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Abstract—Results are presented that were obtained by measuring the independent yields of Kr (A =
89−93) and Хе (A = 135−142) appearing as fragments in the photofission of 237Np and 243Am odd
nuclei. The respective experiments were performed in a beam of bremsstrahlung photons from electrons
accelerated to an energy of 25 MeV at the microtron of the Laboratory of Nuclear Reactions at the Joint
Institute for Nuclear Research (JINR, Dubna). Use wasmade of the procedure involving the transportation
of fragments emitted from the target by a gas flow along a capillary and the condensation of inert gases
in a cryostat at liquid-nitrogen temperature. The identification of Kr and Хе appearing as fragments
was performed by the gamma spectra of their daughter products. The mass-number distributions of the
independent yields of Kr and Хе isotopes were obtained, along with those for the complementary fragments
(Y and La in the fission of 237Np and Nb and Pr in the fission of 243Am). c© 2005 Pleiades Publishing, Inc.
INTRODUCTION

Measurement of fragment yields and of their de-
pendences on various features of fissile nuclei and
fragments formed (nucleonic composition, excitation
energy, angular momentum) is one of the lines of in-
vestigation into the mechanism of the nuclear-fission
process. Measurement of the yields of primary frag-
ments (independent yields)—that is, those fragments
that were formed upon the scission of a fissile nucleus
and neutron emission, but which have not yet under-
gone beta decay—is of particular interest. Such mea-
surements furnish important information about the
formation of the nucleonic composition of fragments
in the process of their transition from the saddle to the
scission point.
However, data on this process are obviously in-

sufficient and refer predominantly to the neutron-
induced fission of U and Pu nuclei and to the spon-
taneous fission of 252Cf [1, 2]. It is of interest to
extend the range of such investigations by including
in them fission reactions caused by other bombarding
particles—for example, photons. Special features of
photofission reactions (a fixed angular momentum
that is introduced in a fissile nucleus by a photon and
the absence of Coulomb energy and binding energy)
make it possible to obtain new information about the
effect of external conditions on the formation of the
nucleonic composition of fragments.
The present study is devoted to measuring the

independent yields of fragments—isotopes of Kr and
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Хе inert gases—originating from the photofission of
237Np and 243Am odd nuclei and is a continuation
of similar experiments performed with 232Th, 238U,
and 244Pu even–even nuclei and reported in [3, 4].
An analysis of the measured fragment-mass-number
dependences of the yields with allowance for known
similar data on even nuclei would make it possible to
explore the effect of an odd particle in a fissile nucleus
on the formation of fragments. There are virtually
no data on the independent yields of fragments in
the photofission of nuclei featuring an odd number of
protons or neutrons (we can only indicate the study
reported in [5]). Moreover, the use of known data on
the number of prompt fission neutrons would make
it possible to deduce additional information about the
yields of the complementary fragments as well—Nb
and Pr in the photofission of 243Am and Y and La in
the fission of 237Np.

EXPERIMENTAL PROCEDURE

In the present experiments, we employed the same
procedure as in the studies of our group that were
devoted to the photofission of even–even nuclei and
which were reported in [3, 4]. Within this procedure,
one implements an efficient separation of Kr and Хе
isotopes from other fission fragments by using the fact
that the chemical properties of the former are strongly
different from the chemical properties of the latter.
Krypton and xenon nuclei originating as fission frag-
ments from a target irradiated with bremsstrahlung
c© 2005 Pleiades Publishing, Inc.
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Table 1. Independent yields of Kr and Хе fragments

Frag-
ment

237Np (γ, f ) 243Am (γ, f )

Yrel,% Yabs, fiss.−1 Yrel,% Yabs, fiss.−1

89Kr 65(8) 0.0019(2) 81(3) 0.019(2)
91Kr 100 0.025(3)∗ 100 0.023(2)∗

92Kr 44(7) 0.011(1) 42(2) 0.0095(9)
93Kr 18(4) 0.0045(5)
135Xe 61(3) 0.023(3) 42(5) 0.015(2)
137Xe 100 0.038(4)∗ 100 0.035(4)∗

138Xe 80(10) 0.030(3) 76(8) 0.027(3)
139Xe 31(4) 0.012(1) 35(3) 0.012(1)
140Xe 8.0(9) 0.0030(3) 9.8(6) 0.0034(3)
141Xe 3.0(3) 0.0011(1) 6.0(6) 0.0021(2)
142Xe 2.0(3) 0.00076(8) 3.4(7) 0.0012(1)

∗ Estimated yield values.

photons were moderated in a gas and were trans-
ported by its flow along a Teflon capillary to a cryostat,
where they were condensed on the walls of a 1-m-
long copper pipe coiled into a spiral and placed in
a Dewar flask that was filled with liquid nitrogen.
All other fragments stopped in the gas were blocked
by a filter at the inlet of the capillary. Thus, only Kr
and Хе isotopes, whose half-lives were longer than
0.2 s (the time of fragment transportation along the
capillary was about 0.5 s), and the products of their
beta decay reached the copper pipe. For the carrier
gas, we employed pure helium at a pressure of 2.5 atm
in the chamber. This gas was characterized by the
highest velocity of fragment transportation and was
not activated by neutrons or bremsstrahlung from the
microtron used.
In identifying Kr and Хе isotopes and in determin-

ing their yields, we relied on the spectra of gamma
radiation that they emitted (for data on these spectra,
see [6]). The identification of short-lived Kr and Хе
isotopes (in the case of half-lives shorter than 1 min)
was based on the gamma spectra of their daughter
products (Rb and Sr for Kr and Ва and La for Хе).
These daughter products, which were formed directly
in the scission of a fissile nucleus, were blocked by
the filter at the inlet of the capillary. Therefore, they
did not contribute to the measured yields of Kr and
Хе fragments. Also, the filter blocked Se, Br, Te, and
I fragments, whose beta decay could produce Kr and
Хе isotopes being studied. Thus, one can see that, in
order to measure gamma spectra, we separated only
those Kr and Хе fragments that emerged immediately
PH
after the scission of a fissile nucleus and neutron
emission, but which did not have time to undergo beta
decay. The measurements were performed in a room
that was protected from microtron radiation—that is,
under conditions of a low gamma-ray and neutron
background.
For targets subjected to irradiation, we used

50-µg/cm2-thick layers made from Np and Am
oxides and deposited onto an aluminum substrate
20 µm thick. At these layer and substrate thick-
nesses, half of the fragments formed in a target were
emitted from it and were moderated in the gas.
In order to measure the gamma spectra in ques-

tion, we employed an HpGe detector of volume
100 cm3 and resolution 2.1 keV for the 1332-keV
gamma line of 60Со. The resulting spectra were saved
in the memory of a PC for a subsequent analysis with
the aid of the AKTIV code [7]. The yields of identified
Kr and Хе fragments were determined from the areas
of their gamma lines (or the gamma lines of their
daughter products) in the spectra with allowance for
the detection efficiency, the intensity per decay event,
the irradiation time, the time of transportation along
the capillary, and the time of the measurements.
The experiments were performed at an accelerated-

electron energy of 25MeV, the corresponding average
excitation energy of a fissile nucleus being 13MeV (it
was determined from the shape of the bremsstrahlung
spectrum [8] and the excitation function for the
photofission of 237Np and 243Am nuclei under the
assumption that this function is similar to the well-
known dependence that was determined in [9] for
238U).

RESULTS OF THE MEASUREMENTS

By analyzing the measured gamma spectra, we
were able to identify four krypton isotopes and seven
xenon isotopes. The ratios of the independent yields
of these isotopes to the yields of 91Kr and 137Хе,
respectively, are given in Table 1. In order to deter-
mine these yields per fission event, we measured the
cumulative yields of fragments characterized by the
mass numbers of A = 91 and A = 137 and estimated
the fractions of Kr and Хе (fractional yields) in these
isobars. The cumulative yields were obtained from
the intensities of the gamma lines of the 91Sr and
137Cs isotopes, which are at the end of the beta-decay
chains for these A values. The results proved to be
4.2(2)% and 6.3(3)% of the number of fission events.
The fractional yields of 91Kr and 137Хе fragments
were estimated by using the systematics of yields in
the neutron-induced fission of U and Pu nuclei [1]
and were found to be 0.60(6) for 237Np and 0.55(6)
YSICS OF ATOMIC NUCLEI Vol. 68 No. 9 2005
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for 243Am. These values make it possible to deter-
mine the independent yields per fission event for 91Kr
and 137Хе and, from them, for all other Kr and Хе
fragments. The yield values obtained in this way are
also given in Table 1, while their dependences on the
fragment mass number are displayed in the figure.
These dependences (isotope distributions of frag-

ments) are usually approximated by the Gaussian
distribution

Y (A) = Kexp
[
−(A− Ā)2

2σ2

]
, (1)

where Ā and σ are, respectively, the mean mass num-
ber and the variance of the distribution, while K is
a normalization factor. From the figure, it can be
seen that, in just the same way as in the photofission
of even–even nuclei, the measured distributions are
well described by expression (1). However, an excess
of the measured yield values above their calculated
counterparts is observed for neutron-rich xenon frag-
ments (141Хе and 142Хе). Thismay be associated with
the nuclear structure of these fragments.
The fitted values of the parameters of isotope dis-

tributions are given in Table 2. A comparison with the
known distributions for even–even nuclei shows that,
both for 237Np and for 243Am, the values of Ā are well
below those for 232Th, 238U, and 244Pu [3], but that
they are close to the value of Ā for 235U fission induced
by thermal neutrons [2]. This relationship between
the Ā values reflects their dependence on the neutron
excess in a fissile nucleus. The ratio N/A is 1.587 for
238U (similar values were found previously for 232Th
and 244Pu), 1.549 for 237Np, and 1.558 for 243Am. The
values of σ for 237Np and 243Am correspond to the
systematics of variances of isotope distributions in the
neutron-induced fission and photofission of nuclei.
From the results obtained here for the isotope dis-

tributions of Kr and Хе, one can derive the analogous
distributions for the complementary fragments. For
Kr fragments, these are La isotopes in 237Np fission
and Pr isotopes in 243Am fission. For Хе fragments,
these are, respectively, Y and Nb isotopes. For frag-
ments characterized by identical independent yields,
we have

Al +Ah + ν = A0, (2)

where Al, Ah, and A0 are the mass numbers of, re-
spectively, a light fragment, a heavy fragment, and the
fissile nucleus being considered, while ν is the total
number of neutrons emitted from the two fragments.
By employing the known numbers of neutrons

emitted in the neutron-induced fission of nuclei in
the reactions 236Np(n, f ) and 242Am(n, f ) [10, 11]
and taking into account corrections for the excitation
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 9 200
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Mass-number (isotope) distributions of the independent
yields of Kr and Хе fragments in the reactions (closed
circles) 237Np(γ, f) and (open circles) 243Am(γ, f).
The points represent experimental data, while the dashed
curves correspond to the calculation by formula (1) whose
parameters are set to the values in Table 2.

energies of the 237Np and 243Am nuclei undergoing
fission, one can evaluate ν. The result is ν = 4 for
237Np and ν = 46 for 243Am. These values of ν make
it possible to determine the mean mass numbers Ā of
Y, Nb, La, and Pr fragments. The results are given in
Table 2.
The data obtained in the present study for the

photofission of 237Np and 243Am nuclei supplement
the systematics of independent yields of fission frag-
ments. They give sufficient grounds to conclude that
an odd particle in a fissile nucleus does not change
significantly the isotope distribution of fragments in
relation to what was observed for even–even nuclei
and that the distributions themselves are close to
those that were obtained in the fast-neutron-induced
fission of the corresponding nuclei.

Table 2. Parameters of the isotope distributions of
photofission fragments

Element
237Np(γ, f ) 243Am(γ, f )

Ā σ Ā σ

Kr 903(2) 1.2(1) 90.1(3) 1.4(2)

Y 96.3(3) 1.3(1)

Nb 101.5(2) 1.5(1)

Xe 136.7(2) 1.3(1) 136.9(1) 1.5(1)

La 142.7(3) 1.3(1)

Pr 148.3(5) 1.4(2)
5
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Abstract—Within quantum-mechanical fission theory, the angular distributions of fragments originating
from the subthreshold photofission of the even–even nuclei 232Th, 234U, 236U, 238U, 238Pu, 240Pu, and
242Pu are analyzed for photon energies below 7 MeV. Special features of various fission channels are
assessed under the assumption that the fission barrier has a two-humped shape. It is shown that the
maximum value of the relative orbital angular momentum Lm of fission fragments can be found upon taking
into account deviations from the predictions of A. Bohr’s formula for the angular distributions of fission frag-
ments. The result isLm ≈ 30. The existence of an “isomeric shelf” for the angular distributions of fragments
from 236U and 238U photofission in the low-energy region is confirmed. c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

The discovery [1] of a sizable anisotropy in the
angular distributions of fragments originating from
the subthreshold photofission of 232Th and 238U nu-
clei served as a basis for introducing the concept
of A. Bohr’s transition fission states [2, 3] (fission
channels) that are formed at the saddle points of the
deformation potential and which are associated with
“cold” intrinsic states of a fissile nucleus. The analysis
of the angular distributions of photofission fragments
that was performed in the review article of Ostapenko
et al. [4] on the basis of a vast body of experimental
information and under the assumption [5] that the
deformation potential of a fissile nucleus has a two-
humped shape confirmed that transition fission states
associated both with the inner and with the outer
fission barrier play a decisive role in the formation of
these distributions.

For the angular distributions of fragments from
236U and 238U photofission in the low-energy region,
an interesting phenomenon was discovered in [6, 7]
that was associated with the emergence of an “iso-
meric shelf,” which was determined by the radiative
population of shape-isomer states [8] in the second
well of the deformation potential of a fissile nucleus.

We note that the results obtained previously from
an analysis of angular distributions of photofission
fragments—for example, in [4]—were based on the
use of A. Bohr’s [2, 3] formula for the angular dis-
tributions of fragments originating from the fission
channel where an axisymmetric fissile nucleus has
a spin J whose projection onto the symmetry axis
of this nucleus is K. This formula is a realization

*e-mail: kadmensky@phys.vsu.ru
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of the qualitative physical assumption that fission
fragments are emitted along or against the direc-
tion of the fissile-nucleus-symmetry axis. Within the
quantum-mechanical theory of binary nuclear fis-
sion [9], it is shown that this assumption is at odds
with the quantum-mechanical uncertainty relation
between the orbital angular momentum and the par-
ticle emission angle. Therefore, A. Bohr’s formula
can only be valid approximately under the condition
that, in the asymptotic region of a fissile nucleus,
where primary fission fragments have already been
formed, there arise rather high orbital angular mo-
menta of these fragments, L � Lm. A virtually uni-
versal mechanism of pumping of the orbital angular
momenta and spins of fission fragments was justified
in [10]. This mechanism is due to a strong non-
sphericity of the fragment-interaction potential in the
vicinity of the scission point of a fissile nucleus and
leads to a value of Lm ≈ 30 for the maximum rela-
tive orbital angular momentum of fission fragments.
So large a value of Lm is consistent with the limit-
ing estimate obtained in [10] for the maximum value
of the total spin of primary fragments, F = J1 + J2,
on the basis of experimental data on the multiplic-
ity of prompt neutrons and on the multiplicity and
multipolarity of prompt photons emitted by primary
fragments, the condition that the maximum spins of
these fragments are parallel, (J1)max||(J2)max, being
satisfied.

On the basis of quantum-mechanical fission the-
ory [9], we analyzed in [11] the angular distribu-
tion of fragments from 238U photofission induced by
bremsstrahlung photons of endpoint energy Eγ =
5.2 MeV, at which the experimental parameters of
this distribution were determined in [12] to a fairly
high degree of precision. For the maximum relative
c© 2005 Pleiades Publishing, Inc.
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orbital angular momentum in question, we found the
range 25 < Lm < 40, which correlates with the value
determined in [10], Lm ≈ 30.

The objective of the present study is to perform,
within quantum-mechanical fission theory [9–11],
a more detailed analysis of the angular distribu-
tions of fragments originating from the subthreshold
photofission of even–even nuclei 232Th, 234U, 236U,
238U, 238Pu, 240Pu, and 242Pu. This analysis is aimed
at obtaining additional information about the value of
Lm and about the physics of binary nuclear fission.

2. ANGULAR DISTRIBUTIONS
OF FRAGMENTS FROM SUBTHRESHOLD

PHOTOFISSION OF NUCLEI

We will perform a further analysis for the sub-
threshold photofission of axisymmetric deformed
even–even actinide nuclei, assuming that the fission
barrier has a two-humped shape [4]. At a rather
low endpoint energy of the photons (Eγ < 7 MeV),
the cross sections for photofission that leads to
the formation of compound-nucleus states in the
first well of the deformation potential decrease with
increasing photon multipolarity J according to the
long-wavelength law; that is,

σEJ
γ ≈ (kγRA)2(J−1)σE1

γ ; σMJ
γ ≈ (kγRA)2JσE1

γ ,

where kγ is the photon wave vector and RA is the
radius of the nucleus involved, the quantity (kγRA)2
taking values in the interval 0.03–0.05 for actinide
nuclei [4]. Therefore, one can disregard the contribu-
tions to the photofission cross sections from electric
photons EJ for J > 2 and from magnetic photons
MJ for J > 1. Subthreshold photofission via the ab-
sorption of M1 photons is determined by Jπ = 1+

transition fission states at the first and the second
fission barrier, where J is the spin of these states and
π is their parity. For axisymmetric even–even nuclei,
the projection K of the spin J onto the nuclear-
symmetry axis in Jπ = 1+ low-lying collective states
isK = 1. In the region of actinide nuclei, the JπK =
1+1 collective state in the first well has a high ex-
citation energy (about 1.5 MeV) with respect to the
ground state, whose quantum numbers are JπK =
0+0. Therefore, one can expect that 1+1 transition
fission states formed at the first and the second fission
barrier will also have high excitation energies with
respect to 0+0 and 2+0 transition fission states and,
in the case of subthreshold fission, very low penetra-
tion factors in relation to the penetration factors for
2+0 transition fission states initiated in photofission
by quadrupole electric photons. For the subthreshold
photofission of even–even nuclei, one can therefore
eliminate effects associated with the absorption of
PH
М1 photons. At the same time, one can disregard
the effect of 2+1 fission channels initiated by the ab-
sorption of E2 photons, since the penetration factors
for these channels involve the same smallness as the
penetration factors for the 1+1 channels.

If, for the direction of the z axis in the laboratory
frame, one chooses the direction of the axis of an
unpolarized-photon beam, it follows from the trans-
verseness of the electromagnetic field that the projec-
tionM of the spin J onto the z axis of the laboratory
frame in the compound state excited in the first well
upon photon absorption by an even–even nucleus will
have the values of M = ±1 with equal probabilities.
The differential cross section for the (γ , f ) subthresh-
old photofission of even–even nuclei that proceeds
first through the stage of formation of a compound
nucleus in the first well and which, thereupon, is not
associated with the mechanism of delayed fission (it is
induced by the radiative population of shape-isomer
states [8] in the second well [6, 7]) can be represented
in the form [3]

σγf (θ) ≡ dσγf (θ)
dΩ

=
∑

J,K�0

P JKT J
MK(θ), (1)

P JK =
ΓJK

f

ΓJ
(2 − δK,0)σEJ

γ , (2)

where the factor (2 − δK,0) takes into account a dou-
ble degeneracy ofK > 0 states, the photofission cross
section σEJ

γ (Eγ) involves only E1 and E2 photons,
and the solid angle Ω ≡ (θ, ϕ) determines the direc-
tion of fission-fragment emission in the laboratory
frame. In (2), ΓJ is the total decay width of the com-
pound state in the first well with allowance for all
decay channels, including radiative ones, and ΓJK

f is
the partial fission width of this compound state, the
latter being determined by the projectionK of the spin
J onto the symmetry axis of a fissile nucleus in the
external region of this nucleus, whereK is already an
integral of the motion. It is assumed that this region
coincides with the region where there occurs the tran-
sition from the outer saddle point of the deformation
potential through the scission point to the space of
already formed primary fission fragments, the fissile
nucleus retaining its axisymmetric shape through-
out this transition. The quantity ΓJK

f depends in a
complicated way on the properties of transition fission
states at the first and the second fission barrier, the
properties of collective deformation modes of motion
of the nucleus, and the character of the coupling of
these modes to the compound states of the nucleus in
the first and the second well. Here, it is assumed that,
in the compound states of the first well, all projections
of the spin J onto the symmetry axis of the nucleus
YSICS OF ATOMIC NUCLEI Vol. 68 No. 9 2005



SUBTHRESHOLD PHOTOFISSION OF EVEN–EVEN NUCLEI 1423
undergo a uniform statistical mixing owing to the
dynamical enhancement of the Coriolis interaction
effect [13]. A similar idea is also often used [3, 4] for
compound states in the second well, but it has yet to
be rigorously justified.

The normalized (to unity) angular distribution
T JK(θ) of the fragments of photofission in the JK
exit fission channel is independent of the spin projec-
tion M = ±1 and is usually calculated by A. Bohr’s
formula [3]

T JK(θ) =
2J + 1

8π
[|DJ

1K(ω)|2 + |DJ
1−K(ω)|2]β=θ,

(3)

where DJ
MK(ω) is a generalized spherical harmonic

that depends on the Euler angles ω ≡ (α, β, γ) deter-
mining the orientation of the symmetry axes of the
fissile nucleus with respect to the axes in the lab-
oratory frame. Within quantum-mechanical fission
theory [9–11], the quantity T JK(θ) takes a different
form,

T JK(θ) =
2J + 1
16π2

∫
dω[|DJ

1K(ω)|2 (4)

+ |DJ
1−K(ω)|2]F (Lm, θ′).

Here, F (Lm, θ′) is the normalized (to unity) angular
distribution of photofission fragments in the intrinsic
coordinate system of the fissile nucleus,

F (Lm, θ′) = b(Lm) (5)

×
{

Lm∑
L=0

YL0(ξ′)YL0(1)
[
1 + ππ1π2(−1)L

2

]}2

,

b(Lm) =

{
Lm∑
L=0

(2L + 1)
4π

[
1 + ππ1π2(−1)L

2

]2
}−1

,

where ξ′ = cos θ′, θ′ being the angle between the
direction of photofission-fragment emission and the
symmetry axis of the fissile nucleus. At rather high
values of Lm, the distribution F (Lm, θ′) does not
depend on the parity π of the fissile nucleus or the
parities π1 and π2 of fission fragments—that is, on the
parity of the relative orbital angular momentum L of
fission fragments. Formula (4) reduces to A. Bohr’s
formula (3) in the limit Lm → ∞, where the distri-
bution F (Lm, θ′) reduces to the half-sum of delta
functions, [δ(ξ′ − 1) + δ(ξ′ + 1)]/2. The properties of
the angular distribution (4) were analyzed in detail
elsewhere [11].

Upon the substitution of expressions (3) and (4)
into (1), the differential cross section σγf (θ,Eγ) can
be represented in the standard form [3]

σγf (θ) = a0 + b0 sin2 θ + c0 sin2(2θ), (6)
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 9 200
where the quantities a0, b0, and c0 are defined as

a0 =
∑
JK

αJKP JK , b0 =
∑
JK

βJKP JK , (7)

c0 =
∑
JK

γJKP JK .

The values of the coefficients αJK , βJK , and γJK for
the cases ofLm → ∞ (A. Bohr’s limit),Lm = 30, and
Lm = 20 are given in Table 1.

In analyzing the experimental angular distribu-
tions of photofission fragments, one usually deter-
mines the asymmetry Wγf (θ) ≡ σγf (θ)/σγf (90◦) of
these distributions with respect to the angle θ = 90◦.
This asymmetry can be represented by formula (6)
upon the replacement of the quantities a0, b0, and c0
by the quantities

a =
a0

a0 + b0
, b =

b0
a0 + b0

, c =
c0

a0 + b0
, (8)

respectively; obviously, we have a + b = 1.

3. ANALYSIS OF THE ANGULAR
DISTRIBUTIONS OF FRAGMENTS

ORIGINATING FROM THE SUBTHRESHOLD
PHOTOFISSION OF NUCLEI

Let us investigate the photofission of 232Th, 234U,
236U, 238U, 238Pu, 240Pu, and 242Pu even–even nu-
clei that is induced by photons of energy in the range
Eγ ≤ 7 MeV. We select only those results of the ex-
perimental studies reported in [12, 14–18] for which
relative root-mean-square deviations of the measured
quantities a and c from 〈a〉 and 〈c〉 are less than 0.5.

For the ensuing analysis, we employ the quanti-
ties GJK = P JK/P 10, which possess the following
properties: GJK > 0, G10 = 1, G11 = Γ11

f /Γ10
f , and

G22 < G20. If we neglect, in accordance with the
above estimate, the effect of 2+1 quadrupole fission
channels and eliminate the quantity G21 from further
consideration, the substitution of formulas (7) into
Eqs. (8) leads to two linear nonhomogeneous equa-
tions for the three quantities G11, G20, and G22. By
solving these equations for the quantities G11 and
G20, we obtain

dG11 = (c(α20 + β20) − γ20)(α10 − a(α10 (9)

+ β10)) + c(α10 + β10)(a(α20 + β20) − α20)

+G22[(c(α20 + β20) − γ20)(α22 − a(α22 + β22))
− (γ22 − c(α22 + β22))(a(α20 + β20) − α20)],

dG20 = −c(α11 + β11)(α10 − a(α10 + β10)) (10)

− c(α10 + β10)(a(α11 + β11) − α11)

+G22[(γ22 − c(α22 + β22))(a(α11 + β11) − α11)
5
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Table 1. Values of the coefficients αJK , βJK , and γJK for Lm → ∞, Lm = 30, and Lm = 20

Lm α10 α11 α20 α22 β10 β11 β20 β22 γ20 γ22

∞ 0 0.75 0 0 0.75 −0.375 0 0.625 0.9375 0.15625

30 0.024 0.74 0.060 0.030 0.714 −0.357 −0.022 0.592 0.854 0.142

20 0.04 0.73 0.087 0.044 0.697 −0.349 −0.033 0.576 0.815 0.136
− c(α11 + β11)(α22 − a(α22 + β22))],

d = c[(α11 + β11)α20 − α11(α20 + β20)] (11)

− a(α11 + β11)γ20 + α11γ20.

By substituting, into these formulas, the experimental
values of the quantities a and c, one can calculateG11

and G20 versus the quantities Lm and G22, which are
considered as parameters. Since the quantities G11

andG20 are positive by definition, a comparison of the
calculated values of G11 and G20 with the conditions
G11 > 0 and G20 > 0 enables one to determine the
possible minimal values of Lm.

It was indicated above that, by using experimental
data on the multiplicity and multipolarity of prompt
photons emitted by primary fission fragments, the
maximum value of the relative orbital angular mo-
mentum of fission fragments was estimated in [10]
as Lm ≈ 30. In order to test this estimate, we will
consider the cases of Lm = 30, Lm = 20, and Lm →
∞ (A. Bohr’s limit) in our ensuing calculations.

The ratio G22/G20 is equal to the fission-width
ratio Γ22

f /Γ20
f , which is much less than unity if the

axisymmetric shape the nucleus is conserved in the
process of subthreshold fission. This is explained by
the fact that the 2+2 transition fission state, which
is associated with the γ vibrations of a nucleus, has
a rather high excitation energy (0.7 MeV [19]) with
respect to the 2+0 transition fission state. Therefore,
the quantityG22 was varied in the interval 0 ≤ G22 ≤
0.2G20, where the upper boundary was chosen to
exceed, by a good margin, the possible values of G22.
For all cases investigated here, these variations of the
quantity G22 lead to changes of not more than 25%
in the absolute values of G11 and G20 calculated by
formulas (9)–(11). Therefore, one can disregard, with
a high degree of precision, the effect of G22 on G11

and G20 and employ a value of zero for G22. This
conclusion, along with the above conclusion that the
effect of the 2+1 fission channel is negligible, actually
validates the procedure extensively used earlier [4]
that describes the angular distributions of fragments
from the subthreshold photofission of nuclei without
taking into account the 2+1 and 2+2 fission channels.
PH
For all cases studied here, the G11 and G20 val-
ues calculated with allowance for the experimental
errors in determining a and c appear to be positive
definite in A. Bohr’s limit (Lm → ∞). As to finite
values of Lm, the situation for them proves to be
more complicated, as might have been expected. One
can single out cases where the values of G11 and
G20 for Lm = 30 and Lm = 20 prove to be positive
definite and rather close to the values of G11 and
G20, respectively, in A. Bohr’s limit. These cases
arise at rather large values of experimentally deter-
mined a and c and correspond to the situation where
A. Bohr’s formula (3) for the angular distributions of
fragments is highly accurate. Table 2 gives the G11

and G20 values calculated for cases where A. Bohr’s
formula (3) is no longer correct, so that there arise
significant distinctions between the absolute values
of G11 and G20 for Lm = 30 and Lm = 20 and their
counterparts in A. Bohr’s limit. From Table 2, one
can see that, at Lm = 30, the values of G11 and G20

prove to be positive definite in the majority of cases
studied here, but the current experimental accuracy in
determining a and c is insufficient for the root-mean-
square deviations of all G11 and, in some cases (for
example, for 232Th), of G20 from their mean values to
be much less than unity. At the same time, it turns out
that, in eight of the 78 cases presented in Table 2 (at
energies in the range 5.9 ≤ Eγ ≤ 6.4 MeV in 232Th,
at energies in the range 5.75 ≤ Eγ ≤ 5.97 in 234U,
and at an energy of Eγ = 5.75MeV in 236U), positive
values ofG11 can only be obtained by shifting the ex-
perimental values of a toward greater values by more
than two standard deviations in determining a. We
note in passing that, in some cases, the most recent
measurements of a lead to positive definite values
of G11, in contrast to measurements of a that were
performed previously. By way of example, we indicate
that such a situation arises for 232Th photofission
at Eγ = 6.4 MeV, in which case the results of the
more recent measurements of a that were performed
in [15] differ significantly from those presented earlier
in [12]. Therefore, the above situation where there
appear negative values of G11 is likely to stem from
an insufficient experimental accuracy in determining
a in the region of its smallest values (〈a〉 ≤ 0.014
YSICS OF ATOMIC NUCLEI Vol. 68 No. 9 2005
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Table 2. Values ofG11 and G20 for Lm → ∞, Lm = 30, and Lm = 20

Eγ ,
MeV

c a
Lm = 30 Lm = 20 Lm = ∞

G11 G20 G11 G20 G11 G20

238Pu

5.25 [14] 1.412 ± 0.139 0.408 ± 0.103 0.368 ± 0.169 1.540 ± 0.049 0.284 ± 0.173 1.603 ± 0.050 0.523 ± 0.163 1.416 ± 0.048

5.5 [14] 1.513 ± 0.112 0.330 ± 0.063 0.240 ± 0.096 1.571 ± 0.056 0.153 ± 0.099 1.635 ± 0.057 0.399 ± 0.090 1.448 ± 0.053

5.75 [14] 0.654 ± 0.055 0.414 ± 0.037 0.431 ± 0.062 0.711 ± 0.043 0.381 ± 0.065 0.738 ± 0.044 0.523 ± 0.059 0.659 ± 0.04

6.0 [14] 0.370 ± 0.018 0.526 ± 0.011 0.644 ± 0.022 0.434 ± 0.018 0.607 ± 0.023 0.450 ± 0.018 0.714 ± 0.020 0.402 ± 0.017

240Pu

5.45 [14] 1.147 ± 0.07 0.102 ± 0.044 −0.009 ± 0.052 1.038 ± 0.039 −0.075 ± 0.054 1.077 ± 0.04 0.109 ± 0.049 0.966 ± 0.037

5.7 [14] 0.710 ± 0.052 0.222 ± 0.034 0.160 ± 0.046 0.685 ± 0.037 0.11 ± 0.047 0.711 ± 0.038 0.251 ± 0.043 0.638 ± 0.035

5.95 [14] 0.331 ± 0.013 0.533 ± 0.010 0.660 ± 0.020 0.390 ± 0.013 0.625 ± 0.02 0.405 ± 0.013 0.727 ± 0.019 0.361 ± 0.012

242Pu

5.0 [14] 3.702 ± 0.424 0.532 ± 0.308 0.485 ± 0.593 4.646 ± 0.530 0.275 ± 0.583 4.892 ± 0.570 0.850 ± 0.598 4.119 ± 0.402

5.25 [14] 0.965 ± 0.032 0.448 ± 0.053 0.461 ± 0.089 1.078 ± 0.003 0.396 ± 0.090 1.122 ± 0.003 0.580 ± 0.088 0.995 ± 0.001

5.35 [14] 1.018 ± 0.069 0.418 ± 0.046 0.408 ± 0.078 1.114 ± 0.042 0.341 ± 0.080 1.159 ± 0.044 0.531 ± 0.074 1.028 ± 0.040

5.5 [14] 0.734 ± 0.034 0.310 ± 0.022 0.272 ± 0.033 0.748 ± 0.025 0.219 ± 0.034 0.776 ± 0.026 0.367 ± 0.031 0.695 ± 0.023

5.75 [14] 0.422 ± 0.012 0.488 ± 0.008 0.572 ± 0.015 0.482 ± 0.011 0.532 ± 0.015 0.500 ± 0.011 0.646 ± 0.014 0.447 ± 0.010

232Th

5.90 [14] 0.084 ± 0.014 0.010 ± 0.005 −0.028 ± 0.006 0.072 ± 0.012 −0.054 ± 0.006 0.074 ± 0.012 0.01 ± 0.005 0.068 ± 0.011

5.95 [14] 0.074 ± 0.010 0.014 ± 0.004 −0.024 ± 0.005 0.063 ± 0.008 −0.049 ± 0.005 0.066 ± 0.009 0.014 ± 0.004 0.06 ± 0.008

6.2 [14] 0.079 ± 0.010 0.012 ± 0.003 −0.026 ± 0.004 0.068 ± 0.008 −0.051 ± 0.004 0.07 ± 0.009 0.012 ± 0.003 0.064 ± 0.008

6.4 [12] 0.028 ± 0.006 0.021 ± 0.003 −0.014 ± 0.003 0.024 ± 0.005 −0.037 ± 0.004 0.025 ± 0.005 0.021 ± 0.003 0.023 ± 0.005

6.4 [15] 0.060 ± 0.040 0.060 ± 0.030 0.025 ± 0.034 0.052 ± 0.034 0 ± 0.036 0.054 ± 0.035 0.062 ± 0.032 0.049 ± 0.032

6.4 [15] 0.028 ± 0.006 0.044 ± 0.002 0.01 ± 0.002 0.024 ± 0.005 −0.014 ± 0.003 0.025 ± 0.005 0.045 ± 0.002 0.023 ± 0.005

6.5 [14] 0.022 ± 0.014 0.022 ± 0.005 −0.012 ± 0.006 0.019 ± 0.012 −0.035 ± 0.006 0.02 ± 0.012 0.022 ± 0.005 0.018 ± 0.011

6.7 [14] 0.009 ± 0.008 0.023 ± 0.002 −0.01 ± 0.003 0.008 ± 0.007 −0.033 ± 0.003 0.008 ± 0.007 0.023 ± 0.002 0.007 ± 0.006

6.9 [14] 0.020 ± 0.022 0.032 ± 0.007 −0.002 ± 0.009 0.017 ± 0.019 −0.025 ± 0.009 0.018 ± 0.02 0.033 ± 0.007 0.016 ± 0.018

7.0 [14] 0.038 ± 0.012 0.036 ± 0.004 0.001 ± 0.005 0.033 ± 0.01 −0.023 ± 0.005 0.034 ± 0.011 0.037 ± 0.004 0.031 ± 0.01

234U

5.6 [18] 0.195 ± 0.018 0.032 ± 0.008 −0.014 ± 0.009 0.169 ± 0.015 −0.044 ± 0.01 0.175 ± 0.015 0.033 ± 0.008 0.158 ± 0.014

5.75 [16] 0.152 ± 0.012 0.025 ± 0.004 −0.018 ± 0.005 0.131 ± 0.01 −0.046 ± 0.005 0.136 ± 0.01 0.025 ± 0.004 0.123 ± 0.009

5.97 [16] 0.158 ± 0.012 0.028 ± 0.004 −0.016 ± 0.005 0.136 ± 0.01 −0.044 ± 0.005 0.141 ± 0.01 0.028 ± 0.004 0.128 ± 0.009

6.05 [16] 0.110 ± 0.014 0.041 ± 0.005 0.001 ± 0.006 0.096 ± 0.012 −0.025 ± 0.007 0.099 ± 0.012 0.042 ± 0.005 0.09 ± 0.011

6.17 [16] 0.158 ± 0.012 0.050 ± 0.004 0.007 ± 0.005 0.138 ± 0.01 −0.021 ± 0.005 0.143 ± 0.011 0.051 ± 0.004 0.13 ± 0.01

6.2 [16] 0.183 ± 0.017 0.086 ± 0.007 0.043 ± 0.009 0.163 ± 0.015 0.014 ± 0.009 0.169 ± 0.015 0.09 ± 0.008 0.153 ± 0.014

6.3 [16] 0.089 ± 0.018 0.084 ± 0.008 0.047 ± 0.01 0.079 ± 0.016 0.022 ± 0.011 0.082 ± 0.016 0.088 ± 0.009 0.074 ± 0.015

6.35 [16] 0.083 ± 0.015 0.133 ± 0.006 0.102 ± 0.008 0.076 ± 0.013 0.076 ± 0.008 0.078 ± 0.014 0.142 ± 0.007 0.071 ± 0.013

6.4 [16] 0.020 ± 0.016 0.133 ± 0.008 0.106 ± 0.01 0.018 ± 0.015 0.083 ± 0.011 0.019 ± 0.015 0.143 ± 0.009 0.017 ± 0.014

6.45 [16] 0.087 ± 0.013 0.163 ± 0.005 0.136 ± 0.007 0.081 ± 0.012 0.11 ± 0.007 0.084 ± 0.012 0.177 ± 0.006 0.076 ± 0.011

6.5 [16] 0.046 ± 0.019 0.157 ± 0.009 0.132 ± 0.012 0.042 ± 0.017 0.108 ± 0.013 0.044 ± 0.018 0.17 ± 0.011 0.04 ± 0.016

6.6 [16] 0.044 ± 0.018 0.185 ± 0.009 0.165 ± 0.012 0.041 ± 0.017 0.141 ± 0.013 0.043 ± 0.017 0.204 ± 0.011 0.039 ± 0.016

6.7 [16] 0.042 ± 0.018 0.238 ± 0.009 0.231 ± 0.013 0.041 ± 0.017 0.207 ± 0.014 0.042 ± 0.018 0.27 ± 0.012 0.038 ± 0.016
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 9 2005
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Table 2. (Contd.)

Eγ ,
MeV

c a
Lm = 30 Lm = 20 Lm = ∞

G11 G20 G11 G20 G11 G20

236U

4.3 [15] 1.71 ± 0.35 0.72 ± 0.25 1.064 ± 0.665 2.369 ± 0.004 0.957 ± 0.677 2.481 ± 0.012 1.249 ± 0.625 2.133 ± 0.021

5.0 [15] 0.250 ± 0.15 0.200 ± 0.10 0.175 ± 0.133 0.23 ± 0.129 0.143 ± 0.139 0.238 ± 0.134 0.229 ± 0.124 0.215 ± 0.121

5.1 [15] 0.187 ± 0.048 0.04 ± 0.02 −0.005 ± 0.024 0.162 ± 0.040 −0.034 ± 0.0254 0.167 ± 0.042 0.041 ± 0.021 0.152 ± 0.028

5.25 [15] 0.12 ± 0.04 0.06 ± 0.03 0.020 ± 0.034 0.105 ± 0.034 −0.006 ± 0.036 0.105 ± 0.035 0.062 ± 0.032 0.099 ± 0.032

5.5 [15] 0.479 ± 0.016 0.048 ± 0.006 −0.018 ± 0.007 0.419 ± 0.013 −0.058 ± 0.008 0.434 ± 0.013 0.049 ± 0.006 0.393 ± 0.012

5.5 [15] 0.500 ± 0.13 0.150 ± 0.07 0.094 ± 0.089 0.459 ± 0.103 0.052 ± 0.094 0.475 ± 0.106 0.165 ± 0.082 0.429 ± 0.096

5.6 [15] 0.503 ± 0.028 0.040 ± 0.012 −0.027 ± 0.014 0.438 ± 0.022 −0.069 ± 0.015 0.454 ± 0.023 0.041 ± 0.013 0.411 ± 0.020

5.75 [15] 0.452 ± 0.015 0.027 ± 0.005 −0.037 ± 0.006 0.391 ± 0.012 −0.076 ± 0.007 0.405 ± 0.012 0.027 ± 0.005 0.367 ± 0.011

6.0 [15] 0.166 ± 0.013 0.042 ± 0.005 −0.002 ± 0.006 0.144 ± 0.011 −0.03 ± 0.006 0.149 ± 0.011 0.043 ± 0.005 0.136 ± 0.01

6.25 [15] 0.110 ± 0.013 0.069 ± 0.005 0.03 ± 0.006 0.097 ± 0.011 0.004 ± 0.007 0.1 ± 0.012 0.071 ± 0.005 0.091 ± 0.011

6.5 [15] 0.080 ± 0.014 0.112 ± 0.006 0.078 ± 0.008 0.072 ± 0.012 0.053 ± 0.008 0.075 ± 0.013 0.119 ± 0.007 0.068 ± 0.012

6.75 [15] 0.051 ± 0.015 0.199 ± 0.008 0.181 ± 0.011 0.048 ± 0.014 0.157 ± 0.011 0.05 ± 0.014 0.221 ± 0.01 0.045 ± 0.013

238U

4.85 [12] 1.380 ± 0.134 0.231 ± 0.079 0.124 ± 0.107 1.346 ± 0.069 0.045 ± 0.11 1.399 ± 0.072 0.266 ± 0.101 1.245 ± 0.066

4.93 [12] 1.350 ± 0.088 0.171 ± 0.053 0.052 ± 0.067 1.272 ± 0.045 −0.023 ± 0.069 1.322 ± 0.047 0.189 ± 0.063 1.18 ± 0.043

5.0 [12] 1.139 ± 0.031 0.135 ± 0.020 0.026 ± 0.024 1.051 ± 0.017 −0.04 ± 0.025 1.091 ± 0.018 0.145 ± 0.023 0.977 ± 0.016

5.13 [12] 1.026 ± 0.054 0.162 ± 0.033 0.065 ± 0.042 0.96 ± 0.033 0.003 ± 0.043 0.996 ± 0.034 0.177 ± 0.039 0.893 ± 0.031

5.2 [14] 0.910 ± 0.080 0.100 ± 0.035 0.006 ± 0.043 0.821 ± 0.057 −0.051 ± 0.046 0.851 ± 0.059 0.106 ± 0.039 0.765 ± 0.053

5.2 [12] 0.907 ± 0.045 0.090 ± 0.024 −0.005 ± 0.029 0.814 ± 0.03 −0.062 ± 0.03 0.844 ± 0.031 0.095 ± 0.026 0.759 ± 0.028

5.4 [12] 0.306 ± 0.026 0.050 ± 0.012 −0.004 ± 0.014 0.267 ± 0.021 −0.037 ± 0.015 0.277 ± 0.022 0.051 ± 0.013 0.251 ± 0.02

5.45 [14] 0.155 ± 0.021 0.038 ± 0.009 −0.005 ± 0.011 0.134 ± 0.018 −0.033 ± 0.011 0.139 ± 0.018 0.039 ± 0.009 0.126 ± 0.017

5.5 [14] 0.039 ± 0.014 0.078 ± 0.005 0.045 ± 0.006 0.035 ± 0.012 0.021 ± 0.007 0.036 ± 0.013 0.081 ± 0.005 0.032 ± 0.012

5.5 [12] 0.161 ± 0.007 0.040 ± 0.004 −0.004 ± 0.005 0.14 ± 0.006 −0.032 ± 0.005 0.145 ± 0.006 0.041 ± 0.004 0.131 ± 0.005

5.5 [18] 0.172 ± 0.033 0.049 ± 0.013 0.005 ± 0.016 0.15 ± 0.028 −0.024 ± 0.017 0.155 ± 0.029 0.050 ± 0.014 0.141 ± 0.026

5.6 [12] 0.074 ± 0.012 0.054 ± 0.005 0.017 ± 0.006 0.065 ± 0.01 −0.008 ± 0.006 0.067 ± 0.011 0.056 ± 0.005 0.061 ± 0.01

5.65 [14] 0.040 ± 0.010 0.034 ± 0.005 −0.001 ± 0.006 0.035 ± 0.009 −0.025 ± 0.006 0.036 ± 0.009 0.035 ± 0.005 0.033 ± 0.008

5.65 [12] 0.085 ± 0.011 0.034 ± 0.006 −0.004 ± 0.007 0.074 ± 0.009 −0.03 ± 0.007 0.076 ± 0.01 0.035 ± 0.006 0.069 ± 0.009

5.7 [12] 0.041 ± 0.009 0.054 ± 0.004 0.019 ± 0.005 0.036 ± 0.008 −0.005 ± 0.005 0.037 ± 0.008 0.056 ± 0.004 0.034 ± 0.007

5.75 [18] 0.043 ± 0.014 0.041 ± 0.005 0.006 ± 0.006 0.037 ± 0.012 −0.018 ± 0.007 0.039 ± 0.012 0.042 ± 0.005 0.035 ± 0.011

5.8 [12] 0.052 ± 0.014 0.068 ± 0.007 0.033 ± 0.008 0.046 ± 0.012 0.009 ± 0.009 0.047 ± 0.013 0.07 ± 0.008 0.043 ± 0.011

5.9 [12] 0.058 ± 0.007 0.054 ± 0.004 0.018 ± 0.005 0.051 ± 0.006 −0.006 ± 0.005 0.052 ± 0.006 0.056 ± 0.004 0.048 ± 0.006

5.97 [18] 0.128 ± 0.013 0.079 ± 0.005 0.039 ± 0.006 0.113 ± 0.011 0.012 ± 0.007 0.117 ± 0.012 0.082 ± 0.005 0.107 ± 0.011

6.0 [12] 0.048 ± 0.012 0.099 ± 0.006 0.066 ± 0.007 0.043 ± 0.011 0.042 ± 0.008 0.044 ± 0.011 0.104 ± 0.007 0.04 ± 0.01

6.05 [18] 0.125 ± 0.016 0.087 ± 0.007 0.048 ± 0.009 0.111 ± 0.014 0.021 ± 0.009 0.115 ± 0.014 0.091 ± 0.008 0.105 ± 0.013

6.17 [18] 0.123 ± 0.012 0.090 ± 0.005 0.051 ± 0.006 0.11 ± 0.01 0.024 ± 0.007 0.114 ± 0.011 0.094 ± 0.005 0.103 ± 0.010

6.2 [12] 0.034 ± 0.038 0.128 ± 0.019 0.1 ± 0.024 0.031 ± 0.034 0.076 ± 0.026 0.032 ± 0.035 0.137 ± 0.022 0.029 ± 0.032

6.2 [18] 0.138 ± 0.016 0.086 ± 0.007 0.046 ± 0.009 0.123 ± 0.014 0.019 ± 0.009 0.127 ± 0.014 0.090 ± 0.008 0.115 ± 0.013

6.3 [18] 0.038 ± 0.018 0.110 ± 0.008 0.079 ± 0.01 0.034 ± 0.016 0.056 ± 0.011 0.035 ± 0.017 0.116 ± 0.009 0.032 ± 0.015

6.35 [18] 0.032 ± 0.013 0.103 ± 0.005 0.072 ± 0.006 0.029 ± 0.012 0.049 ± 0.007 0.03 ± 0.012 0.109 ± 0.006 0.066 ± 0.009

6.4 [14] 0.034 ± 0.008 0.127 ± 0.004 0.098 ± 0.005 0.031 ± 0.007 0.075 ± 0.005 0.032 ± 0.007 0.136 ± 0.005 0.029 ± 0.007

6.4 [18] 0.038 ± 0.020 0.114 ± 0.009 0.084 ± 0.011 0.034 ± 0.018 0.06 ± 0.012 0.035 ± 0.019 0.121 ± 0.010 0.032 ± 0.014

6.45 [18] 0.078 ± 0.011 0.111 ± 0.004 0.077 ± 0.005 0.07 ± 0.01 0.052 ± 0.006 0.073 ± 0.01 0.118 ± 0.004 0.066 ± 0.009

6.5 [18] 0.052 ± 0.018 0.123 ± 0.009 0.093 ± 0.011 0.047 ± 0.016 0.068 ± 0.012 0.049 ± 0.017 0.131 ± 0.010 0.044 ± 0.015

6.6 [18] 0.043 ± 0.018 0.126 ± 0.008 0.097 ± 0.01 0.039 ± 0.016 0.073 ± 0.011 0.04 ± 0.017 0.135 ± 0.009 0.037 ± 0.015
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Fig. 1. Energy dependence of (a) G11 and (b) G20 for 236U (open circles) in the limit Lm → ∞ and of G11 (closed circles) at
Lm = 30. In this figure and those that follow, the values ofG11 for Lm → ∞ were multiplied by a factor of 10.
for 232Th, 〈a〉 ≤ 0.028 for 234U, and 〈a〉 ≤ 0.027 for
236U) and may serve as a basis for performing more
accurate investigations. From an analysis of our re-
sults for G11 that are presented in Table 2 for the
nuclei and the energies Eγ investigated here, one can
draw the conclusion that the maximum possible value
of Lm = 30 is by and large compatible with the entire
body of available experimental data. This conclusion
is in accord with the results presented in [10, 11].

The situation changes radically at Lm = 20. From
Table 2, it can be seen that, for 25 of the 78 cases
studied here (at energies in the range 5.9 ≤ Eγ ≤
7MeV in 232Th, at energies in the range 5.75 ≤ Eγ ≤
6.17 MeV in 234U, at energies in the range 5.5 ≤
Eγ ≤ 6 MeV in 236U, and at energies in the range
5.2 ≤ Eγ ≤ 5.65MeV in 238U), positive values ofG11

can be obtained only upon shifting the values found
for a experimentally toward greater values by more
than two standard deviations in the definition of a.
It follows that, for the experimental-data array being
considered, the value of Lm = 20 can be realized only
with a probability that is negligible in relation to the
probability of realization of the value of Lm = 30.
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For all cases presented in Table 2, the values of
G11 forLm = 30 prove to be significantly smaller than
the values of G11 that were found in A. Bohr’s limit.
This circumstance, which is illustrated in Figs. 1–7,
results in the need for revisiting some parameters of
the model of doorway states [20, 21], which was used
in [4] to calculate cross sections and angular distribu-
tions of fragments from the subthreshold photofission
of nuclei in A. Bohr’s approximation (Lm → ∞).

As to the quantities G20, one can see from Ta-
ble 2 that their values at Lm = 30 are virtually co-
incident with those in A. Bohr’s limit. In Figs. 1–7,
we therefore present the values of G20 for A. Bohr’s
limit, which tend to increase with decreasing energy
Eγ and, in some cases, reach a plateau region at
extremely low values of the energy Eγ , in accordance
with the expected properties of the fission widths Γ10

f

and Γ20
f in the subbarrier region [4]. Here, one can

see resonance structures in the behavior of G20 in
236U, 238U, and 232Th nuclei. The origin of these
structures was discussed in [4] and is associated with
the appearance of resonance states of the deformation
fission mode in the second well of the deformation
potential.
5
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Fig. 2. Energy dependence of (a) G11 and (b) G20 for 238U (open circles and triangles) in the limit Lm → ∞ and (closed
circles and triangles) Lm = 30. Presented here are experimental data from (open and closed circles) [12, 14] and (open and
closed triangles) [15, 17, 18].
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Fig. 3. As in Fig. 1, but for 234U.
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PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 9 2005



SUBTHRESHOLD PHOTOFISSION OF EVEN–EVEN NUCLEI 1431
4. “ISOMERIC SHELF” IN THE ANGULAR
DISTRIBUTIONS OF FRAGMENTS
FROM THE SUBTHRESHOLD
PHOTOFISSION OF NUCLEI

The “isomeric shelf” phenomenon discovered ex-
perimentally in analyzing the total cross sections for
the subthreshold photofission of 238U [6, 7] and 236U
[7,15] nuclei consists in the following: as one goes
over from the photon endpoint energies in the re-
gion Eγ > Eis to those in the range Eγ ≤ Eis, the
rate of the decrease in the photofission cross section
with decreasing Eγ abruptly becomes much lower.
Concurrently, the isotropic component of the angular
distribution of photofission fragments grows in the
region Eγ ≤ Eis, becoming dominant at Eγ ≈ Eis

0 .
An explanation of this phenomenon was proposed
in [22, 4] on the basis of introducing the mechanism
of delayed fission. Finding its way to the second well
in the process of fission, a fissile nucleus can undergo
fission either via fission without any change in energy
and without delay (prompt fission) or via radiative
decay accompanied by the population of a shape-
isomer state and followed by fission from this state—
that is, with a delay characterized by the lifetime of
the nucleus in the second well (delayed fission). Since
the spin of a shape isomer is zero for an even–even
nucleus, the angular distribution of fragments from
delayed fission is isotropic. Therefore, the quantity
a0, which appears in the definition (6) of the angular
distribution of photofission fragments and which has
the form (7), is replaced, upon taking into account
delayed fission, by ā0 = (a0 + ais0 ), where ais0 grows
with decreasing Eγ from negligible values (ais0 
 a0)
for Eγ > Eis to ais0 � b0 � a0 at Eγ = Eis

0 . In order
to observe the isomeric-shelf effect in the angular
distributions of nuclear-photofission fragments, one
usually studies [4] the experimental values of the ratio
b0/ā0, which can be represented in the form b0/ā0 =
b̄/ā = (1 − ā)/ā = (ā)−1 − 1 and which can be ex-
pressed in terms of (ā)−1 [the quantities ā and b̄ are
given by formulas (8), where ā0 must be substituted
for a0]. For prompt fission, (ā)−1 = a−1 first increases
monotonically with decreasing Eγ and then reaches
values that remain constant to the smallest observ-
able energies Eγ [4]. But if one takes into account
delayed fission associated with the population of a
shape isomer, the behavior of (ā)−1 in response to a
decrease inEγ is the following: upon reaching a max-
imum at Eγ ≈ Eis, it begins decreasing and attains a
minimum in the region around Eγ ≈ Eis

0 . This effect
was studied in detail by Ostapenko et al. [4].

In the present study, formulas (1), (2), (7), and (8),
which are based on the prompt-fission mechanism,
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 9 200
were employed to deduce information about the val-
ues of G11 and G20. At the same time, the experi-
mental values of a that were used in our calculations
actually correspond to the quantities ā introduced
above, which take into account the isomeric-shelf-
induced correction ais0 . As a result, the quantity G

11

for the 236U and 238U nuclei (see Figs. 1, 2) first
decreases with decreasingEγ and attains aminimum,
whereupon there occurs a sharp increase in G11 in
the region of the lowest energies Eγ . This behavior
of G11 differs from the behavior expected in the case
where the prompt-fission mechanism is dominant [4]
and where G11 first decreases with decreasing Eγ

and then reaches the region of constant values. It is
interesting to note that, as can be seen from Figs. 1
and 2, the regions where the isomeric shelf manifests
itself for 236U and 238U prove to be close in A. Bohr’s
limit (Lm → ∞) and at Lm = 30. From Figs. 3–
7, one can see that, for 234U, 232Th, 238Pu, 240Pu,
and 242Pu nuclei, the behavior of the quantity G11

in all regions of the energy Eγ that were studied
here has a character that corresponds to the prompt-
fission mechanism and which does not feature the
isomeric-shelf effect. This observation is in line with
the conclusions drawn in [4] from an analysis of the
subthreshold photofission of 234U and 232Th nuclei in
the region of extremely low values of the energy Eγ .

5. CONCLUSION
Within quantum-mechanical fission theory, we

have analyzed the angular distributions of fragments
originating from the subthreshold photofission of
seven even–even nuclei. The results of this analysis
have confirmed the conclusion drawn in [10, 11]
that the maximum value Lm of the relative orbital
angular momentum L of fission fragments cannot
differ significantly from a limiting value of Lm ≈ 30,
which was obtained in [10, 11] from an analysis of the
multiplicity of prompt neutrons and the multiplicity
and multipolarity of prompt photons emitted by pri-
mary fission fragments. This result can be considered
as an additional substantiation of the mechanism of
pumping of high spins and orbital angular momenta
of primary fission fragments that was proposed in [10]
and which was associated with a strong nonsphericity
of the potential of interaction of these fragments.
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Abstract—The concept of transition fission states, which was successfully used to describe the angular
distributions of fragments for the spontaneous and low-energy induced fission of axisymmetric nuclei,
proves to be correct if the spin projection onto the symmetry axis of a fissile nucleus is an integral of the
motion for the external region from the descent of the fissile nucleus from the external fission barrier to the
scission point. Upon heating a fissile nucleus in this region to temperatures of T ≈ 1 MeV (this is predicted
by many theoretical models of the fission process), the Coriolis interaction uniformly mixes the possible
projections of the fissile-nucleus spin for the case of low spin values, this leading to the loss of memory
about transition fission states in the asymptotic region where the angular distributions of fragments are
formed. Within quantum-mechanical fission theory, which takes into account deviations from A. Bohr’s
formula, the angular distributions of fragments are calculated for spontaneously fissile nuclei aligned by an
external magnetic field at ultralow temperatures, and it is shown that an analysis of experimental angular
distributions of fragments would make it possible to solve the problem of spin-projection conservation for
fissile nuclei in the external region. c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

On the basis of the observation that there is a
sizable anisotropy in the angular distributions of frag-
ments originating from the subthreshold photofis-
sion of axisymmetric deformed even–even nuclei [1],
A. Bohr [2, 3] introduced the concept of transition
fission states that are formed at the saddle points of
the deformation potential and which are characterized
by a parity π, a spin J , and its projection K onto the
symmetry axis of the fissile nucleus being considered,
these states corresponding to “cold” internal states of
the nucleus. A generalization of this concept to the
case of a two-humped fission barrier [4–7] made it
possible to explain [8] basic features of experimental
angular distributions of fragments for the subthresh-
old fission of an extensive group of even–even actinide
nuclei.

Relying on quantum-mechanical fission the-
ory [9], which employs the concept of transition fission
states [2, 3], we studied [10, 11] the deviations of
the experimental angular distributions of fragments
for the subthreshold photofission of nuclei [8] from
the predictions of A. Bohr’s widely used formula [3]
and found, for the maximum relative orbital angular
momentum of photofission fragments (lm), a value
of lm ≈ 30, which is in good agreement with the

*E-mail: kadmensky@phys.vsu.ru
1063-7788/05/6809-1433$26.00
estimate of lm obtained with allowance for the mech-
anism of pumping of high spins and relative orbital
angular momenta of fragments (this mechanism was
proposed in [12]).

The angular distributions of fragments originating
from the fission of 236U and 234U nuclei formed upon
the capture of resonance and low-energy neutrons
of energy in the range 0.4 < En ≤ 2000 eV by, re-
spectively, 235U and 233U target nuclei aligned in
strong magnetic fields at ultralow temperatures were
experimentally studied in [13, 14]. The results ob-
tained in [14] by analyzing these angular distribu-
tions for the 234U compound nucleus on the basis
of the concept of transition fission states [2, 3] differ
dramatically from the results reported by Ostapenko
et al. [8], who analyzed the angular distributions of
fragments for the photofission of the same nucleus
in the same range of its excitation energies. Fission
from the Jπ = 2+ compound states of 234U that are
excited in the reactions under study in the first well
of the deformation potential of the fissile nucleus was
determined exclusively by the JπK = 2+0 transition
fission states for photofission [8] and by the JπK =
2+1 states for fission induced by resonance and low-
energy neutrons [14].

The reason behind this distinction has yet to be
clarified conclusively. In particular, it may be asso-
ciated with the possibility that the interference [15]
c© 2005 Pleiades Publishing, Inc.
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between the fission amplitudes for different compound
states of the fissile nucleus in the first well of the
deformation potential, which have different energies
and, in general, different spins, manifests itself in
cross sections and in the angular distribution of frag-
ments for nuclear fission induced by resonance and
low-energy neutrons. Such an interference does not
contribute to cross sections and angular distributions
of fragments for photofission, since the character-
istic energy interval of averaging photofission cross
sections is very wide (≥100 keV) in the experiments
reported in [8].

The very fact that there are distinctions between
the results of descriptions of photofission, on one
hand, and fission induced by resonance and low-
energy neutrons, on the other hand, demonstrates
typical difficulties that arise in extracting reliable in-
formation about fission physics in analyzing the fis-
sion of nuclei from highly excited compound states of
a fissile nucleus that possess a complicated structure.

In this connection, it would be of paramount im-
portance to implement the project [16] of studying
the angular distributions of fragments for the spon-
taneous fission of nuclei aligned by an external mag-
netic field at ultralow temperatures. For anisotropy in
these angular distributions to be observed, it is neces-
sary that the ground-state spin J of the fissile nucleus
satisfy the condition J > 1/2. This means that the
nuclei being studied must be odd or odd–odd, which
creates difficulties for planned experiments since the
branching fractions of spontaneous fission for odd
and especially odd–odd nuclei are small, falling well
below the analogous branching fractions for even–
even spontaneously fissile nuclei.

Investigation of the spontaneous fission of axisym-
metric deformed nuclei is advantageous in that, for
the ground states of these nuclei, the projection K of
the spin J always takes the value K = J . It follows
that, within the concept of transition fission states [2,
3], spontaneous fission is determined exclusively by
the only deep-subbarrier transition fission state of
quantum numbers JπK = JπJ . This circumstance
simplifies substantially the analysis of the angular
distributions of fragments for the spontaneous fission
of oriented nuclei in relation to the analysis of the
angular distributions of fragments for fission from
compound states of fissile nuclei (see above).

On the basis of quantum-mechanical fission the-
ory [9], we demonstrated in [10] the deviations of
the angular distributions of fragments for the spon-
taneous fission of nuclei oriented to the maximum
possible degree by an external magnetic field from
the predictions of A. Bohr’s formula, this making it
possible to determine the maximum value lm of rela-
tive orbital angular momenta of fission fragments at
PH
a rather high statistical accuracy of experiments that
study the angular distributions in question.

The objective of the present study is to explore the
problem of conservation of the spin projection K for
a fissile axisymmetric nucleus in the fission process
and to analyze, within quantum-mechanical fission
theory [9–12], the potential of experiments that would
study the angular distributions of fragments for the
spontaneous fission of oriented nuclei with the aim of
solving this problem.

2. PROBLEM OF CONSERVATION
OF THE FISSILE-NUCLEUS-SPIN

PROJECTION IN THE FISSION PROCESS

Let us consider the case where the shape of the
deformed fissile nucleus in the first well of its deforma-
tion potential possesses axial symmetry. If we elim-
inate the effect of weak interactions, the spin J and
the parity π of fissile-nucleus states will be integrals
of the motion at all stages of the fission process. As to
the projection K of the fissile-nucleus spin onto the
symmetry axis of the fissile nucleus, it can change in
the fission process because of the effect of two main
factors. The first factor is associated with the possibil-
ity that, in the fission process, the nucleus undergoing
fission may develop triaxial deformations specified by
a nonzero parameter γ, which lead to the mixing of
states characterized by different values of K. This
possibility was discussed in [17]. The second factor
is associated with the effect of Coriolis interaction,
which, as was shown in [18, 19], undergoes a dynam-
ical enhancement in the case of rather high excitation
energies E∗ of the fissile nucleus and thermalization
of this energy over a large number of multiquasipar-
ticle states (compound states) and leads to a uniform
statistical mixing of the projections K of the spins J
of these states.

For actinide nuclei, it is generally accepted that, as
collective deformation coordinates of the nucleus un-
dergo changes in the process of its fission, the nuclear
shape retains axial symmetry. Therefore, we will dis-
regard the effect of the first factor on the conservation
of the spin projection K in the fission process. As to
the second factor, which is associated with Coriolis
interaction, its inclusion seems mandatory.

In calculating fission widths and the angular dis-
tributions of fragments for induced nuclear fission,
use is usually made [3, 11] of the concept that, at
the initial stage of the fission process—this stage
involves the formation of highly excited compound
states of a fissile nucleus at the first well of the de-
formation potential—the projections K of the spins
J of these compound states are distributed uniformly
at rather low values of J . As a rule, this concept is
also applied [3, 11] to the compound states of the
YSICS OF ATOMIC NUCLEI Vol. 68 No. 9 2005
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fissile nucleus in the second well of the deformation
potential. However, there is presently no consistent
validation of this concept for the case of practical
interest where the excitation energies of compound
states in the second well are much lower than the
excitation energies of the analogous states in the first
well.

In describing spontaneous and low-energy in-
duced fission of nuclei, use is extensively made of the
concept of transition fission states [2, 3], which are
formed at the saddle points of the deformation poten-
tial of a fissile nucleus and which are characterized
by a spin J , a parity π, and a spin projection K onto
the symmetry axis of the fissile nucleus. For the states
being considered, the spin projectionK takes a single
value for the reason that, since the internal state of
the fissile nucleus is cold, Coriolis mixing in K does
not play any significant role at the saddle points.

For the concept of transition fission states to be
operative and for these states to be crucial for the for-
mation of fission widths and the asymptotic behavior
of the fissile-nucleus wave function in the region of al-
ready formed primary fission fragments, the following
condition of paramount importance must be satisfied:
the spin projections K associated with transition fis-
sion states at the outer saddle point of the deformation
potential must remain integrals of the motion over
the entire external region of the fissile system from
the descent of the nucleus from this saddle point to
the point of its scission into primary fission fragments
and a subsequent divergence of these fragments. This
means that the fissile nucleus must remain quite cold
throughout this region in order that the Coriolis in-
teraction not come into play and not mix, with equal
probabilities, all possible projections K of the fissile-
nucleus spin.

The majority of modern fission models [20–27],
which describe successfully the mass, charge, and
energy distributions of fragments originating from the
spontaneous and induced fission of various nuclei, in-
volve the concept that, because of dissipation effects,
a considerable part of the difference of the potential
energies of a fissile nucleus at the outer saddle point
and at the point of its scission into fragments goes
into heating the fissile nucleus, whose state near the
scission point is characterized by a temperature of
T ≈ 1MeV.According to [3], the relation between the
nuclear excitation energy E∗ and the nuclear temper-
ature T at rather high T is

E∗ = aT 2, (1)

where a = (A/8) MeV−1 [3]. For an A ≈ 250 fissile
nucleus, this yields the estimateE∗ ≈ 30 MeV. It was
indicated above that, upon the thermalization of so
high an excitation energy, Coriolis interaction in an
axisymmetric nucleus leads to [18, 19] a complete
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 9 200
mixing of all values of the projectionsK of the fissile-
nucleus spin J at rather low J and to the loss of
memory about the spin projection in the transition
fission states of the nucleus.

This conclusion contradicts the fact that there
appear sizable anisotropies in the angular distribu-
tions of fragments for the subthreshold fission of nu-
clei [8, 10, 11] and for the fission of aligned nuclei
that is induced by low-energy and resonance neu-
trons [12, 13]; it is also at odds with the observation
of P-odd [28] and P-even [29] asymmetries in the
angular distributions of fragments originating from
nuclear fission induced by polarized cold neutrons, as
well as with the discovery of significant fluctuations
in the fission widths of neutron resonances [30]. By
employing the formula obtained for the angular dis-
tributions of fragments originating from subthreshold
nuclear fission [3, 8, 10, 11] and fragments originating
from the fission of aligned nuclei that is induced by
low-energy and resonance neutrons [13, 14], as well
as the formulas for the coefficients of P-odd and
P-even asymmetries in the angular distributions of
fragments in nuclear fission induced by cold polarized
neutrons [31–33], it can be proven rigorously that the
anisotropies and the coefficients ofP-odd andP-even
asymmetries in the angular distributions of fission
fragments vanish in the case of a uniform distribution
of all projections K of the spins J of fissile-nucleus
states in the vicinity of the scission point.

Upon considering that, at nuclear eхcitation ener-
gies in the rangeE∗ < 2MeV, the Coriolis interaction
effect on themixing of the projectionsK of the spins J
of excited states of an A ≈ 250 axisymmetric nucleus
is weak at rather low values of J [18], the use of
formula (1) makes it possible to obtain a qualitative
estimate of maximum possible fissile-nucleus tem-
peratures Tm at which the projectionK of the fissile-
nucleus spin J can still be considered as an integral
of the motion, Tm ≤ 0.25 MeV. This estimate con-
tradicts the result obtained within the fission models
that were proposed in [20–27] and in which, as was
indicated above, the temperature T of a fissile nucleus
in the vicinity of its scission point is about 1 MeV. It
is of importance to develop new fission models that
would be able to describe basic features of the fission
process, such as the mass, charge, and energy distri-
butions of fission fragments, and which, at the same
time, would be compatible with the experimentally
corroborated concept of transition fission states [2, 3].

An investigation of the angular distributions of
fragments originating from the spontaneous fission
of aligned nuclei may furnish additional arguments in
favor of the above concept.
5
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3. ANGULAR DISTRIBUTIONS
OF FRAGMENTS FOR THE FISSION

OF ALIGNED NUCLEI

Within quantum-mechanical fission theory [9–
12], the normalized (to unity) angular distribution
dP Jπ(θ)/dΩ of fragments originating from the spon-
taneous fission of axisymmetric nuclei aligned by an
external magnetic field at ultralow temperatures can
be represented in the form

dP Jπ(θ)
dΩ

=
∑
K≥0

(2 − δK,0)ΓJπK

ΓJπ

dP JπK(θ)
dΩ

, (2)

where dP JπK(θ)/dΩ is the angular distribution of
fragments for fission from the JπK state of the fissile
nucleus,

dP JπK(θ)
dΩ

=
∑
M

aJ
MT

Jπ
MK(θ); (3)

Ω ≡ (θ, ϕ) is the solid angle that determines the di-
rection of light-fission-fragment emission in the lab-
oratory frame; ΓJπK is the partial fission width for
the transition of the parent nucleus to the asymptotic
state of spin J , parity π, and spin projection K (M )
onto the symmetry axis of the nucleus (z axis in the
laboratory frame); and

ΓJπ =
∑
K>0

(2 − δK,0)ΓJπK

is the total fission width of the parent nucleus, the fac-
tor (2 − δK,0) taking into account double degeneracy
of K > 0 states of an axisymmetric nucleus. In (3),
aJ

M is a parameter that characterizes the relative pop-
ulation of the JπM sublevels of the fissile nucleus,∑J

M=−J a
J
M = 1, and T Jπ

MK(θ) is the normalized (to
unity) angular distribution of fragments for fission
from the JπMK states of the fissile nucleus. For this
angular distribution, we have [9, 10]

T Jπ
MK(θ) =

2J + 1
16π2

∫
dωBJ

MK(ω)F 2(lm, θ′), (4)

BJ
MK(ω) = |DJ

MK(ω)|2 + |DJ
M−K(ω)|2, (5)

where θ′ is the angle between the direction of light-
fission-fragment emission and the symmetry axis
of the fissile nucleus and DJ

MK(ω) is a generalized
spherical harmonic, which depends on the Euler
angles ω ≡ (α, β, γ) determining the orientation of
the symmetry axes of the fissile nucleus with respect
to the axes of the laboratory frame. The function
F (lm, θ′) in (4) coincides with the amplitude of the
normalized (to unity) angular distribution of fission
PH
fragments in the body frame of the fissile nucleus.
Specifically, we have

F (lm, θ′) = b(lm)

{
lm∑
l=0

Yl0(θ′)
√

2l + 1Rl

}
, (6)

b(lm) =

{
lm∑
l=0

(2l + 1)R2
l

}−1/2

, (7)

where Rl = 1 + ππ1π2(−1)l, lm is the maximum
value of the relative orbital angular momentum l of
fission fragments, and Yl0(θ′) is a spherical harmonic.
As follows from specific calculations, the function
F (lm, θ′) at high values of lm is virtually independent
of the parity π of the fissile nucleus and the parities
π1 and π2 of fission fragments—that is, on the parity
of the relative orbital angular momentum l of fission
fragments. For lm → ∞, the angular distribution
F 2(lm, θ′) reduces to the sum of delta functions of
the form

1
4π

[δ(ξ′ − 1) + δ(ξ′ + 1)],

where ξ′ = cos θ′, so that the angular distribution (4)
assumes the form predicted byA. Bohr’s formula [2, 3],

T̃ Jπ
MK(θ) =

2J + 1
8π

BJ
MK(ω)

∣∣∣∣
β=θ

, (8)

which is usually used [3, 8, 13, 14] in calculating the
angular distributions of fission fragments.

The mechanism of pumping of relative orbital an-
gular momenta and spins of fission fragments due to
a strongly nonspherical character of the potential of
interaction between primary fission fragments in the
vicinity of the point where the fissile nucleus under-
goes scission into fragments was proposed in [12].
This mechanism leads to a value of lm ≈ 30 for the
maximum relative orbital angular momentum of fis-
sion fragments. This value of lm was confirmed in [10,
11], where the angular distributions of fragments were
analyzed for the subthreshold photofission of a set of
even–even nuclei and will therefore be used below.

By using the multiplication theorem for spheri-
cal harmonics and the formula for transforming the
spherical harmonic Yl0(θ′) from the body frame to
the laboratory frame, we can represent the angular
distribution F 2(lm, θ′) in the form

F 2(lm, θ′) =
[b(lm)]2√

4π

∑
Lk

∑
ll′

(2l + 1)(2l′ + 1)√
(2L+ 1)

(9)

× |CL0
ll′00|2YLk(θ)DL∗

k0 (ω)RlRl′ ,

where CL0
ll′00 is a Clebsch–Gordan coefficient.
YSICS OF ATOMIC NUCLEI Vol. 68 No. 9 2005
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In turn, the use of the multiplication theorem for
generalized spherical harmonics makes it possible to
represent the quantityBJ

MK(ω) in (5) as

BJ
MK(ω) = 2

∑
L=0,2,4...

BJL
MKD

L
00(ω), (10)

BJL
MK = (−1)M−KCL0

JJM−MC
L0
JJK−K (11)

= (−1)2J−M−KCL0
JJM−MC

L0
JJK−K.

Performing integration in (4) with respect to ω and
taking into account the explicit expressions (10)
and (9) for BJ

MK(ω) and F 2(lm, θ′), respectively, we
can recast the angular distribution T Jπ

MK(θ) into the
form

T Jπ
MK(θ) =

2J + 1
4π

2J∑
L=0,2,4...

DL(lm)BJL
MKPL(θ),

(12)

where PL(θ) is a Legendre polynomial and the coeffi-
cientDL(lm) is given by the expression

DL(lm) (13)

= [b(lm)]2
{

lm∑
ll′

RlRl′
(2l + 1)(2l′ + 1)

2L+ 1
(CL0

ll′00)
2

}
,

whence it follows that DL(lm) ≤ 1 and D0(lm) = 1
for any values of lm.

If, for the generalized spherical harmonic DL
00(ω),

which appears in the definition of BJ
MK(ω), one

employs the relation DL
00(ω)|β=θ = PL(θ), then the

angular distribution T̃ Jπ
MK(θ) (8) in A. Bohr’s limit

(lm → ∞) can be represented in the form

T̃ Jπ
MK(θ) =

2J + 1
4π

2J∑
L=0,2,4...

BJL
MKPL(θ). (14)

Formula (14) can also be obtained from (12) upon
considering that, in A. Bohr’s limit, the quantity
DL(lm) in (13) reduces to DL(lm → ∞) = 1 for any
values ofL, whence it can be seen that, at finite values
of lm, the angular distribution in (12) differs from
A. Bohr’s angular distribution in (14) only because
of the deviation of the coefficients DL(lm) from unity.
At lm = 30, the coefficients DL(lm) are independent
of the parity π of the fissile nucleus or the parities
π1 and π2 of fission fragments, taking the values
of D2(30) = 0.95, D4(30) = 0.91, D6(30) = 0.87,
D8(30) = 0.82, . . . , which decrease with increas-
ing L.

Employing formula (12) and considering that, at
L = 0, the quantity BJL

MK is equal to (2J + 1)−1, we
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 9 200
can recast the angular distribution dP JπK(θ)/dΩ (3)
into the form

dP JπK(θ)
dΩ

=
1
4π

+
2J + 1

4π
(15)

×
∑
M

aJ
M

∑
L=2,4,...

BJL
MKDL(lm)PL(θ).

For a further analysis of the angular distributions (15),
it is convenient to employ the quantity fJ

L that is
referred to as the nuclear-orientation parameter and
which is given by [34]

fJ
L =

[
(2J + L+ 1)!

(2L+ 1)(2J − L)!

]−1/2 (L!)2

(2L)!
J−LGJ

L,

(16)

where

GJ
L =

∑
M

aJ
M (−1)J−MCL0

JJM−M (17)

is the Fano statistical tensor. If a fissile nucleus is
not oriented because of an equiprobable population of
all JπM sublevels of this nucleus at different values of
M , in which case we have aJ

M = (2J + 1)−1, the Fano
statistical tensor GJ

L and the nuclear-orientation
parameter fJ

L become, respectively, GJ
L = (2J +

1)−1/2δL,0 and fJ
L = δL,0 by virtue of the following

properties of Clebsch–Gordan coefficients:∑
M

CL0
JJM−MC

00
JJ−MM (18)

=
∑
M

CL0
JJM−M (−1)J−M 1√

2J + 1
= δL,0.

In this case, all of theL �= 0 terms vanish in the angu-
lar distribution (15), which becomes purely isotropic,(

dP JπK(θ)
dΩ

)is

=
1
4π
.

With the aid of formulas (11), (12), (16), and (17),
the angular distribution (15) can in general be rep-
resented in the form

dP JπK(θ)
dΩ

=
(
dP JπK(θ)

dΩ

)is

W JπK(θ), (19)

where

W JπK(θ) = 1 +
∑

L=2,4,...

DL(lm)fJ
LAL(J,K)PL(θ)

(20)

is the reduced angular distribution of fission frag-
ments with

AL(J,K) = (−1)J−KCL0
JJK−K (21)
5
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Orientation parameters fJ
L and coefficientsAL(J,K) for J = 7/2 and J = 9/2 and various values ofK versus L

J = 7/2 J = 9/2

L
fJ

L

AL(J,K)
fJ

L

AL(J,K)

K = 7/2 K = 5/2 K = 3/2 K = 1/2 K = 9/2 K = 7/2 K = 5/2 K = 3/2 K = 1/2

2 0.57 4.08 0.58 −1.75 −2.92 0.59 4.6 1.53 −0.76 −2.30 −3.07

4 0.08 7.96 −14.78 −3.41 −10.23 0.11 10.75 −13.14 −10.16 1.79 10.75

6 0.003 10.21 −51.06 91.91 −51.06 0.008 17.30 −63.43 57.67 34.60 −46.13

8 0.0002 20.85 −145.96 417.04 −583.86 291.92
× (2J + 1)JL(2L)!
(L!)2

[
(2L+ 1)(2J − L)!

(2J + L+ 1)!

]1/2

.

For a complete alignment of a spontaneously fissile
nucleus in an external magnetic field at ultralow tem-
peratures, in which case aJ

M becomes aJ
M = δM,±J ,

depending on the sign of the gyromagnetic ratio for a
fissile nucleus, the Fano tensor GJ

L (17) assumes the
form

GJ
L = CL0

JJJ−J =
[

(2L+ 1)(2J !)2

(2J − L)!(2J + L+ 1)!

]1/2

,

while the nuclear-orientation parameter reduces
to [34]

fJ
L =

(L!)2

(2L)!
J−L (2J)!

(2J − L)!
. (22)

The total angular distribution dP Jπ(θ)/dΩ of
fragments for the spontaneous fission of oriented
nuclei is obtained by substituting (19) and (20)
into (2),

dP Jπ(θ)
dΩ

=
(
dP JπK(θ)

dΩ

)is

W Jπ(θ), (23)

where the reduced angular distribution W Jπ(θ) is
expressed in terms of the distribution W JπK(θ) (20)
as

W Jπ(θ) =
∑
K≥0

(2 − δK,0)ΓJπK

ΓJπ
W JπK(θ). (24)

One can then see that, in just the same way as in the
case of angular distributions of fragments for the sub-
threshold fission of nuclei [8, 10, 11] and fragments
originating from the fission of aligned nuclei that is
induced by low-energy and resonance neutrons [13,
14], the reduced angular distribution W Jπ(θ) of fis-
sion fragments becomes fully isotropic and equal to
PH
unity if the distribution of all projections K of the
fissile-nucleus spin J is equiprobable in the asymp-
totic region, in which case the partial fission widths
ΓJπK in (24) are independent of K. This result is
associated with the property of Clebsch–Gordan co-
efficients that arises from (18) upon the substitution
of the index K for the index M and which leads to
the vanishing of all L �= 0 terms in (24). This means
that the discovery of a sizable anisotropy in experi-
mental reduced angular distributions W Jπ(θ) would
indicate that, in the external region introduced above,
the fissile nucleus being studied is not heated to sig-
nificant temperatures. It would also be of interest to
obtain a piece of evidence in support of an exact spin-
projection conservation for a spontaneously fissile nu-
cleus in the external region, in which case the sum
over K in (24) would be dominated by the K = J
term.

4. ANGULAR DISTRIBUTIONS
OF FRAGMENTS FOR THE SPONTANEOUS

FISSION OF COMPLETELY ORIENTED
NUCLEI 255Es AND 257Fm

A further analysis will be performed by consid-
ering spontaneous fission from the ground states of
the 255Es and 257Fm odd nuclei that are completely
oriented in an external magnetic field at ultralow tem-
peratures and which were chosen for investigation in
the project formulated in [16]. Although there have
so far been no reliable measurements of the spins of
these nuclei, one can conclude from the systematics
of spins of neighboring odd isotopes of Es and Fm
that the spins J of the 255Es and 257Fm nuclei are 7/2
and 9/2, respectively. Since the angular distributions
of fragments in the spontaneous fission of aligned
nuclei are sensitive to the spins J of these nuclei, one
can obtain direct information about the spins J from
an analysis of these distributions, thereby confirming
YSICS OF ATOMIC NUCLEI Vol. 68 No. 9 2005
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Fig. 1. Reduced angular distributions W JπK(θ) (20) in the case of 255Es for various L values included in their calculation.
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Fig. 2. As in Fig. 1, but for 257Fm.
(or disproving) the spin values proposed above for the
nuclei in question.

From the table, which presents the values calcu-
lated by formulas (22) and (21) for the coefficients
fJ

L and AL(J,K) at J = 7/2 and J = 9/2, one can
see that the quantities fJ

L decrease with increasing
L, while the coefficients AL(J,K) increase fast with
increasing K. It follows that, in order to obtain rather
accurate results for the reduced angular distributions
W JπK(θ) of fission fragments, one must also take
into account the L > 2 terms in the sum over L
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 9 2005
in (20). The calculations reveal that, in describing
angular distributions of fragments for fission from the
ground state of a J = K fissile nucleus, one can dis-
regard the contributions of the L = 6 terms for 255Es
and the contributions of the L = 8 terms for 257Fm.
In describing the angular distributions W JπK(θ) for
K < J , it is necessary to take into account all pos-
sible values of L(L < 2J), this being illustrated by
Figs. 1 and 2 for the example of the reduced angular
distributions, respectively, at J = 7/2 and K = 3/2
and at J = 9/2 and K = 5/2. From Fig. 1, one can
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Fig. 3. Reduced angular distributions W JπK(θ) (20) in the case of 255Es for various values of K. The solid and dashed curves
represent the results of the calculations at, respectively, lm = 30 and lm = ∞ (A. Bohr’s formula).
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see that, at J = 7/2 and K = 3/2, the shape of the
angular distribution changes markedly in the vicinity
of the angle θ = 0◦ upon taking into account the L =
6 term. Figure 2 shows that, at J = 9/2 andK = 5/2,
the inclusion of the L = 8 term is necessary since,
otherwise, the distribution W JπK(θ) takes negative
values in the vicinities of the angles 0◦ and 180◦.

As can be seen from Figs. 3 and 4, the shape of
the reduced angular distributions W JπK(θ) for J =
7/2 and J = 9/2 changes strongly withK—from the
distributions at low K, which have a maximum at
θ = 90◦, to the distributions at K = J , which have a
minimum at θ = 90◦. At the same time, a compar-
ison of the data in Figs. 3 and 4 shows that, in the
case of K = J , the distributions W JπK(θ) change
substantially upon going over from J = 7/2 to J =
9/2. Therefore, a comparison of experimental reduced
angular distributions with the distributions W Jπ(θ)
in (24) would make it possible to determine not only
the spin J of a fissile nucleus but also the spin pro-
jections K that manifest themselves in the external
region of the fissile system.

Upon attaining a rather high statistical accuracy
in measuring reduced angular distributions W Jπ(θ),
one can hope to reveal deviations of W Jπ(θ) from
the predictions of A. Bohr’s formula (24) and to find
the true value of lm. Indeed, the angular distributions
W JπK(θ) calculated by formula (20) at lm = 30 for
angles around θ = 90◦ differ from the angular distri-
butions calculated by A. Bohr formula (14) by factors
of 1.57 and 2.66 for, respectively, J = 7/2 and J =
9/2 (see Figs. 3, 4).

5. CONCLUSION

Our analysis of the problem of conservation of
the projection K of the spin J of an axisymmetric
fissile nucleus at various stages of the fission process
has revealed that, because of the Coriolis interaction
effect, only if the fissile nucleus being considered re-
mains cold up to the point of its scission into fission
fragments do there appear noticeable anisotropies in
the angular distributions of fragments for the sponta-
neous and low-energy induced fission of nuclei. The
planned experiments to study the angular distribu-
tions of fragments originating from the spontaneous
fission of oriented nuclei may furnish additional argu-
ments in favor of the ideas developed above.

It is of importance to emphasize that the con-
clusions drawn from the present analysis cannot be
reconciled with existing fission models, which lead to
significant temperatures in the prescission configura-
tion of a fissile nucleus.
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 9 200
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Abstract—The cold cluster decay model is presented in the framework of a dinuclear system concept.
Spectroscopic factors are extracted from barrier penetrabilities and measured half-lives. The deformation
of the light cluster and residual nucleus is shown to affect the nucleus–nucleus potential and decay
characteristics. Half-lives are predicted for neutron-deficient actinides and intermediate-mass nuclei. The
connection between spontaneous fission and cluster radioactivity is discussed. c© 2005 Pleiades Publish-
ing, Inc.
1. INTRODUCTION

Spontaneous binary nuclear decay is possible if
this process is exothermic, i.e., occurs with positive
energy release Q > 0. This condition is satisfied for
many decay modes of numerous nuclei in the second
half of the Periodic Table. Only α decay (decay super-
symmetric in product masses) and/or spontaneous
fission (symmetric or asymmetric decay) is primarily
realized. The yields of carbon, fluorine, oxygen, neon,
magnesium, and silicon isotopes are measured only
for the case where one of daughter nuclei is 208Pb
or nuclei close to it in narrow ranges 90 ≤ Z ≤ 93
and 206 ≤ A ≤ 212 of the charge and mass numbers,
respectively. Light clusters, as well as the α particle,
are in the ground state, and the heavy residual nucleus
is in the ground state or in one of low-lying states
(e.g., the fine structure of the 223Ra → 14C + 209Pb
decay [1, 2]). This phenomenon is called cluster ra-
dioactivity and has many common features with α
decay and cold fission in which the decay fragments
are almost unexcited [1, 2]. Experiments point to
the decisive role of structure effects such as the fine
structure and exclusion of transitions from odd parent
nuclei [1–3].

The process of cold nuclear decay can be repre-
sented in the form of the collective flow of nucleons
of the initial nucleus to the daughter nuclei, when
nuclei have time to occupy levels with the minimum
energy. This process is accompanied with the consid-
erable rearrangement of the parent nucleus. Such a
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2)Mari State University, Ioshkar Ola, Russia.
3)Institute of Nuclear Physics, Academy of Sciences of
Uzbekistan, Tashkent, 702132 Uzbekistan.

*e-mail: adamian@thsun1.jinr.ru
1063-7788/05/6809-1443$26.00
description of cluster decay is similar to the classi-
cal description of the nuclear fission process. Models
based on this description are called adiabatic or fission
models [4–7]. At the same time, one can assume that
a light cluster is formed on the surface of the parent
nucleus. The decay of such a system consisting of
two daughter nuclei does not require a significant
adjustment of the system to the final decay channel.
In this nonadiabatic approach [1, 2, 8, 9], α decay is
well described. Thus, in adiabatic models, the shape
of a fissioning nucleus is assumed to change con-
tinuously and smoothly with time, and the process is
described dynamically beginning with the parent nu-
cleus and ending with the prescission configuration.
In nonadiabatic models, the probability of the almost
instantaneous formation of a two-cluster system and
the penetrability of the potential barrier are calculated
separately.

The model discussed in this work is based on
the assumption that the ground nuclear state can
be represented as a superposition of cluster states
and a mononucleus [10]. Cluster states are described
as dinuclear systems (DNSs) [11]. A DNS decays
if nuclei overcome a potential barrier preventing the
instantaneous decay of the DNS. There are many
methods for calculating a nucleus–nucleus poten-
tial (e.g., the proximity potential, folding potential,
double-folding potential, optical potential, etc.) [1, 2,
12]. In addition, different models involve different pa-
rameters for calculating the interaction potential. The
form of the potential is determined primarily by the
spectroscopic factor and barrier penetrability. We use
a nucleus–nucleus potential based on the double-
folding procedure. The aim of this work is to extract
the spectroscopic factors of clusters from the available
experimental half-lives and calculated penetrabilities
c© 2005 Pleiades Publishing, Inc.
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Fig. 1. Interaction potential between the 28Mg and 206Hg
nuclei in the decay of 234U. Calculations were performed
for two values of the quadrupole nuclear deformation:
(solid curve) βx = βf = 0 and (dashed curve) βx = 0.49,
βf = 0.05. The horizontal straight line shows the abso-
lute value of Q for the given decay.

of potential barriers and to predict the half-lives of
neutron-deficient nuclei.

2. MODEL

Cluster decay can be described as the evolution
of the system along the mass-asymmetry coordinates
η = (Af −Ax)/(Af + Ax) (Af and Ax are the mass
numbers of the heavy and light clusters, respectively)
and along the distance R between the centers of
mass of clusters. With low probability, a strongly
asymmetric DNS exists in the ground nuclear state.
Such a DNS decays due to tunneling through the
barrier of the nucleus–nucleus potential. In the first
approximation, the process can be divided into two
stages: the formation of the DNS can be treated as
evolution along η, and the decay of the DNS, as
evolution along R. The probability S of the formation
of the DNS can be found using the ground state
of the Schrödinger equation in the mass asymmetry
variable. The probability P of tunneling in R can be
considered in the WKB approximation.

In order to calculate the characteristics of cluster
decay, we use formulas similar to the formulas of
α-decay theory [1]. The half-life of a nucleus with
respect to cluster decay is given by the expression

tx = �/Γx,

where

Γx =
�ω0

π
SP

is the decay width. The half-life can be expressed in
terms of tx as

T1/2 = tx ln 2 =
π ln 2
ω0SP

. (1)

In the expression, the energy �ω0 related to the angu-
lar frequency is the distance between the neighboring
P

resonances in the classically allowed surface of the
potential energy for a particular parent nucleus. In
the case under consideration, this frequency is related
to the frequency of zero modes in the variable η near
|η| = 1. The allowed region arises because the poten-
tial energy of the α configuration is comparable or
even lower (particularly for neutron-deficient nuclei)
than the potential energy of the mononucleus (|η| =
1) [10]. The angular frequency has a specific value for
a specific parent nucleus, but we take the mean value
�ω0 = 1.2 MeV [10] in calculations for all decays
under consideration.

The probability of tunneling through a potential
barrier in R, i.e., its penetrability P , is calculated by
the formula

P = 1/(1 + expG), (2)

where

G =
2
�

R1∫
R0

√
2m[U(R) −Q]dR.

The R0 and R1 values are given in Fig. 1 for the
interaction potential between the 28Mg and 206Hg
nuclei,m = m0AxAf/(Af +Ax) is the reducedmass
of the system (m0 is the nucleon mass), and Q is the
decay energy. The contact configuration atR = R0 ≈
Rx(1 +

√
5/(4π)βx) +Rf (1 +

√
5/(4π)βf ) + 0.5 fm

(Rx,f = r0x,fA
1/3
x,f are the radii of the light and heavy

clusters, and βx,f are the parameters of quadrupole
nuclear deformation) corresponds to the position of
the local minimum of the nucleus–nucleus poten-
tial U . It is assumed that the DNS is axisymmetric,
because the potential interaction energy for all other
orientations of the DNS nuclei is higher.We note that
only quadrupole nuclear deformation is taken into
account.

The potential U(R) can be represented as the sum
of three terms [12]:

U(R) = UCoul(R) + UN (R) + UL(R), (3)

where UCoul(R), UN (R), and UL(R) = �
2L(L +

1)/(2�(R)) are the Coulomb, nuclear, and centrifu-
gal potentials, respectively, where �(R) is the orbital
moment of inertia. Calculation of UN (R) is most
difficult. Let us take it in the form of the double-
folding potential:

UN (R) =
∫

ρx(rx)ρf (R − rf )F (rf − rx)drxdrf .

The nucleon–nucleon forces
F (rf − rx)

= C0

(
Fin

ρ0(rx)
ρ00

+ Fex

(
1 − ρ0(rx)

ρ00

))
δ(rf − rx),
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 9 2005
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Table 1. Calculated penetrabilities P and spectroscopic factors S, as well as measured half-lives T1/2; quadrupole-
deformation parameters βx and βf of the cluster and residual nucleus, respectively [15]; and energy release Q in decay
(the calculations were performed with the parameters a0x = 0.55 fm, a0f = 0.56 fm, r0x = 1.15 fm, and r0f = 1.16 fm)

A → Ax + Af βx βf Q, MeV T1/2, s P S

221Fr → 14C + 207Tl −0.36 0.05 31.29 2.9 × 1014 8.2 × 10−30 5.2 × 10−7

221Ra → 14C + 207Pb −0.36 0.03 32.29 1.5 × 1013 8.9 × 10−28 9.1 × 10−8

222Ra → 14C + 208Pb −0.36 0.00 33.05 1.7 × 1011 1.9 × 10−26 3.8 × 10−7

223Ra → 14C + 209Pb −0.36 0.02 31.85 7.6 × 1015 6.0 × 10−29 2.9 × 10−9

224Ra → 14C + 210Pb −0.36 0.02 30.54 7.3 × 1015 3.2 × 10−31 5.3 × 10−7

226Ra → 14C + 212Pb −0.36 0.02 28.21 1.7 × 1021 1.0 × 10−36 6.8 × 10−7

225Ac → 14C + 211Bi −0.36 0.02 30.48 1.5 × 1017 9.3 × 10−33 8.6 × 10−9

228Th → 20O + 208Pb 0.26 0.00 44.72 5.4 × 1020 7.7 × 10−29 2.9 × 10−14

230Th → 24Ne + 206Hg 0.45 0.05 57.78 4.1 × 1024 3.4 × 10−26 5.8 × 10−21

231Pa → 23F + 208Pb 0.45 0.00 51.87 9.5 × 1025 3.9 × 10−27 3.3 × 10−21

231Pa → 24Ne + 207Tl 0.45 0.05 60.24 7.9 × 1022 8.0 × 10−23 1.9 × 10−22

232U → 24Ne + 208Pb 0.45 0.00 62.31 2.5 × 1020 2.3 × 10−22 2.1 × 10−20

233U → 24Ne + 209Pb 0.45 0.02 60.50 6.9 × 1024 1.5 × 10−24 1.1 × 10−22

233U → 25Ne + 208Pb 0.50 0.00 60.75 6.9 × 1024 3.9 × 10−24 4.4 × 10−23

234U → 24Ne + 210Pb 0.45 0.02 58.84 8.5 × 1025 8.3 × 10−27 1.7 × 10−21

234U → 26Ne + 208Pb 0.50 0.00 59.47 8.5 × 1025 6.5 × 10−26 2.1 × 10−22

234U → 28Mg + 206Hg 0.49 0.05 74.13 5.4 × 1025 6.3 × 10−22 3.5 × 10−26

235U → 24Ne + 211Pb 0.45 0.02 57.36 2.8 × 1027 3.6 × 10−29 1.2 × 10−20

235U → 25Ne + 210Pb 0.50 0.02 57.83 2.8 × 1027 6.2 × 10−28 6.5 × 10−22

235U → 26Ne + 209Pb 0.50 0.02 58.11 2.8 × 1027 1.1 × 10−27 1.5 × 10−21

236U → 30Mg + 206Hg 0.43 0.05 72.51 3.8 × 1027 7.7 × 10−25 4.0 × 10−25

236Pu → 28Mg + 208Pb 0.49 0.00 79.67 3.5 × 1021 8.6 × 10−19 4.2 × 10−25

238Pu → 28Mg + 210Pb 0.59 0.02 75.93 4.7 × 1025 2.0 × 10−21 1.3 × 10−26

238Pu → 30Mg + 208Pb 0.43 0.00 77.03 4.7 × 1025 9.9 × 10−23 2.5 × 10−24

238Pu → 32Si + 206Hg 0.22 0.05 91.21 1.9 × 1025 6.3 × 10−23 9.5 × 10−25

242Cm → 34Si + 208Pb 0.18 0.00 96.53 1.4 × 1023 1.5 × 10−21 1.5 × 10−23
Fin,ex = ζin,ex + ζ ′in,ex
Ax − 2Zx

Ax

Af − 2Zf

Af
,

depend on the nuclear density, because ρ0(rx) =
ρx(rx) + ρf (R− rf ). The constants ζin = 0.09, ζex =
−2.59, ζ ′in = 0.42, ζ ′ex = 0.54, andC0 = 300MeV fm3

are calculated by fitting themeasured nuclear charac-
teristics [13]. The spatial axisymmetric nucleon den-
sity has the form of the Woods–Saxon distribution:

ρx,f(r) =
ρ00

1 + exp(|r − Rx,f |/a0x,f )
,

PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 9 200
where ρ00 = 0.17 fm−3 and a0x,f are the nuclear dif-
fusivity parameters.

The Coulomb potential UCoul is calculated by the
formula [14]

UCoul(R) =
e2ZxZf

R
+

3
5
e2ZxZf

R3

×
∑

i=x,f

R2
0iβiY20(θi)
5
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Table 2. Calculated penetrabilities P and spectroscopic factors S for spherical clusters and residual nuclei, as well
as measured half-lives T1/2 and energy release Q in decay (the calculations were performed with the parameters
a0x = 0.55 fm, a0f = 0.56 fm, r0x = 1.15 fm, and r0f = 1.16 fm)

A → Ax + Af Q, MeV T1/2, s P S

221Fr → 14C + 207Tl 31.29 2.9 × 1014 1.8 × 10−27 2.3 × 10−9

221Ra → 14C + 207Pb 32.29 1.5 × 1013 1.6 × 10−26 5.0 × 10−9

222Ra → 14C + 208Pb 33.05 1.7 × 1011 6.6 × 10−25 1.1 × 10−8

223Ra → 14C + 209Pb 31.85 7.6 × 1015 1.9 × 10−27 8.4 × 10−11

224Ra → 14C + 210Pb 30.54 7.3 × 1015 1.2 × 10−29 1.4 × 10−8

226Ra → 14C + 212Pb 28.21 1.7 × 1021 1.2 × 10−34 5.8 × 10−9

225Ac → 14C + 211Bi 30.48 1.5 × 1017 5.8 × 10−33 1.4 × 10−8

228Th → 20O + 208Pb 44.72 5.4 × 1020 1.5 × 10−31 1.5 × 10−11

230Th → 24Ne + 206Hg 57.78 4.1 × 1024 6.0 × 10−32 4.8 × 10−15

231Pa → 23F + 208Pb 51.87 9.5 × 1025 2.1 × 10−32 6.0 × 10−16

231Pa → 24Ne + 207Tl 60.24 7.9 × 1022 1.1 × 10−29 1.4 × 10−15

232U → 24Ne + 208Pb 62.31 2.5 × 1020 7.7 × 10−28 6.3 × 10−15

233U → 24Ne + 209Pb 60.50 6.9 × 1024 1.7 × 10−30 1.0 × 10−16

233U → 25Ne + 208Pb 60.75 6.9 × 1024 2.6 × 10−30 6.7 × 10−17

234U → 24Ne + 210Pb 58.84 8.5 × 1025 9.9 × 10−33 1.4 × 10−15

234U → 26Ne + 208Pb 59.47 8.5 × 1025 2.3 × 10−32 6.0 × 10−16

234U → 28Mg + 206Hg 74.13 5.4 × 1025 6.2 × 10−30 3.5 × 10−18

235U → 24Ne + 211Pb 57.36 2.8 × 1027 3.6 × 10−35 1.2 × 10−14

235U → 25Ne + 210Pb 57.83 2.8 × 1027 9.4 × 10−35 4.3 × 10−15

235U → 26Ne + 209Pb 58.11 2.8 × 1027 5.5 × 10−34 3.2 × 10−15

236U → 30Mg + 206Hg 72.51 3.8 × 1027 2.2 × 10−32 1.4 × 10−17

236Pu → 28Mg + 208Pb 79.67 3.5 × 1021 1.1 × 10−25 3.3 × 10−18

238Pu → 28Mg + 210Pb 75.93 4.7 × 1025 3.8 × 10−30 6.9 × 10−18

238Pu → 30Mg + 208Pb 77.03 4.7 × 1025 4.2 × 10−29 6.0 × 10−18

238Pu → 32Si + 206Hg 91.21 1.9 × 1025 1.2 × 10−27 5.0 × 10−20

242Cm → 34Si + 208Pb 96.53 1.4 × 1023 1.5 × 10−24 1.5 × 10−20
+
12
35

e2ZxZf

R3

∑
i=x,f

[R0iβiY20(θi)]2.

In terms of the measured half-lives T1/2 and cal-
culated penetrabilities P , the probabilities S of the
formation of various clusters (spectroscopic factors)
are expressed as

S =
π ln 2

ω0T1/2P
. (4)

Numerical results are given in the next section.
PH
3. RESULTS OF THE CALCULATIONS

Figure 1 shows the nucleus–nucleus potential for
the DNS 28Mg + 206Hg at two different values of
nuclear deformation. The inclusion of quadrupole de-
formation changes the position and height of the
barrier, as well as the depth of the local potential
minimum corresponding to the DNS at the contact
point; i.e.,R0 and the area under the curve U(R) −Q
change. As a result, penetrabilityP increases for βx >
0 and decreases for βx < 0 by one to eight orders
of magnitude as compared to the values calculated
YSICS OF ATOMIC NUCLEI Vol. 68 No. 9 2005
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for spherical nuclei (Tables 1 and 2). Penetrability
for identical clusters emitted from neighboring nuclei
always increases with charge asymmetry.

If an additional degree of freedom—the angle θi

between the emission direction of one of the nu-
clei (i = x, f ) and the axial symmetry axis—is intro-
duced, the nucleus–nucleus potential is a function
of this collective variable. A change in the nucleus–
nucleus potential leads to changes in the barrier pen-
etrability P and the potential energy Uc = Bx +Bf +
U (Bx and Bf are the binding energies of the nuclei)
of the contact configuration. As θi for deformed nuclei
increases, Р decreases and Uc increases. These de-
pendences become sharper for large deformations and
large products ZxZf . As an example, P and U for the
DNS 208Pb + 30Mg are shown in Fig. 2 as functions
of θx. By definition, the state with minimum potential
energy is most probable for the contact system (it
has the largest spectroscopic factor). In this case, it
corresponds to the cluster configuration with θi = 0.
The S value for θi = π/6 is approximately 1/30 of the
value for θi = 0. The barrier penetrability is maximal
for θi = 0. Therefore, the probability SP of cluster
decay is also maximal, and the main contribution to
averaging of SP over θi comes from the vicinity of
θi ≈ 0.

Analysis of the decays of odd nuclei requires
the inclusion of DNS states with nonzero orbital
angular momenta L. These states are effectively
taken into account by the centrifugal potential UL

in nucleus–nucleus potential (3). Possible L values
are determined by the conservation laws for parity
and angular momentum. In particular, for the decay
235U(7/2−) → 26Ne(0+) + 209Pb(9/2+), L can be
equal to 1, 3, 5, and 7. Figure 3 shows the depen-
dences of the barrier penetrability on the possible
orbital angular momenta for the decays 235U → 26Ne,
223Ra → 14C, and 229Th → 21O at θ = 0 in compar-
ison with P at L = 0. It is seen that, as the orbital
angular momentum increases, the penetrability de-
creases slightly due to an increase in the moment of
inertia of the system. In the decay considered above,
L does not exceed 10. All calculations are performed
with the inclusion of the angular momentum.

Tables 1 and 2 present spectroscopic factors S
calculated by Eq. (4) using experimental data with,
respectively, the inclusion and exclusion of the static
quadrupole deformation of the light cluster and resid-
ual nucleus. The deformation parameters of the nu-
clei in the ground state are taken from experimen-
tal systematics [15], where only the absolute values
of the quadrupole deformation parameters were pre-
sented. It is remarkable that, as the deformation of the
light cluster is varied, S for a given channel changes
strongly by more than one order of magnitude for 14C
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 9 200
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Fig. 2. (а) Contact-configuration potential U and (b) the
sign-reversed logarithm of the barrier penetrability P for
the dinuclear system 208Pb+ 30Mg vs. the angle θx of the
deviation of the light-nucleus axis of symmetry from the
axis passing through the centers of masses of the nuclei.

and by seven and eight orders of magnitude for 24Ne
and 28Mg, respectively.

According to Tables 1 and 2, the S value for 28Mg
is 17 orders of magnitude smaller than the value
for 14C. The spectroscopic factors for carbon ra-
dioactivity of the even–even isotopes 222,224,226Ra as
calculated including deformation are close to the re-
spective values calculated disregarding deformation.
The S value in the odd isotope 223Ra is two orders of
magnitude smaller than the values for the neighbor-
ing even–even isotopes. This relation indicates that
structure effects are noticeable for a nuclear decay
mechanism and expresses the known suppression of
the emission of an even particle from an odd nucleus
as compared to the neighboring even–even nuclei.
This suppression explains strong deviation of the
widths measured for the decays 221Ra → 14C+ 207Pb
and 235U → 24,25,26Ne + 209,210,211Pb from known
dependences.

The spectroscopic factors presented in Table 1
(except for S for the decay 234U → 28Mg + 206Hg)
are one to four orders of magnitude smaller than the
values for the phenomenological potential described
in [16]. Our S values for 14C are two orders of magni-
tude larger than the shell-model results [1], and our S
values for 24Ne, 28Mg, and 30Mgare two, five, and one
order of magnitude lower, respectively, than the cor-
responding shell-model results [1]. The spectroscopic
factors obtained for 24Ne and 28Mg in [5] are three and
four orders of magnitude larger than the respective
spectroscopic factors in Table 1. The spectroscopic
factors obtained for 14С in [5] agree well with our
calculations.

Figures 4 and 5 show the spectroscopic factor
S extracted from experimental data as a function of
5
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Fig. 4. Plot of −log Sx, where Sx is the spectroscopic factor calculated using the measured half-life, vs. the mass Ax of the
light cluster. Quadrupole deformations of clusters and the residual nuclei (�) 208Pb, (�) 206Hg, and (�) 207Tl were taken into
account in the calculations. The same symbols are connected by straight segments for clearness.
the cluster mass number Ax. Points connected by
line segments correspond to decays with the same
heavy daughter nuclei indicated in the figures. It is
seen that the spectroscopic factor decreases expo-
nentially on average as the cluster mass increases.
When deformation is taken into account, decays ac-
companied by the emission of 32,34Si and the de-
cay 236U → 206Hg + 30Mg do not exhibit this de-
pendence. This tendency is likely associated with the
fact that these cluster configurations are beyond the
Businaro–Gallone critical mass asymmetry (Zx ≈
8–12), after which the potential of the DNS de-
creases with decreasing mass asymmetry, and the
simple two-stage representation of cluster decay be-
comes doubtful. Moreover, new experimental data are
P

necessary in order to corroborate the half-life that has
been already obtained [17].

Figure 6 shows the half-life as a function of barrier
penetrability for “carbon,” “neon,” and “magnesium”
radioactivity. Points for each type of radioactivity are
located along the lines with approximately the same
slope. This property in principle follows from Eq. (1)
if the S values for the identical clusters are approxi-
mately equal to each other. This tendency is charac-
teristic of α decay. Analysis of the resulting S values
(Tables 1 and 2) shows that the spectroscopic factors
for the identical clusters emitted from neighboring
even–even nuclei coincide with each other within
one order of magnitude. This conclusion is corrobo-
rated by microscopic calculations [1]. This fact makes
it possible to predict T1/2 values for certain decays
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 9 2005
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Fig. 5. The same as in Fig. 4, but for spherical residual nuclei and clusters.
(Tables 3 and 4). We use the following decays as
the reference decays: 222Ra → 14C + 208Pb, 228Th →
20O+ 208Pb, 232U → 24Ne+ 208Pb, 234U → 28Mg+
206Hg, and 238Pu → 28Mg + 210Pb. The reliability
of our semiempirical predictions for even–even ac-
tinides is entirely determined by the accuracy of the
measured widths of decays for neighboring reference
nuclei. The S value for the decay 232Pa → 25Ne +
207Tl is calculated as the product of the spectroscopic
factor of the decay 232U → 24Ne + 208Pb and the
structure suppression factor F = 10−1 for the easy
cluster transition [1]. Predictions obtained for T1/2

including (Table 3) and disregarding (Table 4) nuclear
deformation differ only slightly for the same decays.

The spectroscopic factors S (Table 5) for decays
in the “tin-radioactivity” region are simply obtained
as the products of our spectroscopic factors for the
indicated reference “lead-radioactive” nuclei and the
ratios of the spectroscopic factors for the tin and
lead regions as calculated in the microscopic the-
ory [1]. The results give hope to detecting new de-
cays with the yield of various clusters: 112,114,116Ba →
12C + 100,102,104Sn, 118Ce → 12C + 106Te, 118Ce →
16O + 102Sn, 124Sm → 20Ne + 104Te, and 124Sm →
24Mg + 100Sn. For this region of nuclei, only the up-
per limitT1/2 > 1.2× 104 s is experimentally obtained
for the decay 114Ba → 12C + 102Sn [20]. Comparison
shows that our predictions (Tables 3 and 5) strongly
differ from those made in [1, 2] in the tin radioactivity
region. The difference arises due primarily to the dif-
ference in the barrier penetrabilities. Our predictions
of T1/2 (Table 5) for decays with the emission of the
12C, 16O, and 20Ne nuclei from the tin radioactivity
region nearly coincide with those made in [5].
OMIC NUCLEI Vol. 68 No. 9 2005
In [21, 22], the possibility of fission through a
quasimolecular configuration, i.e., through the mass
asymmetry coordinate, was discussed. A fissioning
nucleus sequentially passes through a number of
stages corresponding to different DNSs. Let the
spontaneous fission (s.f.) also occur through the
cluster mechanism; i.e., fluctuations of the nuclear
shape in the collective coordinate of mass asymmetry
give rise to the formation of the initial DNS with
which the system begins to evolve in the energetically
allowed region of the potential surface. Thus, the
transition from cluster decay to spontaneous fission
occurs when the Q value for the initial DNS is equal
to the potential energy U(R0) at the contact point
of the nuclei. Since the system inevitably decays
(Ps.f. = 1) in the process of evolution in the energet-
ically allowed region (Q becomes much higher than
the deformed Coulomb barrier U(Rb ≈ R0 + 1 fm))
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Table 3. Estimates of T1/2 for certain possible decays [here, S is the spectroscopic factor taken from the same decay of
the nearest reference even nucleus (see Table 1 and the main text), P is the penetrability of the nucleus–nucleus potential
calculated for a given dinuclear system, and the parameters of the clusters and residual nuclei are the same as in Table 1]

A → Ax + Af Q, MeV S P T1/2, s
224Th → 14C + 210Po 32.9 3.8 × 10−7 5.1 × 10−29 2.8 × 1014

226Th → 14C + 212Po 30.5 3.8 × 10−7 1.5 × 10−33 9.5 × 1018

229Th → 21O + 208Pb 43.18 2.9 × 10−15 1.3 × 10−31 1.4 × 1022

232Pa → 25Ne + 207Tl 58.95 2.1 × 10−21 1.1 × 10−23 2.4 × 1020

230U → 24Ne + 206Pb 61.40 2.1 × 10−20 3.7 × 10−23 7.2 × 1021

236U → 24Ne + 212Pb 59.9 2.1 × 10−20 4.2 × 10−25 6.9 × 1023

234Pu → 24Ne + 210Po 62.3 2.1 × 10−20 1.1 × 10−24 2.5 × 1023

234Pu → 28Mg + 206Pb 79.2 1.3 × 10−26 2.3 × 10−18 1.9 × 1023

237Pu → 29Mg + 208Pb 77.51 1.3 × 10−27 5.7 × 10−21 7.5 × 1026

Table 4. Estimates of T1/2 for certain possible decays under the assumption that the clusters and residual nuclei are
spherical [here, S is the spectroscopic factor taken from the same decay of the nearest reference even nucleus (see Table 1
and the main text), P is the penetrability of the nucleus–nucleus potential calculated for a given dinuclear system, and
the parameters of the clusters and residual nuclei are the same as in Table 1; the data from Table 2 are used]

A → Ax + Af Q, MeV S P T1/2, s
224Th → 14C + 210Po 32.9 1.1 × 10−8 5.7 × 10−27 9.6 × 1013

226Th → 14C + 212Po 30.5 1.1 × 10−8 1.6 × 10−31 3.4 × 1018

230U → 24Ne + 206Pb 61.4 6.3 × 10−15 2.6 × 10−29 3.5 × 1022

236U → 24Ne + 212Pb 59.9 6.3 × 10−15 6.2 × 10−31 1.5 × 1024

234Pu → 24Ne + 210Po 62.3 6.3 × 10−15 3.0 × 10−30 3.1 × 1024

234Pu → 28Mg + 206Pb 79.2 6.9 × 10−18 1.9 × 10−26 4.3 × 1022
and the measured half-lives T s.f.
1/2 of actinides in

spontaneous fission are known, the spectroscopic
factors Ss.f. of the initial DNS can be estimated by
Eq. (4) as

Ss.f. =
π ln 2
ω0T

s.f.
1/2

. (5)

Then, T s.f.
1/2/T1/2(Ax) = S(Ax)P (Ax)/Ss.f.. Corre-

spondingly, T s.f.
1/2 ≤ T1/2(Ax) if Ss.f. ≥ S(Ax)P (Ax).

As is known from experiments, spontaneous fission
competes with cluster decay for nuclei heavier than
232U. Table 6 presents the weights of the initial
DNS in the wave functions of the ground state of
actinides. As is seen, Ss.f. increases with increasing
charge number Z of the fissioning nucleus. This
dependence is likely due to the fact that the absolute
value of the potential energy of the DNS at the
Businaro–Gallone point decreases with respect to the
PH
mononucleus as Z increases. Comparison of Ss.f. and
S(Ax) provides the assumption that the initial DNS
is an asymmetric DNS, where the light nucleus is
from the nuclear regionCa–Fe. The upper limit of this
region is determined by the fact that the light nuclei
66Cr, 66Mn, and 66Fe are observed in experiments on
spontaneous fission [23]. However, the observation
of light clusters is limited because their yields are
low due to the low penetrabilities of the nucleus–
nucleus potential barrier. With further improvement
of experimental technique, the observation of such
rare events will apparently become possible.

4. CONCLUSIONS

The above mechanism of cluster decay is associ-
ated with dynamic oscillations of the decaying nu-
cleus in the mass-asymmetry coordinate. The pro-
cesses of the formation of a particular DNS and its
YSICS OF ATOMIC NUCLEI Vol. 68 No. 9 2005



SPECTROSCOPIC FACTORS 1451
Table 5. Estimates of the half-lives T1/2 for tin radioactivity∗ (the following reference decays are used: 222Ra →
14C + 208Pb, 228Th → 20O + 208Pb, 230Th → 24Ne + 206Hg, and 234U → 28Mg + 206Hg; T̃1/2 values are the half-lives
obtained with the spectroscopic factors taken from [1]; βx, βf , and Q are taken from [18, 19]; and the calculations are
performed with the parameters a0x = a0f = 0.52 fm, r0x = 1.15 fm, and r0f = 1.16 fm)

A → Ax + Af βx βf Q, MeV S P T1/2, s T̃1/2, s
112Ba → 12C + 100Sn 0.00 0.00 22.09 2.4 × 10−6 3.3 × 10−19 7.2 × 103 5.9 × 105

112Ba → 12C + 100Sn 0.00 0.00 21.46 2.4 × 10−6 2.0 × 10−20 1.2 × 105 9.8 × 106

114Ba → 12C + 102Sn 0.00 0.00 19.00 2.4 × 10−6 1.3 × 10−25 1.8 × 1010 1.5 × 1012

116Ba → 12C + 104Sn 0.00 0.02 17.30 2.4 × 10−6 1.3 × 10−29 1.8 × 1014 1.5 × 1016

118Ba → 12C + 106Sn 0.00 0.03 15.48 2.4 × 10−6 6.7 × 10−35 3.5 × 1019 2.5 × 1021

118Ce → 12C + 106Te 0.00 0.12 18.00 2.4 × 10−6 3.6 × 10−29 6.6 × 1013 5.4 × 1015

124Sm → 12C + 112Ba 0.00 0.21 15.95 2.4 × 10−6 2.2 × 10−39 1.1 × 1024 9.0 × 1025

126Sm → 12C + 114Ba 0.00 0.24 16.01 2.4 × 10−6 9.3 × 10−39 2.5 × 1023 2.1 × 1025

114Ba → 16O + 98Cd 0.01 0.01 26.46 3.9 × 10−10 1.5 × 10−27 9.6 × 1015 1.2 × 1016

116Ba → 16O + 100Cd 0.01 0.02 24.11 3.9 × 10−10 1.9 × 10−32 7.7 × 1020 9.6 × 1020

118Ce → 16O + 102Sn 0.01 0.00 29.44 3.9 × 10−10 1.6 × 10−24 8.8 × 1012 1.1 × 1013

122Nd → 16O + 106Te 0.01 0.12 27.54 3.9 × 10−10 3.2 × 10−29 4.5 × 1017 5.6 × 1017

124Sm → 16O + 108Xe 0.01 0.15 27.44 3.9 × 10−10 9.1 × 10−32 1.5 × 1020 2.0 × 1020

126Sm → 16O + 110Xe 0.01 0.17 26.75 3.9 × 10−10 6.7 × 10−33 2.1 × 1021 2.7 × 1021

118Ce → 20Ne + 98Cd 0.36 0.01 34.54 4.1 × 10−14 5.8 × 10−26 2.4 × 1019 2.0 × 1017

122Nd → 20Ne + 102Sn 0.36 0.00 36.54 4.1 × 10−14 1.8 × 10−26 7.7 × 1018 6.4 × 1016

124Sm → 20Ne + 104Te 0.36 0.05 38.65 4.1 × 10−14 3.7 × 10−25 3.7 × 1017 3.1 × 1015

126Sm → 20Ne + 106Te 0.36 0.12 35.35 4.1 × 10−14 7.0 × 10−30 2.0 × 1022 1.6 × 1020

122Nd → 24Mg + 98Cd 0.41 0.01 46.23 3.0 × 10−19 1.1 × 10−22 1.6 × 1020 3.8 × 1015

124Sm → 24Mg + 100Sn 0.41 0.00 51.97 3.0 × 10−19 3.4 × 10−18 5.6 × 1015 1.3 × 1011

126Sm → 24Mg + 102Sn 0.41 0.00 48.94 3.0 × 10−19 5.5 × 10−22 3.4 × 1019 7.8 × 1014

∗ The calculation of S is explained in the main text.

Table 6.Weights of the initial dinuclear systems in the wave function of the ground state of actinides

AZ Ss.f.
AZ Ss.f.

AZ Ss.f.

232U 4.8 × 10−43 234U 2.4 × 10−45 236U 1.5 × 10−45

236Pu 7.6 × 10−39 238Pu 9.5 × 10−40 240Pu 2.4 × 10−40

242Pu 5.6 × 10−40 244Pu 5.8 × 10−40 246Cm 2.1 × 10−36
decay are considered separately. The inclusion of the
positive static quadrupole nuclear deformation no-
ticeably reduces the nucleus–nucleus potential and,
correspondingly, increases the barrier penetrability by
one to eight orders of magnitude. For spherical nuclei,
the spectroscopic factor S decreases exponentially as
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 9 200
Ax increases. When nuclear deformations are taken
into account, the spectroscopic factors S for Ax > 28
differ from each other much less than the spectro-
scopic factors for lighter clusters, and the exponential
decrease in S is violated. Final conclusions require
new experiments on the detection of Si nuclei.
5
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The half-lives T1/2 predicted with allowance for
the deformations of the light cluster and residual nu-
cleus are nearly identical to those for spherical nuclei.
The half-lives have been predicted for various clus-
ters in the tin- and lead-radioactivity regions. The
connection between spontaneous fission and cluster
radioactivity in this model is discussed. The weights
of the initial DNS in the wave function of the ground
states of certain actinides have been estimated.

ACKNOWLEDGMENTS

We are grateful to Yu.M. Tchuvil’sky and
S.P. Tret’yakova for stimulating discussions and
valuable remarks. This work was supported in part
by the Russian Foundation for Basic Research and
Deutsche Forschungsgemeinschaft.

REFERENCES
1. Yu. M. Tchuvil’sky, Cluster Radioactivity (Mosk.

Gos. Univ., Moscow, 1997) [in Russian].
2. Yu. S. Zamyatin et al., Fiz. Élem. Chastits At. Yadra
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Abstract—The dibaryon model for NN interaction, which implies the formation of an intermediate six-
quark bag dressed by a σ field, is applied to the 3N system, where it results in a new three-body force
of scalar nature between the six-quark bag and a third nucleon. A new multicomponent formalism is
developed to describe three-body systems with nonstatic pairwise interactions and nonnucleonic degrees
of freedom. Precise variational calculations of 3N bound states are carried out in the dressed-bag model
including the new scalar three-body force. The unified coupling constants and form factors for 2N- and
3N-force operators are used in the present approach, in sharp contrast to conventional meson-exchange
models. It is shown that this three-body force gives at least half the 3N total binding energy, while the
weight of nonnucleonic components in the 3H and 3He wave functions can exceed 10%. The new force
model provides a very good description of 3N bound states with a reasonable magnitude of the σNN
coupling constant. A new Coulomb 3N force between the third nucleon and dibaryon is found to be very
important for a correct description of the Coulomb energy and rms charge radius in 3He. In view of the new
results for Coulomb displacement energy obtained here for A = 3 nuclei, an explanation for the long-term
Nolen–Schiffer paradox in nuclear physics is suggested. The role of the charge-symmetry-breaking effects
in the nuclear force is discussed. c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION: CURRENT PROBLEMS
IN A CONSISTENT DESCRIPTION OF 2N
AND 3N SYSTEMS WITH TRADITIONAL

FORCE MODELS

A few historical remarks should be made first.
The current rather high activity in few-body physics
started at the beginning of the 1960s, after mathe-
matical formulation of the Faddeev equations for the
three-body problem. The aim was claimed to estab-
lish unambiguously off-shell properties of the two-
body tmatrix, which cannot be derived from two-body
scattering data only. It was hoped during that time
that just accurately solving the 3N scattering prob-
lem would enable one to establish strong constraints
for the off-shell properties of the two-nucleon t ma-
trix. However, more than forty years has passed since
then, but we are still unable to formulate such a two-
nucleon t matrix that can explain fully quantitatively
the properties of even 3N systems.

Moreover, since that time, many puzzles in few-
nucleon scattering experiments have been revealed
which could not be explained by the current force

∗This article was submitted by the authors in English.
1)Institute for Theoretical Physics, University of Tübingen,
Germany.

**e-mail: kukulin@nucl-th.sinp.msu.ru
1063-7788/05/6809-1453$26.00
models based on the Yukawa concept. Among all
such puzzles, we mention here only the most re-
markable ones, such as the Ay puzzle in �N + d
and �N + 3He scattering [1, 2] and disagreements
on the minima of differential cross sections (Sagara
puzzle) at E ∼ 150−200 MeV and polarization data
for N + �d [3], �N + d, �N + �d [4], and �N + 3He scat-
tering. The strongest discrepancy between current
theories and respective experiments has been found
in studies of the short-range NN correlations in the
3He(e, e′pp) [5], 4He(γ, pp) [6], and 3He(e, e′NN) [7]
processes. In addition to these particular problems,
there are more fundamental problems in the current
theory of nuclear forces, e.g., strong discrepancies
between the πNN , πN∆, and ρNN form factors
used both in one-boson-exchange (OBE) models
for the description of elastic and inelastic scattering
and in the consistent parametrization of 2N and 3N
forces [8–11]. Many of these difficulties are attributed
to a rather poor knowledge of the short-range behav-
ior of nuclear forces. This behavior was traditionally
associated with vector ω-meson exchange. However,
the characteristic range of this ω exchange (formω �
780 MeV) is equal to about λω � 0.2−0.3 fm; i.e., it
is deeply inside the internucleon overlap region.

In fact, since Yukawa, the NN interaction is ex-
plained by a t-channel exchange of mesons between
c© 2005 Pleiades Publishing, Inc.
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two nucleons. The very successful Bonn, Nijmegen,
Argonne, and other modern NN potentials prove
the success of this approach. But the short- and
intermediate-range region in these potentials is more
parametrized than parameter-free microscopically
described.

Besides the evident difficulties with the description
for short-range nuclear force, there are also quite se-
rious problems with a consistent description of basic
intermediate-range attraction between nucleons. In
the traditional OBE models, this attraction is de-
scribed as a t-channel σ exchange with artificially
enhanced σNN vertices. However, accurate modern
calculations of the intermediate-range NN interac-
tion [12, 13] within the 2π-exchange model with ππ
s-wave interaction have revealed that this t-channel
mechanism cannot give a strong intermediate-range
attraction in the NN sector, which is necessary for
binding of a deuteron and fitting theNN phase shifts.
This conclusion has also been corroborated by recent
independent calculations [14]. Thus, the t-channel
mechanism of the σ-meson exchange should be re-
placed by some other alternative mechanism that
should result in the strong intermediate-range attrac-
tion required by even the existence of nuclei.

When analyzing the deep reasons for all these
failures, we must look at a most general element
which is common for all the numerous NN-force
models tested in few-nucleon calculations for the last
40 years. This common element is just the Yukawa
concept for the strong interaction of nucleons in nu-
clei. Hence, if, after more than 40 years of devel-
opment, we are still unable to explain quantitatively
and consistently even the basic properties of 3N and
4N systems at low energies and relatively simple
processes like pp→ ppγ, this concept, which is a
cornerstone of all building of nuclear physics, should
be analyzed critically, especially in the regions where
applicability of this concept looks rather questionable.

Since the quark picture and QCD have been de-
veloped, the “nucleon–nucleon force community” is
more and more convinced that, at short ranges, the
quark degrees of freedom must play an important
role. One of the possible mechanisms for short-range
NN interaction is the formation of the six-quark (6q)
bag (dibaryon) in the s channel. Qualitatively, many
would agree with this statement. But to obtain a
quantitative description of the nucleon–nucleon and
the few-nucleon experimental data with this approach
with the same quality as the commonly used Bonn,
Nijmegen, Argonne, and other equivalent potentials
is a quite different problem.

Within the 6q dynamics, it has long been
known [15–19] that the mixing of the completely
symmetric s6[6] component with themixed-symmetry
s4p2[42] component can determine the structure of
PH
the whole short-range interaction (in the S wave).2)

Assuming a reasonable qq-interaction model, many
authors (see, e.g., [20–23]) have suggested that
this mixture will result in both strong short-range
repulsion (associated mainly with the s6 component)
and intermediate-range attraction (associated mainly
with the above mixed-symmetry s4p2 component).
However, recent studies [22, 23] for NN scattering
on the basis of the newly developed Goldstone bo-
son exchange qq interaction have resulted in purely
repulsive NN contributions from both s6[6] and
s4p2[42] 6q components. There is no need to say
that any quark-motivated model for the NN force
with π exchange between quarks inevitably leads to
the well-established Yukawa π-exchange interaction
between nucleons at long distances.

Trying to solve the above problems (and to under-
standmore deeply themechanism for the intermediate-
and short-range NN interaction), the Moscow–
Tübingen group suggested replacing the conven-
tional Yukawa meson-exchange (t-channel) mech-
anism (at intermediate and short ranges) with the
contribution of an s-channel mechanism describing
the formation of a dressed 6q bag in the intermediate
state such as |s6 + σ〉 or |s6 + 2π〉 [8, 24]. It has been
shown that, due to the change in the symmetry of
the 6q state in the transition from theNN channel to
the intermediate dressed-bag state, a strong scalar
σ field arises around the symmetric 6q bag. This
intensive σ field squeezes the bag and increases its
density [25]. The high quark density in the symmetric
6q bag enhances the meson field fluctuations around
the bag and thereby partially restores the chiral
symmetry [26]. Therefore, the masses of constituent
quarks and σ mesons decrease [8]. As a result of this
phase transition, the dressed-bag mass decreases
considerably (i.e., a large gain in energy arises), which
manifests itself as a strong effective attraction in the
NN channel at intermediate distances. The contri-
bution of the s-channel mechanism would generally
be much larger due to resonance-like enhancement.3)

In our previous works [8, 24], on the basis of
the above arguments, we proposed a new dibaryon
model for the NN interaction [referred to further as
the “dressed-bag model” (DBM)], which provided a
quite good description of both NN phase shifts up

2)We will denote the NN partial waves by capital letters
(S, P, . . . ), while the partial waves in all other cases will be
denoted by lower-case letters.

3)In the theory of nuclear reactions, the t-channel mechanism
can be associated with the direct nuclear reaction, where
only a few degrees of freedom are important, while the s-
channel mechanism can be associated with resonance-like
(or compound-nucleus-like) nuclear reactions with much
larger cross sections at low energies.
YSICS OF ATOMIC NUCLEI Vol. 68 No. 9 2005
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to 1 GeV and the deuteron structure. The developed
model includes the conventional t-channel contri-
butions (Yukawa π and 2π exchanges) at long and
intermediate distances and the s-channel contribu-
tions due to the formation of intermediate dressed-
bag states at short distances. The most important
distinction of such an approach from conventional
models for nuclear forces is the explicit appearance
of a nonnucleonic component in the total wave
function of the system, which necessarily implies the
presence of new three-body forces (3BF) of several
kinds in the 3N system. These new 3BF differ from
conventionally used models for three-body forces.
One important aspect of the novel 3BF should be
emphasized here. In conventional OBE models, the
main contribution to NN attraction is due to the
t-channel σ exchange. However, the 3BF models
suggested until now (such as Urbana–Illinois or
Tucson–Melbourne) are mainly based on the 2π
exchange with intermediate ∆-isobar production,
and the σ exchange either is not taken into account
at all or is of little importance in these models. In
contrast, the σ exchange in our approach dominates
in both 2N and 3N forces. In fact, in our approach,
just the unified strong σ field couples both two- and
three (and more)-nucleon systems; i.e., the general
pattern of the nuclear interaction appears to be more
consistent.

Our recent considerations have revealed that this
dibaryon mode is extremely useful in the explanation
of very numerous facts and experimental results in
nuclear physics, in general. We note here only a few
of them.

(1) The presence of a dibaryon degree of freedom
(DDF) can result in a very natural explanation of
cumulative effects (e.g., the production of cumulative
particles in high-energy collisions [27]).

(2) DDF leads to automatic enhancement of near-
threshold cross sections for one- and two-meson pro-
duction in pp, pd, etc., collisions, which is required by
many modern experiments (e.g., the so-called ABC
puzzle [28]). This is due to an effective enhancement
of meson–dibaryon coupling as compared to meson–
nucleon coupling.

(3) The incorporation of DDF makes it possi-
ble (without the artificial enhancement of meson–
nucleon form factors) to share the large momentum of
an incident probe (e.g., high-energy photon) among
other nucleons in the target nucleus.

(4) The DDF produces in a very natural way new
short-range currents required by almost all experi-
ments associated with high momentum and energy
transfers.

(5) Presence of the dressed-6q-bag components
in nuclear wave functions leads automatically to a
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 9 200
smooth matching between the nucleonic (at low mo-
mentum transferred) and quark currents (at very high
momentum transferred) and, at the same time, results
in correct counting rules at high momentum trans-
ferred.

So, it should be very important to test the above
dibaryon concept of nuclear force in concise and con-
sistent 3N calculations and to compare the predic-
tions of the new model with the results of the conven-
tional meson-exchange models.

Thus, the aim of this work is to make a com-
prehensive study of the properties of the 3N system
with 2N and 3N forces given by the DBM. However,
the DBM introduces explicitly nonnucleonic (quark–
meson) channels. Therefore, it is necessary to in-
troduce a self-consistent multichannel few-body for-
malism for the study of the 3N system with DBM
interaction. We develop in this work such a general
formalism, based on the approach which was sug-
gested in the 1980s by Merkuriev’s group [29–31]
for the boundary-condition-type model for pairwise
interactions. This general formalism leads immedi-
ately to a replacement of all two-body forces related
to the dibaryon mechanism by the respective three
(and many)-body forces, leaving a two-body charac-
ter only for long-range Yukawa π and 2π exchanges,
which are of little importance for the nuclear binding.
Another straightforward sequence of the formalism
developed here is a strong energy dependence of these
many-body forces. In this work, we study all these
aspects in detail by means of applications to the
3N-system properties. The preliminary version of this
work is published in [32].

This paper is organized as follows. In Section 2,
we present a new general multichannel formalism for
description of a two- and three-body system of par-
ticles having inner degrees of freedom. In Section 3,
we give a brief description of the DBM for the NN
system. In Section 4, we treat the 3N system with
DBM interactions, including a new 3BF. In Section 5,
some details of our variational method are discussed,
including calculation of the matrix elements for new
Coulomb 3BF. The results of our calculations for
ground states of 3H and 3He are given in Section 6,
while in Section 7 we discuss the role of the new
3BF and present a new explanation for the Coulomb
displacement energy in 3He within our interaction
model. A comprehensive discussion of the most im-
portant results found in the work is given in Section 8.
In the Conclusion, we summarize the main results of
the work. In the Appendix, we give the formulas for
the matrix elements of all DBM interactions taken in
the Gaussian symmetrized variational basis.
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2. THE GENERAL MULTICOMPONENT
FORMALISM FOR 2N

AND 3N SYSTEMS WITH COUPLED
INTERNAL AND EXTERNAL CHANNELS

In the 1980s, the former Leningrad group
(Merkuriev, Kurepin, Motovilov, Makarov, Pavlov,
et al.) constructed and substantiated with mathe-
matical rigor a model of strong interaction with the
coupling of external and internal channels [29–31,
33]. This model was a particular realization of a gen-
eral approach to interaction of particles having inner
degrees of freedom. The basic physical hypothesis is
that an energy-dependent interaction appears as a re-
sult of the internal structure of interacting particles.4)

A general scheme proposed by S.P. Merkuriev et al.
was based on the assumption of existence of two in-
dependent channels: an external one, which describes
the motion of particles considered as elementary
bodies, i.e., neglecting their inner structure, and an
internal one, which describes the dynamics of inner
degrees of freedom. These channels can have quite
different physical and mathematical nature and their
dynamics are governed by independent Hamiltonians.
The main issues here were how to define the coupling
between external and internal channels and how to
derive the corresponding dynamical equations (of
Schrödinger or Faddeev type) for particle motion in
the external channel.

In [29–31], this coupling was postulated via
boundary conditions on some hypersurface. Thus,
such an approach is well applicable to hybrid models
for NN interaction, which were rather popular in
the 1980s, e.g., the quark compound bag (QCB)
model suggested by Simonov [34]. As for the 3N
system, the formalism of incorporation of the internal
channels (6q bags) was proposed for the first time
also within the QCB model [35]. The general scheme
by Merkuriev et al. has allowed one to substantiate
this formalism.

In QCB-like models, the coupling between the
external (NN ) and the inner (bag) channels was
given just on some hypersurface, similarly to the
well-known R-matrix approach in nuclear physics.
Later on, such a general approach was applied to the
two-channel Hamiltonian model, where the internal
Hamiltonian had a purely discrete spectrum and the
only restriction imposed on the operators coupling
the external and internal channels was their bound-
ness [33]. The above general multichannel scheme

4)From a more general point of view, the explicit energy depen-
dence of interaction reflects its nonlocality in time, while this
time nonlocality, in turn, is a result of some excluded degrees
of freedom. So, the explicit energy dependence is signaling
some inner hidden (e.g., quark) degrees of freedom in NN
interaction.
PH
has straightforwardly been extended to three-body
problem. In particular, it has been shown for the
above two models that elimination of the internal
channels leads to the following recipe for embedding
the energy-dependent pair interactions into the three-
body problem: the replacement of the pair energy by
the difference between the three-body energy and
kinetic energy of the third particle: εα → E − tα [31,
33]. It has also been proved that the resulting Faddeev
equations for the external channel belong with such
energy-dependent potentials to the Fredholm class
and are equivalent to the four-channel Schrödinger
equation.

Our aim here is to extend our new NN force
model—DBM—by using the above Merkuriev et al.
approach to the 3N system. There are external
(nucleon–nucleon) and internal (quark–meson) chan-
nels in our model, and coupling between them is
determined within a microscopic quark–meson ap-
proach. In this section, we present a general mul-
ticomponent formalism for description of systems
of two and three particles having internal structure,
without assuming any specific form for coupling
between the external and internal channels.

2.1. Two-Body System

We assume that the total dynamics in the two-
body system is governed by a self-conjugated Hamil-
tonian h acting in the orthogonal sum of spaces:

H = Hex ⊕Hin,

where Hex is the external Hilbert space of states de-
scribing motion of particles neglecting their internal
structure and Hin is the internal Hilbert space cor-
responding to internal degrees of freedom. Thus, the
total state of the system Ψ ∈ H can be written as a
two-component column:

Ψ =


Ψex ∈ Hex

Ψin ∈ Hin


 .

The two spaces, Hex andHin, can have quite a differ-
ent nature, e.g., in the case of the NN system, Ψex

depends on the relative coordinate (or momentum) of
two nucleons and their spins, while Ψin can depend
on quark and meson variables. The two independent
Hamiltonians are defined in each of these spaces: hex

acts in Hex and hin acts in Hin. Here, hex includes
the kinetic energy of relative motion and some part of
two-body interaction vex:

hex = t+ vex.
YSICS OF ATOMIC NUCLEI Vol. 68 No. 9 2005
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For the NN system, vex includes the peripheral part
of the meson-exchange potential and Coulomb inter-
action between nucleons (if they are protons). Cou-
pling between external and internal channels is deter-
mined formally by some transition operators: hex,in =
(hin,ex)∗. Further, one canwrite down the total Hamil-
tonian h as a matrix operator,

h =


 hex hex,in

hin,ex hin


 , (1)

not specifying so far the coupling operators (if opera-
tors hex and hin are self-adjoint and hex,in is bounded,
then the Hamiltonian h is the self-adjoint operator in
H).

Thus, one can write down the two-component
Schrödinger equation

hΨ = EΨ,

and by excluding the internal channel wave function,
one obtains an effective Schrödinger equation in the
external channel

heff(E)Ψex = EΨex (2)

with an effective “pseudo-Hamiltonian”:

heff(E) = hex + hex,ingin(E)hin,ex = t+ vex + w(E),

(3)

which depends on energy E via the resolvent of in-
ternal Hamiltonian gin(E) = (E − hin)−1. (From a
mathematical point of view, an operator depending on
the spectral parameter is not an operator at all, be-
cause its domain depends on the spectral parameter.
Thus, this object should not be called a Hamiltonian.
However, physicists do not turn their attention to
this fact and use energy-dependent interactions very
widely.)

Having the solution Ψex of effective equation (2),
one can “restore” the excluded internal state unam-
biguously:

Ψin = gin(E)hin,exΨex. (4)

2.2. Three-Body System

In a three-body system we have three different
internal spaces Hin

i (i = 1, 2, 3) and one common
external space Hex

3 . The three-body internal space
Hin

i is a direct product of the two-body internal
space related to the pair (jk) and single-particle
space describing the motion of the third particle (i).
Here, we use the conventional numbering of particles:
(ijk) = (123), (231), (312). The characteristic three-
body Hamiltonian acts in each internal space as

H in
i = hinjk ⊗ Ii + Ijk ⊗ ti, (5)
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 9 200
(ijk) = (123), (231), (312)

where hinjk is the two-body internal Hamiltonian for
the pair (jk), I is the unity operator and ti is the
kinetic energy of the third particle (i) in respect to the
center of mass of the pair (jk). (Here and below we
use capital letters for three-body quantities and small
letters for two-body ones.)

The external three-body Hamiltonian acts in the
external space Hex

3 and includes the total kinetic en-
ergy T and the sum of external two-body interactions,
which were incorporated into the external two-body
Hamiltonians:

Hex
3 = T +

∑
i<j

vexij .

A state in the full three-body Hilbert space

H3 = Hex
3 ⊕

∑
i

Hin
i

can be written as a four-component column:

Ψ3 =




Ψex

Ψin
1

Ψin
2

Ψin
3



.

Thus, the total Hamiltonian,H3, of the three-body
system acting inH3 can bewritten as a (4× 4) matrix:

H3 =




Hex Hex,in
1 Hex,in

2 Hex,in
3

H in,ex
1 H in

1 0 0

H in,ex
2 0 H in

2 0

H in,ex
3 0 0 H in

3



. (6)

Here, we suppose that

(i) there is no direct coupling between different
internal channelsHin

i andHin
j for i 
= j;

(ii) the channel coupling operators do not involve
the third (free) particle:

Hex,in
i = hex,injk ⊗ Ii. (7)

Writing the four-component Schrödinger equa-
tion with Hamiltonian (6),

H3Ψ3 = EΨ3, (8)

and excluding three internal channels from it (it is
simple due to the supposed absence of direct coupling
between different internal channels), one obtains an
5
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effective Schrödinger equation for the external three-
body wave function Ψex

3 ,

Heff
3 (E)Ψex

3 = EΨex
3 , (9)

with an effective (pseudo-)Hamiltonian

Heff
3 (E) = Hex

3 +
∑
i

Hex,in
i Gin

i (E)H in,ex
i , (10)

where the resolvent of internal Hamiltonian Gin
i is a

convolution of the two-body internal resolvent ginjk of
pair (jk) and the free motion resolvent for the third
particle (i):

Gin
i = (E −H in

i )−1 (11)

=
1

2πi

∞∫
−∞

ginjk(z)g
0
i (E − z)dz = ginjk(E − ti)⊗ Ii.

Thus, the effective Hamiltonian in the external
three-body channel takes the form

Heff = T +
∑
jk

{vexjk + wjk(E − ti)}; (12)

i.e., the total effective interaction in the external chan-
nel of the three-body system is a sum of the two-body
external potentials vexjk and the two-body effective in-
teractions with replacement of pair energy εi with the
difference between the total three-body energy and
operator for the relative-motion kinetic energy of the
third particle: εi → E − ti.

Just this recipe for inclusion of energy-dependent
pair interactions in the three-body problem is widely
used in Faddeev calculations. This recipe has been
rigorously proved in the works of Merkuriev et al. for
a two-channel model without a continuous spectrum
in the internal channel [33] and, in particular, for
the boundary-condition model [31]. We see, however,
that this result is a direct consequence of the above
two assumptions and by no means is related to usage
of any specific interaction model.5)

The resulting form of the effective three-body
Hamiltonian (12) is suitable for the Faddeev reduc-
tion. However, it should be emphasized that each
termWβγ in the effective Hamiltonian (12) includes a
dependence on the kinetic energy of the third particle,

5)In the literature, however, there were also discussions of
the alternative variants for embedding energy-dependent
pairwise force into the three-body system [36, 37]. These
schemes assume that the effective total energy ε12 of the
two-body subsystem in the three-body system is obtained
from the total three-body energy E in the following way:
ε12 = E − t12 − 〈v13〉 − 〈v23〉, where vij is the two-body
interaction between particles i and j and an averaging is
assumed with the exact 3N wave function.
PH
i.e., each term Wβγ is, generally speaking, a three-
body force. In spite of the three-body character of
such effective potentials, the corresponding Faddeev
equations have the Fredholm property and are equiv-
alent to the four-channel Schrödinger equation (it
has been proved for a model with a discrete internal
spectrum [33]).

2.3. A New Three-Body Force in the Three-Body
System with External and Internal Channels

In each internal channel one can introduce a new
interaction between the third particle and the pair as
a whole. This leads to replacement of the operator for
kinetic energy of the third particle ti by some (single-
particle) Hamiltonian hi,

ti ⇒ hi = ti + vi, (13)

in Eq. (5) forH in
i , viz.,

H in
i = hinjk ⊗ Ii + Ijk ⊗ hi. (14)

The physical meaning of such interactions will be
discussed below, and here we treat only the formal
aspects of their introduction. As the internal Hamilto-
nian (14) is still a direct sum of the two-body internal
Hamiltonian and the Hamiltonian corresponding to
relative motion of the third nucleon, then its resolvent
can be expressed as a convolution of two subresol-
vents:

Gin
i = (E −H in

i )−1 =
1

2πi

∞∫
−∞

ginjk(z)gi(E − z)dz,

(15)

where gi(ε) = (ε− hi)−1. Now, of course, the effec-
tive interaction in the external channel is not reduced
to a sum of pairwise effective interactions with re-
placement εi → E − ti. Nevertheless, this interaction
includes three termsWjk and is still suitable for Fad-
deev reduction. But now there are no pure pairwise
forces (except vexjk) in the effective Hamiltonian for the
external three-body channel.

Moreover, if even the external interaction vi is dis-
regarded at all, each term wjk in the effective Hamil-
tonian (12) includes a dependence on the kinetic en-
ergy of the third particle, i.e., can be considered, gen-
erally speaking, as a three-body force. This depen-
dence on the third-particle momentum reduces the
strength of the effective interaction between the other
two particles due to a specific energy dependence of
the coupling constants (see below). Therefore, one
can say that there are no pure two-body forces in
the three-body system in such an approach, with
the exception of that part of the interaction which
is included in vex (for the NN system, it is just the
peripheral part of meson exchange).
YSICS OF ATOMIC NUCLEI Vol. 68 No. 9 2005
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3. DRESSED-BAG MODEL FOR NN
FORCES

Here, we give a brief description of the two-
component DBM for the NN interaction. A detailed
description has been presented in our previous pa-
pers [8, 24]. (The effective-field theory description for
the dibaryon model of nuclear force has also been
developed recently [38].) The main assumptions of
the DBM are following:

(i) Interacting nucleons form at small and inter-
mediate distances (rNN ∼ 1 fm) a compound state—
the dibaryon or six-quark bag dressed with π, σ, and
ρ fields.

(ii) The coupling of the external NN channel with
this state gives the basic attractive force between
nucleons at intermediate and small distances, the σ-
dressed bag giving the main contribution.

Thus, nucleon–nucleon system can be found in
two different phase states (channels): the NN phase
and the dressed-6q-bag phase. In the NN (external)
channel, the system is described as two nucleons in-
teracting via OBE; in the internal 6q + σ channel, the
system is treated as a 6q bag surrounded by a strong
scalar–isoscalar σ field (a “dressed” bag).6) The ex-
ternal two-nucleon Hamiltonian includes the periph-
eral part of one-pion- and two-pion-exchange (OPE
and TPE, respectively) interaction and Coulomb in-
teraction:

hex = t+ {vOPE + vTPE}(with soft cutoff) + vCoul.

In the simplest version of the DBM, we used a
pole approximation for the dressed-bag (internal) re-
solvent gin:

gin(E) =
∑
α

∫ |α,k〉〈α,k|d3k
E − Eα(k)

, (16)

where |α〉 is the 6q part of the wave function for the
dressed bag and |k〉 represents the plane wave of the
σ-meson propagation. Here,Eα(k) is the total energy
of the dressed bag:

Eα(k) = mα + εσ(k), (17)

where
εσ(k) = k2/(2mα) + ωσ(k) � mσ + k2/(2m̄σ),

(18)

m̄σ =
mσmα

mσ +mα
,

ωσ(k) =
√
m2

σ + k2 is the relativistic energy of the σ
meson, andmσ andmα are themasses of theσmeson
and 6q bag, respectively.

6)A full description of the NN interaction at energies E ∼
1 GeV still requires other fields in the bag, such as 2π, ρ,
and ω.
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Fig. 1. Effective NN interaction induced by the produc-
tion of an intermediate dressed bag.

The effective interaction w(E) resulting from the
coupling of the external NN channel to the interme-
diate dressed-bag state is illustrated by the graph in
Fig. 1.

To derive the effective interaction w for the NN
channel in such an approximation, knowledge of the
full internal Hamiltonian hin of the dressed bag, as
well as the full transition operator hin,ex, is not nec-
essary. We need only to know how the transition
operator acts on those dressed-bag states which are
included in the resolvent (16): hin,ex|α,k〉. The cal-
culation of this quantity within a microscopic quark–
meson model results in a sum of factorized terms [24]:

hex,in|αJM ,k〉 =
∑
L

|ϕJML 〉BJ
L(k), (19)

where ϕJML ∈ Hex is the NN transition form factor
and BJ

L(k) is the vertex function dependent on the σ-
meson momentum.

Here, we should elucidate our notation in re-
spect to the quantum numbers of angular momenta.
In general, the 6q-state index α includes all the
quantum numbers of the dressed bag, i.e., α ≡
{J,M,S, T, Lb, Lσ}, where Lb, S, T , J , and M are
the orbital angular momentum of the 6q bag, its spin,
isospin, total angular momentum, and its projection
on the z axis, respectively, and Lσ is the orbital
angular momentum of the σ meson. However, in
the present version of the DBM, the s-wave state
of the 6q bag with the s6 configuration only is taken
into account, so that Lb = 0, J = S, and thus the
isospin of the bag is uniquely determined by its spin.
The states of the dressed bag with Lσ 
= 0 should lie
higher than those with Lσ = 0. For this reason, the
former states are not included in the present version
of the model. Therefore, the state index α is specified
here by the total angular momentum of the bag J and
(if necessary) by its z projectionM : α⇒ {J(M)}.

Thus, the effective interaction in the NN channel
w(E) ≡ hex,ingin(E)hin,ex can be written as a sum of
separable terms in each partial wave:

w(E) =
∑
JLL′

wJ
LL′(r, r′, E), (20)
5
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Table 1.Deuteron properties in the DBM and other currentNN models

Model Ed, MeV PD, % rm, fm Qd, fm2 µd, n.m. AS , fm−1/2 η(D/S)

RSC 2.22461 6.47 1.957 0.2796 0.8429 0.8776 0.0262

Moscow 99 2.22452 5.52 1.966 0.2722 0.8483 0.8844 0.0255

Bonn 2001 2.224575 4.85 1.966 0.270 0.8521 0.8846 0.0256

DBM(I) P6q = 3.66% 2.22454 5.22 1.9715 0.2754 0.8548 0.8864 0.02588

DBM(II) P6q = 2.5% 2.22459 5.31 1.970 0.2768 0.8538 0.8866 0.0263

Experiment 2.224575 – 1.971 0.2859 0.8574 0.8846 0.0263a)

a) An average value of the asymptotic mixing parameter η over the results of a few of the most accurate experiments is presented here
(see [40–43]).
with

wJ
LL′(r, r′) =

∑
M

ϕJML (r)λJLL′(E)ϕJML′
∗
(r′). (21)

The energy-dependent coupling constants λJLL′(E)
appearing in Eq. (21) are directly calculated from the
loop diagram shown in Fig. 1; i.e., they are expressed
in terms of the loop integral of the product of two
transition verticesB and the convolution of two prop-
agators for the meson and quark bag with respect to
the momentum k:

λJLL′(E) =

∞∫
0

dk
BJ
L(k)BJ

L′
∗(k)

E − Eα(k)
. (22)

The vertex form factors BJ
L(k) and the potential

form factors ϕJML ∈ Hex have been calculated in the
microscopic quark–meson model [8, 24].

When the NN-channel wave function Ψin is
obtained by solving the Schrödinger equation with
the effective Hamiltonian heff(E), the internal (6qN )
component of the wave function is found from Eq. (4):

Ψin
JM(E) = |αJM 〉

∑
L

BJ
L(k)

E − Eα(k)
〈ϕJML |Ψex(E)〉

︸ ︷︷ ︸
,

(23)

where the underlined part can be interpreted as the
mesonic part of the dressed-bag wave function.

The weight of the internal dressed-bag component
of the bound-state wave function (with given value J)
is proportional to the norm of Ψin

JM :

||Ψin
JM ||2 = ||αJM ||2

∑
LL′

〈ϕJML |Ψex〉〈Ψex|ϕJML′ 〉 (24)

×
∫
BJ
L(k)BJ

L′
∗(k)

(E − Eα(k))2
dk

︸ ︷︷ ︸
IJ
LL′

.

PH
As one can see from the comparison between
Eqs. (22) and (24), the integral IJLL′ in Eq. (24) is
equal to the energy derivative (with opposite sign) of
the coupling constant λJLL′(E):

IJLL′ = −dλ
J
LL′(E)
dE

,

and thus we get an interesting result:

||Ψin||2 ∼ −dλ(E)
dE

;

i.e., the weight of the internal 6qN state is propor-
tional to the energy derivative of the coupling con-
stant of effective NN interaction. In other words, the
stronger the energy dependence of the interaction in
theNN channel, the larger the weight of the channel
corresponding to nonnucleonic degrees of freedom.
This result is in full agreement with the following
well-known hypothesis: energy dependence of inter-
action is a sequence of underlying inner structure of
interacting particles.

The total wave function of the bound state Ψ must
be normalized to unity. Assuming that the external
(nucleonic) part of the wave function Ψex found from
the effective Schrödinger equation has the standard
normalization ||Ψex|| = 1, one finds that the weight of
the internal part, i.e., the dressed-bag component, is
equal to

Pin =
||Ψin||2

1 + ||Ψin||2 . (25)

Thus, theNN interaction in the DBM approach is
a sum of peripheral terms (vOPE and vTPE) represent-
ing OPE and TPE with soft cutoff parameter ΛπNN

and an effective interactionw(E) [see Eqs. (20), (21)],
which is expressed (in a single-pole approximation)
as a one-term separable potential with the energy-
dependent coupling constants (22). The potential
form factors ϕJML (r) are taken as the conventional
YSICS OF ATOMIC NUCLEI Vol. 68 No. 9 2005
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harmonic oscillator wave functions |2S〉 and |2D〉.7)
Therefore, the total NN potential in the DBM model
can be represented as

vNN = vOPE + vTPE + vCoul (26)

+w(E) + λΓ,

where Γ = |ϕ0〉〈ϕ0| is the projector onto |0S〉 har-
monic oscillator function and the constant λ should
be taken to be sufficiently large.

The model described above gives a very good de-
scription for singlet 1S0 and triplet 3S1−3D1 phase
shifts and mixing parameter ε1 in the energy region
from zero up to 1 GeV [24]. The deuteron observables
obtained in this model without any additional or free
parameter are presented in Table 1 in comparisonwith
some otherNN models and experimental values. The
quality of agreement with experimental data for the
NN phase shifts and deuteron static properties found
with the presented force model, in general, is higher
than those for the modern NN potential model such
as Bonn, Argonne, etc., especially for the asymp-
totic mixing parameter η and the deuteron quadrupole
moment. The weight of the internal (dressed-bag)
component in the deuteron is varied from 2.5 to 3.6%
in different versions of the model [8, 24].

4. THREE-NUCLEON SYSTEM WITH DBM
INTERACTION

For description of the three-body system with
DBM interaction, the momentum representation is
more appropriate. We will employ the same notation
for functions in both the coordinate and momentum
representations. The following notation for coordi-
nates and momenta are employed: ri (pi) is relative
coordinate (momentum) of pair (jk), while ρi (qi) is
the Jacobi coordinate (momentum) of the ith particle,
and k is usually the momentum of the σ meson.

4.1. Effective Interaction Due to PairwiseNN
Forces

One obtains an effective Hamiltonian for the ex-
ternal 3N channel according to a general recipe for
transition from a two- to three-particle system:

Heff = T +
∑
i

{vexi +Wi(E)}, (27)

where each of three effective potentials takes the form

Wi(E) = δ(qi − q′
i)wi(E − q2i /(2m̄)), (28)

7)It was first suggested [39] long ago and then confirmed in
detailed 6q microscopic calculations [15] that the 6q wave
function in the NN channel corresponds just to 2�Ω excited
6q-bag components |s4p2[42]LST 〉, while the ground state
|s6[6]〉 describes the wave function in the bag channel.
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and m̄ = mNmα/(mN +mα) is a reduced mass of
the nucleon and 6q bag. In the pole approximation,
this effective interaction reduces to a sum of two-
body separable potentials with the coupling constants
depending on the total three-body energy E and the
third-particle momentum qi:

Wi(pi,p′
i,qi,q′

i;E) = δ(qi − q′
i) (29)

×
∑

JiMiLiL′
i

ϕJiMi
Li

(pi)λ
Ji

LiL′
i

(
E − q2i

2m̄

)
ϕJiMi

L′
i

(p′
i).

When using such an effective interaction, one
must also include an additional 3BF due to the
meson-exchange interaction between the dressed
bag and the third nucleon (see the next subsection).
The pattern of different interactions arising in the 3N
system in such a way is illustrated in Fig. 2.

In the single-pole approximation, the internal
(dressed-bag) components of the total wave function
are expressed in terms of the nucleonic component
Ψex(pi,qi) as

Ψin
i (k,qi;E) =

∑
JiMiLi

|αJiMi〉
BJi
Li

(k)χJiMi
Li

(qi)
E − Eα − q2i /(2m)

,

(30)

where χJiMi
Li

(qi) are the overlap integrals of the ex-
ternal 3N component and the potential form factors
ϕJiMi
Li

:

χJiMi
Li

(qi) =
∫
ϕJiMi
Li

(pi)Ψex(pi,qi)dki. (31)

These overlap functions depend on the momentum
(or coordinate), spin, and isospin of the third nucleon.
For brevity, the spin–isospin parts of the overlap
functions and corresponding quantum numbers are
omitted unless they are needed. In Eqs. (29)–(31) and
below, we keep the index i in the quantum numbers
5
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Fig. 3. The graphs corresponding to three new types of three-body force.
Li and Ji in order to distinguish the orbital and total
angular momenta attributed to the 2N form factors
from the respective angular momenta J and L of the
whole 3N system.

It should be noted that the angular part of the
functionχJiMi

Li
(qi) in Eq. (31) is not equal to YLiMi(q̂).

This part also includes other angular orbital momenta
due to coupling of the angular momenta and spins of
the dressed bag and those for the third nucleon. In
the next section, we consider the spin-angular and
isospin parts of the overlap functions χJiMi

Li
(qi) in

more detail.

The norm of each 6qN component for the 3N
bound state is determined by the sum of the integrals:

||Ψin
i ||2 =

∑
JiMi

||αJiMi ||
∑
LiL′

i

∫
χJiMi
Li

(qi) (32)

×



∫ BJi

Li
(k)BJi

L′
i
(k)(

E − Eα −
q2i
2m

)2 dk



χJiMi

L′
i

(qi)dqi.

The internal loop integral with respect to k in Eq. (32)
(in braces) can be replaced by the energy derivative
of λJL:

∫ BJi
Li

(k)BJi

L′
i
(k)(

E − Eα − q2i /(2m)
)2dk (33)

= − d

dE
λJi

LiL′
i

(
E − q2i

2m

)
.

Thus, the weight of the 6qN component in the 3N
system is determined by the same energy dependence
of the coupling constants λJLL′(ε) as the contribution
of the 6q component in theNN system but at a shifted
energy.
P

Using Eq. (33), the norm of the 6qN component
can eventually be rewritten as

||Ψin
i ||2 =

∑
JiMi

||αJi ||
∑
LiL′

i

∫
χJiMi
Li

(qi) (34)

×
(
− d

dE
λJi

LiL′
i
(E − q2i /(2m))

)
χJiMi

L′
i

(qi)dqi.

Due to explicit presence of the meson variables in
our approach, it is generally impossible to define the
wave function describing the relative motion of the
third nucleon Nψ(q) in the 6qN channel. However,
by integrating Ψin

i (k,q) with respect to the meson
momentum k, one can obtain an average momentum
distribution of the third nucleon in the 6qN channel
(i.e., that weighted with the σ-mesonmomentum dis-
tribution). On the basis of Eq. (33), we can attribute
the meaning of the third nucleon wave function in the
6qN channel to the quantity

ψ̃JiMi
Li

(qi) (35)

=
[(
− d

dE
λJi

LiL′
i
(E − q2i /(2m))

)]1/2

χJiMi
Li

(qi).

With this “quasi wave function,” one can calculate
the mean value of any operator depending on the
momentum (or coordinate) of the third nucleon. We
note that the derivative −dλ/dE is always positive.

4.2. Three-Body Forces in the DBM

In this study, we employ the effective interac-
tion (29) and take into account the interaction be-
tween the dressed bag and the third nucleon as an
additional 3BF. We consider here three types of 3BF:
one-meson exchange (π and σ) between the dressed
bag and the third nucleon (see Figs. 3a and 3b)
and the exchange by two σ mesons where the third-
nucleon propagator breaks the σ loop of the two-body
force—2σ process (Fig. 3c).
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All these forces can be represented in the effective
Hamiltonian for the external 3N channel as some
integral operators with factorized kernels:

W 3BF
(i) (pi,p′

i,qi,q′
i;E) (36)

=
∑

JMJ ′M ′LL′

ϕJML (pi) 3BFW JJ ′
LL′ (qi,q′

i;E)ϕJ
′M ′

L′ (p′
i).

Therefore, matrix elements for 3BF include only the
overlap functions, and thus the contribution of 3BF is
proportional to the weight of the internal 6qN compo-
nent in the total 3N wave function. To our knowledge,
the first calculation of the 3BF contribution induced
by OPE between the 6q bag and the third nucleon
was done by Fasano and Lee [44] in the hybrid QCB
model using perturbation theory. They used the model
where the weight of the 6q component in a deuteron
was about 1.7%, and thus they obtained a very small
value of −0.041 MeV for the 3BF OPE contribution
to the 3N binding energy. Our results for the OPE
3BF agree with the results obtained by Fasano and
Lee (see Table 2 in Section 7), because the OPE
contribution to 3BF is proportional to the weight of
the 6q component, and in our case, it should be at
least twice their calculation. However, we found that a
much larger contribution comes from scalar σ-meson
exchanges: one-sigma exchange (OSE) and two-
sigma exchange (TSE). We emphasize that, due to
(proposed) restoration of chiral symmetry in our ap-
proach, the σ-meson mass becomes about 400 MeV,
and thus the effective radius of the σ-exchange inter-
action is not as small as that in conventional OBE
models. Therefore, we cannot use perturbation theory
anymore to estimate the 3BF contribution but have
to do the full calculation including 3BF in the total
three-body Hamiltonian.

4.2.1. One-meson exchange between the
dressed bag and third nucleon. For the one-
meson-exchange (OME) term, the three-body inter-

action 3BFW
JiJ ′

i

LiL′
i
takes the form

OMEW
JiJ ′

i

LiL′
i
(qi,q′

i;E) (37)

=
∫
dk

BJi
Li

(k)

E − Eα − q2i /(2m)

× V OME(qi,q′
i)

B
J ′

i

L′
i
(k)

E − Eα − q′2i /(2m)
.

Therefore, the matrix element for OME can be
expressed in terms of the internal “bag” compo-
nents Ψin

i :

〈Ψex|OME|Ψex〉 = 3〈Ψin
i |V OME|Ψin

i 〉. (38)

The integral with respect to the σ-meson momentum
k (37) can be shown to be reduced to a difference of
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Fig. 4. The graph illustrating the three-body scalar force
due to two-sigma exchange (2σ process).

the values for constant λ(E − q2/(2m)), so that the
vertex functions B(k) can be excluded from formulas
for OME 3BF matrix elements. The details of cal-
culations for such matrix elements are given in the
Appendix.

4.2.2. 2σ process. The 2σ process (TSE) shown
in Fig. 4 also contributes significantly to 3BF. This
3N interaction seems less important than the OSE
force, because this interaction imposes a specific
kinematic restriction on the 3N configuration.8)

The operator of the TSE interaction includes
explicitly the vertex functions for the transitions
(NN ⇐⇒ 6q + σ), so that these vertices cannot be
excluded similarly to the case of OME. Therefore,
we have to choose some form for these functions.
It is natural to require that these vertices be the
same as those assumed in the two-body DBM; i.e.,
they can be normalized by means of the coupling
constants λ(E), which, in turn, are chosen in the
2N sector to accurately describe NN phase shifts
and deuteron properties [see below Eq. (41) for vertex
normalization]. We use the Gaussian form factor for
these vertices:

BJ
L(k) = BJL

0

e−b2k2

√
2ωσ(k)

, (39)

where k is the meson momentum and the parameter
b is taken from the microscopic quark model [24]:

b2 =
5
24
b20, b0 = 0.5 fm. (40)

8)It follows from the intuitive picture of this interaction that this
force can be large only if the momentum of the third nucleon
is almost opposite to the momentum of the emitted σ meson.
Thus, a specific 3N kinematic configuration is required when
two nucleons approach close to each other to form a bag,
while the third nucleon has a specific space localization and
momentum.
5
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Then, the vertex constants BJL
0 should be found from

the equation

1
(2π)3

∫
dk

BJL
0 BJL′

0 e−2b2k2

(E −mα − εσ(k)) · 2ωσ(k)
= λJLL′(E),

(41)

where λJLL′(E) are the coupling constants employed
in the construction of the DBM in the 2N sector and
are fixed by NN phase shifts. For the σNN vertices,
we take also the Gaussian form factor: gσNN e

−α2k2

with α2 = b20/6.
Then, the box diagram in Fig. 4 can be expressed

in terms of the integral over the momentum q0 of the
third nucleon in the intermediate state:

TSEW JJ ′
LL′ (q,q′;E) = δJJ ′g2σNNB

JL
0 BJL′

0 (42)

× 1
(2π)3

∫
dq0

exp[−(α2 + b2)(q0 − q)2]
m2

σ + (q0 − q)2

× 1
E −mα − q20/(2m)

exp[−(α2 + b2)(q0 − q′)2]
m2

σ + (q0 − q′)2
.

Thus, the matrix element for the total contribution of
TSE eventually takes the form

〈TSE〉 = 3
∑

JiMi,Li,L′
i

∫
χJiMi
Li

(q) (43)

× TSEW JiJi

LiL′
i
(q,q′;E)χJiMi

L′
i

(q′)dqdq′.

After the partial wave decomposition, these six-
dimensional integrals can be reduced to two-dimen-
sional integrals, which are computed numerically by
means of the appropriate Gaussian quadratures.

We should emphasize here that both the two-
nucleon force induced by the DBM and two parts of
the 3BF contribution in our approach, i.e., OSE and
TSE, are all taken with unified coupling constants
and unified form factors in Eqs. (37), (39)–(41), in
a sharp contrast to the traditional meson-exchange
models (see also Section 8).

5. VARIATIONAL CALCULATIONS OF 3N
SYSTEM WITH DBM INTERACTION

The effective Schrödinger equation for the external
3N part of the total wave function H tot(E)Ψex(E) =
EΨex(E) with Hamiltonian

H tot(E) = T +
3∑

i=1

{vexi +Wi(E) +W 3BF
i (E)}

(44)

has been solved by variational method using an an-
tisymmetrized Gaussian basis [45]. Because of the
explicit energy dependence of the three-body total
PH
Hamiltonian, we used an iterational procedure in re-
spect to the total energy E for solving this equation:

H tot(E(n−1))Ψex(n) = E(n)Ψex(n).

Such iterations can be shown to converge if the en-
ergy derivative of effective interaction is negative (for
our case, this condition is valid always). For our cal-
culations, 5–7 iterations usually provide the accuracy
of five decimal digits for the 3N binding energy.

Construction of a 3NNN variational basis. Here,
we give the form of the basis functions used in this
work and the corresponding notation for the quantum
numbers. The wave function of the external 3N chan-
nel, Ψex, can be written in the antisymmetrized basis
as a sum of three terms:

Ψex = Ψ(1)
ex + Ψ(2)

ex + Ψ(3)
ex , (45)

where the label (i = 1, 2, 3) enumerates one of three
possible sets of the Jacobi coordinates (ri,ρi). Every
term in Eq. (45) takes the form

Ψ(i)
ex =

∑
γ

∑
n

Cγ
nΦ(i)

γn. (46)

The basis functions Φ(i)
γn are constructed from Gaus-

sian functions and corresponding spin-angular and
isospin factors:

Φ(i)
γn = Nγ

nr
λi
i ρ

li
i exp{−αγnr2i − βγnρ2i } (47)

×F (i)
γ (r̂i, ρ̂i)T (i)

γ ,

where the spin-angular F (i)
γ (r̂i, ρ̂i) and isospin T (i)

γ

components of the basis functions are given in
the Appendix and the composite label γ ≡ γ(i) =
{λiliLSjkStjk} represents the respective set of quan-
tum numbers for the basis functions (47): λi is the
orbital angular momentum of the (jk) pair; li is the
orbital angular momentum of the third nucleon (i)
relative to the center of mass for the (jk) pair; L is the
total orbital angular momentum of the 3N system;
Sjk and tjk are the spin and isospin of the (jk) pair,
respectively; and S is the total spin of the system. We
omit here the total angular momentum J = 1/2 and
its z projection M , as well as the total isospin of the
system T = 1/2 and its projection Tz (in this work,
we neglect the very small contribution of the T = 3/2
component).

The nonlinear parameters of the basis functions
αγn and βγn are chosen on the Chebyshev grid,
which provides the completeness of the basis and
fast convergence of variational calculations [46]. As
was demonstrated earlier [47], this few-body Gaus-
sian basis is very flexible and can represent quite
complicated few-body correlations. Therefore, it leads
to accurate eigenvalues and eigenfunctions. The
YSICS OF ATOMIC NUCLEI Vol. 68 No. 9 2005
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formulas for the matrix elements of the Hamiltonian
(for local NN interactions) on the antisymmetrized
Gaussian basis are given in paper [45]. The matrix
elements of DBM interactions on this basis are given
in the Appendix.

Wave function in the internal 6qNqNqN channel.
Having the 3N component Ψ3N found in the above
variational calculation, one can construct the inner
6qN-channel wave function Ψ(i)

in , which depends on
the coordinate (or momentum) of the third nucleon
and the σ-meson momentum and includes the bag
wave function [see Eq. (30)]. By integrating the mod-
ulus squared of this function with respect to the me-
son momentum and inner variables of the bag, one
obtains the density distribution of the third nucleon
relative to the 6q bag in the 6qN channel. This density
can be used to calculate further all observables whose
operators depend on the variables of the nucleons and
the bag. However, it is much more convenient and
easier to deal with the quasi wave function of the
third nucleon in the 6qN channel, which has been
introduced by Eq. (35).

To calculate matrix elements of the 3BF Coulomb
and OPE forces, one needs the spin–isospin part of
6qN components of the total wave function. Here, we
give them explicitly. The potential form factors ϕJiMi

Li

now include the spin–isospin partYJiMi
LiSd

(p̂i)T (i)
td

with
quantum numbers corresponding to the dressed bag:

ϕ
JiMitdtdz
LiSd

= φJi
Li

(pi)YJiMi
LiSd

(p̂i)T (i)
td

; (48)

T (i)
td

= |tjtk : tdtdz〉.

The full set of the quantum numbers labeling the
form factors includes the total (Ji) and orbital (Li)
angular momenta, related to the vertex form factor,
and also the spin and isospin numbers Sd, td, and tdz ,
related to the dressed bag. However, since the present
version of the DBM involves the bag states with zero
orbital angular momentum, we have Sd = Ji, while
the bag spin and isospin are supplementary to each
other: td + Sd = 1. Hence, we will omit the quantum
numbers Sd and td where they are unnecessary.

The total overlap functionχJiMi
Li

(i) = 〈ϕJiMi
Li

|Ψ3N 〉
can be written (with its spin–isospin part), e.g., as

χJiMi
Li

(qi) (49)

=
∑
liJ

ΦJiLi
liJ (qi)〈JmJ JiMi|JM〉

× YJmJ
li

1
2

(q̂i)
〈
tdtdz

1
2 tzi |TTz

〉
T 1

2
tzi
.

Here, J and M are the total angular momentum of
the 3N system and its z projection; T and Tz are the
total isospin of the 3N system and its z projection;
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li and J are the orbital and total angular momenta
of the third (ith) nucleon, respectively; and T 1

2
tzi

is

isospinor corresponding to the third nucleon. In the
present calculation for the ground states of 3H and
3He (with J = 1/2), we have considered the two low-
est even partial wave components (S and D) in 3N
wave functions only. Therefore, li can take only two
values: 0 or 2.Moreover, the total angular momentum
of the third nucleonJ is uniquely determined by value
of li: J = 1/2 at li = 0 and J = 3/2 at λi = 2. So,
actually, there is no summation over J in Eq. (49).

It is easy to see that the three form factorsϕJi
Li

used
in the present work (ϕ0

0,ϕ
1
0, andϕ

1
2) determine five ra-

dial components of the overlap functionΦJiLi
liJ (qi) and

five respective components of the quasi wave function
for the 6qN channel. To specify these components, it
is sufficient to give three quantum numbers, e.g., Sd,
li, and Li, and we will use the notationΨin

Sdli,Li
(qi) for

these radial components:

Ψin
00,0 :

(
Ji = Sd = 0, td = 1, Li = 0, li = 0,J =

1
2

)
,

Ψin
10,0 :

(
Ji = Sd = 1, td = 0, Li = 0, li = 0,J =

1
2

)
,

Ψin
12,0 :

(
Ji = Sd = 1, td = 0, Li = 0, li = 2,J =

3
2

)
,

Ψin
10,2 :

(
Ji = Sd = 1, td = 0, Li = 2, li = 0,J =

1
2

)
,

Ψin
12,2 :

(
Ji = Sd = 1, td = 0, Li = 2, li = 2,J =

3
2

)
.

Finally, we give a formula for the total quasi wave
function in internal channel (i), separating out explic-
itly its spin-angular and isospin parts, which include
the spin–isospin part of the bag wave function:

Ψin
i =

∑
liSd



∑
Li

Ψin
Sdli,Li

(qi)


 (50)

×
∣∣∣li 12(J )Sd : JM

〉∣∣∣td 1
2 : TTz

〉
.

The explicit dependence of this function on the isospin
projection Tz is important for calculation of the
Coulomb matrix elements and rms charge radius.

The interaction matrix elements include the over-
lap integrals of the potential form factors with the

basis functions Φγ,n = Φ(1)
γ,n + Φ(2)

γ,n + Φ(3)
γ,n, where all

five above components of the overlap function enter
the matrix elements independently (certainly, some
of the matrix elements can vanish). The explicit for-
mulas for the above overlap functions and detailed
5
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formulas for the matrix elements of all DBM inter-
actions are given in the Appendix. When calculating
both the normalization of the internal components
and observables, the 6qN components distinguished
only by their radial parts can be summed. Thus, only
three different components of the 6qN quasi wave
function remain: one S-wave singlet (Sd = 0),

Ψin
00 ≡ Ψin

00,0,

and two triplet ones (Sd = 1):

Ψin
10 = Ψin

10,0 + Ψin
10,2, Ψin

12 = Ψin
12,0 + Ψin

12,2. (51)

The total weight of each of the three 6qN components
is equal to

P
(i)
in = ||Ψin

00||2 + ||Ψin
10||2 + ||Ψin

12||2, (52)

i = 1, 2, 3.

Now, let us introduce the relative weights of the indi-
vidual 6qN components:

P in
S0 =

||Ψin
00||2

P
(i)
in

, P in
S1 =

||Ψin
10||2

P
(i)
in

, (53)

P in
D =

||Ψin
12||2

P
(i)
in

.

After renormalization of the full four-component
wave function, the total weight of all internal compo-
nents is equal to

Pin =
3P (i)

in

1 + 3P (i)
in

(54)

(here, we assume that the 3N component of the to-
tal wave function, Ψex, obtained from the variational
calculation, is normalized to unity), while the total
weight of the 3N component Ψ3N is equal to

Pex =
1

1 + 3P (i)
in

= 1− Pin. (55)

It is also interesting to find the total weight of
the D wave with allowance for nonnucleonic compo-
nents:

PD = P ex
D (1− Pin) + P in

DPin. (56)

Numerical values of all above probabilities for in-
ternal and external components are given below in
Table 2. The total weight of all 6qN components
P6qN ≡ Pin in the 3N system turns out to be rather
large and approaches or even exceeds 10%. Further-
more, taking into account the short-range character
of these components and the much harder nucleon
momentum distribution (closely associated with the
first property) for these components, as well as very
strong scalar three-body interaction in the internal
6qN channels, one can conclude that these nonnu-
cleonic components are extremely important for the
properties of nuclear systems.
PH
6. COULOMB EFFECTS IN 3He

In this section, we will demonstrate that the DBM
approach leads to some new features related to the
Coulomb effects in nuclei, and, in particular, in 3He.
First of all, the additional Coulomb force arises be-
cause the 6q bag and rest nucleon can have electric
charges.We have found that this newCoulomb three-
body force is responsible for a significant part of the
total 3He Coulomb energy (this three-body Coulomb
force has been missed fully in previous 3N calcula-
tions within hybrid 6qN models [48]).

The second feature of the interaction model used
here is the absence of the local NN short-range
repulsive core. The role of this core is played by the
condition of orthogonality to the confined 6q states
forbidden in the external NN channel. This orthog-
onality requirement imposed on the relative-motion
NN wave function is responsible for the appearance
of some inner nodes and respective short-range loops
in this wave function. These short-range nodes and
loops lead to numerous effects and general conse-
quences for the nuclear structure. One of these con-
sequences is a rather strong overestimation of the
Coulomb contribution when using the interaction be-
tween pointlike nucleons. Thus, it is necessary to take
into account the finite radius of the nucleon charge
distribution.9)

Finally, in order to obtain an accurate Coulomb
displacement energy ∆EC = EB(3H)− EB(3He),
one should take into consideration the effects as-
sociated with the small mass difference between
the proton and neutron. It is well known [49] that
the above mass difference makes a rather small
contribution to the difference between the 3He and
3H binding energies. Therefore, it was usually taken
into account in a perturbation approach. However,
since the average kinetic energy in our case is twice
the kinetic energy in conventional force models, this
correction is also expected to be much larger in our
case. Hence, we present here the estimation for such
a correction term without using perturbation theory.

6.1. “Smeared” Coulomb Interaction

The Gaussian charge distribution ρ(r) that corre-
sponds to the rms charge radius rch and is normalized
to the total charge z, 4π

∫
ρr2dr = z, can be written

as

ρ(r) = z
(α
π

)3/2
e−αr2 , α−1 =

2
3
r2ch. (57)

9)We recall at this point that accounting for the finite radii
of nucleons in the conventional approaches leads to fully
negligible corrections to the Coulomb energy.
YSICS OF ATOMIC NUCLEI Vol. 68 No. 9 2005
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The Coulomb potential for the interaction between
such a charge distribution ρ(r) and a pointlike
charged particle has the well-known form

V (R) =
∫
drρ(r)
|R− r| =

z

R
erf(R

√
α).

We have derived here a similar formula for the
Coulomb interaction between two Gaussian distri-
butions with different widths α1 and α2 and rms radii
rch1

and rch2
, respectively:

V (R;α1, α2) =
z1z2
R

erf(R
√
α̃), (58)

α̃ =
α1α2

α1 + α2
, or α̃−1 =

2
3
(r2ch1

+ r2ch2
).

In our calculations, we used the following charge radii
for the nucleon and dibaryon:

(rch)p = 0.87 fm, (rch)6q = 0.6 fm.10)

These values lead to the “smeared” Coulomb interac-
tions in theNN and 6qN channels:

V Coul
NN (r) =

e2

r
erf(r

√
αNN ), α

−1/2
NN = 1.005 fm,

(59)

V Coul
in (ρ) =

e2

ρ
erf(ρ

√
αin), α

−1/2
in = 0.863 fm.

6.2. Matrix Elements of the Three-Body Coulomb
Force

The Coulomb interaction between the charged
bag and the third nucleon in the 6qN channel is
determined by the three-particle operator with the
separable kernel [see Eq. (36)]:

CoulW (i)(pi,p′
i;qi,q′

i) (60)

=
∑

JiMiLiL′
i

ϕJiMi
Li

(pi)
1 + τ (i)

3

2

× (1 + t̂dz)
CoulW Ji

LiL′
i
(qi,q′

i;E)ϕJiMi

L′
i

(p′
i),

where (1 + τ (i)
3 )/2 is the operator of the ith nucleon

charge and 1 + t̂dz is the operator of the bag charge. It

10)This value is simply the rms charge radius of the 6q bag
with the parameters given in [24]. The neutral σ field of the
bag changes this value only slightly. The evident difference
between the charge radii of the nucleon and dibaryon can be
well understood as follows: the charge radius of the 3q core
of the nucleon is usually taken as r3q

ch � 0.5−0.55 fm, while
remaining 0.3 fm is assumed to come from the charge distri-
bution of the π+ cloud surrounding the 3q core in the proton.
In contrast, the meson cloud of the dibaryon in our approach
is mainly due to the neutral scalar–isoscalar σ meson, so
that the dibaryon charge distribution is characterized by the
charge radius of the bare 6q core only.
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is evident that the matrix element of the operator (60)
can be expressed in terms of the integrals of the prod-
uct of the overlap functions χJiMi

Li
(qi) of NN form

factors and three-body basis functions. The method
for calculation of such Coulomb integrals is given in
the Appendix.

7. RESULTS OF CALCULATIONS

Here, we present the results of the 3N bound-state
calculations based on two variants of the DBM.

(I) In the first version developed in [24], the
dressed-bag propagator includes three loops (two
loops are with pions and one loop is with the σ
meson). Two of them are of the type shown in Fig. 2
of [24], in which each loop was calculated within the
3P0 model for quark–meson interaction. The third
loop consists of two such vertices and a convolution
of the σ-meson and 6q-bag propagators [24].

(II) In the second version, we replaced the two
above pionic loops with the effective Gaussian form
factor B(k), which describes the direct NN → 6q +
σ transition, i.e., the direct transition from the NN
channel to the dressed-dibaryon channel.

Both versions have been fitted to the NN phase
shifts in low partial waves up to an energy of 1 GeV
with almost the same quality. Therefore, they can be
considered on equal footing. However, version II has
one important advantage. Here, the energy depen-
dence arising from the convolution of the two prop-
agators involved into the loop, i.e., the propagators
of the σ meson and bare dibaryon, describes (with no
further correction) just the energy dependence of the
effective strength of theNN potential λ(II)(E), which
is thereby taken directly from the above loop integral.
In contrast, in the first version of the model, two
additional qqππσ loops give a rather singular three-
dimensional integral for λ(I)(E), where the energy
dependence at higher energies should be corrected by
a linear term.

7.1. Bound-State Energies of 3H and 3He
and Individual Contributions to Them

The main difference between the results for both
versions is that the energy dependence of λ(E) for
the second version is much weaker than that for the
first one. In addition, this energy dependence leads to
some decrease in the contribution of the 6qN compo-
nent to all 3N observables and thus to the respective
increase of the two-body force contribution as com-
pared to the three-body force one. Table 2 presents
the calculation results for the two above versions
for the following characteristics: the weights of the
internal 6qN channels and D wave in the total 3N
5



1468 POMERANTSEV et al.
Table 2. Results of the 3N calculations with two- and three-body forces for two variants of the DBM

Model E, MeV PD , % PS′ , % P6qN (Pin), %
Contributions toH , MeV

T T + V (2N) V (3N)

3H

DBM(I) g = 9.577a) –8.482 6.87 0.67 10.99 112.8 –1.33 –7.15

DBM(II) g = 8.673a) –8.481 7.08 0.68 7.39 112.4 –3.79 –4.69

AV18 + UIXb) –8.48 9.3 1.05 – 51.4 –7.27 –1.19
3He

DBM(I) –7.772 6.85 0.74 10.80 110.2 –0.90 –6.88

DBM(II) –7.789 7.06 0.75 7.26 109.9 –3.28 –4.51

AV18 + UIXb) –7.76 9.25 1.24 – 50.6 –6.54 –1.17

a) These values of the σNN coupling constant in 3H calculations have been chosen to reproduce the exact binding energy of the 3H
nucleus. The calculations for 3He have been carried out without any free parameters.
b)The values are taken from [50].
function, as well as the weight of themixed-symmetry
S′ component (only for the 3N channel); the average
individual contributions from the kinetic energy T ,
two-body interactions V (2N) plus the kinetic energy
T , and three-body force (V (3N)) due toOSE and TSE
to the total Hamiltonian expectation.

The percentages of the D wave and the inter-
nal components given in Table 2 were obtained with
incorporation of the three internal components; i.e.,
these values correspond to the normalization of the
total (four-component) wave function of the system
to unity.

To compare the predictions of the new model with
the respective results for the conventional NN po-
tential models, Table 2 also presents the results of
recent calculations with the Argonne potential AV18
and Urbanna–Illinois 3BF UIX [50].

7.2. The Densities, rms Radii and Charge
Distributions in 3H and 3He

First, we give definitions of the nucleon and charge
distributions in the multichannel system.

The external 3NNN channel. The proton (ρp) and
neutron (ρn) densities in this channel are defined in
the standard way [51]:

ρex{ p
n
}(r) (61)

=
1

N{ p
n
}

〈
Ψex

3∑
i=1

∣∣∣∣∣
δ(r − 3

2ρi)
r2

1± τ (i)
3

2

∣∣∣∣∣Ψex

〉

=
3

N{ p
n
}

〈
Ψex

∣∣∣∣∣
δ(r − 3

2ρ1)
r2

1± τ (1)
3

2

∣∣∣∣∣Ψex

〉
,

PH
where ρi is Jacobi coordinate in the set (i) andN{ p
n
} is

the number of protons (neutrons). Due to the property〈
Ψex

∣∣∣∣∣
3∑

i=1

1± τ (i)
3

2

∣∣∣∣∣Ψex

〉
=
〈

Ψex
∣∣∣∣32 ± T̂3

∣∣∣∣Ψex
〉

=
3
2
± T̂3 = N{ p

n
},

the above densities are normalized to unity, provided
that the external wave functionΨex is also normalized
to unity: ∫

ρex{ p
n
}(r)r

2dr = 1.

The matrix element 〈Ψex|τ (i)
3 |Ψex〉 is proportional to

the z projection of the total isospin T3; therefore,
the nucleon densities can be separated into isoscalar
(matter) density and isovector parts:

ρs(r) = ρm =

〈
Ψex

∣∣∣∣∣
δ
(
r − 3

2ρ1
)

r2

∣∣∣∣∣Ψex

〉
, (62)

ρv(r) =
3

2T3

〈
Ψex

∣∣∣∣∣
δ(r − 3

2ρ1)
r2

τ
(1)
3

∣∣∣∣∣Ψex

〉
. (63)

Both latter densities are also normalized to unity.
Then the nucleon densities can be expressed in terms
of isoscalar and isovector densities as

ρexp (3He) = ρexn (3H) =
1
4
(3ρs + ρv), (64)

ρexp (3H) = ρexn (3He) =
1
2
(3ρs − ρv).
YSICS OF ATOMIC NUCLEI Vol. 68 No. 9 2005



DIBARYON MODEL FOR NUCLEAR FORCE 1469
The rms radii of the corresponding distributions are
equal to

〈r2〉ex{s,v,p,n} =
∫
ρex{s,v,p,n}(r)r

4dr. (65)

The rms charge radius in the 3N sector is also defined
conventionally:

〈r2ch〉ex = 〈r2〉exp +R2
p +

Nn

Np
R2
n, (66)

where R2
p = 0.7569 fm2 and R2

n = −0.1161 fm2 are
the squared charge radii of the proton and neutron,
respectively.

The various types of one-particle densities (isoscalar,
isovector, proton, neutron) in the external 3N channel
for the 3H and 3He ground states calculated in
DBM(I) are shown in Fig. 5.

Below, we present also the two-proton density for
3He, which is defined usually as [52]

ρpp(r) = 6

〈
Ψex

∣∣∣∣∣
δ(r − r1)
r2

1 + τ (2)
3

2
1 + τ (3)

3

2

∣∣∣∣∣Ψex

〉
.

(67)

This density is normalized to 2:
∫
ρpp(r)r2dr = 2. (As

there is only a single nucleon in the 6qN channel, we
do not attach the index “ex” to this quantity.) The
two-neutron density ρnn(r) for 3H is defined similarly

[with replacement 1 + τ (i)
3 → 1− τ (i)

3 in Eq. (67)]. In
Fig. 6, we show both these densities for DBM(I) and
also the two-proton density for 3He found with the
BonnNN potential [52].

The internal 6qNqNqN channels. Here, we define the
density (normalized to unity) of the pure nucleon
distributions as

ρin{ p
n
}(r) (68)

=
1

N in
{ p

n
}P

(1)
in

〈
Ψin

1

∣∣∣∣∣
δ(r − αρ1)

r2
1± τ (1)

3

2

∣∣∣∣∣Ψin
1

〉
,

where P (1)
in = 〈Ψin

1 |Ψin
1 〉 and the quantity

N in
{ p

n
} =

1

P
(1)
in

〈
Ψin

1

∣∣∣∣∣
1± τ (1)

3

2

∣∣∣∣∣Ψin
1

〉
(69)

has the meaning of the average number of protons
(neutrons) in the one internal 6qN channel (note that
N in

p +N in
n = 1, i.e., there is only one nucleon in each

internal channel). The number N in
{ p

n
} depends on the

ratio of norms of 6qN components with different val-
ues of isospin of the bag. Therefore, the separation of
the 6qN-channel density into isoscalar and isovector
parts has no meaning.
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These average numbers of nucleons in 6qN chan-
nel can be expressed through relative probabilities of
the 6qN components with a definite value of isospin t,
which in our case are equal to

P in
0 ≡ P in

t=0 = P in
S1 + P in

D , P in
1 ≡ P in

t=1 = P in
S0,

(70)

where P in
S1, P

in
D , and P in

S0 are determined by Eq. (53).
Hence, P in

t=0 + P in
t=1 = 1. Then one can write the av-

erage numbers of nucleons as

N in
p (3H) = N in

n (3He) =
2
3
P in
t=1, (71)

N in
p (3He) = N in

n (3H) = P in
t=0 +

1
3
P in
t=1.

The nucleon densities (61) can be expressed by a
similar formula through components of the internal
wave function with a definite value of isospin t.

The total densities of nucleon distributions.
The total nucleon densities (normalized to unity) for
the whole 3N system, with allowance for both the 3N
and 6qN components, can now be defined as

ρ{ p
n
} =

(1− Pin)ρex{ p
n
}N{ p

n
} + Pinρin{ p

n
}N

in
{ p

n
}

〈N{ p
n
}〉

, (72)

where Pin = 3P in
1 /(1 + 3P in

1 ) is the total weight of all
three internal channels [Eq. (54)] and the denomina-
tor
〈N{ p

n
}〉 = (1− Pin)N{ p

n
} + PinN in

{ p
n
} < N{ p

n
} (73)

Table 3. Isospin structure of 6qN channel, average num-
ber of nucleons, and average mass calculated with the
ground-state wave functions of 3H and 3He in the DBM
approach

3H 3He

DBM(I) DBM(II) DBM(I) DBM(II)

P in
t=1 0.6004 0.6005 0.6044 0.6044

P in
t=0 0.3996 0.3995 0.3956 0.3956

3N in
p 0.799 0.799 2.209 2.209

3N in
n 2.201 2.201 0.791 0.791

〈Np〉 0.919 0.945 1.863 1.908

〈Nn〉 1.861 1.906 0.920 0.947

〈N〉 2.780 2.852 2.784 2.855

〈m〉/(3mN ) 1.015 1.010 1.014 1.010
5
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Fig. 5. The isoscalar ρs, isovector ρv , proton ρp, and neutron ρn densities in the external 3N channel for the 3H and 3He
systems obtained with DBM (I).
is equal to the average number of protons (neutrons)
in the whole multicomponent system. The densities
of the total proton and neutron distributions and also
external- and internal-channel distributions for 3He
calculated for DBM(I) are presented in Fig. 7.

One can also define a (normalized) density of the
matter (or mass) distribution in the 6qN channel as

r2ρinm(r) =
1

(mN +md)Pin
(74)

× 〈Ψin
1 |δ(r − αρ1)mN + δ(r − (1− α)ρ1)md|Ψin

1 〉,
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Fig. 6. The two-proton density in 3He (solid curve) and
the two-neutron density in 3H (dashed curve) calculated
with DBM (I) in comparison with the two-proton density
for the Bonn potential [52] (triangles).
P

where α = md/(md +mN ), mN is a nucleon mass,
and md is the mass of the bag (dibaryon). Then the
total matter density (normalized to unity) is equal to

r2ρm(r) =
(1− Pin)ρexm · 3mN + Pinρinm(mN +md)

〈m〉 .

(75)

The rms radius of any distribution normalized to unity
is defined by Eq. (65). The denominator in Eq. (75)
determines the average mass of the whole system
taking into account nonnucleonic channels:

〈m〉 = (1− Pin)3mN + Pin(mN +md) (76)

= 3mN + Pin(md − 2mN ) > 3mN .

In Table 3 we present some characteristics of
isospin structure for wave functions in the 6qN
channel: the relative probabilities for the components
with t = 0 and t = 1 (i.e., P in

t=0 and P in
t=1), average

numbers of protons and neutrons in all three 6qN
components (3〈N{ p

n
}〉), and also the average number

of nucleons 〈N〉 and the average mass 〈m〉 (divided
by 3mN value) in the whole four-component 3N
system. It should be noted that the average number
of nucleons in our multicomponent model, 〈N{ p

n
}〉, is

always less than the numbers of nucleons in the 3N
channel just due to the existence of the nonnucleonic
components. For example, for DBM(I), the average
number of protons in 3H is approximately equal to the
average number of neutrons in 3He, viz., 〈Np〉(3H) ≈
〈Nn〉(3He), and is equal to 0.92, while the average
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 9 2005
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Fig. 7. The external ρex, internal ρin, and total ρtot densities of proton and neutron distributions in 3He found with DBM (I).
number of neutrons in 3H is approximately equal
to the average number of protons in 3He, viz.,
〈Nn〉(3H) ≈ 〈Np〉(3He), and is equal to 1.86. Hence,
the average number of nucleons found with the total
multicomponent 3H and 3He functions is also always
less than 3:

〈N〉 = 〈Np〉+ 〈Nn〉 = 3− 2Pin < 3.
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 9 20
In our DBM, 〈N〉 is equal to 2.78 and 2.85 for ver-
sions I and II, respectively.

The charge distributions. The charge distribu-
tion for the pointlike particles in the 6qN channel
can be written as the charge density of a system
consisting of a pointlike nucleon and a pointlike bag:
r2ρinch–point(r) =
1
Z

〈
Ψin

1

∣∣∣∣∣δ(r − αρ1)
1 + τ (1)

3

2
+ δ(r − (1− α)ρ1)(1 + t̂3)

∣∣∣∣∣Ψin
1

〉
, (77)
where 1 + t̂3 is the operator of the bag charge. The
total charge radius in 6qN channel includes the rms
radius of this pointlike distribution 〈r2〉inch–point, the
nucleon charge radius (Rp orRn), and the charge bag
radius Rd, which depends on the bag isospin t and its
projection t3:

〈r2〉inch = 〈r2〉inch–point +
1
Z

(
N in

p R
2
p +N in

n R
2
n (78)

+

〈
Ψin

1

∣∣∣∣∣
∑
t,t3

Γt,t3R
2
d(t, t3)

∣∣∣∣∣Ψin
1

〉)
.

05
The last term in Eq. (78) includes the projectors Γt,t3
onto the 6q-bag isospin state with definite values of
isospin t and its projection t3 and is equal to (for the
3H and 3He states with total isospin T = 1/2)

∆(r2ch)
in
bag (79)

=
1
Z

{
R2
d(0, 0)P

in
t=0 +

(
1
3
R2
d(1, 0)

+
2
3
R2
d(1, 1)δT3 ,

1
2

+
2
3
R2
d(1,−1)δT3 ,− 1

2

)
P in
t=1

}
.

The characteristic charge radius of the 6q bagR2
d(t, t3)
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Table 4. The total rms radii (in fm) for the proton (rp), neutron (rn), matter (rm), and charge (rch) distributions in the
DBM approach and their separate values for external and internal channels

Model
3H 3He

rp rn rm rch rp rn rm rch

DBM(I) 3N 1.625 1.770 1.723 1.779 1.805 1.648 1.754 1.989

6qN 1.608 1.823 1.142 1.188 1.854 1.618 1.159 1.412

Total 1.625 1.773 1.663 1.724 1.807 1.647 1.694 1.935

DBM(II) 3N 1.613 1.761 1.713 1.769 1.795 1.636 1.744 1.980

6qN 1.573 1.797 1.124 1.171 1.829 1.583 1.141 1.396

Total 1.613 1.762 1.672 1.732 1.796 1.635 1.703 1.944

AV18 + UIXa) 1.59 1.73 1.76 1.61

Experiment 1.60b) 1.755 1.77b) 1.95

a)Taken from [53].
b)These “experimental” values are taken from [53]. They have been obtained by subtraction of the characteristic proton and neutron
charge radii squared (0.743 and –0.116 fm2, respectively) from the experimental values of the charge radii squared.
has, in general, different values in different isospin
states (which is related to the different multiquark dy-
namics in the channels with different isospin values),
but we assume in this work that their difference can
be ignored, viz.,

R2
d(0, 0) = R2

d(1, 0) = R2
d(1, 1) = R2

d = b20, (80)

b0 = 0.6 fm, and R2
d(1,−1) = 0

(which corresponds to an nn bag).

With the above assumptions, the 6q-bag contribution
to the 3H and 3He charge radius is reduced to

∆(r2ch)
in
bag =

R2
d

Z

(
P in

0 +
2 + 2T3

3
P in

1

)
. (81)

The rms charge radius of whole multicomponent sys-
tem is defined as

r2ch = (1− Pin)〈r2〉exch + Pin〈r2〉exin .

In Table 4, we give the rms radii for all the above
distributions in 3H and 3He found in the impulse
approximation, as well as the respective experimen-
tal values and results obtained for AV18(2N ) +
UIX(3N ) forces. To demonstrate the separate contri-
butions of the 3N and 6qN channels to these observ-
ables, we also present the values calculated separately
with only nucleonic and 6qN parts of the total wave
function. It is seen from Table 4 that both versions
PH
of our model (viz., DBM(I) and DBM(II)) give quite
similar values for all the radii. The most interesting
point here is the importance of 6qN-component
contributions. In fact, the contribution of the 6qN
channel shifts all the radii, i.e., rch and rp in 3H and
3He, predicted with pure nucleonic components in
our approach, much closer to the respective experi-
mental values. For example, the value rch = 1.822 fm
calculated for 3H with only the nucleonic part of
the wave function is substantially larger than the
respective experimental value 1.755 fm. However,
an admixture of a rather compact 6qN component
(rch = 1.22 fm) immediately shifts the 3H charge
radius down to a value of 1.766 fm, which is very close
to its experimental value.

Thus, the dibaryon–nucleon component works in
a right way also in this aspect. It is interesting to
note that, in general, the predictions of our two-phase
model are quite close to those of the conventional
pure nucleonic AV18 + UIX model. This means that
our multichannel model is effectively similar to a con-
ventional purely nucleonic model (at least for many
static characteristics). However, this similarity will
surely hold only for the characteristics that are sen-
sitive mainly to low-momentum transfers, while the
properties and processes involving high-momentum
transfers will be treated in two alternative approaches
in completely different ways.
YSICS OF ATOMIC NUCLEI Vol. 68 No. 9 2005
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7.3. Coulomb Displacement Energy
and Charge-Symmetry-Breaking Effects

The problem of accurate description of Coulomb
effects in 3He in the current 3N approach of the
Faddeev or variational type has attracted much at-
tention for the last three decades (see, e.g., [49, 54]
and the references therein to the earlier works). It is
interesting that the Coulomb puzzle in 3He, being
related to the long-range interactions, is treated in a
different manner in our and conventional approaches.

The ∆EC problem dates back to the first ac-
curate 3N calculations performed on the basis of
the Faddeev equations with realistic NN interac-
tions in the mid-1970s [55]. These pioneering cal-
culations first exhibited a hardly removable difference
of about 120 keV between the theoretical prediction
for ∆Eth

C � 640 keV and the respective experimental
value ∆Eexp

C � 760 keV. In the subsequent 30 years,
numerous accurate 3N calculations have been per-
formed over the world using many approaches, but
this puzzle is still generally unsolved. The most plau-
sible quantitative explanation (but yet not free of se-
rious questions) for the puzzle has recently been sug-
gested by Nogga et al. [49]. They have observed that
the difference in the singlet 1S0 scattering lengths of
pp (nuclear part) and nn systems [originating from
the effects of charge-symmetry breaking (CSB)] can
increase the energy difference between the 3H and
3He binding energies and thus contribute to ∆EC.

Our results obtained in this work with the DBM
give an alternative explanation of the∆EC puzzle and
other Coulomb effects in 3He without any free pa-
rameter. The Coulomb displacement energies ∆EC,
together with the individual contributions to the ∆EC
value, are presented in Table 5.

We emphasize three important points where our
results differ from those for conventional models.

(i) First, we found a serious difference between
the conventional and our approaches in the short-
range behavior of wave functions even in the nu-
cleonic channel. Conventional 3N wave functions
are strongly suppressed along all three interparticle
coordinates rij due to the short-range local repulsive
core, while our wave functions (in the 3N channel)
have stationary nodes and short-range loops along
all rij and the third Jacobi coordinates ρk. Such a
node along the ρ coordinate is seen also in the 6qN
relative-motion wave function. This very peculiar
short-range behavior of our wave functions leads to
a strong enhancement of the high-momentum com-
ponents of nuclear wave functions, which is required
by various modern experiments. On the other hand,
these short-range radial loops lead to significant
errors when using the Coulomb interaction between
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 9 200
Table 5. Contribution of various terms (in keV) of the
Coulomb interaction to the 3H−3He mass difference∆EC

Contribution DBM(I) DBM(II) AV18 +
UIX

Point Coulomb 3N only 598 630 677

Point Coulomb 3N + 6qN 840 782 –
Smeared Coulomb
3N only

547 579 648

Smeared Coulomb
3N + 6qN

710 692 –

npmass difference 46 45 14

Nuclear CSB (see Table 6) 0 0 +65

Magnetic moments
and spin–orbita)

17 17 17

Total 773 754 754

a)Here we use the value for this correction from [49].

pointlike particles within our approach. Hence, we
must take into account the finite radii of charge
distributions in the proton and 6q bag. Otherwise,
all Coulomb energies will be overestimated.

(ii) Another important effect following from our
calculations is a quite significant contribution of the
internal 6qN component to ∆EC. In fact, just this
interaction, which is completely missing in conven-
tional nuclear force models, makes the main contri-
bution (163 and 113 keV for versions I and II, respec-
tively) to filling the gap in∆EC between conventional
3N calculations and experiment if the CSB effects are
of little significance in ∆EC.

The large magnitude of this three-body Coulomb-
force contribution in our models can be explained
by two factors: first, a rather short average distance
〈ρ2〉1/2 between the 6q bag and the third nucleon
(which enhances the Coulomb interaction in the 6qN
channels) and, second, a relatively large weight of the
6qN components, where the 6q bag has the charge
+1 (i.e., it is formed from an np pair). This specific
Coulomb repulsion in the 6qN channel should also
appear in all other nuclei, where the total weight of
such components is about 10% or higher. There-
fore, it should strongly contribute to the Coulomb
displacement energies over the entire periodic table
and could somehow explain the long-term Nolen–
Schiffer paradox [56] in this way.

(iii) The third specific effect that has been found
in this study and contributes to the quantitative ex-
planation of ∆EC is a strong increase in the average
kinetic energy 〈T 〉 of the system. This increase in 〈T 〉
has already been discovered in the first early 3N cal-
culations with the Moscow NN potential model [57]
5
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Table 6. Contribution of charge-symmetry-breaking ef-
fects to the 3H−3He mass difference∆EC

ann, fm
∆EC, keV

DBM(I) DBM(II)

−16.3 −18 −39
−18.9 +45 +26

and results in a similar nodal wave function behavior
along all interparticle coordinates but without any
nonnucleonic component.

The increase in 〈T 〉 leads to the proportional in-
crease in the np mass-difference correction to ∆EC.
Since the average kinetic energy in our case is twice
the kinetic energy in conventional force models, this
correction is expected to be also much larger in our
case. Hence, we evaluate such a correction term in
the following way (without using perturbation the-
ory). In the conventional isospin formalism, one can
assume that the 3H and 3He nuclei consist of equal-
mass nucleons,

m =
mp +mn

2
,

so that mp = m+ ∆m/2,mn = m−∆m/2, where
∆m = mp −mn. The simplest way to include the
correction due to the mass difference ∆m is to as-
sume that all particles in 3H have the average mass

m̄H =
2mn +mp

3
= m− 1

6
∆m,

while in 3He they have the different average mass

m̄He =
2mp +mn

3
= m+

1
6
∆m.

In spite of the smallness of the parameter ∆m/m,
perturbation theory in respect to this parameter does
not work. So we used the average mass m̄H in cal-
culation of 3H and m̄He in calculation of 3He. The
contribution of this np mass difference to the ∆EC
value is given in the fifth row of Table 5. As is seen
from the table, this correction is not very small in our
case and contributes to ∆EC quite significantly.

Many other effects attributed to increasing the
average kinetic energy of the system will arise in our
approach, e.g., numerous effects associated with the
enhanced Fermi motion of nucleons in nuclei.

Charge-symmetry-breaking effects in DBM.
As was noted above, the best explanation for the∆EC
value in the framework of conventional force models
published to date [49] is based on the introduction
of some CSB effect, i.e., the difference between nn
and pp strong interactions. At present, two alternative
values of the nn scattering length are assumed:

a(1)
nn = −18.7 fm and a(2)

nn = −16.3 fm. (82)
PH
The first value has been extracted from the previous
analysis of experiments d(π−, γ)nn [58] (see also [59]
and references therein) and is used in all current
NN potential models, while the second value in (82)
has been derived from numerous three-body breakup
experiments n+ d→ nnp done for the last three
decades. In recent years, such breakup experiments
are usually treated in the complete Faddeev formal-
ism, which includes most accurately both two-body

and 3BF [60]. Thus, this a(2)
nn value is considered to be

quite reliable. However, the quantitative explanation
for the ∆EC value in conventional force models uses
just the first value of ann as an essential point of all the
construction. At the same time, the use of the second
value ann(= −16.3 fm) (which is not less reliable
than the first one) invalidates completely the above
explanation!

Therefore, in order to understand the situation
more deeply and to determine the degree of sensitivity
of our prediction for ∆EC to variation in ann, we also
made 3N calculations with two possible values of ann
from Eq. (82). These calculations have been carried
out with the effective values of the singlet-channel
coupling constant corresponding to the VNqN part of
theNN force:

λeff
He(

1S0) =
1
3
λpp +

2
3
λnp, (83)

λeff
H (1S0) =

1
3
λnn +

2
3
λnp. (84)

In the above calculations, we employ the value λnp =
328.9 MeV, which provides an accurate description of
the 1S0 np phase shifts and the experimental value
of the np scattering length anp = −23.74 fm [24].
Here, for the pp channel, we use the value λpp =
325.523 MeV fitted to the well-known experimental
magnitude app = −8.72 fm, and for the nn channel,
two λnn values corresponding to two available alter-
native values of the nn scattering length (82) have
been tested. The calculation results are presented in
Table 6.

As is seen in Tables 5 and 6, the DBM (version I)
can precisely reproduce the Coulomb displacement
energy ∆EC with the lower (in modulus) value ann =
−16.3 fm, while this model overestimates ∆EC by
54 keV (= 45 + 9 keV) with the larger (in modulus)
value ann = −18.9 fm. Thus, the DBM approach,
in contrast to the conventional force models, prefers
the lower (in modulus) possible value −16.3 fm of
the nn scattering length, which has been extracted
from very numerous 3N breakup experiments n+
d→ nnp [60].

Now, let us briefly discuss the magnitude of CSB
effects in our model. The measure of CSB effects at
YSICS OF ATOMIC NUCLEI Vol. 68 No. 9 2005
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low energies is used to consider the difference be-
tween ann and so-called “pure nuclear” pp scattering
length aNpp that is found from pp scattering data when
the Coulomb potential is disregarded. The model de-
pendence of the latter quantity was actively discussed
in the 1970s–1980s [61–63]. However, the majority
of modern NN potentials fitted to the experimen-
tal value app = −8.72 fm results in the value aNpp =
−17.3 fm when the Coulomb interaction is discarded.
It is just the value that is adopted now as an “em-
pirical” value of the pp scattering length [64]. Thus,
the difference between this value and ann is usually
considered as the measure of CSB effects. However,
our model (also fitted to the same experimental value
app = −8.72 fm) gives a quite surprising result:

aNpp(DBM) = −16.57 fm, (85)

which differs significantly from the above conven-
tional value (by 0.8 fm) due to the explicit energy
dependence of theNN force in our approach.

Thus, if the difference aNpp − ann is still taken as
the measure of CSB effects, the smallness of this
difference obtained in our model attests to a small
magnitude of the CSB effects, which is remarkably
smaller than the values derived from conventional
OBE models for theNN force.

8. DISCUSSION

The 3N results presented in the previous section
differ significantly from the results found with any
conventional model for 2N and 3N forces (based
on Yukawa’s meson-exchange mechanism) and also
from the results obtained in the framework of hybrid
models [65], which include the two-component repre-
sentation of theNN wave functionΨ = ΨNN + Ψ6q.
It is convenient to discuss these differences in the
following order.

(i) We found that the q2 dependence of pair NN
forces on the momentum of the third particle in the
3N system is more pronounced in our case than in
other hybrid models [34, 48, 65, 66]: the 3N bind-
ing energy decreases by about 1.7 MeV, from 5.83
to 4.14 MeV, when one takes into account the q2
dependence [32]. From a more general point of view,
it means that, in our approach, pairwise NN in-
teractions (except Yukawa OPE and TPE terms),
being “embedded” into a many-body system, lose
their two-particle character and become substantially
many-body forces (i.e., depending on the momenta of
other particles of the system).

(ii) Due to such a strong q2 dependence (of “re-
pulsive” character), the 3N system calculated includ-
ing only the pairwise forces turns out to be strongly
underbound (E = −4.14 MeV). In other words, the
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“pairwise” NN forces (including their q2 dependence
on the momenta of the third nucleon) give only about
half the total 3N binding energy, leaving the second
half for the 3BF contribution. Therefore, the follow-
ing question is decisively important: Can the 3BF
(inevitably arising in our approach) give the large
missing contribution to the 3N binding energy? Use-
fulness of the developed model for the description
of nuclear systems depends directly on the answer
to this important question. It is appropriate here to
recall that, in the conventional 3BF models, such as
Urbana–Illinois or Tucson–Melbourne, the contri-
bution of 3BF to the total 3N binding energy does not
exceed 1 MeV; i.e., this contribution can be consid-
ered as some correction (∼15%), although it is sig-
nificant for the precise description of the 3N system.

(iii) Fortunately, the contribution of 3BF induced
byOSE and TSE enables one to fill this 4.3-MeV gap
between the two-body force contribution and exper-
imental value. In fact, including both OSE and TSE
contributions to 3BF, taken with the same coupling
constants and form factors as in the driving NN-
force model, together with a quite reasonable value
for the σNN coupling constant, gσNN = 8−10, one
obtains a 3N binding energy that is very close to
the experimental value (see rows 1, 2 and 4, 5 in
Table 2). Thus, the presented force model leads to a
very reasonable binding energy for the 3N system,
however, with the much larger (as compared to the
traditional 3N force model) contribution of 3BF. In
fact, the unification of the basic 2N- and 3N-force
parameters provides strong support for the whole
force model suggested here and is in a sharp contrast
with all traditional forcemodel based on the t-channel
exchange mechanism. We remind the reader that the
2N and 3N forces in conventional approaches (where
the latter is induced by an intermediate ∆-isobar
production) are taken with different cutoff parameters
values ΛπNN and ΛπN∆ in the 2N and 3N sectors in
order to explain the basic features of 3N nuclei and
N + d scattering! Thus, in the traditional approach,
one has some serious inconsistency in parameter val-
ues for the 2N and 3N sectors.

(iv) The contributions of the pairwise and different
three-body forces to the total 3N binding energy for
3H are given in the sixth and seventh columns of
Table 2. From the results presented in this table, one
can conclude that just the total 3BF contribution
to the 3N binding energy dominates and, in fact,
determines the whole structure of the 3H and 3He
ground states.11) Moreover, comparing the entries

11)It should be noted here that the relative contribution of the
pairwise effective force W (E) to the 3N binding energy
decreases noticeably when including 3BF (due to strength-
ening of the q2 dependence arising from the pairwise forces).
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in the first and second rows and sixth and seventh
columns of the table, one can see a “nonlinear” ef-
fect of self-strengthening for the 3BF contribution.
In fact, the comparison of the results presented in
these rows of the table (see the fourth and the seventh
columns) shows clearly that the 3BF contribution to
the total 3N binding energy is largely determined by
the weight Pin of the 6qN component in the total
3N wave function. So, when the weight of the 6qN
component increases, the 3BF contribution, which is
related directly only to this component of the total
wave function, increases accordingly. However, the
enhancement of the pure attractive 3BF contribu-
tion squeezes the 3N system and thus reduces its
rms radius, i.e., the mean distance between nucleons,
which, in turn, again increases the weight of the
6qN component. In other words, some chain pro-
cess, which strengthens the attraction in the system,
arises. This process is balanced both by the weak-
ening of the effective pairwise interaction due to the
q2 dependence and by the repulsive effect of the or-
thogonalizing pseudopotentials included in each pair
interaction.

There are two other important stabilizing factors
weakening the strong three-body attraction in the 3N
system. The first factor is the generation of the short-
range repulsive vectorω field, where all three nucleons
are close to each other [25]. Since the ω meson is
heavy, this field is located in the deep overlap region
of all three nucleons. In the present study, we omitted
the three-body contribution of this repulsive ω field.
This repulsive contribution will keep the whole sys-
tem from further collapse due to the strong attractive
3N force induced by the scalar field.

The second factor weakening slightly the effective
3N attraction is associated with the conservation of
the number of scalar mesons generated in the 2N-
and 3N-interaction process. The problem is that TSE
giving the 3BF contribution (see Fig. 4) arises due
to the break of the σ-meson loop, which induces the
main 2N force. In other words, the σmeson generated
in the transition of pair nucleons from the NN phase
state to the 6q state is absorbed either in the 6q
bag with closing of the loop or by the third nucleon,
resulting in the 3BF contribution. Thus, the appear-
ance of such a 3BF should weaken the attraction
between nucleons in the pair. We carefully estimated
the effect of the meson-number conservation for the
TSE contribution on the total 3N binding energy.
Its magnitude turned out to be rather moderate on
the absolute energy scale (about 0.3–0.4 MeV), but
quite noticeable within the whole TSE contribution.
However, when the total nucleon density increases
(and the relative TSE contribution also increases),
the effect is enhanced.
P

(v) Dependence of the two-body coupling con-
stants λ(ε) upon the average momentum of the other
nucleon in the 3N system [see, e.g., Eq. (29)] can
be interpreted generally as a density dependence of
the resulting many-body force in a many-nucleon
system. It is easy to show that the appearance of the
energy-dependent pairwise potentials of the above-
mentioned type leads unavoidably to a repulsive
many-body force. In other words, the effects of the
two-body interactions of this type can be reinter-
preted in terms of the conventional static interaction
as an additional contribution of the effective repulsive
density-dependent many-body force. For example,
if we remove the q2 dependence from the coupling
constant λ(E − q2/(2m)) of our two-body force (this
q2 dependence leads to a weakening of the two-
body force in a many-nucleon system, when q2 is
rising), then the neglected q2 dependence must be
compensated by an additional repulsive density-
dependent effective three-body force. Thus, we can
replace this energy-dependent two-body interaction
by an effective static two-body potential (as is usually
done) plus a repulsive density-dependent 3BF.

On the other hand, it is well known from Skirme
model calculations of nuclei that just similar repulsive
phenomenological density-dependent 3BF should be
added to conventional 2N and 3N forces to guarantee
the saturation properties of heavy nuclei. Thus, in this
respect, the present force model is also in qualitative
agreement with the phenomenological picture of nu-
clear interactions.

9. CONCLUSION

In this paper, we have developed a general for-
malism for the multicomponent description of the
three-body system with particles having inner de-
grees of freedom. We have applied our new approach
to studying the 3N system with 2N and 3N inter-
actions based on the dressed dibaryon intermediate
state and σ-field generation. It has been shown that
the DBM applied to the 3N system inevitably re-
sults in new three-body scalar and also new (three-
body) Coulomb forces due to the (strong + Coulomb)
interaction between the dressed dibaryon and the
third nucleon. These forces play a crucial role in the
structure of few-nucleon systems and very likely in
the whole nuclear dynamics. Our accurate variational
calculations have demonstrated that the new 3BF
gives half of the 3N binding energy, whereas the 3BF
contribution in the traditional NN-force approaches
gives about 15% of the total binding energy. Thus, the
suggested approach to the 2N and 3N interactions
can lead to significant revision of relative contribu-
tions of two- and many-body forces in all nuclear
systems.
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 9 2005
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The developed model gives the precise value for
the Coulomb displacement energy ∆EC of the A = 3
system. Two basic sources of this contribution, which
differ from conventional force models, should be indi-
cated here:

the three-bodyCoulomb force between the dressed
bag and the charged third nucleon; and

the quite significant correction to the kinetic en-
ergy of the system due to the np mass difference and
high average kinetic energy.

It should be emphasized that, contrary to other
studies based on conventional forcemodels (using the
2N and 3N forces generated via the meson-exchange
mechanism), this explanation does not require any
noticeable CSB effect, although our model is still
compatible with such effects. However, these CSB
effects do not contribute remarkably to ∆EC in our
approach.

It is crucially important that the DBM leads
to significant nonnucleonic components in the 3N
wave function (8–11%), while this component in the
deuteron is about 3%, which results in a reformulation
of many basic effects in few-nucleon systems and
other nuclei as well. It is probable that the weight of
such nonnucleonic components in heavy nuclei can
be even higher with an increase in the mass number
and nuclear density.

There is a very specific new interplay between two-
and three-body forces: the stronger the three-body
force, the smaller the attractive contribution of the
two-body force to the nuclear binding energy! This
gives a very important stabilization in nuclei and nu-
clear matter. In this way, a very natural density depen-
dence of nuclear interactions appears from the begin-
ning. Thus, the general properties of the 3N system,
where forces differ so much from any conventional
force model, would appear also to be much different
from the predictions of any conventional model and,
hence, from experiment.

Therefore, it was very surprising for us to find that
the static characteristics of the 3N system in our case
turned out to be very close to the predictions of the
modern force model (such as AV18 + UIX) and thus
to experiment. This gives us a good test of the self-
consistency and accuracy of the new force model.
However, predictions of the present 2N- and 3N-
force model in other aspects will strongly deviate from
those for conventional models. First, these are the
properties determined by the high-momentum com-
ponents of nuclear wave functions. The point is that
the system described by our multicomponent wave
functions including the dibaryon components ex-
plicitly can easily absorb high-momentum transfers,
which can hardly be absorbed by the system consist-
ing of nucleons only. Therefore, to fit the experimental
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data corresponding to large-momentum transfers
(∼1 GeV/c), many types of meson-exchange and
isobar currents are often introduced into theoretical
frameworks. However, these currents are often un-
related to the underlying force model. Hence, it is
rather difficult to check the self-consistency of such
calculations, e.g., the validity of gauge invariance, etc.

Numerous modern experiments could corroborate
these results. In particular, according to the recent
3He(e, e′pp) experiments [5] and their theoretical in-
terpretation on the basis of fully realistic 3N calcu-
lations, the cross sections for the 3He(e, e′pp) pro-
cess are underestimated by about five times with a
fully realistic 3N model and incorporation of final-
state interaction and meson-exchange currents. This
important conclusion has been further confirmed in
recent experiments at the Jefferson Laboratory when
the incident-electron-beam energy was increased up
to Ee = 2.2 and 4.4 GeV [7]. The data of the two dif-
ferent experiments give clear evidence of very strong
short-range NN correlation in the 3He ground state.
This correlation still cannot be explained within the
traditional pattern for the 3N system.

In addition, our approach has recently been par-
tially supported [67] from the other side by consid-
ering a model for 2π production in pp collisions at
Ep = 750 and 900 MeV. The authors have found that
almost all particle energy and angular correlations
(e.g., π+π−, pp, πpp, etc.) can be explained quanti-
tatively by assuming that π+π− production occurs
through the generation of an intermediate light σ
meson with the mass mσ � 380 MeV. These values
generally agree with the parameters adopted in our
NN model [8, 24] and drastically disagree with the
values assumed in OBE and other potential models.

A very interesting general implication of the re-
sults presented here is their evident interrelation to
the famous Walecka hydrodynamic model for nu-
clei [68]. It is well known that the Walecka model
describes nuclei and nuclear matter in terms of the
scalar σ and vector ω fields, where the σ field gives
the attractive contribution, while the vector ω field
balances this attraction by short-range repulsion. It
is very important that both basic fields appear (in
the model) as explicit degrees of freedom (together
with relativistic nucleons), in contrast to conventional
meson-exchange models for nuclear forces, where
mesons appear as carriers of forces rather than as
explicit field degrees of freedom. Our approach does
include the σ-meson (and potentially the ω-meson)
degrees of freedom in an explicit form, similarly to the
Walecka model. Moreover, since the average kinetic
energy of the 3N system in our model is high (it
is much higher than that in the conventional OBE
approach), nucleon motion is closer to the relativistic
5
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case, and thus the similarity with the Walecka model
gets even closer.

There is also an additional strong argument in
favor of a tight interrelation between our and the
above Walecka-type nuclear model. Very recently, we
have formulated [38] the dibaryon model for NN in-
teraction in terms of relativistic effective field theory
with the intermediate dibaryon being represented as a
color quantum string with color quark clusters at its
ends. This theory includes π, σ, ρ, and ω mesons as
a dressing of the dibaryon together with the N∆ and
∆∆ loops. Thus, the 3N scalar force introduced in the
present work “by hand” can be derived in the field-
theory Lagrange language within the effective field
theory. Moreover, in the mean-field approximation,
this effective field theory approach, being applied to
nuclei, should result in theWalecka–Serot relativistic
model with the dominating collective σ field, which
couples the nucleons in a nucleus together.

Thus, the alternative description given here by the
new force model looks to be more self-consistent
and straightforward than the conventional OBE-
type models. One aspect of this new picture is
evident—the present model being applied to any
electromagnetic process on nuclei leads automat-
ically to a consistent picture of the process as a
whole: single-nucleon currents at low-momentum
transfers, meson-exchange currents (including new
meson currents) at intermediate-momentum trans-
fers, and quark counting rules at very high mo-
mentum transfers, because the model wave function
includes explicitly multinucleon, meson-exchange,
and multiquark components.

From all the above-mentioned arguments, one can
conclude that the dibaryon concept of nuclear force
advocated in the work results in a new picture for
nuclear structure and dynamics.
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Appendix

OVERLAP FUNCTIONS BETWEEN 3N
SYMMETRIZED BASIS AND NN FORM
FACTORS AND MATRIX ELEMENTS
OF DBM INTERACTIONS FOR A 3N

SYSTEM

1. The Construction of Basis Functions

The total wave function in the 3N channel with the
angular momentum (J,M) and the isospin (T, Tz)
is written as (below we omit the quantum numbers
JMTTz):

Ψ(JMTTz)
ex = Ψ(1)

ex + Ψ(2)
ex + Ψ(3)

ex , (A.1)

Ψ(i)
ex =

∑
γn

Cγ
nΦ(i)

γn (i = 1, 2, 3), (A.2)

where

Φ(i)
γn(ri,ρi) = Nγ

nr
λ
i ρ

l
i (A.3)

× exp(−αnr2i − βnρ2i )FJMTTz
γ (r̂i, ρ̂i)T (i)

tjk
.

We use the following notation: ri (pi) is the relative
coordinate (momentum) of the pair (jk), while ρi

(qi) is the Jacobi coordinate (momentum) of the ith
particle relative to the center of mass for the pair (jk),
(i, j, k) = (1, 2, 3) or their cyclic permutations. Here,
the composite label γ = {λlLSjkStjk} represents the
set of quantum numbers for the basis functions: the
angular momenta λ and l correspond to the Jacobi
coordinates ri and ρi, respectively; Sjk(tjk) is the
spin (isospin) of the two-body subsystem (jk); and
L(S) is the total orbital momentum (spin) of the
system. The normalizing coefficient in (A.3) is

Nγ
n = 2λ+l+3

√
2αλ+3/2

n β
l+3/2
n

π(2λ+ 1)!!(2l + 1)!!
. (A.4)

The spin-angular Fγ and isospin T (i)
tjk

parts of
the basis function are defined by a standard vector-
coupling scheme:

FJMTTz
γ = |{λili : L}{sjsk(Sjk)si : S} : JM〉,

(A.5)

T (i)
tjk

= |tjtk(tjk)ti : TTz〉, (A.6)

where si(= 1/2) and ti(= 1/2) are the spin and
isospin of the ith nucleon.

Now we define the symmetrized basis functions as

Φsym
γn =

∑
i=1,2,3

Φ(i)
γn, (A.7)
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so that the total wave function in an external (3N )
channel takes the form

Ψex =
∑
γ,n

Cγ
nΦsym

γn . (A.8)

2. Nucleon–Nucleon Form Factors

The NN form factors in the separable DBM in-

teraction and in the projectors ϕJiMitdtdz
λiSd

(ri), corre-
sponding to the orbital momentum λi, spin Sd, the
total angular momentum (Ji,Mi), and isospin (tdtdz)
of the subsystem (jk) (Ji = λi + Sd), have the form

ϕ
JiMitdtdz
λiSd

(ri) ≡ ϕf (ri) (A.9)

=
∑
m

Df
mr

λi
i exp(−1

2
η2
mr

2
i )Ff (r̂i)T (i)

f ,

where

f ≡ {λi, Sd, Ji,Mi, td, tdz}, (A.10)

Ff = |λiSd : JiMi〉, T (i)
f = |tjtk : tdtdz〉,

and Df
m and ηm are linear and nonlinear parameters,

respectively, of the Gaussian expansion. (In this Ap-
pendix, we have altered the notation for the quantum
numbers of theNN form factor as compared with the
main text of the paper: we have replaced Li → λi for
the orbital momentum and also included the isospin
quantum numbers td, tdz .) In the single-pole approx-
imation, the DBM includes only one form factor for
each set f , so that index f determines the form factor
uniquely. In the present version of the DBM, we use
only 0S, 2S, and 2D oscillator functions as the form
factors. So, we need to expand in Gaussians the 2S
function only.

3. Overlap Integrals

The total overlap function (49)

χ
JiMitdtdz
λiSd

(i) ≡ χf (i) = 〈ϕf (i)|Ψex〉 (A.11)

=
∑
γn

Cγ
n〈ϕf (i)|Φsym

γn 〉

and also matrix elements (m.e.) of any DBM inter-
action include the overlap integrals between the form
factors ϕf and symmetrized basis functions Φsym

γn :

If,γn(i) (ρi) = 〈ϕf (ri)|Φsym
γn 〉. (A.12)

This overlap integral consists of three terms:

If,γn(i) = If,γn(i)i + If,γn(i)j + Ifγn(i)k , (A.13)
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namely, one “diagonal” (I(i)i) and two nondiagonal
ones:

If,γn(i)j (ρi) = 〈ϕf (ri)|Φ(j)
γn(rj ,ρj)〉 = 〈T (i)

f |T (j)
tik
〉

(A.14)

×
∑
m

Df
mN

γ
n

∫
rλi
i exp(−1

2
η2
mr

2
i )r

λ
j ρ

l
j

× exp(−αnr2j − βnρ2j)〈Ff (r̂i)|Fγ(r̂j , ρ̂j)〉d3ri.

Due to symmetry of the basis functionsΦsym
γn , three

overlap integrals If,γn(i) (ρi) (i = 1, 2, 3) are identical,
so that further we present formulas for the case of
i = 2. For example,

χf (2) =
∑
γn

Cγ
n

(
If,γn(2)2 + If,γn(2)1 + If,γn(2)3

)
. (A.15)

(i) Diagonal overlap integrals I(2)2I(2)2I(2)2:

If,γn(2)2 (ρ2) =
∑
Jm

Gε
22ρ

l
2 (A.16)

× exp(−βnρ22) YJ JiJM
l (ρ̂2)δtdt31X

tdtdz
2 ,

ε ≡ {γ, f,J ,m},
where

Gε
22 = δλλi

δSdS31(−1)λ+l+L (A.17)

×Df
mN

γ
n

(2λ+ 1)!!
√
π[L][S][Ji][J ]

2λ+2α
λ+3/2
nm




l 1
2 J

λ S31 Ji

L S J



,

[X] ≡ 2X + 1, (A.18)

αnm = αn +
1
2
η2
m, (A.19)

YJ JiJM
l (ρ̂2) = 〈JmJ JiMi|JM〉YJmJ

l 1/2 (ρ̂2),
(A.20)

X tdtdz
2 =

〈
tdtdz

1
2
t2z

∣∣∣∣∣TTz
〉
|t2t2z〉. (A.21)

(ii) Nondiagonal overlap integrals:

If,γn
(2)1

(ρ2) = (−1)Sd+S23
∑

J g,t,m

Gε̃
21ρ

t
2 (A.22)

× exp(−ωnmρ22)YJ JiJM
g (ρ̂2)τ21(td, t23)X

tdtdz
2 ,

If,γn(2)3 (ρ2) = (−1)λi+λ
∑

J g,t,m

Gε̃
21ρ

t
2 (A.23)

× exp(−ωnmρ22)YJ JiJM
g (ρ̂2)τ23(td, t12)X

tdtdz
2 ,
5
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where

ε̃ ≡ {γ, n, f,J , g, t,m}, (A.24)

Gε̃
21 (A.25)

=
∑
ξ

G21(γ, n, f,J , g,m, ξ)δt,λi+λ+l−L1−L3−L4 ,

ξ ≡ {L1, L2, L3, L4, j4, g1, g4}.
In Eq. (A.25), the summation is carried out over all
intermediate quantum numbers incorporated into the
composite index ξ. Note that the overlap functions
I(2)1 and I(2)3 are distinguished by a phase factor and
isospin functions only.

The algebraic coefficients G21 in (A.25) are equal
to

G21(γ, n, f,J , g,m, ξ) = (−1)Ji+g1+L+1/2−J

(A.26)

×Df
mN

γ
nA

λiL10
λi0L1(λi−L1)(Pnm)ALL3L4

λlL1j4
(Qnm)

× [g1][g4]
√

[λi][L][S][S23][Sd][Ji][λi − l][j4][J ]

(2µnm)
L1+L3+L4+3

2

× Γ
(
L1 + L3 + L4 + 3

2

)
〈(λi − L1)0j40|g0〉

×




(λi − L1) L1 λi

S0 j g1






1
2

1
2
S23

1
2
S Sd




×



J (λi − L1) g4

j4
1
2

g






J J Ji

(λi − L1) g1 g4




×




j4
1
2
g4

L1 Sd g1

L S J



.

In formulas (A.22), (A.23), (A.26) the following no-
tation is used:

µnm = µn +
1
2
η2
m, ωnm = νn −

σ2
n

4µnm
, (A.27)
PH
where

µn =
1
4
αn +

3
4
βn, νn =

3
4
αn +

1
4
βn, (A.28)

σn =
√

3
2

(αn − βn).

The coefficients A in (A.26) are related to rotation
of the basis functions from one Jacobi set to the other
one:

ALL1L2
λlj1j2

(R̂) = (−1)λ+l(R11)L1(R12)λ−L1(R21)L2

(A.29)

× (R22)l−L2


L1 L2 J1

0 0 0




λ− L1 l − L2 J2

0 0 0




×
√

[λ]![l]![λ][l][L1][L2][λ− L1][l − L2][j1][j2]
[L1]![L2]![λ− L1]![l − L2]!

×




L1 λ− L1 λ

L2 l − L2 l

j1 j2 L



.

The rotation matrices Pnm and Qnm in (A.26)
have the form

Pnm =


1 − σn

2µnm
0 1


 , (A.30)

Qnm =



−1

2
−
√

3
2√

3
2

−1
2


Pnm. (A.31)

The overlaps between the basic isospin functions
τik are equal to
τij(t′jk, tik) ≡ 〈T
(i)
t′jk
|T (j)

tik
〉 =




δt′jktjk
for i = j,

√
(2t′jk + 1)(2tik + 1)




1
2

1
2
t′jk

1
2
T tik



{

(−1)tik for (ij) = (13), (21), (32),
(−1)t

′
jk for (ij) = (12), (23), (31).

(A.32)
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DIBARYON MODEL FOR NUCLEAR FORCE 1481
4. Conversion to Momentum Representation

One of the advantages of the Gaussian basis is the
fact that Gaussian functions have the same form in
both the coordinate and momentum representations.
So expressions for the overlap integrals given below
in the coordinate representation can be directly used
for the calculation of m.e. of DBM interaction op-
erators in the momentum representation. We use a
“symmetrized” momentum representation:

f(p) =
∫
f(x)eip·x

d3x

(2π)3/2
. (A.33)

Therefore, due to properties of the Gaussian func-

tions, the (normalized) basis functions Φ(i)
γn(pi,qi) in

the momentum representation have the same form
(A.3):

Φ(i)
γn(pi,qi) (A.34)

= Ñγ
np

λ
i q

l
i exp(−α̃np2i − β̃nq2i )FJMTTz

γ (p̂i, q̂i)T (i)
tjk
,

where

α̃n =
1

4αn
, β̃n =

1
4βn

. (A.35)

Moreover, as all the NN form factors (A.9) are the
sums of Gaussians, the form of the overlap integrals
(A.16)–(A.29) remains invariable when passing from
the coordinate to momentum representation if one
replaces in these formulas

αn → α̃n, βn → β̃n, ηm → η̃m = 1/ηm. (A.36)

Below, we use the symbols with a tilde for designation
of the corresponding quantities in the momentum
representation, e.g., α̃nm = α̃n + 1/(2η̃m), etc.

5. Matrix Elements for DBM Operators

All quantities related to the nonnucleonic channels
in the DBM can be expressed in the momentum
representation as the sums of integral operators with
factorized kernels [see Eq. (36)]:

ODBM
(i) = ϕf ′(pi)Of ′f (q′

i,qi;E)ϕf (pi). (A.37)

Therefore, the m.e. of such an operator is equal
to the sum of the m.e.’s for one-particle opera-
tors Of ′f (q′

i,qi;E) between the overlap functions
χf (qi):

M2 = 〈Ψex|ODBM
(2) |Ψex〉 =

∑
ff ′

〈χf
′

(2)|O(2)|χf(2)〉

(A.38)

=
∑

γnγ′n′

Cγ′

n′C
γ
n

∑
i,j=1,2,3

Mf ′γ′n′

fγn (i2j),
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whereMf ′γ′n′

fγn (i2j) are the corresponding basis m.e.:

Mf ′γ′n′

fγn (i2j) = 〈If
′,γ′n′

(2)i |O(2)|If,γn(2)j 〉. (A.39)

Any scalar–isoscalar operator O(q− q′) which
does not depend on spin and isospin variables (e.g.,
the DBM two-body force, the projector, the 3BF due
to σ exchange, the norm of nonnucleonic component)
can be expanded in spherical harmonics as

O(q′ − q) =
∑
LM

OL(q′,q)Y ∗
LM (q̂′)YLM (q̂).

(A.40)

In this case, the spin-angular and isospin parts of the
overlaps give∑

M

〈YJ ′JiJM
g′ (q̂′)|Y ∗

LM (q̂′)YLM (q̂)|YJ JiJM
g (q̂2)〉

(A.41)

= δJ ′J δg′LδgL,

∑
tdz

〈X t′dt
′
dz |X tdtdz 〉 = δt′dtd . (A.42)

Therefore, ninem.e.’s for such an operatorM(i2j) ≡
Mi2j (i, j = 1, 2, 3) can be reduced to radial integrals
of four types (here, we omit the indices fγn, f ′γ′n′ for
brevity):

M222 = δJ ′
iJi
δl′lδt′13t13R222,

M122 = (−1)Sd+S′
23τ12(t′23, td)R122,

M322 = (−1)λ
′
i+λ′

τ32(t′12, td)R122,

M221 = (−1)Sd+S23τ21(t23, td)R221,

M223 = (−1)λi+λτ23(t12, td)R221,

M121 = (−1)S23+S′
23τ12(t′23, td)τ21(t23, td)R121,

M323 = (−1)λ+λ′+λi+λ′
iτ32(t′12, td)τ23(t12, td)R121,

M123 = (−1)Sd+S′
23+λi+λτ12(t′23, td)τ23(t12, td)R121,

M321 = (−1)Sd+S23+λ′
i+λ′

τ32(t′12, td)τ21(t23, td)R121.

Here,
R121 (A.43)

=
∑

JJ ′gg′,mm′tt′

Gε̃′
21G

ε̃
21δJJ ′δgg′R

t′t
g (ω̃n′m′ , ω̃nm;O),

R122 (A.44)

=
∑

JJ ′g′,mm′t′

Gε̃′
21G

ε
22δJJ ′δg′lR

t′l
l (ω̃n′m′ , β̃n;O),
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R221 (A.45)

=
∑

JJ ′g,mm′t

Gε′
22G

ε̃
21δJJ ′δgl′R

l′t
l′ (β̃n′ , ω̃nm;O),

R222 (A.46)

=
∑

JJ ′,mm′

Gε′
22G

ε
22δJJ ′Rll

l (β̃n′ , β̃n;O),

Rt′t
L (ω̃′, ω̃;O) (A.47)

=

∞∫
0

∞∫
0

(q′)t
′+2qt+2e−ω̃′(q′)2e−ω̃q2OL(q′, q)dq′dq.

Below, we give the explicit formulas for the radial
integrals Rt′t

L for all specific terms of the DBM inter-
action.

Projector. The total projector onto the state
ϕJi
λi,Sd

has the form

Γf̄ ≡ ΓJi
λi,Sd

(A.48)

=
∑

Mi,tdz

|ϕJiMitdtdz
λi,Sd

〉δ(q − q′)〈ϕJiMitdtdz
λi,Sd

|.

After expanding the δ function into partial waves,

δ(q − q′) =
∑
LM

Y ∗
LM (q′)YLM (q)δ(q − q′)/q2,

(A.49)

the corresponding operator OL in Eq. (A.47) is re-
duced to

Γf̄
L =

δ(q − q′)
q2

, (A.50)

and the radial integral for the projector takes the form

Rt′t
L (ω̃′, ω̃; Γf̄ ) =

Γ( t
′+t+3

2 )

2(ω̃′ + ω̃)
t′+t+3

2

, (A.51)

where Γ(x) is the gamma function.

Effective two-body DBM interaction. Accord-
ing to Eq. (29), the two-body DBM interaction in the
3N system (between nucleons 1 and 3) has the form

W2 =
∑

Ji,λ′
iλi

W Ji

λ′
iλi

(p′
2,p2,q′

2,q2;E), (A.52)

where

W Ji

λ′
iλi

=
∑
Mi

|ϕJiMi

λ′
i,Sd
〉δ(q − q′)λJi

λ′
iλi

(A.53)

× (E − q2/(2m̃))〈ϕJiMi
λi,Sd

|;
PH
therefore,{
W Ji

λ′
iλi

}
L

=
δ(q − q′)
q2

λJi

λ′
iλi

(E − q2/(2m̃)).

(A.54)

In the present version of the DBM we employed a
rational approximation for the energy dependence of
the coupling constant λJLL′(E) [24]:

λJLL′(E) = λJLL′(0)
E0 + aE
E0 − E

, (A.55)

where the parameters E0 and a can be taken to be
the same for all λ. We found that this simple rational
form can reproduce quite accurately the exact energy
dependence of the coupling constants λJLL′(E) cal-
culated from the loop diagram in Fig. 1. Therefore, in
the 3N system, the corresponding coupling constants
λJi

λ′
iλi

take the form

λJi

λ′
iλi

(E − q2/(2m̃)) = λJi

λ′
iλi

(0) (A.56)

×


−a+ (a+ 1)

E0

E0 − E
1

1 +
q2

2m̃(E0 − E)


 .

The first term in Eq. (A.56) leads to the expression for
the radial m.e. like (A.51). For calculating the second
term, we expand the function 1/(1 + q2) into a sum of
Gaussians:

1
1 + q2/q20

=
∑
M
BM exp(−θMq2/q20), (A.57)

where q20 = 2m̃(E0 −E) > 0 (for E < E0) and the
expansion parameters {BM, θM} are universal con-
stants. Then the total m.e. for two-body DBM inter-
actionW2 takes the form

Rt′t
L (ω̃′, ω̃;W f̄ ′f̄

2 ) = λJi

λ′
iλi

(0) (A.58)

×
(
− aRt′t

L (ω̃′, ω̃; Γf̄ ′f̄ ) + (a+ 1)
E0

E0 − E

×
∑
M
BM

Γ( t
′+t+3

2 )

2(ω̃′ + ω̃ + θM/q20)
t′+t+3

2

)
.

Norm of 6qNqNqN component. The norm of the 6qN
component of the total 3N wave function determined
by Eq. (34) can be expressed via a sum of the m.e.’s
of the operator:

N (q′,q) = − d

dE
λJi

λ′
iλi

(E − q2/(2m̃))δ(q′ − q).

(A.59)
YSICS OF ATOMIC NUCLEI Vol. 68 No. 9 2005
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For the energy dependence such as in Eq. (A.55), the
derivative takes the form

− d

dE
λ(E) = λ(0)

1
(E0 − E)2

. (A.60)

Therefore,

Rt′t
L (ω̃′, ω̃;N f̄ ′f̄ ) = λJi

λ′
iλi

(0)
E0(1 + a)
(E − E0)2

(A.61)

×
∑
M′M

B′
M′BM

Γ( t
′+t+3

2 )

2(ω̃′ + ω̃ + (θM + θ′M)/q20)
t′+t+3

2

.

Three-body force due to OME.When calculat-
ing the m.e.’s for 3BF due to OME [Eq. (37)], viz.,

OMEW
J ′

iJi

λ′
iλi

(q′
i,qi;E) (A.62)

=
∫
dk

B
J ′

i

λ′
i
(k′)

E − Eα −
q′i

2

2m

V OME(q′
i,qi)

×
BJi
λi

(k)

E − Eα −
q2i
2m

,

we use a similar trick as in the calculation of the
norm for the 6qN component. It enables us to exclude
the vertex functions BJi

λi
(k) from the formulas for the

m.e.’s. By replacing the product of propagators in the
integral [over the meson momentum k in Eq. (A.62)]
with their difference, one obtains the following ex-
pression free of the vertex functions:

∫ BJi

λ′
i
(k)BJi

λi
(k)

(
E − ε(k)− q2

2m

)(
E − ε(k) − q′2

2m

)dk

(A.63)

=

λJi

λ′
iλi

(
E − q′2

2m

)
− λJi

λ′
iλi

(
E − q2

2m

)

q′2 − q2

= ∆λJi

λ′
iλi

(q′, q).

This quantity is the finite-difference analog of the
derivative of λ with respect to q2, which, in the case
of the energy dependence (A.55), takes the form

∆λ(q′, q) (A.64)

= λ(0)E0(1 + a)
1

E − q2/(2m)
1

E − q′2/(2m)
.

Thus, the m.e.’s for OME can be found without ex-
plicit usage of the vertex functionsBJi

λi
(k).
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Three-body force due to OSE. The exchange
operator for scalar mesons does not include any spin–
isospin variables. Therefore, Eq. (A.62) can be sim-
plified and, in view of the energy dependence given in
Eq. (A.55), reduces to the form

OSEW
J ′

iJi

λ′
iλi

(q′
i,qi;E) = δJ ′

iJi
λJi

λ′
iλi(0)

(A.65)

× E0(1 + a)
1

E − E0 − q2i
2m

−g2σNN

(qi − q′
i)2 +m2

σ

× 1

E − E0 −
q′i

2

2m

.

Using the expansion of the OME interaction into
partial waves,

1
(q′

i − qi)2 +m2
σ

=
∑
LM

Y ∗
LM(q′)

QL(z)
2qq′

YLM (q),

(A.66)

where mσ is the mass of the σ meson, QL(z) is a
Legendre function of the second kind, and

z =
q′2 + q2 +m2

σ

2q′q
,

one gets the following radial integral for OSE m.e.:

Rt′t
L (ω̃′, ω̃;OSEW

f̄ ′f̄
) (A.67)

= g2σNNλ
Ji

λ′
iλi

(0)
E0(1 + a)
(E − E0)2

×
∑
M′M

B′
M′BMR(t′, ω̃′ + θ′, t, ω̃ + θ;L,mσ),

where

R(t′, ω′, t, ω;L,m) (A.68)

=
∫ ∫

(q′)t
′+2e−ω′q′2QL(z)

2qq′
qt+2e−ωq2dq′dq.

We calculate integrals like those in Eq. (A.68) in
the following way. In the integral (A.68), t′ ≥ L and
t ≥ L, and it can be shown that t′ − L and t− L are
even numbers. Introducing the auxiliary indices k and
k′, so that

t = L+ 2k, t′ = L+ 2k′,

the integral (A.68) can be written as

R(L+ 2k′, ω′, L+ 2k, ω;L,m) (A.69)

=
(
− ∂

∂ω′

)k′ (
− ∂

∂ω

)k

R(L,ω′, L, ω;L,m).

The last integral with t = t′ = L is easily calculated in
the coordinate representation. Using the well-known
5
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formulas

QL( q
′2+q2+m2

2q′q )

2qq′
=

∞∫
0

jL(q′ρ)
e−mρ

ρ
jL(qρ)ρ2dρ

(A.70)

and√
2
π

∞∫
0

e−βq2qL+2jL(qρ)dq =
ρL

(2β)L+3/2
e−ρ2/(4β),

(A.71)

we get the result

R(L,ω′, L, ω;L,m) (A.72)

=
1

(4ωω′)L+3/2
JYukL ((ω−1 + ω′−1)/4,m),

where

JYukL (b,m) =

∞∫
0

ρ2L+2 e
−mρ

ρ
e−bρ2

dρ. (A.73)

This integral of the Yukawa potential is calculated by
recursions:

JYukL (b,m) =
1

mL+1
ZL(x), x =

m

2
√
b
, (A.74)

where

Z0(x) =
√
πxex

2
(1− erf(x)), (A.75)

Z1(x) = 2x2(1− Z0(x)), (A.76)

ZL(x) = 2x2 ((k − 2)ZL−2(x)− ZL−1(x)) . (A.77)

These recursions (especially for large L) for functions
Z(x) and also expressions (A.75) and (A.76) for Z0
PH
and Z1 cannot be used for large values of x. So, at
large x, we use the following asymptotic series:

JYuk2L (b,m) (A.78)

=
∞∑
i=0

(
− 2b
m2

)i (2L+ 2i− 1)!!(L + i)!
i!

,

JYuk2L+1(b,m) (A.79)

=
∞∑
i=0

(
− 2b
m2

)i (2L+ 2i+ 1)!!(L + i)!
i!

.

Three-body force due to OPE. For OPE, we
take the interaction operator in the standard form

V
(i)
OPE = − g2πNN

(2mN )2
(σ(i) · p) (A.80)

× 1
p2 +m2

π

(Sd · p)(τ (i) ·Td),

p = q− q′,

where σ(i) and τ (i) are the spin and isospin operators
of the third (ith) nucleon, whereas Sd and Td are the
operators of the total spin and isospin of the 6q bag,
respectively. We found that the contribution of OPE
is so small that it is sufficient to include only S waves
in its evaluation. In this case, only the central part of
the OPE interaction remains:

V OPE
c = g2πNN

m2
π

(4mN )2
1
3
(σ(i) · Sd) (A.81)

× (τ (i) ·Td)
1

p2 +m2
π

.

The spin–isospin m.e. is nonzero only for a singlet–
triplet transition:
〈
Sd = 0, Td = 1

∣∣∣∣13(σ(i) · Sd)(τ (i) ·Td)
∣∣∣∣Sd = 1, Td = 0

〉
= 4/9. (A.82)
Then, the m.e. of the OPE contribution for S waves
takes the form (for Sd = 0, S′

d = 1 or Sd = 1, S′
d = 0)

R00
0 (ω̃′, ω̃;OPEW

f̄ ′f̄
) (A.83)

=
4
9
f2
πNN

√
λ0

00(0)λ
1
00(0)

E0(1 + a)
(E − E0)2

×
∑
M′M

B′
M′BMR(0, ω̃′ + θ′, 0, ω̃ + θ; 0,mπ).

Here, we take the vertex functionsB0
0 andB

1
0 differing
from each other only by a constant. Therefore, using
Eq. (A.63), one can exclude these functions from the
formula for the m.e.

Three-body Coulomb force. The m.e. of the
operator for the three-body Coulomb force (60) (for
pointlike charges) can be expressed in terms of inte-
grals over the overlap functions χf (q):

Mi2j(CoulW ) = e2
∑

JiMiLiL′
i

λJi

LiL′
i
(0)(1 + a) (A.84)
YSICS OF ATOMIC NUCLEI Vol. 68 No. 9 2005
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×
∫
〈
If

′,γ′n′

(2)i (q′)

∣∣∣∣∣
1 + τ (2)

3

2
(1 + t̂dz)

∣∣∣∣∣If,γn(2)j (q)

〉

(
E − E0 −

q2

2m

)
(q− q′)2

(
E − E0 −

q′2

2m

)dqdq′,

where (1 + τ (2)
3 )/2 is the operator of the nucleon

charge (nucleon with number 2). The isospin part of
this m.e. is equal to

τCoul(td) (A.85)

=
∑
tdz

〈
X tdtdz

∣∣∣∣∣
1 + τ (2)

3

2
(1 + tdz )

∣∣∣∣∣X td

〉

=




1 for td = 0,
1
3

for td = 1.

Thus, for calculation of 3BF Coulomb m.e., one can
apply formulas Eqs. (A.69)–(A.79) for the isoscalar
operator with this additional isospin factor (A.85):

Rt′t
L (ω̃′, ω̃; CoulW

f̄ ′f̄
) (A.86)

= δt′dtdτ
Coul(td)e2λ

Ji

λ′
iλi

(0)
E0(1 + a)
(E − E0)2

×
∑
M′M

B′
M′BMRCoul(t′, ω̃′ + θ′, t, ω̃ + θ;L).

Here, the Coulomb integral RCoul(t, ω′, t, ω;L) for
the pointlike charges is obtained from the Yukawa
integralR (A.68) by settingm = 0:

RCoul(t′, ω′, t, ω;L) = R(t′, ω′, t, ω;L, 0). (A.87)

Hence, these Coulomb integrals are reduced by dif-
ferentiating [see Eq. (A.69)] to the integrals

RCoul(L,ω′, L, ω;L) =
1

(4ωω′)L+3/2
(A.88)

×
∞∫
0

ρ2L+2 1
ρ
exp

[
−ρ

2

4
(ω−1 + ω′−1)

]
dρ

≡ 1
(4ωω′)L+3/2

JCoulL ((ω−1 + ω′−1)/4),

JCoulL (b) =
Γ(L+ 1)
2bL+1

. (A.89)

Now, we can replace the Coulomb potential 1/ρ
between the pointlike charges in the integrand in
Eq. (A.88) with the corresponding Coulomb potential
between the “smeared” charges:

JCoulL (b, a) =

∞∫
0

ρ2L+2 erf(ρ
√
a)

ρ
e−bρ2

dρ. (A.90)
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The latter integral is evaluated analytically in the form
of a finite sum:

JCoulL (b, a) =
1
2

1
aL+1

(A.91)

×
L∑

k=0

Ck
L

k!(
b

a

)k+1

(2L− 2k + 1)!!

2L−k

(
b

a
+ 1

)L−k+1/2
,

where Ck
L are the binomial coefficients.
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Abstract—The properties of the 136Xe nucleus are theoretically investigated by using two different
approaches: the two-quasiparticle RPA method and the shell-model calculation. The investigated char-
acteristics include both the energy levels and the electromagnetic properties of 136Xe. Comprehensive
comparison with the experiment that includes all the currently available experimental data is performed.
c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

The singly magic nuclei provide a detailed testing
of model predictions for residual interaction between
like nucleons and checking of different theoretical
approaches for their description. Such nuclei with
N = 82, including the 136Xe, have been interesting
from a theoretical viewpoint for a long time and there
exist several calculations for them. The shell model
was applied to these nuclides by Wildenthal in [1],
while in [2–5] their properties were considered using
the TD approximation accounting for the pairing cor-
relations and particle number projection. The nature
of isomerism in the evenN = 82 isotones was cleared
up by Heyde et al. in [6]. Paper [7] treated their
properties in the framework of the generalized senior-
ity scheme. Wildenthal [8] calculated the spectra of
even and odd N = 82 isotones from 133Sb to 154Hf
in the framework of the multiparticle shell model that
used a restricted basis and 160 values of fitted pair
matrix elements representing the effective interac-
tion. A similar procedure, initiated due to the updated
and extended experimental information on the single-
proton nucleus 133Sb [9] and the two-proton nucleus
134Te [10], but with the full model space of the proton
50−82 shell, was also demonstrated by Blomqvist
in [11], where nuclei with up to six protons added to

∗This article was submitted by the authors in English.
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2)Department of Radiation Sciences, University of Uppsala,
Sweden.

3)Ioffe Physicotechnical Institute, Russian Academy of Sci-
ences, Politekhnicheskaya ul. 26, St. Petersburg, 194021
Russia.
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132Sn were studied. Here, the experimental single-
particle energies (except that for the 3s1/2 state) were
used and the two-body matrix elements of [8] were
employed as starting ones in the fitting procedure. At
the same time, an extended shell-model calculation
using realistic G-matrix interaction was performed
for nuclei with even Z = 52−62, N = 82 in [12]. A
systematic study of the N = 82 isotones from 132Sn
to 146Gd based on the RPA method [13] was reported
by us earlier [14].

However, the whole bulk of experimental evi-
dence [15–26] obtained by now for 136Xe, including
the new data on electromagnetic properties, stim-
ulates us to make a new theoretical review of the
situation in this nuclei. We begin the interpretation of
the 136Xe properties also in the framework of the RPA
method. The only difference with [14] is a new set of
values for single-particle energies that is summarized
in our work [27] and for residual interaction that
was also recently used by us [28] to interpret the
odd–odd N = 83 nucleus 136I. Starting from this
approach, we continue to the shell-model calculation.
The intercomparison between two calculations is
presented at the end of this paper.

2. BASIC RELATIONS DEFINING
THE SPECTRA OF LEVELS

AND TRANSITION PROBABILITIES IN RPA

Assuming the presence of correlations in the true
ground state |0̃〉 of an even–even nucleus, we define
the creation operator Q+

n,JM of the one-phonon ex-

cited state |ωnJM〉 = Q+
n,JM |0̃〉 as

Q+
n,JM =

∑
a≥b

Xn,J
jajb

[ξ+
a ξ

+
b ]JM −

∑
c≥d

Y n,J
jcjd

[ξcξd]JM ,

(1)
c© 2005 Pleiades Publishing, Inc.
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where

[ξ+
a ξ

+
b ]JM =

1√
1 + δjajb

∑
mamb

CJM
jamajbmb

ξ+
jama

ξ+
jbmb

,

(2)

[ξcξd]JM =
1√

1 + δjcjd

(3)

×
∑

mcmd

CJM
jcmcjdmd

ξjc−mcξjd−md
ϕcϕd,

Xn,J
jajb

= 〈ωn;JM |[ξ+
a ξ

+
b ]|0〉, (4)

Y n,J
jcjd

= 〈ωn;JM |[ξcξd]|0〉. (5)

Here, ξ+ are the quasiparticle operators defined by
the equations

a+
α = u|α|ξ

+
α − v|α|ϕαξ−α and u2

|α| + v2
|α| = 1, (6)

where ϕα = (−1)
α+jα−mα is the phase of the
particle–hole transformation (we use below the des-
ignations u|α| = uα and v|α| = vα, omitting the mag-
netic quantum numbers that enter only in ϕα), and
|−α〉 is a state with the opposite sign of magnetic
quantum number with respect to |α〉.

The set of RPA equations that define the ampli-
tudes “X” and “Y ” of the states |ωn, JM〉 and the
eigenvalues ωn has the following form:∥∥∥∥∥∥

[(E − ω)I +A] B

−B −[(E + ω)I +A]

∥∥∥∥∥∥

X
Y


 = 0.

(7)

In Eq. (7), E = Eab = Eja + Ejb
, Icd,ab = δjajcδjbjd

,
Ej is a quasiparticle energy, while thematrix elements
of the submatrices A and B in the case of even–even
nuclei look as follows:

Acd,ab ≡ AJ
jcjd,jajb

= (ujcujd
ujaujb

(8)

+ vjcvjd
vjavjb

)a〈jcjd;J |ϑ̂|jajb;J〉a
+ (ujcvjd

ujavjb
+ vjcujd

vjaujb
)a

× 〈jcj̄d;J |ϑ̂|jaj̄b;J〉a − (−1)ja+jb+J(vjcujd
ujavjb

+ ujcvjd
vjaujb

)a〈jcj̄d;J |ϑ̂|jbj̄a;J〉a,

Bcd,ab ≡ BJ
jcjd,jajb

= (ujcujd
vjavjb

(9)

+ vjcvjd
ujaujb

)a〈jcjd;J |ϑ̂|jajb;J〉a
− (ujcvjd

vjaujb
+ vjcujd

ujavjb
)a

× 〈jcj̄d;J |ϑ̂|jaj̄b;J〉a + (−1)ja+jb+J(vjcujd
vjaujb

+ ujcvjd
ujavjb

)a〈jcj̄d;J |ϑ̂|jbj̄a;J〉a.

In Eqs. (8) and (9), a〈jcjd;J |ϑ̂|jajb;J〉a and

a〈jcj̄d;J |ϑ̂|jaj̄b;J〉a are the antisymmetrical matrix
PH
elements of the effective interaction ϑ̂ in the particle–
particle and particle–hole channels with a given spin
(see [29, 30]).

From the explicit form of the system (7), there
follows the normalization condition on the X and Y
amplitudes, which looks like∣∣∣∣∣∣

∑
a≥b

Xn,J
jajb

Xm,J
jajb

−
∑
c≥d

Y n,J
jcjd

Y m,J
jcjd

∣∣∣∣∣∣ = δmn, (10)

which in terms of the RPA bosons corresponds to the
condition

〈0̃|Qn,JMQ+
m,JM |0̃〉 = δmn. (11)

In [2, 3, 14], which described systems with valence
protons above the Z = 50, N = 82 shells, the inter-
action of the following form was used:

ϑ̂ = V0(P̂s + tP̂t) exp(−βr2
12), (12)

where V0 = −33.2 MeV, t = 0.2, β = 0.325 fm−2,
and P̂s and P̂t are singlet and triplet spin projectors.
Here, we involve the basis that includes not only pro-
tons, but also neutrons, which gives rise to neutron
particle–hole excitations and admixtures. So, now
we use a more general interaction, introduced by us
in [28] for description of odd–odd nuclei in the vicinity
of A = 132, namely,

ϑ̂ =
[
V + Vσσ̂1 · σ̂2 + VT Ŝ12 (13)

+
{
Vτ + Vτσσ̂1 · σ̂2 + VτT Ŝ12

}
τ̂1 · τ̂2

]
e−r2

12/r2
0

with r12 = |r1 − r2| and Ŝ12 being a tensor operator.
Pair Coulomb interaction between protons was also
taken into consideration. The parameters used in the
calculation were the following: V = −16.65, Vσ =
2.33, VT = −3.00, Vτ = 3.35, Vτσ = 4.33, VτT =
3.00 (all in MeV), and r0 = 1.75 fm. With these
parameters and for a system of only like nucleons,
interaction (13) identically transforms into that given
by Eq. (12). We also mention here that the interaction
in (13) was used by us not only for calculation of
the particle–particle and the particle–hole matrix
elements that enter the RPA equations (7)–(9), but
also for defining the pairing characteristics (u, v
coefficients and the Ej values) in 136Xe. Our basis
included 11 proton and 5 neutron orbitals that are
closest to the proton and neutron Fermi levels.
Corresponding single-particle energies were either
borrowed from the experiment [9, 31] or generated
by the suitable phenomenological potential [27, 29,
30], if the experimental values were absent.
YSICS OF ATOMIC NUCLEI Vol. 68 No. 9 2005
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Considering below the electromagnetic transi-
tions that are described by the operator M̂(λµ),

M̂(λµ) =
∑
i,k

〈i|m̂(λµ)|k〉a+
i ak, (14)

we must distinguish between two different cases, i.e.,
the phonon–phonon (between the two excited states)
and the phonon–ground-state transitions. In the last
case, the transition matrix element reads as

〈0̃||M̂(λ)||ωn, J〉 = (−1)λδJλδπnπλ
(15)

×
[ ∑

ja≥jb

Xn,J
jajb

(ujavjb
± vjaujb

)

× (−1)lb√
1 + δjajb

〈ja||m̂(λ)||jb〉

−
∑

ja≥jb

Y n,J
jajb

(vjaujb
± ujavjb

)

× (−1)lb√
1 + δjajb

〈ja||m̂(λ)||jb〉
]
,

where the upper signs refer to T -even (Eλ) tran-
sitions, while the lower ones refer to T -odd (Mλ)
transitions.

In Eq. (15), δ are the Kronecker symbols, while πn

and πλ are the parities of the state |ωn〉 and of the
transition operator M̂(λ).

At the same time, the phonon–phonon matrix el-
ement in the case of λ �= 0 has the form

〈ωn, J
′||M̂(λ)||ωm, J〉 = [(2J + 1)(2J ′ + 1)]1/2

(16)

×
∑

ja≥jb,jc≥jd

[
Xm,J

jajb
Xn,J ′

jcjd
± Y m,J

jajb
Y n,J ′

jcjd

]
√

(1 + δjajb
)(1 + δjcjd

)

×
{
δjbjd

W [λjcJjb; jaJ ′](ujcuja ∓ vjcvja)

× 〈jc||m̂(λ)||ja〉 − (−1)jc+jd+J ′
δjbjc

×W [λjdJjb; jaJ ′](ujd
uja ∓ vjd

vja)〈jd||m̂(λ)||ja〉
− (−1)ja+jb+Jδjajd

W [λjcJja; jbJ ′]
× (ujcujb

∓ vjcvjb
)〈jc||m̂(λ)||jb〉

+ (−1)ja+jb+J+jc+jd+J ′
δjajcW [λjdJja; jbJ ′]

× (ujd
ujb

∓ vjd
vjb

)〈jd||m̂(λ)||jb〉
}
,

where the upper signs also refer to Eλ transitions,
while the lower ones refer toMλ transitions.

Making the calculations for transition probabili-
ties, we used the effective charges and gyromagnetic
ratios defined by us in [10, 32, 33].
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 9 200
3. SHELL-MODEL CALCULATIONS

The RPA method considered by us before has
strong limitations, since it reproduces only states of
the “two-quasiparticle” nature [see Eq. (1)] with a
certain class of correlations, including the ground-
state ones, taken into account. Indeed, in the energy
interval that is of interest to us, one can see some
other excitations, which are out of the RPA approx-
imation. For example, the total number of 2+ states
in 136Xe with excitation energies less than 3.5MeV is
at least six, while the RPA gives only four levels. The
excess of 4+ states with energies less than 3 MeV is
also seen, as compared to the RPA predictions. The
extra excitations offer the levels that, in the spirit of
the multiparticle shell model, are nothing but states
with the total seniority values s, from different pos-
sible orbitals, more than two (while the RPA states
correspond to shell-model states with s = 2).

Below, the structure of 136Xe is considered in a
multiparticle shell-model approach, formally in the
framework of the diagonal approximation, but with
the values of interaction matrix elements obtained
from the empirical data, which implicitly include the
bulk of correlations.

Beginning from the lowest configuration
{(π1g7/2)4}, we note that the RPA scheme gives us
only {(π1g7/2)2, I = 0} (ground state), I = 2+, 4+,
and 6+ levels, which are equivalent to the {7/24; s =
0, I = 0}, {7/24; s = 2, I = 2}, {7/24; s = 2, I = 4},
and {7/24; s = 2, I = 6} shell-model states. How-
ever, the configuration {7/24} gives rise [34] to
additional seniority-four levels, namely, {7/24; s =
4, I = 2}, {7/24; s = 4, I = 4}, {7/24; s = 4, I = 5},
and {7/24; s = 4, I = 8}, which have no analog in the
RPA scheme.

Consider the splitting of the configuration {jn; s,
α, I}, where n is the number of particles, I is spin, s is
seniority, and α is some additional quantum number
(when necessary). Using the formalism of fractional
parentage expansions, one may easily represent the
diagonal matrix element of the interaction ϑ̂ in the
form 〈

jnsα; I

∣∣∣∣∣
n∑

i<k

ϑ̂(i, k)

∣∣∣∣∣ jnsα; I

〉
(17)

=
∑

J0 even

aJ0(j
n, s, α; I)VJ0 ≡MI(j, n, s, α),

where VJ0 = 〈j2J0|ϑ̂|j2J0〉. The aJ0 quantities are
expressed via the fractional parentage and recoupling
coefficients and are tabulated in [35]. We do not cal-
culate here the VJ0 two-body matrix elements for
the configuration {(π1g7/2)2} by using some effective
5
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Table 1. Energy levels and E2-transition rates, B(E2), in
the diagonal {7/24} shell-model calculations for 136Xe; all
the nondiagonal matrix elements for the M1 operator are
equal to zero (note that the calculated value of the ground-
state binding energy of 136Xe is equal toB = 1141.84MeV,
which may be compared to B(136Xe)exp = 1141.88MeV)

I s E,
MeV

Ii si If sf
B(E2; Iisi →
Ifsf ), e2 fm4

0 0 g.s. 2 2 0 0 215

2 2 1.279 4 4 6 2 278

4 2 1.577 4 4 4 2 229

6 2 1.691 4 4 2 2 238

4 4 1.976 2 4 4 2 106

2 4 2.204 2 4 2 2 218

5 4 2.296 5 4 6 2 164

8 4 2.664 5 4 4 2 206

8 4 6 2 154

interaction. Instead, we define their values from the
experiment by employing the ansatz based on the
Koopmans theorem [36] and with account of residual
interaction between the valence particles:

VJ0((π1g7/2)
2) = 2B(133Sb) − B(132Sn) (18)

−B(134Te) +EJ0
exc(

134Te, (π1g7/2)
2),

where B are ground-state binding energies. Then the
excitation energy of the |(7/2)4sα; I〉 state in 136Xe is
given by the equation

EI
exc(

136Xe; sα) = B(136Xe) + 3B(132Sn) (19)

− 4B(133Sb) +MI(7/2, n = 4, s, α)

(no additional quantum number α is really present in
the configuration {7/24}).

Let us consider now the transition probabilities. If
|i〉 ≡ |7/24si; Ii〉 and |f〉 ≡ |7/24sf ; If 〉, then

〈f ||M̂(λ)||i〉 = 4
√

(2Ii + 1)(2If + 1) (20)

×
∑
s0J0

〈7/23s0J0, 7/2; Ii|}7/24siIi〉

× 〈7/23s0J0, 7/2; If |}7/24sfIf 〉
×W [IfJ0λ7/2; 7/2Ii ]〈π1g7/2||m̂(λ)||π1g7/2〉,

where 〈. . . |} . . .〉 are the fractional parentage coeffi-
cients. In practical calculations we used the following
values of reduced matrix elements entering the right-
hand side of (20):

〈π1g7/2||m̂(E2)||π1g7/2〉 = −40.20|e| fm2,
PH
Table 2. Energies of the |(π1g7/2)3Js, π2d5/2; I〉 states
in 136Xe; only the levels with J = 7/2, s = 1 have their
analogs in the RPA calculations (note that theL = 3 inter-
action matrix element of the {π1g7/2π2d5/2} configuration
does not enter the energies of the I = 10 and I = 0 states)

J s I E, MeV J s I E, MeV

7/2 1 1 2.553 9/2 3 2 3.804

2 2.634 3 3.738

3 2.408 4 3.698

4 2.385 5 3.617

5 2.421 6 3.400

6 2.192 7 3.392

3/2 3 1 3.587 11/2 3 3 3.689

2 3.337 4 3.855

3 3.373 5 3.597

4 3.318 6 3.434

7 3.462

8 3.233

5/2 3 0 3.483 15/2 3 5 4.193

1 3.083 6 4.018

2 3.181 7 4.027

3 3.304 8 3.940

4 3.106 9 3.591

5 2.996 10 3.500

corresponding to the eeff(E2) = 1.85|e| (see [10]) and
the Woods–Saxon wave functions, while

〈π1g7/2||m̂(M1)||π1g7/2〉 = 4.70µN ,

corresponding to the experimental [32] value of the
ground-state magnetic moment of 133Sb.

The theoretical energy levels and transition rates
arising from this approach are shown in Table 1. Note
that, among the nondiagonalE2matrix elements only
those with ∆s = 2 are different from zero.

Now let us pass on to the higher lying configu-
ration {j31 , j2} ≡ {(π1g7/2)3, π2d5/2}. Schematically,
its wave function may be represented as |J1, j2; I〉a,
where index ameans antisymmetrization and

|J1〉 = |j31s1, α1;J1〉a (21)

=
∑

J0 even

〈j21J0, j1;J1|}j31s1α1J1〉|j21J0, j1;J1〉.
YSICS OF ATOMIC NUCLEI Vol. 68 No. 9 2005
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The diagonal matrix element of interaction for the
configuration {j31J1, j2; I} looks like〈

j31s1α1J1, j2; I

∣∣∣∣∣
4∑

i<k

ϑ̂(i, k)

∣∣∣∣∣ j31s1α1J1, j2; I

〉
(22)

= MJ1(j1, n = 3, s1, α1) + 3(2J1 + 1)

×
∑

J0 even; L

(2L+ 1)W 2[j1j2J0I;LJ1]

× 〈j21J0, j1;J1|}j31s1α1J1〉2 a〈j1j2L|ϑ̂|j1j2L〉a.

The values of a〈j1j2L|ϑ̂|j1j2L〉a are defined in our
approach from the formula

a〈π1g7/2π2d5/2L|ϑ̂|π1g7/2π2d5/2L〉a (23)
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 9 200
= 2B(133Sb) − B(132Sn) − B(134Te)

+ EL
exc(

134Te, π1g7/2π2d5/2) − E
2d5/2
exc (133Sb),

where Eexc are the corresponding excitation energies.

At the present time, the excitation energies for all
members of the {π1g7/2, π2d5/2} multiplet in 134Te,
except the L = 3 level, are known [33]. For this level,
we used the value of 2.7MeV, obtained by us from the
proper interpolation based on the parabolic rule [37,
38]. This quantity is a cause of some uncertainty in
our prediction of energies, the values of which are
defined from the formula
EI
exc(

136Xe, s1J1) = B(136Xe) + 3B(132Sn) − 4B(133Sb) + E
2d5/2
exc (133Sb) (24)

+

〈
(π1g7/2)

3s1J1, π2d5/2; I

∣∣∣∣∣
4∑

i<k

ϑ̂(i, k)

∣∣∣∣∣ (π1g7/2)
3s1J1, π2d5/2; I

〉

and are listed in Table 2.
Let us consider now the transitions from the state

|i〉 = |j31siαiJi, j2; Ii〉 to the |f〉 = |j41sfαfIf 〉 (in our
case j1 = π1g7/2 and j2 = π2d5/2). The transition
matrix element looks like

〈f ||M̂(λ)||i〉 (25)

=
√

(2Ii + 1)(2If + 1)W [IfJiλj2; j1Ii]

× 〈j31siαiJi, j1; If |}j41sfαf If 〉〈j1||m̂(λ)||j2〉.

At last, we show the formula for transitions within
the configuration {j31 , j2}, which has the form

〈j31sfαfJf , j2; If ||M̂(λ)||j31siαiJi, j2; Ii〉 (26)

=
√

(2Ii + 1)(2If + 1)

×
{

3W [Jf j2λIi; IfJi]〈j1||m̂(λ)||j1〉

×
∑
J0

〈j21J0, j1;Ji|}j31siαiJi〉

× 〈j21J0, j1;Jf |}j31sfαfJf 〉

×
√

(2Ji + 1)(2Jf + 1)W [JfJ0λj1; j1Ji]

+W [IfJfλj2; j2Ii]〈j2||m̂(λ)||j2〉

× δ(JiJf )δ(sisf )δ(αiαf )
}
.

In addition to the single-particle transition matrix
elements given earlier, we now need some new ones:

〈π1g7/2||m̂(E2)||π2d5/2〉 = 8.19|e| fm2,

〈π2d5/2||m̂(E2)||π2d5/2〉 = −33.82|e| fm2,

〈π1g7/2||m̂(M1)||π2d5/2〉 = −0.135µN , and

〈π2d5/2||m̂(M1)||π2d5/2〉 = 5.45µN .

All these quantities were also calculated by using the
effective charges and effective M1 operators, defined
in [10] and [33].

4. INTERCOMPARISON
BETWEEN THE TWO MODELS

Coming to the consistency between both theo-
retical models, we again mention that, among the
shell-model states, there are ones, namely, with total
seniority values (from different orbitals) equal to two,
which have their analogs in the RPA scheme. How-
ever, there also exist states which appear only in one
approach or the other. The comparison of theoretical
energies obtained in the framework of the mentioned
methods with the results of experiment is demon-
strated in Table 3. Parallel with our data, we show
here the intercomparison with experimental results
from [17, 22, 26]. As one can easily see, the total
number of states in such combined method increases,
as compared to only RPA or empirical limited shell-
model approaches, and one can conciliate it with the
5
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Table 3. Comparison of experimental and theoretical energy levels in 136Xe (experimental states and their interpretation
in the framework of approaches considered in this work are exhibited below; in the case of RPA calculations the leading
components of eigenvectors are specified; all the energies are given in MeV)

Iπ
i ; E(Iπ

i )exp Phonon description Empirical shell-model description

0+
1 ; g.s. Vacuum; g.s. {(g7/2)4, I = 0, s = 0}; g.s.

0+
2 ; 2.581 Pairing vibration; 1.872

1+
1 ; 2.634 {g7/2d5/2}; 2.509 {(g7/2)3, J = 7/2, s = 1, d5/2; I = 1}; 2.553

(1+
2 ); 3.212 {(g7/2)3, J = 5/2, s = 3, d5/2; I = 1}; 3.083

2+
1 ; 1.313 {g7/2g7/2}; 1.301 {(g7/2)4, s = 2, I = 2}; 1.279

2+
2 ; 2.289 {(g7/2)4, s = 4, I = 2}; 2.204

2+
3 ; 2.414 {g7/2d5/2}; 2.315 {(g7/2)3, J = 7/2, s = 1, d5/2; I = 2}; 2.634

2+
4 ; 2.849 {d5/2d5/2}; 2.528

2+
5 ; 2.869 {g7/2d3/2}; 3.189

{(g7/2)3, J = 5/2, s = 3, d5/2; I = 2}; 3.181
{(g7/2)3, J = 3/2, s = 3, d5/2; I = 2}; 3.337

3+
1 ; 2.560 {g7/2d5/2}; 2.384 {(g7/2)3, J = 7/2, s = 1, d5/2; I = 3}; 2.408

(3+
2 ); 3.873 {g7/2d3/2}; 3.703

{(g7/2)3, J = 5/2, s = 3, d5/2; I = 3}; 3.304
4+
1 ; 1.694 {g7/2g7/2}; 1.672 {(g7/2)4, s = 2, I = 4}; 1.577

4+
2 ; 2.126 {(g7/2)4, s = 4, I = 4}; 1.976

4+
3 ; 2.465 {g7/2d5/2}; 2.260 {(g7/2)3, J = 7/2, s = 1, d5/2; I = 4}; 2.385

5+
1 ; 2.444 {(g7/2)4, s = 4, I = 5}; 2.296

5+
2 ; 2.608 {g7/2d5/2}; 2.353 {(g7/2)3, J = 7/2, s = 1, d5/2; I = 5}; 2.421

{(g7/2)3, J = 5/2, s = 3, d5/2; I = 5}; 2.996
6+
1 ; 1.892 {g7/2g7/2}; 1.782 {(g7/2)4, s = 2, I = 6}; 1.691

6+
2 ; 2.261 {g7/2d5/2}; 2.090 {(g7/2)3, J = 7/2, s = 1, d5/2; I = 6}; 2.192

8+
1 ; 2.867 {(g7/2)4, s = 4, I = 8}; 2.664

8+
2 ; 3.229 {(g7/2)3, J = 11/2, s = 3, d5/2; I = 8}; 3.233

10+
1 ; 3.484 {(g7/2)3, J = 15/2, s = 3, d5/2; I = 10}; 3.500

3−1 ; 3.275 Collective; 3.848
experiment. Attention should also be drawn to the
fact that the allied (RPA and shell-model) states have
rather similar energies.

One can see from Table 3 that the second 2+ and
4+ levels really offer not the second RPA states, but
the four-quasiparticle {(πg7/2)4, s = 4}, i.e., two-
phonon configurations. This prescription is fortified
by examining the electromagnetic properties of these
levels, shown among the others in Table 4. Re-
ally, if one considers the phonon 2.260-MeV state
with the structure {g7/2d5/2} as a 4+

2 level, then
PH
the 4+
2 → 2+

1 E2-transition probability is found
to be small, about 0.21 W.u. (experimental value
≥1.7 W.u.), while the M1 4+

2 → 4+
1 transition is

rather strong, with B(M1) of about 0.025 W.u. Then
the ratio γ(4+

2 → 4+
1 )/γ(4+

2 → 2+
1 ) becomes equal to

∼20, which also strongly contradicts the experiment,
while the pattern presented in Table 4 gives the
better agreement. The situation with the 2+

2 level is
more complicated. Here, if one takes as a 2+

2 level
the phonon 2.315-MeV state and as 2+

3 level also
YSICS OF ATOMIC NUCLEI Vol. 68 No. 9 2005
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Table 4. Comparison of experimental and theoretical transition probabilities in 136Xe (the quantities γ represent both
experimental and theoretical branching ratios for the γ decays from the initial to different final states; they are normalized
to 100 for the strongest decay seen in the experiment (or given by calculations), for each initial state)

Iπ
i → Iπ

f XL B(XL)a)exp, W.u. B(RPA), W.u. B(sh. mod.), W.u. γ(exp.)b) γ(RPA) γ(sh. mod.)

2+
1 → 0+

1 E2 8.5(35) 14.5 5.2 100 100 100

4+
1 → 2+

1 E2 1.29(2) 0.34 0 100 100 100

6+
1 → 4+

1 E2 0.0132(5) 0.13 0 100 100 100

4+
2 → 4+

1 M1 ≥ 2.8 × 10−3 0 25(2) 4.1

E2 ≥9.2 5.5

4+
2 → 2+

1 E2 ≥1.7 5.7 100(8) 100

6+
2 → 6+

1 M1 2.7(5)× 10−3 0.75 × 10−1 7.08 × 10−5 100(6) 100 100

E2 121(24) 0.29 2.55 × 10−2

6+
2 → 4+

1 E2 0.34(7) 0.6 × 10−1 0.67 × 10−3 2.4(2) 0.14 1.6

2+
2 → 2+

1 M1 ≥ 2.4 × 10−4 0 25.8(14) 25

E2 ≥0.16 5.25

2+
2 → 0+

1 E2 ≥ 8.8 × 10−3 0.28 100(5) 100c)

5+
1 → 6+

2 M1 ≥ 6.5 × 10−3 0 11(1) 0

E2 ≥121 0

5+
1 → 4+

2 M1 ≥ 1.1 × 10−3 0 10(1) 0

E2 ≥6.9 0

5+
1 → 6+

1 M1 ≥ 2.9 × 10−4 0 14(1) 17

E2 ≥0.6 3.95

5+
1 → 4+

1 M1 ≥ 9.3 × 10−4 0 100(8) 100

E2 ≥1.0 4.96

2+
3 → 2+

1 M1 0.16 × 10−1 0.25 × 10−3 5.3(5) 10.9 6.3

E2 0.133 1.14 × 10−3

2+
3 → 0+

1 E2 1.53 0.040 100(5) 100 100

4+
3 → 4+

2 M1 1.9(8)× 10−3 0.21 × 10−2 22(2) 79d)

E2 10.1(46) 0.24 × 10−3

4+
3 → 4+

1 M1 7.2(32)× 10−4 0.25 × 10−1 0.182× 10−3 100(5) 100 100

E2 0.76(34) 0.88 × 10−1 0.024

3+
1 → 2+

2 M1 1.24(3)× 10−3 1.11 × 10−2 11.4(15) 12e)

E2 11.0(54) 3.58 × 10−3

3+
1 → 4+

2 M1 9.6(46)× 10−4 0.61 × 10−2 35(2) 27d)

E2 3.2(15) 0.50 × 10−2

3+
1 → 4+

1 M1 1.1(5)× 10−4 0.56 × 10−3 2.85 × 10−3 30.1(19) 49 100

E2 8.7(41)× 10−2 1.53 × 10−2 1.68 × 10−3

3+
1 → 2+

1 M1 1.1(5)× 10−4 3.72 × 10−3 5.75 × 10−5 100(4) 100 12

E2 4.7(22)× 10−2 1.43 × 10−2 2.29 × 10−2
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 9 2005
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Table 4. (Contd).

Iπ
i → Iπ

f XL B(XL)a)exp, W.u. B(RPA), W.u. B(sh. mod.), W.u. γ(exp.)b) γ(RPA) γ(sh. mod.)

5+
2 → 5+

1 M1 ≥ 9.2 × 10−3 0 18.0(21) 0

E2 ≥232 0

5+
2 → 6+

2 M1 ≥ 5.1 × 10−3 0.16 0.107 87(4) 100 100

E2 ≥28.7 0.93 0.984

5+
2 → 4+

2 M1 ≥ 1.1 × 10−3 3.66 × 10−3 53(3) 11d)

E2 ≥3.3 1.52 × 10−2

5+
2 → 6+

1 M1 ≥ 1.8 × 10−4 3.5 × 10−3 4.18 × 10−4 28.3(17) 19 4

E2 ≥0.24 9.4 × 10−3 1.85 × 10−2

5+
2 → 4+

1 M1 ≥ 3.5 × 10−4 5.4 × 10−3 3.66 × 10−3 100(5) 63 62d)

E2 ≥0.26 7.32 × 10−2 1.52 × 10−2

1+
1 → 2+

3 M1 2.2(8) × 10−3 0.58 0.35 3.5(2) 11 47

E2 29(10) 1.26 3.18

1+
1 → 2+

2 M1 1.9(7) × 10−3 1.64 × 10−2 11.4(6) 9e)

E2 9.8(35) 0.15

1+
1 → 2+

1 M1 2.9(10)× 10−4 2.41 × 10−2 1.46 × 10−4 100(5) 100 8

E2 0.10(4) 1.34 × 10−2 3.99 × 10−2

1+
1 → 0+

1 M1 9.8(35)× 10−6 1.35 × 10−3 4.23 × 10−4 26.7(12) 44 100

8+
1 → 6+

1 E2 3.7

8+
2 → 6+

2 E2 4.3

10+
1 → 8+

2 E2 3.2

3−1 → 0+
1 E3 16.9 15

a) For transitions where the mixed M1/E2 mode is allowed but the mixing parameter δ is not defined, the listed rates are given
separately for the cases when the pureM1 or E2 mode is assumed.
b) Weighted average of branchings obtained by us [26] and the values adopted in [17].
c) Obtained as a result of the 23% admixture of 2+

1 to 2+
2 .

d) Taking into account the 15% admixture of 4+
3 to 4+

2 and 4+
1 in the amplitude.

e) By virtue of the 22% admixture of 2+
3 to 2+

2 .
the phonon, but 2.528-MeV state, then both the
transition probabilities and branching ratios can be
conciliated with the experiment. However, in this
case, there is no room for the {(g7/2)4s = 4I = 2}
two-phonon state, which really is the next one, after
the 2+

1 level (see Table 3). As in the harmonic picture,
there is no transition between the two-phonon and
ground states; the B(E2; 2+

2 → 0+
1 ) value in the

diagonal shell-model approximation is equal to zero.
In order to reproduce the experimental branching
from the 2+

2 level, wemust include small configuration
mixing (see footnote to Table 4), which “opens” the
P

2+
2 → 0+

1 transition. Small configuration mixing for
other levels is also needed for better description of the
branching ratios.

At present, two 5+ levels of 136Xe with exci-
tation energies less than 3 MeV are found in the
experiment [26]. At the same time, the calculations
show the existence of three 5+ states in this in-
terval of energies. Among them, the shell-model
{(g7/2)4, s = 4, I = 5} state that has the lowest en-
ergy (see Table 3) corresponds to the experimental
5+
1 (2.444-MeV) level. Meanwhile, the identifica-
tion of the structure of higher 5+ levels is not so
synonymous. We assume that the 5+

2 (2.608-MeV)
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 9 2005
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state has the shell-model structure {(g7/2)3, J =
7/2, s = 1, d5/2; I = 5}, its RPA analog being of the
{g7/2d5/2} type. In this case, the half-life of the 5+

2

state proves to be about ∼3 ps as compared to the
experimental value of T1/2 ≤ 27 ps [26], while the
alternative attribution of the structure {(g7/2)3, J =
5/2, s = 3, d5/2; I = 5} for this level leads to T1/2 ∼
300 ps, which contradicts the experiment.

At the present time, there exist several mea-
surements concerning magnetic properties of the
136Xe states. In [39], the magnitude of g(4+

1 ) =
0.80(15) was measured, while in [40] and [41] the
values of g(2+

1 ) turned out to be g(2+
1 ) = 0.77(5) and

g(2+
1 ) = 1.20(25), respectively. These numbers may

be compared with the results of our RPA calculations:
g(4+

1 ) = 0.81 and g(2+
1 ) = 0.86. We again mention

here that, in calculations, we used magnetic parame-
ters close to that from our work [33]. Unfortunately, at
the present time, there is no experimental evidence on
the values of quadrupole moments of states in 136Xe,
which are extremely dependent on the shell-model
structure and the occupancy of single-particle levels.

Among the positive-parity states, we mark out
the high-spin levels, where configuration mixing is
small. Calculated empirical shell-model energies of
these levels are very close to the experimental ones.
At the same time, the theory predicts rather strongE2
transitions between these levels (see Table 4), which
is also qualitatively confirmed by the experiment.

5. SUMMARY AND CONCLUSIONS

This work has essentially expanded our under-
standing of the structure of the N = 82 nucleus
136Xe. Joint theoretical calculation of the energies
of levels and their decay properties performed in
the framework of two different models enabled us
to make a synonymous definition of the structure
for the majority of excited states in this nucleus.
In our calculations, we used the minimal amount
of free parameters, which we borrowed either from
our own previous investigations (as in the RPA
approach) or from the empirical data on other nuclei
(as in the shell-model calculations). In particular, the
parameters of interaction that we used in the RPA
scheme agree with those used by us in other works,
as well as with the parameters used by other authors
for description of the N = 82 nuclei. Our combined
theoretical approach for description of 136Xe enabled
us to describe most of the experimental information
on this nucleus and may be successfully applied to
other nuclei with one filled shell.
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 9 200
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The Nuclear Scissors Mode by Two Approaches
(Wigner Function Moments versus RPA)*
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Abstract—Two complementary methods to describe the collective motion, the RPA and the method of
Wigner function moments, are compared using a simple model as an example—a harmonic oscillator with
quadrupole–quadrupole residual interaction. It is shown that they give identical formulas for eigenfrequen-
cies and transition probabilities of all collective excitations of the model, including the scissorsmode, which
is a subject of our special attention. The normalization factor of the “synthetic” scissors state and its overlap
with physical states are calculated analytically. The orthogonality of the spurious state to all physical states
is proved rigorously. c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

The full analysis of the scissors mode in the
framework of a solvable model [harmonic oscillator
with quadrupole–quadrupole residual interaction
(HO+QQ)] was given in [1]. Many obscure points in
the understanding of the mode’s nature were clarified:
for example, its coexistence with the isovector giant
quadrupole resonance (IVGQR), the decisive role
of the Fermi surface deformation in its creation,
and so on.

The method of Wigner function moments (WFM)
was applied to derive analytic expressions for cur-
rents of both coexisting modes (this was done for
the first time), their excitation energies, and mag-
netic and electric transition probabilities. Unexpect-
edly, our formulas for energies turned out to be identi-
cal to those derived by Hamamoto and Nazarewicz [2]
in the framework of the RPA. This fact generated the
natural motivation for this work: to check the relation
between formulas for transition probabilities derived
by the two methods. The obvious development of this
investigation is the systematic comparison of the two
approaches with the aim to establish the connec-
tion between them. The HO + QQ model is a very
convenient proving ground for this kind of research,
because all results can be obtained analytically. There
is no need to describe the merits and demerits of the
RPA—they are known very well [3]. It is necessary,
however, to say a few words about the WFM. Its idea
is based on the virial theorems of Chandrasekhar and

∗This article was submitted by the authors in English.
1)Institut de Physique Nucleaire, Orsay, France.
**e-mail: balbuts@thsun1.jinr.ru
1063-7788/05/6809-1497$26.00
Lebovitz [4]. Instead of writing the equations of mo-
tion for microscopic amplitudes of particle–hole exci-
tations (as in RPA), one writes the dynamical equa-
tions for various multipole phase-space moments of
a nucleus. This allows one to achieve better physical
interpretation of the studied phenomenon without go-
ing into its detailed microscopic structure. TheWFM
method was successfully applied to study isoscalar
and isovector giant multipole resonances and low-
lying collective modes of rotating and nonrotating
nuclei with various realistic forces [5]. The results
of calculations were always very close to similar re-
sults obtained with the help of the RPA. In principle,
this should be expected, because the basis of both
methods is the same: time-dependent Hartree–Fock
(TDHF) theory and a small-amplitude approxima-
tion. On the other hand, it is evident that they are
not equivalent, because one deals with equations of
motion for different objects. The detailed analysis of
the interplay of the two methods turns out to be useful
also from a “practical” point of view: firstly, it allows
one to obtain additional insight into the nature of the
scissors mode; secondly, we find new exact mathe-
matical results for the considered model.

2. THE WFM METHOD

A detailed description of the method of WFM can
be found in [1, 5, 6]. Here, we recall briefly only its
main points. The basis of the method is the TDHF
equation for the one-body density matrix: i�∂ρ̂τ/∂t =[
Ĥτ , ρ̂τ

]
, where Ĥτ is the one-body self-consistent

Hamiltonian depending implicitly on the density ma-
trix ρτ (r1, r2, t) = 〈r1|ρ̂τ (t)|r2〉 and τ is an isotopic
c© 2005 Pleiades Publishing, Inc.



1498 BALBUTSEV, SCHUCK
index. It is convenient to modify this equation, intro-
ducing theWigner transform of the density matrix [3],
known as the Wigner function f τ (r,p, t):

∂f τ

∂t
=

2
�

sin
(

�

2
(∇H

r · ∇f
p −∇H

p · ∇f
r )
)
Hτ

Wf
τ ,

(1)

where the upper index on the nabla operator stands
for the function on which this operator acts and HW
is the Wigner transform of the HamiltonianH .

It is shown in [5, 6] that, by integrating Eq. (1)
over the phase space {p, r} with the weights
xi1xi2 . . . xikpik+1

. . . pin−1pin , where k runs from 0
to n, one can obtain a closed finite set of dynamical
equations for Cartesian tensors of the rank n. Taking
linear combinations of these equations, one is able to
represent them through various multipole moments,
which play the roles of collective variables of the
problem. Here, we consider the case n = 2.

2.1. Model Hamiltonian, Equations of Motion

The microscopic Hamiltonian of the model is

H =
A∑

i=1

(
p2

i

2m
+

1
2
mω2r2

i

)
(2)

+ κ̄

2∑
µ=−2

(−1)µ
Z∑
i

N∑
j

q2µ(ri)q2−µ(rj)

+
1
2
κ

2∑
µ=−2

(−1)µ




Z∑
i�=j

q2µ(ri)q2−µ(rj)

+
N∑

i�=j

q2µ(ri)q2−µ(rj)


 ,

where the quadrupole operator q2µ =
√

16π/5r2Y2µ,
κ̄ is the strength constant of the neutron–proton
interaction, κ is the strength constant of the neutron–
neutron and proton–proton interactions, and N and
Z are the numbers of neutrons and protons, respec-
tively. The mean field potential for protons (or neu-
trons) is

V τ (r, t) =
1
2
mω2r2 +

2∑
µ=−2

(−1)µZτ
2µ(t)q2−µ(r),

(3)

where Zn
2µ = κQn

2µ + κ̄Q
p
2µ, Z

p
2µ = κQ

p
2µ + κ̄Qn

2µ,
and the quadrupole moments Qτ

2µ(t) are defined as

Qτ
2µ(t) =

∫
d{p, r}q2µ(r)f τ (r,p, t)
PH
with
∫
d{p, r} ≡ 2(2π�)−3

∫
d3p

∫
d3r.

Integration of Eq. (1) with the weights r2λµ,
(rp)λµ ≡ {r ⊗ p}λµ, and p2

λµ yields the following set
of equations [1]:

d

dt
Rτ

λµ − 2
m
Lτ

λµ = 0, λ = 0, 2; (4)

d

dt
Lτ

λµ − 1
m
P τ

λµ +mω2Rτ
λµ

− 2
√

30
2∑

j=0

√
2j + 1

{
11j
2λ1

}
(Zτ

2R
τ
j )λµ = 0,

λ = 0, 1, 2;
d

dt
P τ

λµ + 2mω2Lτ
λµ

− 4
√

30
2∑

j=0

√
2j + 1

{
11j
2λ1

}
(Zτ

2L
τ
j )λµ = 0,

λ = 0, 2,

where
{

11j
2λ1

}
is the Wigner 6j symbol, r2λµ ≡ {r ⊗

r}λµ =
∑

σ,ν C
λµ
1σ,1νrσrν is a tensor product [7], and

rν are cyclic variables

r+1 = −(x1 + ix2)/
√

2, r0 = x3,

r−1 = (x1 − ix2)/
√

2.

Further, the following notation is introduced:

Rτ
λµ(t) =

∫
d{p, r}r2λµf

τ (r,p, t),

Lτ
λµ(t) =

∫
d{p, r}(rp)λµf

τ (r,p, t),

P τ
λµ(t) =

∫
d{p, r}p2

λµf
τ (r,p, t).

In terms of cyclic variables q2µ =
√

6r22µ; therefore,

Qτ
2µ =

√
6Rτ

2µ. By definition Rτ
00 = −Qτ

00/
√

3 with
Qτ

00 = N τ 〈r2〉 being the mean square radius. The
tensor Lτ

1ν is connected with the angular momentum

by the following relations: Lτ
10 =

i√
2
Iτ
3 , Lτ

1±1 =

1
2
(Iτ

2 ∓ iIτ
1 ).

We rewrite Eqs. (4) in terms of the isoscalar and
isovector variables Rλµ = Rn

λµ +R
p
λµ, R̄λµ = Rn

λµ −
R
p
λµ (and so on) with the isoscalar κ0 = (κ+ κ̄)/2

and isovector κ1 = (κ− κ̄)/2 strength constants. It
is no problem to solve these equations numerically.
However, we want to simplify the situation as much
as possible to get the results in an analytic form that
YSICS OF ATOMIC NUCLEI Vol. 68 No. 9 2005
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gives us a maximum of insight into the nature of the
modes.

(i) The problem is considered in a small-amplitude
approximation. Writing all variables as a sum of their
equilibrium value plus a small deviation,

Rλµ(t) = R
eq
λµ + Rλµ(t), Pλµ(t) = P

eq
λµ + Pλµ(t),

Lλµ(t) = L
eq
λµ + Lλµ(t),

R̄λµ(t) = R̄
eq
λµ + R̄λµ(t), P̄λµ(t) = P̄

eq
λµ + P̄λµ(t),

L̄λµ(t) = L̄
eq
λµ + L̄λµ(t),

we linearize the equations of motion inRλµ,Pλµ, Lλµ

and R̄λµ, P̄λµ, L̄λµ.
(ii) We study nonrotating nuclei, i.e., nuclei with

L
eq
1ν = L̄

eq
1ν = 0.

(iii) Only axially symmetric nuclei with Req
2±2 =

R
eq
2±1 = R̄

eq
2±2 = R̄

eq
2±1 = 0 are considered.

(iv) Finally, we take

R̄
eq
20 = R̄

eq
00 = 0. (5)

This means that equilibrium deformation and mean
square radius of neutrons are supposed to be equal to
that of protons.

Due to approximation (5), the equations for isosca-
lar and isovector systems are decoupled. Further,
due to the axial symmetry, the angular momentum
projection is a good quantum number. As a result,
every set of equations splits into five independent
subsets with quantum numbers µ = 0, ±1, ±2. The
detailed derivation of formulas for eigenfrequencies
and transition probabilities together with all nec-
essary explanations is given in [1]. Here, we state
only the final results required for comparison with the
respective results obtained in the framework of the
RPA.

2.2. Isoscalar Eigenfrequencies

Let us analyze the isoscalar set of equations with
µ = 1:

Ṙ21 − 2L21/m = 0, (6)

L̇21 − P21/m+
[
mω2 + 2κ0(Q

eq
20 + 2Qeq

00)
]
R21 = 0,

Ṗ21 + 2[mω2 + κ0Q
eq
20]L21 = 0,

L̇11 = 0.

Imposing the time evolution via e−iΩt for all variables,
one transforms (6) into a set of algebraic equations.
The eigenfrequencies are found from its characteristic
equation, which reads

Ω2

[
Ω2 − 4ω2 − 6κ0

m

(
Q
eq
20 +

4
3
Q
eq
00

)]
= 0. (7)
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For κ0, we take the self-consistent value κ0 =
−mω̄2/(4Q00), where ω̄2 = ω2/(1 + 2δ/3) (see Ap-
pendix A) with the standard definition of the deforma-
tion parameter Q20 = Q00

4
3δ. Then

Ω2[Ω2 − 2ω̄2(1 + δ/3)] = 0. (8)

The nontrivial solution of this equation gives the fre-
quency of the µ = 1 branch of the isoscalar GQR

Ω2 = Ω2
is = 2ω̄2(1 + δ/3). (9)

Taking into account relation (A.4) from Appendix A,
we find that this result coincides with that of [8]. The
trivial solution Ω = Ω0 = 0 is characteristic of the
nonvibrational mode, corresponding to the obvious
integral of motion L11 = const responsible for the
rotational degree of freedom. This is usually called the
“spurious” mode.

2.3. Isovector Eigenfrequencies

The information about the scissors mode is con-
tained in the set of isovector equations with µ = 1:

˙̄R21 − 2L̄21/m = 0, (10)
˙̄L21 − P̄21/m+

[
mω2 + κQ

eq
20 + 4κ1Q

eq
00

]
R̄21 = 0,

˙̄P21 + 2[mω2 + κ0Q
eq
20]L̄21 − 6κ0Q

eq
20L̄11 = 0,

˙̄L11 + 3κ̄Qeq
20R̄21 = 0.

Imposing the time evolution via e−iΩt, one trans-
forms (10) into a set of algebraic equations. Again,
the eigenfrequencies are found from the characteristic
equation, which reads

Ω4 − Ω2

[
4ω2 +

8
m
κ1Q

eq
00 +

2
m

(κ1 + 2κ0)Q
eq
20

]

(11)

+
36
m2

(κ0 − κ1)κ0(Q
eq
20)

2 = 0.

Supposing, as usual, the isovector constant κ1 to be
proportional to the isoscalar one, κ1 = ακ0, and tak-
ing the self-consistent value for κ0, we finally obtain

Ω4 − 2Ω2ω̄2(2 − α)(1 + δ/3) + 4ω̄4(1 − α)δ2 = 0.
(12)

The solutions to this equation are

Ω2
± = ω̄2(2 − α)(1 + δ/3) (13)

±
√
ω̄4(2 − α)2(1 + δ/3)2 − 4ω̄4(1 − α)δ2.

The solution Ω+ gives the frequency Ωiv of the µ = 1
branch of the isovector GQR (IVGQR). The solution
Ω− gives the frequency Ωsc of the scissors mode.

We adjust α from the fact that the IVGQR is
experimentally known to lie practically at twice the
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energy of the isoscalar GQR. In our model, the ex-
perimental situation is satisfied by α = −2. Then

Ω2
iv = 4ω̄2


1 +

δ

3
+

√(
1 +

δ

3

)2

− 3
4
δ2


 , (14)

Ω2
sc = 4ω̄2


1 +

δ

3
−

√(
1 +

δ

3

)2

− 3
4
δ2


 .

2.4. Linear Response and Transition Probabilities

A direct way of calculating the reduced transition
probabilities is provided by the theory of linear re-
sponse of a system to a weak external field

Ô(t) = Ôexp(−iΩt) + Ô†exp(iΩt).

For magnetic excitations,

Ô = Ô1µ = −i∇(rY1µ) · [r ×∇]µN , (15)

µN =
e�

2mc
;

B(M1)sc = 2|〈sc|Ô11|0〉|2 (16)

=
1 − α
4π

mω̄2

�
Q00δ

2 Ω2
sc − 2(1 + δ/3)ω̄2

Ωsc(Ω2
sc − Ω2

iv)
µ2

N ,

B(M1)iv = 2|〈iv|Ô11|0〉|2 (17)

=
1 − α
4π

mω̄2

�
Q00δ

2 Ω2
iv − 2(1 + δ/3)ω̄2

Ωiv(Ω2
iv − Ω2

sc)
µ2

N .

These two formulas can be joined into one expression
by the simple transformation of the denominators.
Indeed, we have from (13)

±(Ω2
iv − Ω2

sc) = ±(Ω2
+ − Ω2

−) (18)

= ±2
√
ω̄4(2 − α)2(1 + δ/3)2 − 4ω̄4(1 − α)δ2

= 2Ω2
± − 2ω̄2(2 − α)(1 + δ/3)

= 2Ω2
± − (2 − α)(ω2

x + ω2
z).

Using these relations in formulas (16) and (17), we
obtain the expression for B(M1), valid for both exci-
tations:

B(M1)ν = 2|〈ν|Ô11|0〉|2 =
1 − α
8π

mω̄2

�
(19)

×Q00δ
2 Ω2

ν − 2(1 + δ/3)ω̄2

Ων [Ω2
ν − ω̄2(2 − α)(1 + δ/3)]

µ2
N .

For electric excitations, Ô = Ô2µ = er2Y2µ,

B(E2)sc = 2|〈sc|Ô21|0〉|2 (20)

=
e2�

m

5
8π
Q00

(1 + δ/3)Ω2
sc − 2(ω̄δ)2

Ωsc(Ω2
sc − Ω2

iv)
,

PH
B(E2)iv = 2|〈iv|Ô21|0〉|2 (21)

=
e2�

m

5
8π
Q00

(1 + δ/3)Ω2
iv − 2(ω̄δ)2

Ωiv(Ω2
iv − Ω2

sc)
,

B(E2)is = 2|〈is|Ô21|0〉|2 (22)

=
e2�

m

5
8π
Q00[(1 + δ/3)Ω2

is − 2(ω̄δ)2]/[Ωis]3.

Using relations (18) in formulas (20) and (21), we
obtain the expression for B(E2), valid for all three
excitations:

B(E2)ν = 2|〈ν|Ô21|0〉|2 (23)

=
e2�

m

5
16π

Q00
(1 + δ/3)Ω2

ν − 2(ω̄δ)2

Ων [Ω2
ν − ω̄2(2 − α)(1 + δ/3)]

.

The isoscalar value (22) is obtained by assuming
α = 1.

3. RPA

Standard RPA equations in the notation of [3] are∑
n,j

{[δijδmn(εm − εi) + v̄mjin]Xnj + v̄mnijYnj}

(24)

= �ΩXmi,∑
n,j

{v̄ijmnXnj + [δijδmn(εm − εi) + v̄inmj ]Ynj}

= −�ΩYmi.

According to the schematic model (2), the matrix
element of the residual interaction is

v̄mjin = κττ ′Dτ∗
imD

τ ′
jn

with D = q21 =
√

16π/5r2Y21 and κnn = κpp = κ,
κnp = κ̄. This interaction distinguishes between pro-
tons and neutrons, so we have to introduce the
isospin projection indices τ, τ ′ into the set of RPA
equations (24):

(ετm − ετi )Xτ
mi +

∑
n,j,τ ′

κττ ′Dτ∗
imD

τ ′
jnX

τ ′
nj (25)

+
∑
n,j,τ ′

κττ ′Dτ∗
imD

τ ′
njY

τ ′
nj = �ΩXτ

mi,

∑
n,j,τ ′

κττ ′Dτ∗
miD

τ ′
jnX

τ ′
nj + (ετm − ετi )Y τ

mi

+
∑
n,j,τ ′

κττ ′Dτ∗
miD

τ ′
njY

τ ′
nj = −�ΩY τ

mi.

Its solution is

Xτ
mi =

Dτ∗
im

�Ω − ετmi

Kτ , Y τ
mi = − Dτ∗

mi

�Ω + ετmi

Kτ (26)
YSICS OF ATOMIC NUCLEI Vol. 68 No. 9 2005
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with ετmi = ετm − ετi andKτ =
∑

τ ′ κττ ′Cτ ′
.

The constant Cτ is defined as Cτ =∑
n,j(D

τ
jnX

τ
nj +Dτ

njY
τ
nj). Using here the above-

written expressions for Xτ
nj and Y

τ
nj , one derives the

useful relation

Cτ = 2SτKτ = 2Sτ
∑
τ ′

κττ ′Cτ ′
, (27)

where the following notation is introduced:

Sτ =
∑
mi

|Dτ
mi|2

ετmi

E2 − (ετmi)2
(28)

with E = �Ω. Let us write relation (27) in detail:
Cn − 2Sn(κCn + κ̄Cp) = 0, (29)

Cp − 2Sp(κ̄Cn + κCp) = 0.

The condition for existence of a nontrivial solution to
this set of equations leads to the secular equation

(1 − 2Snκ)(1 − 2Spκ) − 4SnSpκ̄2 = 0. (30)

Making obvious linear combinations of the two equa-
tions in (29), we write them in terms of isoscalar and
isovector variables C = Cn + Cp, C̄ = Cn − Cp:

C − 2(Sn + Sp)κ0C − 2(Sn − Sp)κ1C̄ = 0, (31)

C̄ − 2(Sn − Sp)κ0C − 2(Sn + Sp)κ1C̄ = 0.

Approximation (5) allows us to decouple equations
for isoscalar and isovector variables. Really, in this
case, Sn = Sp ≡ S/2; hence, we obtain two secular
equations:

1 − 2Sκ0 = 0 or 1 − Sκ = Sκ̄ (32)

in the isoscalar case and
1 − 2Sκ1 = 0 or 1 − Sκ = −Sκ̄ (33)

in the isovector case, the difference between them
being in the strength constants only. Having in mind
the relation κ1 = ακ0, we come to the conclusion that
it is sufficient to analyze the isovector case only—the
results for isoscalar case are obtained by assuming
α = 1.

3.1. Eigenfrequencies

The detailed expression for the isovector secular
equation is

1
2κ1

=
∑
mi

|Dmi|2
εmi

E2 − ε2mi

. (34)

The operator D has only two types of nonzero matrix
elementsDmi in the deformed oscillator basis. Matrix
elements of the first type couple the states of the same
major shell. All corresponding transition energies are
degenerate: εm − εi = �(ωx − ωz) ≡ ε0. Matrix ele-
ments of the second type couple the states of the
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 9 200
different major shells with ∆N = 2. All correspond-
ing transition energies are degenerate too: εm − εi =
�(ωx + ωz) ≡ ε2. Therefore, the secular equation can
be rewritten as

1
2κ1

=
ε0D0

E2 − ε20
+

ε2D2

E2 − ε22
. (35)

The sums D0 =
∑

mi(∆N=0)

|Dmi|2 and D2 =
∑

mi(∆N=2)

|Dmi|2 can be calculated analytically (see

Appendix B):

D0 =
Q00

mω̄2
ε0, D2 =

Q00

mω̄2
ε2. (36)

Let us transform the secular equation (35) in the
polynomial

E4 − E2[(ε20 + ε22) + 2κ1(ε0D0 + ε2D2)]

+ [ε20ε
2
2 + 2κ1ε0ε2(ε0D2 + ε2D0)] = 0.

Using here expressions (36) for D0 and D2 and the
self-consistent value of the strength constant (A.3),
we find

E4 − E2(1 − α/2)(ε20 + ε22) + (1 − α)ε20ε
2
2 = 0,

or

Ω4 − Ω2(2 − α)ω2
+ + (1 − α)ω4

− = 0, (37)

where the notation ω2
+ = ω2

x + ω2
z and ω4

− = (ω2
x −

ω2
z)2 is introduced. This result coincides with that

of [2]. By a trivial rearrangement of the terms in (37),
one obtains the useful relation

Ω2(Ω2 − ω2
+) = (1 − α)(Ω2ω2

+ − ω4
−). (38)

Substituting expressions (A.3) from Appendix A for
ω2

x and ω
2
z into (37), we reproduce formula (12) for the

isovector case:

Ω4 − 2Ω2ω̄2(2 − α)(1 + δ/3) + 4ω̄4(1 − α)δ2 = 0.

Taking here α = 1, we reproduce formula (8) for the
isoscalar case:

Ω4 − 2Ω2ω̄2(1 + δ/3) = 0.

3.2. B(E2) Factors

According to [3], the transition probability for a
one-body operator F̂ =

∑A
i=1 f̂i is calculated with the

help of the formula

〈0|F̂ τ |ν〉 =
∑
mi

(f̂ τ
imX

τ,ν
mi + f̂ τ

miY
τ,ν
mi ). (39)
5
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To calculate quadrupole excitations, one has to take

f̂ p = er2Y2µ = ẽDp with ẽ = e

√
5

16π
. The expres-

sions for Xτ
mi and Y

τ
mi are given by formulas (26).

Combining these results, we have

〈0|Dp|ν〉 = 2ẽKp
ν

∑
mi

|Dp
mi|2

ε
p
mi

E2
ν − (εpmi)2

(40)

= 2ẽKp
νS

p
ν = ẽCp

ν .

The constant Cp
ν is determined by the normalization

condition

δν,ν′ =
∑
mi,τ

(Xτ,ν∗
mi X

τ,ν′

mi − Y τ,ν∗
mi Y τ,ν′

mi ),

which gives

1
(Cp

ν )2
= Eν

∑
mi

[
|Dp

mi|2
(Spν)2

ε
p
mi

[E2
ν − (εpmi)2]2

(41)

+
(Cn

ν )2

(Cp
ν)2

|Dn
mi|2

(Snν )2
εnmi

[E2
ν − (εnmi)2]2

]
.

The ratio Cn/Cp is determined by any of Eqs. (29):

Cn

Cp =
1 − 2Spκ

2Spκ̄
=

2Snκ̄
1 − 2Snκ

. (42)

Formula (41) is considerably simplified by the
approximation (5), when Sp = Sn, εpmi = εnmi, and
D

p
mi = Dn

mi. Applying the second parts of formu-
las (32) and (33), we can easily find that, in this
case, Cn/Cp = ±1. As a result, the final expression
forB(E2) is

B(E2)ν = 2|〈0|Dp|ν〉|2 (43)

= 2ẽ2
(

16Eνκ
2
1

∑
mi

|Dmi|2
εmi

(E2
ν − ε2mi)2

)−1

.

With the help of formulas (36), this expression can be
transformed into

B(E2)ν =
5
8π

e2Q00

mω̄2α2Eν
(44)

×
[

ε20
(E2

ν − ε20)2
+

ε22
(E2

ν − ε22)2

]−1

=
5
8π

e2Q00

mω̄2α2Eν

(E2
ν − ε20)2(E2

ν − ε22)2
(E2

ν − ε22)2ε20 + (E2 − ε20)2ε22

=
5

16π
e2�Q00

mω̄2Ων

(Ω2
νω

2
+ − ω4

−)2

Ω4
νω

2
+ − 2Ω2

νω
4
− + ω2

+ω
4
−
.

At a glance, this expression has nothing in common
with (23). Nevertheless, it can be shown that they
are identical. To this end, we analyze carefully the
denominator of the last expression in (44). Summing
PH
it with the secular equation (37) (multiplied by ω2
+),

which obviously does not change its value, we find
after elementary combinations

Denom = Ω4
νω

2
+ − 2Ω2

νω
4
− + ω2

+ω
4
− (45)

+ ω2
+[Ω4

ν − Ω2
ν(2 − α)ω2

+ + (1 − α)ω4
−]

= ω2
+Ω2

ν [2Ω
2
ν − (2 − α)ω2

+]

− ω4
−[2Ω2

ν − (2 − α)ω2
+]

= (Ω2
νω

2
+ − ω4

−)[2Ω2
ν − (2 − α)ω2

+].

This result allows us to write the final expression

B(E2)ν =
5

16π
e2�

mω̄2
Q00

Ω2
νω

2
+ − ω4

−
Ων[2Ω2

ν − (2 − α)ω2
+]
,

(46)

which coincides with (23) (we recall that ω2
+ =

2ω̄2(1 + δ/3) and ω4
− = 4δ2ω̄4). By simple transfor-

mations, we can reduce this formula to the result of
Hamamoto and Nazarewicz [2] (considering that they
published it without the constant factor

5
32π

e2�

mω0
Q0

00).

3.3. B(M1) Factors

In accordance with formulas (39), (26), and (15),
the magnetic transition matrix element is

〈0|Ôp
11|ν〉 = Kp

ν

∑
mi

[
(Ôp

11)imD
p*
im

Eν − εpmi

− (Ôp
11)miD

p*
mi

Eν + ε
p
mi

]
.

(47)

As is shown in Appendix B, the matrix element
(Op

11)im is proportional to D
p
im [formula (B.15),

Appendix B]. So, expression (47) is reduced to

〈0|Ôp
11|ν〉 = −Kp

ν

ẽ�

2c
√

5
(ω2

x − ω2
z)

p (48)

×
∑
mi

[
D

p
imD

p*
im

ε
p
im(Eν − εpmi)

− D
p
miD

p*
mi

ε
p
mi(Eν + ε

p
mi)

]

= Kp
ν

ẽ�

c
√

5
(ω2

x − ω2
z)

pEν

∑
mi

|Dp
mi|2

ε
p
mi[E2

ν − (εpmi)2]
.

With the help of approximation (5) and expres-
sions (36) forD0 andD2, we find

〈0|Ôp
11|ν〉 =

C
p
ν

2Spν

ẽ�

c
√

5
(ω2

x − ω2
z) (49)

× Q00

2mω̄2

(
Eν

E2
ν − ε20

+
Eν

E2
ν − ε22

)

= −2κ1C
p
ν

ẽ

c
√

5
(ω2

x − ω2
z)
Q00

mω̄2

Ων(Ω2
ν − ω2

+)
α(Ω2

νω
2
+ − ω4

−)
YSICS OF ATOMIC NUCLEI Vol. 68 No. 9 2005
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=
C
p
ν

2
ẽ

c
√

5
(ω2

x − ω2
z)

1 − α
Ων

.

Relation (38) and the self-consistent value of the
strength constant κ1 = ακ0 were used at the last
step. For the magnetic transition probability, we have

B(M1)ν = 2|〈0|Ôp
11|ν〉|2 (50)

= 2
(Cp

ν )2

4
ẽ2

5c2
ω4
−

(1 − α)2

Ω2
ν

=
ω4
−

20c2
(1 − α)2

Ω2
ν

B(E2).

This relation between B(M1) and B(E2) was also
found (to the factor 1/(20c2)) by Hamamoto and
Nazarewicz [2]. Substituting expression (46) for
B(E2) into (50), we reproduce [with the help of
relation (38)] formula (19).

3.4. “Synthetic” Scissors and Spurious State

The nature of collective excitations calculated by
the method of WFM is ascertained quite easily by
analyzing the roles of collective variables describing
the phenomenon. The solution of this problem in the
RPA approach is not so obvious. That is why the
nature of the low-lying states has often been estab-
lished by considering overlaps of these states with the
“pure scissors state” [10, 11] or “synthetic state” [2],
produced by the action of the scissors operator

Sx = N−1(〈Inx2〉Ipx − 〈Ipx2〉Inx)

on the ground state:

|Syn〉 = Sx|0〉,
N being the normalization factor. Due to axial sym-
metry, one can use the Iτ

y component instead of Iτ
x ,

or any linear combination of them, for example, the
variable Lτ

11, which is much more convenient for us.
The terms 〈Iτ

x
2〉 are introduced to ensure the orthog-

onality of the synthetic scissors to the spurious state
|Sp〉 = (In + Ip)|0〉. However, we do not need these
terms, because the collective states |ν〉 of our model
are already orthogonal to |Sp〉 (see below); hence,
the overlaps 〈Syn|ν〉 will be free from any admixtures
of |Sp〉. So, we use the following definitions of the
synthetic and spurious states:

|Syn〉 = γN−1(Lp
11 − Ln

11)|0〉
= N−1(Ôp

11 − Ôn
11)|0〉,

|Sp〉 = (Ôp
11 + Ôn

11)|0〉,
where

γ = −i e

2mc

√
3
2π
.

Let us demonstrate the orthogonality of the spu-
rious state to all the rest states |ν〉. As the first
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step, it is necessary to show that the secular equa-
tion (30) has the solutionE = 0. We need the expres-
sion for Sτ (E = 0) ≡ Sτ (0). In accordance with (28),
we have

Sτ (E) =
[
ε0D0

E2 − ε20
+

ε2D2

E2 − ε22

]τ

,

Sτ (0) = −
[
D0

ε0
+
D2

ε2

]τ

.

The expressions for Dτ
0 and Dτ

2 are easily extracted
from formulas (B.10) and (B.11) (see Appendix B):

Dτ
0 =

�

m
Qτ

00

[
1 + 4

3δ

ωx
−

1 − 2
3δ

ωz

]τ

, (51)

Dτ
2 =

�

m
Qτ

00

[
1 + 4

3δ

ωx
+

1 − 2
3δ

ωz

]τ

.

So, we find

Sτ (0) = − �

m
Qτ

00

[
1 + 4

3δ

ωx

(
1
ε2

+
1
ε0

)
(52)

+
1 − 2

3δ

ωz

(
1
ε2

− 1
ε0

)]τ

= −�
2

m

4δτQτ
00

ετ2ε
τ
0

= − 1
m

3Qτ
20

(ω2
x − ω2

z)τ
,

where, in accordance with (B.12) from Appendix B,

(ω2
x − ω2

z)
p = − 6

m
(κQp

20 + κ̄Qn
20), (53)

(ω2
x − ω2

z)
n = − 6

m
(κQn

20 + κ̄Q
p
20),

and the deformation of neutrons δn is allowed to be
different from the deformation of protons δp. Finally,
we get

2Sp(0) =
Q
p
20

κQ
p
20 + κ̄Qn

20

,

1 − 2Sp(0)κ =
κ̄Qn

20

κQ
p
20 + κ̄Qn

20

,

2Sn(0) =
Qn

20

κQn
20 + κ̄Q

p
20

,

1 − 2Sn(0)κ =
κ̄Q

p
20

κQn
20 + κ̄Q

p
20

.

It is easy to see that, substituting these expressions
into (30), we obtain the identity; therefore, the secular
equation has the zero solution.

At the second step, it is necessary to calculate
the overlap 〈Sp|ν〉. Summing (47) with an analogous
5
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expression for neutrons, we get

〈Sp|ν〉 =
ẽ�

c
√

5
Eν

∑
τ

Kτ
ν (ω2

x − ω2
z)

τ (54)

×
∑
mi

|Dτ
mi|2

ετmi(E2
ν − ε2mi)τ

=
ẽ�

c
√

5
Eν

×
∑

τ

Kτ
ν (ω2

x − ω2
z)

τ
∑
mi

|Dτ
mi|2ετmi

(ε2mi)τ (E2
ν − ε2mi)τ

.

Applying the algebraic identity

1
ε2(E2 − ε2) =

1
E2

(
1
ε2

+
1

E2 − ε2
)

and remembering the definition (28) of Sτ , we can
rewrite (54) as

〈Sp|ν〉 (55)

=
ẽ�

c
√

5Eν

∑
τ

Kτ
ν (ω2

x − ω2
z)

τ (Sτ − Sτ (0))

=
ẽ�

c
√

5
K

p
ν

Eν

[
(ω2

x − ω2
z)

p(Sp − Sp(0))

+ (ω2
x − ω2

z)
n(Sn − Sn(0))K

n
ν

K
p
ν

]
.

In accordance with (27) and (42),

Kn
ν

K
p
ν

=
1 − 2Spκ

2Snκ̄
. (56)

Noting now [see formula (52)] that (ω2
x −ω2

z)
τSτ (0) =

− 3
m
Qτ

20 and taking into account relations (53), we

find

〈Sp|ν〉 = β

{
[(κQp

2 + κ̄Qn
2)2S

p −Qp
2] (57)

+ [(κQn
2 + κ̄Q

p
2)2S

n −Qn
2]

1 − 2Spκ
2Snκ̄

}

= β

{
[(2Spκ− 1)Qp

2 + 2Spκ̄Qn
2]

+ [(2Snκ− 1)Qn
2 + 2Snκ̄Qp

2]
1 − 2Spκ

2Snκ̄

}

= β

{
2Spκ̄Qn

2 + (2Snκ− 1)Qn
2

1 − 2Spκ
2Snκ̄

}

= β
Qn

2

2Snκ̄

{
2Snκ̄2Spκ̄− (1 − 2Snκ)

× (1 − 2Spκ)
}

= 0,

where

β = − 3
m

ẽ�

c
√

5
K

p
ν

Eν
PH
and Q2 ≡ Q20. The expression in the last curly
brackets obviously coincides with the secular equa-
tion (30), which proves the orthogonality of the
spurious state to all physical states of the considered
model. Thus, we can conclude that, strictly speaking,
this is not a spurious state, but one of the exact
eigenstates of the model corresponding to the integral
of motion In + Ip. In other words [3]: “In fact, these
excitations are not really spurious, but they represent
a different type of motion, which has to be treated
separately.” The same conclusion was made by Lo
Iudice [12], who solved this problem approximately
with the help of several assumptions (a small defor-
mation limit, for example).

The problem of the “spurious” state being solved,
the calculation of the overlaps 〈Syn|ν〉 becomes
trivial. Really, we have shown above that 〈0|Ôn

11 +
Ô
p
11|ν〉 = 0. Thismeans that 〈0|Ôn

11|ν〉 = −〈0|Ôp
11|ν〉;

then 〈Syn|ν〉 = N−1〈0|Ôp
11 − Ôn

11|ν〉 = 2N−1 ×
〈0|Ôp

11|ν〉 and
U2 ≡ |〈Syn|ν〉|2 = 2N−2B(M1)ν .

The nontrivial part of the problem is the calculation
of the normalization factor N . It is important not to
forget about the time dependence of the synthetic
state, which should be determined by the external
field:

|Syn(t)〉 = N−1[(Ôp
11 − Ôn

11)exp
−iΩt

+ (Ôp
11 − Ôn

11)
†expiΩt]|0〉.

Then we have
N 2 = 〈Syn(t)|Syn(t)〉 (58)

= 2〈0|(Ôp
11 − Ôn

11)
†(Ôp

11 − Ôn
11)|0〉

= 2
∑
ph

〈0|(Ôp
11 − Ôn

11)
†|ph〉〈ph|(Ôp

11 − Ôn
11)|0〉

= 2
∑
ph

|〈ph|(Ôp
11 − Ôn

11)|0〉|2 = 2
∑
τ,ph

|〈ph|Ôτ
11|0〉|2.

With the help of relation (B.15) from Appendix B, we
find

N 2 =
2
5

(
e�

2c

)2∑
τ, ph

(
ω4
−
|〈ph|r2Y21|0〉|2

ε2ph

)τ

(59)

=
1
8π

(
e�

2c

)2∑
τ

(ω4
−)τ

(
D0

ε20
+
D2

ε22

)τ

.

Expressions for Dτ
0 ,D

τ
2 , ω

τ
x, and ω

τ
z are given by for-

mulas (51) and in Appendix (B.12). To get a definite
number, it is necessary to make some assumption
concerning the relation between neutron and proton
equilibrium characteristics. As usual, we apply the
approximation (5); namely, we suppose Qn

00 = Q
p
00
YSICS OF ATOMIC NUCLEI Vol. 68 No. 9 2005
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and Qn
20 = Q

p
20. It is easy to check that, in this case,

formulas for ωτ
x,z are reduced to the ones for the

isoscalar case, namely, (A.3) from Appendix A, and
Dτ

0 = D0/2 and Dτ
2 = D2/2, where D0 and D2 are

given by (36). So, we get

N 2 =
ω4
−

8π

(
e�

2c

)2 Q00

mω̄2

(
1
ε0

+
1
ε2

)
(60)

= µ2
N

δ

2π
mωx

�
Q00.

The estimation of the overlap for 156Gd with δ = 0.27
gives N 2 = 34.72µ2

N and U2 = 0.53, which is two
times larger than the result of [10] obtained in QRPA
calculations with the Skyrme forces. The disagree-
ment can naturally be attributed to the difference in
forces and especially to the lack of pair correlations in
our approach (see the next section, nevertheless). In

a small-deformation limit, U2 =
1
2

√
3
2
≈ 0.6.

3.4.1. Superdeformation. A certain drawback of
our approach is that, so far, we have not included
the superfluidity in our description. Nevertheless, our
formulas (14), (19) can be successfully used for the
description of superdeformed nuclei, where the pair-
ing is very weak [2, 9]. For example, applying them
to the superdeformed nucleus 152Dy (δ � 0.6,�ω0 =
41/A1/3 MeV), we get

Eiv = 20.8 MeV, B(M1)iv = 15.9µ2
N

for the isovector GQR and

Esc = 4.7 MeV, B(M1)sc = 20.0µ2
N

for the scissors mode. There are not so many results
of other calculations to compare with. As a matter
of fact, there are only two papers considering this
problem.

The phenomenological TRMmodel [9] predicts

Eiv � 26 MeV, B(M1)iv � 26µ2
N ,

Esc � 6.1 MeV, B(M1)sc � 22µ2
N .

The only existing microscopic calculation [2] in the
framework of QRPA with separable forces gives

Eiv � 28 MeV, B(M1)iv � 37µ2
N ,

Esc � 5−6 MeV, B(M1)1+ � 23µ2
N .

Here,B(M1)1+ denotes the totalM1 orbital strength,
carried by the calculatedKπ = 1+ QRPA excitations
modes in the energy region below 20 MeV.

It is easy to see that, in the case of IVGQR, one
can speak, at least, about qualitative agreement. Our
results for Esc and B(M1)sc are in good agreement
with that of the phenomenological model and withEsc
and B(M1)1+ of Hamamoto and Nazarewicz [2].
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It is possible to extract from the histogram of [2]
the value of the overlap of calculated low-lying 1+

excitations with the synthetic scissors state: U2 ≡
|〈Syn|1+〉|2 ≈ 0.4. The result of our calculation U2 =
0.43 agrees with it very well. So the natural conclu-
sion of this section is that the correct treatment of
pair correlations is more important for a reasonable
description of the scissors mode than the thorough
choice of an interaction.

4. CONCLUSION

The properties of collective excitations (the scis-
sors mode, isovector and isoscalar giant quadrupole
resonances) of the harmonic oscillator Hamiltonian
with the quadrupole–quadrupole residual interaction
(HO + QQ) were studied by two methods: WFM
and RPA. We have found that both methods give the
same analytic expressions for energies and transi-
tion probabilities of all considered excitations. Does it
mean that WFM and RPA are identical approaches?
Certainly not. First of all, we have the experience of
previous WFM calculations [5] with realistic forces,
which show that, for example, we reproduce only cen-
troids of giant resonances, whereas RPA describes
their fine structure. Secondly, we suppose that one
can find such nuclear characteristics that will be de-
scribed differently by the two approaches even in this
simple model. Thirdly, to establish completely (and
finally) the relation between the two approaches, it
is necessary to analyze the equations of motion for
multipole moments from the point of view of RPA.
This will be done in a subsequent publication.

There is no sense in speaking about advantages or
disadvantages of one of the two discussed methods—
they are complementary. Of course, RPA gives com-
plete, exhaustive information concerning the micro-
scopic (particle–hole) structure of collective excita-
tions. However, sometimes, considerable additional
efforts are required to understand their physical na-
ture. On the contrary, the WFM method gives in-
formation only on the physical nature of excitations
and does not touch their microscopic structure. Our
results serve as a very good illustration of this situa-
tion.What do we really know about the scissors mode
and IVGQR from each method? RPA says that the
scissors mode is mostly created by∆N = 0 particle–
hole excitations with a small admixture of ∆N = 2
particle–hole excitations and vice versa for IVGQR.
And this is all! One cannot even suspect the key role
of the relative angular momentum in the creation of
the scissors mode. On the other hand, the WFM
method says that the scissors mode appears due to
oscillations of the relative angular momentum with a
small admixture of the quadrupole moment oscilla-
tions and vice versa for IVGQR. Further, it informs
5
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us about the extremely important role of the Fermi
surface deformation in the formation of the scissors
mode.

Two new mathematical results are obtained for the
HO + QQ model. We have proved exactly, without
any approximations, the orthogonality of the “spu-
rious” state to all physical states. In this sense, we
have generalized the result of Lo Iudice [12], derived
in a small-deformation approximation. The analytic
expressions are derived for the normalization factor of
the synthetic scissors state and overlaps of this state
with eigenstates of the model.

Appendix A

It is known that the deformed harmonic oscillator
Hamiltonian can be obtained in a Hartree approxi-
mation “by making the assumption that the isoscalar
part of the QQ force builds the one-body container
well” [13]. In our case, it is obtained quite easily by
summing the expressions for V p and V n [formula (3)]:

V (r, t) =
1
2
(V p(r, t) + V n(r, t)) (A.1)

=
1
2
mω2r2 + κ0

2∑
µ=−2

(−1)µQ2µ(t)q2−µ(r).

In the state of equilibrium (i.e., in the absence of an
external field), Q2±1 = Q2±2 = 0. Using the defini-
tion [14] Q20 = Q00

4
3δ and the formula q20 = 2z2 −

x2 − y2, we obtain the potential of the anisotropic
harmonic oscillator

V (r) =
m

2
[ω2

x(x
2 + y2) + ω2

zz
2]

with oscillator frequencies

ω2
x = ω2

y = ω2(1 + σδ), ω2
z = ω2(1 − 2σδ),

where

σ = −κ0
8Q00

3mω2
.

The definition of the deformation parameter δ must
be reproduced by the harmonic oscillator wave func-
tions, which allows one to fix the value of σ. We have

Q00 =
�

m

(
Σx

ωx
+

Σy

ωy
+

Σz

ωz

)
,

Q20 = 2
�

m

(
Σz

ωz
− Σx

ωx

)
,

where Σx =
∑A

i=1(nx + 1/2)i and nx is the oscillator
quantum number. Using the self-consistency condi-
tion [14]

Σxωx = Σyωy = Σzωz = Σ0ω0,
P

where Σ0 and ω0 are defined in the spherical case, we
get

Q20

Q00
= 2

ω2
x − ω2

z

ω2
x + 2ω2

z

=
2σδ

1 − σδ =
4
3
δ.

Solving the last equation with respect to σ, we find

σ =
2

3 + 2δ
. (A.2)

Therefore, the oscillator frequencies and the strength
constant can be written as

ω2
x = ω2

y = ω̄2

(
1 +

4
3
δ

)
,

ω2
z = ω̄2

(
1 − 2

3
δ

)
, κ0 = −mω̄

2

4Q00
(A.3)

with ω̄2 = ω2/(1 + 2
3δ). The condition for volume

conservation ωxωyωz = const = ω3
0 makes ω δ-de-

pendent:

ω2 = ω2
0

1 + 2
3δ

(1 + 4
3δ)

2/3(1 − 2
3δ)

1/3
.

So, the final expressions for oscillator frequencies are

ω2
x = ω2

y = ω2
0

(
1 + 4

3δ

1 − 2
3δ

)1/3

,

ω2
z = ω2

0

(
1 − 2

3δ

1 + 4
3δ

)2/3

.

It is easy to see that they correspond to the case,
where the deformed density ρ(r) is obtained from the
spherical density ρ0(r) by the scale transformation [8]

(x, y, z) → (xeα/2, yeα/2, ze−α)

with

eα =

(
1 + 4

3δ

1 − 2
3δ

)1/3

, δ =
3
2
e3α − 1
e3α + 2

, (A.4)

which conserves the volume and does not destroy the
self-consistency, because the density and potential
are transformed in the same way.

It is necessary to note thatQ00 also depends on δ:

Q00 =
�

m

(
Σx

ωx
+

Σy

ωy
+

Σz

ωz

)

=
�

m
Σ0ω0

(
2
ω2

x

+
1
ω2

z

)

= Q0
00

1
(1 + 4

3δ)
1/3(1 − 2

3δ)
2/3
,
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whereQ0
00 = A3

5R
2,R = r0A

1/3. As a result, the final
expression for the strength constant becomes

κ0 = −mω
2
0

4Q0
00

(
1 − 2

3δ

1 + 4
3δ

)1/3

= −mω
2
0

4Q0
00

e−α,

which coincides with the respective result of [8].

Appendix B

To calculate the sums D0 =
∑

mi(∆N=0) |Dmi|2

and D2 =
∑

mi(∆N=2) |Dmi|2, we employ the sum-
rule techniques of Suzuki and Rowe [8]. The well-
known harmonic oscillator relations

xψnx =
√

�

2mωx
(
√
nxψnx−1 +

√
nx + 1ψnx+1),

(B.1)

p̂xψnx = −i
√
m�ωx

2
(
√
nxψnx−1 −

√
nx + 1ψnx+1)

allow us to write

xzψnxψnz (B.2)

=
�

2m
√
ωxωz

(
√
nxnzψnx−1ψnz−1

+
√

(nx + 1)(nz + 1)ψnx+1ψnz+1

+
√

(nx + 1)nzψnx+1ψnz−1

+
√
nx(nz + 1)ψnx−1ψnz+1),

p̂xp̂z

m2ωxωz
ψnxψnz

= − �

2m
√
ωxωz

(
√
nxnzψnx−1ψnz−1

+
√

(nx + 1)(nz + 1)ψnx+1ψnz+1

−
√

(nx + 1)nzψnx+1ψnz−1

−
√
nx(nz + 1)ψnx−1ψnz+1).

These formulas demonstrate in an obvious way that
the operators

P0 =
1
2

(
zx+

1
m2ωxωz

p̂xp̂z

)
and

P2 =
1
2

(
zx− 1

m2ωxωz
p̂xp̂z

)

contribute only to the excitation of the ∆N = 0
and ∆N = 2 states, respectively. Following [8], we
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express the zx component of r2Y21 =
√

5
16π

D =

−
√

15
8π
z(x+ iy) as

zx = P0 + P2.

Hence, we have

ε0
∑

mi(∆N=0)

∣∣∣∣
〈

0
∣∣∣∣

A∑
s=1

zsxs

∣∣∣∣mi
〉∣∣∣∣

2

(B.3)

= ε0
∑
mi

∣∣∣∣
〈

0
∣∣∣∣

A∑
s=1

P0(s)
∣∣∣∣mi

〉∣∣∣∣
2

=
1
2

〈
0
∣∣∣∣
[ A∑

s=1

P0(s),
[
H,

A∑
s=1

P0(s)
]]∣∣∣∣0

〉
,

where ε0 = �(ωx − ωz). The above commutator is
easily evaluated for the Hamiltonian with the poten-
tial (A.1), as

〈
0
∣∣∣∣
[ A∑

s=1

P0(s),
[
H,

A∑
s=1

P0(s)
]]∣∣∣∣0

〉
(B.4)

=
�

2m
ε0

(
〈0|
∑A

s=1 z
2
s |0〉

ωx
− 〈0|

∑A
s=1 x

2
s|0〉

ωz

)
.

Taking into account the axial symmetry and using the
definitions

Q00 =
〈

0
∣∣∣∣

A∑
s=1

(2x2
s + z2

s )
∣∣∣∣0
〉
,

Q20 = 2
〈

0
∣∣∣∣

A∑
s=1

(z2
s − x2

s)
∣∣∣∣0
〉
,

Q20 = Q00
4
3
δ,

we transform this expression to
〈

0
∣∣∣∣
[ A∑

s=1

P0(s),
[
H,

A∑
s=1

P0(s)
]]∣∣∣∣0

〉
(B.5)

=
�

6m
ε0Q00

(
1 + 4

3δ

ωx
−

1 − 2
3δ

ωz

)
.

With the help of the self-consistent expressions forωx

and ωz (A.3), one comes to the following result:〈
0
∣∣∣∣
[ A∑

s=1

P0(s),
[
H,

A∑
s=1

P0(s)
]]∣∣∣∣0

〉
(B.6)

=
Q00

6m
ε20
ω̄2

=
�

2

6m
Q0

00

(
ω0

ωz
− ω0

ωx

)2

.

5
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By using the fact that the matrix elements for the
zy component of r2Y21 are identical to those for the
zx component, because of axial symmetry, we finally
obtain

ε0
∑

mi(∆N=0)

∣∣∣∣
〈

0
∣∣∣∣

A∑
s=1

r2sY21

∣∣∣∣mi
〉∣∣∣∣

2

(B.7)

=
5

16π
Q00

mω̄2
ε20 =

5
16π

Q0
00

m

ε20
ω2

0

(
1 + 4

3δ

1 − 2
3δ

)1/3

.

By calculating a double commutator for the P2 oper-
ator, we find

ε2
∑

mi(∆N=2)

∣∣∣∣
〈

0
∣∣∣∣

A∑
s=1

r2sY21

∣∣∣∣mi
〉∣∣∣∣

2

(B.8)

=
5

16π
Q00

mω̄2
ε22 =

5
16π

Q0
00

m

ε22
ω2

0

(
1 + 4

3δ

1 − 2
3δ

)1/3

,

where ε2 = �(ωx + ωz).
We need also the sumsDτ

0 andD
τ
2 calculated sep-

arately for neutron and proton systems with the mean
fields V n and V p, respectively. The necessary for-
mulas are easily derivable from the already obtained
results. There are no reasons to require the fulfillment
of the self-consistency conditions for neutrons and
protons separately, so one has to use formula (B.5).
The trivial change of notation gives

〈
0
∣∣∣∣
[ Z∑

s=1

P0(s),
[
Hp,

Z∑
s=1

P0(s)
]]∣∣∣∣0

〉
(B.9)

=
�

6m
ε
p
0Q

p
00

(
1 + 4

3δ
p

ω
p
x

−
1 − 2

3δ
p

ω
p
z

)
,

ε
p
0

∑
mi(∆N=0)

∣∣∣∣
〈

0
∣∣∣∣

Z∑
s=1

r2sY21

∣∣∣∣mi
〉∣∣∣∣

2

(B.10)

=
5

16π
�

m
ε
p
0Q

p
00

(
1 + 4

3δ
p

ω
p
x

−
1 − 2

3δ
p

ω
p
z

)
,

ε
p
2

∑
mi(∆N=2)

∣∣∣∣
〈

0
∣∣∣∣

Z∑
s=1

r2sY21

∣∣∣∣mi
〉∣∣∣∣

2

(B.11)

=
5

16π
�

m
ε
p
2Q

p
00

(
1 + 4

3δ
p

ω
p
x

+
1 − 2

3δ
p

ω
p
z

)
.

The nontrivial information is contained in oscillator
frequencies of themean fields V p and V n [formula (3)]:

(ωpx)
2 = ω2

[
1 − 2

mω2
(κQp

20 + κ̄Qn
20)
]
, (B.12)
PH
(ωpz)
2 = ω2

[
1 +

4
mω2

(κQp
20 + κ̄Qn

20)
]
,

(ωnx)2 = ω2

[
1 − 2

mω2
(κQn

20 + κ̄Q
p
20)
]
,

(ωnz)
2 = ω2

[
1 +

4
mω2

(κQn
20 + κ̄Q

p
20)
]
.

The above-written formulas can also be used to
calculate the analogous sums for various compo-
nents of the angular momentum. Indeed, by defini-
tion, Î1 = yp̂z − zp̂y and Î2 = zp̂x − xp̂z . In accor-
dance with (B.1), we have

xp̂zψnxψnz = −i�
2

√
ωz

ωx
(B.13)

×
(√
nxnzψnx−1ψnz−1.

−
√

(nx + 1)(nz + 1)ψnx+1ψnz+1

+
√

(nx + 1)nzψnx+1ψnz−1

−
√
nx(nz + 1)ψnx−1ψnz+1

)
.

Therefore,

Î2ψnxψnz = i
�

2

(√
ωz

ωx
−
√
ωx

ωz

)
(B.14)

×
(√
nxnzψnx−1ψnz−1

−
√

(nx + 1)(nz + 1)ψnx+1ψnz+1

)

+ i
�

2

(√
ωz

ωx
+
√
ωx

ωz

)

×
(√

(nx + 1)nzψnx+1ψnz−1

−
√
nx(nz + 1)ψnx−1ψnz+1

)
.

Having formulas (B.2) and (B.14), one derives the fol-
lowing expressions for matrix elements coupling the
ground state with ∆N = 2 and ∆N = 0 excitations:

〈nx + 1, nz + 1|Î2|0〉

= i
�

2
(ω2

x − ω2
z)

ωx + ωz

√
(nx + 1)(nz + 1)

ωxωz
,

〈nx + 1, nz − 1|Î2|0〉

= i
�

2
(ω2

x − ω2
z)

ωx − ωz

√
(nx + 1)nz

ωxωz
,

〈nx + 1, nz + 1|xz|0〉 =
�

2m

√
(nx + 1)(nz + 1)

ωxωz
,

〈nx + 1, nz − 1|xz|0〉 =
�

2m

√
(nx + 1)nz

ωxωz
.
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It is easy to see that

〈nx + 1, nz + 1|Î2|0〉

= im
(ω2

x − ω2
z)

ωx + ωz
〈nx + 1, nz + 1|xz|0〉,

〈nx + 1, nz − 1|Î2|0〉

= im
(ω2

x − ω2
z)

ωx − ωz
〈nx + 1, nz − 1|xz|0〉.

Due to the degeneracy of the model, all particle–hole
excitations with∆N = 2 have the same energy ε2 and
all particle–hole excitations with ∆N = 0 have the
energy ε0. This fact allows one to join the last two
formulas into one general expression

〈ph|Î2|0〉 = i�m
(ω2

x − ω2
z)

εph
〈ph|xz|0〉.

Taking into account the axial symmetry, we can write
the analogous formula for Î1:

〈ph|Î1|0〉 = −i�m(ω2
x − ω2

z)
εph

〈ph|yz|0〉.

The operator Ô1±1 is proportional (15) to the angular

momentum: Ô1±1 = − ie

4mc

√
3
2π

(Î2 ∓ iÎ1). There-
fore, we can write

〈ph|Ô1±1|0〉

= − e�

2c
√

5
(ω2

x − ω2
z)

εph
〈ph|r2Y2±1|0〉. (B.15)
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 9 2005
REFERENCES
1. E. B. Balbutsev and P. Schuck, Nucl. Phys. A 720,

293 (2003); 728, 471 (2003).
2. I. Hamamoto and W. Nazarewicz, Phys. Lett. B 297,

25 (1992).
3. P. Ring and P. Schuck, The Nuclear Many-Body

Problem (Springer, Berlin, 1980).
4. S. Chandrasekhar, Ellipsoidal Figures of Equilib-

rium (Yale Univ. Press, New Haven, 1969; Mir,
Moscow, 1973).
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NUCLEI
Theory
Experimental Arguments in Favor of Refining Model Ideas
of the Cascade Gamma Decay

of a Compound State of a Complex Nucleus
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Abstract—An analysis of the entire body of data on the intensities of two-step gamma cascades studied
in thermal-neutron capture for more than 50 nuclei from the range 27 ≤ A ≤ 199 suggests that such
processes should be described in terms of model concepts that are muchmore involved than those currently
adopted by experimentalists. According to the results of this analysis, models of relevant parameters,
such as the density of excited levels and radiative strength functions for dipole gamma transitions, should
take into account more explicitly the coexistence and interaction of quasiparticle and phonon interactions.
A direct inclusion of the idea that a second-order phase transition occurs and affects not only level densities
but also radiative strength functions for dipole transitions may prove to be necessary. These conclusions
concern primarily the excitation-energy region below a value of about 0.5Bn. c© 2005 Pleiades Publish-
ing, Inc.
1. INTRODUCTION

In analyzing experimental data—for example, on
the cascade gamma decay of a neutron resonance—
one usually uses some model ideas of the process
being studied. If there exist alternative models of the
process, experimentalists give preference, as a rule, to
the simplest models. As the volume of experimental
data increases and, what is more important, as one
goes over to a previously inaccessible region of the
parameters of the phenomenon under study, there
arises, however, the need for invoking more involved
concepts.

A large volume of experimental data on the prop-
erties of excited states from about 1 or 3 MeV to
nearly Bn for more than 50 nuclei from the mass
range 27 ≤ A ≤ 199was accumulated in experiments
performed in Dubna, Riga, and Řež and has been
comprehensively analyzed by now at the Laboratory
of Neutron Physics at the Joint Institute for Nuclear
Research (JINR, Dubna). This region of excitation
energies (especially for deformed nuclei) has been
studied for the first time in such minute detail. The
entire body of resulting information gives sufficient
grounds to assume that the concepts underlying the
existing models of cascade gamma decays call for a
radical improvement.

*e-mail: suchovoj@nf.jinr.ru
**e-mail: khitrov@nf.jinr.ru
***e-mail:li@nf.jinr.ru
1063-7788/05/6809-1510$26.00
One extracts two basic parameters from experi-
mental data and then uses them to calculate nuclear-
physics constants [1]. These parameters are

(i) the level density ρ = D−1 at a given excitation
energy Eexc for specific values of the quantum num-
bers characterizing the levels being considered;

(ii) the radiative strength functions

k = Γλi/(E3
γA

2/3Dλ), (1)

which determine the intensities of gamma transitions
that deexcite the excited levels λ.

The ideas used to describe the level density range
between the simplest model [2] of a noninteracting
Fermi gas and the rather complicated generalized
model of a superfluid nucleus [3]. Within the latter,
one directly employs theoretical concepts of the phase
transition in a nucleus from a superfluid to a normal
state. However, there is no direct experimental in-
formation about this transition in a nucleus; in view
of this, Rastopchin et al. [3] fixed its energy on the
basis of available information about the transition of
an electron gas to a superfluid state.

In order to specify the shape of the radiative
strength function for an E1 transition having an en-
ergyEγ and a mean width Γλi and connecting λ and i
states in the excitation-energy range 0 ≤ Eexc < Bn

in a nucleus of massA, one usually employs one of the
two known extrapolations of the giant electric dipole
resonance. The spacing Dλ between the decaying
states is determined either from data on neutron
c© 2005 Pleiades Publishing, Inc.
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resonances for primary transitions of the cascades or
from the density of intermediate levels for secondary
transitions of the cascades, which was obtained in
one way or another.

For M1 transitions, models relying on the as-
sumption that there exists a giant magnetic dipole
resonance were developed in addition to the existing
idea that k(M1) is constant. That models of radiative
strength functions are less diverse than level-density
models is due to paucity of reliable experimental data
on k in the range of transition energies Eγ less than
Bn by several megaelectronvolts.

The relationship between E1 and M1 transition
widths for Eγ ≈ Bn was determined experimentally
for almost all stable target nuclei and can readily be
fixed in the calculations of the parameters of a cascade
gamma decay, irrespective of the model assumptions
used.

Present-day theoretical ideas that make it possible
to calculate ρ and k, in principle, are more realistic.
However, they are hardly appropriate for analyzing
experimental data. Despite this, an analysis of their
conceptual framework reveals the main flaw in level-
density models used to treat experimental data and
to calculate nuclear-physics constants. It consists
either in completely ignoring [2] or in inadequately
taking into account [3] the coexistence and interac-
tion of quasiparticle and phonon excitations in nuclei.

In any case, a solution to this problem cannot be
obtained by purely theoretical methods. As before, the
problem of deriving the most reliable data on ρ and k
bymethods that invoke model-dependent concepts to
the minimum possible degree is the most important
for experimentalists.

2. POTENTIAL OF THE EXPERIMENT

The possibility of obtaining completely model-
independent information about ρ and k up to Bn by
currently available methods of nuclear spectroscopy
has yet to be realized for nuclei characterized by a
high level density. The only available way to solve
this problem is to select, for the corresponding pa-
rameters, values that would provide the best fit to the
following observables:

(a) evaporation spectra of nucleons originating
from nuclear reactions;

(b) various spectra of gamma rays emitted in these
reactions;

(c) the intensities [4] of two-step cascades trig-
gered by slow-neutron capture that connect a neu-
tron resonance with low-lying levels of the nucleus
being considered.

In the first two cases, the amplitude of the ex-
perimentally measured spectra is determined by the
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 9 200
level density multiplied either by the photon-emission
probability or by the model-dependent factor of
nuclear-surface penetrability to an evaporated nu-
cleon (nucleons). For this reason, the reliability of ρ
and k values determined from the respective spectra
[cases (a) and (b)] is adversely affected by a strong and
irremovable correlation between the density of excited
levels and the probability of emission of reaction
products.

In the case of λ→ i→ f two-step cascades, the
presence of the second quantum is responsible for a
different form of the functional dependence of their
intensity on the energy of the primary transition of a
cascade:

Iγγ =
∑
J,π

(Γλi/〈Γλi〉mλi)nλi(Γif/〈Γif 〉mif ). (2)

The partial and total cascade-transition widths Γ, as
well as the numberm(n) of levels excited in respective
transitions in various energy ranges (the bin width
that is optimal for calculations is ∆E ≈ 50 keV),
are unambiguously determined by the functions ρ
and k under the condition that gamma transitions of
given multipolarities are taken into account in ex-
pression (2). This is precisely the circumstance that
makes it possible to reveal, in the structure of ex-
cited states of complex nuclei, special features that
are inaccessible in experiments employing different
methods.

Naturally, the reliability and accuracy of the con-
cepts that can be deduced from an analysis of Iγγ for
the properties of the excited states of the nucleus be-
ing studied become higher as the volume of additional
information included in such an analysis is enlarged.
For example, one can employ known values of the
total radiative width of a decaying compound state,

Γλ =
∑

i

(〈Γλi〉mλi), (3)

this being necessary for determining the absolute
value of k (but not the shape of its dependence onEγ).
In addition, a minimum uncertainty in the sought
value of ρ is ensured by taking into account the mean
spacing Dλ between neutron resonances, which is
determined spectroscopically by the time-of-flight
method, and the known number of low-lying levels.

The use of spectroscopic data from the estimated
schemes of the gamma decay of the nuclei being
studied serves the same goal. Accordingly, the region
of excitations under study is broken down in all cal-
culations into a “discrete” and a “continuous” part.
The parameters ρ and k, which are discussed below,
are characterized by minimum fluctuations and are
naturally determined only in the continuous part of
excitation energies. The lower boundary of this part,
5
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Edis, is 1.5, 2.9, and 1.1 MeV in 60Co, 118Sn, and
187W, respectively. In order to simplify the figures
below, the calculated quantities are everywhere rep-
resented by lines of the same type. Since fluctuations
of the calculated quantities are maximal in the dis-
crete part of excited levels, the corresponding data are
represented by broken lines.

3. EXPERIMENTAL DATA
ON THE PARAMETERS OF THE CASCADE
GAMMA DECAY OF A COMPLEX NUCLEUS

The accuracy to which a calculation reproduces
the entire body of experimental data (it should not
be lower than the accuracy of the experiments being
considered) is a natural characteristic of correctness
of our ideas of processes occurring in a complex nu-
cleus. Unfortunately, it has not been possible so far
to attain this degree of agreement between the the-
ory and experiment since the volume of information
accessible to an experimental determination has been
insufficient.

Only four functionals can be used both to assess
the intervals of probable values of ρ and k and to test
the process of a cascade gamma decay. These are

(i) the total radiative width (as well as the cross
sections for neutron interaction with nuclei);

(ii) the intensity of cascades in a given interval of
energies of their intermediate and final levels;

(iii) the population [5] of low-lying levels by cas-
cades involving various numbers of transitions (in-
cluding the total spectra of gamma radiation);

(iv) the expected [6] number of intermediate levels
of individual cascades whose intensities are below a
threshold value.

Inasmuch as the first two functionals were already
used in [4] to determine the quantities considered
here, the values obtained for ρ and k should ensure
an accurate calculation of the population of low-lying
levels that was extracted in [5] from a comparison of
the intensities of cascades featuring specific interme-
diate levels with the intensities determined indepen-
dently for the primary and secondary gamma transi-
tions of these cascades, as well as from a comparison
of the total spectra of gamma radiation accompanying
neutron capture and various nuclear reactions. Un-
fortunately, data obtained according to [4] are such
that the required degree of agreement between the
experiment and the calculation could not be attained.

For example, the total populations of 118Sn [7] and
183,187W [8] levels in the ranges between about 3 and
5 MeV and between about 1 and 3 MeV, respectively,
disagree sharply with the results of the calculations
not only if use is made of model-dependent values of
PH
ρ and k but also if use is made of their values obtained
according to [4].

This situation manifests itself in [5] to a lesser ex-
tent for the 156Gd and 168Er nuclei. In these deformed
nuclei, the ρ and k values determined according to [4]
reproduce fairly well the experimentally determined
population of low-lying levels only up to an excitation
energy of about 3.5 MeV. The population of levels at
higher energies cannot be estimated because there
are no data from other experiments on the intensities
i of gamma rays emitted in the radiative capture of
thermal neutrons in the required energy intervals.

However, the calculation relying on the data
from [4] reproduces the total spectra of gamma
rays from the radiative capture of thermal and fast
neutrons much more poorly in the region A ∼ 160 [5]
than in the region A > 180 (however, the results
in the former region are better than their counter-
parts produced by models traditionally used for this
purpose). As a matter of fact, this means that the
ideas of cascade gamma decays are inconsistent with
experimental data, at least for deformed even–even
nuclei. It is natural to expect that this inconsistency
will manifest itself directly in the cascade population
of levels in nuclei of this type only at excitation
energies in excess of about 4 MeV.

Naturally, the ρ value determined according to [4]
should correspond to an independent estimate of ρ
from the procedure [6] involving an approximation of
the distribution of random deviations of the inten-
sities of cascades in narrow intervals of energies of
their intermediate levels from a mean value. However,
the level density determined according to [4] at low
excitation energies sometimes proves to be less in a
number of nuclei than that obtained in [6] for zero
threshold of the detection of the intensities of cas-
cades resolved in energy (in the form of two peaks)
that feature intermediate levels at energies below 3 or
4 MeV.

Of course, we cannot rule out the possibility that
the existing disagreement between the measured
functionals of cascade gamma decays and their coun-
terparts calculated within conventional models is due
to systematic errors in the experiment itself or in
known nuclear-physics constants used in analyzing
respective experimental data, but they may also be
due to inadequate ideas of the properties of the
process being considered.

3.1. Estimating the Possible Role of Systematic
Errors in Determining ρ and k

Themain qualitative conclusion that can be drawn
from an analysis of the results obtained according
to [4] is that it is necessary to take into account, in
YSICS OF ATOMIC NUCLEI Vol. 68 No. 9 2005
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greater detail than in conventional models, the co-
existence and interaction of a superfluid and a nor-
mal phase of matter. An alternative idea assumes
the presence of a so-called pygmy resonance in the
radiative strength function [9].

The line of themost appropriatemodification of our
ideas concerning the properties of nuclei below the
neutron binding energy cannot be chosen correctly
without specifying the sources of systematic errors
in the sought quantities ρ and k within various pro-
cedures for obtaining relevant experimental data and
without estimating these errors.

As a matter of fact, the results obtained by apply-
ing the procedure employed in [4] may involve a sig-
nificant error and, accordingly, may distort our ideas
of the properties of nuclei in the energy range from 2
or 3 MeV to Bn for only three reasons. These are

(i) the presence of a regular systematic error that
would result in a severalfold exaggeration of the ex-
perimental value of the cascade intensity for almost
all of the 50 nuclei being studied;

(ii) the existence of two or more groups of excited
states such that they all have the same spin–parity Jπ

(but different structures of wave functions) and that
the mean intensities of two-step cascades populating
them differ by more than one order of magnitude in
any interval of energies of intermediate levels that is
narrow against the scale ofBn;

(iii) a difference in the forms of the energy depen-
dence of radiative strength functions for primary and
secondary cascade transitions of the same multipo-
larity and energy (this difference should be so pro-
nounced as to ensure that the calculated value of the
ratio Γif/Γi for transitions toEf < 1 MeV levels was
on average severalfold overestimated for all cascades
observed experimentally).

The effect of any of the above errors on the param-
eters to be determined was estimated by means of a
standard formula for the transfer of errors. It becomes
very difficult to estimate the resulting probable errors
in the parameters ρ and k since the set of Eqs. (2)
and (3) is strongly correlated and essentially nonlin-
ear. It should be noted that, although the number of
unknown quantities exceeds the number of equations
in this set, the form of the functional relations between
ρ and k, on one hand, and the measured intensities of
the cascades and the total width, on the other hand,
constrain the range of their variation quite efficiently
for any excitation energies and any photon energies.
(There is no such constraints for the spectra of evapo-
rated nucleons and primary gamma transitions in any
nuclear reactions.)

(1) All of the intensities obtained thus far for two-
step cascades were normalized to known intensities
of the strongest primary gamma transitions from the
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 9 200
spectra of radiative thermal-neutron capture. The set
of relevant data [10] on neutron capture in samples
of all stable elements of natural isotopic composition
was obtained in experiments performed more than
30 years ago. Nevertheless, data obtained recently by
measuring the same spectra in Budapest [11] with
modern γ spectrometers did not show any evidence
in support of the statement that, in data presented
in [10], there was a systematic error that led to a regu-
lar exaggeration of the gamma-transition intensity—
for example, a severalfold exaggeration.

The root-mean-square discrepancy between the
data from [10] and [11] was estimated in [12] at 20%
for all of the observed gamma transitions.

Therefore, a variation of Iγγ within a factor of 1.2
to 1.3 with respect to the experimental intensity value
both toward smaller and toward greater values gives
a reasonable idea of the effect of a first-type error
on the ρ and k values determined according to [4].
In the presence of a greater discrepancy between the
absolute intensities of primary cascade transitions as
determined in [10] and in a modern experiment, the
probable systematic error in the cascade intensities
increases. Accordingly, the tested cascade intensity
must be increased (or decreased) to a greater extent
if the intensities of maximum-energy gamma transi-
tions in [11] are higher (or lower) than the analogous
quantities used previously for the normalization of
Iγγ . The result of such an estimation is given in [13].
The basic conclusion of the analysis performed in [13]
is that the discrepancy between the ρ values obtained
according to [4] and those predicted by the models
of a noninteracting Fermi gas cannot be explained
by the systematic error in the experimental values
of Iγγ for its maximum possible values. By way of
example, we indicate that, of 14 nuclei for which a
direct comparison of the spectra of gamma rays from
radiative thermal-neutron capture is possible, the Iγγ

values found previously were underestimated by a
factor of about 2 in relation to those obtained with
the aid of data from [11] for 114Cd and 124Te. For
182Ta and 192Ir, they are overestimated by a factor
of about 1.5, the mean intensity in the high-energy
section of the spectra of radiative thermal-neutron
capture being identical for the remaining 10 nuclei.
If one assumes that the data presented in [11] involve
a systematic error much less than that in the earlier
data compared with them [4], then the amplitude of
fluctuations of the difference between the ρ and k
values determined according to the procedure em-
ployed in [4] and the model concepts existing for them
will increase somewhat for the former two nuclei and
decrease insignificantly for the latter two.

(2) Experiments of all types known to date have
one special feature in common—they are plagued by
5
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an irremovable ambiguity in ρ and k values deter-
mined from them. The uncertainties in the sought
parameters ρ and k depend greatly on the volume of
information that one invokes and on the procedure
used to analyze it.

By way of example, we indicate that, in the ex-
perimentally measured distributions of the intensities
of cascades whose total energy is equal to a few
megaelectronvolts, the order in which the two gamma
transitions occur cannot be determined by means of
experimental equipment exclusively. As a result, such
spectra can be faithfully reproduced (χ2/f < 1) by
using a very wide variety of the functional depen-
dences ρ = F (Eexc) and k = φ(Eγ). Moreover, the
maximum value of either parameter may severalfold
exceed its minimal value. This uncertainty can be
reduced only by establishing the order in which the
transitions follow each other in a cascade. For this, it
is necessary to isolate that section in the experimental
spectra which is equal to the sum of the intensities
of all possible cascades where the primary-transition
energy lies in a preset interval. At the present time,
this problem can be solved [14] by means of the
nuclear-spectroscopy technique and by using data
accumulated in relevant experiments.

In the experimental spectrum of two-step cas-
cades such that E1 + E2 = const, one usually ob-
serves (in the form of pairs of resolved peaks) not
less than 90 to 95% of the intensity of cascades
going to Ei ≤ 0.5Bn levels at a nearly zero level of
background. The dependence Iγγ = F (E1) obtained
according to the method used in [14] involves a sys-
tematic error that is caused by a nonzero threshold for
individual-cascade detection. It decreases asymptot-
ically with increasing efficiency of germanium detec-
tors used to record coincidences.

A method for estimating the error in determin-
ing [14] the shape of the functional dependence Iγγ =
F (E1) was described in [6]. It consists in extrapo-
lating the cumulative sums of random values of cas-
cade intensities to zero value of the experimental-
sensitivity threshold. For a present-day experiment,
the threshold cascade-intensity value below which
such an extrapolation should be performed does not
exceed, as a rule, approximately 10−4 events per de-
cay.

Therefore, the relative error in the dominant part
of the dependences Iγγ = F (E1) obtained according
to [14] is in fact smaller than the error in absolute cas-
cade intensities if random deviations of the cascade
intensities from their mean values have a variance
whose magnitude does not exceed that which was
used in [6].

If this is not so and if the majority of the E1 <
0.5Bn cascades have intensities below the sensitivity
PH
threshold of their detection, the relative error in deter-
mining the dependence Iγγ = F (E1) may increase.
There are presently no specific data that would sug-
gest the presence or absence of this effect. But if
the mean intensity of cascades does indeed depend
greatly on the structure of their intermediate level,
then the prevalent ideas of the process being studied
[which are reflected in Eqs. (2) and (3)] would require
a refinement more pronounced than that which is
associated with taking into account the previously
unobserved [4] stepwise structure in the level density.

(3) The question of whether the level density does
indeed have a stepwise structure and whether it is due
to [3, 15] the rupture of some Cooper pairs of nucleons
is directly related to the problem of assessing the de-
gree to which radiative strength functions depend on
the structure of levels excited by a gamma transition.

Indirect pieces of evidence that R = k(Eγ ,
Eλ)/k(Eγ , Ei) �= const for transitions that have the
same multipolarity and energy, but which occur in
the deexcitation of levels having different excitation
energies Eλ and Ei, were first obtained in [5] in an
attempt at describing the total spectra of gamma
radiation in the capture of thermal and fast neutrons.
It was found that, for the accuracy of the reproduction
of these spectra in the calculations to be improved,
the radiative strength functions for secondary gamma
transitions must feature a weaker dependence on the
emitted-photon energy than their counterparts for
primary transitions.

The most detailed, albeit still indirect, data on the
behavior of a nucleus in the region of the stepwise
structure and on the expected change in the radia-
tive strength functions come from an analysis of the
total and cascade populations of levels at excitation
energies up to 3 or 4 MeV in heavy nuclei (181Hf and
183,184,185,187W) and at somewhat higher energies in
nuclei of lower mass, such as 60Co and 118Sn.

The intensity of an arbitrary cascade, iγγ , is related
to the intensities of its primary and secondary transi-
tions, i1 and i2, respectively, by the equation

iγγ = i1i2/
∑

i2. (4)

By applying this equation to the entire body of ex-
perimental data on the aforementioned intensities, we
can determine (see Fig. 1) the total population P =∑
i2 of about 100 or more intermediate levels of the

cascades in any nucleus among those that have been
studied to date by the method of summation of the
amplitudes of coinciding pulses. In the presence of
maximally comprehensive data on i1 and i2, this can
be done for the excitation energies of intermediate
cascade levels up to 3 or 4 MeV or even for higher
YSICS OF ATOMIC NUCLEI Vol. 68 No. 9 2005
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Fig. 1. Total population P of intermediate levels of two-step cascades in 187W, 118Sn, and 60Co nuclei: (points) experimental
data; (thin lines) results of the calculation with the ρ and k values obtained according to the procedure used in [4]; (dashed
lines) results of the calculation based on the models proposed in [2, 17]; and (thick lines) results of the calculation employing
the level density from [4], the corresponding strength functions being modified according to expressions (5) and (6).
energies, but, if there are no such data, the popula-
tions in question can be determined up to much lower
energies [5].

The difference of P and the intensity i1 of the
primary transition to each of these levels is equal
to the sum of their populations by two-step, three-
step, etc., cascades. It can be calculated by using
various assumptions on the density of levels excited
in thermal-neutron capture and on radiative strength
functions for cascade gamma transitions. Thismay be
done, for example, within the existing models of these
parameters or possible hypotheses concerning them
(including the k and ρ values obtained according
to [4]).

At the present time, the populations of all (without
exception) intermediate levels of two-step cascades
can hardly be determined even at moderate excita-
tion energies (because of the presence of the detec-
tion threshold for the intensities of the cascades, iγγ ,
and for the respective gamma transitions, i1 and i2);
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 9 200
therefore, it is reasonable to compare experimental
and calculated results for P − i1 values summed over
a moderately narrow interval of excitation energies
and consider these sums as a lower bound for each
of the intervals. As an example, we present below the
results of such a comparison for the compound nuclei
60Co, 118Sn, and 187W (Fig. 2). Among 17 nuclei ac-
cessible to the data-analysis method described below,
they were chosen because the population in them was
determined for the maximum number of intermediate
levels of the cascades, because their masses differ to
the maximum possible degree, and because they rep-
resent the three possible combinations of parities of
the numbers of neutrons and protons in a compound
nucleus.

The degree of the discrepancy between the calcu-
lated total population P (see Fig. 1) and its precise
value is determined both by the incompleteness of
data on the intensities of cascades and transitions and
by the possible strong effect of the structure of the
wave function for an excited level on the probability
5
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Fig. 2. Total cascade population of intermediate levels of
cascades in 187W, 118Sn, and 60Co nuclei. The notation
for the curves is identical to that in Fig. 1.

of its cascade population. The need for taking this
possibility into account follows from the fact that the
cascade population of levels at excitation energies
above 1 to 3 MeV changes strongly from one level to
another. This is suggested by very strong fluctuations
of the populations of neighboring levels.

In the isotopes being considered, primary dipole
transitions of two-step cascades excite J = 1/2, 3/2
levels in 187W, J = 0–2 levels in 118Sn, and J = 2–5
levels in 60Co. Since the entire body of data on two-
step cascades can be described only with allowance
for electric and magnetic dipole transitions, a further
analysis is performed under the assumption that they
excite levels of both parities. The fractions of captured
neutrons in one or another spin channel for cobalt and
tin were taken into account in all calculations on the
basis of data from [16].

The cascade population of any level is determined
not only by the total intensity of all two-step cas-
cades but also by the intensity of three- and four-
PH
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Fig. 3. Sums of the intensities of two-step cascades in
187W, 118Sn, and 60Co nuclei over intervals of width
0.5 MeV versus the primary-cascade-transition energy.
The dashed curve represents the results of the calculation
according to expression (2) for the set of models from [2]
and [17].

step cascades, which deexcite levels from a wider
spin window than two-step cascades. Therefore, it
seems incorrect to relate, on the basis of the data in
Fig. 1, the difference in the population of neighboring
intermediate levels of the cascades to the difference in
their spins exclusively [as is usually done, for example,
in analyzing data on (n, n′γ) reactions].

The number of available versions of the functional
dependences of strength functions and level densities
on, respectively, the photon energy and the excitation
energy of a level is quite large. However, general
regularities of the change in the population of levels in
response to a change in their excitation energy can be
revealed by using only three versions of calculations:

(i) The level density is predicted by any version
of the model of a noninteracting Fermi gas; the E1
radiative strength function is specified by known ex-
trapolations of a giant electric dipole resonance to the
YSICS OF ATOMIC NUCLEI Vol. 68 No. 9 2005
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region belowBn; and k(M1) = const, k(M1)/k(E1)
being normalized to the experimental value.

(ii) One employs ρ and k values [4] that faithfully
reproduce the intensities of two-step cascades versus
the energy of their primary transition (Fig. 3).

(iii) One chooses the set of values for the level
density and the strength function in such a way as
to reproduce simultaneously precise values of Iγγ =
F (E1) and Γγ and to reproduce the values of P − i1
to the highest possible precision. In order to solve
this problem exactly, it would be necessary to specify
the form of the dependence of k(E1) and k(M1) not
only on the photon energy but also on the excitation
energy of a nucleus for electric and magnetic transi-
tions individually. (Naturally, the state of the art in the
experiment presently gives little hope to obtain this
information in the near future.) A possible approxi-
mate solution is to multiply the function k for the first
photon of a cascade—it depends only on the energy
Eγ—by some correcting function h = f(Eγ , Eexc) for
all subsequent photons of the cascades.

Through this choice of the form of the dependence
of radiative strength functions on the energy U of a
level excited by a gamma transition, U = Eexc − Eγ ,
one can also effectively introduce, in the iteration
process proposed in [4], additional experimental in-
formation about the distinctions between the forms
of the energy dependence of strength functions for
primary and secondary gamma transitions, concur-
rently retaining the efficiency of this iteration process
and a relatively high rate of convergence to values of
χ2/f < 1 for the calculated cascade intensity.

An implementation of version (iii) is possible in
an iterative regime: for the k values obtained accord-
ing to [4], one selects a functional dependence that
changes the values of the strength functions for sec-
ondary transitions with respect to the strength func-
tion from [4] is such a way as to reproduce the values
of P − i1 to the highest possible degree of precision.
For this, it is quite sufficient to multiply the strength
functions for secondary gamma transitions to levels
below some boundary excitation energy by a function
h that involves a few very narrow peaks. It is very
convenient to specify the dependence of the shapes
of these peaks on the nuclear excitation energy U by
analogy with the heat capacity of a uniform system at
the point Uc of a second-order phase transition as

h = 1 + α(ln|Uc − U1| − ln |Uc − U |) (5)

in the case of U < Uc,

and as

h = 1 + α(ln |Uc − U2| − ln |Uc − U |) (6)

in the case of U > Uc
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 9 200
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Fig. 4. Sums of radiative strength functions that corre-
spond to primary electric and magnetic dipole transitions
of cascades and which make it possible to reproduce
faithfully their intensity with allowance for the probable
distinction between their values and the values of the
strength functions for secondary transitions in the cases
of (closed circles) h given by Eqs. (5) and (6) and (open
circles) h = const. The upper and lower dashed curves
represent the predictions of the models proposed in [17]
and [18], respectively; k(M1) = const. The thick curve
corresponds to the function h for gamma transitions to
the levels at Ei.

with some parameters α, U1, U2, and Uc. The con-
dition (Uc − U1) �= (U2 − Uc) ensures, if necessary,
the asymmetry of peaks and a somewhat closer re-
production of the cascade population of levels at the
tails of the peaks than, for example, in the case of a
Lorentzian curve.

With decreasing excitation energy U , the parame-
ter αmust increase (for example, linearly), in the best
of the versions tested here, from zero at U = Bn to
some maximum value shown in Figs. 4 and 5. The
positions of the peaks and their amplitude and shape
are quite unambiguously determined by P − i1. The
results found for the correcting functions are then
5
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included in the analysis according to [4] in order to
determine ρ and k values faithfully reproducing the
cascade intensities. The values of the latter are given
in Fig. 3, while the corresponding strength functions
and level densities are displayed in Figs. 4 and 5, re-
spectively. After that, this cycle can be repeated—not
more than once if use is made of the hypothesis that
the distortions of the values of k(E1) and k(M1) grow
linearly with decreasing energy of decaying levels and
a few times for the version where α = const. In order
to minimize the number of adjustable parameters, it
was assumed that the correcting functions in Figs. 4
and 5 are identical for electric and magnetic gamma
transitions.

The growth of the parameter α with decreasing
energy of a decaying nucleus reduces the deriva-
tive dk/dEγ , this being in perfect agreement with
the conclusions drawn in [5] from a comparison of
the total experimental and calculated spectra for the
radiative capture of thermal and fast neutrons. The
possibility of consistently describing all experimental
P

data within the approximations used gives sufficient
grounds to expect that the cascade-gamma-decay
parameters found according to [4] reflect basic spe-
cial features of actual level densities and strength
functions, so that these features must remain un-
changed as the total uncertainty in the determination
of the parameters in question is reduced further. By
and large, the impossibility of explaining, in terms
of known systematic errors, the discrepancy between
the experimental functionals of cascade gamma decay
and their counterparts calculated according to data
from [4] provides the main argument in support of the
need for invoking more involved model ideas of the
properties of heavy nuclei (first of all, deformed nuclei)
at excitation energies below 5 to 8 MeV than those
currently used by experimentalists.

4. OBSERVED PATTERN OF THE CASCADE
GAMMA DECAY OF A NEUTRON

RESONANCE IN A COMPLEX NUCLEUS
The largest volume of the most detailed infor-

mation about the properties of heavy nuclei in their
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 9 2005
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excitation-energy range 1–2 < Eexc < Bn [MeV] has
been obtained to date by studying two-step cascades
following thermal-neutron capture. Since one or a
few neutron resonances are effectively excited in this
process, it can be conjectured that the possible effect
of the structure of levels on the process being con-
sidered does not fully manifest itself or is specific and
local. In particular, the possible correlation between
the reduced neutronic width of a compound state and
part of partial radiative widths with respect to primary
transitions of its decay may result in that the shape
and the amplitude of the dependence Iγγ = F (E1)
change significantly in relation to what we see in
Fig. 3 (this being accompanied by a change in the
ρ and k values determined according to [4]). Nev-
ertheless, the observed effects are fragments of the
total pattern of the change in and the complication
of the structure of an excited nucleus and call for an
explanation even in this hypothetical case.

To date, experimentalists have found three rather
general and previously unknown effects indicating
that the properties of nuclei in the excitation-energy
region being considered are more intricate than what
is embedded in the existing models. These are

(i) an extremely strong effect of the structure of ex-
cited levels on the cascade gamma decay of a neutron
resonance in the excitation-energy region extending
at least to half the neutron binding energy (see Fig. 2);

(ii) a pronounced stepwise structure in the den-
sity of intermediate levels of observed two-step cas-
cades in the region around 0.5Bn plus an increase in
k(E1) + k(M1) both for primary and for secondary
transitions, which completely correlates in the exci-
tation energy with this structure;

(iii) nearly equal spacings between the interme-
diate states (or their close multiplets) of the most
intense cascades [intervals that stand out are ob-
served at least for triplets of intermediate levels of the
cascades (or for their multiplets), and, at least, two
such nearly equidistant “bands” can be singled out
in spectroscopic experimental data (see Fig. 6); for a
first approximation, the parameter of equidistance is
proportional to the number of boson pairs in unfilled
nucleon shells].

The equidistant character of the spectrum may be
an indication that the structures of the wave functions
for intermediate levels of the cascades feature large
components corresponding to the existence of one,
two, or more phonons—that is, this fact may suggest
that excitations of the boson type have a significant
effect on cascade gamma decay at energies of cascade
levels at least below a value of about 0.5Bn.

A sizable increase in the strength functions for
secondary gamma transitions to levels in the region
of the stepwise structure also counts in favor of local
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and strong variation in the properties of nuclei in a
bounded region of its excitations, and it is this change
in the intrinsic properties of the system that is peculiar
to the occurrence of a second-order phase transition.

4.1. 60Co Odd–Odd Nucleus

This is the only nucleus that contains odd numbers
of protons and neutrons and for which available data
on the spectra of gamma rays made it possible to
obtain information about the populations of levels at
energies up to about 4 MeV. Moreover, this nucleus
is rather heavy, so that, in simulating the gamma
decay of a compound state for it, it would be natural
to expect comparatively small fluctuations of values
determined for respective radiative strength functions
and level densities. At the same time, the effect of
the structure of intermediate levels of the cascades
on their intensity exhibits itself quite nontrivially in
this nucleus. In just the same way as in heavier near-
magic nuclei, the intensity of cascades featuring low-
energy primary transitions is much lower than their
counterparts for cascades where primary transitions
are high-energy. Although the present-day version
of the procedure proposed in [4] takes into account
quite efficiently a considerable local increase in Iγγ in
individual intervals of energies of intermediate levels
of the cascades (see Fig. 3), this complicates quite
significantly the iterative process [4] of searches for
the interval of ρ and k values that ensure a faithful
reproduction of the experimental intensities of the
cascades, and we cannot rule out the possibility that
this circumstance would lead to the emergence of an
additional systematic error in the values found for ρ
and k.

The widest interval of possible values of spins
characterizing intermediate levels of the cascades
leads to maximum fluctuations of both the experi-
mental and the calculated population of the levels.
The values of P for each of the levels appearing
in the known decay scheme are shown below Edis
in Fig. 1. Above it, only its spin-averaged value is
given to avoid encumbering the figure. For P values
summed over a narrow interval of excitation energies,
all three versions of the calculation of populations (see
Subsection 3.1) yield results differing insignificantly.
However, quite a sizable discrepancy between the
calculated and experimental values of P − i1 for the
level density [2] is a very strong argument against
employing the ideas of the model of a noninteracting
Fermi gas in attempts at constructing a precise
description of the cascade gamma decay of this odd–
odd nucleus.

Yet, it should be noted that quite a significant dis-
tinction between the best values of k and their coun-
terparts predicted by the models proposed in [17, 18]
5
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Fig. 6. Possible “bands” of nearly equidistant intermediate levels of the most intense cascades and their multiplets (intensities
of the strongest cascades are smoothed by using a Gaussian curve of mean width σ = 50 keV).
(this is manifested to the same degree in other odd–
odd nuclei as well [4]) indicates that the model con-
cepts used are sharply at odds with experimental re-
sults for nuclei of this type and that this discrepancy
is probably of a general character.

4.2. 118Sn Even–Even Nucleus
The populations of intermediate levels of the cas-

cades were determined on the basis of available data
on the spectra of gamma rays in the even–even com-
pound nuclei 74Ge, 118Sn, and 184W up to energies
of Eexc > 4 MeV and 114Cd, 124Te, 150Sm, 156,158Gd,
168Er, and 196Pt up to Eexc ≈ 3 MeV. In the first three
of these nuclei, the function h increases greatly in
the region Eexc ≥ 4 MeV. Only in this way can one
reduce significantly the discrepancy between the cal-
culated and experimental distributions of P − i1. At
the same time, the distributions P = f(Eexc) feature
a significant noncompensated excess of the experi-
mental population of levels above the results of all
model calculations. This discrepancy is an additional
PH
argument in support of the above assumption that
unpaired nucleons have a pronounced effect on the
mean probability of photon emission below Bn and
the statement that the conditions under which the
calculations are performed are inadequate to the phe-
nomenon being studied.

4.3. 187WEven–Odd Nucleus

Available data on the intensities of individual two-
step cascades and on the spectra of gamma rays orig-
inating from radiative thermal-neutron capture made
it possible to obtain a vast body of information about
the populations of levels in 181Hf and 183,185,187Wand
a smaller amount of information for 165Dy and 175Yb.
For all of these nuclei, the cascade population P − i1
could not be reproduced without taking into account
local peaks in the function h, but the value found in
this case for α is not as great as that for even–even
compound nuclei.
YSICS OF ATOMIC NUCLEI Vol. 68 No. 9 2005
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5. UNEXPLAINED EFFECTS IN CASCADE
GAMMA DECAY

The entire body of data and parameters concerning
gamma-decay processes that comes from the inves-
tigation of two-step cascades has not yet furnished
a completely consistent pattern of such processes.
For example, the distinction between the level density
required for reproducing experimental Iγγ values that
was obtained according to the procedure proposed
in [4] or according to its modification where R =
k(Eγ , Eλ)/k(Eγ , Ei) �= const and the level density
estimated according to the procedure used in [6] has
yet to be explained.

Of course, the number of intermediate levels of
cascades that is extrapolated to zero value of their
detection threshold in the form of two peaks resolved
in energy may correspond to experimental data only
under conditions that would ensure the correctness
of the application of the Porter–Thomas distribu-
tion [19] to describing [6] the distribution of random
values of the intensities of primary transitions in the
region of their smallest values. This assumption may
be erroneous, for example, in the case where the
distribution of terms for the primary-transition am-
plitude differs from a normal distribution owing to an
excess of terms having the same sign.

An alternative possibility consists in that primary
or secondary gamma transitions (or both of them) of
the same multipolarity and nearly the same energy
fluctuate with respect to different mean widths. As to
their markedly different values, they are determined by
a specific structure of the excited (decaying) interme-
diate level of the cascades. In this case, it is natural to
assume that a nucleus features excited states forming
two systems different in properties and that these
systems go over to each other in response to a change
in the nuclear excitation energy. Among intermediate
levels of the cascades, thosewhose wave functions in-
volve dominant components of the multiquasiparticle
or the phonon type may be candidates for this role.

There are no obstacles of fundamental character
for taking into account this possibility in expres-
sions (2) and (3), but it is impossible to verify this
assumption without additional experimental informa-
tion. The possibilities of such a verification are esti-
mated in Section 7.

6. POSSIBLE FORM OF A MORE INVOLVED
MODEL OF CASCADE GAMMA DECAY

AND METHODS FOR AN EXPERIMENTAL
DETERMINATION OF ITS PARAMETERS

All experimental data that we have obtained to
date for the cascade gamma decay of compound nu-
clear states are indicative of a strong dependence of
this process on the structure of excited levels. First of
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all, these data rule out the possibility of reproducing
its parameters to a precision of present-day experi-
ments on the basis of employing, for the level density,
model concepts like those in the model of a noninter-
acting Fermi gas or some other model concepts that
lead to ρ values close to that in [2]. This conclusion [4]
is in line with the results of our present analysis (see
Fig. 5); moreover, it also follows directly and inde-
pendently from the maximum discrepancy between
the experimental and calculated total populations of
relevant levels (see Fig. 1).

Yet another conclusion of considerable importance
from our analysis of experimental data is that it is
necessary to take directly into account, within models
of the level density and radiative widths, large-scale
effects associated with the influence of the nuclear
structure on these parameters up to an excitation
energy of about 0.5Bn or higher. This conclusion
follows from the impossibility of faithfully reproducing
the sums of cascade populations of levels (see Fig. 2)
with the aid of the ρ and k values deduced from the
analysis performed in [4]. The degree to which the
details of the nuclear structure should be taken into
account in model concepts will of course depend on
the degree of discrepancies between the calculated
functionals of cascade gamma decay and their coun-
terparts determined experimentally.

The entire body of experimental data accumulated
thus far gives sufficient grounds to put forth the hy-
pothesis that model concepts of the process being
studied should be refined by taking into account more
directly and precisely the interplay of the superfluid
and normal phases in a nucleus. However, the follow-
ing questions would remain open in all probability:

(a) Is the present-day experimental level of un-
derstanding of cascade gamma decay sufficient for
creating new models of level densities and radiative
strength functions?

(b) Is it possible to obtain all experimental data
that are required for fully parametrizing such models?

The following points may form the basis of new
model concepts:

(i) The transition of a nucleus from a superfluid to a
normal phase with increasing excitation energy of the
nucleus occurs well below the neutron binding energy
for its values within some range.

(ii) The probability of excitation of levels whose
wave functions involve both quasiparticle and vibra-
tional components depends on the relationship be-
tween their contributions to the normalization (in
particular, on the position of the excited level with re-
spect to the energy of the presumed phase transition).

Since the spins of neutron resonances are low,
one can skip, for the majority of deformed nuclei, the
5
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question of a possible distinction between the proba-
bilities of excitation and decay of levels of rotational
bands, on one hand, and the analogous values for
bandheads, on the other hand, paying no attention,
at this stage, to the effect of rotational excitations on
cascade gamma decay, at least in slow-neutron cap-
ture by even–even targets. It is very unlikely that at-
tempts at taking into account the first point would run
into difficulties of a fundamental character. It can be
incorporated by variousmethods, including extremely
simple ones. This is illustrated by the attempt made
in [20] to create some phenomenological version of
the level-density model. By using the concept of the
heat capacity of nuclear matter and by applying, to
nuclei, the ideas of the form of its variation with en-
ergy in the region of a second-order phase transition
that were inferred from the study of superfluidity in
liquid helium, it was shown in [20] that the use of this,
extremely simple, modification of models belonging to
the type in [2] makes it possible to reproduce stepwise
structures in the level density.

Unfortunately, it is then necessary to solve the
following problems:

(a) a determination of the phenomenological de-
pendence of the nuclear heat capacity for a mixture
of a normal and superfluid phase in the presence of
unpaired nucleons;

(b) the inclusion of the expected dependence of
mean partial widths with respect to gamma transi-
tions on the energies of a decaying and an excited level
that are characterized by wave functions of different
structures.

That an increase in the sums of radiative strength
functions and a decrease in the level density (the latter
is necessary for the dependence of the intensity of a
cascade on the energy of its intermediate level to be
reproduced in the calculations) occur synchronously
may suggest the need for taking into account the
relationship between these two nuclear parameters.
In particular, the set of available data [4] on level
densities and radiative strength functions for cascade
gamma transitions gives sufficient grounds to assume
that these parameters may depend on the parity of the
number of nucleons in a compound nucleus (number
of excited quasiparticles). This is one of the possible
(in principle) explanations for the significant discrep-
ancy between the absolute values of radiative strength
functions for even–even and odd–odd nuclei that was
observed in [4].

Yet another problem that was not solved in [20]
consists in the need for directly including the density
of vibrational levels in the modified version of the
Fermi gas model. This problem requires a dedicated
analysis within the generalized model of a superfluid
nucleus, since, within the existing version, the model
PH
cannot reproduce the intensities Iγγ for all nuclei be-
ing studied, most likely because of an approximately
twofold overestimation of the energy of the phase
transition from a superfluid to a normal state. It is also
necessary to revisit its ideas of the thermodynamic
parameters of a nucleus below the point of the phase
transition for a lower phase-transition energy.

The possibilities for going over to more involved
model concepts of radiative strength functions for
performing a more precise analysis of experimental
data are severely restricted by the absence of reliable
data on the probability of photon emission in a wide
interval of photon energies and a wide interval of
excitation energies of decaying levels. For primary
transitions of the cascades, the values obtained in [4]
for k(E1) + k(M1) have a minimum possible, albeit
actually unknown, discrepancy with the sought value.
Data presented in [5] give every reason to assume
that, as the excitation energy of a nucleus decreases,
the sum of theE1 andM1 strength functions features
a weaker dependence on the photon energy than for
primary transitions of neutron-resonance decay. This
comment is probably quite correct for strongly de-
formed nuclei, but is may be insufficiently accurate,
say, for spherical and transition nuclei from the re-
gions around A ∼ 100 and around A ∼ 190, respec-
tively.

Of course, questions like that of the number of
broken Cooper pairs at an excitation energy of 3 to
4 MeV for a deformed rare-earth nucleus and that of
the effect of the phonon components of a decaying
level at an excitation energy above the region of the
presumed phase transition remain unresolved experi-
mentally.

The procedures developed thus far for studying
excited nuclear states by means of two-step cas-
cades do not have restrictions of a fundamental ori-
gin [4, 6, 13] on the accuracy in determining their
parameters nearly over the entire region of excitations
of intermediate and final levels, at least in the cap-
ture of thermal neutrons and neutrons of “filtered”
beams from stationary nuclear reactors. In attempts
at deriving more precise ideas of the properties of
complex nuclei below the neutron binding energy and
at developing new phenomenological models of the
nucleus, the existing experimental procedures may
prove to be insufficient, however, primarily because
of the absence of detailed experimental data on the
intensities of two-step cascades to Ef > 1 MeV final
levels.

7. POSSIBILITIES OF EXPERIMENTAL
TESTS OF NEW IDEAS

Adirect observation of enhanced secondary gamma
transitions to levels in the region of “stepwise” struc-
YSICS OF ATOMIC NUCLEI Vol. 68 No. 9 2005
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tures is the most pressing experimental problem of
the near future.

In order to prove directly a local enhancement of
radiative strength functions for gamma transitions to
levels at an excitation energy of about 3 MeV in a
deformed heavy even–odd nucleus, it is necessary to
determine the reduced relative probability of gamma
transitions from higher lying levels in the interval
of Eγ from a few hundred kiloelectrovolts to a few
megaelectronvolts. This problem cannot be solved by
means of classical nuclear spectroscopy by using any
types of existing detectors and procedures for deter-
mining the energies of excited levels and their decay
modes.

The only realistic possibility to solve it is to mea-
sure experimentally the distribution of the intensities
of two-step cascades to all possible final levels up
to an excitation energy of about 3 MeV or higher in
a deformed heavy even–odd nucleus. For even–even
and lighter spherical nuclei, the energy of these levels
must somewhat exceed 4 to 5 MeV. In accumulating
useful statistics of a few thousand events for each
spectrum where E1 + E2 = Bn − Ef = const, some
fraction of secondary gamma transitions will be re-
solved in energy in these spectra in the form of pairs
of isolated peaks. By using presently elaborate proce-
dures, one will be able to determine, from these data,
the intensities of individual secondary gamma tran-
sitions to Ef ≤ 3–4 MeV levels, thereby obtaining a
set of values for the reduced probabilities of gamma
transitions that makes it possible to assess directly
the shape of the energy dependence of strength func-
tions in the excitation-energy region of interest to us.

The special features of the energy dependence
of the observed population of levels gives sufficient
grounds to expect a maximum increase in k values for
secondary transitions of the cascades in even–even
nuclei and a less pronounced increase in even–odd
nuclei.

The only reason why such spectra have not been
recorded [21] so far is that, in the spectra of the sums
of amplitudes of coinciding pulses, the corresponding
peaks of ever decreasing area appear against an ever
increasing Compton background. In principle, the
problem in question can be tackled by means of a pro-
cedure where cases of a simultaneous absorption of
the total energy of three photons sequentially emitted
to the ground and low-lying states of a nucleus are
isolated in the form of peaks in the spectrum of sums
of amplitudes of three coinciding peaks. Since the en-
ergies of secondary transitions of two-step cascades
are known (and can be found in the same experiment),
it proves to be possible to determine, from the cases
of detection of the total energy of three sequentially
emitted photons, the distributions of the intensities of
two-step cascades to Ef > 1 MeV final levels.
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The required result can be attained with recording
systems formed by at least three high-purity germa-
nium detectors or by only two such spectrometers
in the case where the Compton background is sup-
pressed. Experimental data reported by Bondarenko
et al. [21] make it possible to obtain a preliminary
estimate of the required degree of suppression of the
Compton background: the suppression factor must
not be less than 10 for each detector. In one version or
another, the efficiency of the detectors used must be
commensurate with the efficiency of modern crystal
ball detectors.

8. CONCLUSION

The results of experiments performed thus far in
Dubna, Riga, and Řež to study two-step cascades
in thermal-neutron capture and the results of their
analysis carried out at the Laboratory of Neutron
Physics at JINR have revealed that various func-
tionals of the cascade gamma decay of nuclei that
have a high level density cannot be reproduced, to a
precision of present-day experiments, by a calculation
that employs only the existing ideas of the factors
determining this process. The set of available data and
their interpretation indicates that it is necessary to
elaborate on the model concepts of this process that
underlie an analysis of any experiment in this region of
low-energy nuclear physics. The most probable line
of such a modification is to take into account more
precisely, in new models of ρ and k, the coexistence
of quasiparticle and phonon excitations in a nucleus
and the effect of their interplay on the level density
and on the probability of gamma decay, including a
direct use of the idea that there exists a second-order
phase transition in a nucleus between a superfluid and
a normal state.
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Abstract—A macroscopic temperature-dependent model that takes into account nuclear forces of finite
range is used to calculate the static and statistical properties of hot rotating compound nuclei. The level-
density parameter is approximated by an expression of the leptodermous type. The resulting expansion
coefficients are in good agreement with their counterparts proposed previously by A.V. Ignatyuk and his
colleagues. The effect of taking simultaneously into account the temperature of a nucleus and its angular
momentum on the quantities under study, such as the heights and positions of fission barriers and the
effective moments of inertia of nuclei at the barrier, is considered, and the importance of doing this is
demonstrated. The fissility parameter (Z2/A)crit and the position of the Businaro–Gallone point are studied
versus temperature. It is found that, with increasing temperature, both parameters are shifted to the region
of lighter nuclei. It is shown that the inclusion of temperature leads to qualitatively the same effects as the
inclusion of the angular momentum of a nucleus, but, quantitatively, thermal excitation leads to smaller
effects than rotational excitation. c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

In recent decades, there has appeared the pos-
sibility of experimentally studying the fission of nu-
clei formed in heavy-ion reactions. This has given
impetus to theoretical investigations into processes
involving the formation and decay of nuclei charac-
terized by high angular momenta and relatively high
excitation energies [1–12]. In this case, a theoretical
consideration includes a quantitative estimate of the
effect of excitation energy and angular momentum
on the evolution of the shapes of a fissile compound
nucleus. This information makes it possible to de-
scribe the fission of rotating heavy nuclei and the
competition between fusion and fission in heavy-ion
reactions. In particular, the theoretically predicted
probability of the formation of relatively stable super-
heavy nuclei depends primarily on excitation energy
and angular momentum. The answer to the question
of whether the nucleus formed will exist, prior to
undergoing fission, long enough to be recorded exper-
imentally is determined precisely by these quantities.

In theoretical calculations, the most comprehen-
sive and precise information about the effect of the
temperature and rotation of a nucleus on its prop-
erties can of course be obtained within microscopic
approaches, such as the Hartree–Fock method [9],
the extended Thomas–Fermi method [3, 4, 7, 12], or

*e-mail: ryabov@org.omskreg.ru
**e-mail: adeev@univer.omsk.su
1063-7788/05/6809-1525$26.00
relativistic mean-field theory [13, 14]. However, such
calculations are complicated and cumbersome even
at the present-day level of development of computa-
tional techniques. By using a simpler macroscopic–
microscopic approach proposed by Strutinsky [15],
Diebel et al. [1] calculated fission barriers and crit-
ical angular momenta for excited nuclear systems.
However, an approach that is based on the liquid-
drop model of the nucleus is the simplest and the
most successfully used in fission dynamics. Despite
its more than half-century history, the liquid-drop
model, albeit having undergone a number ofmodifica-
tions and improvements, remained essentially macro-
scopic. For many years, the fact that the temperature
of a compound nuclear system was not taken into
account in this model has been a significant draw-
back of the model. The absence of vast experimental
data generally used to determine the parameters of
the liquid-drop model (nuclear binding energies in
the ground state and fission barriers, some fusion
barriers, an equivalent nuclear radius, as well as the
diffuseness of the charge distribution) for hot nuclei
was an excuse for this situation to some extent. In
determining the coefficients used in the model, one
has had to rely, in this case, on the results of mi-
croscopic calculations performed, for example, within
the extended temperature-dependent Thomas–Fermi
method [3]. It is the approach that was used in [2, 4,
7, 10, 16]. The rotating-liquid-drop model that takes
into account nuclear forces of finite range and the
diffuseness of the nuclear density [17, 18] is widely
c© 2005 Pleiades Publishing, Inc.
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used both in dynamical and in statistical approaches
to nuclear fission. It was generalized to the case of
hot nuclei by Krappe in [16]. Within the macroscopic
approach (the very applicability of this approach is
determined by nuclear excitation and rotation), this
finally makes it possible to take into account ade-
quately and self-consistently the effect of both the
angular momentum and the temperature of a com-
pound system on the statistical properties of nuclei,
on one hand, and on fission dynamics, on the other
hand. It should be emphasized that the parameters of
this model were determined by Krappe on the basis of
calculations within the microscopic Thomas–Fermi
method (a detailed description of this procedure can
be found in [16]).

In the earlier studies reported in [1–5, 7, 9, 10] and
mentioned above, temperature effects and the rotation
of a nucleus were not taken simultaneously into ac-
count in determining static and statistical properties
of nuclei (fission barriersBf ; level-density parameters
in the ground state and at the barrier, an and af ,
respectively; effective moments of inertia, Jeff ; and
critical angular momenta Lcrit). The importance of
taking these effects into account cannot be overes-
timated, but this does not reduce the value of the
previous investigations.

Some preliminary results of an analysis of the
properties of the temperature-dependent finite-range
liquid-dropmodel were described by our group in [19].
The present article is aimed at more detailed calcula-
tions and discussions.
PH
2. TEMPERATURE-DEPENDENT
FINITE-RANGE LIQUID-DROP MODEL

Hot rotating compound nuclei produced in heavy-
ion reactions form a thermodynamic system. Natu-
rally, various parameters of this system and its sta-
bility conditions must be determined by some of its
thermodynamic potentials, either the free energy [16]
or entropy [20]. The choice of one thermodynamic po-
tential or another is a matter of taste and convenience
in performing calculations since they are related by
the well-known equation F (q, T ) = E(q, T ) − TS.

For a set of collective coordinates q describing
the nuclear shape, we choose geometric parame-
ters of the nuclear shape—that is, q = {c, h, α′}.
In doing this, we employ a modified version of the
well-known {c, h, α} parametrization from [21]. The
parametrization used here in the equation deter-
mining the profile function differs from the original
{c, h, α} parametrization in that the former involves a
new mass-asymmetry parameter α′ that is related to
α by the scale transformation [22]

α′ = αc3. (1)
Within the parametrization being considered, the

shape of the nuclear surface in terms of cylindrical
coordinates is given by the equation [21, 23]
ρ2s(z) =



c−2

(
c2 − z2

) (
Asc

2 +Bz2 + α′z/c2
)
, B ≥ 0,

c−2
(
c2 − z2

) (
Asc

2 + α′z/c2
)
exp(Bcz2), B < 0,

(2)

where z is the coordinate along the symmetry axis and ρs is the value of the coordinate ρ at the nuclear surface.
The quantities As and B are expressed in terms of the nuclear-shape parameters (c, h) as

B = 2h+ (c− 1)/2;

As =



c−3 −B/5, B ≥ 0,

−4
3

B

exp(Bc3) + (1 + 1/(2Bc3))
√
−πBc3erf(

√
−Bc3)

, B < 0.
(3)
In Eqs. (1)–(3), c is the elongation parameter (2c is

the elongation of a nucleus), h is a parameter that

specifies the neck thickness at a given elongation, and

α′ is the mass-asymmetry parameter. Shapes that are
symmetric with respect to the z = 0 plane correspond
to the case of α′ = 0.

A formula for the free energy was proposed in [16]
on the basis of the finite-range liquid-dropmodel. The
free energy of a nucleus as a function of the mass
YSICS OF ATOMIC NUCLEI Vol. 68 No. 9 2005
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Table 1. Coefficients in Eq. (4) [values at zero temperature (first row) and temperature coefficient xi (second row)]

r0 a ad av kv as ks

ai(0) 1.16 0.68 0.7 16.0 1.911 21.13 2.3

103xi [MeV−2] −0.736 −7.37 −7.37 −3.22 5.61 4.81 −14.79
number A = N + Z, the neutron excess per nucleon
[I = (N −Z)/A], temperature, and the collective co-
ordinates q characterizing the nuclear shape has the
form [16]

F (A,Z,q, T, L) = −av(1 − kvI
2)A (4)

+ as(1 − ksI
2)Bn(q)A2/3

+ c0A0 + aC
Z2

A1/3
BC(q)

− ac
5
4

(
3
2π

)2/3 Z4/3

A1/3
+

�
2L(L+ 1)
2J(q)

,

where av, as, and aC are the parameters of the vol-
ume, surface, and Coulomb energies in the finite-
range liquid-drop model at zero temperature, while kv

and ks are, respectively, the volume and the surface
parameter of the symmetry energy. The dependence
on the deformation in Eq. (4) is determined by the
functionals Bn(q), BC(q), and J(q):

Bn(q) =
1

8π2a4r20A
2/3

(5)

×
∫
V

∫
V ′

(
2 − |r− r′|

a

)
exp (−|r− r′|/a)

|r − r′|/a drdr′,

BC(q) =
15

32π2r50A
5/3

(6)

×
∫
V

∫
V ′

[
1 −

(
1 +

|r− r′|
2ad

)

× exp
(
−|r − r′|

ad

)]
drdr′

|r − r′| .

One can easily see that the functionals in (5) and
(6) are in fact the nuclear-energy and the Coulomb
energy functional within the finite-range liquid-drop
model [18]. The last term in (4) is the rotational en-
ergy involving the deformation-dependent rigid-body
moment of inertia of a nucleus with allowance for the
diffuseness of the nuclear density (perfect analog of
the rotational energy in the finite-range liquid-drop
model [18]).
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 9 200
The temperature dependence of the seven coeffi-
cients appearing in Eq. (4), av, as, kv, ks, r0, a, and
ad, is parametrized in the form [16]

ai(T ) = ai(T = 0)(1 − xiT
2), (7)

which can be considered as adequate for T ≤ 4 MeV
[3]. Information about the temperature coefficients xi

was obtained from self-consistent microscopic calcu-
lations on the basis of the extended Thomas–Fermi
method with theSkM∗ interaction for the effective in-
teraction between nucleons [3, 4]. In [16], the results
of these calculations for the thermodynamic Gibbs
potential were used to derive formula (4). The values
of 14 parameters that were obtained in [16] and which
are used in the present study are given in Table 1.

Considering a nucleus within the Fermi gas
model, using thermodynamic relations, and knowing
the free energy, one can obtain both the entropy and
the level-density parameter:

S(q, T ) = −
(
∂F (q, T )
∂T

)
V

, a(q, T ) =
S(q, T )

2T
.

(8)

Within the Fermi gas model, we also have the relation

Eint(q, T ) = E(q, T ) − E(q, T = 0) = a(q)T 2,
(9)

where Eint(q, T ) and E(q, T ) are, respectively, the
internal energy of the system and its total excita-
tion energy, while a(q) is the level-density parameter.
From formulas (8) and (9), it follows, among other
things, that the temperature dependence of the free
energy has the form

F (q, T ) = V (q) − a(q)T 2, (10)

where V (q) is the potential energy of the nucleus
at T = 0 (V (q) = F (q, T = 0)). The microscopic
calculations performed in [3] within the extended
temperature-dependent Thomas–Fermi method re-
vealed that Eq. (10) for the free energy F provides
quite an accurate approximation in the region T ≤
4 MeV.
5
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Table 2. Coefficients av and as obtained in the present
study by using a one-, a two-, and a three-dimensional
grid and in [24, 27]

av, MeV−1 as, MeV−1

one-dimensional 0.0603 0.1186

two-dimensional 0.0600 0.1210

three-dimensional 0.0598 0.1218

[24] 0.073 0.095

[27] 0.0685 0.274

3. RESULTS OF THE CALCULATIONS
AND DISCUSSIONS

3.1. Asymptotic Level-Density Parameter

The level-density parameter a is one of the most
important features of an excited nucleus considered
within the Fermi gas model [24, 25]. By using the
thermodynamic relations (8) and (9) and formula (4),
we can determine the level-density parameter within
the liquid-drop model that takes into account nuclear
forces of finite range and nuclear excitations. In this
case, an implicit dependence of a on the nuclear de-
formation is specified by the dependence of the free
energy F appearing in Eqs. (8) and (9) on the collec-
tive coordinates.

At the same time, the dependence of the level-
density parameter on the deformation of a nucleus is
often represented by a leptodermous-type expansion
of the form [24–27]

a(q) = avA+ asA
2/3Bs(q). (11)

In this equation, A is the mass number of the fissile
nucleus and the dimensionless factor Bs(q) specifies
the area of the deformed-nucleus surface in units of
the surface of a sphere having the same volume—
the surface-energy functional in the model of a liquid
drop having a sharp surface [28]. Among a number of
sets of the parameters av and as in the dependence
given by (11), use is most frequently made of that
which was proposed by Ignatyuk et al. [24] (av =
0.073MeV−1 and as = 0.095MeV−1) and that which
was recommended by Töke and Swiatecki [27] (av =
0.0685 MeV−1 and as = 4av).

For two values of the nuclear temperature, Fig. 1
shows the level-density parameters versus deforma-
tion (elongation) that were calculated by formula (11)
with the coefficients borrowed from [24] and [27] and
by formulas (4) and (8) within the liquid-drop model
taking into account nuclear forces of finite range and
PH
nuclear excitations. We note that the level-density
parameter a(q) calculated on the basis of the liquid-
drop-model version used here weakly depends on
temperature. The same result was obtained in [16] for
spherical nuclei. Because of this, we further assume
that the level-density parameter in the finite-range
liquid-drop model is temperature-independent.

We approximated the deformation dependence of
the level-density parameter in the finite-range liquid-
drop model by the widely used expression (11). In
order to obtain the approximation coefficients av and
as, we used 70 nuclei along the beta-stability line
from Z = 47 to Z = 116. The equation determining
the beta-stable nuclei has the form [29]

Z =
A

2

(
1 − 0.4A

A+ 200

)
. (12)

In constructing the approximation in question, we
employed the least squares method and took into
account all nuclear shapes, with the exception of
scission shapes whose neck radius was smaller than
0.3R0 (R0 is the radius of the original spherical nu-
cleus). The results of the approximation are given in
Table 2. The coefficients av and as were estimated
for the one- (h = α′ = 0), two- (α′ = 0), and three-
dimensional cases. It can easily be seen that the
coefficients are not sensitive to the dimensionality of
the grid used in the approximation; therefore, all of
the results discussed below were obtained with the
coefficients calculated with a three-dimensional grid.

A variation of the approximate coefficients av and
as along the beta-stability line is shown in Fig. 2a. It
can be seen that the value of av is in fact constant,
while the coefficient as decreases by 20% as Z varies
from 47 to 116. It can be concluded from Figs. 2b and
2c that our approximation is quite correct within the
range of nuclear deformations under consideration.
The coefficient as specifies the dependence of the
level-density parameter on deformation; hence, it is
of importance for statistical and dynamical models of
nuclear fission. The value obtained for this coefficient
in the approximation proposed here is close to that
from [24], as = 0.095 MeV−1, and differs by a factor
of more than two from the value of as = 0.274MeV−1

from [27]. The second coefficient, av, takes approx-
imately the same value in all of the approximations
considered here.

For the ground states of the nuclei lying along
the beta-stability line, Fig. 3 displays the level-
density parameter as a function of the mass number.
From this figure, one can see that the results of
the calculations with Ignatyuk’s coefficients [24]
and the results of the calculations performed within
the temperature-dependent liquid-drop model are in
better agreement with the values obtained on the
YSICS OF ATOMIC NUCLEI Vol. 68 No. 9 2005
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Fig. 1. Level-density parameter as a function of deformation for the 224Th nucleus: results for the liquid-drop model taking
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T = 4 MeV, for the case of (dashed curve) Ignatyuk’s coefficients and (dotted curve) Töke–Swiatecki coefficients, and for the
case of (thin straight line) a(q) = A/10.
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Fig. 2. (a) Coefficients av and as as obtained here from an approximation along the beta-stability line; (b, c) level-density
parameter as a function of deformation for the element 306116 and for 109Ag within the finite-range liquid-drop model (solid
curves) and its approximation (dashed curves) (for these nuclei, the accuracy of the approximation is the lowest).
basis of microscopic approaches than with those
that were calculated by employing the set of Töke–
Swiatecki parameters [27]. In turn, the curve for the
level-density parameters that was calculated with
Ignatyuk’s coefficients is virtually coincident with
the results obtained within relativistic mean-field
theory [14]. Since the parameters of the temperature-
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 9 200
dependent finite-range liquid-drop model were deter-
mined in [16] on the basis of an approximation of the
results obtained within the extended Thomas–Fermi
method by using effective Skyrme interaction forces
SkM∗, the curves corresponding to them in Fig. 3
coincide.
5



1530 RYABOV, ADEEV

 

4

40

 
a
 
, MeV
 

–1
 

A

 

80 120 160 200

8

12

16

20

24

Fig. 3. Level-density parameter for some nuclei along
the beta-stability line in the ground state: (dash-
dotted curve) results within the finite-range liquid-drop
model [16], (solid curve) results obtained with Ignatyuk’s
coefficients [24], and (dashed curve) results obtained
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Fig. 4. Fission barriers in hot beta-stable nuclei at var-
ious temperatures T and L = 0 (solid curves, the tem-
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shell effects.

3.2. Effect of the Temperature of a Nucleus and Its
Angular Momentum on the Barrier Height

For nuclei formed in heavy-ion reactions, fission
barriers (Bf ) play an important role in their fusion–
fission dynamics. The height and position of the bar-
rier determine not only the character of a nuclear
process—fast fission, quasifission, or the existence of
PH
superdeformed nuclei—but also, in the case of the
decay of an equilibrium compound nucleus, the com-
petition between the processes of fission and particle
emission. It should be noted that the angular distribu-
tion of fission fragments also depends on the effective
moment of inertia of a fissile nucleus at the barrier
(Jeff), this moment of inertia being determined by the
saddle-point configuration of the nucleus.

The effect of nuclear rotation on the fission process
is well known [18, 30]: the fission barrier decreases,
disappearing at some value of the angular momentum
(Lcrit); the ground state of the nucleus with respect to
the main fission coordinate (c, which is the elonga-
tion parameter of the nucleus) is shifted toward the
scission point, while the saddle point is, on the con-
trary, shifted toward the ground state, these effects
becoming more pronounced with increasing angular
momentum of the rotating nucleus.

However, the inclusion of temperature effects is no
less important [2–5, 9]. It should be noted that only
a few studies have been devoted to a macroscopic
treatment of the temperature dependence of fission
barriers (among those that were mentioned above,
there are [2, 6, 7, 31]). If, in a theoretical descrip-
tion, we want to approach the pattern observed in
heavy-ion reactions, we must take self-consistently
into account both factors (temperature and angular
momentum), considering a hot rotating nucleus [1, 7,
10, 11] within a unified model.

In analyzing the temperature or the angular-
momentum dependence of static and statistical prop-
erties of nuclei, we will assume here and below
that a factor whose magnitude and variation are not
discussed is constant and is equal to zero.

For hot beta-stable nuclei, Fig. 4 presents the
dependence of the fission barriers on the mass num-
ber. Here, the triangles represent experimental data
from [12] that were corrected with allowance for shell
effects. As was indicated in [2], the liquid-drop model
is inapplicable in the region of medium-mass and
light nuclei, this being by and large confirmed by
overestimated values of theoretically predicted barri-
ers in the region of light nuclei (see Fig. 4). Qual-
itative agreement between the temperature depen-
dence of the barrier height (a decrease in Bf with
increasing temperature) and data obtained in [2, 10]
is worthy of note, albeit the barriers calculated in the
present study are systematically below those data.
The same conclusions can be drawn from a compar-
ison of our results for the temperature dependence
of barriers in heavy and superheavy nuclei with the
results reported in [1], where use was made of Struti-
nsky’s macroscopic–microscopic approach. At the
same time, good qualitative agreement is obtained
for barrier heights if a comparison is performed with
YSICS OF ATOMIC NUCLEI Vol. 68 No. 9 2005
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the results of calculations based on the Thomas–
Fermi method [7, 12], although an interaction dif-
fering from the SkM∗ interaction was used for an
effective nucleon–nucleon potential. As might have
been expected, the results of our calculations at zero
temperature for barriers agree with the barriers in
the finite-range liquid-drop model employing Sierk’s
parameters [18] (in Fig. 4, the respective curves are
indistinguishable). The dashed curve, which repre-
sents the barrier heights for the same beta-stable
nuclei of temperature 2 MeV whose rotation is char-
acterized by an angular momentum of L = 40�, il-
lustrates vividly the need for simultaneously taking
into account the rotation of a nucleus and its thermal
excitation. The difference in the barrier heights as
calculated with and without allowance for the rotation
of a hot nucleus becomes ever more pronounced with
decreasing mass number of nuclei.

The effect of simultaneously taking into account
the thermal excitation of a nucleus and its rotation
as a discrete unit is illustrated in Fig. 5a, where the
effect that both factors considered in the present study
(a decrease in the barrier height with increasing nu-
clear temperature and angular momentum of nuclear
rotation) exert on the barrier is shown for the 240Pu
nucleus. It is worth mentioning that an increase in
the angular momentum produces a greater effect, the
temperature effect becoming less pronounced with
increasing L. For a comparison of our results with
data of Garcias et al. [7], who considered the effect
of the same two factors on the fission barrier in 240Pu
within the Thomas–Fermi method, to be complete,
we approximated the dependence of Bf on T and L
by the expression (dashed curve in Fig. 5a)

Bf = 3.889 − (1.544 × 10−3L2 − 5.71 × 10−6L3)
(13)

− (5.03 × 10−1 − 0.63 × 10−4L2)T 2

+ 0.068T 3 [MeV],

which is similar to expression (2) from [7].
In contrast to the quadratic dependence in [7],

we obtained a cubic temperature dependence of the
barrier height (it descends slowly as the temperature
approaches the values of T = Tc, at which the bar-
rier disappears). A cubic temperature dependence is
observed for barriers in all of the nuclei considered in
the present study and is a general feature peculiar to
the finite-range model of a hot liquid drop [16]. Bar-
riers for symmetric binary fission that were calculated
in [6], where diffuseness was simulated in terms of the
“proximity” energy [32] and where the temperature
dependence was constructed on the basis of data
from [5], also have a cubic temperature dependence.

Following the same line of reasoning as Garcias
et al. [7] and employing the approximate relation (13),
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 9 200
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Fig. 5. (a) Fission barrier for 240Pu as a function of
the temperature and angular momentum of a compound
nucleus: (solid curves) results of a theoretical calcula-
tion by formula (4) and (dashed curves) approximation
by expression (13); (b) ratio af/an as a function of the
temperature and angular momentum of the 220Fr nucleus
according to calculations by formulas (4), (8), and (9) for
the saddle-point configuration and for the ground state of
the nucleus.

we can conclude that temperature effects are only
slightly correlated with nuclear-rotation effects (the
term proportional to L2T 2 is only a slight correction).
The coefficients in the approximation are very close to
the values obtained in [7], naturally with the exception
of that term in (13) which is cubic in temperature.
The fact that there is no such term in relation (2)
from [7] may be due to the following: although the
authors of [7] relied on the Thomas–Fermi method
realized with an effective nucleon–nucleon interac-
tion of the SkM∗ type, they calculated the effective
Weizsäcker coefficient (β/36) in the expansion in
powers of �

2 with the value of β = 1.6 rather than
with the value of β = 1, which is usually used. A
detailed discussion of the effect of this factor is be-
yond the scope of the present study. We note that
a cubic character of the temperature dependence of
the barrier height was also observed in [10], where
use was made of the generalized liquid-drop model
5
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due to Myers and Swiatecki [28] and the “proximity”
energy (for details, see [10] and references therein).
Although the fission barriers calculated in [10] are
systematically higher than those that were obtained
in the present study, their temperature and angular-
momentum dependences are similar: with increasing
angular momentum, the temperature effect becomes
weaker.

The critical angular momentum Lcrit character-
izes the fission stability of a nucleus with respect to
rotation [30]. Strictly speaking, this is the angular-
momentum value at which the fission barrier in a
compound nucleus vanishes. Since this feature is
determined by the barrier height, which in turn de-
creases with increasing nuclear temperature, as we
have seen above, Lcrit must decrease as the nucleus
being considered is heated. The critical angular mo-
mentum as a function of the mass numberA for beta-
stable nuclei is displayed in Fig. 6a for various values
of the temperature. It seems quite natural that, at
T = 0, the critical angular momentum determined in
the present study is consistent withLcrit calculated by
Sierk [18] on the basis of the finite-range liquid-drop
model. Since Lcrit only decreases upon taking into
account nuclear temperature, there is no agreement,
over the whole temperature range, with the critical-
angular-momentum values calculated for superheavy
elements within the macroscopic–microscopic ap-
proach proposed in [1] (see Table 3 in [1]). We ob-
tained Lcrit values close to zero even at zero temper-
ature, while, at T = 1.5 MeV, Lcrit [1] is about a few
tens of � units (yet, these values were obtained with
allowance for shell effects).

Our estimates of Lcrit also fall systematically short
of data reported in [10], where, with increasing mass
number, the critical angular momentum decreases
in the region of heavy nuclei faster than its coun-
terpart calculated here. For the 190Hg nucleus, we
found agreement to within 1� for Lcrit with the re-
sults of Myers and Swiatecki [12], who employed the
Thomas–Fermi formalism to calculate the barriers.
A comparison with data from [7] reveals that, for
240Pu, the values that we obtained for the critical
angular momentum are systematically greater—for
example, 62� versus 50� at zero temperature and 40�

versus 32� at T = 2 MeV. However, this fact is not
unexpected, highlighting the validity of our statement
that it is necessary to consider simultaneously the
effect of the temperature of a nucleus and the effect
of its rotation on the static properties of a compound
nuclear system. It is the difference in the character of
the temperature dependence of the barriers (we ob-
tained here a cubic dependence, which descends with
increasing angular momentum, while it is quadratic
in [7]) that is responsible for the difference in Lcrit.
PH
3.3. Effect of Temperature and Angular Momentum
on the Saddle-Point Configuration of a Fissile
Nucleus and on Features Depending on It

The saddle-point configuration of a fissile nucleus
is the shape that this nucleus assumes at the saddle
point. The saddle point determines the position of the
fission barrier on the quasisurface that specifies the
collective-coordinate dependence of the free energy
of the nucleus being considered and is a point of
conditional equilibrium (a maximum with respect to
the main fission coordinate c and a minimum with
respect to other coordinates). Accordingly, the barrier
height is defined as the difference of the free energy
at the saddle point and the minimum value of the
free energy. In turn, the point of minimum specifies
the coordinates of the ground state of the nucleus.
In the case of the {c, h, α′} parametrization, which
is used here, the position of the saddle point in the
space of collective coordinates is determined by three
quantities, csd, hsd, and α′sd. From the outset, we
took zero value for the coordinate α′sd, since it is
well known that, within the model of a rotating liquid
drop [18, 33], asymmetric shapes of a fissile nucleus
are less favorable energetically for nuclei lying on the
right of the Businaro–Gallone point (medium-mass
and heavy nuclei), so that, for the saddle point, the
profile of the free-energy surface along the coordinate
α′ has the shape of a parabola with a minimum at
α′ = 0. For light nuclei (which lie on the left of the
Businaro–Gallone point), the profile in question has,
on the contrary, the shape of an inverted parabola with
a maximum at α′ = 0. In this case, searches for a
minimum in the mass-asymmetry coordinate involve
the problem of grid finiteness in this coordinate. In
order to circumvent this problem, wemade the follow-
ing “simplification” in our calculations: we set to zero
the mass-asymmetry coordinate at the saddle point,
α′sd, for all nuclei studied here. This simplification is
consistent with the experimentally observed fact that
symmetric fission is dominant for hot nuclei [33].

On the basis of our calculations, we can draw
the following conclusion: similarly to the case of a
decrease in the barrier height, the position of the
barrier is most strongly affected by temperature and
angular momentum in the region of heavy nuclei; on
the contrary, the lighter the nucleus, the weaker the
effect of these two factors. By way of example, we
indicate that, at any temperature considered here (not
higher than 4 MeV), the saddle-point configuration
of nuclei lighter than 122Te is virtually independent of
either a thermal or a rotational excitation. If, however,
the temperature range is bounded from above by the
value of 2MeV, this effect is observed for nuclei lighter
than 156Gd. A similar pattern emerges in the case of
YSICS OF ATOMIC NUCLEI Vol. 68 No. 9 2005
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Fig. 6. (a) Critical angular momentum Lcrit (in � units) as a function of the mass number A for beta-stable nuclei at various
values of the temperature T (in MeV); (b) quadrupole moment in the saddle-point configuration of a nucleus, Qsd

2 (in barns),
as a function of the mass number A for beta-stable nuclei at various values of the temperature.
varying the angularmomentum at a constant temper-
ature.

The above is illustrated in Fig. 6b, where the tem-
perature dependence of the quadrupole moment in
saddle-point configurations is shown for beta-stable
nuclei. In order to compare the effect of rotation of
a nucleus on the saddle-point configuration and the
effect of its heating, curves drawn through boxes and
circles are also displayed in Fig. 6b. They correspond
to the saddle-point configurations of nuclei at the
angular momentum of L = 40� and the temperatures
of T = 0 and 2 MeV (solid and dashed curves, re-
spectively). One can see that the heating of a non-
rotating nucleus to a temperature of 2 MeV and the
rotation of a cold nucleus at the angular momentum
of 40� lead to approximately identical saddle-point
configurations of fissile beta-stable nuclei. Similar
conclusions can also be drawn for the T = 3, L = 0
and T = 2, L = 40� cases. We note that the pattern
observed here is in qualitative agreement with the
results obtained in [2, 7].
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 9 200
It is impossible to compare directly the results of
our calculations for saddle-point configurations with
experimental data. However, this can be done indi-
rectly via a comparison of nuclear-shape-dependent
quantities at the barrier (such as the ratio of the level-
density parameters at the barrier and in the ground
state, af/an, and the effectivemoment of inertia at the
barrier, Jeff).

The importance of the ratio af/an in a statistical
simulation of fission reactions induced by heavy ions
is well known [34, 35]. Governing neutron emission,
as a matter of fact, this parameter determines, along
with the barrier height, the fissility of a compound
nucleus. The difference in af and an is a macro-
scopic effect, which is described within the liquid-
drop model, the origin of this effect being related in the
theory to the effect of the nuclear surface and shape
on the level density [24, 27]. Although the ratio af/an

is close to unity, even a change of a few percent in it
changes the ratio of the mean neutronic and fission
5
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decay widths by a value that grows with increasing
excitation energy [36].

The aforementioned effect of the change in the
position of the saddle point in the space of collective
variables in response to a change in the temperature
and angular momentum naturally leads to a varia-
tion in the ratio af/an. Moreover, the conclusions
on the character of the dependence of the barrier
heights on T and L fully apply to the ratio af/an:
it decreases both in response to an increase in the
angular momentum and in response to an increase in
the temperature (see, for example, Fig. 5b). Although
this decrease is as small as about a few percent, it can
substantially affect, as has already been mentioned,
the results of statistical calculations for reactions
involving the fission of compound nuclei. We note
that the lighter the nucleus involved, the weaker the
temperature dependence of af/an; on the contrary, it
becomes more important to take into account nuclear
rotation.

On the basis of an analysis of the fissility of com-
pound preactinide nuclei bombarded with charged
particles, Ignatyuk et al. [37] estimated the averaged
empirical ratio af/an (the results are shown by the
solid curve in Fig. 7). The dashed curve in this figure
represents the ratio af/an calculated for preactinide
nuclei on the basis of relation (11) with Ignatyuk’s
coefficients [24] without explicitly taking into account
the temperature and angular-momentum depen-
dences. The dash-dotted curve corresponds to our
calculation for the same nucleus with allowance for
the excitation energy (which specifies the nuclear
temperature according to the relation T =

√
Eint/a,

where Eint is the internal energy of the nucleus
PH
being considered) at an angular momentum fixed at
L = 20� (this choice was motivated by the fact that,
in the reactions being studied, the fission process
is induced by light charged particles, so that the
formation of a compound nucleus that would carry a
high angular momentum is improbable). From Fig. 7,
one can see that the results obtained within the above
two theoretical approaches (dashed and dash-dotted
curves) agree quite well, but that the two curves
deviate markedly from the empirical dependence.
According to [35], the scatter of the results of different
theoretical analyses [24, 27] for the ratio af/an, as
well as the scatter of its experimental values, may be
as large as 15%. A large arbitrariness in describing
the level density of excited nuclei in the studies of
different authors may be one of the reasons for this
uncertainty. By way of illustration, we indicate that,
in [38], the ratio af/an changes in response to going
over from one phenomenological systematics of level
densities to another in analyzing the ratio of the
fission and neutronic width.

The barrier heights and the ratios af/an deter-
mined by Krappe within the rotating-liquid-drop
model generalized to the case of hot nuclei have not
yet been used in statistical calculations. However,
the study of Newton et al. [39], who calculated the
mean prescission neutron multiplicity for 181Ta+ 19F
and 159Tb + 19F reactions on the basis of the statis-
tical model, is worthy of note. In order to calculate
the temperature-dependent barrier heights, use was
made of data from [7, 8], while the parameter af/an

was adjusted to fit the fission cross sections calcu-
lated for the above two reaction types to their experi-
mental counterparts. Also, the af/an value at which
the agreement with experimental data on neutron
multiplicities is good was estimated in [39], but use
was made there of the barriers that were calculated by
the Thomas–Fermi method [3, 4] and which are ac-
tually equivalent to the barriers determined within the
model considered here. The value of af/an = 0.97,
which was obtained by using the barriers from [7, 8]
proves to be less than its counterpart in the case of the
barriers from [3, 4] (af/an = 1.00). So small a value,
which is less than unity, is at odds with some results
obtained in a number of studies [24, 35–37], where
a statistical description of level densities in nuclei led
to af/an > 1. In view of this, the self-consistency of
the calculations employing the barriers from [3, 4] and
resulting in a greater value of af/an is less disputable.
The problem of consistency of the model concepts
and arbitrariness in choosing the ratio af/an can be
fully solved by employing barriers and level-density-
parameter ratios (af/an) determined within a unified
model—for example, that which was considered in
the present study.
YSICS OF ATOMIC NUCLEI Vol. 68 No. 9 2005
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calculation [16] within the temperature-dependent macroscopic finite-range liquid-drop model [at the temperature values of
0, 1, 2, 3, and 4 MeV (from up down), the angular momentum being set to zero], (dotted curve) results of the calculation on
the basis of the rotating-liquid-dropmodel due to Cohen, Plasil, and Swiatecki [30], and (points) J−1

eff values obtained from an
analysis of experimental data on the angular anisotropy of fission fragments: (open triangles) experimental data on heavy-ion
reactions [40] and (closed triangles) results of an experimental analysis from [41].
The effective moment of inertia Jeff at the saddle
point is yet another feature that is determined by the
position of the barrier. The inverse of Jeff is given by

1
Jeff

=
1
J||

− 1
J⊥
, (14)

where J|| and J⊥ are the moments of inertia of the
nucleus under consideration with respect to the sym-
metry axis and the axis orthogonal to it (nuclear-
rotation axis), correspondingly. As a rule, the effective
moment of inertia is measured in units of J0, which is
the moment of inertia of a sphere of the same volume.

The experimental value of the effective moment
of inertia can be obtained from an analysis of the
anisotropy of the angular distribution of fission frag-
ments. This was precisely the method that was
used calculate the J−1

eff values represented by closed
and open triangles in Fig. 8. This figure displays
the fissility-parameter dependence of Jeff for nuclei
along the beta-stability line. The effective moments
of inertia calculated here on the basis of the Krappe
model [16] for various values of the temperature are
shown by the solid curves in the figure. The dotted
curve, which represents the results of the calculations
based on the model of a liquid drop with a sharp
surface [30], lies markedly higher. The curve calcu-
lated with the Sierk coefficients [18] coincides with
the solid curve, which corresponds to the temperature
value of T = 0. This comes as no surprise since the
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 9 200
positions of the saddle points coincide in these models
at zero temperature, while the moments of inertia
are calculated in the rigid-body approximation. From
Fig. 8, one can see that the experimental data being
considered are in better agreement with the results
of our calculations, while, for Z2/A < 36, the J−1

eff
values obtained from the analysis of experimental
data lie considerably higher than the curves that we
obtained and comply better with the Cohen–Plasil–
Swiatecki model [30]. The existence of experimental
points below the solid curve, which corresponds to
zero temperature (T = 0) is worthy of special note:
if one considers that, within the model used here, an
increase in the angular momentum of a nucleus at
fixed temperature also leads to a decrease in J−1

eff , the
experimental values are reproduced at specific values
of T and L, this counting in favor of the model that
we apply, which takes into account the temperature
dependence of relevant parameters.

The analysis of experimental data that was per-
formed in [40, 41] and which is illustrated in Fig. 8 did
not take into account the emission of prescission neu-
trons. This shortcoming was remedied in [42], where
the data are given with allowance for prefission neu-
trons. However, these corrected data do not change
the conclusions that we have drawn above. Anyway,
overall agreement between a theoretical description
and experimental data could not be achieved. The
model used here is more realistic than the idealized
5



1536 RYABOV, ADEEV
Cohen–Plasil–Swiatecki model of a liquid drop with
a sharp surface [30] and takes into account the tem-
perature dependence of the liquid-drop parameters.
As was indicated in [43], the quantitative disagree-
ment may be due both to an approximate character of
the Halpern–Strutinsky statistical theory of angular-
distribution formation [44] and to the uncertainty in
some parameters used in analyzing experimental data
(for example, a variation in the level-density parame-
ter in [41]).

By calculating the effective moment of inertia, one
can determine, for the ratio (Z2/A), the critical value
(Z2/A)crit at which a nucleus loses stability with re-
spect to fission, this being a parameter of paramount
importance for nuclear physics. For nuclei character-
ized by this value of (Z2/A), the saddle-point defor-
mation coincides with that in the ground state and
Jeff → ∞, the ratio J0/Jeff tending to zero. Within the
model considered here, (Z2/A)crit develops a temper-
ature and an angular-momentum dependence, as all
of the other static parameters that we explored in this
study do. This circumstance becomes obvious if one
recalls that the parameter (Z2/A)crit is determined
in terms of the ratio of the surface and Coulomb
constants of the liquid-drop model, as and aC, which
depend explicitly on temperature in the model being
considered; as to the angular momentum, its effect
is due to the shift of the saddle point, at which we
calculate J−1

eff . An excitation of a nucleus (both of a
thermal and a rotational character) leads to a shift
of (Z2/A)crit toward the region of lighter nuclei, the
effect of the two factors being approximately identical.
By way of example, we indicate that, at zero temper-
ature, the change in temperature from 0 to 4 MeV
leads to the reduction of (Z2/A)crit from 44.5 to 40.5;
at zero temperature, approximately the same values
correspond to a variation in the angular momentum
from L = 0 to L = 60�. The value that we obtained
at T = 0 is in good agreement with the predictions
of other realistic liquid-drop models [18, 45]. The
experimental estimates obtained in [41] for (Z2/A)crit
on the basis of determining Jeff from an analysis
of the angular anisotropies of fission fragments are
different for different sets of nuclei and for different
values of the nuclear-level-density parameter that
were used in that analysis. The estimate (Z2/A)crit =
44.3–44.9 [41], which is in good agreement with the
results of our calculations and which is markedly less
than the value of (Z2/A)crit � 50, predicted by the
model of a liquid drop with a sharp surface, seems the
most plausible.
PH
3.4. Stiffness with Respect to a Mass-Asymmetry
Variation in the Nuclear Shape within the Model

of Hot Rotating Nuclei

In the fission of Z2/A < 32 nuclei whose rotation
is not very fast (low values of L), the “dynamics of
motion” of a nucleus from the saddle to the scission
point does not play any significant role [46]. In this
case, the static properties of the potential-energy sur-
face of a deformed nucleus play the most important
role in a theoretical analysis of the fission process. In
describing the potential energy within the liquid-drop
model, the stiffness (stability) of nuclei with respect
to mass-asymmetric deformations (shape variations),
∂2V/∂η2 [46], is one of the main parameters.

For the mass-asymmetry coordinate η, we fol-
lowed Strutinsky’s definition [45]

η = 2
Vl − Vr
Vl + Vr

, (15)

where Vl and Vr are the volumes of those parts of
the asymmetric body representing the nucleus being
considered that are, respectively, on the left and on
the right of the midpoint of the neck. It was indicated
above that, in our calculations, we used the parameter
α′ for the coordinate describing the mass asymmetry
of the nucleus; therefore, we calculated the stiffness
by the formula

∂2F

∂η2
=
∂2F

∂α′ 2

(
∂α′

∂η

)2

. (16)

We calculated the second factor in this formula by
employing Eq. (15) and the expressions chosen for
the volumes Vl and Vr of the left- and right-hand
parts in accordance with the parametrization being
considered.

On the basis of the liquid-drop model involving
temperature-dependent parameters, we calculated
here stiffness for hot nuclei, employing the free energy
F instead of the potential energy V . This enables us
to assess the effect of temperature on the magnitude
of stiffness for the case of mass-asymmetric defor-
mations and on the critical points of the stiffness
curve. The results are presented in Fig. 9. In this
figure, the experimental data are given only for the
region Z2/A < 31, since, for Z2/A > 32 nuclei, the
saddle and scission points differ significantly, as was
indicated in [46, 47], while the experimental values
of the stiffness for them lie higher, corresponding to
some point that is intermediate between the saddle
and scission points. This range of nuclei will not be
considered in the present analysis.

In [46–48], it was indicated that, in the interval
Z2/A ∼ 20–30, the finite-range liquid-drop model
involving Sierk’s coefficients provides the best de-
scription of experimental data. In those studies, the
YSICS OF ATOMIC NUCLEI Vol. 68 No. 9 2005
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Fig. 9. Stiffness of fissile nuclei at the saddle point, ∂2F/∂η2 (in MeV), for nuclei along the beta-stability line at various values
of the temperature T (in MeV). Boxes represent the results obtained by analyzing experimental data from [48].
position of the Businaro–Gallone point, where a
nucleus completely loses stability against a mass-
asymmetric deformation (the stiffness vanishes),
was determined to be (Z2/A)BG = 22.0 ± 0.6. It
should be noted that the theoretical curves calculated
in [46–48] were obtained with the set of coefficients
from [17] rather than with the set of constants pro-
posed bySierk in [18]. Our results at zero temperature
agree with the results obtained on the basis of the
Sierk model with the constants from [18]. The value
of (Z2/A)BG = 21.1, which was found in the present
study, depends greatly on the set of constants used.
For example, (Z2/A)BG = 21.6 if use is made of
the parameter set from [17]. This is less than the
estimate 22 ± 0.6 from [46–48], but the difference
is likely to be due to employing different nuclear-
shape parametrizations in the respective calculations
(generalized Cassini ovals in [49] versus the {c, h, α′}
parametrization in the present study). For a more
detailed discussion of all uncertainties associated
with the analysis of experimental data and with the
calculation of the stiffness on the basis of these data
in [46–48], the interested reader is referred to [47].

From Fig. 9, one can see that an increase in the
temperature leads to a shift of the Businaro–Gallone
point toward the region of lighter nuclei, with the
result that, at T = 4 MeV, (Z2/A)BG = 19.8. Similar
behavior was obtained in [31] within the model of a
rotating liquid drop with allowance for “proximity”
forces [32]. It was also found there that, up to the
temperature of 2 MeV, the position of the Businaro–
Gallone point remains unchanged on the fissility axis
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 9 200
x (x = (Z2/A)/(Z2/A)crit).Wewill arrive at the same
conclusion if, in calculating the fissility parameter x,
we take into account the temperature dependence of
(Z2/A)crit described in the preceding section. How-
ever, it is worth noting that, within the model being
considered, the decrease in (Z2/A)crit with increasing
temperature is faster than the decrease in (Z2/A)BG,
since, as the temperature increases from T = 2 to
4 MeV, the position of the Businaro–Gallone point
on the fissility axis, xBG, changes from 0.47 to 0.49.
But in [31], the situation was qualitatively different:
an increase in the temperature there led to a sizable
decrease in xBG.

A second critical point on the curve of the stiff-
ness with respect to mass-asymmetric nuclear-shape
variations is the point of maximum; at T = 0, it oc-
curs at Z2/A ∼ 30 (see Fig. 9). As was found in [47,
48], this point of inflection on the curve of the stiffness
plotted against Z2/A corresponds to a change in the
sign of the derivative dσ2

M/dL
2—this means that,

with increasing angular momentum, the variance of
the mass distribution decreases for nuclei charac-
terized by Z2/A values on the left of this point and
increases for nuclei characterized by Z2/A values on
the right of it. Figure 9 clearly shows that, as the
temperature is elevated from 0 to 4 MeV, the position
of the maximum is shifted from Z2/A ∼ 30 to 27.

The effect of the angular momentum on the stiff-
ness with respect to mass-asymmetric nuclear-shape
variations was studied in detail by Rusanov et al. [46].
Their conclusions that the Businaro–Gallone point
5
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and the point of maximum are shifted toward the re-
gion of light nuclei, this corresponding to an effective
increase in the masses of nuclei, also apply to the
results obtained within the model being considered.
This comes as no surprise since the potential energy
of a rotating drop was calculated in [46] on the basis of
the Sierk model [18], which is equivalent to the zero-
temperature Krappe model, which was used here.
Analyzing and comparing the results obtained in [46]
and in the present study, we would like to emphasize
that the rotation of a nucleus has a substantially
stronger effect than temperature on the position of
the Businaro–Gallone point. This was also observed
in [47, 48] in analyzing experimentally determined
stiffnesses.

4. SUMMARY AND OUTLOOK

In calculating static and statistical properties
of hot nuclei, we have applied the temperature-
dependent macroscopic model that takes into ac-
count nuclear forces of finite range.

The main coefficients of the model that were
obtained by Krappe [16] on the basis of approxi-
mating the results of calculations within the mi-
croscopic Thomas–Fermi method feature an ex-
plicit temperature dependence. Within a unified ap-
proach, we have therefore been able to calculate
self-consistently both fission barriers and level-
density parameters. The importance of this self-
consistency was previously highlighted in [19]. By
relying on the temperature-dependent finite-range
liquid-drop model, we have approximated the level-
density parameter by a leptodermous-type equation.
The values that we have obtained for the coefficients,
av = 0.0598 MeV−1 and as = 0.1218 MeV−1, agree
well with the coefficients obtained in [24]. These
coefficient values can be of use both in a statistical
and in a dynamical simulation of the fission process
on the basis of the finite-range liquid-drop model.

By way of example, we have calculated barrier
heights in nuclei and have determined their saddle-
point configurations and ratios af/an. From these ex-
amples, it is obvious that, in theoretically describing
heavy-ion fusion–fission reactions (where the afore-
mentioned parameters play a crucial role), it is nec-
essary to take into account the effect of both the
temperature and the rotation of a nascent compound
nuclear system. In the majority of cases, the effect of
the angular momentum proves to bemore sizable, but
it weakens with increasing temperature.

As matter of fact, the liquid-drop-model version
used here, which involves the coefficients that were
determined on the basis of microscopic calculations,
remains macroscopic. Its applicability range, as well
as the applicability range of any other macroscopic
PH
version of the liquid-drop model, embraces nuclei
heated to such an extent that single-particle pairing
and shell effects can be disregarded. For superheavy
nuclei, shell corrections play a significant role; there-
fore, the liquid-drop-model version due to Krappe
is inapplicable to such nuclei. The model that we
have considered here does not reproduce the results
obtained in [1]: for superheavy elements, there are
no stable states characterized by a relatively high
temperature and high angular momenta.

The results that we have obtained here for the
effective moments of inertia at the saddle point are
in good agreement with experimental estimates only
for Z2/A > 36 nuclei. For Z2/A ∼ 33–34 nuclei, the
model of a liquid drop with a sharp surface leads to
better agreement. However, the parameter (Z2/A)crit
extracted from information about Jeff within themodel
of a liquid drop with a sharp surface appears to
be (Z2/A)crit ∼ 50, which is markedly larger than
experimental estimates, 44.3–44.9, which, in turn,
are well reproduced by the temperature-dependent
finite-range liquid-drop model that was generalized
by Krappe and which has been used in the present
study.

In calculating the stiffness of nuclei, we have fo-
cused our attention primarily on temperature effects.
With increasing temperature, the Businaro–Gallone
point is shifted toward the region of light nuclei on the
Z2/A axis, this corresponding to the results reported
in [31]. As in [31], the increase in the temperature
from 0 to 2 MeV does not change the position of the
Businaro–Gallone point on the x axis, but, in con-
trast to the results of Haddad and Royer [31], a further
increase in the temperature leads, in our case, to an
increase in xBG = (Z2/A)BG/(Z2/A)crit, this being
due to a faster decrease in the parameter (Z2/A)crit
with increasing temperature. This circumstance con-
firms once again the importance of consistently ap-
plying nuclear models in theoretical calculations.

Summarizing the aforesaid, we emphasize that,
even within the best (at least at the present time)
version of the liquid-drop model, one can hardly re-
produce experimental data over the whole range of
mass numbers. In view of this, our present con-
clusions concerning the simultaneous effect of an
increase in the temperature and angular momen-
tum of a fissile nucleus are only qualitative. In or-
der to perform a more detailed quantitative com-
parison with experimental data, one needs dynami-
cal calculations that would employ the temperature-
dependent macroscopic model featuring finite-range
nuclear forces that has been studied here. That the
application of this model in our future dynamical
calculations would be quite straightforward explains
our attention to it and partly justifies the qualitative
YSICS OF ATOMIC NUCLEI Vol. 68 No. 9 2005
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character of the results that we obtained for the static
and statistical features of fissile nuclei.
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Abstract—The interaction of gold nuclei with photoemulsion nuclei at energies in the range 100–
1200 MeV per nucleon was studied experimentally. A consistent comparison of the experimental data
obtained in this way with the results of the calculations based on the cascade–evaporation model is
performed. c© 2005 Pleiades Publishing, Inc.
INTRODUCTION

On the basis of the nuclear-photoemulsionmethod,
the propagation of heavy (gold) nuclei through a ho-
mogeneous medium is studied here under conditions
of a complete experiment in the energy range 100–
1200 MeV per nucleon. Also, the features of the
interactions between 197Au nuclei and photoemulsion
nuclei are calculated within the cascade–evaporation
model [1], this including an analysis of the multiplici-
ties of secondary particles versus the basic properties
of the process. Further, our experimental data are
compared with the results of the calculations.

A similar investigation of the applicability of the
cascade–evaporation model to describing the inter-
actions of lighter nuclei (Ne, Ar, Fe) with photoemul-
sion nuclei in the same energy range was previously
performed in [2–5].

EXPERIMENT AND CALCULATIONS

In order to obtain quantitative results, we em-
ployed a photoemulsion chamber formed by 34 lay-
ers of BR-2 photoemulsion having a standard com-
position (3.148 × 1022 H, 1.412 × 1022 C, 0.396 ×
1022 N, 0.956 × 1022 O, 0.004 × 1022 S, 0.002 × 1022

I, 1.031 × 1022 Br, and 1.036 × 1022 Ag nuclei per
1 cm3). The dimensions of each layer were close to
10× 10× 0.05 cm3. The chamber was irradiated with
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197Au nuclei accelerated at the Bevalac accelerator
(Berkeley, USA) to an energy of 1147.2 MeV per nu-
cleon. In the irradiation, the mean fluence ranged be-
tween 500 and 2000 particles per 1 cm2. The details of
the development and primary treatment of the results
obtained in the chamber are given elsewhere [6, 7].

By using the method of fast and slow scanning,
1122 tracks were traced from their entrance into the
emulsion to their stop or interaction. As a result,
585 interactions of 197Au nuclei over the energy range
0–1147 MeV per nucleon were found over a length
of 30 m. Among these, we processed 332 inelas-
tic interactions of 197Au nuclei whose mean energy
ranged between 100 and 1147 MeV per nucleon. The
procedure employed here to process interactions was
described in [8, 9]. In processing data on projectile
disintegration, we were able to determine the charges
of all projectile fragments and their polar and az-
imuthal emission angles.

For a sample comprising 108 inelastic interac-
tions of 197Au nuclei whose mean energy fell within
the range 741.2 ± 19.8 MeV per nucleon, we mea-
sured the production angles, ionization losses, and
free paths of all charged secondaries (the sample in-
cluded 4444 particles).

In addition, we processed 173 nonrelativistic in-
teractions of 197Au nuclei where the atomic number
of a fragment in excess of 20 was determined by the
residual free path of the fragment [8], measurements
for other charged particles not being performed.

The calculated statistical sample was obtained by
generating the interactions between 197Au nuclei of
energy 700 MeV per nucleon and individual emulsion
nuclei (1H, 12C, 14N, 16O, 80Br, 107Ag) on the ba-
sis of the Monte Carlo method and by subsequently
performing summation with weights corresponding
c© 2005 Pleiades Publishing, Inc.
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to the calculated cross sections and the composi-
tion of the emulsion. In doing this, we took into ac-
count meson-production processes, a Lorentz con-
traction, and the effect of the Pauli exclusion principle
at the fast (first) stage and the effect exerted by the
change in the nuclear-matter density in the course
of cascade propagation. The deexcitation of nuclear
residues after the completion of the fast stage (the
second stage, which is slow) is described on the basis
of the statistical model. The total statistical sam-
ple obtained within the cascade–evaporation model
comprised 1000 events.

INELASTIC-INTERACTION FREE PATHS
OF 197Au NUCLEI

On the basis of our experimental measurements,
inelastic-interaction free paths of 197Au nuclei in
BR-2 nuclear photoemulsion were determined in the
energy ranges 100–400, 400–900, 900–1200, and
100–1200 MeV per nucleon. The results obtained in
this way are given in Fig. 1. Also shown in this figure
are experimental results reported in [10], where Ilford-
G5 emulsions and 197Au nuclei were used for targets
and projectiles, respectively.

Among a great variety of models for calculating
cross sections for inelastic nucleus–nucleus interac-
tions, we choose the Karol model [11] and the Bradt–
Peters model [12], according to which we calculated
the cross sections for the interaction of photoemul-
sion nuclei with 197Au nuclei and the corresponding
inelastic-interaction free paths for BR-2 photoemul-
sion in the energy range between 100 and 1200 MeV
per nucleon. In this calculation, we took into account
the change in the energy of the nuclei as they traverse
emulsion layers and the corresponding change in the
mean cross section for nucleon–nucleon interactions.

From the experimental data and from the results of
the calculations (see Fig. 1), it follows that, although
the cross sections for nucleon–nucleon interactions
exhibit a pronounced energy dependence in the en-
ergy range being considered, the inelastic-interaction
free paths of 197Au nuclei in a nuclear photoemulsion
are rather weakly dependent on the projectile energy.
The experimental data obtained here and in [10] prove
to be quite close to each other if one takes into ac-
count the distinctions between the composition and
densities of BR-2 and Ilford-G5 emulsions. The cal-
culations lead to larger cross sections for the interac-
tions of gold nuclei and, consequently, to shorter free
paths. The observed discrepancies between the cal-
culated and measured results may be due to missing
few-prong events in the experiments or to employ-
ing inaccurate values of adjustable parameters in the
above models or to both of these factors.
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Fig. 1. Inelastic-interactionmean free paths 〈L〉 of 197Au
nuclei in emulsion versus the projectile energy E: (closed
boxes) our present experimental data, (open circles) ex-
perimental data from [10], (solid curve) results of the cal-
culation based on the model proposed in [11], and (dash-
dotted line) results of the calculation within the model
considered in [12].

MULTIPLICITIES OF SECONDARY
PARTICLES

For a further analysis of our data, all secondaries
were partitioned into the following groups:

(i) the group of (g + s) particles defined as first-
stage particles, which comprise singly charged target
fragments of energy E ≥ 26 MeV per nucleon, prod-
uct mesons, and singly charged projectile fragments
whose transverse momentum exceeds 222.6 MeV/c
(this corresponds to E ≥ 26 MeV per nucleon in the
transverse direction);

(ii) the group of b particles defined as target frag-
ments of energy in the range E ≤ 26 MeV per nu-
cleon (their free path is shorter than 3 mm), which are
emitted predominantly at the second reaction stage;

(iii) the group of (s′ + g′ + b′) particles having
energies in the region E ≥ 26 MeV per nucleon and
transverse momenta below 222.6MeV/с per nucleon,
this group including singly (s′), doubly (g′), and mul-
tiply (b′, Z ≥ 3) charged projectile fragments.

In each interaction event, we determined the mul-
tiplicities of particles belonging to the above groups,
the total number N of charged secondaries, and their
total charge Zint.ch. (in electron-charge units). This
made it possible to obtain particle-number distribu-
tions in disintegration events induced by gold ions
of energy 0.741 GeV per nucleon and correlations
5
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Table 1. Multiplicity (in number of particles per interaction event) of charged secondaries produced in the interactions
between 197Au nuclei of mean energy 0.741 GeV per nucleon and photoemulsion nuclei

Interaction
type 〈Ng+s〉 〈Nb〉 〈Ns′+g′+b′〉 〈N〉 〈Zint.ch.〉

197Au + Em 21.71 ± 0.45 3.24 ± 0.17 16.24 ± 0.39 41.19 ± 0.62 91.97 ± 0.92

(19.06) (3.94) (13.04) (36.03) (95.08)
197Au + H 0.82 ± 0.27 0.09 ± 0.09 6.27 ± 0.76 7.18 ± 0.81 80.00 ± 2.69

(1.34) (0.02) (4.14) (5.49) (80.02)
197Au + CNO 13.39 ± 0.57 0.49 ± 0.11 20.51 ± 0.71 34.39 ± 0.92 82.51 ± 1.42

(10.74) (1.75) (15.26) (27.75) (87.56)
197Au + AgBr 31.91 ± 0.76 5.88 ± 0.32 15.07 ± 0.52 52.86 ± 0.97 101.25 ± 1.34

(35.52) (7.85) (16.33) (59.70) (118.40)
between the numbers of different-type particles in an
interaction event.

Table 1 gives the mean multiplicities of secondary
particles, 〈Ng+s〉, 〈Nb〉, and 〈Ns′+g′+b′〉, and the
mean multiplicity of all charged secondaries, 〈N〉, in
the interactions of nuclei having various masses and
energies, as well as the mean value of the total charge
in an interaction event, 〈Zint.ch.〉. We note that the
statistical errors in the values calculated on the basis
of the cascade–evaporation model (these values are
given in parentheses) are approximately three times
less than the experimental errors; therefore, they are
not presented here.

From Table 1 and from the data obtained previ-
ously for the interactions of lighter nuclei (Ne, Ar,
Fe) [2–5], it follows that an increase in the mass
of colliding particles has the greatest effect on the
number of particles produced at the first stage of
the process. For interactions of energy below 1 GeV
per nucleon, the mean multiplicity of (g + s) parti-
cles is proportional to the product of the masses of
interacting nuclei that is raised to a power close to
0.7, 〈Ng+s〉 ∼ (AprAtar)0.7. Also, the total interaction
charge 〈Zint.ch.〉 increases with increasing dimensions
of interacting nuclei. We note that 〈Zint.ch.〉 does not
include the target-nucleus charge, which was not
detected in our experiment. The masses of interacting
nuclei have a weaker effect on the mean multiplicity of
all charged secondaries, 〈N〉, than on 〈Ng+s〉. For in-
teractions of energy below 1 GeV per nucleon, 〈N〉 is
approximately proportional to (AprAtar)0.5.

As can be seen from Table 1, the results obtained
by the Monte Carlo method for the mean multiplici-
ties of (g+ s), b, and (s′ + g′ + b′) particles and for the
mean multiplicity of all charged secondaries, as well
as for the total interaction charge, are close to their
P

experimental counterparts, describing the increase in
the particle multiplicity and in 〈Zint.ch.〉 with increas-
ing mass of colliding particles.

A comparison of our experimental data with the
results reported in [2, 3] revealed that the mean mul-
tiplicity of b particles is virtually independent of the
projectile mass in the mass range 20–197 amu. For
example, the increase in the projectile mass by a fac-
tor of 10—from that of 20Ne to that of 197Au—leads
to only a 15% increase in the multiplicity of b particles
in the interaction with heavy emulsion nuclei, the
multiplicity of b particles in the interactions with light
emulsion nuclei even decreasing.

In order to clarify the possible reasons behind this
behavior of the multiplicity of b particles, we plotted
the mean multiplicity of b particles as a function of
the multiplicity of (g + s) particles in disintegration
events induced by the interaction between 197Au nu-
clei of energy 0.741 GeV per nucleon and photoemul-
sion nuclei (see Fig. 2). Figure 2 also displays the
results of the calculations based on the cascade–
evaporation model that were performed for 197Au nu-
clei of energy 0.7 GeV per nucleon and the results
presented in [2, 3] for the interactions of 20Ne and
40Ar nuclei whose energies were, respectively, 0.28
and 0.27 GeV per nucleon.

From the data in Fig. 2, it follows that, up to a
value of Ng+s ≈ 40, 〈Nb〉 grows almost linearly with
Ng+s in the interactions of gold nuclei. The emission
of each of the (g + s) particles (a particle that es-
caped from the nucleus under consideration at the fast
stage) leads, on average, to an additional emission of
0.2 to 0.3 of a b particle. In the region Ng+s > 40, a
decrease in the mean multiplicity of b particles with
increasing multiplicity of (g + s) particles is observed
in disintegration events involving heavy target nuclei.
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 9 2005
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Fig. 2. Experimental correlations between the mean multiplicity of b particles and the multiplicity of fast (g + s) particles
in disintegration events induced by the interactions of (closed boxes) 197Au nuclei of energy 0.741 GeV per nucleon, (open
circles) 20Ne nuclei of energy 0.28 GeV per nucleon, and (open triangles) 40Ar nuclei of energy 0.27 GeV per nucleon with
photoemulsion nuclei. The histogram represents the respective correlation calculated on the basis of the cascade–evaporation
model for 197Au nuclei of energy 0.7 GeV per nucleon.
Experiments with light projectiles of 20Ne and 40Ar
exhibited an increase in 〈Nb〉 with increasing Ng+s;
however, the respective correlation dependences did
not show (see Fig. 2) a decrease in 〈Nb〉 as Ng+s

grows further since there were no interactions char-
acterized by Ng+s > 40. We also note that, in the
interaction of 660-MeV protons with heavy emul-
sion nuclei, the number of emitted (g + s) particles
does not exceed three, the mean multiplicity being
1.03 particles per interaction event [12].

The simplest way to explain the observed form of
the 〈Nb〉(Ng+s) correlation, which characterizes the
interplay of the slow and the fast reaction stage, is
to take into account effects that are associated with
the “finiteness” of a heavy target nucleus. If the heavy
target nucleus of 107Ag loses 35 to 47 protons at the
first reaction stage, there will be no sizable target-
nucleus residue, with the result that the multiplicity of
b particles will not be large. Previously, the observed
effect of finiteness of a heavy target nucleus was not
found in the projectile-mass range between 2 and
56 amu, since the required number of nucleons could
not be knocked out of a heavy photoemulsion nucleus
because of small projectile dimensions. In our opin-
ion, the experimentally observed fact that the mean
multiplicity of b particles in interactions involving
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 9 200
light nuclei decreases as one goes over from neon to
gold projectiles can also be explained by the finiteness
effect. Upon undergoing a collision with gold nucle-
ons, the bulk of the nucleons of light nuclei go over to
the energy region above 26 MeV per nucleon.

The histogram in Fig. 2 represents the results of
the calculations based on the cascade–evaporation
model. One can easily see that this model provides
a fairly good description of the complicated experi-
mental dependence 〈Nb〉(Ng+s), including the exper-
imentally observed effect of finiteness of a heavy target
nucleus.

TARGET-NUCLEUS FRAGMENTATION
For each target-nucleus fragment (b particle), we

determined here the polar (θ) and azimuthal (ψ) emis-
sion angles and its free path in the photoemulsion.
Under the assumption that all b particles are protons,
we found angular, energy, and momentum properties
of each b particle. The mean values of the multiplic-
ity (〈Nb〉), polar emission angle, ratio of the num-
ber of particles emitted into the forward hemisphere
to the number of particles emitted into the back-
ward hemisphere (forward/backward), and longitudi-
nal and transverse momenta (〈P||〉 and 〈P⊥〉, respec-
tively) are given in Table 2 for the interactions of gold
5
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Table 2. Properties of target fragments of energy in the range E ≤ 26 MeV per nucleon that are emitted at the second
reaction stage

Target nucleus 〈Nb〉, part./int. 〈θ〉, deg Forward/backward 〈E〉, MeV/nucleon 〈P||〉, MeV/c 〈Р⊥〉, MeV/c

Au, E = 0.741 GeV/nucleon

Em 3.24 ± 0.17 77.81 ± 1.91 1.76 ± 0.09 9.23 ± 0.37 26.26 ± 3.92 94.96 ± 2.62

(3.94) (80.03) (1.59) (9.72) (19.6) (94.29)

C, N, O 0.49 ± 0.11 64.63 ± 5.14 5.67 ± 0.58 5.25 ± 1.15 36.76 ± 9.31 71.92 ± 9.15

(1.76) (84.30) (1.38) (7.24) (13.67) (79.02)

Ag, Br 5.88 ± 0.32 78.71 ± 2.00 1.65 ± 0.09 9.47 ± 0.38 25.43 ± 4.12 96.36 ± 2.71

(7.85) (79.32) (1.62) (10.14) (20.54) (96.93)

Au, Eint ≤ 0.873 GeV/nucleon

Ag, Br 5.53 ± 0.43 75.85 ± 0.23 1.77 ± 0.13 9.92 ± 0.04 30.31 ± 0.47 96.54 ± 0.30

Au, Eint > 0.873 GeV/nucleon

Ag, Br 6.27 ± 0.49 81.62 ± 0.21 1.55 ± 0.13 9.01 ± 0.04 20.46 ± 0.43 96.17 ± 0.30
nuclei at an average energy of 741 MeV per nucleon.
The results of the calculations within the cascade–
evaporation model are presented in parentheses.

From Table 2, one can see that a change in the
target mass by nearly a factor of 7 (in going over
from С, N, and O to Ag and Br) leads to an increase
in the multiplicity of b particles by almost a factor
of 12, the energy by a factor of 1.8, and the trans-
verse momentum by a factor of 1.3. Concurrently, the
forward orientation becomes less pronounced—the
forward/backward ratio decreases by almost a factor
of 3.5, 〈P||〉 decreases by a factor of 1.5, and the polar
emission angle increases by a factor of 1.2.

The results of the calculationswithin the cascade–
evaporation model are in satisfactory agreement with
the experimentally determined properties of b parti-
cles in interactions with heavy photoemulsion nu-
clei, the discrepancies being within 5 to 10%. The
calculations describe qualitatively the dependences of
the multiplicity, energy, and transverse momentum of
low-energy protons on the target-nucleus mass.

In order to analyze the effect of the projectile ve-
locity on the properties of b particles, the entire body
of data on interactions with heavy photoemulsion nu-
clei was partitioned into two groups where the in-
teraction energies were Eint � 873 MeV per nucleon
andEint > 873MeV per nucleon (samples containing
identical numbers of b particles). The properties of b
particles belonging to these samples are also given in
Table 2. One can see that, with decreasing projectile
velocity, the forward orientation of b particles be-
comesmore pronounced, the longitudinal momentum
component increasing by a factor of 1.5. The mean
PH
emission angle decreases by 20%. This effect was pre-
viously observed in [2–5], where it was explained by
the contribution of first-stage particles to the energy
region E < 26 MeV per nucleon, this contribution
increasing as the projectile energy decreases.

The measurements of the free paths and of the
azimuthal and polar emission angles in our experi-
ment made it possible to determine the 3-momentum
components for each of the b particles. For our anal-
ysis, we choose Pz(P||), which is the momentum
component along the direction of projectile motion,
and Px(P⊥ cosψ), which is the projection of the mo-
mentum onto an axis in the azimuthal plane that is
orthogonal to the direction of projectile motion.

In Fig. 3, we present the results obtained for
the distributions of b particles with respect to these
3-momentum components from our measurements
(Figs. 3a, 3c) and from the calculations within the
cascade–evaporation model (Figs. 3b, 3d). Both
the experimental and the measured distributions are
close to Gaussian distributions, this giving sufficient
grounds to consider a system that emits particles
isotropically and which has a characteristic temper-
ature and moves at a specific velocity. The effective
temperature of the system emitting particles can be
estimated by assuming that the distribution of singly
charged particles with respect to each 3-momentum
component is described by a Gaussian distribution
characterized by the parameter σ = (2/π)0.5〈P⊥〉,
the variance being related to the temperature by
the equation T0 = σ2/m. Both for the experimental
events and for their counterparts calculated within the
cascade–evaporation model, the estimates performed
YSICS OF ATOMIC NUCLEI Vol. 68 No. 9 2005
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Fig. 3. Distributions of b particles with respect to two 3-momentum components (Pz , Px) in the interactions of 197Au nuclei
with photoemulsion nuclei at an average energy of 0.741 GeV per nucleon. The histograms represent experimental data in
Figs. 3a and 3c and the results of the calculations within the cascade–evaporation model in Figs. 3b and 3d. The dashed
curves correspond to approximations by a Gaussian distribution.
for the interaction with heavy nuclei yield a value
of about 6 MeV for the effective particle-emission
temperature and a value of 〈β||〉 = 0.025 of the speed
of light for the velocity in question.

PROJECTILE-NUCLEUS FRAGMENTATION

For the interactions of gold nuclei with pho-
toemulsion nuclei at an average energy of 741 MeV
per nucleon, Table 3 gives the mean multiplicities
of doubly and multiply charged fragments (〈Ng′〉
and 〈Nb′〉, respectively), the mean multiplicities of
multiply charged fragments in various charge inter-
vals (columns 4–6), and the mean charge of Z ≥ 3
fragments (〈Zfr〉). The respective values obtained
from the calculations within the cascade–evaporation
model are presented in parentheses.

From an analysis of the data in this table on the
multiplicity of b′ particles, one can easily see that there
are two regions both in the calculated data and in
the experimental data at E ≈ 700 MeV per nucleon:
these are the region of fragment charges close to the
projectile charge (Z = 61−79), where the calculated
values exceed considerably their experimental coun-
terparts, and the fragment-charge region Z = 3−20,
where the calculation predicts fragment yields below
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 9 200
the experimental data. By way of example, we indicate
that, in the first region, the adequate calculated data
for our statistical sample (1000 events) at a projectile
energy of about 700 MeV per nucleon should have
been only 180 fragments instead of 590 actually ob-
tained in the calculation—that is, the discrepancy in
this region of fragment atomic numbers is as great as
a factor of 3. In the region Z = 3−20, the experimen-
tal data differ from the results of the calculations by a
factor of 18.

The data that we obtained show that the model
applied here is unable to take adequately into account
the multifragmentation and fission of excited heavy
nuclear residues. As a result, the calculations in-
volve virtually no interactions leading to the emission
of two or more heavy fragments. The mean mul-
tiplicity of heavy fragments of the incident nucleus
197Au was 1.7 to 2.7 particles per interaction event in
the experiment (see Table 3), whereas its calculated
value amounted to unity. An increase in the proba-
bility of the multifragmentation and fission of excited
projectile fragments within the model would lead to
an increase in the multiplicity of fragments in the
range Z = 3−20 and would increase, by and large,
the multiplicity ofZ ≥ 3 fragments in the interactions
of nuclei, and this would make it possible to describe
the experimental data more adequately.
5
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Table 3.Multiplicity of multiply charged projectile fragments formed in the interaction of 197Au nuclei with photoemul-
sion nuclei at an average energy of 0.741 GeV per nucleon

Target
nucleus

〈Ng′〉,
part./int.

〈Nb′〉,
part./int.

Intervals in Z 〈Zfr〉, el. ch.
3–20 21–60 61–79

Em 4.76 ± 0.21 2.52 ± 0.15 1.74 ± 0.13 0.62 ± 0.08 0.16 ± 0.04 18.79 ± 0.26

(1.97) (1.00) (0.08) (0.35) (0.57) (58.10)

H 2.27 ± 0.46 1.73 ± 0.40 0.27 ± 0.16 1.09 ± 0.31 0.36 ± 0.18 41.53 ± 1.48

(0.91) (1.00) (0.00) (0.03) (0.97) (74.70)

C, N, O 5.83 ± 0.38 3.37 ± 0.29 2.68 ± 0.26 0.63 ± 0.12 0.05 ± 0.03 13.38 ± 0.31

(2.52) (1.00) (0.06) (0.39) (0.56) (57.66)

Ag, Br 4.46 ± 0.28 2.05 ± 0.19 1.34 ± 0.15 0.52 ± 0.10 0.21 ± 0.06 21.51 ± 0.43

(2.14) (1.00) (0.14) (0.51) (0.35) (49.04)
In order to separate fission events from the whole
array of processed events of 197Au disintegration at
an energy of 0.741 GeV per nucleon, we selected
four events that involved at least two fast projectile
fragments carrying Zfr ≥ 20 elementary charge units
each. Thus, the ratio of the cross section for the for-
mation of two massive fragments to the total inelastic
cross section was 0.037 ± 0.010, which is close to the
probability of the binary fission of 197Au nuclei that is
induced by high-energy protons (3–5% [12]).

CONCLUSION

New experimental and calculated data have been
obtained for inelastic-interaction free paths of 197Au
nuclei in photoemulsion and for the multiplicities of
various charged secondaries produced in the inelastic
interaction of gold nuclei with photoemulsion nuclei
at energies in the range 100–1147 MeV per nucleon,
as well as for the angular, energy, and momentum
properties of these particles. The fragmentation of
target and projectile nuclei has been considered. The
properties of the interaction have been analyzed ver-
sus the energy of interacting nuclei.

For particles emitted at the slow stage, we have
discovered the effect of finiteness of heavy photoemul-
sion nuclei in their interaction with gold ions. This
effect was not observed previously in the projectile-
mass range between 2 and 56 amu. The behavior
of particles originating at the second stage of the
process from target nuclei can be described quite
accurately within the model of a thermalized source
that emits particles isotropically and which has an
PH
effective temperature of about 6 MeV and moves at
a velocity of 〈β||〉 = 0.025 of the speed of light.

In studying projectile fragments, we have found
that the main discrepancy between the calculated
and experimental data consists in that the calcula-
tion underestimates significantly the probability of the
disintegration of a fast nucleus into several Z ≥ 3
fragments, with the result that the charge spectra of
197Au fragments appear to be distorted. Otherwise,
the results of the calculations within the cascade–
evaporation model describe qualitatively and quanti-
tatively (to within 10 to 15%) our experimental data,
including correlation dependences and the angular,
energy, and momentum features of charged secon-
daries versus the target mass and particle type.
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Abstract—The momentum features of protons originating from 16Оp collisions at a momentum of
3.25 GeV/с per nucleon are analyzed. It is shown that the degree of excitation of the fragmenting
nucleus affects predominantly the shape of the momentum spectrum of protons emitted into the backward
hemisphere in the rest frame of the projectile nucleus and partly the shape of the spectra of protons
emitted into the forward hemisphere and formed via the mechanisms of Fermi breakup and evaporation.
c© 2005 Pleiades Publishing, Inc.
It is well known that the formation of light frag-
ments like 1Н1, 2H1, 3H1, and 3Не2 is a feature pecu-
liar to the nuclear-fragmentation process [1]. In par-
ticular, it was proven experimentally that the bulk
of protons are formed at the initial, fast, stage of
high-energy hadron–nucleus and nucleus–nucleus
interactions. At the same time, the cross section for
nucleon production appeared to be commensurate
with the inelastic nuclear-reaction cross section. In
view of this, more information about the dynam-
ics of the nuclear-fragmentation process can be de-
duced from an analysis of the production of light
fragments than from an analysis of the production
of heavy fragments. Since it is quite straightforward
to identify secondary protons and to measure their
kinematical features, they have been explored fairly
well. Nevertheless, correlations in the production of
protons and multiply charged fragments in relativistic
hadron–nucleus collisions have not yet received ade-
quate study.

In [2], it was shown that the shape of the momen-
tum spectrum of protons produced in 16Оp collisions
at a momentum of 3.25 GeV/с per nucleon depends
on the degree of excitation of the fragmenting oxygen
nucleus. It was also shown there that the mecha-
nism of the production of relatively fast protons (p >
0.45 GeV/c) traveling in the forward hemisphere in
the rest frame of the projectile nucleus is independent

1)Joint Institute for Nuclear Research, Dubna, Moscow
oblast, 141980 Russia.

2)Institute of Nuclear Physics, Uzbek Academy of Sciences,
pos. Ulughbek, Tashkent, 702132 Republic of Uzbekistan.

*E-mail: olimov@uzsci.net
1063-7788/05/6809-1548$26.00
of either the energy or the mass number of the frag-
menting nucleus.

The present study, which is a continuation of the
analysis reported in [2], is devoted to a more detailed
exploration of correlations between the properties of
the momentum spectrum of protons and the degree of
excitation of the oxygen nucleus.

The experimental data subjected to the present
analysis were obtained by exposing the 1-m hydro-
gen bubble chamber of the Laboratory for High En-
ergies at the Joint Institute for Nuclear Research
(JINR, Dubna) to a beam of 16О nuclei accelerated
at the Dubna synchrophasotron to a momentum of
3.25 GeV/c per nucleon. This data sample consisted
of 11 098 measured 16Оp events. The methodological
aspects of our experiment are described in [3–5].

The total charge of multiply charged (zf ≥ 2) frag-
ments (

∑
zf ) can be considered as a measure of the

degree of excitation of the fragmenting oxygen nu-
cleus. In this connection, it is of interest to explore the
effect of the degree of excitation of a fragmenting nu-
cleus on the momentum features of protons. We will
now consider the dependence of the mean momentum
of protons emitted into the forward and backward
hemispheres (forward and backward protons, respec-
tively) in the rest frame of the oxygen nucleus on
the total charge of multiply charged fragments. This
dependence is shown in Fig. 1. From Fig. 1a, one
can see that, within the statistical errors, the mean
momentum of forward protons is everywhere (with
the exception of the point at

∑
zf = 6) independent

of
∑
zf —that is, of the degree of excitation of the

fragmenting nucleus. The solid curve represents the
c© 2005 Pleiades Publishing, Inc.
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result obtained (without allowance for the experimen-
tal point at

∑
zf = 6) by approximating the experi-

mental data by a function of the form

〈p〉 = α. (1)

It can be seen that this approximation describes fairly
well the fact that the mean momentum of forward
protons is independent of the total charge of multiply
charged fragments. The fitted value of the parameter
α proved to be 435.9 ± 4.0 MeV/c at χ2 = 0.74 per
five degrees of freedom, this corresponding to a 98%
confidence level. We also note that, within the statis-
tical errors, the standard deviations for the momen-
tum spectra of forward protons remain unchanged for
these groups of events (

∑
= 273.7 ± 2.9 MeV/c). If,

in approximating the experimental data by expres-
sion (1), one includes the point at

∑
zf = 6 (the

dotted curve in Fig. 1a), then α = 425.0± 3.0 MeV/c
at χ2 = 14.96 per six degrees of freedom, this cor-
responding to a 2% confidence level. Thus, one can
conclude that the deviation of the experimental point
at
∑
zf = 6 from 〈p〉 is significant in relation to other

values of the total charge of multiply charged frag-
ments.

The observed decrease of about 10% in the mean
momentum of forward protons at

∑
zf = 6 in rela-

tion to 〈p〉 at other values of
∑
zf can be explained

by a relatively large contribution of the evaporation
mechanism to the spectrum of forward protons in
these events. This can be qualitatively interpreted as
follows. By virtue of the isotopic invariance of strong
interaction, the probabilities of pp and pn interactions
are identical since the projectile nucleus contains
equal numbers of protons and neutrons. Further, the
processes of multiple intranuclear rescattering can be
disregarded since events in which the total charge is
6 or 7 are due to peripheral 16Оp collisions. In the
case where

∑
zf = 7, the observed proton is, with

identical probabilities, a product of either a direct
knockout or evaporation. For the group of

∑
zf = 6

events, the final state features two protons; of these,
one is due to evaporation, while the other may be, with
a probability of 0.5, a knock-on proton, as in the case
of
∑
zf = 7. This is precisely the circumstance that

leads to an increased fraction of evaporated protons
in the

∑
zf = 6 group and, accordingly, to a decrease

in the mean momentum in this group.
From Fig. 1b, one can see that, with increasing

total charge of multiply charged fragments, the mean
momentum of backward protons decreases mono-
tonically, which is likely to be due to an increase in
the fraction of evaporated protons. It should be noted
that the contribution of cascade protons to the spec-
trum of backward protons can be disregarded. With
increasing total charge, the standard deviations for
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 9 200
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Fig. 1. Mean total momenta of (a) forward and (b) back-
ward protons in the rest frame of the oxygen nucleus
versus the total charge,

∑
zf , of multiply charged frag-

ments.

the momentum distributions decrease almost linearly;
that is, the momentum spectra in question become
narrower.

Here, it is also of interest to study the dependence
of the shapes of the forward- and backward-proton
momentum spectra on the degree of excitation of the
oxygen nucleus. Figure 2 shows the ratios R of the
forward- and backward-proton momentum spectra
for various groups of events to the total spectra of,
respectively, forward and backward protons. The Ro-
man numerals there indicate the numbers of groups
corresponding to different values of

∑
zf . Because of

scarce statistics of
∑
zf = 0 and

∑
zf = 3 events,

they were combined with events characterized by
close total charges of multiply charged fragments—
that is, with

∑
zf = 2 and

∑
zf = 4 events, respec-

tively. Thus, groups I, II, III, IV, and V contain,
respectively,

∑
zf = 0−2,

∑
zf = 3−4,

∑
zf = 5,∑

zf = 6, and
∑
zf = 7 events.

As follows from Fig. 2a, the ratios R display a
significant momentum dependence only in the region
p < 0.25 GeV/c, which corresponds to the spectrum
of evaporated protons. One can see that the depen-
dence of R on p is linear; however, the slope of the
respective straight lines changes from negative values
for groups I–III to positive values for groups IV and
V, reflecting the dynamics of changes in the relative
yields of protons of different origin versus momentum.
5
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In the region p > 0.25 GeV/c, where there are vir-
tually no evaporated protons, R is independent of p
within the statistical errors. Thus, one can conclude
that the degree of excitation of the projectile nucleus
changes the shape of the spectrum of forward protons
that do not originate from a cascade.

From Fig. 2a, one can also see that the fraction of
evaporated protons is maximal in group IV—that is,
in the case where

∑
zf = 6. The bulk of events in this

group involve the formation of one sextuply charged
fragment and three doubly charged fragments.

The ratio R for backward protons displays an
interesting momentum dependence (Fig. 2b). For
groups I and II, R increases slowly with increasing
momentum over the entire region of the spectrum; for
PH
group III, R remains virtually unchanged, within the
statistical errors, over the entire momentum range;
for groups IV and V, R decreases monotonically with
increasing momentum.

From the experimental data considered above, it
follows that the degree of excitation of the fragment-
ing nucleus affects differently the shapes of the mo-
mentum spectra of forward and backward protons.
A substantial effect of the degree of excitation of
the fragmenting nucleus on the shape of the mo-
mentum spectrum of backward protons can be ex-
plained by the origin of these protons. Protons emit-
ted into the backward hemisphere are predominantly
produced via evaporation and Fermi breakup, these
mechanisms being directly associated with the de-
gree of excitation of the fragmenting nucleus, as is
observed experimentally. In addition to these mech-
anisms, intranuclear-cascade processes make a sig-
nificant contribution to the production of forward pro-
tons. It is interesting to note that, although there is
an interrelation between the degree of excitation of
the fragmenting nucleus and the multiplicity of the
intranuclear cascade, the former has no effect on the
shape of the momentum spectrum of protons of this
origin.

Thus, we can conclude that the degree of exci-
tation of the fragmenting nucleus has a substantial
effect only on the shape of the momentum spectrum
of backward protons and affects partly the shape of
the spectra of forward protons that do not originate
from a cascade. The observed decrease in the mean
momentum of forward protons at

∑
zf = 6 in relation

to other charge groups is due to an increased fraction
of evaporated protons.
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Chastits At. Yadra 24, 295 (1993) [Phys. Part. Nucl.
24, 125 (1993)].
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Abstract—New experimental data concerning the mechanisms of the production of protons originating as
fragments from oxygen-nucleus interactions in a hydrogen bubble chamber at high energies are presented.
It is shown that anomalies observed in the energy spectrum of protons at kinetic energies in the range
T = 70−90 MeV are associated with the absorption of slow pions by a quasideuteron nucleon pair.
c© 2005 Pleiades Publishing, Inc.
According to present-day theoretical ideas, the
production of the lightest nuclear fragments, nu-
cleons (protons and neutrons), can proceed at all
stages of hadron–nucleus interaction at high ener-
gies, which is an extremely intricate process. Such
nucleons may emerge at the stage of an intranuclear
cascade or from the decay of excited multinucleon
fragments; also, they may be products of either
evaporation or an explosive decay (Fermi breakup)
of a thermalized residual nucleus. The interaction of
primary particles with intranuclear systems, where
nucleons occur at very short distances (≤1 fm),
may in principle lead to the formation of so-called
cumulative nucleons—that is, nucleons whose mo-
menta have values forbidden by the usual kinematics
of particle scattering on free intranuclear nucleons
(with allowance for their Fermi motion). In particular,
relatively energetic nucleons appearing as fragments
may originate from the absorption of slow product
pions by quasideuteron nucleon pairs in a nucleus via
the reaction

π + 〈〈d〉〉 → N +N. (1)

If the energy of the pion involved is rather high, the
final state may involve isobars. Such reactions, if they
indeed occur, may result in the formation of cumula-
tive nucleons.

Previously, a structure in the momentum spec-
trum of protons emitted in the backward hemisphere
in the laboratory frame was discovered in [1–3] in pNe
interactions at 300 GeV/c and in π−C collisions at
4 and 40 GeV/c—more specifically, the differential
cross section as a function of the proton momentum
was found there to deviate from a monotonic behavior
in the region p ≈ 0.3−0.5 GeV/c. It was shown that
1063-7788/05/6809-1551$26.00
the observed structure is the result of pion or meson-
resonance absorption by strongly bound few-nucleon
systems.

The present study is devoted to exploring the
energy spectrum of protons originating as oxygen-
nucleus fragments from 16Оp interactions at a mo-
mentum 3.25 GeV/с per nucleon. It is a continuation
of the series of investigations into the mechanisms
of relativistic-hydrogen-nucleus fragmentation with
the aid of the 1-m liquid-hydrogen bubble chamber
at the Joint Institute for Nuclear Research (JINR,
Dubna). It should be noted that the use of a liquid
bubble chamber in a magnetic field proved to be
an efficient method for studying many features of
the fragmentation process under conditions of 4π
geometry. The methodological issues concerning
the identification of particles and fragments were
described in detail elsewhere [4–7].

The experimental data presented below are based
on a statistical sample of about 15 000 measured
16Оp events. In analyzing the energy spectra of the
protons, a clear mass separation of fragments was
ensured by considering only those events in which
the measured length of tracks of fast singly charged
particles in the fiducial volume of the chamber ex-
ceeded 35 cm. In the case of this selection, the mean
error in momentum measurements was less than 3%
for 1Н and 2Н and 5% for 3Н. The following mo-
mentum intervals were introduced in order to per-
form a mass identification of these fragments: p =
4.75−7.75 GeV/с for 2Н and p > 7.8 GeV/c for 3Н.
All singly charged positive particles in the momen-
tum range 2.0 ≤ p ≤ 4.75 GeV/c were classified as
protons, since the production of positively charged
pions is kinematically impossible in the momentum
c© 2005 Pleiades Publishing, Inc.
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Fig. 1. Kinetic-energy distribution of protons appearing
as fragments in channels where the total charge of multi-
ply charged fragments falls within the range 5 ≤

∑
zf ≤

7: (a) results for events not involving deuteron production
and (b) results for events involving the production of at
least one deuteron.

region p > 2 GeV/c. It should be noted that all mul-
tiply charged fragments of the projectile nucleus were
unambiguously identified by the charge value. This
made it possible to study the fragmentation process
in individual topological channels. In describing and
discussing the results obtained here, all energy fea-
tures of protons are presented below in the antilabo-
ratory frame—that is, in the rest frame of the oxygen
nucleus.

As was shown in [7], the distribution of the invari-
ant structure function f(T )with respect to the proton
kinetic energy has a sharply descending character
as the energy increases in the region T ≤ 10 MeV,
but, at higher energies, the slope of the spectrum
decreases; in the region T > 50 MeV, the shape of
the spectrum approaches that of an exponential. In
the region T ≈ 60−90 MeV, the inclusive kinetic-
energy spectrum of protons exhibits a deviation from
monotononicity in its descending part. This structure
manifests itself most clearly in topological channels
where the total charge of multiply charged fragments
falls within the range 5 ≤

∑
zf ≤ 7. For two groups

of events belonging to these channels, Fig. 1 displays
P

the kinetic-energy distribution of protons appear-
ing as fragments (in the range 40 < T < 250 MeV).
The groups are defined in such a way that events
of one group feature no deuterons (Fig. 1a), while
events of the other group feature at least one deuteron
(Fig. 1b). From Fig. 1а, one can see that the dis-
tribution for the first group exhibits a structure that
involves a sizable peak. The solid curve represents the
result of approximating the spectrum beyond the in-
terval 70 < T < 110 MeV by a Legendre polynomial
of fifth degree. One can see that beyond this interval,
the spectrum in question has a monotonically de-
creasing character and is very well reproduced by this
polynomial (χ2 = 3.18 per 11 degrees of freedom, this
corresponding to a more than 99% confidence level).
The dashed curve in Fig. 1a represents the result of
approximating all experimental points by a Legendre
polynomial of fifth degree. We see that the description
of the experimental data deteriorates upon the inclu-
sion of the interval 70 < T < 110MeV (χ2 = 17.5 per
15 degrees of freedom, this corresponding to a less
than 30% confidence level). This suggests that the
structure observed in the interval 70 < T < 110 MeV
is reliable.

The position of the peak maximum at T ≈ 80 ±
5 MeV in Fig. 1a agrees well with the assumption
that some of the protons are produced in the decays
of a quasideuteron nucleon pair upon the absorption
of a slow pion. In this case, it is natural to expect
that, in channels involving deuteron production, the
probability of observing protons formed in reactions
of pion absorption by quasideuteron nucleon pairs
in a nucleus (π + 〈〈d〉〉 → N + p) is strongly sup-
pressed. Indeed, one can see from Fig. 1b that, in
events involving deuteron production, there are no
anomalies in the range T ≈ 70−90 MeV. In passing,
we emphasize that the presence or absence of three-
nucleon fragments (3H and 3He nuclei), which could
be formed upon the fusion of a deuteron with another
nucleon from a cascade [7], has virtually no effect on
the result.

The absence of a sizable peak in topological chan-
nels where the total charge of zf ≥ 2 fragments is
less than five can be explained qualitatively as follows.
Since a greater number of intranuclear collisions and
a disintegration of the primary nucleus to a greater
degree occur in those channels, protons formed in
reaction (1) lose their initial kinematical parameters,
the energy spectrum of these protons being strongly
smeared.

Thus, we can conclude that the structure observed
in the energy spectrum of protons in the range T ≈
70−90 MeV is associated with the decay of a two-
nucleon system upon the absorption of a slow pion.
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 9 2005
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Abstract—We demonstrate the possibility of a good description of the processes φ(1020) → γππ and
φ(1020) → γf0(980) within the framework of the nonrelativistic quark model assuming f0(980) to be a
dominantly quark–antiquark system. Different mechanisms of the radiative decay, that is, the emission of a
photon by the constituent quark (additive quark model) and charge-exchange current, are considered. We
also discuss the status of the threshold theorem applied to the studied reactions, namely, the behavior of
the decay amplitude at Mππ → mφ and mf0 → mφ. In conclusion, the arguments favoring the qq̄ origin of
f0(980) are listed. c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

TheK-matrix analysis of meson spectra [1–3] and
meson systematics [4, 5] point determinately to the
quark–antiquark origin of f0(980). However, there
exist hypotheses where f0(980) is interpreted as a
four-quark state [6], KK̄ molecule [7], or vacuum
scalar [8]. The radiative and weak decays involving
f0(980) may be a decisive tool for understanding the
nature of f0(980).

In the present paper, the reaction φ(1020) →
γf0(980) is considered in terms of a nonrelativistic
quark model assuming f0(980) to be dominantly
the qq̄ state. The nonrelativistic quark model is a
good approach for the description of the lowest qq̄
states of pseudoscalar and vector nonets, so one may
hope that the lowest scalar qq̄ states are described
with reasonable accuracy as well. The choice of
a nonrelativistic approach for the analysis of the
reaction φ(1020) → γf0(980) was motivated by the
fact that, in its framework, we can take account of not
only the additive-quark-model processes (emission
of a photon by a constituent quark) but also those
beyond it within the use of the dipole formula (photon
emission by the charge-exchange current gives such
an example). The dipole formula for the radiative
transition of a vector state to a scalar one, V → γS,
was applied before for the calculation of reactions with
heavy quarks (see [9, 10] and references therein). Still,
a straightforward application of the dipole formula to
the reaction φ(1020) → γf0(980) is hardly possible
since the f0(980) surely cannot be represented as a
stable particle: this resonance is characterized by two

∗This article was submitted by the authors in English.
1063-7788/05/6809-1554$26.00
poles lying on two different sheets of the complex-
M plane, at M = 1020 − 40i MeV and M = 960 −
200i MeV. It should be emphasized that these two
poles are important for the description of f0(980).
Therefore, we use the method below as follows: we
calculate the radiative transition to a stable bare
f0 state (this is fbare

0 (700 ± 100)); its parameters
were obtained in the K-matrix analysis [1]. In this
way, we find out the description of the process
φ(1020) → γfbare

0 (700 ± 100), and furthermore, we
switch on the hadronic decays and determine the
transition φ(1020) → γππ; just the residue in the
pole of this amplitude is the radiative transition
amplitude φ(1020) → γf0(980). Hence, we obtain
a successful description of data for φ(1020) → γππ
and φ(1020) → γf0(980) within the assumption that
f0(980) is dominated by the quark–antiquark state.

The conclusion about the nature of f0(980) cannot
be based on the study of one reaction only but should
be motivated by the whole aggregate of data. In the
article, we also list the other processes, which provide
us with arguments in favor of the dominant qq̄ struc-
ture of f0(980).

Section 2 is introductive: here, we consider a sim-
ple model for the description of composite vector
(V ) and scalar (S) particles, the composite parti-
cles consisting of one-flavor quark, charge-exchange
currents being absent. In such a model, the decay
transition V → γS is completely determined by the
additive-quark-model process: a photon is emitted
only by one or another constituent quark. Two alter-
native representations of the V → γS decay ampli-
tude are given, namely, the standard additive-quark-
model formula and that of a photon dipole emission;
in the latter, the factor ω = mV − mS is written in
c© 2005 Pleiades Publishing, Inc.
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explicit form. The comparison of these two represen-
tations helps us to formulate the problem of appli-
cation of the threshold theorem [11] to the reaction
V → γS. Using a simple example with exponential
wave functions, we demonstrate that the ω3 factor
occurs in the partial decay width when the transition
V → γS is considered in terms of the additive quark
model.

The threshold theorem has a straightforward for-
mulation for the stable V and S states, but it is not
the case for resonances, which are the main objects
of our present study. That is why we intend to refor-
mulate the threshold theorem as the requirement of
amplitude analyticity—this is given in Section 3 on
the basis of [12]. Working with nonstable particles,
when V and S are resonances, the V → γS amplitude
should be determined as a residue of a more general
amplitude, with stable particles in the initial and final
states. For example, the φ(1020) → γf0(980) ampli-
tude should be defined as a residue of the e+e− →
γππ amplitude in the poles corresponding to reso-
nances φ(1020) and f0(980) (the φ pole in the e+e−

channel and the f0 pole in the ππ channel). The only
residue in the pole defines the universal amplitude
which does not depend on the considered reaction.

In Section 4, we discuss the reaction φ → γf0 for
the case when the f0 is a multicomponent system and
f0 and φ are stable states with respect to hadronic
decays. The analysis of meson spectra (e.g., see the
latest K-matrix analyses [1, 5]) definitely tells us that
the f0 mesons are the mixture of the quarkonium
(nn̄ = (uū + dd̄)/

√
2 and ss̄) and gluonium compo-

nents. Such a multichannel structure of f0 states
reveals itself in the existence of the t-channel charge-
exchange currents. Therefore, the transition φ → γf0

goes via two mechanisms: the photon emission by
constituent quarks (additive-quark-model process)
and charge-exchange current. Wewrite down the for-
mulas for the amplitudes initiated by these two mech-
anisms. The equality to zero of the whole amplitude
at small mass difference of φ and f0, Aφ→γf0 ∼ ω at
ω → 0, resulted from the cancellation of contributions
of these two mechanisms. We also give a dipole rep-
resentation of the transition amplitude, whereAφ→γf0

is determined through the mean transition radius and
mass difference (mφ − mf0).

Section 5 is devoted to the reaction φ(1020) →
γf0(980). First, we discuss whether it is possible
to treat f0(980) as a stable particle. Our answer
is “no”; in fact, the f0(980) is an unstable parti-
cle characterized by two poles located near the KK̄
threshold. As was stressed above, strong transitions
f0(980) → ππ, KK̄ reveal themselves in the two am-
plitude poles, which are located on different sheets
of the complex-M plane, at M = 1020 − 40i MeV
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and M = 960 − 200i MeV, and these two poles are
important for the description of f0(980). The essential
role of the second pole is seen by considering the ππ
spectrum in φ(1020) → γππ (Section 6): the visible
width of the pick in the ππ spectrum is of the order of
150 MeV, and the spectrum decreases slowly with a
further decrease in Mππ.

Another problem to be discussed is the choice of
method for the consideration of radiative decay ampli-
tude. One can work within two alternative represen-
tations for the Aφ→γf0 amplitude. One representation
uses the additive quark model complemented with
the contribution from the charge-exchange current
processes. Whence the additive-quark-model ampli-
tude can be calculated rather definitely, at least for
the lowest qq̄ states, the charge-exchange current
processes are vaguely determined.

The other way to deal with the transition ampli-
tude consists in using the dipole emission formulas,
where the amplitude is defined by the mean transi-
tion radius and factor (mφ − mf0). For the lowest
qq̄ states, we have a good estimate of the radius.
But there is a problem of the determination of the
factor (mφ −mf0), because the f0(980) is an unstable
particle characterized by two poles. The pole M =
960 − 200i MeV is disposed on the same sheet of the
complex-M plane as the pole of φ meson, and the
distance |mφ − mf0 | is ∼ 200 MeV, while the pole
M = 1020 − 40i MeV is located on another sheet,
and the distance from the φ meson is ∼ 70 MeV,
which is also not small on the hadronic scale. The
problem is what the mass difference factor means in
the case of complex masses and which pole should be
used to characterize this mass difference.

To succeed in the description of the decay
φ(1020) → γf0(980), we use the results of the
K-matrix analysis of the IJPC = 00++ wave [1].
The fact is that, on the one hand, the K-matrix
analysis allows us to get the experimentally based
information on masses and full widths of resonances
together with the pole residues needed for the decay
couplings and partial widths. On the other hand, the
knowledge of the K-matrix amplitude enables us to
trace the evolution of states by switching on/off the
decay channels. In such a way, one may obtain the
characteristics of the bare states, which are prede-
cessors of real resonances. With such characteristics,
one can perform a reverse procedure: to retrace the
transformation of the amplitude written in terms of
bare states to the amplitude corresponding to the
transition to a real resonance. Just this procedure has
been applied in Section 5 for the calculation of the
decay amplitude φ(1020) → γf0(980).
5
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Therefore, within the framework of the nonrela-
tivistic quark model, we have calculated the reac-
tion φ(1020) → γfbare

0 (n), where fbare
0 (n) are bare

states found in [1]. Furthermore, with the K-matrix
technique, we have taken account of the decays
fbare
0 (n) → ππ, KK, thus having calculated the reac-
tion φ(1020) → γππ and the amplitude of φ(1020) →
γf0(980) (the pole residue in the ππ channel). In
this way, we see that the main contribution is given
by the transition φ(1020) → γfbare

0 (700 ± 100). The
characteristics of fbare

0 (700 ± 100) are fixed by the
K-matrix analysis [1]: this is a qq̄ state close to the
flavor octet and it is just the predecessor of f0(980).
In the framework of this approach, we succeed in
the description of data for the reactions φ(1020) →
γf0(980) (Section 5) and φ(1020) → γππ (Sec-
tion 6).

Let us note that such a method, the use of bare
states for the calculation of meson spectra, has been
applied before for the study of weak hadronic decays
D+ → π+π+π− [13] and description of the ππ spec-
tra in photon–photon collisions γγ → ππ [14].

The question of what the accuracy of the addi-
tive quark model is in the description of the reac-
tions φ(1020) → γfbare

0 (700 ± 100) and φ(1020) →
γf0(980) is discussed in Section 7. We compare
the results of the calculation of the φ(1020) →
γfbare

0 (700 ± 100) reaction by using the dipole for-
mula with that of the additive quark model. It is
seen that, within error bars given by the K-matrix
analysis [1], the results coincide. Still, one should
emphasize that the dipole-calculation accuracy is
low, which is due to a large error in the determination
of the bare-state masses. The coincidence of results
in the dipole and additive-quark-model formulas
should point to a small contribution of processes
which violate additivity, such as photon emission
by the charge-exchange current: this smallness is
natural, provided the hadrons are characterized by
two sizes, namely, the hadron radius (Rh ∼ Rconf)
and constituent-quark radius (rq) under the condition
r2
q � R2

h (see [15] and references therein).
The performed analysis demonstrates that the

reaction φ(1020) → γf0(980) does not produce any
difficulty with the interpretation of f0(980) as a qq̄
state. Still, to draw a conclusion about the content of
f(980), we list in Section 8 the arguments in favor of
the qq̄ origin of f0(980).

2. THE PROCESS V → γS
WITHIN THE NONRELATIVISTIC ADDITIVE

QUARK MODEL
Here, in the framework of the nonrelativistic quark

model, we consider the transition V → γS in the case
PH
when the charge-current-exchange forces are absent
and the V → γS amplitude is given by the additive-
quark-model contribution.

2.1. Wave Functions for Vector and Scalar
Composite Particles

The qq̄ wave functions of vector and scalar parti-
cles are defined as follows:

ΨV µ(k) = σµψV (k2), (1)

ΨS(k) = (σ · k)ψS(k2),

where, by using Pauli matrices, the spin factors are
singled out. The blocks dependent on the relative
momentum squared are related to the vertices in the
following way:

ψV (k2) =
√

m

2
GV (k2)

k2 + mεV
, (2)

ψS(k2) =
1

2
√

m

GS(k2)
k2 + mεV

.

Here, m is the quark mass, and ε is the composite-
system binding energy: εV = 2m − mV and εS =
2m − mS, where mV and mS are the masses of
bound states. The normalization condition for the
wave functions reads∫

d3k

(2π)3
Sp2

[
Ψ+

S (k)ΨS(k)
]

(3)

=
∫

d3k

(2π)3
ψ2

S(k2)Sp2[(σ · k)(σ · k)] = 1,

∫
d3k

(2π)3
Sp2

[
Ψ+

V µ(k)ΨV µ′(k)
]

=
∫

d3k

(2π)3
ψ2

V (k2)Sp2[σµσµ′ ] = δµµ′ .

2.2. Amplitude within the Additive Quark Model

When a photon is emitted by a quark or antiquark,
the V → γS process is described by the triangle di-
agram (see Fig. 1a) that is actually the contribution
from the additive quark model. Relativistic consider-
ation of the triangle diagram is presented in [16, 17],
while the discussion of the nonrelativistic approxima-
tion is given in [12, 18] (recall that, in [18], the corre-
sponding wave functions were determined in another
way, namely, ψV (k2) = GV (k2)(4k2 + 4mεV )−1 and
ψS(k2) = GS(k2)(4k2 + 4mεS)−1).

In terms of wave functions (1), the triangle-
diagram contribution reads

ε(V )
µ ε(γ)

α AV →γS
µα = eZV →γSε(V )

µ ε(γ)
α F V →γS

µα , (4)
YSICS OF ATOMIC NUCLEI Vol. 68 No. 9 2005
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Fig. 1. Transitions V → γS in the additive quark model.
F V →γS
µα =

∫
d3k

(2π)3
Sp2

[
Ψ+

S (k)4kαΨV µ(k)
]

.

Here, ε
(V )
µ and ε

(γ)
α are polarization vectors for V

and γ: ε
(V )
µ pV µ = 0 and ε

(γ)
α qα = 0. The charge factor

ZV →γS being different for different reactions is speci-
fied below (see also [16, 17]). The expression for the
transition amplitude (4) can be simplified after the
substitution in the integrand

Sp2[σµ(σ · k)]kα → 2
3

k2g⊥⊥
µα , (5)

where g⊥⊥
µα is the metric tensor in the space orthogo-

nal to total momentum of the vector particle pV and
photon q. The substitution (5) results in

AV →γS
µα = eg⊥⊥

µα AV →γS, (6)

where

AV →γS = ZV →γS

∞∫
0

dk2

π
ψS(k2)ψV (k2)

2
3π

k3. (7)

The amplitudes AV →γS
µα and AV →γS were used in

[16, 17] for the decay amplitude φ(1020) → γf0(980)
within the relativistic treatment of the quark transi-
tions.

However, for our purpose, it would be suitable not
to deal with Eq. (7) but use the form factor F V →γS

µα

of Eq. (4) rewritten in the coordinate representation.
One has

ΨV µ(k) =
∫

d3r eik·rΨV µ(r), (8)

ΨS(k) =
∫

d3r eik·r ΨS(r).

Then the form factor F V →γS
µα can be represented as

follows:

F V →γS
µα =

∫
d3r Sp2

[
Ψ+

S (r) · 4kαΨV µ(r)
]

, (9)

where kα is the operator: kα = −i∇α. This oper-
ator can be written as the commutator of rα and
−∇2/m = T (kinetic energy):

2im(T rα − rαT ) = 4(−i∇α). (10)
MIC NUCLEI Vol. 68 No. 9 200
Let us consider the case when the quark–quark
interaction is rather simple, say, it depends on the
relative interquark distance with the potential U(r).
For vector and scalar composite systems, we also
use an additional simplifying assumption: vector and
scalar mesons consist of quarks of the same flavor
(qq̄). Then we have the Hamiltonian

H = −∇2

m
+ U(r) (11)

and can rewrite (10) as

2im(Hrα − rαH) = 4(−i∇α). (12)

After substituting the commutator in (9), the transi-
tion form factor for the reaction V → γS reads

F V →γS
µα =

∫
d3rSp2

[
Ψ+

S (r)rαΨV µ(r)
]

(13)

× 2im(εV − εS).

Here, we have used the fact that (H + εV )ΨV = 0
and (H + εS)ΨS = 0.

The factor (εV − εS) on the right-hand side of (13)
is a manifestation of the threshold theorem: at εV −
εS = mS − mV → 0, the form factor F V →γS

µα goes to
zero. Actually, in the additive quark model, the ampli-
tude of the V → γS transition, being determined by
the process of Fig. 1a, cannot be zero if V and S are
basic states with radial quantum number n = 1: in
this case, the wave functions ψV (k2) and ψS(k2) do
not change sign, and the right-hand side of (7) does
not equal zero. In order to clarify this point, let us con-
sider as an example the exponential approximation for
the wave functions ψV (k2) and ψS(k2).

2.3. Basic Vector and Scalar qq̄ States: An Example
of the Exponential Approach to Wave Functions

We parametrize the ground-state wave functions
of scalar and vector particles as follows:

ΨVµ(r) = σµψV (r2), (14)

ψV (r2) =
1

25/4π3/4b
3/4
V

exp
[
− r2

4bV

]
,

ΨS(r) = (σ · r)ψS(r2),
5
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ψS(r2) =
i

25/4π3/4b
5/4
S

√
3
exp

[
− r2

4bS

]
.

The wave functions with n = 1 have no nodes;
numerical factors take account of the normalization
conditions ∫

d3rSp2

[
Ψ+

S (r)ΨS(r)
]
= 1, (15)

∫
d3rSp2

[
Ψ+

V µ(r)ΨV µ′(r)
]
= δµµ′ .

With exponential wave functions, the matrix ele-
ment for V → γS given by the additive-quark-model
diagram [Eq. (9)] is equal to

ε(V )
µ ε(γ)

α F V →γS
µα (additive) (16)

= (ε(V )ε(γ))
27/2

√
3

b
3/4
V b

5/4
S

(bV + bS)5/2
.

The formula for F V →γS
µα written in the framework

of dipole emission [Eq. (13)] reads

ε(V )
µ ε(γ)

α F V →γS
µα (dipole) (17)

= (ε(V )ε(γ))
27/2

√
3

b
7/4
V b

5/4
S

(bV + bS)5/2
m(mV − mS).

In the case under consideration [one-flavor quarks
with theHamiltonian given by Eq. (11)], Eqs. (16) and
(17) coincide, F V →γS

µα (additive) = F V →γS
µα (dipole);

therefore,

m(mV − mS) = b−1
V , (18)

which means that the factor (εS − εV ) on the right-
hand side of (13) relates to the difference between the
V and S levels and is defined by bV only. In this way,
the form factor F V →γS

µα goes to zero only when bV (or
bS) tends to infinity.

The considered example does not mean that the
threshold theorem for the reaction V → γS does not
work; this tells us only that we should interpret and
use it carefully. In the next section, we discuss how
to formulate the threshold theorem based on the re-
quirement of amplitude analyticity, thus getting more
information on its applicability.

3. ANALYTICITY OF THE AMPLITUDE
AND THE THRESHOLD THEOREM

The threshold theorem can be formulated as the
requirement of analyticity of the amplitude. To clarify
this statement, we consider here not only the tran-
sition of the bound states but also a more general
process shown in Fig. 1b, where the interacting con-
stituents being in the vector JP = 1− state emit a
P

photon and then turn into the scalar JP = 0+ state.
This amplitude has as a subprocess a bound-state
transition. Namely, the blocks for the rescattering of
constituents in Fig. 1b contain the poles related to
bound states (see Fig. 1c), and the residues in these
poles determine the bound-state transition amplitude
(triangle diagram shown as intermediate block in
Fig. 1c).

With the notation for invariant mass squares in the
initial and final states of Fig. 1b as follows:

P 2
V = sV , P 2

S = sS, (19)

we can write the spin structures for this more general
transition V → γS. The standard representation of
this amplitude is

AV →γS
µα (sV , sS , q2 → 0) (20)

=
(

gµα − 2qµPV α

sV − sS

)
AV →γS(sV , sS , 0).

Here, we stress that the amplitude AV →γS describes
the emission of a real photon, q2 = 0. In (20), it was
taken into account that (PV q) = (sV − sS)/2. The
requirement of analyticity, i.e., the absence of a pole
at sV = sS, leads to the condition[

AV →γS(sV , sS, 0)
]

sV →sS

→ 0, (21)

which is the threshold theorem for the transition am-
plitude V → γS.

It should be now emphasized that the form of the
spin factor in Eq. (20) is not unique. Alternatively,
one can write the spin factor as the metric tensor
g⊥⊥
µα working in the space orthogonal to PV and q,
i.e., PV µg⊥⊥

µα = 0 and g⊥⊥
µα qα = 0 [see Eq. (5)]. This

metric tensor reads

g⊥⊥
µα (0) = gµα +

4sV

(sV − sS)2
qµqα (22)

− 2
sV − sS

(PV µqα + qµPV α),

and we have used it in Eq. (6). The uncertainty in
the choice of spin factor is due to the fact that the
difference

g⊥⊥
µα (0) −

(
gµα − 2qµPV α

sV − sS

)
= 4Lµα(0), (23)

where

Lµα(0) =
sV

(sV − sS)2
qµqα − 1

2(sV − sS)
PV µqα,

(24)

is the nilpotent operator [12]:

Lµα(0)Lµα(0) = 0. (25)
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 9 2005
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The addition of the nilpotent operator Lµα(0) to spin
factor of the transition amplitude V → γS does not
change the expression AV →γS(sV , sS , 0) (see [12] for
more detail). Here, in discussing the analytical struc-
ture of the amplitude, it is convenient to work with the
operator (20), since it is the least cumbersome.

Consider now the reaction V → γS (V and S be-
ing quark–antiquark bound states), say, of the type of
φ → γf0 or φ → γa0. Because of the confinement, the
quarks are not the particles which form the |in〉 and
〈out| states; therefore, the amplitudes likeAφ→γf0 are
to be defined as the amplitude residue for the process
with the scattering of the stable particles, for example,
for e+e− → γπ+π− (see Fig. 2):

Ae+e−→γπ+π−
µα (sV , sS , 0) =

(
gµα − 2qµPV α

sV − sS

)

(26)

×
[

Ge+e−→φ

Aφ→γf0(m
2
φ, m2

f0
, 0)

(sV − m2
φ)(sS − m2

f0
)
gf0→π+π−

+ B(sV , sS , 0)

]
.

We see thatA(m2
φ, m2

f0
, 0), up to the factorsGe+e−→φ

and gf0→π+π− , is the residue in the amplitude poles
sV = m2

φ and sS = m2
f0
: just this value supplies us

with the transition amplitude for the reactions with
bound states φ → γf0. If we deal with stable com-
posite particles, in other words, if φ and f0 can be in-
cluded in the set of fields |in〉 and 〈out|, the transition
amplitude φ → γf0 can be written in a form similar
to (20):

Aφ→γf0
µα (m2

φ, m2
f0

, 0) (27)

=

(
gµα − 2qµpα

m2
φ − m2

f0

)
Aφ→γf0

(
m2

φ, m2
f0

, 0
)

,

where we have substituted PV → p. For

Aφ→γf0

(
m2

φ, m2
f0

, 0
)
, the threshold theorem is ful-

filled:[
Aφ→γf0(m

2
φ, m2

f0
, 0)
]
m2

φ→m2
f0

∼ m2
φ − m2

f0
; (28)

this means that the threshold theorem of Eq. (28)
reveals itself as a requirement of analyticity of the
amplitude φ → γf0 determined by Eq. (27).

Let us emphasize again that formula (27) has been
written for the φ and f0 mesons assuming them to
be stable; i.e., they can be treated as the states which
belong to the sets |in〉 and 〈out|. However, by consid-
ering the process φ → γf0, we deal with resonances,
not stable particles, and whether this assumption is
valid for resonances is a question which deserves
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 9 200
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Fig. 2. Process e+e− → γππ: residues in the e+e− and
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special discussion. We shall come back to this point
below, and now let us investigate how the requirement
(28) is realized in quantum mechanics when φ and f0

are stable particles.

4. QUANTUM MECHANICS
CONSIDERATION OF THE REACTION

φ → γf0 WITH φ AND f0 BEING STABLE
PARTICLES

In Section 2, we have considered the model for the
reaction V → γS when V and S are formed by quarks
of the same flavor (one-channel model for V and S).
The one-channel approach for φ(1020) (the dom-
inance of ss̄ component) looks acceptable, though
for f0 mesons it is definitely not so: scalar–isoscalar
states are multicomponent ones.

The existence of several components in the f0

mesons changes the situation with the φ → γf0 de-
cays. First, the mixing of different components may
result in close values of masses of the low-lying vector
and scalar mesons. Second, Eqs. (9) and (13) for the
φ → γf0 decay turn out to be nonequivalent because
of the photon emission by the t-channel exchange
currents.

Here, we consider in detail a simple model for φ
and f0: the φ meson is treated as an ss̄ system, with
no admixture of the nonstrange quarkonium, nn̄ =
(uū + dd̄)/

√
2, nor gluonium (gg), while the f0 meson

is a mixture of ss̄ and gg.
This model can be considered as a guide for the

study of the reaction φ(1020) → γf0(980). Indeed,
the φ(1020) is an almost pure ss̄ state; the admix-
ture of the nn̄ component in φ(1020) is small, ≤ 5%,
and it can be neglected in a rough estimate of the
φ(1020) → γf0(980) decay.

The resonance f0(980) is a multicomponent state.
Analysis of the IJPC = 00++ wave in the K-matrix
fit to the data for meson spectra ππ, KK̄, ηη, ηη′,
ππππ gives the following constraints for the ss̄, nn̄,
and gg components in f0(980) [1, 5]:

50% � Wss̄[f0(980)] < 100%, (29)
5
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Fig. 3. Examples of diagrams which contribute to the
potentialsUss̄→ss̄(r), Ugg→gg(r), and Uss̄→gg(r).

0 � Wnn̄[f0(980)] < 50%,

0 � Wgg[f0(980)] < 25%.

Also, the f0(980) may contain a long-range KK̄
component, on the level of 10–20%.

The restrictions (29) permit the variant when the
probability for the nn̄ component is small and f0(980)
is a mixture of ss̄ and gg only. Bearing this variant in
mind, we consider such a two-component model for φ
and f0 supposing these particles are stable in respect
to hadronic decays.

It is not difficult to generalize our consideration for
the three-component f0 state (nn̄, ss̄, and gg); the
corresponding formulas are given in this section too.

4.1. Two-Component Model (ss̄, gg) for f0 and φ

Now let us discuss the model where f0 has two
components only: strange quarkonium (ss̄ in the P
wave) and gluonium (gg in the S wave). The spin
structure of the ss̄ wave function is written in Section
2: it contains the factor (σ · r) in the coordinate repre-
sentation. For the gg system, we have δab or, in terms

of polarization vectors, the convolution (ε(g)
1 ε

(g)
2 ).

Here, we consider a simple interaction when the
potential does not depend on spin variables—in this
case, one may forget about the vector structure of
gg working as if the gluon component consists of
spinless particles. As concerns φ, it is considered
as a pure ss̄ state in the S wave, with the wave-
function spin factor ∼ σµ (see Section 2). So, the
wave functions of f0 and φ mesons are written as
follows:

Ψ̂f0(r) =


Ψf0(ss̄)(r)

Ψf0(gg)(r)


 =


(σ · r)ψf0(ss̄)(r)

ψf0(gg)(r)


 ,

(30)

Ψ̂φµ(r) =


Ψφ(ss̄)µ(r)

Ψφ(gg)µ(r)


 =


σµψφ(ss̄)(r)

0


 .

The normalization condition is given by Eq. (15) with
the obvious replacementΨS → Ψ̂f0 andΨV µ → Ψ̂φµ.
PH
The Schrödinger equation for the two-component
states, ss̄ and gg, reads∣∣∣∣∣∣

k2

m + Uss̄→ss̄(r) Uss̄→gg(r)

U+
ss̄→gg(r)

k2

mg
+ Ugg→gg(r)

∣∣∣∣∣∣ (31)

×


Ψss̄(r)

Ψgg(r)


 = E


Ψss̄(r)

Ψgg(r)


 .

Furthermore, we denote the Hamiltonian on the left-
hand side of (31) as H0.

We set the gg component in φ to zero. It means
that the potential Uss̄→gg(r) satisfies the following
constraints:

〈0+ss̄|Uss̄→gg(r)|0+gg〉 �= 0, (32)

〈1−ss̄|Uss̄→gg(r)|1−gg〉 = 0.

These constraints do not look surprising for mesons
in the region 1.0–1.5 GeV because the scalar glueball
is located just in this mass region, while the vector
one has considerably higher mass, ∼ 2.5 GeV [19].

The t-exchange diagrams shown in Figs. 3a, 3b,
and 3c are an example of interaction leading to the
potentials Uss̄→ss̄(r), Ugg→gg(r), and Uss̄→gg(r). The
potential Uss̄→gg(r) contains the t-channel charge
exchange.

4.1.1. Dipole emission of the photon inφ → γf0φ → γf0φ → γf0
decay. The Hamiltonian for the interaction of an
electromagnetic field with two-component composite
systems (quarkonium and gluonium components) is
presented in the Appendix.

For the transition V → γS, keeping the terms
proportional to the charge e, we have the following
operator for the dipole emission:

d̂α =

∣∣∣∣∣∣
2kα irαUss̄→gg(r)

−irαU+
ss̄→gg(r) 0

∣∣∣∣∣∣ . (33)

The transition form factor is given by a formula similar
to Eq. (9) for the one-channel case; it reads

F φ→γf0
µα =

∫
d3rSp2

[
Ψ̂+

f0
(r)2d̂αΨ̂φµ(r)

]
. (34)

Drawing explicitly the two-component wave functi-
ons, one can rewrite Eq. (34) as follows:

F φ→γf0
µα =

∫
d3rSp2

[
Ψ+

f0(ss̄)(r)4kαΨφ(ss̄)µ(r)
]
(35)

+
∫

d3rSp2

[
Ψ+

f0(gg)(r)

× (−irαUgg→ss̄(r))Ψφ(ss̄)µ(r)
]
.
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The first term on the right-hand side of (35), with
the operator 4kα, is responsible for the interac-
tion of a photon with constituent quark that is the
additive-quark-model contribution, while the term
(−irαUgg→ss̄(r)) describes interaction of the photon
with the charge flowing through the t channel—
this term describes the photon interaction with the
fermion-exchange current.

Let us return to Eq. (34) and rewrite it in a form
similar to (13). One can see that

im
(

Ĥ0r̂α − r̂αĤ0

)
= d̂α, (36)

where Ĥ0 is the Hamiltonian for composite systems
written on the left-hand side of (31), and the operator
r̂α is determined as

r̂α =


rα 0

0 0


 . (37)

Substituting Eq. (36) into (34), we have

F φ→γf0
µα =

∫
d3r (38)

× Sp2

[
(σ · r)ψf0(ss̄)(r)rασµψφ(ss̄)(r)

]
× 2im(εφ − εf0).

This formula for the dipole emission of a photon is
similar to that of (13) for the one-channel model.

4.1.2. Partial width of the decay φ → γf0φ → γf0φ → γf0. The
partial width of the decay φ → f0 in the case when φ is
a pure ss̄ state is determined by the following formula:

mφΓφ→γf0 =
1
6

α
m2

φ − m2
f0

m2
φ

∣∣Aφ→γf0(ss̄)

∣∣2 , (39)

where α = 1/137 and the Aφ→γf0(ss̄) amplitude is
determined by Eq. (6) (here, it is specified that we deal
with ss̄ quarks in the intermediate state).

4.2. Three-Component Model (ss̄, nn̄, gg)
for f0 and φ

The above formula can be easily generalized for the
case when f0 is the three-component system (ss̄, nn̄,
gg) and φ is the two-component one (ss̄, nn̄), while
gg is supposed to be negligibly small. We have two
transition form factors:

F φ→γf0(ss̄)
µα (40)

=
∫

d3rSp2

[
(σ · r)ψf0(ss̄)(r)rασµψφ(ss̄)(r)

]
× 2im(εφ − εf0)

and

F φ→γf0(nn̄)
µα (41)
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=
∫

d3rSp2

[
(σ · r)ψf0(nn̄)(r)rασµψφ(nn̄)(r)

]
× 2im(εφ − εf0).

The partial width reads

mφΓφ→γf0 =
1
6

α
m2

φ − m2
f0

m2
φ

(42)

×
∣∣Aφ→γf0(ss̄) + Aφ→γf0(nn̄)

∣∣2 ,

with Aφ→γf0 defined by Eqs. (4) and (6). The charge
factors, which were separated in Eq. (4), are equal to

Z
(ss̄)
φ→γf0

= −2
3

, Z
(nn̄)
φ→γf0

=
1
3
; (43)

they include the combinatorics factor 2 related to
two diagrams with photon emission by a quark and
antiquark (see [16, 17] for more detail).

5. DECAY φ(1020) → γf0(980)

The vector meson φ(1020) has a rather small de-
cay width, Γφ(1020) � 4.5 MeV; from this point of
view, there is no doubt that treating φ(1020) as a sta-
ble particle is reasonable. As to f0(980), the picture is
not so determinate. In the PDG compilation [20], the
f0(980) width is given in the interval 40 ≤ Γf0(980) ≤
100 MeV, and the width uncertainty is related not
to the data inaccuracy (experimental data are rather
good) but to a vague definition of the width.

The mass and width of the resonance are de-
termined by the pole position in the complex-mass
plane, M = m − iΓ/2—just this magnitude is a uni-
versal characteristic of the resonance.
5



1562 ANISOVICH et al.
5.1. The f0(980): Position of Poles

The definition of the f0(980) width is aggravated
by the KK̄ threshold singularity that leads to the
existence of two poles, not one. According to the
K-matrix analyses [1, 5], there are two poles in the
IJPC = 00++ wave at s ∼ 1.0 GeV2,

M I � 1020 − 40i GeV, (44)

M II � 960 − 200i GeV,

which are located on different complex-M sheets re-
lated to the KK̄ threshold (see Fig. 4). By switching
off the decay f0(980) → KK̄, both poles begin to
move toward one another, and they coincide com-
pletely after switching off the KK̄ channel. Usually,
when one discusses the f0(980), the resonance is
characterized by the closest pole,M I. However, when
we are interested in how far from each other the
φ(1020) and f0(980) are, one should not forget about
the second pole.

Keeping in mind the existence of two poles,
one should accept that φ(1020) and f0(980) are
considerably “separated” from each other, and the
f0(980) resonance can hardly be represented as a
stable particle—we return to this point once more
in Section 6 in discussing the ππ spectrum in
φ(1020) → γππ.

5.2. Switching off Decay Channels: Bare States
in K-Matrix Analysis of the IJPC = 00++ Wave

A significant trait of the K-matrix analysis is that
it also gives us, along with the characteristics of real
resonances, the positions of levels before the onset
of the decay channels, i.e., it determines the bare
states. In addition, the K-matrix analysis allows one
to observe the transform of bare states into real reso-
nances. The onset of the decay channels is regulated
by the parameter x, and the value x = 0 corresponds
to the bare state (amplitude pole on the ReM axis)
and the value x = 1 stands for the resonance observed
experimentally. In Fig. 5, one can see such a trans-
form of the 00++-amplitude poles by switching off the
decays f0 → ππ, KK̄, ηη, ηη′, ππππ. It is seen that,
after switching off the decay channels, the f0(980)
turns into a stable state, approximately 300 MeV
lower:

f0(980) −→ fbare
0 (700 ± 100). (45)

The transform of bare states into real resonances
can be illustrated by Fig. 6 for the levels in the po-
tential well: bare states are the levels in a well with
an impenetrable wall (Fig. 6a); at the onset of the
decay channels (underbarrier transitions, Fig. 6b),
the stable levels transform into real resonances.
PH
Figure 7 demonstrates the evolution of coupling
constants at the onset of the decay channels: follow-
ing [21], relative changes of the coupling constants
are shown for f0(980) after switching on/off the decay
channels.

Let us bring attention to a rapid increase in the
coupling constant f0 → KK̄ on the evolution curve
fbare
0 (700)–f0(980) in the region x ∼ 0.8–1.0, where

γ(x = 1.0) − γ(x = 0.8) � 0.2 (see Fig. 7). Actually,
this increase allows one to estimate a possible admix-
ture of the long-rangeKK̄ component in the f0(980):
it cannot be greater than 20%.

5.3. Calculation of the φ(1020)→ γf0(980) Decay
Amplitude

The above discussion of the location of the am-
plitude poles of f0(980), as well as the movement of
poles by switching off the decay channels, tells us
definitely that the smallness of the amplitude of the
φ(1020) → γf0(980) decay due to a visible proxim-
ity of masses of vector and scalar particles is rather
questionable. As to f0(980), its poles “dived” into
the complex plane, on the average by ∼ 100 MeV
(40 MeV for one pole and 200 MeV for another). But
when we intend to represent f0(980) as a stable level,
one should bear in mind that the mass of the stable
level is below the mass of φ(1020) by ∼ 300 MeV
(this value is given by the K-matrix analysis). In both
cases, we deal with shifts in the mass scale of the
order of the pion mass, which is hardly small on the
hadronic scale.

The K-matrix amplitude of the 00++ wave re-
constructed in [1] gives us the possibility to trace
the evolution of the transition form factor φ(1020) →
γfbare

0 (700 ± 100) during the transformation of the
bare state fbare

0 (700 ± 100) into the f0(980) reso-
nance. Using diagrammatic language, one can say

that the evolution of the form factor F
(bare)
φ→γf0

is due to
the processes shown in Fig. 8: the φ meson goes into
fbare
0 (n), with the emission of a photon; then fbare

0 (n)
decays into mesons fbare

0 (n) → hh = ππ, KK̄, ηη,
ηη′, ππππ. The decay yields may rescatter, thus com-
ing to final states.

The residue of the amplitude pole φ(1020) →
γππ gives us the transition amplitude φ(1020) →
γf0(980). So, in the K-matrix representation, the
amplitude of the reaction φ(1020) → γππ (Fig. 8)
reads

Aφ(1020)→γππ(s) =
∑
a,n

F
(bare)
φ(1020)→γfbare

0 (n)

M2
n − s

gbarea (n)

(46)
YSICS OF ATOMIC NUCLEI Vol. 68 No. 9 2005
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×
(

1
1− iρ̂(s)K̂(s)

)

a,ππ

.

Here, Mn is the mass of the bare state, and gbarea (n)
is the coupling for the transition fbare

0 (n) → a, where
a = ππ, KK̄, ηη, ηη′, ππππ. The matrix element
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 9 200
(1 − iρ̂(s)K̂(s))−1 takes account of the rescatterings

of the formed mesons. Here, ρ̂(s) is the diagonal ma-

trix of phase spaces for hadronic states (for example,

for the ππ system, it reads ρππ(s) =
√

(s − 4m2
π)/s),

and the K-matrix elements Kab(s) contain the poles
5
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corresponding to the bare states:

Kab(s) =
∑

n

gbarea (n)gbareb (n)
M2

n − s
+ fab(s). (47)

The function fab(s) is analytical in the right-hand
half-plane of the complex-s plane, at Res > 0 (see [1]
for more detail).

Near the pole corresponding to the f0 resonance
(resonance poles are contained in the factor (1 −
iρ̂(s)K̂(s))−1), the amplitude φ(1020) → γππ is
written as follows:

Aφ(1020)→γππ(s) (48)

�
Aφ(1020)→γf0(980)

M2
f0(980) − s

gf0(980)→ππ + smooth terms,

where Mf0(980) is the complex-valued resonance
mass: Mf0(980) → M I � 1020 − 40i MeV for the first
pole, and Mf0(980) → M II � 960 − 200i MeV for the
second one. The transition amplitudeAφ(1020)→γf0(980)

is different for different poles; the gf0(980)→ππ cou-
plings are different as well.

We see that the radiative transition φ(1020) →
γf0(980) is determined by two amplitudes,

Aφ(1020)→γf0(M I) ≡ AI
φ(1020)→γf0(980),

Aφ(1020)→γf0(M II) ≡ AII
φ(1020)→γf0(980),

and just these amplitudes are the subject of our
interest. The amplitudes AI

φ(1020)→γf0(980) and
PH
AII
φ(1020)→γf0(980) may be represented as the sum of

contributions from different bare states:

AI
φ(1020)→γf0(980) (49)

=
∑
n

ζ (I)n [f0(980)]F
(bare)
φ(1020)→γfbare

0 (n)
,

AII
φ(1020)→γf0(980)

=
∑
n

ζ (II)n [f0(980)]F
(bare)
φ(1020)→γfbare

0 (n)
.

To calculate the constants ζn[f0(mR)], we use the
K-matrix solution for the 00++-wave amplitude de-
noted in [1] as II-2. In this solution, there are five bare
states fbare

0 (n) in the mass interval 290–1950 MeV:
four of them are members of the qq̄ nonets (13P0qq̄
and 23P0qq̄) and the fifth state is the glueball. Namely:

13P0qq̄ : fbare
0 (700 ± 100), fbare

0 (1220 ± 30), (50)

23P0qq̄ : fbare
0 (1230 ± 40), fbare

0 (1800 ± 40),

glueball : fbare
0 (1580 ± 50).

For the first pole of the f0(980) resonance located at
M [f0(980)] = 1020 − 40i MeV, the renormalization
constants are as follows:

ζ
(I)
700[f0(980)] = 0.62 exp(−144◦i), (51)

ζ
(I)
1220[f0(980)] = 0.37 exp(−41◦i),

ζ
(I)
1230[f0(980)] = 0.19 exp(1◦i),

ζ
(I)
1800[f0(980)] = 0.02 exp(−112◦i),

ζ
(I)
1580[f0(980)] = 0.02 exp(5◦i).

These constants are complex-valued. One should pay
attention to the fact that the phases of constants
ζ
(I)
700[f0(980)] and ζ

(I)
1220[f0(980)] have a relative shift

close to 90◦. This means that the contributions from
fbare
0 (700 ± 100) and fbare

0 (1220 ± 30) (which are
members of the basic 13P0qq̄ nonet) do not interfere in
practice in the calculation of probability for the decay
φ(1020) → γf0(980).

Actually, one may neglect the bare states
fbare
0 (1230), fbare

0 (1800), fbare
0 (1580) in the calcula-

tion of the φ(1020) → γf0(980) reaction because the
form factors for the production of radial excited states
are noticeably suppressed (see [17]):∣∣∣F (bare)

φ(1020)→γf0(23P0qq̄)

∣∣∣� ∣∣∣F (bare)
φ(1020)→γf0(13P0qq̄)

∣∣∣ .
In addition, the coefficients ζ

(I)
1230[f0(980)]

ζ
(I)
1800[f0(980)] are also comparatively small [see (51)].
The second pole located on the third sheet,

M [f0(980)] = 960 − 200i MeV, has renormalizing
YSICS OF ATOMIC NUCLEI Vol. 68 No. 9 2005
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constants as follows:

ζ
(II)
700[f0(980)] = 1.00 exp(6◦i), (52)

ζ
(II)
1220[f0(980)] = 0.33 exp(113◦i),

ζ
(II)
1230[f0(980)] = 0.32 exp(148◦i),

ζ
(II)
1800[f0(980)] = 0.08 exp(4◦i),

ζ
(II)
1580[f0(980)] = 0.04 exp(98◦i).

Here, as before, the transitions φ(1020) →
γfbare

0 (1230), γfbare
0 (1580), γfbare

0 (1800) are negli-
gibly small.

In φ(1020), the admixture of the nn̄ component
is small. In the estimates given below, we assume
φ(1020) to be a pure ss̄ state. The bare states
fbare
0 (700) and fbare

0 (1220) are mixtures of the nn̄ and
ss̄ components,

nn̄ cos ϕ + ss̄ sinϕ,

and, according to [1], themixing angles are as follows:

ϕ
[
fbare
0 (700)

]
= −70◦ ± 10◦, (53)

ϕ
[
fbare
0 (1220)

]
= 20◦ ± 10◦.

Because of that, the transition amplitude forφ(1020) →
γf0(980) reads

AN
φ(1020)→γf0(980) (54)

� ζ
(N)
700 [f0(980)] sin ϕ

[
fbare
0 (700)

]

× F
(bare)
φ(1020)→γfbare

0 (700)

+ ζ
(N)
1220[f0(980)] sin ϕ

[
fbare
0 (1220)

]

× F
(bare)
φ(1020)→γfbare

0 (1220)
.

Here, ζ
(N)
700 [f0(980)] and ζ

(N)
1220[f0(980)] (N = I, II) are

given by formulas (51), (52). One can see that numer-
ically the factor ζ1220[f0(980)] sin ϕ×

[
fbare
0 (1220)

]
is

small, and we may neglect the second term on the
right-hand side of (54). Then, for the pole which is
OF ATOMIC NUCLEI Vol. 68 No. 9 200
the closest one to the real axis (1020− 40i MeV), one
has

AI
φ(1020)→γf0(980) (55)

� (0.58 ± 0.04)F (bare)
φ(1020)→γfbare

0 (700)
,

and for the distant one (960 − 200i MeV),

AII
φ(1020)→γf0(980) (56)

� (0.92 ± 0.06)F (bare)
φ(1020)→γfbare

0 (700)
.

We see that, in practice, the AII
φ(1020)→γf0(980) ampli-

tude does not change its value during the evolution
from bare state to resonance, while the decrease in
AI

φ(1020)→γf0(980) is significant.

5.4. Comparison to Data

Comparing the above-written formulas to experi-
mental data, we have parametrized the wave func-
tions of the qq̄ states in the simplest, exponent-type,
form (see Section 2.3). For φ(1020), we accept its
mean radius square to be close to the pion radius,
R2

φ(1020) � R2
π: both states are members of the same

36-plet. This value of the mean radius square for
φ(1020) fixes its wave function by bφ = 10 GeV−2.

For fbare
0 (700), we change the value bf0 in the

interval

5 ≤ b
(bare)
f0

≤ 15 GeV−2,

which corresponds to the interval (0.5–1.5)R2
π of the

mean radius square of f
(bare)
0 (700).

Using the branching ratios [22, 23]

BR[φ(1020) → γf0(980)] (57)

= (3.5 ± 0.3+1.3
−0.5) × 10−4,

BR[φ(1020) → γf0(980)]

= (2.90 ± 0.21 ± 1.54) × 10−4,

and the definition of the radiative decay width,

mφΓφ→γf0 =
1
6

α
m2

φ − m2
f0

m2
φ

|Aφ→γf0|2 ,
5
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Fig. 9. Amplitudes for the decay φ(1020) → γf0(980):

the calculated amplitude A
(calc)
dipole vs. the experimental one

A(exp).

we have the following experimental value for the decay
amplitude:

A
(exp)
φ(1020)→γf0(980) = 0.115 ± 0.040 GeV. (58)

Here, α = 1/137, mφ = 1.02 GeV, and mf0 =
0.975 GeV (the mass reported in [22, 23] for the mea-
sured γf0(980) signal) and Γtot[φ(1020)] = 4.26 ±
0.05 MeV [20]. The right-hand side of (58) should
be compared with Aφ(1020)→γf0(980) calculated with
Eqs. (17), (38), and (55):

A
(calc)
φ(1020)→γf0(980)

(dipole) (59)

� (0.58 ± 0.04)
√

Wqq̄[fbare
0 (700)]Z(ss̄)

φ→γf0

× 27/2

√
3

b
7/4
φ b

5/4
f0

(bφ + bf0)5/2
ms [mφ − (0.7 ± 0.1) GeV] .

Recall that, in (59), the factor (0.58 ± 0.04) takes
into account the change of the transition amplitude
caused by the final-state hadron interaction, Eq. (55).
The probability to find the quark–antiquark com-
ponent in the bare state fbare

0 (700) is denoted as
Wqq̄[fbare

0 (700)]: one can guess that it is of the order
of 80–90%, or even more. The mass of the strange
constituent quark is equal toms � 0.5GeV. Thewave
functions of φ(1020) and fbare

0 (700) are parametrized
as exponents: we fix bφ = 10 GeV−2 (which gives for
the mean radius of φ(1020) a value of the order of the
pion radius, Rφ � Rπ) and vary bf0 in the interval 5–
15 GeV−2.

The comparison of the data (58) to the calculated
amplitude is shown in Fig. 9. We see that the calcu-
PH
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Fig. 10.The ππ spectrumof the reactionφ(1020) → γππ
calculated with the Flatté formula (a) and Eq. (68) (b).

lated amplitude (59) is in a perfect agreement with da-
ta when Mfbare

0 � 750–800MeV, which is just inside
the error bars given by the K-matrix analysis [1].

6. PION–PION SPECTRUM IN φ(1020) → γππ

The f0(980) resonance is seen in the reaction
φ(1020) → γππ as a peak at the edge of the ππ
spectrum. So, it is rather enlightening to calculate
the ππ spectrum to be sure that its description agrees
both with the quark-model calculation of the form
factor Fφ(1020)→γf0(980) and with the threshold the-
orem (cross section tending to zero as ω3 at ω → 0,
where ω = mφ − Mππ).

The partial cross section of the decay φ(1020) →
γπ0π0 is given by the following formula:

dΓφ(1020)→γπ0π0

dMππ
=

1
3
Γφ(1020)→γf0(980) (60)

×
m2

φ − M2
ππ

m2
φ − m2

f0

2Mππ

π
ρππ
YSICS OF ATOMIC NUCLEI Vol. 68 No. 9 2005
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×
∣∣∣∣ gπ

M2
0 − M2

ππ − ig2
πρππ − ig2

KρKK̄

+ B(M2
ππ)
∣∣∣∣
2

.

The factor 1/3 in front of the right-hand side of (60) is
associated with the π0π0 channel: Γφ(1020)→γπ0π0 =
(1/3)Γφ(1020)→γππ . Here, for the description of the
f0(980), we use the Flatté formula [24] with the
phase-space factors

ρππ =
1

M0

√
M2

ππ − 4m2
π, (61)

ρKK̄ =
1

M0

√
M2

ππ − 4m2
K .

AtM2
ππ < 4m2

K , one should replace
√

M2
ππ − 4m2

K →

i
√

4m2
K − M2

ππ . In line with [22, 23, 25], we use the

Flatté formula with the parameters

g2
π = 0.12 GeV2, g2

K = 0.27 GeV2, (62)

M0 = 0.975 GeV.

The threshold theorem requires[
gπ

M2
0 − M2

ππ − ig2
πρππ − ig2

KρKK̄

(63)

+ B(M2
ππ)

]

Mππ→mφ

∼ Mππ − mφ,

which gives a constraint for the background term
B(M2

ππ). The term B(M2
ππ) is parametrized in the
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form

B(M2
ππ) = C

[
1 + a(M2

ππ − m2
φ)
]

(64)

× exp

[
−

m2
φ − M2

ππ

µ2

]
,

and the parameter C is fixed by the constraint[
gπ

M2
0 − M2

ππ − ig2
πρππ − ig2

KρKK̄

+ C

]
Mππ=mφ

=0.

(65)

Fitting to the π0π0 spectrum [22] (see Fig. 10a), we
have the following values for other parameters:

1
a

= −0.2 GeV2, µ = 0.388 GeV. (66)

For Γφ(1020)→γf0(980) entering (60), we have used
Aφ(1020)→γf0(980) = 0.13 GeV, which satisfies both
(58) and (59).

The Flatté formula gives us a rather rough de-
scription of the ππ amplitude around the f0(980) res-
onance. A more precise description may be obtained
by using in addition the nonzero transition length
for ππ → KK̄ [21]. For this case, we have formulas
analogous to Eq. (60), after replacing the resonance
factor

gπ

M2
0 − M2

ππ − ig2
πρππ − ig2

KρKK̄

(67)

by the following one:
gπ + iρKK̄gKf

M2
0 − M2

ππ − ig2
πρππ − iρKK̄ [g2

K + iρππ(2gπgKf + f2(M2
0 − M2

ππ))]
. (68)
The parameters found in [21] are equal to

gπ = 0.386 GeV, gK = 0.447 GeV, (69)

M0 = 0.975 GeV, f = 0.516.

The transition length aππ→KK̄ is determined by the
parameter f as follows: aππ→KK̄ = 2f/M0.

The description of the π0π0 spectra [22] with-
in the resonance formulas (68) is demonstrated in
Fig. 10b. In this fit, we have the following parameters
for B(M2

ππ):

a = 0, µ = 0.507 GeV. (70)

In this variant of the fitting to spectra, we also used
Aφ(1020)→γf0(980) = 0.13 GeV.
Let us emphasize that the visible width of the
f0(980) signal in the ππ spectrum is comparatively
large, ∼ 150 MeV, which is related to an essential
contribution of the second pole at 960 − 200i MeV.

7. THE ADDITIVE QUARK MODEL,
DOES IT WORK?

Let us point to the two aspects of this question.
One is the problem of the applicability of the addi-
tive quark model to the production of the resonance
f0(980); the other is the production of the bare state
fbare
0 (700 ± 100).
5
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7.1. Process φ(1020)→ γfbare
0 (700 ± 100)

The additive quark model describes well the pro-
duction of the bare state fbare

0 (700 ± 100), provided
its mass is in the region 750–800 MeV. To see it,
consider Eq. (38) for F φ→γf0

µα (dipole), or Eq. (17),
where the exponential representation of the quark
wave functions is used. Formula (17) takes into ac-
count both the additive-quark-model processes and
photon emission by the charge-exchange current,
while Eq. (16) gives us the triangle-diagram contri-
bution within the additive quark model. The contri-
bution of the charge-exchange current is small when

ms[mφ − Mfbare
0

] � 1
bφ

. (71)

At ms = 0.5 GeV and bφ = 10 GeV−2, the equa-
lity (71) is almost fulfilled, when Mfbare

0
� 0.8 GeV.

Such a magnitude is allowed by the K-matrix fit [1],
which gives Mfbare

0
= 0.7 ± 0.1 GeV.

However, let us emphasize that the error bars
±0.1 GeV are rather large in the difference mφ −
Mfbare

0
: with the lower possible limitMfbare

0
= 0.6GeV,

we face a two-times disagreement in Eq. (71). Still,
one may hardly hope that the K-matrix analysis of
the 00++ wave would provide us with a tighter re-
striction for the mass of this bare state, since a large
uncertainty in the definition of Mfbare

0
is not related

to the data accuracy but to the problem of the light
σ-meson existence (see the discussions in [5, 26–28]
and references therein).
PH
The use of F φ→γf0
µα (additive), Eq. (16), for the

calculation of A
(calc)
φ(1020)→γf0(980) results in agreement

with experimental data. Thus, we have

A
(calc)
φ(1020)→γf0(980)

(additive) (72)

� (0.58 ± 0.04)
√

Wqq̄[fbare
0 (700)]Z(ss̄)

φ→γf0

× 27/2

√
3

b
3/4
φ b

5/4
f0

(bφ + bf0)5/2
.

In Fig. 11, one can see A
(calc)
φ(1020)→γf0(980)(additive)

versus A
(exp)
φ(1020)→γf0(980): there is good agreement

with data.
The existence of two characteristic sizes in a

hadron, namely, hadronic radius and that of the
constituent quark, may be the reason why the contri-
bution of the charge-exchange current is small in the
reaction φ(1020) → γfbare

0 (700). The relatively small
radius of the constituent quark assumes that charge-
exchange interaction ss̄ → gg → nn̄ is a short-range
one, which causes a smallness of the second term on
the right-hand side of (35).

The hadronic size is defined by the confinement
radius Rh ∼ Rconf, which is of the order of 1 fm for
light hadrons. The constituent-quark size rq is much
smaller; it is defined, as one may believe, by the
relatively large mass of the soft gluon (experimental
data [29] and lattice calculations [30] give us mg ∼
700–1000 MeV). So, we get r2

q/R2
h ∼ 0.1–0.2; the

same value follows from the analysis of soft hadron
collisions (see [15, 31] and references therein).

7.2. Process φ(1020)→ γf0(980)

The two sizes, r2
q and R2

h, being accepted, the
additive-quark-model contribution dominates the re-
action φ(1020) → γf0(980) too, thus allowing direct
use of the triangle diagram of Fig. 1a for the calcula-
tion of this process. Such calculationswere performed
in [17], revealing reasonable agreement with data.
Once again it should be emphasized that the trian-
gle diagram contribution does not have a particular
smallness related to a deceptive proximity of φ(1020)
and f0(980). In addition, as was explained above, the
poles associated with these resonances are separated
from each other in the complex-M plane by nonsmall
distances on the hadronic scale.

In the literature, there exist rather opposite state-
ments about the possibility to describe the reaction
φ(1020) → γf0(980) within the framework of the hy-
pothesis of the qq̄ nature of f0(980). Using the QCD
sum-rule technique, the authors of [32] evaluated
YSICS OF ATOMIC NUCLEI Vol. 68 No. 9 2005
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Fig. 12. Linear trajectories on the (n, M2) plane for bare states (a) and scalar resonances (b).
the rate of the decay φ(1020) → γf0(980), with fair
agreement with data, supposing a sizeable ss̄ com-
ponent in the f0(980).

The results of the calculation performed in [33]
in the framework of the additive quark model do not
agree with data on the reaction φ(1020) → γf0(980).
This calculation, though similar to those of [16, 17],
led to a different result, so it would be instructive
to compare model parameters used in these two ap-
proaches.

In [33] as well as in [16, 17], the exponential
parametrization of the wave function was used;
however, the slopes bφ and bf0 in [33] were consid-
erably smaller (constituent quark masses are smaller
too). In [33], bss̄ = 2.9 GeV−2 and buū = bdd̄ =
3.7 GeV−2 (mu = md = 220 MeV, ms = 450 MeV),
while in [16, 17] bφ � 10 GeV−2 and bφ ∼ bf0 (mu =
md = 350 MeV, ms = 500 MeV). In addition, in [33],
the scheme of mixing of f0 states was used that was
suggested in [33, 35], where the transitions fbare

0 →
real mesons were not accounted for. Still, as was
emphasized above (Section 5.2), just the transitions
fbare
0 → ππ, KK̄, ηη, ππππ afford the final disposition
of poles in the complex plane, for they are responsible
for the resonance mass shift of the order of 100 MeV
(see Fig. 5).

In our opinion, the failure of the qq̄ model demon-
strated in [33] can attest only to the fact that not any
model enables the description of radiative decays. The
qq̄ model should be based on the whole set of exper-
imental data but not on the reproduction of several
levels of the lowest states.
ICS OF ATOMIC NUCLEI Vol. 68 No. 9 200
8. CONCLUSIONS

Correct determination of the origin of f0(980) is
a key for understanding the status of the light σ and
classification of heavier mesons f0(1300), f0(1500),
f0(1750), and the broad state f0(1200–1600).

We have shown that experimental data on the
reaction φ(1020) → γf0(980) do not contradict the
suggestion about the dominance of the quark–anti-
quark component in the f0(980). However, as was
emphasized in the Introduction, the final conclusion
about the origin of f0(980) should be made on the
basis of the whole availability of arguments, so let us
enumerate them briefly.

(1) There are data on the hadronic decays of the
lowest mesons, and the most reliable information on
scalar resonances is given by the K-matrix analy-
sis. Summing up, one can state that, according to
the K-matrix analysis [1], the lowest states f0(980),
f0(1300), a0(980), K0(1430) are the descendants of
bare mesons, which have created the 13P0 multiplet.
Because of that, all the decays, namely,

f0(980) → ππ, KK̄, (73)

f0(1300) → ππ, KK̄, ηη,

a0(980) → KK̄, πη,

K0(1430) → Kπ,

are described by two parameters only in the leading
terms of the 1/Nc expansion, which are the universal
coupling constant and mixing angle for the nn̄ and ss̄
components in the scalar–isoscalar sector.
5
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(2) Another argument is the systematics of scalar
states on linear trajectories on the (n, M2) plane.
For scalar mesons, the trajectories are shown in
Fig. 12a—one can see that f0(980) lies comfortably
on a linear trajectory, together with the other scalars.
Such trajectories are formed not only for the scalar
sector but also for all aggregate of data (see [4, 5]),
and all the trajectories are characterized by a universal
slope.

Similar qq̄ trajectories exist in the (J, M2) plane
too, and f0(980) belongs to one of them.

(3) The alternative to the qq̄ system may be
the four-quark qq̄qq̄ or molecular KK̄ structu-
re [6, 7, 36, 37]. Such a nature of f0(980) would
mean that f0(980) was a loosely bound system, but
the experiment tells us that this is not so. The point is
that

(i) f0(980) is easily produced at large momenta
transferred to the nucleon in the reaction π−p →
f0(980)n [38, 39],

(ii) f0(980) is produced in Z0-boson decays [40],
(iii) f0(980) is produced in central pp collisions at

high energies [41].
Were the f0(980) a loosely bound system, these

processes would be suppressed.
(4) The f0(980) resonance is produced in hadronic

decays of the Ds meson, D+
s → π+f0(980), with a

probability comparable with that for the transition
D+

s → π+φ(1020) [42]. These two reactions are due
to the weak decay of the c quark, c → π+s; as to
f0(980), it is formed, like φ(1020), by the ss̄ system
in the transition ss̄ → f0(980). The calculation of this
process [43] shows us that the f0(980) yield in the
P

reaction D+
s → π+f0(980) can be reliably calculated

under the assumption that f0(980) is close to the qq̄
flavor octet.

The study of D+
s → π+f0(980) decay in [44–46]

also led to the conclusion about the ss̄ nature of
f0(980).

(5) Concerning radiative decays with the forma-
tion of f0(980), we see that the transition φ(1020) →
γf0(980) can be well described within the approach
of the additive quark model, with the dominant qq̄
component in the f0(980). Another radiative decay,
f0(980) → γγ, the partial width of which was mea-
sured [47], can also be treated in terms of the qq̄
structure of f0(980) [16, 48]. The values of partial
widths in both decays support the conclusion made
in [1] that the flavor content of f0(980) is close to the
octet one.
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Appendix

DIPOLE EMISSION OF PHOTON

To describe the interaction of a composite system
with an electromagnetic field, we consider the full
Hamiltonian
Ĥ(0) =

∣∣∣∣∣∣∣∣

k2
1

2m
+

k2
2

2m
+ Uss̄→ss̄(r1 − r2) Ûss̄→gg(r1 − r2)

Ûss̄→gg(r1 − r2)
k2
1

2mg
+

k2
2

2mg
+ Ugg→gg(r1 − r2)

∣∣∣∣∣∣∣∣
. (A.1)
Here, the coordinates (ra) and momenta (ka =
−i∇a) of the constituents are related to the charac-
teristics of the relative movement, entering (31), as
follows:

r1 = r +
1
2
R, r2 = −1

2
r + R, (A.2)

k1 = k +
1
2
P, k2 = −1

2
k + P.
H

The electromagnetic interaction is included by sub-
stituting in (8) as follows:

k2
1 → (k1 − e1A(r1))

2 , (A.3)

k2
2 → (k2 − e2A(r2))

2 ,

Ûss̄→gg(r1 − r2) → Ûss̄→gg(r1 − r2)
YSICS OF ATOMIC NUCLEI Vol. 68 No. 9 2005
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× exp


ie1

r1∫
−∞

dr′αAα(r′) + ie2

r2∫
−∞

dr′αAα(r′)


,

with e1 = −e2 = es. After that, we obtain the gauge-
invariant Hamiltonian Ĥ(A):

Ĥ(A) = χ̂+Ĥ(A +∇χ)χ̂, (A.4)

where A +∇χ means the substitution

A(ra) → A(ra) +∇χ(ra), (A.5)
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and matrix χ̂ reads

χ̂ =

∣∣∣∣∣∣
exp[iesχ(r1)− iesχ(r2)] 0

0 1

∣∣∣∣∣∣ . (A.6)

For the transition φ → γf0, keeping the terms pro-
portional to the s-quark charge, es, we have the fol-
lowing operator for the dipole emission:
d̂α =

∣∣∣∣∣∣
2(k1α − k2α) i(r1α − r2α)Ûss̄→gg(r1 − r2)

−i(r1α − r2α)Ûss̄→gg(r1 − r2) 0

∣∣∣∣∣∣ . (A.7)
There exist other mechanisms of photon emis-
sion which, being beyond the additive quark model,
lead us to the dipole formula for V → γS transition;
an example is given by (L · S) interaction in the
quark–antiquark component [9, 10, 49]. The short-
range (L · S) interaction in the qq̄ systems was
discussed [50, 51] as a source of the nonet split-
ting. Actually, the pointlike (L · S) interaction gives
(v/c) corrections to the nonrelativistic approach. In
the relativistic quark model approaches based on the
Bethe–Salpeter equation, the gluon-exchange forces
result in similar nonet splitting as for the (L · S) in-
teraction (see, for example, [52]).
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Theory
Quark–Antiquark Composite Systems: the Bethe–Salpeter Equation
in the Spectral-Integration Technique
in the Case of Different Quark Masses*
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Abstract—The Bethe–Salpeter equations for quark–antiquark composite systems with different quark
masses, such as qs̄ (with q = u,d), qQ̄, and sQ̄ (with Q = c, b), are written in terms of spectral integrals.
For mesons characterized by the massM , spin J , and radial quantum number n, the equations are written
for the (n,M2) trajectories with fixed J . The mixing between states with different quark spin S and angular
momentum L is also discussed. c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

The relativistic description of quark–antiquark
states is a necessary step for meson systematics
and the search for exotic states. The standard way
to take account of relativistic effects is to use the
Bethe–Salpeter equation [1]. Different versions of the
Bethe–Salpeter equations applied to the description
of quark–antiquark systemsmay be found in [2–6]. In
the present paper, we develop the approach suggested
in [7] for the Bethe–Salpeter equation written for
quark–antiquark systems in terms of spectral inte-
grals. In [7], the systems of quarks with equal masses
have been considered, such as uū, ud̄, dd̄, and ss̄. In
this paper, the systems with unequal masses, like qs̄
(q = u, d) and qQ̄ (Q = c, b), are treated.

A detailed presentation of the spectral-integration
method as well as the emphasis on its advantages was
given in [7], so we need not repeat ourselves. Let us
only stress a particular feature of the method: it is
rather easy to control the quark–gluonium content of
the composite system that is rather important for the
search for exotics. Another advantage consists in the
easy treatment of the systems with high spins.

Similarly to [7], we present here the equations for
the group of states lying on the (n,M2) trajectory.
Such trajectories are linear, and they are suitable for
the reconstruction of interaction between quarks at
large distances. We hope, by investigating high-spin
quark–antiquark states, to obtain decisive informa-
tion on the structure of forces in the region of r ∼
Rconf.

∗This article was submitted by the authors in English.
**e-mail: anisovic@thd.pnpi.spb.ru
1063-7788/05/6809-1573$26.00
In this paper, we present final formulas for the
(n,M2) trajectories; the details of the calculations
may be found in [7]. It should be immediately empha-
sized that the case of different masses requires more
cumbersome calculations. In particular, the mixing of
states with J = L, S = 0 and J = L, S = 1 should be
accounted for (here, L and S are the orbital momen-
tum and spin of quarks, respectively).

Note that, for systems with equal quark masses,
we have already obtained numerical results for a set
of the (n,M2) trajectories such as a0, a1, a2, π, ρ, and
b1. So, we hope that we have elaborated a rather
efficient technique allowing us to find realistic wave
functions for the quark–antiquark systems. Certain
aspects of numerical solutions of the Bethe–Salpeter
equations in terms of the spectral integrals are dis-
cussed in [8].

The paper is organized as follows. In Section 2,
we define the quantities entering the Bethe–Salpeter
equation: for equal masses, they were introduced
in [7]; now, we expand the definition for unequal
masses. In Section 3, the equations for the (n,M2)
trajectories are considered for two different cases,
for J = L, S = 0 and J = L, S = 1 states. The
technicalities related to the trace calculations of loop
diagrams as well as trace factor convolutions are
considered in Appendices A and B.

2. QUARK–ANTIQUARK COMPOSITE
SYSTEMS

In the spectral integral technique, the Bethe–
Salpeter equation for the wave function of the q1q̄2
c© 2005 Pleiades Publishing, Inc.
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system with the total momentum J , angular momen-
tum L = |J− S|, and quark–antiquark spin S can be
schematically written as(

s −M2
)
Ψ̂(S,L,J)

(n)µ1...µJ
(k⊥) (1)

=
∫

d3k′
⊥

(2π)3
Φ(s′)V̂

(
s, s′, (k⊥k′

⊥)
)
(k̂′

1 + m1)

× Ψ̂(S,L,J)
(n) µ1...µJ

(k′
⊥)(−k̂′

2 + m2),

where the quarks are mass-on-shell: k2
1 = k′2

1 = m2
1

and k2
2 = k′2

2 = m2
2. We use the following notation:

k =
1
2

(k1 − k2) , P = k1 + k2, (2)

k′ =
1
2
(
k′
1 − k′

2

)
, P ′ = k′

1 + k′
2,

P 2 = s, P ′2 = s′, k⊥
µ = kνg

⊥
νµ, k′⊥

µ = k′
νg

⊥
νµ.

The phase-space integral is written as

ds′
d3k′

1

2k′
10

d3k′
2

2k′
20

δ(4)(P ′ − k′
1 − k′

2) =
d3k′

⊥
(2π)3

Φ(s′), (3)

Φ(s′) =
2s′

√
s′

s′2 − (m2
1 −m2

2)2
.

The wave function reads

Ψ̂(S,L,J)
(n)µ1...µJ

(k⊥) = Q(S,L,J)
µ1...µJ

(k⊥)ψ(S,L,J)
n (k2

⊥). (4)

Here, Q
(S,L,J)
µ1...µJ (k⊥) are the moment operators for

fermion–antifermion systems [9] defined as follows:

Q(0,J,J)
µ1µ2...µJ

(k⊥) = iγ5X
(J)
µ1...µJ

(k⊥), (5)

Q(1,J+1,J)
µ1...µJ

(k⊥) = γ⊥
α X(J+1)

µ1...µJα(k⊥),

Q(1,J,J)
µ1...µJ

(k⊥) = εαν1ν2ν3γ
⊥
α Pν1Z

(J)
ν2µ1...µJ ,ν3

(k⊥),

Q(1,J−1,J)
µ1...µJ

(k⊥) = γ⊥
α Z(J−1)

µ1...µJ ,α(k⊥),

where

X(J)
µ1...µJ

(k⊥) =
(2J − 1)!!

J !
(6)

×
[
k⊥

µ1
k⊥

µ2
k⊥

µ3
k⊥

µ4
. . . k⊥

µJ
− k2

⊥
2J − 1

×
(

g⊥µ1µ2
k⊥

µ3
k⊥

µ4
. . . k⊥

µJ

+ g⊥µ1µ3
k⊥

µ2
k⊥

µ4
. . . k⊥

µJ
+ . . .

)

+
k4
⊥

(2J − 1)(2J − 3)

×
(

g⊥µ1µ2
g⊥µ3µ4

k⊥
µ5

k⊥
µ6

. . . k⊥
µJ
PH
+ g⊥µ1µ2
g⊥µ3µ5

k⊥
µ4

k⊥
µ6

. . . k⊥
µJ

+ . . .

)
+ . . .

]
,

Z(J−1)
µ1...µJ ,α(k⊥) =

2J − 1
L2

×
(

J∑
i=1

X(J−1)
µ1...µi−1µi+1...µJ

(k⊥)g⊥µiα − 2
2J − 1

×
J∑

i,j=1
i<j

g⊥µiµj
X(J−1)

µ1...µi−1µi+1...µj−1µj+1...µJ α(k⊥)

)
.

The potential operator can be represented as a sum of
the t-channel operators:

V̂
(
s, s′, (k⊥k′

⊥)
)

(7)

=
∑

I

V
(0)
I

(
s, s′, (k⊥k′

⊥)
)
ÔI ⊗ ÔI ,

ÔI = I, γµ, iσµν , iγµγ5, γ5.

To write the spectral-integral equations, we are to
transform the t-channel potential operator V̂ (s, s′,
(k⊥k′

⊥)) into the s-channel ones as follows:

V̂
(
s, s′, (k⊥k′

⊥)
)

(8)

=
∑

I

∑
c

V̂
(0)
I

(
s, s′, (k⊥k′

⊥)
)
CIc(F̂c ⊗ F̂c),

where CIc are coefficients of the Fierz matrix

C =




1
4

1
4

1
8

1
4

1
4

1 −1
2

0
1
2

−1

3 0 −1
2

0 3

1
1
2

0 −1
2

−1

1
4

−1
4

1
8

−1
4

1
4




. (9)

Here, the summation is assumed in the iσµν ⊗ iσµν

structure for all indices. Denoting

Vc

(
s, s′, (k⊥k′

⊥)
)

=
∑

I

V̂
(0)
I

(
s, s′, (k⊥k′

⊥)
)
CIc,

(10)

we have

V̂
(
s, s′, (k⊥k′

⊥)
)

(11)

=
∑

c

(F̂c ⊗ F̂c)Vc

(
s, s′, (k⊥k′

⊥)
)

= (I ⊗ I)VS

(
s, s′, (k⊥k′

⊥)
)

+ (γµ ⊗ γµ)VV

(
s, s′, (k⊥k′

⊥)
)
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+ (iσµν ⊗ iσµν)VT

(
s, s′, (k⊥k′

⊥)
)

+ (iγµγ5 ⊗ iγµγ5)VA

(
s, s′, (k⊥k′

⊥)
)

+ (γ5 ⊗ γ5)VP

(
s, s′, (k⊥k′

⊥)
)
.

Let us multiply Eq. (1) by the operator Q
(S,L,J)
µ1...µJ (k⊥)

and convolute over the spin–momentum indices:

(
s − M2

)
tr

[
Ψ̂(S,L,J)

(n)µ1...µJ
(k⊥)(k̂1 + m1) (12)

× Q(S,L,J)
µ1...µJ

(k⊥)(−k̂2 + m2)

]

=
∑

c

tr
[
F̂c(k̂1 + m1)Q(S,L,J)

µ1...µJ
(k⊥)(−k̂2 + m2)

]

×
∫

d3k′
⊥

(2π)3
Φ(s′)Vc

(
s, s′, (k⊥k′

⊥)
)

× tr
[
(k̂′

1 + m1)F̂c(−k̂′
2 + m2)Ψ̂

(S,L,J)
(n)µ1...µJ

(k′
⊥)
]
.

We have four states with the q1q̄2 spins S = 0 and
S = 1:

(i) S = 0; L = J ;
(ii) S = 1; L = J + 1, J, J − 1,

which are mixed and form two final states. The wave
functions read

for S = 0, 1, J = L,

Ψ̂(Si,J,J)
(n)µ1...µJ

(k⊥) = CiΨ̂
(0,J,J)
(n)µ1...µJ

(k⊥) (13)

+ DiΨ̂
(1,J,J)
(n)µ1...µJ

(k⊥),

where Ci and Di are the mixing coefficients with i =
1, 2;

for S = 1, L = J ± 1, J ,

Ψ̂(1,(J±1)j ,J)

(n)µ1...µJ
(k⊥) (14)

= AjΨ̂
(1,J−1,J)
(n)µ1...µJ

(k⊥) + BjΨ̂
(1,J+1,J)
(n)µ1...µJ

(k⊥),

where Aj and Bj are the mixing coefficients with j =
1, 2.

These wave functions are normalized:∫
d3k⊥
(2π)3

Φ(s)(−1) (15)

× tr

[
Ψ̂

(S′,L′
j′ ,J

′)

(n′)µ1...µJ
(k⊥)(k̂1 + m1)Ψ̂

(S,Lj ,J)

(n)µ1...µJ
(k⊥)

× (−k̂2 + m2)

]
= (−1)JδS′SδL′

j′Lj
δJ ′Jδn′n.

3. EQUATIONS FOR (n,M2) TRAJECTORIES

In this section, we write the trajectories for J =
L,S = 0, 1 and J = L ± 1, S = 1 states.
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 9 200
3.1. The Equation for the S = 0,1, J = L State
There are two equations for the two states with

S = 0, 1 and J = L. Their wave functions are denoted
as CiΨ̂

(0,J,J)
(n)µ1...µJ

(k⊥) + DiΨ̂
(1,J,J)
(n)µ1...µJ

(k⊥), with i =
1, 2. These wave functions are orthogonal to each
other. Normalization and orthogonality conditions
give three constraints for four mixing parameters Ci

and Di.
Each wave function obeys two equations:

(s − M2)X(J)
µ1...µJ

(k⊥) (16)

× tr
[(

iγ5CiX
(J)
µ1...µJ

(k⊥)ψ(0,J,J)
n (k2

⊥)

+ γ⊥
α Diεαν1ν2ν3Pν1Z

(J)
ν2µ1...µJ ,ν3

(k⊥)ψ(1,J,J)
n (k2

⊥)
)

× (k̂1 + m1)iγ5(−k̂2 + m2)
]

= X(J)
µ1...µJ

(k⊥)

×
∑

c

tr
[
F̂c(k̂1 + m1)iγ5(−k̂2 + m2)

]

×
∫

d3k′
⊥

(2π)3
Φ(s′)Vc

(
s, s′, (k⊥k′

⊥)
)

× tr
[(

iγ5CiX
(J)
µ1...µJ

(k′
⊥)ψ(0,J,J)

n (k′2
⊥)

+ γ⊥
α′Diεα′ν1ν2ν3P

′
ν1

Z(J)
ν2µ1...µJ ,ν3

(k′
⊥)ψ(1,J,J)

n (k′2
⊥)
)

×(k̂′
1 + m1)F̂c(−k̂′

2 + m2)
]

and (
s − M2

)
εβν1ν2ν3Pν1Z

(J)
ν2µ1...µJ ,ν3

(k⊥) (17)

× tr
[(

iγ5CiX
(J)
µ1...µJ

(k⊥)ψ(0,J,J)
n (k2

⊥)

+ γ⊥
α Diεαν1ν2ν3Pν1Z

(J)
ν2µ1...µJ ,ν3

(k⊥)ψ(1,J,J)
n (k2

⊥)
)

×(k̂1 + m1)γ⊥
β (−k̂2 + m2)

]

= εβ′ν1ν2ν3Pν1Z
(J)
ν2µ1...µJ ,ν3

(k⊥)

×
∑

c

tr
[
F̂c(k̂1 + m1)γ⊥

β′(−k̂2 + m2)
]

×
∫

d3k′
⊥

(2π)3
Φ(s′)Vc

(
s, s′, (k⊥k′

⊥)
)

× tr
[(

iγ5CiX
(J)
µ1...µJ

(k′
⊥)ψ(0,J,J)

n (k′2
⊥)

+ γ⊥
α′Diεα′ν1ν2ν3P

′
ν1

Z(J)
ν2µ1...µJ ,ν3

(k′
⊥)ψ(1,J,J)

n (k′2
⊥)
)

×(k̂′
1 + m1)F̂c(−k̂′

2 + m2)
]
.

Now consider the left-hand side of Eq. (16). Using
the traces written in Appendix A and convolution of
operators from Appendix B, we have

X(J)
µ1...µJ

(k⊥)tr
[
iγ5(k̂1 + m1)iγ5(−k̂2 + m2)

]

5
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× X(J)
µ1...µJ

(k⊥) = −2(s − ∆2)α(J)k2J
⊥ ,

X(J)
µ1...µJ

(k⊥) (18)

× tr
[
γ⊥

α (k̂1 + m1)iγ5(−k̂2 + m2)
]

× εαν1ν2ν3Pν1Z
(J)
ν2µ1...µJ ,ν3

(k⊥) = 0.

Here and below, we use the following notation:
δ = m2 − m1, σ = m2 + m1. Also, the left-hand side
of (17) contains two convolutions:

εβν1ν2ν3Pν1Z
(J)
ν2µ1...µJ ,ν3

(k⊥) (19)

× tr
[
iγ5(k̂1 + m1)γ⊥

β (−k̂2 + m2)
]

× X(J)
µ1...µJ

(k⊥) = 0,

εβν1ν2ν3Pν1Z
(J)
ν2µ1...µJ ,ν3

(k⊥)

× tr
[
γ⊥

α (k̂1 + m1)γ⊥
β (−k̂2 + m2)

]

× εαν1ν2ν3Pν1Z
(J)
ν2µ1...µJ ,ν3

(k⊥)

= −2s(s− ∆2)
J(2J + 3)2

(J + 1)3
α(J)k2J

⊥ .

The right-hand side of Eq. (17) is calculated in two
steps. First, we summarize over c:

A
(
s, s′, (k⊥k′

⊥)
)

(20)

=
∑

c=T,A,P

Ac

(
s, s′, (k⊥k′

⊥)
)
Vc

(
s, s′, (k⊥k′

⊥)
)

=
∑

c=T,A,P

tr
[
F̂c(k̂1 + m1)iγ5(−k̂2 + m2)

]

× tr
[
iγ5(k̂′

1 + m1)F̂c(−k̂′
2 + m2)

]

× Vc

(
s, s′, (k⊥k′

⊥)
)
,

Bβ′α′
(
s, s′, (k⊥k′

⊥)
)

(21)

=
∑

c=T,A,V,S

(Bc)β′α′
(
s, s′, (k⊥k′

⊥)
)

× Vc

(
s, s′, (k⊥k′

⊥)
)

=
∑

c=T,A,V,S

tr
[
F̂c(k̂1 + m1)γ⊥

β′(−k̂2 + m2)
]

× tr
[
γ⊥

α′(k̂′
1 + m1)F̂c(−k̂′

2 + m2)
]

× Vc

(
s, s′, (k⊥k′

⊥)
)
,

and

Cα′
(
s, s′, (k⊥k′

⊥)
)

(22)

=
∑

c=T,A

Cc
α′
(
s, s′, (k⊥k′

⊥)
)
Vc

(
s, s′, (k⊥k′

⊥)
)

PH
=
∑

c=T,A

tr
[
F̂c(k̂1 + m1)iγ5(−k̂2 + m2)

]

× tr
[
γ⊥

α′(k̂′
1 + m1)F̂c(−k̂′

2 + m2)
]

× Vc

(
s, s′, (k⊥k′

⊥)
)
.

In Appendix A, the trace calculations are presented,
and the values Ac (s, s′, (k⊥k′

⊥)), Cc (s, s′, (k⊥k′
⊥))

are given. So, after the summation, Ac, Bc, Cc are
written as follows:

A
(
s, s′, (k⊥k′

⊥)
)

(23)

=
∑

c=T,A,P

Ac

(
s, s′, (k⊥k′

⊥)
)
Vc

(
s, s′, (k⊥k′

⊥)
)

= −16(k⊥k′
⊥)
[
2
√

ss′VT

(
s, s′, (k⊥k′

⊥)
)

+ ∆2VA

(
s, s′, (k⊥k′

⊥)
) ]

− 4(s − ∆2)(s′ − ∆2)

×
[

σσ′
√

ss′
VA

(
s, s′, (k⊥k′

⊥)
)

+ VP

(
s, s′, (k⊥k′

⊥)
)]

,

Bβ′α′
(
s, s′, (k⊥k′

⊥)
)

(24)

=
∑

c=T,A,V,S

(Bc)β′α′
(
s, s′, (k⊥k′

⊥)
)

× Vc

(
s, s′, (k⊥k′

⊥)
)

= 4g⊥β′α′

[
(s − ∆2)(s′ − ∆2)

×
(
VV

(
s, s′, (k⊥k′

⊥)
)

+ 2
σ2

√
ss′

VT

(
s, s′, (k⊥k′

⊥)
) )

+ 4
√

k2
⊥

√
k′2
⊥z
(√

ss′VA

(
s, s′, (k⊥k′

⊥)
)

+ 2∆2VT

(
s, s′, (k⊥k′

⊥)
) )]

+ 16k⊥
β′k′⊥

α′

[(
σ2VS

(
s, s′, (k⊥k′

⊥)
)

+
σ2∆2

√
ss′

VV

(
s, s′, (k⊥k′

⊥)
) )

+ 4
√

k2
⊥

√
k′2
⊥zVV

(
s, s′, (k⊥k′

⊥)
)]

− 16k′⊥
β′ k⊥

α′

[√
ss′VA

(
s, s′, (k⊥k′

⊥)
)

+ 2∆2VT

(
s, s′, (k⊥k′

⊥)
)]

+ 16k⊥
β′k⊥

α′
(
s′ − ∆2

)
VV

(
s, s′, (k⊥k′

⊥)
)

+ 16k′⊥
β′ k′⊥

α′
(
s − ∆2

)
VV

(
s, s′, (k⊥k′

⊥)
)
,
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and

Cα′
(
s, s′, (k⊥k′

⊥)
)

(25)

=
∑

c=T,A

Cc
α′
(
s, s′, (k⊥k′

⊥)
)
Vc

(
s, s′, (k⊥k′

⊥)
)

= 8
[
2∆εα′kk′P ′VA

(
s, s′, (k⊥k′

⊥)
)

+ σεα′Pk′P ′VA

(
s, s′, (k⊥k′

⊥)
)

+ 4∆εα′Pkk′VT

(
s, s′, (k⊥k′

⊥)
)

+ 2σεα′PkP ′VT

(
s, s′, (k⊥k′

⊥)
) ]

.

Here we used a shorthand notation: εα′kk′P ′ ≡
kβk′

µP ′
νεα′βµν . Second, the convolution of operators

is performed by using equations of Appendix B and
recurrent formulas for the Legendre polynomials

zPJ(z) =
J + 1
2J + 1

PJ+1(z) +
J

2J + 1
PJ−1(z),

which allows us to represent the Bethe–Salpeter
equation in terms of the Legendre polynomials. As
a result, we get

X(J)
µ1...µJ

(k⊥)A
(
s, s′, (k⊥k′

⊥)
)
X(J)

µ1...µJ
(k′

⊥) (26)

= −4α(J)
(√

k2
⊥

√
k′2
⊥

)J

×
[
4

J + 1
2J + 1

√
k2
⊥

√
k′2
⊥

(
2
√

ss′VT

(
s, s′, (k⊥k′

⊥)
)

+ ∆2VA

(
s, s′, (k⊥k′

⊥)
))

PJ+1(z)

+ (s − ∆2)(s′ − ∆2)

×
(

σ2

√
ss′

VA

(
s, s′, (k⊥k′

⊥)
)

+ VP

(
s, s′, (k⊥k′

⊥)
))

× PJ (z) + 4
J

2J + 1

√
k2
⊥

√
k′2
⊥

×
(

2
√

ss′VT

(
s, s′, (k⊥k′

⊥)
)

+ ∆2VA

(
s, s′, (k⊥k′

⊥)
) )

PJ−1(z)

]

and

X(J)
µ1...µJ

(k⊥)Cα′
(
s, s′, (k⊥k′

⊥)
)

(27)

× εα′ν1ν2ν3P
′
ν1

Z(J)
ν2µ1...µJ ,ν3

(k′
⊥)

= 16
2J + 3
J + 1

α(J)
(√

k2
⊥

√
k′2
⊥

)J+1
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×
(

2
J + 1

P ′
J(z) − JPJ+1(z)

)

×
(
s′∆VA

(
s, s′, (k⊥k′

⊥)
)

+ 2∆
√

ss′VT

(
s, s′, (k⊥k′

⊥)
) )

.

For the right-hand side of (17), we have

εβ′ν1ν2ν3Pν1Z
(J)
ν2µ1...µJ ,ν3

(k⊥) (28)

× Cβ′
(
s, s′, (k⊥k′

⊥)
)
X(J)

µ1...µJ
(k′

⊥)

= 16
2J + 3
J + 1

α(J)
(√

k2
⊥

√
k′2
⊥

)J+1

×
(

2
J + 1

P ′
J(z) − JPJ+1(z)

)

×
(
s∆VA

(
s, s′, (k⊥k′

⊥)
)

+ 2∆
√

ss′VT

(
s, s′, (k⊥k′

⊥)
) )

and

εβ′ν1ν2ν3Pν1Z
(J)
ν2µ1...µJ ,ν3

(k⊥) (29)

× Bβ′α′
(
s, s′, (k⊥k′

⊥)
)
εα′ν1ν2ν3

× P ′
ν1

Z(J)
ν2µ1...µJ ,ν3

(k′
⊥)

= −4
√

ss′
J(2J + 3)2

(J + 1)3
α(J)

(√
k2
⊥

√
k′2
⊥

)J

×
[
4

J

2J + 1

√
k2
⊥

√
k′2
⊥

(√
ss′VA

(
s, s′, (k⊥k′

⊥)
)

+ 2∆2VT

(
s, s′, (k⊥k′

⊥)
) )

PJ+1(z)

+ (s − ∆2)(s′ − ∆2)

(
VV

(
s, s′, (k⊥k′

⊥)
)

+ 2
σ2

√
ss′

VT

(
s, s′, (k⊥k′

⊥)
))

PJ(z)

+ 4
J + 1
2J + 1

√
k2
⊥

√
k′2
⊥

(√
ss′VA

(
s, s′, (k⊥k′

⊥)
)

+ 2∆2VT

(
s, s′, (k⊥k′

⊥)
) )

PJ−1(z)

]
.

Expanding the interaction block in a series of Leg-
endre polynomials,

Vc

(
s, s′, (k⊥k′

⊥)
)

=
∑
J

V (J)
c

(
s, s′

)
PJ(z) (30)

=
∑
J

Ṽ (J)
c

(
s, s′

)
α(J)

(
−
√

k2
⊥

√
k′2
⊥

)J

PJ(z),
5
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and integrating over angle variables on the right-hand
side by taking account of the standard normalization

condition
∫ 1
−1

dz

2
P 2

J (z) = 1/(2J + 1), we have finally

(s −M2)
[
(s − ∆2)ψ(0,J,J)

n (s)Ci

]
(31)

=

∞∫
(m1+m2)2

ds′

π
ρ(s′) · 2(−k′2

⊥)Jψ(0,J,J)
n (s′)Cj

×
[
− 4ξ(J + 1)

J + 1
2J + 1

k2
⊥k′2

⊥

×
(
2
√

ss′Ṽ
(J+1)
T

(
s, s′

)
+ ∆2Ṽ

(J+1)
A

(
s, s′

))

+ ξ(J)(s − ∆2)(s′ − ∆2)

×
(

σ2

√
ss′

Ṽ
(J)
A

(
s, s′

)
+ Ṽ

(J)
P

(
s, s′

))

− 4ξ(J − 1)
J

2J + 1

×
(
2
√

ss′Ṽ
(J−1)
T

(
s, s′

)
+ ∆2Ṽ

(J−1)
A

(
s, s′

)) ]

−
∞∫

(m1+m2)2

ds′

π
ρ(s′) · 82J + 3

J + 1
k2
⊥(−k′2

⊥)J+1

× ψ(1,J,J)
n (s′)Dj

[
2

J + 1

∑
a

(2J − 4a − 1)

× ξ(J − 2a − 1)
(
−
√

k2
⊥

√
k′2
⊥

)−2(a+1)

×
(
s′∆Ṽ

(J−2a−1)
A

(
s, s′

)

+ 2∆
√

ss′Ṽ
(J−2a−1)
T

(
s, s′

) )

− Jξ(J + 1)
(
s′∆Ṽ

(J+1)
A

(
s, s′

)

+ 2∆′√ss′Ṽ
(J+1)
T

(
s, s′

) )]
,

where

P ′
J(z) =

∑
a

(2J − 4a − 1)PJ−2a−1(z). (32)

Equation (17) reads

(s − M2)
[
s(s − ∆2)

J(2J + 3)2

(J + 1)3
ψ(1,J,J)

n (s)Di

]

(33)
PH
= −
∞∫

(m1+m2)2

ds′

π
ρ(s′) · 82J + 3

J + 1
k2
⊥(−k′2

⊥)J+1

× ψ(0,J,J)
n (s′)Dj

(
2

J + 1

∑
a

(2J − 4a − 1)

× ξ(J − 2a − 1)
(
−
√

k2
⊥

√
k′2
⊥

)−2(a+1)

×
(
s∆Ṽ

(J−2a−1)
A

(
s, s′

)

+ 2∆
√

ss′Ṽ
(J−2a−1)
T

(
s, s′

) )

− Jξ(J + 1)
(
s∆Ṽ J+1

A

(
s, s′

)

+ 2∆
√

ss′Ṽ J+1
T

(
s, s′

) ))

+

∞∫
(m1+m2)2

ds′

π
ρ(s′) · 2

√
ss′

J(2J + 3)2

(J + 1)3
(−k′2

⊥)J

× ψ(1,J,J)
n (s′)Dj

[
− 4ξ(J + 1)

J

2J + 1
k2
⊥k′2

⊥

×
(√

ss′Ṽ
(J+1)
A

(
s, s′

)
+ 2∆2Ṽ

(J+1)
T

(
s, s′

))

+ ξ(J)(s − ∆2)(s′ − ∆2)

×
(

2
σ2

√
ss′

Ṽ
(J)
T

(
s, s′

)
+ Ṽ

(J)
V

(
s, s′

))

− 4ξ(J − 1)
J + 1
2J + 1

×
(√

ss′Ṽ
(J−1)
A

(
s, s′

)
+ 2∆2Ṽ

(J−1)
T

(
s, s′

))]
.

The normalization and orthogonality conditions look
as follows:

∞∫
(m2+m1)2

ds

π
ρ(s)

[
C2

i

(
ψ(0,J,J)

n (k2
⊥)
)2

· 2α(J) (34)

× (−k2
⊥)J

(
s− ∆2

)
+ D2

i

(
ψ(1,J,J)

n (k2
⊥)
)2

× 2α(J)(−k2
⊥)Js

(
s − ∆2

) J(2J + 3)2

(J + 1)3

]
= 1,

i = 1, 2,

and
∞∫

(m2+m1)2

ds

π
ρ(s)

[
C1C2

(
ψ(0,J,J)

n (k2
⊥)
)2

· 2α(J)

(35)
YSICS OF ATOMIC NUCLEI Vol. 68 No. 9 2005
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× (−k2
⊥)J

(
s− ∆2

)
+ D1D2

(
ψ(1,J,J)

n (k2
⊥)
)2

× 2α(J)(−k2
⊥)Js

(
s − ∆2

) J(2J + 3)2

(J + 1)3

]
= 0.

As the result of our calculations, we observe
the mixing of singlet (J = L, S = 0) and triplet
(J = L, S = 1) states and that is proportional to
the quark mass difference. This is a consequence of
C-parity breaking for the quark–antiquark system
with nonequal quark masses. The best known exam-
ples of such a system is K and B mesons.

Themixing between S = 1, J = L and S = 0, J =
L states gives rise to a system of equations where,
for states with total spin J , we need to know all
lower projections of the potential on the Legendre
polynomials, not only the J + 1, J , J − 1 ones.

3.2. The Equations for the S = 1, J = L ± 1 States

We have two equations for the two states with
S = 1 and J = L ± 1. Their wave functions are de-
noted asAjΨ̂

(1,J−1,J)
(n)µ1...µJ

(k⊥) + BjΨ̂
(1,J+1,J)
(n)µ1...µJ

(k⊥), with
j = 1, 2. These wave functions are orthogonal. The
normalization and orthogonality conditions give three
constraints for four mixing parameters Aj and Bj .

Each wave function obeys two equations:(
s − M2

)
X

(J+1)
µ1...µJβ(k⊥) (36)

× tr
[
γ⊥

α (k̂1 + m1)γ⊥
β (−k̂2 + m2)

]

×
(
AjZ

(J−1)
µ1...µJ ,α(k⊥)ψ(1,J−1,J)

n (k2
⊥)

+ BjX
(J+1)
µ1...µJα(k⊥)ψ(1,J+1,J)

n (k2
⊥)
)

= X
(J+1)
µ1...µJβ′(k⊥)

×
∑

c

tr
[
F̂c(k̂1 + m1)γ⊥

β′(−k̂2 + m2)
]

×
∫

d3k′
⊥

(2π)3
Vc

(
s, s′, (k⊥k′

⊥)
)

× tr
[
γ⊥

α′(k̂′
1 + m1)F̂c(−k̂′

2 + m2)
]

×
(
AjZ

(J−1)
µ1...µJ ,α′(k′

⊥)ψ(1,J−1,J)
n (k′2

⊥)

+ BjX
(J+1)
µ1...µJ α′(k′

⊥)ψ(1,J+1,J)
n (k′2

⊥)
)

and (
s− M2

)
Z

(J−1)
µ1...µJ ,β(k⊥) (37)

× tr
[
γ⊥

α (k̂1 + m1)γ⊥
β (−k̂2 + m2)

]

×
(
AjZ

(J−1)
µ1...µJ ,α(k⊥)ψ(1,J−1,J)

n (k2
⊥)
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+ BjX
(J+1)
µ1...µJα(k⊥)ψ(1,J+1,J)

n (k2
⊥)
)

= Z
(J−1)
µ1...µJ ,β′(k⊥)

×
∑

c

tr
[
F̂c(k̂1 + m1)γ⊥

β′(−k̂2 + m2)
]

×
∫

d3k′
⊥

(2π)3
Vc

(
s, s′, (k⊥k′

⊥)
)

× tr
[
γ⊥

α′(k̂′
1 + m1)F̂c(−k̂′

2 + m2)
]

×
(
AjZ

(J−1)
µ1...µJ ,α′(k′

⊥)ψ(1,J−1,J)
n (k′2

⊥)

+ BjX
(J+1)
µ1...µJα′(k′

⊥)ψ(1,J+1,J)
n (k′2

⊥)
)
.

First, consider Eq. (36). On the left-hand side of (36),
one has two convolutions:

X
(J+1)
µ1...µJβ(k⊥)tr

[
γ⊥

α (k̂1 + m1) (38)

× γ⊥
β (−k̂2 + m2)

]
X(J+1)

µ1...µJ α(k⊥)

= 2α(J)k2(J+1)
⊥

[
2J + 1
J + 1

(s − ∆2) + 4k2
⊥

]
,

X
(J+1)
µ1...µJβ(k⊥)tr

[
γ⊥

α (k̂1 + m1)γ⊥
β (−k̂2 + m2)

]

× Z(J−1)
µ1...µJ ,α(k⊥) = 8α(J)k2(J+1)

⊥ .

Also, the left-hand side of (37) contains two convolu-
tions:

Z
(J−1)
µ1...µJ ,β(k⊥)tr

[
γ⊥

α (k̂1 + m1)γ⊥
β (−k̂2 + m2)

]
(39)

× X(J+1)
µ1...µJα(k⊥) = 8α(J)k2(J+1)

⊥ ,

Z
(J−1)
µ1...µJ ,β(k⊥)tr

[
γ⊥

α (k̂1 + m1)

× γ⊥
β (−k̂2 + m2)

]
Z(J−1)

µ1...µJ ,α(k⊥)

= 2α(J)k2(J−1)
⊥

[
2J + 1

J
(s − ∆2) + 4k2

⊥

]
.

The right-hand sides of Eqs. (36) and (37) are
determined by the convolutions of the trace factor
Bβ′α′ (s, s′, (k⊥k′

⊥)) [see Eqs. (24)] with angular-
momentum wave functions; the corresponding for-
mulas may be found in Appendix B. Taking them into
account, one has for the right-hand side of (36)

X
(J+1)
µ1...µJβ′(k⊥)Bβ′α′

(
s, s′, (k⊥k′

⊥)
)
X

(J+1)
µ1...µJα′(k′

⊥)
(40)

= 4α(J)
(√

k2
⊥

√
k′2
⊥

)J+1
5
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×
([

2J + 1
J + 1

(s − ∆2)(s′ − ∆2)

×
(

VV (s, s′, (k⊥k′
⊥)) + 2

σ2

√
ss′

VT (s, s′, (k⊥k′
⊥))
)

+ 4(s′ − ∆2)k2
⊥VV (s, s′, (k⊥k′

⊥))

+ 4(s − ∆2)k′2
⊥VV (s, s′, (k⊥k′

⊥))

+ 16
J + 1
2J + 1

k2
⊥k′2

⊥VV (s, s′, (k⊥k′
⊥))

]

× PJ+1(z) + 4

[
σ2VS(s, s′, (k⊥k′

⊥))

+
σ2∆2

√
ss′

VV (s, s′, (k⊥k′
⊥))

+
J

J + 1

(√
ss′VA(s, s′, (k⊥k′

⊥))

+ 2∆2VT (s, s′, (k⊥k′
⊥))
)]√

k2
⊥

√
k′2
⊥PJ (z)

+ 16
J

2J + 1
k2
⊥k′2VV (s, s′, (k⊥k′

⊥))PJ−1(z)

)

and

X
(J+1)
µ1...µJβ′(k⊥)Bβ′α′

(
s, s′, (k⊥k′

⊥)
)

(41)

× Z
(J−1)
µ1...µJ ,α′(k′

⊥) = 16α(J)k2
⊥

×
(√

k2
⊥

√
k′2
⊥

)J−1
([

s − ∆2 + 4
J + 1
2J + 1

k2
⊥

]

× k′2
⊥VV (s, s′, (k⊥k′

⊥))PJ+1(z)

+

[
σ2VS(s, s′, (k⊥k′

⊥)) +
σ2∆2

√
ss′

VV (s, s′, (k⊥k′
⊥))

−
√

ss′VA(s, s′, (k⊥k′
⊥))

− 2∆2VT (s, s′, (k⊥k′
⊥))

]

×
√

k2
⊥

√
k′2
⊥PJ(z) +

[
s′ − ∆2 + 4

J

2J + 1
k′2
⊥

]

× k2
⊥VV (s, s′, (k⊥k′

⊥))PJ−1(z)

)
.

For the right-hand side of (37),

Z
(J−1)
µ1...µJ ,β′(k⊥)Bβ′α′

(
s, s′, (k⊥k′

⊥)
)

(42)

×X
(J+1)
µ1...µJα′(k′

⊥) = 16α(J)k′2
⊥

(√
k2
⊥

√
k′2
⊥

)J−1
PH
×
([

s′ − ∆2 + 4
J + 1
2J + 1

k′2
⊥

]

× k2
⊥VV (s, s′, (k⊥k′

⊥))PJ+1(z)

+

[
σ2VS(s, s′, (k⊥k′

⊥)) +
σ2∆2

√
ss′

VV (s, s′, (k⊥k′
⊥))

−
√

ss′VA(s, s′, (k⊥k′
⊥)) − 2∆2VT (s, s′, (k⊥k′

⊥))

]

×
√

k2
⊥

√
k′2
⊥PJ(z) +

[
s − ∆2 + 4

J

2J + 1
k2
⊥

]

× k′2
⊥VV (s, s′, (k⊥k′

⊥))PJ−1(z)

)
,

and

Z
(J−1)
µ1...µJ ,β′(k⊥)Bβ′α′

(
s, s′, (k⊥k′

⊥)
)

(43)

× Z
(J−1)
µ1...µJ ,α′(k′

⊥) = 4α(J)
(√

k2
⊥

√
k′2
⊥

)J−1

×
(

16
J + 1
2J + 1

k2
⊥k′2

⊥VV (s, s′, (k⊥k′
⊥))PJ+1(z)

+ 4

[
σ2VS(s, s′, (k⊥k′

⊥))

+
σ2∆2

√
ss′

VV (s, s′, (k⊥k′
⊥))

+
J + 1

J

(√
ss′VA(s, s′, (k⊥k′

⊥))

+ 2∆2VT (s, s′, (k⊥k′
⊥))
)]√

k2
⊥

√
k′2
⊥PJ(z)

+

[
2J + 1

J
(s − ∆2)(s′ − ∆2)

×
(

VV (s, s′, (k⊥k′
⊥)) + 2

σ2

√
ss′

VT (s, s′, (k⊥k′
⊥))

)

+ 4(s′ − ∆2)k2
⊥VV (s, s′, (k⊥k′

⊥))

+ 4(s − ∆2)k′2
⊥VV (s, s′, (k⊥k′

⊥))

+ 16
J

2J + 1
k2
⊥k′2

⊥VV (s, s′, (k⊥k′
⊥))

]
PJ−1(z)

)
.

On the right-hand sides of Eqs. (36) and (37), we
expand the interaction block in a series of Legen-
dre polynomials and integrate over angle variables:∫ 1
−1 dz/2. As a result, Eq. (36) reads

(s − M2)

[
4ψ(1,J−1,J)

n (s)Aj (44)
YSICS OF ATOMIC NUCLEI Vol. 68 No. 9 2005
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+
(

2J + 1
J + 1

(s − ∆2) + 4k2
⊥

)
ψ(1,J+1,J)

n (s)Bj

]

=

∞∫
(m1+m2)2

ds′

π
ρ(s′) · 8(−k′2

⊥)J−1

× ψ(1,J−1,J)
n (s′)Aj

(
ξ(J + 1)k′4

⊥

×
(

s − ∆2 + 4
J + 1
2J + 1

k2
⊥

)
Ṽ

(J+1)
V (s, s′)

− ξ(J)k′2
⊥

[
σ2Ṽ

(J)
S (s, s′) +

σ2∆2

√
ss′

Ṽ
(J)
V (s, s′)

−
√

ss′Ṽ
(J)
A (s, s′) − 2∆2Ṽ

(J)
T (s, s′)

]
+ ξ(J − 1)

×
[
s′ − ∆2 + 4

J

2J + 1
k′2
⊥

]
Ṽ

(J−1)
V (s, s′)

)

+

∞∫
(m1+m2)2

ds′

π
ρ(s′) · 2(−k′2

⊥)J+1ψ(1,J+1,J)
n (k′2

⊥)

× Bj

(
ξ(J + 1)

[
2J + 1
J + 1

(s − ∆2)(s′ − ∆2)

×
(

Ṽ
(J+1)
V (s, s′) + 2

σ2

√
ss′

Ṽ
(J+1)
T (s, s′)

)

+ 4(s′ − ∆2)k2
⊥Ṽ

(J+1)
V (s, s′)

+ 4(s − ∆2)k′2
⊥Ṽ

(J+1)
V (s, s′)

+ 16
J + 1
2J + 1

k2
⊥k′2

⊥Ṽ
(J+1)
V (s, s′)

]

− 4ξ(J)

[
σ2Ṽ

(J)
S (s, s′) +

σ2∆2

√
ss′

Ṽ
(J)
V (s, s′)

+
J

J + 1

(√
ss′Ṽ (J)

A (s, s′) + 2∆2Ṽ
(J)
T (s, s′)

)]

+ 16ξ(J − 1)
J

2J + 1
Ṽ

(J−1)
V (s, s′)

)
.

The second equation, (37), reads

(s − M2)
[(

2J + 1
J

(s − ∆2) + 4k2
⊥

)
(45)

× ψ(1,J−1,J)
n (s)Aj + 4k4

⊥ψ(1,J+1,J)
n (s)Bj

]

=

∞∫
(m1+m2)2

ds′

π
ρ(s′) · 2(−k′2

⊥)J−1ψ(1,J−1,J)
n (s′)Aj
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×
(

16ξ(J + 1)
J + 1
2J + 1

k4
⊥k′4

⊥Ṽ
(J+1)
V (s, s′)

− 4ξ(J)k2
⊥k′2

⊥

[
σ2Ṽ

(J)
S (s, s′)

+
σ2∆2

√
ss′

Ṽ
(J)
V (s, s′) +

J + 1
J

×
(√

ss′Ṽ
(J)
A (s, s′) + 2∆2Ṽ

(J)
T (s, s′)

)]

+ ξ(J − 1)
[
2J + 1

J
(s − ∆2)(s′ − ∆2)

×
(

Ṽ
(J−1)
V (s, s′) + 2

σ2

√
ss′

Ṽ
(J−1)
T (s, s′)

)

+ 4(s′ − ∆2)k2
⊥Ṽ

(J−1)
V (s, s′)

+ 4(s − ∆2)k′2
⊥Ṽ

(J−1)
V (s, s′)

+ 16
J

2J + 1
k2
⊥k′2

⊥Ṽ
(J−1)
V (s, s′)

])

+

∞∫
(m1+m2)2

ds′

π
ρ(s′) · 8(−k′2

⊥)J+1ψ(1,J+1,J)
n (s′)Bj

×
(

ξ(J + 1)k4
⊥

[
s′ − ∆2 + 4

J + 1
2J + 1

k′2
⊥

]

× Ṽ
(J+1)
V (s, s′) − ξ(J)k2

⊥

×
[
σ2Ṽ

(J)
S (s, s′) +

σ2∆2

√
ss′

Ṽ
(J)
V (s, s′)

−
√

ss′Ṽ
(J)
A (s, s′) − 2∆2Ṽ

(J)
T (s, s′)

]

+ ξ(J − 1)
[
s − ∆2 + 4

J

2J + 1
k2
⊥

]
Ṽ

(J−1)
V (s, s′)

)
.

The normalization and orthogonality conditions are

∞∫
(m2+m1)2

ds

π
ρ(s)

[
A2

j

(
ψ(1,J−1,J)

n (k2
⊥)
)2

(46)

× 2α(J)(−k2
⊥)(J−1)

×
(

2J + 1
J

(s − ∆2) + 4k2
⊥

)

+ 2AjBjψ
(1,J−1,J)
n (k2

⊥)ψ(1,J+1,J)
n (k2

⊥)8α(J)

× (−k2
⊥)(J+1) + B2

j

(
ψ(1,J+1,J)

n (k2
⊥)
)2

× 2α(J)(−k2
⊥)(J+1)

×
(

2J + 1
J + 1

(s − ∆2) + 4k2
⊥

)]
= 1
5
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for j = 1, 2, and

∞∫
(m2+m1)2

ds

π
ρ(s)

[
A1A2

(
ψ(1,J−1,J)

n (k2
⊥)
)2

(47)

× 2α(J)(−k2
⊥)(J−1)

(
2J + 1

J
(s − ∆2) + 4k2

⊥

)

+ (A1B2 + A2B1)ψ(1,J−1,J)
n (k2

⊥)

× ψ(1,J+1,J)
n (k2

⊥) · 8α(J)(−k2
⊥)(J+1)

+ B1B2

(
ψ(1,J+1,J)

n (k2
⊥)
)2

· 2α(J)(−k2
⊥)(J+1)

×
(

2J + 1
J + 1

(s − ∆2) + 4k2
⊥

)]
= 0.

Let us emphasize again: all the above equations are
written for J > 0.

4. CONCLUSION

We have presented the Bethe–Salpeter equations
for the quark–antiquark systems when the quark and
antiquark have different masses. The main difference
from the equal-mass case is that there is the mixture
of states J = L, S = 0 and J = L, S = 1 and that is
proportional to the quark-mass difference. The mix-
ing between S = 1, J = L and S = 0, J = L states
gives rise to a strongly correlated system of equations.
In the equation for states with total spin J , we need
to know all lower projections of the potential on the
Legendre polynomials, not only the J + 1, J , J − 1
ones. The numerical study of these equations is now
in progress.
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Appendix A

TRACES FOR LOOP DIAGRAMS

Here, we present the traces used in the calcula-
tion of loop diagrams. Recall that, in the spectral-
integral representation, there is no energy conser-
vation, s �= s′, where P 2 = s, P ′2 = s′, but all con-
stituents are mass-on-shell:

k2
1 = m2

1, k2
2 = m2

2, k′2
1 = m2

1, k′2
2 = m2

2.

We have used the notation for the quark momenta

kν =
1
2
(k1 − k2)ν , k′

ν =
1
2
(k′

1 − k′
2)ν , (A.1)

k⊥
µ = kνg

⊥
νµ, k′⊥

µ = k′
νg

⊥
νµ,

kµ =
m2

1 − m2
2

2s
Pµ + k⊥

µ , k′
µ =

m2
1 − m2

2

2s′
P ′

µ + k′⊥
µ ,

and for the quark masses

∆ = m2 − m1, σ = m2 + m1. (A.2)

We work with the following definition of the matrices:

γ5 = −iγ0γ1γ2γ3, σµν =
1
2

[γµγν ] .

TRACES FOR THE S = 0 STATES

For the S = 0 states, we have the following
nonzero traces:

T ′
P = tr

[
iγ5(k̂′

1 + m1)γ5(−k̂′
2 + m2)

]
(A.3)

= 2i(s′ − (m2 − m1)2),

T ′
A = tr

[
iγ5(k̂′

1 + m1)iγµγ5(−k̂′
2 + m2)

]

= −2
[
2k′

µ(m2 −m1) + P ′
µ(m2 + m1)

]
,

T ′
T = tr

[
iγ5(k̂′

1 + m1)iσµν(−k̂′
2 + m2)

]
= −4iεµναβP ′

αk′
β

and

TP = tr
[
iγ5(−k̂2 + m2)γ5(k̂1 + m1)

]
(A.4)

= 2i(s − (m2 − m1)2),

TA = tr
[
iγ5(−k̂2 + m2)iγµγ5(k̂1 + m1)

]
= 2 [2kµ(m2 − m1) + Pµ(m2 + m1)] ,

TT = tr
[
iγ5(−k̂2 + m2)iσµν(k̂1 + m1)

]
= 4iεµναβPαkβ.

The convolutions of the traces AP = (TP T ′
P ), AA =

(TAT ′
A), AT = (TT T ′

T ) are equal to

AP = −4(s − ∆2)(s′ − ∆2), (A.5)
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AA = −16∆2
√

k2
⊥k′2

⊥z − 4
σ2

√
ss′

(s − ∆2)(s′ − ∆2),

AT = −32
√

ss′
√

k2
⊥k′2

⊥z.

TRACES FOR THE S = 1 STATES

For the S = 1 states, the traces are equal to

T ′
S = tr

[
γ⊥

α′(k̂′
1 + m1)(−k̂′

2 + m2)
]

(A.6)

= 4k′⊥
α′ (m2 + m1),

T ′
V = tr

[
γ⊥

α′(k̂′
1 + m1)γµ(−k̂′

2 + m2)
]

= 2
(
g⊥α′µ(s′ − (m2 − m1)2) + 4k′⊥

α′ k′
µ

)
,

T ′
A = tr

[
γ⊥

α′(k̂′
1 + m1)iγ⊥

µ γ5(−k̂′
2 + m2)

]

= 4εα′µαβk′
αP ′

β ,

T ′
T = tr

[
γ⊥

α′(k̂′
1 + m1)iσµν(−k̂′

2 + m2)
]

= 2i
[
2(m2 −m1)

(
g⊥α′νk

′
µ − g⊥α′µk

′
ν

)

+ (m1 + m2)
(
g⊥α′νP

′
µ − g⊥α′µP

′
ν

)]

and

TS = tr
[
γ⊥

β′(−k̂2 + m2)(k̂1 + m1)
]

(A.7)

= 4k⊥
β′(m1 + m2),

TV = tr
[
γ⊥

β′(−k̂2 + m2)γµ(k̂1 + m1)
]

= 2
[
g⊥µβ′(s − (m2 − m1)2) + 4k⊥

β′kµ

]
,

TA = tr
[
γ⊥

β′(−k̂2 + m2)iγµγ5(k̂1 + m1)
]

= −4εβ′µαβkαPβ ,

TT = tr
[
γ⊥

β′(−k̂2 + m2)iσµν(k̂1 + m1)
]

= 2i
[
2(m2 − m1)(g⊥β′µkν − g⊥β′νkµ)

+ (m2 + m1)
(
g⊥β′µPν − g⊥β′νPµ

)]
.

The corresponding convolutionBS = (TcT
′
c) reads

(BS)β′α′ = 16k⊥
β′k′⊥

α′ σ2, (A.8)
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(BV )β′α′ = 4

[(
g⊥β′α′(s − ∆2)(s′ − ∆2)

+ 16k⊥
β′k′⊥

α′

√
k2
⊥k′2

⊥z + 4k⊥
β′k⊥

α′(s′ − ∆2)

+ 4k′⊥
β′ k′⊥

α′ (s − ∆2) + 4k⊥
β′k′⊥

α′
σ2∆2

√
ss′

)]
,

(BA)β′α′ = −16
√

ss′
[
k′⊥

β′ k⊥
α′ − g⊥β′α′

√
k2
⊥k′2

⊥z

]
,

(BT )β′α′ = −8

[
4∆2

(
k′⊥

β′ k⊥
α′ − g⊥β′α′

√
k2
⊥k′2

⊥z

)

− g⊥β′α′
σ2

√
ss′

(s − ∆2)(s′ − ∆2)

]
.

Appendix B

CONVOLUTIONS OF TRACE FACTORS

Here, we present the convolutions of the angular-
momentum factors. Let z be

z =
(k⊥k′

⊥)√
k2
⊥

√
k′2
⊥

. (A.9)

The convolutions for the S = 1 states read

X(J)
µ1µ2...µJ

(k⊥)X(J)
µ1µ2...µJ

(k′
⊥) (A.10)

= α(J)
(√

k2
⊥

√
k′2
⊥

)J

PJ (z).

Analogous convolutions for S = 1 states are writ-
ten as follows:

X
(J+1)
µ1µ2...µJβ(k⊥)X(J+1)

µ1µ2...µJ α(k′
⊥) (A.11)

=
α(J)
J + 1

(√
k2
⊥

√
k′2
⊥

)J
[√

k′2
⊥√

k2
⊥

APJ,J+1
(z)k⊥

β k⊥
α

+

√
k2
⊥√

k′2
⊥

BPJ,J+1
(z)k′⊥

β k′⊥
α

+ CPJ,J+1
(z)k⊥

β k′⊥
α + DPJ,J+1

(z)k′⊥
β k⊥

α

+
(√

k2
⊥

√
k′2
⊥

)
EPJ,J+1

(z)g⊥βα

]
,

X
(J+1)
µ1µ2...µJβ(k⊥)Z(J−1)

µ1µ2...µJ ,α(k′
⊥) (A.12)
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= −α(J)
J

1
k′2
⊥

(√
k2
⊥

√
k′2
⊥

)J

×
[√

k′2
⊥√

k2
⊥

APJ,J+1
(z)k⊥

β k⊥
α +

√
k2
⊥√

k′2
⊥

×
(
BPJ,J+1

(z) − (2J + 1)AJ (z)
)
k′⊥

β k′⊥
α

+ (CPJ,J+1
(z) − (2J + 1)BJ (z))k⊥

β k′⊥
α

+ DPJ,J+1
(z)k′⊥

β k⊥
α

+
(√

k2
⊥

√
k′2
⊥

)
EPJ,J+1

(z)g⊥βα

]
,

Z
(J−1)
µ1µ2...µJ ,β(k⊥)Z(J−1)

µ1µ2...µJ ,α(k′
⊥) (A.13)

=
J + 1
J2

α(J)
(√

k2
⊥

√
k′2
⊥

)J−2

×
[√

k′2
⊥√

k2
⊥

(
APJ,J+1

(z) − (2J + 1)AJ (z)
)
k⊥

β k⊥
α

+

√
k2
⊥√

k′2
⊥

(
BPJ,J+1

(z) − (2J + 1)AJ (z)
)
k′⊥

β k′⊥
α

+
(

CPJ,J+1
(z) +

(2J + 1)2

J + 1
PJ (z)

− 2(2J + 1)BJ(z)
)

k⊥
β k′⊥

α + DPJ,J+1
(z)k′⊥

β k⊥
α

+
(√

k2
⊥

√
k′2
⊥

)
EPJ,J+1

(z)g⊥βα

]
,

PH
εβν1ν2ν3Pν1Z
(J)
ν2µ1...µJ ,ν3

(k⊥) (A.14)

× εαλ1λ2λ3P
′
λ1

Z
(J)
λ2µ1...µJ ,λ3

(k′
⊥)

=
(2J + 3)2

(J + 1)3
α(J)

(√
k2
⊥

√
k′2
⊥

)J−1

(PP ′)

×
[
−
√

k2
⊥

√
k′2
⊥

(
(z2 − 1)DPJ,J+1

(z)

+ zEPJ,J+1
(z)
)

g⊥βα − DPJ,J+1
(z)

×



√

k′2
⊥√

k2
⊥

k⊥
β k⊥

α +

√
k2
⊥√

k′2
⊥

k′⊥
β k′⊥

α − zk⊥
β k′⊥

α




+
(
zDPJ,J+1

(z) + EPJ,J+1
(z)
)
k′⊥

β k⊥
α

]
,

and

X(J)
µ1...µJ

(k⊥)εαν1ν2ν3P
′
ν1

Z(J)
ν2µ1...µJ ,ν3

(k′
⊥) (A.15)

=
2J + 3
J + 1

α(J)
(√

k2
⊥

√
k′2
⊥

)J−1

APJ,J+1
(z)εαP ′kk′ .

Here,

APJ,J+1
(z) = BPJ,J+1

(z) (A.16)

= −
2zPJ(z) +

[
Jz2 − (J + 2)

]
PJ+1(z)

(1 − z2)2
,

CPJ,J+1
(z) =

[
(1 − J)z2 + (J + 1)

]
PJ(z) +

[
(2J + 1)z2 − (2J + 3)

]
zPJ+1(z)

(1 − z2)2
,

DPJ,J+1
(z) =

[
(J + 2)z2 − J

]
PJ (z) − 2zPJ+1(z)

(1 − z2)2
,

EPJ,J+1
(z) =

zPJ (z) − PJ+1(z)
(1 − z2)

.

For the factors KβX
(J+1)
µ1µ2...µJβ(k⊥) ×

X
(J+1)
µ1µ2...µJα(k′

⊥)Kα, where K = k, k′, we need more
complicated convolutions, namely:

kβX
(J+1)
µ1µ2...µJβ(k⊥)X(J+1)

µ1µ2...µJ α(k′
⊥)kα

= k2
⊥α(J)

(√
k2
⊥

√
k′2
⊥

)J+1

PJ+1(z),
YSICS
kβX
(J+1)
µ1µ2...µJβ(k⊥)X(J+1)

µ1µ2...µJα(k′
⊥)k′

α

= α(J)
(√

k2
√

k′2
⊥

)J+2

PJ (z),

k′
βX

(J+1)
µ1µ2...µJβ(k⊥)X(J+1)

µ1µ2...µJα(k′
⊥)k′

α

= k′2
⊥α(J)

(√
k2
⊥

√
k′2
⊥

)J+1

PJ+1(z),

k′
βX

(J+1)
µ1µ2...µJβ(k⊥)X(J+1)

µ1µ2...µJα(k′
⊥)kα

= α(J)
(√

k2
⊥

√
k′2
⊥

)J+2
OF ATOMIC NUCLEI Vol. 68 No. 9 2005



QUARK–ANTIQUARK COMPOSITE SYSTEMS 1585
×
[
2J + 1
J + 1

zPJ+1(z) −
J

J + 1
PJ(z)

]
,

g⊥βαX
(J+1)
µ1µ2...µJβ(k⊥)X(J+1)

µ1µ2...µJ α(k′
⊥)

=
2J + 1
J + 1

α(J)
(√

k2
⊥

√
k′2
⊥

)J+1

PJ+1(z);

as well as for the factors KβX
(J+1)
µ1µ2...µJβ(k⊥) ×

Z
(J−1)
µ1µ2...µJ ,α(k′

⊥)Kα:

kβX
(J+1)
µ1µ2...µJ β(k⊥)Z(J−1)

µ1µ2...µJ ,α(k′
⊥)kα

= k4
⊥α(J)

(√
k2
⊥

√
k′2
⊥

)J−1

PJ−1(z),

kβX
(J+1)
µ1µ2...µJ β(k⊥)Z(J−1)

µ1µ2...µJ ,α(k′
⊥)k′

α

= k2
⊥α(J)

(√
k2
⊥

√
k′2
⊥

)J

PJ(z),

k′
βX

(J+1)
µ1µ2...µJ β(k⊥)Z(J−1)

µ1µ2...µJ ,α(k′
⊥)k′

α

= α(J)
(√

k2
⊥

√
k′2
⊥

)J+1

PJ+1(z),

k′
βX

(J+1)
µ1µ2...µJ β(k⊥)Z(J−1)

µ1µ2...µJ ,α(k′
⊥)kα

= k2
⊥α(J)

(√
k2
⊥

√
k′2
⊥

)J

PJ(z),

g⊥βαX
(J+1)
µ1µ2...µJ β(k⊥)Z(J−1)

µ1µ2...µJ ,α(k′
⊥) = 0;

and for the factors KβZ
(J−1)
µ1µ2...µJ ,β(k⊥) ×

Z
(J−1)
µ1µ2...µJ ,α(k′

⊥)Kα:

kβZ
(J−1)
µ1µ2...µJ ,β(k⊥)Z(J−1)

µ1µ2...µJ ,α(k′
⊥)kα

= k2
⊥α(J)

(√
k2
⊥

√
k′2
⊥

)J−1

PJ−1(z),

kβZ
(J−1)
µ1µ2...µJ ,β(k⊥)Z(J−1)

µ1µ2...µJ ,α(k′
⊥)k′

α

= α(J)
(√

k2
⊥

√
k′2
⊥

)J

PJ (z),

k′
βZ

(J−1)
µ1µ2...µJ ,β(k⊥)Z(J−1)

µ1µ2...µJ ,α(k′
⊥)k′

α

= k′2
⊥α(J)

(√
k2
⊥

√
k′2
⊥

)J−1

PJ−1(z),

k′
βZ

(J−1)
µ1µ2...µJ ,β(k⊥)Z(J−1)

µ1µ2...µJ ,α(k′
⊥)kα

= α(J)
(√

k2
⊥

√
k′2
⊥

)J

×
[
2J + 1

J
zPJ−1(z) −

J + 1
J

PJ(z)
]
,

g⊥βαZ
(J−1)
µ1µ2...µJ ,β(k⊥)Z(J−1)

µ1µ2...µJ ,α(k′
⊥)
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 9 20
=
2J + 1

J
α(J)

(√
k2
⊥

√
k′2
⊥

)J−1

PJ−1(z);

and for the factors Kβεβν1ν2ν3Pν1Z
(J)
ν2µ1...µJ ,ν3(k⊥) ×

εαλ1λ2λ3P
′
λ1

Z
(J)
λ2µ1...µJ ,λ3

(k′
⊥)Kα:

kβεβν1ν2ν3Pν1Z
(J)
ν2µ1...µJ ,ν3

(k⊥)

× εαλ1λ2λ3P
′
λ1

Z
(J)
λ2µ1...µJ ,λ3

(k′
⊥)kα = 0,

kβεβν1ν2ν3Pν1Z
(J)
ν2µ1...µJ ,ν3

(k⊥)

× εαλ1λ2λ3P
′
λ1

Z
(J)
λ2µ1...µJ ,λ3

(k′
⊥)k′

α = 0,

k′
βεβν1ν2ν3Pν1Z

(J)
ν2µ1...µJ ,ν3

(k⊥)

× εαλ1λ2λ3P
′
λ1

Z
(J)
λ2µ1...µJ ,λ3

(k′
⊥)k′

α = 0,

k′
βεβν1ν2ν3Pν1Z

(J)
ν2µ1...µJ ,ν3

(k⊥)

× εαλ1λ2λ3P
′
λ1

Z
(J)
λ2µ1...µJ ,λ3

(k′
⊥)kα

=
(2J + 3)2

(J + 1)3
α(J)

(√
k2
⊥

√
k′2
⊥

)J+1

× (PP ′) [zPJ (z) − PJ+1(z)] ,

g⊥βαεβν1ν2ν3Pν1Z
(J)
ν2µ1...µJ ,ν3

(k⊥)

× εαλ1λ2λ3P
′
λ1

Z
(J)
λ2µ1...µJ ,λ3

(k′
⊥)

= −J(2J + 3)2

(J + 1)3
α(J)

(√
k2
⊥

√
k′2
⊥

)J

(PP ′)PJ(z).

Considering the Bethe–Salpeter equation with
unequal masses, one may face the problem of the
definition of the momentum transfer squared t in the
interaction block (this means the relation between
z, t) when retardation effects are accounted for. We
think that the most convenient form, symmetrical
under the permutation of the indices 1 ⇐⇒ 2, was
suggested in [10]:

t = (k′
1 − k1)µ(k2 − k′

2)µ. (A.17)

The other variants of accounting for retardation ef-
fects may be found in [11, 12]; see also discussion
in [10].
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ELEMENTARY PARTICLES AND FIELDS
Theory
Electroproduction of D∗±D∗±D∗± Mesons at High Energies
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Abstract—A comparative analysis of the predictions of the collinear parton model and the kT -factorization
approach is performed for the case of theD∗-meson electroproduction at the HERA ep collider. It is shown
that, owing to effectively taking into account, in noncollinear distributions, next-order corrections in the
strong coupling constant αs, the kT -factorization approach increases, in contrast to the predictions of the
collinear parton model, the absolute value of the cross sections for charmed-meson electroproduction by
approximately a factor of 1.5 to 2. As a result, the agreement with experimental data is improved. This is not
so only for the pseudorapidity spectrum, whose shape differs considerably from the experimental one and
depends greatly on the choice of parametrization of the noncollinear gluon distribution within the proton.
c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

The cross sections for photo- and electroproduc-
tion of D∗ mesons have been calculated many times
within the kT -factorization approach (see, for ex-
ample, the discussion on the results of the Small-x
Collaboration in [1]). However, there are still a large
number of disputable aspects in the kT -factorization
approach, the ambiguities in their interpretation sub-
stantially affecting the results. Previous calculations
of D∗-meson spectra ensured fairly good agreement
with experimental data [1] via optimizing the choice of
parameters of the approach (which include the quark
masses and the renormalization scale) and the choice
of parametrization for the noncollinear gluon distribu-
tion in the proton. The objective of the present study
is to perform a unified calculation of the spectra for
D∗-meson photo- and electroproduction in order to
assess the uncertainty that is inherent in the approach
because it is necessary to choose the parametrization
for the noncollinear gluon distribution in the pro-
ton. Moreover, analytic expressions that describe the
squares of the absolute values of amplitudes for par-
tonic subprocesses within the kT -factorization ap-
proach and which are convenient for numerical cal-
culations are given for the first time in this article, this
being of paramount importance for a comparison with
the results obtained by other authors. Our results are
compared below with available data on various spec-
tra (with respect to pT , η,W , xBj, andQ), whereas the
comparison in the literature is usually performed only
for the pT and η spectra.

*e-mail: Saleev@ssu.samara.ru
**e-mail: Vasin@ssu.samara.ru
1063-7788/05/6809-1587$26.00
At some values of kinematical parameters, our
present results for the D∗-meson-production spec-
tra differ by a factor of 1.5 to 2 from the results of
our previous study [2], where an embarrassing error
was made at the stage of numerical calculations. An
improved version of the study reported in [2] was
presented in the form of a preprint [3].

2. FORMALISM
OF THE kT -FACTORIZATION APPROACH

At the present time, there exist two approaches
to describing high-energy processes that lead to
the production of hadrons containing heavy quarks.
These are the collinear parton model and the kT -
factorization approach, which is also known as the
theory of semihard processes. Either approach is
based on the hypothesis that the effects of long- and
short-distance physics factorize in hard processes.

In the collinear parton model, it is assumed that
the cross section for the hadronic process being
considered—σ(ep → D∗X, s) in the present case—
and the cross section for the corresponding partonic
subprocess, σ̂(eg → D∗X, ŝ), are related by the
equation

σPM(ep → D∗X, s) (1)

=
∫

dxG(x, µ2)σ̂(eg → D∗X, ŝ),

where ŝ = xs, s is the square of the total energy
of the participant electron and proton in their c.m.
frame, G(x, µ2) is the collinear gluon distribution in
the proton, k = xpN is the gluon 4-momentum, x is
the proton-momentum fraction carried by the gluon,
c© 2005 Pleiades Publishing, Inc.
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and µ2 is the characteristic scale of the hard scat-
tering process. Within perturbative QCD, the evo-
lution of the gluon distribution G(x, µ2) is described
by the Dokshitzer–Gribov–Lipatov–Altarelli–Parisi
evolution equation [4].

Within the kT -factorization approach, the par-
tonic and hadronic cross sections are related by the
equation

σKT(ep → D∗X, s) =
∫

dx

x

∫
dk2

T (2)

×
∫

dϕ

2π
Φ(x,k2

T , µ
2)σ̂(eg∗ → D∗X, ŝ),

where σ̂(eg∗ → D∗X, ŝ) is the cross section for
D∗-meson production in electron scattering on a
Reggeized gluon, k = xpN + kT is the gluon 4-
momentum, kT = (0,kT , 0) is the transverse gluon
4-momentum, k2 = k2

T = −k2
T is the virtuality of

the primary gluon, pN = EN (1, 0, 0, 1) is the 4-
momentum of the primary proton, ŝ = xs− k2

T , ϕ is
the azimuthal angle in the xy plane between the vec-
tor kT and the fixed x axis (pD∗ ∈ xz, the z axis being
aligned with the ep-reaction axis), and Φ(x,k2

T , µ
2)

is the noncollinear distribution of Reggeized glu-
ons in the proton. The QCD evolution of the non-
collinear gluon distribution Φ(x,k2

T , µ
2) is described

by the Balitsky–Fadin–Kuraev–Lipatov [5] or the
Ciafaloni–Catani–Fiorani–Marchesini [6] evolution
equation. It is usually assumed that the function
describing the noncollinear distribution of gluons
in the proton and satisfying the Balitsky–Fadin–
Kuraev–Lipatov evolution equation [5] can be related
to the collinear gluon distribution G(x, µ2) in the
proton as follows:

xG(x, µ2) =

µ2∫
0

Φ(x,k2
T , µ

2)dk2
T . (3)

The need for reconstructing the gauge invariance
of amplitudes for hard scattering processes involv-
ing Reggeized gluons leads to effective Feynman
rules [7], where the polarization vector of primary off-
shell gluons is represented in the form

εµ(kT ) =
kµ

T

|kT |
. (4)

At the stage of numerical calculations, use is made
of the GRV LO parametrization [8] of the collinear
gluon distribution G(x, µ2) in the proton. In the
case of calculations within the kT -factorization ap-
proach, we employed the following parametrizations
for the unintegrated (noncollinear) gluon distribution
Φ(x,k2

T , µ
2) in the proton: the JB parametrization
PH
from the study of Blumlein [9], the JS parametrization
from the study of Jung and Salam [10], and the KMR
parametrization from the study of Kimber, Martin,
and Ryskin [11].

For the sake of comparison, Figs. 1 and 2 display
unintegrated gluon distributions in the proton versus
x at fixed k2

T (Fig. 1) and versus k2
T at fixed x (Fig. 2).

One can see that, in the x region around x ∼ mc/
√
s

and the transverse-momentum region around k2
T ≈

50 GeV2 (and these are the regions in which we
are interested), the parametrizations in question differ
substantially.

3. FRAGMENTATION FUNCTION

The production of D∗ mesons, which consist of a
heavy c quark and a light ū (d̄) antiquark, is described
phenomenologically on the basis of the fragmentation
model [2, 12–14] by introducing a universal fragmen-
tation functionDc→D∗(z, µ2) for c-quark fragmenta-
tion into a D∗ meson or on the basis of the fusion
model [15, 16].

At high energies, the cross sections for c-quark
and D∗-meson production in the fragmentation
model are related by the equation

dσ(ep → D∗X) (5)

=
∫

Dc→D∗(z, µ2)dz · dσ(ep → cX),

whereDc→D∗(z, µ2) is the above fragmentation func-
tion, µ2 is the characteristic scale of the hard scatter-
ing process, and z is the fragmentation parameter.

The probability of c-quark fragmentation into a
D∗± meson is given by

ωc→D∗± =

1∫
0

Dc→D∗±(z, µ2)dz. (6)

According to data of the OPALCollaboration [17], we
have

ωc→D∗± = 0.222 ± 0.014. (7)

In the present study, we use the Peterson phe-
nomenological scaling fragmentation function [18]

Dc→D∗(z) = N
z(1− z)2

[(1− z)2 + εz]2
. (8)

In the limit of massless quarks and hadrons, the
fragmentation parameter z relates the c-quark and
D∗-meson 4-momenta as follows:

pD∗ = zpc. (9)

Experimental data on D∗±-meson production at the
HERA ep collider correspond to the region p ≥ mc,
YSICS OF ATOMIC NUCLEI Vol. 68 No. 9 2005
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Fig. 1.Unintegrated gluon distribution Φ(x,k2
T , µ2) in the proton versus x at k2
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so that the use of the massless approximation is not
quite correct; therefore, we employ a different defini-
tion of the fragmentation parameter z,

z =
ED∗ + |pD∗ |
Ec + |pc|

, (10)

assuming that

θD∗ = θc, (11)

where θD∗ and θc are, respectively, theD∗-meson and
c-quark emission angles in the laboratory frame. This
assumption is justified by the fact that the c-quark
mass is approximately equal to theD∗±-meson mass,
mc ≈ mD∗± (mD∗± = 2.010GeV [19]); therefore, the
c quark does not change the direction of its motion in
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 9 200
the fragmentation process. For the sake of definite-
ness, we set the c-quark mass to mc = 1.5 GeV in
our numerical calculations.

Alternative definitions of the fragmentation pa-
rameter z are also possible, for example,

pD∗ = zpc. (12)

As was shown in [20], the definitions in (9), (10), and
(12) lead to virtually identical spectra of D∗ mesons
over a wide range of kinematical variables.

A definition of z close to that in (10) was used
in [21–24] to extract the c → D∗ fragmentation func-
tion in the processes of electro- and photoproduction
5
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on protons; namely,

z =
ED∗ + |pD∗ |
2Ehad

, (13)

where Ehad is the total energy of the hadron jet.
For the free parameter of the Peterson fragmen-

tation function [18], a fit to experimental data on
D∗±-meson production in e+e− annihilation gives
the value of ε = 0.036 [25] in the model that takes
into account the c-quark mass and the value of ε =
0.116 [12, 26] in the model of massless c quarks. We
use the value

ε = 0.06, (14)

which is in accord with the analysis in [21].

4. DEEP-INELASTIC SCATTERING

4.1. Cross Section for the Process
e+ p → e+D∗ +X

By using relations (1), (2), and (5) and the defi-
nition of the fragmentation parameter z in the form
specified by Eqs. (10) and (11), one can rewrite the
quadruple-differential production cross section in the
parton model as

dσPM(ep → eD∗X)
dηD∗d|pD∗T |dQ2dW 2

(15)

=
∫

dzDc→D∗(z, µ2)G(x, µ2)

×
∫

dϕc
1

(2π)4
|pc||pcT |
2ED∗

1
s|y − a|

|M(eg → ecc̄)|2
8xs2

,

PH
where Q2 is the photon virtuality; xBj = Q2/(ys) is
the Bjorken variable; y = (W 2 +Q2)/s;W is the en-
ergy of photon–proton interaction in the с.m. frame;
ϕc is the polar angle between the directions of pcT and
the fixed axis x (p′e ∈ xz); p′e is the 4-momentum of
the final electron; η is the pseudorapidity,

η = − ln tan θ

2
; (16)

µ2 = m2
D∗ + p2

D∗T +Q2 is the characteristic scale of
the hard interaction; and, for other quantities, we use
the notation

x =
Q2 + 2|pcT |Qβ1 + syb

s|y − a| , (17)

β1 = cosϕc, (18)

a =
Ec − pcz

2Ee
, (19)

b =
Ec + pcz

2EN
. (20)

In the kT -factorization approach, we have

dσKT(ep → eD∗X)
dηD∗d|pD∗T |dQ2dW 2

(21)

=
∫

dzDc→D∗(z, µ2)
∫

dϕ

2π

∫
dk2

T

Φ(x,k2
T , µ

2)
x

×
∫

dϕc
1

(2π)4
|pc||pcT |
2ED∗

1
s|y − a|

|M(eg∗ → ecc̄)|2
8xs2

,

where
x =
|kT |2 +Q2 + 2|kT ||qT |β2 − 2|pcT ||kT |β3 + 2|pcT ||qT |β1 + s(yb+ av)

s|y − a| , (22)
v = −Q2/s, (23)

|qT | = Q
√
1− y, (24)

β2 = cosϕ, (25)

β3 = cos (ϕ− ϕc). (26)

To go over from one set of differential cross sections
to another, one can employ the formulas

d3p′e
2E′

e

=
dQ2dW 2dϕ′

e

4s
=

dydQ2dϕ′
e

4
(27)

=
ydxBjdQ

2dϕ′
e

4xBj
,

where E′
e is the energy of the final electron and ϕ′

e is
the azimuthal angle of final-electron emission.

In the high-energy region (xBj � 1, Q2 � s), the
electroproduction cross section can be represented
as the convolution of the photoproduction cross sec-
tion σ̂(γ∗g∗ → cc̄) and the equivalent-virtual-photon
spectrum fγ∗/e(y,Q2); that is,

dσKTQT(ep → eD∗X)
dηD∗d|pD∗T |dQ2dW 2

(28)

=
∫

dzDc→D∗(z, µ2)
∫

dϕ

2π

∫
dk2

T

Φ(x,k2
T , µ

2)
x

YSICS OF ATOMIC NUCLEI Vol. 68 No. 9 2005
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×
∫

dϕcfγ∗/e(y,Q
2)

1
(2π)2

|pc||pcT |
2ED∗

× 1
s|y − a|

|M(γ∗g∗ → ecc̄)|2
2xys2

,

where qT = (0,qT , 0) is the transverse momentum of
the virtual photon, q2

T = −Q2; q = ype + qT is the 4-
momentum of the virtual photon; pe = Ee(1, 0, 0,−1)
is the 4-momentum of the initial electron; ϕc is the
polar angle between the directions of pcT and the fixed
x axis (q ∈ xz); and fγ∗/e(y,Q2) is the equivalent-
virtual-photon spectrum, which can be represented in
the form [27]

fγ∗/e(y,Q
2) =

α

2π

(1 + (1− y)2

yQ2
−2m

2
ey

Q4

)
. (29)

In this approximation, the polarization tensor of vir-
tual photons is given by

Lµν
e (q) = qµ

T q
ν
T /Q

2. (30)

4.2. Amplitudes of Parton Subprocesses

Let us introduce the notation

t̃ = t̂−m2
c , (31)

ũ = û−m2
c (32)

and set

fkk = |kT |2, fkp = β3|kT ||pcT |, (33)

fkq = β2|kT ||qT |,
fpp = β2

3 |pcT |2, fpq = β2β3|pcT ||qT |,
fqq = β2

2 |qT |2.

For the electroproduction of a pair of c quarks on a
Yang–Mills gluon via the process

e+ g → e+ c+ c̄, (34)

the result obtained upon averaging the absolute value
of the amplitude over the electron and gluon polariza-
tions and over the color states of the initial gluon has
the form

|M(eg → ecc̄)|2 (35)

= 32α2αse
2
cπ

3(Ma
11 + 2M

a
12 +Ma

22),

where

Ma
11 = − 4

Q4t̃2

[
m4

c

(
4Q2 + s(6b+ x)

)
(36)

+ st̂
(
(Q2 + t̂)x+ b(t̂+ û+ 2sx)

)

−m2
c

(
2Q4 +Q2s(4b+ x)

+ s(4b2s+ 7bt̂+ bû+ 2bsx+ 2t̂x)
)]

,
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Ma
12 =

2
Q4t̃ũ

[
2Q6 − 4m4

c(Q
2 − 2sx) (37)

+ 2Q4(2bs + t̂− sx) +Q2
(
2s2(2b2 − 2bx+ x2)

+ t̂(2bs − û− sx)− û(2bs − û− 3sx)
)

+ s(−bt̂ 2 + bû2 − 2bst̂x+ t̂ 2x+ 2bsûx+ 3t̂ûx

+ 2st̂x2)−m2
c

(
2Q4 −Q2(8bs + t̂− 5û− 6sx)

+ s
(
2b(4s(x− b)− 3(t̂− û)) + 9t̂x

+ 3ûx+ 2sx2
))]

,

Ma
22 =

4
Q4ũ2

[
û
(
−Q4 +Q2(−ŝ+ sx) (38)

+ s(bt̂+ bû+ 2bsx− t̂x− 2ûx− 2sx2)
)

+m4
cs(6b− 7x) +m2

c

(
3Q4 +Q2(4bs + ŝ

− 4û− 5sx) + s(4b2s− bt̂− 7bû− 10bsx+ t̂x

+ 9ûx+ 6sx2)
)]

.

Here, ŝ, t̂, and û are the standard Mandelstam vari-
ables for the process γ∗ + g → c+ c̄.

For the electroproduction of c quarks on a Reggei-
zed gluon via the process

e+ g∗ → e+ c+ c̄, (39)

the result analogously obtained by averaging the
square of the absolute value of the amplitude over the
electron polarizations and over the color states of the
initial gluon is

|M(eg∗ → ecc̄)|2 (40)

= 64α2αse
2
cπ

3(M b
11 + 2M

b
12 +M b

22),

where

M b
11 =

2s
Q4t̃2

[(
v(Q2 − 2m2

c + 2bs+ t̃) (41)

− 2b2s
)
(fkk − 4fkp − 4fkq + 4fpp

+ 8fpq + 4fqq)− bt̃(fkk − 8fkp − 4fkq + 8fpp

+ fpq + 4fqq +Q2 + ŝ)− xt̃(t̃+Q2 + 2bs)
]
,

M b
12 = − s

Q4t̃ũ

[
4bs(b− x− v)(4fpp − 4fkp (42)

+ fkk + 4fpq − 2fkq)− 4bũ(fqq + 2fpq − fkq)

− 2xt̃(4fpp − 4fkp + fkk + 2fpq) + (û− t̂)

×
(
b(ŝ +Q2) + ũ+ 3vfkk

)
+ v
(
2sx
(
4fpp
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− 4fkp + fkk + 4fpq

)
− 4m2

c

(
fkk + fqq − 4fpp

− 7fpq

)
+ 4û

(
fpp + fqq − 4fkp − 2fkq

)
− 4ŝ

(
2fkp + 2fpq + fkq

)
− 2Q2

(
4fpp + 8fpq

+ fkk

)
− 4t̂

(
fpp + 3fpq

)
+ 2fkk

(
fkk − 8fkp

− 4fkq + 4fpp + 2fqq

))
+ x
((

Q2 + t̃
)

×
(
2sx+ t̃+ ũ

)
+ 2s

(
b(t̂− û) + vũ

)

+ 2
(
m2

c(û+ t̂)−m4
c − t̂û

))]
,

M b
22 = − 2s

Q4ũ2

[(
2s(x− b)(x− b− v) (43)

−Q2v
)
(fkk − 4fkp + 4fpp) + 4ûv(−fkp + fpp

+ fpq) + ũ(x− b)(fkk − 8fkp + 8fpp + 4fpq)

+ 2m2
cv(fkk − 2fkp + 2fpp − 2fpq)

+ ũ(Q2 + ŝ)(b− v) + xũ
(
ũ− ŝ+ 2s(x− b+ v)

)]
.

Upon averaging over the color states of the initial
gluon, the square of the absolute value of the ampli-
tude for the photoproduction of c quarks by a virtual
photon on a Reggeized gluon via the process

γ∗ + g∗ → c+ c̄ (44)

takes the form

|M(γ∗g∗ → cc̄)|2 (45)

= 8ααse
2
cπ

2(M c
11 + 2M

c
12 +M c

22),

where

M c
11 = − 2

t̃2

[
(fkk + 4fpp + t̃)Q2 (46)

− (fkk −m2
c + ŝ)m2

c − 4|pcT |Q
(
|kT |Q

+ (t̃+ 2Q2)β2

)
β3 + 4(t̃+Q2)(|kT |Qβ2 +Q2β2

2)

− (Q2 + û)t̂− 4|pcT |
(
4fppQβ1 + (t̃+ 4Q2)|kT |

× β2 + 2(t̃+ 2Q2)Qβ2
2 − 2|pcT |(2|kT |Q

+ (t̃+ 4Q2)β2)β3 +Qfkk

)
+ 4|pcT |2

× β2
1

(
fkk + 2Q2 + 4|kT |Qβ2 + 2Q2(cos 2ϕ)

− 4fkp − 4|pcT |
(
Qβ1 −Q cos(2ϕ− ϕc)

+ |pcT |β3

))]
,

M c
12 = − 2

t̃ũ

[
−t̃ũ+ 2(ũ+ fkk)(t̃+Q2)β2

2 (47)

+ fkkQ
2 − 2ŝ|kT |Qβ2 − 2|pcT |

(
2(t̃+ 2Q2)|kT |
PH
× β2 − (ŝ− 3fkk −Q2)Qβ2 + 2|kT |Q2
)
β3

+ 4fppQ
(
Q+ 2|kT |β2

)
− 2|pcT |

(
(fkk + 3Q2

− ŝ)|kT |β2 + 2fkkQ+ 2(ũ+ 2fkk)Qβ2
2

− 2|pcT |(4|kT |Q+ (3fkk + 3Q2 − ŝ)β2

+ 4|kT |Qβ2)β3 + 8fpp(Q+ |kT |β2)
)
β1

+ 4|pcT |2
(
2|pcT |β3 − |kT |

)

×
(
−|kT | − 2Qβ2 + 2|pcT |β3

)
β2

1

]
,

M c
22 = − 2

ũ2

[
fkk(ũ+Q2)− (t̂+ fkk)û (48)

+ 4(|kT |Qβ2 + fkkβ
2
2)(ũ+ fkk)−m2

c(ŝ−m2
c

+Q2)− 4|pcT |
(
Q(ũ+ 4fkk)β2

+ 2|kT |(ũ+ 2fkk)β2 + |kT |Q2
)
β3

+ 4fpp

(
Q2 + 4|kT |Qβ2 + 4fkkβ2

)

+ 4|pcT |2
(
|kT | − 2|pcT |β3

)2
β2

1

− 4|pcT |β1

(
−|kT |+ 2|pcT |β3

)(
−|kT |Q

− (ũ+ 2fkk)β2 + 2|pcT |Qβ3 + 2|kT ||pcT |

× cos(2ϕ− ϕc) + 2|kT ||pcT |β1

)]
.

We have tested analytically that, in the limit |kT | → 0
and upon averaging over the azimuthal angle ϕ, the
amplitudes for the processes involving a Reggeized
initial gluon reduce exactly to the amplitudes for the
process involving a real gluon in the initial state. By
way of example, we indicate that, for the processes
in (34) and (39),

|M(eg → ecc̄)|2 = lim
|kT |→0

2π∫
0

dϕ

2π
|M(eg∗ → ecc̄)|2,

(49)

where ϕ is the angle between the fixed axis x and the
vector kT .

4.3. Results of the Calculations

In this section, we compare theoretical predictions
made within various approaches and experimental
data obtained at the HERA collider for the spectra
of D∗± mesons in ep interactions at the energies of
EN = 820 GeV and Ee = 27.5 GeV. The experimen-
tal data of the ZEUS Collaboration [23] are presented
in the form of various spectra of D∗± mesons versus
YSICS OF ATOMIC NUCLEI Vol. 68 No. 9 2005
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the variable y = Q2/(xBjs) = (Q2 +W 2)/s in the
interval 0.02 < y < 0.7, the photon 4-momentum
squared Q2 in the interval 1 < Q2 < 600 GeV2, the
transverse momentum pD∗T in the interval 1.5 <
pD∗T < 15 GeV, and the pseudorapidity η in the
interval |η| < 1.5.

Figure 3 shows the results of the present calcula-
tions for the pT spectrum ofD∗ mesons. One can see
that the curves obtained within the kT -factorization
approach lie above (by a factor of 1.5 to 2) the pre-
dictions of the collinear parton model; this is not so
only for the curve obtained in calculations on the basis
of the KMR parametrization [11] for the unintegrated
distribution of gluons in the proton.

It should be noted that the numerical results ob-
tained with the aid of formulas (21) and (28) within
the kT -factorization approach are virtually coinci-
dent. Thus, we see that, within the kT -factorization
approach and in the parton model, the use of the
Williams–Weizsäcker spectrum (29) for equivalent
virtual photons is possible and is correct in the kine-
matical region Q2 ≥ 1GeV2.

Figure 4а shows the results of the present cal-
culations for the η spectrum of D∗ mesons. In this
spectrum, the discrepancies between the predictions
obtained with the different parametrizations of the
unintegrated distribution of gluons in the proton are
the most pronounced. The discrepancies between the
theoretical predictions and the experimental data are
due to the uncertainty in the choice of parametrization
for the distribution of Reggeized gluons in the proton.
The curve obtained by using the JS parametriza-
tion [10] describes most precisely the shape of the
spectrum, it but underestimates its absolute value.

In Fig. 4c, we display the results of the present
calculations for the Q2 spectrum of D∗ mesons.
One can see that, in this spectrum, the discrepancy
between the results obtained by applying the dif-
ferent parametrizations and approaches is the most
pronounced in the region of low Q2; therefore; it is
necessary to investigate processes in which Q2 <
1 GeV2—that is, photoproduction processes. This
will be done in the next section of the present study.

In Fig. 4d, the results of the calculation of the
differential cross section for the production of D∗

mesons are displayed in the form of the spectrum in
the Bjorken variable xBj. The relationship between
the predictions of various models is analogous to that
for the spectra considered above. The curves obtained
with the JB parametrization [9] provide the best de-
scription of the experimental data.

Figure 4b shows the results of our present calcula-
tions for theW spectrum ofD∗ mesons. In this spec-
trum, the predictions of the parton model lie above
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 9 200
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Fig. 3. Differential cross section for the deep-inelastic
electroproduction of D∗ mesons as a function of the
transverse momentum pD∗T .

the predictions of the kT -factorization approach
supplemented with the KMR parametrization [11].
This spectrum exhibits the lowest sensitivity to the
choice of approach and provides a testing ground for
comparing different gluon distributions. One can see
that none of the parametrizations (JB [9], JS [10],
KMR [11], or GRV LO [8]) is universal.

5. PHOTOPRODUCTION

5.1. Cross Section for the Process γ + p → D∗ +X

Alongwith experiments to study the deep-inelastic
electroproduction of D∗ mesons, the ZEUS [22] and
H1 [21] Collaborations performed measurements in
the region of low photon virtualities,Q2 < 1GeV2.

In the region of low Q2, the cross section for D∗-
meson electroproduction in the process e+ p → e+
D∗+X can be expressed in terms of the cross section
forD∗-meson photoproduction by real photons in the
process γ + p → D∗ + X as

σ(ep → eD∗X) (50)

=
∫

σ(γp → D∗X) · fγ/e(y)dy,

where fγ/e(y) determines the virtual-photon spec-
trum (29) integrated with respect to Q2 within
the kinematical limits from Q2

min to Q2
max (Q2

min =
m2

ey
2/(1− y) is the lower kinematical limit, while

Q2
max is the upper kinematical limit of the cut on the

photon virtuality) and y =W 2/s.
5
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The Williams–Weizsäcker spectrum of quasireal
photons can be derived by performing integration of
(29) with respect to Q2 [28]. The result is

fγ/e(y) =
α

2π

[
1 + (1− y)2

y
log

Q2
max

Q2
min

(51)

+ 2m2
ey

(
1

Q2
min

− 1
Q2

max

)]
.

By using the relation between the cross sections at
the hadron level and at the quark level as deter-
mined by Eq. (5), the relation between the hadron
process and the parton subprocess as determined
by Eq. (1) in the parton model and by Eq. (2) in
the kT -factorization approach, and the definition of
the fragmentation parameter z in the form specified
by Eqs. (10) and (11), one can obtain the double-
P

differential production cross section within the parton
model and within the kT -factorization approach.

In the parton model, we have

dσPM(ep → eD∗X)
dηD∗dpD∗T

(52)

=
∫

dyfγ/e(y)
∫

dz

z
Dc→D∗(z, µ2)G(x, µ2)

× 2|pc||pcT |
Ec(W 2 − 2EN (Ec − pcz))

|M(γg → cc̄)|2
16πxW 2

,

where ymin =W 2
min/s and ymax =W 2

max/s are, corre-
spondingly the lower and the upper limit of integration
with respect to y; W is the energy of photon–proton
interaction in the с.m. frame; and µ2 = m2

D∗ + p2
D∗T

is the characteristic scale of hard interaction.
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 9 2005
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Within the kT -factorization approach, the double-
differential cross section in question takes the form

dσKT(ep → eD∗X)
dηD∗dpD∗T

(53)

=
∫

dyfγ/e(y)
∫

dz

z
Dc→D∗(z, µ2)

×
∫

dϕ

2π

∫
dk2

T

Φ(x,k2
T , µ

2)
x

× 2|pc||pcT |
Ec(W 2 − 2EN (Ec − pcz))

|M(γg∗ → cc̄)|2
16πxW 2

,

where q = ype is the 4-momentum of the real photon;
q2 = 0; and k = xpN + kT is the 4-momentum of the
Reggeized gluon, k2 = k2

T = −|kT |2.

5.2. Amplitudes of Parton Subprocesses

For the process

γ + g → c+ c̄, (54)

the result of averaging the square of the absolute
value of the amplitude over the photon and gluon
polarizations and over the color states of the initial
gluon is well known and can be represented in the
form [29]

|M(γg → cc̄)|2 (55)

= 16π2e2
cαsα

[
−4
(
m2

c

t̃
+

m2
c

ũ

)2

− 4
(
m2

c

t̃
+

m2
c

ũ

)
+

ũ

t̃
+

t̃

ũ

]
.

For the analogous process involving a Reggeized
gluon,

γ + g∗ → c+ c̄, (56)

the averaging of the square of the absolute value of the
respective amplitude over the photon polarization and
over the color states of the initial gluonwas performed
in [2]. The result can be written in the form

|M(γg∗ → cc̄)|2 = −16π2e2
cαsα

t̃2ũ2
(57)

×
[
m2

c

(
2m6

c − (8p2
T +m2

c + 3k
2
T )k

4
T

+ 4m2
cp

2
Tk2

T − (4m4
c + 5k

4
T + 12p

2
T k2

T )ŝ

+ (3m2
c − 4p2

T − 3k2
T )ŝ

2 − ŝ3

)

+
(
4m4

c(3ŝ− 2m2
c) + (ŝ + 4p

2
T + k2

T + 2m
2
c)k

4
T

+ 4p2
T k2

T (ŝ− 2m2
c) + (s+ k2

T − 6m2
c)ŝ

2

)
t̂
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+
(
4p2

T k2
T − k4

T + 3(−2m2
c + s)2

)
t̂2 + 2t̂4

− 4(2m2
c − ŝ)t̂3 + 4|pT |

(
|kT | cosϕ

[
−2m6

c

− (k2
T − ŝ− 2t̂)t̂(m2

c − ũ) +m4
c(k

2
T + 3ŝ+ 6t̂)

+m2
c

(
3k4

T + ŝ2 − 6ŝt̂+ k2
T (4ŝ− 2t̂)− 6t̂2

)]

+ cos(2ϕ)|pT |
[
m4

ck
2
T + k2

T t̂(m
2
c − ũ)

−m2
c

(
2k4

T + ŝ2 + k2
T (3ŝ + 2t̂)

)])]
.

If we use the polarization vector of the Reggeized
gluon in the form

εµ(x, kT ) = −xpµ
N

|kT |
, (58)

the amplitude squared appears to be [30, 31]

|M(γg∗ → cc̄)|2 (59)

= 16π2e2
cαsα(ŝ + k2

T )
2

[
α2

1 + α2
2

(t̂−m2
c)(û−m2

c)

− 2m2
c

k2
T

(
α1

û−m2
c

− α2

t̂−m2
c

)2]
,

where

α1 =
m2

c + p2
cT

m2
c − t̂

, (60)

α2 =
m2

c + p2
c̄T

m2
c − û

; (61)

pcT and pc̄T are the transverse momenta of the c
and c̄ quarks, respectively; and kT = pcT + pc̄T is the
transverse momentum of the Reggeized gluon.

Formula (59) can be reduced to the form (57),
whereby the gauge-invariance of the amplitude for the
process involving a Reggeized gluon is confirmed.

In the limit |kT | → 0, the matrix element involving
a Reggeized gluon reduces to the matrix element
involving a real gluon, as this occurred in the case of
electroproduction. Specifically, we have

|M(γg → cc̄)|2 = lim
|kT |→0

2π∫
0

dϕ

2π
|M(γg∗ → cc̄)|2,

(62)

where ϕ is the angle between the fixed axis x and the
vector kT .
5
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5.3. Results of the Calculations

In this section, we compare the theoretical predic-
tions obtained within various approaches with exper-
imental data on the spectra ofD∗±-meson photopro-
duction in ep interactions at the HERA collider for
the energies of EN = 820 GeV and Ee = 27.5 GeV.
Experimental data of the H1 [21] and ZEUS [22]
Collaborations are represented in the form of various
spectra of D∗± mesons—specifically, the spectrum
with respect to W in the range 130 < W < 280 GeV,
the spectrum with respect to the square of the photon
4-momentum in the range Q2 < 1 GeV2, the spec-
trum with respect to the transverse momentum in the
range 1.5 < pD∗T < 15 GeV, and the spectrum with
respect to the pseudorapidity in the range |η| < 1.5.

Figure 5 shows the results of our calculations for
the pT spectrum of D∗ mesons. One can see that
the curves calculated within the kT -factorization ap-
proach lie higher (by a factor of 2 to 3) than the
predictions of the collinear parton model.

It should be noted that the respective calculations
for D∗-meson photoproduction can be directly per-
formed by the formulas that describeD∗-meson elec-
troproduction, in which case integration with respect
to Q2 in formulas (15), (21), and (28) must be per-
formed fromQ2

min toQ
2
max = 1GeV2. We have verified

this statement by means of numerical calculations,
and this proved the applicability of the method of
equivalent photons both in the parton model and in
the kT -factorization approach.
PH
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Figure 6 displays the results of the present cal-
culations for the η spectra of D∗ mesons for various
cuts on the D∗-meson transverse momentum pD∗T .
This spectrum demonstrates most clearly the dis-
tinctions between the predictions obtained by using
the different parametrizations of unintegrated gluon
distributions in the proton. Our results agree with
the results reported in [13] if use is made of the JB
parametrization [9].

Figure 7 shows the results of the present calcu-
lations for the W spectra of D∗ mesons for various
cuts on the D∗-meson transverse momentum pD∗T .
There are no experimental data on the W spectra
in D∗-meson photoproduction, a significant scatter
(by a factor of 2 to 3) of the theoretical predictions
calling for experimental tests. A comparison with
experimental data would make it possible to assess
YSICS OF ATOMIC NUCLEI Vol. 68 No. 9 2005
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uncertainties that are associated with the choice of
various parametrizations for the noncollinear gluon
distribution in the proton.

6. CONCLUSIONS

In the present study, we have shown that only for a
specific choice of parametrization for the noncollinear
gluon distribution in the proton do calculations with
parton amplitudes in the leading order in the strong
coupling constant within the kT -factorization ap-
proach describe experimental data on D∗±-meson
electro- and photoproduction at the HERA collider
energies better than calculations within the collinear
parton model (see also [3, 32]).

Our results for the pT and η spectra ofD∗ mesons
in photoproduction processes are in good agreement
with the results obtained in [13], where the JB
parametrization [9] was used for the noncollinear
gluon distribution.

The main sources of uncertainties in theoreti-
cal calculations are the following: (i) the existing
arbitrariness in the choice of c-quark mass (1.3–
1.8 GeV), a variation in the c-quark mass leading
to a 30% change in the result (this is in accord with
the results obtained in [14]); (ii) the uncertainties
in the choice of fragmentation function and of the
fragmentation parameter, they being about 15%;
(iii) the errors in measuring the parameter ε in the
fragmentation function for the transformation of a c
quark into a D∗± meson, which are about 25% of the
result; (iv) the distinctions (by a factor of 1.5 to 2.5)
between the predictions obtained by using different
parametrizations of the unintegrated gluon distribu-
tion in the proton; and (v) the choice of renormaliza-
tion scale µ2 in the running strong coupling constant,
this leading to a change in the total cross section by
a factor of 1.5 to 2. By way of example, we indicate
that, in [13, 14, 33], the argument of the running
coupling constant was set to the Reggeized gluon
virtuality µ2 = k2

T . Concurrently, the value of αs is
fixed in the region of low k2

T (αs(k2
T ) = αs,max � 0.5),

or integration with respect to k2
T is performed over

the region k2
T ≥ Q2

0 � 2 GeV2. In either case, one
has to invoke additional assumptions and introduce
new phenomenological parameters. Moreover, such a
choice for processes involving a fewReggeized gluons
or a few quark–gluon interaction vertices some of
which have no bearing on a Reggeized gluon may
lead to a violation of the gauge-invariance condition
for the amplitudes if different values of µ2 are chosen
for different vertices. In the present calculations, we
have set µ2 = m2

D∗ + p2
T +Q2, where Q2 → 0 in the

case of photoproduction.
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Fig. 7. Differential cross section for the photoproduction
of D∗ mesons as a function of the total energy W of the
photon–proton interaction in the c.m. frame for various
cuts on the transversemomentumofD∗ mesons [pD∗T >
2, 4, 6 GeV (from top to bottom)] and for |ηD∗ | < 1.5.

We note that the choice of µ2 with allowance
for k2

T in the quark–gluon interaction vertex, µ2 =
m2

D∗ +p2
T +Q2+k2

T , introduces virtually no changes
in the results because of a low power of αs in the
square of the absolute value of the eg∗ → ecc̄ matrix
element, a weak logarithmic dependence in αs(µ2)
at high µ2, and a relatively small contribution from
the region of high k2

T due to the decrease in the
unintegrated distributions with increasing k2

T .
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Abstract—The two-loop quark Regge trajectory is obtained at arbitrary spacetime dimension D using
the s-channel unitarity conditions. Although explicit calculations are performed for massless quarks, the
method used allows one to find the trajectory for massive quarks as well. AtD → 4, the trajectory turns into
one derived earlier from the high-energy limit of the two-loop amplitude for the quark–gluon scattering.
The comparison of two expressions obtained by quite different methods serves as a strict cross check of
many intermediate results used in the calculations, and their agreement gives strong evidence of accuracy
of these results. c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Perturbative QCD is widely used for the descrip-
tion of semihard [1] as well as hard processes [2]. But
whereas the theory of the latter is clear and plain, a lot
of problems remain unsolved for the former processes.
The applicability of perturbation theory, improved by
the renormalization group, to a hard process with a
large typical virtuality Q2 is justified by the small-
ness of the strong coupling constant αs(Q2). In the
semihard case, however, smallness of the ratio x of
the typical virtuality Q2 to the squared c.m.s. energy
s requires resummation of the terms strengthened
by powers of ln(1/x). In the scattering channel, this
problem is related to the theoretical description of
high-energy amplitudes at fixed (not growing with s)
momentum transfer t. It turns out, that the Gribov–
Regge theory of complex angular momenta, which
was developed much before the appearance of QCD,
is eminently suitable for description of the QCD am-
plitudes, due to the remarkable property of QCD—
Reggeization of its elementary particles, gluons and
quarks [3–6]. The Reggeization means, in particular,
that, with account of radiative corrections in the high-
energy limit, the s dependence of QCD amplitudes
with gluon (G) or quark (Q) quantum numbers in
the t channel is given by Regge factors (s)jP (t), with
P = G or P = Q, accordingly. The functions jP (t)

∗This article was submitted by the authors in English.
**e-mail: A.V.Bogdan@inp.nsk.su

***e-mail: Fadin@inp.nsk.su
1063-7788/05/6809-1599$26.00
with the property jP (m2
P ) = sP (mP and sP are re-

spective mass and spin values), called Regge trajec-
tory, describe the motion of poles of the correspond-
ing t-channel partial waves in the complex angular
momentum plane. In this respect, QCD sharply dif-
fers from QED, where only amplitudes with electron
exchange in the t channel [7], but not with photon
one [8], acquire the Regge factors.

The Reggeization phenomenon is extremely im-
portant at high energy. The gluon Reggeization is
especially significant, since gluon exchanges in the
t channel provide nondecreasing cross sections at
large s. In particular, the gluon Reggeization consti-
tutes the basis of the famous BFKL approach [5, 9] to
the theoretical description of high-energy processes
in QCD. Initially, the BFKL approach was formulated
in the leading logarithmic approximation (LLA). Now
it is developed in the next-to-leading order (NLO) (for
references, see, for instance, [10]) since LLA is not
sufficiently reliable, especially because this approxi-
mation does not fix scales either longitudinal (for s) or
transverse (for running coupling αs) momenta. This
development extensively uses gluon Reggeization,
which has been proved in LLA [11], but in the next-
to-leading approximation (NLA) still remains a hy-
pothesis, although it has successfully passed through
a set of stringent tests on self-consistency (see, for
instance, [12] and references therein). Accordingly,
the NLO gluon Regge trajectory and Reggeized
gluon vertices are calculated; moreover, a way for the
proof of gluon Reggeization in the NLA is outlined
(see, e.g., [10] and references therein).
c© 2005 Pleiades Publishing, Inc.
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Fig. 1.Schematic representation of the backward quark–
gluon scattering process G + Q → Q′ + G′. The triple
line denotes an intermediate t-channel state with mo-
mentum q = pQ − pG′ = pQ′ − pG.

Along with the Pomeron, which appears in the
BFKL approach as a compound state of two Reggeized
gluons, the hadron phenomenology requires Reggeons,
which can be constructed in QCD as colorless states
of Reggeized quarks and antiquarks. It demands
further development of Reggeized quark theory, which
remains in a worse state thanReggeized gluon theory,
although noticeable progress was achieved in recent
years. In particular, multiparticle Reggeon vertices
required in the NLA were found [13] and the NLO
corrections to the LLA vertices were calculated [14,
15] assuming quark Reggeization in NLA. Note that
the Reggeization hypothesis is extremely powerful;
but in the quark case, it actually was not proved even
in the LLA, where merely its self-consistency was
shown, in all orders of αs but only in a particular
case of elastic quark–gluon scattering [6]. Recently,
the hypothesis was tested at the NLO in order of
α2
s in [16], where its compatibility with the two-loop

amplitude for the quark–gluon scattering was exhib-
ited and the NLO correction to the quark trajectory
was found in the limit of the spacetime dimension D
tending to the physical value D = 4.

In this paper, we investigate the quark Reggeiza-
tion in the NLO by the method based on the s-
channel unitarity and the analyticity of scattering
amplitudes, which was developed for analysis of pro-
cesses with gluon exchanges [4, 5] and was already
successfully applied to processes with fermion ex-
changes [6]. The two-loop quark trajectory at arbi-
trary spacetime dimension D is obtained as a par-
ticular result of the investigation. At D → 4, the tra-
jectory goes into one derived in [16]. This agreement
testifies to the accuracy of many intermediate results
used in both derivations. In the method used here,
the trajectory is obtained from the requirement of the
compatibility of the Reggeized form of the amplitudes
with the s-channel unitarity at the two-loop level.
A possible generalization of this requirement to all
orders of perturbation theory should give the “boot-
strap” conditions on the Reggeized quark vertices
and the trajectory in QCD. Verification of them will
PH
give a strict test for quark Reggeization. A proof of
the Reggeization is also possible in this way.

The calculation of the two-loop corrections to the
quark trajectory is performed explicitly for massless
quarks; but the method used here allows one to do it
for massive quarks as well, since all necessary one-
loop Reggeon vertices for the massive case are known
now.

The paper is organized as follows. In the next
section, all necessary notation is introduced and the
method of calculation is discussed. Section 3 is de-
voted to the calculation of the two-particle contri-
bution to the s-channel discontinuity of the quark–
gluon scattering amplitude. The contribution of the
three-particle intermediate state is calculated in Sec-
tion 4. The final expressions for the discontinuity and
the two-loop corrections to the quark trajectory are
presented and discussed in Section 5. For conve-
nience, the integrals encountered in Sections 3 and 4
are listed in Appendices A and B, respectively. Details
of the calculation of a new nontrivial integral arising
in present calculations are given in Appendix C.

2. NOTATION AND METHOD
OF CALCULATION

Let us consider the backward quark–gluon scat-
tering process (see Fig. 1) in the limit of large (tend-
ing to infinity) c.m.s. energy and fixed momentum
transfer t ≡ q2 = (pQ − pG′)2.

We use the Sudakov decomposition of momenta

p = βp1 + αp2 + p⊥,

p2
1 = p2

2 = 0, (p1 + p2)2 = s, (1)

sαβ = p2 − p2
⊥,

supposing that the momenta pG, pQ′ and pQ, pG′ are
close to the light-cone momenta p1 and p2, respec-
tively, that is,

βG ∼ βQ′ ∼ αQ ∼ αG′ � 1, (2)

βQ � βG′ � αG � αQ′ ∼ |t|
s
,

and all transverse momenta are limited, so that q �
q⊥. We do not suppose that p1 and p2 are contained
in the initial momentum plane, in order to main-
tain symmetry between cross channels and to make
more evident substitutions for transitions between
channels. For a gluon having momentum ka (kb)
with predominant component along p1 (p2), we use
physical polarization vectors in the light-cone gauge
e(ka)p2 = 0 (e(kb)p1 = 0), so that

e(ka) = e(ka)⊥ − (e(ka)ka)⊥
kap2

p2, (3)
YSICS OF ATOMIC NUCLEI Vol. 68 No. 9 2005
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e(kb) = e(kb)⊥ − (e(kb)kb)⊥
kbp1

p1,

where (ab)⊥ means (a⊥b⊥). Furthermore, since with
our choice of gauges gluon polarization vectors are
expressed in terms of their transverse components,
from this point forward, we will use only these com-
ponents, without explicit indications, so that every-
where below e means e⊥. The same we will do for the
momentum transfer q.

The large-s and fixed-t limit of scattering ampli-
tudes is related to quantum numbers in the t chan-
nel. For the gauge group SU(Nc), the t-channel
color state of the process depicted in Fig. 1 contains
three irreducible representations of the color group
(for QCD with Nc = 3, it is 3 ⊕ 6̄ ⊕ 15). Therefore,
it is natural to decompose the quark–gluon scatter-
ing amplitude into three parts, in accordance with
the representations [6, 16]. At the same time, in the
Gribov–Regge theory, each part must be decom-
posed into two pieces according to the new quantum
number—signature—which is introduced in the the-
ory. Besides quantum numbers, commonly used for
particle classification, a Reggeon has definite signa-
ture, positive or negative, which is actually a parity of
the t-channel partial waves with respect to the sub-
stitution cos θt → − cos θt (which turns into s → u =
−s in the limit of large s and fixed t). Consequently,

there are six terms A
(±)
χ , χ = 3, 6̄, and 15 in full de-

composition [6, 16] of the quark–gluon scattering
amplitude. As is known [6], in the LLA only one of the

positive signature amplitudes, namelyA
(+)
3 , does sur-

vive; and at the same time, it has the Reggeized form.
This is not so for the negative signature amplitudes.
The Bethe–Salpeter-type equation obtained for them
in the LLA [6] does not have a simple Regge-type
solution (in fact, no solution has been found at all).
Note that they are not actually leading in each order of
perturbation theory, because leading logarithms can-
cel in them as the result of antisymmetry with respect
to the exchange s → u = −s. Below, we consider only
the amplitudes of positive signature. As we will see,
in the NLA, as well as in the LLA, only amplitudes
with a color triplet in the t channel survive among
them. For quark–gluon scattering, the contribution
of the Reggeized quark can be represented as [here
and below, we write symbols of initial (final) particles
as lower (upper) indices of scattering amplitudes and
place first the particles with momenta close to p1]

RQ′G′

GQ = ΓQ′G
1

mQ − q̂

1
2

(4)

×
[(

−s

−t

)δT (q̂)

+
(

s

−t

)δT (q̂)
]

ΓG′Q,
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where ΓQ′G and ΓG′Q are effective vertices for in-
teraction of particles (quarks and gluons) with the
Reggeized quark; we call them PPR vertices, and
we call δT (q̂) the quark trajectory. Strictly speaking,
for massive quarks, there are two trajectories, in ac-
cordance with two possible parity states for an off-
mass-shell quark. These trajectories are determined
by eigenvalues of δT (q̂). We perform actual calcula-
tions for the massless case, when δT (q̂) depends in
fact not on q̂, but on q̂2 = t, and write it as δT (t).
Note, however, that the PPR vertices ΓQ′G and ΓG′Q

are known now for massive quarks [15], so that all
consideration presented below can be transferred to
the massive case in a straightforward way.

We demonstrate that the Reggeized form (4) is
compatible with the s-channel unitarity and obtain
the NLO contribution to the trajectory δT . More pre-
cisely, we calculate, using the unitarity relation, both
logarithmic and nonlogarithmic terms in the two-
loop s-channel discontinuity of the backward quark–
gluon scattering amplitude with positive signature
and prove that only color triplet t-channel states con-
tribute to the discontinuity. It means that only the

color triplet part A
(+)
3 of the amplitude survives at

NLO as well as at LO. We compare the calculated
discontinuity with the discontinuity of the Reggeized
quark contribution (4). The logarithmic terms of con-
fronted discontinuities turn out to be equal. The non-
logarithmic terms in the discontinuity of (4) are ex-
pressed through the one-loop corrections to the PPR
vertices, which are known, and the two-loop cor-
rection to the trajectory, which makes it possible to
obtain the last correction.

For massless quarks, the PPR vertices entering
in (4) have the form [14]

ΓQ′G = −gū(pQ′)tG (5)

×
[
êG(1 + δe(t)) +

(eGq)q̂
q2

δq(t)
]
,

ΓG′Q = −g
[
ê∗G′(1 + δe(t)) +

(e∗G′q)q̂
q2

δq(t)
]

× tG
′
u(pQ).

Here, tG and tG
′
are the color group generators in

the fundamental representation; we omit color wave
functions for gluons and assume that they are in-
cluded in u(pQ), ū(pQ′) for quarks. The one-loop cor-
rections δe(t), δq(t) can be written as

δe(t) = ω(1)(t)δ(1)
e , δq(t) = ω(1)(t)δ(1)

q , (6)

where

δ(1)
e =

CF

2Nc

(
1
ε
− 3(1 − ε)

2(1 + 2ε)
(7)
5
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+ ψ(1) + ψ(1 − ε) − 2ψ(1 + ε)

)
+

1
2ε

− ε

2(1 + 2ε)
,

δ(1)
q =

ε

2(1 + 2ε)

(
1 +

1
N2

c

)
,

ψ(x) = Γ′(x)/Γ(x) is the logarithmic derivative of the
Euler gamma function, and ω(1)(t) is the one-loop
gluon Regge trajectory:

ω(1)(t) = −2Nc

ε

g2
s

(4π)2+ε

(
µ2

−t

)−ε

Γε, (8)

Γε =
Γ2(1 + ε)Γ(1 − ε)

Γ(1 + 2ε)
.

We use conventional dimensional regularization; the
spacetime dimension D = 4 + 2ε and gs = gµε is the
dimensionless bare coupling constant.

To avoid uncertainties, let us note that the vertices
ΓGQ̄ and ΓQ̄G′ are obtained from (5) by the sub-
stitutions ū(pQ′) → v̄(pQ̄), eG → e∗G and u(pQ) →
v(pQ̄), e∗G′ → eG′ , respectively.

Representing the quark trajectory as

δT (t) =
ω(1)(t)

Nc
δ
(1)
T +

1
2

(
ω(1)(t)

Nc

)2

δ
(2)
T , (9)

where δ
(1)
T = CF [6], and the two-loop s-channel dis-

continuity of the Reggeized quark contribution (4) as[
RQ′G′

GQ (two-loop)
]
s

(10)

=
iπg2

t

1
2

(
ω(1)(t)

Nc

)2

ū(pQ′)tGtG
′
∆Ru(pQ),

we have from (4), (5), (9), and (6)

∆R = δ
(2)
T Q̂ + 2CF (11)

×
(

2Ncδ
(1)
e + CF ln

s

−t

)
Q̂ + 2CFNcδ

(1)
q Ê ,

where

Q̂ = êGq̂ê∗G′ , Ê = êG(e∗G′q) + ê∗G′(eGq), (12)

and δ
(1)
e , δ(1)

q are given by (7).
Below we calculate the discontinuity[(
A(+)

)Q′G′

GQ
(two-loop)

]
s
of the backward quark–

gluon scattering amplitude with positive signature
from the s-channel unitarity condition. We show that

it has the same color structure as
[
RQ′G′

GQ (two-loop)
]
s

(10); i.e., in this approximation, only the color triplet
state survives in the positive signature. Writing the
calculated discontinuity in the same form as the
PH
right-hand side of (10) with ∆s instead of ∆R,
we see that ∆s has the same helicity structure as
∆R (11) and that their logarithmic terms coincide;
moreover, the nonlogarithmic terms at the helicity
nonconserving structure Ê also coincide. After that,
the requirement of equality of the nonlogarithmic
terms at the helicity conserving structure Q̂ gives us

δ
(2)
T .

The calculation of ∆s is the main content of this
paper. It is determined from the s-channel unitarity
relation: [(

A(+)
)Q′G′

GQ
( two-loop)

]
s

(13)

=
iπg2

t

1
2

(
ω(1)(t)

Nc

)2

ū(pQ′)tGtG
′
∆su(pQ)

= iP (+)
∑
n

∫
dΦnA

n
GQ

(
An
Q′G′

)∗
,

where Φn is the n-particle phase-space element and
P (+) is the positive signature projector. The summa-
tion is performed over two- and three-particle inter-
mediate states; accordingly, we represent the discon-
tinuity as the sum of two contributions

∆s = ∆(2)
s + ∆(3)

s . (14)

The projection on the positive signature means the
half-sum of the s-channel discontinuities for the di-
rect (GQ → Q′G′) and crossed (GG̃ → Q′Q̄′) pro-
cesses. More precisely, if one represents the disconti-
nuity of the direct processes as 〈Q′G′|M |GQ〉, where
|GQ〉 is a spin and color quark–gluon wave function,
and the discontinuity for the process GG̃ → Q′Q̄′

with pG̃ = pQ, pQ̄′ = pG′ as 〈Q′Q̄′|Mc|GG̃〉, then the
projection on the positive signature is 〈Q′G′|(M +
Mc)/2|GQ〉. Note that, calculating ∆s, we always
use the fact that the rightmost p̂2 and leftmost p̂1 in
M and Mc give negligible contributions because of
the Dirac equation.

3. TWO-PARTICLE CONTRIBUTION
TO THE DISCONTINUITY

In the direct channel, a two-particle intermediate
state can be solely a quark–gluon one. Since only
limited transverse momenta of intermediate particles
are important in the unitarity relation (we will see it
directly; actually, it is a consequence of the renor-
malizability), non-negligible contributions are given
by two nonoverlapping kinematical regions. In one
of them, the intermediate gluon momentum is close
to pG (see Fig. 2a), and in another, it is close to pQ
YSICS OF ATOMIC NUCLEI Vol. 68 No. 9 2005
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Fig. 2. Schematic representation of the two-particle contribution to the s-channel discontinuity of the backward quark–gluon
scattering amplitude. The double lines represent Reggeized quark and gluon, and the blobs, PPR vertices.
(Fig. 2b). In both cases, the amplitudes on the right-
hand side of the unitarity relation (13) are in Regge-
type kinematics.

As we need to calculate the two-loop contribution
to the discontinuity, one of them has to be taken in
the Born approximation and another one in the one-
loop approximation. An important point is that since
Born amplitudes are real, only real parts of one-loop
amplitudes are essential for the calculation of the dis-
continuity. Therefore, required amplitudes are deter-
mined by Reggeized quark and gluon contributions.

Moreover, we can use AQ′G′
n instead of

(
An
Q′G′

)∗
, as

imaginary parts of the amplitudes are not important.
The amplitudes with t-channel quarks can be

obtained by evident substitutions from (4). Using
Eqs. (5), (6), for the process G + Q → Q′ + G′, we
have with required accuracy

AQ′G′

GQ =
g2

−q2
ū(pQ′)tGtG

′

{
êGq̂ê∗G′ (15)

×
[
1 + ω(1)(q2)

(
2δ(1)

e +
CF

Nc
ln

s

−q2

)]

+ ω(1)(q2)δ(1)
q [êG(e∗G′q) + (eGq)ê∗G′ ]

}
u(pQ),

where q = pQ − pG′ .
In the following, in the amplitudes on the right-

hand side of (13), we denote Reggeized gluon and
quark momenta q1 and q2, respectively, q1 + q2 =
q, and Reggeized gluon color index r. Since q1 �
q1⊥, q2 � q2⊥, everywhere below we omit the sign ⊥
at q1,2, so that qi means qi⊥, i = 1, 2.

Amplitudes for processes AB → A′B′ with gluon
exchanges with our accuracy are written as

AA′B′
AB =

2s
q2
1

Γr
A′A

(
1 + ω(1)(q2

1) ln
s

−q2
1

)
Γr
B′B ,

(16)
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where Γr
A′A and Γr

B′B are Reggeized gluon vertices,
which can be found in [12]. In the direct channel,
we need quark–gluon scattering amplitudes. For
the process G + Q → G1 + Q1 (see the left part of
Fig. 2a), we obtain

AG1Q1

GQ =
2g2s

q2
1

T r
G1Gū(pQ1)tr

p̂1

s
u(pQ) (17)

×
{

− (e∗G1
eG)

[
1 + ω(1)(q2

1)

×
(
δ
(1+)
G + δ

(1−)
G + δ

(1)
Q + ln

s

−q2
1

)]

+ ω(1)(q2
1)(D − 2)

(e∗G1
q1)(eGq1)
q2
1

δ
(1−)
G

}
,

where T r
G1G

are color generators in the adjoint repre-
sentation; q1 = (pG1 − pG)⊥; δQ represents the one-
loop corrections to the quark–quark–Reggeon ver-
tex,

δ
(1)
Q =

1
2

[
1
ε

+ ψ(1 − ε) + ψ(1) − 2ψ(1 + ε) (18)

+
2 + ε

2(1 + 2ε)(3 + 2ε)
− 1

2N2
c

(
1 +

2
ε(1 + 2ε)

)

− nf

Nc

1 + ε

(1 + 2ε)(3 + 2ε)

]
,

nf being the number of quark flavors; and δ
(1+)
G

and δ
(1−)
G represent helicity-conserving and helicity-

violating corrections to the gluon–gluon–Reggeon
vertex,

δ
(1+)
G =

1
2

[
2
ε

+ ψ(1 − ε) + ψ(1) (19)
5
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− 2ψ(1 + ε) − 9(1 + ε)2 + 2
2(1 + ε)(1 + 2ε)(3 + 2ε)

+
nf

Nc

(1 + ε)3 + ε2

(1 + ε)2(1 + 2ε)(3 + 2ε)

]
,

δ
(1−)
G =

ε

2(1 + ε)(1 + 2ε)(3 + 2ε)

×
(
−1 +

nf

Nc(1 + ε)

)
.

P

Note that, in order to obtain AQ′G′

Q1G1
(see the right

part of Fig. 2b) from (17), one has to change p̂1 to
p̂2 besides evident substitution of symbols.

In addition to the presented amplitudes, in the
crossed channel, we need gluon–gluon and quark–
antiquark forward scattering amplitudes (see Fig. 3).

The first (see the left part of Fig. 3a) is written as
AG1G̃1

GG̃
=

2g2s

q2
1

T r
G1GT r

G̃1G̃

{
(e∗G1

eG)(e∗
G̃1

eG̃)
[
1 + ω(1)(q2

1)
(

2δ(1+)
G + 2δ(1−)

G + ln
s

−q2
1

)]
(20)

− ω(1)(q2
1)(D − 2)

(
(e∗G1

eG)(e∗
G̃1

q1)(eG̃q1) + (e∗G1
q1)(eGq1)(e∗

G̃1
eG̃)

)
q2
1

δ
(1−)
G

}
,

and the second (see the right part of Fig. 3b)

AQ′Q̄′

Q1Q̄1
= −2g2s

q2
1

ū(pQ′)tr
p̂2

s
u(pQ1)v̄(pQ̄1

) (21)

× tr
p̂1

s
v(pQ̄′)

[
1 + ω(1)(q2

1)
(

2δ(1)
Q + ln

s

−q2
1

)]
.

Before starting with the calculation, let us show
that only a color triplet state survives in the dis-
continuity, due to cancellation of contributions of all
other color states in the direct and crossed channels.
In fact, this cancellation has the same nature as in
the leading order [6]. The point is that, if a one-loop
contribution is taken for one of the PPR vertices in
Figs. 2 and 3, then all other vertices must be taken
at NLO in the Born approximation. Therefore, either
both lower or both upper vertices are Born ones. Let
us consider the first case. Since the upper parts of the
diagrams Fig. 2a and Fig. 3a are equal, contributions
to M + Mc from the lower lines enter as the sum

γµ⊥tG
′ ∑

λ

uλ(pQ1)ūλ(pQ1)tr
p̂1

s
(22)

−
∑
λ

êλ
G̃1

tG̃1

(
eλ
G̃1

)∗µ
T r
G̃1G′ = γµ⊥trtG

′
.

Here, we have omitted terms with leftmost p̂1 because
of the reason explained above and have taken the
same Lorentz and color indices of the gluons G′ and
G̃ as we do not write their wave functions. It is easy
to see that the lower lines of Fig. 2b and Fig. 3b
give in sum the same result. Since trtG

′
projects

the t-channel quark–gluon state on a color triplet, it
H

means that contributions of other color states cancel
in the sum of the direct and cross channels. The
case when both upper vertices are Born ones can be
considered quite analogously. One can come to the
same conclusion seeing that sum of contributions of
Fig. 2a and Fig. 3b, as well as Fig. 2b and Fig. 3a,
is proportional to tGtr. It is not difficult to understand
that the cancellation of color states different from a
triplet is not restricted by the considered diagrams
or by the two-loop approximation, but is a general
property of the NLA, as well as the LLA.

Since we have shown that only a color triplet
survives in the t channel, we can write

P
(+)
3

∑
P1P2

AP1P2
GQ

(
AP1P2
Q′G′

)∗
(23)

= g4ω(1)(t)sū(pQ′)tGtG
′M(2)u(pQ).

With the amplitudes listed above, calculation of
M(2) is straightforward. Dividing it into two pieces,

M(2) = M(2)
Q + M(2)

G , one of which contains one-
loop corrections for a quark channel and another for a
gluon channel, we obtain

M(2)
Q =

(
q2

q2
2

)−ε
CF

q2
1q

2
2

(24)

×
{(

2δ(1)
e +

CF

Nc
ln

s

−q2
2

)
êGq̂2ê

∗
G′

+ δ(1)
q [êG(e∗G′q2) + (eGq2)ê∗G′ ]

}
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Fig. 3. Schematic representation of the two-particle contribution to the cross-channel discontinuity of the backward quark–
gluon scattering amplitude.
and

M(2)
G =

(
q2

q2
1

)−ε 1
q2
2q

2
1

{[
− 1

Nc
δ
(1)
Q (25)

+ Nc

(
δ
(1+)
G + δ

(1−)
G

)
+ CF ln

s

−q2
1

]

× êGq̂2ê
∗
G′ −

Nc

2
D − 2

q2
1

δ
(1−)
G

× [êGq̂2q̂1(e∗G′q1) + (eGq1)q̂1q̂2ê
∗
G′ ]

}
.

Integration over the phase-space element dΦ2 =
dD−2q2/(2s(2π)D−2) is quite simple. The integrals
are well convergent at large |q2|, so that the in-
tegration region can be expanded to infinity. For
convenience of the reader, we present necessary
formulas in Appendix A. As a result, we obtain for
the two-particle contribution to ∆s

∆(2)
s =

2Ncε(−q2)1−ε

Γεπ(D−2)/2

∫
dD−2q2M(2) (26)

= 2NcXΓ

{
2CF δ(1)

e +
Nc

2

(
δ
(1+)
G − 2ε

1 − ε
δ
(1−)
G

)

− 1
2Nc

δ
(1)
Q +

C2
F

Nc

(
ln

s

−t
+ Ψ1

)

+
CF

2

(
ln

s

−t
+ Ψ1 +

1
2ε

)}
Q̂

+ XΓ

{
CF δ(1)

q + Nc
ε(1 + ε)

1 − ε
δ
(1−)
G

}
Ê ,

where

XΓ =
Γ(1 − 2ε)Γ2(1 + 2ε)

Γ(1 + ε)Γ(1 + 3ε)Γ2(1 − ε)
, (27)

and
Ψ1 = ψ(1 − 2ε) + ψ(1 + 3ε) (28)

− ψ(1 + 2ε) − ψ(1 − ε).
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4. THREE-PARTICLE CONTRIBUTION
TO THE DISCONTINUITY

Let us denote intermediate particles in the uni-
tarity condition (13) Pj and their momenta kj , j =
1–3. Just as before, only limited transverse momenta
are important. As for longitudinal momenta, let us
set (without loss of generality) α3 � 1; that is, for
the direct process G + Q → Q′ + G′, a particle P3

is produced in the fragmentation region of the initial
quark (note that, for the crossed process G + G̃ →
Q′ + Q̄′, it is the region of G̃ fragmentation). Then
β1 + β2 � 1; i.e., at least one of the particles Pi, i =
1, 2, is produced in the gluon fragmentation region.
Let it be P1; then β1 ∼ 1, but β2 can vary from β2 ∼ 1
(which means P2 as well as P1 is produced in the
gluon fragmentation region) to β2 ∼ |k2

2⊥|/s (which
means α2 ∼ 1, i.e., P2 is in the quark fragmenta-
tion region). Of course, the same with substitution
1 ↔ 2 can be said for the case when in the gluon
fragmentation region particle P2 is produced. Note
that region 1 � βi � |k2

i⊥|/s is usually called multi-
Regge or central region for a particle Pi. But this
region does not require separate consideration, be-
cause amplitudes for production of Pi in any of the
fragmentation regions are applicable in it. Actually,
natural bounds for domains of applicability of these
amplitudes are αi � 1 for the gluon and βi � 1 for
the quark fragmentation regions. Therefore, it is suffi-

cient to consider two regions: 1 ≥ βi ≥
√

|k2
i⊥|/s and

1 ≥ αi ≥
√

|k2
i⊥|/s. For brevity, we will say that, in

the first (second) case, there are two particles in the
gluon (quark) fragmentation region. Moreover, the
symmetry with respect to α ↔ β in the definition of
the regions permits one to consider only one of them.
Indeed, as regards the inverse reaction (Q′ + G′ →
G + Q), the names of the regions must be changed;
therefore their contribution to the discontinuity is re-
lated by the substitutionsQ ↔ Q′, G ↔ G′ and com-
5
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plex conjugation. We will consider the gluon frag-
mentation region.

In this region, amplitudes on the right-hand side
of the unitarity relation (13) can be written, in accor-
dance with our agreement about notation, as

AP1P2P3
AB =

2s
q2
1

Γr
{P1P2}AΓr

P3B (29)

and

AP1P2P3
AB = Γ{P1P2}A

−q̂2

q2
2

ΓP3B (30)

for gluon and quark exchanges, respectively, with the
same vertices Γr

P3B
and ΓP3B as for the elastic ampli-

tudes, but taken now in the Born approximation only.
Therefore, as well as in the two-particle contribution,
only the t-channel color triplet survives in positive
signature since

P (+)
∑
P3

Γr
P3Q (ΓP3G′)∗ (31)

= −P (+)
∑
P3

ΓP3Q

(
Γr
P3G′

)∗ = −g2

2
trtG

′
ê∗G′u(pQ).

The vertices Γr
{P1P2}A and Γ{P1P2}A can be found

in [12] and [13], respectively. Actually, they can be
easily calculated since are given by Born amplitudes
for processes A + R → P1 + P2, where R is either a
gluon (for Γr

{P1P2}A) with momentum q1, color index
r, and polarization vector p2/s (p1/s) for a particle
A with predominant momentum components along
p1 (p2) or a quark (for Γ{P1P2}A) with momentum q2

and omitted quark wave function. An important point
is that the corresponding light-cone gauge [see (3)]
must be taken not only for real gluons, but for virtual
ones as well. Note that theHermitian property of Born
amplitudes gives the relations(

Γr
{P1P2}Q′

)∗
= Γr

Q′{P1P2}, (32)
(
Γ{P1P2}Q′

)† = ΓQ′{P1P2}γ
0,

which we use in the following.
Let us denote∑

P1P2

(
Γr
{P1P2}GΓQ′{P1P2} − Γ{P1P2}GΓr

Q′{P1P2}

)
tr

(33)

= g4ū(pQ′)tGFG .

The particles P1 and P2 can be two gluons (G1G2),
quark and gluon (Q1G2), and quark and antiquark
(Q1Q̄2). Evidently, only the first (second) term on the
left-hand side of (33) contributes in the first and third
cases (in the second case). Using the fact that the
PH
phase-space element dΦ3 in the gluon fragmentation
region looks like

dΦ3 = δ(1 − β1 − β2)
dβ1dβ2

4sβ1β2

dD−2k1d
D−2k2

(2π)2D−3
, (34)

with the help of (29)–(31), we obtain the contribution
of this region to ∆s (13) in the form

∆(3)G
s = −ε2(−q2)1−2ε

π(D−2)Γ2
ε

∫
dβ1dβ2

β1β2
(35)

× dD−2k1d
D−2k2

q2
1q

2
2

FGq̂2ê
∗
G′δ(1 − β1 − β2)

× θ


β1 −

√
|k2

1⊥|
s


 θ


β2 −

√
|k2

2⊥|
s


 ,

where q1 and q2 are the momenta of t-channel gluon
and quark, respectively, q1 + q2 = q. As was already
pointed out, the total three-particle contribution can
be written then as

∆(3)
s = ∆(3)G

s + ∆̄(3)G
s (G → G′), (36)

where ∆̄ = γ0∆†γ0. Note that logarithms of s appear

in ∆(3)G
s from integration over βi of those terms in FG

which do not go to zero at βi → 0. It is always possi-
ble to rewrite FG as a sum of terms which go to zero
either at β1 = 0 or at β2 = 0. For the first (second) of

them, the limitation β1 >
√

|k2
1⊥|/s (β2 >

√
|k2

2⊥|/s)
can be taken away; the change of variables k1⊥ =
β1l1⊥ (k2⊥ = β2l2⊥) often turns out to be useful, and
we meet integrals

1∫
√

|k2
i⊥|/s

dβi
βi

(1 − βi)δ (37)

=
1
2

ln
s

|k2
i⊥|

+ ψ(1) − ψ(δ + 1),

where δ is proportional to ε.
Calculation of integrals without ln |k2

i⊥| does not
present a problem. The list of basis integrals is pre-
sented in Appendix B. On the contrary, two of the
integrals with ln |k2

i⊥| cannot be expressed in terms
of elementary functions at arbitrary ε. Besides the
integral I0 [see (46)] already encountered in the cal-
culations of the two-loop gluonRegge trajectory, here
we meet a new nontrivial integral I1 [see (47)] below,
which is considered in Appendix C.

In the following, we will use Eqs. (33), (35), (36)
and the notation

kiG = (ki − βipG)⊥, kiQ′ = (ki − βipQ′)⊥, (38)

k12 = −k21 = (β2k1 − β1k2)⊥.
YSICS OF ATOMIC NUCLEI Vol. 68 No. 9 2005
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It is easy to understand that kiA (i = 1, 2) is the
transverse part of ki with respect to the pA, p2 plane,
multiplied by βA.

Since the integration in (35) is symmetric with
respect to exchange k1 ↔ k2, we will systematically
omit in FG contributions antisymmetric in relation to
this exchange, without further reminding.

4.1. Fragmentation into Two Gluons

The vertex for production of the gluons G1, G2

with color indices i1, i2 by the initial gluon G can be
written as

Γr
{G1G2}G = g2

{(
TGT r

)
i1i2

[
γµν(k1G) (39)

− γµν(k12)
]
e∗1µe

∗
2ν + (1 ↔ 2)

}
,

where

γµν(p) =
2
p2

[
β1β2g

µν
⊥ (eGp) − β1e

µ
Gpν − β2p

µeνG
]
.

The vertex for a quark exchange can be taken in [13].
Using Sudakov parametrization and omitting terms
with rightmost p̂2, we have for it

ΓQ′{G1G2} = −g2ū(pQ′) (40)

×
{
ti1ti2

[
γµν12 − γµν

[12]

]
e1µe2ν + (1 ↔ 2)

}
,

where

γµν12 =
1

k2
1Q′

(
β1k̂1Q′γµ⊥ − 2kµ1Q′

)
γν⊥, (41)

γµν[12] =
2

k2
12

[
β1β2g

µν
⊥ k̂12 − β1γ

µ
⊥kν12 − β2k

µ
12γ

ν
⊥

]
.

Note that the lower indices of γµν vertices in (40)
are determined by sequences of color matrices in
corresponding group factors, and square brackets in
γµν[12] emphasize its antisymmetry with respect to the
permutation 1 ↔ 2, as well as its relation to the color
factor [ti1ti2].

As was pointed out already, only the first term on
the left-hand side of (33) contributes in the case of
two-gluon production. Putting there the vertices (39)
and (40) and performing summation over spin and
color of intermediate gluons, after simple color alge-
bra, we obtain for the two-gluon contribution to FG

FGG
G = −N2

c

4

[
(γµν(k1G) − γµν(k12)) (42)

×
(
γµν12 − γµν[12]

)
+ (1 ↔ 2)

]
.
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One should pay attention that all terms in (42) corre-
spond to planar diagrams. It is an important property
of a color triplet state in the t channel which greatly
simplifies calculations.

The convolutions entering in (42) give

γµν(p)γµν12 =
2

k2
1Q′p2

{êG[2β2(k1Q′p) (43)

+ β1(1 − 2β2)k̂1Q′ p̂] + 4β1β2(eGk1Q′)p̂

+ β1β2[β1(D − 2) − 4](eGp)k̂1Q′};

γµν(p)γµν[12] =
−4

k2
12p

2
(44)

× {β1β2(2 − β1β2(D − 2))(eGp)k̂12

− 2β1β2(eGk12)p̂− (1 − 2β1β2)(k12p)êG}.

We obtain the two-gluon contribution in ∆(3)G
s by

substituting (42) into (35) and performing integra-
tion. Note that, if we integrate over all phase space
in (35), we have to take into account equivalence of
produced gluons by the factor 1/2!. With account
of the quark fragmentation region according to (36),
we obtain, denoting the contributions related to the
terms γµν(p)γµνN in FQQ

G (42) by ∆N∗p,

∆12∗k1G
=

N2
c

4

{
2

[
2
ε
− 3

1 + 2ε
+ Ψ2 (45)

+ ln
s

−t
+

5
2ε

XΓ +
1
2

(I0 + I1)

]
Q̂ +

2ε
1 + 2ε

Ê
}

;

∆12∗k12 =
N2

c

4
XΓ

×
{

2
[

3
1 + 2ε

− 3
ε
− ln

s

−t
− Ψ

]
Q̂ − 2ε

1 + 2ε
Ê
}

;

∆[12]∗k12
= 0;

∆[12]∗k1G
= −N2

c

4
XΓ

{
2

[
ln

s

−t
+ Ψ +

5
2ε

− 4
1 + 2ε

+
1

(1 − ε)(1 + 2ε)(3 + 2ε)

]
Q̂

− 4ε2

(3 + 2ε)(1 − ε)(1 + 2ε)
Ê
}

,

where

I0 = −ε2(−q2)1−2ε

Γ2
επ

(D−2)
(46)

×
∫

dD−2k1d
D−2k2q

2

k2
1⊥(k1 − q)2⊥k2

2⊥(k2 − q)2⊥
ln

q2

(k1 − k2)2⊥
,

5
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I1 = −ε2(−q2)1−2ε

Γ2
επ

(D−2)
(47)

×
∫

dD−2k1d
D−2k2(k1 − k2)2⊥

k2
1⊥(k1 − q)2⊥k2

2⊥(k2 − q)2⊥
ln

q2

(k1 − k2)2⊥
.

Here and below, we use the notation

Ψ2 = 2[ψ(1) − ψ(1 + 2ε)], (48)

Ψ = ψ(1 − 2ε) + ψ(1 + 3ε)
− ψ(1 + ε) − ψ(1) + Ψ2.

The contribution ∆GG
s of fragmentation into two glu-

ons to ∆(3)
s is

∆GG
s = ∆12∗k1G

+ ∆12∗k12 + ∆[12]∗k1G
. (49)

4.2. Fragmentation into Quark and Gluon

Let us denote particles produced in the gluon frag-
mentation region Q1 and G2 and their momenta k1

and k2, respectively. The vertex Γ{Q1G1}G can be ob-
tained by crossing and appropriate substitutions from
ΓQ′{G1G2} (40). We will represent it as

Γ{Q1G2}G = −g2ū(k1) (50)

×
{
tGti2

[
γνG2 − γν[G2]

]
e∗2ν

+ ti2tG
[
γµ2G + γµ[G2]

]
e∗2µ

}
,

where γνG2, γ
ν
[G2], and γν2G, are obtained from γµν12 , γµν[12],

and γνµ21 , respectively, by the substitutions

β1 → 1
β1

, β2 → −β2

β1
, k1Q′ → −k1G

β1
, (51)

k12 → k2G

β1
, k2Q′ → k12

β1

and convolution with eµG. The vertex Γr
Q′{Q1G2} can be

found in [12] and represented as

Γr
Q′{Q1G2} = g2ū(pQ′)

p̂2

s
(52)

× {ti2tr(Lµ(k2Q′) + Lµ(k1Q′))

+ trti2(Lµ(k12) − Lµ(k1Q′))}eµ2u(k1),

where

Lµ(p) =
β2p̂γ

µ
⊥ − 2pµ

p2
. (53)

In the case of quark–gluon production, only the sec-
ond term on the left-hand side of (33) contributes.
P

Using vertices (50) and (52), we obtain for the quark–
gluon contribution to FG after summation over spin
and color

FQG
G = −β1

∑
ij

Lµ(kij) (54)

×
[
Cij
G2γ

µ
G2 + Cij

2Gγµ2G + Cij
[G2]γ

µ
[G2]

]
,

where ij takes on values 1Q′, 2Q′, 12 and

C1Q′

G2 =
1
4
, C2Q′

G2 =
1
4

(
1 +

1
N2

c

)
, (55)

C12
G2 =

1
4N2

c

;

C1Q′

2G =
1
4
, C2Q′

2G =
1

4N2
c

,

C12
2G = −1

4

(
1 − 1

N2
c

)
;

C1Q′

[G2] = 0, C2Q′

[G2] = −1
4
, C12

[G2] = −1
4
.

Note that the term C2Q′

G2 Lµ(k2Q′)γµG2 here corre-
sponds to a nonplanar diagram and leads to a
complicated integral. Fortunately, it is canceled by
the respective contribution from quark–antiquark
production, as we will see in the next subsection.

For the products Lµ(p)γµmn, we have after some
simplifications

Lµ(p)γµG2 =
1

k2
1Gp2

{2β1β2(D − 2) (56)

× (eGk1G)p̂− β2(D − 6)p̂k̂1GêG − 2êGk̂1Gp̂};

Lµ(p)γµ2G =
1

k2
12p

2

× {β2(β2(D − 2) − 4)p̂k̂12 + 4(k12p)}êG;

Lµ(p)γµ[G2] =
2β2

k2
2Gp2

{(
β2

β1
− 1

)
êGp̂k̂2G

+ (β2(D − 2) − 4)(eGk2G)p̂

+
2
β2

(k2Gp)êG + 4(eGp)k̂2G

}
.

The quark–gluon contribution to ∆(3)G
s is given

by (35) with (54) instead of FG. Denoting by ∆mn·ij
the contributions proportional Cij

mn in (54), after
integration, we obtain for them with account of the
quark fragmentation region according to (36)

∆G2·1Q′ =
1
4

{
2

[
3 − 2ε
1 + 2ε

− Ψ2 − ln
s

−t
(57)
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 9 2005
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− 5
2ε

XΓ − 1
2

(I0 + I1)

]
Q̂ +

2ε
1 + 2ε

Ê
}

;

∆G2·12 =
1

4N2
c

XΓ

×
{
−2

[
ln

s

−t
+ Ψ +

1
ε
− 3 − 2ε

1 + 2ε

]
Q̂ +

2ε
1 + 2ε

Ê
}

;

∆2G·1Q′ =
1
4
XΓ

×
{

2
[
ln

s

−t
+ Ψ +

3
2ε

− 3
2(1 + 2ε)

]}
Q̂;

∆2G·2Q′ =
1

4N2
c

XΓ

{
2
[

3 − 2ε
2(1 + 2ε)

− 1
ε

]}
Q̂;

∆2G·12 = 0;

∆[G2]·2Q′ =
1
4

{
− 2

[
− 3

1 + 2ε
+

2
ε

+ Ψ2

+ ln
s

−t
− XΓ

ε
− 1

2
I1

]
Q̂ − 2ε

1 + 2ε
Ê
}

;

∆[G2]·12 =
1
4
XΓ

{
2

[
ln

s

−t
+ Ψ

+
3
ε
− 3

1 + 2ε

]
Q̂ +

2ε
1 + 2ε

Ê
}
.

The contribution ∆G2·2Q′ is not presented here since
it is canceled with the respective contribution from
quark–antiquark production, as was pointed out. The

quark–gluon contribution to ∆(3)
s is given by

∆QG
s =

∑
ij,mn

∆mn·ij, ij = 1Q′, 2Q′, 12; (58)

mn = G2, 2G, [G2].

4.3. Fragmentation into Quark–Antiquark Pair

As well as in the two-gluon case, only the first
term on the left-hand side of (33) exists. We denote
the momenta of particles Q1 and Q̄2 in the gluon
fragmentation region k1 and k2, respectively. The
vertex Γr

{Q1Q̄2}G can be obtained by crossing and

corresponding substitutions from Γr
Q′{Q1G2} (52):

Γr
{Q1Q̄2}G = g2ū(k1)

p̂2

s

{
tGtr

(
L(k1G) (59)

− L(k12)
)

+ trtG (L(k12) + L(k2G))
}
v(k2),
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 9 2005
where

L(p) =
−p̂êG + 2β1(peG)

p2
. (60)

The vertex ΓQ′{Q1Q̄2} can be obtained from [13];
a direct calculation does not encounter difficulties
either. We have

ΓQ′{Q1Q̄2} = g2

[
v̄(k2)tcγσu(k1)ū(pQ′)tcAσ (61)

− ū(pQ′)tcγσu(k1) · v̄(k2)tcBσδQ1Q

]
,

where δQ1Q shows that the last contribution exists
only when an intermediate quark has the same flavor
as the initial one, and the values Aσ and Bσ can be
written as

Aσ =
−β1β2

k2
12

(
γσ⊥ − (k̂1 + k̂2)⊥

2pσ2
s

)
; (62)

Bσ =
β1

k2
1Q′

(
γσ⊥ + (k̂1 − p̂Q′)⊥

2pσ2
sβ2

)
.

By substituting the vertices (59) and (61) into (33),
after summation over spin and color states of inter-
mediate particles, we obtain for the quark–antiquark
contribution to FG

FQQ
G =

∑
ij

[
Cij
A tr

(
k̂1

p̂2

s
L(kij)k̂2γσ

)
Aσ (63)

− Cij
Bγσk̂1

p̂2

s
L(kij)k̂2B

σ

]
,

where ij takes on values 1G, 2G, 12 and

C1G
A =

Nc

8
nf , C2G

A = −Nc

8
nf , C12

A = −Nc

4
nf ;

(64)

C1G
B =

1
4N2

c

, C2G
B =

1
4

(
1 +

1
N2

c

)
, C12

B =
1
4
.

Taking into account, as usual, external Dirac spinors,
we obtain

tr
(
k̂1

p̂2

s
L(p)k̂2γσ

)
Aσ =

2β1β2

p2k2
12

(65)

×
(

(k12p)êG − (eGk12)p̂ + (1 − 4β1β2)(eGp)k̂12

)
;

γσk̂1
p̂2

s
L(p)k̂2B

σ

=
−β1

k2
1Q′p2

{2β1β2(D − 2)(eGp)k̂1Q′

− β2(D − 6)k̂1Q′ p̂êG − 2êGp̂k̂1Q′}.
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The quark–antiquark contribution to ∆(3)G
s is given

by (35) with (63) instead of FG. As has been men-
tioned above, inFQQ

G we also have a term correspond-
ing to a nonplanar diagram. In (63), it appears with

the coefficient C2G
B . Note that C2G

B = C2Q′

G2 [see (55)].
Moreover, comparing the first equations in (56) and
the second in (65), one can see that the substitution

k1Q′ → −k2Q′ , k2G → −k1G (66)

turns γσk̂1(p̂2/s)L(k2G)k̂2B
σ into β1Lµ(k2Q′)γµG2

with opposite sign. Note that, for the quark–antiquark
contribution, q2 in (35) is equal to pQ′⊥ − k1⊥ −
k2⊥ = β2q − k1Q′ − k2G. Upon the substitution (66),
it turns into β2q + k2Q′ + k1G = k1⊥ + k2⊥ − pG⊥,
which is just the t-channel quark momentum for
the quark–gluon contribution. An important point
is that the theta functions in (35) can be omitted for
the contributions of the nonplanar diagrams due to
convergence of integrals, after which the substitu-
tion (66) does not influence the integration region.
Therefore, these contributions cancel each other.

Performing integration and denoting by ∆A·ij and
∆B·ij the contributions to (63) proportional to C1j

A

and C1j
B , respectively, we obtain with account of the

quark fragmentation region according to (36)

∆A·1G =
Nc

8
nfXΓ (67)

×
{

−2
1 + 2ε

(
1 − 1

(1 − ε2)(3 + 2ε)

)
Q̂

− 4ε2

(1 − ε2)(1 + 2ε)(3 + 2ε)
Ê
}

;

∆A·2G = ∆A·1G; ∆A·12 = 0;

∆B·1G =
1

4N2
c

{
2

[
− 3 − 2ε

1 + 2ε
+ Ψ2

+ ln
s

−t
− XΓ

ε
− 1

2
I1

]
Q̂ − 2ε

1 + 2ε
Ê
}

;

∆B·12 =
1
4
XΓ

×
{
−2

[
3 − 2ε
1 + 2ε

− ln
s

−t
− Ψ − 1

ε

]
Q̂ − 2ε

1 + 2ε
Ê
}

.

Therefore, the quark–antiquark contribution to ∆(3)
s

can be written as

∆QQ
s = 2∆A·1G + ∆B·1G + ∆B·12 + ∆B·2G, (68)
P

where ∆B·2G = −∆G2·2Q′ , as was shown above. Be-
cause of cancellation of these contributions in

∆(3)
s = ∆GG

s + ∆GQ
s + ∆QQ

s , (69)

∆B·2G is not present in (67), nor ∆G2·2Q′ in (57).

5. TWO-LOOP CORRECTION
TO THE QUARK TRAJECTORY

The total discontinuity ∆s is given by the sum of
the contributions of two- and three-particle interme-
diate states in the unitarity relation. The two-particle

contribution ∆(2)
s is given explicitly by (26). All nec-

essary contributions to ∆(3)
s (69) are calculated in the

preceding section. They are given by (49) and (45) for
fragmentation into two gluons, by (58) and (57) for
fragmentation into a quark and gluon, and by (68),
(67) for fragmentation into a quark and antiquark.
Now we can compare the calculated discontinuity
with the form (11) required by the quark Reggeiza-
tion. First of all, we note coincidence of the terms
with lns. Actually, this coincidence must be expected,
since it is required by the quark Reggeization in the
LLA, which was already checked on this level. Much
more important is that the calculated discontinuity
has the same helicity structure as ∆R (11), with the
same coefficient at the structure Ê . It is a serious
argument in favor of validity of the Reggeization hy-
pothesis in the NLA. Then, comparing coefficients at
the structure Q̂, we obtain

δ
(2)
T = CF

{
− nf

XΓ(1 + ε)
(1 + 2ε)(3 + 2ε)

(70)

+ Nc

(
1
2
I0 + I1 −XΓ[ψ(1 + ε) − ψ(1 + 2ε)]

+
7XΓ

2ε
+

XΓ(11 + 7ε)
2(1 + 2ε)(3 + 2ε)

)

+ 2CF

(
− 1

2
I1 + ψ(1) − ψ(1 − ε)

+ (2 −XΓ)[ψ(1 + ε) − ψ(1 + 2ε)]

− 1 + XΓ

ε
− (1 −XΓ)(3 − ε)

2(1 + 2ε)

)}
,

where XΓ is given by (27), and I0 and I1 are defined
in (46) and (47).

The two-loop correction to the quark Regge tra-
jectory jQ = 1/2 + δT (t) is determined by Eqs. (9),
(70) at arbitrary spacetime dimension D = 4 + 2ε.
Unfortunately, at arbitrary D, the integrals I0 and I1
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 9 2005
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cannot be written in terms of elementary functions. In
the limit ε → 0, we have for them (see Appendix C)

I0 =
1
ε

+ 15ψ(2)(1)ε2 + O(ε3), (71)

I1 = −4
ε

+ 6ψ(2)(1)ε2 + O(ε3),

where ψ(2) means the second derivative of theψ func-
tion. Using this result and the proportion ψ(2)(1) =
−2ζ3, where ζn is the Riemann zeta function, from
Eq. (70), we obtain for the two-loop correction up to
terms nonvanishing at ε → 0

δ
(2)
T = CF

{
β0

2
ε
−K

2
ε

+ Nc

(
404
27

− 2ζ3

)
(72)

− nf
56
27

+ (CF −Nc)16ζ3

}
,

where

β0 =
11
6

Nc −
2
3
nf , K =

(
67
18

− ζ2

)
Nc −

5
9
nf ,

in agreement with the result of [16].

6. SUMMARY

In this paper, we have checked compatibility of the
quark Reggeization hypothesis with the s-channel
unitarity by explicit two-loop calculations and have
found in the case of massless quarks the two-loop
correction to the quark trajectory at arbitrary space-
time dimension D = 4 + 2ε. The ε expansion of the
correction gives the result obtained in [16]. We have
calculated the two-loop s-channel discontinuity of
the backward quark–gluon scattering amplitude with
positive signature keeping nonlogarithmic terms and
have proved that only a color triplet part of the am-
plitude survives at NLO as well as at LO. It was
shown that the calculated discontinuity has a form re-
quired by the Reggeization hypothesis. The two-loop
correction to the trajectory has been obtained from
comparison of the calculated discontinuity with the
Reggeized form. In the case of massive quarks, the
trajectory can be found by the same method, since all
necessary quantities for such calculation are known.

The cancellation of contributions of color states
different from triplet in positive signature is not re-
stricted by the two-loop approximation, but is a gen-
eral property of the NLA. Therefore, in this approxi-
mation, as well as in the LLA, real parts of amplitudes
with positive signature are completely determined by
Reggeized quark contributions.

Note that testing of the quark Reggeization per-
formed up to now is rather limited. Even in the LLA,
self-consistency of the hypothesis was shown only in
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a particular case of elastic quark–gluon scattering,
although in all orders of αs. In the NLA, it is tested
in the same process only in order of α2

s . A possible
way of stricter testing and, in principle, a complete
proof is examination of “bootstrap” conditions on
the Reggeized quark vertices and the trajectory in
QCD. These conditions appear from comparison of
the Reggeized form of discontinuities of amplitudes
with the discontinuities calculated by using the s-
channel unitarity.

We have used dimensional regularization for both
infrared and ultraviolet divergences and the bare
coupling constant g = gsµ

ε, so that, besides infrared
poles in ε, our result contains the ultraviolet poles.
To remove them, it is sufficient to express the bare
coupling through the renormalized one. In the MS
renormalization scheme,

g = gµµ
−ε

{
1 + β0

g2
µΓ(1 − ε)

ε(4π)2+ε

}
, (73)

where gµ is the renormalized coupling at the normal-
ization point µ.
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Appendix A

For convenience of the reader, we list here the
integrals encountered in the calculation of ∆(2)

s (note
that, everywhere below, we use Euclidean transverse
momenta and omit the transeverseness sign):

J i
1 =

∫
dD−2kki

(k2)1−ε(k − q)2
(A.1)

= qi
π(D−2)/2

ε(q2)1−2ε
Γε · XΓ,

J i
2 =

∫
dD−2kki

(k2)1−ε(k − q)2
ln

s

k2
(A.2)

† Deceased.
5
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= J i
1

[
ln

s

−t
+ Ψ1

]
,

J i
3 =

∫
dD−2kqi

(k2)1−ε(k − q)2
=

3
2
J i

1, (A.3)

J i
4 =

∫
dD−2kqi

(k2)1−ε(k − q)2
ln

s

k2
(A.4)

=
3
2
J i

2 +
1
4ε

J i
1,

Jµ
5 =

∫
dD−2kklkmqi

(k2)2−ε(k − q)2
(A.5)

=
1

ε(1 − ε)

(
qkql

q2
(1 − 2ε) +

δkl

4

)
J i

1.

Recall that

Γε =
Γ2(1 + ε)Γ(1 − ε)

Γ(1 + 2ε)
, (A.6)

XΓ =
Γ(1 − 2ε)Γ2(1 + 2ε)

Γ(1 + ε)Γ(1 + 3ε)Γ2(1 − ε)
,

Ψ1 = ψ(1 + 3ε) + ψ(1 − 2ε)
− ψ(1 + 2ε) − ψ(1 − ε).

Appendix B

Apart from I0 (46) and I1 (47), considered in the
next appendix, integrals required for calculation of

∆(3)
s can be transformed to the ones listed below.

Using (A.6), (48), and

Λ =
π(D−2)

ε2(q2)1−2ε
, (B.1)

we have

K1 =
∫

dk(D−2)dp(D−2)

Λ(Γε)2
(B.2)

× êG(kq)p̂
k2(k − q)2p2(p− q)2

= êGq̂,

K2 =
∫

dk(D−2)dp(D−2)

Λ(Γε)2
(B.3)

× (eGk)(k̂ − q̂)p̂
k2(k − q)2p2(p− q)2

= −êGq̂
1

2(1 + 2ε)
+ (eGq)

ε

1 + 2ε
,

K3 =
∫

dk(D−2)dp(D−2)

Λ(Γε)2
(B.4)
PHYSIC
× êGk̂(k̂ − q̂)p̂
k2(k − q)2p2(p− q)2

ln
s

(k − p)2

= êGq̂

[
1
2

(I0 + I1) + XΓ
5
2ε

+ ln
s

−t

]
,

K4 =
∫

dk(D−2)dp(D−2)

Λ(Γε)2
(B.5)

× êG(k̂ − q̂)k̂p̂
k2(k − q)2p2(p− q)2

ln
s

(k − p)2

= êGq̂

[
−1

2
I1 −

XΓ

ε
+ ln

s

−t

]
,

K5 =
∫

dk(D−2)dp(D−2)

Λ(Γε)2
(B.6)

× (eGk)k̂p̂
k2(k − p)2p2(p − q)2

= −
(
êGq̂

1
2

+ (eGq)(1 + ε)
)

XΓ

(1 + 2ε)
,

K6 =
∫

dk(D−2)dp(D−2)

Λ(Γε)2
(B.7)

× (eGk)(k̂ − p̂)(p̂ − q̂)
k2(k − p)2p2(p − q)2

=
(
êGq̂

1
4

+ (eGq)ε2
)

XΓ

(1 − ε)(1 + 2ε)
,

K7 =
∫

dk(D−2)dp(D−2)

Λ(Γε)2
(B.8)

× êGk̂p2

k2(k − p)2p2(p− q)2
= êGq̂XΓ,

K8 =
∫

dk(D−2)dp(D−2)

Λ(Γε)2
(B.9)

× êGk̂p2

k2(k − p)2p2(p− q)2
ln

s

(k − p)2

= êGq̂

[
ln

s

−t
+ Ψ − Ψ2 +

1
ε

]
XΓ,

K9 =
∫

dk(D−2)dp(D−2)

Λ(Γε)2
(B.10)

× êG(kp)(p̂ − q̂)
k2(k − p)2p2(p− q)2

= −1
2
êGq̂XΓ,

K10 =
∫

dk(D−2)dp(D−2)

Λ(Γε)2
(B.11)

× êG(kp)(p̂ − q̂)
k2(k − p)2p2(p− q)2

ln
s

(k − p)2
S OF ATOMIC NUCLEI Vol. 68 No. 9 2005
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= −1
2
êGq̂

[
ln

s

−t
+ Ψ − Ψ2 +

3
2ε

]
XΓ.

Appendix C

At arbitrary D �= 4, the integrals I0 (46) and
I1 (47) can be expressed only through infinite series.
They belong to the class of integrals which were
studied particularly in [17]. The first of them has
already appeared in the calculation of the two-loop
correction to the gluon Regge trajectory [18], where
its limit at ε → 0 was found:

I0 =
∫

dD−2k1d
D−2k2

Λ(Γε)2
(C.1)

× q2

k2
1(k1 − q)2k2

2(k2 − q)2

× ln
q2

(k1 − k2)2
=

1
ε

+ 15ψ(2)(1)ε2 + O(ε3).

Here, Γε and Λ are given in (A.6) and (B.1); ψ(2)

means the second derivative of ψ. We have obtained
the limit of the second integral:

I1 =
∫

dD−2k1d
D−2k2

Λ(Γε)2
(C.2)

× (k1 − k2)2

k2
1(k1 − q)2k2

2(k2 − q)2

× ln
q2

(k1 − k2)2
= −4

ε
+ 6ψ(2)(1)ε2 + O(ε3).

Below, some details of the calculation are given.
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Representing the integral as

I1 =
d

dν
I(ν)

∣∣∣∣
ν=0

, (C.3)

I(ν) =
∫

dD−2k1d
D−2k2

Λ(Γε)2

× (q2)ν

k2
1(k1 − q)2k2

2(k2 − q)2[(k1 − k2)2]ν−1
,

we have from Eqs. (1), (4), (9) of [17]

I(ν) =
2ε2

2ε− 1
ν−1(ν − ε)

(Γε)2
(C.4)

×G2(1, 1 − ε + ν)G2(1, ν)

×
(
ν(ν − 1) lim

b→0
S(ε − 1, b, 2ε − ν, ν − 1 − ε)

)
,

where

G2(α1, α2) = G1(α1)G1(α2) (C.5)

×G1(2 + 2ε − α1 − α2),
G1(α) =

Γ(1 + ε− α)
Γ(α)

.

The function S(a, b, c, d) is defined by Eqs. (17), (16),
and (10) of [17]:

S(a, b, c, d) =
π cot(πc)

H(a, b, c, d)
− 1

c
(C.6)

− b + c

bc
F (a + c,−b,−c, b + d),

where
H(a, b, c, d) =
Γ(1 + a)Γ(1 + b)Γ(1 + c)Γ(1 + d)Γ(1 + a + b + c + d)

Γ(1 + a + c)Γ(1 + a + d)Γ(1 + b + c)Γ(1 + b + d)
, (C.7)
and F (a, b, c, d) is expressed through the generalized
hypergeometric function 3F2:

F (a, b, c, d) = 3F2


 −a,−b, 1

1 + c, 1 + d
; 1


 − 1. (C.8)

The limit b → 0 in (C.4) can be easily taken. We can
also use for this purpose Eq. (12) of [17] and obtain
with our values of parameters

ν(ν − 1) lim
b→0

S(ε − 1, b, 2ε − ν, ν − 1 − ε) (C.9)

= S1(ν) + S2(ν),
where
S1(ν) = π cot[π(2ε − ν)] (C.10)

× Γ(3ε − ν)Γ(1 + ν)
Γ(ε)Γ(2ε − 1)

− ν(ν − 1)
2ε− ν

,

S2(ν) = ν(ν − 1)
3ε− 1 − ν

(ε − 1)(ν − 2ε)
(C.11)

× F (1 − ε, 2ε − ν, ν − 2ε, ν − 2).

With this notation, we have

I1 =
d

dν
[S0(ν)(S1(ν) + S2(ν))]

∣∣∣∣∣
ν=0

, (C.12)
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where

S0(ν) =
ε2

(Γε)2
(C.13)

× 2
2ε− 1

Γ2(ε)Γ(2ε − ν)Γ(1 − 2ε + ν)Γ(1 − ν + ε)
Γ(3ε − ν)Γ(1 + ν)Γ(1 + 2ε− ν)

.

We need to know Si(0) and S′
i(0), i = 0–2. For i =

0, 1, they are easily obtained from (C.13), (C.10):

S0(0) =
3

2ε− 1
XΓ, (C.14)

S′
0(0) = S0(0)

(
1
6ε

+ Ψ − Ψ2

)
;

S1(0) = 2π cot[2πε]
ε(2ε − 1)

3
Γ(1 + 3ε)

Γ(1 + ε)Γ(1 + 2ε)
;

S′
1(0) = S1(0)

×
(
ψ(1) − ψ(1 + 3ε) +

1
3ε

+
2π

sin(4πε)

)
+

1
2ε

,

whereXΓ is defined in (A.6), and Ψ andΨ2 are defined
in (48). To find S2(0) and S′

2(0), we use the integral
representation

F (a, b, c, d) = −1 +
Γ(1 + d)Γ(1 + c)

Γ(d)Γ(−b)Γ(1 + c + b)
(C.15)

×
1∫

0

dx(1 − x)d−1

1∫
0

dzz−b−1(1 − z)c+b(1 − zx)a,

which follows from the standard representation for
hypergeometric functions. Performing integration
over x by parts three times, we obtain

S2(ν) = (3ε− 1 − ν) (C.16)

×
(

ν

1 − 2ε + ν
+

ε

2 − 2ε + ν

+ ε

1∫
0

1∫
0

dxdzz1−2ε+ν(1 − x)ν
d

dx
(1 − zx)−1−ε

)
,

so that

S2(0) = (1 − 2ε)
Γ(1 − ε)Γ(1 − 2ε)

Γ(1 − 3ε)
, (C.17)

S′
2(0) =

S2(0)
1 − 3ε

+ (3ε − 1)

×
(

1
1 − 2ε

− ε

4(1 − ε)2
+ ε(J1 + J2)

)
, (C.18)

where

J1 =

1∫
0

1∫
0

dxdzz1−2ε ln z
d

dx
(1 − zx)−1−ε, (C.19)
PH
J2 =

1∫
0

1∫
0

dzdxz1−2ε ln(1 − x)
d

dx
(1 − zx)−1−ε.

(C.20)

The integral J1 can be easily found:

J1 =
1

4(1 − ε)2
+

Γ(1 − ε)Γ(2 − 2ε)
Γ(2 − 3ε)

(C.21)

× (ψ(2 − 3ε) − ψ(2 − 2ε))
ε

.

For the integral J2, replacing d/dx by (z/x)d/dz in
the representation (C.20) and integrating over z by
parts, we obtain in the limit ε → 0

J2 � −1
ε2

+ 1 + ψ(1)(1) (C.22)

+ ε

(
5 − ψ(1)(1) +

ψ(2)(1)
2

)
.

Using in (C.12) the results (C.21), (C.22), (C.14) and
(C.17), (C.18), we get the final result (C.2).
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CURRENT EVENTS
70th Birthday of Yuriı̆ Fedorovich Smirnov
On May 26, 2005, Professor Yuriı̆ Fedorovich
Smirmov, leading researcher at the Institute of Nu-
clear Physics at Moscow State University, member
of the Mexican Academy of Sciences, celebrated his
70th birthday. Yu. Smirnov is a brilliant representative
of Soviet and Russian science. The main focus of his
scientific interests lies in the realms of theoretical nu-
clear and atomic physics and mathematical (group-
theory) methods in theoretical physics. He is the
author of about 300 scientific publications, including
ten well-knownmonographs. The citation index of his
studies exceeds 1500. He supervised the work of 16
candidates of science in physics andmathematics and
taught many different lecture courses at the Physics
Department of Moscow State University. Smirnov
was a recipient of the K.D. Sinelnikov Prize of the
Ukrainian Academy of Sciences in 1982 and the
Lomonosov Prize of Moscow State University in
1063-7788/05/6809-1616$26.00
2002 and is a member of the Editorial Council of the
journal Physics of Atomic Nuclei.

The first important contribution of Smirnov to sci-
ence dates back to his postgraduate years and con-
cerns the theory of nucleon clustering in light nuclei
on the basis of the multiparticle shell model. Together
with two colleagues, he introduced coefficients de-
scribing the transformation of the wave function for a
system of a few nucleons in the oscillator shell model
from single-particle to cluster Jacobi coordinates and
proposed a method for calculating these coefficients,
which are presently referred to as Talmi–Moshinsky–
Smirnov coefficients. By using this result, Smirnov
showed (1959–1961) that by no means does the fact
that reduced widths for cluster (for example, alpha-
particle) emission from p-shell nuclei are close to
Wigner’s single-particle limit favor the alpha-particle
model of nuclei; moreover, he proved that such val-
ues are quite compatible with the multiparticle shell
model. This theory made it possible to describe suc-
cessfully and to predict a wide variety of experimental
data.

In 1966–1968, Smirnov and his colleagues pro-
posed the method of quasielastic electron knockout
by a fast electron [(e, 2e) reactions] at energies of
about 10 to 50 keV from atoms, molecules, and solid
bodies. This was an extremely successful example
of extending experience gained in nuclear physics
[(p, 2p) reactions at energies of about 500 MeV] to
a different region. An experimental implementation
of this method in several countries made it possible
to “feel” (via measuring respective momentum dis-
tributions), for first time, various individual electron
orbitals and to test, at this level, which is the most
adequate, theHartree–Fock method, as well as to ex-
plore, bymeans of (γ, 2e) and (e, 3e) experiments per-
formed in the double- and triple-coincidence modes
(such experiments were also proposed by Smirnov
and his colleagues), electron–electron correlations
in various multielectron systems. Many experimental
and theoretical studies have been conducted in this
field as well.

Finally, Smirnov and his colleagues obtained an
outstanding result in the realms of group-theory
methods in quantum physics. They developed a
universal method of projection operators (currently
c© 2005 Pleiades Publishing, Inc.
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known as Asherova–Smirnov–Tolstoy projection
operators) for all semisimple Lie groups. This method
makes it possible to construct efficiently wave func-
tions for quantum systems possessing preset symme-
try properties. A complete and consistent mathemat-
ical theory of the SU(3) spin (including respective
Clebsch–Gordan and Racah coefficients) was con-
structed for the first time by thismethod. Smirnov and
his colleagues also applied the method in question
to quantum Lie algebras, which form a very rapidly
developing field of investigations.

At seventy, Smirnov continues his studies vigor-
ously. He writes articles (in particular, in Physics of
Atomic Nuclei) and reviews and discusses modern
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 9 200
scientific problems with colleagues and disciples. It
is a pleasure for us to wish Smirnov good health,
prosperity to him and his relatives, and many years
of creative activity.

R. M. Asherova, V. V. Balashov,
L. D. Blokhintsev, G. Ya. Korenman,

V. V. Kukulin, D. E. Lanskoı̆,
V. I. Man’ko, V. G. Neudatchin,

I. T. Obukhovsky, I. M. Pavlichenkov,
V. N. Pomerantsev, V. P. Popov,
V. N. Tolstoy, A. M. Shirokov,

and Yu. M. Tchuvil’sky
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FUTURE PUBLICATIONS
Production ofΩscbscbscb Baryons in Photon–Photon Collisions
S. P. Baranov and V. L. Slad

Methods for calculating the total and differential cross sections for the production of Ωscb baryons in
photon–photon collisions and the results that these methods produce are described.

Charge Asymmetry in the Photoproduction of Charmed Mesons
A. V. Berezhnoy and A. K. Likhoded

Within the perturbative-recombination model, the charge asymmetries in theD∗+ −D∗−,D∗0 −D∗0, and
D+

s −D−
s yields are estimated under the kinematical conditions of the COMPASS experiment. Corrections

that arise owing to the mass of a light quark in a charmed meson are taken into account. The yield of D+
s

mesons is predicted to be large in relation to the yield ofD−
s mesons.

Gauge-Invariant Spatial Shift in Calculating a Color Axial Anomaly
I. T. Dyatlov

A nonsinglet axial anomaly is calculated for the case where the interaction of fermions with a non-Abelian
gauge field is regularized by means of a coordinate shift according to Schwinger. The methods used makes
it possible to obtain a covariant expression for the anomaly directly from the effective action for the field. The
anomaly in question was calculated many times by numerous different methods, but the application of the shift
method to this problem (from the study of W. Bardeen in 1969) led to the result only through a number of
intermediate stages and additional subtractions of specially chosen polynomials of fields.

Solving Faddeev–Merkuriev Equations within the JJJ-Matrix Approach:
Application to Coulomb Problems
S. A. Zaitsev, V. A. Knyr, and Yu. V. Popov

Within the J-matrix method for solving Faddeev–Merkuriev three-particle differential equations, a version
is proposed that makes it possible to take into account the full spectrum of the two-particle Coulomb
subsystem. Laguerre functions are used as a basis in which the total wave function for the problem being
considered is expanded. In order to test the efficiency of the proposed method, the differential cross section for
a single ionization of a helium atom is calculated for the case where the emerging He+ ion remains in an excited
state. The result is in satisfactory agreement with experimental data both in magnitude and in the shape of the
respective curve.

Neutrino Corona of a Protoneutron Star and Analysis of Its Convective Instability
V. S. Imshennik and I. Yu. Litvinova

A numerical solution to the problem of the structure of the neutrino corona of a protoneutron star that is
formed upon an star-iron-core collapse, which is peculiar to all massive stars at the end of their thermonuclear
evolution, is given. The structure of a neutrino corona, which is semitransparent to neutrino radiation from the
spherical envelope between the neutrinosphere and the front of the accretion shock wave, is determined by a set
of ordinary nonlinear equations of spherically symmetric neutrino hydrodynamics with allowance for a full set of
beta processes in a Boltzmann gas of free nucleons and an ultrarelativistic Fermi–Dirac electron–positron gas
that form neutrino-corona matter. The problem of consistently taking into account nonequilibrium neutrino-
absorption and neutrino-emission processes and the problem of formulating boundary conditions for a neutrino
corona were the main problems in constructing the numerical solution in question, which was obtained by
means of a dedicated algorithm. The problem at hand features a number of parameters: the protoneutron-
star mass, М0; the rate of accretion of the outer layers of the collapsing star being considered, М̇0; the
1063-7788/05/6809-1618$26.00 c© 2005 Pleiades Publishing, Inc.
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effective temperature of the neutrinosphere and the effective neutrino chemical potential there, Тν eff and ψν eff,
respectively; and, finally, the total neutrino emissivity of the neutrinosphere, Lνν̄ . Two of these parameters, М0

and Lνν̄ , are varied within broad intervals in accordance with the hydrodynamic theory of a collapse. On one
hand, the numerical solutions constructed in the present study give an idea of the physical conditions in the
immediate vicinity of a protoneutron star in the course of its continuing gravitational collapse; on the other
hand, they make it possible to obtain exhaustive information about its convective instability, which is the most
important property of a so-called soundless collapse—that is, a collapse not accompanied by an explosion on
the supernova scale. The increment of development of a convective instability is obtained at a linear stage,
this giving sufficient grounds to introduce the hypothesis that the instability in question plays a key role in
the origin of observed gamma-ray bursts. More precisely, these bursts may result from the development of the
instability at the subsequent nonlinear stage, which has yet to be studied theoretically—in particular, on the
basis of non-one-dimensional numerical models of neutrino hydrodynamics.

Nucleus–Nucleus Scattering in the High-Energy Approximation and Optical Potential
in the Folding Model

V. K. Lukyanov, E. V. Zemlyanaya, and K. V. Lukyanov

A microscopic complex folding-model potential that reproduces the scattering amplitude of Glauber–
Sitenko theory in its optical limit is obtained. The real and imaginary parts of this potential are dependent
on energy and are determined by known data on nuclear-density distributions and on the nucleon–nucleon
scattering amplitude. For the real part, use is also made of a folding-model potential obtained with effective
nucleon–nucleon forces and with allowance for nucleon exchange. Three forms of semimicroscopic optical
potentials where the contributions of the inputs—that is, the real and the imaginary folding-model potential—
are controlled by adjusting two parameters are constructed on this basis. The efficiency of these microscopic
and semimicroscopic potentials is tested by means of a comparison with the experimental differential cross
sections for the elastic scattering of heavy ions 16O on nuclei at an energy of E ∼ 100 MeV per nucleon.

Noncompact Quantum Algebra uq(2, 1)uq(2, 1)uq(2, 1): Intermediate Discrete Series of Unitary Irreducible
Representations

Yu. F. Smirnov, Yu. I. Kharitonov†, and R. M. Asherova

Unitary irreducible representations of the uq(2, 1) quantum algebra that belong to an intermediate discrete
series are considered. A q-analog of theMikelson–Zhelobenko algebra is developed. Use is made of theU basis
that corresponds to the uq(2, 1) ⊃ uq(2) reduction. Explicit expressions are obtained for the matrix elements
of generators in this basis. An operator is found that projects an arbitrary vector onto the extremal vector for a
representation from this series.

Nontraditional Role of Interparticle Forces in QuantumMechanics

A. I. Steshenko

A quantum-mechanical model for systems of interacting bodies that takes into account noncommutativity
of the operators of coordinates andmomenta of different particles and correlation equalities for the uncertainties
of these quantities is considered. Here, the noncommutativity of these operators is due to the effect of
interparticle forces and arises as a natural generalization of the usual commutation relation between the
coordinate and momentum operators for a single particle. The efficiency of the model is proven by calculations
for systems known in atomic and nuclear physics.

† Deceased.
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 9 2005
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A Study of the Nuclear-Medium Influence on the Production of Neutral Strange Particles
in Deep-Inelastic Neutrino Scattering

N. M. Agababyan, V. V. Ammosov, M. Atayan, N. Grigoryan, H. Gulkanyan, A. A. Ivanilov, Zh. Karamyan,
and V. A. Korotkov

The influence of nuclear effects on the production of neutral strange particles (V 0) is investigated using data
obtained with the SKAT propane–Freon bubble chamber irradiated in a neutrino beam (withEν = 3−30GeV)
at the Serpukhov accelerator. The mean multiplicity of V 0 particles in nuclear interactions, 〈nV 0〉A = 0.092 ±
0.010, is found to exceed significantly that in “quasideuteron” interactions, 〈nV 0〉D = 0.063 ± 0.013. The ratio
ρV 0 = 〈nV 0〉A/〈nV 0〉D = 1.46 ± 0.23 is larger than that for π− mesons, ρπ− = 1.10 ± 0.03. It is shown that
the multiplicity gain of V 0 particles can be explained by intranuclear interactions of product pions.

Mass and Decays of Brout–Englert–Higgs Scalar with Extra Generations
J.-M. Frère, A. N. Rozanov, and M. I. Vysotsky

The upper bound on the mass of the Brout–Englert–Higgs scalar boson arising from radiative corrections
is not stable when the Standard Model is extended to include nondecoupling particles. In particular, additional
generations of fermions allow for a heavier scalar. We investigate how the branching ratios for scalar-boson
decays are affected by the opening of new channels.

Antineutrino Background from Spent-Fuel Storage in Sensitive Searches for θ13

at Reactors
V. I. Kopeikin, L. A. Mikaelyan, and V. V. Sinev

Sensitive searches for antineutrino oscillations in the atmospheric-mass-parameter region, much dis-
cussed in recent years, are based on an accurate comparison of the inverse-beta-decay positron spectra
measured in two (or more) detectors, far and near, positioned, for example, at about 1000 and 100 m from
the reactor(s) used. We show that antineutrinos emitted from the stored irradiated fuel can differently distort
the soft part of the positron spectra measured in the far and near detectors, thereby mimicking (or hiding) an
oscillation signal.

Coulomb Deexcitation and Nonresonant Charge Exchange of Muonic Hydrogen
in Mixtures of Hydrogen Isotopes

A. V. Kravtsov and A. I. Mikhailov

The process of inelastic collisions of excited muonic hydrogen is considered within the asymptotic theory
of nonadiabatic transitions. The Coulomb deexcitation and charge-transfer rates are calculated in the energy
range 0.001–100 eV with allowance for the electron-screening effect for excited states in the range n = 3−10
for various isotopic configurations.

Experimental Study of Direct Photon Emission in the DecayK− → π−π0γK− → π−π0γK− → π−π0γ
with the ISTRA+++ Detector

V. A. Uvarov, S. A. Akimenko, V. N. Bolotov, G. I. Britvich, K. V. Datsko, V. A. Duk, A. P. Filin, A. V. Inyakin,
V. A. Khmelnikov, A. S. Konstantinov, V. F. Konstantinov, I. Y. Korolkov, S. V. Laptev, V. M. Leontiev,

V. P. Novikov, V. F. Obraztsov, V. A. Polyakov, A. Yu. Polyarush, V. I. Romanovsky, V. M. Ronjin, V. I. Shelikhov,
N. E. Smirnov, O. G. Tchikilev, and O. P. Yushchenko

The branching ratio in the charged-pion kinetic energy region between 55 and 90 MeV for direct photon
emission in the decay K− → π−π0γ was measured by using in-flight decays detected with the ISTRA+
setup operating in a 25-GeV/c negative secondary beam of the U-70 PS. The value of Br(DE) = [0.37 ±
0.39(stat.)± 0.10(syst.)]× 10−5, which was obtained from an analysis of 930 completely reconstructed events,
is consistent with the average value of two stopped-kaon experiments, but it differs by 2.5 standard deviations
from the average value of three in-flight-kaon experiments. The result is also compared with recent theoretical
predictions.
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 9 2005
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