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the supervision of V.V. Vladimirsky and with his participation are described. c© 2005 Pleiades Publish-
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The proposal of E. Courant, M. Livingston, and
H. Snyder (1952) that concerned the creation of
strongly focusing accelerators changed radically the
situation around the construction of high-energy ac-
celerators and, hence, in high-energy physics. How-
ever, this proposal was perceived rather ambiguously
in the Soviet Union. Some of the renowned authori-
ties on accelerator physics called attention to extraor-
dinarily stringent tolerances on magnetic elements in
these accelerators and, in view of this, denied the pos-
sibility of implementing this project in practice. Under
these circumstances, V.V. Vladimirsky demonstrated
great scientific perspicacity and considerable courage
when, contrary to the authorities’ opinion, he argued
that the required tolerances, albeit stringent, are quite
attainable technologically. At the same time, the
“nothing for nothing” principle suggested that this
project is in line with technical progress; therefore, it
should be started despite technological difficulties and
prepared for a practical implementation in the future.
It was just due to Vladimirsky’s scientific intuition
that the official leaders of our branch of industry
decided to charge the staff of the Thermotechnical
Laboratory [presently, the Institute of Theoretical
and Experimental Physics (ITEP, Moscow)] with
starting the development of a new generation of
strongly focusing accelerators under Vladimirsky’s
supervision.
Even the first analysis of the situation indicated

at least four problems peculiar to strongly focus-
ing systems. First, there was the problem of a crit-
ical energy that, if attained, impaired the stability of
longitudinal oscillations of accelerated protons. The
remaining problems were associated with a greatly
diminished transverse size of the magnetic elements
and the vacuum chamber of the accelerator. This
called for completely changing the design of the ac-
celerator vacuum chamber, strengthening tolerances
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on a residual vacuum in it, and imposing more strin-
gent requirements on the nonlinear components of
the magnetic field. In order to solve these and other
problems, Vladimirsky was able to organize a small
group of researchers at ITEP within a short period of
time, which included L.L. Gol’din, D.G. Koshkarev,
Yu.F. Orlov, and E.K. Tarasov as the main partici-
pants; I.M. Kapchinsky joined the group later. They
solved these problems successfully, and this permitted
preparing physics projects of strongly focusing proton
synchrotrons in the shortest possible time.
Koshkarev could understand the essence of the

problem that arose upon reaching the critical energy,
but the technological realization of this transition
above it was dubious because of the underdevelop-
ment of radioelectronics at that time. Vladimirsky, to-
gether with Tarasov, proposed a more reliable version
where was no critical energy at all—more precisely,
where it was pushed to the energy region unattainable
at a particular accelerator. Unfortunately, the pro-
posed decision led to some complication of the design
of the accelerator magnetic system and to an increase
in the accelerator perimeter. Nevertheless, this sug-
gestion played a positive role, having confirmed the
efficiency of employing strong focusing in circular
accelerators.
The theory of nonlinear oscillations of protons

in strongly focusing accelerators was developed by
Orlov. This theory made it possible to determine
the tolerances on the nonlinear components of the
magnetic field in the operating area of the accelerator
vacuum chamber. The effect of a residual vacuum
on the dynamics of accelerated ions was studied
by Gol’din and Koshkarev, whose results enabled
them to determine an allowed value of the residual-
gas pressure in the vacuum chamber of a strongly
focusing accelerator.
Projects of two strongly focusing proton syn-

chrotrons, which were the largest at that time, were
prepared on the basis of the studies performed under
c© 2005 Pleiades Publishing, Inc.
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the supervision of Vladimirsky. The first project of a
7-GeV accelerator (U-7) was successfully commis-
sioned at ITEP within the shortest period in 1961.
In 1967, a 70-GeV proton accelerator constructed in
accordance with the second of these projects (it was
the greatest accelerator at that time) was put into
operation at the Institute for High Energy Physics,
which was organized on the basis of this accelerator
near Serpukhov in Protvino, Moscow region, in 1964.
Injectors were needed for the circular accelera-

tors under development, but only electrostatic gen-
erators could be used for that purpose at that time,
their energy not exceeding 5 MeV. This energy was
barely sufficient for injection into U-7, but it was
absolutely inadequate for a more sizable accelera-
tor. Under these circumstances, Vladimirsky made
the only possible decision to construct U-7 with an
5-MeV electrostatic generator as an injector and to
initiate, at the same time, the development of two
new injectors—specifically, 25- and 100-MeV linear
proton accelerators for the U-7 and U-70 facilities,
respectively. Vladimirsky invited Kapchinsky, whom
he knew well since their cooperation in the field of
radiolocation, to develop the projects of these strongly
focusing linear proton accelerators.
Since the advent of the strong focusing principle,

Vladimirsky realized that this principle can be of ad-
vantage not only in circular accelerators but also in
channels for ion-beam transportation in linear accel-
erators. However, major difficulties were associated
with the use of magnetic quadrupole lenses in the
initial segment of a linear proton accelerator, where
the speed of accelerated particles is considerably be-
low the speed of light; in some cases, their use even
appeared to be impossible. A solution to this prob-
lem via magnetic quadrupoles by electrostatic ones
was rejected, since the introduction of electrostatic
quadrupoles in the vacuum system would complicate
the accelerator design and reduce the reliability of
its operation. There remained only one way out—
that which consisted in changing the design of the
accelerating elements in such a way that the high-
frequency field would generate a quadrupole focusing
component, along with a dipole accelerating compo-
nent. Vladimirsky was the first to find a rather simple
solution to this problem—he proposed using “horn”
electrodes. Later, V.A. Teplyakov independently ar-
rived at the same solution. Kapchinsky found an-
other solution, suggesting to change the structure
of the accelerating system radically in such a way
that the focusing quadrupole field would be the main
excited component of the high-frequency field in it, in
which case only due to a violation of quadrupole sym-
metry would the focusing quadrupole field generate
a dipole component needed for proton acceleration.
Both these suggestions are widely used in practice
now, although Kapchinsky’s solution is applied more
frequently.
PH
For their outstanding contribution to the prac-
tice of linear-accelerator construction, the authors of
these innovations received, in 1968, inventor’s certifi-
cate and, in 1991, a diploma for their discovery of a
new phenomenon of the focusing of charged-particle
beams in a varying electric field that is uniform along
the beam axis. This research work was subsequently
awarded a Lenin prize.
In developing contemporary accelerators, the in-

tensity of the accelerated beam and its luminosity,
which characterize the possibility of producing ion
beams of high electric-charge density, are the most
important parameters along with the ion energy. In
order to find out which accelerator parameters deter-
mine the intensity and the luminosity of accelerated
ion beams, one needed a theory that would correctly
describe the dynamics of ion beamswith allowance for
the effect of the electromagnetic fields of accelerated
ions. Such a theory was developed by Kapchinsky
and Vladimirsky. The results of that study were first
presented at the conference on charged-particle ac-
celerators in Geneva in 1959. The main result known
as the KV equation has been extensively applied both
in theory and in the calculations of the dynamics of in-
tense ion beams in accelerators and charged-particle
storage rings. Later, the main ideas of that study were
developed in many investigations, but, undeniably,
the priority belongs to the discoverers, Kapchinsky
and Vladimirsky.
The report of Vladimirsky at the International

Conference on Charged-Particle Accelerators in
Dubna in 1963 appeared to be his last research work
in the field of accelerators. In his report, Vladimirsky
demonstrated that U-70, which was then under
construction near Serpukhov, could serve as an
appropriate basis for developing, in the Soviet Union,
the next generation of giant accelerators for the
energy region around 1 TeV.
Vladimirsky’s disciples and colleagues regretted

deeply that he stopped his active research in the field
of charged particle accelerators after 1963, concen-
trating his main efforts on studies in the realms of
elementary-particle physics, nuclear-force physics,
and nuclear reactors.
Vladimirsky’s achievements in developing the

complex of contemporary accelerator facilities in the
Soviet Union were highly appreciated by the scien-
tific community and the government. Vladimirsky
was elected a corresponding member of the USSR
Academy of Sciences after the commissioning of U-7
in 1961; in 1970, he was awarded a Lenin prize for
his participation in the construction of the 70-GeV
proton synchrotron, the greatest facility in the world
at that time.
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Abstract—The influence of irradiation conditions on the retention of hydrogen isotopes in structural
materials (austenitic steel) under heating is considered. The specimens under study were irradiated either in
a reactor or by bombarding them with hydrogen-isotope ions of variable fluence and energy at accelerators.
An investigation of irradiated specimens with an EM-300 transition electronmicroscopewas accompanied
by studying the kinetics of hydrogen release from samples with a high-vacuum mass spectrometer.
Also, the kinetics of hydrogen-isotope release from specimens of structural materials treated with a
deuterium plasma was studied. It was found that, under the effect of irradiation, the materials being
studied develop radiation defects, which appear to be efficient traps for hydrogen atoms, retaining them
up to rather high temperatures (650 K). It is also shown that blisters formed in the materials treated
with a hydrogen plasma contain both molecular hydrogen and hydrocarbons—in particular, methane.
c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION
In connection with the problem of creating ma-

terials for the first wall of thermonuclear reactors,
it is of paramount importance to study processes of
hydrogen-isotope retention in them. This in turn is
associated with possible losses of expensive fuel (tri-
tium) and with the problems of safe reactor operation.

In the present study, we explore the influence of ir-
radiation on hydrogen-isotope retention in austenitic-
steel samples under heating. Specimens of the mate-
rials being studied were irradiated either in a reactor
or by bombarding themwith hydrogen-isotope ions of
variable energy and fluence at accelerators. We also
study the kinetics of hydrogen-isotope release from
specimens treated with a deuterium plasma.

2. EXPERIMENTAL PROCEDURE
The kinetics of hydrogen-isotope release from

austenitic-steel specimens was studied by using a
high-vacuum mass spectrometer whose operational
concept was described in [1]. The specimens under
study were heated at a constant rate of 10 K/min
within the temperature range 300–1300 K, the
hydrogen evacuation rate being 4.8 ± 0.5 l/s. The
specimens were prepared in the form of foils 200 µm
thick. The foil surface was cleaned with CCl4 before
the experiments. The electron-microscopic studies
of the specimens were performed with an EM-300
transition electron microscope [2].

†Deceased.
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3. EXPERIMENTAL RESULTS
Figure 1 shows a typical kinetic dependence of

hydrogen release from specimens of 0X16H15M3B
austenitic steel that were irradiated in the 18-keV
H+

2 -ion beam up to a fluence of 1 × 1018 ions/cm2

at an ILU-100 magnetic mass-separating facility. In
this case, the hydrogen-ion free path in the material
being studied was about 0.1 µm. There are two peaks
at about 420 and 570 K in Fig. 1.
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Fig. 1. Curve of hydrogen thermal desorption from spec-
imens of 0X16H15M3B steel that were irradiated up to
a fluence of 1018 ions/cm2 with a 18-keV hydrogen-ion
beam at an accelerator. The curve was obtained under
conditions of uniform heating.
c© 2005 Pleiades Publishing, Inc.
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Fig. 2. Deuterium-thermal-desorption curves obtained
under a uniform heating of specimens of 0X16H15M3B
steel that were irradiated up to a fluence of 1018 ions/cm2

with a 3-MeV deuterium-ion beam: (1) calculated curve
and (2, 3) results obtained, respectively, 1.5 and 9 months
after irradiation.
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Fig. 3. Hydrogen-thermal-desorption curves obtained
under a linear heating at rate of 0.15-K/s for (1) a spec-
imen irradiated with neutrons, (2) an unactivated speci-
men that is saturated electrolytically with hydrogen, and
(3) a specimen irradiated with neutrons and additionally
saturated electrolytically with hydrogen.

Figure 2 displays a typical kinetic dependence of
deuterium release from specimens of 0X16H15M3B
austenitic steel that were held at room temperature
for 1.5 and 9 months after irradiation with 3-MeV
deuterium ions at fluences up to 1 × 1018 ions/cm2.
Just as in Fig. 1, the curves in Fig. 2 exhibit two
peaks within the temperature range 550–700 K. In
this case, the particle free path was about 20 µm. Irra-
diation was performed at an electrostatic accelerator
by using a well-known procedure that guaranteed
the reliable cooling of the specimens to 373 K for
ion-current densities of (3–5) × 10−2 A/m2 [3] up
to fluences of 1016–1018 ions/cm2. An electron-
microscopic investigation could not reveal any no-
ticeable defects in the implanted layer of the speci-
mens irradiated up to a fluence of 1 × 1016 ions/cm2

(the investigation was performed 3 months after
irradiation). Implantation dislocation loops were
observed after a heavier dose. At a fluence of 1 ×
1017 ions/cm2, the density of such loops was 7 ×
PH
1022 m−3, their mean size being 4.5 nm. At a flu-
ence of 1 × 1018 ions/cm2, these parameters were
1 × 1023 m−3 and 7.0 nm, respectively. In studying
gas thermal desorption under the heating of the
specimens irradiated in a deuterium-ion beam up to a
fluence of 1016 ions/cm2, no deuterium was found for
specimens held at room temperature for 1.5 months
after their irradiation.

Figure 3 (curve 1) shows a typical dependence of
hydrogen thermal desorption under a linear heating
of austenitic-steel specimens irradiated in a PWR
reactor at about 590 K up to a neutron fluence of
(0.4–0.9) × 1021 cm−2 after storing the specimens
at room temperature for five years. The kinetic curve
of hydrogen release has one peak (at about 680 K).
Hydrogen release stops completely at about 740 K.
Curve 2 represents hydrogen thermal desorption from
a specimen that was not irradiated, but which was
saturated with hydrogen electrolytically. Curve 3 cor-
responds to an irradiated specimen that was elec-
trolytically saturated with hydrogen after its irradia-
tion in the reactor. Electron-microscopic studies of
specimens irradiated in the reactor revealed implanta-
tion dislocation loops of density about 4 × 1022 m−3,
their mean diameter being 60 nm.

Figure 4 presents the curves of deuterium thermal
desorption from specimens of 12X18H10T austenitic
steel that were irradiated with four pulses of deu-
terium plasma, the energy content per pulse being
40–60 kJ. The studies were performed 3 to 5 days
after irradiation. The central part of the specimens
wasmelted, and blisters of various size were formed at
the periphery of the specimens [4]. Curve 2, which has
one peak at about 600 K, was obtained with a spec-
imen from the assembly center where there were no
blisters because of the melting of the material surface.
Curve 1, which was obtained with a sample from the
assembly periphery, where blisters were identified, has
three peaks at about 500, 600, and 900 K.

4. DISCUSSION OF THE RESULTS
In Fig. 1, the first two peaks in the curves of hydro-

gen release from specimens preliminarily irradiated
with 18-keV hydrogen ions correspond to diffusive
hydrogen escape from planar specimens in the case
of an asymmetric gas distribution with respect to the
specimen surfaces [5]. The first peak is associated
with gas escape through the specimen surface closest
to the saturated layer, while the second peak corre-
sponds to hydrogen escape through both specimen
surfaces. A sharp shape of the low-temperature peak
suggests that hydrogen escaped from a thin irradiated
layer near the specimen surface.

Figure 2 shows the kinetic curves of hydrogen re-
lease from austenitic-steel specimens irradiated with
YSICS OF ATOMIC NUCLEI Vol. 68 No. 8 2005
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Fig. 4. Deuterium-thermal-desorption curves obtained
under a uniform heating of specimens of 12X18H10T
steel that were subjected to the effect of four pulses of
deuterium plasma: (1) results for a specimen containing
blisters and (2) results for a specimen having a fused
surface and not containing blisters.

3-MeV deuterium ions. As mentioned above, the
double peak corresponds to diffusive hydrogen release
from planar specimens in the case of an asymmetric
gas distribution with respect to the specimen sur-
faces. Curve 1 is the calculated curve of deuterium
thermal desorption from a nonirradiated specimen
200 µm thick, in which deuterium was initially con-
centrated in a thin layer at a distance of 25 µm from
one of the specimen surfaces. The following data
from [6] were used in our calculation: the activation
energy of hydrogen diffusion, 50 kJ/mol, and a pre-
exponential factor, D0 = 3 × 10−7 m2/s. The shift of
the peaks toward higher temperatures in the case of
irradiated specimens can be explained by hydrogen
diffusion slowed down in irradiated specimens be-
cause of the formation of radiation defects.

Our calculations revealed that, if there were no ra-
diation defects (hydrogen traps), deuterium contained
initially in a thin specimen layer at a depth of 25 µm
would diffuse uniformly throughout the whole volume
of the 200-µm thick specimen in just 1.5 months of
specimen storage at room temperature. In view of
this, the thermal-desorption curve should have only
one peak. However, thermal-desorption curves have
a double peak even nine months after irradiation, this
suggesting deuterium retention by radiation defects
in the damaged region of the specimen. This conclu-
sion is in good agreement with known data obtained
by studying the effect of the prolonged storage of
specimens irradiated with 17-MeV protons on vari-
ation of their microhardness [7].

The Arrhenius dependence (Fig. 5) plotted on the
basis of the curves of hydrogen thermal desorption
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 8 200
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Fig. 5. Arrhenius dependence plotted on the basis of the
experimental curves of hydrogen thermal desorption from
a specimen saturated with a gas by means of deuterium-
ion bombardment.

from an irradiated specimen according to the proce-
dure described in [5] has an inflection point at T ≈
650 K. The activation energy for hydrogen diffusion
was found to be about 70 kJ/mol in the tempera-
ture range up to 650 K and about 50 kJ/mol for
T > 650 K, the latter being close to the activation
energy for deuterium-atom diffusion in the nonirra-
diated austenitic steel [6]. These data indicate that
the radiation defects formed are traps for deuterium
atoms up to rather high temperatures of about 650 K.

From an analysis of deuterium-release curves
(Fig. 2), it is obvious that storage of irradiated
specimens at room temperature results in a shift of
the double peak toward higher temperatures. The
observed shift of the peaks of deuterium release
from the specimens being studied with increasing
time of specimen storage at room temperature after
irradiation may be due to hydrogen redistribution
among radiation defects—that is, the migration of the
hydrogen atoms from traps of lower binding energy to
those of higher binding energy.

The presence of two peaks in Fig. 3 (curves 2, 3) is
explained by a nonuniform initial saturation of spec-
imens with hydrogen. The shift of the peaks corre-
sponding to hydrogen release from irradiated spec-
imens that are subjected to additional electrolytic
saturation with hydrogen in relation to those caused
by hydrogen release from nonirradiated specimens
is explained by the fact that the irradiated speci-
mens contain hydrogen traps, which are free from gas
atoms and which are filled in the course of electrolytic
saturation. The shape of the curve of hydrogen ther-
mal desorption from an irradiated material (curve 1)
corresponds to hydrogen escape from a specimen that
is uniformly saturated with a gas (symmetrically over
its thickness). It follows from Fig. 3 that irradiation
5
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results in a shift of the hydrogen-release peaks toward
higher temperatures.

We plotted the Arrhenius dependence on the basis
of curve 1 (Fig. 3) by using the method described
in [5]; just as in the case of specimens irradiated with
3-MeV deuterium ions, this curve has an inflection
point, this time at 600 K. The distinction between
the temperature values corresponding to the inflection
points can possibly be explained by the difference in
the saturating agent—hydrogen in the present case
(Fig. 4) and deuterium in the case of irradiation at
an accelerator (Fig. 2)—and by different irradiation
conditions. The most probable reason for the appear-
ance of the inflection point is that, at temperatures
above 600 K, radiation defects formed in this case
by reactor irradiation lose their efficiency as traps for
hydrogen atoms. This is confirmed by the calculation
of the activation energy: it appears to be 65 kJ/mol
or 50 kJ/mol if calculated on the basis of, respec-
tively, the low- or the high-temperature section of the
Arrhenius curve. The latter value is in good agree-
ment with data from [8, 9] on hydrogen diffusion in
nonirradiated austenitic steel. We used the procedure
described in [8] to determine the binding energy of
hydrogen in traps; it appeared to be 33 kJ/mol. Va-
cancy complexes can be supposed to be traps of this
type [10].

It was found experimentally that specimens irradi-
ated in a reactor contained 1.3 × 10−2 at % hydro-
gen. As was indicated in [11], the nuclear reaction
59Ni(n, p)59Co, whose cross section for thermal neu-
trons is σ = 2.0 b, can yield one hydrogen atom per
every six helium atoms produced in the nuclear re-
action 58Ni(n, γ)59Ni(n, γ)56Fe (σ = 13 b). Starting
from this fact and using experimental data reported
in [12], we find that the calculated amount of hydro-
gen produced in a particular material irradiated in a
PWR reactor is two orders of magnitude less than
the values obtained in our experiment. The specimens
being studied can be assumed to contain hydrogen of
a nonradiation origin, or hydrogen can be assumed
to originate in the specimens from some unknown
nuclear reactions, but the latter is less probable.

Figure 4 presents the kinetic curves of deu-
terium release in the course of a uniform heating of
12X18H10T steel specimens that were subjected to
the effect of four pulses of deuterium plasma: curves
1 and 2 represent relevant results for specimens
containing blisters and having a fused surface without
blisters.

It was found in [4] that, in the case of a high energy
content in the plasma flows, the surface of the speci-
mens being studied is predominantly melted, blisters
not being formed. At a lower energy content, anoma-
lously large blisters, with top layer about 1 µm thick
P

(this value is an order of magnitude greater than the
free path of hydrogen ions at the energy value used),
are formed on austenitic steel specimens. Heating to
about 900 K gives rise only to additional smaller blis-
ters without destruction of already available ones or
variations in their size. Only upon heating to 1020 K
does there occur a partial cracking of the domes of the
largest blisters, but, even at 1300 K, a lot of blisters
remain undamaged.

In addition to the peak at T ∼ 600 K, curve 1
(Fig. 4) for specimens from the periphery of the as-
sembly has two peaks—a low-temperature one at
about 500 K and a high-temperature one at about
900 K. It is possible that these peaks are associated
with deuterium release from the blisters, where it
can be both in a molecular form and in the form of
chemical compounds—for instance, hydrocarbons.

In order to confirm the above conjectures, we will
consider the kinetics of hydrogen release from the
blisters. For structures similar to hydrogen blisters,
it was shown in [8] that the concentration of hydro-
gen at the blister top decreases linearly with depth
as the blisters are degassed, whereby there arises a
hydrogen distribution typical of experiments studying
permeability in the mode of a steady-state flow. An
estimate of the permeability of austenitic steel [10]
revealed that the redistribution of molecular hydrogen
released from blisters of particular geometry under a
uniform heating at a rate of about 10 K/min generates
a gas-release peak in the range 400–600 K.

Thus, the first peak of the curve of gas release
from austenitic-steel specimens containing blisters
(Fig. 4) can be explained by the redistribution of
molecular deuterium accumulated in the blisters.
This conclusion is confirmed by data from [13], where
it was shown that radiation pores in austenitic steels
do not retain molecular hydrogen at 800 K. Therefore,
molecular hydrogen cannot cause the observed de-
struction of blisters under heating and the formation
of second-generation blisters.

The high-temperature peak of the curve of deu-
terium release from austenitic-steel specimens con-
taining blisters (Fig. 4) is possibly associated with
deuterium release in the dissociation of hydrocarbon
compounds contained in the blisters. The most prob-
able reasons for the absence of a high-temperature
peak (900–1000 K) on the curves of the thermal
desorption of hydrogen isotopes from 0X16H15M3B
steel specimens (Figs. 1–3) are the following: on
one hand, we did not observe any porosity in these
particular specimens; on the other hand, there was an
insufficient amount of hydrogen for the formation of
hydrocarbon compounds.

The hypothesis put forth in [10, 14] that hydro-
carbons—in particular, methane—are formed in met-
als irradiated with hydrogen ions explains rather
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 8 2005
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well the destruction of blisters and the formation of
second-generation blisters in the course of heating
after irradiation. Since methane is not soluble in a
metal, it will behave as an inert gas (for instance,
helium) under heating. If, at the dissociation temper-
ature, the methane pressure in the blisters is not suf-
ficient for their destruction, then blisters must survive
further heating. In order to test this conjecture, we
studied thermal desorption of gases from specimens
of 0X16H15M3B austenitic steel at a heating rate of
0.3 K/s. The surface topography was studied before
and after heating [4].

In order to determine the composition of chemi-
cal compounds within blisters directly, we used the
effect of blister destruction under heating. Since the
destruction of blisters depends on the plasma-flow
power and, hence, on the distance between the speci-
mens and the assembly center, it is impossible to pin-
point, from the outset, specimens for which the effect
will be maximal. In view of this, we studied a group
of specimens that contained blisters and which were
irradiated with three pulses of a hydrogen plasma.
We chose hydrogen plasma in this case, since it is
more difficult to isolate CD4 peaks than CH4 peaks
in their detection with a mass spectrometer. The pos-
sible presence of water vapor at the surface of setup
elements was the main obstacle, which generated a
series of peaks corresponding to atomic masses of 18,
17, and 16, this complicating the detection of peaks
corresponding to methane (masses of 16, 15, and
13) [15]. The mass spectrometer used was tuned to
recording compounds of mass in the range from 15
to 27.

The corresponding gas-release curves are pre-
sented in Fig. 6. The first peak was observed for all
specimens. Probably, it is associated with degassing
of the specimen surface. The second peak was ob-
served only for specimens in which the blisters ap-
peared to be destroyed after heating. An analysis of
the resulting spectra gives grounds to state that, at a
temperature of about 750 K, methane and some other
compound of the CXHY type (a peak at a mass of 26
corresponds to it) are released upon the destruction of
blisters. The high-temperature peaks on the thermal-
desorption curves for specimens irradiated with 18-
keV and 3-MeV hydrogen-isotope ions are also likely
associated with the dissociation of chemical com-
pounds contained in microcracks that we did not
observe.

Knowing the evacuation rate for our system and
considering the gas-desorption curves corresponding
to specimens containing intact blisters as a “back-
ground,” we estimated the amount of hydrocarbons
released from a specimen upon the destruction of
blisters. We determined the gas pressure in blisters
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 8 200
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Fig. 6. Gas-release curves obtained under a uniform
heating of specimens from 12X18H10T austenitic steel
that were subjected to the effect of four pulses of deu-
terium plasma. The dashed and solid lines correspond to
specimens containing nondestructed and destructed blis-
ters. Curves 1, 2, and 3 represent results corresponding to
masses of 16, 15, and 26, respectively.

at the instant of their destruction from the electron-
microscopy data on the volume of destroyed blisters
and obtained a value of about 100 MPa, which,
according to the known estimates from [16], is quite
sufficient for their destruction. The mechanism of
formation of the observed anomalous blisters was
considered in [17]. According to this concept, some
prerequisites for methane-blister formation (micro-
pores, sufficient amount of hydrogen and carbon,
temperature) appear at some depth from the plasma-
irradiated surface (about 1 µm in our case) under
certain conditions.

5. CONCLUSION

We have found that, upon heating austenitic-steel
specimens that were irradiated in a reactor or by
means of bombarding them with hydrogen-isotope
ions and which were stored up to 9 months at room
temperature, there arises a “high-temperature” peak
of hydrogen release (600–700 K). This suggests that
irradiation generates some defects in the material,
which are efficient traps for hydrogen up to rather high
temperatures (650 K).

If austenitic-steel specimens are irradiated in a
PWR reactor, the amount of hydrogen accumulated
in the material being studied considerably exceeds the
yield from known nuclear reactions of the (n, p) type.

Our study of deuterium thermal desorption from
austenitic-steel specimens irradiated with 3-MeV
deuterium ions show that preliminary storage of
irradiated specimens at room temperature (for 1.5
and 9 months) causes a shift of the gas-desorption
5
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peaks toward higher temperatures. This may be due
to the redistribution of hydrogen atoms in specimens
among traps of different binding energy in the course
of specimen storage at room temperature.

In relation to what was observed for nonirradi-
ated specimens, two additional peaks (at about 500
and 1000 K) have been found on the kinetic curve
of deuterium thermal desorption from austenitic-
steel specimens subjected to the effect of deuterium
plasma. The high-temperature peak of deuterium
release (at about 1000 K) is caused by the dissociation
of hydrogen-containing compounds accumulated in
micropores. The low-temperature peak of deuterium
release (at about 500 K) is associated with its escape
from the material under study upon the dissociation
of deuterium molecules contained in blisters.

We heartily congratulate V.V. Vladimirsky on the
occasion of his 90th birthday and wish him good
health and further years of creative activity.
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Abstract—Results are presented that were obtained by studying the previously unknown narrow res-
onance of mass about 1070 MeV. This state was discovered in the system of two KS mesons. The
experimental data subjected to the analysis here come from the 6-m spectrometer created at the Institute of
Experimental and Theoretical Physics (ITEP, Moscow) and irradiated with a 40-GeV beam of negatively
charged pions from the U-70 accelerator at the Institute for High Energy Physics (IHEP, Protvino) with
the aim of studying π−p and π−C interactions. At the respective maximum, there are 69 events, the
statistical significance being not less than six standard deviations. The mass and width of the observed
meson areM = 1072.4± 0.8MeV and Γ = 3.5+1.5

−1.0 MeV, respectively, the product of the cross section for
its formation and the relevant branching ratio being not less than 20 nb. The preferable JPC assignment
for this resonance is 0++. Its extraordinary small width has no satisfactory theoretical explanation.
c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Over the past few years, seven narrow mesons of
width not larger than 15 MeV have been discovered
in theKSKS system in the effective-mass range from
the threshold to about 2200 MeV by exposing the
6-m spectrometer created at the Institute of The-
oretical and Experimental Physics (ITEP, Moscow)
to a 40-GeV beam of negatively charged pions from
the U-70 accelerator of the Institute for High Energy
Physics (IHEP, Protvino) [1–7].

One of the resonances that we observed, that of
mass 1450 MeV [6], was known previously [8–11].
Indications of the existence of resonances at 1245,
1768 and 1786 MeV were obtained by the authors
of [12] at the L3 facility (CERN), but those authors
gave their own interpretation of the data that they
obtained. The remaining resonances have not been
observed by other experimental groups. In the present
study, we consider a new narrow resonance of mass
1072 MeV and width ∼3.5 MeV, which was discov-
ered in the system of two KS mesons by using the
aforementioned 6-m spectrometer.

It should be emphasized that, in the system of two
KS mesons, a maximum in the mass region around
1070 MeV was previously observed in 1976 [13] (see
Fig. 3 there) and in 1986 [14] (see Fig. 5 in [14]; that

*e-mail: vkgrigor@rambler.ru
1063-7788/05/6808-1271$26.00
investigation was performed by our group, but the da-
ta from [14] are not used here). In those publications,
no particular attention was given to the maxima in the
mass region around 1070 MeV since their statistical
significance did not exceed three standard deviations
(SD). In light of our present results, however, those
data appear to be of importance.
In the hadron-spectroscopy realms, interest in

narrow resonances has quickened sharply in the
past two years. This was due largely to the ap-
pearance of the article by Diakonov, Petrov, and
Polyakov [15] in 1997, who indicated that a baryon
of width about 15 MeV may exist in the mass region
around 1530 MeV. The quark content of the predicted
state is unusual: it contains a strange antiquark and
four light quarks. The discovery of this baryon (culled
the Θ+ pentaquark) initiated an enormous number of
both theoretical and experimental studies. Although
many experiments have been conducted, the situation
remains unclear: some experimental groups “see”
this resonance, while others do not. A comprehensive
review on the subject can be found in [16].
Pieces of evidence have been obtained for the

existence of other narrow baryons as well [17, 18],
which also have a pentaquark composition but differ-
ent masses and different decay modes. However, the
situation there is evenmore uncertain than in the case
of Θ+. In analyzing early experimental publications,
studies that resulted in observing narrow baryons of
c© 2005 Pleiades Publishing, Inc.
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mass 3170 [19] and 3520 MeV [20] have attracted
considerable attention.
In the meson-spectroscopy realms, narrow reso-

nances whose width could not be explained on the ba-
sis of standard theoretical models have been observed
experimentally since the mid-1960s. As was men-
tioned above, several groups claimed the observation
of a resonance at a mass value of 1450 MeV [8–11].
The resonance was observed in the π+π−, K+K−,
and KSKS meson systems. In [9], the measured
width of this resonance was about 15 MeV. Data ob-
tained at the ITEP 6-m spectrometer [6] corroborate
the existence of this resonance and its small width.
However, the resonance in question was not observed
by all experimental groups, and it was excluded from
the main tables of the Particle Data Group [21]. The
question of why some experimental groups see this
resonance, while the others do not, was addressed
in [9]; the same question as applied to pentaquarks
was discussed in [22].
Yet another narrow resonance was observed at one

of the facilities at the Stanford Linear Accelerator
Center (SLAC, USA) [23] in the KSKS and K+K−

systems in the radiative decays of J/ψ particles
and was confirmed at the BES facility (China) [24].
The mass and width of this resonance are 2230 and
15 MeV, respectively. The BES group observed this
state in several decay modes: pp̄, π+π−, and KK̄.
However, the history of this resonance is similar in
many respects to the history of the resonance of mass
1450 MeV: it was seen in some studies but was not
observed in others. Ultimately, this resonance (of
mass 2230 MeV) was also excluded from the main
tables of the Particle Data Group.
The narrow meson recently discovered in theD+

s η
and D0K+ systems at the SELEX spectrometer [25]
also attracts the attention of researchers. The mass
of this state is 2636 MeV. Its decay modes and mass
suggest that this meson consists of c and s̄ quarks. It
could decay via strong interaction and have a width
of about 100 MeV; nevertheless, the width of this
resonance is less than 17 MeV.
From the above brief survey, it follows that, both

in the class of baryons and in the class of mesons,
there are presently experimental indications of the ex-
istence of narrow hadrons whose small width presents
a challenge to modern theoretical approaches. It is
quite feasible that this phenomenon has the same
explanation both for baryons and for mesons.
An experimental observation of narrow resonances

involves considerable difficulties associated with the
following circumstances:
(i) The product of the resonance-formation cross

section and the relevant branching ratio is small,
which complicates the accumulation of sufficient
statistics. In the majority of studies, there are not
PH
more than a few tens of events at the corresponding
peak, but, at a low background level, the statistical
significance may exceed five standard deviations even
in this case.
(ii) As a rule, the resonance widths are less than

the resolution of the experimental facilities used.
(iii) Since the production dynamics of these reso-

nances is unusual, the possibility of observing them
may depend on experimental conditions.
(iv) For experimental facilities of the electronic

type, it is not clear how one should organize a trig-
ger. It is little wonder that a considerable number
of studies where narrow states were observed were
performed by using bubble chambers.
In the present study, we explore in detail the

properties of a newly discovered narrow resonance of
mass about 1070 MeV and width amounting to a few
megaelectronvolts. An observation of such a narrow
resonance is an extraordinary fact. There are no clear-
cut theoretical arguments in favor of the existence
of new states in this region, especially such narrow
ones. In view of this, we investigated the effect of
various selections of the statistical significance of this
resonance and subjected our data to various tests.

2. EXPERIMENTAL CONDITIONS

The experimental data employed in the present
analysis were obtained over a period between 1985
and 1996 by using the ITEP 6-m spectrometer. A
detailed description of the spectrometer was given
elsewhere [26, 27]. The spectrometer records, with a
high efficiency, KS mesons traveling in the forward
direction and decaying to two charged pions. A large
volume covered by a magnetic field and filled with
detectors makes it possible to identifyKS mesons re-
liably and to measure the effective mass of theKSKS

system in the region around 1100 MeV to a high
precision (to within a few megaelectronvolts).
The data analyzed in the present study come from

exposures where we employed liquid-hydrogen and
carbon targets. The KSKS system recorded under
experimental conditions of the 6-m spectrometer is
produced in the following two reactions on a hydrogen
target:

π−p → KSKSn (1)

and
π−p → KSKS + (n+mπ0, p+ π−, . . .). (2)

The reaction in (1) is selected by means of a trig-
gering device that is based on veto counters sur-
rounding the liquid-hydrogen target. The counters
form a double veto layer around the target. In order
to suppress events where not only charged particles
but also photons are emitted from the target, lead
YSICS OF ATOMIC NUCLEI Vol. 68 No. 8 2005
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converters of thickness about two radiation-length
units are arranged in between the counters. Because
of an imperfect operation of the trigger, some events
of the reaction in (2) are recorded in the apparatus.
A trigger that selects low-multiplicity events (two

to three charged particles escaping from the target)
accompanied by the production of additional charged
particles beyond the target was applied in the case
of a carbon target. This trigger also recorded events
involving the production of KS mesons. In the data
sample obtained in this way, we selected events fea-
turing twoKS mesons. The recordedKS-meson pair
was predominantly produced in the reaction

π−A → KSKS + (A′ +mπ0 + nπ+ + lπ−, . . .).
(3)

By A′, we imply here not only excited nuclei but
also reaction products formed in the final state, which
possibly include isobars.
Product KS mesons are identified by their decays

to a π+π− pair. For the KSKS system, the detection
efficiency is 45% at the threshold and is about 35% in
the mass region around 2000 MeV. For events where
the momentum of each of the two KS mesons does
not fall below 7 GeV, the main contribution to the
calculated efficiency comes from the suppression of
events involving the decay of one or bothKS mesons
within the volume surrounded by the veto counters.
The contribution of such events is determined by the
relative disposition of the target and these counters
and can easily be taken into account. In the present
study, we consider events where the effective mass
of two KS mesons does not exceed 1150 MeV, while
their total momentum is not less than 37 GeV. Under
these conditions, the momentum of an individual KS
meson cannot be less than 10 GeV, 13 GeV in the
band of the resonance being studied.
For kinematical variables that are used in our

analysis of the KSKS system, we took the effec-
tive mass MKK of a KS pair, the squared mass
MM2 of particles that are produced in association
with the KSKS system and which are not recorded
by the spectrometer (missing mass squared), the
4-momentum transfer from the beam to the system
under study (−t), the cosine cos θ of the Gottfried–
Jackson angle, and the Treiman–Yang angle φ.
The angles are calculated in the rest frame of the
KS-meson pair, the beam-axis direction in this frame
being taken for the polar axis. The plane from which
we measure the Treiman–Yang angle is spanned by
the beam and target-proton momenta.
For a KS-meson system produced on carbon nu-

clei, the missing mass squared is calculated by the
same formulas as in the case of production on pro-
tons. It is assumed that intranuclear protons and
neutrons are in a “quasifree” state. But in fact, the
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 8 200
very concept of a missing mass loses meaning in
many respect in the case of production on nuclei.
Nevertheless, practice revealed that, even in this case,
selections in the “quasimissing” mass may be useful
in separating various mechanisms of the production
of theKS meson system.

3. DATA PROCESSING

In this section, we describe basic methods for
data processing. In Subsection 3.1, we consider an
algorithm for fitting a “vee” that is formed upon the
decay of a KS meson to two charged pions. The
results of this fit are important for the following two
reasons: first, no such procedure is used by other
experimental groups; second, the fitting in question
improves the resolution in the effective mass of the
KSKS system. The fitting of vees that is used here
is of paramount importance for discovering narrow
resonances. In Subsection 3.2, we consider the effect
of various selections on the separation of a signal from
the narrow resonance being studied.

3.1. Fitting the Parameters ofKS Mesons

In order to refine the particle parameters on which
physically significant quantities depend (effective
mass of two KS mesons and Gottfried–Jackson and
Treiman–Yang angles), the fitting procedure was
performed independently for each of the two vees.
The following requirements were imposed: charged-
pion tracks forming a vee must intersect at one spatial
point, while the effective mass of a two-pion system
must be equal to the Particle Data Group value of
the KS-meson mass. As the result of fitting, we
calculated χ2

V and the kinematical features of a vee.
This procedure improves the accuracy in calculating
the physical parameters of KS , as is illustrated in
Fig. 1, which displays the distributions of events
with respect to the vertex coordinate XV and with
respect to the distance D between the trajectories of
KS mesons. One can see that the fitting procedure
(its results are shown in Figs. 1b and 1d) improves
substantially the original distributions (Figs. 1a and
1c). It should be recalled that the vees are fitted
independently of each other.
As follows from the data in Fig. 2, which shows

the mass spectra of two KS mesons in the reso-
nance region, the application of the fitting procedure
also improves the accuracy for the effective mass of
the system of two KS mesons. The effective mass
was calculated by three methods. For Figs. 2a and
2b, the masses were calculated by using nonfitted
parameters, the vee masses being taken from our
experimental data for Fig. 2a and being set to the
Particle Data Group value for the KS-meson mass
5
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As the parameters of KS-meson vees are refined, the
resonance width is seen to become narrower. This be-
havior of the calculated effectivemass lends additional
support to the statement that, here, we are dealing
with a physical effect rather than with a statistical
fluctuation.
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3.2. Event Selection
In processing experimental data, we applied selec-

tions that admit a convenient separation into selec-
tions in the quality of events, in geometric variables,
and in kinematical parameters. Figure 3 shows the
distribution of events with respect to the variables
used in standard selections and the boundaries within
which events employed in a further data treatment lie.
The numerical boundaries of the selections are given
in Subsection 3.2.3. The distributions of events in
the kinematical variables are considered in Subsec-
tion 3.2.4.

3.2.1. Selections in the quality of events. The
meaning of selections in the quality of events con-
sists in separating events that were measured most
accurately. With selections in the quality of events, we
class those in the deviations of the vee effective mass
Mππ from theKS-meson mass, those in the track age
T , those in χ2

V , and those in the numberNP of points
on a track.
The distributions of events with respect to the

effective mass of two pions forming a vee and with
respect to the track age are given in Figs. 3a and
3b, respectively. In the figures, the boundaries of the
selections are indicated by the vertical lines. We do
not present here the distribution with respect to χ2

V
and NP since the number of events rejected by using
these criteria is about 4%.
The track age is determined as follows. The time

between the passage of a charged particle through a
spark chamber and the development of a breakdown
between the chamber wires is about 3 µs. Within
this time interval, ions formed upon the passage of
the recorded particle travel some distance in crossed
electric and magnetic fields. The electric fields have
opposite directions in even and odd chambers. There-
fore, there is a gap (measured in millimeters) be-
tween the tracks of the same charged particle that
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 8 2005
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are drawn on the basis of sparks in even and odd
chambers, and this gap is precisely the quantity that
is the measure of time and which is determined in the
experiment. In the following, we refer to it as the age
of a track and denote it by T . This distance depends
on many factors. First, it is affected by the errors in
measuring the coordinates of the sparks. Second, the
spark-generation instant for different spark cham-
bers depends on the individual properties of discharge
gaps. If the time interval between two successive
events is not longer than 100 ms, then high-voltage
capacitances do not have time to be charged to a
nominal voltage, this leading to a delay of discharge-
gap initiation and, accordingly, to an increase in the
age. Further, the fact that a high voltage is selected
for each chamber individually is also operative. The
voltage is selected in such a way as to achieve the
highest efficiency. In addition to the aforementioned
factors, there is also the background from the tracks
of particles that passed prior to (“old tracks”) or after
(“young tracks”) the instant of trigger-signal gener-
ation.
The selection in the track age made it possible

to remove cases where one of the tracks was not
associated with a given event. Simultaneously, poorly
measured tracks were rejected.

3.2.2. Geometric selections. Geometric selec-
tions consisted in imposing cuts on the coordinates
XV of the vertices of vee-production events and the
coordinates XK ofKS-meson-decay vertices.
The cuts on the event-vertex coordinates required

that they lie in the region where the beam intersects
the liquid-hydrogen target. The selections in the co-
ordinate XV played the most important role.
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 8 200
Figures 3c and 3d show the distributions of events
with respect to XV and XK . The boundaries of the
liquid-hydrogen target are indicated by the dashed
lines. Use is made of fitted coordinates. The distribu-
tions of events in the plane orthogonal to the beam
(coordinates Y and Z) are not presented here since
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Table 1

Selection Nev
Rejected
events,% K , arb. units

Without selections 1554 0 1.0
Mππ 1207 22 1.95
T 1246 20 2.15
NP 1489 4 1.15
χ2 1521 2 1.10
All selections
in quality

913 41 3.1

XV 1373 12 1.5
YV 1502 4 1.2
ZV 1513 3 1.1
XK 1334 13 1.5
All geometric
selections

1125 28 2.5

All selections 684 55 4.75

the role of selections in these coordinates is insignifi-
cant.
The selection in the vee-vertex coordinateXK ex-

cludes the region that contains a significant fraction
of background events produced in the scintillators of
the veto counters.

3.2.3. Effect of various selections on the signal-
to-background ratio (S/BS/BS/B).We will now list once
again the criteria that were used in event selections:

487 < Mππ < 510MeV,
3.75 < T < 5.6 mm,
NP > 8,
χ2 < 80,
−180 < XV < −110 cm,
−2.0 < YV < 0.3 cm,
−3.0 < ZV < 2.5 cm,
−115 < XK < 300 cm.
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Fig. 5. Effect of the selection in Mππ on the signal-to-
background ratio S/B. The event-number loss caused by
this selection is plotted along the abscissa. The straight
line is drawn to guide the eye.
P

For the mass spectrum of the system of two KS

mesons, Fig. 4 displays the result obtained upon ap-
plying these selections. There is a distinct maximum
at a mass value of 1072 MeV. In the case of 8-
MeV binning, the excess of events falls within one
channel almost entirely. The inset in Fig. 4 shows the
respective distribution for a bin width of 3 MeV.

Table 1 illustrates the effect of each selection on
the ratio of the number of events in the signal to that
in the background, the signal-to-background ratio
S/B; for unity, we take here the ratio (S/B)0 obtained
without applying any selections. In the first, second,
third, and fourth columns, we present respectively, the
kind of a selection, the numberNev of events that sur-
vived a given selection, the fraction of rejected events
in percent, and the quantityK = (S/B)/(S/B)0.
From the data in Table 1, it follows that each

selection improves the ratio S/B. An additional anal-
ysis reveals that, if the selection being considered is
bounded from above and from below, the introduction
of each of these bounds individually leads to an im-
provement of S/B.

In those cases where a selection affects each vee
individually (χ2,XK ,Mππ), it turns out that the ratio
S/B is improved upon the effect of the selection on
each vee.
The selections in Mππ and T are especially effi-

cient. Figure 5 demonstrates the effect of the change
in the boundaries of the selection in Mππ on S/B.
The greater the number of removed events, the larger
the value that the ratio S/B assumes. The behavior
in response to the application of other selections is
similar.

3.2.4. Selections in kinematical variables. By
selections in kinematical variables, we mean selec-
tions in the missing mass and in the momentum
transfer. These selections are immaterial for isolating
the resonance under study, but they characterize the
mechanism of its production.
Figure 6 shows the distributions of events with

respect to kinematical variables (square of the miss-
ing mass and momentum transfer). The vertical lines
indicate the boundaries of the selections. The removal
of the kinematical selections reducesK to 3.55.
Important physical information about the proper-

ties of the X(1070) resonance can be deduced from
the results obtained upon applying a selection in the
square of the missing mass. This selection separates
events in which a neutron is produced in association
with two KS mesons and events in which a baryon
accompanied by one or a few pions are produced in
the lower vertex. It turns out that the ratio S/B is
greater in the latter case (Fig. 7) than in the region
where a neutron is predominantly produced in the
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 8 2005



DISCOVERY OF A NARROW RESONANCE 1277

 

2000

1000

0.2 0.4
–

 

t

 

, GeV

 

2

 

0.60

(

 

b

 

)

 

N

 

/0.05 GeV

 

2

 

MM

 

2

 

, GeV

 

2

 

0.8 1.0

3000

400

–1.5 0.5 2.5
0

(

 

a

 

)

 
N

 
/0.2 GeV

 
2

 

4.5

800

Fig. 6. (a) Missing-mass-squared and (b) momentum-
transfer distributions of events (Nev = 8389 and Nev =
8314, respectively). The boundaries of the selections are
indicated by the vertical lines.

 

40

30

20

10

0
1000 1320 1640 1960

 

M

 

KK

 

, MeV

 
N

 
/8 MeV

 

1007 1067 1127

15

5

0

 

M

 

KK

 

, MeV

 
N

 
/3 MeV

10

Fig. 7. Effective-mass spectrum of the system of two
KS mesons according to data from our experiment with
a liquid-hydrogen target. Events were selected by ap-
plying cuts on the square of the effective mass (1.6 <
MM2 < 2.5GeV2) and on themomentum transfer (−t <
0.6 GeV2); Nev = 1197, S = 23, and S/B = 3.1. The
curve represents the result obtained by fitting a Breit–
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maximum-likelihood method.

lower vertex. This conclusion was confirmed by an
analysis of data obtained with a carbon target.
If the above selection in the square of the missing

mass is supplemented with a selection in the momen-
tum transfer, 0.1 < −t < 0.6 GeV2 (this eliminates
lowmomentum transfers), then the ratio S/B reaches
a value of about 6.0. Despite a rather low statisti-
cal significance, these data may be of importance in
studying the resonance-production mechanism.
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We note that that, in studying the missing-mass
dependence of the production cross sections for nar-
row resonances, we found that these objects may
be produced via different mechanisms. Specifically, a
resonance of mass 2000 MeV [7] is predominantly
produced in a reaction involving a neutron, while a
resonance of mass 1786 MeV [2] is not produced in
the association with a neutron. The X(1070) reso-
nance, which is studied here, may be accompanied
either by a neutron or by an isobar.

4. MONTE CARLO SIMULATION
OF RELEVANT EVENTS

Distributions with respect to various variables
were obtained from a Monte Carlo simulation, and
these distributions were contrasted against our ex-
perimental results. This comparison revealed that
the spectrometer model used is quite realistic, repro-
ducing experimental data to within 20%. The most
important result was obtained by calculating the
effective mass of the system of twoKS mesons.
For the effective-mass distribution of the system

of two KS mesons, Fig. 8 shows the result obtained
from aMonte Carlo simulation of respective events at
the fixed resonance mass of 1072 MeV. The methods
for calculating the effective mass were different for
Figs. 8a and 8b. In Fig. 8b, the effective mass of
each vee was set to the Particle Data Group value of
5
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the KS-meson mass, while, in Fig. 8a, it was set to
the value that was obtained from the simulation. A
comparison of these results with the corresponding
experimental distributions (Figs. 2a and 2b) shows
that, both in simulated events and in experimental
data, a transition from the method where use is made
of the experimental value of the KS-meson mass to
the method that employs the Particle Data Group
value of the KS-meson mass leads to a narrower
maximum in the spectrum of the system of two KS
mesons.

Thewidth of the experimental distribution (Fig. 2b)
is larger than that obtained from the simulation
(Fig. 8b). This suggests that the intrinsic width
is somewhat smaller than the apparent one. The
substitution of a Breit–Wigner function for a delta
function showed that a distribution that agrees with
the experimental one is obtained at Γ = 3.5+1.5

−1.0 MeV.
As usually occurs in the case where the width of the
observed object is commensurate with the spectrom-
eter resolution, it is difficult to draw a more definitive
conclusion.

5. TEST INVESTIGATIONS

Test investigations consisted in verifying the ex-
istence of the X(1070) resonance in individual event
samples selected by different methods. First, we in-
vestigated the yield of events featuring the resonance
under study in individual runs. After that, we ana-
lyzed the distribution of events with respect to the
azimuthal angle determined in the laboratory frame.
Also, we studied the yield of events in different sam-
ples for the same target volume and, finally, the yield
of events grouped according to the coordinates ofKS-
meson-decay vertices. For each sample, we tested the
dependence of the signal-to-background ratio S/B
on selections in the quality of events.

5.1. Analysis of the Yield of Events in the Resonance
Band in Individual Runs

Three runs were performed with a hydrogen target
under identical conditions. A signal from the reso-
nance being studied was present in all three runs.
The scatter of the yield of events in the resonance
band from one run to another was within statistically
admissible boundaries. Within each of the runs, all
selections improve the ratio S/B, the statistical un-
certainty being taken into account.
PH
5.2. Analysis of the Azimuthal Dependence

In order to investigate the azimuthal dependence,
we selected (as well as in other cases) events lying
in the mass range 1020–1120 MeV. This range was
broken down into four sectors in accordance with the
direction of theKSKS-pair momentum.
We performed the partition by two methods, tak-

ing, for the reference plane, the horizontal plane in
the first case and the plane rotated through an angle
of 45◦ with respect to the horizontal plane in the
second case. An analysis revealed that the yields of
the total number of events in each of the sectors and
the yields of events in the resonance band lie within
the statistical errors.
In addition, we analyzed the yield of events of the

double production of KS mesons over the target vol-
ume. We chose four equal intervals in the coordinate
X in the Y Z plane orthogonal to the beam-axis direc-
tion, the target being partitioned into four segments of
identical area. It turned out that the scatter of events
in a resonance signal did not exceed that which was
expected statistically.
We also investigated the yield of events involv-

ing the production of the KSKS system versus the
coordinate XK of the KS-meson-decay vertex. As
a result, it turned out that the number of events at
the resonance was proportional to the total number
of events in each of the intervals in this coordinate.

6. ANALYSIS OF DATA OBTAINED
WITH A CARBON TARGET

Experimental data obtained with a carbon target
in 1995 and 1996 were accumulated under conditions
differing substantially from those peculiar to data ac-
quisition with a liquid-hydrogen target.
The trigger applied in those runs was much softer:

the emission of two to three charged particles from
the target was allowed. In order to separate the pro-
duction of neutral strange particles, a hodoscope ar-
ranged inside of the magnet between the spark cham-
bers was included in the trigger. It was required that
the number of particles recorded by the hodoscope be
greater than the number of particles emitted from the
carbon target.
The spectrometer resolution in the KS-meson

mass was about 1.5 times lower in the runs with
a carbon target than in the runs with a hydrogen
target. Nonetheless, the effective-mass distribution
of the system of two KS mesons (Fig. 9) showed a
distinct peak in the region around the mass value
of 1070 MeV. No selections in the quality of events
were imposed. The missing-mass selection MM2 >
2.0 GeV2 was introduced. The histogramming of
these data yielded a mass of M = 1070 ± 3 MeV
YSICS OF ATOMIC NUCLEI Vol. 68 No. 8 2005
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and a width of σ = 5 ± 3 MeV (the resonance was
described in terms of a Gaussian function). The
number of standard deviations was NSD � 3.7.

The result obtained with a carbon target—namely,
the fact that X(1070) production occurs for MM2 >

2.0 GeV2—is in accord with the result obtained
with a liquid-hydrogen target, where the signal-to-
background ratio S/B is higher for that sector of the
missing-mass spectrum which corresponds to the
production of one or a few pions at the lower vertex
in the association with the baryon (see Fig. 7). It
should be recalled that, in the runs with a carbon
target, the production of additional pions was not
suppressed by the trigger. Thus, the fact that, in
the inelastic-channel region, the new resonance in
question is produced more intensively is confirmed by
data obtained both with a carbon and with a hydrogen
target.

Although the statistical significance in experimen-
tal data coming from a carbon target is less than
five standard deviations, the importance of this result
is great: it was shown that the application of a nu-
clear target does not prevent the observation of the
X(1070) resonance, while the use of a trigger that is
softer than a neutral one leads to an increase in the
ratio S/B.
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7. ANGULAR DISTRIBUTION

Figure 10 shows the distribution of events with
respect to the cosine of the Gottfried–Jackson an-
gle θ for various mass intervals. For Fig. 10a, we
choose the broad mass interval 1045–1105 MeV,
from which we excluded the resonance region (1067–
1088 MeV). The statistical sample of 997 events
available in this interval makes it possible to get quite
a clear idea of the background angular distribution.

From [14], it is well known that the mass region
below 1200 MeV is dominated by the S wave, which
contributes more than 90% to the total cross section.
The remaining cross-section fraction is described by
the D0 wave, generated by the f2(1270) resonance.
Within the mass range being considered, the relative
phase of the S and D0 waves is close to π. Below, we
reckon all phases from the direction of the S wave,
which we assume to be real-valued. In this case,
the angular distribution is described by two param-
eters, a constant and the coefficient of the angular
momentum. The square of the D0-wave amplitude
is disregarded, since its contribution is negligible. In
view of this, we describe the angular distribution in
terms of the function

U(cosθ) = A2 − 2ABY 0
2 , (4)

where A is the S-wave amplitude, B is the D0-wave
amplitude, and Y 0

2 is a spherical harmonic. The solid
5
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Table 2

Fitting conditions AS AD0 M0, MeV Γ, MeV α, deg N χ2

Without introducing a resonance 1.0 0.11 – – – 0 100

The resonance is described 0.95 0.12 1072 5.1 86.1 79 63

by the S wave 0.95 0.12 1072 4.7 −88.7 67 60

The resonance is described 0.99 0.12 1072 1.0 75.1 10 88

by theD0 wave 0.99 0.11 1069 1.0 −69.1 14 85
curves in Fig. 10 represent the results of approximat-
ing experimental data by the function in (4). It can
be seen that, in Fig. 10a, this function describes the
experimental distribution satisfactorily.

As to the angular distribution in the resonance
band (Fig. 10b), it is much better described by a
constant (dashed line); however, the statistical signif-
icance of the distinction between the two descriptions
is not more than two standard deviations. Thus, we
can state that the angular distribution in the reso-
nance band shows no significant changes in relation
to the angular distribution of the background.

8. DETERMINATION OF THE RESONANCE
PARAMETERS

In order to determine the parameters of the ob-
served resonance and its statistical significance, we
fitted experimental data by the maximum-likelihood
method. The main advantage of this method over
that of histogramming is that, in the fitting process,
the masses and angles are not averaged over the
bin width, so that the result does not depend on the
choice of reference point and the number of intervals
into which the range of the masses being studied is
partitioned.

In describing experimental data, we employed the
probability-density function F (P ; Ω), where P is the
set of parameters andΩ is the phase space for the sys-
tem of two KS mesons. This phase space is spanned
by the effective mass, the cosine of the Gottfried–
Jackson angle θ, and the Treiman–Yang angle φ. The
resonance is described by a Breit–Wigner function.
The angular dependence for the background is spec-
ified by S and D0 waves whose amplitudes are taken
to be free parameters. According to our fit, the am-
plitudes of both background waves can be assumed
to be mass-independent. Thus, the S- and D0-wave
amplitudes are the parameters P that describe the
background. The amplitude AR, the mass M0, the
phase α, and the width Γ are the resonance param-
eters.
P

Weminimized the functional∫

Ω

ε(Ω)F (P ; Ω)dΩ −
N∑

i=1

lnF (P ; Ωi), (5)

where ε(Ω) is the event-detection efficiency and N is
the number of events. In the mass range being stud-
ied (1–1.2 GeV), the detection efficiency is virtually
independent of the mass. The function F (P ; Ω) has
the form

F (P ; Ωi) = (AS −AD0(Y
0
2 )i (6)

+ARRe(BW)(Y 0
m)i)2 + (ARIm(BW)(Y 0

m)i)2,

where AS is the amplitude of the background S wave;
AD0 is the amplitude of the backgroundD0 wave; and
BW is a Breit–Wigner function,

BW = exp(iα)
M0Γ

(M2
i −M2

0 ) − iM0Γ
. (7)

The quantity χ2 is calculated by the formula

χ2 = −2 lnL+ const, (8)

where L =
∏N

i=1 F (P ; Ωi). The choice of value for the
constant in (8) is immaterial since this constant does
not appear in the formula for calculating the number
of standard deviations:

NSD =
√
χ2

B − χ2
S − n. (9)

In this expression, χ2
B is the value obtained for χ

2

without introducing a resonance; χ2
S is its counterpart

obtained upon introducing a resonance; and n is the
number of degrees of freedom, which, in our case, is
equal to four (amplitude, mass, width, and phase of
the resonance).
For the KSKS system, the angular momentum J

can take only even values, while P and C are positive.
The resonance being studied lies near the threshold
for the production of two KS mesons. It is difficult
to expect a spin value in excess of two. The possible
quantum-number assignments are 0++ and 2++. The
distribution of the Treiman–Yang angle φ shows that
spin projections for nonzerom are impossible. For the
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 8 2005
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2++ state, a D0 wave was therefore chosen for a trial
function.
Table 2 shows the results of fitting. The experi-

mental data in question were approximated by for-
mula (6), N being the number of events at the res-
onance.
It turned out that there are two solutions for which

the values of χ2 differ by only three units.
In describing experimental data by a D0 wave,

χ2 is greater by 25 units than in describing them
by an S wave, this corresponding to more than five
standard deviations. As a result, we can rule out the
2++ quantum state.
Figure 11 shows the quantity χ2 as a function of

the resonance phase. One solution corresponds to a
phase value of α � 90◦, while the other corresponds
to α � −90◦. The masses and widths of these two
solutions agree within the statistical errors, while the
amplitudes differ by a factor of about four. The am-
plitudes are different because the interference is con-
structive in the former and is destructive in the latter
case. If there were no D0 wave in the background
at all, there would be no visible distinctions between
these two solutions. The difference of the χ2 values is
so small that it is impossible to choose a solution.
The important fact that, if there is yet a destructive

interference, this can lead to additional difficulties in
observing the resonance is noteworthy. If the reso-
nance amplitude is twice as great as the background
amplitude, the resonance as a maximum in the mass
distribution disappears, the change in the phase re-
maining the only observable phenomenon. For a ratio
of the amplitude that is close to two, the resonance-
production rate may be highly sensitive to changes
in experimental conditions. Possibly, this explains
sometimes observed contradictions between data of
different experiments.
The number of standard deviations is

NSD = 4.5 in the treatment of data obtained by
using only geometric selections, NSD = 5.1 for data
obtained by using the selections only in the quality
of events, and NSD = 6.2 upon the application of
both kinds of selections. In Fig. 4, the inset shows
solutions obtained (dashed line) without and (solid
line) upon introducing a resonance.
For the number of events under the Breit–Wigner

peak, the mass, and the width, our fitting procedure
yielded the values of 69,M = 1072.4 ± 0.8MeV, and
Γ = 5.0+1.2

−1.0 MeV, respectively. A Monte Carlo sim-
ulation of the resonance width with allowance for the
errors in the spectrometer measurements showed that
the true width is Γ = 3.5+1.5

−1.0 MeV.
In order to test, the above errors in the mass and

width due to statistical fluctuations, our statistical
sample was partitioned into four subsamples, each
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 8 200
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being treated individually. The results of this treat-
ment confirmed the above estimates.

9. ESTIMATING THE RELIABILITY
OF OUR RESULTS

In the present study, it has been shown that the
observed maximum in the system of two KS mesons
is a real physical object rather than a statistical fluctu-
ation. Our confidence is based on the following facts:

(i) Any selection aimed at removing poorly mea-
sured events improves the signal-to-background ra-
tio S/B. The selections in the vee mass (the closer
the vee mass to the Particle Data Group value of the
KS-meson mass, the better obviously the measure-
ment of an event) and in the track age play a dominant
role. Other selections (in χ2 and in the number of
points) are less efficient. If they had not been applied,
the results would have changed only slightly.

(ii) The selections in geometric variables also im-
prove the ratio S/B. Under our experimental condi-
tions, the geometric selections, as well the selections
in quality, are essentially selections that make it pos-
sible to remove poorly measured events. However, the
choice of boundaries for the selections in question is
not arbitrary—it is determined by the target and beam
dimensions, which are well known.

(iii) Various methods for calculating the effective
mass have revealed that the higher the accuracy in
determining the mass, the more clear-cut the man-
ifestation of the resonance. Such a pattern inevitably
takes place if we are dealing with a real object. In the
case of a statistical fluctuation, the result of this would
be unpredictable in advance.
5
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10. CONCLUSION

For the mass and the width of the previously
unknown narrow resonance observed in study, we
have found values of M = 1072.4 ± 0.8 MeV and
Γ = 3.5+1.5

−1.0 MeV; the resonance quantum numbers
are JPC = 0++.
For the product of the resonance-formation cross

section and the respective branching ratio, the ob-
served number of events yields a value of 20 ± 5 nb.
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Abstract—The A dependence of the forward cross section for inclusive pion double charge exchange
on nine target nuclei from 6Li to 209Bi at T0 = 0.59 GeV, as well as the cross section for 6Li, 7Li, and
12C nuclei at T0 = 0.59, 0.75, and 1.1 GeV, was measured with the 3-m magnetic spectrometer of the
Institute of Theoretical and Experimental Physics (ITEP, Moscow). The resulting A dependence is well
described within the model involving two sequential single charge exchanges and taking into account the
renormalization of the amplitude for pion single charge exchange in a nucleus. A relatively weak energy
dependence of the cross section for the 6Li, 7Li, and 12C nuclei agrees with the analogous dependence
obtained previously for the 16O nucleus, but it contradicts the predicted sharp decrease in the cross section
within the model involving two sequential single charge exchanges. This result provides an additional piece
of evidence that the contribution from the mechanism of inelastic Glauber rescattering is significant at
T0 � 0.6GeV. c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Pion double charge exchange (DCX) in a nucleus
is a process in which a pion of specific charge trans-
forms into a pion of opposite charge owing to the
interaction with the nucleus. This process involves
at least two identical nucleons of the nucleus. This
unique feature of DCX reactions attracted attention
as early as 1961 [1] in connection with the possibility
of employing the DCX process in searches for two-
nucleon correlations in nuclei. A process of this type
was first observed in 1963 at the Joint Institute for
Nuclear Research (JINR, Dubna) [2] in inclusive re-
actions at energies in the range 30–80 MeV; since
1977, exclusive DCX reactions have been intensively
studied, first of all as an efficient method for exciting
doubly isobar-analogous nuclear levels. In contrast
to what we have in inclusive reactions, the final state
of the nucleus involved is fixed, in which case the
cross section is substantially smaller. The investi-
gations mentioned above became feasible owing to
the appearance of meson factories (for an overview,
see [3]) producing meson beams of high intensity up
to about 109 pions/s and energy in the region T0 �
0.5 GeV. The mechanism of two sequential single
charge exchanges (SSCX) of a π meson with π0

in the intermediate state is the commonly adopted

1)Univ. of Giessen, Germany.
2)Univ. de Valencia, Av. Dr. Moliner, 50; E-46100 Burjassot,
Valencia, Spain.
*e-mail: anna.krutenkova@itep.ru
1063-7788/05/6808-1283$26.00
mechanism that is used to analyze experimental data
in this energy range. The SSCX mechanism predicts
a fast decrease in the DCX cross section with in-
creasing energy [4]; therefore, interest in this process
at high energies is associated with searches for new
DCX mechanisms. In [5], our group proposed study-
ing DCX in inclusive reactions by using a kinemat-
ical region at the high-energy edge of the emitted-
pion spectrum (∆T = T0 − T ≤ 140 MeV, T being
the kinetic energy of the emitted pion), where the
production of an extra pion is forbidden by the energy-
conservation law in the nucleus. We emphasize that,
strictly speaking, events off this region at energies of
T0 � 0.17 GeV may be due to the process in which
the production of two real pions on one nucleon is
followed by the absorption of an extra pion in the
nucleus [6–8]. Investigation of the process in this
region, which is relatively narrow in∆T of the emitted
pion, requires a high momentum resolution of the
experimental facility used. The ITEP 3-m magnetic
spectrometer equipped with spark chambers, which
has a resolution of ∆p/p � 1%, made it possible to
separate and study events from this region. For ex-
ample, the spectra of emitted pions were analyzed
in [9] for the case where the kinetic energy of incident
π− mesons was T0 = 0.59 GeV; in [10], the energy
dependence of DCX on an oxygen nucleus was stud-
ied at T0 = 0.59–1.1 GeV, while, in [11], preliminary
data on the A dependence of DCX were obtained at
T0 = 0.59 GeV.
c© 2005 Pleiades Publishing, Inc.
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Fig. 1. A dependence of the cross section for the reaction
π−A→ π+X at θ ≈ 5◦ and ∆T = T0 − T ≤ 140 MeV
(T0 = 0.59 GeV) for two series of measurements: results
for the 6Li, 7Li, 12C, and 16O nuclei (closed circles)
and results for the Al, Cu, In, Ta, Bi, and 16O nuclei
(closed boxes; the point for 16O is shifted to the right
along the A axis in order to obtain a clearer picture).
The solid curve was calculated for the SSCX mechanism
on the basis of the cascade model and with allowance
for the renormalization of the amplitude for pion single
charge exchange in the nucleus. The dashed line is a
fit of the expression Aα, where α = 0.61 ± 0.08, to the
data. The open circles represent data from [15, 16] for
T0 = 0.24 GeV and θ = 25◦.

It is worth emphasizing that the concept of the
ITEP 3-m magnetic spectrometer and design of
its magnet were developed under the supervision of
V.V. Vladimirsky [12]. In the mid-1960s, he initiated
the creation of two magnetic spectrometers supple-
mented with optical spark chambers. One of them
was the aforementioned 3-m magnetic spectrometer
based on a magnet of field volume 3 × 0.5 × 1.0 m
and intended for experiments at the 7-GeV ITEP
accelerator, which operated at that time, while the
second was a 6-m spectrometer based on a still larger
magnet of field volume 6× 0.75 × 1.5m and intended
for experiments at the 70-GeV IHEP accelerator. The
underlying ideas of these spectrometers proved to be
so seminal that the spectrometers are still used, upon
several upgrades, in physics experiments [13].

2. DESCRIPTION OF THE EXPERIMENT

In this study, we explored the A dependence of the
inclusive cross section for the reaction

π− +A→ π+ +X (1)

on the A = 6Li, 7Li, 12C, 16O, Al, Cu, In, Ta, and
Bi nuclei at 0.59 GeV, and the energy dependence
of the analogous cross section for the 6Li, 7Li, and
PH
12C nuclei in the range T0 = 0.59–1.1 GeV for re-
action angles of θ � 10◦ (the average value is 〈θ〉 ≈
5◦) in the kinematical region where no contribu-
tion comes from reactions involving the production
of an extra pion. Our measurements were performed
in a negative pion beam from the ITEP 10-GeV
proton synchrotron. The beam intensity amounted
to about (1–5) × 105 π− mesons per second. The
target was placed at the center of the ITEP 3-m
magnetic spectrometer, and the trajectories of inci-
dent and final pions were recorded in multigap spark
chambers arranged in the magnetic field. An incident
(final) pion was separated from the electron (positron)
background by Cherenkov counters. Emitted pions
and protons were discriminated by the time of flight
over a base of about 6 m. The equipment used and
the procedures for event selection and cross-section
calculations were described in detail elsewhere [9, 10].
As was shown in [9, 10], the ∆T -spectra of π+

mesons grow with increasing ∆T . In the present ex-
periment, these spectra are constrained by the accep-
tance of the setup at a value of ∆T � 150–180MeV.
The double-differential cross sections d2σ/dΩdT for
reaction (1) that were integrated over the region
∆T ≤ 140 MeV, 〈dσ/dΩ〉140, were obtained for each
target from the total number of events falling within
the interval 0–140 MeV and the average value of the
solid angle.
Targets from 12С, Al, Cu, In, Ta, and Bi were

prepared as sets of identical disks about 8 cm in diam-
eter arranged uniformly space in thin-walled cylinders
9.5 cm long. The disk thickness was chosen in such a
way that the total thickness of each target was about
0.1 of the nuclear length. Targets from 6Li, 7Li, H2O,
and D2O filled the cylinders completely. Targets from
H2O and D2O were used to study interaction with
the 16O nucleus and to calibrate the whole procedure
for evaluating cross sections on the basis of mea-
surements of backward elastic π−p scattering [10].
The background from the empty target was measured
with the cylinder casing. Six target cylinders were
simultaneously placed on a turntable and were in turn
exposed to the beam at regular time intervals.
The measurements with Al, Cu, In, Ta, Bi,

and D2O (for calibration) were performed at T0 =
0.59 GeV. The total flux of π− mesons that traversed
the set was 2.44 × 109 particles.
The energy dependence of the cross sections for

reaction (1) was measured with the 6Li, 7Li, 12С,
H2O, and D2O targets and with an empty target
at T0 = 0.59, 0.75, and 1.1 GeV. For the 6Li and
D2O targets, the cross sections were measured with
and without the Cherenkov counters, whereby it was
possible to determine the positron background, which
proved to be within the range 10–40%, depending on
YSICS OF ATOMIC NUCLEI Vol. 68 No. 8 2005
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Fig. 2.Energy dependence of the cross sections for the reactionπ−A→ π+X, whereA = (closed stars) 6Li, (closed triangles)
7Li, (closed boxes) 12C, and (closed circles) 16O that were integrated with respect to ∆T from 0 to 140 MeV at θ ≈ 5◦. The
curve is calculated for the 16O nucleus on the basis of the cascade model for the SSCX mechanism and with allowance for the
renormalization of the amplitude for pion single charge exchange in the nucleus. The open symbols represent data for 6Li, 7Li,
and 12C nuclei from [16] at T0 = 0.24 GeV and the 16O nucleus from [15] at T0 = 0.18, 0.21, and 0.24 GeV and θ = 25◦.
the initial energy and the target type. This value was
used to evaluate the cross sections for reaction (1) on
the 7Li and 12C targets, for which the measurements
were performed without the Cherenkov counters. The
positron background originating from the electron
contamination of the beam was removed by choosing
a nonzero angle of reaction detection. The total fluxes
of π− mesons that traversed the setup with the 6Li,
7Li, and 12C targets at T0 = 0.59, 0.75, and 1.1 GeV
amounted to 3.77 × 109, 8.59 × 109, and 9.21 × 109

particles, respectively.

3. A DEPENDENCE OF THE INCLUSIVE
DCX CROSS SECTION AT T0 = 0.59 GeV

Figure 1 shows the cross sections 〈dσ/dΩ〉140 at
T0 = 0.59 GeV and 〈θ〉 ≈ 5◦ for two measurement
series: for 6Li, 7Li, 12C, and 16Onuclei (closed circles)
and for Al, Cu, In, Ta, Bi, and 16O nuclei (closed
squares; the point for 16O is shifted to the right along
the A axis in order to obtain a clearer presentation).
The displayed errors are purely statistical; the sys-
tematic errors do not exceed 10%. The dashed line is
a fit of the dependence Aα, where α = 0.61 ± 0.08, to
the measured cross sections. The value of α in the fit
allowing for the 〈dσ/dΩ〉140 values obtained in [9] for
6Li, 7Li, and 16O in the case of a broader acceptance
in ∆T coverage amounts to α = 0.68 ± 0.04. These
values of α are close to 2/3, which is typical of the
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 8 200
A dependence of the total cross sections for nuclear
targets. The solid curve was calculated on the basis
of the cascade model for the SSCX mechanism [10,
14], the Fermi motion of nucleons, the Pauli exclusion
principle, absorptive effects, and the renormalization
of the amplitude for pion single charge exchange in
the nucleus (polarization of nuclear matter) according
to [4] being taken into account in this calculation.
The curve does not represent a power-law function,
but it describes well the observed A dependence. We
emphasize that, upon taking into account the renor-
malization of the amplitude, whereupon the cross
sections decrease by a factor of about 2.5 for all nuclei,
the description of the emitted-pion spectrum for the
16O nucleus at T0 = 0.59 GeV proved to be better
in [9].

For the sake of comparison, Fig. 1 also shows data
that we extracted from the π+-meson spectra in reac-
tion (1) on the 6Li, 7Li, 9Be, 12C, 16O, 40Ca, 103Rh,
and 208Pb nuclei from [15, 16] for T0 = 0.24 GeV
and θ = 25◦ (open circles). It is clear from the figure
that the cross section decreases for large A at T0 =
0.24 GeV, but that there is virtually no such effect at
T0 = 0.59 GeV. Qualitatively, this is explained by the
decrease in the cross section for pion absorption in a
nucleus with increasing primary energy.
5
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4. ENERGY DEPENDENCE
OF THE INCLUSIVE DCX CROSS SECTION

FOR 6Li, 7Li, AND 12C

Figure 2 displays the double-differential DCX
cross section measured for the light nuclei 6Li, 7Li,
and 12C at T0 = 0.59, 0.75, and 1.1 GeV and θ =
5◦ and integrated over the region ∆T from 0 to
140 MeV (〈dσ/dΩ〉140, closed stars, triangles, and
boxes, respectively). The closed circles represent
combined data of the present experiment and previous
data for the 16O nucleus from [9, 10]. The open stars,
triangles, boxes, and circles correspond to the cross
sections extracted from data reported in [15, 16] for
T0 = 0.24GeV and θ = 25◦. It is clear from the figure
that a relatively weak (as compared to the results of
the calculation based on the SSCX model, which are
shown by the solid curve in Fig. 2) energy dependence
observed for 16Omanifests itself for other light nuclei
as well.
As was shown in [4], a fast decrease in the cross

section for T0 � 0.6GeV in the SSCX model with π0

in the intermediate state (the curve in Fig. 2) is asso-
ciated with the decrease in the amplitude of π0-meson
single charge exchange in this energy region and is
independent of the type of target nucleus. A rela-
tively weak energy dependence of the cross section
for some nuclei is an additional argument in favor of a
significant contribution from new DCX mechanisms
in the region being studied. Indeed, it was shown
in [17] that Glauber inelastic rescattering (first of all,
the two-pion contribution) in the intermediate state
must be taken into account in the calculations at
T0 � 0.6GeV. For example, the cross section (2) was
represented in [18] as the sum of two contributions:
that which involves intermediate π0 and that which
involves an intermediate two-pion state. The latter
was estimated in the Gribov–Glauber approximation
for the one-pion-exchange model. It was shown that
the energy dependence of the cross section at T0 �
1GeV is completely determined by sequential charge
exchanges accompanied by Glauber inelastic rescat-
tering in the intermediate state. We can expect that
theA dependence of the cross section would also obey
the A2/3 law in this case.

5. CONCLUSION

TheA dependence of the cross section for inclusive
pion double charge exchange has been measured for
a set of nuclei from 6Li to 209Bi at T0 = 0.59 GeV
and 〈θ〉 ≈ 5◦ in the kinematical region where there
is no contribution from reactions involving the pro-
duction of an extra pion. The A dependence has been
calculated within the model of two sequential single
charge exchanges. The measured A dependence is in
P

good agreement with the results of the calculation
that takes into account the renormalization of the
amplitude for pion single charge exchange in nuclear
matter. The inclusive forward cross section for pion
double charge exchange has been measured for the
6Li, 7Li, and 12C nuclei over the energy range T0 =
0.59–1.1 GeV. A relatively weak energy dependence
of the cross section for the 6Li, 7Li, and 12C nu-
clei agrees with the analogous dependence measured
previously for the 16O nucleus. These results are at
odds with the predictions of the SSCX model, ac-
cording to which the cross sections in question must
decrease fast. We consider this as an additional piece
of evidence of a dominant contribution from inelastic
Glauber rescattering at T0 � 0.6GeV.
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et al., Pis’ma Zh. Éksp. Teor. Fiz. 80, 244 (2004)
[JETP Lett. 80, 214 (2004)].
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 8 200
14. M. J. Vicente Vacas, M. Kh. Khankhasayev, and
S. G. Mashnik, nucl-th/9412023.

15. S. A. Wood et al., Phys. Rev. C 46, 1903 (1992).
16. P. A. M. Gram, in Pion–Nucleus Physics: Future

Directions and New Facilities at LAMPF, Ed. by
R. J. Peterson and D. D. Strottman (AIP, New York,
1988), p. 79.

17. A. B. Kaidalov and A. P. Krutenkova, Yad. Fiz. 60,
1334 (1997) [Phys. At. Nucl. 60, 1206 (1997)].

18. A. B. Kaidalov and A. P. Krutenkova, J. Phys. G 27,
893 (2001).

Translated by M. Kobrinsky
5



Physics of Atomic Nuclei, Vol. 68, No. 8, 2005, pp. 1288–1293. Translated from Yadernaya Fizika, Vol. 68, No. 8, 2005, pp. 1341–1346.
Original Russian Text Copyright c© 2005 by Blinov, Turov, Chadeyeva.

TRIBUTE TO THE 90th BIRTHDAY
OF V.V. VLADIMIRSKY
Investigation of pn Correlations in 4Hep Interactions
at a Momentum of 5 GeV/c

A. V. Blinov*, V. F. Turov**, and M. V. Chadeyeva***

Institute of Theoretical and Experimental Physics,
Bol’shaya Cheremushkinskaya ul. 25, Moscow, 117259 Russia

Received November 12, 2004; in final form, February 10, 2005

Abstract—Proton–neutron correlations in 4Hep interactions are studied in an exclusive experiment by
using a 2-m bubble chamber exposed to a 5-GeV/c beam of α particles (the kinetic energy of the protons
in the nucleus rest frame is Tp = 620 MeV). Data on the production of pn pairs in 4π geometry for three
channels, where it is possible to reconstruct the neutron momentum unambiguously, are used to determine
the pn correlation function in 4Hep interactions. The experimental results are comparedwith the predictions
of a modified Lednicky–Lyuboshitz model. The value obtained for the root-mean-square radius of the pn-
emission region is Rpn = 2.1 ± 0.3 fm. The dependence of the correlation function on the modulus of the
total momentum of the emitted nucleon pair and on the direction of the momentum transfer is studied.
An indication that the emission of a pn pair proceeds predominantly through the production of a virtual
deuteron is obtained. c© 2005 Pleiades Publishing, Inc.
V.V. Vladimirsky has always been keenly inter-
ested in the development of themethodology of liquid-
hydrogen bubble chambers. He initiated work that re-
sulted in successfully designing and commissioning a
80-cm liquid-hydrogen bubble chamber at the Insti-
tute of Theoretical and Experimental Physics (ITEP,
Moscow) by a team headed by Ya.M. Selektor. That
chamber was used in a series of experiments devoted
to studying the interactions of light nuclei (3Н and
3Не) with a target proton at intermediate energies.
Experiments at the ITEP 2-m liquid-hydrogen bub-
ble chamber that were aimed at exploring 4Hep in-
teractions at 2.7 and 5 GeV/c were a logical devel-
opment of those studies. The present article reports
on a continuation of an analysis of experimental data
obtained throughout these exposures.

1. INTRODUCTION

Nuclear-reaction studies based on analyzing pair
correlations of emitted particles (two-particle inter-
ferometry) [1, 2] have aroused interest in recent years.
For studying correlations, of particular interest are
data on the production of a two-nucleon system in
reactions involving the most compact nucleus 4Не,

h + 4He → (NN) + X. (1)

*e-mail: blinov@itep.ru
**e-mail: turov@itep.ru
***e-mail: marina.chadeyeva@itep.ru
1063-7788/05/6808-1288$26.00
Here, h is an incident particle, NN is the emit-
ted nucleon pair, and X is the system of secondary
particles and nuclear fragments. Such data make
it possible to study special features of the correla-
tion function for the emitted nucleon pair, CNN (qinv)

(qinv =
1
2
|p∗

1 − p∗
2|, where p∗

1 and p∗
2 are the nucleon

momenta in the rest frame of the pair), in the case
where the emission-region dimension is commensu-
rate with the range of nuclear forces. However, there
are virtually no such data in the literature.

In our previous study [3], which was devoted to
exploring pp correlations, we used an experimen-
tal scheme where the 2-m liquid-hydrogen bubble
chamber is exposed to a beam of 5-GeV/c 4He nuclei,
this corresponding to reaction (1) on protons, whose
kinetic energy in the rest frame of the nucleus is
Tp = 620 MeV. The resulting data in 4π geometry
for six main 4Hep-interaction channels involving the
production of two protons were used to determine
the total pp correlation function Cpp and the two-
proton correlation functions for individual interaction
channels. Also, the root-mean-square (rms) radius
of the pp-emission region in 4Hep interactions was
found to be Rpp = 1.6 ± 0.3 fm, which is close to the
rms radius of the nucleus, R4He = 1.53–1.66 fm (see
discussion in [3]).

In [4], the correlation function for two protons in
reaction (1) was determined by employing an electron
beam of energy 4.46 GeV. The value of Rpp = 1.6 fm,
c© 2005 Pleiades Publishing, Inc.
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which was obtained there with a systematic error of
about 3%, indicates that this quantity takes close
values for strong and electromagnetic interactions.

As to studying pn correlations in reaction (1),
there are no relevant data in the literature, as far
as we know. (The correlation function for a pn pair
was determined in [5] only for heavy-ion interactions.)
However, such data and their comparison with the
corresponding data for pp production are obviously of
great interest.

In this study, the pn correlation function and the
rms radius of the pn-emission region are determined
from an analysis of data accumulated over the ex-
posure of the liquid-hydrogen bubble chamber to a
5-GeV/c 4He beam. We selected only events in the
4Hep-interaction channels featuring one neutron in
the final state, in which case it is possible to recon-
struct and kinematically balance the neutronmomen-
tum. We emphasize that, for the above primary mo-
mentum, secondary neutrons can be unambiguously
identified for the above channels almost over the entire
phase space.

2. THEORETICAL MODEL

In this study, pn correlations are analyzed within
the same theoretical scheme as that which was used
in [3] to analyze pp correlations. We calculated the
pn correlation function within the simplest modifi-
cation of the Lednicky–Lyuboshitz model [6] as a
function of the spacetime parameters r0 and τ0 (the
rms radius of the emission region is R =

√
3r0). For

the components of the pn wave function within the
range of nuclear forces (R ≤ 2 fm), we use an exact
solution to the Schrödinger equation for the square-
well potential

U(r) =




−K2/m, r ≤ D,

0, r > D,
(2)

where K and D are the well parameters and m is the
nucleon mass.

It is obviously of interest to calculate the pn cor-
relation function with a realistic NN potential, but
this is beyond the scope of the present study. As
was stated in [4], the pp correlation function in the
region R ≤ 2 fm is weakly sensitive to the choice of
potential (simple-well, Reid, or Tabakin potentials),
while the values of the rms radius that appear in a fit
of data from [4] with various potentials differ within
3%, which is taken in that study for the theoretical
uncertainty in the calculation.
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 8 200
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Fig. 1. Proton–neutron correlation function CLL
pn (qinv)

calculated within the theoretical model used (see main
body of the text) for the chosen values of r0. The inset
displays the r0 dependence of the correlation-function
“amplitude” A(CLL

pn ) within (solid curve) the theoret-
ical model used and (dotted curve) the conventional
Lednicky–Lyuboshitz model.

The correlation function Cpn averaged over the
distribution of unpolarized nucleon sources has the
form

Cpn = 1 +
1
4
(C(0) + 3C(1)), (3)

where the functions C(0) and C(1) describe the con-
tributions of singlet and triplet states, respectively.
In the calculations, the length and effective range of
pn interaction were taken to be fpn

0 = 23.7 fm and
dpn
0 = 2.7 fm in the singlet and fpn

1 = −5.4 fm and
dpn
1 = 1.7 fm in the triplet state [7, 8]. For the well pa-
rameters, we used, respectively, the values of Kpn

0 =
0.11 GeV/c and Dpn

0 = 0.983dpn
0 and the values of

Kpn
1 = 0.18GeV/c andDpn

1 = 1.14dpn
1 [7, 9].We also

used the approximation of equal emission times in the
rest frame of nucleons (τ0 = 0).

For various values of r0, Fig. 1 shows the pn

correlation functionCLL
pn (qinv) calculated on the basis

of the theoretical model used. The inset displays the
r0 dependence of the maximum value of the correla-
tion function, A(CLL

pn ), within the theoretical model
used (solid curve) and the conventional Lednicky–
Lyuboshitz model [6] (dotted curve). It is clear from
the figure that, in the region r0 ≥ 1.5 fm, the curves
virtually coincide, but that, for r0 ≤ 1 fm, the results
differ significantly.
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Reaction channels involving the production of the pn sys-
tem in 4Hep interaction at a momentum of 5 GeV/c (Tp =
620 MeV) that are chosen for our analysis

Reaction channel Number of
events

Number of events
satisfying the selection rule

qinv < 0.4 GeV/c
4Hep → dppn 2567 1871
4Hep →3 Hepn 2507 130
4Hep → tpnπ+ 362 323
4Hep → (pn)X 5436 2324

3. DESCRIPTION OF THE EXPERIMENT

The 2-m ITEP liquid-hydrogen bubble chamber
was exposed to a separated beam of 5-GeV/c 4He
nuclei. The chamber was placed in a magnetic field
of strength 0.92 T. Background particles in the in-
cident beam (predominantly, deuterons) were reliably
discriminated by track ionization. About 120 00 pho-
tographs were obtained with an average load inten-
sity of about 5 to 8 particles per chamber expansion.
In all, 18 736 interactions were measured. The total
cross section for 4Hep interaction was determined
in a standard way [10] by counting the number of
interactions in a chosen chamber volume and was
found to be 121.5 ± 2.9 mb (the quoted error is purely
statistical). The systematic error in the absolute nor-
malization of the cross section is about 3%. In order
to identify particles in αp interactions, we used a
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Fig. 2. Correlation function Cpn in 4Hep interactions
versus qinv. The curves represent the predictions of the
modified Lednicky–Lyuboshitz model with allowance for
the measurement errors in the forms specified by (solid
curve) Eqs. (6)–(8) and (dashed curve) Eqs. (6)–(9) and
(dotted curve) without allowance for these errors.
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procedure that is standard for chamber experiments
and which consists in choosing mass hypotheses
with allowance for data on the visible ionization of
secondary-particle tracks. The methodology of the
experiment and the procedure for data processing
are described in more detail elsewhere [10, 11]. We
note that the experimental procedure used makes it
possible to analyze data in 4π geometry.

For a further analysis, we selected only events in
the 4Hep-interaction channel involving one neutron
in the final state, in which case it is possible to re-
construct and kinematically balance the neutron mo-
mentum. At the energy value being considered, there
are three such channels, which are listed in the table,
along with event statistics collected for each channel
in this experiment. The total number of events in
these channels exceeds 75% of total statistics for the
reactions involving the simultaneous production of a
proton and a neutron. For the channel 4Hep → dppn,
where two protons are produced, we selected, for our
analysis, the spectator proton, which is the slowest
one in the rest frame of the nucleus.

As in [3], the subsequent correlation analysis is
performed for events selected according to the con-
dition

qinv < qmax, (4)

where qmax = 0.4 GeV/c (the number of events in
each channel that satisfy this selection criterion is
given in the table).

For the correlation function Cpn, we employ the
standard definition

Cpn = const · Nc

Nnc
. (5)

Here const is a normalization constant that is defined
in such a way that Cpn → 1 at rather large qinv, in
which case there are no correlations, and Nc and
Nnc are the numbers of events for a given qinv that
correspond to the experimentally observed (corre-
lated) and background (noncorrelated) distributions,
respectively. The background distribution was gen-
erated by “mixing” of the momenta of particles from
different events.

4. RESULTS AND CONCLUSIONS

The points in Fig. 2 represent the pn correlation
function Cpn in 4Hep interactions versus qinv accord-
ing to the results of this experiment (only statistical
errors are shown). In order to determine the spacetime
dimension of the emission region for the pn pair,
we approximated these data by the theoretical curve
calculated within the modified Lednicky–Lyuboshitz
model (see Section 2). In approximating experimental
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 8 2005
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Fig. 3. Correlation function Cpn in 4Hep interactions versus qinv for Ptot subjected to the constraints (�) Ptot < 0.6 GeV/c
and (�) Ptot > 0.6 GeV/c and (•) for unconstrained Ptot. The inset displays the distribution with respect to Ptot, where the
shadowed region corresponds to Ptot > 0.6 GeV/c. The curve represents the prediction of the modified Lednicky–Lyuboshitz
model.
data, we took into account the experimental resolu-
tion as follows:

C̃LL
pn (qinv) =

∫
CLL

pn (q′inv)Φ(qinv, q′inv, σ(q′inv)) dq
′
inv.

(6)

Here, C̃LL
pn and CLL

pn are the model predictions with
and without allowance for the measurement errors,
respectively; Φ is the distribution density for the
quantity qinv; and σ(qinv) is the experimental (system-
atic) error in determining qinv. This error is determined
primarily by the error in the reconstructed neutron
momentum, is virtually independent of qinv in the
region of our measurement, and is on average

σ(qinv) = 0.03 GeV/c. (7)

In approximating the data by the theoretical de-
pendence, we employed the simplest Gaussian form
for Φ,

Φ = G(qinv, q′inv, σ(q′inv)) (8)

=
1√

2πσ(q′inv)
exp

(
−(qinv − q′inv)

2

2σ2(q′inv)

)
,

and a form that takes into account the behavior of
the distribution of the absolute value in the vicinity of
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 8 200
zero,

Φ = G(qinv, q′inv, σ(q′inv)) + G(−qinv, q
′
inv, σ(q′inv)).

(9)

The distinctions between the distributions in (8)
and (9) become significant for qinv ≤ σ(qinv). The
value of Rpn = 2.1 ± 0.3 fm (χ2/NDF = 6.4/3) for
the rms radius of the pn-emission region corresponds
to the best approximation of the data by the theoret-
ical curve at qinv < 0.1 GeV/c with allowance for the
measurement errors in the form (8). Note that this
value significantly exceeds the radius of the 4He nu-
cleus. The approximation of the data with allowance
for the error by this method in the range 0.04 < qinv <
0.1 GeV/c introduces virtually no changes in this
result. But if the measurement errors are taken into
account in the form (9), this leads to a still greater
value of Rpn = 2.8 ± 0.4 fm (χ2/NDF = 6.6/3). It is
worth noting that, in contrast to what we have for pp
correlations (see [3]), the emission-region dimension
determined from the approximation of the data on
pn correlations proves to be highly sensitive to the
method for taking into account the measurement er-
rors. This is because the correlation function exhibits
radically different types of behavior in the vicinity of
5
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Fig. 4.Correlation functionCpn in 4Hep interactions versus qinv for cos θ subjected to the constraints (�) | cos θ| < 0.5 and (�)
| cos θ| > 0.6 and (•) for unconstrained | cos θ|. The inset displays the distribution with respect to | cos θ|, where the shadowed
regions correspond to the above constraints. The curve is the prediction of the modified Lednicky–Lyuboshitz model.
zero in these two cases; therefore, the contribution
from the measurement errors for qinv → 0 is different.
Since, however, the experimental error is not at all
known for qinv < 0.015GeV/c, it is impossible to take
completely into account the experimental resolution
for the pn correlation function.

The curves in Fig. 2 represent the predictions of
the modified Lednicky–Lyuboshitz model with al-
lowance for the measurement errors in the form (6)–
(8) (solid curve) or in the form (6)–(9) (dashed curve),
as well as without allowance for the measurement
errors (dotted curve). These curves were calculated
for the parameter r0 corresponding to Rpn = 2.1 fm
(solid and the dotted curves) orRpn = 2.8 fm (dashed
curve). It is clear from the figure that the inclusion
of the measurement errors significantly improves the
agreement between the theoretical and experimental
results (for qinv < 0.1GeV/c, χ2 = 19.7 for the dotted
curve, this significantly exceeding the values obtained
with allowance for the measurement errors).

Figure 3 displays the correlation functionCpn ver-
sus qinv for the case where the absolute value of the
sum of the particle momenta in the pn system in
the rest frame of the nucleus is constrained as Ptot <
0.6 GeV/c (closed triangles) or as Ptot > 0.6 GeV/c
PH
(open triangles), as well as for the case of uncon-
strained Ptot (circles). The curve represents the pre-
dictions of the modified Lednicky–Lyuboshitz model
for unconstrained Ptot with allowance for the mea-
surement errors in the form specified by Eqs. (6)–(8),
the parameter r0 corresponding to the rms radius of
Rpn = 2.1 fm.

The inset in Fig. 3 shows the Ptot distribution for
events in three channels involving the production of
a pn pair [for the constraint in (4)]. It is clear from
Fig. 3 that, in contrast toCpp (see [3]),Cpn is virtually
independent, within the errors, of constraints imposed
on Ptot. As differentiated from the case of pp emission,
there is even some trend toward the reduction of the
correlation effect for Ptot > 0.6 GeV/c. We empha-
size that independent correlation experiments based
on electronics are highly desirable for studying the
properties of Cpn at high Ptot.

The fact that Cpn is independent of the total
momentum of emitted particles and the fact that
the value obtained for the rms radius of the emis-
sion region is nearly coincident with the charge
rms radius and the close (to it) value of the rms
radius of the deuteron-density distribution, Rd =
1.96–2.13 fm [12], suggest that the emission of pn
YSICS OF ATOMIC NUCLEI Vol. 68 No. 8 2005
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pairs in the case being considered is likely to occur
through the production of a virtual deuteron.

For events in three channels involving the produc-
tion of a pn pair [the constraint in (4) being imposed],
the inset in Fig. 4 displays the distribution with re-
spect to | cos θ|, where θ is the angle between the
vectors q and pin (q is the momentum transfer to the
emitted nucleon pair, and pin is the momentum of the
incident proton in the rest frame of the nucleus).

Figure 4 presents the pn correlation function Cpn

versus the momentum transfer qinv for the case where
cos θ is constrained as | cos θ| < 0.5 (open triangles)
or as | cos θ| > 0.6 (closed triangles), as well as for
the case of unconstrained | cos θ| (circles). The curve
represents the predictions of the modified Lednicky–
Lyuboshitz model for unconstrained | cos θ| with al-
lowance for the measurement errors in the form spec-
ified by Eqs. (6)–(8), the parameter r0 corresponding
to R = 2.1 fm. Within the errors, the distributions in
Fig. 4 are in good agreement with one another. This
indicates (see [2]) that the region of pn-pair emission
in 4Неp interactions is spherically symmetric.

5. CONCLUSION

With the aid of the 2-m liquid-hydrogen bubble
chamber exposed to a 5-GeV/c beam of α particles,
the correlation function for a pn pair emitted in 4Hep
interactions has been measured for first time. The
value obtained for the rms radius of the pn-emission
region in 4Hep interactions is Rpn = 2.1 ± 0.3 fm,
which is close to the rms radius of the deuteron.
We have studied the dependence of the correlation
function on the absolute value of the total momentum
of the emitted pair and on the direction of the momen-
tum transfer. We have found that, in contrast to Cpp,
the correlation functionCpn is virtually independent of
the total momentum of the emitted pair. These results
give reasons to assume that the emission of a pn pair
proceeds predominantly through the production of a
virtual deuteron.
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 8 200
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Abstract—Propagation of gluons in the confining vacuum is studied in the framework of background
perturbation theory, where nonperturbative background contains confining correlators. Two settings of
the problem are considered. In the first, the confined gluon evolves in time together with the static quark
and antiquark forming the one-gluon static hybrid. The hybrid spectrum is calculated in terms of string
tension and is in agreement with earlier analytic and lattice calculations. In the second setting, the confined
gluon is exchanged between quarks and the gluon Green’s function is calculated, giving rise to the
Coulomb potential modified at large distances. The resulting screening radius of 0.5 fm presents a problem
when confronted with lattice and experimental data. A possible solution of this discrepancy is discussed.
c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION
Gluons are known to be confined, but this property

is never taken into account in standard perturba-
tion theory (SPT). As an argument, one refers to
the small-distance (high-momentum) domain, where
SPT is assumed to be valid. Beyond this domain,
SPT displays unphysical singularities and, moreover,
the very notion of gluon should be properly defined.
This can be done in the framework of background
perturbation theory (BPT) [1]. The formalism of this
kind, where the background is assumed to be non-
perturbative with confining properties, was developed
in [2, 3].

One immediate consequence of this new BPT is
that all gluons are confined and, moreover, the un-
physical singularities of SPT (Landau ghost poles
and branch points as well as IR renormalons) are
removed from the theory [2, 3].

The confined gluons can form several types of sys-
tems: glueballs [4], hybrids [5, 6], and gluelumps [7].
The analytic calculations in the quoted papers predict
a spectrum that, in all cases, is in good agreement
with lattice data and has a very simple form depending
only on string tension σ and αs.

The main subject of the present paper is the study
of the gluon-exchange interaction between Q and
Q̄ when the gluon is confined, which can be called
the confined Coulomb interaction V ∗

C (R). One can
expect that, at small distances, say R < 1 GeV−1,
the confined Coulomb potential coincides with the
standard Coulomb potential VC(R) = −C2αs(R)/R,
C2 = (N2

c − 1)/(2Nc).

∗This article was submitted by the author in English.
1063-7788/05/6808-1294$26.00
At large R, the confined gluon is expected to pro-
duce the screening of the Coulomb interaction. At
first glance, the screening mass should coincide with
the lowest hybrid mass of the static hybrid. How-
ever, as will be shown below, this naive expectation
fails since gluon propagation between quarks goes
not only in time (where hybrid mass is in the proper
place) but also in distance R (where, in addition,
asymptotics of wave functions enters). As a result,
one obtains a more complicated behavior, which we
display both numerically and analytically.

The plan of the paper is as follows. In Section 2,
the general formulas of BPT are written and ap-
proximations are discussed. In Section 3, a simple
toy model is suggested to illustrate the method and
possible qualitative outcome.

In Section 4, the method is applied to calculate
the static hybrid Green’s function and spectrum in
a way different from that used before, in [6]. In Sec-
tion 5, results of the previous section are used to
calculate the Green’s function of the confined gluon
exchanged between static quarks, and the resulting
screened Coulomb potential. Physical consequences
and prospects are discussed in the concluding sec-
tion.

2. DYNAMICS OF A CONFINED GLUON:
GENERALITIES

In the field correlator method (FCM), the dynam-
ical picture of a confined gluon is simple and self-
consistent: the gluon (its corresponding field is aµ)
moves in the strong and disordered vacuum field Bµ
c© 2005 Pleiades Publishing, Inc.
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characterized by the correlators of the field Fµν(B),
so that the total gluonic field Aµ can be written as

Aµ = Bµ + aµ. (1)

Here, the problem of separation of Aµ into Bµ and aµ

and that of double counting are resolved technically
by the use of the so-called ’t Hooft identity [3], and
one can integrate and average over both DBµ and
Daµ, so that the partition function is

Z =
1
N ′

∫
DBµZ(J,B), (2)

Z(J,B) =
∫

Daµ exp(−S(a+B) + J(a+B))

and S is the standard QCD Euclidean action in-
cluding ghost and gauge-fixing terms (see [2, 3] for
details).

In what follows, we shall be interested in the gluon
propagation in the field of static (confined) quark Q
and antiquark Q̄. The starting point for the gauge-
invariant study of this process is the total Green’s
function of the QQ̄ system, which is proportional to
the Wilson loop:

〈W (A)〉 ≡ 〈〈W (B + a)〉〉B,a (3)

= 〈〈W (B + a)〉a〉B ,

W (A) = trP exp


ig

∫

C

Aµdzµ


 . (4)

The Wilson loop is assumed to be the closed rect-
angular contour R× T0 in the (x1, x4) plane.

One may expand in gaµ keepingBµ intact and this
will give the BPT series ([1, 2]; see [3] for details), the
first terms being

〈〈W (B + a)〉〉B,a = 〈W (0)(B)〉B (5)

− g2〈W (2)(B,x, y)Gµν(x, y)〉Bdxµdyν + . . . .

For the chosen contour C and the Feynman gauge of
fieldBµ and Fock–Feynman–Schwinger representa-
tion (FFSR) for Gµν ,W

(2) and Gµν can be written as

W (2) = C2(f)Φ
(−)
αβ (x, y)Φ(+)

α′β′(y, x), (6)

Gµν(x, y) =

∞∫

0

ds(Dz)xye
−K (7)

×
{
Φ(adj)(x, y)P exp

(
2g

s∫

0

Fρσ(z(τ))dz

)}(µν)

βα,β′α′

,

where Φ(±)(x, y) are the future/past pieces of the
Wilson loopW (0)(B) = P exp(ig

∮
Bµdzµ), obtained
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by cutting it at points x and y. Note that the adjoint
phase factor Φ(adj)(x, y) ≡ exp(ig

∫ x
y Bµdzµ) from

Gµν , which can be written as the product

Φ(adj)(x, y) = Φβα(y, x)Φβ′α′(x, y), (8)

produces in the total construction two closed Wilson
loops (see [2, 3, 6] for pictures and discussion):

Φ(−)Φ(adj)Φ(+) = W (−)
σ (x, y)W (+)

σ (y, x). (9)

Note the subscript σ in (9) which implies the color-
magnetic spin factor [the last factor on the right-hand
side of (7)] entering into all Wilson lines including
Φ(adj). The averaging of (9) over fieldsBµ can be easily
done at large Nc:

〈W (2)
µν Gµν〉B = G(0)〈W (−)

σ (x, y)〉B〈W (+)
σ (y, x)〉B ,

(10)

where G(0) denotes the integral
∫
ds(Dz)xye

−K . In
the FCM, one obtains for 〈W 〉 the area-law behavior
at large distances R,T � λ:

〈W 〉 = exp(−σSmin), (11)

and λ is the gluon correlation length [8], character-
izing the fall-off in x of the field correlator D(x) ∼
〈trF (x)ΦF (0)〉, and Smin is the area, which is as-
sumed to be minimal for the given contour C.

Note that, at large distances, the spin factor does
not contribute to the area law [4–7] and, therefore, the
subscript σ in (11) is omitted.

To describe Smin, one can parametrize first the
trajectory zµ(t) of the gluon between the initial point
x and the final point y (both on the contour C),

zµ : (z1(t) ≡ ξ(t), z2(t), z3(t), z4(t) ≡ t), (12)

h2(t) = z2
2(t) + z2

3(t).

We choose the Nambu–Goto ansatz for the minimal
area surface (or rather for its increase over the plane
area S0 = RT ):

∆S = ∆S1 +∆S2, (13)

∆Si =

x4∫
y4

dt

1∫

0

dβ
√

(ẇiw′
i)2 − ẇ2

i w
′2
i ,

where wiµ(τ, β): wi4 = t, w1,2 = (1− β)(R, 0) + βz.
Note that, in our case, two different processes can be
initiated by the exchanged gluon:

(i) Points x and y are at x4 = T0, x = (R/2, 0, 0)
and y4 = 0, y = (R/2, 0, 0), the situation which is
ensured on the lattice by the insertion of plaquettes
at these sides of the Wilson loop. In this case, one
obtains the hybrid excitation of the Wilson loop, and
this form was used before to compute hybrid spectra
analytically [5, 6] and on the lattice [9].
5
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(ii) The points x and y belong to the trajecto-
ries of Q and Q̄, respectively, so that Gµν(x, y) =
G44(R,T ), T < T0, describes the propagation of the
Coulomb gluon between the quarks.

In what follows, we shall study both cases using
for that the final form resulting from (5), (7), (11), and
(13)

〈G44(x, y)〉B ≡ G(x, y) =

∞∫

0

ds(Dz)xye
−K−σ∆S .

(14)

To treat the awkward roots in ∆S [Eq. (13)],
one can introduce the einbein parameters ν(t) and
ν̄(t) [10], obtaining in the small oscillation limit

G(x, y) =

∞∫

0

ds(Dz)xyDνDν̄e−K−σ∆S̃(ν,ν̄), (15)

where

∆S̃(ν, ν̄) =

x4∫
y4

dt

{
ν + ν̄

2

(
1− 1

3
ż2
⊥

)
(16)

+
h2 + ξ2

2ν
+

h2 + (R − ξ)2

2ν̄
−R

}
.

For x = (R/2, 0, 0, T0), y = (R/2, 0, 0, 0), one will
have from (14) the static hybrid spectrum, to be com-
pared with previous calculations, and for case (ii), one
can define the generalized Coulomb interaction as

T0∫

0

dx4

T0∫

0

dy4G(x, y) =

T0∫

0

d
x4 + y4

2
(17)

×
T0/2∫

−T0/2

G(R,T )dT ≡ T0V
∗
C (R).

In the limit σ → 0, one obtains the free gluon
propagator G(0)(x, y) = 1/[4π2(x− y)2] in case (i)
and the Coulomb interaction V ∗

C(R) = VC(R) =
−C2αs/R in case (ii). Our purpose in what follows
is to obtain a modification of these results for nonzero
σ. To grasp the idea, we shall start with a toy model
as a warm-up.

3. A SIMPLE TOY MODEL
FOR THE CONFINED GLUON

Consider a gluon propagating from static quark Q
with coordinate (0,0) to antiquark Q̄(T,R, 0, 0).

The world sheet of the QQ̄ system with the string
from Q to Q̄ sweeps the strip in the (x4, x1) plane,
PH
and one expects that gluons are confined dynamically
to some region around this strip. This means that
the running away of gluons from the plane (x4, x1) is
damped by some function, which we take in the form
of the confining “potential” V ,

V (z) =
ω2

4
(z2

2 + z2
3). (18)

The Green’s function of the gluon can be written in
the FFSR [11]

G(T,R) =

∞∫

0

ds(Dz1)0R(Dz4)0T (19)

× (Dz2)00(Dz3)00 exp


−K −

s∫

0

V dτ


 ,

where K =
1
4
∫ s
0 dτ (dzµ/dτ )

2 and

(Dzi)ab =
N∏

n=1

dpi

2π
eipi(ai−bi)

d∆zi(n)
4πε

.

The integration in Dzi factorizes and can be per-
formed immediately, with the result (see Appendix 1
for details)

G(T,R) =
1

16π2

∞∫

0

ds

s2
ϕ(ωs) exp

(
−x2

4s

)
, (20)

ϕ(t) =
t

sinh t
; x2 = R2 + T 2.

The integral (20) can be estimated by the stationary-
point method and one obtains

G(T,R) ∼=
ψ(ωx2)
4π2x2

, (21)

ψ(t) ≈




t

8 sinh (t/8)
, t � 1,

√
te−

√
t, t � 1.

One can see that, at large x2, x2ω � 1, there
appears in (21) the damping factor signaling the mass
gap m =

√
ω, i.e., the confined gluon acts at large

distances as a massive particle, while at small dis-
tances, x2 → 0, it behaves as an ordinary unconfined
gluon. When ω → 0, one recovers from (17) the stan-
dard Coulomb interaction,

VC(R) = −g2C2(f)× 2

∞∫

0

G(T,R)dT = −αsC2(f)
R

,
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and in the opposite limit, ωR2 � 1, VC(R) is multi-
plied by the factor

4
√
2

(ωR2)1/4
exp(−(ωR2)1/2).

This screening factor is equal to 1/2 at R ≈
√

4/ω
and decays exponentially at large R, as is commonly
expected. In Section 5, a more complicated behavior
will be obtained in the realistic case when the gluon
is confined by the string world sheet. To this end, we
develop in the next section the necessary formalism
for the hybrid Green’s function.

4. SPECTRUM OF THE CONFINED
GLUONS: STATIC HYBRID

In this section, we shall calculate the gluon
Green’s function in the hybrid situation, i.e., when
boundary conditions are given in (i) [see Section 2
below Eq. (13)], and one can identify T ≡ T0. One
can introduce the einbein variable µ(t) as in [10] (see
Appendix 2 for details) and write

G(x, y) =
∫

Dµ

2µ̄
DνDν̄e−ΓG3(R,T, ν, ν̄, µ), (22)

where we have defined

Γ =

T∫

0

µ

2
dt+

σ

2

T∫

0

(ν + ν̄)dt + σR2

T∫

0

dt

2(ν + ν̄)
,

(23)

G3 =
∫

(D3z)xy (24)

× exp

(
−

T∫

0

(
µ

2
ż2
1 +

µ+ J1 + J2

2
ż2
⊥

)
dt

− σ

2ν̃

T∫

0

[(z1 − R̃)2 + h2]dt

)
,

R̃ = Rν/(ν + ν̄), and we take x = (R/2, 0, 0, 0), y =
(R/2, 0, 0, T ), Ji = σνi/3.

The integration over (D3z) can be immediately
done using the standard path integral formula (see
Appendix 1):

G3 =
(

µω1

2π sinh(ω1T )

)1/2

(25)

× (µ+ J1 + J2)ω⊥
2π sinh(ω⊥T )

exp
{
− µω1

2 sinh(ω1T )

× R2(ν − ν̄)2

2(ν + ν̄)2
(cosh(ω1T )− 1)

}
,
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where

ω1 =
√

σ

µν̃
, ω⊥ =

√
σ

ν̃(µ+ J1 + J2)
,

ν̃ =
νν̄

ν + ν̄
.

The next step is the stationary point analysis of
Eqs. (22), (25) with respect to variables ν, ν̄, µ. We
relegate the details of this analysis to Appendix 2 and
here only quote the result. Minimizing the expression
in the exponent of (25) with respect to (ν − ν̄), one
obtains ν = ν̄, and the stationary point in ν, ν = ν0 is
found from the equation

∂

∂ν

(
σν +

σR2

4ν
+

ω⊥
2

+ ω⊥

)
= 0. (26)

One can distinguish two cases: (a) σR2 � 1;
(b) σR2 � 1.

In case (a), taking into account that µ0 � √
σ

(which will be confirmed afterwards), one has

ν0 =
R

2
, ω

(0)
1 →

(
4σ
µR

)1/2

, (27)

ω
(0)
⊥ →

√
12
R

,

and Eq. (22) with ν = ν̄ = ν0 assumes the form for
large ωT

G(x, y) (28)

=
∫

Dµ exp
[
−
(
σR+ ω

(0)
⊥ +

µ

2
+

1
2

√
4σ
µR

)
T

]
.

The stationary point µ = µ0 is found from the expo-
nential of (28) to be

µ0 =
( σ

R

)1/3
,

and the resulting static hybrid mass at large R is

Mhybrid(R) = σR +
3
2

( σ

R

)1/3
+

√
12
R

. (29)

The second term on the right-hand side of (29)
is the characteristic R−1/3 law for large-R hybrid
excitations, studied in [6], and one can distinguish the
longitudinal and transverse branches of the spectrum
with higher excitations generated by sinh(ω1T ) and
sinh(ω⊥T ) in (25), which we write as in [6]:

M
(long)
hybrid =

3
21/3

( σ

R

)1/3
(
nz +

1
2

)2/3

, (30)

M
(trans)
hybrid =

√
12
R

(n⊥ + Λ+ 1),
5
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where Λ is angular momentum projection on the x

axis. Note that
√
12 = 3.46 ≈ π and transverse spec-

trum is very close to the flux tube excitations, while
the longitudinal one found in [6] is new.

The resulting spectrum (30) is in a good agree-
ment with lattice calculations [9] (see also discussion
in [6]).

We now turn to case (b), σR2 � 1, and from (26)
find that ν = ν0 = (9/(σµ))1/3 and the equivalent of
Eq. (28) is

G(x, y) =
∫

Dµ (31)

× exp

{
−
[
µ

2
+

3
2
(3σ)2/3

µ1/3
+

σR2

2

(σµ
9

)1/3
]
T

}
.

To check the accuracy of our approach, we can calcu-
late the hybrid mass in the limit R → 0, which coin-
cides with the gluelump case [7]. Defining for R → 0
the stationary point µ = µ0 from the exponent of (31),
one has µ = µ0 =

√
3σ and the gluelump mass is

Mgluelump = 2
√
3σ, (32)

which should be compared with the dedicated gluelump

calculations in [7]: M0 = 2 (a/3)3/4 (2σadj
)1/2 =

2
√
3.096σ, where we have used the value of the first

zero of the Airy function, a = 2.338. One can see
agreement on the level of 1.5%.

Taking into account the last term in the exponent
of (31), one obtains the lowest hybrid mass at small
σR2 � 1

Mhybrid(R) = 2
√
3σ +

σR2

2

√
σ

3
+O(R4), (33)

which coincides with the mass spectrum obtained in
[6] for this limiting case by a different method.

Thus, our approach can be used as a good zeroth-
order approximation for the confined gluon Green’s
function and its spectrum.

In what follows, we shall use the dependence
µ0(R) = µ̄ given above in two limiting cases:

µ0(R) =
( σ

R

)1/3
, σR2 � 1, (34)

µ0(R) =
√
3σ, σR2 � 1.

5. THE CONFINED COULOMB
INTERACTION

In this section, we consider the confined gluon
Green’s function for the initial and final conditions
corresponding to the Coulomb gluon exchange.
PH
With the same notation as in (22)–(24), one has

G(R,T ) =
∫

DνDν̄
Dµ

2µ̄
e−ΓG

(C)
3 (R,T, ν, ν̄, µ),

(35)

where Γ is the same as in (23), but now G
(C)
3 is

not given by (25), but has another form, due to dif-
ferent initial and final condition, x = (0, 0, 0, 0), y =
(R, 0, 0, T ), and the same simple general formula of
Appendix 1 yields

G
(C)
3 =

(
µ̄ω1

2π sinh(ω1T )

)1/2

(36)

× (µ̄+ J1 + J2)ω⊥
2π sinh(ω⊥T )

exp
{
− µ̄ω1

2 sinh(ω1T )

× [R2 cosh(ω1T ) + 2R2 ν̃

ν + ν̄
(1− cosh(ω1T ))]

}
,

where we have defined ω⊥ as in the previous section,
while

ω1 =

√
4σ

µ̄(ν + ν̄)
, Dµ =

∏
n

dµ(n)
√
∆t√

2πµ(n)
,

so that
∫
Dµ exp

{
−1
2
∫ T
0 µ(t)dt

}
= 1. Minimizing

in (ν − ν̄), one obtains ν = ν̄,

ω1 → ω
(0)
1 =

√
2σ
µ̄ν

,

ω⊥ → ω
(0)
⊥ =

√
2σ

(µ̄+ J1 + J2)ν
,

and one has

G(R,T ) =
∫

Dν

(2π)3/2 × 2µ̄
exp(−Γ0), (37)

where

Γ0 = σνT +
σR2T

4ν
+

1
2
ln sinh(ω(0)

1 T ) (38)

− 1
2
ln(µ̄ω(0)

1 ) +
µ̄R2

2T
ϕ(ω(0)

1 T ) + ln sinh(ω(0)
⊥ T )

− ln
(
(µ̄+ J1 + J2)ω

(0)
⊥

)

and

ϕ(x) =
x(1 + coshx)

2 sinhx
, (39)

ϕ(0) = 1, ϕ(x → ∞) ≈ x

2
.

To proceed, one should find the stationary point
of Γ0 with respect to ν, ∂Γ0/∂ν|ν=ν0

= 0. This is
easy to do at large R since then ν0 ∼ R/2 and
YSICS OF ATOMIC NUCLEI Vol. 68 No. 8 2005
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The screening factor ξ(R) and f(λ) as functions of distance R

λ 0.1 0.2 0.4 0.6 0.8 1.0 2.7 5.4

f(λ) 4.60 1.91 0.74 0.41 0.26 0.18 0.024 0.0029

R [fm] 0.084 0.14 0.23 0.32 0.39 0.46 0.98 1.645

ξ(R) 0.929 0.796 0.656 0.577 0.515 0.469 0.241 0.086
ω
(0)
1 =

√
2σ/(µ̄ν0) → 0, ω

(0)
⊥ → 0, so that the last

three terms on the right-hand side of (38) do not
contribute:

∂Γ0

∂ν
= 0 = σT

(
1− R2

4ν2
0

)
, (40)

ν0 =
R

2
, R → ∞,

and

Γ0(ν = ν0)− σRT =
1
2
ln sinh

(√
4σ
µ̄R

T

)
(41)

− 1
2
ln
(
µ̄

√
4σ
µ̄R

)
+

µ̄R2

2T
ϕ

(√
4σ
µ̄R

T

)

+ ln sinh

(√
12
R

T

)
− ln

((
µ̄+

σR

3

) √
12
R

)
.

To get the modified Coulomb interaction at large
R, one considers the integral

V ∗(R) ≡
∞∫

−∞

dTG(R,T ) (42)

= 2

∞∫

0

dTG(R,T ) =
2

(2π)3/2 × 2µ̄

∞∫

0

e−Γ0dT.

Here, the modified Coulomb potential is connected to
V ∗(R) as V ∗

C (R) = g2C2V
∗(R). Inserting (41) into

(42), one obtains

V ∗(R) =
2
√
3 (µ̄/R+ σ/3)

2π3/2
(43)

×
∞∫

0

dT

sinh
(√

12T/R
) [

sinh
(√

4σ/(µ̄R)T
)]1/2

× exp
(
− µ̄R2

2T
ϕ

(√
4σ
µ̄R

T

))
.

Introducing a new variable τ = µ̄R2/(2T ), this
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 8 200
integral can be reduced to the form

V ∗(R) =

√
3
(
(µ̄R)2 + λ2

3

)

2π3/2R
(44)

×
∞∫

0

dτ

τ2

e−τϕ(λ/τ)

(sinh(λ/τ))1/2 sinh
(√

3µ̄R/τ
) ≡ ξ(R)

4πR
,

where we have defined λ = (σµ̄R3)1/2 →
R→∞

(σR2)2/3.

Finally, ξ(R) can be written as

ξ(R) =

√
3
π
× 2λ

(
1 +

λ

3

)
f(λ), (45)

λ = (σR2)2/3,

f(λ) =

∞∫

0

dy
e−ϕ(λy)/y√

sinh(λy) sinh(
√
3λy)

. (46)

For λ → 0, one has f(λ) ≈ 1
2λ

√
π

3
, and ξ(λ → 0) is

close to unity. The explicit behavior of ξ(R) is given in
the table.

For σR2 → ∞, one has from (34) µ̄ = (σ/R)1/3,
and inserting this into (44), one obtains the asymp-
totics

V ∗(R) ≈
√

2
3π

λ exp
(
−λ

2

)

R
(47)

≈

√
2(σR2)2/3 exp

[
−1
2
(σR2)2/3

]
√
3π3/2R

, σR2 � 1.

One can see in the table that the screening starts
at rather small values of R, and at R ∼ 0.5 fm, the
coefficient ξ(R) ∼ 0.5.

6. CONCLUSIONS

The overall static interaction betweenQ and Q̄ can
be derived from Eq. (5), where the term 〈W (0)(B)〉
5
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gives the confining term Vconf(R), while the second
term on the right-hand of (5) provides the screened
Coulomb potential V ∗

C (R), so that one has forR � λ,
λ ≈ 0.2 fm,

Vstatic(R) = σR + V ∗
C(R), (48)

V ∗
C (R) = −C2αs

R
ξ(R),

where ξ(R) is given in (45), (46) and in the table.
In (48), the interference of perturbative field aµ and

nonperturbative Bµ is taken into account. At smallR,
R � λ, there exists another interference effect, which
was treated before in [12] and which provides linear
behavior of Vconf(R) at very small R, while with-
out this interference Vconf(R) ∼ const · R2, for R �
λ [13].

The behavior σR− e/R was checked on the lat-
tice in the interval 0.1 < R < 1 fm with good accu-
racy [14], and the region 0.8 < R < 1.5 fm was also
measured [15] in the regime where string breaking is
expected. Recently, a thorough analysis of the region
R � 1 fm [16] has revealed that ξ(R) is approximately
constant in this interval and coincides within 15%
with the bosonic string Casimir energy prediction
(see [16] for discussion and earlier references). Also,
the heavy quarkonia spectrum calculated assuming
ξ(R) ≡ 1 is in good agreement with experiment in-
cluding high excited bottomonium states [17, 18], and
deviation of ξ(R) from unity for R � 0.5 fm seems to
deteriorate this agreement. Thus, the screening factor
ξ(R) calculated in this paper [Eq. (45) and table] may
be in conflict with lattice and phenomenological (ex-
perimental) data. A possible solution of this paradox
lies in adopting the bosonic string term [16] at dis-
tances beyond 0.5 fm, so that the sum of the screened
Coulomb term and the bosonic string term could
imitate the original unscreened Coulomb interaction.
This picture of transmutation of the Coulomb into the
string vibration term, if realistic, can be supported by
the Casimir scaling study of theCoulomb-like term at
distances around 1 fm. The accuracy of the previous
study by Bali [14] was insufficient to draw definite
conclusions about the presence of the bosonic string
term in this region.

In addition, one should recalculate the bosonic
string term using the realistic hybrid spectrum found
in [6], which will be reported elsewhere.
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APPENDIX 1

DERIVATION OF THE GLUON GREEN’S
FUNCTION IN THE TOY MODEL

OF THE CONFINING PLANE

Equation (19) describes the Green’s function of
free motion in the plane (x1, x4) and factorizable mo-
tion in oscillator potential in the directions x2 and
x3. For the latter, one can use the standard text-
book formula (see, e.g., [19]) for the Green’s function
G(xa, ta;xb, tb) corresponding to the Lagrangian

L =
mẋ2

2
− mω2

0x
2

2
,

which we write in the Euclidean metrics

G(xa, ta;xb, tb) =
(

mω0

2π sinh(ω0T )

)1/2

× exp
{
− mω0

2 sinh(ω0T )
[(x2

a + x2
b)

× cosh(ω0T )− 2xaxb]
}
,

where T = ta − tb. Changing mω2
0 → ω2/4,m =

1/2, and identifying xa = xb = 0, one arrives at the
result written in Eq. (20).

APPENDIX 2

THE GLUON PROPAGATOR
IN THE EINBEIN PATH-INTEGRAL

REPRESENTATION

One starts with FSR for the free propagator, which
can be written as

G(x, y) =

∞∫

0

ds(Dz)xy exp(−K), (A.1)

and introduces the einbein variable-dynamical mass
µ(t) as in [10], so that K can be rewritten as

K = m2s+
1
4

s∫

0

(
dzµ(τ)
dτ

)2

dτ (A.2)

=

T∫

0

dt

{
m2

2µ(t)
+

µ(t)
2

+
µ(t)
2

(
dzi(t)
dt

)2
}

.

In (Dz)xy , there is integration over time compo-
nents of the path, namely,

(Dz4) ≡
∏
n

d∆z4(n)
(4πε)1/2

δ
(∑

∆z4 − T
)
, (A.3)
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where T ≡ x4 − y4, and using the definition of

µ(t), µ(t) =
1
2
dt

dτ
, one can rewrite the integration

element in (A.3) as follows (t ≡ z4):

d∆z4(n)√
4πε

= 2dµ(n)
√

ε

π
=

dµ(n)
√
∆t√

2πµ(n)
, (A.4)

√
ε =

√
∆t

2µ(n)
.

Moreover, the δ function acquires the form

δ
(∑

∆z4 − T
)
= δ(s × 2µ̄− T ), (A.5)

where we have defined

µ̄ =
1
s

s∫

0

2µ(τ)dτ. (A.6)

As a result, one can integrate in (A.1) over ds using δ
function (A.5) and rewrite ds(Dz)xy as ds(D4z)xy =
(D3z)xyDµ. One can write the Green’s function as
follows:

G(x, y) =
∫ ∏ d3∆zi(n)

l3
(A.7)

× e−K dµ(n)
lµ(n)

d3p

(2π)3
eip·(x−y−

∑
∆z(n)),

where K is given in (A.2), and l, lµ are

l(n) =
(
2π∆t

µ(n)

)1/2

,

lµ(n) =
(
2πµ(n)
∆t

)1/2

, N∆t = x4 − y4 ≡ T.

The integration over d3∆zi(n) yields

G(x, y) =
∫

d3p

(2π)3
exp

(
ip · (x − y) (A.8)

− 1
2

T∫

0

dtµ(t)
(
1 +

p2 +m2

µ2(t)

))
1
2µ̄

(Dµ).

Taking into account the integral
∞∫

0

dµ(n)√
µ(n)

exp
[
−∆t

2

(
µ(n) +

p2 +m2

µ(n)

)]
(A.9)

=

√
2π
∆t

e−∆t
√

p2+m2
,
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one has finally

G(x, y) =
∫

d3p

(2π)3
e
ip·(x−y)−

T∫
0

dt
√

p2+m2

2
√

p2 +m2
, (A.10)

where we have used the relation following from the
stationary point in the integral (A.9)

µ̄ =

s∫

0

µ(τ)dτ =
√

p2 +m2. (A.11)

This can be compared with the integral

G(r, T ) =
∫

d4p

(2π)4
eip·r+ip4T

p2
4 + p2 +m2

, (A.12)

r = x − y,

which reduces to (A.10) after integrating over dp4 for
T > 0. Equation (A.12) is the standard form of the
free propagator. Now, in the case of interacting gluon
as in Section 4, one can still use (A.5), (A.6) with the
result that µ̄ = µ0, with µ0 defined in (34), since µ0

does not depend on time.
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Abstract—The differential cross sections for elastic and inelastic scattering of α particles on 11В nuclei
at energies of 40 and 50 MeV were measured in the entire angular range. The measured angular
distributions were analyzed in terms of the optical model, the distorted-wave Born approximation, and the
coupled-channelmethod. Optical model potentials and quadrupole (β2) and hexadecapole (β4) deformation
parameters were found from this analysis. The rise in the cross sections at backward angles was shown to
be associated with the transfer mechanism of the heavy 7Li cluster. c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

The elastic and inelastic scattering of hadrons on
11B nuclei has been the subject of much research.
The largest number of works were performed with
protons of various energies up to 1 GeV (see [1–5]
and references therein). The scattering of 3He [6–
9] and α particles [10–12] has been investigated to
a much lesser extent. In these papers, the measured
angular distributions were analyzed mainly in terms
of the optical model and the distorted-wave Born
approximation. However, belonging to the nuclei of
the middle of the p shell, the 11B nucleus has an ex-
tremely large quadrupole deformation [13]. Therefore,
it is natural that the low-lying states of this nucleus
at energies 2.125 (1/2−), 4.445 (5/2−), 5.021 (3/2−),
and 6.743 MeV (7/2−) are interpreted as the mem-
bers of two rotational bands. These bands are built on
the ground (3/2−) and first excited (1/2−) states and
have the quantum numbers K = 3/2 and K = 1/2,
respectively. In this case, the channel-coupling effects
are significant. Disregarding them can be responsible
both for the nonphysical values of the potential pa-
rameters extracted from a phenomenological optical-
model analysis of the elastic scattering and for the
inability to achieve an acceptable description of the
experimental data with folding potentials. Therefore,
the coupled-channel method is more suitable for ana-
lyzing 11В. In addition, not only the absolute value but
also the sign of the deformation can be determined in
principle by using this method.
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A coupled-channel analysis was performed only in
two papers in which the elastic and inelastic scatter-
ing of 3He at energies of 74 MeV [7] and 17.5 and
40 MeV [8] was investigated. In the former paper, an
equally good description of the measured angular dis-
tributions was achieved for both negative and positive
quadrupole deformation parameters (β2 = +0.43 and
β2 = −0.5). In the latter paper, it was pointed out that
the negative sign is preferred. This is consistent with
the conclusions set out in [14] and corresponds to
the physical picture where, in a simple shell model,
11В has the configuration of a p3/2 hole in the core
of 12С, a nucleus that is known to have a negative
quadrupole deformation. At the same time, the most
recent result was in conflict with the data of the earlier
paper [15], in which a positive quadrupole deformation
of the 11В nucleus was obtained by analyzing the
12C(d, 3He)11B reaction at deuteron energy 80 MeV.
However, if this were the case, then the shape of the
nucleus in the above reaction would change sharply
from highly oblate (12С) to highly prolate (11В). As
was noted in [14], such a significant change in defor-
mation would yield a large suppression factor in the
cross sections for the single-nucleon pickup reaction
on 12С nuclei, which is not observed experimentally.

In light of the foregoing, investigating the scatter-
ing of α particles is of considerable interest. The point
is that the scattering of “isoscalar” particles (Tz = 0)
provides information about the mass deformation of
the target nucleus, while the scattering of e, p, and
3He is also sensitive to other isospin components.
Therefore, the deformation parameters determined in
both cases may not be identical. Another special
feature associated with the use of α particles is the
absence of spin–orbit coupling, which makes it easier
c© 2005 Pleiades Publishing, Inc.
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Fig. 1. The energy spectrum of α particles scattered from 11B nuclei at beam energy 50 MeV measured at an angle of 50◦.
to analyze the measured cross sections in the range of
intermediate and backward angles.

In this paper, we investigate the elastic and inelas-
tic scattering ofα particles at energies 40 and 50MeV
with the excitation of low-lying states in the 11В
nucleus. Our mail goal was to extract the quadrupole
and hexadecapole deformation parameters for the 11В
nucleus from the analysis of experimental data by
using the coupled-channel method and to study the
dependence of the results obtained on the choice of an
optical model potential and the possible contribution
of the heavy stripping mechanism to the scattering.

2. THE EXPERIMENTAL TECHNIQUE
AND RESULTS OF THE MEASUREMENTS

The measurements were made with beams of
α particles at energies of 40 and 50 MeV that
emerged from the U-150M isochronous cyclotron at
the Institute of Nuclear Physics, National Nuclear
Center, Republic of Kazakhstan. The angular spread
in the beam was±0.5◦.

Self-supported 11В foils enriched up to 99% were
used as the targets. The target thickness ranged
from 0.1 to 0.2 mg cm−2 and was determined from
the energy losses by α particles from a radioactive
source with an accuracy of about 8%.

The scattered particles were detected by a tele-
scope consisting of two silicon counters: one thin
(∆E) and one total absorption (E) counter 30 µm
and 1 mm in thickness, respectively. The scattered
P

α particles were separated from other charged reac-
tion products by a system of two-dimensional ∆E–
E analysis using CAMAC electronic modules and a
special code running on a personal computer. The
charged particle detection technique was described in
more detail in [16].

The overall energy resolution, 400–500 keV, was
determined mainly by the energy spread in the cy-
clotron beam.

The measurements were performed in the range of
angles θl.s. = 10◦–170◦. A typical spectrum of scat-
tered α particles is shown in Fig. 1. The spectra ex-
hibit no strong transitions at 11В excitation energies
above 7 MeV. Apart from the elastic scattering peak,
intense transitions to the Ex = 4.445 MeV (Jπ =
5/2−) and 6.743MeV (7/2−) states are observed; the
latter are themembers of the rotationalK = 3/2 band
of the 11В (3/2−) ground state. TheEx = 2.125 MeV
(1/2−) and 5.021 MeV (3/2−) levels, which belong
to theK = 1/2 band, are excited weakly. This is to be
expected, since theK selection rule forbids collective
transitions between states with differentK.

The 4.445-MeV (5/2−) and 5.021-MeV (3/2−)
levels were not completely separated in our experi-
ment. The standard fitting procedure with the decom-
position of the structure at Ex = 4.45 MeV into two
Gaussian peaks with the width equal to the energy
resolution was used to separate them. An example of
this decomposition is shown in the inset in Fig. 1.

The differential cross sections were measured only
for the members of the rotational band of the 11В
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 8 2005



SCATTERING OF α PARTICLES ON 11B NUCLEI 1305
ground state. As will be seen from the figures below,
the diffraction structure in the angular distributions,
which is distinct at forward angles, gradually disap-
pears with increasing angle. At beam energy 50MeV,
the oscillations are smoothed out in the range of in-
termediate angles. An increase in the cross sections,
particularly significant at energy 40 MeV, is observed
at backward angles (more than 120◦).

We estimated the systematic error of the measured
cross sections to be no larger than 10%. The sta-
tistical error was 1–5% during our measurements in
the region of the forward hemisphere and increased at
backward angles, but nowhere exceeded 10%.

3. ANALYSIS AND DISCUSSION
OF RESULTS

3.1. Elastic Scattering:
Optical-Model Analysis

The potentials describing the interaction of α par-
ticles with 11В nuclei were initially sought in terms
of the optical model. We restricted our analysis to the
central Woods–Saxon potential with volume absorp-
tion

U(r) = −V f(r) − iWg(r) + VC (1)

and the radial dependence

f(r) = {1 + exp[(r − rV A
1/3
t )/aV ]}−1, (2)

g(r) = {1 + exp[(r − rWA
1/3
t )/aW ]}−1, (3)

where rV (W ) and aV (W ) are, respectively, the re-
duced radii and diffuseness for the real (V ) and imag-
inary (W ) parts of the nuclear potential. The last term
in Eq. (1) is the Coulomb potential of a uniformly

charged sphere of radius RC = 1.3A1/3
t , where At is

the target mass.
We computed the elastic scattering cross sections

and sought the optical-potential parameters that de-
scribed best the experimental data using the well-
known SPI-GENOA code [17] modified by Nils-
son [18] and Goncharov [19].

The ratios of the differential cross sections for
elastic scattering of α particles at energies of 40 and
50 MeV to the Rutherford cross section are shown
in Figs. 2 and 3, respectively. Our data for Eα =
50 MeV are identical to the previous measurements
at energy 48.7 MeV [12]. As we see from the figures,
the diffraction structure, which clearly shows up in the
forward hemisphere, decreases with increasing angle.
At backward angles, the differential cross sections
exhibit a rise that is the most pronounced at an en-
ergy of 40 MeV. Note that this rise is absent in the
scattering of 3Не from 11В at energies 40MeV [8] and
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 8 200
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Fig. 2. Angular distributions for the elastic scattering of
α particles from 11B nuclei at a beam energy of 40 MeV
(points). The curves represent the differential cross sec-
tions computed using the optical model with the poten-
tialsA andB fromTable 1: the heavy solid curves indicate
the total differential cross sections; the dotted and dashed
curves indicate the cross sections for the scattering on
the “near” and “far” edges of the nucleus; the thin solid
curves indicate the computed differential cross sections
for the far component withW = 0.

45 MeV [9], where the angular distributions show a
rainbow pattern that manifests itself in a broad maxi-
mum near 70◦ followed by an exponential decrease up
to 150◦.

The rise in the cross sections at backward an-
gles is a well-known phenomenon. It often cannot
be explained in terms of the standard optical model,
and other mechanisms different from the potential
scattering [20] have to be included in the analysis.
The scattering of d, t, 3He, and α particles from light,
strongly clustered nuclei (6Li, 7Li, 9Be, etc.) repre-
sents a special case. Here, the main mechanism of
anomalous backward-angle scattering is the cluster
transfer between the target nucleus and the projectile
particle [21, 22] in which the core of the target nucleus
is identical to the projectile particle.

In seeking the potential parameters that describe
best the experimental differential cross sections, we
5
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Table 1. The potential parameters found from the optical-model analysis

Potential V , MeV rV , fm aV , fm W , MeV rW , fm aW , fm IV /4A,
MeV fm3

IW /4A,
MeV fm3

χ2/N

Eα = 40 MeV

A 76.51 1.245 0.866 16.37 1.57 0.790 305 100 7.2

13.0∗

B 130.7 1.245 0.762 18.40 1.57 0.641 463 99.4 18.8

12.44∗

Eα = 50 MeV

A 74.88 1.245 0.856 16.86 1.57 0.829 295 106.4 4.51

13.9∗

B 124.2 1.245 0.753 19.29 1.57 0.692 435 108.5 11.36

14.4∗

∗ The values used in the calculations by the coupled-channel method.
took into account the fact that the rise in the cross
sections at backward angles observed in the scat-
tering of α particles may not be associated with the
ordinary potential scattering. Therefore, we found two
potentials. One (A) potential was obtained from the
condition for the best description of the experimental
data in the angular range of the forward hemisphere,
where the contribution from the potential scattering
is certain to dominate. The other (B) potential was
found from a fit over the entire angular range.

As the starting potential, we used the global po-
tential [23] that describes well the elastic scattering
of α particles on nuclei from 12С to 208Pb at en-
ergies above 80 MeV. The radii rV = 1.245 fm and
rW = 1.57 fm were fixed, and only the four remaining
parameters (V , W , aV , aW ) were varied. The results
of our search for optimal potential parameters carried
out by minimizing the functional χ2/N are presented
in Table 1. The two potentials found (A and B) were
used in our subsequent calculations by the coupled-
channel method.

The radial dependences of the potentials for en-
ergies 40 and 50 MeV are shown in Fig. 4. As we
see from this figure, the potentials A and B on the
surface of the nucleus (r ≈ 3−5 fm) have close imag-
inary parts and greatly differing real parts (the po-
tential B is much deeper). In the former and latter
cases, the volume integral of the real part (JV ) nor-
malized to the pair of interacting particles is about 300
and 430−460 MeV fm3, respectively. The computed
curves for the potential A (Figs. 2 and 3) describe
satisfactorily the experimental cross sections up to
80◦–90◦. The calculations with the potential B give
quite a satisfactory global description of the behavior
PH
of the differential cross sections. However, the com-
puted cross sections are in poor agreement with the
experimental ones in the range of intermediate (60◦–
90◦) and backward (more than 150◦) angles, where,
in contrast to the experimental data, the predicted
curves have a distinct oscillatory structure.

Note that the theoretical angular distributions
corresponding to the potential A show a rainbow
pattern. The latter shows up as strong oscillations
observed in the range of forward angles that are
damped with increasing angle and that transform
into a broad maximum followed by an exponential
decrease. For greater clarity, we decomposed the
cross sections into two components corresponding
to the scattering from the near and far edges of the
nucleus by using a standard procedure [24]. The
result of this decomposition is indicated in Figs. 2
and 3 by the dotted and dashed curves. We see
that the cross sections at angles larger than 30◦ are
entirely determined by the far component attributable
to the negative-angle scattering on the far (from the
detector) edge of the nucleus under the nuclear field of
attraction. The strong cross-section oscillations ob-
served in the range of forward angles (where the two
components have close amplitudes) are attributable
to the Fraunhofer diffraction. The special features
of the refractive part of the nuclear potentials A
and B are seen most clearly in the behavior of the
cross sections for the far component at W = 0. The
corresponding computed cross sections are shown
in Figs. 2 and 3 (thin solid curves). We see that (in
contrast to the calculations with the potential B) the
angular distributions computed with the potential A
exhibit a broad maximum in the range 70◦–80◦ with
YSICS OF ATOMIC NUCLEI Vol. 68 No. 8 2005
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Fig. 3. As in Fig. 2, but for an energy of 50 MeV.

a monotonic decrease in the cross sections toward
backward angles. In this sense, the potential A is
of the rainbow type, while the potential B is not.
It should be noted that the computed curves for
the potential A are very similar to the experimental
angular distributions for the elastic scattering of 3He
from 11B nuclei at close energies. The already noted
fact that the experimental angular distributions for
the scattering of α particles and 3He, nevertheless,
differ greatly in shape suggests that the contribution
of the heavy 8Li stripping from the 11B nucleus at
backward angles for the 3He scattering is much
less significant than that of the 7Li stripping for
the scattering of α particles. This is not surprising,
since the binding energy for 7Li in the 11B nucleus is
relatively low, εb = 8.67 MeV, while for 8Li it is much
higher, 27.21 MeV; therefore, the amplitude of the
3He + 8Li configuration in the surface region of the
nucleus must be small.

The potential scattering and the heavy stripping
are known to be separated with increasing α-particle
energy: the potential scattering undoubtedly dom-
inates in the forward hemisphere, while the heavy
stripping dominates in the range of backward angles.
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 8 200
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Unfortunately, there is no data on the scattering of
α particles from 11B at fairly high energies as yet.
The nearest (in mass) nucleus for which data are
available is 12C. For example, a rainbow maximum is
observed at an angle of 40◦ in the angular distribution
measured at an α-particle energy of 104 MeV [25].
Since the differential cross sections near the rainbow
maximum are described by the Airy function in the
semiclassical approximation and since the position of
the maximum depends on energy as θ ∼ 1/E [26],
one may expect a similar feature at our energies to
manifest itself in the range 70◦–80◦, which is pre-
dicted by the calculations with the potential A.

Thus, the potentialA seems physically more justi-
fied, although it does not allow the experimental cross
sections at backward angles to be described.
5
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3.2. Description of the Scattering
by the Coupled-Channel Method

The angular distributions of α particles for the
members of the rotational band of the 11B ground
PH
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Fig. 6. As in Fig. 5, but for an energy of 50 MeV.

state (Ex = 0.0 (3/2−), 4.445 MeV (5/2−), and
6.743 MeV (7/2−)) are shown in Figs. 5 and 6.
In inelastic scattering, as in elastic scattering, the
diffraction structure shows up in the entire angular
range, and a rise in the cross sections is observed in
the range of backward angles (θ > 130◦–140◦). In
analyzing the measured distributions by the coupled-
channel method, we used the collective model in
which the 11B nucleus is represented as a symmetric
rotor. In this model, the potential depends not only on
the radius, but also on the angle (θ) between the ra-
dius vector and the symmetry axis associated with the
nucleus. Taking into account only the quadrupole and
hexadecapole deformations with the parameters β2

and β4, we now define the radii ri in Eq. (1) for the
YSICS OF ATOMIC NUCLEI Vol. 68 No. 8 2005
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optical potential as

ri(θ) = ri[1 + β2Y
0
2 (θ) + β4Y

0
4 (θ)], (4)

which makes the standard optical potential deformed.
In our calculations, we disregarded the mixing

of the ground-state (K = 3/2) band and the band
starting from the 2.125-MeV (1/2−) (K = 1/2) level.
This is justified, because, first, the cross sections for
the transitions to the K = 1/2 band levels are small,
and, second, as the studies of the 3He scattering from
11B at energies 17.5 and 40 MeV [8] showed, the
band mixing model does not improve the description
of the experimental data and does not change signifi-
cantly the deformation parameters extracted from the
analysis, although it affects some of the above matrix
elements.

The calculationswere performed using the ECIS88
code [27]. The coupling scheme, including both
the quadrupole (L = 2) and hexadecapole (L = 4)
transitions in the 11B nucleus, is shown in the inset
in Fig. 5. Since the quadrupole moment of 11В is
large, the reorientation matrix elements whose values
are proportional to the quadrupole moment were
also included in the scheme. They correspond to
the transitions from states i to the same states i;
the contribution of only the quadrupole (L = 2)
reorientation was taken into account. The starting
potentials were taken from the optical-model analysis
of the elastic scattering (Table 1). At the first stage,
we assumed that β4 = 0 and varied only the depths
of the imaginary part of the potentials for a grid
of both positive and negative quadrupole deforma-
tion parameters of the real part of the potentials A
and B over the range from 0.3 to 0.9 to reconcile
the computed and experimental cross sections. The
parameters β2 for the Coulomb and imaginary parts
of the nuclear potential were chosen so that the defor-
mation lengths were constant (β2V RV = β2WRW =
β2CRC). The computed cross sections were fitted
to the experimental ones simultaneously for three
angular distributions. We sought the parameters that
yielded the best agreement between the theoretical
(σt(θi)) and experimental (σe(θi)) differential cross
sections by minimizing

χ2/N =
1
N

N∑
i=1

[
σe(θi) − σt(θi)

∆σe(θi)

]2

,

whereN is the total number of experimental points.
The χ2/N values are plotted against β2 in Fig. 7.

The solid and dotted curves correspond to the nega-
tive and positive values of β2, respectively. The filled
and open squares indicate the calculations with the
potentials A and B, respectively. We see that the
χ2/N values for the two potentials haveminima in the
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 8 200
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range β2 = 0.5−0.7 and that χ2/N reach the lowest
values for the negative sign (in the range β2 ≥ 0.5).

The subsequent calculations were performed for a
grid of β2 and β4 at fixed parameters of the imaginary
partW obtained at the first stage. For each given β2,
we varied the parameters β4 over the range from−0.5
to +0.5. The χ2/N values for positive and negative
β2 are shown in Fig. 8. For the two potentials, A
and B, there are shallow minima at β2 = 0.5−0.7 for
both positive and negative values of this parameter.
As previously, the calculations with negative β2 are
closer to the experimental points. The parameters β4

that described best the experimental data for several
fixed values of β2 were related to β2 almost linearly.
For example, the approximate relation β4 = 1.18 +
2.16β2 holds for Eα = 50 MeV (the potential A) and
at negative β2 (see the inset in Fig. 8). Thus, our
analysis yields β2 = −0.6 ± 0.15 (irrespective of the
chosen potential). The hexadecapole deformation pa-
rameter β4 lies within the range from −0.1 to +0.2
and could not be determined with a better accuracy in
our analysis. Therefore, the cross sections computed
5
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Table 2. The deformation parameters (β2) and the deformation lengths (δ2) determined by analyzing the scattering of
α particles, 3Не, and p using the coupled-channel method

a E, MeV Potential 〈r2〉1/2, fm R, fm β2 δ2, fm References

α 40 A 3.865 4.99 −0.6 −2.994 Our study

B 3.551 4.58 −0.6 −2.748 Our study

50 A 3.834 4.95 −0.6 −2.970 Our study

B 3.525 4.55 −0.6 −2.730 Our study
3He 17.5 3.166 4.09 −0.47 −1.920 [8]

40.0 3.579 4.62 −0.53 −2.449 [8]

74.0 C 3.348 4.32 −0.50 −2.161 [7]

D 3.318 4.28 +0.43 +1.842 [7]

p 30 2.754 3.55 0.77∗ 2.737∗ [3]
∗ The calculations were performed by the distorted-wave method; the sign of the deformation was not determined.
with β2 = −0.6 and β4 = 0 are assigned to the exper-
imental angular distributions (Figs. 5 and 6). As in
the case of elastic scattering, the calculations with the
potential A reproduce well the experimental data in
the forward hemisphere, but yield a smoother oscilla-
tory structure. While reproducing well the behavior of
the experimental cross sections in the entire angular
range, the calculations with the potential B underes-
timate their values in the range of intermediate angles
(>70◦), particularly for the transition to the 7/2− ex-
cited state atEx = 6.743MeV.Our analysis indicates
that the reorientation effects for the excited states play
no significant role. Only the inclusion of the matrix
element responsible for the quadrupole scattering to
the ground state leads to small changes in the in-
termediate angular range. This is in agreement with
the results of a similar analysis in [28, 29], where the
scattering from 9Ве with a deformation similar to that
of 11В was investigated.

In Table 2, our quadrupole deformation parame-
ters β2 and deformation lengths δ2 = β2R are com-
pared with those obtained by analyzing the scattering
of 3He at energies of 17.5, 40, and 74 MeV [7, 8] and
protons at energy 30 MeV [3]. In our calculations of
the deformation lengths, we used the mean radius of
the actual potential related to the root-mean-square
radius 〈r2〉1/2 by R =

√
5/3〈r2〉1/2. Our values of δ2

exceed those inferred from the 3He scattering by 20–
30%, which is within the errors of our analysis. The
electromagnetic deformation parameter can be de-
termined from the equality between the nuclear and
electromagnetic deformation lengths, β2R = β2CRC.
At the mean square of the Coulomb radius 〈r2〉 =
PH
5.0 fm2 [13] and the corresponding charge radius
RC = 2.89 fm, β2C = 0.99.

Using the expression for the internal quadrupole
moment (Q0)

Q0 =
3Z√
5π

β2CR
2
C, (5)

we obtainQ0 = −31.29 fm2.
The reduced probability for the quadrupole transi-

tion defined by [13]

B(E2; Ii → If ) =
5

16π
e2Q2

0〈I + iK20|IfK〉2 (6)

is B(E2; 5/2 → 3/2) = 33.4 e2 fm4; this is in rea-
sonable agreement with B(E2) = 21.3 ± 2.0 e2 fm4

inferred from the electron scattering [30], given the
accuracy of the analysis itself and the possible error
in the absolute value of the cross sections for the
measured angular distributions.

The negative sign of the deformation obtained
from our analysis and in the study of the 3He scatter-
ing [8] is consistent with the theoretical calculations
by the Hartree–Fock method for a self-consistent
potential [31, 32]. Our calculations show that the
total binding energy is at a minimum only for the
deformation corresponding to an oblate nucleus
(Q0 < 0). On the other hand, since the sign of the
internal quadrupole moment is negative, the static
quadrupole moment Q defined by [13]

Q =
3K2 − I(I + 1)
(I + 1)(2I + 3)

Q0, (7)

which is valid for an axially symmetric deformation,
must also be negative. However, it follows from the
YSICS OF ATOMIC NUCLEI Vol. 68 No. 8 2005
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hyperfine structure of the 11В atomic spectrum [33]
that Q > 0.

This contradiction can probably be explained by
the fact that our rotational model is not quite ad-
equate when applied to the 11B nucleus. Indeed, it
can explain neither the location of the 7/2− level nor
the intensities of the transitions inside the rotational
band 3/2−–5/2−–7/2− [32]. It should be added that
the enhancement of the transitions in 11B could be
associated not only with the axially symmetric de-
formation in the shape of an ellipsoid of revolution,
but also with the cluster isolation effects, which are
known to play a major role in light nuclei.

3.3. Allowance for the Transfer Mechanism
of the Heavy Cluster

At backward angles, the cross sections for the
transfer of a cluster (C = A−a) in the A(a, A)a reac-
tion can significantly exceed those for purely potential
scattering. The optical model predicts that the latter,
as the studies of the scattering of 3He and α on light
nuclei at energies of 40–70 MeV [7, 8, 21, 22] show,
are no more than 0.1 mb sr−1, while the cluster-
transfer cross sections can reach 1–10 mb sr−1. For
the scattering ofα particles on 11B, the increase in the
contribution of the transfer of the heavy 7Li cluster in
the 11B(α, 11B)α reaction is attributable to the low
energy of 11B dissociation into 7Li and an α particle
and the significant spectroscopic amplitudes of the
7Li + α configuration for the 11B nucleus. However,
allowance for this mechanism is complicated by the
fact that, in comparison with the transfer of light d,
3He, t, and α clusters, the transfer of a heavy cluster
is possible not only in the ground state, but also in the
excited states for which the spectroscopic amplitudes
are known with an insufficient accuracy.

The differential cross sections for the transfer
mechanism were computed by the distorted-wave
method with an accurate allowance for the finite in-
teraction range using the DWUCK5 code [34]. In our
calculations of distortions, we used the potentials A
from Table 1. The cluster (7Li + α) wave functions of
the bound 11B nuclear states were computed with the
Woods–Saxon potential whose geometric parame-
ters were r0 = 1.25 fm and a = 0.65 fm. The potential
depth was chosen to obtain the needed binding energy
of the clusters. The number of nodes of the wave
functions (N ) was defined in the approximation of a
harmonic oscillator by

2N + L =
7∑

i=1

(2ni + li) − 3, (8)
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Fig. 8. As in Fig. 7, but with the parameters β4 found
from the best fit. The values of β2 and β4 that were
obtained by minimizing χ2/N are shown in the inset.

where L is the orbital angular momentum of the
relative motion of the clusters, and ni and li are the
corresponding quantum numbers for the individual
nucleons comprising 7Li in the 11В nucleus. We took
into account the transfer of the 7Li cluster in the
ground (3/2−) and two excited states with energies
Ex = 0.478 MeV (1/2−) and 4.652 MeV (7/2−).

The spectroscopic amplitudes for the ground
(3/2−) and excited states with energies 4.445 MeV
(5/2−) and 6.743MeV (7/2−) for the 11B → 7Li+ α
system were computed in terms of the translation-
invariant shell model [35] using theDESNA code [36]
and wave functions [37]. The results are presented in
Table 3.

The computed angular distributions for the 7Li
cluster pickup mechanism are indicated in Figs. 5
and 6 by the dashed curves. The total scattering cross
sections in which this mechanism would be included
must be determined by a coherent addition of the
scattering and cluster transfer amplitudes. However,
due to the difficulties in describing the transfer of the
heavy cluster noted above, we did not attempt to do
5
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Table 3. The spectroscopic amplitudes (Sx) for the 11B → 7Li + α system used in our calculations of the elastic and
inelastic cluster transfer by the distorted-wave method

Ex(11B), MeV Jπ Ex(7Li), MeV Jπ Eb, MeV nLJ Sx

0 3/2− 0 3/2− 8.665 3S3/2 −0.638

2D3/2 −0.422

0.478 1/2− 9.142 2D3/2 −0.422

4.652 7/2− 13.294 2D3/2 0.362

1G3/2 0.429

4.445 5/2− 0 3/2− 4.219 2D5/2 −0.049

1G5/2 −0.192

0.478 1/2− 4.697 2D5/2 0.092

4.652 7/2− 8.849 2D5/2 −0.314

1G5/2 −0.507

6.743 7/2− 0 3/2− 1.921 2D7/2 0.104

1G7/2 0.124

0.478 1/2− 2.399 1G7/2 0.146

4.652 7/2− 6.551 3S7/2 0.390

2D7/2 0.785

1G7/2 0.589
this summation and consider these calculations only
as a means for rough estimates.

For the ground state, the cluster-transfer mecha-
nism reproduces the absolute value of the experimen-
tal cross sections at backward angles, while, for the
excited states, the theoretical cross sections exhaust
only 30–50% of the experimental ones. The existing
difference most likely results both from an incom-
plete description of the transfer process, in which the
possible contribution from other excited states of the
7Li nucleus was disregarded, and from insufficiently
accurate knowledge of the spectroscopic amplitudes.

4. CONCLUSIONS

We measured the differential cross sections for
elastic and inelastic scattering of α particles on 11В
nuclei in the entire range of angles at energies of 40
and 50 MeV.

Two potentials were found from our optical-model
analysis of the elastic scattering. The first potential
was obtained by fitting the computed cross sections
to the experimental data in the forward hemisphere. In
this case, the theoretical angular distributions have a
rainbow shape with a broad maximum at angles 70◦–
80◦ followed by an exponential decrease, which agrees
PH
with the shape of the distribution for the elastic scat-
tering of 3Не at close energies. The second potential
was found from a fit over the entire angular range, and
no nuclear rainbow effects manifest themselves in the
corresponding distributions.

The two potentials were used to analyze the angu-
lar distributions for the member of the ground-state
rotational band (Ex = 0.0 (Jπ = 3/2−), 4.445 MeV
(5/2−), and 6.743 MeV (7/2−)) by the coupled-
channel method within the collective model in which
the 11Вnucleuswas represented as a symmetric rotor.
Irrespective of the chosen potential, the calculations
yield approximately identical quadrupole deformation
parameters, β2 = −0.6 ± 0.15, and provide direct
evidence for the negative sign of the deformation. The
hexadecapole-deformation parameter β4 lies within
the range from −0.1 to +0.2. In our analysis, it could
not be determined with a better accuracy.

The internal quadrupole moment Q0 and the re-
duced transition probabilities B(E2) computed with
the above parameters β2 are in reasonable agreement
with the electron-scattering data. The negative sign
of the deformation is consistent with the results ob-
tained from the scattering of 3Не at energies of 17.5
and 40 MeV [8] and with the theoretical calculations
with a self-consistent potential using the Hartree–
Fock method, but is in conflict with the analysis of the
YSICS OF ATOMIC NUCLEI Vol. 68 No. 8 2005
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hyperfine structure of the 11В [33] atomic spectrum.
This most likely suggests that the rotational model
used in our analysis have certain limitations when
applied to light nuclei in which the cluster effects
could play a major role.

Our calculations by the distorted-wave method
show that the rise in the cross sections observed
in backward-angle scattering is attributable to the
transfer mechanism of the heavy 7Li cluster in the
11B(α, 11B)α reaction, which is indistinguishable
from the scattering in the experiment.
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Abstract—A unified approach to describing the properties of spherical, transition, and deformed even–
even nuclei (without invoking the concept of static nuclear deformation), a “dynamical collective model,”
is set out in retrospective. We present the results of calculations for a wide range of nuclei and, on this
basis, reveal a number of experiments that are of fundamental importance in developing the theory further.
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1)From the Editorial Board. The review by V.E. Mitroshin

sets forth the main ideas and results of an original approach
(the dynamical collective model, DCM) in the theory of low-
lying nuclear excitations that he has developed for about
thirty years. This approach is similar in original formulation
to the quasiparticle–phonon model by V.G. Solov’ev and his
disciples. Just as the latter, DCM uses the “pairing + mul-
tipole forces” Hamiltonian, but it is significantly advanced
compared to Solov’ev’s model primarily in that it allows for
the Pauli exclusion principle in the microscopic construction
of phonons, the main objects of both approaches. The choice
of the form of multipole forces with surface form factors
similar to those suggested by N.I. Pyatov, S.A. Fayans, and
F.A. Gareyev also seems felicitous. DCM purports to give a
unified description of both spherical nuclei, with the collective
quadrupole oscillations making a dominant contribution to
their dynamics, and deformed nuclei with a well-defined rota-
tional spectrum. In addition, the so-called transition nuclei,
traditionally difficult objects for the nuclear theory, can also
be described in terms of DCM. In this respect, DCM can
be likened to the interacting-boson model, but it is a micro-
scopic approach of a deeper level: in DCM, bosons (phonons)
are built from fermions. In the presented approach, for exam-
ple, the properties of low-lying states in the Sm isotopes of
spherical, transition, and deformed nuclei can be satisfacto-
rily described without resorting to the concept of deformation
and, accordingly, without introducing rotational degrees of
freedom. This result seems very instructive: the rotational
(or quasirotational) spectrum is not always direct evidence of
deformation—certain additional conditions are required. In
DCM, such a spectrum arises from the Pauli exclusion prin-
ciple: as the j level is filled, the purely vibrational spectrum
is distorted and transforms into a rotational spectrum in the
limit. This has led the author to the far-reaching conclusion
about the fundamental absence of deformation in the ground
(and the first excited) states of nuclei. An attempt is made
to substantiate this conclusion mathematically. It seems to
us that this “extremist” conclusion is erroneous, which ne-
cessitated this comment. Without going into mathematical
details, we note that the proof is apparently inapplicable to
systems with spontaneously broken symmetry, to which the
deformed nuclei belong (see, e.g., the well-known mono-
graph by O. Bohr and B. Mottelson, vol. 2). The so-called
1063-7788/05/6808-1314$26.00
1. INTRODUCTION

Among the multitude of problems facing nuclear
physics, one of the most important problems is to
develop a model of the atomic nucleus that could
reliably, within a reasonable accuracy, describe any
of the properties of the first two or three states with
any spin and parity, i.e., the structure of the states
near the yrast band, for a given atomic number and
nuclear charge. This problem is of fundamental im-
portance not only because the insolubility of many
questions in astrophysics and particle and solid-state
physics rests precisely on this “nuclear factor,” but
also because the spectroscopy of low-lying nuclear
states, perhaps as no other field of physics, provides
a wealth of information on the spectral properties of
multiparticle systems. Thus, we can refine to details
the methods for solving multiparticle problems, the
methods that have been successfully used and are
being used in other fields of natural science.

However, despite the long history of development
of nuclear spectroscopy, our views of the structure of
atomic nuclei are still in such an “infant age” that,
without comprehensive experimental information on
the properties of excited states in a specific nucleus,
we are often unable not only to predict, but even to
describe the level spectrum for this nucleus, not to
mention such subtle characteristics as the probability
of its β decay. For two neighboring isotopes of the

Goldstone excitation mode starting “from zero” must nec-
essarily exist in these systems. In a deformed nucleus, this
is the rotational branch of excitations to which, according
to the Goldstone theorem, all low-lying excitations belong.
However, in our view, this assertion of the author, which
seems erroneous to us, does not abolish the positive content
of the approach developed by him, in which an important step
has been taken in constructing a microscopic theory of low-
lying nuclear excitations, particularly in the transition region
between spherical and deformed nuclei.
c© 2005 Pleiades Publishing, Inc.
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same nucleus, our views of their structure often differ
radically.

Henri Poincaré, a prominent thinker of the 19th
century, emphasized that “science is built from facts
as a house from bricks; but a simple collection of facts
is as far from science as a pile of stones from a house.”
In this sense, we have to do with a pile of “bricks” and
nothing else, although some of the “bricks” have been
polished to a high gloss.

But is the problem of describing the structure of
the states near the yrast band soluble at all? May it be
that the oppressive variety of models each of which
is applicable only to a narrow range of phenomena
and nuclei is attributable precisely to the fundamental
insolubility of even this narrow problem?

In Section 2, we look at the obstacles, achieve-
ments, and prospects that exist on the way to solving
the problem of describing the structure of the states
near the yrast band through a prism of history. We
emphasize that we give an overview of not the models
in the nuclear theory and their applications, but the
historically conditioned reasons for our chosen ap-
proach under the name “dynamical collective model”
(DCM). This is a figurative name. The mathematical
essence can be expressed by the words “the method of
an ordered basis in the nuclear theory.” In Section 3,
we describe the implementation of this program in
terms of the “pairing + multipole–multipole interac-
tion” scheme. The reader will find here not only the
theory, but also an analysis of the experiments used
as the basis for it. In Section 4, we present the results
of our calculations for a number of spherical, tran-
sition, and deformed even–even nuclei. The results
presented here allow the questions whose solution
will play a key role in developing the theory further to
be posed for an experiment.

2. INTERNAL PROBLEMS OF NUCLEAR
SPECTROSCOPY

2.1. When studying the structure of atomic nuclei,
we run into two main difficulties. On the one hand,
we do not know the detailed nature of the nuclear
forces, and it becomes increasingly clear that they
can be fairly complex. On the other hand, even if
we knew these forces, as in the case of an atom,
how could we tackle the many-body problem that
the problem of describing the properties of nuclei is?
In such a situation, based on an experiment, each
researcher initially identifies particular processes as
the main ones and subsequently solves this simplified
problem. This is how a model of the atomic nucleus
arises, which in its essence no longer purports to
describe the entire variety of phenomena in nuclear
spectroscopy.
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 8 200
We emphasize that, in this paper, we will talk
about models and only about models, because, para-
phrasing Hertz’s words about Maxwell’s theory, the
nuclear theory is Schrödinger’s equation. Honestly,
we are not quite sure of this either, since the studies
of the past twenty years have shown an important
role of nonnucleon degrees of freedom in nuclei and
relativistic effects. However, even if we were sure that
the “nuclear theory is Schrödinger’s equation,” we
would still be unable to solve it exactly. We always
solve it approximately. Whether we make these ap-
proximations once we have passed to a more conve-
nient unitarily equivalent representation (the method
of K-harmonics etc.), where we subsequently sepa-
rate out the principal components of the wave func-
tion based on an experiment or on what is called phys-
ical considerations or we separate out the principal
components based on an (even macroscopic) analogy,
is not so important if the adequacy of the description
of experimental data serves as a criterion of truth.
Whether we construct the perturbation theory for
Schrödinger’s equation proper or for its resolvent (the
method of Green’s functions), these are all different
ways of expressing the same thing and we have no
grounds to call one of the approaches a theory and the
other approaches models. Which models should be
preferred is a different question. However, all criteria,
alas, are subjective here as well: each researcher ap-
plies his own, often unconscious, evaluation system
even in the concept of satisfactory agreement, all but
one criterion—the completeness of the experimental
data described by the model.

The historically formed path of cognizing any
complex phenomenon, which consists in decompos-
ing it into simple components (elementary excitation
modes), studying them individually, and attempting
to reproduce the original complex phenomenon in its
interrelationship, is reflected surprisingly accurately
in the development of models in any of the natural
sciences. Nuclear spectroscopy also developed in this
way, where the main events occurred at the turn of
the 1950s. It was then that two central concepts
were crystallized from an analysis of a vast collection
of experimental data, the concepts of single-particle
and collective degrees of freedom, which reflected the
common property that was inherent in the dynamics
of most nuclei and that depended weakly on the
detailed nature of the nuclear forces. It would hardly
be an exaggeration to say that these concepts will
remain at the basis of the baggage of ideas of nuclear
spectroscopy for a long time. It is through the prism
of these concepts that we will look at the prospects
for solving the main problem.
2.2. Let Hmod denote the model Hamiltonian

through which we hope to describe the properties
of atomic nuclei and let us assume that we are
5
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Fig. 1. (a) Single-particle state diagram. (b) The diagram
for the filling of single-particle states with neutrons for the
first excited 17O state. (c) A fragment of the experimental
diagram of excited 17O states (the energy is in keV).

interested only in the discrete spectrum of Hmod and
its eigenvectors. Methodologically, all approaches to
finding the eigenvectors of Hmod and its eigenvalues
are identical and are reduced to expanding the desired
wave function of the nth state |ψ(n)〉 in terms of a
complete orthonormal set {|ϕν〉}∞1 of functions of the
required class:

|ψ(n)〉 =
∑

r(n)
ν |ϕν〉. (1)

The expansion coefficients {r(n)
ν } and the eigen-

valuesE(n) can be determined by solving the standard
conditional-extremum problem:

δ{〈ψ(n)|Hmod|ψ(n)〉 − E(n)[〈ψ(n)|ψ(n)〉 − 1]} = 0,
(2)

where the requirement that eigenvectors (1) be or-
thonormal acts as the condition.

For any specific realization of (2), we have to re-
strict ourselves to a finite number of expansion terms.
Therefore, the question about the convergence of ex-
pansion (1) and about the rate of its convergence
immediately arises.

First of all, we emphasize that expansion (1) con-
verges always. This directly follows from the fact that,
since the binding energy of the nuclei is finite, the cor-
responding Hamiltonian Hmod must be limited below
by a linear operator. In turn, this implies that, if we are
interested only in a finite number of the first N eigen-
values, then, whatever the basis of vectors {|ϕν〉}∞1
we choose, for any prespecified accuracy ε, we will
find a finite number Nε ≥ N of vectors {|ϕν〉}Nε

1 in
the description, for example, of the eigenvalues at
which the first N solutions of problem (2) in this
finite-dimensional space will not differ from the exact
solution by more than ε. As a result, the problem
of finding the first N eigenvalues and eigenvectors
P

is reduced to the trivial problem of diagonalizing the
matrix

[〈ϕν |Hmod|ϕµ〉]µ,ν=1,...,Nε

of dimension Nε. However, first, although Nε is
finite, it can be very large (the problem of diagonal-
izing large-dimension matrices); second, we must
be able to efficiently calculate the matrix elements
〈ϕν |Hmod|ϕµ〉 (the problem of choosing a convenient
basis); and, third, we do not know a priori precisely
which of the vectors |ϕν〉 enter into our finite-
dimensional space (whether the first hundred vectors
or only ten starting from the hundred thousandth
vector).

Whereas the first two problems are, as it were,
technical ones, it is on the third problem that the
development of any nuclear model rests, be it the
translationally invariant shell model [1], the theory of
finite Fermi systems [2], the method of hyperspherical
functions [3], the quasiparticle–phonon model [4], or
any other model. In fact, we wish to show this and to
outline a possible way out of this impasse.
2.3. For convenience, we begin with the formal

aspect of the question. Let H0 be an arbitrary linear
operator limited below whose domain of definition co-
incides with the domain of definition of Hmod. For the
sake of convenience, we assume that the eigenvectors
of H0 form a complete orthonormal system. Let us
now rewrite Hmod as

Hmod = H0 + (Hmod −H0) = H0 + Hint. (3)

Now, the objective of the theory is to study how Hint,
figuratively speaking, “intermixes” the various eigen-
vectors of H0. Fairly few constraints were imposed on
the choice of H0; it can also be chosen in such a way
(perhaps randomly) that the effect of Hint for some
of the eigenvectors of H0 can be ignored; i.e., these
eigenvectors are “almost” the eigenvectors of Hmod.

Analysis of the experimental data (the theory gave
no grounds for this) suggested that, to the first ap-
proximation, a nucleus could be treated as a system of
noninteracting fermions that, according to the Pauli
exclusion principle, move independently in the self-
consistent “average” field generated by them. The
analogy with an atom played a prominent role in the
birth of this idea, but this analogy has hindered the
perception of the ideas of the single-particle shell
model (SSM) for a long time. However, the experi-
mental data accumulated by the 1950s convincingly
demonstrated that the ground states of several odd
nuclei with the number of nucleons equal to the magic
number ± 1 strikingly resemble the inert atom ± 1,
but with the reversed pattern of spin–orbit coupling.

Figure 1a shows a fragment of the single-particle
state diagram that was suggested to explain the
magic numbers and related patterns. In the SSM
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 8 2005
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Fig. 2. (a) Level spectrum for the two-particle configu-
ration [1d5/2]

2
J=0,2,4. (b) A fragment of the experimental

spectrum of excited 18O states (the energy is in keV).
(c) The spectrum of excited states for a harmonic oscil-
lator.

ideology, the wave functions of the ground states of
the “magic number ± 1” nuclei represent Slater’s
determinant with the single-particle states packed
most densely with nucleons up to the last jπ level,
where the odd nucleon the spin and parity of whose
state correspond to the experimental data is located.
This is illustrated by Fig. 1b, which shows a diagram
for the filling of single-particle 17O nuclear states with
neutrons. It turned out that some of the experimen-
tally observed excited states (Fig. 1c) could be easily
understood from an analysis of the lowest (in energy)
transitions of nucleons to free single-particle states.
The correctness of the identification of these states
precisely as single-particle ones was soon confirmed
in single-nucleon exchange reactions. Moreover,
the magnetic moments of the ground states of the
“magic number ± 1” nuclei and the probabilities
of β transitions between such nuclei showed good
agreement with SSM predictions.

This was the real triumph of the physical idea,
since a tool for not only qualitative but also quanti-
tative analysis of experimental data fell into the hands
of researchers. It would not be an exaggeration to say
that most of the theoretical works have been devoted
to an increasingly thorough development of the ideas
that underlie the shell model for 50 years. Now, it may
even seem strange how long it has forced its way. Is
this because it is hard to realize the idea that the SSM
is just a luckily guessed H0? Luckily means that, for
some of the nuclei, the wave functions of the ground
and several excited states contained one well-defined
component. However, as soon as this idea had been
realized, an attempt was made to extend it to all nuclei
and to the entire spectrum of low-lying states.

As an example, let us consider 18O, a fragment
of whose excitation spectrum is shown in Fig. 2b.
Following their ideology, the SSM proponents be-
lieved that the spectrum of low-lying 18O states was
nothing more than the split (throughHint) multiplet of
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 8 200
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Fig. 3. (a) Fragment of the experimental spectrum of
excited 16O states. (b) Schematic view of the expected
components of the wave function for the excited 0+

2 state.
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wave function for the excited 0+

2 state.

[1d5/2]2J=0,2,4 states formed by the last two nucleons.
They were going to determine Hint from the multiplet
splitting by performing similar calculations for many
other nuclei. However, the level spectrum obtained
in this way (Fig. 2a) was in poor agreement with
the experimental data, while the experimental value
of B(E2; 2+

1 → 0+
1 ) was a factor of 5 higher than

its calculated value. In other words, the experimental
data showed that adding only two nucleons leads to
a strong polarization of the magic core and that the
wave function even for the ground states of such and
more complex nuclei should be sought in the form
of expansion (1) in terms of the eigenvectors of H0,
admissible by the laws of conservation of total angular
momentum and parity, and with a fairly low excitation
energy.

This is how the multiparticle shell model (MSM)
arose. However, in the 1960s, it did not attract atten-
tion, because no suitable computers were available
and there were difficulties in classifying the multi-
fermion states. The fruits of this direction of research
began to mature relatively recently [5]. At the same
time, it has emerged that there are no a priori criteria
that would allow one to establish precisely which of
the vectors of H0 give the main, say, 90%, contri-
bution to the formation of the spectrum of low-lying
states. Let us illustrate this by describing the 0+

2 state
of 16O as an example; a fragment of its spectrum is
shown in Fig. 3a. It would be natural to assume (and
therein lies the MSM ideology) that the spectrum of
low-lying states with given spin and parity must be
formed from the vectors of H0 with the lowest exci-
tation energy. Moving upward over the H0 spectrum,
we will see how rapidly our problem converges.

For 16O, the “two particles + two holes” config-
urations are the lowest states in the H0 spectrum
with the 0+ angular momentum (Fig. 3b). One would
think that precisely these configurations must give
5
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the main contribution to the formation of the first
excited 0+ states of 16O. What a surprise it was when
it emerged that that the principal components of the
excited 0+

2 state were the vectors of the α-particle
type “four particles + four holes,” while the other,
simpler, configurations yielded only small corrections
(see, e.g., [6] and references therein). However, the
question then arises as to whether we will encounter
an even more pathological situation in other nuclei?
2.4. We have run a few steps forward; let us return

to the 1960s, when each new experiment required an
immediate explanation, and, therefore, each day gave
birth to new ideas. Thus, for example, scrutiny of the
18O spectrum revealed that it remarkably resembled
the level spectrum of a weakly split harmonic oscil-
lator (Fig. 2c). The systematics of experimental data
showed that a similar picture is also observed in many
other nuclei, and the idea that we have to deal with
the surface oscillations of an incompressible liquid
drop arose. Of course, this idea was not born out of
nothing. The liquid-drop models of the nucleus have
long and successfully been used to analyze the nu-
clear masses, the fission processes, etc. However, the
creators of the generalized collective model (GCM)
took a further step [7] by noting that, if the drop is
statically deformed, then another degree of freedom,
the rotation of the nucleus as a whole, appears in
the nucleus. The almost purely rotational level spec-
tra detected for many nuclei stimulated an intensive
and comprehensive analysis of the ideas that underlie
GCM. The separation of nuclei into spherical and
deformed ones arose precisely at this time, and the
no-man’s land of transition nuclei lies between them.

The most striking thing in the history of the mak-
ing and development of the rotational model is that its
P

zeroth approximation worked excellently. Only sub-
sequently did it emerge that “the more accurately you
calculate, the worse result you obtain.” For now, the
very possibility of analyzing experimental data, as it
were, on the fingers and conveniently systematizing
them has led to the fact that the concept of statically
deformed nuclei has become one of the main concepts
of nuclear spectroscopy. Is this the reason why it took
almost thirty years to return to the idea of unity of
the dynamics in atomic nuclei and arbitrariness of the
separation of nuclei into spherical and deformed ones
following Sheline [8] and Sakai [9]? We will return to
these fundamentally important questions below.

As regards the nature of the vibrational states,
phonons, it was established by the mid-1960s that
they are correlated particle–hole excitations with
the corresponding spin and parity. This is shown
in Fig. 4, which schematically displays the wave
function for a phonon in the Tamm–Dankov ap-
proximation (Fig. 4a), the wave function for the
ground state of an even–even nucleus in the random
phase approximation (Fig. 4b), and the wave function
for the single-phonon state in the random-phase
approximation (Fig. 4c).

At that time, it seemed obvious that the switch-
over from the particle–hole MSM representation to
the phonon representation would allow the observed
spectrum of low-lying states for even–even nuclei to
be easily constructed from various phonon modes and
their degrees. It should be emphasized that this idea
has not yet lost its appeal, reviving in various versions
of the interacting boson model [10].

The hope for the fruitfulness of this approach
is based on the simple consideration that, when
phonons are formed, a fairly large fraction of the
forces acting between the nucleons must go into the
phonon dynamics; therefore, the residual forces that
already act between the phonons, in a sense, are too
weak to ensure good convergence of the expansions
of the wave function in terms of multiphonon states.
These hopes strengthened even more after the phe-
nomenon of superfluidity was discovered in atomic
nuclei and after yet another dynamical concept, a
quasiparticle as an elementary excitation mode in
compound nuclei, was shaped. However, the main
thing was that, based on the concepts of a phonon
and a quasiparticle, we managed to figure out a
number of phenomena of nuclear physics that had
not been explained until then. The impression from
these results was so strong that, by the early 1970s,
few doubted that the excitation spectra of both even–
even and odd nuclei from the spherical mass region
could be easily constructed from quasiparticles and
quasiparticle-based phonons. At the same time, for
deformed nuclei, it was suggested doing the same,
but only in the corresponding deformed average field.
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 8 2005
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It seemed that the “bricks” from which the building
of the theory of atomic nucleus could be easily erected
had been found; it remained only to “count” them,
and this is not so interesting. . . .

Is this the reason why many prominent researchers
have abandoned nuclear physics and turned to the
construction of “bricks” in other fields of natural
science? Is this the reason why many of the then
published books contained the phrase “theory of
atomic nucleus” in their titles, emphasizing the
completeness of the problem? Is this the time from
which interest in studying the structure of atomic
nuclei has waned?

Forty years has elapsed in the development of
this direction of research. What have we now? The
“bricks” that have been polished to a high gloss and
that we have inherited are simply unsuitable for con-
structing the theory of atomic nucleus. Why?
2.5. First, the concept of a phonon that we have

inherited most often makes no sense—as soon as
we depart from a magic nucleus by several nucle-
ons, the energy of the quadrupole phonon becomes
imaginary. Initially, this was considered as a point
of phase transition from the spherical shape of the
nucleus to a deformed shape. However, it was noted
back in 1964 [11] that the reason lies in the overly
rough approximations that were made in develop-
ing this concept, and a new approach to the prob-
lem was formulated. However, the first calculations
yielded another negative result [12]: the energy of the
2+
1 state stabilized rapidly at 500 keV almost in all

nuclei without “wishing” to drop below this level.
As was established subsequently [13, 14], the fact
that the effect of collective degrees of freedom on the
superfluid properties of the nucleus was disregarded
is responsible for the failure. This effect is twofold. On
the one hand, the presence of unpaired quasiparticles
destroys the superfluid properties of the nucleus due
to the blocking effect; on the other hand, the phonon
exchange between the nucleons gives rise to an addi-
tional pairing field.

As a result, the quasiparticle energy decreases
with increasing collectivity of the nucleus, causing
the phonon energy to decrease, while the blurring of
the Fermi surface characteristic of pairing increases.
A proper realization of this idea was delayed for many
years, and certain progress in describing the basic
characteristics of spherical, transition, and deformed
nuclei has been made in this direction only recently
[14, 15]. The 112,122Sn spectra calculated in the
single-phonon approximation in comparison with
the experimental spectra (Fig. 5) and the calcu-
lated and experimental dependences of the various
characteristics of the Sm isotopes on the number
of neutrons (Fig. 6) can serve as an illustration
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 8 200
of the aforesaid. These questions are discussed in
detail in Subsections 3.2–3.5. Here, these results are
presented only to compare the concept of a phonon
in the past (phonons are formed from quasiparticles,
but exist as foreign bodies with respect to them)
with the concept of a phonon at present (the mutual
effect of the collective and single-particle degrees of
freedom on one another is taken into account). As
we see from our comparison with the experimental
data, the latter can be used as the basis for describing
spherical, transition, and deformed nuclei. What do
these concepts have in common? Essentially, only the
name.
2.6. Second, the presence of an odd quasiparticle

can affect significantly the structure of the collective
modes. This effect attributable to the Pauli exclusion
principle manifests itself most clearly for odd nuclei
in the (j − 1) anomaly and in the coexistence of the
superfluid and normal phases in the spectra of odd
nuclei.

The (j − 1) anomaly has been studied thoroughly
[16, 17] and consists in the following. Let an odd
quasiparticle be in a single-particle state with an an-
gular momentum j ≥ 5/2. Let us excite a quadrupole
phonon. If the total angular momentum J of the ex-
cited state is J = j − 1, then strong attraction arises
between the odd quasiparticle and the quasiparti-
cles that form the phonon, while repulsion arises in
different (in spin) states. As a result, the phonon
has a different structure not only depending on the
position of the odd quasiparticle, but also in differ-
ent (in total angular momentum) states. Occasion-
ally, this change in the structure is so large that
the (j − 1) anomaly becomes the ground state of
the nucleus; i.e., the multiquasiparticle state proves
to be energetically more favorable than the single-
quasiparticle state.

This is observed in the rhodium isotopes, but it
is most pronounced in the europium isotopes, where
the spectrum of low-lying states has two 5/2+ states
and one 7/2+ state. In light isotopes with A ≤ 151,
5/2+ originating from the single-quasiparticle 2d5/2

state is the ground state, while the (j − 1) anomaly
based on 1g7/2 is an excited state, as the single-
quasiparticle 7/2+ state. However, the 5/2+

1 and
5/2+

2 states in the 153Eu isotope change places
(Fig. 7a); the (j − 1) anomaly becomes the ground
state. Indeed, the g factor of the (j − 1) anomaly is
almost the same [17] as that of the single-particle
state on which it is formed, and, hence, µ(j − 1) ∼=
(j − 1)g(j). That is why a sharp decrease in the mag-
netic moment of the ground 5/2+ state is observed
in the 153Eu isotope (Fig. 7b), since g(1g7/2) 

g(2d5/2). On the other hand, the root-mean-square
5
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Fig. 5. Spin-expanded fragments of the calculated spectra for single-phonon 112,122Sn states of various multipolarity in
comparison with the experimental spectra.
charge radius of the (j − 1) anomaly is larger than
the charge radius of the state on which it is formed
due to the presence of a phonon; that is why a sharp
increase in the charge radius of europium relative
to the samarium isotope with the same number of
neutrons is observed (Fig. 7c). If we take into account
the previously discussed effect of the collective modes
of motion on the quasiparticle ones, then we will
immediately reach the conclusion that there are no
universal bricks in odd nuclei; in each nucleus, spe-
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cific concepts of dynamical variables whose quanta
realize the spectrum are needed for each spin and
parity.

The problem under discussion manifests itself
even more clearly in the coexistence of the superfluid
and normal phases in atomic nuclei.
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The history of this question began from the dis-
covery of low-lying states with seemingly different
equilibrium shapes in several nuclei. The 51Cr iso-
tope can serve as one of the most dramatic exam-
ples of such a nucleus. In addition to the typically
vibrational states, a band of states that was identified
[18] as the rotational Kπ = 1/2− band based on the
Nilsson 1/2[321] level was detected in its excitation
spectrum (Fig. 8a). The zeroth approximation of the
rotational model described excellently the properties
of this band, while the fact that the γ transitions
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 8 200
to states that did not belong to the band were hin-
dered seemed to be convincing evidence for shape
isomerism in this nucleus. However, analysis [19] of
the accumulated data showed that most of the radia-
tive transitions between states of different equilibrium
shapes are not explicitly forbidden; the following al-
ternative [20] to the description of shape isomers then
appeared.

First of all, note that the values of B(E2) between
the band states are close to those of B(E2; 2+

1 →
5
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0+
1 ) in the 50Cr isotope. However, for 51Cr to be

similar to 50Cr, the odd neutron from the 1f7/2 shell
must be removed to a state from the overlying shell.
The 1f7/2-state blocking effect then vanishes, strong
pairing arises between the remaining neutrons, and
the core becomes similar to the strongly collective
50Cr isotope (Fig. 8b). The increase in the energy

Table 1. Transition probabilities between the “nonrota-
tional” 51Cr states (in Weisskopf units)

Jπ
i Jπ

f
B(E2; Ji → Jf ) B(M1; Ji → Jf )

calc. expt. calc. expt.

9/2− 7/2− 16.2 12+6
−3 0.11 0.24+0.10

−0.06

11/2− 7/2− 14.6 6+4
−2 –

9/2− 7.5 <25 0.31 0.3+0.5
−0.13

Table 2. Transition probabilities between the “rotational”
51Cr states (in e2 b2 × 10−3)

Jπ
i Jπ

f
B(E2; Ji → Jf )

calc. rot. model expt.

1/2− 3/2− 33 48 –

5/2− 3/2− 7 7 16+11
−6

1/2− 22 24 24+14
−9

7/2 3/2− 33 31 32+17
−15

5/2− 1 3 –

9/2− 5/2− 42 34 32+11
−8

7/2− 2 2 –

11/2− 7/2− 51 36 ≤51
P

of the odd neutron is largely offset by the pairing
energy, while the coupling of the odd neutron with
the strongly collective 50Cr states can produce a band
similar to the experimental one (see below). How-
ever, when the odd neutron is in the 1f7/2 state or
in any other hole-type state for the “magic number
–1” nuclei, the blocking effect destroys the neutron
superfluid properties, and the core becomes similar
to the weakly collective 52Cr nucleus. Figure 8c, in
which the pairing gap is plotted against the position
of the odd neutron, explains the aforesaid. As a result,
the 51Cr excitation spectrum breaks up into a sum
of the spectra of the “hole + 52Cr” and “quasipar-
ticle + 50Cr” systems that are virtually uncoupled.
The results on the 84Kr(d, p)85Kr reaction [21], where
states with Jπ = 5/2+ and 1/2+ and with large spec-
troscopic amplitudes were found, provide a good il-
lustration to the hypothesis under discussion. These
data are presented in Fig. 8d taken from the same
paper in comparison with those for the nuclei with
N = 51. The figure shows that the states are identical
in nature, and the clear correlation of the energy of
the 1/2+ states with E(2+

1 ) of the even A− 1 core
(asterisks) is indicative of a direct relationship to the
collective motion.

The realization of this idea for the 51Cr [20] and
In [22] isotopes showed good agreement between the
results of the calculations and the entire set of exper-
imental data (see Fig. 9 and Tables 1, 2).

The situation with the bands of (∆J = 1)-type
states detected in several antimony, iodine, and ce-
sium isotopes is identical. These are hole-type ex-
citations in the strongly collective tellurium, xenon,
and barium isotopes, respectively [20]. In 119Cs, this
hole 9/2+ state even becomes the ground state of the
nucleus with large root-mean-square deformation;
as a result, a jump in the charge radius is observed
(Fig. 10).

It should be emphasized that the attempt [23] to
describe both the vibrational and rotational 115In lev-
els in terms of the “one particle + two holes + 116Sn”
scheme was made the earliest. In general, it was
successful, but the transition probabilities between
the states of the band calculated without introducing
effective charges proved to be a factor of 2 or 3 lower
than their observed values. Clearly, the reason is that
the states of the cadmium core forming the rotational
band do not fit into the “two holes + 116Sn” space.
These examples give an excellent illustration of the
previously advanced idea that not the first (in order
of increasing energy) thousand vectors, but only, for
example, one hundred, but starting from the hundred
thousandth vector, can play a major role in forming
the low-lying and even ground nuclear states.
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 8 2005
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Fig. 11. Level systematics [25] for the yrast bands of
nuclei with developed collectivity versusE(2+
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2.7. Third, if one quasiparticle affects the phonon
structure so strongly, then the question arises as to
whether the effect of the phonons on one another is
just as strong. Here is the line of reasoning that allows
the answer to be guessed qualitatively.

Let us consider an N-phonon state. Being a
fermion structure, each phonon blocks any of the
available single-particle states for a certain time,
thereby reducing the fraction of the phase volume
for the other phonons. Therefore, the fraction of the
phase volume for each phonon in the N-phonon
state decreases proportionally to N − 1. However,
the phonon frequency ω then increases proportionally
to N − 1 with the coefficient 4g that depends on
the structure of the Fermi surface and the quantum
numbers of the N-phonon state: ωN = ω + 4g(N −
1). Consequently, the total energy of the N-phonon
state is EN = NωN ; for the states aligned by the total
angular momentum R = 2N , it takes the form of the
standard formula ER = fR + gR(R + 1) with f =
ω/2 − 3g. The phonon structure and the transition
probabilities in the band change in accordance with
the change in ωN :

B(E2;R → R− 2) = NB(E2;ωN → 0)

=
R/2

1 + 2g(R − 2)/ω
B(E2; 2+

1 → 0+
1 ).

We see from the definition of the coefficient f that
even the small contribution from the Pauli exclusion
principle, g ∼ 10 keV, will lead to the fact that the
spectrum of the yrast band for soft nuclei will differ
little from the rotational one, as will the E2-transition
probabilities in the band. These ideas were first set
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 8 200
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Fig. 12. Spectra of the yrast bands calculated in the
harmonic DCM approximation for several nuclei in com-
parison with the experimental data.

forth in 1974 [24]; it emerged that the coefficient g
depends weakly on the structure of the Fermi surface
and, hence, on ω = E(2+

1 ). Consequently, the depen-
dence of ER on E(2+

1 ) must be nearly linear [24].
This is demonstrated by Fig. 11, where the level

systematics [25] for the yrast bands of nuclei is plotted
against E(2+

1 ). This is how a simple and univer-
sal mechanism that leads to the rotational excitation
spectra for soft nuclei with all their characteristic
features was found without resorting to the concept
of static deformation. However, the implementation
of this program on the microscopic level was hindered
by the fact that the concept of a phonon that would
be acceptable for any mass region did not exist at
that time. Therefore, to get a weighty argument for
the chosen path, an attempt was made in 1977 [25] to
find a classical analog of the Pauli exclusion principle
in the liquid-drop model. It proved to be the sur-
face tension coefficient, which increases with nuclear
excitation; this coefficient directly demonstrates the
extent to which Hooke’s law is violated in nuclei:

σN = σ1[1 + 2γ̄(N − 1)].

In this case, the frequency of a phonon in the N-
phonon state is ωN = ω[1 + 2γ(N − 1)]1/2 with γ =
γ̄(1 + ω2

C/ω
2), where ωC is the Coulomb frequency.

We thus see that, although γ̄ can be very small, γ is
large in soft nuclei, because ω is small. A systematic
analysis of the experimental data [25] showed good
agreement with this hypothesis; therefore, the affir-
mative answer to the question about the universal role
of the Pauli exclusion principle was beyond doubt.

Now that the concept of a phonon, the brick from
which we can attempt to erect the building of spher-
ical, transition, and deformed nuclei, has been devel-
oped, we can return to the role of the Pauli exclu-
sion principle in forming the multiphonon states on
the microscopic level. This is done in Sections 3.6
5
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their experimental values (triangles) in the yrast band.
and 3.7, while here we present some of the results to
immediately describe the prospects.

Figure 12 shows fragments of the calculated (in
the harmonic approximation) and experimental spec-
tra of the yrast bands for several isotopes. As we see
from comparison, all of the characteristic features in
the spectra of the bands when passing from spherical
to deformed nuclei can be reproduced. The experi-
mentally observed behavior of B(E2) over the band
is reproduced remarkably closely, irrespective of how
strongly the nucleus is deformed, as illustrated by
Fig. 13.

However, the main thing demonstrated by these
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P

results is that a dynamical variable whose quanta
would realize the nuclear spectrum cannot be found
in even–even nuclei: the phonons are different in dif-
ferent states.

2.8. The zeroth (harmonic) approximation H0 that
we constructed reproduces many characteristic fea-
tures in the spectra of actual nuclei. But will this
success be destroyed after applying the anharmonic
corrections, i.e., after including the residual inter-
action that mixes the modes with different numbers
of phonons? After all, the sad experience of many
preceding approaches points precisely to this.

Indeed, let σN+1 mean the amplitude of the ad-
mixture of the (N + 1)-phonon component to the N-
phonon component attributable to Hint. Then,

σN+1 = 〈N + 1|Hint|N〉/[EN+1 − EN ] (4)

∼ NqN [B(E2;N + 1 → N)]1/2/ωN+1,

where ωN is the frequency of a phonon in the N-
phonon state, and qN is a quantity proportional to
the intrinsic quadrupole moment of one phonon in
the N-phonon state. If we choose the random phase
approximation for which

ωN = const = E(2+
1 ), qN = const,

B(E2;N + 1 → N) = (N + 1)B(E2; 2+
1 → 0+

1 )
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 8 2005
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Fig. 15. Calculated (in DCM) and experimental spectra of excited 152Sm states.
as H0, then we will obtain

σN+1 ∼ const ·N3/2[B(E2; 2+
1 → 0+

1 )]1/2/E(2+
1 ).

(5)

It can thus be seen that, in addition to the poor
convergence due to the factor N3/2, we also come up
against the great sensitivity of the problem to the col-
lectivity of the nucleus: when passing from spherical
to deformed nuclei, the factor at N3/2 increases by a
factor of 30 or more. It thus follows, in particular, that
the random phase approach has no prospects as the
zeroth approximation.

Let us now look at the quadrupole moment of the
2+
1 state. If we remain within perturbation theory and

assume that Q(2+
1 ) is attributable to the admixture

of a two-phonon component to the single-phonon
component σ2, then

Q(2+
1 ) = const · σ2(1 − σ2

2)
1/2[B(E2; 2+

1 → 0+
1 )]1/2.

(6)

It thus follows that y = |Q(2+
1 )|/

√
B(E2)↑ must be

a nearly linear function of x =
√

B(E2)↑/E(2+
1 ).

The systematics of available experimental data pre-
sented in Fig. 14 shows that y depends on x, if at all,
only at very low values of x and reaches rapidly the
rotational limit.

Thus, something suppresses the mixing of the
basis wave vectors with increasing collectivity of the
nucleus. As follows from (4), only qN can be such a
quantity. One mechanism of qN suppression with in-
creasing collectivity of the nucleus was found in 1979
[26]; it is associated with the zero nuclear shape oscil-
lations. By increasingly blurring the boundary of the
nucleus with its growing collectivity, the zero oscil-
lations or, figuratively speaking, vacuum fluctuations
cause the particle–hole interaction in the scattering
channels to be suppressed without affecting the inter-
action channels responsible for the phonon formation.
F ATOMIC NUCLEI Vol. 68 No. 8 200
Another mechanism that must clearly take place is
associated with the Pauli exclusion principle; but the
Pauli exclusion principle plays the most important
role in destroying the strong dependence of the ex-
pansions in terms of phonon vectors on the number
of phonons. As we saw above, allowing for the Pauli
exclusion principle in the formation of phonon vectors
leads not only to a nearly linear dependence of ωN

on the number of phonons N , but also to a weak
dependence of B(E2;N + 1 → N) on N . Moreover,
the maximum number of phonons that can be excited
in a nucleus turns out to be finite, and this solves
the problem of convergence. A detailed discussion of
these questions can be found in Sections 3.7 and 3.8,
while here we finish the discussion with one typi-
cal (in terms of the accuracy of description) result
of our complete calculation of the spectrum for the
classically deformed 152Sm nucleus (Fig. 15). What
determines such spectra, rotation? No, the reason lies
in the statistics, the Pauli exclusion principle, and the
zero shape oscillations.

Below, we summarize our preliminary results of
the discussion of the theoretical status of the previ-
ously formulated problem.

In the MSM ideology, the difficulties stem from
the fact that we have no a priori criteria that would
allow us to estimate whether we actually grasped in
main features the part of the state space in which the
nuclear dynamics is realized at low excitation ener-
gies. Transferring part of the interaction to the defini-
tion of new dynamical variables (and thus seemingly
circumventing the difficulties) also proves to have no
prospects. As we have tried to show, the way in which
the quanta proper are redefined so as to fully take
into account the mutual effect of the collective and
single-particles degrees of freedom on one another
turns out to be better. Formally, this is reduced to the
problem of defining the phonons and the quasiparticle
as the extremals of the complete Hamiltonian rather
than a part of it and with allowance made for the
5
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Pauli exclusion principle. To clarify the reasons, let us
consider the mathematical essence of the problem.
2.9. Let us return to the original formulation of the

problem.
1. We always solve the eigenvalue equation

Hmod|ψ(n)〉 = E(n)|ψ(n)〉 in two steps. First, we
divide Hmod into two parts: Hmod = H0 + (Hmod −
H0) = H0 +Hint, where the zeroth approximationH0,
we will now speak strictly, must satisfy two condi-
tions:

(1) The eigenvectors {|ϕν〉}∞1 of the linear self-
adjoint operator H0 limited from below form a com-
plete orthonormal system in the space of quadratically
summable functions of A-nucleon variables and are
antisymmetric relative to the permutations of nucleon
coordinates.

(2) The operators H0 and Hmod must be commen-
surable; i.e., such real constants α, β > 0 that the
following two inequalities are valid on any vector |ψ〉
from the domain of definition of Hmod must exist:

||(H0 −Hmod)ψ|| < α{||H0ψ|| + ||ψ||},
||(H0 −Hmod)ψ|| < β{||Hmodψ|| + ||ψ||}.

If these conditions are satisfied, then the solution
of the eigenvalue problem is sought in the form

of an expansion, |ψ(n)〉 =
∑∞

ν=1 r
(n)
ν |ϕν〉, provided

that
∑∞

ν=1 r
(n)
ν r

(m)
ν = δn,m. However, for any spe-

cific realization, we have to restrict ourselves to
a finite number N of expansion terms: |ψ(n)

N 〉 =∑N
ν=1 r

(n)
ν (N)|ϕν〉, provided that

∑N
ν=1 r

(n)
ν (N) ×

r
(m)
ν (N) = δn,m. By the convergence of the ap-

proximate solution |ψ(n)
N 〉 to the exact one |ψ(n)〉,

we mean the satisfaction of the Cauchy condition:

lim
N→∞

||ψ(n)
N − ψ

(n)
N+k(N)|| = 0 at any natural (even N-

dependent) k.
We will call the expansion of the kth state in terms

of basis vectors a k-ordered expansion if, for ν > k,

|r(k)
ν | ≥ |r(k)

ν+1|. (7)

In view of the well-known Neumann theorem [27],
condition 1 can be easily satisfied for a wide choice of
zeroth approximations. Condition 2 is necessary for

lim
N→∞

||ψ(n)
N − ψ

(n)
N+k(N)|| = 0, but checking whether

it is satisfied is a difficult and not always solvable
problem. Therefore, we assume condition 2 to be sat-
isfied.
2. Let us now assume that we have such a

Hamiltonian H0(ω) dependent on the parameter(s)
ω that conditions 1 and 2 are satisfied at any ω.
We can then use the representation Hmod = H0 +
P

(Hmod −H0) = H0 + Hint at each ω precisely be-
cause the eigenvectors of H0(ω) are complete. Next,
let {E(k)(N,ω)}k=1,N be the eigenvalue spectrum for
Hmod obtained in the N-dimensional approximation.

Each eigenvalue of E(k)(N,ω) depends on both
the dimension N of the chosen subspace and the
parameter ω. The ω dependence stems from the fact
that the chosen subspace is finite-dimensional. The
exact solution cannot depend on ω precisely because
the system of eigenvectors of H0(ω) is complete.

There can be two types of dependence ofE(k)(N,ω)
on N . If the first eigenvectors of H0(ω) are k-ordered,
then, as the dimension increases, we will have a
picture similar to curve 1 in Fig. 16; i.e., the kth
eigenvalue decreases uniformly. Since Hmod is limited
from below, E(k)(N,ω) necessarily has a limit the
attainment of which can be easily estimated from the
condition |E(k)(N,ω) − E(k)(N + k, ω)| < ε, where
ε is the prespecified accuracy of the calculation. If,
however, the chosen basis is not k-ordered, then the
N dependence of E(k)(N,ω) can be similar to curve 2
in Fig. 16. In this case, the estimate of |E(k)(N,ω) −
E(k)(N + k, ω)| < ε gives no guarantees that we
“grasped” in main features the part of the state space
where the nuclear dynamics develops—we could be
on one of the plateaus of curve 2 (Fig. 16). We tried
to demonstrate this in previous sections. Finding a
basis that is ordered relative to the first three to five
vectors with given spin and parity means guessing the
physics of the phenomenon. The dynamical collective
model is a possible procedure for constructing an
ordered basis or, more specifically, finding such a
zeroth approximation H0 from the specified initial
model Hamiltonian Hmod that the following expan-
sion would hold:

Hmod = H0 + iλ[H0T − TH0], (8)

where T is a self-adjoint operator whose domain of
definition coincides with the domain of definition of
Hmod, and λ is a real parameter.

To construct H0 of interest, note that only the
nondiagonal matrix elements of the residual interac-
tion Hint in the space {|ϕn〉} of eigenvectors of H0

are nonzero and 〈ϕn|Hmod|ϕn〉 = 〈ϕn|H0|ϕn〉 ≡ εn.
Consequently, if we wish to solve the problem in the
space of quasiparticle and phonon vectors, then their
expansion amplitudes should be sought by minimiz-
ing the complete Hamiltonian Hmod rather than a
separate part of it. This is a necessary but not suffi-
cient condition for the existence of expansion (8).
3. Let us assume that N is chosen to be so large

that the condition |E(k)(N,ω) − E(k)(N + k, ω)| <
ε, k ≤ 5 is satisfied for the first five eigenvalues. Let
us now consider the dependences of E(k)(N,ω) on ω.
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 8 2005
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They reach a minimum at a certain value of ω. Note
that this minimum can be at different ω for differ-
ent eigenvalues. Having these ω dependences of the
eigenvalues before their eyes, nuclear physicists will
begin to talk about intruder states and clustering and
will undoubtedly be right if the basis is ordered for the
solutions under consideration (in this case, the min-
ima are indistinct). At the same time, the presence
of well-defined minima is evidence that the space of
states is incomplete.
4. The situation where we calculate the depen-

dence of the total energy of a nucleus on the defor-
mation parameter is identical. The presence of well-
defined minima is evidence that the space of states
is incomplete when the law of conservation of total
angular momentum is violated.

I realize that this assertion demolishes the cur-
rent ideas in nuclear physics and cannot but pro-
voke criticism and a prejudiced attitude toward the
foregoing. For most of the researchers who grew in
the spirit of conceptual ideas of the 20th century, the
question of whether the deformed nuclei are deformed
may sound seditious, if not absurd. But who are the
judges? Mathematics and experiment. And mathe-
matics has said its word. For the lovers of computer
graphics, I propose to carry out a numerical experi-
ment: compute the total energy as a function of the
deformation parameter by gradually increasing the
number of oscillatory shells involved in the computa-
tion. As the number of oscillatory shells (there must
be more than eight such shells for oxygen) increases,
the dependence of the ground-state energy on the
deformation parameter will become increasingly flat,
gradually reaching a plateau, while the minimum will
become progressively less distinct, being gradually
lost in the unstable haze of computational errors.

Moreover, in my study of 1978 [28], I showed
for odd nuclei that, in the limit of large oscillation
amplitudes, the vibrational and rotational models be-
come unitarily equivalent if the centrifugal and Corio-
lis (with K = 1/2) terms are included in the definition
of the deformed average field. Note that this is also re-
quired by Eq. (8). In other words, deformed nuclei are
a language that is convenient and clear, but severely
narrows down the horizons. However, few physicists
have paid attention to this work, probably because it
is too mathematical.

Finally, if we could exactly solve Schrödinger’s
multiparticle equation Hmod|Ψ〉 = E|Ψ〉, then the
question of whether the deformed nuclei are deformed
even would not arise. We would calculate the level
spectrum, the transition probabilities, etc., from the
given charge and atomic number (this is done in
Section 4) and would make sure that the choice of a
two-particle component of the forces is correct. At the
same time, we would attribute the small discrepancies
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 8 200
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with the experimental data that would remain, for
example, to the disregarded three-particle forces,
relativistic effects, etc. The density distribution of the
material in the ground state of an even–even nucleus
and, in general, in any other state with a total angular
momentum of 0+ would necessarily be spherically
symmetric. The physics would be different. However,
we are unable to directly solve Schrödinger’s multi-
particle equation. Hence, we must choose a zeroth
approximation whose basis vectors would be ordered
relative to the first three to five states. We have already
seen what is obtained.

3. THE DYNAMICAL COLLECTIVE MODEL

We emphasize that the name we chose reflects not
the specifically chosen (paring + multipole–multipole
interaction) Hamiltonian, but the method of its anal-
ysis described in Section 2.9. In translation into the
language of perturbation theory, we obtain a list of
diagrams that play a crucial role in forming the spec-
trum of low-lying states. Once this list has been
established, we can also perform calculations with
realistic forces.

3.1. The Hamiltonian

The complete Hamiltonian is assumed to be

Hmod = H0 + HG + HQ, (9)

where H0 describes the independent motion of the
nucleons in an average field V (r), HG is the pai-
ring Hamiltonian, and HQ is the multipole–multipole
interaction. In the representation of the secondary
quantization, they are

H0 =
∑
jm

(ej − ν)a+
jmajm,
5
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HG = −G

4

∑
jm,in

(−1)j−m+i−na+
jma+

j−mainai−n,

HQ = −1
2

∑
λ,µ

χ(λ)

2λ + 1
Q+

λµQλµ,

Q+
λµ =

∑
j1,j2

f
(λ)
12 [a+

1 a2]λµ, f
(λ)
12 = 〈j1||f (λ)Yλ||j2〉,

[a+
1 a2]λµ =

∑
m1m2

Cλµ
j1m1j2m2

a+
j1m1

aj2m2 .

Here, a+
j1m1

(aj1m1) is the nucleon creation (an-
nihilation) operator in a single-particle state with
energy ej1 , total angular momentum and its pro-
jection j1m1, and other quantum numbers; f (λ)(r)
is a function of the angular momentum λ = 2, 3, . . .
and the single-particle radius r; and Cλµ

injm are the
Clebsch–Gordan coefficients. We will talk about the
parametrization of f (λ)(r) and the average field and
about the choice of constants of the effective forces
in the proper place. The symbol ν denotes the proton
or neutron chemical potential, and the energy is reck-
oned from E0 = νpNp + νnNn, where Np and Nn are
the numbers of protons and neutrons, respectively. In
most cases, we omit the isospin symbol where it is not
needed. The remaining notation is standard [4].

3.2. The Theory of Single-Phonon States

Although the method for constructing the single-
phonon states of Hmod is based on the random-phase
approximation, it has a number of significant distinc-
tions, which forces us to give plenty of space for its
description.

All begins from the standard passage in (9) from
the representation of a+(a) particles to the repre-
sentation of α+(α) quasiparticles through the Bo-
golyubov canonical transformation [4]. To terms pro-
portional to the pairs of operators αα and α+α+

with zero total angular momentum, the expression for
H0 + HG then takes the form

H̃0 = H0 + HG =
∑

1

(2j1 + 1)(ej1 − ν)

× [v2
j1 + (u2

j1 − v2
j1)

�
η j1] − (1/G)[(G/2)

×
∑

1

(2j1 + 1)uj1vj1(1 − 2
�
η j1)]

2

− (G/2)
∑

1

(2j1 + 1)v4
j1(1 − 2

�
η j1).
PH
Here,
�
η j = (2j + 1)−1

∑
m α+

jmαjm, and uj and vj
are the Bogolyubov transformation coefficients. Ac-
cordingly, HQ takes the form

HQ = H22 + H04 + Hsc + H13,

H22 = −1
4

∑
λµ

χ(λ)

2λ + 1

∑
1234

q
(λ)
12 q

(λ)
34 A+

12(λµ)A34(λµ),

H04 = −1
8

∑
λµ

χ(λ)

2λ + 1

∑
1234

q
(λ)
12 q

(λ)
34

× [(−1)λ−µA+
12(λµ)A+

34(λ− µ) + h.c.],

Hsc = −1
2

∑
λµ

χ(λ)

2λ + 1

∑
1234

p
(λ)
12 p

(λ)
34 N+

12(λµ)N34(λµ),

H13 = −1
2

∑
λµ

χ(λ)

2λ + 1

∑
1234

p
(λ)
12 q

(λ)
34

×N12(λ− µ)[A+
34(λµ) + (−1)λ−µA34(λ− µ)].

In these expressions,

q
(λ)
12 = f

(λ)
12 (u1v2 + v1u2),

p
(λ)
12 = f

(λ)
12 (u1u2 − v1v2),

A+
12(λµ) =

∑
m1m2

Cλµ
j1m1j2m2

α+
j1m1

α+
j2m2

,

N12(λµ) =
∑
m1m2

(−1)j2+m2Cλµ
j1m1j2m2

α+
j1m1

αj2−m2 .

At the first stage, we solve the problem in the har-
monic approximation, i.e., disregard the role of H13—
it has no nonzero diagonal matrix elements. However,
even with such a simplified Hamiltonian as

H̃mod = H̃0 + H22 + H04 + Hsc,

the problem cannot be solved exactly. The random
phase approximation appears at this stage. It lies
in the fact that, instead of the exact commutation
relations for A12(λµ) and A+

34(λµ) of the form

[A12(λµ), A+
34(λµ)] = δ(12)(34) (10)

−
∑
λ2µ2

W λ2λ
1234N13(λ2µ2),

where W is a geometric factor, whose exact form is
not yet important to us, and

δ(12)(34) = δ13δ24 − (−1)j1+j3+λδ14δ23,

one uses an approximation in which the terms pro-
portional to W are discarded. Hara [11] suggested
substituting the right-hand side of Eq. (10) with its
YSICS OF ATOMIC NUCLEI Vol. 68 No. 8 2005
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vacuum mean value and, thus, working again with the
boson commutation relations, but now in the form

[A12(λµ), A+
34(λµ)] = δ(12)(34)(1 − η1 − η2),

where

η1 = 〈0|�η 1|0〉 = (2j1 + 1)−1
∑
m1

〈0|α+
j1m1

αj1m1 |0〉.

Subsequently, the problem is solved as follows: Let

Ω+(i)
λµ denote the production operator of the ith

phonon with angular momentum λ and its projec-
tion µ. The ground state |0〉 is defined as a vacuum of

phonons: Ω(i)
λµ|0〉 = 0. The solution for Ω+(i)

λµ is sought
in the form of an expansion,

Ω+(i)
λµ =

1
2

∑
12

{r(iλ)
12 A+

12(λµ) (11)

− (−1)λ−µs
(iλ)
12 A12(λ− µ)},

where r and s are the sought expansion amplitudes.
Requiring that the phonon operators satisfy the boson
commutation relations

〈0|[Ω(i)
λµ,Ω

+(k)
σν ](−)|0〉 = δikδλσδµν ,

where [K,L](−) = KL−LK, we find that the expan-
sion that is the inverse of (10) is

A+
12(λµ) = (1 − η1 − η2)

∑
i

{r(iλ)
12 Ω+(i)

λµ

+ (−1)λ−µs
(iλ)
12 Ω(i)

λ−µ},

provided that the norm of the vectors is equal to unity:

〈0|Ω(i)
λµΩ+(i)

λµ |0〉 =
1
2

∑
12

{[r(iλ)
12 ]2 − [s(iλ)

12 ]2}

× (1 − η1 − η2) = 1.

It remains to determine the expansion amplitudes {r}
and {s} by solving the equation

δ{〈0|Ω(i)
λµ[H̃mod,Ω

+(i)
λµ ](−)|0〉

− ω
(i)
λ [〈0|Ω+(i)

λµ Ω(i)
λµ|0〉 − 1]} = 0.

Before doing this, let us make several technical re-
marks. The expression for H̃0 contains a term with
the square of the operator

�
∆ =

G

2

∑
1

(2j1 + 1)u1v1(1 − 2
�
η 1).

When calculating the commutator [H̃mod, Ω+(i)
λµ ](−) of

this term, we then obtain

− 1
G

[
�
∆

2

,Ω+(i)
λµ ](−) = − 1

G
[
�
∆, [

�
∆,Ω+(i)

λµ ]](−)
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− 2
G

[
�
∆,Ω+(i)

λµ ](−)

�
∆.

However,

− 1
G

[
�
∆, [

�
∆,Ω+(i)

λµ ]](−) (12)

= −G

4

∑
12

(1 − η1 − η2)(u1v1 + v2u2)2

× {[r(iλ)
12 ]2 − [s(iλ)

12 ]2},
and since ujvj ≤ 0.5, it follows from the normaliza-
tion condition that the contribution of (12) at any
admissible u, v, r, and s does not exceed G/2 (for
intermediate mass and heavy nuclei, it is negligible).
Hsc, which requires calculating commutators of the
form [N12, A34](−) constitutes the greatest inconve-
nience. However, this can be avoided by reducing Hsc
to a normal form relative to the vacuum of phonons:

Hsc =
1
2

∑
Λλµ

χ(λ)

2λ + 1

∑
1234

p
(λ)
12 p

(λ)
34 (−1)j3−j4+λ

× (2Λ + 1)

{
j1 j4 λ

j3 j2 Λ

}
A+

13(Λµ)A42(Λµ).

We can now perform all calculations by using the ex-
pansion of A+

13(Λµ), A42(Λµ) in terms of the phonon
operators. As a result, we obtain the following equa-
tion for the r and s amplitudes:

[ε1 + ε2 − ω
(i)
λ ]r(iλ)

12 =
χ(λ)

2(2λ + 1)
q
(λ)
12

×
∑
34

q
(λ)
34 (1 − η3 − η4)(r

(iλ)
34 + s

(iλ)
34 )

− χ(λ)
∑
34

p
(λ)
14 p

(λ)
32 (1 − η3 − η4)r

(iλ)
34

{
j1 j4 λ

j3 j2 λ

}
,

[ε1 + ε2 + ω
(i)
λ ]s(iλ)

12 =
χ(λ)

2(2λ + 1)
q
(λ)
12

×
∑
34

q
(λ)
34 (1 − η3 − η4)(r

(iλ)
34 + s

(iλ)
34 )

− χ(λ)
∑
34

p
(λ)
14 p

(λ)
32 (1 − η3 − η4)s

(iλ)
34

{
j1 j4 λ

j3 j2 λ

}
,

where εj = (ej − ν)(u2
j − v2

j ) + 2ujvj〈0|
�
∆|0〉 + Gv4

j

is the quasiparticle energy. These equations formally
differ from the standard equations [4] in that they
include Hsc, the exchange (with respect to H22) in-
teraction, and the blocking effect, the factors (1 −
η1 − η2), in both the pairing and multipole interaction
5
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channels. As our calculations show, the contribution
of Hsc to all of the calculated characteristics is 10%.

It remains to derive equations for the u and
v coefficients and the η numbers. In general, the
Bogolyubov transformation coefficients are sought
by minimizing 〈0|H̃0|0〉. In this case, however, as
we noted above, the important contribution from the
multipole attractive forces is lost: it may turn out to be
advantageous for the system to have a blurred Fermi
surface, since in this case the contribution of the
multipole attractive forces to the ground-state energy
increases greatly. In other words, the total energy
〈0|Ω(i)H̃modΩ+(i)|0〉 in each of the phonon states
must be minimized in u, v. Using the Heisenberg
equation, the orthonormality of the phonon vectors,

and the fact that ω
(i)
λ does not depend explicitly on

u, v, we find that the problem is reduced to minimizing
H̃mod in the ground state, provided that u2

j + v2
j = 1

for any j, i.e.,

δ{〈0|H̃mod|0〉 − µj(u2
j + v2

j − 1)} = 0.

The Lagrange factor µj in this equation can be easily
eliminated by applying a linear operator of the form
curlj = 1/2(uj∂/∂vj − vj∂/∂uj) to the expression in
the braces. Thus, the u and v coefficients must satisfy
an equation of the following form for each j:

curlj〈0|H̃mod|0〉 = 0.

Calculating curlj of 〈0|H̃0|0〉 involves no difficulty.
The situation with the contribution from 〈0|H22 +

H04|0〉 proportional to
[∑

12(1 − η1 − η2)q
(λ)
12 s

(iλ)
12

]2
is different. Using the equation for the s amplitudes,
we obtain

curl3(q
(λ)
12 s

(iλ)
12 ) = 2s(iλ)

12 curl3(q
(λ)
12 ) (13)

+
χ(λ)

2(2λ + 1)
q
(λ)
12 q

(λ)
12 curl3

[ ∑
· · ·

ε1 + ε2 + ω

]
.

A numerical analysis in the constant pairing approx-
imation by varying the constant of pairing forces
shows that the contribution from the second term
in (13) to the distributions of the u and v amplitudes is
several percent of the first term, while the contribution
from Hsc is negligible. As a result, we find that the
distributions of the u and v numbers, with a good
accuracy, satisfy the system of equations

(2j + 1)(1 − 2ηj)[(ej − ν)ujvj (14)

− 1/2(u2
j − v2

j )〈0|
�
∆|0〉]

= 1/2
∑
i

(ujvi − vjui)(1 − ηj − ηi)∆ji,
P

where

∆ji = 2
∑
nλ

χ(λ)

2(2λ + 1)
f

(λ)
ji s

(nλ)
ji

×
∑
kl

q
(λ)
kl (1 − ηk − ηl)s

(nλ)
kl ,

and the position of the chemical potential is deter-
mined by the condition for the conservation of the
number of particles on average:

N =
∑
j

(2j + 1){v2
j + (u2

j − v2
j )ηj}.

The left-hand side of Eq. (14) (if it were equal to
zero) is the standard equation for superfluidity with

the pairing gap ∆(G) = 〈0|
�
∆|0〉 renormalized due to

the presence of quasiparticles in each single-particle
(2j + 1)ηj state. The right-hand side of Eq. (14) is the
additional pairing field that arises from the exchange
of phonons of different multipolarity between the nu-
cleons. The role of this field is extremely important,
since Eq. (14) can have a solution corresponding to a
blurred Fermi surface even for G → 0.

This is illustrated by Fig. 17a, which schemati-
cally shows the dependence of uv on the constant of
pairing forces at χ = 0 and at χ exceeding a criti-
cal value of χ∗, which is determined by the specific
Fermi surface. In the past [14], this served as the
basis for calling the phenomenon under discussion
“anomalous superfluidity.” To demonstrate the effect
of the ∆ji terms on the blurring of the Fermi surface
additional to ∆(G), Fig. 17b shows the change in
the numbers of nucleons ∆nj in single-particle states
of the 152Sm nucleus caused by the inclusion of the
∆ji terms. As a result, we come up against a situation
that is paradoxical at first glance. On the one hand, as
the collectivity of the nucleus grows, as we will see
below, the η numbers increase, and, as a result of the
corresponding decrease in ∆(G), the quasiparticle
energies decrease. On the other hand, the blurring
of the Fermi surface does not decrease, but pro-
gressively increases due to the increasing role of the
∆ji terms. The decrease in the quasiparticle energies
with growing collectivity of the nucleus directly fol-
lows from the decrease in the even–odd mass differ-
ence in strongly collective nuclei and can be observed
by a sharp increase in the density of states in nuclei
at low excitation energies. This is demonstrated by
Fig. 17c, which shows the experimental level density
in 144−152Sm as a function of the excitation energy.
In plotting this dependence, we discarded the states
belonging to the yrast band and followed only the en-
ergy starting from which the density increased sharply
(after all, we do not yet know the nature of most
states). The position of the first noncollective solution
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 8 2005
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Fig. 17. (a) Schematic dependence of uv on the constant of pairing forces at zero constant of multipole forces, χ = 0, and at
a constant exceeding a critical value χ > χ∗. (b) The change in the occupation numbers of single-particle 152Sm states by
nucleons caused by the inclusion of the multipole forces. (c) The experimental level density of the excited states of samarium
isotopes as a function of the excitation energy. The arrows indicate the positions of the first calculated noncollective state; the
closed circles indicate the position of the collective state.
we calculated is indicated by the arrow in each of
these figures. The observed correlation is so clear that
the affirmative answer to the question of the decrease
in the quasiparticle energy with growing collectivity
of the nucleus is beyond doubt.

We see that both the decrease in the quasiparticle
energies with growing collectivity of the nucleus and
the increasing blurring of the Fermi surface are the
two most important dynamical effects whose neglect
is responsible for the failures of the previous attempts
to describe even–even nuclei.

Let us now proceed to calculate the η numbers.
An exact expression cannot be derived for them; we
always have to restrict ourselves to an approximation.
The zeroth approximation

ηj =
∑
niλ

(2λ + 1)/(2j + 1)[s(nλ)
ij ]2,

on which the authors of [4] relied for ω → 0, has
asymptotic behavior of the form η|ω→0 ∼ 1/[ω/c],
where c is a constant. However, by definition, the
η numbers cannot exceed 1/2. The linear approxima-
tion [12, 14, 26]

ηj =
∑
niλ

(2λ + 1)/(2j + 1)[s(nλ)
ij ]2(1 − ηi − ηj)

with the asymptotic behavior η|ω→ 0 ∼ 1/2[1 −
ω/(2c)] also has a low accuracy in strongly collective
nuclei (∼80%), which can easily be estimated by
calculating, for example, the total angular momentum
of the single-particle state. To find a more adequate
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 8 200
approximation, let us consider the set of “quasiparti-
cle + N phonons” vectors

|JM〉 = [Dj ]−1/2α+
j ⊗ {Ω+(i)

λ }N |0〉

with the normalization Dj = (1− ηj). As a result, we
obtain

ηj = (2j + 1)−1
∑
m

〈0|α+
jmαjm|0〉

= (2j + 1)−1
∑

m,Ji,M

〈0|α+
jm|JiM〉〈JiM |αjm|0〉

=
∑
n,i,λ

(2λ + 1)/(2j + 1)[s(nλ)
ij ]2

× (1 − ηi − ηj)2/(1 − ηi)

with the asymptotic behavior η|ω→0 ∼ 1/2{1 −
[ω/c]1/2/2}. As our numerical calculations show,
when summing over n and λ both in Eq. (14) and
in others, we may restrict ourselves to the first three
or four solutions with the angular momenta λ = 2, 3;
the contribution from the remaining solutions to the
distributions of the u, v, and η numbers and the
contribution from the states of higher multipolarity
are negligible at the computational accuracy (0.1%)
in spherical, transition, and deformed nuclei. The
fact that the calculated values of the total angular
momentum for any of the phonon states do not differ
from the exact value by more than 0.2% is particularly
attractive.

In the described scheme of our calculations, the
nonunitarity of the Bogolyubov canonical transfor-
5
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Fig. 18. (a) Calculated values of g(6+
1 ) for 112Sn versus

neutron constant ζ− of spin–orbit forces in compari-
son with the experimental data. (b) Calculated (open
symbols) and experimental (closed symbols) energies of
the 2+

1 , 4+
1 , 6+

1 , and 10+
1 states in the tin isotopes and

energy difference of the 7/2+
1 and 5/2+

1 states in the cor-
responding Sb isotopes versus mass number. The scale
of variations in the proton constant of spin–orbit forces
corresponding to these mass numbers is shown below.
(c) Calculated (open symbols) and experimental (closed
symbols) values of g(6+

1 ) versus mass number.

mation, as a result of which the total number of nu-
cleons is not an exact quantum number, introduces
the largest uncertainty; their number is conserved
only on average. To apply a correction for this, we
used the standard projection method [4] and obtained
the following renormalization for the constant of pair
forces:

G → G

{
1 +

[∑
j

(2j + 1)[ηj(u2
j − v2

j )
2

+ (1 + 2ηj)2u2
jv

2
j ]

]−1}
.

A curious feature has been found: if, as is customary,
the renormalization is made in the η = 0 approxima-
tion, then its value changes greatly from nucleus to
nucleus. In contrast, the renormalization is almost
constant, slightly more than 12%, in the approxima-
tion for the u, v, and η numbers under consideration.

We calculated the probabilities of electromagnetic
transitions and the magnetic moments of the states
in a standard way. As regards the charge radius of the
nucleus in the ground state (a vacuum of phonons),
P

the expression

Z〈R2〉 =
∑
j

(2j + 1)〈j|r2|j〉[v2
j + (u2

j − v2
j )ηj ]

does not include the anharmonic corrections at-
tributable to H13, which we have not yet calculated.
To obtain an upper limit for the role of H13, we

renormalized the single-particle operator
�
r

2
to 1 +

[5/(4π)]β2 , where the root-mean-square deformation
can be expressed in terms of the normalization factor
Y2 of the phonon amplitudes r and s as follows:
β2 = 25/[2E(2+

1 )Y2].

3.3. Parametrization
Describing the parametrization, we will naturally

also present a number of results that underlie it.
The average field. The parameters of the average

field V (r) taken in the form of the Woods–Saxon
potential differ little from the standard parameters [4].
The depth is defined as

V ±
0 = 52[1 ± 0.647(N − Z)/A] MeV,

where (+) and (−) refer to the protons and neutrons,
respectively. We chose the half-decay radius r0 =
1.28 fm and the diffusivity a = 0.69 fm (of course, not
uniquely) from the description of the absolute values
of the charge radii for the 116Sn and 144Sm nuclei. The
most uncertain characteristics of the average field are
the constants of spin–orbit forces ζ±:

V ±
ls = ζ±[1 + 2(N − Z)/A]V ±

0 /2.

In a sense, they have been reliably determined only for
the magic nuclei. Are they constant in the entire mass
region or do they change significantly? The boson
model of spin–orbit forces gives no answer to this
question. There is only evidence that, to within the
isotopic factor, the sum of the proton and neutron
constants is constant throughout the mass region,
i.e.,

1/2(V +
0 ζ+ + V −

0 ζ−) ≈ const. (15)

On the other hand, there are direct experimental data
showing that ζ+ changes significantly even within the
same isotopic chain. The case in point is the 7/2+

1

and 5/2+
1 states of the Sb isotopes, which are identi-

fied as single-particle ones and which change signif-
icantly their relative positions as the atomic number
increases. Thus, we have every reason to consider
the constants ζ± as free parameters chosen from the
condition for the best description of the spectroscopic
information. We began with this, but soon made sure
that (15) with const ∼ 14 MeV is valid even based on
a cursory analysis of the properties of the Sn and Hg
isotopes.
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 8 2005
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This was an unexpected result of our work: our
Hamiltonian is approximate, and we solve the prob-
lem approximately; as a result, we arrive at pure rela-
tivity! Below, we will return to the discussion of this
problem, and now we only emphasize that, in view
of (15), one free parameter remains in the model.

The pairing interaction. From the wide range
of various parametrizations of the pairing interac-
tion that we analyzed, the following parametrization
proved to be the most satisfactory:

G = (19.5/A)[1 ± 0.51(N − Z)/A].

The multipole interaction. We chose the para-
metrization of the multipole forces by following the
reasonable ideology of the liquid-drop model, in which
the function f (λ)(r) = r∂V (r)/∂r does not depend
on the multipolarity. The constants of forces then do
not depend on the multipolarity either:

1/χ± =

∞∫

0

r
dV ±

dr

dρ±

dr
dr.

Here, ρ± is the single-particle proton (+) or neu-
tron (−) density calculated at η = 0. As regards the
pn interaction, χnp = χpn =

√
χ+χ−. Including the

Coulomb interaction proved to be important for prop-
erly describing the experimental data as a whole. For
potentials with a fairly sharp edge, χ ≈ const/A4/3.

Choosing a basis of single-particle states.
Four oscillatory shells both for protons and for
neutrons were involved in our calculations. When
varying the constants of spin–orbit forces in the
chain of isotopes, we made sure that the same single-
particle states were involved in the calculations. The
dimension of the basis was determined from the
description of the E2 transitions in the Sn isotopes.

3.4. Results of the Calculations
in the Single-Phonon Approximation

First of all, recall that any of the results presented
here were obtained by choosing the proton (or neu-
tron) constant of spin–orbit forces, since sum (15)
proved to be constant throughout the mass region
and equal to 13.9 MeV. This sum was fixed by an-
alyzing the properties of the Sb and Sn isotopes.
More specifically, having determined ζ+ from the de-
scription of the relative positions of the 7/2+

1 and
5/2+

1 states in the 113Sb isotope, we find the constant
ζ− from the description of the g factor for the 6+

1 state
of 112Sn. This is demonstrated by Fig. 18a, where
g(6+

1 ) is plotted against ζ−. Such a sharp dependence
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of the g factor on ζ− is attributable to different de-
grees of mixing of the two-quasiparticle configura-
tions [1g7/2, 2d5/2]6+ and [1g7/2]26+ with significantly
different magnetic moments.

Once sum (15) has been fixed, one parameter, for
example, ζ+, which can be determined from the de-
scription of all the available spectroscopic information
on the nucleus in question, remains in the model.

Can the characteristic changes in the excitation
spectra of the nuclei in the chain of isotopes be re-
produced by choosing one parameter? Figure 18b for
the 2+

1 , 4+
1 , 6+

1 , and 10+
1 states of the tin isotopes

answers this question. How the relative positions of
the 7/2+

1 and 5/2+
1 states in the corresponding Sb

nuclei are described in this case is shown in the lower
part of Fig. 18b together with its scale of the ζ+

variations. The behavior of g(6+
1 ) as a function of the

mass number proved to be curious (Fig. 18c). We
see that, in agreement with the experimental data,
g(6+

1 ) increases rapidly as we pass from 110Sn to
112Sn, reaching its maximum in 114Sn. However, it
has the opposite sign even in 118Sn g(6+

1 ), which is
attributable to the leading role of the [1h11/2]26+ con-
figuration in forming the 6+

1 state. However, as yet,
there are no experimental data for g(6+

1 ) in the 114Sn
and 118Sn isotopes.

A series of other known data is given in Tables 3
and 4 together with the results of our calculations.

Whereas Fig. 18 characterizes the general trend,
Fig. 5, which was discussed above, shows the de-
gree of detail to which the excitation spectra of the
best studied isotopes can be described in the single-
phonon approximation.

We also performed similar calculations for many
other chains of isotopes from the region of A ∼ 100,

Table 3. Values of g(Jπ
i ) calculated in the single-phonon

approximation for some of the states of the ASn isotopes in
comparison with its experimental values

A Jπ
i Calc. Expt.

110 6+
1 +0.028 +0.012(5)

112 6+
1 +0.091 +0.089(6)

114 7−1 −0.047 −0.081

116 5−1 −0.049 −0.045

10+
1 −0.263 −0.231(2)

118 5−1 −0.080 −0.065(5)

7−1 −0.065 −0.098

120 5−1 −0.081 −0.061(5)
5
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Table 4. Results of our calculations in the single-phonon approximation

A
E(2+

1 ), MeV B(E2)↑, e2 b2 g(2+
1 ) ∆〈r2〉A,A′ , fm2

calc. expt. calc. expt. calc. expt. calc. expt.

Sn

110 1.024 1.212 0.24 0.13 −0.278 −0.417

112 1.207 1.257 0.21 0.24(2) 0.14 −0.164 −0.269

114 1.373 1.300 0.18 0.23(5) 0.15 −0.040 −0.136

116 1.422 1.294 0.16 0.21(1) 0.12 0

118 1.350 1.230 0.17 0.21(1) 0.09 +0.064 +0.128

120 1.038 1.171 0.22 0.20(1) 0.03 +0.199 +0.241

122 0.983 1.141 0.21 0.19(1) 0.00 +0.254 +0.342

Ba

130 0.450 0.386 0.88 0.60(20) 0.37 0.35(3) −0.074 −0.086

132 0.523 0.465 0.80 0.86(6) 0.38 0.34(3) −0.049 −0.068

134 0.679 0.605 0.79 0.68(20) 0.53 0.43(5) −0.017 −0.053

136 0.883 0.819 0.66 0.40(1) 0.57 0.34(5) 0.014 −0.041

138 1.556 1.436 0.40 0.23(1) 0.80 0 0

140 0.817 0.602 0.81 0.34 +0.315 +0.281

Hg

186 0.367 0.405 0.95 1.37(23) 0.63 −0.522 −0.464

190 0.366 0.416 1.13 – 0.49 −0.314 −0.319

196 0.347 0.426 0.99 1.15(5) 0.49 −0.067 −0.081

198 0.394 0.412 0.86 0.99(1) 0.57 0.56(9) 0 0
150, and 200 (see Fig. 6 and Table 4). As we see,
the single-phonon approximation satisfactorily re-
produces the properties of the basic characteristics of
the nuclei in long isotopic chains.

There arises the question of whether we have the
right to draw any conclusions from the comparison
of the results of our calculations in the harmonic
approximation with the experimental data. For the tin
isotopes, this comparison is quite legitimate, since the
smallness of the quadrupole moment of the 2+

1 states
is indicative of a minor role of H13. However, this
cannot be said, for example, about the samarium
isotopes. Why do we speak about a satisfactory de-
scription in this case as well? The point is that our
numerous studies of odd nuclei have shown that H13
affects rather weakly the description of the relative
positions of the yrast states, the probabilities of tran-
sitions between them, etc. Therefore, our calculated
characteristics in the harmonic approximation also
closely correspond to the calculated values of the
same characteristics after including H13.
P

Although the results obtained appear to be suc-
cessful, we found a number of systematic discrep-
ancies with the experimental data. These primarily
include (i) an overestimated B(E2; 2+

1 → 0+
1 ) com-

pared to its experimental values in nuclei with a magic
number of neutrons, and (ii) an underestimated high-
spin multiplet splitting compared to its experimental
value.

Collectively, these discrepancies stem from the
fact that the range of the multipole–multipole in-
teraction is too small; as a result, the diagonal and
off-diagonal pair matrix elements are comparable in
magnitude. If the magnitude of the forces is chosen
from the description of the high-spin multiplet split-
ting, then we will always obtain overestimated values
of B(E2) due to the overly strong mixing of the con-
figurations. In this respect, the multipole–multipole
approximation to the effective forces in nuclei may be
considered to be “doomed.” However, the experience
in recognizing the “main diagrams” gained in this
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 8 2005
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way is a necessary prerequisite for further progress
in a future study with realistic nuclear forces. There-
fore, below, we also rely on the multipole–multipole
approximation when constructing the multiphonon
states and when applying the anharmonic correc-
tions.

3.5. The Theory of Multiphonon States

Let, as above, Ω+(i)
λµ denote the production oper-

ator of the ith phonon with angular momentum λ
and its projection µ. Consider a two-phonon wave
function (to save space, we omit the letter i) with
angular momentum R and projection M :

|[λ]2R〉 = [K2λR]−1/2
∑
µν

CRM
λµλνΩ

+
λµΩ+

λν |0〉,

where K2λR is the normalization factor determined
from the condition 〈[λ]2R||[λ]2R〉 = 1:

K2λR = 2 + PR
λλ,

PR
λ1λ2

= −(2λ1 + 1)(2λ2 + 1)
∑
1234




j1 j2 λ1

j3 j4 λ2

λ1 λ2 R




×
[
r
(λ1)
12 r

(λ2)
34 r

(λ1)
13 r

(λ2)
24 − s

(λ1)
12 s

(λ2)
34 s

(λ1)
13 s

(λ2)
24

]

× (1 − η1 − η3)(1 − η2 − η4).

Here, the amplitudes r and s depend on the number
of phonons N and on the total angular momentum R;
we do not write out these quantum numbers in order
not to overload the expression, but this should be kept
in mind.

Now, note that we will obtain the same result if we
assume that the phonon operators satisfy the boson
commutation relations, while we apply the Pauli cor-
rections by introducing a special antisymmetrization
operator P whose action on the two-phonon vector
|[λ]2R〉 is defined in such a way that the following
identity holds:

〈[λ]2R|(1 + P )|[λ]2R〉 = 1.

As a result, we find that

P [A+
12(λ)A+

34(λ)]R

= −
∑
λ1λ2

(2 + 1)[(2λ1 + 1)(2λ2 + 1)]1/2

×


[A+

13(λ1)A+
24(λ2)]R




j1 j2 λ

j3 j4 λ

λ1 λ2 R



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+ (−1)j3−j4−λ[A+
14(λ1)A+

23(λ2)]R




j1 j2 λ

j4 j3 λ

λ1 λ2 R





 .

We defined P [A12(λ)A34(λ)]R in a similar way. As
yet, we have made no approximations, and, formally,
the essence of the method suggested in [24] is to
restrict the analysis to the contribution from the two-
phonon components when allowing for the Pauli cor-
rections. The norm of the N-phonon state is then
found to be

KNλJ = N !

{
1 + (N − 1)/2

∑
R

Γ2
NJRP

R
λλ

}
,

where ΓNJR is the weight of the two-phonon com-
ponent with angular momentum R in the N-phonon
state with the set of quantum numbers N and J
calculated in a standard way via the genealogical
coefficient [29].

We can verify that this approximation is highly
accurate by considering various limiting situations.
For example, let us choose a spin-forbidden multi-
quasiparticle configuration {j}NJ . If we attempt to
represent it as an N/2-phonon configuration, then we
will find KN/2,λJ = 0. Another example: if a phonon is
assumed to be formed at one single-particle j level,
then we will easily obtain the maximum number of
phonons that can be excited in such a system, which
is determined by the condition for the norm of the
vector being equal to zero. As a result, the maximum
angular momentum Jmax = 2Nmax that the {j}Nmax

J
configuration can have is almost always equal to its
exact value. In other words, the two-phonon approxi-
mation used to allow for the Pauli corrections reflects
the actual situation quite adequately, while the entire
procedure of calculations can be unified by introduc-
ing the operator P .

It remains to present the variational equation that
defines the structure of one phonon in the N-phonon
state with the set of quantum numbers J and N :

δ{〈[λ]1λ|H̃0 + Hqq|[λ]1λ〉 + [(N − 1)/2]

×
∑
R

Γ2
NJR〈[λ]2R|HqqP |[λ]2R〉

− ωλNJ(〈[λ]1λ|[λ]1λ〉 − 1)} = 0, EλNJ = NωλNJ ,

where Hqq = H22 +H04 +Hsc. After variations in the
r and s amplitudes, we find that

(2λ + 1)−1{S(λ)
p (χppF

(λ)
p + χpnF

(λ)
n )

+ S(λ)
n (χnnF

(λ)
n + χnpF

(λ)
p )}

+ D(λ)
p + D(λ)

n = F (λ)
p + F (λ)

n .
5
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Fig. 19. Spectra of multiphonon states for several nuclei calculated in the harmonic DCM approximation in comparison with
the experimental excitation spectra.
Here (the isospin symbol τ = p, n in the formulas
given below indicates that the summation is over the
corresponding single-particle states),

S(λ)
τ =

∑
1τ2τ

q
(λ)
1τ2τ [(ε1τ + ε2τ )/([ε1τ + ε2τ ]2

− ω2
λNJ)](1 − η1τ − η2τ ),

F (λ)
τ =

∑
1τ2τ

q
(λ)
1τ2τ (r

(λ)
1τ2τ + s

(λ)
1τ2τ )(1 − η1τ − η2τ ),

r
(λ)
1p2p

=
q
(λ)
1p2p

2(2λ + 1)(ε1p + ε2p − ωλNJ)

× (χppF
(λ)
p + χpnF

(λ)
n ) − [(ε1p + ε2p − ωλNJ)

× (1 − η1p − η2p)]
−1 ∂M

∂r
(λ)
1p2p

,

s
(λ)
1p2p

=
q
(λ)
1p2p

2(2λ + 1)(ε1p + ε2p + ωλNJ)
PH
× (χppF
(λ)
p + χpnFn(λ)) − [(ε1p + ε2p + ωλNJ)

× (1 − η1p − η2p)]
−1 ∂M

∂s
(λ)
1p2p

,

D(λ)
p =

∑
12

q
(λ)
1p2p

[
(ε1p + ε2p − ωλNJ)−1 ∂M

∂r
(λ)
1p2p

+ (ε1p + ε2p + ωλNJ)−1 ∂M

∂s
(λ)
1p2p

]
,

M =
N − 1

2

∑
R

Γ2
NJR〈[λ1λ2]2R|HqqP |[λ1λ2]2R〉,

〈
[λ1λ2]2R|HqqP |[λ1λ2]2R

〉
= −

{
χpp

(
F (λ1)
p QRp

λ1λ2
+ F (λ2)

p QRp
λ2λ1

)

+ χpn

(
F (λ1)
n QRn

λ1λ2
+ F (λ2)

n QRn
λ2λ1

)}

+
{
χnn

(
F (λ1)
n QRn

λ1λ2
+ F (λ2)

n QRn
λ2λ1

)
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+ χnp

(
F (λ1)
p QRp

λ1λ2
+ F (λ2)

p QRp
λ2λ1

)}
,

where

QRτ
λ1λ2

= −(2λ1 + 1)(2λ2 + 1)
∑
1234




j1 j2 λ1

j3 j4 λ2

λ1 λ2 R




×
[
q
(λ1)
13

{
r
(λ1)
12 r

(λ2)
24 r

(λ2)
34 + s

(λ1)
12 s

(λ2)
24 s

(λ2)
34

}

+ q
(λ1)
24

{
r
(λ1)
12 r

(λ2)
13 r

(λ2)
34 + s

(λ1)
12 s

(λ2)
13 s

(λ2)
34

}]

× (1 − η1 − η3)(1 − η2 − η4).

The expressions for the neutron amplitudes r and s
derived from these relations by substituting the index
n for p appear similar. Next, to save space, in all
expressions, we do not specify that the amplitudes r
and s and, hence, S, F , and Q depend on the set of
quantum numbers that characterize the N-phonon
state. We emphasize that the solution of the equations
has a meaning only for a positively defined vector
norm. The values of the quantum numbers at which
the vector norm is zero imply a break of the band of
collective states. However, it does not follow from this
that a state with an even larger angular momentum
cannot be excited in the system. This requires con-
sidering the band of states in a noncollective state of
large multipolarity.

3.6. Results of the Calculations
of Multiphonon States

The parametrization was discussed in detail in
Section 3.3. Here, we merely recall that there is only
one free parameter in the approach under consider-
ation, the proton or neutron constant of spin–orbit
forces.

The spectra of the bands of ground nuclear states
and the transition probabilities in them calculated in
the harmonic approximation are shown in Figs. 12
and 13. Figure 19 shows the total spectra of collective
states for several nuclei calculated in the harmonic
approximation in comparison with the experimental
data.

We see that, after allowing for the Pauli exclusion
principle in the formation of multiphonon states, we
can reproduce not only the structure of the yrast
bands of nuclei and the characteristic changes in
them when passing from spherical to deformed nuclei,
but also many characteristic features observed in the
total spectra.

However, the role of the Pauli exclusion principle
manifests itself most clearly in the existence of a crit-
ical number of phonons Nmax and the corresponding
angular momentum Jmax = 2Nmax.
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Fig. 20. Calculated (closed triangles) critical angular
momenta, excitation energies corresponding to these
angular momenta (open squares), and proton (closed
squares) and neutron (closed triangles) separation en-
ergies versus mass number of the samarium isotopes.
Two typical patterns of behavior of RJ = B(E2; J →
J − 2)/B(E2; 2+

1 → 0+
1 ) near the critical angular mo-

mentum (the value is indicated by the dashed line) are
shown in the lower part of the figure.

The calculated values of Jmax and Emax for the
samarium isotopes are shown in Fig. 20 together
with the experimental data on the nucleon separa-
tion energies in these nuclei. The clear correlation
of Emax with the neutron separation energy Sn is not
random; it is repeated from calculation to calculation.
This suggests that Emax is precisely the energy at
which the nucleus is easily deexcited by emitting a
neutron with an orbital angular momentum l = 2 (the
Coulomb barrier is a hindrance to protons).

The behavior of B(E2) near Jmax is shown in the
lower part of Fig. 20 to demonstrate two typically
encountered situations. The last situation is observed
in the experiment for 74Se at Jπ = 16+ (see Sec-
tion 4.1). It remains to apply the anharmonic cor-
rections to complete our analysis of the “pairing +
multipole–multipole” interaction scheme.

3.7. The Theory of Anharmonic Corrections

The Hamiltonian of the multipole attractive forces
HQ consists of two main parts: Hqq = H22 + H04 +
Hsc and H13. The first part is responsible for the for-
mation of phonon vectors, while the second part is re-
sponsible for their mixing. Naturally, the constants of
forces in the first and second parts are identical. How-
ever, it follows from our analysis of the experimental
data, in particular, from the analysis of Q(2+

1 ), as we
saw, that as the collectivity of the nucleus grows, i.e.,
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as the contribution from Hqq increases, the corre-
sponding contribution from H13 must decrease. This
characteristic relationship between the contributions
was first established in 1979 [26] by analyzing the
properties of odd nuclei; the cause (zero shape oscil-
lations) was also established at this time. Therefore,
turning to even–even nuclei, we knew where to seek
the answer.

Formally, our problem is to calculate matrix ele-
ments of the form 〈[λ]N1

J1
|H13(1 + P )|[λ]N2

J2
〉 and di-

agonalize the matrix constructed as a result. There is
no need to describe a detailed derivation of the for-
mulas for these matrix elements; except the separa-
tion of the corrections related to the zero oscillations,
a standard technique is used here. We will discuss
this point using the calculation of the matrix element
〈ΩλµNji(ΛM)Ω+

λµ〉 to which many of the calculations
are eventually reduced as an example.

The standard procedure for calculating this matrix
element is based on the tacit assumption that the
commutator Ωλµ with Ω+

λµ is identically equal to a
Kronecker delta, and the contribution of the second
term in the expression

〈ΩλµNjiΩλµ〉 = 〈Ωλµ[Nji,Ω+
λµ](−)〉 + 〈ΩλµΩ+

λµNji〉
(16)

is then equal to zero at Λ �= 0. However, for any
microscopic definition of the phonon, only the vac-
uum mean of the commutator rather than its exact
expression, which also contains terms proportional to
Nkl, can be equal to a Kronecker delta. Hence, the
contribution of the second term in (16) is proportional
to 〈Nkl(ΛM)Nji(Λ′M ′)〉. The latter can be easily
P

calculated by reducing it to a normal (relative to the
phonon vacuum) form and using the expansion of the
quasiparticle pairs α+

i α
+
j and αkαl in terms of the

phonon operators. As a result, we obtain

〈ΩλµΩ+
λµNkl(LM)〉 ∼ 〈α+

i αjα
+
k αl〉 ∼ ηjδkjδil

− 〈α+
i α+

j αkαl〉 ∼ ηjδkjδil

−
∑
nΛ

s
(nΛ)
ik s

(nΛ)
jl (1 − ηi − ηk)(1 − ηj − ηl).

These corrections in (16) play a crucial role in
strongly collective nuclei. It remains to give the final
expressions for the matrix elements.

The matrix elements with∆N === 1.

〈[λ]N−1
J |H13|[λ]NJ 〉 = (N − 1)

[
KN,J,...

KN−1,J,...

]1/2

× ΓN,J,...
N−1,J,...{[χppF

(NλJ)
p + χpnF

(NλJ)
n ]Lp

NλJ

+ [χnnF
(NλJ)
n + χnpF

(NλJ)
p ]Ln

NλJ

+ [χppF
(N−1λJ)
p + χpnF

(N−1λJ)
n ]Mp

NλJ

+ [χnnF
(N−1λJ)
n + χnpF

(N−1λJ)
p ]Mn

NλJ}.

In these expressions, the ellipses stand for the en-
tire set of quantum numbers that characterize the
N-phonon state. Further, we have

Lτ
NλJ = −1

2

∑
123

(−1)j1+j3+λ

{
λ λ λ

j1 j2 j3

}

×G
(λ)
123[r

(NλJ)
23 r

(N−1λJ)
13 + (−1)λs(NλJ)

13 s
(N−1λJ)
23 ],
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M τ
NλJ = −1

2

∑
123

(−1)j1+j3+λ

{
λ λ λ

j1 j2 j3

}

×G
(λ)
123r

(NλJ)
23 s

(NλJ)
13 ,

G
(λ)
123 = p

(λ)
12 (1 − η1 − η2 − η3)

+
∑
45Λ

(−1)j4+j5+λ(2Λ + 1)




j4 j5 λ

j1 j2 Λ




× s
(0Λ0)
15 p

(λ)
54 s

(0Λ0)
42 (1 − η1 − η5)(1 − η4 − η2).

In these expressions, we specified all those quantum
numbers on which the amplitudes r and s depend.
The weighting factors ΓN,J,...

N−1,J,... can be calculated
inductively,

ΓN,J,...
N−1,J,... =

∑
ΓN−1,JN−1,...
N−2,JN−2,...

×GN,JN ,...
N−1,JN−1,...

[λ]GN−1,JN−1,...
N−2,JN−2,...

[λ],

from the known single-phonon fractional-parentage
coefficients [29] GN,JN ,...

N−1,JN−1,...
[λ] with the initial con-

dition Γ2,J2

1,λ = δλ,J2 ; the summation is over all inter-
mediate quantum numbers.

Similarly, we also determined the weighting fac-
tors encountered below

ΓN,J,...
N−3,J,... =

∑
ΓN−1,JN−1,...
N−4,JN−4,...

×GN,JN ,...
N−1,JN−1,...

[λ]GN−3,JN−3,...
N−4,JN−4,...

[λ]

and the coefficients D...
...[R] whose determination dif-

fers from that of ΓN,J,...
N−1,J,... only by the initial condition

D3,J,...
2,R,...[R] = [(2λ + 1)(2R + 1)]1/2

×




λ λ R

λ J λ


G3,J,...

2,R,...[λ].

The matrix elements proportional to F · L and F ·M
correspond to the diagrams shown in Figs. 21a, 21b,
and 21c, respectively. The open circle corresponds to
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 8 200
the matrix element G
(λ)
123 that includes the renormal-

ization of the matrix element p
(λ)
12 attributable to the

vacuum fluctuations. In the language of the diagrams
shown in Fig. 21a, allowance for the vacuum fluctua-
tions implies allowance for the set of diagrams shown
in Fig. 21d. A similar expansion in terms of vacuum
contributions should be kept in mind for any diagram
where the open circle is encountered.

In addition to the above matrix elements respon-
sible for the processes with the change in the number
of phonons by one, there are two more purely Pauli
matrix elements:

〈[λ]N−1
J |H13P |[λ]NJ 〉 = N(N − 1)

[
KN−1,J,...

KN,J,...

]1/2

× ΓN,J,...
N−1,J,...{χppR

p
NλJ + χnnR

n
NλJ}

+ N(N − 1)(N − 2)
[
KN−1,J,...

KN,J,...

]1/2

×
∑

R=0,2,4

DN,J,...
N−1,J,...[R]{[χppF

p
NλJ + χpnF

n
NλJ ]

× T p
NλJ [R] + [χnnF

n
NλJ + χnpF

p
NλJ ]T n

NλJ [R]},

Rτ
NλJ = −

∑
1,...,5

(2λ + 1)2

×




λ λ λ

j1 j2 j5







j2 j3 λ

j5 j4 λ

λ λ λ




q
(λ)
34 G

(λ)
125

× [r(NλJ)
32 r

(NλJ)
45 r

(N−1λJ)
51

+ s
(NλJ)
32 s

(NλJ)
45 s

(N−1λJ)
51 ](1 − η3 − η4),

T τ
NλJ [R] = −

∑
1,...,5

(2λ + 1)2

×




λ λ λ

j1 j2 j5







j2 j3 λ

j5 j4 λ

λ λ R




G
(λ)
125
5
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× [r(NλJ)
32 r

(NλJ)
54 r

(N−1λJ)
51 r

(N−1λJ)
34

+ s
(NλJ)
32 s

(NλJ)
54 s

(N−1λJ)
51 s

(N−1λJ)
34 ](1 − η3 − η4).

The matrix elements proportional to R and F · T
correspond to the diagrams shown in Figs. 21e and
21f and to similar diagrams obtained by reversing the
phonon lines. In general, the diagrams in Fig. 21e are
suppressed with respect to those in Fig. 21f due to
the absence of a coherently enhanced factor F . For
this reason, we also disregarded other similar Pauli
diagrams arising from H13P . We emphasize that the
role of the diagrams in Fig. 21f becomes significant at
N ∼ Nmax/2.

Thematrix elements with∆N === 2. In the stan-
dard random phase approximation, the matrix ele-
ments with ∆N = 2 are identically equal to zero.
However, numerical simulations of the various types
of matrices to which the multipole interaction can
lead and analysis of their spectra have led us to con-
clude that these matrix elements are largely responsi-
ble for the formation of the spectra with a low-lying
gamma band. 166Er serves as a typical example of
such a nucleus.

Not all of the matrix elements with ∆N = 2 are
equal to zero in our approach, but they are all purely
Pauli ones. Therefore, they are a factor of 2 or 3
smaller than the value required to describe the 166Er-
type spectra. As our analysis indicates, neglecting
the role of the pairing interaction could be mainly
responsible for the observed “deficit.” We established
this by analyzing the diagrams with ∆N = 0 shown
in Fig. 22c and similar diagrams obtained by symmet-
rically reversing the phonon lines.

The contribution of the diagrams in Figs. 22a and
22b from the pairing interaction is large at zero total
angular momentum of the isolated phonon pair and
for a certain structure of the Fermi surface. However,
it thus follows that the diagrams shown in Fig. 22d
also play an important role in forming the phonon
vectors in strongly collective nuclei; including them
means going far outside the scope of Hara’s approxi-
mation that we took as the basis.

The contribution of the pairing Hamiltonian to the
energy functional of the single-phonon state is found
to be

〈0|Ω(i)
λ [HG,Ω

+(i)
λ ](−)|0〉

= H
(1)
G + H

(2)
G + H

(3)
G + H

(4)
G ,

where

H
(1)
G = −

∑
τ

(Gτ/2)
∑
1τ2τ

[{r(i)
1τ2τ }2

− {s(i)
1τ2τ}2](η1τ + η2τ ),
PH
H
(2)
G = −

∑
τ

[2λ + 1]1/2(Gτ/2)

×
∑
1τ2τ

[u2
1τv

2
2τ + v2

1τu
2
2τ ]r

(iλ)
1τ2τs

(iλ)
1τ2τ

× (1 − 2η1τ )(1 − 2η2τ ),

H
(3)
G = −

∑
τ

Gτ

∑
1τ2τ3τ4τ

kΛ

[r(iλ)
1τ2τ r

(iλ)
3τ4τ − s

(iλ)
1τ2τs

(iλ)
3τ4τ ]

× s
(kΛ)
1τ4τs

(kΛ)
2τ3τ (2Λ + 1)

{
j3τ j4τ λ

j1τ j2τ Λ

}

× (1 − η1τ − η4τ )(1 − η2τ − η3τ ),

H
(4)
G = −

∑
τ

Gτ

√
2λ + 1

2

∑
1τ2τ3τ4τ

kΛ

(u2
1τv

2
2τ + v2

1τu
2
2τ )

× [r(iλ)
1τ3τs

(iλ)
4τ2τ + r

(iλ)
4τ2τs

(iλ)
1τ3τ ]s

(kΛ)
1τ2τs

(kΛ)
3τ4τ (2Λ + 1)

×
{

j2τ j4τ λ

j3τ j1τ Λ

}
(1 − η1τ − η2τ )(1 − η3τ − η4τ ).

H
(1)
G gives the largest contribution to the energy

of the single-phonon 2+
1 state: it is easy to see (after

variations in the rji and sji amplitudes) that the effect

of H
(1)
G reduces to an effective decrease in the en-

ergy of each single-quasiparticle state by εj → εj −
ηjG/2, which causes the energy of the single-phonon
state to decrease by about 50 keV for the nuclei from
the samarium region. This means that the correction
to the energy of the single-phonon state can reach
30%. In general, however, the situation becomes rad-
ically more complicated.

Our accumulated experience in modeling the
spectra of matrices suggested a way out; we must
choose suitable objects for comparison, i.e., choose
nuclear isotopes in whose excitation spectra the base
of the gamma band lies at a higher excitation energy
than the base of the beta band. In such nuclei, the
diagrams in Fig. 22 discussed above will not play a
significant role in forming the spectrum.

We will most likely have to devote more than one
paper to the diagrams in Fig. 22.
The matrix elements with∆N === 3. The contri-

bution from the Pauli corrections to the matrix ele-
ments with ∆N = 3 can be disregarded, since their
relative importance is more than a factor of 3 smaller
than that for the processes with ∆N = 1. Then,

〈[λ]N−3
J |H13|[λ]NJ 〉

= N(N − 1)

[
K2

N−2,J,...

KN−3,J,...KN,J,...

]1/2

ΓN,J,...
N−3,J,...
YSICS OF ATOMIC NUCLEI Vol. 68 No. 8 2005
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Table 5. Experimental and calculated (in DCM and IBM) values of B(E2; Ji → Jf ) for 74Se (in e2 b2 × 10−3)

Ji Jf Expt. DCM IBM Ji Jf Expt. DCM IBM

21 01 74+4
−4 74 74 02 21 152+11

−11 141 148

41 21 102+15
−11 130 137 31 21 9.3+5.6

−3.7 21 3

61 41 117+19
−15 162 179 31 22 19+15

−6 63 50

81 61 122+28
−19 180 196 31 41 55+33

−15 36 31

101 81 152+50
−30 187 192 42 41 26+15

−6 40 33

121 101 134+37
−24 185 166 42 21 0.6+4

−2 2 1

141 121 92+28
−17 170 126 42 22 50+28

−13 83 104

161 141 < 70 162 68 51 31 83+50
−22 90 91

22 01 1.6+0.6
−0.4 5 2 51 41 3+2

−1 16 2

22 21 89+35
−20 65 78 71 51 105+48

−26 129 120

22 02 < 148 26 48 91 71 75+39
−26 143 120
× [[χppF
(NλJ)
p + χpnF

(NλJ)
n ]Np

NλJ

+ [χnnF
(NλJ)
n + χnpF

(NλJ)
p ]Nn

NλJ ],

N τ
NλJ = −

√
2λ + 1

2

∑
1 2 3

(−1)j1+j3+λ

×
{

λ λ λ

j1 j2 j3

}
G

(λ)
123r

(NλJ)
23 s

(NλJ)
13 .

Thematrix elementswith∆N === 4.6. If we were
consistent in our approximations, then we should also
forget the matrix elements of this type at the current
stage.
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Fig. 23. Diagram representation of the processes that
were taken into account in our calculations of the elec-
tromagnetic moments.
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3.8. The Electric and Magnetic Moments

We performed our calculations in the approxima-
tion of the main diagrams shown in Figs. 23a–23c
and 23g–23i.

Although the nontrivial role of the pairing inter-
action that we found narrowed the validity range of
our approach, this range remains wide enough. It
includes spherical, transition, and deformed nuclei,
but of a certain type. More specifically, if the β and
γ bands were formed in the nuclear spectrum, then we
have the right to touch only on those nuclei for which
Eβ < Eγ .
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Fig. 24. Calculated (in DCM and IBM) and experimental
74Se excitation spectra.
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Fig. 25. (a) Band of intruder 114Sn states in compari-
son with the yrast band of 118Xe and schematic view of
the wave function for the ground, 0+

1 , and intruder, 0+
2 ,

states. (b) The probabilities ofE2 transitions between the
intruder states of the 112,114Sn isotopes (the open and
closed circles, respectively) and the corresponding data
for 118Xe (squares). The dashed straight line represents
the vibrational limit.

4. RESULTS OF THE CALCULATIONS:
β-SOFT NUCLEI

First of all, recall that there is only one parameter
to describe the spectra in DCM, the proton or neutron
constant of spin–orbit forces.

In the calculations of the M1 angular momenta,
the spin g factor is taken to be 0.8 of its value for
a free nucleon according to our previous studies of
the properties of odd nuclei. In the calculations of the
E2 angular momenta, the effective charge of the neu-
tron was chosen from the description of B(E2; 2+

1 →
0+
1 ), but, in all cases, it did not exceed five times the

effective charge of the neutron associated with the
nuclear recoil, i.e., 5Z/A2 ∼ 2 × 10−3. This suggests
that we have almost exhausted the space of single-
particle states in which the dynamics of the described
states is realized. In the calculations of the E1 transi-
tions, we took into account only the nuclear recoil.

The nuclear isotopes that we chose for our analy-
sis were determined, first, by the availability of fairly
comprehensive information on their properties; sec-
ond, these must include spherical, transition, and de-
formed nuclei from different mass regions; third, and
most importantly, the experimental information must
PH
be “live” for any arising questions to be resolved in
communication with experimenters.

We emphasize that we also performed approximate
calculations for many other nuclei. The accuracy of
describing the experimental spectra achieved in the
calculations differs only slightly from those presented
below, but the scarcity and uncertainty of other exper-
imental spectroscopic information forces us to aban-
don the presentation of this material, although some
of the model-independent results are presented below.

4.1. The 74Se Isotope

The 74Se nucleus belongs to typically transition
nuclei. The presence of the low-lying 0+

2 state in
its spectrum maintained constant interest in this
nucleus. Recently, the E2-transition probabilities
have been measured [30] for most of the observed
collective states in this isotope. Therefore, this nu-
cleus can serve as a kind of a testing ground for
various theoretical approaches. Figure 24 and Ta-
ble 5 present the level spectra and the E2-transition
probabilities calculated in terms of DCM [31] and
the interacting-boson model (IBM) [30] in com-
parison with the experimental data. In this case,
Q(2+

1 )DCM = −0.31 e b, while the experimental value
is Q(2+

1 )expt = −0.36(7) e b. Further, note that the
0+
2 → 2+

1 transition is highly accelerated; therefore,
it seems impossible to talk about the coexistence of
the shapes in the selenium isotopes. Another curious
fact is that B(E2) falls sharply at Jπ = 16+. In
DCM, the fall just begins to show up and occurs
at Jπ = 18+. The discrepancy stems from the fact
that the limiting number of phonons obtained from
our DCM calculations is nine rather than eight, as
follows from the direct interpretation of the data on
B(E2). As regards the picture as a whole, the quality
of describing the experimental data is approximately
the same in both DCM and IBM, although DCM
has only one free parameter to describe the level
spectrum, while IBM has six such parameters.

4.2. The 112,114Sn Isotopes

The even 112,114Sn isotopes are known for the clear
manifestation of the so-called intruder states in their
excitation spectra along with the vibrational and non-
collective modes. The energy spectrum of these states
closely resembles the main band of states of nuclei
with four particles or four holes for the closed Z = 50
shell and the same number of neutrons. Thus, for ex-
ample, a band of states similar to the main 118Xe band
is observed in the 114Sn isotope, as demonstrated by
Fig. 25a. This figure also schematically shows the
YSICS OF ATOMIC NUCLEI Vol. 68 No. 8 2005
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Fig. 26. Calculated (in DCM) and experimental spectra
of excited 112Sn states.

structures of the ground 0+
1 state and the intruder

0+
2 state of type “4h + Xe.” These ideas have long

been discussed in the literature, and we have already
touched on them in Section 2. However, in most of the
papers, the conclusions are drawn only from the anal-
ysis of data on level energetics, while the natural as-
piration of experimenters for the novelty of the results
obtained does not allow them to notice obvious con-
flicts of this hypothesis with other experimental facts.
The simplest of them are the acceleration of certain
γ transitions between states of different natures and
the intense population of some of the intruder states
in single-nucleon exchange reactions. In other words,
the foundation of energetics is too shaky to assert the
coexistence of the shapes in the nuclear spectrum. In
DCM, the “4h + Xe” states can be easily taken into
account. This requires finding a local extremum of the
complete Hamiltonian on the described configuration
and including this configuration in the computational
scheme. It is easy to estimate the energy at which
this configuration (with four holes in the lower shell)
is, ∼10 MeV, given the emerging proton superfluidity
and with the collectivity increased by a factor of 4.
It is hard to imagine another mechanism that would
reduce the energy of this configuration to 2 MeV. An
uncertainty in describing the chemical potential of
only 10 keV will lead to an error in describing the level
energy of ∼1 MeV. Most importantly, the standard
DCM methods have not been exhausted.

For the two 112,114Sn isotopes, the lifetimes for
most of the intruder states have been measured
recently [32, 33]. The values of B(E2;J → J − 2) for
the intruder states of the 112,114Sn isotopes calculated
from the measured level lifetimes are shown (the open
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 8 200
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Fig. 27. Calculated (in DCM) and experimental spectra
of excited 114Sn states.

and closed circles, respectively) in Fig. 25b together
with the available data on the E2-transition proba-
bilities in the main band of 118Xe states (squares).
We see from this figure that the B(E2) scale for the
intruder states does not correspond to the data for
xenon (unless the discrepancy by a factor of 2 is
assumed to be negligible). Moreover, the observed
acceleration of certain γ transitions between states
of different natures contradicts this apparently con-
sistent picture. For example, B(E2; 6+

3 → 4+
1 ) ∼

B(E2; 2+
1 → 0+

1 ) in 112Sn, while B(E2; 0+
2 → 2+

1 ) ∼
B(E2; 2+

1 → 0+
2 ) in 114Sn. Note that the latter ratio

is typical of the deexcitation of the two-phonon
0+
2 states in spherical nuclei.

A careful analysis of the experimental data shows
that the large values of B(E2) for the intruder
states could result from the absolutization of the
processing of the measurements. To elucidate this,
let us turn to the experimental 112Sn spectrum
shown in Fig. 26. The probability B(E2; 6+

3 → 4+
4 )

calculated from the measured branching and lifetime
is 0.324(97) e2 b2, which is a factor of 8 higher
than B(E2; 2+

1 → 0+
1 ). The derived value does not

include the possible deexcitation of 6+
3 → 6+

1 with
energy 865.1 keV, which differs only slightly from the
observed γ transition with energy 865.2 keV identified
as the 12+

1 → 10+
1 transition. Similarly, if the lifetime

of the 8+ state is assumed to be entirely determined
by only one 8+ → 6+

3 transition, then B(E2; 8+ →
6+
3 ) = 0.461(138) e2 b2. However, this value does not

include the possible deexcitation with the transitions
5
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Table 6.Calculated transition energies Eγ (in MeV), B(E2) (in e2 b2 × 10−3), B(E1) (in fm2 × 10−4), B(M1) (in µ2
nucl),

and lifetimes T (in ps) of the 112Sn states in comparison with the experimental data

Jπ
i Jπ

f

Eγ B(E2), B(E1), B(M1) T
calc. expt. calc. calc. expt.

B(E2)
2+
1 0+

1 1.22 1.26 41.0 0.63 0.6(2)
4+
1 2+

1 0.88 0.99 44.0 1.96 2.5+2.5
−1.5

4+
2 2+

1 1.15 1.26 23.0 1.12 0.6(2)
4+
3 2+

1 1.64 1.53 2.7 3.62 1.2(4)
4+
4 2+

1 1.85 1.69 0.9 6.61 >2
6+
1 4+

1 0.51 0.30 2.0 16 × 103 20 × 103

6+
2 4+

1 0.75 0.68 3.0 188
6+
3 4+

1 0.99 1.17 64.0 0.58 1.5(5)
8+
1 6+

1 1.16 26.0 1.50
8+
2 6+

3 0.91 8.0 16.4
8+
3 6+

1 1.57 1.53 14.0 0.7 1.3(4)
10+

1 8+
1 1.16 8.0 5.0

8+
2 0.87 17.0 9.7

8+
3 0.75 0.74 128.0 2.9 0.6(2)

12+
1 10+

1 1.00 0.87 164.0 1.0 0.7(3)
11−1 9−1 1.19 1.24 28.0 1.0 0.7(3)

B(E1)
3−1 2+

1 1.20 1.10 3.2 1.5 0.65(25)
7−1 6+

1 1.36 0.81 0.6 20 > 3.5
B(M1)

6+
2 6+

1 0.24 0.38 0.24 4.2 1.2+1.3
−0.5

8−1 7−1 0.22 0.08 0.18 720 850
9−1 8−1 0.10 0.26 0.10 31 > 1
Table 7.Components of the wave functions for some of the
112Sn states

|2+
1 〉 = 0.95|[21]12〉 + 0.25|[21]22〉 + . . .

|4+
1 〉 = 0.72|[21]24〉 + 0.26|[21]34〉 + 0.53|[41]14〉

−0.12|[42]14〉 − 0.21|[43]14〉 − . . .

|6+
3 〉 = 0.70|[21]36〉 + 0.31|[21]46〉

− 0.28|[61]16〉 − 0.29|[62]16〉
+ 0.24|[21]12[41]14〉 − 0.18|[21]12[42]14〉
− 0.24|[21]12[45]14〉 − . . .

|8+
3 〉 = 0.55|[21]48〉 + 0.26|[21]58〉

− 0.32|[21]24[41]14〉 − 0.21|[21]24[42]14〉
− 0.17|[21]24[43]14〉 − 0.35|[21]24[45]14〉
+ 0.53|[21]12[61]16〉 + . . .

|10+
1 〉 = 0.53|[21]510〉 + 0.23|[21]610〉

+ 0.33|[21]36[41]14〉 − 0.33|[21]36[45]14〉
− 0.22|[21]36[43]14〉 + 0.58|[21]24[61]16〉 + . . .
P

8+ → 6+
2 with Eγ = 1151.3 keV and 8+ → 6+

1 with
Eγ = 1528.8 keV. The latter cannot be distinguished
in the observed γ spectrum from the γ transitions
with energies Eγ = 1151.9 and 1527.2 keV identified
as 10− → 8− and 4+

3 → 2+
1 , respectively. However,

the lower limit for B(E2; 8+ → 6+
3 ) is estimated to

be 0.129 e2 b2, but it already fits quite well into the
vibrational views of the 112Sn spectrum. Similarly, the
short lifetime of the 10+ state is probably attributable
to the deexcitation to the 8+ states that have not been
identified in the spectrum, but are genetically related
to the 6+

1,2 states. The transition probability can be
low, but the high transition energy ensures the short
lifetime of the intruder 10+ state.

But why does the spectrum of intruder states re-
semble the main band of xenon rather than tin? This
can be understood if it is considered that the energy
of the two-phonon mode in the tin isotopes is close
to the energy of the two-quasiparticle state; in these
cases, a strong coupling arises between the collective
and noncollective degrees of freedom [34, 35], which
leads to noticeable distortions in the level spectrum.
The results of the implementation [32, 33] of this
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 8 2005
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Table 8. Calculated energies Eγ (in MeV), B(E2) (in e2 b2 × 10−3), B(E1) (in e fm2 × 10−4), and lifetimes T (in ps) of
the 114Sn states in comparison with the experimental data

Jπ
i Jπ

f Eγ B(E2), B(E1) T

calc. expt. calc. calc. expt.

B(E2)

2+
1 0+

1 1.14 1.30 46.0 0.48 0.45(15)

4+
1 2+

1 0.80 0.89 80.0 1.73 >2.0

4+
2 2+

1 1.40 1.31 4.0 5.3 2.0+2
−1

4+
3 2+

1 1.87 1.47 3.0 4.0 1.8(7)

6+
1 4+

1 0.84 1.00 111.0 0.74 3.1+0.9
−0.5

4+
2 0.24 0.57 22.0 3.6 1.4+0.6

−0.4

8+
1 6+

1 0.97 0.68 138 1.47 0.90(25)

10+
1 8+

1 1.01 0.80 170 0.84 0.7+0.3
−0.2

12+
1 10+

1 1.09 0.88 185

B(E1)

3−1 2+
1 1.20 0.98 4.2 1.6 2.5+1.5

−1.0
program in terms of DCM are presented in Fig. 26
and Table 6. Comparison with the experimental da-
ta indicates that DCM reproduces all characteristic
features of the spectrum, while the calculated total
lifetimes of the levels, including all ways of their deex-
citation, are in good agreement with the experimental
data. To illustrate how complex the dynamics of the
observed phenomenon is, Table 7 presents the com-
ponent composition of the wave functions for some of
the 112Sn states. Recall that |[λi]NJ [λj]ML 〉 means that
the vector has a component composed of N phonon
vectors [λi] with total angular momentum J and M
phonon vectors [λj ] with total angular momentum L.
The index on the multipolarity denotes the solution
number in the harmonic approximation. The weight
of the collective components changes sharply twice,
at Jπ = 4+ and 8+. This double resonance is respon-
sible for the observed deviations in the spectrum from
the vibrational pattern.

We also performed similar calculations for 114Sn.
The results are presented in Fig. 27 and Table 8. As
we see, the agreement with the experimental data is
also quite satisfactory here.

Two facts have engaged our attention. First, the
low-lying 0+

2 state appeared in the 114Sn spectrum,
which is at a fairly high excitation energy in 112Sn.
This is because there is a strong competition in the
112Sn isotope between the diagrams with ∆N = 1
and ∆N = 3; therefore, the position of the 0+

2 state
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 8 200
is highly sensitive to the chosen constant of spin–
orbit forces; in heavier isotopes, there is no such sen-
sitivity to the choice of parametrization. Second, the
calculated positions of the noncollective 6+

i states and
the genetically related 8+

i states rose sharply when
passing to 114Sn. Hence, the lifetimes of the intruder
states in this isotope are determined to a larger degree
by the transitions in the band. Since B(E2; 2+

1 →
0+
1 )112 is almost equal to B(E2; 2+

1 → 0+
1 )114, the

values of B(E2) for 114Sn calculated from the mea-
sured lifetimes of the intruder states are lower than
those of B(E2) for 112Sn. This conclusion, which can
be reached without any calculations using DCM, is
based only on the hypothesis about the vibrational
nature of the intruder states. It was completely con-
firmed by the experimental results, as demonstrated
by Fig. 25b, although the experimental error is so
large that any model can actually fit into the error
limits.

4.3. The 150,152,154Sm Isotopes

This is the best-studied chain of isotopes that
contains spherical, transition, and deformed nuclei.
Figure 28 shows the calculated (in DCM [36]) and
experimental spectra of these nuclei in comparison
with two more well-known theoretical approaches:
the six-boson expansion of the fermion operators by
Tamura et al. [37] (TKB) and the adiabatic approxi-
mation by Kumar and Baranger [38] (KB).
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Fig. 28. Spectra of excited 150,152,154Sm states calculated in DCM, TKV, and KB in comparison with the experimental data.
First of all, the remarkable similarity between the
DCM and TKB results is immediately apparent, al-
though these two approaches differ significantly in
formulation (see below for a discussion). However,
the main thing is that DCM with the chosen neutron
ζ− constant of spin–orbit forces, which varies within
a very narrow range in these isotopes, from 0.290 to
0.305, allows the passage from the vibrational pat-
tern of the spectrum to its rotational pattern to be
described without introducing rotational degrees of
freedom.

Analysis of the results of our calculations revealed
two phenomena that deserve rapt attention.

First, the spectra of the samarium isotopes be-
come similar at fairly high angular momenta and
excitation energies, as do the transition probabil-
ities. This is demonstrated by Fig. 29a, in which
the ratio ∆E(J)152/∆E(J)150, where ∆E(J) =
E(J) − E(J − 2), and the ratio of the calculated
values of B(E2;J → J − 2) for these isotopes are
plotted against the spin of the yrast state. As we see,
these ratios tend to unity as the angular momentum
increases. However, the most striking thing is that
the wave functions also become similar, for example,

|12+
1 〉150 = 0.72|[21]6.112 〉
P

− 0.59|[21]7.112 〉 − 0.26|[21]8.212 〉 + . . . ,

|12+
1 〉152 = 0.58|[21]6.112 〉

− 0.63|[21]7.112 〉 − 0.36|[21]8.212 〉 + . . . .

At the same time, at low angular momenta, even the
principal components differ:

|2+
1 〉150 = 0.82|[21]1.12 〉

− 0.41|[21]2.12 〉 − 0.23|[21]4.22 〉 + . . . ,

|2+
1 〉152 = 0.39|[21]3.12 〉

− 0.33|[21]2.12 〉 − 0.34|[21]4.22 〉 + . . . .

Recall that, for example, |[21]8.212 〉 denotes the second
eight-phonon doublet—the first with a total angular
momentum of 12. The presented results suggest that
the nucleus loses its individuality and resembles a
heated liquid drop at a fairly large number of ex-
cited quasiparticles. Is this characteristic of all nuclei,
given the correction for their phase volume? To an-
swer this question, we note that, as our calculations
show, the spectra become similar at J ∼ A/10; if
the hypothesis is valid, then the energy intervals in
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 8 2005



DYNAMICAL COLLECTIVE MODEL 1347
Table 9. Experimental and calculated values of
B(E2; Ji → Jf ) (in e2 b2) for the samarium isotopes

Ji Jf Expt. DCM TKV KB
150Sm

21 01 270(10) 290 280 230
41 21 530(60) 530 510 430
61 41 860 640 560
02 21 260(30) 490 420 330
22 01 3.6(1.4) 15 20 3

21 43(20) 176 181 2
41 166(98) 205 77 90
02 560(310) 270 190 140

42 22 500 350 300
23 01 8.8(2.0) 12 20 10

21 39(14) 71 24 125
41 19(10) 90 87 34

152Sm
21 01 670(20) 700 670 650
41 21 1020(10) 990 980 990
61 41 1180(30) 1090 1090 1190
81 61 1390(140) 1160 1110 –
101 81 1550(150) 1180 – –
02 21 176(11) 42 120 200
22 01 4.6(0.3) 2 7 3

21 26(3) 5 25 28
41 98(18) 24 70 137

42 21 5.3(3.5) 1 5 0
41 37(23) 11 16 27
61 100(57) 39 47 –

23 01 16(1) 36 50 22
21 42(4) 67 53 51
41 4.2(0.3) 10 6 3

43 21 3.5(0.2) 12 26 8
41 37(1) 74 76 49

154Sm
21 01 922(40) 880 880 940
41 21 1210(70) 1230 1250 1400
61 41 1410(60) 1350 1350 –
81 61 1570(100) 1420 1380 –
101 81 1600(150) 1410 – –
02 21 9 54 235
22 01 6.0(1.4) 1 1 13

21 12(3) 5 25 28
41 98(18) 1 10 54

23 01 13(3) 35 21 33
21 20(4) 68 47 47
41 0.8(0.3) 12 0 10
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 8 200
Table 10. Experimental and calculated values of |δ| =
T (M1)/T (E2) for the transitions with ∆J = 0 in 152Sm

Ji Ji Expt. DCM

22 21 13+∞
−7.9 36.0

23 21 −27+11
−56 25.0

42 41 6+4
−2 4.1

43 41 −6+2
−19 9.8

the yrast band corresponding to these spins must be
described well by the liquid-drop parametrization

∆E|J∼A/10 ∼ const/
√
A.

The systematics of experimental data for the nuclei
from the region A = 100−180, shown in Fig. 29b,
confirms the aforesaid. Here, not the description itself,
but the fact that the microscopic calculations lead to
this is striking.

Second, let us look carefully at the spectrum of
the γ band in 152Sm. This is a typical rotational
band. However, if we look at the calculated values of
B(E2) in it, then it comprises, as it were, two nested
bands with odd and even spins. Thus, for example, for
this isotope, B(E2; 5+

γ → 4+
γ ) = 0.040 e2 b2, while

B(E2; 5+
γ → 3+

γ ) = 0.55 e2 b2. At the same time,
the ratio of the values considered in the rotational
model differs little from unity. Perhaps our results
follow from the neglect of the role of the diagrams
with ∆N = 2, but what does the experiment say?
It turns out that virtually no transitions with ∆J =
1 in the γ band are observed in the experimental
γ spectra if the base of the γ band is at a higher
energy than the base of the β band (note that the
M1 component must also be present in the 5+

γ → 4+
γ

transition, although, as our calculations show, it is
insignificant). In those cases where these transitions
are observed, the uncertainty in the experimental in-
formation is so large that no conclusions can be
reached. As an example, let us consider 152Sm. The
transition with Eγ = 148.01 keV identified precisely
as the 3+

γ → 2+
γ deexcitation is observed in the γ-ray

spectrum. However, at least three ways of placing this
γ transition can be found in the 152Sm level diagram.
The most interesting placement corresponds to the
possible deexcitation of the (1+, 2+) state with E =
2294.1 keV to the state with E = 2146 keV whose
spin is uncertain. In turn, this state can be deexcited
via the observed γ transition with Eγ = 616.05 keV to
the 2− state with E = 1529.8 keV and the observed
γ transition with Eγ = 852.8 keV to the 2+ state with
E = 1292.8 keV. All these states have rich branch-
ings, including the direct deexcitation to the base of
5
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Table 11. Calculated and experimental ratios R = B(E2; Ji → Jf1)/B(E2; Ji → Jf2) for 152Sm

Ji Jf1 Jf2 DCM TKB KB IBM [43] Expt. [46] Expt. [43]

22 02 01 66 69 236 890 107

02 21 45 3 18 20

41 21 5 5 2 3 4

42 21 41 0.1 0.3 0.01 0.01 0.1 0.1

22 41 65 39 41 18 41 37

23 21 01 2 1 2 1 2 2

21 41 8 9 20 1 12 9

02 01 0.2 0.4 1 0.7 – 0.02

22 21 0.1 2.6 1 31 1 3

02 22 0.1 0.3 0.02 0.02 – 0.005
the γ band. This means that the γ transition with
Eγ = 148.01 keV under discussion will also be seen
in the spectrum of the coincidences with the γ de-
excitation of the base of the γ band. Most sadly,
the described situation is typical of the accumulated
experimental information (we will turn to this isotope
below).

However, let us return to DCM and the description
of the transition probabilities. Table 9 gives the avail-
able experimental data on the E2-transition proba-

 

1

0
2

 

B

 

(

 

E

 

2)

 

152

 

/

 

B

 

(

 

E

 

2)

 

150

 

J

 

+

 

2

3

6 10 14 18

 

∆

 

E

 

(

 

J

 

)

 

152

 

/

 

∆

 

E

 

(

 

J

 

)

 

150

 

0
100

 

A

 

0.5

1.0

140 160 180120

 

E

 

, MeV

 

E

 

 = 8.2/

 

A

 
(

 
a

 
)

(

 

b

 

)

Fig. 29. (a) Calculated (in DCM) ratios
∆E(J)152/∆E(J)150 of the energy intervals
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intervals ∆E(J) = E(J) − E(J − 2) at J ∼ A/10 and
the hydrodynamic limit.
P

bilities in 150,152,154Sm and the results of the calcula-
tions by various authors. Before we turn to a compar-
ison, let us make several general remarks. The experi-
mental data for the absolute values of B(E2) obtained
by various authors often differ markedly even at small
errors. On the other hand, the theoretical models
cannot purport to describe weak transitions, since a
small admixture in the wave function uncontrollable
by the theory can affect significantly the calculated
values of B(E2) without affecting the description of
other nuclear characteristics. If all of this is kept in
mind, then a comparison shows that both DCM and
TKB describe the observational data equally success-
fully and are similar. However, there are appreciable
discrepancies with the experimental data. They all
concern the transitions with ∆J = 1 in the γ band,
but this has already been discussed above.

One curious feature has been revealed for the
ratios of the interband E2 transitions: the ratio
B(E2;Jγ → Jg − 1)/B(E2;Jγ → Jg + 1) for the
odd spins of the γ band and the ratio B(E2; Jγ →
Jg)/B(E2;Jγ → Jg − 2) for the even spins depend
only slightly on the structure of the wave function
(except the first two states), reflecting the geometry
rather than the dynamics to a larger degree. This is
demonstrated by Fig. 30, which shows the various
experimental ratios of the interband E2-transition
probabilities for nuclei from a wide mass region (dots)
and the expected values from the calculations (shaded
zones) without any detailed fitting to the excitation
spectra of a large group of nuclei.

A few words should be said about the M1 angular
momenta. As with the E2 transitions, the M1 transi-
tions were calculated in the approximation of the main
diagrams. It emerged that, in view of the peculiarity
of the geometry, the values of B(M1) for transitions
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 8 2005
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with the spin changed by one prove to be less than
10−3 µ2

nucl, and an accurate allowance for the Pauli
corrections becomes important for these transitions.
Since the experimental data on the M1 transitions
contain a significant uncertainty, we did not venture
to undertake this large work. At the same time, for
transitions without any change in the spin, the cal-
culated probabilities prove to be significant, and their
comparison with the experimental data is quite legit-
imate. Some of the results of this kind are presented
in Table 10 for 152Sm. As we see, the agreement with
the experimental data is quite satisfactory.

As regards the description of the g factors for
excited states, curious features have been found here.
First, as the magic number of neutrons is approached,
the g factor of the 2+

1 state decreases in accordance
with the experimental data (Fig. 31) rather than in-
creasing, as is commonly the case. This is because
[1g7/2]2, the proton configuration with a low M1 an-
gular momentum, becomes the main component in
the wave function of the 2+

1 state. Second, as the an-
gular momentum of the excited state of the band in-
creases, the g factor also decreases, although slowly.
This is demonstrated by Fig. 31, which presents the
results of our calculations in comparison with the
experimental data. The reason again lies in the fact
that, at high angular momenta, the phonons in all
samarium isotopes become similar and weakly collec-
tive and have a small g factor.

As regards the description of the quadrupole mo-
ments, our calculations in DCM describe excellently
the experimental data as a function of the mass
number (Fig. 31). It turned out that, as the angular
momentum of the excited state of the yrast band
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 8 200
increases, the quadrupole moment of the state de-
creases in absolute value. This is a purely Pauli effect:
as the angular momentum increases, the phonons
become progressively less collective. In weakly col-
lective nuclei, the quadrupole moment usually initially
increases with angular momentum. At the same time,
in any version of the boson model and in any version
of the rotational model, the quadrupole moment of
the states of the yrast band increases with angular
momentum up to J ∼ Jmax/2. The following exper-
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iment then suggests itself to answer the question
about the existence of rotational degrees of freedom
in nuclei at low angular momenta and excitation
energies: measuring Q(4+

1 )/Q(2+
1 ) in a particular

strongly collective nucleus with a high accuracy. If
this ratio is less than unity, then it will no longer be
pertinent to talk about deformation.

The samarium isotopes were studied in [39] and in
the interacting boson model. However, these eight-
parameter calculations yielded results that were in
poorer agreement with the experimental data than
those presented above. As regards the 152Sm iso-
tope, it has aroused heightened interest in recent
years [40–45]. It was noticed that the states near
the 0+

2 level remarkably resemble the level spectrum
of a weakly split harmonic oscillator, while some of
the newly measured [43] γ-transition probabilities
differed significantly from previous results. The idea
that we have to deal with the existence of a spherical
shape in a deformed nucleus arose, and various kinds
of calculations were performed [42–45], in particular,
in terms of IBM [43]. The experimentally observed
fact that the 2+

3 → 0+
2 transition is greatly hindered,

which is obtained in the IBM calculations in a very
narrow range of parameters of the Hamiltonian, at-
tracted particular attention; however, the level spec-
trum for the β band at these parameters is described
poorly. Table 11 presents some of the ratios of the E2-
transition probabilities calculated using DCM, TKB,
KB, and IBM [43] in comparison with the experi-
mental data. The comparison shows that both DCM
and TKB describe much better the experimental sit-
uation as a whole, including the fact that the 2+

3 →
0+
2 transition is hindered relative to other transitions,

although they exceed the experimental value by more
than an order of magnitude (remaining less than the
single-particle estimate in magnitude). However, as
we have already noted above, the theory cannot pur-
port to describe such weak transitions in principle.
Therefore, we have no reason to attach crucial im-
portance of the information to the 2+

3 → 0+
2 transition

with respect to other data. (The work [46] was the
main source of experimental data on the samarium
isotopes.)

5. CONCLUSIONS

The basic research by V.G. Solov’ev and his disci-
ples on the quasiparticle–phonon model has shown
that many phenomena in nuclear spectroscopy can
be described in terms of this model both at low exci-
tation energies and in the continuum spectral range.
The relative simplicity of the model allowed the level
of its underlying approximations to deepen step by
P

step. As a result, we arrived at the dynamical collec-
tive model. The basis vectors in DCM, quasiparticles
and phonons, are constructed for each specific spin–
parity and the numbers of phonons, and quasiparti-
cles by minimizing the total Hamiltonian in phonon
and quasiparticle amplitudes on these vectors rather
than a particular part of it and, naturally, by taking
into account the Pauli exclusion principle. We con-
struct an ordered basis. Therein lies the first fun-
damental difference between DCM and many other
similar (in many respects) models. The second fun-
damental difference between DCM and the existing
approaches lies in allowance for the vacuum fluctua-
tions to renormalize the effective forces. As a result, it
proved to be possible to uniformly describe the states
near the yrast band in a wide mass region of spherical,
transition, and deformed nuclei by varying only the
constant of spin–orbit forces without invoking the
concept of static nuclear deformation.

Our calculations revealed a number of model-
independent phenomena and the relativistic nature of
the spin–orbit forces and raised questions of funda-
mental importance in developing the theory further for
an experiment.

And in closing, we formulated the ideas set out in
this paper back in 1975 [47]. However, it took fifteen
years to approach the calculations of specific even–
even nuclei. And we are still halfway. This is depress-
ing. However, if we look at the active studies [48] of
complex atoms in atomic and molecular physics, then
we will see that researchers in these fields have just
embarked on studying the role of the diagrams that
have been analyzed in detail in nuclear physics since
the mid-1970s. This is encouraging.
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Abstract—A spheroidal global shell potential is constructed on the basis of the optical model whose global
parameters are extracted from experimental data on nucleon–nucleus scattering. This potential is used
to estimate the quadrupole deformation of a large number of light, intermediate, and heavy nuclei in the
mass-number range 10 � A � 240. The results are comparedwith the results of similar calculations for the
Nilsson potential and with the estimates of the quadrupole deformation that follow from data on the static
quadrupole moments of the nuclei considered in the present study. c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

A microscopic description of nuclear shapes is
usually based on one of two approaches, that which
involves calculating a mean self-consistent field of
the Skyrme–Hartree–Fock type (see, for exam-
ple, [1–3]) or that which involves introducing an
anisotropic shell-model potential and finding an
equilibrium nuclear deformation by minimizing the
sum of single-particle nucleon energies Es.p. (see, for
example, [4, 5]).

It seems that the first of thesemethods is more jus-
tified. However, calculations of amean self-consistent
field yield results that depend strongly on the choice
of parameters of the nuclear Hamiltonian, to say
nothing of the intricacy of the underlying mathemat-
ical procedure itself. In view of this, rather simple
calculations of a quadrupole nuclear deformation δ
on the basis of the single-particle shell model are still
appealing.

Calculations in which an oscillating term δEs.p. [6–
9] is isolated in the sum of single-particle energies
Es.p. belong to the same type. This oscillating term
is treated as a shell correction to the macroscopic
energy Emacro of the nucleus being considered, and it
can be calculated, for example, by the semiempirical
Weizsäcker mass formula. As a result, one minimizes
the improved total energy Etot = Emacro + δEs.p. of
the nucleus rather than the single-particle energy
Es.p.. This relaxes significantly the requirements on
the choice of anisotropic shell potential used in the
calculations, because, in the case under considera-
tion, it determines only those of the forces stabilizing
the shape of a nucleus that are due to inhomogeneities
in the single-particle spectrum [7, 10, 11].
1063-7788/05/6808-1352$26.00
With the aid of such calculations, it proved to be
possible to explain the observed quadrupole deforma-
tions (δ ∼ 0.2–0.3) of the ground states of actinides
and rare-earth elements [10, 12], to reveal the origin
of isomeric states of strongly deformed (δ ∼ 0.6) ac-
tinide nuclei, and to describe some of those features of
their fission that could not be reproduced within the
macroscopic liquid-drop model without taking into
account microscopic shell effects [11, 13].

However, it is illegitimate to apply this approach
to describing the equilibrium shapes of light and
medium-mass nuclei (A < 100), since details of the
behavior of the single-particle-level scheme play an
important role in this mass-number region. More-
over, the replacement of the single-particle energy
by the total energy, Es.p. → Etot, does not guarantee
a correct inclusion of the residual-force effect on
the nuclear-deformation process. In particular, this
replacement does not take into account the effect of
pairing forces, which, as is well known, render closed
spherical shells more stable.

The effect of pairing interaction on the quadrupole
deformation of medium-mass and heavy nuclei was
considered in [14], where, in calculating the sum
of Es.p., the single-particle energies in the Nilsson
potential [4] were replaced by quasiparticle energies.
These calculations revealed that pairing forces lead
to a decrease in the equilibrium deformation of nuclei
and facilitate an earlier transition to the spherical
shape as one approaches filled shells.

In order to describe quadrupole deformations
of nuclei, a method that combines both main ap-
proaches was chosen in [15]: a specific anisotropic
shell potential, the Nilsson potential [4], was used
in the calculations, while the equilibrium nuclear
c© 2005 Pleiades Publishing, Inc.
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deformation was found from the condition requiring
that the shape of equipotential surfaces be matched
with the shape of the nucleon-density distribution
rather than from the condition requiring that the sum
of the single-particle energiesEs.p. be minimal. It was
additionally assumed that, for modest variations in
the nuclear shape, single-particle orbitals associated
with spherical magic numbers of nucleons always
remained filled, undergoing adiabatic deformations.
This made it possible to describe satisfactorily the
quadrupole deformation of the majority of β-stable
nuclei in the mass-number region A > 16. That it
was impossible in the course of such calculations to
discriminate between isomer and stationary shapes
of the nuclear surface was a serious drawback of the
method.

In the present study, we attempt to construct a
realistic spheroidal shell potential that has global
parameters (in the following, we refer to it as a
spheroidal global potential) and which would make
it possible to reproduce correctly deformation forces
by minimizing the energy Es.p. without resort to
the replacement of the single-particle energy by the
total energy, Es.p. → Etot. In constructing such a
potential, we rely on the spherical optical Woods–
Saxon potential involving global parameters that was
described in [16]. The spheroidal global potential
(SGP) introduced here differs by a number of im-
portant special features from the deformed Woods–
Saxon potential that was used previously in [17] to
estimate the equilibrium quadrupole and hexade-
capole deformations of rare-earth and transuranic
elements. Namely, a unified set of parameters for
the spheroidal global potential over the entire mass-
number range is used here in contrast to [17]. In
addition, we consider arbitrary elliptic deformations
of an axisymmetric nucleus (not only quadrupole and
hexadecapole deformations) and take into account
the dependence of the nuclear-surface diffuseness
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 8 200
on angular variables (this is of particular importance
in describing the deformations of light nuclei, whose
radii are commensurate with the size of the surface-
diffuseness region).

With the aid of the global potential obtained in
the way outlined above, we calculate the quadrupole-
deformation parameters δ for 90 nuclei in the mass-
number range 10 � A � 240. In order to reveal the ef-
fect of residual forces, we compare two versions of the
calculation of equilibrium deformations—specifically,
we fix the quantum numbers K and π (K is the spin
projection onto the nuclear-symmetry axis, while π
is the parity of the ground state of a nucleus) in the
first and do not do this in the second version. Simul-
taneously, we perform calculations with the Nilsson
potential [4].

2. SPHEROIDAL GLOBAL POTENTIAL

In order to construct the spheroidal global poten-
tial, we will consider only the real part of the optical
potential from [16]. This real part involves a nuclear, a
spin–orbit, and a Coulomb component,

Re[Vopt(r, ε)] = −U1(ε)f1(r) (1)

+ 4U2
1
r

df2(r)
dr

l · s + VCoul(r),

where r is the radial component of spherical coordi-
nates (r, θ, ϕ) of the scattered nucleon in the body
reference frame, ε is its energy, U1(ε) is the depth of
the nuclear potential, U2 is the amplitude of spin–
orbit forces, and

fi(r) =
1

1 + exp[(r −Ri)/ai]
(2)

are the radial Woods–Saxon form factors for the nu-
clear and spin–orbit interactions (Ri = riA

1/3, i =
1, 2). The Coulomb potential is taken in the form
VCoul(r) =

{
0.5(qZe2/RCoul)[3 − (r/RCoul)2] for r ≤ RCoul

qZe2/r for r > RCoul,
(3)
where q = 0, 1 is the nucleon charge number; Z
is the charge number of the target nucleus; and
RCoul = 1.149A1/3 + 1.788A−1/3 − 1.163/A [fm] is
its Coulomb radius, A = Z + N being its mass
number.

On the basis of an analysis of data on (n, n) and
(p, p) reactions, the following global parameters for
the optical model were chosen in [16] for the mass-
number region 16 ≤ A ≤ 208:

U1(ε) = 54.19 − 0.33ε + 0.4
qZ

A1/3
(4)

− (−1)q
N − Z

A
(22.7 − 0.19ε) [MeV],

r1 = 1.198 fm, a1 = 0.663 fm, U2 = 6.2 MeV, r2 =
1.01 fm, and a2 = 0.75 fm.
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The sought spheroidal global potential must in-
clude, in just the same way as the input isotropic
potential (1), three components:

VSGP(r, θ) = V̂nucl(r, θ) + V̂spin–orb(r, θ) + V̂Coul(r, θ).
(5)

Let us consider each of these components individ-
ually.

2.1. Nuclear Potential
The radial dependence of the nuclear component

of the potential in (1) is tightly correlated with the
radial nuclear-matter-density distribution that is ob-
tained in experiments that study fast-electron scat-
tering (this is suggested by a close similarity of the
corresponding radial form factors). In a deformed nu-
cleus, the geometric form factor of the nuclear po-
tential must depend not only on radial but also on
angular variables. If the thickness of the diffuse layer
of the nuclear surface is much smaller than the ra-
dius of the nucleus being considered, the variation
in the shape of the mean nuclear field in response
to a surface deformation can be taken into account
by replacing the isotropic form factor f1(r) = {1 +
exp[(r −R1)/a1]}−1 by its anisotropic counterpart,

f̂1(r, θ, ϕ) (6)

= {1 + exp[(r − R̂1(θ, ϕ))/â1(θ, ϕ)]}−1,

the condition that the gradient of the potential at the
nuclear surface is constant being respected [9]:

(gradf̂1)2r=R̂1(θ,ϕ)
= (gradf1)2r=R1

=
1

16a2
1

. (7)

From Eqs. (7), we find that the quantity â1(θ, ϕ),
which characterizes the diffuseness of the nuclear
surface, has the form

â1(θ, ϕ) = a1

[
1 + (gradR̂1)2r=R̂1(θ,ϕ)

]1/2
. (8)

The function R̂1(θ, ϕ) describes the equipotential
surface (by convention, it can be referred to as the
nuclear surface) at which the nuclear potential takes
the value of −0.5U1(ε). We will assume that, in a de-
formed nucleus, this surface has the form of a spheroid
and denote by c1 and d1 its semiaxes in, respectively,
the direction of the symmetry axis z of the nucleus and
the direction orthogonal to it; that is,

R̂1(θ) =
[
cos2 θ
c21

+
sin2 θ

d2
1

]−1/2

. (9)

In view of the condition that the volume of the
nucleus remains unchanged, c1d2

1 = R3
1, this relation

can be recast into the form

R̂1(θ) = R1(1 − η1)1/6(1 − η1 cos2 θ)−1/2, (10)
PH
where η1 = (c21 − d2
1)/c

2
1 is a parameter that charac-

terizes the nuclear deformation.

From relations (8) and (10), we find that, in a
spheroidal nucleus, the nuclear-surface-diffuseness
parameter is given by

â1(θ) = a1

[
1 + η2

1

sin2 θ cos2 θ

(1 − η1 cos2 θ)2

]1/2

. (11)

Many features of a nucleus, including its ground-
state deformation [7, 10], are determined by the be-
havior of single-particle levels near the Fermi surface.
Bearing this in mind, we equate the energy ε, on
which the optical potential (1) depends, to the average
Fermi energy ε̄F ≈ −8 MeV. For the nuclear compo-
nent of the spheroidal global potential, this ultimately
yields

V̂nucl(r, θ) (12)

= −Û1{1 + exp[(r − R̂1(θ))/â1(θ)]}−1,

where

Û1 = 56.83 + 0.4
qZ

A1/3
(13)

− 24.22(−1)q
N − Z

A
[MeV]

is the depth of the nuclear potential and the quantities
R̂1(θ) and â1(θ) are given by (10) and (11).

In the following, we will have to match the de-
formations of the various terms of the global poten-
tial (5). This can be done by introducing a unified
quadrupole-deformation parameter δ0 for all three
terms of the potential—in general, it does not coincide
with the quadrupole-nuclear-deformation parameter
δ (see Section 3). In the case of the nuclear potential,
the parameter δ0 is related to the parameter η1, which
was introduced above, by the relation

δ0 =
3
4

π∫
0

I(θ)(3 cos2 θ − 1) sin θdθ

π∫
0

I(θ) sin θdθ

, (14)

where

I(θ) ≡
∞∫

0

f̂1(r, θ)r4dr ≈ 1
5
R̂5

1(θ) (15)

+
2
3
π2R̂3

1(θ)â
2
1(θ) +

7
15

π4R̂1(θ)â4
1(θ).

(The error made in approximating the quantity I(θ)
does not exceed 24â5

1(θ) exp{−R̂1(θ)/â1(θ)}.)
YSICS OF ATOMIC NUCLEI Vol. 68 No. 8 2005
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2.2. Spin–Orbit Potential

In infinite uniform nuclear matter, the mean
nuclear field cannot depend on the spin of a moving
nucleon [18]. In a finite nucleus, there arises a spin–
orbit interaction that has the form const · [gradf ×
p] · s, where gradf is the gradient of the form factor
of the mean nuclear field, p = −i�∇ is the nucleon
momentum, and s is the nucleon spin. It can be
seen from formula (1) that, in the isotropic optical
model [16], this interaction can be described by the
potential

Vspin–orb(r) = −2i�U2[gradf2 ×∇]s (16)

+ h.c. = 4U2
1
r

df2(r)
dr

l · s.

For a spheroidal nucleus, the spin–orbit poten-
tial (16) reduces to the form

V̂spin–orb(r) = −2i�U2[gradf̂2 ×∇]s + h.c., (17)

where f̂2(r, θ) = {1 + exp[(r − R̂2(θ))/â2(θ)]}−1 is
the form factor of the spheroidal mean field generating
the spin–orbit interaction. This form factor can be
constructed in the same way as the spheroidal form
factor f̂1(r, θ)—that is, with the aid of formulas (10)
and (11), where the parameters R1 = r1A

1/3, a1, and
η1 are replaced by the parameters R2 = r2A

1/3, a2,
and η2, respectively. (Similar substitutions must be
made in formulas (14) and (15) in employing them to
describe the relation between the deformation param-
eters η2 and δ0.)

Calculating the right-hand side of the equality
in (17) in the system of local spherical coordinates,
we obtain

V̂spin–orb(r) = 4U2

{
1
r

df̂2(r, θ)
dr

l · s (18)

− i�
df̂2(r, θ)

dθ

[
(sx cosϕ + sy sinϕ + sz cot θ)

× 1
r2

d

dϕ
+ (sx sinϕ− sy cosϕ)

1
r

d

dr

]}
.

Owing to terms involving the factors sx cosϕ,
sy sinϕ, sx sinϕ, and sy cosϕ, the potential (18) can
mix single-particle states for which ∆Ω = ±2 (Ω is
the projection of the total nucleon angularmomentum
onto the symmetry axis of the nucleus). However, the
matrix elements of the operator V̂spin–orb(r, θ) that
correspond to such transitions are smaller than the
matrix elements for ∆Ω = 0 by a factor of about
δ0. For this reason, we disregard these terms and
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 8 200
approximate the spin–orbit term in the spheroidal
global potential by the expression

V̂spin–orb(r, θ) (19)

= 4U2

[
1
r

df̂2(r, θ)
dr

l · s +
1
r2

df̂2(r, θ)
dθ

cot θ lzsz

]
.

2.3. Coulomb Potential

Formula (3) describes the Coulomb interaction
generated by a uniformly charged sphere of radius
RCoul.We generalize this expression to the case where
the sphere is deformed to become a uniformly charged
spheroid of the same volume.

The surface of such a spheroid is described by the
function [compare with Eq. (10)]

R(θ) = RCoul(1 − η)1/6(1 − η cos2 θ)−1/2, (20)

where η = (c2 − d2)/c2 is the deformation parameter
and c and d are the semiaxes of the spheroid in,
respectively, the direction along the symmetry axis z
of the spheroid and the direction orthogonal to it.

The parameter η is related to the spheroid-quadrupole-

deformation parameter δ0 =
3
2

c2 − d2

c2 + 2d2
by the equa-

tion

η =
2δ0

1 + 4δ0/3
. (21)

The Coulomb component of the spheroidal global
potential can be calculated by the formula

V̂Coul(r, θ) =
3
2
qZe2

R3
Coul

(22)

×
π∫

0

sin θ′dθ′
R(θ′)∫

0

(r′)2dr′√
r2 + (r′)2 − 2rr′ cos β

,

where β is the angle between the radius vectors r
and r′.

By using the expansion

1√
r2 + (r′)2 − 2rr′ cos β

(23)

=
∞∑

λ=0

kλ(r, r′)Pλ(cos β),

kλ(r, r′) =



rλ/(r′)λ+1 at r ≤ r′,

(r′)λ/rλ+1 at r > r′,
(24)
5
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which follows from the form of the generating func-
tion for Legendre polynomials, and the addition the-
orem for spherical harmonics, we can recast expres-
sion (22) into the form

V̂Coul(r, θ) =
3
2
qZe2

R3
Coul

(25)

×
∞∑

λ=0

Pλ(cos θ)

π∫

0

Pλ(cos θ′)Kλ(r, θ′) sin θ′dθ′,
P

where

Kλ(r, θ) =

R(θ)∫

0

kλ(r, r′)(r′)2dr′. (26)

The function Kλ(r, θ) can readily be expanded in
powers of the parameter η by considering individu-
ally the case of r ≤ RCoul and the case of r > RCoul.
Upon substituting the series found in this way into
formula (25) and performing integration with respect
to the variable θ′, we have
V̂Coul(r, θ) =




3
2
qZe2

RCoul

[(
1 − r2

3R2
Coul

)
+

∞∑
n=1

(
αn + βn

r2

R2
Coul

P2(cos θ)

)
ηn

]
at r ≤ RCoul,

qZe2

[
1
r

+
∞∑

n=1

n∑
l=0

γnl
R2l
Coul

r2l+1
P2l(cos θ)ηn

]
at r > RCoul,

(27)
where the coefficients αn, βn, and γnl are given by

αn =
n∑

k=0

(−1)kΓk(1/3)
(2n − 2k + 1)k!

, (28)

βn =
2

(2n + 1)(2n + 3)
,

γnl =
3

(2l + 3)!!

×
n∑

k=l

(−1)n−kΓn−k

(
2l + 3

6

)
(2l + 2k + 1)!!

22l+k(n− k)!k!

×
l∑

m=0

(−1)m(4l − 2m)!
m!(2l −m)!(2l − 2m)!(2l − 2m + 2k + 1)

.

[Here, Γj(x) = x(x− 1) . . . (x− j + 1) at j = 1, 2, . . . ;
Γ0(x) = 1.]

The infinite series in (27) converge in the region
|η| < 1. This ensures the description of the Coulomb
component of the spheroidal global potential at
quadrupole deformations in the range −0.3 < δ0 <
1.5 [see (21)]. For oblate nuclei (δ0 < 0), it is more
reasonable to expand the potential V̂Coul(r, θ) in
the parameter ξ = (c2 − d2)/d2 = 2δ0/(1 − 2δ0/3)
rather than in the parameter η = (c2 − d2)/c2, the
general form of the expansion in (27) remaining
unchanged if we replace the parameter η by the
parameter ξ and the coefficients αn, βn, and γnl by
the coefficients
α′
n =

n∑
k=0

(−2)kk!Γn−k(2/3)
(2k + 1)!!(n − k)!

, β′
n = − (−2)nn!

(2n + 3)!!
, (29)

γ′nl =
3

(2l + 3)!!

n∑
k=l

(−1)kΓn−k

(
2l + 3

3

)
(2l + 2k + 1)!!

22l(n− k)!

l∑
m=0

(−1)m(4l − 2m)!(2l − 2m + 1)!!
m!(2l −m)!(2l − 2m + 1)!(2l − 2m + 2k + 1)!!

.

The resulting series converge in the region−0.75 < δ0 < 0.375 (|ξ| < 1).
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 8 2005
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3. APPLICATION OF THE SPHEROIDAL
GLOBAL POTENTIAL TO CALCULATING
THE QUADRUPOLE DEFORMATION

OF NUCLEI

3.1. Calculation of Single-Particle States
for the Spheroidal Global Potential

A complete description of the eigenstates of the
anisotropic single-particle Hamiltonian

H(δ0) = T + VSGP(δ0), (30)

where T = − �2

2m∆ is the nucleon (proton or neutron)
kinetic energy, is an involved mathematical problem.
However, it is not necessary to solve it completely,
because, in estimating the equilibrium deformation
of a nucleus, we can restrict ourselves to calculating
only filled (in the ground state) single-particle or-
bitals. This simplifies the analysis significantly since
such single-particle states are localized in a bounded
region of a space; therefore, they can be approximated
by a finite set of bound orthonormalized functions.

In order to diagonalize the Hamiltonian in (30), we
used the truncated oscillator basis {|N ljΩ〉}, N ≤
N0 (where |N ljΩ〉 is the spherical-oscillator wave
function characterized by the orbital angular momen-
tum l, the total angular momentum j, the projection
Ω of the total angular momentum onto the z axis, and
the number of excited quanta N ). The quantum en-
ergy �ω0 = 41A−1/3 MeV was chosen in such a way
that the experimental value of the root-mean-square
nucleon radius [4] would be faithfully reproduced as
the oscillator states are filled.

In diagonalizing the energy matrix
〈N ′l′j′Ω|H(δ0)|N ljΩ〉, we took into account the
conservation of the parity π = (−1)N

′
= (−1)N and

of the total-angular-momentum projection Ω. The
maximum oscillator number N0 at which the basis
was truncated was determined by the conditionN0 =
Nval + 6, where Nval is the oscillator number of the
valence shell of the nucleus being considered. Thus,
the calculation of bound states in the valence shell
was performed by using the basis that included, in
addition to this shell, three oscillator shells of the
same parity. In fact, we took into account seven
oscillator shells for extremely light nuclei (A ∼ 10)
and 11 and 12 shells (for protons and neutrons,
respectively) for very heavy nuclei (A ∼ 240).

The basis that we chose ensures quite a reli-
able description of bound states in the spheroidal
global potential for the potential-deformation param-
eter taking values in the range −0.5 ≤ δ0 ≤ 0.5. This
is illustrated in Fig. 1а, where the results of the calcu-
lation of the 1p and 1d2s neutron levels for the 25Mg
nucleus and the nuclei neighboring it (Nval = 2) are
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given at the N0 values of (dotted curves) 4, (dashed
curves) 6, and (solid curves) 8.

In expansion of the Coulomb potential V̂Coul(r, θ)
in powers of the parameter η (ξ) [see Eq. (27)], we
took into account powers up to ten inclusively.

3.2. Estimating Equilibrium Nuclear Deformations

The eigenenergies εi(δ0) and eigenstates |ϕi(δ0)〉
of the Hamiltonian in (30) that were found individu-
ally for protons and for neutrons were used to calcu-
late the single-particle energy of the ground state of a
nucleus,

Es.p.(δ0) =
A∑

i=1

εi(δ0), (31)

and its deformation

δ(δ0) =
3
4

A∑
i=1

〈2z2 − x2 − y2〉i

/
A∑

i=1

〈r2〉i. (32)

Here, the sum
∑A

i=1 is taken over all filled proton and
neutron states, {x, y, z} are the nucleon coordinates
in the body reference frame, r2 = x2 + y2 + z2, and
the symbol 〈. . . 〉i means averaging over the state
|ϕi(δ0)〉.

The equilibrium nuclear deformation δ was deter-
mined by minimizing the function Es.p.(δ0), the re-
spective minimum being sought (with a rather small
step in the potential deformation parameter δ0) in the
interval −0.5 ≤ δ0 ≤ 0.5.

The above procedure does not take into account
the effect of pairing and of other residual forces on the
nuclear shape, which are responsible, in particular, for
an earlier transition to the spherical shape as nucleon
configurations approach filled shells. An investiga-
tion of the spectroscopic features of low-lying nuclear
states shows that the effect of residual forces often
violates a natural order in the filling of single-particle
levels of the mean nuclear field. This can affect sub-
stantially the equilibrium deformation of a nucleus,
especially in odd and odd–odd nuclei. In order to take
into account this effect to some extent, we used, along
with the computational scheme described above, yet
another version of calculations of the equilibrium de-
formation, that where the proton and neutron ground-
state configurations, which determine the order of
summation in (31), are determined with allowance
for the requirement that the experimental values of
the parity π and of the spin J of the nucleus be
reproduced (it was assumed that, in the ground state,
the spin J is equal to its projectionK =

∑A
i=1 Ωi onto

the symmetry axis of the nucleus). It will be shown
below (see Section 4) that, upon fixing the quantum
5
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Fig. 1. Neutron-level scheme for the 25Mg nucleus and for nuclei neighboring it: (а) results of the calculations based on the
spherical global potential withN0 = (solid curves) 8, (dashed curves) 6, and (dotted curves) 4 oscillator quanta and (b) results
of the calculation with the aid of the Nilsson potential. The closed and open circles show the position of the Fermi surface for,
respectively, theN = 13, 14 and theN = 11, 12 nuclei. The energies are normalized to the quantity �ω0 = 41A−1/3 MeV.
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numbers π and K, the theoretical results for nuclei
of nonzero angular momentum in the ground state
appear to be significantly closer to their experimental
counterparts.

3.3. Alternative Calculations with the Nilsson
Potential

A universal set of parameters for all nuclei is used
in the spheroidal global potential (see Section 2).
This inevitably affects estimates of the equilibrium
deformation for individual nuclei. Because of this,
we deemed it reasonable to perform calculations de-
scribed in Subsection 3.2 not only for the spheroidal
global potential but also for the spheroidal Nilsson
potential [4], whose parameters are varied in going
over from one principal shell to another (this enables
one to describe better the features of the ground states
of beta-stable nuclei).

Since the procedure for finding eigenstates for the
Nilsson potential is described in detail elsewhere [4,
9], we do not dwell on it here. We only indicate
how one can introduce the quadrupole-deformation
parameter δ0 for the Nilsson potential. In the oscil-
lator Nilsson potential, equipotential surfaces are to
a good approximation spheroids whose semiaxes are
proportional to ω−1

z and ω−1
x (where ωz and ωx = ωy

are the frequencies of oscillations in the potential,
respectively, in the direction of the nuclear-symmetry
axis z and in the direction orthogonal to it). From
the condition requiring that the potential shape be
matched with the nucleon distribution, it follows that∑A

i=1〈x2〉i =
∑A

i=1〈y2〉i ∝ ω−2
x and

∑A
i=1〈z2〉i ∝

ω−2
z . Substituting these relations into (32), we find
that the quadrupole-deformation parameter for the
Nilsson potential can be represented in the form

δ0 =
6δosc − δ2

osc

2δ2
osc − 4δosc + 6

, (33)

where
δosc = 3

ωx − ωz

2ωx + ωz
(34)

is a standard parameter that characterizes the anisot-
ropy of the Nilsson potential [9].

3.4. Estimating Nuclear Deformations on the Basis
of Measured Static Quadrupole Moments

The results of our calculations were compared with
the estimates of the quadrupole-deformation param-
eter δ that follow from data reported in [19] for static
electric quadrupole moments.

The parameter δ is related to the intrinsic electric
quadrupole moment Q0 by the equation

δ =
3
4

Q0

Z〈r2〉 , (35)
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where 〈r2〉 is the mean-square radius of the charge
distribution in a nucleus.

The static quadrupole moment Q measured in the
laboratory frame does not coincide with Q0 because
of the precession of the angular momentum about the
symmetry axis of a nucleus. If the nuclear state being
considered belongs to the rotational band, we have
the equality

Q =
3K2 − J(J + 1)
(J + 1)(2J + 3)

Q0, (36)

where J is the angular momentum of the state andK
is its projection onto the symmetry axis of the nucleus.

Taking into account the conditions of applicability
of this formula, we used only those data from [19]
on the static quadrupole moments Q that satisfy the
conditions Q � Qs.p. and Q0 � 3Qs.p. (Qs.p. ≈ 〈r2〉
is the single-particle quadrupole moment). We also
restricted ourselves to considering the ground states
of odd and odd–odd nuclei (here, it was assumed that
K = J) and the first excited 2+ states of even–even
nuclei [for which, the value ofK = 0 was substituted
into formula (36)]. In all, we thereby chose 90 nuclei
(see table).

The mean-square radius of the charge distribution
in a nucleus was estimated on the basis of the rela-
tions

〈r2〉 =




3
5
R2

0

1 + (10π2/3)(a0/R0)2

1 + π2(a0/R0)2
for A ≤ 100,

3
5
(1.2A1/3)2 for A > 100,

(37)

which take into account the effect of the surface
diffuseness in light nuclei (the parameters appearing
in the radial form factor of the charge distribution,
R0 = 1.07A1/3 fm and a0 = 0.55 fm, were extracted
from data on fast-electron scattering).

4. DISCUSSION OF THE RESULTS

The main results of our calculations are given
in the table. In the first column of this table, we
list nuclei for which we estimated the quadrupole-
deformation parameter δ. The second and third
columns display, respectively, the excitation energies
Eexc and the spin–parities Jπ of nuclear states for
which the static quadrupole momentQwasmeasured
in [19]. The values of Q and their measurement
errors dQ are quoted in, respectively, the fourth
and the fifth column. The quadrupole-deformation
parameters δ calculated on the basis of the Q values
are presented in the sixth column. The seventh and
eighth columns show the deformation parameters
obtained by minimizing the sum of single-particle
5
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Quadrupole deformation of nuclei [the second and third columns present, respectively, the excitation energies Eexc and
spin–parities Jπ of nuclear states for which the static quadrupole moment Q was measured in [19]; the fourth and fifth
columns give, respectively, the values of Q and their measurement errors dQ; the sixth column displays the quadrupole-
deformation parameters δ calculated on the basis of the Q values; the seventh and eighth columns show the deformation
parameters obtained by minimizing the sum of single-particle energies in the spheroidal global potential, respectively,
with and without fixing the quantum numbersKπ of the nuclear ground state, while the ninth and tenth columns present
their counterparts for the Nilsson oscillator potential; if two theoretical values of δ are given, the second corresponds to a
shallower energy minimum (an asterisk indicates that there is a considerable loss in energy)]

Nu-
cleus

Eexc,
MeV Jπ Q, fm2 dQ,

fm2

Estimates of the parameter δ
on the
basis of

Q

on the basis of the SG potential on the basis of the Nilsson potential

withKπ withoutKπ withKπ withoutKπ

11B 0.00 3/2− 4.07 0.03 0.498 0.276 −0.328 0.250 −0.377
12C 4.44 2+ 6.00 3.00 −0.411 −0.358 −0.358 −0.380 −0.380
21Ne 0.00 3/2+ 10.30 0.80 0.463 0.431 0.431 0.451 0.451
23Na 0.00 3/2+ 10.40 0.40 0.407 0.429 0.429 0.446 0.446
25Na 0.00 5/2+ −10.00 5.00 −0.210 0.225 0.398 −0.319 −0.319

−0.273 −0.273 0.385 0.444
23Mg 0.00 3/2+ 125.20 5.10 4.489 0.429 0.429 0.446 0.446
24Mg 1.37 2+ −17.30 1.10 0.425 0.429 0.429 0.444 0.444
25Mg 0.00 5/2+ 19.94 0.20 0.384 0.376 0.427 0.385 0.443
26Mg 1.81 2+ −14.00 4.30 0.331 0.401 0.401 −0.348 −0.348
27Al 0.00 5/2+ 14.50 0.50 0.249 0.201 −0.341 −0.351 −0.351
28Si 1.78 2+ 16.70 1.20 −0.326 −0.346 −0.346 −0.376 −0.376
32Si 1.94 2+ −14.50 2.00 0.265 −0.207 −0.207 −0.220 −0.220

0.104 0.104 0.111 0.111
32S 2.23 2+ −14.80 2.10 0.237 0.202 0.202 0.015 0.015
33S 0.00 3/2+ −7.40 1.40 −0.167 −0.118 0.158 −0.081 −0.081
36Ar 1.97 2+ 11.00 6.00 −0.148 −0.161 −0.161 −0.148 −0.148
44Ca 1.16 2+ −14.00 7.00 0.153 0.117 0.117 0.120 0.120
46Ti 0.89 2+ −21.00 6.00 0.204 0.240 0.240 0.247 0.247
50V 0.00 6+ 21.00 4.00 0.085 0.162 0.250 0.161 0.280
50Cr 0.78 2+ −36.00 7.00 0.307 0.247 0.247 0.275 0.275
54Cr 0.83 2+ −21.00 8.00 0.172 0.235 0.235 0.245 0.245
51Mn 0.00 5/2− 42.00 7.00 0.272 0.243 0.243 0.249 0.249
55Mn 0.00 5/2− 32.00 2.00 0.199 0.233 0.233 0.242 0.242
56Fe 0.85 2+ −21.00 8.00 0.156 0.201 0.201 0.217 0.217
59Co 0.00 7/2− 39.50 3.00 0.168 0.191 0.241 0.183 0.248
58Ni 1.45 2+ −10.00 6.00 0.068 0.278 0.278 0.280 0.280

0.111 0.111 0.444 0.444
64Ni 1.35 2+ 40.00 20.00 −0.257 0.103 0.103 −0.284 −0.284

−0.112 −0.112 0.345 0.345
70Zn 1.35 2+ −24.00 3.00 0.137 0.059 0.059 0.046 0.046
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Table. (Contd.)

Nu-
cleus

Eexc,
MeV Jπ Q, fm2 dQ,

fm2

Estimates of the parameter δ
on the
basis of

Q

on the basis of the SG potential on the basis of the Nilsson potential

withKπ withoutKπ withKπ withoutKπ

75As 0.00 3/2− 30.70 5.00 0.220 0.141 0.141 −0.214 −0.214
74Se 0.64 2+ −36.00 7.00 0.176 0.069 0.069 −0.210 −0.210
77Kr 0.00 5/2+ 94.00 10.00 0.341 0.066 0.066 −0.246 −0.246

0.310∗ 0.290∗ 0.315∗ 0.295∗

81Kr 0.00 7/2+ 64.00 7.00 0.173 0.115 0.142 0.121 −0.275
83Kr 0.00 9/2+ 26.00 3.00 0.059 0.113 0.140 0.119 −0.278
79Sr 0.00 3/2− 72.60 6.20 0.439 −0.088 −0.063 −0.233 −0.053

0.380∗ 0.361∗ 0.385 0.358∗

83Sr 0.00 7/2+ 78.10 6.70 0.197 −0.075 0.101 −0.088 −0.088

0.073 −0.102 0.085 0.085
85Sr 0.00 9/2+ 28.90 2.90 0.062 0.071 0.099 0.083 0.083
99Sr 0.00 3/2+ 84.00 8.00 0.450 −0.148 −0.148 0.374 0.394

0.354 0.354 −0.301 −0.307
91Zr 0.00 5/2+ −20.60 1.00 −0.061 −0.021 0.021 −0.017 −0.017
98Mo 0.79 2+ −26.00 9.00 0.089 0.195 0.195 −0.215 −0.215
100Ru 0.54 2+ −34.00 15.00 0.109 0.184 0.184 0.176 0.176
104Ru 0.36 2+ −63.00 19.00 0.197 0.147 0.147 −0.246 −0.246
108Pd 0.43 2+ −55.00 15.00 0.160 0.149 0.149 0.267 0.267
110Cd 0.66 2+ −39.00 8.00 0.108 0.144 0.144 0.239 0.239
115In 0.00 9/2+ 75.50 12.00 0.104 0.063 0.063 0.248 0.268
109Sn 0.00 5/2+ 31.00 10.00 0.066 0.107 0.107 0.110 0.110
121Sb 0.00 5/2+ −40.50 5.00 −0.079 −0.017 0.017 −0.175 −0.175
123Sb 0.00 7/2+ −49.00 5.00 −0.072 −0.055 −0.055 −0.142 −0.142
124Sb 0.00 3− 190.00 40.00 0.312 0.057 0.057 0.142 0.142
121Xe 0.00 5/2+ 133.00 5.00 0.245 0.232 −0.187 −0.206 −0.206
135Xe 0.00 3/2+ 21.40 0.70 0.065 0.092 0.092 0.052 0.075
137Xe 0.00 7/2− −49.01 1.70 −0.064 −0.061 0.094 −0.050 −0.050
120Cs 0.00 2+ 145.00 2.00 0.329 0.234 0.234 0.360 0.360
121Cs 0.00 3/2+ 83.80 0.90 0.270 0.232 0.232 0.357 0.357
131Cs 0.00 5/2+ −62.00 5.00 −0.106 0.109 0.147 0.149 0.170

−0.114 −0.142 −0.145 −0.145
132Cs 0.00 2− 50.00 2.00 0.107 0.141 0.141 0.144 0.144
130Ba 0.36 2+ −57.00 43.00 0.121 0.188 0.188 0.202 0.202
143Pr 0.00 7/2+ 77.00 16.00 0.089 0.105 0.105 0.084 0.107
135Nd 0.00 9/2− 192.00 48.00 0.194 0.309 0.309 0.239 0.325
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Table. (Contd.)

Nu-
cleus

Eexc,
MeV Jπ Q, fm2 dQ,

fm2

Estimates of the parameter δ
on the
basis of

Q

on the basis of the SG potential on the basis of the Nilsson potential

withKπ withoutKπ withKπ withoutKπ

144Nd 0.70 2+ −22.00 9.00 0.041 0.105 0.105 0.106 0.106
146Nd 0.45 2+ −78.00 9.00 0.142 0.141 0.141 0.448 0.448
148Nd 0.30 2+ −146.00 13.00 0.264 0.187 0.187 0.454 0.454
149Nd 0.00 5/2− 130.00 30.00 0.187 0.189 0.189 0.454 0.357
150Nd 0.13 2+ −200.00 50.00 0.359 0.225 0.225 0.332 0.332
154Sm 0.08 2+ −187.00 4.00 0.319 0.259 0.259 0.356 0.356
159Eu 0.00 5/2+ 266.00 30.00 0.350 0.298 0.298 0.360 0.360
160Gd 0.08 2+ −208.00 4.00 0.335 0.296 0.296 0.358 0.358
152Tb 0.00 2− 34.00 13.00 0.056 0.218 0.218 0.413 0.385
153Tb 0.00 5/2+ 108.00 14.00 0.141 0.221 0.221 0.360 0.360
157Tb 0.00 3/2+ 140.10 8.00 0.321 0.259 0.259 0.330 0.330
163Dy 0.00 5/2− 265.00 2.00 0.327 0.297 0.297 0.322 0.322
153Ho 0.00 11/2− −110.00 50.00 −0.082 −0.143 0.216 −0.117 −0.239
154Ho 0.00 2− 19.00 10.00 0.030 0.219 0.219 0.205 0.205
155Ho 0.00 5/2+ 152.00 10.00 0.191 0.222 0.222 0.209 0.296
165Ho 0.00 7/2− 339.00 34.00 0.313 0.299 0.299 0.322 0.322
165Er 0.00 5/2− 271.00 3.00 0.322 0.295 0.268 0.321 0.321
170Tm 0.00 1+ 72.00 5.00 0.295 0.296 0.296 0.303 0.322
173Lu 0.00 7/2+ 356.00 4.00 0.300 0.264 0.264 0.298 0.327
178Hf 0.09 2+ −202.00 2.00 0.269 0.343 0.343 0.449 0.449
182Ta 0.00 3− 260.00 30.00 0.231 0.221 0.221 0.232 0.232
186W 0.12 2+ −160.00 30.00 0.202 0.181 0.181 0.174 0.174
190Os 0.19 2+ −115.00 13.00 0.139 0.175 0.175 0.167 0.167
189Ir 0.00 3/2+ 87.80 1.00 0.150 0.174 0.174 −0.171 0.143
185Pt 0.00 9/2+ 385.00 50.00 0.242 0.253 0.226 0.259 0.259
187Pt 0.00 3/2− −100.10 7.00 −0.170 0.175 0.175 0.170 0.170

−0.148 −0.148 −0.230 −0.250
185Au 0.00 5/2− −110.10 10.00 −0.104 −0.146 0.224 0.265 0.265
186Au 0.00 3− 314.00 16.00 0.254 0.223 0.223 0.263 0.291
191Au 0.00 3/2+ 71.60 2.10 0.119 −0.140 −0.140 0.136 0.136

0.108 0.108 −0.142 −0.142
229Ra 0.00 5/2+ 310.00 20.00 0.229 0.178 0.178 – –
229Th 0.00 5/2+ 430.00 90.00 0.310 0.206 0.174 – –
235U 0.00 7/2− 457.00 161.00 0.243 0.246 0.246 – –
241Am 0.00 5/2− 380.00 120.00 0.251 0.252 0.252 – –
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energies in the spheroidal global potential, respec-
tively, with and without fixing the quantum numbers
Kπ in the ground states of the nuclei, while the ninth
and tenth columns display their counterparts for the
oscillator Nilsson potential. If two theoretical values
of δ are given, the second corresponds to a shallower
energy minimum (an asterisk indicates that there is a
considerable loss in energy).

It can be seen from the table that the estimates
of the nuclear quadrupole deformation that were ob-
tained on the basis of the spheroidal global poten-
tial with fixed quantum numbers Kπ describe fairly
well experimental data in the stable-deformation re-
gions (rare-earth elements, actinides, and 24–26Mg
isotopes). These regions correspond to new (non-
spherical) magic numbers and gaps that arise at δ0 �=
0 in the single-particle spectrum of the deformed po-
tential.

In the vicinity of such a gap, the oscillating com-
ponent of the energy Es.p. (see Section 1)—it is pro-
portional to the level density near the Fermi surface—
attains a minimum value corresponding to the maxi-
mum of the binding energy of the nucleus being con-
sidered [6, 7, 10]. This explains, among other things,
the behavior of the energy Es.p.(δ0) of the 165Ho nu-
cleus, this energy taking a minimum value at δ0 ∼
0.25 (see Fig. 2a). Indeed, it follows from the data
in Figs. 3 and 4 that the proton and neutron Fermi
surfaces of the 165Ho nucleus lie near the energy gap
at δ0 ∼ 0.3 (compare with the weakly deformed 153Ho
isotope, whose neutron Fermi surface at δ0 ∼ 0.3 lies
in the region of concentration of single-particle lev-
els). In the same way, one can explain the deformation
of the 24–26Mg isotopes (see Fig. 1).

The proposed method leads to a much poorer de-
scription of the equilibrium deformations of vibra-
tional nuclei (A ∼ 60−100), in which the static de-
formation is commensurate with the amplitude of
surface vibrations; the deformations of nuclei in the
regions where there occurs a transition from the value
of δ = 0 to values of δ �= 0 (see, for example, the data
for the Tb and Ho isotopes in the table); and the
deformations of the set of light nuclei that can change
shape sharply upon the addition or removal of one
nucleon. In all of these cases, it is illegitimate to disre-
gard the effect of residual forces. We will demonstrate
this by considering the example of the 25Na nucleus.
According to experimental data, the 25Na nucleus in
the ground state has a negative deformation δ and the
spin–parity of Jπ = 5/2+. It can be seen from Fig. 5
that, for the 25Na nucleus, the correct spin–parity can
be obtained only if the odd proton is in the seventh
orbital, but, for δ < 0, this orbital lies below the Fermi
boundary; therefore, the required proton configuration
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in the 25Na nucleus may arise only under the effect of
residual forces.

As was mentioned above (see Subsection 3.2),
the effect of residual forces can be partly taken into
account if, in calculating the energy Es.p., one fixes
the quantum numbers Kπ of the ground state of the
nucleus (by estimating them on the basis of spectro-
scopic data). A comparison of the data in the sixth
and the seventh column of the table shows that,
in this way, the agreement between the results of
the calculations with the spheroidal global potential,
on one hand, and the experimental estimates of the
quadrupole-deformation parameter δ, on the other
hand, is significantly improved for odd and odd–odd
nuclei.

The effect of residual forces also manifests itself in
that experimental data are compatible, in some cases,
with the theoretical estimates of δ that do not corre-
spond to the deepest minimum of the curve Es.p.(δ0)
(see table). As a rule, the energy of such a mini-
mum exceeds insignificantly (by less than 1 MeV)
the energy of the absolute minimum of the function
Es.p.(δ0); owing to this, residual forces can readily
shift the position of the stable equilibrium.

This is not so only for the strongly deformed (ac-
cording to data on static quadrupole moments) 77Kr
and 79Sr nuclei, for which such a shift leads to an
increase in the single-particle energy Es.p. by a few
megaelectronvolts. This is corroborated by Fig. 6,
where it can be seen that the minimum of the energy
of the 77Kr nucleus according to experimental data
lies 4 to 5 MeV above the absolute minimum. This
brings about the question of accuracy in determining
the static quadrupole moments for soft vibrational
nuclei such as 77Kr and 79Sr.

There is the reason to question the accuracy of the
estimate of the ground-state quadrupole moment of
the 23Mg nucleus, since an improbably large value of
δ ≈ 4.5 follows from this estimate. Moreover, a sharp
jump of the experimental estimate of the parameter δ
in going over from the 123Sb to the 124Sb nucleus (see
table) is surprising.

It is interesting to trace the behavior of experi-
mental and theoretical estimates of the deformation
parameter for Tb and Ho isotopes. It can be seen
from the table that, as one approaches the bound-
ary of stable deformations, δ between 0.2 and 0.3,
the experimental estimates increase more smoothly,
which can be explained by the effect of pairing forces,
stabilizing a spherical shape of nucleus. This can be
observed, for example, in going over from the 153Ho to
the 154Ho nucleus. For the 153Ho nucleus, the dashed
curve drawn in Fig. 7а according to the calculations
of Es.p.(δ0) at fixed quantum numbers Kπ exhibits
three local minima: at δ0 ∼ −0.1, 0.05, and 0.15, the
5
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Fig. 2. Single-particle energy Es.p. (in MeV) and quadrupole deformation δ of the 165Ho nucleus versus the parameter δ0: (а)
results of the calculations with the spheroidal global potential and (b) results of the calculation on the basis of the Nilsson
potential. The results for Es.p. are given here for the calculations (dashed curve) with and (solid curve) without fixing the
quantum numbersKπ of the ground state.
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Fig. 3. Proton-level scheme for the 165Ho nucleus and for nuclei neighboring it: (а) results of the calculations with the
spheroidal global potential and (b) results of the calculations with the Nilsson potential. The points indicate the position of
the Fermi surface for the 165Ho nucleus.
first of these being the deepest. If we do not take into
account the effect of residual forces, the third mini-
mum becomes the deepest upon the addition of one
neutron. However, the effect of residual forces results
in that the second rather than the third minimum
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 8 200
of the curve Es.p.(δ0) becomes the position of stable
equilibrium.

A comparison of the results of the calculations
performed by using the spheroidal global potential
with those obtained on the basis of the Nilsson poten-
5
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Fig. 4. Neutron-level scheme for the 165Ho nucleus and for nuclei neighboring it: (а) results of the calculations with the
spheroidal global potential and (b) results of the calculations with the Nilsson potential. The closed and open circles indicate
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tial shows that these results are close in many cases.
However, the results of the calculations that employ
the spheroidal global potential are by and large in
better agreement with experimental data. Analyzing
the variation of the energy Es.p.(δ0) in response to the
P

deformation of the potential, we can see that the use of
the Nilsson potential leads to underestimating forces
hindering the increase in the nuclear deformation.
This is especially so for heavy nuclei. ForA � 200 nu-
clei, one can see from Fig. 8b that, with increasing
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 8 2005
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Fig. 6. As in Fig. 2, but for the 77Kr nucleus.
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Fig. 7. As in Fig. 2, but for the 153Ho nucleus.
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|δ0|, the Nilsson curve Es.p.(δ0) descends so fast that
the local minima in the region −0.5 ≤ δ0 ≤ 0.5 dis-
appear (or are leveled out). For this reason, dashes
appear in the ninth and tenth columns of the table
beginning from the 229Ra nucleus.

5. CONCLUSIONS

Our analysis has led to the following conclusions:
(i) The spheroidal global potential introduced in

this study ensures a more adequate description of the
equilibrium deformation of nuclei than that obtained
on the basis of the Nilsson potential.

(ii) In order to describe correctly the quadrupole
deformation of odd and odd–odd nuclei, it is desirable
to fix the quantum numbersKπ of the ground state.

(iii) For nuclei that do not belong to the region of
stable deformations, the possibility of obtaining a few
(usually two) competitive values of the deformation
parameter δ must be taken into account in general.
The choice between them must be performed either
by taking into account the effect of residual forces or
by invoking additional experimental data.
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Abstract—The asymptotic expression for the radial component of the wave function for a three-particle
bound state involving two charged particles is derived in an explicit form. This expression contains a
three-particle asymptotic normalization factor C(ϕ), where ϕ is a hyperangle in the six-dimensional space
of intrinsic coordinates of the three-particle system. The resulting expressions are used to analyze the
asymptotic behavior of the wave functions for the 9Be nucleus that were calculated within the α+ α+ n
three-particle model for various forms of the αn potential. A comparison of the asymptotic expression
derived here and the asymptotic expressions for model wave functions makes it possible to extract C(ϕ)
values, which turned out to be sensitive to the form of αn interaction. This permits deducing information
about two-particle interaction from a comparison of the theoretical values of C(ϕ) with their phenomeno-
logical counterparts found from an analysis of experimental differential cross sections for relevant nuclear
reactions. c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

In order to describe the structure of light nuclei,
especially halo nuclei, various three-body approaches
have been intensively developed since the early 1990s
along with the microscopic multiparticle model [1–3].
These include the multicluster dynamical stochastic
method [4–6], the method of hyperspherical func-
tions [7, 8], and the Lagrange mesh method [9]. The
main advantage of these approaches is that theymake
it possible to treat three-particle systems in a nearly
model-independent way by applying mathematically
correct methods. Wave functions were obtained for
some light nuclei—in particular, 6Hе, 6Be, 6Li, 9Be,
and 11Li—on the basis of these approaches within
the three-body model. These wave functions made it
possible to explain not only static observables (ener-
gies of low-lying states; root-mean-square radii; and
magnetic, quadrupole, and octupole moments) but
also electromagnetic form factors and spectroscopic
factors.

Within the approaches in question, the three-
particle wave function for a bound system a = (bcd) is
expanded, as a rule, in one set of angular basis func-
tions or another, whereupon an infinite-dimensional
set of coupled integro-differential equations is ob-
tained for the radial component of the three-particle
wave function. In order to obtain numerical solutions,
this set is truncated—that is, it is approximated

1)Institute of Nuclear Physics, Uzbek Academy of Sciences,
pos. Ulughbek, Tashkent, 702132 Uzbekistan.
1063-7788/05/6808-1372$26.00
by a finite-dimensional set of equations. Such an
approximation can affect the calculated values of
the three-particle wave function in the asymptotic
region of configuration space, where the wave func-
tion decreases exponentially as the hyperradius R
increases [10]. In view of this, it is of interest to study
in detail the asymptotic behavior of the radial three-
particle wave function. The importance of studying
the asymptotic behavior is associated, first, with the
problem of approximating infinite sets of equations for
the radial components of three-particle wave func-
tions by finite-rank sets and, second, with the prob-
lem of deducing information about the three-particle
asymptotic normalization factor, which is a quantity
of fundamental importance. In just the same way
as the asymptotic normalization factor for the radial
component of the wave function in the two-particle
((bc) + d) channel [11], it is an important feature
of the three-particle bound (bcd) system, carrying
information about two-particle interactions [12].

In [12], we studied in detail the genuinely three-
particle asymptotic expression for the radial compo-
nent of the wave function for the bound state a =
(bcd) in the case of short-range interaction between
particles b, c, and d and showed that the resulting
asymptotic formula involves a factor that can affect
significantly the asymptotic values of the three-
particle wave function for some specific directions
in configuration space. By comparing the resulting
asymptotic formula with the asymptotic behavior
of the model three-particle wave function for the
c© 2005 Pleiades Publishing, Inc.



COORDINATE ASYMPTOTIC BEHAVIOR 1373
6He nucleus [4], we also obtained there information
about the three-particle asymptotic normalization
factor and revealed its sensitivity to the form of the
αn potential.

The overwhelming majority of nuclear systems
that can be described within three-body models
(including nuclei of interest for nuclear astrophysics)
contain two or three charged particles, whose
Coulomb interaction changes the asymptotic behav-
ior of the wave function for short-range potentials.
In this connection, we analyze here the asymptotic
behavior of the radial component of the wave function
for the bound three-particle (bcd) system involving
two charged particles. The results are used to extract
the three-particle asymptotic normalization factor for
the 9Be nucleus by means of an analysis of the wave
functions calculated within the ααn three-particle
model.

Hereafter, we will use the system of units where
� = c = 1.

2. COORDINATE ASYMPTOTIC BEHAVIOR
OF THE RADIAL COMPONENT

OF THE THREE-PARTICLE WAVE
FUNCTION FOR A BOUND SYSTEM
WITH ALLOWANCE FOR COULOMB

INTERACTION

Let us consider the case of a bound three-particle
system a = (bcd) where two particles (for example, b
and c particles) are charged, while the third particle
(d) is not charged. The 9Be nucleus in the (ααn)
three-body model is an important example of such
systems. The Fourier transform of the wave function
ψ(r,ρ) for the a system has the form

ψ(r,ρ) =
∫

d3q

(2π)3
d3p

(2π)3
e−i(r·q+ρ·p)Ψ(q,p), (1)

where r is the relative coordinate of particles b and c,
ρ is the coordinate of the third particle d with respect
to the center of mass of the bc pair,

q =
mckb −mbkc

mbc
,

p =
mbckd −md(kb + kc)

ma

are the Jacobi momenta corresponding to them,
Ψ(q,p) is the three-particle wave function in the
momentum representation, mj (kj) is the mass
(momentum) of particle j, andmij = mi +mj .

The functionΨ(q,p) is related to the noncovariant
vertex functionW (q,p) for the virtual decay

a → b+ c+ d (2)
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 8 200
by the equation [13]

Ψ(q,p) = −W (q,p)
L(q, p)

, (3)

where L(q, p) = ε(q, p) + εa, ε(q, p) = q2/(2µbc) +
p2/(2µ(bc)d), µbc = mbmc/mbc, µ(bc)d = mdmbc/ma,
and εa is the binding energy of the a system with
respect to the virtual process (2). It was indicated
in [13] that, if there are bound states in the two-
particle subsystems (bc), (cd), and (db), the vertex
functionW (q,p) has two-particle singularities at the
points Eij = −εij , where Eij is the relative kinetic
energy of particles i and j and εij is the binding
energy of the bound two-particle subsystem (ij)
with respect to the decay (ij)→ i+ j. For the two-
particle systems (bd) and (cd), where there is no
Coulomb interaction, these singularities are poles,
while, for the (bc) system, the singularity has the form
of a power-law branch point [14]. It should also be
noted that, according to [10, 15], the vertex function
W (q,p) additionally has a three-particle singularity
of the branch-point type at ε(p, q) = −εa and that its
singular partW (s)(q,p) has the form [15]

W (s)(q,p) = Γ(1− ηbc)W̃ (q,p)
[
ε(q, p) + εa

4εa

]ηbc

,

(4)

where ηbc = izbzce
2µbc/q, zje being the charge of

particle j, and W̃ (q,p) is the vertex-function com-
ponent that is regular at the point ε(q, p) = −εa and
which coincides with the vertex function on the mass
shell [15]—that is, with the vertex function W (q,p)
whose arguments satisfy the relation q2/(2µbc) +
p2/(2µ(bc)d) = −εa.2)

According to [10], the asymptotic behavior of the
three-particle wave function ψ(r,ρ) for ρ → ∞ (or
r → ∞) is determined by the two-particle singular-
ities of the vertex function W (q,p) at Eij = −εij

(ij = bc, cd, bd) and the three-particle singularity at
ε(q, p) = −εa. For ρ → ∞, the contribution to (1)
from the singularitiesEij = −εij produces the cluster
component of the asymptotic expression, this com-
ponent being responsible for the formation of possible
bound states in two-particle ij subsystems, while the
contribution to (1) from the three-particle singular-
ity at ε(q, p) = −εa generates the genuinely three-
particle asymptotic behavior of the wave function
ψ(r,ρ). In the following, we consider the (bcd) bound
three-particle system featuring no bound states in the

2)It should be noted that there are misprints in formulas (8)–
(10) from [15]. In formula (8), the factor of 1/2 is omitted
in the definition of η̃0; moreover, the factors eiπη̃0 and eiπηa

should be removed from formulas (8)–(10).
5
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two-particle subsystems. The 9B = (ααp) and 9Be =
(ααn) nuclei exemplify such systems. For ρ → ∞
or r → ∞, the leading asymptotic expression for the
wave function ψ(r,ρ) can then be determined by iso-
lating the contribution from three-particle singularity
at ε(q, p) = −εa in the integral in Eq. (1).

Let us analyze expression (1) for ρ → ∞. For this
purpose, we introduce modified Jacobi variables [10],
x = r

√
2µbc, y = ρ

√
2µ(bc)d, q′ = q/

√
2µbc, and

p′ = p/
√
2µ(bc)d, and then construct the partial-

wave expansions of the wave function ψ(r,ρ) ≡
ψ(x,y) and the vertex functionW (q,p) ≡ W (q′,p′)
in the total set of orthonormalized functions YλlLML

,
following the same line of reasoning as in [12]. As a
result, the radial three-particle wave functionψν(x, y)
can be represented in the form [12]

ψν(x, y) = −i−λ−lm
3/2

2π4

∞∫
−∞

dq′q′2jλ(q′x) (5)

×
∞∫

−∞

dp′p′2jl(p′x)
Wν(q′, p′)

q′2 + p′2 + εa
,

wherem = mbmcmd/ma, ν = {λlLsbcS}, λ (l) is the
orbital angular momentum of the (bc) pair (d particle),
L = l+ λ, sbc = sb + sc, S = sbc + sd, sj is the spin
of the j particle, jl(z) is a spherical Bessel function,
andWν(q′, p′) is the radial part of the vertex function.
By using the representation of the spherical Bessel
function jl(z) in the form (8.462 (1)) from [16],

jl(z) =
1
2z

[
eiz

l∑
n=0

i−l+n−1(l, n)
(2z)n

(6)

+ e−iz
l∑

n=0

(−i)−l+n−1(l, n)
(2z)n

]
,

where (l, n) = (l + n)!/(n!(l − n)!), and taking into
account expression (4), we then recast formula (5) for
y → ∞ into the form

ψν(x, y) = (−1)λ+l m3/2

2π4xy
(7)

×
∞∫

−∞

dq′q′eiq′xfλ(q′x)Iν(q′; y),

Iν(q′; y) =
Γ(1− ηbc)
4εa

∞∫
−∞

dp′p′eip′y (8)

× fl(p′y)W̃ν(q′, p′)
(
q′2 + p′2 + εa

4εa

)ηbc−1

,

P

where ηbc = izbzce
2µ

1/2
bc /(

√
2q′), W̃ν(q′, p′) is the ra-

dial component of the vertex functionWν(q′, p′) reg-
ular at the point q′2 + p′2 = −εa, and

fl(x) =
l∑

n=0

(l, n)
(−2ix)n . (9)

By using in (5) the change of integration variables
q′ → −q′ and p′ → −p′ and the relations

Wν(q, p) = (−1)λWν(−q, p) = (−1)lWν(q,−p),

one can show that the two terms on the right-hand
side of (6) make identical contributions to the right-
hand side of (5).

For y → ∞ (ρ → ∞), we isolate in (8) the con-
tribution of the singularity at p′2 + q′2 + εa = 0. This
part of expression (8) can be obtained by displacing
the integration contour to the upper half-plane and
by isolating there the integral along the straight line
going along the imagine axis from the point p′ =
i
√

q′2 + εa to i∞. The contribution from the singu-
larity at p′ = i

√
q′2 + εa to (8) then assumes the form

Iν(q′; y) ≈ I(s)
ν (q

′; y) = iπ

(√
q′2 + εa

2εay

)ηbc

(10)

× W̃ν(q′, i
√

q′2 + εa)fl(i
√

q′2 + εa)e−y
√

q′2+εa.

In order to find the three-particle asymptotic behavior
of the wave function ψν(x, y) for y → ∞ (ρ → ∞),
we must substitute expression (10) into (7) and, in
the resulting expression, calculate the integral with
respect to the variable q′ by using the saddle-point
technique [17]. The point q′ = q′0 ≡ i

√
εax/R is the

saddle point in this case. As a result, the sought
three-particle asymptotic expression for the wave
function in the limit y → ∞ takes the form

ψν(x, y) ≈ ψ(as)
ν (R,ϕ) (11)

= Cν(ϕ)(2
√
εaR)−ηfl(i

√
εaR sin2 ϕ)

× fλ(i
√
εaR cos2 ϕ)

e−
√

εaR

R5/2
, y → ∞,

where

η =
zbzce

2

cosϕ

(
µbc

2εa

)1/2

and

Cν(ϕ) = (−1)λ+l+1 (m
√
εa)3/2

√
2π5/2

(12)

×Wν(i
√
εa cosϕ, i

√
εa sinϕ)

is the three-particle asymptotic normalization fac-
tor [12], in which x = R cosϕ and y = R sinϕ. In de-
riving expressions (11) and (12), we considered that
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 8 2005
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the function W̃ν(q′0, i
√

q′20 + εa), which is regular at
the point q′2 + p′2 + εa = 0, coincides with the vertex
function on themass shell,Wν(i

√
εa cosϕ, i

√
εa sinϕ)

[15, 18]. We note that the asymptotic formula (11) is
valid for x → ∞ (r → ∞) as well, but that it is not
applicable for those values of x and y (or r and ρ) at
which |q′0| and |p′0| (p′0 = i

√
εay/R) are rather close

to zero. In this case, the representations in Eqs. (8)
and (9) cannot be used in determining the asymptotic
behavior of the wave function ψν(x, y) since the
saddle point q′0 (p

′
0) approaches the singularities

(poles) of the integrand at q′ = 0 (p′ = 0), which
appear at λ �= 0 (l �= 0). The problem of deriving the
asymptotic formula for this case requires a dedicated
consideration. We emphasize that this comment also
applies to the asymptotic formula (15) from [12],
which was obtained for short-range two-particle
potentials.

3. ANALYSIS OF THE MODEL
THREE-PARTICLE WAVE FUNCTION

FOR THE 9Be NUCLEUS

On the basis of the results obtained in Section 2,
we study here the asymptotic behavior of the (ααn)
three-particle wave function obtained in [5, 6] for the
ground state of the 9Be nucleus within the dynamical
multicluster model of light nuclei [4]. In [5, 6, 19],
this wave function was used to calculate a number
of static features of the ground and low-lying ex-
cited states of the 9Be nucleus. For the αα inter-
action, use was made of the deep Buck–Friedrich–
Wheatley αα potential involving forbidden 0S, 2S,
and 2D states [20], which describes well αα phase
shifts up to energies of about 40 MeV. For the αN
interaction, two kinds of potentials were used: the
Sack–Biedenharn–Breit potential and an improved
αN potential that takes into account the exchange
Majorana component both in the central and in the
spin–orbit term [4].

In [19], static features of the 9Be nucleus were
studied on the basis of an improved version of the
wave function [21] obtained within the dynamical
multicluster model for two sets of potentials char-
acterizing the αN and αα interactions (M1 and M2
models). In the M1 model, the Ali–Bodmer poten-
tial [22], where the Pauli exclusion principle is taken
into account via the presence of a repulsive core at
short distances, was used for the αα interaction. In
the M2 model, an attractive potential involving for-
bidden states and also providing a good description
of αα phase shifts up to 40 MeV [23] was used to
describe the αα interaction. In both models, a poten-
tial involving the exchange Majorana component was
used for the αn interaction. For the binding energy
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 8 200
εa corresponding to the decay of the 9Be nucleus
through the (α+ α+ n) three-particle channel, the
values of εa = 1.76 and 2.86 MeV were obtained for
the αN and αα potentials in, respectively, the M1
and theМ2model [21]. We note that the experimental
value of the binding energy, εexp

a , is 1.57 MeV.
Since there are no two-particle bound subsystems

for the 9Be nucleus within the (ααn) three-particle
model, the leading asymptotic expression for the 9Be
three-particle wave function is determined by expres-
sion (11). Therefore, it is of interest, first, to assess the
extent to which the 9Be three-particle wave functions
proposed in [5, 6, 21] have a correct asymptotic be-
havior and, second, to find out whether it is possible to
deduce, from these wave functions, information about
the value of the three-particle asymptotic normaliza-
tion factor and its sensitivity to the form of the αα
potential.

Within the dynamical multicluster model, the ra-
dial component of the three-particle wave function for
the 9Be nucleus is represented as a finite series in
two-dimensional Gaussian functions [5, 6] (below, we
omit the index sbc = 0); that is,

ψλlLS(r, ρ) = rλρl

ni,nj∑
i,j=1

Cij;λlLS exp{−air
2 − bjρ

2},

(13)

where ai, bj , and Cij;ν are variational parameters.
The coefficients ai, bj , and Cij;ν calculated for both
the М1 and the М2 models and for each set of
quantum numbers (λ, l, L, S) were placed at our
disposal by Kukulin in a tabular form [21]. We perform
our analysis for four components of the model wave
function (13) that correspond to various quantum-
number sets (λ, l, L, S) (three of them are dominant
components, while the remaining one is a small
component).

In order to deduce information about the three-
particle asymptotic normalization factor, it is neces-
sary first to establish the extent to which the model
wave function (13) reproduces the asymptotic behav-
ior of the three-particle wave function for r → ∞ and
ρ → ∞. For this purpose, it is convenient to make use
of the ratio [12]

RλlLS(ϕ, ρ) =
ψλlLS(r, ρ)

ψ
(as)
ν (R,ϕ)

Cν(ϕ), (14)

where ψ
(as)
ν (R,ϕ) is given by (11). For ρ → ∞ and

r → ∞, we vary the variables r and ρ in such a way
as to ensure fulfillment of the equality r/ρ = const,
which is equivalent to the condition

ϕ = arctan(
√

µ(bc)d/µbc ρ/r) (15)
5
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Fig. 1. Ratio R̃ = ψλlLS(r, ρ)/ψ
(as)
ν (ρ, ϕ) of the model radial 9Be wave functions for the М1 model to the corresponding

asymptotic expression (11) versus the variable ρ at a fixed value of the hyperangle ϕ for various sets of quantum numbers: (a)
(λ, l, L, S) = (0, 1, 1, 1); (b) (λ, l, L, S) = (2, 1, 1, 1); (c) (λ, l, L, S) = (2, 1, 2, 1); and (d) (λ, l, L, S) = (2, 3, 1, 1).
= arctan(2ρ/3r) = const.

If the condition in (15) is valid, the values of the
variables r and ρ must be chosen in such a way that
they belong to the configuration-space region far off
the points q′0 = 0 and p′0 = 0—that is, far off the hy-
perangle values ofϕ = π/2 andϕ = 0, respectively, at
which the asymptotic formula (11) is not applicable.
The asymptotic region of the variables r and ρ that
is considered in the present study is given by the
inequalities r ≥ 3 fm and ρ ≥ 3 fm, the correspond-
ing range of the hyperangle ϕ in configuration space
being 20◦ ≤ ϕ ≤ 72.5◦.

We note that, if themodel wave functionψλlLS(r, ρ)
has a correct asymptotic behavior, the left-hand
side of relation (14) for ρ → ∞ and ϕ = const is
independent of ρ and coincides with the three-particle
asymptotic normalization factor:

RλlLS(ρ, ϕ) = Cν(ϕ). (16)

It is obvious that, at rather large values of r and
ρ, the behavior of the wave function (13), which is
a finite sum of Gaussian functions, inevitably de-
viates from the rigorous asymptotic form (11). If,
nevertheless, the number of terms on the right-hand
side of (11) is large, a situation is possible where,
at large (but finite) values of r and ρ, this deviation
is moderate. If one plots, on a graph, the ratio R̃ =
ψλlLS(r, ρ)/ψ

(as)
ν (ρ, ϕ) versus ρ at fixed values of the
PH
hyperangle ϕ, the curves representing this depen-
dence will feature amaximum (see Fig. 1). By a region
where the wave function (13) has a “correct” asymp-
totic behavior (at ϕ = const), we will imply the ρ
interval that contains thismaximumandwithin which
the ratio R̃ differs from its value at the maximum by
not more than 15%.

The results obtained by analyzing the asymptotic
behavior of the model three-particle wave func-
tion (13) on the basis of the asymptotic formula (11)
and relations (14) and (16) are given in Table 1
for some values of the hyperangle ϕ. The sets of
quantum numbers (λ, l, L, S) and the relative weights
Pk (in percent) for each component of the model wave
function (13) are presented in the first column of this
table. The Pk values quoted in Table 1 correspond to
the potentials used in the М1 model. The Pk values
corresponding to the М2 model differ insignificantly
from the analogous Pk values in the М1 model. The
third and the fourth column of Table 1 display three
sets of variables r and ρ for each fixed value of the
hyperangle ϕ. The r and ρ values presented in the
first and the third row for each fixed value of the
hyperangle ϕ correspond to the lower ({rmin, ρmin})
and the upper ({rmax, ρmax}) boundary of the inter-
val that was defined above and in which the wave
function (13) has a “correct” asymptotic behavior.
In the second row, intermediate r and ρ values
that approximately correspond to the maxima of the
curves in Fig. 1 are given for each value of ϕ. The
YSICS OF ATOMIC NUCLEI Vol. 68 No. 8 2005
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Table 1. Three-particle asymptotic normalization factor
C(ϕ) versus the matching point {r, ρ} for various sets
of quantum numbers (λ, l, L, S) within the М1 and М2
models

(λ, l, L, S) ϕ,
deg

r,
fm

ρ,
fm

Cν , fm−7/4

(Pk,%) M1 M2
1 2 3 4 5 6

(0, 1, 1, 1) 22.5 7.08 4.42 −158 −270
(40.78) 8.05 5.00 −181 −305

9.01 5.60 −163 −296
37.5 5.04 5.80 −232 −320

6.43 7.40 −256 −360
7.82 9.00 −223 −334

47.5 4.77 7.80 −321 −408
6.48 10.60 −361 −458
7.70 12.60 −327 −450

57.5 5.78 13.60 −885 −1020
6.12 14.40 −898 −1090
6.97 16.40 −796 −1130

67.5 4.42 16.00 −4260 −4320
4.70 17.00 −4340 −4670
5.19 18.80 −3940 −4760

(2, 1, 1, 1) 20.0 7.69 4.20 −54.7 −99.8
(34.71) 8.79 4.80 −62.0 −115.0

9.89 5.40 −57.2 −109.0
45.0 4.13 6.20 −25.8 −48.1

4.93 7.40 −28.1 −52.3
5.73 8.60 −26.2 −47.3

47.5 4.03 6.60 −24.0 −45.4
4.77 7.80 −26.5 −50.1
5.62 9.20 −24.9 −45.6

72.5 3.91 18.60 −134.0 −263.0
4.21 20.00 −138.0 −292.0
4.58 21.80 −122.0 −280.0

(2, 1, 2, 1) 25.0 8.58 6.00 −45.3 −87.0
(21.31) 9.15 6.40 −46.7 −93.2

10.01 7.00 −43.8 −93.4
45.0 7.60 11.40 −27.0 −49.8

8.27 12.40 −30.1 −54.1
8.67 13.00 −30.1 −56.0

67.5 4.97 18.00 −67.0 −112.0
5.36 19.40 −64.2 −123.0
5.52 20.00 −63.3 −125.0

(2, 3, 1, 1) 30.0 8.31 7.20 −1.42 −4.08
(1.67) 8.78 7.60 −1.37 −3.99

9.24 8.00 −1.26 −3.70
42.5 8.29 11.40 −1.92 −3.95

9.02 12.40 −1.95 −3.99
9.90 13.60 −1.73 −3.51

57.5 7.14 16.80 −5.86 −14.5
7.31 17.20 −5.70 −15.0
7.56 17.80 −5.26 −16.1
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 8 200
Table 2.RatioRλl = fλl(rmin, ρmin)/fλl(rmax, ρmax) versus
the hyperangle ϕ for various values of the orbital angular
momenta (λ, l) and the binding energy εa of the 9Be nu-
cleus with respect to the ααn channel

(λ, l) εa,
MeV

ϕ,
deg

rmin,
fm

rmax,
fm

ρmin,
fm

ρmax,
fm Rλl

(0, 1) 1.76 42.5 4.81 7.57 6.6 10.4 1.19

1.76 50.0 4.81 7.83 8.6 14.0 1.16

2.86 42.5 4.66 8.00 6.4 11.0 1.22

2.86 50.0 5.71 8.39 10.20 15.0 1.19

(2, 1) 1.76 32.5 4.60 9.21 4.40 8.80 2.60

1.76 47.5 4.15 9.53 6.80 15.60 2.97

2.86 32.5 6.28 8.79 6.00 8.40 1.45

2.86 47.5 4.03 5.62 6.60 9.2 1.57

(2, 3) 1.76 42.5 6.99 9.90 9.6 13.6 2.32

1.76 62.5 5.55 6.60 16.0 19.0 1.48

2.86 42.5 6.55 10.62 9.0 14.6 2.76

2.86 62.5 6.39 7.57 18.4 21.8 1.36

three-particle asymptotic normalization factor Cν(ϕ)
calculated on the basis of formulas (14) and (16) for
the aforementioned three sets of r and ρ (treated as
the points of matching) is given in the fifth and the
sixth column of Table 1 for the potentials of the М1
and the М2 model, respectively.

From Table 1 and from the results that are not
given there and which are associated with other val-
ues of the hyperangle ϕ, it follows that, in general, the
interval∆ of ρ values (∆ = ρmax − ρmin) within which
the wave function (13) has a correct (to within 15%)
asymptotic behavior becomes wider with increasing
ϕ. This can also be seen from Fig. 1, where the calcu-

lated ratio R̃λlLS(r, ρ) = ψλlLS(r, ρ)/ψ
(as)
λlLS(R,ϕ) is

given as a function of ρ for various values of the hyper-
angle ϕ. In plotting the curves in Fig. 1, we employed
the values of the three-particle asymptotic normal-
ization factor Cν(ϕ) from Table 1 that correspond to
the М1 model (fifth column) and the set {rmin, ρmin}
(the upper row of the values of {r, ρ} for each value of
ϕ). From Fig. 1, it can be seen that, with increasing
ϕ, the region of a correct asymptotic behavior of the
model wave functionψλlLS(r, ρ) (13) is shifted toward
large values of ρ, its width ∆ becoming larger. From
the results of our calculations, it also follows that
the width ∆ depends on the form of the αα potential
used. By way of example, we indicate that, for the
(λ, l, L, S) = (2, 1, 1, 1) configuration at ϕ = 47.5◦,
∆ ≈ 9 fm for the М1 model and ∆ ≈ 3 fm for the
5
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Fig. 2. Three-particle asymptotic normalization factor Cν(ϕ) versus the hyperangle ϕ according to calculations with the 9Be
radial wave functions for various sets of quantum numbers (λ, l, L, S). The solid (dashed) curves correspond to the potentials
of the М1 (М2) model.
M2 model. In all probability, this is because the 9Be
binding energy is less in theМ1 than in theM2model,
with the result that the wave function (13) in the М1
model has a longer asymptotic tail in the variable ρ
than the wave function in the М2 model. It should
also be noted that, at λ �= 0 and l �= 0, the factors
fλl(r, ρ) = fλ(i

√
εaR cos2 ϕ)fl(i

√
εaR sin2 ϕ) affect

significantly the absolute values of the asymptotic
expression for the three-particle wave function. In
Table 2, the calculated values of the ratio Rλl =
fλl(rmin, ρmin)/fλl(rmax, ρmax) are given for the pur-
pose of illustration for various values of the orbital
angular momenta (λ, l) and the hyperangle ϕ. From
this table, one can see that the effect of the factor
fλl(r, ρ) on the three-particle wave function is sizable
P

and that this effect depends significantly on the orbital
angular momenta (λ, l) and on the hyperangle ϕ.

It was indicated above that the asymptotic for-
mula (11), which was derived in the present study,
may become invalid at values of the hyperangle ϕ that
are close to 0 or π/2. For this reason, we considered
only the interval 22.5◦ ≤ ϕ ≤ 70◦ in determining the
three-particle asymptotic normalization factor Cν(ϕ)
from a comparison of the model wave function (13)
and the asymptotic formula (11). For all hyperangles
from this interval, the condition∆ ≥ 2 fm holds.

Figure 2 shows the extracted values ofCν(ϕ). The
solid (dashed) curves in this figure correspond to the
potentials of the M1 (M2) model. For either model,
the upper and the lower curve represent, respectively,
the maximum and the minimum values of Cν(ϕ)
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 8 2005
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within the interval ∆. From Fig. 2, one can draw
the important conclusion that the extracted values
of the three-particle asymptotic normalization factor
Cν(ϕ) are highly sensitive to the nuclear model used
to determine the 9Be wave function, actually to the
form of the αα potential, which is markedly different
in the М1 and in the М2 model.

4. CONCLUSION

Here, we briefly list the basic results of this study.
An explicit asymptotic expression for the radial

component of the three-particle wave function for
an a = (bcd) bound state in the limit at large val-
ues of the hyperradius (R → ∞) has been obtained
for the case of two charged particles. The asymp-
totic expression derived in the present study has been
compared with the asymptotic expression for the 9Be
model (ααn) three-particle wave function [5, 6, 21]
involving three dominant and one small component
that correspond to various sets of quantum numbers
(λ, l, L, S). The intervals of the Jacobi variables r
and ρ within which the (λ, l, L, S) components have
a correct asymptotic behavior within a preset accu-
racy have been determined. The effect of the cen-
trifugal potentials, which are determined by the fac-
tor fλl(R,ϕ), on the asymptotic values of the three-
particle wave functions has been estimated, and it has
been shown that this effect depends greatly on the
direction in configuration space.

Information about the values of the three-particle
asymptotic normalization factor Cν(ϕ) over a wide
range of the hyperangle ϕ has been obtained, and
it has been found that they are highly sensitive to
the form of the αα potential. For this reason, it is of
interest to obtain “experimental” information about
the three-particle asymptotic normalization factor, for
example, from data on the reaction 9Be(p, d)αα or
9Be(d, t)αα by continuing the experimental differen-
tial cross sections to the pole of the reaction ampli-
tude corresponding to the pole mechanism of neutron
transfer.3) This would make it possible to refine the
form of potentials for the αα and αn interactions
by comparing the phenomenological values of Cν(ϕ)
with their theoretical counterparts obtained from the
above analysis of the 9Be wave functions calculated
by using various forms of the αα and αn potentials.

It should be noted that, in general, the values
of the three-particle asymptotic normalization factor
Caν(ϕ) that have been extracted from the present

3)A similar method was successfully used in [24] to determine
the three-particle asymptotic normalization factor for the
3He → p+ p+ n vertex function from data on the reaction
3He(p, d)pp.
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analysis may involve additional ambiguities that arise
from the expected dependence of the model wave
function in the asymptotic region on the numbers
ni and nj of basis functions in expansion (13) (in
our case, ni = nj = 7). An increase in ni and nj is
expected to result in the expansion of the range ∆
within which the model wave function (13) would
have a correct asymptotic behavior and, hence, in the
improvement of the accuracy to which one assesses
the three-particle asymptotic normalization factor. In
this connection, it would be of importance to con-
struct a model wave function of the form in (13) but
for greater values of the parameters ni and nj than
in [5, 6, 21].
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Abstract—A technique for projecting a multiquark wave function in the microscopic model of a 3P0

scalar fluctuation onto the virtual-decay channels N → N + ρ and N → N + π is formulated (at a more
general level for the latter than previously). The amplitude for the electromagnetic transition ρ+ γ∗T → π
in electron-induced quasielastic rho-meson knockout followed by rho-meson conversion to a pion is
considered. Theoretical results obtained in this way are contrasted against available experimental data,
and reasonable agreement is found for cross-section values. This confirms a universal character of the 3P0

model. The precision of relevant experiments is as yet insufficient for comparing the momentum distribution
of the rho meson from the channel N → N + ρ with its theoretical counterpart. c© 2005 Pleiades Pub-
lishing, Inc.
1. INTRODUCTION

Much attention has been given in the literature
to constructing a quark microscopic description of
hadron degrees of freedom in the nucleon [1–5]. This
approach is used to analyze the deep-inelastic scat-
tering of leptons on nucleons and nuclei [6, 7], pion
photo- [8] and electroproduction [9], and the decays of
excited nucleon states to pions and rho mesons [10–
12]. In principle, such a description may form a basis
of a unified approach to studying a broad set of various
meson–baryon components in the nucleon in terms
of a minimum number of parameters that character-
ize vacuum polarization by the color charges of the
nucleon quarks and the sizes of hadrons.

In [13, 14], it was indicated that quasielastic me-
son knockout induced by high-energy electrons pro-
vides a highly efficient tool for studying the quark
microscopic picture of the structure of the nucleon
and its meson cloud. In the laboratory frame, this
process is described by two t-channel pole diagrams
(of these, one is the z diagram) and is realized for
pions at intermediate values of the squared virtual-
photon mass Q2, 1 � Q2 � 3 (GeV/c)2. This makes
it possible to extract, from experimental data directly,
the momentum distributions of mesonsM in individ-
ual decay channelsN → B +M ; as a result, one can
determine the corresponding wave functions and their
normalization (spectroscopic factors). For a broader

*e-mail: obukh@nucl-th.sinp.msu.ru
1063-7788/05/6808-1381$26.00
discussion on this issue, the interested reader is re-
ferred to the recent articles of our group [15–17] (for
an overview, see [18]).

Since Q2 = 0 (pion photoproduction), the contri-
butions of the s- and t-channel pole diagrams are
commensurate [8], so that the extracted information
about the pole in the t channel is not so clear. AtQ2 ≈
10−20 (GeV/c)2, meson electroproduction must be
considered at the level of perturbative QCD and the
corresponding diagram technique without indulging
in the use of concepts of the physics of “soft” hadronic
degrees of freedom (which is applicable in the region
of intermediate energies) such as quasielastic me-
son knockout and momentum distributions in various
channels.

In just the same way as in [15–17], we rely here
on the model of a localized scalar qq̄ fluctuation (3P0)
in the QCD vacuum [1, 5]. Albeit being conceptually
similar to other approaches to the issues being dis-
cussed, this model may differ from them in a num-
ber of important details. For example, the fluctuation
considered here is color-singlet (in all probability, this
is so precisely for knock-on mesons of intermediate
energy in the range between 1 and 2 GeV, in which
case the color-singlet channel of the primary inter-
action between the projectile electron and a virtual
meson has time to be formed). On the contrary, the
fluctuation has color in the string model advocated
in [2, 10, 11], which corresponds to higher meson en-
ergies and in which the underlying physics presumes
the scenario where an instantaneous electron impact
c© 2005 Pleiades Publishing, Inc.
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directly on a quark is followed by the hadronization of
this quark. This issue of the physical pattern can be
explored experimentally in meson electroproduction
processes (see below) at various values of the final
meson energy.

Within the model being discussed, our group
calculated the momentum distributions of pions in
the virtual-decay channels N → B + π [B = N , ∆,
N∗(3/2−, 1/2−), N∗∗(1/2+) (Roper)] [13, 15, 17]
and the momentum distributions of kaons in the
channelsN → Λ +K,Σ +K [16, 17]. The formalism
here is based on a specific rearrangement of quark
coordinates between the nucleon (q3) and the qq̄
fluctuation, since the 3P0 fluctuation is a scalar
having the spin of S = 1, while the pion is an isovector
of zero spin. Thus, the calculated momentum distri-
butions provide, within the model being studied, a
special multifaceted characterization of the synthe-
sis of primary degrees of freedom (valence quarks
of the nucleon, on one hand, and sea quarks and
antiquarks, on the other hand) into various secondary
soft meson–baryon degrees of freedom, both mesons
and baryons being treated as composite particles. To
some extent, this resembles the formation of cluster
degrees of freedom in a nucleus [19]. Of course,
this multichannel approach is highly sensitive to the
structure of the fluctuation model used.

The above range of specific physics problems cor-
responds to the quasielastic knockout of pions [13,
15, 17] and kaons [16, 17], which involves longitu-
dinal virtual photons (γ∗L). The processes in question
are diagonal in the quantum numbers of the knock-
on charged meson: π∗+ + γ∗L → π+ andK∗+ + γ∗L →
K+ (although the possibility of the deexcitation of vir-
tual states through the processes π∗ → π and K∗ →
K without changes in their spin–isospin structure is
also implied—see below).

The momentum distribution that we extracted in
the pole approximation for pions in the channel N →
N + π (in doing this, we used data in the region
1 � Q2 � 3 (GeV/c)2 [20–22] as a basis) proved to
be in reasonable agreement in shape with the results
of the calculation within the model of a 3P0 scalar
fluctuation [15, 17]. As a good illustration of the
validity of the pole approximation, we can indicate
that the resulting shape of the momentum distri-
bution is quite compatible with the cutoff-constant
value of Λπ = 0.7 GeV/c, which appears in the phe-
nomenological theory of pion–nucleon coupling. This
value was determined previously in [23] from data
on pion electroproduction in the delta-resonance re-
gion. Further, it was briefly mentioned in [17] that
the scalar-fluctuation constant gs can be expressed
in terms of the phenomenological pseudovector pion–
nucleon coupling constant fπNN , and this provides
PH
the possibility of analyzing the normalization of the
momentum distribution in the channel p→ n+ π+

as well—that is, the possibility of supplementing our
consideration with an analysis of the absolute value
of the cross section for quasielastic pion knockout in
the reaction p(e, e′π+)B involving spectator baryons
B listed above.

We hope that, together with the predictions for-
mulated in the present article for the momentum
distributions of vector mesons, the momentum dis-
tributions (including their normalization) calculated
for the channels N → B + π [15, 17] and N → Y +
K [16] will give impetus to performing new exclusive
coincidence experiments in the Jefferson Laboratory.
In particular, the latest data from this laboratory [22,
24] on quasielastic pion and kaon knockout were
analyzed in [17], and it was shown there that these
data are in good agreement with our predictions in
the range 1 � Q2 � 2 (GeV/c)2 for pions. For kaons,
the data in question made it possible to assess more
accurately the degree to which strange fluctuations
(s̄s) in the nucleon are suppressed in relation to non-
strange fluctuations (ūu and d̄d).

The ensuing exposition is organized as follows.
A formal scheme for projecting the nucleon wave
function dressed with a q̄q scalar fluctuation onto
the virtual-nucleon-decay channels N → B + ρ and
N → B + ω, which involve vector mesons, is a key
point of the present study. This scheme, which is
based on the covariant model employing a scalar
source of q̄q pairs [4, 17], is formulated in Section 2.
By considering the example of pions and rho mesons,
we discuss the important possibility of going over
from the universal quark microscopic picture to the
phenomenological theory of meson–nucleon cou-
pling for various meson channels; as was indicated
above, this makes it possible to express the known
phenomenological parameters of coupling to the
nucleon for pseudoscalar and vector mesons, such
as fπNN and fρNN , in terms of the scalar-fluctuation
constant gs. This in turn enables one to determine the
constant gs in terms of the known quantity fπNN and
to relate parameters, such as fπNN and fρNN , to one
another through the microscopic picture, as well as to
predict their values for various virtual-decay channels
N → B +M . In addition, we derive microscopic
expressions for the vertex functions FπNN (k) and
FρNN (k). As a result, we can write expressions for
the momentum distributions of the above mesons,
including the normalization of these distributions,
and proceed to discuss the differential cross sections
for quasielastic knockout (Section 3). In this discus-
sion, we rely on experiments that study processes
where quasielastic rho-meson knockout induced by
high-energy electrons that involves transverse virtual
YSICS OF ATOMIC NUCLEI Vol. 68 No. 8 2005
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Fig. 1. Diagrams representing quark–pion coupling in (a, b) the model of a scalar q̄q fluctuation and (c) the Riska–Brown
chiral model [12].
photons γ∗T characterized by Q2 ∼ 2−3 (GeV/c)2

is followed by the spin-flip conversion of the virtual
rho meson to a pion (ρ+ γ∗T → π) [9, 13, 14]. This
corresponds to measuring the transverse differential
cross section dσT /dt for pion electroproduction via
the process p(e, e′π+)n in quasielastic-knockout
kinematics. The required electromagnetic meson
form factors are discussed in Section 3 in connection
with the problems arising in directly analyzing the
differential cross sections for p(e, e′π+)B processes
involving longitudinal and transverse virtual photons.
Also, the question of what information can be de-
duced from the absolute values of these cross sections
for refining the constant gs is analyzed there. Finally,
the possibility of further exploring the properties of
3P0-fluctuations in various meson–baryon channels
is considered in Section 4, which concludes our
present study.

2. PROJECTING THE QUARK WAVE
FUNCTION FOR THE NUCLEON ONTO

BARYON–MESON CHANNELS INVOLVING
VECTOR AND PSEUDOSCALAR MESONS

AND CONNECTION WITH
PHENOMENOLOGY

Since the mechanism of meson production (ab-
sorption) is essentially nonperturbative at low and in-
termediate energies, a detailed ab initio description is
impossible here. In view of this, use is made of a phe-
nomenological model of a 3P0 scalar fluctuation [1, 4,
5, 17] in the form that satisfies the empirical Okubo–
Zweig–Iizuka rule [25], according to which quark an-
nihilation transitions must be suppressed in hadronic
processes. A special role assigned to a color-singlet
scalar (not vector) qq̄ fluctuation complies well with
the well-known suppression of vector annihilation
transitions in meson-production and meson-decay
processes, which is explained only within QCD, a
theory where quarks interact with color vector gluons.

The physics content of the problem considered
here corresponds to the following scheme: in the nu-
cleon, the (1 2 3 4 4̄) quark system fragments into
the (1 2 4) and (3 4̄) subsystems (Fig. 1), which
can be formed in various excited states (this wide
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 8 200
variety of information permits a profound verification
of the model). For the 3P0 scalar qq̄ fluctuation of spin
S = 1 and isospin T = 0 to be compatible with the
production of an S = 1, T = 1 rho-meson state in the
field of a baryon B (including the case of the B = N
diagonal transition), it is necessary to consider the
redistribution of quarks between the original (1 2 3)
and (4 4̄) subsystems.1)

In addition to the fact that the model being con-
sidered possesses a “correct” algebraic structure, it
presumes a specific prediction for the shape of the
momentum distribution of mesons in the nucleon (or
of meson–baryon form factors), and this is the point
in whichwe are interested first of all.More specifically,
the momentum distribution of mesons must replicate
(with allowance for the motion of the common center
of mass) the momentum distribution of constituent
quarks in the nucleon. We show that this prediction
can readily be tested in quasielastic-meson-knockout
processes and present the corresponding estimates
for pions and rho mesons.

Such predictions are quite general and are inde-
pendent of a specific mechanism of the production of
qq̄ pairs—this may be the mechanism of rupturing
color-flux tubes [2], the Schwinger mechanism of pair
production in a classical external field (a color field in
the present case [26]), or some other mechanism. It is
the most convenient to use the universal formulation
proposed in [4] and to represent the Hamiltonian for
the production of qq̄ pairs in the 3P0 state in a co-
variant form by introducing interaction with a scalar
source of these pairs:

Hs = gs

∫
d3xψ̄q(x)Zψq(x) (1)

= gs

∫
d3x[ū(x)u(x) + d̄(x)d(x) + zs̄(x)s(x)].

1)We note that, within the model being considered, only in the
knockout of a scalar f0 meson (whose internal structure is
assumed to be qq̄) via processes like N(π, πf0)N would the
redistribution of quarks between the subsystems be unnec-
essary, with the result that the momentum distribution of f0
mesons would feature a peak at zero momentum, this peak
corresponding to projecting the 3P0 fluctuation as such onto
the f0 meson. Obviously, there must be no such peak in the
case of a color fluctuation [2, 10].
5



1384 OBUKHOVSKY et al.
Here, u(x), d(x), and s(x) are the Dirac fields of
the triplet of constituent quarks (summation over the
three color indices of quarks is also implied, but it is
not indicated here to avoid encumbering the presen-
tation).

The Hamiltonian in (1) is considered here as an
effective operator that describes nonperturbative dy-
namics in terms of the creation and annihilation of qq̄
pairs. In expression (1), SU(3)F symmetry is broken
(if it is assumed that z �= 1)2) because of the mass dif-
ference between the strange and nonstrange quarks;
however, this distinction is of importance only for the
strange sector [16, 17], which is not considered here.

In terms of the creation and annihilation operators
b†µα(p), bµα(p), d†µ̄ᾱ(p), and dµ̄ᾱ(p) defined in Fock
space,

{b†p′µ′α′ , bpµα} = δµµ′δαα′
Eq(p)
mq

(2π)3δ(p − p′),

(2)

bpµα|0〉 = 0, etc.,

the componentHs corresponding to the production of
scalar qq̄ pairs has the form

Hpair = gs

∑
αµ

∫
d3p

(2π)3
mq

Ep
(3)

×
∫

d3p′

(2π)3
mq

Ep′
(2π)3δ(p + p′)ū(pµ)

× v(p′µ̄)b†µα(p)d†µ̄ᾱ(p′),

where α = u, d, s and Ep(p) =
√
m2

q + p2. Here,mq

is the constituent quark mass, mq ≈MN/3 ≈ mρ/2
(or mq = ms ≈ mφ/2 in the strange sector), and the
Dirac bispinors are subjected to the standard normal-
ization condition ū(pµ)u(pµ′) = δµµ′ .

The amplitudes for meson emission (absorption)
in N →M +B and M →M1 +M2 processes are
defined as the matrix elements

Ms(N →M +B) = 〈M |〈B|Hs|N〉, (4)

Ms(M →M1 +M2) = 〈M1|〈M2|Hs|M〉,
where the initial and the final state are basis vectors
of hadronic states in the constituent quark model. In
particular, we use the following expressions for the
pion and the nucleon:

| ˜π(q̄q), α,k〉 = i

∫
d3p3

(2π)3
mq

Eq(p3)
(5)

×
∫

d3p4̄

(2π)3
mq

Eq(p4̄)
(2π)3δ(k − (p3 + p4̄))

2)In some studies (see, for example, [17]), this quantity was
estimated at z � 0.5−0.8.
PH
× Φπ(κκκ,k)
∑
cc̄

(δcc̄/
√

3)
∑
µ3µ̄4̄

(−1)1/2−µ̄4̄

×
(

1
2
µ3

1
2
− µ̄4̄

∣∣∣∣00
)∑

t3t4̄

(−1)1/2−t̄4̄

×
(

1
2
t3

1
2
− t̄4̄

∣∣∣∣1α
)
b†p3µ3t3d

†
p4̄µ̄4̄ t̄4̄

|0〉

[here, δcc̄/
√

3 is the color component of the wave
function, where, for the sake of simplicity, we have
omitted the obvious indices 3 and 4̄ on the color
projections of the quark and the antiquark and have
not indicated them on the creation operators b† and
d†; in addition, we have used the following notation: α
is the pion isospin projection (that is, the pion charge)
and κκκ = (p3 − p4̄)/2];

| ˜N(3q), µ, t,P〉 =
∫

d3p1

(2π)3
mq

Eq(p1)
(6)

×
∫

d3p2

(2π)3
mq

Eq(p2)

∫
d3p3

(2π)3
mq

Eq(p3)
(2π)3

× δ

(
P −

∑
i

pi

)
ΦN (κκκ1,κκκ2;P)

×
∑
µi

∑
ti

[
2−1/2

(
1
2
µ1

1
2
µ2

∣∣∣∣1µ12

)

×
(

1µ12
1
2
µ3

∣∣∣∣12µ
)(

1
2
t1

1
2
t2

∣∣∣∣1t12
)(

1t12
1
2
t3

∣∣∣∣12 t
)

+ 2−1/2δµ3µδt3t

(
1
2
µ1

1
2
µ2

∣∣∣∣00
)(

1
2
t1

1
2
t2

∣∣∣∣00
)]

× b†p1µ1t1b
†
p2µ2t2b

†
p3µ3t3

∣∣∣∣0〉
[here, we have omitted the (obvious) color part, which
is proportional to εc1c2c3 , and have introduced the
following notation for the relative momenta of the
quarks in the nucleon: κκκ1 = (p1 − p2)/2 and κκκ2 =
(p1 + p2)/3 − 2p3/3].

In the following we will omit the color part of the
wave functions in order to avoid encumbering the
displayed equations. In the case being considered, the
presence of the color part only leads to the appearance
of the additional factor

√
3 in the expressions for the

amplitudes describing the annihilation (creation) of
mesons as q̄q states.

In the shell approximation used, the rho-meson
wave function

| ˜ρ(q̄q),m, α,k〉 =
∫

d3p3

(2π)3
mq

Eq(p3)
(7)

×
∫

d3p4̄

(2π)3
mq

Eq(p4̄)
(2π)3δ(k − (p3 + p4̄))
YSICS OF ATOMIC NUCLEI Vol. 68 No. 8 2005
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× Φρ(κκκ,k)
∑
µ3µ̄4̄

(−1)1/2−µ̄4̄

(
1
2
µ3

1
2
− µ̄4̄

∣∣∣∣1m
)

×
∑
t3t4̄

(−1)1/2−t̄4̄

(
1
2
t3

1
2
− t̄4̄

∣∣∣∣1α
)
b†p3µ3t3d

†
p4̄µ̄4̄ t̄4̄

|0〉,

which is specified in the rho-meson rest frame (that
is, at k → 0), differs from the pion wave function
in (5) only in the replacement of the Clebsch–Gordan

coefficient (−1)1/2−µ̄4̄

(
1
2
µ3

1
2
− µ̄4̄

∣∣∣∣00
)
, which cor-

responds to the composition of the quark and anti-
quark spins to the total spin equal to zero, by the

analogous coefficient (−1)1/2−µ̄4̄

(
1
2
µ3

1
2
− µ̄4̄

∣∣∣∣1m
)
,

which corresponds to the total rho-meson spin equal
to unity, wherem is the spin projection onto the quan-
tization axis, which we choose to be aligned with the
vector k. Thus, the rho-meson polarization 4-vector
ρµ (normalized, as a spacelike vector, by the condi-
tion ρµρµ = −1) is represented in the rho-meson rest
frame (ρµ = {0, ρ̂}) in the form of an expansion in
three spherical components,

ρ̂ =
∑

m=0,±1

ρ(m)ε(m)∗, ε(±1) = ∓(n̂1 ± in̂2)/
√

2,

ε(0) = n̂3.

By virtue of its orthogonality to the timelike vector
kµ = {mρ,k = 0}, it automatically satisfies the four-
dimensional-transverseness condition

ρµkµ = 0. (8)

In an arbitrary rest frame, k �= 0, and the polarization
vector of the rho-meson state |ρ,m,α,k〉 is obtained
by applying the corresponding Lorentz transforma-
tion to the spacelike vector {0, ρ̂}. The result has the
form

ρµ =
{

k · ρ̂
mρ

, ρ̂ +
(
ωρ

mρ
− 1
)

(k · ρ̂)k̂
}
, (9)

where k̂ is the unit vectork/|k|. As a result, the vector
in (9) also satisfies the condition in (8).

As is usually done, the wave packets Φπ(κκκ,k),
Φρ(κκκ,k), and ΦN (κκκ1,κκκ2;P), which appear in ex-
pressions (5), (7), and (6) for the state vectors
|π, α,k〉, |ρ,m,α,k〉, and |N,µ, t,P〉, respectively,
are chosen in the form of the Fourier transforms of the
simplest functions in the translation-invariant shell
model. Functions used in thismodel are characterized
by only one phenomenological parameter, the quark-
configuration radius b, which corresponds to the root-
mean-square radius of the system. The meson wave
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 8 200
function is dependent on the relative coordinate of
quarks, ρ = r3 − r4̄, and is chosen in the form

Φ̃M(ρ) = (2πb2M )−3/4e−ρ2/4b2M , M = π, ρ, (10)

where bM = bπ ≈ bρ ≈ 0.3 fm. For the nucleon
(baryon), b ≈ 0.6 fm; the respective wave function in
the translation-invariant shell model is taken in the
form of the product of functions that are dependent
on the relative coordinates ρ1 = r1 − r2 and ρ2 =
(r1 + r2)/2 − r3; that is,

Φ̃N (ρ1,ρ2) = Φ̃nr(12)
N (ρ1)Φ̃

nr(3)
N (ρ2), (11)

Φ̃nr(12)
N (ρ1) = (2πb2)−3/4e−ρ2/4b2 ,

Φ̃nr(3)
N (ρ2) = (3πb2/2)−3/4e−ρ2/3b2 .

If use is made of a covariant dynamical de-
scription, the time evolution of the wave packets
Φπ(κκκ,k), Φρ(κκκ,k), and ΦN (κκκ1,κκκ2;P) is deter-
mined by the exponential factors exp[i(−ωπ)(k)x0],
exp[i(−ωρ)(k)x0], and exp[i(−EN )(P)x0], respec-
tively, where ωπ(k) =

√
k2 +m2

π, ωρ(k) =√
k2 +m2

ρ, and EN (P) =
√

P2 +M2
N . By defini-

tion, the covariant normalization of the wave packets
here depends on the total momentum of the respective
hadron (in accordance with the covariant phase-
space form d3k/(2ωM (k)(2π)3),MNd

3P/(EN (P) ×
(2π)3). However, we use here the nonrelativistic shell
wave functions (10) and (11), whose normalization
features no dependence on the momenta k andP. For
the standard normalization conditions in Fock space,

〈π, α′,k′|π, α,k〉 (12)

= 2ωπ(k)(2π)3δ3(k − k′)δαα′ ,

〈ρ,m′, α′,k′|ρ,m,α,k〉
= 2ωρ(k)(2π)3δ3(k − k′)δmm′δαα′ ,

〈N,µ′, t′,P′|N,µ, t,P〉

=
EN (P)
MN

(2π)3δ3(P − P′)δµµ′δtt′ ,

to be valid in this case, we redefine the state vec-
tors (5)–(7) by introducing appropriate additional
factors in these expressions:

|π(q̄q), α,k〉 =
√

2ωπ(k)| ˜π(q̄q), α,k〉, (13)

|ρ(q̄q),m, α,k〉 =
√

2ωρ(k)| ˜ρ(q̄q),m, α,k〉,

|N(3q), µ, t,P〉 =
√
EN (P)/MN | ˜N(3q), µ, t,P〉.

In the nonrelativistic approximation, Eq/mq ≈ 1,
which is quite acceptable in the region of lowmomen-
ta, |k| � mq, characteristic of the virtual-pion cloud,
the normalization conditions in (12) and (13) reduce
5
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to the conventional nonrelativistic normalization con-
ditions for wave packets,∫

|Φnr
π (κκκ)|2d3

κ/(2π)3 (14)

=
∫

|Φnr
ρ (κκκ)|2d3

κ/(2π)3 = 1,
∫

|Φnr(12)
N (κκκ1)|2d3

κ1/(2π)3

=
∫

|Φnr(3)
N (κκκ2)|2d3

κ2/(2π)3 = 1,

where the functions Φnr
M and Φnr

N are the Fourier
transforms of the corresponding nonrelativistic wave
functions Φ̃(ρ) defined above in (10) and (11).

We calculate the required matrix elements (4) in
two steps. First, we evaluate transition amplitudes for
one specific quark—for example, the third one. For
the effective quark–meson vertex function, this yields

H
(3)
Mqq(s)(m,α,k) (15)

= 〈M,m,α,k|〈q, t4 , µ4,p4|Hs|q, t3, µ3,p3〉,

where |q, t3, µ3,p3〉 = b†µiti
(pi)|0〉 and |q̄, t̄3, µ̄3,

p3〉 = d†
µ̄i t̄i

(pi)|0〉 are the basis states in Fock space
that correspond to a quark (antiquark) of momentum
pi, spin projection (µi), and isospin projection (ti).
After that, the amplitude for theN → B +M transi-
tion is calculated as thematrix element of the operator

H
(3)
Mqq sandwiched between the quark wave functions

for the nucleon (baryon),

M(N →M +B) = 3〈B|H(3)
Mqq|N〉, (16)

where the factor of 3 characterizes the number of
quarks in the nucleon and reflects the fact that there
are three identical matrix elements.

The calculation of the matrix element (15) in the
first order in v/c (that is, for small k, pi � mq) leads to
the following expression for the effective quark–pion
vertex:

H
(3)
πqq(s)

(α,k) =
igs

mq
(2π)3δ(k − (p3 − p4)) (17)

× (2πb2π)3/4
√
ωπ(k) exp

[
−((p3 + p4)/2)2b2π

]

×
〈

1
2
t4

∣∣∣∣ τ (3)
α

†
∣∣∣∣12t3

〉

×
〈

1
2
µ4

∣∣∣∣σ(3) · (k − (p3 + p4))
∣∣∣∣12µ3

〉
+ O

(
v2

c2

)
.

In deriving expression (17), we relied on the rep-
resentation in (5) for the quark wave function for
the pion and the wave function for a q̄q pair in the
expansion (3) of the operator Hpair. Integration with
P

respect to quark momenta is performed with the aid
of delta functions originating from the anticommuta-
tion relations in (2) for the creation and annihilation
operators. As a result, the wave function for a q̄q pair
is projected onto the pion wave function (for details,
see [17]). Concurrently, use is made of the standard
technique for rearranging angular, spin, and isospin
momenta.

Further, we compare expression (17) with the
analogous matrix element

H
(3)
πqq(PV)(α,k) (18)

= 〈πα(k)|〈q, t4, µ4,p4|HPV|q, t3, µ3,p3〉
of the operator of local pseudovector (PV) πqq cou-
pling [12]. This operator has the form

HPV =
fπqq

mπ

∫
d3xψ̄q(x)γ5γµ0τψq(x) · ∂µ0ϕπ(x),

(19)

where use is made of the same basis states for quarks
as in the matrix element (15), but the pion |πα(k)〉 =
a†α(k)|0〉 here is treated as an elementary particle
without an internal structure:

H
(3)
πqq(PV)(α,k) = i

fπqq

mπ
(2π)3 · δ(k − (p3 − p4))

×
〈

1
2
t4

∣∣∣∣ τ (3)
α

†
∣∣∣∣12 t3

〉〈
1
2
µ4

∣∣∣∣σ(3) ·
(
k (20)

− ωπ(k)
2mq

(p3 + p4)
) ∣∣∣∣12µ3

〉
+ O

(
v2

c2

)
.

Comparing expressions (17) and (20), we can see
that the last factor on the right-hand side of (17) (spin
matrix element) differs slightly from the analogous
factor in (20); in order to remove this distinction, it
is necessary to make the substitution

σ(3) · (k − (p3 + p4)) (21)

→ σ(3) ·
(
k − ωπ(k)

2mq
(p3 + p4)

)
,

which is equivalent to introducing a correction to the
effect of recoil in pion emission. Upon applying the
substitution given by (21), we arrive at the transition
amplitudes satisfying Galilei invariance.3)

3)Galilei invariance is violated in the πqq vertex function cal-
culated on the basis of the 3P0 model because the massmπ

of the physical pion, which is a (pseudo) Goldstone particle,
is anomalously small in relation to the mass of a constituent-
quark pair (mπ � 2mq) generated by the Hamiltonian given
by Eq. (1). We note that, if mM ≈ 2mq (this is so, for
example, in the case of the ρ meson), a substitution of
the form (21), which would then become 1 → ωM/(2mq) ≈
mM (2mq), does no longer change anything.
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 8 2005
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Yet another distinction between expressions (17)
and (20) is that, in the 3P0 model, the vertex func-
tion (17) depends on the pion wave function Φπ(κκκ) ∼
e−κκκ

2b2π . As a result, we arrive at a kernel that, in the
coordinate representation, has the following nonlocal
form: ∫

d3
κ

(2π)3
eiκκκ·(r3−r4)e−κκκ2b2π (22)

= (4πb2π)−3/2 exp
[
−(r3 − r4)2

4b2π

]
.

In the pointlike-pion limit bπ → 0, expression (22)
reduces to the delta function δ3(r3 − r4); that is, the
πqq vertex function (17) becomes a local-coupling
operator, as that in (20). In this limit, the phenomeno-
logical pseudovector coupling constant fπqq appears
to be proportional to the scalar coupling constant gs:

fπqq

(2πb2πm2
π)3/4

→ gs

mq
, bπ → 0. (23)

Further, the averaging of the vertex functions (17)
and (20) with the nucleon wave functions in the ma-
trix element (16) results in that the quark constant
fπqq transforms into the nucleon constant fπNN ; as
a result, we arrive at a relation between gs and fπNN
that is valid for any finite value of the pion radius bπ
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 8 200
(see below). It is the point where we generalize our
previous consideration in [15,17], which was devoted
to the pion and kaon channels.

The details of the calculation that are associated
with projecting the q̄q4 quark system onto meson–
nucleon channels were described previously in [17]
(see also [15, 16]); for this reason, the exposition of
this part here will be schematic, the more so as, in
the model specified by Eqs. (1)–(7), this procedure
reduces to the standard technique of the rearrange-
ment of quark angular, spin, and isospin momenta
and to the inclusion of (anti)commutation relations
for creation and annihilation operators in Fock space.

We calculate the matrix elements

Ms(N → π +N) (24)

= 〈π(qq̄), α,k|〉N |Hs|N〉 = 3〈N |H(3)
πqq(s)|N〉,

MPV(N → π +N) = 〈πα(k)|〈N |HPV|N〉
= 3〈N |H(3)

πqq(PV)|N〉,

relying on two different models of interaction that
correspond to the Hamiltonians in (1) and (19) (here,
|N〉 ≡ |N(3q),M, Tz ,P〉). For themodel employing a
local (pseudovector) πqq interaction, HPV, the result
is quite obvious: in the first order in v/c, we obtain the
expression
〈πα(k)|〈N(3q),M ′, T ′
z ,P

′|HPV|N(3q),M, Tz ,P〉 = i
5
3
fπqq

mπ

∫
d3

κ2

(2π)3
Φnr(3)

N (κκκ2)Φ
nr(3)
N

(
κκκ2 +

2
3
k
)

(25)

×
〈

1
2
M ′
∣∣∣∣σ ·

[
k− ωπ(k)

2mq

(
P + P′

3
− 2κκκ2 −

2
3
k
)] ∣∣∣∣12M

〉〈
1
2
T ′

z

∣∣∣∣ τ †α
∣∣∣∣12Tz

〉
,

which differs from the analogous expression for the
local πNN vertex function,

〈πα(k)|〈N,M ′, T ′
z,P

′|ψ̄N (0)γµγ5 (26)

× 0τψN (0) · ∂µ0ϕπ(0)|N,M,Tz ,P〉

= i
fπNN

mπ

〈
1
2
M ′
∣∣∣∣σ ·

[
k− ωπ(k)

2MN

×
(
P + P′)] ∣∣∣∣12M

〉〈
1
2
T ′

z

∣∣∣∣ τ †α
∣∣∣∣12Tz

〉
,

only by the presence of the πNN form factor

F
(loc)
πNN (k2) =

∫
d3

κ2

(2π)3
Φnr(3)

N (κκκ2)Φ
nr(3)
N

(
κκκ2 +

2
3
k
)

(27)
in the vertex function (25).4)

From a comparison of expressions (25) and (26)
for k → 0, we find that the πNN and πqq coupling
constants are related by the well-known equation [12]

fπNN =
5
3
fπqq, (28)

where the coefficient 5/3 is the spin–isospin part
of the matrix element, this part being calculated by
standard methods for summing Clebsch–Gordan co-

4)The term proportional to σ · (2κκκ2 + 2
3
k) does not con-

tribute to (25), since integration with respect to the an-
gles in

∫
Φ

nr(3)
N (κκκ2)Φ

nr(3)
N

(
κκκ2 + 2

3
k
)
σ ·
(
κκκ2 + 1

3
k
)
d3

κ2,

where Φ
nr(3)
N are the Fourier transforms of the Gaussian

functions in (11), annihilates this integral.
5
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efficients appearing in the definition of the functions
in (6).

By expressing fπqq in terms of fπNN , we finally ob-
tain an expression for the pseudovector πNN vertex
function (26) in the form

MPV(N → π +N) =
ifπNN

mπ
(29)

× F
(PV)
πNN (k2)τ †ασ ·

[
k− ωπ(k)

2MN
(P + P′)

]
.

A calculation of the matrix element for the same
transition within the model of a scalar q̄q fluctuation
(for relevant details, the interested reader is referred
to [17]) leads to the expression

Ms(N → π +N) =
5
3
i
√

3gs

mπmq
(2πb2πm

2
π)3/4 (30)

×
[
1 − yπ

3
ϕπNN (0)

]
(1 − yπ)3/2F

(s)
πNN (k2)

× τ †ασ ·
[
k− ωπ(k)

2MN
(P + P′)

]
.

Here, we have made the substitutionMN = 3mq and
have introduced the notation

yπ =
2
3
x2

π(1 + 2x2
π/3)

−1, xπ = bπ/b, (31)

ϕπNB(k) = 3ωπ(k) [MN +MB + ωπ(k)]−1 .

The factor
√

3 in front of gs on the right-hand side
of (30) is the color contribution to the transitionN →
N + π [the result of summation over color in the pion
wave function (5)]. Usually, this factor is included in
the constant gs by redefining it from the outset as

g̃s =
√

3gs. (32)

In the two models in question (the local and the

nonlocal one), the form factors F (PV)
πNN and F (s)

πNN in
the πNN vertex function are specified in the form of
Gaussian functions, this being associated with the
use of the oscillator basis (10), (11) in quark config-
urations of the translation-invariant shell model [see
Eqs. (5)–(7)]; at the same time, any other (more re-
alistic) wave functions—for example, wave functions
that are used in covariant dynamical approaches [4]—
are also compatible with the general form of expres-
sions (5)–(7).

The form factor on the right-hand side of Eq. (30)
is determined by an integral that is the generalization
of (27) to the case of nonlocal interaction; that is,

F
(nonloc)
πNN (k2) =

∫
d3κ2

(2π)3
Φnr(3)

N (κκκ2) (33)

× Φnr(3)
N

(
κκκ2 +

2
3
k
)

Φnr
π

(
κκκ2 +

1
6
k
)
.

PH
For the functions in (10)–(11), Eqs. (27) and (33)
determine form factors of the following two types:

F
(loc)
πNN (k2) = exp

(
−k2b2/6

)
, (34)

F
(nonloc)
πNN (k2) = exp

[
−k2b2(1 + yπ/4)/6

]
.

In this case, the required form factors F
(PV)
πNN and

F
(s)
πNN are given by

F
(PV)
πNN (k2) = F

(loc)
πNN (k2), (35)

F
(s)
πNN (k2) = [1 − yπϕπNN (0)/3]−1

× [1 − yπϕπNN (k)/3]F (nonloc)
πNN (k2).

From a comparison of expressions (29) and (30)
considered in the limit k → 0, we find that the cou-
pling constants fπNN and g̃s are related by the equa-
tion

fπNN =
5
3
g̃s

mq
(2πb2πm

2
π)3/4 (36)

× [1 − yπϕπNN (0)/3] (1 − yπ)3/2,

gπNN =
2MN

mπ
fπNN .

As a matter of fact, this is a condition that normal-
izes the only phenomenological parameter of the 3P0

model, g̃s =
√

3gs, to the experimental value of the
πNN coupling constant gπNN . Since Eq. (36) was
derived within the constituent-quark model, its right-
hand side also features a dependence on the parame-
ters b, bπ, andmq of this model, which are determined
from an independent fit to the spectrum of hadrons.

We note that the bracketed factor on the right-
hand side of (36) yields only a small correction at a
realistic value of xπ ≈ 0.5−1. Discarding this factor,
we obtain

g̃s =
3
5
fπNN (2πb2πm

2
π)−3/4

(
1 +

2
3
x2

π

)3/2

mq,

(37)

which corresponds to a value of g̃s � 1.94mq at
xπ = 0.5.

The right-hand side of (37) has a clear physical
meaning. Here, (2πb2π)−3/4 is the value of the pion
wave function Φ̃nr

π (ρ) at the origin. The same value
determines thematrix element of the divergence of the
axial current,

〈0|ψ̄q(0)γ5γµ∂µτβψq(0)|π, α,k〉 (38)

= −iδαβm
2
πfπ.
YSICS OF ATOMIC NUCLEI Vol. 68 No. 8 2005
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This matrix element specifies the amplitude of weak
pion decay. The weak-decay constant fπ can be cal-
culated for the initial state (5) by using the wave func-
tion Φ̃nr

π (ρ). This yields an expression that involves
the value of this function at the origin. Specifically, we
have

m2
πfπ =

√
3
√

2mπΦ̃nr
π (0)mud, (39)

where mud = (mu +md)/2, with mu and md being
the masses of light (current) quarks.5)

Once the constant gs has been normalized to
the known value of the πNN coupling constant,
there appears the possibility of calculating, within the
model of a q̄q scalar fluctuation, N →M +B vertex
functions [the coupling constants fMNB and the
form factors FMNB(k2)] for any q̄q mesons M = π,
ρ, π∗, K, K∗, . . . and any 3q baryons B = N , ∆,
N1/2+(1440), N1/2−(1535), Λ, Σ, . . .. For the cou-
pling constants, we will concurrently obtain relations
that, albeit being initiated by the original SU(3)F -
symmetric Hamiltonian (1), are beyond SU(3)F
symmetry as such—for example, those that satisfy
SU(6)FS symmetry. We have already realized this
program in part for pion and kaons in [15–17].

Following the scheme outlined above, we will ob-
tain the N → ρ+N rho-meson vertex function. In
doing this, we start from the matrix elements

Ms(N → ρ+N) (40)

= 〈ρ(qq̄),m, α,k|〈N |Hs|N〉 = 3〈N |H(3)
ρqq(s)|N〉,

MV (N → ρ+N)

= 〈ρ(m)α(k)|〈N |HV |N〉 = 3〈N |H(3)
ρqq(V )

|N〉,

which are similar to those in (24). By HV , we mean
here the minimal (that is, the Dirac) interaction of a
quark with a vector field,

HV = gρqq

∫
d3xψ̄q(x)γµ0τψq(x) · 0ρµ(x). (41)

In the first order in v/c, this local interaction leads to
the following ρqq vertex function:

H
(3)
ρqq(V )(m,α,k) (42)

=
gρqq

2mq
(2π)3δ(k − (p3 − p4))

5)The factor
√

2mπ on the right-hand side of (39) is due
exclusively to a change in the notation for the nonrelativistic
pion wave function in (13). For the wave packet Φπ , which
satisfies the covariant normalization condition (12), Eq. (39)
reduces to the formm2

πfπ =
√

3Φ̃π(0)mud. As a result, the
constant fπ does not vanish in the chiral limit mud → 0

if Φ̃π(0) 	= 0. We are grateful to V.E. Lyubovitsky for this
valuable comment.
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×
〈

1
2
t4

∣∣∣∣ τ (3)
α

†
∣∣∣∣12t3

〉

×
〈

1
2
µ4

∣∣∣∣
(
p3 + p4 − i[σ(3) × k]

)
· ε(m)

∣∣∣∣12µ3

〉
.

Applying Eq. (40), we obtain the N → ρ+N transi-
tion amplitude in the form

〈ρ(m)α(k)|〈N(3q),M ′, T ′
z ,P

′|HV |N(3q),M, Tz ,P〉

=
gρqq

2mq

∫
d3

κ2

(2π)3
Φnr(3)

N (κκκ2)Φ
nr(3)
N

(
κκκ2 +

2
3
k
)

(43)

×
〈

1
2
M ′

∣∣∣∣∣
(

P + P′

3
− 2κκκ2 −

2
3
k

− 5
3
i [σ × k]

)
· ε(m)

∣∣∣∣∣
1
2
M

〉〈
1
2
T ′

z

∣∣∣∣∣τ †α
∣∣∣∣∣
1
2
Tz

〉
.

Here, the expression in the lowest line [in a perfect
analogy with the lowest line in (25)] is the spin–
isospin part of the matrix element of the operator
given by (42) and sandwiched between the nucleon
wave functions (6), this spin–isospin part being cal-
culated by standard methods of the shell model (for
example, with the aid of the technique employing the
fractional-parentage coefficients). In just the same

way as in (25), we can discard the vector 2κκκ2 +
2
3
k

in the lowest line of (43), since, for the functions
in (11), its contribution vanishes upon integration of
the whole expression with respect to the angles of the
vector κκκ2.

As a result, we find that, in the same order in v/c,
the only distinction between the matrix element (43)
of the local ρNN interaction for theN → ρ+N tran-
sition and the elementary ρNN vertex〈

ρ(m)α(k)
∣∣∣
〈
N,M ′, T ′

z,P
′
∣∣∣ψ̄N (0) (44)

×
(
γµ +

κρ

2MN
σµν∂ν

)

× 0τψN (0) · 0ρµ(0)
∣∣∣N,M,Tz ,P

〉

=
gρNN

2MN

〈
1
2
M ′

∣∣∣∣∣(P + P′ − (1 + κρ)

× i [σ × k]) · ε(m)

∣∣∣∣∣
1
2
M

〉〈
1
2
T ′

z

∣∣∣∣ τ †α
∣∣∣∣12Tz

〉

is that the former includes the ρNN form factor [sec-
ond line in (43)]

F
(V )
ρNN (k2) (45)

=
∫

d3
κ2

(2π)3
Φnr(3)

N (κκκ2)Φ
nr(3)
N

(
κκκ2 +

2
3
k
)
,

5
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which, in this model, coincides with the πNN form
factor (27).

Moreover, it follows from a comparison of expres-
sions (43) and (44) that, in the quark model, the
phenomenological parameter κρ, which determines
the coupling constant for the Pauli term of ρNN
interaction, has a specific value,

1 + κρ = 5, (46)

which was obtained algebraically by using only the
Dirac term in the interaction given by Eq. (41). We
note that formula (46) for the rho-meson is an analog
of formula (28) for the pion.

We derive a relation between the quark and nu-
cleon coupling constants gρqq and gρNN for the ρme-
son, following the same scheme of calculations as in
deducing relation (28) for the pion. Substituting the
relationmq = MN/3 into Eq. (43), we find that, in the
limit k → 0 (that is, in the limit where the form factor
reduces to unity), formulas (43) and (44) are identical
if κρ satisfies Eq. (46) and that the meson coupling
constant takes the same value both for nucleons and
for quarks:

gρNN = gρqq. (47)

By using this relation, we can find that, in the model
assuming a local ρqq interaction, the ρNN vertex
function admits the representation

MV (N → ρ+N) (48)

=
gρNN

2MN
τ †α
(
P + P′ − 5i[σ × k]

)
· ε(m)F

(V )
ρNN (k2),

which coincides with the result obtained previously by
Riska and Brown [12].

We calculate the same matrix element within the
model of a q̄q scalar fluctuation by using a universal
value of the scalar constant gs. This value was earlier
normalized to the pion coupling constant in Eqs. (36)

and (37). We derive the operator H(3)
ρqq(s)(m,α,k) of

effective ρqq coupling in just the same way as the
analogous operator in (17) for πqq coupling by di-
rectly calculating the matrix element in (15) with the
aid of the rho-meson wave function (7), the anticom-
mutation relations (2) for creation and annihilation
operators, and standard methods for transforming
products of Clebsch–Gordan coefficients. In addi-
tion, we use the transverseness condition (8) for the
rho-meson polarization vector in the region of small
|k|/mq ≈ v/c. For the ρqq vertex function, this leads
to the expression

H
(3)
ρqq(s)(m,α,k) =

gs

mq
(2π)3δ(k − (p3 − p4)) (49)

× (2πb2ρ)
3/4
√
ωρ(k)exp

[
−((p3 + p4)/2)2b2ρ

]

P

×
〈

1
2
t4

∣∣∣∣ τ (3)
α

†
∣∣∣∣12t3

〉

×
〈

1
2
µ4

∣∣∣∣
(
p3 + p4 − i

[
σ(3) × k

])
· ε(m)

∣∣∣∣12µ3

〉
.

We can see that, in the model of a q̄q scalar fluctu-
ation, the operator H(3)

ρqq(s) of effective ρqq coupling
has the same spin–isospin structure as the operator
of local ρqq coupling (42) [compare the last two lines
in Eqs. (42) and (49)].

The calculation of the matrix element for theN →
ρ+N transition with this operator is performed in
just the same way as for the N → π +N transition
with the πqq-coupling operator (17). As a result, we
arrive at the expression

Ms(N → ρ+N) (50)

=
√

3gs

√
2mρ

MN
(2πb2ρ)

3/4(1 − yρ)3/2F
(s)
ρNN (k2)

× τ †α
(
P + P′ − 5i[σ × k]

)
· ε(m),

which is similar to that in (30). Here, we have as-
sumed as usual thatmq = MN/3 and have employed
the notation

yρ =
2
3
x2

ρ

(
1 +

2
3
x2

ρ

)−1

,

where xρ =
bρ
b
.

In this model, the form factors for local and non-
local coupling in the amplitudes in (48) and (50) are
expressed in terms of Gaussian functions as

F
(V )
ρNN (k2) = exp

[
−k

2b2

6

]
, (51)

F
(s)
ρNN (k2) = exp

[
−k

2b2(1 + yρ/4)
6

]
.

In the limit k → 0, the amplitude in (50) deter-
mines the ρNN coupling constant in the model of a
scalar fluctuation. Comparing Eq. (50) with Eqs. (44)
and (48), we obtain the following expression for the
ρNN coupling constant in terms of the scalar con-
stant g̃s =

√
3gs and the parameters of the rho-meson

wave function in the constituent-quark model:

gρNN = 2g̃s
√
mρ(2πb2ρ)

3/4

(
1 +

2
3
x2

ρ

)−3/2

. (52)

For the example of the rho meson, this demonstrates
that the microscopic model being considered provides
a universal basis for describing various meson clouds
in the nucleon.
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 8 2005
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Fig. 2. Diagram for ρπγ coupling in the constituent-
quark model.

Considering that, in our model, gs is normalized

to the pion constant fπNN =
mπ

2mN
gπNN [see rela-

tions (36), (37)], we arrive at the equation

gρNN

gπNN
=

1
5

(
mρ

mπ

)1/2( bρ
bπ

)3/2




1 +
2
3
x2

π

1 +
2
3
x2

ρ




3/2

,

(53)

which relates the constants gρNN and gπNN to each
other and which follows from a microscopic consider-
ation.

At bρ = bπ, the model predicts the following nu-
merical values for the rho-meson constants:

gρNN =
gπNN

5

(
mρ

mπ

)1/2

= 6.35, (54)

1 + κρ = 5.

This result does not differ very strongly from the
value predicted by the well-known Kawarabayashi–
Suzuki–Riazuddin–Fayyazuddin relation [27],
|gρNN | = |gρππ| = mρ/(

√
2fπ) � 5.89, as a conse-

quence of low-energy theorems. For the sake of
comparison, we indicate that, in the model proposed
in [12], the quark vector coupling constant κρ is a
free parameter, its value being determined from a fit
to the (model-dependent) coupling constant gρNN in
the one-boson-exchange nucleon–nucleon potential.
The resulting values of gρNN and κρ, together with

the form factor F (s)
ρNN (k2), are used in the following

to describe the transverse part of the differential cross
section for quasielastic rho-meson knockout from the
nucleon with the subsequent conversion of the rho
meson to a pion, ρ+ γ∗T → π.

3. ρπγ ELECTROMAGNETIC FORM FACTOR
AND CROSS SECTION FOR QUASIELASTIC

RHO-MESON KNOCKOUT FOLLOWED
BY RHO-MESON CONVERSION TO PIONS
Let us first consider the ρπγ electromagnetic ver-

tex function. We will calculate it, assuming the min-
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 8 200
imal (Dirac) interaction of a quark with an electro-
magnetic field [see also formula (42) above]:

Hem(q) = e

∫
d3xψ̄q(x)γµ

(
1
6

+
τz
2

)
ψq(x)Aµ(x).

(55)

For one of the constituent quarks (we label it with the
number 2), we obtain, in the lowest order in v/c, the
transition amplitude [similarly to Eq. (43)]

H
(2)
em (q, λ) =

〈
q, µ′2, t

′
2p

′
2

∣∣∣∣
(

1
6

+
τ

(2)
z

2

)
e

2mq
(56)

×
(
p2 + p′

2 − i[σ(2) × q]
)
· ε(λ)

γ

∣∣∣∣q, µ2, t2,p2

〉
,

where ε
(λ)
γ is the polarization vector of the virtual

photon γ∗T . Here, we are interested in the transverse
polarizations (λ = ±1),

ε(λ)
γ (q̂) = ∓

{
1√
2
,±i 1√

2
, 0
}
, (57)

since only transversely polarized photons γ∗T make a
nonzero contribution to the quark-spin-flip isovector
M1 transition ρ+ γ∗ → π. Calculating the matrix
element for this transition, which corresponds to the
diagram in Fig. 2, we obtain

M(0ρ + 0γ → 0π) = 2〈0π,k′|H(2)
em (q, λ)|0ρ,k〉 (58)

= egρπγ |q|ε(λ)
γ · [ρ̂ × q̂][0ρ× 0π]Iz=0Fρπγ(q2),

where the ρπγ coupling constant and the vertex form
factor are expressed in term of the parameters of the
constituent-quark model as

gρπγ = Cρπ

√
mπmρ

mq
, (59)

Fρπγ(q2) =
∫

d3
κ

(2π)3
Φπ

(
κκκ − q

2

)
Φρ(κκκ)

= exp
[
−q2b2ρ/4

]
.

Here, 0ρ and 0π are isospin vectors, q̂ = q/|q| and ρ̂
are vectors of unit length, and we assume that bρ =
bπ. Within this approach, the coefficient Cρπ, which
takes into account relativistic and other corrections,
is a phenomenological parameter; in principle, it could
be fitted to cross sections for other electromagnetic
processes involving rho mesons (for example, to the
decay width of the rho meson with respect to the
channel π + γ). In the present study, we only esti-
mated the coefficient Cρπ on the basis of data on
quasielastic pion knockout induced by virtual photons
γ∗T and obtained the value of Cρπ = 1.7 (see below).
A total analysis of corrections contributing to the
coefficient Cρπ is possible within relativistic models—
for example, within the model used in [9].
5
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Fig. 3. Transverse part of the cross section for quasielastic pion knockout from a nucleon, dσT /dt, at the momentum transfers
of Q2 = (a) 1.0 and (b) 1.6 (GeV/с)2. The displayed experimental data were borrowed from [22]. The total rho-meson-pole
and pion-pole contribution calculated within various models of meson–nucleon coupling are represented by the dashed and
the dash-dotted curve for the case where use is made of the monopole parametrization of the vertex form factors FMNN (k2)

(M = π, ρ) for the cutoff parameterΛ set to 0.6 and 1.2 GeV/c, respectively, and by the solid curve for the casewhere the results
were obtained on the basis of the microscopic quark model whose parameters were set to b = 0.6 fm and bπ = bρ = 0.3 fm.
The dotted curve shows the contribution of the pion t-pole diagram alone.
Having the ρNB and ρπγ form factors at our
disposal, we can obtain the required the differential
cross section for pion electroproduction. In the gen-
eral case, the differential cross section averaged over
the azimuthal angle has the form

dσ

dQ2dWdt
= εJ2

0 + J2
1 , (60)

where ε is a parameter that characterizes the degree
of the virtual-photon longitudinal polarization and J2

i
is the square of the matrix element of the relevant
current.
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Fig. 4. Results of our calculations for the transverse
part of the cross section for quasielastic pion knockout
from a nucleon (the notation for the calculated curves is
identical to that in Fig. 3) along with older experimen-
tal data from [20] at the momentum transfer of Q2 =
3.3 (GeV/с)2.
PH
As was shown previously, the region Q2 ≥
1−3 (GeV/c)2 is dominated by the quasielastic-
pion-knockout mechanism, in which case the main
contribution to the cross section is generated by the
t-channel pole mechanism, the longitudinal and the
transverse part of the cross section receiving dom-
inant contributions from, respectively, the diagram
describing direct pion knockout and the diagram
involving the rearrangement of the internal structure
of the emitted meson— that is, the ρ→ π conversion
in the photon vertex. For rho-meson knockout fol-
lowed by the conversion process ρ→ π, we ultimately
obtain the matrix elements of hadron currents in the
form

〈N,M ′, T ′
z, p

′|JNγ∗→Nπ
(λ) (t, α)|N,M,Tz , p〉 (61)

= egρπγgρNN
|q||k|
t−m2

ρ

Fρπγ(q2)FρNN (k2)
1 + κρ

2MN

×
√

2(1 − λ1λ|10)(−1)1/2−T ′
z (1/2Tz1/2 − T ′

z|1α)

×
√

2(−1)λ(1(M ′ −M)1(λ −M ′ +M)|1λ)

×
√

2(−1)1/2−M (1/2 −M ′1/2M |1(M −M ′))

×
√

4π
3
Y1(λ−M ′+M)(k̂),

where t = k2
0 − k2, kµ = pµ − p′µ, and α is the rho-

meson (pion) isospin index. Upon performing sum-
mation and averaging over the spin projections of
the initial (final) nucleon, we obtain the follow-
ing result for the squared matrix element |J1|2 =
YSICS OF ATOMIC NUCLEI Vol. 68 No. 8 2005
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Fig. 5. Longitudinal part of the cross section for quasielastic pion knockout froma nucleon,dσL/dt, at themomentum transfers
ofQ2 = (а) 1.0 and (b) 1.6 (GeV/с)2. The displayed experimental data were borrowed from [22]. The notation for the calculated
curves is identical to that in Fig. 3.
(1/2)(J2
(λ=1) + J∗2

(λ=−1)):

1
2

∑
MM ′

(J2
(λ=1) + J∗2

(λ=−1)) =
[
egρπγgρNN (62)

× |q||k|
t−m2

ρ

Fρπγ(q2)FρNN (k2)
1 + κρ

2MN

]2

× (1 + cos2(q̂k)).

A transition from the expression for the currents
to the momentum distribution of mesons and dif-
ferential cross sections in the pole approximation is
discussed in detail elsewhere [13]. The results ob-
tained by calculating the cross sections for quasielas-
tic rho-meson knockout are given in Figs. 3 and 4.
Also presented here for the sake of comparison are
the longitudinal components of the cross section for
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Fig. 6. Results of our calculations for the longitudinal
part of the cross section for quasielastic pion knockout
from a nucleon (the notation for the calculated curves is
identical to that in Fig. 3) along with older experimen-
tal data from [20] at the momentum transfer of Q2 =
3.3 (GeV/с)2.
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quasielastic pion knockout (Figs. 5 and 6). As to
the electromagnetic form factors, the nonrelativistic
constituent-quark model does not claim to provide a
quantitative description of the “electromagnetic part”
of the cross section at rather high values of q2 ∼
2−3 (GeV/c)2; in our calculations, we employed the
latest experimental data [22] for Fππγ(q2), assuming
that Fρπγ(q2) � Fππγ(q2).

For a comparison of the shape of momentum dis-
tributions with theoretical results to be meaningful,
available experimental data [20-22], against which
we contrast our results (Figs. 3–6), must be refined
substantially. At the same time, it is important that
the absolute cross-section values are approximately
in accord with experimental data, and this favors the
statement, albeit at a qualitative level so far, that the
microscopic 3P0 model is universal.

In Figs. 3–6, the solid curves correspond the mi-
croscopic quark model at the parameter values of
b = 0.6 fm and bπ = bρ = 0.3 fm, while the dashed
and dash-dotted curves represent results obtained
by using the monopole parametrization of the vertex
form factors FMNN (k2) (M = π, ρ) with the cutoff
parameter Λ set to 0.6 and 1.2 GeV/c, respectively.
For a comparison to be convenient, the common ver-
tex constants gρNN = 6.35, 1 + κρ = 5.0, and gρπγ =
1.87 (this corresponds to Cρπ = 1.7), which were ob-
tained within the quark model involving a 3P0 scalar
fluctuation (in this model, gρNN is normalized to the
experimental value of gπNN = 13.5), were used in all
models.

4. CONCLUDING COMMENTS

The development of the microscopic formalism
and the calculation of momentum distributions for
channels involving an excited spectator baryon B
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in the final state, N → B + ρ [B = ∆, N∗(3/2−,
1/2−), N∗∗(1/2+) (Roper)], are the most immediate
task. Relevant experimental investigations are quite
feasible at the Jefferson Laboratory. In the near future,
a transition to an unpolarized electron and a polarized
proton target in exclusive experiments (this is being
planned at the present time) will furnish much richer
information about virtual mesons in the nucleon that
possess a nonzero intrinsic spin.

In all probability, investigation of quasielastic me-
son knockout induced by electrons and accompa-
nied by the rearrangement of the internal state of the
emitted meson can be extended by considering not
only the spin-flip process ρ→ π (this was done in
the present article) but also a change in the intrin-
sic orbital angular momentum l = 1 of a meson—for
example, in the electron-impact-induced transition
of a virtual positive-parity b1 meson in the nucleon
to the l = 0 state (pion). As a result, a pion will be
knocked out upon the absorption of a longitudinal
virtual photon. The observable consequences of this
will be similar to effects studied in detail in the theory
of the quasielastic knockout of clusters from nuclei
that is induced by protons of energy in the range
500–1000 MeV [19]. In particular, the relevant cross
section will receive contributions both from the domi-
nant π+ γ∗L → π amplitude and from the off-diagonal
b1 + γ∗L → π amplitude, which can manifest itself via
anisotropies of differential cross sections [19].
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Abstract—Experimental data on inclusive deuteron production in 16Оp collisions at high energies were
obtained for the first time under conditions of 4π geometry. An irregularity in the momentum spectrum of
deuterons in the rest frame of oxygen nuclei is found in the range 0.40 ≤ p ≤ 0.55GeV/c, and the reasons
for its appearance are discussed. The mean multiplicities of secondary fragments are correlated with the
presence of deuterons in an event, these correlations being positive for fragments of charge in the range
zf ≤ 4 and negative for fragments of charge in the range 5 ≤ zf ≤ 7. This is likely to be due to baryon-
charge conservation. c© 2005 Pleiades Publishing, Inc.
INTRODUCTION

Investigation of mechanisms that are responsible
for the fragmentation of relativistic nuclei interacting
with nucleons and nuclei is one of the key problems of
high-energy physics. In our opinion, themost efficient
method for solving this problem is to study processes
leading to the production of light fragments (1Н1,
2Н1, 3Н1, 3He2, and 4He2). This is because the cross
section for light-particle emission is commensurate
with the total reaction cross section; therefore, the
production of light particles is a characteristic fea-
ture of the nuclear-fragmentation process, which can
be completely understood only upon establishing the
mechanism of light-particle production. At the same
time, it has been firmly established by now that a
considerable part of light particles are emitted at the
initial stage of the interaction of two nuclei. It follows
that, in contrast to products originating from the
decay of a thermalized residual nucleus, which forget
the entire path of their formation almost completely,
such particles carry direct information about interac-
tion dynamics. We also note that data on deuteron
production in hadron–nucleus collisions at high en-
ergies are scanty, the bulk of them stemming from the
application of electronic procedures and covering a
narrow solid angle. The entire momentum interval of
deuteron production has not been considered either.

1)Joint Institute for Nuclear Research, Dubna, Moscow
oblast, 141980 Russia.

2)Institute of Nuclear Physics, Uzbek Academy of Sciences,
pos. Ulughbek, Tashkent 702132 Republic of Uzbekistan.
*e-mail: olimov@uzsci.net
1063-7788/05/6808-1395$26.00
Of course, this constrains substantially the range of
useful information about the dynamics of deuteron
formation. In view of this, it is of great interest to
obtain new experimental data on deuteron emission
from 16Оp collisions at high energies (under condi-
tions of 4π geometry) for nearly the whole momentum
interval of deuteron production, and this is precisely
the objective of the present study.
Experimental data discussed below were obtained

by exposing the 1-m hydrogen bubble chamber of the
Laboratory of High Energies at the Joint Institute for
Nuclear Research (JINR, Dubna) to a beam of 16О
nuclei accelerated at the Dubna synchrophasotron to
a momentum of 3.25 GeV/c per nucleon. The data
sample subjected to analysis in the present study
consisted of 11 098 measured 16Оp events. We note
that the use of beams of accelerated light nuclei in
experiments with hydrogen bubble chambers makes
it possible to identify all projectile fragments in charge
and mass [1–3]. We considered fragments for which
the measured track length satisfied the condition L >
35 cm. This was necessary for reliably identifying
fragments in mass. For this cut on the track length,
the mean relative error in determining the momenta
of all fragments does not exceed 3.4%.
In order to perform an ultimate mass identification

of fragments, we introduced the followingmomentum
intervals: singly charged fragments were identified as
2Н1 for momenta in the range p = 4.75−7.8 GeV/c
and as 3Н1 for momenta in the region p > 7.8GeV/c,
while doubly charged fragments were classed with
3Не2 for momenta in the range p < 10.8 GeV/c and
c© 2005 Pleiades Publishing, Inc.
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Fig. 1. Distribution of deuterons with respect to
the total momentum in the rest frame of the oxy-
gen nucleus: (closed circles) experimental data and
(open circles) results obtained within the cascade–
fragmentation–evaporationmodel.

with 4Не2 for momenta in the region p > 10.8GeV/c.
If the fragments for which the track lengths satisfy
the condition L > 35 cm are identified by using these
criteria, the admixture of isotopes close in mass does
not exceed 4 to 5%. Positive singly charged rela-
tivistic particles of momentum in the range 1.75 <
p < 4.75 GeV/c were identified as protons. If pro-
tons are selected in this way, the admixture of pos-
itively charged pions can be disregarded. For mul-
tiply charged fragments (zf ≥ 3), no constraint was
imposed on the track length, since no mass identi-
fication was performed for such fragments. In deter-
mining the mean multiplicities of singly and doubly
charged fragments, we took into account the loss of
these fragments at distances of L ≤ 35 cm owing to
their interaction with the chamber operating liquid
(hydrogen). Other methodological features of our ex-
periment were described elsewhere [1–3].
The experimental data in question are compared

with the predictions of the cascade–fragmentation–
evaporation model (CFEM) [4]. Within this model,
the breakup of an excited thermalized residual nu-
cleus, which is formed upon the completion of the
intranuclear cascade, is a dominant mechanism of
the production of all fragments, with the exception
of protons, in the interactions of light nuclei with
nucleons. For light nuclei, such as 16О, the evapora-
tion mechanism of fragment formation is disregarded,
even for nucleons.

EXPERIMENTAL DATA AND THEIR
ANALYSIS

The mean multiplicity of deuterons in the exper-
iment proved to be 〈nd〉 = 0.331 ± 0.007, which is
P

about 1.4 times greater than its counterpart calcu-
lated on the basis of the cascade–fragmentation–
evaporation model, 〈nd〉 = 0.239 ± 0.003. The inclu-
sive cross sections for deuteron production appeared
to be 110.6 ± 2.3 mb in the experiment and 79.8 ±
1 mb in the cascade–fragmentation–evaporation
model.
Figure 1 displays the normalized (to the total

number of events) distribution of deuterons with
respect to the total momentum in the rest frame
of the oxygen nucleus. Also shown in this figure
is the analogous spectrum obtained on the basis
of the cascade–fragmentation–evaporation model,
the calculated mean multiplicity of deuterons being
normalized to their experimental mean multiplicity.
The deuteron total momentum averaged over the
experimental spectrum proved to be 〈p〉 = 0.341 ±
0.005 GeV/c, its counterpart calculated within the
cascade–fragmentation–evaporation model being
〈p〉 = 0.223 ± 0.002 GeV/c, which is less than the
above experimental value by a factor of about 1.53
Let us proceed to analyze the shape of the mo-

mentum spectra. As can be seen from Fig. 1, the
calculated spectrum of p is smooth over the entire
range of momentum (it peaks at p ≈ 0.20 GeV/c
and decreases fast toward p ≈ 0.7 GeV/c). The ex-
perimental spectrum of p grows monotonically up
to a maximum (at p ≈ 0.22 GeV/c), whereupon it
exhibits a pronounced irregularity (“shoulder”) in the
region p = 0.40−0.55 GeV/c; at momentum values
in excess of p ≈ 0.6 GeV/c, the spectrum in ques-
tion decreases (approximately in proportion to an
exponential), covering the momentum interval up to
p ≈ 1.4 GeV/c. From a comparison of these spectra,
one can conclude that the cascade–fragmentation–
evaporation model overestimates deuteron produc-
tion in the range 0.10 < p < 0.35 GeV/c, but that
it underestimates the contribution of this process in
the region p > 0.4 GeV/c. As was indicated in [5] in
studying the structure functions for light fragments
versus kinetic energy, this discrepancy is due to the
disregard of the mechanism of fast-cascade-nucleon
fusion in the model.
In order to clarify the reason behind the emer-

gence of the irregularity in the momentum spectrum
of deuterons in the range p = 0.40−0.55 GeV/c, we
consider individually, in the rest frame of the oxygen
nucleus, the momentum distributions of deuterons
emitted into the forward and the backward hemi-
sphere (Fig. 2). From Fig. 2, one can see that the
momentum spectrum of deuterons emitted into the
backward hemisphere is monotonic. The momentum
spectrum of deuterons emitted into the forward hemi-
sphere is rather hard, and the above irregularity in the
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 8 2005
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Table 1.Mean multiplicities of light fragments in events where there is a deuteron or where there is no deuteron

nd
Fragment type

1H1
3H1

3He2 4He2

0 Expt. 1.28 ± 0.02 0.087± 0.004 0.088 ± 0.004 0.476 ± 0.011

CFEM 1.52 ± 0.01 0.096± 0.002 0.137 ± 0.003 0.359 ± 0.005

≥ 1 Expt. 2.24 ± 0.04 0.232± 0.011 0.253 ± 0.012 0.806 ± 0.020

CFEM 2.64 ± 0.03 0.156± 0.006 0.211 ± 0.007 0.356 ± 0.010

Table 2.Mean multiplicities of fragments in events where there is a deuteron or where there is no deuteron

nd
Fragment charge

1 2 3 4 5 6 7

0 1.37 ± 0.03 0.56 ± 0.01 0.063± 0.003 0.035± 0.002 0.076 ± 0.003 0.216 ± 0.005 0.247± 0.006

≥ 1 2.47 ± 0.04 1.06 ± 0.02 0.12 ± 0.01 0.054± 0.005 0.067 ± 0.006 0.126 ± 0.008 0.022± 0.003

Table 3.Mean multiplicities of light fragments in the events involving the emission of a deuteron in the backward or in
the forward direction in the rest frame of the oxygen nucleus

ϑd,
deg

Fragment type
1Н1

3H1
3He2 4He2

≤ 90 2.31 ± 0.04 0.215 ± 0.011 0.235 ± 0.012 0.746 ± 0.021

>90 2.35 ± 0.05 0.242 ± 0.019 0.251 ± 0.019 0.753 ± 0.029

Table 4.Meanmultiplicity andmean total and transversemomenta of the deuteron in the rest frame of the oxygen nucleus
versus the presence of a charged pion in an event

Quantity
Presence of a charged pion in an event

nπ+ = 0 nπ+ ≥ 1 nπ− = 0 nπ− ≥ 1

〈n〉 0.287 ± 0.008 0.412 ± 0.018 0.292 ± 0.007 0.441 ± 0.023

〈p〉, MeV/c 343 ± 6 345 ± 9 340 ± 5 358 ± 11

〈p⊥〉, MeV/c 252 ± 5 253 ± 8 250 ± 5 263 ± 9
momentum spectrum of all deuterons in the range
p = 0.40−0.55 GeV/c becomes even more distinct
there. It can be conjectured that this effect is due to
a significant distinction between the mechanisms re-
sponsible for the forward and backward production of
deuterons. The main contribution to the production of
deuterons traveling in the backward direction comes
from the evaporation mechanism and the mechanism
of Fermi breakup. The production of deuterons trav-
eling in the forward direction is due not only to these
mechanisms but also to the fusion of fast cascade
nucleons and the decays of relatively fast excited
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 8 200
light fragments, as well as to a direct knockout of
deuterons from the oxygen nucleus involved. These
additional mechanisms can be responsible for the
hardness of the deuteron momentum spectrum and
for the emergence of the irregularity in it.

The experimental transverse-momentum (p⊥)
distribution of deuterons is shown in Fig. 3, along
with the p⊥ spectrum of deuterons that was calcu-
lated on the basis of the cascade–fragmentation–
evaporation model. For the experimental spectrum,
the mean value of the deuteron transverse momentum
proved to be 〈p⊥〉 = 0.252 ± 0.005 GeV/c, its coun-
5
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Fig. 2. Distribution of deuterons with respect to the to-
tal momentum in the rest frame of the oxygen nucleus:
(closed circles) results for deuterons emitted into the for-
ward hemisphere and (open circles) results for deuterons
emitted into the backward hemisphere.
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Fig. 3. Transverse-momentum distribution of deuterons:
(closed circles) experimental data and (open circles)
results of the calculation based on the cascade–
fragmentation–evaporationmodel.

terpart in the cascade–fragmentation–evaporation
model being 〈p⊥〉 = 0.173 ± 0.002 GeV/c, which is
less than the experimental value by a factor of about
1.46. As can be seen from Fig. 3, both the exper-
imental and the calculated p⊥ spectrum are rather
smooth (this is not so only for the experimental spec-
trum in the vicinity of the point p⊥ ≈ 0.52 GeV/c).
The experimental p⊥ spectrum covers the entire
momentum range up to p⊥ ≤ 1.1 GeV/c, while the
calculated spectrum terminates at p⊥ ≤ 0.65 GeV/c.
For p⊥ ≥ 0.22 GeV/c, the experimental p⊥ spectrum
has an approximately exponential character. For the
calculated p⊥, such a regime is realized in the region
p⊥ ≥ 0.35GeV/c. The slope parameter for the calcu-
lated p⊥ spectrum is severalfold as great as that for
the experimental spectrum. From the comparison of
P

these two spectra, we can conclude that the cascade–
fragmentation–evaporation model fails to describe
the experimental data being discussed.

Let us now proceed to consider associated multi-
plicities of secondary fragments versus the presence
of a deuteron in an event. Table 1 gives the mean
multiplicities of light fragments (1Н1, 3Н1, 3He2,
and 4He2) in events featuring a deuteron and events
featuring no deuteron. Also displayed in this table
are data calculated on the basis of the cascade–
fragmentation–evaporation model. As can be seen
from Table 1, the mean multiplicities of light frag-
ments are correlated with the presence of a deuteron
in an event. In the experiment, the mean multiplicities
of 1Н1 and 4Не2 in events featuring the production of
a deuteron are approximately 1.75 times greater than
those in events featuring no deuteron. For the mirror
nuclei of 3Н1 and 3He2, the respective difference
exceeds a factor of 2.7. It should be noted that, within
the statistical errors, the mean multiplicities of these
nuclei agree, irrespective of deuteron production
in an event. Within the cascade–fragmentation–
evaporation model, positive correlations between the
mean multiplicities of fragments and the presence of a
deuteron in an event are observed only for fragments
whose mass numbers satisfy the inequality A ≤ 3;
for 4Не2 nuclei, there are no correlations within the
statistical errors. We also note that, in contrast to
what we observed experimentally, the mean mul-
tiplicities do not coincide for mirror nuclei within
the model—the mean multiplicity of 3Не2 nuclei
is approximately 1.4 times greater than the mean
multiplicity of 3Н1. Irrespective of the presence of a
deuteron in an event, the cascade–fragmentation–
evaporation model overestimates the production of
protons and underestimates the production of 4Не2
nuclei, this being probably due to the disregard of
the α-cluster structure of the 16О nucleus in the
model. A strong discrepancy between the predictions
of the cascade–fragmentation–evaporation model
and experimental data was also observed previously
for the yields of carbon isotopes [1].

Themeanmultiplicities of fragments whose charge
satisfies the condition 1 ≤ zf < 7 that are not sep-
arated in mass are displayed in Table 2 versus the
presence of a deuteron in an event. We note that the
meanmultiplicity of singly charged fragments is given
without allowance for the multiplicity of deuterons.
In just the same way as in Table 1, we can see here
correlations between mean multiplicities of fragments
and the presence of a deuteron in an event. However,
these correlations are positive for zf ≤ 4 fragments
and are negative for 5 ≤ zf ≤ 7 fragments, this being
probably due to baryon-charge conservation.
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 8 2005
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The mean multiplicities of light fragments (1Н1,
3Н1, 3He2, and 4He2) are presented in Table 3 versus
the deuteron emission angle in the rest frame of the
oxygen nucleus. One can see that, within the statis-
tical errors, the mean multiplicities of the fragments
being considered are independent of the deuteron
emission angle. With allowance for the significant
distinction between the mechanisms of backward-
and forward-deuteron production, this means that
there is no interplay between the mechanisms of pro-
duction of light fragments and deuterons.
Let us now consider the mean multiplicity of

deuterons and their mean kinematical features ver-
sus the presence of a charged pion in an event. In
order to eliminate the effect of the target-proton
charge on the correlations being studied, we consider
pions originating from the projectile—that is, fast
(p > 0.5 GeV/c) positively and negatively charged
pions produced predominantly in an inelastic charge-
exchange process involving one or a few nucleons of
the oxygen nucleus and constituting one of the steps
of the intranuclear cascade (p(n) → n(p) + π+(π−)).
Table 4 displays the mean multiplicity of deuterons
and the mean values of its total and transverse
momenta versus the presence of a fast positively or
negatively charged pion in an event. From this table,
on can see that, within the statistical errors, the mean
multiplicity of deuterons and its mean momentum
features are independent of the sign of the pion
charge and that the mean multiplicity of deuterons
in events involving charged pions is approximately
1.45 times greater than that in events not involving
the production of charged pions.

CONCLUSION

The production of deuterons in 16Оp collisions at
a momentum of 3.25 GeV/c per nucleon has been
studied for the first time under conditions of 4π ge-
ometry. The basic results of this investigation are
the following. In the momentum range 0.40 < p <
0.55 GeV/c, the momentum spectrum of forward
deuterons in the rest frame of the oxygen nucleus
exhibits a shoulder, which may be associated with the
fusion of cascade nucleons, decays of relatively fast
light fragments, and a direct knockout of a deuteron
from the oxygen nucleus by the target proton. In order
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 8 200
to clarify the role of these mechanisms and processes
in the formation of the shoulder in the deuteron mo-
mentum spectrum, it is necessary to perform a de-
tailed investigation of correlations between the shape
of the momentum spectrum of forward deuterons (in
the rest frame of the oxygen nucleus) and various
topological channels of oxygen-nucleus breakup.

Mean multiplicities of fragments are correlated
with the presence of a deuteron in an event. These
correlations are positive for fragments of charge zf ≤
4 and are negative for 5 ≤ zf ≤ 7 fragments. This is
likely to be due to baryon-charge conservation. The
meanmultiplicities of light fragments are independent
of the deuteron-production mechanism.

The cascade–fragmentation–evaporation model
fails to reproduce our experimental data on deuteron
production (multiplicities, momentum spectra, and
correlations between the multiplicities of fragments
of various types). From a comparison of the ex-
perimental data with the predictions of this model,
one can conclude that, in order to obtain a realistic
description of the production of light fragments in
hadron–nucleus collisions at high energies, it is
necessary to take into account both the contribution
of the evaporation mechanism (even for nuclei as light
as 16О) and the contribution of the mechanism of
fast-cascade-nucleon fusion, as well as the α-cluster
structure of light nuclei.
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Abstract—One of the processes involving the inclusive production of the vector-charmonium states J/ψ
and ψ(2S) in two-photon electron–positron annihilation at

√
s = 10.6 GeV is studied on the basis of the

singlet model. Analytic expressions are derived for respective differential cross sections, and numerical
values of the total cross sections are given, along with graphs that represent the distributions of cross
sections in the scattering angle and in the vector-meson energy. It is shown that these distributions differ
substantially from the analogous distributions for charmoniumproduction in one-photon electron–positron
annihilation. For this reason, the process under consideration can readily be isolated despite the smallness
caused by an extra power of α. c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

States of charmonium (that is, a meson consisting
of c and c̄ quarks—for example, J/ψ, ψ(2S), or ηc

particles) are of great theoretical and experimental
interest: on one hand, these states can easily be iso-
lated experimentally; on the other hand, a theoret-
ical analysis of these states is considerably simpli-
fied owing to their nonrelativistic character. Within
nonrelativistic QCD (NRQCD) [1, 2], charmonium
production and decay can be systematically described
in terms of series in the strong and electromagnetic
coupling constants and in the c-quark velocity in the
charmonium rest frame. At the same time, vector-
charmonium production in electron–positron annihi-
lation can be described within a model-independent
approach because, in this case, all relevant parame-
ters determined by perturbation theory cannot be ob-
tained phenomenologically from experimental data on
the rate of the decay (cc̄) → e+e−. For example, vec-
tor charmonium can emerge from electron–positron
annihilation in the reaction e+e− → γJ/ψ [3, 4].

This may be the exclusive pair production of
charmonuim states in electron–positron annihilation.
This reaction has received considerable theoretical
and experimental studies. For example, the BELLE
Collaboration investigated the pair production of
charmoniuum states in electron–positron annihila-
tion at the c.m. energy of

√
s = 10.6 GeV [5] and

obtained experimental data that disagree with the
theoretical predictions based on NRQCD [6–13].
Attempts were made to explain this disagreement
by taking into account the octet mechanism or the

*e-mail: Alexey.Luchinsky@ihep.ru
1063-7788/05/6808-1400$26.00
contribution of a two-photon intermediate state.
Although those attempts did not remove the dis-
crepancy between the theoretical predictions and
experimental data completely, it was shown [6–13]
that the contribution of the two-photon intermediate
state may be sizable despite the suppression due to
an extra power of α.

Yet another example is provided by the inclu-
sive production of vector charmonium in electron–
positron annihilation via the reaction

e+e− → (cc̄)V + hadrons.

Although this reaction has received much attention
(see, for example, [8, 14–16]), the contribution of
the two-photon intermediate state has not yet been
taken into consideration. Despite an extra power of
the small factor α, the two-photon process may con-
tribute significantly to the cross section for the inclu-
sive production of vector charmonium because, in this
case, the square of the momentum of the photon frag-
menting into the vector meson is equal to the mass
squared of this meson: p2 = M2

V � s (for this reason,
the contribution of purely electromagnetic processes
to the exclusive production of two charmonia, which
was considered in [6], is about 20%). It is the process
that is considered in the present study.

The ensuing exposition is organized as follows.
Expressions for relevant coupling constants are given
in Section 2, and their relation to experimental data is
considered there. Analytic expressions for differential
cross sections are presented in Section 3. The respec-
tive numerical results are quoted in Section 4.
c© 2005 Pleiades Publishing, Inc.
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Fig. 1. Diagrams for the reaction e+e− → 2γ → γH .
2. VERTICES

Thematrix element for the decay of a vector meson
V to an electron–positron pair can be represented in
the form

MV = gV εµv̄(k2)γµu(k1),

where u(k1) and v̄(k2) are, respectively, the wave
functions for the electron and the positron (whose
masses are neglected); k1 and k2 are their momenta;
εµ is the meson polarization vector; and gV is the
effective coupling constant, whose value can be deter-
mined from experimental data. The respective decay
width is given by

Γee
V = (2π)4

1
6MV

∫
dΦ2(p; k1, k2)|MV |2, (1)

where p = k1 + k2 is the momentum of the vector
meson,MV =

√
p is its mass, and

dΦn(P ; p1, . . . , pn) = δ(P −
n∑

i=1

pi)
n∏

i=1

dpi

(2π)3 · 2Ei

(2)

is the n-body Lorentz-invariant phase space. On the
basis of Eq. (1), the effective coupling constant gV
can be expressed in terms of experimentally observ-
able quantities as

g2V = 12π
Γee

V

MV
. (3)

The matrix element for the one-photon annihila-
tion of an electron–positron pair to a given hadron
stateH has the form

M(e+e− → γ∗ → H)
= Eµ(H)v̄(k2)γµu(k1) = Eµ(H)Lµ,

whereEµ(H) is the effective polarization vector of the
state H ; this vector may depend on the number n
of hadrons and on their momenta (p̂1, . . . , p̂n), spins,
and masses. The inclusive annihilation cross section
has the form

σH =
∑
H

σ(e+e− → γ∗ → H) = (2π)4
1

16(k1k2)
ICS OF ATOMIC NUCLEI Vol. 68 No. 8 200
× Lµ(Lν)†
∑
H

∫
dΦn(p̂; {p̂i})Eµ(H)E∗

ν(H)

=
π4

(k1k2)
Lµ(Lν)†Eµν(p̂),

where p̂ =
∑n

i=1 p̂i is the total momentum of the
hadron state and ŝ = p̂2. The last term in the above
equation may depend only on the metric tensor gµν , ŝ,
and p̂. Since it is transverse (that is, Eµν(p̂)p̂µ = 0),
it can be represented in the form

Eµν(p̂) =
∑
H

∫
dΦn(p̂; {p̂i})Eµ(H)E∗

ν (H) (4)

= −a(ŝ)
(
gµν − p̂µp̂ν

ŝ

)
.

The function a(ŝ) can be broken down into a reso-
nance and a nonresonance part:

a(ŝ) = ar(ŝ) + anr(ŝ).

The first component

ar(ŝ) =
∑
V

δ(ŝ −M2
V )g2V

corresponds to the production of one vector meson V .
Here, the coupling constant gV is defined according
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Fig. 2. Distribution in the invariant mass of the hadron
state for (solid curve) V = J/ψ and (dashed curve) V =
ψ(2S).
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to (3), while δ(ŝ−M2
V ) is a narrow distribution ŝ that

is centered at the point ŝ = M2
V and which is charac-

terized by a width (Γee
V )2. The second component

anr(ŝ) = σ(e+e− → µ+µ−)R(ŝ) =
α2

6π3

R(ŝ)
ŝ

takes into account the production of any hadron state
in a continuum. In determining the ratio R(ŝ), one
can rely on experimental data, but we employ here the
relation

R(ŝ) = 3
∑

q

e2q , (5)

which merely corresponds to the production of a pair
of massless quarks (q and q̄). It should be emphasized
that analytic results given below are independent of
the choice of specific expression for R(ŝ). For exam-
ple, the hadron stateH may involve either two ormore
than two particles.

3. INCLUSIVE PRODUCTION
OF VECTOR CHARMONIUM

The diagrams describing the production of a vector
charmonium V accompanied by a specific hadron
state H are shown in Fig. 1. It should be noted
that, although the contribution of processes involving
a two-photon intermediate state is suppressed by
an extra power of α in relation to the contribution
of gluon-mediated hadron production, it may con-
tribute significantly. The reason is that the momen-
tum squared of the photon fragmenting into the vector
PH
meson is p2 = M2
V in the former case and satisfies the

condition s�M2
V in the latter case.

Thematrix element corresponding to the diagrams
in Figs. 1a and 1b has the form

MV H = gV εµEν(H)v̄(k2)

×
[

1
q2a
γν q̂aγ

µ +
1
q2b
γµq̂bγ

ν

]
u(k1)

= gV εµEν(H)Lµν .

For the inclusive cross section, we have

σV H =
∑
H

σ(e+e− → 2γ∗ → V H) (6)

=
2π4g2V
s

εµε
∗
α

∑
H

∫
dΦn+1(k1 + k2; p, {p̂i})

× Eν(H)E∗
β(H)Lµν(Lαβ)†.

The Lorentz-invariant phase space (2) satisfies the
recursion relation

dΦn+1(k1 + k2; p, {p̂i})

= (2π)3dŝdΦ2(k1 + k2; p, p̂)dΦn(p̂; {p̂i}),

where ŝ = p̂2 = (
∑
p̂i)2. Using this recursion rela-

tion and expression (4) for the virtual-photon polar-
ization tensor, we can recast expression (6) into the
form
σV H =
π2g2V
8s

ŝmax∫

ŝmin

dŝ
|p|√
ŝ

1∫

−1

dxLµν(Lµβ)†Eνβ(p̂) =
π2g2V
s

ŝmax∫

ŝmin

dŝλ

[
α2

6π3

R(ŝ)
ŝ

+
∑
V ′

δ(ŝ −M2
V ′)g2V ′

]
(7)

×
1∫

−1

dx
e20(4 − 2e0 − e1e2) − (e20 − 6e0 + e1e2 + 4)λ2x2 − λ4x4

(e20 − λ2x2)2
,

where x = cos θ is the cosine of the scattering angle
(that is, the angle between the momenta of the elec-
tron and the vector meson),

λ =

√√√√1 −
(
MV√
s

+

√
ŝ√
s

)2
√√√√1 −

(
MV√
s
−

√
ŝ√
s

)2

,

e0 = 1 − M2
V

s
− ŝ

s
, e1 = 1 +

M2
V

s
− ŝ

s
,

e2 = 1 − M2
V

s
+
ŝ

s
.

The maximum value of ŝ is ŝmax = (
√
s−M)2; as

for ŝmin, we consider two cases: ŝmin = (2mπ)2 and
ŝmin = 1 GeV2. In the former case, the ratio in (5)
should in principle be corrected in order to take into
account the π-meson form factor. However, we ne-
glect these corrections because the form factor in
YSICS OF ATOMIC NUCLEI Vol. 68 No. 8 2005
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Fig. 3. Angular distribution for V = J/ψ: (solid curve)
ŝmin = (2mπ)2 and (dashed curve) ŝmin = 1 GeV2.

question is close to unity. That term in expression (7)
which corresponds to V = V ′ must be divided by a
factor of 2 in order to avoid the double counting of
identical states.

Upon integration of the differential cross sec-
tion (7) with respect to the scattering angle, we obtain
the ŝ distribution of the nonresonance component of
the inclusive cross section:

dσnrV H

dŝ
=
α2g2V
3πsŝ

R(ŝ)λ
[
e20 − 2e0 + 2

e0λ
ln
e0 + λ
e0 − λ

− 2
]
.

In the limit of low ŝ, the logarithmic term is dominant
in the above expression, so that we have

dσnrV H

dŝ
≈ α2g2V

3π
R(ŝ)
ŝ

s2 +M4

s2(s−M2)
ln

(s−M2)2

M2ŝ
,

ŝ� s,M2.

The results of a numerical integration with respect
to ŝ are presented in the next section.

4. NUMERICAL RESULTS

The distributions of the nonresonance cross sec-
tions σnrV H for V = J/ψ and ψ(2S) production with
respect to the invariant mass of the hadron state are
shown in Fig. 2. The distributions are seen to grow at
low values of the invariant mass (or, in other words,
near maximum values of the vector-meson energy in

Table

V σrV H , fb
σnrV H , fb

ŝmin = (2mπ)2 ŝmin = 1 GeV2

J/ψ 58.0 99.7 56.0

ψ(2S) 20.0 32.0 16.1
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 8 200
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Fig. 4. Angular distribution for V = ψ(2S) production:
(solid curve) ŝmin = (2mπ)2 and (dashed curve) ŝmin =

1 GeV2.

the c.m. frame). This shape of the distribution is gov-
erned by the virtual-photon and electron propagators,
differing substantially from the shape of the analogous
distributions for one-photon electron–positron anni-
hilation.

The angular distributions of the cross sections for
the inclusive production of J/ψ and ψ(2S) at various
values of ŝmin are shown in Figs. 3 and 4, respectively.
They also grow significantly in the vicinity of x = 1,
in contrast to what we have in the case of one-photon
annihilation.

The resonance and nonresonance contributions to
the inclusive cross section for J/ψ and ψ(2S) pro-
duction are shown in the table for various values of
ŝmin. The resonance contribution to the cross sec-
tion involves all vector mesons V ′ whose production
is allowed by the energy-conservation law (that is,
whose mass satisfies the conditionM2

V ′ < ŝmax). The
coupling constants gV ′ are determined by formula (3)
with the meson masses and widths from [17]. The
tabulated cross sections are an order of magnitude
smaller than the cross sections for J/ψ and ψ(2S)
production in one-photon annihilation. However, the
above distinctions between scattering-angle distri-
butions and between the distributions in the vector-
meson energy would make it possible to isolate the
respective signal.
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ELEMENTARY PARTICLES AND FIELDS
Theory
Special Case of Sunset: Reduction and ε Expansion*
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Abstract—We consider two-loop sunset diagrams with two mass scales m and M at the threshold
and pseudothreshold that cannot be treated by earlier published formulas. The complete reduction to
master integrals is given. The master integrals are evaluated as a series in ratio m/M and in ε with the
help of a differential-equation method. The rules of asymptotic expansion in the case when q2 is at the
(pseudo)threshold are given. c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

The sunset diagram plays a key role in the two-
loop calculations with masses. Despite the fact that a
lot of investigation has been devoted to the sunset di-
agram, there still remain drawbacks. In [1], a general
reduction procedure is given in the case when external
momentum q and internal masses are arbitrary. But in
the case when q2 is equal to the threshold or one of the
pseudothreshold values, the formula of [1] becomes
inapplicable. Therefore, we turn to paper [2], where
the reduction was given specifically for the (pseu-
do)threshold kinematics. However, even here in the
two cases shown in the figure, the reduction of [2]
requires additional analysis.

In the present paper, we consider calculation of
these two special cases. These integrals naturally
arise in the threshold problems with given mass hi-
erarchy. An immediate typical example where it is
the case is a problem of matching vector and axial
QCD currents to NRQCD ones with two heavy-
quark mass scales m�M . Another example is the
1063-7788/05/6808-1405$26.00
calculation of masses of the heavy gauge bosons in
the two-loop approximation [3], when q2 is equal to
m2

Z orm2
W .

For the calculation of master integrals, there are
mainly three methods: (i) direct evaluation using α
or Feynman parameter representation; (ii) solving a
master differential equation in external Mandelstam
variables, which can be written for the master inte-
grals of any Feynman graph; (iii) applying various
asymptotic expansions [4, 5]; (iv)Mellin–Barnes rep-
resentation. Here, we will demonstrate the strong and
weak features of the first three methods using our
particular problem as an example and will advocate
that a certain mixing of these methods can give us a
desired answer in the easiest way.

Now let us introduce the notation that will be used
later in this paper and define the master integrals we
are going to calculate. For the two-loop sunset with
arbitrary masses and propagator indices, we have
Jν1ν2ν3(q
2) =

1
πd

∫ ∫
ddkddl

[k2 −m2
1]ν1[(k − l)2 −m2

2]ν2 [(l − q)2 −m2
3]ν3

, (1)
where d = 4 − 2ε is the dimension of spacetime.

∗This article was submitted by the authors in English.
1)On leave of absence from the Institute for High Energy

Physics, Protvino, Russia, and the Institute for Theoret-
ical and Experimental Physics, Moscow, Russia; e-mail:
onish@particle.uni-karlsruhe.de

∗∗e-mail: veretin@particle.uni-karlsruhe.de
We will discuss only two special cases of the sun-
set integrals which are shown in the figure:

(a) m1 = M , m2 = 0, m3 = m, q2 = (M +m)2
(threshold case),

(b) m1 = m, m2 = m, m3 = M , q2 = M2 (pseu-
dothreshold case).
c© 2005 Pleiades Publishing, Inc.
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With the help of recurrence relations [6], which
will be given in the next section, any integrals of
the first type with arbitrary propagator indices can be
reduced to two master integrals J111((m+M)2) and
J112((m+M)2), whereas, in the second case, to two
master integrals J111(M2) and J211(M2).

Another problem is the evaluation of the master
integrals themselves. The general representation for
the sunset diagram was obtained in [7] in terms of
the hypergeometric Lauricella function. For practical
purposes, however, one needs the ε expansion of these
formulas.

The result for the threshold and pseudothreshold
values of the sunset integrals with three arbitrary
masses has been obtained in [8] up to O(1) in ε ex-
pansion. From these results, we can easily obtain the
finite parts of our integrals. However, we established
that, in the reduction procedure for the matching of
QCD to NRQCD currents, one has to know also
the O(ε) part for J (a) integrals and the O(ε2) part
for J (b) integrals. It is not easy to push forward the
approach of [8] in order to evaluate these needed parts.
Instead, we use the differential-equation method [9–
11] (see also [12]). We solve the differential equa-
tions as a series in m/M and the desired number of
coefficients can always be obtained. In order to find
the boundary conditions for the solutions, one can
use two methods: the representation of [7] can be
expanded in the limitm/M → 0 and the asymptotic-
expansion procedure can be applied at the threshold
and pseudothreshold.

2. RECURRENCE RELATIONS
AT THE THRESHOLD

AND PSEUDOTHRESHOLD

Here we give the recurrence relations [6] for the
sunsets of two types introduced earlier. While the
derivation of these recurrence relations is straightfor-
ward, they have not been considered in the literature
in detail until now. On the other hand, they repre-
sent the missing pieces to complete the generalized
recurrence relations of Tarasov [1] and threshold re-
lations of Davydychev and Smirnov [2] for the sunset
diagrams in the case of threshold with one zero mass
and pseudothreshold with two equal masses. Most of
PH
the formulas below can be derived just by combining
and reexpressing the appropriate recurrence relations
of [1, 2].

2.1. JM0m

In this case, some of the general relations obtained
in [2] can be applied only after some transformations.
The reason is that they become degenerate for this
mass configuration. We present here an explicit so-
lution:

(d− 2ν2 − 2)ν22+ = −2m2ν3(ν3 + 1)3++ (2)

+ (d− 2ν3 − 2)ν33+,

2M2ν1(ν1 + 1)1++ = 2m2ν3(ν3 + 1)3++ (3)

− (d− 2ν3 − 2)ν33+ + (d− 2ν1 − 2)ν11+,

2m2(M +m)(3d − 2ν1 − 2ν3 − 7) (4)

× ν3(ν3 + 1)3++ =
[
m
(
(d− ν3 − 3)(2d − ν1

− 2ν3 − 4) + (d− ν1 − ν3 − 2)(3d − 2ν2

− 2ν3 − 6)
)
+M(2d − ν1 − 2ν3 − 5)(2d − ν1

− 2ν3 − 4)
]
ν33+ + (d− ν3 − 2)

(
m(d− ν3 − 3)

+M(2d− ν1 − 2ν3 − 5)
)
ν11+ + 2m2

×Mν1ν3(ν3 + 1)1+2−3++ +
[
−m(d− ν3 − 3)

−M(2d − ν1 − 2ν3 − 5)
]
ν1ν31+2−3+,

2mM(m+M)(3d − 11)J212 (5)

= −(d− 3)
(
m(d− 3) +M(2d− 7)

)
J112

− (d− 3)
(
m(2d− 7) +M(d− 3)

)
J211

+
m+M

4m2M2
(d− 2)2(2d− 7)J101.

Here, as usual, j+ (or j−) means the operator raising
(or lowering) the index on the jth line. In particular,
(2) and (3) follow directly from [2].

With the help of (2)–(5), we reduce all integrals
to three sunset diagrams J111, J112, and J211 plus
products of one-loop tadpoles. In addition, there is a
relation between these three sunset integrals and one
of them can be eliminated,

M(m+ 2M)J211 +m(M + 2m)J112 (6)

=
3d− 8

2
J111 +

(d− 2)2

4mM(d− 3)
J101.

This finishes the reduction procedure.
YSICS OF ATOMIC NUCLEI Vol. 68 No. 8 2005
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2.2. JmmM

Here, we are faced with the pseudothreshold prob-
lem, and again, in this case, the general recurrence
relations by Tarasov [1] and those for the threshold
problems by Davydychev and Smirnov [2] become
degenerate. The reduction procedure for this type of
integrals was studied in [13], where the topology with
three and four lines was considered. The problem was
solved by reduction to master integrals: sunset and
the integral with additional massless line. These inte-
grals were also considered in [14], where an asymp-
totic expansion was used. For completeness, we give
reduction formulas which follow from [13], but we use
a slightly different set of master integrals.

First, using relations

2m2ν1(ν1 + 1)1++ = (d− 2ν1 − 2)ν11+ (7)

− (d− 2ν3 − 2)ν33+ + 2M2ν3(ν3 + 1)3++,

2m2ν2(ν2 + 1)2++ = (d− 2ν2 − 2)ν22+ (8)

− (d− 2ν3 − 2)ν33+ + 2M2ν3(ν3 + 1)3++,

we reduce the indices of lines 1 and 2 to one or two.
Thus, there remain only integrals J11ν3 , J12ν3 , and
J22ν3 .

For J12ν3 , we have

4(M2 −m2)ν33+ =
[
1− − (d− 3)2−

]
ν33+ (9)

− 1+3− + d− 3ν3.

For J22ν3 , we have

4m2(M2 −m2)(d − ν3 − 3) = m2 (10)

× (d− ν3 − 3)3− +
[
m2
(
−3d2 + d(13 + 7ν3)

− 12 − 17ν3 − 4ν2
3

)
+M2(2d− ν3 − 6)

× (d− ν3 − 2)
]
1− +

[
−m2 +M2(d− ν3 − 2)

]

× (d− 3)ν33+1−2− +
[
m2(d− 3)

−M2(2d− ν3 − 6)
]
ν33+1−−.

For J11ν3 , we have

4M2(M2 −m2)(d− ν3 − 3) (11)

× ν3(ν3 + 1)3++ =
[
−m2(d− 2ν3 − 3)

× (2d − 2ν3 − 5) +M2
(
3d2 − d(17 + 7ν3) + 24

+ 19ν3 + 4ν2
3

)]
ν33++

[
−m2

(
d2 − d(3 + 5ν3)

+ ν3(4ν3 + 11)
)
−M2(d− ν3 − 2)ν3

]
2+

+
[
−m2(d− 3) +M2ν3

]
ν33+2+1−
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 8 200
+m2(d− ν3 − 3)3−1+2+.

Finally, there is a relation between three integrals

M2J112 +m2J211 =
3d− 8

4
J111 (12)

− (d− 2)2

8m2(d− 3)
J110.

This finishes the reduction.

3. MASTER DIFFERENTIAL EQUATION

It is known that a general two-loop sunset topol-
ogy has fourmaster integrals [1]: one with unit powers
of propagators and three with a dot placed on one
of the lines. For master integrals considered in this
paper, this number is, however, smaller, which is due
to a symmetry of the mass distribution on the lines. In
addition, in case of JM0m, the index of massless line
can always be reduced to 1 (see [1]). It can be shown
that these master integrals satisfy a system of linear
nonhomogeneous differential equations in q2 (q being
external momentum) [11] or in masses [9]. However,
in our case, we want to write differential equations in
r = m/M , where m and M are internal masses and
q2 lies at threshold or pseudothreshold. Differential
equations of this type were considered earlier in [15].

3.1. JM0m
In this case, we have two master integrals (J111

and J112) and a system of two first-order equations.
It is convenient to rescale integrals introducing J̃111

and J̃112 by

J111 = M2d−6Γ2(3 − d/2)J̃111 and (13)

J112 = M2d−8Γ2(3 − d/2)J̃112.

Then the differential equations read


(r + 1)(r + 2)
∂

∂r
J̃111 − 6r(r + 1)J̃112

−
(
d+ 2(d− 3)r − 4

)
J̃111

− 8rd−3

(d− 4)2(d− 3)
= 0,

(r + 1)(r + 2)
∂

∂r
J̃112 +

1
r
(2r2 − 5dr

+ 20r − 4d+ 14)J̃112 −
(d− 3)(3d − 8)

2r
J̃111

− 8rd−5

(d− 4)2
= 0.

(14)

Using this system one can write the second-order
differential equation for J̃111:

(r + 1)2(r + 2)2
∂2

∂r2
J̃111 −

2
r
(r + 1) (15)
5
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× (r + 2)2
(
d+ (d− 4)r − 3

) ∂
∂r
J̃111

+
1
r
(d− 3)2(r + 2)2(d− 2r − 4)J̃111

− 8
(d− 4)2

(r + 2)2rd−4 = 0.

As usual, we search for the solution to (15) as a linear
combination of two solutions to the homogeneous
equation and the solution to the nonhomogeneous
equation. We will find the solution as a series in r,
namely, in the following form:

J̃111 =
∑

i

rαi

( ∞∑
n=0

a(i)
n (d)rn

)
. (16)

By substituting (16) into (15), we find for leading
exponents αi three allowed values α1 = 0, α2 = 2d−
5, corresponding to the two independent solutions
of the associated homogeneous equation, and α3 =
d− 2, as required by the nonhomogeneous part of
Eq. (15). So, the only thing we still need to do is
to find the coefficients in front of two independent
solutions to the homogeneous part of Eq. (15) using
boundary conditions. One equation for these coef-
ficients can be obtained from the value of the J111
master integral at r = 0, which can be written in
terms of Γ functions. One cannot use J112 at r = 0
as the second boundary condition. The reason is that
the latter integral becomes infrared divergent and this
divergency is regularized by ε (d = 4− 2ε) and not by
r as in the limit r → 0. In order to obtain a second
boundary condition, we need an explicit expansion of
function J111 in r up to the third order, which can
be obtained by analyzing the representation of this
integral in terms of Appel function F4 or performing
an asymptotic expansion in small mass ratio r. Ex-
pansion of the Appel function will be considered in the
Appendix, while the asymptotic expansion technique
is discussed in Subsection 4.1.

Having obtained an expansion in r up to order
O(r3) using one of the aforementioned methods, one
can easily reconstruct all other expansion coefficients
from the differential equation. Returning back to
functions J111 and J112 instead of J̃111 and J̃112, we
give the first seven coefficients of the expansion:

e2εγEM−2+4εJ111 = −1 + r2

2ε2
(17)

+
(8L− 5)r2 + 2r − 5

4ε
− 1

8
(11 + 20ζ2) +

5r
4

− 1
8
(16L2 − 48L− 12ζ2 + 7)r2 − 2

9
(9L2 + 15L

+ 54ζ2 − 8)r3 +
1
8
(24L2 + 20L+ 144ζ2 − 3)r4
PH
− 2
225

(450L2 + 255L+ 2700ζ2 − 16)r5

+
1
72

(360L2 + 156L + 2160ζ2 − 5)r6 + ε

(
55
16

− 25ζ2
4

− 11ζ3
3

+
1
8
(20ζ2 + 11)r +

(
4L3

3

− 6L2 + 2(ζ2 + 7)L+
1
48

(276ζ2 + 208ζ3

+ 321)
)
r2 +

(
4L3 +

2L2

3
+
(

40ζ2 −
238
9

)
L

− 68ζ2
3

− 24ζ3 +
773
54

)
r3 +

(
− 6L3 − L2

2

+
(

463
12

− 60ζ2

)
L+ 17ζ2 + 36ζ3 −

4639
144

)
r4

+
(

8L3 +
23L2

15
+
(

80ζ2 −
22681
450

)
L− 134ζ2

15

− 48ζ3 +
1242497
27000

)
r5 +

(
− 10L3 − 19L2

6

+
(

3751
60

− 100ζ2

)
L− 5ζ2

3
+ 60ζ3

− 648161
10800

)
r6
)

+O(r7) +O(ε2)

and

e2εγEM4εJ112 = − 1
2ε2

+
2L− 1/2

ε
(18)

+
1
4
(6ζ2 + 2) + 4L− 2L2 + (−2L2 − 4L

− 12ζ2 + 2)r +
(

3L2 + 3L+ 18ζ2 −
1
2

)
r2

+
(
− 4L2 − 8L

3
− 24ζ2 +

2
9

)
r3 +

(
5L2 +

5L
2

+ 30ζ2 −
1
8

)
r4 +

(
− 6L2 − 12L

5
− 36ζ2

+
2
25

)
r5 +

(
7L2 +

7L
3

+
1
18

(756ζ2 − 1)
)
r6

+ ε

(
1
12

(66ζ2 + 52ζ3 + 66) + 8L+ 2Lζ2 − 4L2

+
4L3

3
+ (4L3 + 4L2 + 40ζ2L− 24L− 8ζ2

− 24ζ3 + 14)r +
(
− 6L3 − 5L2 − 60ζ2L+ 37L

− 6ζ2 + 36ζ3 −
67
2

)
r2 +

(
8L3 +

22L2

3
+ 80ζ2L

− 440L
9

+
68ζ2

3
− 48ζ3 +

1277
27

)
r3
YSICS OF ATOMIC NUCLEI Vol. 68 No. 8 2005
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+
(
− 10L3 − 31L2

3
− 100ζ2L+

1097L
18

− 42ζ2

+ 60ζ3 −
4403
72

)
r4 +

(
12L3 +

69L2

5
+ 120ζ2L

− 5489L
75

+
318ζ2

5
− 72ζ3 +

75179
1000

)
r5

+
(
− 14L3 − 529L2

30
− 140ζ2L+

6418L
75

− 1307ζ2
15

+ 84ζ3 −
4823273
54000

)
r6
)

+O(r7) +O(ε2),

where L = log r. The O(1) part of J111 is in agree-
ment with [8].

3.2. JmmM

This diagram was recently studied in [16] by
means of the differential-equation method in the
regime when m�M , while we are interested in the
case m�M . Here, we also have two master inte-
grals and a system of two differential equations. Again
introducing rescaled functions according to (13), we
have


∂

∂r
J̃111 − 4rJ̃211 = 0,

(r2 − 1)
∂

∂r
J̃211 +

r2(13 − 4d) + 2d− 7
r

J̃211

+
(d− 3)(3d − 8)

4r
J̃111 −

2rd−7(rd − 2r2)
(d− 4)2

= 0.

(19)

Using (19), the corresponding second-order dif-
ferential equation for J111 looks like

(r2 − 1)
∂2

∂r2
J111 −

2(d− 3)(2r2 − 1)
r

∂

∂r
J111 (20)

+ (d− 3)(3d − 8)J111 −
8rd−6(rd − 2r2)

(d− 4)2
= 0.

To find a solution to this equation, we again use
ansatz (16) for the most general form of solution
at r → 0. For leading exponents αi, there are four
allowed values α1 = 0, α2 = 2d− 5, corresponding
to the two independent solutions of the associated
homogeneous equation, andα3 = d− 2,α4 = 2d− 4,
as required by the nonhomogeneous part of Eq. (20).
All other steps in this case are in one-to-one cor-
respondence with those considered in the previous
subsection. The first boundary condition is given by
the value of master integral J111 at r = 0. In order
to find the second boundary condition, we need an
explicit expression for r expansion of J111 up to the
third order, which can be obtained from threshold
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 8 200
large-mass asymptotic expansion of J111. As a result
of all these steps, we have the following expressions
for our master integrals:

e2εγEM−2+4εJ111 = −1 + 2r2

2ε2
(21)

+
4(4L − 3)r2 − 5

4ε
− 1

8
(11 + 20ζ2)

− (4L2 − 12L− 3ζ2 + 5)r2 − 1
4
(8L2 − 12L

+ 8ζ2 + 7)r4 − 1
18

(12L − 11)r6 + ε

(
55
16

− 11ζ3
3

− 25ζ2
4

+
(

8L3

3
− 12L2 + 4(ζ2 + 7)L+ 9ζ2

+
26ζ3

3
− 3
)
r2 − 32ζ2r3 +

(
4L3 − 5L2 − 7L

2

+ 4ζ2 − 4ζ3 +
95
8

)
r4 +

32ζ2r5

5
+

2
9
(8L− 9ζ2

− 14)r6
)

+ ε2
(

949
32

− 55ζ2
8

− 55ζ3
6

− 1
720

π4

× (296r4 − 578r2 + 303) +
(
− 4L4

3
+ 8L3

− 4(ζ2 + 7)L2 +
4
3
(9ζ2 − 2ζ3 + 45)L+ 31ζ2

+ 26ζ3 + 19
)
r2 +

64
3

(6L+ 12 log 2 − 11)ζ2r3

+
(
− 14L4

3
+ 6L3 +

(
3
2
− 2ζ2

)
L2

+
(

3ζ2 +
37
4

)
L− 71ζ2

4
+ 8ζ3 −

885
16

)
r4

− 32
75

(60L+ 120 log 2 − 77)ζ2r5 +
1

324
(288L3

− 792L2 − 108(2ζ2 + 11)L+ 1926ζ2 − 1296ζ3

+ 5417)r6
)

+O(r7) +O(ε3)

and

e2εγEM4εJ211 = − 1
2ε2

+
4L− 1

2ε
+

1
2

(22)

+
3ζ2
2

+ 4L− 2L2 − (2L2 − 2L+ 2ζ2 + 1)r2

+
(

3
4
− L

)
r4 +

(
5
36

− L

3

)
r6 + ε

(
11
2

+
11ζ2

2

+
13ζ3

3
+ 8L+ 2Lζ2 − 4L2 +

4L3

3
− 24ζ2r

+ (4L3 − 2L2 − 6L+ 4ζ2 − 4ζ3 + 11)r2 + 8ζ2r3
5
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+
1
9
(24L − 27ζ2 − 38)r4 +

8ζ2r5

5

+
(
L

45
− ζ2 −

83
300

)
r6
)

+ ε2
(

49
2

+
37ζ2

2

+
37ζ3

3
+

289π4

720
− 4

3
L(ζ3 − 12) + 4Lζ2 − 2L2ζ2

− 8L2 +
8L3

3
− 2L4

3
+ 48ζ2(2L+ 4 log 2 − 3)r

+
(
− 14L4

3
+

4L3

3
− 2(ζ2 − 3)L2 + 2(ζ2 + 5)L

− 17ζ2 + 8ζ3 −
37π4

90
− 53

)
r2

− 8
3
(12L+ 24 log 2 − 13)ζ2r3 +

(
4L3

3
− 3L2

−
(
ζ2 +

121
18

)
L+

35ζ2
4

− 6ζ3 +
5219
216

)
r4

− 4
75

(120L+ 240 log 2 − 199)ζ2r5

+
(

4L3

9
− 5L2

9
− 1

450
(150ζ2 + 203)L

+
37ζ2
180

− 2ζ3 +
237511
81000

)
r6
)

+O(r7) +O(ε3),

where L = log r. The O(1) part of J111 is in agree-
ment with [8].
P

4. ASYMPTOTIC LARGE-MASS EXPANSION
AT THE THRESHOLD

In this section, we consider an asymptotic large-
mass expansion for the master integrals introduced
above. The type of expansion one needs to perform in
order to obtain an analytic expression for the master
integral of case (b) was already considered in [17]
and [14], and one may just follow along the lines of
the procedure described there. However, in the case
of master integral JM0m, a somewhat different pre-
scription for setting loop momenta is required,2) and
thus we will consider this case in detail below.

In order to establish the expansion procedure, we
use an approach similar to [17]. In this regime, it
is equivalent to the “strategy of regions” suggested
in [18] for the large-mass expansion at the threshold.
This approach was developed later in [19]. We con-
sider a general case of threshold Feynman integral
FΓ, corresponding to a graph Γ when the masses
Mi and external momenta Qi are considered large
with respect to small masses mi and external mo-
menta qi. We are interested in the case when external
momenta Qi are on the following mass shell: Q2

i =
(
∑

j aijMj +
∑

k bikmk)2. Here, aij and bik are some
numbers. It is just the generalization of the on-mass-
shell condition of [17]. Then the asymptotic expansion
in the limit Qi,Mi → ∞ takes the following explicit
form [4]:
FΓ(Qi,Mi, qi,mi; ε) ∼
Mi→∞

∑
γ

MγFΓ(Qi,Mi, qi,mi; ε). (23)
Here the sum runs over subgraphs γ of Γ such that
(i) in γ, there is a path between any pair of external

vertices associated with the large external momenta
Qi;

(ii) γ contains all the lines with large masses;
(iii) every connectivity component γj of the graph

γ̂ obtained from γ by collapsing all the external ver-
tices with large external momenta to a point is 1 PI
with respect to the lines with small masses.

Operator Mγ in (23) can be written as a prod-
uct ΠiMγi over different connectivity components,
where Mγi are operators of Taylor expansion in cer-
tain momenta and masses. In what follows, we will
distinguish the connectivity component γ0, which
is defined to contain all external vertices with large
momenta. For connectivity components γi, different
from γ0, the corresponding operator Mγi performs a
Taylor expansion of the Feynman integral Fγi in its
small masses and external momenta. To describe the
action of Mγ0 , one uses a representation of the γ0

component in terms of a union of its 1 PI components
and cut heavy lines (that is a subgraph becomes
disconnected after a cut line is removed). Here, we
can again factorize Mγ0 and the Taylor expansion of
the 1 PI components of γ0 is performed as in the case
of other connectivity components γi. As for the action
of operator M on the cut lines, there are two different

2)Asymptotic expansions in momentum space are not invari-
ant under the redefinition of loop momenta contrary to the
expansions performed in the α representation for Feynman
integrals. Therefore, special care should be taken in choosing
a correct set of momenta.
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 8 2005
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cases. LetP + k be themomentum of a line with large
mass Mi, where P is a linear combination of large
external momenta and k is a linear combination of
loop momenta and small external momenta. Then the
aforementioned two cases can be written as follows:

P 2 = M2
i andM for this line is given by

M = Tx
1

xk2 + 2Pk

∣∣∣∣
x=1

. (24)

Here, Tx denotes the operator of Taylor expansion in
x around x = 0.

P 2 �= M2
i and the operator M reduces to the or-

dinary Taylor expansion in small (with respect to this
line) external momenta.

As for the optimal set of internal loop momenta,
we choose a rule when large external momenta are
divided between lines with masses Mi and mk in
order to satisfy the following conditions: P 2

i = M2
i

and P 2
k = m2

k. We do not know whether such sepa-
ration is always possible or not, but in most cases of
interest it certainly works. As an example in the next
subsection, we will consider an expansion for master
integral J111((m+M)2) from our case (a).

4.1. Second Boundary Condition for JM0m

For master integral J111, according to our pre-
scription for choosing internal momenta, we have the
following expression:

J111 (25)

=
1
πd

∫ ∫
ddkddl

[k2][(k + l)2 + 2a(k + l, q)][l2 + 2blq]
.

Here, q is an external momentum; a = M/(M +
m) and b = −m/(M +m). From the general for-
mula (23) in the asymptotic expansion of master
integral J111 in the limit m/M → 0, we have four
subgraphs:3)

(i) graph Γ itself;
(ii) subgraph γ1 consisting of lines with massesM

andm;
(iii) subgraph γ2 consisting of lines with masses

M and zero;
(iv) subgraph γ3 consisting of one heavy line.
For graph Γ, we expand the integrand aroundm =

0 with the result
∞∑

n=0

(−1)n(2b)n

πd
(26)

×
∫ ∫

ddkddl(l · q)n
[k2][(k + l)2 + 2a(k + l, q)][l2]n+1

.

3)Here, Γ is the graph corresponding to Feynman integral J111.
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Each term in this expansion can be evaluated by
rewriting it via scalar integrals with shifted spacetime
dimension [1], and for the first three of them, we have

1
πd

∫ ∫
ddkddl(lq)

[k2][l2]2[(k + l)2 + 2a(k + l, q)]

= −aq2JVd+2
222 ,

1
πd

∫ ∫
ddkddl(lq)2

[k2][l2]3[(k + l)2 + 2a(k + l, q)]

= −q
2

2
JVd+2

231 − q2

2
JVd+2

132 + 4a2q4JVd+4
333 ,

1
πd

∫ ∫
ddkddl(lq)3

[k2][l2]4[(k + l)2 + 2a(k + l, q)]

= −36a3q6JVd+6
444 + 3aq4JVd+4

243 + 3aq4JVd+4
342 ,

where

JVd
ν1ν2ν3

=
1
πd

∫ ∫
ddkddl

[k2]ν1 [l2]ν2[(k + l)2 + 2(k + l, q)]ν3

and q2 = M2.

The latter can be easily expressed in terms of Γ func-
tions for arbitrary values of ν1, ν2, and ν3.

Subgraph γ1 is equal to zero.
The Taylor expansion for subgraph γ2 gives
∞∑

n=0

(−1)n

πd

∫ ∫
ddkddl(k2 + 2kl + 2akq)n

[k2][l2 + 2alq]n+1[l2 + 2blq]
= 0.

(27)

In the case of subgraph γ3, we have the expression
∞∑

n=0

(−1)n

πd

∫ ∫
ddkddl(l2 + 2kl + 2alq)n

[k2][k2 + 2akq]n+1[l2 + 2blq]
.

(28)

Each term of this sum is just a product of two one-
loop integrals and hence can be easily evaluated.

An expansion for subgraph γ4 leads to the follow-
ing result:

∞∑
n=0

(−1)n

πd

∫ ∫
ddkddl((k + l)2)n

[k2][l2 + 2blq][2a(k + l, q)]n+1
.

(29)

Here, we can see that it is the most difficult type of
contribution from the point of view of computation, as
we are dealing in this case with eikonal integrals. As
one can easily see, the evaluation of each term from
this contribution can be reduced to the evaluation of
integrals of the following type:

1
πd

∫ ∫
ddkddl(kl)m

[k2][l2 + 2blq][(k + l, q)]n
. (30)
5
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In order to calculate these integrals, it is natural to
express the products (kl)m in terms of traceless prod-
ucts (kl)(m) ≡ k(α,m)l(α,m)

4). Then we notice that

integration over k of traceless products k(α,m) times
the part of integrand which depends only on k results
in an expression proportional to the traceless product
q(α,m). Thus, we can replace the factor (kl)(m) by
(qk)(m)(ql)(m)/(qq)(m) and finally replace the factors
involved through ordinary products qk and lq. After
performing these steps, we reduce the evaluation of
integrals (30) to the integrals

1
πd

∫ ∫
ddkddl(lq)m

[k2][l2 + 2blq][(k + l, q)]n
. (31)

These integrals with the use of integration-by-
parts identities (d− 3− n)n+ + (n+ 1)m+n++ = 0,
where n(m)+ are operators which increase corre-
sponding indices n or m, can be further reduced to
integrals of the form

1
πd

∫ ∫
ddkddl(lq)m

[k2][l2 + 2blq][(k + l, q)]
. (32)

To take these last integrals, one can first perform k0

and l0 integrations using the Cauchy theorem and the
remaining angular integrations are trivial since there
are no products kl in the integrand left.

However, as our calculations showed, it is far
simpler just to calculate this master integral using
asymptotic expansion up to the order (m/M)3 and
then use this result as the necessary boundary condi-
tions for the solution to the master differential equa-
tion. It then takes much less effort to construct the
expansion of this master integral up to any order in
r = m/M using the differential-equation method.

5. CONCLUSION

We considered two-loop sunset diagrams with two
mass scales m and M at the threshold and pseu-
dothreshold that cannot be treated by earlier pub-
lished formulas [1, 2]. The complete reduction to the
master integrals is given. The master integrals are
evaluated as a series in ratiom/M and up to order in ε
needed in applicationswith the help of the differential-
equation method. The rules of asymptotic expansion
in the case when q2 is at the (pseudo)threshold are
given.

4)Here, α is a collective index representing m Lorenz indices
α1, α2, . . . , αm.
P
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APPENDIX

EXPANSION OF F4 APPEL FUNCTION:
SECOND BOUNDARY CONDITION

FOR JM0m

In order to obtain the second boundary integral in
the case of JM0m, we can use the representation of
the sunset diagram in terms of the Lauricella function
which can be obtained from [7]. However, since one
mass is zero, the Lauricella function simplifies to the
Appel function:

e2γεM−2+4εJ111(m,M, 0; q2) (A.1)

= −
(
m2

M2

)1−ε

Γ2(−1 + ε)

× F4

(
1, ε

2 − ε, 2 − ε
;
m2

M2
,
q2

M2

)

− Γ(1 − ε)Γ(−1 + ε)Γ(−1 + 2ε)

× F4

(
−1 + 2ε, ε
ε, 2 − ε

;
m2

M2
,
q2

M2

)
,

and in our case q2 = (m+M)2. We need the expan-
sion of this integral up to the order O(r3) and O(ε).
Then the remaining coefficients can be found from the
differential equation.

In order to expand (A.1) in a series overm/M , we
use the following representation for F4:

F4

(
a, b

c, c′
;x, y

)
(A.2)

=
∞∑

k=0

(a)k(b)k
(c)k

xk

k! 2F1

(
a+ k, b+ k

c′
; y
)
.

In (A.2), function 2F1 has to be transformed to the
argument 1− y. Then we have for the right-hand side
(r = m/M )

−r2−2εΓ2(−1 + ε)
∞∑

k=0

(1)k(ε)k
(2 − ε)k

r2k

k!
(A.3)

×
{

Γ
(

2−ε,1−2ε−2k
1−ε−k,2−2ε−k

)
2F1

(
1+k,ε+k
2ε+2k

;−r(2 + r)
)

+ [−r(2 + r)]1−2ε−2k Γ
(

2−ε,2ε+2k
1+k,ε+k

)
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× 2F1

(
1−ε−k,2−2ε−k

2−2ε−2k
;−r(2 + r)

)}

− Γ(−1 + ε)Γ(1 − ε)Γ(−1 + 2ε)

×
∞∑

k=0

(−1 + 2ε)k
r2k

k!

×
{

Γ
(

2−ε,3−4ε−2k
3−3ε−k,2−2ε−k

)
2F1

(
−1+2ε+k,ε+k

2ε+2k
;−r(2 + r)

)

+ [−r(2 + r)]3−4ε−2k Γ
(

2−ε,−3+4ε+2k
−1+2ε+k,ε+k

)

× 2F1

(
3−3ε−k,2−2ε−k

4−4ε−2k
;−r(2 + r)

)}
.

The first and third terms in (A.3) can be easily ex-
panded since the series in k and the 2F1 series can be
truncated at the given order. In the second and fourth
terms, we can still truncate the 2F1 series; however,
we cannot truncate the sum over k because of the
factor [−r(2 + r)]−2k. Thus, we have to resum the
whole k sum. Thus, in order O(r3), we have for the
second term

(−r)−2ε(+r)−2ε

2
√
π

Γ(2 − ε)Γ2(−1 + ε)

× Γ(−1/2 + ε)2F1

(
3−3ε−k,2−2ε−k

4−4ε−2k
; 1
)

and for the fourth term
(−r)−4ε

2
√
πΓ(ε)

Γ(2 − ε)Γ2(1 − ε)Γ(−1 + ε)

× Γ(−3/2 + 2ε)Γ(−1 + 2ε)2F1

(
3−3ε−k,2−2ε−k

4−4ε−2k
; 1
)
.

Each of these two terms has an imaginary part, but it
cancels in the sum of the two. Adding contributions
from the first and third terms of (A.3) and expanding
in ε, we get the O(r3) term of formula (17).
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Method for Reconstructing Primary Event Parameters in a Water Cherenkov Telescope
of the SuperKamiokande Type

A. M. Anokhina and V. I. Galkin

Methods for reconstructing energy, event type, and directions and vertices of electron and muon production
in a water Cherenkov neutrino telescope that is similar in parameters to the SuperKamiokande setup are
considered. Ultimate-resolution estimates obtained from a simulation are compared with the values declared
for the SuperKamiokande.

Effect of the aaa111(1260)(1260)(1260) Resonance on the ρ → 4→ 4→ 4π and ω,,,φ → 5→ 5→ 5π Decay Widths
N. N. Achasov and А. А. Kozhevnikov

The contribution of the a1(1260) meson to the amplitudes of the decays ρ(770) → 4π, ω(782) → 5π,
and φ(1020) → 5π is analyzed within the chiral model of pseudoscalar, vector, and axial-vector mesons,
which is based on a generalized hidden local symmetry supplemented with terms induced by the Wess–
Zumino anomaly. It is shown that the rate of these decays is enhanced upon taking into account the a1

meson in intermediate states. For the a1-meson mass between 1.23 GeV and ma1 = mρ

√
2 = 1.09 GeV, the

enhancement factor falls within the interval from 1.3 to 1.9.

Prospects for Studying Penguin Decays in the LHCb Experiment
S. Ya. Barsuk, G. V. Pakhlova, and I. M. Belyaev

Investigation of loop penguin decays of charmed hadrons seems to provide a promising tool for testing
the predictions of the standard model of electroweak and strong interactions and for seeking new phenomena
beyond it. The possibility of studying the radiative penguin decays B0 → K0∗γ, B0

s → φγ, and B0 → ωγ and
the gluonic penguin decays B0 → φK0

S and B0
s → φφ in the LHCb experiment is discussed.

Diffractive Scattering of Loosely Bound Nuclei Involving Two Charged Clusters on Nuclei
V. V. Davidovsky, M. V. Evlanov, and V. K. Tartakovsky

A theory of diffractive interaction between nuclei and loosely bound nuclei featuring two charged clusters
is developed with allowance for Coulomb interaction. The differential cross sections for the scattering of 6Li,
7Be, and 8B nuclei on 12С are calculated and compared with experimental data obtained recently.

Rarita–Schwinger Field: Dressing Procedure and Spin–Parity Component
A. E. Kaloshin and V. P. Lomov

A general form of the total nonrenormalized propagator for a massive Rarita–Schwinger field is obtained
with allowance for all spin components. The dressing of two opposite-parity Dirac fermions in the presence of
mutual transitions is the closest analogy of dressing in the (s = 1/2) sector of the Rarita–Schwinger field. A
calculation of self-energy contributions confirms that the Rarita–Schwinger field involves, in addition to the
leading spin of s = 3/2, two opposite-parity components of spin s = 1/2 parity.

Effects of Scalar (Pseudoscalar) Higgs Boson in the Process е+++е−−− →→→ bb̄νν̄ at LEP II
A. A. Likhoded and A. E. Chalov

The possibility of imposing constraints on the couplings of the scalar (pseudoscalar) Higgs boson to b
quarks by using data on the process e+e− → bb̄νν̄ at the LEP II collider is considered. The effect of mixing
of the scalar and a new hypothetical pseudoscalar state of the Higgs boson at the Hbb̄ vertex is parametrized
1063-7788/05/6808-1414$26.00 c© 2005 Pleiades Publishing, Inc.
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v
(a+ iγ5b). In analyzing differential distributions for the process e+e− → bb̄νν̄, the contribution of the

fusion subprocessWW → H in the channel involving an electron neutrino is of importance, this contribution
enhancing the sensitivity of data to the parameters under analysis. It is shown that data from the LEP II collider
(
√
s = 200 GeV and

∫
Ldt = 600 pb−1/experiment) would make it possible to constrain the parameters

∆a = a− 1 and b at the level of −0.75 ≤ ∆a ≤ 1.4 for the case of b = 0 and free ∆a and at the level of
−0.97 ≤ b ≤ 0.97 for the case of ∆a = 0 and free b.

Gradient in the Distribution of Ultrahigh-Energy Particles
A. A. Mikhailov

Twenty-one pulsars from whose direction fluxes of ultrahigh-energy particles are enhanced within a narrow
solid angle are discovered. An analysis of the directions of particle arrival from these pulsars shows that there
are gradients in the particle distribution, their centers being coincident with the location of these pulsars. The
problem of the origin of ultrahigh-energy cosmic rays is discussed.

Differential Analyzing Power in pp′′′ Scattering on 28Si Nuclei That Is Accompanied
by the Excitation of High-Spin Particle–Hole States

A. V. Plavko and M. S. Onegin

The experimental energy dependence of the differential analyzing power is presented for the 5−1 , T = 0 and
6−1 , T = 1 nuclear levels and is contrasted against the results of calculations based on the DWBA-91 code.
Information obtained for the nuclear structure from the analysis of inelastic scattering is discussed.

On the Generation of Hadronic Resonances in Heavy-Ion Collisions
I. I. Roizen

The problem of the role of microscopic kinetics in the production of short-lived (broad) hadronic resonances
from subhadronic nuclear matter is discussed. A new approach to calculating the multiplicities of broad meson
resonances that takes explicitly into account the possibility that massive constituent quarks play a key role
at the last stage of the expansion and cooling of matter formed in central interactions of relativistic heavy
ions is proposed. The resulting theoretical estimates are compared with known experimental data, and some
quantitative and qualitative predictions are made.

Quantum Non-Markov Langevin Equations and Transport Coefficients
V. V. Sargsyan, Z. Kanokov, G. G. Adamian, and N. V. Antonenko

Quantum diffusion equations involving transport coefficients depending explicitly on time are derived
from generalized non-Markov Langevin equations. Generalized fluctuation–dissipation relations and analytic
formulas for calculating the friction and diffusion coefficients in nuclear processes are obtained. The asymptotic
behavior of the transport coefficients and of the correlation functions is studied for a damped harmonic oscillator
that is linearly related in momentum with a heat bath. The momentum relation with a heat bath is responsible
for the emergence of the diffusion coefficient in the coordinate. The weakening of correlations in quantum
dissipative systems is investigated.

Features of the Absorption of 2- to 40-TeV Cosmic-Ray Hadrons in Lead
L. G. Sveshnikova, V. I. Yakovlev, A. N. Turundaevsky, V. I. Galkin, S. I. Nazarov, D. M. Podorozhnyi,

N. S. Popova, and T. M. Roganova

For the first time, 2- to 40-TeV hadronic cascades detected in a lead ionization calorimeter at the Tien
Shan mountain research station of the Lebedev Institute of Physics are compared with modern calculations
performed on the basis of the GEANT 3.21 package with allowance for the detection method. Earlier, these
experimental datamade it possible to conclude that a long-range component appeared in high-energy hadronic
cascades. Methodological features of hadron detection in the calorimeter are investigated at TeV energies. It
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 8 2005
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is shown that both average hadronic cascades and various features of individual E < 10 TeV cascades are
well described by calculations employing the QGSJET + FLUKA generators of nuclear interactions, but that
they are not described if use is made of the GHEISHA generator at low energies. All details of experimental
cascades whose energy is above 10 TeV could not be described.

Value of BK from Experimental Data on the CP Violation in K Mesons and Up-to-Date
Values of the CKM-Matrix Parameters

E. A. Andriyash, G. G. Ovanesyan, and M. I. Vysotsky

The difference between the quantity ε̃ induced by the box diagram and the experimentally measured value
of ε is determined and used to obtain the value of ε̃ with a high precision. Present-day knowledge of the
CKM-matrix elements (including B-factory data) enables us to obtain the value of the parameter BK from
the Standard Model expression for ε̃: BK = 0.89 ± 0.16. It proves to be very close to the vacuum-insertion
result, BK = 1.

K-Matrix Approach to the ∆-Resonance Mass Splitting and Isospin Violation
in Low-Energy πNNN Scattering

A. B. Gridnev, I. Horn, W. J. Briscoe, and I. I. Strakovsky

Experimental data on πN scattering in the elastic energy region, Tπ ≤ 250 MeV, are analyzed within
the multichannel K-matrix approach with effective Lagrangians. Isospin invariance is not assumed in this
analysis, and the physical values for masses of the particles involved are used. The corrections due to π+−π0

and p−n mass differences are calculated and found to be in reasonable agreement with NORDITA results.
An analysis shows that the description of all experimental observables is good. From the data, new values for
the masses and widths of the ∆0 and ∆++ resonances were obtained. The isospin-symmetric version gives
phase-shifts values close to the new solution for the πN elastic-scattering amplitude FA02 by the GW group
on the basis of the latest experimental data. While our analysis leads to a considerably smaller (≤1%) isospin
violation in the energy interval Tπ ∼ 30−70 MeV as compared to 7% in the studies of W.R. Gibbs et al. and
E. Matsinos, it confirms calculations based on chiral perturbation theory.

On the Basic Properties of the A === 48 Isobars
V. I. Isakov and Yu. N. Novikov

The binding energies of the A = 48 isobars and their charge radii are determined on the basis of self-
consistent calculations and the concept of nuclear isobaric symmetry.

Experimental Data on Single-Spin Asymmetry and their Interpretations
within the Chromomagnetic String Model

S. B. Nurushev and M. G. Ryskin

An attempt is made to interpret various existing experimental data on single-spin asymmetries in inclusive
pion production by polarized proton and antiproton beams. The chromomagnetic string model is used as a
basis for this analysis. The entire measured kinematic region is covered. The successes and failures of such an
approach are outlined. The possible improvements of the model are discussed.

Constraints on Narrow Exotic States from Data on K+++p and K0
Lp Scattering

R. L. Workman, R. A. Arndt, I. I. Strakovsky, D. M. Manley, and J. Tulpan

The effect of exotic S = +1 resonances Θ+ and Θ++ on data on elasticK+p scattering (total cross section)
and the process K0

Lp→ K0
Sp is considered. Data near the observed Θ+(1540) resonance are examined for

evidence of additional states. The width limit for a Θ++ state is reconsidered.
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