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Abstract—Isomeric ratios were measured for N = 81 isotones (135Xe, 137Ba, 139Ce, 141Nd, 143Sm). In
the experiment reported here, Jπ = 11/2− isomers were excited in (n, γ) and (γ, n) reactions and in the
β+ decay of 139Pr and 141Pm. In order to determine the reaction yields, use was made of the activation
method involving measurement of the gamma-ray spectra of reaction products. It is found that, in the same
reactions, isomeric ratios are different for isotones characterized by different atomic numbers Z. Isomeric
ratios were calculated with the spectra of low-lying levels and radiative-transition probabilities established
on the basis of the quasiparticle–phononmodel. Good agreement between the experimental and calculated
values of isomeric ratios is obtained for all isotopes invesigated here. The dependence of isomeric ratios on
the atomic numberZ of a nucleus is explained by the difference of reaction energies, which leads to different
probabilities of excitation of activation levels through which the isomers being considered are populated.
c© 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Investigation of nuclear reactions leading to the
production of isomeric states is an efficient method
for obtaining data on the features of nuclei at low
excitation energies. The system of levels through
which an isomeric state is populated is one of such
features. As a rule, such levels have not yet received
adequate study, since they are weakly manifested in
the majority of nuclear reactions.

Measurement of isomeric ratios—i.e., ratios of the
cross sections for reactions (yields from reactions)
leading to the production of a nucleus in an iso-
meric and in the ground state—that is followed by
a comparison of the results of such a measurement
with the results of a relevant calculation is the most
popular method for studying reactions that involve
isomer production. In such calculations, use is made
of specific ideas of the properties of nuclear levels, and
the degree of agreement between the experimental
and calculated values of isomeric ratios is a measure
of correctness of these ideas. Usually, the calcula-
tions in question rely on the statistical model of the
nucleus [1–3] and comply well with experimental data
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(see, for example, [4–6]) for a number of reactions.
It is important that this agreement can be achieved
with the level-density parameter a and the spin-cutoff
parameter σ (which specify, respectively, the energy
and the angular-momentum dependence of the level
density) set to values adopted in the model or deduced
from independent experimental data.
It is well known that the statistical model faithfully

reproduces the spectrum of nuclear levels that occur
above the neutron binding energy. At the same
time, isomeric ratios are substantially, and even
sometimes crucially, affected by lower levels through
which gamma-ray cascades populate an isomeric
state. However, data on the properties of such levels
(specifically, on their spectrum, nucleonic configura-
tions, and wave function) are by far insufficient, so
that a correct calculation of this stage of the isomer-
production process is often impossible. Obviously,
this is one of the reasons behind a noticeable dis-
crepancy between experimental and calculated data.
Such a discrepancy is exemplified by the isomeric
ratio in the reaction 180Та(γ, γ′), where the spin
difference between the ground-state and the isomeric
level is as large as ∆J = 8 and where the measured
isomeric ratio is 0.3 [7] (according to statistical-
model calculations, it should not exceed 0.001).
It seems natural to calculate isomeric ratios on the

basis of a model that would describe well the proper-
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1902 BELOV et al.
Table 1. Spectroscopic features of nuclei under study

Nucleus Ground state Isomeric state

T1/2 Eγ , keV Iγ , % α T1/2 Eγ , keV Iγ , % α

135Xe 9.1 h 249.8 93 0.076 15.3 min 526.6 81 0.24
137Ba Stable 2.55 min 661.6 90 0.11
139Ce 138 d 165.8 80 0.25 56.8 с 754.2 93 0.08
141Nd 2.5 h 1127 0.75 0.002 62.0 d 756.7 92 0.09
143Sm 8.8 min 1056 2.0 0.003 66.0 d 754.0 90 0.11
ties of levels in the excitation-energy range between
the isomeric state and the neutron binding energy.
For one, this is the quasiparticle–phonon model that
was developed by V.G. Soloviev and his colleagues
[8–12] and which was successfully used to describe
the spectroscopic properties of a wide range of nuclei
and nuclear reactions, including those that lead to the
excitation of isomeric states [13, 14].
The objective of the present study is to measure

isomeric ratios in nuclei having similar properties but
in strongly different reactions and to calculate iso-
meric ratios on the basis of the quasiparticle–phonon
model. Our investigation was performed for nuclei
that have one hole in the filled neutron shell N =
82 (135Xe, 137Ba, 139Ce, 141Nd, 143Sm) and which
are produced in the relevant reactions of radiative
thermal-neutron capture, (n, γ); photonuclear reac-
tions involving the emission of one neutron, (γ, n), in
the giant-dipole-resonance region; and in β+ decay.
Available experimental data on the isomeric ratios

for these nuclei show sizable scatter in the (γ, n)
reactions, although these reactions have similar prop-
erties. Specifically, the isomeric ratios are much less
for 141Nd and especially for 143Sm than for 137Ba and
139Ce [15, 16]. These distinctions are at odds with the
results of the calculations according to the statistical
model with the values adopted there for the parame-
ters а and σ. In order to achieve agreement, one has
to use strongly different values of these parameters for
each group of nuclei, but this cannot be reasonably
explained.
A totally different type of variation in isomeric

ratios is observed for the (n, γ) reactions as one
goes over from one nucleus to another: the lightest
nucleus 135Xe has the smallest isomeric ratio, and the
isomeric ratio grows with increasing atomic number
Z [17].
In order to study more comprehensively the be-

havior of isomeric ratios in the aforementioned region
of nuclei, the accuracy of previous measurements
was considerably improved: the uncertainties were
reduced to 10% for all absolute values of the isomeric
ratios and to 5% the for relative ones. This was
PH
achieved by using samples enriched in the isotope
under study, by more thoroughly calibrating the ef-
ficiency of the gamma-radiation detector, and by per-
forming all measurements under identical conditions
with a reduced background level.
In addition to measuring isomeric ratios in (n, γ)

and (γ, n) reactions, we have also determined the
probabilities of isomeric-state excitation in β+ decay.
In the heavy nuclei 139Ce, 141Nd, and 143Sm, there
are no direct beta transitions to isomeric states. At
the same time, a high beta-decay energy leads to the
population of a wide set of nuclei that is comparable
with its analog in the (γ, n) reactions. It is the
cascade of gamma transitions from these levels that
leads to the population of the isomeric state.

SPECTROSCOPIC FEATURES
OF THE NUCLEI UNDER INVESTIGATION

The nuclei under investigation have a compara-
tively simple and nearly identical spectrum of low-
lying excitations. All single-particle states following
from the shell model (2d3/2, 3s1/2, 2h11/2, 2d5/2,
1g7/2) [8, 18] lie in the energy region extending up
to 1.4 MeV. The spin–parity of these nuclei in the
ground state is 3/2+, while the spin–parity in the
first excited state is 1/2+. As to Jπ = 5/2+ and
7/2+ single-particle states, they lie much higher (in
the energy range 1.1–1.3MeV). Radiative transitions
from all these levels (of the M1 or the E2 type) lead
only to the ground state—they do not populate the
isomeric level. It is populated from higher states of
spin–parity Jπ = 7/2−, 9/2−, or 9/2+.
There are Jπ = 11/2− isomeric states in a large

number (more than 50) of nuclei from Zr (Z = 40)
to Yb (Z = 70). All these states have close values of
the magnetic moment (about half the value computed
on the basis of the Schmidt model [19]) and of the
reduced probabilities ofM4 radiative transitions from
the isomeric level to the 3/2+ ground state (1 to 2
Weisskopf single-particle units). All this suggests
the presence of small admixtures of other configu-
rations, although the nuclei involving isomers are
YSICS OF ATOMIC NUCLEI Vol. 64 No. 11 2001



EXCITATION OF ISOMERIC 1h11/2 STATES 1903
substantially different (ranging from nuclei having a
closed proton shell and a nearly closed neutron shell
to nuclei from the transition region between spherical
nuclei and deformed ones). In the nuclei under inves-
tigation, isomeric levels lie comparatively high—from
527 keV in 135Xe to 757 keV in 141Nd. The energies
of the isomeric states in question correspond to the
energies of gamma rays emitted in their deexcitation
(see Table 1).
Table 1 displays the features of the radiative decays

of the nuclei under investigation in the ground and
isomeric states: the half-lives T1/2, the energies Eγ
and the intensities Iγ of the gamma lines, and the to-
tal internal-conversion coefficients α [18]. These data
were used to identify product nuclei and to determine
their yields.
Data on the statistical properties of the excited

states of the nuclei being discussed are much more
scanty. By analogy with neighboring nuclei for which
the mean spacings between neutron resonances were
measured, we can assume that the level-density pa-
rameter a and the spin-cutoff parameter σ are about
15 to 20 and 4 to 5, respectively.

EXPERIMENTAL PROCEDURE

Measurements of isomeric ratios in (n, γ) and (γ,
n) reactions were performed at the MT-25 microtron
installed at the Flerov Laboratory of Nuclear Reac-
tions (Joint Institute for Nuclear Research, Dubna).
The description of the microtron and its basic param-
eters can be found in [20, 21]. An accelerated electron
beam served as a source of both bremsstrahlung pho-
tons and neutrons.
For a braking target, we used a tungsten disk

2 mm thick followed by a 30-mm-thick aluminum
absorber of electrons. A typical electron current
during the experiment was 20 µA, the corresponding
intensity of bremsstrahlung that had an energy above
the (γ, n) threshold and which was incident on a tar-
get being about 1013 s−1. Themaximum energy of the
accelerated electrons was 25MeV; it could be reduced
by implementing a transition to a different orbit or
by changing a magnetic field. The bremsstrahlung
spectrum had a typical shape; its calculation for the
conditions of the present experiment (tungsten-disk
thickness, solid angle covered by the irradiated sam-
ple) is described in [22].
In order to obtain neutrons, an electron beam was

directed onto a cylindrical converter made from ura-
nium and surrounded by beryllium. This converter
was arranged within a graphite cube of side length
120 cm that served as a moderator for neutrons. The
(γ, n) and (γ, f ) reactions on uranium and the (γ,
n) and (n, 2n) reactions on beryllium were used to
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 11 20
produce neutrons. At an electron energy of 25 MeV
and an electron current of 20 µA, the thermal-neutron
flux at the cube center was 4 × 108 s−1 cm−2, the
cadmium ratio being 1.8.
The samples subjected to irradiation consisted of

the oxides of the elements being investigated (ВаО,
Се2О3, Nd2O3, Sm2O3). They had a weight of
200 mg and an area of 1.5 × 1.5 cm and were packed
in thin envelopes of Dacron (20 µm thick). Use was
made of both samples of natural isotopic composition
and samples enriched in the isotopes being studied
(136Ва enriched to 95%, 138Се enriched to 60%, and
144Sm enriched to 90%). When irradiated, noble
gases enriched in the isotopes 134Хе (to 90%) and
136Хе (to 95%) were in quartz-glass ampules of vol-
ume about 1 cm3 at a pressure of 1 atm.
The time of sample irradiation was determined by

the half-lives of reaction products. It was about three
half-lives for T1/2 < 1 h and 3 to 4 h for T1/2 > 1 h.
After irradiation, the samples were transported to a
room shielded from the radiation of the accelerator,
where their gamma-ray spectra were measured. For
these measurements, we used a Ge(Li) detector hav-
ing a volume of 60 cm3 and a resolution of 2.8 keV for
the 1332-keV γ line of 60Со. The measured spectra
were processed with the aid of the ACTIV code [23],
which makes it possible to separate, in a complex
spectrum, γ lines close in energy. The reaction prod-
ucts were identified on the basis of the energies of
the γ lines and the time dependence of their inten-
sities (these features of radioactive decay are quoted
in Table 1). The absolute intensities of these γ lines
(more precisely, their absolute values corrected for
the efficiency ε of gamma-radiation detection, the
internal-conversion coefficient α, the fraction k of a
given γ line in the spectrum, accumulation over the
irradiation time t1, and decay over the time interval t2
prior to measurements) make it possible to determine
the reaction yield

Y =
Sλ(1 + α)(1 − e−λt1)e−λt2

t3εk
, (1)

where S is the area of the γ line after the background
subtraction, λ is the radioactive-decay constant (λ =
0.69/T1/2), and t3 is the measurement time. This
yield is related to the reaction cross section Σ by the
equation

Y = AΣI, (2)

where A is the number of atoms of the isotope under
investigation in the irradiated sample and I is the flux
of bombarding particles (neutrons or photons) that
is integrated over the irradiation time. An isomeric
ratio (IR) measured experimentally, which is defined
as the ratio of the cross sections for the production of
01
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Fig. 1. Excitation-energy distributions of nuclei prior to
the gamma-ray cascade in (γ, n) and (n, γ) reactions and
in β+ decay.

a nucleus in the isomeric and in the ground state, can
be replaced by the ratio of the corresponding yields,
since the measurements were performed for same
target and within the same irradiation run; that is,

IR =
Σi

Σg
=
Yi
Yg
, (3)

where the subscripts i and g label quantities referring
to the isomeric and the ground state, respectively.

EXPERIMENTAL RESULTS

On the basis of the measurement and data-
processing procedures outlined above, we determined
isomeric ratios in reactions of three types.
(i) In the reactions of radiative thermal-neutron

capture by 134Xe, 136Ba, and 138Ce isotopes, com-
pound nuclei had an excitation energy equal to the
corresponding neutron binding energy (see Table 2)
and the spin–parity of Jπc = 1/2+. The isomeric
states were populated by a gamma-ray cascade,
while the isomeric ratios are given by expression (3).
The ground-state nucleus produced in the reaction
136Ba(n, γ)137Ba is stable. In order to obtain the
relevant isomeric ratio, we therefore used the value
of Σg known from [17] and determined Σi from a
comparison with the well-known cross section for the
reaction 65Сu(n, γ)66Cu [17].
PH
(ii) For photonuclear reactions involving the emis-
sion of one neutron at the electron energy (endpoint
energy of the bremsstrahlung spectrum) of 25 MeV,
we have measured the isomeric ratios for all five nuclei
quoted in Table 1. In these reactions, compound
nuclei are produced with the spin–parity of Jπc = 1−
and the energy equal to the absorbed-photon en-
ergy. Since the bremsstrahlung spectrum and the
spectrum of emitted neutrons are both continuous,
the product nuclei are characterized by a rather wide
excitation-energy distribution, which is given by

Y (Eb) =

E0∫

0

E0−Bn∫

0

σ(Eγ)N(Eγ)W (En)dEγdEn, (4)

where Eb is the excitation energy of the final nucleus,
Bn is the neutron binding energy in the compound
nucleus, σ(Eγ) is the cross section for the absorption
of a photon of energy Eγ , N(Eγ) is the number of
photons of energyEγ in the bremsstrahlung spectrum
with endpoint energy E0, and W (En) is the proba-
bility of the emission of a neutron of kinetic energy
En from the compound nucleus. In order to calculate
these distributions, we used the energy dependences
of the cross sections for monochromatic-photon ab-
sorption from [24], the kinetic-energy spectra of neu-
trons from [25], and the bremsstrahlung spectrum
computed in [22] for the conditions of the present
experiment. Some examples of these distributions
are presented in Fig. 1, while the mean excitation
energies of the final nuclei for all reactions considered
here are quoted in Table 2.

Since, for the relevant (γ, n) reactions, it is not
the cross section but the yield integrated over the
bremsstrahlung spectrum that is measured experi-
mentally, the isomeric ratio is determined as the yield
ratio

IR =

E0∫
E1

σi (Eγ)N (Eγ) dEγ

E0∫
E1

σg (Eγ)N (Eγ) dEγ

, (5)

where E1 is the threshold for the reaction leading to
the production of a nucleus in the ground or in the
isomeric state. We haveE1 = Bn for the ground state
and E1 = Bn + Ei for the isomeric state.
Just as in the case of (n, γ), a direct measurement

of the yield of the stable final nucleus 137Ва was im-
possible. For this reason, the relevant isomeric ratio
was determined from a comparison of the yields of
the 137Ва and 139Се isomers and the known 138Ва(γ,
n) and 140Се(γ, n) cross sections integrated over the
bremsstrahlung spectrum [24].
YSICS OF ATOMIC NUCLEI Vol. 64 No. 11 2001
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Table 2. Experimental and calculated values of the isomeric ratios for (γ, n) and (n, γ) reactions and for beta decay

Reaction Ēb , MeV J̄ , � Isomeric ratios

experiment calculation
134Xe(n, γ)135Xe 6.45 1/2 0.013(2) 0.023∗

136Xe(γ, n)135Xe 6.1 3/2 0.110(9) 0.11∗∗

136Ba(n, γ)137Ba 6.90 1/2 0.022(3) 0.024∗

138Ba(γ, n)137Ba 5.4 3/2 0.120(8) 0.10∗∗

138Ce(n, γ)139Ce 7.47 1/2 0.025(3) 0.027∗

140Ce(γ, n)139Ce 4.8 3/2 0.130(8) 0.11∗∗

139Pr
β+

−→ 139Ce 1.6 5/2 0.008(2) 0.007∗∗

142Nd(γ, n)141Nd 4.2 3/2 0.060(6) 0.05∗∗

141Pm
β+

−→ 141Nd 2.1 5/2 0.009(2) 0.010∗∗

144Sm(γ, n)143Sm 3.5 3/2 0.046(5) 0.05∗∗

143Eu
β+

−→ 143Sm 2.2 5/2 0.007(2) 0.007∗∗

* Calculations according to the statistical model.
** Calculations according to the quasiparticle–phononmodel.
(iii) In determining the isomeric ratios for the β+

decay of and for electron capture by 139Pr (T1/2 =
4.4 h, Qβ = 2.80 MeV, Jπ = 5/2+) and 141Pm
(T1/2 = 20.9 min, Qβ = 4.56 MeV, Jπ = 5/2+) nu-
clei, we obtained them in the reactions 141Pr(γ,
2n)139Pr (Еγ0 = 25 MeV) and 141Pr(α, 4n)141Pm
(Еα = 38 MeV), respectively, at the MT-25 mi-
crotron and the U-200 isochronous cyclotron of
the Flerov Laboratory of Nuclear Reactions (JINR,
Dubna). By using the experimental facility described
above, we have measured the spectra of gamma
radiation emitted in the beta decay of 139Pr and 141Pm
nuclei. The by-products of the photon- and alpha-
particle-induced reactions (140Pr, 142Pm, 143Pm) had
significantly different half-lives, and their gamma
radiation could easily be discriminated.

An analysis of the spectra of gamma radiation from
139Pr and 141Pm enabled us to determine the proba-
bilities of the population of isomers in the daughter
nuclei 139Се and 141Nd. In this analysis, we also used
data on the β+ decay of these isotopes [18] and of
143Eu, the isomer in the 143Sm nucleus being excited
in the last case [26]. By analogy with the (n, γ) and
(γ, n) reactions considered above, we also evaluated
isomeric ratios in beta decay, determining them as
the ratios of the numbers of nuclei produced in the
isomeric state to the number of beta transitions to all
levels above the isomer:

IR =
Ni∑

Nβ(Eb > Ei)
. (6)
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 11 20
By way of example, one excitation-energy distribu-
tion of nuclei originating from β+ decay (for 143Sm)
is displayed in Fig. 1. Because of a finite and compar-
atively small number of beta transitions, a histogram
is presented here instead of a continuous distribution.
For the remaining nuclei (139Ce, 141Nd), the analo-
gous distributions have a similar shape. In relation
to the corresponding distributions for the relevant (γ,
n) reactions, the distributions being discussed are
narrower and are shifted toward lower energies.
The isomeric-ratio values measured in this way for

all reactions studied here are presented in Table 2,
along with the features of final nuclei (mean excitation
energies Ēb and mean angular momenta J̄) before
the gamma-ray cascade leading to the isomeric or
the ground state. Within the combined errors, these
isomeric-ratio values agree with the known data from
[15–17], but, as was noted above, the former are
characterized by a higher accuracy; as a result, we
can now draw more reliable conclusions about the
distinctions between the isomeric ratios for different
nuclei and different reactions for their production.

DISCUSSION OF THE RESULTS

From Table 2 and from Fig. 1, we can see that the
conditions of isomer excitation are different in differ-
ent processes. In beta-decay processes, the cascade
of gamma rays begins from a comparatively narrow
range of low-lying levels (1.5–3.0MeV), whosemean
angular momentum (5/2) is higher than in other pro-
cesses. The situation is totally different in the relevant
(n, γ) reactions—the excitation energy is the highest
01
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(6.5–7.5 MeV), while the angular momentum is the
lowest (1/2). In this respect, the (γ, n) reactions in
question occupy an intermediate position—they are
characterized by the greatest scatter of excitation en-
ergies and angular momenta. This variety of nuclear
features leads to considerable distinctions between
isomeric ratios and makes it possible to obtain com-
prehensive information about the spectrum of levels
through which the isomers are populated.
An analysis of the spectrum of gamma radiation

emitted in the beta decay of 139Pr, 141Pm, and 143Eu
revealed that, in all cases, the isomers are populated
by radiative E2 transitions through Jπ = 7/2− levels
that are excited immediately after the relevant beta
transitions. In the 139Се (141Nd) nucleus, the isomer
is populated through the single 7/2− level at 1.578
(1.420) MeV, while, in the 143Sm nucleus, this occurs
through three levels at 1.310, 2.886, and 3.325 MeV.
In these three nuclei, the isomeric ratios have close
values and are determined primarily by the probabili-
ties of the beta transitions to the 7/2− levels involved.
In the (n, γ) reactions, a sufficiently long cascade

of gamma transitions (not less than three) is required
for populating the isomer because the spin difference
between the compound nucleus and the isomer is
large (∆J = 5). Awide energy gap between the initial
level and the isomer (more than 6 MeV) favors the
development of such a cascade and makes it possible
to calculate the isomeric ratios on the basis of the
statistical model. The calculations for this case were
performed with the aid of the EMPIRE code [27].
At the parameter values of a = 18 and σ = 4.5, the
isomeric ratios calculated in this way are presented
in Table 2. Good agreement is seen to be obtained
for 137Ва and 139Се, whence we conclude that, in the
(n, γ) reactions, the statistical model is applicable
to these nuclei. However, an analysis of gamma
radiation emitted in thermal-neutron capture by a
136Ва nucleus [28] has revealed that about half of the
contribution to the relevant isomeric ratio comes from
a single gamma-ray cascade through 137Ва levels:

6.605 MeV(1/2+) E1−→ 2.182 MeV(3/2−)
E2−→ 1.798 MeV(7/2−) E2−→ 0.661 MeV(11/2−).

This gamma-ray cascade indicates that specific
states through which the isomer is populated may
play an important role in the (n, γ) reactions, as they
do in beta decay.

In the (γ, n) reactions, spin-1/2 to spin-9/2 lev-
els that lie in a broad range of excitation energies
(Fig. 1) are populated following neutron evaporation.
It is the properties of these levels that determine the
probability of isomer excitation. They have a compli-
cated structure—their single-particle and collective
PH
components are fragmented over a wide energy in-
terval and undergo strong fluctuations. To describe
them, it is therefore desirable to use some effective
approach. We will invoke an approach based on the
aforementioned quasiparticle–phonon model [8–12],
which was successfully used to describe a number of
nuclear phenomena.

CALCULATION OF ISOMERIC RATIOS
WITHIN THE QUASIPARTICLE–PHONON

MODEL

For many nuclei, the spectra of excited states in a
broad range of excitation energies and their reduced
the widths with respect to the radiative transitions
from them to the isomeric and the ground state in
each nucleus being considered have been calculated
within this model; in addition, so-called activation
states—that is, states from which isomeric levels are
populated as the result of gamma decay—have been
singled out on the same basis. In these calculations,
both the ground state and excited states characterized
by an angularmomentum J and its projectionM were
described in terms of the wave function

Ψν
JM = CνJ{α+

JM (7)

+
∑
λJM

Dλi
j (Jν)[α+

jmQ
+
λµi]JMΨ0},

where α+
jm is the creation operator for a quasiparticle

having the shell quantum numbers j and m; Q+
λµi is

the creation operator for a phonon having an angular
momentum λ, its projection µ, and a number i; Ψ0 is
the wave function for the neighboring even nucleus;
and ν is the ordinal number of an excited state in the
sequence of states characterized by given Jπ. The
coefficients CλJ and D

λi
j are the quasiparticle and the

quasiparticle–phonon amplitudes for ν states. The
calculations performed with the wave functions (7)
are described in detail elsewhere [12, 29].
In the calculations described below, the Woods–

Saxon potential with the parameters set to the values
from [30, 31] was used for that part of theHamiltonian
which describes the mean field. The strength of the
residual interaction was chosen in such a way as
to reproduce, in the one-phonon approximation, the
experimental values of the energies and reduced prob-
abilities of low-lying collective states in the neigh-
boring even–even nuclei [32]. The wave functions
used in our calculations took into account the λπ =
1±, 2+, 3−, 4+, and 5− phonons. We employed the
effective charges ep = (N/A)e and en = −(Z/A)e for
E1 transitions and the effective charges ep = e and
en = 0 for E2 transitions. The contribution of elec-
tromagnetic transitions of other multipole orders to
the processes being considered is negligible.
YSICS OF ATOMIC NUCLEI Vol. 64 No. 11 2001
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We have calculated the spectrum of Jπ = 1/2±,
3/2±, 5/2±, 7/2±, 9/2±, and 11/2± excited states
up to the excitation energy of 6.5 MeV and their
structure. The 1h11/2 isomeric state is faithfully re-
produced in these calculations for all isotones being
considered: the deviations from the experimental en-
ergy values did not exceed 40 keV. The wave functions
are dominated by the single-quasiparticle component
(its weight is above 80%).
In calculating the isomeric ratios, we assumed

that the isomers are populated by radiative transi-
tions from the Jπi = 7/2− (E2 transitions), 9/2+ (E1
transitions), and 9/2− (M1 transitions) levels. The
spectrum of activated levels, together with the cal-
culated reduced widths, is presented in Fig. 2 for
the 139Се nucleus. For the other N = 81 isotones
being considered, the corresponding spectra are very
similar. The ground state is predominantly populated
by transitions proceeding from Ji ≤ 5/2 levels.
Since, following beta decay, the nuclear excitation

energy does not exceed 3.0 MeV (Table 2), the popu-
lation of the isomer in this reaction is due exclusively
to the Jπi = 7/2− excited state at an excitation energy
of about 1.5 MeV (Fig. 2). Here, the absolute value
of the isomeric ratio is determined, to a considerable
extent, by the probability of the population of levels in
the daughter nucleus formed upon beta decay. These
probabilities were computed by using the initial- and
final-state wave functions. Since, in the nuclei be-
ing considered, beta decay populates predominantly
Jπi ≤ 5/2+ levels, which then decay into the ground
state, the absolute value of the isomeric ratio is quite
modest (see Table 2). Small variations in its mag-
nitude in the 139Ce, 141Nd, and 143Sm nuclei are
associated with the details of the nuclear-structure
calculations.
The number of activation states involved in the

population of the isomer in the (γ, n) reaction, where
the daughter nucleus formed upon the decay of the
giant dipole resonance has an excitation energy of
up to about 6 MeV, is much greater (Fig. 2). The
mechanism of ground-state and isomer population in
this reaction was considered in detail elsewhere [33].
The isomeric ratio is given by

IR =

∑
Jπ

i

(2Ji + 1)Tlj (ε)
∑
ν

(CνJπ
i
)ΓνJπ

i →is

∑
Jπ

i

(2Ji + 1)Tlj (ε)
∑
ν

(CνJπ
i
)ΓνJπ

i →gs
, (8)

where Tlj is the transmission coefficient for a neu-
tron of orbital angular momentum lj ; J is the total
angular momentum of the nucleus following neutron
emission; CνJπ are the spectroscopic factors for the
states of spin–parity Jπ ; and ΓJπ→is and ΓJπ→gs are
the partial widths of intermediate-energy states with
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Fig. 2. Calculated reduced widths of 139Се nuclear levels
fromwhich radiative transitions lead to the isomeric state.

respect to gamma decay into, respectively, the iso-
meric and the ground state. In the calculations, it was
assumed that an emitted neutron of medium energy
can carry away angular momenta of 0, 1, 2, and 3
(this determines the set of final-nucleus spins). The
isomeric ratios calculated in this way are displayed
in Table 2. The agreement with experimental data is
seen to be good. A drop in the isomeric ratio when
we go over to 143Sm and 141Nd is explained by the
fact that, because of a higher neutron binding energy
in the initial nucleus in heavier isotones, a smaller
number of 7/2−, 9/2+, and 9/2− activation levels are
populated in the final nucleus.
The above calculations were performed under the

assumption that the direct decay of intermediate-
energy states into the ground and the isomeric state
dominates over cascade transitions. This assumption
is justified at modest excitation energies of the nu-
cleus, in which case the density of excited levels is low
and the phase space for possible cascades is severely
constrained. That the calculated isomeric ratios are
in good agreement with experimental data obtained
in the (γ, n) reactions proves the applicability of this
assumption up to excitation energies of about 6 MeV.
However, the population of isomers in the N = 81
isotones in the (n, γ) reactions cannot be explained
without taking into account cascade transitions. In
these reactions, the spin of the daughter nucleus
formed upon thermal-neutron capture is 1/2, and
isomer generation requires an angular-momentum
transfer of 5—that is, a cascade of not less than three
to four gamma transitions. This is the reason why,
in particular, the isomeric ratios obtained in the (n,
γ) reactions for the set of nuclei under investigation
are much less than in the (γ, n) reactions, where the
averaged angular momentum of states populated in
dipole-resonance decay is 3/2 and where the 7/2−,
9/2+, and 9/2− levels can be populated upon neutron
emission as well.
If one aims at considering cascade transitions

within a microscopic approach, the requirements for
01
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the accuracy in describing the details of the struc-
ture of excited states at intermediate excitation en-
ergies are much more stringent than those for direct
transitions to the ground and to the isomeric state.
In this case, the description of excited states up to
the neutron-separation energy in terms of the wave
function (7) is by far insufficient—it must additionally
include at least quasiparticle plus two phonons
and quasiparticle plus three phonons terms, and
the calculations must be performed without a radical
truncation of the basis. Fulfillment of these require-
ments leads to a configuration space where a diago-
nalization of the model Hamiltonian presents, at the
moment, serious technical difficulties. For the sake
of comparison, the isomeric ratios computed for the
(n, γ) reactions within the statistical approach at the
above values of the parameters a and σ are therefore
quoted in Table 2. The calculated isomeric ratio for
the 135Хе nucleus below the experimental value ad-
mits a natural explanation, because the neutron bind-
ing energy is lower in this nucleus. As can be seen
from the calculations based on the quasiparticle–
phonon model, a smaller number of activation states
is therefore involved in the population of the isomeric
state.
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Models (Énergoizdat, Moscow, 1981).

9. V. G. Soloviev, Theory of Atomic Nuclei (Inst. of
Physics Publ., Bristol,1992).

10. A. I. Vdovin and V. G. Soloviev, Fiz. Élem. Chastits
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Abstract—Double-differential cross sections for the reaction 9Be(d, pγ)10Be at Ed = 15.3 MeV are
measured for proton emission into the forward hemisphere. All even spin-tensor components of the density
matrix for the 2+ 3.37-MeV state of the residual nucleus are reconstructed in a model-independent way.
The angular distributions of the populations of the magnetic substates and of the tensors of the angular-
momentum orientation for the state in question are also obtained. The experimental results are compared
with the results of the calculations performed by the coupled-channel method under the assumption of
the neutron-stripping mechanism. The calculated correlation features are found to be highly sensitive to
the wave functions for the participant nuclei, especially the 10Be nucleus. The importance of taking into
account multistep processes in the reaction being considered is demonstrated. c© 2001 MAIK “Nau-
ka/Interperiodica”.
1. INTRODUCTION

In [1, 2], the even spin-tensor componentsAkκ(θp)
of the density matrix for the 2+ 3.37-MeV state of the
10Ве nucleus produced in the reaction 9Be(d, pγ)10Be
at Еd = 12.5 MeV were for the first time found in a
model-independent way. It was shown there that,
while the number of the components Akκ(θp) for the
usually assumed mechanism of neutron stripping to
the 1p state in this reaction is expected to be equal
to four (k ≤ 2, κ ≤ k), experimental data show clear
evidence for nonzero values of the k = 4 compo-
nents. The inclusion of the contribution from the f
configuration in the wave function for the residual
nucleus did not result in satisfactory agreement
with experimental data. In order to improve the
description of data from [1], the multistep neutron-
transfer mechanism associated with the collective
excitation of 9Ве and 10Ве nuclei [3] was taken
into account in [2]. Although the selection rules
for the stripping mechanism at the orbital-angular-
momentum transfer of l = 1 allow two values of the
total-angular-momentum transfer, j = 1/2 and 3/2,
the j = 1/2 component was disregarded in [2]. This
means that the (1p)43/2(1p)

2
1/2 cluster configuration,

which corresponds to the bineutron component in the
wave function for the 10Ве nucleus, was predomi-
nantly considered in the 2+ state of this nucleus.
These assumptions made it possible to improve con-
siderably agreement between the calculated values
of Akκ(θp) and experimental data. However, the
conclusions drawn in [2] could not be considered
1063-7788/01/6411-1909$21.00 c©
to be unambiguous because of the small number of
relevant experimental points. On the other hand, the
observed manifestation of the bineutron component
and the evaluation of its effect on the correlation
features of the 10Ве(2+) nucleus require more detailed
experimental and theoretical investigations. For this
purpose, the correlation features of the reaction in
question are studied here experimentally at the higher
energy of Еd = 15.3 MeV, because the manifesta-
tions of the cluster structure of nuclei become more
spectacular with increasing energy. With the aim of
revealing more clearly the bineutron component in
the 10Ве nucleus, we also analyze the effect of various
components of the wave functions for the 9Ве and
10Ве nuclei on the correlation features of the reaction.

2. EXPERIMENTAL PROCEDURE

The experiment was performed with deuterons
accelerated to 15.3 MeV by the 120-cm cyclotron
installed at the Institute of Nuclear Physics (Moscow
State University). The variation of the projectile
energy and a subsequent formation of the beam
spot at the target were implemented with the aid of
moderating aluminum foils and short-focus magnetic
quadrupole lenses (see [14] and references therein).
The energy spread of the beam was 160 and 350 keV
at Ed = 15.3 and 12 MeV, respectively.

The detection of the reaction products and their
energy and time analysis were performed by using
2001MAIK “Nauka/Interperiodica”
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a measurement–computational complex with a dis-
tributed architecture including a few levels of infor-
mation processing [5].
In order to measure double-differential cross sec-

tions, we detected charged reaction products us-
ing four semiconductor silicon detectors of thickness
about 1000 µm and angular resolution ±2.5◦. The
detectors were placed within the scattering chamber
on a special table that could be inclined with respect
to the horizontal plane within an angle of π/2. We
measured the angular and energy dependence of the
differential cross section by the same detector with an
angular resolution of ±1◦. The detector was placed
on a horizontal table outside the scattering chamber.
The photons emitted in the reaction being studied

were detected by four scintillation detectors contain-
ing NaI(Tl) crystals and having an angular resolution
of ±12◦. The photon detectors were placed out-
side the scattering chamber on a horizontal rotating
platform with an angular step of 32.5◦. Photon–
proton coincidences were analyzed in the photon-
energy range 2–3.5 MeV, which covers a significant
part of the spectrum corresponding to a transition
of the excited state of the residual nucleus 10Be(2+;
3.37 MeV) to the ground state.

The target was made from self-sustaining 9Be
plates of thickness 1 to 5 mg/cm2. The absolute
value of the reaction cross section was measured to
a precision of about 10%.
The model-independent method that we use here

to reconstruct the spin-tensor components Akκ(θp)
of the density matrix on the basis of the experimental
double-differential cross sections W (θγ , ϕγ ; θp) for
the reaction is described in detail elsewhere [6]. It
consists in solving, by the method of least squares, an
overdetermined set of linear equations for nine spin-
tensor components Akκ(θp) of the density matrix that
are defined by the relation

d2σ/dΩpdΩγ ≡ W (θγ , ϕγ ; θp)

=
1
4π

∑
k,κ

Akκ(θp)P̄ κ
k (cos θγ)

√
2

2k + 1
cos κϕγ ,

where the angles θp, θγ , and ϕγ specify the direc-
tions of proton and photon emission in the system
of spherical coordinates with the z axis and the xz
plane coinciding with deuteron-beam direction and
the reaction plane, respectively, and where P̄ κ

k are
associated Legendre polynomials. The normalization
is chosen in such a way that A00(θp) ≡ dσ/dΩ(θp).
The values of k are determined by the relations k =
Jf + Jf and k = L + L (Jf is the spin of the excited
state, and L is the multipolarity of the γ transition),
and κ can be any integer in the interval from−k to k.
PH
The double-differential cross sections measured in
three planes with respect to the reaction plane make
it possible to reconstruct all nine even spin-tensor
components Akκ(θp) for the 2+ 3.37-MeV state of
the 10Be nucleus and to obtain the angular depen-
dences of the population of the magnetic substates,
P±M (θp), and the components of the orientation ten-
sor of the angular momentum, tkκ(θp), for this level
of 10Be [6]. In reconstructing Akκ(θp), we took into
account the finite dimensions of the scintillation de-
tectors [6]. The reliability of the Akκ(θp) values re-
constructed on the basis of the experimental double-
differential cross sections can be estimated by a high
confidence level that was not poorer than 0.1 in the
majority of cases.

3. EXPERIMENTAL RESULTS

We measured the angular dependences of the dif-
ferential cross section for the reaction 9Be(d, p)10Be
leading to the production of a residual nucleus in the
ground state or the first excited (2+1 ) state in the in-
terval of θp from 20◦ to 160◦ (in the laboratory frame).
The results are displayed in Fig. 1a. It is clear from
the figure that the shape of the dependences is typical
of direct processes.
The energy dependences of the differential cross

section for the reaction were measured for the proton-
emission angles of 50◦ and 90◦ in the deuteron-
energy interval between 12 and 15.3 MeV (see
Fig. 1b).
The excitation functions corresponding to the

transition to the 2+1 state are rather smooth, which
is typical of direct processes. Small deviations
from monotonicity are present only in the energy
dependence of the cross section for the transition to
the ground state at θp = 50◦.
The double-differential cross sections for the re-

action 9Be(d, pγ)10Be were measured for 12 values of
the proton emission angle in the interval from 20◦ to
90◦ (in the laboratory frame); five to nine values of the
polar angle θγ ; and three azimuthal-angle values of
ϕγ = 180◦, 225◦, and 270◦. Figures 2 and 3 display
the angular dependences of the reconstructed com-
ponents Akκ(θp) for k = 2 and 4. These dependences
have a rather complex oscillating shape. The absolute
values of the components A2κ(θp) at small proton-
emission angles exceed 0.5, while the amplitude of
oscillations of A4κ(θp) does not exceed 0.2 over the
entire angular region. By using the reconstructed
values of Akκ(θp), we determined the population of
the magnetic substates of the 2+

1 state of the residual
nucleus. The angular dependences are shown in
Fig. 4. Figure 5 displays the angular dependences of
YSICS OF ATOMIC NUCLEI Vol. 64 No. 11 2001
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Fig. 1. (a) Angular dependences of the differential cross section for the reaction 9Be(d, p)10Be occurring at Ed = 15.3 MeV
and leading to the production of the residual nucleus in the ground (0+) or the 2+1 excited state (proton groups p0 or p1,
respectively). Here and in the following figures, open circles represent experimental values with statistical errors. Curves show
the results of the calculation based on the coupled-channel Born approximation for various values of the deformation parameter
β2 for the 9Be and 10Be nuclei: +0.5, +0.5 (solid curve);−0.5, +0.5 (short dashes);+0.5,−0.5 (long dashes); and−0.5,−0.5
(dotted curve). (b) Differential cross section for the reaction at two values of the angle θp (in the laboratory frame) as a function
of energy. The curves represent eyeball fits to the experimental points.
some components of the dimensionless tensor of the
angular-momentum orientation for this state [these
results were also obtained from the reconstructed
values of Akκ(θp)].

4. CALCULATIONS
WITHIN COUPLED-CHANNEL BORN
APPROXIMATION AND DISCUSSION

OF THE RESULTS

Our present calculations were based largely on the
assumption of the cluster-stripping mechanism and
were performed by using the CHUCK code [3], which
takes into account channel coupling in the initial and
in the final state (coupled-channel Born approxima-
tion further abbreviated as CCBA) and some auxiliary
codes for calculating correlation features.
The optical potentials used were chosen in the

Woods–Saxon form, whose parameters are quoted in
the table. We did not seek optimum values of these
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 11 20
parameters; instead, we employed those from [7]. For
the bound-state potentials, we took the usual values
of rV = 1.25 fm and aV = 0.65 fm and the Thomas
spin–orbit parameter of λ = 25. We determined the
depth of the real part of the potential through the
standard procedure of fitting the calculated value of
the binding energy of the transferred particle and the
nuclear core to a known value. We varied the de-
formation parameter β2 in the interval from 0 to ±1
both in the input and in the output reaction chan-
nels. Other details of the calculation are described
in [2]. Only the most typical curves are presented
in Figs. 1–5 in order to avoid encumbering graphical
illustrations.
Our analysis of the calculated and experimental

data revealed the following special features of the
structure of the nuclei involved (these results proved
to be close to those obtained in [2]):
(i) Comparing the theoretical and the experimental

correlation features, we were able to determine quite
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Fig. 2. Angular dependences of the spin-tensor componentsAkκ of the density matrix for the 2+ 3.37-MeV state of the 10Be
nucleus produced in the reaction 9Be(d, pγ)10Be atEd = 15.3MeV. The units of measurements along the ordinate are chosen
in such a way thatA00 ≡ dσ/dΩ has dimensions of mb/sr. The notation for the curves is identical to that in Fig. 1a.
reliably the magnitude and the sign of the quadrupole

deformation of the Be nuclei. In our calculations,
PH
we used the deformation parameter β2, which relates,

within the rotational model, the ground to the lowest
YSICS OF ATOMIC NUCLEI Vol. 64 No. 11 2001
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Fig. 3. As in Fig. 2 for a few components Akκ. The curves in Fig. 3a represent the results of the CCBA calculations for
various values of the contribution of the j = 1/2 spin channel: (solid curve) 0%, (short dashes) 100%, and (long dashes)
without the f = [42]31D1,

31 D2 components of the 10Bewave function. The curves in Fig. 3b correspond to various calculated
contributions of the orbital-angular-momentum transfer of l = 3: (solid curve) 20%, (dotted curve) 10%, and (dashed curve)
0%.
excited state [3/2−(g.s.) and 5/2−, respectively] of
the 9Be nucleus and the 0+(g.s.) to the 2+ state
of the 10Be nucleus. For both Be nuclei, we chose
the eventual value of β2 = 0.5. This parameter deter-
mines, to a great extent, the amplitude of oscillations
for the majority of the components Akκ(θp). The
above value seems optimal according to the analysis
of the entire set ofAkκ(θp)with k �= 0 and populations
P±M (θp). The dependence of the results of calcula-
tions on the absolute value of β2 in the output channel
proved to be weaker than on that in the input chan-
nel. Therefore, the value of β2(10Be) = 0.5 is more
ambiguous. Variation in these parameters changes
insignificantly the theoretical differential cross section
A00 ≡ dσ/dΩ(θp) for angles θp < 40◦ both in shape
and in magnitude.

The calculations with zero values of the deforma-
tion parameters in both channels on the basis of the
OLYMP-3 code [8] (there, the remaining parameters
have values close to those used in CCBA) yield pop-
ulations P±M (θp) that are only slightly dependent on
the angle, in a glaring contradiction with the experi-
mental results (see Fig. 4).
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 11 20
The calculations revealed that the majority of the
angular dependences Akκ(θp) are better described
with positive values of both β2 (see Fig. 2). By way
of example, we indicate that, at β2 = −0.5 in the
input channel [β2(10Be) = 0.5], the calculation leads
to A21(θp), A22(θp), A40(θp), and A41(θp) that are in
antiphase with their experimental counterparts.
The form of the calculated angular distribu-

tions of the differential cross section for the reac-
tion 9Be(d, p1)10Be(2+) undergoes no qualitative
changes upon reversal of the signs of β2, at least at
small angles (see Fig. 1a). For the transition to the
ground state of the final nucleus, the shape and the
magnitude of the cross section dσ/dΩ(θp) at the first
two maxima are rather stable.
(ii) The theoretical analysis of the quantities

Akκ(θp) makes it possible to obtain data on the
bineutron cluster structure of the 10Be(2+) nucleus.
As was mentioned in the Introduction, the selection
rules for the mechanism of neutron stripping to the 1p
shell allow the orbital-angular-momentum transfer
of l = 1 and the total-angular-momentum transfers
of j = 1/2 and 3/2 in the 3/2− → 2+ (3.37 MeV)
01
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magnetic substates of the 2+1

10Be state produced in
the reaction 9Be(d, pγ)10Be. The curves represent the
results of the calculations performed (solid curve) with
and (dashed curve) without allowance for the deformation
of 9Be and 10Be nuclei.

transition. The calculated spectroscopic factor S
for j = 1/2 is approximately one-half as great as
that for j = 3/2. The angular dependences of the
differential cross section are virtually independent
of the values of j that are taken into account in
the calculation. Nevertheless, the admixture of j =
1/2 abruptly changes the shape of the components
A20(θp), A22(θp), and t21(θp) (see Fig. 3a and Fig. 5)
PH
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at small angles in such a way that they appear to be
in antiphase with their experimental counterparts. All
these components are directly related to the tensor
polarization of the nucleus—that is, to its cluster
structure.
Let us consider the problem in more detail. It is

well known that the nuclei belonging to the middle
of the 1p shell have a complex structure. This is
suggested not only by a significant deformation of
these nuclei (in particular, of the beryllium nuclei),
YSICS OF ATOMIC NUCLEI Vol. 64 No. 11 2001
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Parameters of the optical potentials

Channel V , MeV rV , fm aV , fm W , MeV rW , fm aW , fm Vso, MeV rso, fm aso, fm rC, fm

9Be+ d 73.0 1.04 0.87 24.0 2.05 0.41 1.3

10Be+ p 55.66 1.17 0.75 11.2∗ 1.32 0.65 6.2 1.01 0.75 1.25

∗The surface potential was taken in the form of the derivative of the Woods–Saxon expression.
but also by the fact that, in the calculations of the
wave functions for the A = 10 nuclei on the basis of
the intermediate-coupling shell model, the quantum
numbers of the model are insufficient for unambigu-
ously classifying basis configurations (there are two
physically different f = [42]31D configurations [9]).
The analysis of the beryllium wave functions within
the jj-coupling model shows that the ground state of
the 9Be nucleus contains approximately equal frac-
tions of the (1p)43/2(1p)1/2 and the (1p)33/2(1p)

2
1/2

configuration. The 2+ state of the 10Be nucleus
features predominantly two configurations [9], (1p)63/2
and (1p)43/2(1p)

2
1/2. It is clear that only the transfer of

a j = 3/2 nucleon can result in such a rearrangement
of the nuclei involved. Most likely, it is for this rea-
son that the total-angular-momentum value of j = 2
must be rejected in order to achieve agreement be-
tween the results of the calculations and experimental
data.
A more profound analysis of the problem reveals

that the weight of the (1p)63/2 configuration in the

wave function for the 2+
1 state of the

10Be nucleus is
overestimated, because this symmetric configuration
cannot lead to such a significant deformation of the
nucleus. At the same time, it can be shown that
this overestimation is due to a significant contribution
of the f = [42]31D1,

31D2 components in the shell-
model wave function for this nucleus. According
to the calculations, these are the components that
strongly affect the amplitude of the 3/2− → 2+(j =
1/2) transition. If the weights of these components
are set to zero, the spectroscopic factor for the transi-
tion being considered decreases by a factor of about
180, while the spectroscopic factor for the j = 3/2
transition decreases only by a factor of 2. The an-
gular dependences Akκ(θp) calculated without the
f = [42]31D components are, as might have been
expected, close to those for which the j = 1/2 tran-
sition is disregarded (see Figs. 3a and 5). In other
words, the correlation features of the 10Be nucleus—
in particular, its tensor polarization—directly indicate
that the wave function for the nucleus is dominated
by the (1p)43/2(1p)

2
1/2 bineutron cluster configura-

tion. It is also worth noting that this change in the
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 11 20
10Be wave function increases the amplitude of the
5/2−(2.43 MeV, 9Be) → 2+(j = 1/2) transition by
a factor of about 4, but, in this case, the calcula-
tions confirm the weak effect of the amplitudes of this
transition on the shape of the angular dependences
Akκ(θp).
Changing the weights of various components of

the wave function for the 9Be nucleus did not result
in any significant reduction of the relative value of the
j = 1/2 amplitude in the transition 3/2− → 2+.
(iii) From our calculations, it follows that, by tak-

ing into account the possible admixture of l = 3 in the
transitions to the 2+ 3.37-MeV state of the 10Be nu-
cleus within the approach used, we can significantly
improve the description of some k = 4 components
Akκ(θp). The estimated weight of the f configuration
in different studies varied from 6 to 10% [1, 10].
In order to evaluate the contribution of l = 3 (with
respect to S for l = 1), we used the values 0, 10,
and 20% (see Fig. 3b). Comparing the experimental
and the calculated values of Akκ(θp), we arrive at the
conclusion that the optimal agreement is attained for
a contribution of l = 3 not less than 10%.
Thus, allowance for the deformation of the 9,10Be

nuclei and an adequate choice of their wave functions
(the inclusion of the contribution of l = 3 and the
disregard of the contribution of j = 1/2) result in
satisfactory agreement for the entire set of the cal-
culated and experimental components Akκ(θp), the
populations P±M (θp), and the components tkκ(θp) of
the tensor of the angular-momentum orientation.

5. CONCLUSION

Our calculations for the neutron-stripping mech-
anism of the reaction 9Be(d, pγ)10Be by the coupled-
channel method have revealed that correlation fea-
tures are a good tool for studying the details of the
reaction mechanism and the structure of the partici-
pant nuclei. A comparison of the experimental values
of Akκ(θp) and other related features with the results
of these calculations have made it possible to choose
the majority of the model parameters (the magnitude
and the sign of β2, transition amplitudes, etc.). At the
same time, the angular distributions of the differential
01
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cross section have shown a relatively weak sensitivity
to variations in these parameters.
It also follows from the above analysis that the

probability of the multistep mechanism in this reac-
tion is high. The multistep mechanism is associated
with the preexcitation of the target nucleus at a suffi-
ciently strong 3/2− ↔ 5/2− coupling corresponding
to β2 ∼ 0.5.
Finally, direct evidence for the existence of the

bineutron cluster configuration in the 10Be wave
function is the most important result obtained from
the analysis of the tensor polarization. It should be
emphasized that our results furnish an independent
corroboration of the inability of the shell model to
describe the A = 10 nuclei.
The conclusions drawn for the reaction being con-

sidered seem to remain valid in the rather wide re-
gion of deuteron energies Ed, because they proved
to be rather similar to those obtained in [2] at Ed =
12.5MeV.
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Abstract—Within Glauber–Sitenko multiple-scattering theory, the differential cross sections for elastic
and inelastic proton, positive-pion, and positive-kaon scattering on 6,7Li nuclei are calculated at incident-
hadron energies ranging between 0.143 and 1.0 GeV. The 6Li and 7Li wave functions are taken in,
respectively, the α2N and the αt cluster model. The resulting cross sections are investigated as functions of
the scattered-particle energy, parameters of the model wave functions, and various scattering multiplicities.
It is concluded that a partial filling of the diffraction minimum in the cross section is due to the D-wave
contribution to the wave function for the 6Li target nucleus. c© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Investigation of elastic and inelastic hadron–
nucleus scattering at energies of a few hundred
MeV is an important source of information both
about the structure of nuclei and about interaction
mechanisms. A comparison of processes where dif-
ferent particles—protons, charged pions, and positive
kaons—are scattered on the same target nuclei is
of particular interest since different particle species
interact differently with intranuclear nucleons. For
example, positive kaons are weakly absorbed and
have a large range in a nuclear medium (5–7 fm),
whence it follows that they can be used as a probe for
studying the structure of nuclei [1, 2]. At the same
time, the interaction of charged pions is of a manifest
peripheral character since they can hardly penetrate
into the interior of nuclei because of strong absorption
[3]. The main objective of the present study is to
find out how the aforementioned features may reveal
themselves in characteristics of elastic and inelastic
hadron scattering on 6Li and 7Li nuclei.

Experimental data on proton scattering by 6Li
nuclei were obtained in Uppsala (Sweden) at Ep =
0.185 GeV [4] and in Saclay (France) at 0.6 and
1.04 GeV [5]. At the cyclotron laboratory of the
Indiana University (IUCF), polarized-proton beams
of energy 0.2 GeV were used to study scattering on
6Li [6] and 7Li [7] nuclei. Charged-pion scattering
was investigated at the meson factory in the Los
Alamos National Laboratory (LAMPF) at an energy
of 0.143 GeV for 7Li targets [8] and in the energy

*e-mail: ibraeva@physics.kz
1063-7788/01/6411-1917$21.00 c©
range between 0.1 and 0.26 GeV for 6Li targets [9]
and at the Paul Scherrer Institute (PSI, Switzerland),
where systematic data on differential cross sections
were obtained at 0.1, 0.18, and 0.24 GeV for 6Li
[10] and at 0.164 GeV for 7Li [11]. Later, the pro-
duction of targets having a vector polarization made
it possible to measure, for π± 6,7Li interactions, not
only the differential cross sections but also polariza-
tion properties (iT11)—specifically, these results were
obtained at energies between 0.1 and 0.219 GeV for
6Li [12] and at 0.134, 0.164, and 0.194 GeV for 7Li
[13]. The latest experimental data on positive-kaon
scattering by 6Li nuclei come from experiments at the
Brookhaven National Laboratory (BNL AGS) [1] for
energies of EK+ = 0.375 GeV.

All measured features were computed on the ba-
sis of dispersion methods [14], the coupled-channel
method [12, 13, 15], the optical model [distorted-wave
impulse approximation (DWIA)] [2, 4–9, 16–18], and
Glauber–Sitenko diffraction-scattering theory [19–
27]; for the scattering of protons on 12С and 16О
[24, 25], charged pions on 12С [26], and positive kaons
on a deuteron [27], a comparison of the last two
approaches revealed that the distinctions between the
results that they yield for these cases is small—in the
differential cross sections, they are manifested only
in the region of the diffraction minimum and at large
scattering angles. In our calculations, we rely on
diffraction theory, where, given the wave functions for
the target nucleus and elementary hadron–nucleon
amplitudes, one can calculate the scattering-matrix
elements that are related to observables (differential
cross sections and polarization features) by simple
2001MAIK “Nauka/Interperiodica”
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Table 1. Compilation of the parameters of the proton–
nucleon amplitudes

Ep,
GeV

σpN ,
fm2 εpN

βpN ,
fm2

References

0.2 pp 2.36 1.15 0.65
[26]

pn 4.20 0.71 0.68

0.6 pp 3.96 0.24 0.11
[34]

pn 3.66 −0.295 0.175

0.8 pp 4.73 −0.06 0.38
[35]

pn 3.79 0.2 0.4

1.0 pp 4.75 −0.1 0.23
[20]

pn 4.00 −0.4 0.16

Table 2.Compilation of the parameters of the π+N ampli-
tudes according to data from [26]

Eπ , GeV σπN , fm2 επN βπN , fm2

0.15 10.93 0.522 1.25

0.18 12.76 0.114 0.994

0.23 9.24 −0.43 0.55

Table 3. Compilation of the parameters of the K+N am-
plitudes according to data from [23]

EK , GeV σKN , fm2 εKN βKN , fm2

0.201 K+p 1.29 −2.190 0.0134

K+n 1.31 −0.667 0.0013

0.23 K+p 1.30 −1.964 0.0197

K+n 1.41 −0.575 0.0012

0.375 K+p 1.32 −1.467 0.0114

K+n 1.67 −0.373 0.0015

0.468 K+p 1.32 −1.258 0.0095

K+n 1.71 −0.305 0.0013

0.534 K+p 1.39 −0.9074 0.0065

K+n 1.75 −0.105 0.0011

equations. Listed immediately below are advantages
of this theory:

(i) The Glauber multiple-scattering operator Ω is
constructed in such a way that it enables one to con-
sider the scattering process microscopically—that is,
to trace individual collisions of incident particles with
the nucleons (or clusters) of the target nucleus and
to take into account all scattering and rescattering
multiplicities.

(ii) The parameters of the elementary amplitudes
PH
[see Eq. (1) below] have a simple physical meaning (σ
is the total cross section, ε is the ratio of the real part
of the amplitude to its imaginary part, and β is the
slope of the amplitude cone) and admit a convenient
comparison with observables: the filling of the mini-
mum in the differential cross sections and the cross-
section value at the first maximum are generally as-
sociated with the parameter ε and the parameter σ,
respectively.

(iii) Diffraction theory, together with the wave
function within the dynamical multicluster model, in-
volves no free parameters (in contrast to the optical
model) and can be used to describe the scattering of
intermediate- and high-energy hadrons.

For a target, we chose 6,7Li nuclei, considering
that these are strongly clustered nuclei (the binding
energies are equal to 1.47 and 2.47MeV in the αd and
the αt channel, respectively). For these nuclei, there
are adequate three- and two-particle wave functions
that were calculated for realistic interaction potentials
[28–30] and which faithfully reproduce static fea-
tures, the probabilities of the electromagnetic transi-
tions, and elastic and inelastic Coulomb form factors
over a wide range of momentum transfers.

In the present study, we develop a spectroscopic
approach [31] (description of a vast body of exper-
imental data within a unified theory featuring real-
istic wave functions for target nuclei) by extending
previous inquiries into reactions induced by protons
[32] and charged pions [33] to the case ofK+-meson
scattering.

We have calculated the differential cross sections
for elastic and inelastic scattering and shown that
they are correctly reproduced within diffraction the-
ory. The investigation of these observables versus
the model wave functions for the target nucleus, the
admixture of small components in these wave func-
tions, and the contribution of various scattering mul-
tiplicities to the multiple-scattering operator at var-
ious scattered-particle energies makes it possible to
draw conclusions both on the structure of the nuclei
involved and on special features of interactions of
different particle species.

2. ELEMENTARY HADRON–NUCLEON
INTERACTIONS

An elementary amplitude that describes phe-
nomenologically the interaction of the scattered
particle with intranuclear nucleons is one of the
input parameters of diffraction theory. Usually, it is
parametrized in the form

fν (q) =
kσν
4π

(i+ εν) exp
(
−βνq2/2

)
, (1)
YSICS OF ATOMIC NUCLEI Vol. 64 No. 11 2001
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where k is the incident-hadron momentum; the
remaining parameters were discussed in the Intro-
duction, while their values for the various incident-
particle species are quoted in Tables 1–3.

From a comparison of the values presented in
Tables 1-3 for the parameters of the elementary am-
plitudes, we can see the following. The total cross
sections for the scattering of protons and positive
pions are much larger than those for the scattering of
positive kaons. According to the optical theorem, σtot
is related to the elastic-scattering amplitude at zero
angle as

σtot =
4π
k
ImMii (0) ; (2)

that is, the imaginary part of the amplitude (it is
dominant in scattering) depends on the total cross
section σtot, which is much smaller for K+N scat-
tering than for pN and π+N scattering. The quantity
β is also one to two orders of magnitude less forK+N
scattering than for pN and π+N scattering, whence
we conclude that the S-wave contribution [23] to
scattering is dominant; at the same time, the absolute
value of ε (ratio of the real part of the amplitude to
its imaginary part) is significantly larger (it is even
larger than unity), which suggests that positive kaons
are absorbed only slightly, so that the interaction
proceeds primarily through the elastic channel.

We now compare the elementary interactions of
protons, charged pions, and charged kaons with nu-
cleons at the quark level. Most clearly, these interac-
tions can be represented in terms of the diagrams in
Fig. 1. The analogous diagrams for π±N and K±N
are displayed in [16].

At intermediate energies (p ∼ 0.8 GeV/c, which
corresponds to Ep = 0.295 GeV), the pN interaction
has a nonresonance character (diagrams in Figs. 1a,
1b), but its amplitude is quite large (∼35 mb/sr) and
involves sizable spin-dependent terms.

Since antiquarks (d̄ in π+ and ū in π−) enter
into the composition of the charged pions, their
interaction with nucleons is sufficiently strong and
has a pronounced resonance character (diagrams
in Figs. 1c–1f). This is the most spectacular
in π+p interaction, where the ∆33 resonance oc-
curs at energies above 0.1 GeV. This resonance is
rather broad, its magnitude at the maximum (at
Eπ = 0.169 GeV) being about 200 mb/sr. In the
π+N system, there are no open channels below the
positive-pion-production threshold other than the
charge-exchange channel. The ratio of the total cross
sections is σ(π+p)/σ(π−p) = 3/1.

The kaon–nucleon interaction differs drastically
from the interactions described above because of the
presence of a strange quark, which generates nonzero
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 11
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Fig. 1. Quark diagrams for elementary xN interactions
(x ≡ p, π±, K±).

strangeness (S �= 0). Since the strangeness is S = 1
for positive kaons and S = −1 for negative kaons,
the K+N and the K−N interaction differ strongly
(diagrams in Figs. 1g–1j). Because of uū annihi-
lation, the K−N interaction generates narrow reso-
nance states (Λ,Σ) and features open channels below
the K−N threshold. This interaction is strong, its
amplitude being 42 mb/sr at p = 0.8 GeV/c, which
corresponds to EK− = 0.446 GeV. On the contrary,
the five-quark structure in the K+N system does
not form resonances [the hypothetical Z∗ resonance
(duus̄u) has not yet been observed); predominantly,
the interaction proceeds through the elastic channel;
it is much weaker than that in the K−N system, its
amplitude being 13 mb/sr. That the K+N interac-
tion is the weakest of all strong interactions is also
suggested by a large mean range of the positive kaon
in nuclei.
2001
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3. 6Li AND 7Li WAVE FUNCTIONS
IN CLUSTER MODELS

Presently, 6Li wave functions within three-particle
models have been obtained by a few groups of authors
[36–38]. Among the first systematic calculations of
the wave functions in the αnp model, we would like
to mention those that were performed by Kukulin’s
group from Moscow State University [28] and which
yielded accurate results for static features and ob-
servables of quasielastic reactions involving electrons
[28], protons [21, 32], and charged pions [10, 15,
22, 33]. The most comprehensive description of all
properties of 6Li–6Не nuclei within the dynamical
multicluster model involving a Pauli projection and a
full antisymmetrization was presented by Eramzhyan
et al. [39], who considered, among other things,
the neutron halo in 6Не, electromagnetic form fac-
tors, and the observables of the photodisintegration
process 6Li(γ, π+)6He and of elastic charged-pion
scattering at 0.134 GeV. Previously, it was shown
in [40] and [41] that the αnp model makes it pos-
sible to reproduce faithfully the observables of two-
particle photodisintegration through the 3Неt and the
αd cluster channel, respectively. The model also
describes well the experimental spectra and the mo-
mentum distributions of protons for transitions to
the ground state and excited states of the 5Не nu-
cleus [42].

The wave functions that we use were calculated
in [28] on the basis of two models. In model 1, the
relevant interactions were simulated by the Sack–
Biedenharn–Breit (SBB) potential for the αN inter-
action and the Reid soft-core (RSC) potential for the
NN interaction in the ground state and by the SBB
potential for the αN interaction and a square-well
potential for the NN interaction in the 3+ excited
state. In model 2, the αN and the NN interaction
were taken, for either state, in a form leading to an
even–odd splitting of the phase shifts and in the form
of the RSC potential, respectively. In all models,
eigenfunctions are sought in the form of an expansion
in multidimensional Gaussian functions. This makes
it possible to calculate all matrix elements analytically
and to determine wave functions in a large basis in-
volving a great number of the small components. The
configuration of a wave function is specified by the
set of quantum numbers λ, l, L, and S, where l is the
orbital angular momentum of the relative motion of
the α particle and the center of mass of two nucleons;
λ is the orbital angular momentum of the relative
motion of two nucleons; andL and S are, respectively,
the total orbital momentum and the total spin of the
nucleus being considered.

For the ground-state wave function, we take into
account two configurations: λ = l = L = 0, S = 1
PH
(S wave) and λ = 2, l = 0, L = 2, S = 1 (D wave).
The S wave is dominant (its weight is greater than
90%), while theD wave contributes 3% to 7% in the
calculations with the various interaction potentials.
It is, however, interesting to clarify the dependence
of the cross section on the D-wave contribution and
to perform a comparison with the results presented
in [2, 18], where the contribution of the quadrupole
correction to the cross section is estimated within
the DWIA. The total weight of the remaining com-
ponents does not exceed a few percent—for example,
the weight of the λ = 0, l = 2, L = 2, S = 1 configu-
ration in model 2 is 0.0008. Thus, the wave function
of the 6Li ground state can be represented as

Ψi =
∑
λl

Ψ(λl)
L = Ψ(00)

S + Ψ(20)
D , (3)

where

Ψ(00)
S =

1
4π

∑
i,j

C
(00)
ij exp

(
−αir2 − βjR2

αd

)
(4)

× Φα (rµ=1–4)χ1M ,

Ψ(20)
D =

∑
MLMS

〈2ML1MS | 1MJ〉 (5)

× Y2ML
(r̂)Y00

(
R̂αd

)
Φα (rµ=1–4)χ1MS

× r2
∑
i′j′

C
(20)
i′j′ exp

(
−αi′r2 − βj′R2

αd

)

with

Φα (rµ) =
1

2
√

2

(
t

π

)9/4

(6)

× exp


− t

2

4∑
µ=1

(rµ − Rα)
2


 .

Here, t = 0.5828 fm−2 [43]; χ1M is the two-nucleon
spin function; rµ,Rα, andRd are the radius vectors of,
respectively, the nucleons forming the alpha particle,
the center of mass of the alpha particle, and the center
of mass of the deuteron; Rαd = Rα −Rd and r = r5 −
r6 are the radius vectors of, respectively, the relative
motion of the alpha particle and the deuteron and the
relative motion of the nucleons forming the deuteron.
The expressions for the expansion coefficients Cij , αi,
and βj are quoted in [28].

For the Jπ = 3+ excited state of the 6Li nucleus,
we take into account the λ = 0, l = 2, L = 2 (D1

component) and the λ = 2, l = 0, L = 2 (Dλ compo-
nent) configuration, their weights being, respectively,
73 to 74% and 22 to 25%. The wave function then
has the form

Ψf =
∑
λl

Φ(λl)
MJ

= Φ(02)
MJ

+ Φ(20)
MJ
, (7)
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where

Φ(02)
MJ

=
∑

MLMS

〈2ML1MS |3MJ 〉 (8)

× Y2ML
(r̂)Y00

(
R̂αd

)
Φα (rµ=1,4)χ1MS

×R2
αd

∑
pq

C(02)
pq exp

(
−αpr2 − βqR2

αd

)
,

Φ(20)
MJ

=
∑

ML,MS

〈2ML1MS | 3MJ 〉 (9)

× Y00

(
R̂αd

)
Y2ML

(r̂)Φα (rµ=1,4)χ1MS

× r2
∑
p′q′

C
(20)
p′q′ exp

(
−αp′r2 − βq′R2

αd

)
.

A large quadrupole moment (Q ∼ 40 mb) and
strong αt clustering in the ground state are features
peculiar to the 7Li nucleus. Among the first 7Li wave
functions in the αt cluster model that are known to
the present authors, there are those computed in [29]
on the basis of the Woods–Saxon potential with the
parameters proposed in [44]. Not only do these wave
functions faithfully reproduce static features and elec-
tromagnetic form factors at lowmomentum transfers,
but it also appears that their application to describ-
ing the differential cross sections for the two-particle
photodisintegration 7Li(γ, t)α, including so subtle a
feature of the process as asymmetry in the distribution
of tritons for the case of polarized photons [40], is
highly successful. The analogous wave functions for
the Buck potential were computed in [30]. In either
case, use was made of deep attractive αt potentials
involving states forbidden by the Pauli exclusion prin-
ciple [44]. We have performed our calculations with
two cluster wave functions for 7Li using the param-
eter values borrowed from [29] and [30] for models 1
and 2, respectively.

In the ground and in the first excited state, the
7Li nucleus has the quantum numbers Jπ, T = 3/2−,
1/2; L = 1 and Jπ , T = 1/2−, 1/2; L = 1, respec-
tively. The wave function for the 7Li nucleus in the αt
model can be represented in the form

Ψi,f =
∑

MLMS

〈LMLSMS |JMJ 〉 (10)

× Φα (rµ=1,4)Φt (rl) Φαt (R)χ 1
2
MS
,

where χ 1
2
MS

is the spin function and Φα(rµ=1,4),
Φt (rl), and Φαt (R) are the wave functions that de-
scribe, respectively, the alpha particle, the triton, and
their relative motion and which are taken in the form
of expansions in a Gaussian basis. Specifically, we set

Φt (rl) = Nt (11)
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 11 20
×
∑
k

Ck exp

(
−1

2
αk

3∑
l=1

(rl − Rt)
2

)
,

Φαt(R) = RLYLM (R̂)Nαt (12)

×
∑
i

Ci exp(−αiR2),

where Nt and Nαt are the normalization factors for
the corresponding wave functions; Ci, Ck, αi, and αk
are the expansion coefficients taken from [45] for t and
from [29, 30] for αt; Rt is the center-of-mass triton
coordinate; and R = Rα − Rt is the coordinate of the
relative motion of the alpha particle and the triton in
the 7Li nucleus. The wave function Φα is identical to
that in (6).

4. FORMALISM OF DIFFRACTION THEORY

In diffraction theory, the matrix element (ampli-
tude) for hadron scattering by a nucleus can be rep-
resented in the form [43]

Mif (q) ≡ 〈Ψf |Ω |Ψi〉 =
ik

2π
(13)

×
∫
d2ρ exp (iq · ρ) 〈Ψf |Ω (ρ1, . . . ,ρ7) δ (RA)|Ψi〉.

Here, Ψf and Ψi are, respectively, the initial- and the
final-state wave functions for the target nucleus [see
Eqs. (3), (7), and (10)], which obviously coincide in

the case of elastic scattering; RA =
1
A

∑A

n=1
rn is

the coordinate of the center of mass of the nucleus;
ρi are the two-dimensional intranuclear-nucleon co-
ordinates in the impact-parameter (ρ) plane, which
is orthogonal to the incident hadron beam; k and k′

are the momenta of, respectively, the incident and the
scattered hadron in the c.m. frame; and q = k− k′,

q = 2k sin
θ

2
, k =

√
ε2 −m2, (14)

where θ is the scattering angle (� = c = 1), is the 3-
momentum transfer in the reaction.

The multiple-scattering operator can be written in
the form [32]

Ω = Ωα + Ωb −
1
2

(ΩαΩb + ΩbΩα) , (15)

where b stands for the d cluster in 6Li or the t cluster
in 7Li,

Ωα = 1 −
4∏

ν=1

(1 − ων (ρ − ρν)) =
4∑

ν=1

ων (16)

−
∑
ν<µ

ωνωµ +
∑

ν<µ<η

ωνωµωη − ω1ω2ω3ω4,
01
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Fig. 2.Differential cross sections for the elastic scattering
of (a) 0.18-GeV positive pions, (b) 0.2-GeV protons, and
(c) 0.375-GeV positive kaons on 6Li nuclei for various
model wave functions: (1, solid curve) results of the
calculations with the 6Li wave function in model 1, (2,
dashed curve) results of the calculationswith the 6Li wave
function inmodel 2, (curves 3) results of theDWIA calcu-
lations from [15], and (4) results of the DWIA calculations
from [2]. The points represent the experimental data for
(�) positive pions from [10], (•) protons from [6], and (�)
positive kaons from [2]. In order to avoid the overlap of
the results, the experimental and the calculated data in
Figs. 2a and 2b are multiplied by a factor of 10.

Ωb = 1 −
A∏
ν=5

(1 − ων (ρ − ρν)) (17)

= 1 −
[
1 −

A∑
ν=5

ων +
∑
ν<µ

ωνωµ − . . .
]
.

Here, ων is the profile function, which is expressed
in terms of the xN-scattering amplitude (x ≡ p, π+,
K+) as

ων (ρ − ρν) =
1

2πik
(18)

×
∫
d2q exp (−iq · (ρ − ρν)) fν (q).

We choose the xN-scattering amplitude in the
form (1). By substituting formula (1) into the profile
function (18) and by performing relevant integration,
we obtain

ων (ρ − ρν) =
2∑

ϕ,ψ=1

Cϕψ exp
[
− (ρ − ρν)

2 ηϕψ

]
,

(19)

where
Cϕ1 =

σν
4πβ2

ν

, Cϕ2 = −i σνεν
4πβ′2

ν

, (20)

ηϕ1 = ηϕ2 =
1

2β2
ν

,

PH
and the subscript ϕ = 1, 2 numbers the particle (n, p)
with which the incident hadron collides.

We do not describe the ensuing calculations, since
they are similar to those for proton scattering from
[32]. We only present the expression for the differen-
tial cross sections in terms of the amplitude in (13):

dσ

dΩ
=

1
2J + 1

∑
MLM

′
L

|〈Ψf |Ω |Ψi〉|2. (21)

The final expression for scattering on 6Li is
obtained by summing the cross section over the
angular-momentum projections. The ML = ±2
amplitudes are equal; therefore, they are multiplied
by a factor of 2 in the cross section. As to the
ML = ±1 amplitudes, they are equal to zero. For
elastic scattering, the differential cross section has
the form

dσ

dΩ
=

1
3

{∣∣∣
〈
Ψ(00)
S,ML=2 |Ω|Ψ(00)

S,ML=2

〉∣∣∣2 (22)

+
6
5

[∣∣∣
〈
Ψ(20)
D,ML=0 |Ω|Ψ(00)

S,ML=0

〉∣∣∣2

+ 2
∣∣∣
〈
Ψ(20)
D,ML=2 |Ω|Ψ(00)

S,ML=0

〉∣∣∣2
]

+
∣∣∣
〈
Ψ(20)
D,ML=2 |Ω|Ψ20

D,ML=2

〉∣∣∣2
}
.

For inelastic scattering, we have
dσ

dΩ
=

7
15

{∣∣∣
〈
Φ(02)
ML=0 |Ω|Ψ(00)

S

〉∣∣∣2 (23)

+ 2
∣∣∣
〈
Φ(02)
ML=2 |Ω|Ψ(00)

S

〉∣∣∣2

+
∣∣∣
〈
Φ(20)
ML=0 |Ω|Ψ(00)

S

〉∣∣∣2

+ 2
∣∣∣
〈
Φ(20)
ML=2 |Ω|Ψ(20)

D

〉∣∣∣2
}
.

Formulas (22) and (23) clearly demonstrate the
contributions to the cross section from the various
wave-function components and from various values
of the angular-momentum projection ML. In calcu-
lating the differential cross sections, each matrix ele-
ment was treated individually. In the next section, we
discuss their contributions to the total cross section.

5. DISCUSSION OF THE RESULTS

We have calculated the differential cross sections
for the elastic and inelastic scattering of protons,
positive pions, and positive kaons by 6,7Li nuclei at
energies ranging between 0.143 and 1.0 GeV and
have compared our results with experimental data
from [1, 2, 4–13] and with the results obtained by
other authors [2, 15].
YSICS OF ATOMIC NUCLEI Vol. 64 No. 11 2001
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Let us begin our discussion by considering Fig. 2,
which displays the calculated differential cross sec-
tions for elastic hadron scattering on 6Li nuclei.
Curves 1 and 2 were computed with the three-body
α2N wave functions for the different αN interaction
potentials (see Section 3), so that the D-wave
admixture to the main S-wave component takes
different values for them: 3% in model 1 and 7%
in model 2 [28]. A comparison of curves 1 and 2 in
Fig. 2 shows that, in the region of small scattering
angles, the cross sections computed with the different
wave functions do not differ from each other. Small
variations arise only in the region of the diffraction
minimum and at large scattering angles. For the
case of protons (Fig. 2b), the distinctions between
the differential cross sections for the different wave
functions are minimal in the energy range being
considered. This is associated with the absolute value
of the 3-momentum transfer q in the reaction. If
the momentum transfer is low (for protons at E =
0.2 GeV, it varies between 0.047 GeV/c at θ = 5◦

and 0.538 GeV/c at θ = 60◦), the projectile particles
penetrate to a lesser extent into the interior of the
target nucleus (where fine particle-correlation effects,
which, strictly speaking, distinguish one version of
model from another, must bemore noticeable), so that
scattering occurs at the periphery of the nucleus. At
higher beam energies (E = 1.04GeV), the curves de-
viate from each other more strongly (see [32]), since,
in case of protons, themomentum transfer varies from
0.112 GeV at θ = 5◦ to 0.777 GeV/c at θ = 35◦; that
is, the projectile particles penetrate into the nucleus
more deeply, with the result that the effect of particle
correlations on the scattering process becomes more
pronounced. However, curve 2, which corresponds to
a largerD-wave admixture, lies higher in all cases.

The results of calculations performed by other
authors are also illustrated in Fig. 2 for the sake
of comparison: curves 3 and 4 represent the re-
sults of the DWIA calculations from [15] and [2],
respectively. The experimental data for positive pions
(Fig. 2a) at small scattering angles and in the re-
gion of the diffraction minimum are better described
by Glauber–Sitenko theory (curve 2) than by the
DWIA (curve 3); at large scattering angles (θ > 70◦),
diffraction theory is inapplicable because of intrinsic
limitations and provides poorer results. As to large
deviations from the experimental data for curve 3 (in
calculating this curve, use was also made of the wave
function from [28] within model 1, but the D-wave
contribution was ignored), the authors of [15] explain
this by the absence of absorption channels from the
optical potential and by the disregard of the second-
order optical potential.

As was mentioned in the Introduction, positive-
kaon scattering on 6Li nuclei was first measured in
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 11 20
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Fig. 3. Differential cross sections for the elastic scatter-
ing of (a) 0.164-GeV positive pions, (b) Ep = 0.2-GeV
protons, and (c) 0.2-GeV positive kaons on 7Li nuclei for
various model wave functions: ( 1, solid curve) results of
the calculationswith the 7Li wave function in model 1, (2,
dashed curve) results of the calculationswith the 7Li wave
function in model 2, and (3, dash-dotted curve) results of
the calculations with the oscillator wave function. Points
represent experimental data for (�) positive pions from
[11, 13] and (•) protons from [7].

[1], but transitions to the ground state of 6Li and
its first excited state at E∗ = 2.18 MeV were not
separated there. The separation procedure was imple-
mented in [2], where a slight deviation from the origi-
nal data quoted in [1] was found in the angular region
θ > 25◦. For this reason, the rescaled experimental
data from [2] (for the transition only to the ground
state of the 6Li nucleus) are presented in Fig. 2c,
along with the results of the DWIA calculations per-
formed on their basis (curve 4). From a comparison of
curves 1, 2, and 4, we can see that, at the angles in the
range 20◦ < θ < 40◦, the scattering of positive kaons
is also better described by diffraction theory, although
the quadrupole noncentral interaction was taken into
account in [2] along with the central interaction; how-
ever, the contribution of the quadrupole interaction
appeared to be overly small to affect the cross-section
value. At large scattering angles, the discrepancy be-
tween curves 1 and 4 is especially large (a few orders
of magnitude), but we cannot definitively conclude
which theory is more appropriate because there are
presently no experimental data in this region. The
calculation within DWIA for K+-meson scattering
was also performed in [18], where the contribution of
the quadrupole scattering appeared to be negligibly
small.

Let us proceed to consider Fig. 3. Here, we
present the differential cross sections calculated for
elastic hadron scattering on 7Li nuclei with the αt
01
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Fig. 4. Structure of the differential cross sections for the
elastic scattering of (a) 0.6-GeV protons, (b) 0.18-GeV
positive pions, and (c) 0.375-GeV positive kaons on 6Li
nuclei: (curve 1) S-wave contribution, (curve 2) D-wave
contribution, and (curve 3) their total contribution. The
experimental data were borrowed from [5] for protons, [10]
for positive pions, and [2] for positive kaons.

cluster wave functions for (curve 1, model 1) the
Woods–Saxon potential and (curve 2, model 2) the
Buck potential and (curve 3) with the oscillator wave
function.

We are now going to indicate features that are
common to the wave functions used and features
that distinguish them. All of them are single-node
ones, and the node occurs at r = 1.7 fm in all the
cases. The cluster wave functions are similar, but
the oscillator wave function differ from them mainly
by the behavior at large distances from the center of
PH
the nucleus. It decreases extremely fast—in just the
same way as all oscillator functions, it has a descend-
ing asymptotic behavior, which does not reflect the
actual behavior of wave functions—and its value at
the first maximum exceeds those of the cluster wave
functions by about 40%. As was mentioned in the
Introduction, the charged kaon interacts most weakly
among all strongly interacting particles; therefore, it
can penetrate into the interior of the nucleus more
deeply than protons and charged pions of the same
fixed energy. Curves 1 and 2 are close in Figs. 3a–
3c, as are the wave functions. This means that the
form of the interaction potential used to calculate the
wave functions does not strongly affect either static
or dynamical observables. We will now find the re-
gion where curve 3 shows the greatest distinctions
from the first two. In Fig. 3a and 3b, this is so
at small (θ < 20◦) and at large (θ > 60◦) scattering
angles. At small scattering angles, the distinction
is due to the fact that the interaction of protons and
positive pions with nucleons occurs predominantly at
the nuclear periphery, where the cluster wave func-
tions differ strongly from the oscillator wave function
(large distances for the wave functions correspond to
lowmomentum transfers—that is, to small scattering
angles). At large angles (corresponding to short dis-
tances for the wave functions), the distinction arises
both from fine effects in the nuclear structure that
are disregarded in the oscillator model and from the
fact that diffraction theory is applicable only at small
scattering angles. The distinction between curves 1
and 2, on one hand, and curve 3, on the other hand,
is especially pronounced at large scattering angles
for positive kaons (Fig. 3c); this is because they
are scattered in the interior of the nucleus and are
therefore more sensitive to the behavior of the wave
functions at short distances than in the asymptotic
region.

It has already been mentioned in Section 2 that, at
zero scattering angle, the amplitude is related to the
total cross section [see formula (2)]. The total cross
section is considerably larger for π+N and pN scat-
tering than for K+N scattering (Tables 1–3); there-
fore, the experimental data and the calculated curves
lie higher for π+ 6,7Li and p6,7Li than forK+ 6,7Li.

Let us now consider in more detail the structure
of the differential cross sections for elastic-scattering
processes on 6Li nuclei that is associated with the S-
and theD-wave components. Their partial contribu-
tions are shown in Fig. 4 for (a) protons, (b) positive
pions, and (c) positive kaons. Curves 1, 2, and
3 represent the differential cross sections calculated
with allowance for only the S wave [the first term in
(22)], only theD wave [the second and the third term
in (22)], and their total contribution [all terms in (22)],
respectively.
YSICS OF ATOMIC NUCLEI Vol. 64 No. 11 2001
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It can clearly be seen that the differential cross
section for the partial D wave at θ = 0◦ is two or-
ders of magnitude smaller than the differential cross
section for the S wave. At θ = 0◦, we have Ω = 1
and the overlap integrals of the wave functions for
the S wave are two orders of magnitude greater than
those for the D wave. However, the minimum in
the differential cross section represented by curve 2
is shifted, in relation to curve 1, toward the region of
smaller scattering angles by 10◦–30◦, while the sec-
ond maximum in curve 2 coincides with the minimum
of curve 1 and partly fills the minimum in curve 3,
which represents the total contribution. In the pre-
vious analyses reported in [32] and devoted to proton
scattering on 6Li, a similar result was obtained for
both wave functions—it was found that the degree of
filling of the minimum is in direct proportion to the
weight of theD wave in the relevant wave function.

Let us consider the contributions to the cross
section from various scattering multiplicities in the
operatorΩ [see Eqs. (15)–(17)] by using the example
of scattering on 7Li nuclei. The results of these
calculations are presented in Fig. 5 for the scattering
of (a) protons, (b) positive pions, and (c) positive
kaons. Curves 1, 2, 3, and 4 in Figs. 5a and 5b
represent, respectively, the results for scattering on
the alpha-particle cluster [which are obtained by sub-
stituting the first term in (15) into (21)], the results for
scattering on the triton cluster [which are obtained
by substituting the second term in (15) into (21)],
and the results for rescattering on the two clusters
[this corresponds to substituting the third and the
fourth term in (15) into (21)], and their algebraic sum
[formula (21) with the total operator Ω (15)].

The scattering of positive kaons was considered
here in the double-scattering approximation, where,
in the multiple-scattering operator, one retains only
terms associated with single and double collisions:

Ω = 1 −
[
1 −

7∑
ν=1

ων +
∑
ν<µ

ωνωµ

]
. (24)

The validity of this approximation in the case being
considered is justified by the fact that, because of
the weakness of K+N interaction, whence it follows
that the mean range of positive kaons is large, the
multiple-scattering series for K+A must converge
fast, with the result that single scattering will be
dominant. Abgrall and Labarsouque [27] calculated
directly the contribution of various scattering multi-
plicities and showed that, in K+12C scattering at a
momentum of 715MeV/c, the sum of single and dou-
ble collisions correctly describes the differential cross
sections in the angular region extending up to 50◦. In
Fig. 5c, curves 1 and 2 correspond, are respectively,
to single scattering [substitution of the third term
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 11 20
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Fig. 5. Contributions of various scattering multiplicities
to the differential cross section for the scattering of (a)
0.2-GeV protons (the experimental data were borrowed
from [7]), (b) 0.164-GeV positive pions (the experimental
data were borrowed from [11, 13]), and (c) positive kaons
on 7Li nuclei: curves 1, 2, 3, and 4 in Figs. 5a and
5b correspond to scattering on the alpha-particle clus-
ter, scattering on the triton cluster, rescattering on the
clusters, and the algebraic sum of these contributions,
while curves 1, 2, and 3 in Fig. 5c correspond to single
scattering, double scattering, and their sum.

in (24) into the cross section (21)] and to double
scattering [substitution of the fourth term in (24)
into the cross section (21)], while curve 3 represents
their sum. Let us first compare the contributions of
different scattering are multiplicities for the various
projectile-particle species at similar beam energies.
FromFigs. 5a and 5b, it can be seen that, at small an-
01
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Fig. 6. Differential cross sections calculated for scattering on (a–c) 6Li and (d–f) 7Li nuclei at various energies of incident (a,
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0.143 GeV from [8] and at 0.164 GeV from [11, 13].
gles, the main contribution comes from scattering on
the clusters—the contribution of rescattering is two
orders of magnitude less, but it decreases much more
slowly and, at θ ∼ 30◦ (for protons) and θ ∼ 50◦ (for
positive pions), approaches the first two, becoming
dominant in scattering at larger angles. A different
pattern is observed in positive-kaon scattering (upper
curves in Fig. 5c; EK+ = 0.23 GeV). Here, the main
contribution comes from single scattering over the
entire region of angles—the contribution of double
scattering is two orders of magnitude less, and only in
the region of the diffraction minimum does it become
visible in the total cross section. A similar conclusion
PH
was drawn by the authors of [23 ,27], who calculated
the contributions of various multiplicities in positive-
kaon scattering on 12С nuclei.

Let us now try to trace the variation of the double-
scattering contribution in response to an increase in
the energy of scattered positive kaons. A comparison
of curves 2 in Fig. 5c at 0.23 and 0.468 GeV reveals
that, with increasing energy, the double-scattering
contribution increases in the region θ > 55◦. The
reason for this is that, with increasing energy, incident
particles penetrate more deeply into the interior of
the nucleus, where collisions occur more frequently
and with a greater number of particles, so that higher
YSICS OF ATOMIC NUCLEI Vol. 64 No. 11 2001
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Fig. 7. Differential cross sections for the inelastic scattering of (a, b, e) protons, (c, f) positive pions, and (d) positive kaons
to (a–d) the Jπ = 3+ level of the 6Li nucleus at E∗ = 2.18 MeV and (e, f) the Jπ = 1/2− level of the 7Li nucleus at
E∗ = 0.48 MeV. In all panels, curves 1 and 2 display the results of the calculations with the wave functions for models 1
and 2, respectively. The experimental data presented here were borrowed from (a) [4], (b) [5], (c) [10], (d) [1, 2], (e) [7], and
(f) [17]. Curves 3 and 4 in Fig. 7c represent the contributions of the wave-function componentsΦ(02) and Φ(20), respectively.
Curve 3 in Fig. 7d shows the results of the DWIA calculations from [2]. Curves 3 in Figs. 7e and 7f represent the results of
the calculations with the oscillator wave function.
multiplicities make greater contributions. The same
regularity is observed in the scattering of protons and
charged pions as well [32, 33].

In Fig. 6, the differential cross sections calculated
for scattering on (a–c) 6Li and (d–f) 7Li nuclei are
presented for various energies of incident (a, d) pro-
tons, (b, e) positive pions, and (c, f) positive kaons.
The patterns obtained for the different types of par-
ticles are substantially different. The following reg-
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 11 20
ularities can be seen for protons and positive kaons:
at an energy of about 0.2 GeV, there is no diffrac-
tion minimum in the differential cross sections—it
appears from about 0.4–0.5GeV for protons and from
somewhat lower energy values for positive kaons.
With increasing energy, the minimum is shifted to-
ward the region of smaller scattering angles, and the
absolute value of the cross section at θ = 0◦ increases
somewhat. This minimum is shifted because, the
01
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position of the minimum in K+A and pA scattering
as a function of the momentum transfer q is nearly
constant; therefore, an increase in the energy leads
to a shift of the minimum toward smaller scattering
angles [a decrease in θ compensates for an increase
in k, as can be seen from (14)]. A modest increase
in the absolute value of the cross section at zero
angle is explained by the fact that the total cross
section increases somewhat with increasing energy
(see Tables 1–3)—according to the optical theorem,
the total cross section determines the amplitude for
zero-angle scattering [see Eq. (2)].

In positive-pion scattering, the minimum in the
cross section is not shifted—it is localized at θ ≈ 60◦.
This is due to the existence of a rather broad (of width
about 100MeV) resonance∆33 channel in this region
(this channel dominatates the scattering process) and
to the absence of open channels below the threshold
for positive-pion production. Similar calculations
were performed in [46] for π− 3Не scattering and in
[47] for π± 4Не scattering. It was also shown in
those studies that, as the energy changes from 0.09
to 0.24 GeV, the minimum in the cross section is not
shifted (it occurs in the region between about 85◦
and 90◦). The fact that the diffraction minimum is
manifested more clearly at low energies [0.164 and
0.18 GeV for 6Li (Fig. 6b) and 0.143 GeV for 7Li
(Fig. 6e)] than at the higher energy of 0.24 GeV, in
which cases we can observe only an inflection point,
is somewhat surprising.

Let us now proceed to consider inelastic scatter-
ing. Figure 7 displays the differential cross sections
for the inelastic scattering of (a, b, e) protons, (c, f)
positive pions, and (d) positive kaons to (a–d) the
Jπ = 3+ level of the 6Li nucleus at E∗ = 2.18 MeV
and (e, f) the Jπ = 1/2− level of the 7Li nucleus at
E∗ = 0.48 MeV. In all the panels of this figure, curves
1 and 2 represent the results of our calculations with
the wave functions in models 1 and 2 (see Section 3),
respectively. For the 6Li nucleus, a better description
of the experimental data is obtained with the wave
function inmodel 2, where use is made of the potential
leading to an even–odd splitting of phase shifts for
the αN interaction and of the RSC potential for the
NN interaction. Most clearly, this can be seen in
Fig. 7a, where the scale along the ordinate is lin-
ear and not logarithmic as in the remaining panels
of the figure. For the 7Li nucleus, the calculations
with the cluster wave functions yield nearly identical
results; for the sake of comparison, the results of the
calculation with the oscillator wave function are also
shown in Figs. 7e and 7f (curves 3). On the basis
of a comparison of curves 1, 2, and 3, we can draw a
conclusion that is similar to that for the case of elastic
scattering (see Figs. 2 and 3 above). Curves 1 and
PH
2 differ from curve 3 at small and large scattering
angles—that is, in the region where the oscillator
wave function differs most strongly from the cluster
wave functions. Specifically, this is so in the interior
of the nucleus (the corresponding scattering angles
in the differential cross section are large), because
short-range nuclear correlations are disregarded in
the oscillator potential, and in the asymptotic region,
where the momentum transfers are low (the corre-
sponding scattering angles in the differential cross
section are small), because the oscillator wave func-
tion decreases overly fast.

In Fig. 7c, curves 3 and 4 represent the con-
tributions to the cross section from the two wave-
function components Φ(02) [first and second terms
in (23)] and Φ(20) [third and fourth terms in (23)],
respectively, while curve 2 corresponds to their sum.
That the weight of the first component is nearly three
times greater than the weight of the second com-
ponent determines their partial contributions to the
cross section, where the first two terms on the right-
hand side of (23) are dominant (curve 3), while the
remaining two terms (curve 4) generate a small cor-
rection that contributes to the cross section only at
large scattering angles.

In Fig. 7d, curve 3, calculated in [2] on the basis
of the DWIA, is shown for the sake of comparison.
We can see that the DWIA description of the behavior
of the cross section is not quite satisfactory at small
scattering angles (θ < 15◦).

6. CONCLUSIONS

(i) For various projectile species, Glauber–Siten-
ko diffraction theory provides an adequate description
of the differential cross sections for scattering on the
6,7Li nuclei over the broad projectile-energy range
between 0.1 to 1.0 GeV.

(ii) By usingwave functions calculated in two- and
three-particle cluster models with realistic interaction
potentials, it is possible to calculate analytically the
relevant matrix element. Owing to this, the accuracy
in describing the differential cross sections within
diffraction theory is not inferior to and is even some-
times higher than the corresponding accuracy in the
DWIA.

(iii) The important role of the small components in
the 6Li wave function has been revealed: making vir-
tually no contribution to the cross section over almost
the entire angular range (because of the smallness of
the absolute value), they nevertheless increase some-
what the differential cross section in the region where
the contribution of the leading component attains a
minimum.
YSICS OF ATOMIC NUCLEI Vol. 64 No. 11 2001
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(iv) We have considered the contribution to the
cross section from various scattering and rescatter-
ing multiplicities. It has been established that, for
protons and positive pions, it is necessary to take
into account all scattering multiplicities, but that, for
positive kaons, it is sufficient to retain only single and
double scattering. It has been shown that the role of
multiple scattering becomes more pronounced with
increasing energy of scattered particles.

(v) An analysis of the elementary xN interaction
(x ≡ p, π±, K±) from the point of view of the quark
structure of particles furnishes deeper insights into
the special features of the nuclear interaction, while
the distinctions between the parameters of the phe-
nomenological xN amplitudes make it possible to
draw a conclusion on how these features manifest
themselves at the nuclear level.

(vi) The differential cross sections have been in-
vestigated at various energies of scattered particles.
It has been shown that, with increasing energy, the
diffraction pattern becomesmore pronounced (we can
observe a larger number of the maxima and minima,
their deepening, and a shift of the diffractionminimum
toward the region of smaller scattering angles) for
protons and positive kaons. At energies between 0.1
and 0.24 GeV, the pattern for positive pions is dras-
tically different, which is due to the ∆33 resonance
occurring in this region and completely determining
the differential cross section.
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Abstract—Inclusive K−-meson production in proton–nucleus collisions in the subthreshold-energy
regime is analyzed within an appropriate folding model for incoherent primary proton–nucleon and sec-
ondary pion–nucleon production processes, which takes properly into account the struck-target-nucleon
momentum and removal-energy distribution (nucleon spectral function), novel elementary cross sections
for proton–nucleon reaction channels close to threshold, as well as nuclear mean-field potential effects on
the one-step and two-step antikaon-creation processes. A detailed comparison of the model calculations
of the K− differential cross sections for the reactions p + 9Be and p + 63Cu at subthreshold energies
with the first experimental data obtained at the ITEP proton synchrotron is given. It displays both the
relative role of the primary and secondary production channels at incident energies considered and the
contributions to K− production that come from the use of the single-particle part and high-momentum–
energy part of the nucleon spectral function. It is found that the pion–nucleon production channel does not
dominate in the subthreshold “hard” antikaon production in p9Be and p63Cu collisions and that the main
contributions to the antikaon yields here come from the direct K−-production mechanism. The influence
of the nucleon, kaon, and antikaon mean-field potentials on the K− yield is explored. It is shown that
the effect of the nucleon mean field is of importance in explaining the considered experimental data on
“hard” antikaon production, whereas theK+ andK− optical potentials play a minor role. The sensitivity of
subthreshold “soft” antikaon production in p9Be reactions to the nucleon, kaon, and antikaon mean fields
is studied. It is demonstrated that, contrary to the case of “hard” antikaon production, the K− potential
has a very strong effect on the K− yield, which is comparable with that from the nucleon effective potential.
c© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION
Kaon and antikaon properties in dense matter are

the subject of considerable current interest in the
nuclear physics community [1]. Knowledge of these
properties is important for understanding both chiral-
symmetry restoration in a dense nuclear medium
and neutron-star properties. Since the pioneering
study of Kaplan and Nelson [2] on the possibility
of kaon condensation in nuclear matter, there have
been many theoretical investigations into the in-
medium properties of kaons and antikaons, based
on various approaches, such as the effective chiral
Lagrangian [3–8], the boson-exchange model [8–
10], the Nambu–Jona-Lasinio model [11, 12], the
quark–meson coupling model [13], and the coupled-
channel [14, 15] and effective KN-scattering length
[16] approaches. Although these models give quanti-
tatively different predictions for the kaon and antikaon
potentials in a nuclear medium, they agree qualita-
tively in establishing that, in nuclear matter, K+ feels

∗This article was submitted by the author in English.
1063-7788/01/6411-1931$21.00 c©
a weak repulsive potential of about 20–30 MeV at
normal nuclear-matter density ρ0 (ρ0 = 0.17 fm−3),
whereas K− feels a strong attractive potential that
ranges between –140 and –75 MeV at ρ0. The
K− atomic data also indicate [10, 17, 18] that the
real part of the antikaon optical potential can be on
the order of (−200 ± 20) MeV at normal nuclear-
matter density, while being slightly repulsive at very
low densities in accordance with the K−p scattering
length. As a result, deeply bound kaonic nuclei should
exist [19]. Moreover, the condensation of antikaons in
neutron stars at critical density of about 3ρ0 becomes
possible, which would then lead to the lowering of
the maximum neutron-star mass to the value that
is in good agreement with the observed one, as well
as to the existence of a large number of low-mass
black holes in a galaxy [20]. On the other hand, in
the recent chiral approach of Oset and Ramos [21],
it was shown that, as nuclear density ρN increases,
the attraction felt by K− becomes significantly more
moderate than that obtained within other theories
2001MAIK “Nauka/Interperiodica”



1932 PARYEV
and that the effective K− mass m∗
K− gains, at high

densities, the level around the value already achieved
at ρN = ρ0, namely, m∗

K−(ρN > ρ0) ≈ m∗
K−(ρN =

ρ0) = 445 MeV, which makes the appearance of the
phenomenon of K− condensation in neutron-star
matter very unlikely. The in-medium K− mass of
445 MeV corresponds to a weaker attractive K− op-
tical potential of about −50 MeV at normal nuclear-
matter density. Furthermore, coupled-channel cal-
culations for antikaons in matter performed very
recently in [22] demonstrated that the K− optical
potential becomes repulsive at finite momenta or
finite temperature. The momentum dependence of
the K+ and K− potentials at a finite nuclear density
was investigated in [23, 24] within the dispersion
approach. It was found that, in contrast to [22], the
antikaon potential remains attractive even at high
momenta. The K− potential of about −28 MeV at
density ρ0 and an antikaon momentum of 800MeV/c
was extracted in [25] from the data on elastic K−A
scattering within Glauber theory. Therefore, it is very
important to have such experimental data that allow
one to test the predictions of the above models.

Subthreshold kaon and antikaon production in
heavy-ion collisions, where high densities are ac-
cessible, is obviously best suited for studying their
properties in dense matter. The transport-model
calculations [1, 26–33] showed that the in-reaction-
plane and out-of-reaction-plane kaon flow is a sen-
sitive probe of K+ potential in a medium. The
dropping K−-mass scenario will lead to a sub-
stantial enhancement of the K− yield in heavy-ion
collisions at subthreshold incident energies due to
the in-medium shifts of the elementary production
thresholds to lower energies. Antikaon enhancement
in nucleus–nucleus interactions was observed by
the KaoS and FRS collaborations at SIS/GSI [34–
38]. This phenomenon was attributed to the in-
medium K−-mass reduction [16, 20, 39–42]. Thus,
the analysis of the KaoS data [34, 35] within the
relativistic transport model [20, 39–41] showed that
these data are consistent with the predictions of chiral
perturbation theory that K+ feels a weak repulsive
potential and K− feels a strong attractive potential
in a nuclear medium (respectively, of about 20 and
−110 MeV at normal nuclear-matter density). This
is similar to the findings of Cassing et al. [42].

Of special question is the validity of extrapolation
of “empirical” kaon and antikaon dispersion relations
extracted in [20, 39–42] from densities of (2–3)ρ0 to
the density of ordinary nuclei. This can be clarified
from the study of subthreshold K+ and K− produc-
tion in proton-induced reactions. The advantage of
these reactions is that possible kaon and antikaon
PH
mass changes (up to 5% and 20% for K+ and K−,
respectively), although smaller than those in heavy-
ion collisions, can be better controlled owing to their
simpler dynamics compared to the case of nucleus–
nucleus interactions. Therefore, information obtained
from proton-induced reactions will supplement that
deduced from heavy-ion collision studies and provide
an independent test of theoretical predictions that
precursor phenomena of chiral-symmetry restoration
should be observable even at normal nuclear-matter
density.

Another, very important piece of information that
can be extracted from the study of K+- and K−-
meson production in pA collisions at subthreshold
incident energies concerns such intrinsic properties of
target nuclei as Fermi motion and high-momentum
components of the nuclear wave function.

Inclusive K+ production in proton–nucleus re-
actions at bombarding energies less than threshold
energies in a collision of free nucleons has been
extensively studied both experimentally and theoret-
ically in recent years [43–55]. This phenomenon is
under study presently at the accelerators COSY–
Jülich [56] and CELSIUS [57], as well as at the
ITEP proton synchrotron [58, 59]. Up to now, there
have been, however, no data on subthreshold K−

production in proton–nucleus collisions. Recently,
such experimental data have been obtained at the
ITEP proton synchrotron [60]. The main goal of
the present work is to analyze these data within the
spectral-function approach. Here, we present the
analysis of the first experiment [60] on subthresh-
old K− production on Be and Cu target nuclei by
protons. Some preliminary results of this analysis
were reported in [60]. It should be noted that the
investigation of inclusive and exclusive subthreshold
K− production in pA interactions is planned in the
near future at the accelerator COSY–Jülich [56].

In Section 2, we give a review of the spectral-
function approach employed, as well as the parametri-
zations for the elementary antikaon-production cross
sections. In Section 3, we present a detailed compar-
ison of our calculations with the data [60], as well
as our predictions for the invariant cross sections
for “soft” K− production on 9Be target nucleus,
which might be measured at, for example, the Cooler
Synchrotron COSY–Jülich. Finally, the results of
this study are summarized in Section 4.

2. THE MODEL AND INPUTS

2.1. Direct K−-Production Mechanism

Apart from participating in elastic scattering, an
incident proton can produce K− directly in the first
inelastic pN collision due to nucleon Fermi motion.
YSICS OF ATOMIC NUCLEI Vol. 64 No. 11 2001
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Since we are interested in the few-GeV region (up to
3 GeV), we have taken into account [61] the following
elementary process having the lowest free production
threshold (2.99 GeV for kinematical conditions of
the experiment [60] in which the rather “hard” K−

mesons with a momentum of 1.28 GeV/c at the lab-
oratory angle of 10.5◦ have been detected):

p + N → N + N + K + K−, (1)

where K stands for K+ or K0 for the specific isospin
channel. In the following calculations, we will include
the medium modification of the final hadrons (nucle-
ons, kaon, and antikaon) participating in the produc-
tion process (1) by using their in-mediummasses m∗

h
determined below. The kaon and antikaon masses in
the medium, m∗

K±, can be obtained from the mean-
field approximation to the effective chiral Lagrangian
[27, 62, 63]; i.e.,

m∗
K±(ρN ) ≈ mK

(
1 − ΣKN

2f2m2
K

ρS ± 3
8f2mK

ρN

)
,

(2)

where mK is the rest mass of a kaon in free space,
f = 93 MeV is the pion decay constant, and ΣKN

is the KN sigma term depending on the strangeness
content of a nucleon and reflecting the explicit chiral
symmetry breaking due to the nonzero strange-quark
mass. It determines the strength of the attractive
scalar potential for kaon and antikaon. The scalar
and nuclear densities are denoted by ρS and ρN , re-
spectively. Since the exact value of ΣKN and the size
of higher order corrections leading to different scalar
attractions for kaon and antikaon are not very well
known, the quantity ΣKN was treated in [20, 39] as
a free parameter that was adjusted separately for K+

and K− to achieve, within the relativistic transport
model, good fits to the experimental K+ and K−

spectra [34, 35] in heavy-ion collisions. Using the
values of the “empirical kaon and antikaon sigma
terms” obtained in [20, 39] and considering that ρS ≈
0.9ρN at ρN ≤ ρ0 [27], we can readily rewrite (2) in
the form

m∗
K±(ρN ) = mK + UK±(ρN ), (3)

where theK± optical potentialsUK±(ρN ) are propor-
tional to the nuclear density ρN ,

UK±(ρN ) = U0
K±

ρN
ρ0

(4)

with
U0
K+ = 22 MeV, U0

K− = −126 MeV. (5)

To explore the sensitivity of the K− spectra from the
primary channel (1) in proton–nucleus reactions to
the K± potentials in nuclear matter, we will ignore
both these potentials in our calculations and also
adopt, instead of the antikaon potential (4), (5), the
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 11 20
K− potential extracted [17] from the analysis of kaon
atomic data, viz.,

UK−(ρN ) (6)

= −129

[
−0.15 + 1.7

(
ρN
ρ0

)0.25
]

ρN
ρ0

MeV.

It is easily seen that the potential (6) amounts to
–200 MeV in the nuclear interior. According to
the predictions of the quark–meson coupling model
by Tsushima et al. [13], one has m∗

K0 = m∗
K+ in

symmetric nuclear matter. The effective mass m∗
N of

secondary nucleons produced in reaction (1) can be
expressed via the scalar mean-field potential UN (ρN )
as [53]

m∗
N (ρN ) = mN + UN (ρN ), (7)

where mN is the bare nucleon mass. The potential
UN (ρN ) was assumed to be proportional to the nu-
clear density [21],

UN (ρN ) = U0
N

ρN
ρ0

, (8)

with the depth at nuclear saturation density ρ0 rele-
vant [53] to the momentum range of outgoing nucle-
ons for the most part of kinematical conditions of the
experiment [60] on subthreshold antikaon production
being

U0
N = −34 MeV. (9)

To see the sensitivity of antikaon-production cross
sections from the one-step process (1) to the effective
nucleon potential, we will both neglect this potential
in the following calculations and employ, in them, the
potential of the type (8) with the depth [21, 52]

U0
N = −50 MeV. (10)

The total energies E
′
h of secondary hadrons inside the

nuclear medium can be expressed in terms of their
effective masses m∗

h defined above and in-medium
momenta p

′
h as in the free-particle case, namely,

E
′
h =

√
p′2
h + m∗2

h . (11)

It should be pointed out that the use of the quasi-
particle dispersion relation (11) with the momentum-
independent scalar potentials (4)–(6) entering into
the in-mediummasses of finalK± mesons is very well
justified for the K+ meson [23], whereas, in the case
of the K− meson, it is valid only for small momenta.
However, for reasons of simplicity, as well as in view
of substantial uncertainties in the model K− opti-
cal potential (see above), we will neglect the explicit
momentum dependence of the antikaon mean-field
potential in the present study.

Let us now specify the energies and momenta of
the incoming proton inside the target nucleus, as well
01
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as of the struck target nucleon participating in the
first-chance pN collision (1). The total energyE

′
0 and

momentum p
′
0 of the incident proton inside the target

nucleus are related to E0 and p0 outside the nucleus
by the equations [53]

E
′
0 = E0 −

∆p2

2MA
, (12)

p
′
0 = p0 − ∆p, (13)

where

∆p =
E0V0
p0

p0

|p0|
. (14)

Here, MA is the mass of the initial target nucleus,
and V0 is the nuclear optical potential that a proton
impinging on a nucleus at the kinetic energy ε0 of
about a few GeV feels in the interior of the nucleus
(V0 ≈ 40 MeV). Further, let Et and pt be the total
energy and momentum of the struck target nucleon
N just before the collision process (1). Taking into
account the respective recoil and excitation energies
of the residual (A− 1) system, one has [52, 53]

Et = MA −
√

(−pt)2 + (MA −mN + E)2, (15)

where E is the removal energy of the struck target
nucleon. After specifying the energies and momenta
of all particles involved in the K−-production pro-
cess (1), we can write the corresponding energy- and
momentum-conservation laws

E
′
0 + Et = E

′
N1

+ E
′
N2

+ E
′
K + E

′
K− , (16)

p
′
0 + pt = p

′
N1

+ p
′
N2

+ p
′
K + p

′
K− . (17)

From (16) and (17), we obtain the squared invariant
energy available in the first-chance pN collision:

s = (E
′
0 + Et)2 − (p

′
0 + pt)2. (18)

On the other hand, according to (16) and (17), one
gets

s = (E
′
N1

+ E
′
N2

+ E
′
K + E

′
K−)2 (19)

− (p
′
N1

+ p
′
N2

+ p
′
K + p

′
K−)2.

With use of (11), this leads to the following expression
for the in-medium reaction threshold:√

s∗thr = 2m∗
N + m∗

K+ + m∗
K− (20)

=
√
sthr + 2UN + UK+ + UK−,

where
√
sthr = 2(mN + mK) is the threshold energy

in free space and the effective potentials are given
by (4)–(6) and (8)–(10). It is clear from (20) that
the threshold for antikaon production in the reaction
pN → NNKK− is lowered when the in-medium
masses are used. For example, the reduction of the
K− threshold in the nuclear interior will be 172 and
204 MeV, respectively, for the potentials (5), (9) and
(5), (10). This will strongly enhance the possibility
PH
of K− production in first-chance pN collisions at
subthreshold beam energies.

Finally, neglecting K− production via resonances
in pN collisions1) [16] and taking into consideration
antikaon final-state absorption, we can represent the
invariant inclusive cross section for the production on
nuclei of K− mesons with the total energy EK− and
momentum pK− from the primary proton-induced
reaction channel (1) as (see also [52, 53])

EK−
dσ

(prim)
pA→K−X(p0)

dpK−
= A

∫
ρ(r)dr (21)

× exp


−µ(p0)

0∫

−∞

ρ(r + xΩ0)dx− µ(pK−)

×
+∞∫

0

ρ(r + xΩK−)dx




×
〈
E

′
K−

dσpN→NNKK−[p
′
0,p

′
K− , ρ(r)]

dp′
K−

〉
,

where〈
E

′
K−

dσpN→NNKK−[p
′
0,p

′
K− , ρ(r)]

dp′
K−

〉
(22)

=
∫ ∫

P (pt, E)dptdE

×
[
E

′
K−

dσpN→NNKK−[
√
s,p

′
K− , ρ(r)]

dp′
K−

]
;

µ(p0) = σinpp(p0)Z + σinpn(p0)N, (23)

µ(pK−) = σtotK−p(pK−)Z + σtotK−n(pK−)N.

Here, E
′
K−dσpN→NNKK−[

√
s,p

′
K− , ρ(r)]/dp

′
K− is

the “in-medium” invariant inclusive cross section for
K− production in reaction (1); ρ(r) and P (pt, E) are,
respectively, the density and nucleon spectral function
normalized to unity; pt and E are, respectively, the
internal momentum and removal energy of the struck

1)It should be pointed out that, in the threshold energy region,
K− mesons can be produced in these collisions also by the
decay mainly of the φ meson as an intermediate state [64,
65]. Thus, the resonant(φ meson)-to-nonresonant K−-
production cross-section ratio in pp reactions measured re-
cently by the DISTO collaboration at SATURNE [65] at a
beam energy of 2.85 GeV is equal to 0.82. However, in
view of the complete lack of other data in the literature for
φ-meson production in pp interactions at energies close to
the threshold needed for accurately estimating the resonant
contribution to K− production in pA reactions, it is natural
to assume, in calculating the K− yields in pA collisions from
primary channel (1), that the antikaons are produced directly
in this channel.
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target nucleon just before the collision; σinpN and
σtotK−N are, respectively, the inelastic and total cross
sections of free pN and K−N interactions; Z and N
are, respectively, the numbers of protons and neutrons
in the target nucleus (A = N + Z); Ω0 = p0/p0 (p0

is the beam momentum) and ΩK− = pK−/pK− ; and
s is the pN center-of-mass energy squared. The
expression for s is given above by formula (18). In
(21), it is assumed that the K−-meson production
cross sections in pp and pn interactions are the same
[29, 61, 66] and that any difference between the proton
and the neutron spectral functions is disregarded
[52, 53]. In addition, it is suggested that the way
of the produced antikaon out of the nucleus is not
disturbed by the K− optical potential and K−N

elastic rescatterings, as well as that σtotK−N (p
′
K−) ≈

σtotK−N (pK−). Such approximations are allowed in
calculating the K−-production cross sections for
kinematics of the experiment reported in [60]. As
a result, the in-medium antikaon momentum p

′
K−

is assumed to be parallel to the vacuum momentum
pK− and the relation between them is given by√

p′2
K− + m∗2

K− =
√

p2
K− + m2

K . (24)

In our approach, the invariant inclusive cross sec-
tion for K− production in the elementary process (1)
has been described by the four-body phase-space cal-
culations normalized to the corresponding total cross
section [52]:

E
′
K−

dσpN→NNKK−[
√
s,p

′
K− , ρ(r)]

dp′
K−

(25)

= σpN→NNKK−(
√
s,
√

s∗th)f4(s,p
′
K−),

f4(s,p
′
K−) = I3(sNNK ,m∗

K+ ,m∗
N ,m∗

N ) (26)

× [2I4(s,m∗
K+,m∗

K− ,m∗
N ,m∗

N )]−1 ,
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I3(s,m∗
K+,m∗

N ,m∗
N ) =

(π
2

)2
(27)

×

(
√
s−m∗

K+ )2∫

4m∗2
N

λ(sNN ,m∗2
N ,m∗2

N )
sNN

×
λ(s, sNN ,m∗2

K+)
s

dsNN ,

I4(s,m∗
K+ ,m∗

K−,m∗
N ,m∗

N ) (28)

=
π

2

(
√
s−m∗

K+−m∗
K− )2∫

4m∗2
N

λ(sNN ,m∗2
N ,m∗2

N )
sNN

× I3(s,m∗
K− ,

√
sNN ,m∗

K+)dsNN ,

λ(x, y, z) =
√[

x− (
√
y +

√
z)2
][
x− (

√
y −

√
z)2
]
,

(29)

sNNK = s + m∗2
K− − 2(E

′
0 + Et)E

′
K− (30)

+ 2(p
′
0 + pt)p

′
K− .

Here, σpN→NNKK−(
√
s,
√

s∗th) is the “in-medium”
total cross section for K− production in reaction (1).
This cross section is equivalent [28, 42, 53] to the vac-
uumcross section σpN→NNKK−(

√
s,
√
sthr) in which

the free threshold
√
sthr is replaced by the effective

threshold
√

s∗thr as given by Eq. (20). For the free to-
tal cross section σpN→NNKK−(

√
s,
√
sthr), we have

used the parametrization2) suggested in [61, 66] that
has been corrected for the new data point (500 pb) for
pp → ppK+K− reaction from the COSY-11 collabo-
ration at COSY–Jülich [67] taken at 6.1-MeV excess
energy, viz.,
σpp→ppK+K−(
√
s,
√
sth) =




0.098
(

1 − sthr
s

)2.23
[mb] for 0 <

√
s−√

sthr ≤ 0.1 GeV

F

(
s

sthr

)
[mb] for

√
s−√

sthr > 0.1 GeV,

(31)
where

F (x) =
(

1 − 1
x

)3

[2.8F1(x) (32)

+ 7.7F2(x)] + 3.9F3(x)
and

F1(x) = (1 + 1/
√
x) ln x− 4(1 − 1/

√
x), (33)

F2(x) = 1 − (1/
√
x)(1 + lnx/2),
F3(x) =
(
x− 1
x2

)3.5
.

2)It should be mentioned that this parametrization was pro-
posed for the inclusive pp → K−X cross section, which is
assumed to be the same as that for pp → ppK+K− at beam
energies of interest [61, 66].
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Fig. 1. Total antikaon-production cross section in
proton–proton collisions as a function of the available
energy above the threshold. The notation is explained in
the main body of the text.

A comparison of the results of our calculations by
(31) (solid curve) with the experimental data close
to the threshold for pp → ppK+K− reaction from
the installation COSY-11 [67] (open square), from
the DISTO collaboration at SATURNE [65] (full
square), and with the K− inclusive production cross
sections at higher energies (open circles) [61, 66] is
shown in Fig. 1. In this figure, we also show the
predictions from the current parametrization (dashed
curve) employed in the recent study [23] of the an-
tikaon production in proton–nucleus collisions. It is
seen that our parametrization (31) accounts well for
the K− cross sections measured in the experiments
[65, 67] near the production threshold, whereas the
one from [23] underestimates the lowest data point by
a factor of about 10.

For K−-production calculations in the case of
9Be and 63Cu target nuclei reported here, we have
employed, for the nuclear density ρ(r), respectively,
the harmonic-oscillator and a two-parameter Fermi
density distribution,

ρ(r) = ρN (r)/A (34)

=
(b/π)3/2

A/4

{
1 +

[
A− 4

6

]
br2
}

exp (−br2),

ρ(r) = ρ0

[
1 + exp

(
r −R

a

)]−1
, (35)

with b = 0.329 fm−2 [60], R = 4.20 fm, and a =
0.55 fm [68].

Another very important ingredient for the cal-
culation of the K−-production cross sections in
PH
proton–nucleus reactions in the subthreshold-energy
regime—the nucleon spectral function3) P (pt, E)
(which represents the probability of finding a nucleon
with momentum pt and removal energy E in the
nucleus)—was taken from [52, 53] for a 9Be target
nucleus; for 63Cu, it is assumed to be identical to
that for 208Pb [71]. The latter was taken from [72].
The adopted spectral function contains information
on both the single-particle motion of intranuclear
nucleons (at low pt andE) and short-range nucleon–
nucleon correlations (at high pt and E). The descrip-
tion of its structure at high values of the nucleon mo-
mentum (up to∼ 0.8 GeV/c) and removal energy (up
to ∼ 0.5 GeV) relevant to the kinematical conditions
of the experiment [60] (see below) is based on the
convolution model [71]. It should be noted that, in
specific cases (see, for example, [73]), the analysis
of hadron production on nuclei requires knowledge
of the nucleon spectral function at larger values of
three-momentum and removal energy. Such an
extrapolated spectral function was obtained in [73].

Let us now simplify expression (21) for the in-
variant differential cross section forK− production in
pA collisions from the one-step process. Since we
are interested in the spectra of emitted antikaons at
forward laboratory angles, i.e., when ΩK− ≈ Ω0, we
have

EK−
dσ

(prim)
pA→K−X(p0)

dpK−
(36)

= 2πA

+∞∫

0

r⊥dr⊥

+∞∫

−∞

dzρ(
√

r2⊥ + z2)

× exp [−µ(p0, pK−; r⊥, z)]

×
〈
E

′
K−

dσpN→NNKK−[p
′
0,p

′
K− , ρ(

√
r2⊥ + z2)]

dp′
K−

〉
,

where
µ(p0, pK−; r⊥, z) = µ(p0)t(r⊥, z) (37)

+ µ(pK−)t(r⊥,−z)

and

t(r⊥, z) =

z∫

−∞

ρ(
√

r2⊥ + x2)dx. (38)

The quantities µ(p0) and µ(pK−) entering into (37)
are defined above by formula (23). In the case of

3)It should be noticed that the full energy–momentum distri-
bution of the struck target nucleonswas not taken previously
into account [23, 58, 69, 70] in analyzing the subthreshold
and near-threshold antikaon production in proton–nucleus
reactions.
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the harmonic-oscillator density distribution (34), the
integral in (38) has the simple form

t(r⊥, z) =
(

2b
πA

){
1 +

[
A− 4

6

]
br2⊥ (39)

+
[
A− 4

12

]
+ f(z) − f(−z)

}
exp (−br2⊥),

f(z) = Θ(z)
{[

1 +
(
A− 4

6

)
br2⊥ (40)

+
(
A− 4

12

)]
erf(z

√
b)

−
(
A− 4

6

)
z
√
b√
π

exp (−bz2)

}
,

Θ(z) =
z + |z|

2|z| , erf(x) =
2√
π

x∫

0

exp (−t2)dt.

Considering that, for K− mesons with a momen-
tum of 1.28 GeV/c, the elementary cross section is
σtotK−N ≈ 30 mb [61] and that σinpN ≈ 30 mb [52] for
the beam energy range of interest, we have

µ(p0) = µ(pK−) = µ = 30A mb. (41)

Then, expression (37) is reduced to the simpler form
µ(p0, pK− ; r⊥, z) = µt(r⊥), (42)

t(r⊥) = t(r⊥, z) + t(r⊥,−z) (43)

= 2

+∞∫

0

ρ(
√

r2⊥ + x2)dx.

For the harmonic-oscillator density distribution (34),
the quantity t(r⊥), in view of Eqs. (39) and (40), has
the simple form

t(r⊥) =
(

4b
πA

){
1 +

[
A− 4

6

]
br2⊥ (44)

+
[
A− 4

12

]
} exp (−br2⊥).

Let us now consider the two-step K−-production
mechanism.

3. TWO-STEP K−-PRODUCTION
MECHANISM

Kinematical considerations show that, in the bom-
barding energy range of our interest (≤3.0 GeV), not
only may the following two-step production process
contribute to K− production in pA interactions, but
it is even dominant [23, 69] at subthreshold energies.
In the first inelastic collision with an intranuclear
nucleon, an incident proton can also produce a pion
through the elementary reaction

p + N1 → N + N + π. (45)
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Then, the intermediate pion, which is assumed to be
on-shell, produces an antikaon on a nucleon of the
target nucleus via the elementary subprocess with
the lowest free production threshold (1.98 GeV for
kinematics of the experiment reported in [60]),4)

π + N2 → N + K + K−, (46)

provided that this subprocess is energetically pos-
sible. To allow for the influence of the nuclear
environment on the secondary K−-production pro-
cess (46), it is natural to use, in calculations of the
K−-production cross section from this process, the
same in-medium modifications of the masses of final
hadrons (kaon, antikaon, and nucleon) as those, (3)
and (7), for hadrons from primary pN collisions due
to the corresponding mean-field potentials UK±(ρN )
and UN (ρN ). For the sake of numerical simplicity,
these potentials are assumed here to be density-
independent with depths (5) and (9) taken at the
nuclear saturation density. Evidently, this enables
us to obtain an upper limit on the respective cross
sections. Moreover, in order to reproduce the high-
momentum tails of the pion spectra at forward labo-
ratory angles from reaction (45), which are responsi-
ble for K− production through the πN → NKK−

channel, it is necessary to take into account, in
calculating these spectra, as was shown in [53], the
modification of the mass of each low-energy nucleon
produced together with a high-energy pion by the
effective potential (9). But, since we will employ (see
below), in our calculations of the antikaon production
from secondary process (46), the pion spectra from
proton–nucleus interactions also measured in the
experiment reported in [60] instead of the theoretical
ones, this modification will be automatically included.
Then, taking into account the antikaon final-state
absorption and using the results given in [52, 53],
we easily get the following expression for the K−-
production cross section for pA reactions from the
secondary pion-induced reaction channel (46), which
includes the medium effects under consideration on
the same footing as that employed in the calculation
of theK−-production cross section (21) from primary
proton-induced reaction channel (1):

EK−
dσ

(sec)
pA→K−X(p0)

dpK−
(47)

4)It is important to note that the elementary processes
πN → NπKK− with one pion in final states, as our cal-
culations with the total cross sections of these processes
taken from [20] showed, play a minor role in subthreshold
antikaon production in pA reactions for kinematics of the
experiment reported in [60].
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=
∑

π=π+,π0,π−

∫

4π

dΩπ

plimπ (ϑπ)∫

pabs
π

p2πdpπ
dσ

(prim)
pA→πX(p0)

dpπ

×
IV [A,σinpN (p0), σtotπN (pπ), σtotK−N (pK−), ϑπ, ϑK− ]

I
′
V [A,σinpN (p0), σtotπN (pπ), ϑπ]
PH
×
∫ ∫

P (p
′
t, E

′
)dp

′
tdE

′

×
[
E

′
K−

dσπN→K−X(
√
s1,p

′
K−)

dp′
K−

]
,

where
IV [A,σinpN (p0), σtotπN (pπ), σtotK−N (pK−), ϑπ, ϑK− ] = A2

∫ ∫
drdr1Θ(x‖)δ(2)(x⊥)ρ(r)ρ(r1) (48)

× exp


−µ(p0)

0∫

−∞

ρ(r1 + x′Ω0)dx′ − µ(pπ)

x‖∫

0

ρ(r1 + x′Ωπ)dx′


 exp


−µ(pK−)

∞∫

0

ρ(r + x′ΩK−)dx′


 ,

I
′
V [A,σinpN (p0), σtotπN (pπ), ϑπ] (49)

= A

∫
ρ(r)dr exp


−µ(p0)

0∫

−∞

ρ(r + xΩ0)dx− µ(pπ)

∞∫

0

ρ(r + xΩπ)dx


 ,
r− r1 = x‖Ωπ + x⊥, (50)

Ωπ = pπ/pπ,
cos ϑπ = Ω0Ωπ, cos ϑK− = Ω0ΩK−;

µ(pπ) = (A/2)[σtotπp (pπ) + σtotπn (pπ)],

Θ(x‖) = (x‖ + |x‖|)/2|x‖|,

E
′
K−

dσπN→K−X(
√
s1,p

′
K−)

dp′
K−

(51)

=
Z

A
E

′
K−

dσπp→K−X(
√
s1,p

′
K−)

dp′
K−
+
N

A
E

′
K−

dσπn→K−X(
√
s1,p

′
K−)

dp′
K−

,

s1 = (Eπ + E
′
t)
2 − (pπ + p

′
t)
2, (52)

E
′
t = mN − E

′ − Crec, (53)
plimπ (ϑπ) =
βAp0 cos ϑπ + (E0 + MA)

√
β2A − 4m2

π(sA + p20 sin2 ϑπ)

2(sA + p20 sin2 ϑπ)
, (54)
βA = sA + m2
π −M2

A+1, sA = (E0 + MA)2 − p20.
(55)

Here, dσ(prim)
pA→πX(p0)/dpπ are the inclusive differential

cross sections for pion production on nuclei from
the primary proton-induced reaction channel (45);
E

′
K−dσπp→K−X/dp

′
K− (E

′
K−dσπn→K−X/dp

′
K−) is

the in-medium inclusive invariant differential cross
section for K− production in πp (πn) collisions via
the subprocess in (46); σtotπN (pπ) is the total cross
section of the free πN interaction; pπ and Eπ are,
respectively, the momentum and total energy of a
pion; pabsπ is the absolute threshold momentum for
antikaon production on the residual nucleus by an
intermediate pion (pabsπ ≈ 1.88 GeV/c for the produc-
tion of K− mesons with a momentum of 1.28 GeV/c
at a laboratory angle of 10.5◦); and plimπ (ϑπ) is the
kinematical limit for pion production at the laboratory
angle ϑπ from proton–nucleus collisions. The quan-
tities µ(p0) and µ(pK−) are defined above by (23).
Finally, the quantity Crec in (53) takes properly into
account the recoil energies of residual nuclei in the
two-step production process (Crec ≈ 3 and 16 MeV
for the initial 9Be target nucleus and Crec ≈ 0.4 and
2 MeV for the 63Cu target nucleus in the case where,
in (47), use is made of uncorrelated and correlated
YSICS OF ATOMIC NUCLEI Vol. 64 No. 11 2001
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parts of the nucleon spectral function, respectively).
The in-medium momentum p

′
K− of the antikaon

produced in the secondary πN → NKK− channel
is related to the free momentum pK− by Eq. (24),
in which, according to the aforesaid, one has to set
m∗
K− = mK + U0

K− with U0
K− = −126 MeV.

Because we are interested in the high-momentum

parts of the pion spectra dσ
(prim)
pA→πX(p0)/dpπ at for-

ward laboratory angles, as was noted above, and
since the high-momentum tails of the experimental

pion spectra dσ
(expt)
pA→πX(p0)/dpπ at these angles are

populated mainly by the pions from first-chance pN
collisions (45) [53], we will employ, in our calcula-
tions of the K− cross sections from the two-step
process (45), (46), the experimental pion yields at
small angles and for highmomenta. In the case of 9Be
and 63Cu target nuclei, these yields were measured
in the experiment reported in [60] at a laboratory
angle of 10.5◦ for incident proton energies of 1.75 and
2.25 GeV and the results of measurements, with the
aid of those from [74, 75], were parametrized as [in
GeV mb/(GeV/c)3] [60, 76]

Eπ+

dσ
(expt)
p9Be→π+X

(p0)

dpπ+
= 220(1 − xRF )3+3p

2
⊥ , (56)

Eπ−
dσ

(expt)
p9Be→π−X(p0)

dpπ−
= 130(1 − xRF )3+5p

2
⊥ ;

Eπ+

dσ
(expt)
p63Cu→π+X

(p0)

dpπ+

(57)

= 3650(xRF )4(1 − xRF )2+2x
R
F+3p

2
⊥ ,

Eπ−
dσ

(expt)
p63Cu→π−X(p0)

dpπ−

= 2460(xRF )4(1 − xRF )2+2.2x
R
F+5p

2
⊥ ,

where the radial scaling variable xRF is given by

xRF =
∗
p/

∗
pmax, (58)

∗
p =

√
∗
p
2

L + p2⊥,
∗
pmax=

1
2
√
sA

λ(sA,m2
π,M

2
A+1),

and
∗
pL and p⊥ are the longitudinal and transverse

momenta of the pion in the pA c.m. frame, respec-

tively; and
∗
pmax is the maximum value of

∗
p allowed by

the kinematics. The quantity sA is defined above by
(55). The π0 spectrum also needed for our calcula-
tions can be approximately expressed in terms of the
π± spectra as

Eπ0

dσ
(expt)
pA→π0X

(p0)

dpπ0

(59)
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Parameters in the approximation of the partial cross sec-
tions for the production of K− mesons in πN collisions

Reaction A, mb B i j

π+ + n → p + K+ + K− 0.1757 0.4938 1 2

π− + p → n + K+ + K− 0.1800 0.0549 2 3

π− + p → p + K0 + K− 0.0576 0.0549 2 3

π− + n → n + K0 + K− 0.0647 0.2910 1 2

=
1
2


Eπ+

dσ
(expt)
pA→π+X

(p0)

dpπ+

+ Eπ−
dσ

(expt)
pA→π−X(p0)

dpπ−


 .

In our method, the Lorentz-invariant inclusive
cross section for K− production in πN collisions
(46) has been described by the three-body phase-
space calculations normalized to the respective “in-
medium” total cross section σπN→NKK− ×(√

s1,
√

s∗1,thr

)
. According to [77], one has

E
′
K−

dσπN→NKK−(
√
s1,p

′
K−)

dp′
K−

(60)

=
π

4

σπN→NKK−(
√
s1,
√

s∗1,thr)

I3(s1,m∗
K+,m∗

K− ,m∗
N )

λ(sKN ,m∗2
K+,m∗2

N )
sKN

,

sKN = s1 + m∗2
K− − 2(Eπ + E

′
t)E

′
K− (61)

+ 2(pπ + p
′
t)p

′
K− ,

where√
s∗1,thr =

√
s1,thr + U0

N + U0
K+ + U0

K− , (62)

where √
s1,thr = mN + 2mK is the vacuum thresh-

old energy and the quantities I3 and λ are defined
by the (27) and (29), respectively. Like above,
we assume that the “in-medium” cross section
σπN→NKK−(

√
s1,
√

s∗1,thr) is equivalent to the vac-

uum cross section σπN→NKK−(
√
s1,

√
s1,thr) in

which the free threshold√
s1,thr is replaced by the ef-

fective threshold
√

s∗1,thr as given by (62). For the free

total cross section σπN→NKK−(
√
s1,

√
s1,thr), we

have used the following parametrization suggested
in [77]:

σπN→NKK−(
√
s1,

√
s1,thr) (63)

=
A[(

√
s1 −√

s1,thr)/GeV]i

B + [(
√
s1 −

√
s1,thr)/GeV]j

,

where the constants A, B, i, and j are given in the
table.

In order to obtain the total cross sections for
the reactions π0p → pK+K−, π0n → nK+K−, and
01
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π0n → pK0K−, where data are not available, we
have employed isospin considerations. They have
shown that there exist the following relations5) be-
tween the cross sections σπN→NKK−:

2σπ−p→nK+K− + σπ−n→nK0K− + σπ−p→pK0K−

(64)

= 2[2σπ0p→pK+K− + σπ0n→pK0K−],

σπ0p→pK+K− = σπ0n→nK+K− , (65)

and
σπ0n→pK0K− ≈ σπ−p→nK+K−. (66)

Using (64)–(66), one gets
σπ0p→pK+K− = σπ0n→nK+K− (67)

=
1
4
(
σπ−n→nK0K− + σπ−p→pK0K−

)
.

Within the representation (60), the inclusive invariant
differential cross sections E

′
K−dσπp→K−X/dp

′
K−

and E
′
K−dσπn→K−X/dp

′
K− for antikaon production

in πp and πn interactions appearing in (51) can be
written as

E
′
K−

dσπ+p→K−X(
√
s1,p

′
K−)

dp′
K−

= 0, (68)

E
′
K−

dσπ+n→K−X(
√
s1,p

′
K−)

dp′
K−

= E
′
K−

dσπ+n→pK+K−(
√
s1,p

′
K−)

dp′
K−

;

E
′
K−

dσπ0p→K−X(
√
s1,p

′
K−)

dp′
K−

(69)

= E
′
K−

dσπ0p→pK+K−(
√
s1,p

′
K−)

dp′
K−

,

E
′
K−

dσπ0n→K−X(
√
s1,p

′
K−)

dp′
K−

= E
′
K−

dσπ0n→nK+K−(
√
s1,p

′
K−)

dp′
K−

+ E
′
K−

dσπ0n→pK0K−(
√
s1,p

′
K−)

dp′
K−

;

E
′
K−

dσπ−p→K−X(
√
s1,p

′
K−)

dp′
K−

(70)

= E
′
K−

dσπ−p→nK+K−(
√
s1,p

′
K−)

dp′
K−

5)It should be noted that these relations are in line with those
between the cross sections σπN→NKK− derived in [78] by
employing the K∗-resonance exchange model.
PH
+ E
′
K−

dσπ−p→pK0K−(
√
s1,p

′
K−)

dp′
K−

,

E
′
K−

dσπ−n→K−X(
√
s1,p

′
K−)

dp′
K−

= E
′
K−

dσπ−n→nK0K−(
√
s1,p

′
K−)

dp′
K−

.

Let us now simplify expression (47) describing the
invariant differential cross section for K− production
in pA collisions via the two-step process. Consid-
ering that the main contribution to the cross section
for antikaon production at forward laboratory angles
comes from fast pions moving in the beam direction
and that the πN total cross section σtotπN in the energy
region of interest is approximately constant with a
magnitude of 〈σtotπN 〉 ≈ 35 mb [52], we can recast this
expression into the form

EK−
dσ

(sec)
pA→K−X(p0)

dpK−
(71)

=
IV [A,σinpN (p0), 〈σtotπN 〉, σtotK−N (pK−), 0◦, 0◦]

I
′
V [A,σinpN (p0), 〈σtotπN 〉, 0◦]

×
∑

π=π+,π0,π−

∫

4π

dΩπ

plimπ (ϑπ)∫

pabs
π

p2πdpπ
dσ

(prim)
pA→πX(p0)

dpπ

×
∫ ∫

P (p
′
t, E

′
)dp

′
tdE

′

×
[
E

′
K−

dσπN→K−X(
√
s1,p

′
K−)

dp′
K−

]
,

where, according to (52),

s1 = (Eπ + E
′
t)
2 − (pπΩ0 + p

′
t)
2. (72)

For a nucleus of radius R = 1.3A1/3 fm and with a
uniform nucleon density, the expressions for
IV [A,σinpN (p0), 〈σtotπN 〉, σtotK−N (pK−), 0◦, 0◦] and

I
′
V [A,σinpN (p0), 〈σtotπN 〉, 0◦] are simplified to become

IV [A,σinpN (p0), 〈σtotπN 〉, σtotK−N (pK−), 00, 00] (73)

=
9A2

2πR2(a2 − a3)
[I(a1, a3) − I(a1, a2)] ,

I(a1, a) =
1

(a1 − a)

{
1
a2
[
1 − (1 + a)e−a

]
(74)

− 1
a21

[
1 − (1 + a1)e−a1

]}
;

I
′
V [A,σinpN (p0), 〈σtotπN 〉, 0◦] =

3A
(a3 − a2)a22

(75)
YSICS OF ATOMIC NUCLEI Vol. 64 No. 11 2001



ANTIKAON PRODUCTION AND MEDIUM EFFECTS 1941
×
{

1 − (1+a2)e−a2−
(
a2
a3

)2 [
1 − (1+a3)e−a3

]}
,

where a1 = 3µ(pK−)/2πR2, a2 = 3µ(p0)/2πR2, and
a3 = 3A〈σtotπN 〉/2πR2. In the case of a1 = a2 relevant
to the kinematical conditions of the experiment re-
ported in [60] [see (41)], the quantity I(a1, a2) enter-
ing into (73) can be represented, in view of (74), in the
simpler form

I(a1, a2 = a1) = I(a1) (76)

=
2
a31

[
1 − (1 + a1 +

a21
2

)e−a1
]
.

Finally, it is interesting to note that, in the case
of a1 = a2 = a3, which is realistic enough as well,
expression (73) can be reduced to a substantially
simpler form, viz.,

IV [A,σinpN (p0), 〈σtotπN 〉, σtotK−N (pK−), 0◦, 0◦] (77)

=
9A2

4πa1R2

[
3I(a1) − e−a1

]
,

where the quantity I(a1) is defined above by (76).
Let us now discuss the results of our calculations

for antikaon production in pBe and pCu interactions
in the framework of the model outlined above.

4. RESULTS AND DISCUSSION

At first, we will concentrate on the results of our
calculations for the direct K−-production mecha-
nism.

Figure 2 shows a comparison of the invariant cross
section calculated by (36), (41)–(44) for the produc-
tion of K− mesons with a momentum of 1.28 GeV/c
at a laboratory angle of 10.5◦ from the primary pN →
NNKK− channel with the data from the experiment
reported in [60] for p + 9Be → K− + X reaction at
various bombarding energies. One can see the fol-
lowing:

(i) Our model for the primary antikaon produc-
tion process based on nucleon spectral function fails
completely [especially at “low” beam energies (dash-
dotted curve)] to reproduce the experimental data at
subthreshold beam energies (at energies ≤ 2.99 GeV
for the kinematical conditions of the experiment re-
ported in [60]) without allowance for the influence of
the corresponding nuclear mean-field potentials on
the one-step production process (1).

(ii) The simultaneous inclusion of potentials for
final nucleons, kaon, and antikaon (dashed curve with
two dots) leads to an enhancement of the K− yield
by about a factor of 1.6 (3) at “high” (“low”) incident
energies as well as to a reasonable description of the
experimental data, except for the four lowest data
points.
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Fig. 2. Lorentz-invariant cross sections for the
production of K− mesons with a momentum of
1.28 GeV/c at the laboratory angle of 10.5◦ in p + 9Be
reactions as functions of the laboratory kinetic energy
ε0 of the proton. The experimental data (full squares)
were taken from [60]. The curves are our calculation
with the density-dependent potentials. The dashed
curves with one, two, and three dots and the solid
and short-dashed curves represent the results of the
calculations for the primary production process (1) with
the total nucleon spectral function at V0 = 40 MeV,
UN (ρN) = 0, UK+ (ρN) = 0, UK− (ρN) = 0;
V0 = 40 MeV, UN(ρN ) = −34(ρN/ρ0) MeV,
UK+ (ρN) = 22(ρN/ρ0) MeV, UK− (ρN) =
–126(ρN/ρ0) MeV; V0 = 40 MeV, UN (ρN) =
–34(ρN/ρ0) MeV, UK+ (ρN) = 0, UK− (ρN) = 0;
V0 = 40 MeV, UN (ρN ) = –34(ρN/ρ0) MeV,
UK+ (ρN) = 0, UK− (ρN ) = –126(ρN/ρ0) MeV;
and V0 = 40 MeV, UN (ρN) = −50(ρN/ρ0) MeV,
UK+ (ρN) = 0, UK− (ρN) = 0, respectively. The long-
dashed curve denotes the same as the dashed curve with
two dots, but it is assumed in addition that the total
nucleon spectral function is replaced by its correlated
part. The arrow indicates the threshold for the reaction
pN → NNKK− occurring on a free nucleon for the
kinematics under consideration.

(iii) The previous scenario is hardly distinguish-
able from the one employing only the attractive out-
going nucleon effective potential (dashed curve with
three dots), which indicates that the simultaneous
application of kaon and antikaon potentials has no
effect on the K− yield and is mainly governed by the
nucleon mean-field potential.

(iv) Although the K+ and K− potentials are sub-
stantially different in magnitude, the effect of the
K+ potential alone (compare the solid curve and the
01
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dashed curve with two dots) is comparable to that
of the K− potential alone (compare the solid curve
and the dashed curve with three dots) and they act in
opposite directions; namely, the inclusion of the K+

or K− potential alone results in the reduction or the
enhancement of the antikaon yield by a factor of about
1.2 (1.5) at “high” (“low”) beam energies, which are
insufficient to describe the data in case where the
antikaon potential alone is included.

(v) Our calculations including simultaneously
both attractive antikaon (4), (5) and nucleon (8), (9)
effective potentials (solid curve in Fig. 2) reproduce
quite well the experimental data in the energy region6)

ε0 ≥ 2.4 GeV, but they underestimate the data at
lower bombarding energies, as in the cases consid-
ered above with the different scenarios for the in-
medium masses of hadrons produced in the primary
production process (1).7)

(vi) The application of the effective nucleon po-
tential (8), (10) alone (short-dashed curve) leads to
a result that also gives a rather qood description of
the experimental data, except for the three lowest data
points, which means, in view of the aforesaid, that the
determination of theK− potential from the excitation
function for “hard” antikaons appears to be difficult.

(vii) The antikaon yield from the one-step K−-
production mechanism is entirely governed by the
correlated part of the nucleon spectral function only
in the far subthreshold energy region (at bombarding
energies of ε0 ≤ 2.4 GeV), which intimates that in-
ternal nucleon momenta greater than the Fermi mo-
mentum are needed for K− production in the direct
process (1) at the given kinematics and these beam
energies.8)

The results presented in Fig. 2 indicate, as was
also noted above, that the one-step production pro-
cess (1) misses the experimental data in the energy
region far below the free threshold (at beam ener-
gies ε0 ≤ 2.4 GeV) even when the influence of the
nuclear density-dependent mean-field potentials (4)–
(6) and (8)–(10) has been included. But K− cre-
ation due to first-chance pN collisions (1) in this

6)This counts in favor of the scenario where, for positive-
charged kaons, virtually nomediummodifications are needed
to reproduce the data in this energy region.

7)It should be pointed out that the use in the calculation
of the K− optical potential (6), extracted from the kaonic
atomic data, instead of the potential (4), (5), leads to an
increase in the “low”-energy (ε0 ≤ 2.5 GeV) and “high”-
energy (ε0 > 2.5 GeV) parts of the antikaon excitation func-
tion only by about 15 and 5%, respectively.

8)Calculations show that the minimal internal nucleon mo-
menta needed for K− production in the primary process (1)
at incident energies of 2.25, 2.30, 2.35, and 2.40 GeV corre-
sponding to the four lowest data points in Fig. 2, respectively,
are 424, 374, 331, and 291 MeV/c.
PH
energy region occurs, as is evident from the foregoing,
when incident protons collide with the short-range
two-nucleon (or multinucleon) correlations inside the
target nucleus, which means that the local baryon
density around the spatial creation points of hadrons
in these collisions can be high [54]. Therefore, the
antikaon production in the far subthreshold energy
region should be evaluated more likely for the density-
independent potentials with depths (5) and (9) taken
at normal nuclear density ρ0 than for the density-
dependent fields (4) and (8) where the local average
nuclear density is involved.

The results of such calculations obtained both for
the one-step (1) and for the two-step (45), (46) reac-
tion channels, as well as the same experimental data
as those presented in Fig. 2, are shown in Fig. 3. One
can see the following:

(i) Our calculations for the one-step reaction
channel (1) with the parameter values of V0 =
40 MeV, U0

N = 0, U0
K+ = 22 MeV, and U0

K− =
−126 MeV (dash-dotted curve) underestimate sub-
stantially the data in the energy region far below the
threshold, whereas the additional inclusion of the
nucleon effective potential U0

N = −34 MeV (dashed
curve with two dots) leads to quite a good description
of the data in this energy region, whichmeans that the
K− yield is almost totally determined by the nucleon
mean-field potential (compare also the dashed curves
with two and three dots in Fig. 3).

(ii) The scenario where only an attractive antikaon
density-independent potential with depth U0

K− =
−126 MeV is used does not allow us to reproduce the
data in the far subthreshold energy region (compare
the thin solid curve and the dashed curve with three
dots), which is in line with our findings inferred above
from the analysis of the same data with the density-
dependent potential.

(iii) The results of our calculations of the antikaon
yield from the secondary reaction channel (46) in-
cluding the influence of the different in-medium sce-
narios on it are significantly lower9) than the data and
calculated cross sections from the primary process (1)
(dashed curves with two and three dots, thin solid
curve), which implies the dominance of the one-step
K−-production mechanism for antikaon production
considered at all beam energies of interest.

Let us now consider subthreshold K− production
from p + 63Cu reactions within the above model.

Figure 4 presents invariant cross sections mea-
sured and calculated by (36) and (41)–(43) for the

9)For example, the two-step (thick solid curve)-to-one-step
(thin solid curve) K−-production cross-section ratio is
about 1/5 at “low” kinetic energies (ε0 ≈ 2.2–2.3 GeV) and
about 1/20 at “high” beam energies (ε0 ≈ 2.7–2.9 GeV).
YSICS OF ATOMIC NUCLEI Vol. 64 No. 11 2001
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Fig. 3. Lorentz-invariant cross sections for the produc-
tion of K− mesons with a momentum of 1.28 GeV/c

at a laboratory angle of 10.5◦ in p + 9Be reactions as
functions of the laboratory kinetic energy of the proton.
The experimental data (full squares) were taken from the
experiment reported in [60]. The curves represent the
results of our calculation with density-independent po-
tentials. The dashed curves with one, two, and three dots
and the thin solid curve correspond to the calculations
for the primary production process (1) with the total nu-
cleon spectral function at V0 = 40 MeV,U0

N = 0, U0
K+ =

22 MeV, and U0
K− = −126 MeV; V0 = 40 MeV, U0

N =

–34 MeV, U0
K+ = 22 MeV, and U0

K− = −126 MeV;
V0 = 40 MeV, U0

N = –34 MeV, U0
K+ = 0, and U0

K− =

0; and V0 = 40 MeV, U0
N = –34 MeV, U0

K+ = 0, and
U0

K− = –126 MeV, respectively. The dotted, short-,
and long-dashed curves show the results of the calcu-
lations by (71)–(76) for the secondary production pro-
cess (46) at U0

N = 0, U0
K+ = 0, and U0

K− = 0; U0
N = 0,

U0
K+ = 0, and U0

K− = −126 MeV; and U0
N = –34MeV,

U0
K+ = 22 MeV, and U0

K− = −126 MeV, respectively.
The curve with alternating short and long dashes and
the thick solid curve represent the results of our cal-
culations for the secondary production process (46) at
U0

N = 0, U0
K+ = 22 MeV, and U0

K− = −126 MeV and
U0

N = –34 MeV, U0
K+ = 0, and U0

K− = −126 MeV, re-
spectively. The arrow indicates the threshold for the
reaction pN → NNKK− occurringon a free nucleon for
the kinematics under consideration.

production of K− mesons with a momentum of
1.28 GeV/c at a laboratory angle of 10.5◦ from the
primary pN → NNKK− channel in p63Cu reactions
at various bombarding energies. We can clearly see
the following:

(i) Only a simultaneous inclusion of the attractive
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Fig. 4. Lorentz-invariant cross sections for the produc-
tion of K− mesons with a momentum of 1.28 GeV/c

at a laboratory angle of 10.5◦ in p + 63Cu reactions as
functions of the laboratory kinetic energy of the proton.
The experimental data (full triangles) were taken from the
experiment [60]. The curves represent our calculation
with density-dependent potentials. The notation for the
curves is identical to that in Fig. 2. The arrow indicates
the threshold for the reaction pN → NNKK− occuring
on a free nucleon for the kinematics under consideration.

antikaon [(4), (5)] and nucleon [(8), (9)] effective po-
tentials (solid curve in Fig. 4) or the application of the
nucleon potential (8), (10) alone (short-dashed curve)
allows us to describe rather well the experimental
data, except for the two lowest data points, which is
consistent with our previous findings of Fig. 2.

(ii) The use of only the attractive outgoing nucleon
potential (8), (9) (dashed curve with three dots) leads
to an enhancement of theK− yield by about a factor of
2.5 (1.5) at a beam energy of 2.5 (2.9) GeV, whereas
the additional inclusion of the K− potential (4), (5)
(solid curve) results in a further enlargement of the
antikaon yield by a factor of about 1.5 (1.1), which
indicates that the effect of the nucleon mean field
is of importance for explaining experimental data on
“hard” antikaon production at the incident energies
considered and the influence of theK− optical poten-
tial alone is insufficient for describing the data under
consideration.

(iii) A simultaneous application of the kaon and
antikaon potentials has virtually no effect on the K−

yield (compare the dashed curves with two and three
dots), as in the case ofK− production on a 9Be target
nucleus discussed above.

(iv) The main contribution to K− production in
the far subthreshold energy region (at beam energies
01
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Fig. 5. Lorentz-invariant cross sections for the produc-
tion of K− mesons with a momentum of 1.28 GeV/c

at a laboratory angle of 10.5◦ in p + 63Cu reactions as
functions of the laboratory kinetic energy of the proton.
The experimental data (full triangles) were taken from
the experiment reported in [60]. The curves represent
our calculation with density-independent potentials. The
notation for the curves is identical to that in Fig. 3.
The arrow indicates the threshold for the reaction pN →
NNKK− occuring on a free nucleon for the kinematics
under consideration.

ε0 ≤ 2.4 GeV) comes from the use in our calcula-
tions with the density-dependent mean-field poten-
tials of only the correlated part of the nucleon spectral
function (long-dashed curve), which means, in line
with the conclusion drawn above from the analysis
of the K− data from p9Be interactions, that antikaon
production in this energy region should be evalu-
ated for density-independent potentials rather than
for density-dependent fields.

The results of such calculations performed for
the one-step [(1)] and two-step [(45), (46)] reaction
channels are given in Fig. 5, along with the same
experimental data as those presented in Fig. 4. We
can see the following:

(i) Our calculations for the one-step reaction
channel (1) with the parameters set to the values of
V0 = 40 MeV, U0

N = 0, U0
K+ = 22 MeV, and U0

K− =
−126 MeV (dash-dotted curve) essentially miss the
data in the energy region ε0 ≤ 2.6 GeV, whereas the
additional inclusion of the nucleon effective potential
U0
N = −34 MeV (dashed curve with two dots) leads

to a fairly good description of the data at 2.5- and 2.6-
GeV incident, energies as well as to a much better
description of the two lowest data points in relation
to the previous one and to that obtained by adopting
PH
the corresponding density-dependent potentials (cf.
Fig. 4).

(ii) The scenario where only attractive nucleon and
antikaon density-independent potentials with depths
U0
N = −34 MeV and U0

K− = −126 MeV are used
(thin solid curve) allows us to reproduce quite well
these data points, which also counts in favor of the
conclusion drawn above that, for positively charged
kaons, virtually no medium modifications are needed
to explain the data under consideration.

(iii) The application of only the antikaon density-
independent potential with depth U0

K− = −126 MeV
does not allow us to describe the data at energies
far below the freeK−-production threshold (compare
the thin solid curve and dashed curve with the three
dots), and the K− yield is mainly determined by the
nucleon mean-field potential, which is in line with our
findings of Figs. 2–4.

(iv) The two-step-to-one-step antikaon-creation
cross-section ratio calculated with allowance for the
influence of the same nuclear mean fields on hadrons
produced in secondary (46) and primary (1) reaction
channels (thick and thin solid curves, long-dashed
curve, and dashed curve with two dots in Fig. 5)
is about 1/3 and 1/10, respectively, at “low” and
“high” bombarding energies, which indicates that, as
in the case of a 9Be target nucleus considered above
(see Fig. 3), the one-stepK−-productionmechanism
also dominates in the subthreshold “hard” antikaon
production in p63Cu collisions [60].

It should be emphasized that the latter is in line
with the findings inferred in [53] that concern the
role played by the direct K+-production mechanism
in subthreshold kaon creation in p9Be interactions
under the same kinematical conditions [54, 55, 58]
as those used in the experiment reported in [60].
Therefore, the reaction p + A → K− + X in the sub-
threshold regime and for “hard” kinematics along
with the p + A → K+ + X one may be recommended
for experimentally studing the high-momentum com-
ponents within a target nucleus.

Taking into account what was considered above,
one may conclude that the determination of the K−

potential in nuclear matter from the measurements
of the primary-proton-energy dependence of the
double-differential cross sections for the production
of “hard” antikaons on light andmedium target nuclei
in the subthreshold-energy regime appears to be
difficult. On the other hand, the recent studies [23, 58]
of subthreshold and near-thresholdK− production in
pA reactions, carried out within a coupled-transport
approach [23] and a simple folding model [58] based
on the internal nucleon momentum distribution,
indicate that the K− potential has a strong effect on
YSICS OF ATOMIC NUCLEI Vol. 64 No. 11 2001
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the K− yields at low antikaon momenta. Therefore,
it is interesting to explore the sensitivity of the “soft”
(low-momentum) K− production in pA interactions
at subthreshold incident energies to the medium
effects considered here within the approach outlined
above.

Finally, Fig. 6 shows invariant cross sections cal-
culated according to (36)–(40) for the production
of K− mesons with a momentum of 0.4 GeV/c at
a laboratory angle of 10.5◦ from the primary pN →
NNKK− channel in p9Be collisions at various beam
energies. In the calculations, the nucleon, kaon,
and antikaon effective potentials were assumed to be
density-independent. The elementary cross sections
σtotK−p and σtotK−n at pK− = 0.4 GeV/c, needed for our
calculations, were borrowed from [20, 61]. It can be
seen that, in contrast to the case of “hard” antikaon
production discussed above, the K− potential has a
dramatic effect on the antikaon excitation function
at all subthreshold energies (compare the solid curve
and the dashed curve with three dots in Fig. 6), which
is nearly identical to that from the nucleon effective
potential (compare the dashed curve with three dots
and the long-dashed curve) in the energy range 1.6 ≤
ε0 ≤ 2.0 GeV and even greater than the latter at ε0 >
2.0 GeV. While the kaon potential has a minor effect
on the K− yield at incident energies of ε0 > 2.0 GeV
(compare the solid curve and the dashed curve with
two dots), at lower beam energies, it reduces theK−-
production cross section by a factor of about 2–2.5.
As a result, the sensitivity to the kaon and antikaon
potentials (compare the dashed-dotted and the long-
dashed curves) is higher than that to the nucleon
mean field at kinetic energies in excess of 2 GeV,
whereas, at lower bombarding energies, the effect of
the nucleon potential is dominant. It is apparent
that at least the former case opens the opportunity to
determine the K− potential in nuclear matter experi-
mentally.

Thus, our results demonstrate that measurements
of the differential cross sections for subthreshold
“soft” K− production on various target nuclei will
allow us to shed light on the antikaon potential in
a nuclear medium. Such measurements might be
conducted at, for example, the COSY accelerator
using a proton beam in the COSY–ANKE detector
system.

5. SUMMARY

In this study, we have presented the analysis
of the first experimental data [60] on subthreshold
K− production on Be and Cu target nuclei by pro-
tons. The measured yields of K− mesons with a
momentum of 1.28 GeV/c at a laboratory angle of
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 11 20
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Fig. 6. Lorentz-invariant cross sections for the produc-
tion of K− mesons with a momentum of 0.4 GeV/c

at a laboratory angle of 10.5◦ in p + 9Be reactions as
functions of the laboratory kinetic energy of the pro-
ton. The long-dashed curve represents the results of the
calculation for primary production process (1) with the
total nucleon spectral function at V0 = 40 MeV, U0

N = 0,
U0

K+ = 0, and U0
K− = 0. The rest of the notation is

identical to that in Fig. 3.

10.5◦ from p + 9Be and p + 63Cu reactions in the
subthreshold energy region have been compared with
the results of the calculations within an appropriate
folding model for incoherent primary proton–nucleon
and secondary pion–nucleon production processes,
which takes properly into account the struck-target
nucleon momentum and removal energy distribution
and novel elementary cross section for the proton–
nucleon reaction channel close to the threshold, as
well as nuclear mean-field potential effects on the
one-step and two-step antikaon production pro-
cesses. It has been shown that the effect of the
nucleon mean field is of importance for explaining
the considered experimental data on “hard” antikaon
production, whereas the K+ and K− optical po-
tentials play a minor role and the scenario with
zeroth K+ potential is favorable. It has also been
found that the pion–nucleon production channel
does not dominate in the subthreshold “hard” an-
tikaon production in p9Be and p63Cu collisions under
consideration and that the main contributions to
the antikaon yields here come from the direct K−-
production mechanism, which offers the possibility of
investigating the high-momentum tail of the internal
nucleon momentum distribution also via the antikaon
production on light and medium target nuclei at
subthreshold beam energies.

The sensitivity of subthreshold “soft” antikaon
01
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production in p9Be reactions to the nucleon, kaon,
and antikaon effective potentials has been explored.
It has been demonstrated that, in contrast to the case
of “hard” antikaon production, theK− potential has a
very strong effect on the K− yield at all subthreshold
energies, which is comparable with that from the
nucleon effective potential. This gives the opportunity
to determine the antikaon potential experimentally.
Therefore, measurements of the differential cross sec-
tions (spectra and excitation functions) for K− pro-
duction on various target nuclei at low antikaon mo-
menta are extremely needed nowadays for obtaining
deeper insight into the properties of K− in a nuclear
medium and into the relative weight of the primary
and secondary reaction channels in subthreshold an-
tikaon production, as well as into the role played by
nucleon–nucleon correlations in this phenomenon.
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Status of an Experiment Aimed at Laboratory Searches
for the Electron-Antineutrino Magnetic Moment

at a Level of µν ≤ 3 × 10−12µB
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Abstract—An experiment aimed at directly detecting antineutrino–electron scattering by using a 40-MCi
tritium β-active source will make it possible to lower the present-day laboratory limit on the neutrino
magnetic moment by two orders of magnitude. The experiment brings together novel unique technologies
in studying rare processes of neutrino–electron scattering: (i) an artificial source of antineutrinos from
tritium decay of 40-MCi activity with the antineutrino flux density of about 6 × 1014 cm−2 s−1 and (ii)
new types of detectors capable of detecting electrons of energy down to about 10 eV, namely, a silicon
cryogenic detector based on the ionization-into-heat conversion effect and a high-pure germanium detector
with an internal signal amplification in the electric field. A compact installation located at a specially
equipped underground laboratory (≤100 mwe) will provide favorable background conditions for running
the experiment. With a background level of about 0.1 event/(kg keV d) and detector assembly masses of
3 and 5 kg for the silicon and germanium ones, respectively, a limit of µν ≤ 3 × 10−12µB on the electron-
antineutrino magnetic moment will be obtained within 1 to 2 years of data acquisition. The status of the
experiment and the state of the art are presented. c© 2001 MAIK “Nauka/Interperiodica”.
1. MOTIVATION

The possible existence of a neutrino magnetic mo-
ment µν considerably exceeding the value allowed
by the minimal extended standard model [1], µν ∼
mν × 10−19µB (µB = e�/2me being the Bohr mag-
neton and mν (eV) being the neutrino mass), is of
fundamental importance. The prospects for checking
the Standard Model of electroweak interactions and
searches for phenomena beyond its initial premises
are motivated by at least two observations, viz., the
solar-neutrino deficit and the anticorrelation of the
measured neutrino fluxwith solar activity [2]. A large-
magnetic-moment hypothesis, µν ∼ 10−11µB [3], is
so far the unique possibility of explaining the anti-
correlation (if confirmed) within the standard solar
model [4]. A number of extensions of the theory
beyond the minimal Standard Model are proposed,
where the required magnitude of µν can be achieved
independently of a possible neutrino mass [5, 6].

∗This article was submitted by the authors in English.
1)Joint Institute for Nuclear Research, Dubna, Moscow
oblast, 141980 Russia.

2)Russian Federal Nuclear Center, All-Russia Scientific Re-
search Institute of Experimental Physics, Sarov, Russia.

**e-mail: ludmila@neron.itep.ru
1063-7788/01/6411-1948$21.00 c©
The present direct laboratory limits on the neutrino
magnetic moment are derived from the measurement
of ν̄e scattering in reactor experiments with elec-
tron antineutrinos and are µν ≤ (1.9−2.4)× 10−10µB

[7]. More stringent (but model-dependent) limits are
found from stellar physics or cosmology, µν ≤ (0.01−
0.1) × 10−10µB (see, e.g., [8] for an overview). These
bounds were derived from astrophysical considera-
tions against excess cooling of evolved stars, cos-
mological considerations for nucleosynthesis, or from
SN1987A. Presently, uncertainties existing in the
majority of astrophysical calculations preclude treat-
ing them as reliable constraints. This refers, in par-
ticular, to the lowest bound, µν ≤ 0.01 × 10−10µB,
derived from SN1987A. On the other hand, stellar-
evolution limits have probably gone about as far as
they can, with all uncertainties. Figure 1 taken
from [8] shows that the globular-cluster limit of µν ≤
0.03 × 10−10µB is the most restrictive one for neu-
trino massesmν below a few eV. A positive discovery
of µν at this level would indicate serious problems
with the understanding of stellar dynamics.

In view of an ample gap between existing exper-
imental constraints and those deduced from astro-
physics, it is relevant to access the direct labora-
2001MAIK “Nauka/Interperiodica”
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Fig. 1. Astrophysical limits on neutrino transition mo-
ments from various searches for neutrino radiative de-
cays. The dashed line approximates their envelope (for a
detailed explanation, see [8]). Of various stellar-energy-
loss limits on µν , the lowest globular-cluster bound is
shown. For neutrino masses below a few eV, it is more
restrictive than those from neutrino radiative decays.

tory limit on µν below 10−11µB. The lowest limit
expected in current [9] and standing by [10] reactor
experiments is µν ≤ (0.3–0.5) × 10−10µB. The ex-
isting projects with artificial radioactive sources plan
to reach the same level [11]. A forthcoming project
has a goal to set a limit on the electron-neutrino
magnetic moment at a level of µν ≤ 0.03 × 10−10µB.
The detection of a neutrino magnetic moment at this
level would reveal the structure beyond the standard
theory and would be influential in the understanding
of scenarios with magnetic-field-induced spin pre-
cession in the Sun, supernovae, active galactic nuclei,
or the early Universe.

2. IDEA OF THE EXPERIMENT

Laboratory measurements of µν are based on the
observation of the antineutrino–electron scattering.
For µν �= 0, the differential cross section with re-
spect to the kinetic energy T of the recoil electron
is given by the sum of the standard-electroweak-
interaction cross section (EW) and the electromag-
netic one (EM). At small recoil energies, T � Eν (Eν
is the neutrino energy), these two components behave
in different ways: the weak part is virtually constant,
while the EM one grows in proportion to 1/T toward
lower energies, being virtually independent of Eν
(Fig. 2). Lowering the threshold for recoil-electron
detection, one may choose the energy interval where
the EM contribution to the cross section is larger
than the EW one. This allows one to improve the
sensitivity of the measurements with respect to µν .
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Fig. 2. Differential cross sections for ν̃e scattering with
respect to the electron recoil energy for a 3H emitter. The
contribution from magnetic scattering is shown for µν =
m× 10−12µB (m = 1, 3, 10). The dashed line represents
the standard electroweak cross section. The arrow in-
dicates the energy threshold for existing semiconductor
detectors (SCD).

The experiment proposed in [12] exploits new
unique technologies for studying rare processes of
neutrino–electron scattering. These are
(i) new types of semiconductor detectors capable

of detecting electrons from neutrino–electron scat-
tering with a recoil energy in the range 10–100 eV,
where the electromagnetic scattering dominates over
weak scattering (Fig. 2);
(ii) an artificial tritium source (ATS) with an an-

tineutrino flux density of about 6 × 1014cm−2 s−1,
which can be achieved in a compact detector array
(of volume 1–1.5 l) located inside a thick spherical-
shell-shaped source (Fig. 3).
Working with an artificial source, one can choose

an optimum ratio of effect-to-background measure-
ment times. With a background level of about
0.1 event/(kg keV d), a limit of µν ≤ 3 × 10−12µB on
the antineutrino magnetic moment will be obtained
within 1 to 2 years of data acquisition.

3. 40-MCi TRITIUM SOURCE

The choice of tritium as a preferable source of
antineutrinos for µν measurements is motivated by
many physical reasons, of which only a few were
mentioned above (see [12, 13]). However, a 40-
MCi ATS is necessary (4 kg of tritium) for ensuring
the required antineutrino flux density. Presently, a
significant amount of tritiumhas been stored owing to
1
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LHe 4.2 K

Fig. 3.Schematic arrangement of the experiment accord-
ing to [12]: a semiconductor detector array of net volume
1–1.5 l is located in a cylinder-shaped cavity inside a
spherical tritium source. The source activity is 40 MCi,
and the diameter is 35 cm.

the reduction of nuclear weapons. The suggestion to
use already available tritium for fundamental science
and, specifically, for the proposed experiment [12]
was recently approved in Russia. An intense tritium
source is presently being developed in the Russian
Federal Nuclear Center VNIIEF (formerly Arzamas-
16).
The source being of extraordinary activity, its ab-

solute safety should be provided at all stages of its life
cycle (ATS saturation with tritium, its transportation,
storage and exploitation during the experiment, and
further utilization). Some physical, technical, and
technological aspects of source designing and con-
struction, as well as safety problems, were considered
in [13].
The most important requirements for an ATS are

as follows:
(i) Tritium must be chemically bound to titanium

with the largest initial degree of saturation, TiT1.9.
(ii) The construction must admit insertion of a

cylinder-shaped detector array (Fig. 3).
(iii) The construction must ensure the vacuum-

tightness of the inner source shell and the strength
reliability 0.999999 for 6 years of source exploitation.
PH
The compensation of the pressure resulting from ti-
tanium tritide heating by tritium decay or from an
accidental heating must be foreseen.
(iv) The constructionmust enable the extraction of

radiogenic helium during ATS exploitation.
(v) The ATS must be equipped with a system for

permanently monitoring the pressure and tempera-
ture and with a calorimeter, these being the sensors
of the tritium state in the ATS.
Moreover, the conditions of the low-background

experiment put forward specific requirements on the
ATS structural materials and on the procedure for its
manufacturing and maintaining.

4. ULTRALOW-THRESHOLD
SEMICONDUCTOR DETECTORS

To use all the exceptional advantages of the tritium
source for the measurement of the neutrino magnetic
moment, novel detectors capable of recording recoil
electrons at a threshold of about 10 eV are developed.

Detectors using theNeganov–Trofimov–Luke
(NTL) effect [14]. Cryogenic detectors have been
intensively developed recently by many groups and
have reached a thermal threshold as low as 500 eV
per 150–250 g of the detector mass. These detectors
are used to detect recoil nuclei in the keV range that
are produced by weakly interacting massive particles
(WIMPs), which are regarded as the most probable
dark matter (DM) candidates [15]. While being an
outstanding achievement in detector technique, this
result is still insufficient for the proposed tritium
experiment. A radical threshold improvement for
cryodetectors can be obtained through an application
of the ionization-into-heat conversion phenomenon
(NTL effect) observed in Si and Ge at ultralow tem-
peratures [16]. This method can ensure a threshold
for recoil electrons in the range 10–100 eV, while
keeping the thermal threshold and, consequently, the
calorimeter mass relatively large, say, 100 eV and
100 g, respectively. The NTL effect was successfully
used in Dubna for a calorimetric measurement of
light-absorption spectrum in silicon at 1 K [17]
and was later observed in a large-volume silicon
spectrometer [18].

Detectors with amplification. Another ap-
proach is to develop a high-purity germanium
(HPGe) detector operating at 77 K with a physical
amplification of ionization. Presently, germanium
detectors are widely used in low-background mea-
surements because of the high purity of germa-
nium crystals: radioactive impurity does not exceed
10−14 g/g. Thresholds of 2–10 keV, being mainly
determined by leakage currents and electronic and
microphone noises, are too high for the experiment
YSICS OF ATOMIC NUCLEI Vol. 64 No. 11 2001
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Fig. 4. Layout of the installation for µν measurements with an ATS.
aimed at measuring the neutrino magnetic moment
with an ATS (see Fig. 2).
Using an internal proportional amplification of the

signal, one can attain an effective reduction of the
germanium-detector threshold. This principle has
been realized now in silicon avalanche photodiodes
(APD), where the gain of about 102–104 is imple-
mented by an avalanche multiplication of electrons in
an electric field of Ecr = (5 − 6) × 105 V/cm. Such a
value of Ecr is accomplished by a high concentration
of impurities in a narrow junction. As a result, the
sensitive volume of an APD is only a few mm3.
Avalanche multiplication of electrons or holes in a

HPGe detector of a 100-cm3 sensitive volume can be
achieved by the special configuration of the electric
field due to the large difference of cathode and anode
sizes [19]. Such an avalanche germanium detector
(AGD) is designed similarly to a multiwire propor-
tional chamber (MWPC). In contrast to MWPC, the
electric field in AGD is determined not only by the
applied voltage and electrode dimensions but also by
a donor (n-type) or an acceptor (p-type) impurity
concentration. The AGD threshold is governed by
the magnitude of the bulk leakage current, and a
threshold of Eth � 10 eV is expected for a planar
microstrip Ge detector of a volume 100 cm3 [19].
CSOF ATOMIC NUCLEI Vol. 64 No. 11 20
A prototype avalanche germanium strip detector
of volume 20 cm3 is being manufactured now.

5. EXPERIMENTAL INSTALLATION

When a more detailed consideration of the fu-
ture installation units began, it was understood that
an ATS of the cylinder-shell-layered shape would
more adequately meet some technological require-
ments for its manufacture andmaintenance. Calcula-
tions showed that the antineutrino flux density inside
a cylinder of external diameter D = 30 cm is on the
same order of magnitude as inside the sphere shown
in Fig. 3. This allowed consideration of the future
installation design for cylinder-like source geometry.
The final optimization of the source dimensions can
be performed as soon as the detectors’ effective size is
determined. Owing to the low endpoint energy of the
tritium-decay spectrum (E0 = 8.6 keV), no special
passive shielding between the ATS and the detectors
is needed: bremsstrahlung is absorbed within the
source.
The spectrometer including AGD must have a

mass of 4 to 5 kg; it can be manufactured from 5–7
separate modules of volume 150 cm3, each having a
mass of about 0.8 kg. Cryogenic silicon detectors of
01
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volume 100 cm3, mounted 14–16 on a stack, provide
a net mass of about 3 kg.
The scheme of the installation is shown in Fig. 4.

For shielding, a classical scheme is proposed: an
air-proof 5-cm-thick container of low-background
copper surrounding the source is followed by a 8-
cm-thick layer of borated polyethylene and a 15-cm-
thick layer of lead. An external plastic scintillator of
thickness 4 cm vetoes charged cosmic-ray particles.
Gaseous nitrogen circulating around the copper con-
tainer removes airborne radioactivity (Rn). The cryo-
stat cup made from low-background copper houses
the detectors. The low temperature of the dilution
refrigerator (for cryodetectors) (not shown in Fig. 4)
or of the nitrogen Dewar (for an AGD) is transferred
to the cryostat cup by a cold finger.
The construction of the shield and of the ATS

support (not shown in Fig. 4) must allow access to
and extraction of the tritium source.
A compact installation will be located at a spe-

cially equipped underground laboratory (≥100 mwe)
ensuring favorable background conditions.
Preparation of two types of detectors for recording

antineutrino–electron scattering opens the possibil-
ity of simultaneously running two independent ex-
periments with the same installation. An identical
setup, but with deuterium instead of tritium, will be
constructed and located in the same site nearby to
measure the background. While one spectrometer
measures the effect + background (data acquisition
for 50% of total experiment duration proves to be
optimal), the other one measures the background
with its deuterium-filled twin, and vice versa. This
would enable control operation of both spectrometers
and would substantially increase statistics assembled
throughout ATS effective functioning.

6. BACKGROUND

The main sources of background in the future
experiment are environmental radioactivity, intrinsic
contamination of the ATS and shielding materials,
intrinsic contamination of the detector (including the
cosmogenic component, especially for Si cryodetec-
tors), airborne radioactivity (Rn), cosmic radiation,
and neutrons from natural fission (α, n) reactions.
Traditional and specially developed background-
suppression methods will be used:
(i) operation deep underground (about 100 mwe)

[the muon flux at this depth is about 2 µ/m2 s, and
the background from secondary cosmic neutrons is
on the same order of magnitude as the environmental
(α, n) radioactivity];
(ii) passive shielding for reducing external-radia-

tion and neutron backgrounds;
PH
(iii) material selection (the use of radiation-pure
materials for detectors, ATS, and passive and active
shielding reduces the background of the installation);

(iv) active background discrimination based on the
veto and coincidence techniques (a veto with the use
of a plastic scintillator discriminates charged particles
passing through the detector and neutrons correlated
with muon capture in the installation; anticoinci-
dences between separate modules of the detector ar-
ray suppress the radiation background);

(v) pulse-shape-analysis methods developed for
suppressing microphone and electronic noises.

Monte Carlo simulations can be used to un-
derstand the structure of the background with the
aim of reducing it. The quality of computer-intense
modeling depends on a detailed knowledge of ex-
perimental geometry, location of characteristic back-
grounds, and a complete implementation of all phys-
ical processes involved. In the experiment studying
neutrino–electron scattering, the background to
single-electron events—i.e., recoil electrons with
E ≤ 1000 eV—comes mainly from the photons with
energy E ≤ 1000 eV, Compton electrons with Ee ≤
1000 eV, electromagnetic scattering of neutrons on
electrons, and nuclear recoils from neutron–nucleus
scattering.

The radiation background in semiconductor de-
tectors, which plays a decisive role in the future ex-
periment, has been well studied for the region above
2 keV in dark-matter searches [20]. The lowest
measured background was 0.08 event/(kg keV d) for
Ge detectors [15]. For Si detectors, the radiation
background is somewhat larger.

Since technologies available now allow one to ob-
tain tritium of extremely high degree of purification,
the main attention should be paid to titanium chosen
as a tritium carrier in the ATS. Monte Carlo calcula-
tions of the background due to Ti radioactive contam-
ination by the U–Th chain and 40K were performed.
This component should not exceed a value of about
0.1 event/(kg keV d). Then, the allowed level of Ti
radioactive contamination proved to be ≤ 10−10 g/g.
Industrial titanium is of purity about 10−9–10−8 g/g.
Therefore, special efforts are needed to ensure its
required radioactive purity.

As to the correlated background, we note that
tritium antineutrino coherent scattering off nuclei is
insignificant, producing nuclear recoils of a fraction
of eV.
YSICS OF ATOMIC NUCLEI Vol. 64 No. 11 2001
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7. EXPECTED RESULTS

The expected per day numbers of antineutrino–
electron magnetic-scattering events for two values of
µν (effect) and of weak-scattering events are shown
in the table for two energy intervals of recoil-electron
detection. The antineutrino flux density was taken to
be about 6 × 1014 cm−2 s−1, and the detector mass
was 5 kg. In the calculations, the electron binding
in the atom was taken into account [21]. For a more
detailed consideration, effects of atom binding in the
crystal must be included. The numbers of back-
ground events were calculated under the assumption
that the background level is 0.1 event/(kg keV d).

It can clearly be seen from the table that, at low
threshold, the number of expected events changes
insignificantly when the effect is observed for 10–
200 eV region in relation to the total recoil energy
range 10–1260 eV. At the same time, narrowing
energy range of recoil-electron detection to 10–
200 eV reduces both noncorrelated and correlated
background (weak interaction contribution) notice-
ably. Of course, the assumption about the uniform
background below 1 keV should be carefully checked,
which is the primary task in such measurements.

The sensitivity of the experiment to the neutrino
magnetic moment can be determined by using the da-
ta from the table. Under the assumption that the total
duration of the measurements is 400 days (200 days
with an ATS and 200 days of background measure-
ments), the achievable limits are µν ≤ 2.5× 10−12µB

for the energy interval 10–1260 eV and µν ≤ 2.2 ×
10−12µB for 10–200 eV at a 95% C.L.

8. STATUS AND CONCLUSIONS

The Program “Measurement of the Neutrino
Magnetic Moment at a Level of µν ≤ (1 − 3) ×
10−12µB” was approved by the Ministry for Atomic
Energy of the Russian Federation (Minatom). R&D
on the ATS, two types of detectors, and all relevant
problems have begun in JINR, ITEP, and RFNC
VNIIEF.

An experimental study of neutrino properties and
interactions with matter is a challenge for low-energy
physics. The discovery of a neutrino magnetic mo-
ment at a level of µν ≤ 3 × 10−12µB would indicate
physics beyond the Standard Model of electroweak
interactions and would radically change the modern
astrophysical scenario. In particular, these results
would impact our understanding of the observed vari-
ations of the solar-neutrino flux. The novel detec-
tor technologies developed for this experiment can
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 11 20
Number of ν̄emagnetic- and weak-scattering events (NM

andNW , respectively) and background (B.g.) expected per
day for various energy intervals of detected recoil electrons

Energy NM

interval, µν = 1 × µν = 3 × NW B.g.

eV 10−11µB 10−12µB

10–200 1.4 0.13 0.04 0.1

10–1260 2.4 0.22 0.15 0.5

be further considered for other elementary-particle-
physics research (dark-matter search, neutrino co-
herent scattering on nuclei, solar-neutrino measure-
ments) and for other fields of fundamental and applied
physics requiring detection of low-energy particles.
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Abstract—A new experimental value of the fundamental weak-interaction parameter λ = GA/GV

(−1.2686± 0.0046) is obtained for the first time by an original method that consists in measuring both
P-odd correlations in free-neutron decay. c© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The ratio of the axial-vector and vector constants
of weak interaction, λ = GA/GV , is a fundamental
parameter of the theory. Usually, it is determined from
data on the neutron lifetime or on the coefficient A
of correlation between the electron-emission and the
neutron-spin direction. Either method requires addi-
tional data, the value ofGV from 0+ ↔ 0+ transitions
in the first case and the degree of neutron polarization
in the second case.

In order to determine λ, we used the measurement
of two P-odd correlations, A(e, s) and B(ν, s), for
the outgoing electron and antineutrino, respectively.
The quantities λ, A, and B are related by the simple
equation λ = (A−B)/(A +B). Its form allows one
to replaceA andB by the actually measured products
of these quantities and the neutron polarization S;
that is,

λ =
A−B

A+B
≡ SA− SB

SA+ SB
. (1)

Owing to this, it is not necessary to measure the
beam polarization if it has the same value in both
measurements.

The error in determining λ by this method is

∆λ =
2SA× SB

(SA+ SB)2
(2)

1)Russian Research Centre Kurchatov Institute, pl. Kurcha-
tova 1, Moscow, 123182 Russia.

2)Petersburg Nuclear Physics Institute, Russian Academy of
Sciences, Gatchina, 188350 Russia.

3)Harvard University, Cambridge, MA 02138, USA.
4)National Institute of Standards and Technology, Gaithers-
burg, MD 20899, USA.

5)Laue–Langevin Institute, 38042 Grenoble, France.
1063-7788/01/6411-1955$21.00 c©
×

√(
∆SA
SA

)2

+
(

∆SB
SB

)2

.

It follows that the error of ∆λ ∼ ±0.0055 can be
achieved if ∆SA/SA and ∆SB/(SB) have been de-
termined with the same relative error of about 1.5%.
The P-odd nature of the correlations in question
makes it possible to attain such an accuracy without
precision spectroscopy owing to the relative character
of measurement of the experimental asymmetry X =
(N↑ −N↓)/(N↑ +N↓) by the change in the count-
ing rate for decay events in response to polarization
reversal (N↑ versus N↓) under invariable conditions
of decay-product detection.

2. EXPERIMENTAL PROCEDURE

This experiment is based on the procedure devel-
oped in measuring the correlations A [1–3] and B
[4, 5]. Experience gained in combiningmeasurements
under conditions of the same experiment is summa-
rized in [6]. This article reports on the latest technical
upgrade of the setup and on the eventual result of the
measurements of λ = GA/GV in the PF1 beam from
the reactor installed at the Laue–Langevin Institute
(Grenoble, France) in 2000.

The layout of the setup is shown in the figure. The
coincidence of the emergence of the decay electron
and the emergence of the recoil proton was traced in
the experiment. The electron energy and the time of
proton delay were recorded. For this purpose, we used
an electron detector (2) based on a plastic scintillator
(∅ = 75 mm) and a proton detector (3) based on two
microchannel plates (∅ = 70 mm).

A verification of the linearity of the scale of our
electron-energy measurement and a determination of
the energy of the reference source were performed
2001MAIK “Nauka/Interperiodica”
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Layout of the setup used: (1) vacuum chamber, (2) elec-
tron detector, (3) proton detector, (4) electrode of the
neutron-beam flight, (4g) grid, (5) time-of-flight elec-
trode, (6) spherical electrode, (6g) grid, (7) spherical grid,
(8) electron collimator, (8g) grid, (9) decay region, and
(10) lithium collimators.

with the aid of a magnetic spectrometer by relying on
the conversion lines of 198Au, the relevant accuracy
being about 1%. Thus, the accuracy in calibrat-
ing the energy of recorded electrons was determined
completely by the electron-detector energy resolution
dE/E, which was about 25% at E = 200 keV.

The detectors were placed opposite each other on
the two sides of the neutron beam. The beam region
(9) where decay events were recorded was separated
by a collimator (8) arranged between the beam and
the electron detector. Emphasis on decay-electron
recording ensured an unaltered determination of the
decay region in the measurements of SA and SB,
because it was independent of the conditions of proton
recording.

Protons that had passed through the time-of-
flight electrode (5) and the grid labeled with the sym-
bol 6g in the figure were focused onto the detec-
tor by the electric field of a quasispherical capacitor
formed by two electrodes (6, 7). The diameter of the
focusing-system inlet window, covered with the grid
6g, was 260 mm. An experimental test showed that,
at a voltage of 26.6 kV, all protons that had passed
through this window were collected at the detector
within a spot of diameter less than 50 mm.

In the requirements on the flight base, which de-
termines the proton delay time, there is a contradic-
tion between the measurements of SA and SB. In
order to ensure optimal conditions in both measure-
ments, the setup was designed in such a way that the
focusing system, together with the proton detector,
could be movable. This made it possible to change
the length of the time-of-flight electrode, without
PH
breaking a vacuum, from 35 mm in measuring SA to
145 mm in measuring SB.

In measuring SA, the coincidence of the electron
and the recoil proton was used only to separate the
decay electron. In this case, a loss of protons would
lead to a methodological error. The removal of all
protons from the decay region (9) and their transfer
to the detector 3 was ensured by a voltage of 2 kV
applied between the grids 4g and 8g. That there were
no impediments associated with the electrode 5 at
the length of 35 mm was checked by consequently
shutting off the paths of protons punching through
the grids 6g and 7g. This showed that, to within frac-
tions of a percent, there were no trajectories passing
through 15% of the grid area at the grid periphery.

In measuring SB, it was impossible to determine
directly the antineutrino momentum, but it could be
calculated for any electron energy Ee on the basis
of the recoil-proton momentum and its projection
onto the electron momentum. This enabled us to
measure the (ν, s) asymmetry by analyzing changes
in the shape of the proton-delay spectrum in response
to polarization reversal. The observed shape of this
spectrum is governed by the position of the electrode
5, its flight-base length, which was equal to 145 mm,
ensuring the required accuracy of the analysis of pro-
ton delay time.

The emission of the photon accompanying neutron
decay can distort such an analysis, but the degree of
distortion in a particular experiment depends on the
conditions under which decay events are recorded.
The calculation performed in [7] showed that the role
of photon emission is negligible in our case.

The vacuum chamber used was surrounded by
three pairs of current loops that induced the guiding
magnetic field of 4× 10−4 T and ensured the compen-
sation of the Earth’s field to a value not higher than
3 × 10−6 T. The radio-frequency flipper was switched
on and off to reverse polarization. The sign of the
guiding field was changed periodically to suppress the
possible uncertainty associated with the calculation
of the contribution of the a(e, ν) correlation of the
outgoing antineutrino and electron and the uncer-
tainty associated with effects that could be caused by
an asymmetry in flipper operation.

3. STRUCTURE OF AMPLITUDE–TIME
MEASUREMENTS

Information about the recorded coincidences of
signals from the electron and proton detectors was
accumulated as two-dimensional [Ei, tk] matrices
[(i = 1–64) × (t = 1–256)] for the electron energy
E and the proton delay time t. In the run of 1998 [6],
data accumulation was implemented in the CAMAC
YSICS OF ATOMIC NUCLEI Vol. 64 No. 11 2001



EXPERIMENTAL VALUE OF GA/GV 1957
standard. A radically new measuring system with
sorting performed directly by a computer was used
in the latest measurements. This system employs
the VME standard [8]. It has two parallel event-
recording channels (the electron and the proton
one) synchronized by a unified time scale. Time
measurement by counting quartz-generator signals
ensured, to a high degree, invariability of the scale-
division unit of the time channel and enabled us to fix
the proton-delay time with a precision of about 15 ns.

For each event, the system forms a single “word”
that carries, in a coded form, information about the
time of pulse arrival, the pulse amplitude, and the
flipper state and records this word in one of the two
buffers of the crate buffer memory, which are used
alternately within a 0.4-s cycle. While event accumu-
lation proceeds in one buffer, the data accumulated
in the other buffer over the preceding 0.4-s cycle are
transferred to the computer, processed, and summa-
rized in its long-time memory in the form of four [E, t]
matrices, whereupon this buffer is cleared for a new
cycle.

For the usual proton-delay time, the coincidence
of events for the two flipper states were sorted in
the first pair of matrices. Events accumulated there
consisted of true neutron-decay events and random
coincidences caused by loads of the electron and the
proton channel. The second pair of matrices accumu-
lated only random coincidences. For this, the same
channel loads were sorted under the condition of an
additional delay organized in the proton channel in
order to remove correlated events from the coinci-
dence range. The remaining counts were due only
to random coincidences at the unchanged load of the
electron and the proton channel.

The difference of the event and the background
matrix separates neutron-decay events, while their
sum makes it possible to determine the statistical
error of the calculation. The sum of the matrices
corresponding to the two flipper states yielded the
matrix of the unpolarized experimental spectrum.

In measuring SA and SB, this system was
adopted without any changes. The measurements of
SA and SB were based on 865000 and 375000 decay
events, respectively. Sixteen sets of measurements
were performed for theSA–SB pair. The energy scale
was calibrated by using a reference electron source for
each set of measurements of SA and SB.

4. COMPUTER MODEL
OF THE EXPERIMENT

In order to calculate the sought correlations, it is
necessary to know the mean values of the relative
electron velocity and of the cosines of the angles of
emission of the neutron-decay products. They were
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calculated by means of a Monte Carlo code that was
developed for a beta-decay simulation and which was
successfully used in the experiment reported in [5].
The model took into account all necessary geometric
parameters, the decay-electron spectrum in the form
of the Fermi function, the response functions of the
electron and the proton detector, the properties of
the amplitude analyzer and of the time-to-code con-
verter, and the calculated map of the field between the
electrodes 6 and 7. In order to process the results
of the measurement of SA, a calculation of proton
acceleration in the field between the grids 4g and 8g
was included in the code.

The results of the simulation were represented in
the form of four matrices in terms of the same coordi-
nates i and k as those used in the experimental ma-
trices. One of the matrices contained the calculated
two-dimensional spectrum for an unpolarized beam,
while the other three matrices contained the accumu-
lated sums of the values of cos θν , v/c × cos θe, and
v/c× cos θe,ν . These data made it possible to obtain
the required mean values for any chosen part of the
matrix.

A comparison of the experimental and calculated
spectra was performed with the aid of a special
code that scanned all experimental spectra in order
to choose the required intervals of the energy and
time channels, calculated the sum of the matrices
corresponding to the two flipper states in these chan-
nels, selected the same channels in the calculated
two-dimensional spectrum for an unpolarized beam,
compared the matched spectra in the normalized
form, and calculated the SB value for them.

In processing the results of the measurements of
SB, the matching of the matrices obtained from the
experiment and from the simulation is the most deli-
cate procedure, which is based on the analysis of the
time-spectrum shape.

5. CALCULATIONS OF SA AND SB

Coincidences for calculating SA were selected by
summing events in the interval extending from the
16th to the 56th energy channel and corresponding
to events associated with an electron energy of 200 to
800 keV and in the interval from the 67th to the 88th
time channel, where there was a peak of neutron-
decay events. The delay of the decay proton ruled
out the background of instantaneous coincidences
caused by recording cascade photons and rescattered
electrons. The resulting values of (N ± ∆N)↑ and
(N ± ∆N)↓ were used to calculate the relative varia-
tion in the counting of decay events and its statistical
error (X ± ∆X) for each of 16 sets of measurements.
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The product SA and the statistical error in it are
related toX ± ∆X by the equation

SA± ∆SA =
X ± ∆X

〈v/c × cos θe〉
, (3)

where 〈v/c × cos θe〉 is the mean value of the product
of the relative electron velocity and the cosine of its
emission angle. This mean value was calculated from
the lower energy threshold of electron detection on the
basis of the energy-scale calibration by a reference
source. The calibration accuracy was about 0.5 of a
channel for the maximum of the source peak in the
46th or 47th channel.

At 200 keV, 〈v/c × cos θe〉 was equal to 0.806 ±
0.001. The error was determined from the variation
of 〈v/c× cos θe〉 in response to the variation of the
energy boundary of the 16th channel within the cal-
ibration accuracy. The precision of SA measurement
by this procedure was ±0.12%. Its sign tended to be
random in some sets; therefore, the error is four times
less over 16 sets.

Two corrections were introduced in calculating
SA. The experimental correction took into account
a 0.6% reduction of the (e, s) correlation because of
recording decay electrons scattered in the chamber. It
was measured to within 10% with aid of the reference
source by using the number of counts for the fraction
of its electrons hitting the detector as the result of
scattering in the chamber. The methodological un-
certainty in SA from the introduction of this correc-
tion is±0.06%.

The theoretical correction took into account the
mimicking of (e, s) asymmetry due to the weak-
magnetism effect and the GA–GV interference. This
PH
correction was calculated on the basis of the formulas
forA from [9]; the result is 0.012. To correct SA for it,
this correction should be multiplied by the degree S
of neutron polarization, but the resulting correction
to the correction appears to be negligible (about
0.00007) because of the smallness of the theoretical
correction itself.

The weighted mean value over 16 individual mea-
surements of SA was SA = −0.1097 ± 0.0016, the
distribution of their results being normal with stan-
dard deviation σ = ±0.0014. The total methodolog-
ical uncertainty associated with the determination
of the energy of the 16th channel and with taking
into account electron scattering in the chamber is
δSA/SA ∼ 0.09%.

In measuring SB, the relative changeX in count-
ing depends simultaneously on three correlations,
SA, SB, and a:

X =
SB〈cos θν〉 + SA〈v/c × cos θe〉

1 ± a〈v/c× cos θeν〉
. (4)

We used the value of−0.1097± 0.0016 forSA and the
value of−0.1017 ± 0.0051 for a, which were obtained
in the present experiment and in [10], respectively.
The error in a allows one to calculate the contribution
of the correlation to a precision higher than 0.4%.
The symbol± indicates the change in the relative sign
of the contributions to X from the even correlation a
and the odd correlations SA and SB upon the reversal
of the direction of the guiding magnetic field.

The sought asymmetry SB and the statistical er-
ror in it were found for each [Ei, tk] cell of the exper-
imental and calculated matrices from relative varia-
tions in counting decay events, (X ± ∆X)i,k:
(SB ± ∆SB)i,k =
(X ± ∆X)i,k × (1 ± a〈v/c × cos θeν〉i,k) − SA〈v/c × cos θe〉i,k

〈cos θν〉i,k
. (5)
After that, these values were averaged over the se-
lected intervals of the energy and time channels. The
uncertainty in matching the experimental and cal-
culated matrices determines the methodological un-
certainty of this procedure. Three individual features
of the experimental time-coincidence spectra made it
possible to control it.

First, the peak of instantaneous correlated coinci-
dences determined the position of the absolute time
zero to a precision of 1.5 channels.

Second, the delay of the arrival of the fastest pro-
tons is virtually independent of the electron energy,
since it is determined by the sum of the electron and
the antineutrino momentum. The value of this delay
enabled us to measure directly the length of the flight
base, a basic geometric parameter that controls the
shape of the time spectrum.

Finally, the width of the time-delay spectrum of
decay protons is extremely sensitive to the actual
value of the decay-electron energy, because it is de-
termined by the difference of the electron and the
antineutrino momentum. For example, a transition
fromE = 340 keV toE = 511 keV changes the width
by a factor of 2, from 80 to 40 channels. This al-
lowed one to verify the correctness of the energy-
scale division chosen on the basis of the identity of
matching the calculated and measured time spectra
in various regions of the energy spectrum and used in
the calculation.

A constant value of the asymmetry SB within
YSICS OF ATOMIC NUCLEI Vol. 64 No. 11 2001
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Table

1 2 3 4 5 6 7 8

λ −1.2959 −1.2927 −0.2731 −1.2595 −1.2396 −1.2567 −1.2969 −1.2839

∆λ 0.0235 0.0196 0.0189 0.0211 0.0177 0.0188 0.0171 0.0169

9 10 11 12 13 14 15 16

λ −1.2800 −1.2659 −0.2813 −1.2451 −1.2484 −1.2567 −1.2870 −1.2658

∆λ 0.0186 0.0187 0.0187 0.0163 0.0200 0.0144 0.0203 0.0181
the statistical errors as obtained by averaging SBi,k
events over 15 intervals of 〈cos θν〉 was the final crite-
rion of the correctness of matching the matrices. This
criterion is especially sensitive in the region where
the zero of the experimental asymmetry must coincide
with the zero of the calculated cosine. The method-
ological uncertainty caused by the use of this criterion
was found from the change in SB associated with
small variations in the energy-scale division such that
they did not lead to any appreciable changes in SBi,k
in this region. The uncertainty determined by using
this method did not exceed one-third of the statistical
error in an individual set.

The statistical error in the measurement of SB
in an individual set was ∆SB/SB ∼ 1.7%. The
weighted mean value over 16 individual measure-
ments of SB was SB = 0.9233 ± 0.0037, the distri-
bution of their results being normal with standard
deviation σ = ±0.0047. The methodological uncer-
tainty was ±0.0012. The difference of the statistical
error and the standard deviation is in agreement with
the above estimate of the methodological uncertainty.

6. CALCULATION OF λ = GA/GV

We used formulas (1) and (2) to calculate λ =
GA/GV . Sixteen individual values obtained for
GA/GV are quoted in the table.

Theweightedmean value over 16measurements is
λ = −1.2686 ± 0.0046. A statistical analysis shows
that the distribution of the 16 individual values is
normal with standard deviation σ = ±0.0048, which
corresponds to the normalized χ2 value of 1.08.

The methodological uncertainty in the resulting
value of λ was found from the change in its value
in response to variations in SA and SB within the
methodological uncertainties in them. The result is
δλ = ±0.0007.

The value of 〈SB〉 = 0.9233 ± 0.0047 determined
in this study and the correlation coefficient B =
−2(λ− λ2)/(1 + 3λ2) = 0.9876± 0.0004 correspon-
ding to the value obtained for λ make it possible to
determine precisely the polarization of the neutron
beam used (S = 〈SB〉/B = 0.935 ± 0.005). A direct
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 11 20
measurement of this polarization by the second-
reflection method yielded S = 0.940 ± 0.010. Good
agreement of these values is an independent piece of
evidence for the correctness of the procedure used.

7. CONCLUSION

For the first time, the fundamental quantity λ
has been determined by using only experimental data
on free-neutron decay induced by weak interaction
(without recourse to data from any other measure-
ments).

A key point of our experiment has been the use of
two P-odd correlations. This has ensured an effective
link between λ and the measured quantities, elim-
inated the need for polarization measurements, and
rendered measurement of the experimental asymme-
try relative.

We have obtained a new experimental value,
λ = −1.2686 ± 0.0046 ± 0.0007,

that agrees well with the world-average value recom-
mended by the Particle Data Group and deduced from
the measurements of correlations:

λ = −1.2670 ± 0.0035 [11].

Our result for λ has enabled us to calculate the
corresponding values of the angular-correlation co-
efficients a,A, and B and the degree S of polarization
of the beam used:

a = −0.1045 ± 0.0014,
A = −0.1168 ± 0.0017,
B = 0.9876 ± 0.0004,
S = 0.935 ± 0.005.

The correctness of our procedure has been verified
by a direct polarization measurement that was based
on the second-reflection method.

A low level of the methodological uncertainty
opens the possibility for improving further the accu-
racy in testing the standard theory of weak interac-
tion.
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Abstract—The tensor analyzing powerAyy and the vector analyzing powerAy for the inelastic scattering
of 4.5-GeV/с deuterons on beryllium nuclei at angle of about 80 mrad are measured in the vicinity of
baryon-resonance excitation. These new data, presented as a function of t, comply well with the results
of previous 4.5-, 5.5-, and 9-GeV/с measurements at zero angle in overlapping regions of t; all available
data are described by a unified dependence on |t| up to about 0.9 (GeV/с)2. The experimental results are
compared with the results of calculations performed within the multiple-scattering model and the model
involving omega-meson exchange in the t channel. c© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Reactions induced by relativistic deuterons have
been intensively studied in recent years. In particular,
high-energy, coherent deuteron–nucleus interac-
tions not accompanied by deuteron breakup have
been the subject of investigations in various laborato-
ries worldwide [1–11]. It is expected that the intrinsic
properties of the nuclear structure of the deuteron,
possibly including nonnucleonic degrees of freedom,
may manifest themselves in processes involving
high momentum transfers. In this respect, inelastic
deuteron–nucleus scattering accompanied by high
momentum transfers supplements investigations of
the short-distance structure of the deuteron that are
performed by exploring elastic proton–deuteron and
electron–deuteron scattering and deuteron-breakup
reactions induced by hadrons, electrons, and photons.
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At the same time, inelastic deuteron scattering is
an effective tool for studying systems having a specific
isospin value because, in A(d, d′)X reactions, the
isospin of an unobservable system X must coincide
with the isospin of the target nucleus A. This cir-
cumstance was used, for example, in searches for
the ∆∆ dibaryon of isospin T = 0 in d(d, d′)X re-
actions [6]. Inelastic deuteron scattering on hydro-
gen, 1H(d, d′)X, is selective to isospin-1/2 systems;
therefore, it can serve as a source of information about
the excitation of baryon resonances like N∗(1440),
N∗(1520), andN∗(1680).

Differential cross sections for inelastic deuteron
scattering were measured in Saclay at 2.95 GeV/с
for hydrogen targets [1, 4], in Dubna at deuteron mo-
menta up to 9 GeV/с for various targets [3, 5, 7], and
at Fermilab at higher energies for reactions occurring
on hydrogen [2]. Calculations within the multiple-
scattering formalism revealed [7] that the differential
cross sections for 1H(d, d′)X reactions are satisfac-
torily described by double hadron–hadron scattering.
Within this approach, the amplitudes for NN →
NN∗ elementary processes were determined for the
N∗(1440), N∗(1520), and N∗(1680) resonances [7].

Data on polarization effects in inelastic deuteron
scattering are scanty at present. High-energy polar-
ized deuterons were used to study the tensor analyz-
2001MAIK “Nauka/Interperiodica”
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Fig. 1. Layout of the SFERA facility and the V P1 ion guide: (F5, F6) foci of the ion guide, (Mi) magnets, (Li) lenses,
(IC) ionization chamber, (T ) target, (F61, F62, F63) trigger counters, (F561−4) scintillation counters, (HT ) scintillation
hodoscope for time-of-flight measurements, (HOXY, HOUV) beam-profile hodoscopes, and (C̆) Cherenkov counter.
ing power T20 in the vicinity of the excitation of the
Roper resonance [P11(1440)] for hydrogen and car-
bon targets in Dubna [8] and for hydrogen targets in
Saclay [9]. In the scattering of 9-GeV/c deuterons on
hydrogen and carbon, the tensor analyzing power T20

was measured for excitation masses of up to MX ∼
2.2 GeV/c2 [10]. It turned out that, at momentum
transfers of t ∼ −0.3 (GeV/c)2, this analyzing power
takes negative values of large magnitude. Within
the model assuming the mechanism of omega-meson
exchange [12], this behavior was interpreted as that
which is associated with the longitudinal isoscalar
form factor for the excitation of the Roper resonance
[13]. Also, large values of the tensor analyzing power
Ayy around MX ∼ 2.2 GeV/c2, where MX is the
mass of the undetected system, were observed in
measuring this quantity and the vector analyzing
power Ay at 9 GeV/c and the secondary-deuteron
emission angle of 80 mrad [11]; this observation has
yet to be explained. In addition, data on the ten-
sor analyzing power T20 are known for the reaction
p(d, p)pn induced by 3.5- to 6.5-GeV/c deuterons for
zero secondary-proton emission angle [14].

The present article reports on a continuation of the
series of investigations begun in [11] and devoted to
polarization effects in relativistic-deuteron-induced
reactions leading to the emission of secondary par-
PH
ticles of high transverse momenta. Here, we present
new data on the tensor analyzing power Ayy and the
vector analyzing power Ay in the inelastic scattering
of 4.5-GeV/c deuterons on a beryllium target for
secondary-deuteron emission at an angle of about
80 mrad.

The ensuing exposition is organized as follows.
In Section 2, we describe the details of our exper-
iment. A comparison with existing data and with
predictions of various theoretical models is performed
in Section 3. The basic conclusions of our study are
formulated in Section 4.

2. DESCRIPTION OF THE EXPERIMENT

Our experiment employed the SFERA facility de-
scribed in [15] and a polarized deuteron beam from the
synchrophasotron installed at the Joint Institute for
Nuclear Research (JINR, Dubna). The layout of the
experiment is shown in Fig. 1. Polarized deuterons
were produced by the POLARIS ion source [16]. The
sign of the beam polarization was changed regularly
from one accelerator pulse to another in the 0, –, +
sequence, where 0 means the absence of polarization,
while the signs + and – correspond to the sign of
pzz, the quantization axis being orthogonal to the
plane containing the mean orbit of the beam in the
accelerator.
YSICS OF ATOMIC NUCLEI Vol. 64 No. 11 2001
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Tensor analyzing power Ayy and vector analyzing power Ay for the inelastic scattering of 4.5-GeV/c deuterons on a
beryllium target at an angle of about 80 mrad

p, GeV/c ∆p(FWHM), GeV/c t, (GeV/c)2 MX , GeV/c2 Ayy ± dAyy Ay ± dAy

2.577 0.111 −0.917 1.752 −0.178± 0.240 0.082± 0.272

2.822 0.127 −0.683 1.711 0.070 ± 0.159 −0.072± 0.179

3.067 0.139 −0.508 1.647 0.084 ± 0.096 0.053± 0.108

3.361 0.149 −0.345 1.549 0.211 ± 0.067 0.015± 0.075

3.651 0.165 −0.253 1.418 0.364 ± 0.056 0.155± 0.063

4.047 0.189 −0.165 1.196 0.293 ± 0.063 0.098± 0.071
The tensor polarization of the beam was peri-
odically checked in the course of the experiment
by measuring asymmetry in the emission of pro-
tons of momentum pp ∼ (2/3)pd at zero angle in
the deuteron breakup d + A → p + X on a nu-
clear target [17]. Previously, it was shown that,
in the deuteron-breakup reaction occurring under
such conditions, the tensor analyzing power is very
large, T20 = −0.82 ± 0.05, and is independent of the
target atomic number (for A > 4) or the incident-
deuteron momentum in the range between 2.5 and
9.0 GeV/с [18]. The tensor polarization of the beam
as averaged over the entire experimental time proved
to be p+

zz = 0.798 ± 0.002(stat.) ± 0.040(syst.) and
p−zz = −0.803 ± 0.002(stat.) ± 0.040(syst.) for, re-
spectively, the + and the – spin states of the beam.

The invariability of the vector polarization of
the beam was monitored by measuring asymmetry
in quasielastic proton–proton scattering on a thin
target made from CH2 and arranged at the focus
F4 (not shown in Fig. 1) of the ion guide VP1 at
a distance of about 20 m in front of the facility
[19]. The absolute values of the vector polariza-
tion were obtained from the asymmetry measured
in the scattering of 4.5-GeV/c protons at a angle
of 8◦ by using the polarimeter analyzing power of
A(CH2) = 0.146 ± 0.007 [20]. For the different
spin states, the vector polarization of the beam was
p+
z = 0.231 ± 0.014(stat.) ± 0.012(syst.) and p−z =

0.242 ± 0.014(stat.) ± 0.012(syst.).
A beam of tensorially polarized deuterons that was

characterized by a momentum of 4.5 GeV/c and an
intensity of 5 × 108 particles per accelerator spill and
which was extended in time over 0.5 s as the result of
a slow extraction was incident on a beryllium target
20 cm thick positioned at the focus F5 of the ion
guide VP1 (see Fig. 1). The beam intensity was
monitored by an ionization chamber arranged in front
of the target. The position of the beam and its profiles
at specific loci of the ion guide was checked by the
control system of the accelerator in each pulse. The
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dimensions of the beam at the target position were
σx ∼ 0.4 cm and σy ∼ 0.9 cm in the horizontal and
the vertical direction, respectively.

Our data were obtained for six values of the mo-
mentum of secondary particles in the range between
2.5 and 4.0 GeV/с. Secondaries emitted from the
target at an angle of about 80 mrad were transported
to the focus F6 with the aid of three deflecting mag-
nets (the magnet M0 was switched off) and three
doublets of lenses. The acceptance of the facility
was determined from a Monte Carlo simulation with
allowance for the parameters of the incident deuteron
beam; nuclear interactions and multiple scattering in
the target, in air, in windows, and in the detectors;
energy losses of primary and secondary deutrons; etc.
The momentum and polar-angle acceptances were
(FWHM) ∆p/p ∼ ±2% and ±8 mrad, respectively.

For a trigger, we used coincidences of signals
from the scintillation counters F61, F62, and F63.
Along with inelastically scattered deuterons, our
equipment recorded protons from deuteron breakup.
The recorded particles were identified in an off-line
analysis on the basis of information about the time
of flight over the base of length about 34 m from the
start counter F61 to the stop counters F561–F562

and F563–F564 and the scintillation hodoscopeHT .
The resolution in the time of flight was better than
0.2 ns (1σ). The time-of-flight spectra obtained for
all six settings of the magnetic elements are shown
in Fig. 2. At the highest momentum of recorded
particles, only deuterons are seen in the time-of-
flight spectrum; however, the relative contribution of
protons becomes more pronounced with decreasing
momentum. In data processing, we chose only those
events for which at least two measured times of flight
were correlated. This made it possible to eliminate
completely the background of protons.

Measurements without a target were performed
for 4.0-GeV/c secondaries. The ratio of the deuteron
yields in the experiments without and with the beryl-
lium target of thickness 20 cm was less than 1%.
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Fig. 2.Time-of-flight spectra obtained at various values of the excitation currents in themagnetic elements. The corresponding
momenta of secondary deuterons were (a) 2.5, (b) 2.75, (c) 3.0, (d) 3.3, (e) 3.6, and (f) 4.0 GeV/c.
The tensor analyzing power Ayy and the vector
analyzing power Ay were calculated on the basis of
the numbers n+, n−, and n0 of deuterons recorded for
the different polarization states of the beam by using
the expressions

Ayy = 2
p−z (n+/n0 − 1) − p+

z (n−/n0 − 1)
p−z p

+
zz − p+

z p
−
zz

, (1)

Ay = −2
3
p−zz(n+/n0 − 1) − p+

zz(n−/n0 − 1)
p−z p

+
zz − p+

z p
−
zz

,

where the above numbers of deuterons were reduced
to the same intensity of the beam and were corrected
for the dead-time effect [21]. These expressions,
which take into account different values of the polar-
izations for the different spin states of the beam, are
significantly simplified for p+

z = p−z and p+
zz = p−zz.

The tensor analyzing power Ayy and the vector
analyzing powerAy according to the data on inelastic
deuteron scattering from the present experiment are
displayed in the table. The quoted errors are purely
statistical. The systematic errors were 5 and 8% for
Ayy and Ay , respectively.
PH
The values presented in the table for the secondary-
deuteron momentum p, the momentum acceptance
(FWHM) ∆p, the 4-momentum t, and the missing
mass MX were obtained from our Monte Carlo sim-
ulation, in which the t dependence of the differential
cross sections for (d, d′)X reactions was taken in the
form

d2σ

dtdM2
X

∼ e−b|t|, (2)

where the slope parameter was set to b = 18
(10) (GeV/c)−2 for MX ≤ 1200 (MX >
1200) MeV/c2 [4]. With allowance for the energy
loss in the target, the averaged momentum of primary
deuterons was 4.465 GeV/c.

Since a comparatively thick target (36 g/cm2) was
used in our experiment, we could not rule out, from
the outset, the contribution of deuterons that suffered,
after the interaction event, additional elastic scatter-
ing on a different target nucleus (macroscopic double
scattering). However, the Monte Carlo simulation
revealed that, at 4.0 GeV/c, the contribution of such
YSICS OF ATOMIC NUCLEI Vol. 64 No. 11 2001
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Fig. 3. Kinematical diagram of the dependence of the
missing mass MX on the square t of the 4-momentum
transfer for (d, d′)X reactions at the primary-deuteron
momentum of 4.5 GeV/c. The region of t and MX values
covered by the acceptance of the facility in the present
experiment is shaded. The dashed curve corresponds to
the conditions of the experiment that was reported in [8]
and which was performed for zero emission angle (the
midpoint of the acceptance).

deuterons is not greater than 0.5% of the total number
of secondaries and that it decreases with decreasing
momentum.

The values of the mixing mass MX that are pre-
sented in the table were calculated under the assump-
tion that the reaction in question proceeds on a target
having a mass equal to the proton mass. In this
case, the square t of the 4-momentum transfer and
the missing massMX are related by the equation

M2
X = t + m2

p + 2mpQ, (3)

where mp is the proton mass and Q is the differ-
ence of the energies of the incident and the scattered
deuteron. The region of t and MX values covered by
the acceptance of the facility in the present experi-
ment is shaded in the kinematical diagram displayed
in Fig. 3. The dashed curve corresponds to the
primary deuteron momentum of 4.5 GeV/c and zero
emission angle, which were realized in the experiment
reported in [8]. It can be seen that the same missing
mass MX corresponds to different values of t under
the conditions of that experiment and our present
experiment. In view of this, data that we obtained
for an emission angle of about 80 mrad provide new
information about the t dependence of the tensor an-
alyzing power Ayy .
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Fig. 4. Tensor analyzing powerAyy for inelastic deuteron
scattering (closed triangles) on beryllium at 4.5 GeV/c
for an emission angle of about 80 mrad and on hydrogen
at (open triangles) 4.5 and (open squares) 5.5 GeV/c [8]
and (open circles) at 9 GeV/c [10] for zero emission angle
versus the square t of the 4-momentum transfer. The
solid, the dashed, the dotted, and the dash-dotted curve
represent the results of the calculations performed in
the plane-wave impulse approximation with the deuteron
wave functions for the Paris potential [22], the Bonn
potential A, the Bonn potential B, and the Bonn potential
C [23], respectively.

3. RESULTS AND DISCUSSION

Our data on the tensor analyzing powerAyy in the
inelastic scattering of 4.5-GeV/c on beryllium at an
angle of about 80 mrad are displayed in Fig. 4 versus
the square of the 4-momentum transfer (closed trian-
gles). We can see that Ayy is positive, attains values
of about 0.3 in the region |t| = 0.2–0.4 (GeV/c)2,
and decreases to zero at high |t|. Data on the tensor
analyzing power in the case of deuteron emission at
zero angle for hydrogen targets at primary energies
of 4.5 and 5.5 GeV/c [8] and of 9.0 GeV/c [10] are
also shown in Fig. 4 (open symbols). (We recall
that Ayy = −T20/

√
2 for these data.) In can be seen

that the results of our present experiment comply well
with previous data from [8, 10] in the region where
they overlap. Irrespective of the primary momentum
and the deuteron emission angle, all available data
on Ayy fit approximately in a unified dependence on
t. It can also be seen that there is no visible depen-
dence on the atomic number A of the target. This
confirms conclusions drawn previously in connection
with the experiments performed at 4.5 and 5.5 GeV/c
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[8] and at 9.0 GeV/c [10] for the case of zero deuteron
emission angle. That no dependence of the tensor
analyzing power on the target atomic number has
been observed suggests that rescattering in the target
and medium effects (these factors are of consider-
able importance in the case of delta-isobar excitation
[24]) are insignificant in the case being considered.
Hence, nuclear targets are also appropriate for deduc-
ing information about baryon excitation in inelastic
deuteron scattering.

The curves in Fig. 4 represent the results of the
calculations in the plane-wave impulse approxima-
tion (PWIA). The relevant mechanism is schemati-
cally represented by the diagram in Fig. 5а. In this
approach, the tensor analyzing power Ayy is inde-
pendent of the NN → NN∗ elementary amplitude—
it is determined by the charge form factorGC and the
quadrupole form factor GQ for the deuteron; that is,

Ayy =
1
2

2
√

2GCGQ + G2
Q

G2
C + G2

Q

, (4)

where

GC(q) =

∞∫

0

(
u2(r) + w2(r)

)
j0(rq/2)dr, (5)

GQ(q) =

∞∫

0

2w(r)
(
u(r) − w(r)

2
√

2

)
j2(rq/2)dr. (6)

Here, u(r) and w(r) are, respectively, the wave func-
tions for the S- and theD-wave state of the deuteron
in configuration space; j0 and j2 are, respectively, a
zero- and a second-order Bessel function; and q2 =
−t.

The solid curve in Fig. 4 represents the results of
the calculations with the deuteron wave function for
PH
the Paris potential [22], while the dashed, the dotted,
and the dash-dotted curve correspond to the deuteron
wave functions for, respectively, the A, the B, and
the C version of the Bonn potential [23]. A strong
deviation of the present data from the PWIA predic-
tions, as well as the fact that the tensor analyzing
power behaves differently in (d, d′)X reactions and in
elastic electron–deuteron and proton–deuteron scat-
tering (see [25, 26] and [27], respectively), indicates
that the quantityAyy is sensitive to baryon-resonance
excitation.

Within the multiple-scattering model, such a de-
viation could be due to a sizable contribution of dou-
ble scattering (diagrams in Figs. 5b, 5c). The
diagram in Fig. 5b corresponds to resonance for-
mation in the second nucleon–nucleon collision; in
the process represented by the diagram in Fig. 5c,
a resonance is formed in the first nucleon–nucleon
interaction, whereupon the resonance is elastically
scattered on the second nucleon of the deuteron.
The calculations show that the contribution of dou-
ble scattering is of importance at |t| values greater
than approximately 0.4 (GeV/c)2 [7]. Thus, we see
that, in the multiple-scattering model, the behavior of
the tensor analyzing power Ayy is determined by the
spin structure of the deuteron and by the elementary
amplitudes for NN → NN∗ and NN∗ → NN∗ pro-
cesses.

The sensitivity of the tensor analyzing power for
inelastic deuteron scattering on protons to baryon-
resonance excitation was indicated in [12], where the
quantity Ayy was considered within the model as-
suming the mechanism of omega-meson exchange
in the t channel. The diagram corresponding to this
model is shown in Fig 5d. The differential cross sec-
tion and polarization observables can be calculated on
the basis of the known electromagnetic properties of
the deuteron and of baryon resonances N∗ within the
vector-dominance model. The details of the model in-
volving omega-meson exchange in the t channel are
described elsewhere [12, 13]. Here, we will therefore
briefly touch only upon the basic features of themodel.

Within the omega-meson-exchange model, the
tensor analyzing power for inelastic deuteron scatter-
ing is expressed in terms of the ratio of the differen-
tial cross sections for the absorption of longitudinally
and transversely polarized virtual isoscalar photons
by nucleons [12], r = σL/σT ; that is,

Ayy =
V 2

1 + (2V0V2 + V 2
2 )r

4V 2
1 + (3V 2

0 + V 2
2 + 2V0V2)r

, (7)

where the structure functions V0, V1, and V2 are
related to the standard deuteron electric, magnetic,
and quadrupole form factors (GC , GM , and GQ, re-
spectively) [12, 13].
YSICS OF ATOMIC NUCLEI Vol. 64 No. 11 2001
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In the case involving the excitation of N∗ reso-
nances, the ratio r can be represented in the form

rN∗ =
|Apl + Anl |2

|Ap1/2 +An1/2|2 + |Ap3/2 + An3/2|2
, (8)

where ANl is the longitudinal form factor for the
excitation of N∗ on a proton (N = p) or a neutron
(N = n) and AN1/2 and AN3/2 are two possible trans-
verse form factors corresponding to the the values
of 1/2 and 3/2 for the total helicity of the γ∗ + N
system. Within the model based on the mechanism of
omega-meson exchange in the t channel [12, 13], the
tensor analyzing power can therefore be represented
as the product of two terms that are determined by
the electromagnetic properties of the deuteron, on
one hand, and by the form factors for the N → N∗

transition, on the other hand.
The tensor analyzing power for d + p → d + X

processes as a function of t was analyzed [13] by
using, for the transverse and the longitudinal helicity
amplitude, the results obtained on the basis of the
algebraic collective string model of baryons [28] with
allowance for the finite widths of the P11(1440),
S11(1535), D13(1520), and S11(1650) resonances.
However, only the Roper resonance P11(1440) has a
nonzero isoscalar longitudinal form factor—the other
three resonances considered here cannot be excited
by isoscalar longitudinal virtual photons, since the
isoscalar longitudinal amplitudes for the S11(1535)
and D13(1520) resonances vanish because of spin–
flavor symmetry and since the isoscalar and isovector
longitudinal couplings of the S11(1650), D15(1675),
and D13(1700) resonances are identically equal to
zero. It follows that, within the omega-meson-
exchange model, the t dependence of the tensor an-
alyzing power for inelastic deuteron scattering is de-
termined by the contribution of the Roper resonance
and by the t dependence of the deuteron form factors
[13]. If we disregard the finite values of the reso-
nance widths, the tensor analyzing power in question
taken in this approximation is a universal primary-
deuteron-momentum-independent function of t.

In Fig. 6, the data at 4.5 GeV/c that were obtained
for emission angles of about 80 mrad and zero
and which are shown by closed and open triangles,
respectively, are contrasted against the results of
the calculations performed within the omega-meson-
exchange model [13]. The calculations employed the
deuteron form factors computed in the relativistic
impulse approximation [29] and the standard values
of the paramaters of the collective string model [28]
(the constituent quark mass of m = 0.366 GeV, the
magnetic moment of µ = 0.127 GeV−1, and the fixed
scale parameter of a0 = 0.232 fm). The solid and
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 11 20
  

0

–0.5
–0.9

 
A
 

yy

 

t

 

, (GeV/

 

Ò

 

)

 

2

 

–0.6 –0.3 0–1.2

0.5

1.0

Fig. 6. Tensor analyzing powerAyy for inelastic deuteron
scattering on (closed triangles) beryllium at 4.5 GeV/c
for an emission angle of about 80 mrad according to
the data of the present experiment and (open triangles)
hydrogen at 4.5 and 5.5 GeV/c [8] for zero emission angle
versus the square t of the 4-momentum transfer. The
solid and the dashed curve represent the results of the
calculations on the basis of the omega-meson-exchange
model [13] without and with allowance for the resonance
widths, respectively, at ξ = 0. The dotted and the dash-
dotted curve were computedwithin the same model at the
string-tension values of ξ = 0.5 and 1, respectively.

the dashed curve represent the results of the cal-
culations performed without and with allowance for
finite resonance widths, respectively. It can be seen
that the results of the calculations are in reasonably
good agreement with data up to |t| ∼ 0.3 (GeV/c)2;
at higher values of |t|, serious discrepancies are ob-
served, which may be due to the contributions of the
F15(1680) and P13(1720) resonances, not included
in the calculations. Just like the Roper resonance,
they have nonzero isoscalar longitudinal form factors.
Therefore, the contributions of these resonances can
substantially affect the t dependence of the tensor an-
alyzing power at high t. At the same time, the model
relying onmeson exchange in the t channel alonemay
be inadequate in this region; possibly, it is necessary
to take into account the contributions of harder pro-
cesses as well—for example, the baryon-resonance
excitation in the approximation of one-nucleon ex-
change [30, 31]. Moreover, exchanges of other
mesons (σ, η, etc.) and the double-scattering mech-
anism [1, 7] can contribute significantly at high t.

In the QCD string model, it is expected that,
with increasing excitation energy, strings will stretch
(swelling of hadrons). Within the collective string
01
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Fig. 7. Data on Ayy (closed triangles) from the present
experiment and relevant data obtained at (open trian-
gles) 4.5 and (opens squares) 5.5 GeV/c for zero emis-
sion angle [8] versus the square t of the 4-momentum
transfer at four various values of the missing mass MX :
(a) MX ∼1200 MeV/c2, (b) MX ∼1440 MeV/c2, (c)
MX ∼1550 MeV/c2, and (d) MX ∼1650 MeV/c2. The
solid and dotted curves represent the results of the cal-
culations in the plane-wave impulse approximation with
the deuteron wave function for, respectively, the Paris
potential [22] and the B version of the Bonn potential [23].
The dashed curves were computed on the basis of the
omega-meson-exchange model [13].

model [28], this effect is taken into account by intro-
ducing the string tension ξ in the expression for the
scale parameter a via the relation

a = a0

(
1 + ξ

W −M

M

)
, (9)

where a0 = 0.232 fm is a fixed scale parameter of
the collective string model, while M and W are the
nucleon and the baryon mass, respectively. The string
tension ξ varies between 0 and 1. The dashed, the
dotted, and the dash-dotted curve in Fig. 6 repre-
sent the results of the calculations performed within
the omega-meson exchange model [13] with ξ set
to 0, 0.5, and 1, respectively. It can be seen that
the tensor analyzing power is highly sensitive to ξ.
It was indicated in [13] that the introduction of the
swelling of hadrons that corresponds to ξ ∼ 0.5–1
(such values are consistent with the results of an
PH
analysis of the spectrum of experimental masses in
terms of the Regge trajectories) leads to a better
description of experimental data on Ayy [8–10] in the
range of primary deuteron momenta between 3.7 and
9 GeV/c. However, data of the present study and
data obtained at 4.5 GeV/c for deuteron emission at
zero angle are better reproduced within the omega-
meson-exchange model at the string-tension value
of ξ ∼ 0.2. On the other hand, the mechanism of
delta-isobar excitation in the incident particle and the
mechanism of Roper resonance excitation in the tar-
get nucleus (via sigma-meson exchange) should be
taken into account in this region [32]. However, the t
dependence of the tensor analyzing power would then
be governed by the interference between the mech-
anisms considered in [32] and the omega-meson-
exchange mechanism [13], which is sensitive to the
string tension ξ. Therefore, definitive conclusions on
the value of ξ on the basis of the present experimental
data alone would be premature at present.

The data on Ayy from the present experiment
(closed triangles), along with the data taken at 4.5
and 5.5 GeV/с for zero emission angle [8] (open
triangles and squares, respectively), versus the square
t of the 4-momentum transfer are displayed in Figs.
7a, 7b, 7c, and 7d for four values of the missing mass
MX around 1200, 1440, 1550, and 1650 MeV/c2,
respectively. The solid and dotted curves represent the
results of the PWIA calculations with the deuteron
wave function for the Paris potential [22] and the
version B of the Bonn potential [23]. The experimental
data in Fig. 7a correspond to the region where the
mechanism of delta-isobar excitation in the incident
particle [32] is dominant, so that the tensor analyzing
power is determined primarily by the behavior of
the deuteron form factors. The dashed curves in
Figs. 7b, 7c, and 7d represent the predictions of the
omega-meson-exchange model [13] for P11(1440),
D13(1520) and S11(1535), and S11(1650) resonances,
respectively. As was indicated above, the t depen-
dence of the tensor analyzing power is determined
exclusively by the longitudinal form factor for the
Roper resonance P11(1440), because the longitudi-
nal form factors for the D13(1520), S11(1535), and
S11(1650) resonances vanish [13]. In the last case,
the tensor analyzing power Ayy is independent of
t and amounts to +0.25. It can be seen that, in
the vicinity of the Roper resonance (Fig. 7b) and
at MX ∼ 1550 MeV/c2 (Fig. 7c), the behavior of
Ayy is consistent with the predictions of the omega-
meson-exchange model [13], but that, at MX ∼
1650MeV/c2 (Fig. 7d), a deviation from the constant
value of +0.25 is observed. It was indicated above,
however, that, at these missing-mass values, it may
prove to be necessary to take additionally into account
YSICS OF ATOMIC NUCLEI Vol. 64 No. 11 2001
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Fig. 8. Tensor analyzing power Ayy for (d, d′)X reac-
tions according to (closed triangles) the present data on
inelastic deuteron scattering on beryllium at 4.5 GeV/c
for an emission angle of about 80 mrad and (open circles)
the data from [14] for the reaction 1H(d, p)pn versus the
quantity M that coincides with the missing mass MX for
(d, d′) reactions and with the differenceMX −mp for the
reaction (d, p)pn.

the contributions of the F15(1680) and P13(1720)
resonances, whose longitudinal isoscalar form factors
are also nonzero, which may significantly affect the t
dependence of the tensor analyzing power. It should
also be noted that, since we explore inclusive (d, d′)X
processes, a few resonances can contribute at the
above value of MX because of their finite widths; at
the same time, the theoretical predictions presented
in Fig. 7 were obtained for the individual contribu-
tions of the P11(1440), D13(1520), S11(1535), and
S11(1650) resonances. In view of this, exclusive (or
semiexclusive) measurements involving the detection
of resonance-decay products could aid in separating
the contributions of various baryon resonances.

It is of interest to compare the present data on
the tensor analyzing power Ayy for (d, d′) reactions
occurring on intranuclear nucleons and involving
nucleon-resonance excitation with the tensor an-
alyzing power for other inelastic processes. The
parameter T20 for two-body deuteron breakup on
hydrogen with proton emission at zero angle was
measured in the experiment reported in [14]. In Fig. 8,
the data obtained in the present experiment (closed
triangles) are shown along with the values of Ayy for
the reaction 1H(d, p)pn that were calculated on the
basis of data from [14]. Along the abscissa, we plotted
the quantity M that coincides with the missing
mass MX for (d, d′) reactions and with the difference
MX −mp for the reaction (d, p)pn. It is surprising
that, although the two processes are governed by
the totally different mechanisms (the former was
treated here on the basis of the multiple-scattering
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 11 20
and the omega-meson-exchange model, while the
latter should be described, under the kinematical
conditions implemented in [14], by the one-nucleon-
exchange diagram), the corresponding two data sets
can be approximated, as can be seen from Fig. 8, by
a single smooth dependence on the above variable
M , which characterizes the degree of inelasticity of
the reactions in question. It can be seen that, as the
degree of inelasticity becomes greater, the quantity
Ayy grows, attains a maximum, and then decreases.

The values of the vector analyzing power Ay are
small and are characterized by large uncertainties
(see table). In the vicinity of Roper resonance
excitation, however, Ay takes a value of 0.155 ±
0.063, which is nonnegligible. Within the plane-
wave impulse approximation (Fig. 5a), this can be
considered as an indication of a significant role of the
spin-dependent part of the elementary amplitude for
NN → NP11(1440) processes.

4. CONCLUSION

New data on the tensor analyzing power Ayy and
the vector analyzing power Ay for the inelastic scat-
tering (d, d′)X of 4.5-GeV/c deuterons on beryllium
at an angle of about 80 mrad in the vicinity of the
excitation of baryons with masses between 1.2 and
1.75 GeV/c2 have been obtained. This corresponds
to values of the 4-momentum transfer squared t be-
tween –0.17 and –0.90 (GeV/c)2.

The new data on Ayy , together with data obtained
previously for zero scattering angle [8, 10], presented
versus t, show virtually no dependence on the primary
momentum and the deuteron observation angle. It
has also been found that Ayy is independent of the
target atomic number A. These regularities indicate
that rescattering, final-state interaction, and nuclear-
medium effects, which depend on kinematical con-
ditions, do not have a pronounced influence on the
behavior of the tensor analyzing power.

A strong deviation of Ayy for (d, d′)X reactions
from the PWIA predictions, as well as the behavior
of the tensor analyzing power for elastic electron–
deuteron scattering [25, 26] and elastic proton–
deuteron scattering [27], is indicative of the sensi-
tivity of this observable to the excitation of baryon
resonances via double interaction.

The behavior of Ayy in the vicinity of the exci-
tation of the P11(1440), D13(1520), and S11(1535)
resonances is compatible with the predictions of the
omega-meson-exchange model [13]; in the case of
excitation of higher mass resonances, it may prove to
be necessary to take into account, within this model,
additional baryon resonances featuring nonzero lon-
gitudinal form factors. Moreover, the inclusion of
01
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extra mechanisms, like double scattering [1, 7], ex-
changes of other mesons [32], or the excitation of N∗

in the u channel [30, 31], may be required.
Polarization experiments in an exclusive imple-

mentation featuring the detection of resonance-decay
products could contribute to obtaining deeper in-
sights into the mechanisms that govern the excitation
of various baryon resonances and into the spin prop-
erties of their interaction with nucleons.
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Abstract—Neutrino oscillations in matter and in a magnetic field are investigated within models involving
an extended Higgs sector. The left–right model containing a bidoublet and two triplets of Higgs fields
(LRM) and the general two-Higgs-doublet model (GTHDM) are chosen by way of example. It is
shown that the interaction of leptons with physical Higgs bosons can substantially change the pattern
of oscillations in these models in relation to the predictions of the Standard Model (SM). Upper limits on
the Yukawa coupling constants and on the Higgs boson masses are found in order to obtain maximum
corrections to the SM solar-matter potential V SM. By using constraints on these parameters from
the literature and those that are obtained here, it is possible to estimate corrections to V SM that come
exclusively from charged Higgs bosons. The maximum value of these corrections is 40% of V SM within
the LRM and 10% of V SM within the GTHDM. The entire body of information about the contributions of
physical Higgs bosons to the solar-matter potential can be obtained by studying the Lorentz structure of
the amplitudes for the reactions e−νl → e−νl′ at low energies. c© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

At present, the entire body of experimental data
indicates that the Standard Model describes correctly
the interactions of elementary particles at energies
achievable at currently existing accelerators. How-
ever, it is conceivable that we are still far from the true
picture of the real world, with the Standard Model
being an approximate theory that loses its predictive
power as soon as energy reaches values of about a
few hundred GeV. Moreover, numerous attempts at
going beyond the Standard Model are also motivated
by the quest of researchers for solving more consis-
tently and more elegantly problems existing within
the Standard Model. This can be exemplified by the
problem in the neutrino sector of the theory. The
structure of the Standard Model is such that, upon
a spontaneous breakdown of symmetry, the neutrino
remains a massless particle [a Dirac mass propor-
tional to νLνR does not arise because there is no
right-handed neutrino singlet in the theory, whereas
the appearance of the Majorana mass proportional to
νTLCσ2νL is forbidden by SU(2)L invariance]. How-
ever, the results of experiments with cosmic and ter-
restrial neutrinos furnish compelling evidence in favor
of a nonzero neutrino mass andmixing in the neutrino
sector. The aforesaid is confirmed, in particular, by a
discrepancy between the solar-neutrino flux predicted
by the standard solar model, on one hand, and those
that were measured by the Homestake, Kamiokande,

*e-mail: boyarkin@bspu.unibel.by
1063-7788/01/6411-1971$21.00 c©
GALLEX, and SAGE experiments [1], on the other
hand. It should be noted that there exist solar models
in which attempts are made to solve the neutrino
problem without resort to types of neutrino behavior
that are anomalous from the point of view of the Stan-
dard Model (vacuum oscillations, effects associated
with the enhancement of oscillations in a medium
and in a magnetic field, oscillations caused by lepton-
flavor-violating currents, etc.). However, the most
recent helioseismological data favor the standard so-
lar model, strengthening our belief that the solar-
neutrino problem must indeed be solved on the ba-
sis of models that predict a nonzero neutrino mass
and the existence of the νe → νa neutrino-oscillation
channel (a = µ, τ ).

Earlier experiments [2] and recent results of the
SuperKamiokande collaboration [3] on the fluxes of
atmospheric neutrinos also suggest that the neutrino
is massive. Data from these experiments are best
explained under the assumption that the νµ → ντ
oscillation channel is dominant. The possibility that a
νµ → νe admixture is present cannot be ruled out [4],
because a description in terms of νµ → νe oscillations
exclusively also makes it possible to fit the theory to
experimental data, albeit the quality of the resulting
fit is much poorer.

There are two accelerator neutrino experiments
that give grounds to believe that the neutrino has
a nonzero mass and is a mixture of physical states.
Specifically, experiments with the Los Alamos liquid
2001MAIK “Nauka/Interperiodica”
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scintillation detector [5] and the KARMEN 2 exper-
iment [6] indicate the presence of oscillations both in
the νµ → νe and in the νµ → νe channel.

A more detailed investigation into the neutrino
sector is expected from future high-statistics long-
baseline oscillation experiments where a high-energy
neutrino beam created at an accelerator travels a
distance L in Earth’s rock and is recorded by an
underground detector. In the experiments currently
performed by the CERN–Gran Sasso ICARUS and
the Fermilab–Soudan MINOS collaboration (see [7]
and [8], respectively), L is only 730 km, which is
insufficient for a full development of the oscillations
[9]. Presently, projects are being discussed (see, for
example, [10] and references therein) in which a neu-
trino detector is arranged at the Laboratori Nazion-
ali del Gran Sasso, while a neutrino source (muon
collider producing a neutrino beam of energy in the
range 10–30 GeV) is situated either at Fermilab (L =
7400 km) or at KEK (L = 8800 km).

Thus, interest in theories where the left-handed
neutrino develops a nonzero rest mass in a natural
way is quite understandable. For such theories, we
choose here the left–right model (LRM) featuring a
bidoublet and two triplets of Higgs fields [11] and
the model that is constructed on the basis of the
Standard Model as its most general modification in-
volving two doublets of Higgs fields (general two-
Higgs-doublet model abbreviated here as GTHDM)
[12]. The existence of lepton-flavor-violating currents
at the tree level is a property common to these two
models. The appearance of lepton-flavor-violating
currents, both neutral and charged ones, is due to
the interaction of physical Higgs bosons with leptons.
For the first time, the effect of neutral lepton-flavor-
violating currents on neutrino oscillations in matter
was investigated in [13]. It turned out that limits on
the parameters of neutrino oscillations change signif-
icantly upon taking into account these currents. In
recent years, the idea of using lepton-flavor-violating
currents to explain the results of experiments with
cosmic and terrestrial neutrinos [14] has become ever
more popular. It should be emphasized that, in
theories involving massive neutrinos, mixing in the
neutrino sector and the existence of lepton-flavor-
violating currents are manifested as two facets of the
same phenomenon that is associated with the choice
of the Yukawa Lagrangian and the Higgs potential.
Thus, the two effects exist in the theory simultane-
ously, so that any attempt at using them separately is
a rough approximation.

The objective of the present study is to analyze the
evolution of a neutrino beam in a medium and in a
magnetic field with allowance for effects associated
with lepton-flavor-violating currents and for mixing
in the neutrino sector.
PH
The ensuing exposition is organized as follows.
In Section 2, we consider this problem within the
LRM. In Section 3, the behavior of a neutrino flux is
investigated on the basis of the GTHDM. In Section
4, constraints on the Yukawa coupling constants and
on the masses of physical Higgs bosons are obtained
by studying the channels of muon and tau-lepton
decays. By using the resulting limits, we estimate the
maximum values of corrections to the solar-matter
potential in relation to Standard Model predictions.
In the Conclusion, we analyze our results.

2. NEUTRINO OSCILLATIONS IN THE LRM

Left–right models relying on the gauge group
SU(2)L × SU(2)R × U(1)B−L [15, 16] and involv-
ing the bidoublet Φ(1/2, 1/2, 0) and two triplets
∆L(1, 0, 2) and ∆R(0, 1, 2) of Higgs fields stand out
among the extensions of the Standard Model. (i) A
dynamical solution to the parity-violation problem in
weak interactions, (ii) the emergence of a small left-
handed-neutrino mass owing to the so-called seesaw
mechanism, and (iii) the presence of elements among
physical Higgs bosons that are common to these
models and popular extensions of the Standard Model
{minimal supersymmetric Standard Model [17], the
model based on the gauge group SU(3)L × U(1)N
[18], the superstring-motivated model based on the
gauge group SU(4) ×O(4) [19], and so on} are their
main advantages. The present analysis is based
on the asymmetric LRM (gL �= gR) [20] featuring a
potential of the most general form [21]. Thus, the
results to be obtained will reproduce the spectrum
of predictions of all possible LRM versions. Upon a
spontaneous breakdown of symmetry, there arise, in
the model, four doubly charged, four singly charged,
four neutral scalar, and two neutral pseudoscalar

Higgs bosons (∆(±±)
1,2 , h(±) and δ̃(±), S1,2,3,4, and

P1,2, respectively). The form and the strength of their
interactions with fermions are completely determined
by the choice of Yukawa Lagrangian LY and potential
V of the Higgs fields. The Yukawa Lagrangian
describing the gauge-invariant interaction in the
lepton sector is taken here in the form

LY = −
∑
a,b

{habΨ̄aLΦΨbR + h′abΨ̄aLΦ̃ΨbR (1)

+ ifab[ΨT
aLCσ2(σ · ∆L)ΨbL + (L→ R)] + conj.},

where ΨaL (ΨaR) is the left-handed (right-handed)
lepton doublet, σ1,2,3 are the Pauli matrices, C is the
charge-conjugation matrix, Φ̃ = σ2Φ∗σ2, a and b are
the generation indices, hab and h′ab are the bidoublet
Yukawa coupling constants, and fab = fba stands for
the triplet Yukawa coupling constants.
YSICS OF ATOMIC NUCLEI Vol. 64 No. 11 2001
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From expression (1), it follows that the LRM will
lead to lepton-flavor violation at the tree level. In
the Standard Model, such a phenomenon does not
occur since the lepton-mass matrixMl is proportional
to the matrix constructed from the Yukawa coupling
constants, so that the diagonalization of the former
entails the diagonalization of the interaction between
the physical Higgs boson and leptons. In the LRM,
the lepton mass matrix is the sum of four matrices
(they are products of the Yukawa coupling constants
and vacuum expectation values), which obviously
cannot be diagonalized simultaneously. In order to
demonstrate this, we note that, upon going over to the
basis of states of physical Higgs bosons, we obtain,
from (1), the interaction Lagrangians

Ldc
l = −

∑
a,b

fab
2

[lca(1 + γ5)lbcθd
(2)

− lca(1 − γ5)lbsθd
]∆(++)

1

+ (∆1 → ∆2, θd → θd −
π

2
) + conj.,

Lsc
l =

∑
a,b

{
b
[h′abk2 − habk1

2k+
νa(1 − γ5)lb (3)

− habk2 − h
′
abk1

2k+
N̄a(1 + γ5)lb

]
h(+)

+
fab√

2

[
lca(1 + γ5)νb

( dβk2
0

(α+ ρ1 − ρ3/2)v2R
h(+)

− dδ̃(+)
)

+ lca(1 − γ5)Nb

(ak0
vR
h(+)

+
aβk0

(α+ ρ1 − ρ3/2)vR
δ̃(+)

)]
+ conj.

}
,

Ln
l = − 1√

2k+

∑
a

malaRlaL(S1cθ0 − S2sθ0) (4)

− 1√
2k+

∑
a,b

laRlbL[(habk1 −−h′abk2)

× (S1sθ0 + S2cθ0) + i(habk1 + h′abk2)P1]

− 1√
2k+

∑
a,b

{N̄aRνbL[hab(k1cθ0 − k2sθ0)

+ h′ab(k2cθ0 + k1sθ0)]S1 − [hab(k1sθ0 + k2cθ0)

+ h′ab(k2sθ0 − k1cθ0)]S2 − i(habk2 + h′abk1)P1}

− 1√
2

∑
a,b

fab[νcaLνbL(S4 + iP2)

+ N̄ c
aRNbRS3] + conj.,

where
〈δ0L,R〉 =

vL,R√
2
, 〈Φ0

1〉 = k1, 〈Φ0
2〉 = k2,
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 11 20
k± =
√
k2
1 ± k2

2 , k0 =
k2
−√

2k+
, α =

α3k
2
+

2k2
−
,

β =
k2
+(β1k1 + 2β3k2)

2k2
−k0

,

a =

[
1 +

(
1 +

β2

(α+ ρ1 −
ρ3
2

)2

) k2
0

v2R

]−1/2

,

b =
(

1 +
k2
0

v2R

)−1/2

,

d =


1 +

β2k2
0

(α+ ρ1 −
ρ3
2

)2v2R



−1/2

;

cθ0 = cos θ0 and sθ0 = sin θ0, θ0 being the mixing an-
gle in the sector of neutral Higgs bosons; cθd

= cos θd
and sθd

= sin θd, θd being themixing angle in the sec-
tor of doubly charged Higgs bosons; αi, ρi, and βi are
constants appearing in the Higgs potential; and the
index c denotes the charged-conjugation operation.

Since the neutrino is a Majorana particle in the
LRM, the first and the fourth term in (3) can be
rewritten, respectively, as∑

a,b

bλ∗νa
h′abk2 − habk1

k+
lcb(1 − γ5)νah(+) (5)

and as

−
∑
a,b

λνa
dfab√

2
νa(1 + γ5)lbδ̃(+). (6)

In deriving relations (5) and (6), we have taken into
account the identity

νa(1 − γ5)lb ≡ (νca)c(1 − γ5)(lcb)
c

≡ −(νca)TC−1(1 − γ5)C(lcb)
T ≡ lcb(1 − γ5)νca

and the condition that the Majorana spinor is self-
conjugate,

νca = λ∗νaνa, (7)

where λνa is the phase factor of νa. It should be
recalled that not only do Yukawa coupling constants
determine the interaction between leptons and phys-
ical Higgs bosons, but they also fix the parameters of
neutrino oscillations [22], this being one of the most
important properties of the LRM. This in turn means
that, by investigating the processes of Higgs boson
interaction only with charged leptons, we can obtain
an entire body of required information about the val-
ues of the mixing angles and about the difference of
the squares of the neutrino masses. For example,
these can be the processes (see [15, 23] and references
therein)

e−e− →W−W−, (8)
01
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e−µ+ →W−W+, (9)

e−µ+ → e+µ−. (10)

Thus, the LRM belongs to the class of models where
the parameters of neutrino oscillations can be mea-
sured both by direct and by indirect methods.

Along with mass, the dipole magnetic moment
is an important property of the neutrinos, the latter
being induced by radiative corrections to the elec-
tromagnetic neutrino vertex. In the Standard Model
wheremν �= 0, this quantity is extremely small, since,
on the internal neutrino line, helicity flip, which is
necessary for the existence a nonvanishing mag-
netic moment, is due exclusively to the neutrino-
mass term,

µνaνb
=

3GF

16
√

2π2
(mνa +mνb

)
∑
l

U†
alUlbµB, (11)

whereGF is the Fermi constant, µB is the Bohr mag-
neton, and νl =

∑
b Ulbνb. Under the assumption that

the tau-lepton mass is about a few MeV, we then ob-
tain a value of 10−16µB for µνe(µ)ντ . The LRM belongs
to the class of models that emerge as extensions of the
Standard Model and which can lead, at some model-
parameter values compatible with experimental data,
to µνe(µ)ντ of about 10−12µB. Diagrams that induce a
neutrino magnetic moment at the one-loop level can
be divided into three classes: (i) diagrams involving
virtual W±

1,2 bosons, (ii) diagrams involving virtual

h(±) and δ̃(±) Higgs bosons, and (iii) diagrams in-
volvingW±

1,2 bosons and h(±) and δ̃(±) Higgs bosons
in virtual states.

The contributions of diagrams belonging to the
first and the second class are dominant. The neutrino
magnetic moment caused byW±

1 -boson exchange in
the basis of pure mass states is given by [24]

µWW
νiνj

=
32π2egLgR
m2

W1

sin 2ξ
∑
l

mlV†
iνl
Vνlj , (12)

where ξ is the mixing angle for charged gauge
bosons and the 6 × 6 matrix Vαli (αl = νl, Nl) de-
scribes the transition from the flavor basis ΨT

f =
(νTe , N

T
e , ν

T
µ , N

T
µ , ν

T
τ , N

T
τ ) to the basis of pure mass

states.
The neutrino magnetic moment induced by the di-

agrams involving δ̃(±) Higgs bosons in virtual states
appears to be greater than the neutrino magnetic mo-
ment induced by the exchange of h(±) Higgs bosons
and has the form [24]

µδ̃δ̃νaνb
=

efab
8π2m2

δ̃

[
mafaa

(
ln
m2

δ̃

m2
a

− 1

)
(13)
PH
+mbfbb

(
ln
m2

δ̃

m2
b

− 1

)]
.

The expression for µWW
νiνj

includes the factor sinϕl

(ϕl is the mixing angle between the light νl and the
heavy Nl neutrino belonging to the same generation
l). There exists a theoretical prejudice in favor of very
small values of this angle (about 10−6–10−5). In
this case, µWW

νiνj
amounts to 10−15µB, provided that

use is made of the upper limit of 3.1 × 10−2 on ξ. It
was shown in [23], however, that, even if the seasaw
relation

mνl
mNl

= m2
l

holds, the angles ϕl can be rather large (∼10−2). The
necessary condition for this is that vL is nonzero. At
ϕl ∼ 10−2 and ξ = ξmax, µWW

νiνj
is about 10−12µB.

Let us determine the maximum possible values of
µδ̃δ̃νaνb

by using the existing constraints on the triplet
Yukawa coupling constants and on the Higgs boson
masses. Searches for the decay µ→ eγ lead to the
constraint [25]

fµµfeµ < 2 × 10−10
( m∆

GeV

)2
, (14)

where m∆ is the mass of the lightest doubly charged
Higgs boson. By assuming thatm∆ = 1 TeV and by
using the upper limit on fµµfeµ, we obtain

µδ̃δ̃νeνµ
≈ 10−12µB (15)

atmδ̃ = 100 GeV. It should be recalled that the mix-
ing angles within a neutrino generation can be sizable
only at large values of the Yukawa coupling constants
[22].

Let us discuss the evolution of the solar-neutrino
flux. We begin by considering the case of negligibly
small values of the neutrino magnetic moment. The
effect of heavy neutrinos on the oscillation pattern
can be disregarded, because there is every reason to
believe that their masses lie in the region around a few
TeV. The interaction between left- and right-handed
light neutrinos can be induced either by the neutrino
magnetic moment or by lepton-flavor-violating cur-
rents. It will be shown below that, in the LRM,
lepton-flavor-violating currents do not mix neutrinos
of different helicities. For this reason, the evolution
equations for left- and right-handed neutrinos will be
independent of each other. We consider a neutrino
system consisting of νeL, νµL, and ντL; further, we
set the CP-violation phase to zero and choose the
scheme of neutrino-generation mixing in the form


νe

νµ

ντ


 = U



ν1

ν2

ν3


 (16)
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SOLAR NEUTRINOS IN MODELS INVOLVING AN EXTENDED HIGGS SECTOR 1975
=




1 0 0

0 c23 s23

0 −s23 c23







c13 0 s13

0 1 0

r − s13 0 c13




×



c12 s12 0

−s12 c12 0

0 0 1






ν1

ν2

ν3


 ,

where ϕik is the mixing angle between νi and νk in a
vacuum, cik = cosϕik, and sik = sinϕik.

In the ultrarelativistic limit [E � max(m1,m2,
m3)], the evolution equation for the case of motion
in a vacuum has the form

i
d

dz



νeL

νµL

ντL


 = Hv



νeL

νµL

ντL


 , (17)

where

Hv
11 =

1
6E

[
(3s213 − 1)∆m2

32

+ (1 − 3c212c
2
13)∆m2

21

]
,

Hv
22 =

1
6E

[(3c13s223 − 1)∆m2
32

+ (1 − 3b21)∆m2
21],

Hv
12 =

c13
2E

(s13s23∆m2
32 + c12b1∆m2

21),

Hv
23 =

1
2E

(c213c23s23∆m2
32 + b1b′1∆m2

21),

b1 = c23s12 + c12s23s13,

b′1 = b1
(
ϕ23 → ϕ23 −

π

2

)
,

∆m2
ik = m2

i −m2
k,

Hv
33 = Hv

22

(
ϕ12 → ϕ12 −

π

2

)
,

Hv
13 = Hv

12

(
ϕ12 → ϕ12 +

π

2

)
.

In a medium, the elements of the Hamiltonian Hv

undergo changes owing to interactions with gauge
bosons and Higgs bosons. Figures 1 and 2 show
Feynman diagrams for elastic forward νaLe− scat-
tering. The parts of the interaction Lagrangian that
are determined by relations (5) and (6) generate the
diagrams in Fig. 2. If the arrows on a fermion
line are directed oppositely, this means that it is not
the spinor u but its charge-conjugate counterpart v
that must be used to describe the respective charged
fermion. Diagrams involving the exchanges of W2

and Z2 gauge bosons are disregarded here, because
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Fig. 1. Feynman diagrams for the process
e−νaL → e−νaL in the Standard Model.
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Fig. 2. LRM Feynman diagrams for the process
e−νaL → e−νbL that are not present in the Standard
Model.

corrections to the solar-matter potential that stem
from such diagrams are at a level of 1% [26].

By using the Fierz transformation and performing
averaging over solar matter, we find that the contribu-
tion to the solar-matter potential from the diagrams in
Fig. 2 can be represented as

V H
ab =

(
αeaαeb
2m2

h

− feafeb
m2

δ̃

)
ne, (18)

where

αab =
h′abk2 − habk1

k+

and ne (nn) is the electron (neutron) density in solar
matter.

The total contribution of the diagrams in Figs. 1
and 2 to the solar-matter potential is given by

Vee =
g2L

4m2
W

(
1
2
nn − ne

)
+ V H

ee ,

Vaa =
g2L

8m2
W

nn + V H
aa , Vab = V H

ab .

The evolution equation in the flavor basis has the
form

i
d

dz
Ψ = HmΨ, (19)
01
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where
Hm

12 = Hv
12 + V H

eµ , Hm
13 = Hv

13 + V H
eτ ,

Hm
23 = Hv

23 + V H
µτ , V SM = −

√
2GFne,

Hm
11 = Hv

11 + V SM + V H
ee , Hm

22 = Hv
22 + V H

µµ,

Hm
33 = Hv

33 + V H
ττ ,

and we have neglected the quantity proportional to
the identity matrix.

Let us proceed to examine resonance transitions
in the neutrino system for the case of motion in solar
matter. Three resonance transitions are possible.
They occur between the i and k states at densities
ne(z) corresponding to the minimum of the difference

∆M2
ik = M2

i −M2
k ,

where the expressions for M2
i are presented in the

Appendix. Since the graphs of the functions M2
i (z)

do not intersect, only two of the three possible res-
onances will be realized, depending on the structure
parameters of the model. The approximate values
of the resonance densities ne(zr) can be found by
equating the diagonal elements of the Hamiltonian
Hm:

1
2E

[
(s213 − c213s223)∆m2

32 + (b21 − c212c213)∆m2
21

]
(20)

=

(
√

2GF −
α2
ee − α2

µe

2m2
h

+
f2
ee − f2

µe

m2
δ̃

)
ne,

1
2E

[(s213 − c213c223)∆m2
32 + (b′21 − c212c213)∆m2

21]

(21)

=

(
√

2GF − α
2
ee − α2

τe

2m2
h

+
f2
ee − f2

τe

m2
δ̃

)
ne,

1
2E

[c213(s223 − c223)∆m2
32 + (b′21 − b21)∆m2

21] (22)

=

(
α2
τe − α2

µe

2m2
h

−
f2
τe − f2

µe

m2
δ̃

)
ne.

Equations (20), (21), and (22) are conditions un-
der which the resonance transitions νeL ↔ νµL,
νeL ↔ ντL, and νµL ↔ ντL, respectively, are realized.
The dependence of the off-diagonal elements of the
Hamiltonian Hm

ab on ne(z) can lead to interesting
physical implications. We now assume that the
conditions in (20) and (21) are satisfied. However,
the conversion ofmuon neutrinos into tau neutrinos is
not observed, since Hm

23 vanishes at the density value
corresponding to the resonance transition νµL →
ντL. Thus, we can see that, even at nonzero values of
the mixing angle ϕ23, there are still no tau neutrinos
in the solar-neutrino flux.
PH
In the case being considered, the probability of
survival of left-handed electron neutrinos, P(νeL →
νeL), can be obtained in an analytic form. Consid-
ering that the adiabatic approximation is not valid
only in the regions where the resonance transitions
are localized, we can represent the survival probability
P(νeL → νeL) in the form

P(νeL → νeL) =
∑
a,b

| Uae(ϕm
nk) |2 (23)

× | Ube(ϕm
nk) |2 (pSab + pDab),

where ϕm
nk (n, k = 1, 2, 3) are the mixing angles in

matter at the point of νeL generation (their values are
quoted in the Appendix) and pSab (p

D
ab =

∑
r p

S
arp

S
rb) is

the probability of the resonance transition between
νaL and νbL for a single (double) passage through
the resonance region. With the aid of the method of
complex trajectories proposed by Landau, we can find
the expression for pSab in the form [27]

pSab = exp


− 1
E

Im

δNab∫

Nab

∆M2
ab(n

ab
e )

| Ṅab |
dne


 , (24)

where integration is performed in the upper com-
plex half-plane of the variable ne(z). The quantities
nabe = Nab + iδNab, whereNab and δNab are the reso-
nance electron densities and the resonance-transition
widths, respectively, are found as complex solutions
to the equations

∆M2
ab(n

ab
e ) = 0.

Under the condition that the resonances are
isolated—that is, if the inequality

Nab + δNab < Ncd − δNcd (25)

is satisfied—the resonance-transition probability can
be calculated by using the approximate formula

pSab = exp
(
− πδN2

ab

16E | Ṅab |

)
, (26)

where
Ṅab = dNab

/
dt.

In a rough approximation, the resonance width and
the resonance electron density can be determined
with the aid of the relations

δNab ∼
2Hm

ab

V 0
aa − V 0

bb

, Nab ∼
Hv

aa −Hv
bb

V 0
aa − V 0

bb

, (27)

where

V 0
aa = (−

√
2GF)δae +

α2
ea

2m2
h

− f
2
ea

m2
δ̃

.

We further consider the evolution of the neutrino
flux in solar matter, taking into account the effect
of neutrino interaction with the magnetic field of the
YSICS OF ATOMIC NUCLEI Vol. 64 No. 11 2001
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Sun. For the sake of simplicity, we restrict ourselves
to the two-flavor approximation, in which case the
system under investigation is described by the wave
function

ΨT =
(
νTeL, ν

T
XL, ν

T
eR, ν

T
XR

)
,

where X = µ, τ . For the axes z and x, we choose,
respectively, the direction of the neutrino trajectory
and the axis of rotation of the Sun. The magnetic field
in the convection zone is then characterized by the
geometric phase Φ(z) determined from the relation

Bx ± iBy = B⊥ exp [±iΦ(z)] .
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For the right-handed neutrinos, the diagrams in
Fig. 3 make the following contribution to the solar-
matter potential:

V R
ea = −V H

ea , a = e,X. (28)

In the flavor basis, the evolution equation for the
system under consideration has the form

i
d

dz
Ψ = HΨ, (29)

where
H =




∆m2

2E
s2ϕ + V mf

ee

∆m2

4E
s2ϕ + VeX 0 µeXB⊥

∆m2

4E
s2ϕ + VeX

∆m2

2E
c2ϕ + V mf

XX −µXeB⊥ 0

0 −µ∗XeB⊥
∆m2

2E
s2ϕ − V mf

ee

∆m2

4E
s2ϕ − VeX

µ∗XaB⊥ 0
∆m2

4E
s2ϕ − VeX

∆m2

2E
c2ϕ − V mf

XX



.

Here, µik is the magnetic moment between the i
and the k neutrino state, V mf

ll = Vll + (1/2)(dΦ/dt),
s2ϕ = sin 2ϕ, ∆m2 = m2

1 −m2
2, and the notationϕeX

is used for ϕ. We recall that the neutrino magnetic
moments diagonal in the lepton flavor are equal to
zero owing to CPT invariance.

In the system under investigation, there can exist
four resonance transitions that can occur under the
conditions

∆m2

2E
c2ϕ + V mf

XX − V mf
ee = 0 (νeL ↔ νXL), (30)

∆m2

2E
c2ϕ − V mf

XX − V mf
ee = 0 (νeL ↔ νXR), (31)

∆m2

2E
c2ϕ + V mf

XX + V mf
ee = 0 (νeR ↔ νXL), (32)

∆m2

2E
c2ϕ − V mf

XX + V mf
ee = 0 (νeR ↔ νXR). (33)

By using expressions determining the eigenvalues
of the HamiltonianH and the mixing angles in matter
(they are presented in the Appendix), we can obtain,
with the aid of (23), the probability of survival of
left-handed electron neutrinos. Since the neutrino
flux can traverse three resonance regions, the sum
in the expression for P(νeL → νeL) also includes the
terms

pTab =
∑
c,d

pSacp
S
cdp

S
db.
3. NEUTRINO OSCILLATIONS
IN A MODIFICATION OF THE STANDARD

MODEL WITH TWO DOUBLETS
OF HIGGS FIELDS

For the first time, a model that is based on the
SU(2)L × U(1)Y gauge group and which involves
two doublets of Higgs fields,

Φj

(
1
2
, 1

)
=


Φ+

j

Φ0
j


 , j = 1, 2

(two-Higgs-doubletmodel or THDM), was proposed
in [28]. Models of this type can be grouped into
two classes where the fermion flavor is either vio-
lated or conserved at the tree level. The Yukawa
Lagrangian and the Higgs potential in the THDM1
and in the THDM2 possess an additional discrete
symmetry [29] ensuring fermion-flavor conservation.
In the THDM1, fermions corresponding to up and
down doublet components develop masses owing to
the vacuum expectation values of one of the dou-
blets of Higgs fields. In the THDM2, the genera-
tion of masses of up and down fermions is associ-
ated with the vacuum expectation values of Φ1 and
Φ2, respectively. A model that does not possess a
discrete symmetry that prevents the violation of the
fermion flavor at the tree level is referred to as the
THDM3 or the general THDM (GTHDM). It should
be recalled that nonzero nondiagonal Yukawa cou-
pling constants lead to the existence of lepton-flavor-
violating currents, on one hand, and are precisely
01
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Fig. 3. Feynman diagrams describing the process
e−νaR → e−νbR in the LRM.

those quantities that are responsible for mixing in the
neutrino sector, on the other hand.

The Yukawa Lagrangian for the GTHDM is taken
here in the commonly accepted form

LY = −
∑
a,b

(huabΨ̄aLΦ̃1νbR + hdabΨ̄aLΦ1lbR (34)

+ h′uabΨ̄aLΦ̃2νbR + h′dabΨ̄aLΦ2lbR + conj.),

where ΨaL is a left-handed lepton doublet, laR and
νaR are right-handed lepton singlets, and Φ̃1,2 =
iσ2Φ∗

1,2. For the Higgs potential, we use the expres-
sion proposed in [30] and assume that it attains a
minimum at

Φj

(
1
2
, 1

)
=

1√
2


 0

vj


 ,

where
v21 + v22 = v2 = (246 GeV)2.

Upon a spontaneous breakdown of symmetry, we
have the following physical Higgs bosons: two neu-
tral CP-even scalars

H
h


 =


 cα sα

−sα cα





Φ0r

1

Φ0r
2


 ;

one neutral CP-odd scalar
A = −sβΦ0i

1 + cβΦ0i
2 ;

and two singly charged scalars

h(±) = −sβΦ±
1 + cβΦ±

2 ,

where

tan 2α =
v1v2(λ3 + λ5)
λ2v

2
2 − λ1v

2
1

, tan β =
v2
v1
,

the superscript r (i) denotes the real (imaginary) part
of the corresponding quantity, and λk are the param-
eters of the Higgs potential (see [30]).

By going over from the gauge basis to the basis
of pure mass states, we obtain, from the Yukawa
PH
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Fig. 4. Feynman diagrams for the process e−νa → e−νb

within the GTHDM that involve h(−), h, H , and A
exchanges.

Lagrangian, the Lagrangians that describe the in-
teraction of physical Higgs bosons with leptons and
which have the form

Lh(±) = −
√

2v−1 tan β
∑
a

maνaLlaRh
(+) (35)

+
∑
a,b

κabνaLlbRh
(+) + conj.,

LH,h,A=
1√
2

∑
a,b

{
laLlbR[(hdabcα + h′dabsα)H (36)

+ (h′dabcα − hdabsα)h+ i(h′dabcβ − hdabsβ)A]

+ (l→ ν, d→ u) + conj.
}
,

where κab = h′dabc
−1
β + huabsβ − h′uabcβ. We note that

the choice of Higgs sector ensures the Dirac charac-
ter of neutrinos.

As in any gauge theory where the neutrino mass
arises owing to a spontaneous breakdown of symme-
try, there is a relationship between constants that de-
termine the interaction of Higgs bosons with leptons,
on one hand, and the neutrino-oscillation parameters,
on the other hand. In the two-flavor approximation,
the corresponding equations have the form

(hueev1 + h′ueev2)/
√

2 = m1c
2
ϕ +m2s

2
ϕ, (37)

(huXXv1 + h′uXXv2)/
√

2 = m1s
2
ϕ +m2c

2
ϕ,

(hueXv1 + h′ueXv2)/
√

2 = cϕsϕ(m1 −m2).
On the basis of Eqs. (35)–(37), we can conclude
that, for the GTHDM, the parameters of neutrino
oscillations can be measured by indirect methods in
accelerator experiments. In contrast to the LRM,
however, the total set of experiments must now in-
clude those where there are neutrino beams either in
the initial or in the final state.

We now proceed to study solar neutrinos within
the GTHDM. The contributions to the solar-matter
potential come from diagrams involving virtual W−

and Z bosons (see Fig. 1) and from the diagrams
in Fig. 4. By using the Fierz transformation and
YSICS OF ATOMIC NUCLEI Vol. 64 No. 11 2001
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performing averaging over solar matter, we arrive
at the conclusion that diagrams featuring the ex-
change of h(−) bosons only modify the amplitudes for
the forward elastic right-handed-neutrino scattering
e−νaR → e−νbR. The corresponding contribution to
the solar-matter potential is given by

V RR
ab =

1
4m2

h(−)

κ′eaκ
′
ebne, (38)

where κ′ab = (−
√

2mav
−1 tan β)δab + κab.

On the other hand, the interaction with neutral
Higgs bosonsH , h, and A is responsible for the spin-
flip elastic neutrino scattering

e−νaL → e−νbR, e−νaR → e−νbL.

In averaging over matter, the contributions from the
pseudoscalar Higgs boson disappear, and the even-
tual expression for that part of the solar-matter po-
tential which is associated with the exchanges of
neutral Higgs bosons has the form

V LR
ab = V RL

ab = Babne, (39)

where

Bab =
1
2

[(hleecα + h′leesα)(hνabcα + h′νabsα)m−2
H

+ (hleesα − h′leecα)(hνabsα − h′νabcα)m−2
h ].

Thus, the interaction with neutral Higgs bosons leads
to the effective neutrino-interaction Lagrangian

Leff
H,h = νaLBabνbR. (40)
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 11 20
The form of expression (40) resembles that of the
effective Lagrangian

Leff
m = µabνaLσλρFλρνbR, (41)

which involves the electromagnetic-field tensor Fλρ

and which describes magnetic dipole interaction.

The GTHDM also belongs to the class of models
where the neutrino magnetic moment may amount
to about 10−12µB. This occurs when the Yukawa
coupling constants are great.

If the interactions specified by the Lagrangians in
(40) and (41) are negligibly small, a system involving
three sorts of left-handed neutrinos is described iden-
tically within the GTHDM and within the Standard
Model [31].

For the case where the neutrino magnetic moment
is on the order of 10−12µB or where the interaction
V LR
ab is great, we now consider the evolution of a neu-

trino flux. For the sake of simplicity, we restrict our
analysis to the two-flavor approximation. Taking into
account the interaction both with solar matter and
with a magnetic field, we then obtain the evolution
equation
i
d

dz




νeL

νXL

νeR

νXR




=




∆m2

2E
s2ϕ + V ′LL

ee

∆m2

4E
s2ϕ τee τeX

∆m2

4E
s2ϕ

∆m2

2E
c2ϕ + V ′LL

XX τXe τXX

τ∗ee τ∗Xe

∆m2

2E
s2ϕ + V ′RR

ee

∆m2

4E
s2ϕ + V RR

eX

τ∗eX τ∗XX

∆m2

4E
s2ϕ + V RR

eX

∆m2

2E
c2ϕ + V ′RR

XX







νeL

νXL

νeR

νXR



, (42)
where

V ′LL
ee =

√
2GF

(nn
2

− ne
)

+
Φ̇
2
,

V ′LL
XX =

GFnn√
2

+
Φ̇
2
,

V ′RR
ll = V RR

ll − Φ̇
2
, τab = µabB⊥ + V LR

ab .

From (42), it follows that, depending on the values
of the model parameters, three of the four possible
resonance transitions can occur in the system being
considered. Approximate values of the resonance
electron density can be found from the equations

∆m2

2E
c2ϕ − V ′LL

ee + V ′LL
XX = 0 (43)

(νeL ↔ νXL),

∆m2

2E
c2ϕ + V ′RR

XX − V ′LL
ee = 0 (44)

(νeL ↔ νXR),

∆m2

2E
c2ϕ − V ′RR

ee + V ′LL
XX = 0 (45)

(νeR ↔ νXL),
01
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Fig. 5. Feynman diagrams for inverse muon decay within
the LRM.

∆m2

2E
c2ϕ + V ′RR

XX − V ′RR
ee = 0 (46)

(νeR ↔ νXR).
Thus, the interaction of leptons with physical Higgs
bosons leads to the emergence of yet another reso-
nance, namely,

νeR ↔ νXR.

Because of the very complicated form of the
Hamiltonian in Eq. (42), only by invoking numerical
methods can we determine the probability of survival
of left-handed electron neutrinos.

4. CONSTRAINTS ON THE PARAMETERS
OF THE HIGGS SECTOR

In this section, we will try to estimate corrections
to the solar-matter potential that arise, in the models
being considered, from the interaction with physical
Higgs bosons. Complete information can be obtained
in low-energy experiments studying elastic neutrino–
electron scattering. In order to establish conclusively
the V −A structure of the amplitudes for such pro-
cesses, it is necessary to detect simultaneously the
charged lepton and the neutrino in the final state.
Since the currently available experimental technique
gives no way to perform such a measurement, we
cannot be positive about the statement that the am-
plitudes for the reactions in question do indeed have
the V −A form. The situation is similar for the so-
called direct lepton decays

µ− → e−νeνµ, τ− → e−νeντ (47)

and the so-called inverse lepton decays

νµe
− → µ−νe, ντe

− → τ−νe. (48)

All the results of low-energy experiments for the
processes in (47) and (48) can be parametrized in
terms of the amplitudes gγλλ′ and the Fermi constant
GF as [32]

4GF√
2

∑
gγλλ′〈eλ | Γγ | νen〉〈νXm | Γγ | Xλ′〉, (49)

where X = µ, τ ; the index γ specifies the interaction
type (ΓS = 1 for the scalar, ΓV = γµ for the vector,
PH
and γT = σµν/
√

2 for the tensor interaction); the he-
licities of charged leptons (left-handed, right-handed)
determine the subscripts λ and λ′; and the helicities
of νe and νµ determine the subscripts n and m. Nine
complex-valued amplitudes gγλλ′ and GF form the set
of 19 independent real-valued parameters, which are
determined experimentally. We recall that, within the
Standard Model, the amplitude gVLL must be equal to
unity, while all the remaining amplitudes vanish.

Within the LRM, inverse muon (tau-lepton) de-
cay is described by the diagrams in Fig. 5. The
emergence of diagrams involving exchanges of h(−)

Higgs bosons in the s channel is due to the Majorana
nature of the neutrino. A comparison of the matrix
elements corresponding to the diagrams in Fig. 5
with expression (49) leads to the relations

αeeαXX

m2
h

= 2
√

2GFg
S
RR, (50)

α2
eX

m2
h

= 4
√

2GF(gVLL − 1), (51)

feefXX

m2
δ̃

=
√

2GFg
S
LL, (52)

f2
eX

m2
δ̃

= 2
√

2GFg
V
RR. (53)

We can see that, from the point of view of Fermi’s
four-fermion theory, the process in question as treated
within the LRM is described by both vector and scalar
currents. The nonzero amplitudes are gVLL, g

V
RR, g

S
LL,

and gSRR. The experimental constraints on them from
muon decay at a 90% C.L. are [33]

| gVLL |> 0.96, | gVRR |< 0.033, (54)

| gSLL |< 0.55, | gSRR |< 0.066.
From (50)–(54), it follows for the Yukawa coupling
constants that (in GeV−2 units)

αeeαµµ
m2

h

< 0.218 × 10−5, (55)

α2
eµ

m2
h

< 0.264 × 10−5, (56)

feefµµ
m2

δ̃

< 0.907 × 10−5, (57)

f2
eµ

m2
δ̃

< 0.109 × 10−5. (58)

We must now verify whether the inequalities in (55)–
(58) are compatible with constraints that follow from
other experiments. At present, only constraints on
the triplet Yukawa coupling constants exist in the
YSICS OF ATOMIC NUCLEI Vol. 64 No. 11 2001
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Fig. 6. LRM Feynman diagrams for the decay µ− →
e−νeνµ.

literature (see [15] and references therein). From the
investigation of Bhabha scattering in experiments at
SLAC and DESY, it follows that

f2
ee

m2
∆

< 9.7 × 10−6 GeV−2. (59)

For the Yukawa coupling constants fµµ, a measure-
ment of the (g − 2)µ factor yields the constraint

f2
µµ

m2
∆

< 2.5 × 10−5 GeV−2. (60)

It can be seen that an appropriate choice of mass
values for the ∆(±±) and δ̃(±) bosons can reconcile
the limits in (14), (59), and (60) with the constraint in
(57). In the present analysis, we would like, however,
to get rid of the uncertainty associated with the choice
of the ∆(±±)-boson mass—that is, to have an upper
limit on a quantity that is related to feefµµ/m2

δ̃
, which

appears in the solar-matter potential. With this aim
in view, we will now investigate muon decay through
the channel

µ− → e−νeνµ. (61)

The relevant Feynman diagrams are shown in Fig. 6.
The decay width of a muon having left-hand circular
polarization is given by

Γµ−→e−νeνµ
=

√
(feefµµ)2 + f4

eµm
5
µ

96(2π)3m4
δ̃

. (62)

Known experiments yield the constraint [34]
Γµ−→e−νeνµ

Γµ−→all
< 1.2 × 10−2.

We then obtain√
(feefµµ)2 + f4

eµ

m2
δ̃

< 0.255 × 10−5 GeV−2. (63)

Obviously, the inequality in (63) is at odds with (57).
This leads to the conclusion that data from searches
for the decay µ− → e−νeνµ reduce the upper limit on
the amplitude gSLL to that in the constraint

| gSLL |< 0.155. (64)

In deriving (64), we assumed that f2
eµ � feefµµ.
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Fig. 7. LRM Feynman diagrams for the decay µ− →
e−e+e−.

We will try to estimate the nondiagonal Yukawa
coupling constants using data from searches for the
decay

µ− → e−e+e−. (65)

The diagrams that describe the decay process (65) in
the second order of perturbation theory are displayed
in Fig. 7. Assuming that the muon and the electrons
are unpolarized and that θd = 0, we can represent the
decay width in the form

Γµ−→e−e+e− =
τm5

µ

96(2π)3
, (66)

where

τ = (feefeµ)2
(

1
m4

∆1

+
1
m4

∆2

)

+
α2
eµ

4k2
+

(
mecθ0sθ0 − αeek+s2θ0

m2
S1

−
mesθ0cθ0 + αeek+c2θ0

m2
S2

)2

+
4mefeefeµαeµ

mµk+

(
1
m2

∆1

+
1
m2

∆2

)

×
(
mecθ0sθ0 − αeek+s2θ0

m2
S1

−
mesθ0cθ0 + αeek+c2θ0

m2
S2

)
.

From experiments, it follows that [34]
Γµ−→e−e+e−

Γµ−→all
< 10−12.

Setting αeµ to zero, we arrive at

feefeµ

√
1
m4

∆1

+
1
m4

∆2

< 2.33 × 10−11 GeV−2.
(67)

For the inequalities in (67) and in (58) and (59) to
be consistent, we must assume that the mass of the
∆(±±)

1 or of the ∆(±±)
2 boson is not less than 21 TeV

and that the mass of the δ̃(±) boson is simultaneously
01



1982 BOYARKIN, BAKANOVA
about 100 GeV. Since the δ̃(±) boson does not inter-
act with quarks, there are no constraints on its mass
from data on the decay b→ sγ. For its mass, it is
therefore natural to use the upper limit of 100 GeV,
which was obtained in LEP II experiments [35]. It
should also be noted that there are no reasons that
would forbid the existence of doubly charged Higgs
bosons of mass about 21 TeV.

Let us proceed to discuss constraints on the
bidoublet Yukawa coupling constants. The width
with respect to the decay of a right-hand-polarized
muon through the channel

µ− → e−νeνµ
is given by

Γµ−→e−νeνµ
=

[(αeeαµµ)2 + α4
eµ]m5

µ

48(4π)3m4
h

. (68)

A comparison of the theoretical and experimental re-
sults leads to the conclusion that√

(αeeαµµ)2 + α4
eµ

m2
h

< 5.1 × 10−6 GeV−2. (69)

Disregarding αeµ in (69), we find that more strin-
gent limits on αeeαµµ/m2

h follow from data on inverse
muon decay.

In order to determine limits on αeµ from data on
the decay µ− → e−e+e−, we have to make assump-
tions both on the S2-boson mass and on the value of
the constant αµµ. Making the S2-boson mass tend
to 10 TeV, one can increase αeµ to values of about
2× 10−1, but a contradiction with (56) can be avoided
only if the h(±)-boson mass is less than 123 GeV.
On one hand, that form of the Yukawa Lagrangian
is taken to be commonly accepted which leads to the
existence of interaction between quarks and the h(±)

Higgs boson. It turns out that limits on its mass that
follow from data on the decay b→ sγ depend strongly
on the choice of values for the LRM parameters and
are about a few hundred GeV (see [36] and references
therein). On the other hand, the Yukawa Lagrangian
can be chosen in a form such that only neutral Higgs
bosons interact with quarks [22]. This enables us to
use the lower limit of 100 GeV [35] for the h(±)-boson
mass. It should be noted that, from the point of view
of a precise determination of the quantities α2

eµ/m
2
h

and f2
eµ/m

2
δ̃
, the most promising reactions are

e−γ → h(−)νµ, (70)

e−γ → δ̃(−)νµ. (71)

They can be studied at e+e− colliders operating in the
e−γ mode.

In the following, we will briefly discuss limits on
the Yukawa coupling constants associated with the
PH
tau-lepton sector. The experimental constraints ob-
tained by the CLEO collaboration in measuring the
Michel parameters are less stringent than those for
the muon case. At a 90% C.L., the constraints on
gγλλ′ are [37]

| gVLL |< 1.0, | gVRR |< 0.2, (72)

| gSLL |< 1, | gSRR |< 0.2.

From (72), it follows that (in GeV−2 units)
αeeαττ
m2

h

< 0.66 × 10−5, (73)

αeτ ≈ 0, (74)

feefττ
m2

δ̃

< 3.3 × 10−5, (75)

f2
eτ

m2
δ̃

< 0.66 × 10−5. (76)

The expression for the width with respect to the decay
τ− → e−e+e− (77)

can be obtained from (66) upon the substitution
feµ → feτ , αeµ → αeτ , mµ → mτ .

The investigation of the decay process (77) by the
CLEO collaboration [38] yielded the following result
(at a 95% C.L.):

Br(τ− → e−e+e−) < 3.3 × 10−6.

Assuming that αeτ is equal to zero, we then obtain

feefeτ

√
1
m4

∆1

+
1
m4

∆2

< 1.8 × 10−8 GeV−2. (78)

If the∆(±±)
1 - or∆(±±)

2 -bosonmasses lie in the region
around 3 TeV, the constraint in (78) yields

feefeτ < 0.16, (79)

whence we can conclude that the upper limit on
feefeτ from (75) and (76) seems quite plausible. It
should be emphasized that the quantities αeτ/m2

h and
feτ/m

2
δ̃
can be reliably determined with the aid of an

e−γ collider by studying the reactions

e−γ → h(−)ντ ,

e−γ → δ̃(−)ντ .

In the majority of cases, processes involving cos-
mic and terrestrial neutrinos are analyzed on the basis
of the Standard Model supplemented with a right-
handed neutrino singlet in order to ensure a nonzero
neutrino mass. In this case, the Yukawa Lagrangian
reduces neutrino interaction with the physical Higgs
boson (there is no such interaction in the usual ver-
sion of the Standard Model). Since the strength of
this interaction is proportional to the ratio of mνl

to
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v (about 246 GeV)—that is, it is extremely small—
the two versions of Standard Model differ only in
the kinematical features of the neutrinos. The solar-
matter potential in the Standard Model involving a
right-handed neutrino singlet has the form

V SМ = −
√

2GFne.

With the predictions of precisely this modification
of the Standard Model, we will now compare the
expressions for the solar-matter potential that were
obtained within the LRM. We begin our analysis by
considering the diagonal elements of the Hamiltonian
from (19). If we assume that αee ≈ αµµ and fee ≈
fµµ, then V H

ee can amount to about 15.5% of V SM

in the case where the amplitudes gSRR and gSLL are of
the same sign [see Eq. (54)]; in the case where these
amplitudes are of opposite signs, the quantity V H

ee can
be as large as about 22% of V SM. Since there is
presently no information about α2

eX/m
2
h, we can only

assume that
αeµ = αeτ = 0. (80)

With the aid of (58) and (76), we then obtain

V H
µµ < 6.6% V SM, V H

ττ < 40% V SM.

For the nondiagonal elements of the Hamiltonian,
the corrections are constrained by the inequalities

V H
eµ < 10% V SM, V H

eτ < 25% V SM,

V H
µτ < 16% V SM.

We now perform a similar analysis for the
GTHDM, where the inverse-muon-decay (tau-lep-
ton-decay) process is described by diagrams involv-
ing the exchanges of W− and h(−) bosons in the
t channel (see Fig. 5) and diagrams involving the
exchanges of H , h, and A bosons (see Fig. 8). The
nonzero amplitudes are gVLL, g

V
LR, g

V
RL, and g

S
RR. They

are related to the Yukawa coupling constants by the
equations

4GF√
2
gSRR =

κ′eeκ
′
XX

m2
h(−)

, (81)

2GF√
2
gVRL =

2GF√
2
gVLR =

λleXλ
ν
eX

m2
H

+
βleXβ

ν
eX

m2
h

, (82)

where
λfab = hfabcα + h′fabsα, βfab = h′fabcα − hfabsα,

f = l, ν, a, b = e,X.
With the aid of available experimental data [34], we
can obtain the constraints (the values in them are in
GeV−2 units)

κ′eeκ
′
µµ

m2
h(−)

< 0.217 × 10−5, (83)
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κ′eeκ
′
ττ

m2
h(−)

< 0.66 × 10−5, (84)

λleµλ
ν
eµ

m2
H

+
βleµβ

ν
eµ

m2
h

< 0.99 × 10−6, (85)

λleτλ
ν
eτ

m2
H

+
βleτβ

ν
eτ

m2
h

< 0.28 × 10−5. (86)

In our attempts at estimating the parameters of the
Higgs sector that are discussed in the present study,
we now invoke data on the decay processes
µ− → e−e+e−, τ− → e−e+e−, µ− → e−νeνµ

and try to find out whether their analysis may produce
information of value for this purpose. The widths with
respect to these decays are given by

ΓX−→e−e+e− =
m5

X

96(4π)3
(87)

×
[(
λleeλ

l
eX

m2
H

+
βleeβ

l
eX

m2
h

)2

+
(γleeγleX)2

m4
A

]
,

Γµ−→e−νeνµ
=

m5
µ

48(4π)3
(88)

×


 κ4

eµ

m4
h(−)

+

(
λleµλ

ν
eµ

m2
H

+
βleµβ

ν
eµ

m2
h

)2

+
(γleµγ

ν
eµ)2

m4
A


 ,

where γfab = h′fabcβ − hfabsβ. With the aid of experi-
mental data, we can obtain (the numerical values in
these results are in GeV−2 units)√(

λleeλ
l
eµ

m2
H

+
βleeβ

l
eµ

m2
h

)2

+
(γleeγleµ)2

m4
A

(89)

< 6.6 × 10−11,√(
λleeλ

l
eτ

m2
H

+
βleeβ

l
eτ

m2
h

)2

+
(γleeγleτ )2

m4
A

(90)

< 2.82 × 10−7,√√√√ κ4
eµ

m4
h(−)

+
(
λleµλ

ν
eµ

m2
H

+
βleµβ

ν
eµ

m2
h

)2

+
(γleµγνeµ)2

m4
A (91)
01



1984 BOYARKIN, BAKANOVA
< 5.1 × 10−6.

It can easily be seen that the constraints obtained
within the GTHDM for the parameters of the Higgs
sector are compatible. We will now evaluate the
corrections to the solar-matter potential within the
model being investigated. Assuming that κee ≈ κµµ,
we obtain

V RR
ee < 3.3% V SM.

On the basis of the definition of the constants κll, we
can state that their hierarchy can be the following:

κττ < κµµ < κee.

Even in the most conservative case of κee ≈ κττ , the
quantity V RR

ee may then amount to about 10% of
V SM. With the aid of relations (83) and (91), we can
obtain

V RR
µµ < 8% V SM, V RR

eµ < 5% V SM.

At present, we do not have at our disposal information
required for determining V RR

ττ , V RR
eτ , and V RR

µτ . It will
become possible to estimate V RR

ab reliably in studying
the reactions

e−γ → h(−)νe, h
(−)ντ , µ−γ → h(−)ντ .

Attempts at estimating the contributions to the
the solar-matter potential that are associated with
neutral Higgs bosons have to deal with still greater
uncertainties. Assuming that

λlee = λleX , βlee = βleX
and using the inequalities in (89) and (90), we arrive
at the conclusion that

V LR
eµ < 3% V SM, V LR

eτ < 8.5% V SM.

Unfortunately, data required for estimating V LR
ee ,

V LR
µµ , and V LR

ττ are unavailable at present.

5. CONCLUSION

Within two extensions of the Standard Model—(i)
LRM [SU(2)L × SU(2)R × U(1)B−L gauge group;
a bidoublet and two triplets in the Higgs sector]
and (ii) GTHDM [SU(2)L × U(1)Y gauge group;
two doublets in the Higgs sector]—we have con-
sidered the propagation of a neutrino flux through
a medium. Within either theory, the solar-matter
potential undergoes considerable changes in relation
to the Standard Model predictions owing to the inter-
actions of leptons with physical Higgs bosons. In the
LRM, these changes are generated by singly charged
Higgs bosons. From the point of view of effective
four-fermion interaction, this means the existence of
charged currents not present in the Standard Model
that involve both diagonal and off-diagonal compo-
nents in the lepton flavor (flavor-conserving charged
PH
currents and flavor-violating charged currents, re-
spectively). The existence of the latter leads to the
mixing of neutrinos having identical helicities but
different flavors. If the neutrino magnetic moment is
disregarded, it is possible to obtain an analytic ex-
pression for the probability of survival of a left-handed
electron neutrino, P(νeL → νeL), even in the three-
flavor approximation, but if the magnetic moment is
taken into account, this problem can be solved only in
the two-flavor approximation.

Within the GTHDM, additional contributions to
the solar-matter potential come both from singly
charged and from neutral physical Higgs bosons
H,h, and A. Neutral currents associated with H , h,
and A bosons also involve lepton-flavor-conserving
and lepton-flavor-violating components. The exis-
tence of the latter results in the mixing of neutrinos
of different flavors and different helicities. Because
of this, it is impossible to obtain P(νeL → νeL)
analytically even at zero neutrino magnetic moment
in the two-flavor approximation.

Thus, we can see that, while, in the Standard
Model, the calculation of the survival probability for
a left-handed electron neutrino of specific energy re-
quires knowledge of the electron-density distribution
in solar matter and values of oscillation parameters
(neutrino mixing angles in a vacuum and the dif-
ferences of the squared neutrino masses), in models
involving an extended Higgs sector, we must addi-
tionally have at our disposal information about the
interaction of Higgs bosons with leptons. We have
investigated some channels of muon and tau-lepton
decays and obtained a number of constraints on the
Yukawa coupling constants and on the masses of
physical Higgs bosons. The use of relevant limits
available from the literature and of those derived here
makes it possible to obtain more or less reliable es-
timates for maximum corrections to the solar-matter
potential that come exclusively from the interaction
of charged Higgs bosons with leptons. We can state
that, within the LRM, corrections to the solar-matter
potential can be as large as 40% of V SM and 25% of
V SM for, respectively, diagonal (Hd) and nondiagonal
(Hnd) elements of the Hamiltonian for the neutrino
system. In the GTHDM, the deviations from the
Standard Model predictions are less pronounced: for
Hd andHnd, we have 10% of V SM and 8.5% of V SM,
respectively. In order to deduce more precise informa-
tion about corrections to the solar-matter potential
within the extensions of the StandardModel that have
been considered above, it is necessary to investigate
the reactions

e−γ → h(−)νl, e−γ → δ̃(−)νl, (92)

µ−γ → δ̃(−)ντ , µ−γ → h(−)ντ , (93)
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e−νl → e−νl′ . (94)

Of course, the reactions in (94) stand out among
these. The reasons for this are as follows: (i) They do
not require the use of next-generation accelerators,
because it is sufficient to investigate them at low
energies. (ii) Analysis of the Lorentz structure of
the amplitudes for these reactions will provide com-
plete information about all possible corrections to the
solar-matter potential. Knowing the solar-matter
potential, we can proceed to revise constraints on
oscillation parameters in any gauge theory involving
an extended Higgs sector.

APPENDIX

Within the LRM, we have calculated the eigenval-
uesM2

i of the Hamiltonian and the mixing angles ϕm
ik

for a neutrino beam propagating in matter.
At zero neutrino magnetic moment, M2

i in the
three-flavor approximation is given by

M2
1 = m2

1 +
C1

3
− 1

3
C2

(
cos q −

√
3 sin q

)
, (A.1)

M2
2 = m2

1 +
C1

3
− 1

3
C2

(
cos q +

√
3 sin q

)
, (A.2)

M2
3 = m2

1 +
C1

3
+

2
3
C2 cos q,

where
D11 = 2E[c212c

2
13Vee + b21Vµµ + b′21 Vττ

− 2c12c13(b1Veµ − b′1Veτ ) − 2b1b′1Vµτ ],

D23 = 2E
[
c13s13s12Vee + s23c13b2Vµµ

− c23c13b′2Vττ + (s13b2 + c213s23s12)Veµ
− (s13b′2 + c213c23s12)Veτ

− (c13s23b′2 − c13c23b2)Vµτ
]
,

D12 = 2E
{
c13

[
c13c12s12Vee + (c12b2 − s12b1)Veµ

+ (s12b′1 − c12b′2)Veτ ] − b1b2Vµµ − b′1b′2Vττ
+ (b1b′2 + b2b′1)Vµτ

}
,

D33 = 2E
[
s213Vee + c213(s223Vµµ + c223Vττ )

+ 2c13(s13s23Veµ + s13c23Veτ + c13c23s23Vµτ )
]
,

D22 = D11

(
ϕ12 → ϕ12 +

π

2

)
,

D13 = D23

(
ϕ12 → ϕ12 −

π

2

)
,

b2 = b1
(
ϕ12 → ϕ12 +

π

2

)
,

bs = b′s
(
ϕ23 → ϕ23 −

π

2

)
(s = 1, 2),

Sik = Dii +Dkk,
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Λik = DiiDkk −D2
ik (i, k = 1, 2, 3),

C0 = ∆m2
21Λ13 + ∆m2

31Λ12 + ∆m2
21∆m2

31D11

+ (2E)3
∑
a,b,c

εabcVeaVµbVτc (a, b, c,= e, µ, τ),

C1 =
∑
i

m2
i + 2E

∑
a

Vaa,

C3 =∆m2
21∆m2

31 + ∆m2
21S31 + ∆m2

31S21 +
∑
i<k

Λik,

C2 = ±
√
| C2

1 − 3C3 |,

q =
1
3

arccos
(

9C1C3 − 2C3
1 − 27C0

C3
2

)
,

and the signs of C3 and 9C1C3 − 2C3
1 − 27C0 must

be chosen to be identical.
For ϕm

ik, we have

sin2 2ϕm
12 (A.3)

=
A2∆M2

32(A1∆M2
12 −A2∆M2

32)
4A2

1∆M4
12

,

sin2 2ϕm
13 =

A1(∆M2
32∆M2

13 −A1)
4∆M4

32∆M4
13

, (A.4)

sin2 2ϕm
23 (A.5)

=
4∆M4

23[B1 + B2(B3 −M2
1 −M2

2 )]2

A2
1(∆M2

32 − ∆M2
21)2

,

where
a1 = c213c12s12∆m2

12 − b′1b′2∆m2
32 + 2EVeµ,

a2 = c12c13s13∆m2
12 + c23c13b′1∆m2

32 + 2EVeτ ,
B1 = a1a2,

B2 = c13s13s12∆m2
12 − c23c13b2∆m2

32 + 2EVµτ ,

B3 = (s212c
2
13 + s213)∆m2

12 + (b22 + c213c
2
23)∆m2

32

− 2m2
2 + 2E(Vµµ + Vττ ),

B4 = a2
1 + a2

2,

A1 = B4 + (B3 −M2
1 −M2

2 )(B3 − 2M2
3 ),

A2 = A1 + ∆M2
31(B3 −M2

1 −M2
2 ).

It should be emphasized that, in the LRM, both the
eigenvalues of the Hamiltonian and the mixing angles
in matter are dependent on ϕ23. This immediately
follows from the fact that νe, νµ, and ντ interact
differently with physical Higgs bosons. We recall that,
in the Standard Model, the quantitiesM2

i and ϕm
ik do

not depend on ϕ23.

The inclusion of the neutrino magnetic moment
complicates the calculations, and only in the two-
flavor approximations have we been able to obtain a
01
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solution in radicals. The eigenvalues of the Hamilto-
nian for the system being considered are given by

M2
1 =

1
2

(m2
1 +m2

2) +
√
z1 −

√
z2 +

√
z3, (A.6)

M2
2 =

1
2

(m2
1 +m2

2) −√
z1 +

√
z2 +

√
z3,

M2
3 =

1
2

(m2
1 +m2

2) −√
z1 −

√
z2 −

√
z3,

M2
4 =

1
2

(m2
1 +m2

2) +
√
z1 +

√
z2 −

√
z3,

where
zi = yi + p′, y1 = 2p cosα,

y2,3 = −p[cosα±
√

3 sinα],

p = ±
√

| −3p′2 +
r

16
|,

p′ =
1
6

[
1
2

∆m4
12 + V 2

1 + V 2
2 + 2(V 2

0 + µ2
eaB

2
⊥)

]
,

r = 2(∆m2
12)2(V 2

1 + V 2
2 ) + (V 2

1 − V 2
2 )2

+ 4V 2
0 [4µ2

eaB
2
⊥ + (V1 + V2)2] + 4µ2

eaB
2
⊥(V1 − V2)2,

q′ = ∆m2
12(V 2

2 − V 2
1 ),

q =
−128p′3 + 4p′r − q′2

64
,

α =
1
3

arccos
(

q

2(p/3)3

)
,

V1 = 2E(V mf
ee c

2
ϕ + V mf

XXs
2
ϕ + 2VeXcϕsϕ),

V2 = V1(ϕ→ ϕ+
π

2
),

V0 = 2E(V mf
ee − V mf

XX)cϕsϕ + 2EVeX(s2ϕ − c2ϕ).

Since we have four resonance transitions in this
case, the number of themixing angles inmatter is also
equal to four. We parametrize the rotation matrix Um
as

Um

=




cm12 sm12 0 0

−sm12 cm12 0 0

0 0 cm34 sm34

0 0 −sm34 cm34







cm14 0 0 sm14

0 cm23 sm23 0

0 −sm23 cm23 0

−sm14 0 0 cm14



.

The mixing angles are then determined by the rela-
tions

tan2 ϕm
14 =

(1 −
√

1 − d23)P(+−)
2

(1 +
√

1 − d23)P(++)
1

, (A.7)

tan2 ϕm
23 =

(1 −
√

1 − d23)P(−+)
2

(1 +
√

1 − d23)P(−−)
1

,

PH
tan2 ϕm
12 =

P(−−)
1

P(++)
1

, tan2 ϕm
34 =

P(−+)
1

P(+−)
1

, (A.8)

where

d1 =
2V0

∆M2
21

, d2 =
2V0

∆M2
43

,

d3 =
4µeXB⊥

∆M2
21

√
1 − d21 + ∆M2

43

√
1 − d22

,

P(qq′)
s =

1
4

(1 + q
√

1 − d2s cos 2ϕ+ q′ds sin 2ϕ),

q, q′ = ±1, s = 1, 2.
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ELEMENTARY PARTICLES AND FIELDS
Theory
Structure Function F p
2 (x,Q2) at Small x

within the Generalized Regge Eikonal Approach
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Abstract—The small-x behavior of the proton structure function F p
2 (x,Q2) is investigated within a

generalized Regge eikonal model that takes automatically into account the unitarity condition for processes
involving off-shell particles. A good quality of description of experimental data for x < 10−2 is achieved,
and the assumption that data on F p

2 (x,Q2) that were obtained at the HERA collider can be described by
using classical universal Regge trajectories is validated. In doing this, hypothetical hard trajectories with
large intercepts are not used. The x and Q2 slopes and the effective intercept are considered as functions of
x and Q2. c© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION
There exist a great number of models describing

the small-x behavior of the proton structure function
F p

2 (x,Q2) in terms of a so-called soft Pomeron [1] or
in terms of a hard Pomeron [2]. Below, we essentially
adduce new arguments in favor of a soft Pomeron
within a general approach that takes into account
the unitarity condition for processes involving virtual
particles. This approach disregards completely the
possibilities of calculations within perturbative QCD,
but this does not of course mean that we ignore QCD
as a basis of the theory of strong interactions.

2. EXTENSION OF THE REGGE EIKONAL
MODEL TO PROCESSES

INVOLVING VIRTUAL PARTICLES
We begin formulating the model from the unitarity

condition
ImT (s,b) = |T (s,b)|2 + η(s,b),

where T (s,b) is the scattering amplitude in the
impact-parameter space,

√
s is the c.m. collision

energy, b is the impact parameter, and η(s,b) stands
for the contribution of inelastic channels. Within the
eikonal model, the amplitude can be represented in
the form

T (s,b) =
e2iδ(s,b) − 1

2i
. (1)

In terms of the eikonal δ(s,b), the unitarity condi-
tion takes the simple form

Imδ(s,b) ≥ 0, s > sinel. (2)

*e-mail: petrov@mx.ihep.su
**e-mail: prokudin@th1.ihep.su
1063-7788/01/6411-1988$21.00 c©
In the Regge pole approximation, the eikonal
function in the t space (here, t is the momentum
transfer) is given by

δ̂(s, t) = c
( s

s0

)α(0)
et

ρ2

4 , (3)

where с is a dimensionless constant, s0 = 1 GeV2,

ρ2 = 4α′(0) ln
s

s0
+ r2 (4)

is the Reggeon radius, and r2 (GeV−2) is the bare
radius of hadrons involved in the reaction being con-
sidered.

Thus, the eikonal function has a simple pole in the
J plane, and the corresponding Regge trajectory is
taken in the linear approximation at small t; that is,

α(t) = α(0) + α′(0)t. (5)

In order to go over from t to b space, we use the
Fourier–Bessel transformation

f̂(t) = 4πs

∞∫

0

db2J0(b
√
−t)f(b), (6)

f(b) =
1

16πs

0∫

−∞

dtJ0(b
√
−t)f̂(t). (7)

By using (7), we obtain the well-known b repre-
sentation for the eikonal function:

δ(s, b) =
c

s0

( s

s0

)α(0)−1 e
− b2

ρ2

4πρ2
. (8)

In this approach, the Pomeron is the leading pole of
the eikonal function.
2001MAIK “Nauka/Interperiodica”
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For cross sections, we use the following normal-
ization conditions:

σtot =
1
s
ImT (s, t = 0),

σel = 4π

∞∫

0

db2|T (s, b)|2, (9)

dσ

dt
=

|T (s, t)|2
16πs2

.

A generalization of the eikonal representation (in
general, this is correct beyond the Regge eikonal
approach as well) to the case of off-shell particles can
be obtained by means of the following consideration.
The amplitude T (s, t) can be recast into the form

T (q′, p′|q, p) (10)

= δ̂(q′, p′|q, p) + i

∫
d3q′′d3p′′d3q′′′d3p′′′(2π)4

× δ(q′ + p′ − q′′ − p′′)(2π)4δ(q′′′ + p′′′ − q − p)

× δ(p′, q′|q′′, p′′)L(q′′, p′′|q′′′, p′′′)δ(q′′′, p′′′|q, p),
where q, p and q′, p′ are the particle momenta, respec-
tively, before and after a scattering event; for identical
particles of massm, we have

T (s, t) = T (q′, p′|q, p)
∣∣∣∣
q′2=q2=p′2=p2=m2

, (11)

δ̂(s, t) = δ̂(q′, p′|q, p)
∣∣∣∣
q′2=q2=p′2=p2=m2

,

s = (p + q)2 = (p′ + q′)2,

t = (p − p′)2 = (q − q′)2,

d3p =
dp

(2π)3 · 2p0
≡ d4p

(2π)4
Θ(p0) · 2πδ(p2 −m2),

∞∑
n=2

2(2iδ(s, b))n−2

n!
≡ L(s, b),

L(s, t) = 4s
∫

d2beikbL(s, b).

The representation in (10) can be illustrated by the
following diagram:

 

T

 

 = 

 

e

 

2

 

i

 

2

 

i

 

δ

 

– 

 

1
= 

 

δ

 

+

 

δ δ

 

 Li

 

.

A further step, which is of paramount importance
indeed, consists in letting some external momenta go
off the mass shell. We assume that q2 	= m2 and q′2 	=
m2 (that is, two of the interacting particles are off the
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 11 20
mass shell, as they are in the process γ∗p → γ∗p).
The representation in (10) then takes the form

T ∗∗ = δ̂∗∗ + iδ̂∗ ◦ L ◦ δ̂∗, (12)

where asterisks label off-shell particles and the sym-
bol “◦” denotes integration as in (10). The off-shell
amplitude can be related to the on-shell amplitude as
[3]

T ∗∗(s, b) = δ∗∗(s, b) (13)

− δ∗(s, b)δ∗(s, b)
δ(s, b)

+
δ∗(s, b)δ∗(s, b)
δ(s, b)δ(s, b)

T (s, b).

The decomposition in (12) can obviously be illus-
trated with the aid of the following diagram:

 

δ

 

**

 

T

 

**(

 

s

 

, 

 

b

 

) = 

 

+

 

 

 

i

 

δ

 

*

 

δ

 

*

 

 L .

 

 

The case where only one particle is off the mass
shell is considered in a similar way. We assume that
q2 	= m2. Equation (10) can then be recast into the
form

T ∗ = δ̂∗ + iδ̂∗ ◦ L ◦ δ̂ , (14)
or

 

δ

 

*

 

T

 

**(

 

s

 

, 

 

b

 

) = 

 

+

 

 

 

i

 

δ

 

*

 

δ

 

 L .

The amplitudes T ∗ and T are obviously related by
the equation

T ∗(s, b) =
δ∗(s, b)
δ(s, b)

T (s, b). (15)

Let us choose a specific realization of the eikonal
function in the presence of virtual particles. In
terms of the operator-product-expansion method, the
eikonal is actually associated (in the spirit of the well-
known Chew–Yang approach, but with allowance
for the latest achievements) with the contribution of
the leading twist 2, whence it follows that, at fixed
x � Q2/(s + Q2) values, the violation of scaling is
weak (non-power-law). Taking this and formula (8)
into account, we parametrize the eikonal in the form

δ∗±(s, b) = ξ±
c∗(Q2)

s0 + Q2 −m2
(16)

×
( s + Q2 −m2

s0 + Q2 −m2

)α(0)−1 e−b
2/ρ2∗

4πρ2
∗

.

Here, ξ± are the signature factors;

ρ2
∗ = 4α′(0) ln

s + Q2 −m2

s0 + Q2 −m2
+ r2

N + r2
∗(Q

2) ; (17)
01
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and

δ∗∗± (s, b) = ξ±
c∗∗(Q2)

s0 + Q2 −m2
(18)

×
( s + Q2 −m2

s0 + Q2 −m2

)α(0)−1 e−b
2/ρ2∗∗

4πρ2
∗∗

,

where

ρ2
∗∗=4α′(0) ln

s+Q2−m2

s0+Q2−m2
+ r2

N + r2
∗∗(Q

2) (19)

and rN , r∗, and r∗∗ are radii associated with the cor-
responding vertices. We assume that the coefficients
c∗(Q2) and c∗∗(Q2) weakly depend (in a non-power-
law way) on Q2. Below, we describe the properties of
the model in various kinematical regimes.

2.1. Total Cross Section

According to the representation in (10), we obtain

σ∗∗
tot =

1
s
ImT ∗∗(s, t = 0) . (20)

We have

σ∗∗
tot →

(s/Q2)∆

Q2
(21)

×
[
c∗∗(Q2) − c∗(Q2)2

c

( s0

Q2

)1+∆ ρ2

ρ2
∗

]

in the Regge regime (s  Q2) and

σ∗∗
tot →

c∗∗(Q2)
Q2

(1
x

)∆
(22)

− c∗(Q2)2

2c
1
Q2

(1
x

)∆( s0

Q2

)1+∆
ln

Q2(1 − x)
s0x

ln(1/x)
.

in the Bjorken regime (s � Q2(1 − x)/x; x is fixed).
We can now demonstrate an interesting phe-

nomenon that is observed in our model, the stripping
of the Pomeron. Such an effect also occurs in the
model considered in [4], in which case the effective
intercept

∆(Q2) = ∆0

(
1 +

2Q2

Q2 + d

)
, (23)

where d (GeV2) is a parameter, depends only on Q2

and grows with increasing Q2 (∆(Q2 = 0) = ∆0 ∼
0.08, ∆(Q2 → ∞) ∼ 0.24).

Let us assume that the structure function is de-
scribed by the formula

F p
2 (x,Q2) = f(Q2)

( 1
x

)∆eff(Q
2)
, (24)

where ∆eff(Q2) is the effective intercept, which does
not of course correspond to the Regge trajectory,
since it depends on the photon virtuality Q2. We
PH
now use (22) and, at fixed (and sufficiently small) x,
find that, in our model, the effective intercept can be
represented as

∆eff(x,Q2) � ∆ +
(s0/Q

2)1+∆

ln2(1/x)
f(x,Q2), (25)

where
f(x,Q2) (26)

=
c∗(Q2) ln(Q2/s0)

2 c c∗∗(Q2) − c∗(Q2)(s0/Q
2)1+∆ ln(Q2/s0)x

ln(1/x)

.

In expression (25), the right-hand side tends to
∆ with increasing Q2. Thus, we obtain the follow-
ing effect: with increasing photon virtuality Q2, the
unitary corrections decrease; at sufficiently small x,
the proton structure function can be described by
the Born term of the eikonal expansion, so that the
effective intercept in (24) will be equal to the Pomeron
intercept.

In our model, the effective intercept depends,
in contrast to what takes place in (23), on x and
∆eff(x,Q2 → ∞) ∼ 0.1 as well.

Thus, we obtain a method for measuring the
Pomeron intercept and for testing our model.

The total cross section exhibits a power-law be-
havior in the Regge limit, but this does not mean
the violation of the Froissart–Martin bound [5], since
this bound cannot be obtained for this case. But if
we recover the mass-shell conditions for particles,
we will recover the normal logarithmic asymptotic
behavior of the cross section as well, σ ∼ ln2(s/s0).
In the Bjorken limit, we have a strong (power-law) vi-
olation of scaling in the second term, which, however,
does not represent the contribution of higher twists
because it has a nonintegral power. It is interesting
to note that, if the entire dependence on virtuality in
the eikonal strictly factorized, the total cross section
would obey the Froissart–Martin bound off the mass
shell (with respect to the s dependence) as well. How-
ever, there is generally no such factorization.

2.2. Elastic-Scattering Cross Section
For elastic-scattering cross section, we arrive at

[see (10)]

σ∗
el = 4π

∞∫

0

db2
∣∣∣δ∗
δ
T (s, b)

∣∣∣2. (27)

Since q′2 = µ2, where µ is the mass of the product
particle, it is natural to assume that s0 = µ2. As a
result, we obtain

σ∗
el → 16πα′(0)∆

(c∗
c

)2( µ2

Q2

)2+2∆
(

ln
s

µ2

)2

(28)
YSICS OF ATOMIC NUCLEI Vol. 64 No. 11 2001
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Parameter values obtained by fitting experimental data

∆P 0.11578 (fix.) α′
P [GeV−2] 0.27691 (fix.)

c∗∗ 7.7247± 4.1474 c∗ 2.4350± 2.7259

c∗1 (0.42154± 0.58348)× 10−1 r2 [GeV−2] 62.152± 81.490

Q2
0 [GeV

2] 1.0 (fix.) W0 [GeV] 1.8869± 0.87862
in the Regge regime and

σ∗
el → 8πα′(0)

(c∗
c

)2( µ2

Q2

)2+2∆ (ln(Q2/x))2

ln(1/x)
(29)

in the Bjorken regime.
It is interesting to note that

σ∗
el

σ∗∗
tot

→ 0 (30)

in contrast to the limit of 1/2 for the case where all
particles are on the mass shell. We are now ready
to proceed to describe the proton structure function
F p

2 (x,Q2).

3. MODEL FOR F p
2 (x,Q2)

The proton structure function F p
2 (x,Q2) is related

to the transverse cross section σ∗∗
T (W,Q2) for the

process γ∗ + p → X by the equation

σ∗∗
T (W,Q2) =

4π2α

Q2(1 − x)
(31)

×
1 +

4m2
px

2

Q2

1 + R(x,Q2)
F p

2 (x,Q2),

where W 2 =
Q2

x
−Q2 + m2

p and R(x,Q2) =
σ∗∗
L

σ∗∗
T

.

Since the ratio R(x,Q2) is assumed to be small, we
set it to zero; that is, we assume that the total cross
section coincides with the transverse cross section.

In the ensuing analysis, we restrict ourselves to the
case of x values as small as x < 10−2; this is done in
order that we could use the asymptotic formula (21),
which explicitly demonstrates unitarization effects in
our model. By using (13), (16), and (18), we can
recast Eq. (21) into the form (s ≡ W 2; ∆P ≡ ∆ is
the Pomeron intercept)

σ∗∗
tot (32)

→
((W 2 + Q2 −m2

p)/(W
2
0 + Q2 −m2

p))
∆P

(W 2
0 + Q2 −m2

p)

×
[
c∗∗(Q2) − c2∗(Q2)

c

(W 2
0 − µ2 −m2

p

W 2
0 + Q2 −m2

p

)1+∆P ρ2

ρ2
∗

]
.

PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 11 20
In deriving this formula, we assumed that the γ∗p
scattering amplitude is proportional to the amplitude
for the scattering of a virtual vector meson by a proton
[6] and that this effective vector meson is ρ0; that is,

Tγ∗p→γ∗p(W,Q2, t) = kTρ∗0p→ρ∗0p
(W,Q2, t), (33)

where k is a constant.
We note that the asymptotic behavior given by

(32) takes place at Q2 = 0—that is, for real photons.
Although the photons are real in this case, the vec-
tor mesons are off the mass shell. Therefore, the
Froissart–Martin bound is not violated. But if we
take into account electromagnetic interaction in all
orders in αem, σγp will be infinite because of long-
range interactions in the t channel.

Because we use asymptotic formulas, we neglect
the real part of the Pomeron signature factor (since
it is proportional to ∆P � 0.1) and set the signature
factor to i.

The parametrizations for c∗∗ and c∗ are

c∗∗(Q2) =
c∗∗

((Q2
0 + Q2)/Q2

0)∆
, (34)

c∗(Q2) =
c∗ + c∗1 ln

(
Q2

0 + Q2

Q2
0

)3

((Q2
0 + Q2)/Q2

0)∆
,

c = c∗(−µ2),

where Q2
0 = 1.0 GeV2; µ = 0.77 GeV (ρ-meson

mass); and c∗∗, c∗, and c∗1 are numerical parameters.

In principle, the Q2 dependence of the coefficients
c∗(∗) can be taken into account with the aid of per-
turbative QCD (by introducing some additional as-
sumptions). However, we refrain from doing this
here and rely on purely phenomenological fits for the
coefficients. In order to clarify the role of perturbative
QCD, we are going to use it in subsequent studies.
The parametrizations of the radii ρ2 and ρ2

∗ are

ρ2
∗(W,Q2) = 4α′(0) (35)

× ln
W 2 + Q2 −m2

p

W 2
0 + Q2 −m2

p

+ r2/(Q2
0 + Q2),

ρ2(W ) = ρ2
∗(W,−µ2) ,

where r and W 2
0 (GeV2) are parameters and Q2

0 =
1.0 GeV2.
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Fig. 1. Experimental data on the proton structure functionF p
2 (x, Q2) at low Q2 and model predictions
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2 (x, Q2) at high Q2 and model predictions.
For the proton structure function F p
2 (x,Q2), we

finally obtain

F p
2 (x,Q2) =

1
4π2α

Q2(1 − x)

1 +
4m2

px
2

Q2

(36)

×
((W 2 + Q2 −m2

p)/(W
2
0 + Q2 −m2

p))
∆P

(W 2
0 + Q2 −m2

p)
PH
×
[
c∗∗(Q2)− c2∗(Q2)

c

(W 2
0 − µ2 −m2

p

W 2
0 + Q2 −m2

p

)1+∆P ρ2

ρ2
∗

]
.

For Q2  W 2
0 and 1/x  1, the asymptotic ex-

pression for the structure function is

F p
2 (x,Q2) �

(
1
x

)∆
[
c∗∗(Q2) − c2∗(Q2)

c
(37)
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×
(

ln(Q2/W 2
0 )

ln(1/x)
+ 1
)(

W 2
0

Q2

)1+∆
]
.

4. RESULTS

It was mentioned above that, in our fit, we use
data for x < 10−2; thus, we select 401 points of the
complete set of 1265 points. Having five free pa-
rameters, we obtained χ2/NDF = 1.0098. (The fitted
parameter values are quoted in the table. Data on the
intercept and the slope of the Pomeron trajectory were
borrowed from the study reported in [7] and devoted to
describing nucleon–nucleon scattering.)

The results of fitting are presented in
Figs. 1 and 2.
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4.1. x Slope or ∂ lnF p
2 (x,Q2)/∂ ln(1/x)

Data on F p
2 (x,Q2) show a tendency toward a

fast growth with decreasing x—this is the so-called
HERA effect. Our model assumes that this effect will
become weaker with increasing Q2 (Fig. 3). This was
also predicted within the dipole-Pomeron model [1b].
We suppose that new experimental data in the region
specified by the inequalities 100 ≤ Q2 ≤ 1000 GeV2

and x ≤ 10−2 will contribute to proving or disproving
this prediction.

The effective intercept, which is measured experi-
mentally under the assumption that F p

2 ∝
(1/x)∆eff (Q2), can be approximately associated with
the x slope if the slope depends weakly on x. We have
calculated the slope; the results of these calculations
01
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are shown in Fig. 4, alongwith experimental data. We
emphasize that we have calculated the effective slope;
that is, we have not included experimental data on it in
the fitting process. As can be seen, the experimental
data are well described by our model.

4.2.Q Slope or ∂F p
2 (x,Q2)/∂ lnQ2

Data on the Q slope show a peak in the region
Q2 ∼ 1−5 GeV2. This maximum is often interpreted
as a transition from the Regge behavior to the pertur-
bative regime of QCD. We have performed relevant
calculations within our model; the results are dis-
played in Fig. 5. As can be seen, the specific behavior
of the Q slope is quite consistent with the Regge
regime. We also want to emphasize that the definition
of the transition region depends on the path in the
two-dimensional surface of ∂F p

2 (x,Q2)/∂ lnQ2, and
this can lead to an x dependence for the position of the
maximum [1b]. In order to demonstrate this effect, we
present a figure that illustrates the slope calculated
within our model (Fig. 6).

5. CONCLUSION

The proton structure function F p
2 (x,Q2) at small

x has been described within the generalized Regge
eikonal approach. No additional Regge poles with
Q2-dependent intercepts are required for describing
experimental data. Experimental data on the x and
Q slopes have also been well described. The model
predicts the weakening of the effect obtained at the
HERA collider (the same prediction was made within
the dipole-Pomeron model [1b]).

ACKNOWLEDGMENTS

We are grateful to E. Martynov and A. Kaidalov
for stimulating discussions and to A. De Roeck for
placing experimental data at our disposal. One of the
authors (A.V. Prokudin) is indebted to the Depart-
ment of the Theoretical Physics at the International
Centre for Theoretical Physics (ICTP, Trieste, Italy)
for the invitation and hospitality at ICTP, where part
of this work was performed.
PH
REFERENCES

1. (a) K. Adel, F. Barreiro, and F. J. Ynduráin, Nucl.
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Abstract—We compare numerical predictions of the conventional QCD parton model and of the kT -
factorization approach (semihard theory) for heavy-quark production in high-energy hadron collisions.
The total production cross sections and one-particle rapidity and pT distributions, as well as two-particle
correlations, are considered. The distinction between the predictions of the two approaches is not very
large, while the shapes of the distributions are slightly different. c© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Investigation of heavy-quark production in high-
energy hadron collisions is an important method for
studying the quark–gluon structure of hadrons. Re-
alistic estimates of the cross section for heavy-quark
production, as well as the correlations of two product
heavy quarks (heavy-flavor hadrons), are necessary
for planning experiments at existing and future accel-
erators, as well as in cosmic-ray physics.

The description of hard interactions in hadron
collisions within QCD is possible only with the help
of some phenomenology, which reduces the hadron–
hadron interaction to the parton–parton one via the
formalism of the hadron structure functions. The
cross sections of hard processes in hadron–hadron
interactions can be written as the convolutions of
squared matrix elements of the subprocess calculated
within QCD with parton distributions in colliding
hadrons.

The most popular and technically simplest ap-
proach is the so-called QCD collinear approximation
or parton model (PM). In this model, all particles
involved are assumed to be on themass shell, carrying
only longitudinal momenta, and the cross section is
averaged over two transverse polarizations of the in-
cident gluons. The virtualities q2 of the initial partons
are taken into account only through their structure
functions. The cross sections of QCD subprocess are
calculated usually in the leading order (LO), as well as

∗This article was submitted by the authors in English.
1)Abdus Salam International Centre for Theoretical Physics,
Strada Costiera 11, I-34014 Trieste, Italy.

**e-mail: ryskin@thd.pnpi.spb.ru
***e-mail: shabelsk@thd.pnpi.spb.ru
****e-mail: shuvaev@thd.pnpi.spb.ru
1063-7788/01/6411-1995$21.00 c©
in the next-to-leading order (NLO) [1–5]. The trans-
verse momenta of the incident partons are neglected
in the QCD matrix elements. This is the direct
analogy of the Weizsäcker–Williams approximation
in QED. It allows one to describe quite reasonably
experimental data on the total cross sections and one-
particle distributions of product heavy flavors; how-
ever, it cannot reproduce, say, the azimuthal correla-
tions [6] of two heavy quarks or the distributions over
the total transverse momentum of heavy-quark pairs
[7], which are determined by the transverse momenta
of the incident partons.
There is an attempt at incorporating the transverse

momenta of the incident partons by a random shift
of these momenta (kT kick) [7] according to certain
exponential distributions. This allows one to describe
quantitatively two-particle correlations [7], but cre-
ates the problems in the simultaneous description of
one-particle longitudinal and transverse momentum
distributions [8].
Another possibility to incorporate the incident

parton transverse momenta is referred to as the
kT -factorization approach [9–13], or the theory of
semihard interactions [14–19]. Here, the Feynman
diagrams are calculated taking account of the virtu-
alities and of all possible polarizations of the incident
partons. In the small-x domain (x is the fraction of
the momentum of incident hadron which is carried
out by the parton under consideration in the infinite-
momentum frame), there are no grounds to neglect
the transverse momenta of the gluons, q1T and q2T ,
in comparison with the quark mass and transverse
momenta, piT . Moreover, at very high energies and
very high p1T , the main contribution to the cross
sections comes from the region of q1T ∼ p1T or q2T ∼
p1T . The QCD matrix elements of the subprocesses
are rather complicated in such an approach. We have
2001MAIK “Nauka/Interperiodica”



1996 RYSKIN et al.
calculated them in the LO. On the other hand, the
multiple emission of soft gluons is included here. That
is why there arises the question of which approach is
more constructive.
The majority of the published papers on kT factor-

ization have presented no numerical results or pre-
sented rather incomplete ones. Old sets of struc-
ture functions have been used, and, sometimes, the
parton model results obtained with a particular set
are compared with kT -factorization results based on
another set.
In [20], we presented a comparison of results ob-

tained with the help of the kT -factorization approach
and the parton model. The main goal of [20] was to
demonstrate the differences in the qualitative and nu-
merical predictions coming from the matrix elements.
To simplify the calculations and to avoid various ad-
ditional dependences, we used a gluon distribution
which had only a reasonable qualitative behavior and
a fixed value of αs.
The objective of this study is to present a com-

parison between the results of the conventional par-
ton model and the kT -factorization approach for the
quantities which are measured experimentally. For
this reason, we use the realistic gluon distribution
GRV94 [21] compatible with the most recent data
(see discussion in [22]).
Below, we briefly repeat the basic formalism of

the approaches used, discuss the values of the pa-
rameters, and present numerical results on charm
and beauty production obtained in the LO (and
qualitatively in NLO) parton model and in the kT -
factorization approach.

2. CONVENTIONAL PARTON-MODEL
APPROACH

The conventional PM expression for the calcula-
tion of heavy-quark-hadroproduction cross sections
has the factorized form [23]

σ(AB → QQ̄) =
∑
ij

∫
dxidxjGA/i(xi, µF ) (1)

×GB/j(xj, µF )σ̂(ij → QQ̄),

where GA/i(xi, µF ) and GB/j(xj , µF ) are the struc-
ture functions of partons i and j in the colliding
hadrons A and B with invariant energy sAB, µF
is the factorization scale (i.e., virtualities of incident
partons), and σ̂(ij → QQ̄) is the cross section of the
subprocess that is calculated in perturbative QCD.
The latter cross section can be written as a sum of
LO and NLO contributions,

σ̂(ij → QQ̄) =
α2
s(µR)
m2
Q

(
f

(o)
ij (ρ) (2)
PH
+ 4παs(µR)
[
f

(1)
ij (ρ) + f̄

(1)
ij (ρ) ln(µ2/m2

Q)
])

,

where αs is QCD coupling constant, µR is the renor-

malization scale, and f (o)
ij , as well as f

(1)
ij and f̄ (1)

ij ,
depends only on the single variable

ρ =
4m2

Q

ŝ
, ŝ = xixjsAB; (3)

therefore, ŝ is the invariant energy of colliding par-
tons. {In the factor ln(µ2/m2

Q), we assume µR =
µF = µ following [1]. In the case of different val-
ues of µR and µF , which is preferable for describing
experimental data from [7], Eq. (2) becomes more
complicated.}

Expression (1) corresponds to the process shown
schematically in Fig. 1. The main contribution to
the cross section at small x is known to come from
gluons, i = j = g.

Usually in the PM, the values

µF = µR = mQ (4)

are used for the total cross sections and

µF = µR = mT =
√
m2
Q + p2

QT (5)

for the one-particle distributions [7]. However, we
calculate the total cross sections of heavy-quark pro-
duction as the integrals over their pT distrubutions,
i.e., with scales (5).

Both in the parton model and in the kT -factoriza-
tion approach, we take

mc = 1.4 GeV, mb = 4.6 GeV (6)

for the values of short-distance perturbative quark
masses [24, 25].

Another important problem of PM is the collinear
approximation. The transverse momenta of the inci-
dent partons, qiT and qjT , are assumed to be zero, and
their virtualities are taken into account only through
the structure functions; the cross section σ̂(ij →
QQ̄) is assumed to be independent of these virtu-
alities. Naturally, this approximation significantly
simplifies the calculations.

The conventional NLO parton-model approach
with collinear approximation works quite reasonably
for one-particle distributions and for the total cross
sections; at the same time, it is in serious disagree-
ment with data on heavy-quark correlations (without
introducing a kT kick [7]).
YSICS OF ATOMIC NUCLEI Vol. 64 No. 11 2001
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Fig. 1. Heavy-quark production in hadron–hadron col-
lisions. The LO parton model corresponds to the case
where q1T = q2T = 0.

3. HEAVY-QUARK PRODUCTION
IN THE kT -FACTORIZATION APPROACH

In the kT -factorization approach, the transverse
momenta of the incident gluons in the small-x re-
gion result from the αs ln k2

T diffusion in the gluon
evolution. The diffusion is described by the func-
tion ϕ(x, q2) giving the gluon distribution at a fixed
fraction of the longitudinal momentum of the initial
hadron, x, and of the gluon virtuality, q2. At very low
x, the leading log(1/x) accuracy seems reasonable;
therefore, the function ϕ(x, q2) can be approximately
determined [14] via the derivative of the usual struc-
ture function:

ϕ(x, q2) = 4
√

2π3 ∂[xG(x, q2)]
∂q2

. (7)

This definition of ϕ(x, q2) enables us to treat correctly
effects arising from the gluon virtualities.
Although ϕ is generally a function of three vari-

ables, x, qT , and q2, the transverse momentum
dependence is comparatively weak since q2

T ≈ −q2

for small x in the leading log approximation (LLA) in
agreement with q2 dependences of structure func-
tions. Note that, due to QCD scaling violation,
ϕ(x, q2) for realistic structure functions increases
faster with decreasing x. Therefore, at smaller x,
larger qT becomes important in numerical calcula-
tions.
The exact expression for the qT gluon distribution

can be obtained as a solution to the evolution equa-
tion, which, in contrast to the PM case, is nonlin-
ear due to interactions between the partons in the
small-x region. The calculations [26] of the qT gluon
distribution in the leading order by using Balitsky–
Fadin–Kuraev–Lipatov (BFKL) theory [27] result in
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 11 20
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Fig. 2. Low-order QCD diagrams (a–c) for heavy-quark
production in hadron A–hadron B collisions via gluon–
gluon fusion.

deviations from our ϕ(x, q2) function given by (7) by
only about 10–15%.
Here, we deal with a matrix element that takes

into account the gluon virtualities and polarizations.
Since it is much more complicated than in the PM,
we consider only the LO of the subprocess gg →
QQ̄, which gives the main contribution to the heavy-
quark-production cross section at small-x (see the
diagrams in Fig. 2). The lower and upper ladder
blocks represent the two-dimensional gluon func-
tions ϕ(x1, q

2
1) and ϕ(x2, q

2
2).

Strictly speaking, Eq. (7) may be justified only in
the leading log(1/x) limit. To restore the unintegrated
parton distribution fa(x, qT , µ) (i.e., the probability
of finding a parton a with transverse momentum qT
that initiates our hard process with factorization scale
µ) based on the conventional (integrated) parton
density a(x, q2

1), we have to consider the Dokshitzer–
Gribov–Lipatov–Altarelli–Parisi (DGLAP) evolu-
tion2)

∂a

∂ ln q2
1

=
αs
2π




1−∆∫

x

∑
a′

Paa′(z)a′
(x
z
, q2

1

)
dz (8)

− a(x, q2
1)
∑
a′

1−∆∫

0

Pa′a(z′)dz′




[here, a(x, q2
1) denotes xg(x, q2

1) or xq(x, q2
1), and

Paa′(z) are the splitting functions].
The first term on the right-hand side of (8) de-

scribes the number of partons δa emitted in the in-
terval q2

1 < q2
T < q2

1 + δq2
1 , while the second (virtual)

term reflects the fact that the parton a disappears after
splitting.

2)For g → gg splitting, we must insert the factor z′ into the
last integral in Eq. (8) to take into account the identity of the
product gluons.
01
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The second contribution may be resummed to give
the survival probability Ta that the parton a with
transverse momentum qT remains intact in the evo-
lution up to the factorization scale:

Ta(qT , µ) (9)

= exp


−

µ2∫

q2T

αs(pT )
2π

dp2
T

p2
T

∑
a′

1−∆∫

0

Pa′a(z′)dz′


 .

Thus, the unintegrated distribution fa(x, qT , µ) has
the form

fa(x, qT , µ) (10)

=


αs

2π

1−∆∫

x

Paa′(z)a′
(x
z
, q2
T

)
dz


Ta(qT , µ),

where the cutoff ∆ = qT /µ is used in Eqs. (8)–(10)
[28, 29].
In the leading log(1/x) (i.e., BFKL) limit, the vir-

tual DGLAP contribution is neglected. Thus, Ta = 1,
and one comes back to (7)

fBFKL
a (x, qT , µ) =

∂a(x, λ2)
∂ lnλ2

, λ = qT . (11)

In the double log limit, Eq. (10) can be written in
the form

fDDT
a (x, qT , µ) (12)

=
∂

∂ lnλ2

[
a(x, λ2)Ta(λ, µ)

]
λ=qT

,

which was first proposed in [30]. In this limit, the
derivative ∂Ta/∂ lnλ2 cancels the second term on the
right-hand side of (8) (see [29] for a more detailed
discussion).
Finally, the probability fa(x, qT , µ) is related to the

BFKL function ϕ(x, q2
T ) as

ϕ(x, q2) = 4
√

2π3fa(x, qT , µ). (13)
Note that, owing to a virtual DGLAP contribu-

tion, the derivative ∂a(x, q2
1)/∂q

2
1 can be negative for

not overly small x values. This shortcoming of (11)
is overcome partly in the case of (12). Unfortunately,
the cutoff ∆ used in a conventional DGLAP compu-
tation does not depend on the scale µ. To obtain an
integrated parton distributions it is enough to put any
small∆ � 1.3)

3)There is a cancellation between the real and virtual soft gluon
double log contributions in the DGLAP equation, written for
the integrated partons (including all kT ≤ µ). The emission
of a soft gluon with momentum fraction (1 − z) → 0 does
not affect the x distribution of parent partons. Thus, the
virtual and real contributions originated from 1/(1 − z) sin-
gularity of the splitting function P (z) cancel each other. On
the contrary, in the unintegrated case, the emission of soft
gluon (with q′T > kT ) alters the transverse momentum of
parent (t-channel) parton. Equation (12) includes this effect
through the derivative ∂T (k2

T , µ2)/∂k2
T .
PH
On the other hand, in the survival probability
(9), we have to use the true (within the leading
log approximation) value ∆ = qT /µ. Thus, for a
rather large qT (of the order of µ) and x, even the
Dokshitzer–Dyakonov–Troyan (DDT) form (12) is
not sufficiently precise. Only expression (10) with
the same cutoff ∆ in a real DGLAP contribution and
in the survival probability (9) ensures positiveness of
the unintegrated probability fa(x, qT , µ) in the entire
interval 0 < x < 1.
Of course, just by definition, we have

fa(x, qT , µ) = 0 when the transverse momentum qT
becomes larger than the factorization scale µ.
In what follows, we use the Sudakov decomposi-

tion for the quarkmomenta p1,2 through themomenta
of colliding hadrons, pA and pB (p2

A = p2
B 	 0), and

the transverse momenta p1,2T , that is,
p1,2 = x1,2pB + y1,2pA + p1,2T . (14)

The differential cross section of heavy-quark hadro-
production has the form4)

dσAB
dy∗1dy

∗
2d

2p1Td2p2T
=

1
(2π)8

1
s2

(15)

×
∫

d2q1Td
2q2T δ(q1T + q2T − p1T − p2T )

× αs(q2
1)

q2
1

αs(q2
2)

q2
2

ϕ(y, q2
1)ϕ(x, q2

2)|MQQ|2.

Here, s = 2pApB, q1,2T are the gluon transverse mo-
menta, y∗1,2 are the quark rapidities in the hadron–
hadron c.m. frame,

x1 =
m1T√
s
e−y

∗
1 , x2 =

m2T√
s
e−y

∗
2 , x = x1 + x2,

y1 =
m1T√
s
ey

∗
1 , y2 =

m2T√
s
ey

∗
2 , y = y1 + y2, (16)

m2
1,2T = m2

Q + p2
1,2T ,

and |MQQ|2 is the square of the matrix element for the
heavy-quark pair hadroproduction.
In LLA kinematics, we have

q1 	 ypA + q1T , q2 	 xpB + q2T , (17)
so that

q2
1 	 −q2

1T , q2
2 	 −q2

2T . (18)

(The more accurate relations are q2
1 = − q2

1T
(1 − y) and

q2
2 = − q2

2T
(1 − x) , but we are working in the kinematics

where x, y ∼ 0.)
The matrix element M is calculated in the Born

approximation of QCD (for details, see [18, 20]) with-
out standard simplifications of the parton model.

4)We set the argument of αs to the gluon virtuality, which is
very close to the BLM scheme [31] (see also [17]).
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(solid curve) charm and (dashed curve) beauty production
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√
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3. TOTAL CROSS SECTIONS
AND ONE-PARTICLE DISTRIBUTIONS

Equation (15) enables us to calculate straight-
forwardly all distributions concerning one-particle or
pair production. One-particle calculations, as well
as correlations between two produced heavy quarks,
can easily be obtained by using, say, the VEGAS
code [32].

However, there exists an important problem that
comes from the infrared region. Since the functions
ϕ(x, q2

2) and ϕ(y, q2
1) are unknown at small values of

q2
2 and q

2
1 (smaller than some Q

2
0 value), we use the

direct consequence of (7) [32],

xG(x, q2) (19)

= xG(x,Q2
0) +

1
4
√

2π3

q2∫

Q2
0

ϕ(x, q2
1)dq2

1 ,

and rewrite the integrals in (15) as∫
d2q1Td

2q2T δ(q1T + q2T − p1T − p2T ) (20)

× αs(q2
1)

q2
1

αs(q2
2)

q2
2

ϕ(y, q2
1)ϕ(x, q2

2)|MQQ|2

= (4
√

2π3αs(m2
T ))2xG(x,Q2

0)yG(y,Q2
0)

× T 2(Q2
0, µ

2)
(
|MQQ|2
q2
1q

2
2

)
q1,2→0

+ 4
√

2π3αs(m2
T )xG(x,Q2

0)T (Q2
0, µ

2)
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(dash-dotted curves) ŝ/4 and (dashed curves) in the LO
PM.

×
∞∫

Q2
0

dq2
1T δ(q1T − p1T − p2T )

αs(q2
1)

q2
1

× ϕ(y, q2
1)
(
|MQQ|2
q2
2

)
q2→0

+ 4
√

2π3αs(m2
T )yG(y,Q2

0)T (Q2
0, µ

2)

×
∞∫

Q2
0

dq2
2T δ(q2T − p1T − p2T )

αs(q2
2)

q2
2

× ϕ(x, q2
2)
(
|MQQ|2
q2
1

)
q1→0

+

∞∫

Q2
0

d2q1T

×
∞∫

Q2
0

d2q2T δ(q1T + q2T − p1T − p2T )

× αs(q2
1)

q2
1

αs(q2
2)

q2
2

ϕ(y, q2
1)ϕ(x, q2

2)|MQQ|2,

where the unintegrated gluon distributions are taken
from (13).

The first contribution in (20), with the averaging
of the matrix element over the directions of the two-
dimensional vectors q1T and q2T , is identical to the
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conventional LO PM expression, with QCD scales
µ2
R = m2

T and µ
2
F = Q2

0 multiplied by the “survival”
probability T 2(Q2

0, µ
2) not to have transverse mo-

menta q1,2,T > Q0. The sum of the product-heavy-
quark transverse momenta is exactly zero here.
The next three terms contain the corrections to the

PM related to the gluon polarizations, virtualities, and
transverse momenta in the matrix element. The rel-
ative contribution of the corrections depends strongly
on the initial energy. If it is not sufficiently high, the
first term in (20) dominates, and all results nearly
coincide [after taking into account (19)] with the con-
ventional LO PM predictions. In the case of very high
energy, the opposite situation takes place—the first
term in (20) can be considered as a small correction—
and our results differ from the conventional ones. It is
necessary to note that the absolute and the relative
values of all terms in (20) strongly depend on the T -
factor inclusion [i.e., when we use (9), (10), (13), or
(7)].
Before the numerical comparison, it is necessary

to note that the NLO PM actually results only in a
normalization factor in the case of one-particle dis-
tributions, the shapes of LO and LO + NLO distri-
butions being almost the same (see [3–5, 34]). This
means that we can calculate theK factor

K =
σ(LO) + σ(NLO)

σ(LO)
, (21)

say, from the results for the total production cross
sections, and restrict ourselves only to LO calcula-
PH
0 10 20 30 40 50

630 GeV

1.8 TeV

14 TeV

s

α s(q2
iT)

dσ/dpT, µb/GeV

10– 5

10– 3

10– 1

101

pp → bb

pT, GeV

(b)

–

(b) b quarks produced at various energies. The dashed curves
lculated with the unintegrated gluon distribution fg(x, qT , µ)

ted curves were calculated for µ2 = ŝ/4.

tions of pT , or rapidity distributions, multiplying them
by theK factors.
The numerical values of the K factors depend

[35] on the structure functions used, quark masses,
QCD scales, and initial energy, the dependence on
the renormalization scale µR being especially impor-
tant. This seems to be evident, because the LO
contribution is proportional to α2

s , whereas the NLO
contribution is proportional to α3

s . However, the
more important dependence at high energies, when
small-ρ values dominate, comes from the structure
of (2). In the limit ρ → 0, the functions f (1)

gg and

f̄
(1)
gg have constant limits [1], f (1)

gg (ρ → 0) ≈ 0.1 and
f̄

(1)
gg (ρ → 0) ≈ −0.04, so due to (2) the K factor at
high energies depends strongly on the ratio µ/mQ.
First of all, we consider the role of the T factors

(9). In Fig. 3, we show their values which were
calculated as the ratios of the values of the last term of
(20) to the same values calculated with Ta(q1T , µ) =
1 for the cases of charm and beauty production at√
s = 14 TeV and µ2 = ŝ as functions of q1T . The

values of heavy-quark transverse momenta were fixed
at 20 GeV. In both cases, the values of Ta(q1T ) are
rather small at small q1T and Ta(q1T ) → 1 for pT �
q1T .
Let us now compare the numerical results pre-

dicted by the parton model and by the kT -factoriza-
tion approach.
The energy dependences of the total cross sections

of cc̄- and bb̄-pair production are presented in Fig. 4.
YSICS OF ATOMIC NUCLEI Vol. 64 No. 11 2001
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As was mentioned, at comparatively small energies
the first term in (20) dominates and the results of the
kT -factorization approach should be close to the LO
PM prediction. Actually, the first results are even
smaller owing to the presence of the T factor in (10).
However, the kT -factorization approach predicts a
stronger energy dependence than the LO PM, both
for cc̄ and for bb̄ production. This can be explained
by additional contributions appearing at very high
energies in the kT -factorization approach (see [20]).
The one-particle pT distributions, dσ/dpT calcu-

lated within the kT -factorization approach and within
the LO PM are presented in Fig. 5. In all cases, the
kT -factorization approach predicts broader distribu-
tions. The average values of pT of the product heavy
quarks are rather different in these two approaches, as
one can see from the table.
This seems very natural because, in contrast to the

case of the LO PM, a large pT of one heavy quark
can be compensated not only by the pT of another
heavy quark but also by the initial gluons (i.e., by hard
gluon-jet emission).
The rapidity distributions of product heavy quarks

presented in Fig. 6 show that the main part of the
difference between the kT -factorization approach and
the LO PM comes from the central region.

4. TWO-PARTICLE CORRELATIONS

We saw from the preceding section that there is
only a small difference in our results for the total
cross sections and one-particle distributions obtained
in the kT -factorization approach and in the LO PM.
The predictions of the NLO parton model for these
quantities differ from the LO PM only by a normal-
ization factor of 2–2.5 [3–5, 34]. Thus, the difference
between our predictions and the NLO PM should be
small.
The calculations of two-particle correlations in the

different approaches are more informative. The sim-
plest quantity here is the distribution of the product
heavy-quark pair with respect to their total trans-
verse momentum ppair. In the LO, we obviously
have ppair = p1T + p2T = q1T + q2T ; if q1T = q2T =
0, then dσ/dppair is a delta function of zero. Thus, the
ppair distributions give direct information about the
transverse-momentum distribution of incident par-
tons.
It is clear that, if qiT � piT , then the distributions

in ppair should be narrower than the one-particle pT
distributions. In this case, the Weizsäcker–Williams
approximation should be valid, and one can believe
that the parton model reflects the real dynamics of the
interaction. In the opposite case, qiT ∼ piT , the large
transverse momentum of the product heavy quark can
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 11 20
Mean charm- and beauty-quark transverse momenta 〈pT 〉
(in GeV) in the kT -factorization approach with µ2 = ŝ and
in the LO parton model

√
s,

TeV
LO PM kT factorization

cc̄ bb̄ cc̄ bb̄

14 1.78 4.53 2.23 5.47

1.8 1.48 3.96 1.91 4.54

be compensated not by the other quark, but by a high-
pT gluon. We have shown in [20] that about 70–80%
of the total cross section for high-pT quark produc-
tion at high energies originates from such processes,
when the heavy-quark propagator is close to themass
shell.
We have calculated dσ/dppair for (a) charm and

(b) beauty production in the kT -factorization ap-
proach using the unintegrated gluon distribution (9),
(10), and (13) with the scale values of µ2 = ŝ and
µ2 = ŝ/4 (only for

√
s = 14 TeV). Our results for pair

production at various initial energies are shown by
solid curves in Fig. 7. For the sake of comparison,
the one-particle pT -distributions taken from Fig. 5,
which were obtained in the same kT -factorization
approach and with the same T factor, are shown by
the dashed curves. Since we set Q2

0 = 1 GeV2 in
(20), we cannot distinguish between the initial gluons
with qT equal to, say, 0.1 and 0.9 GeV; therefore, our
first bin in the distribution dσ/dppair has the width of
2 GeV, which explains some irregular behavior of the
solid curves at low pT . Naturally, all solid and dashed
curves are normalized equally at the same energy.
At comparatively small energies of

√
s = 39 GeV

and even at
√
s = 630 GeV, the distributions

dσ/dppair are narrower than the one-particle dis-
tributions dσ/dpT . This means that the transverse
momenta of the product heavy quarks compensate
each other almost completely. However, the situation
changes drastically with increasing initial energy.
From comparatively small pT , the difference between
the curves decreases with energy. At

√
s = 14 TeV,

the distributions are similar in the cases of both cc̄
and bb̄ production. This means that the production
mechanism changes in the energy region being dis-
cussed. At

√
s = 14 TeV, the transverse momentum

of the product heavy quark is balanced more probably
by one or a few gluons (see also [20]), because
the contribution with large virtuality in the quark
propagator is more suppressed in relation to the large
virtuality in the gluon propagator.
The behavior under discussion depends on the

scale µ2 in the T factor (9). The results of a similar
calculation at

√
s = 14 TeV with µ2 = ŝ/4 are shown
01
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in Fig. 7 for pair and single production (dash-dotted
and dotted curves, respectively). Here, the difference
between these two curves is more significant and
becomes larger at lower energies.

The distributions of the product heavy-quark pair
PH
as a function of the rapidity gap ∆y = |yQ − yQ̄|

between the quarks are presented in Fig. 8. Here,

the difference between the LO PM and the kT -
factorization predictions is not large again every-
YSICS OF ATOMIC NUCLEI Vol. 64 No. 11 2001
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where, with the exception of the region of very
large∆y.
Another interesting correlation is the distribution

in the azimuthal angle φ, which is defined as the
opening angle between the two product heavy quarks
that is projected onto the plane that is perpendicular
to the beam and which is defined as the xy plane. In
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 11 20
the LOPM, the sum of the product-heavy-quark mo-
menta projected onto this plane is exactly zero, and
the angle between them is always 180◦. In the case
of the NLO PM, the φ distribution is nontrivial [6];
however, the predicted distribution (without including
the kT kick) is narrower in comparison with the fixed
target data [7].
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The theoretical and the experimental investigation
of such distributions are very important for checking
our understanding of the processes under considera-
tion. The problem is that, in the case of one-particle
inclusive distributions for heavy-quark production in
hadron collisions, the sum of LO and NLO contri-
butions of PM virtually coincides [3–5, 34] with the
LO contribution multiplied by K factors. Therefore,
agreement with experimental data can be achieved
for too small or too large an NLO contribution by
fitting one parameter, which can work as a normal-
ization factor (say, the QCD scale). The deviation
of azimuthal correlations from the trivial δ(φ− π)
distribution comes from the NLO correction to the
PM. However, the standard NLO contributions are
not sufficiently large for describing data, and only a
comparatively large intrinsic transverse momentum
of incoming partons (kT kick) allows us to describe
[7] data.

Preliminary results for the azimuthal correlations
in the kT -factorization approach were considered in
[19]. The main distinction between information com-
ing from dσ/dppair and dσ/dφ distributions is due
to a comparatively slow heavy quark. It makes a
negligibly small contribution to the dσ/dppair in the
first case; in the second case, each quark contributes
to the distribution dσ/dφ almost independently of
its momentum, so that all corrections coming from
quark confinement, hadronization, and resonance de-
cay can be important.

As was discussed above, the first contribution in
(20) is identical to the conventional LO PM, where
the angle between the momenta of the product heavy
quarks is always 180◦. However, the angle between
the momenta of two heavy hadrons can be slightly
different from this value because of hadronization pro-
cesses. To take this into account, we assume that,
in this first contribution, the probability of finding a
hadron pair with azimuthal angle 180◦ − φ is deter-
mined by the expression

w1(φ) =
ph√

p2
h + p2

T

, (22)

where ph = 0.2 GeV is the transverse momentum in
the azimuthal plane coming from the hadronization
process. The other contributions in (20) result in
a more or less broad φ distribution; therefore, we
neglect their small modification due to hadronization.

The kT -factorization-approach predictions for the
azimuthal correlation of heavy quarks produced in pp
collisions are presented in Fig. 9, and one can see
that they change drastically when the initial energy
increases from fixed target to the collider region.
PH
5. CONCLUSION

We have compared the conventional LO PM
and the kT -factorization approach for heavy-quark
hadroproduction at collider energies using a realistic
gluon (parton) distribution. Both the transverse
momenta and rapidity distributions have been con-
sidered, as well as two-particle correlations, such
as the distribution in the rapidity gap between two
heavy quarks, their azimuthal correlations, and the
distributions of the total transverse momentum of the
product heavy-quark pair (ppair).
It was shown in [20] that the contribution of

the domain with strong qT ordering (q1,2T � mT =√
m2
Q + p2

T ) in the kT -factorization approach co-

incides with the LO PM prediction. In addition, a
numerically large contribution appears at high ener-
gies in the kT -factorization approach in the region
q1,2T ≥ mT . It is kinematically related to the events
where the transverse momentum of heavy quark Q is
balanced not by the momentum of the antiquark Q̄
but by the momentum of the nearest gluon.
This configuration is associated with the NLO (or

even NNLO, if q1,2T ≥ mT ) corrections in terms of
the PM with fixed number of flavors, i.e., without
the heavy quarks in the evolution. Indeed, as was
mentioned in [1], up to 80% of the whole NLO cross
section originates from events where the heavy-quark
transverse momentum is balanced by the nearest
gluon jet. Thus, the large “NLO” contribution,
especially at large pT , is explained by the fact that
the virtuality of the t-channel (or the u-channel)
quark becomes small in the region around qT 	
pT , and the singularity of the quark propagator
1/((p̂ − q̂)−mQ) in the “hard”QCDmatrix element
M(q1T , q2T , p1T , p2T ) reveals itself.
The double logarithmic Sudakov-type form factor

T in the definition of unintegrated parton density
(10) comprises an important part of the virtual loop
NLO (with respect to the PM) corrections. Thus,
we demonstrate that the kT -factorization approach
collects, even at the LO, a major part of the contribu-
tions that play the role of the NLO (and even NNLO)
corrections to the conventional PM. Therefore, we
hope that a higher order (in αs) correction to kT
factorization would be rather small.
Another advantage of this approach is that a

nonzero transverse momentum of QQ̄ system
(ppair = p1T + p2T = q1T + q2T ) is naturally achieved
in kT factorization. We have calculated the ppair

distribution and compared it with the single-quark
pT spectrum. At low energies, the typical values of
ppair are much lesser than the heavy-quark pT , in
accordance with the collinear approximation. How-
ever, for the CERN Large Hadron Collider energy,
YSICS OF ATOMIC NUCLEI Vol. 64 No. 11 2001
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both spectra become close to each other, indicating
that the transverse momentum of the second heavy
quark is relatively small. The typical value of this
momentum (ppair = kT kick) depends on the parton
structure functions (densities). It increases with
initial energy (kT kick increases with decreasing
momentum fractions x and y carried by incoming
partons) and with the transverse momenta of heavy
quarks, pT . Thus, it becomes possible to describe a
nontrivial azimuthal correlation without introducing
a large “phenomenological” intrinsic transverse mo-
mentum of the partons.
It is necessary to note that significant values of the

parton transverse momenta q1T and q2T increase in
our calculations with increasing pmin

T of the detected
b quark. In the language of kT kick, this means that
the values of 〈k2

T 〉 also increase.
A more detailed study of heavy-quark correlations

in the kT -factorization approach, the role of DL factor
T (k2

T , µ
2), and the value of scale µ in the T factor will

be published elsewhere.
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Abstract—An effective meson Lagrangian including a scalar glueball is constructed on the basis of
U(3)× U(3) chiral symmetry. The glueball is introduced in the meson Lagrangian by using the principle
of scale invariance of an effective Lagrangian and the dilaton model. The singlet–octet mixing of scalar-
meson states is described by means of the ’t Hooft interaction. The contribution of scalar and pseudoscalar
anomalies to the breakdown of scale invariance is taken into account. The mixing of quarkonia with the
glueball is described. The mass spectrum of scalar mesons, together with the glueball, and also their
strong decay widths are calculated. From a comparison of the results with experimental data, it follows
that f0(1500) is rather a glueball, whereas f0(1710) is a quarkonium. This is in accord with the results
obtained in our previous study, where radially excited scalar-meson states were described. It is shown
that the ρ meson plays an important role in the description of glueball decays. c© 2001 MAIK “Nau-
ka/Interperiodica”.
1. INTRODUCTION
The self-interaction of gluons, a feature peculiar

to QCD, gave an idea that gluons can form bound
states that can propagate as particles in space. Un-
fortunately, because of theoretical problems, an exact
answer to the question of whether these states really
exist or not has not yet been obtained. However, from
recent lattice simulations [1–3], one can conclude
that, most probably, glueballs are real objects of our
world. Having assumed that glueballs exist, one can
try to construct a model to describe their interac-
tion with other mesons and their properties (such as
masses and decay widths) and to identify them with
observed resonances.

An exact microscopic description of bound gluon
states cannot be constructed systematically with-
in QCD. In this situation, QCD-motivated phe-
nomenological models are a tool that can help to deal
with glueballs, as well as with quarkonia, which form
most of the observed meson states. However, using
these models to describe glueballs, we encounter
many difficulties concerning, e.g., the ambiguity
of the ways of including glueballs in models and
the identification of experimentally observed meson
states. This explains the variety of points of view on
this problem.

First of all, we do not know the exact mass of a
glueball. From the quenched QCD lattice simula-
tions, Weingarten (see, e.g., [1, 3]) concluded that the
lightest scalar glueball is expected around 1.7 GeV.

∗This article was submitted by the authors in English.
1063-7788/01/6411-2006$21.00 c©
Amsler [4] considered the state f0(1500) as a candi-
date for a scalar glueball. QCD sum rules [5] and the
K-matrix method [6] showed that both f0(1500) and
f0(1710) are mixed states with a large admixture of
the glueball component.

All bound isoscalar qq̄ states are subject to mixing
with glueballs, and their spectrum hasmany interpre-
tationsmade by various authors. For example, Palano
[7] suggested a scenario in which the states a0(980),
K∗

0 (1430), f0(980), and f0(1400) form a nonet. The
state f0(1500) is considered as a scalar glueball.
Törnqvist et al. [8] considered the states f0(980) and
f0(1370) as manifestations of the ground and excited
ss̄ states and the state f0(400−1200) as the ground
uū state. Eef van Beveren et al. [9] treated the states
f0(400−1200) and f0(1370) as ground uū states and
the states f0(980) and f0(1500) as ground ss̄ states.
Two states for each qq̄ system occur owing to pole
doubling, which takes place for scalar mesons in their
model. Shakin et al. [10, 11] found from a nonlocal
confinement model that the f0(980) resonance is the
ground uū state and that f0(1370) is the ground ss̄
state. The state f0(1500) is considered as a radial
excitation of f0(980). They believe that the mass of
scalar glueball is 1770 MeV.

In [12], following the methods given in [13–16],
we showed that all experimentally observed scalar-
meson states with masses in the interval from 0.4
to 1.71 GeV can be interpreted as members of
two scalar-meson nonets—the ground-state nonet
2001MAIK “Nauka/Interperiodica”
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(lighter than 1 GeV) and its first radial excitation
(heavier than 1 GeV). We considered all scalar
mesons as qq̄ bound states and took into account
singlet–octet mixing caused by the ’t Hooft inter-
action. In [12], we obtained a scalar–isoscalar state
with a mass of 1600 MeV and had to choose to which
of the experimentally observed states, f0(1500) or
f0(1710), we should ascribe it. From our analysis
of the strong decay rates calculated in our model,
we found that f0(1710) fits in the nonet of quarkonia
better than f0(1500). Therefore, we supposed that
the state f0(1500) contains a greater admixture of
the scalar glueball (see [5, 6]). However, the final
decision should be made after including the scalar
glueball into the model and after taking account of its
mixing with quarkonia. In the present study, which is
devoted to solving this problem, from the analysis of
strong decay widths of the glueball we again arrive at
an analogous conclusion.1)

To describe the properties of the glueball and its
interaction with quarkonia, one should introduce a
scalar–isoscalar dilaton field χ in our model, in ad-
dition to the quarkonia that have already been de-
scribed [12]. For this purpose, one can make use
of the idea of approximate scale invariance of the
effective Lagrangians based on the dilaton model.
Such models were studied by many authors (see,
e.g., [17–21]). Unfortunately, there is no unique way
to introduce the dilaton field in a chiral Lagrangian.
This explains the large number of models dealing with
glueballs.

The guideline one should follow in introducing the
dilaton field in an effective meson Lagrangian is to
reproduce theWard identity associated with the scale
anomaly. The latter leads to the following equation for
the vacuum expectation value of the divergence of the
dilatation current:

〈∂µSµ〉 = Cg −
∑

q=u,d,s

m0
q〈q̄q〉, (1)

Cg =
(

11
24

Nc −
1
12

Nf

)〈α
π
G2
µν

〉
, (2)

whereNc is the number of colors;Nf is the number of
flavors; 〈απG2

µν〉 and 〈q̄q〉 are the gluon and the quark
condensate, respectively; andm0

q is the current quark
mass.

In this paper, we are going to use the most nat-
ural method of introducing the dilaton field in the
effective Lagrangian by requiring that, in the chiral
limit, our Lagrangian be scale-invariant except for the
dilaton potential and terms induced by gluon anoma-
lies. To realize this program, one should multiply

1)However, radially excited states have not yet been consid-
ered.
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all dimensional parameters of the original Lagrangian
(without the dilaton) by a corresponding power of
the dilaton field divided by its vacuum expectation
value χc. Thus, instead of the four-quark coupling
constant G, the ’t Hooft coupling constant K, the
ultraviolet cutoff Λ (necessary for regularizing the
divergent integrals coming from quark loops), and the
constituent quark masses mq (q = u, s), one should
useG(χc/χ)2,K(χc/χ)5, Λ(χ/χc), andmq(χ/χc).

The current quarkmassesm0
q are not multiplied by

the dilaton field and violate scale invariance explicitly,
as this takes place in QCD. Their contribution to
the divergence of dilatation current is determined by
quark condensates and disappears in the chiral limit
[see (1)].

The scale invariance is also broken by those terms
in the effective Lagrangian that are induced by the
pseudoscalar and scalar gluon anomalies and are
given by [22, 23]

Lan = −hφφ
2
0 + hσσ

2
0 , (3)

where hφ and hσ are constants and the fields φ0 and
σ0 (〈σ0〉 �= 0) are defined as follows: φ0 =

√
2/3φu −√

1/3φs, and σ0 =
√

2/3σu −
√

1/3σs; here, σu
(〈σu〉 �= 0) and φu consist of u(d) quarks, and σs
(〈σs〉 �= 0) and φs consist of s quarks.

These terms appear due to the ’t Hooft interac-
tion. When restoring scale invariance of the effective
Lagrangian by inserting dilaton fields (the procedure
of the restoration of scale invariance is given in Sec-
tion 3), these termsmust be treated separately. More-
over, it turns out that these terms determine most of
quarkonium–glueball mixing.

Omitting, for a moment, the ’t Hooft interaction in
our approach, we require the Lagrangian to be scale-
invariant in the chiral limit both before and after the
spontaneous breaking of chiral symmetry (SBCS),
except for the dilaton potential. This property can be
obtained by considering (after bosonization when the
effective Lagrangian is expressed in terms of bosonic
scalar and pseudoscalar fields σ and φ) the shift of the
scalar-meson field σ

σ = σ′ −m
χ

χc
(m0 = 0), (4)

where 〈σ′〉0 = 0 and 〈σ〉0 = −m, guaranteeing that
relation (1) is satisfied. The nonzero vacuum expec-
tation value of σ appears as a result of SBCS, and
thus the constituent quark mass m is produced. In
the case of nonvanishing current quark masses, (4)
changes by including an additional (nonscaled) mass
termm0 in the expression on the right-hand side:

σ = σ′ −m
χ

χc
+ m0. (5)
01
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The structure of the paper is as follows. In Sec-
tion 2, we derive the usual U(3) × U(3) flavor sym-
metric effective Lagrangian with the ’t Hooft inter-
action and without dilaton fields. In Section 3, the
dilaton field is introduced in the effective Lagrangian
obtained in Section 2. In Section 4, the gap equations
are investigated, the quadratic (in fields) terms are
deduced, and the mixing matrix for scalar–isoscalar
states is introduced. In Section 5, the numerical
estimates for the model parameters are given. The
main strong decays of scalar–isoscalar mesons are
calculated in Section 6. It is shown there that the ρ
meson plays an important role in the decay of a glue-
ball into four pions. Finally, we discuss our results in
the Conclusion.

2. CHIRAL EFFECTIVE LAGRANGIAN
WITH ’T HOOFT INTERACTION

AU(3)×U(3) chiral Lagrangian with the ’t Hooft
interaction was investigated in paper [24]. It consists
of three terms (see below). The first term represents
the free-quark Lagrangian, the second is composed of
four-quark vertices as in the NJL model, and the last
one describes the six-quark ’t Hooft interaction [25]
that is necessary to solve the UA(1) problem:

L = q̄(i∂̂ −m0)q (6)

+
G

2

8∑
a=0

[(q̄λaq)2 + (q̄iγ5λaq)2]

−K {det[q̄(1 + γ5)q] + det[q̄(1 − γ5)q]} .
Here, G and K are coupling constants; λa(a =
1, ..., 8) are the Gell-Mann matrices; λ0 =

√
2/3 1,

with 1 being the identity matrix; and m0 is a current
quark mass matrix with diagonal elements m0

u, m
0
d,

andm0
s (m0

u ≈ m0
d).

The standard bosonization procedure for local
quark models consists in replacing the four-quark
vertices by Yukawa coupling of quarks to bosonic
fields, which enables one to perform integration with
respect to quark fields. The final effective bosonic
Lagrangian appears then as a result of the calculation
of the quark determinant. To realize this program, it
is necessary, using the method described in [24–27],
to go over from Lagrangian (6) to an intermediate
Lagrangian that contains only four-quark vertices

L = q̄(i∂̂ − m̄0)q (7)

+
1
2

9∑
a,b=1

[G(−)
ab (q̄τaq)(q̄τbq)

+G
(+)
ab (q̄iγ5τaq)(q̄iγ5τbq)],
PH
where

τa = λa (a = 1, ..., 7), τ8 = (
√

2λ0 + λ8)/
√

3,

τ9 = (−λ0 +
√

2λ8)/
√

3, (8)

G
(±)
11 = G

(±)
22 = G

(±)
33 = G± 4KmsI

Λ
1 (ms),

G
(±)
44 = G

(±)
55 = G

(±)
66 = G

(±)
77 = G± 4KmuI

Λ
1 (mu),

G
(±)
88 = G∓ 4KmsI

Λ
1 (ms), G

(±)
99 = G,

G
(±)
89 = G

(±)
98 = ±4

√
2KmuI

Λ
1 (mu),

G
(±)
ab = 0 (a �= b; a, b = 1, . . . , 7),

G
(±)
a8 = G

(±)
a9 = G

(±)
8a = G

(±)
9a = 0 (a = 1, . . . , 7),

and m̄0 is a diagonal matrix composed of the modified
current quark masses

m̄0
u = m0

u − 32KmumsI
Λ
1 (mu)IΛ

1 (ms), (9)

m̄0
s = m0

s − 32Km2
uI

Λ
1 (mu)2. (10)

Here, mu and ms are constituent quark masses, and
the integrals

IΛ
n (ma) =

Nc

(2π)4

∫
d4
ek

θ(Λ2 − k2)
(k2 + m2

a)n
(11)

(n = 1, 2; a = u, s)

are calculated in the Euclideanmetric and regularized
by a simple O(4)-symmetric ultraviolet cutoff Λ. For
IΛ
1 (ma), one gets

IΛ
1 (ma) =

Nc

16π2

(
Λ2 −m2

a ln
(

Λ2

m2
a

+ 1
))

, (12)

where ma represents a corresponding constituent
quark mass, mu or ms. Note that we have already
introduced the notation of constituent quark masses
here, although they will be consistently considered
only later, when discussing mass gap equations (see
(50) and (51) below) and the related shift of scalar-
meson fields. However, as we want to use an effective
four-fermion interaction instead of the original six-
quark one, we have to use full quark propagators
with constituent quark masses to calculate quark
loop corrections for the constant G [see (8)]. For the
definition of the constituent quark masses, see (14)
and (15) below.

In addition to the one-loop corrections to the con-
stant G at four-quark vertices, we modified the cur-
rent quark massesm0

a [see (9) and (10)]. This is done
to avoid the problem of double counting of the ’t Hooft
contribution in gap equations which was encountered
in [27]. After the redefinition of the constant G and of
the current quark masses, we can guarantee that, in
the large-Nc limit, the mass spectrum of mesons and
the gap equations, derived from the new Lagrangian
with modified four-quark vertices and current quark
YSICS OF ATOMIC NUCLEI Vol. 64 No. 11 2001
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masses, are the same as those obtained from the
original Lagrangian with six-quark vertices.

Now we can bosonize Lagrangian (7). By intro-
ducing auxiliary scalar σ and pseudoscalar φ fields,
we obtain [13, 14, 24]

L(σ, φ) (13)

= −1
2

9∑
a,b=1

(
σa(G(−))−1

ab σb + φa(G(+))−1
ab φb

)

− i tr ln

{
i∂̂ − m̄0 +

9∑
a=1

τa(σa + iγ5φa)

}
.

As we expect, the chiral symmetry is spontaneously
broken owing to strong attraction of quarks in the
scalar channel, and the scalar–isoscalar fields ac-
quire nonzero vacuum expectation values 〈σa〉0 �= 0
(a = 8, 9). These values are related to basic model
parameters G, m0, and Λ via gap equations, as will
be shown in the next section. Therefore, we first have
to shift the σ fields by a proper value so that the new
fields have zero vacuum expectation values:

σa = σ′
a − µa + µ̄0

a, 〈σ′
a〉0 = 0, (14)

where µa = 0 (a = 1, . . . , 7), µ8 = mu, and µ9 =
−ms/

√
2 and µ̄0

a = 0 (a = 1, . . . , 7), µ̄0
8 = m̄0

u, and
µ̄0

9 = −m̄0
s/
√

2. After this shift, we obtain

L(σ′, φ) = LG(σ′, φ) (15)

− i tr ln

{
i∂̂ −m +

9∑
a=1

τa(σ′
a + iγ5φa)

}
,

where
LG(σ′, φ) (16)

= −1
2

9∑
a,b=1

(σ′
a − µa + µ̄0

a)
(
G(−)

)−1

ab

× (σ′
b − µb + µ̄0

b) −
1
2

9∑
a,b=1

φa

(
G(+)

)−1

ab
φb,

and m is a diagonal matrix of constituent quark
masses for different flavors. From Lagrangian (15),
we take only those terms (inmomentum space) which
are linear, squared, cubic, and quadruple in scalar and
pseudoscalar fields,2)

L(σ′, φ) = LG(σ′, φ) (17)

+ tr

[
IΛ
2 (m)((∂µσ′)2 + (∂µφ)2)− 4mIΛ

1 (m)σ′

2)Despite that the scalar fields are of the main interest in
this paper, we still need pseudoscalar fields to fix the model
parameters.
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+ 2IΛ
1 (m)(σ′2 + φ2) − 4m2IΛ

2 (m)σ′2

+ 4mIΛ
2 (m)σ′(σ′2 + φ2)− IΛ

2 (m)(σ′2 + φ2)2

+ IΛ
2 (m)[σ′ −m,φ]2−

]
,

σ′ =
9∑

a=1

σaτa, φ =
9∑
a=1

φaτa, (18)

where “tr” means a calculation of the trace over τ-
matrix expressions and [. . . ]− stands for a commuta-
tor. Hereafter, the coordinate derivatives are denoted
as ∂µ ≡ ∂/∂xµ, and the sum over µ is assumed in
(17). The argument of IΛ

1 and IΛ
2 is rather formal.

Instead of the matrix m, one should put either mu or
ms; as well, an appropriate ga, defined in (24) below,
should be taken in place of g, depending on the sort
of mesons. In the case of strange mesons, for the
integral IΛ

2 , one should use I
Λ
2 (mu,ms) defined below

in (25). Which one to choose and how to calculate
“tr” are explained in detail in [13]. The expression
for IΛ

1 (ma) in the Euclidean metric is given in (12).
The integrals IΛ

2 (ma) are also calculated in Euclidean
spacetime

IΛ
2 (ma) =

Nc

16π2

(
ln
(

Λ2

m2
a

+ 1
)
− Λ2

Λ2 + m2
a

)
.

(19)

Then, we renormalize the fields in (17), so that the
kinetic terms of the effective Lagrangian are of the
conventional form, and diagonalize the isoscalar sec-
tor,

L̄(σr, φr) = L̄G(σr, φr) (20)

+ tr

[
1
4
((∂µσr)2 + (∂µφr)2)− 4mgIΛ

1 (m)σr

+ 2g2IΛ
1 (m)(σr 2 + Zφr 2) +

1
4
[m,φr]2− −m2σr 2

+ mgσr(σr 2 + Zφr 2) − g

2
[m,φr]−[σr, φr]−

− g2

4
((σr 2 + Zφr 2)2 − [σr, φr]2−)

]
,

σr =
9∑

a=1

σraτa, φr =
9∑

a=1

φraτa. (21)

For L̄G, we have

L̄G(σr, φr) (22)

= −1
2

9∑
a,b=1

(gaσra − µa + µ̄0
a)
(
G(−)

)−1

ab
01
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× (gbσrb − µb + µ̄0
b)−

Z

2

9∑
a,b=1

gaφ
r
a

(
G(+)

)−1

ab
gbφ

r
b .

Here, we have introduced the Yukawa coupling con-
stants ga:

σ′
a = gaσ

r
a, φa =

√
Zgaφ

r
a, (23)

g2
1 = g2

2 = g2
3 = g2

8 = g2
u = [4IΛ

2 (mu)]−1, (24)

g2
4 = g2

5 = g2
6 = g2

7 = [4IΛ
2 (mu,ms)]−1,

g2
9 = g2

s = [4IΛ
2 (ms)]−1,

IΛ
2 (mu,ms) =

Nc

(2π)4
(25)

×
∫

d4
ek

θ(Λ2 − k2)
(k2 + m2

u)(k2 + m2
s)

=
3

(4π)2(m2
s −m2

u)

×
[
m2
s ln

(
Λ2

m2
s

+ 1
)
−m2

u ln
(

Λ2

m2
u

+ 1
)]

,

Z =

(
1 − 6mu

M2
A1

)−1

≈ 1.44, (26)

where we have taken into account π-A1 transitions
leading to an additional Z factor, with MA1 being
the mass of an axial-vector meson (see [13]). The
renormalized scalar and pseudoscalar fields in (20)–
(23) are labeled with the superscript r.

The mass formulas for isovectors and isodublets
follow immediately from (20). One just has to look
up the coefficients at σr 2 and φr 2. There are still
nondiagonal terms in (22) in the isoscalar sector.
This problem is solved by choosing the proper mix-
ing angles, both for the scalars and for the pseu-
doscalars (see, e.g., [24]). As we are going to in-
troduce the glueball field, the mixing with scalar–
isoscalar quarkonia will change the situation. One
has to consider the mixing among three states, which
cannot be described by a single angle. For simplicity,
in our estimations we resort to a numerical diagonal-
ization procedure, not to the algebraic one. Concern-
ing the pseudoscalar sector, one can avail oneself of
the results given in [24]. All what concerns dealing
with the glueball is discussed in the next section.

3. NAMBU–JONA-LASINIO MODEL
WITH DILATON

Aswe have already mentioned above, we introduce
the glueball field into our effective Lagrangian, ob-
tained in the preceding section, as a dilaton. For this
purpose, we use the following principle. Insofar as the
QCDLagrangian is scale-invariant in the chiral limit,
we suppose that our effective meson Lagrangian, mo-
tivated by QCD, has also to be scale-invariant both
before and after SBCS in the case when the current
PH
quark masses are equal to zero. As a result, we
come to the following prescription: the dimensional
model parameters G, Λ, K, and ma are replaced by
the following rule: G → G(χc/χ)2, K → K(χc/χ)5,
Λ → Λ(χ/χc),ma → ma(χ/χc), where χ is the dila-
ton field with the vacuum expectation value χc. But
there are terms that break scale invariance. They are
the terms containing current quark masses, the scale
anomaly of QCD reproduced by the dilaton potential,
and terms of the type hφφ2

0 and hσσ
2
0 [see (3)] induced

by gluon anomalies in the meson Lagrangian.
As was mentioned in the preceding section, the

current quark masses break scale invariance and
should not therefore be multiplied by dilaton fields.
The modified current quark masses m̄0 are not
multiplied by dilaton fields either. In particular, this
transforms formula (14) to what follows:

σa = σ′
a − µa

χ

χc
+ µ̄0

a. (27)

Finally, we arrive at the Lagrangian

L̄(σr, φr, χ) = L(χ) + Lkin(σr, φr) (28)

+ L̄G(σr, φr, χ) + L1−loop(σr, φr, χ)
+∆Lan(σr, φr, χ).

Here, L(χ) is the pure dilaton Lagrangian

L(χ) =
1
2
(∂νχ)2 − V (χ) (29)

with the potential

V (χ) = B

(
χ

χ0

)4
[
ln
(

χ

χ0

)4

− 1

]
(30)

that has a minimum at χ = χ0, and the parameter B
representing the vacuum energy density when there
are no quarks. The curvature of the potential at its
minimum determines the bare glueball mass

mg =
4
√
B

χ0
. (31)

The part Lkin(σr, φr) of Lagrangian (28) contains the
pure kinetic terms

Lkin(σr, φr) =
1
2

9∑
a=1

(
(∂νσra)

2 + (∂νφra)
2
)
. (32)

The next term reads

L̄G(σr, φr, χ) = −1
2

(
χ

χc

)2

(33)

×
9∑

a,b=1

(
gaσ

r
a − µa

χ

χc
+ µ̄0

a

)(
G(−)

)−1

ab

×
(
gbσ

r
b − µb

χ

χc
+ µ̄0

b

)
− Z

2

(
χ

χc

)2
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×
9∑

a,b=1

gaφ
r
a

(
G(+)

)−1

ab
gbφ

r
b .

The sum of one-loop quark diagrams is denoted as
L1−loop(σr, φr, χ)

L1−loop(σr, φr, χ) = tr

[
−4mgIΛ

1 (m)σr
(

χ

χc

)3

(34)

+ 2g2IΛ
1 (m)(σr 2 + Zφr 2)

(
χ

χc

)2

−m2σr 2

(
χ

χc

)2

+ mg
χ

χc
σr(σr 2 + Zφr 2)

− g2

4
(
(σr 2 + Zφr 2)2 − [σr, φr]2

)

−g

2
[m,φr]−[σr, φr]−

]
.

As one can see, expanding (33) in a power series
in χ, we can extract a term that is of order χ4. It can
be absorbed by the term in the pure dilaton potential
that has the same degree of χ. Obviously, this leads
only to a redefinition of the constants B and χ0,
which anyway are not known from the very beginning.
Moreover, saying in advance, terms like χ4 do not
contribute to the divergence of the dilatation current
(1) because of their scale invariance.

If the procedure of the scale invariance restoration
of this Lagrangian is implemented, the part induced
by gluon anomalies also becomes scale-invariant. To
avoid this, one should subtract this part in the scale-
invariant form and add it in a scale-breaking (SB)
form. This is achieved by including the term ∆Lan:

∆Lan = −Lan

(
χ

χc

)2

+ LSB
an . (35)

The term Lan was introduced in (3). In Lan, we will
use the renormalized fields σr0 and φr0 instead of σ0

and φ0, however, taking into account the effects of
a nonzero vacuum expectation value of σ0. Let us
define the scale-breaking term LSB

an . The coefficients
hσ and hφ in (3) can be determined by comparing
them with the terms in (33) that describe the singlet–
octet mixing. We obtain

hφ = − 3
2
√

2
gugsZ(G(+))−1

89 , (36)

hσ =
3

2
√

2
gugs(G(−))−1

89 .

If these terms were to be made scale-invariant, one
should insert (χ/χc)2 into them. However, as the
gluon anomalies break scale invariance, we introduce
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the dilaton field into these terms in a more compli-
cated way. The inverse matrix elements (G(+))−1

ab and
(G(−))−1

ab ,

(G(+))−1
89 =

−4
√

2muKIΛ
1 (mu)

G
(+)
88 G

(+)
99 − (G(+)

89 )2
, (37)

(G(−))−1
89 =

4
√

2muKIΛ
1 (mu)

G
(−)
88 G

(−)
99 − (G(−)

89 )2
, (38)

are determined by two different interactions. The
numerators are fully defined by the ’t Hooft interaction
that leads to anomalous terms (3) breaking scale
invariance; therefore, we do not introduce here dilaton
fields. The denominators are determined by constant
G describing the main four-quark interaction, and
the dilaton field is inserted into it, according to the
prescription given in the beginning of this section.
Finally, we come to the following form of LSB

an :

LSB
an (39)

=

(
−hφφ

r 2
0 + hσ

(
σr0 − F0

χ

χc
+ F 0

0

)2
)(

χ

χc

)4

,

F0 =
√

2mu√
3gu

+
ms√
6gs

, F 0
0 =

√
2m̄0

u√
3gu

+
m̄0
s√

6gs
. (40)

From it, we immediately obtain the term ∆Lan:

∆Lan =

(
hφφ

r 2
0 − hσ

(
σr0 − F0

χ

χc
+ F 0

0

)2
)

(41)

×
(

χ

χc

)2
(

1 −
(

χ

χc

)2
)

.

Let us now consider the vacuum expectation value
of the divergence of the dilatation current calculated
from the potential of the effective meson–dilaton La-
grangian:

〈∂µSµ〉 =

(
9∑
a=8

σra
∂V

∂σra
+ χ

∂V

∂χ
− 4V

)∣∣∣∣∣ χ=χc

σr
a=0

(42)

= 4B
(
χc
χ0

)4

− 2hσ
(
F0 − F 0

0

)2 − ∑
q=u,d,s

m̄0
q〈q̄q〉.

Here, V = V (χ) + V̄ (σr, φr, χ), and V̄ (σr, φr, χ) is
the potential part of Lagrangian L̄(σr, φr, χ) that
does not contain the pure dilaton potential. The
expression given in (42) is simplified by using the
following relation between the quark condensates and
integrals IΛ

1 (mu) and IΛ
1 (ms):

4mqI
Λ
1 (mq) = −〈q̄q〉0 (q = u, d, s). (43)
01
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Table 1. Masses of the physical scalar-meson states σI, σII, and σIII; values of the parameters χc and χ0; bag constant
B; and (bare) glueball massMg

MσIII , MeV σI σII σIII χc χ0 B, GeV4 Mg , MeV

1500 400 1100 1500 206 190 0.009 1447

1710 400 1100 1710 180 166 0.009 1665
These integrals are related to the constants G
(−)
ab

through the gap equations, as will be shown in the
next section [see (47) and (48) below]. Comparing
the QCD expression (1) with (42), one can see that
the term

∑
m0
q〈q̄q〉 in (1) is canceled by the corre-

sponding contribution in (42). Equating the right-
hand sides of (1) and (42),

Cg −
∑

q=u,d,s

m0
q〈q̄q〉 = 4B

(
χc
χ0

)4

(44)

− 2hσ
(
F0 − F 0

0

)2 − ∑
q=u,d,s

m̄0
q〈q̄q〉,

we obtain the correspondence

Cg = 4B
(
χc
χ0

)4

(45)

+
9∑

a,b=8

(µ̄0
a − µ0

a)(G
(−))−1

ab (µb − µ̄0
b)

− 2hσ
(
F0 − F 0

0

)2
,

where µ0
8 = m0

u and µ0
9 = −ms/

√
2. This equation

relates the gluon condensate, whose value is taken
from other models (see, e.g., [28]), to the model pa-
rameter B. The next step is to investigate the gap
equations.

4. EQUATIONS

As usual, gap equations follow from the require-
ment that the terms linear in σr and χ′ be absent in
our Lagrangian:

δL̄
δσr8

∣∣∣∣
(φr ,σr ,χ′)=0

= 0,
δL̄
δσr9

∣∣∣∣
(φr ,σr ,χ′)=0

= 0, (46)

δL̄
δχ

∣∣∣∣
(φr ,σr ,χ′)=0

= 0.

Here, the field χ′ = χ−χc with a zero vacuum expec-
tation value 〈χ′〉0 = 0 is associated with the glueball
field. In further calculations, the Lagrangian is ex-
panded in power series of χ′. As a result, we obtain
the equations

(mu − m̄0
u)(G

(−))−1
88 (47)
PH
− ms − m̄0
s√

2
(G(−))−1

89 − 8muI
Λ
1 (mu) = 0,

(ms − m̄0
s)(G

(−))−1
99 (48)

−
√

2(mu − m̄0
u)(G

(−))−1
98 − 8msI

Λ
1 (ms) = 0,

4B
(
χc
χ0

)3 1
χ0

ln
(
χc
χ0

)4

(49)

+
1
χc


 9∑
a,b=8

µ̄0
a(G

(−))−1
ab (µ̄0

b − 3µb)




− 2hσ
χc

(
F0 − F 0

0

)2 = 0.

Using (9) and (10), one can rewrite equations (47)
and (48) in the well-known form [27]

m0
u = mu − 8GmuI

Λ
1 (mu) (50)

− 32KmumsI
Λ
1 (mu)IΛ

1 (ms),

m0
s = ms − 8GmsI

Λ
1 (ms) (51)

− 32K(muI
Λ
1 (mu))2.

To define themasses of quarkonia and the glueball,
we consider that part of Lagrangian (28) which is
quadratic in fields σr and χ′ and which we denote by
L(2):

L(2)(σ, φ, χ′) (52)

= −1
2
{g2

8 [(G
(−))−1

88 − 8IΛ
1 (mu)] + 4m2

u}σr28

Table 2. Elements of the matrix b describing mixing in the
scalar–isoscalar sector

σI σII σIII

σIII ≡ f0(1500)

σr
u 0.939 0.240 0.247

σr
s −0.214 0.968 −0.128

χ′ −0.270 0.067 0.960

σIII ≡ f0(1710)

σr
u 0.948 0.232 0.216

σr
s −0.216 0.971 −0.099

χ′ −0.233 0.047 0.971
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− 1
2
{g2

9 [(G
(−))−1

99 − 8IΛ
1 (ms)] + 4m2

s}σr29

−g8g9(G(−))−1
89 σr8σ

r
9 −

M2
g

2
χ′2

+
9∑

a,b=8

µ̄0
a

χc
(G(−))−1

ab gbσ
r
bχ

′

+
4hσ(F0 − F 0

0 )
χc

√
3

(
σr9 − σr8

√
2
)
χ′,

where

M2
g = χ−2

c (4Cg +
9∑

a,b=8

µ̄0
a(G

(−))−1
ab (53)

× (2µ̄0
b − µb) +

9∑
a,b=8

4µ0
a(G

(−))−1
ab (µb − µ̄0

b)

− hσ4F 2
0 + 4hσ(F 0

0 )2)

is the glueball mass before taking account of mixing
effects.

From this Lagrangian, after diagonalization, we
obtain the masses of three scalar-meson states, σI,
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σII, and σIII, and a matrix of mixing coefficients b that
relates the nondiagonalized fields σ8 ≡ σu, σ9 ≡ σs,
and χ′ to the physical ones σI, σII, and σIII:

σu

σs

χ′


 =



bσuσI

bσuσII
bσuσIII

bσsσI
bσsσII

bσsσIII

bχ′σI
bχ′σII

bχ′σIII







σI

σII

σIII


 . (54)

5. MODEL PARAMETERS
AND NUMERICAL ESTIMATES

The basic parameters of our model are G, K, Λ,
mu, and ms. Once the dilaton fields have been intro-
duced, they retain their values [13, 24]:

mu = 280 MeV,ms = 420 MeV,Λ = 1.26 GeV,

G = 4.38 GeV−2,K = 11.2 GeV−5. (55)

Moreover, three new parameters, χ0, χc, and B,
appear. To fix the new parameters, one should use
Eqs. (45) and (49) and the physical glueball mass. As
a result, we obtain
χ0 = χc exp

(
−

∑9
a,b=8 µ̄

0
a(G

(−))−1
ab (3µb − µ̄0

b) + 2hσ
(
F0 − F 0

0

)2
4[Cg −

∑9
a,b=8(µ̄0

a − µ0
a)(G(−))−1

ab (µb − µ̄0
b) + 2hσ

(
F0 − F 0

0

)2]
)

, (56)

B =
Cg −

∑9
a,b=8(µ̄

0
a − µ0

a)(G
(−))−1

ab (µb − µ̄0
b) + 2hσ

(
F0 − F 0

0

)2
4

(
χ0

χc

)4

. (57)
We adjust the parameter χc so that the mass of the
heaviest scalar meson, σIII, would be either 1500 or
1710 MeV. The result of our fit for both cases is given
in Table 1. One will also find the mixing coefficients
in Table 2.

6. DECAY WIDTHS

Once all parameters have been fixed, we can es-
timate the decay widths for the main strong decay
modes of scalar mesons: σl → ππ, KK, ηη, ηη′, and
4π, where l = I, II, III.

Note that, in the energy region under considera-
tion (∼1500MeV), we work on the brim of the validity
of exploiting the chiral symmetry that was used to
construct our effective Lagrangian. Thus, we can
consider our results to be rather qualitative.

Let us start with the lightest scalar–isoscalar-
meson state σI associated with f0(400−1200). This
state decays into pions. This is the only strong decay
mode, because σI is too light for other channels to be
open. The amplitude describing its decay into pions
has the form

AσI→π+π− = 2Ag
π+π−bχ′σI

+ 2AubσuσI
, (58)

Ag
π+π− = −M2

π

χc
, Au = 2gumuZ, (59)

where Ag
π+π− is the contribution from the glueball

component and Au is the contribution from the (ūu)
quarkonium one. The coefficients bχ′σI

and bσuσI
rep-

resent the corresponding elements of the 3× 3mixing
matrix for scalar–isoscalar states (see Table 2). Both
contributions have identical signs and are added to
the width of σI.

To calculate the decay width of a meson into two
mesons, one can use the formula

Γ =
|A|2

16πM3

λ1/2(M2,M2
1 ,M

2
2 )

r
, (60)

where A is the amplitude of the process, M is the
mass of the decaying particle,M1 andM2 are masses
of secondary particles, and r is the dimension of the
01
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permutation symmetry group in the phase space of
final states. The function λ(x, y, z) is defined as [29]

λ(x, y, z) = (x− y − z)2 − 4yz. (61)

For the decay of σI into pions, formula (60) can be
rewritten in the simpler form

ΓσI→π+π− =
|AσI→π+π− |2

16πMσI

√
1− 4M2

π

M2
σI

. (62)

Using isotopic symmetry, we obtain the total width

ΓσI→ππ =
3
2
ΓσI→π+π− ≈ 820 MeV (63)

for the case where the model parameters are fixed for
the state σIII identified with f0(1500) and

ΓσI→ππ ≈ 830 MeV (64)

for the case of σIII ≡ f0(1710). The experimental
value is known with a large uncertainty and is re-
ported to lie in the interval from 600 to 1000MeV [29].

The amplitude describing the decay of the state
σII, which we identify with f0(980), into pions also
consists of two parts

AσII→π+π− = 2Ag
π+π−bχ′σII

+ 2AubσuσII
. (65)

Here, the glueball contribution is small again and the
quarkonium determines the decay width; however, in
this case both contributions are opposite in sign and
slightly compensate each other. The width of the
state σII is close to that obtained in the model without
glueballs [24]. We obtain

ΓσII→ππ ≈ 28 MeV (66)

if σIII ≡ f0(1500) and
ΓσII→ππ ≈ 26 MeV (67)

if σIII ≡ f0(1710). For the decay of σII into pions, the
experiment gives a value lying within the range 30–
70 MeV [30].

Let us now proceed to consider the decays of σIII.
The process σIII → π+π− is given by the amplitude

AσIII→π+π− = 2Ag
π+π−bχ′σIII

+ 2AubσuσIII
, (68)

which consists of two parts. The first part repre-
sents the contribution from the pure glueball. This
contribution is small (since it is proportional to the
pion mass squared), and the process is determined
by the second part that describes the decay of the
quarkonium component. As a result, the width of the
decay σIII → ππ is

ΓσIII→ππ =
3
2
ΓσIII→π+π− ≈ 14 MeV (69)

if σIII ≡ f0(1500) and
ΓσIII→ππ ≈ 8 MeV (70)

if σIII ≡ f0(1710).
In the case of KK̄ channels, the contribution of

the pure glueball is also proportional to the kaonmass
PH
squared and is rather large in relation to the pion case.
The amplitude of the decay σIII → K+K− consists of
three parts:

AσIII→K+K− = AgKKbχ′σIII
(71)

+ AuKKbσuσIII
+ AsKKbσsσIII

,

where the pure glueball decay intoK+K− is given by
the amplitude

AgKK = −2M2
K

χc
. (72)

The quarkonium contributions are
AuKK = 2guZ (73)

×
(
mu + ms

2

(
Fπ
FK

)2

+
ms(mu −ms)

mu + ms

)
,

AsKK = −4
√

2gsZ (74)

×
(
mu + ms

2

(
Fs
FK

)2

+
mu(ms −mu)

mu + ms

)
,

where Fπ and FK are the pion and kaon weak decay
constants, respectively, and Fs = ms/(gs

√
Z). In the

case where σIII is f0(1500), we have
ΓσIII→KK̄ = ΓσIII→K+K− (75)

+ ΓσIII→K0K̄0 = 2ΓσIII→K+K− ≈ 29 MeV;

in the other case [σIII ≡ f0(1710)],
ΓσIII→KK̄ ≈ 60 MeV. (76)

The amplitude of the decay of σIII into ηη and ηη′

can also be considered in the same manner. The only
complication is singlet–octet mixing in the pseu-
doscalar sector and additional vertices coming from
∆Lan. The corresponding amplitude is

AσIII→ηη = 2Agηηbχ′σIII
+ 2Au sin2 θ̄bσuσIII

(77)

+ 2As cos2 θ̄bσsσIII
+ 2Aan

φ sin2 θbχ′σIII
,

Agηη = −
M2
η

χc
, (78)

Aan
φ = −2hφ

χc
, (79)

where θ̄ = θ− θ0, with θ being the singlet–octet mix-
ing angle in the pseudoscalar channel, θ ≈ −19◦ [24],
and θ0 being the ideal mixing angle, tan θ0 = 1/

√
2.

Therefore, the decay width is
ΓσIII→ηη ≈ 25 MeV (80)

if σIII ≡ f0(1500) and
ΓσIII→ηη ≈ 43 MeV (81)

if σIII ≡ f0(1710). For the decay of σIII into ηη′, we
have the amplitude

AσIII→ηη′ = −Au sin 2θ̄bσuσIII
(82)
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+ As sin 2θ̄bσsσIII
−Aan

φ sin 2θbχ′σIII
.

The direct decay of a bare glueball into ηη′ is
absent here. This process occurs only due to the
mixing of the glueball and scalar–isoscalar quarkonia
and the anomaly contribution. The decay widths are
as follows:

ΓσIII→ηη′ ∼ 10 MeV (83)

for σIII ≡ f0(1500) and
ΓσIII→ηη′ ≈ 30 MeV (84)

for σIII ≡ f0(1710). The estimate for the decay
f0(1500) into ηη′ is very rough, because the decay is
allowed only owing to a finite width of the resonance,
since its mass lies slightly below the ηη′ threshold.
The calculation is made for the mass of f0(1500) plus
its half-width. For f0(1710), we have a more reliable
estimate, since its mass is large enough for the decay
to be possible.

Up to thismoment, we considered only decays into
a pair of mesons. For the state σIII, there is a possi-
bility to decay into four pions. This decay can occur
through intermediate σ (f0(400–1200)) resonance.

The decay through the σ resonance can be rep-
resented as two processes: with two resonances
σIII → σσ → 4π and one resonance σIII → σ2π →
4π. The vertices determining these decays follow from
Lagrangian (28). The decay of a glueball into two σ
is given by the amplitude

AσIII→σσ ≈ 2Agσσbχ′σIII
(85)

+ 3Z−1AubσuσIII
b2σuσI

+ 2Aan
σ bχ′σIII

b2σuσI
,

where Agσσ is the pure glueball amplitude3)

Agσσ ≈ −
M2
σu

χc
, (86)

and the anomaly amplitudeAan
σ coming from∆Lan is

Aan
σ =

2hσ
3χc

. (87)

The total amplitude describing the decay into four
pions through two σ resonances is

AσIII→σσ→2π+2π− (88)

= 2AσIII→σσA
2
σ→π+π−(∆σ(s12)∆σ(s34)

+ ∆(s14)∆(s23)),

where the function ∆σ(s) appears owing to the reso-
nant structure of the processes,

∆σ(s) = (s−M2
σI

+ iMσI
ΓσI

)−1, (89)

3)To obtain an approximate estimate for the glueball contribu-
tion, we used the mass of σu state before diagonalization [see
the term with σr 2

8 in (52)].
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where ΓσI
≈ Γσ→ππ is the decay width of the σI

resonance [see (63)]. This function depends on the
invariant mass squared sij defined as

sij = (ki + kj)2 (i, j = 1, . . . , 4). (90)

Here, i and j label the momenta ki of the pions
π+(k1), π−(k2), π+(k3), and π−(k4).

Let us now consider the decay into 4π through one
σ resonance. The amplitude describing this process is
as follows:

AσIII→σ2π (91)

= Agσ2π(bσuσI
bχ′σIII

+ bσuσIII
bχ′σI

)
+ Auσ2πbσuσIII

bσuσI
.

The glueball amplitude is

Agσ2π =
4muguZ

χc
, (92)

while, for the quarkonium amplitude, we have

Auσ2π = −4g2
uZ. (93)

The glueball contribution prevails over the quarko-
nium one in magnitude and is opposite in sign.

The amplitude describing the decay σIII →
2π+2π− through one σ resonance is

AσIII→σ2π→2π+2π− (94)

= −AσIII→σ2πAσ→π+π−(∆σ(s12) + ∆σ(s34)
+ ∆σ(s14) + ∆σ(s23)).

The total amplitude of the decay into 2π+2π− via
σ resonances is obtained as a cumulative contribution
from both one and two intermediate σ mesons:

AσIII→2π+2π− (95)

= AσIII→σσ→2π+2π− + AσIII→σ2π→2π+2π− .

The amplitude describing the decay into 2π0π+π−

has the form
AσIII→2π0π+π− (96)

= AσIII→σσ→2π0π+π− + AσIII→σ2π→2π0π+π− ,

where
AσIII→σσ→2π0π+π− (97)

= 4AσIII→σσAσ→2π0Aσ→π+π−∆σ(s12)∆σ(s34),
AσIII→σ2π→2π0π+π− (98)

= −2AσIII→σ2πAσ→2π0(∆σ(s12) + ∆σ(s34)).

In this case, k1 and k2 are momenta of the two π0 and
s12 is their invariant mass squared. The indices 3 and
4 stand for π+ and π−, respectively. The amplitude
Aσ→2π0 is equal to 0.5Aσ→π+π− .

In the case of the decay into 4π0, we have
AσIII→4π0 = AσIII→σσ→4π0 + AσIII→σ2π→4π0 , (99)

where
AσIII→σσ→4π0 (100)
01
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= 4AσIII→σσA
2
σ→2π0(∆σ(s12)∆σ(s34)

+ ∆σ(s13)∆σ(s24) + ∆σ(s14)∆σ(s23)),
AσIII→σ2π→2π0π+π− (101)

= −2AσIII→σ2πAσ→2π0(∆σ(s12) + ∆σ(s13)
+ ∆σ(s14) + ∆σ(s23) + ∆σ(s24) + ∆σ(s34)).
PH
Let us give numerical estimates for these decay

modes. The width with respect to glueball decay

into four particles is calculated using the prescription

given in [29],
Γ4π =
1

64(2π)6rM2
σIII

s+123∫

s−123

ds123

s+12∫

s−12

ds12

s+34∫

s−34

ds34

s+23∫

s−23

ds23

1∫

−1

|AσIII→4π|2dζ√
λ(s123, s12,M2

π)(1 − ζ2)
, (102)
where AσIII→4π is the amplitude describing one of
the processes discussed above and MσIII

is the mass
of σIII. The symmetry factor r is determined by
the number of identical particles in the final state.
The corresponding two-particle invariant masses are
defined in (90) except for s123, the invariant mass of
three pions,

s123 = (k1 + k2 + k3)2. (103)

The cosine between the plane spanned by the 3-
momenta k1 and k2 and the plane spanned by k3 and
k4 in the rest frame of three mesons (k1 + k2 + k3 =
0) is denoted by ζ . The limits of integration are as
follows:

s−123 = 9M2
π , s+

123 = (MσIII
−Mπ)2, (104)

s−12 = 4M2
π , s+

12 = (
√
s123 −Mπ)2,

s±34 = 2M2
π +

1
2s123

[
(s123 + M2

π − s12)

× (M2
σIII

−M2
π − s123)

±
√

λ(s123, s12,M2
π)λ(M2

σIII
, s123,M2

π)
]
,

s±23 = 2M2
π +

1
2s12

[
s12(s123 −M2

π − s12)

±
√

λ(s12,M2
π ,M

2
π)λ(s123, s12,M2

π)
]
.

Formula (102) is similar to that given in [31]; how-
ever, we used here different kinematical variables. As
a result, we find for the decay into 4π that

ΓσIII→2π+2π− ≈ 2.2 MeV, (105)

ΓσIII→2π0π+π− ≈ 1.2 MeV, ΓσIII→4π0 ≈ 0.1 MeV

if σIII ≡ f0(1500). The total width is

Γtot
σIII→4π ≈ 3.5 MeV; (106)

in the other case [σIII ≡ f0(1710)], we have
ΓσIII→2π+2π− ≈ 6 MeV, (107)

ΓσIII→2π0π+π− ≈ 3.3 MeV, ΓσIII→4π0 ≈ 0.3 MeV.
The total width is
Γtot
σIII→4π ≈ 10 MeV. (108)

As one can see, these values are very small.

The other possibility of the state σIII to decay into
four pions is to produce two intermediate ρ reso-
nances (σIII → 2ρ → 4π). In contrast to the decay
through scalar resonances, where strong compen-
sations take place, no compensation occurs in the
process with ρ resonances, and it turns out that the
decay through ρ determines most of the decay width
of σIII.

To calculate the amplitude describing the process
σIII → 2ρ, we need a piece of the Lagrangian with ρ-
meson fields. Although we did not consider vector
mesons in the source Lagrangian, an extended ver-
sion of the NJL model [13] contains the vector and
axial-vector fields. Taking themass term for ρmesons
from [13] and including dilaton fields in it according to
the principle of scale invariance, we obtain

M2
ρ

2

(
χ

χc

)2

(2ρ+
µ ρ

−
µ + ρ0

µρ
0
µ), (109)

where Mρ = 770 MeV is the ρ-meson mass. From
this, we derive the vertex describing the decay σIII →
ρρ:

M2
ρ

χc
bχ′σIII

χ′(2ρ+
µ ρ

−
µ + ρ0

µρ
0
µ). (110)

The decay of a ρ meson into pions is described by the
amplitude

gρ(p1 − p2)µ, (111)

where gρ = 6.14 is the ρ-meson decay constant and
p1 and p2 are the momenta of π+ and π−. Finally, we
arrive at the following formula for the amplitude of the
process σIII → ρ0ρ0 → 2π+2π−:

AσIII→ρ0ρ0→2π+2π− =
M2
ρ g

2
ρbχ′σIII

χc
(112)
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Table 3. Partial and total decay widths (in MeV) of the scalar-meson states f0(400–1200) and f0(980) and of the
glueball for two cases [σIII ≡ f0(1500) and σIII ≡ f0(1710)] and experimental values of decay widths of f0(1500) and
f0(1710) [30]

Γππ ΓKK̄ Γηη Γηη′ Γ4π Γtot Γexp
tot

f0(400–1200) 820 – – – – 820 600–1200

f0(980) 28 – – – – 28 40–100

f0(1500) 14 29 25 10 ∼ 140 ∼ 220 112

f0(1710) 8 60 43 30 ∼ 1000 ∼ 1100 130
×
(

(s13 + s24 − s14 − s23)∆ρ(s12)∆ρ(s34)

+ (s13 + s24 − s12 − s34)∆ρ(s14)∆ρ(s23)

)
.

The function∆ρ(s) has the form

∆ρ(s) = (s −M2
ρ + iMρΓρ)−1, (113)

where Γρ = 150 MeV is the decay width of the ρ
resonance.

The decay into 2π0π+π− occurs through a pair of
charged ρ resonances: ρ+ and ρ−. The amplitude
of this process is the same as for the decay with
intermediate ρ0. The decay into 4π0 cannot go via ρ
resonances.

In an extended NJL model [13], there are no ver-
tices describing the decay of a quarkonium into ρ
mesons. As a result, only the glueball part determines
the decay of σIII into four pions through ρ resonances,
unlike the case with σ resonances. This leads to a
large decay rate through ρ mesons (in contrast to
decays through σ).

Let us now give the numerical estimates for the
decay into four pions. In the case where σIII ≡
f0(1500), we have

ΓσIII→ρρ→2π+2π− ≈ 50 MeV, (114)

ΓσIII→ρρ→2π0π+π− ≈ 90 MeV,

with the total width being

Γtot
σIII→4π ≈ 140 MeV. (115)

In the other case (σIII ≡ f0(1710)), we obtain
ΓσIII→ρρ→2π+2π− ≈ 350 MeV, (116)

ΓσIII→ρρ→2π0π+π− ≈ 650 MeV,

Γtot
σIII→4π ≈ 1 GeV. (117)

We can now estimate the total width of the state
σIII. If σIII is identified with f0(1500), we have

Γtot
σIII

≈ 220 MeV, (118)
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which is in qualitative agreement with the experimen-
tal value of 112 MeV [30], and, in the other case
(σIII ≡ f0(1710)), we obtain

Γtot
σIII

≈ 1.1 GeV, (119)

which is in a glaring contradiction with experimental
data. In the last case [f0(1710)], ρ mesons can show
up as on-mass-shell decay products at large proba-
bility. The decay width is estimated at about 1 GeV.
The absence of this decay mode in experimental ob-
servations is a reason that f0(1710) is not a glueball.

Our estimates for the decay widths of the scalar-
meson states σI, σII, and σIII are collected in Table 3.

7. CONCLUSION

In the approach presented here, we assume that
(with the exception of the dilaton potential and the
’t Hooft interaction) scale invariance holds for the
effective Lagrangian before and after SBCS in the
chiral limit. On the other hand, we take into account
effects of scale-invariance breaking that come from
three sources: the terms with current quark masses,
the dilaton potential reproducing the scale anomaly of
QCD, and term Lan induced by gluon anomalies [see
(3) in the Introduction].

Scale-invariance breaking that is associated with
the term Lan was not taken into account in our pre-
vious paper [32].4) This led to a small quarkonium–
glueball mixing proportional to current quark masses
disappearing in the chiral limit. If the term ∆Lan is
taken into account in (28), the quarkonium–glueball
mixing becomes much greater and does not disappear
in the chiral limit, being proportional to constituent
quark masses (quark condensates). This corresponds
to the results obtained from QCD in [33]. This con-
tribution to the quarkonium–glueball mixing proves
to have a decisive effect on the strong decay widths of
scalar mesons.

4)Note that there was wrong sign of the term in formula (43)
that describes the quarkonium–glueballmixing, which led to
incorrect estimates for the decaywidths of the scalar glueball.
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For the scalar-meson states f0(400−1200) and
f0(980), we obtain a good agreement with experi-
mental data [30]. Their decay widths are determined
by quarkonium parts of decay amplitudes.

Strong decays of the scalar-meson state σIII

(“glueball”) are considered for two different masses:
1500 and 1710 MeV. In the ππ channel, the con-
tribution from quarkonia prevails over that from the
glueball and thereby determines the decay rate. In
the case of KK, ηη, and ηη′ channels, there are
noticeable compensations among decay amplitudes
between the glueball and quarkonium contributions.

A similar situation with compensations takes
place in the decay into 4π with intermediate σ
mesons. Here, we have a strong compensation
among the glueball and quarkonium contributions.
But there is the possibility for the state σIII to decay
through ρ resonances. In this case, no compensation
occurs since there is no quarkonium component, and
this channel determines amajor part of the total decay
width of σIII.

We performed calculations for both candidates for
the scalar glueball state, f0(1500) and f0(1710), and
found that f0(1500) is rather the glueball. The main
decay mode is that into four pions. The decay rate
into a pair of kaons is next by order of magnitude and
is followed by the ηη, ηη′, and ππ decay modes.

The total width of the third scalar–isoscalar state
is estimated to be about 220 MeV for MσIII

=
1500 MeV and 1.2 GeV for MσIII

= 1710 MeV. The
experimental width of f0(1500) is 112 MeV, and that
of f0(1710) is 130 MeV. Unfortunately, the detailed
data on the branching ratios of f0(1500) and f0(1710)
are controversial and not reliable [30].

Our calculations are rather qualitative. However,
they allow us to conclude that f0(1500) is a scalar
glueball state, whereas f0(1710) is a quarkonium for
the following reasons: (i) The total decay width of the
glueball in our model fits its experimental value better
if f0(1500) is assumed to be the glueball, rather than
f0(1710). (ii) As follows from our calculations, the
main decaymode of the scalar glueball is that into four
pions. This is true for the state f0(1500). A decay
of f0(1710) into four pions, however, was not seen
in experiment. (iii) Moreover, a direct decay into a
pair of ρ mesons on their mass shell is possible for a
scalar glueball with the mass about 1.7 GeV. It has
not been observed either. Our conclusion concerning
the nature of f0(1710) as a quarkonium state is in
agreement with the conclusion drawn in [12].

We are going to use this approach in our future
work for describing both glueballs and ground and
radially excited scalar-meson nonets which lie in the
energy interval from 0.4 to 1.71 GeV.
PH
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14, 4621 (1999); Fiz. Élem. Chastits At. Yadra 31,
576 (2000) [Phys. Part. Nucl. 31, 282 (2000)]; Yad.
Fiz. 63, 1924 (2000) [Phys. At. Nucl. 63, 1835
(2000)].

13. M. K. Volkov, Ann. Phys. (N.Y.) 157, 282 (1984); Fiz.
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Abstract—A finite-energy classical solution in effective Yang–Mills theory specified by a nonstandard
Lagrangian is obtained. The effect of vacuum polarization on the formation of gluon clusters is discussed.
c© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Investigation of nontrivial solutions to classical
field equations has been actively performed since the
mid-1970, when stable finite-energy classical solu-
tions having nontrivial topology (monopoles and in-
stantons) were discovered [1–3]. Such solutions,
which had the form of clusters—compact lumps of
energy whose density vanishes at spatial infinity—
were investigated in detail; in particular, important
mathematical results concerning the existence and
stability of these solutions in various fieldmodels were
obtained [4] and nontrivial physical effects following
from the existence of such solutions were revealed
[5, 6].

At the same time, it was found that, in the phys-
ical case of 3 + 1 spacetime dimensions, scale in-
variance forbids the existence of such static finite-
energy cluster solutions in the matter-field-free non-
Abelian theory of classical Yang–Mills fields [7]. In
[8], it was shown that not only static but also periodic
solutions of the type being discussed do not exist in
classical non-Abelian Yang–Mills theory. This gives
every reason to state that there is no classical glueball
defined as a finite-energy gluon cluster object [9]. In
this context, it became clear that the existence of,
say, a monopole solution [1, 2] in 3 + 1 spacetime di-
mensions is due to a nontrivial interaction with scalar
Higgs fields. Also, unstable spherically symmetric
solutions of the cluster type (sphalerons) [10], which
determine the height of the potential barrier between
two topologically nonequivalent vacua, were found in
the theory of classical Yang–Mills fields interacting
with classical Higgs fields [10, 11].

In addition, stable topologically nontrivial solu-
tions that possess an electric charge (dions) [12] were
investigated in Yang–Mills theory involving Higgs

*e-mail: ovp@goa.bog.msu.su
1063-7788/01/6411-2020$21.00 c©
fields. The existence and the stability of such solu-
tions are also due to a nontrivial interaction of non-
Abelian fields with scalar Higgs fields.
Nonstatic stable solutions of the cluster type, q

spheres, were also considered in the literature [13]
(see also [14] and references therein). The existence
and the stability of such solutions were due to their
charge. Solutions of such types were actively dis-
cussed within effective hadron models like the quark
bag model [13, 14].
In view of the aforesaid, cluster solutions in the

theory of non-Abelian fields may appear only as the
result of going beyond pure Yang–Mills theory. This
is possible, for example, owing to interaction with
matter fields, as is observed in the case of monopoles
and dions. In the present study, it will be shown that
the inclusion of quantum vacuum-polarization effects
in the presence of a classical gluon field can also lead
to the formation of such solutions. This is suggested
by the study of Schwinger [15], who considered the
case of QED. Indeed, he showed that the effect of
such polarization phenomena on a classical solution
can effectively be taken into account by supplement-
ing the Lagrangian of the original classical theory
with additional terms of higher order in fields. He also
proved that, in the problem of the singular classical
self-energy of the electron, this modification to the
Lagrangian plays the role of regularization for this
singularity. In the present study, we will attempt
to use Schwinger’s idea of taking into account vac-
uum polarization for the case of non-Abelian gauge
fields and will show that these phenomena lead to
the formation of compact static spherically symmetric
objects.
As was indicated above, there are no nontrivial

stable finite-energy classical solutions in pure non-
Abelian Yang–Mills theory free from matter fields.
However, infinite-energy solutions of this type do
exist. An analysis of, say, static spherically symmetric
2001MAIK “Nauka/Interperiodica”
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classical solutions in SU(2) Yang–Mills theory of the
chromomagnetic type (A0 = 0) reveals that typical
solutions occur in a vacuum state at the origin and at
infinity and take singular values on a sphere of finite
radius. Because of this singularity, such solutions
possess an infinite energy [16, 17].
By using the analogy with the aforementioned

problem of the electron self-energy, we will show that,
in just the same way as in the case of QED, the mod-
ified Lagrangian that takes into account polarization
phenomena will also regularize the singularity of the
self-energy of such an object (here, this singularity
is not localized at a point, as was in the case of
electrodynamics, but it is distributed over a sphere of
finite radius).
In the present study, we rely on the approach

proposed and developed in [18–26]. Within this ap-
proach, quantum fluctuations and polarization phe-
nomena are taken into account in a gauge-invariant
way by supplementing original Yang–Mills theory
with additional modifying terms that involve higher
covariant derivatives with respect to the field Aaµ. As
a result, there arises an effective field theory, whereas
the classical field is treated as a field that is aver-
aged over quantum fluctuations: A eff = 〈A0〉 [20–
22]. Such nonstandard Lagrangians for Yang–Mills
fields naturally arose in attempts at constructing the
low-energy limit of QCD on the basis of solutions
to the Schwinger–Dyson equation [18, 20]. Sim-
ilar analyses were performed in [25, 26]. Investi-
gations along these lines resulted in deriving effec-
tive gauge-invariant Lagrangians that describe the
infrared behavior of the asymptotic expressions for
strongly connected Green’s functions. In the first
approximation, these Lagrangians contained terms of
the fabc(Fµν)a(F ν

ρ)b(F ρµ)c and (DρFµν)a(DρFµν)a
types. Further, some classical solutions for such
effective Lagrangians were analyzed in [22]. The
hope for describing color-particle confinement was
associated with these solutions. Classical solutions
in Yang–Mills theories specified by nonstandard La-
grangians were also investigated in [27].
In the present study, we consider the simplest

modification to Yang–Mills theory; namely, the stan-
dard Lagrangian

L = −1
4
(Fµν)a(Fµν)a (1)

is supplemented here with a modifying term that in-
volves higher covariant derivatives and which is equal,
apart from a total divergence, to

∆L = fabc(Fµν)a(F ν
ρ)b(F ρµ)c (2)

= (DρFµν)a(DρFµν)a − (DµFµν)a(DρF
ρν)a,

where (Fµν)a = ∂µA
a
ν − ∂νA

a
µ + fabcAbµA

c
ν is the

strength tensor for the Yang–Mills fields Aaµ of the
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SU(N) gauge group and fabc are the structure
constants of this group. The covariant derivative then
has the form (Dµ)ab = δab∂µ + fabcAcµ.

This modification is chosen because it leads to
equations containing derivatives to powers not higher
than two, which makes it possible to analyze them in
greatest detail.

Moreover, the above additional term has a clear
physical meaning within the gauge-invariant ap-
proach proposed in [28], where Yang–Mills theory
is reformulated in terms of bimetric gravity; as a
result, it can be demonstrated [29] that this addition
to the standard Lagrangian is the cosmological Λ
term, which is well known from the general theory
of relativity. In [29], it is shown that this additional
term arises naturally in regularizing the self-energy
of singular solutions in Yang–Mills theory. Such a
regularization is necessary in using these solutions as
a natural gluon-bag model for fermions. The hadron
model constructed on the basis of such a gluon bag
was considered in detail elsewhere [17].

Similar Lagrangians appear not only within the
aforementioned approaches. For example, modifying
terms of this type in the Lagrangian were obtained
in [30, 31] by the method of dimensional reduction
from the gravitational action functional in spaces of
higher dimensions. Analogous investigations were
performed in [32, 33]. That similar Lagrangians arise
within different approaches gives sufficient grounds
to believe that theories specified by such Lagrangians
play an important role in physics and require a thor-
ough study.

In the present study, we consider the problem of
existence of finite-energy classical solutions in the
Yang–Mills theory involving the nonstandard addi-
tional term (2) in the Lagrangian. In order to sim-
plify relevant calculations, we analyze the case of the
SU(2) gauge group and examine static magnetic-
type solutions (A0 = 0) associated with the Wu–
Yang substitution [34].

The ensuing exposition is organized as follows.
In Section 2, we briefly recall basic formulas from
classical Yang–Mills theory specified by nonstandard
Lagrangians, introduce the required notation, and
derive equations for a subsequent investigation. Sec-
tion 3 is devoted to proving the existence of finite-
energy solutions and to describing the properties of
such solutions. In Section 4, we summarize the basic
results of the present study and outline prospects for
further investigations.
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2. COMPENDIUM OF INFORMATION
ABOUT CLASSICAL THEORY
OF YANG–MILLS FIELDS

WITH NONSTANDARD LAGRANGIANS

As was indicated in the Introduction, we will con-
sider the classical theory of non-Abelian gauge fields
that is specified by the Lagrangian

Lε = −1
4
(Fµν)a(Fµν)a (3)

− ε2

6
εabc(Fµν)a(F ν

ρ)b(F ρµ)c

= −1
4
(Fµν)a(Fµν)a − ε2

6
(Fµν)a(Gµν)a,

where ε is the effective coupling constant having di-
mensions of inverse mass and (Gµν)a =
εabc(F ν

ρ)b(F ρµ)c. By using the variational principle,
we arrive at the field equation

Dab
µ (Fµν − ε2Gµν)b = 0. (4)

The energy–momentum tensor can be found by
the standard formula

T νµ = ∂µA
a
ρ

∂Lε
∂(∂νAaρ)

− δνµLε (5)

= −(F νρ − ε2Gνρ)a∂µAaρ − δνµLε.
We further symmetrize expression (5) by supplement-
ing it with a total divergence of the form

∂ρ[(F νρ − ε2Gνρ)aAaµ] (6)

and, with the aid of the field Eq. (4), eventually obtain
T νµ = −(F νρ − εGνρ)a(Fµρ)a − δνµLε. (7)

Let us now consider the Wu–Yang spherically
symmetric substitution [34]

Aa0 = 0, Aai = εaijnj
1 −H(r)

r
, (8)

where ni = xi/r. As a result, Fµν and Gµν will take
the form

(F0ν)a = 0, (Fij)a = εijk

[
(δak − nank)

H ′(r)
r
(9)

+nank
H(r)2 − 1

r2

]
,

(G0ν)a = 0, (Gij)a = εijk

[
(δak − nank)

× H ′(r)(H(r)2 − 1)
r3

+ nank

(
H ′(r)
r

)2
]
. (10)

The field Eq. (4) leads to the relation(
1 − ε2

r2
(H(r)2 − 1)

)
r2H ′′(r) (11)
PH
= H(r)
(
H(r)2 − 1

)

+
ε2

r2

(
(rH ′(r))2H(r)

− 2rH ′(r)(H(r)2 − 1)
)
,

while the energy of the corresponding field configura-
tion is

Eε =
∫

T 00d3x (12)

= 4π

∞∫

0

[(
1 − ε2

r2
(H(r)2 − 1)

)

×
(
H ′(r)

)2 +
(H(r)2 − 1)2

2r2

]
dr =

∞∫

0

E(r)dr.

3. FINITE-SELF-ENERGY SOLUTION

Let us now proceed to investigate solutions to
Eq. (11). We will be interested in solutions character-
ized by finite values of the energy given by Eq. (12).
This imposes specific constraints on the behavior of
the function H(r) at the origin of coordinates and at
infinity. The presence of the factor

Φ[H](r) =
(
r2 − ε2(H(r)2 − 1)

)
(13)

in front of the highest derivative H ′′(r) is one of the
features of Eq. (11) that have far-reaching conse-
quences. Suppose that, at some value of rs, a solution
Hs to Eq. (11) occurs in a region where the factor
Φ[Hs](rs) is small; it will be shown below that, in this
region, Hs(r) will exhibit a singular behavior that is
determined by this small factor in front of the highest
derivative. It can easily be seen that the region where
Φ[H] ∼ 0 is specified by a small vicinity of the func-
tion

H̃(r) = ±
√

1 + r2/ε2. (14)

Let us now assume that the solutionHs(r) is near
H̃(r) or |H̃(r) −Hs(r)| < δ ∼ 0. By using conven-
tional procedures, we can determine the asymptotic
behavior ofHs(r) in this region. The result is

Hs(r)
r→R±0−→ ±

√
1 + R2/ε2 (15)

− C (R − r)2/3 + o(R− r),

where C is an arbitrary constant (a positive or a neg-
ative one) and R is the point at which the functions
H̃(r) andHs(r) intersect. Here, we also note that the
derivative of this function,

H
′
s(r)

r→R±0−→ 2
3
C (R− r)−1/3 + o(1), (16)
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is singular at the point R. At the same time, the
density of the energy of this field configuration is finite
at the point R, namely,

E(r)|r=R ∼ 4π
(
± 8ε2

9R2

√
1 + R2/ε2 C3 +

R2

2ε4

)
;

(17)

therefore, the self-energy functional (12) is finite for
solutions of the above type. In the following, we will
investigate the set of solutions having a singularity of
the form in (15).
Equation (11) is a complicated nonlinear second-

order differential equation, whose solutions can be
investigated only by numerical or approximate meth-
ods. In order to perform such investigations, it is nec-
essary to know the asymptotic behavior of solutions
to this equation at the origin of coordinates and at
infinity. As was noted above, the solutions in question
must satisfy the condition requiring that the self-
energy integral (12) be finite. Such an investigation
yielded the following asymptotic expressions. For
r → 0,

H(r) � e + a1 r
2 + a2

1

2ε2a1 + 3e
10(1 − 2ea1ε2)

r4 + o(r6),

(18)

where e = ±1 and a1 is an arbitrary constant.
Equation (11) possesses a discrete symmetry: its
form is invariant under the substitution H(r) →
−H(r). In terms of expression (18), this substitution
corresponds to the simultaneous sign reversals a1 →
−a1 and e → −e. The case of e = −1 and a1 > 0 is
of particular importance for the ensuing analysis. For
r → ∞, we similarly have

H(ρ) � 1 + a2 ρ +
3
4
a2

2 ρ
2 +

11
20

a3
2 ρ

3 (19)

+
193a2

2 − 240ε2

480
a2

2ρ
4 +

329a2
2 − 1280ε2

1120
a3

2ρ
5

+ o(ρ6), ρ = 1/r,

where a2 is an arbitrary constant. Below, we will con-
sider solutions whose asymptotic behavior is given by
(19) with a2 > 0.
Prior to proceeding to describe directly solutions

to Eq. (11) that have the asymptotic behavior (18) on
the left and the asymptotic behavior (19) on the right,
we would like to note yet another important fact. In
Eq. (11), we make the scale transformation

r =
ε

εN
rN . (20)

As a result, we obtain an equation of the same struc-
ture at a different parameter value, ε = εN . Thus, we
see that, if a set of solutions {Hε1(r)} at some value
ε1 is known, a set of solutions for any other value ε2
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Fig. 1. Effect of the additional term in Lagrangian (3) on
the classical solution. Thin lines represent the function
H̃(r) and the vacuum solutionsH = ±1.

can be obtained by means of the substitution in (20),
which is equivalent to

{Hε1(r)}
r→ ε1

ε2
r

−→
{
Hε2(r) = Hε1

(
ε1

ε2
r

)}
. (21)

In the subsequent analysis, we fix the parameter ε,
setting it, for example, to unity, and vary the boundary
conditions—that is, a1 and a2. In accordance with
(20), all quantities that have dimensions of length are
measured in ε units.
Let us now proceed to describe directly a numer-

ical investigation of solutions H(r) whose asymp-
totic behavior is given by (18) and (19). Solutions
H<(r) whose asymptotic behavior at the origin of
coordinates is specified by (18) (at e = −1 and a1 >
0) will be referred to as internal ones. With in-
creasing r, they grow monotonically at any a1 > 0,
reaching the function H̃(r) (14); at the point r =
R of their intersection, the asymptotic behavior of
these solutions is given by (15). In Fig. 1, the
behavior of solutions to Eq. (11) is illustrated at
various values of the parameter ε. The A- and the
B-labeled curve represent, respectively, the solution
to Eq. (11) at the parameter value of ε = 1 and the
solution that takes the asymptotic form (18) near the
origin of coordinates and which corresponds to the
value of ε = 0 (it should be recalled that, in Fig. 1,
r is measured in ε units). The latter case, which
was investigated, for example, in [17] is that of a
solution to the usual Yang–Mills equation without
polarization effects. From the figure, we can see that,
as the amplitude of H(r) grows, which entails the
growth of the energy density, the role of the additional
term in the Lagrangian given by (3) becomes more
pronounced. That, at the point r = R, the solution
at ε = 1 exhibits a critical behavior corresponding to
the asymptotic form in (15) is directly related to the
presence of this term.
A similar monotonic behavior is characteristic of

the external solutionH>(r)whose asymptotic form at
01
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Fig. 2. (A) Finite-energy solution (here, ε = 1 and a1 =
0.544; the radius of the singularity is r1 = 2.95); (B,
C) singular solutions at ε = 0. Thin lines represent the
function H̃(r) and the vacuum solutionsH = ±1.

infinity is given by (19) (at a2 > 0). The above raises
the important question of how the solutionH<(r), for
one, can be extended to the right beyond the singular
point at r = R. This is a challenging problem that
requires going beyond the mathematical model for-
mulated here. From the mathematical point of view,
we are dealing, in this case, with solutions noncon-
tinuable to the right (left), which are well known in the
literature [35]. Since the point at which the solution
H(r) is singular is an essential singularity, it cannot
be removed by means of coordinate transformations;
nor is it possible to solve the problem at hand by
popular methods of the theory of functions of complex
variables. The arising difficulty is associated with
the loss of uniqueness in the boundary-value problem
formulated here for Eq. (11). A recourse to an ad-
ditional physical principle that would make it possible
to choose, among the set of solutions to Eq. (11), that
which corresponds to the actual physical situation is
a possible way out of the situation.

In order to reveal the required physical princi-
ple and to recover the uniqueness of the boundary-
value problem, we recall that the c-number Yang–
Mills field being investigated is essentially the orig-
inal gluon field averaged over quantum fluctuations;
hence, solutions in this effective theory must ap-
proximate real objects of the original theory. Such
objects must be characterized by continuous physical
features like the energy density; therefore, it is natural
to require that approximate solutions in the effective
theory specified by the Lagrangian in (3) meet the
same conditions. As will be shown below, the con-
dition requiring that the energy density be continuous
is sufficient for unambiguously fixing the sought so-
lution over the entire space. It is interesting to note
that, in the case under consideration, this condition
actually results in that there is a critical (limiting)
energy-density valueEcr abovewhich no solution can
exist because of polarization effects.
PH
 
E

r
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40

0 2 4 6

Fig. 3. Energy-density distribution.

If we adopt the requirement that the energy density
be continuous, the above mathematical difficulties are
resolved in a remarkable way, and it proves to be
possible to match unambiguously the internal and the
external solution. We will say that we have been able
to construct a solution over the entire space if we have
found two solutions, an internal and an external one,
that ensure the same critical energy-density valueEcr

at a given surface, which is a sphere of radius r = R
in our spherically symmetric case; that is,

E(r)<|r=R = E(r)>|r=R −→ C< = C>. (22)

It turns out that, by using the condition in (22),
it is possible to obtain, for any ε, a solution H(r)
that is tangential to the function H̃(r) (14) at one
point r = R, the condition in (22) being sufficient for
unambiguously fixing such a solution at fixed ε (that
is, for fixing such features of the solution asR, a1, and
a2 ). Figure 2 shows a solution obtained numerically
at ε = 1 (function A), r in Fig. 2 being measured
in ε units; also shown in this figure is a solution at
ε = 0, which has a singularity at the point r = R
(functions B and C). With the aid of expression
(12), one can obtain the graph of the energy density
for the field configuration being studied (see Fig. 3).
The energy density E(r) in Fig. 3 is measured in 1/ε
units. We can see that, in what is concerned with the
energy density, the resulting solution is a spherically
symmetric shell, with the entire energy of such a
configuration being concentrated in the vicinity of this
shell.
Let us now address the question of the energy

of the field configuration that we obtained and of its
dependence on the parameter ε. Considering that
the matching condition is invariant under the trans-
formations in (21), which relate solutions at different
values of ε, and using expression (12) for the energy
of such field configurations, we can obtain

Eε =
1
ε
Eε=1, (23)
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where Eε=1 is the energy of the field configuration at
ε = 1. Relation (23) does not seem surprising since
the original Yang–Mills theory was scale-invariant
and since its modification specified by Eq. (3) has
led to the emergence of the dimensional parameter ε
and, hence, to the emergence of a scale for massive
solutions. By using numerical methods, one can find
that, at ε = 1, such a configuration has the energy of
Eε=1 = 110.75; in order to assess the energy and the
effective radius R of such solutions, it is now neces-
sary to have at our disposal a physical estimate of the
parameter ε. According to the estimates presented
in [21], 1/ε � 0.59π GeV. The object explored in
the present study will then have an energy of about
200 GeV (more precisely, M � 205 GeV) and the
effective radius ofR � 0.3 fm.
To conclude this section, we note that an analysis

similar to that described above was performed for so-
lutions to Eq. (11) that obey the asymptotic condition
(18) on the left at e = −1 and a1 > 0. Just like the
solutions studied above, they grow monotonically at
any a1 > 0 with increasing r, reaching the function
H̃(r) (14); at the point R of intersection with it,
their asymptotic behavior is given by (15). We were,
however, unable to find a solution on the right that
has a singularity at the same point R, which satisfies
the matching condition (22) at this point, and which
has the asymptotic form (19) at infinity (this form
corresponds to a finite-energy solution).

4. DISCUSSION AND CONCLUSION

Solutions to the classical equations of Yang–Mills
theory have been investigated here with allowance for
averaging over quantum fluctuations and for vacuum
polarization in the vicinity of such solutions. It was
shown in a number of studies [18–20, 25, 26] that,
in the first approximation, these phenomena can be
taken into account by supplementing the standard
Lagrangian of Yang–Mills theory with a modifying
term ∆L involving higher covariant derivatives. This
approach is manifestly invariant under Lorentz and
gauge transformations; it is also advantageous in that
the resulting theory proves to be local.
In the present study, it has been shown that this

approach predicts the existence of massive gluon
clusters whose mass is about a few hundred GeV
and whose effective radius is about a few tenths of
fm. Such objects owe their existence to a modifica-
tion of the Lagrangian of the theory via supplement-
ing it with a modifying term that is associated with
vacuum-polarization phenomena, their mass being
directly dependent on the dimensional quantity ε,
which appears in the Lagrangian in front of the mod-
ifying term. In conventional Yang–Mills theory, such
objects would have an infinite mass.
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In Section 3, the effect of polarization phenomena
on a classical field has been considered for the spe-
cific example ofWu–Yang parametrization describing
spherically symmetric solutions for the case of the
SU(2) color group. This effect is illustrated in Fig. 1.
It turns out that, for an internal solution issuing from
the vacuum state at the origin of coordinates, the role
of polarization effects becomesmore pronounced with
increasing gluon-field energy density [with increas-
ing function H(r) in Fig. 1]. At some point r = R,
E[Hε](r) eventually reaches a critical energy-density
value Ecr < ∞ at which Hε has a singularity. It has
been shown that a similar pattern is observed for an
external solution as well: starting from the vacuum
solution at infinity, the field energy density grows and
also reaches a critical value.
It seems that the only physically meaningful way

to relate the internal and the external solution is to
choose boundary conditions at the origin and at infin-
ity in such way as to ensure coincidence of the critical
values Ecr that the internal and the external solution
take at a sphere of radius R. This corresponds to the
intuitively comprehensible requirement that physical
features of the system like the energy-density distri-
bution be continuous. On the basis of this require-
ment, it has proved to be possible to construct such
a solution over the entire space (curve A in Fig. 2),
to calculate its mass, and to determine its effective
radius.
From the point of view of soliton theory, the so-

lution that we have obtained is a quantum soliton,
its mass being in inverse proportion to the effective
coupling constant ε, which reflects the intensity of
polarization phenomena.
In conclusion, we note that similar solutions were

recently found in non-Abelian Born–Infeld theory
[36]. In the Wu–Yang parametrization, these static
spherically symmetric solutions satisfy the following
boundary-value problem: the sought solutions issue
from the vacuum state H = −1 at the origin of coor-
dinates and go over into the topologically nonequiva-
lent vacuumH = 1 at infinity. In Born–Infeld theory,
such solutions were interpreted as sphalerons char-
acterized by the Chern–Simons topological num-
ber of Q = 1/2. From the theory of sphalerons, it
is well known [10, 11] that unstable classical so-
lutions determine the height of the potential barrier
between topologically nonequivalent vacua in non-
Abelian field theory. Investigation of such solutions is
of paramount importance for a semiclassical analysis
of the nontrivial structure of the ground state of this
theory. It should also be noted that the solution inves-
tigated in the present article is singular on a sphere
of finite radius, and this is the point where it dif-
fers substantially from the aforementioned solutions
in non-Abelian Born–Infeld theory [36]. It is well
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known, however, that the theory that is specified by
the Lagrangian in Eq. (3) and which has been studied
here can be considered as the first approximation in
the coupling constant of non-Abelian Born–Infeld
theory [37], which in turn has a direct bearing on
brane theory [38–40]. In view of this, the solution that
we have obtained may be of interest for those theories
as well.
It is also worth noting that a solution in the effec-

tive theory has been obtained only in the first approx-
imation and that the effect of higher order terms on
the possible existence of the gluon clusters considered
above has yet to be investigated. Moreover, only the
fields of the SU(2) color group have been studied
in the present article. Since the SU(2) group is a
subgroup of SU(3), the spectrum of solutions for the
general SU(3) color group of course contains the
solutions investigated here. It is conceivable, how-
ever, that there exist solutions for the general group
SU(3) that are not reduced to those for SU(2). But
the most important question of all is that of physical
implications of the possible existence of such objects.
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Abstract—On the basis of the model of hard one-gluon exchange, the two-particle hadronic decays of
Bc mesons into S- and P-wave charmonium states, Bc → Xcc̄π(ρ), are considered at high momentum
transfers and in the nonrelativistic approximation. It is shown that the width with respect to Bc-meson
decay into S-wave charmonium states is two times greater than the width with respect toBc-meson decay
into P-wave states and that the yield of J/ψ mesons in the cascade processes of Bc-meson decay via the
formation and radiative decay of P-wave charmonium states is approximately 8% of the yield of directly
produced J/ψ mesons. c© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Information about Bc mesons can be obtained
most directly from their decays producing J/ψ me-
sons in the final state [1]. At present, Bc mesons are
sought in two main decay channels,

Bc → J/ψ + l + νl (1)

and
Bc → J/ψ + π(ρ). (2)

The first observation of the Bc meson by the CDF
collaboration at Tevatron [2] was based on an analysis
of the semilepton decay mode (1). Although the
width with respect to the decay process (2) is less
than the width with respect to the decay process (1),
two-particle hadronic decays may appear to be more
promising from the point of view of isolating a signal
from Bc-meson production and of determining the
Bc-meson mass. First, all final-state particles in
decays (2) are detectable hadrons, and this makes
it possible to determine precisely the features of the
Bc meson. Second, the momentum transfer to the
spectator quark is much greater in decays (2) than in
decays (1). Allowance for this effect considerably in-
creases the theoretical estimate of theBc → J/ψπ(ρ)
decay width in relation to that calculated within the
spectator model, where the decay width is controlled
by the overlap integral of the nonrelativistic wave
functions of the initial- and final-state quarkonium.
In [3] and, more recently, in [4], it was found that,
within the model of hard one-gluon exchange, one
can expect a nearly fourfold increase in the theoretical
estimate of the Bc → J/ψπ(ρ) decay width. In the

*e-mail: saleev@ssu.samara.ru
1063-7788/01/6411-2027$21.00 c©
present study, we consider the following two-particle
hadronic decay of the Bc meson into the S- and P-
wave states of charmonium (Xcc̄):

Bc → Xcc̄ + π(ρ). (3)

It will be shown that the width with respect to two-
particle hadronic Bc-meson decay producing a J/ψ
meson in the final state increases further by about 8%
upon taking into account the contribution of cascade
processes leading to J/ψ-meson production via the
radiative decays of P-wave charmonium (Xcc̄) states
generated in Bc-meson decays along with either a π
or a ρmeson.

2. HARD-EXCHANGE MODEL

In the nonrelativistic approximation, we disregard
the binding energy of quarks and antiquarks in the
Bc meson and in the charmonium Xcc̄. The Bc-
meson mass is then equal to the sum of the b- and
the c-quark mass, m1 = mb +mc; accordingly, the
charmonium mass is m2 = 2mc. Furthermore, the
quark and the antiquark in the Bc meson or in Xcc̄

move at the same 4-velocities,

v1 =
p1

m1
=

pb̄
mb

=
pc
mc

, (4)

v2 =
p2

m2
=

pc̄
mc

=
p′c
mc

. (5)

In order to secure this condition for the quark and the
antiquark in Xcc̄ after weak b̄ decay [b̄ → c̄π(ρ)], the
4-momentum transfer k to the spectator c quarkmust
be quite high, with the virtuality being

|k2| =
m2

4m1
((m1 −m2)2 −m2

3) � Λ2
QCD, (6)
2001MAIK “Nauka/Interperiodica”
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Diagrams describing the decay processBc → Xcc̄π(ρ).

where m3 stands for the π- or the ρ-meson mass.
For various S- and P-wave Xcc̄ states of massm2 =
3.0–3.5 GeV, |k2| lies in the range 1.0–1.2 GeV2. So
high a value of the momentum transfer violates the
condition that ensures the applicability of the specta-
tor model and which requires a significant overlap of
the wave functions for the initial- and the final-state
heavy meson.

Here, use is made of the general covariant formal-
ism proposed in [5] for calculating the cross sections
for the production of S- and P-wave heavy quarkonia
and their decay widths at high momentum transfers
between the quarks involved. In the leading nonrel-
ativistic approximation in the relative momentum of
the quark and the antiquark in quarkonia, the expres-
sion for the amplitude of the decay of the (b̄c) bound
state into the (c̄c) bound state in this approach has
the form

A(p1, p2) =
∫

dq1

(2π)3
∑
L1zS1z

ΨL1zS1z(q1) (7)

× 〈L1L1z;S1S1z|J1J1z〉
∫

dq2

(2π)3
∑
L2zS2z

ΨL2zS2z(q2)

× 〈L2L2z;S2S2z|J2J2z〉M(p1, p2, q1, q2),

where p1 (p2), J1 (J2), L1 (L2), and S1 (S2) are,
respectively, the 4-momentum, the total angular
momentum, the total orbital angular momentum,
and the total spin of the initial (final) bound state;
M(p1, p2, q1, q2) is the quantity that is obtained
from the hard amplitude of the decay process (3)
by cutting off the fermion lines of the initial and the
final meson (see figure); and ΨLzSz(q) stands for the
nonrelativistic wave functions of the initial and the
final meson.

We now introduce the operators ΓSSz(p, q) that
project the state of a free quark–antiquark pair onto
PH
the bound state with fixed quantumnumbers. To first-
order terms in the relative momentum q of the quark
and the antiquark, they can be represented as

ΓS1S1z(p1, q1) (8)

=
√
m1

4mcmb

(
mc

m1
p̂1 − q̂1 +mc

)
Â1

×
(
mb

m1
p̂1 + q̂1 −mb

)
,

where Â1 = γ5 for S1 = 0 and Â1 = ε̂(S1z) for S1 =
1, and as

Γ†
S2S2z

(p2, q2) (9)

=
√
m2

4m2
c

(
mc

m2
p̂2 + q̂2 −mc

)
Â2

×
(
mc

m2
p̂2 − q̂2 +mc

)
,

where Â2 = γ5 for S2 = 0 and Â2 = ε̂(S2z) for S2 =
1; here, ε(S1z,2z) is the polarization vector of the spin-
1 particle. It should be noted that the color factor
δij/

√
3, which takes into account the fact that the

quark and the antiquark in the meson are in the color-
singlet state, is omitted in the above expressions for
the projection operators ΓSSz(p, q).

Using the projection operators (8) and (9), we can
represent the amplitudeM(p1, p2, q1, q2) in the form

M(p1, p2, q1, q2) (10)

= tr
[
Γ†
S2S2z

(p2, q2)γβΓS1S1z (p1, q1)Oβ

]
,

where, in the case of a π meson in the final state, we
have

Oβ = O1
β + O2

β , (11)

O1
β =

GF√
2

16
3
παsVbcfπa1p̂3 (12)

× (1 − γ5)
(
−x̂1 +mc

x2
1 −m2

c

)
γβ
k2
,

O2
β =

GF√
2

16
3
παsVbcfπa1

γβ
k2

(13)

×
(
−x̂2 +mb

x2
2 −m2

b

)
p̂3(1 − γ5).

Here,

x̂1 =
mb

m1
p̂1 + q̂1 − p̂3, x̂2 =

mc

m2
p̂2 + q̂2 + p̂3,

k̂ =
mc

m2
p̂2 −

mc

m1
p̂1 − q̂1 + q̂2,

p3 is themomentum of the πmeson, fπ is its leptonic-
decay constant, the factor a1 takes into account hard
gluon corrections to the effective four-fermion vertex
[6], αs is the strong-interaction constant, GF is the
YSICS OF ATOMIC NUCLEI Vol. 64 No. 11 2001
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effective constant of four-fermion interaction, and Vbc
is an element of the Kobayashi–Maskawa matrix.
Since q1/m1 and q2/m2 are small, we can expand
M(p1, p2, q1, q2) in a Taylor series near the point q1 =
q2 = 0,

M(p1, p2, q1, q2) = M(p1, p2, 0, 0) (14)

+ q1α
∂M
∂q1α

∣∣∣∣
q1,2=0

+ q2α
∂M
∂q2α

∣∣∣∣
q1,2=0

+
1
2
q1αq1β

∂2M
∂q1α∂q2β

∣∣∣∣
q1,2=0

+ . . . .

Here, each term corresponds to the transition Bc →
Xcc̄ featuring fixed quantum numbers of the bound
states (b̄c) and (c̄c)—namely, L1 = 0 and L2 = 0 for
the first term, L1 = 1 and L2 = 0 for the second term,
L1 = 0 and L2 = 1 for the third term, and so on.
For the S- and P-wave states of the initial and the
final quarkonium, the amplitude A(p1, p2) depends,
apart from q2 terms, on the nonrelativistic radial wave
functionRs(0) for theBc meson and on the derivative
R′
p(0) of the charmonium radial wave function at the

coordinate origin as∫
dq

(2π)3
Ψ00(q) =

Rs(0)√
4π

, (15)
∫

dq
(2π)3

Ψ1Lz(q)qα (16)

= −i
√

3
4π

R′
p(0)εα(p, Lz),

where εα(p, Lz) is the polarization 4-vector of the
spin-1 particle. In the case of charmonium produced
in the 1P1 state, we have∑

L2z

εα(p2, L2z)〈1L2z , 00|1J2z〉 (17)

= εα(p2, J2z).

In this case, summation over charmonium polariza-
tions yields

1∑
J2z=−1

εα(p2, J2z)εβ(p2, J2z) = Pαβ(p2), (18)

where

Pαβ(p2) = −gαβ +
pα2 p

β
2

m2
2

and gαβ means the standard metric tensor
[diag(gαβ) = (1,−1,−1,−1)]. In the case where the
3PJ (J = 0, 1, 2) state is produced, we arrive at∑
S2z ,L2z

εα(p2, L2z)〈1L2z , 1S2z |J2, J2z〉εβ(p2, S2z)
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 11 20
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1√
3
(gαβ − pα2 p

β
2

m2
2

) for J2 = 0

i√
2m2

εαβµνp2µεν(p2, J2z) for J2 = 1

εαβ(p2, J2z) for J2 = 2,

(19)

where εαβµν is a completely antisymmetric rank-4
tensor and εαβ(p2, J2z) is the polarization tensor for
the spin-2 particle. The sum over polarizations for the
3P2 state is given by [7]

2∑
J2z=−2

εαβ(p2, J2z)ε∗µν(p2, J2z) (20)

=
1
2
(
Pαµ(p2)Pβν(p2) + Pαν(p2)Pβµ(p2)

)

− 1
3
Pαβ(p2)Pµν(p2).

From the above expressions that describe the de-
cay process (3) with a π meson in the final state, we
can obtain the analogous expressions for the decay
process with a ρ meson in the final state by making
the substitution fπp̂3 → mρfρε̂3 in the amplitude in
(10), where εµ3 is the ρ-meson polarization 4-vector.

3. RESULTS OF THE CALCULATION

Without discussing the details of rather standard
calculations, we present below our results for the
widths with respect to decays of a pseudoscalar me-
son Bc into final states involving various S- and P-
wave states of the charmoniumXcc̄ and a π or a ρme-
son. The results have the simplest form for the decay
Bc → Xcc̄π. Sincemπ � mc,mb, the π-meson mass
can be disregarded. Owing to this, we can obtain
simple analytic formulas for the decay widths. The
results are

Γ(Bc → J/ψπ) =
128
9π

F
|R2(0)|2
m3

2

(1 + x)3

(1 − x)5
, (21)

Γ(Bc → ηcπ) =
32
9π

F
|R2(0)|2
m3

2

(1 + x)3

(1 − x)5
(22)

× (x2 − 2x + 3)2,

Γ(Bc → hcπ) =
128
3π

F
|R′

2(0)|2
m5

2

(1 + x)3

(1 − x)7
(23)

× (x2 − x+ 2)2,

Γ(Bc → χc0π) =
128
9π

F
|R′

2(0)|2
m5

2

(1 + x)3

(1 − x)7
(24)

× (3x3 − 12x2 + 14x− 7)2,

Γ(Bc → χc1π) =
256
3π

F
|R′

2(0)|2
m5

2

(1 + x)3

(1 − x)5
(25)
01
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Ratios of the widths of Bc meson with respect to decays
into the P-wave states of charmonium Γ(Bc → Xcc̄π(ρ))
to the decay width Γ(Bc → J/ψπ(ρ))

Xcc̄
2S+1XJ

Γ(Bc → Xcc̄π)
Γ(Bc → J/ψπ)

Γ(Bc → Xcc̄ρ)
Γ(Bc → Xcc̄π)

J/ψ 3S1 1.00 4.0

ηc
1S0 1.17 3.2

hc
1P1 0.50 3.7

χc0
3P0 0.29 3.6

χc1
3P1 0.10 5.6

χc2
3P2 0.28 4.3

× (x2 − x− 1)2,

Γ(Bc → χc2π) =
256
9π

F
|R′

2(0)|2
m5

2

(1 + x)5

(1 − x)7
, (26)

where

x =
m2

m1
and F = α2

sG
2
FV

2
bcf

2
π |R1(0)|2a2

1;

R1(0) and R2(0) are the nonrelativistic radial wave
functions for, respectively, the Bc meson and the S-
wave charmonium Xcc̄ at the origin; and R′

2(0) is the
derivative of the radial wave function for the P-wave
charmoniumXcc̄ at the origin. The present numerical
calculations were performed with the following set of
parameter values: GF = 1.166 × 10−5 GeV−2, αs =
0.33, Vbc = 0.04, fπ = 0.13 GeV, mπ = 0.14 GeV,
fρ = 0.22 GeV, mρ = 0.77 GeV, mBc = 6.3 GeV,
mψ = 3.1 GeV, mηc = 2.98 GeV, mhc = 3.5 GeV,
mχc0 = 3.4 GeV,mχc1 = 3.5 GeV,mχc2 = 3.55 GeV,
|Rs1(0)|2 = 1.27 GeV3, |Rs2(0)|2 = 0.94 GeV3, and
|R′

p2(0)|2 = 0.08 GeV5.

The results obtained here for the widths of the Bc
meson with respect to decays into J/ψ and ηc agree
with those obtained in [3, 4]. For example, the Bc →
J/ψπ decay width calculated in the present study is

Γ(Bc → J/ψ + π) = 7.5 × 10−6a2
1 eV. (27)

The widths of the Bc meson with respect to decays
into other states of the charmonium Xcc̄ can be ex-
pressed in terms of (27) by using the results from the
table.

It is interesting to note that, in the case where a
π (ρ) meson is produced in the final state, the total
width of the Bc meson with respect to decays into
3PJ states is about 30% (40%) of the total width of
the Bc meson with respect to decays into the S-wave
states of J/ψ and ηc. So large a contribution of P-
wave charmonium states to the width with respect
to the two-particle hadronic decay of the Bc meson
leads to a noticeable enlargement in the width of the
PH
Bc meson with respect to decay into J/ψ through
the cascade decays of P-wave charmonia, χc0,c1,c2 →
J/ψγ. The branching ratios for the radiative de-
cays of P-wave charmonia into J/ψ are well known:
Br(χc0 → J/ψ + γ) = 0.007, Br(χc1 → J/ψ + γ) =
0.27, and Br(χc2 → J/ψ + γ) = 0.14 [8]. Using the
results obtained here (see table), we arrive at

Γ(Bc → χc0,c1,c2π → J/ψγ)
Γ(Bc → J/ψπ)

= 0.068, (28)

Γ(Bc → χc0,c1,c2ρ → J/ψγ)
Γ(Bc → J/ψρ)

= 0.082. (29)

Summing the decay widths for the cases of a π and
a ρ meson in the final state, we find that, in the two-
particle hadronic decays of Bc mesons, J/ψ particles
are produced in the cascade processes through the
decays of P-wave states approximately 12.7 times
more rarely than in the direct processBc → J/ψπ(ρ).
It should be noted that, in the semileptonic decays
of Bc mesons with J/ψ in the final state, the con-
tribution of the cascade mechanism of J/ψ produc-
tion through radiative decays of P-wave charmo-
nia is about 1/20 of the contribution of the direct-
production mechanism [9].

The estimation of the Bc → J/ψπ(ρ) decay width
within potential models [10] yields

Br(Bc → J/ψπ) + Br(Bc → J/ψρ) = 0.8%. (30)

Within the hard-exchange model considered here, we
obtain

Br(Bc → J/ψπ) + Br(Bc → J/ψρ) = 3.0% (31)

for the direct decays at a1 = 1.1 and
Br(Bc → J/ψπγ) (32)

+ Br(Bc → J/ψργ) = 0.24%

for the cascade decays ofBc into J/ψ via the produc-
tion of χc0,c1,c2.

4. CONCLUSION

It has been shown that the width with respect
to the two-particle hadronic decay of the Bc meson
into J/ψ accompanied by either a π or a ρ meson is
nearly four times greater in the hard-gluon-exchange
formalism than in the spectator model. Allowance for
the contribution from the cascade processes ofBc de-
cays through the production of P-wave charmonium
states that is followed by their radiative decay into
J/ψ + γ leads to a further increase in the calculated
yield of J/ψ from the decays under consideration by
about 8%. This effect is modest, but it increases the
probability of observing the Bc meson in the experi-
ments performed at the FNAL and LEP accelerators.
YSICS OF ATOMIC NUCLEI Vol. 64 No. 11 2001
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Abstract—By representing the hadron as a system consisting of one or two partons and a multiparton
core, which in turn is treated as a parton of variable mass, a relativistically invariant density matrix for
this system is constructed by performing integration with respect to this mass. The proposed approach
makes it possible to establish simple relations between the density-matrix elements and to validate or
interpret more clearly assumptions adopted by various authors in parton models. c© 2001 MAIK “Nau-
ka/Interperiodica”.
1. INTRODUCTION

A method is described in this article for dealing
with relativistic quark-parton models of the hadron
that are proposed for analyzing deep-inelastic scat-
tering.
The hadron is treated here as a system consisting

of one or two partons and a core having a variable
mass and containing the remaining partons.
As was mentioned in [1], where the reader can find

introductory information about the method developed
here, the density matrix that is nondiagonal in dis-
crete spin indices and in continuous momentum vari-
ables is generally required for describing the structure
of hadrons. Conventional distribution functions are
diagonal elements of this matrix.
We begin constructing the hadron wave func-

tion with the aid of expressions from [2]. Owing
to relativistic invariance, the expressions for density-
matrix elements contain a comparatively small num-
ber of unknown functions depending, in the one-
parton case, on one variable—the invariant fireball
mass, which in turn is a function of two usual parton
variables, x and k.
These functions can be sought on the basis of

theoretical considerations by proceeding from QCD
or by constructing quasipotentials. In the present
study, however, we do not introduce the interaction
of partons; instead, we consider the possibility of
determining the required functions from experimental
data and later use them to describe other experiments.
By way of example, it is shown in Section 2 that the
density matrix can be determined from experiments
studying the deep-inelastic scattering of electrons
or muons on longitudinally polarized protons. In
Section 3, it is demonstrated that one can make
predictions for scattering on a proton whose spin is
transversely oriented in the rest frame.
1063-7788/01/6411-2032$21.00 c©
In Section 4, it is proven that the expressions
obtained in Section 2 for partons of half-integer spin
can be applied, nearly without modifications, to the
case where the parton spin is equal to unity, both for
zero-mass gluons and for massive vector diquarks.
The description of scalar diquarks is trivial. The ex-
pressions for the three-particle system of two partons
and a fireball are presented further in that section. The
end of the section is devoted to deriving a relation
between the usual structure functions F1,2(x) and
g1,2(x) and the elements of the one-particle density
matrix introduced in Section 2.
The basic results of this study are briefly summa-

rized in the Conclusion.

2. DENSITY MATRIX FOR FREE QUARKS

In this section, we construct the density matrix for
the parton with a half-integer spin in the proton. We
assume that all partons are free and that all gluons
and quarks but one that is singled out are contained in
a fireball of massW that can vary in a certain interval.
Integration with respect to W is performed over all
possible values.
First, we write basic kinematical relations.
We consider the quark in a proton of 4-momentum

(P0, 0, 0, P ), where P0 =
√
M2 + P 2, M being the

proton mass, and introduce the variables x and kT to
describe the quark 4-momentum (q(P )0,kT , q(P )L),

where q(P )0 =
√

µ2 + k2
T + q2

(P )L, with µ being the

quark mass; here, the subscript L labels the lon-
gitudinal component, and the subscript P indicates
that the corresponding quantity is considered in the
reference frame where the proton has the momentum
P . We also denote by x = (q(P )0 + q(P )L)/(P0 + P )
the usual light-front variable.
2001MAIK “Nauka/Interperiodica”
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Constraints on the mass W and on k2 ≡ k2
T are

obtained from the energy-conservation law in the
proton rest frame,√

µ2 + k2 + q2
(R)L +

√
W 2 + k2 + q2

(R)L = M. (1)

All components of the quark momentum in the rest
frame (it is denoted by the symbol R) are determined
from the usual Lorentz transformations

q(R)0 = (q(P )0 − βq(P )L)/
√

1 − β2,

q(R)L = (−βq(P )0 + q(P )L)/
√

1 − β2,

where β = P/P0. From (1), we can easily obtain
0 ≤ W ≤ (M − µ) and

0 ≤ k2 ≤
(
M2 − µ2

2M

)2

. (2)

According to [2], the wave function for a particle
having amassM and involving a quark of mass µ and
helicity λ1 and a fireball of fixed mass W and helicity
λ2 has the form

|P = 0 Σ[MJ ]µλ1Wλ2〉 = NJ

∫
d2ωD̄J

Σλ(φ, θ, 0)

× |P = 0;φ, θ,M, µλ1,Wλ2〉, (3)

λ = λ1 − λ2, NJ =
√

(2J + 1)/4π,

d2ω = sin θdθdφ,

where J is the total angular momentum; Σ is its pro-
jection onto a given axis (we choose the z axis); and
D̄j
m1m2(α, β, γ) are usual rotation-matrix elements

determined by the Euler angles α, β, and γ.
The functions |P = 0;φ, θ,M, µλ1,Wλ2〉 de-

scribe that state of two particles, a quark and a
fireball, in the reference frame comoving with their
center of mass (hadron) in which the first particle
of helicity λ1 moves in the direction determined by
the polar angles φ and θ, while the second particle
of helicity λ2 moves in the opposite direction. The
momenta of the two particles are equal in magnitude:

q2
(R) ≡ k2 + q2

(R)L =
1

4M2
(M4 + W 4 + µ4 (4)

− 2M2W 2 − 2M2µ2 − 2W 2µ2).

In order to obtain the hadron wave function in the
required reference frame (its velocity with respect to
the hadron rest frame along the z axis is equal to V ),
it is necessary to perform the Lorentz transformation
L̂z(V ) and, if required, a rotation R̂(Φ,Θ, 0) in (3).
The mass W is still fixed, the angular momentum
J transforms into the spin S, and its projection Σ
transforms into the helicity Λ:

|PΛ[MS]µλ1Wλ2〉 = R̂(Φ,Θ, 0)L̂z(V )NS (5)

×
∫

d2ωD̄S
Λλ(φ, θ, 0)|P = 0;φ, θ,M, µλ1,Wλ2〉.
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 11 20
The operators R̂ and L̂ on the right-hand side of
Eq. (5) act according to the usual rules on the single-
particle states |q(R), φ, θ, λ1〉 and |− q(R), φ, θ, λ2〉.
Upon the transformation, the particle wave functions
must be expanded in states of specific helicities in the
new reference frame. The corresponding expressions
from [3] will be quoted in the next section. By per-
forming integration over all possible values ofW and
summation over all allowed values of λ2 in (5), we find
that the general expression that describes the quark
state in the hadron has the form

|PΛ[MS]µλ1〉 (6)

=
∑
λ2

∫
dWgλ2(W )|PΛ[MS]µλ1Wλ2〉.

If the quark and the fireball do not interact, we can
assume that the weight function g depends only on
the total angular momentum of the fireball and not on
its projection onto the direction of motion. In the case
of noninteracting particles, the density matrix, which
is diagonal inW , can be represented as

ρ̂
λ1λ

′
1
(P,Λ,M, S) =

∫
dW

∑
λ2λ

′
2

ρ2
λ2λ

′
2
(W ) (7)

× |PΛ[MS]µλ1Wλ2〉〈PΛ[MS]µλ
′
1Wλ

′
2|.

The elements of the density matrix (or conven-
tional distribution functions, which are diagonal el-
ements of this matrix) are obtained upon going over
from the integration variables W , θ, and φ to the
integration variables x, k2, and φ. Usually, the matrix
elements are assumed to be independent of φ, in
which case it is possible to perform integration with
respect to φ explicitly from the outset and, thereupon,
to go over from integration with respect to W and
θ to integration with respect to k2 and x. We can
determine the weight function gλ(W ) in (6) and the
weight function ρ2

λλ′(W ) in (7) (in just the same way
as distribution functions in the usual parton models)
from experimental data or calculate them theoretically
under some additional assumptions. In doing this, we
can avoid calculating the cumbersome determinants
D(W, θ)/D(k2, x). Since it follows from (4) that, at
fixedW , the absolute value of the particle momentum
in the hadron rest frame q(R) is also fixed, we can
first go over from integration with respect to cos θ =
±
√

q2
(R) − k2/q(R), where a plus sign is taken for 0 ≤

θ ≤ π/2 and a minus sign is taken for π/2 ≤ θ ≤ π,
to integration with respect to k2. We obtain

d(cos θ)/d(k2) = 1/(2q(R)Lq(R)).
Changing the order of integration with respect to W
and k2 and using the relation

W 2 = M2 + µ2 −M2x− (k2 + µ2)/x, (8)
01
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we can easily go over from integration with respect to
W to integration with respect to x.
In this calculation, we use the relations

q(R)L =
1
2
xM − k2 + µ2

2xM
, (9)

q2
(R) =

1
4

{
x2M2 +

(k2 + µ2)2

x2M2
+ 2k2 − 2µ2

}
,
(10)

q(R)0 =
1
2
xM +

k2 + µ2

2xM
. (11)

In expressions (3) and (5)–(7), we make the fol-
lowing substitution in the functions D̄S

Λλ1
(cos θ, φ):

cos θ = q(R)L/q(R).

If µ �= 0, then
µ2/M2 ≤ x ≤ 1,

while k2 varies within the interval
0 ≤ k2 ≤ M2(1 − x)(x− µ2/M2).

For the other order of integration, we have

0 ≤ k2 ≤
(
M2 − µ2

2M

)2

, (12)

M2 + µ2

2M2
−

√√√√
(
M2 − µ2

2M2

)2

− k2

M2
(13)

≤ x ≤ M2 + µ2

2M2
+

√√√√
(
M2 − µ2

2M2

)2

− k2

M2
.

For half-integer values of the hadron and the
parton (quark) spin, the spin of the fireball can be
equal only to zero or unity. Therefore, only two
functions of W that correspond to these values of
spin appear in (6) and (7). There are well-known
expressions for the functions D̄S

Λλ1
(cos θ, φ) in terms

of exp(iΛφ) and the functions dSΛλ depending only on
θ. If one quark-parton is singled out, two of these
functions are equal to cos(θ/2), while the other two
are equal to± sin(θ/2).

3. DESCRIPTION OF EXPERIMENTAL
DISTRIBUTION FUNCTIONS

In order to compare, at least at a qualitative level,
the predictions of the proposed model for the nondi-
agonal free-parton density matrix with experimental
distribution functions, it is necessary to average di-
agonal density-matrix elements by performing inte-
gration with respect to k2. For a nonzero quark mass
µ, the resulting expressions are rather cumbersome.
To a considerable extent, this is because the functions
describing a quark state of specific helicity in the
PH
hadron rest frame do not correspond to states of con-
served helicities in the reference frame where the pro-
tonmomentum is equal toP . Therefore, the functions
used in the above formulas to describe the states of
free quarks must be expressed in terms of linear com-
binations of the functions corresponding to conserved
helicities in the P frame. We can easily do this by in-
troducing, for each quark state, the Lorentz 4-vector

s =
{

(q · ξ)
µ

, ξ +
(q · ξ)q
µ(µ + q0)

}
,

where ξ corresponds to the direction of the quark
spin in its rest frame [4]. The quark states of specific
helicity in the hadron rest frame or in the P frame will
then correspond to the vectors

s(f) = ±
{
q(f)

µ
,

q(f)0

µq(f)
kT ,

q(f)0

µq(f)
q(f)L

}
, (14)

where a plus and a minus sign correspond to a
positive and a negative helicity, respectively; for
the hadron rest frame, (f) = (R), while, for the P
frame, (f) = (P ). The quantities q(P )0 and q(P )L are
obtained from known q(R)0 and q(R)L by means of the
ordinary Lorentz transformation with β = P/P0. We
recall that q2

(f) = q2
(f)L + k2. From (9) and (11), we

obtain

q(P )L =
1
2
x(P0 + P ) − k2 + µ2

2x(P0 + P )
, (15)

q(P )0 =
1
2
x(P0 + P ) +

k2 + µ2

2x(P0 + P )
. (16)

If the angle between the vectors ξR and ξP is

α in the quark rest frame, the wave functions Ψ(±)
R

and Ψ(±)
P , which describe the states of a quark with

a positive or a negative helicity in the R and the P
frame, satisfy the relations [3]

Ψ(+)
R = cos

α

2
Ψ(+)
P + sin

α

2
Ψ(−)
P ,

Ψ(−)
R = − sin

α

2
Ψ(+)
P + cos

α

2
Ψ(−)
P .

The cosine cosα ≡ (ξR · ξP ) is also equal to the
invariant scalar product:

cosα = −(s(R)s(P )).

Expression (14) is the 4-vector s(R) in the hadron rest
frame, while s(P ) is defined in the P frame. In order
to calculate cosα, it is therefore necessary to apply
the Lorentz transformation with β = P/P0 to s(R).
Assuming that

A(x, k2) = (P0 + P )Mx2

+
(k2 + µ2)2

(P0 + P )Mx2
+

2P0

M

(
k2 − µ2

)
,
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we arrive at

−(s(R)s(P )) =
A(x, k2)√

A2(x, k2) + 16k2µ2
P 2

M2

. (17)

In this study, we do not aim at performing a de-
tailed comparison with experimental data—our ob-
jective is to demonstrate the potential of the proposed
model. Therefore, we consider below the case of zero
quark mass, where helicity is conserved in going over
to any reference frame. As a result, all expressions
are substantially simplified, and the variable x varies
in the interval from 0 to 1.
Functions that characterize the state of a proton

that has a longitudinal polarization in the rest frame
(its direction coincides with the proton momentum
P ) will be labeled with the subscript S; the subscript
T will be used for the transverse polarization, or-
thogonal to the momentum P . If the polarization of
the quark-parton is insignificant, the result obtained
upon summation over the corresponding indices is
ρS(x) = ρT (x) ≡ ρ(x), where

ρ(x) = C

M2x(1−x)∫

0

d(k2) · 2σ1(W 2) + σ0(W 2)/2

M2

(
x +

k2

M2x

)2 .

(18)

Here,C is a constant that is independent of dynamical
variables,

W 2 = M2

(
1 − x− k2

M2x

)
,

and the functions σ1,0 correspond to the contributions
of two possible fireball states of angular momenta 1
and 0.
If we are interested in the distribution of quarks

with definite helicity, the function

∆ρS(x) = C

M2x(1−x)∫

0

d(k2)

(
x− k2

M2x

)
σ0(W 2)

M2

(
x +

k2

M2x

)3

(19)

for longitudinally polarized protons and the function

∆ρT (x) = C

M2x(1−x)∫

0

d(k2)

2k
M

σ0(W 2)

M2

(
x +

k2

M2x

)3

(20)

for the hadron transversely polarized in its rest frame
must be added to the function ρ(x) for positively
polarized quarks or subtracted from it for negatively
polarized quarks.
Any pair of relations (18), (19), or (20) is a set of

integral equations. If, for example, ρ(x) and ∆ρS(x)
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are known from experimental data, σ1(W 2) and
σ0(W 2) can be determined by solving these equations
(exactly or approximately), whereupon it is possible
to predict the values of the function∆ρT (x) by using
relation (20). Given σ1(W 2) and σ0(W 2), we can also
make many other predictions.
The quantities σ1(W 2) and σ0(W 2) can be para-

metrized in the form
σ1,0 =

(
W 2
)ν
H1,0
n (W 2),

whereH1,0
n (W 2) are polynomials of degree n and ν is

a rational number. Its value and the coefficients inHn
are variable parameters.
This parametrization makes it possible to express

ρ(x) and∆ρS,T in terms of a hypergeometric function
or, for integral values of ν, in terms of a combination
of rational functions and logarithms. By varying two
constants in Hn, one can arrive at results in agree-
ment with experimental data, but, as was mentioned
above, a detailed comparison with experimental data
will be performed elsewhere.

4. DENSITY MATRIX FOR TWO PARTONS

Since there exist partons of various kinds, it is
reasonable to begin this section by briefly considering
vector partons. The general expressions (6) and (7)
are valid both for zero-mass gluons and for massive
vector diquarks (as a matter of fact, they are valid
for particles of arbitrary spin). If a spin-1 vector
parton is singled out, the spin of the fireball can also
assume only two values, 3/2 and 1/2. Since the
wave functions or the density-matrix elements for a
hadron that consists of free partons depend only on
the fireball spin, an increase in the number of the
possible spin projections onto a specific axis does
not lead to an increase in the number of unknown
functions determining the density-matrix elements.
Instead of the two functions σ1(W 2) and σ0(W 2),
which describe the state with the selected quark, there
appear the two functions σ1/2(W 2) and σ3/2(W 2).
The functions D̄S

Λλ(θ, φ, 0) have the same structure.
Analysis of the two-parton case amounts to sin-

gling out one more parton from the fireball. Thus, we
describe the hadron as a system formed by a fireball
of variable mass and spin and two partons that do not
interact with each other.
In the hadron rest frame, we have
|P = 0 Σ[MJ ];w12Sµ1λ1, µ2λ2;λ12Wλ3〉 (21)

= NJNS

∫
d2ωA

∫
d2ωBD̄

J
ΣλA

(ωA)D̄S
λ12λ(ωB)

×|P = 0;φA, θA,M ;φB , θB, w12Sλ1λ2;Wλ3〉,
where Σ, J , andM are the same quantities as in (3);
µ1,2 and λ1,2 are, respectively, the masses and the
01



2036 SHCHELKACHEV
helicities of the partons that were singled out; S, λ12,
and w12 are the spin, the helicity, and the invariant
mass of the two-parton system; W and λ3 are,
respectively, the mass and the helicity of the fireball;
φA,B and θA,B are the angles in the subsystems; NJ

andNS are the known normalization factors (see [2]);
and

λ = λ1 − λ2, λA = λ12 − λ3.

The functions D̂J
ΣλA

in (21) are identical to
those in the preceding case; however, the functions
D̂S
λ12λ

(ωB) have a more complicated form since the
spin S can be equal to 3/2 or 1. The explicit
expressions for these functions can be found in [2]
(or in any handbook on angular-momentum theory).
Given the two-particle density matrix, it is pos-

sible to calculate the one-particle density matrix,
whence it follows that the parametrizations of un-
known functions must be consistent in the two cases.
Therefore, it is reasonable to compare the results
with experimental data simultaneously. Since the
calculations in the two-particle case are cumber-
some, a comparison is postponed to a forthcoming
publication.
We can use (7) to calculate the differential cross

sections for the deep-inelastic electromagnetic scat-
tering of partons by a hadron, Eldσ/d3pl (where El

and p l are the lepton energy and momentum), for the
hadron spin parallel, antiparallel, and orthogonal (in
the rest frame) to the lepton spin. A comparison of
the resulting formulas with the usual expressions for
these quantities in terms of the functions F1,2(x) and
g1,2(x) would permit expressing Fk and gk in terms
of the diagonal elements of the density matrix. We
can obtain a sufficiently accurate approximation by
expressing, in the known formulas, the quark dis-
tributions in terms of the diagonal elements of the
density matrix [1].
By way of example, we indicate that, at high mo-

mentum transfers, simple substitutions can be made
in the well-known expressions

2xF1(x,Q2) =
∑
a

e2
ax[q↑a(x,Q

2) + q↓a(x,Q
2)],

g1(x,Q2) =
1
2

∑
a

e2
a[q

↑
a(x,Q

2) − q↓a(x,Q
2)],

where the subscripts a correspond to the quark flavors
and functions q↑,↓a describe quarks whose spins are
PH
parallel or antiparallel to the nucleon spin. A high
precision can be achieved by replacing the distribu-
tion functions by the integrals of the density-matrix
elements diagonal in k2. For a first approximation,
we can set k2 = 0 and assume that

q↑a = ρ2
(a)1/2,1/2, q↓a = ρ2

(a)−1/2,−1/2.

5. CONCLUSION

The proposed method makes it possible to es-
tablish many interesting relations between distribu-
tion functions and density-matrix elements by using
only the property of relativistic invariance. We can
generalize this method by introducing the interaction
between the quark and the fireball and by describ-
ing it by various quasipotentials. An account of the
quasipotential method can be found in [5–7].
We can validate or interpret clearly the results

obtained by means of the Wilson expansion [8] or
by other methods [9–11]. These problems will be
considered in more detail elsewhere.
We emphasize once again that, even in the sim-

plest form, the proposed model can readily describe
a wide variety of experimental data to a fairly high
precision.

REFERENCES
1. A. V. Shchelkachev, in Proceedings of the XVIII

Workshop on High Energy Physics and Field
Theory, IHEP, Protvino, Russia, 1996, Ed. by
V. A. Petrov, A. P. Samokhin, and R. N. Rogalyov,
p. 250.

2. J. Werle, Relativistic Theory of Reactions (Model-
Independent Methods) (PWN, Warsaw, 1966; At-
omizdat, Moscow, 1969).

3. A. V. Shchelkachev, Teor. Mat. Fiz. 96, 3 (1993).
4. L. B. Okun, Leptons and Quarks (Nauka, Moscow,
1981; North-Holland, Amsterdam, 1984).

5. V. G. Kadyshevsky, Nucl. Phys. B 6, 125 (1968).
6. A. A. Logunov, V. I. Savrin, N. E. Tyurin, and
O. A. Khrustalev, Teor. Mat. Fiz. 6, 157 (1971).

7. A. A. Arkhipov and V. I. Savrin, Teor. Mat. Fiz. 16,
328 (1973); 19, 320 (1974).

8. K. Wilson, Phys. Rev. 179, 1499 (1969).
9. R. L. Jaffe and X. Ji, Phys. Rev. D 43, 724 (1991).
10. L. L. Frankfurt andM. Stricman, Phys. Rep. 160, 235

(1988).
11. S. J. Brodsky, L. L. Frankfurt, J. F. Gunion, et al.,

Phys. Rev. D 50, 3134 (1994).
Translated by M. Kobrinsky
YSICS OF ATOMIC NUCLEI Vol. 64 No. 11 2001



Physics of Atomic Nuclei, Vol. 64, No. 11, 2001, pp. 2037–2042. Translated from Yadernaya Fizika, Vol. 64, No. 11, 2001, pp. 2124–2129.
Original Russian Text Copyright c© 2001 by Zarubin, Savina, Shmatov.
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Abstract—The effect of parton shadowing on the distributions of global observables (total transverse
energy ET and charged-particle multiplicity nch) is investigated on the basis of the HIJING model
of nucleus–nucleus interactions. It is shown that, for the interaction of lead nuclei at

√
s = 5 TeV

per nucleon, the shadowing effect results in a considerable reduction of the cross section for (mini)jet
production (approximately by a factor of 4); this in turn reduces the total transverse energy and the
charged-particle multiplicity by a factor of 2.7. Upon taking into account the QCD evolution of nuclear
structure functions in Q2, the shadowing effect becomes less pronounced (by a factor of 1.9 for PbPb
interactions). It is shown that global observables can be used to test models of parton shadowing.
c© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Among experimental features used to character-
ize interaction processes in ultrarelativistic nuclear
physics, much attention is given to global observables
by which one usually means the (pseudo)rapidity dis-
tributions of the total transverse energy ET and the
charged-particle multiplicity nch. The physics of
global observables is an important line of investiga-
tions into the interaction of ultrarelativistic nuclei in
the research programs for the RHIC and LHC col-
liders [1], which are now under construction. It was
shown (see, for example, [2]) that the total transverse
energy and the multiplicity are determined primarily
by the production of so-called (mini)jets—that is,
jets of pT ∼ 2 GeV. Detailed knowledge of the cross
sections for (mini)jet production and of the transverse
energy carried by product (mini)jets is of importance
for obtaining deeper insights into the dynamics of
interactions at early stages and into the subsequent
evolution of the parton system formed.

By the early stage, we mean here the time interval
τ ∼ 1/pT � 0.1 fm/с, which corresponds to the state
of nuclear matter upon the completion of all hard
interactions, but which precedes the commencement
of the thermalization of the system via secondary
interactions.

Knowing the initial properties of such a system,
one can assess, among other things, the time of its
thermalization and to investigate the possibility of
formation of a fully equilibrated thermalized partonic
medium—that is, a quark–gluon plasma [3].

*e-mail: shmatov@lhe.jinr.ru
1063-7788/01/6411-2037$21.00 c©
It should be noted that, in all probability, only an
event-by-event analysis of the fluxes of the transverse
energy and multiplicity can provide an answer to the
question of whether an equilibrium state has been
reached in a specific nuclear collision [4]. Effects as-
sociated with the collective behavior of dense strongly
interacting nuclear matter are smeared in integrated
distributions. Owing to a high statistical significance,
the pseudorapidity distributions of the total transverse
energy and multiplicity are nevertheless highly sensi-
tive to some other specific nuclear effects that distort
the original physical pattern of nucleus–nucleus col-
lisions.

By specific nuclear effects, one usually means the
reaction of a nuclear medium. For relevant calcu-
lations to be more convenient, this reaction is par-
titioned into independent effects, such as the effect
of jet quenching (energy loss) in a dense nuclear
medium [5] and the shadowing of structure functions.
It should be borne in mind, however, that this par-
tition is merely an ad hoc trick because, in fact, the
above effects are not independent and can in principle
be described on the basis of a unified mechanism [6].

Investigation of the deep-inelastic scattering of
electrons and muons on nuclei revealed the sup-
pression of the ratio of the nuclear structure func-
tions FA

2 (x,Q2) to the free-nucleon structure func-
tions FN

2 (x,Q2). Later on, a detailed analysis of
this phenomenon over wide ranges of the Bjorken
variable x = Q2/2M, 10−5 ≤ x ≤ 0.8, and of the
4-momentum transfer squared Q2, 0.05 ≤ Q2 ≤
2001MAIK “Nauka/Interperiodica”
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150 GeV2, was performed on the basis of experi-
mental data from CERN [7] and FNAL [8]. It was
established that the ratio of a parton distribution
within an intranuclear nucleon (referred to in the
following as a nuclear structure function) to the
corresponding parton structure function within a free
nucleon (referred to in the following as a parton struc-
ture function),RA = Fi/A/Fi/N , depends strongly on
the variable x. For x values in the interval between 0.3
and 0.7, the distributions of quarks and gluons are
suppressed [European Muon Collaboration (EMC)
effect], while, in the interval 0.1 ≤ x ≤ 0.3, the parton
structure functions Fi/A are in excess ofFi/N . Finally,
RA(x) is again suppressed in the region x ≤ 0.1.

Various phenomenological models [9] were used to
explain this behavior of nuclear structure functions;
however, no adequate description has been found so
far. For events characterized simultaneously by small
values of the Bjorken variable x, about 10−4, and
relatively high values of the 4-momentum transfer
squared Q2, about 1000 GeV2, there do not exist
experimental data either.

Presently, it is expected that, at LHC energies, a
considerable fraction of the total transverse energy
(up to 30%) will be determined by processes where x
and Q2 take values on precisely these orders of mag-
nitude. Therefore, it is necessary to perform a more
thorough experimental investigation of the behavior
of nuclear structure functions in the above regions of
x and Q2.

Shadowing effects modify the pseudorapidity dis-
tributions of global observables, and these modifica-
tions can also be used to study jet quenching by a
dense nuclear medium [10].

The main objective of the present study is to find
out how the distributions of global observables are
affected by changes in parton structure functions due
to nuclear-matter shadowing.

That there are ambiguities in parton distributions
because of nuclear-medium effects leads to ambigu-
ities in determining multiplicities and transverse en-
ergies in nucleus–nucleus collisions and in assessing
the background for jet-reconstruction algorithms. It
will be demonstrated below how the distributions of
multiplicities and transverse energies can be used to
test various parton-shadowing models.

In our calculations performed for the case where
lead nuclei interact at the LHC energy (

√
S = 5 TeV

per nucleon), we used the parametrization of nuclear
parton distributions that is adopted in the HIJING
model of nucleus–nucleus interactions [11]. The
Q2 evolution of the shadowing effect was taken
into account on the basis of the EKS98 model [12],
PH
which allows for the scale dependence of nuclear-
medium effects. For this, theQ2 evolution of the ratio
RA(x,Q2) from the initial scale RA(x,Q2

0), where
Q2

0 ∼ 4 GeV2, was considered by using the modified
Dokshitzer–Gribov–Lipatov–Altarelli–Parisi evo-
lution equations for structure functions [13].

Within these models, we have also analyzed the
effect of various sets of parton structure functions on
the predictions of the shadowing models used.

2. MULTIPARTICLE-PRODUCTION
PROCESSES IN NUCLEUS–NUCLEUS

INTERACTIONS

Multiparticle-production processes in nucleus–
nucleus interactions are considered as a combina-
tion of hard or semihard (pT ≥ p0) and soft particle-
production processes. By soft processes, we mean
those that cannot be computed within renormalizable
QCD. The cutoff parameter p0 depends on the set of
parametrizations used for the quark and gluon struc-
ture functions. As a rule, it is about 1 to 2 GeV. Under
the assumption of independent binary parton–parton
interactions, the production of minijets (that is, jets of
pT ∼ p0), whose detection in experiments is impossi-
ble, is the main source of multiplicity and transverse
energy fluxes. In the leading order of QCD at the level
of nucleon–nucleon interactions, the cross section for
(mini)jet production is given by

dσjet

dy
(
√
sNN , p0) =

1
2

s/4∫

p20

dp2
T dy2

dσjet

dp2
Tdy1dy2

, (1)

dσjet

dp2
T dy1dy2

= K
∑
i,j,k,l

x1fi(x1, p
2
T )x2fj(x2, p

2
T )

×
[
dσ̂ij→kl

dt̂
(ŝ, t̂, û) +

dσ̂ij→kl

dt̂
(ŝ, û, t̂)

]
1

1 + δkl
,

where p0 is the cutoff parameter, x1 = xT (ey1 +
ey2)/2 and x2 = xT (e−y1 + e−y2)/2 are the momen-
tum fractions carried by the primary partons i and
j, xT = 2pT /

√
s, and y1 and y2 are the rapidities of

the product partons. Summation is performed over
all flavors, and the factor ofK ≈ 2 was introduced to
take into account higher QCD orders.

The rapidity distribution of the number of
(mini)jets produced in a nucleus–nucleus collision at
a fixed impact parameter is obtained from expression
(1) by multiplying it by the nuclear overlap function;
that is,
dNAA

dy
(
√
sNN , p0, b) = 2TAA(b)

σjet

dy
(
√
sNN , p0),

TAA(|b|) =
∫

d2rTA(r)TA(b − r), (2)
YSICS OF ATOMIC NUCLEI Vol. 64 No. 11 2001
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where r is the two-dimensional vector determining
the interaction vertex, b is the impact-parameter ver-
tex, and TA(r) is the nuclear thickness computed un-
der the assumption of the Woods–Saxon distribution
for the nuclear density ρA(r). The mean number of
charged hadrons per (pseudo)rapidity unit, dnch/dy,
can be obtained from (2) by substituting, into (1), the
fragmentation function Dh/i(z,Q2)/πz [14] for the
transition of quarks and gluons into final observable
particles.

The flux of the total transverse energy per rapidity
unit due to (mini)jet production in an AA interaction
is given by

dEjet
T

dy
(
√
sNN , p0, b) = TAA(b)K (3)

×
∫

dp2
Tdy2

∑
i,j,k,l

x1fi(x1, p
2
T )x2fj(x2, p

2
T )

×
[
dσ̂ij→kl

dt̂
(ŝ, t̂, û) +

dσ̂ij→kl

dt̂
(ŝ, û, t̂)

]
pT

1 + δkl
.

As was indicated above, the total cross section
for AA interactions is represented as the sum of the
cross sections for soft and hard particle-production
processes (σsoft and σjet, respectively): σtot = σjet +
σsoft. Accordingly, the expressions for calculating
the charged-particle multiplicity and the transverse
energy are written as

dntotch

dy
=

dn
jet
ch

dy
+
dnsoftch

dy
,
dEtot

T

dy
=

dE
jet
T

dy
+
dEsoft

T

dy
,

where nch is the number of hadrons produced in (se-
mi)hard interactions, while dnsoft

ch /dy and dEsoft
T /dy

are the terms representing the contributions of soft
processes to, respectively, the integrated flux of the
multiplicity and the integrated flux of transverse en-
ergy. In order to take these processes into account,
use is usually made of phenomenological models of
nuclear–nuclear collisions like the dual parton model
and FRITIOF [15].

3. NUCLEAR SHADOWING
WITHIN THE PARTON MODEL

At sufficiently high energies, nuclei can be treated
as objects consisting of a set of valence quarks sur-
rounded by a cloud of sea quarks and gluons. The
shadowing of the color charge leads to a reduction
of the parton-interaction probability and, hence, to a
reduction of the total cross section for particle pro-
duction in nucleus–nucleus interactions. In order to
take into account the shadowing effect, a coefficient
that characterizes the degree of shadowing of two
interacting partons at given values of x, p2

T , and A
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 11 20
is introduced in the integrand on the right-hand side
of (1).

Our calculations are based on the HIJING model
of nucleus–nucleus interactions [11], where the x and
A evolution of the shadowing effect is realized as a
global parametization [16] of EMC, NMC, and E665
data [7, 8] for various sets of nuclei in the form

RA(x) ≡
fi/A(x)
Afi/N (x)

(4)

= 1 + 1.19ln1/6A[x3 − 1.5(x0 + xL)x2 + 3x0xLx]

−
[
αA − 1.08(A1/3 − 1)

ln(A + 1)
√
x

]
e−x

2/x2
0 ,

where αA = 0.1(A1/3 − 1), x0 = 0.1, xL = 0.7, and
A is the atomic number of the nucleus involved.

The shadowing of partons is taken into account
by replacing, in (1), the parton distributions with-
in the free nucleon, fi/N (x), by the parton distri-
butions within an intranuclear nucleon, fi/A(x) =
RA(x)Afi/N (x).

It is assumed that the degree of nuclear shadowing
is identical for valence and for sea quarks, as well as
for gluons. Within themodel used, we do not consider
shadowing for unrenormalizable processes—that is,
the shаdowing of the structure functions for Q2 <
4 GeV2 processes and the Q2 evolution of the effect.
In order to take into account the dependence of the
effect on the impact parameter of a nuclear collision,
a dependence on the distance r from the center of the
nucleus to the interaction vertex is introduced in the
parameter αA in the form

αA = 0.1(A1/3 − 1)
4
3

√
1 − r2/R2

A, (5)

where RA is the radius of the nucleus.
On the basis of the above assumptions, we have

investigated the behavior of global variables for the
sample of 10000 events of collisions between lead
nuclei at a c.m. energy of

√
s = 5 TeV per nucleon

and impact-parameter values varying between 0 and
3RA. The pseudorapidity distributions of the total
transverse energy are displayed in Fig. 1а for various
scenarios of nucleus–nucleus interactions. The dis-
tribution represented by curve 1 was obtained under
the assumption that there is no parton shadowing,
but final-state parton interaction—that is, the jet-
quenching effect [17]—was included. This effect leads
to the emergence of a broad maximum in the central
pseudorapidity region of the distribution dET /dη [18].
Curve 2 corresponds to the case where we disre-
garded both the shadowing and the jet-quenching
effect. The third and the fourth distribution were
computed by using the quark and gluon structure
01
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Fig. 1.Pseudorapidity (η) distributions of (а) the total transverse energy dET (inGeV) and (b) the charged-particlemultiplicity
dnch for 10000 events of PbPb interactions at

√
s = 5 TeV per projectile nucleon. The curves were computed for the cases

where (1) there is no shadowing, but the jet-quenching effect is taken into account; (2) medium effects are completely ignored;
(3) both the shadowing and the jet-quenching effect are taken into account; and (4) the shadowing effect is taken into account,
but no losses in the nuclear medium are assumed.
functions modified within the nucleus (3) with and (4)
without allowance for the jet-quenching effect.

As can be seen from the figure, shadowing does
not distort the shape of the distributions, but it re-
duces the absolute height of the distribution by a
factor of 2.7.

From the form of Eqs. (1) and (4), it follows that
the charged-particle multiplicity, which is directly re-
lated to the jet-production cross section (2), must be
proportional to the square of the degree of shadowing,
dnch/dη ∼ R2

A(x). In central collisions of lead nuclei
at a c.m. energy of 5 TeV per nucleon, (mini)jet-
production processes are characterized by mean val-
ues of x about 7 × 10−4 at Q2

0 = 4 GeV2; at such x
values, RA = 0.5 and the multiplicity is expected to
decrease by a factor of about 4.

At the same time, it can be seen from Fig. 1b
that the shadowing effect also leads to the reduction
of the density of the charged-particle multiplicity,
dnch/dη, at η = 0 by a factor of 2.7 both when the
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Fig. 2. As in Fig. 1b, but the distributions here are
normalized to the analogous distributions for the case of
proton–proton interactions at the same energy.
PH
jet-quenching effect is taken into account and when
the final-state interaction of partons is disregarded.

This deviation from the expected decrease is asso-
ciated with the reduction of the shadowing effect with
increasing distance between the center of the nucleus
and the vertex of nucleon–nucleon interaction; it can
also be due to fragmentation effects and to unrenor-
malizable contributions to the cross section—that is,
to soft processes, whose shadowing is not consid-
ered in the present study. It should be noted that
the influence of strong processes must be especially
pronounced when the jet-quenching mechanism is
introduced in the process of nucleus–nucleus inter-
actions, because this effect leads to a redistribution
of the multiplicity, shifting it toward lower pT values
[11]. From the distributions presented above, this
cannot be seen, however, since the Q2 evolution of
nuclear structure functions is not considered in the
shadowing model used.

It is interesting to note that, for η ≥ 2.5, the dis-
tributions obtained with and without allowance for
the jet-quenching effect differ insignificantly; that is,
the high-η region is insensitive to this effect. This
can clearly be seen if we examine the charged-particle
multiplicity for PbPb collisions that is normalized to
the analogous distribution for proton–proton interac-
tions (see Fig. 2). At the same time, the region η ≥
2.5 is very sensitive to the shadowing effect and can
be used, in studying nuclear structure functions in the
small-x region, to obtain experimental information
not distorted by final-state interactions.

4. SCALE EVOLUTION
OF THE PARTON-SHADOWING EFFECT

As was indicated above, the parametrization in
Eq. (4) was obtained under the assumption that the
YSICS OF ATOMIC NUCLEI Vol. 64 No. 11 2001
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Cross section for (mini)jet production at the NN level for various sets of parton structure functions

Cross section σjet, mb

D01 CTEQ2L GRV 92LO

Without shadowing 130.7 289.3 764.2

With allowance for shadowing:

Ca 46.3 100.4 259.8

Nb 40.5 83.9 236.9

Pb 32.7 71.5 192.6
shadowing effect undergoes no scale evolution; that
is, there is no QCD evolution of the quark and gluon
structure functions FA

q , F
A
q̄ , and F

A
g inQ2. However,

experimental data suggest that the ratio RA depends
strongly on the scale of the 4-momentum transfer
squared Q2 [7, 8]. In the Q2 range between 4 and
100 GeV2, the ratio RAF2

increases from 0.54 to 0.66
at x = 0.001. The theoretical calculations from [13,
19], which are based on solving modified evolution
equations within the Dokshitzer–Gribov–Lipatov–
Altarelli–Parisi formalism, revealed that, with in-
creasing 4-momentum transfer squared, the shadow-
ing of gluons in a nucleus becomes less important
than the shadowing of quarks. Later on, some phe-
nomenological models (see, for example, [12]) that
make it possible to take into account the shadowing-
effect-induced corrections to nuclear structure func-
tions were developed on the basis of the results ob-
tained. It turned out that, for (mini)jet-production
cross sections and, hence, for the total transverse
energy and the charged-particle multiplicity, these
models yield strongly different estimates. By way of
example, the results of the calculations for the pseu-
dorapidity distribution of the number of (mini)jets are
displayed in Fig. 3 for two phenomenological models
of shadowing. There, Njet(shadowing)/Njet is the
ratio of the number of (mini)jets that are formed in
collisions of lead nuclei at an energy of 5 TeV per
nucleon and which are calculated with allowance for
shadowing to the number of (mini)jets obtained by
using structure functions without shadowing.

The inclusion of Q2 evolution substantially re-
duces the influence of shadowing: the distribution ob-
tained with the parametrization in Eq. (4) (solid line)
is nearly twice as high as the distribution computed
on the basis of the EKS98 model [12] (dash-dotted
line). In our calculations, we also considered that the
present-day accuracy in determining nuclear struc-
ture functions is rather poor (δxg(x) ∼ 30% at x =
0.0001 and Q2 = 5 GeV2 [20]). However, the predic-
tions of the two models used differ so strongly that,
despite large uncertainties in the calculations, we can
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 11 20
conclude that the global observables being considered
are highly sensitive to various aspects of the dynamics
of nucleus–nucleus interactions and can be used to
test experimentally parton-shadowing models, espe-
cially at high luminosities of future hadron colliders
(RHIC, LHC).

We note that the (mini)jet-production cross sec-
tions computed by formula (1) depend strongly on the
set of structure functions used.

We have performed a comparative analysis of the
cross sections for (mini)jet production in AA inter-
actions, σjet, for three sets of parton structure func-
tions. The results of the calculations for the relevant
cross sections are quoted in the table both for the
case where shadowing is disregarded and for the case
where the scale evolution of shadowing in various
nuclei is taken into account. It can be seen that, al-
though the cross-section values change sizably upon
going over from one set of structure functions to an-
other, the ratio of the cross section where shadowing
is taken into account to the cross section where this
effect is disregarded remains unchanged for the same
nucleus. Thus, the EKS98 model of shadowing is not
sensitive to the choice of set of structure functions (at
least within their class considered here).
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5. CONCLUSION

We have studied the effect of parton shadowing on
the distributions of global observables. Specifically,
we have considered the distributions dET /dη and
dnch/dη.

We have used two models of parton shadowing:
(i) that which allows for scale evolution and (ii) that
which disregards it. The calculations based on the
second model have revealed that, for PbPb interac-
tions at an energy of 5 TeV per nucleon, the inclusion
of shadowing in the structure functions leads to a
reduction of the transverse-energy density and the
charged-particle multiplicity by a factor of 2.7.

Upon taking into account the scale evolution of
nuclear structure functions [model (i)], this effect is
reduced by a factor of about 1.9. Thus, the distribu-
tions of global observables have proved to be highly
sensitive to the choice of parton-shadowing model.
This circumstance can be used to test the proposed
scenario of shadowing.

It has also been established that, within the ex-
isting models of shadowing, the use of different sets
of parton structure functions has no effect on the
behavior of the distributions of global observables.
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Abstract—A collision of two parallel domain walls in a supersymmetric model is analyzed by using both
the effective-Lagrangian approximation and a numerical solution to the equations of motion for the scalar
components of the superfields involved. Two cases—that where a configuration belonging to the type of
two parallel walls is saturated in the sense of Bogomol’nyi, Prasad, and Sommerfeld (BPS) and that where
such a configuration is not BPS-saturated—are considered individually. For the first case, it is shown
that, at low initial velocities, a collision of the walls is virtually an elastic reflection somewhat delayed in
time. It is also demonstrated that, in this case, it is possible to introduce a collective variable that has
the meaning of an internal parameter of the configuration and which can be treated as a dynamical (time-
dependent) variable and to describe the dynamics of the system in terms of an effective Lagrangian. For
the second case, it is found that, for collisions, there is a critical value of vcr ≈ 0.9120 for the initial velocity
vi. For vi < vcr, the reflection of the walls occurs, the vacuum between the walls remaining unchanged.
For vi > vcr, the collision process is accompanied by a change in the vacuum state between the walls.
c© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The presence of domain walls in supersymmetric
models involving scalar superfields is associated with
the existence of degenerate vacua. If there are a few
isolated degenerate vacua, there can exist domain
walls between each pair of such vacua. The question
of intersection of two or more domain walls has been
intensively studied in recent years. In this connection,
it is worth noting the studies of Shifman and Voloshin
[1–3]. Within the Wess–Zumino model involving
two chiral superfields, it was shown in [1] that, for a
domain wall saturated in the sense of Bogomol’nyi,
Prasad, and Sommerfeld (BPS), there exist not only
zero modes associated with a shift of such a wall as
a discrete unit but also zero modes associated with
a change in the internal parameter of the relevant
configuration. In [2], Voloshin investigated stability
of some domain-wall-type configurations and con-
sidered the possibility of formation of their intersec-
tions. Some questions concerning BPS-saturated
intersections of domain walls were also discussed in
the studies reported in [4, 5], which appeared some-
what later. A one-parameter family of domain walls
in a generalized Wess–Zumino model that involves
two scalar superfields was presented in [3]. A con-
figuration that corresponds to the intersection of two
domain walls at a small angle was considered in [6]
for the case where a static solution in the form of

*e-mail: gani@heron.itep.ru
**e-mail: kudryavt@heron.itep.ru
1063-7788/01/6411-2043$21.00 c©
two parallel walls is known analytically. For a col-
lision of two walls, the time evolution of the process
is investigated here in Section 3 by using a similar
method. The study of Smilga and Veselov [7], who
considered the effective Lagrangian of SU(2) super-
symmetric QCD and solved numerically the equa-
tions of motion, is also worthy of note. In this
way, they found domain-wall-type solutions, which
include both BPS-saturated and BPS-unsaturated
solutions.

2. DESRIPTION OF THE MODEL

Following [1–3, 6], we consider a supersymmetric
model that involves two chiral superfieldsΦ andΞ and
the superpotential

W (Φ,Ξ) =
m2

λ
Φ − 1

3
λΦ3 − αΦΞ2,

where m is a mass parameter and λ and α are cou-
pling constants. We assume that all parameters are
real-valued and positive and denote by φ and χ the
scalar components of the superfields Φ and Ξ, respec-
tively. Their dynamics is described by the Lagrangian

L = (∂φ)2 + (∂χ)2 (1)

−
(
m2

λ
− λφ2 − αχ2

)2

− 4α2φ2χ2 .

In the following, we everywhere consider configura-
tions of the type of domain walls orthogonal to the x
2001MAIK “Nauka/Interperiodica”
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Fig. 1. Positions of the vacua in the model being consid-
ered.

axis. We assume that the fields φ and χ are indepen-
dent of other coordinates. The surface density of the
wall energy is given by

E =

+∞∫

−∞

[(
∂φ

∂t

)2

+
(
∂φ

∂x

)2

+
(
∂χ

∂t

)2

(2)

+
(
∂χ

∂x

)2

+
(
m2

λ
− λφ2 − αχ2

)2

+ 4α2φ2χ2

]
dx.

From (2), we can easily obtain first-order differ-
ential equations of the type of the BPS equations [8].
Indeed, we consider time-independent configurations
φ(x) and χ(x). We transform (2) as follows:

E =

+∞∫

−∞

[
∂φ

∂x
−
(
m2

λ
− λφ2 − αχ2

)]2

dx (3)

+

+∞∫

−∞

[
∂χ

∂x
+ 2αφχ

]2

dx

+

+∞∫

−∞

[
2
∂φ

∂x

(
m2

λ
− λφ2 − αχ2

)
− 4αφχ

∂χ

∂x

]
dx.

It can easily be seen that the third integral is an
integral of a total derivative; that is,

+∞∫

−∞

dF

dx
dx = F |x=+∞ − F |x=−∞ = Q,

where

F [φ(x), χ(x)] = 2φ
(
m2

λ
− λ

3
φ2 − αχ2

)
.

The quantity Q, which can be referred to as a topo-
logical charge of the configuration, depends only on
the boundary conditions for the functions φ(x) and
χ(x), but it is independent of their behavior at finite x.
PH
The first and the second integral in (3) are integrals
of nonnegative functions. It follows that, if we seek
configurations satisfying given boundary conditions
and having aminimal energy, it is necessary to require
that the integrands there vanish; that is,

dφ

dx
=

m2

λ
− λφ2 − αχ2, (4)

dχ

dx
= −2αφχ.

Configurations that satisfy preset boundary condi-
tions and the set of first-order differential Eqs. (4)
are referred to as BPS-saturated configurations. The
energy of a BPS-saturated configuration is obviously
equal to Q. If Q = 0, boundary conditions forbid the
existence of nontrivial BPS-saturated configurations
(by a trivial configuration, wemean a solution that co-
incides with the same vacuum over the entire space).

The potential in the Lagrangian given by Eq. (1)
has four degenerate minima occurring at the points

(±m/λ, 0) and
(
0,±m/

√
λα
)

in the (φ, χ) plane.

We number them as is illustrated in Fig. 1. In
all, there are four vacuum states, whence it follows
that six types of domain walls between the different
vacua are possible in the model being considered.
All of these, with the exception of the wall between
vacua 3 and 4, are BPS-saturated. That BPS
configurations of the wall type cannot exist between
vacua 3 and 4 follows from the vanishing of the
topological charge Q34 = Q43 when boundary con-
ditions of the type being considered are imposed on
the fields φ and χ. For the remaining types of walls,
we can easily obtain Q12 = −Q21 = (8/3)Q0 and
Q13 = −Q31 = Q14 = −Q41 = Q42 =−Q24 =Q32 =
−Q23 = (4/3)Q0, where Q0 ≡ m3/λ2.

For the sake of convenience, we will henceforth
use the dimensionless variables f and h that are
related to φ and χ by the equations

φ =
m

λ
f , χ =

m√
λα

h .

In terms of the new variables (f, h), the vacuum
states of the model being considered are represented
by the points (±1, 0) and (0,±1). We also intro-
duce the notation λ/α = ρ and set m = 1. The BPS
Eqs. (4) then take the form

df

dx
= 1 − f2 − h2, (5)

dh

dx
= −2

ρ
fh.

Dividing the first equation in (5) by the second one,
we obtain

df

dh
= −ρ

2
1 − f2 − h2

fh
.
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This is an ordinary differential equation (a linear
one if f2 is treated as a function of h), whose general
solution can be represented in the form

f2 = 1 − ρh2

ρ− 2
− Chρ, (6)

where C is a constant of integration (it is assumed
that ρ 	= 2). The constant C changes within the
interval C∗ ≤ C < +∞, where C∗ = 2/(2 − ρ). In
[3], Shifman and Voloshin discussed the properties
of the solution given by (6) and obtained explicit
expressions for f(x) and h(x) at ρ = 4 for arbitrary C.
The trajectories in the (f , h) plane that are specified
by Eq. (6) are shown in Fig. 2 for some values of the
constant C. It is worthy of note that, from the second
equation in (5), we immediately obtain

x = −ρ

2

∫
dh

hf(h)
. (7)

The integral on the right-hand side of Eq. (7) is
expressed in terms of elementary functions at ρ = 1
and ρ = 4. At ρ = 1, the model being considered
reduces to the trivial case of two noninteracting scalar
fields φ̃ = (φ + χ)/

√
2 and χ̃ = (χ− φ)/

√
2. In the

following, we everywhere assume that ρ = 4.
At C = C∗ = −1, we find from (6) that

f = ±(1 − h2). (8)
Choosing the minus sign in (8), substituting this
expression into (7), and performing integration there,
we obtain

f13(x− x0) = f14(x− x0) =
1
2

(
tanh

x− x0

2
− 1
)
,

(9)

h2
13(x− x0) = h2

14(x− x0) =
1
2

(
1 + tanh

x− x0

2

)
,

where x0 is a constant of integration. The solution in
(9) corresponds to a wall between vacua 1 and 3 or
1 and 4, depending on the choice of sign in taking
the square root of h2. The position of the wall is
determined by the constant x0. If the plus sign is
chosen in Eq. (8), we arrive at expressions for the
3 → 2 and 4 → 2 walls; that is,

f32(x− x0) = f42(x− x0) =
1
2

(
1 + tanh

x− x0

2

)
,

(10)

h2
32(x− x0) = h2

42(x− x0) =
1
2

(
1 − tanh

x− x0

2

)
.

The energies of the configurations (9) and (10) are
equal to 4/3 [(4/3)m3/λ2 in dimensional units]. At
arbitrary values of C from (6) and (7), we obtain a
family of solutions for walls between vacua 1 and 2 [3]:

f12(x− x0) =
e2(x−x0) − C − 1
(ex−x0 + 1)2 + C

, (11)
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Fig. 2. Trajectories in the (f , h) plane that are specified
by Eq. (6) at ρ = 4 and some values of the constant C.
Shown in the figure are branches that were computed for
positive values of h. The numbering of the vacuum states
corresponds to that in Fig. 1.

h2
12(x− x0) =

2ex−x0

(ex−x0 + 1)2 + C
.

At ρ = 4, the constant C changes in the interval
−1 ≤ C < +∞. We note that the energy of the con-
figurations in (11) is independent of the parameter C
and is equal to 8/3, the quantity x0 determining the
shift of the wall along the x axis; it is obvious that this
shift does not affect the energy either. We choose x0

in such a way as to ensure fulfillment of the equality
f(0) = 0 in (11):

x0 = −1
2

ln (C + 1).

The solution given by (11) can then be recast into
the form [6]

f12(x) =
a(e2x − 1)

a+ 2ex + ae2x
, (12)

h2
12(x) =

2ex

a+ 2ex + ae2x
,

where a =
√

1 + C, 0 ≤ a < +∞. Introducing the
parameter s via the relation

cosh s = 1/a, (13)

we obtain

f12(x) =
1
2

(
tanh

x+ s

2
+ tanh

x− s

2

)
, (14)

h2
12(x) =

1
2

(
1 − tanh

x + s

2
tanh

x− s

2

)
.

Wenote that f12(x) is merely the sum f13(x+ s) +
f32(x− s). This statement is valid for any value of
s. At large s  1, we also have, to an exponential
accuracy, the relation

h12(x) ≈ h13(x+ s) + h32(x− s).
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Fig. 3. Schematic representation of a collision between
1 → 3 and 3 → 2 domainwalls. Numbers denote vacuum
states in accordance with their arrangement in Fig. 1.

[In taking the square root of h2
12(x), we choose a plus

sign.] Thus, we see that, for s  1, the configuration
specified by Eq. (14) has the form of two walls
situated at the points x = ±s. A transition between
vacua 1 and 3 and a transition between vacua 3 and 2
occur at x = −s and x = +s, respectively. It should
be emphasized that Eq. (13) determines real-valued
s only for 0 ≤ a ≤ 1—in the region 1 < a < +∞, the
parameter s is pure imaginary.

3. TIME DEPENDENCE
FOR BPS-SATURATED CONFIGURATIONS

The problem of intersection of two domain walls
within the supersymmetric model being discussed
was investigated in [6]. Instead of solving the exact
equations of motion for the fields involved, the authors
of [6] made use of the following trick. It has already
been mentioned above that, at s  1, a configuration
of the type in (14) represents two parallel 1 → 3 and
3 → 2 domain walls separated by the distance 2s. If
we now assume that s is not a constant but a quantity
(weakly) dependent on the coordinate along the wall
(for example, y), which is orthogonal to the x axis,
we will obtain a configuration formed by two (slightly)
nonparallel domain walls, which therefore intersect at
a small angle.

On the basis of a similar argument, we consider
here the time evolution of a collision between the
1 → 3 and 3 → 2 walls. We substitute expressions
(14), which describe a configuration belonging to the
type of 1 → 3 and 3 → 2 walls at the points x = −s
and x = +s into the expression that is obtained for
energy from (2) with allowance for the definition of
the fields f and h in terms of the fields φ and χ.
Assuming that the parameter s is not a constant but
a quantity dependent on the time t [this procedure is
approximate in that the functions in (14) at s = s(t)
must not be solutions to the equations of motion for
PH
the fields f and h; at this point, it is not assumed that
the dependence s(t) is weak], we obtain

E = 2E0 + Heff , (15)

where E0 = 4/3 is the energy of the 1 → 3 or the
3 → 2 wall and

Heff =
1
2
m(s)ṡ2. (16)

Here, we have introduced the notation

m(s) = 4
[
s tanh s+

5
3
− 2s

tanh s
(17)

+
1

tanh2 s

( s

tanh s
− 1
)]

.

For the function s(t), the effective Hamiltonian (16)
yields the differential equation

m(s)s̈+
1
2
m′(s)ṡ2 = 0 . (18)

In order to investigate the process of wall collision, it
is necessary to take the initial configuration (14) at
some s(0)  1 and ṡ(0) < 0. Since the parameter s
in (14) has the meaning of half the distance between
the walls, such an initial configuration corresponds to
the 1 → 3 and 3 → 2 walls approaching each other
along the x axis, their initial velocities being |ṡ(0)|. By
numerically solving Eq. (18) with the aforementioned
initial conditions, it can be shown that s(t) decreases
to zero. In the region of small s, the equation can be
solved analytically. The result is

m(s) ≈ 32
15
s2, (19)

s(t) =
√

2s(t∗)ṡ(t∗)(t− t∗) + s2(t∗),
where t∗ is the time instant at which the numerical
solution to Eq. (18) is matched with the analytic
expression (19). It can be seen that the function s(t)
behaves as

√
t− t0, where t0 possesses the following

property: the closer the matching instant t∗ to the
time instant at which the numerical solution for s(t)
vanishes, the closer t0 to t∗. For the case of two
interacting Skyrmions in the (2 + 1)-dimensional σ
model, an equation that is similar to (18), but which
involves a function m(s) of a different form, was dis-
cussed in [9]. A square-root (singular) behavior of
the variational function s(t) [s(t) ∼

√
t− t0], which

determines the distance between the Skyrmions, was
also found in that study.

When s changes from +∞ to 0, the parameter a
takes values from 0 to 1. At s = 0 (the point A in
Fig. 3), we find for the fields in Eq. (14) that

f(x) = tanh
x

2
, h(x) =

1
√

2 cosh
x

2

. (20)

In the region 1 < a < +∞, the parameter s defined
according to (13) becomes a pure imaginary quantity;
YSICS OF ATOMIC NUCLEI Vol. 64 No. 11 2001
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therefore, it is convenient to introduce the variable s̃
specified by the relation

cos s̃ = 1/a. (21)

The effective Hamiltonian for s̃ is analogous to that in
(16); that is,

Heff =
1
2
m̃(s̃) ˙̃s2, (22)

where

m̃(s̃) = 4
[
s̃ tan s̃− 5

3
+

2s̃
tan s̃

(23)

+
1

tan2 s̃

(
s̃

tan s̃
− 1
)]

.

When a = 1 (or s = 0), we go over from the variable s
to the variable s̃, which increases from 0 to π/2. At
s̃ = π/2 (the point B in Fig. 3), the profiles of the
fields f and h are given by

f(x) = tanhx, h(x) ≡ 0. (24)

After that, s̃ decreases to zero and becomes pure
imaginary. When this variable reaches the value of
s̃ = 0 (the pointC in Fig. 3), we return to the variable
s, which begins to increase from 0 to +∞. We
note that, for s̃ � 1 and |s̃− π/2| � 1, we have also
used approximate analytic solutions to the equation
of motion. The variables s and s̃ versus time are
displayed in Fig. 4 for two values of the initial wall
velocity (|ṡ(0)| = 0.05 and |ṡ(0)| = 0.1). In order
to test the applicability of the above approximation,
where we have treated s as a dynamical variable, we
solved numerically the Cauchy problem, taking the
same initial conditions for the set of field equations
∂2f

∂t2
− ∂2f

∂x2
− 2f(1 − f2 − h2) +

4
ρ
fh2 = 0, (25)

∂2h

∂t2
− ∂2h

∂x2
− 2
ρ
h(1 − f2 − h2) +

4
ρ2
hf2 = 0,

which follow from the Lagrangian specified by Eq. (1).
A comparison of these results reveals that, at low val-
ues of the initial wall velocities (|ṡ(0)| � 1), numeri-
cal solutions to the set of Eqs. (25) (the equations of
motion) comply well with the approximate solutions
that are obtained from the effective Lagrangian. This
good agreement means that, at identical boundary
conditions—that is, at identical values of ṡ(0)—one
cannot visually observe a sizable distinction between
the evolution of the initial conditions according to
the set of Eqs. (25) and the configurations that are
specified by (14) and which correspond to values of
the parameter s at the same values of t. This con-
firms that the dynamical-variable approximation used
is reasonable in studying the interaction of domain
walls. With increasing initial wall velocity |ṡ(0)|, the
numerical solutions to the field problem specified by
Eqs. (25) begin to deviate significantly from solutions
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 11 20
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to Eq. (18), which follows from the effective Hamil-
tonian featuring one dynamical variable s, whence
we conclude that different degrees of freedom play an
important role in fast collisions.

4. TIME DEPENDENCE
FOR NON-BPS CONFIGURATIONS

Let us now consider a collision of 3 → 2 and 2 → 4
walls (and 3 → 1 and 1 → 4walls as well). In contrast
to the preceding case, there does not exist here an
exact solution yielding a configuration belonging to
the type of two 3 → 2 and 2 → 4 walls situated con-
secutively by analogy with the 1 → 2 solution (14).
For this reason, we have to construct a trial solution
of the 3 → 2 → 4 type. This can be done, for example,
by taking a superposition of two elementary walls
3 → 2 and 2 → 4 situated at the points x = −x0 and
x = +x0, respectively; that is,

f324(x, x0) = f32(x+ x0) + f24(x− x0) − 1, (26)

h324(x, x0) = h32(x + x0) + h24(x− x0),

where

f32(x) =
1
2

(
1 + tanh

x

2

)
, (27)

h32(x) =

√
1
2

(
1 − tanh

x

2

)
,

f24(x) =
1
2

(
1 − tanh

x

2

)
, (28)

h24(x) = −
√

1
2

(
1 + tanh

x

2

)
.

We note that, upon the substitution of f = 0 into
the set of Eqs. (25), one can easily obtain the exact
diagonal solution 3 → 4:

f34(x) ≡ 0, h34(x) = − tanh
x

2
. (29)

The energy of this configuration is E34 = 16/3. In
order to obtain the energy of the configuration in (26)
01
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as a function of x0, we must substitute (26) into the
Hamiltonian. As a result, we obtain

E324(x0) = 2E0 + ∆E324(x0), (30)

where

∆E324 =

+∞∫

−∞

dx

[
2
df32

dx

df24

dx
+ 2ρ

dh32

dx

dh24

dx
(31)

+ (1 − f2
324 − h2

324)
2 +

4
ρ
f2
324h

2
324

− (1 − f2
32 − h2

32)
2 − 4

ρ
f2
32h

2
32

−(1 − f2
24 − h2

24)
2 − 4

ρ
f2
24h

2
24

]
.

For the sake of brevity, we have introduced here the
following notation: f32 ≡ f32(x+ x0), h32 ≡ h32(x+
x0), f24 ≡ f24(x− x0), and h24 ≡ h24(x− x0). We
have obtained ∆E324 as a function of x0 numerically
(Fig. 5, solid curve). In the limit of large x0, the con-
figuration in (26) reduces to two isolated walls 3 → 2
and 2 → 4. Therefore, their total energy is 2E0, and
we have ∆E324 ≈ 0. It can be seen from Fig. 5 that
the energy ∆E324 increases with decreasing x0. At
x0 = 0, we have∆E324(0) ≈ 3.119. This corresponds
to E324(0) ≈ 5.786. It should be noted that E324(0)
is greater than E34 = 16/3 ≈ 5.333. The energy of
the 3 → 2 → 4 configuration (26) has a maximum
at x0 ≈ −0.37 with (∆E324)max ≈ 3.202. At neg-
ative x0 of large magnitude, ∆E324(x0) approaches
the asymptotic value of 2.274. It should be noted,
however, that, at negative x0, the trial configuration
(26) has, in fact, a form of the 3 → 1 → 4 type (see
Fig. 6) rather than a form of the 3 → 2 → 4 type. It is
obvious that, by analogy with (26), we can construct
a 3 → 1 → 4 ansatz of the form
f314(x, x0) = f31(x+ x0) + f14(x− x0) + 1, (32)

h314(x, x0) = h31(x + x0) + h14(x− x0),
PH
where

f31(x) = −1
2

(
1 + tanh

x

2

)
, (33)

h31(x) =

√
1
2

(
1 − tanh

x

2

)
;

f14(x) = −1
2

(
1 − tanh

x

2

)
, (34)

h14(x) = −
√

1
2

(
1 + tanh

x

2

)
.

The energy of the 3 → 1 and 1 → 4 walls is identical
to the energy of the 3 → 2 and 2 → 4walls. Therefore,
the energy of the configuration in (32) as a function of
x0 is given by

E314(x0) = 2E0 + ∆E314(x0), (35)

where the “potential” ∆E314(x0) is analogous to
∆E324(x0) in (31). The profile of the function
∆E314(x0) is identical to that of ∆E324(x0). It was
mentioned above that, at x0 < 0, the ansatz in (26)
has a form of the 3 → 1 → 4 type (Fig. 6b). As to the
configuration in (32), it has a form of the 3 → 2 → 4
type at negative values of x0 (Fig. 6d). It should be
noted that h324(x,−x0) 	= h314(x, x0); that is, the
configurations in Figs. 6a and 6d are not identical.
The same is true for the configurations in Figs. 6b
and 6c as well. In order to compare the energies of
the configurations in (26) and (32), which belong to
the same type, it is necessary to plot the graphs of
∆E324(x0) and ∆E314(−x0) [or of ∆E314(x0) and
∆E324(−x0)] in the same coordinate axes. This is
precisely what was done in Fig. 5, from which we
can see that, for the chosen type, a configuration
characterized by positive values of x0 has a minimum
energy.

We solved numerically the set of field Eqs. (25)
with the initial conditions (26), where the 3 → 2 and
2 → 4 walls are situated at a distance 2x0  1 and
approach each other with initial velocities vi. De-
pending on the initial velocities, various types of evo-
lution were observed. As long as vi was less than a
critical value vnum

cr , the 3 → 2 and 2 → 4 walls col-
lided and then moved apart to infinity. As a result,
we again obtained a 3 → 2 → 4 configuration after a
collision. For initial velocities satisfying the condition
vi > vnum

cr , the collision process proceeded in a some-
what different way. The difference was that, after a
collision event, we observed a 3 → 1 → 4 configura-
tion. For the critical velocity, we obtained the value
of vnum

cr ≈ 0.9120. The presence of different collision
regimes is a consequence of the fact that the energy of
the 3 → 2 → 4 configuration is not degenerate in the
parameter x0; that is, there is a potential interaction
between the 3 → 2 and 2 → 4 domain walls. It should
be noted that there is no potential interaction in the
case of BPS-saturated walls.
YSICS OF ATOMIC NUCLEI Vol. 64 No. 11 2001
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Fig. 6. Profiles of the fields (solid curves) f(x) and (dashed curves) h(x) for the 3 → 2 → 4 (26) and 3 → 1 → 4 configurations
(32) at x0 = ±10.
Within the potential approach, it is also possible
to explain the existence of the critical velocity. From
Fig. 5, it can be seen that (inelastic) reflection can be
expected if the kinetic energy of the 3 → 2 and 2 → 4
walls is less than∆E∗ ≈ 3.119 (this is the energy that
corresponds to the intersection of the graphs). The
critical-velocity value of v∗cr ≈ 0.8874, which is close
to the “experimental” value of vnum

cr , corresponds to
the energy ∆E∗. If the kinetic energy of the walls
exceeds ∆E∗, it is natural to expect that a collision
process results in the formation of a configuration that
belongs to the type in (26) and which is characterized
by negative x0. But the configuration in (26) at
negative x0 is of the 3 → 1 → 4 type (see Fig. 6),
and it can be seen from Fig. 5 that, in this sector,
configurations of the type in (32) have a lower energy.
Therefore, the configuration in (26) for x0 < 0 will
decay into (32), whereupon the 3 → 1 and the 1 → 4
wall formed move apart at infinity.

It should also be noted that the initial configura-
tion (26) at x0 = 0 with vi = 0 can be interpreted as
an excitation of the static solution (29), whence it
follows that, upon radiating part of the energy, such
an initial configuration leads to the formation of the
kink that has the form (29) and which features an
excited discrete (shape) mode. At nonzero values of
x0 or vi, we were unable to obtain such an excited
kink in numerical calculations—we observed a pair of
walls moving apart, either 3 → 1 and 1 → 4 or 3 → 2
and 2 → 4.

5. CONCLUSION
To summarize, we note once again that collisions

of 1 → 3 and 3 → 2 (or 1 → 4 and 4 → 2) walls differ
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 11 20
substantially from collisions of 3 → 1 and 1 → 4 (or
3 → 2 and 2 → 4) walls. In the first case, there is an
exact static solution that is BPS-saturated and which
corresponds to two parallel walls. Here, the energy
of the configuration is independent of the parameter
specifying the distance between the walls. There-
fore, there is no “potential” interaction between them,
and their collision at any (arbitrarily small) initial
velocities is accompanied by a change in the vacuum
between the walls (see Fig. 3). For a configuration
formed by two parallel walls 3 → 1 and 1 → 4, there
does not exist an exact solution. For this reason, we
have constructed initial conditions from two separate
solutions 3 → 1 and 1 → 4 and found that the energy
depends on the degree of their overlap—that is, on
the distance between the walls. Hence, a “potential”
interaction arises between them. This leads to the
emergence of two collision modes: at initial veloc-
ities less than the critical value, colliding walls are
reflected without a change in the vacuum between
the walls, while, at initial velocities greater than the
critical value, the reflection of the colliding walls is
accompanied by a change in the vacuum between the
walls.
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Abstract—Dynamical symmetry breaking in the Nambu–Jona-Lasinio model in a constant external elec-
tromagnetic field is studied in curved spacetime of arbitrary dimension. The effective potential of composite
bifermion fields is calculated in the proper-time formalism to terms linear in curvature. Curvature- and
electromagnetic-field-induced phase transitions are analyzed. c© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Models of four-fermion interaction, such as the
Nambu–Jona-Lasinio (NJL) model [1] or the
Gross–Neveu (GN) model [2], are usually considered
as effective low-energy theories describing strong-
interaction physics [3]. Such models possess non-
trivial properties, including a dynamical symmetry
breaking and dynamical mass generation, that are of
particular importance in quantum field theory [4].
The mechanism of dynamical symmetry break-

ing depends substantially on temperature, density,
chemical potential, external fields, curvature, and
topology of spacetime, whose presence renders the
phase structure of the NJL and GN models more
complicated. It was revealed that a magnetic field
always breaks chiral symmetry, whereas an electric
field tends to restore it [5–11].
The effect of a gravitational field on dynamical

symmetry breaking was also considered. In partic-
ular, it was found that the curvature of spacetime
may induce phase transitions [12–16], which must be
taken into account in constructing realistic scenarios
of the evolution of the early Universe.
In the present study, we examine dynamical

symmetry breaking within the NJL model in curved
spacetime of d dimensions in an external electro-
magnetic field. We use dimensional regularization
because, in the case under consideration, it is the
most convenient regularization scheme [17]. The
contribution of a constant electromagnetic field such
thatE ·H = 0 is calculated exactly in the proper-time
formalism [18], whereas the dependence on curvature
is taken into account as a linear contribution to

*e-mail: shilnov@mail.ru
**e-mail: Vladislav.V.Chitov@univer.kharkov.ua
1063-7788/01/6411-2051$21.00 c©
the effective potential of composite bifermion fields.
The results of our numerical analysis suggest the
existence of additional phase transitions induced both
by the electromagnetic field and by the curvature of
space.

2. EFFECTIVE POTENTIAL OF THE MODEL

The NJL model in curved spacetime of arbitrary
dimension is described by the action functional [1]

S =
∫
ddx

√
−g
{
iψ̄γµ(x)Dµψ (1)

+
λ

2N

[
(ψ̄ψ)2 + (ψ̄iγ5ψ)2

]}
,

where g is the determinant of the metric tensor; λ is
the coupling constant; and the covariant derivative
Dµ is given by

Dµ = ∂µ − ieAµ −
i

4
ωabµ σab, (2)

where Aµ is the vector potential of the electromag-
netic field and ωabµ is the usual spin connection.
The local Dirac matrices γµ(x) are expressed in

terms of the conventional matrices γa in flat space and
the vierbein eaµ as

γµ(x) = γaeµa(x), σab =
i

2
[γa, γb]. (3)

By N , we denote the number of the bispinor fields
ψa. The dimension of the spinor representation is
assumed to be equal to four. Greek and Latin indices
correspond to curved tangent space and flat tangent
space, respectively.
Introducing the auxiliary fields

σ = − λ

N
(ψ̄ψ), π = − λ

N
ψ̄iγ5ψ, (4)
2001MAIK “Nauka/Interperiodica”



2052 SHIL’NOV, CHITOV
we can recast the action functional (1) into the form

S =
∫
ddx

√
−g
{
iψ̄γµDµψ (5)

− N

2λ
(
σ2 + π2

)
− ψ̄(σ + iπγ5)ψ

}
.

In the leading order of 1/N expansion, the standard
expression for the effective action is then given by

1
N

Γeff(σ, π) = −
∫
ddx

√
−g σ

2 + π2

2λ
(6)

− i ln det
[
iγµ(x)Dµ − (σ + iγ5π)

]
.

Since the final expression depends only on σ2 + π2,
we set π = 0. This means that we actually go over to
the GN model [2]. Defining the effective potential for
constant σ and π as

Veff = − Γeff

N
∫
ddx

√−g ,

we obtain

Veff =
σ2

2λ
+ i tr ln〈x| [iγµ(x)Dµ − σ] |x〉. (7)

Using the Green’s function satisfying the equation
(iγµDµ − σ)xG(x, x′, σ) = δ(x− x′), (8)

we derive the formula

V ′
eff(σ) =

σ

λ
− i trG(x, x, σ). (9)

For the effective potential, the linear correction in
curvature is readily calculated by employing the local-
momentum representation [19, 20]. Using the special
Riemann coordinates [19, 21], we arrive at

gµν(x) = ηµν −
1
3
Rµρσν y

ρyσ, (10)

eµa(x) = δµa +
1
6
Rµρσa y

ρyσ, (11)

ωabµσab =
1
2
Rabµλ y

λσab, (12)

y = x− x′. (13)

The vector potential of the electromagnetic field is
given by

Aµ(x) = −1
2
Fµνx

ν , (14)

where Fµν is the strength tensor of the electromag-
netic field. Substituting Eqs. (10)–(12) into Eq. (8),
we find that the Green’s function satisfies the equa-
tion [

iγa
(
δµa +

1
6
Rµρσa y

ρyσ
)

(15)

×
(
∂µ −

i

8
Rbcµλ y

λσbc − ieAµ
)

− σ
]

PH
×G(x, x′, σ) = δ(x − x′).
We then expand the Green’s function in powers of the
curvature of spacetime; that is,

G = G0 +G1 + . . . , (16)

whereG0 is the Green’s function in a flat space,G1 ∼
R, etc. After straightforward but tedious computa-
tions, we arrive at

G̃1(x− x′, σ) =
∫
dx′′G00(x− x′′, σ) (17)

×
[
− i

6
γaRµρσa (x′′ − x′)ρ(x′′ − x′)σ ∂x′′µ

× G̃0(x′′ − x′, σ) − 1
8
γaσbcRbcaλ (x′′ − x′)λ

× G̃0(x′′ − x′, σ)

]
,

where the function G̃ is related toG by the equation

G(x, x′) = exp


ie

x′∫

x

Aµdx
µ


 G̃(x− x′) (18)

and G00 is the Green’s function for free fermions in a
flat spacetime. In what follows, we do not discrimi-
nate between Greek and Latin indices because this is
beyond the approximation linear in curvature.
In order to derive the effective potential on the

basis of expression (9), we need only the values of
all relevant quantities in the limit x→ x′. We can
also simplify formula (17) by considering a space of
constant curvature R, where

Rµσκλ =
R

d(d− 1)
(ηµκησλ − ηµληκσ) . (19)

Thus, the expression for the Green’s function G̃1 in
the space of arbitrary dimension d takes the form

G̃1(0, σ) = − iR

12d(d − 1)
(20)

×
∫
dzG00(−z, σ)

[
2γνzνzµ ∂µ G̃0(z, σ)

− 2z2γµ ∂µ G̃0(z, σ) + 3(d− 1)γµzµ G̃0(z, σ)

]
.

We consider the electromagnetic-field configura-
tion

G = −1
8
FµνFρσε

µνρσ = E ·H = 0,

F =
1
4
FµνF

µν =
1
2

(H2 − E2) = 0. (21)
YSICS OF ATOMIC NUCLEI Vol. 64 No. 11 2001
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The proper-time representation for the Green’s func-
tions in a flat space has the form [18]

G̃0(z, σ) = e−i
πd
4

∞∫

0

ds

(4πs)d/2
e−isσ

2
(22)

× exp
(
− i

4s
zµC

µνzν

)(
σ +

1
2s
γµCµνz

ν

− e

2
γµFµνz

ν

)[
(eξs) coth(eξs) − es

2
γµγνFµν

]
,

G̃00(−z, σ) = e−i
πd
4

∞∫

0

dt

(4πt)d/2
(23)

× exp
[
−i
(
σ2t+

z2

4t

)](
σ +

1
2t
γµzµ

)
,

where

Cµν = ηµν + Fµ
λFλν

(eξs) coth(eξs) − 1
ξ2

(24)

and ξ2 = E2 −H2 is an invariant of the electromag-
netic field.
There are two qualitatively different cases. If E >

H , in which case the magnetic field can be reduced to
zero by a Lorentz transformation, ξ is real. Upon the
Wick rotation is→ s, it→ t, which is necessary for
evaluating the relevant integral in Euclidean space,
the function cot(eξs) in the integrand tends to infinity
at regularly spaced points. The existence of an infinite
number of poles on the contour of integration means
that wemust take into account the contribution of the
respective residues, whereupon the effective poten-
tial develops an imaginary part, which indicates that
the ground state is unstable, with the result that it
can decay, producing particles. However, a solution
to this problem is beyond the scope of the present
article. We only mention that such an instability
stems from the absence of asymptotically free fermion
states in a constant external electric field. In order
to study a dynamical breakdown of symmetry, we
chose the simplest possibility of relatively small ξ
values at which particle production rate is exponen-
tially suppressed. In this case, the real part of the
effective potential still determines the ground state of
the system being considered to the required accuracy.
As a consequence, the mechanism of a dynamical
symmetry breaking is governed by the real part of the
effective potential exclusively; technically, this means
that we need only the principal values of all integrals.
In what follows, we everywhere discard the imaginary
part of the effective potential.
If E < H , in which case we can obtain a purely

magnetic field, ξ is pure imaginary, with the result
that, upon a Wick rotation, the function cot(eξs) has
no poles on the real axis other than that at the origin.
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 11 20
Substituting the expression for the Green’s func-
tion in a flat space into formula (20) and performing
a Wick rotation and some transformations, we obtain
the effective potential in the form

Veff(σ) =
σ2

2λ
(25)

+
2

(4π)d/2
p.v.

∞∫

0

ds

sd/2+1
e−sσ

2
(eξs)

× cot(eξs) − R

3d(4π)d/2

× p.v.

∞∫

0

∞∫

0

ds dt e−(s+t)σ2

(s+ t)d/2+1(1 + (eξt) cot(eξs))2

×
[
−(eξt) ((eξt) + (eξs))

+

((
4 − d

2

)
(eξt) +

3d
2

(eξs)

)
cot(eξs)

+ (eξt)

((
3d
2

− 4
)

(eξs) − d

2
(eξt)

)
cot2(eξs)

]
.

The integrals appearing in this expression diverge at
the lower limit; therefore, we must regularize them.
The simplest regularization scheme involves intro-
ducing a cutoff parameter Λ; moreover, this scheme
is necessary for comparing our result with the results
for d = 3, 4 in the limit ξ → 0 [15]:

V
(d=3)
eff (σ) =

σ2

2λ
+

Λ3

6π3/2

{(
1 − 2

σ2

Λ2

)
(26)

× exp
(
−σ

2

Λ2

)
+ 2

√
πσ3 erfc

(σ
Λ

)

− R

4Λ2

[
exp

(
−σ

2

Λ2

)
−

√
π σ erfc

(σ
Λ

)]}
,

V
(d=4)
eff (σ) =

σ2

2λ
+

1
(4π)2

{(
Λ4 − Λ2σ2

)

× exp
(
−σ

2

Λ2

)
+ σ4 Ei

(
σ2

Λ2

)
(27)

− R

6

[
exp

(
−σ

2

Λ2

)
− σ2 Ei

(
σ2

Λ2

)]}

with

erfc(x) =
2√
π

∞∫

x

e−t
2
dx, (28)

Ei(x) =

∞∫

x

exp(−s)
s

ds. (29)
01
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Expanding (26) and (27) and retaining only those
terms that do not vanish in the limit Λ → 0, we ar-
rive at

V
(d=3)
eff (σ) =

σ2

2λR
+
σ3

3π
+
Rσ

24π
, (30)

1
λR

=
1
λ
− Λ
π3/2

, (31)

V
(d=4)
eff (σ) =

σ2

2λ
(32)

− 1
(4π)2

{
2 Λ2σ2 + σ4

(
ln
σ2

Λ2
+ γ − 3

2

)

+
Rσ2

6

(
ln
σ2

Λ2
+ γ − 1

)}
+ O

(
σ2

Λ2

)
,

where γ is the Euler constant.

A regularization in terms of a ζ function is the
most convenient for our purposes because it can be
used in the case of arbitrary space dimensions. Per-
forming the first integration by means of the formula

∞∫

0

dxxs−1e−ax coth(cx)

=Γ(s)
[
21−sc−sζ

(
s,
a

2c

)
−a−s

]
,

we obtain

2
(4π)d/2

p.v.

∞∫

0

ds

sd/2−1
e−sσ

2
(eξs) coth(eξs) (33)

= Re

{(
ieξ

2π

)d/2
Γ
(

1 − d

2

)

×
[

2ζ
(

1 − d

2
,
σ2

2ieξ

)
−
(
σ2

2ieξ

)d/2−1
]}

.

Although the integral diverges at the lower limit, the
expression with the ζ function is finite because the
functions Γ(z) and ζ(z, x) can be analytically contin-
ued to all points of the domain Re(z) < 0, with the
exception of the poles of Γ(z) at z = 0, −1, −2, . . . .

In the limit of a weak electromagnetic field (eξ �
σ2), the curvature-dependent term in the effective po-
tential is simplified. Since the curvatureR is assumed
to be small in the linear approximation, we obtain

VR = − R

6(4π)d/2

∞∫

0

dxe−xσ
2
x−d/2 (34)

= − Rσ

6(4π)d/2
Γ
(

1 − d

2

)
.

PH
This expression is also finite for 2 < d < 4. Thus, we
can rewrite the effective potential in such a way that it
becomes finite and free from the cutoff parameter Λ:

ReVeff(σ) =
σ2

2λ
− Rσd−2

6(4π)d/2
Γ
(

1 − d

2

)
(35)

+ Re

{(
ieξ

2π

)d/2
Γ
(

1 − d

2

)

×
[

2 ζ
(

1 − d

2
,
σ2

2ieξ

)
−
(
σ2

2ieξ

) d
2
−1
]}

.

3. PHASE STRUCTURE OF THE MODEL

In order to find the ground state of the system,
it is necessary to determine the σ value at which
the effective potential has the global minimum. The
conditions of the global minimum are as follows: the
vanishing of the first derivative (stationarity condi-
tion),

∂ ReVeff(σ)
∂σ

∣∣∣∣
σmin

= 0; (36)

the positiveness of the second derivative (stability of
the extremum),

∂2 ReVeff(σ)
∂σ2

∣∣∣∣
σmin

≥ 0; (37)

and the condition that the effective potential at this
minimum is smaller than its values at other local
minima,

ReVeff(σmin) ≤ ReVeff(0). (38)

If H > E, the parameter ξ is pure imaginary, in
which case it is convenient to use the parameter ρ de-
fined as ρ =

√
H2 − E2 = iξ. The effective potential

then takes the form

Veff(σ) =
σ2

2λ
− Rσd−2

6(4π)d/2
Γ
(

1 − d

2

)
(39)

+
( eρ

2π

)d/2
Γ
(

1 − d

2

)

×
[

2 ζ
(

1 − d

2
,
σ2

2eρ

)
−
(
σ2

2eρ

) d
2
−1
]
.

From the condition of the vanishing of the first deriva-
tive, it follows that

1
λ
− (d− 2)Rσd−4

6(4π)d/2
Γ
(

1 − d

2

)
(40)

− 1
2π

( eρ
2π

) d
2
−1

Γ
(

2 − d

2

)

×
[

2 ζ
(

2 − d

2
,
σ2

2eρ

)
−
(
σ2

2eρ

) d
2
−2
]

= 0.
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Fig. 1. Dependence of xmin on l in a magnetic field at
r = 1.

To minimize the number of the parameters, we in-
troduce dimensionless parameters in the stationarity
condition; that is,

1
l

+
(r + 6)xd−4

3(4π)d/2
Γ
(

2 − d

2

)
(41)

− 4
(4π)d/2

Γ
(

2 − d

2

)
ζ

(
2 − d

2
, x2

)
= 0,

where

l = λ (2eρ)
d
2
−1, r =

R

2eρ
,
σ2

2eρ
= x2. (42)

Any nontrivial solution xmin satisfying the con-
ditions in (36)–(38) corresponds to a minimum of
the effective potential, σmin = xmin

√
2eρ = 0. The

results of our numerical analysis are presented in
Figs. 1 and 2.
Figure 1 shows xmin as a function of l at various

values of d and the fixed value of r = 1, which is
less than the critical value rc. It can be seen that a
nontrivial solution exists for any positive value of the
coupling constant and that, for l→ ∞, it tends to xas.
This solution has the form

(r + 6)xd−4
as

12
− ζ

(
2 − d

2
, x2

as

)
= 0. (43)

Note that xas tends to zero when r → rc. Hence, the
critical value rc is given by

rc = 6 + 12x4−dζ

(
2 − d

2
, 1 + x2

)∣∣∣∣
x→0

, (44)

whence we obtain rd<4
c = 6 for d < 4 and rd=4

c = 0 for
d = 4.
Figure 2 illustrates the second-order phase tran-

sition induced by the curvature R = 2erρ for various
d. The symmetry is dynamically broken at r < rc, and
the ground state corresponds to a nontrivial solution
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 11 20
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Fig. 2. Dependence of xmin on r in a magnetic field at
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xmin. The symmetric phase corresponds to r > rc.

Since r =
R

2eρ
, we conclude that a magnetic field

breaks the symmetry, whereas a curvature tends to
restore it. It should be borne in mind that the value
of rc = 6 is consistent with the condition that the
curvature is small. The point is that, in the weak-field
limit, σ2 � 2eρ, whereas the expansion in the cur-
vature is valid for R� σ2; therefore, the parameter

r =
R

2eρ
=
R

σ2

σ2

2eρ
can be substantially greater than

other parameters of the model.
In the case of E > H , the parameter ξ is real. In

dimensionless units, the effective potential and the
stationarity condition are given by

Re veff(x) =
x2

2 l
− r xd−2

6(4π)d/2
Γ
(

1 − d

2

)
(45)

+
2

(4π)d/2
Γ
(

1 − d

2

)
Re
[
id/2ζ

(
1 − d

2
,−ix2

)]
,

1
l

+
r xd−4

3(4π)d/2
Γ
(

2 − d

2

)
− 4

(4π)d/2
Γ
(

2 − d

2

)

(46)

×Re
[
id/2−1ζ

(
2 − d

2
,−ix2

)]
= 0,

where

v(x) = V (σ)(2eξ)−d/2, l = λ(2eξ)
d
2
−1, (47)

r =
R

2eξ
, x2 =

σ2

2eξ
.

The dependence of xmin = σmin/
√

2eξ on the pa-
rameters l and r for various values of d was obtained
numerically. This dependence at constant r and d
01
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r = 3.
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Fig. 5. Phase diagram (r, 1/l) in an electric field.

(r < rc) is shown in Fig. 3; it is typical of first-order
phase transitions. It can be concluded that this phase
transition is induced by the electric field (at constant
λ) or by a change in the coupling constant λ (at
constant ξ).
Thus, an increase in the electric field restores sym-
PH
metry, whereas an increase in the coupling constant
breaks it.
The first-order phase transition (for l > lc) in-

duced by the curvature r is shown in Fig. 4. The cur-
vature also restores symmetry. In both cases (Fig. 3
and Fig. 4), the critical point of the phase transition
is determined by Eq. (38). It can be seen from the
phase diagram in Fig. 5 that, in contrast to what
occurs in flat spacetime, where symmetry is broken
only at negative values of the coupling constant λ,
nonsymmetric phase in curved spacetime can exist at
positive values of the coupling constant as well.

4. CONCLUSION

We have studied the effect of external gravitational
and electromagnetic fields on the phase structure of
the four-fermion model in spacetime of arbitrary di-
mension.
In the case of a magnetic field, it has been shown

that chiral symmetry is restored at r = R/2eρ = 6
for all d < 4. The approximation used is applica-
ble at these values of the parameter r, because the
relevant simplifications in our formulas stem from
the assumption that eρ/σ2 � 1, whereas the local-
momentum representation is valid at smallR/σ2. For
this reason, R/2eρ can be considerably greater than
other parameters of the system.
In the case of an electric field, a first-order phase

transition occurs not only at negative values of the
coupling constant (as in flat space) but also at positive
values. Both the curvature and the electric field tend
to restore broken symmetry.
It turns out that the pattern of the phase transition

undergoes no qualitative changes for values of d in the
range 2 < d < 4.
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Zh. Éksp. Teor. Fiz. 61, 847 (1995) [JETP Lett. 61,
871 (1995)].

8. H. Suganuma and T. Tatsumi, Ann. Phys. (N. Y.) 208,
470 (1991); Prog. Theor. Phys. 90, 379 (1993).

9. V. Gusynin, V. Miransky, and I. Shovkovoy, Phys.
Rev. D 52, 4718 (1995); Phys. Lett. B 349, 477
(1995); Nucl. Phys. B 462, 249 (1996).

10. D. Cangemi, G. Dunne, and E. D’Hoker, Phys. Rev.
D 51, R2513 (1995); 52, R3163 (1995); C. N. Leung,
Y. J. Ng, and A. W. Ackly, Phys. Rev. D 54, 4181
(1996); D. S. Lee, C. N. Leung, and Y. J. Ng,
Phys. Rev. D 55, 6504 (1997); V. A. Miransky, hep-
th/9805159; E. J. Ferrer and V. Incera, SUNY-FRE-
98-11, hep-ph/9810473; D. S. Lee, P. N. McGraw,
Y. J. Ng, and I. A. Shovkovy, Phys. Rev. D 59, 085008
(1999).

11. M. Ishi-i, T. Kashiwa, and N. Tanemura, Prog. Theor.
PHYSICS OF ATOMIC NUCLEI Vol. 64 No. 11 20
Phys. 100, 353 (1998); S. Kanemura, H.-T. Sato, and
H. Tochimura, Nucl. Phys. B 517, 567 (1998).

12. T. Muta and S. D. Odintsov, Mod. Phys. Lett. A 6,
3641 (1991); C. T. Hill and D. S. Salopek, Ann.
Phys. (N.Y.) 213, 21 (1992); T. Inagaki, T. Muta, and
S. D. Odintsov, Mod. Phys. Lett. A 8, 2117 (1993);
E. Elizalde, S. D. Odintsov, and Yu. I. Shil’nov,
Mod. Phys. Lett. A 9, 913 (1994); T. Inagaki,
S. Mukaigawa, and T. Muta, Phys. Rev. D 52, R4267
(1995); E. Elizalde, S. Leseduarte, S. D. Odintsov,
and Yu. I. Shil’nov, Phys. Rev. D 53, 1917 (1996);
S. Kanemura and H.-T. Sato, Mod. Phys. Lett. A 24,
1777 (1995); G. Miele and P. Vitale, Nucl. Phys. B
494, 365 (1997); P. Vitale, Nucl. Phys. B 551, 490
(1999); J. Hashida, S. Mukaigawa, T. Muta, et al.,
Phys. Rev. D 59, 101302 (1999); HUPD-9909, gr-
qc/9907014.

13. E. V. Gorbar, Phys. Rev. D 61, 024013 (2000).
14. I. L. Buchbinder, S. D. Odintsov, and I. L. Shapiro,

Effective Action in Quantum Gravity (Inst. of
Physics Publ., Bristol, 1992).

15. T. Inagaki, T. Muta, and S. D. Odintsov, Prog. Theor.
Phys. Suppl. 127, 93 (1997).

16. D. M. Gitman, S. D. Odintsov, and Yu. I. Shil’nov,
Phys. Rev. D 54, 2968 (1996); B. Geyer, L. N. Gran-
da, and S. D. Odintsov, Mod. Phys. Lett. A 11,
2053 (1996); E. Elizalde, S. D. Odintsov, and
A. Romeo, Phys. Rev. D 54, 4152 (1996); T. Inagaki,
S. D. Odintsov, and Yu. I. Shil’nov, Int. J. Mod. Phys.
A 14, 481 (1999); E. Elizalde, Yu. I. Shil’nov, and
V. V. Chitov, Class. Quantum Grav. 15, 735 (1998).

17. G. ’t Hooft and M. Veltman, Nucl. Phys. B 44, 189
(1972).

18. J. Schwinger, Phys. Rev. 82, 664 (1951).
19. T. S. Bunch and L. Parker, Phys. Rev. D 20, 2499

(1979).
20. L. Parker and D. Toms, Phys. Rev. D 29, 1584 (1984).
21. A. Z. Petrov, Einstein Spaces (Fizmatgiz, Moscow,

1961; Pergamon, Oxford, 1969).
Translated by R. Rogalyov
01


	1901_1.pdf
	1909_1.pdf
	1917_1.pdf
	1931_1.pdf
	1948_1.pdf
	1955_1.pdf
	1961_1.pdf
	1971_1.pdf
	1988_1.pdf
	1995_1.pdf
	2006_1.pdf
	2020_1.pdf
	2027_1.pdf
	2032_1.pdf
	2037_1.pdf
	2043_1.pdf
	2051_1.pdf

