µB1

(
�

2

2m
η2
1,2 − ε+

)
. (3.50)

The solution to the problem at hand is given by
(3.33)–(3.37) and (3.41)–(3.43) with allowance for
the definitions in (3.48)–(3.50).

4. POSSIBILITY OF OBSERVATION
AND APPLICATION

We have considered above a number of optical
phenomena that arise in neutron-wave interaction
with matter characterized by a variable potential. As
far as we know, none of this has been observed ex-
perimentally so far. We will now briefly discuss the
possibilities for an experimental observation of these
phenomena and, in some cases, for their applications.

4.1. Dynamic Reflection and Refraction
and Possibility for Controlling the Direction

of Wave Propagation
In Subsection 3.1, we have obtained the reflection

coefficients for the usual and unusual waves in the
case of neutron reflection from a magnet featuring
a time-dependent magnetization. Their behavior and
specific values depend on several parameters, includ-
ing the optical potential U , the magnetic induction
B in matter, and the frequency Ω of rotation of the
magnetic-induction vector. (In the quasistationary
case, there is of course no dependence on the fre-
quency.)

For the two waves, the reflection coefficients R+

and R− versus the velocity are shown in Fig. 7 ac-
cording to the calculations based on Eqs. (3.17)–
(3.20). We recall that the subscript “−” labels the
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Fig. 7.Reflection coefficients for two waves. The potential
U , the magnetic induction in matter, and the frequency of
rotation of the magnetic-induction vector are identical to
their counterparts in Fig. 3.

wave undergoing spin-flip reflection and a change in
the frequency. For the potential U , the magnetic in-
duction in matter, and the frequency f = Ω/2π of ro-
tation of the magnetic-induction vector, we used the
values in this calculation that are identical to those
in the calculation for Fig. 3. All of these seem quite
realistic. As before, the ratio of the neutron-velocity
component to the boundary velocity v0 =

√
2U/m is

plotted along the abscissa.
The reflection coefficient R− for the unusual wave

as a function of the velocity is displayed in Fig. 8
for various values of the frequency of rotation of
the magnetization vector. Also shown there for the
sake of comparison is the analogous curve calcu-
lated in the quasistationary approximation by formu-
las (2.12) and (2.13). The intensities of n > 0 waves
are summed in order to obtain a more instructive
picture. One can see that the reflection coefficient
for the nonspecular wave depends rather weakly
on the frequency and that its magnitude may be
quite sizable. At low frequencies, the quasistationary
calculation yields results that are rather close to
precise ones. The effect is maximal at the incident-
neutron energy close the threshold energy, E ≈ U ,
and decreases fast with increasing energy.

In order to observe nonspecular dynamic reflec-
tion, it is necessary to ensure a sufficient angular
separation of waves. From (3.8), it follows that the
ratio of the normal components of two waves is

k−⊥
k+⊥

= (1− γ)1/2, γ =
�Ω
E⊥

, E⊥ =
�

2

2m
k2
⊥,

(4.1)
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Fig. 8. Reflection coefficient R− calculated in the quasistationary approximation and in the case of a rotating magnetic-
induction vector. The potentialU and the magnetic inductionB in matter are identical to their counterparts in Figs. 3 and 7.
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Fig. 9. Transmitted-wave intensity as a function of the
frequency of rotation of the magnetic-induction vec-
tor. The calculation was performed at B = 0.5 T, 2L =

0.28 mm, and λ = 20 Å.

where, in the last formula, it is assumed that k⊥ ≈
k±⊥. Since reflection is the strongest near the barrier
and since the effective potential is about 10−7 eV
for the majority of substances, we set E⊥ ≈ U ≈
150 neV for estimates. Considering that a magneti-
zation-reversal frequency of about 5 to 10 MHz is
quite accessible in good magnetic materials, we set
the cyclic frequency toΩ ≈ 5× 107 s−1. The resulting
estimate is γ ≈ 0.2. Thus, the normal components of
PH
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Fig. 10. Dynamic enhancement of the magnetic-field
transparency featuring a variable field versus the ampli-
tude of the radio-frequency field at U = 150 neV, B0 =
−0.7 T, 2L = 0.44 µm, and v = 6.4 m/s.

the two reflected waves differ quite sizably. Therefore,
the effect of nonspecular reflection from matter fea-
turing a rotating polarization vector can be detected
with the aid of neutron reflectometers (see, for ex-
ample, [43]). We note that the effect of nonspeculаr
reflection from a vibrating surface was reliably mea-
sured in [33] at substantially lower frequencies of f ≈
0.6−2.2 MHz.

Let us now address the case of neutron trans-
mission through a finite-thickness slab featuring a
YSICS OF ATOMIC NUCLEI Vol. 68 No. 7 2005
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rotating polarization vector. In this case, which we
have already considered in Subsection 3.2, the energy
of the motion in the direction orthogonal to the matter
boundary, E⊥, obviously must not fall below the po-
tential U . If the excess of this energy above the barrier
is not overly small, the total transmission factor tends
to unity with increasing energy. (We disregard neu-
tron absorption in the sample material.) In general,
the amplitudes of transmitted waves depend on the
same parameters as the amplitudes of reflected waves.
In the case being considered, the slab thickness 2L is
also an important parameter of the problem. For the
case of a normal incidence of neutrons at a velocity of
200 m/s to a thin slab of matter, the transmitted-wave
intensity calculated by formulas (3.33)–(3.37) and
(3.41)–(3.43) is shown in Fig. 9 versus the frequency
Ω of rotation of the magnetic-induction vector. The
sample thickness and the magnetic-induction value
used in the corresponding calculation are indicated in
the caption under Fig. 9.

From this figure, it can be seen that one of the
waves can be efficiently suppressed by varying the
frequency of rotation, whereby a polarized wave that is
characterized by the required direction of polarization
is obtained at the output. Also, the intensities of the
two waves can be equalized, in which case a state of
transverse polarization is formed. Thus, we see that,
in the geometry of transmission, the amplitude of the
unusual wave can be commensurate with unity at
rather large values of the normal neutron velocity as
well.

In the geometry of grazing incidence, the waves
are spatially separated, as is shown in Fig. 5. At small
incidence angles α, the angle δ between the directions
of propagation of the two waves is given by δ ≈ αγ/2.
We note that, since k⊥ ≈ αk (where k is the total
wave number), it follows from the definition in (4.1)
that γ ∝ α−2 and δ ∝ α−1. Estimates show that the
spatial separation of the waves can easily be observed
experimentally in this case inclusive.

We emphasize once again that the angle δ is pro-
portional to the frequency Ω. Thus, there arises the
unusual possibility of controlling the direction of the
reflected or the transmitted wave by merely varying
the frequency of rotation of the magnetization vector.

4.2. Dynamic Enhancement of Thin-Film
Transparency

Let us briefly dwell upon yet another intriguing
circumstance. The presence of many parameters in
the problem of neutron transmission through matter
in the presence of a variable magnetic field makes it
possible to vary the optical properties of the system
within a wide range. By way of example, we consider
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ultracold-neutron transmission through a resonance
flipper in the presence of matter (see Subsection 3.3).
In this case, the parameters of the device can be
chosen in such a way that the total transmission of
the system proves to be strongly dependent on the
amplitude of the variable field. This situation is illus-
trated in Fig. 10. The values of the optical potential
and of the constant magnetic field, as well as the
film thickness, are indicated in the caption under the
figure. The frequency corresponds to the resonance
value Ω = 2µB0/�.

Since the effect of the dynamic suppression of re-
flection (dynamic enhancement of film transmission)
exists only in a very narrow range of the above param-
eters, it is difficult to state whether this effect may be
of any practical importance.

4.3. Spin Flipper on the Basis of a Magnet Featuring
a Variable Induction, Resonance Spin Echo,

and Time Interferometer

Leaving aside, for the time being, the problem of
the direction of unusual-wave propagation, we now
focus on the polarization state of waves that tra-
versed the slab of matter characterized by a variable
magnetic induction. As can be seen from Fig. 9, a
sample featuring a rotating magnetization vector is
an efficient spin flipper. At specific values of the optical
potential, magnetic induction, and sample thickness,
one can always choose the frequency of rotation of the
magnetic-induction vector in such a way as to obtain
the preset relation between the intensities of waves
that have opposite spin projections.

Herein lies the distinction between this device and
the flipper featuring crossed fields, which was consid-
ered in Subsection 3.3. In the latter case, it is neces-
sary to ensure fulfillment of two conditions simultane-
ously. First, the frequency of the variable field B1 must
be close to the resonance frequency Ω = 2µB0/�;
second, the amplitude of the field B1 must be unam-
biguously related to the time of flight through matter.
5
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By way of example, we indicate that, for the sign of
polarization to be reversed (spin rotation through an
angle π), the time of flight through the slab must
satisfy the condition

t =
2L
v

=
π�

2µB1
,

where v is the neutron velocity in matter.
The main advantage of a flipper featuring a magnet

over a conventional resonance flipper is likely to be
associated with its well-defined dimensions. This is of
paramount importance, for example, in devices that
employ the method of a resonance spin echo in zero
field [44–47]. Below, we illustrate this circumstance
for a specific example.

In this connection, we will consider one of the
possibilities of the application of a flipper featuring
a rotating magnetic induction. We mean a device
that, on an equal footing, can be referred to as a
spin [48] or a time [24–26] neutron interferometer.
It is shown schematically in Fig. 11. Suppose that a
neutron traverses successively three slabs featuring a
rotating magnetization vector, the parameters of the
devices being such that each of them reverses the
spin direction—that is, each is a π flipper. In addition,
the frequency of rotation of the magnetic-induction
vector in the second slab is twice as high as that in
the first and third slabs. (At a preset neutron energy,
this imposes constraints on the relations between the
slab thicknesses.) We also assume that the initial spin
direction is parallel to the slab plane and, hence, to
the plane of rotation of the magnetic-induction vector
and that the slabs are equally spaced, the distance
between them being denoted by D.

Choosing the z axis for a quantization axis, we
represent the input neutron wave function in the form

ψ(z, t) =
1√
2

(
1

1

)
exp[i(kz − ωt)]. (4.2)

Without considering here reflected waves, we as-
sume, for the sake of simplicity, that the flipper under
study is perfect, so that |θ+| = 0 and |θ−| = 1. In ac-
cordance with (3.45), the wave function immediately
after the first flipper has the form

ψ(z, t) =
1√
2

(
ei[k(1+γ)

1/2z − Ωt]

ei[k(1−γ)
1/2z + Ωt]

)
e−iωt. (4.3)

We recall that, for states in which the spin has oppo-
site orientations with respect to the angular-velocity
vector, the change in the energy, ∆E = �Ω, has op-
posite signs. From (4.3), it follows that, at the point
of fixed coordinates, the spin precesses about the z
axis at the frequency 2Ω. When the neutron wave
PH
being considered reaches the second flipper, the cor-
responding phases are

ϕ
(2)
±

∼= k(1± γ/2)D ∓ Ωt1, t1 =
D

ṽ
, (4.4)

ṽ =
�

m

k+ + k−
2

∼= v (γ � 1),

the precession angle being equal to the difference
of these phases. The second π flipper interchanges
the spinor components and changes the frequency of
each wave-function component by 2Ω. Immediately
downstream of this flipper, we have

ψ(z, t) (4.5)

=
1√
2

(
ei[ϕ

(2)
− + k(1+γ/2)(z−D) − Ω(t−t1)]

ei[ϕ
(2)
+ + k(1−γ/2)(z−D) + Ω(t−t1)]

)
e−iωt.

From (4.4) and (4.5), one can see that, immediately
upstream of the third flipper, the phase difference be-
tween two wave-function components is zero since
the distance between the second and the third flipper
is also equal to D. Thus, the third flipper will restore
the original neutron energy by changing once again
the frequencies of both wave-function components by
Ω. As to the polarization of the final state, it will be
opposite to the initial polarization.

We will show that this device is indeed analogous
to an interferometer. Suppose that a matter slab of
thickness d that is characterized by the refraction fac-
tor n and which is transparent to neutrons is inserted
into the gap between one of the flipper pairs. On the
basis of classical concepts, we find that the time of
neutron propagation between the flippers will increase
by

∆t =
1− n

n

d

v
≈ (1− n)

d

v
, (4.6)

this being due to the difference of the neutron velocity
in matter, nv, from the vacuum value v. Accord-
ingly, the phase difference between the wave-function
components—it can be associated with the angle of
precession about the z axis—will increase by ∆φ =
2∆tΩ. Thus, the direction of polarization upon the
traversal of the system will change by ∆φ, and this
is measurable experimentally. The same result can be
obtained on the basis of wave concepts by calculating,
for each wave-function component individually, the
phase shift associated with refraction in matter [48].
The effect of time delay due to refraction in the sample
[see Eq. (4.6)] was reliably measured in experiments
with neutrons whose spin precessed in a constant
magnetic field [49, 50]. We note that the time de-
lay (4.6) is proportional to the cube of the wavelength,
so that the effect is especially pronounced for ultracold
neutrons. In view of this, the possibility of creating
YSICS OF ATOMIC NUCLEI Vol. 68 No. 7 2005
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Fig. 12. Ratio of the splitting powers of a nonstationary
wave splitter at frequency Ω = 7 MHz and of a diffraction
grating of spatial period 1 µm.

an interferometer of this type for ultracold neutrons
seems appealing [51].

In this connection, we will now estimate the re-
quired accuracy in positioning flippers in such an
interferometer. Obviously, fulfillment of the criterion

∆D � (kγ)−1 (4.7)

is a necessary condition.
On the basis of the neutron-velocity and frequency

values of v = 8 m/s and Ω = 2πf ≈ 2.5× 106 s−1,
respectively, which seem realistic, we obtain the es-
timate (kγ)−1 ≈ 2× 10−4 cm. Thus, the positions of
the flippers must be fixed to a submicron precision.
In the case of flippers based on thin magnetic films,
which is considered here, this nontrivial problem can
be solved, in all probability, but the application of con-
ventional resonance flippers is absolutely impossible.
We also note that, at a fixed flipper frequency, the
factor (kγ)−1 is proportional to neutron velocity.

4.4. Wave-Front Splitting and Spacetime
Interferometer

The spin interferometer considered above is one of
the interferometers that involve spatially superposed
waves and which have been proposed in recent years.
In this section, we consider the question of whether
a slab featuring a rotating induction vector can be
applied as a coherent wave splitter, which, as is well
known, is the main element of an interferometer in-
volving a spatial separation of waves. It is reasonable
to compare this device with a conventional diffraction
grating since not only do neutron interferometers em-
ploying diffraction gratings exist, but they also were
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successfully applied in a number of fundamental ex-
periments [52–56]. In the case of a normal incidence
of a wave to a grating of period a, the angular separa-
tion of waves is obviously δ = 2λ/a. In the case of a
normal incidence of a wave to a nonstationary device,
there is no angular separation. However, the situation
changes in the case of grazing incidence. At small
grazing angles, the effective grating period is αa, so
that δ ∝ λ/α. For a nonstationary wave splitter, we
have

δ ≈ α
γ

2
= α

�Ω
2E

∝ α
Ω
k2
⊥
.

Since k⊥ = αk, we have δ ∝ λ2/α in this case.
Therefore, it turns out that, over a rather wide region
of wavelengths and grazing angles, a nonstationary
wave splitter possesses better splitting properties
than a diffraction grating [37]. This circumstance is
illustrated in Fig. 12. We also note that, in a reso-
nance splitter, the entire wave intensity is partitioned
between two waves, but, in the case of a grating, there
is always a set of waves differing in the diffraction
order; of these, only two take part in the formation of
the interference pattern.

To be more specific, we also present a scheme
of a possible interferometer that involves a spatial
separation of waves and which employs nonstationary
spin flippers (see Fig. 13). Shown on the left of the
figure are the vector of the magnetization angular
velocity and the frequencies for three flippers. The
frequency of the wave function and the spin direction
are indicated near the corresponding waves.

5. CONCLUSION

We have considered some optical phenomena that
arise in the interaction of a neutron wave with mat-
ter characterized by a variable potential. The time
dependence of the interaction potential is due to a
time variation of the magnetization vector in matter.
A nonstationary character of the interaction implies
a change in the neutron energy. Since it has been
5
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assumed in all cases that the incident wave interacts
with a sample that has a plane surface, a change
in the neutron energy leads to a change only in the
neutron-velocity component orthogonal to the matter
boundary. Thus, reflected waves are characterized by
a reflection angle differing from the incidence angle.
Waves transmitted through a plane sample may also
change the direction of their propagation. A change
in the energy of a neutron and in the direction of
its velocity is closely related to the reversal of the
neutron-spin projection. This relation is unambigu-
ous in the case of a rotating magnetization vector.
The wave that retains the initial polarization upon the
interaction with a sample is referred to as a usual
wave, the direction of its propagation is identical to
that in the static case.

Thin samples of a magnetic substance featuring a
rotating magnetization vector can serve as efficient
spin flippers and coherent wave splitters. In some
cases, such coherent splitters may be more efficient
than modern diffraction gratings.
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Abstract—The problem of the origin of the quadrupole deformation in the 6Li ground state is investigated
with allowance for the three-deuteron component of the 6Li wave function. Two long-standing puzzles
related to the tensor interaction in the 6Li nucleus are known: that of an anomalous smallness of the 6Li
quadrupole moment (being negative, it is smaller in magnitude than the 7Li quadrupole moment by a factor
of 5) and that of an anomalous behavior of the tensor analyzing power T2q in the scattering of polarized 6Li
nuclei on various targets. It is shown that a large (in magnitude) negative exchange contribution to the 6Li
quadrupole moment from the three-deuteron configuration cancels almost completely the “direct” positive
contribution due to the αd folding potential. As a result, the total quadrupole moment proves to be close to
zero and highly sensitive to fine details of the tensor nucleon–nucleon interaction in the 4He nucleus and
of its wave function. c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION AND FORMULATION
OF THE PROBLEM

At the present time, it seems that A = 6 nuclei
have been quite thoroughly studied on the basis
of various nuclear models, including fully micro-
scopic [1–3], few-particle [4–10], and macroscopic
ones. Almost all of the observables of their ground
and low-lying excited states were explained in this
way. In particular, the multicluster (α + 2N ) model
without antisymmetrization (MDMP) or with a
subsequent antisymmetrization of variational wave
functions (AMDMP) [4–8], where the symmetric S-
wave alpha-particle component |s4[4]L = S = T =
0〉 was taken for a nonexcited core, proved to be quite
successful. Similar fully symmetric S-wave compo-
nents of alpha-cluster wave functions are postulated
in almost all of the alpha-cluster nuclear models
(for example, in the Brink alpha-cluster model), as
well as in numerous calculations of the structure of
light nuclei and of the interaction of clusters by the
resonating-group method [11, 12]. In the AMDMP
approach, it was tacitly assumed that the D-wave
component in the 4Не wave function—this compo-
nent corresponds to an admixture of highly excited
shell-model configurations of the |s2p2[22]L = S =
2, T = 0〉 type—does not play any significant role
in the structure of light nuclei that include alpha-
particle clusters, so that it can be disregarded without
spoiling the quality of respective predictions [4–12].
It seemed that this assumption is well confirmed by
the success of multicluster models in predicting the
properties of A = 6, 7, and 9 nuclei [4–10, 13, 14].
Here, there is one important exception, however—the
1063-7788/05/6807-1120$26.00
6Li quadrupole moment (Qexpt(6Li) = −0.083 fm2)
was not reproduced, either in magnitude or in sign, by
dynamical calculations based on the (α+ 2N ) model
with a subsequent antisymmetrization or without
it [4–9].

In simple αd-cluster models of the 6Li nucleus,
a negative value can be readily obtained for the
quadrupole moment in question by assuming that
the tensor αd potential has the form of a short-
range purely attractive well [15–17], since, for the
small D-wave component of the αd-cluster wave
function, this leads to a sign that is opposite to the
sign of the S-wave component, which is dominant.
However, this character of the tensor αd potential
is unsatisfactory in two respects. First, the tensor
analyzing powers in polarized-deuteron scattering
on 4He nuclei [18–20] cannot be reproduced with
such a potential. Second, potentials of this form
are in a glaring contradiction with the tensor αd
potential obtained from the folding model. It should
be emphasized that, in all other cases of polarized-
deuteron scattering on medium-mass nuclei, exper-
imental data on tensor analyzing powers are rather
well described with the tensor interaction obtained on
the basis of the folding model [18–20]. Moreover, a
series of recent studies reported in [21–23] showed
that the tensor αd potential has a strong even–odd
splitting (that is, it depends strongly on the parity
of the angular momentum), the tensor αd potential
being highly dissimilar to the folding-model potential
in even waves and rather close to it in odd waves [23].
Moreover, those studies revealed a strong and non-
monotonic energy dependence of both the tensor and
c© 2005 Pleiades Publishing, Inc.
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the spin–orbit component of the αd potential, and
this also calls for an explanation.
At the same time, fully microscopic six-nucleon

calculations performed within the multiconfiguration
shell model (so-called no-core shell model [3]) with
realistic two- and three-nucleon forces lead to rather
accurate predictions for the 6Li quadrupole moment
and for other properties of A = 6 nuclei. Moreover,
microscopic six-nucleon calculations by the Monte
Carlo method [1, 2] also yield a negative value of the
6Li quadrupole moment, but it is overestimated in
magnitude by a factor of 5. In those calculations, ten-
sor mixing was fully taken into account in 4He (that
is, the D-wave component of the 4He wave function
was incorporated in the calculations). In view of this,
it would be tempting to assume that the disregard
of this component in traditional alpha-cluster models
and in the AMDMP is precisely the factor that is
responsible for the discrepancies in the results for the
6Li quadrupole moment. However, the actual situa-
tion is more intricate. The point is that, in the case of
the 6Li nucleus, the aforementioned fully microscopic
models lead to large errors in the binding energy of
this nucleus in theαd cluster channel. In this channel,
either the 6Li nucleus proves to be unbound [1–3], or
its binding energy appears to be strongly underrated
in relation to its experimental counterpart. As was
indicated in [14], so strong a change in the binding
energy in theαd cluster channel is expected to change
the quadrupole moment significantly (as occurs, for
example, in the deuteron or in the 7Li nucleus). In
view of this, the authors of [14] assume that the
agreement attained for the 6Li quadrupole moment
within the microscopic models in [1, 2] is accidental
to a considerable extent and cannot underlie a reliable
explanation of the nature of the quadrupole deforma-
tion in the 6Li nucleus.
There are two more paradoxes closely related to

the puzzle of the quadrupole deformation and the
origin of the tensor interaction in the 6Li nucleus. The
first problem concerns the tensor analyzing power

for the scattering of polarized 6−→Li and 7−→Li nuclei on
medium-mass target nuclei (for example, Ni or Zr).
Although the quadrupole moments of 6Li and 7Li are
negative (that is, the charge distributions in these nu-
clei are oblate in the spin direction), the quantities T2q

have opposite signs for the scattering of 6−→Li and 7−→Li
on Ni or Zr nuclei. Although the relationship between
the quadrupole deformation of the projectile nucleus
and the sign of T2q was successfully explained in [17]
for the case of 7Li, the analogous explanation is inap-
plicable to the case of 6Li.
Thus, there is quite a wide range of as-yet-

unresolved problems that are associated with the
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origin of the quadrupole deformation and tensor
interaction in the 6Li nucleus. Our present study
is devoted to clarifying these problems on the basis
of available information about the structure of the
D-wave component in 4He and about the properties
of the central 4Hed potential. We formulate here
a model of the tensor 4Hed interaction, relying on
the exchange mechanism where there occurs the
interchange of a projectile (“external”) deuteron and
one of the deuterons entering into the composition
of the 4He core. The tensor potential generated by
this mechanism is entirely due to the contribution
of the D-wave state of the core, the corresponding
shell-model configuration being |s2p2[22]L = 2, S =
2, J = 0〉. The main result of the present study can
be formulated as follows: the above exchange mech-
anism makes a negative contribution of large mag-
nitude to the 6Li quadrupole moment, and this con-
tribution cancels almost completely the positive con-
tribution from the direct mechanism that is caused
by the D-wave component of the wave function
describing the motion of the external deuteron with
respect to the 4He core. To put it otherwise, we show
that the puzzle of the quadrupole deformation of the
6Li nucleus can be solved by employing the special
tensor properties of the three-deuteron component in
the wave function for this nucleus.

2. ORIGIN OF TENSOR MIXING IN THE 4He
AND 6Li NUCLEI

2.1. Tensor Mixing and Internal Quadrupole
Deformation in 4He

Let us first discuss some special features of the
tensor mixing in 4He, which were partly missed in
previous studies (see [24] and references therein to
the studies of other authors). It is well known that the
D-wave component in the alpha particle, the weight
of this component varying between 10 and 16% in
various models [25], includes, in addition to other
configurations, that whose structure is |s2p2[22]L =
2, S = 2, T = 0〉. This is precisely the configuration
that is directly related to the cluster dd configuration
in 4He, although the weight of the latter is about
2.2% [26], constituting only a small fraction of the
total weight of theD wave in 4He.Within the oscilla-
tor shell model, the wave function for the 4He ground
state is represented as the superposition

|4He〉 = a1|(0s)4[4]L = 0, ST = 00〉 (1)

+ a2|(0s)2(1p)2[4]L = 0, ST = 00〉
+ a3|(0s)2(1p)2[22]L = 2, ST = 20〉

+ b1|(0s)3(2s)[4]L = 0, ST = 00〉 + . . . ,
5
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where the second, the third, and the fourth com-
ponent are two-quantum configurations of total
angular momentum J = 0, while the ellipsis stands
for excited components involving a greater number
of quanta. In the cluster dd representation, the
second and the fourth component (more precisely,
their superposition) can be represented in the form
Ψ1 = A{ϕd(r12) ⊗ ϕd(r34) ⊗ χSdd(rdd)}, where A is
the operator of antisymmetrization with respect to
permutations of nucleons between two deuterons, ϕd
is the internal deuteron wave function, and χSdd(rdd)
is the wave function describing the relative motion in
the dd channel having the 2S structure and involving
two oscillator excitation quanta in relative ddmotion.
The third component in Eq. (1) can be recast into the
form Ψ2 = A{ϕd(r12) ⊗ ϕd(r34) ⊗ χDdd(rdd)}, where
χDdd(rdd) has the character of a D wave in the dd
channel. The first component is dominant in the wave
function for the 4He ground state. Obviously, the first
and the second, as well as the first and the fourth
component, can be mixed with central nucleon–
nucleon forces, while the third component (L = 2 for
it) is admixed to other ones only by tensor nucleon–
nucleon interactions. It is highly probable that the
third component (that is, the D wave) is admixed
to the 4He ground state only through tensor mixing
with the second and (or) the fourth component, which
involve two excitation quanta, but not with the first
component, which is themain one. The reason is that,
from the point of view of the oscillator shell model,
all three components (second, third, and fourth ones)
belong to the same 2�ω shell—that is, they have a
relatively small energy splitting—whereas the main
configuration |(0s)4〉 corresponds to the nonexcited
(ground-state) shell shifted below by the large energy
value 2�ω. From this point of view, the weight of
the D-wave cluster dd configuration is therefore of
the second order of smallness (since it is mixed by
tensor forces not with the main component but with
the second or the fourth component, which in turn
can only be considered as admixtures to the main
configuration). Recent realistic calculations of four-
nucleon systems seem to support this conclusion [25],
since they yield only a rather small contribution of the
D-wave dd component to the 4He wave function.

The above specific tensor mixing in 4He (with-
in the excited 2�ω shell) leads to a very interesting
consequence [27]: the S- and D-wave projections
ΦS(rdd) and ΦD(rdd) of the total four-nucleon 4He
wave function onto the dd channel,

ΦS(rdd) = 〈ϕd1(ξ1)ϕd2(ξ2)Y00(r̂dd)|Φα(ξ1, ξ2, rdd)〉,
ΦD(rdd) = 〈ϕd1(ξ1)ϕd2(ξ2)Y2m(r̂dd)|Φα(ξ1, ξ2, rdd)〉,
P

have opposite signs. This in turn leads to a highly
nontrivial conclusion: the spheroidal shape of the al-
pha particle is oblate.
Indeed, the presence of the D-wave component

in the total alpha-particle wave function in the form
described above implies that the matter (and charge)
distribution features an internal deformation that does
not manifest itself experimentally (that is, in the labo-
ratory frame) because the total spin of the alpha par-
ticle is zero.1) Since the signs of the S- and D-wave
projections onto the dd channel are opposite, this
internal quadrupole moment of the alpha particle—
it is determined by the off-diagonal matrix element
Q ∼ 〈ϕd1ϕd2ΦS|Q̂|ϕd1ϕd2ΦD〉 between the S- and
theD-wave component—must be negative! (Strictly
speaking, one should take additionally into account
other components of the alpha-particleD-wave func-
tion having the 3 + 1 structure.)
Thus, we see that, if this D-wave dd compo-

nent makes a dominant contribution to the internal
quadrupole deformation of 4He, then the alpha parti-
cle must have an oblate spheroidal shape in the body-
frame axes, the respective quadrupole moment being
negative. In [29], the degree of the internal deforma-
tion of the alpha particle was estimated at about 20%.

2.2. Origin of Quadrupole Deformation in 6Li

In a free 4He nucleus, a negative internal quad-
rupole deformation is unobservable because of zero
total spin of this nucleus, while, in the 6Li ground
state, whose spin is equal to unity, this deformation
can in principle be observed in the 4He subsystem
if the distortion of the 4He cluster in the 6Li nu-
cleus is not overly strong. In a series of studies of
our group [4–8], as well as in some studies of other
authors [10–12], it was clearly demonstrated that, on
the basis of the (α + 2N ) three-cluster model (in-
volving a subsequent antisymmetrization), one can
explain quantitatively, without resort to any free pa-
rameters, all of the properties of the ground and low-
lying excited states of the A = 6 nuclei (6He, 6Li,
6Be), with the exception of the quadrupole moment.
In the aforementioned studies of our group, the to-

tal wave function for theA = 6 nuclei was represented
in the form

Ψ(A=6)
αnp (x1, . . . , x6) (2)

= A{Φα(ξ1, ξ2, rdd)χαnp(r,R)},

1)The situation here resembles that of the internal quadrupole
deformation of the nucleon, in which case it disappears upon
averaging in the laboratory frame since the nucleon spin is
1/2 [28].
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 7 2005
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where Φα(ξ1, ξ2, rdd) is the wave function for the 4He
core, χαnp is the wave function describing the relative
motion of the clusters in the α + 2N system, and A
is the operator of antisymmetrization with respect to
permutations between core nucleons and two external
nucleons [5, 8]. In the calculations reported in [4–8],
the internal wave function for the alpha-particle clus-
ter was represented by the S-wave component, which
is dominant; that is, the D-wave component, whose
weight in Φα is small, was not expected to change the
results significantly. However, this is illegitimate for
operators that are rank-2 tensors—in particular, for
the operator representing the quadrupole moment of
a nucleus and having the form

Qij =
A∑
k=1

êk(3x
(k)
i x

(k)
j − r2

(k)δij),

where êk =
1 + τk

2
e is the charge of the kth nucleon

and x(k) is its single-particle radius vector.
Because of the structure of the quadrupole-

moment operator, the main contribution to the cor-
responding observable comes from the region of large
distances near the boundary or beyond the range of
nuclear forces [30]. In calculating the quadrupole
deformation, the (αd) two-cluster wave functions
χSαd(R)ϕd(r) and χDαd(R)ϕd(r), which correspond
to the S and the D wave of the relative motion in
the αd system, are therefore a good approximation
for the wave function describing the relative motion
in the (α + 2N) system. Concurrently, the deuteron
wave function ϕd(r), which includes both the S- and
theD-wave component, is factored out from the total
three-particle wave function χαnp(R, r). Further, the
antisymmetrization operator A includes both one-
and two-nucleon permutations; of these, the former
do not play any significant role in estimating the 6Li
quadrupole moment [5], while the latter are of crucial
importance for this. Therefore, the antisymmetriza-
tion operator in (2) can be replaced by the sum of
the identity operator and two deutron-permutation
operators Pdd; since the deuteron spin is integral, the
permutation operator Pdd must be taken with a plus
sign. In this approximation, the total wave function
for the 6Li nucleus can be represented in the form

Ψ(6Li) = N−1/2{1 + Pdd(13) + Pdd(23)} (3)

× {Φα(12)ϕd(3)χαd},
where N is a normalization factor and the figures
1, 2, and 3 stand for the three deuterons in the 6Li
nucleus (see Fig. 1). The matrix element for the 6Li
quadrupole moment can be written in the form

Q = 〈Ψ(6Li)|Q̂|Ψ(6Li)〉 ≡ Qdir +Qexch, (4)
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the direct (Qdir) and the exchange (Qexch) contribu-
tion to the total quadrupole moment having opposite
signs, with the result that they can compensate each
other to a considerable extent.2)

It should also be borne in mind that the weight of
the D-wave component ΦD

α does not exceed a few
percent; therefore, its contribution is of importance
only for some special observables (of the quadrupole-
moment type) where other contributions are small
or vanish completely. Moreover, the weight of the
D-wave component in the wave function describing
the relative motion in the αnp (or αd) system is also
quite small (about 1%) in relation to the weight of the
S-wave component, which is dominant. Therefore,
the main contribution to the 6Li quadrupole moment
will come from two “mixed” configurations: ΦS

αχ
D
αd

and ΦD
α χ

S
αd.

3)

In the present study, we show explicitly that, if use
is made of the most precise alpha-particle wave func-
tions adopted currently, which were obtained with
realistic two- and three-nucleon interactions, and if
αd-interaction dynamics describing empirical S- and
D-wave phase shifts for d4He scattering is accurately
taken into account, the cancellation of the contri-
butions Qdir and Qexch from relative motion in the
αd system is indeed almost complete, so that the
resulting 6Li quadrupolemoment is determined by the
free-deuteron quadrupole moment exclusively.

2)The idea that such a compensation of the direct and ex-
change contributions to the 6Li quadrupole moment is pos-
sible was first put forth in [5, 6] (see also [24]), but it has not
been verified so far.

3)Obviously, the pure S-wave component ΦS
αχ

S
αd does not

make any contribution to the quadrupole moment, while the
componentΦD

α χ
D
αd involves a second-order smallness.
5
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2.3. Admixture of aDWave as a Small Parameter
in the Expansion of a Nuclear Wave Function

Let us consider a three-deuteron structure in 6Li
(see Fig. 1).
It can easily be seen that, upon taking into account

tensor nucleon–nucleon forces, there arise admix-
tures ofD-wave components in each of the five Jacobi
coordinates: r1, r2, rdd, r, and Rαd. As a result, the
tensor structure of the total wave function for the 6Li
nucleus proves to be extremely intricate. In particular,
it can be shown that, even upon factoring out all three
deuteron wave functions in the total wave function,
the total number of possible configurations of S and
D waves (in any of the Jacobi coordinates) is as large
as 25 = 32.
However, the problem of tensor mixing can be

radically simplified by considering that the amplitude
of the D wave is proportional to the small parameter
β (for realistic nucleon–nucleon interactions, β2 ∼
0.03−0.05). Therefore, the amplitude of the total-
wave-function component involving twoD waves (in
two of the five Jacobi coordinates) is of order β2, while
the component involving D waves in all five Jacobi
coordinates has the β5 order of smallness. To a preci-
sion of 1%, one can therefore retain, in the total wave
function for the 6Li nucleus, only those components
that involve not more than one D wave in any of
the five Jacobi coordinates. By way of example, we
indicate that, in considering, in this approximation, a
D wave of relative motion in the αd system (that is, a
Dwave in the coordinateRαd), onlyS waves in all co-
ordinates must be retained in the 4He wave function.
If, on the contrary, a D wave in the rdd coordinate in
4He is included, only the S wave components must
be taken into account in the relative motion in the
αd system, as well as in the internal deuteron wave
functions. In the ensuing analysis, we will follow this
rule, which simplifies the problem considerably.

3. DIRECT AND EXCHANGE POTENTIAL
OF αd INTERACTION

The problem of finding correct αd interaction—
that is, an interaction that is matched not only with
d4He phase shifts but also with the ground state
and low-lying excited states of the 6Li nucleus—has
been considered in a great number of studies (see
the review article of Kukulin and Mackintosh [31],
which contains an exhaustive list of references to
earlier studies, and a more recent article of Cooper
andMackintosh [23]). There are many reasons behind
increased interest in this problem [31], and one of the
main of these is that, here, one can study, in the purest
form, general features of the interaction of deuterons
P

(spin-1 particles in general) with typical nuclear tar-
gets [18–20]. In contrast to heavier and more loosely
bound targets, the 4He nucleus is a pure scalar both
in spin and isospin spaces and undergoes virtually no
transitions to excited states up to projectile-deuteron
energies of about 30 MeV. Therefore, this problem
provides an almost ideal testing ground for three-
particle models of deuteron–nucleus interaction.
No wonder that, since the mid-1950s, many

groups have performed calculations of elastic d4He
scattering on the basis of the resonating-group
method [32], as well as on the basis of Faddeev equa-
tions and other three-particle approaches. Although
basic features of the observed cross sections for
elastic scattering and breakup were successfully re-
produced in those calculations, many subtler special
features of αd interaction have remained unexplained
so far. The main “white spots” in this pattern are
associated with two problems: that of describing odd
partial waves, which is intimately related with the
origin of theMajorana forces between nuclei [23], and
that of establishing the origin of tensor αd interaction
in even and odd states [21, 23, 31]. Both the direct and
the exchange αd potential include spin-dependent
terms (spin–orbit and tensor ones), as well as the
imaginary parts of these components, which are in-
adequately known at the present time [30, 31]. Thus,
we will distinguish between a direct and an exchange
term in each component of the αd interaction.
In the present study, we consider only one of the

aforementioned problems, that of the origin of tensor
αd interaction in even partial waves—more specifi-
cally, in the ground state of the 6Li nucleus. Obvi-
ously, the structure and the magnitude of this ten-
sor potential is closely related to the 6Li quadrupole
moment, since the degree of clustering in 6Li is very
high owing to an anomalous smallness of the binding
energy in the αd channel, so that this nucleus can
be considered as a two-cluster αd system to a good
approximation.4)

According to the meaning of the components of
the direct potential, it is natural to determine them by
relying on the double folding of the effective nucleon–
nucleon potential with the projectile (deuteron) and
target (4He) wave functions or on the single folding
of theNα potential with the deuteron wave functions.
In the present study, we adopt the latter procedure.

4)One reservation must be made here: this cluster configura-
tion in 6Li should not be taken too literally since the deuteron
in it is strongly polarized in the field of the alpha particle and
since the antisymmetrization of the αd cluster wave function
must be performed in order to understand many aspects of
the structure of 6Li. However, these effects are negligible in
the peripheral region of the nucleus, and this is precisely the
region considered here.
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 7 2005
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While the central components of the direct and ex-
change d4He potentials were thoroughly investigated
in previous years [31, 33, 34] and while some informa-
tion is available for direct tensor interaction, exchange
tensor interaction has received virtually no study. The
main objective of our present analysis is to reveal the
origin and basic features of this force, which, as we
show here, is precisely that which determines the 6Li
quadrupole moment.
Thus, we consider the tensor αd interaction in 6Li

on the basis of the two-component αd model, tak-
ing into account the interchange of the internal and
external deuterons. We assume that the even partial
waves (S and D) of elastic d4He scattering and the
ground state of the 6Li nucleus can be described on
the basis of the two-channel Schrödinger equation
involving the matrix of potentials

V̂ =


V00 V02

V20 V22


 , (5)

where each element VLL′ is in turn the sum of the di-
rect and the exchange contribution. The direct contri-
bution is determined by the folding procedure outlined
above. As a matter of fact, the effective central αd
potential V centr found by solving the inverse scatter-
ing problem [35] was used for the diagonal interaction
terms V00 and V22. This phenomenological potential,
which assumes that V00 = V22, describes well dα
phase shifts with allowance for Coulomb interaction
and, hence, effectively includes both the direct and
the exchange contribution to the diagonal part of the
potential V̂ . In principle, the exchange terms in the
potential can be either calculated within some ap-
proach like the resonating-groupmethod or extracted
from a fit to experimental data as the difference of
the empirically reconstructed potential and the direct
interaction.
In order to determine the total off-diagonal (ten-

sor) potentials V02 and V20 (that is, the sum of the
direct and exchange terms), it is necessary to know
the mixing parameter ε1 as a function of energy,
but this parameter is poorly known at the present
time [23, 34]. We will calculate these off-diagonal
potentials as the sum of direct and exchange contri-
butions.Wewill determine the direct tensor potentials
by means of the single-folding procedure [36] and find
the exchange potentials on the basis of the deuteron-
exchange model developed in the present study.

3.1. Direct αd Potential

As was indicated above, the direct αd interaction
is determined by folding the Nα interaction with the
known nucleon-distribution density in the deuteron.
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In the coordinate representation, its central (V fold
C )

and tensor (V fold
T ) components are given by [36]

V fold
C (R) =

2
4π

∫
d3rVNα(|R + r/2|)(ϕd0(r))2, (6)

V fold
T (R) = V fold

T (R)[(S · R)2 − 2/3], (7)

V fold
T (R) =

6
√

2
4π

×
∫

d3rVNα(|R + r/2|)ϕd0(r)ϕd2(r)P2(cos θ),

where ŜT = (S · R)2 − 2/3 is one of the possible
forms of the operator of tensor interaction between
a spin-1 particle and a spinless target;R is the point-
to-point vector between the deuteron and alpha-
particle centers of mass; S is the deuteron-spin
operator; VNα is the nuclear potential of the Nα
interaction; P2 is a Legendre polynomial; cos θ =
R · r/(Rr); and ϕd0(r) and ϕd2(r) are the radial func-
tions for, respectively, the S- and the D-wave state
in the deuteron, these functions being normalized
according to the standard condition

∫∞
0 [|ϕd0(r)|2 +

|ϕd2(r)|2]r2dr = 1. The tensor component (7) is due
exclusively to theD-wave component of the deuteron
wave function; along with the tensor component
of the exchange interaction, it must be taken into
account in considering effects associated with theD-
wave admixture in the total wave function for the 6Li
nucleus.

For VNα, we took the single-term Gaussian po-
tential from [6], VNα = V Nα

0 e−γr
2
, while, for ϕd0(r)

and ϕd2(r), we employed the deuteron wave functions
calculated with theMoscow nucleon–nucleon poten-
tial [37] and parametrized as the sum of Gaussian
terms,

ϕdl (r) = rl
40∑
i=1

Dl
i exp(−α(l)

i r2). (8)

For this choice of VNα and ϕdl , fully analytic expres-
sions can readily be obtained for the tensor folded
potential V fold

T both in the coordinate and in the mo-
mentum representation (see Appendix).

Figure 2 shows the radial dependences of the cen-
tral [V fold

C (R)] and tensor [V fold
T (R)] folded potentials,

along with the radial dependence of the phenomeno-
logical central potential V centr(R) used in our calcu-
lations. It is the difference of V centr(R) and V fold

C (R)
that is a local representation of the exchange central
potential.
5
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Fig. 2. Graphs of the (solid curve) direct central and
(dashed curve) tensor αd potentials (the latter being
multiplied by ten), along with the graph of the (dotted
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makes it possible to reproduce empirical d4He phase
shifts.
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Fig. 3. Diagram corresponding to deuteron exchange in
αd interaction.

3.2. Exchange αd Potential

Let us further consider deuteron exchange in the
d4He system (diagram in Fig. 3, where primes label
final-state particles, while d1 stands for the trans-
ferred deuteron). This exchange mechanism was dis-
regarded in (α + 2N) three-particle models widely
used to calculate states of the discrete and continu-
ous spectra of the dα system [35, 38]. As to calcu-
lations of d4He scattering by the resonating-group
method [32], exchange contributions were considered
there only for zero orbital angular momentum in the
initial and final states—that is, also without taking
into account tensor interaction.
The amplitude V exch corresponding to the dia-

gram in Fig. 3 can be treated as an exchange po-
tential of αd interaction. Solving the Schrödinger (or
Lippmann–Schwinger) equation with this potential
is then equivalent to summing all ladder diagrams
generated by deuteron exchange. It is obvious that,
upon taking into account the D-wave component
in the wave function describing the relative motion
of two deuteron clusters in 4He, this potential will
PH
develop a tensor component in addition to the cen-
tral one. It should be emphasized that this exchange
potential is nonlocal.
According to general rules of constructing ampli-

tudes for nonrelativistic Feynman diagrams (see, for
example, [39]), the deuteron-exchange amplitude is
given by (spin variables are suppressed for the sake
of brevity)

V exch = Gα→d′d1(qd′d1)Gdd1→α′(qdd1) (9)

× (Ed1 − k2
d1/(2md) + i0)−1,

where Gi↔jk(qjk) is the vertex function for the re-
spective breakup (or fusion) reaction, i ↔ jk;qjk is
the momentum of the relative motion of particles j
and k; mi is the mass of particle i; and Ed1 and kd1
are, respectively, the kinetic energy and the momen-
tum of the virtual deuteron d1, which are expressed,
with the aid of the energy–momentum conservation
laws, in terms of the energies and momenta of the
external particles. We note that, in considering the
problem of d4He scattering or the problem of bound
states in 6Li, one has to deal with iterations of the
diagram in Fig. 3 where a four dimensional integra-
tion corresponds to each intermediate state. However,
integration with respect to the energy variable can be
performed trivially by taking the residue at the pole
corresponding to the intermediate deuteron, which
appears to be on the mass shell upon doing this, the
alpha particle formed from two deuterons remaining
off the mass shell. In the following, we will consider
bound states of the dα system, in which case the
quantity Ed1 − k2

d1
/(2md) is always negative, so that

an infinitesimal imaginary term i0 can be discarded.
The vertex functionsGα→d′d1 and Gdd1→α′ can be

represented in the form of the sum of S- and D-wave
components [40]:

Gα→d′d1 =
√

4π (10)

×
∑

l=0,2;m

(1µ′1µ1|lm)(lmlm|00)Gl(qd′d1)Ylm(q̂d′d1).

Here, (aαbβ|cγ) are Clebsch–Gordan coefficients; µ′

and µ1 are deuteron-spin projections; Ylm are spher-
ical harmonics; and Gl(q) is the vertex form factor,
which is expressed in terms of the Fourier component
of the radial overlap integral Il(r) of the wave func-
tions for the alpha particle and two deuterons as

Gl(q) = −(4πN)1/2 (11)

×
(

q2

2µdd
+ εα

) ∞∫
0

Il(r)jl(qr)r2dr,

where µij is the reduced mass of particles i and j,
εα = 2md −mα is the binding energy of the alpha
YSICS OF ATOMIC NUCLEI Vol. 68 No. 7 2005
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particle with respect to breakup into two deuterons,
jl(z) is a spherical Bessel function, N = 6 is a factor
that takes into account the identity of nucleons, and
Il(r) is determined from the expansion of the total
overlap integral I(r). We have

I(r) =
∫

ϕ+
d (r1)ϕ+

d (r2)Φα(r1, r2; r)d3r1d
3r2 (12)

=
∑

l=0,2;m

il(1µ′1µ1|lm)(lmlm|00)Il(r)Ylm(r̂),

where ϕi is the total wave function describing the
internal state of particle i with allowance for spin–
isospin variables. The expression for Gdd1→α′ is ob-
tained from Eq. (10) upon the substitutions qd′d1 →
qdd1 , Ylm(q̂) → Y ∗

lm(q̂), and µ′ → µ.

In order to determine the total exchange-scattering
amplitude, the amplitude V exch given by (9) must be
iterated until reaching convergence of the relevant
rescattering series. However, it is more straight-
forward to follow the way outlined above—namely,
one identifies the Born amplitude V exch with the
exchange potential and substitutes this nonlocal
exchange potential into the two-channel Lippmann–
Schwinger equation, and it is the solution of this
equation that yields the sum of the entire infinite
rescattering series. In the present study, we relied
on precisely this procedure. Moreover, the potential
V exch can be included, upon supplementing it with
the corresponding operator of projection onto the
deuteron state, in full three-particle calculations of
the properties of the 6Li nucleus. However, it can be
used more straightforwardly within the two-channel
αd cluster model of the 6Li nucleus. In this model, the
total wave function for the 6Li nucleus includes the
sum of the S- andD-wave components (respectively,
χS and χD5)); that is,

Ψ(6Li) = ψM (k)Φα; (13)

ψM (k) = χ0(k)
1√
4π

ϕdM + χ2(k)

×
∑
mµ

(2m1µ|1M)Y2m(k̂)ϕdµ,

where k is the momentum of the relative motion of
the d and α clusters in 6Li,M is the projection of the
6Li spin, and ϕdµ is the deuteron wave function for the

5)The weight of the αd projection of the wave function for the
6Li ground state is about 50% if use is made of the free-
deuteron wave function. However, this weight increases to
90% or even to a higher value upon taking into account
a complete antisymmetrization and the deformation of the
deuteron cluster [41].
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spin projection µ. The functions χL are assumed to be
normalized as follows:

∞∫
0

[χ2
0(k) + χ2

2(k)]
k2dk

(2π)3
= 1. (14)

The potential V exch acts as an integral operator.6)

In order to obtain one-dimensional integral equa-
tions of the Lippmann–Schwinger type for the partial-
wave components χ0 and χ2, it is necessary to
construct a partial-wave expansion of the exchange
potential V exch. After that, the result of applying the
potential V exch to the two-component wave function
χ can be represented in the matrix form

V̂ exchχ̂ =

(
V exch

00 V exch
02

V exch
20 V exch

22

)(
χ0

χ2

)
. (15)

In order to obtain explicit expressions for the partial-
wave potentials V exch

LL′ , it is necessary to represent
expression (9) as a function of the variables k and
k′. This problem can be simplified by approximating
the vertex form factors appearing in (9) by a linear
combination of Gaussian functions as

Gl(q) = ql
Nl∑
i=1

ali exp(−β2
liq

2), (16)

l = 0, 2.

After straightforward but rather cumbersome cal-
culations with the aid of the expansions in (16) for
the potentials V exch

LL′ (k, k′), one can obtain analytic
expressions presented in the Appendix. We recall
that, in the present study, we calculate only the off-
diagonal (L �= L′) elements of the exchange potential.

4. CHOOSING 4He WAVE FUNCTION
AND SOLVING COUPLED EQUATIONS

4.1. Solving Coupled Lippmann–Schwinger
Equations

The wave function describing the relative motion
of the d and α clusters in the 6Li nucleus was found by
solving the homogeneous two-channel Lippmann–
Schwinger equation for the S- and D-wave compo-
nents. We have

χl(k) =
∑
L′=0,2

∞∫
0

VLL′(k, k′)
E − k′2/2µdα

χL′(k′)
k′2dk′

2π2
, (17)

L = 0, 2.

6)We note that V exch is a nonlocal operator both in the mo-
mentum and in the coordinate representation. Moreover, the
operator V exch depends on the energy of the system.
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Table 1. Parameters of 4He wave functions used in calcu-
lating the exchange potential

Version εB , MeV |F0|2 |F2|2 S = |F0||F2|
M1 21.9 0.50073 0.02226 0.10558

M2 0.46725 0.00432 0.04492

C1(AV14) 27.8 0.4477 0.01132 0.07119

C2(UV14) 28.2 0.4201 0.01889 0.08907

For the potential V̂ in (17), we took the sum of
the phenomenological central potential V centr [35],
the off-diagonal (tensor) components of the folded
potential V fold

T , and the exchange potential V exch, the
Coulomb αd potential V Coul being also included; that
is,

VLL = V centr
l + V Coul

l , (18)

VLL′ = (V fold
T )LL′ + V exch

LL′ , L �= L′.

According to formulas (9)–(12), the exchange po-
tential V exch is completely determined by the overlap
integrals of the alpha-particle wave function and the
wave functions for two deuterons.

4.2. Parametrization of the 4HeWave Functions

For the alpha-particle wave functions, we em-
ployed, in our calculations, four versions associated
with four versions of the potential V exch, which are de-
noted byM1,M2, C1, and C2. VersionsM1 andM2
correspond to a parametrization of the radial overlap
integrals I0(r) and I2(r) found on the basis of 4He
wave functions obtained by Morita et al. [27] (M1)
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Table 2. 6Li quadrupole moment found within the two-
channel αdmodel with various tensor potentials

Tensor
potential εB , MeV PD ,% 〈R2〉, fm2 Q̃, fm2

V exch
T (M1) 1.495 0.30 19.3 −0.3525

V exch
T (M2) 1.480 0.185 19.5 −0.2606

V exch
T (C1, AV14) 1.501 0.63 19.4 −0.5372

V exch
T (C2, UV14) 1.5088 1.00 19.3 −0.6092

V fold
T 1.529 1.25 19.0 +0.5725

V exch
T (C2) + V fold

T 1.483 0.14 19.4 −0.009

and, more recently, by Buchmann and Henley [42]
(M2) from a variational solution to the four-nucleon
problem with the realistic nucleon–nucleon potential
proposed by Reid.
Versions C1 and C2 correspond to choosing the

four-nucleon 4He wave functions found by using
the Argonne nucleon–nucleon potential AV14 (C1)
and the Urbana nucleon–nucleon potential UV14
(C2) with allowance for three-particle forces (UVII
model) [43]. In the present study, we employed the
analytic approximations of the overlap integrals I0
and I2 for these functions from [44]. Table 1 gives
the alpha-particle binding energies εB , the norms of
the overlap integrals |Fl|2 =

∫
|Il(r)|2r2dr for all four

versions used here for the 4He wave functions, and
the parameter S = |F0||F2| determining the strength
of the exchange tensor potential and, through it, the
exchange contribution to the 6Li quadrupolemoment.
Figure 4 shows the behavior of the overlap inte-

grals Il(R) (l = 0, 2) for two versions of the 4He wave
functions (C1 and C2).
For the Coulomb αd interaction, we took the

Coulomb potential acting between the alpha-particle
and deuteron centers of mass. We note that the
inclusion of the Coulomb interaction has virtually no
effect on the quadrupole moment Q.

4.3. 6Li Quadrupole Moment

By definition (see, for example, [30]), the quad-
rupole moment Q of the 6Li nucleus is given by

Q =

〈
Ψ1

∣∣∣∣∣2
√

4π/5
3∑
i=1

r2
i Y20(r̂i)

∣∣∣∣∣Ψ1

〉
, (19)

where Ψ1 is the total wave function in the coordinate
representation for 6Li having the spin projection of
unity and ri is the coordinate of the ith proton in the
6Li nucleus with respect to its center of mass. Using
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 7 2005
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for Ψ1 an expression that is similar to (13), we find,
after some simple algebra, that

Q = (P0 + P2/10)Qd + (4
√

2/15) (20)

×
∞∫
0

[
χ0(R)χ2(R) − 1

2
√

2
χ2

2(R)
]
R4dR,

where χ0(R) and χ2(R) are the radial wave functions
describing the relative motion of the d and α clus-
ters in the S- and D-wave states, respectively; PL =∫∞
0 χ2

l (R)R2dR (L = 0, 2) is the weight of the cluster
αd state of relative orbital angular momentum L; and
Qd = 0.2860± 0.0015 fm2 is the deuteron quadrupole
moment [45].

5. NUMERICAL RESULTS
AND DISCUSSION OF THE RESULTS

The set of homogeneous integral Lippmann–
Schwinger equations (17) was solved numerically by
means of Gauss’ quadrature with 48 and 96 mesh
points of integration. The numerical accuracy of the
solution was tested by the convergence of the results
with increasing number of mesh points. In order to
calculate the quadrupole moment by formula (20),
we approximated the resulting numerical solutions
by the sums of Gaussian functions and transformed
therm analytically to the coordinate representation.
The radial wave functions found in this way for relative
motion in the αd system are displayed in Fig. 5. One
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can clearly see their peripheral character—the far tails
of these functions extend to large distances of Rαd �
8−10 fm. This is associated with an anomalously
low binding energy of 6Li in the αd channel (εB �
1.47MeV).

The resulting values of the quadrupole moment
Q̃ corresponding to relative motion in the αd sys-
tem in the 6Li nucleus [second term on the right-
hand side of Eq. (20)] are given in Table 2. All of
the results displayed in this table and in Fig. 5 were
obtained by employing, for the diagonal elements VLL
(L = 0, 2) of the potential in (18), the local Gaus-
sian potential V0e

−r2/a2 with the parameter values
of V0 = −72.133 MeV and a = 2.305 fm; the latter
yields the value of εB = 1.4754 MeV for the binding
energy of the 6Li ground state (second state in this
deep potential), the tensormixing being omitted in the
diagonal term.

In addition to the quadrupole moment, Table 2
also gives the binding energies, the weights PD of
theD wave, and the mean-square radius 〈R2〉 for the
relative motion in the αd system in 6Li according to
our two-channel calculations with the various tensor
αd potentials.

From the data in Table 2, it can clearly be seen
that the four-nucleon 4He wave functions calculated
in [27, 42] yield a strongly underestimated asymp-
totic behavior of the αd-channel wave function, this
leading to underestimated contributions to the 6Li
5
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quadrupole moment. In contrast to those wave func-
tions, more precise four-nucleon 4He wave functions
found in [43] have a more correct asymptotic behavior
in the αd channel both in the S and in the D wave,
version C2 leading to the largest (in magnitude) neg-
ative value of the 6Li quadrupole moment due to the
exchange tensor αd potential.
The result given in the last row of Table 2 shows

that the contributions to the quadrupolemoment from
the direct and exchange tensor interactions nearly
compensate each other.7) This comes as no surprise
if one considers that, as follows from the data in
Fig. 5, the D-wave functions in the αd channel,
χ2, in the external region r ≥ 4 fm, which makes a
dominant contribution to the quadrupole moment, are
nearly equal in magnitude and opposite in sign for
the versions of the calculation with the direct and
exchange tensor potentials. Thus, the resulting D-
wave function in the αd channel almost dies out at
distances of r ∼ 4 fm, so that the 6Li quadrupole
moment calculated with this function appears to be
anomalously small.

6. CONCLUSION

We have found the exchange tensor d4He po-
tential on the basis of an admixture of the three-
deuteron component in the 6Li wave function. Within
this model of tensor αd interaction, we have stud-
ied the 6Li quadrupole moment and have compared
the exchange potential in question with the direct
tensor potential obtained by folding the Nα poten-
tial with the two-component deuteron wave function.
Our calculations have revealed for the first time that
an anomalously small quadrupole deformation in the
6Li ground state is due to an almost complete cancel-
lation of the direct and exchange contributions, which
are both large in magnitude, the latter being caused
by deuteron exchange between the two clusters in
the 6Li nucleus. A negative sign of the exchange
contribution is in turn a direct corollary of the fact
that the S- and D-wave components of the wave
functions describing relative motion in the dd system
in 4He have opposite signs. In all probability, this
result follows from a specific character of the tensor
interaction in 4He (where theD wave in the dd chan-
nel is mixed by tensor nucleon–nucleon interaction
with the 2�ω-excited admixture of 4He rather than
with its main component). Thus, we have shown that
the quadrupole deformation in the 6Li nucleus is not
related directly (as might have been thought) to the
three-particle dynamics of the α + 2N system, but

7)Here, we mean the quadrupole moment Q̃ associated with
the relative motion in the αd system. The free-deuteron
quadrupole moment remains noncompensated in our case.
PH
that it is caused to a considerable extent by the tensor
polarization of the alpha-particle core by the external
deuteron. It is interesting that this tensor polarization
of the alpha-particle core does not manifest itself in
any other observables (that is, those that are not of a
tensor character), which are faithfully reproduced on
the basis of the (α+ 2N ) three-particle model [4–9].
The result obtained here may have a number of

important corollaries for nuclear physics. First, it
demonstrates that, in 6Li, the 3d component mani-
fests itself in addition to cluster configurations (αd or
α + 2N and tτ ), despite the smallness of its weight.
It is precisely this component that determines, to a
considerable extent, the asymptotic behavior of theD
wave in the bound αd state. There is every reason to
believe that this component also controls the energy
dependence of the parameter ε1 of the tensor mixing
of the S and D waves in low-energy d4He scattering.
Second, our result makes it possible to understand

the distinction between the magnitudes and signs of
the tensor analyzing powers T2q for the scattering
of polarized 6Li and 7Li projectiles on medium-mass
nuclei. In light of the results obtained here, it is indeed
obvious that, while the 7Li quadrupole moment is due
to direct 4Het interaction, so that the main contri-
bution to Q(7Li) comes from the asymptotic part of
the wave function for relative motion in the αt system
(as a result, this leads to a large negative value for it),
the very small 6Li quadrupole moment stems from an
almost complete cancellation of the twoD wave com-
ponents (a direct and an exchange one) in the wave
function for relative motion in the αd system. In other
words, the 6Li quadrupole deformation (in contrast to
the 7Li quadrupole deformation) is almost completely
due to the exchange process, which will also radically
change the dynamics of the spin-dependent interac-
tion of 6Li with nuclei. In particular, the same prob-
lems arise in studying the tensor analyzing powers
for 6 5Li+ 4He scattering and for scattering in other
similar systems.
Finally, one can invert the formulation of the prob-

lem, assigning the 6Li quadrupole moment a preset
value and treating the D-wave component of the
wave function for relative motion in the αd system as
a sought quantity. This formulation makes it possible
to deduce information about the values of the asymp-
totic normalization constant and the weight (spectro-
scopic factor) of the D wave in the wave function for
relative dd motion in the 4He system. We remind the
reader that it is the exact value of this asymptotic con-
stant for the virtual decay 4He→ d+ d that controls
the matrix element for the radiative-capture reaction
d + d → 4He+ γ, which plays an important role in
Big Bang theory. We also note that a correct value of
YSICS OF ATOMIC NUCLEI Vol. 68 No. 7 2005
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the matrix element for the radiative-capture reaction
d + 4He→ 6Li+ γ [46, 47] at low deuteron energies
is of paramount importance for understanding the
origin of 6Li in the Universe.
Thus, the puzzle of the 6Li quadrupole deformation

is of importance not only in itself; it is related to
many fundamental problems in nuclear physics and
astrophysics.
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APPENDIX

Here, we present explicit expressions for the po-
tentials V fold

T and V exch appearing in the total nondi-
agonal potential VLL′(k, k′).
By using expressions (7) and (8) and a Gaussian

form for the potential VNα (VNα = V Nα
0 e−γρ

2
), we

can easily find in the coordinate representation that

V fold
T (R) = 6

√
2V Nα

0 R2
∑
ij

A
(02)
ij e−α

02
ij R

2

, (A.1)

where

A
(02)
ij =

√
π

16
γ2D0

iD
2
j

(
α

(0)
i + α

(2)
j +

γ

4

)−7/2
,

(A.2)

α02
ij = γ

α
(0)
i + α

(2)
j

α
(0)
i + α

(2)
j + γ/4

.

In order to go over to the momentum representation,
we will use the relation

V fold
T,LL′(k, k′) =

1√
kk′

(A.3)

×
∞∫
0

JL+1/2(kR)JL′+1/2(k
′R)V fold

T (R)RdR,

where Jλ(x) is a Bessel function. Upon the substi-
tution of (A.1) into expression (A.3), the resulting
integral can be evaluated analytically. The result is

V fold
T,02(k, k

′) = 6
√

2V Nα
0 (A.4)

×
∑
ij

A02
ij

1√
kk′

J1/2,5/2(k, k
′;α02

ij ),
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where

J1/2,5/2(k, k
′;α) (A.5)

≡
∞∫
0

J1/2(kR)J5/2(k
′R)e−αR

2
R3dR

=
exp(−(k2 + k′2)/4α)

8a3

×
{
k2I5/2(x) − 2kk′I3/2(x) + k′

2
I1/2(x)

}
.

Here, x = kk′/(2α) and Iλ(x) is a modified Bessel
function.

The exchange potential V exch
LL′ (k, k′) has the form

V exch
02 (k, k′) (A.6)

=
∑
i,i′

∞∑
n=0

a0ia2i′
In+1/2[(β2

0i + β2
2i′)kk

′]√
β2

0i + β2
2i′

× (exp{−[β2
0i(k

2 + k′
2
/4)

+ β2
2i′(k

2/4 + k′
2)]}B02

n (k, k′)

+ exp{−[β2
2i′(k

2 + k′
2
/4)

+ β2
0i(k

2/4 + k′
2)]}B20

n (k, k′)).

Here, ali and βli are the parameters appearing in ex-
pansion (16) and the functions BLL′

n (k, k′) are given
by

B02
n (k, k′) = − 2

√
πmd√

3(kk′)3/2
(A.7)

×
∑

l1+l2=2

∞∑
l=0

∞∑
l′=0

(−1)l2−l1
(2l + 1)(2l′ + 1)√

(2l1)!(2l2)!

× (l10l0|n0)(l20l′0|n0)(l0l′0|20)
×W (l1l2ll′; 2n)kl1(k′)l2Ql[ζ(k, k′)],

where (aαbβ|cγ) are Clebsch–Gordan coefficients,
W (abcd; ef) is a Racah coefficient, Ql(x) is a Leg-
endre function of the second kind, and

ζ(k, k′) =
k2 + k′2 +md(εαdd − E)

kk′
. (A.8)

Here, md is the deuteron mass, εαdd = 2md −mα is
the α-particle binding energy in the dd channel, and
E is the energy of the relative motion of α and d in
the system of six nucleons; in our case, E = −ε6Li

αd =
m6Li −mα −md < 0. The expression for B20

n (k, k′)
can be obtained from (A.7) by means of the substi-
tution 2−l1 → 2−l2 . The expression for V exch

20 (k, k′)
follows from expressions (A.6)–(A.8) upon the sub-
stitution (−1)lQl(ζ) → (−1)l

′
Ql′(ζ).
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Abstract—For nuclei where the number of protons lies in the range 76 ≤ Z ≤ 400, proton and neutron
shell corrections are calculated along the beta-stability line described by Green’s formula. The magic
numbers of protons and neutrons are determined for ultraheavy nuclei. Alpha-decay half-lives and fission
barriers are estimated for ultraheavy doubly magic nuclei. c© 2005 Pleiades Publishing, Inc.
INTRODUCTION

Magic numbers corresponding to the filling of nu-
clear shells of single-particle levels have been known
since the middle of the past century, and the role
that they play in nuclear physics is of crucial impor-
tance [1–4]. Nuclei where the numbers of nucleons
are magic are more stable and have a higher binding
energy than their neighbors and are more abundant
in nature than them [1–4]. Many quantities, such as
the energies required for the separation of one and two
nucleons, the energies of alpha and beta transitions,
pairing energies, and the excitation energies of low-
lying vibrational states, undergo discontinuities upon
passing a magic number [1–4].

The magic numbers Z = 82 and N = 126 are the
greatest magic numbers that have been empirically
confirmed to date for protons and neutrons, respec-
tively. It should be noted, however, that, at matter
densities close to nuclear-matter densities, there oc-
curs a transition in neutron stars from nuclei, neutron
drops, neutrons, and protons to fusing and decaying
heavy nuclei [5, 6], which transform, as the density
increases further, into a more complicated state of
nuclear matter [5–7]. Therefore, very heavy nuclei can
be formed in neutron stars. The existence of neutron-
rich nuclei where the number of neutrons is about
103–105 and of supercharged nuclei where the num-
ber of protons is about 1600 is discussed in [6]. It
would be interesting to find magic numbers in ultra-
heavy nuclei where the number of nucleons falls with-
in the range 300 ≤ A ≤ 1200. In neutron stars, the
relative production rate for ultraheavy nuclei involv-
ing a magic number of nucleons would be enhanced
because of their higher stability. The results presented
in [8] also provoke interest in studyingmagic numbers
in the region of superheavy nuclei.

It is well known that magic numbers correspond
to the filling of nucleon shells in spherical beta-stable
nuclei [1–4, 9–12]. The shell correction has a deep
1063-7788/05/6807-1133$26.00
local minimum in the vicinity of a magic number [4,
9–14]. Calculating shell corrections for spherical nu-
clei involving various numbers of protons and neu-
trons, one can therefore determine magic numbers
from the positions of deep local minima in the proton
and neutron shell corrections. It should be noted that
nuclei lying along the beta-stability line and having
empirically known magic numbers of nucleons (Z =
8, 20, 28, 50, 82, N = 8, 20, 28, 50, 82, 126) are
spherical [4, 11]. In the following, we will therefore
also explore shell corrections in spherical nuclei.

CALCULATION OF SHELL CORRECTIONS

Figure 1 shows the proton (δP ), neutron (δN ),
and total (δP + δN ) shell corrections calculated for
76 ≤ Z ≤ 400 even–even spherical nuclei lying along
the beta-stability line approximated by Green’s for-
mula [15], from which it follows that a nucleus involv-
ing Z protons and NGreen(Z) = (2/3)Z + (5/3) ×
(10 000 + 40Z +Z2)2 − 500/3 neutrons corresponds
to the beta-stability valley [15]. Green’s formula
describes well the beta-stability line, which is asso-
ciated with a specific relation between the numbers
of protons and neutrons for nuclei known to date.
Let us assume that that the relation between the
numbers of protons and neutrons in beta-stable
nuclei that is described by Green’s formula is valid
for heavier nuclei inclusive. Figure 1 shows the shell
corrections calculated for nuclei involving an even
number Z of protons in the range from 76 to 400
and an even number N of neutrons in the range
NGreen − 10 ≤ N ≤ NGreen + 10, where NGreen is the
even number closest to NGreen(Z). The numbers of
neutrons and nucleons in nuclei were varied in the
range 102 ≤ N ≤ 820 and in the range 178 ≤ A ≤
1218, respectively.

The energies of single-particle levels of nucleons
were calculated for the nucleon mean field in the
form of the Woods–Saxon potential with allowance
c© 2005 Pleiades Publishing, Inc.
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Fig. 1. Proton (δP ), neutron (δN ) and total (δP + δN ) shell corrections for even–even spherical nuclei.
for spin–orbit and Coulomb interactions [2–4, 11,
16]. We employed a “universal” set of parameters of
the Woods–Saxon potential [16]. This set makes it
possible to describe well the spectra of single-particle
P

levels in light, medium-mass, heavy, and superheavy
spherical and deformed nuclei. Also, it was success-
fully used to calculate various properties of nuclei [14,
16, 17]. The residual pairing interaction of nucleons
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 7 2005
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was taken into account in the Lipkin–Nogami ap-
proximation [13, 18] , the coupling constant being
set to rmic = 3.30 fm [13]. In order to calculate shell
corrections, we employed a basis formed by oscillator
wave functions for the lowest 35 shells of an axially
deformed harmonic oscillator and took into account
the lowest 2330 single-particle levels. The degree of
the correcting polynomial was chosen to be six. This
choice is conventional in calculating shell corrections
for medium-mass, heavy, and superheavy nuclei [11].
The energies of single-particle levels of nucleons were
calculated with the aid of the WSBETA code [16],
whichwas refined in order to take into account greater
numbers of shells and levels.

From the data in Fig. 1, it follows that the pro-
ton shell corrections have deep local minima at Z =
82, 114, and 164 and that the neutron shell cor-
rections have deep local minima at N = 126, 184,
and 228. It should be noted that Z = 82, 114, and
164 and N = 126, 184, and 228 are or are assumed
to be magic numbers [4]. For example, the empir-
ically known magic numbers Z = 82 and N = 126
correspond to the doubly magic spherical nucleus
208Pb126. The values that we found for the shell cor-
rections in the doubly magic nuclei 208Pb126 and
298114184 are in good agreement with their counter-
parts calculated in [13, 14]. Thus, our calculations
reproduce known results and make it possible to per-
form an extrapolation to the region of heavier nuclei.

The proton shell corrections have three deep local
minima in the region 164 < Z ≤ 400 (Fig. 1). There-
fore, Z = 210, 274, and 354 are the magic numbers of
protons in this region. Analyzing deep local minima
in the dependence of the neutron shell corrections on
the number of neutrons in Fig. 1 in the range 228 <
N ≤ 820, we can conclude that N = 308, 406, 524,
644, and 772 are the magic numbers of neutrons in
this region.

ALPHA-DECAY HALF-LIVES

Among nuclei for which we have calculated shell
corrections and which are close to the beta-stability
line described by Green’s formula, the 208Pb126,
298114184, 472164308, 616210406, and 798274524 nuclei
are doubly magic. In Fig. 1, the total shell correction
δP + δN has deep local minima in the vicinities of
these doubly magic nuclei. However, the heavier
doubly magic nuclei 998354644 and 1126354772 are
quite far off the beta-stability line described by
Green’s formula. For example, the 998354644 nucleus
is neutron-deficient, while the 1126354772 nucleus is
neutron-rich.

Alpha decay and fission are the main modes of de-
cay of doubly magic beta-stable heavy nuclei. Let us
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 7 200
estimate the alpha-decay half-lives and fission bar-
riers for the super- and ultraheavy nuclei 298114184,
472164308, 616210406, and 798274524.

The alpha-decay half-lives for these nuclei will be
found with the aid of the phenomenological Viola–
Seaborg formula [19], which relates the alpha-decay
half-life to the energy of alpha particles and the charge
of the primary nucleus. For the constants of the phe-
nomenological Viola–Seaborg formula, the authors
of [20] found values that made it possible to repro-
duce faithfully the experimental half-lives of 58 nuclei
heavier than 208Pb126. Knowing the total shell cor-
rections calculated here and the macroscopic binding
energies of nuclei as calculated by means of the mass
formula from [13], we determine the energies of alpha
particles (in MeV) emitted by the aforementioned
super- and ultraheavy nuclei. We have

Q(298114184) ≈ 9.4, Q(472164308) ≈ 13.1,

Q(616210406) ≈ 20.9, Q(798274524) ≈ 35.0.

After that, we determine the half-lives with respect
to the alpha decay of these nuclei with the aid of the
modified Viola–Seaborg formula [20]. The results are
(in s)

T1/2(
298114184) ≈ 1.1 × 102,

T1/2(
472164308) ≈ 2.3 × 104,

T1/2(
616210406) ≈ 4.2 × 10−6,

T1/2(
798274524) ≈ 3 × 10−21.

The half-lives of the first three doubly magic nuclei
with respect to alpha decay are quite long and can
readily be measured. The results that we obtained
for the energy of alpha particles from the 298114184

nucleus and for its alpha-decay half-life are in good
agreement with the results reported in [14].

Let us estimate fission barriers in doubly magic
ultraheavy nuclei. In order to do this, we calculate the
deformation energy of nuclei that is associated with
the change in their shape. For very heavy nuclei, the
fission barrier can be roughly estimated by taking into
account only variations in the quadrupole deformation
β2 of the nuclear surface, since the quantity β2 is
small at the barrier, with the result that deformations
of higher multipole orders have a weaker effect on the
barrier shape. Figure 2 shows the deformation energy
as a function of β2 for the super- and ultraheavy
doubly magic nuclei 298114184, 472164308, 616210406,
and 798274524. In calculating nuclear deformation en-
ergies, we took into account variations in the liquid-
drop and shell energies. The liquid-drop energy was
found in the approximation where nuclear interaction
is represented as the sum of the Yukawa and expo-
nential terms [21].
5
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From the data in Fig. 2, it follows that the fission
barrier in the 298114184 nucleus has a two-humped
shape. The identical fission-barrier shape was ob-
tained in [14] for the 298114184 nucleus. The inner-
and outer-barrier heights determined from the da-
ta in Fig. 2 are larger than their counterparts cal-
culated in [14], this being due to the fact that the
multipole surface deformations β2, β3, β4, . . . , β8

were taken into account in [14]. However, the inner-
fission-barrier heights determined from Fig. 2 and
in [14] are rather close, because, at small values of β2,
the effect of deformations of higher multipole orders
on the barrier height is weak. This makes it possible
to estimate the shape and the height of fission barriers
in ultraheavy doubly magic nuclei.

From Fig. 2, one can see that the ultraheavy dou-
bly magic nuclei 472164308, 616210406, and 798274524

have rather high but narrow one-humped fission bar-
riers. With increasing nuclear charge, the fission bar-
rier becomes narrower and occurs at smaller values of
β2. An increase in the barrier height with increasing
mass number in these doubly magic nuclei is due to
an increase in the amplitude of the shell correction
(see Fig. 1).

The fission half-life of the 298114184 nucleus is
about 1010 times longer than its alpha-decay half-
life [14]. The lifetimes of the 114 ≤ Z ≤ 120 neigh-
boring nuclei are also determined by their alpha-
decay periods [14, 17]. Similarly, the lifetimes of the
472164308, 616210406, and 798274524 nuclei are related
to their alpha-decay half-lives, since the fission bar-
riers in these nuclei are rather high. As was indi-
cated above, the half-lives of the doubly magic nuclei
PH
472164308 and 616210406 could therefore readily be
measured if they were formed.

The nucleus involving the magic number Z = 164
of protons can be formed, for example, in the fusion
of two lead nuclei, whereas the nucleus involving the
magic numberN = 308 of neutrons can be generated
in the fusion of two 252Cf154 nuclei. However, nuclei
arising in these reactions are rather far off the beta-
stability line. Ultraheavy doubly magic nuclei can be
produced in a collision of two heavy neutron-rich
nuclei that is accompanied by the absorption of many
neutrons.

DISCUSSION OF THE RESULTS
AND CONCLUSION

Recently, there appeared the article of Zhang
et al. [22], who studiedmagic numbers for 100 ≤ Z ≤
140 nuclei within the relativistic continuum Hartree–
Bogolyubov approximation, employing various ver-
sions of microscopic forces. Various nuclear shapes
were also taken into account in that article. It is
well known that the inclusion of nuclear deformations
leads to the emergence of additional local minima in
the dependence of shell corrections on the number
of nucleons [9–11, 14]. These minima, which are
associated with the filling of shells in deformed nuclei,
correspond to “quasimagic” numbers. It should be
noted that deformed nuclei having filled shells—that
is, quasimagic numbers of nucleons—also possess
enhanced stability and other properties inherent in
spherical beta-stable nuclei involving magic numbers
of nucleons. However, the amplitude of magicity
YSICS OF ATOMIC NUCLEI Vol. 68 No. 7 2005
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effects in deformed nuclei is less than that in spher-
ical nuclei. In the region 100 ≤ Z ≤ 140, Zhang
et al. [22] found a greater number of magic num-
bers than the present author and the authors of [4,
12]. Some of the magic numbers found in [22] are
quasimagic. However, the magic numbers Z = 114,
N = 184, and N = 228 for 100 ≤ Z ≤ 140 nuclei
were found here and in [4, 22] as well.

The shell corrections for 40 ≤ Z ≤ 200, 40 ≤ N ≤
420 nuclei were calculated in [12] in the Hartree–
Fock approximation with various versions of Skyrme
forces and on the basis of the relativistic mean-field
model. Within various versions of the calculations,
magic numbers in the interval Z ≈ 114–126, an in-
terval around Z ≈ 164, the interval N ≈ 172–184,
and an interval around N ≈ 308 were found in that
study. It is worth noting that, in the figures presented
in [12], deep minima in the shell corrections are seen
in the regions close to N ≈ 228 and N ≈ 406; unfor-
tunately these minima are not discussed there.

Because of the Coulomb repulsion of protons, a
region depleted in nucleons can arise at the center
of super- and ultraheavy nuclei [12, 23]. This effect
was taken into account in [12]. However, the doubly
magic nucleus 472164308 found here also proved to
be doubly magic in the calculations performed in [12]
by using some parametrizations of Skyrme forces.
The Coulomb repulsion of protons at the center of
a nucleus could affect the values of the magic num-
bers for heavier nuclei, but a detailed investigation of
this effect would require substantially changing the
parametrization of the nucleon-mean-field potential.
It should be noted that a parametrization that would
take into account a decrease in the density at the
center of a nucleus has not yet been investigated.
Therefore, the effect of the Coulomb repulsion of pro-
tons at the center of super- and ultraheavy nuclei was
not considered in the present study.

In [12, 22], it was indicated that the values of
magic numbers in super- and ultraheavy nuclear re-
gions depend both on the choice of model and on the
choice of parameters of forces in microscopic calcu-
lations. Therefore, it would be of interest to perform
investigations similar to those in [12, 22] for heavier
nuclei and to compare the results of such investiga-
tion with the results obtained here.

By studying shell corrections, we have determined
the proton magic numbers Z = 114, 164, 210, 274,
and 354 and the neutron magic numbers N = 184,
228, 308, 406, 524, 644, and 772 in super- and ul-
traheavy nuclear regions. Ultraheavy nuclei involving
magic numbers of protons and neutrons are expected
to be more stable and to possess higher binding en-
ergies than neighboring nuclei. The alpha-decay pe-
riods of some doubly magic ultraheavy nuclei and
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 7 200
fission barriers in them are rather large; therefore,
searches for such nuclei are of great interest.
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Abstract—The stimulation of the endothermic beta decay of stable nuclei by the field of synchrotron
radiation has been analyzed theoretically in the framework of the photobeta decay mechanism. In contrast
to works devoted to the effect of laser fields on beta decay, the action of the field directly on a nucleus
rather than on a beta electron is considered (a sufficiently intense flux of hard photons whose energies
exceed 60 keV allows this action). The rates of such a beta decay are calculated for a number of “parent
nucleus–daughter nucleus” pairs for the relativistic case including Coulomb effects. For the most intense
available sources of synchrotron radiation, the rate of stimulated beta decay for most nuclei under inves-
tigation appears to be characteristic of third-forbidden β− transitions. The effect of synchrotron radiation
on highly forbidden natural nuclear β− decays is also analyzed. In particular, irradiation increases the rate
of the β− decay of the 87

37Rb and 115
49In nuclei by 2% and by almost two orders of magnitude, respectively.

c© 2005 Pleiades Publishing, Inc.
INTRODUCTION

Changes in the beta-decay characteristics of nu-
clei under external actions have been analyzed by
many researchers for the last two decades. There are
two directions of these investigations: first, analysis
of the effect of a strong electromagnetic field (static or
laser) on natural nuclear beta decay and, second, the
stimulation of the beta decay of stable and naturally
beta-active nuclei by collision and other processes.

The works of the first direction were reviewed
in [1]. In these works, the natural beta decay of either
the neutron or the triton was studied. The effect of
the electromagnetic field only on the beta electron
was analyzed, because energy transferred directly to
a nucleus is much less than nuclear energies. The
general conclusion was drawn that the differential
probability of the above-indicated beta decay in this
scheme depends generally on the wave intensity, but
the experimental verification of the predictions is not
yet possible. At the same time, variation in the energy
flux density of the intense electromagnetic wave over
a quite wide range scarcely affects the total probability
of beta decay. In this approach, exceptions would be
likely presented by beta processes that substantially
involve the atomic electron shell such as electron
capture or beta decay after which an electron appears
in an atomic bound state [2, 3]. In this case, the strong
external field can rearrange the atomic shell and
thereby affect the rate of the beta process. However,

*e-mail: dayna@mail.ru
1063-7788/05/6807-1138$26.00
the observation of the effects predicted for these
processes also requires quite specific experimental
conditions.

Among the works of the second direction, we point
to [4–7] (where references to previous works of this
cycle can be found) and to [8–11]. In [4–6], so-
called collisional beta decay (CBD) was studied. In
this case, the decay of a beta-stable nucleus (or a
proton) is stimulated by its collisions with other nuclei
or elementary particles. In these processes, energy
that is transferred by a collisional partner to the target
(parent) nucleus may be comparable with nuclear
energies. This circumstance enables one to consider
those beta transitions to the states of the daughter
nucleus that were previously forbidden only by the en-
ergy conservation law; i.e., the external action directly
on the parent nucleus rather than on the beta electron
can be analyzed. In [6], this mechanism of CBD was
also used to evaluate the possibility of highly for-
bidden natural beta transitions. Since cross sections
for weak processes are small, the required intensities
of incident particle fluxes are evidently too high for
real realization of CBD. The investigations provided
a conclusion that the observation of the CBD process
is impossible, because the intensities of nucleon or ion
beams are still insufficient. However, the occurrence
of this process is not excluded in massive stars at high
temperatures (about (2–3) × 109 K), in particular, in
the synthesis of “bypassed” (or p) nuclei [7].

Endothermic nuclear beta decay induced by elec-
tromagnetic radiation with the Planck frequency
c© 2005 Pleiades Publishing, Inc.



EFFECT OF SYNCHROTRON RADIATION 1139
spectrum (so-called photobeta decay) was analyzed
in [8–11]. In contrast to works devoted to the effect
of laser fields, temperatures comparable with nuclear
energies were considered in [8–11]. As in the case
of the CBD process, this circumstance opens the
possibility of transferring the photon energy directly
to the parent nucleus and realizing beta transitions
that were previously forbidden by energy conditions.
The first theoretical estimates of the cross section for
photobeta decay were performed in [8] in application
to the nuclear astrophysical problem and, more re-
cently, in [9] for the problem of the synthesis of p
nuclei in massive stars. However, the results that
were obtained in [8, 9] are doubtful, because they were
obtained in the plane wave approximation. Indeed, as
was shown in [10, 11], where the photobeta decay
of a stable nucleus in the field of thermal radiation
was studied for the relativistic case with the exact
inclusion of the effect of the Coulomb nuclear field
on leptons, this process, as well as CBD, could
contribute appreciably to the synthesis of p nuclei
at certain stages of the evolution of a massive star
for environmental temperatures (1–5) × 109 K, when
the energy of a photon absorbed by the parent nucleus
at the maximum of the Planck spectrum is equal
to 0.3–1.5 MeV. Such temperatures are evidently
inaccessible on the Earth, and nuclear photobeta
decay is hypothetical for accessible temperatures.

New sources of intense electromagnetic radia-
tion, synchrotron radiation (SR), recently appear in a
number of research centers. This radiation has unique
characteristics [12] such as a wide spectral range up
to the x-ray region with the possibility of obtain-
ing hard photons with energies of several MeV, high
power, sharp collimation that ensures high brightness
of a source, and spontaneous polarization. All these
properties of SR, together with a good theoretical de-
scription of its properties, open the way for a wide use
of this radiation in physical experiments in atomic,
molecular, and condensed matter physics (works in
this area were reviewed in [13]; see also [14]). Since
SR includes photons with energies above 50 keV and
its power is high, the problem of the effect of electro-
magnetic radiation on nuclear beta decay again be-
comes urgent now for SR. Since energies transferred
to the parent nucleus are sufficiently high and com-
parable with nuclear energies, for an appropriately
chosen “parent nucleus–daughter nucleus” pair, it
is possible to directly stimulate nuclear beta transi-
tions that are forbidden under natural conditions only
by the energy conservation law. Moreover, a similar
mechanism can be used to analyze the possibility
of accelerating highly forbidden natural beta decay.
In this case, the absorption of a high-energy pho-
ton can induce the beta decay of the parent nucleus
with those transitions to daughter nuclear states that
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 7 200
are energetically forbidden under natural conditions
but have quantum characteristics corresponding to
allowed beta decay. Owing to a high power of real
SR, one can hope, in contrast to CBD and beta decay
stimulated by thermal radiation, to obtain rates such
that the corresponding beta processes will be observ-
able or, at least, to formulate necessary requirements
for realizing this possibility.

The aim of this work is to study the effect of
SR on nuclear beta decay. Analysis is based on the
formalism developed in [10, 11]. In this formalism as
in [8], nuclear beta decay is simulated by the elec-
tromagnetic field through the production of a virtual
electron–positron pair with the subsequent absorp-
tion of a positron by a nucleus and the emission of
an antineutrino. In this formalism in contrast to [8],
the nuclear Coulomb field and relativism of leptons
are exactly included. The characteristics of this en-
dothermic beta decay are analyzed as functions of
the parameters of SR, the threshold energy, and the
charge number of the parent nucleus. Two situations
are considered. In the first case, SR initiates the
decays of nuclei that are beta stable under natural
conditions and have a relatively low energy threshold.
In the second case, SR acts on nuclei whose natural
beta decay is possible but is highly forbidden, and the
radiation-induced acceleration of their natural beta
decay can be expected.

SYNCHROTRON RADIATION SPECTRUM

To date, a number of third-generation SR sources
have been commissioned or will be commissioned
in the near future. The most intense sources are
SPring-8 (Japan), ESRF (France), and APS (USA)
(operating at present) and the source PETRA-3
(Germany) under construction. They are character-
ized by a high energy of electrons in the orbit (6–
8 GeV), considerable spectral brightness (the number
of photons emitted from a unit area of a source per
unit time into unit solid angle in the spectral range
∆ω/ω), and a large number of output channels. As a
rule, SR is emitted either in a rotating magnet or in
special devices that consist of a number of magnets of
different polarities and are mounted on the rectilinear
section of the orbit of electrons. Depending on the
magnetic field magnitude, these devices are classified
as undulators (weak field) or wigglers (strong field).
Synchrotron radiation that arises in each type of the
above devices has the following features. Electrons
in the rotating magnet move along a circular orbit
and emit SR with a continuous spectrum. At the
same time, an electron beam in an undulator de-
viates at a small angle and very bright and quasi-
monochromatic light is formed due to interference
effects. Electrons in a wiggler are subjected to a
5
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undulator, (4) Sun, and (5) x-ray tube.

strong deviating magnetic field and emit SR with
high brightness and a continuous spectrum whose
maximum is shifted towards higher energies. The
SPring-8 setup is the brightest available source of
SR of high photon energies (�60 keV). Figure 1
shows the spectral brightness of this source as a
function of the photon energy for various output
channels (rotating magnet, wiggler, and undulators)
in comparison with the brightnesses of the Sun and
an x-ray tube [15].

Let us consider the theory of the above spectral
properties. Synchrotron radiation that is formed in
the rotating magnet is concentrated in a narrow cone
with an angle of about 1/γ, where γ = Ee/mec

2, Ee
is the energy of electrons in the synchrotron, me is
the electron mass, and c is the speed of light. Within
this cone, the spectral–angular distribution of the
flux of photons with frequency ω in relative frequency
interval dω/ω is given by the expression [12]

d3F (ω, θ, ψ)
dθdψ(dω/ω)

=
3αe
4π2
γ2 I

e
y2(1 +X2)2 (1)

×
[
K2

2/3(ξ) +
X2

1 +X2
K2

1/3(ξ)
]
.

Here, θ and ψ are the observation angles in the hori-
zontal and vertical planes, respectively (the horizontal
plane coincides with the electron orbit plane); αe is
the fine structure constant; I is the current in the
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Fig. 2. FunctionsG1(y) andH2(y). Areas corresponding
to 50% of the power of emitted SR are shaded.

accelerator; e is the elementary charge; y = ω/ωc =
Eγ/Ec, where Eγ = �ω is the photon energy, Ec =
�ωc, ωc = 3γ3c/2ρ is the critical frequency (it divides
the power spectrum into two equal parts), and ρ is
the instantaneous radius of the electron trajectory;
X = γψ, ξ = y(1 +X2)3/2/2; andKn(x) is the mod-
ified Bessel function of the second kind. In terms of
the commonly used units, ρ(in m) = 3.3Ee/B and
Ec(in keV) = 0.665E2

eB (where Ee is given in GeV
and the magnetic field B is given in tesla). In the
horizontal direction (ψ = 0), distribution (1) has the
form

d3F (ω, θ, ψ)
dθdψ(dω/ω)

∣∣∣∣
ψ=0

=
3αe
4π2
γ2 I

e
H2(y), (2)

where
H2(y) = y2K2

2/3(y/2),

or in the practical units (photon s−1 mrad−2 into 0.1%
of the spectral range)

d3F (ω, θ, ψ)
dθdψ(dω/ω)

∣∣∣∣
ψ=0

(3)

= 1.33 × 1013E2
e (in GeV)I(in A)H2(y).

The integration of distribution (1) with respect to ψ
yields

d2F (ω, θ)
dθ(dω/ω)

=
√

3
2π
αeγ
I

e
G1(y), (4)

where

G1(y) = y

∞∫
y

K5/3(y
′)dy′,
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 7 2005
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Fig. 3. Diagrams of endothermic β decay induced by electromagnetic radiation.
or in the practical units (photon s−1 mrad−1 into 0.1%
of the spectral range)

d2F (ω, θ)
dθ(dω/ω)

= 2.46 × 1013Ee(in GeV)I(in A)G1(y).

(5)

The frequency dependence of distributions (2) and
(4) is determined by the functions H2(y) and G1(y).
Their plots are shown in Fig. 2. We note that, accord-
ing to the definition of ωc,

1∫
0

G1(y)dy =

∞∫
1

G1(y)dy.

The wiggler radiation spectrum is identical in shape
to the rotating-magnet spectrum, but it differs from
the latter in a higher critical energy of emitted photons
Ec = �ωc = 3e�Bγ2/2me (because electrons move
in a stronger magnetic field) and a larger number of
these photons. Formulas (3) and (5) for the wiggler
have the form

d3F (ω, θ, ψ)
dθdψ(dω/ω)

∣∣∣∣
ψ=0

(6)

= 2.65 × 1013NE2
e (in GeV)I(in A)H2(y)

and

d2F (ω, θ)
dθ (dω/ω)

(7)

= 4.92 × 1013NEe(in GeV)I(in A)G1(y),

respectively, where N is the number of periodic ele-
ments in the wiggler.
F ATOMIC NUCLEI Vol. 68 No. 7 200
RATE OF PHOTOBETA DECAY
STIMULATED BY SYNCHROTRON

RADIATION

Following [10, 11], we calculate the rate of the
endothermic reaction

γ + (A,Z) → (A,Z + 1) + e− + νe, (8)

which has the energy threshold

∆ ≡ [M(A,Z + 1) −M(A,Z) +me] c2 > 0. (9)

Here, γ is the photon; A and Z are the mass and
charge number of the (A, Z) nucleus, respec-
tively; e− is the electron; νe is the antineutrino; and
M(A, Z) is the mass of the nucleus (A, Z). Owing
to the energy threshold ∆, the natural β− decay
(A,Z) → (A,Z + 1) is impossible and photons with
energies Eγ > ∆ are necessary in order to open this
channel. Feynman diagrams corresponding to this
process are shown in Fig. 3. Diagram 3a describes
photobeta decay through the production of a virtual
electron–positron pair in the Coulomb field of the
nucleus (A,Z), and diagrams 3b, through the virtual
excitation of nuclear states (so-called indirect nuclear
transitions). For allowed β decays, the probability
of an indirect transition obviously has smallness
(Zme/mp)2 compared to the process described by di-
agram 3a (mp is the proton mass), and contributions
from bypass transitions will be disregarded below.
According to general quantum mechanical rules, the
probability of the photobeta transition from the |βi〉
state of the parent nucleus (A,Z) to the |βf 〉 state of
the daughter nucleus (A,Z + 1) (βi, βf are the sets of
the quantum numbers of these states) that is initiated
by a photon of energy Eγ is given by the expression

P
(γ)
β,ω(βi → βf ) = 2π

∫
d3p

(2π)3
d3q

(2π)3
|Mfi|2 (10)

× δ(M(A,Z) + ω −M(A,Z + 1) − ε− q0),
5
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where Mfi is the amplitude of the |βi〉 → |βf 〉 tran-
sition, and p and ε (q and q0) are the momentum
and energy of the electron (antineutrino) (we use the
system of units where � = c = me = 1). In [11], for

P
(γ)
β,ω(βi → βf ) we obtained a general expression that

can be represented for a particular case of allowed β−

transitions |βi〉 → |βf 〉 (only these transitions will be
discussed as most intense transitions) in the form

P
(γ)
β,ω(βi → βf ) = 24π2 αe ln 2

Π2
Ji
f0t

(11)

×
∑

jγ lγjeleL

(
Πlγ ΠjeC

jγ1
11lγ0

)2

×
ω−∆+1∫

1

|N2||Le|2
(1 + ω − ∆ − ε)2

ω
ε
√
ε2 − 1dε.

Here, Ji is the spin of the nucleus (A,Z); f0t is the
reduced lifetime of the β transition; jγ , lγ(je, le) are
the total and orbital angular momenta of the pho-
ton (electron), respectively; L is the orbital angular
momentum transferred to the nucleus; Πl =

√
2l + 1;

Cjmj1m1j2m2
is the Clebsch–Gordan coefficient; and the

nuclearN and leptonic Le components of the process
amplitude are given by the respective expressions

N =
(

2αeRnucl

νg

)λg−1√ νg
αe

(12)

×
[
δL0(1 + i)(λg − ηg − Zνg − 1)

√
1 + E

− δL′0(1 − i)(λg − ηg + Zνg + 1)
√

1 −E
]
,

P

Le = i
Γ(λg − ηg)
Γ(2λg + 1)

(13)

×


−(−1)leΠleL′C

lγ0
le0L′0




le je 1/2

L′ 1/2 1/2

lγ jγ 1



I1

+ (−1)jeΠl′eLC
lγ0
l′e0L0




l′e je 1/2

L 1/2 1/2

lγ jγ 1



I2


 .

Here, Rnucl is the nuclear radius, E = ω − ε,

νg =
αe

(1 − E2)1/2
, (14)

λg = (1 − (αeZ)2)1/2, ηg = −EZνg,
Γ(z) is the gamma function, l′e = 2je − le, L′ = 1 −
L,

I1 ≡
∞∫
0

dr
√
rfle(r)f−(x)jlγ (ωr), (15)

I2 ≡
∞∫
0

dr
√
rgle(r)f+(x)jlγ (ωr).

Here, x = 2rαe/νg and the large fle(r) and small
gle(r) components of the radial function of the elec-
tron in the nuclear Coulomb field [16] are given by the
expression
fle(r)

gle(r)


 = 23/2 exp

(
πξe
2

)
|Γ(γe + 1 + iξe)|

Γ(2γe + 1)
(2pr)γe

r



√
ε+ 1/ε · Im

√
ε− 1/ε · Re


 (16)

× [ei(pr+ζe)
1F1(γe − iξe, 2γe + 1,−2ipr)],
where 1F1(a, c, z) is the confluent hypergeomet-
ric function, ξe = αeZε/p, p = (ε2 − 1)1/2, γe =
(κ2
e − (αeZ)2)1/2, κe = ∓(je + 1/2) for je = le± 1/2,
e2iζe = (κe − iξe/ε) / (γe − iξe); jlγ (ωr) is the spher-
ical Bessel function;

f±(x) =
√

1 + E (17)

×
[
(−Zνg + 1)Wηg− 1

2
,λg

(x) ±Wηg+ 1
2
,λg

(x)
]
,

whereWκ,µ(x) is the Whittaker function.
The cross section for photobeta decay induced by
the photon of energy Eγ is expressed as [16]

σ(ω) =
P

(γ)
β,ω(βi → βf )

j
, (18)

where j is the photon flux density.

When a target [nucleus (A,Z)] is irradiated by a
photon flux with a given frequency spectrum (such as

SR that we discuss), the rate λ of the (A,Z)
β−,γ
−−−→ (A,

Z + 1) reaction and the yield n(A,Z + 1) of nuclei
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 7 2005
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(A,Z + 1) are given by the respective expressions

λ = V −1

∞∫
∆

dω

∫
dθdψ F (ω, θ, ψ)σ(ω), (19)

n(A,Z + 1) =
ρ(A,Z)d
V

(20)

×
∞∫

∆

dω

∫
dθdψF (ω, θ, ψ)σ(ω).

Here, ρ(A,Z) is the density of parent nuclei in the
target, d is the target thickness (determined by the
penetration depth of photons into the substance, V
is the target volume, and F (ω, θ, ψ) is defined by
Eq. (1). In the general case, d = d(Z,ω), but photon-
energy dependence is disregarded in Eq. (20) (d can
be taken at the critical frequency ω = ωc, because the
SR spectrum is sufficiently narrow). In what follows,
the dependence of the photon flux F on the angle ψ
will be disregarded. In this case, Eqs. (19) and (20)
have the form

λ = V −1

∞∫
∆

dω

1/2γ∫
−1/2γ

dθ F (ω, θ)σ(ω), (21)

n(A,Z + 1) =
ρ(A,Z)d
V

(22)

×
∞∫

∆

dω

1/2γ∫
−1/2γ

dθF (ω, θ)σ(ω),

where F (ω, θ) is defined by Eqs. (5) and (7) when
SR is emitted in the rotating magnet and wiggler,
respectively.
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 7 2005
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STIMULATION OF THE DECAY OF β−
STABLE NUCLEI BY SYNCHROTRON

RADIATION: CALCULATIONS

We consider the case where the β− decay of the
parent nucleus (A,Z) is impossible under natural
conditions (see Fig. 4a). The channel of endother-

mic |βi〉
β−,γ
−−−→ |βf 〉 transition is open if Eγ > ∆. The

photon energy dependence of the process cross sec-
tion [Eq. (18)] was analyzed for various values of the
threshold energy ∆ and charge number Z. In this
analysis, a value of 105 s, which is characteristic of
suppressed allowed β− transitions, was used for the
reduced lifetime f0t of β decay. The calculation results
are shown in Fig. 5a.

According to Fig. 5a, the cross section magni-
tude is characteristic of weak processes and is equal
to ∼10−46–10−49 cm2 in the Eγ energy range of
interest. The process cross section decreases as ∆
increases at a givenZ value and increases appreciably
with Z at a given ∆ value. A similar Z dependence is
observed for the rate of natural β− decay if the nuclear
Coulomb field is taken into account by introducing
the universal Fermi function F (Z,E) immediately
into the integrand determining the function f0.

Figure 5b shows the rate λ of stimulated β− decay
calculated as a function of ∆ for various Z values
[Eq. (21)]. The SR photon flux density was calculated
with the data for the SPring-8 wiggler, which is the
most intense source with a sufficiently wide hard part
of the spectrum. Its parameters are as follows: the
energy of electrons on the orbit Ee = 8 GeV, current
I = 0.1 A, the critical energy Ec = 43 keV, and the
periodic-element number N = 37 [12].

As is seen in Fig. 5b, the process rate depends
strongly on the threshold energy. It decreases rapidly
from values characteristic of the second-forbidden β
transitions (for ∆ < 40 keV) to values corresponding
to the third- or fourth-forbidden transitions (for ∆ >
100 keV). The Z dependence of λ is not as strong as
the dependence on ∆.

In order to estimate the practical feasibility of
the SR-stimulated nuclear photobeta decay of stable
(against β− decay) (A,Z) nuclei, we selected “parent
nucleus (A,Z)–daughter nucleus (A,Z + 1)” pairs
that satisfy the following criteria: (i) the threshold
energy ∆ must be lower than 200 keV; (ii) the β−

transition between the ground states of these nuclei
is allowed; and (iii) the daughter nucleus must be
sufficiently long-lived with respect to the inverse
|βf 〉 → |βi〉 transition (β+ decay and/or electron
capture). The decay rate λ and the yield of daughter
n(A,Z + 1) nuclei were calculated by Eqs. (21) and
(22), respectively. The results obtained with the above
parameters of SR are given in Table 1. It is seen that
PH
the highest rate of stimulated β− decay of the 163
66Dy

nucleus has an order of magnitude corresponding to
the second-forbidden natural β decay (in this case,
the threshold energy is anomalously low). In all other
cases, λ is much lower and corresponds to third-
forbidden transitions (for comparison, λ = 4.7 ×
10−19 s−1 for the well-studied third-forbidden β−

decay of the 87
37Rb nucleus). Such rates are evidently

too low for experimental verification of the above
results. However, if the intensity of SR increases
significantly or the peak of its spectrum is shifted
towards higher energies, the rate of the stimulated β−

decay can increase to values corresponding to allowed
or first-forbidden β transitions, which would make
such an experiment more realizable. Obviously, when
selecting candidate nuclei, it is necessary to take into
account that the rate of endothermic decay depends
strongly on the threshold energy ∆, as is shown in
Fig. 5b.

ACCELERATION OF NATURAL β−
TRANSITIONS BY SYNCHROTRON

RADIATION: RESULTS
OF THE CALCULATIONS

We now consider the effect of the SR field on a
naturally β−-active parent nucleus (A,Z). Let us
describe a possible scheme of accelerating natural β−

decay. We do not discuss the effect of the electro-
magnetic field on the β electron. As was mentioned
above, this effect has been well studied and the corre-
sponding results were discussed in the Introduction.
We only emphasize that the integral probability of β
decay hardly changes when the field effect is taken
into account in such a scheme. As in the case of the
stimulation of the decay of β-stable nuclei, which was
discussed in the preceding section, we are interested
in the possibility of realizing β transitions that are
forbidden in the absence of an electromagnetic field
by the energy conservation law (see Fig. 4b). Owing
to the presence of γ rays with energies above 50 keV
in the SR spectrum, this β decay channel is not
excluded. We now discuss this case in more detail.
Let the parent nucleus (A,Z) be β−-unstable, but its
natural decay be strongly suppressed. This condition
is necessary in order to possibly enhance the effect.
In addition, let quantum selection rules allow β tran-
sitions from the ground state of the parent nucleus
to some of the excited states of the daughter nucleus
(A,Z + 1) with excitation energiesEf > Qβ− (where
Qβ− is the energy release for the natural β− decay).
In this case, in order to increase the decay rate,
Ef should be as low as possible (Ef −Qβ− serves
as the energy threshold for photobeta decay, and,
as was shown above, the decay probability depends
strongly on this threshold). Under these conditions,
YSICS OF ATOMIC NUCLEI Vol. 68 No. 7 2005
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Table 1. Rate λ and yield n(A,Z + 1) for β−-stable nuclei (hereinafter, experimental data are taken from [17])

Nucleus (A,Z) Jπi

i → Jπf

f

transition
∆, keV T1/2 of the nucleus (A,Z)

T1/2 of the nucleus
(A,Z + 1)

λ, s−1 n(A,Z + 1),
s−1 cm−3

68
31Ga 1+ → 0+ 106 67.6 min 270 day 9.1 × 10−21 3.0 × 10−10

163
66Dy 5/2− → 7/2− 2.6 Stab. 4570 yr 2.0 × 10−16 6.6 × 10−6

178
73Ta 1+ → 0+ 91 9.3 min 21.6 day 2.3 × 10−19 7.5 × 10−9

179
72Hf 9/2+ → 7/2+ 110 Stab. 1.82 yr 2.3 × 10−20 7.8 × 10−10

181
73Ta 7/2+ → 9/2+ 188 Stab. 121.2 day 1.3 × 10−21 4.3 × 10−11

Table 2. Decay rate λ for β−-active nuclei

Nucleus
(A,Z)

Natural
Jπi

i → Jπf

f

transition
Qβ− , keV

Stimulated
Jπi

i → Jπf

f

∗

transition
Ef , keV λ(spont), s−1 λ, s−1

79
34Se 7/2+ → 3/2− 151 7/2+ → 9/2+ 207 >3.4 × 10−13 3.63 × 10−20

87
37Rb 3/2− → 9/2+ 283 3/2− → 1/2− 388 (4.63 ± 0.04)× 10−19 9.61 × 10−21

107
46Pd 5/2+ → 1/2− 33 5/2+ → 7/2+ 93 (3.4 ± 0.3) × 10−15 7.55 × 10−20

115
49In 9/2+ → 1/2+ 495 9/2+ → 7/2+ 612 (4.98 ± 0.25)× 10−23 3.28 × 10−21

129
53I 7/2+ → 1/2+ 194 7/2+ → 5/2+ 321 (1.40 ± 0.04)× 10−15 4.34 × 10−21

135
55Cs 7/2+ → 3/2+ 269 7/2+ → 5/2+ 480 (9.6 ± 0.3) × 10−15 1.99 × 10−22
SR makes the endothermic β− transition possible
from the ground state |βi〉 of the nucleus (A,Z) to
the excited state |βf 〉 of the daughter nucleus (A,Z +
1) with energy Ef through the above mechanism of
stimulated β− decay. It is assumed that the daughter
nucleus (A,Z + 1) will be subsequently deexcited
due to electromagnetic relaxation. In this case un-
der certain conditions (a low rate of natural β decay
and a relatively low energy threshold Ef −Qβ−), a
certain increase in the yield of the daughter nucleus
(A,Z + 1) can be expected compared to their yield in
the natural β process.

Taking into account the above requirements, we
analyzed the schemes of the decay of β−-active nuclei
with large lifetimes and listed candidates appropriate
for investigations in Table 2. Some nuclei whose β−

decays are classified among second-forbidden transi-
tions are not presented in Table 2, because the spins
and parities of the appropriate excited states of these
nuclei are uncertain.

The rate λ of the (A,Z)
β−,γ
−−−→ (A,Z + 1)∗ transi-

tion into the excited state |βf 〉 is calculated as pre-
viously by Eq. (21) for SR from the wiggler with
the same parameters. The calculation results are also
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 7 200
given in Table 2. For comparison, this table also
presents the rate of the natural β− decay of the nu-
cleus (A,Z), which was calculated by the formula
λ(nat) = ln 2/T1/2, where T1/2 is the known half-life.

As is seen in Table 2, as in the case of the pho-
tobeta decays of stable nuclei, the rates λ corre-
spond to the third-forbidden β transitions. These re-
sults are primarily attributed to the relatively high en-
ergy thresholds of endothermic reactions (60 keV or
above). Therefore, for most suppressed β transitions
presented in Table 2, radiation-induced change in the
natural-decay rate is insignificant (no more than 2 ×
10−3%). As was mentioned above, an increase in the
SR flux density or a shift of the peak in its spectrum
towards higher energies can significantly affect the
rate of stimulated β decay. The third- and fourth-
forbidden β decays of the 87

37Rb and 115
49In nuclei,

respectively, are the only exceptions. In the former
case, the rate of β− decay increases by more than
2%, which is beyond the λ-measurement accuracy
(�1%). In the latter case, the rate of β− decay in-
creases by a factor of almost 100, which is evidently
due to a very strong suppression of the natural β−

transition.
5
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CONCLUSIONS

The above study of endothermic β− decays stimu-
lated by synchrotron radiation provides the following
conclusions.

(i) The rate of endothermic decay depends strongly
on the energy threshold and, more slightly, on the
charge number Z of the parent nucleus.

(ii) For all above cases of stimulated β decays
of stable and naturally β−-active parent nuclei irra-
diated with synchrotron radiation from available in-
tense sources, the order of magnitude of the decay
rate is typical for third-forbidden β transitions. The
endothermic β− decay of the 163

66Dy nucleus with an
anomalously low threshold energy is the only excep-
tion. The rate of this β− decay corresponds to second-
forbidden natural transitions. For this reason, the rate
of the second-forbidden natural and first-forbidden
β− decays changes only slightly (�10−3%). However,
this change is already equal to 2% for the third-
forbidden β− transition of the 87

37Rb nucleus, and the
rate of the strongly suppressed β decay of the 115

49In
nucleus increases by almost two orders of magnitude.

(iii) Owing to relatively low rates of endother-
mic decays stimulated by the available synchrotron
radiation sources, the effect can hardly be observed
experimentally. However, real situations, where the
stimulation of natural β− decay is considered, are bet-
ter, because stimulated β− decay occurs to an excited
state of the daughter nucleus. This circumstance al-
lows the identification of decay by methods using γ
rays, i.e., by detecting nuclear γ rays arising as a
result of the deexcitation of the excited state. In this
case, both the energy of the emitted photon and the
lifetime of the excited state are important. In principle,
“parent nucleus–daughter nucleus” pairs appropriate
for experiment can be chosen. Rapid advance in the
creation of intense sources of SR provides the hope
that the corresponding experimental problem will be
solved. A solution to this problem will give an an-
swer to the fundamental question of whether external
effects can stimulate nuclear decays—in particular,
those that are forbidden by the energy-conservation
law. Moreover, a positive answer to this question will
possibly promote a solution to the problem of utiliza-
tion of nuclear waste.
PH
ACKNOWLEDGMENTS

We are grateful to A.N. Almaliev for stimulating
discussions and valuable remarks. This work was
supported by the Ministry of Education of the Russian
Federation, project no. A03-2.9-450.

REFERENCES
1. I. M. Ternov, V. N. Rodionov, and O. F. Dorofeev, Fiz.
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Abstract—Relations determining the shift of energies and widths of scattering resonances are obtained
within the method of evolution in the coupling constant. These relations generalize the well-known
relations for the shift of levels in a discrete spectrum. The problem of determining the Coulomb shifts of
low-energy resonances manifesting themselves in the cross section for the scattering of some light nuclei
is solved. Examples that are of importance for nuclear astrophysics and examples of problems that are
associated with the production of chemical elements are considered. The character of Coulomb shifts is
studied within simple nuclear models. Respective numerical estimates are given, which agree satisfactorily
with experimental data. c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION
Low-energy resonances that manifest themselves

in scattering processes involving light nuclei are likely
to play an important role in the dynamics of nucle-
osynthesis occurring within stars and in the active
region of galaxies [1–3]. In order to assess the role
of such processes, it is of importance to determine
reliably the parameters of some resonances whose
energy is close to or less than the Coulomb barrier
between interacting nuclei. The blocking effect of
Coulomb forces hinders an experimental determina-
tion of nuclear cross sections in the region of astro-
physical energies (from a few tens of electronvolts to
a few kiloelectronvolts). Usually, nuclear data at such
energies are deduced by means of extrapolation from
the region of higher energies under the assumption
that there are no resonances at such low energies, so
that the cross sections in question change monoton-
ically [1, 4].

At the same time, results obtained for few-body
systems suggest that, in this energy region, narrow
resonances can exist in some nuclear systems [5]. If
so, advances in solving problems of nuclear synthesis
and nucleogenesis (that is, the formation of chemical
elements) will depend on the development of reso-
nance physics and on the dynamics of complicated
quantum systems [6].

Coulomb repulsion is of particular importance for
low-energy nuclear resonances, since it reduces the
probability for particles to approach each other closely
and, hence, the probability of their nuclear interac-
tions. Moreover, Coulomb repulsion can deform a
resonance substantially—for example, push it to the
region of higher energies.

As is well known, problems of scattering governed
by both Coulomb and nuclear forces have special
1063-7788/05/6807-1147$26.00
features inherent in them that are due to the “bad”
behavior of Coulomb forces in the asymptotic re-
gion. This leads to the interplay of the nuclear and
Coulomb transition operators, with the result that,
even upon the separation of the purely Coulomb com-
ponent from the total two-particle amplitude, the re-
mainder involves irregular factors [7–9]. The situa-
tion becomes even more complicated in the problems
where the scattering process involves three or more
particles [10–12].

The aforesaid concerns the general problem of
scattering in complicated systems governed by
Coulomb and nuclear forces. However, the problem
of describing the properties of resonance scattering
becomes more tractable in the energy region around
a narrow resonance. First of all, this applies to a
determination of the Coulomb shift of resonance
levels [13, 14].

In this connection, it is of importance to ana-
lyze the effect of Coulomb forces on the charac-
ter of changes in the resonance position and width.
Such estimates can be of use for many problems
of nuclear astrophysics, as well as for problems of
atomic and molecular physics and other branches of
physics, where one often has to deal with interactions
of different character and with resonance states of
systems [15].

In the present study, we explore the character of
the Coulomb shift of resonance nuclear states. Rela-
tions determining this shift—that is, the energy shift
of such states and the change in their width—are
obtained by the method of evolution in the coupling
constant [13].

The ensuing exposition is organized as follows.
Section 2 contains a brief account of the method
of evolution in the coupling constant with special
c© 2005 Pleiades Publishing, Inc.
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emphasis on the details that are necessary for the
ensuing calculations. Also, a generalization of the re-
spective relations to the case of resonance scattering
is given there. In Section 3, we consider examples
involving simple model nuclear forces and admitting
analytic solutions and generalizations of these exam-
ples to the cases incorporating Coulomb repulsion
forces.

2. RELATIONS OF THE METHOD
OF EVOLUTION IN THE COUPLING

CONSTANT FOR THE SHIFT
OF RESONANCE STATES

Let us briefly describe the method of evolution
in the coupling constant [16, 17]. In doing this, we
will give special attention to the points that are of
importance for the ensuing exposition. We represent
the total Hamiltonian of a quantum system in the
form

H = H0 + λV + αU, (1)

where H0 is a free Hamiltonian; λV is the potential of
nuclear forces; λ is the respective coupling constant,
which is factored out in this term; αU is the Coulomb
potential; and α = e2 is the Coulomb coupling con-
stant.

The method of evolution in the coupling constant
describes the evolution of a quantum system in re-
sponse to a variation in the coupling constant. The
evolution of our system can be considered with re-
spect to variations in the nuclear coupling constant λ,
the Coulomb coupling constant α, or both coupling
constants simultaneously. The final result must not
depend on the method of analysis. In applying the
method, it is assumed that the initial conditions of the
problem (for example, solutions at λ = 0 orα = 0) are
known or preset.

We first consider the evolution of the system in the
coupling constant λ, assuming that Coulomb forces
are switched off. Differentiating the Schrödinger
equation

(Eν −H)|Ψν〉 = 0 (2)

with respect to the parameter λ, we obtain the evolu-
tion equations for the wave function in the form

d

dλ
|Ψν〉 = G+(Eν)V |Ψν〉 (3)

where G+(E) = (E −H + iγ)−1 and γ → 0+.
For levels of the discrete spectrum, there is the

well-known relation [18]

d

dλ
Eν = 〈Ψν |V |Ψν〉, (4)

which is widely used.
PH
In the scattering region, the method of evolution in
the coupling constant leads to the equations

d

dλ
Sµν = −2πiδ(Eµ −Eν)

∑
σ

SµσVσν (5)

for the scattering matrix Sµν = 〈Ψ−
µ |Ψ+

ν 〉 and to the
equations

d

dλ
Vµν =

∑
σ

VµσVσν (6)

×
(

1
Eµ − Eσ − iγ

+
1

Eν − Eσ + iγ

)

for the matrix elements Vµν = 〈Ψµ|V |Ψν〉, the ini-
tial conditions being Sµν(λ = 0) = δµν and V 0

µν =
Vµν(λ = 0).

It should be noted that Eqs. (5) reduce to the
evolution equations for the phase shifts, which are
defined by the relations SL(E) = exp(2iδL(E)). We
have

d

dλ
δL = −πiρ(Eν)VL(Eν , Eν), (7)

where ρ(E) is the density of states in the continuum
region, the initial condition for the phase shift be-
ing δ0 = δ(λ = 0) = 0. For the total S matrix to be
unitary, it is necessary that the phase shift be real-
valued (or the phase-shift matrix be Hermitian in the
multichannel case). Therefore, the method of evolu-
tion is frequently referred to as a unitary approach in
scattering theory [19].

The aforesaid also applies to the evolution equa-
tions with respect to the Coulomb coupling constant
α—only the initial conditions will be different.

Let us now consider a simple isolated resonance,
in which case the physical scattering amplitude ex-
hibits a characteristic Breit–Wigner behavior,

f(E) ≈ − 1
πρ(E)

Γ/2
E − ER + iΓ/2

.

It is assumed that the off-shell amplitude f (p, p′;
Z), where p and p′ are, respectively, the initial and
the final momentum and the complex energy is Z =
k2/(2µ), has poles in the second sheet of energies at
Z = Eres = k2

res/(2µ) or in the complex plane of wave
number at the points k = kres, where kres = ±kR +
ikI , ER = (k2

R − k2
I )/(2µ), and Γ = −4kIkR/(2µ)

with kI ≤ 0. It is well known that, for Z → E =
p2
0/(2µ) and |p| = |p′| → p0, the amplitude behaves

as f(p, p′;Z) → f(E).
Let us represent f(p, p′;Z) in the vicinity of the

pole in the well-known form

fres(p, p′;Z) = 〈p|ξ〉 1
Z − Eres

〈ξ̄|p′〉. (8)
YSICS OF ATOMIC NUCLEI Vol. 68 No. 7 2005
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Using the Lippmann–Schwinger equation and equat-
ing the pole terms on its left and right-hand sides, we
then obtain

〈ξ̄|p〉 = (Z − Eres)
[−〈Ψ0|λV |Ψ0〉 + . . .][

〈Ψ0|ξ〉 −
∑
σ
〈Ψ0|λV G0(Z)|ξ〉

] ,

(9)

where G0(Z) = (Z −H0)−1. We note that, in a com-
plicated multichannel problem, the form-factor rep-
resentation will differ from (9) only by the bracketed
expression in the numerator on the right-hand side of
this relation.

The expression in the denominator on the right-
hand side of (9) is of prime importance for the approx-
imation used. From this expression, which vanishes
at Z = Eres, we can derive the following equation
upon discarding wave vectors orthogonal to 〈Ψ0| and
setting |ξ〉 = λV |ϕres〉:

(Eres −H0 − λV )|ϕres〉 = 0. (10)

A similar result can be obtained for the vector ϕ̄res as
well.

On the basis of equations belonging to the type
in (10), we now derive, by means of the same proce-
dure as that applied to Eq. (4), the evolution equation
for the resonance energy [15]. The result is

dEres

dλ
= 〈ϕ̄res|V |ϕres〉/〈ϕ̄res|ϕres〉. (11)

It is important to note that the ϕres and ϕ̄res (in con-
trast to the vectors Ψν) are meaningful in a bounded
region of energies—they are not eigenfunctions for
the system in question and are not orthonormalized,
the quantity 〈ϕ̄res|ϕres〉 not being real-valued. More-
over, Eres is complex-valued and has nothing to do
with the eigenvalues of the Hamiltonian.

Relation (11) has a form that is close to the canon-
ical form of Eq. (4) and is, in this sense, a generaliza-
tion of (4), relating the features of the resonance Eres
to the parameters of the interaction forces.

We will now extend the above procedure to res-
onance states where Coulomb forces are operative
along with nuclear forces. We will consider the evo-
lution of the system in response to variations in the
Coulomb coupling constant α, assuming that nu-
clear forces are fixed, but that they are responsible
for the existence of the scattering resonances being
considered. Restricting, as before, the region under
consideration to that around Z ≈ Eres, we obtain the
relation

dEres

dα
= 〈ϕ̄C

res|U |ϕC
res〉/〈ϕ̄C

res|ϕC
res〉, (12)

which is of the same type as relation (11), but which
involves modifications induced by Coulomb forces.
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With allowance for the initial conditions, the solution
can be represented in the form

Eres(α) = Eres(α = 0) (13)

+

α∫
0

dα〈ϕ̄C
res|U |ϕC

res〉/〈ϕ̄C
res|ϕC

res〉.

In the following, we consider some simple exam-
ple, employing relations (12) and (13).

3. MODEL PROBLEMS
INVOLVING SEPARABLE NUCLEAR

INTERACTION

By way of illustration, we consider a simple model
problem that admits an exact analytic solution. The
model in question employs a separable potential of the
Yamaguchi type,

{λV }JL,S = |νJL,S〉λJL,S〈νJL,S|. (14)

Here, the coupling constant λJL,S is taken to be real-
valued for the total Hamiltonian to be Hermitian.

Separable potentials are advantageous in that they
make it possible to find a final solution. The amplitude
can be represented in the analytic form

f = −|ν〉η(Z)〈ν|, (15)

where
η = {1/λ −A(Z)}−1, A(Z) = 〈ν|G0(Z)|ν〉.

(16)

Here, the indices labeling states are suppressed for
the sake of simplicity. If the sum of a few separable po-
tentials appears in (14), then the expressions in (15)
and (16) must treated as matrix-valued quantities in
this new index as well.

Upon the inclusion of Coulomb forces, the dis-
tinction will consist in the modification of transition
operators [7–10]. The Coulomb–nuclear amplitude
fC preserves the form (15), but the modified quantities
then appear to be

ηC = {1/λ−AC(Z)}−1, (17)

AC(Z) = 〈νC|G0(Z)|νC〉 = 〈ν|GC(Z)|ν〉, (18)

where GC = (Z −H0 − αU)−1 is the Coulomb
Green’s function.

It is important to note that the purely nuclear
coupling constant appears in the expression on the
right-hand side of (17) and that the following equality
holds at the pole point:

1/λ = AC(Eres). (19)

By definition, its left-hand side is independent of the
coupling constant α. Obviously, its right-hand side
5
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will not change with α either, whence we readily ob-
tain the condition dAC(Eres)/dα = 0, which entails
the relation

dEres

dα
=

〈ν|GC(Eres)UGC(Eres)|ν〉
〈ν|GC(Eres)GC(Eres)|ν〉

=
〈ξ̄C|U |ξC〉
〈ξ̄C|ξC〉

,

(20)

where we have used the notation

|ξC〉 = GC(Eres)|ν〉, 〈ξ̄C| = 〈ν|GC(Eres). (21)

In the model being considered, relation (20) is exact
and determines the Coulomb shift of the pole point.

Within this simple model, we will further consider
a few nuclear systems that are of importance for ap-
plications.

The first example is that of resonance nucleon
scattering on alpha particles at low energies. The
respective amplitudes have distinct resonances in the
P-wave components P J

L;S , where J = 3/2, L = 1,
and S = 1/2. These resonances can be described
satisfactorily by the simple separable potential (14)
involving the form factor

〈ν3/2
1;1/2|p〉 = ν3/2(x) = const · x/(1 + x2), (22)

where const =
√

8π/(2µβ) and β is the inverse range
of nuclear forces. Here, the dimensionless variable
x = p/β was introduced for the sake of convenience.
We will employ it in the following as well, introduc-
ing the notation xZ = k/β, xR = kR/β, and xI =
−kI/β.

The amplitudes has a pole at the point Z = Eres,
where A(Eres) = 1/λ. For the potential involving
the form factor (22), it follows that A(Z) = −(1 −
2ixZ)/(1 − ixZ)2.

For the nα system, experimental data yield ER =
0.9 MeV and Γ = 0.6 MeV [4], whence it follows
that the resonance parameters have the values of
xR = 0.158 and xI = −0.0256, from which we can
determine the features of the nuclear potential: λ =
−(1 + xI) and β = 1.175 fm−1.

Let us now estimate the Coulomb shifts in the
mirror system—that is, find the features of the pα
resonance. By numerically estimating the expression

∆EC = α
1
t

t∫
0

dy
〈ξ̄C|U |ξC〉
〈ξ̄C|ξC〉 , (23)

we find that ∆EC/ER ≈ 1.056 − i0.73 or EC
R ≈

1.83 MeV and that ΓC ≈ 1.54 MeV, these values
being in satisfactory agreement with their experimen-
tally determined counterparts EC

R,exp = 1.9 MeV and

ΓC
exp = 1.5 MeV [4].
PH
Here, it should be noted that the resonance-
position shift, which is determined by the real part
of (23), is satisfactorily described by simple per-
turbation theory. At the same time, the shift of the
resonance width depends on α and on the parameters
of nuclear forces in an intricate way, so that it can be
determined only numerically [13].

Indeed, the nuclear form factors of the potential
that are modified by Coulomb forces acquire the char-
acteristic factor

C2
L=1 =

2π/(ζx)
[exp(2π/(ζx)) − 1]

(
1 +

1
ζ2x2

)
, (24)

where ζ = βa0 and a0 is the Bohr radius of the sys-
tem, special features of the large-distance asymptotic
behavior, which are insignificant for (23), being disre-
garded here.

For the system being considered, we have ζ ≈
19.35, while the quantity ∆R = Re{〈ξ̄C|ξC〉/〈ξ̄C|ξ〉}
is close to unity for small xres:

∆R =
(

1 +
1
ζ
(4 − 2 ln ζ) − 3

ζ3
+ . . .

)
. (25)

We note that 1/ζ ∼ α. As to the quantity ∆I =
Im{〈ξ̄C|ξC〉/〈ξ̄C|ξ〉}, it is a more complicated func-
tion of ζ and xres [13].

An estimation of the quantity 〈ξ̄C|r−1|ξC〉 yields
nearly the same result. With increasing α, its real
part undergoes virtually no change, while the imag-
inary part, albeit being dependent on ζ in a compli-
cated way, makes a very small contribution. Thus, the
resonance-energy shift is nearly linear in the constant
α at small xres.

Let us consider yet another example, that of reso-
nance nucleon scattering on the nucleus of a 6Li atom
at very low energies. In the channel characterized by
the quantum numbers Jπ = 5/2−, L = 1, S = 3/2,
and T = 1/2, there are a resonance of width Γ ≈
0.154 MeV at ER ≈ 0.225 MeV for the n 6Li system
and a resonance of width ΓC ≈ 0.836 MeV at EC

R ≈
1.6 MeV for the p 6Li system [4].

Following the same line of reasoning as in the pre-
ceding case, we choose the potential in the form (14)
with the form factor (22) and first determine the pa-
rameters for the n 6Li system. The results are xR =
0.149, xI = −0.0229, and β = 0.683 fm−1. By using
relation (23), we then estimate the Coulomb shift of
the energy and the width of the resonance in the p 6Li
system. We obtain the values of EC

R ≈ 1.72 MeV and
ΓC ≈ 0.78 MeV, which are close to their experimental
counterparts from [4].

In the calculations,we took into account the
pronounced cluster structure of the lithium nucleus.
YSICS OF ATOMIC NUCLEI Vol. 68 No. 7 2005
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In evaluating the integrals in (23)—in particular,
the quantity 〈ξ̄C|r−1|ξC〉—we imposed a constraint
on the minimum distance between charged clusters.
Specifically, we set it to the alpha-particle size.

Finally, we consider low-energy resonance scat-
tering in the system of two alpha particles. For the
resonance energy and width, experimental data yield
the values of, respectively, EC

R ≈ 92 keV and ΓC ≈
6.8 eV [4]. The existence of such a narrow resonance
is of paramount importance for the problem of the
synthesis of light nuclei—for example, carbon nu-
clei [20, 21].

We will perform our analysis within the theory
of scattering on two potentials, a Coulomb and a
nuclear one, treating alpha particles in the region of
very low energies as structureless elementary par-
ticles. The nuclear interaction of two alpha parti-
cles will be described by a simple separable S-wave
potential—for example, that which involves the form
factor 〈ναα|p〉 = const/(1 + x2).

In this case, the sign of the coupling constant
specifies the character of the singularities of the am-
plitude. If λ ≤ 0, the pole of the amplitude corre-
sponds to a bound (or a virtual) state in the system of
two particles, the parameters of this state being xR =
0 and xI = 1 −

√
λ. If λ > 0, then the amplitude has

poles at the points xres = ±xR + xI , where λ = x2
R

and xI = 1. Thus, the inverse range β of forces and
the coupling constant λ determine unambiguously
resonances and the properties of the nuclear ampli-
tude.

However, additional forces of Coulomb repulsion
act between the particles, and this repulsion can
change, as is well known, the resonance parameters
substantially. In actual practice, we know the param-
eters of a shifted resonance rather than the parame-
ters of the bare resonance. In this case, it is therefore
necessary to invoke an inverse procedure—knowing
the energy and the width of the observed resonance,
one determines the position of the pole singularity
of the amplitude in the absence of Coulomb forces
and, accordingly, the parameters of the underlying
nuclear potential. Within the potential model being
considered, this can readily be done, for example, on
the basis of the condition in (19) and expression (18).

With the aid of (18), we obtain

AC(Z) =
4
π

∞∫
0

x2dx

(1 + x2)2
FC(x)

x2
Z − x2 + iγ

, (26)
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where x2
Z = mαZ/β

2 and the function FC(x) reflects
the modification of nuclear form factors that is in-
duced by Coulomb forces (y = 2π/ζx),

FC =
y

1 − exp(−y)exp
{
−y
(

1 − 2
π

arctan(x)
)}

.

(27)

By using the small parameter xI/xR ∼ −0.185 ×
10−4 of the problem, we will determine the roots
of Eq. (18) numerically. Here, an analytic continua-
tion to the lower half-plane of the complex plane of
k does not involve any difficulties, so that relevant
estimations are straightforward by virtue of a pole
dominance. For the potential of purely nuclear forces,
one readily obtains the values of β ∼ 0.2784 fm−1

and λ ∼ −5.38. It is noteworthy that, although the
coupling constant corresponds to attractive rather
than repulsive forces, these values are close to typical
nuclear-parameter values.

It is well known that there are no bound states
in the system of two alpha particles. Therefore, it is
possible that a potential involving a state forbidden
by the Pauli exclusion principle is realized here. This
nuclear potential, supplemented with Coulomb repul-
sion forces, generates a very narrow quasistationary
state.

4. CONCLUSION

It is important to note that, even in the case of
resonances close to the physical region, the character
of the Coulomb shifts of scattering resonances is de-
termined by the dimensionless parameters xres and ζ
characteristic of the system, which are related both to
Coulomb quantities and to basic nuclear quantities.

The examples considered above have revealed that
relations (12) and (13) and their model form (19) can
be used in practical calculations. First of all, this con-
cerns the description of pronounced pole singularities.
This is exemplified by the resonances in the (n, α) and
(p, α) systems.

It is clear that the n 6Li and p 6Li systems are
more complicated than the model used here to simu-
late them—they feature a greater number of reaction
channels and a greater number of singularities in the
scattering amplitudes. However, the 6Li nucleus has
a pronounced cluster structure; owing to this, the
respective estimates of the Coulomb shift of a single
isolated low-energy resonance proved to be quite sat-
isfactory.

In more complicated cases, it seems necessary to
take into account a few close singularities (poles)—
that is, to introduce higher rank potentials in the
respective analysis.
5
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In the model problem of two alpha particles, the
Coulomb shift of the resonance width revealed a non-
trivial behavior, this probably reflecting the intricate
character of the interaction in this system at ultralow
energies. At the same time, the nuclear forces them-
selves preserved conventional nuclear scales. This
fact is of importance in the problems of the stellar
synthesis of light nuclei.

The main objective of the present study was to
derive simple relations for estimating resonance shifts
and to demonstrate the viability of these relations by
considering simple examples.

These relations are also of use in determining the
properties of resonances in more complicated nuclear
systems. At the first step, one can determine the
positions of resonances and their width from calcula-
tions allowing for only nuclear forces, whereupon one
can employ the relations in question to estimate the
resonance-level shifts induced by Coulomb forces.
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Abstract—The investigation of nuclear reactions near the Coulomb barrier poses a number of problematic
issues which have remained unsolved for a long time: The out-of-phase problem between theoretical
predictions and experimental data, the reproduction of the oscillatory structure near the Coulomb barrier,
and the consistent description of angular distributions together with the excitation functions data are just
some of these issues. To address and overcome them, we examine the elastic scattering of the 12C + 24Mg
system within the framework of the optical model with two small potentials in addition to the nuclear
potential. The experimental data have been analyzed in the laboratory system from 16.0 to 24.0 MeV and
excellent agreement between theoretical results and the measured experimental data has been obtained
by using this modified optical potential. We show that the presence of the two small additional potentials
creates a deepening in the surface region of the nuclear potential, which is very effective for the interference
of the internal and barrier waves. This work is important in showing the sensitivity of the cross section to
the fine details of the optical potential. It is also argued that the two small additional potentials take into
account the coupling effect like that of the coupled channels and as a result reduce the strength of the
imaginary potential. In this context, the results of the optical model are compared with that of the coupled
channels. c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

The elastic and inelastic scattering of nα-type nu-
clei which present a strongly oscillating backward rise
in angular distributions and very structured excitation
functions at both forward and backward angles have
been studied extensively and research on these topics
is still being conducted. A large body of experimen-
tal data has been accumulated from the systematic
studies of such reactions and a number of problems
have continued to plague the study of these systems.
The explanation of anomalous large-angle-scattering
data, the reproduction of the oscillatory structure near
the Coulomb barrier, and the out-of-phase problem
between theoretical predictions and experimental da-
ta are just some of them.

In this context, the 12C + 24Mg reaction [1–5]
has been extensively investigated both experimen-
tally and theoretically. Conventional optical-model
analyses with shallow or deep potentials, either fold-
ing or phenomenological, have difficulty in explaining
all or some of the experimental data [1, 2, 5]. The
experimental data show striking oscillatory features
at forward, intermediate, and backward angles. A
similar oscillatory structure is also observed in the
16O + 28Si system, and the standard method has

∗The text was submitted by the authors in English.
1063-7788/05/6807-1153$26.00
also failed to describe certain features of the experi-
mental data.

A variety of theoretical approaches, based on dy-
namical models or purely phenomenological assump-
tions, have been proposed to explain or merely re-
produce the experimental data [6]. However, although
most of those descriptions give reasonably good fits to
the angular distributions, and a few fit the elastic exci-
tation functions, there is as yet no satisfactory physi-
cal explanation of all the observed phenomena. Theo-
retical frameworks proposed so far range from the oc-
currence of possibly overlapping shape resonances [7]
and the scattering from surface-transparent optical
potentials [8] to more exotic effects like explicit parity
dependence of the ion–ion potential [9, 10].

The failure of these theoretical models might be
due to the way the problem is modeled. That is to
say, in the elastic and inelastic scattering of two nu-
clei, the projectile (Ap) or the target (At) nuclei may
exist in any one particular excited state from among
an infinite number of excited states, as well as in
their ground state. In order to describe the scatter-
ing process fully and accurately, one would have to
model all the different couplings to all the different
excited states of Ap and At and, furthermore, to all
the different mass partitions. This is an insurmount-
able task and therefore an approximation has to be
made in practice. In modeling such as the optical
c© 2005 Pleiades Publishing, Inc.
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Fig. 1. Interaction potential between 12C and 24Mg vs. the separation R for various values of the orbital angular-momentum
quantum number l.
model, the distorted-wave Born approximation, or the
coupled-channel one, the infinite sets of equations are
in fact truncated to a relatively few channels, which
are theoretically expected or known by experiment
to be strongly coupled to the entrance channel. The
effect of other channels is taken into account using
a complex optical potential (optical model) or a few
excited states included in the coupled-channel calcu-
lations in addition to the complex potential. Further-
more, although the qualitative features of the optical
potential are well determined, there is still ambiguity
in determining its fine details.

Therefore, in this study, we have carried out notch
tests for the different regions of the optical potential
to determine the sensitivity of the calculations to the

Table 1.The parameters of the two small additional poten-
tials

U1, MeV R1, fm a1, fm U2, MeV R2, fm a2, fm

10.14 5.84 0.187 3.8 7.19 0.31
PH
optical potential. We have noticed that the light–
heavy ion reactions are extremely sensitive to the
shape of the nuclear potential in the surface region.
By noticing this sensitivity, we have introduced two
small potentials whichmodify the shape of the nuclear
potential in the optical-model calculations. We have
then explained themodification of the optical potential
by adding the two small additional potentials in the
surface region and have introduced our optical model
as well as potential parameters. In the paper, we show
the results of the analyses in Section 3 from Elab =
16.0 to 24.0 MeV and compare our results with the
coupled-channel calculations. The effect of the two
small potentials and the dispersion relation between
real and imaginary potentials are also discussed in
this section. Finally, our conclusion is given in Sec-
tion 4.

2. THE MODEL
With two small additional potentials [U(r) = U1 +

U2], the total real potential is given as
Vtot(r) = VNucl(r) + U(r)︸ ︷︷ ︸

Real potential

+VCoul(r) + VCentr(r).

(1)
YSICS OF ATOMIC NUCLEI Vol. 68 No. 7 2005
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Fig. 2. The shapes of two small additional potentials U1 (dotted curve) and U2 (solid curve). The inset shows their effects on
the nuclear potential with a dashed curve.
The nuclear potential is assumed to have the square
of a Woods–Saxon shape taken as

VNucl(r) =
−V0

(1 + exp(r −R)/a)2
, (2)

where V0 = 323.5 MeV and R = r0(A
1/3
p +A

1/3
t )

with r0 = 0.848 fm and a = 1.3 fm. The volume
integral of the real potential is 289.28 MeV fm3. The
parameters of the nuclear potential are fixed as a
function of energy and kept constant in the present
calculations, although it has been observed that small
changes could improve the quality of the fits.

The Coulomb potential [11] due to a charge Zpe
interacting with a charge Zte, distributed uniformly
over a sphere of radiusRCoul, is also added:

VCoul(r)

=




1
4πε0

ZpZte
2

r
, r ≥ RCoul, (3)

1
4πε0

ZpZte
2

2RCoul

(
3 − r2

R2
Coul

)
, r < RCoul, (4)

where RCoul = 6.2 fm is the Coulomb radius, and Zp
and Zt denote the charges of the projectile and the
target nuclei, respectively.
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 7 2005
The sum of the nuclear, Coulomb, and centrifugal
potentials is shown in Fig. 1 for various values of the
orbital angular momentum. The superposition of the
attractive and repulsive potentials results in the for-
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Table 2.The parameters and volume integrals of the imag-
inary potentials and χ2 values for some of the energies
studied (note that 10% error has been assumed for the
experimental data)

Elab,
MeV

WV ,
MeV

WS ,
MeV

JV ,
MeV fm3

JS ,
MeV fm3 χ2

16.0 1.0 1.0 0.051 1.004 1.43

17.0 3.0 1.0 0.153 1.004 3.06

18.5 5.0 5.0 0.256 5.020 1.37

19.0 7.0 7.0 0.358 7.028 4.23

19.5 9.50 9.0 0.486 9.037 2.92

20.0 17.50 15.0 0.596 15.061 2.03

20.5 14.50 13.0 0.741 13.053 1.26

21.0 15.50 15.0 0.793 15.061 1.30

21.5 18.50 17.0 0.946 17.069 2.58

22.0 19.50 18.0 0.997 18.073 0.78

22.5 20.50 19.0 1.049 19.077 3.62

23.0 22.00 20.0 1.125 20.081 3.73

23.5 23.50 23.0 1.202 23.093 1.74

24.0 25.50 25.0 1.304 25.102 3.74

mation of a potential pocket, which is very important
for the interference of the barrier and internal waves,
which creates the oscillatory structure observed in
the cross section. The width and depth of the pocket
depend on the orbital angular-momentum quantum
number for a given nuclear potential.

Two small additional potentials are the derivatives
of the Woods–Saxon shape

U(r) = 4U1a1df(r,R1, a1)/dr (5)

+ 4U2a2df(r,R2, a2)/dr,

f(r,Ri, ai) =
1

(1 + exp((r −Ri)/ai))
. (6)

Their parameters are shown in Table 1. As shown
in the inset of Fig. 2, they create two minima in the
nuclear potential between ∼5.8 and ∼7.19 fm.

The imaginary part of the potential was taken as
the sum of a Woods–Saxon volume and the surface
potential [12]:

W (r) = −WV f(r,RV , aV ) (7)
PH
+ 4WSaSdf(r,RS , aS)/dr,

f(r,R, a) =
1

(1 + exp((r −R)/a))
(8)

with rV = 0.25 fm, aV = 0.326 fm and rS = 0.70 fm,
aS = 0.42 fm. The depths and volume integrals of the
imaginary potentials are shown in Table 2, and for
Elab = 21 MeV, they are displayed in Fig. 3.

3. THE RESULTS

Using this optical model with the above-described
modifications in the nuclear potential, we have ana-
lyzed the experimental data from 16.0 to 24.0 MeV
in the laboratory system for 12C + 24Mg elastic scat-
tering. The comparison of the experimental data and
the optical model fits are shown in Fig. 4. The results
of the coupled-channels calculations are also shown
in these figures for some of the energies studied for
comparison purposes. The comparison of the optical-
model calculations (solid curves) with the coupled-
channel calculations (dashed curves) reveals that the
optical-model results obtained by two small addi-
tional potentials are as good as or even better than
the coupled-channel calculations.

However, it should be pointed out here that, with
the standard optical-model calculations without two
small additional potentials, we could not reproduce
the oscillatory structure or obtain the correct phase
for the experimental data. The oscillations in the
theoretical results are completely out of phase with
the measured ones even at intermediate angles.
This is demonstrated in Fig. 5 at 21.0 MeV. Figure
5d presents the cross sections obtained when both
potentials are omitted.

The effect of the two small potentials on the nu-
clear potential is shown in Fig. 2. As mentioned
above, they create two minima in the nuclear poten-
tial between ∼5.8 and ∼7.19 fm, and as we argued
in [13], one way to understand the effect of these
potentials is in terms of the interference between the
internal and barrier waves that correspond to a de-
composition [14–16] of the scattering amplitude into
two components, the inner and external waves. The
inner wave comes from the reflection at the inner
face of the total real potential pocket and the external
wave comes from the reflection at the outer barrier
(see Fig. 1 for the pocket in the total real potential).
The presence of the two small potentials affects the
phases and magnitudes of these internal and external
components, and, as a result, we obtain excellent
agreement with experimental data. We observe from
the parameters in Table 1 that the two small additional
potentials are not strong enough to produce pockets
in the total real potential, although they have a very
significant effect on the scattering.
YSICS OF ATOMIC NUCLEI Vol. 68 No. 7 2005
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Fig. 4. The elastic scattering results obtained by using
the optical-model calculations with two small additional
potentials for the 12C+24Mg system (solid curves). The
dashed curves show the results of the coupled-channel
calculations.
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when both potentials are ignored [13].

Another way to look at the effect of the two small
potentials is to plot the nuclear-plus-coupling poten-
tial (VCC) in comparison with the nuclear potential
and nuclear potential plus U1 and U2. VCC consists
of the nuclear potential plus the coupling potential,
which is often treated to the first order and can be
given as

VCC = VNucl(r) + U(r) +
1
4π
βR

dVNucl
dr

, (9)

where βR is the deformation length of the target
nucleus. We see in Fig. 6 that VCC departs from the
nuclear potential in the surface region as a result of
the effect of the coupling potential. We observe the
similar effect for the two small additional potentials
and both potentials generate similar results.
05
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Fig. 6. The nuclear (VNucl) (dash-dotted curve), nuclear-plus-coupling (VCC) (solid curve), and coupling potentials (dashed
curve). The inset shows the comparison of VNucl (dash-dotted curve), VCC (solid curve), and VNucl plus two small potentials
(U1 + U2) (dotted curve).
The relative significance of the volume and surface
components of the imaginary potential was evaluated
for all the energies. For higher energies, omitting the
volume term predominantly affected the amplitude of
the cross section at large angles. However, this effect
was small and negligible at lower energies. Omitting
the surface term increased the cross sections at large
angles, which were as much as two orders of magni-
tude. It was observed that this term had a significant
effect at all the considered energies. This is clearly
seen from the volume integrals of the imaginary po-
tentials from Table 2.

We have also examined the dispersion relation be-
tween the real and imaginary potentials. The volume
integrals of the real and imaginary potentials are cal-
culated by using following formulas:

JV (E) =


 4π
ApAt

R∫
0

V (r,E)r2dr


 , (10)
PH
JW (E) =


 4π
ApAt

R∫
0

W (r,E)r2dr


 .

From Table 2, it can be perceived that the strength
of the depth of the imaginary potential increases
rapidly at the top of the Coulomb barrier. However,
we do not see a rapid change in the real potential
parameters. It is expected that the real potential
should accompany the rapid change in the parameters
of the imaginary potential according to the dispersion
relation. The reason why we do not observe this rapid
variation might be due to the presence of the two
small additional potentials. The two additional po-
tentials take into account the coupling effect between
different channels; therefore, both remove the rapid
variation of the real potential parameters and reduce
the strength of the imaginary potential. The code
FRESCO [17] has been used for all the calculations.
YSICS OF ATOMIC NUCLEI Vol. 68 No. 7 2005
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4. SUMMARY

We have shown a consistent description of the
elastic scattering of the 12C+ 24Mg system from 16.0
to 24.0 MeV in the laboratory system by using the
modified-optical-model calculations. The theoretical
description of such systems has been very difficult
due to the dominance of Coulomb interaction for
bombarding energies close to or below the top of the
Coulomb barrier as the elastic scattering cross sec-
tions approach the Rutherford values and tend to be
featureless [11]. When the bombarding energy is over
the Coulomb barrier, Coulomb excitation provides the
major part of the reaction and absorption cross sec-
tions, and the effect of this absorption is represented
by a long-range imaginary potential, which shadows
the short-ranged nuclear terms. The absorption in
higher partial waves beyond the grazing one causes
the cross section to fall below the Rutherford value;
Coulomb–nuclear interference occurs and, as a re-
sult, reduces the sensitivity of the scattering to the
nuclear interaction.

Below and above the Coulomb barrier, the 12C +
24Mg system we examined in this paper shows all
these features: The experimental data show very os-
cillatory features near the Coulomb barrier at very low
energies and a striking backward rise and oscillatory
features at forward, intermediate, and backward an-
gles at high energies.

Similar to previous analyses performed so far, we
failed to describe certain aspects of the data with-
in the standard optical-model calculations. We then
performed notch tests to see which part of the op-
tical potential is more effective on the scattering of
these two ions. We observed that the light–heavy
ion reactions such as the one presented in this paper
are very sensitive to the shape of the nuclear po-
tential in the surface region. By taking this feature
into account, we used two small additional potentials,
which modify the shape of the nuclear potential in the
surface region, and obtained excellent agreement with
the experimental data over a wide energy range. The
agreement between the optical-model and coupled-
channel calculations in the results is very important
in the sense that two additional potentials have effects
very similar to that of the coupling of excited states to
the ground state in the coupled-channel method.

It should be noted here that we have introduced
two additional potentials in a phenomenological way
by examining the sensitivity of the scattering to the
optical potential. These two additional potentials are
very small and do not create a pocket in the total
nuclear potential, but they are very effective for the
interference of the barrier and internal waves, which
creates the oscillatory structure observed in the cross
section. It could be very interesting to determine the
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 7 200
potential by means of Sl → V inversion correspond-
ing to the elastic scattering S matrix. This allows us
to identify the dynamical polarization potential, and it
is the properties of this which we can then relate to
the characteristics of the coupling potential. Further
work in order to obtain the inverted optical potential
from the S matrix is still in progress.
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5. R. L. Filho, A. Lépine-Szily, A. C. C. Villari, and

O. P. Filho, Phys. Rev. C 39, 884 (1989).
6. P. Braun-Munzinger and J. Barrette, Phys. Rep. 87,

209 (1982).
7. J. Barrette,M. J. LeVine, P. Braun-Munzinger, et al.,

Phys. Rev. Lett. 40, 445 (1978).
8. S. Kahana, B. T. Kim, and M. Mermaz, Phys. Rev. C

20, 2124 (1979).
9. D. Dehnhard, V. Shkolnik, and M. A. Franey, Phys.

Rev. Lett. 40, 1549 (1978).
10. S. Kubono, P. D. Bond, and C. E. Thorn, Phys. Lett.

B 81, 140 (1979).
11. G. R. Satchler, Direct Nuclear Reactions (Oxford

Univ. Press, Oxford, 1983); Introduction to Nuclear
Reactions (Macmillan, London, 1980).

12. A. M. Kobos and G. R. Satchler, Nucl. Phys. A 427,
589 (1984).

13. I. Boztosun, Phys. Rev. C 66, 024610 (2002); I. Boz-
tosun et al., Balkan Phys. Lett. 10, 173 (2002).

14. S. Y. Lee, Nucl. Phys. A 311, 518 (1978).
15. D.M. Brink and N. Takigawa, Nucl. Phys. A 279, 159

(1977).
16. I. Boztosun and W. D. M. Rae, Phys. Rev. C 64,

054607 (2001); Phys. Lett. B 518, 229 (2001).
17. I. J. Thompson, FRESCO, A Coupled-Channels

Code (unpublished).
5



Physics of Atomic Nuclei, Vol. 68, No. 7, 2005, pp. 1160–1170. From Yadernaya Fizika, Vol. 68, No. 7, 2005, pp. 1209–1219.
Original English Text Copyright c© 2005 by Agababyan, Ammosov, Atayan, Grigoryan, Gulkanyan, Ivanilov, Karamyan, Korotkov.

ELEMENTARY PARTICLES AND FIELDS
Experiment
A Study of the Nuclear-Medium Influence on Transverse Momentum
of Hadrons Produced in Deep-Inelastic Neutrino Scattering*

N. M. Agababyan1), V. V. Ammosov, M. Atayan2), N. Grigoryan2),
H. Gulkanyan2), A. A. Ivanilov**, Zh. Karamyan2), and V. A. Korotkov

Institute for High Energy Physics, Protvino, Moscow oblast, 142284 Russia
Received September 21, 2004

Abstract—The influence of nuclear effects on the transverse momentum (pT ) of neutrino-produced
hadrons is investigated using the data obtained with the SKAT propane–freon bubble chamber irradiated
in the neutrino beam (with Eν = 3−30 GeV) at the Serpukhov accelerator. It has been observed that the
nuclear effects cause an enhancement of 〈p2

T 〉 of hadrons produced in the target fragmentation region at low
invariant mass of the hadronic system (2 < W < 4 GeV) and at low energies transferred to the hadrons
(2 < ν < 9 GeV). At higher W and ν, no influence of nuclear effects on 〈p2

T 〉 is observed. Measurement
results are compared with predictions of a simple model, incorporating secondary intranuclear interactions
of hadrons, which qualitatively reproduces the main features of the data. c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

The experimental study of the hadron produc-
tion in deep-inelastic scattering (DIS) of leptons
on nuclei is an important source of information on
the spacetime evolution of the leptoproduced quark
strings. Depending on the features of the latter, the
nuclear medium influences the inclusive spectra of
final hadrons differently, in particular, affecting their
yields and the mean transverse momentum in various
domains of the phase space. Hitherto, no detailed
data inferred in the same experiment are available for
transverse momentum distributions in the lepton–
nucleus DIS. This gap is partly filled by the present
work, where the influence of the nuclear effects on the
transverse momentum of neutrino-produced hadrons
is explored using the data collected in the neutrino
experiment with the bubble chamber SKAT.

In Section 2, the experimental procedure is briefly
described. The experimental results are presented in
Section 3, discussed in Section 4, and summarized in
Section 5.

2. EXPERIMENTAL PROCEDURE

The experiment was performed with the SKAT
bubble chamber [1], exposed to a wideband neutrino

∗The text was submitted by the authors in English.
1)Joint Institute for Nuclear Research, Dubna, Moscow
oblast, 141980 Russia.

2)Yerevan Physics Institute, Armenia.
**e-mail: ivanilov@ihep.ru
1063-7788/05/6807-1160$26.00
beam obtained with 70-GeV primary protons from
the Serpukhov accelerator. The chamber was filled
with a propane–freon mixture containing 87 vol %
propane (C3H8) and 13 vol % freon (CF3Br) with
the percentage of nuclei H : C : F : Br = 67.9 : 26.8 :
4.0 : 1.3%. A 20-kG uniform magnetic field was pro-
vided within the operating chamber volume.

Charged-current interactions containing a neg-
ative muon with momentum pµ > 0.5 GeV are se-
lected. Other negatively charged particles are con-
sidered to be π− mesons. Protons with momentum
below 0.6–0.65 GeV/c and a fraction of protons with
momentum up to 0.85 GeV/c were identified by their
stopping in the chamber. More details concerning
the experimental procedure, in particular, the event-
selection criteria and the reconstruction of the neu-
trino energyEν , can be found in our previous publica-
tions [2–5]. Each event is given a weight (depending
on the charged particle multiplicity) which corrects
for the fraction of events excluded due to improper
reconstruction.

For further analysis, the events with 3 < Eν <
30 GeV were accepted, provided that the invariant
mass of the hadronic system W > 2 GeV and the
transfer momentum squared Q2 > 1 (GeV/c)2. The
full sample consists of 2222 events (3167 weighted
events). The mean values of the kinematical variables
are 〈Eν〉 = 10.8 GeV, 〈Q2〉 = 3.6 (GeV/c)2, 〈W 〉 =
3.0 GeV, 〈W 2〉 = 9.5 GeV2, and, for the energy ν
transferred to the hadronic system, 〈ν〉 = 6.5 GeV.

The whole event sample is subdivided, using
several topological and kinematical criteria [4, 5],
c© 2005 Pleiades Publishing, Inc.
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Fig. 1. The p2
T distributions (a) of h+ and π− for the whole event sample, (b) of h+ forBN and BS subsamples, and (c) of π−

forBN andBS subsamples. The curves are results of the fit (see text).
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results of the fit (see text).
into three subsamples: the “cascade” subsample BS
with a sign of intranuclear secondary interactions
and the “quasiproton” (Bp) and “quasineutron” (Bn)
subsamples, the latter two composing the “quasi-
nucleon” subsample (BN ≡ Bp +Bn), for which
no sign of secondary interactions is observed. The
corresponding event numbers for the BS, Bp, and
Bn subsamples are 1190, 477, and 555 (weighted
numbers NS = 1736, Np = 680, and Nn = 751),
respectively.

About 40% of subsample Bp is contributed by in-
teractions with free hydrogen. Weighting the “quasi-
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 7 200
proton” events with a factor of 0.6, one can compose
a “pure” nuclear sample: BA = BS +Bn + 0.6Bp
(with an effective atomic weight Ā = 28). It can
also be shown [4, 5] that a subsample composed as
BD = Bn + 0.6Bp approximately corresponds to the
neutrino–deuterium interactions.

3. EXPERIMENTAL RESULTS

In the present analysis, the identified protons are
not included. All the remaining positively (labeled as
h+) and negatively (labeled as π−) charged hadrons
5



1162 AGABABYAN et al.
Table 1. The mean values of 〈p2
T 〉 in (GeV/c)2 of h+ and π− for several subsamples and various regions of xF andW 2

〈p2
T 〉N 〈p2

T 〉S 〈p2
T 〉D 〈p2

T 〉A
4 < W 2 < 25 GeV2

h+(xF > 0) 0.180 ± 0.006 0.190 ± 0.007 0.182± 0.007 0.187± 0.005

π−(xF > 0) 0.129 ± 0.009 0.128 ± 0.008 0.131± 0.009 0.129± 0.006

h+(xF < 0) 0.207 ± 0.009 0.268 ± 0.009 0.205± 0.009 0.252± 0.007

π−(xF < 0) 0.126 ± 0.009 0.141 ± 0.008 0.127± 0.009 0.137± 0.006

4 < W 2 < 9 GeV2

h+(xF > 0) 0.163 ± 0.007 0.170 ± 0.007 0.161± 0.007 0.166± 0.005

π−(xF > 0) 0.101 ± 0.009 0.119 ± 0.010 0.104± 0.009 0.113± 0.007

h+(xF < 0) 0.189 ± 0.011 0.266 ± 0.011 0.186± 0.011 0.245± 0.008

π−(xF < 0) 0.106 ± 0.009 0.127 ± 0.009 0.108± 0.009 0.122± 0.007

9 < W 2 < 25 GeV2

h+(xF > 0) 0.205 ± 0.012 0.217 ± 0.013 0.214± 0.013 0.216± 0.009

π−(xF > 0) 0.154 ± 0.015 0.134 ± 0.013 0.156± 0.016 0.144± 0.010

h+(xF < 0) 0.228 ± 0.015 0.271 ± 0.014 0.229± 0.016 0.259± 0.011

π−(xF < 0) 0.149 ± 0.018 0.157 ± 0.019 0.151± 0.018 0.155± 0.011

Table 2. The mean multiplicities of h+ and π− for several subsamples and various regions of xF andW 2

〈n〉N 〈n〉S 〈n〉D 〈n〉A
4 < W 2 < 25 GeV2

h+(xF > 0) 1.441 ± 0.023 1.198 ± 0.023 1.402± 0.023 1.279± 0.017

π−(xF > 0) 0.449 ± 0.019 0.412 ± 0.017 0.474± 0.019 0.437± 0.013

h+(xF < 0) 0.725 ± 0.023 1.303 ± 0.036 0.677± 0.023 1.052± 0.024

π−(xF < 0) 0.325 ± 0.017 0.541 ± 0.022 0.339± 0.018 0.460± 0.015

4 < W 2 < 9 GeV2

h+(xF > 0) 1.349 ± 0.026 1.106 ± 0.027 1.319± 0.026 1.193± 0.019

π−(xF > 0) 0.325 ± 0.019 0.309 ± 0.018 0.360± 0.021 0.329± 0.014

h+(xF < 0) 0.632 ± 0.027 1.172 ± 0.040 0.589± 0.027 0.935± 0.027

π−(xF < 0) 0.277 ± 0.019 0.480 ± 0.024 0.295± 0.020 0.405± 0.016

9 < W 2 < 25 GeV2

h+(xF > 0) 1.596 ± 0.042 1.349 ± 0.042 1.545± 0.042 1.425± 0.030

π−(xF > 0) 0.660 ± 0.036 0.579 ± 0.032 0.671± 0.036 0.615± 0.024

h+(xF < 0) 0.883 ± 0.043 1.516 ± 0.066 0.829± 0.043 1.248± 0.044

π−(xF < 0) 0.408 ± 0.032 0.640 ± 0.041 0.417± 0.033 0.553± 0.028
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 7 2005
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Fig. 3. The W 2 dependence of 〈p2
T 〉 for BN and BS subsamples (a) at xF > 0 and (b) at xF < 0 and (c) of the difference

〈p2
T 〉A − 〈p2

T 〉D.
are given the pion mass mπ. The transverse mo-
mentum pT of hadrons is defined with respect to the
weak-current direction given by the vector difference
of the neutrino and muon momenta. In Fig. 1a, the p2

T

distributions for h+ and π− are plotted for the whole
sample of events. Both distributions are fitted to the

form exp[−b(p2
T +m2

π)
1/2], with parameters b(h+) =

5.57 ± 0.06 GeV−1 and b(π−) = 7.48 ± 0.15 GeV−1,
respectively. The latter are close to those extracted
from the neutrino interactions with a heavier compos-
ite target (CF3Br) at the same incident energies [6].
The p2

T distributions for the BS subsample are less
steep than for the BN subsample (both shown in
Figs. 1b and 1c), owing to an additional transverse
momentum acquired by final hadrons in the in-
tranuclear scattering processes. These distributions
can also be fitted to the same form, resulting in
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 7 200
bS(h+) = 5.30 ± 0.08 GeV−1 and bS(π−) = 7.22 ±
0.21 GeV−1 for the “cascade” subsample, which are
about 10–15% smaller than those in the “quasin-
ucleon” subsample, bN (h+) = 6.06 ± 0.10 GeV−1

and bN (π−) = 7.99 ± 0.25 GeV−1. Figure 2 shows
the p2

T distributions for charged hadrons (h±) pro-
duced in the current quark and target fragmentation
regions (with Feynman variable xF > 0 and xF <
0, respectively). While at xF > 0 the parameter b
is almost the same for subsamples BN and BS ,
bN (xF > 0) = 6.57 ± 0.12 (GeV/c)−1 and bS(xF >

0) = 6.43± 0.13 (GeV/c)−1, at xF < 0 bS(xF < 0) =
5.29 ± 0.10 (GeV/c)−1 is 16% smaller than bN (xF <

0) = 6.13 ± 0.15 (GeV/c)−1. The values of bN (xF >
0) and bN (xF < 0) for the “quasinucleon” subsample
BN are consistent with those measured in νp [7] and
νD [8] interactions at somewhat higher 〈W 2〉.
5
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T 〉D.
More informative (with respect to the nuclear
effects) are the values of 〈p2

T 〉 collected in Table 1
for several subsamples and various regions of xF and
W 2. As can be seen, the nuclear effects influence
faintly the 〈p2

T 〉 for π− mesons, as well as for h+ with
xF > 0, in both low (4 < W 2 < 9 GeV2) and high
(9 < W 2 < 25 GeV2) regions ofW 2. On the contrary,
the 〈p2

T 〉 for h+ with xF < 0 increases by ∆(p2
T ) =

〈p2
T 〉S − 〈p2

T 〉N = 0.061 ± 0.013 (GeV/c)2 due to
the secondary intranuclear interactions. One should
emphasize that this rise is more prominent at W 2 <

9 GeV2, where ∆(p2
T ) = 0.077 ± 0.016 (GeV/c)2,

than at W 2 > 9 GeV2, where ∆(p2
T ) = 0.043 ±

0.021 (GeV/c)2. This is in accordance with the recent
PH
observations [4, 5, 9] that the effects of the secondary
intranuclear interactions weaken with increasingW 2.

Another consequence of the intranuclear inter-
actions is that the region of xF > 0 turns out to
be somewhat depleted, while the region of xF < 0
is enriched for the subsample BS relative to the
subsampleBN . This can be clearly seen from the data
on the mean multiplicities presented in Table 2. The
depletion and enrichment effects can be characterized
by the ratios ρ(xF > 0) = 〈n(xF > 0)〉S/〈n(xF >
0)〉N and ρ(xF < 0) = 〈n(xF < 0)〉S/〈n(xF < 0)〉N ,
respectively. For π− mesons, the depletion effect is
rather weak, ρ−(xF > 0) = 0.92 ± 0.05, while the
multiplicity gain at xF < 0 reaches ρ−(xF < 0) =
1.66 ± 0.11. Slightly larger effects are observed for
YSICS OF ATOMIC NUCLEI Vol. 68 No. 7 2005
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positively charged hadrons: ρ+(xF > 0) = 0.83 ±
0.02 and ρ+(xF < 0) = 1.80 ± 0.08. Note that the
latter value can be somewhat influenced by the
contamination from the nonidentified recoil protons
emitted during the secondary interaction processes.
The lower limit of the mean multiplicity of these
protons, evaluated from the identification efficiency
for protons with 0.6 < pp < 0.85 GeV/c (almost
all having xF < 0), turns out to be about 5% of
〈nh+(xF < 0)〉S . The data of Table 2 also indicate
that the depletion and enrichment effects depend on
W only slightly.

To compare our data with the results of other
experiments, as well as to extract quantitative char-
acteristics of the secondary intranuclear interactions,
the data on 〈p2

T 〉, corresponding to νD and νA inter-
actions, 〈p2

T 〉D and 〈p2
T 〉A, respectively, are presented

in Table 1. The values of 〈p2
T 〉D and 〈p2

T 〉A are defined
as

〈p2
T 〉D =

0.6Np

ND
〈p2
T 〉p +

Nn

ND
〈p2
T 〉n, (1)

〈p2
T 〉A =

ND

NA
〈p2
T 〉D +

NS

NA
〈p2
T 〉S . (2)

Here,ND = Nn + 0.6Np,NA = NS +ND, and 〈p2
T 〉p

and 〈p2
T 〉n are the values of 〈p2

T 〉 for subsamples Bp
and Bn, respectively.

The average multiplicities 〈n〉A and 〈n〉D are de-
fined similarly (see Table 2). The measured values
of 〈p2

T 〉A − 〈p2
T 〉D and 〈n〉A − 〈n〉D will be compared

with theoretical predictions in Section 4.
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 7 200
The dependence of the mean value of 〈p2
T 〉 of

charged hadrons (combined h+ and π−) on the
DIS kinematical variables W 2 and ν is presented
in Figs. 3 and 4. It is seen from Fig. 3a that 〈p2

T 〉
for particles with xF > 0 increases with W 2, as was
observed in earlier investigations with neutrino and
muon beams [8–14]. For the considered range of
W 2, this rise is essentially caused by an increase in
the available phase space. With increasing W 2, the
QCD effects are predicted [15] to play a more and
more significant role in the rise of 〈p2

T 〉. The data
show (Figs. 3a, 3c) that the nuclear effects hardly
affect 〈p2

T 〉 at xF > 0. On the contrary, they cause a
significant increase in 〈p2

T 〉 at xF < 0 in the region of
W 2 < 15 GeV2, where the difference 〈p2

T 〉A − 〈p2
T 〉D

is about 0.04 (GeV/c)2 and practically independent
ofW 2.

The dependence of 〈p2
T 〉 on ν (see Fig. 4) reveals

analogous significant nuclear effects for particles with
xF < 0 in the region of ν < 9 GeV, where the differ-
ence 〈p2

T 〉A − 〈p2
T 〉D is around 0.03–0.05 (GeV/c)2.

At ν higher than 9 GeV, the nuclear effects on 〈p2
T 〉

are negligible. As for particles with xF > 0, the ef-
fects of secondary intranuclear interactions hardly
affect 〈p2

T 〉.
The dependence of 〈p2

T 〉 for charged hadrons on
their kinematical variables is presented in Figs. 5 and
6. The dependence of 〈p2

T 〉 on xF (Fig. 5a) has a
typical “seagull” form (cf., for example, [6, 11]) for
both BN and BS subsamples. For the latter, a small
5
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part (about 3%) of positively charged hadrons occupy
the region of xF < −1, kinematically forbidden for
reactions on a free nucleon (the so-called “cumu-
lative” region), where 〈p2

T 〉S reaches a rather high
value of 〈p2

T 〉S ∼ 0.6 (GeV/c)2. About one-third of
these cumulative hadrons are estimated to be non-
identified protons with 0.6 < pp < 0.85 GeV/c and
〈p2
T 〉 = 0.51 ± 0.06 (GeV/c)2. It is seen from Fig. 5b

that the influence of nuclear effects is significant only
at xF < −0.6, where the difference 〈p2

T 〉A − 〈p2
T 〉D is

about 0.07 ± 0.03 (GeV/c)2.

Figure 6 shows the dependences of 〈p2
T 〉N , 〈p2

T 〉S ,
and 〈p2

T 〉A − 〈p2
T 〉D on the variable z = Eh/ν, the

fraction of the current quark energy carried by the
PHY
hadron. The rise of 〈p2
T 〉N with z for forward hadrons

(Fig. 6c), observed earlier in [10, 11, 13], is mainly
caused by the intrinsic transverse momentum of the
current quark inside the nucleon [16] (see Section 4
for details). It is seen from Fig. 6b that the secondary
intranuclear interactions induce a significant differ-
ence of 〈p2

T 〉A − 〈p2
T 〉D in almost the whole range of

z. The rise of 〈p2
T 〉A − 〈p2

T 〉D at 0 < z < 0.3 is con-
tributed by particles with xF < 0 (cf. Fig. 6f), while its
fall at z > 0.3 is caused by the increasing contribution
of forward particles for which the difference 〈p2

T 〉A −
〈p2
T 〉D is rather small (Fig. 6d), in accordance with

recent observations in DIS of muons and positrons
on light and intermediate mass nuclei [17, 18].
SICS OF ATOMIC NUCLEI Vol. 68 No. 7 2005
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Table 3. The measured and predicted differences 〈n〉A − 〈n〉D at xF > 0 and xF < 0

W 2, GeV2 Particle type
〈n〉A − 〈n〉D

measured calculated

4 < W 2 < 9 h+(xF > 0) −0.123 ± 0.019 −0.136 ± 0.045

π−(xF > 0) −0.037 ± 0.015 −0.008 ± 0.032

h+(xF < 0) 0.375 ± 0.025 0.407 ± 0.084

π−(xF < 0) 0.121 ± 0.017 0.241 ± 0.069

9 < W 2 < 25 h+(xF > 0) −0.119 ± 0.036 −0.059 ± 0.041

π−(xF > 0) −0.056 ± 0.029 −0.006 ± 0.039

h+(xF < 0) 0.418 ± 0.048 0.284 ± 0.051

π−(xF < 0) 0.136 ± 0.032 0.186 ± 0.044

Table 4. The measured and predicted differences 〈p2
T 〉A − 〈p2

T 〉D at xF > 0 and xF < 0

W 2, GeV2 Particle type
〈p2

T 〉A − 〈p2
T 〉D, (GeV/c)2

measured calculated

4 < W 2 < 9 h+(xF > 0) 0.005 ± 0.006 0.003 ± 0.008

π−(xF > 0) 0.009 ± 0.008 0.001 ± 0.011

h+(xF < 0) 0.059 ± 0.009 0.032 ± 0.019

π−(xF < 0) 0.014 ± 0.008 0.036 ± 0.024

9 < W 2 < 25 h+(xF > 0) 0.002 ± 0.011 0.000 ± 0.012

π−(xF > 0) −0.012 ± 0.013 −0.002 ± 0.015

h+(xF < 0) 0.030 ± 0.013 0.010 ± 0.016

π−(xF < 0) 0.004 ± 0.008 0.016 ± 0.019
4. MODEL CALCULATION
AND DISCUSSION

The data on 〈p2
T 〉N of hadrons with xF > 0 in the

subsampleBN were checked for consistency with the
conventional picture of the quark string fragmenta-
tion (see, e.g., [16] for a review). According to the
latter, the z dependence of 〈p2

T 〉N for leading hadrons
(containing the current quark) can be parametrized
as [19]

〈p2
T 〉N = 〈p2

T 〉frag + z2〈k2
T 〉 + 〈p2

T 〉QCD, (3)

where 〈p2
T 〉frag is the contribution from the fragmen-

tation process, kT is the primordial transverse mo-
mentum of the current quark inside the nucleon, and
〈p2
T 〉QCD is the contribution of QCD effects (involving

hard gluon emission and qq̄ production). AtW 2 avail-
able in this experiment (W 2 < 25 GeV2), the latter
term can be approximately parametrized as [20]

〈p2
T 〉QCD = a(W 2 −W 2

0 ), (4)
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with a = 3.5 × 10−3 (GeV/c)2 andW 2
0 = 2 GeV2.

Figure 7 shows the z2 dependence for 〈p2
T 〉 of

positively charged hadrons in the current fragmen-
tation region for two intervals of W 2, W 2 < 9 GeV2

and W 2 > 9 GeV2 (containing approximately equal
statistics). The data for fast hadrons (with z2 > 0.16),
containing with a high probability the current quark,
are fitted to dependence (3). The QCD term in (3)
was fixed according to (4). At z2 > 0.16, the mean
value of 〈W 2〉 in the present experiment is prac-
tically independent of z2: 〈W 2〉 ≈ 6 GeV2, leading
to 〈p2

T 〉QCD = 0.014 (GeV/c)2 for the region W 2 <

9 GeV2, and 〈W 2〉 ≈ 14 GeV2, leading to 〈p2
T 〉QCD =

0.042 (GeV/c)2 for the regionW 2 > 9 GeV2. The re-
sults of the fit are plotted in Fig. 7 (top). The fitted val-
ues of 〈p2

T 〉frag and 〈k2
T 〉 turn out to be independent of

W 2 within statistical uncertainties: 〈p2
T 〉frag = 0.17 ±

0.03 (GeV/c)2 and 〈k2
T 〉 = 0.23 ± 0.10 (GeV/c)2 at
5
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Fig. 7. The z2 dependence of 〈p2
T 〉 and 〈p2

T 〉A − 〈p2
T 〉D of positively charged hadrons with xF > 0. The lines are the results

of the fit (see text). The two closed circles in the bottom figure are predictions for leading particles with 0.16 < z2 < 0.3 and
z2 > 0.3 atW 2 < 9 GeV2; the open circle is a prediction for particles with z2 > 0.2 atW 2 > 9 GeV2.
W 2 < 9 GeV2, and 〈p2
T 〉frag = 0.22 ± 0.07 (GeV/c)2

and 〈k2
T 〉 = 0.30 ± 0.19 (GeV/c)2 at W 2 > 9 GeV2.

The quoted values of 〈k2
T 〉 are consistent with those

extracted from the data on νp [21] and µp [22, 23] DIS
at higher W 2 (16 < W 2 < 400 GeV2). The values
of 〈p2

T 〉frag are also consistent with that estimated
in [21]; however, they somewhat underestimate the
value of 〈p2

T 〉frag = 0.274± 0.059 extracted from e+e−

annihilation at LEP energies [24].

In Fig. 7 (bottom), the difference 〈p2
T 〉A − 〈p2

T 〉D
versus z2 is plotted. The data at low W 2, W 2 <
9 GeV2, indicate that the additional transverse mo-
mentum, acquired by forward hadrons (with xF > 0)
due to the intranuclear interactions, slightly increases
PH
with z, while at larger W 2 > 9 GeV2 no significant
nuclear effects are observed.

Below, an attempt is undertaken to describe the
obtained experimental data on differences 〈n〉A −
〈n〉D and 〈p2

T 〉A − 〈p2
T 〉D, which characterize the

strength of nuclear effects, with the help of a sim-
ple model incorporating the secondary intranuclear
interactions of produced pions [25]. We assume that
the formation length lπ of pions is determined [26] in
the framework of the Lund fragmentation model [27]:

lπ = νz

[
ln(1/z2) − 1 + z2

1 − z2

]/
k, (5)

where k ≈ 1 GeV/fm is the quark string tension.
Expression (5) has a maximum at z ≈ 0.3 and be-
YSICS OF ATOMIC NUCLEI Vol. 68 No. 7 2005
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haves as lπ ≈ 2νz ln(0.61/z)/k at z < 0.2 and ap-
proximately (with an accuracy better than 20%) as
lπ ≈ ν(1 − z)/k at z > 0.5. The latter behavior (pre-
dicted also in [28]) was found to be consistent with
recent experimental data [4, 5, 29]. We assume that
a pion can interact in the nucleus, starting from the
distance lπ from the νN-scattering point. The model
considers both elastic and inelastic interactions of
pions with xF > 0 produced in the νN scattering and
having relatively largemomenta, while only the elastic
scattering of pions with xF < 0 (having small mo-
menta) is considered. The contribution from noniden-
tified recoil protons (the overwhelming part of which
occupy the region of xF < 0) is taken into account
also.

A comparison with the experimental data is given
in Tables 3 and 4. As can be seen from Table 3, a
reasonable consistency with the data on 〈n(xF >
0)〉A − 〈n(xF > 0)〉D is observed. Particularly, the
model predicts a stronger depletion for the yield of h+

than for π− in the forward hemisphere in agreement
with the data. The data description at xF < 0 is worse.
The model overestimates the enhancement of the
π− yield at W 2 < 9 GeV2 by a factor of 2, but is
in agreement with the data at W 2 > 9 GeV2 within
experimental uncertainties. On the other hand, the
predicted value of 〈nh+(xF < 0)〉A− 〈nh+(xF < 0)〉D
agrees with the measured one at W 2 < 9 GeV2, but
underestimates significantly that at W 2 > 9 GeV2.
Nevertheless, the model reproduces qualitatively the
nuclear depletion and enhancement effects for the
yield of h+ and π− and, in particular, predicts, in
accordance with the experimental observation, these
effects to be more significant for h+ than for π−.
The model describes satisfactorily the data on the
difference 〈p2

T 〉A − 〈p2
T 〉D (Table 4). In particular, the

model reproduces rather small values of this difference
at xF > 0, as well as the data for π− mesons with
xF < 0.

The predicted values of 〈p2
T 〉A − 〈p2

T 〉D for leading
particles (with z2 > 0.16) shown in Fig. 7 (bottom)
are, in agreement with the data, rather small and do
not contradict the trend of the latter with variation of
z2 andW 2.

Finally, one needs to note that, although the ap-
plied model reproduces the majority of the experi-
mental data [presented in Tables 3 and 4 and Fig. 7
(bottom)], it is rather crude and uses several simplified
assumptions which should be summarized: (i) the
calculations concerning the secondary intranuclear
interactions are performed for fixed average momenta
of π+ and π− mesons, p̄π±(xF > 0) and p̄π±(xF < 0),
instead of more extensive calculations averaged over
the momentum spectra; (ii) the second-order effects
of two or more intranuclear collisions of a pion are
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 7 200
neglected; (iii) the model does not incorporate the
production of hadronic resonances, in particular, ρ
mesons (composing about 10% of charged pions [30,
31]), with a proper spacetime structure of their forma-
tion, intranuclear interactions, and decay.

5. SUMMARY

New experimental data concerning the influence of
the nuclear medium on the transverse momentum of
neutrino-produced hadrons are presented.

The p2
T distribution of hadrons (both positively

and negatively charged) is less steep in “cascad-
ing” (and “nuclear”) than in “quasinucleon” (and
“quasideuteron”) interactions, while in the quark
fragmentation region (xF > 0) these subsamples
have just the same p2

T distributions.

The influence of the nuclear medium on the depen-
dence of 〈p2

T 〉 on kinematical variables of the DIS and
of final hadrons is studied. The nuclear effects leading
to an enhancement of 〈p2

T 〉 are more prominent for the
following ranges of variables:

for xF < 0 at W 2 < 15 GeV2 or ν < 9 GeV, while
no significant enhancement of 〈p2

T 〉 is observed at
higherW 2 or ν;

for xF < −0.6, while at xF > −0.6 the manifesta-
tion of nuclear effects is faint;

for practically the whole range of z.

The observed z2 dependence of 〈p2
T 〉N for fast

hadrons in the “quasinucleon” subsample follows
the conventional picture of the quark string frag-
mentation. The extracted parameters governing the
transverse momentum of produced hadrons,
〈p2
T 〉frag = 0.19 ± 0.03 (GeV/c)2 and 〈k2

T 〉 = 0.24 ±
0.09 (GeV/c)2 (estimated for the whole range of 4 <
W 2 < 25 GeV2), are compatible with values obtained
at higher energies.

The experimental data on nuclear effects are com-
pared with predictions of a simple model incorporat-
ing the secondary intranuclear interactions of pro-
duced hadrons with the formation length taken into
account. Themodel predicts a depletion of the particle
yield at xF > 0 and an enhancement of that at xF < 0
(more pronounced for positively charged hadrons for
both regions of xF > 0 and xF < 0) in agreement with
the data. The model also describes satisfactorily the
data on the difference 〈p2

T 〉A − 〈p2
T 〉D for both h+ and

π− with xF > 0 and xF < 0, as well as for the leading
particles with z > 0.4.
5
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Backscattered Flux Generated by Protons
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Abstract—Detailed simulations of cascade processes are used to analyze the properties of the backscat-
tered particle flux from a lead absorber (in comparison with an iron absorber). The energy dependence
of the albedo flux and the spatial and angular distributions of its various components are considered.
c© 2005 Pleiades Publishing, Inc.
An ionization calorimeter is widely used for energy
measurements to experimentally study high-energy
particles [1]. In this case, certain difficulties in mea-
suring the charge of the primary particle arise from the
presence of a backscattered particle flux. The latter is
formed by the secondary particles escaping from the
absorbing material of the calorimeter in the direction
opposite to the primary particle. The backscattered
particle flux depends significantly on the absorber
material for which high-density materials (iron, lead,
and BGO) are used. The properties of the backscat-
tered particle flux from an iron absorber were consid-
ered previously [2]. In this paper, our goal is to study
the backscattered particle flux from a lead absorber in
comparison with the data obtained previously for an
iron absorber.

In this connection, we simulated the cascades
triggered by 0.5-, 2-, 8-, and 32-TeV protons in
a 90-cm-thick lead absorber. The primary particles
were assumed to fall perpendicularly to the absorber
surface. In this case, the secondary particles escap-
ing through the surface are recorded (according to
the conditions adopted previously for an iron ab-
sorber [2]). The simulations were performed using the
GEANT 3.21 software package [3]; the high-energy
and low-energy (below 50 GeV) hadron interactions
in the cascade processes were described using the
QGSJET [4, 5] and FLUKA [3] generators, respec-
tively.

Below, we present the main properties of the
backscattered particle flux obtained through simu-
lations from a lead absorber in comparison with an
iron absorber. Table 1 gives the mean numbers of
backscattered particles for its various components
as a function of the energy of the protons triggering
a cascade in the absorber. As follows from these

*e-mail: ant@eas.npi.msu.ru
1063-7788/05/6807-1171$26.00
data, a stronger energy dependence of the number
of backscattered particles is characteristic of the lead
absorber. At all energies in the range under consid-
eration, the neutron flux from the lead absorber is
much higher than that from the iron absorber. At the
same time, the spatial distribution of backscattered
particles depends weakly on the absorber material.
We can note only a narrower distribution of gamma-
ray photons for the lead absorber (Table 2 and Fig. 1).
The angular distributions of gamma-ray photons and
neutrons of the backscattered flux change little when
changing the absorber. The electron flux from lead
is closer to the isotropic one than the backscattered
particle flux from the iron absorber (Table 3 and
Fig. 2).

An increase in the distance between the upper
absorber boundary and the charge detector (i.e., in the
gap between the charge detector and the absorber)
causes the density of the backscattered particle flux
near the primary particle track to decrease at a nearly
isotropic angular distribution. Figure 3 shows the
corresponding dependence for the various compo-
nents. The decrease in the density is largest when
the distance H increases from zero to about 5 cm. A
further increase in the distance yields a relatively weak
effect, because the value of H in this case becomes
comparable to the emission depth of the backscat-
tered particle flux.

The difference between the kinetic energies of the
backscattered particle flux from different absorbing
materials is largest for the electron component: the
mean energy of the electrons escaping from lead is
much lower (Table 4). This gives rise to two peaks in
the energy distribution of backscattered charged par-
ticles, one of which arises from the electron compo-
nent, while the other arises from the pion component
(Fig. 4).
c© 2005 Pleiades Publishing, Inc.
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Table 1.Mean numbers of backscattered particles produced by protons with energy E in the iron (pFe) and lead (pPb)
absorbers

E, TeV γ e+e− n π+π−

pFe

0.5 43.8 ± 2.9 1.2 ± 0.1 178.9 ± 5.7 0.50 ± 0.05
2.0 76.0 ± 4.9 1.80 ± 0.16 411.8 ± 12.7 0.80 ± 0.07
8.0 174.0 ± 11.5 4.10 ± 0.29 1032.6 ± 32.7 1.60 ± 0.14

32.0 406.3 ± 30.2 10.5 ± 1.7 2597.3 ± 84.8 3.20 ± 0.21
pPb

0.5 35.7 ± 2.9 1.00 ± 0.09 482.5 ± 13.3 0.40 ± 0.05
2.0 86.2 ± 7.0 2.10 ± 0.16 1240.5 ± 34.0 1.00 ± 0.08
8.0 281.8 ± 28.3 7.70 ± 1.66 3401.0 ± 94.1 2.40 ± 0.17

32.0 673.5 ± 58.0 15.20 ± 1.48 8651.0 ± 234.7 4.70 ± 0.43

Table 2.Mean distances R (cm) of backscattered particles to the cascade axis at the upper boundaries of the iron (pFe)
and lead (pPb) absorbers

E, TeV γ e+e− n π+π−

pFe

0.5 11.16 ± 0.07 10.38± 0.45 23.46 ± 0.05 6.27 ± 0.40
2.0 12.18 ± 0.06 10.99± 0.39 24.35 ± 0.03 8.16 ± 0.44
8.0 12.66 ± 0.04 11.55± 0.27 24.83 ± 0.02 7.77 ± 0.30

32.0 12.76 ± 0.03 10.33± 0.18 25.20 ± 0.01 8.46 ± 0.21
pPb

0.5 10.41 ± 0.09 11.74± 0.61 24.00 ± 0.03 7.52 ± 0.54
2.0 10.75 ± 0.06 13.53± 0.43 24.72 ± 0.02 7.18 ± 0.31
8.0 9.31 ± 0.03 10.83± 0.22 25.19 ± 0.01 7.48 ± 0.22

32.0 9.68 ± 0.02 13.19± 0.16 25.96 ± 0.01 7.60 ± 0.17

Table 3.Mean cosines of the exit angle of backscattered particles relative to the normal to the surfaces of the iron (pFe)
and lead (pPb) absorbers

E, TeV γ e+e− n π+π−

pFe

0.5 0.7194± 0.0016 0.6786 ± 0.0109 0.7191± 0.0008 0.7433± 0.0151
2.0 0.7317± 0.0012 0.7104 ± 0.0086 0.7217± 0.0005 0.7768± 0.0112
8.0 0.7289± 0.0008 0.7061 ± 0.0059 0.7231± 0.0003 0.7910± 0.0078

32.0 0.7409± 0.0005 0.7406 ± 0.0036 0.7243± 0.0002 0.8010± 0.0051
pPb

0.5 0.7279± 0.0018 0.6614 ± 0.0127 0.7253± 0.0005 0.7607± 0.0148
2.0 0.7339± 0.0011 0.6502 ± 0.0087 0.7286± 0.0003 0.7630± 0.0099
8.0 0.7520± 0.0006 0.6798 ± 0.0045 0.7318± 0.0002 0.7707± 0.0064

32.0 0.7548± 0.0004 0.6540 ± 0.0032 0.7379± 0.0001 0.8046± 0.0042
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 7 2005
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Table 4.Mean kinetic energies (MeV) of the various components of the backscattered particle flux produced by protons
with energy E in the iron (pFe) and lead (pPb) absorbers

E, TeV γ e+e− n π+π−

pFe

0.5 2.87 ± 0.08 14.04 ± 1.45 3.15 ± 0.04 193 ± 13
2.0 2.87 ± 0.07 14.42 ± 1.02 2.81 ± 0.03 312 ± 63
8.0 2.90 ± 0.07 15.73 ± 0.89 2.65 ± 0.02 620 ± 191

32.0 3.44 ± 0.08 26.41 ± 1.39 2.48 ± 0.01 513 ± 82
pPb

0.5 2.94 ± 0.06 7.98 ± 1.07 2.34 ± 0.02 1137 ± 774
2.0 2.79 ± 0.06 10.65 ± 3.35 2.20 ± 0.01 364 ± 193
8.0 3.23 ± 0.10 17.62 ± 2.42 2.07 ± 0.01 301 ± 38

32.0 2.83 ± 0.06 13.72 ± 2.14 1.89 ± 0.01 756 ± 103

Table 5.Best-fit parameters for the dependence of the number of backscattered particles on the depth of the first inelastic
pFe interaction N(Xint) = N0 exp(−Xint/Labs) (N0 is the backscattered particle flux for the interaction at the upper
absorber boundary, Labs is the absorbing range, and χ2/ν characterizes the quality of the fit)

E, TeV
N0 Labs, g cm−2 χ2/ν N0 Labs, g cm−2 χ2/ν

γ e+e−

0.5 118 ± 4 54 ± 3 1.8 4.1 ± 0.3 36 ± 4 1.2
2.0 223 ± 8 56 ± 2 2.2 5.7 ± 0.4 47 ± 4 1.2
8.0 384 ± 12 67 ± 3 3.6 11.0 ± 0.6 57 ± 4 0.7

32.0 839 ± 26 64 ± 3 2.3 18.8 ± 1.1 62 ± 5 0.9

n All charged particles

0.5 303 ± 6 153 ± 8 0.8 5.6 ± 0.4 41 ± 5 0.8
2.0 727 ± 15 154 ± 7 2.5 8.7 ± 0.6 51 ± 4 0.6
8.0 1748 ± 35 162 ± 8 1.0 15.6 ± 0.8 59 ± 4 0.6

32.0 4397 ± 87 150 ± 7 1.0 34.3 ± 2.0 55 ± 4 0.5

Table 6. Same as Table 5 for pPb

E, TeV
N0 Labs, g cm−2 χ2/ν N0 Labs, g cm−2 χ2/ν

γ e+e−

0.5 65 ± 2 93 ± 7 8.5 3.9 ± 0.3 53 ± 7 1.8
2.0 133 ± 4 105 ± 6 10.6 6.0 ± 0.3 78 ± 9 2.6
8.0 262 ± 9 121 ± 9 12.6 15.1 ± 0.8 94 ± 10 3.8

32.0 860 ± 29 100 ± 6 9.6 30.3 ± 1.3 90 ± 12 4.7

n All charged particles

0.5 784 ± 15 258 ± 14 1.3 4.9 ± 0.3 62 ± 9 2.4
2.0 2022 ± 35 269 ± 14 0.5 9.6 ± 0.5 73 ± 6 1.9
8.0 5512 ± 101 244 ± 12 0.4 22.8 ± 1.1 91 ± 7 2.5

32.0 14 622 ± 246 223 ± 10 1.4 42.0 ± 1.7 87 ± 10 4.3
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 7 2005
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The number of backscattered particles fluctuates
greatly for both the iron and lead absorbers. Events
with a backscattered particle flux well above the mean
values given in Table 1 are possible.

There is a correlation between the fluxes of vari-
ous backscattered particle components. It should be
noted that the neutron flux increases faster with pri-
mary energy than the fluxes of gamma-ray photons
and electrons (see Table 1). This is attributable to a
larger neutron range in the material; as result, a sub-
stantial part of the hadron cascade contributes to the
backscattered particle flux, while the electromagnetic
component is absorbed significantly.

Since the ratio of the cascade unit to the nuclear
range in lead is smaller, the neutron flux depends
weakly on the flux of the electromagnetic compo-
nent at a large gamma-ray yield. The events with
the highest flux of the electromagnetic component
PH
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32-TeV primary proton. The notation is the same as that
in Fig. 1.
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TeV primary proton. The notation is the same as that in
Fig. 1.

are distinguished by a small depth of the first inelas-
tic interaction. The maximum of the hadron cascade
gives a major contribution to the neutron component
of the backscattered flux and a minor contribution
to the electromagnetic component. The correspond-
ing correlation for all charged particles differs only
slightly from the curve for electrons, because the flux
of charged pions is low.

The form of the dependence of the number of
backscattered particles on the depth of the first in-
elastic interaction is also determined by the absorp-
tion range of the corresponding component. Figure 5
shows such dependences for gamma-ray photons,
all charged particles, and neutrons. We see that this
dependence is noticeably weaker for neutrons than
for the electromagnetic component. For an exponen-
tial fit, N(Xint) = N0 exp(−Xint/Labs), the absorp-
tion range of the electromagnetic component is con-
siderably lower than that for neutrons. For lead, this
difference is larger than that for iron. The numerical
YSICS OF ATOMIC NUCLEI Vol. 68 No. 7 2005
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values of the best-fit parameters N0 and Labs for the
various components with the corresponding values of
χ2/ν are given in Table 5 and Table 6 for the iron [2]
and lead absorbers, respectively. The high values of
χ2/ν indicate that the absorption of the backscattered
particle flux deviates from the strictly exponential law;
this can be explained by the dependence of the ab-
sorption range on the energy of the backscattered
particle. This is confirmed by the fact that the devi-
ation from the exponential is more noticeable in the
lead absorber, where the backscattered gamma-ray
photons at low critical energy generate a well-defined
electromagnetic cascade (Fig. 5).

Thus, a considerable fraction of the differences
in the parameters of the backscattered particle flux
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 7 200
from the lead (pPb) and iron (pFe) absorbers is at-
tributable to the properties of the electromagnetic
cascade. Since the critical energy in lead is signifi-
cantly lower, the absorption range of the electromag-
netic component increases, while the mean kinetic
energy slightly decreases.

The neutron yield depends significantly on the
nuclear mass of the absorber material. Heavy nuclei
contain more neutrons; therefore, the fragmentation
of these nuclei as they interact with hadrons from the
cascade increases the flux of this component of the
backscattered particle flux.
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Abstract—We analyze the characteristics of the albedo, or the backscatter current, which constitutes a
background for charge measurements in calorimetric experiments in high-energy cosmic rays.We compare
the experimental data obtained in the flights of the ATIC spectrometer with the simulations performed using
the GEANT 3.21 code. We discuss the influence of the backscatter on the charge resolution in the ATIC
experiment. c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

A number of experiments in which an ionization
calorimeter was used to directly measure the spectra
at high energies have been carried out to date. The
experiments onboard the PROTON satellites [1] were
performed in 1965–1968 first. However, the results
obtained were inconclusive due to the possible signal
distortion in the charge detector module by albedo
particles from the calorimeter [2]. The albedo prob-
lem was completely solved in experiments with emul-
sion chambers owing to the high spatial resolution
achieved in nuclear emulsion analysis. When applied
to cosmic-ray studies, this technique has a number
of shortcomings, namely, a high energy threshold
and insufficient reliability of energy measurements.
The technique is also very laborious. Therefore, the
results obtained in three emulsion experiments dif-
fered significantly [3–5]. A successful method for
solving the problem of the backscatter current was
used in the SOKOL experiment [6], in which direc-
tional Cherenkov detectors were employed to deter-
mine the charges of light nuclei (protons and helium).
Thin nondirectional Cherenkov counters were used to
measure the charges of heavier nuclei. However, the
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charge resolution in this experiment was too low for
nuclei heavier than helium to be resolved.
A different method for significantly reducing the

albedo influence on charge measurements was used
in the ATIC experiment. This experiment is aimed
at performing new measurements of the energy
spectrum for galactic cosmic rays with an individual
charge resolution from protons to iron over a wide
energy range, from 100 GeV to 100 TeV per particle.
A matrix of silicon detectors has been used for the
first time to measure the charge. The albedo problem
is solved here through the fine segmentation of the
charge detector. The matrix design of the charge
detector offers a possibility for studying the pulse
and lateral albedo signal distributions as a function of
energy and type of primary particles. Comparison of
experimental data with simulations verifies whether
the simulations can be used in situations where no
experimental data can be obtained.

2. THE ATIC SPECTROMETER

The layout of the spectrometer is shown in Fig. 1.
A fully active calorimeter built from 320 bismuth-
germanate (BGO) scintillator crystals, each 25 ×
2.5 × 2.5 cm in size, measures the energy of each
cascade. The BGO crystals form eight layers, each
50 × 50 cm in area, with the crystal axes lying
alternately along the X and Y axes. The calorimeter
depth is 18 radiation units. The target module con-
sists of three 10-cm-thick graphite layers (density
1.7 g cm−3) and lies above the calorimeter. The target
thickness, including the constructional materials and
scintillators, is 3/4 of the proton interaction length.
c© 2005 Pleiades Publishing, Inc.
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The instrument has three hodoscopes built from
202 strips of plastic scintillators 1 cm thick and
2 cm wide. Each hodoscope consists of two mutually
perpendicular strip layers. The hodoscopes are placed
above, under, and inside the graphite target and form
the first level trigger, which determines the aperture of
the instrument, and provide additional measurements
of the charge and trajectory of the primary particle
reconstructed from the cascades in the calorimeter.
The charge detector, a silicon matrix built from 4480
silicon pixels 1.5 × 2 cm in size, is the uppermost
detector in the instrument. The silicon pixels are
arranged in four planes with a small overlap along
the X and Y axes to avoid the holes through which
the primary particle could pass. Thus, each particle
inside the aperture of the instrument passes at least
through one silicon pixel, and about 15% of the
particles pass through two pixels. The total matrix
area is 99.2 × 111.2 cm. The ATIC silicon matrix and
its properties are described in detail in [7, 8].

3. FLIGHTS IN THE STRATOSPHERE
ATIC was launched for its first test flight on De-

cember 28, 2000, at McMurdo, Antarctica. Having
made a complete turn around the South Pole, it
landed on January 13, 2001. The altitude of the flight
was 37 ± 1.5 km. Since ATIC landed successfully
and was recovered in good condition, it could be
flown again after refurbishment. The second, scien-
tific, flight was also carried out in Antarctica fromDe-
cember 29, 2002, through January 18, 2003. A third
flight is scheduled to increase the statistics, particu-
larly at high energies. The goal of the ATIC-1 flight
was to test the operation of all detectors and systems
of the instrument. However, the first scientific data
were obtained during this flight. We used ATIC-1
data to study the backscatter current and its influence
on the charge resolution of the ATIC spectrometer.

4. RECONSTRUCTION OF EVENTS
IN THE SPECTROMETER

Each high-energy event detected by the instru-
ment is reconstructed from the signals in the detec-
tors to determine the primary particle charge, energy,

Table 1.Trajectory reconstruction accuracy and mean size
of the search area for events of various energies

Ed, GeV σX , cm σY , cm
Search area

∆X ,∆Y , cm

>10 10.3 9.6 ±30

>100 4.6 4.6 ±14

>1000 2.7 3.2 ±9
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 7 200
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Fig. 1. Layout of the ATIC spectrometer: 1—silicon ma-
trix, 2—scintillator hodoscopes, 3—graphite target, 4—
BGO calorimeter.

and trajectory in the instrument. The particle trajec-
tory was reconstructed from the signals in the BGO
calorimeter and was described by two projections in
theXZ and Y Z planes (see Fig. 2). Both projections
are reconstructed independently using the Y - andX-
oriented crystal layers, respectively. The crystal with
the maximum energy deposition is determined in each
layer. (If this crystal is found near the edge of the layer,
then the event is considered to be a side event and
is rejected.) Subsequently, the symmetrized weight
center of the energy distribution in the layer is found
by taking into account the crystals in both directions
from the central crystal. The dispersions of the weight
centers are determined from simulated cascades (see
below): in each layer, the dispersion of the location
of the weight center is determined as a function of
the energy deposition in the layer. The parameters
of the trajectory projections onto the XZ and Y Z
planes and their χ2 values are calculated using these
weight centers in theX- and Y -oriented layers of the

Table 2. Probability of an albedo signal with Q > 1.5 (for
protons) andQ > 2.5 (for helium nuclei) in various regions
around the point of incidence of the primary particle (in%)

Search area
Protons Helium

Ed, GeV Ed, GeV

∆X ,∆Y , cm >10 >100 >1000 >10 >100 >1000

±5 0.6 0.6 1.6 0.1 0.15 0.7

±10 1.7 2.2 6.3 0.1 1 2.2

±25 5.6 13.6 37.6 0.8 2.8 8.4
5
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Fig. 2. Example of trajectory reconstruction and charge measurement for an event. The silicon matrix plane is shown in the
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calorimeter. Subsequently, the trajectory projections
are extended until they intersect the Si-matrix plane,
and the rms errors in the coordinates of the points of
intersection in the Si-matrix plane, σX and σY , are
determined. Then, the ±3σX , ±3σY area for primary
particle search is delineated. The Si pixel with the
maximum signal in the search area is selected, and
the trajectory parameters are recalculated by taking
into account the coordinates of the pixel center. The
primary particle charge is determined from the for-
mula Z =

√
A cos θ, where θ is the zenith angle of the

trajectory, and A is the signal in the Si pixel in MIPs
(MIP is the energy deposition of a vertical minimum
ionizing particle in a silicon pixel). For each recon-
structed event, the energy deposition in the calorime-
P

ter Ed is calculated by adding the energy depositions
of all crystals in all layers of the calorimeter. The
signals in the scintillator hodoscopes were not used
at this stage of our analysis.

Figure 2 shows an example of event reconstruc-
tion. Figure 3 shows the experimental distributions of
the distances along the x axis from the cascade axis
to the center of the pixel with the maximum signal for
three energy ranges. The width of these distributions
is seen to decrease with increasing primary particle
energy, since the nuclear dispersion decreases in im-
portance and the Coulomb electron scattering begins
to play a major role in the lateral distribution. The rms
errors of these distributions in each coordinate, σX
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 7 2005
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and σY , and the mean size of the ±3σ search area as
a function of the cascade energy are given in Table 1.

5. EXPERIMENTAL DATA

About 25 million events were detected in the
ATIC-1 experiment. For our analysis of the backscat-
ter current, we selected 7000 events with energy
deposition Ed > 10 GeV and the same number of
events withEd > 100GeV as well as all events (about
1600) with Ed > 1 TeV. When processing the raw
data, in addition to information about the charge, en-
ergy deposition, and trajectory of the primary particle
in these events, we recorded information about all
signals in the silicon matrix. These signals, except
the signal from the primary particle, were produced
by the backscatter current or were noise signals. In
Fig. 4, the number of albedo and noise signals in
the entire matrix per event (na) is plotted against the
equivalent charge Q =

√
A for three ranges of energy

deposition and three types of primary particles. The
noise signals dominate at Q < 1, and their number
does not depend on energy. On average, there were
about 20 noise signals per event. The number of
albedo signals decreases with increasing Q almost
exponentially and increases with energy and charge of
the primary particle. As the energy rises by an order of
magnitude, the number of albedo particles increases
by a factor of about 3.

6. SIMULATIONS

Initially, simulations were undertaken at the de-
sign stage of the instrument and were performed
for the design with four 10-cm-thick graphite layers
and for the silicon matrix with 3 × 3-cm pixels. For
our simulations, we used the GEANT-3.21 software
package, in which a hadron cascade was simulated
using the FLUKA generator [9]. The primary par-
ticles were protons with energies of 102, 103, and
104 GeV. The results of these simulations were pub-
lished in [7]. Electrons (bearing in mind both elec-
trons and positrons), pions, photons, and protons
were shown to give the main contribution to the
albedo signal in the matrix. The relative contribution
of pions and, especially, protons increases with the
albedo signal. It was also shown that, for a pixel size of
3 × 3 cm, the frequency of events in which the albedo
signal in the axis pixel exceeded 1 MIP is less than
1.5% even at an energy of 10 TeV; i.e., the albedo
signals in the matrix are essentially separated from
the primary particle signal.
We performed new simulations for the actual de-

sign of the instrument. An isotropic particle flux with
a power-law energy distribution with index γ = 1.6
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 7 200
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was incident on the silicon matrix plane over the
aperture of the instrument. The simulations were car-
ried out for three ranges of primary kinetic energies,
E > 10, >100, and >1000 GeV, and cascades with
energy deposition Ed > 10, >100, and >1000 GeV,
respectively, were selected for the analysis. Protons
and helium nuclei were taken as the primary parti-
cles. We used the QGSM generator [10] to simulate
the interactions of helium nuclei. The statistics in
our simulations were 104 cascades for protons and
103 cascades for helium in each energy range. To be
5
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sure that the simulation results are valid, they must
be compared with experimental data.

Figure 5 compares the experimental and simulated
distributions of albedo signals inQ forEd > 100GeV.
We can see that the agreement is good at Q > 1,
where the number of noise signals is negligible.

Figure 6 shows the simulated lateral distribution
of albedo signals with Q > 1 in the silicon matrix for
protons with Ed > 100 GeV. Also shown here is the
experimental lateral distribution of albedo signals at
P

R > 20 cm. The albedo particle density atR < 20 cm
cannot be studied experimentally, since the maximum
signal in this region (the search area) is considered
as the signal from the primary particle. The region
of R > 80 cm can be distorted in the experiment,
because large distances are associated with particles
near the edge of the matrix. In this case, there is a
probability that the axis of the cascade produced by
the nucleus that past by the matrix could be restored
inside the matrix, and the signal from the backscat-
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 7 2005
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Table 3. Distortions of the proton and helium-nucleus fluxes due to the albedo δa, ionization loss fluctuations δi, and
their sum δ (in%)

δa δi δ

Row number Ed, GeV Ed, GeV Ed, GeV

>10 >100 >1000 >10 >100 >1000 >10 >100 >1000

1 −1.87 −2.29 −2.55 −3.68 −3.68 −3.68 −5.55 −5.97 −6.23

2 −0.47 −0.60 −0.90 −5.16 −5.16 −5.16 −5.63 −5.76 −6.06

3 +3.20 +2.39 +2.48 +7.80 +4.94 +4.19 +11.0 +7.33 +6.67

4 +2.73 +1.79 +1.58 +2.64 −0.22 −0.97 +5.37 +1.57 +0.61

Note: Row 1—decrease in proton flux, row 2—decrease in helium flux, row 3—increase in helium flux due to proton admixture, and
row 4—sum of rows 2 and 3.
ter current of the nucleus could be mistaken for the
proton signal. As we showed, the number of albedo
signals from nuclei is larger than that from protons.
Note that the values of albedo signal densityDa in the
experiment and the simulations are not normalized to
one another.
Thus, both the lateral distribution of albedo signals

and their Q distribution are satisfactorily reproduced
by the simulations. Therefore, we will use the results
of our simulations for the subsequent analysis of the
albedo influence when determining the charge from
the maximum signal in the search area.

7. CHARGE RESOLUTION
IN THE ATIC EXPERIMENT

To estimate the albedo influence, we must cal-
culate the probability that the albedo signal rather
than the signal from the primary particle will be the
maximum signal in the search area, and, thus, the
primary particle will be misidentified. Table 2 gives
the calculated probabilities of detecting backscatter
signals with Q > 1.5 for protons and Q > 2.5 for
helium nuclei for three sizes of the search area and
three ranges of energy deposition. Table 3 gives
the distortions of the protons and helium fluxes
due to the albedo δa when using the algorithm of
primary particle search employed in the experiment
for simulated events. For protons and helium, the
flux is shown to decrease, because the measured
charge Q exceeds 1.5 and 2.5, respectively (rows 1
and 2). The admixture to the helium flux from protons
is given in row 3 (for this estimate, the relative
number of cascades from protons and helium in
the experiment was taken into account), and row 4
gives the total effect for helium in the range 1.5 <
Q < 2.5.
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 7 200
In addition to the albedo, the fluctuations of ion-
ization losses in the silicon detector are another pro-
cess that leads to misidentification of protons and
helium nuclei. The fluctuations of ionization losses in
the silicon detector of the ATIC instrument were an-
alyzed in [8]. The distortions of the proton and helium
fluxes due to this process δi and the total distortion
δ = δa + δi are also given in Table 3. We see from this
table (row 2) that the decrease in the helium flux is
determined mainly by the ionization loss fluctuations,
not by the albedo particles.

The experimental proton and helium charge res-
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150 GeV, (b) 150 < Ed < 500 GeV, (c) 500 < Ed < 5000 GeV, and (d) Ed > 5000 GeV. The number of events (Nev) in the
bin is along the vertical axis.
olution is shown in Fig. 7 for four ranges of energy
deposition.

8. CONCLUSIONS

The silicon matrix in the ATIC spectrometer has
solved the problem of the backscatter current in this
experiment and allowed a good charge resolution to
be achieved for protons and helium and, consequently,
the energy spectra of these particles to be measured.
The required corrections to the measured proton and
helium fluxes do not exceed 7%.
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ELEMENTARY PARTICLES AND FIELDS
Theory
Some Features of the Production of Heavy-Quark-Containing Baryons
in Electron–Positron Collisions
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Abstract—The production of various heavy-quark-containing baryons in electron–positron annihilation
is considered. On the basis of exact formulas that we obtained previously within full perturbation theory,
new numerical calculations of the respective cross sections are performed, and simple approximate
expressions are then constructed for the results of these calculations. The dependence of the total cross
sections on the masses of constituent quarks is discussed. The application of the Peterson fragmentation
function and a Reggeon-type fragmentation function to describing differential cross sections is analyzed.
c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Investigation of the mechanisms responsible for
the production of hadrons containing heavy quarks
is of interest from the theoretical point of view since
this provides the possibility for further testing QCD—
more precisely, our understanding of it. In this way,
one tests both its perturbative aspect used to describe
the simultaneous production of several quark pairs
and nonperturbative models constructed on the basis
of QCD for bound states. We recall that, even in cases
that are the simplest at first glance, the results of cal-
culations appear to be in an unexpected contradiction
with experimental data, as was, for example, in the
hadronic production of J/ψ particles. At the same
time, derivation of theoretical estimates for relevant
cross sections is of importance for practical purposes,
such as those associated with planning searches for
such particles and investigations of their properties.
Available calculations of the cross sections for

the production of baryons containing heavy c and b
quarks rely, as a rule, on considering the production of
respective diquarks, this corresponding to the fourth
order of perturbation theory. A detailed review of the
results obtained in this way and an exhaustive list
of relevant references can be found in [1]. In the
sixth order of perturbation theory [O(α2α4

s)], the to-
tal and differential cross sections for the production
of multiply heavy baryons Ωscb and Ωccc at the Z
pole in electron–positron collisions were calculated
in our previous studies [2, 3]. For the squares of

1)Lebedev Institute of Physics, Russian Academy of Sci-
ences, Leninskiı̆ pr. 53, Moscow, 117924 Russia. e-mail:
baranov@sci.lebedev.ru
*e-mail: vslad@sinp.msu.ru
1063-7788/05/6807-1183$26.00
relevant matrix elements, we obtained exact analytic
expressions, which, as might have been expected,
are very cumbersome (they exist only in the form of
computer codes). As a result, numerical calculations
with these matrix elements would be extremely time-
consuming.

By using these expressions and performing a se-
ries of new numerical calculations of various cross
sections for the production of baryons containing
three nonidentical quarks, we try here to impart, to
the emerging results, a broader content, simplicity,
and adaptability in the possible future application
to constructing estimates for planning experiments.
Specifically, we find, first of all, a simple approximate
dependence of the total cross section for baryon pro-
duction in electron–positron collisions on the mass of
each constituent quark. On the basis of the concept
of fragmentation, we then approximate the differential
cross sections with the aid of the Peterson function
for various sets of quark masses.

In this study, we also analyze some aspects of the
description of the differential cross sections for the
production of Ωscb and Ωccc baryons in terms of a
Reggeon-type fragmentation function.

2. DEPENDENCE OF THE TOTAL CROSS
SECTIONS FOR BARYON PRODUCTION
ON CONSTITUENT-QUARK MASSES

Let us consider some properties of the production
of a q1q2q3 baryon consisting of three nonidentical
quarks q1, q2, and q3 and having a mass M , a mo-
mentum p, and an energyE at theZ pole in electron–
positron collisions.We assume that the quark masses
c© 2005 Pleiades Publishing, Inc.
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m1,m2, andm3 differ markedly from each other; that
is,

m2
1 � m2

2 � m2
3. (1)

In QCD, the elementary process corresponding to
the production of such a baryon is

e+ + e− → q1(p1) + q2(p2) + q3(p3) (2)

+ q̄1(p4) + q̄2(p5) + q̄3(p6),

where the quark and antiquark 4-momenta are indi-
cated in parentheses.
The formation of the baryon from three quarks is

described in the well-known nonrelativistic approxi-
mation [4–6], whose details required for our purposes
are as follows. First, the velocities of the quarks form-
ing the baryon are assumed to be identical. Second,
the differential cross section for baryon production is
obtained from the standard differential cross section
for the process in (2) by replacing the phase space
of three quarks by an expression proportional to the
baryon phase space; that is,

d3p1

(2π)3 · 2E1

d3p2

(2π)3 · 2E2

d3p3

(2π)3 · 2E3
(3)

→ |ψ(0)|2
M2

d3p

(2π)3 · 2E ,

where ψ(0) is the value of the wave function at the
point where relative coordinates of all three quarks are
zero.
In each of the Feynman diagrams corresponding

to the process in (2), one can indicate a virtual gluon
g such that it transforms into a quark–antiquark pair
qi(pi)q̄i(pi+3) without emitting a new gluon g′. The
denominator of the propagator of the gluon g—it has
the form (pi + pi+3)2—attains a minimum of 4m2

i at
pi+3 = pi. But if a virtual gluon g transforms into two
quark–antiquark pairs qi(pi)qj(pj)q̄i(pi+3)q̄j(pj+3),
the denominator of its propagator has a minimum
of 4(mi +mj)2. Taking into account the inequalities
in (1), we can deduce from the above that the leading
contribution to the amplitude of the process in (2)
comes from the diagrams where the production of
quark–antiquark pairs proceeds hierarchically from
the heaviest to the lightest. This sequence that ends
up in the formation of a baryon from the quarks q1, q2,
and q3 is generally referred to as the fragmentation of
the quark q3 into a q1q2q3 baryon. It is often described
analytically in the form

dσ/dz = σq3q̄3D(z), (4)

where σq3q̄3 is the total cross section for the process
e+e− → q3q̄3 and D(z) is the respective fragmenta-
tion function. For the variable z, one usually takes the
quantity xp = p/pmax or xE = E/Emax.
PH
It is obvious that the amplitude of any process is
a homogeneous function of the 4-momenta Pj , the
masses Mj , and the widths Γj of real and virtual
particles involved in the process. Therefore, the total
cross section or one differential cross section or an-
other can be represented in the form of the product of
some power of the total energy

√
s and a function of

the reduced 4-momenta Pj/
√
s, the reduced masses

Mj/
√
s, and the reduced widths Γj/

√
s. From here, it

follows, among other things, that the fragmentation
function D(z) appearing in (4) depends parametri-
cally on the reduced masses mi/

√
s of the product

quarks. In the following, we will write the reduced
masses explicitly only in the logarithmic factors on
the right-hand side of formula (6) (see below).
In comparing experimental results obtained in

electron–positron collisionswith some fragmentation
function, attention is given primarily to its form
depending on one or two parameters but not to its
normalization.
For want of experimentally observed events in-

volving the production of q1q2q3 baryons in electron–
positron annihilation, it is reasonable to focus on the
total cross section—namely, on the dependence of the
total cross section on the masses of the quarks q1, q2,
and q3. The choice of a simple algebraic expression
representing this dependence is based on the fact that
the square of the matrix element of the process being
considered is similar, in some respects, to a ratio-
nal function of the momenta of product particles, its
denominator at the minimum involving constituent
quark masses and their sums as factors. It is well
known that the integral of such a function can gen-
erally include logarithmic terms.
By using relation (3) and the results of numerical

calculations of the total cross section for the pro-
duction of q1q2q3 baryons at the Z pole in electron–
positron collisions for six sets of masses m1, m2,
and m3 for the same set of electroweak-interaction
coupling constants (such as that for the production
of scb baryons), we arrive at the formulas

σtot =
|ψ(0)|2

(m1 +m2 +m3)2
G, (5)

G ≈ C

m2
1m

2
2

ln
( √

s

4m1

)
ln
(√

s

m3

)
, (6)

where
√
s = 91.2 GeV and C = 0.0407 ± 0.006 pb.

In Table 1, we present the sets of masses m1,m2,
and m3; the values of G that are obtained from a
Monte Carlo calculation of the integral of the square
of the matrix element for the process in (2) over the
phase space of four final particles (QCD column in
the table); and the values of G that are obtained by
formula (6).
YSICS OF ATOMIC NUCLEI Vol. 68 No. 7 2005
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Table 1

Quark mass, GeV G, pb GeV4 Parameter ε
from (8)

m1 m2 m3 QCD Formula (6)

0.5 1.5 4.8 (7.85 ± 0.16)× 10−1 (8.15 ± 0.14) × 10−1 0.124 ± 0.016

0.3 1.5 4.8 2.58 ± 0.07 2.57 ± 0.04 0.098 ± 0.012

0.075 1.5 4.8 (5.59 ± 0.20)× 101 (5.42 ± 0.09) × 101 0.066 ± 0.008

0.01 1.5 4.8 (4.29 ± 0.12)× 103 (4.12 ± 0.07) × 103 0.048 ± 0.006

0.01 0.5 4.8 (3.90 ± 0.28)× 104 (3.71 ± 0.06) × 104 0.016 ± 0.002

0.01 0.5 1.5 (5.10 ± 0.53)× 104 (5.18 ± 0.09) × 104 0.24 ± 0.08
We believe that the use of the factor ln(
√
s/(4m1))

in formula (6) is quite justified empirically. It seems
plausible that the quantity G depends only slightly
on the mass m3 of the heaviest quark; relying on
the results of our calculations exclusively, we can-
not be confident, however, that the G depends on
m3 through the factor ln(

√
s/m3), as follows from

Eq. (6).

Strictly speaking, the dependence of the total
cross section on the quark masses m1, m2, and
m3 is not exhausted by the explicit expressions in
formulas (5) and (6), since the baryon-state wave
function at the origin, ψ(0), must change in response
to a change in the masses. The dependence of ψ(0) on
the masses of constituent quarks is determined within
potential quark models, which are not discussed in
the present study. On the basis of the numerical
values of |ψ(0)|2 that are presented in [7] for six sets
of quarks q1, q2, and q3, we can nevertheless estimate
cross sections by using the approximate expression

|ψ(0)|2 ≈ Dm1.5
2 m3, (7)

if m1 � m2 ≤ m3,

whereD = 0.065 × 10−3 GeV3.5.

Taken together, relations (5)–(7) indicate that
the total cross section for the production of q1q2q3
baryons in electron–positron annihilation is highly
sensitive to the mass of the lightest of three quarks.
This circumstance is especially important in the case
where, for the quark q1, one takes a u or a d quark,
since, from the point of view of simple nonrelativistic
concepts, their masses can be varied within rather
wide intervals, from 50MeV (in pions) to 300MeV (in
nucleons). In order to estimate cross sections for the
production of baryons containing two heavy quarks
and a u or a d quark, we set mu = md = 100 MeV
in Eqs. (5)–(7), bearing in mind that, according to
the approximation specified by Eq. (6), these cross
section are determined to within a factor of 10.
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 7 200
For want of something better and, to some extent,
as a continuation of the strategies adopted in [7], we
propose extending the procedure of the present study
and of previous studies [2, 3] to the case of deriving
estimates for the production of baryons containing
one heavy quark c or b, a strange quark s, and a light
quark u or d—namely, we propose supplementing
the perturbative part of calculations (sixth order of
perturbation theory) with the following nonrelativistic
nonperturbative elements: the assumption of equal
velocities of the quarks fusing into the baryon in ques-
tion, relation (3), and the approximation specified by
Eq. (7). What we inherit from nonrelativistic potential
models reduces to the extrapolations in (3) and (7).
It is reasonable to indicate here that, in contrast to u
and d quarks, a strange quark of massms = 500MeV
leads to an acceptable level of agreement with naive
nonrelativistic expectations for the masses of the me-
son and baryon ground states [ss̄ (φ) and sss (Ω),
respectively].

All estimates that can be obtained on the basis
of formulas (5)–(7) by setting mb = 4.8 GeV, ms =
0.5 GeV, and mu = md = 0.1 GeV are given in Ta-
ble 2 (the symbol q in the subscripts there stands for a
u or a d quark). The factor C in (6) is set to 0.0407 pb
in calculating cross sections for the production of
Ωscb, Ξqcb, and Ξqsb baryons and to C = 0.0407 pb ·
((gcV )2 + gcA)2/((gbV )2 + gbA)2 = 0.0317 pb in dealing
with Ξqsc baryons.

Table 2

Baryon |ψ(0)|2 × 103, GeV6 σtot, fb

Ωscb 0.57 0.0097

Ξqcb 0.57 0.40

Ξqsb 0.11 0.98

Ξqsc 0.034 2.2
5



1186 BARANOV, SLAD
Wewould like to bring to the attention of the reader
that, in [8], the quantity |ψ(0)|2 was calculated at
the following values of the constituent quark masses:
mb = 5.29GeV,mc = 1.905GeV,ms = 0.6GeV, and
mu = md = 0.3 GeV. In our previous studies [2, 3],
we employed the values of |ψ(0)|2 from [8] without
introducing any corrections. In the present study, all
cross-section values, including those that are given in
the figures, are calculated by using Eq. (7).
It should be emphasized that the approximate

formula (6) was obtained for the constituent quark
masses obeying the inequalities in (1). But if these
inequalities are not satisfied and if, in addition, there
are quarks identical in flavor among the quarks in
question, formula (6) cannot be used even for a rough
estimate of cross sections. Indeed, it can be seen that,
for the production of an Ωccc baryon in electron–
positron annihilation, a direct numerical calculation
of the quantity G on the basis of formula (5) gives
the value of 2.27 pb GeV4, while expression (6)
yields 0.090 pb GeV4. The reasons for so significant
a discrepancy between the values of G are rather
obvious: if the inequalities in (1) hold, the main
contribution to the cross section comes only from a
few Feynman diagrams, but, if all three masses m1,
m2, and m3 are close to one another, all diagrams
make approximately equal contributions (for the
production of an Ωccc baryon, there are 504 such
diagrams); additionally, interference effects arise if
there are identical quarks.

3. DIFFERENTIAL CROSS SECTION
AND PETERSON FRAGMENTATION

FUNCTION

Let us now proceed to consider a simple alge-
braic description of the differential cross sections for
the production of q1q2q3 baryons in electron–positron
collisions on the basis of the fragmentation approach.
Experimental data on the production of heavy-quark
hadrons in electron–positron annihilation are usually
approximated in terms of the Peterson function [9]

D(z) ∼ 1
z[1 − (1/z) − ε/(1 − z)]2

, (8)

where ε is a phenomenological parameter. We used
this function in [2] to describe approximately the pro-
duction of Ωscb baryons in electron–positron colli-
sions.
We performed complete numerical calculations

of the differential cross sections for the production
of q1q2q3 baryons for six sets of constituent quark
masses (see Table 1) and then determined the values
of the parameter ε of the Peterson function (8) that
ensure the best agreement between the form of this
fragmentation function and the form of the differential
PH
cross sections dσ/dxp. The resulting values of the
parameter ε are given in the last column of Table 1.
The results of numerical calculations of dσ/dxp and
their approximation in terms of the Peterson function
are shown in Fig. 1.

The dependence of the parameter ε on themassm1

of the lightest quark can be approximated by a linear
function,

ε ≈ a+ bm1, (9)

where a = 0.046 and b = 0.17 GeV−1. As the middle
mass m2 is decreased, the maximum of the distribu-
tion dσ/dxp is shifted toward the largest possible rel-
ative momentum value, xp = 1, while the parameter
ε becomes smaller. The shift of the maximum of the
cross section dσ/dxp in response to the change in the
mass m3 of the heaviest quark is opposite to that in
response to the analogous change inm1 andm2: with
decreasing m3, the extremal value of xp decreases
substantially, while the parameter ε in the function
given by (8) grows.

The value that we found here for ε at the mass
values of m1 = 0.01 GeV, m2 = 0.5 GeV, and m3 =
1.5 GeV is very close to the values of ε that were
obtained in experiments that studied the production
of Λc, Σc, and Ξc baryons in electron–positron anni-
hilation: ε = 0.236+0.068

−0.048 for Λc [10], ε = 0.29 ± 0.06
for Σc [11], and ε = 0.24 ± 0.08 for Ξc [12].
For baryons containing quarks of identical flavor

(for example, Ωccc ), it is difficult to take into account
effects of interference between identical particles;
therefore, the fragmentation mechanism cannot be so
well justified theoretically in this case as for q1q2q3
baryons under the conditions in (1). At the same
time, it remains quite useful in the phenomenological
aspect. For example, it was found in [3] that the
transverse-momentum distribution of Ωccc baryons
that is obtained from direct numerical calculations
cannot be adequately approximated with the aid of
the Peterson function. However, the shape of this
distribution can be faithfully reproduced by using the
so-called Lund function [13]

D(z) ∼ 1
z
(1 − z)a exp(−c/z), (10)

where the parameters are set to a = 2.4 and c = 0.70.

4. DIFFERENTIAL CROSS SECTIONS
AND REGGEON-TYPE FRAGMENTATION

FUNCTION

Let us now consider the representation of nu-
merical results for the production of heavy-quark-
containing baryons in electron–positron collisions
YSICS OF ATOMIC NUCLEI Vol. 68 No. 7 2005
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Fig. 1. Differential cross section dσ/dxp for the production of q1q2q3 baryons in electron–positron collisions: (crosses)
results of Monte Carlo calculations along with the errors in them and (solid curves) results of the calculation by formula (4)
with the Peterson fragmentation function (8). The values of the masses of the quarks q1, q2, and q3 (in GeV) and of the
parameter ε in the Peterson function in Figs. 1a–1f are the following: (a) m1 = 0.5, m2 = 1.5, m3 = 4.8, and ε = 0.124;
(b) m1 = 0.3, m2 = 1.5, m3 = 4.8, and ε = 0.098; (c) m1 = 0.075, m2 = 1.5, m3 = 4.8, and ε = 0.066; (d) m1 = 0.01,
m2 = 1.5, m3 = 4.8, and ε = 0.048; (e) m1 = 0.01, m2 = 0.5, m3 = 4.8, and ε = 0.016; and (f) m1 = 0.01, m2 = 0.5,
m3 = 1.5, and ε = 0.24.
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Fig. 2. Differential cross section dσ/dxE for the production of Ωscb baryons [(а) ms = 0.5 GeV and (b) ms = 0.3 GeV]
and Ωccc baryons (c) in electron–positron annihilation. The crosses show the results of Monte Carlo calculations and their
errors. The solid curves correspond to the approximation of the cross sections with the aid of a Reggeon-type fragmentation
function (11) with the parameters (а) β = 3.3 and γ = 1.48, (b) β = 3.2 and γ = 1.18, and (c) β = 2.6 and γ = 4.6.
in terms of the Reggeon-type fragmentation func-
tion [14]

D(z) ∼ zβ(1 − z)γ . (11)

This function was employed in [15, 16] in discussing
experimental data on the production of D and B
mesons in electron–positron annihilation, the param-
eters β and γ not being related there to Regge trajec-
tories.
An approximation of the numerical results ob-

tained here for the production ofΩscb andΩccc baryons
in electron–positron annihilation with the aid of the
fragmentation function in (11) was performed for the
differential cross sections dσ/dxE and is displayed in
Fig. 2.
It is of interest to compare the values obtained for

the parameters of the function in (11) by approxi-
mating the numerical results of our perturbative ap-
proach to determining cross sections and the values
PH
deduced from the expressions for these parameters in
terms of the intercepts of the trajectories of appropri-
ate hadrons. If the quark i fragments into a baryon
consisting of the quarks i, j, and k, then [17]

β = 1 − αīi, γ = αqq̄ − 2αjkq, (12)

where the symbol q in the subscripts stands for a
light quark u or d, while the quantities αll̄ and αjkq
are the intercepts of the meson (of ll̄ quark content)
and baryon (of jkq quark content) trajectories. An
approximate linear relation between the intercepts
of trajectories corresponding to different quark con-
tents was obtained within the model of quark–gluon
strings [18]:

2(αijk − αijl) = αkk̄ − αll̄. (13)

On the basis of relation (13) and the standard
notation αuū = αdd̄ = αρ, αss̄ = αφ,αcc̄ = αψ, αbb̄ =
YSICS OF ATOMIC NUCLEI Vol. 68 No. 7 2005
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αΥ, and αuud = αudd = αN , the equalities in (12) can
be recast into the form

β = 1 − αΥ, γ = 3αρ − αφ − αψ − 2αN (14)

for Ωscb baryons and into the form

β = 1 − αψ, γ = 3αρ − 2αψ − 2αN (15)

for Ωccc baryons.
For some intercepts, we will take the quite reliably

established values of αN = −0.4, αρ = 0.5, and αφ ≈
0 [17], while, for the others, we will use the following
estimates:αψ = −2.2 [19] andαΥ = −8.0 [20]. These
estimates differ only slightly from those that were
previously obtained in [7, 21].
Substituting the above values into relation (14)

for Ωscb baryons, we obtain β = 9.0 and γ = 4.5, but
these results are in a glaring contradiction with the
values of β = 3.3 and γ = 1.48 if ms = 500 MeV
and with the values of β = 3.2 and γ = 1.18 if ms =
300 MeV, which we obtained from a comparison of
the fragmentation function in (11) with the results
of direct numerical calculations of the cross section
dσ/dxE . In turn, relation (15) for the production of
Ωccc baryons yields β = 3.2 and γ = 6.7, which can be
thought to be in very rough agreement with the values
of β = 2.6 and γ = 4.6 resulting from the approxi-
mation of our numerical results for the cross section
dσ/dxE .
This suggests the simple conclusion that the

perturbative and the nonperturbative (Reggeon) ap-
proach do not reduce to each other and, depending on
the process being considered, they can lead either to
close or to strongly different results.
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in Rare Kaon Decays?1)1)1)
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Abstract—Further possibilities of experiments aimed at searches for lepton-flavor violation in kaon decays
at present and future intermediate-energy accelerators are considered. It is shown that such investigations
are complementary to searches for muonic lepton-flavor-violating processes and can possess, in some
models featuring approximately conserved generation quantum numbers of fundamental fermions, a very
high and even record sensitivity. Searches for lepton-flavor-violating processes in kaon decays should be
considered as a very important and independent part of the general program of searches for the violation of
lepton flavors in processes involving charged leptons. c© 2005 Pleiades Publishing, Inc.
1. STANDARD MODEL
AND LEPTON FLAVORS

Basic results in contemporary elementary-
particle physics are in accord with the so-called
Standard Model (SM) [1–5], which provides a good
description of physical phenomena within the mass-
scale region up to 100 GeV or even a few hundred
gigaelectronvolts. The Standard Model involves three
generations of fundamental fermions, quarks and
leptons,

u, d, e, νe( first generation); (1)

c, s, µ, νµ( second generation); (2)

t, b, τ, ντ ( third generation). (3)

These fundamental families have the same structure,
but they differ strongly in mass.

Strong interactions between quarks, which are
characterized by special quantum numbers, quark
flavors and quark colors, proceed via the exchange
of eight types of massless color vector gluons. These
interactions are described within the modern the-
ory of strong-interaction processes, quantum chro-
modynamics (QCD). The QCD formalism enables
one to realize quite well perturbative calculations
in the leading logarithmic and the next-to-leading
logarithmic approximation at rather short distances
(<1–2 GeV−1). The fact that quarks and gluons

*e-mail: lgl@mx.ihep.su
1)An extended version of the report presented at the Chica-
go Flavor Seminar, February 27, 2004 (Fermilab); hep-
ph/0410261
1063-7788/05/6807-1190$26.00
carry color quantum numbers makes them unob-
servable as free particles (concept of confinement).
Strong interactions conserve quark flavors: in such
processes, quarks cannot transform into quarks of
different flavor. They can only be rearranged into
various combinations, be produced in pairs (qq̄), or
be annihilated in the form of such pairs.

Electroweak interactions involving both quarks
and leptons are mediated by intermediate W± and Z
bosons and by a photon γ. It is expected that scalar
Higgs bosons must play an important role in weak
interactions. These particles have yet to be discov-
ered, but, the observed Higgs bosonH0 must exist in
the Standard Model. As will be seen below, charged-
current weak interactions mediated by W± bosons
change quark flavors.

Let us now consider in detail the electroweak in-
teractions of fundamental fermions. The interaction
Lagrangian is based on the broken SU(2)L × U(1)
group involving left-handed quarks and leptons that
form weak-isospin doublets,

νe

e−




L

,


νµ

µ−




L

,


ντ

τ−




L

, (4)


u

d′




L

,


 c

s′




L

,


 t

b′




L

, (5)

and right-handed quark and lepton singlets, qR and
lR, respectively. The left- and right-handed fermions
c© 2005 Pleiades Publishing, Inc.
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can be represented in the form2)

ψL =
1
2
(1 − γ5)ψ and ψR =

1
2
(1 + γ5)ψ. (6)

The electroweak interactions of quarks and lep-
tons are realized via the exchange of intermediate
heavy gauge W± and Z0 bosons and massless pho-
tons. These interactions are described by the La-
grangian

L[SU(2)L × U(1)] = LCC + LNC. (7)

The Lagrangian density LCC is determined by the
charged weak (V −A) current; that is,

LCC =
g

2
√

2
(J+

µ W+µ + J−
µ W

−µ), (8)

where

J+
µ = (ūd′)V−A + (c̄s′)V−A + (t̄b′)V−A (9)

+ (ν̄ee)V−A + (ν̄µµ)V−A + (ν̄τ τ)V−A.

These interactions, induced by the exchange of inter-
mediateW± bosons, are accompanied by a change in
quark flavors.

The neutral-current Lagrangian density LNC has
the form

LNC = eJem
µ Aµ +

g

2 cos ϑW
J0
µZ

µ, (10)

where Jem
µ is the vector electromagnetic current,

while J0
µ is the weak neutral current featuring (V −
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 7 200
A) and (V + A) components:

Jem
µ =

∑
f

Qf f̄ γµf, J0
µ =

∑
f

f̄ γµ(vf − afγ5)f.

Here, vf = T f
3 − 2Qf sin2 ϑW and af = T f

3 are the
coefficients of the vector and axial components of the
neutral weak current; sin2 ϑW = 0.23147 ± 0.00016
is the square of the sine of the Weinberg angle;
g2/8M2

W = GF/
√

2 is the Fermi constant for weak

interaction; andQf and T f
3 are, respectively, the elec-

tric charge of the fermion f and the third component
of its weak isospin.

The expressions for the charged weak quark cur-
rents involve the transformed components d′, s′, and
b′ of the down quarks. They are determined with
the aid of the unitary Cabibbo–Kobayashi–Maskawa
quark-mixing matrix VCKM [6]:



d′

s′

b′


 = VCKM



d

s

b


 . (11)

The quark-mixing matrix has the form
VCKM =



Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb


 =




c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −s23c12 − s12c23s13e

iδ c23c13


 . (12)
This matrix depends on three quark-generation-
mixing angles ϑ12, ϑ13, and ϑ23 (sij = sinϑij , cij =
cos ϑij) and on a nontrivial phase δ that determines
CP violation in quark processes.

Thus, the processes occurring in the quark sec-
tor, quark mixing, and quark-flavor changes in weak
decays are described in detail within the Standard
Model.

2)We recall the definition of the weak (V − A) current in the
Standard Model. The current J+

µ that corresponds to the
∆Q = +1 weak (i→ f) transition from the initial to the
final fermion involves the differences of vector and axial terms
of the type f̄γµ(1 − γ5)i = 2f̄LγµiL = f̄γµi− f̄γµγ5i =

Vµ − Aµ = (f̄ i)V −A.
At the same time, the situation in the lepton sector
of the Standard Model had seemed different for a
long time. The leptons of the different generations
were characterized by the lepton flavors Le, Lµ, and
Lτ (see Table 1). The weak lepton interactions were
described by the Standard Model Lagrangian where
the neutrinos were taken to be massless particles and
where lepton-flavor conservation was assumed.

It should be noted that lepton-flavor conservation
is not caused by some new global gauge symmetries
of the U (1) type, as is the case, for example, for
electric-charge conservation by virtue of the gauge
symmetry of electromagnetic interactions. Therefore,
5
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Table 1. Lepton flavors

Leptons belonging to different
generations of fundamental
Standard Model fermions

Lepton
flavors

Le Lµ Lτ

First-generation
leptons

e−

1 0 0

νe

Second-generation
leptons

µ−

0 1 0

νµ

Third-generation
leptons

τ−

0 0 1

ντ

Notes:
(1) For antileptons, lepton flavors change sign.
(2) The total lepton charge is L = Le + Lµ + Lτ .

the question of whether lepton flavors are conserved
or violated has always remained open. The question
of whether the total lepton charge L = Le + Lµ +
Lτ is conserved also aroused great interest. First
of all, one bears in mind here the possibility of ob-
serving processes such as neutrinoless double-beta
decay, (Z,A) → (Z + 2, A) + 2e−; the decaysK+ →
π−l+l+; and the neutrinoless conversion of muons to
positrons, µ− + (Z,A) → e+ + (Z − 2, A).

The discovery of neutrino oscillations in experi-
ments with atmospheric and solar neutrinos [7, 8]; re-
actor neutrinos [9]; and, possibly, accelerator neutri-
nos [10] was one of the most important achievements
in elementary-particle physics over the past years (see
Table 2 and the review articles of Smirnov [11] and
Alberico and Bilenky [12], who summarized the situ-
ation around neutrino oscillations). The hypothesis of
neutrino oscillations was first put forth by Pontecorvo
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γ
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ν

 

µ

 

 

 

→ ν

 

e

Fig. 1. Diagram for the decay µ→ eγ via the neutrino-
mixing mechanism.
PH
in 1957 [13] (see also [12], where the authors trace
the evolution of the concept of neutrino oscillations).
The observation of neutrino oscillations means that
the neutrinos of the different fundamental genera-
tions have different masses and that lepton flavors
are not strictly conserved quantum numbers. There-
fore, neutrinos are mixed with one another and are
able to transform into one another. The observation
of neutrino oscillations [7–10] completed long-term
searches for these effects and opened a new page in
studying neutrino physics and the properties of lepton
flavors [11, 12].

Although neutrino oscillations do not fit in the
general pattern of the StandardModel, their discovery
as it is did not generate the need for revising the
fundamentals of this theory. It proved to be sufficient
to modify somewhat the Standard Model by intro-
ducing in its Lagrangian terms that correspond to
the neutrino masses and lepton-flavor violation. Con-
currently, there arises the neutrino-mixing matrix,
which is close in form to the Сabibbo–Kobayashi–
Мaskawa quark-mixingmatrix. The neutrino-mixing
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Fig. 2. Historic advances in experiments seeking the
lepton-flavor violation in processes involving muons and
kaons [28]: (◦) µ→ eγ, ( ) µ→ 3e, and (•) µ− +A→
e− + A (muon processes) and ( ) K0

L → eµ̄ and (+)

K+ → π+eµ̄ (kaon processes). It can be seen from these
data that the sensitivity of experiments seeking lepton-
flavor-violating processes was constantly improved (on
average, by two orders of magnitude per decade).
YSICS OF ATOMIC NUCLEI Vol. 68 No. 7 2005
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Table 2.Data on neutrino oscillations [11]

Best fit Allowed values

∆m2
12 = 7.1 × 10−5 eV2, tan2 ϑ12 = 0.40 ∆m2

12 < 10−4 eV2, tan2 ϑ12 < 0.64
∆m2

32 = 2.0 × 10−3 eV2, sin2(2ϑ23) = 1 ∆m2
32 � (1.3−3.0)× 10−3 eV2, sin2(2ϑ23) > 0.9, sin2 ϑ13 < 0.067
matrix is referred to as the Pontecorvo–Maki–
Nakagawa–Sakata matrix (see [12–15]). However, it
should be emphasized that, while quark mixing leads
to a great number of new effects in the quark sector of
the Standard Model, the neutrino-mixing matrix may
in general result only in quite limited phenomenology.
It may even appear that neutrino oscillations will be
unique experimental manifestations of lepton-flavor
violation. If the neutrinos are Majorana particles,
|∆L| = 2 neutrinoless double-beta decay can become
another observable effect.

Indeed, let us consider other manifestations of
lepton-flavor violation in processes involving charged
leptons [below, they are referred to as lepton-flavor-
violating (LFV) processes]. For example, the decay
µ → eγ is a lepton-flavor-violating process. At first
glance, it seems that this decay may be due to neu-
trino mixing (see diagram in Fig. 1). However, the
smallness of the neutrino masses results in that the
probability of the decay µ → eγ via the neutrino-
mixing mechanism is very small—it is suppressed by
the factors (mνi/MW )4 [16, 17]. The branching ratio
for the decay µ → eγ is estimated as

Br(µ → eγ) =
Γ(µ → eγ)

Γ(µ → eν̄eνµ)
(13)

� 3
32

α

π

∣∣∣∣∣
∑
i

U∗
µiUei

(
mνi

MW

)2
∣∣∣∣∣
2

.

Here,

νµ =
∑

Uµiνi, νe =
∑

Ueiνi, (14)

where νi are the neutrino mass and lepton-flavor
eigenstates and νµ and νe are the neutrino states pro-
duced in, respectively, muon and electron processes
(they are neither mass eigenstates nor lepton-flavor
eigenstates). In the case ofmνi < 1 eV, we then have
Br(µ → eγ) � 10−48. Such an estimate is also valid
for other lepton-flavor-violating processes involving
charged leptons.

Searches for such forbidden lepton-flavor-
violating decays (µ → eγ, µ → 3e, K0

L → eµ̄, K+ →
π+µ+e−, and so on) are of great interest in the
general context of searches for new physics beyond
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 7 200
the Standard Model; over the past few decades,
such searches have been performed in a number of
experiments with an ever increasing accuracy. So far,
none of these processes has been discovered. The
upper limits established for them are presented in
Table 3 [18–27] and in Fig. 2 [28] (where the history
of these searches is demonstrated). Much attention
has been given to lepton-flavor-violating processes
involving charged leptons because their observation
would obviously be beyond the Standard Model. The
very fact that lepton-flavor violation was discovered
in neutrino oscillations of course gave additional
impetus to such searches. It will be seen below that,
if lepton-flavor-violating decays occur, they generally
manifest themselves at very short distances (for very
high energy scales) that will remain inaccessible
even to next-generation supercolliders. It seems that
investigation of rare anomalous decays is the only way
to probe this region of very high energies.

At the present time, a number of new projects have
been proposed in which the sensitivity of searches

Table 3.Upper limits on the branching fractions of lepton-
flavor-violating processes

Process Upper limit
on Br (90% C.L.) References

K0
L → e∓µ± 4.7 × 10−12 [18]

K0
L → π0e∓µ± 3.3 × 10−10 [19]

K0
L → e∓e∓µ±µ± 4.12 × 10−11 [19]

K+ → π+µ+e− 2.8 × 10−11 [20]

K+ → π+µ−e+ 5.2 × 10−10 [21]

K+ → π−e+e+ 6.4 × 10−10 [21]

K+ → π−e+µ+ 5.0 × 10−10 [21]

K+ → π−µ+µ+ 3.0 × 10−9 [21]

µ → eγ 1.2 × 10−11 [22]

µ → 3e 1.0 × 10−12 [23]

Γ(µ− +Ti → e− + Ti)/
Γ(µ− + Ti → capture)

4.3 × 10−12 [24]

τ → eγ 2.7 × 10−6 [25]

τ → µγ 3.1 × 10−7 [26]

τ → l1l2l3 (1.4−3.1) × 10−7 [27]
5
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for muon lepton-flavor-violating processes may be
improved by a few orders of magnitude (up to Br(µ →
eγ) ∼ 10−14 and, in the future, to Br(µ → eγ) and
Br(µ → 3e) ∼ 10−15–10−16 at neutrino factories).
A new technique of superconducting magnetic traps
was proposed for studying coherent µ–e conversion
on nuclei to a precision of Γ[µ− + (Z,A) → e− +
(Z,A)]/Γ(µ− → capture) ∼ 10−17 (or even maybe
up to 10−19). The program of these new searches for
muon lepton-flavor-violating processes and theoret-
ical hypotheses associated with such processes are
discussed in [28, 29] (see also references therein).

At the same time, there was some pessimism con-
cerning the possibility of further improving accuracy
in searches for lepton-flavor-violating processes in
rare kaon decays. In this connection, two comments
are in order:

First, lepton-flavor-violating processes in purely
leptonic decays and in quark–lepton transitions can
be caused by totally different mechanisms (for exam-
ple, quark–lepton lepton-flavor-violating processes
may be due to leptoquark exchange).

Second, a comparison of the quark–lepton pro-
cesses s → dµē and d → dµē must be performed
with allowance for their possible distinctions. In
particular, it will be shown below that processes of
the s → dµē type, which manifest themselves in kaon
decays, possess unique features that make respective
experiments complementary to other searches for
lepton-flavor-violating processes. Therefore, it is of
paramount importance to consider possibilities of
searches for lepton-flavor-violating kaon decays at
the highest achievable sensitivity in new-generation
experiments. This may become an important part of
the general program of experiments aimed at searches
for lepton-flavor violation in processes involving
charged leptons.
PH
The objective of the present article is to attract the
attention of researchers to this problem and to em-
phasize the need for new investigations into lepton-
flavor-violating kaon decays at the highest possible
sensitivity.

2. PHENOMENOLOGY
OF LEPTON-FLAVOR-VIOLATING

KAON DECAYS

Let us consider the lepton-flavor-violating kaon
decays

K0
L → e−µ+ (15)

and

K → πe−µ+. (16)

In this section, we present a phenomenological
description of these processes [30–33]. Since kaons
and pions are pseudoscalar particles, only axial and
pseudoscalar currents can contribute to the decay
process (15), where the 〈0|Hw|K0

L〉 transition occurs,
while vector, scalar, and tensor hadron currents can
contribute to the decay process (16) (〈π|Hw|K〉 tran-
sition).

For the lepton-flavor-violating decay (15), thema-
trix element can be written in the form

M =
GF√

2

[
Jλ
A(f ′

Aūeγλvµ + fAūeγ5γλvµ) (17)

+ JP (f ′
P ūevµ + fP ūeγ5vµ)

]
.

The most general expression for the hadron cur-
rents appearing in the matrix element M was ob-
tained by using the phenomenological decay parame-
ters:
axial vector Jλ
A = P λmKaAϕK = P λmKaA

1√
2mK

pseudoscalar JP = m2
KaPϕK = m2

KaP
1√
2mK



. (18)
Here, ϕK is the pseudoscalar kaon wave function

normalized to 1/
√

2mK ;P λ is the kaon 4-momentum

(P λ = P λ
µ + P λ

e ); and aA and aP are the hadron

parameters, which are defined below.
The constants
GF√

2
fA,

GF√
2
f ′
A,

GF√
2
fP , and

GF√
2
f ′
P

describe the new lepton-flavor-violating interactions

of kaon hadron currents with lepton currents beyond

the Standard Model. Because everything that is nec-
YSICS OF ATOMIC NUCLEI Vol. 68 No. 7 2005
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essary is taken into account in the definition of the
new coupling constants fA, f ′

A, fP , and f ′
P , we do

not include the Cabibbo mixing angle in the matrix
element.

The relation between the axial currents Jλ
A forK0

L

andK+ decays is dictated by SU (3) symmetry [30]

〈0|Jλ
A|K0

L〉 =
√

2〈0|Jλ
A|K+〉 =

√
2fK

P λ√
2mK

. (19)

Here, fK = 159.8 ± 1.5 MeV is the K+-decay con-
stant, which was determined from data onK+

µ2 decays
(see, for example, [1]). From here, the dimensionless
constant aA =

√
2fK/mK is found to be 0.46. As was

shown in [30], the relation between the constants aA
and aP in (18) can be established on the basis of
current algebra. We have

aP = aA
mK

ms + md
= 0.46 × 4.6 = 2.1,

where ms � 100 MeV and md � 7.5 MeV are the
current quark masses.

Considering that the K0
L-meson 4-momentum

is P λ = P λ
µ + P λ

e and using the Dirac equation for

the lepton spinors µ and e, (P̂µ + mµ)vµ = (P λ
µ γλ +

mµ)vµ = 0 and ūe(P̂e −me) = 0 (vµ is the antispinor
of µ+, while ue is the spinor of e−), and the com-
mutation properties of the Dirac matrices, one can
represent the matrix element (17) in the form

M =
GF√

2

{
mKaA√

2mK

[
f ′
Aūe(P̂e + P̂µ)vµ (20)

+ fAūeγ5(P̂e + P̂µ)vµ
]

+
m2

KaP√
2mK

[
f ′
P ūevµ + fP ūeγ5vµ

]}

=
GF√

2

{
mKaA√

2mK

[
f ′
A(meūevµ −mµūevµ)

+ fA(−meūeγ5vµ −mµūeγ5vµ)
]

+
m2

KaP√
2mK

[
f ′
P ūevµ + fP ūeγ5vµ

]}

=
1√

2mK

[
Aūeγ5vµ + Būevµ

]
.

Here, А and В are dimensionless amplitudes given by

A =
GF√

2
mKaA (21)

×
[
−fA(mµ + me) +mK

aP
aA

fP

]
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� GF√
2
mKmµaA

[
−fA + fP

mK

mµ

aP
aA

]

� 2.00 × 10−7[−fA + 9.9fP ],

B =
GF√

2
mKaA

×
[
−f ′

A(mµ −me) + f ′
PmK

aP
aA

]

� GF√
2
mKaAmµ[−f ′

A + 9.9f ′
P ]

� 2.00 × 10−7[−f ′
A + 9.9f ′

P ].

We can disregard the effect of the electron mass
on the decay in (15) and find the width with respect to
this decay in the form

Γ(K0
L → e−µ+) =

1
(2π)2

(22)

×
∫

d3pµ

2Eµ

d3pe

2Ee
|M |2δ(4)(PK + Pµ + Pe),

where the square of the matrix element is

|M |2 = M+M (23)

=
1

2mK
[−A∗(v̄µγ5ue) + B∗(v̄µue)]

× [A(ūeγ5vµ) +B(ūevµ)]

=
1

2mK

{
−A∗A(v̄µγ5ue)(ūeγ5vµ)

+ B∗B(v̄µue)(ūevµ)

−A∗B(v̄µγ5ue)(ūevµ) + AB∗(v̄µue)(ūeγ5vµ)
}

=
1

2mK

{
AA∗tr

[
(P̂µ −mµ)(P̂e −me)

]

+ BB∗tr
[
(P̂µ −mµ)(P̂e + me)

]

+ A∗Btr
[
(P̂µ −mµ)(P̂e −me)γ5

]

+B∗Atr
[
(P̂e + me)(P̂µ −mµ)γ5

]}

=
1

2mK

{
|A|2[P ρ

µP
σ
e · 4gρσ + 4mµme]

+ |B|2[P ρ
µP

σ
e · 4gρσ − 4mµme]

}

=
4

2mK

[
|A|2 + |B|2

]
(PµPe)

+
4

2mK

[
|A|2 − |B|2

]
(mµme)

� 4
2mK

[
|A|2 + |B|2

]
(PµPe).



1196 LANDSBERG
Here, terms of the A∗B type vanish upon evaluating
the relevant trace because we have tr(γργσ) = 4gρσ ,
trI = 4, tr(γαγ5γβ) = 0, tr(γβγ5) = 0, and trγ5 = 0.

Further, we omit the terms proportional to the
electron mass and introduce the 3-momentum
p = |pµ| [Eµ =

√
p2 + m2

µ, Ee = p; p = (m2
K −

m2
µ)/(2mK) = (mK/2)(1 −m2

µ/m
2
K)]. Upon inte-

gration, we then obtain

Γ(K0
L → e−µ+) =

1
4(2π)2

1
2mK

× 2[|A|2 + |B|2]
(24)

×
∫

2(PePµ)
EµEe

d3pµδ(mK − Eµ − Ee)

=
1

2(2π)2
1

2mK
m2

K

(
1 −

m2
µ

m2
K

)
[|A|2 + |B|2]

×
∫

4πp2dp

Eµp
δ

(
mK − p−

√
p2 + m2

µ

)

=
mK

8π

(
1 −

m2
µ

m2
K

)2

[|A|2 + |B|2]

� 18.1 MeV× [|A|2 + |B|2].

Here, we have used the relation m2
K = (Pe + Pµ)2 =

2(PePµ) + m2
µ +m2

e , whence it follows that

2(PePµ) � m2
K

(
1 −

m2
µ

m2
K

)
,

and the relations∫
pdp

Eµ
δ

(
mK − p−

√
p2 + m2

µ

)

=
p

Eµ

(
d

dp

(
p +

√
p2 + m2

µ

)∣∣∣∣
p+E=mK

)−1

=
Eµ

Eµ + p

p

Eµ
=

p

Eµ

Eµ

mK
=

p

mK
=

1
2

(
1 −

m2
µ

m2
K

)
,

Br(K0
L → e−µ+) (25)

=
Γ(K0

L → e−µ+)
Γ(K0

L → tot)
=

18.1 MeV× [|A|2 + |B|2]
1.273 × 10−14 MeV

= 1.42 × 1015[|A|2 + |B|2].

Let us consider the model where |fA|2 = |f ′
A|2,

fP = f ′
P = 0. We then have

Br(K0
L → e∓µ±) = 2Br(K0

L → e−µ+)

= 2[1.42 × 1015 × 4.0 × 10−14|fA|2 × 2]

= 2.27 × 102|fA|2.
PH
Taking into account the experimental limit Br(K0
L →

e∓µ±) < 4.7 × 10−12 (see Table 3), we obtain the
limitations

|fA|2 < 2.07 × 10−14, fA < 1.4 × 10−7. (26)

In the model where fA = f ′
A = 0 and |fP | = |fP ′ | 
=

0, we have

Br(K0
L → e∓µ±) (27)

= 2.27 × 102 × (9.9)2|fP |2

= 2.22 × 104|fP |2 < 4.7 × 10−12.

This leads to the limitations

|fP |2 ≤ 2.1 × 10−16, |fP | < 1.5 × 10−8.

It is convenient to compare the decayK0
L → e∓µ±

with the decay K+ → µ+νµ, which is kinematically
close to the former. In the model where |fA| = |f ′

A|
and fP = f ′

P = 0, we have [|A|2 + |B|2] =
2G2

F|f2
A|f2

Km
2
µ. From (24), we then have

Br(K0
L → e−µ+)τ−1(K0

L) (28)

= Γ(K0
L → e−µ+)

=
2G2

F|fA|2mK

8π
f2
Km

2
µ

(
1 −

m2
µ

m2
K

)2

,

Br(K0
L → e∓µ±)τ−1(K0

L)

= Γ(K0
L → e∓µ±)

=
4G2

F|fA|2mK

8π
f2
Km

2
µ

(
1 −

m2
µ

m2
K

)2

.

For the decayK+ → µ+νµ, the results are [1]

Br(K+ → µ+νµ)τ−1(K+) (29)

= Γ(K+ → µ+νµ)

=
G2

F[sinϑC]2mK

8π
f2
Km

2
µ

(
1 −

m2
µ

m2
K

)2

;

B1 =
[
Br(K0

L → e∓µ±)
Br(K+ → µ+νµ)

τ(K+)
τ(K0

L)

]
(30)

=
Γ(K0

L → e∓µ±)
Γ(K+ → µ+νµ)

=
4|fA|2(GF/

√
2)2

sin2 ϑC(GF/
√

2)2
≤ 1.75 × 10−12

{this follows from the data in Table 3 for the upper
limit on the branching ratio for (15) and from [26]}.

For the lepton-flavor-violating decay K0
L →

e∓µ±, we will now consider the model in which this
YSICS OF ATOMIC NUCLEI Vol. 68 No. 7 2005
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process is induced by a horizontal bosonX0 changing
lepton flavors (see Fig. 3). Within this model, the
probability of the decay process (15) is proportional
to

|fA|2
G2

F

2
=
(
h′h′′

M2
X

)2

. (31)

From (30) and (31), we then obtain

B1 =
4
(
h′h′′

M2
X

)2

sin2 ϑC

(
g2

8M2
W

)2 =
4

sin2 ϑC

(
h′h′′

M2
X

)2

(
g2

8M2
W

)2

(32)

= 4
(
MW

MX

)4
[(

h′h′′

g2/8

)2 1
sin2 ϑC

]

=
(

16
sinϑC · g2

)2 ( h′

h′′

)2 [ h′′

MX
MW

]4

= 2.86 × 104

(
h′

h′′

)2 [ h′′

MX
MW

]4

,

whence we find forMX that

M4
X =

4M4
W

B1

[(
h′h′′

g2/8

)2 1
sin2 ϑC

]
.

Under the assumption that
(
h′h′′

g2/8

)2

� 1, we have

MX = 3.0MWB
−1/4
1 (33)

= 2.6MW × 103 GeV � 210 TeV.

It can be seen from here that the rare kaon decay (15)
is sensitive to the region of very short distances (very
large masses), which remains inaccessible even at
next-generation supercolliders.

However, it should be noted that, in the model
involving horizontal bosons, there exists yet another
serious constraint on the parameters of the respective
interaction. It can be seen from Fig. 4 that this inter-
action leads to K0 � X0 � K̄0 and will contribute
to the mass difference ∆mK between theK0

L andK0
S

mesons. It was shown in [30] that

∆m′
K � 8

3
mKf

2
K

(
h′′

MX

)2

. (34)

If we make the extreme assumption that the kaon-
mass splitting ∆mK is entirely due to this process
(that is, ∆m′

K = ∆mK = 3.49 × 10−12 MeV) and
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 7 200
 

K

 

0

 

L

 

X

 

0

 

d

 

µ

 

–

 

h

 

''

 

h

 

'

 

s

e
 

–

Fig. 3. Feynman diagram for the decay K0
L → e∓µ±

in the model involving horizontal bosons X0 changing
lepton flavors.
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Fig. 4. Feynman diagram for the mixing processesK0 �
X0 � K̄0 in the model involving horizontal bosonsX0.
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Fig. 5. Feynman diagram for the leptoquark-exchange-
induced lepton-flavor-violating processes involving lep-
tons and quarks.

represent fK = 159.8 MeV in the form fK = 2.00 ×
10−3MW , we can obtain(

h′′

MX
MW

)2

=
∆mK

mK

3
8

106

4
= 6.57 × 10−10. (35)

Substituting (35) into (32), we then arrive at

B1 ≤ 2.86 × 104

(
h′

h′′

)2 [ h′′

MX
MW

]4

(36)

= 1.23 × 10−14

(
h′

h′′

)2

.

5
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Fig. 6. Results of the calculation of the branching ratios (Вr) for the decays (а)K0
L → eµ̄ and (b)K → πeµ̄ within the model

proposed in [33] versus the mass of the horizontal boson X0 [see (37)] under the assumption that gX = g is a weak coupling
constant. In Fig. 6a, the solid and dashed curves correspond to the axial (A) and pseudoscalar (P ) interactions violating lepton
flavors in kaon decays. In Fig. 6b, the solid and dashed curves represent data on the decayK0

L → π0eµ̄ for the scalar (S) and
vector (V ) interactions, respectively, while the dash-dotted and dotted curves show data on the decay K+ → π+eµ̄ for S and
V interactions, respectively.
In fact, B1 must be still smaller since ∆m′
K <

∆mK—as is well known, a significant fraction of
∆mK can be explained by ordinary weak interactions
within the Standard Model.

Thus, the only possible way to obtain a not overly
small value of B1 (close to the existing upper limit)
is to introduce a large value of the ratio of the lep-
tonic and hadronic coupling constants for the hor-
izontal X0 boson—h′/h′′ � 10. This condition does
not seem absolutely unnatural. For example, one can
see that, for weak interactions within the Standard
Model, the ratio of the W -boson couplings to the
leptons and strange quarks is 1/ sin ϑC � 5 (for in-
teractions with heavy quarks, this ratio is consider-
ably higher). Nevertheless, it seems (in view of the
possibility ∆m′

K < ∆mK) that one can expect a rel-
atively large branching ratio for the lepton-flavor-
violating decay (15) only if there is a symmetry that
suppresses the K0 � X � K̄0 mixing processes or
if an entirely different mechanism governs the decay
process (15)—this may be, for example, leptoquark
exchange (see Fig. 5). Such a mechanism must also
contribute to other processes violating lepton flavor in
lepton–hadron interactions—for example, the neutri-
noless muon conversion µ− + (Z,A) → e− + (Z,A).
It is not peculiar to lepton-flavor-violating kaon de-
cays.

The phenomenology of lepton-flavor-violating
(s → dµe−) kaon decays was also investigated in [33]
within the model involving the exchange of a horizon-
tal bosonX0 and hadron interactions of the axial and
pseudoscalar types (for the decaysK0

L → eµ̄) or of the
PH
vector and scalar types (in the decaysK → πeµ̄). The
corresponding interactions are described by operators
that have a rather general form; that is,

QV,A =
g2
X

2M2
X

d̄γα [CLqPL + CRqPR] sµ̄γα (37)

× [CLlPL + CRlPR] e + h.c.,

QS,P =
g2
X

2M2
X

d̄
[
C ′
LqPL + C ′

RqPR

]
sµ̄

×
[
C ′
LlPL + C ′

RlPR

]
e + h.c.,

where PL = (1− γ5)/2; PR = (1 + γ5)/2; and g2
X ,C,

and C ′ are coupling constants.

The branching ratios calculated with these oper-
ators for lepton-flavor-violating kaon decays are pre-
sented in Fig. 6 for g2

X = g2 and C = C ′ = 1.

3. LEPTON-FLAVOR-VIOLATING KAON
DECAYS AND CONCEPT

OF FUNDAMENTAL FERMION
GENERATIONS WITH CONSERVED

QUANTUM NUMBERS

As was mentioned in Section 2, decays of the
s → deµ̄ type possess a unique special feature that
distinguishes them from process of the d → deµ̄ type
(the neutrinoless conversion of muons into electrons)
or from purely leptonic transitions accompanied by
lepton-flavor violation (µ → eγ, µ → 3e, and so on).

Namely, quarks and leptons belonging to the dif-
ferent generations take part in lepton-flavor-violating
YSICS OF ATOMIC NUCLEI Vol. 68 No. 7 2005
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Table 4. Selection rule in the generation quantum number of fundamental fermions in the Standard Model

First-order processes ∆G = 0 K+ → π+µ+e−, K0
L → e∓µ±, K0

L → π0e∓µ±

Second-order processes |∆G| = 1 µ → 3e, µ → eγ, µ− + N → e− + N

Third-order processes |∆G| = 2 K0 � K̄0 (∆m(K0
L −K0

S)), µ−e+ → µ+e−, K+ → π+µ−e+

Note: Some examples illustrating the effect of the ∆G selection rule:

a) K+ → π+µ+e− : (s̄u) → (ud̄)µ+e−,

Gin = −1 + 2 = +1, Gfin = 0 + (−1) + 2 = +1, ∆G = Gfin −Gin = 0;

b) K0 → e−µ+ : (s̄d) → e−µ+,

Gin = +1, Gfin = +1,∆G = 0;

K0 → e+µ− : Gin = +1, Gfin = −1,∆G = −2;

K̄0 → e−µ+ : ∆G = +2;

K̄0 → e+µ− : ∆G = 0;




If dominant decays are characterized
by ∆G = 0, then one has

K0
L � K0

2 =
∣∣∣∣ 1√

2
(K0 − K̄0)

〉
→ e∓µ±,

| |→ e−µ+ → e+µ−

but there is an additional factor of 1/2 in the matrix
elements for these decays;

c) µ− + N → e− + N : Gin = +1 + G(N)

Gfin = +2 + G(N)

}
∆G = +1;

d) K0 � K̄0 : Gin = +1

Gfin = −1

}
∆G = −2.
kaon decays; therefore, it becomes possible to com-
pensate for a change in the generation within the
quark sector by the corresponding change in the gen-
eration within the lepton sector. This simple possibil-
ity was discussed many times, but it was most clearly
formulated by Cahn and Harari [34], who introduced
the quantum numbers G characterizing the funda-
mental fermion generations in the Standard Model
and classified various processes in accordance with
the possible change in this quantum number, ∆G =
Gfin −Gin.

If we consider only transitions between fermions
of the first two generations, one can assign, in a
purely phenomenological way, any differing quantum
numbers to these generations—for example, G1 = 2
for the first generation andG2 = 1 for the second gen-
eration (G1 = −2 and G2 = −1 for antifermions). It
can then be seen from Table 4 that we can partition all
processes under consideration into classes in accor-
dance with the change inG,∆G, in the corresponding
transitions.
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 7 200
In Fig. 7, the effect of the ∆G selection rule is
shown for decays occurring via the exchange of hori-
zontal bosonX0.

The physical meaning of the quantum number
G is not quite clear. It is obvious that the special
properties of lepton-flavor-violating kaon decays
and their unique potential will manifest themselves
only if the ∆G selection rule is rather stringent.
Some lepton-flavor-violating decays correspond-
ing to ∆G = 0 may then have a markedly higher
probability than other processes for which |∆G| = 1
at best. Moreover, horizontal interactions mediated
by X0-boson exchange, which were considered in
the preceding section (see Figs. 3 and 4), are not
sensitive in this case to constraints arising in K0 �
X0 � K̄0 transitions since this mixing occurs in
the third order (|∆G| = 2; see Table 4) and may
be strongly suppressed. An unexpected distinction
between the decay processesK+ → π+µ+e− (∆G =
0) and K+ → π+µ−e+ (|∆G| = 2) is also worthy of
note.
5
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Fig. 7. Effect of the selection rule in the generation quantum numbers of fundamental fermions in the Standard Model within
the mechanism involving the exchange of a horizontal bosonX0.
Thus, we see that, if the concept of fundamental
generations that involves the quantum numbers G

conserved in the first approximation is valid and if
the |∆G| selection rule imposes stringent constraints
on the the branching ratios for the corresponding
processes, further searches for lepton-flavor-violating
kaon decays are of paramount importance.

Let us now illustrate the concept of the funda-
mental-fermion generations in the Standard Model
that are characterized by the quantum numbers G

conserved in the first approximation by considering
the dynamical model involving extra spatial dimen-
sions that was developed in [35] and especially in [36].
Below, we briefly formulate the main aspects of this
model:

(А) A space that involves extra dimensions is
characterized by an M4 × S2 metric—that is, it cor-
responds to four-dimensional Minkowski spacetime
and an additional two-dimensional manifold com-
pactified within a sphere of radius R. In this six-
dimensional spacetime, fundamental fermions form
a single generation that further reduces to the three
generations of fundamental fermions in the Standard
Model [see (1)], these generations being localized in
different regions of the multidimensional space and
P

being characterized by the generation quantum num-
bers Gi that are conserved in the first approximation.
These quantum numbers correspond to some angu-
lar momenta in the compactified S2 space (sphere).
Specifically, the first, second, and third generations
of fundamental fermions are characterized, by the
values of, respectively, G1 = 2, G2 = 1, and G3 = 0
(for the corresponding antifermions, the signs ofG are
reversed).

(B) The existence of lepton-flavor-violating de-
cays whose probability is determined by the structure
of the extra space (that is, by the mass scale of the
compactification of extra dimensions, 1/R, and by
the Kaluza–Klein structures for gauge bosons) is a
distinctive feature of the model question.

(C) Because of a rather weak mixing of the funda-
mental generations in the Standard Model, |∆G| 
= 0
processes are strongly suppressed,

Br ∼ |ε|∆G||2. (38)

Here, ε is the generation-mixing parameter, which
plays a crucial role for the degree of suppression of
processes accompanied by a change in the generation
quantum number.
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 7 2005
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(D) The structure of the interactions of fermions,
gauge bosons, and Higgs particles is tuned to repro-
duce the true hierarchy of masses and mixing angles
in the quark sector for the matrix VCKM. Quark-
mixing processes are determined by the mixing pa-
rameter εq � 10−2. For the lepton sector of the theory,
it is presently impossible to determine the analogous
mixing parameter εL in a model-independent way.
Therefore, we are going to use two values of this
parameter that are compatible with available experi-
mental data: (i) εL � εq = 10−2 and (ii) εL � εq; we
choose εL ∼ 10−3. It is obvious that, in the case of
small lepton mixing, the ∆G selection rule becomes
substantially more stringent.

Three types of processes characterized by different
values of ∆G were considered. Since many model
parameters were determined to a not very high preci-
sion, the branching ratios for lepton-flavor-violating
decays were estimated quite roughly by comparing
processes of similar kinematics that are allowed and
forbidden in the Standard Model.

(1) Lepton-flavor-violating decays allowed by
the selection rule ∆G = 0 (K0

L → e∓µ±, K+ →
π+µ+e−). The branching ratio for the decay K0

L →
e∓µ± is compared with the branching ratio for the
allowed decay K+ → µ+νµ (in just the same way as
in Section 3). The quantity B1 is then determined by
the ratio of the squares of the corresponding matrix
elements; that is,

B1 =
[
Br(K0

L → e∓µ±)
Br(K+ → µ+νµ)

τ(K+)
τ(K0

L)

]

=
Γ(K0

L → e∓µ±)
Γ(K+ → µ+νµ)

=
∣∣∣∣ 〈ēµ|s̄d〉〈ν̄µ|s̄u〉

∣∣∣∣
2

.

We recall that B1 ≤ 1.75 × 10−12 [see (30)]. With-
in the model proposed in [36], one can obtain an
equation that relates Br(K0

L → e∓µ±) to the inverse
compactification radius,

1
R

>
MW

cos ϑW

[
Br(K+ → µ+νµ)
Br(K0

L → e∓µ±)
τ(K0

L)
τ(K+)

(39)

× (2 sin4 ϑW − sin2 ϑW + 1/4)

]1/4 (
ζ

sinϑC

)1/2

=
MW

cosϑW

(
ζ

sinϑC

)1/2

×
[
Br(K0

L → e∓µ±)−1 × 0.64 × 4.19
]1/4

× 0.595,
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whence it follows that

1/R > 101 TeV×
√
ζ � 64 TeV. (40)

Here, ζ � 0.4 is a model parameter and Br(K0
L →

e∓µ±) = 4.7 × 10−12.3)

For another ∆G = 0 lepton-flavor-violating de-
cay,K+ → π+µ+e−, it was found in [36] that

1
R

>
MW

cos ϑW

(
ζ

2 sin ϑC

)1/2

(41)

×
[
ξBr(K+ → π0µ+ν)
Br(K+ → π+µ+e−)

]1/4

,

where

ξ = (4 sin2 ϑW/3 − 1)2(1 + (4 sin2 ϑW − 1)2)

+
sin4 ϑW

9
(16 cos2 ϑW)2 = 1.38.

From the constraint Br(K+ → π+µ+e−) < 2.8 ×
10−11, it follows for the compactification scale that

1/R > 18 TeV. (42)

(2) Lepton-flavor-violating decays corresponding
to |∆G| = 1 suppressed transitions. Let us now
consider the lepton-flavor-violating decay µ+ →
e+e+e−, which proceeds in the next order in ∆G

(|∆G| = 1; see Table 4). It can be compared with the
main muon decay µ+ → e+νeν̄µ, which is kinemati-
cally close to it and which is allowed in the Standard
Model [36]. We have

Br(µ+ → 3e)
Br(µ+ → e+νeν̄µ)

(43)

= (MWR4)(εL)2ζ2

[
1 + 20 sin4 ϑW

2 cos4 ϑW

]

= (MWR4)(εL)2ζ2 × 1.90 < 1.0 × 10−12.

This yields

1
R

> 60 TeV×√
εL =




6.0 TeV (εL = 10−2),

1.9 TeV (εL = 10−3).
(44)

3)In estimating K0
L-meson decays within the ∆G = 0

model, we calculate Br(K0
L → e∓µ±) with allowance

for what was indicated in the note to Table 4:

K0
L � K0

2 =

∣∣∣∣ 1√
2
(K0 − K̄0)

〉
→ e∓µ±.

| |→ e−µ+ → e+µ−

The amplitudes of the corresponding processes involve
the factor of 1/2.
5
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In the model being considered, the decay µ → eγ
is additionally suppressed by a loop factor, so that its
probability is small.

One of the most promising lepton-flavor-violating
processes characterized by |∆G| = 1 is neutrinoless
muon conversion to an electron in the field of a nu-
cleus, µ− + Z → e− + Z. The best limit on the prob-
ability of this process is

F =
Γ(µ− + Ti → e− + Ti)
Γ(µ− + Ti → capture)

≤ 4.3 × 10−12

(see Table 3).
Following [36], we find that the probability of this

lepton-flavor-violating process and the compactifica-
tion radiusR are related by the equation

F =
Γ(µ− + Ti → e− + Ti)
Γ(µ− + Ti → capture)

(45)

= 2(εL)2α3
QEDR

4m4
µ

[
ζF (q2)

π

]2

× Z4
eff

[
κmµ

ZΓ(µ− → capture)

]
M4

WG2
F,

where Γ(µ− → capture) = Γ(capture) = 2.6 ×
106 s−1 = 1.71 × 10−15 MeV for the Ti nucleus;
Z = 22 and N = 26 are the numbers of, respectively,
protons and neutrons in the nucleus;Zeff = 17.6 is the
effective electric charge of the nucleus; |F (q2)| � 0.54
is the nuclear form factor; and κ = 220. From here, we
obtain

1
R

> mµZeff

[
2α2

QEDmµ|F (q2)|2κ
π2Γ(capture)ZF

]1/4

(46)

×MWG
1/2
F ζ1/2(εL)1/2

or

1
R

> 78 TeV×
√
εL =




7.8 TeV (εL = 0.01),

2.5 TeV (εL = 0.001).
(47)

(3) Process K0 → X → K̄0 characterized by
|∆G| = 2. As was shown in [36], the hadronic tran-
sitions considered here, which proceed in the third
order in ∆G, are strongly suppressed by the selection
rule (38). The limitations for the compactification
scale because of these processes appear to be very
lenient:

1
R

< 1.5 TeV (48)

(from the mass difference, ∆mK),
P

1
R

< 2.6 TeV (from a possible effect (49)

on the CP-violation parameter, εK).

Therefore, the data on K0 → X → K̄0 transitions,

which proceed in the third order in |∆G|, impose

no constraints on the branching ratio for the decay

K0
L → e∓µ±.

Thus, the possibility of considering various neu-

tral lepton-flavor-violating processes from a unified

point of view and with allowance for the selection

in the generation quantum number of fundamental

fermions, the ∆G selection rule, is an appealing fea-

ture of the studies reported in [35, 36]. Within this

theory and with the aid of relations (39), (41), (43),

and (46), we find that the branching ratios for lepton-

flavor-violating processes admit the universal repre-

sentation

Bri(LFV) = ai/R
−4
ieff . (50)

In accordance with the selection rule (38), we then

have

R−1
ieff = [R−1(ε|∆G|)1/2]i, (51)

where R is the compactification radius expressed in

TeV−1 units.

For the processes allowed by the selection rule
in G (that is, if ∆G = 0), we have R−1

eff = R−1. For
|∆G| = 1 lepton processes, we will use two assump-

tions on the lepton-mixing factors: (i) εL � εq � 0.01
and (ii) εL = 10−3. Either assumption is compat-

ible with available experimental data and is rather

conservative. It is obvious that, with decreasing εL,

the selection rule in the generation quantum number

becomes more stringent.

Thus, we represent the branching ratios for

lepton-flavor-violating decays in the form

Bri(LFV) = ai/[R−4(ε|∆G|)2]i (52)

or

ai = Bri(LFV)[R−4(ε|∆G|)2]i. (53)
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 7 2005
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We conjecture that different lepton-flavor-
violating processes corresponding to identical values
of the effective inverse radiusR−1

ieff = [R−1(ε|∆G|)1/2]i
(R is the compactification radius at which the lepton-
flavor violation occurs for ∆G = 0 allowed processes)
are equally sensitive to possible lepton-flavor violation
in processes involving charged leptons.

Relying on the currently available upper limit on
the relevant branching ratios, Br(K0

L → e∓µ±) =
4.7 × 10−12, and on the corresponding inverse com-
pactification radius, 1/R = 64 TeV (40), one can
therefore estimate the branching ratios that must be
achieved in searches for other lepton-flavor-violating
processes in order to obtain commensurate sensitivi-
ties to lepton-flavor violation. The result is

Bri(LFV)|R−1
eff =64 TeV (54)

=
{
Bri(LFV)exp =

ai

[R−4(ε|∆G|)2]i

}

× [R−4(ε|∆G|)2]i
(64 TeV)4

= ai/(64 TeV)4.

If we assume that, in future kaon experiments,
one can reach the sensitivity of Br(K0

L → e∓µ±) =
10−14 (this corresponds to 1/R = 298 TeV), then the
predicted branching ratios for other processes of the
same sensitivity are

Bri(LFV)|R−1
eff =298 TeV = ai/(298 TeV)4. (55)

The corresponding numerical results are given in Ta-
ble 5.

Thus, it was shown that the theory proposed in [35,
36], which involves a space featuring extra dimen-
sions and an M4 × S2 metric, the extra dimensions
being compactified within a sphere of radius R, leads
to the concept of approximately conserved generation
quantum numbers of fundamental fermions in the
Standard Model and to a significant suppression of
|∆G| 
= 0 processes. In this theory, the sensitivity of
lepton-flavor-violating kaon decays proceeding in the
first order in G (that is, at |∆G| = 0), especially of
the decaysK0

L → e∓µ±, is many orders of magnitude
higher than muon lepton-flavor-violating processes,
which proceed in the second order in G (that is, at
|∆G| = 1) (see Table 5).
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 7 200
Of course, the model being considered is of an
approximate character and calls for a further devel-
opment and refinements. It is only one of the possi-
ble models involving lepton-flavor violation. In pro-
cesses involving charged leptons, lepton-flavor vio-
lation may be of a very intricate character and may
receive contributions from many other mechanisms,
for which purely leptonic processes (µ → eγ, µ → 3e,
τ → 3µ, τ → µ + γ, and so on) can be even more
sensitive than kaon decays. For mixed quark–lepton
processes, such as s → dµē and d → dµ̄e, it is of
great interest to study in detail the relative poten-
tial of different mechanisms (involving the selection
in the generation quantum number, leptoquark ex-
change, etc.). Finally, processes involving noncon-
servation of the total lepton charge L—such as neu-
trinoless double-beta decay [(Z,A) → (Z + 2, A) +
2e−] or exotic decays likeK+ → π−µ+µ+—may play
an important role.

Problems associated with lepton-flavor violation
attract much attention since lepton-flavor-violating
processes can be sensitive to an energy scale that is
far beyond the possibilities of next-generation super-
colliders. These problems were considered in detail
in a number of studies (see, for example, [28, 37–
49] and references therein). At the present time, the
main attention of researchers is given to an am-
bitious program of new searches for muon lepton-
flavor-violating processes of the µ → e + γ or µ− +
(Z,A) → e+ (Z,A) type. It is planned to improve the
sensitivity of these searches by three to five orders of
magnitude [28, 29]. Of course, this is a very important
and promising line of future investigations.

However, it follows from the present analysis that
searches for effects of lepton-flavor violation in rare
kaon decays, where unique features of kaon pro-
cesses may manifest themselves, are complementary
to muon-decay experiments and also deserve an ex-
tensive development in future investigations. We will
assess some possibilities of future kaon experiments
in the next section.

4. PROSPECTS OF FUTURE SEARCHES
FOR LEPTON-FLAVOR-VIOLATING KAON

DECAYS

Future studies of rare lepton-flavor-violating kaon
processes will be possible only upon realizing the
following two main conditions:
5
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Table 5. Sensitivities to various lepton-flavor-violating processes within the extradimensional model featuring approxi
fundamental fermions [36]

Br(LFV) (90% C.L.)
(experimental data on

upper limits)
|∆G| [R−1(ε|∆G|)1/2]i,

TeV
[R−4(ε|∆G|)2]i,

TeV4
ai(LFV), TeV4

Branching ratios
expected for

lepton-flavor-violating
processes and

normalized to available
data on the decays
K0

L → e∓µ± and
R−1 = 64 TeV

[see (54)]

f
i

Br(K0
L → e∓µ±)

< 4.7 × 10−12

0 64 1.68 × 107 7.90 × 10−5 Normalization:
Br(K0

L → e∓µ±)
< 4.7 × 10−12,
R−1 = 64 TeV

Br(K+ → π+µ+e−)
< 2.8 × 10−11

0 18 1.05 × 105 2.94 × 10−6 1.75 × 10−13

Br(µ− → e+e−e−)
< 1.0 × 10−12

1
6.07 (εL = 10−2)
1.92 (εL = 10−3)

1.36 × 103

1.36 × 10
1.36 × 10−9

1.36 × 10−11
0.81 × 10−16

0.81 × 10−18

F =
Γ(µ− → e−)

Γ(µ → capture)
< 4.3 × 10−12

1
7.80 (εL = 10−2)
2.47 (εL = 10−3)

3.70 × 103

3.70 × 10
1.59 × 10−8

1.59 × 10−10
0.94 × 10−15

0.94 × 10−17

Note: For various processes, columns 6 and 7 give the expected branching ratios at which their sensitivity to lepton-flavor
existing data for the decaysK0

L → e∓µ± and with data expected in the future for these decays.
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(i) Intense kaon sources must be created in order
to increase considerably statistics for enhancing the
sensitivity to lepton-flavor-violating kaon decays.

(ii) Reliable methods must be developed for identi-
fying rare lepton-flavor-violating kaon decays and for
suppressing background processes that restrict the
sensitivity of relevant experiments.

These conditions would require preparing a new
generation of kaon experiments at the existing
intermediate-energy (∼25–120 GeV) accelerators,
as well as at those that are currently under con-
struction or are designed. Detectors for these inves-
tigations must be based on the latest achievements
of experimental techniques in order to improve the
efficiency of identification of decay products and the
accuracy of spectrometric and time measurements,
as well as to increase maximally the detector ability to
operate at high rates.

Although there are presently no specific new pro-
posals of searches for lepton-flavor-violating kaon
decays, some investigations along these lines are un-
der way [41, 50, 51]. In the project of the CKM exper-
iment [50], in which it was planned to perform pre-
cision measurements of the rare decay K+ → π+νν̄,
further searches for the lepton-flavor-violating de-
cays K+ → π+µ+e−, K+ → π+µ−e+, and K+ →
π−l+l+ (first of all,K+ → π−µ+µ+) were considered
among accompanying measurements. It was shown
that the high sensitivity of the СКМ experiment and
unique features of the CKM detector would make
it possible to reach a statistical accuracy for their
branching ratios at a level of Br � 10−12—that is, to
improve the sensitivity of searches for lepton-flavor-
violating kaon decays by more than one order of mag-
nitude in relation to the results achieved in the E865
experiment (Table 3). Although a complete analysis
of the background situation that would enable one
to attain this improvement of the sensitivity was not
performed in the SKM project, some studies were
carried out, and their results proved to be very promis-
ing [51]. Note that the limit obtained in the Е865
experiment for the decay K+ → π−µ+µ+ (Br < 3 ×
10−9) was the least restrictive one. This limit was de-
termined by the copious background from the decay
K+ → π−π+π+, in which two π+ mesons decay in
flight (π+ → µ+νµ) and are misidentified as muons.
The results of the Е865 experiment for this decay
are presented in Fig. 8. For the СКМ setup, it was
shown via a CKM GEANT Monte Carlo simulation
that, for standard processing methods (close to those
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 7 200
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Fig. 8. Results of the Е865 experiment for the de-
cay K+ → π−µ+µ+. The dashed curve corresponds to
Br(K+ → π−µ+µ+) � 3 × 10−9; N is the number of
events.

used under conditions of the Е865 experiment), the

expected background for Br(K+ → π−µ+µ+) proved
to be at the same level (�2.5 × 10−9, 90% C.L.).

However, the set of equipment that must constitute

the СКМ detector made it possible to perform an

optimized analysis on the basis of redundant mo-

mentum measurements for one of the muons with

the aid of a magnetic spectrometer and a Cherenkov

RICH spectrometer that was installed downstream

of the magnetic spectrometer (and upstream of the

muon detector) and which was intended for precisely

measuring particle velocities. From an analysis of

the data in Fig. 9, we see that this method would

make it possible to reduce, at least by two orders

of magnitude, the background of the decays π → µν

in flight and to improve the expected sensitivity of

searches to Br(K+ → π−µ+µ+) � 10−11 [51]. Al-

though the СКМ experiment was initially approved

at Fermilab, its future fate is unfortunately unclear

because of the lack of funds. At the present time, the

CKMCollaboration is preparing a revised plan for this

experiment [52] with the aim of considerably reducing

the cost of the project and, at the same time, achieving

its main goals formulated in [50].
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Fig. 9. Simulation of the background for the decay K+ → π−µ+µ+ under the conditions of the CKM experiment [51]. The
shaded histograms represent the background; N is the number of events in relative units; the unshaded peaks correspond to
the decays K+ → π−µ+µ+ (the vertical scale is changed). In Figs. 9а and 9b, the background is suppressed by standard
kinematical methods for separatingK+ → π−µ+µ+ events with various cuts (which are close to the conditions in the Е865
experiment); in Figs. 9c and 9d, the background is suppressed by using the procedure of a double identification of muons in the
magnetic spectrometer and in the RICH spectrometer (see main body of the text). A comparison of the data in Figs. 9d and 8
shows that the background due to the decay K+ → π+π−π+ (involving the decays π+ → µ+ν in flight) can be suppressed
by more than two orders of magnitude under the conditions of a double muon constraint (CKM).
Although it is of importance to improve, to the
maximum possible degree, the sensitivity of searches
for various lepton-flavor-violating kaon decays, which
may be induced by interactions of different types,
searches for the decaysK0

L → e∓µ± with the highest
possible sensitivity seem to be the most promising.
In this connection, we consider the estimates of the
statistical potential of such searches at the present
and future accelerators [41, 53, 54].

In order to illustrate the potential for obtaining
intense K0

L beams at the Fermilab Main Injector, the
estimates derived for one of the versions of the KAMI
project (KAMI-NEAR [53]) are given in Table 6.
As can be seen from this table, the sensitivity that
can be achieved in such measurements is Br(K0

L →
e∓µ±) � 10−14.

At the 70-GeV IHEP accelerator, a statistical ac-
curacy of Br(K0

L → e∓µ±) � 10−13 can be achieved
P

because of a lower intensity, a lower repetition fre-
quency of the proton beam, and a shorter time of mea-
surements. Nevertheless, prospects for increasing the
solid angle and the intensity of the neutral beam
should be explored by using a strongly asymmetric
beam in order to reduce the losses of detection effi-
ciency for the process under investigation. It should
be recalled that, in the KOPIO experiment (BNL), the
solid angle of a slow K0

L beam was increased up to
about 500 µsr (the dimensions of the beam spot were
about 120 × 10 cm2—see Fig. 10) [55].

Information about the properties of future accel-
erators (the J-PARC project at KEK, accelerators
for neutrino factories, and the proton driver at Fer-
milab [41, 56]) shows that, at the next-generation
intermediate-energy hadron accelerators, the sta-
tistical sensitivity in searches for the decays K0

L →
e∓µ± can be improved to a level of <10−15 (or
maybe higher). It seems that the sensitivity of these
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 7 2005
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Table 6. Evaluation of the potential of theK0
L beam at the Fermilab Main Injector in the KAMI-NEAR project [53]

Proton beam and properties of
secondary neutral beam

Decay volume
and data onK0

L decays
Results of an analysis of the decay

K0
L → e∓µ±

Proton beam: Ep = 120 GeV;
Ip = 3 × 1013 protons рer
cycle→ 3.6 × 1016 protons рer hour;
neutral-beam-production angle of
ϑ � 8 mrad;
beam acceptance of dΩ =
(2.5 mrad) × (2.5 mrad) = 6.3 µsr;
K0

L-meson flux at the target of
1.5 × 109K0

L per cycle;
intensity ratio of n/K0

L � 20

The distance from the primary target
to the decay volume is 40 m;
the decay length is 23 m;
the decay probability in the decay
volume is about 10%;
the number ofK0

L decays is
1.2 × 108/cycle→ 1.4 × 1011/hour;
the mean momentum of decay kaons
is 15 GeV

The total number ofK0
L decays over two

years of running (under the assumption of
50% losses because of dead time and
inefficiency of accelerator system) is
N = 1.7 × 1015K0

L decays;
the detection efficiency for the decay
K0

L → e∓µ± is∼10%;
the sensitivity is
Br(K0

L → e∓µ±) � 10−14.

In the KAMI project characterized by a
reduced intensity, the statistical sensitivity
is Br(K0

L → e∓µ±) � 10−13 [54]
experiments will be limited only by the background
conditions of the experiments.

For experiments at the aforementioned level of
sensitivity, the preparation of proposals will of course
require a very careful elaboration of the experimental
design and a detailed simulation of the background
conditions of measurements. Only some of the possi-
ble recommendations for a further analysis are formu-
lated here.

(i) A neutral beam must possess good properties
and a minimum halo. In order to achieve this, the
beam-formation scheme and the collimation system
must be designed carefully. Figure 10 displays the
results of a neutral-beam simulation for the KAMI
project [54] that were obtained with allowance for data
on neutral beams at the KTeV setup and for the beam
in the KOPIO project [55]. The neutral beam must
traverse the entire setup in a vacuum and not interact
with the detector material.

(ii) The forward part of the setup contains the
decay volume and two magnetic spectrometers up-
stream of it that are characterized by a very high res-
olution and which are located in the region of a high
vacuum (about 10−6 Torr). The vacuum chamber
must be within the yoke of the magnetic spectrom-
eters. Thin-wall drift tubes of high resolution that
were developed for the СКМ setup and which operate
in a high vacuum [50, 57] can be used as tracking
detectors. Therefore, they can be located within the
vacuum chamber of the magnetic spectrometer. The
holes in the tubes make it possible to channel through
them an intense neutral beam without interactions,
so that the counting rate will be determined almost
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 7 200
completely by the products ofK0
L-meson decay in the

decay volume and in the spectrometers. The double
measurement of the muon momentum reduces sub-
stantially the background from the decays π → µνµ
in flight.

(iii) A muon- and electron-identification system
must be located downstream of the magnetic spec-
trometers. In order to remove the neutral beam, it
is channeled from the above system through a thin
evacuated pipe. For a high-efficiency electron identi-
fication, one can employ a system formed by a shower
spectrometer and a transition-radiation detector (as
in the KTeV setup) or a gas Cherenkov detector. A
conventional time-of-flight spectrometer can be used
to identify muons and to perform additional indepen-
dent measurements of their momenta (in the same
way as was done in the E871 experiment [17]). How-
ever, it seems more efficient to employ in this region a
high-precision RICH counter to identify simultane-
ously muons and electrons (as was proposed in the
CKM project). This would also make it possible to
perform a third measurement of the muon momen-
tum and to suppress further the background from the
decays π → µνµ in flight—this was discussed in [50,
51] by using the decay K+ → π−µ+µ+ (see Fig. 9)
as an example.

An analysis of possible background processes in
separating the decays K0

L → e∓µ± was performed
in [17, 32]. This resulted in indicating the following
three main sources of the background:

The first source is the processes K0
L → π±e∓ν

involving a very soft neutrino and the decays π+ →
µ±ν in flight. Although the maximum mass of the
5



1208 LANDSBERG

 

–200 –100

 

N

 

cm
0 100 200

10

 

0

 

10

 

2

 

10

 

4

 

(

 

d

 

)

–200 –100

 

N

 

cm
0 100 200

10

 

0

 

10

 

2

 

10

 

4

 

(

 

c

 

)

–100 –50

 
N

 

cm
0 50 100

10

 

0

 

10

 

2

 

10

 

4

 

(

 

a

 

)
10

 

6

 

–100 –50
cm

0 50 100

(

 

b

 

)

Fig. 10. Results of a simulation of the expected profiles for the low-halo neutral beams in the KAMI [54] and KOPIO [55]
experiments: (a) the KAMI project, aK0

L beam; (b) the KAMI project, a neutron beam; (c) the KOPIO project, the horizontal
profile of a neutral beam; and (d) the KOPIO project, the vertical profile of a neutral beam. In the KOPIO project, the
neutral beam is characterized by a strong asymmetry in the vertical and horizontal coordinates and by a very large acceptance
(∼500 µsr).
detected system e∓µ± is shifted, in this case, with
respect to the K0

L-meson mass ((Meµ)max = mK −
8.43 MeV [32]), non-Gaussian errors in the momen-
tum measurements can generate a hazardous back-
ground situation.

The second is a misidentification of secondary par-
ticles, which leads to errors in determining the effec-
tive mass of the system.

The third is random coincidences of secondary
decay particles from two different K0

L mesons; such
backgrounds become more dangerous under condi-
tions of a high intensity that is necessary for achieving
a high sensitivity of the experiment.
PH
The possibility of independently suppressing these
backgrounds should be studied carefully in design-
ing the setup for searches for the decays K0

L → eµ̄
(Monte Carlo simulation based on theGEANT pack-
age, dedicated calibration measurements). Particular
attention should be given to non-Gaussian errors in-
duced by the decays π → µν in flight and interactions
of secondary particles in the tracking detectors of the
magnetic spectrometers (the thickness of the detector
material must be minimized). In order to reduce non-
Gaussian effects to the maximum possible degree,
tracks should be thoroughly fitted by using all avail-
able modern algorithms (see, for example, [58]).

In order to reduce the random background, it is
necessary to chose carefully an optimum profile of the
YSICS OF ATOMIC NUCLEI Vol. 68 No. 7 2005
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neutral beam—for example, to use a sharply asym-
metric profile (see Fig. 10 and [55]). It is also neces-
sary to harness the latest achievements of electronics.
It can be expected that considerable advances can be
made by employing, in the beam-identification zone
(that is, beyond the vacuum), new-generation track-
ing detectors that rely on the Micromega TPC tech-
nology (of the KABES type in the NA48 experiment)
and which enable one to operate under conditions of
high counting rates [59].

For future experiments, it might be worth consid-
ering a system for focusing the products of the two-
particle decay K0

L → e−µ+ with the aid of a super-
conducting solenoid whose magnetic field is directed
along the neutral kaon beam (in a way analogous
to that proposed in [60] for studying µ–e conver-
sion). However, the proposed system may substan-
tially complicate the design of the experimental setup.

5. CONCLUSION

In conclusion, it should be emphasized once
again that, in view of unique features of lepton-
flavor-violating kaon decays that are associated with
the concept of approximately conserved generation
quantum numbers G of fundamental fermions in
the Standard Model and with the ∆G = 0 selection
rules, it is of paramount importance to perform a
new generation of rare-kaon-decay experiments at
the existing and future intermediate-energy (25–
120 GeV) accelerators by using kaon beams of high-
est intensity. It is necessary to design new setups that
would ensure the highest speed of operation and the
most detailed reconstruction of event kinematics with
the aim of suppressing the background and improving
the sensitivity of experiments by two to four orders of
magnitude in relation to the data in Table 3. These
very complicated experiments should be considered
as an independent and a complementary part of
the general program of searches for lepton-flavor
violation in processes involving charged leptons.
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ELEMENTARY PARTICLES AND FIELDS
Theory
Pion Electromagnetic Form Factor in QCD Sum Rules
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Abstract—The electromagnetic form factor of the πmeson is calculated in terms of the QCD sum rules for
a pion axial-vector current with allowancemade for the radiative QCD corrections. The derived dependence
of the pion form factor on the square of the transferred momentum Q2 is in good agreement with the
experimental data. The QCD corrections are shown to make a large contribution, and they should be taken
into account in a rigorous theoretical analysis. c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

The electromagnetic form factors of hadrons have
been studied for a long time. The first calculations in
this field appeared immediately after it had become
clear that the perturbative approach in QCD could
also be used to analyze the high-energy asymptotic
behavior of exclusive processes [1–3]. However, a
comparison of the experimental data with QCD pre-
dictions led to the conclusion that, at momentum
transfers on the order of several GeV, the contribution
of the power corrections to the asymptotic predictions
is significant and should be taken into account in the-
oretical calculations (see, e.g., the discussion in [4]).
In this paper, we use the approach of QCD sum

rules [5] to calculate the pion electromagnetic form
factor with the goal of simultaneously allowing for the
hard rescattering (hard contribution) and the overlap
of the pion wave functions in the initial and final
states (soft contribution). In this approach, the soft
contribution is represented by the leading triangular
diagram, while the hard contribution is represented
by the single-gluon exchange diagrams, which have
a higher order in the expansion in terms of the strong
constant αs, and, as a result, it is suppressed com-
pared to the soft contribution by the factor αs/π ∼
0.1. The suppression of the hard contribution is in
complete agreement with the high-energy asymp-
totics of the pion electromagnetic form factor calcu-
lated in terms of perturbative QCD [1–3]:

F hardπ (Q2) =
8παs(Q2)

9
(1)

×
1∫

0

dx

1∫
0

dy
φπ(x)φπ(y)

xyQ2
=

8παsf2
π

Q2
,

1)Institute for High Energy Physics, Protvino, Russia.
2)Department of Physics and Astronomy, Wayne State Uni-
versity, Detroit, USA.
1063-7788/05/6807-1211$26.00
where the asymptotic wave function of the pion is
used in the last equality. At asymptotically large mo-
mentum transfers O(αs/π), the suppression of the
hard contribution is compensated for with an excess
by its slower decrease with increasing Q2. However,
in the range of low momentum transfers, the soft
contribution, which behaves as 1/Q4, is significant
and could become equal to the contribution of the
hard rescattering.
The pion electromagnetic form factor has been

studied in terms of various approaches, such as the
QCD sum rules [6–9], the light-cone sum rules [10–
12], and the perturbative approach with allowance
made for the higher radiative corrections [13–17] and
for the dependence of the pion wave function on the
transverse momentum [18–20]. There are also esti-
mates of this form factor that use pseudoscalar cur-
rents as the pion interpolation currents [21–23].
In this paper, we analyze the three-point QCD

sum rules with allowance made for the radiative αs
corrections in order to determine the pion form factor
in the low-energy range of small momentum trans-
fers. We took an axial-vector current as the pion
interpolation current. The main result of our work is
an explicit analytic expression for the radiative QCD
corrections to the double spectral density, which is
one of the main components in the formulation of the
QCD sum rules for the pion electromagnetic form
factor. It should be noted that the radiative corrections
only to the reduced spectral density are known to
date [24, 25].
The results obtained are in good agreement with

the available experimental data. Here, we would like
to emphasize that allowing for the radiative correc-
tions is very important for a systematic analysis, be-
cause only in this way can we simultaneously take
into account the hard and soft contributions to the
pion form factor. Moreover, the numerical value of the
c© 2005 Pleiades Publishing, Inc.
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Fig. 1. Leading contribution.

corrections is fairly large, and they should be taken
into account to make reliable theoretical predictions.
This paper is organized as follows. In Section 2,

we describe the essence of the approach of QCD sum
rules and give explicit expressions for the radiative
corrections to the double spectral density. In Sec-
tion 3, we perform a numerical analysis. Finally, in the
last section, we discuss the results obtained.

2. DERIVATION OF THE QCD SUM RULES

We use the three-point QCD sum rules to de-
termine the pion electromagnetic form factor. In this
approach, the charged pion is described as the result
of the action of an interpolation axial-vector current
on the vacuum state. The matrix element of the axial-
vector current in the vacuum–pion plates is defined
as

〈0|ūγ5γµd|π−(p)〉 = ifπpµ, (2)

where fπ = 131MeV. The pion electromagnetic form
factor studied here is given by the hadron matrix
element of the electromagnetic current:

〈π(p′)|jelµ |π(p)〉 = Fπ(Q2)(pµ + p′µ), (3)

where jelµ = euūγµu + edd̄γµd; p and p′ are the pion
momenta in the initial and final states, respectively;
and Q2 = −q2 (q = p− p′) is the square of the trans-
ferred momentum.
In the QCD sum rules, the expression for the

pion electromagnetic form factor is obtained from an
analysis of the three-point correlation function

Πµαβ(p, p′, q) = i2
∫

dxdyei(p
′·x−p·y) (4)

× 〈0|T{ū(x)γ5γαd(x), jelµ (0), (ū(y)γ5γβd(y))+}|0〉.

This correlation function contains a large number
of various tensor structures. The scalar functions at
various Lorentz structures are functions of the kine-
matical invariants, i.e., Πi = Πi(p2, p′2, q2). In QCD,
the expression for the three-point correlation function
is calculated by using an operator-product expansion
PH
(OPE) for the time-ordered product of the currents in
a deeply Euclidean region of momenta, p2, p′2, q2 <
0. Apart from the leading perturbative contribution,
OPE also yields the power-law corrections related
to the vacuum condensates. Below, we will return to
the discussion of the QCD expression for the three-
point correlation function; now, we will discuss the
relationship of our correlation function to the pion
electromagnetic form factor. In the QCD sum rules,
the relationship to the hadron characteristics is ob-
tained by comparing the expression for the correlation
function calculated in QCD with its spectral repre-
sentation at q2 < 0, where a model that describes the
actual hadron spectrum most completely is taken as
the spectral density. In our case, the following double
spectral representation proves to be convenient:

Πµαβ(p2
1, p

2
2, q

2) =
1

(2π)2
(5)

×
∫

ρ
phys
µαβ(s1, s2, Q

2)

(s1 − p2
1)(s2 − p2

2)
ds1ds2 + subtractions.

Under the assumption that the dispersion relation (5)
converges rapidly, the physical spectral density is
saturated by the low-lying hadron states plus the
continuum that starts from certain threshold values
of sth1 and sth2 :

ρ
phys
µαβ(s1, s2, Q

2) = ρresµαβ(s1, s2, Q
2) (6)

+ θ(s1 − sth1 )θ(s2 − sth2 )ρcontµαβ(s1, s2, Q
2),

where
ρresµαβ(s1, s2, Q

2) = 〈0|ūγ5γαd|π−(p′)〉 (7)

× 〈π−(p′)|jelµ |π−(p)〉〈π−(p)|(ūγ5γβd)+|0〉
× (2π)2δ(s1)δ(s2) + contribution from higher states.

In the massless-quark approximation used in this
paper, we set m2

π = 0. Thus, the pion contribu-
tion to the spectral density is given by ρ

pion
µαβ ∼

f2
πFπ(Q2)pαp′β(pµ + p′µ), and, as was pointed out
in [6–9], the most convenient method of obtaining the
sought form factor is to analyze the scalar amplitude
Π at the most symmetric Lorentz structure PµPαPβ
(P = p1 + p2).
Let us now return to the calculation of the QCD

expression for the three-point correlation function.
The contribution of the vacuumcondensates has been
well known for a long time [6–9] (its analytic ex-
pression can be found in Section 3). The perturbative
contribution is convenient to calculate by using the
double dispersion relation for the variables s1 = p2

and s2 = p′2 at q2 < 0:

Πpertµαβ(p
2, p′2, q2) =

1
(2π)2

(8)
YSICS OF ATOMIC NUCLEI Vol. 68 No. 7 2005
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Fig. 2. Single-gluon radiative corrections.
×
∫

ρ
pert
µαβ(s1, s2, Q

2)

(s1 − p2)(s2 − p′2)
ds1ds2 + subtractions.

The integration domain in (8) is defined by the in-
equality3)

−1 ≤ s2 − s1 − q2

λ1/2(s1, s2, q2)
≤ 1, (9)

where
λ(x1, x2, x3) = (x1 + x2 − x3)2 − 4x1x2. (10)

Wewill seek the double spectral density ρpertµαβ(s1,s2,Q2)
in the form of a series in the strong coupling constant:

ρ
pert
µαβ(s1, s2, Q

2) = ρ
(0)
µαβ(s1, s2, Q

2) (11)

+
αs
4π

ρ
(1)
µαβ(s1, s2, Q

2) + . . . .

Only the diagram shown in Fig. 1 contributes to
the correlation function in the leading approximation
in coupling constant. In the next order, we already
have six diagrams shown in Fig. 2. We use the stan-
dard Cutkosky rules to calculate the double spectral
density. Note also that the kinematical region q2 < 0
is free from non-Landau singularities, and using the
Cutkosky rules to determine the spectral density and
the domain of integration over the variables s1 and s2

is completely justifiable. In the Born approximation,
the expression for the scalar spectral density at the
most symmetric Lorentz structure PµPαPβ can be
easily derived and is given by

ρ
(0)
µαβ(s1, s2, Q

2) =
3Q4

4
1

k7/2
(12)

×
(

3k(s1 + s2 + Q2)(s1 + s2 + 2Q2) − k2

− 5Q2(s1 + s2 + Q2)3
)
PµPαPβ + . . . ,

3)In our case, this inequality holds for any s1, s2 > 0.
ICS OF ATOMIC NUCLEI Vol. 68 No. 7 200
where k = λ(s1, s2,−Q2). The complete analytic ex-
pression for ρ

(0)
µαβ can be found in [7]. The proce-

dure for calculating the radiative corrections to the
double spectral density is also quite clear. Here, it is
necessary to consider all the possible sections of the
diagrams in Fig. 2. However, the presence of collinear
and soft infrared divergences calls for regularizing
the emerging divergences at the intermediate stages,
which makes the analytic calculation fairly compli-
cated. The particular features of this calculation will
be presented in the near future in a separate publi-
cation. Here, we only give the final result. The cal-
culation can be simplified significantly by expanding
the spectral density with respect to the various tensor
structures under the conditions ρµαβqµ = ρµαβpα =
ρµαβp

′
β = 0:

ρµαβ = A1[(Q2 + x)pα1 − (x + y)pα2 ] (13)

× [(y − x)pβ1 + (Q2 + x)pβ2 ]

× [(Q2 + y)pµ1 + (Q2 − y)pµ2 ]

− 1
2
A2[(Q2 + y)pµ1 + (Q2 − y)pµ2 ]

× [(Q2 + x)gαβ − 2pβ1p
α
2 ]

− 1
2
A3[(Q2 + x)pα1 − (x + y)pα2 ]

× [2(pβ2 − pβ1 )pµ2 + (Q2 + y)gµβ ]

− 1
2
A4[(x− y)pβ1 − (Q2 + x)pβ2 ]

× [2(pα2 − pα1 )pµ1 + (y −Q2)gµα],

where x = s1 + s2 and y = s1 − s2. The four indepen-
dent structuresAi (we omitted the dependence on the
kinematical variables) can be determined by solving
5
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the system of linear equations

I1 = ρµαβp
µ
1p

α
2 p

β
1 (14)

=
k2

8

(
kA1 −A2 −A3 −A4

)
,

I2 = ρµαβp
µ
1g
αβ (15)

=
k

4
(x + Q2)

(
kA1 − 3A2 −A3 −A4

)
,

I3 = ρµαβp
α
2 g

µβ (16)

=
k

4
(y + Q2)

(
kA1 −A2 − 3A3 −A4

)
,

I4 = ρµαβp
β
1g

µα (17)

= −k

4
(y −Q2)

(
kA1 −A2 −A3 − 3A4

)
.

The analytic expressions for Ii (the functional de-
pendence on the kinematical variables is implied) are
derived when calculating the diagrams and are given
by (s3 = Q2)

k1/2I1 = −s3
1 + s2s

2
1 + s2

2s1 − s3
2 (18)

+ (s1 + s2)s2
3 − s2

1s3 − s2
2s3 + s1s2s3

×
[
− 16 log2(v1) − 16 log(v3) log(v1)

− 16 log(v4) log(v1) + 2 log(v1) − 4 log2(v3)

− 4 log2(v4) − 2 log(v2) − 2 log(v3)

− 8 log(v3) log(v4) − 8Li2

(
x2

x1

)
− 8Li2

(
y1

y2

)

− 8Li2

(
z1

s1

)
− 8Li2

(
z1

s2

)
+ 8Li2

(
z1

z2

)]
,

k1/2I2 = −2s2
1 − 2s2

2 + 2s2
3 − 8s1s2 (19)

+ s1s2

[
− 32 log2(v1) − 32 log(v3) log(v1)

− 32 log(v4) log(v1) + 4 log(v1) − 8 log2(v3)

− 8 log2(v4) − 4 log(v2) − 4 log(v3)

− 16 log(v3) log(v4) − 16Li2

(
x2

x1

)
− 16Li2

(
y1

y2

)

− 16Li2

(
z1

s1

)
− 16Li2

(
z1

s2

)
+ 16Li2

(
z1

z2

)]
,

k1/2I3 = −2s2
1 + 2s2

2 + 2s2
3 − 8s2s3 (20)

+ s2s3

[
− 32 log2(v1) − 32 log(v3) log(v1)

− 32 log(v4) log(v1) + 4 log(v1) − 8 log2(v3)

− 8 log2(v4) − 4 log(v2) − 4 log(v3)
P

− 16 log(v3) log(v4) − 16Li2

(
x2

x1

)
− 16Li2

(
y1

y2

)

− 16Li2

(
z1

s1

)
− 16Li2

(
z1

s2

)
+ 16Li2

(
z1

z2

)]
,

k1/2I4 = 2s2
1 − 2s2

2 + 2s2
3 − 8s1s2 (21)

+ s1s3

[
− 32 log2(v1) − 32 log(v3) log(v1)

− 32 log(v4) log(v1) + 4 log(v1) − 8 log2(v3)

− 8 log2(v4) − 4 log(v2) − 4 log(v3)

− 16 log(v3) log(v4) − 16Li2

(
x2

x1

)
− 16Li2

(
y1

y2

)

− 16Li2

(
z1

s1

)
− 16Li2

(
z1

s2

)
+ 16Li2

(
z1

z2

)]
,

where we used the following notation:

x1 =
1
2
(s1 − s2 −Q2) − 1

2

√
k, (22)

x2 =
1
2
(s1 − s2 −Q2) +

1
2

√
k, (23)

y1 =
1
2
(s1 + Q2 − s2) −

1
2

√
k, (24)

y2 =
1
2
(s1 + Q2 − s2) +

1
2

√
k, (25)

z1 =
1
2
(s1 + s2 + Q2) − 1

2

√
k, (26)

z2 =
1
2
(s1 + s2 + Q2) +

1
2

√
k, (27)

v1 =
1

2s1
(s1 − s2 −Q2) +

1
2s1

√
k, (28)

v2 =
1

2s2
(s1 − s2 + Q2) +

1
2s2

√
k, (29)

v3 =
1

2s1
(s1 + s2 + Q2) +

1
2s1

√
k, (30)

v4 =
s1

Q2
, (31)

v5 =
s2

Q2
, (32)

v6 = 1 − z1

z2
. (33)

We checked that all infrared and ultraviolet diver-
gences cancel out in the sum of the diagrams, as they
must when use is made of axial-vector interpolation
currents. The radiative corrections to the scalar den-
sity at the most symmetric Lorentz structure PµPαPβ
are given by

ρ
(1)
µαβ =

Q2

k3

{
1
2
(x1 + x2)kI3 (34)

+ (k − 5(x1 + x2)(y1 + y2))I1
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+
1
2
(y1 + y2)kI4 +

1
2

k

z1 + z2

× ((x1 + x2)(y1 + y2) − k)I2

}
PµPαPβ + . . . .

The expression for the radiative corrections to the
spectral density in the limitQ2 → ∞ takes the form

ρ
(1)
µαβ =

{
2
Q2

− 10
s1 + s2

Q4
(35)

− 2
s1 + s2

Q4
log
(
s1s2

Q4

)}
PµPαPβ + . . . .

Here, we wish to make several remarks. First, we
see that there are no double logarithms in our result.
In general, their presence might be expected, because
the diagrams in Fig. 2 contain the Sudakov vertex,
the corrections to the q vertex. In fact, the result for
the gluon corrections to the electromagnetic vertex
(with the addition of the self-energy insets divided
by two to cancel the ultraviolet divergences) contains
double logarithms and agrees with the result of [24,
25] in the limitQ2 → ∞. However, our results for the
corrections to the vertices p1 and p2 also contain dou-
ble logarithms (an analog of the double logarithms
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 7 200
that appear in the perturbative description of the pion
electromagnetic form factor [18, 19]). The double
logarithms cancel out in the sum of all diagrams.
Second, using the expression for the spectral density
at large Q2 and the threshold values of sth1 and sth2
equal to 4π2f2

π , we can easily show that, in the limit
Q2 → ∞, the QCD sum rules reproduce the leading
high-energy asymptotics for the pion electromagnetic
form factor (1) predicted by perturbative QCD using
the asymptotic wave function of the pion (φasπ (x) =
6fπx(1 − x)). Let us now consider a numerical anal-
ysis.

3. NUMERICAL RESULTS

We used the Borel scheme of the QCD sum rules
to obtain the numerical results. In this scheme, the
use of the Borel transformation in two variables, s1
and s2, also makes it possible to get rid of the un-
known polynomial terms in p2

1 and p2
2 in the spectral

representation for the correlation function. The Borel
transformation of the three-point correlation function
is defined as
Φ(M2
1 ,M

2
2 , q

2) ≡ B̂12Πi(s1, s2, q
2) (36)

= lim
n,m→∞

{
sn+1
2

n!

(
− d

ds2

)n sm+1
1

m!

(
− d

ds1

)∣∣∣∣
s1=mM2

1 ,s2=nM
2
2

}
Πi(s1, s2, q

2).
The Borel transformations (36) of expressions (8) and
(5) then yield

Φ(pert|phys)(M2
1 ,M

2
2 , q

2) =
1

(2π)2
(37)

×
∞∫
0

ds1

∞∫
0

ds2 exp
[
− s1

M2
1

− s2

M2
2

]

× ρ(pert|phys)(s1, s2, q
2),

where ρ(pert|phys)(s1, s2, q
2) is the scalar spectral

density at the most symmetric Lorentz structure
PµPαPβ . Below, we assume that M2

1 = M2
2 = M2.

In the case where M2 is chosen to be ∼ 1 GeV2,
the right-hand side of (37) for the physical spectral
density is saturated by the lightest hadron state, while
the contribution of the higher states is suppressed.
Equating the Borel images of the theoretical and
physical parts of the QCD sum rules yields

Fπ(Q2) (38)

=
4
f2
π

(
Φ(M2, q2) +

αs
48πM2

〈0|Ga
µνG

a
µν |0〉

+
52π

81M4
αs〈0|ψ̄ψ|0〉2

(
1 +

2Q2

13M2

))
,

where

Φ(M2, q2) =
1

(2π)2
(39)

×
s0∫

0

dx exp
[
− x

M2

] x∫
0

dyρpert(s1, s2, q
2).

We subtracted the continuum contribution by us-
ing the so-called triangular model. To check the sta-
bility of our results to the choice of a model for the
5
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Fig. 3.M2 dependence of the electromagnetic form factor
Fπ at Q2 = 1GeV2.
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Fig. 4. Q2 dependence of the pion electromagnetic form
factor. The solid curve corresponds to the sum of the
leading approximation (dashed curve) and the radiative
corrections (dotted curve); the dots represent the exper-
imental data [27].

continuum subtraction, we also performed calcula-
tions with the standard “square” model. Both models
were found to yield similar results for the pion elec-
tromagnetic form factor, provided that the continuum
thresholds were chosen so that s0 ∼ 1.5sth1 .

4) In our
calculations, we took s0 = 0.9GeV.5)

This value agrees with the continuum threshold
of about 0.6 GeV2 used in the two-point sum rules
with axial-vector currents. In our numerical calcula-
tions, we used a two-loop running strong coupling
constant with ΛQCD = 325MeV and fixed the scale

4)More detailed information about the various subtraction
schemes can be found in [7].

5)In general, the continuum threshold can be determined from
the ratio of the nonperturbative corrections to the leading
perturbative contribution.
PH
µ of the coupling constant at 2GeV. This choice
agrees with the results of [25], where it is argued that
the strong coupling constant should be “frozen” at
αs ∼ 0.3 when describing the pion electromagnetic
form factor in the regionQ2 < 10GeV2. In Fig. 3, the
pion electromagnetic form factor is plotted against
the Borel parameter M2 at Q2 = 1 GeV2. As we see
from this figure, the “stability plateau” lies in the
region M2 > 2 GeV2. Choosing the Borel param-
eter M2 = 2 GeV2, we can immediately construct
the dependence of the form factor under study on
the transferred momentum. However, having fixed the
Borel parameter, we restrict the Q2 region where our
results may be considered reliable. This is easy to
understand if we note that the perturbative contri-
bution to the form factor decreases in proportion to
Q−2 in the limit of high momentum transfers, while
the power-law corrections increase in proportion to
Q2. It turns out that the sum rules are inapplicable
even at Q2 > 4. Therefore, we consider the limit of an
infinite Borel parameter in order to obtain the depen-
dence of the pion form factor in the entire Q2 region
accessible to experimental study. In other words, we
employ an approach known as local duality; the con-
tinuum threshold [25, 26] is fixed by the relation sth1 =
sth2 = 4π2f2

π/(1 + αs/π) = 0.6GeV2 following from
the requirement that the Ward identity for the pion
electromagnetic form factor with the inclusion of the
electromagnetic corrections be satisfied (Fπ(0) = 1).
Figure 4 presents our estimates for the dependence of
the pion electromagnetic form factor on the momen-
tum transfer as obtained in terms of local duality.

4. CONCLUSION

In this paper, we have calculated the pion electro-
magnetic form factor in terms of the QCD sum rules
using axial-vector interpolation currents for pions in
the initial and final states. In our calculations, we have
taken into account the single-gluon QCD radiative
corrections. The derived Q2 dependence of the pion
form factor is in agreement with the available exper-
imental data. The radiative corrections to the double
spectral density used to construct the sum rules with
axial-vector interpolation currents have been calcu-
lated for the first time. Since the numerical value of
these corrections is large, they should be taken into
account in calculations.
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On the Stability of a Self-Similar Spherical Bubble of a Scalar
Higgs Field in de Sitter Space
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Abstract—An exact generalized discontinuous solution of the spherical-bubble type is obtained for a scalar
Higgs field in de Sitter space. It is shown that the radius of such a generalized bubble evolves in accordance
with one of the exact solutions to a dynamical problem considered previously for the bubble radius in the
thin-wall approximation, where the bubble-wall thickness is negligible in relation to the bubble radius.
Both the generalized solution and the self-similar bubble-type solution that was obtained earlier for the
Higgs field in de Sitter space are studied for stability: it is shown that the former is stable, while the latter is
unstable in this space. A physical interpretation of the reasons for the instability of the self-similar solution
is given. c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION: ON SOLUTIONS
TO THE NONLINEAR EQUATION

FOR THE BUBBLE RADIUS
IN THE THIN-WALL APPROXIMATION

In de Sitter space, the problem of the collapse
of a spherical bubble formed by a scalar Higgs field
described by the action functional

SH =
∫ √

−g[gikϕ,iϕ,k/2 − U(ϕ)]d4x, (1.1)

where the potential is

U(ϕ) = λ2(ϕ2 − ν2)2, (1.2)

was considered in [1]. The above equations are written
in the system of units where c = � = 1. In terms of
spherical coordinates (r, θ, φ), the metric of de Sitter
space has the form [2, 3]

ds2 = dt2 − a2(t)[dr2 + r2(dθ2 + sin2 θdφ2)],
(1.3)

a(t) = a0 exp(Ht),

where H is the Hubble constant and 0 < a0 = const.
By a bubble, we mean a spherically symmetric solu-
tion ϕ(r, t) to the field equation such that it is defined
and bounded over the whole space, tends to one of the
vacua for r → ∞ at any t, and differs from ϕ± ≡ ±ν.
A solution to the equation ϕ(R(t), t) = 0 is referred
to as the radius R(t) of a bubble (if this equation has

1)Dorodnitsyn Computing Center, Russian Academy of Sci-
ences, ul. Vavilova 40, Moscow, Russia.

*e-mail: voronov@heron.itep.ru
**e-mail: nadja@ccas.ru
1063-7788/05/6807-1218$26.00©
more than one solution, we say that we are dealing
here with embedded bubbles).

In [1], the problem of a bubble in de Sitter space
was considered in the approximation of an infinitely
thin wall, in which case the thickness of the bubble
wall can be disregarded against the bubble radius,
the intrinsic gravitational field of the bubble not being
taken into account. In this approximation, the time
evolution of the bubble radius is described by the
equation

R̈ + {2/[a2(t)R] + 3HṘ} (1.4)

× [1 − a2(t)Ṙ2] + HṘ = 0, t > 0,

the initial conditions being taken in the form

R(0) = R0 > 0, Ṙ(0) = 0. (1.5)

Equation (1.4) follows from the “folded action” [1]

Sw = −4πµ
∫

a2R2
√

1 − a2Ṙ2dt

(µ = 4
√

2λν3/3 is the surface energy density), which
is obtained by integrating the total action functional
SH (1.1) with respect to the radius r with the field ϕ
in the form of a wall. Equation (1.4) was also obtained
in [1] from the exact equation for the Higgs field in de
Sitter space in the spherically symmetric case, that is,
from the equation

ϕtt + 3Hϕt − ϕrr/a
2 − 2ϕr/(a2r) (1.6)

+ 4λ2ϕ(ϕ2 − ν2) = 0,

by constructing a solution in the form ϕb(r, t) ≈
νtanh(α(r, t)/l), where α is an unknown function,
c 2005 Pleiades Publishing, Inc.
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l = 1/(a0λν
√

2) [R(t) is a solution to the equation
α(R(t), t) = 0, t ≥ 0], and by formally going over
to the limit l → 0 (λ → ∞). We note that, for a flat
spacetime, there exist a few different methods for
deriving an equation that describes the evolution of
the spherical-bubble radius (see, for example, [4] and
references therein).

In order to analyze Eq. (1.4), it is convenient to go
over to the conformal time τ ,

τ = − exp(−Ht)/(a0H), (1.7)

τ(0) = τ0, τ(∞) = 0,

where τ0 = −(a0H)−1, (−∞ < t < ∞) ⇔ (−∞ <
τ ≤ 0). As a result, the metric (1.3) of de Sitter space
becomes conformally flat:

ds2 = H−2τ−2[dτ2 − dr2 − r2(dθ2 + sin2 θdφ2)].
(1.8)

If, in expression (1.8), we extend the domain of the
variable τ to the whole real axis, −∞ < τ < ∞, then
the coordinate system will cover the entire de Sitter
space; that is, it will be geodesically complete [2].

The problem specified by Eqs. (1.4) and (1.5) re-
duces to the following form in terms of the conformal
time τ (1.7) (dR/dτ ≡ R′):

R′′ = −(2/R − 3R′/τ)(1 −R′2), (1.9)

τ0 ≤ τ < 0,

R(τ0) = R0, R′(τ0) = 0. (1.10)

In [1], it was shown that Eq. (1.9), which describes
the evolution of the bubble radiusR(τ), possesses the
following properties:

(i) For the problem specified by Eqs. (1.9)
and (1.10), there exists a value of the initial radius
R0 (we denote it by Rc and refer to it as a critical
radius) such that, for any R0 > Rc, the bubble does
not undergo a collapse in the course of its evolution,
R(0) = Rf �= 0 (or, in terms of the originally used
time t, R(∞) = Rf �= 0), the following estimate
being valid:

2/[
√

3(1 +
√

2)a0H] < Rc < 6
√

2/3/(7a0H).
(1.11)

From numerical calculations, it was found that Rc =
D/(a0H), where D ≈ 0.6204032. We also present a
rough estimate of the final radius Rf as a function of
the initial radius R0 > Rc (for large R0):

Rf ≈
[
R0 +

√
R2

0 − (a0H)−2

]
/2. (1.12)

(ii) Equation (1.9) possesses the family of particu-
lar solutions

R(τ, d) = ±τ + d, (1.13)
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 7 200
where d is an arbitrary constant, and the solutions

R(τ) = ±
√

2/3τ. (1.14)

Comment 1. Equation (1.9) is invariant under
the transformation Rnew = NR, τnew = Nτ , where
N is a dimensional constant. We can then treat R
and τ in Eq. (1.9) as dimensionless quantities and
consider this equation on the interval (−1, 0) under
the conditions R(−1) = R̃0 > 0 and R′(−1) = 0,
whence, for the solution to the problem specified by
Eqs. (1.9) and (1.10) forR0 = R̃0/(a0H), one obtains
R(τ, τ0) = R(τ,−1)/(a0H). It follows, among other
things, that, in the estimate for Rc(τ0) = D/(a0H),
D = Rc(−1); from Eqs. (1.11) and (1.12), it fol-
lows that 2/[

√
3(1 +

√
2)] < Rc(−1) < 6

√
2/3/7,

Rf (−1) ≈ [R̃0 +
√

R̃2
0 − 1]/2.

2. SELF-SIMILAR BUBBLE-TYPE
SOLUTIONS WITH A WALL OF FINITE

WIDTH AND GENERALIZED
DISCONTINUOUS SOLUTIONS

For a scalar field in de Sitter space, we write
Eq. (1.6) in terms of the conformal time (1.7) as

ϕττ − 2ϕτ/τ − ϕrr − 2ϕr/r (2.1)

+ 4λ2ϕ(ϕ2 − ν2)/(Hτ)2 = 0.

In this equation, it is convenient to go over to the di-
mensionless variablesϕnew = ϕ/ν, τnew = (a0H/ν)τ ,
and rnew = (a0H/ν)r. Equation (2.1) then assumes
the final form (we suppress the index “new” here)

ϕττ − 2ϕτ/τ − ϕrr − 2ϕr/r (2.2)

+ 4C2ϕ(ϕ2 − 1)/τ2 = 0,

where

C = λν/H (2.3)

is a dimensionless constant. We now estimate C for
a realistic physical situation, setting H ≈ 10−10 yr−1

[3] and λν ∼ mp [5] (where mp is the proton mass).
This yields C ∼ 1041.

We are interested in the solution ϕ(r, τ) to
Eq. (2.2) such that it is defined and bounded over the
entire space, satisfies the condition

lim
r→∞

ϕ2(r, τ) = 1 (2.4)

for any τ , and differs from ϕ± ≡ ±1. As was indicated
above, such a solution is referred to as a spherical
bubble; if a given solution depends on C, it corre-
sponds to a bubble whose wall has a finite width l ∼
1/C. Further, we define the bubble radius R(τ) as a
solution to the equation ϕ(R(τ), τ) = 0.
5
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Table

C c0 b0 ξb

2 0.6774 –0.8500 –0.7950

4 0.9892 –0.9993 –0.8139

5 0.9980 –0.99994 –0.8150

10 1 − 5 × 10−7 −1 + 2 × 10−10 −0.8161 ≈ −
√

2/3

There arises the natural question of whether
Eq. (2.2) has solutions belonging to the type of a
bubble whose radius would possess, as the wall width
tends to zero (l → 0; that is, C → ∞), the properties
that were listed in Section 1 for solutions to Eq. (1.9).

First of all, it would be of interest to verify whether
a bubble undergoes a collapse if its initial radius
exceeds a critical value. However, we are unaware
of relevant calculations [among the reasons behind
the computational difficulties that arise in solving the
problem specified by Eqs. (2.2) and (2.4), we can
indicate the absence of a conserved energy integral,
which would make it possible to test the correctness
of the computations, and the emergence of large gra-
dients in the solution].

The problem of bubbles collapsing at τ = 0 (that
is, within an infinite time t) can be solved more
successfully. In particular, the problem specified by
Eqs. (2.2) and (2.4) has C-independent generalized
discontinuous solutions of the shock-wave type; that
is,

ϕ̃(r, τ) = θ(τ ± r), (2.5)

where θ(x) is the signum function of x—specifically,
θ(x) = x/|x| for x �= 0, θ(0) = 0, and θ′(x) = 2δ(x).
Indeed, we have

ϕ̃ττ = ϕ̃rr, ϕ̃r/r = ±2δ(τ ± r)/r = −ϕ̃τ/τ,

ϕ̃(ϕ̃2 − 1) ≡ 0.

The bubble radius for the function in (2.5) changes
with the time τ according to the law

r = R(τ) = ∓τ.

Thus, the original problem specified by Eqs. (2.2) and
(2.4) possesses solutions (2.5) to which particular so-
lutions R(τ) = ∓τ from the family (1.13) of solutions
to Eq. (1.9) correspond, and this seems quite natural
since the function in (2.5) is independent of C and
originally describes a zero-width wall.

In order to find an analog of the solutions in (1.14)
for a finite-width wall, we note first of all that a bubble
whose radius also moves in time τ at a constant
velocity corresponds to these solutions. We will seek
a solution to the problem specified by Eqs. (2.2) and
(2.4) in the form ϕ = ϕb(r/τ)—that is, in the form of
PH
self-similar functions (see [6, 7]). A zero of the func-
tion ϕb will then automatically move at a constant
velocity in time τ . As has already been mentioned,
we concurrently assume that the radius at which
the function ϕb vanishes coincides with the bubble
radius Rb, this being natural since the bubble-energy
density peaks at the zero of the function ϕb. In [6,
7], the velocity of motion of the zero of the function
ϕb was found numerically versus the wall width l,
and the limit of this velocity was determined there for
l → 0 (C → ∞) in order to compare the velocity of
the collapse of the self-similar function ϕb with the
velocities in the solutions given by (1.13) and (1.14).
We note from the outset that the collapse of a self-
similar bubble in the limit of an infinitely thin wall
proceeds according to the law specified by Eq. (1.14)
(see in the table the C dependence of ξb = Rb/τ ,
where ξb(C): ψb(ξb, C) = ϕb(Rb/τ,C) = 0).

We will now proceed to consider briefly self-similar
solutions, setting

ϕ = ψ(ξ), ξ = r/τ. (2.6)

For ψ(ξ) from Eqs. (2.2) and (2.4), we obtain the
equation

[ξ2(1 − ξ2)ψ′]′ = 4C2ξ2ψ(ψ2 − 1), (2.7)

−∞ < ξ < −1, −1 < ξ < 0, 0 < ξ < 1,
1 < ξ < ∞,

and the condition

lim
|ξ|→∞

ψ2(ξ) = 1, (2.8)

where C is the same dimensionless constant (2.3) as
in (2.2). Writing the expression for ϕ in Eq. (2.6) as a
function of the original variables t and r, we obtain

ϕ(r, t) = νψ(−a0Hr exp(Ht)).

Similar substitutions for a scalar field specified by
the Higgs potential in de Sitter space were previ-
ously used by Basu and Vilenkin [8], but only for
one-dimensional walls (as well as for string- and
monopole-type solutions in the systems of two and
three scalar Higgs fields). However, those authors did
not notice the self-similar character of these variables
(in conformal time).

The points ξ = 0, ξ = −1, and ξ = −∞ are regular
singular points of Eq. (2.7) [9, 10], and it is necessary
first of all to impose boundary conditions at finite
singular points of this equation—namely, one formu-
lates, in the interval (−1, 0), a singular boundary-
value problem, imposing the conditions

lim
ξ→−1+0

ψ(ξ) = c0, lim
ξ→−1+0

[(1 + ξ)ψ′(ξ)] = 0,

(2.9)
YSICS OF ATOMIC NUCLEI Vol. 68 No. 7 2005
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lim
ξ→−0

ψ(ξ) = b0, lim
ξ→−0

[ξψ′(ξ)] = 0, (2.10)

where c0 and b0 are the parameters to be determined.
By using theorem 5 from [10], it was shown in [6]
that, at any fixed c0 (fixed b0), the singular Cauchy
problem specified by Eqs. (2.7) and (2.9) [the Cauchy
problem specified by Eqs. (2.7) and (2.10)] has only
one solution; this solution is holomorphic at the point
ξ = −1 (at the point ξ = 0). Thus, the boundary-
value problem specified byEqs. (2.7), (2.9), and (2.10)
has been formulated correctly in what is concerned
with the number of indeterminate boundary param-
eters. It is shown that this problem is solvable if and
only if |c0| ≤ 1 and |b0| ≤ 1; moreover, there are many
solutions, and all of them satisfy the constraint

|ψ(ξ)| ≤ 1, ∀ξ ∈ [−1, 0]. (2.11)

In particular, the constants ψf ≡ 0 and ψ± ≡ ±1
are solutions to the problem specified by Eqs. (2.7),
(2.9), and (2.10). The number of solutions grows
with increasing C, the first solution differing from
the above constants appearing at C ∼ 1.581. This
solution is characterized by the presence of one zero
in the interval −1 < ξ < 0. At any fixed C � 1.581,
such a solution to the problem specified by Eqs. (2.7),
(2.9), and (2.10) is a solution of the bubble type
(embedded-bubble type at a greater value of zeros in
the interval (−1, 0)), since it admits a continuation
to the interval (−∞,−1) and, oscillating, tends to
one of the vacuum solutions—that is, it satisfies the
condition in (2.8) for ξ → −∞ [this condition is a
natural condition for any nontrivial solution to the
problem specified by Eqs. (2.7), (2.9), and (2.10)]. The
solution in question admits an even continuation to
the interval (0,∞).

The asymptotic behavior of the solution at large |ξ|
is [6, 7]

ψ±(ξ) = ±1 ± A

|ξ|3/2
(2.12)

×
[

cos
(√

32C2 − 9
2

ln |ξ| + η

)
+ o(1)

]
,

|ξ| → ∞,

where C2 > 9/32 (for C2 ≤ 9/32, the asymptotic
behavior of the solution is of no interest since, for
such C, the boundary-value problem specified by
Eqs. (2.7), (2.9), and (2.10) obviously does not have
nontrivial solutions differing from ψ± = ±1), A and η
being constants that are unambiguously determined
from the Cauchy data at the singular points ξ = ±1—
that is, upon determining the value of c0 for the
solution to the boundary-value problem specified by
Eqs. (2.7), (2.9), and (2.10).
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Comment 2.As was indicated above, the number
of solutions to the problem specified by Eqs. (2.7),
(2.9), and (2.10) depends on C. From a qualitative
analysis and from numerical experiments reported
in [6, 7], it follows that the eigenvalues C = Cn of the
corresponding spectral problem for the linear equa-
tion

[ξ2(1 − ξ2)ψ′]′ = −4C2ξ2ψ, (2.13)

−1 < ξ < 0,

are global-bifurcation points.
This equation was obtained from (2.7) by means

of a linearization around a trivial solution. Upon the
substitution χ(ξ) = ξψ(ξ), Eq. (2.13) reduces to the
Legendre equation

[(ξ2 − 1)χ′]′ − 2(2C2 + 1)χ = 0, (2.14)

−1 < ξ < 0,

with the boundary conditions

| lim
ξ→−1+0

χ(ξ)| < ∞, (2.15)

lim
ξ→−1+0

[(1 + ξ)χ′(ξ)] = 0,

χ(0) = 0. (2.16)

For each C = Cn such that 2(2C2 + 1) = (2n +
1)(2n + 2), n = 0, 1, . . . , which is equivalent to

Cn =
√

[(2n + 1)(n + 1) − 1]/2, n = 0, 1, . . . ,
(2.17)

functions that are proportional to odd-order Leg-
endre polynomials P2n+1(ξ), are then solutions to
the problem specified by Eqs. (2.14), (2.15), and
(2.16). It was natural to expect that, at C ≈ Cn, the
original nonlinear problem specified by Eqs. (2.7),
(2.9), and (2.10) would possess small solutions (as
perturbations of a trivial vacuum) that are nearly
proportional to Pn+1(ξ)/ξ, and this was confirmed
in the calculations reported in [6]. These solutions
grow in amplitude with increasing C. It follows that,
for each C such that Cn < C < Cn+1, n = 1, 2, . . . ,
the boundary-value problem specified by Eqs. (2.7),
(2.9), and (2.10) has precisely (apart from the sign) n
solutions ψ1(ξ, C), . . . , ψn(ξ, C) different from ψ± ≡
±1, where ψk(ξ, C) has precisely k zeros in the
interval (−1, 0), k = 1, . . . , n. In particular, we find
from (2.17) that C1 =

√
5/2 ≈ 1.5811388 (the value

of C1 for a flat wall was first obtained in [8] on the
basis of a similar argument).

At large values ofC2 in Eq. (2.7), one can describe
a wall-type solution qualitatively. In the region where
ψ changes quite slowly, that term in Eq. (2.7) which
involves a large numerical factor can be compensated
only by a cofactor—that is, ψ ≈ ±1. But in the region
5
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Fig. 1. (a) Graphs of basic bubble-type solutions to the
boundary-value problem specified by Eqs. (2.7), (2.9),
and (2.10) at C = 2, 4, and 10 (with increasing C, the
wall becomes ever steeper); (b) graphs of the same so-
lutions continued to the left of the point ξ = −1 [see the
asymptotic expressions in (2.12)].
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Fig. 2. Graphs of all (apart from those differing in sign)
solutions (different fromψ± ≡ ±1) to the boundary-value
problem specified by Eqs. (2.7), (2.9), and (2.10) for
C = 5.

where the function ψ changes sign, the coefficient of
4C2 is about unity in absolute value, and this term
can be compensated only owing to derivatives. In
this region, we have ψ′′ ≈ ψ/l2 ≈ 4C2ψ, where l is
a characteristic size of the region where the function
ψ changes sign; that is, l is the wall thickness. From
here, we obtain the estimate l ≈ 1/C (in dimension-
less units). More precise information about the quali-
P

tative agreement between the results obtained in [6, 7]
and the results of the theory of singular perturbations
(including the results for multinode solutions) can be
found in [6].

For various values of the constant C, Fig. 1a
shows the graphs of solutions ψ = ψb(ξ, C) to the
problem specified by Eqs. (2.7), (2.9), and (2.10),
while Fig. 1b displays the graphs of the same so-
lutions continued to the left beyond the interval
(−1, 0). The table gives the values of C, c0, b0, and ξb
for these solutions, where ξb(C): ψb(ξb(C), C) = 0,
ξb ∈ (−1, 0). Apart from the change in sign, Fig. 2
presents the graphs of all solutions (different from
ψ± ≡ ±1) to the problem specified by Eqs. (2.7),
(2.9), and (2.10) at C = 5.

Equation (2.7) also possesses the generalized so-
lutions [6]

ψ̃(ξ) = θ(1 ± ξ). (2.18)

Indeed, we have ψ̃(1 − ψ̃2) ≡ 0, ψ̃′ = ±2δ(1 ± ξ),
ψ̃′′ = −2δ(1 ± ξ)/(1± ξ), whence it follows that (1−
ξ2)ψ̃′′ − 2(2ξ − 1/ξ)ψ̃′ = 0. As can easily be verified,
the solutions in (2.18) coincide with the generalized
solutions (2.5). [For a geodesically complete space,
there are, in addition to (2.18), generalized solutions
of the form ψ̂(ξ) = θ(1 ± ξ)θ(±ξ).]
Comment 3.For a solution to the boundary-value

problem specified by Eqs. (2.7), (2.9), and (2.10) at
fixed C, the following relation holds:

0∫
−1

ψ(ξ, C)[ψ2(ξ, C) − 1]ξ2dξ = 0.

For the main bubble, it follows from this relation that

ξb(C)∫
−1

ψ(ξ, C)[ψ2(ξ, C) − 1]ξ2dξ

= −
0∫

ξb(C)

ψ(ξ, C)[ψ2(ξ, C) − 1]ξ2dξ,

which can serve as an additional test of the correct-
ness of calculations.

3. ON THE STABILITY OF GENERALIZED
AND SELF-SIMILAR SOLUTIONS

Let us now proceed to discuss the problem of
stability of the solutions obtained in Section 2.
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 7 2005
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1. Stability of Generalized Discontinuous Solutions

We begin by considering the shock-wave-type so-
lutions (2.5) [or (2.18)]. Substituting into Eq. (2.2)
the expression

ϕ(r, τ) = θ(r ± τ) + u(r, τ) (3.1)

and assuming that |u| � 1, we find that, in the linear
approximation, u satisfies the equation

uττ −
2
τ
uτ − urr −

2
r
ur +

8C2

τ2
u

+
12C2

τ2
[θ2(r ± τ) − 1]u = 0, (3.2)

which differs from the equation describing an exci-
tation above the vacua ϕ± = ±1 [2, 3] by the term
(12C2/τ2)(θ2 − 1)u, which is responsible for the in-
teraction of the field u with a well of finite depth
and zero width, but this cannot radically change the
character of the spectrum for perturbations above the
vacua; that is, the solutions given by (2.5) are stable
to small perturbations.

2. Instability of Self-Similar Solutions as Bubbles
with Walls of Finite Width

Let us consider the stability of a self-similar solu-
tion, which we denote here by ϕ(ξ). We are unaware
of any attempts at addressing the problem of stability
of a self-similar solution against small perturbations.
Moreover, an analysis of solutions obtained numer-
ically for stability is a cumbersome computational
problem. Here, it becomes even more involved be-
cause of the need for studying the asymptotic behav-
ior of perturbations at largeC. Such difficulties do not
arise if, in analyzing a self-similar bubble for stability,
one employs a variational approach—for example, the
Derrick–Hobart method [11]. Within this approach,
one makes use of only those properties of a bubble-
type self-similar solution that were studied in Sec-
tion 2—in particular, the asymptotic behavior of the
solution at large |ξ| [see (2.12)]. Let us consider the
functional

I(ϕ) =

∞∫
−∞

[
(1 − ξ2)(ϕξ)2/2 + C2(1 − ϕ2)2

]
ξ2dξ

(3.3)

on the manifold specified by solutions to the problem
formulated in terms of Eqs. (2.7) and (2.8). For this
functional, Eq. (2.7) is the Euler–Lagrange equation;
therefore, the substitution of solutions to the problem
specified by Eqs. (2.7) and (2.8) must yield δI(ϕ) = 0.

We note that the integrand in the functional (3.3)
coincides with the expression for the energy density
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of the field ϕ in de Sitter space in the so-called static
coordinates, in which the metric has the form

ds2 = (1 − r2H2)dt2 − (1 − r2H2)−1dr2 (3.4)

− r2(dθ2 + sin2 θdφ2),

where the radial variable r is reduced to a dimen-
sionless form with the aid of the Hubble constant H .
One can show that this coincidence is not accidental
and that the self-similar variable ξ is indeed equal
to −rH , where r is the radial variable in the system
of static coordinates. [Thus, self-similar solutions in
the space specified by the metric in (1.8) coincide
with stationary solutions in the space specified by the
metric in (3.4).] Concurrently, the energy integral in
the system of static coordinates (3.4) is the integral
in (3.3) taken from−∞ to 0.
2.1. First of all, we note that, for the C-indepen-

dent discontinuous solution (2.18), which represents
a bubble with a wall of zero width, the integral in (3.3)
is equal to zero. Indeed, the integral

∫∞
−∞(ϕ2 − 1)ξ2dξ

vanishes since the integrand is different from zero only
at one point. The second term involves the square
of the derivative of the solution in (2.18). For the
derivative of the function in (2.18), we obtain ϕξ =
±2δ(1 ± ξ). The square of a delta function is in gen-
eral indeterminate, but, in the case being considered,
it appears in the integral together with the factor
(1 − ξ2); since (1 − ξ2)δ(1 ± ξ) = 0 [12], we have

∞∫
−∞

(1 − ξ2)δ2(1 ± ξ)ξ2dξ

=

∞∫
−∞

δ(1 ± ξ)[(1 − ξ2)δ(1 ± ξ)]ξ2dξ

= 0 ×


2

∞∫
−∞

δ(1 ± ξ)dξ


 = 0.

We will now give a more rigorous proof of the last
statement. We will calculate the kinetic part of the
functional in (3.3) for the one-parameter family of
functions ϕ±

β (ξ) = tanh(β(1 ± ξ)). For β → ∞, the

functions ϕ±
β (ξ) reduce to θ(1 ± ξ). For the sake of

definiteness, we first consider the family of functions
ϕ+
β (ξ). For these functions, the kinetic part of the

functional in (3.3) is given by

Ik(ϕ+
β , β) = Ĩ(β) (3.5)

= β2

∞∫
−∞

[(1 − ξ2)/cosh4(β(1 + ξ))]ξ2dξ.
5
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Let us make the change of variable β(1 + ξ) = y. At
large β, we then have

Ĩ(β) = 2

∞∫
−∞

[y/cosh4(y)]dy + O(1/β) = O(1/β),

(3.6)

whence we obtain the result that is coincident with
the above conclusion. The proof for the function θ(1−
ξ) can be conducted in a similar way.

We will now prove that, upon the substitution of
the functions in (2.18) into the functional in (3.3), the
result will remain zero upon restricting the domain
of integration to that from −∞ to 0; that is, the
energy of the solutions given by (2.18) in the system of
static coordinates is zero. Since this result is obvious
for the function θ(1 − ξ), we will consider only the
solution θ(1 + ξ). In just the same way as in the above
proof, we approximate this function by the expression
tanh(β(1 + ξ)), but, instead of formula (3.5), we ob-
tain the following result at large β:

Ĩ0(β) = β2

0∫
−∞

[(1 − ξ2)/cosh4(β(1 + ξ))]ξ2dξ

(3.7)

= 2

β∫
−∞

[y/cosh4(y)]dy + O(1/β).

For β → ∞, the function Ĩ0(β) (3.7) tends to zero.
Thus, the energy integral [the functional in (3.3)] re-
tains a zero value upon this discontinuous continua-
tion of the vacuum solutions to the interval (−∞,−1)
[or to the interval (−∞,∞)].
2.2. Let us now proceed to study the stability of a

C-dependent self-similar solution, which represents
a bubble with a wall of finite width. In doing this, we
assume that a solution is stable if it minimizes (this
may be a local minimum) the functional in (3.3) and
that it is otherwise unstable (see, for example, [11]).
First of all, we show that the functional in (3.3) is
finite for bubble-type solutions—that is, for functions
whose asymptotic behavior is given by (2.12). Sub-
stituting formula (2.12) into expression (3.3), we find
that, for |ξ| → ∞, the integrand has the form

A2

8|ξ|(32C
2 − 9) cos(

√
32C2 − 9 ln |ξ| + 2η) (3.8)

− 3A2

8|ξ| sin(
√

32C2 − 9 ln |ξ| + 2η) + O(1/ξ2).

The integrals of the terms proportional to 1/ξ2 in
expression (3.8) converge at large |ξ|. In the first two
P

terms, we introduce the variable y = ln |ξ|, where-
upon the integrand in the functional (3.3) for the
functions ϕ±, whose asymptotic behavior is given
by (2.12), assumes the following form at large y:

[A2(32C2 − 9)/8] cos
(√

32C2 − 9y + 2η
)

− [3A2
√

32C2 − 9/8] sin
(√

32C2 − 9y + 2η
)
;

that is, the integral is bounded at large |ξ|. At the
singular points ξ = ±1, 0, the solution to the problem
specified by Eqs. (2.7), (2.9), and (2.10) is given by
holomorphic functions [6, 7].

Wewill seek theminimum of the functional in (3.3)
among functions that are bounded at finite ξ and
whose asymptotic behavior at large |ξ| is

ϕ± ≈ ±1 ± (A/|ξ|3/2) (3.9)

× cos((
√

32C2 − 9/2)α ln |ξ| + η),

where α is a parameter. For functions whose asymp-
totic behavior has the form (3.9), the integrand in the
functional given by (3.3) then develops a term that
involves a nonintegrated singularity at infinity,

A2(32C2 − 9)(1 − α2)/(16|ξ|). (3.10)

For trial functions of asymptotic behavior in the
form (3.9), the functional in (3.3) is then −∞ for
α > 1 and +∞ for α < 1. Thus, α = 1 is not a point
of minimum for this functional (it is some kind of in-
flection point); that is, the self-similar solution whose
asymptotic behavior is given by (2.12) is unstable in
the class of functions whose asymptotic behavior has
the form (3.9). [We note that the functional in (3.3)
cannot be differentiated with respect to the parameter
α since the respective integral diverges for α �= 1.]

A similar conclusion can be drawn by studying the
self-similar solutionϕ(ξ) for stability by the Derrick–
Hobart method [11]. Substituting into the functional
in (3.3) the family of functions ϕγ(ξ) = ϕ(γξ), where
γ is a parameter, and making the change of variable
ξnew = γξ, we obtain

I(ϕγ) ≡ J(γ) =
1
γ3

I(ϕ) +
γ2 − 1
2γ3

K(ϕ), (3.11)

K =

∞∫
−∞

[
∂ϕ

∂ξ
(ξ)
]2

ξ2dξ.

Since the quantities I and K in Eq. (3.11) are finite,
we can differentiate J(γ) with respect to γ. We have

dJ(γ)
dγ

∣∣∣∣
γ=1

= K − 3I,
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 7 2005
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whence it follows that I = K/3, since ϕ(ξ) is a so-
lution to the Euler equation (2.7). For the second
derivative, we obtain

d2J(γ)
dγ2

∣∣∣∣
γ=1

= −5K + 12I = −K < 0, (3.12)

since the functional K is positive definite. The in-
equality in (3.12) implies that a solution of the finite-
width-wall type to Eq. (2.7) is unstable in the afore-
mentioned class of functions. The above argument
can be extended to the case where integration in the
functional given by (3.3) is performed over the range
between −∞ and 0—that is, to the energy integral in
the system of static coordinates (3.4). If, however, the
interval of integration is finite in the functional given
by (3.3), this argument becomes illegitimate, so that
a dedicated consideration is required. We only note
that, at large C, the Derrick relation I = K/3 is valid
numerically to a high accuracy over the integration
range [−1, 0] (for ξ < −1, the solutions are very close
to ϕ± ≡ ±1); in particular, it was found for the main
solution at C = 6 that |I −K/3| ∼ 10−5.
Comment 4. If one considers the singular

boundary-value problem specified by Eqs. (2.7), (2.9),
and (2.10) in the interval (−1, 0), this problem is
equivalent to the following problem: it is necessary
to find solutions to Eq. (2.7) such that the integral

E(ϕ) =

0∫
−1

[(1 − ξ2)(ϕξ)2/2 + C2(1 − ϕ2)2]ξ2dξ

(3.13)

is finite for them.
For this functional, Eq. (2.7) is the Euler–Lag-

range equation, so that δE(ϕ) = 0 on the manifold
spanned by the solutions to the problem specified by
Eqs. (2.7), (2.9), and (2.10). The integral in (3.13)
is a nonnegative definite, and the vacuum solutions
ϕ± ≡ ±1 minimize it absolutely, so that E(ϕ±) = 0.
For the spurious vacuum ϕf ≡ 0, which corresponds
to an unstable field state, we obtain E(ϕf ) = C2/3,
this being the maximum value of the integral in (3.13)
for solutions to the problem specified by Eqs. (2.7),
(2.9), and (2.10). For the remaining solutions to this
problem, which admit an interpretation as pertur-
bations of the trivial vacuum, we obtain interme-
diate values of E. Figure 3 shows the quantities
given by (3.13):En(C) = E(ϕn(ξ, C)), where n is the
number of nodes of the self-similar solution ϕn(ξ, C)
in the interval (−1, 0).

In conclusion, we will discuss the possible reasons
for the instability of self-similar solutions. To do this,
we will return to de Sitter space in the variables
(r, τ). The metric in (1.8) in terms of these variables
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Fig. 3. Graphs of the quantities in (3.13): En(C) =
E(ϕn(ξ, C)), where ϕn(ξ, C) is the function that repre-
sents a solution to the boundary-value problem specified
by Eqs. (2.7), (2.9), and (2.10) and which has n zeros in
the interval (−1, 0).

is conformally flat; therefore, a causal structure of a
flat space survives in it. This means that the motion
of test bodies r = κ|τ | for κ > 1 is impossible since
ds2 ≥ 0 for real bodies. In a self-similar solution, the
field ϕ is constant on the trajectories r = ξτ , so that a
given value of the field ϕ moves at the velocity ξ, this
not being a phase velocity since there is no periodic
process. It is then natural to assume that the field
ϕ resists motion off the light cone, but this means
precisely an instability of a self-similar solution. The
field will either discharge part of energy by radiation,
going over to a stable state of the shock-wave type, or
dissipate into the vacuum.

These arguments do not apply to the shock-wave-
type solution (2.5), since the field is constant for |ξ| >
1, so that the concept of the velocity of motion of a
given field value is meaningless. For the same reason,
the stability of the self-similar solution is restored for
C → ∞, since, in this limit, it reduces to the corre-
sponding θ function.
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Abstract—The general properties of the quasilinearization method (QLM), particularly its fast quadratic
convergence, monotonicity, and numerical stability, are analyzed and illustrated on different physical
problems. The method approaches the solution of a nonlinear differential equation by approximating the
nonlinear terms by a sequence of linear ones and is not based on the existence of a small parameter. It is
shown that QLMgives excellent results when applied to different nonlinear differential equations in physics,
such as Blasius, Lane–Emden, and Thomas–Fermi equations, as well as in computation of ground and
excited bound-state energies and wave functions in quantummechanics (where it can be applied by casting
the Schrödinger equation in the nonlinear Riccati form) for a variety of potentials most of which are not
treatable with the help of perturbation theory. The convergence of the QLM expansion of both energies and
wave functions for all states is very fast and the first few iterations already yield extremely precise results.
The QLM approximations, unlike the asymptotic series in perturbation theory and 1/N expansions, are not
divergent at higher orders. The method sums many orders of perturbation theory as well as of the WKB
expansion. It provides final and accurate answers for large and infinite values of the coupling constants and
is able to handle even supersingular potentials for which each term of the perturbation series is infinite and
the perturbation expansion does not exist. c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

I first came to the Institute of Theoretical and
Experimental Physics (ITEP) sometime during 1960
as a student of the fourth year at the Moscow Uni-
versity to start my diploma work. I was twenty years
old. The theoretical department then was still rather
small, about 15 staff members and a similar num-
ber of diploma and PhD students. Soon I noticed a
tall PhD student a few years older than myself who
made lasting impression on me by being energetic
and very ambitious. His name was Yuri Simonov. He
was intensively working on analyticity and dispersion
relations in field theory. A few years later, however,
after losing in the Moscow subway a thick, ready
for publication manuscript on analytic properties and
connected with it numerous pages of complicated
derivations, he decided overnight not to spend many
months reconstructing it and instead switched to a
different field: he turned to the few-body problem. It
was then a virgin field—mathematical methods such
as the Faddeev equations and the hyperspherical ap-
proach had just started to be developed and com-
puter facilities and even computer languages (many

∗The text was submitted by the authors in English.
1)This article is dedicated to the 70th birthday of Yu.A. Si-
monov [see Phys. At. Nucl. 68, nos. 4, 5 (2005)].
1063-7788/05/6807-1227$26.00
programs at ITEP were at this time still written us-
ing machine addresses) were not at all adequate for
intrinsically complicated calculations involving three
or more particles. The series of his works in this
new field [1], developing the hyperspherical harmonics
method recently pioneered in physics, were elegantly
and carefully written and heralded a new era in the
treatment of several interacting particles. They made
him well known among nuclear physicists and in
the emerging few-body field. Twenty years later, this
approach evolved into the correlation function hyper-
spherical harmonics method (CFHHM) combining
the correlation function and hyperspherical harmon-
ics methods, which enabled very accurate calcula-
tions of the few-body atomic and molecular bound
states and resonances [2–5], of atomic cross sec-
tions [6], and of nuclear levels and reactions [7].

Another work which very much appealed to me at
that time was the pioneering approach by Badalyan
and Simonov to relating energy shifts in pionic atoms
to low-energy πN-scattering data [8]. The extention
of this work led a few years later to the general radius
perturbation theory [9] for potentials consisting of two
parts, an external potential and the internal “core.”
The small parameters in this theory are the ratios of
the core radius to the characteristic length param-
eters of the outer potential, such as its radius, the
c© 2005 Pleiades Publishing, Inc.
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size of the bound-state orbit, and so on. The simple
formula for core corrections to scattering amplitudes,
wave functions, and bound-state levels of the external
potentials were obtained. The theory includes from
the beginning the finite size of the core interaction
and therefore gives much better results than the usual
zero-range approximation to which it reduces in the
limit of zero core size.

I am not qualified to review all the contributions
of Prof. Simonov to nuclear and high-energy physics,
but if I try to sum them up in one sentence, it will
be developing nonperturbative methods, from the
analyticity and unitarity approach in field theory,
Regge theory, multiple dispersion relations, and hy-
perspherical analysis to the nonperturbative approach
to QCD, which is his main interest now. As a homage
to Yuri, I would like therefore to devote this article
to reviewing an emerging additional nonperturbative
approach to treatment of different physical problems
called the quasilinearization method (QLM). The
origin of this very powerful approximation technique
lies in the theory of linear programming. The method,
whose iterations are carefully constructed to yield
rapid quadratic convergence and often monotonicity,
was pioneered more than 30 years ago byBellman and
Kalaba [10, 11] to solve a wide variety of nonlinear
ordinary and partial differential equations or their
systems arising in different engineering and biology
problems such as orbit determination, detection of
periodicities, radiative transfer, and cardiology. The
modern developments and applications of the method
to different fields are given in the monograph [12].
QLM, however, was never systematically studied
or extensively applied in quantum physics, though
references to it can be found in well-known mono-
graphs [13, 14] dealing with the variable phase
approach to potential scattering as well as in a
few scattered research papers [15–18]. This could
be explained by the fact that convergence of the
method has been proved only under rather restrictive
conditions [10, 11] which generally are not fulfilled
in physical applications, such as, for example, for
a rather small domain of variables or for forces
which are finite everywhere in the domain. Recently,
however, the convergence was proved [19, 20] for
realistic physical conditions of infinite domains and
forces which could be singular at certain points of
the domains. It was shown also [21] how to deal with
solutions which themselves could be infinite at certain
values of parameters such as, for example, scattering
amplitudes at bound-state energies.

The review is arranged as follows. In the second
section, we start, for purposes of simplicity and trans-
parency, with the first-order ordinary nonlinear differ-
ential equation and present the main features of the
quasilinearization approach for this case. In the third
PH
section, we give the proof of the convergence of QLM
for an nth-order ordinary nonlinear differential equa-
tion. The generalization to an nth-order partial non-
linear differential equation in N-dimensional space
is straightforward. In order to highlight the power
of the method, in the fourth section, we apply it to
second- and third-order nonlinear differential equa-
tions well known in physics, namely, to the Lane–
Emden, Thomas–Fermi, and Blasius equations. The
comparison of QLM with quantum-mechanical per-
turbation theory is discussed in the fifth section, while
the sixth, seventh, eighth, and ninth sections deal
with comparison of the QLM and WKB. The re-
sults, convergence patterns, numerical stability, ad-
vantages of the method, and its possible future appli-
cations are summed in the final, tenth, section.

2. THE QUASILINEARIZATION METHOD
FOR THE FIRST-ORDER ORDINARY

NONLINEAR DIFFERENTIAL EQUATION

In order to introduce the method in the simplest
possible way in this section, we limit ourselves to the
case of the first-order ordinary nonlinear differential
equation. Physically, this covers the quantum me-
chanics of one particle in a central field since in this
case the Schrödinger equation for a wave function
could be rewritten as the Ricatti equation for its log-
arithmic derivative. The presentation in this section
closely follows the proofs and derivations of [19].

The aim of QLM is to obtain the solution v(z) of a
nonlinear first-order differential equation

dv(z)
dz

= g(v(z), z) (1)

with the boundary condition v(a) = c as a limit of a
sequence of linear differential equations. This goal is
easily understandable in view of the fact that there is
no useful technique of presenting the general solution
to Eq. (1) in terms of a finite set of particular solu-
tions as in the linear case, where, as a result of the
superposition property, the equation could be solved
analytically or numerically in a convenient fashion.
In addition, the sequence should be constructed in
such a way as to obtain quadratic convergence and,
if possible, monotonicity.

The shift of the coordinate z = x+ a and of the
solution itself u(x) = v(x+ a)− c reduces Eq. (1) to
the canonical form [22]

du(x)
dx

= f(u(x), x), u(0) = 0, (2)

where f(u(x), x) ≡ g(u(x) + c, x+ a).
YSICS OF ATOMIC NUCLEI Vol. 68 No. 7 2005
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The QLM prescription [10, 11] determines the
(n+ 1)th iterative approximation un+1(x) to the so-
lution of Eq. (2) as a solution of the equation

u′n+1(x) = f(un, x) + (un+1(x)− un(x))fu(un, x),
(3)

un+1(0) = 0,

where function fu(u, x) = ∂f(u, x)/∂u is a func-
tional derivative of a functional f(u(x), x). If one
definesm as an upper limit of a maximum of absolute
values of the functional and its first and second
functional derivatives

max
(
|f(u(x), x)|, |fu(u, x)|,

∣∣∣∣12fuu(u, x)
∣∣∣∣
)

(4)

≤ m <∞,
one can prove that the sequence of iterations un(x),
n = 1, 2, . . . , converges uniformly and quadratically
on the interval [0, b] to solution u(x) of Eq. (2) for bm
sufficiently small. Indeed, introducing the norm ||g||
of function g(x) as a maximum of the function on the
interval [0, b],

||g|| = max |g(x)|, 0 ≤ x ≤ b, (5)

and introducing the notation ∆un+1(x) = u(x)−
un(x), δun+1(x) = un+1(x)− un(x), one proves [10,
11] the following inequalities:

||∆un+1|| ≤ k||∆un||2, (6)

||δun+1|| ≤ k||δun||2, (7)

k =
bm

1− bm, (8)

which establish the uniform quadratic convergence of
sequence un(x) on [0, b] for sufficiently small bm. A
simple induction of Eq. (7) shows [11] that δun+1(x)
for an arbitrary l < n satisfies the inequality

||δun+1|| ≤ (k||δul+1||)2
n−l
/k, (9)

or for l = 0
||δun+1|| ≤ (k||δu1||)2

n
/k. (10)

The convergence therefore depends on the quantity
q1 = k||u1 − u0||, where zero iteration u0(x) satisfies
condition u0(0) = 0 and is chosen from physical and
mathematical considerations. In view of Eq. (8), the
convergence is reached if bm is sufficiently small.
However, from Eq. (9), it follows that, for the conver-
gence, it is sufficient that just one of the quantities
qm = k||δum+1|| be small enough. Consequently, one
can always hope [11] that, even if first convergent
coefficient q1 is large, a well-chosen initial approxi-
mation u0 results in a smallness of at least one of the
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 7 200
convergence coefficients qm, m > 1, which enables a
rapid convergence of the iteration series for n > m.

One can prove in addition [10, 11] that the conver-
gence is monotonic from below (above) if functional
f(u(x), x) is strictly convex (concave), that is, if the
second functional derivative fuu(u, x) in interval [0, b]
exists and is strictly positive (negative).

The QLM approaches the solution of a nonlinear
differential equation by approximating the nonlinear
terms by a sequence of linear ones and is not based
on existence of some kind of small parameter. In the
proof of R.E. Bellman and R. Kalaba, a small parame-
ter bm, however, does appear sort of through the back
door. The requirement of small bm is unfortunately
too restrictive in most physical problems, where m
and b are often large or infinite, since x normally
changes in an infinite region and many potentials
are infinite at some points in the domain. For ex-
ample, in the case of a variable phase equation [see
Eq. (72) later on], since most of the realistic forces,
like Yukawa, Coulomb, van der Waals, or hard core
potentials, are infinite at the origin, a function

f(a(x), x) = −V (x)(x+ a(x))2 (11)

or its first
fa(a(x), x) = −2V (x)(x+ a(x)) (12)

or second

faa(a(x), x) = −2V (x) (13)

functional derivatives are infinite at the origin. This
means m = ∞, that is, a zero convergence interval.
However, it has already been well known for a long
time [13, 14, 23] that a first approximation of QLM
gives finite and reasonable results even for super sin-
gular 1/rn, n > 4, potentials for which all the terms of
the usual perturbation theory are strongly divergent.
It indicates that the condition bm being small may be
too restrictive and should be relaxed.

Our goal now is to modernize the proof of uniform
quadratic convergence of QLM, so the requirement
of smallness of an interval for large m, as well as the
requirement ofm being finite, is removed. Let us sub-
tract from both sides of Eq. (2) a term h(w(x), x)u(x),
where w(x) and h(w(x), x) are some arbitrary func-
tion and functional, respectively, which we will choose
later. We obtain

du(x)
dx

− h(w(x), x)u(x) (14)

= f(u(x), x) − h(w(x), x)u(x), u(0) = 0.

The integral form of this equation is

u(x) =

x∫
0

ds(f(u(s), s) (15)
5
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− h(w(s), s)u(s)) exp
x∫
s

dth(w(t), t)

or, in the case of nonzero boundary condition
u(0) = c,

u(x) = c exp

x∫
0

dth(w(t), t) (16)

+

x∫
0

ds(f(u(s), s)− h(w(s), s)u(s))

× exp

x∫
s

dth(w(t), t),

which can be checked easily by a simple differentia-
tion.

We consider three different forms of function w(x)
and its functional h(w(x), x):

h(w(x), x)) ≡ 0, (17)

h(w(x), x) = fw(w(x), x), w(x) ≡ 0, (18)

h(w(x), x) = fw(w(x), x), w(x) ≡ u(x). (19)

We can define now the iteration scheme by setting
function u(x) on the right equal to its nth approxima-
tion un(x) and obtaining the (n+ 1)th approximation
on the left. The zero approximation u0(x) is chosen
from some mathematical or physical considerations
and satisfies the boundary condition u0(0) = 0. We
get three different iteration schemes, corresponding
Eqs. (17)–(19), respectively:

un+1(x) =

x∫
0

ds(f(un(s), s), (20)

un+1(x) =

x∫
0

ds(f(un(s), s) (21)

− fu(0, s)un(s)) exp
x∫
s

dtfu(0, t),

and

un+1(x) =

x∫
0

ds(f(un(s), s) (22)

− fu(un(s), s)un(s)) exp
x∫
s

dtfu(un(t), t).
P

In the case of nonzero boundary condition u(0) = c,
the iteration sequence should be slightlymodified. For
example, in this case, according to Eq. (16), Eq. (22)
has a somewhat different form, namely,

un+1(x) = c exp

x∫
0

dtfu(un(t), t) (23)

+

x∫
0

ds(f(un(s), s)− fu(un(s), s)un(s))

× exp

x∫
s

dtfu(un(t), t).

Let us concentrate in the beginning to Eq. (22),
which, being the solution to Eq. (3), displays the
iteration sequence of the QLM. The subtraction of
Eq. (3) for n and n− 1 gives a similar differential
equation for difference δun+1(x) = un+1(x)− un(x):

δu′n+1(x) = f(un(x), x) − f(un−1(x), x) (24)

+ δun+1(x)fu(un(x), x) − δun(x)fu(un−1(x), x),
δun+1(0) = 0.

By use of the mean-value theorem [24], one can
write

f(un(x), x) = f(un−1(x), x) (25)

+ δun(x)fu(un−1(x), x) +
1
2
fuu(ūn(x), x)δu2

n(x),

where ūn(x) lies between un(x) and un−1(x). As
a result, Eq. (24) could be written as the following
equation:

δu′n+1(x)− δun+1(x)fu(un(x), x) (26)

=
1
2
fuu(ūn(x))δu2

n(x),

whose solution has the form

δun+1(x) =
1
2

x∫
0

dsfuu(ūn(s), s)δu2
n(s) (27)

× exp

x∫
s

dtfu(un(t), t).

Obviously,

|δun+1(x)| ≤
1
2

x∫
0

ds|fuu(ūn(s), s)| (28)

× |δun(s)|2 exp
x∫
s

dtfu(un(t), t)
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 7 2005
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≤ kn(x)|δun(x̄)|2 ≤ kn(b)||δun||2.
Here, x̄ is the point on the interval [0, x] where
|δun(x)| is maximal,

kn(x) =
1
2

x∫
0

ds|fuu(ūn(s), s)| exp
x∫
s

dtfu(un(t), t),

(29)

and positiveness of the integrand in Eq. (29) and
definition (5) are used. Since Eq. (28) is correct for
any x in the interval [0, b], it is correct also for a value
of x ∈ [0, b] for which |δun+1(x)| reaches its maximal
value. This gives

||δun+1|| ≤ kn(b)||δun||2. (30)

Let us assume the boundness of the first two func-
tional derivatives of f(u(x), x)), that is, existence of
bounding functions F (x) and G(x) which for any u
and x satisfy

fu(u(x), x)) ≤ F (x), |fuu(u(x), x)| ≤ G(x).
(31)

In this case, kn(b) ≤ k(b), where

k(b) =
1
2

b∫
0

dsG(s) exp

b∫
s

dtF (t), (32)

and Eq. (30) could be written in the form

||δun+1|| ≤ k(b)||δun||2, (33)

which is identical to Eq. (7) but with k = k(b) in-
stead of k given by Eq. (8). We can reproduce the
results of Bellman and Kalaba [10, 11] by follow-
ing their bounding restriction Eq. (4) and setting
F (x) = m, G(x) = 2m. In this case, the integrals in
Eq. (32) can be easily calculated and give k(b) =
(1− e−mb)/e−mb, which for small mb reduces to ex-
pression for k given by Eq. (8). However, as we will
see in different examples in the next section, k(b)
given by Eq. (32), unlike k given by Eq. (8), can be
sufficiently small also for an infinite interval length b
and for singular functionsG(x) andF (x). Thismeans
that the quantity q1(b),

q1(b) = k(b)||u1 − u0||, (34)

which is responsible for the convergence [see dis-
cussion after Eq. (10)], can be less than unity and
thus assures the convergence even in this case. As
was pointed out there, for the rapid convergence, it is
actually enough that an initial guess for zero iteration
be sufficiently good to ensure the smallness of just one
of the convergence coefficients qm(b) = k(b)||um+1 −
um||.
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 7 200
With the uniform quadratic convergence of the
sequence un(x) for the intervals [0, b] in which at
least one of the convergence coefficients qm(b) < 1
is now proven, one can conclude from Eq. (27) that,
in addition, for strictly convex (concave) functionals
f(u(x), x), the difference un+1(x)− un(x) is strictly
positive (negative), which establishes the monotonic-
ity of the convergence from below (above), respec-
tively, on this interval.

If F (x) is a sign-definite function and G(x) =
|F (x)|, the integral in Eq. (32) can be taken explicitly
and produces a simple expression for k(b),

k(b) =
1
2

∣∣∣∣∣∣exp
b∫

0

dtF (t)− 1

∣∣∣∣∣∣ . (35)

The subtraction of Eq. (3) from Eq. (2) gives the
equation

∆u′n+1(x) = f(u, x)− f(un(x), x) (36)

+∆un+1(x)fu(un(x), x) −∆un(x)fu(un(x), x),
∆un+1(0) = 0,

which is similar to Eq. (24), which was a starting
point for our derivation of Eq. (33). The derivation
along the same lines, starting from Eq. (36), gives the
analog of Eq. (6) with k changed to k(b):

||∆un+1|| ≤ k(b)||∆un||2. (37)

This equation again confirms the uniform quadratic
convergence of sequence un to a solution u(x) of
Eq. (2). One can show in exactly the same fashion as
before that, for strictly convex (concave) functionals
f(u(x), x), the difference ∆un+1 is strictly positive
(negative), proving in this case the monotonic con-
vergence to a limiting function u from below (above),
respectively.

In the case where the solution u(x) and, respec-
tively, its iterations un(x) go to infinity at some points
on the interval [0, b], Eq. (22) could become mean-
ingless. To deal with it, it is necessary to regularize
Eq. (2), that is, reformulate it in terms of a new func-
tion v(x) which is finite, as, for example, to change
to function v(x) = 1/u(x) for |u(x)| > 1, the pre-
scription which is used in the present work, or to set
u(x) = tan v(x), as was suggested in [25, 26] and uti-
lized in [21]. The corresponding nonlinear equations
for v(x) have the form

dv(x)
dx

= −v(x)2f
(

1
v(x)

, x

)
, (38)

v(0) = u(c), |u(c)| = 1,

and
dv(x)
dx

= cos2 v(x)f(tan v(x), x), v(0) = 0, (39)
5
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respectively.
Let us now turn our attention to the iteration

sequences given by Eqs. (20) and (21). These suc-
cessive approximation schemes were considered by
Picard [27] and Babikov, Calogero, and Fluegge
(BCF) [14, 13, 23], respectively. The quadratic con-
vergence reached in QLM is based on a specific
choice of function w(x) and its functional h(w(x), x)
given by Eq. (19), which, in view of the mean-
value theorem of Eq. (25), assures cancellation of
the first power of δun(x) and ∆un(x) in recurrence
relations of Eqs. (24) and (36), respectively. Such
cancellation will not happen for the Picard and BCF
choices ofw(x) and h(w(x), x) given by Eqs. (17) and
(18). One obtains, therefore, for these approximation
schemes the usual inequality characteristic of first-
order convergence

||δun+1|| < p||δun||, (40)

p being a correspondent convergence coefficient. This
leads, instead of very rapid 2n-power type of con-
vergence, displayed in Eqs. (33) and (37), to much
slower geometric convergence

||δun+1|| < pn||δu1||. (41)

3. THE QUASILINEARIZATION METHOD
FOR THE nth-ORDER NONLINEAR

DIFFERENTIAL EQUATION

For simplicity, we limit our discussion here to
nonlinear ordinary differential equation on the interval
[0, b], which could be infinite:

L(n)u(x) = f(u(x), u(1)(x), . . . , u(n−1)(x), x), (42)

with n boundary conditions

gk(u(0), u(1)(0), . . . , u(n−1)(0)) = 0, (43)

k = 1, . . . , l,

and

gk(u(b), u(1)(b), . . . , u(n−1)(b)) = 0, (44)

k = l + 1, . . . , n.

Here, L(n) is a linear nth-order ordinary differen-
tial operator and f and g1, g2, . . . , gn are nonlinear
functions of u(x) and its n− 1 derivatives u(s)(x),
s = 1, . . . , n− 1. The more general case of partial
differential equations in N-dimensional space can be
considered in exactly the same fashion by changing
the definition of L(n) to be a linear nth-order differ-
ential operator in partial derivatives and x to be the
N-dimensional coordinate array.

We will follow here the derivation outlined in [19,
20], which is not based, unlike the derivations in [10,
PH
11], on a smallness of the interval and on the bound-
ness of the nonlinear term and its functional deriva-
tives, conditions which usually are not fillfilled in
physical applications.

The QLM prescription [10, 11, 19, 20] determines
the r+ 1 iterative approximation ur+1(x) to the solu-
tion of Eq. (42) as a solution of the linear differential
equation

L(n)ur+1(x) (45)

= f(ur(x), u(1)
r (x), . . . , u(n−1)

r (x), x)

+
n−1∑
s=0

(
u

(s)
r+1(x)− u(s)

r (x)
)

× fu(s)(ur(x), u(1)
r (x), . . . , u(n−1)

r (x), x),

where u
(0)
r (x) = ur(x), with linearized two-point

boundary conditions

n−1∑
s=0

(
u

(s)
r+1(0) − u(s)

r (0)
)

(46)

× gku(s)(ur(0), u(1)
r (0), . . . , u(n−1)

r (0), 0) = 0,
k = 1, . . . , l,

and
n−1∑
s=0

(
u

(s)
r+1(b)− u(s)

r (b)
)

(47)

× gku(s)(ur(b), u(1)
r (b), . . . , u(n−1)

r (b), b) = 0,
k = l + 1, . . . , n.

Here, the functions fu(s) = ∂f/∂u(s) and gku(s) =
∂gk/∂u

(s), s = 0, 1, . . . , n− 1, are functional deriva-
tives of the functionals f(u(x), u(1)(x), . . . ,
u(n−1)(x), x) and gk(u(x), u(1)(x), . . . , u(n−1)(x), x),
respectively. For example, in the case of a simple
nonlinear boundary condition u′(b)u(b) = c, where
c is a constant, one has g(r) ≡ g(u(r), u′(r), r) =
u′(r)u(r), so that gu = u′(r) and gu′ = u(r). The
linearized boundary condition (47) has the form
(ur+1(b)− ur(b))u′r(b) + (u′r+1(b)− u′r(b))u(b) = 0
or (ur+1(b)ur(b))′ = (ur(b)ur(b))′, so the nonlinear
boundary condition for the initial guess u0(b)u′0(b) =
c will be propagated to the linear boundary condition
for the next iterations. The zeroth approximation
u0(x) is chosen from mathematical or physical con-
siderations.

To prove that the above procedure yields a quadratic
and often monotonic convergence to the solution of
Eq. (42) with boundary conditions (43) and (44),
we follow the previous section and [19] and consider
YSICS OF ATOMIC NUCLEI Vol. 68 No. 7 2005
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a differential equation for the difference δur+1(x) ≡
ur+1(x)− ur(x) between two subsequent iterations:

L(n)δur+1(x) (48)

= [f(ur(x), u(1)
r (x), . . . , u(n−1)

r (x), x)

− f(ur−1(x), u
(1)
r−1(x), . . . , u

(n−1)
r−1 (x), x)]

+
n−1∑
s=0

[δu(s)
r+1(x)

× fu(s)(ur(x), u(1)
r (x), . . . , u(n−1)

r (x), x) − δu(s)
r (x)

× fu(s)(ur−1(x), u
(1)
r−1(x), . . . , u

(n−1)
r−1 (x), x)].

The boundary conditions are similarly given by the
difference of Eqs. (46) and (47) for two subsequent
iterations:

n−1∑
s=0

[δu(s)
r+1(0) (49)

× gku(s)(ur(0), u(1)
r (0), . . . , u(n−1)

r (0), 0) − δu(s)
r (0)

× gku(s)(ur−1(0), u
(1)
r−1(0), . . . , u

(n−1)
r−1 (0), 0)] = 0,

k = 1, . . . , l,

and
n−1∑
s=0

[δu(s)
r+1(b) (50)

× gku(s)(ur(b), u(1)
r (b), . . . , u(n−1)

r (b), b) − δu(s)
r (b)

× gku(s)(ur−1(b), u
(1)
r−1(b), . . . , u

(n−1)
r−1 (b), b)] = 0,

k = l + 1, . . . , n.

In view of the mean-value theorem [24],

f(ur(x), u(1)
r (x), . . . , u(n−1)

r (x), x) (51)

− f(ur−1(x), u
(1)
r−1(x), . . . , u

(n−1)
r−1 (x), x)

=
n−1∑
s=0

δu(s)
r (x)

× fu(s)(ur−1(x), u
(1)
r−1(x), . . . , u

(n−1)
r−1 (x), x)

+
1
2

n−1∑
s,t=0

δu(s)
r (x)δu(t)

r (x)

× fu(s)u(t)(ūr−1(x), ū
(1)
r−1(x), . . . , ū

(n−1)
r−1 (x), x),

where ū(s)
r−1(x) lies between u(s)

r (x) and u(s)
r−1(x),

Eq. (48) can be written as

L(n)δur+1(x)−
n−1∑
s=0

δu
(s)
r+1(x) (52)

× fu(s)(ur(x), u(1)
r (x), . . . , u(n−1)

r (x), x)
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=
1
2

n−1∑
s,t=0

δu(s)
r (x)δu(t)

r (x)

× fu(s)u(t)(ūr−1(x), ū
(1)
r−1(x), . . . , ū

(n−1)
r−1 (x), x).

Denoting G(n)
r (x, y) as the Green’s function, which

is the inverse of the following differential operator and
incorporates linearized boundary conditions (46) and
(47),

L̃(n) = L(n) (53)

−
n−1∑
s=0

fu(s)(ur(x), u(1)
r (x), . . . , u(n−1)

r (x), x)
ds

dxs
,

one can express the solution to the difference function
δur+1 as

δur+1(x) =
1
2

b∫
0

G(n)
r (x, y) (54)

×
n−1∑
s,t=0

δu(s)
r (y)δu(t)

r (y)

× fu(s)u(t)(ūr−1(y), ū
(1)
r−1(y), . . . , ū

(n−1)
r−1 (y), y)dy.

The functions δu(s)
r (y)δu(t)

r (y) could be taken outside
of the sign of the integral at some point y = x̄ belong-
ing to the interval, so one obtains

δur+1(x) =
1
2

n−1∑
s,t=0

δu(s)
r (x̄)δu(t)

r (x̄)Mst(x), (55)

whereMst(x) equals

Mst(x) =

b∫
0

G(n)
r (x, y) (56)

× fu(s)u(t)(ūr−1(y), ū
(1)
r−1(y), . . . , ū

(n−1)
r−1 (y), y)dy.

IfMst(x) is a strictly positive (negative) matrix for all
x in the interval, then δur+1(x) will be positive (neg-
ative), and the monotonic convergence from below
(above) results.

Obviously, from Eq. (54) follows

|δur+1(x)| ≤ kr(x)||δur ||2, (57)

where kr is given by

kr(x) =
1
2

b∫
0

|G(n)
r (x, y)|

n−1∑
s,t=0

dy (58)

× |fu(s)u(t)(ūr−1(y), ū
(1)
r−1(y), . . . , ū

(n−1)
r−1 (y), y)|
5
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and ||δur|| is a maximal value of any of |δū(s)
r | on the

interval (0, b).
Since Eq. (57) is correct for any x on the inter-

val (0, b), it is correct also for some x = x̄, where
|δur+1(x)| reaches its maximum value ||δur+1||. One
therefore has

||δur+1|| ≤ kr(x̄)||δur ||2. (59)

Assuming the boundness of the integrand in expres-
sion (58), that is, the existence of the bounding func-
tion F (x) such that integrand at x = x̄ and at any y
is less than or equal to F (y), one finally has

||δur+1|| ≤ k||δur||2, (60)

where

k =

b∫
0

F (x)dx. (61)

The linearized boundary conditions (46) and (47)
are obtained from exact boundary conditions (43)
and (44) by using the mean-value theorem (51) and
neglecting the quadratic terms, so that the error in
using linearized boundary conditions vis-à-vis the
exact ones is quadratic in the difference between the
exact and linearized solutions. The maximum differ-
ence between boundary conditions (46) and (47) cor-
responding to two subsequent quasilinear iterations
is therefore quadratic in ||δur||. In view of this result
and of Eq. (60), the difference between the subsequent
iterative solutions to Eq. (45) with boundary condi-
tions (46) and (47) decreases quadratically with each
iteration. In a similar way, one can show (see previ-
ous section and [19]) that the difference ∆ur+1(x) =
u(x)− ur(x) between the exact solution and the rth
iteration decreases quadratically as well:

||∆ur+1||| ≤ k||∆ur||2. (62)

A simple induction of Eq. (60) shows [11] that
δun+1(x) for an arbitrary l < r satisfies the inequality

||δur+1|| ≤ (k||δul+1||)2
r−l
/k, (63)

or, for l = 0, we can relate the (n+ 1)th-order result
to the first iterate by

||δun+1|| ≤ ((k||δu1||)2
n
/k. (64)

The convergence depends therefore on the quantity
q1 = k||u1 − u0||, where, as we have mentioned ear-
lier, the zeroth iteration u0(x) is chosen from phys-
ical and mathematical considerations. Usually, it is
advantageous (see discussion below) that u0(x) sat-
isfy at least one of the boundary conditions. From
Eq. (63), it follows, however, that, for convergence,
it is sufficient that just one of the quantities qm =
PH
k||δum|| be small enough. Consequently, one can
always hope [11] that, even if the first convergent
coefficient q1 is large, a well-chosen initial approxi-
mation u0 results in the smallness of at least one of
the convergence coefficients qm, m > 1, which then
enables a rapid convergence of the iteration series
for r > m. It is important to stress that, in view of
the quadratic convergence of the QLM method, the
difference ||∆ur+1|| between the exact solution and
the QLM iteration always converges to zero if the
difference δur+1(x) between two subsequent QLM
iterations becomes infinitesimally small.

Indeed, if δur(x) is close to zero, it means, since
δur+1(x) = ∆ur(x)−∆ur+1(x), that ∆ur(x) =
∆ur+1(x) or Qr = Qr+1, where Qr = k||∆ur||.
When one assumes the possibility that Qr and Qr+1

could not be small, one could conclude that the itera-
tion process “stagnates,” which means convergence
to the wrong answer or no convergence at all.

However, such a conclusion is wrong since
Eq. (62), which can be written as Qr+1 ≤ Q2

r , for
Qr ≤ 1 (this last inequality, starting from some r,
is a necessary condition of convergence), cannot
be satisfied unless both ||Qr+1|| and ||Qr|| equal
zero. This proves that stagnation of the iteration
process is impossible and convergence of ||δur+1||
to zero automatically leads to convergence of the
QLM iteration sequence to the exact solution. Hence,
the QLM assures not only convergence but also
convergence to the correct solution.

Another corollary of this iteration process is that,
if the solution and its derivatives are continuous func-
tions of x, the convergence of the QLM in the whole
region will follow. Indeed, even if the zero iteration
u0(x) is chosen not to satisfy the boundary con-
ditions, the next iteration u1(x), being a solution
to a linear equation with linearized boundary con-
ditions (46) and (47), will automatically satisfy the
exact boundary conditions (43) and (44), at least up to
the second order in difference δu1 at the boundaries.
This means that the difference between the exact
and first QLM iterations at some intervals near the
boundaries will be small, so that the QLM itera-
tions in this interval would converge. Because the
subsequent values of kδum(x),m > 2, become much
smaller for this interval, in view of assumed continuity
of the solution and its derivatives, these differences
will also be small at the neighboring intervals. The
subsequent iterations will extend the convergence to
the next neighboring intervals and so on, until the
convergence in the whole region is reached. The pre-
dicted trend is therefore that the QLM yields rapid
convergence starting at the regions where the bound-
ary conditions are imposed and then spreading from
there to all other regions.
YSICS OF ATOMIC NUCLEI Vol. 68 No. 7 2005
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An additional important corollary is that, in view
of Eq. (63), once the quasilinear iteration sequence
starts to converge, it will continue to do so, unlike
the perturbation expansion, which is often given by
an asymptotic series and therefore converges only up
to a certain order and diverges thereafter.

Based on this summary of the QLM, one can
deduce the following important features of the quasi-
linearization method:

(i) The method approximates the solution of non-
linear differential equations by treating the nonlinear
terms as a perturbation about the linear ones and is
not based, unlike perturbation theories, on the exis-
tence of some kind of small parameter.

(ii) The iterations converge uniformly and quadrat-
ically to the exact solution. In the case of matrixMst
in Eq. (56) being strictly positive (negative) for all x in
the interval, the convergence is also monotonic from
below (above).

(iii) For rapid convergence, it suffices that an initial
guess for the zeroth iteration be sufficiently good to
ensure the smallness of just one of the quantities
qr = k||ur+1 − ur||. If the solution and its derivatives
are continuous, convergence follows from the fact
that, starting from the first iteration, all QLM itera-
tions automatically satisfy the quasilinearized bound-
ary conditions (46) and (47). The convergence is
extremely fast: if, for example, q1 is of the order of
1/3, only four iterations are necessary to reach the
accuracy of eight digits, since (1/3)2

n
is of the order

of (1/10)2
n−1

.
(iv) Convergence of ||δur+1|| to zero automatically

leads to convergence of the QLM iteration sequence
to the exact solution.

(v) Once the quasilinear iteration sequence at
some interval starts to converge, it will always con-
tinue to do so. Unlike an asymptotic perturbation
series, the QLM yields the required precision once
a successful initial guess generates convergence after
a few steps.

4. EXAMPLES: COMPARISON
OF QUASILINEARIZATION RESULTS

WITH EXACT SOLUTIONS

In order to investigate the applicability of the
QLM and its convergence and numerical stabil-
ity, we present in this review the results of com-
putations [20] on different ordinary second- and
third-order nonlinear differential equations applied in
physics, namely, the Lane–Emden, Thomas–Fermi,
and Blasius equations, and compare the results
obtained by the QLM with the exact solutions. Al-
though all our examples deal only with linear bound-
ary conditions, the nonlinear boundary conditions can
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 7 200
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Fig. 1. Convergence of QLM iterations for the Lane–
Emden equation and comparison with the numerically
obtained exact solution. Thin solid, dash-dotted, short-
dashed, long-dashed, and dotted curves correspond to
the first, second, third, fourth, and fifth QLM iterations,
respectively, while the thick solid curve displays the exact
solution. The difference between the exact solution and
the eighth QLM iteration for all r in the figure is less
than 10−11.

be handled readily after their quasilinearization as
explained in the previous section.

4.1. Lane–Emden Equation

The Lane–Emden equation

y′′(r) +
2
r
y′(r) + yn(r) = 0, (65)

y(0) = 1, y′(0) = 0,

is a nonlinear second-order differential equation
which arises in the study of stellar structure. It de-
scribes the equilibrium density distribution in a self-
gravitating sphere of polytropic isothermal gas. The
parameter n corresponds to a particular choice for an
equation of state with its physically interesting range
being 0 ≤ n ≤ 5. The equation also appears in other
contexts, e.g., in the case of radiatively cooling self-
gravitating gas clouds, in the mean-field treatment
of a phase transition in critical absorption, or in the
modeling of clusters of galaxies. The equation can be
solved analytically for the special cases n = 0, 1, and
5. For other values of n, power series approximations,
as well as nonperturbative approaches, have been
developed (see, for example, [28] and references
therein). Setting y = u/r transforms the equation to
a more convenient form without a first derivative:

u′′(r) +
un(r)
rn−1

= 0, u(0) = 0, u′(0) = 1. (66)

Let us consider this nonlinear equation for the
physically interesting and analytically nonsolvable
5
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Fig. 2. Convergence of QLM iterations for the Thomas–
Fermi equation and comparison with the numerically
obtained exact solution. Thin solid, dash-dotted, short-
dashed, and dotted curves correspond to the first, second,
third, and fourth QLM iterations, respectively, while the
thick solid curve displays the exact solution. The differ-
ence between the exact solution and the eighth QLM
iteration for all x in the figure is less than 10−7.
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Fig. 3.Comparison of the first QLM iteration for the Bla-
sius equation with the numerically obtained exact solu-
tion (dotted and solid curves, respectively). The difference
between the exact solution and the fifth QLM iteration for
all x in the figure is less than 10−10.

case of n = 4. The quasilinearized form of Eq. (66)
is

u′′k+1(r) + n
un−1
k (r)
rn−1

uk+1(r) =
n− 1
rn−1

unk(r), (67)

uk+1(0) = 0, u′k+1(0) = 1.

The simplest initial guess satisfying the boundary
conditions will be u0(r) = r. A comparison of the
quasilinear solutions corresponding to the first five
iterations with the numerically computed exact so-
lution is given in Fig. 1. The figure shows that the
convergence to the exact solution is very fast. It starts
at the left boundary and spreads with each iteration to
larger values of r as expected from the discussion in
Section 3. The difference between the exact solution
P

and the eighth QLM iteration for all r in the range
between 0 and 10, where our calculations were per-
formed, is less than 10−11.

4.2. Thomas–Fermi Equation

The Thomas–Fermi equation [29, 30]
√
xu′′(x) = u3/2(x), u(0) = 1, u(∞) = 0, (68)

is an equation for the electron density around the
nucleus of an atom. The left-hand side of the above
equation equals zero for u < 0. The Thomas–Fermi
equation is also very useful for calculating form fac-
tors and for obtaining effective potentials which can
be used as initial trial potentials in self-consistent
field calculations. It is also applicable to the study
of nucleons in nuclei and electrons in metal. It has
long been known (see [31] and references therein) that
solution of this equation is very sensitive to a value
of the first derivative at zero which ensures smooth
and monotonic decay from u(0) = 1 to u(∞) = 0
as demanded by the boundary conditions. Finding
the value of u′(0) accurately is a tedious procedure
requiring considerable computer time. By contrast,
the computation is much simpler for the quasilin-
earized version of this equation. The QLM procedure
in this case reduces to setting u′′k+1(r) = f(uk) +
(uk+1(r)− uk(r))fu(uk), where f = u3/2(r)/

√
x and

the functional derivative is fu = (3/2)u1/2/
√
x, so

that the QLM equation has the form
√
xu′′k+1(x)−

3
2
u

1/2
k (x)uk+1(x) = −1

2
u

3/2
k (x),

(69)

uk+1(0) = 1, uk+1(∞) = 0,

which is easily solved by specifying directly the
boundary condition at infinity without searching
first for the proper value of the first derivative. The
initial guess satisfying the boundary condition at zero
was chosen to be u0(x) ≡ 1. The results of QLM
calculations with Eq. (69) are presented in Fig. 2,
which displays the exact solution together with the
first four QLM iterations.

The convergence starts at the boundaries, exactly
as expected from the discussion in the previous sec-
tion, and expands with each iteration to a wider range
of values of the variable x. The difference between the
exact solution and the eighth QLM iteration for all x
in the range between 0 and 40, where our calculations
were performed, is less than 10−7.

4.3. Blasius Equation

The Blasius equation [32]

u′′′(x) + u′′(x)u(x) = 0, (70)
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u(0) = u′(0) = 0, u′(∞) = 1,

is a third-order nonlinear differential equation which
describes the velocity profile of the fluid in the bound-
ary layer which forms when fluid flows along a
flat plate. The Blasius equation is similar to the
Thomas–Fermi equation in that it has a two-point
boundary condition. However, it differs from the
Thomas–Fermi case in that it is of higher order
and also contains a second-derivative term times
u(x). Therefore, Eq. (70) is even more difficult to
solve. The QLM procedure in this case is given
by u′′′k+1(x) = f(uk, u

′′
k) + (uk+1 − uk)fu(uk, u′′k) +

(u′′k+1 − u′′k)fu′′(uk, u′′k), where f(u, u′) = −u′′u,
fu(u, u′) = −u′′, and fu′′(u, u′) = −u. The quasilin-
earized version of the Blasius equation thus has the
form
u′′′k+1(x) + uk(x)u

′′
k+1(x) + uk+1(x)u′′k(x) (71)

− uk(x)u′′k(x) = 0, uk+1(0) = u′k+1(0) = 0,

u′k+1(∞) = 1.

The initial guess satisfying the boundary condition
for the derivative at zero was chosen to be u0(x) ≡ 1.
The results of QLM calculations with Eq. (71) are
presented in Fig. 3, which displays the exact solution
together with the first QLM iteration.

The convergence starts at the left boundary, as
follows from the discussion in Section 3, and expands
with each iteration to larger values of the variable x.
The difference between the exact solution and the fifth
QLM iteration for all x in the range between 0 and 10,
where our calculations were performed, is less than
10−10.

We see in all our examples that QLM is able
to handle large values of the coupling constant and
any degree of the nonlinearity and provides extremely
accurate and numerically stable answers for a wide
range of nonlinear physics problems.

5. COMPARISON WITH PERTURBATION
THEORY

In the previous sections, we have proved that the
QLM successive approximations to exact solution
converge quadratically and uniformly to an exact so-
lution. In this section, we consider examples of differ-
ent singular and nonsingular, attractive and repulsive
potentials for which the nonlinear first-order ordinary
differential equation for an S-wave scattering length,

da(r)
dr

= −V (r)(r + a(r))2, a(0) = 0, (72)

obtained in variable-phase approach [13, 14], could
be solved exactly. We will compare the iterations ob-
tained by QLM with perturbation theory and with
exact solutions.
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5.1. Square-Well Potential

1. Repulsive square well. Let us start from the
repulsive square-well potential

V (r) =
λ

R2
Θ(R− r), (73)

where Θ(R− r) is the Heaviside function and λ is
a potential strength which for now is assumed to
be positive. The change of variables to dimension-
less variable x =

√
λr/R and dimensionless func-

tion A(x) =
√
λa(xR/

√
λ)/R allows one to express

Eq. (72) for x ≤ x0, x0 =
√
λ in the form

dA(x)
dx

= −(x+A(x))2, A(0) = 0. (74)

For x > x0, A(x) is a constant equal dimension-
less scattering length A0 =

√
λa0/R, the scattering

length itself being a0 ≡ a(R). A further change of the
function to u(x) = x+A(x) gives a familiar equation
for the hyperbolic tangent

du(x)
dx

= 1− u2(x), u(0) = 0. (75)

Exact variable scattering length a(r) for the repulsive
square-well potential is therefore

a(r) =
R√
λ
tanh

(√
λ
r

R

)
− r, (76)

while the scattering length is given by

a0 = R

(
tanh

√
λ√

λ
− 1

)
≡ R

(
tanhx0

x0
− 1
)
.

(77)

We use here the Calogero definition of the scattering
length [13]

a0 = lim
k→0

tan δ(k)
k

, (78)

δ being a scattering phase, which is different in sign
from the definition used in most publications.

Before considering the QLM, let us turn to the
usual perturbation theory. Displaying explicitly the
dependence of the potential on the coupling constant
V (r) = λv(r) and expanding a(r) in powers of λ, one
obtains from Eq. (72)

∞∑
k=1

λka′k(r) = −λv(r)
(
r +

∞∑
n=1

λnan(r)

)2

. (79)

Comparisons of coefficients before the powers of λ
gives the recurrence relation

a′k(r) = −v(r) (80)
5
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×
(
r2δk1 + 2rak−1(r) +

k−2∑
n=1

ak−n−1(r)an(r)

)
.

For the repulsive square-well potential, the succes-
sive integrations of these equations produce the ex-
pansion a(r) in the powers of the coupling constant.
The first three terms of the perturbation expansion of
the variable scattering length, for example, are

a1(r) = −
r∫

0

dss2v(s), (81)

a2(r) = −
r∫

0

ds · 2sv(s)a1(s),

a3(r) = −
r∫

0

dsv(s)(2sa2(s) + a2
1(s)),

and so on. In terms of function u(x), this expansion
has the form

u(x) = x− 1
3
x3 +

2
15
x5 − 17

315
x7 (82)

+
62

2835
x9 − 1382

155925
x11 +

21844
6081075

x13

− 929569
638512875

x15 +
6404582

10854718875
x17 +O(x19).

These series, of course, could also be obtained by
using the power series expansion of tanh(x). The
power expansion of scattering length is given by
Eqs. (82) and (77); the latter can be written in the
form a0 = R(u(x0)/x0 − 1).

Let us consider now the approximate QLM solu-
tions to Eq. (75), choosing as a zeroth approximation
a solution to this equation for a very small x: u0(x) =
x. Recurrence relation (22) now has the form

un+1(x) =

x∫
0

ds(1 + u2
n(s)) exp


−2

x∫
s

dtun(t)


 ,
(83)

while the nth approximation to the scattering length
is given by

a0,n = R
(
un(x0)
x0

− 1
)
. (84)

The substitution of the zeroth iteration in Eq. (83)
leads to a first-order approximation

u1(x) = −i
√
π

4
erf(ix)e−x

2
+
x

2
, (85)

where erf(x) is the error function [33]. Expansion
of (85) in a power series enables a comparison with
P

perturbation series (82),

u1(x) = x−
1
3
x3 +

2
15
x5 − 4

105
x7 (86)

+
8

945
x9 +O(x11),

which shows that the first approximation reproduces
exactly three terms of the perturbation series, that is,
two more terms than was given correctly by the zero
QLM approximation u0(x) = x. This improvement of
the representation of the perturbation series not by
one but by two powers of λ is, of course, precisely
what one should expect from the quadratic conver-
gence. In addition, the fourth term is also mostly
correct, being−12/315 vis-à-vis exact−17/315. The
second iteration u2(x) cannot be calculated analyti-
cally, but can be computed numerically or expressed
by a power series expansion with the help of a sym-
bolic computation program [34]. The latter gives

u2(x) = x−
1
3
x3 +

2
15
x5 − 17

315
x7 (87)

+
62

2835
x9 − 1382

155925
x11 +

21844
6081075

x13

− 918844
638512875

x15 +
39944

70945875
x17 +O(x19).

One can see that the second iteration of QLM
reproduces correctly the first seven terms of the
perturbation series, an improvement by four powers
of λ compared with the previous QLM approxima-
tion u1(x). In addition, the eighth and ninth terms
of the power-series expansion of u2(x) are very
close to their precise values in perturbation theory,

being − 918844
638512875

and 5.63 × 10−4 vis-à-vis exact

values− 929569
638512875

and 5.90 × 10−4, respectively.

Aside from the fact that first QLM approximations
already sum many orders of the usual perturbation
theory, the QLM iterations, unlike the perturbation
series, have meaning also for a large or even infi-
nite values of coupling constant. Indeed, for λ→ ∞,
any term of the perturbation series is infinite. Even
for a finite moderately large potential strength λ ≥
2.5, perturbation expansion (82) diverges since the
power-series expansion of the hyperbolic tangent of
x0 converges [33] only for x0 < π/2, that is, for λ <
π2/4. On the other hand, the QLM approximations
to the scattering length are finite. The first QLM
approximation to scattering length (85) in view of an
asymptotic expression

erf(z) 

(
1− e−z

2

√
πz

)
(88)
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for |z| → ∞ [33] shows that the scattering length in
this approximation equals −R/2, a reasonable ap-
proximation to exact value a0 = −R. The compu-
tation of the scattering length in the second QLM
approximation gives again a finite and improved result
a0 = −3R/4.

To tackle more rigorously the question of conver-
gence of the iteration series for dimensionless scat-
tering length A0,n = a0,n/R given by Eqs. (83), (84)
to the exact result A0 = a0/R, let us turn to the
convergence condition demanding the smallness of
convergence coefficient (34), which in this case is
given by

q1(b) = k(b)||a0,1 − a0,0|| (89)

= k(b)
∣∣∣∣
∣∣∣∣u1(x)− u0(x)

x

∣∣∣∣
∣∣∣∣ = k(b) max

0≤x≤b

∣∣∣∣u1(x)
x

− 1
∣∣∣∣ .

To calculate q1(b), one first has to estimate k(b) us-
ing, for example, Eq. (35). From Eq. (75) and the
boundary condition, there follows u(−x) = −u(x).
We can consider therefore only the positive branch
of the solution whose extremum is reached when
u′(x) = 1− u2(x) = 0, that is, when u(x) = 1. This
means that 0 ≤ u(x) ≤ 1. Since the first and second
functional derivatives of f(u(x), x) = 1− u2(x) equal
−2u(x) and −2, respectively, one can set F (x) = −2
and G(x) = |F (x)| = 2, which gives

k(b) =
1
2
|e−2b − 1| ≤ 1

2
. (90)

In view of the fact that, due to the properties [33] of
the error function, |u1(x)/x− 1| ≤ 1/2 for all positive
x, one obtains q1(b) ≤ 1/4 for all values of b. Thus,
the convergence of QLM approximations (84), (84)
to the exact scattering length in the case of a repulsive
square well is uniform and quadratic for all values of
x0, that is, for all values of coupling constant λ.

2. Attractive square well. The same conclusions
are correct also for the attractive square-well poten-
tial the equations for which are obtained by changing
λ to−λ. The equation for u(x) now has the form

du(x)
dx

= 1 + u2(x), u(0) = 0. (91)

Its solution is

u(x) = tan x, (92)

and the scattering length is given by

a0 = R

(
tan

√
λ√
λ

− 1

)
≡ R

(
u(x0)
x0

− 1
)
. (93)
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The QLM subsequent approximations are obtained
with the help of recursion equations

un+1(x) =

x∫
0

ds(1− u2
n(s)) exp


2

x∫
s

dtun(t)


 .
(94)

Choosing the zeroth QLM approximation as before
in the form u0(x) = x leads to the first QLM approx-
imation

u1(x) =
√
π

4
erf(x)ex

2
+
x

2
. (95)

Now there is, however, an additional difficulty, since
scattering length a0(x0) is a singular function of x0 =√
λ and becomes infinite at values of the coupling

constant corresponding to zero bound-state energies
λ = ((2n + 1)π/2)2. This finds reflection in the fact
that u1(x0) increases very fast for x0 around π/2. To
deal with it, let us, in accordance with the discussion
in the previous section, regularize Eq. (91), that is,
reformulate it for |u(x)| > 1 in terms of a new function

v(x) =
1
u(x)

. (96)

Defining c as a singular point, where u(c) = ∞, one
obtains, according to Eq. (38), the following nonlinear
equation for v(x):

dv(x)
dx

= −(1 + v(x)2), v(c) =
1
u(c)

= 0. (97)

In view of Eq. (91), a solution to this equation is
v(x) = u(c− x). Equation (96) then gives

u(x) =
1

u(c− x) . (98)

Setting x = c/2 allows to write an equation

u2
( c
2

)
= 1 (99)

for constant c. Since the solution to Eq. (91) should
be an odd function of x,

u(−x) = −u(x), (100)

it is enough to choose only a positive branch of
Eq. (99), that is,

u
( c
2

)
= 1. (101)

From Eqs. (98) and (100) follows the 2c periodicity
of solution u(x): u(x+ 2c) = 1/[u(c − (x+ 2c))] =
−1/[u(x + c)] = −u(c− (c+ x)) = u(x). Thus, it is
enough to find a solution only on the interval (0, 2c).
We can now formulate the following result:
5
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Fig. 4. The ratio of the first QLM iteration to the exact
solution for the attractive square well as a function of the
potential strength λ (axis x).

The nth QLM approximation Un(x) to the solu-
tion of Eq. (91) on the interval [0, 2cn], which is able
to properly describe a singularity, is given by

Un(x) = un(x)Θ
(cn
2

− x
)
Θ(x) (102)

+
1

un(cn − x)
Θ
(
x− cn

2

)
Θ
(
3cn
2

− x
)

+ un(x− 2cn)Θ
(
x− 3cn

2

)
Θ(2cn − x),

where the nth QLM approximation un(x) on the in-
terval (0, cn/2) is found with the help of recurrence
relations Eq. (94) and the nth approximate value cn of
c is given by

un

(cn
2

)
= 1. (103)

Computation of cn/2 shows that the differences
between exact value c = π/2 and approximate values
cn are very small even for the first and second QLM
iterations, namely, c1 − π/2 and c2 − π/2 are 0.00529
and 0.00000132, the errors being 0.5 and 10−4%,
respectively. Since the nth QLM approximation,
Eq. (102), has a pole at x0 = cn, λ = c2n gives a value
of potential strength corresponding to a zero-energy
bound state. One sees that the QLM description of
such a state is extremely accurate even in the first and
especially in the second approximations.

To prove the uniform quadratic convergence of the
QLM iterations, it is enough, in view of Eqs. (100)
and (102), to consider un(x) only on intervals (0, cn/2)
which are very close to interval (0, π/4). Since the
first and second functional derivatives on the left-
hand side of Eq. (91) are 2u(x) and 2, respectively,
and |u(x)| ≤ 1, one can choose F (x) = G(x) = 2
P
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Fig. 5. The same as in Fig. 4, but for the second QLM
approximation.

and use Eq. (35), which produces a simple expression
for k(b),

k(b) =
1
2
(e2b − 1). (104)

This leads to the following result for q1(b):

q1(b) =
1
2
(e2b − 1)

(√
π

4
erf(b)eb

2 − b

2

)
. (105)

A simple computation shows that 0 < q1(b) < 1 for
0 < b < 0.92, which proves the uniform quadratic
convergence of the QLM iterations on an even larger
interval (0, 0.92) than the interval (0, π/4) and thus
the convergence of the sequence Un(x0) to the exact
solution tanx0 on the interval (0, 2cn) ≈ (0, π). In
view of its 2cn ≈ π periodicity, the nth QLM ap-
proximation Un(x0) converges therefore to the exact
solution for all x0, that is, for all values of the coupling
constant λ.

The extremely fast convergence of QLM approx-
imations given by Eq. (102) is evident from the ra-
tios of first [Eq. (95)] and second [Eq. (94)] QLM
iterations to exact solution (92), which are shown in
Figs. 4 and 5, respectively.

5.2. δ-Function Potential

In the case of the δ-function potential

V (r) =
λ

R
δ(r −R), (106)

Eq. (72) for the scattering length has the form

A′(x) = λ(x−A(x))2δ(x− 1) (107)

≡ λ(1−A(x))2δ(x− 1), A(0) = 0,
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 7 2005



QUASILINEARIZATION METHOD 1241
where x = r/R and A(x) = −a(r)/R are a dimen-
sionless variable and variable scattering length, re-
spectively; note that, in the last equation,A(x) cannot
be set equal to A(1), since A(x) is discontinuous at
x = 1, its derivative being proportional to the δ func-
tion. Introduction of a new function y(x) = λΘ(x−
1), y(0) = 0, y(∞) = λ, with a derivative dy(x) =
λδ(x − 1)dx reduces Eq. (107) to the form

dA(y)
dy

= (1−A(y))2, A(y)|y=0 = 0. (108)

A solution to this equation is

A(y) =
y

1 + y
. (109)

An exact solution to Eq. (72) for the δ potential thus
is given by a(r) = −RA(y) ≡ −RλΘ(r −R)/[1 +
λΘ(r −R)]. The scattering length a0 equals
a(r)|r=∞ ≡ −Rλ/(1 + λ). It is singular at λ = −1,
reflecting the existence of the zero-energy bound
state for the unit potential strength.

Let us now consider QLM approximations to ex-
act solution (109) in the case of the repulsive δ-
function potential, λ > 0. According to Eq. (22), they
are given by the following iteration sequence,

An+1(y) =

y∫
0

ds(1−A2
n(s)) (110)

× exp


−2

y∫
s

dt(1 −An(t))


 ,

since the functional derivative of the right-hand part
of Eq. (108) equals−2(1−A(y)). The introduction of
the nth approximation un(y) = 1−An(y) to a func-
tion u(y) = 1−A(y) = 1/(1 + y) helps to write re-
currence relationship (110) in a simpler form

un+1(y) = exp


−2

y∫
0

dtun(t)


 (111)
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+

y∫
0

dsu2
n(s) exp


−2

y∫
s

dtun(t)


 ,

which coincides with the QLM iteration scheme (23)
for Eq. (108), rewritten with the help of function
u(x) = 1−A(x) as

u′(x) = −u(x)2, u(0) = 1. (112)

Since for x = ∞ y = λ, un(λ) gives the nth ap-
proximation to u(λ) = 1−A0(λ) = 1/(1 + λ), where
A0(λ) is the exact dimensionless scattering length.

Let us choose as a zero approximation u0(y) ≡
u(0) = 1. The substitution in Eq. (111) for n = 0
gives

u1(y) =
1
2
(1 + e−2y). (113)

One can see that, already, the first approximation
u1(λ) for λ→ ∞ is finite and equals 1/2, which gives
a value of 1/2 for the approximate dimensionless
scattering length vis-à-vis exact value A0 = 1. Each
term in the perturbation series for u(λ),

u(λ) =
∞∑
m=0

(−λ)m, (114)

in this case is infinite, while the perturbation expan-
sion itself is divergent already for |λ| ≥ 1. The com-
parison of perturbation expansion (114) with the per-
turbative expansion of first QLMapproximation (113)

u1(λ) =
1
2
(1 + e−2λ) = 1− λ+ λ2 (115)

− 2
3
λ3 +

1
3
λ4 − 2

15
λ5 +O

(
λ6
)

shows that, in this approximation, the perturbation
series is correct up to the fourth term. The next, sec-
ond, approximation also can be calculated analytically
with the help of a symbolic computation program [34]
and gives a rather cumbersome expression,
u2(λ) = −1
4
−2

√
ee−2λ − e1/2−λ +

√
2πerf(e−λ/

√
2)
√
ee−2λe1/2 − e1/2+λ −

√
2πerf(1/

√
2)e1/2

√
ee−2λ

√
ee

−2λ
e1/2(−e

−2λ+2λ+1)
.

(116)
For λ→ ∞, the largest term in both numerator
and denominator is e1/2+λ. Therefore, u2(∞) = 1/4,
which corresponds to the second QLM approxi-
mation to A0 being 3/4, a significant improvement
compared with the result obtained in this limit in the
first QLM approximation (113). The computation of
the power-series expansion yields

u2(λ) = 1− λ+ λ2 − λ3 + λ4 − λ5 + λ6 (117)

− 62
63
λ7 +

79
84
λ8 − 4931

5670
λ9 +O(λ10).
5
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Fig. 6. Comparison of first three QLM approximations
un(λ), n = 1, 2, 3 (curves a, b, c, respectively) with exact
solution u(λ) = 1/(1 + λ) (curve d) and its perturbation
expansion (114) (curve e) containing 15 terms (up to λ14,
inclusively) for the δ-function potential with the potential
strength λ (axis x) changing in the interval (0, 10).

The perturbation series in the second QLM ap-
proximation is given correctly up to the seventh term,
while the coefficients of the eighth and ninth terms are
different only by 1/63 and 5/84, that is, by 1.6 and 6%,
respectively.

Analytic calculation of the third QLM approxi-
mation seems impossible, but the power series ex-
pansion can be evaluated with the help of the same
program [34], which yields

u3(λ) = 1− λ+ λ2 − λ3 + λ4 − λ5 + λ6 (118)

− λ7 + λ8 − λ9 + λ10 − λ11 + λ12 − λ13 + λ14

− 59534
59535

λ15 +
1904891
1905120

λ16 − 12139457
12145140

λ17

+
161721779
161935200

λ18 − 113880892943
114225041700

λ19 +O
(
λ20
)
.

In the third QLM approximation, the first 15 terms
of the perturbation series are given exactly, while the
next five terms have coefficients extremely close to
being exact.

Summing up, the number of the terms given pre-
cisely in the zero, first, second, and third QLM ap-
proximations equals 1, 3, 7, and 15, increasing by
2, 22, and 23, respectively, that is, according to ge-
ometric progression with q = 2, exactly as one should
expect from the quadratic law of convergence. The
number Nn of perturbation series terms reproduced
P

exactly in the nth QLM approximation is therefore

Nn =
n∑
k=0

qk =
qn+1 − 1
q − 1

= 2n+1 − 1 (119)

and for larger n approximately doubles with n in-
creasing by each unit. For example, the 6th QLM
approximation reproduces exactly 27 − 1 = 127 terms
of the perturbation expansion, while the 12th approx-
imation reproduces 213 − 1 = 8191 terms, and so on.

The numerical computation of u3(∞) gives 0.125,
corresponding to A0 = 0.875, a finite and gratifying
result.

Comparison of the first three QLM approxima-
tions un(λ), n = 1, 2, 3, with exact solution u(λ) =
1/(1 + λ) and its perturbation expansion (114) con-
taining 15 terms (up to λ14, inclusively) for the
δ-function potential with the potential strength λ
changing in the interval (0, 10) is shown graphically
in Fig. 6. One can see that each subsequent QLMap-
proximation reproduces the exact solution better than
the previous one up to infinite values of the coupling
constant, while even 15th-order perturbation theory
is not able to describe the exact solution adequately
beyond λ = 1.

To prove the uniform quadratic convergence of
QLM iterations, let us note that the first and sec-
ond functional derivatives on the left-hand side of
Eq. (112) are −2u(x) and −2, respectively, exactly
as in the case of the repulsive square well which
was discussed earlier. The extremal value of u(x),
reached when u′(x) = −u2(x) = 0, is obviously zero,
which in view of boundary condition u(0) = 1 means
0 ≤ u(x) ≤ 1. This allows one to choose the same
functions F (x) = −2, G(x) = 2 as for the repulsive
square well and, consequently, results in the same
expression (90) for k(b). Since from Fig. 6 it follows
that the maximal difference between zero and first
QLM approximations ||u1(x)− u1(x)|| equals 1/2,
one obtains as before q1(b) ≤ 1/4, which proves the
uniform quadratic convergence of the QLM iterations
for all values of b. This means that the convergence of
subsequent QLM approximations to the exact scat-
tering length for the repulsive δ-function potential
is uniform and quadratic for all values of coupling
constant λ, including very large and infinite ones.

5.3. Inverse Square Potential

Let us consider now the inverse square potential

V (r) =
λ

r2
Θ(R− r), (120)

where λ is the dimensionless coupling constant. As is
well known [35], this potential produces a fall to the
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 7 2005
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center in the case of λ < −1/4. For r ≤ R, Eq. (72)
for the scattering length can be written in the form

A′(x) = −λ
(
1 +

A(x)
x

)2

, A(0) = 0, (121)

where x = r/R and A(x) = a(r)/R are a dimen-
sionless variable and variable scattering length, re-
spectively; for x > 1, A(x) ≡ A(1) is a constant and
represents the dimensionless scattering length A0.
Looking for a solution in the form A(x) = xα(x), we
obtain for α(x) the following equation:

α′(x) = −1
x
[α(x) + λ(1 + α(x))]2. (122)

Note that, in this equation, boundary condition
α(0) = 0 is not necessary: α(x) could be any function
regular at x = 0, so that condition A(0) = 0 is sat-
isfied. Setting α(x) = const ≡ A0 gives an algebraic
equation A0 = −λ(1 +A0)2 whose solution is given
byA0 = −1− (1/2λ)(1±

√
1 + 4λ). Since for λ→ 0

there should be no scattering, only the solution with
the minus sign before the square root should be
chosen, since only for this solution A0 → 0 when
λ→ 0. Setting for convenience g = 4λ, we finally
obtain

A0 = −1− 2
g
(1−

√
1 + g). (123)

The solution has a singularity, namely, a branch point,
at g = −1, that is, at λ = −1/4. The singularity
marks the beginning of interval −∞ < λ < −1/4,
where a fall to the center takes place [35] and the ex-
pression for the scattering length becomes complex,
its real and imaginary parts for g < −1 being given by

ReA0 = −1− 2
g
, ImA0 =

2
g

√
−1− g. (124)

Note that, in view of our definition (78) of the scat-
tering length, one has to choose ImA0 ≥ 0 [35]. The
perturbation series for the scattering length can be
obtained by expansion of the square root in Eq. (123)
in a power series, which gives

A0 = −1
4
g +

1
8
g2 − 5

64
g3 +

7
128

g4 (125)

− 21
512

g5 +
33

1024
g6 − 429

16384
g7 +

715
32768

g8

− 2431
131072

g9 +
4199

262144
g10 − 29393

2097152
g11

+
52003

4194304
g12 − 185725

16777216
g13 +

334305
33554432

g14

− 9694845
1073741824

g15 +
17678835

2147483648
g16
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− 64822395
8589934592

g17 +
119409675
17179869184

g18

− 883631595
137438953472

g19 +
1641030105

274877906944
g20

− 6116566755
1099511627776

g21 +
11435320455

2199023255552
g22

− 171529806825
35184372088832

g23

+
322476036831
70368744177664

g24

− 1215486600363
281474976710656

g25

+
2295919134019

562949953421312
g26

− 17383387729001
4503599627370496

g27

+
32968493968795
9007199254740992

g28

− 125280277081421
36028797018963968

g29

+
238436656380769
72057594037927936

g30

− 14544636039226909
4611686018427387904

g31

+
27767032438524099

9223372036854775808
g32 +O(g33).

The expansion is convergent [33] for |g| < 1, that
is, for |λ| < 1/4.

Let us now turn our attention to QLM approxima-
tions and their convergence. The QLM iterations se-
quences are easiest to find by considering differential
form (3) of Eq. (22), which can be written as

α′n+1(x) = −1
x

[g
4
(1− α2

n(x)) (126)

+αn+1

(
1 +

g

2
(1 + αn(x))

)]
.

The assumption that αn(x) are constant functions,
αn(x) ≡ cn, immediately establishes the QLM recur-
rence relationship

cn+1 = −g 1− c2n
4 + 2g(1 + cn)

. (127)

Note that, since cn+1 → 0when g → 0, each approxi-
mation to the scattering amplitude vanishes for g = 0,
as it should, since in absence of the potential there is
no scattering. The convergence of the QLM iteration
sequence to exact solution (123) is obvious. Indeed,



1244 MANDELZWEIG
for n→ ∞, Eq. (127) is

c∞ = −g 1− c2∞
4 + 2g(1 + c∞)

, (128)

whose solution vanishing for g → 0 is given by the
expression forA0 in Eq. (123). The QLM approxima-
tion cn to the dimensionless scattering length for an
infinite n therefore indeed is c∞ ≡ A0, as we wanted
to show.

The explicit calculation of the first few QLM ap-
P

proximations, starting from the usual initial guess
c0 = 0, gives

c1 = − g

4 + 2g
, (129)

c2 = −1
4

(
16 + 16g + 3g2

)
g

(8 + 8g + g2) (2 + g)
, (130)
c3 = −1
8

(
4096 + 12288g + 14080g2 + 7680g3 + 2016g4 + 224g5 + 7g6

)
g

(128 + 256g + 160g2 + 32g3 + g4) (2 + g) (8 + 8g + g2)
. (131)
These expressions, unlike that of perturbation theory,
give finite values also for g > 1 or even for g = ∞,
where the first, second, and third QLM approxima-
tions give −1/2, −3/4, and −7/8 vis-à-vis exact
value A0 = −1; the fourth approximation, not given
here because of its cumbrous form, results in−15/16,
and so on. The convergence of these values is from
above in agreement with the law of convergence for
the concave functions proved in Section 2, since the
second functional derivative−λ/x2 on the right-hand
side of Eq. (121) is negative for the repulsive potential.

The expansion of the QLM approximations in the
power series in the coupling constant shows, as in
previous examples, that eachQLM iteration sums ex-
actly many perturbation series terms, whose number
is given by Eq. (119). One obtains

c0 = 0, (132)

c1 = −1
4
g +

1
8
g2 − 1

16
g3 +

1
32
g4 − 1

64
g5 +O

(
g6
)
,

(133)

c2 = −1
4
g +

1
8
g2 − 5

64
g3 +

7
128

g4 (134)

− 21
512

g5 +
33
1024

g6 − 107
4096

g7 +
177
8192

g8

− 593
32768

g9 +O
(
g10
)
,

c3 = −1
4
g +

1
8
g2 − 5

64
g3 +

7
128

g4 (135)

− 21
512

g5 +
33

1024
g6 − 429

16384
g7 +

715
32768

g8

− 2431
131072

g9 +
4199

262144
g10 − 29393

2097152
g11

+
52003

4194304
g12 − 185725

16777216
g13 +

334305
33554432

g14
− 2423711
268435456

g15 +
4419705

536870912
g16

− 16205537
2147483648

g17 +
29852049

4294967296
g18

− 220900693
34359738368

g19 +O
(
g20
)
,

c4 = −1
4
g +

1
8
g2 − 5

64
g3 +

7
128

g4 (136)

− 21
512

g5 +
33

1024
g6 − 429

16384
g7 +

715
32768

g8

− 2431
131072

g9 +
4199

262144
g10 − 29393

2097152
g11

+
52003

4194304
g12 − 185725

16777216
g13 +

334305
33554432

g14

− 9694845
1073741824

g15 +
17678835

2147483648
g16

− 64822395
8589934592

g17 +
119409675
17179869184

g18

− 883631595
137438953472

g19 +
1641030105

274877906944
g20

− 6116566755
1099511627776

g21 +
11435320455

2199023255552
g22

− 171529806825
35184372088832

g23 +
322476036831

70368744177664
g24

− 1215486600363
281474976710656

g25 +
2295919134019

562949953421312
g26

− 17383387729001
4503599627370496

g27

+
32968493968795
9007199254740992

g28

− 125280277081421
36028797018963968

g29

+
238436656380769
72057594037927936

g30
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 7 2005
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− 3636159009806727
1152921504606846976

g31

+
6941758109631017

2305843009213693952
g32 +O

(
g33
)
.

A comparison of Eqs. (132)–(136) with Eq. (125)
shows that the QLM iterations with n = 0, 1, 2,
3, 4 reproduce exactly 1, 3, 7, 15, 31 terms of the
perturbation series, respectively, in exact agreement
with Eq. (119), while the next few terms have coef-
ficients extremely close to being exact. The number
of terms given precisely by the zero, first, second,
third, and fourth QLM approximations increases by
2, 22, 23, and 24, exactly as we saw earlier in the case
of the δ-function potential and in precise agreement
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 7 200
with the quadratic law of convergence. Due to the
simplicity of the algebraic recurrence relations (127),
Eq. (119) for number Nn of the perturbation series
terms given precisely by the nth QLM approximation
can be checked for higher QLM approximations. For
example, earlier from the example of the repulsive
δ potential, we concluded that N6 = 127. The sim-
ple calculation using a symbolic manipulation pro-
gram [34] shows immediately that it is precisely the
same for the inverse square potential. Indeed, the
first seven nonzero terms of the expansion in powers
of g of difference A0 − c6 between exact scattering
length (123) and its sixth QLM approximation are
− 1
28948022309329048855892746252171976963317496166410141009864396001978282409984

g127 (137)

+
127

57896044618658097711785492504343953926634992332820282019728792003956564819968
g128

− 16319
231584178474632390847141970017375815706539969331281128078915168015826259279872

g129

+
707135

463168356949264781694283940034751631413079938662562256157830336031652518559744
g130

− 92988123
3705346855594118253554271520278013051304639509300498049262642688253220148477952

g131

+
2473622041

7410693711188236507108543040556026102609279018600996098525285376506440296955904
g132

− 110916205323
29642774844752946028434172162224104410437116074403984394101141506025761187823616

g133,
exactly as one expects fromEq. (119). In addition, one
can see that the next terms of the perturbation series
are also reproduced extremely well, their difference
from the precise terms being infinitesimally small.
Namely, the coefficient of 127th power of g is about
3.45 × 10−76, the coefficient of 128th power is about
2.19 × 10−74, and so on.

For the attractive potential, expressions (129)–
(131) become singular, with the number of zeros of
denominators increasing with each iteration. This,
of course, is a reflection of the fact that the exact
scattering length A0 has a branch point at g = −1
and a cut line along the real axis between g = −1
and g = −∞. When n increases, the poles get closer
and closer to each other and fuse together at n = ∞,
where, as we saw earlier, the exact amplitude and its
singularity are reproduced.

To handle the singularities, one can try, as we
have discussed earlier, to consider, instead of function
α(x), a new function β(x) such that α(x) = 1/β(x).
Substitution of the last expression into Eq. (121)
leads to the equation

β′(x) =
1
x
[β(x) + λ(1 + β(x))]2, (138)

which is different from Eq. (122) only by the sign of
the right-hand side. The QLM iteration sequence is
found as before by considering differential form (45)
of Eq. (22),

β′n+1(x) =
1
x

[g
4
(1− β2

n(x)) (139)

+ βn+1

(
1 +

g

2
(1 + βn(x))

)]
,

which leads under a previous assumption of βn being
a constant function, βn ≡ cn, to exactly the same
QLM recurrence relations (127). Again, the conver-
gence of the QLM series follows from the fact that, at
n→ ∞, we have the same equation (128), as before,
with the only distinction that, since now the scatter-
ing amplitude in the limit n = ∞ is given by 1/β∞,
5
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Fig. 7. Comparison of real parts of the exact scattering
length (curve a) and of the second QLM approximation
to it (curve b) for inverse square potential, |g| ≤ 8.
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Fig. 8. Comparison of imaginary parts of the exact scat-
tering length (curve a) and of the second QLM approxi-
mation to it (curve b) for inverse square potential, |g| ≤ 8.

one should take a solution to this equation which
goes to infinity at g → 0 rather than to zero. Such a
solution is given by

β∞ = −1− 2
g
(1 +

√
1 + g). (140)

The n = ∞ QLM approximation to the scattering
length A0 thus equals

1
β∞

=
1

−1− (2/g)(1 +
√
1 + g)

(141)

≡ −1− 2
g
(1−

√
1 + g),

which indeed coincides exactly with expression (123)
for A0.

Since the change to βn(x) = 1/αn(x) does not
PH
give anything new, the only way to avoid the singu-
larities in the case of an attractive potential seems
therefore to use the fact that the zero approximation
could be an arbitrary, not necessarily real, number
and to choose c0 as a complex number with a positive
imaginary part of the same order as the real part. The
necessity of choosing c0 complex in the case of the
attractive potential follows also from the fact that, in
this case, the fall to the center happens. The inelastic
cross section for zero energies, determined by the
imaginary part of the S-wave scattering length [35],
cannot therefore be zero; however, from recurrence
relations (127), it is obvious that, unless the initial
guess c0 is a complex number, all subsequent QLM
approximations are real.

A comparison of real and imaginary parts of the
scattering length with those calculated in the second
and third QLM approximations for an arbitrary initial
guess α0 = 1 + i and for coupling constant values
|λ| ≤ 2 |g| ≤ 8 is shown in Figs. 7–10. One can see
that, even for the second QLM iteration, the agree-
ment between the exact scattering length and the
QLM approximation to it is quite good. It improves
visibly for the next QLM iteration. For the fourth and
next iterations, the distinction between the exact and
approximate scattering length is difficult to see and
therefore the correspondent graphs are not shown.

5.4. Newton Supersingular Potential

Our next and last example [36] is the highly singu-
lar Newton potential [37]

V (r) =
a2

(r/R)4
(b2 + c2eR/r), (142)

which in canonical form, setting (ab)2 = g, (c/b)2 =
p, and R = 1, can be written as

V (r) =
g

r4
(1 + pe1/r). (143)

This potential contains a fourth-order pole at the
origin and for the nonzero p in addition an essential
singularity there; g and p are inherently positive since
the attractiveness of such a potential near the origin
leads to the fall to the center [35, 37].

The scattering length is given by the analytical
expression

a0 = −z
2
H

(1)′
ν (z)

H
(1)
ν (z)

, (144)

where ν = 2
√
g and z = 2i

√
gp. In the limit of the

inverse quartic potential, when p = 0, this equation,
using the property of the Hankel function at zero ar-

gument,H(1)′
ν (z)/H(1)

ν (z) = −2ν/z, reduces to a0 =
−√

g, a well-known result [13, 23, 26]. Since for
YSICS OF ATOMIC NUCLEI Vol. 68 No. 7 2005
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Fig. 9. The same as in Fig. 7, but in the third QLM approximation.
the repulsive potential no bound states are possible
and the scattering length has no poles, we now use
Eqs. (72) and (22) to obtain the scattering length
in the QLM approximation. Tables 1–3 contain our
results for potential strengths g between 1 and 10
and for different values of p: p = 0 corresponds to a
pure inverse quartic potential, while p = 1 and p = 10
correspond to equal admixtures of the 1/r4 term and
the term containing the essential singularity at the
origin and to the dominant contribution of the latter
term, respectively.

Since the patterns of convergence for different p
are rather similar, we present the graphs only for one
value of p. Namely, for p = 1, the first few iterations
and the last iteration, as well as the exact solution,
are displayed in Fig. 11, while Fig. 12 shows the
dependence on the coupling strength of the number
of iterations necessary to obtain five-digit accuracy
of the scattering length. We see that, in this case,
this number always equals 6 and, due to the extreme
singularity of the Newton potential, does not depend
on the strength of the potential.

One should stress that, unlike the QLM approach,
which works perfectly well, giving an accuracy of five
significant figures with just six iterations even for
large values of coupling constants, the perturbation
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 7 200
treatment in this case is not possible at all even for
a very small coupling. Indeed, in view of the strong
singularity of the potential at the origin, all the terms
of the Born series for the scattering amplitude are
divergent and no perturbation expansion exists for
any coupling values, which is, of course, a direct
consequence of the branch-point singularity of the
exact scattering length (144) at g = 0. Since we now
use Eq. (72), where the second functional derivative
on the right-hand side,

−2V (r), (145)

for the repulsive Newton potential is concave, the
difference of subsequent QLM iterations should be
strictly negative, ensuring the monotonic conver-
gence to the exact solution from above. This, indeed,
is what follows from Fig. 11, where the curve cor-
responding to the first iteration lies above the curve
corresponding to the second iteration and both lie
above the exact solution as expected.

6. QLM AND WKB

The derivation of the WKB solution starts by
casting the radial Schrödinger equation into non-
linear Riccati form and solving that equation by
expansion in powers of �. It is interesting, instead,
5
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Fig. 10. The same as in Fig. 8, but in the third QLM approximation.
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Fig. 11. Convergence of QLM iterations and comparison with the exact results for the scattering length a0 for the Newton
potential of Table 2 (p = 1).
to solve this nonlinear equation with the help of
the QLM [19, 20] and compare the results with
the WKB results. The QLM and its iterations were
originally constructed [10, 11] as a generalization of
PH
the Newton–Raphson method [38, 39] to yield rapid
quadratic and often monotonic convergence to the
exact solution. The initial comparison of QLM and
WKB was performed in [16, 17], where it was shown
YSICS OF ATOMIC NUCLEI Vol. 68 No. 7 2005
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that the first QLM iteration reproduces the structure
of the WKB series, generating an infinite series of
WKB terms, but with different coefficients. Besides
being a better approximation than the usual WKB,
the first QLM iteration is also expressible in a closed
integral form.

The goal of this section is, following [40, 41], to
point out that similar conclusions can be reached
for higher QLM approximations as well. Namely, we
show that the pth QLM iterate with p > 1 reproduces
the WKB series exactly up to �

2p
: when expanded in

powers of �, it, besides providing the correct structure
of the whole series, generates the coefficients of the
first 2n terms of the WKB series precisely and of
a similar number of the next terms approximately.
In addition, we prove that the exact quantization
condition in any QLM iteration, including the first,
leads to exact energies not only for the Coulomb and
harmonic oscillator potentials, as was shown in [16,
17], but also for many other well-known physical po-
tentials used in molecular and nuclear physics, such
as the Pöschl–Teller, Hulthèn, Hyleraas, Morse, and
Eckart.

The usual WKB substitution

χ(r) = C exp


λ

r∫
y(r′)dr′


 (146)

converts the radial Schrödinger equation

d2χ(r)
dr2

+ λ2k2χ(r) = 0 (147)

to the nonlinear Riccati form
dy(z)
dz

+ (k2(z) + y2(z)) = 0. (148)

Here, k2(z) = E − V − l(l + 1)/z2, λ2 = 2m/�2,
and z = λr.

The proper bound-state boundary condition for
potentials falling off at z 
 z0 
 ∞ is y(z) = const at
z ≥ z0. This means that

y′(z0) = 0, (149)

so that Eq. (148) at z 
 z0 reduces to k(z0)2 +
y2(z0)) = 0 or y(z0)) = ±ik(z0). We choose here to
define the boundary condition with the plus sign, so
that

y(z0) = ik(z0). (150)

The quasilinearization [16, 19, 20] of this equation
gives a set of recurrence differential equations
dyp(z)
dz

= y2
p−1(z)− 2yp(z)yp−1(z)− k2(z) (151)

with the boundary condition deduced from Eq. (150):

yp(z0) = ik(z0). (152)
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 7 200
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order that the absolute value of the difference between
successive iterations be less than 10−5 for the potential
of Fig. 11.

The analytic solution [16] of these equations ex-
presses the pth iterate yp(z) in terms of the previous
iterate:

yp(z) = fp−1(z)−
z∫

z0

ds
dfp−1(s)
ds

(153)

× exp


−2

z∫
s

yp−1(t)dt


 ,

where

fp−1(z) =
y2
p−1(z)− k2(z)

2yp−1(z)
. (154)

Indeed, differentiation of both parts of Eq. (154) leads
immediately to Eq. (151), which proves that yp(z)
is a solution to this equation. The boundary condi-
tion (150) is obviously satisfied automatically.

The second term in Eq. (153) could be written as
z∫

z0

ds

(
−dfp−1(s)/ds

2yp−1(s)

)
(155)

×


2yp−1(s) exp


−2

z∫
s

yp−1(t)dt




 .

The second expression in the parentheses in the in-
tegrand is the derivative of the exponential there. The
integration by parts of this integral therefore gives

 (− 1
2yp−1(s)

dfp−1(s)
ds

)
(156)

× exp


−2

z∫
s

yp−1(t)





∣∣∣∣∣∣
z

z0

−
z∫

z0

ds
d

ds

(
−dfp−1(s)/ds

2yp−1(s)

)
exp


−2

z∫
s

yp−1(t)dt


.
5
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Table 1.Comparison of QLM and exact phases δ0 (defined
as δ0 = arctana0, where a0 is the scattering length) for
the Newton potential V (r) = (g/r4)(1+ pe1/r), p = 0 [mu

is the minimum QLM iteration number required in order
that the absolute value of the difference between successive
iterations be less than 10−5; the resulting absolute value
of the difference ∆ = ∆umu+1 between the final QLM
approximation and the exact solution is displayed in the
last column, where square brackets denote the powers of
10 for the scattering length a0 for the Newton potential
V (r) = g(1 + pe1/r)/r4 (R = 1); the choice p = 0 here
reduces V (r) to the special case 1/r4]

g mu QLM Exact |∆|
1.0 5 –0.99999987 –1.00000000 1[–7]

2.0 6 –1.41421510 –1.41421356 2[–6]

3.0 6 –1.73205380 –1.73205081 3[–6]

4.0 6 –2.00000120 –2.00000000 1[–6]

5.0 6 –2.23606960 –2.23606798 2[–6]

6.0 6 –2.44949190 –2.44948974 2[–6]

7.0 6 –2.64575400 –2.64575131 3[–6]

8.0 6 –2.82843040 –2.82842712 3[–6]

9.0 6 –3.00000100 –3.00000000 1[–6]

10.0 6 –3.16227880 –3.16227766 1[–6]

Since the lower limit in the first term of this expression
vanishes in view of Eq. (149), the integration of the
second term of Eq. (153) by parts results in

yp(z) = fp−1(z) +
(
− 1
2yp−1(z)

dfp−1(z)
dz

)
(157)

−
z∫

z0

ds
d

ds

(
−dfp−1(s)/ds

2yp−1(s)

)
exp


−2

z∫
s

yp−1(t)dt


.

The successive integrations by parts of Eq. (157)
lead [16] to the series

yp(z) =
∞∑
n=0

L(p)
n (z) (158)

with L(p)
n (z) given by recursive relation

L(p)
n (z) =

1
2yp−1(z)

d

dz
(−L(p)

n−1(z)) (159)

and

L(p)
0 (z) = fp−1(z). (160)

Since
d

dz
= g

d

dr
, g = λ−1 =

�√
2m
, (161)
PH
Table 2. The same as in Table 1, but for p = 1

g mu QLM Exact |∆|
1.0 6 –1.55117510 –1.55117440 7[–7]

2.0 6 –2.13431750 –2.13431460 3[–6]

3.0 6 –2.58243320 –2.58243170 2[–6]

4.0 6 –2.96048760 –2.96048510 2[–6]

5.0 6 –3.29370350 –3.29370260 9[–7]

6.0 6 –3.59504450 –3.59504330 1[–6]

7.0 6 –3.87221530 –3.87221380 2[–6]

8.0 6 –4.13024160 –4.13023970 2[–6]

9.0 6 –4.37261600 –4.37261370 2[–6]

10.0 6 –4.60188310 –4.60188040 3[–6]

Eq. (158) represents the expansion of the pth QLM
iterate in powers of g, that is, in powers of �, which
one can compare with theWKB series, as will be done
in the next section.

For the zeroth iterate y0(z), it seems natural to
choose the zeroth WKB approximation, that is, to set

y0(z) = ik(z), (162)

which in addition satisfies boundary condition (150).
However, one has to be aware that this choice has
unphysical turning point singularities. According to
the existence theorem for linear differential equa-
tions [42], if yp−1(z) in Eq. (151) is a discontinuous
function of z in a certain interval, then yp(z) or
its derivatives may also be discontinuous functions
in this interval, so consequently the turning point
singularities of y0(z) may propagate to the next
iterates.

Substitution of the initial QLM approximation
(162) into Eq. (153) gives an especially simple ex-
pression [16] for the first QLM iterate,

y1(z) = ik(z)− i
z∫

z0

ds k′(s) exp


−2i

z∫
s

k(t)dt


 .

(163)

The first QLM iteration is expressible in a closed
integral form. However, it takes into account, though
approximately, an infinite number of WKB terms cor-
responding to higher powers of �, as will be shown
in the next section. In view of this, it is a better
approximation than the usual WKB.
YSICS OF ATOMIC NUCLEI Vol. 68 No. 7 2005
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7. COMPARISON OF EXPANSIONS OF QLM
ITERATES AND WKB SERIES

To obtain the WKB series, one has to expand
solution y of the Riccati equation (148) in powers of
�. This is easy to do by using Eq. (161) and looking
for y in the form of series in g:

y =
∞∑
m=0

gmYm. (164)

Substitution into (148) and equation of terms by the
identical powers of g gives

dYm−1

dr
= −

m∑
k=0

YkYm−k. (165)

This reduces to the recurrence relation

Ym = − 1
2Y0

(
Y ′
m−1 +

m−1∑
k=1

YkYm−k

)
. (166)

The derivatives in this and subsequent expressions
are in variable r. The zero WKB approximation Y0

is given by Y0 = ik. The subsequent terms Yn of
the expansion can be obtained from this recurrence
relation by use of Mathematica [43].

We present here the WKB expansion (164) up to
g7 inclusively:

y = ik − gk′

2k
+

i

8k3
g2(3k′2 − 2kk′′) (167)

+
g3

8k5
(6k′3 − 6kk′k′′ + k2k(3)) +

i

128k7

× g4(−297k′4 + 396kk′2k′′ − 52k2k′′
2

− 80k2k′k(3) + 8k3k(4))− g5

32k9
(306k′5

− 510kk′3k′′ + 111k2k′
2
k(3) − 3k2k′(−48k′′2

+ 5kk(4)) + k3(−24k′′k(3) + kk(5))) +
i

1024k11

× g6(50139k′6 − 100278kk′4k′′ + 22704k2k′
3
k(3)

+ 12k2k′
2(3679k′′2 − 290kk(4)) + 16k3k′

× (−694k′′k(3) + 21kk(5))− 8k3(301k′′3

− 80kk′′k(4) + k(−49k(3)2 + 2kk(6)))) +
g7

128k13

× (38286k′7 − 89334kk′5k′′ + 20721k2k′
4
k(3)

+ k′3(53724k2k′′
2 − 3405k3k(4)) + 3k3k′

2

× (−5426k′′k(3) + 129kk(5)) + 2k3k′(−3528k′′3

+ 735kk′′k(4) + 2k(225k(3)2 − 7kk(6)))

+ k4(1176k′′2k(3) − 62kk′′k(5)
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Table 3. The same as in Table 1, but for p = 10

g mu QLM Exact |∆|
1.0 6 –3.53935640 –3.53935320 3[–6]

2.0 6 –4.91444300 –4.91444030 3[–6]

3.0 6 –5.96917320 –5.96917180 1[–6]

4.0 6 –6.85821230 –6.85821020 2[–6]

5.0 6 –7.64140310 –7.64140000 3[–6]

6.0 6 –8.34941940 –8.34941840 1[–6]

7.0 6 –9.00048470 –9.00048340 1[–6]

8.0 6 –9.60646440 –9.60646280 2[–6]

9.0 6 –10.17560100 –10.17559900 2[–6]

10.0 6 –10.71389400 –10.71389200 2[–6]

+ k(−90k(3)k(4) + kk(7)))).

To compare expansion of the first QLM iterate y1
in powers of � with the WKB expansion (167), we
have to use, as we have already mentioned in the
previous section, Eqs. (158) and (159) together with
Eq. (162). The result up to power g7 inclusively is
again obtained with the help of Mathematica [43]:

y1 = ik − k
′g

2k
+
ig2

4k3
(k′2 − kk′′) (168)

+
g3

8k5
(3k′3 − 4kk′k′′ + k2k(3)) +

ig4

16k7

× (−15k′4 + 25kk′2k′′ − 7k2k′k(3)

+ k2(−4k′′2 + kk(4))) +
g5

32k9
(−105k′5

+ 210kk′3k′′ − 60k2k′
2
k(3) + k2k′(−70k′′2

+ 11kk(4)) + k3(15k′′k(3) − kk(5)))− ig6

64k11

× (−945k′6 + 2205kk′4k′′ − 630k2k′
3
k(3)

+ 14k2k′
2(−80k′′2 + 9kk(4)) + 2k3k′(175k′′k(3)

− 8kk(5)) + k3(70k′′3 − 26kk′′k(4) + k(−15k(3)2

+ kk(6)))) +
g7

128k13
(10395k′7 − 27720kk′5k′′

+ 7875k2k′
4
k(3) − 126k2k′

3(−150k′′2 + 13kk(4))

+ 14k3k′
2(−495k′′k(3) + 17kk(5))

+ k3k′(−2800k′′3 + 784kk′′k(4) + k(455k(3)2

− 22kk(6))) + k4(560k′′2k(3) − 42kk′′k(5)

+ k(−56k(3)k(4) + kk(7)))).
5
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As we have already mentioned, the comparison
of expansion of the first QLM iterate in powers of �

and WKB series was originally performed in [16, 17].
There, it was shown that the expansion reproduces
exactly the first two terms and also gives correctly the
structure of the WKB series up to the power g3 con-
sidered in these works, generating series with identi-
cal terms, but with different coefficients. Comparison
of Eqs. (167) and (168) of the present work shows that
this conclusion is also true if higher powers of g are
taken into account.

The computation of the expansion of the second
QLM iterate y2 in powers of � is done by reexpanding
the term 1/(2y1) in Eq. (159) in the series in powers
of g and keeping the powers up to g7 inclusively in
this expression as well as in the sum in Eq. (158). The
result is given by

y2 = ik − k′g

2k
+
ig2

8k3
(3k′2 − 2kk′′) (169)

+
g3

8k5
(6k′3 − 6kk′k′′ + k2k(3)) +

ig4

32k7
(−74k′4

+ 99kk′2k′′ − 20k2k′k(3) + k2(−13k′′2

+ 2kk(4))) +
g5

64k9
(−607k′5 + 1017kk′3k′′

− 222k2k′
2
k(3) + 6k2k′(−48k′′2 + 5kk(4))

− 2k3(−24k′′k(3) + kk(5)))− ig6

128k11
(−6186k′6

+ 12446kk′4k′′ − 2832k2k′
3
k(3) + k2k′

2

× (−5503k′′2 + 435kk(4)) + 2k3k′(694k′′k(3)

− 21kk(5)) + k3(301k′′3 − 80kk′′k(4)

+ k(−49k(3)2 + 2kk(6)))) +
g7

256k13
(75256k′7

− 176659kk′5k′′ + 41224k2k′
4
k(3) + 4k2k′

3

× (26687k′′2 − 1700kk(4)) + 2k3k′
2

× (−16243k′′k(3) + 387kk(5)) + k3k′(−14071k′′3

+ 2940kk′′k(4) + 8k(225k(3)2 − 7kk(6)))

+ 2k4(1176k′′2k(3) − 62kk′′k(5) + k(−90k(3)k(4)

+ kk(7)))).

The expansion of y2 reproduces exactly the first
four terms of the WKB series. It also gives the proper
structure of the other terms of theWKB series, gener-
ating series with identical terms which have approxi-
mately correct coefficients.

The expansion of y3 is obtained in a similar fash-
ion. It reproduces exactly the first eight terms of the
PH
WKB series, that is, all the terms up to the power g7

inclusively listed in Eq. (167).
Summing up, we have proved that the expansion

of the first, second, and third QLM iterates repro-
duces exactly two, four, and eight WKB terms, re-
spectively. Since the zero QLM iterate y0 was chosen
to be equal to the zero WKB approximation ik, one
can state that the pth QLM iterate contains 2p exact
terms. In addition, expansion of eachQLM iterate has
the correct structure whose terms are identical to the
WKB series with approximate coefficients.

The 2p law is, of course, not accidental. The QLM
iterates are quadratically convergent [10, 11, 19, 20];
that is, the norm of the difference of the exact solution
and the pth QLM iterate ||y − yp|| is proportional to
the square of the norm of the differences of the exact
solution and the (p− 1)th QLM iterate:

||y − yp|| ∼ ||y − yp−1||2. (170)

Since y0 contains just one correct WKB term of
power g0 and thus ||y − y0|| is proportional to g, one
has to expect that ||y − y1|| ∼ g2 and thus y1 con-
tains two correct WKB terms of powers g0 and g1.
The difference ||y − y2|| ∼ ||y − y1|| ∼ g4, so that y2
contains four correct WKB terms of powers g0, g1,
g2, and g3. Finally, the difference ||y − y3|| should be
proportional to g8, and therefore y3 has to contain
eight correct terms with powers between g0 and g7

inclusively. This explains the 2p law.

8. QLM AND WKB ENERGY CALCULATIONS

The exact quantum-mechanical quantization con-
dition for the energy [44–46] has the form

J =
∮
C

y(z)dz = 2πin. (171)

Here, y(z) is the logarithmic derivative of the wave
function, given by Eq. (148); z = gr; n = 0, 1, 2, . . .
counts the number of poles of y(z) and is the bound-
state number; and the integration is along a pathC in
the complex plane encircling the segment of the Rez
axis between the turning points.

The pth QLM iterate yp(z), as we have seen, con-
tains in addition to 2p exact WKB terms of powers
g0, g1, . . . , g2

p−1 also an infinite number of struc-
turally correct WKB terms of higher powers of g with
approximate coefficients. One can expect therefore
that the quantization condition (171) with y(z) ap-
proximated by any QLM iterate yp(z), including the
first,

Jp =
∮
C

yp(z)dz = 2πin, p = 1, 2, . . . , (172)
YSICS OF ATOMIC NUCLEI Vol. 68 No. 7 2005
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gives more accurate energy than the WKB quantiza-
tion condition∮

C

k(z)dz = 2π
(
n+

1
2

)
, (173)

which is obtained by substituting into exact quanti-
zation condition (171) the WKB expansion (167) up
to the first power of g ∼ �, that is, y(z) = ik(z) −
dk(z)/dz

2k(z) , and neglecting all higher powers of g in the
expansion. Indeed, Eq. (172) leads to exact energies
not only for the Coulomb and harmonic oscillator
potentials, as was shown earlier in [16, 17], but also
for many other well-known physical potentials [40,
41] used inmolecular and nuclear physics, such as the
cotangent, Pöschl–Teller, Hulthèn, Hyleraas, Morse,
and Eckart.

The WKB quantization condition (173) yields the
exact energy only for the first two potentials, but not
for the rest of them.

Let us now consider some of the above-mentioned
potentials:

1. Harmonic oscillator V (x) = x2/2, −∞ <
x <∞. From now on, we will work in the units
� = m = 1 so that from z = λx follows x = z/

√
2

and V (z) = z2/4.
In view of the boundary condition (152), yp(z) at

infinity should behave like i
√
E − z2/4 
 −z/2 +

E/z, where we omitted terms of order 1/z2 and
higher. Here, we took into account that, for bound
states, the logarithmic derivative at infinity should be
negative. More accurately, the pole structure of yp(z)
at z ∼ ∞ can be found by looking for the solution
there in the form yp(z) 
 −z/2 + αp/z. Substituting
into the quasilinearized equation (151)

dyp(z)
dz

= y2
p−1(z)− 2yp(z)yp−1(z) −

(
E − z2

4

)

(174)

and again neglecting terms of order 1/z2 or higher,
which do not contribute to the integral, yields αp =
E − 1/2, so that the pole term in yp(z), p = 1, 2, . . . ,
is given by (E − 1/2)/z.

The integration in Eq. (172) is counterclockwise
along a path C in the complex plane encircling the
segments of the Rez axis between the two turning
points −2

√
E and 2

√
E. Since the only singularity

outside contour C in the complex plane lies at infin-
ity, the integral (172) can be done by distorting the
contour to enclose the pole at x = ∞. The evaluation
of the integral yields 2πi(E − 1/2) = 2πin or E =
n+ 1/2, which is the exact equation for the energy
levels.
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2. Cotangent potential V (x) = V0cot
2(πx/a),

V0 > 0, 0 < x < a. Let us introduce a new variable

z = sin2
(πx
a

)
, (175)

so that

x =
a

π
arcsin

√
z, dx =

a

2π
1√

z(1 − z)
dz,

k(z) =

√
2(E + V0)−

V0

z
.

The QLM equation (151) will now have the form

2π
a

√
(1− z)z dyp(z)

dz
(176)

= y2
p−1(z)− 2yp(z)yp−1(z)− k2(z).

One of the singularities of k2(z) is at z = 0. Near this
point, the equation has the form

2π
a

√
z
dyp(z)
dz

= y2
p−1(z) − 2yp(z)yp−1(z) +

2V0

z
.

(177)

We look for a solution to this equation in the form
yp(z) = ap/

√
z. Then we obtain for ap the following

recurrence relation:

ap(2ap−1 − π/a) = a2
p−1 + (π/a)2λ(λ− 1). (178)

Here, we set 2V0 = (π/a)2λ(λ− 1), where λ = 1/2 +√
1/4 + 2V0a2/π2. The solution to this algebraic

equation, which fullfils the demand that, at large p,
ap = ap−1, is ap = πλ/a. The yp(z) near zero thus
has the form yp(z) = πλ/(a

√
z). At z 
 ∞, Eq. (176)

reduces to
2π
a

√
−z2dyp(z)

dz
= y2

p−1(z)− 2yp(z)yp−1(z)

− 2(E + V0).

Looking for a solution in the form yp(z) = cp,
where cp is some constant, one obtains the recurrent
relation for cp, namely, c2p−1 − 2cpcp−1 − 2(E + V0) =
0. The solution to this algebraic equation, which full-
fils the demand that, at large p, cp = cp−1, is cp =√

−2(E + V0).
The quantization condition (172) in variable z

given by Eq. (175) has the form

Jp =
a

π

∮
C

yp(z)√
z(1 − z)

dz = 2πin, (179)

p = 1, 2, . . . ,

where integration is counterclockwise along a path
C in the complex plane encircling the cut along the
Rez axis between zero and z = V0/[2(E + V0)]. Since
5
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yp(z) equals πλ/(a
√
z) and

√
−2(E + V0) at z 
 0

and z 
 ∞, respectively, the integrand in Eq. (179)
has poles with residues πλ/a and

√
2(E + V0) there.

The deformation of the contour to include these poles
and computation of their contributions yields

Jp = 2πi
(
−a
π
λ+

√
2(E + V0)

)
= 2πin, (180)

or, upon substitution of the value of λ and inserting �

andm from dimensional considerations,

E = −V0 +
π2

�
2

2ma2

(
n+

1
2
+

√
2mV0a2

π2�2
+

1
4

)2

.

This is the exact equation for the energy levels in
the cotangent potential [47]. The correspondentWKB
expression is different and is given by [47]

E = −V0 +
π2

�
2

2ma2

(
n+

1
2
+

√
2mV0a2

π2�2

)2

.

3. Modified Pöschl–Teller potential V (x) =
−V0/cosh

2(x/a), V0 > 0, −∞ < x <∞. Setting
z = cosh2(x/a) so that dx = adz/[2z(z − 1)], one
finds that the QLM equation (151) now has the form

2
a

√
(z − 1)z

dyp(z)
dz

= y2
p−1(z) (181)

− 2yp(z)yp−1(z) − k2(z),

where k2(z) is given by 2(−|E| + V0/z). At z 
 0,
this equation has the form

2π
a

√
−z dyp(z)

dz
= y2

p−1(z) (182)

− 2yp(z)yp−1(z)−
λ(λ− 1)

z
,

where we use the definition of λ = 1/2 +
+
√

1/4 + 2V0a2, so that 2V0 = λ(λ− 1)/a2. The
solution near zero can be sought in analogy with
previous cases in the form yp(z) = ap/

√
−z. Sub-

stitution into (182) gives ap = a2
p−1 − 2apap−1 +

λ(λ− 1), whose solution, satisfying the condition
that, at large p, ap = ap−1, is ap = λ− 1. Thus,
near zero, yp(z) 
 (λ− 1)/

√
−z. The solution at

infinity yp(z) 

√

2|E| is found in the same way as
in the previous two sections. The integration in the
quantization condition

Jp = a
∮
C

yp(z)√
z(z − 1)

dz = 2πin, (183)

p = 1, 2, . . . ,

is counterclockwise along a path C in the complex
plane encircling the cut along the Rez axis between
P

z = λ(λ− 1)/[2a2|E|] and z = ∞. The deformation
of the contour and computation of the integral upon
substitution of values of λ and insertion of � and m
from dimensional considerations yields

E = − �
2

2ma2

[
−
(
n+

1
2

)
+

√
2mV0a2

�2
+

1
4

]2

.

This is the exact equation for the energy levels in
the Pöschl–Teller potential hole [23, 47]. The cor-
respondent WKB expression is different [47] and is
given by

E = − �
2

2ma2

[
−
(
n+

1
2

)
+

√
2mV0a2

�2

]2

.

Summing up, in this section, we have shown that
the quantization condition in the first QLM itera-
tion leads to exact energies for the harmonic oscilla-
tor, cotangent, andmodified Pöschl–Teller potentials.
In [41], it was shown that it is also true for many other
potentials, such as the Coulomb, Hulthèn, Hylleraas,
Morse, Eckart, and some other well-known poten-
tials used in molecular and nuclear physics which
have a simple analytic structure. By comparison, the
WKB approximation reproduces exact energies only
in the case of the oscillator and Coulomb potentials.

9. QLM AND WKB ENERGY AND WAVE
FUNCTION CALCULATIONS

We will show now following our works [40, 48, 49]
that, also in the general case of arbitrary potentials
that do not have a simple analytic structure, both the
wave functions and energies are very well reproduced
by the first QLM iteration and demonstrate signifi-
cant improvement over those obtained by the usual
WKB approximation. In addition, we show that, if
the initial QLM guess is properly choosen, the wave
function in the first QLM iteration, unlike the WKB
wave function, is free of unphysical turning point
singularities. Since the first QLM iteration is given by
an analytic expression [40, 41, 48, 49], it allows one to
analytically estimate the role of different parameters
and the influence of their variation on boundedness
or unboundedness of, for example, critically stable
quantum systems with muchmore precision than ob-
tained by the WKB approximation, which often fails
miserably, for systems on the border of stability. In
addition, we show that fiveQLM iterations are usually
enough to obtain both the wave function and energies
with the extreme accuracy of ten significant figures.

In the previous section, the zero-order WKB ap-
proximation ik(z) was chosen as the zeroth iterate
y0(z). However, that choice has unphysical turning
point singularities. Consequently, if yp(z) in Eq. (151)
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 7 2005
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Fig. 13. Comparison of the Langer WKB solution
(dashed curve), the exact solution (dotted curve), and the
first QLM iteration (solid curve) for the ground state of
the anharmonic oscillator. The last two are almost indis-
tinguishable on the plot. Here, x = κr, κ2 = 2mE/�2.

is a discontinuous function of z in a certain interval,
then yp+1(z) or its derivatives could also be discon-
tinuous functions in this interval [42], so the turning
point singularities of y0(z) would unfortunately prop-
agate to the next iterate, as we indeed saw in theQLM
series containing powers of k(z) in the denominators
of different terms.

To avoid this, let us choose as the zero iteration the
Langer [50]WKBwave function, which does not have
the turning point singularities. This function near the
turning points a and b is given by the simple analytic
expression

χi(r) = ci

√
S

1/3
i (r)
|k(r)| Ai

[
dS

1/3
i (r)

]
, (184)

Si(r) =
3
2
λ

∣∣∣∣∣∣
r∫
i

|k(s)| ds

∣∣∣∣∣∣ .

Here, Ai denotes the Airy function; i = a, b; k(r) =
(2m/�2)[(E − V (r))− (l + 1/2)2/(2mr2)]; d is −1
for a < r < b and 1 for r ≤ a, r ≥ b; and ca = 1, cb =
(−1)n, where n = 0, 1, 2 is the number of the bound
state. It is easy to check that χa(r) and χb(r) co-
incide at some point in the interval (a, b) between
the turning points, are continuous across them, and
coincide with the usualWKB solutions far from them.
Let us present a couple of examples considered origi-
nally in [48] (numerous other examples are considered
in [49]):
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Fig. 14. Logarithm of the differences between ex-
act uexact and WKB solution (dashed curve) and be-
tween uexact and the first QLM iteration u1 (solid
curve) for the ground state of the anharmonic oscilla-
tor; u(x) is defined as u(x) = − arctan(κχ(r)/χ′(r)) =
− arctan(E/y(λr)); QLM iteration here is performed on
the monotonic function u(x) and not on the singular
function y(λr).

1. Ground state of the anharmonic oscillator
V (r) = (r2 + r4)/2. The exact energy of this state is
2.324406352 (in a.u.) with mass m = 1. The WKB
energy is different by 2.14% and equals 2.27460 a.u.,
while the first-iteration QLM energy equals 2.32575
and differs from the exact energy only by 0.058%. The
fifth-iteration QLM energy coincides with the exact
energy in all ten digits.

The graphs corresponding to the LangerWKB so-
lution, the exact solution, and the first QLM iteration
are displayed in Fig. 13. One can see that, while the
Langer solution is noticeably different from the exact
solution, the curve of the first QLM iteration is almost
indistinguishable from the exact curve.

This can be followed more precisely by looking at
Fig. 14, where the logarithm of the difference between
the exact andWKB solutions and the one between the
exact solution and the first QLM iteration are shown.
One can see that the difference between the exact
solution and the first QLM iteration is two orders of
magnitude smaller than the difference between the
exact and the WKB solutions, that is, just one QLM
iteration increases the accuracy of the result by a
remarkable two orders of magnitude.

2. Second excited state of the linear poten-
tial V (r) = 27/2r. The exact energy in this case is
9.352429642 a.u. The WKB energy is different by
0.49% and equals 9.39863 a.u. The first-iteration
QLM energy equals 9.3582123 and differs from the
exact one only by 0.062%. The QLM energy, as in the
5
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Fig. 15. The same as in Fig. 14, but for the second excited
state of the linear potential.

case of the anharmonic potential, coincides with the
exact one after the fifth iteration in all ten digits.

The accuracy of the WKB approximation in-
creases for higher excitations. Therefore, in the case
of the second excited state in the linear potential, both
the Langer WKB and QLM curves are indistinguish-
able from the exact one. Figure 15 shows, however,
that, also in this case, the difference between the exact
solution and the first QLM iteration is two orders of
magnitude smaller than the difference between the
exact and WKB solutions.

10. CONCLUSIONS

Summing up, we have reviewed the basic proper-
ties of the quasilinearization method and its emerg-
ing applications in physics. The proof of the con-
vergence of the method for nonlinear ordinary nth-
order differential equations was reformulated [19, 20]
by removing unnecessary restrictive conditions gen-
erally not fulfilled in physical applications and was
adjusted for large or infinite domains of variables and
for functionals which are singular at some points in
the domain. The generalization of the proof to non-
linear partial nth-order differential equations in N-
dimensional space is straightforward.

The results can be summed up as follows:
(i) The sequence un(x), n = 1, 2, . . . , of QLM it-

erations converges uniformly and quadratically to the
exact solution u(x). For convergence, it is sufficient
that an initial guess for the zeroth iteration be suffi-
ciently good to ensure the smallness of just one of the
convergence coefficients qm = k||um+1 − um||. For a
first-order nonlinear ordinary equation, for example, k
is given by Eqs. (32) or (35). [In addition, in this case,
for strictly convex (concave) functionals f(u(x), x),
P

difference un+1(x)− un(x) is strictly positive (nega-
tive), which establishes the monotonicity of the con-
vergence from below (above), respectively.]

(ii) The method approaches the solution of a non-
linear differential equation by approximating the non-
linear terms by a sequence of linear ones and is not
based on the existence of a smallness parameter. As a
result, it is able to handle, unlike perturbation theory,
large or even infinite values of the coupling constant.

(iii) Comparison of QLM with perturbation theory
shows that each QLM iteration reproduces and sums
many orders of perturbation theory exactly and, in
addition, many more orders approximately. Namely,
in agreement with the quadratic pattern of the con-
vergence, the number Nn of terms of the perturba-
tion series reproduced exactly in the nth QLM ap-
proximations equals 2n+1 − 1, and approximately the
same number of terms is reproduced approximately.
The number of the exactly reproduced terms thus
doubles with each subsequent QLM approximation
and reaches, for example, 127 terms in the 6th QLM
approximation 8191 terms in the 12th QLM approxi-
mation, and so on.

(iv) QLM handles without any problems not only
singular potentials, like the inverse squared potential,
for which perturbation theory is divergent outside a
narrow interval of values of the coupling constant, but
even supersingular potentials, like the Newton poten-
tial, for which perturbation series are not existent at
all, since their calculation leads to infinities in each
order of the perturbation expansion.

(v) The advantage of the quasilinear approach is
that each pth QLM iteration is expressible in a closed
integral form. We have proved that its expansion in
powers of � reproduces the structure of the WKB
series, generating an infinite number of WKB terms
with 2p terms of the expansion reproduced exactly
and a similar number approximately. As a result, one
expects that the exact quantization condition with
the integrand replaced by any QLM iterate, including
the first, gives more accurate energy than the WKB
quantization condition which is obtained by substi-
tuting into the exact quantization condition theWKB
expansion up to the first power of � and neglect-
ing all higher powers of �. Indeed, we have shown
that the approximation by the first QLM iterate in
Eq. (171) leads to exact energies for harmonic oscilla-
tor, cotangent, andmodified Pöschl–Teller potentials.
The same is true [41] for many other well-known
physical potentials used in molecular and nuclear
physics, such as the Coulomb, Hulthèn, Hyleraas,
Morse, and Eckart.

(vi) For other potentials which have more com-
plicated analytical structure, we have shown via ex-
amples of the anharmonic oscillator and linear po-
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 7 2005
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tentials that the use of the Langer WKB solution as
an initial guess even in the first QLM approximation
gives energies and wave functions at least two orders
of magnitude more accurate than the WKB results;
such aQLMsolution, unlike the usualWKB solution,
displays no unphysical turning point singularities.
Since the first QLM iterate is given by an analytic
expression, it allows one to estimate analytically the
role of different parameters and their influence on
properties of a quantum system with much higher
precision than that provided by the WKB approxi-
mation. In addition, we have shown that five QLM
iterations are usually enough to obtain both the wave
function and the energy with accuracy of at least ten
significant figures.

In view of all this, since most equations of physics,
from classical mechanics to quantum field theory, are
either nonlinear or can be transformed in a nonlinear
form, the quasilinear method may turn out to be ex-
tremely useful and in many cases more advantageous
than perturbation theory or its different modifications,
like expansion in inverse powers of the coupling con-
stant, 1/N expansion, etc.
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Quadrupole Moments and Transition Probabilities B(E2)
for Light Nuclei in the Orthogonal-Scheme Basis

with Symmetric Representations of the О(((А−−− 1))) Group

K. J. Yankauskas* and A. K. Petrauskas
Received June 7, 2004; in final form, November 4, 2004
The nuclear properties are studied in the U(3(A −
1)) scheme using two bases (schemes): unitary and
orthogonal [1]. In this work, we analyze some prob-
lems of spectroscopic calculations in the orthogonal
scheme.

The basis wave function of the system of A nu-
cleons in the orthogonal scheme (specified by the
following chains of the subgroups of the U(3(A− 1))
group [1]:U(3(A− 1)) ⊃ O(3(A− 1)) ⊃ O(A− 1)×
O+(3),O(A− 1) ⊃ S(A), whereU ,O, and S are uni-
tary, orthogonal, and symmetric groups, respectively)
is denoted as

ψ(EKβω123αλLΓ0). (1)

Here, E and K are the irreducible symmetric
representations of the U(3(A− 1)) and O(3(A −
1)) groups, respectively; ω123 ≡ (ω1ω2ω3) is the
irreducible representation of the O(A− 1) group;
β and α are the repetition indices for the chains
O(3(A − 1)) ⊃ O(A− 1) ×O+(3) and O(A− 1) ⊃
S(A), respectively; λ is the Young tableau of the
S(A) group; L is the orbital angular momentum; and
Γ0 are the remaining quantum numbers and spin–
isospin characteristic. Functions (1) are the eigen-
functions of the [3(A− 1)]-dimensional harmonic
oscillator and E and K have the sense of the number
of oscillatory quanta and multidimensional angular
momentum, respectively. Functions with E > K are
multiquantum-excited U(3(A − 1)) states (radial ρ
excitations).

In this article, we propose simple expressions
for calculating the quadrupole momenta Q and the
transition probabilities B(E2) in orthogonal-scheme
bases. These bases involve the kinematically most
important functions [2], i.e., functions that corre-
spond to the most symmetric Young tableaus of the
S(A) group and symmetric representations of the
O(A− 1) group of the form ω123 ≡ (K0 0) and that

*e-mail: fizkat@jtf.ku.lt
1063-7788/05/6807-1259$26.00
are specified by the number of quanta E = K + 2N ,
whereN = 0, 1, 2, . . . .

The electric quadrupole moment of the nucleus
is defined as the mean value of the (16π/5)1/2O2

0

operator in the state with J = M . The operator O2
0 is

given as

O2
0 =

e

2

A∑
i

(1 − 2t10(i))Y
2
0 (i)r2(i). (2)

Here, e is the elementary charge, t10(i) is the isospin
projection, Y 2

0 is the spherical function, and r(i) is
the distance between the ith particle and the center
of mass of the nucleus. Using the properties of the
proton–neutron basis of the U(3(A− 1)) scheme [3]
and the relation between the functions of the unitary
and orthogonal schemes [2], we represent the group
quantities of the SU (3) [4] and O+(3) groups for
states with E = K as

Q = −
[
(2J + 1)(2J − 1)J(2L + 1)L(L+ 1)
(2J + 3)(J + 1)(2L + 3)(2L− 1)

]1/2

(3)

×
{
L L 2

J J S

}
(2l + 3)λ1

K
er2ψ.

Here, λ1 is determined from the (λ10) representa-
tion of the SU (3) group for the proton subsystem
of the proton–neutron basis [the representation of
the SU (3) group for the entire system has the form
(λµ) = (K0)] and rψ is the parameter of the wave
function. Then, using Eq. (3) and Eq. (16) from [5],
we express the quadrupole moments in terms of the
basis of functions (1) with E = K + 2N ,N = 0, 1, 2,
. . . , where multiquantum ρ excitations are taken into
account, as

Q = − 3X(X + 1) − 4J(J + 1)L(L+ 1)
2(J + 1)(2J + 3)(2L + 3)(2L− 1)

(4)

× (2K + 3)λ1

K
[D]er2ψ.
c© 2005 Pleiades Publishing, Inc.
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Here,X = S(S + 1) − L(L+ 1) − J(J + 1) and [D]
is the following sum of the coefficients CN of the
expansion of the wave function ψ(J) in the above
multiquantum basis:

[D] =

[
Nmax∑
N=0

A(NlK , NlK)C2
N (5)

+ 2
Nmax−1∑
N=0

A(NlK , N + 1lK)CNCN+1

]
.

Here, according to [5, Eq. (17)],

A(NlK , NlK) =
lK + 2N + 3/2
lK + 3/2

, (6)

A(NlK , N + 1 lK) = −
√

(N + 1)(lK +N + 3/2)
lK + 3/2

,

where lK = K + 3(A− 2)/2 andN = (E −K)/2.
The probability of electric quadrupole transitions

B(E2) is expressed in terms of the matrix element of
the O2

0 operator [6], and it is similarly represented as

B(E2, J → J − 2) =
15
8π

λ2
1

K2
(7)

× (K − L+ 2)(K + L+ 1)L(L− 1)
(2L− 1)

(2J − 3)

×
{
S L− 2 J − 2

2 J L

}
[D1]2e2r4ψ.

Here,

[D1] =

[
Nmax∑
N=0

A(NlK , NlK)CNC1
N (8)
P

+
Nmax−1∑
N=0

A(NlK , N + 1 lK)(CNC1
N+1 +CN+1C

1
N )

]
,

where C and C1 are the coefficients of the expansion
of the functions ψ(J) and ψ(J − 2), respectively, in
basis (1) with E = K + 2N , where N = 0, 1, 2, . . . .
The expressions for the probabilities of other possible
transitions are also easily obtained.

The above formulas are applicable forU(3(A− 1))
states with symmetric O(A− 1) representations of
the form ω123 = (K0 0). Such states of the orthogo-
nal scheme exist in nuclei with A ≤ 16 [1]. Formu-
las (4) and (7) take into account both isospin and
spin dependences ofQ and B(E2) and generalize the
known formulas of collective models [7].
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FUTURE PUBLICATIONS
Special Features of the Boundary of Stability of Light Nuclei

K. A. Gridnev, D. K. Gridnev, V. G. Kartavenko, V. E. Mitroshin, V. N. Tarasov, D. V. Tarasov, and W. Greiner

The problem of stability of the 4–12He, 14–44O, and 38–80Ca isotopes with respect to the emission of one or
two neutrons is studied in the Hartree–Fock approximation by using Sly4 and Ska effective Skyrme forces. A
stability peninsula in the region of 40O is discovered.

On Alignment in Jet Events

I. P. Lokhtin, A. K. Managadze, L. I. Sarycheva, and A. M. Snigirev

The hypothesis previously put forth in the literature that alignment of spots on films that is observed in
emulsion experiments with cosmic rays is related to a predominant jet character of events at ultrahigh energies
is verified. TheMonte Carlo PYTHIA generator, which is known to have provided good results in describing jet
events in hadron–hadron interactions, is used in the present analysis. Because of a strong correlation between
the directions of the jet axes and particle momenta (collinearity) in them, the estimated degree of alignment
is much higher than in a random sample of spots disposed chaotically on a film. For primary-interaction
altitudes and collision energies satisfying some specific constraints, the degree of alignment appears to be
strongly dependent on the hardness of the process and on the threshold for the total energy of selected clusters,
increasing as they grow.

On the Possibility of Revealing Collective Pion Degrees of Freedom in a Nucleus by Means

of Quasielastic Pion Knockout Induced by High-Energy Electrons

V. G. Neudatchin, L. L. Sviridova, N. P. Yudin, and S. N. Yudin

The kinematics of quasielastic knockout accompanying pion electroproduction and involving longitudinal
virtual photons is considered, and a method for directly studying, in this way, the momentum distribution of
pions in specific channels owing to the dominance of pole amplitudes is proposed. It is shown that, in view of the
final-state interaction between the knock-on pion and the target nucleus, the existence of a pion condensate
in nuclei can be efficiently revealed since the momentum distribution of collective pions is expected to have
a pronounced maximum at a momentum of 0.3 GeV/с and since the excitation spectrum of the final recoil
nucleus is concentrated in the low-energy regionE∗ ≈ K2/(2AMN ) ≤ 1 MeV. The results for pion knockout
from meson clouds of individual nucleons are of a totally different character. The analogous distributions are
also given for rho mesons, this corresponding to the process ρ∗ + γ∗T → π.

Searches for Light-Quark Exotic Baryons of Isotopic Spin 5/2

A. F. Nilov

The status of light-quark exotic baryons of isospin I = 5/2 is considered. A brief survey of theoretical
studies devoted to this subject is given. Experimental searches for exotic baryons are traced from the first
publication on the subject to the present day. Among possible candidates for an exotic baryon, the pentaquark
baryonE5/2 5/2 of massM ≈ 1.44 GeV and width Γ < 0.05 GeV is the most probable. This state was recorded
in six studies at five different facilities. Among these, there are two studies where the excess of the signal above
the background is more than five standard deviations. Possibilities of further searches for exotic baryons in
various reactions are discussed.
1063-7788/05/6807-1261$26.00 c© 2005 Pleiades Publishing, Inc.
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Electric Properties of Levels of 156Dy Rotational Bands
A. A. Okhunov

A nonadiabatic character of E0 transitions from states of the 0+
2 and 2+

1 bands in 156Dy is studied within
a phenomenological model that takes into account the mixing of states of the Kπ = 0+

1 , 0+
2 , 0+

3 , 2+
1 , and 1+

bands. It is shown that a nonadiabatic character of these E0 transitions is due predominantly to the mixing of
the 0+

2 and 0+
3 bands.

On Electrodisintegration of Nuclei
A. A. Pasichnyı̆ and O. A. Prigodyuk

The kinematical dependences of cross sections for the electrodisintegration of nuclei that is induced
by high-energy electrons is studied within the shell model of the nucleus. It is proposed to identify the
quantum numbers of nuclear shells by a method that involves the subtraction of quasielastic peaks. The
effect of Coulomb resonances and quasireal photons on the formation of angular and energy distributions of
electrons and protons in A(e, e′p)(A− 1) reactions is explored. The phenomenon of quasielastic-peak shift
and broadening is interpreted.

Charmed-Quark Component of the Photon Wave Function
V. V. Anisovich, L. G. Dakhno, V. N. Markov, V. A. Nikonov, and A. V. Sarantsev

We determine the cc̄ component of the photon wave function on the basis of (i) data on the transitions
e+e− → J/ψ(3096), ψ(3686), ψ(4040), ψ(4415); (ii) the partial widths with respect to the two-photon decays
ηc0(2979), χc0(3415), χc2(3556) → γγ; and (iii) the charmonium-states wave functions obtained by solving
the Bethe–Salpeter equation for the cc̄ system. Using the resulting cc̄ component of the photon wave function,
we calculate the γγ-partial decay widths for a radial excitation of the 2S state, ηc0(3594) → γγ, and 2P states,
χc0(3849), χc2(3950) → γγ.

Random-Matrix Theory and Analysis of Nucleus–Nucleus Collisions at High Energies
E. I. Shahaliev, R. G. Nazmitdinov, A. A. Kuznetsov, M. K. Suleymanov, and O. V. Teryaev

We propose a novel method for analyzing experimental data obtained in relativistic nucleus–nucleus
collisions. The method, based on the ideas of random-matrix theory, is applied to detecting systematic errors
that occur in measuring momentum distributions of emitted particles. The unfolded momentum distribution
is well described by a Gaussian orthogonal ensemble of random matrices if the uncertainty in the momentum
distribution is maximal. The method is free from unwanted background contributions.
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